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ABSTRACT 
 
 
The book, introduces entropy functional, defined on a controllable random process, 

which serves as the random process’ integral information measure, while Shannon’s 
information measure is applicable for the process’s selected states.  

The random process’ information dynamics is studied by establishing an information path 
functional (IPF), which, using a variation principle (VP), allows both approximating the 
entropy functional with a maximal functional probability and finding dynamic trajectories of 
the random microprocess as its macroprocess.  

The IPF mathematical formalism connects the controlled system’s randomness and its 
dynamic regularities by the informational macrodynamics’ (IMD) equations for both 
concentrated and distributed systems, which describe a system of the information dynamic 
macroprocesses, generated by random observations.  

The IMD provides modeling of a controlled random system by its dynamic macromodel 
for a disclosure of the system's information regularities, expressed by the VP.  

The modeling includes the discrete intervals of the process’ observation with the 
identification of the macromodel VP extremal’s sequence (segments), and a potential model’s 
renovation (between the VP extremal segments).  

The VP information invariants present both dynamic and information measures of each 
IPF extremal segment.  

The invariants allow the process’ simple encoding by applying the the IPF or Shannon 
information measure.  

The optimal controls, implementing the VP for the process’ integral functional, connect 
the process exremal segments into a dynamic chain, which is encoded into the process’ 
information network.  

Connecting the extremal segment of multi-dimensional process into a cooperative chain 
is accompanied by its states consolidation, which reduces the number of the model 
independent states.  

These allow grouping the cooperative macroparameters and aggregating their equivalent 
dimensions in an ordered hierarchical information network (IN), built on a multidimensional 
spectrum of the systems operator, which is identified during the VP minimax principle a real-
time optimal motion.  

The IN synthesis, based on the VP minimax principle, includes the operator eigenvector’s 
ordered arrangement and their aggregation in the elementary cooperative units.  
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An optimal aggregation, satisfying both a minimal IPF local path to each cooperating unit 
and a stability of the formed cooperative unit, leads to assembling the extremal segments’ 
spectrum sequentially into the IN elementary nodes, composed by a pair of eigenvectors 
(doublets) and/or by their triple (triplets)-as a maximal elementary unit.  

The triple cooperation is also able to deliver an elementary quantity of the information 
contribution, measured by the above information invariants, as the IN elementary triplet’s 
code word.  

The IN is formed by ordering and adjoining of the cooperated nodes, which finally 
move to a single IN ending node, being encoded by the same elementary code word.  

This allows both encoding the initial random process in the IN ordered hierarchical 
macrostructure and compressing the process’ encoded information into the IN final node.  

The computer procedure, based on the above mathematical formalism, includes the 
object's identification, combined with optimal control's synthesis, process' consolidation in 
the cooperative dynamics, and building the IN.  

The introduced concept and measure of macrocomplexity (MC) arises in an irreversible 
macrodynamic cooperative process and determines the process components’ ability to 
assemble into an integrated system.  

MC serves as a common indicator of the origin of the cooperative complexity, defined by 
the invariant information measure, allowing for both analytical formulation and computer 
evaluation.  

The MC of the IN optimal cooperative triplets’ structure is measured by the triplet code, 
which provides the MC hierarchical invariant information measure by both its quantity and 
quality. MC presents a computable complexity measure of a cooperative dynamic irreversible 
process, as an opposite to the Kolmogorov complexity’s incomputability.  

The bi-levels renovated macromodel embraces the regularities of the evolutionary 
dynamics, such as creation of an order from stochastics, evolutionary hierarchy, stability, 
adaptive self-controls and a self-organization with copying information and a genetic code.  
The equations’ regularities follow from the informational path functional’s VP as a 
mathematical law of evolution, which is capable of a prognosis of the evolutionary 
dynamics and its specific components: evolution potentials, diversity, speed, and genetic 
code.  

Book also studies some physical analogies related to the information path functional, 
including its connection to Feynman’s path functional, Schrödinger’s equation, and 
Irreversible Thermodynamics.  

Process of Cognition, formalized by a minimization of observed process’ uncertainty, is 
described by a piece-wise sequence of the VP dynamic macromodel’s externals, identified 
during observation and built to maximize a reception of information. 

The developed computer-based methodology and software were practically used for 
systems modeling, identification, and control of a diversity of information interactions in 
some physical (technological) and non-physical (economical, information-biological) objects.  

The book on Information Path functional is published for the first time. 
 



 

 
 
 
 
 
 
 
 
 

PREFACE 
 
 
 
 

“Mathematics Is More Than Just A Language- It Is Language Plus Logic” 
R. Feynman 

 
“A new logical basis for information theory as well as probability theory is proposed, based 

on computing complexity”. 
A.Kolmogorov (the theory author) 

 
This book introduces an information path functional as a basic information measure of a 

random process, whereas Shannon’s information measure is applicable to the process’ states.  
The book’s mathematical formalism uses a variation principle (VP) for the path 

functional to find the process’ dynamic trajectories as the VP extremals and to get the 
process’ dynamic equations in the informational macrodynamics (IMD). 

The information path functional, defined on a controlled random process, extends the 
obtained dynamic macromodels on a wide class of the control information systems. This 
allows modeling (identification) of a controlled random system by its dynamic macromodel 
for a disclosure of the system's information regularities, expressed by the VP. 

The developed mathematical formalism connects the controlled system’s randomnesses 
and dynamic regularities by the IMD equations, which describe a system of the information 
dynamic macroprocesses, generated by random observations.  

The book’s path functional, its VP and the IMD present a new approach to dynamic 
information modeling, applied to a functional on trajectories of a random process and its 
relation to the random process' entropy functional. 

This book focuses on the mathematical roots of informational macrodynamics and the 
recent applications; while broader IMD basics were considered in the author’s other books 
and research papers (please see the References). 

The book consists of two parts. 
Part1 contains the foundation of the information path functional and the variation 

principle with the IMD dynamic model. 
In ch.1.1 we introduce the initial mathematical models of the controlled random 

(microlevel) processes in the forms of a controlled stochastic equation and a random 
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information (entropy) functional, defined on the microlevel process, and present a class of the 
considered dynamic macroprocesses.  

In ch.1.2 we provide the probabilistic evaluation of the micro- and macrolevel processes, 
using the probabilities of the processes’ proximity via the process trajectories’ metrical space 
distances.  

Applying these probabilities, we formulate the problem of dynamic approximation of the 
random information functional by the information path functional (IPF), determined through 
the parameters of the initial stochastic equation. This leads to a variation problem as an 
extreme of the path functional with a dynamic constraint, defined by a maximal closeness of 
the microprocess’ conditional entropy functional to the path functional at the 
macrotrajectories. The constraint establishes a connection between the micro- and 
macroprocesses. The functional’s structure and the constraint bring the nontraditional 
solutions of both the extremal’s and the control synthesis’ problems.  

Using both Pontryagin’s maximum principle and Lagrange’s methods of eliminating 
constraints, we find in ch.1.3 the solution to the variation problem in the form of a dynamic 
macromodel and the specified equation of constraint, binding the dynamics and stochastics. 
The solution determines the piece-wise extremal segments, where the macrodynamics act, 
and the “windows” between the segments, where the microlevel’s random information affects 
the macrolevel dynamics. We use the connection of the micro- and macroprocesses to identify 
the macromodel operator via the observed random processes, in particular, by measuring and 
computing the corresponding covariation (correlation) functions.  

We also solve the corresponding Bolza problem for optimal control synthesis.  
We obtain a discrete function for the optimal regular control, applied at each extremal 

segment, and the optimal “jump” function for the optimal “needle” control, applied between 
the segments and thereby connecting them.  

These controls allow us to build a procedure for optimal control synthesis combined with 
macromodel identification during the optimal control’s action along each extremal. Because 
the above controls also stick the extremals, they sequentially consolidate the extremals (of an 
initially multi-dimensional process) into a process’ cooperative structure. By this chapter’s 
end we summarize the formal results of chs.1.1-1.3, establishing the IMD math foundation, 
applied for information modeling of a random concentrated system.  

Ch. 1.4 introduces the space-time distributed entropy’s functional in a random field and 
the basic path functional’s distributed dynamic models (with fixed space coordinates) by the 
solution of Euler-Ostrogradsky equations for the functional's extremals. These models define 
the primary macroequations in partial deviations (PDE) of a distributed system. Then we 
consider a family of the space coordinates' transformations with the invariant condition 
imposed on the IPF. Searching for the VP's natural limitations, we obtain the IMD extreme 
model, defined on the admissible space coordinates' variations, which satisfies these 
transformations. Applying the Noether theorem, we get sufficient conditions for the 
invariance of the functional at the above transformations and the general forms of the PDE 
models in a mobile evolving space coordinate system. The invariant conditions bring an 
additional differential constraint to that, imposed by the IPF’s VP on the distributed 
macromodel.  

We obtain the IMD controllable distributed macromodel with the optimal controls, 
operating on space-time discrete intervals, which are found from Erdman-Weierstrass' 
conditions. We study the IMD macromodel’s singular points and the singular trajectories; the 
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IPF natural variation problem, singular trajectories’ control functions, and the field’s 
invariants for the IPF. 

In Ch.1.5, analyzing the time-space movement toward the macromodel's cooperation, we 
use the obtained results for building the information cooperative network (IN). The IN nodes 
integrate the information time-space macromovement along a sequence of extremal segments. 
The IN dynamic and geometrical structures are studied by applying the VP information 
invariants, following from the solution of the variation problem. The optimal IN nodes’ 
cooperation, satisfying to the VP, leads to forming a set of triplet’s nodes substructures, 
which are sequentially enclosed according to the IN hierarchy.  

In ch.1.6 we examine the model phenomena and the process’ information contributions 
into the IN triplet’s hierarchy, evaluate both the model’s reversible and irreversible time 
courses. We analyze the model information cellular geometry and its genetic information 
code, generated by the control processes and the IN triplet’s hierarchy. This code, being a 
specific for each system, is memorized on a double spiral cellular time-space trajectory, 
generated by the IN triplets during the optimal control process.  

The optimal triple digital code encloses the IN time-space hierarchy of the macromodel’s 
cooperating nodes. The chapter results specify the macromodel’s information geometry and 
its connection to macrodynamics. The path functional’s integrated information is revealed 
through a decoded finite set of the extremal segments, assembled into the IN, which had been 
encoded by the triplet code. 

In ch.1.7 we study the cooperative macrodynamic complexities (MC), which determine 
the process components’ (in particular, the segments’) ability to assemble into an integrated 
system in the cooperative informational dynamics.  

We introduce the MC notion and the invariant information measures, allowing for both 
the complexities’ analytical formulation and computer evaluations. Exploring the formal 
multi-cooperative mechanism of the IN, we establish the MC hierarchical invariant 
information measure by the quantity and quality in the triplet code.  

We also consider the MC complexity’s connections to Kolmogorov’s complexity 
measures. Applying the information geometry’s space equations, we determine an intensity of 
information attraction in the cooperative dynamics and its connection to the MC complexity. 

Ch.1.8 studies the regularities of evolutionary dynamics and the mathematical law of 
evolution, following from the application of the variation principle for the informational path 
functional.  

The law, applied to Darwinian evolutionary theory, embraces the following bio-
regularities’ information forms: creation of an order from stochastics via the evolutionary 
dynamics, described through the gradient of dynamic potential, local evolutionary speeds, and 
the evolutionary conditions of a fitness; evolutionary hierarchy, stability, potential of 
evolution; adaptive self-controls and a self-organization with a copying of information and a 
genetic code. We show that the VP single form of information law, which defines the above 
regularities, is capable of a prognosis of the evolutionary dynamics and its specific 
components: potentials, diversity, speed, and genetic code. 

In ch.1.9 we study some physical analogies related to the information path functional, 
including its connection to Kolmogorov entropy, Feynman path functional, Schrödinger 
equation, and Irreversible Thermodynamics.  

We also analyze information description for both superimposition and the controls by 
revealing the information mechanism of the cross phenomena. 
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Part 1 is aimed at establishing the IPF mathematical formalism, describing information 
regularities, the IMD explicit dynamic features and information mechanisms, following from 
the regularities’ general VP form.  

In part 2, the formalism is applied to the information modeling of complex systems with 
examples, studying the information regularities of control systems and the processes’ 
regularities from biology, technology, and economics.  

The first goal of part 2 is to show how these regularities, features, and the information 
mechanisms work in different areas of applications.  

The second goal is to show that most of the applications’ specific regularities (being 
known and unknown), studied in the particular branches of science, actually are the concrete 
realizations of the general information regularities and the IMD mechanisms of their 
revealing. These results are important for the regularities’ understanding and practical use.  

Ch.2.1 provides the IMD solution of the control problems for a complex system, applied 
for the system’s joint  identification, optimal control, and consolidation.  

The studied in chs. 2.2-2.4 information complex systems embrace the case pattern from 
biology, technology, and economics, which include:  

 
- the information modeling of the encoding-decoding processes, the structure of the 

information network and its code, applied to biological and cognitive systems;  
- information modeling and control of some industrial technology processes with 

complex superimposing phenomena; and  
- the application of the information modeling approach to an elementary market 

macroeconomic system. 
 
All applications focus on disclosing of the information regularities of a studied object 

using the IMD equations and exploring their specific features for each considered object.  
The model’s formalism provides a tool for developing a computer-based methodology, 

and the programs (ch.2.5), which have been applied toward the solutions to the problems of 
information modeling, identification, optimal control, and consolidation for a wide diversity 
of complex systems.  

The book’s essentials consist of not only presenting a new theory of the information path 
functional, but also bringing this math theory up to very practical implementations, allowing 
the solution of actual problems in biology, technology, economics, and other considered 
applications.  

The book style is directed on the initiation and keeping of the audience interest in this 
new interdisciplinary information science, which enhances both theory and computer 
applications.  

The book starts with basic mathematical statements, followed by their examination and 
assessments in the comments and in subsequent conceptual reviews.  

The book’s mathematical results are motivated by means of their potential applications.  
The author developed this approach between the years of 1960-1980 using physical 

models and applying them to technological systems (the References [R], published in 
Russian, reflect a history of the approach). 

The book utilizes the author's scientific and practical experience of more than 40 years. 
The main research and academic results have been published in more than 250 scientific 
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articles and 6 books, which contain different parts of the developed formalism and its 
applications.  

The author has taught the course “Information Modeling” for graduate students at the 
University of California at Los Angeles (UCLA) and at West Coast University. Based on the 
formalism applications, some new advanced courses were given at UCLA and WCU, such as 
“Information Systems Analysis”, ”Advanced Artificial Intellect”, and “Dynamic Cognitive 
Modeling”.  

This book would be interesting for scholars, researchers, and students in applied 
mathematics, mathematical modeling and control, information and computer sciences, 
engineering, biology, and economics, as well as other interdisciplinary fields.  

Specifically, part 1(chs.1.1-1.2, 1.3-1.4) would be interesting for a reader who wants to 
understand the basic mathematical formalism, which is an essential attribute of dynamic 
information modeling mechanisms and their correctness. 

The reader interested only in an essence of the formalism and its conceptual 
understanding may start reading the book from sec.1.3.5 (by omitting the proofs in chs.1.2-
1.3) and then continue with the practical applications in part 2. 

The author addresses this book not only to scholars and scientists, but also to curious and 
searching minds trying to understand a modern World of Information and Uncertainty.  

This book provides new ideas for both the theory of the novel path information functional 
and its applications, which allow the solution of actual practical problems in many areas 
where other related methods do not work.  

The results are practically implemented on real objects and demonstrated by the book 
examples. 

Regarding the book’s formulas and references: Only the book's formulas, cited outside of 
the part and/or chapter's references, start with part numbers, for example 1.4 for part 1, 
chapter 4. Within each chapter we use a sequential numbering of formulas starting with the 
chapter number, and apply them only for the inside references. The same principle we apply 
also to all figures; the cited references are also related to the corresponding chapters.  
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INTRODUCTION 
 
 
 
The main subject of this book is mathematical formalism, describing the creation of the 

dynamic and information regularities from stochastics.  
The formalism is based on the introduction of an informational path functional (IPF) via a 

dynamic approximation of the entropy functional (EF), defined on trajectories of a controlled 
random process.  

Using a variation principle with its dynamic constraint, connecting both EF and the IPF, 
we find the IPF extemals, allowing a dynamic approximation of the random process.  

The solution provides both the information dynamic model of a random process and the 
model of optimal control in the forms of differential equations of informational 
macrodynamics (IMD).  

This allows building of a two-level information model with a random process at the 
microlevel and a dynamic process at macrolevel. 

Considering a variation principle (VP) as a mathematical form that expresses some 
regularity, it is assumed that the VP extremals, represented by the solutions of the above 
dynamic model, describe a movement possessing these regularities.  

Such an approach has been used by R. P. Feynman, who introduced the functional on 
trajectories of an electron’s movement and applied the variation principle for this path 
functional to obtain the equations of quantum mechanics.  

The same way, we use the IPF and its VP to obtain the IMD equations. 
Feynman’s path functional is defined on the dynamic trajectories and has not been 

applied to random trajectories of a controlled process.  
For an observed multi-dimensional random controllable process, affected stochastic 

perturbations, the mathematical results related to the information path functional (IPF), as 
well as the variation principle and the following dynamic model have been unknown.  

For the IPF we use Shannon’s definition of quantity of information applied to the 
functional probability on the process’ trajectories. 

The path functional’s connection to information theory allows bringing a common 
information language for modeling the micro-macro level’s processes and their regularities in 
diverse interdisciplinary systems.  

For a wide class of random systems, modeled by the Markov diffusion process, and a 
common structure of the process’s information path functional, this approach leads to a 
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broad-spectrum information structure of the dynamic macromodel, which we specify and 
identify on a particular system with the applied optimal control functions.  

Unlike the existing literature on mathematical modeling, this book introduces a unified 
mathematical-information formalism for information modeling, which includes a common 
computer-based modeling methodology, algorithms, information code, and computer 
software.  

According to the model dynamic regularities, the code arises from stochastics in a form 
of optimal double and/or triple digits, which compose an information network, formed by a 
hierarchy of the macromodel cooperating nodes. 

The formalism has been applied to the information modeling of complex systems, and 
allows revealing their information regularities, particularly, demonstrated in the book 
examples from biology, technology, and economics.  

 
The book specifics include the following key topics: 

The information path functional is found as a dynamic approximation of a random 
information functional, defined on the process trajectories, using the probabilistic evaluation 
of the Markov diffusion process by a functional of action, whose Lagrangian is determined by 
the parameters of a controlled stochastic equation.  

The optimal approximation of the system's random processes by the model's dynamic 
process leads to the minimization of their information difference, evaluated by the 
information path functional’s measure of uncertainty. This problem automatically includes 
the solution of the variation problem (VP) for the system's mathematical model, the synthesis 
of the optimal control, and the solution of an identification problem. 

The VP solution selects the functional’s piece-wise extremal segments, where the 
macrodynamics act, and the windows between the segments, where the microlevel random 
information affects the macrolevel dynamics, and the stochastic-dynamic connection takes 
place. The VP solution also automatically introduces the model piece-wise controls, which 
operate by both joining the extremals’ segments and acting along them.  

The model’s piece-wise dependency upon the observed information allow identification 
of both the controllable stochastic’s  and dynamic model’s operators in real time under the 
optimal control action. 

These controls, applied to the random process and its dynamic model, stick the 
extremals’ segments (of an initially multi-dimensional process), sequentially consolidating 
these segments into a cooperative process.  

The model segments’ consolidation leads toward the model’s compressed representation 
by the segments’ cooperative macrodynamics with the collective macrostates. This creates a 
sequence of the aggregated macrodynamic processes and the ordered macrostates, 
consolidated in an informational network (IN) of hierarchical macrostructures, which 
organizes the system's mathematical model. These macrostates, memorized by the controls, 
create the model’s genetic information code, which is able to encode the whole macromodel 
and its IN, allowing the eventual restoration of the system’s model. 

The microlevel’s ability to discretely affect the macrodynamics at the segment’s windows 
brings the model’s piece-wise dependency on the randomness, being a source of the model’s 
renovation and evolution. The consolidating extremals create the cooperative complexity of 
the evolutionary macrodynamics, initiated by the VP. 
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The book contains the following key features: 
     Revealing the dynamic regularities of a random process by applying VP to the process’ 
information functional (as a universal attribute for any natural process) automatically brings 
the dynamic constraint, imposed discretely on the random process, which allows selecting the 
process quantum states that represent both the process’ dynamics and randomness. 

The informational macrodynamics (IMD), resulting from the VP solution for the 
information path functional, create the Lagrange-Hamiltonian macromechanics of 
uncertainty, which represent an information analog of physical irreversible thermodynamics.  

The macrolevel's function of action portraits a dynamic eqiuvalent of the microlevel's 
entropy functional, which, being sufficient in the theory of dynamic systems, communication 
theory, and computer science, has not been used before.  

A "deterministic impact" of microlevel stochastics on the Hamiltonian mechanics 
changes the structure and value of the dynamic macromodel operator, carrying its dynamic 
piece-wise dependency upon observed data. The macrodynamic process is characterized by 
the discrete of time-space intervals (defined by the extremals’ segments), which are selected 
from the Hamilton's solutions and determined by the VP invariants. The discrete renovated 
operator and macrostates (at the window’s discrete points (DP)) are sources of new 
information, new properties, and the macrostructures created by the state consolidation.  

The Hamilton equations determine the reversible dynamic solution within the extremals’ 
time intervals and the irreversible solutions that emerge out of these intervals.  

The macromodel interacts with the environment at the segments’ widows when the model 
is open for external influence. The open system does not satisfy the preservation laws at the 
moments of interaction when the external environment is able to change the model structure.  

Optimal control functions are an intrinsic part of the model as an inner model's feedback 
mechanism, which is synthesized by the duplication of macrostates at the DPs during the 
optimal model's movement. These discrete controls are memorized and stored along with the 
corresponding ordered macrostates.  

The specifics of the path functional’s controls, applied at the beginning of the extremal 
segment, allows the proceeding of the segment’s operator identification under the optimal 
control action, and, as a result, leads to a joint solution of the object’s optimal identification 
and consolidation problems.  

The IPF optimum predicts each extremal’s segments movement not only in terms of a 
total functional path goal, but also by setting at each following segment the renovated values 
of this functional, identified during the optimal movement, which currently correct this goal. 
The concurrently synthesized optimal control’s actions provide a maximal Markov’s 
probability and optimal filtering of the random process. This optimal dual strategy at each 
current movement cannot be improved (even theoretically) because it defined by an extremal 
of a total path to a terminal state, which is updated at each optimal control’s action. 

The IMD system model contains the following main layers: microlevel stochastics, 
macrolevel dynamics, and a hierarchical dynamic network of information structures with an 
optimal code language for the communication and model restoration.  

The system's complex dynamics initiate unique information geometry and evolution of 
the model equations, using the functional’s information mechanisms of ordering, cooperation, 
mutation, stability, adaptation, and the genetic code.   

In the formalism’s applications, the information modeling’s unified language and 
systemic categories, such as information entropy, the VP information Hamiltonian and 
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invariants, quantity and quality of information, information flows, forces, and information 
complexity, are translated into the corresponding categories of energy, entropy, temperature, 
and other physical and/or computer analogies of specific systems.  

A computer implementation works directly with the real system’s information model that 
produces its information network and a code. This builds a bridge connecting mathematical 
modeling formalism to the world of information, intelligence, and information technologies, 
allowing the revelation of the common systemic information regularities across a variety of 
modeling objects, including a specific information code and complexity for each system, and 
applying the universal computer-based methodologies, algorithms and programs.  

Finally, applying the information path functional allows us to evaluate the information 
content of a random process, build its dynamic macromodel, the corresponding information 
network, and disclose the process’s information code and macrodynamic complexity. 

 



 

 
 
 
 
 
 
 
 
 
 

PART 1. 
THE INFORMATION PATH FUNCTIONAL’S 

FOUNDATION 
 
 
 
 

 





 
 
 
 
 
 

Chapter 1.0 
 
 
 

INTRODUCTION 
 
 
 
Uncovering unknown information regularities of a random process is an actual problem 

in the theory of dynamic and stochastic systems, control and system theories, theory of 
information, and physics.  

Physics studies natural processes in order to reveal their regularities, using different 
principles and methods, applied to the measurement and estimation of observed processes.  

By R. P. Feynman’s ideology [1], a measured process has to reflect some regularity of the 
observed systems. Numerous examples from physics show that regularities of deterministic 
and stochastic systems are formulated and formalized by some extremal principles: a real 
movement of a physical system represents trajectory-extremals of some functional.  

This assumes that an extremal principle can express regularities of an observed system.  

Using this approach, R. P. Feynman introduced the functional on trajectories of an 
electron’s movement and applied the variation principle for this path functional to obtain the 
equations of quantum mechanics [2]. This functional is defined on the dynamic trajectories 
and has not been applied to trajectories of a random process.  

M. Kac [3] joins the Wiener integral measure [4] with Feynman’s path integral in the 
theory of stochastic processes, providing the Feynman-Kac formula for solving the 
Schrödinger equation in statistical mechanics. Latter publications [5-12] summarize and 
extend the applications of Feynman-Kac’s results to different problems in physics and 
mathematics.  

An observed system is usually represented by a random controllable process, affected by 
stochastic perturbations.  

The mathematical results, related to stochastic control theory and theory of controlled 
Markov processes are studied by E.B. Dynkin [13], I.I.Gihman, A.V. Scorochod [14], and W. 
H. Fleming and H.M. Soner [15].  

R.L Stratonovich developed theory of the conditional Markov processes, applied to 
optimal control problems [16] and to information theory [17].  

M. I. Freidlin and A.D. Wentzell, considering the stochastic behavior of perturbed 
Hamiltonian systems [18], introduced a functional of action.  
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Other related to the path functional’s results, such as the stochastic Hamiltonian and an 
approximation of the components of diffusion processes, were published in [19, 20] 
accordingly.  

N.V. Krylov [21] used a normalized Bellman’s equation for an estimation of optimal 
stopping for the controlled diffusion process.  

The path functional’s applications to the controllable Markov processes and a process’ 
dynamic model is still unknown.  

Our aim is modeling (identification) a controlled random system by its information 
dynamic model to disclose the system's information regularities.  

We assume that a measured system's process might reveal the system regularities, serving 
for the identification of an extremal problem, expressed by the system functional.  

Because most of the unknown regularities are covered by a random environment, their 
revelation and identification involve a probabilistic evaluation of a measured control process. 

 This brings an essence of the extremal principle as an approximation of the process' 
extremals using the most probable system's trajectories.  

Identification of such a natural system’s functional (providing the exremals) theoretically 
allows us to restore the system’s model, reflecting the system’s regularities, by applying 
variation methods to this functional.  

Because modeling is based on disclosing regularities by minimizing uncertainties in the 
observed object, we may suppose that an unknown functional covers uncertainty, associated 
with the object's probabilistic description and/or with the information necessary for the 
object's measurement and identification.  

This leads to the functional's connection to information theory and to an information 
model, obtained by a minimization of such an information functional, which becomes the 
object's own (eigen) information functional.  

That is why, introducing the controllable random process (as a microlevel process), and 
an information (entropy) functional on its trajectories, the objectives consist of:  

 
(1)  finding a dynamic approximation of this functional, considered as an information 

path functional of the controllable random process; 
(2)  solving the variation (extremal) problem for this path functional to find a dynamic 

model of the controllable random process (as a macrolevel process), which, we 
suppose, will describe the process’s dynamic regularities;  

(3)  solving the control’s synthesis problem for the path functional;  
(4)  solving the problem of the identification of the dynamic model using an observable 

random process;  
(5)  finding the optimal controls solving the problem identification of the model’s 

dynamic operator under the optimal control action.  
 
Problem (1) is solved in the book chs. 1.1-1.2, solutions to problems (2-5) are considered 

in chs.1.3, 1.4 and then applied in chs.2.1, 2.2.  
Due to a lack of specific references in known literature, related to the path functional’s 

applications for the controllable random processes, the key sources for this approach are 
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provided by the Feynman-Kac results [1-3], the Freidlin functional of action [18], and the 
Stratonovich entropy functional for a diffusion Markov process [17].  

Foundation of the mathematical formalisms, describing the information regularities of the 
creation of dynamics from stochastics, requires the proofs of many problematic mathematical 
statements, which use the results from stochastic theory, the theory of dynamic systems, 
calculus of variations, thermodynamics, and information theory.  

The development and proofs of this complicated formalism took many years (see [R]), 
with a brief publication in 1989 [31].  

Unlike the following publications [32-34], containing the separate findings, this book 
brings a comprehensive and new mathematical results to the entropy functional of controlled 
Markov process, problem of dynamic modeling of a random system, and the solution of the 
system's identification, combined with optimal control's synthesis, based on the variation 
principle for information path functional.  

The chapter is organized as followings.  
In ch.1.1, we introduce the model of microlevel processes, including a controlled random 

process (as a solution of the stochastic equation with a specified class of control functions), 
the models of the disturbances, and a given (programmable) process.  

Along with the problem statement, we define a class of macroprocesses, followed by an 
extremal probabilistic approximation of the microlevel process by a macrolevel process with 
the aid of the applied control.  

We introduce an entropy functional for a controllable Markov diffusion process, describe 
the functional’s representation through the process’ additive functional and the parameters of 
corresponding stochastic differential equation.  

Then we apply the results of ch.1.1 for establishing the Jensen inequality for the entropy 
functional (sec.1.1.9), which is used for the functional estimation.  

In ch.1.2 we provide the probabilistic evaluation of the micro- and macrolevel processes. 
We define the probabilities of the processes’ proximity, using the process trajectories’ 
metrical space distances to determine the trajectories’ closeness (in C ) and a distance (in 2L ) 
accordingly.  

Applying the “functional action” approach, we express the extremal problem using the 
macroprocess’ (path) functional, determined by the parameters of the stochastic equation, and 
evaluate the above probabilities’ closeness in terms of the microprocess’ conditional entropy 
functional.  

This allows us to formulate in ch.1.3 the variation problem as an extreme of the 
macroprocess functional with the constraint, defined by a maximal closeness of the 
microprocess’ conditional entropy to the path functional at the macrotrajectories.  

This constraint establishes a connection between the micro- and macroprocesses. It is 
shown that a macrolevel process, which approximate the microlvel’s process with a maximal 
functional probability, enables minimize the entropy functional, while the extremal of the 
path functional defines a macroprocess.  

The functional’s structure and the constraint lead to the nontraditional solutions to both 
the extreme and the control’s synthesis problems.  
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Using both Pontryagin’s minimum principle and Lagrange’s methods of eliminating 
constraints, we find the solution to the variation problem in the form of a dynamic 
macromodel and a specified equation of constraint, connecting the dynamics and stochastics. 
The solution determines the piece-wise extremal segments, where the macrodynamics act, 
and the “windows” between the segments, where the microlevel’s random information affects 
the macrolevel.  

We use the connection of the micro- and macroprocesses to identify the macromodel’s 
operator via the observed random processes, in particular, by measuring and computing the 
corresponding covariation (correlation) functions.  

In sec.1.3.4 we synthesize the model optimal controls by solving the corresponding Bolza 
problem.  

We obtain a discrete function for the optimal regular control, applied at each extremal 
segment, and the optimal “jump” function for the optimal “needle” control, applied between 
the segments and connecting them.  

Existence of the widows between segments leads to dynamic model’s possibility of 
forming an optimal piece-wise control, during a real time movement at each segment, which 
is applied to the diffusion process at each of such widow.  

These controls allow the optimal control synthesis combined with macromodel 
identification, while the identification proceeds during the optimal control’s action along each 
extremal.  

Because the above controls also stick the extremals, they sequentially consolidate the 
extremals into a process cooperative structure.  

In sec.1.3.5 we summarize the chapter results and introduce the model’s information 
invariants.  
 
 



 
 
 
 
 
 

Chapter 1.1 
 
 
 

THE INITIAL MATHEMATICAL MODELS* 
 
 

1.1.1. Model of Microlevel Process  

We consider controllable random processes, as the trajectories in a Gilbert space, defined 
by the solutions of n -dimensional controlled stochastic differential equation Ito [15]: 

 
1( , , ) ( , ) , , [ , ] , [0, ] ,t t t t t sdx a t x u dt t x d x t s T s T Rσ ξ η += + = ∈ = Δ ∈ ⊂� � � �    (1.1)  

 
where ( , )t tξ ξ ω=  is an increment of a Wiener process ( , )t tυ υ ω=  during the time ( )t s−  

on the probability space ( , , )oPΩ Ψ ,ω∈Ω  with the variables located in nR ; Ω  is a space 

of random events, Ψ  is a σ -algebra on Ω ; ( )o oP P B=  is a probability measure on 

Ψ , ,B ⊂ Ψ β  is a Borel algebra in nR ; function , )(ξ ω•  is continuous on Δ ; 

)( ,tξ • : ( , , )oPΩ Ψ ( , ),, oC μυ→  ( , )nC C R= Δ  is a space of the n -dimensional, 

continuous on Δ  vector functions, υ  is a σ -algebra in C , generated by all possible 
opened sets (in C  metric), oμ  is a probability measure on υ : 

 

 ( ) { } { : ( , ) }, ,o o t oA P A P t A Aξ ω ξμ υ•= ∈ = ∈ ⊂ {ξ t ∈A}⊂ Ψ , ( ) 1o Cμ = ; (1.1a) 

η ( 1ω ) is random vector on the probability space 1 1 1( , , )PΩ Ψ , 1 1ω ∈Ω  with the 

variables in nR :  

 1 1 1: ( , , ) ( , );,n
sR Pη βΩ Ψ Ρ →  

  1 1 1 1 1 1 1 1 1( ), , ( ) { : ( ) } { },s sP P B B P P D P D P Dω η ω η= ⊂ Ψ = = ⊂ = ⊂ ,    

1 1 1 1 1, { } , ( ) { ( ) }, ;, n
sD D P x P x x Rω η η ωβ∈Ω ⊂ ∈ ⊂ Ψ = = ∈                     (1.1b)  

                                                        
* All details of the initial models are essentially important for the use in the following proves and results. 
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( , , )tx x t x η=� �  is a random process, considered on a family of the probability spaces 

( , , )xPΩ Ψ , or on the probability space 11 11( , , )PΩ Ψ with the variables in nR ; 

Px = Px(B)  is a is a family of probability measures on , BΨ ⊂ Ψ , depending on nx R∈  

with the probability ( );sP x 0 ,o xP P ==  
 

 11 11 11 11 11 11( , ), , , , ,nx R B Dω ω ω β= ∈Ω Ω = Ω× Ψ = Ψ× × ⊂ Ψ  
  

( )P B D× is a probability measure on 11Ψ , which, following the Markovian property, 
satisfies the equation

 
 

( ) ( ) ( )s x
D

P B D P dx P B× = ∫ . (1.1c) 

 

For ( , , )xPΩ Ψ  and 11 11( , , )PΩ Ψ  we have accordingly: 

 
11 11, ,( , ) : ( , , ) ( , ), ( , ) : ( , , ) ( , ),, ,x xx t P C x t x P Cη μ μυ υ• •Ω Ψ → Ω Ψ →� �      (1.1d) 

 
where ( )x x Aμ μ= ,μ = μ(A)  are the probability measures on υ , A υ⊂ , which, for the 

process tx� , in both cases, correspond to the equalities: 
 

,( ) { } { : ( , ) },{ ) ,x x x t x tA P x A P x t A x Aηωμ μ •= = ∈ = ∈ ∈ ⊂Ψ� � �     (1.1e) 

  
11 11,( ) { } { : ( , ) },{ ) }, ( ) ( ) 1.t x t xA P x A P x t x A x A C Cωμ μ μ μ•= ∈ = ∈ ∈ ⊂ Ψ = == � � �  

 

Function of diffusion 1( , ) ( ( , ))n
ij ijt x t xσ σ ==  is a nonsingular 

operator, defined on nRΔ×  with the values from space ( , )n nL R R  of linear 

operators in nR : 
 

1 1

( , ) : ( , ),det ( , ) 0, ( , ) ,
( , ) ( , ),

n n n n

n
ij

t x R L R R t x t x R
t C R R

σ σ

σ •

Δ × → ≠ ∀ ∈Δ×

∈
     (1.2)  

 
where function 1 1( , ) ( , )o

ij x C Rσ • ∈ Δ is a continuous differentiable everywhere on Δ , 

possibly excluding my be the set 1{ }m
k kτ = : 1 |{ }o m

k kτ =Δ = Δ .  

Function of shift: ( , , ) ( , )ua t x u a t x=  is a controllable vector, defined on nR UΔ× × , 

,rU R r n⊂ ≤  with variables in nR , function :u n na R U RΔ × × →  is a continuous 

differentiable by nx R∈ , ˆu U∈ , ˆ intU U=  and has the bounded second derivatives by 
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each of the indicated variables; at fixed ( , )x u U∈Δ× , function ( , , )a x u•  is a continuous 

on Δ  and is a continuous differentiable function on oΔ : 
1 1 ˆ( , , ) ( , ), ( , , ) ( , ),n n na t u C R R a t x C U R• •∈ ∈    

1 1( , , ) ( , ) ( , ) ( , )n o n na x u C R C R KC R• ∈ Δ Δ = Δ∩ .                                            (1.2a) 

1.1.2. Model of the Macrolevel Process  

Model of the macrolevel process is a set of trajectories tx =
def

x ( t ,η ) in the space state 

with the initial conditions sx =η  being averaged by ( , , oPΩ Ψ ) and therefore independent on 

ω∈Ω :  
 

1 1: ( , , ) ( , ), ( , ) ( , ) ( , )(mod ),
def

n n n n
t sx R P R x x KC R C R Pβ β •Δ × → ∈ Δ ⊂ Δ  

 
  (1.3) 

where KC1 is a space of continuous piece-wise differentiable on Δ , n -dimensional vector-
functions.  

1.1.3. The Feedback Equation-Control Law  

Control (ut ) is formed as a function of time and macrovariables ( tx ), which had 

averaged by (Ω,Ψ, Px ) , becoming the nonrandoms with respect to set 11Ω .  

This control, acting on the object, moves ( )tx u� toward tx .  

The control law is defined by the following feedback equation: 
 

( , ), : ( ) , ( ),
def

r r
t tu u t x u R U U Rβ= Δ × → ∈                                                         (1.4) 

 

where tx  satisfies (1.3), ( )rRβ is a Borel algebra in Rr , r ≤ n .  

At a fixed x ∈Rn , function ( , )u x• is a piece-wise continuous by t ∈Δ , and at fixed 
t ∈Δ , function ( , )u t •  is a continuous differentiable and has the limited second derivatives 
by x ∈Rn : 

 
1 1, ( , ) ( , ), ( , ) ( , ); , ( , ) ( , ).n o nx R u x KC U u x C U t u t C R U• • •∀ ∈ ∈ Δ ∈ Δ ∀ ∈Δ ∈ (1.4a) 
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The fulfillment of equations (1.3), (1.4), (1.4.a) defines ut  as a piece-wise continuous 
function:  

 

 
( , ), lim ( , ), lim ( , ), 0,..., ,

k k
k k

def def

t t o t o
u KC U u u t x u u t x k mτ ττ τ+ −→ + → −
∈ Δ = = =

 

 1, 0, (mod ),k o m T Pτ τ τ∈Δ = =  (1.5) 

 

where KC(Δ,U)  is a space of the piece-wise continuous on Δ  functions, defined with 

probability P1 =1. 
From (1.2), (1.2a) it follows that the Lipschitz conditions, the linear growth by  

x ∈Rn , and the uniformity with respect to ( t ,u )∈Δ × U are satisfied with necessity, and 
limitations (1.4a) are correct.  

Therefore, according to [22], solution (1.1) exists, is unique on (Ω,Ψ, Px )  and 
11 11( , , )PΩ Ψ , and the moments of different orders at these spaces exist. 

Vector ( , , ) ( , )ua t x u a t x= of the stochastic equation in physical problems defines a 
macroscopic speed of a medium (with the diffusing Brownian particles), which has the 
meaning of a regular flow:  

 

 / ( , ), .u
t t sdx dt a t x x η= =  (1.6) 

 
Matrix σ =σ ( t , x ) characterizes the peculiarities of a medium to conduct flow (1.6).  

Functions ˜ x t , x t  define the micro-and macrolevel's processes. Their values ˜ x , x  at the fixed 
moments of time define the vectors of micro-and macrostates of object (1.1).  

The variables, measured by some physical instruments, are represented by vector x . 

1.1.4. Model of Programmable Trajectories (as a Task) at 
Microlevel 

Model of programmable trajectories (as a task) at microlevel is given by process ˜ x t
1  that 

satisfies the corresponding stochastic equation  
 

 
1 1 1 1 1 1 1 1 1( , ) ( , ) , , ( , , ),t t t t s tdx a t x dt t x d x x x tσ ξ η ω η= + = =� � � � � �     (1.7) 

 

and the relations analogous to (1.1a-1.2): 
 

1 1 1 1 1 1( ) : ( , , ) ( , );,n
sR Pη η ω β= Ω Ψ Ρ →

1 1 1 1 1 1 1 1 1 1 1 1( ) ( ) { : ( ) }, ( ) { ( ) },s s sP P D P D P D P x P xη ω η ω η ω= = ∈ = ∈ = =  
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1 1 1 1 11 11 1( , , ) : ( , , ) ( , ), ( , , ) : ( , , ) ( , ),, ,x xx t P C x t P Cη μ ω μυ υ• •Ω Ψ → Ω Ψ →� �  

1 1 1 1 1 1 1 1 11( ) { },{ } , ( ) { },{ }x x x t t t tA P x A x A A P x A x Aμ μ μ μ= = ∈ ∈ ⊂ Ψ = = ∈ ∈ ⊂ Ψ� � � � , 

1 1( ) ( ) 1;x C Cμ μ= =  

1 1 1 1, ( , ) ( , ), , ( , ) ( , ).n n n nt a t C R R x R a x C R• •∀ ∈Δ ∈ ∀ ∈ ∈ Δ                                    (1.7a) 

1.1.5. Model of Programmable Trajectories (as a Task) at the 
Macrolevel  

Model of programmable trajectories (as a task) at the macrolevel is defined by process 
 

1 1 1 1 1 1 1 1,( , ), : ( , , ) ( , ), ( ) ( , ),(mod ),
def

n n n
t t t s tx x t x R P R x C R Pη ηβ β •= Δ∈ → ∈ Δ   (1.8) 

where 1( , )nC RΔ  is the space of the continuous differentiable on Δ  n -dimensional vector-
functions.  

The corresponding regular flow at the macrolevel is defined by an equation similar to 
(1.6) in the form: 

 
 1 1 1 1 1/ ( , ), .t t sdx dt a t x x η= =  (1.9) 
 
The difference in distributions for the macroprocesses tx  and 1

tx  has a simple physical 
interpretation: the object and control tasks are measured by different instruments.  

 

1.1.6. The Equations in Deviations  

The micro-and macrotrajectories we consider in the deviations from the corresponding 
programmable movements, which are given for the two-level model by the appropriate tasks: 

 
 * 1 1 1 *, , .t t t t t t sx x x x x x x η η η= − = − = − =� � �  (1.10) 
 
The selection of ut  is limited by several conditions:  
 

1)-each process' *
tx� , ˜ x t , measured on (C,υ),  is absolutely continuous with respect to 

the other;  

2)-the measure of xt  coincides with the measure of tx .  
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According to the first one, *
tx�  will be found as a solution of the stochastic equation with 

the same function diffusion σ ( t , x ), ( t , x )∈Δ × Rn  as the one in (1.1) and with unknown 
drift a* ( t , *

tx� , ut ), i.e. from the equation 
 
        * * * * * * * * *( , , ) ( , ) , , ( , , ),t t t t t s tdx a t x u dt t x d x x x tσ ξ η ω η= + = =� � � � � �   (1.11) 

 

whereη* = η − η1 =η* ( 1)ω ,η* :(Ω1 ,Ψ1 ,Ρ1 )→ ( Rn ,β , Ps
* ); 

 

 * * 1 1 * 1 1 * * 1( ) { : ( ) } { }, { } ,,s sP P D P D P D D Dω η ω η ηβ= = ∈ = ∈ ⊂ ∈ ⊂ Ψ  
 

            
* 1 * 1 1 * 1( ) { } { : ( ) }, .n

sP x P x P x x Rη ω η ω= = = = ∈  
 
According to [22], the following equations are true: 
 

 * 1 * *( ) ( ) ( ), [ ] [ ] ( ),
n n

s s s s s
R R

P x P x y dP y E P dx• •= + =∫ ∫  

 * * *( , , ) : ( , , ) ( , ),,x xx t P Cη μυ• Ω Ψ →�  
 
 * * * * *( ) { }, { } ,{ } ,,x x s t t tA P x A A x A x Aμ μ υ= = ∈ ⊂ ∈ ⊂ Ψ ∈ ⊂ Ψ� � �  
 
 * 11 11 * * 11( , , ) : ( , , ) ( , ),{ } ,, tx t P C x Aω μυ• Ω Ψ → ∈ ⊂ Ψ� �  
 * * * * 11( ) { }, { } ,,t tA P x A A x Aμ μ υ= = ∈ ⊂ ∈ ⊂ Ψ� �  (1.11a) 

where *[ ]sE •  is a corresponding conditional mathematical expectation and 

μ x
* (C) = μ *(C) = 1.  

Function a* ( t , x ,ut )=au ( t , x ) with control ut =u ( t , xt + 1
tx ) at ( t , x ,u )∈Δ × Rn × U 

satisfies the same relations, which are applied to function a ( t , x ,u ).  
According to (1.10), we have  
 

xt = x ( t , *η ), xt :Δ × (Rn ,β,Ps
* )→ (Rn ,β) , x ( • , *η )∈ 1( , )nKC RΔ  (mod P1 ).     

 (1.12) 

The points of discontinuity of the vector-functions ,( )x η•  and x ( • , *η ) are defined by 
the set {τk }, k = 1,. .. ,m  following from the points of the control switching.  

At these points, we consider the one-sided derivatives: 
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 *
,lim ( )

k

def

t o
x x

τ
η•− → −

=� � , *
,lim ( )

k

def

t o
x x

τ
η•+ → +

=� � .         (1.12a)  

 
The lack of an explicit macrolevel description brings to consideration a wide class of 

dynamic macroprocesses as a subset of the piece-wise differentiable n -dimensional vector–
functions xt ∈ KC1(Δ × Rn ) on Δ =[ , )s T , x∈ Rn , where the dynamic process xt  is 

characterized by the initial conditions *η  at Δ . 

1.1.7. Model of Disturbances 

Model of disturbances is considered as an auxiliary random process (chosen as a standard 
process): 

 ( , ), : ( , , ) ( , ),n
t t xt P Rζ ζ ω ζ β= Δ× Ω Ψ →   (1.13)  

 

which models perturbations ( , )
t

t
s

v dν νζ σ ζ ζ= ∫  at the following conditions for mathematical 

expectations:  

 ( ) 1
[ ] [ ] 0 ,n

x t t i i
E Eζ ζ

=
= = Ο =  (1.13a) 

 
where  

 xE [ • ] 11

"

[ ] [ ] ( ).E P dω• •

Ω

= = ∫   (1.13b)  

1.1.8. The Microlevel Process’ Functional  

Let us have a diffusion process tx�  with transition probabilities ( , , , )P s x t B�  and have a 

σ -algebra ( , )s tΨ  created by the events { ( )x Bτ ∈� } at s tτ≤ ≤ ; , , ( )s x s xP P A=  are the 

corresponding conditional probability distributions on an extended ( , )sΨ ∞ , , [ ]s xE • are the 

related mathematical expectations.  
A family of the real or complex random values ( )t t

s sϕ ϕ ω= depending on s t≤  defines 

an additive functional of process ( )tx x t=� �  [27, 28], if each ( )t t
s sϕ ϕ ω= is measured 

regarding the related σ -algebra ( , )s tΨ  at any s tτ≤ ≤  with probability 1 at 
t t
s s

τ
τϕ ϕ ϕ= + ; and , [ ( ( ))]t

s x sE exp ϕ ω− < ∞ .  

Then the transformation with the additive functional:  
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 ,
( )

( , , , ) exp{ ( )} ( ),t
s s x

x t B

P s t B P dς ϕ ω ω
∈

= −∫
�

�  (1.14) 

defines the transitional probabilities of a transformed diffusion process tς .  

At this transformation, the transitional probability functions determine the corresponding 
family of the extensive distributions , , ( )s x s xP P A=� �  on ( , )sΨ ∞  with the density measure  

 

 

,

,

( )
( ) exp{ ( )}.

( )
s x t

s
s x

P d
p

P d
ω

ω ϕ ω
ω

= = −
�

     (1.14a) 

 
Applying the definition of a conditional entropy [17] to the logarithmic probability functional 
density measure on trajectories (1.14a) for process tx�  regarding process tς  we have  

 

 , ,
( )

( / ) ln[ ( )] ( ) { ln[ ( )]},t t s x s x
x t B

S x p P d E pς ω ω ω
∈

= − = −∫
�

�      (1.15) 

 

where ,s xE  is a is a mathematical expectation for functionals, taken along the 

trajectories by the probability measure.  

Using (1.3) we get the following equality for the entropy functional expressed via the additive 

functional on the trajectories of the considered diffusion processes:  

 

 ,( / ) { ( )}t
t t s x sS x Eς ϕ ω=� . (1.16)  

Let the transformed process be ( , )
t

t
s

v dν νς σ ζ ζ= ∫  having the same diffusion matrix as 

the initial process, but the zero drift.  
Then the above additive functional at its fixed upper limit T acquires the form [17, 28]: 

 

1 11 / 2 ( , ) (2 ( , )) ( , ) ( ( , )) ( , ) ( ),
T T

T u T u u
s t t t t t

s s

a t x b t x a t x dt t x a t x d tϕ σ ξ− −= +∫ ∫� � � � �    

  2 ( , ) ( , ) ( , ) 0Tb t x t x t xσ σ= >� � � ,  (1.17) 
where  

 1
, { ( ( , ) ( , ) ( )} 0

T
u

s x t t
s

E t x a t x d tσ ξ− =∫ � � .  (1.18) 
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Finally we get the information entropy functional (EF) expressed via parameters of the 
initial controllable stochastic equation (1.1): 

 

 1
,( / ) 1 / 2 { ( , ) (2 ( , )) ( , ) },

T
u T u

t t s x t t t
s

S x E a t x b t x a t x dtς −= ∫� � � �  (1.19) 

 
For a positive quadratic form in (1.19), the above information entropy is a positive. 
 
Comments 1.1. 

Functional (1.14), integrated by the above probability measure, represents the functional 
probability on the trajectories of a Markov diffusion process, which is connected to 
Feynman’s path functional (ch.1.9). 

It’s seen that the EF (1.19), which is built on the functional probability (1.14) at the 
measured trajectories using its conditional relations for the considered measures (1.14a) and 
definition (1.15), is also determined at these trajectories.  

The EF arises at a transformation of the functional probability measures, representing a 
specific form of more general relationships connecting the sets, characterized by these 
measures.  

The EF connection to the additive functional (1.16), (1.17) allows both establishing the 
EF as a functional on the measured trajectories and expressing the functional’s integrand 
(1.19) via the functions of shift and diffusion of a standard Ito’s stochastic equation, leading 
to the EF constructive use.  

It will be demonstrated that solving the IPF variation problem (ch.1.3) brings the above 
EF to the form of a regular integral functional that simplifies the practical path functional’s 
applications.  

 
Example. Let us have a single dimensional equation (1.1) with the shift function 

( ) ( )ua u t x t= �  at the given control function ( )tu u t= , and the diffusion ( )tσ σ= .  
Then the entropy functional has the form 

 2 2 2
,( / ) 1 / 2 [ ( ) ( ) ( )] ,

T

t t s x
s

S x E u t x t t dtς σ −= ∫� �   (1.20) 

 
from which at the nonrandom ( )u t , ( )tσ  we get  

 

 2 2 2 2 1
,( / ) 1 / 2 [ ( ) ( ) [ ( )]] 1 / 2 ,

T T

t t s x t t s
s s

S x u t t E x t dt u r r dtς σ − −= =∫ ∫� � �      (1.20a) 

 
where for the diffusion process, the following relations hold true:  

 

 
22 ( ) ( ) / tb t t dr dt rσ= = = � , 2

, [ ( )]s x sE x t r=� ,  
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and the functional (1.20a) is expressed via the process’ covariation functions sr , tr  and 

known tu .  
This allows us to identify the entropy functional on an observed controlled process 

( )tx x t=� �  by measuring the above covariation (correlation) functions.  
The n-dimensional form of functional (1.20a) follows directly from using the related n-

dimensional covariations and the control. •  
The jump of the control function u− (1.5) from k oτ − to kτ , acting on a diffusion process 

( )x x t=� � , might “cut off” this process after moment k oτ − . The “cut off” diffusion process 
has the same drift vector and the diffusion matrix as the initial diffusion process. 

The additive functional related to this “cut off” has the form [28]:  
 

 
0,

.
,

k ot
s

k

t
t
τ

ϕ
τ
−− ≤⎧

= ⎨∞ >⎩
 (1.21) 

 
The jump of the control function u+ (1.5) from kτ  to k oτ +  might cut off the diffusion 

process after moment kτ  with the related additive functional  
 

 
,

.
0,

kt
s

k o

t
t

τ
ϕ

τ
+

+

∞ >⎧
= ⎨ ≤⎩

 (1.22a) 

 
At the moment kτ , between the jump of control u− and the jump of control u+ , we 

consider a control impulse  
 

 
( ) ( ).

k k o k ou u uτδ τ τ− − + += +∓  (1.23) 

The related additive functional at a vicinity of kt τ= acquires the form of an impulse 
function  

 
t t
s s sϕ ϕ δϕ− ++ = ∓ .  (1.23a) 

 
The entropy functional at the localities of the control’s switching moments (1.5) takes the 

values 

 
0,

[ ] ,
,

k ot
s

k

t
S E

t
τ

ϕ
τ
−−

−

≤⎧
= = ⎨∞ >⎩

 
,

[ ] ,
0,

kt
s

k o

t
S E

t
τ

ϕ
τ

+
+

+

∞ >⎧
= = ⎨ ≤⎩

 (1.24) 

 
changing from 0 to ∞  and back from ∞  to 0 and acquiring an absolute maximum at kt τ> , 

between k oτ − and k oτ + . 
The related multiplicative functionals (1.14a) are:  
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0,

,
1,

k ot
s

k

t
p

t
τ
τ

−− ≤⎧
= ⎨ >⎩

 
1,
0,

kt
s

k o

t
p

t
τ
τ

+

+

>⎧
= ⎨ ≤⎩

,     (1.24a) 

 
which determine , ( ) 0s xP dω =�  at k ot τ −≤ , k ot τ +≤  and , ,( ) ( )s x s xP d P dω ω=�  at kt τ> .  

For the “cut-off” diffusion process, transitional probability (at k ot τ −≤ , k ot τ +≤ ) turns 

to zero, then the states ( ), ( )x o x oτ τ− +� � become independent, and the mutual time 
correlations are dissolved: 

 
 

,
[ ( ) ( )] 0

o o
r E x o x o
τ τ

τ τ
− +

= − + →� � .  (1.24b) 

 
The entropy ( )kSδ τ+

− of the additive functional sδϕ ∓ , produced within or at a border of 
the control impulse (1.23), is define by the equality  

 

 
[ ] [ ] ( )

k o

k o

t t
s s s sE E P d

τ

δ
τ

ϕ ϕ δϕ δϕ ω
+

−

− ++ = = ∫∓ ∓ ,  (1.25) 

 
where ( )P dδ ω is a probability evaluation of impulse sδϕ ∓ .  

Taking integral of the δ -function sδϕ ∓ between the above time interval, we get on the 

border: [ ] 1/ 2 ( )s kE Pδδϕ τ=∓ at k k oτ τ −= , or k k oτ τ +=  [70].  

The impulse, produced by the controls, is a non random with ( )kPδ τ =1, which brings 

the EF estimation at kt τ= :  
 

 
[ ] 1 / 2

k

u
sS E

τ

δ ϕ= =∓ .  (1.26) 

This entropy increment evaluates an information contribution from the controls (1.23) at 
a vicinity of the above discrete moments.  

Since that, each information contribution from the step-wise functions  
 
 [ ] ,

k k

ut
sE S

ττϕ −− =  [ ]
k k

ut
sE S

ττϕ ++ =  

 
at a vicinity of kt τ= , produced by the corresponding controls’ step functions 

( ), ( )k ku uτ τ− +  (1.5) in (1.23) accordingly can be estimated by  
 

 
1 / 4

k

uS
τ

− = , ( )ku u τ− −= , k o kτ τ− → ; 1 / 4
k

uS
τ

+ =  , ( )ku u τ+ += , k k oτ τ +→ , (1.26a) 

 
where the entropy, according to its definition (1.15), is measured in the units of Nat (1 
Nat≅ 1.44bits). 
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Estimations (1.26), (1.26a) determine the entropy functional’s cut-off values at the above 
time’s borders under actions of these controls.  

1.1.9. The Jensen's Inequality for the Entropy Functional  

Let us have g( t, x),g:Δ × Rn → R1 as a measured and limited on Δ × Rn  function, 
convex down by the argument  

 
1 1

1 1, ( , ) , ( , ), : : ,n n n n nx R t x R t x R R x Rλ λ∈ ∀ ∈Δ× ∃ Δ × → ∀ ∈  
 
and consider the Jensen's inequality [25, 26] in a simple form: 

 

 g( t, x) ≥ g( t, x1) + (x − x1)λ1 (t,x1) . (1.27) 
 

Proposition 1.1 

Assume x = ˜ x (t,ω ) , and ( , )x t •�  is measured function of argument ω ∈β (C)  at ∀t ∈Δ ; 

and at a fixed ω ∈β (C) , ˜ x (•,ω) is a continuous function ˜ x t  on Δ .  

According to [25], function g(t,ω ) = g(t, ˜ x (t,ω))  is measured, limited, and therefore is 
summable by measure μΔ =mesΔ × Ps, ˜ x s

 on the set  

 

1( ) : ( , ) ( , ( ) ( ), )C g t L C Cω μβ β β ΔΔ× ∈ Δ× Δ × ,     (1.27a) 
 

where 

                       β (Δ) = {t:B1 ∩Δ, B1 ⊂β(R1 )} ,  

mesΔ  is a Lebeg's measure on ( )β Δ , and× is the index of a direct multiplication of the 

sets of the β -algebra's, and the measures are finite.  

Then the Jensen's inequality is in the form as follows 
 

 
, [ ( , ]

s

T

tx B
s

E g t x dt∫ �� � ≥ g(t, x t
s

T

∫ )dt , (1.28) 

where x t = ,sx BE ��  [ ˜ x t ] is a macroprocess in (1.3). 

For function g(t, x) , which is convex up by argument x ∈Rn , we come to the Jensen's 
inequality  

 
, [ ( , ]

s

T

tx B
s

E g t x dt∫ �� � ≤ g(t, x t
s

T

∫ )dt .     (1.28a) 
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Proof. Relation (1.27) and the Fubini theorem [25, 26] lead to equation 
 

 
( g(t, ˜ x ( t,ω ))

˜ B 
∫

s

T

∫ Ps, ˜ x s
(dω ))dt = ( ( , ( , )) )

T

sB

g t x t dtω∫ ∫
�

� Ps, ˜ x s
(dω) , ˜ B ⊂β (C) ,  

 
which can be directly written via the conditional mathematical expectations: 

 

 
, [ ( , ]

s

T

tx B
s

E g t x dt∫ �� � = , [ ( , )
s

T

tx B
s

E g t x dt∫�� � ]. (1.28b) 

 
Let us take ( , )x x t ω= � , x1 = ,sx BE �� [ ˜ x t ] in (1.27), and integrate both sides of (1.27) by 

measure μΔ  on the set Δ × ˜ B , ˜ B ⊂β (C).  
Then, applying (1.28b), we come to the Jensen's inequality in the form (1.28) (for 

function g(t, x) , which is convex down by argument x ∈Rn ).  

For function g(t, x) , which is convex up by argument x ∈Rn , we get by analogy the 
inequality (1.28a). •  

 
Proposition 1.2.  

Let us consider function ˆ ( , )uL t x  on Δ × Rn : 
 

 

1

, 1

ˆ ˆ ˆ( , ) 1 / 2 (2 ( , )) ( , ) ( , ),
n

u u u
ij i j

i j

L t x b t x a t x a t x−

=

= ∑  (1.29) 

where functions ˆ( , ), ( , )u
ij ib t x a t x , i, j = 1,.. ,n  are measured and limited on the set Δ × Rn . 

And let function x = ˜ x (t,ω )  in (1.29) holds the limitation for Proposition 1.1.  
Because the class of the measured functions is closed regarding the arithmetic operations, 

function ˆ ( , )uL t x  is limited.  

This means that ˆ L u(t,ω ) = ˆ L u (t, ˜ x (t,ω ))  is a measured, limited, and therefore is a 

summable function by the measure μΔ  on the set Δ ×β(C) .  

Assuming g = ˆ L u  and following the relations (1.14a),(1.9),(1.28), (1.28b),(1.29), (1.1-
1.3) we get the Jensen inequalities for the entropy functional convex down by the arguments:   

 

 ( , , ( )) ( , , ( ))S s T x S s T x• ≥ •� ,  (1.29a) 
 
and for the entropy functional convex up by the arguments: 

 

 ( , , ( )) ( , , ( ))S s T x S s T x• ≤ •� ,    (1.29b) 
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where 

 
( , , ( )) ( , )

Tdef
u

t
s

S s T x L t x dt• = ∫ ,    (1.30) 

and the relation  

 

 
1 ˆ[1/ 2 ( , ) (2 ( , )) ( , )] [ ( , )] ( , )u T u u u

t t t t tE a t x b t x a t x E L t x L s x− = =� � � �     (1.30a) 
 

plays a role of a Lagrangian uL . 
For the functionals with the arguments from (1.30a),(1.10) we obtain by the analogy 

accordingly: 
 

 
*( , , ( )) ( , , ( ))S s T x S s T x• ≥ •� ,   (1.31a) 

 

 
*( , , ( )) ( , , ( ))S s T x S s T x• ≤ •� ,     (1.31b) 

where 

 
( , , ( )) ( , )

Tdef
u

t
s

S s T x L t x dt• = ∫ , Lu(t, xt )=1 / 2(au )T (2b)−1 au . •       (1.32) 

Comments 1.2.  
Applying (1.28b) and (1.19) we get the following equality for the integrals  

 

 

* 1 * *

, 1

[ ] [ ], 1 / 2 (2 ( , )) ( , ) ( , ),
T T n

u u
x x t ij i t j t

i js s

E Ldt E Ldt L b t x a t x a t x−

=

= = ∑∫ ∫� � � � � �  (1.33) 

 

 2b = σσT , * * *( , ) ( , , )u
t t ta t x a t x u=� � , ut = u(t,xt ,x t

1) , 

 
where functions 
                                 a u(t, x) = a(t,x,u) , * * *( , ) ( , , )u

t t ta t x a t x u=� � ,  

and σ ij( t, x) , ai
u(t, x)  are measured and limited on Δ × Rn  and Δ × Rn ×U  accordingly.  

From this, using a closeness of the class of the measured and limited functions with respect to 
arithmetic operations [25], it follows that the function  

 

 

1

, 1

( , ) 1/ 2 (2 ( , )) ( , ) ( , )
n

u u u
ij i j

i j

L t x b t x a t x a t x−

=

= ∑ ,         (1.34) 

which corresponds to *( , )u
tL L t x=� � in (1.33), belongs to the same class of functions on 

Δ × Rn ×U .  
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Since *
tx�  is a function, measured on ω ∈Ω  with xP  and is a continuous for ∀t ∈Δ , we 

conclude that the function *( , )u
tL L t x=� � is also measured, limited, and therefore is a 

summable function by measure xPmes ×Δ , with the Lebeg measure mesΔ  on Δ ×Ω.  
Then using the Fubini theorem, we come to a possibility of the reordering for the 

integrals (1.33) on Δ and Ω . 





 
 
 
 
 
 

Chapter 1.2 
 
 
 

DYNAMIC APPROXIMATION OF A RANDOM 
INFORMATION FUNCTIONAL  
AND THE PATH FUNCTIONAL 

 
 

1.2.1. The Extremal Principle and the Problem Formulation 

We formulate the considered extremal principle as a probability problem of 
approximating the microlevel processes ( ˜ x t ) by the macrolevel processes ( tx ) with an 
accuracy δ >0: 

 

 21 { ( , ) } ,
t

t tL
x

P P x x Supρ δ= < →  (2.1) 

where  

 2L
ρ (ϕ ,ψ )=( |

0

T

∫ ϕ − ψ |2 dt )1/2 , |ϕ − ψ |2 = (ϕ i − ψ i
i=1

n

∑ )2 ,  

is a metrical distance between some functions (ϕ ,ψ )∈ 2L ; 
 

 tx =
def

tx ( t ,η ), tx ∈
def

KC1(Δ , R n )(mod P1 ), ut
∈KC(Δ,U) , (2.1a) 

and 2 ( , )nL RΔ  is the Gilbert space; KC1(Δ , R n ) and KC(Δ,U)  are the spaces of the piece-

wise differentiable, piece-wise continuous at t ∈Δ  functions in ( ,nR U ) accordingly, with  
(mod P1 ) and the probability P1 =1.  

The probability problem of approximating the programmable process ˜ x t
1  by the 

programmable macrotrajectories x t
1  has a form, analogous to (2.1): 

 

                                   P2 = P{ 2L
ρ ( ˜ x t

1 , x t
1 )<δ }→ Sup

x t
1

.  (2.2) 
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The probabilities, approximating other considered processes, satisfy the following 
requirements: 

 

P3 = P{ 2L
ρ ( ˜ x t , ˜ x t

1 )<δ }→
1
tx

Sup , m ( P3 )→ m ( 4P ), 4P = P{ 2L
ρ ( x t

1 +ζt , tx )<δ }, (2.2a) 

where m ( Pi ) is the lowest limit of the probabilities Pi , i =1− 4.  

The corresponding probability equation for the terminate states: P1 {| x T − x T
1 |>ε }, ε >0 

can be joined to (2.1)− (2.2a) as an additional condition, depending on the requirements for 
the object.  

Relation (2.2a) expresses the closeness of the object to the task at the macrolevel, and 
(2.1), (2.2) establish the relations between the deviations from the tasks for the micro- and 
macrolevel processes.  

An essence of the probabilities’ 3P  and 4P  nearness consists of connecting the micro- 

and macrolevel processes. With some limitations (see sec.1.2.2), the fulfillment of (2.2a) for 

3P  leads to the following maximal conditions for probabilities 

 

 2
*

4 { ( , ) } ,
t

t tL
x

P P x x Supρ δ= < →   (2.3) 

 25 { ( , ) } .
t

t tL
x

P P x Supρ ζ δ= < →   (2.3a)  

1.2.2. The Problem Solution. Information Path Functional  

Definition. Trajectory ϕt  passes a locality of trajectory ψ t  with a maximal probability if 
the lowest probability limit of their closeness reaches the maximum:  

P{ρΔ (ψ t ,ϕt )<δ }→ Sup
ϕ t

, ∀ δ >0, ϕt ∈KC1
(Δ , R n ), ψ t ∈C (Δ , R n )  (2.4) 

and the upper probability limit of their distance reaches the minimum: 
 
P{ρΔ (ψ t ,ϕt )≥ δ }→ Inf

ϕ t

, ∀ δ >0, ρΔ (ψ t ,ϕt )=||ψ t − ϕt || (• ) =ρ(• ) (ψ t ,ϕt ). (2.4a) 

Depending on the considered distance in the C - or 2L -metrics (at ρΔ =ρC , or ρΔ = 2L
ρ ), 

the evaluation of (2.4) has a meaning of the C - or 2L -closeness, and the evaluation of (2.4a) 
has a meaning of the C - or 2L -distance.  

The following relations determine the connections between the considered probabilistic 
evaluations: 

2
2 1/2 2 1/2

1 1

( , ) [ ( ( ) ( )) ] [ ( ( ( ) ( )) )
T Tn n

t t i i i iL
i is s

t t dt t tρ ψ ϕ ψ ϕ ψ ϕ
= =

= − = −∑ ∑∫ ∫
2 1/2 1/2

1

( ( ( ) ( )) ) ]
n

i i
i

t t dtψ ϕ
=

× −∑
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≤ [ max
t ∈Δ

s

T

∫ ( (
i =1

n

∑ ( )i tψ − ϕ i (t))
2 )1/2

( (
i =1

n

∑ ( )i tψ − ϕi (t))
2 )1/2 dt]1/ 2

 

≤[ max
t ∈Δ

s

T

∫ ( (
i =1

n

∑ ( )i tψ − ϕ i (t))
2 )1/2

( (
i =1

n

∑ ( )i tψ − ϕ i (t))
2 )1/2 dt]1/ 2  

=max
t∈Δ

( (
i =1

n

∑ ψ i ( )t 2 1/ 2( )) )i tϕ− (T − s)1/ 2 =ρC (ψ t ,ϕt )(T − s)1/ 2 ;  

 2
1/2( , ) ( , )( ) ,C t t t tL

T sρ ψ ϕ ρ ψ ϕ −≥ −  

  
 2

1/2{ ( , ) } { ( , )( ) },C t t t tL
T sρ ψ ϕ δ ρ ψ ϕ δ−< ⊆ − <

 
 
 2

1/2{ ( , ) } { ( , )( ) },t t C t tL
P P T sρ ψ ϕ δ ρ ψ ϕ δ< ≥ − <   (2.4b) 

 
where (2.4a) evaluates how far a potential probabilistic deviation of tϕ  is located from ψ t . 

Because the C -closeness is stronger than 2L -closeness, we consider the C -closeness for 
the evaluation of (2.4), and the 2L -distance for the evaluation of (2.4a). 

 
Lemma 2.1. (L1)  

The evaluation of the lowest probability limit of the closeness of the controlled process 
( ˜ x t (u) ) to the standard process (ζt ) at the microlevel is reduced to the following evaluations, 
connecting the micro- and macrolevel processes to each other:  

 

 1 { ( , ) } ,
t

t t
x

P P x x Supρ δΔ= < →   (2.5) 

                                         
1

1 1
2 { ( , ) } ,

t

t t
x

P P x x Supρ δΔ= < →   (2.5a) 

 
1

3 { ( , ) } .
t

t t
x

P P x x Supρ δΔ= < →   (2.5b) 

Proof. Using (1.10), (1.13) (from ch.1.1) and following the triangle inequality [25], we 
come to relations 

1 * * *( , )  ( , ) ( ( , )  ( , )) ( ( , ) ( , ) ( , )) ;t t t t t t t t t t tx x x x x x xρ ρ ρ ζ ρ ζ ρ ζ ρ ρ ζΔ Δ Δ Δ Δ Δ Δ= Ο ≤ + Ο ≤ Ο + +
* *{  ( , ) } {( ( , )  ( , ) ( , )) }t t t t t tx x x xρ δ ρ ζ ρ ρ ζ δΔ Δ Δ ΔΟ < ⊇ Ο + + <  

*{ ( , ) / 3}{  ( , ) / 3}{ ( , ) / 3};t t t t tx x xρ ζ δ ρ δ ρ ζ δΔ Δ Δ⊇ Ο < < <  
1 *{ ( , ) } {  ( , ) }t t tP x x P xρ δ ρ δΔ Δ< = Ο <  

*{{ ( , ) / 3}{  ( , ) / 3}{ ( , ) / 3}},t t t t tP x x xρ ζ δ ρ δ ρ ζ δΔ Δ Δ≤ Ο < < <  

where 
 *{  ( , ) }tP xρ δΔ Ο < is the probability of the process’ ˜ x t

*  deviation from a null-vector O.  
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The events:{ρΔ (ζt , Ο )<δ /3},{ρΔ ( *
tx , xt )<δ /3}, and {ρΔ (ζt , xt )<δ /3} assume 

independence, provided by the chosen ( , , )t tx u δ .  

Then, because of an arbitrariness of 0δ >  we get relations 
 

1 *
4 5{ ( , ) } {  ( , ) } { ( , ) } ,t t t tP x x P x P P Pρ δ ρ δ ρ ζ δΔ Δ Δ< = Ο < ≥ Ο <   

 
*

4 5{ ( , ) }, { ( , ).t t t tP P x x P P xρ δ ρ ζΔ Δ= < =  
 
From this, we conclude that the following conditions are equivalent: 
 

 3P = P { * ( , )txρΔ Ο <δ }
tx

Sup→ , 4P = P{ρΔ ( *
tx , xt )<δ }

tx
Sup→ , 

 5P = P{ρΔ (ζt , xt )<δ }
tx

Sup→ .  (2.5c)  

     This reduces the probabilities’ conditions (2.1)-(2.3b) to (2.5)-(2.5b) and proves Lemma 
2.1.•   

 
Remark. Transformation t tx x→  in (1.10), at a fixed 1

tx , is a linear transformation. 

Therefore, for any twice differentiable (by Frechet [25]) functional ( )F • , its extreme values 

( )tF x  and 1( )t tF x x+  exist or not exist simultaneously.  
Indeed, according to the principle of superposition, the first two differentials 

2( ), ( )dF d F• • , defined on tx  and tx  are equal consequently:  
 

 
1 2 2 1( ) ( ), ( ) ( )t t t t t tdF x dF x x d F x d F x x= + = + . 

 
Because these two differentials determine the necessary and sufficient extreme 

conditions, both extremal problems for these functionals are equivalent, and from the 
existence or nonexistence of one of them follows that of the other. Probabilities 3P , 4P , 5P  are 
similar functionals (having the first and the second variations). This follows from the 
application of the Radon-Nikodim theorem for these probability’s evaluations.  

 
Lemma 2.2 (L2).  

Let us introduce the functions 
 

 yt = y (t , x ):Δ × ( R n ,β , P s )→( R n ,β ), ( , )y x• ∈KC1(Δ , R n ), (mod P1 ), 

 ys = ys ( 1ω ):(Ω1,Ψ1, P1) →( R n ,β , P s ); 1 1ω ∈Ω , (2.6) 
which satisfy the equation  

 

 ˜ y t = ˜ y s + q
s

t

∫ (υ , ˜ y υ ,uυ )d υ + σ
s

t

∫ (υ , ˜ y υ )d ζυ ,  (2.6a)  

where 
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 ˜ y s = ˜ y s ( 1ω ):(Ω1,Ψ1, P1) →( R n ,β , ˆ P s ), 
 

 ( , , ),ty y t xω= ( , , )ty y t • •= :(Ω,Ψ, Px ) → (C, υ,μ x
3) , μ x

3 (C) = μ 3 (C) = 1, 
 

 ( , , )y t x• : 11 11( , , )PΩ Ψ → (C, υ,μ x
3) , 11 11ω ∈Ω ; 

and the function q (t , x ,u ), q : Δ × R n × U→ R n , which satisfies the conditions 

analogous to (1.2) for au =au (t , x ).  
 
Then the following probabilistic evaluations are fulfilled: 

 
 P{ρΔ ( ˜ y t , yt )<δ }= Px {ρΔ ( ˜ y t , yt )<δ }, ys = ˜ y s ,  (2.7) 
 

 P{ρΔ ( ˜ y t , yt )<δ }= *
ŝP Px {ρΔ ( ˜ y t − yt , ˜ y s − ys )<δ }, ys ≠ ˜ y s ,  (2.7a) 

 

 
*

ŝP = *
ŝP ( Dδ ) ( P s

Rn
∫

Dδ

∫ ( y ) ˆ P s ( x + y )d y )d x ; Dδ ⊂β , 

 

 Dδ =K(O,δ )={ x ∈R n : || x ||<δ },  (2.8) 
 
where K( x ,δ ) is a ball, opened in R n with a center in a point x ∈R n :  

 

 K( x ,δ )={ ny R∈ :|| y − x ||<δ }, at || y − x ||=( (
i =1

n

∑ yi − xi)
2 )1/ 2 ,  (2.8a) 

and *
ŝP  is the initial probability for process xt

* , while *
ŝP ( Dδ ) is probability of set Dδ , 

defined by the ball.  
Proof. Using the Markov property [22] for ys = ˜ y s , we come to relations 
 

P{ρΔ ( ˜ y t , yt )<δ }=
( , )

( ) ( ( , ) )
s

s

s s y t t
K y

dP y P y y
δ

ρ δΔ <∫  

 = ˆ P s
K( x,δ )
∫ ( y ) Py {ρΔ ( ˜ y t , yt )<δ }d y = 

 = ˆ δ (y − x)
K( x,δ )
∫ Py {ρΔ ( ˜ y t , yt )<δ }d y = Px {ρΔ ( ˜ y t , yt )<δ }; ( x , y )∈R n ,  

where ˆ δ ( x ) is the n -dimensional delta-function.  
For ys ≠ ˜ y s , P s ≠ ˆ P s  , we apply the triangle inequality:  

 
ρΔ ( ˜ y t , yt )≤ (ρΔ ( ˜ y t , yt + ˜ y s − ys )+ρΔ ( yt , yt + ˜ y s − ys )) 

 =ρΔ ( ˜ y t , yt + ˜ y s − ys )+ ( , )s sy yρΔ − Ο , O= 1(0 )n
i i= ,  
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{ ( , )s sy yρΔ − Ο = 2 1/2

1
( ( ) )n

n

is isR
i

y x y y
=

− = −∑ ,  

{ ( , } } {( ( , ) ( , )) }t t t t s s s sy y y y y y y yρ δ ρ ρ δΔ Δ Δ< ⊇ + − + − Ο <  

{{ ( , ) / 2} { ( , ) / 2}};t t s s s sy y y y y yρ δ ρ δΔ Δ⊇ + − < × − Ο <  
 

{ ( , } } {{ ( , ) / 2} { ( , ) / 2}};t t t t s s s sP y y P y y y y y yρ δ ρ δ ρ δΔ Δ Δ< ≥ + − < × − Ο <  
 

The events and { ( , ) / 2}s sy yρ δΔ − Ο < are independent because the first one does not 

depend on β , and the second one has been defined on β .  
Then, because δ >0 is chosen arbitrary, we get the following relation: 

1 '{ ( , } } ( ) { ( , ) }; ,t t x t t s s s sP y y P B P y y y y y yδρ δ ρ δΔ Δ< ≥ − − < ≠   

where 'Bδ ={ 1ω : ( , )s sy yρ δΔ − Ο < }⊂ Ψ1 .  

According to [22] we have equality P1 ( 'Bδ )= *
ŝP ( Dδ ), where the last probability 

satisfies (2.8). Finally we get (2.7).•   
The lowest probability evaluations (2.7),(2.7a) distinguish only by the multiplier, 

responsible for the probabilistic closeness of the initial conditions.  
We need to evaluate the right-hand side of (2.7), (2.7a). 
 
Theorem 2.1.  

The probability of the evaluation of a closeness ϕt  to tξ  is defined by relations 
 
P{ρΔ ( tξ ,ϕt )<δ }= Px=0 {ρΔ ( tξ ,ϕt )<δ }= P0 {ρΔ ( tξ ,ϕt )<δ } 

 ≥ P0 ( Bδ )ε exp{ − [(S(ϕt )+(2S(ϕt ) 1 1/ 2(1 ) )ε −− ]},  

 ϕt ∈KC1(Δ , R n ), tξ ∈C(Δ , R n ),  (2.9) 
 

 S(ϕt )=1/2 T

T

t t
s

ϕ ϕ∫ dt =1/2 2| |
T

t
s

ϕ∫ dt , ϕs =0, sξ =0,  (2.10) 

 
2| |tϕ = 2

1
( )

n

i
i

tϕ
=
∑ , ε ∈(0,1), Bδ ={ω :ρΔ ( tξ ,O)<δ }⊂ Ψ . 

Proof. Let t t tϕ ϕ ξ= − +  and assume that the measures ( 0μ , 4
0μ ) of the corresponding 

functions ( ˜ ϕ t , sξ ) on (C,υ ) are absolutely continuous with respect each to other.  
Then, according to (2.7), we get the following relations  
 

P0 {ρΔ (ϕt , tξ )<δ }= Px=0 {ρΔ (ϕt , tξ )<δ }= Px=0 {ρΔ ( ˜ ϕ t ,O)<δ }= P0 {ρΔ ( ˜ ϕ t ,O)<δ }.  
 

Using the Radon-Nikodim theorem [22] and the relation for the density measures [17], 
we come to the equality for the considered probability  
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4
0

0 0 0
0

{ ( , ) } ( ( , )) ( ) exp[ ( ( ) )] ( ).
T

t t t t
B B s

dP t P d S d P d
d

δ δ

μρ ϕ δ ξ ω ϕ ϕ ξ ω
μ

• •Δ Ο < = = − +∫ ∫ ∫
 

The last relation equals to the following expression 
 

2
0

1

exp[ ( )] exp[ ( ) ( , )] ( ), ( ) 1 / 2 | | ,
T Tn

t i i t t
iB s s

S t d t P d S dt
δ

ϕ ϕ ξ ω ω ϕ ϕ
=

− − =∑∫ ∫ ∫           (2.11) 

 
where Bδ ={ω :ρΔ ( sξ ,O)<δ }⊂ Ψ , and μ o

4 , μ 0  are the measures for ˜ ϕ t , tξ  on (C,υ ).  
We evaluate the second co-multiplier in (2.11) by Chebyshev's inequality [22] in the 

form 
P0 { η(ω ) ≤ a }≤ 0E [ f (η)]/ f (a) ,  (2.12) 

 
where η(ω )  is a nonnegative random variable,  

 

 ω ∈ Ω , a ∈ R+
1 , 0E [ • ]= 0xE = [ • ]= [

Ω
∫ •] P0 (dω) ,  

f (s) is a monotonous increasing on R+
1  function, s ∈ R+

1 .  
Let us assume 

 

     η(ω ) =
def

exp[ − ( )] ( )
T

t t
s

d Bδϕ ξ λ•∫ , a =exp[ − (2S(ϕt ))1/2 (1 − ε )−1/ 2 ], 

 f (η)= η λ(Bδ ) ,λ(Bδ ) 1,
0,

{ B
B

δ

δ

ω
ω

∈
∉

= .  (2.13)  

 
Remark. Using relations 
 

 
Po{ρΔ ( ˜ ϕ t ,0) < δ}=

def

Po
4 (dω )

Bδ
'
∫ , 'Bδ ={ρΔ( ˜ ϕ t ,0) < δ }, 

 4 4( ) { : ( , ) },o o tA P A Aμ ω ϕ ω•= ∈ ⊂ Ψ ,  (2.13a) 

and the formula of changing the measure in integrals [22], we get the following representation 
of (2.13a) 

 
0

'

4 ( )
B

P d
δ

ω =∫ 0

' 4( ) ( )B P dδλ ω
Ω

=∫
4

' 0

0

( ) ( ( , ))t
dB
dδ

μλ ϕ ω
μ

•

Ω
∫ . •  

 
Assuming (2.13), we have f( a )=a , and according to relations (2.12), we come to 

 
η(ω)

Bδ

∫ 0 ( )P dω 0{ ( ) ( ) },aP B aδλ η ω≥ ≥  
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{λ(Bδ ) η(ω ) ≥ a } =
def

{ω :ω ∈ Bδ , η(ω ) ≥ a } 
 ={ω :ω ∈ Bδ }∩ {ω : η(ω ) ≥ a },  

 P0 {λ(Bδ ) η(ω ) ≥ a } =
def

P0 ( Bδ ) P0 { η(ω ) ≥ a | Bδ },  (2.13b) 
 
where P0 { η(ω ) ≥ a | Bδ } is the conditional probability of the event η(ω ) ≥ a  at the 
condition for Bδ  (the independence of events {ω :ω ∈ Bδ } and {ω : η(ω ) ≥ a } is not 
supposed). 

Then, taking into account the relation (2.13), we have: 
 

exp[
Bδ

−∫ ( )
T

t t
s

t dϕ ζ∫ ] P0 dω ≥ P0 ( Bδ ) 1/2 1/2exp[ (2 ( )) (1 ) ]tS ϕ ε −− −  

 1/2 1/2
0{exp[ ( ) ] exp[ (2 ( )) (1 ) ]} | }.

T

t t t
s

P t d S Bδϕ ξ ϕ ε −× − ≥ − −∫                       (2.14) 

Since 0 0, ( | ) 1 ( | ), \ ,B P B B P B B B Bδ δ∀ ⊂ Ψ = − = Ω   
we assume 

 

 1/2 1/2{exp[ ( ) ] exp[ (2 ( )) (1 ) ]}
T

t t t
s

B t d Sϕ ξ ϕ ε −= − ≥ − −∫  

 1/2 1/2{ ( ) (2 ( )) (1 ) }.
T

t t t
s

t d Sϕ ξ ϕ ε −= − ≥ − −∫  

After that, we obtain the relations 

 1/2 1/2{exp[ ( ) ] exp[ (2 ( )) (1 ) ]}
T

t t t
s

B t d Sϕ ξ ϕ ε −= − ≤ − −∫  

 1/2 1/2{ ( ) (2 ( )) (1 ) };
T

t t t
s

t d Sϕ ξ ϕ ε −= − ≤ − −∫   

 
1/2 1/2

0 0( | ) 1 {[ ( ) ] [ (2 ( )) (1 ) ] | .
T

t t t
s

P B B P t d S Bδ δϕ ζ ϕ ε −= − − ≤ − −∫   (2.15) 

For the evaluation of P0 ( B | Bδ ) we are using a generalized Kolmogorov's inequality for 
the martingals [25], and also the peculiarities of the stochastic integral [22]: 

1/2 1/2
0 0( | ) {[| ( ) |] [ (2 ( )) (1 ) ] |

T

t t t
s

P B B P t d S Bδ δϕ ζ ϕ ε −≤ ≥ − −∫  

1 2
0(1 )(2 ( )) {[ ( ) ] | }

T

t t t
s

S E t d Bδε ϕ ϕ ζ−≤ − ∫

1 2
0(1 )( ( )) ) {1 / 2[ | ( ) | | } (1 ); {1 | } (1 ).

T

t t
s

S E t dt B E Bδ δε ϕ ϕ ε ε−= − = − = −∫   (2.16) 
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From that and using equations (2.11), (2.15) we obtain 

1/2 1/2
0{exp[ ( ) ] exp[ (2 ( )) )(1 ) ]} ,

T

t t t
s

P t d Sϕ ζ ϕ ε ε−− ≥ − − ≥∫   (2.17) 

1 1/2
0 0{ ( , ) } ( ) exp{ [ ( ) (2 ( )(1 ) ) ]},t t tP P B S Sδρ ϕ δ ε ϕ ϕ ε −

Δ Ο < ≥ − + −   (2.17a) 
 

and by the substitutions of the obtained relations we come to (2.9), (2.10).•   
Using equations (2.9), (2.10) for the evaluation of the lowest probabilities limit (2.6), 

(2.7), we have 
 

 0{ ( , ) } { ( , ) }, ,x t t x t t t x tP y y P Q y Q yρ δ ρ ξ δ ϕΔ Δ< ≥ < =   (2.18a) 
 
where xQ is a sought operator depending on nx R∈ at xQ : 1 1( , ) ( , )n nKC R KC RΔ → Δ .  

Assume that we might construct an operator (or a family of operators):  
 

 
1 1: ( , ) ( , ), : ( , ) ( , )n n n n

x xG C R C R G KC R KC RΔ → Δ Δ → Δ ,  (2.18b) 
 
which reflects tξ  on ˜ y t  (one-to-one in a probabilistic meaning) and ϕt  on yt  (one-to-one in 
a regular meaning) accordingly and satisfies the following relations  

 

 : , { } 1x t t x x t tG y P G yξ ξ→ = = ,  (2.18) 
 

 Gx:ϕt → yt , ,Gxϕt = yt,
1 :x t tG x y ϕ− → , Gx

−1yt = ϕ t ,  (2.19) 
 
where 1

xG− =Qx  is an inverse operator on 1( , )nKC RΔ at 1( )x t t s sG y ϕ−
= = . 

Then, the following proposition holds true: 
 

Lemma 2.3. 
If the transformation (2.18) exists, then the lowest probabilities limit (2.7), (2.7a) can be 
evaluated by the relations 

 
1 1/2

0 1{ ( , ) } ( ) exp{ ( ) [2 ( )(1 ) ] }, ;t t t t s sP y y P B S y S y y yδρ δ ε ε −
Δ < ≥ − + − =   (2.20) 

 
* 1 1/2

1{ ( , ) } ( ) exp{ ( ) [2 ( )(1 ) ] }, ;t t s t t s sP y y P D S y S y y yδρ δ ε ε −
Δ < ≥ − + − ≠  (2.21) 

 

 ( ) 1 / 2tS y =
d

dt
(Gx

−1yt )
T d

dt
s

T

∫ (Gx
−1yt )dt .  (2.22) 

Proof. Using relations (2.18), (2.19) we may write (2.7) in the form 
 

 { ( , } } { ( , ) },x t t x x t x tP y y P G Gρ δ ρ ϕ ξ δΔ Δ< = <   

 
1( , ) || || ( , ) || || ( , ),x t x t x c t t x c x t tG G G G G yρ ϕ ξ ρ ϕ ξ ρ ξ−

Δ Δ Δ≤ =  
 1 1{ ( , ) } {|| || ( , ) } { ( , ) }/ || || },x t x t x c x t t x t t x cG G G G y G y Gρ ϕ ξ δ ρ ξ δ ρ ξ δ− −

Δ Δ Δ< ⊆ < = <  
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where ||Gx ||c is the norm of Gx  in a subspace of ),( nRCC Δ= .  
Because δ >0 is chosen arbitrary, we have  
 
 1 1{ ( , ) }/ || || } { ( , ) },x t t x c x t tG y G G yρ ξ δ ρ ξ δ− −

Δ Δ< ⊂ <   (2.23a) 
 

 
1 1

0{ ( , } } { ( , ) } { ( , ) }.x t t x x t t x t tP y y P G y P G yρ δ ρ ξ δ ρ ξ δ− −
Δ Δ Δ< ≥ < = < (2.23) 

 
Applying relations (2.9), (2.10) (for the evaluation of the right-hand side of equation 

(2.23)), and taking into account relations (2.7)-(2.8), we come to (2.20)-(2.22) • . 
Because the C-closeness is stronger than 2L -closeness, the obtained lowest probability limits 
(2.20), (2.22) are also satisfied for the evaluation of 2L -closeness. 
 

Lemma 2.4.  
The operator, created by the solution of (2.6a), satisfies relations (2.18), (2.19), and function 
(2.22) has a view:  
 

 1( ) 1 / 2 ( ( , , )) (2 ( , )) ( ( , , )) ,2 .
T

T T
t t t t t t t t

s

S y y q t y u b t y y q t y u dt b σσ−= − − =∫  (2.24) 

Proof. It is natural to choose Gx  as an operator created by solution (2.6a), which is 
continuous with probability 1, exists, and is unique.  
Then Gx  reflects C(Δ, Rn )  on itself with probability 1, and relation (2.18) is fulfilled 
(because any two solutions of (2.6a) at the same initial conditions coincide with probability 
1).  
Operator Gx  on subspace C(Δ, Rn )  of space KC1 (Δ, Rn ) defines a reflection ϕt ∈ KC1 to 
yt ∈ KC1 as a solution of the Volterra second order integral equation [24]: 

 yt = ys + [q(υ, yυ ,uυ)
s

t

∫ + ( , )yυ υσ υ ϕ ] dυ ,  (2.25) 

which exists and is unique on KC1 at the limitations (ch.1.1) for the considered functions of 
drift and diffusion;Gx  has an inverse operator on KC1, its explicit form follows from (2.25): 
 

 
1 1( ( , )) ( ( , , )) .

t

x t t
s

G y y y q t y u dυ υ υ υϕ σ υ υ− −= = −∫   (2.26) 

Therefore, the relations (2.19) are satisfied for the initial object's stochastic equation, and 
from (2.26), (2.22), and (2.24) follows (2.25). •  

 
Assuming the sequential fulfillment of  

 
 1 1, ; , ; ,t t t t t t t t t ty x y x y x y x y x= = = = = 1 ;t t ty x ζ= + *,t t t ty x y x= = ,  
 
we obtain from relations (2.20), (2.21), (2.22) the following estimators for (2.5),(2.5a),(2.3), 
(2.3a):  
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1 1/2

0 ( ) exp[( (2 (1 ) )] ],i i iP P B S Sδ ε ε −≥ − + −
T

i i
s

S L dt= ∫ , 1, 2,5i = ,  (2.27) 

 
1

1 1/ 2( ( , )) (2 ( , )) ( ( , ))u T uL x a t x b t x x a t x−= − − , 
 

      
1 1 1 1 1 1 1 1

2 1/ 2( ( , )) (2 ( , )) ( ( , ))TL x a t x b t x x a t x−= − − ,  (2.27a) 
 

 
1

5 1/ 2( ( , )) (2 ( , )) ( ( , ))u T uL x a t x b t x x a t x−= − − ,  (2.27b) 

and for  

 
* 1 1/2

4 0 4 4( ) ( ) exp[( (2 (1 ) )] ],sP P D P B S Sδ δ ε ε −≥ − + −   (2.28) 

we get  

 
4 4 ,

T

s

S L dt= ∫ 4L = 11/ 2 (2 ( , ))Tx b t x x−  . (2.28a) 

 
Theorem 2.2.  

The lowest probability limit of the evaluation of probability (2.5b) is defined by relations: 
 

 
* 1 1/2

3 0 3 3( ) ( ) exp[( (2 (1 ) )] ],sP P D P B S Sδ δ ε ε −≥ − + −                                            (2.29) 
 

3S = xE [ 3

T

s

L∫ dt ]= 3[ ]
T

x
s

E L∫ dt , 3L =1/2au( t, ˜ x )T (2b(t, ˜ x )) −1 a u( t, ˜ x ) , 2 ,Tb σσ=   (2.30) 

where equation (2.30) coincides with the conditional entropy of the processes ˜ x t * regarding 
ζt  (or with the controlled processes’ entropy, defined with respect to a standard process by 
the transformation ˜ x t → ζt ): 

 S ( *
tx /ζt )= xE {[

2
10

*ln[ ( ( , , ))]s
x

d x t
d

μ
μ

−
• • }= 3S .  (2.31) 

Proof. By analogy with the relations for Lemma 2.1, we may write 
 

1 * * * *
3 { ( , ) } {  ( , ) } ( ) { ( ), ) },t t t s x t sP P x x P x P D P x xδρ δ ρ δ ρ δΔ Δ Δ= < = Ο < ≥ − Ο < (2.32) 

 
where *

tx = ˜ x t − 1
tx .  

Because the processes’ ( *
tx ,ζt ) measures *

xμ  and μ0
2  are absolutely continuous, one 

related to other, we may apply the Radon-Nikodim theorem to the last multiplier in (2.32): 
 

 Px {ρΔ ( *
tx − *

sx , Ο )<δ }=
2

2
*0

,* ( ( , ))
xB

d x t
d

δ

μ
μ

• •∫ Px (d ω ); B2δ ={ω :ρΔ (ζt , Ο )<δ }. (2.33)  
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According to [22, 25] and the previous results, we come to the following relations:  

 
2
0
*
x

d
d

μ
μ

* * 1 *
3exp[ ( ( ) ( ( , )) ( , ) )],

t
u

t t t t
s

S x t x a t x dσ ξ−= − + ∫                                        (2.34) 

3 1 / 2S = * * 1 *( , ) (2 ( , )) ( , )
T

u T u
t t t

s

a t x b t x a t x−∫ dt , 2 ,Tb σσ=   (2.35) 

For the evaluation of (2.33), (2.34) we use relations (2.12), (2.13) by exchanging the 
symbols P0 and 0E  with Px and xE  accordingly and assuming  

 

 

2
*0

*( ) ( ( , , ))
x

d x t
d

μη ω
μ

• •= , * * 1 1/2
3 3exp[ ( ( ) (2 ( )(1 ) )) ],t ta S x S x ε −= − + −  

 3S = xE [ 3S ], f( η )= η .  (2.36) 
 
Then by analogy with (2.14) we obtain for (2.36) the following inequalities 
 
Px {ρΔ ( *

tx − *
sx , Ο )<δ }≥ Px ( B2δ ) * * 1 1/2

3 3exp[ ( ( ) (2 ( )(1 ) )) ]t tS x S x ε −− + −  

* * 1 * * * 1 1/2
3 3 3exp[ ( ( ) ( ( , )) ( , ) )] exp[ ( ( ) (2 ( )(1 ) )) ].

t
u

x t t t t t t
s

P S x t x a t x d S x S xσ ξ ε− −× − + ≥ − + −∫
                                                                                                                                          (2.37) 
For the evaluation of the first co-multiplier in (2.37) we are using equalities: 

 

 2( ) {  ( , ) } {  ( , ) }.x x t tP B P Pδ ρ ζ δ ρ ζ δΔ Δ= Ο < = Ο <   (2.38) 
 
Suppose relation Gx=0 =G0  is created by the transformation G0 tξ =ζt . 

Then, because of G0 Ο= Ο  and an arbitrary δ 0> , we get the following relations 
 

0 0 0( , ) ( , ) || || ( , ),t t c tG G Gρ ζ ρ ζ ρ ξΔ Δ ΔΟ = Ο ≥ Ο   

0{ ( , ) } {|| || ( , ) }t c tGρ ξ δ ρ ξ δΔ ΔΟ < ⊆ Ο <      

0{ ( , ) / || || } { ( , },t c tGρ ξ δ ρ ξΔ Δ= Ο < ⊇ Ο   (2.38a) 
 

 2 0 0( ) {  ( , ) } {  ( , ) } ( ).t tP B P P P Bδ δρ ζ δ ρ ζ δΔ Δ= Ο < = Ο < =   (2.39) 
 
For the evaluation of the last co-multiplier in (2.37) we apply the following inequalities 

 

* * 1 *
3{[ ( ( ) ( ( , )) ( , ) )]

T
u

t t t t
s

D S x t x a t x dσ ξ−= − + ∫
* * 1 1/2

3 3exp[ ( ( ) (2 ( )(1 ) )) ]}t tS x S x ε −≥ − + −
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* * 1 * * * 1 1/2
3 3 3{ [( ( ) ( ( , )) ( , ) )] [ ( ) (2 ( )(1 ) ) ]}

T
u

t t t t t t
s

S x t x a t x d S x S xσ ξ ε− −= − + ≥ − + −∫  

* * * 1 *
3 3{ ( ( ) ( )} {( ( ( , )) ( , ) ))}

T
u

t t t t t
s

S x S x t x a t x dσ ξ−⊇ − ≥ ∩ −∫     

* 1 1/2
3[2 ( )(1 ) )] } ,tS x ABε −≥ − − =    (2.40) 

 
using them for  

 Px ( D )≥ Px ( AB ) 1= − Px ( AB ),  (2.41) 
 

where ( , , )A B D ⊂ Ψ , AB =Ω \ AB , AB={ω : ω ∈ A} ∩ {ω :ω ∈ B} .  
Applying the duality principle in the set theory [25] to the events:  

 
 * *

3 3{ ( ( ) ( )},t tA S x S x= − ≥   

* 1 * * 1 1/2
3{( ( ( , )) ( , ) )) [2 ( )(1 ) ] }

T
u

t t t t
s

B t x a t x d S xσ ξ ε− −= − ≤ − −∫                          (2.42)  

in the forms 
 
 AB ={ω ∈A}∩{ω ∈B}={ω ∈A}∪{ω ∈B}= A + B  ,  (2.43) 
 

 ( ) ( ) ( ) ( ),x x x xP A B P A P B P AB+ = + −   (2.43a) 
 

we get from (2.41),(2.43) and (2.43a) the inequality 
 

 ( ( ) 1 [ ( ) ( ) ( ) ( )].x x x x xP D P A B P A P B P AB≥ − + = + −   
 

Using the initial equations (1.11) and (2.35), (2.42), we obtain 
 

* 1( ( , ))
T

t t
s

t x dσ ξ−∫  

 = * 1 *( ( , )) ( , )
T

u
t t

s

t x a t xσ −∫ ) * 1 * 1 *[( ( , )) ( ( , )) ( , ) ]u
t t t tt x dy t x a t x dtσ σ− −−  

 = * 1 *(2 ( , )) ( , )
T

u
t t

s

b t x a t x−∫ *
32 ( );t tdy S x−   

σ ( • , x  ), au=au( • , x ),b =b ( • , x )=1/2σ ( • , x )σ T ( • , x ),  
 

* 1 * * * 1 1/2
3 3{( (2 ( , )) ( , ) 2 ( )) [2 ( )(1 ) ] }

T
u

t t t t t
s

B b t x a t x dy S x S x ε− −= − + ≤ − −∫  

 { | }N A A⊇ ,   (2.45) 
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where 

* 1 * * * 1 1/2
3 3{( (2 ( , )) ( , ) (2 ( )) [2 ( ) (1 ) ] },

T
u

t t t t t
s

N b t x a t x dy S x S x ε− −= − ≤ − + = −∫   

N ⊂ Ψ  .  (2.45a) 
 

From that we get the following relations  
 
 { } { } { } , ( ) 1 ( ).x xAB A B A A P D P Bω ω ω= ∈ ∩ ∈ = ∈ = = −   (2.46) 
 
For the evaluation of an upper probability Px ( B ) limit we are using (2.43a), (2.36), 

(2.35) and Chebychev’s inequality:  
 

Px ( B )≤ Px {| * 1 *( ( , )) ( , )
T

u
t t

s

t x a t xσ −∫ tdξ |≥ * 1 1/2
3[2 ( )(1 ) ] }tS x ε −−  

 ≤ (1 )ε− xE [| * 1 *( ( , )) ( , )
T

u
t t

s

t x a t xσ −∫ tdζ |2 ] * 1
3(2 ( ))tS x −  

 (1 )ε= − xE [| * 1 * 2| ( ( , )) ( , ) |
T

u
t t

s

t x a t x dtσ −∫ ](2 3S ( *
tx ))−1 (1 )ε= − .  (2.47) 

After the substitution of (2.47) in (2.46) we obtain Px (D)≥ ε .  

From that and according to (2.32)-(2.35), (2.38)-(2.40) we get (2.29)-(2.30).  
Functional (2.30) coincides with the definition of the conditional entropy (2.31) in [17] 

and directly follows from (1.15c) (in sec. (1.1.8)).  
Finally, using (2.34), (2.35) and  
 

                 xE [ * 1 *(( ( , ) ( , )
T

u
t t

s

t x a t xσ −∫ tdζ )] 0,=   

we get *
3( / ) ,t tS x Sζ = .•   

 
Theorem 2.3.  

If transformations (2.18), (2.19) satisfy relation (2.23), then the absolute minimum of the 
upper limit of the probabilistic evaluation in the 2L -distance: 

 
                                  P {

2L
ρ ( ˜ y t , yt )≥ δ }→

ty
Inf , ∀ δ >0,  (2.48) 

is reached on the solution of equation 
 

 ty =q ( t ,y ,u ) .  (2.49) 
Proof. To evaluate relation (2.48) we apply inequality (2.12) and transformations (2.18), 

(2.19):  
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P {
2L

ρ ( ˜ y t , yt )≥ δ }≤ 1/δ 2 E[ 2
2
L

ρ ( ˜ y t , yt )]=1/δ 2 E[ 2
2
L

ρ (Gy ζt ,Gy ϕt )] 

 ≤ 1/δ 2
sE [ Ky

2 ] 0E [ 2
2
L

ρ (ζt ,ϕt )],  

 ( , ); 0,t s T δ∈ Δ = > Gy =Gy=0 , ys = ˜ y s 0= ,  (2.50) 

 
where Ky  is the Lipschitz constant for operator Gy ,which, at the limitation imposed on the 
stochastic equation, can be expressed via the Lipschitz constants for q ,σ , and  
 
                                                              (T − s)= ( )mes Δ .  
Here 0 0[ ] [ ]yE E• •== is operator of mathematical expectation, corresponding to probability 

measure 0P  on Ψ ; [ ]sE •  is operator, corresponding to probability measure ˆ P s  on σ -algebra 

Ψ 1 , created by deviations ( ˜ y s = ys )(mod ˆ P s);  
 

 sζ = lim( )t st s
υ υ

↓
− 00(mod ); 0.sP ϕ= =   

The fulfillment of (2.48) at conditions (2.18), (2.19) leads to the problem 
 

 0E [ 2
2
L

ρ ( ˜ y t , yt )]→
ty

Inf .  (2.51) 

For the problem solution we are using the following relations: 
 

s
Eζ [•] = lim

h↓0 s h
Eξ +

[•], (s+h )∈ Δ , 
s

Eζ [ 2
2
L

ρ (ζt ,ϕt )]= 2
2
L

ρ
Ω
∫ (ζt ,ϕt ) s

Pξ (d ω )  

= 2
2
L

ρ
Ω
∫ (ζt ,ϕt ) P0 (d ω )= 0E [ 2

2
L

ρ (ζt ,ϕt )]= 0
lim

s hh
Eξ +↓

[ 2
2
L

ρ ( υζ ,ϕυ )], υ ∈[s+h , T].  (2.52) 

 
Then, the problem (2.51) consists of minimizing of the right-hand side in the last equality in 
(2.52).  
Since h  is arbitrarily chosen, let us assume (s+h )= t ∈ Δ ; and let us estimate  

 

t
Eξ [ 2

2
L

ρ (ζ Θ ,ϕΘ )]= Eξ [ 2
2
L

ρ (ζ Θ ,ϕΘ )] 

 = Eξ [
s

T

∫ |ζ Θ − ϕΘ |2 d Θ ]= ˜ u (ζ ,t); Θ ∈[t,T], ζ =ζt , 

 
where function ˜ u (ζt ,t) satisfies the equation following from [24] (see its solution in 
Comments 2.1): 

/ 1 / 2u t−∂ ∂ = ∇ ˜ u +|ϕt − ζ |2 ;∇ = 2 2

1
/

n

i
i

∂ ∂ζ
=

∑ ,  (2.53) 

  
lim
t T↑

( , )u tζ 0,=  ( , )tζ ∈( R n × Δ ), |•|2 =||•||
Rn

2 .                                           (2.53a) 

This equation for function ( , )u tζ  is connected to (2.51), (2.52) by the relation 
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0E [ 2
2
L

ρ (ζ Θ ,ϕΘ )]= lim
t ↓s

( , )u tζ = ˜ u (s,0)→ Inf
ϕ t

; ( ) 0.t sζ = =                              (2.54) 

 
The fulfillment of (2.54) follows if we write the condition (2.54) in the form 

 

 
lim
t ↓s

0E [ 2
2
L

ρ (ζt ,ϕt )]= 0E [ || ϕ t ||L2

2 ]= || ϕ t ||L2

2 .  (2.55) 

We will show that at s sy y≠  we obtain the same result.  
Indeed, using the triangle inequality we have 
 

2 2{ ( , ) } { ( , ) / 2}t t t s t sL L
y y y y y yρ δ ρ δ< ⊇ − − <   

2{ ( , ) / 2} { }{ };s sL
y y A Bρ δ× − Ο < =   

2 2 1{ } { ( , ) / 2} ,{ } { ( , ) / 2} ,t s t s s sL L
A y y y y B y yρ δ ρ δ= − − < ⊂ Ψ = − Ο < ⊂ Ψ  

 2{ ( , ) }t tL
y yρ δ< ⊇ {A}{B}; {A}{B} =

def

Ω × Ω 1 \ {A}{B},  (2.56) 

2 2 1{ } { ( , ) / 2} ,{ } { ( , ) / 2} .t s t s s sL L
A y y y y B y yρ δ ρ δ= − − > ⊂ Ψ = − Ο > ⊂ Ψ  

Applying relations (2.42), (2.43a) to (2.56) at Px = P , we obtain 
 

2{ ( , ) } { } { } { }t tL
P y y P A B P A P B Pρ δ≥ ≤ + = + − {A, B}. (2.57)  

From that and because Ψ and Ψ 1  are independent, it follows  
 

2{ ( , ) } { } { } { } { } { } (1 { }) { }t tL
P y y P A P B P A P B P B P B P Aρ δ≥ ≤ + − = + −         (2.58) 

where { }P A  is the probability of the considered event ( ˜ y s = ys =0, mod ˆ P s).  

Since the function (2.57) is increasing monotonously with respect to { }P A , its upper 

estimator is defined by the upper estimator for { }P A , and this estimator can be found from 
(2.58).  

Beside this, and because only yt  is covered by { }P A , finding the Inf
yt

 of the upper limit 

of probability (2.50) is reduced to Inf
yt

of the upper limit of { }P A .  

(At this case, Gy =Gy=0 , Ky = Ky = 0  ).  
Therefore, the upper limit of probability (2.50) has a minimum on the solutions (2.49) 

independently on the values ˜ y s , ys . (The numerical values of these limitations are different in 
the cases of ys ≠ ˜ y s , and ys = ˜ y s  accordingly). •  

 
Corollary 2.1.  

The solutions of equation (2.49) remain at a locality of function ˜ y t ∈C(Δ, Rn )  with a 
maximal probability (2.27) applied to 

2L
ρ ( ˜ y t , yt ).  
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Indeed, the problem of maximizing the estimator (2.27) is reduced to condition 
 

 
t ty y

minS ( ) min
T

i t i
s

y L dt= ∫ , 11 / 2( ) (2 ) ( ), 1,2,5,T
iL y q b y q i−= − − = ,  (2.59) 

which is fulfilled at the solution of equation ( , , )y q t y u= .  

As a result, we obtain relations 
 

2 2{ ( , ) } ; { ( , ) } ,t t t tL L
y q y q

P y y m Sup P y y m Infρ δ ρ δ
= =

< ≥ → ≥ ≥ →                       (2.60) 

i.e., solutions (2.49) become the nearest to the most probable solutions (in the 2L -metric) by 
upper evaluation (m ) as well as by lower (m ) evaluation of the above probabilities. •  

 
Comments 2.1. The solution of equations (2.53), (2.53a).  
Let us apply to (2.53) the Fourier transformation 

 

 
1

1
[ ] [ ]exp( ( , )) , ( ) , ( , )

n

n
n

k k k k
kR

F i dξ λ ξ λ λ ξ λ ξ λ• • =
=

= = = ∑∫ ;  (2.61) 

 
21 | | ;

2
du u f
dt

λ− = − +   (2.62)  

 
at  ( , ) 0u T λ =  ,  (2.63) 
 
where  

 
2[ ], [ ], | |tu F u f F f f ϕ ξ= = = − .  (2.64) 

A general solution of (2.62) will be built using the method of variations of an arbitrary 
constant in  

2 21 1( , ) ( ( , ) exp( | | ) ) exp( | | )
2 2

u t f t t dt C tλ λ λ λ= − − +∫ .  (2.65) 

 
This function should satisfy (2.62).  
Let’s check it: 

 

2 21 1( , ) ( , ) exp( | | ( )) | | ;
2 2

T

t

du f t f t d
dt

λ τ λ λ τ λ τ= − + − −∫
 

 

2 2 21 1 1( , ) | | ( , ) exp( | | ( )) ( , ) | | .
2 2 2

T

t

du f t f t d f t u
dt

λ λ τ λ λ τ τ λ λ− = − − − = −∫  

 
It seen that function (2.65) satisfies (2.62) identically.  
According to (2.65),(2.63) a partial solution of (2.62),(2.64) has a form 
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21( , ) ( , ) exp( | | ( ))
2

T

t

u t f t dλ τ λ λ τ τ= − −∫  ,  (2.66) 

 
which also satisfies (2.62): 

 

2 21 1( , ) | | ( , ) exp( | | ( )) ;
2 2

T

t

du f t f t d
dt

λ λ τ λ λ τ τ= − + − −∫
 

 

21( , ) | | .
2

du f t u
dt

λ λ− = −  

 
Then taking into account (2.66) we have 

 
1 1 21( , ) [ ] (2 ) ( , ) exp( ( , )) ( , ) [exp( | | ( ))]

2n

T
n

tR

u t F u u t i d f F t dξ π λ ξ λ λ ξ τ λ τ τ− − −= = − = ∗ − −∫ ∫ ;  

  (2.67) 
 

2
1 2 1 2 / 2

1

1 1 | |[exp( | | ( ))] [exp( ( ))] (2 ( )) exp( ).
2 2 2( )

n
n

kk
F t F t t

t
ξλ τ λ τ π τ
τ

− − −

=
− − = Π − − = − −

−
  

  (2.68) 
 
And according to (2.67), (2.68) the following relations hold true: 

2
/2

2
2 /2

| |( , ) ( , )(2 ( )) exp( )
2( )

| || ( ) | (2 ( )) exp( )
2( )

n

n

T
n

t R
T

n

t R

xu t f x t t dxd
t

xx t dxd
t

ξξ π τ τ
τ

ξϕ τ π τ τ
τ

−

−

−
= − −

−

−
= − − −

−

∫ ∫

∫ ∫
 

2
/ 2 2

1

| |(2 ( )) ( ( ) ) exp( )
2( )n

T n
n

i i
it R

xt x dxd
t

ξπ τ ϕ τ τ
τ

−

=

−
= − − −

−∑∫ ∫  

2

/ 2 2 1

1

( )
(2 ( )) ( ( ) ) exp( )

2( )n

n

T k kn
n k

i i
it R

x
t x dxd

t

ξ
π τ ϕ τ τ

τ
− =

=

−
= − − −

−

∑
∑∫ ∫  

1

2
/ 2 2

1

( )(2 ( )) (( ( ) ) ( )) exp( ))
2( )

T n
n i i

i i i i i
it R

xt x dx
t

ξπ τ ϕ τ ξ ξ
τ

−

=

−
= − − + − −

−∑∫ ∫ ; 

 

1

2

1,
1 1 1

( )
exp( ) ... ...

2( )n

n

i i
k k i

i i n
R

x
dx dx dx dx d

t

ξ
τ

τ−

= ≠
− +

−
−

−

∑
∫
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1

2
/ 2 ( 1) / 2 2 2

1

( )(2 ( )) (2 ( )) [( ( ) ) 2( ( ) )( ) ( ) ]exp( ))
2( )

T n
n n i i

i i i i i i i i i
it R

xt t x x dx d
t

ξ
π τ π τ ϕ τ ξ ϕ τ ξ ξ ξ τ

τ
− −

=

−
= − − − + − − + − −

−∑∫ ∫

1 1

2 2
1/ 2 2 2

1

( ) ( )(2 ( )) [( ( ) ) exp( )) 0 ( ) exp( ) ]
2( ) 2( )

T n
i i i i

i i i i i i
it R R

x xt dx x dx d
t t

ξ ξπ τ ϕ τ ξ ξ τ
τ τ

−

=

− −
= − − − + + − −

− −∑∫ ∫ ∫

1

1/2 2 1/2

1

2
1/2 2

1 2
1

(2 ( )) ( ( ) ) (2 ( ))

( )(2 ( )) ( ) exp( ) ;
2( )

T n

i i
it

T n
i i

i i i
it R

t t d

xt x dx d u u
t

π τ ϕ τ ξ π τ τ

ξπ τ ξ τ
τ

−

=

−

=

= − − −

−
+ − − − = +

−

∑∫

∑∫ ∫
 

 

2
1

1
( ( ) ) ,

T n

i i
it

u dϕ τ ξ τ
=

= −∑∫
1

2
1/ 2 2

2
1

( )(2 ( )) ( ) exp( )
2( )

T n
i i

i i i
it R

xu t x dx d
t

ξπ τ ξ τ
τ

−

=

−
= − − −

−∑∫ ∫ . 

 

Let us find 2u  assuming 
1

2
2

2
( )( ) exp( ) , , .
2( )

i i i
i i i i i i

R

xI x dx x y a t
t

ξξ ξ τ
τ
−

= − − − = − = −
−∫   

We have  
 

 1

2
2

2 exp( ) ;
2

i i
i i

R

yI y dy
a

= −∫
1

2 2

2 exp( ) | [ [ exp( ) ] ;
2 2

i i i
i i i i i i

R

y yI y y dy y dy dy
a a

+∞
−∞= − − −∫ ∫

 
2

1/ 2 1/ 2 1 1/ 2 1/ 2 1/ 2(2 ) ; (2 ) 2 2 (2 ) exp( )(2 ) ( (2 ) )
2

i
i i i i

yz y a a y a a d y a
a

− − − −= −∫  

 =
2

2 2 2 22 exp( ) exp( ) ( ) ( 1) exp( ) exp( );
2

i
i i i i i i

ya z z dz a z d z a z a
a

− = − = − − = − −∫ ∫  

 1

2
1/ 2 1/ 2 3/ 2 1/ 2 3/ 2

2 exp( ) (2 ) (2 ) (2 ) ( ) ;
2

i i
i

R

yI a dy a a a t
a

π π π τ= − = = = −∫  

 

1/ 2 1/ 2 2
2 2

1
(2 ) ( ) ( ) / 2( )

T Tn
i

it t

u I t d n t d n T tπ τ τ τ τ− −

=

= − = − = −∑∫ ∫ . 

 
And as a result we get  

 

 

2 2

1

( , ) ( ( ) ) / 2( )
T n

i i
it

u t d n T tξ ϕ τ ξ τ
=

= − + −∑∫ .  (2.69)  

 
The problem essence.  

Evaluator (2.2a) reaches a maximum on the solutions of equation x =au , and because of that, 
the problems (2.5),(2.5a,b),(2.28), (2.28a) lead to the fulfillment of the condition 

 
3 4 4 4min ( ) min ( ), ( )

T

t t t
s

S x S x S x L dt→ = ∫ , 4L = 11/ 2 (2 )Tx b x− , x =au( t, x )≠ 0, (2.70) 

from which are found macroprocess tx  and the corresponding control function ut  (ch.1.3), 
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[30, 33].  
      This leads to the problem of minimizing of the entropy functional, defined on the 
macroprocess.  

The essence of the functionals (2.70) nearness (for the probabilities P 3  and P 4 ) consists 

of connecting the micro-and macrolevel processes by their abilities to approximate the 
disturbance (ζt ).  

This is achieved by their probabilistic closeness to some lower limits.  
As a result, the macrolevel process, which approximates the microlevel process with a 

maximal probability, following from (2.70), enables us to minimize the entropy functional for 
the bi-level (micro-macro) structure of the object's processes.  

The path functional (2.70)(defined on the macroprocess) provides a dynamic 
approximation of the entropy functional (defined on the microprocess) with a maximal 
probability. 

1.2.3. The Estimation of an Accuracy of the Probability’s 
Approximation  

At the given macroprocesses and the corresponding functionals (2.27)-(2.29), let us find 
such (0,1), 1, 2,3i iε ∈ = at which the conditions for the maximums of these probabilities: 

1/2
i(0,1)

max{  exp[ (2S /(1 )) ]}
i

i iε
ε ε− −  are satisfied.  

Proposition 2.1.  
A maximum of the function  
 

 f( x = ε )=ε exp[−(
2Si

1 − ε
)1/ 2 ] → max

ε∈(0 ,1)

Si >0, 1, 2, 4i =   (2.71) 

is reached on the solutions of equation  
 

 (1 − x)3 = Sx 2

2
 at x ∈(0,1) , S >0, iS S∈ .  (2.72)  

Proof. Introducing function 
 
  1/2( ) exp[ (2 (1 )) ]f x x S x= − − ,  (2.72a) 

 
we will analyze its maximum considering its first derivative: 

f ' (x) = exp[−(
2S

1 − x
)1/ 2 ] + x exp[−(

2S

1 − x
)1/ 2 ] ( 1− ) 

− (2S)1/ 2(−
1

2
) × 1

(1 − x)3/ 2 ( 1) 0,1− = = (2S)1/ 2(
1

2
) x

(1 − x)3/ 2 .  

We come to equation (1 − x)3 = Sx 2

2
, x ∈(0,1) , S>0, which has a unique real root.  
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Let us determine a second derivative f"( x ) at the point x ∈(0,1) , defined by the solution 
of the equation (2.72a): 

 

f "(x) = exp[−(
2S

1− x
)1/ 2 ]

(2S)1 / 2

2
( 1− ) 1

(1 − x)3/ 2
− (2S)1 / 2

2
exp[−(

2S

1− x
)1/ 2] ; 

1

(1 − x)3/ 2 − (2S)1 / 2

2
x

d

dx
{
exp[−(

2S

1 − x
)1/ 2 ]

(1− x)3/ 2 }
 

 = − (2S)1/ 2

(1 − x)3/ 2 exp[−(
2S

1− x
)1/ 2] − (2S)1/ 2

2
x

d

dx
{
exp[−(

2S

1 − x
)1/ 2 ]

(1− x)3/ 2 } ;  

 

d

dx
{
exp[−(

2S

1− x
)1/2 ]

(1− x)3/ 2 }=
exp[−(

2S

1− x
)1/ 2]

2(1− x)3 (−(2S )1/ 2 + 3(1 − x)1/ 2 ) .  

 
At the extremal point of the solution, we come to relation 

 

 f " (x) = −
(2S)1/ 2 exp[−(

2S

1 − x
)1/ 2 ]

(1− x)3/ 2 (1+ 3(1 − x)1/ 2 − (2S)1/ 2

2 (2S )1/ 2 ) 

 = −
(2S)1/ 2 exp[−(

2S

1 − x
)1/ 2 ]

(1− x)3/ 2 (
1

2
+ 3(1 − x)1/ 2

2(2S)1/ 2 ) 0,<  

 
that satisfies the maximum of (2.72a).  

Therefore, the fulfillment of (2.71) at x = ε  leads to (2.72), with the following roots of 
the equation:  

 
 x =ε i  at S = Si , i = 1, 2 , 4 . •  

Proposition 2.2.  

A lower limit of P0 ( Bδ ) or Ps
*( Dδ ) in (2.20)-(2.21) is estimated by formula  

 P0 ( Bδ )
1/2

1 2

/( )

exp( / 2)
o

n
n

T

K d
δ

ρ ρ ρ
∞

−≥ −∫ , oδ δ< , 

 
1 ( 2) / 2( / 2)2 n

nK n− −= Γ , ( ), 0α αΓ > ,  (2.73) 

 
where ( )αΓ is an Euler’s gamma function. 
Proof. The estimation P0 (Bδ )  in (2.29), according to [22] acquires the form:  

 

 Po{ξ t ∈Α } ≥1 − 2 Po{ξT ∉Α } ,  (2.73a) 
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where Α ⊂ U  is an arbitrary closed concave set.  
Let us introduce the balls 
 

Α = Α (0,δo) , (0, )oK δ in ( , )C U and ( , )nR β  accordingly, with a fixed value oδ δ> : 

 

                              Α = Α (0,δ o) ={ : ( ,0) }t t oCϕ ρ ϕ δΔ∈ ≤ ,  

 A(0,δ )={ϕ t ∈C:ρΔ (ϕ t ,0) < δ }, (0, )oK δ = }(:{
1

2
o

n

i
i

n xRx δ≤∈ ∑
=

.  

And let us assume Α = Α (0,δo) , and use the following relations  
 

 Bδ =
def

{ξ t ∈Α (0,δ )} ⊃ {ξt ∈ Α (0,δ o )} , 

 {ξT ∉Α (0,δo )}={ξ T ∉K (0,δ o )}={| ξT |> δ}, |ξ T |= ( ξ i
2 (T,ω ))1/ 2

i=1

n

∑ . 

Then, applying the above relations and the representation of probability in [22], we get  
  

 {| | }o TP ξ δ> = {| | }o TP ξ δ> = Kn r n−1

δo /(T ) 1/ 2
∫ exp(−r 2 / 2)dr ,  

where Kn
−1 = Γ(

n

2
) × 2

n −2

2 , Γ(α ) , α >0 is the Euler gamma-function.  

Finally, we come to the estimation of these probability by (2.73). •  
 

Comments 2.2.  

At given trajectories of (1.11) and corresponding functionals (2.30) on them, it is found 
such εi ∈(0,1), i =1− 3 in (2.27)-(2.29) at which the relations (2.71), (2.72) are fulfilled.  

This conditions satisfy to the maximums of these probabilities.  

Then, using the evaluation of the lowest limit of the probabilities P0 (Bδ )  and Ps
*  in 

(2.27)-(2.29) by (2.73), we obtain the numerical evaluations for the probabilities.  
Actually, solving the variation problem (2.70) (in ch.1.3) allows approximating the 

random information functional by the path functional with the maximal probabilities (2.5)-
(2.5b). 

 



 
 
 
 
 
 

Chapter 1.3 
 
 
 

THE VARIATION PROBLEM FOR THE INFORMATION 
PATH FUNCTIONAL AND ITS SOLUTION 

 
 
 
In this chapter, the found solution to the path functional’s variation problem provides 

both a dynamic model of a random process and the model’s optimal control synthesis, which 
allows us to build a two-level information model with a random process at the microlevel and 
a dynamic process at the macrolevel. 

1.3.1. The Problem Formulation 

Let us formulate the variation problem (VP) using the Lagrange method of eliminating 
constraints [23] and the Pontryagin maximum principle [24], applied to the information path 
functional in forms (2.59),(2.70): 

0

ˆ ˆ( ) ( , , , ) ; ( , ), , ,
T

o
p t p t t t t tS x L t x x u dt extr u u t x u U U intU= → = ∈ =∫ �                     (3.1) 

( , , ( ))p p tS S s T x •= , 1
,( ) ( , )n

tx x KC R• ∈ Δ , 

1
2 1/2

1
1

( ( , )) , 0 .
ndef n

t t i T iKC C i
t i

x x Sup x t x•
=

∈Δ =

= = =∑   (3.1a) 

( , , ) ( ( , ))o T u
p p o t t t t tL L L t x x p x a t xλ= = + −� � ,                                                          (3.2a) 

or 

( , , ( , )) ( ( , ))o u u T u
p p o t t t t tL L L t x a t x p x a t xλ= = + −� ,                                                (3.2b) 

1( , , ) 1/ 2 (2 ( , ))T
t t t t tL t x x x b t x x−=� � � ,                                                                            (3.3) 

1( , , ( , )) 1 / 2( ( , )) (2 ( , )) ( , ), ( , ) 0,u u T u u
t t t t t tL t x a t x a t x b t x a t x a t x−= ≠                (3.4) 

1( , , ( , )) 0, 1,..., , ;|| || : ( , , ) ,n
j jx u x j N R U Rτ τ ψ ψψ τ τ τ ψ ψ= = ∈ Γ ⊂ Δ = Γ →   (3.5) 
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where Lagrangian Lp
o  is written in both the traditional (3.2a) (for Calculus in Variations) and 

the Pontryagin's (3.2b) forms, and ,o tpλ  are the Lagrange multipliers: 

oλ ∈ R+
1 , 1( , ) ( , )n

tp p x KC R•= ∈ Δ .  

The conditions (3.5) are determined by reaching the equalization of S2 ( xt ) with S3 ( ˜ x t ) 
in (2.70) and represent the constraint's equation, imposed by stochastics; Γψ  is a discrete set 
of points t ∈ Δ  defined by the function ψ j =ψ j(τ,xτ ,u(τ, xτ )) , Γψ  and N  will be found 
based on (2.70) and the applied controls (1.5).  

The differential constraint below, implementing (2.70), brings an important specific of 
the VP. 

1.3.2. Solution to the Variation Problem 

Lemma 3.1.  
The equations for the field of the functional Sp  on the set 

 1 1

( \ ) ; \ ,k k

m m
n o

k k

Q Rψτ τ
= =

= Δ Γ × Δ = Δ� ∪ ∪ ∪   (3.5a) 

where τk  is the point of the control’s discontinuity, follow from the application of the 
functional’s field variation conditions [23] imposed on the conjugate vectors Xp (t) , pt  and 

the corresponding Hamiltonians Hp , Hp
u  accordingly.  

Indeed, the field’s equations brings the following relations, which are satisfied at 
∀t ∈ Δo \ Γ ψ : 

 1( , , )( ) , (2 ( , )) ,p t t
p o t t t t t

t t

L L t x xX t X p X b t x x
x x

∂ ∂λ
∂ ∂

−= = + = =
� �

� �
   (3.6) 

 1(2 ( , )) , ( , ) 2 ( , ) ,u
o t t o t t t t t t tX p b t x x p x a t x b t x Xλ λ −+ = + = =� �   (3.7) 

 

 
( ) ( ) ( )T

p t p pH t x X t L t= −�

1 1(2 ( , )) (2 ( , )) ( , )
2

T T T T T uo
o t t t t t t t t t t t tx b t x x x p x b t x x p x p a t xλλ − −= + − − +� � � � � � ,  (3.8) 

 ( , , ) ( ) ( , )( ) ( , ),T T u
p p o p t p t t tH t x X X p b t x X p p a t xλ= − − +     (3.8a) 

 Hp (t,x, X) = λo XTb( t, x)X + pt
T a u(t, xt ) .   (3.8b) 

 
We come to the differential equations of the VP’s extremals: 

( , , ( ))p t p
t

p

H t x X t
x

X
∂

∂
=� = λ o 2b(t, xt )Xt = λ oa

u (t,xt ) , (3.9) 
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( , , )p p p p

p p

H H H H t x XX I
X X X X X

∂ ∂ ∂ ∂∂
= = =

∂ ∂ ∂ ∂ ∂
,  (3.9a) 

where I is the identity matrix and 

 

u
p

t
t

L
p

x
∂
∂

=
�

, 

1( ) ( ) ( , )) (2 ( , )) ( , )) ( , )
2

u T u T u T u T uo
p t t p t t t t t t tH t x p L t x p a t x b t x a t x p a t xλ −= − = − +� �

 

 
T
t tp x− � .   (3.10) 

From the comparison of (3.7) and (3.9) follows λ o = 1  and  
 

Hp
u (t) = −

1

2
au (t,xt))

T(2b(t, xt ))
−1 au (t,xt) + pt

Tau (t, xt) . (3.10a) 

The functional's field on Q = (Δo \ Γ ψ ) × Rn  is determined by the tranversality's conditions  
 

( , , ( , ))( , , ( , )) , , 1,...,
uu

ji

j i

X t x a t xX t x a t x i j n
x x

∂∂
∂ ∂

= = , (3.11) 

( , , ( , )) ( , , ( ))u
p t t p t p

t

dX t x a t x H t x X t
dt x

∂
∂

= − ,   (3.12) 

or is expressed by both relation (3.11) and equation 
 

1( , ) 1( ) ( ( , )) (2 ( , )) ( , ))
2

u u
p T u T ut t

t t t t
t t t

Hdp a t x p a t x b t x a t x
dt x x x

∂ ∂ ∂
∂ ∂ ∂

−= − = + , (3.13) 

corresponding to the forms (3.2a) and (3.2b).  
Equation (3.12) for the conjugate vector in (3.6) relates to the Lagrangian in form (3.2a), 

while the equation for the conjugate vector in (3.10) relates to the Lagrangian in form (3.2b).  
Equation (3.13) is a stationary condition for the maximum principle.  

These equalities for the functional’s Sp  field should be equivalent on ( \ )o nRψΔ Γ ×  

because both of them are a consequence of the same variation principle, represented in the 
two forms. •  
 

Corollary 3.1.  
Function of action ( , )pS t x , defined on extremals, satisfies the Hamilton-Jacobi (HJ) 

equation at ( , )t x Q∈  in the forms 
 

( , )
( , , )p u

p p

S t x
H t x X

t
∂

∂
− = , 

( , )
( , )p

p

S t x
X t x

x
∂

∂
= , (3.14) 
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1( , ) 1 ( , )) (2 ( , )) ( , )) ( , )
2

p u T u T u
t

S t x
a t x b t x a t x p a t x

t
∂

∂
−− = + . (3.15) 

 
Lemma 3.2 (L2).  

Let us consider the distribution of functional (3.1) on ˜ Q = Δo × Rn  as a function of current 

variables: ˜ S = ˜ S ( t, x) , which satisfies the Kolmogorov equation (K) [25], applied to equation 
(3.1) in the form 
  

−
∂ ˜ S 

∂t
= (au )T ∂ ˜ S 

∂x
+ bij

i, j =1

n

∑ ∂ 2 ˜ S 

∂xi∂x j

+
1

2
(au )T(2b)−1au  , au =au (t, x ), b =b ( t, x ),  (3.16) 

and let us have a function ( , )p pS S t x=� � , which satisfies equation (3.16) at each point 

( , )t x Q∈  of the extremal’s field:  
 

 

2
1

, 1

1( ) ( ) (2 )
2

n
p p pu T u T u

ij
i j i j

S S S
a b a b a

t x x x
∂ ∂ ∂
∂ ∂ ∂ ∂

−

=

− = + +∑
� � �

 
(3.16a) 

and satisfies the HJ equations (3.14), (3.15) on a certain set oQ Q⊂ , where holds true the 
equation  
 

 

2

, 1

( )
n

p pu T T u
ij

i j i j

S S
a b p a

x x x
∂ ∂
∂ ∂ ∂=

+ =∑
� �

 
, au =au ( t, x ), b =b (t, x ).

 
 (3.17) 

Then, the above function ( , )p pS S t x=� �  exists and satisfies the equation 

2p TX X XX
x x

∂ ∂
∂ ∂

= = − ,                                                                                          (3.18) 

which determines N = n 2  equations of constraint in (3.5), imposed on the Hamilton 
equations (at the “punched” discretely selected points (DP) (3.5a)). 

Proof. Applying equations (3.6)-(3.12) and the principle of superposition for the 
continuous and differentiable transformations, we come to the existence of equation (3.17) 

and the fulfillment of (3.15) for ( , )p pS S t x=� � .  

Because of that, on oQ Q⊂  are satisfied the equations  
 

,p p
p p

S S
X H

x x
∂ ∂

= − =
∂ ∂

.                                                                                        (3.18a) 

Since (3.17) is a linear elliptic equation solvable under the given boundary conditions (on 
the right-hand side of (3.17)), the function ˜ S p( t, x)  exists.  

According to (3.17), (3.18a) and (3.6)-(3.8) we get on oQ Q⊂  the following equations  
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 , 1

( ) ( )
n

piu T u T T u
ij

i j j

X
a X a p b p a

x
∂
∂=

+ + =∑ , 

 , 1 , 1

2 0, ( 2 ) 0,
n n

pi piT
ij ij i j

i j i jj j

X X
X bX b b X X

x x
∂ ∂
∂ ∂= =

+ = + =∑ ∑     (3.19)  

 
, 1

( 2 ) 0, 0,det 0
n

ip
ij i j

i j j

X
b X X b b

x
ψ

=

∂
= + = > ≠

∂∑  (3.19a) 

 
2p TX X XX

x x
∂ ∂

= = −
∂ ∂

.   (3.20) 

Relation (3.19a) is fulfilled if, in particular, equation (3.18) is satisfied, which determines 
N = n2  equations of the differential constraints in (3.5).  

The condition (3.18), being applied, should not contradict to the VP (particularly, in 
forms (3.14) and (3.11)).  

Indeed, from (3.14, 3.18) we have  
 

       

∂Xp

∂t
= −

∂Hp

∂x
−

∂Xp

∂x
au , ( ) 2( )

T
p TX X XX X

x t t t
∂∂ ∂ ∂

∂ ∂ ∂ ∂
= − + , ( , )t x ∈ oQ ,(3.20a) 

or in other form:  
 

, 1
( 2 ) ( )T n

ij i j

X XX o
t x

∂ ∂
∂ ∂ =

+ = . 

This proves the correctness of (3.18), which satisfies (3.20a). •  
Comment 3.1. For the implementation of (3.18), (3.20), the distributions for both 

functionals ( , )pS t x�  and ˜ S (t, x)  on ˜ Q = Δo × Rn , as well as condition 
˜ S p( t, x)=extrS(t, x)  at (t, x )∈ ˜ Q , should be considered in the same region by letting Q= ˜ Q  

for the above HJ and K equations. From that follows Q = Δo × Rn , 
1

m
o

k
k

ψ τ
=

Γ = =Δ∪ , i.e., 

the set 1Rψ +Γ ⊂ , where the constraint (3.5),(3.18) holds true, coincides with the discrete 

moments, imposed at a locality of the control's discontinuity 0 0{ }m
k kτ =∓ .  

For fulfillment of equation (3.18), (3.20) by applying the controls, let us assume   

 
0 0 0Q Q Q− += ∪ , 0Q ± 0

1

mdef
n

k
k

Rτ
=

= ×∓∪ ,  (3.21) 

i.e. the constraint (3.5), (3.18) at (3.21) is imposed at a vicinity of the hyperplanes of space 

R+
1 × Rn

, defined by the set ψΓ =
  

τ k

k =1

m

U , which will be selected constructively later on.•   

Let us represent vector au  in (1.6) in a traditional form = ( , )ua A t x x u+ , where ( , )A t x  
is a macromodel’s differential operator, while the control can be written in the form 

( , )u A t x v= , where v  is a control vector reduced to a state vector x.  
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Then we formulate the following  
Theorem 3.1(T1). 

The equations for the functional field (3.6)-(3.7), (3.15), (3.16) and for differential constraint 
(3.5), (3.18) of the VP are satisfied jointly at a limited set oΔ  when the following equations 
for the macromodel and controls hold true: 
 

 ( , , ) ,u
t ta t x u a= au = A ( t )( x +v ), A ( t )= At ,  

 
1( ) ( , ( )) ( , ( ))n o n

tA t KC L R C L R∈ Δ ∩ Δ ,  (3.22) 

 

1

1

( , ) ( ), \ , ( , ) ( , ( )),k

m
n o o n n

t
k

t x R v KC V C L R V Rτ
=

∈ Δ × Δ = Δ ∈ Δ ∩ Δ ⊂∪ , (3.23)  

where 1v A u−=  is the control vector u , reduced to a state vector x , with 

[ ] [ ]rank v rank x n= = ; ( , )A A t x= is a nonsingular macromodel matrix, and 
1,C KC are the spaces of continuous differentiable and the piece wise 

differentiable n-dimensional vector functions on Δ , respectively, oΔ  is a 
set of discrete moments ψτ ∈ Γ in Δ . 

Proof. The equalities (3.6) and (3.14), (3.15) are the consequences of the same variation 
principle with the Lagrangians in two forms (3.2a,b).  

Therefore, either (3.6), (3.7) or (3.6), (3.14) must be equivalent at 
, ( , )o nQ Q R t x Q= = Δ × ∈� � .  

This involves a joint consideration of the following equations: the field equations (3.6), 
(3.7), the differential equation for the conjugate vector in the field for Haminltonian (3.10): 

 

 

p p p uX H X
a

t x x
∂ ∂ ∂
∂ ∂ ∂

= − − , ( , ) ( , )pX X t x p t x= + , 

  ( ) ( )p p T TX X X X
x x x x

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
,  (3.24) 

 
( ) ( ) , 2T T u T T u u

p p pH X p b X p p a X bX p a a bX= − − + = + = ,  (3.24a) 

the equation of differential constraint in the form (3.18), and the equation 
 

 
( / ) / 2[( / ) ( / ) ]T T

pX t x X t X X X t∂ ∂ ∂∂ ∂ ∂ = − ∂ + ∂ .  (3.25) 
The right side of (3.25), after applying Hp  from (3.12), (3.24a) and substituting (3.18), 

acquires the forms: 
 

 
( ( ) ) ( ) ( ) ,p T T u T

p

H XX p b X b X a p
x x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= − − +  (3.25a) 

 
/ 1/ 2( / ) 2 ( / )u T T u T

pH x a x X XX bX a x p∂ ∂ ∂ ∂ ∂ ∂= + + .  (3.25b) 
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The equations (3.25) and (3.25b) can be written in the following two forms:  
 

 
/ 1/ 2( / ) ( / )u T T u u T

pX t a x X XX a a x p∂ ∂ ∂ ∂ ∂ ∂= − + − , 

[1/ 2( / ) ( / ) ] / 2[( / ) ( / ) ],
[1/ 2( / ) ( / ) ] / 1/ 2 ( / ) / ) : ( 2 )
( / ) / 4 ( ).

u T T u u T T T

u T T u u T u T

u T T T u T T u

a x X XX a a x p x X t X X X t
a x XX a a x p x a x x X p

a x XX XX a x XX X a

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

− + = +

− + = +

− − +

(3.26) 

Since functional (3.1) reaches its extreme on the solutions of equations (3.8,3.9), the 
variation conditions of a coordination in the functional field [23] are satisfied in the form: 

 
1( , , ( , )) / ( , , ( , )) / , 1 / 2( ) (2 ) 1/ 2u u u T u T uX t x a t x t H t x a t x x H a b a X a∂ ∂ −∂ = − ∂ = =  .   

    (3.26a) 
Using the last equation, we obtain 

/ 1 / 2[( / ) ( / ) ] 1 / 2[ 2 ( / ) ]T u u T T u TH x X x a a x X XX a x X∂ ∂− ∂ = − ∂ + ∂ ∂ = − − + ∂ ∂ ,  
   (3.27) 

and equality (3.25) takes the form 
 
2[( / ) ( / ) ] 2 ( / ) 2 ( )

/ 4 ( ) ( / ) / .

T T T u T u T T u T T

T u T u T u T T T u

X t X X X t XX a X a x XX X a XX
XX a x X X a X a x XX XX a x
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

+ = − +

− = − −  
   (3.28) 

 

From the joint consideration of (3.26) and (3.28) we get equality 
 

, 1
1/ 2 ( / ) / : ( 2 ) ,

nu T
ij i j

a x x X p o∂ ∂
=

∂ ∂ + = = Ο  (3.29) 

which is satisfied identically on the set  
 

( \ )n
kQ Rτ= Δ ×∪ , if 2 0( , ) / ; , , 1,..., , ( , ) .u

k i ja t x x x i j k n t x Q∂ ∂ ∂ ≡ Ο = ∈  (3.30) 

From that, the equations (3.22), (3.23) follow.  
Operator A = A(t)  does not depend on the microlevel’s randomness (ω ∈Ω ) by its 

definition. •  

Comments 3.2. The path functional on the extremals, expressed through the parameters 

of the object equations (1.11), which satisfies the VP, we call an eigenfunctional.  

This functional, according to (3.13), meets the conditions of the model’s stability.  

The Lagrangian of the eigenfunctional:  

 

 
11/ 2[( / ) (2 ) ( / ) ( / )]T T u

pL dx dt b dx dt p dx dt a−= − + − ,  (3.31) 

with the equations (3.16),(3.18): 
 

 ( ) / (2 ) , / , 2 /T u T u T up a X p a b X x bX X dx dt a bX dx dt= + + ∂ ∂ − = =   (3.32) 
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takes the form   

 
11/ 2[( ) (2 ) ( ) / ( / ) ].u T u T T

pL a b a X dx dt dx dt X−= − − +   (3.33) 

Corollary 3.3.  
From (3.8), (3.22), (3.23) follow the explicit relations for vector X  and the differential 
constraint (3.18) in the forms 
 

1 1 1( , ) (2 ( , ) ( )( ), , , (2 ) (2 ) , ( , ),T TX t x b t x A t x v A A b b b A A b b b t x− − −= + = = = =    
  (3.34) 

1 1 1 1 1/ (2 ) (2 ) / (2 ) (2 ) / 2 2(2 ) ,u u u
j j j j jX x b b x b a b a x XX b a X∂ ∂ ∂ ∂− − − − −= − ∂ + ∂ = = (3.35) 

 
1(2 ) / (2 ) / 2u u u

j j jb x b a a x a X∂ ∂ ∂ ∂−− + = ,  

 
( (2 ) / ) / 2u u

j i i j i jb x X a x a X∂ ∂ ∂ ∂− + = , i, j = 1,.. .,n ,  (3.36) 

 

1 1

, 1 1

(2 )
(2 ) 2 (2 )

un n
ij u u ui

km m i jk k
k m kj j

b ab a a b a
x x

∂ ∂
∂ ∂

− −

= =

− + =∑ ∑ ,  

 
2 ( , ) ( , ) ( , ) ij

ij j ij j ji j kinb t x t x t x Lσ σ= = , ( , )u u
i i ja a t x= ,  (3.37) 

 − 1 1

, 1 1

(2 ) / (2 ) 2 (2 ) , , 1,..., ,
n n

u u u
ik j v ij i jk kkv

k k
b x b a A a b a i j n

ν

∂ ∂ − −

= =

+ = =∑ ∑ ,  

 i, j = 1,... ,n , ( , ) ( )o nt x R∈ Δ × .   (3.38) 
Both (3.17), (3.37) [at ( , )b b t x= ] and (3.22) [at ( )b b t= ] define the dynamic model 

of random object satisfying the VP.  
The macroprocess’ extremals provide the prognosis of an evolution (for the (1.11) 

solutions) using the microstates’ initial math expectations. 
Form (3.9),(3.34) coincides with the equations of Nonequilibrium Thermodynamics [37-

38], where function ( , )b b t x=  defines the nonlinear kinetic operator in kinL  in (3.37), while 
Lagrangian (3.33) corresponds to the Onsager-Machlup Lagrangian [39,40].  

Considering an information speed tx�  as an analog of information flow ~ tI x� , we get a 

basic information relation between the flow and an the information force X that cause the 
flow:  

 ( ( )tI L b x X= ,   (3.38a) 

on the extremals of the path functional with Lagrangian (3.33).•   
Comments 3.3.The informational macromodel (3.22), (3.34), (3.38) includes control 

(3.23), which, unlike the traditional maximum principle, appears in the conjugate vector's 
expression, and therefore, participates in the equation of constraint (3.20), (3.36), (3.37).  

This connects the functions of drift and diffusion and represents a basic equation for 
identification of the macromodel operator with an unknown structure by measuring a 
nonlinear matrix of diffusion.  

However, at ( )tb b t=  the equation of differential constraint (3.18) acquires the form 
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1 0

, 1[ 2( )( ) (2 ) ] ( ) O,( , ) ,ij
T n

t t t i jA E x v x v A b o t x Q−
=+ + + = = ∈ ,  (3.39) 

which can be satisfied only when At , 1( ) Oij
n
i jo == =  because  

 
1det[( )( ) (2 ) ]T

t tx v x v A b −+ + ≡ Ο .   (3.39a) 

This relation leads to the fulfillment of dx / dt ( t ∈Δ ) 0=  for (3.22), which contradicts 
the initial condition (3.4). This means that b =b ( t )=bt  satisfies (3.38) at the "punched" 

points of set ˜ Q : Q0 =(  Uτk × Rn ), and function b =b ( t , x ) satisfies (3.37) within a "coupled 

region" of ˜ Q .  
The condition  

 

1

, 1
(2 ) 0, 0,

n
n

ij i j t
i j

b x x x x R−

=

≥ ≠ ∈∑ ,  (3.40) 

following from a positivity of both Langrangian and the functional at L2 20, 0S≠ ≠ in 
(2.27), (2.27a), requires a nonsingularity of matrix b , which according to (3.37),(3.38) leads 
also to the nonsingularity of matrix A .  

Equations (3.23)-(3.25),(3.38) allow the restoration of the macromodel's eigenfunctional, 
Lagrangian and Hamiltonian letting us to find the macromodel's equation directly from the 
solution of the VP problem. 

Corollary 3.4.  
Because of the above (3.18) limitations, let us consider the implementation of (3.5) using 
relation 

 
2 TX XX

x
∂ ε
∂

+ = , ( ) minρ ε → ,  (3.41) 

where an accuracy ( )ρ ε of approximating function ε = ( , )t xε  can have the following forms  

 

2 1/ 2

, 1
( ) ( )

n

ij
i j

ρ ε ε
=

= ∑     (3.42a) 

 

2 1/2

, 1

( ) ( [ ])
n

ij
i j

Eρ ε ε
=

= ∑
 
, (3.42b) 

 

2 1/2

, 1

( ) ( [ ])
n

ij
i j

Eρ ε ε
=

= ∑  .  (3.42c)  

Taking into account (3.41), the coordination of relations (3.17) or (3.20) with the variation 
principle in the forms (3.14), (3.11) accordingly and equation (3.24), leads to equalities 
 

 

∂Xp

∂t
= −

∂Hp

∂x
−

∂Xp

∂x
au , 

, 1
( 2 ) nT

i j

X XX o
t x

∂∂ ε
∂ ∂ =

+ − = = Ο ,   (3.43)  

 
( ) [ ] ,

T
TX X X XX X

x t x x t
∂ ∂ ∂ ∂ ∂ε
∂ ∂ ∂ ∂ ∂

= + +   (3.43a) 

 
( , ) 0ij

d x
dt τε τ = , ( , ) 0ij x

x τ
ν

∂ ε τ
∂

= , i, j,ν = 1,. .., n , 
0

m

k
k

τ τ
=

∈ ∪ ,   (3.44) 

from which we get the equation of constraint (3.39) in the form 
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11/ 2 ( ) TI x v X A bε−+ + =  . (3.45) 

Corollary 3.5.  
Applying estimation (3.42c) to (3.18), we come to equality 
 

 
, 1[ 2 ] || ||T n

i j
XE XX o
x

∂
∂ =+ = = Ο  .  (3.46) 

Considering (3.46) jointly with (3.43), we obtain the relation for the identification of At  at 

t ∈Δo :  
At = − rv

−1 b = − b rv
−1, 2 ( , ) ( , ) ( , )T

t t tb t x t x t xσ σ= , ( ) [( )( ) ]T
v t t t tr t E x v x v= + + ,  

 1( ) [ ( ) ]T
t t tr t E x x v= +� ,   (3.47) 

 (with the aid of control, applied at t τ= ), using the corresponding covariation functions 
( )vr t and 1( )r t , which satisfy relations 

 1 1( ) 1/ 2 ( ),  ( )= ( ) ( ) [ ( ) ( ) ]T T T
v v t t t t t tb t r t r t r t r t E v x v x v v= + + + + +� � � � .  (3.48) 

It is seen that the dispersion matrix b is expressed through the derivation of covariation 
matrix ( )vr t , defined via the observed macrovariables, while matrices rv

−1 and b  mutually 
commutate, satisfying the equations for functional’s field (3.7) and for constraint (3.46). •  

Theorem 3.2 (T2).  
Equations of the functional’s field (3.6), (3.7) and the VP’s differential constraints (3.41), 
(3.45), (3.46) are consistent if equations (3.22), (3.23) are fulfilled, and the equation for the 
identification of the model’s operator on Q0 =(  Uτk × Rn ) (including the 

( )k o kτ τ ο± = ± locality) has the forms 
 

1 1

1 1 1 1 1 1 1( ) , ( ) ( ), ( ), [ / ( ) ]v v v

T T
k o k o k o k oA A r r r r r r r r r r M dx dt x vτ τ τ τ− −

± ± ±± ± ± ± ± ± ± ±= = = = = = = + ,   
   (3.49) 

 1 1( ) 2 ( ) 2 ( )v

T
k o k o k or r rτ τ τ± ± ± ±= =� ,  

 ( ) 1/ 2 ( ) ( ) 1/ 2 ( ) ( )v v v vk o k o k o k o k oA r r r rτ τ τ τ τ± ± ± ±± ± ± ± ±= =� �  .   (3.49a) 
To prove T2 we use jointly equations (3.24a, 3.41) and (3.42c), (3.43), (3.44).  

Following the methodology of proving T1, we write down the equations 
 

 
/ 1/ 2[( / ) 1/ 2 ( / ) ],u T T u T u u T

pH x a x X XX a a a x p∂ ε∂ = ∂ ∂ + − + ∂ ∂    (3.50) 

 

( , ) / / 2

1/ 2( / ) 1/ 2 ( / )

T u T u
p p

u T T u T u u T

X t x t H x XX a a

a x X XX a a a x p

∂ ∂ ∂ ε

ε

= − ∂ + −

= − ∂ ∂ + − + ∂ ∂
  .   (3.50a) 

From those and after substituting (3.50a) into (3.43a) we obtain 
 

(1/ 2( / ) )( 2 ) 1/ 2 ) / 2[ ( ) ]u T T u u T TX X
a x X p XX a a x X X

t t
∂ ∂

∂ ∂ ∂ ε ∂
∂ ∂

+ − + = + .   

    (3.50b) 
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Using (3.41) and (3.50b) we have 
 
∂(1 / 2(∂au / ∂x)T) / ∂x:(X + 2p) − (∂au / ∂x)T XX T + 

 1 / 2(∂au / ∂x)T ε − XXT∂au / ∂x   

 +4 XXT (XTau ) −2ε (XTau )+1 / 2(∂ε / ∂x)T :au + 1/ 2ε T∂au / ∂x ,   (3.51)  
and after applying (3.26a) to (3.41) we get  
 

 
1/ 2[ ( ) ] 1/ 2 1/ 2( )

u u
u T T u u TX a aX a X XX a a X

t x x x
∂ ∂ ∂∂ ε

∂ ∂ ∂ ∂
= − + = − − .(3.51a) 

Considering jointly (3.43a), (3.50b), and (3.51a) we come to  
 

 

2[ ( ) ] 2 ( ) ( )

2 ( ) ( )

u
T T T u u T T T

u
T T u u T T T

X X aX X X X a a X XX
x x t x

aXX X a X a XX
x t

∂ ∂ ∂ε ∂ε
∂ ∂ ∂ ∂

∂ ∂εε
∂ ∂

+ + = − −

+ − − +
 . (3.51b) 

From (3.50b), (3.51), (3.51b), and (3.44), we get  
 

 

(1 / 2( / ) ) / : ( 2 ) 1 / 2 / 1 / 2( / ) 2 ( )
( ) .

u T T u u T T u

u T u T T

a x x X p a x a x X a
a X a X

∂ ∂ ∂ ∂ ε ∂ ∂ ∂ ∂ ε

ε ε

+ + + −

= − −
  

  (3.52)  
The last relation has to be identical on 0Q Q⊂  irrespectively of the explicit form for 

function ε ( t , x ). This condition is fulfilled if both the representation of (3.22) and relations  
 

  = , det 0; / ( / ) , ( )T u u T u T u T Ta x a x a X a Xε ε ε ε ε ε ε≠ ∂ ∂ = ∂ ∂ =   (3.53)  

hold true on Q . From equations (3.22),(3.52), (3.53) we obtain the following relations 
 

 
12 / 2 , 2 2 , ,u T u T u T T ua X a x X A a X X a I Iε ε∂ ∂ ε εε −+ = + = =    (3.54) 

1 1 1 1(2 ) 2 (2 ) 2 , / 2 (2 ) 2 ( ), ( ),T T u T u T u Tb A XX b X a X x XX b Sp a X b Sp a Xε− − − −+ = ∂ ∂ + = =   
  (3.54a)  

 
1 1 1(2 ) 2 ( ) 2 2 ( ), ( )u T T u T u u TA b A a x v b A X a X a Sp a X− − −+ + = =  ,   (3.54b) 

 
1 12 2( )( ) 2 2 ( ), ( , ), ( , )u T T uA bA x v a A b X a b b t x t x Q− −+ + = = ∈ .   (3.54c) 

Relations (3.54a,b), (3.22), and (3.36) lead to equations 
 
……… ( ) ( )( ) ,u T u Ta x v x v a+ = + ….    

….   ( / ) ( ) ( )( / ) , , 1,..., .T T
k odx dt x v x v dx dt t k nτ∈± ± ± ± ±+ = + =                    (3.55) 

After taking the math expectation and applying (3.48) we arrive at 
(3.49), (3.49a) for the identification of A± on Q0 =(  Uτk × Rn ) by the 
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covariance function and its derivative at the moments k oτ ± of applying 

control. •  

Comments 3.4. From equations (3.34), (3.48) we get 11 / 2 ( )vX r x v−= − +  and 
Lagrangian (3.33) in the form 

 

 
1 11/ 2( ) (2 ) 1/ 2( / ) ( ) ( ) ( / )u T u T T

p vL a b a dx dt r x v x v dx dt− −= − + − + .   (3.56)  

Comments 3.5. Solution of the equation for differential constraint (3.20). 
Let us consider the equation of constraint (3.21) in a more general form:  

 

∂A

∂x
+ ATFA = 0  at A = A(x), A = AT , F = F(x) , { }, 1,..,ix x i n= = .  

Multiplying both sides of this equation on matrix A−1 and using the symmetry of A , we get 

                                           A−1 ∂A

∂x
A−1 + F = 0 . 

After differentiating matrix 1A A I− =  and then multiplying result on A−1
 we get 

                                     A−1 ∂A

∂x
A−1 = −

∂A−1

∂x
,  

which after substitution to the previous equation brings  

                                                   −
∂A−1

∂x
+ F = 0 .  

By integrating the last equation with respect to all x  components, we obtain the solution  

 
1 1

1 1 1, ( ,..., ,0, ,...)i i iA Fdx A x x x− −
− += ∫ . 

In particular, considering the simplified equation for a single-dimensional x :  

 2F I= , 
∂A

∂x
+ 2 AT A = 0 , where AT(x) = A(x) =

a(x),b(x)

b(x),c(x)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

and substituting it into the previous matrix equation, we get the solutions 

 

2 ,0
2

0,2
x

Fdx Ix
x

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∫  , A−1(O) =

c

ac − b2 , −
b

ac − b2

−
b

ac − b2 ,
a

ac − b2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

, 

 A =

2x(ac − b2 ) + a

4x 2(ac − b2 ) + 2x(a + c) +1
,

b

4x2 (ac − b2 ) + 2x(a + c) + 1

b

4x 2(ac − b2 ) + 2x(a + c) +1
,

2x(ac − b2 ) + c

4x2 (ac − b2 ) + 2x(a + c) + 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

. 

The last solution can be directly applied to the matrix equation (3.20) for  

 
A = X =

X11, X12

X21, X22

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

a(x),b(x)

b(x),c(x)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ , A(0) = X(x = 0) =

X11(0), X12(0)

X21(0), X22(0)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ .  

The above solutions can be equal at the state coordinate points… 
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 x* =
a(0) − b(0)

2(a(0)c(0) − b2 (0))

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥   

with the following equalities for the conjugate coordinates, determined by x * :  

 X11(0) ≠ X12 (0) , X11(x*) = X12(x*) = X21(x*)= 

 

b(0)

4x *2 (a(0)c(0) − b2 (0)) + 2x *(a(0) + c(0)) +1
.  

There is also a possibility of the equalization of solutions 
                                   12 21 22( ) ( ), ( ),X x X x X x=  

or all solutions  

                                   
( ) ( ), , 1,2o

ijX x X x i j= =
 

for the considered initial variables 

                                        11 22 12(0) (0) 0, (0) 0.X X X= ≠ ≠  
The constraint in the form (3.20) for each pair of variables ,i kX X  holds four equations  

( )2 2 3.56a/ 2 , / 2 , / 2 , / 2 ,i k i k i i i k i i k k k kX x X X X x X X x X X X x X∂ ∂ = − ∂ ∂ = − ∂ ∂ = − ∂ ∂ = −

 from which after substituting in  

                                             / / 2i k k i i kX x X x X X∂ ∂ = ∂ ∂ = −   
the derivations from (3.34),(3.35) we get  

                                            ( ) ( ), ( ) ( ), ( ) ( )i k i k i kb b A A x xτ τ τ τ τ τ= = = ,  

and finally come to 

                           
2 2( ) ( ) ( ( )) , ( ) ( ) ( ) , ( ) ( )i k i k i k k iX X X X X X X Xτ τ τ τ τ τ τ= = = . (3.56b) 

This brings a symmetrization of the matrix’ solutions, binding the solutions, which, working 
jointly with variation equations (3.26a); others, leads to their potential integration in 
cooperative dynamics.  

At  

                                                  ,i i i k k kX X jX X X jXα β α β= ± = ± ,  

because  

                                                                   ( ) ( ) 0i kX Xβ βτ τ= = ,  

these equations lead to  

                                               
2 * 2 *| ( ) | | ( ) ( ) |,| ( ) | | ( ) ( ) |i i k k k iX X X X X Xτ τ τ τ τ τ= = , (3.56c) 

where                                                               
*| ( ) ( ) |i k i kX X X Xα ατ τ = ,  

for                                                                       2 2 2| | ( ) ( )i i iX X Xα β= + ;  

it brings  
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2 2 *| ( ) | ( ) | ( ) ( ) |i i i kX X X Xατ τ τ= = ,  

which holds true for both parts of (3.56c). These equations connect the conjugated variables 
(modeling the entangled physical forces, ch.1.9). 

Comments 3.6. Condition ˜ S p =min Sp  is implemented by control ut = u(xt(τ)) , applied 

within (or at the border) of region o nQ R= Δ × , where extremals xt (τ )  exist.  

Out of this region, the functional extreme: min Sp = Sp
o (xt )  is not defined, but the 

microlevel's functional ˜ S p( ˜ x t)  has a meaning. The question is: How to formulate the 

extremal principle using ( )p tS x� � , which depends on microlevel process tx� ?  

Considering min Sp = Sp
o (xτ ) , where Sp

o (xτ )  takes a fixed ("frozen") value on the 

region's border (at xt (τ ) = xτ ), the difference: ˜ S p − min Sp = Δ ˜ S p 0>  starts at ˜ x t (τ + o)  

with Δ ˜ S p ( ˜ x t (τ + o)) . For its derivation: 

  
2

1

, 1

1( ) ( ) (2 )
2

n
u T u T u

ij
i j i j

S S Sa b a b a
t x x x

∂ ∂ ∂
∂ ∂ ∂ ∂

−

=

Δ Δ Δ
− = + +∑

� � �
  (3.57)  

the condition  
2

, 1

( ) 0
n

u T
ij

i j i j

S Sa b
x x x

∂ ∂
∂ ∂ ∂=

Δ Δ
+ =∑
� �

, at ( )x x oτ= +  

for the constraint (3.19) is not fulfilled.  
Let us express each components of (3.57) using the related functions on the external. We have 

2

, 1
( )

n
u T

ij
i j i j

S Sa b
x x x

∂ ∂
∂ ∂ ∂=

Δ Δ
+ ∑
� �

⇒ ( )u T Xa X b
x

∂
∂

+ ,  

where according to (3.34) at ( )b b t=  we get  

1(2 )X b A
x

∂
∂

−=  and ( ) ( ) 1/ 2 ( )Xb A
x

∂τ τ τ
∂

= , while    

1( ( )) ( ) ( ( )) (2 ( )) ( )u T u T ua X a b aτ τ τ τ τ−= .                                                           (3.57a)  
Applying mathematical expectations [ ]E •  to (3.57a): 
 

1 1[( ( )) (2 ( )) ( )] [ ( )(2 ( )) ( ( ) ( ))( ( ) ( )) ( )]u T u T TE a b a E A b x v x v Aτ τ τ τ τ τ τ τ τ τ− −= + +
1[ ( ) (2 ( )) ( ) ( )] 1/ 2 [ ( )]T

vTr A b r A Tr Aτ τ τ τ τ−= = − , 1( ) ( ) ( )vA r bτ τ τ−= −   
we get the constraint equation on the extremal in the form:  

 
1[( ( )) (2 ( )) ( ) 1/ 2 ( )] 1/ 2 [ ( ) ( )] 0u T uE a b a A Tr A Aτ τ τ τ τ τ− + = − + = ,  (3.57b)  

where on a stable extremal’s segment, ( ) 0A t < at any moment ( , )t s τ∈  belonging to the 
segment. At the points ,τ τ ε+ , the control’s (1.5) sign is changed affecting the sign of  

( )ua τ ε+  and the matrix’ ( ) ( ) 0A Aτ ε τ+ = − > , but it will not change the sign of a 

quadratic form in (3.57a). Therefore, out of the extremal we have 
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 1[( ( )) (2 ( )) ( ) 1 / 2 ( )]u T uE a b a Aτ ε τ ε τ ε τ ε−+ + + − +  

1 / 2 [ ( ) ( )] [ ( )]Tr A A Tr Aτ ε τ ε τ ε= − + + + = − + ,  

and get a total derivation’s math expectation in the forms  

( ( ))[ ] [ ( ) 1/ 4 ( )]tS xE Tr A A
t

∂ τ ε τ ε τ ε
∂

Δ +
− = − + + +

� �
,  

or 
( ( ))[ ] 3 / 4 [ ( )] 0tS xE Tr A

t
∂ τ ε τ ε

∂
Δ +

= + >
� �

,  

where on the extremal: 

( ( ))[ ] 1/ 4 [ ( )], ( ) 0;tS xE Tr A A
t

∂ τ τ τ
∂

Δ
− ⇒ <

�
 

( ( ))[ ] 1/ 4 | [ ( )] | 0tS xE Tr A
t

∂ τ τ
∂

Δ
⇒ >

�
.                                                                  (3.58) 

This means that at transferring from ( )tx τ to ( )tx oτ +� , the average entropy’s derivation 
gets a jump, changing the above derivation on the extremal in three times.  

For the process, transferred to the following extremal segment, the applied control should 
compensate this jump. Then, an analog of the initial variation equation  

1( ( ))) 1min [ ] min [ ( ) (2 ) ] 0
2

u T utS xE E a b a
t

∂ τ
∂

−Δ
− = >

�
   (3.58a) 

acquires the form  

( ( )) ( ( ))min [ ] max [ ] max [ ( )] 0t tS x S xE E Tr A
t t

∂ τ ε ∂ τ ε τ ε
∂ ∂

Δ + Δ +
− = = + >

� �� �
.(3.58b) 

In this case, a special control tuδ (or tvδ ) is needed to maximize the entropy derivation 
(3.58b) between the extremal's segments. Therefore, the controls should do both the selection 
of each extremal's segments (by the fulfillment of (3.57b),(3.58a)), acting at each segment’s 
DP punched points (where the identification of operator (3.47) takes place), and connecting 
the extremal’s segments between these points.  

Example 3.1.  Let us illustrate the results on a simple and rather formal example for the 
identification of unknown nonrandom symmetric matrix ( )A t by observing the solution of 

equation ( )x A t x=�  via a measurement of the correlation function ( ( ) ( ))Tr E x t x t= .  
Substituting the solutions into identification equation (3.49a) (at ( ) 0v τ = ) in form: 

11/ 2inR rr −= �  with unknown inR  and using relations ( ( ) ( )) ( ( ) ( ))T Tr E x t x t E x t x t= +� � �  

( ( ) ( ) ( ))TE A t x t x t= + ( ( ) ( ) ( ))T TE x t x t A t TAr rA= + , at TA A= , we obtain from this 

identification equation inR = A . It seen that matrix A  is identified precisely.  
For a real object, the procedure involves statistical methods and a numerical computation. •  
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Alongside with the implementation of the functional’s extreme by solving the VP 
problem (3.1)-(3.5), it is possible to show (at the fulfillment of (3.39) at a ˜ Q  boundary) that a 
minimum condition for the entropy functional (1.15b) at the segment’s boundary is also 
satisfied.  

1.3.3. The Minimum Condition for the Microlevel Functional  

Theorem 3.3.  

Let us have a closed measured set B τ =[s, τ] × B , where [s, τ] ⊂ Δ , B ⊂ β(Ω) , 

intB B= , Γ =
def

B \ B , Bτ =(s,τ ) × B , Γτ =
def

B τ \ Bτ  and consider the distribution of the 

entropy functional S( ˜ x ( •)) (1.15b), satisfying (3.16) on the set Bτ , as a function of time 

t ∈(s,τ) and a current random x B∈ :  

 
−

∂S(t, x)

∂t
= ai

u

i =1

n

∑ (t,x)
∂S(t, x)

∂xi

+ bij (t, x)
i , j =1

n

∑ ∂ 2S(t, x)

∂xi∂xj

+W(t, x) , (t, x) ∈ Bτ  , 

 W(t, x) ≥ 0,   (3.59) 

and solve the following boundary value problem 
 

 S(s,x) = f1(x) , f1 (x) 1( , )C B R+∈ ,   (3.60) 
or  

 S(τ, x) = f 2 (x) , f 2 (x) 1( , )C B R+∈  ,    (3.60a) 
and 

 S(t,y) = f 3(t, y) , y ∈Γ , f 3(t) 1([ , ], )C s Rτ +∈  .   (3.60b) 
Then, the solution of problem (3.60), 3.60a,b) reaches its minimal value on the border of 

the set B τ : e.g., at t =s, or t =τ  ; or on the border Γ  of the set B .  
This means that for ∃( to , x o ) ⊂ B τ , the following inequality is satisfied: 
 

 S(to ,xo ) ≥ inf
x∈B ,y∈Γ

min
t ∈(s, τ )

[ f1 (x) , f 2 (x) , f 3(t, y)]. (3.61) 

Proof. Using the concept of proving the maximum principle (for the heat transfer 
problem [35]), let us assume the opposite by considering such moments ∃(to, xo ) ⊂ Bτ when 
(3.61) is satisfied in the form:  

 

 S(to ,xo ) − inf
x∈B ,y∈Γ

min
t ∈(s, τ )

[ f1 (x) , f 2 (x) , f 3(t, y)]≤ − ε ,ε >0 .   (3.62)   

Let us form an auxiliary function  

 V(t, x) = S(t,x) +
ε (to − t)

2τ
  (3.63) 

and show that it takes a minimal value on the set Bτ .  
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Because the set B τ  is closed and limited, and the second Weierstrass' theorem for 
continuous functions [25] is fulfilled on B τ , function V( t, x)  reaches a precise lower limit 
on B τ .  

Using inequality (3.62) and function (3.63) we have  

 V(s, x) ≥ f1 (x) −
εt

2τ
≥ f1 (x) −

ε
2

≥ inf
x∈B

f1 (x) −
ε
2

,  (3.64a) 

 V( t, x) ≥ f 2 (x) −
εt

2τ
≥ f 2 (x) −

ε
2

≥ inf
x∈B

f 2 (x) −
ε
2

, (3.64b) 

 V( t, x) ≥ f 3(t, y) −
εt

2τ
≥ f 3(t, y) −

ε
2

≥ inf
y∈Γ

min
t ∈(s, τ )

f 3(t, y) −
ε
2

 .  (3.64c) 

From (3.59), (3.60), (3.60a,b), (3.64a-c) it follows relations: 
 

 
inf
x∈B

f1 (x) − S(to ,xo ) ≥ ε ,  (3.65a) 

 
inf
x∈B

f 2 (x) − S(to ,xo ) ≥ ε ,  (3.65b) 

 
inf
y∈Γ

min
t ∈(s, τ )

f 3(t, y) − S(to ,xo ) ≥ ε . (3.65c)  

Because (3.63) leads to V(to, xo )=S(to ,xo ) , after the joint solution of systems (3.64a-c) 
and (3.65a-c), we get   

 V(s, x) ≥ V(to, xo ) +
ε
2

, (3.66a) 

 V(τ, x) ≥ V(to, xo ) +
ε
2

, (3.66b) 

 V( t, y) ≥ V(to, xo ) +
ε
2

. (3.66c) 

From this system of the inequalities, it follows that the function V( t, x)  does not get a 
minimal value on Γτ . Because a minimum on B τ  does exist, it means that the minimum can 
be reached at some inner points of B τ , and therefore, on the set Bτ .  
For function V( t, x)  at the points (t*, x*)  of its minimum, the following relations hold true: 
 

 

∂V

∂t
(t*, x*) 0= ; 

∂V

∂xi

( t*,x*) 0= , i =1,..., n ;  (3.67) 

 

1

2
hij

i , j =1

n

∑ Δxi Δxj ≥ 0, hij=
∂ 2V

∂xi∂x j

(t*, x*), Δxi = xi − xi *.   (3.67a) 

A current state x  of the diffusion process for any δ >0 satisfies the equality [22]:  
 

 
Δxi

|x− x *|≤δ
∫ Δxj P(t*, x*, t * +Δt, dy) =2bij (t*,x*) Δt +o (Δt )  (3.68) 

Because δ  is an arbitrary, we may choose it from the condition  
 

 Bδ ={| x − x *|≥ δ }⊂ B . 
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Let us integrate (3.68) by the probability measure P(t*, x*,t * +Δt, Bδ )  on the set Bδ  
and then divide both of the integral’s sides on Δt → 0.  

Using the condition  

 t
to

t Δ
Δ

→Δ

)(lim
0

0=  ,∀t* ∈(s,τ ),  

we get from (3.67a), (3.68) 
 

 
hij (t*, x*)bij(t*, x*)

i , j =1

n

∑ =
∂ 2V

∂xi∂xji, j=1

n

∑ (t*, x*)bij (t*, x*) ≥ 0 . (3.69) 

Applying jointly equalities (3.67) and (3.69), we write the following inequality  
 

+ + 0 .
∂ V

∂t
(t*, x*)

∂ V

∂xi

(t*,x*)ai
u(t*,x*)

i =1

n

∑ ∂ 2V

∂xi∂xj

(t*, x*)bij(t*, x*)
i , j =1

n

∑ ≥
 (3.69a) 

Using relations (3.66a-c), (3.69a) we have 
 

 

∂ V

∂t
(t, x) =

∂S(t, x)

∂t
−

ε
2τ

,
∂ V

∂xi

(t, x) =
∂S(t, x)

∂xi

,
∂ 2V

∂xi∂x j

(t, x) =
∂ 2S(t, x)

∂xi∂xj

,  

 i, j = 1,.. .,n .  (3.69b) 
After substituting (3.69a) into (3.69b) at t =t *, x = x * we get  
 
∂ S( t*, x*)

∂ t
+

∂ S

∂xi

(t*, x*)ai
u (t*, x*)

i =1

n

∑ +
∂ 2S

∂xi∂xj

(t*, x*)bij(t*, x*)
i , j =1

n

∑ ≥
ε
2τ

. (3.70) 

Equations (3.60) and (3.70) lead to the inequalities 
 

 − W(t*, x*) ≥
ε
2τ

>0, W(t*, x*)<0. (3.70a) 

Because the inequality W(t, x) ≥ 0 is correct by definition, we come to a contradiction 
that proves the initial statement.•   

Corollary 3.3a.  
Let us compare the IPF minimum, reached within (and at the borders) of an IPF extremal’s 
segment ( )i i

tx x t= , whose both ends are fixed at some moments t ∈(s,τ) of the initial 

random process ˜ x t (at ( )i ix x s= �  and ( )i ix x τ= �  accordingly), with a minimum of the 
entropy functional (3.61), reached at the same t ∈(s,τ) (according to T3.3).  
Then we conclude: 

 (i). The T3.3 results show that both minimum coincides at the same ( )i ix x s= �  and 

( )i ix x τ= �  . 

(ii). To fix these extremal segment’s ends, the random process ˜ x t  should be cut off at 
each moment, following the first exit from the process’ border on the above set. (Here we are 
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using the random process’ cut off as an effective method for the process’ fixing at its exit 
from some interval [22]). 

In particular, considering τ T=  in (3.60), (3.60a, b) and taking the t T=  as a moment 
of cutting off the process, we have  

 f 2 (x)= f 3(t, y) 0= . (3.70b)  
(iii). Thus, following (3.70b) and T3.3, the absolute minimum of S ( t , x )-function will 

be reached at the moment of the process' ˜ x t exit of the bordered moments t ∈(s,τ) by the 
process’ cut off at these moments. 

The operation of cutting off the random process is performed by the controls, which are 
able to keep the random process within a given set.  

The n-dimensional Markov process generally might have n  such the first exits on Γτ .  
(iv). According to the Jensen inequality for both IPF (1.21a-b),(1.22) and the entropy 

functional (1.15c), the entropy functional’s minimum estimates an upper limit for the IPF 
minimum, considered also out of the above t ∈(s,τ) .•   

In the Example (ch.1.1) with the entropy functional (1.16),(1.16a), (1.16d), the “cut off” 
operation is performed by the control ( , ) uu u s τ= ∈Γ at a moment oτ +  of the exit from 

uΓ . This provides both the entropy functional minimum and an upper limit for the IPF 
minimum. 

The dynamic process represents a prognostic movement among the probable random 
trajectories.  

1.3.4. The Optimal Control Synthesis  

The problem of optimal synthesis for controls (3.23) is solved in the following sequence.  
Using the Lagrange principle of eliminating constraints, we formulate the corresponding 

Bolza problem to find both regular and special controls.  
Then, we find the class of an admissible control function vt  from relations (3.11)-(3.13), 

(3.22), (3.47), and implement the transversality conditions to determine the jump's value for 
functions vt , At , and get the moments {τk}k =1

m  of their occurrences.  

Finally, we will find the solution of the optimal control problem for vt , combined with 

the problem of identification for At (3.49) under this control.  

The above problems are solved at b = bt , V = Rn , using the constraint's equations in the 
forms (3.41),(3.42c).  

Applying the method of eliminating the constraints for problems (3.1)-(3.5), (3.45), we 
have  

0

min ( , , ( , v)) min{ ( , v)}
T

o o
pl t s p plv V v V

S s T x x L dt l x S
∈ ∈

= + =∫ , ( ) 1
, ,ns s

t T i i
x x x o

=
= =  (3.71) 

where o
pL  is defined by eqs. (3.2a,b), and ( , v)l l x= is the functional's terminal part that 

uses equation of constraint (3.45) at Q0 =(  Uτk × Rn ) in the form  
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l = lk

±

k =0

m

∑ ,  
, 1

,
n

o
k ijk ijk k

i j

l l Qλ ψ± ± ± ±
±

=

= ∈∑ ,  { } ( , )n n
k ijk L R Rλ± ±Λ = ∈  ,   (3.72) 

 
1/ 2 ( ( ) ( )) ( , ( ))ijk ij i k i k j k kx v o X o xψ δ τ τ τ τ± = + + ± ±

 

 

1

1

( ( ) ( )) ( )
n

k k i i kA o b o oν ν
ν

τ τ ε τ−

=

− ± ± ±∑ ,  (3.73) 

where Λ k
± are the matrices of Lagrange's multipliers, indexes ±  correspond to the matrice’s 

values at t = τk ± o , and  

 δ ij =
1,i = j

0,i ≠ j
⎧ 
⎨ 
⎩ 

.  (3.73a) 

Lemma 4.1.  

The joint solution of the constraint equations (3.72-3.73a) and (3.44) leads to the following 

constraint’s forms:  

 
1 1

, 1 , 1 1

{ ( (2 ) ) ( ) ( ) } | 1/ 2 ( ) | ( ( ) ) |
k k k

n n n

k k i i t o k t o k i j t o
i i j

l b A x v x v Tr A bν ν τ τ ν ν τ
ν ν

ε± ± − ± ± −
= ± = ± = ±

= = =

= Λ + + + Λ − Λ∑ ∑ ∑ ,  

    (3.74) 
1 1

, 1 , 1 1

1

2( ( (2 ) ) ( ) ) | ( ( ) / ) |

2( (2 ) ( )) | , 1,...., , 0,...,

k k

k

n n n
k

k i iq t o k i j q t o
i i jq

k q t o

l b A x v A b x
x

b A x v q n k m

ν ν τ ν ν τ
ν ν

τ

∂ δ ε
∂

±
± − ± −

= ± = ±
= = =

± −
= ±

= Λ + − Λ ∂ ∂ =

= Λ + = =

∑ ∑ ∑
,    

                                                                                                                                             (3.75) 

 
2 ,

k

k
k

l X
xτ

∂
∂

±
± ±= Λ ( )kX X oτ± = ± , 

∂lk
±

∂τk

= 0 ,  0,...,k m= .  (3.76)  

The result follows directly after transforming (3.72)-(3.73a) to equation  

 
1

, 1 1
( ) ((2 ) ) ( )

n n

k i j
i j

x v b A x vν ν
ν

± −
± ± ± ±

= =

Λ + + =∑ ∑
 

1 1

, 1 1 , 1
( ((2 ) ) )( ) ( ) ( (2 ) ) ( ) ( )

n n n

k j i k i i
i j j i

b A x v x v b A x v x vν ν ν ν
ν

± − ± −
± ± ± ± ± ± ± ±

= = =

Λ + + = Λ + +∑ ∑ ∑    

  (3.76a) 
and substituting (3.76a) into (3.44).  
Equations (3.75),(3.75a), (3.76) define the constraint as a function of the control for the 

solution of Bolza’s problem.  
Theorem 4.1. (T4.1)  

Problem (3.71) with constraint (3.74)-(3.76) has a solution under  
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(1)-the class of the piece-wise controls (3.23);  

(2)-the controls, which are switched at the moments 
1

k

m

k

τ τ
=

∈∪ , defined by the conditions 

of equalization of the dynamic model’s relative phase speeds: 

|dx i / dt (τ k − o) xi
−1 (τ k )| 1| / ( ) ( ) |,j k j kdx dt o xτ τ−

−=   

( ) 0, ( ) 0,i k j kx xτ τ≠ ≠ i, j = 1, .. .,n  ;                 (3.77) 

(3)-the controls, which at moments (3.77) change the model’s matrix from 
( )k oA A τ− −= to its renovated form A+ = ( )k oA τ +  (at a subsequent extremal segment), 

while both matrices are identifiable by the following relations for the conditional 
covariance (correlation) functions: 
 

A− =1/2 1r r−
−� =1/2 1r r−

−� , ( ), ( ),
k

T
k or r o r E xx E Iττ− − − −= − = =� � ,   (3.78) 

A+ = ± A− (1+ 1

vμ ) 1− = ± (1+ 1

vμ ) 1− A− , 1

vμ ∈ R1 , 1 1vμ ≠ − ,  (3.78a) 

or 

 A+ = ± 1/2 1r r−
−� (1+ 2

vμ ) 1− = ± 1/2 1r r−
−� (1+ 2

vμ ) 1− , 2

vμ ∈ R1  , 2

vμ ≠ 1− ; (3.78b) 

 (4)-the control function:  
1 1 1, ( ), ( ), 0v k k v vv x v v o x x o Iτ τ μ− − − −= ∠ = − = − ∠ = ≠ ,                  (3.79a) 

which changes matrix A− to A+ (according to (3.78a), 

and the control function: 
2 2 2, 0, ( )v v v kv x I x xμ τ+ + += ∠ ∠ = ≠ = ,                                                                  (3.79b) 

 which changes matrix A+  to ( )kA oτ + (at the next extremal segment), 

where 2( ) ( )( )k k vA o A Iτ τ+ = ± + ∠ ,  

or the control function: 
1 ( ), ( ),v kv v x v v v τ+ − − − +− = ∠ + =                                                                      (3.79c) 

which changes the above matrix according to 1( ) ( )( )k k vA o A Iτ τ+ = ± + ∠ . 

Proof of Theorem T4.1(1) uses the representation of the equation for the conjugate vector X  
in two forms, one of them is  
 

 dX ( t , x ,au ( t , x )) / dt =− A (2b)−1 A ( x +v ); b =bt ,  (3.80) 
which follows from the Hamiltonian (3.10a) and from equation (3.12),(3.13), (3.15) at 

 

 
/ / / / ( / )u T

p pdX t dp dt dX dt H x a x p∂ = + = −∂ ∂ = − ∂ ∂ ,  

 
1/ ((1/ 2 ) (2 ) ) /u T udX dt a b a x−= −∂ ∂ ,   (3.80a)  
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where the equivalence of conditions (3.12),(3.13) will be reached by the control, applied at 

1( , ), 1,..., , 0, .k k o mt k m Tτ τ τ τ−∈ = = =  
The other form we derive by differentiating the right–hand side of relation  
 

 X = 1(2 )b −
1

1
vr r− ( x + v )= 1[(2 )E b − x� ( x + v )T ]rv

−1( x + v ),  

obtained after substitution 1r  from (3.49).  
We get  

1 1

1 1 1 1

/ { (2 ) ) ( ) ] / } ( ) }

[(2 ) ( ) ]( ( ) / )( ) [(2 ) ( ) ] ( ) / .

T T
v

T T
v v

dX dt d E b x x v dt r x v

E b x x v d r dt x v E b x x v r d x v dt

− −

− − − −

= + +

+ + + + + +

�
� �

 (3.80b) 

The first components of the right–hand side of (3.80b) lead to: 

 
1 1

1 1 1

1

1

1

{ [((2 ) ( ) )} / )] ( )

{ [( (2 ) ) / )( ) ] [(2 ) ) ( ) ]} ( )

{ [( / )( ) ] [ ] [ ]} ( )

{ [( / )( ) ] [(2 ) ( )( ) ]
[(2 ) ( ) ]}

T
v

T T
v

T T T
v

T T

T
v

d E b x x v dt r x v

E d b x dt x v E b x x v r x v

E dX dt x v E Xx E Xv r x v

E dX dt x v E b A x v x v A
E b A x v v r

− −

− − −

−

−

− −

+ +

= + + + +

= + + + +

= + + + +

+ +

�
� � � �

� �

� 1( ) .Tx v+

  (3.81) 

By substituting (3.81) into the expression, following from (3.80): 
 

1 1[ / (2 ) ( ) )] (2 )T
vE dX dt A b A x v b Ar− −= − + + ,    (3.81a) 

we have  

 
1 1 1

1 1 1 1

{ [(2 ) ( ) ] / } ( ) (2 ) ( )

(2 ) ( ) (2 ) [( ) ] ( ).

T
v

T
v v v

d E b x x v dt r x v A b A x v

b Ar Ar x v b AE x v v r x v

− − −

− − − −

+ + = − +

+ + + + +

�
�

   (3.82) 

For the second and third components of (3.80b) we come to the related equalities: 
 

1

1 1

1 1 1 1 1

1 1

1 1
1

{ [(2 ) ( ) ] ( ) / }( )

[(2 ) ( ) ]( 1) ( ) (2 ) ( 1) ( )

(2 ) ( 1) ( )

(2 ) { [ ( ) ] [( ) ] } ( );

T
v

T
v v v v v

v v
T T T

v

E b x x v d r dt x v

E b x x v r r r x v b A r r x v

b A r r x v

b A r E v x v E x v v r r x v

− −

− − − − −

− −

− −

+ +

= + − + = − +

= − +

= − + + + + + +

�
� � �
�

� �

 (3.82a) 

1 1 1 1[(2 ) ( ) ] ( ) / (2 ) ( ) (2 ) .T T
vE b x x v r d x v dt b AA x v b Av− − − −+ + = + +� �  (3.82b) 

By the substitution of the obtained relations into (3.80b) we reduce it to the form  
 

 
1 1 1/ (2 ) ( ) (2 ) ( [ ( ) ]) ( ),T

vdX dt A b A x v b A v E v x v r x v− − −= − + + − + +� �   (3.83) 
using relations  
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1

1 1 1

1 1 1 1 1 1
1

1 1

1 1 1

/ (2 ) ( ) (2 ) ( )

(2 ) ( ) (2 ) ( [( ) ]) ( ) (2 ) ( ) ( )

(2 ) [ ( ) ] ( )

[( ) ] ( ) (2 ) ( ) (2 )

v v
T T

v v v v
T T

v
T T T

v

dX dt A b A x v b Ar Ar x v

b Ar Ar x v b A E x v v r x v b A r r r x v

b AE v x v r x v

E x v v r x v b AA x v b Av

− − −

− − − − − −

− −

− − −

= − + + + +

+ + + + − + +

− + +

+ + + + + +

�
�
� �

1

1

1 1 1 1
1

1 1 1 1

1 1 1 1 1
1 1 1

1

(2 ) ( ) (2 ) ( ( ) )( )

(2 ) { [( ) ]} [( ) ] { ( ) } [( ) ]

(2 ) ( ) (2 ) ( ( ) )( )

(2 ) { [ ( ) ]}

T
v v v

T T T
v v v

T T
v v v

T

A b A x v b A r Ar r r r A x v

b A E x v v r E x v v r E v x v r x v v

A b A x v b A r r r r r r r x v

b A v E v x v

− − − −

− − − −

− − − − −

−

= − + + − + + +

+ + − + − + + +

= − + + − + + +

+ − +

� � � �

� � 1

1 1 1

( )

(2 ) ( ) (2 ) { [ ( ) ]} [( ].
v

T
v

r x v

A b A x v b A v E v x v r x v

−

− − −

+

= − + + − + +� �

 

From that, due to the validity of (3.80), we get from (3.83): 
 
 (2b)−1 A ( v� −E[ v� ( x + v )T ])rv

−1 ( x + v ) , 1(0 )n
ij i j== = Ο .  (3.83a) 

At the fulfillment of inequalities 
 
                           , 1 , 12 (0 ) , ( ) (0 ) ,n u n

ij i j ij i jb A a A x v= =≠ = Ο ≠ = + ≠ = Ο
 

when 
                                               , 1( ) (0 ) ,u n

ij i ja A x v == + ≠ = Ο
 

it follows 

 
1[ ( ) ] ( )T

vv E v x v r x v−= + +� � .  (3.83b) 

Equality (3.83b) can be identically true on (τk ,τk −1) nR× only if the control satisfies 
 

                                              dv / dt , 1(0 ) .n
ij i j== = Ο  

Due to an arbitrariness of the chosen control’s intervals (τk ,τk −1)∈Δ0 , we come to the 
result, which proves T4.1(1): 
 

 tv� , 1( ) ,ij
n
i jo == = Ο  ∀ (τk ,τk −1)∈Δ0 , k = 1,... ,m , vt ( , )nKC R∈ Δ .  (3.83c) 

To prove T4.1(2) let us apply method [24] for formulating Erdmann-Weierstrass' 
condition at the points of control's discontinuity { }, 0,....,k k mτ τ= = , using equations for 
the conjugate vector and Hamiltonian:  

 ( ) ( ) ( ) ( ),p p
l lX o o X o o
x x

∂ ∂τ τ τ τ
∂ ∂

− − − = + + +   (3.84) 

 ( ) ( ) ( ) ( ).p p
l lH o o H o o∂ ∂τ τ τ τ

∂τ ∂τ
− + − = + − +   (3.85) 

According to (3.75), (3.76) and because of the arbitrariness of index k in { }kτ τ= , we 
represent relations (3.84), (3.85) in the forms  
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2 2 ,
( ), ( ), ( ), ( ),p p

X p X X p X
X X o X X o p p o p p oτ τ τ τ

− − − − + + + +

− + − +

+ − Λ = + + Λ

= − = + = − = +
  (3.86) 

 Hp (τ − o) = Hp(τ + o). (3.87) 

By introducing auxiliary matrices ( , )n nD L R R± ∈ , ,X p D± ± ±∀ ∃ , we assume 
 

 p± = D± X± .   (3.88) 

Applying (3.88) for the Hamiltonian and using equation /dX dt AX= − and (3.49), we  
 get at 0{ }m

k o kt τ − =∈ : 
  

 

1 1 1

1 1

, 1 , 1

1 1

, 1

, 1

( ) ( ) (2 ) (2 ) ( ) ( ) (2 ) ( )

1 / 2 [( (2 ) ) ( ) ( ) ] 1 / 2 [( (2 ) ) ( ) ( ) ]

1 / 2 [( (2 ) 2 (2 ) ) ( ) ( ) ]

1 / 2 [( (

T u T T T
p

n n

ij i j ij i j
i j i j

n

ij i j
i j

n

i j

H X bX a p x v A b b b A x v x v AD b A x v

A b A x v x v AD b A x v x v

A b A AD b A x v x v

A

− − −

− −

= =

− −

=

=

= + = + + + + +

= + + + + +∑ ∑

= + + +∑

= ∑ 12 )(2 ) ) ( ) ( ) ],ij i jI D b A x v x v−+ + +

 

                                                                                                                   (3.88a)  
where the mathematical expectation of equation’s (3.88a) first component acquires the form 

1

, 1

1 1 1 1

, 1 , 1 1

1 1 1 1

, 1 1 , 1

, 1

[ ] 1 / 2 [( (2 ) )

1 / 4 ( (2 ) ) 1 / 4 ( (2 ) ) )

1 / 4 ( (2 ) ) ) 1 / 4 ( (2 ) ) ( )

1 / 4 ( (

nT
ij vij

i j

n n n

v v ij vij v ik vij vij
i j i j k

n n n

v ik vij vij v ik v v ki
i j k i j

n

i k

E X bX A b A r

A b r r r A b r r r

A b r r r A b r r r

A

−

=

− − − −

= = =

− − − −

= = =

=

= =∑

=∑ ∑ ∑

= =∑ ∑ ∑

= ∑

� �

� � �

1 1 1

1
2 ) ) 1 / 4 ( (2 ) ) 1 / 4 [ (2 ) ],

n

v ik ik v ii v
i

b r A b r Tr A b rδ− − −

=
= =∑� � �

  (3.88b) 

or applying (2b)−1= vr� from (3.48) we obtain  
 

 [ ] 1 / 4 .TE X bX TrA=    (3.88c) 
Following the same procedure, we get the math expectations for both the second 

component and the Hamiltonian:  
 

1[ ] 1 / 2 [ (2 ) ],T u
vE p a Tr AD b r−= �                                                                (3.89a)   

1[ ] 1 / 4 [ ( 2 )(2 ) ].p vE H Tr A I D b r−= + �    (3.89b)  

From that and applying (3.49),(3.88a,b), (3.89a,b) to (3.87) we come to the following eqs  

 ( ) ( ) 1 / 4p pH o H oτ τ+ − − = 1

, 1
[( ) ( ( )( ) )

n T
v ij v ij

i j
r r x v x v−

+ + + + +
=

Θ + +∑ �  
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 1 1 1) ( ( )( ) ) ], ( 2 )(2 ) ,T
v ij v ijr r x v x v A I D b− − ± −

+ − − − − ± ± ±−Θ + + Θ = +�   (3.89c) 

at  
( )( ) , ( )( ) ,T T

v vr E x v x v r E x v x v+ − + + − − − −= + + = + +  
 [ ]E •− =

1xE
τ −

[ • ]=
1

*[ ] ( )
k

nR

P y dyτ −
•∫ , y = xτ k −1

, (3.89d)  

where [ ]E •−  is an operator of the math expectation taken by the starting conditions 1xτ − at 

the moment 1, 1,..., 1kt k mτ −= = − .  
Substituting the obtained relations into equations (3.86), (3.87), we get  
 

 ( 2 ) ( 2 ) ,I D X I D X+ + + − − −+ Δ + = + Δ +     (3.90) 

 

1 1

, 1
[( ) ( ( )( ) ) ( ) ( ( )( ) ) ] 0

n
T T

v ij v ij v ij v ij
i j

r r x v x v r r x v x v− −
+ + + + + − − − − −

=

Θ + + − Θ + + =∑ � � . (3.90a) 

Applying operator (3.89d) to (3.90a)) and taking into account (3.89b,c), we come to  
 

 Tr (Θ + vr +� )− Tr (Θ − vr−� )=0, ±Θ = A± (I+2 D± )(2b± )−1 .  (3.90b) 

Since a matrix trace (Tr ) and a matrix continuity are invariant under the linear 
transformations, equality (3.90b) must be satisfiable independently on a selected coordinate 
system.  

This is possible at the fulfillment of equation 
 

 
1 1( 2 )(2 ) ( 2 )(2 ) .v vA I D b r A I D b r+ − − −

+ + + − − −+ = +� �   (3.91) 
Relation (3.90b) is a condition of the Hp  continuity in equations (3.87), (3.89b)-(3.90b) 

by the probability measure, consistent with operator (3.89d).  
Since D± ∈ L ( Rn , Rn ) are auxiliary matrices, which are not imposed by the variation 

principle, it is expedient to eliminate them from the subsequent analysis by selecting the 
Lagrange's multipliers in equations (3.74),(3.86) according to relations 

 

 ( 2 )I D+ ++ Δ + =
def

( 2 )I +± + Δ , ( 2 ) 1/ 2I D D− − − −− Δ + Δ = =
def

( 2 )I −± + Δ . (3.92) 
From that we get equalities 
 

1 / 2 , 3 / 2 ; 1 / 2 , 3 / 2 ,D or I D D or I D+ + + + − − − −Δ = Δ = − − Δ = Δ = − −        (3.92a) 
and condition (3.90) acquires the form  
 

 ( 2 ) ( 2 )I D X I D X+ + − −+ = ± + .   (3.93) 
From equations (3.91), (3.93) we get the following relations   
 
 1 1 1 12 ( ) ( 2 )(2 ) ((2 ) ) ,vI D A A I D b b r+ − − − − −

+ − − + ++ = + �   (3.94) 
1 1 1 11 / 2(2 ) ( ), 1 / 2(2 ) ( ),v v v vX b r r x v X b r r x v+ − − − − −

+ + + + − − − −= + = +� �                      (3.94a) 
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1 1 1 1 1( ) ( 2 )(2 ) ( ) ( 2 )(2 ) ( ).v v v vA A I D b r r x v I D b r r x v− − − − − − −
+ − − − + + − − − −+ + = ± + +� �   (3.95) 

 

By multiplying equality (3.95) on ( )Tx v++  and applying operator (3.89d) we obtain  
1 1 1 1( ) ( 2 )(2 ) ( 2 )(2 ) [( )( ) ].T

v v vA A I D b r I D b r r E x v x v− − − − − −
+ − − − − − − − − ++ = ± + + +� �    

  (3.96) 
If we eliminate D− , the equality (3.96) will serve for the identification of matrix A+ , 

being a result of the matrix’s A−  transformation, or its renovation at the moment of applying 
the above controls.  

This requires the fulfillment of the following related to D± equalities  
1 1( ) , ( 2 )(2 ) (( 2 )(2 ) ) ,

def def
T T

v vD D I D b r I D b r± ± ± − ± −
± ± ± ±= + = +� �                             (3.97) 

                              
1 1 1( 2 )(2 ) [( 2 )(2 ) ]v vI D b r I D b r+ − − − −

+ + − −+ +� �   

 1 1 1{( 2 )(2 ) [( 2 )(2 ) ] }
def

T
v vI D b r I D b r+ − − − −

+ + − −= + +� �  (3.97a) 
According to equations (3.91), (3.97), and (3.97a), the left side of (3.96) represents a 

symmetric matrix, which is equal to the product of the underlined symmetric matrices.  
That is why we come to equality 

 
1 1 1 1( ) ( 2 )(2 ) ( 2 )(2 ) ( ) .v vA A I D b r I D b r A A− − − − − −

+ − − − − − + −+ = +� �  (3.97b) 
From equalities (3.96), (3.95) and (3.97b) it follows the identification equation  

 [( )( ) ]T
vA A E x v x v r+ − − − + −= ± + +   (3.98)  

as well as the relation for (3.95) in the form 

 E− [( x + v−)( x + v+)T ]rv +
−1 ( x + v+)=( x + v−) .  (3.99) 

Let us find a structure of controls ( v+ , v− ), satisfying the accepted assumptions, i.e. 
(3.99), (3.90a), (3.91) and the identification equation (3.98) for each of them.  

The following control functions with coefficients  

 
∠v

1 =μv
1 I , μv

1 ∈ R1
 :   (3.99a) 

v+ = v− +∠v
1 ( x + v−), ( x v++ )=(∠v

1 +I)( x + v−),∠v
1 ∈ L( Rn , Rn),                (3.100) 

 rv+ =(∠v
1 +I)rv− (∠v

1 +I)T , rv+
−1=(∠v

1 +I)−1
rv−

−1 ((∠v
1 +I)−1)T ,

 ∠v
1 =

def

(∠v
1 ) (3.100a) 

 ( x + v−)( x + v−)T (∠v
1 +I) =

def

(∠v
1 +I)( x + v−)( x + v−)T   (3.100b) 

satisfy identically to (3.99), (3.90a) and are verifiable by a direct substitution, while condition 
(3.100b) is fulfilled identically at (3.99a).  

Indeed, we have 
1 1 1 1 1 1 1[( )( ) ]( )( ) ( ) ( )( )T
v v v v vE x v x v I I r I I x v− − −

− − − − −+ + ∠ + ∠ + ∠ + ∠ + +  

1[( )( ) ] ( ) ( );T
vE x v x v r x v x v−

− − − − − −= + + + ≡ +  
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1 1 1 1 1 1

, 1
( ) ( ) 1/ 4 [( ) (( ) ( ) ( )

n

p p v ij v v v v
i j

H o H o r I r I Iτ τ − − −
+ + −

=

+ − − = Θ ∠ + ∠ + ∠ +∑ �

1 1( )( ) ( )) ( ) ( ( )( ) ) ]T T
v ij v ij v ijx v x v I r r x v x v−

− − − − − − −× + + ∠ + − Θ + +�

1 1 1 1

, 1
1/ 4 ( ) (( ) ( )( ) ( ) ( )( ) )

n
T T

v ij v v v ij
i j

r I x v x v I r x v x v− −
+ + − − − − −

=

= Θ ∠ + + + ∠ + − + +∑ �  

( ), , 1
, 1

1/ 4 [( ) (0 ) ]
n

n
v ij i j i j

i j
r+ + =

=

= Θ ≡ Ο∑ � ,                                                                   (3.100c) 

which holds true with respect to (3.100b) and (3.99a).  
By applying the last two equalities (3.100a,b), the equation (3.98) acquires the form 

 A+ = ± A− (∠v
1 +I)−1 , or A+ = ± A− (1+μv

1 )−1  .  (3.101) 

Considering the following relations with coefficients ∠v
2 =μv

2 I: 

 v+=∠v
2 x , v+ − v−=∠v

2 x − v− , ∠v
2 ∈ L ( Rn , Rn  ), ∠v

2 =
def

(∠v
2 )T ,   (3.102) 

( x + v+)=(∠v
2 +I) x , ( x x T )(∠v

2 +I) =
def

(∠v
2 +I)( x x T ), 

rv + =(∠v
2 +I)r (∠v

2 +I), r = E− ( x x T ),                        (3.102a) 
we find the second form of the controls (3.102) with equalities (3.102a), which should also 
satisfy (3.99).  

After the substitution we get relations 
E− [( x + v−) x T ](∠v

2 +I)(∠v
2 +I)−1 r −1 (∠v

2 +I)−1 (∠v
2 +I) x  

 = E− [( x + v−) x T ]r −1 x = x + v−  ;   (3.103) 

 
r −1 x =( E− [( x + v−) x T ])−1 ( x + v−); 1 1 1( ) ( [( ) ])T

v vr x v r E x v x r x− − −
− − − − −+ = + ,   

                                                                                                                 (3.103a)  
   

 
1 1( [( ) ]) [( ) ]T T

vE x v x r r E x v x− −
− − − − −+ = + .   (3.103b) 

From that we obtain the following equation  

 ( / )dx dt − = E− [ ( / )dx dt − x T ]r −1 x .  (3.104) 
Equalities (3.103), (3.103a,b), and (3.104) are equivalent. By writing the model in the form 

 dx / dt = Av (t , x ) x  , Av = A [I+ , 1

( ,.)
( )

( ,.)
j n

ij i j
i

v
x t

τ
δ = ], x

i
( t )≠ 0 ,  (3.105) 

 (where ijδ  is the Kronnecker delta) and comparing (3.104) with (3.105), we arrive at 

equation 

 E− [ A−
v ( x x T )] = [ E− ( A−

v )]r ,   (3.106) 

which is satisfied identically if equality 2 2
, 1( )n

v vij ij i jδ =∠ = ∠ is fulfilled.  
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In this case, matrix Av (τ − 0)= Av (τ k − 0)  is independent on the initial random 

conditions 1k
xτ − , k = 1,... ,(m −1) .  

According to (3.89d), the matrix gets averaged by these variables.  
From the above relations and (3.106) it follows  

 E− ( A−
v
)= A−

v = E− [ ( / )dx dt − xT ]r −1 ,  (3.107) 

and (3.104) is satisfied identically.  
Therefore (3.103), (3.103a,b) are also true.  
From that follows the fulfillment of (3.95)-(3.96).  

After substituting relations (3.91),(3.100a,b) and (3.103a,b) into equation (3.89c), we arrive at  
 

1 1{ [( ) ]} ( ) {[ [ ( ) ]} ( ) ,T T T TE x v x x v x E x x v x x v− −
− − − − − −+ + = + +   (3.108) 

which fulfills (3.90a). 
From that we get the condition which the considered controls should satisfy: 
  

, 1

[ ( )]( ) [ ( ) ( )]( )

[ ( )]( ) [ ( )]( ) (0 ) .

T T T T T T

T T T T n
ij i j

E xx v x xv E xv E v x xx

E xv v x E v x xv
− − − − − − −

− − − − − − =

+ + −

+ − = = Ο
                                   (3.109) 

Both equations (3.108) and (3.109) are satisfied identically if the following equality is 
valid at the moments (3.77):  

 ,T Tv x xv− −=  τ ∈{τk }, k = 1,... ,m  .   (3.110) 
According to (3.55) and from the above equations we get relation  
 

 ( / ) ( ) ( )(( / ) ) ,T Tdx dt x v x v dx dt− − − −+ = +   (3.111)  

which at xi (τk )≠ 0, 1,...,i n=  can be written in the form 
 

 ( / ) (1 / ) ( / ) (1 / ), , 1,..., .i j j j j i i idx dt x v x dx dt x v x i j n− − − −+ = + =    (3.112) 
This equation with respect to condition (3.110) assumes the form 
 

 ( / ) ( / ) ,i j j idx dt x dx dt x− −=  τ ∈{τk }, k = 1,... ,m .   (3.113) 
The validity of (3.113) (or (3.110) is provided by the corresponding selection of the 

moments {τk }, k = 1,... ,m  of the applied control. This proves T4.1(2).  
Let us write equality (3.107), according to its connection to (3.113), in the form 
 

 
1 11 / 2( / ) 1 / 2 ( / ) .vA dx dt r r dx dt− −

− − −= =    (3.114) 
Because equality (3.102a) is satisfied identically if the following relation is true  
 

 
∠v

2 =μv
2 I, μv

2 ∈R1
,  (3.115) 

and taking into account equalities (3.102, 3.102a), the equation (3.98) acquires the form 
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A+ = ± 1/2(∠v
2 +I)−1 r −1 ( / )dx dt − = ± 1/2(∠v

2 +I)−1 ( / )dx dt − r −1 ,   (3.116) 

or it can be represented in other form, consistent with relation (3.115): 
 

 A+ = ± 1/2(1+μv
2 )−1 r −1 ( / )dx dt − = ± 1/2(1+μv

2 )−1 ( / )dx dt − r −1 .  (3.117) 

Using (3.98) at the moment kτ τ=  and under the control ( )kv v τ+ = (3.102) when 0v− = , 
we have 

1( ) ( )[ ( ( ) )] ,
k

T
k k vA o A E x x v rττ τ −

+ ++ = ± +                                                   (3.117a) 

where  

( )( ) ( ),
k

T
v v kr E x v x v rτ τ+ + += + + =

2 2 2 2( ) ( )( ) ( ) ( )( )
k k

T T T
v k v v v vr E x x x x I E xx Iτ ττ = + ∠ + ∠ = + ∠ + ∠ , 

2 2 1 2 2( ( ) ) ( )( ) ( ) ( ) ( )( )
k k k

T T T T T
v v v vE x x v E xx I I I E xx Iτ τ τ

−
++ = + ∠ = + ∠ + ∠ + ∠

2 1( ) ;v vI r−
+= + ∠  

1 2 1[ ( ( ) )] ( ) ;
k

T
v v v vE x x v r I r rτ

− −
+ + + ++ = + ∠ 2( ) ( )( )k k vA o A Iτ τ+ = ± + ∠ .    (3.117b) 

The composite control (3.79c) represents both v+  and v− . This control, being applied to 

(3.98) as ( )kv v oτ− = − , while using relations (3.100), brings           

…..
1 1( ) ( )( )k k vA A o Iτ τ −= ± − + ∠ ,  

which corresponds to (3.78a),(3.101); and being applied to (3.98) as ( )kv v τ+ = , while 
using relations (3.100), leads to  
 

     1( ) ( )( )k k vA o A Iτ τ+ = ± + ∠  .              (3.117c) 

The above relations prove both T4.1(3) and T4.1(4).•   
Corollary 4.1 
The values of μv

2 ,μv
1  for controls (3.100) or (3.102) are obtainable from the additional 

conditions (e.g., μv
1  from the condition , 1( ) (0 ) ).n

T ij i jx T x == = = Ο   

At the same A− in all (3.78),(3.78a, b) we have μv
1 =μv

2 . Since the feedback control is 

applied to a closed loop system, it is natural to assume the fulfillment of equality A+ = A−
v , 

which, according to (3.114),( 3.117, (3.105), is satisfied at μ v
2

=(0,−2).  

The first part of this option (μ v
2 =0) is inconsistent with applying new controls.  

Hence, the remaining part:μv
2 =−2 brings us to the resulting equalities for the 

synthesized control:  

v+=−2 x (τ ),                     (3.118) 
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δ v=v+ −v−=−2 x (τ )−v−, δ v= tvδ .                                    (3.119) 
The last equation determines the control jump (a "needle" control's action), as the control, 
applied to the closed loop system.  
The model’s operator is identified at the moment τ  of applied control according to formulas  

A+ =( A+ )T =1/2 r−� r −1(τ ), / |t or dr dt τ− = −=� , ( ) ( )T
t tr t E x x= .        (3.120) 

By choosing μ v
1 =−2, we get from (3.78a), (3.79a) : 

A+ =∓ A− and v+=−2 x (τ )−v−,                                                                            (3.120a) 

being an equivalent of control (3.119).  
Substituting A+ =− A− = A−

v and the control (3.120a) into (3.105) we get v−=0 and the 

control (3.118). At A+ = A− = A−
v  we have v−=−2 x .  

Sequentially applying of the both controls at the time interval ( , ), ( )o oτ τ δτ τ− = brings  
v−=v ( )oτ − =− 2 x ( )oτ − , v+=v (τ )=− 2 x (τ ) (representing jointly the δ v (τ ) control),  
and sequentially changes the sign of the above matrices.  

For an extremal’s segment with a stable process, we have  

               0A− <  and A+ (v ( )oτ − )>0, A− <0.  

Then A+ (v (τ ))<0, and therefore δ v (τ ) control connects the segments with the stable 
processes closing the ( )o τ -window between them. •  

Comments 4.1. Relations (3.11), (3.119) determine the values of the discrete controls, 
which initiate both the process of the optimal motion and the identification of unknown 
dynamic operator (3.120).  

This is an essence of the joined process of the optimal control and identification (ch.1.1). 
The time of the identification is a part of the optimal process. As a distinction from the known 
discrete systems, the macroprocess’ discrete intervals are determined by the dynamic 
constraint and the controls action with the macromodels operator, identified in the process of 
optimal motion; the macromodel operator is not given a priory.  

Condition (3.114) corresponds to the equalization of the model's operator eigenvalues 

1( )n
i iA λ == : λ i(τ − o)=λ j(τ − o)  at the moments, preceding to the applied controls 

actions (for the model, written in the diagonal form):  

( )i i i ix x vλ= +� ,vi = −2xi (τ ) ,i =1,...,n ,                                   (3.121) 

where vi  is an optimal control, reduced to a state vector xi . Each such control vi  selects the 

corresponding extremal's segment xi (t, τ − o) .  

The reduced control presents a projection of control ut  on each of the state 
macrocoordinates, which is consistent with the object’s controllability and identifiability [41].  

This control specifies the structure of the controllable drift-vector ua = A ( x + v ) and 
corresponding identifiable operator (3.78); it provides also the fulfillment of equalities 
(3.83a),(3.103).  
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The reduced controls in (3.128), (3.129), as the VP solution, are an important part of the 
macrosystem’s structure, reflecting a mechanism of a self-control synthesis, being a function 
of the macrocoordinates.  

These controls are also useful for a direct programming and prognosis of the 
macromovement. 

At the known reduced control (3.100) or (3.102) and the corresponding identified 
operator (3.101) or (3.127), (for example at 0Tx = ), the initial control (1.4) is found by 

solving equations with regard to tu : 

1 1 1 1, ( , ) ( ) , ( ) ( , , )u
t t t t t t t t t t t t t t tx x x a t x A x v x A x v x a t x x u= + = + + + + = +� � � �� , (3.122) 

where 1
tx  is a solution of (1.9), tx  is the solution of (3.22) at known tA , tv . •  

Corollary 4.2.  
Let us determine the constant D  in (3.88) using the equivalent equations:  
 

 
12 ,x bX x br x−= =� � .  

We get  

 1/ 2X hx= , 1[ ]Th E xx −=  .   (3.123) 
Following (3.88c) we have  
 

 [ ] 1 / 2 [ ] 1/ 4TE H E X x TrA= =� , at x Ax=� ,  (3.124) 

where we may hold pX X hxμ μ= = .  

By substituting, we get  
 

 [ ] [ ] 1 / 2T TE X x E x h Ax TrA TrAμ μ= = =� .   (3.125) 

From that we have 1 / 2, 1/ 2 pX Xμ = =  , and at pX X p= +  , we get 1/ 2 pp X X= = . 

Using (3.88): p DX= , we get D I= . This allows us to determine  
 

[ ] 1/ 4 1/ 2 [ ] 3/ 4pE H TrA Tr AD TrA= + =                      (3.126) 
from (3.89c), while (3.124) coincides with  
 

1/ 2 pX X=  in [ ] 1/ 2 [ ] 1/ 4 [ ] 1/ 4 ,T T
pE H M X x E X x TrA= = =� �

           
(3.127)  

and we have 
 

[ ]T
pE X x TrA=� , [ ] 3 / 4 [ ], [ ] [ ] 1/ 2T T u u

p p pE H E X x E p a E H TrA= = =� .     (3.128) 
Following equations 
 

 , ,
u
p pu

p p

S SSH H H
t t t

∂ ∂∂
= − = − = −

∂ ∂ ∂
 ,                                                                    (3.128a) 

we get relation 
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 ˆ[ ] [ ]E H t S E SΔ = −Δ = − Δ                                                                                           (3.129) 
that defines an increment of the averaged internal entropy, which an object consumes, while 
relation 
 

ˆ[ ]u u
p pE H t SΔ = −Δ                                                                                                   (3.129a) 

defines an increment of the external object’s average entropy, delivered by the controls 
(3.118), (3.119), whereas 
 

ˆ[ ]p pE H t SΔ = −Δ                                                                                                     (3.130) 
defines the increment of a total average entropy.  
We may conclude that the external entropy exceeds the internal entropy in three times, while 
the entropy’s increment of the object’s controls exceeds the internal entropy in two times. ● 

Comments 4.2. At the extremals with a stable process we have  

( ) ( ) 0signA o signA oτ τ− = + < , ( ), ( ( )) ( )A A o A v A oτ τ τ− += − = + ,  

while at applying the control ( )v oτ −  we get  

                               ( ) 0signA τ > , ( ) ( ( ))A A v oτ τ+= − .  

This brings 
 

        ˆ ˆ3 / 4 [ ( )] 0, 1 / 2 [ ( )] 0u
p pH Tr A o H Tr Aτ τ= − < = >   

with a total Hamiltonian increment  
 
       ˆ ( ) 1 / 2 [ ( )] 3 / 4 | [ ( )] |H Tr A Tr A oτ τ τ= − −  

1 / 4 [ ( )], ( ) ( )Tr A A A oτ τ τ= − = − − .                                                                 (3.130a) 
Considering the entropy derivation’s increment at the extremal under the control action we 
have 
 

ˆ ˆ( ) ( ) ( ) ( )
u u u
p p p u u

p p

S S S
o H o H

t t t
τ τ τ τ

∂Δ ∂ ∂
= − − = − − +

∂ ∂ ∂
 

ˆ ˆ( ) ( ) 1/ 2 [ ( )] 1/ 2 [ ( )] [ ( )]u u
p pH o H Tr A o Tr A Tr Aτ τ τ τ τ= − − + = − − + = .  (3.130b) 

 
This means, the above control’s action increases the entropy increment, which the microlevel 
provides, compared with that on the extremal.  
The result is a consequence of applying the total entropy derivation (3.16) and removing the 
constraint (3.19) at transferring the process to the microlevel.  
Therefore, compared with a minimum entropy at the extremals, the control ( )v oτ −  brings a 
maximum entropy derivation at the moments τ  (between the extremal segments) delivering it to 
each segment.  
This is an essence of the considered minimax VP, which also corresponds to Comments 3.6. 
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1.3.5. A Summary of the Information Path Functional Approach. 
The IPF invariants  

In this sec. we summarize an essence of the IPF approach, illustrate the theorems results 
and some limitations.  

The initial assumptions and the problem.  
Let us have two random processes, one of them ( )t tx x u=� � is a controlled process, being 

a solution of equation (1.1.1), another one 1
tx�  (as a solution of (1.1.7)) is given as a 

programmed process; the task for the controlled process consists of moving ( )t tx x u=� �  close 

to 1
tx�  by applying control u , or moving the difference 1 *( ) ( )t t tx u x x u− =� � �  to its minimum.   
The problem formalization.  
The control task can be formalized by the evaluation of these processes δ −closeness 

via a probability measure 1[ ( , ) ]t tP x xρ δΔ <� � , where 1( , )t tx xρΔ � � = ( , )ρ • •Δ  is a metric 
distance in a Banach space (estimated with an accuracy of δ >0), with the requirement of 
this probability’s maximum  

1

( )
[ ( , ) ]

t

t t
x u
Sup P x xρ δΔ <
�

� � .                                                                     

Process * ( )tx u�  is modelled by the solutions of a control stochastic differential equation Ito: 
 

* * *( , , ) ( , )u
t t t t tdx a t x u dt t x dσ ξ= +� � � , 

* *
t s sx x= =� � , [ , ] , [0, ]t s T s T∈ = Δ ∈ , * nx R∈� , *( , ) ( )nt x R∈ Δ ×� ,   (3.131)  

whose function of shift ( , , )u ua a t • •= depends on control, and the diffusion component of 
the solutions  

 
( , )

t

t
s

t dυ υζ σ ξ ξ= ∫ , [ ]tE ζ = Ο   (3.132) 

models an uncontrollable noise.  
In this case, the control task can be reduced to these processes’ maximum probability of 
δ −closeness for difference 1 *( ) ( )t t tx u x x u− =� � �  to tζ , or to null-vector Ο : 
 

* *

1 * *

( ) ( ) ( )
[ ( , ) ] [ ( , ) ] [ ( , ) ]

t t t

t t t t t
x u x u x u
Sup P x x Sup P x Sup P xρ δ ρ ζ δ ρ δΔ Δ Δ< → < → Ο <
� � �

� � � � .  (3.133) 

This control task we will express via a functional, defined on the process’ trajectories using:  
Proposition 5.1.  

The probability in (3.133) in the logarithmic form is defined by relation  
 

 
* *ln [ ( , ) ] ( / )t t t tP x S xρ ζ δ ζΔ < = −� ,  (3.134)  

where *( / )t tS x ζ  is a conditional entropy functional of processes *
tx�  regarding ζt .  
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Proof follows from the representation of (3.134)(left) by the Radom-Nikodim density 

measure [17, 28] *
tx

d
d

ζμ
μ �

of a transformation *
tx�  to tζ  on a set Bδ : 

* *
* * *ln [ ( , ) ] ln ( ) ( ) [ln ]

t t
t t t tx x

B

d dP x x P dx E
d d

δ

ζ ζμ μρ ζ δ
μ μ

Δ < = =∫ � �
� � � , Bδ ={ *( , )t txρ ζ δΔ <� },  (3.135) 

where 

 
*

*
*[ln ] [ ln ] ( / )

t

t

x

t tx

d dE E S x
dd

ζ

ζ

μ μ ζ
μμ

= − = −
�

�
                                                              (3.135a) 

and its left side is a math expectation of logarithmic probability’s functional density measure 
on trajectories for process *

tx�  regarding process tζ , taken along the process’ trajectories. • 
Proposition 5.2.  

For the considered Markov diffusion process (3.131), (3.132), the entropy functional (3.134):  
 

*
,( / ) [ ]T

t t s x sS x E Sς ϕ= = ��  ,                                                                                     (3.136) 

expressed through an additive functional [28], (ch.1.1): 

* * 1 * * 1 *1/ 2 ( , ) (2 ( , )) ( , ) ( ( , )) ( , ) ( )
T T

T u T u u
s t t t t t

s s

a t x b t x a t x dt t x a t x d tϕ σ ξ− −= +∫ ∫� � � � � , (3.136a) 

acquires the form 

 

* * 1 *
,1 / 2 [ ( , ) (2 ( , )) ( , ) ]

T
u T u

s x t t t
s

S E a t x b t x a t x dt−= ∫� � � �
 
,
 

1/ 2 Tb σσ= .  (3.137)   

Proof follows from the definition of the density measure in (3.135) through an additive 
functional T

sϕ of the above diffusion processes ( *
tx� , tζ ) (ch.1.1): 

 
*
tx

d
d

ζμ
μ �

= exp( )T
sϕ− .  (3.138)  

At 

 

* 1 *
, { ( ( , ) ( , ) ( )} 0

T
u

s x t t
s

E t x a t x d tσ ξ− =∫ � � ,  (3.138a)  

the fulfillment of equations (3.136), (3.138) lead to (3.137), which determines the entropy 
functional via the integrand of the Ito equation’s functions of controllable shift and 
diffusion. •   

This allows us to reformulate the problem (3.133) using the entropy functional:  

* *

* *

( ) ( )
( / ) [ ],

t t

t t t
x u x u
Inf S x Inf S xζ =
� �

� �� � * * 1 *[ 1 / 2 ( , ) (2 ( , )) ( , ) ]
T

u T u
t t t

s

S E a t x b t x a t x dt−= ∫� � � �
 
,
 
(3.139)  

which connects this stochastic variation problem to the given initial Eq. (3.131).  
A direct solution of this variation problem is complicated, because functional (3.137), 

integrated by the above probability measure, represents a path functional on the trajectories of 
a Markov diffusion process, which is connected to Feynman’s path functional [2, 3].  



The Variation Problem for the Information Path Functional and Its Solution 79

That is why an essential are  
The secondary level’s problem. 
We will approximate *

tx�  by a dynamic process tx , which we call a macroprocess, 

defined in the space 1KC (of the piece–wise differentiable, continuous functions), 
considering tx� , 1

tx� , *
tx�  as the corresponding microlevel processes and tζ  as a model of an 

irremovable disturbance for macrolevel, where 1
t t tx x x= −  is a difference between a current 

macrolevel process tx and its given target 1
tx .    

Control ut  (acting on both Eqs. (1.1.1) and (3.131)) is formed as a function of dynamic 

variables ( tx ), defined by a sought feedback equation: ut
=

def

u ( tx ) at the limitation ch.1.1. 

Then by analogy of problem (3.133), we require a maximum probability of 
δ −closeness of tx  to tζ :  

[ ( , ) ]
t

t t
x

Sup P xρ ζ δΔ <  ,
1( , ), [ , ]n

tx KC R t s T∈ Δ ∈ = Δ ,                                  (3.140a)  

and impose on tx  the requirement to be a dynamic analog of *
tx� , while both requirements we 

formalize through the evaluation of these process’ probabilities closeness by analogy with 
problem (3.133): 
 

*

*[ ( , ) ] [ ( , ) ]
tt

t t t t
xx

Sup P x Sup P xρ ζ δ ρ ζ δΔ Δ< ⇔ <
�

� , 1 ( , ), [ , ]n
tx KC R t s T∈ Δ ∈ = Δ ,  

   (3.140) 
which also connects the processes by their mutual ability to approximate tζ  (considered as a 

standard process for a comparison of both *
tx�  and tx ). Condition (3.140) formally connects 

both problems. According to this condition, the control task of moving the difference *
tx�  

close to tζ , also approximates tx  through tζ  and, therefore, leads to the approximation of 
*
tx�  by tx , which redefines the initial control problem.  

We formulate the secondary problem using  
Proposition 5.3.  

The probability condition (3.140) (right) by an analogy with (3.134) we define by relation 

ln [ ( , ) ] [ ]
t t

t t t
x x

Sup P x Inf S xρ ζ δΔ < = − , ( , , )
T

s

S L t x x dt= ∫ �  , (3.141) 

where tx  is an extremal of integral functional [ ]tS x , which, as well as its integrand (in 
(3.141)), will be found using condition (3.140) in the form 

 
*

*

( )
[ ] [ ]

tt

t t
xx u

Inf S x Inf S x=
�

� �  . (3.142) 

Solving this variation problem (VP) will determine tx  as an extremal of the variation 

problemand identify the random process *
tx�  via this extremal. • 



Vladimir S. Lerner 80

The relations (3.139)-(3.142) allow for the dynamic approximation of the entropy 
functional of the diffusion process by the integral functional [ ]tS x  with a maximal 

probability, and also connect both the random process *
tx�  to this functional’s extremal tx , as 

its macroprocess, and this functional to information theory.  
In this connection, [ ]tS x  becomes an information path functional (IPF).  
We illustrate the specifics of the solution of the above variation problem (VP) using 

condition (3.142) in the form:  

 
*

*

( )
min [ ] min [ ],

tt
t txx u

S x S x=� � ,  (3.143) 

where the condition’s left hand side is fulfilled by applying the control, while the right 
hand functional is defined on its extremals, which provide its minimum.  

The considered here and below functional (3.137) is the conditional entropy functional 
related to the model’s noise. 

 Proposition 5.4.  
The solution of variation problem (3.143) for the entropy functional brings the following 
equations of extremals for a vector x  and a conjugate vector X accordingly:  

 
ux a=� , ( , )t x Q∈  ,  (3.144a)  

 
1(2 ) uX b a−= ;  (3.144b) 

and the constraint  

                                                          
( ) ( ) ( ) ( ) 0u Xa X b

x
τ τ τ τ∂

+ =
∂

,
 

(3.144c) 

imposed on the solutions (3.144a), (3.144b) at some set 
 

                                   
oQ Q⊂ , , [0, ], { }, 1,...,o n o o

kQ R k mτ τ τ= × Δ Δ = = = ;   (3.144d)
   

where the controls (1.5)(ch.1.1) are applied at the above discrete moments ( )kτ (1.5a)  .   

Proof. Using the Jacobi-Hamilton (JH) equation for a function of action ( , )S S t x= , 
defined on the extremals ( )tx x t=  of functional [ ]tS x  at ( , )t x Q∈ , we have  

 
, ,TS H H x X L

t
∂

− = = −
∂

�   (3.145) 

where X  is a conjugate vector for x  and H is a Hamiltonian for this functional.  
(All derivations here and below have vector form).  
Let us consider the distribution of functional (3.137) on ( , )t x Q∈  as a function of 

current variables ( , )S S t x=� � , which satisfies the Kolmogorov (K) equation [25, 26, others], 
applied to the math expectation of functional (3.137) in the form:  

 

2
1

2( ) 1 / 2( ) (2 )u T u T uS S Sa b a b a
t x x

−∂ ∂ ∂
− = + +

∂ ∂ ∂

� � �
 . (3.146) 

From condition (3.142) it follows 

 
,S S S S

t t x x
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

� �
,  (3.146a) 
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where ,S SX H
x t

∂ ∂
= − =

∂ ∂
. This allows us to join (3.146) and (3.146a) in the form 

 
1( ) 1/ 2 (2 )u T u uS X Sa X b a b a H

t x t
−∂ ∂ ∂

− = + + = − =
∂ ∂ ∂

�
. (3.146b)  

Applying to (3.146) the Hamilton equation
 

H x
X

∂
=

∂
�

 
we get (3.144a), and after 

substituting it to (3.145) (at the fulfillment of (3.146a)) we come to Lagrangian  

 
11 / 2 (2 )TXL b x b x

x
−∂

= − −
∂

� �  .  (3.146c) 

On the extremals ( )tx x t= , both ua and b  are nonrandom. After their substitution to 

(3.137) we get the integral functional S�  on the extremals:  

 

1[ ( )] 1/ 2 ( ) (2 )
T

u T u
e

s

S x t a b a dt−= ∫�  ,  (3.147)  

which should satisfy the variation condition (3.143), or  
 

 [ ( )] [ ( )]eS x t S x t=� ,  (3.147a) 
where both integrals are determined on the same extremals.  

From (3.147a) it follows 
  

 
11 / 2( ) (2 )u T uL a b a−= , or 11 / 2 (2 )TL x b x−= � �  .  (3.147b) 

Both expressions for Lagrangian (3.146c) and (3.147b) coincide at  

 
1(2 ) 0TXb x b x

x
−∂

+ =
∂

� � .  (3.147c) 

Applying to (3.147b) (at the fulfillment of (3.144a)) Lagrange’s equation 
L X
x

∂
=

∂�
, we 

get the equations for the conjugate vector 1(2 )TX x b −= �  and , 2k kx L X L b= =� , which 
prove (3.144b). 
The fulfillment of (3.146) by controls (1.5),(1.5a) is possible if equation (3.147c) is satisfied 
at each point ( , )t x Q∈  of the functional field ( ( ))S x t� , except a certain set (3.144d): 

                                 
oQ Q⊂ , , [0, ], { }, 1,...,o n o o

kQ R k mτ τ τ= × Δ Δ = = = ,  
where the following relations hold true: 

 

2

, 2[( ) ] 0, ( , ), ( , )u T u u
x

S SE a b a a t x b b t x
x xτ

∂ ∂
+ = = =

∂ ∂

� �

 
. (3.147d) 

Substituting to (3.147d) the relations from (3.146a), (3.144a) we come to (3.144c), which 
also follows from (2.13),(2.2).  

This equation determines the constraint, which JH imposes on K to fulfill (3.143). • 
The constraint allocates a set of the states ( , ) ox Qτ ∈  for which the information path 

functional (IPF) coincides with the entropy functional. The IPF becomes a dynamic 
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equivalent of the EF (defined on trajectories of diffusion process), while the IPF extremals 
form the dynamic equivalents of the diffusion process’ trajectories.  

Such a trajectory, as a most probable solution of (1.249) (or (3.144a)) (in the Theorem 
2.3’ probability measure), starting with math expectations of the diffusion process’ initial 
conditions (ch.1.1), is also an equivalent of the process’ macrotrajectory.  

Imposing the constraint (3.147d), implementing (3.143), is initiated by the controls (1.5), 
applied at the states’ set (3.144d). 

Remark. To prove (3.144a, b) we can also use directly an integral functional [ ]tS S x= , 

defined on its extremals ( )tx x t= in a form (3.141)(right), and connect it to the entropy 
functional (3.137) by the variation conditions (3.146a), with following after that the relations 
(3.146b)-(3.147d). (This proof will omit the probability condition (3.141)). 

Corollary 5.1.  
The control action on equation (3.146b), which implements the variation conditions (3.143) at 
the set of discrete moments (3.144d), requires turning the constraint (3.144c) on with 
changing the process function /S t−∂ ∂�  from its maximum to a minimum. 

Proof. With the fulfillment of (3.144c), Hamiltonian (3.146b) acquires the form 

 
11 / 2( ) (2 )u T uH a b a−= ,  (3.148)  

which, after substituting (3.144a) to (3.146b), corresponds to the function’s /S t−∂ ∂�  
minimum on the extremals when it coincides with the Hamiltonian:  

 
1

( )
min( / ) 1/ 2( ) (2 )T

x t
S t H x b x−−∂ ∂ = =� � � ,  (3.149)  

whereas this function in (3.146) reaches its maximum when the constraint is not imposed . 
Both minimum and maximum are conditional regarding the constraint imposition.   
The constraint’s imposition follows from the fulfillment of the variation conditions 

(3.143) that requires the satisfaction of JH equations.  
The constraint’s implementation is carried by the control switch, turning the constraint on 

(at some starting moment o
k kτ τ= ) for the extremal movement and turning it off while 

transferring the dynamics to the process’ stochastics (where the variation conditions are not 
satisfied).  

Therefore, an extremal is determined by imposing the constraint during the control 
actions, which select an extremal segment from the initial random process.•  

Below we find the limitations on the fulfillment of constraint equation (3.144c), which 
also restrict the controls action, specifically when it should be turn off. 

Proposition 5.5.  
The constraint in the form  

                

2

2| [( ) ] | 0u T
x x

S S Sa b
t x xτ τ

∂Δ ∂ ∂
= + =

∂ ∂ ∂

� � �
                                                    (3.150) 

corresponds to the operator equation [28]: 
2

2[ ] 0, uLS x L a b
x xτ

∂ ∂
= = +

∂ ∂
� � , ( )x xτ τ=  , ( , ) ox Qτ ∈ , { },kτ τ=                    (3.150a) 
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whose solutions allow classifying the states ( ) { ( )}, 1,...,kx x k mτ τ= = , considered to be 

the boundary points of a diffusion process at *lim ( ) ( )
t

x t x
τ

τ
→

=� .  

A boundary point ( )x xτ τ=  attracts only if the function  

                         

1( ) exp{ ( ) ( ) }
o

x
u

x

R x a y b y dy−= −∫ ,                                                (3.150b) 

defining the general solutions of (3.150a), is integrable at a locality of x xτ= , satisfying the 
condition 

                                          
| ( ) |

o

x

x

R x dx
τ

< ∞∫ .                                                           (3.150c) 

From the above reference [28] and (3.150), (3.150a) it follows that a boundary point repels if 
equation (3.150c) does not have the limited solutions at this locality; it means that the above 
(3.150b) is not integrable. •  

Comments 5.1. Therefore, the constraint equation (3.144c), or (3.147d) establishes a 
connection between the microlevel’s diffusion and macrolevel’s dynamics only at some 
“punched” points of the space o n oQ R= × Δ , while macroequations (3.144a,b) act along 
each extremal, except the related discrete points (DP)  

                                           1

,
m

o
k

k
τ ττ

=

Γ = Γ ∈Δ∪                                                     (3.151) 

with the states 
                                  ( )x xτ τ= { ( )}kx τ= , ( ) [ ( )]x E xττ τ= � ,                                   (3.151a) 
for which the information path functional (IPF) coincides with the entropy functiona (EF).  
Thus, both the constraint imposition and the control action are limited by the punched points,  

1( ), ( )k kx xτ τ + when the control, starting at the moment o
k k oτ τ= + , should be turned off at 

a moment 1
1k k oτ τ += −  preceding 1kτ + , which corresponds to the solution of (3.150a) for the 

extremal, approaching the punched point 1kτ + .  
To continue the extremal movement, the control should be turned on again at the moment 

1 1
o
k k oτ τ+ += +  following 1kτ +  to start a next extremal segment.  

This determines a discrete action of control, imposing the constraint during the extremal 
movement within each interval 
                                          1 1

1 1 1, , 1,...,o o
k k k k k kt t k mτ τ τ τ+ + += − = − =   

by a step-wise control ( m is the number of applied controls), which limits a time length of the 
extremal segment between the punched localities. (A very first control is applied at the 
moment o

o s oτ = + , following the process’ initial condition (1.1.1) at t s= .)  
The process continuation requires connecting the extremal segments between the 

punched localities by the joint step-wise control action: with a k -control turning off at the 
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moment 1
kτ  while transferring to 1kτ +  locality, and a next 1k + -control which, transferring 

from 1kτ +  locality, is turning on at the moment 1
o
kτ + in the following extremal segment.  

Both step-wise controls form an impulse control function 1
1 1( ( ), ( ), ( ))o

k k kx x xδ τ τ τ+ +  

acting between moments 1
1 1, , o

k k kτ τ τ+ +  (or 1
1, , o

k k kτ τ τ− ) and implementing (1.23, ch.1.2). 

As it follows from (3.150), (3.150a) the functional’s (3.137) increments at each kt , 
generated by the constraint between the punched points, is preserved:  

[ ( )]c kS x t invΔ = , 1,...,k m= .                                                                               (3.152) 

Equality (3.152), which turns to zero equation (3.150a) at each moment kτ , indeed joins 
(3.150a) with the VP, becoming an information invariant that depends on both functions 

,ua b . Condition (3.152) will be used to find the interval of applying the control kt . 
Comments 5.2. Equations (3.144c), (3.147d) are the necessary and sufficient conditions 

for the existence of the solutions (3.150a),(3.150b),(3.150c), which define the set of states 
( )x xτ τ= , where the macrodynamics arise from stochastics and determine some boundary 

conditions, limiting the above set.  
The necessary condition for the punched points to be attractive include: ( ) 0b y ≠ , which 

corresponds to the existence of a regular diffusion process [28], and ( ) 0ua y ≠ -being 
necessary for the creation of the dynamics.  

At ( ) 0b y = both the entropy functional and the related IPF are degenerated: S → ∞� , 

S → ∞ ; at ( ) 0ua y =  the process’ dynamics vanishes.  
Thus, the fulfillment of (3.150b), (3.150c) guarantees that Eq. (3.150a) is integrable, the 

punched points, where the dynamics can start, exist and are attractive.  
This brings a quantum character of generation of the macrostates carrying the 

macrodynamic information at the VP fulfillment.  
The total information, originated by the macrodynamics, (following from (3.147), 

(3.151)), is evaluated by:  
1( ) ( ) (2 ( )) ( )u T u

k k k kS a b a d
τ

τ τ τ τ τ−

Γ

Γ = ∫ ,                                                           (3.153) 

where the operator shift and the diffusion matrix are limited by (3.150b), (3.150c), τΓ  is the 

union of a total number of kτ  time instants (3.151) for n-dimensional model (3.131). 

Equations (3.150a), (3.153) also satisfy a stationary condition at kτ -locality. •   
The DP (3.151) divides the macrotrajectory into a sequence of the extremal segments 

limited by the punched localities, where the model’s randomness and regularities are 
connected, and therefore the model’s identification is possible.  

At these points, the constraint (3.147d) is applicable for the identification of the random 
states and the related DP in the form 

, [ ( ) ( )] 0T
x

XE XX
xτ τ τ∂

+ =
∂

.                                                                           (3.153a) 

Constraint (3.147c),(3.153a), imposed on the random process (through applying control 
(1.23)), selects also the process’ most informative states (satisfying to the EF maximum, ch. 
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1.2). The constraint action between the punched localities limits the segment’s length and 
determines the control’s functions, which, acting along each segments, also connect them 
through a random window between the segments.  

The constraint equation is the main mathematical structure that distinguishes the 
equations of diffusion stochastics from related dynamic equations: at the constraint 
imposition, both equation’s solutions coincide (at the process’s boundary points).  

This corresponds to transferring the stochastics into dynamics, and vice versa, at the 
constraint termination. With the constraint aid, the path integral on random trajectories (EF) is 
expressed through the integral functional on dynamic trajectories (IPF).  
Comments 5.3. Writing the equation of extremals ux a=�  in a dynamic model’s the 
traditional form  

 , , ( )x Ax u u Av x A x v= + = = +� � ,  (3.154) 
where v  is a control, reduced to the state vector x , we will identify matrix A  and find the 
control v  that solves the initial problem.  

After substituting 2ua bX=  (following from (3.144b) at 0b ≠ ) to (3.144c), the 
constraint also acquires the forms  

 
( ) 2 ( )TX XX

x
τ τ∂

= −
∂

 ,  (3.155a)  

 ( ) ( ) ( )u Ta Xσ τ σ τ τ=  .  (3.155b) 
Substituting  

 
1 1 1(2 ) ( ), ( ) (2 ) , (2 )T T T XX b A x v X x v A b b A

x
− − −∂

= + = + =
∂

  (3.156)  

to (3.154) and (3.155) we get  
 

 
1 1 1(2 ) 2 [(2 ) ( )( ) (2 ) ]T Tb A E b A x v x v A b− − −= − + + ,  (3.157) 

from which, at a nonrandom A  and [ ]E b b= , we obtain the equations for the identification 
of matrix  

 
1( ) ( ) ( ), [( )( ) ], 1/ 2 , [ ]T T

v vA b r r E x v x v b r r E xxτ τ τ−= − = + + = =� � � ( )vr τ=  (3.150b) 

via the above correlation functions, or directly, by the dispersion matrix b from (3.131), 
(3.137), (3.157a): 

 

1| ( ) | ( )(2 ( ) )
o

A b b t dt
τ

τ

τ τ −

−

= ∫ >0 ,  (3.157b) 

where  ( ), 1..., .ko o k mτ τ− = − =  

The fulfillment of relations (3.154),(3.157),(3.157a) is reached with the aid of the 
control’s action, which we find using (3.157) in the form  

 ( ) [( ( ) ( ))( ( ) ( )) ] [ ( ) ( ) ],T TA E x v x v E x xτ τ τ τ τ τ τ+ + = − � at 2 [ ( ) ( ) ]Tr E x xτ τ=� � .   

  (3.158) 

This relation after substituting (3.149) leads to  

      ( ) [( ( ) ( ))( ( ) ( )) ] ( ) [( ( ) ( )) ( ) ]T TA E x v x v A E x v xτ τ τ τ τ τ τ τ τ+ + = − + ,  
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and then to  

…. [( ( ) ( ))( ( ) ( )) ( ( ) ( )) ( ) ] 0T TE x v x v x v xτ τ τ τ τ τ τ+ + + + = ,  

which is satisfied at applying control  

 ( ) 2 ( )v xτ τ= −  .  (3.158a) 

Because ( )x τ is a discrete set of states, satisfying (3.150a), (3.151a), the control has a 
discrete form. This control imposes the constraint (in the form (3.157), (3.157a)), which 
 follows from the variation conditions (3.143), and, therefore it implements this condition. 
      This control, applied to both the random process and the extremal segment, initiates the 
identification of matrix ( )A τ . When the control turns off: ( ) 0v τ = , equations (3.158) and 
below, following from the constraint, change the sign, which leads to the constraint 
termination. Finding this control here just simplifies some results of Theorem T4, sec.1.3.4.  

We also illustrate the theorem’s results, considering alongside with model (3.154) and 
control (3.158a), the model of a closed system with a feedback in the form  

                                                     ( ) ( )vx t A x t=� ,                                                     (3.159) 

where matrix vA  is a subject of both the object’s characterization and identification.  
Using both (3.154) and (3.159):  

        ( , ( , )) ( , )( ( , ) ( )); ( )( ( ) ( )) ( ) ( )u va x t A t x t v A x v A xτ τ τ τ τ τ τ τ τ τ= + + =  (3.159a) 

at applying control (3.158a), we get 

                  
1( ) ( ) 1 / 2 ( ) ( ), ( ) 1 / 2 ( )v

v vA A b r b rτ τ τ τ τ τ−= − = = � .                        (3.159b) 

In particular, by applying control ( ) 2 ( )o o
k kv xτ τ= − , which imposes the constraint 

during time interval 1 o
k k kt τ τ= −  (starting it at o

kτ  and terminating at 1
kτ ) to both (3.154) 

and (3.159), we get the same solutions by the end of this interval:  

              
1 1( ) ( )[2 exp( ( ) )]o o
k k k kx x Aτ τ τ τ= − .                                                      (3.160) 

Substituting this solution to 1 1 1( ) ( ) ( )v
k k kx A xτ τ τ=�  we come to  

                
1 1 1( ) ( )exp( ( ) ) ( ) ( )[2 exp( ( ) )]o o o v o o

k k k k k k k kx A A A x Aτ τ τ τ τ τ τ τ− = − ,         (3.160a) 

or to the connection of both matrixes 1`( )v
kA τ and 1( )kA τ  (at the interval end) with the matrix 

( )o
kA τ  (at the interval beginning) in the forms: 

         
1 1 1 1( ) ( )exp( ( ) )[2 exp( ( ) )]v o o o
k k k k k kA A A Aτ τ τ τ τ τ −= − −  

and 

         1 1 1 1( ) ( )exp( ( ) )[2 exp( ( ) )]o o o
k k k k k kA A A Aτ τ τ τ τ τ −= − .                               (3.160b) 

 Following (3.159a),(3.159b) and (3.160b) we come to changing both matrixes signs: 

 1` 1` ` ` ` `
1 0 1 0 1 1 0[ ( )] [ ( )], ( ) ( ) , [ ( )] ( )v v v o

k k k v k v k k vA v A v A A A v Aτ τ τ τ τ τ+ = + = + + == − = = −    (3.160c) 

at 1
1( , , )o

k k kτ τ τ + -locality , where the nearest segments are connected through the microlevel. 
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The fulfillment of (3.159a) allows identifying matrix A  as a component of the drift 
vector ua  in (3.159b) via the dispersion (3.157b) at the moments τ .  

Specifically, this moment, following the end of the time interval 1
1 1 1

o
k k kt τ τ− − −= − , is 

kτ τ= , when relations ( ) 1/ 2 ( )k v kb rτ τ= � , or ( ) ( )k v kr rτ τ= (in (3.157a), (3.159b)) are 
satisfied, indicates that the solution of the constraint equation reaches the boundary points of 
the diffusion process.  

At this moment, the control, acting on both Ito’s equation (1.1.1) and its dynamic model 
(3.154), should turn the constraint off, transferring the extremal movement to a random 
process. 

The control, turning the constraint on, creates a dynamic model, satisfying Hamilton 
equations (3.149). Such a dynamic model possesses a matrix A  with the complex 
(imaginary) eigenvalues (Example 3.3).  

After the constraint’s termination (at the diffusion process’ boundary point), the control 
transforms this matrix to its real form (3.157b) (being a component of the drift vector in 
(1.1.1)and (3.160)).   
Controlling the dynamic model’s current ( )r t  allows (according to (3.157a)) identifying the 

model current 1( ) 1/ 2 ( ) ( )A t r t r t−= �  (see Example 3.1).  

Comments 5.4. Specifying the constraint equations (3.156), (3.157) by the end at any interval  
, 1,...,kt k m=  (at the moment 1

kτ ) and using (3.56a-c), we have  

       
1 1( )(2 ) , ( )(2 ) ,i i k k i k k i i kX A x v b X A x v b− −= + = + [( )( )]ik i i k k kir E x v x v r= + + =

 
; 

1 1 12 2 [(2 ) ( )( ) (2 ) ]; ( )i
i i i i k k i i k k k ki k

k

X b A E b A x v x v A b A r b
x

− − −∂
= = − + + = −

∂

1 1 12 2 [(2 ) ( )( ) (2 ) ]; ( ) ,k
k k k k i i k k i k i ik i

i

X b A E b A x v x v A b A r b
x

− − −∂
= = − + + = −

∂
  

and  

                                        
2i k

i k
k i

X XX X
x x

∂ ∂
= − =

∂ ∂
.  

This leads to i ib A k kb A= , and 1 1( ) ( )i ik i k ki kb r b b r b− −= , which brings 

                                           i kb b=  and iA = kA ,                                                    (3.161) 

or for the matrix eigenvalue ,i k , considered at the same moment 1
kτ , we get  

                                                  
1 1( ) ( )i k k kλ τ λ τ=  .                                                        (3.161a) 

Applying(3.161) for complex conjugated eigenvalue                 

                    1 1 1( ) ( ) ( )i k i k i kjλ τ α τ β τ= + , * 1 1 1 1( ) ( ) ( ) ( )i k i k i k i kjλ τ λ τ α τ β τ= = − , 
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at the moment 1
kτ of fulfilling the constraint Eq, we come to  

1 1Im ( ) ( )i k i kλ τ β τ= = * 1 1Im[ ( )] ( )i k i kλ τ β τ= − , 12 ( )i kβ τ =0, 1Im ( ) 0i kλ τ =              (3.161b) 

and 

                
1 * 1Re ( ) Re ( )i k i kλ τ λ τ= .                                                                              (3.161c) 

It seen that fulfillment of any (3.161),(3.161a-c) actually follow from imposing the constraint 
(starting at o

kτ ) , which by the moment 1
kτ  reaches the 1( )k oτ + − locality.  

Indeed. After applying the control at the moment o
kτ (to both object and the model), 

according to (3.155a) and (3.146b): 
( )( ) ( , ) ( , )(2 exp( ( ) )) ( )
( )

o o o T T
k k k

X tb t A t x t A t X t
x t

τ τ τ∂
+ −

∂
11/ 2 ( , , )(2 ( ) ( ( , , ))) ( ),u o u o T

k k k k
Sa t b t a t t
t

τ τ τ τ− ∂
+ = −

∂
  

the model moves to fulfill (3.155a) at moment 1
kτ  when the constraint reaches the form 

                    
1

1 1 1 1
1

( ) 2 ( , ) ( , )(2 exp ( ) ) ( ) 0
( )

o o o Tk
k k k k k k k

k

X A x A X
x

τ τ τ τ τ τ τ τ
τ

∂
+ − =

∂
 .        (3.161d) 

Thus, the fulfillment of (3.161d) indicates the moment 1
kτ  when the solution of the constraint 

equation approaches the process’ punched locality, and control ( )o
kv τ  should be turned off,  

transferring the extremal movement to a random process at the following moment 1kτ + . 

As it follows from Prop. 3.5, the state ( )tx τ  is a dynamic analog of the random ( )tx τ� as its 
boundary point.  

Therefore this dynamic state can also be used to form the control (3.158) starting a next 
extremal segment, while each of these controls connects the segments between the boundary 
points.  

Both random process and its dynamic model proceed under the same control (imposing 
the constraint during each kt ), which brings the same dynamic trends of functions 

1( , , ), ( , , ),u o o
k k k k ka t b t tτ τ τ τ τ≤ , in both (1.1.1) and the extremal equations (3.144a,b), 

(3.161b).  
These functions are renovated, being identified at each following moment 1kτ +  , and reach 

1 1( , ), ( , )u
k k k ka bτ τ τ τ+ + . 

This provides a dynamic equivalence for the macroprocess and the diffusion process. 
Proposition 5.6.  

Operator (3.150), (3.153a) and the matrix’s ( )A τ  eigenvalues for each of the model 
dimension 1,..., ,i n=  are connected with the functionals (3.137) and (3.141) by equations  

[ ( )] 1/ 4 [ ( )]SE Tr A
t

τ τ∂
=

∂

�
 ,                                                                                    (3.162)
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( ) ( ( )), ( ) 4 [ ( )]i
i i k k

SA E
t

τ λ τ λ τ τ∂
= =

∂

�
, 1,... , 1,...i n k m= = .                            (3.162a) 

The proof follows from substituting the constraint (3.153a) and the relations (3.154), (3.157a) 
to (3.146) in the forms 

 
1[ ( )] 1/ 2 [( ( ) ( )) ( ) (2 ) ( )( ( ) ( ))],T TSE E x v A b A x v

t
τ τ τ τ τ τ τ−∂

− = + +
∂

�

       
 

1( ) ( ) ( )vA b rτ τ τ−= − ,                                                                            (3.162b) 

from which we get (3.162), where for each i-dimensional model’s eigenvalue with kτ τ=  we 
come to (3.162a). •  

Comments 5.5. Substituting matrix ( )A τ  from (3.157b) to (3.162), we come to a direct 
expression of differential information entropy (negentropy) via the dispersion at the 

kτ locality, where the macrolevel’s dynamics receive information from the microlevel:  

1[ ( )] 1/ 4 [ ( )(2 ( ) ) ] 0
k

k k
SE Tr b b t dt
t τ

τ τ −∂
= >

∂ ∫
�

,                                                  (3.162c) 

and a total macrodynamic information is collected according to (3.153). 
This information along with the information, delivered by the controls, is spent between 

each kτ , 1( )k oτ + − -localities during each time interval 1 o
k k kt τ τ= − .  

The constraint’s differential entropy (3.146) is  

12 ( ) (2 )T u T ucS bX X a b a
t

−∂
= =

∂

�
,                                                                       (3.163) 

which we get after substituting X from (3.144b).  
Comparing this information entropy, reduced to the state ( )kx τ : [ ( )]c kS x τΔ , with that from 

the path functional [ ( )]kS x τΔ  in (3.147), we come to 

               [ ( )] 2c kS x τΔ = [ ( )]kS x τΔ   

with a total model’s entropy, starting at ( )kx τ :  

                  [ ( )] 3o kS x τΔ = [ ( )]kS x τΔ .  
Evaluating integral of (3.162a) for each i-model’s dimension by 

 ( ) [ [ ( )]] 1/ 4 ( )
k

i
i k i k k

SE t dt E S x
tτ

τ λ τ τ∂
= Δ =

∂∫
� � , 1,... , 1,... ,i n k m= =   

we get the related constraint’s average information 
           1/ 2 [ [ ( )] 1/ 2 ( )ic ic k i k kS E S x τ λ τ τΔ = Δ =

  
with the total information 
….       [ [ ( )]] 3 / 4 ( )io k i k kE S x τ λ τ τΔ = ,  

where both ( )i kλ τ and kτ are unknown before their measurement at kτ locality.  
From (3.152) we come to invariant  

[ [ ( )]] 1/ 2 ( ) , 1,... , 1,... .i k i k kE S x inv i n k mτ λ τ τΔ = = = =                                (3.163a) 
This entropy should be compensated by a full amount of control action, evaluated by 
information 
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[ ] 1/ 2 ( )u
i i k kE S λ τ τΔ = .                                                                                        (3.163b) 

From that we get a balance equation 
      [ [ ( )]] [ ] [ [ ( )]u

io k i i kE S x E S E S xτ τΔ − Δ = Δ �                                                          (3.163c) 
with the ratio  

[ ] / [ [ ( )] 2 / 3u
i io kE S E S x τΔ Δ = .                                                                            (3.164) 

Information delivered by the control consists of two step-wise control’s contributions 
       2 [ ] [ ]v u

i iE S E SΔ = Δ ,  

while turning the control on at o
kτ  and off at 1

kτ .  
This leads to the evaluation each of these  control information contributions by 
….. [ ] 1/ 4 ( )v

i i k kE S λ τ τΔ = ,  

which compensates for the related constraint’s information consumption [ ]v
icE SΔ , satisfying 

the balance relation 
       [ ] [ ] [ ]v v

ic ic iE S E S E SΔ = Δ − Δ ,                                                                            (3.164a) 
at the segment’s end, prior a second step-wise control turns the constraint off.  

According to (3.160c), we get the related eigenvalues’ signs at each 1
1 1( , , )o

k k kτ τ τ+ + -locality 

       
1

1( ) ( ) ( )o
i k i k i ksign signλ τ λ τ λ τ +− = = − .                                                          (3.164b)  

Those relations lead to changing signs for the entropy derivations at this locality: 

…… 1
1( ) ( ) 0oi i

k k
S Ssign sign
t t

τ τ +

∂ ∂
= <

∂ ∂
.                                                               (3.164c) 

And also to changing the signs in the related information contributions in (3.163b).  
Because within this locality (at 1kτ + ) the entropy derivation at the microlevel is positive: 

1( ) 0i
k

S
t

τ +

∂
>

∂

�
, we come to the negative entropy derivations at the macrolevel in (3.164c) . 

Based on these, and using conditions (3.146), (3.149) for an extremal in the form 

      max( ( )) min ( )i i
k k

S St t
t t

∂ ∂
− =

∂ ∂
,  

we can reformulated this condition as reaching a minimum for the entropy derivations (by the 
moment 1

kτ ) at the macrolevel through its maximum at the microlevel (at 1
1k koτ τ ++ = ):  

1
1max ( ) min ( ) min ( )i i i

k k k
S S S t
t t t

τ τ+

∂ ∂ ∂
= =

∂ ∂ ∂

�
 ,                                               (3.164c) 

where the maximum corresponds to the second thermodynamic law.  
Just departing from (3.164c), implies that the considered above variation conditions satisfy to 
this law.    
Because of the dynamic equivalence of both model and controllable process (within each 

kt ), reaching 1min ( )i
k

S
t

τ∂
∂

 means also reaching 1max ( )i
k

S
t

τ +

∂
∂

�
 at the microlevel.  

     Thus, the dynamic model allows selecting the microstates (micro-distributions) having a 
maximum information entropy’s derivation as the most informative (at the microlevel), which 
are used for the process control and identification. 
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Proposition 5.8.  
The constraint’s information consumption [ ]v

icE SΔ  (3.164a) during interval kt of applying 

controls ( ) 2 ( )o o
k kv xτ τ= −  brings the following two invariants: 
1( )o

i k k invλ τ τ = , 1,.., , 1,...,i n k m= =  ,                                                                (3.165) 
1 1( )i k k invλ τ τ =  ,                                                                                                      (3.165a) 

where ( )o
i kλ τ  and 

1( )i kλ τ  are the model eigenvalues taken at the moment o
kτ  and 1

kτ  of a 

segment’s time interval kt  accordingly; whereas relation (3.163a) brings the information 
invariant  

( )i k k invλ τ τ = .                                                                                                     (3.165b) 
The proof of (3.165a,b) follows from both writing the constraint’s information consumption 

[ ]v
icE SΔ  during interval kt of applying ( ) 2 ( )o o

k kv xτ τ= −  and using (3.163a) : 
1 1

[ [ ( )] [ ( ) ] 1/ 2 ( )
k k

o o
k k

v ic
ic k i

SE S x t E t dt t dt
t

τ τ

τ τ

λ∂
Δ = =

∂∫ ∫
�

 

1 11/ 2[ ( ) ( ) ] 1/ 4 ( )o o
i k k i k k i k k invλ τ τ λ τ τ λ τ τ= − = =  ,                                          (3.166) 

where eigenvalue ( )i kλ τ  (identified at the moment kτ ) under the control action (at the 

moment o
kτ ) is transformed to ( )o

i kλ τ− , satisfying  

        ( )i kλ τ = ( )o
i kλ τ− and ( ) ( )o o

i k k i k k invλ τ τ λ τ τ− = = . 
This brings the right side of  (3.166) to the form 

1 1 1 1( ) ( ) 1/ 2 ( ) , ( ) 1/ 2 ( )o o o o o o
i k k i k k i k k i k k i k k invλ τ τ λ τ τ λ τ τ λ τ τ λ τ τ− = − = = .           (3.166a) 

To prove (3.165) we use the eigenvalues’ function  

       
1 1 1 1( ) ( )exp( ( ) )[(2 exp( ( ) )]o o o

i k i k i k k i k kλ τ λ τ λ τ τ λ τ τ −= −                                        (3.166b) 

following from (3.161) after applying the control ( ) 2 ( )o o
i k i kv xτ τ= −  to equation (3.154) at 

( ), 1,..., ,...,iA i k nλ= = .  
Substituting (3.166b) to (3.166a) we obtain 

1 1 1 1 1 1( ) ( ) exp( ( ) )[(2 exp( ( ) )]o o o
i k k i k k i k k i k k invλ τ τ λ τ τ λ τ τ λ τ τ −= − =  .                  (3.166c)  

This invariant condition leads to the filfullment of both (3.165) and (3.165a).  
These two invariants define both the necessary (3.166a) and sufficient conditions (3.166) and 
therefore (3.152) for [ ]v

icE SΔ . •  
Corollary 5.2. 

Invariants (3.165), (3.165a-b) have the following information forms:…. 

       
1[ ( ( )] 1/ 2 ( )o

io k i k kE S x t λ τ τΔ = −  ,                                                                       (3.167a) 
1 1[ ( ( )] 1/ 2 ( )v

ic k i k kE S x t λ τ τΔ = − ,                                                                        (3.167b) 
which connect them to a total segment entropy and the control’s information contribution (in 
(3.163a-c)) accordingly. 
To prove that, we multiply (3.166c) on a constant c, aiming to link a segments’ total entropy 
with invariant (3.165) by relation  
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1[ ( ( )] ( )o
io k i k kE S x t cλ τ τΔ =  ,                                                                              (3.168) 

and the entropy contribution (from the constraint)  with invariant (3.165a) by relation  
1 1[ ( ( )] ( )v

ic k i k kE S x t cλ τ τΔ = .                                                                                   (3.168a) 
The constant c we find from (3.166a) following the relation 

1 1 1 1[ ( ( )] ( ) 1/ 4 ( ) 1/ 2 ( )v
ic k i k k i k k i k kE S x t cλ τ τ λ τ τ λ τ τΔ = = = − , 1/ 2c = − ,     (3.168b) 

This allows writing (3.167) and (3.167a) in the forms (3.167a,b). •  
By knowing the above invariant and the identified ( ) | ( ) |o

i k i kλ τ λ τ=  one can find the 

interval kt  of the control action, using condition (3.161a) (the details are in chs.2.1,2.2), while 

control ( ) 2 ( )o o
i k i kv xτ τ= − is applied before finding kt ; at the interval’s end 1

k oτ +  the 

identification of a next 1( )i kλ τ + takes place.  
Comments 5.6. At the existence of random window between a pair of extremal segments 

(with a time interval 1
1 1( , , )o

k k k kτ τ τ τ+ +Δ = ), the step–wise control  

                    
12 ( )kv x τ− = −  ,                                                                                   (3.169) 

applied at the moment 1
kτ  to a current extremal segment, turns the constraint off at the 

moment kτ , when ( )kx τ is identified, which  serves to form the second step-wise control  

                    12 ( )i kv x τ+ += −  ,                                                                          (3.169a) 

being applied to a next extremal segment at the moment 1
o
kτ + , starting the dynamics at a next 

segment similar to  
                            12 ( )o

k kv x τ += − .  
Joint action of both step-wise controls forms an impulse control, which crosses the window. 

Building the process’ continuous dynamic trajectory (satisfying the VP) requires minimal 
random windows between the extremal segments.  

A needle control tvδ , formed by a pair of the above step–wise controls and applied at a 
small ( )oδτ τ→ interval, provides a closest the segments connection:   

1 1
1 1 1( , , ) 2 ( ) 2 ( ), ( ( )) , 1,...,o o

k k k k k tv v v x x v o v k mδδ τ τ τ τ τ δ τ+ + + − += − = − + = = .     (3.169b)  
Controls (3.158a), (3.169),(3.169a), and (3.169b), solving the VP (specifically 

implementing a minimum in (3.149)), we call the optimal controls, which start at the 
beginning of each segment, act along the segment, and connect the segments in the 
macrodynamic optimal process.  

The impulse needle δ -control (acting between the moments 1
1 1( , , )o

k k kτ τ τ+ + ) also 
performs a decoupling (a “decorrelation”) of the pair correlations at these moments (ch.1.1, 
sec.1.1.8). The δ -control provides also the fulfillment of equality 

1 1 1 1
1 1| ( ) ( ) | | ( ) ( ) |j o oi

k i k k j k

dxdx x x
dt dt

τ τ τ τ− −
+ += ,                                                         (3.170) 

which connects the current extremal segment’s eigenvalue 1 1 1 1| ( ) | | ( ) ( ) |i
i k k i k

dx x
dt

λ τ τ τ−=  with 
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eigenvalue 1
1 1 1| ( ) | | ( ) ( ) |j

j k k j k

dx
x

dt
λ τ τ τ−

+ + += , identified at 1kτ + , and then to the eigenvalue 

1
1 1 1| ( ) | | ( ) ( ) |jo o o

j k k j k

dx
x

dt
λ τ τ τ−

+ + +=  at a beginning of next the extremal segments.  

(These connections can also be used for the identification of the eigenvalues via observed 
states 1( )i kx τ + and their derivations).  

If the eigenvalue, identified at 1kτ + , is renovating, compared to 1( )i kλ τ , then the unequal 

eigenvalues 1( )i kλ τ and 1( )j kλ τ +  are joint at a first connection, and at the second connection, 

the transformation 1( )j kλ τ +  to 1( )o
i kλ τ +  at the moment 1

o
kτ + takes place.    

At this transformation, the step-wise control v+  also serves for changing the eigenvalue 

1( )i kλ τ + sign.  

The reduced controls, built by the macrostates memorized at 1
1( , )o

k kτ τ + , according to (3.169) 
and (3.169a), presents a projection of control 

                          2 ( )t tu Av Ax τ= = −  
on each of the state macrocoordinates.  

The above results summarize and simplify the object’s dynamic macromodel and the 
synthesized optimal controls, following from Theorems (T1, T2), sec.1.3.2, and T4, sec.1.3.4.  

The DP divide the macrotrajectory into a sequence of the extremal segments, defined by 
the solutions of macromodel (3.144a,b), (3.154), while the discrete controls (3.158a), (3.169) 
applied at each segment, allow a piece-wise approximation of the initial entropy functional, 
the functions of shift and diffusion as well.  

For the IPF, defined by started functions of shift and diffusion, the IPF optimum predicts 
each extremal segment’s movement not only in terms of a total functional path goal, but also 
by setting at each following segment the renovated values of these functions, identified during 
the optimal movement (via diffusion and correlations (3.157a), or directly by diffusion 
(3.157b)), which currently correct this goal.  

In this optimal dual strategy, concurrently synthesized optimal control provides a 
maximal Markov’s probability (ch.1.1) at each punch locality of the random process and, 
therefore, the considered identification with a maximal probability.  

This optimal strategy for each current movement cannot be improved because it’s defined 
by an extremal of a total path to a terminal state, which is renovated at each control’s action.  

The IPF, as an entropy functional measure of a priory given performance criterion, can be 
applied to any specific performance criterion [34, others]. 

Comments 5.7. Using the equivalent equations:  
12 ,u u va bX a A x br x−= = =                                                                             (3.171) 

we get the expressions for the conjugate vector 
11 / 2 ,X hx h r−= − = ,                                                                                          (3.172)
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T 1

0

( ) 1 / 2( ) ( )X dt x
τ

τ

τ σσ τ−

−

= − ∫ .                                                                        (3.172a) 

A potential, corresponding to this conjugate vector in (3.144b), which satisfies (3.146a,b) at 
the DP, loses its deterministic dependency on the shift vector in (3.131), becoming the 
function of diffusion and a state vector at the DP vicinity (3.172a).  
The gradient of (3.172a) at the punched point depends only on the diffusion:  

1

0

( )( ) 1/ 2( ) 2 ( ) ( )
( )

T TXgradX dt X X
x

τ

τ

ττ σσ τ τ
τ

−

−

∂
= = − = −

∂ ∫ ,                     (3.173) 

and at a vicinity of the boundary, where T 0σσ → , it acquires a form of the δ -function. 
Out of the DP, the gradient (3.173) does not exist, as well as the potential function in the form 
(3.172a). (At the moment ( )oτ − , preceding the control action, the conjugate vector and its 
gradient have the opposite signs:  

          ( ) ( ), ( ) ( )X o X gradX o gradXτ τ τ τ− = − − = −  
according to (3.156)). 
Following (3.164b) ,we have the following signs for these functions at 1

1 1( , , )o
k k kτ τ τ+ + -

locality (limited by the moments 1
1 1

o
k k kτ τ δτ+ +− = ):  

                    1
1 1( ) ( ) ( )o

k k ksignX signX signXτ τ τ+ +− = = − ; 

       
1

1 1[ ( )] [ ( )] [ ( )]o
k k ksign gradX sign gradX sign gradXτ τ τ+ +− = = −  .                (3.173a) 

Those functions, satisfying (3.173a), limit a macrodynamic border of the locality, where the 
maximum of entropy derivation (3.164b) takes place. 

The equalities (3.155a), (3.155b), and (3.172a), (3.173), (3.173a) (following from 
(3.142),(3.143)) define a set of states ( ), ( )X xτ τ on the extremal trajectory, which are used 
for an access to the random process, specifically by forming the control functions (3.169), 
(3.169a,b) and the operator that is identified by (3.157a,b).  

From other consideration, using (3.172),(3.155b), we get a direct connection of the shift 
vector and diffusion matrix at DP in the form  

1

0

( )( ( )) ( )( 2 ( ) ) ( )u u T Ta a b b t dt b
τ

τ

τ τ τ τ−

−

= ∫ .                       (3.174) 

For 1( ) ( ) ( ) ( ) ( ) ( )ua A x b r xτ τ τ τ τ τ−= − = , we get (3.150b) in the form  

1( ) exp{ ( ) } , ( ) 0
o

x

x

R x r y ydy y x τ−= − < ∞ = ≠∫  if ( ) 0r y ≠ ,                        (3.175) 

which is satisfied for a regular diffusion process.  
Comments 5.8. Using (3.161b) and (3.167a,b) for each  
             *( ) , ( )o o

i k io io i k io ioj jλ τ α β λ τ α β= + = − , 
we get the entropy increment by the segment’s end, evaluated by the real eigenvalue’s 
invariant : 

               
1Re [ [ ( )]io k io kE S x t α τΔ = − = a oi inv= ,                                                 (3.176) 

where in a stable process 0ioα <  within the segment’s time interval, as well as 
1( ) 0.it i kα α τ= <   
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Because ioα starts at a boundary point and measures a fixed entropy derivation for each 

segment, invariant a io  evaluates a segment’s information contribution between a punched 
localities.  

Following (3.167a) we get the related entropy increments  

                       
1 1Re [ ] ( )v

ic i k kE S α τ τΔ = = a i inv= ,                                                      (3.176a) 

                                   Re [ ]u
icE SΔ = 2 a i inv= ,                                                            (3.177) 

which evaluate the information contribution of both the constraint and the controls by 
invariant a i .  

The invariants (3.165), (3.165a) for the above complex eigenvalues also bring the 
invariant relations for the eigenvalues’ imaginary parts:  

               
1Im [ [ ( )]io k io kE S x t β τΔ = − = b oi inv= ,                                                (3.178) 

and     
                      1 11/ 2 [ ] ( )ic i k kE S β τ τΔ = = b i inv=  ,                                                      (3.178a) 

where at a fixed /i io ioaγ β= , the invariants are connected :  

                   b o ( )iγ = iγ a o ( )iγ , b ( )iγ = iγ a ( )iγ .  
From these relations follow that the invariants ao , bo  measure the quantity of real and a 

potentially imaginary information, produced during the interval by its end; invariants a, b 
measure the quantity of real and potentially imaginary information, produced by the control at 
the ending moment the interval.  

These invariants evaluate the corresponding information contributions, equivalent to the 
constraint and control’s actions, while a total information, generated by an information quant 
at a punched locality, is evaluated by ao .  
     The real value of invariant in (3.163a) is evaluated by  

              Re[ ] Re[1/ 2 ( ) ]ic i k kS aτλ τ τΔ = =   ,                                                       (3.179) 
where according to (3.166c) and (3.177) we get  

                     Re[ ] 2icS aτΔ = = a ( )iγ .  
With the fulfillment of (3.177), this brings  

                           Re[ ] 1/ 2v
iS aτΔ = = a ( )iγ    

and  
                         Re[ ] 3 / 2 3ioS aτΔ = = a ( )iγ = a o ( )iγ .                                            (3.179a) 

Therefore, to produce an elementary information quant (at kτ locality), the required actions 

are evaluated by the invariants a ( )iγ  and aτ . 
Corollary 5.3.  

(i)-The filfullment of (3.161b) imposes on the model’s complex eigenvalue 
*( ) , ( )o o

i k io io i k io ioj jλ τ α β λ τ α β= + = −  condition 1Im ( ) 0i kλ τ = , for which the solution 
of (3.166b) brings equation 

         2sin( ) sin( ) exp( 2 ) 0i o i i o i oγ γ γ γ+ − − =a a a                                            (3.180) 
at  
           1Im ( ) 0i kλ τ = , 0ioα ≠ , 0ioβ ≠ .                                                              (3.180a) 
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This equation allows us to determine function a o =a o ( )iγ  and find interval kt  for each 

starting ioα , where for a stable process within a time interval a o 0< ; 
(ii)-Condition (3.180a),imposed on the solution (3.166c), allows determine the corresponding 
function bo ( )iγ  and a time interval kt  for each known starting imaginary ioβ . 

Indeed. Following (3.165c) we can write the solutions by the end of interval kt for 
starting only imaginary eigenvalue 

( ) ,o
i i iojλ τ β= *( )o

i k iojλ τ β= − : 
1 1 1 1( ) exp( )[2 exp( )]i i io io k io kj j jλ τ β β τ β τ −= − − ,

* 1 1 1 1( ) exp( )[2 exp( )]i k io io k io kj j jλ τ β β τ β τ −= − − − − , 

and select the solution’s real and imaginary and component at 1
kτ : 

1 1 1 1Re ( ) 2 sin( )[5 4cos( )]i k io io k io kλ τ β β τ β τ −= − − * 1Re ( )i kλ τ= , 
1 1 1 1 * 1Im ( ) (2cos( ) 1)[5 4cos( )] Im ( ),i k io io k io k i kλ τ β β τ β τ λ τ−= − − = −  

which at 1Im ( ) 0i kλ τ = determines an invariant bo ( )iγ 1
io kβ τ= . •  

For a pure imaginary staring eigenvalue, this invariant can be used as an indicator of the 
control’s turning off. 

Example 3.2. Applying condition 1Im ( ) 0i kλ τ =  to the above solutions, we get 
12cos( ) 1 0io kβ τ − =  and 1 / 6io kβ τ π= 0.5235inv= ≅ , which corresponds to the specific 

invariant bo in (3.176); at given ioβ , bo  defines 1 1( ) / 6k ioτ β π−= .  

This also allows finding 1Re ( ) 0.577i k ioλ τ β= −  and the macrostate at this moment: 
1 1 1( ) ( )[2 exp( 0.577 )] 1.26o

i k i k io k kx xτ τ β τ τ= − − ≅ . • 

Remark. Solving (3.165c) at condition 1Re ( ) 0i kλ τ =  brings for invariant '

0b 1'io kβ τ=  
the equation 

' ' '

0 0 02 cos( ) sin ( ) exp( ) 0γ γ γ− − =b b b ,                                                            (3.181) 

which identifies an interval '
kt ,when a control, applied at the interval beginning 'o

kτ , 

theoretically, is able turning to zero the matrix’ real components by the interval end 1'kτ . 
Comments 5.9. A potential continuation of a dynamic movement within the punched 

locality is limited by two points: the control turn’s off at 1
kτ  and the boundary point of 

process’ stopping at 1kτ + .  

Such a dynamic movement is a finite, localized in a potential hall between these points 
and formed an oscillation with conjugated imaginary eigenvalues [71,67]. The related 
eigenfunction at moment 1kτ +  is identified by its real value 1( )i kα τ + according to (3.157a).  

Following the moment 1kτ + , at the moment 1
o
kτ + , the control starts a dynamic 

Hamiltonian model with an imaginary eigenvalue 1 1 1( ) ( ) ( )o o
i k io k i kj jλ τ β τ α τ+ + += ± = ± .  
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By the end of 1kt +  interval, the eigenfunction 1
2( )i kλ τ + reaches its real value, which is 

renovated at the moment 2kτ + , becoming 2( )i kα τ + .  

To start a next Hamiltonian segment with the renovated eigenvalue, the control, 
switching random process to the constraint (3.155a), changes 2( )i kα τ +  to  2( )o

i kλ τ + and then 

by the interval’s end, the equation 2Im ( ) 0o
i kλ τ + =  is fulfilled.  

This condition (following the Example 3.2) allows finding 1
2kτ +  and identifying 

3( )i kα τ + at a next 3kτ + , and so on.  

In a more general case, when the model’s complex eigenvalues include real parts, the 
invariant relations (3.176), (3.176a),(3.180) and condition (3.161b) are used.  
Let us show that a control jump, changing the sign of some matrix elements (specifically 

performing ( ) ( ), ( ) ( )ii i ii i ki k ki ka v a v a v a v→ − − → − −  for matrix 
,
,

ii ik

ki kk

a a
A

a a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, leads to 

appearance of complex eigenvalues in this matrix. 

Example 3.3. Let us have a real matrix 
3, 2
4, 1

A
+ −⎛ ⎞

= ⎜ ⎟− +⎝ ⎠
with eigenvalues 1,2 2 3λ = ± .  

After a single dimensional control changes the corresponding matrix elements we get 
3, 2
4, 1

A
− +⎛ ⎞

= ⎜ ⎟− +⎝ ⎠
, and the matrix eigenvalue become complex 1,2 1 2jλ = − ± . 

More commonly, considering the dynamic model at the moment 1
kτ  of the equalization 

of some matrix’ eigenvalue 1 1 1( ) ( ) ( ),i k i k i kjλ τ α τ β τ= + * 1 1( ) ( ) ( )o
i k i k i kjλ τ α τ β τ= − ,  

we have 1 * 1 1( ) ( ) ( ),i k i k i kλ τ λ τ α τ= = 1( ) 0i kβ τ = , and after reaching a punched locality at 

1kτ + = 1
k oτ +  we get *

1 1 1( ) ( ) ( )i k i k i kλ τ λ τ α τ+ + += = ; then at the moment 1
o
kτ + , the control 

changes the sign of model’s matrix leading to 1 1 1( ) ( ) ( )o o
i k i k i kjλ τ λ τ β τ+ + += − = , with a 

possibility that the model’s eigenvalues become imaginary by analogy with the above 
example. • 

The invariants locate the DP when both starting controls (3.169a) and needle control 
(3.169b) are applied. The limited time intervals restrict both discrete actions of the constraint 
and the controls. The time intervals between the DP ( 1

1 1
o
k k kτ τ δτ+ +− = ) are connected by the 

conditions (3.170), (3.164c), (3.173a) for each cooperating ,i j  eigenvalues.  

Solving (3.154) by applying (3.170) with the above controls determines the model 
macrotrajectory as a chain of the extremal segments, joined at each DP, where, through the 
access to the microlevel, the identification of the model’s renovated operator is possible using 
the identification equations (3.157a), (3.157b).  

Under control (3.169) action we get the matrix equation (3.161), where matrix 
1( )kA τ is renovated each DP moment 1kτ +  becoming 1( )kA τ + , and with 

applying control 1 1( ) 2 ( )o
k kv xτ τ+ += −  it’s transformed to 1( )o

kA τ + , starting 
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the matrix equation at a next segment. Interval kt  is used for the 

matrix’s computation from the data had obtained at 1kτ + . 

Invariants (3.176),(3.176a) and condition (3.161a) allow computing any kt , 1kt + , which 

identify both each DP of the model’s renovation and the control’s action for a sequence of the 
extremal segments.  

In an n-dimensional model, at each 1
1 1( , , )o

k k kτ τ τ+ + -locality, the equalization of an 

eigevalues’ pair 1 1( ) ( )k k i kλ τ λ τ=  takes place at the moment 1
kτ (according to (3.161a,c)) 

and, at the moment 1kτ + , the joint real’s eigenvalues pair 1Re ( )i kλ τ is connected to 

1Re ( )j kλ τ + , and then, at 1
o
kτ + , it leads to eigenvalue 1( )o

j kλ τ +  on the following segment 

(according to (3.170)), forming a triple eigenvalue’s connection.  

Thus, the segments’ triple 1
1 1( ( ), ( ), ( ))o

i k j k j kλ τ λ τ λ τ+ +  cooperate under the needle 

control’ actions, reducing the model’s dimension at each of this locality, with a possibility of 
forming the model’s cooperative information network (IN).   

Relations (3.162a), (3.163a,b), (3.164) and (3.164a,b) connect the identified matrix’s 
elements to the initial variation conditions (3.142) and the above information equations.  

Corollary 5.6.  
Balance ratio (3.164) is satisfied at the following relations between invariants 

           ao ( )iγ /a ( )iγ 3= ,                                                                                 (3.182) 

which corresponds 0.5o
iγ ≅ .. 

The result follows from both (3.179a) and (3.179):  
     a ( )iγ /ao ( )iγ = exp(ao ( )iγ ) [2 exp− [exp ( ao ( )iγ ) 1]− 1/ 3= .            (3.183) 

Solution of this equation brings ao ( )iγ ln2≅ , which corresponds to 0.5o
iγ ≅  and  

a( o
iγ ) 0.23≅ . 

Therefore, this o
iγ and the above invariants’ parameters provide the fulfillement of the 

balance ratio (3.164), which satisfies to balance equation (3.163c). •  
From these it follows that the balance equation imposes the additional constraint on the 

invariant connection, which allows selecting the model invariants satisfying this balance.  
The balance relations might not be fulfilled when  

           iγ ≠ o
iγ .                                                                                                      (3.184) 

Invariant a=a ( 0)iγ → , at the model’s only real eigenvalues, evaluates the information  
contribution (ch.1.2) (1.1.26a) by a step-wise control (3.169); while the information 
contribution of needle control (3.169b) (that includes two step-wise controls with the additive 
information contributions) is evaluated by 2a ( 0)iγ → , which is related to (1.1.26).  

The computation using the model’s invariant equations (3.176),(3.177) and the 
invariant’s connection to iγ  in (3.180) (see also ch.1.4)) brings a ( 0) 0.75o iγ → ≅ and  

a ( 0)iγ → 0.25≅ that leads to the evaluation of (3.167a,b) at the real eigenvalues by 
the above invariants.  
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The information values of the above invariants a o  and a correspond to 1 bit and 0.35 bits 

accordingly; and the elementary information quantum can be evaluated by a io  ≅ 1 bit.  
(These results, following from the IPF, do not apply classical information theory.)  
The information invariants connect the IPF VP with information specific of the 

constrain’s imposing.   
Because both a ( 0) 0.75o iγ → ≅  and b o

1 / 6io kβ τ π= = are determined at the imaginary 

eigenvalue 1( ) 0i kβ τ =  their relation b o = iγ a o at the same kt leads to finding iγ ≅ 0.7 in 
this non regular case.  

Comments 5.10. The model dynamics is initiated by applying a starting step-wise control 
in the form  

( ) 2 [ ( )]o
o

o
o tv E x s

τ
τ = − � ,                                                                                        (3.185) 

at o
o s oτ = + , where o

oτ is the moment of the control’s starts, ( )tx s� are the object’s initial 
conditions, which also include given correlations 
     ( ) [ ( ) ( ) ]T

t tr s E x s x s= � � and/or  ( ) 1/ 2 ( )b s r s= � .  
These initial conditions also determine a starting external control 
      1( ) ( ) ( ) ( )o o o o

o o o ou b r vτ τ τ τ−= ,                                                                              (3.185a) 

where ( ) 2 ( )o o
o ov xτ τ= − , and a nonrandom state can be defined via  

       
1/2( ) | ( ) |o o

o ox rτ τ≅  .                                                                                            (3.185b) 
This control imposes the constraint (3.155a), in the form (3.152), thereby starting the dynamic 
process. The above initial conditions determine matrix  
       1( ) ( ) ( ) , ( ) ( ( )), 1,...,o o o o o

o o o o i oA b r A i nτ τ τ τ λ τ−= = = ,                                       (3.185c) 

and the condition 1Im ( ) 0i oλ τ = (or (3.161a)) is used to find a first time interval between the 
punched points, where the next invariant should be identified, and so on.  

Each following ( )i kα τ 1,..., 1k m= − , identified at a fixed moment kτ , also identifies 

invariants ( )i k kaτ α τ τ=  and a related invariant a( iγ ), which serves to determine ao( iγ ) 
according to (3.179a).  

Equation (3.178) allows finding iγ for each ao( iγ ) with a starting complex ( )o
i kλ τ , 

and then using this invariant to compute kt  for each identified ioα = ( )i kα τ  in the following 

segment time interval, which determines kτ locality, where the next 1( )i kα τ + should be 
measured, and so on.  

From (3.179a):  
          13 ( ) ( ) 3 / 2 ( ) ,o o o

i k k i k k i k kα τ τ α τ τ α τ τ= = − ( ) ( )o
i k i kα τ α τ= −   

it follows 12 / 3o
k k kτ τ τ≅ ≅ . This allows us to predict 1

kτ  and therefore kt  by knowing kτ .  

    The moment 1
k oτ +  estimates a punch point where 1( )i kx τ + should serve for forming a 

second step-wise control and the identification (measurement) takes place.  
    If the model segment’s ( ) ( ) ( )o o o

i k i k i kλ τ α τ β τ= ±  is currently identified, then iγ  is 

known, and using (3.180) can be found ao ( iγ ) which determines kt  for ( )o
i kα τ .  
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Because during the process, only a real component of the model’s complex eigenvalue is 
changing, its imaginary component can be fixed or set up as the model’s initial condition; 
still, each renovated real component changes the current iγ . 

 Specific of the considered optimal process consists of the computation of each following 
time interval (where the identification of the object’s operator takes place and the next 
optimal control is applied) during the optimal movement under the current optimal control, 
formed by a simple function of dynamic states.  

Comments 5.11. An elementary entropy increment iSδΔ between the nearest segments, 
evaluated via correlation (3.157a) using (3.165) and (3.163b) is: 

2 1 2 2 11/ 2 ( ) (2 ) 1/ 2 (2 ) ,
o o

u
i i i i i i

o o

S a b dt x b dt
τ τ

δ

τ τ

λ
+ +

− −

− −

Δ = =∫ ∫ 1,....i m= ,               (3.186) 

1[ ] 1/ 4 1/ 8 1/ 8[ln ( ) ln ( )].
o o

i i i i i i
o o

E S dt r rdt r o r o
τ τ

δ

τ τ

λ τ τ
+ +

−

− −

Δ = = = + − −∫ ∫ �  (3.186a) 

At a fixed 0 ( ) 1ir oτ< − ≤ , the entropy increment depends on the correlation ( )ir oτ + , 

which can take its border’s values ( ) 1ir oτ + = , or ( ) 0ir oτ + = .  

At the maximal correlation ( ) 1ir oτ + = , the increment [ ] 1 / 8 ln ( ) 0.i iE S r oδ τΔ = − − ≥  

At a decoupling (dessolving) the correlation ( ) 0ir oτ + → , we get 

[ ]iE S δΔ → ∞ independently on the value of ( )ir oτ − ; this corresponds to breaking off the 
segment’s connection.  
 

Connection to Shannon’s entropy.  
Considering a set of discrete states ( ) { ( )}, 1,...,kx x k mτ τ= =� �  at each moments kτ τ=  
along the random process, and using definition of the entropy functional (1.4), (3.136a), we 
get the entropy function for these conditional probabilities [ ( )]k k kp p x τ= � (corresponding to 

(1.3)) for all moments , 1,...k k mτ = : 

1
( / ) ln [ ( )] [ ( )]

m

k k k k
k

S x p x p xτ ς τ τ
=

= −∑� � � � ,                                                           (3.187) 

which coincides with the Shannon entropy for the probability distributions [ ( )]k k kp p x τ= � . 
      Function (3.187) holds all characteristics of Shannon’s entropy, following from the initial 
Markov process and its additive functional.  

The entropy for the set ( ) { ( )}, 1,...,kx x k mτ τ= =� �  is 

1
( / ) [ ( )]

m

m k k
k

S x S xτ ς τ
=

= Δ∑� � � ,                                                                              (3.188) 

where [ ( )]k kS x τΔ � is the entropy at each , 1,...k k mτ =  .  
Both entropy measures (3.187) and (3.188) (for (3.136)) and their invariant’s form 

(3.179a) coincide for the set ( ) { ( )}, 1,...,kx x k mτ τ= =� � .  
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Distribution [ ( )]k k kp p x τ= � is selected by variation condition (3.143) as an extremal 

probability distribution, where a macrostate ( )kx τ estimates a random state ( )kx τ� with a 

maximum probability [ ( )]k k kp p x τ= � .  

In other point of view, at a kτ -vicinity, the information entropy (ch.1.2), (1.24) reaches a 
maximum, which, for the considered variation problem, is associated with turning the 
constraint (3.144c) off (by the controls) when function (3.146) takes its maximum (3.164c)  
(at switching to the random process).  

Thus, ( )kx τ  emerges as the most informative state’s evaluation of the random process at 

the kτ -vicinity.  
Selecting these states (with an aid of the dynamic model) allows an optimal discrete 

filtration of random process at all , 1,...k k mτ = , where the macromodel is identified.  

Computing the above invariant allows to predict each kτ -vicinity where entropy (3.187) 
should be measured and a sum of process’s entropies (3.188) determines the IPF entropy with 
a maximal process’ probability.  

The conditions (3.164c), (3.173a), impose a macrodynamic limit on the vicinity’s time 
interval 1

1
o

k k kδτ τ τ+= − , where the maximum can be reached. 

Following (3.176), it’s seen that the invariant’s information measure a o ( iγ ) evaluates 

each segment’s total information contribution delivered at the segment’s kτ -locality: 

[ ( )]k kS x τΔ � , while ( / )mS xτ ς� � is measured by the sum of the invariants:  

1 1
( / )

m n

m
k i

S x kτ ς
= =

= ∑∑� � a o ( iγ ),                                                                             (3.188a) 

(where m n=  , if the number of the segments equals to the model’s dimension n , assuming 
each segment has a single kτ -locality).  

Computing the above invariants aτ , and a o ( iγ ) allows predicting each kτ -vicinity 

where entropy (3.187) should be measured, and a sum of process’s entropies (3.188), (3.188a) 
determines the process entropy with a maximal process’ probability.   

Knowing this entropy allows encoding the random process using the Shannon formula for 
an average optimal code-word length: 

 
/ lncm ml S Dτ≥ ,                                                                                                  (3.189) 

where D is the number of letters of the code’s alphabet, which encode mSτ .  
An elementary code-word to encode the process’ segment is  
 

csl ≥a ( )o iγ / ln oD ,                                                                                            (3.190) 

where oD is a segment’s code alphabet.  

At a ( 0) 0.75o iγ → ≅ , oD =2, we get csl ≥1 , or a bit per the letter. 
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Therefore, the invariant ao=ao( iγ ), or a( iγ ) for each i-segment (with the identified 

eigenvalues, or aτ ) allows us to encode the process using (3.189),(3.190) without counting 

each related entropy (3.187).  
The assigned code also encodes and evaluates both constraint and controls’ actions.  
The code sequence allows building a hierarchical information network (IN), which, 

along with encoding a sequence of the process extremals in a real time, also ranges the 
segments by the values of their local entropies–invariants.  

The space distributed hierarchical (IN) (chs.1.5, 1.6) is built by the cooperating segments’ 
sequence during a real time process, which possesses the specific IN structure with an 
individual genetic information code for each process, described by equation 1.1.1. •  

Comments 5.12. The specific solutions of equations (3.147d) or their macrodynamic 
analogies (3.155a,b) determine the actual number (m) of the discrete instances (DP), and the 
particular sequence of the equations’s both roots: eigenvectors and the related time intervals. 
This means that under the constraint action, each stochastic equation (1.1.1) with specific 
functions of the drift-vector and diffusion components encloses a potential number of the 
considered discrete intervals and their sequential logics.  

Comments 5.13. The bi-level model’s controls, as a part of solution the VP problem for 
IPF, perform the following functions: allows selecting the dynamic equivalents of the random 
states; allocate the dynamic process’ discrete extremal segments with a window between 
them (where the identification takes place), and then connect the segments in a chain, which 
carry on the IPF path dynamics; allows the process’ filtering with an optimal Shannon’s 
encoding (by selecting the random process’ most informative state); join the set of the ranged 
segments into cooperative IN, allows modeling the initial process’ cooperative dynamics.  

These controls compose an inner mechanism of the model’s structure.  
An external control, chosen according to a given programmable process, or performance 

criterion, is synthesized on the basic of the internal control (sec. 1.3.4). 
Finally, the IPF, the variation equations, and the obtained macromodels form a 

mathematical foundation of informational macrodynamics, which provide the transformation 
of a random process’ eigenfunctional EF to the corresponding dynamic process’ 
eigenfunctional IPF, having the invariant information measure in terms of the Hamiltonian, 
eigenfunctions of model’s matrix, and a code.  

IPF models the random object’s trajectory by the related dynamic trajectory, consisting of 
the set of extremal segments, whose punched localities allow the object identification under 
the optimal control action.  

In this optimal dual strategy, the IPF optimum predicts each extremal’s segments 
movement not only in terms of a total functional path goal, but also by setting at each 
following segment the renovated values of this functional, identified during the optimal 
movement, which currently correct this goal.  

The concurrently synthesized optimal control provides a maximal Markov’s probability 
and optimal filtering of the random process at each of its identified punched localities.  
 
 



 
 
 
 
 
 

Chapter 1.4 
 
 
 

THE INFORMATION SPACE DISTRIBUTED 
MACROMODELS DEVELOPED BY THE SOLUTIONS  

OF THE IPF VARIATION PROBLEM 
 
 

1.4.1. Introduction 

Studying a random space distributed object, we intend to reveal its information dynamics 
through the modeling (identification) of a corresponding random information field. 

Important problem’s aspect includes a transfer from a random field, modeled by a 
stochastic differential equation with a random time’s and the non random space’s arguments, 
to its macromodel in the form of a conventional differential equations in partial derivatives 
(PDE). Such a transfer by itself represents a very complicated problem, which includes 
finding of the structure, parameters, and a specific class of PDE based on the observation of 
the random field. The restored dynamic space model could be stationary or nonstationary, 
linear or nonlinear, depending on corresponding characteristics of the random field.  

The known identification methods [46], including the recent results [47, others], are 
based on approximation of an observed process by some class of equations (operators).  

The choice of an approximating operator is more often defined not by the equations of 
the related physical law [48], but typically is determined subjectively.  

Applied approximating criteria, as a measure of closeness between both an observation 
process and a solution of identification equation, usually are not associated with the field's 
physical regularities, the cooperative phenomena of complex systems, and, in general, are 
arbitrary [49]. At such a formal approximation, the quantitative effect of the above field's 
phenomena could be insignificant in terms of the accepted PDE operator and the 
approximating criteria, but is very important from the physical and application viewpoints 
[50,others]. Applied mathematical models are mostly reversible for the irreversible observed 
processes, and have been developed basically for "simple objects" without taking into account 
the superimposing and cooperative phenomena.  

This problem acquires a significant importance for a complex object with a wide 
diversity of superimposing process's interactions of a distinct nature, which all can be 
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modeled by information interactions, making the information model's description a universal 
language for dynamic modeling.  

Both the identification with the approximation criteria and the optimization with a 
performance criteria require the formulation and solution of the specific variation problems 
for each of them [51, 52].  

We use the informational path functional (IPF), defined on a random field, to find the 
dynamic PDF macromodel from a solution of the IPF variation principle (VP), considering 
the VP as a mathematical form to convey the model’s regularities.  

This formalism extends the results (ch.1.3), obtained for the information concentrated 
controllable objects, on the space distributed information systems; uses the invariant 
transformation of space coordinates, following from the PF VP, and also applies the 
identification methods [53] and results [54-55].  

Thus the objective includes: application of the PDF for the controllable informational 
dynamic model, being able to describe the complex object’s regularities; identification of this 
model in a random field, using the VP for an extreme approximation of both the model’s 
dynamics and the identified object’s random process.  

Section 4.2 introduces the space-distributed entropy’s functional in a random field and 
the basic path functional’s models (with a fixed space coordinates) by the solution of Euler-
Ostrogradsky equations for the functional's extremals. These basic models describe a complex 
object at both the micro-and macrolevels.  

Section 4.3 presents the family of the space coordinates' transformations with the 
invariant condition imposed on the (entropy) path functional. Searching for the VP's natural 
limitations, we obtain an extreme model, defined on the admissible space coordinates' 
variations, which satisfies these transformations. Applying the Noether theorem, we get the 
sufficient conditions for the invariance of the functional at the above transformations and the 
general forms of the PDE models in a mobile evolving space coordinate system. The invariant 
conditions bring an additional differential constraint to that, imposed by the functional’s VP 
on the distributed macromodel.  

Section 4.4 applies the equations of extremals and the differential constraints to find the 
space transformation’s parameters and the specific model’s structure. As a result, we obtain 
the controllable distributed macromodel with the optimal controls, applied on the space-time 
discrete intervals, which had been found from the Erdman-Weierstrass' conditions.  

The dynamic model's operator is identified during the observation of random filed by the 
actions of the optimal controls. We show the macromodel’s direct connection to the equation 
of the nonequibrium irreversible thermodynamics and physical kinetics.  

Section 4.5 studies the IPF macromodel’s singular points and the singular trajectories, 
and the invariants following from their connections. The singularities arise at the DP-
windows with shortening the initial model’s dimension and the potential chaotic dynamics’ 
bifurcations. 

Section 4.6 analyzes the solutions of a natural border problem for the IPF under the 
control actions. It is shown that both the model extremals and the model’s singular 
trajectories belong to these solutions, if the segment’s controls are bound by the found 
limitations. We also establish the invariant conditions, as the model’s field’s functions, being 
the analogies of the information conservations laws.  
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1.4.2. The Variation Problem for Space Distributed Macromodel 

The controlled bi-level model of distributed object contains the distributed random 
process ( , , , , )t s t tx x u t l ξ� �  at the microlevel, which depends on a nonrandom space parameter 

l ∈Rν , ν =1,2, 3, the control ( , )t su u l x= � , random initial conditions ˜ x s , and a Wiener 
process ξ t .  

The microlevel process is considered to be a solution of the controlled stochastic equation 
1( ) ( , ( ), ( )) ( , ( )) , ( , ), [ , ] , [0, ]t t t t t sdx l a t x l u l dt t x l d x l t s T s Tσ ξ η ω= + = ∈ = Δ ∈� � � �

,   
  (4.1a) 

where ( , )t tξ ξ ω=  is a random process, defined on probability space ( , , )oPΩ Ψ ,ω ∈Ω  

with the variables located in nR ; Ω  is a space of random events, Ψ  is a σ -algebra on Ω ; 

( )o oP P B=  is a probability measure on Ψ , ,B ⊂ Ψ β  is a Borel's algebra in nR ; 

η ( , ,t l 1ω ) is random distributed process on the probability space 1 1 1( , , )PΩ Ψ , 
1 1ω ∈Ω  with the variables in C2 ( Rn

, Rν ); 11( ) ( , , , )t sx l x x t lω=� � �  is a random distributed 

process, considered on a family of the probability spaces ( , , )xPΩ Ψ , or on the probability 

space 11 11( , , )PΩ Ψ with the variables in C2 ( Rn
, Rν ); Px = Px(B)  is a family of 

probability measure on Ψ , B ⊂ Ψ depending on nx R∈  with the probability 

( );sP x 0 ,o xP P == 11 ( , )xω ω= , 11 11,ω ∈Ω 11 2 ( , )nC R RνΩ = Ω× , 11Ψ = Ψ × β , 

( )P P B D= ×  is a probability measure on 11( )B D× ⊂ Ψ , which satisfies the Markovian 

property for the xP  and 1 1( ) ( ( , ))sP x P lη ω= .  
The solution of (4.1a) satisfies the theory of Ito's stochastic integral [13,14] and the 

requirements for the concentrated model (ch.1.1) with the following functions and the 
mathematical expectations  

 
2( , , ) C ( , ), ( , , ), ( , ), ( , , ), 2n Tx l R R a t t u t x bν σ σσ• • • • • •∈ = , 

 1

1 1 1 1 1 1 1 1( ) [ ] ( , , ), ( , ), [ ] [ ] ( ),t tx l E x x t l E P dω η ω ω ω• • •

Ω

= = = ∈Ω∫�
.  (4.1b) 

Both the drift (a ) (as a regular distributed flow) and the diffusion conductivity of a 
medium ( )b  depend parametrically on the nonrandom the ν -dimensional vector l =e l , 
l ={ l1,l2 ,l3 } that characterizes the geometrical coordinates of a point in some selected affine 
space system. 

The Ito equation of a distributed diffusion (directly connected to physical diffusion and 
conductivity) does not require applying a special δ -correlation needed in the Stratonovich 
equation’s symmetrical form, which would affect an object’s (natural) eigen path functional.  
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The controllable microlevel process ( ) ( ", , )tx l x t lω=� �  is considered in a deviation of 

some given (programmed) process 1 1( ) ( ", , )tx l x t lω=� � , 1( ) ( ) ( )t t tx l x l x l= −� � � , where the 

( )tx l�  characterizes an object’s process in the above deviations.  

An entropy random functional [ ( )]tS x lΔ �� , which evaluates an information closeness of 

the above deviation’s processes, is defined on the object’s random trajectories ( )tx l� . 

Following this, an information path functional [ ]l
tS x , as a dynamic approximation of 

the entropy functional (ch.1.2), is built by analogy with functional of action [18], using 
approximation (sec.1.3.5): 

 [ ] [ ]l
t tSup S x InfS xΔ ≤��

, (4.1c) 
where an evaluator [ ]l

tS x  is defined on a dynamic (macro) process tx  to be found, and the 

structure of both [ ]tS xΔ ��  and [ ]l
tS x  functionals depend on the parameters of stochastic 

equation (4.1a).  
Solution of variation problem (VP) for the path functional: 

4
1 2 3

( , )( ( , ), ) , , ,l i
i

G

x t lS L x t l d d d dt d dl dl dl
t

∂ υ υ υ υ
∂

= = =∫                                  (4.2) 

1 3 1

, 1

( , )( , )1 / 2 (2 ) ; : , ,
n

j ni
ij

i j

x t lx t lL b x R R R
t t

∂∂
∂ ∂

−
+

=

= Δ × → Δ ⊂∑                      (4.3) 

determines the macrotrajectories ( )tx l , which approximate the process ( )tx l�
with a minimum 

uncertainty; where L  is a Lagrangian, defined in a four-dimensional space-time region G 4 (υ ), 
with an elementary volume ( , )l tυ υ= .  

The variation problem of finding the extremals of the functional (4.2) includes the 
constraint’s equation in partial derivations (ch.1.3) with applying control to eq. (4.1). 

This variation problem differs from ch.1.2 only by existence of parameter l , which is 
fixed for each ( , )tx t l .  

This allows us to apply the Euler-Ostrogradsky equation [24] to get the extremals for the 
Lagrangian (4.3) and then use the same methodology to obtain the distributed macromodel.  

We received the following macromodel's equation  
 

1 12
1

2
1 1

( , ) (2 ) (2 ) ( , ){(2 ) [ 1 / 2 ]} 0;
n n

j kj kji i
kj

j i i

x t l b bx x t lb
t t t x t

∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂ ∂

− −
−

= =

+ − =∑ ∑
   (4.4) 

( , , ), ( ( , )), , 1,..., ;Tm
m m

x a t x u a A x v l A A m n
t

∂ τ
∂

= = + = =

3( , ), , : ( ), ( , ), , .nb b t x b A R R u Av l r nτ τ= Δ × → ∠ = ∈ Δ ≤  (4.4a) 
In particular, considering the model with a diagonalized matrix of diffusion and the 

Lagrangian 
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1 2

1

1 / 2 ( ) ,
n

i
ii

i

xL
t

∂σ
∂

−

=

= ∑
, (4.4b) 

we obtain the equation of extremals in the form 
 

 
2

1
2 , 1,..., .i ii i

ii
x x i n
t t t

∂ ∂σ ∂σ
∂ ∂ ∂

−= =  (4.5) 

The admissible transformations of the space parameters will determine a potential spatial 
macromovement and impose the additional constrains on the VP solution.  

Thus, the VP leads to the macroequations, which according to the approximation (4.1c), 
carry out the information closeness to the object and, as a result, an ability for the 
identification of the random object. 

1.4.3. The Invariant Conditions at the Transformation 
of the Space Coordinates  

The space motion in a field is presented by the transformation of coordinates l o ={ lk
o } 

that are assumed to be given initially in an immobile system, connected with an observer and 
then are transformed into the mobile coordinate system l ={ lk }, k =1, 2, 3 according to 
relations 

 , ( ),ol Al L L L t= + =  (4.6) 

with an orthogonal matrix of rotation A = 3
, 1( )ij i ja =  and a vector L ={L k}, k =1,2,3, 

reflecting an appropriate space shift of the origin of the initial coordinate system.  
Relation (4.6) represents a continuous, simple, and a single-parametrical transformation 

for a family of Euclid's spaces in the theory of solid-state matter [56, 57], which allows 
changing its scale at each of the space points.  

The extreme principle provides an invariance of functional (4.2) on the family of 
transformations (4.6), which enables a system to preserve the macrodynamic laws in all 
observed mobile systems at deterministic movements of the object (4.4a).  

The process, defined by Lagrangian (4.3) and the above transformation, determines the 
object's natural space coordinate system.  

The problem consists of application of Noether's theorem [23,24] to find the parameters 
of the transformation. 

Lemma 2.1.  
The invariant conditions for the functional (4.2) at the transformation (4.6) in the form: 

 
Z0 =

t = t,

l o = A (t)−1(l − L )

⎧ 
⎨ 
⎩  (4.7)  

is an equivalent to the invariant conditions for the functional’s transformation at a time 
incrementδ t : 
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* 1

* *, * ,
.

( *) ( * ( *))o

t t t t t
Z

l A t l L t
δ

−

= = +⎧
= ⎨

= −⎩  (4.8a) 

Indeed. Let us consider a vector * *( , ) ( )ol t l l t tδ= + = A (t + δt)l o + L (t + δ t)  at fixed 

t*, defined by a space shift δ l o =l * −l o .  
According to Noether's theorem for a functional, invariant at transformations (4.7), the 
conservation laws hold true at small deviations of parameter δ t . It defines the relations:  

 * *, .l l l l l l
o oZ S S S Z S S S= = = =  (4.8b)  

From that we get *
l l
oS S= . Besides this, for the space shift δ l o , which can be observed 

only in an immobile system, the invariant conditions must be preserved during a time t . 
Theorem 2.1. (T1).  

The fulfillment of model's equations in the form 

 
( , ) 1 / 2 ,j ix xt l y

t l
∂ ∂
∂ ∂

= −
 (4.9) 

1

0

( ) ( )lim ; ( ) ( ) ; { }, 0, 1,2,3,kt

l t t l t l l yy A A l L L y y k
t t t tδ

δ ∂ ∂ ∂
δ ∂ ∂ ∂

• •
−

→

+ −
= = = − + = = =

                                                                                                                                                   (4.10) 
represents the sufficient condition of the invariance for the functional (4.2) at the 
transformation (4.8a) for a twice continuous differentiable function xi = xi (t, l )  with the 

nonzero derivatives 
∂xi

∂t
≠ 0 . 

Proof. Functional (4.2), (4.3) holds an invariant at transformation (4.6) if the following 
equality is true: 

4 4 4

1 1( , ) ( , ) ( , ) , 0, ,
o

oi i i i
i i o

G G G

x x x xL x d L d L x d L d d dt
t t l t

∂ ∂ ∂ ∂υ υ υ υ υ
∂ ∂ ∂ ∂

+ = = =∫ ∫ ∫   

  (4.11) 
where the states ( xi

o , xi ), given in the immobile and in the mobile coordinate systems 
accordingly, are connected by the following relations (with a symbol of scalar 
multiplication<>): 
                                ( , ),o o

i ix x t Al L= +                                                                      (4.12) 

           ( , + ) ,
o

oi i ix x x lt Al L
t t l t

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + < >  

     1( , ) ( , ( ) ( ) .oi ix xt Al L A A l L L
t l

∂ ∂
∂ ∂

• •
−= + + < − + >  (4.13) 
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The last equation follows directly from the gradient form of the equation (considering 
below), which is determined in the coordinate systems, connected by the transformation 
(4.8a): 

 
3

1

( )i i
kjo

kj k

x x a
l l

∂ ∂
∂ ∂=

= ∑ ,
1

( )kja A
−

= ; k, j =1,2,3; gradxi = Agrad oxi  . (4.13a) 

From this equation, at the fulfillment of A
−1

= A
T

 we obtain  
 

 ,

, ( ) ( ) ( ) ( )
oqTT Ti i i i

qpo op
p q

x l x l x l x lA a
l t l t l t l t

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
< >= = = ∑

 . (4.14) 
 
Condition (4.11), after substituting (4.12), (4.13), leads to Lagrangian in the form 

                   1 1

, 1

1 / 2 (2 )
n

ij
i j

L b −

=

= ∑ {<( jx
l

∂
∂

, A 
•
(A )−1(l − L ) + L 

•
)> 

                        1[ 1 / 2 ( , ( ) ( ) ) ]i ix x A A l L L
t l

∂ ∂
∂ ∂

• •
−× + < − + >  

                                1( , ( ) ( ) )ix A A l L L
l

∂
∂

• •
−+ < − + >   

                      × [ jx
t

∂
∂

+1/2<( ( )j Tx
l

∂
∂

, A 
•
(A )−1(l − L ) + L 

•
)>]}=0, (4.15) 

which is fulfilled if one of the following equations is true:  

1( , ) 1 / 2 ( ) , ( ) ( ) ) 0, 1,..., ;Ti ix t l x A A l L L i n
t l

∂ ∂
∂ ∂

• •
−+ < − + >= =   (4.16a) 

1( ) , ( ) ( ) 0, 1,..., .Tix A A l L L i n
l

∂
∂

• •
−< − + >= =                                                           (4.16b) 

At 
∂xi

∂t
≠ 0 , only the equation (4.16a) is left.  

Besides (4.16a), the sufficient condition of the functional's (4.2) invariance is the equality 
for its first variation: δSl =0, which, for integrals δSl =δS1

l +δS2
l , within a variable domain 

G 4 , has a view: 

δS1
l = ( [

∂L

∂xii =1

n

∑
G 4
∫ −

∂
∂ lk

(
∂L

∂ (∂xi / ∂ lk )
]δ xi

k =1

4

∑ ) dυ , δ xi = δ xi −
∂xi

∂lk

yk
k =1

4

∑ . (4.17a) 
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 δS2
l

= [
∂

∂lki ,k =1

n, 4

∑
G 4
∫ (

∂L

∂(∂xi / ∂lk )
δ xi)+

∂(Lyk )

∂ lk

] dυ , { }k oy y= , k =1,..,4, (4.17b) 

where the last component in δS2
l , which represents the integral of divergence, can be reduced 

to an integral at the border of the domain G 4 .  
Parameters yk , according to [23], are defined by the transformation of the coordinate 

system (4.8a), which after the decomposition in Maclaurin's series acquires the form 

  1( ) ( ) [ ( ) ( ) ].l t t l t t A A l L Lδ δ
• •

−+ ≅ + − +  (4.18a) 
From this equation follows the equality for the auxiliary function 

  1
40

( ) ( )lim ( ) ( ) , 1.
t

l t t l t ly A A l L L y
t tδ

δ ∂
δ ∂

• •
−

→

+ −
= = = − + =  (4.18b) 

The condition δS1
l =0 defines the equation of the extremal in the form (4.4a). 

The remained equation is δS2
l =0, from which (at an arbitrary G 4 ) the relation follows: 

 
4 4 4

1 1 1 1

( )( ( )) 0, 1,..., .
( / )

n
i k

k
k i k kk i k k k

L x Lyy i n
l x l l l

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂= = = =

− + = =∑ ∑ ∑ ∑  (4.19a) 

Because L  does not depend on 
∂xi

∂lk

, k =1,2,3 we arrive at equation 

 

4 4

1 1 1

( )( ( )) 0.
( / )

n
i k

k
i k ki k k

x LyL y
t x t l l

∂ ∂∂ ∂
∂ ∂ ∂ ∂ ∂ ∂= = =

− + =∑ ∑ ∑
 (4.19b) 

From that, taking into account the relations 

 
,

( / )

l
l i
i

i i

XL LX
x t x t

∂∂ ∂
∂ ∂ ∂ ∂ ∂

= =
 , (4.20a)  

we come to equations 

24 4 4 3

1 1 1 1 1 1

( ) [ ( ) ( ) ( )],
ln n

l l li i i i i k
i k k i k i

i k i k k kk k k k

x X x x x yX y y X y X
t l t l l t l t

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = = = = =

− = − + − + −∑ ∑ ∑ ∑ ∑ ∑  

  (4.20b) 
2 2

1 1

( ) ( ),
( / )

ln n
li i i i i
i

i ik i k i k k k

L L x L x X x xX
l x l x t l t t l l t

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= =

= + = +∑ ∑              (4.21a) 

 

24 4 4

1 1 1 1

( ) , ( ( ) ( ).
ln

lk i i i
o k i k

k i k kk k k

Ly X x xgradL y y X y
l t l l t

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂= = = =

=< >= +∑ ∑ ∑ ∑       (4.21b)  

 
After substituting the equations (4.20a)-(4.21b) into the condition (4.19b) we obtain 
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24 4 3

1 1 1 1

[ ( ) ( ) ( )
ln

l li i i i k
k i k i

i k k kk k k

X x x x yy X y X
t l l t l t

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂= = = =

− + − + −∑ ∑ ∑ ∑
 

 
24 4

1 1

( ) ( ) 0,
l

li i i
k i k

k kk k

X x xy X y Ldivy
t l l t

∂ ∂ ∂
∂ ∂ ∂ ∂= =

+ + + =∑ ∑   

 1 2, 3( , ), .oy y y y divy divy= =  (4.22) 

For a twice differentiable function xi = xi (t ,l ) of the arguments (t , l ) on Δ × R3  the 
relation 

 
2 2

; 1,..., , 1,2,3,4i i

k k

x x i n k
l t t l

∂ ∂
∂ ∂ ∂ ∂

= = =  (4.23a) 

 
is correct.  
Then, the equality (4.22) leads to the equation 

 

3

1 1

( ) 0,
n

l i k
i

i k k

x yX Ldivy
l t

∂ ∂
∂ ∂= =

− + =∑ ∑
 (4.23b) 

from which at  

 1 2

1 1

1 / 2 ( ) 1 / 2
n n

li i
ii i

i i

x xL X
t t

∂ ∂σ
∂ ∂

−

= =

= =∑ ∑  (4.23c) 

we arrive at the equation 

                              

3

1 1

[ ( ) 1 / 2 ] 0.
n

l i k i
i

i k k

x y xX divy
l t t

∂ ∂ ∂
∂ ∂ ∂= =

− + =∑ ∑
                          (4.24)  

 

Because the matrix A 
•
(A )−1 = C  is a skew-symmetric, the relation divy =0 holds true.  

The remaining equation is 

 
3

1 1

( ) 0,
n

l i k
i

i k k

x yX
l t

∂ ∂
∂ ∂= =

− =∑ ∑  (4.25) 

 
which is fulfilled at condition 

 1 2, 3( , )
0.

y y yy
t t

∂∂
∂ ∂

= =  (4.26) 

The last result is also true for the general Lagrangian form (4.3), because the equations 
(4.16b), (4.20a) are satisfied for the functional (4.2), (4.3).  

If a functional is invariant, then the first of its variation turns to zero automatically on the 
functional’s extremals. Because of that, the equation (4.25) must be satisfied.  

This is an additional requirement for the fulfillment of (4.26).  
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The identical implementation of (4.25) by using condition (4.26) (that is fulfilled by an 
appropriate choice of functions A = A (t), L = L (t)), corresponds to the condition of the 
conservation for the informational laws.  

Considering the fulfillment of the Noether theorem at an arbitrary (nonextremal) surface, 
we may write the first variation of functional δSl  in the form  

 4

4 4

1 1 1

( ){ ( ) }
( / )

n
l k

i i
i k ki i k k kG

L L LyS x x d
x x l l l

∂ ∂ ∂ ∂δ δ δ υ
∂ ∂ ∂ ∂ ∂ ∂= = =

= + + =∑ ∑ ∑∫
 

 
4

4 4

1 1 1

( ){ ( ( ) } ;
( / )

n
i k

i k
i k ki i k k kG

L L x Lyx y d
x x l t l l

∂ ∂ ∂ ∂ ∂δ υ
∂ ∂ ∂ ∂ ∂ ∂ ∂= = =

+ − +∑ ∑ ∑∫  

 

 
4

1

( ).i
i k

k k

xx y
l

∂δ
∂=

= −∑   (4.27) 

At the condition of an arbitrariness of the integrating domain we obtain 
 

 

4 4

1 1 1

( )( ( )) 0.
( / )

n
i k

i k
i k ki i k k k

x LyL Lx y
x x l t l l

∂ ∂∂ ∂ ∂δ
∂ ∂ ∂ ∂ ∂ ∂ ∂= = =

+ − + =∑ ∑ ∑
 (4.28) 

 
The last component of equation (4.28), taking into account (4.20), can be reduced to the 

form  

 

4

1

24 4
3

1 1 1

( ) , >+  = , >

=2 ( ).

k
o o o

k k

n
i i i ii

ii k ii k
i k kk k

Ly gradL y Ldivy gradL y
l

x x xy y
t t l l t

∂
∂

∂ ∂ ∂ ∂σσ σ
∂ ∂ ∂ ∂ ∂

=

−

= = =

=< <

−

∑

∑ ∑ ∑
 (4.29) 

 
By substituting equations (4.20), (4.29) into equation (4.28) we get relation 
 

 

4 4
3 2

1 1 1

[( 2 )( ) 2 ( )]
n

i ii i i i
ii k ii k

i k kk k

x x x xy y
t t l t t l

∂ ∂σ ∂ ∂ ∂ ∂σ σ
∂ ∂ ∂ ∂ ∂ ∂

− −

= = =

− − + −∑ ∑ ∑  

 

24 4
3

1 1 1

2 ( )
n

i i i ii
ii k ii

i k kk k

x x xy
t t l l t

∂ ∂ ∂ ∂σσ σ
∂ ∂ ∂ ∂ ∂

−

= = =

+ −∑ ∑ ∑  

 

24
3

1 1

2 [ (
n

i i ii i
ii k k ii

i k k k

x x xy y
t l t t l

∂ ∂ ∂σ ∂σ σ
∂ ∂ ∂ ∂ ∂

−

= =

= −∑ ∑  

 

2

)] 0i k i i ii
ii k ii

k k k

x y x xy
l t t l l t

∂ ∂ ∂ ∂ ∂σσ σ
∂ ∂ ∂ ∂ ∂ ∂

− + − = .  (4.30a) 

From that, taking into account relation (4.20a), we arrive at equation 
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3 3

2

1 1 1 1

2 ( ) 2 ( ) 0,
n n

li i k i k
ii i

i k i kk k

x x y x yX
t l t l t

∂ ∂ ∂ ∂ ∂σ
∂ ∂ ∂ ∂ ∂

−

= = = =

− = − =∑ ∑ ∑ ∑
 

 (4.30b) 

which coincides with the considered equation (4.25) on the extremals (4.4a).  

This means that the identity of 
∂yk

∂t
≡0 is fulfilled, and the condition (4.26) is satisfied.  

Therefore, if the functional is invariant, its first variation turns to zero by the 
transformation that fulfills the condition (4.10).•   

Corollary 2.1. (C1).  
The sufficient condition of the functional invariance requires the satisfaction of the equation 
(4.10), i.e. the fulfillment of the equation 

 

4

1

1 ,
2

i i
k

k k

x xy
l t

∂ ∂
∂ ∂=

= −∑
 (4.31) 

Equations (4.9), (4.10), and (4.31) are the differential constraints imposed by the 
variation principle on the field equations.  

Proof of C1. By substituting the equations (4.31) and (4.20a), (4.29) into (4.28) we obtain 
 

2
3 2 3

2
1 1

[( 2 ) 2 ] 2
n n

i ii i i i i
ii ii ii

i i

x x x x x
t t t t t t

∂ ∂σ ∂ ∂ ∂ ∂σ σ σ
∂ ∂ ∂ ∂ ∂ ∂

− − −

= =

− + +∑ ∑
 

 

2 2 24 4
3

2
1 1 1

( ) 2 ( ) 0
n

i i ii i i i
k ii ii ii k ii

k i kk k

x x x x xy y
t l t t t t t l

∂ ∂ ∂σ ∂ ∂ ∂σ σ σ σ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

−

= = =

× + = + =∑ ∑ ∑
.  

  (4.31a) 

2 4 3
2

2
1 1 1

2 ( ( ) )
n

i i i i k
ii k

i k kk k

x x x x yy
t t t l l t

∂ ∂ ∂ ∂ ∂∂σ
∂ ∂ ∂ ∂ ∂ ∂

−

= = =

+ −∑ ∑ ∑
 

 

2 2 4
2

2 2
1 1

2 ( )
n

i i i i
ii k

i k k

x x x x y
t t t l

∂ ∂ ∂ ∂σ
∂ ∂ ∂ ∂

−

= =

= − −∑ ∑
 

 
3 3

2

1 1 1 1

2 ( ) 2 ( ) 0.
n n

li i k i k
ii i

i k i kk k

x x y x yX
t l t l t

∂ ∂ ∂ ∂ ∂σ
∂ ∂ ∂ ∂ ∂

−

= = = =

= − = − =∑ ∑ ∑ ∑  (4.31b) 

Thus, relation (4.25) has been obtained without using condition (4.23a) and the extremal 
equations. This is the result of the fulfillment of (4.31a,b) that guarantees the zero equality for 
the first variation of the functional.  

From this fact, however, it is not possible to get directly the sought transformation (4.7). 
Only after transforming the first variation into the form (4.31b), (4.11), it becomes clear that 
the identical equalization of this variation to zero must be reached by the fulfillment of 
relation (4.26), which is a consequence of the initial variation principle.  

Moreover, the result (4.26) represents a condition of a constant space velocity in an 
arbitrary coordinate system.•   
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1.4.4. The Parameters of the Space Transformation and the 
Distributed Macromodels 

The equation (4.10) determines the parameters of the space coordinates' transformation at 
the following conditions 

1( , ) ( ) ( ) ( ) ; ( ) 0yy y t l A A l L L C l L L C l L C L L
t

∂
∂

• • • ••
−= = − + = − + = − − + =�� . (4.32) 

The last equality has to be true identically at any l . From which the equation for an 
angular of rotation follows: 

 
( ) 0, ( ), , , 0,ij ij ij ji jjC t C C C Const C C C

•

= = = = − = i ≠ j , (4.33) 

and the equality (4.32) is divided on two equations: 
 

 1( ) , ; 1 / 2( ); ( );T T
ijA A C A CA C C C C C

• •
− = = = − =  (4.34)  

 

 ,L C L
•

=��  (4.35) 
where C  is the angular’s constant of the speed rotation. 

By integrating (4.34) we obtain the equation for the transformation of the space 
coordinates  

 ( ) exp[( ) ] ( ), .o o oA t t t C A t t s= − =  (4.36) 
For the considered plan movement with the transformation matrix: 

 A =
cos ,sin

sin ,cos
φ φ

φ φ
⎛ ⎞
⎜ ⎟−⎝ ⎠

; A −1
= A T

 , (4.37) 

the equality (4.34) is satisfied at the fulfillment of the equations: 

 
cos , sin sin ,cos

, .
sin ,cos cos , sin

d dC Const
dt dt

φ φ φ φφ φ
φ φ φ φ

− −⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

 (4.38) 

Thus, the relation (4.38) is the necessary and sufficient condition for the fulfillment 
(4.33) at a plan movement. From whence, taking into account the requirement  

 , ( ( )),dl y dy C l l t
dt dt

∂ φ φ
∂φ

= = = =  (4.39) 

we arrive at the condition 

 .y Const∂
∂φ

=  (4.40) 

 
However, the fulfillment of this condition is not enough for the case of a general space 

movement.  
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Equation (4.35) admits reducing its order, and it is represented by the solution of a 
system of the ordinary differential equations with constant coefficients at the given initial 
conditions:  

 R� = C R ; L 
•

= R ; L (to ) = L o ; L 
•

(to) = Ro . (4.41) 
 
The fulfillment of the extremal principle leads to the equations 

 

∂x

∂ t
1 11/ 2 ( ) ( ) 0, ( ) ,x A A l L L A A C

l
∂
∂

• ••
− −= − < − + >= =  

 L�� 0L
•

− = , 1/ 2( )TC C C= − . (4.42) 
The joint consideration of the equations for extremals (1.4a) and differential constraint 

(4.10) brings the following forms of the distributed macromodels.  
By substituting equation (4.31) into equality (4.5) we arrive at the model 

 
2 3

2
1

1 / 2( ) 0, 1,2,..., .i i ii
ii k

k k

x x y i n
t l t

∂ ∂ ∂σσ
∂ ∂ ∂=

+ = =∑  (4.43) 

 
(See also the proof of Theorem 2.1 and C.1).  

After differentiating equality (4.31) we come to equation 

 
2 2 2 23 3 3

2 2
1 1 1

0; 1 / 2 , 1,2,..., .i i i k i i
k

k k kk k k

x x x y x x y i n
t l t l t t l t

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = =

+ + = = − =∑ ∑ ∑  (4.44) 

By substituting the last one into (4.5) we get 

 
23

1

1 / 2 0, 1,2,..., .ii i i
ii k

k k

x x y i n
t t l t

∂σ ∂ ∂σ
∂ ∂ ∂ ∂=

+ = =∑  (4.45)  

And finally, after substituting equation (4.31) into (4.44) we obtain the model 
 

 

23

1

( / )( ) 0; ; 0.i i ii i ii i
ii k k

k k k k ii k

x x x x ty y
l t l t l t l

∂ ∂ ∂σ ∂ ∂σ ∂ ∂ ∂σ
∂ ∂ ∂ ∂ ∂ σ ∂ ∂=

− = = ≠∑
 (4.46)  

 
The controllable distributed macromodel with the reduced controls v , satisfying 

( , )  u A t l v= , gets the form 

 ( , )( ); ( , )( ).x xA t l x v C A t l x v
t l

∂ ∂
∂ ∂

= + = +  (4.47) 

If each of the phase vector's component xi = x  performs a single-dimensional movement 
in the direction of the space axis li =l  with a local speed c , then (4.47) acquires the diagonal 
form 
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( ); ( ); ( , ), ( ) 2 ( , ), ( , )s
x xx v c x v x x t l v v l x s l t l
t l

∂ ∂λ λ λ λ
∂ ∂

= + = + = = = − =
 (4.48) 

at the above reduced optimal control, applied at the initial point.  
For this system, the parameter λ =λ ( t ,l ), which defines the matrix A , is identified by 

an analogy with the concentrated model, using the corresponding correlation's matrices 

vr , vr� (measured at the microlevel): 

 

1 1( , ) [ ( ) ] ; [( )( ) ], 1/ 2 .T T
v v i vi vi

xt l cE x v r r E x v x v r r
l

∂λ λ
∂

− −= + = + + =� � �
 (4.49) 

The needle control's action (ch.1.3), applied at the “punched” fields’ locations, jumps the 
model operator: 

 

 ( , ) ( , ), ( , ) ( , )v v o l v o l A A o l A o lδ τ τ δ τ τ= + − − = + − − . (4.50) 
 
At these locations, each path functional’s extremal, approximates the microlevel process 

with a maximal probability (chs.1.2,1.3).  
The total extremal is divided on the segments limited by these locations, while the set of 

discrete moments: τ =
  
U
k

τ k ⊂ Δ  between the locations is determined from the Erdman-

Weierstrass' conditions [23,24].  
As a result, we obtain the optimal control, fixed along an extremal segment, particularly, 

in the form 

 ( , ) 2 ( , )v o l x o lτ τ+ = − +  (4.51) 
 
and the following equation for the matrix A  identification by the correlation matrix r and its 
derivative: 
 

A (τ o+ , l )=1/2
∂r

∂t
( , )o lτ − r −1

(τ , l ), r (τ , l )= E [( x� +v )( x� +v )
T

], ,xE E τ=  (4.52)  

 
at the moments of the equalization of the relative phase speeds of the state vector (between 
the segments): 

 

1 1 3( , )  ( ,  )= ( , )  ( , ); , : ( ),j ni
i j

zz o l z l o l z l z Gx G R R
t t

∂∂ τ τ τ τ
∂ ∂

− −− − = Δ× → ∠
  (4.53) 

as a part of the optimal synthesis, where G is the diagonal form of matrix A ; z  is the 
corresponding state vector.  

The relation (4.53) identifies the starting time-space instants of the applied controls and 
the matrix A  renovation.  

The renovated matrix is identified during the optimal control action, applied during each 
segment and at a current punch locality (the given initial conditions determine the first of the 
applied control).  
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The renovated matrix’s divergence (4.50) is a result of both identification and needle 
control action.  

The condition of the state’s equalization allows characterizing each pair of the state 
vectors by a single joint vector. The consequent realization of this process leads to the state’s 
cooperation during the optimal control and identification.  

Thus, the equalization (4.53) and cooperation follow from the solution of the optimal 
problem for the path functional approximating the entropy functional (4.1c).  

The Lagrangian, in a more general case than (4.3), admits the representation [39, 58]:  
 

L=−
, 1

*ˆ ˆ
n

ij i j
i j

B y y
=

∑ − 1/2
1

*(
n

i
i

i

xx
t

∂
∂=

∑ −
*

i
i

k

xx
l

∂
∂

), ˆ y i = Gik
k =1

3

∑ ∂xi

∂lk

, *ˆiy =
3

1

*
ik

k

G
=

∑
*

i

k

x
l

∂
∂

, 

  (4.54) 
where vector ˆ y  is proportional to the gradient of the state vector, and it is analogous to a 
general force, or to the conjugate vector X ; and the vector x  is analogous of generalized 
flow [58]. (The complex conjugated variables are indicated by*).  

The corresponding Euler-Ostrogradsky equations lead to the equation of extremals for the 
main ( x , ˆ y ) and the conjugate variables ( x *, ˆ y *) in the above equations: 

 

 
23

1 , 1

*( ), 1,2,..., .
n

ji
ij jm ik

j k m m k

xx B G G i n
t l l

∂∂
∂ ∂ ∂= =

= =∑ ∑  (4.55) 

In a particular, at the conditions 
 

 * *, = , , , 1,2,3,  jm j m ik i k k m km kmG g G G g G G G G k mδ= = = =  (4.56) 
 
the equations of the extremals acquire a form 

                
23

2
1 1

;
n

ji
ij

j m m

xx D
t l

∂∂
∂ ∂= =

= ∑ ∑  i, j = 1, 2,.. .,n , ( ) , 1

*; .
n

ij ij ij i ii j
D D D B g g

=
= =  (4.57) 

 
The last equation leads to a diffusion equation with the diffusion matrix D  and the 

Laplace operator:  

 

2, .x D x
t

∂
∂

= Δ Δ = ∇
 (4.58) 

 
The macromodel in the form of the nonequilibrium thermodynamic equation follows 

from (4.55), using the definition of generalized flow I =
∂x

∂ t
, and, thus, connecting the flows 

I  and forces X : 
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23

2
1 1

, , , , 1,2,..., .
n

j
i ij j ij ij i i i

j m m

x
I l X l B g X g i j n

l
∂
∂= =

= = = =∑ ∑  (4.59) 

 
The equation of the extremals takes the nonequilibrium thermodynamics’ form [56-58]:

  

 2 , , , ( ) 2 ,
l

l l T
ij

x SbX X x gradx l b
t x

∂ ∂ σσ
∂ ∂

Δ
= = ∇ = = =

∇
 (4.60) 

 
and it follows directly from the entropy form of the macromodel’s functional for the local 
homogenous fields: ΔS l =1 / 2∇xT g∇x , where the kinetic operator ( )ijl  in our approach is 

identified by the operator of diffusion in (4.1a). 
The macromodels of the distributed systems, described by the integral equations 
 

 
1

ˆ( , ) ( , , ) ( , ) ,
n

i
ij i

j v

x t l l l l t X l t dl
t

∂
∂ =

= ∑∫
�

� � �  (4.61) 

depend on the kinetic operator ˆ l ( , , )l l t� =1/2
∂ ˆ r 

∂ t
( , , )l l t� , which is identifiable by the 

correlation vector-function ˆ r  of the initial random field.  
These equations are also used in physical kinetics and theory of dissipative systems [38, 58, 
other].  

The optimization problem is formulated as an extreme condition for the Hamiltonian  
 

 H =
∂x

∂t
(t,l )* X(t,l )dl 

v
∫ . (4.62) 

For the space distributed system, the generalized flow I =au  depends on gradients and a 
function ( , , )og x t v of the coordinates, and control:  

                                               ; ( , , ).u
o o o

xa g g g x t v
l

∂
∂

= =                                         (4.63) 

 
In this case, the random field is averaged with respect to some piece-wise space curves, 

defined from equation (4.1a) with the shift-vector depending on the generalized flow. 
 Among these curves, the variation principle is able to select the extremals of the path 

functional. 
 For this model, the functional and its Lagrangian acquire the form: 
 

; ( , , );x y zS Ldtdl l l l l= =∫∫  

1 1 11 / 2( ) (2 ) 1 / 2( ( ) ( ) ).
T

u T u T
v v

x xL a b a r x v x v r
t t

∂ ∂
∂ ∂

− − −= − + − +                     (4.64) 

The corresponding Euler-Ostrogradsky equation has a form  
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1 1 11 / 2[ ( ( )) (2 ) ( )] 0,v v oT

t l

L L L x xr r x v b g
x t l t t l lx x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

− − −
• •− − = + + − =  

                                                                                                                                            (4.65) 
 
from which the equation of the extremals with the coefficients, represented by the correlation 
matrix, follows: 

 

 
2

1 1 1
21 / 2 ( ( )) 1 / 2(2 ) .v v o

x xr r x v b g
t t l

∂ ∂ ∂
∂ ∂ ∂

− − −+ + =  (4.66) 

 
We get the controlled macroequation, whose parameters identified at the microlevel 

 

2
1 1

21 / 2( (2 ) ( ) ; [( )( ) ],T Tv
v o v v

x x rr b g r x v r E x v x v
t l t

∂ ∂ ∂
∂ ∂ ∂

− −= + + = + +� �
 (4.67) 

 
including the function 

 1
,[ ( ) ] { [ ( ) ]} ; ,T T

o x
x xg E x v E x v E E
t l τ

∂ ∂
∂ ∂

−= + × + =  (4.68) 

 
which corresponds to a known form of the diffusion equation: 

 

2

2( , ( )) ( )( );x xf t b t f t x v
t l

∂ ∂
∂ ∂

= + +�
 (4.69) 

 
with the controls v (τ , l ) and the relations for the identification of the auxiliary functions: 
 

 

1 1 1
1 11/ 2 (2 ) ; 1/ 2 ; ( ) ;lv

v o v o
rf r b g f r g r r
t

∂
∂

− − −= = =�
 

 1 1[ ( ) )], [ ( ) ].T l Tx xr E x v r E x v
t l

∂ ∂
∂ ∂

= + = +  (4.69a) 

 
Finally, the macroequation for a space distributed system acquires a general operator's 

form  
 

( , , , )x A t l v x
t

∂
∂

= Δ , Δ = ∇2 , ∇x = gradx , x ={xi}i =1
n , l ={li}i =1

m , li = {lx , ly , lz},  (4.70) 

 2 ( )v x τ= − , v ={vi}i =1
n , ,

1{ }n m
imk kτ τ == , m ≤ n ,  (4.70a) 
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where ( , , , )A t l v is the model’s operator, Δ  is Laplacian of the macrovector x ; v  is the 
reduced control, switched at discrete points (DP) τ .  

The macromodel processes x = x(t,l,u,ξ)  describe the evolution dynamics in the time-
space coordinates ( , )t l . 

Actually, Theory of Markov random process [60] includes building of the PDE (in 
Fourier’s, Fick’s and other forms) based on Fokker-Plank-Kolmogorov equation for the 
probability function, defined on Brownian motion.  

In particular, the condition (4.53) follows from the Markovian property (sec.1.2.1). 
The models operator depends on the microlevel’s diffusion that allows the model’s 

statistical identification.  
Specific examples of the model’s identification, based on the microlevel’s correlation and 

dispersion functions, are given in [53, 54] and in sec.2.1.2.2.  
For a real object, the procedure involves both statistical methods and a numerical 

computation.  
The concrete object’s path functional determines the macromodel’s specific structure, 

whose parameters are identified on the object along with the path functional’s parameters and 
the controls.  

The identified macroequations reflect the object’s informational regularities, in 
particular, representing the information analogies of the irreversible thermodynamics 
equations.  

1.4.5. The IPF Macromodel’s Singular Points and the Singular 
Trajectories 

For the considered concentrated and distributed macromodels, the analysis of the 
existence and uniqueness of singular points and/or the singular trajectories represents the 
principal and sufficient interest.  

The pair equalization of the relative phase speeds (3.77), (3.164b) at each discrete point 
for the concentrated model (3.22) leads to singularities of the dynamic operator, which follow 
from the consideration below.  

We will show that the dynamics and geometry at each of the singular points of the spatial 

macromodel (sec. 4.3) are bound, and the singularities are associated with the model’s 

cooperative phenomena.  

Such analysis we provide for the model in partial derivations of the first order:  

 

 
1 1 1 2 2 2;x x y yA B v A B v

t l t l
∂ ∂ ∂ ∂

= + = +
∂ ∂ ∂ ∂

  (4.71) 

with variables ( , )x y , spatial coordinate l , time t , controls 1( , , )v t l x , 2 ( , , )v t l y , and 

coefficients  

 1 1( , , )A A t l x= , 1 1( , , )B B t l x= , 2 2 ( , , )A A t l y= , 2 2 ( , , )B B t l y= . 
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The initial conditions are given by the following distributions  
 

 1| ( ) ( , , , )l
t s ox l x s l lϕ τ= = = � , or 1| ( )

o

t
l lx tϕ= = ; 2| ( ) ( , , , )l

t s oy l y s l lϕ τ= = = � ,  

 or 2| ( )
o

t
l ly tϕ= = .  (4.71a) 

Equations (4.71), (4.71a) characterize a reflection of some region of plane ( , )t l  on a 

region of space ( , , )S x yΔ , where the peculiarities and class of the surface ( , )S S x yΔ = Δ  

are completely defined by a specific equation of the reflection.  

At the known solution of problem (4.71), (4.71a), this surface’s equation can be defined 

in a parametrical form:  

 
 ( , ), ( , ), [ ( , ), ( , )].x x t l y y t l S S x t l y t l= = Δ = Δ  (4.72) 
 
For the given system, a singular point of the second order of the considered surface is 

determined by the condition of decreasing the following matrix’s rank:  
 

 

, ,
2

, ,

x y S
t t trank
x y S
l l l

∂ ∂ ∂Δ
∂ ∂ ∂ ≠
∂ ∂ ∂Δ
∂ ∂ ∂

,  (4.73) 

 
which corresponds to decreasing the above matrix’s rank, it means turning to zero all minors 
of the second order of the above matrix.  

By introducing the radius-vector 1 2 3r xe ye Se= + + Δ
G G G G

 with the orths of basic vectors 
3{ }i ieG  and the derivatives  

                                                     
,t l

r rr r
t l

∂ ∂
= =

∂ ∂

G GG G
,  

we write (4.73) in the form  

 [ ] 0t lr r× =
G G

.  (4.73a) 

The equation of a normal N
→

 to surface (4.72) has view: 

 

1 2 3, ,

, ,

, ,

e e e
x y SN
t t t
x y S
l l l

∂ ∂ ∂Δ
=

∂ ∂ ∂
∂ ∂ ∂Δ
∂ ∂ ∂

G G G

G
,  (4.74) 

where n
→

=
N
→

N
 is an orth of the normal .N

→
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Because ,tr
G

lr
G

 are the tangent vectors to the coordinate lines, the fulfillment of (4.72) or 
(4.73) is an equivalent of the condition of a nonexistence of the normal (4.74) at the given 
singular point.  

Since a normal to a surface is determined independently on a method of the surface 
parameterization, we come to the following conditions of the existence of the singular point: 

 

 1 1 2 2 2 2 0N M e M e M e= + + =
G G G G

,  (4.75) 
or  

 
1

,
det 0

,
t t

l l

x y
M

x y
= = , l

SS
l

∂Δ
Δ =

∂
, ,t t

x yx y
t t

∂ ∂
= =

∂ ∂
,  

 
,l l

x yx y
l l

∂ ∂
= =

∂ ∂
;  (4.75a) 

 
2

,
det 0

,
t t

l l

x S
M

x S
Δ

= =
Δ

, t
SS
t

∂Δ
Δ =

∂
, l

SS
l

∂Δ
Δ =

∂
;   (4.75b) 

 
3

,
det 0

,
t t

l l

y S
M

y S
Δ

= =
Δ

 .   (4.75c) 

 
According to (4.72) we write a complete derivation 
 
  

 
;S S x S y S S x S y

t x t y t l x l y l
∂Δ ∂Δ ∂ ∂Δ ∂ ∂Δ ∂Δ ∂ ∂Δ ∂

= + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

.  (4.76) 

 
That is why relations (4.75a-c) are fulfilled automatically if (4.75) holds true.  
       Indeed, using (4.76) for (4.75b), we get 
 

( ) ( ) ( )x S x S y x S x S y S x y x y S J
t x l y l l x t y t x t l l t x

∂ ∂Δ ∂ ∂Δ ∂ ∂ ∂Δ ∂ ∂Δ ∂ ∂Δ ∂ ∂ ∂ ∂ ∂Δ
+ − + = − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
,  

   (4.77) 
where Jakobian for this system satisfies (4.75a):  

 
1

,( , ) det 0
,( , )

t t

l l

x yD x yJ M
x yD t l

= = = = .  (4.77a) 

This brings the strong connection of the system’s geometrical coordinates ( l ,e ) with the 
dynamics of ( , )x y .  

Therefore, at a chosen representation (4.72), the singular points correspond also a 
degeneracy of Jacobean J, or the fulfillment of condition  
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x y y x
t l t l

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

=  ,   (4.77b) 

which for the distributed model is an analog of the equalization of the relative phase speeds 
(3.77), (3.160).  

Indeed. The analog of the relation (4.72) for a corresponding matrix of the concentrated 
system is 

 

,
2

,

dx d S
dt dtrank
dy d S
dt dt

Δ

≠
Δ

,  

which leads to  
 

 

,
det 0

,

dx d S
dt dt
dy d S
dt dt

Δ

=
Δ

, 

or  

                                      ( ) 0d S dx dy
dt dt dt
Δ

− = , 0d S
dt
Δ

≠ , 
dx dy
dt dt

= .   (4.77c) 

 
The last relation at ( ) ( ) 0x x oτ τ≅ + ≠  coincides with (3.77) at t τ= .  
Let us apply (4.77b) to the system (4.71), written in the diagonal form: 
 

 
1 1

1 1 1( ) ( ) ( , )t lx x v t l
t l

λ λ− −∂ ∂
= +

∂ ∂
; 1 1

2 2 2( ) ( ) ( , )t ly y v t l
t l

λ λ− −∂ ∂
= +

∂ ∂
,   (4.78) 

where 1 1 2 2( , ), ( , )t l t lλ λ λ λ are the corresponding eigenvalues.  
For the diagonalized equations, it is possible to build the system of the regular differential 
equations in a symmetric form, generally  
 

 
1 1( ) ( )

i
t l
i i i

dxdt dl
vλ λ− −= − = , i=1,….,n   (4.79) 

with its common integrals 
 

 1 2( , ) 0,i i iφ φΦ = =   (4.80) 
 
where the first integrals:  
 

 

 φ1
i = ( ) ( )l t

i il dl t dtλ λ+∫ ∫ , 2 ( )i i
i l

ix l vdlφ λ= + ∫     (4.80a) 

are the solutions of (4.79).  
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The concrete form of the common integral is defined by (4.71a) and (4.78): 
 

 Φ =φ2 ( )[ ( )] [ ( )] [ ( )]l lfl f v f d f∂λ φ φ φ ϕ φ
∂φ

− +∫ ,  (4.81) 

where  
 

1 ( )dτφ φ λ τ τ= − ∫ = ( ) ( ) ( )l tl dl t dt dτλ λ λ τ τ+ −∫ ∫ ∫ ; ( ) ( ) |t
td t dtτ

τλ τ τ λ ==∫ ∫ , 

 1 2 1 2( , ), ( , )t t t l l lλ λ λ λ λ λ= = ,  

 1 2( , )x x x= , 1 2( , )Φ = Φ Φ , 1 2
1 1 1( , )φ φ φ= 1 2

2 2 2, ( , )φ φ φ= ,  (4.81a) 
 

and f  is a root of equation f = l (φ1 (τ ),τ ) solved for l  and a fixed t=τ : 
 

 1( ) ( )l l dl dτλ φ λ τ τ= −∫ ∫ , 1 1 |t τφ φ ==  .   (4.82) 

 
A partial solution of (4.79, (4.81)-(4.82) acquires the form:  

 

x = ( ) ( )[ ( ))] [ ( ))] [ ( )].l l lfl vdl l f v f d f∂λ λ φ φ φ ϕ φ
∂φ

− + +∫ ∫    (4.83) 

Then, the corresponding partial derivations have the view: 
 

 
1

1 1 1
l tx v dl

t t
∂ ∂λ λ
∂ ∂

= − + Φ∫ , 2
2 2 2
l tvy dl

t t
∂∂ λ λ

∂ ∂
= − + Φ∫  ,   (4.84)  

 
1 1 1 1
l lx v

l
∂ λ λ
∂

= − + Φ , 2 2 2 2
l ly v

l
∂ λ λ
∂

= − + Φ ,   (4.84a) 

 

1 1
1 1 1 1 1

1 1

[ ( ) ( )]
l

l fv
f

∂ϕ ∂φ λ φ
∂ ∂φ

Φ = +   (4.85) 

 
By imposing the condition (4.77b) on the systems (4.84)-(4.85), we come to equation 

 

1 2
1 1 1 2 2 2 2 2 2 2 1 1 1 1( )( ) ( )( )l t l l l t l lv vdl v dl v

t t
∂ ∂λ λ λ λ λ λ λ λ
∂ ∂

− Φ − Φ = − Φ − Φ∫ ∫ , (4.86) 

 
which is fulfilled at the following cases: 
 

 1 0,lλ =  or 2 0lλ = ,   (4.86a) 
and at the different combinations of the following pairs of the relations: 

 1 1v = Φ , or 2 2v = Φ  ;   (4.86b) 
 

 
1

1 1 1( )l tv dl
t

∂λ λ
∂

− Φ∫ =0, or 2
2 2 2( ) 0l tv dl

t
∂λ λ
∂

− Φ =∫ ;   (4.86c)  
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where the last two relations are correct if 1 10, 0t lλ λ≠ ≠ ,   (4.86d) 
or, in particular, at the fulfillment of any of these relations: 

 
1

1 10, 0, 0t v
t

∂λ
∂

= Φ = = ,  (4.86e) 

 
2

2 20, 0, 0l v
t

∂λ
∂

= Φ = = .  (4.86f) 

 
Finally, we come to the condition: 
 

 

1 2
1 1 1 2 2 2

1 1 1 2 2 2

( ) ( )
nv.

( ) ( )

l t l t

l l

v vdl dl
t t
v v

∂ ∂λ λ λ λ
∂ ∂

λ λ

− Φ − Φ
= = Ι

− Φ − Φ

∫ ∫
  (4.87) 

 
It means, that for the n-dimensional PDE model (4.78) could exist an invariant condition 

(4.87) on the solution of (4.84), (4.85), which is not dependable on the indexes in (4.87), or 
nvΙ  could take a constant value for some pair of the indexes.  

If we omit the trivial conditions (4.86a)–(4.86f) and the invariant (4.87), then (4.86) leads 
to the following relations: 

 

 
0x x

l l
∂ ∂

= =
∂ ∂

  

and  

                                                     0y y
l t

∂ ∂
= =

∂ ∂
,  

or  

                                                      0x y
l t

∂ ∂
= =

∂ ∂  
and (4. 77a). 
The conditions (4.86) define the different equations of the singular points, or the singuar 

trajectories, created by any of the separated processes ( , )x t l , or ( , )y t l , while (4.87) defines 
the singular trajectory, created by the process’ interactions.  

At such singularities, the rank of extended matrix (4.73) decreases that declines the 
number of independent equations in a system; and a normal to a surface SΔ at a singular 
point does not exist.  

Because of the equations’ (3.22) and (4.77b) connections, these conditions of 
singularities are applied also to the considered in chs.1.2,1.3 concentrated models. 

Therefore, the singular points, defined by the conditions (4.86) and (4.87) do exist, and 
they are not singles.  

The geometrical locations of the singular points could be the isolated states of the system 
(4.71), as well as the singular trajectories.  

The invariant nvΙ corresponds to the equalization of the local subsystems relative speeds 
(at the phase trajectories) at the process of transferring via the singular curve, which is an 
analog of the condition (3.77), (3.164b).  
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At these points, relation (4.86b) gets the form  
 

1 1
1 1 1 1 1 1

1 1

[ ( ) ( )]
l

l fv v
f

∂ϕ ∂φ λ φ
∂ ∂φ

Φ = + = ,                                              (4.88) 

 
and it is fulfilled along the singular trajectory, in particular, at  
 

 1 1 1 1 1co , ,l t lnst t l τλ φ λ λ λ τ= = + − 1
1 1 1 1 1( ) ( / )( ),l t lf l tφ λ λ λ τ−= = + −  

 

( )1 1
1

1

( )lf∂
λ

∂φ
−= ,  (4.88a) 

which is satisfied at  

 
1

1 1
1 1 1 1

1

| ( ( , ) ( , ))
l l

l
l f v t l v t f

f l
∂ϕ ∂ϕ λ
∂ ∂ == = − .  (4.88b)  

 
This condition binds the automatic fulfillment of (4.76b) (at the macrotrajectories’ 

singlular points) with the initial distribution (4.71a) (which depends on the model’s 
microlevel). 

 That is why relations (4.86b-f), (4.87) might be considered as the limitations imposed on 
the class of the model’s random processes, for example, applicable for Markov fields.  
At a given random field, which does not satisfies these limitations, the conditions (4.86b-c) 
could be fulfilled by choosing the corresponding controls.  
At 1

1 varλ = , in particular at 1
1 1( )vλ , it’s a possibility of the Jacobean degeneracy, as it 

follows from (4.88), which is also covered by relations (4.88b).  

From that it follows that the model’s singular phenomena could be implemented by the 

controls.  

Therefore, the singular points and trajectories carry out the additional information about 

a connection of the micro- and macroprocesses, the model’s geometry, dynamics, and control. 

Because relations (3.77), (4.53), and (4.77a) are the conditions connecting the extremal’s 

segments at the o-window, the singularities are related also to the model’s cooperative 

phenomena.  

The state consolidation at the singular points is possible. 

The detail analysis of the singular points is provided in [34] for a two dimensional 

concentrated model, where it’s shown that before the consolidation, the model has a saddle 

singular point, and after the consolidation its singular point becomes an attractor.  

More generally, the equalization of the subsystem’s eigen frequencies (connected to the 

eigenvalues) (in (4.53), (4.77)) is an indicator of arising oscillations, which, at the 

superposition of the diffusion at the o-window, are faded into an attractor.  
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Actually, applying just a regular control (as a first part of the needle control actions) at 

the model’s o-window transfers the dynamic trajectories at the macrolevel to the random 

trajectories at the microlevel, while both of them are unstable.  

Applying a second regular control (being a second part of the needle control) brings 

stability to both of them. 

Generally, the model undergoes a global bifurcation at the o-window between the 

segments, under the control actions and by transferring from kinetics to a diffusion and then 

back from the diffusion to kinetics. 
Indeed. At the segment extremal’s ending moment we have (sec.1.3.5) 

 

 
1( ) ( ) ( ) ( )ua o b o r o x oτ τ τ τ−− = − − − ,  (4.89) 

where 
  

 
1( ) ( ) ( )xb o r o D oτ τ τ−− − = −   (4.89a) 

is the diffusion component of stochastic equation, which is compensated by the kinetic part, 
delivered with the regular control.  

The needle control, applied between the segments at the moments ( , )oτ τ + , brings the 
increment  

 

 ( ) ( ) ( ) ( ) ( ) ( )u u ua a a o x o x oδ τ τ λ τ τ λ τ τ= − + + = − + + + ,  
 

where 

 ( ) 0oλ τ − < , ( ) ( )sign sign oλ τ λ τ= − − ,  (4.90) 
which at  
 

                                         ( ) ( ), ( ) ( )x o x oτ τ λ τ λ τ+ ≈ + ≈ −   
determines  

                                                         2 ( ) ( )ua xδ λ τ τ= − . 
 

Thus, the needle control decreases the initial diffusion part (sec.1.3.5)  
 

 ( ) ( )xD o oτ λ τ− = −  
according to relation 

 

 
 1( ) ( ) ( ) ( ) 2 ( ) ( ),x xb o r o D o Dτ τ τ τ λ τ λ τ−+ + = + ≈ − ≈ −  
 

transferring the diffusion into kinetics. 

This means that applying of the needle controls to a sequence of the extremal segments 

increases an influence of the kinetics on the model, decreasing the diffusion components.  
The phenomenon is discussed in chs.1.7, 1.8. 
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1.4.6. The IPF Natural Variation Problem, Singular Trajectories, 
and The Field’s Invariants for the IPF 

The information functional (IPF) of the distributed model in the form: 
 

 G

S LdldtΔ = ∫∫ ,  (4.91) 

 

 
,x xL X X

t l
∂ ∂

= +
∂ ∂

  (4. 91a) 

is defined on the controlled processes { }ix x= , which are determined by the solutions of 
Euler-Ostrogradsky’s equations for this functional and the natural border conditions, 
connected with the initial distributions (4.71a).  

Using the equations (4.64) − (4.69a) we will apply the following expressions for  
 

 1/ 2X hx= , { }ix x= , 1
, ,, [ ]

o

T
x s lh r r E xx−= = � � � , { }ix x=� � ,  (4.91b)  

in the Lagrangian (4.91a). 
The considered problem consists of the synthesis of a control law in a 

form ( , , , )t lv v t l x x= � �  that carries out the fulfillment of extremal principle for the functional 

SΔ  at the natural border conditions.  
This problem, which is called the natural variation problem, we solve for the equations 

having the structure (4.71) at the Lagrangian L in form (4.91a).  
The aim of this problem’s solution is establishing its formal connection to an appearance 

of a singular curve (sec.1.4.4).  
Writing the functional’s variation at a variant domain G  (under a control’s action) 

according to [35] and sec.1.4.4, we have 
2

1 2
1

{ [ ( ) ( )] }i
i i it ilG

L L LS S S x dldt
x t x l x

δ δ δ δ
=

∂ ∂ ∂ ∂ ∂
Δ = Δ + Δ = − − +

∂ ∂ ∂ ∂ ∂∑∫∫ � �
 

 

2

1

{ [ ( ) ( )] ( ) ( )} 0i
i it ilG

L L x L t L l dldt
t x l x t l

δ δ δ
=

∂ ∂ ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂ ∂∑∫∫ � �
;  

 ixδ
2

1 2
1

; , .i
i j

j j

xx l l t l l
l

δ δ
=

∂
= + = =

∂∑
 (4.92)

 

Condition 1SδΔ =0 is fulfilled by the implementation of Euler-Ostrogradsky’s equation  
 

 i

L
x

∂
∂

( ) ( )
it il

L L
t x l x

∂ ∂ ∂ ∂
− −

∂ ∂ ∂ ∂� �
=0,   (4.93) 

 
which for (4.71) and (4.91a,b),(4.72) acquires the forms 
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( ) ( ) 0i i ii i i ii

ii i ii i ii i ii i
i i

x x h x x hh x h x h x h x
t t x l l x t l

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
; 

 

 

ii i ii i ii ii

i i

h x h x h h
x t x l t l

∂ ∂ ∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂ ∂ ∂
( 0, ( , ) )ix l t G∀ ≠ ∀ ∈ .  (4.94) 

 
We get the equation of extremals in the form 
 

 
0; 0;ii ii ii iih h r r

t l t l
∂ ∂ ∂ ∂

+ = + =
∂ ∂ ∂ ∂

  (4.95) 

 
At the solutions of this equation, the following relation holds true  
 

 [ ] [ ( )] 0i i i ii i it ilE L E h x x x= + ≡� � .  (4.96)  
 

The condition 
2

2 0
i

L
x

∂
≠

∂
 on an extremal determines the regular, not the singular 

extremal’s points.  
For the linear form (4.91a), regarding variables ( , , )t lx x x� � , it’s fulfilled 

2

2 0
i

L
x

∂
=

∂
( , )l t G∀ ∈ , and the obtained extremals are a non regular.  

At these extremals, the differential equations (4.73) turn into the parametrical equations 
for the functions iih  (4.94), (4.95), and (4.96) determined via ( , ) { ( , )}ix t l x t l=  in (4.91a).  

Applying the differential equation with the control processes { ( , )i ix x t l= }, the piece-

wised controls { iv }, and random initial conditions, let us find the control in (4.71) for which 
the solutions of equations (4.91) satisfy to (4.95).  

Using (4.95) as the initial condition for the control synthesis, we get  
 

( )]
t

ti
i ii i il i ill

i

L h x x u xλ
λ

= + +� � ; [ ] 0i iE L = at [ 1].
[ ]

t
t t iit i
i i i l

i i i

ru v
E x

λλ
λ

= = − +
�

   (4.97)  

 
The same way we find  

 
[ 1].

[ ]

l
l l iit i
i i i t

i i i

ru v
E x

λλ
λ

= = − +
�

  (4.98)  

 
From these relations also it follows the representation of the control function 

( , ), 1,2i iv v t l i= = , which corresponds to the control’s form in the initial equations (4.71), 
(4.71a).  
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Let us specialize the above controls, which act both within the controls definition’s 
domain G  and at its border G∂ , for example, a square.  

For these controls, in domain G  might exist a geometrical set of points, where the partial 
derivations of eq. (4.71) get a first kind of the discontinues. For a simplicity, let us consider a 
monotonous smooth curve 5γ  (Fig.4.1) as such a set.  

Generally, such a curve does not cross the above border, and we can prolong this curve 
by two auxiliary curves 2 4,γ γ  up to G∂  in such a way that the obtained 2 4 5γ γ γ∪ ∪ will be 
a monotonous curve (at an arbitrary the method of the continuation).  

As a result of these formations, the initial of two bound domain split on the two single 
subdomains 1 2,G G  with the borders 1 2,G G∂ ∂ accordingly (Fig.4.1).  

Because the curve 5γ  is priory unknown, the above subdomains are variable.  
 

 

Figure 4.1. An illustration of the control’s domain and the auxiliary curves. 

 
The following relations formalize the considered domain’s and subdomains’ descriptions: 
 

 5G G G γ= ∂∪ ∪ ; 1 2 2 4G G G γ γ= ∪ ∪ ∪ ; 1 3 6 7G γ γ γ γ∂ = ∪ ∪ ∪ ;  

 1 1 1G G G= ∂∪ ; 1 1 31 2 5 4 61G γ γ γ γ γ γ∂ = ∪ ∪ ∪ ∪ ∪ 2 2 2G G G= ∂∪ ;  (4.99) 

 
: o

o k

t t s const
l l l

γ
= = =⎧

⎨ ≤ ≤⎩
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where at       212
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( , ) 0
:

o

F l t
t

l l

=⎧
⎨

=⎩
,  
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the equations ( , ) 0, 2,4mF l t m= = describe any curve in the domains considered below for  
 

 
32 12
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l l const
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6
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k

F l t
t

l l

=⎧
⎨

=⎩
 ; and for 62 12

6

: ;k

k

l l const

t t t
γ

= =⎧⎪
⎨

≤ ≤⎪⎩
7 : .k

o k

t t const

l l l
γ

= =⎧⎪
⎨

≤ ≤⎪⎩
  (4.100a) 

 
The border domain has the form  

 

1 2 2 2 5 4 2 5 4 int int[( ) ( )]G G G Gγ γ γ γ γ γ+ + + − − − + −Γ = ∂ ∂ = ∂ = ∂ Γ Γ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ,  
  (4.100b) 

 
where intΓ is an internal part of domain Γ , + and – mean the particular curve’s movement 
along the above domains accordingly.  

Let us implement the border condition 2 0SδΔ =  using Green’s form [35] and the above 
relations:  

 

 

1 2
1 2 1 2 2 1

1 2

( )
G

P P dl dl Pdl P dl
l l Γ

∂ ∂
+ = − +

∂ ∂∫∫ ∫  , (4.101) 

 

1 1 2 2

2 2 2 2 2 2

1 1 2 2
1 1 1 1 1 1
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x xL L L LP x l L l P x l L l
x x l x x l

δ δ δ δ δ δ
= = = = = =

∂ ∂∂ ∂ ∂ ∂
= − + = − +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑ ∑ ∑� � � �
 
Applying relations (4.101) to functional (4.91), (4.91a), we come to 

 

 

2 2 2 2

2 1 2 1 2 2 1
1 1 1 1

[ ( )]
k k

j
i j k

k i i jk il il jG

xL L LS x l L l dl dl Pdl P dl
l x x l

δ δ δ δ
= = = = Γ

∂∂ ∂ ∂
Δ = − + = − +

∂ ∂ ∂ ∂∑ ∑ ∑ ∑∫∫ ∫� �  . 

 
Because of the ixδ , ilδ  arbitrariness we get  
 

                                         
1 2 2 1 0

G

Pdl P dl
∂

− + =∫  ,                                                    (4.102a)

  

                                  int int

1 2 2 1 0Pdl P dl
+ −Γ Γ

− + =∫
∪

 .                                            (4.102b) 

 
The first of them (4.102a) leads to the natural border conditions at the external border 

G∂ , for example, in the following forms  
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∂�
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it

L
x =

∂
=

∂�
, ( , ) 0ii kh t l⇒ = , 0ix ≠ ; 

| 0
ol l

il

L
x =

∂
=

∂�
, ( , ) 0ii oh l t⇒ = , 0ix ≠ ; | 0t s

it

L
x =

∂
=

∂�
, ( , ) 0ii kh l t⇒ = , 0ix ≠ . (4.103) 

 
The second relation (4.102b) leads to an analogy of the Erdman-Weierstrass’ conditions 

[24] at the curve 5γ .  

Indeed. Because 2γ , 4γ are the arbitrary (being the virtual) curves, at crossing them, the 
partial derivations are continuous, and the integral, taken along the opposite directions, is 
equal to zero.  

From that for (4.102b) is fulfilled  
 

 int int 5 5

1 2 2 1 1 2 2 1Pdl P dl Pdl P dl
γ γ+ − + −Γ Γ

− + = − +∫ ∫
∪ ∪

.   (4.104) 

 
Suppose, the curve 5γ can be defined by equation *( )l l t= .  
Then integral (4.104), written in a single (arbitrary) direction, acquires the forms 
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                                                                                                                                   (4.105)
 
     

Writing the integral in the opposite directions at the arbitrariness of ixδ , ilδ , we get the 

system of four equations along 5γ : 
 

 
* *

ii i ii i ii i ii ih x l h x h x l h x− − + +− = −� � , ii iih h− += , 1, 2i = , * 1l =� , ( 1, 2i = ),  (4.105a)  
 

2 2
* *

11 22 11 22
1 1

( ) ( )i i
ii i ii i

i i

x xx y x yL h x l h x h y L h x l h x h y
l l l l l l

− +− − + +
− − − − + + + +

= =

∂ ∂∂ ∂ ∂ ∂
− + + = − + +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑� �  ,  

  (4.105b) 
 where the indexes +and– indicate the above functions for the domains 1G  and 2G  

accordingly.  
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Substituting (4.105a) into (4.105b) we come to the system of equalities, which determine 
a jump of the Lagrangian on 5γ : 

  

* *
11 11 22 22( )( ) ( )( ),x x y yL L x h l h y h l h

l l l l

− + − +
− + − − − −∂ ∂ ∂ ∂

− = − − + − −
∂ ∂ ∂ ∂

� �  

* * *
11 11 22 22( ) ( )( ) ( )( ).t t t tL L l x h l h x x y h l h y y− + − − + − − − + −− = − − + − −� � �� � � �    (4.106) 

 
The obtained relations are equivalent along the curves 
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x x y y l
x x y y
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;                                                  (4.106a) 

 
at the corresponding Jakobians’ forms  

 

 

( , ) ( , ) 0
( , ) ( , )

D x y D x y
D t l D t l

+ −

+ −= = .  (4.106b). 

 
According to (4.106a) the controls at the singular curve become bound: 
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Let us assume that along the singular curve the conditional probability density is defined 
by a δ -distribution.  

Then, according to the features of δ -function, we get the equivalent relations:  
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x l
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� �
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r l
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,  

and can write the relation for the Lagrangian’s jump in the form  
 

* *
11 22(1 )( ) (1 )( )l l l lL xh l x x yh l y y− − + − − +Δ = + − + + −� �� � � �  

 11 22(1 )( ) (1 )( )t t
l l l l

l l

x yxh x x yh y y
x y

− −
− − + − − +

− −= − − + + −
� �� � � �
� �

,
  

(4.107a) 

at , 1,2.ii iih h i− += =  
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Because on 5γ  holds true  
 

                       [ ]i i ix E x= , [ ]it i itx E x− −=� � , [ ]il ilx E x=� � ,  
 

the following equality is correct: 
 

 

1 111 22
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11 22
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r rL r r r r r r
r r
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.  (4.108) 

 
According to (4.106a) and (4.108) we get 
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l l
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  (4.108a)
  

 

 

1 111
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l l l l
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rL r r r r r r
r
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.  (4.108b).  

 
Now we can determine the functional’s value at the extremals of equation (4.71): 
  

( )t l t l
G G

S Ldldt xX xX yY yY dldtΔ = = − + + +∫∫ ∫∫ � � � �  

5

11 22 11 22 int( ) ( ) ,
G

xh x yh y dl xh x yh y dt S S
γ

Γ
∂

+ − − + − = Δ + Δ∫∫
∪

 (4.109) 

 
where , , ,t l t lX X Y Y� � � �

 are the corresponding covariant functions, intSΔ  is an internal 

functional’s increment, SΓΔ  is a border’s increment, and the Lagrangian is represented by 
the sum  

 

1 2 11 11 22 22t l t l t l t lL L L x h x x h x y h y y h y x X x X y Y y Y= + = + + + = + + +� � � � � � � �  

 
( ) ( ) .t t l lxX yY xX yY xX yY xX yY

t t
∂ ∂

= + + + − − − −
∂ ∂

� � � �   

 
According to (4.96) we have  
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and  
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where 1 2{ , }E E E=
G

is a symbol of mathematical expectation acting additively on the 
Lagrangian;  
and 
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 (4.109b) 

At * 1l =�  we get 0SΓΔ = , which brings to a total entropy’s increment in the optimal 

process equals to zero, where * 1l =�  corresponds, in particular, the fulfillment of 
,t l t lx x y y= =� � � � , i.e. appearance (according to (4.77b,c) a singular curve by the equalization 

of the above phase speeds.  

At * 1l >� the entropy’s increment is positive, at * 1l <� the increment is negative  
Let us build at an ε -locality of the singular curve a domain  
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Then the relations (4.97), (4.98) in 1G� and 2G�  holds true, specifically in the forms: 
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where the lover indexes 1,2, at the above , , ,t l

iit iil i ir r u u� �  , indicate that these functions belong 

to the 1G�  and 2G�  accordingly.  
Using these relations we find the control’s jumps: 

 

2 1
1 2 1 2

( )( ) [ 1]
[ ]

t
t t t t ii l ii l i
i i i i i i l

i i i

r ru u u v v
E x

λλ
λ

−
Δ = − = − = +

� �
,  (4.111a) 

 

 

2 1
1 2 1 2

( )( ) [ 1]
[ ]

l
l l l l ii t ii t i
i i i i i i t

i i i

r ru u u v v
E x

λλ
λ

−
Δ = − = − = +

� �
 .   (4.111b) 



Vladimir S. Lerner 136 

Therefore, in a general case, there exists the jumps for both the controls and Lagrangian 
(according to (4.108b)) at crossing the singular curve.  

These jumps can be found if the derivatives of the corresponding correlation functions 
are known.  

The conditions ,iit iil iit iilr r r r− − + += =� � � �  in particular, for the concentrated systems (at 0iilr =� ) 
acquire the forms  

 

 [ ( ) ( )]T
iitr E x x oτ τ− = +� � , 1 1[ ( ) ( )]T

iitr E x x oτ τ+ = +� � , 1 oτ τ= + ;  (4.112) 

 iit iitr r− +=� � , [ ( ) ( )] [ ( ) ( )] 0i i i i i iE x x o E x x oτ τ τ τ+ + + =� � , 
at 

                          ( ) , ( ) ;x x x o x x xτ τ− + − += + = = .                                    (4.112a) 
 

From that we have  

         ( ) ( )x x oτ τ= +   
and  

( ) ( )x x oτ τ= − +� � .  

Thus, at crossing the singular curve, or a singular point, ( )x τ�  changes the sign.  
 

If  
 ( ) ( )( ( ) ( ))x x vτ λ τ τ τ= +� , ( ) ( )( ( ) ( ))x o x vτ λ τ τ τ+ = +�   

 

then the control, at crossing the singularity, is found from relation  
 

( )( ( ) ( )) ( )( ( ) ( ))x v x vλ τ τ τ λ τ τ τ+ = − + ,  
or  

( ) 2 ( )v xτ τ= −   
and  

1 1( ) 2 ( )v xτ τ= − ,  
 

which determines the needle control (secs.1.3.4, 1.3.5):  
 
       1( ) ( ) ( )v v vτ τ δ τ− = − . 
 
The control’s strategy that solves the natural border problem consists of: 

 
-the movement along an extremal (4.95) by applying controls (4.97),(4.98) (being the 

functions of the initial distribution (4.71a)) that proceed up to the moment of time, when the 
conditions (4.86a) are fulfilled and the controls become bound by (4.107);  

-the movement along a singular curve (at the control’s jump) until the condition (4.106a) 
is violated; 

-the movement’s continuation along the above extremals with the controls (4.97), (4.98).  
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The following statement summarizes the results:  
The natural border problem’s solutions for the path functional with the model 

(4.71),(4.71a) are both the extremal (4.95) and the singular curve of this equation, for which 
(4.96) holds true, and the controls are bound according to (4.110a,b).  

Along the singular curve (and/or the singular points) the initial model’s dimension is 
decreased and the state’s cooperation takes place.  

All these results include from the solution of variation problem for the information path 
functional (ch.1.3). 

According to the initial VP, the IPF’s extremals hold the principle of stationary action. 
This allows us to find the invariant conditions, as the model field’s functions, being the 
analogies of the information form of conservations laws.  

Following to the Noether theorem [24] and the results ch.1.4.2 we come to  
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Let us have a four dimensional volume Ω  limited by a surface 4Σ : 
 

 
4

1 2Σ = Σ ∪ Σ ∪ Σ ; 3
4 4( ) ( )l a l bΣ = Σ ∩ > ∩ < ; 

 

 1 1 2 3 4 2 1 2 3 4( ( , , ) 0) ( ); ( ( , , ) 0) ( )F l l l l a F l l l l bΣ = ≤ ∩ = Σ = ≤ ∩ = ,  (4.114) 
 

where a,b are the auxiliary fixed moments of time; 3Σ  is a non self-crossing surface defined 
by equation  

                       1 2 3( , , ) 0;F l l l =   
4Σ is a four dimensional cylindrical surface limited by two parallel planes 

 
                                          4l a= , 4l b= ,  
where the cylinder’s vertical line is in parallel to the time axis, and the basis is a geometrical 
space of points 3Σ . 
 

After integrating (4.114) by ,Ω applying the Ostrogradsky-Gauss theorem [23], we get  
 

 4

4 4( , ) 0divQdv Q n dσ+

Ω Σ

= =∫ ∫
G G G

 ,   (4.115) 

 
where n+G is a positive oriented external normal to the surface 4Σ ; 4dσ is an infinite small 
element of 4Σ . 

Integral (4.115) is represented by the sum of the following integrals, taken by the 
cylinder’s two bottom parts 1Σ , 2Σ  and its sidelong part Σ of 4Σ : 
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where 1 (0,0,0,1)n+ =

G
is a positive oriented external normal to the bottom part 2Σ of the 

surface 4Σ ; 
 
 4l t= ; 1 1(0,0,0, 1)n n− += − = −

G G
 

 is a negative (internal) normal to the bottom part 1Σ of 4Σ ;  
 

2 21 22 23( , , , 0)n n n n+ + + +=
G G G G

 
 is a positive external normal to Σ ; 
 

3
1 2 3 4( ( , , ) 0) ( 0)G F l l l l= ≤ ∩ =  

 is a part of space being a projection of ( 1Σ , 2Σ ) on a hyper plane 4 0l = ; 
3dv is an infinite small element of volume 3G ;  

dσ , 1dσ , 2dσ  are the infinite small elements of the surfaces Σ , 1Σ , 2Σ accordingly.  
Let us implement (4.116) at the typical physical assumptions, supposing that both 

function 
  

2 2 2 2
1 2 3 1 1 1( , , ) oF l l l l l l R= + + −   

and the field are decreasing rapidly at approaching the infinity.  
This means that at oR → ∞  and 2~ od Rσ , the integral by Σ  in (4.116) can be 

excluded.  
Then (4.116) according to (4.115) acquires the form 
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 ,                                                                (4.117) 

 
where both integrals are taken by an infinite domain.  

Because of the auxiliary a and b, the equality (4.117) means the preservation in time the 
values  

 

 

4
3 3

1 1
( , ) [ ( ) ]

( / )

n
i

m
i mi k m

xLQ n dv y L dv
x l l

+

= =

∂∂
= − +

∂ ∂ ∂ ∂∑ ∑∫ ∫
G G

, 4,m
m

ly l t
t

∂
= =

∂
.  (4.118) 

 



The Information Space Distributed Macromodels… 139

Applying the Lagrange-Hamilton equations we get invariant  
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which at 
 

 , 1/ 2T TH L x X L x X− = − =� �  (ch.1.3)  
 
leads to the invariant 
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preserving the volume’s Hamiltonian of the information path functional. 

 
 





 
 
 
 
 
 

Chapter 1.5 
 
 
 

THE COOPERATIVE INFORMATION MACROMODELS 
AND INFORMATION NETWORK 

 
 

1.5.1. Introduction 

This chapter focuses on forming the IPF cooperative information macromodels and 
information networks. 

In section 5.1 we synthesize the cooperative distributed model, built during the optimal 
time-spaced movement directed toward the equalization and collectivization of the model 
operators' eigenvectors, by applying the PDE models in the moving space coordinates' 
system. The optimal time-space model movement with the discrete optimal control, 
implementing the variation principle, generates the states' consolidation as an auxiliary 
mechanism at this movement. Both the invariant space transformation and the PDE 
cooperative process follow from the VP.  

The chapter examples provide a detailed procedure for building of the undistinguished 
collective states and the cooperative models. In the process of the eigenvectors' 
collectivization, the chaotic bifurcations and resonance arise. This process is associated with 
an essential irreversibility, breaking determinism and the time's symmetry.  

We also consider the transformation of imaginary into real information with transforming 
the imaginary eigenvectors into the real eigenvectors at the discrete points. It is shown that a 
time-space metric is a result of the above transformation of information.  

The structural symmetry follows from the VP, and the consolidation leads to a dynamic 
asymmetry of the forming macrostructures.  

In section 5.2. we consider the consolidation and aggregation of the model’s processes in 
an information netwok (IN). The IN aggregations of the cooperative macroparameters are 
formed during the joint process of optimal control, identification, and consolidation.  

The solution is achieved by applying the invariant transformation preserving the PDE 
(built in an immobile coordinate system) along a family of the moving space coordinate.  

This allows the equalization and consolidation for some of the space state vectors at a 
certain mobile coordinate system, reducing a number of the independent state’s vectors, with 
the following aggregation of the consolidated macrostates into the IN.  
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Sections 5.3, 5.4 introduce both the IN’s dynamic and geometrical structures, considering 
the optimal space-time distributed model with the consolidated states, defined by the complex 
spectrum of the model's eigenvectors. The IN model brings a concurrent solution to the 
consolidation problem of modeling the object’s hierarchy with a sequentially reduced number 
of independent variables. The optimal cooperative strategy is accomplished by the 
consolidation of the eigenvalues in threes, which determines a triplet, or in, a particular, a 
doublet (with a subsequent joining it to a third eigenvalue), as an elementary optimal dynamic 
collective structure. In the ranged sequence of the optimal model's processes, each previous 
process can sequentially control each following process, performing the optimal control 
functions, which enable generating the superimposing phenomena and cooperative processes.  

The found IN geometrical structure is determined by the VP's dynamical and geometrical 
invariants. The optimal time-space trajectory represents a spiral, located on conic surfaces. 
The geometrical structures, formed by the cones' consolidations into the enclosed triplets, 
compose a hierarchy of the space distributed information network.  

The obtained relations define the procedure for the restoration of a specific IN and its 
node's formation, using the above identified invariants and the three given model's basic 
values (dimension n , parameters of structural uncertainty γ  and of space curvature k ). The 
procedure's details and the computer applications to various objects in technology, biology, 
and economy are considered in part 2.  

Here we extend the results of distributed modeling [53-55, 59, 60, 69], and ch.1.4 on a 
comprehensive math solution the problem of consolidation, combined with optimal control's 
synthesis and process' identification.  

1.5.2. The Time-Space Movement Toward the Macromodel's 
Cooperation 

Let us have 3n  dimensional space distributed macromodel  
 

 

∂x

∂t
= Ax, x = {xi(l 

i)}i =1
i =n , l i = (l1

i ,l2
i ,l3

i ) , ( )ikA a= , i, k = 1,... ,n ,   (5.1)  

 
whose each of three-dimensional space coordinates vector l i  is built on the local coordinate 

system, created by the corresponding eigenvector iX  of the matrix A .  
The considered cooperative process includes the equalization of the matrix A  

eigenvalues, which requires the matrix diagonalization.  
During the cooperative optimal movement, the equation (5.1) will be transformed into 

relations 
 

 
1

exp( ), ( )
2 exp( )

v v nio io
i

io

tz z
t

λ λ
λ == Λ Λ = −

−
� , T −1A(0)T = Λ (0) ,  

 

 1(0) ( )n
io iλ =Λ = ,T−1A(τ )T = Λ(τ ) ,  (5.2a) 
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 z(τ) = Tx(τ) , ( )n
i i otτ == , −T −1 Av (τ )T = Λ(τ ) = −Λv(τ) ,T = A   (5.2b) 

 

 
1 1(0)exp( (0) )(2 exp( (0) )) ( )vT A A E A Tτ τ τ− −− − = Λ ,  (5.2c) 

 
where T  is a transformation, reducing the matrix Av(τ)  to diagonal form Λv(τ)  by the 

considered in ch.14.2 space transformation A of the matrix A  eigenvectors' coordinate 
system with the aid of applied control v = v(τ ) .  

At each discrete moment (DP) ( )n
i i otτ == , the applied control transforms a complex 

eigenvalue of the matrix Λv(τ) : ( ) ( ) ( )i i i i i it o t o j t oλ α β− = − ± −  into a real eigenvalue 
λ i(ti ) → α i(ti),β i (ti ) = 0 .  

For each fixed ti , this operation changes an initial Λv(ti −1) , bringing a new set of the 

eigenvectors for the eigenvalues Λv( ti) and  

1 1

2 1
1

1

( )
( )

( )
...

( )

v

n

t o
t o

t o

t o

λ
λ

λ

−⎛ ⎞
⎜ ⎟−⎜ ⎟Λ − =
⎜ ⎟
⎜ ⎟

−⎝ ⎠

 with the eigenvectors X (t1 − o) .  

At the moment t1  this matrix acquires the form 

1 1

2 1
1

1

( )
( )

( )
...

( )

v

n

t
t

t

t

α
λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟Λ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

, which corresponds to the 

new eigenvectors X (t1) .  
Transformation T (t1 − o,t1 ) , applied to Λv(t1 − o) , is able to create both Λv( t1 )  and 
X (t1) . During the time-interval (t1,t2 − o) , the transformation T(t1,t2 − o) , applied to 

Λv( t1 ) , is able to produce 

1 2

2 2
2

2

( )
( )

( )
...

( )

v

n

t o
t o

t o

t o

α
λ

λ

−⎛ ⎞
⎜ ⎟−⎜ ⎟Λ − =
⎜ ⎟
⎜ ⎟

−⎝ ⎠

 with eigenvector X (t2 − o) ,  

where the equation for  
1

1 2 1 1 1 1 2 1 1 1 2 1( ) ( ) exp ( )(( ) )[2 exp(( ( )(( ) )]t o t t t o t t t o tα α α α −− = − − − − − −  
follows from (5.2c). At the moment t2 , this matrix acquires the form 
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1 2

2 2
2

2

( )
( )

( )
...

( )

v

n

t
t

t

t

α
α

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟Λ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

 with the eigenvector X (t2 )  and α2 (t2 ) = Reλ 2(t2 ) . 

During the next time-interval, transformation T (t2 , t3 − o)  generates 

1 3

2 3

3 3 3

3

( )
( )

( ) ( )
...

( )

v

n

t o
t o

t o t o

t o

α
α
λ

λ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟Λ − = −
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 with X (t3 − o)  and the eigenvalues satisfying (5.2b,c).  

At the moment t3 , using T (t3 − o, t3 ) , we get 

1 3

2 3

3 3 3

3

( )
( )

( ) ( )
...

( )

v

n

t
t

t t

t

α
α
α

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Λ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 with X (t3 )  and the 

eigenvalues satisfying (5.2a,b).  
The DP moments are chosen such a way that the equalization of each triple real 

eigenvalues' occurs at the moment (t3 + o ) :  
 

 α1(t3 + o) = α 2(t3 + o) = α 3(t3 + o)  (5.3)  
with joining all of them into a single common α3 (t3 + o) .  

The correspondent matrix 

3 3

4 3
3

3

( )
( )

( )
...

( )

v

n

t o
t o

t o

t o

α
λ

λ

+⎛ ⎞
⎜ ⎟+⎜ ⎟Λ + =
⎜ ⎟
⎜ ⎟

+⎝ ⎠

 has the (n − 2) dimensions comparing 

with the n -dimensional matrixes at the previous time-intervals.  
Creation of this matrix and the associated (n − 2) -dimensional eigenvector X (t3 + o)  

requires to apply the transformation T (t3 , t3 + o) .  
To continue this procedure, the analogous transformations should be applied at the 

subsequent time-intervals T (t3 + o, t4 − o) , T(t4 − o,t4 ) , T (t4, t5 − o ) ,T (t5 − o, t5)  until 
the transformation T (t5 , t5 + o)  joins the second eigenvalues' triple with the first triple into a 
common triplet, which cooperates all previous eigenvalues into a single unit.  

We suppose that the considered sequence of transformations T(τ ) , applied to the matrix 
A (τ )  according to the equations (5.2a-c), is performed by the sequential space shifts and 
rotations of a mobile coordinate system built on the matrix eigenvalues.  
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To execute this movement, let us associate the transformation T (τ )  with the matrix of 

rotation A (τ ) , whose increment of angle of rotation ϕ i =ϕ i ( ti ) is defined by the considered 

local transformation at each DP, and use the vector 1,...,
1,2,3( )i i n

j jL L =
== , related to A (τ ) , which 

describes the appropriate shifts of the origin of the local mobile coordinate systems.  
We assume that assigning of the matrix A → T  and the vector L  takes place 

automatically, along with assigning of the space coordinates to each of the eigenvector's three 
dimensional components.  

The identification of A (τ )  and L (τ )  is based on the known T (τ ) .  
The macrovariables, changing according to (5.2a-c), at the moments of the equalization 

(5.3), satisfy the equation 

 

31 2
3 3 3

1 2 3

( ) ( ) ( )zz zt o t o t o
z z z

+ = + = +
�� �

.  (5.4)  

The condition of an indistinguishability of the corresponding macrovariables:  
 

 ˆ z 1(t3 + o + δ ) = ˆ z 2 (t3 + o + δ ) = ˆ z 3 (t3 + o + δ )   (5.5) 

requires applying the transformation ˆ T (δ ) = ˆ T (ψ5 )  in addition to T (t5 , t5 + o) =T (ϕ5 ), 
with the increment of the angle ψ 5 , determined by the fulfillment of (5.5), which is 
automatically joint to (5.4) at the δ -moment of the applied control.  
The transformation ˆ T (ψ k )  takes place at each DP tk , k = 3,5,7,...   

The operators T , ˆ T  are connected with the method of choosing A (τ ) , L (τ ) , satisfying to 
the path functional invariant’s condition during the optimal spatial movement. The local 
rotations and shifts of the moving coordinate system are defined by the considered time-
interval's transformations. In a particular, the matrix’s A (τ )  space parameter ϕ i  is 
connected to the dynamic parameters (ti ,c i ) by the formula following from (4.36),(4.37):  

 
  A ( ti , c i )= A (0)exp(tic i)  at A (ϕ i )= A ( ti , c i ) ,  (5.6) 

where c i  is the vector of a space speed. Because at the initial moment t =0, the 

transformation A (0)=I, we can find the elements of matrix c i  at the known ti  and ϕ i  using 
the relations (4.38)-(4.41) and (5.3)-(5.6). 

Choosing the three-dimensional matrix A  of rotation  
 

 A (ϕ i ) =

cos ,sin ,0
sin ,cos ,0

0,0, 1

i i

i i

ϕ ϕ
ϕ ϕ

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟±⎝ ⎠

 ,  (5.7)  

for the matrix of transformation T , we can employ the results [61], based on a redefinition of 
quadratic form, given in  

Rn : Φ = gij
i , j =1

n

∑ xix j  into a subspace Rk :Φ k = μ i
i =1

k

∑ yi
2  of a lesser dimension k < n .  
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The orthogonal and normal canonical basis in kR  is determined by the corresponding 
egenvectors (μ 1,μ 2 ,. .,μ k ) , whose eigenvalues are connected with the corresponding ranged 

values of the quadratic form with ( 1| |)n
i iλ = : λ 1 ≥ λ 2 ≥. ..λ k .. .≥ λ n , defined on Rn . It is 

proven that the maximal value μ1  of quadratic form Φk , defined on the sphere Rk  of radius 
one, is bigger or equals to λ n− k +1 , leading to the inequalities  

 

 λ 1 ≥ μ 1 ≥ λ n− k +1 , λ 2 ≥ μ 2 ≥ λ n− k + 2 , λ 3 ≥ μ 3 ≥ λ n− k + 3 ,...,λ k ≥ μ k ≥ λ n .  (5.8) 
 
In particular, the method defines the three-dimensional canonical basis of matrix A , 

corresponding to (μ 1,μ 2 ,μ 3 )  by the given eigenvalues of matrix T . The matrix A  
eigenvalues should be ranged the same way. Their decreasing values determine the sequence 
of the increasing time-intervals, defined by the macromodel’s invariants (sec.1.3.5).  

Let us show how to build the orthogonal matrix of rotation  
 

  A (ϕ i )

1

2

3

,0,0cos sin ,0,0 exp( ),0,0
0,cos sin ,0 0,exp( ),0 0, ,0
0,0,1 0,0,1 0,0,

ii i i

i i i i

i

aj j
j j a

a

ϕ ϕ ϕ
ϕ ϕ ϕ

⎛ ⎞+⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= − = − = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (5.9)  

 
using the known (μ 1,μ 2 ,μ 3 ) . The condition det|ai

1ai
2ai

3| =1  is satisfied by the fulfillment 
of the following equations for the corresponding coefficients:  

 

 ai
1 = (μ 1 )2 / μ 2μ 3 , ai

2 = (μ 2 )2 / μ 1μ 3 , ai
3 = (μ 3 )2 / μ 1μ 2 .  (5.10)  

 
The angle of rotation around the direction of the eigenvector, associated with the 

eigenvalue +1 of A (ϕ i ), equals ϕ i = arccos(ai
1 + ai

2 + ai
3 ).  

Macroequation (5.1) acquires a most simple form in the direction of the main normal to 
the plane of symmetry of the second order's surface  

 

 
Φ l

3 = a ij
l

i =1

3

∑ li lj ,  (5.11) 

 
whose orth-vector coincides with the eigenvector of the matrix A .  

The related quadratic form: Φn = aij
i =1

n

∑ xix j  has a diagonal form  

 

 
Φn = λi zi

2

i =1

n

∑  at ( )ikA a= =(λ i ) , i, k = 1,... ,n .  
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Let us bring each of the matrices’ A  n -eigenvectors (with the corresponding n  
directional main normals) to the n -quadratic forms (5.11), building the n  vectors' space 
coordinates l i

N  for each of the spatial increments of the macrocoordinate zi( l i
N )  i =1,...,n .  

Then the differential equation for the time-space movement splits on the n  differential 
equations of the first order for each zi( l i

N ) , being independent (within each discrete interval 
tk ,k = 3,5,7, .. . ):  

 

  
∂zi

∂ t
= ci

∂zi

∂l i
N , 

∂zi

∂ t
= λ izi , 

∂zi

∂ l i
N = grad

l i
N

zi ,  (5.12)  

 
where ci  is a local speed of rotation for each normal l i

N  in the process of the matrix A  

diagonalization.  

At the moment (tk + o)  of the consolidation of each three eigenvectors, the three orth-
vectors of the normals form a common three-dimensional coordinate system for the joint 
triple. The rotations and shifts of the local coordinate systems constitute a part of the optimal 
time-space cooperative movement directed toward the equalization of the n  macromodel's 
eigenvalues. This process is governed by applying the optimal control, which initiates also 
the movement of the space coordinate systems, assigned to the matrix eigenvectors.  

Under the applying control, the matrix eigenvalues, defined on the eigenvectors' space 
coordinate systems, move toward their cooperation in a joint coordinate system, while both 
matrices A , A  are diagonalized.  

Thus, the movement toward coinciding of the eigenvectors' space coordinate systems is 
also a part of macromodel's cooperative process. By the end of this process, the sequential 
equalization of the matrix eigenvalues completes at the discrete moment 1( )nt o− + .  

At every tk  vicinity, each three coinciding eigenvectors acquire a unique common three-
dimensional coordinate system, whose dimension changes to one at (tk + o)  for a joint 
common eigenvector. This procedure sequentially involves each subsequent triple's 
eigenvalues including such one that had been cooperated before.  

By the end of optimal time-space optimal movement, the matrix A gets the diagonalized 
form and the equal eigenvalues.  

The considered transformations are summarized in the relation 
 

 AA = Λ,ΛU vU δ = α (l ) ,   (5.13) 
 
where ( )iλΛ = , i =1,..., n  is the matrix of eigenvalues λ i , Uv  is the transformation, 

corresponding to the applied optimal control v = v(ti ) , which also transforms the complex 

eigenvalues λ i  into the real eigenvalues α i (ti ) , Uδ  is the impulse δ (ti + o ) -control, 

which joins the equal real eigenvalues ( )iα  and changes both the dynamic and space model's 

dimensions at the moment (tk + o + δ ) .  
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After applying (n -1)-th transformation by the end of (tn−1 + o + δ )  interval, the matrix A  

acquires a single real α  eigenvector with the assigned space vector l .  
If each of the initial eigenvectors, before joining in the consolidation process, has a three-

dimensional space, defined in each local moving coordinate systems, then the final space 
dimension of the eigenvector α ( l )  will also be equal to three at (tn−1) .  

During the process of the every triple's sequential diagonalization (before joining by the 
δ -control), the first triplet could have an intermediate space dimension equals 9, or 6, and for 
each following triplet the intermediate dimensions could be 12, 9, 6.  

Actual forming of the subsequent triplets is accomplished by the consolidation of a 
previous created triplet with a following doublet. If the local eigenvectors have a single initial 
dimension of spatial coordinates, then by joining a following doublet, the intermediate spatial 
dimension still holds three (before the consolidation of its all three equal eigenvectors).  

The final eigenvector also has the three dimensional space coordinates before its 
complete consolidation in a single dimension.  

And a final three dimensional space is created as a result of the transformation of 
imaginary information with forming the real eigenvalue (5.13) and starting a real time.  

Physical meaning of the considered δ ( ti + o) = v(ti ) − v(o) -control's action is the 
following: 

 

• At the moment (ti )of the equalization of the pair (i, k)  eigenvalues, related to 

frequencies ( ) ( )i i k it tω ω= , (when a local equilibrium takes place and the pair 
correlation arises), the control v(ti )  disolves the correlation, changes the sign of the 
eigenvalues; this leads to a local instability and initiates the attraction of the pair's 
trajectories in the process of couple's resonance and chaotic bifurcations [42-45], 
which generate the diffusion and entropy.  

• At the moment (ti + o )of the resonance, the control − v(o )  is applied, which finally 
binds the frequencies (that belong to different macrotrajectory's dimensions), 
stabilizing the cooperative bifurcations at the negative sign of the joint eigenvalue. 
The triplet is formed by a sequential consolidation of two eigenvalues (for example, 
dimensions m-1, m) at each (tk + o)  with ajoining to them to a third eigenvalue 
(dimension m-2) that had been cooperated before. The sequence of the above 
dissipative resonances leads to a finale resonance, which joins all initial eigenvalues 
into a common single dimensional dynamic and space optimal movements.  

 
These cooperative actions model the macroprocess’ superimposition, revealing its 

phenomena and singularities at the discrete moments (DP) of applying controls. The 
bifurcation's singularities at the DP's locality reflect the instabilities at the matrix renovation. 
The process is associated with an essential irreversibility, breaking the determinism (within 
interval (ti −1 + o, ti ) ),and the time's symmetry, and is ended with a local stability.  

 
Example 5.1. Let us illustrate the above procedure considering the time-space dynamics 

of two-dimensional matrix 11 12

21 22

,
,

v a a
A

a a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 for the controlled system (5.12).  
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Using the matrix eigenvalues λ1
v , λ2

v  and the matrix eigenvectors 
x 1

v = (x 1
1, x 1

2 ), x 2
v = (x 2

1,x 2
2 ) , determined by the equations for their components:  

 

 (a11 − λ1
v )x 1

1 +a12x 2
1 = 0 , a21x 1

2 + (a22 − λ2
v )x 2

2 = 0 ,  (5.14a) 
 
at the fixed x 1

2 = x 2
1 =1 , we get the solutions 

 
  x 1

1 = −a12 (a11 − λ1
v)−1 , x 2

2 =− a21 (a22 − λ 2
v )−1. 

 
With respect to the basis (0e1e2 ), the eigenvectors have a view: 
 

 x 1
1 = −a12 (a11 − λ1

v)−1 e1+e2 , x 2
2 =e1 − a21 (a22 − λ 2

v )−1 e2    (5.14b) 
 
       and acquire the lengths: 

 

 | x 1
v | ={1 + [a12(a11 − λ1

v )−1]2}1/ 2 , |x 2
v|= 1 2 1/ 2

21 22 2{1 [ ( ) ] }va a λ −+ − .  (5.14c) 
 
To find the orths (e1

' ,e2
' )  for the coordinate system, built on the first x 1

v  and the second 
x 2

v  eigenvectors, we normalize them and get the orths  
 
e1

' =(a22 − λ 2
v ){a21

2 + [(a22 − λ2
v )2 ]2}−1/ 2 e1 + (−1)a21sign(a22 − λ2

v )  

 
2 2 2 1/2
21 22 2{ [( ) ] }va a λ −× + − e2 ;  (5.15a) 

 
e2

' =(−1)a12sign(a11 − λ1
v) {a12

2 + [(a11 − λ1
v)2 ]2}−1/ 2 e1 + (a11 − λ1

v )  

 
2 2 2 1/2
12 11 1{ [( ) ] }va a λ −× + − e2 .   (5.15b) 

 

The sought matrix' T  elements 11 12

21 22

,
,

T T
T

T T
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, which perform the transformation  

'
1
'
2

e

e

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= 11 12

21 22

,
,

T T
T T

⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2

e
e

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and satisfy to the equations e1
' =T11e1 + T12e2 , 

e2
' =T21e1 + T22 e2 , are determined by the above normalized relations for the orths (e1

' ,e2
' ) .  

At a12 = a21 =a12 , directly from (5.14a) follow the relations: 
 
(a11 − λ1

v )2 (x 1
1)2 + a12

2 (x 2
1 )2 = 0 , (a22 − λ 2

v )2 (x 1
2 )2 − a12

2 (x 2
2 ) = 0 , 

 
(a12

2 + (a11 − λ1
v )2 )(x 1

1)2 = a12
2 , ((a11 − λ1

v )2 + a12
2 )(x 1

2 )2 = (a11 − λ1
v)2 , 

 
(a12

2 + (a22 − λ 2
v )2 )(x 2

1)2 = (a22 − λ2
v )2 , ((a22 − λ 2

v )2 + a12
2 )(x 2

2 )2 = a12
2 ; 
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x 1
1 = ±a12 ((a11 − λ1

v)2 + a12
2 )−1/ 2 , 1 2 2 1/ 2

2 11 1 11 1 12( ) (( ) )v vx a a aλ λ −= − − +∓ , 
 
x 1

2 = ±(a22 − λ 2
v )((a22 − λ2

v )2 + a12
2 )−1/2 , 2 2 2 1/ 2

2 12 22 2 12(( ) )vx a a aλ −= − +∓ .  (5.16) 
 
Let us order the vectors x 1(x 1

1, x 2
1) , x 2(x 1

2, x 2
2 )  such a way that they will be oriented and 

coordinated with the initial basis orths (e1,e2 )  and select the orthogonal matrix T =I at 

                                               1

2

v
v

v

λ

λ

⎛ ⎞
Λ = ⎜ ⎟⎜ ⎟

⎝ ⎠
.  

To satisfy these requirements, we will choose the vector's pairs with the alternating signs 
 ±  and ∓ .  
At T = A , we get two possible transformations:  
 

11 1 122 2 1/ 2
11 1 12

12 11 1

( ),
(( ) )

, ( )

v
v

v

a a
T a a

a a

λ
λ

λ
− ⎛ ⎞−

= − + ⎜ ⎟⎜ ⎟± −⎝ ⎠

∓ ∓
∓

= 11 12

21 22

,
,

T T
T T

⎛ ⎞
⎜ ⎟
⎝ ⎠

=
cos ,sin

sin ,cos
ϕ ϕ

ϕ ϕ
⎛ ⎞
⎜ ⎟−⎝ ⎠

, (5.17a) 

 

22 2 122 2 1/ 2
22 2 12

12 22 2

' ( ),
(( ) )

, ( )

v
v

v

a a
T a a

a a

λ
λ

λ
− ⎛ ⎞−

= − + ⎜ ⎟⎜ ⎟± −⎝ ⎠

∓ ∓
∓

' '
11 12
' '

21 22

, cos ',sin '
sin ',cos ',

T T

T T
ϕ ϕ

ϕ ϕ
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠
. (5.17b) 

 

At the moment of equalization of λ1
v = λ 2

v , T = 'T , the angle 'ϕ ϕ= is found from the 
relations 

 
2 2 1/ 2

11 1 11 1 12cos ( )(( ) )v va a aϕ λ λ −= − − +∓ , 2 2 1/ 2
12 11 1 12sin (( ) )va a aϕ λ −= − +∓ , 

 

 
1

12 11 1( ( ) ) , 1, 0varctg a a k kϕ λ π−= − + = ± .  (5.17c) 
 
If T11 > 0 , then ϕ ∈(− π / 2,π / 2) , k = 0 . If T11 = 0  and T12 > 0 , then 

ϕ = ±π / 2 ;  

if T11 = 0 and 12 0T < , then ϕ = −π / 2 .  

At T11 < 0  and 12 0T > , we obtain 1
12 11 1( ( ) )varctg a aϕ λ π−= − − .  

At T11 < 0  and 12 0T < , we get 1
12 11 1( ( ) )varctg a aϕ λ π−= − + .  

For the given initial matrix 
2,3

(0)
3,10

A ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, by applying of the optimal control, we get 

the following relations for the matrix Av(τ1)  elements at the first DP's moment t1 = τ1 : 
 

  a11(τ1 ) =
2exp(12τ1 ) − 2.2exp(11τ1) − 1.8exp(τ1 )

exp(12τ1) − 2exp(11τ1) − 2exp(τ1 ) + 4
,  
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 a22(τ1 ) =
10exp(12τ1 ) −19.8exp(11τ1) − 0.2 exp(τ1 )

exp(12τ1) − 2exp(11τ1) − 2exp(τ1 ) + 4
, 

 

 a12(τ1) = a21(τ1 ) =
3(exp(12τ1 ) − 2.2exp(11τ1 ) + 0.2exp(τ1 ))

exp(12τ1) − 2 exp(11τ1 ) − 2 exp(τ1) + 4
,  (5.18)  

 
where the moment t =τ1  is found from equation (5.14a).  

For this example, we get τ1 ≅ 0.7884 , whose substitution into the relations for the 
matrix elements leads to a12(τ1) = a21(τ1 )=0, a11(τ1 )=a22(τ1 ) .  

Therefore, the simultaneous diagonalization Av(τ1) and the equalization of the matrix 
elements take place at the DP by applying optimal control.  

The maximal angle of rotation ϕ = ϕ(τ − o)  on a plane is determined by the above 
relations: 

 
1

12 12
1 2 2 1/ 2

12 11 22

( )sin ( ) |
( ( ) ) t o

a sign ao
a a a τϕ τ = −− =

+ −
,  

 
which for our example gives ϕ(τ1 − o) ≈ −3.45 .  

Transformation 
cos ,sinˆ

sin ,cos
T

ψ ψ
ψ ψ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, which reduces (5.14a) toward the 

undistinguished states (5.16), for this example, is determined by the angle ψ = 0.147 π . The 
resulting angle of the rotation is ϕ + ψ ≅ −3  and the corresponding transformation is 

 

 

cos( ),sin( ) 0.998,0.0471ˆ( ) ( )
sin( ),cos( ) 0.0471,0.998

T T T
ϕ ψ ϕ ψ

ϕ ψ
ϕ ψ ϕ ψ
+ +⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟− + + −⎝ ⎠ ⎝ ⎠
.  (5.19) 

 
The initial orth's coordinates e1 = (1, 0),e2 = (0,1) are transformed into 

e1
' (e 1

1,e 2
1),e2

' (e 1
2 ,e 2

2 )  according to relations e1
' = T e1 ,e2

' = T e2  from which follows 
e1

' = (0.998,−0.0471) , e2
' = (0.0471,0.998) .  

The initial vector 1

2

o
o

o

l
L

l

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 gets increment ΔL o = (T − E)L o , which at l1

o =1 , l2
o =1  

equals to ΔL o =
0.451

0.491
⎛ ⎞
⎜ ⎟−⎝ ⎠

.  

This space vector can be used to fix and store the undistinguished macrovariables.  
The rotation speed's vector c  is determined from relation (5.16):  
 

 T = exp(c τ1) , where 
0,

,
c

c
c o

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

.  
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Using formula  
 

exp(c t) =
exp(λ 1

ct)

λ1
c − λ 2

c (c − λ 2
c E) +

exp(λ 2
c t)

λ2
c − λ1

c (c − λ1
cE) ,  

where 1

2

,0

0,

c

c
c

λ

λ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, λ1

c = j , λ 2
c = − j ,  

we get  

1exp( )cτ 1 1 1 1

1 1 1 1

1/ 2[exp( ) exp( )],1/ 2[exp( ) exp( )]
1/ 2[exp( ) exp( )],1/ 2[exp( ) exp( )]

jc jc j jc jc
j jc jc jc jc

τ τ τ τ
τ τ τ τ
+ − − −⎛ ⎞

= ⎜ ⎟− − − − −⎝ ⎠
 

and   

 

1 1

1 1

cos( ),sin( )cos( ),sin( )
sin( ),cos( ) sin( ),cos( )

c c
c c
τ τϕ ψ ϕ ψ

ϕ ψ ϕ ψ τ τ
+ + ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟− + + −⎝ ⎠ ⎝ ⎠
.  (5.20) 

 
We obtain cτ 1 = ϕ + ψ , or for the above τ 1 ≅ 0.7884  and ϕ + ψ ≅ −3  we get  
|c| ≅ 3.805 .  
This example provides a detail methodology for the calculation of the matrices 
 ( ), ( ), ( ),vA T Aτ τ τ the rotation speed's vector c =|C| and the shift 's vector L . 
The analogous examples for three-dimensional matrix are considered in [33, 34].  

 
Example.5.2. Illustration of the cooperative process in PDE.  
To illustrate the cooperative process in PDE let us consider an example of the space 

movement described by the second order differential equation:  
 

 

∂xi

∂t
= −c(l2

∂xi

∂l1

− l1

∂xi

∂l2

) ; 
∂xi

∂t
= −λ ixi , i =1,2 , 

 

  xi = zi , λ i xi =c(l2

∂xi

∂l1
− l1

∂xi

∂l2
) , (5.21) 

 

 l = A (t)l o , 1

2

o
o

o

l
l

l

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, A (t ) = A (0)exp(tc ) , (0)A I= ,  

with the applied starting control vi (s) = −2zi (s)  and a given initial distribution 

z( ls ,s) = z(l1s ,l2s ) , which at l1s = l1 ,l2 s = l2  and for the fixed l1 = ˆ l 1 we write in the form  

 

 
ϕ i = xi(

ˆ l 1,l2,s ) = ki(2 − exp
λ i

c
l2 ) ,λ i = λ i(s) ,λ i(s) = 1 ,  

 

 λ 2 (s) = 11 ,s = 0 ,ki = ki(l1, s) ,k1 = 1, k2 = 11•10−6 . 
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The problem consists of finding the geometric region of the points l2
o = l2

o (l1
o ) , where at 

the moment τ  of the eigenvalues' equalization (4.53), the distributions 
x1(l1

o ,l2
o, τ) = x2(l1

o,l2
o ,τ)  will coincide.  

For this purpose, using the equations (5.21), we determine their solutions at the moment 
s : xi (

ˆ l 1, l1,l2,s) , i =1,2  first, and then, we find their solutions at the moment τ .  
Getting the solutions, we come to the relations 
 

 

dl1
l2

= −
dl2
l1

=
c

λ i

dxi

xi

, ψ1 = l1
2 + l2

2 , ψ 2 =
l1
l2

+
c

λ i

ln xi , ˆ ψ 1 = ˆ l 1
2 + l2

2 ,  

 
ˆ ψ 2 =

ˆ l 1
l2

+
c

λ i

ln xi , l2 = ±( ˆ ψ 1
2 − l1

2 )1/ 2 ; xi = exp(
λi

c
( ˆ ψ 2 −

ˆ l 1
l2

)) ,  

 
xi = exp(

λi

c
( ˆ ψ 2 − + ˆ l 1 ( ˆ ψ 1

2 − l1
2 )−1/ 2 )) ,  

 

2 1/ 2 2 2 2 1/ 21
1 2 1 1 2

2

ˆ ˆexp( ( ln ) ( ) ) ( ( ) ) 0i
i i

i

l c x l l l l l
c l
λ ϕ

λ
−+ − ± − + =∓ , l1

2 + l2
2 > ˆ l 1

2 , 

 

2 2 2 1/ 2
1 2 1 1 1 1 2

2

ˆ ˆ( , , ) exp( ( )) ( ( ) )i
i i ix x l l s l l l l l

cl
λ ϕ= = − − + ± − + , 

 
xi = −exp(

λ i

cl2
(l1 − ˆ l 1)) + ki(2 − exp(±

λ i

c
(l1

2 − ˆ l 1
2 + l2

2 )1/ 2 )) . 

 
Solutions xi (l1, l2 ) , i =1,2  have a meaning on the set 1 \ oΩ Ω , where 1Ω =Ω1 ∪ Γ1 , 

 Ω1:
2 2 2

1 2 1( )l l R+ > , R1 = ˆ l 1 ; Γ1:l1
2 + l2

2 = R1 ; Ωo:|l2|< δ1 , δ1 > 0 , (Fig. 5.1). 

Let us introduce the set 2 2 2
2 1 2 2: ( )l l RΩ + ≥ , R2 = R1 + δ , δ > 0 , Ω = Ω2 \ Ω1 \ Ωo . 

At a small δ > 0 , we may restrict the solutions xi , i =1,2  by a linear approximations on Ω  
considering only the first two parts of the function's xi (l1, l2 )  decomposition in Taylor's 

series at a δ -locality of * * *
1 2( , )l l l= , *

1 1̂l l= , l* ∈Γ1.  
We get the following relations 
 

 
− exp(

λ i

cl2

(l1 − ˆ l 1)) ≅ −(1 +
λ i

cl2
* ( l − l1

*) −
λi

c(l2
* )2 (l − l2

*)) , 

 

* * *
2 * 2 2 1/ 2 2 2 1

1 1 2 *
2

ˆexp( ( ( ) ) )) (exp( ) exp( )
| |

i i i i
i i

l l lk l l l k
c c c c l
λ λ λ λ

− ± − + ≅ − + (l1 − l1
* )  

+ exp(
λ il2

*

c
)
λi

c
(l2 − l2

*))  

 
= −ki(exp(

λi l2
*

c
)(1 +

λ i

c

l1
*

|l2
*|

(l1 − l1
* ) +

λ i

c(l2
* )2 (l2 − l2

* )); 
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xi ≅ (2ki − 1− ki exp(
λi l2

*

c
)) −(

λi

cl2
*

+ ki exp(
λ il2

*

c
)
λi

c
l1

*

|l2
*|

)(l1 − l1
*)

 

 
+(

λi

c(l2
* )2 − ki exp(

λi l2
*

c
)
λ i

c
)(l2 − l2

* ))  =ki (2 − exp(
λ il2

*

c
)) −1)   

 

* *
* 1 *2 1
2 1 1*

2

(( ) exp( ) ))( )
| |

i i
i

l ll k l l
c c l
λ λ−− + − +

λi

c
((l2

* )−2 − ki exp(
λ il2

*

c
))(l2 − l2

*)) . 

 
Let us implement the equality x1 = x2  at the moment s  for the obtained linearized 

functions. This leads to equations  
 

 Bo + B1( l1 − l1
* ) + B2( l2 − l2

*) = 0 ,  
where  

Bo = −k1(2 − exp(
λ1l2

*

c
)) + k2 (2 − exp(

λ2l2
*

c
)) ,  

 

 
B1 = −

λ2

c
((l2

* )−1 + k2 exp(
λ 2l2

*

c
)
l1

*

l2
* ) −

λ1

c
((l2

* )−1 + k1 exp(
λ1l2

*

c
)
l1
*

l2
* ) , 

 

 
B2 =

λ1

c
((l2

* )−2 − k1 exp(
λ1l2

*

c
)) +

λ 2

c
((l2

* )−2 − k2 exp(
λ 2l2

*

c
)) . 

 
We receive the equation of a strait line: 
 

 
l2 = B3 +

B1

B2

l1 , B3 = l2
* +

Bo

B2

−
B1

B2

,  

 
at which the equalization of the considered distributions is reached at the initial moment s . 

Computing the above coefficients at given λ1,λ 2 ,k1, k2 , we get 
B1

B2

= 1.827 , B3 = −0.816 , 

and the equation l2
o = −0.816 +1.827l1

o , which is indicated by (a) on Fig.5.2a.  
The moment τ1 , satisfying (4.53) is found from the transcendent equation  
 

                               
ηα −

α
2

η + α − 1 = 0 ,                                                   (5.22a) 

where α =
γ ij −1

γ ij

, γ ij =
λis

λ js

, η = exp(λ isτ1) , which for λ is =11,λ js =1 , 

α =
10

11
, η = exp11τ1  determines τ1 = 0.7884  that also corresponds to 

 
                     λ1(τ1 ) = λ 2 (τ 1) = −11 .   (5.22)  

To get the analogous equations at the moment τ1 , we use the transformation  
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 l1 = A 11l1
o + A 12l2

o , l2 = A 21l1
o + A 22l2

o  at 11 12

21 22

,
,

A A
A

A A

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
,  

which satisfies the equations ( ) (0)exp( )A t A tc= 2( ... )
2! !

n
nt tI I tc c c

n
= + + + +  

 

2 3 4 50,1 0,1 0,1( ) ( ) ( ) ( )( 1) .
1,0 1,0 1,02 6 24 120

tc tc tc tcI tc I I
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

≅ + + − + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
We come to relations 

 

A 21l1
o + A 22l2

o = B3 +
B1

B2

A 11l1
o + A 12l2

o , (A 22 −
B1

B2

A 12 )l2
o = B3 + (

B1

B2

A 11 − A 21)l1
o ,  (5.23) 

 
which determine the equation of the strait line, where hold true the equalities 

 

 

1 11 1 1
2 22 12 3 11 21 22 12 1

2 2 2

( ) ( )( )o oB B Bl A A B A A A A l
B B B

− −= − + − − ,  

 

 
A 11 = A 11(t) ≅1 −

(tc)2

2
+

(tc)4

24
,   (5.24) 

 

 
A 12 = A 12(t) ≅ ct −

(tc)3

6
+

(tc)5

120
, A 21 = A 21(t) ≅ −ct +

(tc)3

6
−

(tc)5

120
,  

 

 
A 22 = A 22(t) ≅ 1−

(tc)2

2
+

(tc)4

24
. 

 
At t = τ1  the above coefficients take the values A 11(τ1) ≅ 0.7 , 

A 12(τ1 ) ≅ −0.06 , A 21(τ1 ) ≅ 0.06 , A 22(τ1) ≅ 0.7 , and the seeking equation acquires the 
form l2

o = −1 +1.5l1
o . This strait line is indicated by (b) on (Fig. 5.2a).  

The example's results correspond to the transformation of the strait line (a), considered at 
the initial moment s , into the strait line (b), considered at the moment τ 1 = 0.7884 .  

This transformation corresponds to moving the initial model's distributions z1(ls
*,s) , 

z2 (ls
*,s)  toward the distribution’s cooperation into a joint distribution z( lτ

o, τ) , or z(l1τ
o ,l1τ

o )  
on the line (b), (Figs 5.2a and 5.2b.). Both distributions coincide because the model's 
eigenvalues (5.22) are also equal at the moment τ1 .  

The consolidation, along with forming an information macrostructure, is an additional 
mechanism for the path functional minimization that reduces the initial minimax principle to 
the principle of a minimum of uncertainty, responsible for the informational space-time 
cooperations. The regularities of these processes are defined by the movement along the path 
functional’s extremals and by the proceedings directed toward the state consolidation.  
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The results illustrate the possibility of forming the cooperative model based on the 
regular equations in partial derivations without a direct use of the stochastic equations. 

 

 

Figure 5.1. The distribution’s geometrical locations at the moment s (a) and the moment τ1 -(b). 

 

Figure 5.2.a. The potential geometrical locations of the model’s distributions. 

 

Figure 5.2.b. The process of cooperation for the model’s distributions in three dimensional space. 
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Figure 5.3. 

 

Figure 5.3.a. 

 

Figure 5.3.b. 

       Example 5.2a. Model of a third order. 
Let us have a system model of a third order which is given by equations: 
 

 ( ), 2 ( )x A x v v x τ= + = −� with the initial matrix 

3, 1,1
(0) 1,5, 1

1, 1,3
A

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

.  (5.25) 
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The calculated initial eigenvalues ioλ , 1,2,3i =  and the eigenvector’s components 
i
joφ , 1,2,3j = are: 

 
1 1 1/ 2 1 1 1

1 1 3 2 1 32; (2) , 0,o o o o o oλ φ φ φ φ φ−= = = ± = = − ; 

 
2 2 2 1/ 2

2 1 2 33; (3)o o o oλ φ φ φ −= = = = ± ; 

 
3 3 1/ 2 3 1/ 2

3 1 3 26; (6) , 2(6)o o o oλ φ φ φ− −= = = ± = ∓ .  (5.26) 
 
The corresponding orths 1

ie of a coordinate system that is built on the related eigenvectors 

(with regard to the orths of the initial coordinate system ie ) are  
 

1 1/ 2 1/ 2
1 1 2 3(2) 0 (2) ,e e e e− −= ± ± ∓  
1 1/ 2
2 1 2 3(3) ( ),e e e e−= ± + +  
1 1/ 2
3 1 2 3(6) ( 2 )e e e e−= ± − + . 

 
From that, the possible transformations, converting matrix (0)A to a diagonal form, have 

view:  

 

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
1

1/ 2 1/ 2 1/ 2

(2) ,0, (2)
(3) , (3) , (3)
(6) , 2(6) , (6)

T

− −

− − −

− − −

⎛ ⎞−
⎜ ⎟

= ±⎜ ⎟
⎜ ⎟−⎝ ⎠

, 

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
2

1/ 2 1/ 2 1/ 2

(2) ,0, (2)
(6) , 2(6) , (6)
(3) , (3) , (3)

T

− −

− − −

− − −

⎛ ⎞−
⎜ ⎟

= ± −⎜ ⎟
⎜ ⎟
⎝ ⎠

,  

 

1/ 2 1/ 2 1/ 2

1/ 2 1/ 2
3

1/ 2 1/ 2 1/ 2

(3) , (3) , (3)
(2) ,0, (2)
(6) , 2(6) , (6)

T

− − −

− −

− − −

⎛ ⎞
⎜ ⎟

= ± −⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 
with a total of 24 combinations of the matrix’s transformations iT , chosen for the similar 
oriented orths (without taking into account the operation of their inversion).  

Let us select such of them, which correspond, for example, to a right triple of the 
eigenvectors that determine the matrix of a right rotation. These matrixes satisfy the condition 
det 1, 1,...,6kT k= + = . 

We illustrate the choice on the example for the matrix 1T , considering a different order of 

this matrix’s elements at det 1T =1. We get the following matrices 
 

 

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
11

1/ 2 1/ 2 1/ 2

(2) ,0, (2)
(3) , (3) , (3)
(6) , 2(6) , (6)

T

− −

− − −

− − −

⎛ ⎞−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−⎝ ⎠

, 

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
12

1/ 2 1/ 2 1/ 2

(2) ,0, (2)
(3) , (3) , (3)
(6) ,2(6) , (6)

T

− −

− − −

− − −

⎛ ⎞−
⎜ ⎟

= − − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

,  
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1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
13

1/ 2 1/ 2 1/ 2

(2) ,0, (2)
(3) , (3) , (3)

(6) ,2(6) , (6)
T

− −

− − −

− − −

⎛ ⎞−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

, 

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
14

1/ 2 1/ 2 1/ 2

(2) ,0, (2)
(3) , (3) , (3)

(6) , 2(6) , (6)
T

− −

− − −

− − −

⎛ ⎞−
⎜ ⎟

= − − −⎜ ⎟
⎜ ⎟−⎝ ⎠

. 

 
In the subsequent calculations, we use just one of potential 24 matrices, for example, 

14T G=  with  
1/ 2 1/ 2 1/ 2

1 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2

(2) , (3) , (6)
0, (3) , 2(6) ,

(2) , (3) , (6)

TG G

− − −

− − −

− − −

⎛ ⎞
⎜ ⎟

= = −⎜ ⎟
⎜ ⎟−⎝ ⎠

.                                                                (5.27) 

 
The solutions of the dynamic model’s equation in a diagonal form: 

 

 

1

2

3

,0,0
( ), (0) 0, ,0 , 2 (0)

0,0,

o

o

o

z z u u z
λ

λ
λ

⎛ ⎞
⎜ ⎟= Λ + Λ = = −⎜ ⎟
⎜ ⎟
⎝ ⎠

�   (5.28) 

 
can be ordered, for example, by the increasing of ioλ (in(5.28)): 

 
1 2

1 1 1 1 1 1 2 1 1 1 2
1 2

2 1 2 2 1 2 2 2 1 2 2
1 2

3 1 3 3 1 3 2 3 1 3 2

( ) (0)(2 exp( )); ( ) ( )(2 exp( ));

( ) (0)(2 exp( )); ( ) ( )(2 exp( ));

( ) (0)(2 exp( )); ( ) ( )(2 exp( )).

z z z z

z z z z

z z z z

τ λ τ τ τ λ τ

τ λ τ τ τ λ τ

τ λ τ τ τ λ τ

= − = −

= − = −

= − = −

  

 
The discrete moment 1τ  of the equalizations we find from the fulfillment of one of the 

equalities  
1 1 1 1 1 1
1 1 2 1 1 1 3 1 2 1 3 1( ) ( ), ( ) ( ), ( ) ( ),λ τ λ τ λ τ λ τ λ τ λ τ= = =   

at  
1 1
1 1 1 1( ) 2 exp(2 )(2 exp(2 ))λ τ τ τ −= − − ; 
1 1 1 1
2 1 1 1 3 1 1 1( ) 3exp( )(2 exp(3 )) ; ( ) 6 exp( )(2 exp(6 )) ;λ τ τ τ λ τ τ τ− −= − − = − −  

from which we get the equation 
 

1 1 1 16exp( ) exp(3 ) 4 0;4exp(3 ) exp(6 ) 6 0;τ τ τ τ− − = − − =  

1 13exp(4 ) exp(6 ) 3 0.τ τ− − =  
 
A positive solution 1 0τ >  has only the first equation.  

We get 1 1
1 1 1 2 1 2 10.693177, ( ) ( ) ( ) 4τ λ τ λ τ λ τ= = = = . 
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To find 2τ we solve jointly the equations 
 

2 1 1 1 1
1 2 1 1 1 1 2 1 1 2( ) ( ) exp( ( ) ))(2 exp( ( ) ))λ τ λ τ λ τ τ λ τ τ −= − ; 
2 1 1 1 1
3 2 3 1 3 1 2 3 1 2( ) ( ) exp( ( ) ))(2 exp( ( ) ))λ τ λ τ λ τ τ λ τ τ −= −  

at 
    2 2 2

2 2 2 2 3 2 3 2( ) ( ) ( ) ( )λ τ λ τ λ τ λ τ= = = .  
We come to 
 

1 1 1 1 1 1 1 1 1
3 1 2 3 1 2 1 3 1 2 1 2 1 2 1 1 2exp( ( ) )[ ( )( ( )) 1] 2( ( ) ( )) exp[( ( ) )) ( ( ) )] 1) 0λ τ τ λ τ λ τ λ τ λ τ λ τ τ λ τ τ− −− − − − =  

and get 2
2 3 2 3 20.341761, ( ) ( ) 8.158562τ λ τ λ τ= = = .  

Thus, at the moment 1τ , the operators of the processes’ 1 2( ), ( )z t z t  are equalized,  

and at the moment 2τ , these operators are equalized with 2
3 2( )λ τ . At 

3 3 5
1 2 3(0) 10 , (0) 0.96 10 , (0) 10z z z− − −= = × =  we have 1 2 2 2 3 2( ) 0.36, ( ) 0.35, ( ) 0.375z z zτ τ τ= = = . 

A total time of optimal movement is  

1 2 3T τ τ τ= + + , at 2 1
3 3 2ln 2( ( )) 0.77811τ λ τ −= ≅ , 1 2 3( ) ( ) ( ) 0z T z T z T= = = , 

( ) 0x T = , and T =1.181305.  
The resulting optimal process is shown on Fig. 5.3.  
The optimal controls are switched at the moments of the model operators' equalization.  

Because matrix 
1 2

2 2 2

3 2

( )
( ) 0, ( ),0

0,0, ( )

λ τ
τ λ τ

λ τ

⎛ ⎞
⎜ ⎟Λ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 satisfies the relation 1 2 2 2 3 2( ) ( ) ( )λ τ λ τ λ τ= = , 

we have 1
2 1 2 1 2( ) ( ) ( )A G IG Iτ λ τ λ τ−= = , i.e., the system’s renovated matrix 2( )A τ is 

diagonalzed at moment 2τ .The same is true for the moment 1τ : 

1 1 1 1 2 2 2 1( ) / / ( )z z z zλ τ λ τ= = =� �  if the transformation G  is implemented by the rotation 

around one of the coordinate axis ( 30z ).  

Indeed, writing this matrix in the form 

cos ,sin ,0
sin ,cos ,0

0,0,1
G

ϕ ϕ
ϕ ϕ

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

, we get the system’s matrix  

1 1

1 2 1

3 1

( )cos ,sin ,0 cos , sin ,0
( ) sin ,cos ,0 0, ( ),0 sin ,cos ,0

0,0,1 0,0,10,0, ( )
A

λ τϕ ϕ ϕ ϕ
τ ϕ ϕ λ τ ϕ ϕ

λ τ

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= − =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

2 2
1 2 1 2

2 2
1 2 1 2

3

( cos sin ), ( sin cos sin cos ),0

( sin cos sin cos ), ( cos sin ),0
0,0,

λ ϕ λ ϕ λ ϕ ϕ λ ϕ ϕ

λ ϕ ϕ λ ϕ ϕ λ ϕ λ ϕ
λ

⎛ ⎞+ − +
⎜ ⎟

− + +⎜ ⎟
⎜ ⎟
⎝ ⎠

=
1 2

2 2

3 2

( )
0, ( ),0
0,0, ( )

λ τ
λ τ

λ τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

.  (5.29) 
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The condition of the equalization of all phase speeds holds true at the moment 2τ ; this 

condition, taking into account the diagonalization of 2( )A τ , acquires the form 

1 1 2 2 3 3 1 1 2 2 3 3/ / / / / /z z z z z z x x x x x x= = = = =� � �� � � . 

The phase picture of the control system at 2 t Tτ < ≤ is portrayed by three straight lines, 

crossing a beginning of coordinate system in the planes 1 2 2 3 3 20 ,0 ,0x x x x x x (Fig.5.3a), 

which are turned on the angles 12 23 31, ,ψ ψ ψ with regard the coordinate axis’s 

1 2 3 30 ,0 ,0x x x x accordingly. A transformation of the initial coordinate system 1 2 30x x x  to the 

affine system 1 1 1
1 2 30x x x , built on these strait lines as the vectors, has a view 

 

12 12
2

1 23 23
2

31 31

cos ,sin ,0
( )0,sin ,cos , , .
( )

cos ,0,sin

oi
ij ij ij

j

xT tg k
x

ψ ψ
τψ ψ ψ ψ ψ π
τ

ψ ψ

⎛ ⎞
⎜ ⎟= = = ±⎜ ⎟
⎜ ⎟
⎝ ⎠

  

To find the above angles let us transform 2( )iz τ to 2( )ix τ :  

1 2 11 1 2 12 2 2 13 3 2

2 2 21 1 2 22 2 2 23 3 2

3 2 31 1 2 32 2 2 33 3 2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

T T T

T T T

T T T

x G z G z G z

x G z G z G z

x G z G z G z

τ τ τ τ

τ τ τ τ

τ τ τ τ

= + +

= + +

= + +

 

After substitution of the calculated 2( )iz τ  and T
ijG , we have 

        1 2( ) 0.61,x τ = 2 2( ) 0.101,x τ = − 3 2( ) 0.101x τ =  
and 

                     1

0.985, 0.171,0
0,0.564, 0.826
0.986,0,0.165

T
−⎛ ⎞

⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

;  

with  
          1det 0.985(0.564 0.165) 0.171(0.386 0.826) 0.T = × + × >  
We get  

      12 23 130.172, 1.463, 0.167tg tg tgψ ψ ψ= − = − = ,  
and  

           12 23 130.172, 0.972, 0.166.o o oψ ψ ψ= − = − =  

Forming the indistinctive states 1 2 3ˆ ˆ ˆ ˆ( , , )x x x x is associated with turning the coordinate 

system 1 1 1
1 2 30x x x  in such a way that the axis’s 1

10x , 1
20x , 1

30x will become the bisectrices of 

the coordinate planes 1 3 1 2 2 3ˆ ˆ ˆ ˆ ˆ ˆ(0 ,0 ,0 )x x x x x x .This corresponds to applying the transformation 
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1/2 1 1/2 1

1/2 1 1/2 1

1/2 1 1/2 1

(2) 2 ,0, (2) 2
ˆ (2) 2 ,(2) 2 ,0

0, (2) 2 ,(2) 2
T

− −

− −

− −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

,  

which is not an orthogonal transformation:  

                                               

1 1/2

1,1, 1
ˆ ˆ(2) 1,1,1 .

1, 1,1

TT T− −

−⎛ ⎞
⎜ ⎟= − ≠⎜ ⎟
⎜ ⎟−⎝ ⎠

  

The indistinctive states’ vectors are connected with the initial vector by relation 

1
1

ˆx̂ TT x Tx−= = , where 1/2

0.001,0.394, 0.991
(2) 0.001,0.735, 0.661

1.971, 0.735,0.991
T −

− −⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

.  

Let have a vector 1 (1,1,1)x = , given in 1 1 1
1 2 30x x x , then a length of this vector in 1 2 3ˆ ˆ ˆ0x x x  

(equals to the square root of the sum of the coordinate’s squares) is 
 

1/2 2 2 2 1/2 1/2ˆ (2) [( 0.001 0.394 0.991) (0.001 0.735 0.661) (1.971 0.735 0.991) ] 2.3(2) 1.62.xl
− −= − + − + + − + − + ≅ ≅

The length’s increment, determined by the transformation T : 1/2ˆ ˆ| (3) | 0.1x xl l −Δ = − ≅ , is 

caused by a non- orthogonal transformation T̂ .  
A length of the corresponding vector’s difference we find from relation  

 

1/2

1/2 2 2 1/2

1 1 1 1.413,0.394, 0.991 1
| 1 1 | | ( ) 1 | (2) 0.001, 0.679, 0.661 1

1 1 1 1.971, 0.735, 0.423 1

(2) [( 1.413 0.394 0.991) (0.001 0.679 0.661) ] 1.8.

T T I −

−

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= − = − = − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− + − + − − =

  

As a result, the above increments are associated with reaching the model coordinates’ 
pair indistinctiveness.  

Let us also find the discretization moments from the conditions of equalization of phase 
speeds for a non diagonal system with 

1 1 12 2 2 12 2 2 23 3 3 23 1 1 13 1 1 13/ ( ) / ( ), / ( ) / ( ), / ( ) / ( ).x x x x x x x x x x x xτ τ τ τ τ τ= = =� � � � � �  

The solutions of the initial system at optimal control have the form 
  

1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1

(2 exp 2 3 exp3 6 exp 6 2),3 (exp 6 exp3 ), (2 exp 2 3 exp3 6 exp6 )
( ) 3 (exp 6 exp3 ), 3 (exp3 2exp6 6),3 (exp 6 exp3 )

(2 exp 2 3 exp3 6 exp 6 ),3 (exp6 exp3 ), (2 exp 2 3 exp3

t t t t t t t t
x t t t t t t t

t t t t t t

− − − − − − −

− − −

− − − − − −

− + + − − − −

= − − + − −

− − − − + 16 exp 6 2)t t−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+ −⎝ ⎠

 

10

20

30

x
x
x

⎛ ⎞
⎜ ⎟×⎜ ⎟
⎜ ⎟
⎝ ⎠

; 
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10 20
1 1 1 1 1 1

10 20

(exp 2 exp3 exp6 ) (2exp6 exp3 )/
(2 exp 2 3 exp3 6 exp6 2) 3 (2exp6 exp3 )

x t t t x t tx x
x t t t x t t− − − −

− + + + − +
=

− + + − + − +
�  

  30
1 1 1

30

(exp 2 exp3 exp6 )
(2 exp 2 3 exp3 6 exp6 )

x t t t
x t t t− − −

+ − −
+ − −

, 

10 20 30
2 2 1

10 20 30

(2exp6 3 ) (exp3 4exp6 ) (2exp6 3 )/
3 [ (exp6 exp3 ) (exp3 2exp6 6) (exp6 exp3 )]

x t exp t x t t x t exp tx x
x t t x t t x t t−

− − + + −
=

− − + − + −
� , 

10 20
3 3 1 1 1 1

10 20

(exp 2 exp3 exp6 ) (2exp6 exp3 )/
(2 exp 2 3 exp3 6 exp3 ) 3 (exp6 exp3 )

x t t t x t tx x
x t t t x t t− − − −

− − + − +
=

− − + + +
�  

………. 30
1 1 1

30

(exp 2 exp3 exp6 )
(2 exp 2 3 exp6 6 exp3 2)

x t t t
x t t t− − −

− + +
− + + −

. 

 
From that we get the equations for finding the discrete moments: 

 
7 6 5 4 3 7

12 7 6 5 4 3 1: 0,oA y A y A y A y A y A y Aτ + + + + + + =  
6 4 3

13 6 4 3 1: 0,oB y B y B y B y Bτ + + + + =  
7 6 4 3

23 7 6 4 3 1: 0oC y C y C y C y C y Cτ + + + + + = , expy t= , 

where the above coefficients are expressed through the initial conditions 
 

1 2 2 1 2 1 1
7 10 20 30 10 20 20 30 10 30(2) (2) (2) (2) ;A x x x x x x x x x− − − −= − + − − +  

1 2 2
6 10 30 10 20 20 302(3) ( 2 2 );A x x x x x x−= − − +  

2 2
4 20 10 10 30 10 20 20 302(2 2 2 3 );A x x x x x x x x= − − + −  

1 2 2
3 30 10 10 20 20 30(6) ( );A x x x x x x−= − − + 2 2

1 10 20 10 30 20 302( );A x x x x x x= − + −  

0 20 30 10 302( );A x x x x= −  
1

6 10 20 302(3) ( 2 );B x x x−= − + 4 20 10 302(2 );B x x x= − − 1
3 10 20 30(3) ( );B x x x−= + +  

1 10 20 302( );B x x x= − + + 0 10 302( );B x x= − +  
2 1 2 1 2 1 1

7 20 10 30 10 20 10 30 20 30(2) (2) (2) (2)C x x x x x x x x x− − − −= − − + − + ; 
1 2 2

6 10 30 10 20 20 302(3) ( 2 2 )C x x x x x x−= − − + ; 
2 2

4 30 20 10 20 10 30 20 302(2 2 2 3 )C x x x x x x x x= − + + − ; 
1 2 2

3 30 10 10 20 20 30(6) ( )C x x x x x x−= − − + ; 2 2
1 20 30 10 30 10 202( )C x x x x x x= − − + ; 

0 20 30 10 202( ).C x x x x= −    (5.30) 

From the above relations it follows that the discrete moments, determined by these relations, 
depend on the random initial conditions and therefore are random; whereas the discrete 
moments found for the diagonal system, are not random, determined exclusively by a given 
matrix (0)A that characterizes an inner systems peculiarities. 
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1.5.3. The Consolidation and Aggregation of the Model Processes. 
Forming an Information Network (IN)  

The fulfillment of condition (5.4) connects the extremal segments of a multi-dimensional 
process leading to the segment’s cooperation and the corresponding state’s consolidation, 
which reduces a number of the model independent states.  

These allow grouping the cooperative macroparameters and aggregating their equivalent 
dimensions in an ordered hierarchical information network (IN), built on a multi-dimensional 
spectrum of the system operator, which is identified during the optimal motion.  

The IN organization includes the following steps: arranging the extremal segments in an 
ordered sequence; finding an optimal mechanism of connecting the arranged segments into a 
sequence of their consolidating states, whose joint dimensions would be sequentially 
deducted from the initial model’s dimension; and forming an hierarchy of the adjoining 
cooperating dimensions.  

Below we consider the formal relations and procedure of implementing these steps, 
which are based on the variation and invariant conditions following from the initial VP (sec. 
1.3.5).  

The relations that we illustrate use the n-dimensional spectrum of the model starting 
matrix ( )oA t  with the different complex eigenvalues io io iojλ α β= ± , characterized by the 

ratio | / |io io ioγ β α= , 0ioα ≠ , 1,.....,i n= .  
The segments’ cooperation produces a chain of the matrix eigenvalues 

( , ) ( , )k k
k k it itA t t o oλ λ+ = +  with k k k

it it itjλ α β= ±  and ( ) ( ) ( )k k k
it it ito o j oλ α β+ = + ± +  

at each segment’s end and the beginning of a following segment accordingly; where 
1, .....,k N= is the number of the DP ( kt o+ ) where cooperation of k

itλ and k
it oλ +  takes 

place. This cooperative chain includes a sequence of eigenvalues k
it oλ +  renovated regarding 

.k
itλ  The procedure includes the following sequence. 

The cooperative grouping. 
A feasible IN unites of the multiple nodes, while each its node joins a group of equal 
eigenvalues, gained in the cooperative process. The optimal condition (3.49), 
(3.160c),(3.164b) for such groups of the eigenvalues, considered at a moment of cooperation 

kt o+ , acquires the form 

 1
min [ ( )] min[ ]

m
k g
it k r r

r
Tr t o gλ λ

=

+ = ∑ ,  (5.31) 

where rg  is a r -th group number with its joint eigenvalue g
rλ , m is a total number of 

groups-the IN’s nodes. Cooperation of the corresponding states’ variables is carried by 
transforming the related g

rλ  according to the model equation.  
Applying the invariant relations.  

For building the cooperating chain of the eigenvalues, satisfying (3.170), (4.53), and (5.31), 
we implement Propostion 3.5.8 using both the invariant relation (3.165),(3.165a) and the 
condition (3.180a).  
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Thus, we apply the following relations: 
 

 
| ( ) | | ( ) |i k j kt t oλ λ= +   (5.32) 

for each cooperating ,i j  segment, whose eigenvalues, at the time interval between DP: 
1k k kt t t −Δ = − , satisfy the solutions  

 
1

1 1 1( ) ( )exp( ( )) )[(2 exp( ( ) )] , 1,.., ,...,i k i k i k k i k kt t t t t t i k nλ λ λ λ −
− − −= Δ − Δ =        (5.33) 

 (under the control (4.51) action), and fulfill the condition  
 

 Im ( ) 0i ktλ = ,  (5.34) 

which holds true also by the moment ( )kt o+ of segment’s cooperation;  

the invariants ao and | / |io io ioγ β α γ= =  are connected by the equation 
 

 2(sin( ) cos( )) exp( ) 0o o oγ γ γ γ+ − =a a a .  (5.35) 
 

We also use the connection of invariants ao , a: 
 

2 1/2 1/2exp( )(1 ) (4 4exp( )cos( ) exp( 2 ))o o o o oγ γ −= − + − − + −a a a a a a ,   (5.36) 

following from relation 2| ( ) |t
i i it tλ = a2

 and the representation (5.33) via the invariants.  
This allows us evaluate both invariants.  
From (5.35) we get at 0γ →  the equation  
 

 0
exp( ( 0)) lim 2[sin( ) / cos( )] 2[ ( 0) 1]o o o o

γ
γ γ γ γ γ

→
→ = + = → +a a a a ,  (5.36a) 

whose solution brings the maximal | ( 0) | 0.768o γ = =a .  

From the solution of (5.35) at 1γ → we get a minimal ( 1) 0o γ = →a , which brings also 

the minimal a( 1γ = )=0 from (5.36). The first one at 0γ →  limits a maximal quantity of a 
real information produced at each segment; the second one at 1γ →  restricts to a minimum 
the information contribution necessary for cooperation and, therefore, puts a limit on the 
information cooperation. It’s also seen that relation (5.36c) as the function of γ  reaches its 
extreme at γ =0, which at | ( 0) | 0.768o γ = =a , brings ( 0) 0.23193γ = ≅a .  

Actually, a feasible admissible diapason of ioγ γ= , following from the model 

simulation [33], is 0.00718 0.8ioγ≤ ≤  with the condition of a model equilibrium at 

0.5,γ = ( 0.5) ln 2o γ = ≅a , ( 0.5) 0.25γ = ≅a . 
Cooperation of the model’s real eigenvalues.  

The cooperation of the real eigenvalues, according to (5.34), reduces the condition (5.31) to 
the form 
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 1 1

min[ | |] min[ ]
R R

g g
r r r r

r r
g gλ α

= =

=∑ ∑ ,  (5.37) 

where 0g
rα > is a joint real eigenvalue for each group, satisfying the requirement of a 

positive eigenvalue g
rα  at applying the optimal control (4.50), (4.51); R is the total number 

of the cooperating real eigenvalues. 
We find the number of the joint eigenvalues in a group rg  starting with a doublet as a 

minimal cooperative unit (Fig.5.4). The minimal g
rα  for the doublet with two starting real 

eigenvalues at | | | |io koα α<  can be reached, if by the end of interval it  when at itα =a o / it  , 

the initial eigenvalue koα  brings the equation (5.33) to the form  
 
 1( ) exp( ( ))[2 exp( ( ))] , ( )k i ko ko i ko ko i ko ko ko kot t t t t tα α α α α α−= − − − = ,  (5.37a) 

 
whose solution ( )k itα  will coincide with itα  by the end of the it  duration, getting 

2g
r itα α= .  

The fulfillment of | | / | |it ioα α = |a/a o | at the admissible γ and |a|<|a o | guarantees the 

decrease of both itα  and ( )k itα  that leads to the inequalities 
 

 | | | |it ioα α< , | ( ) | | |k i kotα α< .  (5.38) 
 
Using a triplet as an elementary cooperative unit.  
Let us consider also a triplet as an elementary group of the cooperating three segments 

with the initial eigenvalues | | | | | |j o io koα α α< < , where we add the minimal eigenvalue | joα | 

of a third segment to the previous doublet (for a convenience of the comparison).  
Then the minimal g

rα can be reached (at other equal conditions) if the moment for 

joining the first two eigenvalues (with the initials | | | |io koα α< ) coincides with the moment 

jt  of forming the minimal j tα = |a o |/ jt  for the third eigenvalue.  

In that case, the additional discrete interval is not required.  
Compared with the related doublet, we have | j tα |<| itα |, where each minimal eigenvalue 

is limited by a given ordered initial spectrum.  
Therefore, a minimal optimal cooperative group is a triplet with g

rα =3 j tα  (more 

details are in sec.5.3). 
For a space distributed macromodel (ch.1.4), the minimal number of cooperating 

segments is three, each one for every space dimension. This also limits a total number of the 
cooperating segments of the n-dimensional state system, distributed in space.  

Each of such a cooperation starts with the rotation of a dimension’s eigenvalue (initiated 
by the dimension’s information interactions) and finishes by the eiegenvalues’ joining at DP 
locality (within each local three-dimensional system).  
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Arranging the model initial eigenvalues.  
The selection of the triplet sequence and their arrangement into the IN is possible after 

ordering the initial 1( )n
io iα =  in their decreasing values: 

 

 1 2 1| | | | ,.... | | | |,...... | |o o io i o noα α α α α+> > > > .  (5.39) 
 
Applying the needle controls at the moment of cooperation (for example at ( it o+ ) for 

the doublet) takes place when, in addition to the real eigenvalue equalization: 
( ) | | ( ) |i i k it o t oα α+ = +  and reaching a minimum among the sum of the egenvalues, prior 

the cooperation:  
 

 | ( ) | | ( ) | 2 | ( ) | | | min(| ( ) | | ( ) |g
i i k i i i i i i k kt o t o t o t tα α α α α α+ + + = + = = + ),  (5.40) 

 
the cooperated sum also satisfies a maximum condition regarding any sum of the following 
two eigenvalues: 

 

 1 1 2 22 | ( ) | | | max[| ( ) | | ( ) |]g
k i i i i i it o t tα α α α+ + + ++ = = + ,  (5.41)  

 
because each joint eigenvalue should bring a decrease to the ordered sequence of the 
eigenvalues that has already been formed. 

Since for the ranged 1( )n
io iα =  the conditions (5.40), (5.41) are satisfied, also the 

following relations are fulfilled:  
 

1 1 1(| | | |) max[| | | |]i o io i o i oα α α α− + ++ = + , as well as 1| | max[| |]io i oα α += .  (5.41a) 
 
The formalization of this procedure leads to a minimax representation of eigenvalues by 

the Kurant-Fisher variation theorem [62], which brings the condition of a sequential 
arrangement for the macromodel eiegenvalues' spectrum (Details are in sec.1.5.3). 

The procedure leads to forming a monotonous sequence of the eigenvalues (5.39), which 
actually follows from the initial VP application. 

Forming the IN.  
There are two options in forming the IN:  

(1)-identify the IN by collecting the current number of equal g
rα  for each cooperative 

group rg -as an IN node, and then arranging these nodes into a whole IN;  

(2)-building an optimal IN by collecting the triplet’s 3 3g
r rα α= =  and using the invariant 

relations (5.35),(5.36).  
The sequence of the cooperating ordered eigenvalues 3

rα , 3,5, 7,..r m=  moves to its 

minimal 3
mα  with the IN minimal dimension for a final node 1mon → .  
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The cooperations and assigning to each triple its joint eigenvalue bring the eigenvalues’ 

sum to its minimum: 3 3

3

min
m

r m
r

α α
=

=∑ .  

The sequential cooperation of the ordered eigenvalues by triples, leads to repeating of the 
initial triplet’s cooperative process for each following triplet with the preservation of two 
basic eigenvalues ratios:  

 

 

1
1

2 1

( ) o io

o i o

α α αγ γ
α α +

= → , 1,2
2

3 2,

( ) i oo

o i o

α ααγ γ
α α

+

+

= →  ,  

satisfying the equations 
 

 1
αγ = 1 2

2

exp( ( ) ) 0.5exp( ( ))
exp( ( ) ) 0.5exp( ( ))

α α

α

γ γ γ γ
γ γ γ

−
−

a a
a a

, 1
2

1 1

11
2 ( )( 1)

α
α

α α

γγ
γ γ γ

−
= +

− −a
,  (5.42) 

where parameter γ  is found from relation (5.35) at the known ao , and a(γ ) from (5.36).  

The preservation of , 1, 2i iαγ =  along the IN triplet’s chain defines the IN’s common 

parameter of γ  that allows us to calculate the invariant quantity of information a(γ ) 

transferred to each following triplet’s eigenvalue (at every it ).  
Thus, the IN node collects information  
 
 a(γ ) 1 1

1 2(1 ( ) ( ) )α αγ γ− −+ + = g (γ ),  (5.42a) 
 
which is preserved at fixed γ . 

The microlevel’s information, generated at each ( )io τ -locality, evaluated by the 
invariants (3.176),(3.177): 

 

 
2( ) | ( ) |) | | ( ) | ( )i o i i o iS τ γ γ γ= − ≅a a a  (5.42b) 

is compensated by the optimal control’s action at 2( ) | ( ) | ( )o i i o iγ γ γ≅ +a a a (For details see 
ch.1.6).  

Each triplet's discrete point is formed by a joint solution of the three local extremal 
equations that could be nonlinear. Such points are singular with a possibility of all kinds of 
chaotic dynamic phenomena. The controllable cooperative dynamics (that involve the chaotic 
resonances) automatically develop the IN hierarchical dynamic and geometrical organization 
through the enclosed sequence of the triplet’s structures.  

Each IN’s node-triplet, cooperating in chaotic dynamics, in particular, memorizes a 
chaotic attractor. 

Building the IN during a real-time process follows the same procedure.  
In addition to that, fixing the real-time sequence of the time intervals allows selecting the 

corresponding sequence of the related IN nodes with their codes’ sequence, which thereby 
establishes a current IN’s genetic code (ch.1.6).  
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The real-time IN, possessing the structure of an initial IN, which is built on the ordered 
sequence of the same eigenvalues, would have the current code distinctive from the initial 
one. 

Considering a multi-dimensional macroprocess, let us start the macromodel’s cooperative 
examples with an initial pair of extremal segments.  

At a first extremal segment, the equations (3.154),(3.161) have the solution  
 

             1 1 1( ) ( )(2 exp ( ) ),ox t x t t tλ= −   

whose current eigenvalue 1( )tλ  (at a fixed 
             1 1 1 10( ) ( )o o tt t tλ λ λ= = = )  

is changing under the control’s action according to  
 

 1
1 1 10 1 10 1 10 1 10 1 10 1 10( ) exp( )(2 exp( )) ,t t t t t tt t t jα βλ λ λ λ λ λ λ−= − − = + ,  (5.43)  

acquiring by the segment’s end the value  
 

 
1

1 1 1 1 1 0 1 10 1 1 10 1( ) exp( )(2 exp( ))t t t tt t t tλ λ λ λ λ −= = = − − .  (5.43a) 

The second extremal segment starts with macrostates 1 1 1 1( ( ), ( ))x t o x t+ and eigenvalue 

1 1 1 20( ) tt oλ λ+ =  that is able to cooperate with 1 1tλ , while 1 1 1 20( ) tt oλ λ+ ≅  by the end this 
segment reaches the value  

 

 
1

1 2 1 2 1 20 1 20 2 1 20 2( ) exp( )(2 exp( ))t t t tt t t tλ λ λ λ λ −= = = − − ,  (5.43b) 

which might cooperate with the starting eigenevalue 1 2 1 30( ) tt oλ λ+ ≅ of the third segment, 
and so on for each i,k: 

 1,0( )i k itkt oλ λ ++ ≅ .  (5.44) 
Each extremal segment should preserve invariants  

 
 a 1 10 1 1 20 2 ,...,o t tt tα αλ λ= =  and  b 1 10 1 1 20 2 ,...o t tt tβ βλ λ= = ,  (5.44a) 

 (where ,α βλ λ  indicate the real and imaginaty components of the model eigenvalues), even 
though the eigenvalues within the segment are changing by the control according to 
(5.43),(5.43a,b). (At 1 10 1 10 1/t t

β αλ λ γ= , the eigenvalue 10 1 10 1 10( , )t t
α βλ λ λ=  is defined by 

the given 1 10t
αλ and 1γ .)  

From (5.44a) we find the first segment’s time interval 1t  at fixed 1 0t
αλ , and the second 

time interval 2t at the known 1 1t
αλ , and so on. It also determines such 1 1 1 20( ) tt oλ λ+ ≅  with 

whom 1 1tλ is able to cooperate, and so on. This leads to building a chain of the sequentially 

cooperating extremal segments satisfying the VP, which start with 1( )ox t , 1 0tλ  of the 
dimension i=1. The analogous chains can be built for other macromodel’s starting 
eigenvalues with the cooperative segment’s connections within each chain.  

The segment’s time interval is determined by sequentially applying relations (5.43a,b), 
and (5.44a). The macromodel’s initial eigenvalues spectrum { 1 2 3, , ,....,o o o noλ λ λ λ } is 
determined for the chain of cooperating eigenvalues by the following the relations  

 



Vladimir S. Lerner 170 

 1oλ = 1 0tλ , 2oλ = 1 20tλ , 3oλ = 1 30tλ ,…., noλ = 1 0tnλ ,  (5.44b)  
where the temporal equations (5.43a) are fulfilled for each spatial dimensional sequence 
(5.44b). This means that such a spectrum can be built directly starting with 1 0tλ  by the use of 
the above equations. In this case, the invariant relations (5.44a) allocate the length of each 
segment belonging to different state’s dimensions, which are cooperating sequentially each 
with other by forming a between dimensional cooperative chain.  

Let us analyze the effect of control action on changing the model’s eigenvalues, 
beginning with a single dimensional model and comparing both cases with the applied control 
and without it. Both equations: 

 

1 1 10 1 1( ) ( ) ( )tx t t x t vλ= +� , 1 12 ( )ov x t= , 1 1 1( ) ( ) ( )x t t x tλ=�   

are equivalent at 1( )tλ satisfying (5.43a).  

This means that without control (at 1v =0), we have 1 1( )tλ = 1 10tλ .  

The control 1v , applied at ot t=  during the time 1t t=  brings the eigenvalue increment  
 

 
1

1 1 1 10 1 1 1 10 1 10 1 1 10 1(1 exp( )(2 exp( ))t t t t t tt tλ λ λ λ λ λ −Δ = − = + − ,  (5.45) 
which reduces the ratio of the initial eigenvalue:  

 

 
1

1 1 1 1 10 1 10 1 1 10 1/ exp( )(2 exp( ))v t t t tt tλ λ λ λ −Δ = = − − ,  (5.45a) 
and increases the relative eigenvalue’s contribution from the control: 

 

 
1

1 1 1 1 10 1 10 1 1 10 1/ (1 exp( )(2 exp( ))v t t t tt tλ λ λ λΔ −Δ = Δ = + − .  (5.45b)  
Considering separately the real and imaginary eigenvalue’s parts and using the invariant 
relations, we get 1v invΔ = , as well as the corresponding information contribution 

1 1 1t t invλΔ = , which is a negative for a stable process with a negative eigenvalue 1 10tλ <0, 

while 1 1tλ  (at the same sign of 1 10tλ ) brings a positive information contribution 

1 1 1 0t t invλ = > . So we have  
 

 1 0v invΔΔ = > , 1 0v invΔ = < .  (5.46) 
These invariants determine a sequential decrease of both the initial eigenvalue along the 
whole cooperating chain and the eigenvalues invariant’s ratio at each segment, accompanied 
by the invariant positive information contribution from the segment’s controls.  

The above regularities hold true for any cooperating chain satisfying (5.45)(5.45a).  
Applying (5.46) to relations (5.45a), (5.45b) by considering only the real eigenvalue’s 

ratios 1,| / | , 1, 2,...io i o io i nα α αλ λ γ+ = = , we get the invariant ratios 

 

 
1 1( ) , 1,..., , ( ) | 2 / expio vi viinv i nα α αγ − −= Δ = = Δ = a o ( )γ |,   (5.47) 

evaluating the information distance between the starting eigenvalues, which are acceptable 
for the following cooperations.  
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For example, at a o ≈ − ln2 we get io
αγ ≈ 3, which determines the sequential decrease the 

real eigenvalues forming the cooperative chain.  
These invariant relations follow from the path functional’s VP, which, being applied to 

the chain, forms the functional’s “macropath” across the segments.  
The needle control in this case: 
 

                            1( )v δ = 1 1( )v t − 2 2 20( )tv t  at 2 2 20 1 1( ) ( )tv t v t δ≅ +                       (5.48) 
is formed by the controls from both connecting segments.  

While the control 1v  delivers a positive information within a segment, the needle control 
spends the collected information (5.42b,c) on the segment’s cooperation.  

Using the control’s information contributions and the related invariants, we express the 
information, collected from the previous segments’ end and the following segment’s start, in 
the invariant form:  

 

 1 1t t
αλ = a( 1γ ), 1 20 1 21t ttαλ = −a( 2γ ),  (5.49) 

where  
 

1 1 1 1 20 1 20 2/ , /t t t t
β α β αλ λ γ λ λ γ= = , 1 1 20t tsign signα αλ λ= − , or 1 20 1 1( )t t tα αλ λ δ= − + .          (5.49a) 

 
This brings the needle control’s summary information spent on cooperation in the invariant 
form 

 1 inf( )v δ = a( 1γ )+a( 2γ ).  (5.50) 
 

In particular, at 1 2 0.5γ γ= =  we have 1 inf( ) 0.5v δ ≈ , which coincides with (5.42c) at  
 

 a o ≈ − ln2.  
 
Thus, the model eigenvalue’s spectrum, admissible for the cooperations, could not be an 
arbitrary.  
The cooperating eigenvalues’ ratio io

αγ  is equal to the ratio of time intervals 1, /i o iot t+ at a 
fixed invariant a. 

This means that at the given ,io iotλ , the nearest eigenvalue 1,i oλ + (or the related 

frequency) settles on as an equivalent of some “time delay” in delivering information between 
these starting segments.  

In other words, the macromodel eigevalues are capable of assembling into a cooperative, 
if its information frequencies operate with the sequential delay, determined by the time 
intervals required for the following cooperations.  

To satisfy this requirement the cooperative model arranges its starting eigenvalues 
(frequencies) according to an external communication providing the necessary time delays.  

The above requirement is not a mandatory, but one of optional realization of the formal 
cooperative procedure. 

The condition of binding the cooperative model’s spectrum is imposed also on the 
formulas (5.42), which connect the IN’s spectrum ratios with the model’s invariants.  
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For example, suppose we know the triplet first segment’s io
αλ = ,io itα  and need to 

determine the time delays , 1i it +Δ  between the subsequent segments’ it  and 1it +  and 

1, 2i it + +Δ = 1it + − 2it +  accordingly, which depend upon these segments’ 1 1,i itλ + + , 2 2,i itλ + + .  

Using io itα =a o (γ ) and formula (5.36a) we find γ  and then, applying (5.42), we obtain  

1
αγ , 2

αγ . From that we get 1, 1 2, 1, 2/ , /i o io i o i o
α αα α γ α α γ+ + += = , which at the known γ  

and the above invariant determine 1 1,i itλ + + , 2 2,i itλ + +  and then the time delays  
 

 , 1i it +Δ , 1, 2i it + +Δ = 1it + − 2it + .  
 
The vice versa operations are also true: starting from known it  and given time delays, we 

determine 1it + , 2it +  and then 1 1 1 2 1( ) / , ( ) / ,i i i it t t tα αγ γ γ γ+ + += =  to find γ , the invariant and 

finally get ioα , 1,i oα + , 2,i oα + . 
 
Example. Let us evaluate the chain of the segment’s real eigenvalues 1ti

αλ and the 

corresponding time intervals it  using just the invariants  

a 1 10 1 1 20 2 1 0,...,o t t ti it t tα α αλ λ λ= = ≈ |0.7|; 1 1 1 1 2 2 1a = ,...,t t ti it t tα α αλ λ λ= ≈ |0.25|,γ =0.5  
 

at the sequential cooperation of the each segment’s ending eigenvalues with each subsequent 
segment’s starting eigenvalue 1 1 10ti ti

α αλ λ += , i=1,2…5. At 1 10t
αλ =1 we get the following 

sequence of 1ti
αλ : 0.357, 0.127, 0.0453, 0.0162, 0.00578 with the ratio io

αγ ≈ 2.83 and the 

corresponding time intervals it : 0.7, 1.96, 5.52, 15.452, and 43.3 with the same ratio. 

Therefore, by giving two numbers: γ  and 1 10t
αλ  (and using the invariants depending on γ ) 

we are able to uncover a whole path functional’s trajectory with the set of cooperative states 
and the segment’s time intervals. 

The set of the states identifies a number of the ordered events covered by the information 
invariant and defined by the model’s elementary quantity of information.  

This number is limited by a total time T of the considered process for a given path 
functional, which restricts the related path of the IPF.  

For a multidimensional process, this total time also restricts a maximal dimension of the 
cooperating local ordered processes with the related cooperative states and the segments 
time intervals (whose sum is limited by the ).T   
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1.5.4. The IN Dynamic Structure 

Let us first formulate and summarize the restrictions, imposed on the model’s eigenvalue 
that cooperate into IN, taking into account a minimal path (MP) to each IN’s node, which 
implements a local IPF and is characterized by a minimal time interval movement to the node 
along the sequence of extremal segments.  

Based on the considerations in sec.1.5.2, the restrictions are:  
1) the starting eigenvalues{ }, 1,...,io i nλ = , determined by the model’s complex operator 

spectrum, are different; 
2) the condition of joining of the eigenvalue’s real parts requires vanishing of these 

eigenvalue’s imaginary parts, taking place by the end of the starting time interval 

it = a o / ioα (for each cooperating segment). 
The third restriction (3) we formulate by  
Proposition 5.1.  
To satisfy the MP and a stability of the cooperated segments, the components of the 

extremal spectrum should be assembled sequentially into the elementary units, composed by a 
pair of eigenvalues (doublets) and/or by a triple eigenvalues (triplets).  

Let us show primarily that for each segment’s cooperation, a minimal time interval of the 
cooperation is limited by the segment with a minimal eigenvalue (having a maximal 
segment’s time interval).  

Indeed. For a pair cooperation of i,k-extremal segments with the real eigenvalues ioα and 

koα  accordingly, at ko ioα α> , we get the segment’s time intervals | | / | |,k o kot α= a   

| | / | |i o iot α= a  with k it t< , where mini it t=  limits the cooperation, determined by a 

minimal real eigenvalue minio oα α= .  

This means that for the eigenvalue min min| ( ) | | | / | | / | ( ) |k k k i i it t t tα α= > =a a to 

cooperate with min( )i itα , the minimal additional time mink i kt t tΔ = −  is needed, while the 

total time necessary for the segments’ cooperation cannot be less than minit . 

Joining kα ( kt ) with min( )i itα  requires applying the control to the k-extremal segment, 
which initiates the dynamic process 

1
min min min( ) ( ) exp( ( ))[2 exp( ( ))]k i k k k i k k i kt t t t t tα α α α −= − − − − ,                         (5.51a) 

leading to the coincidence of min( )k itα and min( )i itα by the end of minit .  

Adding a third real eigenvalue to this doublet, having a lesser eigenvalue minjo i koα α α< < , 

brings | | / | |,j o jot α= a at minj i kt t t> > , that only increases the doublet’s time.  

Joining these three segments according to process (5.51a) by applying the controls to 

min min( ) ( )k i i it tα α=  at the moment to minit or to any ( )j jtα will add minj j it t tΔ = − .  

In this case, the minimal time interval minjt of the triple cooperation is limited by a minimal 

eigenvalue among all three segments: minjo jα α= , while the MP for this triple’s cooperative 
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process requires finishing the doublet’s cooperation by the end of the min min| | / | |,j o jt α= a  

Fig.5.4.  
Adding a forth ordered eigenvalue not only increases a total minimal time cooperation, but 
will make the cooperation of this quadruple impossible, because the cooperation of more than 
three elements becomes unstable (with the unlimited trajectories [67] at such an interaction).  

Secondary. At any ordered eigenvalue’s manifold with m  simultaneous and potentially 
stable cooperations, the MP would not exceed the time interval limited by a minimal final 
eigenvalue moα in this manifold. The cooperation, performed sequentially by triple or double, 

will keep the same MP preserving the stability at each of such elementary cooperation.  
For example, at m =4, the two sequential double cooperations require the minimal time 

interval limited by 4oα , which is the same if the simultaneous cooperation of these four 

segments would be stable. For m =5, the two triple sequential cooperations occur (Fig. 5.4) 
during the time interval limited by minimal 5oα , which is the same if the simultaneous 

cooperation of these five segments would be stable.  
Therefore, the MP is achieved for an elementary cooperative unit with a maximum of 

three eigenvalues (with minjt ), where for a space distributed macromodel, a minimal number 

of cooperating segments is three, each one for every space dimension.  
Besides that, the triple cooperation is able to deliver an elementary quantity of 

information contribution in 1 bit (sec.1.6).•   
In addition to requirements (1-3) we request also  
4)-the needle controls (secs.1.3.4, 1.3.5) have to be applied at the moments, when, with 

the fulfillment of (5.35) (in form of | min( )k itα |=| minioα |), the conditions (5.40)-(5.41a) of the 
VP's maximum are satisfies.  

The restrictions (1-4) lead to a sequential choosing such miniα , which holds a maximum 
among all previously chosen eigenvalues from a spectrum, implementing thereby condition 

 min min maxi iα α= , or min max mini iα α= ,                                             (5.51b) 

where each iα  is limited by the segment’s invariant oa  and starting ioα .  

Such a search (implementing the VP) will also order the spectrum’s ioα sequence.  
The above strategy we specify in the following statements.  
Proposition 5.2.  

The minimax condition for the macromodel eiegenvalues' spectrum leads to the spectrum 
sequential ordering that brings a monotonous sequence of the eigenvalues: 

2 1| | ,... | | |nλ λ λ> > <  (with a minimal | nλ |).  
The result follows from the Kurant-Fisher's variation theorem [62] by a successive applying 

of the maximum condition to the minimal condition for the Relay's relation q(x ) =
(x, Ax )

(x, x)
 (for 

the macromodel's matrix A > 0 ).  
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This leads to 1
( , )| | | |, ....
( , )

t
i i

x A x
x x

λ λ +≥ ≥ , or (in the indication of sec.1.5.2) to 

1 1| | | | | |g g g
i i iα α α− +> >  .  
The geometrical meaning illustrates an ellipsoid, whose axes represent the model's 

eigenvalues. The method starts with the maximal eigenvalue 1 1| ( ) | max ( )
x

t q xα = , taken 

from a maximal axis of the ellipsoid’s orthogonal cross section, that is rotating up to reaching 
a minimal axis of the ellipsoid’s cross section, which should coincide with the following 
lesser eigenvalue 2 2 1 1| ( ) | | ( ) |t tα α< , and so on.  

Because the model works with ranging the current | ( ) |i itα , the procedure brings also a 
monotonous sequence of the starting eigenvalues of the model’s spectrum.  

Each model’s eigenvalue is an equivalent to a local average entropy Hamiltonian 
according to the VP. 

The maximal part of the VP principle selects the maximal eigenvalue, corresponding to 
the maximal ellipsoid's cross section, while the minimal part selects an eigenvalue from a 
minimal axis of the ellipsoid’s cross section in the current eigenvalue sequence.  

This leads to alternating the sequence of min max q(x )  along the macrotrajectory 
model's segments, satisfying to the Kurant-Fisher's variation theorem.  

Therefore, the VP application automatically orders the model's eigenvalues, executing 
the Kurant -Fisher's variation theorem. •  

Proposition 5.2a. 

For the macromodel with the complex ranged eigenvalues  
 

 , , , 1, 1, 1,,t t t t t t
i o i o i o i o i o i oj jλ α β λ α β+ + += ± = ±  at |αi ,o

t |>|αi +1, o
t |: 

(1)-the condition of the eigenvalues ordering by applying the equations for invariants a o , a, 

b o (5.34), brings the invariant relation for the eigenvalue's ratios as well: 
 

 

,
,

1,

t
t
i m

i m t
i m

α α
γ

α +

= =γ i ,m
α ( , , );Const i m j=   (5.52) 

(2)-the joint fulfillment of restrictions (1-6) with relation (5.52) allow cooperating of the 
nearest (i,i + 1)  eigenvalues; that leads to a minimal sum of the discrete intervals (ti ,ti+1 ) for 
each of the (i,i + 1)  eigenvalues' couples, which can be reached if the discrete moment for 
joining of the first couple (for which |αi ,o

t |>|αi +1, o
t |) coincides with the discrete moment for 

the second couple. Then an additional discrete interval is not required, satisfying the MP. 
(This result is applied for the joint solutions of the ranged IN eigenvalues spectrum at 
|αi ,o

t |>|αi +1, o
t |, sec. 1.5.2);  



Vladimir S. Lerner 176 

(3)-the requirement of coinciding the eigenvalue αi
t(ti) = αi

t(γ ,α i,o
t ) ,γ =

βio
t

αio
t  with 

1 1 1 1,( ) ( ', )t t t
i i i i otα α γ α+ + + += , γ ' =

βi+1,o
t

αi +1, o
t   

at the condition  

 

,

1,

( )
t
i o

i t
i o

α α
γ γ

α +

= ,  

leads to  
                                                                   γ =γ ' . •   (5.52a) 

Comments 5.1. At the cooperation of each of three sequential eigenvalues' spectrum 
(having the complex eigenvalues{λ i,o

t } at |αi ,o
t |>|αi +1, o

t |>|αi + 2,o
t |) and the fulfillment of 

(5.40)-(5.41a), the minimal sum of the discrete intervals ( ti ,ti+1,ti +2 ) is achieved.  
In this case, the moment (ti + 2 ) of the disappearance of the imaginary part of λ i+ 2

t (ti + 2 )  
coincides with the discretization moments, found from the solution for the i -and (i +1)-
couple equations, when the real eigenvalues are equalized.  

The total consolidation time of the considered triple does not exceed the interval of ti + 2  
defined by the third dynamic equation. This brings the following relations: 

 

 αi +1
t (ti +2 ) = α i+1

t (γ ' ,αi +1,o
t ) = α i+ 2

t (γ ",α i+ 2,o
t ) = αi + 2

t (ti +2 ) ,  (5.53a)  
 

 αi
t(ti +2 ) = α i

t (γ ' ,αi ,o
t ) = αi + 2

t (γ ",αi + 2, o
t ) = αi +2

t (ti+ 2 )  ,  (5.53b) 
satisfying the requirements of the coincidence at  
                                                              γ =γ ' =γ " .   (5.54)  

 
Figs. 5.4, 5.5a illustrate the above results. 
 
Comments 5.2. The model’s simulation [33] shows that the above condition for the 

eigenvalues' cooperation is sustained if the parameter γ  is changed in the diapason 
γ = (0.0 − 0.8) . The system reaches an equilibrium at γ = 0.5 , ( 0.5) ln 2o γ = ≅a , 

( 0.5) 0.25γ = ≅a . Because the entropy functional is expressed in natural logarithmic 

measure, the above invariants values get the information measures (in bits): ( 0.5)o γ =a ≅ 1 
bit and ( 0.5)γ =a ≅ 0.36 bit. That is why all invariant’s relations, applied (3.179a), hold 
above information measure.  
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Figure 5.4. Forming a triplet’s space structure. 

 

Figure 5.5. The equalization of the model’s eigenvalues for the corresponding eigenvectors during the 
optimal movement with the triplet node’s formation at the localities of the triple cones vertexes’ 
intersections; { }ioα  is a ranged string of the initial eigenvalues, which are cooperating (during the time 

dynamics) into the triplets, formed around the 1 2 3( , , )t t t  locations. 

Proposition 5.3.  
The sequential cooperation of the ranged eigenvalues by threes (Fig.5.4) leads to forming the 
macromodel's information hierarchical cooperative network (IN) (Fig.5.5), where the IN’s 
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nodes model the joint segments information contributions in the process of building a current 
optimal model with a successful equalization of the eigenvalues' spectrum and the 
consolidation of them into the final node's eigenvalue • .  

The result is supported by the following statements. 
Proposition 5.4.  

If the model's phase coordinates { zi } at the initial moment to  are connected by relations  
 

 zi −1(to )=λ i
t (to) zi(to ) ,  (5.55)  

then at the moment ti  the following equation for the phase coordinates: 
 

 1( ) 2 ( )i i i iz t z t− = − �  (5.56) 

holds true with the relative accuracy, depending on γ : 
 

 

δzi

zi

(ti −1) = ε (γ )=exp[|ao|(γ i ,m
α −1)] −2(1−|

ao

a
|) , ε ~ Δt* =

δti

ti

,  (5.57)  

which at γ =0.5, a(γ ) , ao (γ ) , γ i ,m
α (γ )  does not exceed εi =0.0095-0.112.  

The result follows from relations 

 
xi(ti)

xi −1(ti−1 )
=

xi( to )

xi −1(to )
, xi −1(ti) = xi−1 (ti −1)(2 − exp λt

i −1(ti − ti−1 )) ,
λ i

t

λ i−1
t = γ i ,i−1

α =inv , 

 a(γ ) =αi −1
t ti−1 =inv ,  (5.58) 

while the initial condition (5.56) can be fulfilled with the accuracy 
 

ε i =
δxi

xi

(ti −1) , 1( ) 2 ( ) ( ) 2i i i i i ix t x t x tδ −= − =� λ i
t xi (ti) − 2xi−1 (ti −1) + 

 xi −1(ti−1 )exp(−λi −1
t ( ti)ti−1 )exp(λi −1

t (ti)ti ) .  (5.59) 
The last equation, after substituting (5.58), is reduced to the form (5.55), and it defines 

the limited accuracy’s values in (5.57) at γ =0.5. •  
 
Comments 5.3. With growing γ , the error of performing the cooperation by the controls 

(ch.1.3) (that are coping the macrostates at τ i ), is enlarged: and at  

γ → 1, |
a o

a
|→ 1, γ i ,m

α →1  the error leads to ε → 1.  

This increases uncertainty of the cooperation, diminishes the binding of the eigenvalues' 
connections, and finally at γ =2.2 leads to the macromodel's decay.  

From the connection of the first of two eigenvalues, we have γ 1,2
α  =2.21 (at γ = 0.5 ) 

and ε1 ≤ 0.078 . By adjoining of the third of the ranged eigenvalue, we get γ 2,3
α =1.75  (at 

γ = 0.5 ), and ε2 ≤ 0.07 .  
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The errors are the same for joining each following eigenvalue of the ranged spectrum.  
If the relative difference between their initial eigenvalues ratios γ i ,m

α  is growing, the error 
is enlarging essentially.  

The equality (5.55) is fulfilled with a zero error, if the initial conditions are bound by the 
relations 

 

 ( )i ox t� =ki xi −1(to) , ki =
a o

2a
(2 − exp(γ i

αao )) = inv  ,  (5.60) 

or the discrete moments are defined from condition 
 

 ti
2 = ti−1ti +1 .  (5.61) 

The result is proved by a direct substitution of (5.60) into (5.57).  
For the optimal model with ti =2.21ti −1 , ti +1 =3.79 ti −1 , γ =0.5, the admissible relative 

time's accuracy of the fulfillment (5.61) is equal to Δti*=
δ ti

ti

.  

With this accuracy, or at the fulfillment (5.60), the self-forming of the optimal controls is 
possible: 

 

 1( ) ( ) ( ) 2 ( ) ( ) ( )t t
i i i i i i i i i i iu t t v t t z t z tλ λ −= = − = , (5.62) 

using the process 1( )i iz t−  at the discrete moments it  as a control ( )iu t , while the fixed 

values of the initial zi(to )  perform the function of the applied starting control v(to ) .  
The obtained invariant equations simplify the problem solution for the self-control. 
 
Comments 5.4. The system of equations (5.42), (5.51)-(5.54), and (5.62) allow the 

restoration of the macrodynamics by knowing the invariants, whose finding also use also use 

relations 1 2 t
i i ir r α− =� , where 2( ) [ ( ) ]i ir t E x t= � , 1,...,i n=  are the covariation functions, 

identified by the observation of the microlevel's process ˜ x i (t) .  

Finding the αi
t  sequence determines γ 1

α , γ  and the above invariants, which bring the 

values of the τ i  intervals.  

This sets up processes xi (t) = F(xio, t,τ i ,λi
t(t)) , where xio = ˜ x i(s) , and λ i

t (t)  is 
found from (5.32),(5.33), while the cooperative optimal control is found from (5.62).  

The implementation of the above equations leads to a creation of the successively 
integrated information macrostructures, which accompany increasing of ti  and decreasing of  

 

 
α i

t( ti) =
ti +1 + ti −1 − 2 ti

(ti +1 − ti)(ti − ti−1 )
≥

2αi −1
t (ti−1 )αi +1

t (ti +1 )

αi −1
t (ti −1 ) + αi +1

t ( ti +1)
>0,  (5.63) 

where the condition of the eigenvalue’s positivity is satisfied by switching the needle controls 
at the infinite nearest moments of time ( tk , tk + δ ,δ ~ o(tk )):δv(tk ) = v(tk ) − v(tk + δ) . 
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The final eigenvalue of this integrated macrostructure (according to (5.40)) satisfies the 
relation  

 | ( ) | min | ( ) |, 1,..., ,t t
n n i it t i nα α= = 1( ) 1/ 2 ( )( ( ) )

n

n

t
t
n n n n n

t o

t b t b dα τ τ −

−

= ∫ .  (5.64)  

According to (3.183)) the condition (5.64) acquires the form 
 

 

1min | ( ) | min[1/ 2 ( )( ( ) ) ] min | |, ( ) 0, 1,...,
i

i

t
t
i i i i i i i i

t o

t b t b d h b t i nα τ τ −

−

→ → > =∫ ,  (5.65)  

where ( )i ih t is a local Hamiltonian at the time interval it . 

The optimal strategy (that is chosen from the set of possible strategies) is a one that, 
transferring the dynamic process along the switching line ( ( )t

i i it t Constα= =a ), will bring 

the minimal |αi
t(ti) | at each discrete moment it .  

The procedure consists of joining of the two eigenvalues at first, and then adding a third 
eigenvalue to the doublet.  

Optimal triplet structure includes the doublet as a primary IN’s element.  
By forming a triplet, each following doublet sequentially orders and organizes the 

eigenvalues’ chain into the IN triplet’s nodes.  
For the ranged spectrum, defined from the joint solution (5.51)-(5.54),(5.63) (at 

γ = 0.5 ), the minimal sum of the discrete interval is a unique and a single.  
This strategy is implemented for the spectrum of the initial eigenvalues, with a maximal 

value of parameter (5.51):  
 

 γ n
α0 =(2.21)(3.89)n / 2 , γ = 0.5 , (5.66) 

which characterizes the optimal-minimal filter.  
Thus, the eigenvalues {αio

t } that are different from the optimal set: 
 

 αi +1, o
t =(0.2567)i(0.4514)1− iα1o

t  , α1o
t = max , 1, 2....ioi

i nα =  ,γ = 0.5   (5.67)  

are filtered.  
Using the dispersion of the synthesized process:  
 

 1
0

( ),
i n

i i
i

D t t
=

+
=

= −∏   (5.68) 

we write it for the optimal set (5.66),(5.67) in the form
 

 

 
Do =

(2.042)n / 2(3.896)(n−2 )/2

0.758• 2.215
t1

n , t1 =
a o

α1o
t ,γ =0.5,  (5.68a) 
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The initial IN node's dimension n  (allowing the cooperations) is found from the equation 
(5.67a) for the ranged eigenvalues:  

 

 

/2 1 /21 1 2 3

3 2 3 4

[( )( )( 1)] ( 1) 1
t t t t

n no o o o
t t t t
o o o o

α α α α
α α α α

−− − =   (5.69) 

 
and from the relation (5.68a), written for given γ .  

A vice versa, to find α1o
t  via n , is also true.  

The IN dimension n  can be expressed via a starting consolidating moment t1  of the triplet's 
time sequence ( t1,t2 ,t3 ) according to formula  

 

 (ln t1 − 2.949876)n + 0.618485 = 0 , γ =0.5.  (5.70)  

Changing t1 , even with the fixed invariants ao (γ )  and the ratios of γ 2
α =t2 / t1 (γ ), 

γ 3
α = t3 / t1(γ ), leads to a new model's dimension.  

The spectrum of the initial eigenvalues, the consolidation procedure, and the optimal strategy 
are found for the model with a given (n ,γ ).  

By the joint solution of the equations (5.76)-(5.80), the following model's parameters 
γ n

α ,α1o
t ,αno

t , γ i ,m
α ; {αi

t(ti)}i =1
n−1  are obtained successively.  

This procedure allows us to build the macromodel even without using the microlevel (at 
given (n ,γ )), implementing the above relations.  

The given macromodel spectrum determines the total time of the IN’s macrodynamic 
process m

IN nT t≅ , which we call the IN’s life-time; here m
nt  is the αno

t discrete interval at the 
last IN’s triplet m that finalizes the IN cooperations.  

The local MPs are integrated into the IN final node, whose information evaluates a total IPF. 
 
Example. Let us determine the parameters of optimal IN for a given dimension n = 10  

and γ = 0.5 . 
By solving the equations (5.64) − (5.70), (5.42)) we get 

0.7606,o =a γ 1
α = 2.2155,γ 2

α = 3.8955 , the staring segment’s moment t1 , eigenvalue 

α1o
t , and then we obtain the spectrum of the model's initial eigenvalues αio

t ,i = 1− 10  in the 
following ranged sequence:  

8.43736, 3.80833,2.16592, 0.97762, 0.55600, 0.25096, 0.14273, 0.06442,0.03663, 
0.01653,0.00940, along with the corresponding sequence of the discrete moments ti : 
0.08367, 0.18538, 0.32595, 0.72215,1.26976, 2.81316,4.94637,10.95870,19.26861,42.68961, 
75.06089.  

These numerical data allow us the complete restoration of the optimal macroprocess, 
optimal controls, and to build the corresponding IN (by analogy with Figs.5.4,5.5a,b), where 
each third ti  in the above sequence corresponds to forming the IN's triplet's node with a total 
number m = n / 2 + 1 = 6 .  
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1.5.5. Geometrical Structure of the Optimal Space Distributed 
Cooperative Macromodel (OPMC).  
The IN Geometrical Structure 

The OPMC geometrical structure is a result of space transformations of the 
macrodynamic variables that satisfy the invariant condition for the path functional in the 
controlled process of the space-time motion.  

The information structures, consolidating in the IN’s nodes, accompany this movement. 
 

  

Figure 5.6. An OPMC spiral trajectory with radius ρ = bsin(ϕ sinβ )  on the conic surface at the 
points D, D1, D2, D3, D4 with the spatial discrete interval DD1=μ , which corresponds to the angle 
ϕ = πk / 2 , k = 1,2,. ..of the radius vector’s ρ(ϕ ,μ )  projection of on the cone’s base (O1, O2, 

O3, O4) with the vertex angle oβ ψ= ( in the text).  

Theorem 5.1.  
The trajectory of each of the n  three-dimensional OPMC movements represents the 
parametrical equation of a helix curve on the cone (Figure 5.6) with the projection of radius-
vector r (ρ ,ϕ ,ψ o ) on the i- cone’s base: 

 

 sin( sin )o
i i i ibρ ϕ ψ= . (5.71) 

The transfer from the one cone trajectory to another cone trajectory is executed at the 
points that satisfy the extreme condition of the equation (5.71) at the angles 

 ( ) sin o
i i ilϕ ψ =π / 2 . (5.72) 

Proof. The trajectory of each of the n -three-dimensional movements with a 
nonorthogonal, in general, the matrix of rotation A  (at the fixed angle with respect to one of 
the coordinate axis) has a simple representation in the cylindrical space coordinate system  
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 ( )l r = ( , , )ol ρ ϕ ψ : 

 
2 2 2 1 2 2 2 2 2cos , , ( ) , ,o oz r z r z tg dl d d dzψ ρ ρ ψ ρ ρ ϕ−= = + = = + +  (5.73) 

 
where ϕ  is the angle’s increment of the radius vector’s coordinate ρ ; ψ o  is the fixed 
angle’s increment with respect to the axis z .  

Then at the zero increment odψ =0, corresponding to a fixed coordinate z , we get the 
equality 

 

2 2 2 1/ 2[( ) sin ] .oddl d
d

ρ ψ ρ ϕ
ϕ

−= +
 (5.74)  

The conditions (4.9),(4.10) are imposed on that equality, as a consequence of the VP 

fulfillment for , idl dldly c
dt dt dt

≡ = = .  

From hence, the differential equations follow:  
 

 

2 2 2 2( ) sin ; .od dld d Const
d d

ρ ψ ρ
ϕ ϕ

−= + = =  (5.75) 

The solution of these equations leads to  
 

 
2

2
2 sin 0, 0,o∂ ρ ∂ρψ ρ

∂ϕ ∂ϕ
− + = ≠  (5.76)  

 

 
2

2 2
2 sin 0, 0.o∂ ρ ∂ρψ ρ

∂ϕ ∂ϕ
− + ≠ =   (5.77) 

 
Relation (5.76) satisfies (5.71) automatically. Relation (5.77) that implements the 

extreme condition for ρ =ρ(ϕ ) is satisfied at the fulfillment (5.72), while (5.71) is a 
parametrical equation of the spiral curve on conic surface S: 

 

2
2

2
, 1

( ) 0, ,
( )

n
ii i i i

j j j ji j
i j j

S l l l e l
l

∂
∂=

− = =∑ ∑  (5.78) 

where l j
i  are the coordinates of the radius vector r  at the fixed nonsingular point with orths 

i
je , lj

i  are the current point’s coordinates on the cone with the angle 2ψ o at the vertex with 

the d , as the curve parameter, and with the projection ρ  of the radius vector r on the cone 
base.  
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At the existence of a singular point, its location corresponds to the transformation from one 
cone’s trajectory (5.71) to the analogous trajectory of another cone at a ρ(ϕ )extreme.  
The transformation A  carries up the n  spiral curves on the corresponding cones 
(Figs. 5.6, 5.4).•   
 

Theorem 5.2.  
Let us consider the directional cosines of the normal on the cones 1 2 3( , , )i i iα α α , which are 

defined in the coordinate system, constrained by a particular cone at the discrete moments iτ .  

Then, in the cone vertex at the discrete space points ( )i il τ = i oμ + , 1,...,i m= , taken on 
the helix curve, we get relation 

 ϕ (0)=0, 1 1 cosi oα α ψ= = ,α 2
i = α 2 = sin ψ o , 3 3

iα α= =0; (5.79) 

and in the cone base, defined at the discrete points: lk (τk ) =μ k +o, k = 1m − , ..., 7,5,3,1 , we 
have 

 kϕ = 6π , α 2
k =0,α 1

k =0, 3
kα =1.  (5.80) 

 
At the intermediate points, the following relations hold true 

 

 
( ( ) ( ))j j

jl l t l τΔ = − (α 1
jl 1

j

+α 2
jl 2

j

+α 3
jl 3

j ); j =( i ,k ).   (5.80a) 

Proof. From the conditions of the orthogonality for the vectors l i(ti) , l i +1(ti +1 )  that are 
written via the directional cosines of the normal on the cone: 

         
α 1

i =
dl 1

i

dμi

=
dρi

dϕ i tgψ i
o = cos cos( sin )o o

i i iψ ϕ ψ ; ϕi =ϕ (τ i ), 

 

2
2  sin cos cos( sin )

i
i o o

i i i i
i

dl
d

α ψ ϕ ϕ ψ
μ

= = -sinϕ i sin(ϕ i sin ψ i
o ) ,     

3
3 sin sin cos( sin )

i
i o o

i i i i
i

dl
d

α ψ ϕ ϕ ψ
μ

= = +cosϕ i sin(ϕ i sin ψi
o )  (5.81)  

the equation, connecting the above vectors, follows 

 ( )i
il τ 1( )i

il τ + =0 , α 1
iα 1 +α 2

iα 2 +α 3
iα 3 =0, (5.81a) 

where  

1 cos cos( ( ) sin )o o
i i iα ψ ϕ τ ψ= , 2 sin cos ( ) cos( ( ) sin )o o

i i i i i iα ψ ϕ τ ϕ τ ψ=  
 − sinϕ i(τ i)sin(ϕ i(τ i )sin ψ i

o ) ,  

  3α = sin sin ( ) cos( ( ) sin )o o
i i i i i iψ ϕ τ ϕ τ ψ cos ( ) sin( ( ) sin )o

i i i i iϕ τ ϕ τ ψ+ .  (5.82) 
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Considering the equations (5.81a), (5.82) with the initial angle ϕ(τ i) =ϕ(0)=0, and 
substituting (5.81),(5.82) to (5.81a), we obtain  

 

 
2cos cos( sin )o o

i i iψ ϕ ψ + 2sin cos( sin )o o
i i iψ ϕ ψ  

  sin sin cos( sin )o o
i i i iψ ϕ ϕ ψ− =0.  (5.83) 

 
Solution of the last equation at ϕ = sin o

i iϕ ψ = / 2π±  leads to 

 sin iϕ =0. (5.84) 
 
The joint solution of (5.83),(5.84) defines the minimal real roots:  
 

 ϕi = ± 6π ,ψ i
o = ± 0.08343.  

 
In a more general case, we get the relations  

 iϕ =kπ , k =1,2,...and at k =1: iϕ =π . •   (5.85) 

Corollary 5.1.  
The parameters of spiral bi=b (μ i )=μ i(ϕ i )

−1 at the discrete points (li ~ μ i ), 
( )i i il l τ= , 1,...,i m=  for each cone are equal to  

( ( )) ( ) sin( sin )o
i i i i i i i i i il b bρ ρ τ ρ μ ϕ ψ= = = = , (5.86) 

 
and the angle at the cone vertex takes the values 

 

 
1sin (2 )o

i kψ −= , k =1,2,..; at k =1, 
o

iψ =π /6 ;  (5.86a) 
with the angle  

 ( ( ))i i il kϕ τ π= . (5.86b) 
The results follow from (5.72) and (5.85). The obtained relations hold true for each cone, 

and because of that, all cones have the same angle at the vertex ψ i
o =ψ o  and the extreme 

value of the radius vector’s projection ρi=ρi(μ i) (li ~ μ i ) at this angle. •  
 
Theorem 5.3.  

At the moments of the matrix A t  eigenvectors’ consolidation, when following equation holds 
true 

 ( ) ( ) ( ( ))t t t
i k j k m k kt t t o tλ λ λ= = + , k =1,3, 5; i, j ,m = 1,2, .. .,n  (5.87)  

the vectors l i (tk ) , l j (t k) , l m (t k ) , which coincide by their direction with the corresponding 
eigenvectors of matrix A t , get the equal directions. 

This result follows from the definition of vectors l i  and the equalization of the 
eigenvalues. • .  
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Figure 5.6 illustrates the geometrical trajectory for each OMPC space coordinate. 
Using (5.80b),(5.87) we write the result of the Theorem 5.3 in the form 

 

( ) ( ) ( ( ))
| ( ) | | ( ) | | ( ( )) |

i j m
k k k k

i j m
k k k k

l t l t l t o t
l t l t l t o t

Δ Δ Δ +
= =

Δ Δ Δ +
, i, j ,m = 1,2, .. .,n ; k =1, 3, 5.  (5.88) 

The condition of the equalization of the directions for the vectors l i (tk ) , l j (t k)  acquires also 
the form 

 

1 1
11 1( ) ( ) ( ) ( ) , ,

| ( ) | | ( ) |

i i j j
i ji k i k

i ii j
k k

l t l t l t l t l l b
l t l t

ϕ
− −

−− −+ Δ + Δ
= = +  i, j =1,...,n ; k =1, 3, 5,…(5.89) 

At the discrete moments tk , considering the equal vector’s modules in the form 
 

 | ( ) | | ( ) | | ( ) |i j
k k kl t l t l t= = , 1( ) ( )i i i i il t l tμ −= − , (5.90) 

we obtain, after differentiating (5.89) at t → t k , the relation 

 

( ) ( ) ( ) ( ),
i j i j

i jk k z k z k
z z

d l t d l t d l t d l tc c
dt dt dt dt

Δ Δ Δ Δ
= = = =  . (5.91)  

Taking into account the condition dΔl i(tk )

dt
≠

dΔ l j( tk )

dt
, the equalities (5.91) for the 

vectors Δ l m (tk + o(tk )) and Δ l i ( tk ) , or Δ l j (tk )  are not fulfilled generally.  
The equality for the derivations (5.91) along the lz -axis characterizes the equal speeds in a 
chosen direction of growing of the cooperative macrostructure, which is defined by the final 

discrete interval, where ( dΔ l z
i (tk )

dt
α z

i ) is the projection of the linear vector speed; Δl z
i dα z

i

dt
 

is the projection of the angle speed for the vector Δl i .  
The relations (5.88)-(5.91) hold true at the discrete intervals ti , which correspond to the 

movement along the hyperbola defined by the model’s VP dynamic invariant  
 
 a(γ )=α i

t ti = inv ,  
where γ = β io

t / α io
t .  

The local cone’s helix trajectories are stuck along a geometric projection of the switching 
controls line on the hyperbola. 

Let us consider the increment of the angle η  for vector l i = l i (η)  for a sector of the 
entrance in the hyperbola, i.e., for to ≤ t < t i .  

Because l i (η)  coincides by the direction with the corresponding eigenvector 

z i (t) = zα
i (t ) + jzβ

i (t )  of the matrix A(t )= 1( ( ) ( ))t t n
i i it j tα β =+ , this task can be resolved 

using the condition of the zero-equality for the imaginary component of the eigenvector at the 
moment of an entrance on the hyperbola α i

t ti = inv , which is connected to another model’s 
VP invariant b ( ) t

i itγ β= = inv .  
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We get the solution of the equation 

 0 0( )(2 exp ( )i t
iz t tβ α ti )cos(β i

t (t0) ti ))= 0( )iz tα exp(α i
t ( t0 ) ti )sin(β i

t (t0) ti ),  (5.92) 

 tgη =
zβ

i (t0 )

zα
i(t0 )

=
exp(αi

t(t0 )ti)sin(βi
t( t0 )ti )

2 − exp(α i
t (t0 )ti)cos(βi

t(t0 )ti )
. (5.92a)  

For the optimal model, this relation represents the invariant  

 cx
0 = exp( ) sin( )

2 exp( ) cos( )
o o

o o

γ
γ−

a a
a a

,  

which depends on the invariant a o (γ )= t
io itα .  

At γ =0.5, a o = − 0.706, we get 0
xc =7.0866 that determines the angle η =1.430611(≈ 82o ).  

At the inverse directional movement, starting at the moment to , the condition of the zero-
equality for the real component of the eigenvector determines the angle η'  of reaching the 
starting point on hyperbola b ( ) i itγ β=  at the moment 1

iτ = ti − to : 
 

1
01 10 100 0

1
0 0 0

( ) 2 exp( ( ) ) cos( ( ) ) 2 exp( ) cos( ),
( ) exp( ( ) ) sin( ( ) ) exp( )sin( )

i t t
i i i i

x xi t t
i i i i

z t t t t ttg c c
z t t t t t

α

β

α β γη
α β γ

− − − −
= = = =

− −
o o

o o

b b
b b

, (5.92b)  

 
which is defined by the invariant bo (γ )=α i

t ( t0 )ti − , where ti − is the interval preceding to 
the initial moment to  . 

At γ =0.5, bo= − 0.517, we obtain 10
xc =523.1 that defines 1η ≈ π / 2 .  

Assume that the optimal motion takes place on the surfaces of the corresponding cones 
along the surfaces’ normals, with the spiral’s equation (5.71) at the discrete moments, which 
are defined by the invariants bo , a o  and a . 

Then the increment of the angle η  of the spiral rotation ηϕ is determined from condition 

 1 0 1( ) ( )i i
it tα α + 2 0 2 3 3( ) ( ) ( ) ( )i i i i

i i it t t tα α α α+ =cos η , i=1 (5.93)  
 
and it holds the form 

 ( )i
itηϕ = ηϕ . (5.94) 

 
At γ =0.5, ao = − 0.706, this angle equals ϕη ≈ 18rad .  

Relation (5.93) (with cos 1η on the right side) defines the space angle of a spiral rotation 1
ηϕ  to 

reach the cone vertex at the moment t' = ti − .  

Atγ =0.5, bo= − 0.517, 1η ≈ π / 2 , this angle takes the value 1
ηϕ ≈ 18.9rad .  
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The condition (5.91) for the vector l k
i ( tk + o )  on the k -cone with respect to the vector 

l k
m (tk + o) , defined on this cone, at the μ i +1  discrete interval, and taken on the geometric 

projection of the switching controls line, acquires the form 
 

 

( ( ))z kd l t o t
dt

Δ +
=

( ( ))m
z kd l t o t

dt
Δ +

, k =1,3,5; m =1,2,.. (5.95) 

 
The fulfillment of (5.88) − (5.94) assembles the above vectors mutual positions on the 
considered cones in the space and governs the alternations of the vectors l i (t),  
(i=n ,n − 1,...,1) in the immobile coordinate system ( lx , ly , l z  ).  

Let us form this coordinate system on the m -cone:  
 

 1 2 3( , , )m m ml l l = ( lx , ly , l z ), (5.96)  
 
at the discrete moment that finalizes the consolidation procedure.  

As a result of the fulfillment of (5.88), we arrive at the following equations of the 
normals in the immobile coordinate system: 

 
Δl 6 =(l − l6 )(α 1

6
lx +α 2

6 ly +α 3
6 lz ), α 1

6 =α x , α 2
6 =αy , α 3

6 =α z ,  
 
Δl 5 =(l − l5 )(− α 1

5
lx +α 2

5 ly +α 3
5 lz ), 

 
Δl 4 =(l − l4 )[(α 1

4 cos ψ cos ψ o +α 2
4 sin ψ cosψ o +α 3

4 sin ψ o ) lx +  

(α 1
4 cos ψ sin ψ o +α 2

4  sin ψ sin ψ o
− α 3

4 cos ψ o ) ly +(α 1
4 sin ψ − α 2

4 cosψ )lz ], 
 
Δl 3 =(l − l3 )[(α 1

3 sin ψ cosψ o +α 2
3 cos ψ cos ψ o +α 3

3 sin ψ o ) lx +  

(α 2
3 cos ψ sin ψ o +α 1

3 sin ψ sin ψ o
− α 3

3 cos ψ o ) ly +(α 1
3 cosψ − α 2

3 sin ψ ) lz ]. (5.97)  
 
Considering the angles of rotation of the local coordinate systems (ψ ,ψ1), applied for 

the subsequent discrete intervals Δl 2 , Δl 1, we introduce below the indications that will 
simplify the equations forms. For example at n =6 we get  

 

Ax
2 =(α 1

2 cos ψ1 +α 2
2 sin ψ1 )sin ψ o

− α 3
2 cos ψ o ,  

Ay
2=(− α 1

2 cos ψ1 +α 2
2 sin ψ1 )cos ψ o +α 3

2 sin ψ o  , 

Az
2=α 1

2 sin ψ1 − α 2
2 cos ψ1 , Ax

1 =(α 1
1 sin ψ1 +α 2

1 cos ψ1 )sin ψ o +α 3
1 cos ψ o ,  

Ay
1 =α 1

1(cos ψ1 − sin ψ1 )cos ψ o
− α 3

1 sin ψ o , Az
1 =α 1

1 cos ψ1 − α 1
2

.sin ψ1   (5.98) 
 
Generally, for the sequential set of discrete intervals we obtain the equation  
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( )[(j j j
yl l l AΔ = − cos ψ1 cos ψ o + Ax

j sin ψ1 sin ψ o + Az
j sin ψ o )lx +  

1( cosj
yA ψ sin ψ o + Ax

j sin ψ o
− Az

j cos ψ o ) yl +( Ax
j cos ψ1 −

j
yA sin ψ1 ) lz ]; j =2,1, 

  (5.99a) 
where (α 1

i ,α 2
i ,α 3

i) are the directional cosines of the normal in a local coordinate system of 
the i-cone; i=1,..., 6; j=2,1.  
As it follows from (5.98),(5.99a), the condition (5.88) can be fulfilled with an accuracy of a 
some angle (ψ ,ψ1), approximating the rotation of a local coordinate system.  

We choose the values of the angles (ψ ,ψ1 ,...,ψ k ) derived from the condition (5.91): 
 

 

3 5 4 5
3 5 4 5

5 5 5 5( ) ( )( ) ( )( ) ( ),z z
z z

l ld dc t t t c t
dt dt

∂ ∂ϕ ϕ
∂ϕ ∂ϕ

− −
− −Δ Δ

= = =  (5.99b) 

4 5 4 4 4
5 1 2( cos sin ),z zl l b ϕ α ψ α ψ− = + + 3 5 3 3 3

3 2 1( cos sin ),z zl l b ϕ α ψ α ψ− = + ∓  (5.99c) 
 

where the signs in the last equation correspond to the different spiral directions on the 
considered cones (the “minus” for the right spiral direction and the “plus” for the left spiral 
direction). We arrive at the relations for derivatives: 

 

4 5 4 5 4 4
3 3 1 2( / )( cos sin )z zl c b c b α ψ α ψ− −= = +� + 4 4

5 1 2( cos sin )b ϕ α ψ α ψ+� � , 

3 5 3 5 3 3
2 1( cos sin )z zl c c aα ψ ψ− −= =� ∓ + 3 3

3 2 1( cos sin )b ϕ α ψ α ψ� �∓ ,b = b3 , 

1 cos cos( sin ),o oα ψ ϕ ψ=  

2 sin cos cos( sin ) sin sin( sin )o o oα ψ ϕ ϕ ψ ϕ ϕ ψ= − , 

1 ( / ) sin cos sin( sin )o o oc bα ψ ψ ϕ ψ= −� , 

2
2 ( / )[(1 sin ) cos( sin )o oc bα ψ ϕ ψ= − +� 2sin sin cos( sin )o oψ ϕ ϕ ψ+ ].  (5.99d)  

 
Because these relations hold true at the point of the triple consolidation, where 6ϕ π=  and 

sin / 2oϕ ψ π= , we obtain 
 

1 20, 0,α α= =  1α� = ( / ) sin cosoc b ψ ψ− , 2α� = 2( / )(1 sin )oc b ψ− + ;  
4 5 6zc cπ− = − [sin ψ o cos ψ o cosψ +(1 + sin2 ψ o)sin ψ ], 

3 5
zc − = 26 [(1 sin ) cosocπ ψ ψ− + ∓ sin cos sin ]o oψ ψ ψ ,  (5.100) 

or from 3 5
zc − = 4 5

zc −  we have  
 

2(1 sin cos sin ) coso o oψ ψ ψ ψ− + = 2(1 sin cos sin ) sino o oψ ψ ψ ψ± + , 
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2

2

(1 sin cos sin )
(1 sin cos sin )

o o o

o o otg ψ ψ ψψ
ψ ψ ψ

− +
=

± +
 ,  (5.101) 

 
which at 0.08343,oψ = brings 0.70311ψ = ; for the equal directed spirals at a small angle 

oψ , we get ψ = π /4−
oψ .  

For the spirals of the opposite directions, it follows that ψ' =π /4.  
For the intervals t1 − t3 , t2 − t3 , we come to the analogous procedure for the definition of the 
angles 1 2,ψ ψ ,which take the same values.  
We get the equalities 

 

 1 2 ... kψ ψ ψ ψ= = = = =π /4−
oψ ; 1 2' 'ψ ψ= , 2 'ψ …=ψ k ' =π /4. (5.102) 

 
At the last interval of the optimal motion, for the example, with ( t5 − t7 ), (t6 − t7 ), we obtain 
following equations  

5 7 5 5 6 7 6 6 5 7 5 5 6 7 6 6
5 6 5 6; ; ;z z z z z z z z z z z zl l b l l b c c b c c bϕα ϕα α ϕα α ϕα− − − −= + = + = + = +� � , (5.103) 

 
where at 6ϕ π= , j

zα� =0, 1, 5, 7j
z jα = = , and we get 5 7 6 7

z zc c c− −= = . 
This corresponds to the resulting macrosystem movement along the lz  axis with the 

constant speed c after finalizing the optimal process.  
Because of that, the extremal condition for Δl z (ψ) (5.103) (which is in agreement with 

the increments of this coordinate by other cones) defines its maximal increments.  
By analogy, we determine the conditions of the cones’ coordination (formed before the 

entrance on the hyperbola) with the cones that correspond to the movement along the 
hyperbola switching line.  

The condition (5.99a) leads to the equation in the form (5.97).  
From the condition (5.93), (5.94) we find the angle 0 ( )i

jlηψ ϕ= Δ  of the relative rotation 

of the above cones. 
Considering, for example, the cones between the points (l6 − l7 ) ,(l0 − l6 )  we come to the 

following equations: 
 

6 6
3 3( ) ( ) ( ) ( ) ( )j

z z zc t t b t b t tϕ α ϕ α= +� � ; at 6t t o= + , cz
6

6( )t o+ =0; 6( ) 0t oϕ + = ; 
6

3 0 0 0 0( ') [ ( ')( ( ') cos ( ') sin ) ( ')( ( ') cos ( ') sin )],z x y x yc t b t t t t t tϕ α ψ α ψ ϕ α ψ α ψ= − + −� � �  
2( / )(cos sin ), ( / )(1 sin )o o o

x yc b c bα ψ ψ α ψ= − = − +� � ; at t' = 6t o− ; 6( )t oϕ − =6π , 

' ' 6 2
3 0 0( ) ( ) 0, , ( ') 6 [(1 sin )sin ) sin cos cos ].o o o

x y zt t b b c t cα α π ψ ψ ψ ψ ψ= = = = − + −  
  

(5.104) 
By the equalization of the speeds 6 6( ) ( ')z zc t c t= , we get equality for 
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0 0 02

sin cos ; ( 0.5) 0.0075, 0.
1 sin

o o

otg tgψ ψψ ψ γ ψ
ψ

= = = ≈
+

  (5.105)  

 
The same relations follow from the consideration of the condition (5.94) for the cones 
between the points(l3 − l5 ) ,(l0 − l3 ) .  

Finally, we come to the following recurrent equations for the projection of the normals 
(defined by the n -cones) with respect to the immobile coordinate system: 

 

 lx
i = lx

i ( tj ) + biϕ i(Δtj )α x (Δt j) ; Δ ti → τ i  , j=0,1,...,n ; i=1,...,n ;  
 

 ( ) ( ) ( )i i
y y j i i j y jl l t b t tϕ α= + Δ Δ ; ϕ (0) = 0 , ( ) 6jϕ τ π= ,  

 

 0 0,ψ = ( ) ( ) ( )i i
z z j i i j z jl l t b t tϕ α= + Δ Δ ; η = η o =6π  , ψ =π /4.  (5.106)  

 
Using the obtained results, we can express the relative angle of rotation of the local 

coordinate system as the function of the model’s basic parameters (of dimension, uncertainty, 
and curvature) (n , γ , k ):  

 
-at the moment of the entrance of each cone’s helix on the hyperbola (describing the 

mutual cone’s locations): 
 

 0ψ =arctg[ sin coso oψ ψ ( 2 11 (sin )oψ −+ ] ( , , );Const n j k=  (5.107)  
 
-at the discrete intervals of the helix movement along the hyperbola, when the condition 

(5.88) holds true: 
 

 ( )itψ =arctg(1− sin ψ o cos ψ o +sin2 ψ o )× (1 sin coso oψ ψ± +sin2 ψ o )−1 ,  (5.108) 
where the signs “ +” and “− ” are related to the spirals of the opposite directions.  

The different values of γ  bring the variations to the angles’ values 0, , , ,oϕ ψ η ψ ψ . 
The fulfillment of (5.98) − (5.108) for the coordinates determines the mutual positions of 

the cones in the space and the changes of the geometrical macromodel coordinates in the 
immobile system. The obtained geometrical structure reflects the necessity of memorizing the 
macrodistributions in space, created by the undistinguished states in the consolidation process.  

Let us find the increment of information volumes , 1m mV +Δ  between the volumes of a two 

IN triplet’s nodes m and (m+1): mV , 1mV + , considering their relative difference 
*
, 1 1( / 1)m m m mV V V+ +Δ = − . 

Volume mV ~ 5( )V t , for example, is formed at the moment 5t  of the m-th node’s triplet’s 

cooperation, and volume 1 7~ ( )mV V t+ is formed at the moment 7t of the (m+1)-th node’s 
triplet cooperation.  
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Forming the above triplet’s volumes satisfies the relation following from the geometry of 
the IN node’s hierarchy (Fig. 5.5): 

 

 
3 3

5 5 3 5 4 7 7 5 7 6( ) 2 [3( ) ( )], ( ) 2 [3( ) ( )]c cV t V t t t t V t V t t t t= − + − = − + − , 

 3 22 / 3( ) o
cV c k tgπ π ψ= , (5.109) 

 
where , 3, 4,5, 6, 7jt j = are the cooperative moments of the processes, related to the triplets 

shown on Fig.5.5, and cV is the constant volume determined by the fixed space speed c, the 

cone geometrical parameter k, and the angle at each cone vertex oψ (Fig.5.6).  
From that we get 

 

  
3 3 3

7 6 5 6 7 5 7 6
3 3 3

5 4 3 4 5 3 5 4

( ) [3( / ) (( / ) 1)) (( / ) 1)]
( ) [3( / ) (( / ) 1)) (( / ) 1)]

V t t t t t t t t
V t t t t t t t t

− + −
=

− + −
,  (5.109a) 

 
while the following relations are satisfied at forming the IN: 

5 3 7 5 3,5 6 5 4 3 3,4 5 4 7 6 4,5/ / , / / , / / ,t t t t t t t t t t t tα α αγ γ γ= = = = = =

6 4 6 5 5 4 3,4 4,5 3,5/ ( / )( / )t t t t t t α α αγ γ γ= = = . 
 

This brings the relative volume’s ratio to  
 

 

* 37
3,5

5

( ) 1 ( ) 1
( )

V tV
V t

αγΔ = − = − ,   (5.109b) 

where at 0.5γ = , 3,5
αγ =3.89.  

The relative increment of the volume *
, 1m mV +Δ in the considered node’s (m+1) volume 

1mV + ~ 7( )V t  regarding the previous node’s volume mV ~ 5( )V t  is increasing in 
* ( 0.5)V γΔ = = 57.863 times. 

 
Comments 5.2. The triplet’s asymmetry.  

The geometrical meaning of consolidation at the triplet’s discrete points consists of an 
additivity of the cone volumes Vk

i , and their increments , 2i i
kV +Δ , which form the triplet as a 

new macrostructure: 
 

 
1 2( ) ,i i i

k k k k kV t V V V+ += + +  , 2 2, 1,2(3 )i i i i i i
k k kV V V+ − −Δ = + , i=3,5,7 . (5.110)  

 
The ratio of the volume Vk

i  to the surface Fk  of the forming structure characterizes its 
relative strength Π  (as a specific force of the pressure, measured by a weight’s ratio of the 
volume Vk

i  to Fk
i ):  

 

 
i

k
i

k

V
F

Π = sin( sin ) cos
3

o ob ϕ ψ ψ= , Fk
i =

πρi
2

sin ψ o + πρi
2

.  (5.110a) 
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The condition of an extreme for the relative strength (
∂Π
∂ϕ

= 0 ) is satisfied by the 

execution of relation (5.73), i.e., with a maximum of ρ(ϕ ) .  
Each triplet is a structure with an odd symmetry order, determined by the equations  
 

 
1

2 ,
/ 2 ( / 4 arcsin(2 ) )c k

π
π π −Π =

± − 1

2' ,
/ 4 arcsin(2 )c k

π
π −Π =

−
 at k =1:  

 

 ( ) 3, ( ) 7, ' ( ) 9c c cψ ψ ψΠ ≅ Π − ≅ Π = , (5.111)  
 
where ψ is the angle of rotation of the local coordinate systems in (5.102).  
Moreover, the positions of the triplet’s local coordinate axes in the space are not repeated 
precisely (Fig. 5.7), and any symmetrical transformations cannot bring the above axes to an 
equivalent position.  
The transformation of local coordinates is preserved at ϕ π= ±  (k =1), and it possesses the 
symmetry of a reflection.  
Angle ψ , as a third space coordinate, depends on parameter k .  
With growing k , the number of three-dimensional coordinates is increasing, and the 
restricted relation, admitting an even symmetry order, takes place:  

 

 
lim ( ) 2.66,ck

ψ
→∞

Π + =  lim ( ) 8,ck
ψ

→∞
Π − =  lim ' ( ) 8ck

ψ
→∞

Π = , (5.112) 

 
even though, a “conditional “ symmetry order is the odd at any limited k . 

 

 

Figure 5.7. The OPMC space’s asymmetry, illustrated by the nonrepeating positions of the triplet’s 

local coordinate axes (in the space) 1 1 1( , , )x y zl l l  and 2 2 2( , , )x y zl l l at the coordinate system’s 

symmetrical transformations. 
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The considered space movement is accompanied by a rotary movement along each spiral, 
and therefore it possesses a rotating moment M( i) , defined by the scalar multiplication of a 
system’s impulse imp (i)  and the radius vector of the rotation r (i)  for each local extremal 
piece (i):  

 

( , / )( ) ( ) ( ), ( ) i i

i

L x x tM i imp i r i imp i
C

∂ ∂ ∂
∂

= • = , i
i

dlC
dt

= .  (5.113) 

 
The impulse is preserved for a Hamiltonian model, and at a vicinity of the discretization 

moment, when the macrostructure is forming, the radius of rotation acquires a maximal value 
r (i) = b(i) , where b(i) is the radius of the i-cone base.  

This defines the maximal value of each local rotating moment (for considered the i-piece 
of extremal movement) around the corresponding coordinate axis:  

 

                 M t =τ (i ) = M m ( i) = imp (i) • b(i ) .                                                        (5.114) 
 
The Mm (i)  moment is able to rotate the initial matrix’s eigenvalues for the eigenvector’s 

space cooperation.  
This rotary moment of the macromodel movement exists independently on electrical and 

magnetic fields as an intrinsic information-geometric characteristic during the formation of 
informational structure.  

The obtained OPMC equations are important not only for the implementation of general 
relations (chs.1-4), but also in bringing this math approach to the solution of the actual 
applied problems [63].  

Applying the above equations allowed us to develop the algorithmic procedure and the 
software packet for the restoration of the OPMC dynamic and geometrical structures for a 
given (γ ,c, k , ioα ) (part2).. 

The OPMC is implemented in the IN models a complex object by a hierarchy of the 
sequentially reduced number of independent macrocoordinates. 

 



 
 
 
 
 
 

Chapter 1.6 
 
 
 

THE IMD MODEL’S PHENOMENA 
AND INFORMATION CODE 

 
 

1.6.1. The Model Time Course and the Evaluation 
of the Information Contributions into IN. 
The Triplet Genetic Code 

The model possesses two scales of time: a reversible time that equals to the sum of the 

time intervals on the extremals segments 
1

i n
r

i
i

T t
=

=

= ∑ , and the irreversible time ir
eT  that is 

counted by the sum of the irreversible time intervals itδ  between the extremals segments, 

while the time arrow itδ
G

 arises when the needle controls connect the segments.  
Proposition 6.1.  

The ratio of the above elementary time intervals is evaluated by the formula  
 

 2 1
a

i i

i o

t S
t

δδ Δ
= − ,  (6.1) 

where iSδΔ  is the information contribution delivered between the time intervals it  and 

( )i it tδ+ , oa -invariant  
Proof. Because the needle control connects the extremal segments by transferring 

information between the segment’s window itδ , i.e. from the i-segment’s information 

/i iS tδΔ  to the (i o+ )-segment’s information /( )i i iS t tδ δΔ + , the information contribution 

from the needle control o
iδα , delivered during itδ  is  

 

 /i iS tδΔ − /( )i i iS t tδ δΔ + = 2
oi i
i

i i i

S t
t t t

δδ δα
δ

Δ
=

+
.  (6.2) 
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From other consideration, o
iδα  is evaluated by an increment of information production at 

itδ :  

 
2

2
o io io
i i

S S t
t t

δ δ∂ ∂δα δ δ
∂ ∂
Δ Δ

= ≈ ,  

where following equations sec.1.3.5 we have at the segment’s beginning:  
 

 
2

2
ioS

t

δ∂
∂
Δ

=
2

20
lim ( ) , 1/ 2

i

ti io
i io it

S Ht H
t tδ

∂ ∂δ α
∂ ∂→

Δ
= − = , 

 
 2 2

1 1 12( ) exp( )(2 exp( )t t t t
i i i i i it tα α α α −

− − −= − −� ,  (6.3)  
 
 2

10
lim 2( )
i

t t
i it

α α −→
= −� , ioH� = 2

1( )t
iα −− , o

iδα = 2
1( )t

iα − itδ  . (6.3a) 
 

By substituting (6.3) into (6.2), at oa ( )γ = 1
t
i itα − , we get 2( 1)

a
i

i i
o

St t
δ

δ Δ
= − .•  

Proposition 6.2  
(1)-Each extremal segment's time interval it  retains ( )o γa units of the information entropy;  

(2)-The regular control, applied at the interval it  beginning, brings the negentropy 

a(γ )= t
i itα , and this control is memorized at each of the i-segment’s DP-locality.  

Proofs of (1),(2) follow from the invariant relations sec.1.3.5 and an essence of the 
control actions.•   

 
Corollary 6.1.  

By evaluating the information contribution on the it -extremal by both the segment entropy’s 
invariant ao and the regular control’s negentropy invariant a, we come to  

 
 iSδΔ = oa −a,  

and  

                                                          
2

2| |i o o

i o

t
t
δ − +

=
a a a

a
= *( )δ γ .  (6.3b)  

Corollary 6.2. 
The model life-time ratio *

irT /ir rT T= is evaluated by the following invariant ratio *( )δ γ  

at it -extremal:  

*
irT =

2

2| |o o

o

− +a a a
a

= *( )δ γ .  (6.4)  
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Indeed, using 
2

2| |o o
i i

o

t tδ − +
=

a a a
a

, 
1

n
ir

i
i

T tδ
=

=∑  and 
1

i n
r

i
i

T t
=

=

= ∑ , we come to 

*
irT =

2

2| |o o

o

− +a a a
a

. 

Comments 6.1. Let us count ir
eT by *( )δ γ  at γ ∈(0,1) and 

1

i n
r

i
i

T t
=

=

= ∑ 12 nt −≈ (for IN’s 

dimension n).  
Then the *( )δ γ -function takes the values from 0.0908, at γ =0.1 to 0.848, at γ =1, with 

a minimal value 0.089179639, at γ =0.5.  

And at n=22, 1nt − =2642, we have ir
eT = 471.225, at γ =0.5, with a maximal 

ir
eT = 4480.832.  

Corollary 6.3.  

A minimal 0i

i

t
t
δ

→  leads to equality 

 oa ( )γ −a(γ )−a 2
o ( )γ 0≈ ,  (6.5)  

 
which is approximated with an accuracy *δ a 2

o =0.044465455, ( 0.5)γ = . (6.5a)  
 

Corollary 6.4.  
Because each extremal segment's it interval retains oa ( )γ  units of the information entropy, 

and the regular control brings the negentropy a(γ )= t
i itα  for interval it , while a needle 

control is also applied on this interval, the fulfillment of equation (6.5) means that the 
information contribution, delivered by needle control for interval it ( inf( )ivδ ), is evaluated 
by invariant  

 inf( )ivδ =a 2
o ( ).γ  (6.6) 

 
This equality is preserved only if the needle control actually connects the segments.  
At the needle control absence, the contribution inf( )ivδ = 0, even though the invariant 

oa ( )γ 0≠ , which actually evaluates information of the segment internal process. 

Therefore (6.5) expresses the balance of information at each it -extremal at condition 

0i

i

t
t
δ

→ , which at 0.5γ = is approximated with the accuracy (6.5a).  

The same result follows at 2ai oSδΔ =  when the needle control compensates the between 
segment’s contribution.  

At 2ai oSδΔ >  we have 0i

i

t
t
δ

> , and at iSδΔ →∞ (sec.1.3.5) we come to i

i

t
t
δ

→∞ . 
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Comments 6.2. Since the needle control joins the extremal segments by delivering 
information a 2

o ( )γ , we might assume that *δ a 2
o  represents a defect of the a 2

o  information, 
which is conserved after cooperation.  

Taking this into account leads to a precise fulfillment of the balance equation in the form  
 oa ( )γ −a(γ )−a 2

o ( )γ − *δ a 2
o ( )γ =0,  (6.6a) 

while *δ a 2
o  is the information spent on the segments cooperation. This result also 

corresponds to relation (5.42c) evaluating (at the equal a( 1γ )and a( 2γ )) the information 

contribution from the needle control by ~2a ( )γ ≅ a 2
o ( )γ .

．
 

Proposition 6.3. The information structure of a triplet. 
A triplet, formed by the three-segments cooperative dynamics during a minimal time 

(secs.1.5.2,1.5.3), encloses information 4a 2
o +3a≅ 4 bits at 0.5γ = , while each of the IN’s 

triplet’s node holds information a 2
o +a≅ 1 bit. 

Proof. The triplet’s dynamics include two extremal segments, joining first into a doublet, 
which then cooperates with a third extremal segment (Fig.6.1).  

Forming the triplet during a minimal time requires building the doublet during the time 
interval of a third extremal segment, while all three dynamic processes start simultaneously 
with the action of three starting controls. Each two extremals consist of two discrete intervals 
( 11 12 21 22, , ,i i i it t t t ) where i  is the triplet number; 11 12,i it t are the first and second discrete 

intervals of the first dynamic process; 21 22,i it t are the first and second discrete intervals of the 

second dynamic process; 3it is a single discrete interval of the third dynamic process. 

0

a

a

a

a

aa

a a

t 1 t 2 t 3 t 4 t 5

t

a+a~4a

2a

0a

a 0

0

0

a 0
2

2aa

a

0

0

0

a+a~4a

2

a 0
0
2

2

2
0a

=

=

 

 Figure 6.1. 
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The above requirement for a triplet with minimal process’ time implements the following 
equations on the first discrete interval for the first and second dynamic process:  

 
 2

1 11 11 11 ai o i i i ot tα α− + + = − oa +a+a 2
o −

* 2aoδ ,  

 2
20 21 21 21 ai i i i ot tα α− + + = − oa +a+a 2

o −
* 2aoδ ,   (6.7)  

 

where 1 11i o itα = oa , 20 21i itα = oa , 21 21i itα = a, 12 12i itα =a.  
This means that at each of these discrete intervals, the information balance is fulfilled with the 
accuracy * 2aoδ .  
The first and second dynamics, at the second time interval, convey the total contribution 

13 13i itα + 23 23i itα +2 * 2aoδ , followed by applying the needle control, which joins both 
dynamics into the doublet. This brings the balance condition in the form 

13 13i itα + 23 23i itα +2 * 2aoδ = 2ao . (We count here the information contribution from a defect 

2 * 2aoδ = *( )δ γ  at both intervals 21 22,i it t ).  
Joining the third segment’s discrete interval with the doublet at the IN node requires 

applying another needle control, acting at the end of third interval (Fig.6.1).  
This leads to the balance equation for third discrete interval in the form  

 
 30 31 31 31i i i it tα α− + +a 2

o −
* 2 2 0,o o oδ ≅ − + + ≅a a a a   (6.8) 

at 0.5γ = . 

It can be seen that a total information, delivered to the triplet, is equal to 4a 2
o +3a, which 

compensates for the information being spent on the triplet’s cooperative dynamics:  
 
 3 oa + 12 12 22 22i i i it tα α+ 31 31i itα+ + 13 13i itα + 23 23i itα +2 * 2aoδ . (6.9) 
 
Let us verify this result by direct computation of the contributions 13 13i itα  and 23 23i itα , 

using the following formulas for each of them: 
 
 1

13 13 12 3 11 12 3 11 12 3 11( ) exp( ( ))[2 exp ( )]i i i i i i i i i i it t t t t t tα α α α −= − − − − , 
 
 1

23 23 12 3 21 12 3 21 12 3 21( ) exp( ( ))[2 exp( ( )]i i i i i i i i i i it t t t t t tα α α α −= − − − − ,  
 
 12 3 11 12 11 3 11( ) ( / 1)i i i i i i it t t t tα α− = − =a 13( 1)γ − ,  
 
 22 3 21 22 21 3 21( ) ( / 1)i i i i i i it t t t tα α− = − =a 23( 1)γ − ,  (6.10)  
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where the triplet’s parameters at γ =0.5 take the values 13γ ≅ 3.9, 23γ ≅ 2.215, a≅ 0.252.  

The computation shows that the regular controls, acting at 13t  and 23t , deliver 

information a 13( 1)γ − =0.7708 and a 23( 1)γ − =0.306 accordingly, while the macrodynamic 

process at these intervals consumes 13 13i itα ≅ 0.232 and 23 23i itα ≅ 0.1797. Including the 

defect *( )δ γ , we get the information difference ≅ 0.50088≅ a 2
o (at 0.5γ = ). 

This means that both regular controls, acting on the second doublet’s intervals, provide 
necessary information to produce the needle control, and therefore, the doublet satisfies the 
balance equation that does not need additional external information for the cooperation.  

The doublet cooperation with the third extremal segment forms the triplet IN node, which 
encloses the information contribution from both the doublet’s and the third segment’s needle 
controls (6.8), providing the defect * 2aoδ  that satisfies the balance in (6.8).  

The triplet information at 4a 2
o +3a≅ 2.75 (at 0.5γ = ) is measured in Nats (according to 

the basic formula for entropy (ch.1.1)), or by 3.96≅ 4 bits in terms of 2log  measure.  

Because the IN’s triplet node consists of the doublet, which encloses information * 2aoδ , 

and the third segment that transfers information a 2
o +a− * 2aoδ ≅ 0.70535 Nats to the node, 

the total node information is a 2
o ( γ )+a( γ )≅ 1.0157 ≅ 1bits.  

This means that, in addition to the sec. 1.5.3 statement 1.5.1, the triplet represents also an 
optimal formation carrying both VP information invariants. •  

Comments 6.2a. To form a triplet, each of its component’s initial complex eigenvalues 
should have a nonzero imaginary part, because every first triplet segment’s time interval is 
associated with disappearance of the imaginary eigenvalue’s component, and a third 
segment’s time interval coincides with the equalization of the real components of the two 
previous segments.  
Therefore, one of the necessary conditions of forming an optimal triplet consists of having its 

 
 / 0io io ioγ β α= ≠  at / 0io io ioγ β α= ≥ .  (6.10a) 

Taking into account the necessary condition / 1io io ioγ β α= ≤ , limiting a creation of the 

macrodynamics, we come to the admissible range of the basic model’s parameter ioγ : 
 

 1 0ioγ≥ ≥ ,  (6.10b) 

which restricts both the triplet’s and the cooperative dynamics’ formations.  
A number of joining triplet’s nodes is limited by a total external information, delivered for 
their cooperation.  
Below we evaluate this information and determine the amount of information necessary for 
cooperating of any number of the segment’s chain.  

Comments 6.3. The triplet’s both regular and needle controls produce four switches 
(Fig.6.1), which carry information ≅ 4 bits. Since each switch can encode one bit symbol, or 
a single letter, it follows that a triplet is a carrier of a four letter’s information code.  
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This is a triplet’s genetic code, initiated at the triplet’s formation.  
Therefore, the creation of an external code with the same information switches, applied 

to the given initial eigenvalues spectrum, would be able to restore the triplet’s information 
structure.  

This means that such a code might reproduce the triplet’s dynamics, which the genetic 
code had encoded.  

Comments 6.4. The triplet’s information structure could serve as an information model of 

a DNA’s triplet, which is the carrier of the DNA four letter’s code.  

Comments 6.5. There are two options for building the triplet’s information network.  
One of them (IN1) consists of starting each new triplet with every three subsequent 

eigenvalues of the model initial spectrum.  
The second (IN) includes a continuing the cooperation of an initial triplet with a next 

doublets and so on (Figs.5.4, 5.5).  
In this procedure, the following next doublet is formed by the third dynamics of the 

previous triplet and the first dynamics of the current triplet.  
Such dynamics, satisfying equations (6.9), (6.10), deliver information a 2

o  necessary to 
form the doublet. The doublet’s cooperation with the current triplet’s second extremal 
segment also needs the needle control information a 2

o . Thus, the second joint triplet includes 

the information from the third segment a 2
o +a, which brings also a total information 

contribution 4a 2
o +3a ≈2.75 Nats (at 0.5γ = ), or≈ 4 bits (at 0.5γ = ). 

Actually, the second triplet contains an original and independent information delivered by 
two regular controls and three needle controls (Fig.6.1), which is equal to 3a 2

o +2a≈2 Nats, 
or ≈ 3 bits. This means that 4-3=1 bit is transferred from the previous triplet’s node, being an 
equivalent of a 2

o ( γ )+a( γ )≈1.02 bits. Information transferred to a first IN node is equal 

a 2
o ( γ )+a( γ ), because the triplet’s doublet conserves information - * 2aoδ .  

Therefore, each IN’s triplet contains the same information 4 bits, while each IN’s node 
encloses information a 2

o ( γ )+a( γ )≈1.02 bits, which is transferred between the IN’s 
nodes, as the node’s information code. Each third code’s digit integrates the triplet’s code, 
and a fourth code’s digit integrates all fourth code’s digits. 

Finally, each triplet is characterized by the four letters genetic code, whose first letter is 

created by the previous triplet and is transferred from the previous IN’s node. Such a code 

letter is dependable. Thus, each IN’s current node includes the fourth letter of the previous 

triplet, while the triplet’s encoding needs just three letters of the independent genetic code.  

Even if the IN node’s code is the same (for an entire IN), its information value depends 
on the node location within the IN’s structure, because each following IN’s node gets 
information from the previous IN’s node.  

At this case, both the first and the second IN’s triplets require 4+3=7 bits information 
code. The following third triplet contains the same information 3.0 bits, while all three triplets 
require information 10.0 bits.  
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Therefore, each three joint triplets contain 9 bits, except the first one having 10 bits. The 
n-dimensional macromodel, cooperating into the IN with m=(n+1)/2 triplets, is able to 
enclose information [(m− 1)3+4]=(3m+1) bits.  

Corollary 6.5.  
A linear chain of the cooperated n-extremal segments contains a total information  

na ( )γ +(n−1)a 2
o ( )γ , which is able to encode the chain.  

Corollary 6.6.  
The n-dimensional macromodel, cooperating into the IN1 with m=(n/3) triplet’s nodes, 
accumulates 4m bits information code that encodes information of the entire IN1.  
This means that the same n-dimensional macromodel, cooperating into the IN, can be 
encoded by the information code having the (m− 1) bits less than the IN1 code.  

Comments 6.6. The information, transformed from each previous to a following triplet’s 
node, has an increasing information value, because each following triplet’s node encapsulates 
information from all previous triplet’s nodes.  

The information valuelessness (as a measure of quality of information) we define as a 
code's unchangeability with other code's having the same quantity of information.  

Each triplet contains the same quantity of information 4a 2
o +3a≅ 4bits, and transfers 

a 2
o +a≅ 1bits to the following node, but the above information quantities of the previous 

triplet do not evaluate the structure of the following triplet.  
Since the information invarints a o  and a of the following triplet include the structural 

information from the previous triplet, which depends on its location within the IN, both 
triplets' equal quantities of information are unexchangeable.  

The triplet's sequential connections by the successful contributions of the information to 
each following triplet binds the IN's nodes is such a way that its final node's invariants a 2

o +a 
accumulate an entire IN network's entropy, having a maximum valuelessness.  

Finally, a time-space sequence of the applied controls, generating the doublets and 
triplets, represents a discrete control logic, which creates the IN's code as a virtual 
communication language and an algorithm of minimal program.  

The code is formed by a time-space sequence of the applied inner controls (both regular 
and needle), which automatically join the ranged discrete moments (DP) of the successive 
equalization of the model's phase speeds (eigenvalues) in the process of generation of the 
macromodel's spectrum.  

The equalized speeds and the corresponding macrostate's variables are memorized at the 
DPs by the optimal control actions.  

A selected sequence of the minimal nonrepeating DPs, produced by a minimal ranged 
spectrum of eigenvalues and the corresponding initial macrostates, generates the optimal IN's 
code, which initiates the ranged sequence of the IN's doublets, cooperating sequentially into 
triplets.  

The optimal code consists of a sequence of the double states, memorized at the { 1
1}n

i it −
=  

DP-localities, and each n dimensional model is encoded by n intervals of DP.  
Each triplet joins and memorizes three such discrete intervals, generating the triplet’s 

digital code. 
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The above results reveal the procedure of the transformation of dynamitic information 
into a triplet’s code, which is governing by the VP. 

The number of the spectrum’s cooperating strings (frequencies) is limited by the amount 
of delivered external information, which is restricted by both the admissible ioγ  and a total 
information provided by the macrodynamics (3.152), (5.42c), (6.11a,b).  

Because these limitations depend on chosen model and the external information, the 
triplet’s digital program is a finite, allowing to avoid the Kolmogorov principal 
incompatibility (the details are in ch.1.9).  

1.6.2. The Model Information Geometry (IG), Its Specific, 
and the Structure 

The solution of the optimal VP problem, which generates the geometrical space 
distributed structures, connects the macrodynamics and the information geometry (IG), 
initiated by macrodynamics.  

The IG describes the time-space locations, configurations, and shapes of the information 
macrostructures, created by information contribution of the space distributed macrodynamics, 
with a feedback on macrodynamics.  

The IG reflects the geometry of informational (virtual) connections, imposed by the 
information path functional’s measure of uncertainty, as an additional to a regular way of 
representing and storing information.  

The following specifics describe the IG essentials.  
The information time-space macromovement along the extremal segments is modeled by 

a spatial trajectory, which is represented by a spiral shaped helix curve, located on the conic 
surface (Fig.5.6). Both the spiral and cones’ equations satisfy the VP (chs.1.3,1.4). 

 

Figure 6.2. The cone’s parameters (the indications are in the text). 
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A three-dimensional information geometry is formed at a locality of each joint three 
linear spiral segments at the cones' surfaces, forming a space-time triplet (Figs.5.4) with the 
cone’s parameters (Fig.6.2).  

Such a triplet is an optimal elementary macrostructure satisfying to the VP.  
The consolidated macrodynamics originate a space movement, forming a sequence of the 

triplet's geometrical macrostructures, organized in the information hierarchical structured 
network (IN) (Figs.5.5, 6.3).  

 

 

Figure 6.3. The IN geometrical structure represented by the hierarchy of the IN cones’ spiral space-time 
dynamics with the triplet node’s (tr1, tr2, tr3, ..), formed at the localities of the triple cones vertexes’ 

intersections, where { }t
ioα  is a ranged string of the initial eigenvalues, cooperating around the 

1 2 3( , , )t t t  locations; T-L is a time-space. 

The optimal IN nodes’ cooperation, fulfilling the VP minimum, consists of forming a set 
of triplet’s substructures, which are sequentially enclosed according to the IN’s hierarchy, in 
such a way that each following triplet includes the previous triplet, and the ending IN’s node 
encapsulates the IN nodes’ total information. This leads to an entire optimal IN's structure as 
a sequential connection of the triplets' hierarchy, where each second triplet joins one of the 
cone's spiral of a previous triplet and the doublet' structure, formed by the connection of the 
two following cone's spirals. The IN space macrostructure is built by a set of the time-space 
helix's form trajectories, located at an external shape of the local invariant cones.  

The segment’s macrodynamics at each current moment is determined by the local cone’s 
space coordinates presented on Fig. 6.2: the spiral radius vector’s projection on the cone’s 
base ρ , depending on the radius’ parameter b and the angle ϕ  at the base; the fixed angle at 

the cone's vertex ψ o ; and a relative position of the cone’s local coordinate systems ψ .  
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At the moment it  of the segment’s cooperation in the triplet’s node, these coordinates (at 
γ =0.5) acquire the increments  

 
 ( )sin / 2o

itδϕ ψ π= , ( ) ( ( ))i it b tδρ μ= ,  (6.11) 

with a total cone’s space angle ( )itψ =
1

( )
i

k
k

tδψ
=
∑ , counted from the process’ beginning up 

to the end of each it  interval.  

The increment of the space angle ( )itδψ  between the IN nearest nodes (m− 1) and m 
determines an orientation of the m-th node’s local coordinate system.  

The information contribution from the segment’s macrodynamics at a triplet’s node m, 
formed at it , is defined by the invariants a( it )= ma (γ ), oa ( it )= ( )o γa , which in the 
geometric space depend on both the scalar invariant’s value and the cone’s relative position’s 
space angle ( )i mtψ ψ= :  

 
 ma ( , m

αγ γ )= ( , )m mψa a , ( , )o m
αγ γa = ( , )mo o mψa a , (6.12) 

where m
αγ  is the IN node’s multiplier (equals to the eigenvalues’ ratio for the nearest nodes), 

which determines the node position within the IN, connected to the space angle mψ . 

Relations (6.12) at a given IN with the fixed ( , )mγ ψ  mean that each the IN node encloses 
the invariant information quantity defined by 

 
 a in

m= ( , )m mψa a + ( , )mo o mψa a ,  (6.12a) 
which is dependable on the node’s location within the IN. At each time-space discrete interval 
( it , il ) the information geometry produces information ma (γ )= ( , )o

m mψa a  that is revealed 
only by the end of this interval. Within this interval, the geometrical field conceals the 
information ( )o γa = ( , )o

mo o mψa a .  
The rotations and shifts of the local triplet cone’s geometry are performed according to 

the IN’s enclosed control’s logics, which determines an algorithm of the program and the 
triplet’s code that organizes each IN level of the model.  

A set of the control’s switched points determine the model's switching control lines 
Lc (Fig.6.4), which is formed by the model’s spatial intervals: 1 1( ) ( )i i i i il l t l t+ +Δ = − .  

Each of them has a discrete cellular geometric structure, formed by the joint triple cones 
(Fig.6.4a,b). The cell represents the IG elementary unit, which encloses invariant information 
(6.12a), measured in the bits of a cellular information code. 

The cell’s space metric mds , defined by the cell diameter, acquires the invariant 
information measure  

 inf || ||mmes ds = a i
m ,  (6.13) 
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which depends upon the cell m location within the IG.  
This means that in the cellular IG, with different locations have distinctive information 

values depending on their position in the IN’s node hierarchy, which, in turn, depends on the 
model’s eigenvalues for this node. (In the Euclid space geometry, the metric invariant does no 
depend on the metric’s location, while in the Riemann space it depends on a space curvature 
via the fundamental metrical tensor).  

Thus, the IG cell’s geometry is generated by the IN node’s consolidated space movement, 
while each level of the IG hierarchical organization is evaluated by the number of the 
enclosed nodes into the considered IN node’s level.  

The related triplet node’s information code posseses a hierarchical dependency on the 
node’s position within the IN hierarchy.  

The sequence of the cones' vertexes and bases’ connections carries out the entire spatial 
optimal macrotrajectory, located at the surfaces of joint cones, which integrate the IN nodes’ 
total contributions.  

A certain IN’s space trajectory enfolds a specific cell’s code, which determines the 
particular IN’s organization, enclosed into the cooperative cellular IG.  
Such a time-space trajectory with the code cells is simulated on Figs.6.3,6.4.  

Each IN node collects the contributions of the information path (MP, sec. 5.3) coming to 
this node (along the IN hierarchy of preceding nodes and accumulating a prehistory of this 
node formation.  

The IN’s node’s information volume is increasing according to the ratio (5.109a,b). 
Each space information invariant a in

m  represents a vector, measured by the quantity of 

information a and the angle ( )m
m m lψ ψ=

GG
 of the IN node coordinate system’s ml

G
 location, 

which gets its increment on angle mδψG  at the next IN’s node.  
This invariant can only be applied to the above specific node location. 

Let us find a scalar distance 1|| || || ||m m ma a a+ − = Δ
G G G

 between two vectors: 

                   ( , )m m ma ψ= a a GG
 and 1 1 1 1( , ),m m m m m ma ψ ψ ψ δψ+ + + += = +a a G G G GG

,  

which at / 4mδψ π=G
equals to || ||maΔ ≅

G
07653 ma  at the movement from triplet (m− 1) 

to m.  
At / 4mδψ π= −

G
, we get the negative increment || ||maΔ ≅

G
− 07653 ma ,  

which corresponds to the movement from triplet m to (m-1).  
From that, the space invariant 1m+a  for triplet (m+1) acquires the value ma (1+07653). 

The same increment gets the triplet’s (m+1) space invariant 1, 1( , )m o o mψ+ +a a G
with regard to 

( , )mo o mψa a G
at the shift of the triplet’s coordinate system on angle 1m m mψ ψ δψ+ = +

G G G
: 

1,m o mo+ =a a (1+0.7653), as well as the triplet’s eigenvectors scalars: 

1, ,

l l

m o m o
λ λ

+
= 1.7653,

1, ,

l l

m o m o
α α

+
=  1.7653, and 

1,1 1

l l

m m
α α

+
= 1.7653. 
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c) 

 

Figure 6.4. Continued on next page. 
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Figure 6.4. Simulation of the double spiral cone’s structure (DSS) with the cell (c[l]), arising along the 

switching control line Lc (a); with a surface 2
nF  of uncertainty zone (UR) (b), surrounding the Lc-

hyperbola in the form of the Ls-line, which in the space geometry enfolds a volume V3
n (b,c). 

That is why the invariant’s scalar relations: 1 11,1

l
m mm

lα+ ++
=a  and 11

l
m mm

lα=a , as well 

as the the invariant 1, 1,1 ,1

l
m o m om o

lα+ ++
=a , ,

l
m o momo

lα=a  will be preserved, determining the 

same space distances 1ml + = 1ml and 1,m o mol l+ = , if only the above angle is changed. These 
changes in the information invariants bring the increasing contributions from both the 
extremal segment’s information 1,m o+a and the information contribution from the regular 

control 1m+a  in 1.7653 times, as well as the increase of the information contribution from the 

needle control 2
1,( )m o+a in ~3.116 times. This means that both the needle control’s and 

regular control’s information effectiveness grow with the addition of each following (m+1) 
triplet, which increases a “strength” of the following triplet’s connections.  

These contributions also change the considered balance in equations (6.8). 
Each IN node’s space location, which encloses information a in

m , also virtually 
accumulates the space locations of the previous nodes, which had been distributed along in 
the IN’s hierarchy and concurrently are consolidated in this node’s geometrical spot.  

The cooperation is accompanied by growing the node’s information geometrical 
“density” a in

m / k
mlΔ , along the IN hierarchy, where k

mlΔ  is a space location of a node k.  

For example, if a node’s 1 geometrical location 1
mlΔ contains information a in

m , its density 

is a in
m / 1

mlΔ ; the node’s 2 geometrical location 2
mlΔ , containing the same information a in

m , has 
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the geometrical density a in
m / 2

mlΔ . A node 3 that also contains information a in
m  in a 

geometrical location 3
mlΔ , formed by the cooperation of the nodes 1 and 2, satisfies the 

relation a in
m / 3

mlΔ =a in
m / 1

mlΔ +a in
m / 2

mlΔ .  

At 1
mlΔ = 2

mlΔ , the geometrical density of the third node increases twice ( 3
mlΔ = 1

mlΔ /2).  
Each such a node acquires a raise in information geometrical intensity, or a “strength” 

through growing numbers of the enclosed triplet-nodes.  
This leads to an increase of a local intensity of both regular and needle controls, 

determined by the values of the corresponding information invariants a and a 2
o accordingly.  

The above hierarchical dependencies are carried out by the spatial-time chain of the 
model’s cooperating segments, whose invariants, controls, discrete intervals, and related 
information code satisfy these phenomena.  

Knowing the space-time distribution of the model’s invariants allows us to predict both 
the intensity of each segment’s needle control, and the following discrete interval which 
determines the related code. 

Both the controls and the code are fixed and memorized in the IG space points and the 
nodes at the transformation from the temporal to the spatial macrodynamics.  

 

 

Figure 6.5. Structure of the cellular geometry, formed by the cells of the DSS triplet’s code, with a 
portion of the surface cells (1-2-3), illustrating the space formation. 

A set of the possible IN space trajectories (at the different model’s eigenvalue’s 
spectrum) defines an entire model’s potential information geometrical structure, which 
encodes the creation of a wide diversity of the IN’s macrostructures, generated by the genetic 
code. Along the switching controls line (Fig.6.4a), the IN set of the macromodel’s cones 
allocates a geometrical volume V3

n , whose external surface 2
nF  identifies the IN geometrical 
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macrostructure’s border (BMS) where the macromodel is open for the external interactions. 
The distribution of the local BMSs along IN’s hierarchy allows each node to keep an external 
communication through its BMS and have an access to the entire model’s IG structure.  

The total 2
nF geometrical structure is composed by the quadrilateral curved cellular 

structure (Fig.6.5), which carry a set of genetic model’s codes for a source-generation of all 
potential macrodynamic time-space structures, capable of developing in the future.  

The geometrical IG phase space fabric (where the VP regularities act), consists of the 
code-cells (Fig.6.5), which form an expending hyperbolic cone’s curved structure.  

Any trajectory, located in this space, acquires a corresponding sequence of the code cells.  
The model’s genetic code is enfolded into this cellular structure in the triplet form a 

juncture of the local triplet’s spirals. Such a code's universal structure can be applied to a 
variety of specific macromodels built for diverse processes. Since the optimal control is 
formed by a duplication of the model’s macrostates at each it , both the switching control line 
and the macrostates are represented by a double spiral curve, carrying the cell’s information 
code (Fig.6.4). The optimal IN code’s double spiral-helix triplet structure (DSS) (Fig.6.4b-c), 
is shaped at the localities of the sequential connected cones' spirals, which form the time-
space path-line of transferring the IN's information through the triplet's hierarchy. 

The IN optimal code is both a virtual communication language and an algorithm of a 
minimal program for building the IN. The code’s information language describes the object’s 
uncertainty. Both the code and algorithm are the attributes of systemic connections, generated 
by the macromodel’s primary information string { } ~ { }io ioα ω  and the formed IN’s 
structure. The code embraces both the micro-and macrolevel’s regularities and their 
structuring into the optimal system’s organization.  

Both a system and its model could be restored by knowing their genetic code. Because 
the space cell encloses the code-message at any interactions, satisfying a law, this IG code 
conceals information regarding a law.  

The information, transformed from each previous to a following triplet, has an increasing 
value, because each following triplet encapsulates and encloses information from all previous 
triplets. The location of the node within the IN’s hierarchy determines the value of 
information, encapsulated into this node. 

The information valueness as a measure of quality of information is defined by a code's 
unexchangeability with other codes having the same quantity of information.  

The hierarchy of the triplet code’s creates the IN code’s enclosed hierarchical 
dependency, where the encoded macrostructures depends not just on the total number of 
corresponding code’s symbols, but essentially on the coding structure, presented by the 
hierarchy of the previous code’s symbols. This information systemic property allows a 
sequentially integrating of the encoded information into the code words of the same length.  

A particular code's optimal program identifies the details of each space-time 
macrodynamics. The object's identification leads to the possibility of a reconstruction of 
optimal code for each class of the modeled processes allowing their universal information 
description. In general, this approach’s information valueness defines it as a mutual 
unexchangeability of the information with other information having the same quantity. In the 
IN, this quality is measured in the cell’s bits information code, attached to the specific node’s 
eigenvalue and its dimension, which models the particular event’s information.  
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The classical information theory does not make any difference between a quality of 
information obtained, for example, from a number of people and from the same number of 
cards or stocks, and so on.  

Multiple attempts to introduce in information theory a constructive definition of a quality 
(value) of information [62, 63, others] were unsuccessful. 

1.6.3. The Model Uncertainty Zone and Its Evaluation  

Each o-window between the extremal segment is a source of uncertainty generated by the 
random microlevel. Such a local uncertainty also exits at each locality of the triplet’s node 
where the doublet joins a third extremal segment.  

The optimal controls, by closing the o-window, overcome the uncertainty, connect the 
segments, and initiate a sequential time-space movement from each previous to a following 
IN node. Along such a movement, a zone of uncertainty UR, surrounding all IN node, is 
formed (Fig.6.4).  

Each local uncertainty is evaluated by the irreversible time interval  
 
 *( ) ( , , ),i i it t mαδ δ γ γ γ=  ( , ) ( , ) /t

i i io it mα αγ γ α γ= a o (γ ),  (6.14) 
which depends on the ratio of the imaginary and real segment’s eigenvalues: 

t
io
t
io

βγ
α

= =b o (γ )/a o (γ ), the ratio of real eigenvalues i
αγ , and the IN’s node number m. 

This allows evaluating the UR it terms of the above model’s invariant, which determines also 
the information invariants and the IN parameters (sec.1.5.3).  

As it follows from the numerical computations of (6.14), at any γ <0.5, or γ >0.5, the 
UR is enlarging, compared to γ =0.5. This allows selecting the UR of minimal geometrical 
shape. A minimal itδ  grows with rising m. This leads to the UR extension at increasing m 
(Fig.6.4).  

The UR information border can be evaluated by the relative increment of a segment’s 
entropy (concentrated in UR) through the model’s invariants: 

 

 ( ( 0) ( *)) / ( 0)o o o oh γ γ γ= = − =a a a   (6.15) 
at changing γ  from 0 to γ = *γ , where *γ  corresponds to the segment’s location at the UR 
border. The above consideration extends the VP application, allowing us to conclude that  

 
(1)-the model’s invariants not only characterize the region between the model’s real and 

imaginary eigenvalues, but also limit the UR;  
(2)-the model’s irreversible time (ch.6.1) emerges as an information measure of 

uncertainty for both each local o-window and the whole UR; 
(3)- the UR (6.14) can be measured in a discrete unit of uncertainty, expressed in the bits 

of the information code, as well as by the cell’s number and sizes in the IG. 
 
The last result is naturally connected to the notion of information as a measure of 

uncertainty, allowing us to introduce its geometrical representation and a new meaning via the 
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irreversible time. Both the reversible time intervals =it a t
o ( )/ ioγ α  and the equivalent of the 

scalar space intervals il =a / l
mo ioα  are determines by the model’s eigenvalue spectrum.  

The entire UR’s geometry identifies the IN’s geometrical border where the macromodel 
is open for the external interactions, modeled by the microlevel.  

The conic structures, generating the UR cells, form an information background for the 
IN. At the given cells’ logic, the sequence of cells’ blocks forming the IN nodes, can be built. 
For such an IN, both ma (γ ) and ( )mo γa are the m space distributed node’s invariants, 

preserving their scalar components (a, a o ) for a fixed γ , and depending geometrically on 

the relative shifts of angle ( )m m
αψ γ  and the angle starting position.  

1.6.4. Creation of the IN geometry and a Genetic Code of the 
Information Cellular Geometry 

Let us describe the IG creation from the microlevel stochastics, considering the 
generation in a random space the distributed n -dimensional state vector x(l )  at the initial 

moment to , where l  is the three-dimensional vector of geometrical coordinates, composed 

by the set of local geometrical vectors l {l i(to )}  for each of i ∈n  components of state vector 

x . We assume that the ensemble of the random initial x(l (to ))  is able to generate the 

(n × 3) -dimensional differential macrooperator A(l (to ))  with the set of three-dimensional 

space vectors l i(to )  for each of i -dimension, defined by the A(l (to ))eigenvectors (ch.1.4). 

Each vector from the l i(to )  set has an equal length and different initial angle. Total possible 

sets of these l i(to )-vectors can be represented by the rotation of the initial one, having a 

constant length vector l i
o (to ) , on the angle, equivalent to the discrete space interval li (ti) .  

Applying the VP, we presume the existence of a rotating moment ( )M i (sec 1.5.4) acting 

on these l i
o (to )  at each of the i extremal segments. Under the rotating moment, each three 

dynamic eigenvectors of the macrooperator is undergoing the transformation of rotation, 
which is capable of successive diagonalizing the dynamic operator.  

Such a set of vectors generates a family of cones and helixes on the cones, rotating 
around the chosen vector l i

o (to ) . The (n × 3) dimensional set of all possible l i
o (to )-vectors 

i ∈n  generates the rotating hierarchy of the cones, forming the IN's triplet's dynamic 
structures (Figs.5.5,6.5).  

The model's switching control lines Lc  are formed by the model’s spatial intervals: 

1 1( ) ( )i i i i il l t l t+ +Δ = − . Both the multiple “left” ( )i il t  and right 1 1( )i il t+ + points can be 

found from the corresponding relations il = ( , )m mψa a / ( )l
im ilα  and 
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1il + = ( , )m mψa a 1 1/ ( )l
i m ilα + + , depending on the ranged discrete spectrum of the model’s real 

eigenvalues, which grow up with rising the node’s number ( )mm m αγ= .  
The rotating Lc  sets form the hyperbolic strip Ls ∈Lc , which includes all Ls , located 

within the UR (Figs.6.4a-c).  
The UR is determined by the admissible error E  at the region of the joint triplet's cones. 

Each local cone's region error iε E∈ , which covers the o-window for the IN's node, forms a 
circle area that defines the E -strip’s error E . The rotating Lc  allocates the UR geometrical 

volume V3
n  with an external surface F2

n . Particular switching control lines Lc  could be 
located inside and on the surface of the uncertain zone UR. An entire UR’s external surface 
Fn

2  identifies the IN’s geometrical border where the macromodel is open for the external 

interactions. Total F2
n  is composed by the set of cross-sections of Ls -strips with E -strips: 

E(εi)× Ls(li (ti ))  at the region of assembling the triple's cones. Each cone's region iε E∈  

is orthogonal to the cone's vertex having the line-projections {lci } of the surface F2
n .  

The time-space region Ls(li (ti))  between each of the following E(ε i)  cone's regions 
limits the UR's boundaries, which are determined by the above cross-sections. This leads to 
the external shape of the elementary UR's boundaries (εi × li ), which form a cell 

CF [ li × lci ], where the F2
n  unifies the CF  cell's sets for the Ls -strips, limiting the UR 

boundaries, while the F2
n  shape takes into account the cells’ specific forms.  

The initial three segments, consolidated on the switching control line Lc , form a three-
dimensional IG. Their following merge to the next four eigenvalues’ strings can generate 
7=4+3 extra dimensional space-time IG (with a total of 11 extra dimensions if the next four 
strings are added), which are located at the iε -region, wrapped into the UR [34].  

The mutual dimensions’ information interactions at DP-localities (with potential chaotic 
dynamics) are compensated by the needle controls, which bind these dimensions.    

The information geometry is represented by a discrete cellular structure of invariant 
cones with a set of time-space piece-vise trajectories, located on the cones' surfaces.  

Since each IN’s node contains the same number of the IG cells, the cells sizes, 
characterized by the cell’s volume V3

n  and external surface Fn
2 , are growing with the rising of 

the node number m. The cells’ number within the node conceals the node’s code, while the 
cell’s space size, depended on m, specifies the node’s position within IN.  

The particular model’s 2F ε  structure carries the cells code as the IG logical information 
universal characteristic, which encloses both the creation of model’s dynamics and geometry 
and includes all their phenomena.  

A set of possible space trajectories at Fn
2  define the potential creation of a wide diversity 

of macrostructures, generated by the genetic code.  
We apply to the hyperbolic structure (Fig.6.4) with volume V and an external surface F  

both the Gauss-Ostrogradsky theorem in the form 
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  v v
V F

grad s dv s dfΔ = Δ∫ ∫  

and the model’s dynamic equation  

 
vx
t

∂
∂

= , v
v v v

xl grad s i
t

∂
Δ =

∂
,  

where vi is a differential information flow, determined by a differential information potential 

vgrad sΔ  and an elementary volume’s kinetic matrix vl , while vsΔ  is an information 

produced within an elementary volume by the model’s information dynamics. 
At a vgrad sΔ , directed to the external surface, where information interactions with the 

environment takes place, the generated information is concentrating on the structure’s 
external surface F . 

The external surface’s square and its cellular geometry impose a limit on the generated 
external information, which also restrict the model’s dynamic flow.  

Finding the external surface’s square of the hyperbolic structure, formed by the IN’s 
cellular geometry  

Let find the square F of the surface Fig.6.5, which is obtained by a rotation of the 
switching control line in the form of a hyperbola /y a x=  around some axis.  

Generally, a surface, formed by rotating a curve with an elementary length 
dl= 2 1/2(1 / )dy dx+  around an axis (0-x), has the equation 

  2 1/22 [1 ( / ) ]
B

A

F y dy dx dxπ= +∫ . (6.16) 

Integrating this equation by using /y a x= leads to the following relations: 

2 4 1/2 1 1 2 4 4 4

2 4 1/2 2 4 1/2 2 2 4 1/2 1

4 3 3 2 1/2 1 3 2

2 [1 ] , , , , ,

2 [1 ] 2 [1 ] 2 [1 ] ,

,4 , 1 / 4 , 1 / 2 [1 ] 1 / 2 [1

B

A
B B B

A A A
B

A

F y a x dx y ax x ay dx ay dy x a y

F y a x dx y a y ay dy a y ay dy

y z y dy dz dy y F a a z y y dz a a z

π

π π π

π π

− − − − − −

− − − − −

− − − − −

= + = = = − =

= + = − + = − +

= = = = − + = − +

∫

∫ ∫ ∫

∫ 1/2 1

2 1/2 2 1/2 2 1/2 1

] ,

1 / 2 {2[1 ] ln[[(1 ) 1][(1 ) 1] ]} | .

B

A
B
A

z dz

F a a z a z a zπ

−

− − − −= − + + + − + +

∫

.

  

  (6.16a) 
And finally we come to 
 

2 4 1/2 2 4 1/2 2 4 1/2 1[1 ] 1/ 2 ln[[(1 ) 1][(1 ) 1] ]} |BAF a a y a a y a yπ π− − − −= − + − + − + + . (6.17) 

 

 

Let us estimate both the surface’s square F and the length L for IN’s dimension n, using 
the approximate relations 

  

2 ,F yπ≅ ∓
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at  

 
0.083 , 75 ,[ ] / sec.A By r c y R c c m= = = = =

 
(6.17a)

 We get  
 217,671.458 , / 75F c L F R cπ= ≅ = .  (6.17b) 

 
Each of the IN’s m node spot occupies area /of F m=  square per node.  

Assuming that each spot’s of contains a known number of a code’s cell per the spot cm , 

we get the spot’s area per a single cell /c
o o cf f m=  at each node-spot, or 1c

of = .  

At 2
oF F c= , this relation allows us to determine the mode’s linear speed c for each 

given cm , oF , and m:  

 
1/2 1/2( ) ( )c oc m m F −= .  (6.18) 

In particular, at 4cm cells= , / 2m n= , we get  

 

 
1/2 1/2(2 ) ( )oc n F −= .  (6.18a) 

The code’s cells are produced by the IN’s information /o
m ms S m=  in bits per node.  

Thus, each c
of  brings a related m

os and vice versa: c m
o of s⇔ , from which it follows 

 

 /m cS F m⇔ .  (6.19)  
 

At 4cm cells= or 4bits, we come to  
 

 1/ 4mS F⇔ ,  (6.20) 

establishing the direct relation between the external surface’s square and the information 
accessible through the cell’s geometry, distributed on F.  
This imposes the restrictions on the model’s ability to accept external information and 
communicate with an environment.  

Let us estimate c using (6.18) at the model example’s parameters (6.17a) with  
 

 10, 17,671458on F= =  . We get 0.0363 / secc m≅ . 
 

At 22, 4645.4314n R= = , we have 0.00947 / secc m≅ .  
 
Therefore, both a given code-word cm  (per the IN node) and the IN’s surface F (6.17) 

limit the mode’s linear speed c , which determines the node’s movement along the surface 
and the code-cells’ distribution on this surface.  
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Actually, the hyperbolic structure’s volume is filled up by a set of the INs having 
dimensions from n=2 up to n=N=96. Their information codes, embedded in F, are the sources 
of communication for the internal models with the environment. 

 
Let us Summarize the results of secs. 1.6.1-1.6.4. 
The genetic DSS code, reflecting a particular information network for each 

macrostructure geometry, carries the logic of the quadrilateral curved cell connections. 
Optimal space trajectory creates an optimal genetic code, while a manifold of non-optimal 
trajectories may produce a variety of the codes. 

The code’s geometry is an essential component of the IN’s double spiral structure, where 
the particular code sequence is an indicator of the quality of information. 

Thus, the model’s information geometry is represented in the following structure: 
 

-the cone spiral space trajectories of model’s macrostates; 
-the cone’s spiral trajectories of model’s controls, formed by the doubling of the 

macrostates at the DP; 
-the double spiral trajectory, which encloses the space dynamics of both the macrostates 

and controls;  
-the eigenvector’s space movement; 
-the triplet’s node formed by both the joint cone’s trajectories and the joint eigenvectors; 
-the IN node’s hierarchy created by the multiple triplet cone’s cooperative movement; 
-the triple code, resulting from a sequence of the discrete intervals and the switching 

controls, measured in the bits of information (as the control’s attribute);  
-the IN’s uncertainty zone’s cellular discrete geometry with the code’s information 

measure, and 
-the external UR surface, carrying the DSS genetic code, while a total F2

n  shape, 
integrating the UR of all possible IN’s structure, encloses the DSS genetics of those multiple 
macrostructures.  

 
Finally, the information geometry describes the bound hierarchical information structure 

as a systemic category, which includes a smooth field of dynamic trajectories within each 
cone, the discrete cone's geometry with their functional connections (in the IN's form), and 
curved cellular discrete geometry with its information measure by the triple’s genetic code. 
Within the UR, a chaotic movement could arise [34,45], which generates the fractal geometry 
at the sticking cone's vicinities, characterized by a specific geometric invariant.  

A source of the bound dynamic information ( , )m mψa a , determined by the invariant 

a(γ ) and the node’s location mψ ( )γ , is able to create the IG space structure, which 
memorizes both the IN’s organization and DSS code.  

The quantity of information, enclosed into the IN final node, represents the IPF 
information measure, which integrates total information from the sequence of the IN nodes. 
Thus, either the IPF value, or the IN triplet’s code embodies the whole IN, and is able to 
recreate a specific IN. 
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1.6.5. The Minimal Admissible Uncertainty and Its Connection 
to Physics 

Let us evaluate a minimal ( ( 0) ( *)) / ( 0)o o o oh γ γ γ= = − =a a a  in (6.15) by finding 

such ( *)o γa , which serves a threshold of changing the macromodel dimension nm .  

This means that at such a feasible * 0γ γ= > , a minimal increment of the model 
dimension would be 

 ( *) ( 0) ( *) 1m m mγ γ γΔ = = − = ,  (6.21) 

and any *γ γ<  will not affect the model dimension, being an admissible within a given 
dimension.  

Because the macromodel’s dimension depends on the number of cooperations, the 
condition (6.21) limits both the actual increment of dimension and the model’s ability to 
cooperate.  

We evaluate ( *)m γΔ  using the model invariants that determine (6.21). 
 
Proposition 6.4.  

The minimal ho , satisfying (6.21), is  

 oh =0.00729927=1/137, (6.22) 
 

with ( *)o γa =0.762443796, a(γ*) =0.238566887, and *γ =0.007148. 

Proof. According to sec.1.6.1, both regular and needle control produce an elementary 
negentropy (a o

2 (γ )+a(γ )), available for each cooperation, while each extremal segment 

consumes an elementary quantity of information ao (γ ).  

So, the difference (ao
2 (γ )+a(γ )−ao (γ )) determines a cooperative information 

surplus, which can be used for forming the additional information cooperations, and the ratio  
 
 km (γ )=(ao

2 (γ )+a(γ ))/(ao
2 (γ )+a(γ )−ao (γ ))  (6.22a) 

characterizes the number km  of such potential cooperations.  
At γ =0, we have 

mo = ( 0)m γ = =(ao
2 ( 0)γ = +a ( 0)γ = )/(ao

2 ( 0)γ = +a ( 0)γ = −ao ( 0)γ = ),  

and at γ = *γ , we get 

  ( *)m γ =m1 =(ao
2 (γ*) + ( *)γa )/(ao

2 (γ*) + ( *)γa − ( *)o γa ).  (6.22b)  

Applying the common formula (sec.1.5.2) connecting the above invariants:  
2 1/2( ) exp( ( ))(1 )o oγ γ γ= − −a a  

1/2[4 4exp( ( ))cos( ( )) exp( ( ))] ,o o oγ γ γ γ −× − − + −a a a  ( ) 0,o γ >a  
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we have at 0oγ = :  

 a ( )oγ =exp( − ao ( )oγ )[4 − 4exp( − ao ( )oγ )+exp(−2ao ( )oγ )]−1/ 2 .  

By substituting ao (γ = 0) =0.76805 we get the corresponding a(γ = 0) =0.231960953 
and mo =15.2729035.  

Using the same formulas that connect ( *)o γa  and ( *)γa  and satisfy (6.22b), we come 
to equation  

115.2729035 1 ,m− = m1 = f ( ( *)o γa ),  

from which we get ( *)o γa =0.762443796 and ( *)γa =0.238566887.  

These relations bring m1 =14.2729035 and evaluate both parameter ho =0.0729927=1/137 

and *γ =0.007148, allowing us to estimate a minimal elementary uncertainty ( *)γa  
separating the model’s dimensions.•  

 
Comments 6.7. The minimal * * *, 0o oγ γ γ γ γΔ = − = =  that restricts reaching γ =0 is 

able to provide both invariant quantities of information ao (γ*)  and a(γ*) , which can 

generate an elementary negentropy hs = a o
2 (γ*) +a(γ*) =0.819887424 that conceals a 

minimal cooperative uncertainty.  
In a three dimensional space, this *γ  provides information necessary to form a 

corresponding triplet 3 3km = , which carries 4 bits of genetic DSS code.  
The minimal number m1  (at this threshold) (6.22b) brings the three dimensional 

3
1 42.8187105 43m ≅ ≅  with a potential genetic code carrying 172 bits of a non redundant 

information. A non removable uncertainty is inherent part of any interaction (cooperation).  
Its minimal relative invariant ho  evaluates an elementary increment of the model’s 

dimensions in (6.21), while the absolute quantity of the hidden invariant information hs  is 
able to produce an elementary triple code, enclosed into the hyperbolic structure Fig.6.5.  

This means that a non removable uncertainly enfolds a potential DSS information code. 
 
Comments 6.8. The found model’s structural invariant 1/137oh ≅  coincides with the 

Fine Structural constant in physics [66]:
  

                            
α o = 2π

e2

4πε ohc
,  

where e  is the electron charge magnitude's constant, ε o  is the permittivity of free space 
constant, c  is the speed of light, h  is the Plank constant.  

The equality ho ≅ α o
 between the model's and physical constant allows us to show, for 

example, that the Plank constant can be found using the model's structural parameter and by 
knowing the other constants in the formula:  

 
invhC

ch
eh o

hhhoo ==== −1
2

)(,
2

αα
ε

, 
e2

2εoc
= Ch ,  (6.23) 
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where Ch  is the energy's constant (in[J.s]), which transforms the invariant αh  into h .  

The above equalities lead to a connection of the IMD model to Quantum Mechanics QM, 
considered below and in ch.1.9. 

The structural invariant αh  determines the relative negentropy increment necessary for 
the creation of a single information element. This is a minimal increment, potentially 
generated by the deviations of the model's eigenvalue Δλi , corresponding to the deviations 

of related conjugated model's variables ˆˆ ,i jx XΔ Δ .  

Using the model's Hamiltonian equations:  
 

 ˆ ˆˆi i j
t

H dt x X=∫ >0, ˆ 1/ 2i iH λ= ,  (6.24) 

for a conjugate iλ  , let us evaluate the minimal increment of ˆˆ ,i jx XΔ Δ  corresponding the 

minimal limit of Δλi . We have  

 ˆ ˆˆ ˆ1/ 2 ( ) ( )( ) 0i i i i j j
t

dt x x X Xλ λ+ Δ = Δ + Δ + Δ ≥∫
 

(6.25) 

that brings the information increment ˆ
iSΔ , generated by Δλi : 

 

 ˆ ˆ ˆ ˆˆ ˆ ˆ2( ) 0i i j i j i jS x X x X x XΔ = Δ + Δ + Δ Δ ≥ ,  (6.26) 

which follows from (6.25), (6.26).  

The minimal value of the positive sum on the right side of (6.26) is  

 ˆ ˆˆmin 2 0o
i i i j

t

S dt x XλΔ = Δ = Δ Δ ≥∫  ,  (6.27)  

(which reaches its limited minimal value equal to ˆˆ2 0i jx XΔ Δ ≥  if ˆ ˆˆ ˆ 0i j i jx X x XΔ + Δ = ), 

while the model's structural invariant 1)( −= o
h hα is found from the minimal relative 

information increment, generated by the minimal Δλi .  

Therefore, αh  is the relative measure of information ˆo
iSΔ , and h  is an energy's measure 

of the same information ˆo
iSΔ .  

If the informational conjugate variables acquire such physical measures: 
ˆˆ~ , ~i i j jQ x P XΔ Δ Δ Δ , that their multiplication will bring the energy's measure of ˆo

iSΔ , 

then this multiplication corresponds to the minimal energy’s measure of αh , which is 

proportional to h . Because the αh  is a minimal increment, ˆo
iSΔ  is also a minimal 

information increment, corresponding to h , and therefore, any increments of physical 
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variables, being adequate to the minimal αh , should not exceed h , restricted by the 
inequality  

 2ΔQiΔPj ≥ h . (6.29) 

 
We got the famous Heisenber's uncertainty relation ΔQiΔPj ≥1 / 2h  for the physical 

conjugate variable ΔQi ,ΔPj , representing the increments of a coordinate and momentum (or 

the increments of energy and time), whose multiplication satisfies to the above energy's 

measure h  in QM.  

Both these variables are identifiable separately, but cannot be measured simultaneously.  

The invariant quantity of information ao  at the model's local equilibrium γ = 0.5  is an 

equivalent of an elementary information quanta ln 2 , which can be delivered through the 

needle control (in the form a 2
o ), accompanies each segment's interaction.  

According to formulas (6.24), (6.25), a superimposition of the conjugate variables ˆix  and 

*ˆ ˆj iX x=  corresponds to their conjugate eigenvalues λ i ,λ i
*  being additive: 

 

 

ˆ ˆˆi i j
t

H dt x X=∫  , *ˆ 1/ 2( )i i iH λ λ= + .  (6.29a) 

Following this formula, the model's conjugate eigenvalues λ io = αio + jβio ,λi
* = αio − jβio

,  

at the above superimposition, produce the elementary quantity of information 

 

 

*ˆ 1/ 2 ( ) 1/ 2 (2 )
i

ij i i io io i
t t

S dt dt tδ λ λ α α= + = = =∫ ∫ ao .  (6.30) 

during an elementary time interval ti .  

The invariant quantity of information ao at the model's local equilibrium γ = 0.5  has a 
distinctive information value depending on its location at the IN’s hierarchy (sec.6.2).  

If the cooperating segments are represented by the conjugate variables capable of 
superimposition, the quantum a o , as well as the needle control's negentropy can be delivered 
by the information, generated by the above superimposition.  

The VP differential constraint’s equation (secs. 1.3.3, 1.3.5), imposed by stochastics, 
originates the local dynamics within each extremal segment and connects the segments’ 
macrodynamics. This constraint is responsible for arising the cooperative dynamics and the 
macrodynamic regularities.  

From the VP solution with the differential constraint follows the equation (ch.1.3, 
1.3.38) with the information forces, acting between the local dynamic processes. In the 
regular Hamiltonian mechanics these forces are not present.  
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1.6.6. Information Structure of the model Double Spiral’s (DSS) 
Control Mechanism  

Let us reveal the formation of the DSS along the model’s line of switching controls Lc , 
which joins the macrojectory’s segments into a consolidating process ( )x t .  

This consolidated trajectory, as a macrostate’s carrier, has a single dimension for both 
cone's spiral lines and phase trajectories, described by the equations:  

 

 ( ) ( )( ( ) ( ))t
i ix t t x t v tα= +� , ( ) ( ) 2 ( )i i iv t v xτ τ= = − , 1,....,i m= , (6.31) 

 (at given initial ( )o iox x t= , ( )t
i oα τ − ), where v(ti )  are the optimal controls, applied at the 

DP's {ti}i=1
n−1 by doubling the macrostates x(ti )  at each DP moment iτ .  

       After applying this control at each at i it τ=  the equations (6.31) acquire a form  
 

  ( ) ( ) ( )t
i i ix xτ α τ τ= −� ,  (6.31a)  

and then, after transferring in a next segment with 1i it τ+ >  , the process continues according 
to equation  
  1 1 1( ) ( )( ( ) ( ))t

i i i ix t x t v tα τ+ + += − +�  (6.32) 

up to a moment 1 1i it τ+ += , when at 

  1 1 1( ) ( ) 2 ( )i i iv t v xτ τ+ + += = −  

holds 

  1 1 1( ) ( ) ( )t
i i ix xτ α τ τ+ + +=� .   (6.32a)  

      At the subsequent segment with 2 1i it τ+ +> , the process follows the equation  

  2 1 2 2( ) ( )( ( ) ( ))t
i i i ix t x t v tα τ+ + + += +� .  (6.32b). 

       It is seen that at i it τ= , the control  

  ( ) ( )( ( ) 2 ( )) ( ) ( ) ( )t t
i i i i i i iu x x x xτ α τ τ τ α τ τ τ= − = − = �  

coincides with 1( )ix t +� from the next segment’s equation (6.32) at 1i it τ+ = , 1( ) 0iv t + = :  

                                                  1 1( ) ( ) ( )t
i i ix t x tα τ+ += −� .  

      The following control 
                                               1 1 1 1( ) ( ) ( ) ( )t

i i i iu x xτ α τ τ τ+ + + += = �  

coincides with 2( )ix t +� from (6.32b) at 2 1i it τ+ += , 2( ) 0iv t + = , and so on.  
The optimal trajectory moves along the sequential segments with the alternating 

opposite signs of the local information speed α t(ti) , and the optimal controls 
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                1( ) ( )i iu xτ τ += � , 1,...,i m=   

are formed by the phase speeds 1( )ix τ +� at the beginning of each following segment with 

alternated )( 1+i
t tα .  

In reality, these controls ( )iu τ (or the corresponding reduced controls 

( ) 2 ( )i iv xτ τ= − ) should be formed and applied before the moment iτ  comes and/or when 

the following segment’s process starts with 1 1( ) ( )i ix x tτ + +=� � .  
This is possible at a simultaneous existence of two complementary mutually controlled 

processes during each ti : one of them is (6.31) , another one has an opposite sign of α (ti )  
according to (6.32). (Or considering the complementary processes (6.32) and (6.32b)).  

Then, the control ( )iu τ can be formed at the beginning of the segment’s process (6.32), 

while this process is running in opposite time direction starting at iot− .  

In that case, the macrostate ( )ix oτ − would be equivalent to ( )iox t o− + at a concurrent 

time for both processes ( )i oτ − = iot o− + .  

The states ( )ix oτ −  and ( )iox t o− + , taken simultaneously from both spirals, bring 

2 ( )ix oτ − , which corresponds the required reduced controls in (6.31).  
As a result, the controls is formed automatically by getting the phase speeds (or the 

reduced control’s macrostates) at a moment i oτ −  (preceding iτ ) and applying them at iτ  
sequentially from the alternating segment’s spirals processes.  

The related controls  
                  ( ) ( ), ( ) 2 ( )io io io iou t o x t o v t o x t o− + = − + − + = − − +�   

are applied to the alternating segment’s process.  
Let us consider how this strategy might be implemented.  
Instead of using the time coordinate, the analogous solutions of these equations can be 

presented along the opposite spiral's linear geometrical directions: il+  and il−  (with 

corresponding ( )l
il
τα  and ( )l

il
τα−  accordingly): 

  1( ) ( )( ( ) ( )),l
i i i ix l l x l v lτα −= +� ( ) 2 ( ),i iv l x lτ= −  

 1, , , 1,..., ,l t
i i i il Ct C l C i mτα α τ−= = = =  (6.33)  

 

 ( ) ( )( ( ) ( )), ( ), ( ) 2 ( )l
i i i i i i i ix l l x l v l l C t v l x lτ τα− = − − + − − = − − = +� ,  (6.33a)  

where C  is the process's linear speed, il  is a current linear space interval corresponding 

it , il
τ corresponds iτ . (Such opposite directional cone’s spirals and their parameters are 

considered in sec. 1.5.4).  
The macrostate's control 2 ( )ix lτ− , governing the equation (6.33), is prepared during the 

interval −li−1  and applied, starting at the point (li − o) .  
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The macrostate's control 2 ( )ix lτ+ , governing the equation (6.33a), is prepared during the 

interval li−1 and applied, starting at the point (−li + o) , Fig. 6.6.  
This means that both complimentary trajectory’ segments mutually control each other, 

alternatively switching the process from equation (6.33) to equation (6.33a) and vice versa.  
Using the positive and negative time directions, we would not be able to introduce the 

complimentary processes, because of the nonequivalence of these time directions in the IMD 
irreversible equations. By inverting the il -line directions of these linear chains we preserve 
the same positive time course for both complimentary processes.  

Such self-forming controls and the initiated them the corresponding segments with the 
macrotrajectories are mutually complementary, producing the replicated macrostates.  

The δ( li ) = oi  and δ(−li) = −oi  localities of each li  and − li  accordingly correspond to 
the UR existence around Lc . Because of that, the considered regular reduced controls: v(li) , 
v(−li )  generate automatically also the needle δ(vi)  controls, applied simultaneously to each 
equation (6.33), (6.33a) at each small interval δ( li ) = oi δ(−li) = −oi .  

The needle controls secure a correct direction of the extremal segments and the 
corresponding cones' spirals, providing a structural process' stability along the cone sequence. 
The complimentary processes can also be generated by the two interacting operator's 
eigenvalues at the IN last interval )( 11 −− nn lt , providing a feedback to the IN’s staring process.  

The spatial trajectory segments, corresponding the considered complimentary processes, 
are represented by the cones’ spirals of the opposite directions forming the information 
double spiral structure DSS  (Fig. 6.6). The DSS 's right directional (R) and the left 
directional (L) spirals could locate on the same Lc  cone's sequence.  

The DSS 's linear structure is a carrier of both the doubling macrostates ( )ix lτ  and 
corresponding controls, which produce the considered IN's code. The controls generate the 
code sequence simultaneously at each of (li − o) , (−li + o)  for both spiral's complimentary 
segments.  

The specific code depends on the current locations li , il
τ  along the Lc  for each IN's 

triplets. At the locality of each cone's vertex, both spirals generate the macrostate's codeword 
c[x(li)]  (with ao  information measure), which carries both v(li)  and δv(li )  control codes 
in DSS .  

The DSS  code can also be created by the superimposing processes of different 
dimensions that are not necessary located on the Lc  line. The controls, generated by a DSS  
primary code, can initiate this process. Actually, the DSS  can be used for both the generation 
of the control code and encoding the renovated double spiral macrostates.  

The DSS  geometrical structure is determined by the cone radius vector ρi , the angle at 

the cone vertex ψ i
o , the angle of spiral rotation ϕ i , and the spatial angle ψ i between the 

nearest cone's spirals (Figs. 5.6, 6.2). All these parameters are the functions of VP invariant, 
because the spatial cone trajectories are the geometrical representations of the VP extremals. 
For example at γ =0.5: ϕ i =π ,ψ i

o ≈ π / 6 , ψ i ≈ 5.73π , ρi=li / π .  
The double chain and its coding language are similar to ones for DNA.  
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As an alternative to experimental DNA discovery, the double chain and its coding 
language implements the IMD mathematical model.  

Moreover, we consider the double chain spiral structure as a general genetic generator 
for any optimal macrostructures, following from the VP for the IPF.  
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Figure 6.6. Information structure of the double spiral DSS : a).The self-controlling processes, located on 
opposite spiral's cones, which take into account the delay of applying controls: δ( li )  and δ( l i ) , formed by a 

UR or the spiral's shift; b). DSS 's structure, obtained from a) with the code c[x(li)]  generated by each spiral 
pieces. 

1.6.7. Examples of the DSS codes 

Each triplet in the IN structure can be encoded, as a minimum, by the sequence of three 
IN string's symbols α1t ,α2t ,α 3t , for example at γ = 0.5 , they are α1t =3.011, 
α2 t=1.35918, α3t =0.77301, which are characterized by the following sequence of the triplet 

IN's ratios: γ 12
α = α1t / α2t =2.2155, γ 23

α = α2t / α 3t =1.7583. 
Let us encode the above sequence α1t ,α2t ,α 3t  by a subsequence of the alphabet's 

letters: ABC, whose ratios code have the same values of the γ 12
α , γ 23

α .  
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The triplet, encoded by the subsequence BCA, has the different ratios: γ 23
α =1.7583, 

γ 31
α =0.2667, and the subsequences CAB, BAC have the ratios: γ 31

α =0.2667, γ 12
α =2.2155 and 

γ 21
α =0.451365, γ 13

α =3.8955 accordingly.  
Actually to specify the very first letter of the code, the correct sequence of the ratios 

needs one more symbol, for example (3.011, 2.2155, 1.7583) for the code ABC.  
A more general code's structure is ( Nik , γ ij

α ,γ jk
α ), where Nik  identifies the ordinal 

number of the first letter (among the chosen and ranged alphabet's letters) whose ratios 
γ ij

α ,γ jk
α  are used for the i, k  coding sequence.  

For example, the above codes have the following general structure: ABC: (1,γ 12
α ,γ 23

α ), 

BCA: (2,γ 23
α ,γ 31

α  ), CAB: (3, γ 31
α , γ 12

α ), and so on.  
Therefore, each sequence of the alphabet letters for a triplet's code can be represented by 

the corresponding sequence of the IN string's symbols or their ratios. The vice versa is also 
correct: any sequence of the IN's string can be encoded by the subsequence of the chosen 
alphabet's letters, and each triplet can be encoded by a minimum of three letters of this 
alphabet. The m=n/2 sequence of this code describes the sequential IN's model of the 
independent m-triplets. The sequence of the enclosed triplet's codes represents the IN's nested 
structure with a code hierarchy. 

The initial string's symbols describe the object's specifics and can be found by the object's 
identification procedure, which could also classify the different objects in terms of their basic 
parameters (n, γ ,k) (representing the object's information functional). For a given IN with a 
fixed (n,γ ,k), each triplet has the same three letter's code, but the microlevel's influences and 
mutations, which affect the parameters (n,γ ,k), are able to modify the code of following 
triplets. This leads to diverse combinations of the code's letters, generating an evolving DSS  
chain, which encodes the variations of the object's characteristics. 

The fourth letter-symbol of the IN's fixed triplet's code carries a repeating ratio of the 
triplet's letters, for example α 4t =0.34891, brings the same ratio γ 34

α = α3t / α 4t =2.2155 as 

γ 12
α  has. This fourth letter compensates the possible code's errors, contributing the adaptation 

potential (ch.1.). Under the mutations, this letter brings new ratio to the code sequence, which 
together with the ratioγ 12

α , identifies the code ratios γ 23
α , γ 34

α  for a new modified triplet.  
This letters-symbol also serves as a bridge to each next triplet's code, carrying the code’s 

hierarchical dependency. Each triplet's code is responsible for generation of the three 
superimposing processes, and created them the cross-phenomena.  

The fixed IN's DSS encodes the n such processes (ranged by the αit  string values) which 
are able forming a real solid macrostructure with m = n/2 cross-phenomena, sequentially 
enclosed each other.  

The DSS  can also encode the triplets' sequence belonging to the distinct fixed INs that 
brings a variety of the macrostructures with different basic parameters. Such a DSS  code is 
not predetermined by the code of first triplet. The four letters of this extended DSS  code 
would have more combinations in an expanded long sequence. 

The above examples show a possibility to develop a universal code's structure for variety 
of systems models. 
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1.6.8. A System’s Harmony, Regularities, and the VP 

Harmony is a fundamental and universal phenomenon of any system in nature, which 
accompanies a mutual frequency locking in the cooperating resonances. It provides 
information about the tendencies of the nature to share rhythm, vibrating in harmony like 
music. This rule of music is also applied to a harmony of life.  

The question is: Does it exist a law of harmony as a formal mathematical principle? What 
is a universal mechanism generating this phenomenon?  

It was the Pythagoras discovery that the simultaneous sound of two strings becomes a 
harmonic if their frequencies are related approximately as 1/2 for an octave (seventh) and 2/3 
for a quintet (fifth).  

For the comparison, the IN triplets have a repeating frequency’s ratios from 

2 1/o of f =0.407 and 3 2/o of f =0.55 to 2 1/o of f =0.507 and 3 2/o of f =0.619 (by changing 

γ =(0−0.75)), which at γ =0.6 are 2 1/o of f =0.469 and 3 2/o of f =0.576 accordingly. These 
IN’s nearest starting triplet’s strings have the following sequence of the frequency’s ratios: 
2.13, 1.74; 2.13, 1.74, with the total frequency spectrum’s ratios, counted from a 
maximal ( )of n  ( n -system’s dimension): 2.13, 3.70, 7.89, 13.74, 29.26, where the octaves 
alternates with a quintets and each IN’s triplet covers spectrum of 12 inner frequencies.  

A particular system’s spectrum depends upon both n  and γ .  
This means that the optimal IN satisfies the spectrum of most harmonic sounds, like a 

virtual music instrument, accepting only the incoming harmonics playable on this instrument.  
The VP application leads to integrating and cooperating the extremal's segments into a 

system’s chain, sequentially synchronizing their frequencies, automatically ranging and 
encoding the frequencies in the IN’s nodes. The chain’s segments become bound by the 
frequencies resonances, which, by transferring a maximal information along the chain, create 
the harmony for every one of the system’s segments. Such a system, possessing the internal 
harmony, is sensible to perception of external musical rhythms. 

In a cognitive reflection, the frequencies resonate with the individual’s processes (intiated 
by a cognition’s motivation) creating a satisfaction, while a fundamental inner harmony is a 
result of evolution, whose regularity follow from the VP.  

The system’s harmony is encoded by a sound of each frequency if , its time duration it , 

the “sound’s strength” ix , and the hierarchy of the node’s geometrical locations.  
Because the IN is an attribute of cooperative dynamics and both are the “product” of the 

variation principle, the VP is a basic mathematical source of the harmony, and the IN is a 
universal information mechanism generating the harmony.  

We assume that the information field on the surface of the cooperative hyperbolic 
structure (Fig.6.5) unifies a multiple IN’s harmonic coexistence.  

Indeed. The volume V of this structure encloses a multiple collection of the IN’s systems, 
which are able to interact by the IN node’s information code (at the considered in sec.1.6.4 
restrictions).  

Information cooperation unifies different forms of interactions from various physical, 
economic exchanges, consumptions, up to diversity of virtual connections and 
communications.  
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The INs triplet’s cooperating strings are generating the frequency’s spectrum, producing 
the considered synchronized harmonic chain of the frequencies, bound by the frequencies 
resonances (which depend on the frequency’s specific ratio γ , affecting the system’s 
stability). These resonances, transferring along the IN chain, automatically range and encode 
the frequencies in the IN’s nodes in the form of the code-cells (Fig. 6.5).  

Therefore, a set the cooperating INs systems, occupying a common volume, are capable 
of a harmonic coexistence with a generation of their common code-cells on the volume 
surface F.  

Thus, the information surface F and its code-cells can be produced by a harmonic IN’s 
collective, occupying the volume.  

An external system might interact with the cooperative through this surface by adding its 
specific cooperative connection to F for consuming a collective–generated common 
information, or producing it.  

This collective information can also be used by the inner volume’s systems for getting the 
needed information or generating it. 

The codes-cells information distributed on the surface might be considered as an 
information field, bordered the volume, where collective productions of both the internal and 
external volume’s systems are concentrated.  

Because each IN, as well as the INs sets of different dimensions, models a system, the 
bordered information field might belong to variety of collectives, combining a diversity of 
their interactions and communications.  

The F-information field, being not a directly visible, is formed around each functioning 
system-virtual and/or real. Such a collective information field is a product of a society and 
can be used by both particular system, society, and/or other interacting societies.  

Finally, a society or their sets can coexist in a harmony and stability, determined by the 
system’s nets synchronization frequencies, through the cooperative exchanges and 
communications, delivered the necessary information. 

An external intellect (in any forms) could exist as an information system, producing 
negentropy, which might not obey physical laws, requiring a conservation of an energy.  

But such a creative information system, to be a stable, should obtain an intellectual 
information from the environment, which might include a human society as a civilization. 

 





 
 
 
 
 
 

Chapter 1.7 
 
 
 

THE MACRODYNAMIC AND COOPERATIVE 
INFORMATION COMPLEXITIES 

 
 

1.7.1. Introduction 

Basic complexity measures have been developed in algorithmic computation theory [1-
4], important indicators of complexity have been proposed in physics [5-8]; numerous other 
publications [9-20] are connected with these basics. (Please see the references to ch.1.7).  

These complexity’s measures focus on the evaluating complexity for an already formed 
complex system.  

We intend to analyze an origin of complexity in an interactive dynamic process with its 
elements’ cooperation into a joint system, accompanied by creation of new phenomena, 
which in turn, are the potential sources of a complexity.  

The universality of information language allows a generalization of the description of 
various interactions in terms of the information interactions, considered independent of their 
specific forms and nature.  

Focus on interactive informational dynamics leads to a study of a dynamic complexity 
resulting from the interactions of information flows, measured by the specific information 
speeds. That’s why the dynamic information complexity should be connected with the 
information speeds rather than just with a quantity of information in the above publications. 

An intuitive notion of a system’s complexity, which distinguishes complexity from 
simplicity, is associated with the assembling of the system elements into a joint system during 
a cooperative process.  

This means that the system complexity is naturally connected to its ability to cooperate, 
which depends on the phenomena and parameters of cooperative dynamics. It has been 
pointed out repeatedly that algorithmic complexity [1-4] does not fit the intuitive notion of 
complexity [5-6].  

The system complexity, emerging from the cooperative dynamics of a multiple set of 
interacting processes (elements), having an adequate information measure, has not been 
studied yet [9-20].  
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The main questions are: What is a general mechanism of cooperation and the condition of 
its origin? Does there exist a general measure of a dynamic complexity independent of a 
particular physical-chemical nature of the cooperative dynamics with a variety of their 
phenomena and parameters? How can the dynamic multi-dimensional cooperative complexity 
be defined and measured?  

The answers for these questions require a new approach leading us to a unified notion of 
dynamic information complexity, measured in terms of quantities and qualities of information 
by a corresponding information code.  

The objective consists of the definition and formulation of the complexity’s information 
measure, the analysis of the complexity’s origin in cooperative dynamics, and both analytical 
and computational measure’s connections to the informational dynamic parameters. 

Compared to known publications, we analyze the complexity as an attribute of the 
process’s cooperative dynamics, considering both the phenomenological concept and the 
formal measure of the complexity. 

It is shown that a system complexity depends on both the between element’s connections 
and the element’s number. 

Analysis of the regularities of collective dynamics, accompanied by a formation of 
cooperative structures, can be formalized using a variation principle (VP), applied to the 
informational path functional and equations of informational macrodynamics (IMD).  

This chapter studies both the complexity of information macrodynamic process and the 
cooperative complexity, arising within a set of elements (dynamic objects) from the elements’ 
involvement in the information transitions and communication with a focus on dynamics of 
this process. The cooperative complexity indicates and mesasures an information difference 
between the independent elements and their integration into a cooperating untit.  

The complexity is evaluated by an increment of each element’s internal concentration of 
information (an object’s information capacity), measured by a change of an external relative 
information flow. It is shown that a common indicator of the origin of the cooperative 
complexity is the specific entropy’s speed (related to a speed of the object’s volume), rather 
than only the entropy, as it was accepted before. The results are extended on a wide class of 
complex systems with the physical and virtual interactions of different nature represented by 
transitions of information, including a communication process. We also consider the 
complexity’s connections to other related complexity measures.  

The chapter objective is implemented by introducing a formal notion of MC complexity 
and its information indicator (secs. 1.7.1, 1.7.2), and then considering the MC-emergence in 
an elementary cooperative dynamic process with the connection between diffusion and 
kinetics in cooperative dynamics (sec. 1.7.3).  

Then, sec. 1.7.4 introduces the complexities’ informational invariant measure; sec. 1.7.5 
generalizes the MC complexity measure for multi-dimensional cooperative dynamics, 
integrated in the hierarchical IN with the MC hierarchical invariant information measure, 
which evaluates both quantity and quality by the IN’s triplet’s code, and provides the MC 
direct computability; sec.1.7.6 applies the information geometry’s space equations to 
determine an intensity of information attraction and the complexity measures; sec.1. 7.7 
connects the MC-complexity’s to K complexity.  
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1.7.2. The Notion of Interactive and Cooperative Complexities 
and Their Information Measures 

Definition 7.1. Let us have two sources of information ,i kS S  concentrated in geometrical 

volumes ,i kV V  accordingly, which are able to interact (affecting one another) by some 

portions of their information (entropy) 0ikSΔ ≠ , accompanied by a change of a shared 

volume 0ikVΔ ≠ , and characterized by the corresponding information 

speeds ik
ik

S H
t

∂Δ
− =

∂
.  

Then the information measure of complexity for the interacting sources: ikMC  is defined 

by an information speed, concentrated in shared volume ikVΔ : 
 

 

ik
ik

ik

HMC
V

=
Δ

,  (7.1) 

 

or an instant entropy’s concentration in this volume: ik

ik

S
V t
∂Δ
Δ ∂

(the entropy production), which 

evaluates the specific information contribution, transferred during the source’s interaction in 
dynamics.  

Definition 7.2. Let us consider an increment of complexity ( )ikMCδ , generated by an 
increment of the specific information (entropy) speed:  

 

 2

( ) ( )( ) ( ) / [ ( ) /( ) ]
( ) ( )

ik ik ik ik ik ik ik
ik ik

ik ik ik ik

S S S V V S SV V
V t t t V V t V t

δ δδ δ δ δ∂Δ ∂Δ ∂Δ Δ Δ ∂Δ ∂Δ
= Δ − = Δ −

Δ ∂ ∂ ∂ Δ Δ ∂ Δ ∂
,  

 
which at a small ikV δΔ  satisfies 0ik ikV V δδ δΔ ≅ ≠ , and we get  

 

 ik ik ikMC MC MCδ δ= + ,  (7.1a) 
 

where ( )ik
ik

ik

SMC
V t

δ δ ∂Δ
= −

Δ ∂
, /ik ikH V δδ δ = ikMCδ  at ik

ik
S H
t

∂Δ
− =

∂
.  

Then ikMCδ  is the information measure of a differential interactive complexity, defined 

by the increment of the information flow ikS
t

∂Δ
−

∂
 per a small volume increment ikV δδ (within 
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the shared volume ikVΔ ), or ikMCδ /ik ikH V
t t

∂ ∂Δ
=

∂ ∂
is defined by the ratio of the above 

speeds. The ikMCδ automatically includes both the ikMC and its increment ikMCδ .  
Comments 7.1. The information transition includes transferring both the information flow 

and the volume. At * 1ik
ik

ik

VV
V

δ
δ δδ

δ
= → +

Δ
, the shared volume ikVΔ  increases, and at 

* 1ik
ik

ik

VV
V

δ
δ δδ

δ
= → −

Δ
, the shared volume decreases, shrinks.  

The shrinkage is associated with the sources’ ,i kS S  volumes assembly (cooperation) 
while the volume enlargement is associated with the volume source’s disassembly. According 
to the second thermodynamic law, the internal (per volume) entropy production can only 

increase: ( ) / 0ik
ik

S V
t

δ ∂Δ
Δ >

∂
 at a fixed ikVΔ  and any changes of the ,i kS S  external 

entropies. This leads to 0ikHδ < at a fixed ikVΔ . 

Therefore at ikV δδ <0, 0ikHδ < , the corresponding differential information complexity 

ikMCδ >0, and at ikV δδ >0 we have ikMCδ <0. In both cases, an existence of the information 

flows ( 0ikH ≠  and its increment 0ikHδ ≠ ) determines the involvement of both ,i kS S  in 

the information transition, which are a necessary condition that connects ,i kS S  and can 

assemble them into a cooperative.  

The corresponding ikMCδ >0 we call the cooperative complexity measure.  

Comments 7.2. At 0ikH < and / 1ik ikV VδΔ = − , we get also 0ikMC >  at the 

cooperation. A single source iS , possessing the volume’s concentration of entropy 

i
i

i

Ss
V

= , can generate outside a total potential increment ( )i i
i i

i i

V Ss s
V V
δ δδ

δ
= − .  

Using the corresponding information measures:  

,i i i iS H s h= − = −  at | | 1i

i

V
V
δ

=   

we get the increment in the form i i iMC h hδ δ= + , where i
i

i

HMC
V

δ δ
δ

=  is the source’s 

potential differential complexity, which can also be written through the ratio of the source’s 

information speed to volume speed: i
i

i

HMC
V

δ = .  
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In particular, at 1i

i

V
V
δ

= − and 0iHδ <  the complexity 0iMCδ > . 

Comments 7.3. The examples of the interacting information sources by their differential 
entropies, in particular, represent each of the IN node (Figs.1.5.5a, b), and the nodes’ space 
distributed volume is their shared volume.  

The volume’s specific formulas are in ch.1.5: (1.5.109, 1.5.109a, and b). Whereas each 
IN node is created by the interaction of three space segments (a triplet) of the path 
functional’s extremals.  

1.7.3. The Information Indicator of a Cooperative Complexity 

Let us have a set of elements (objects) jvΔ ∈ VΔ , 1,..., ,..,j k n=  with the internal 

concentrations of information j v
j

j

h
h

v
Δ

=
Δ

(as an object’s information capacity) for each j and 

the element’s possibility of a free movement within a volume VΔ . Suppose within the set 

exists an element k  with an internal vk
k

k

h h
v

Δ
=

Δ
, whose increment v

khδ  is a source of 

information transferred to other elements in a communication process. This means that an 
external increment of the element’s k  information e

khδ  (related to the element’s surface) is 

transmitted to some other element j , satisfying relation e e
k jh hδ δ≥ , where e

jhδ  is the j -

external increment (related to the element’s surface) that affects its internal v
jh according to 

the corresponding equality e
jhδ v

jhδ≥ .  

Proposition 7.1.  
The information indicator of the element’s k involvement in the cooperative association with 
other elements of the above set serves the ratio  

 

 
( ) / 0,k k

h k
k

dh vh
dt t

δ Δ
Δ = >

Δ
  (7.2) 

where
( )k kd s dh
dt dt
Δ

− = is the element’s information flow and k

k

v
t

Δ
Δ

is the volume’s fixed 

speed (both of them assume to be controllable); then the above ratio (7.2) is applicable in both 
cases: 

 (i)-at a fixed volume kvΔ , relation (7.2) leads to  

 ( )h khδ Δ =
( )kd h
dt
Δ

  (7.2a)  
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within the time interval ktΔ ; and 
(ii)-if the transmission of the information flow is accompanied by transferring of the 

element’s information volume, then the ratio (7.2) acquires the form 
 

 
, 2 ( ) ( )

( )
v v vk k k k k k k

h v k k k
k k k k k k

h h v v h v hh h h
v v v v v v

δ δ δ δ δδ
δ

= − = − = −
Δ Δ Δ Δ

,  (7.2b) 

Indeed. Considering the increment v
khδ  at a fixed volume kvΔ , we come to relations 

                    
( ) ( )( ) , ( ) ,k k k

h k k
k k

h h d hh t
v v dt

δδ δΔ Δ Δ
= Δ = Δ

Δ Δ
  

where ktΔ  is a time interval at a fixed 
( )kd h
dt
Δ

 and at a fixed kvΔ , which brings (7.2a). 

When the transmission includes both the information flow and the element’s information 
volume, then (7. 2) leads to (7. 2b). •  
     Corollary 7.1.  

At a small kvΔ  relation (7.2b) admits 1k

k

v
v

δ
→

Δ
and it leads to ,

v vk
h v k k

k

h h h
v

δ= + .  

In this case, the information transition includes a relative increment of information volume. 

At 1k

k

v
v

δ
→ +

Δ
, the element’s initial volume increases, and at 1k

k

v
v

δ
→ −

Δ
, the element’s 

volume could be transferred to others during the transitions. In both (7.2a), (7.2b), function 
0v

khδ >  characterizes the element source’s informational potential as its ability to involve 
other elements in the information connection. •  

An ability of the element’s for the information connections by adjoining other elements 

into a cooperative we call the element’s potential complexity pkMCδ , which is measured in 

both formulas by the ratio of the information speed to the volume speed.  
Specifically, at transferring the information flow: 

                                   pkMCδ = / 0k k

k

dh v
dt t

Δ
>

Δ
,  

this function coincides with the element information potential.  
With changing both the element’s information flow and the volume, the potential 

complexity also includes the element’s volume internal concentration of information v
kh : 

                                phvMCδ = ,( ) 0v vk
h v k k

k

h h h
v

δ= + > .  

    The positivity of both above functions can be reached at the same signs of kdh
dt

 and 

k

k

v
t

Δ
Δ

(or kv ). More generally, at |1|k

k

v
v

δ
≠

Δ
, both functions acquire the form  
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,
v

h v kv vk
phv k k

k k

hhMC v h
v v

δ δ
δ

= = Δ + .  (7.3)  

Comments 7.4. At pkMCδ → 0, the information flow, transferred by the element, 

decreases, reaching zero in a limit, when the element is unable to make any connections to 
others and becomes independent, even though it could be located close to its neighbors. At 

0phvMCδ → , we get the same result, even though , 0v
p v khδ > , because from phvMCδ =0 

follows equality ,
v v

h v k kh hδ = − , that means this increment is consumed by the element itself 

without transferring its information outside. Therefore, a positivity of above complexity 
measures is an indicator of the element’s a cooperative activity, which characterizes the 
element’s ability to transfer its information to other elements.  

Proposition 7.2.  
The information increment transferred between elements ( k , j ) follows from (7.3) in the 

form:                 ,
,

, ,

/
0,

/
k jv

k j
k j k j

dh dt
h

v t
= ≥
Δ Δ  

with
 

,

// 0
/ /

jv k
h k j k j k

k k j j

dh dtdh dth MC MC MC
v t v t

δ δ δδ = − = − = Δ ≥
Δ Δ Δ Δ

,  (7.4) 

where the elements are coordinated in such a way that one of them ( k ) is a source of 
information for others ( , ,...,j m n ), which serve as the information consumers, and 

/
0

/
j

j
j j

dh dt
MC

v t
δ = >

Δ Δ
 becomes an indicator of the element j  cooperative activity, which 

for this element characterizes its ability to be involved in communication with a source (and 
possibly with other elements). (Generally, we assume that an object possesses an ability for a 
self-controllable cooperative activity or an opposite ability for inactivity). •  

Corollary 7.2.  
With changing both the element’s information flow and the volume, the element’s j 
cooperative activity acquires the form analogous to (7.3): 

 

,
v

j h v jv v
jhv j j

j j

h h
MC v h

v v
δ δ

δ
= = Δ + .  (7.4a) 

Condition (7.4), applied to transferring both the information flows and volumes between 
the elements, leads to relations 

 
, , , ( ) ( ) ( )j jv v v v vk k

h v k j h v k j k j
k k j j

v hv hh h h h h
v v v v

δδδ δ= − = − − −
Δ Δ

 .   (7.5) 
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At jk

k j

vv
v v

δδ
= −

Δ Δ
 the element j ’s volume relative increment decreases by transferring it 

to the increasing element k ’s relative volume increment. In this case, 0kv >  and jv <0, that 

it’s why 0k

k

h
v

>  and 0j

j

h
v

< .  

For ,jv
j

j

h
h

v
Δ

=
Δ

we have  

j
j k

k

v
v v

v
δ
δ

Δ = −Δ  and v
jh <0 at jhΔ >0 .  

At jk

k j

vv
v v

δδ
= −

Δ Δ
=1, 

a total volume of the element j  passes to the element’s volume k , merging with that 
element’s volume. This merge corresponds to a binding of both element’s information flows 
and volumes. At this case, relation (7.5) acquires form  

 
, ,( ) ( )j v v v vk

h v k k h v j k
k j

hh h h h h
v v

δ δ− = + − + ,  (7.6) 

where j jv vδΔ = − . This means that each element’s connection is measured by the same 

form of indicator 

                                                          0j
j

j

h
MC

v
δ = > , (7.6a) 

which is subtracting from the source’s potential complexity measure  

                                                        phv kMC MCδ δ= = k

k

h
v

.  

Comments 7.5. Decreasing of a current difference ( phvMCδ − jhvMCδ ) means arising of 

the information connections between the elements’ volumes jvΔ ∈ VΔ , or growing of the 

involved information flows and the volumes that bind them. A total number of the elements, 

satisfying condition (7.4), or (7.6) (in the phvMCδ  environment), measures a current 

cooperative complexity of the set. Each partial transition of the initial relative flow k

k

h
v

 to the 

following elements’ j

j

h
v

, , ,...,j m n  decreases the potential complexity and increases the 
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number of elements merged into the cooperative. A current difference: ( k

k

h
v

− j

j

h
v

)= kjMCδΔ , 

represented by (7.5) or (7.6), measures an increase of cooperative complexity in the 
dynamics, accompany by a growing number of the involved elements.  

We call kjMCδΔ  the dynamic cooperative complexity.  

A total decline of a current potential complexity  

 
N

phv phv jhv
j

MC MC MCδ δ δΔ = −∑   (7.7) 

is measured by the sum of cooperative activities of the elements N involved in the 
information transitions.  

At pivMCδΔ =0, the potential complexity covers the cooperative activities of all involved 

elements, even though their individual activities are not equal. If all involved elements are 

joined into a complex, then pkvMCδ measures the complexity of this cooperative.  

If the individual measure of activity j
j

j

h
MC

v
δ =  is equal for all connected n-

elements , ,...,j m n , and the potential complexity’s measure covers the sum of the element’s 

individual measures, satisfying relation pkvMCδ − jnMCδ =0, /pkv jn MC MCδ δ= , N=n, then 

all n  elements, joined into the cooperative, get the equal divided source’s information 
contributions, as the equal information consumers.  

Even though the individual’s jMCδ  are not equal, their total number, deducted from pkvMCδ , 

measures the number of elements. Thus, both the potential complexity o
pkvMCδ and the 

individual element’s cooperative activity jMCδ , as well as the dynamic complexity, are 

measured by the specific information speed related to the speed of volume at the information 
transitions, which join the elements.  

A maximal cooperative complexity  

 
, , ,

max max max( ) 0v vk
pkv k kh v h v h v

k

hMC h h
v

δ δ= = + >   (7.8) 

limits the complexity of the cooperative.   
Assigning measure (7.6a) to each acting element (object) allows ordering and 

classification of the objects in terms of their cooperative activities. The object, having a 

higher jMCδ  value, compared to some others (m, m+1,.. , n, n+1), possesses the 

corresponding cooperative potential jmMCδΔ , being able to attract these elements and form a 

local cooperative (in an addition to a “central” cooperative with the k-source).  
A sequential forming of such local cooperatives leads to appearance of an information 

cooperative net with the spanning branches (Fig. 7.1).  
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In the process of cooperation, the potential in (7.7) decreases, bringing finally kjMCδΔ  to 

zero at joining the elements into a common unit. As a result, the elements, belonging to a 

cooperative, possess the jMCδ  values depending on the local potential in (7.7) that initiates 

the elements’ movement into a local cooperative. A higher potential allows to activate and 
cooperate more element’s numbers, serving the complexity measure for each local 
cooperative, whose potential covers the complexities of the joint elements. Ranging the local 
cooperative’s complexities by their values allows classifying the local cooperatives (by their 
real complexities) and creating a hierarchy of the cooperatives with different element’s 
number. This leads to a hierarchical information network (IN), whose hierarchy is formed by 
the nodes, enfolded the local cooperatives and arranged by these complexities (Fig.7.1a).  

n+2n+1

n

m +1
m+2

m

j+3j+2

j

j+1

 
Figure 7.1. An information cooperative net with the arbitrary spanning branches. 

n+2n+1

n
m +1 m+2

m

j+3j+2

j

j+1

 

Figure 7.1a. An hierarchical information cooperative network (IN) with the ranged complexity’s of the 
local cooperatives and their sequentially cooperations into a common unit.  
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In a such an IN, a sequence of nodes with the decreasing ranged potential activities, 
representing the potential complexities of the local cooperatives, could be a capable for a 
further cooperation, consecutively involving the IN’s neighbor levels and reaching finally a 
complete cooperation at a lower IN’s level.  

This IN orders the cooperative activities of the elements’ set in such a system, where a 
whole set of active elements, cooperating into a common unit, is evaluated by the complexity 
measures at each step of the local cooperation, as well as by the complexity of the joint unit.  

Compared to an arbitrarily spanned branching net (Fig.7.1), the IN presents the ordered 
organized sequence of the merging local cooperatives, holding a cooperative organization of 
a given set of dynamic objects.  

Indicator (7.7) is applicable to both cases (Figs.7.1,7.1a) allowing a discrimination of the 
connections and the restoration of a current information net, formed during the 
communications.  

The time-space distributed information network (chs.1.4-1.5) allows the automatic 
allocation and measurement of the MC-local complexities for a multi-dimensional process, 
taking into account their mutual dependencies.  

Collective macrodynamics in (chs.1.4-1.6) is a source of the IN with an optimal 
distribution of the information flows between the collective’s elements according to the 
element’s measure of cooperative activity. These processes’ cooperative complexity is 

encoded in the IN communication code, allowing the kjMCδΔ  transmission through the 

common communication channels, including the specific kjMCδΔ  allocation at each IN j’s 

hierarchical level, with the following evaluation of the IN level by the kjMCδΔ -digital 

measure. (The IN’s code is an analog of the pkvMCδ code.) 

1.7.4. Illustration of Arising of the Information Cooperative 
Complexity at Discrete Points of Applied Controls  

Methods of Irreversible Thermodynamics (IT) [21,23,26,28] have been applied to 
describe superimposing phenomena, in terms of the generalized thermodynamic flows and 
forces of a cooperative process.  

The universality of the information language and the informational nature of the IPF led 
us to Informational Macrodynamics (IMD) as an information analogy of the IT.  

The macroprocess at the VP’s extremals is described by the IT-IMD n -dimensional 
kinetic equation 

 tx LX= , ,t
Sx I X
x
∂

= =
∂

,  (7.9) 

where I is a vector of a generalized flow is, X  is a vector of a generalized force, L is a 
kinetic matrix.  
The microprocess, at a locality of the considering punched locality, is modeled by the n -
dimensional stochastic differential equation (1.1.1).  
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The VP, applied to both ,t tx x  (at a fixed 1
tx ), imposes the constraint on vector X, binding 

these processes at the above ( )o ε locality:  

 
1( ) (2 ) ( )tX b xττ τ−= , ( )b bτ τ= ,  (7.10) 

where diffusion matrix σ  of (1.1.1) is defined through a dispersion matrix b . Comparing the 
equations (7.9) and (7.10), we come to the equalities, connecting the kinetics and diffusion, 
the model’s micro- and macrolevels  

 2 , ( )L b L Lτ τ τ τ= = , ( )TLτ σσ τ= .  (7.11) 
Several superimpositions increase the number of cooperative processes and their 

contributions. These and other essential properties of collective dynamics, accompanied by a 
formation of cooperative structures, can be formalized using the minimax variation principle 
(VP), applied to the IPF (ch.1.3). In the macrodynamic model, the controls implement the 
variation principle (VP) by selecting the macrotrajectory extremal’s segments in a multi-
dimensional process, divided by a “punched” microlevel’s window, which is a source of new 
information. The additional “needle” controls, applied between the extremal’s segments, stick 
them into a cooperative structure and successively join into a multi-dimensional cooperation. 

 The “needle” control action consists of switching the macroprocess from the extremal’s 
section, satisfying the entropy minimum, to the extremal’s piece, satisfying the entropy 
maximum, and back to the entropy minimal extremal’s section for each model’s dimension. 
The control’s switch closes a jump of the corresponding entropy influx at each border’s 
“punched” point (DP) between the section’s discrete intervals. During the jump, a local 
chaotic motion might arise with a chaotic resonance, which is able to join the current equal 
probable macrostates (at the section’s borders) into the cooperative structure (physically 
performing the control function). For the considered transformation, at the border of the 

( )o ε -window, we get the following conditions, defining the indicators of a conjugation 

between the kinetics and diffusion: at ( ) ( ),L oτ σσ τ− ≥ -the kinetic flow transfers to 

diffusion; at ( ) ( )L oσσ τ τ≥ + -the diffusion flow transfers to kinetics. Changing the signs 
of macrodynamic forces in the border (3.173a)  links up to the arise, change , and decrease of 
these flows. The cooperation brings a physical analogy of the states’ superposition into a 
compound state, accompanied by a nonsymmetry of the formed ordered macrostructures.  

The jump is a source of the irreversibility at each DP and the nonlinear phenomena, 
accompanied by the creation of new properties. In particular, the above collective properties 
are also associated with forming dissipative structures [23].  

Forming a dissipative structure possesses fundamental features of cooperative dynamics, 
such as transformation of macrodynamics to stochastic fluctuations, accompanied by 
instabilities, thermodynamic irreversibility and asymmetry, and the transformation of the 
stochastics ( )x t  into the renovated and stable dynamics ( )x t , leading to the creation of a 
complex system. At the dynamic-stochastic border, for the irreversible phase transformations 
[23, 24], the probability function in a limit acquires the form  

 ( , ) ( ( ) ( )) ( ( ) ( )),t t oP x x C x t o x t C x t x t oδ δ+= − − + − +    
 (in our indications, where a weight sum of the coefficients equals 1). A development of these 
phenomena, in particular, depends on the system’s starting conditions [25] securing an 
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instability on the border and a subsequent stability of a formed composite structure. Many 
chemical kinetic processes, providing a cooperation of molecules [22], are accompanied by a 
push-pull impulse, which captures and joins the interacting molecules into a cooperative 
structure (Fig.7.2). Actually, the multi-dimensional superimposition also embraces a potential 
inner “needle” control action, associated with modeling of the process’ jump-wise 
interactions (by an analogy with Fig. 7.2). This control (sec. 1.3.5), implementing condition 
(1.3.160), connects the process’ segments of different dimensions that decreases the process’ 
initial dimension and creates the cooperative dissipative structures.  
In the case of a piece-wise self-forming control, such a decrease of the dimension is 
associated with forming the Prigogine dissipative structures [21]. 

 

Figure 7.2. Simulated in [22], the chemical kinetic mechanism for the behavior of fluorocarbons in 

flames; 1 2k (E),k (E)  are the energy’s (E) densities for a sum of states, generated by the cooperative 

reactions R+R I , P+P I  at the A –locality, under the up downk ,k  the push-pull’s impulse. 
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Figure 7.2.a. The illustration of transformations of the i - extremal’s segment with a macroprocess tx  

to a segment ( )tx ε  of the microprocess tx and back to the j -segment tx  under controls 

( , ), ( , )i k k jv t t v t tε− .It seen that this figure is analogous to Fig. 7.2. 
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Macrocomplexity ikMC  (sec.7.1-2) measures the specific quantity of information 
concentrated within and at a border of each extremal segment, while the complexity for a total 
macrotrajectory MC∑ measures a summary of such information contributions from all of the 
macrotrajectory’s sections. The differential complexity: ikMCδ  characterizes the phenomena 
arising from the transformation from one extremal section to another by the jump through a 
microlevel’s stochastic process during the ( )o ε -window between the i,j sections (Fig. 7.2a). 

These phenomena consist of transferring first the macromovement from an ordered local 
stable (but a nonequilibrium) macroprocess (at one extremal segment) to a disordered 
microlevel’s process with a local instability. The second transformation brings this microlevel 
process back to the macromovement at the subsequent stable extremal segment. 

ikMCδ evaluates the contributions to complexity, generated by the appearance of new features 

during the information interaction with the environment, while ikMC evaluates an 

accumulation of this complexity at each interval of an assimilation of these features. 
These phenomena consist of transferring first the macromovement from an ordered local 

stable (but a nonequilibrium) macroprocess (at one extremal segment) to a disordered 
microlevel’s process with a local instability. The second transformation brings this microlevel 
process back to the macromovement at the subsequent stable extremal segment. 

ikMCδ evaluates the contributions to complexity, generated by the appearance of new features 

during the information interaction with the environment, while ikMC evaluates an 
accumulation of this complexity at each interval of an assimilation of these features.  

Later on we find the concrete forms for both complexity’s measures and constructively 
evaluate their values.  

Let’s start with ikMCδ , whereas the increment is generated by the model’s needle control, 
performing the extremal segment’s cooperation and bringing the above contributions. In this 
case, ikMCδ acquires a meaning of cooperative complexity.  

Assume we have a couple of the extremal’s sections ,i j  along a macroprocess with the 
needle control connecting them, and let’s evaluate the information contribution by the needle 
control ijvδ  actions, implementing both of above transformations at a small time interval 

between the segments (Fig.7.2a):  

 
( , ) ( , )ij i i i j jv v t t v t tε εδ −= + .  (7.12) 

We illustrate ijvδ using a finite approximation of an external needle control (Fig. 7.2a) 

that consists of two parts: 

 
( , ) ( , )ij i i k j k jv v t t v t tε−= + ,  (7.12a)  

where ε  is a small time interval between the end of control ( , )i i kv t t ε− and the start of control 

( , )j k jv t t . (Theoretically, 0ε = , and a total needle control’s impulse (during ( jt - it ) we 

divide here on two step-wise discrete functions ( , )i i kv t t and ( , )j k jv t t ).  
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Control ( , )i i kv t t ε−  transfers the macroprocess tx  (at it ), defined by a kinetic matrix 

( )T
i iL tσσ= , to a diffusion process tx  with duffusion matrix ( )T

kt εσσ − ; control 

( , )j k jv t t  transfers this process’ matrix ( )T
kt εσσ −  to ( )T

ktσσ  and then back to the 

macroprocess with a kinetic matrix ( )T
j jL tσσ= .  

According to (ch.1.3.5), these transformations bring the changes of the corresponding 
eigenvalues, taken on a macrotrajectory, from ( )i itλ  to ( ), ( )i k j kt tελ λ− and then to ( )i jtλ , 

where the moments ( it , ,k kt tε− , jt ) are defined by the nonrandom controls (7.12a) acting on 

the operator shift of (1.1.1), and therefore on both micro- and macrolevels.  
A total eigenvalue’s increment delivered by the control is 
 

( ) ( ( ) ( )) ( ) ( ( ) ( ) ( )), ( ( ) ( )) ( )ij j j j k i k i i j ij i j k i k ijt t t t o o t tε ελ λ λ λ λ λ τ λ τ λ τ λ λ λ τ− −Δ = − + − → + − − − + → ..  

  (7.12b)  
From this consideration and the difinitions (sec.7.1) we get 
Proposition 7.3. 

(i)-The ikMCδ complexities measures, generated by the needle control ijv (7.12a), are 

 /ik ik ikMC H VΔ Δ= Δ Δ , ( ) ( ) ( )ik
ik i k

S S SH t t
t t t ε−

∂ ∂ ∂
Δ = −Δ = − +

∂ ∂ ∂
,  (7.13) 

 
/kj kj kjMC H VΔ Δ= Δ Δ , ( ) ( ) ( )kj

kj k j

S S SH t t
t t t

∂ ∂ ∂
Δ = −Δ = − +

∂ ∂ ∂
,  (7.14)  

with a total information increment  
 

 ij ik kjH H HΔ = Δ + Δ = ( )ijS
t

∂
−Δ

∂
 at

 
( )k

S t
t ε−

∂
∂

( )k
S t
t

∂
≠
∂  

,
  

(7.15) 

where by applying the needle control ijvδ (7.12) at δΔ→  we get these complexities in the 

forms  

 
/ , / , / ,ik ik ik kj kj kj ij ij ijMC H V MC H V MC H Vδ δ δ δ δ δδ δ δ δ δ δ= = =

  
(7.16) 

 (ii)- The entropy increments (7.15), (7.16) are determined by the increments of related 
eigenvalues (7.12b) (delivered by controls ( , )i i kv t t and ( , )j k jv t t ), with a total information 

contribution  

 
4ij ijHδ δλ= ,  (7.16a) 

 (following from (3.154a)), which is a necessary for the cooperation and is supplied by 
control ijv . •  

(At the fulfillment of (7.16a), the complexities (7.1)− (7.8), (7.13)− (7.16a) can be 
expressed directly via the models Hamiltonian (3.145b) at the same indications for the above 
information contributions and the related Hamiltonian). 

Example 7.1. We illustrate the application of (7.15) on the example from physical 
kinetics for a chain of connected chemical reactions.  
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Following [28], the kinetic equation between the number iN  of components for i -

reaction and the number kN of components for k -reaction is 

 
( )i

ik i ki k
N N N
t

λ λ∂
= − +

∂
, 1ik kiλ λ+ = ,   (7.17) 

where ik iNλ−  represents a decrease of iN  at ik -transition, while ki kNλ represents an 

increase of kN at ki -transition; ,ik kiλ λ  here are the probabilities of transitions for these 
components, and are independent of time. The transition takes place during a time interval 

iktΔ  under a fixed increment of chemical potentials ik i kμ μ μΔ = −  for these reactions.  
The specific entropy production for this transition is 

 
( )v i

ik ik i ki k ik
S N N N
t t

μ λ λ μ∂Δ ∂
= Δ = − + Δ

∂ ∂
,  (7.18) 

where vSΔ  is an increment of specific entropy.  

Applying (7.15),(7.16) at ikt tΔ →∂  and using the derivation, we come to the 
cooperative complexity  

 

 
d
ikMC = ,i k vi ki

ik ik ki ik
N N S S
t t t t

λ μ λ μ∂ ∂ ∂Δ ∂Δ
− Δ + Δ = − +

∂ ∂ ∂ ∂
  (7.18a) 

which is measured by the above increment of the entropy productions between the above 
reactions, generating new components.  
These transitions join the above reactions in a cooperative.  
For a chain of these reactions, we get a sum, taken at the corresponding time-space’s 
locations.  

An example of a cooperative behavior is also the Belousov-Jabotinsky (BJ) reaction 
[21,29] with a mutual transformation of its components during the oscillations.  

The “three molecular” model of chemical reactions (brusselator) represents “an ideal 
system for studying cooperative processes in chemical kinetics” [23].  

In the brusselator, a mutual interaction of two reactions gives rise to a third one, which 
has a feedback action on the first two, producing their cooperative dissipative structures. Both 
BJ’s and brusselator’s cooperative complexities are evaluated analogously to eq.(7.18a).  

 
Comments 7.6. Applying relations (7.10) we can write (7.9) in the form: 
 

1( ) ( ) ( ), ( ) 1/ 2 ( ) ( ), ( ) [ ( ) ( ) ], ( )T
t ox A x A r r r M x x A A x vτ τ τ τ τ τ τ τ τ−= = = = + , 

                                                                                                                                  (7.19) 
where ( )r τ  is a covariation matrix, determined at the ( )o ε -locality, with control v .  
This allows us also to connect both the kinetic and covariance matrixes, opening an option for 
directly measuring the kinetics in (7.9) by (7.11).  
The increment of forces ijXΔ  is initiated directly by the entropy production: 
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( ), 1/ 2 ( ) ( ), 1/ 2 ( ) ( )ij jT Ti

ij i i i j j j

S SSX H x t X t H x t X t
x t t t

∂ ∂∂∂
Δ = Δ − = = − = =

∂ ∂ ∂ ∂
,  

  (7.20) 
where for a stable system (7.10) at jtτ = , ( ) 0jA tτ = < , the force ( ) 0jX tτ = < ; and at a 

local instability around it  with ( ) 0, ( ) 0i i i iA t o X t o+ > + > , the increment 
 

 
1 1(2 ) ( ) ( ) (2 ) ( ) ( )ij i j i i i i j j j jX X X b A t o x t o b A t x tτ τ
− −Δ = − = − + + +    (7.20a) 

acquires a sum of negative values. This indicates that the resulting force generates an 
attracting action, which joins the extremal’s segments, where at 

( ) 0i iA t o+ > , ( ) 0i
i

S t o
t

∂
+ >

∂
, and the entropy on the extremal reaches a local maximum: 

( ( )) maxiS x t oΔ + → , while at ( ) 0j jA t < , ( ( )) minjextr S x tΔ → . 

The above conditions (related to (3. 1.64c), (3.173a)) are the main indicators of the origin 
of the cooperative complexity, which generates the processes of self-organization, complex 
biophysical and chemical transformations, accompanied by the formation of composite 
structures.  

These results follow from the VP application, which involves the transformation from a 
kinetic instability to diffusion and back to stable kinetics during a time-space ( )o ε -window.  

These cooperative phenomena are associated with an alteration between the VP intervals 
of the entropy’s local minima and maxima, while the applied control are cable of modeling 
the process’s interactive dynamics.  

1.7.5. The Complexity Invariant Measure in a Cooperative 
Dynamic Process 

As a rather a formal example, let us find the complexity of the model’s cooperative 
dynamics, using (7.14) at  

 

 0

/lim /
/ tt

H tMC H V MC
V t

δ δ δ
δδ

δ δ
δ δ→

= = = ,  (7.21) 

The considered mechanism of cooperative dynamics reveals the complexity origin and its 
connection to the dynamic and physical phenomena and parameters.  

The complexity invariant information measure emerges as an indicator of the cooperative 
phenomena, in particular, the contributions from different superimposing processes.  

Proposition 7.4.  
Let us consider the cooperative dynamics for the two nearest extremal segments of the 
macrotrajectory, accompanied by joining their corresponding eigenvalues ( t

iα , 1
t
iα + ) of the 

model's operator spectrum { }, 1,.., ,.,t
iA i k nα= =  by the needle control (7.12), and 

following the solutions of the variation problem for the model's operator eigenvalues (7.16a).  
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Then complexity (7.1), reduced to the beginning of a segment’s time interval ( )it , 
acquires the form  

 ( )t oMC tδ = ( )i iH t / ( )i iv t =(a 2)o
3 4/ i ic tπ ,  (7.22)  

where (a o ) 2 is the segment information needle control’s contribution, measured by the 

information invariant a o = t
io itα ; 3( ) /i i i i i iv t V t tπρ= =  is an elementary segment’s space 

volume increment at the time interval it , with a current 2
i i iV cπ ρ= , determined by the fixed 

model's space speed ic and the volume's cross-section 2
i iF πρ= , i i ic tρ = , i i iV c F= . 

(Here and below the information contribution, expressed via the eigenvalues (7.16b), should 
be multiplied by 4). 
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Figure 7.3.a,b. The illustration of cooperation of two exremal’s sections under the discrete 
control ( )i iv tΔ (a) and the needle control ( )i iv tδ (b) (other indications are in the text). 

Proof. According to the IMD, the process starts with applying a regular controls ( )i otν  

(Fig.7.3a) to the initial eigenvalues t
ioα  and 1,

t
i oα + , initiating the dynamics of ( )t

i tα  and 

1( )t
i tα + at both segments within the time intervals it  and 1it + , accordingly.  

The corresponding dynamic equations are determined by the model invariant relations, 
following from the solution of the variation problem:  
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t
itα = t

ioα a/a o , a= 1,
t
i t itα = ,a o (γ )= t

io itα , 1, 1,
t t
i t i oα α+ += a/a o ,a(γ ) 1, 1

t
i t itα + += ,a o 1, 1

t
i o itα + += , 

  (7.22a) 
where t

ioα , 1,
t
i oα + are the eigenvalues at the beginning of time intervals it , 1it + accordingly, 

t
itα , 1,

t
i tα + are the eigenvalues at the end of these time intervals.  

The above information invariants, which depend on the model parameter γ , evaluate a 

closeness of the nearest initial eigenvalues ( t
ioα and 1,

t
i oα + ).  

The needle control ( )i iv tδ Δ (Fig. 7.3b), applied at the moment v
it  to the eigenvalue t

itα  and 

acting during a finite time interval 1
v v

i i it t t+Δ = − , provides the consolidation of the 

eigenvalue t
itα  with 1, 1

t
i tα + +  at the moment 1

v
it + .The corresponding derivation of local 

model’s Hamiltonian iH ( t
iα )= /t

i t∂α ∂  is determined by function 

                                1
1( ) exp( )(2 exp( ))t v t t t

i i it it i it it t tα α α α −
+ = Δ − Δ ,  

where t
itα = t

iα ( v
it ) is the eigenvalue at the beginning of itΔ  preceding the cooperation, 

1( )t v
i itα +  is the eigenvalue at the moment 1

v
it +  of cooperation.  

Both of them depend on the model’s dimension n  and parameter γ .  
Using the indication  

 
1exp( )(2 exp( ))t t

it i it ip t tα α −= Δ − Δ ,   (7.23)  
we get the corresponding derivation 

 

 iH ( t
iα )= 2 2( ) ( )t

it p pα + ,  (7.23a)  

here p  is the parameter of the dynamic cooperation of t
itα  with 1, 1

t
i tα + + at itΔ :  

 

 
t
itα p = 1,

t
i tα +  .   (7.24)  

By substituting relations (7.23), (7.23a), and (7.22a) into (7.24), we represent p  in (7.23-

7.24) by the ratio of the initial eigenvalues: 1, /t t
i o iop α α+=

 
that relates p  to the model 

parameter of multiplication 1,/t t
i io i o
αγ α α += (which particularly, for the IN is 2.21i

αγ =  at 

γ =0.5, where t
itα = ( , )t

it nα γ ).  

Because generally i it tΔ ≠ , this p  differs from 1( )i
αγ − .  

For example, at 1 1( ) 2.21ip αγ − −= = , we get / 0.47 /i it tΔ = a(γ ), which for γ =0.5 brings 

/ 1.88i it tΔ ≅ .
．
  

This allows us to express the interval of cooperation: ( )i it p αγΔ = and directly obtain the 
increment (7.23a) during the cooperative dynamics, using the model invariants and the initial 

t
ioα :  

 

 iH ( t
iα )= 2/ ( , ) ( )t t

i iot n∂α ∂ γ α= (a/ao)
2 [ 1( )i

αγ − + 2( )i
αγ − ] ,   (7.25) 
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where a maximal t
ioα  depends on the model γ  and dimension n :

0
max ( , ) ( )t to

it itn n
γ

α γ α
→

= . 

Applying the needle control at a very small time interval itδ : 

                                         
0

( ) lim ( )
i

i i i i it
v t v t v

δ
δ δ δ δ δ

→
= = ,  

we get the corresponding derivation of local Hamiltonian iH ( t
iα ) in a limit: 

                                             ( )iH vδ =
0

lim( / )t
it

t
δ

∂α ∂
→

,  

which is determined by function ( )t
i vα δ = 1exp (2 exp )t t t

it it itt tα α δ α δ −− .  
From this we obtain the actual needle control’s contribution  

 ( )iH vδ =
0

lim( / )t
it

t
δ

∂α ∂
→

= 22( )t
itα ,   (7.26) 

and using the information invariants (7.22a), we come to  

 ( )iH vδ = ( )i iH t =2(a) 2 2/ it =2 2( )t
ioα (a/ao)

2 ,  (7.27) 
where 

 
2( ) 2( )t

i o ioH t α= =2(ao)
2 2/ it  ,   (7.28)  

and ( )i oH t = ( )i iH t (ao/a) is the information contribution at the beginning of the segment, 

reduced to the segment’s time interval it .  

The value of ( )i oH t /2 (7.28) can be applied to each consecutive starting segment.  

To evaluate the elementary cooperative complexity at each extremal segment’s tMCδ , 

we use any of equations (7.27),(7.28) and the model's current 2
i i iV cπ ρ= , determined by the 

fixed model's space speed ic and the volume's cross-section 2
i iF πρ= .  

Because both invariants in (7.27),(7.28) depend on a segment’s time interval, we reduce 
the volume’s increment also to the considered time interval it . At the radius’ increment 

i i ic tρΔ =  and 3 2
i i iV c tπΔ = , using the contribution (7.28),we get (7.22). •  

 
Comments 7.7. Let us evaluate the numerical values of tMCδ ( it ) in (7.22) (at a fixed 

volume increment) for the model admissible variations of the parameter (0.0072 0.8)γ = −  
and a reasonable range of the dimensions (2 20)n = − .  

The tMCδ  dependency on two variables ( , )n γ  splits the ( , )tMC nδ γ  into two 

functions: 
it

MCδ (γ ) and 
it

MCδ ( )n . (In both cases, the complexity at the o-windows 

undergoes the jump-vise change).  
Then 

it
MCδ (γ )=(a/a o ) 2 [ 1( )i

αγ − + 2( )i
αγ − ] takes the following computed values: 

it
MCδ (γ =0.0072) 0.052866353≅ , 

it
MCδ (γ =0.8) 0.5936826≅  with the ratio's range 

it
MCδ (γ =0.8)/

it
MCδ (γ =0.0072) 11.23≅ . 
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Complexity
 it

MCδ ( )n = 2
( )( )t

n ioα , at ( ) 2 20n io = − (where ( )
t
n ioα  is the initial 

eigenvalue of dimension ( )n n io= ) gets the following computed values: 
( 2)

it
MC nδ = 0.6058≅  and ( 20)

it
MC nδ = 58708.8≅  with the ratio's span 

( 20)
it

MC nδ = / ( 2)
it

MC nδ = 96911.2≅ .  

This means that the tMCδ  complexity's dependency on dimensions is in 100,000≅  
times stronger than the dependency on γ . At a given n, the complexity’s growth is limited by 
a maximal γ → 1 when the system decays.  

In addition to the cooperative complexity, the model possesses the local ( )iMC t and 

1( )iMC t + complexities, determined by the macromovement within and at the borders of the 

time intervals it , 1it +  and the volumes 1 1
1,,io i ov v− −
+ − produced during these times: 

( )iMC t =( t
ioα it ) 1

iov− =a o ( )γ 1
iov−  , 1( )iMC t + =( 1,

t
i oα + 1it + ) 1

1,i ov−
+ =a o ( )γ 1

1,i ov−
+ ,  (7.29) 

 it
MCΣ = ( )iMC t + 1( )iMC t + =a o ( )γ ( 1 1

1,io i ov v− −
++ ),   (7.30)  

where the dynamics are initiated by the actions of regular controls ( )i otν .  
The complete model’s complexity, generated by the cooperative macrodynamics of joining 

t
iα  to 1

t
iα + , is the sum:  

 it
MCΣ + ( , )tMC nδ γ = ( , )MC n γΣ ,  (7.31)  

where both the invariants and the elementary volumes in (7.17)− (7.18), (7.30), (7.31)(and in 
ch.1.5) are determined by the basic model’s parameters of dynamics ( , )n γ and geometry (k).  
Computer simulation [30] of the model's adaptive self-organizing process shows that at small 
n, a number of neighboring subsystems with a similar complexity does exist.  
With growing n, the number of close-complex neighboring subsystems decreases sharply.  

Comments 7.8. The MC complexity, defined by the system’s dynamics and geometry and 
expressed through the IN’s code, allows classifying both the systems and corresponding 
macromodels in the terms of their MC value.  

This classification also evaluates a difference between the systems (models) with the 
certain model parameters (n,γ , k) and some fixed (no ,γ o,ko ) , measured by the 

corresponding MC (n,γ ,k) and oMC  (no ,γ o,ko )  accordingly.  

 

1 1

( , ) ( , )
, , ( , , ) / , ( , , ) /

( , , ) ( , , )

n n
t t
io io o o

i i
o o o o o o o

o o o o o

n n
MC MC cF n k dV dt c F n k dV dt

cF n k c F n k

α γ α γ
γ γ

γ γ
= == = = =
∑ ∑

.  

   (7.32) 
From that, the systems with the equal MC-complexity’s measures but different model’s 

parameters are connected:  
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1 1
( , ) ( , )

( , , ) ( , , )

n n
t t
io io o o

i i

o o o o o

n n

cF n k c F n k

α γ α γ

γ γ
= ==
∑ ∑

 
,  (7.33) 

at 

  1 1

1
, [ (0)]( ) , , [ (0)]

n
t
io

i

MC H V H Tr A t V cF t Tr A α− −

Σ Σ
=

= Δ = Δ Δ = Δ =∑ .   (7.34)  

Function (7.33) serves as a numerical indicator of the system’s similarity, which also 
allows identifying the model’s parameters (n,γ , k) by some known (basic) model’s 
parameters (no ,γ o,ko ) .  

It leads to finding the specific dynamic and geometrical parameters and the code of the 
identifying system. 

Comment 7.9. Since− ( )ik

ik

S
V t

δ ∂Δ
Δ ∂

is the increment per volume of information produced 

in this volume, which defines the cooperative complexity ikMCδ , this negentropy increment 
cannot be more (by the absolute value) than the related internal increment of physical 

entropy
int

( )ik

ik

S
V t

δ ∂Δ
Δ ∂

 had been spent on the above negentropy production, according to the 

second thermodynamic law.  
That is why the ikMCδ

 maximum is limited by the above maximal internal increment of 
the entropy, admitted by the physical properties of this volume:  

 Max| |ikMCδ ≤max|
int

( )ik

ik

S
V t

δ ∂Δ
Δ ∂

|.  (7.35) 

The analogous limitations are true also for the information complexity 

 ikMC =− ik

ik

S
V t
∂Δ
Δ ∂

: max| ikMC |≤max|
int
ik

ik

S
V t

∂Δ

Δ ∂
|,  (7.36) 

where 
int
ik

ik

S
V t

∂Δ

Δ ∂
is the internal entropy production per the volume, limited by this volume (and 

by γ →1). The maximal complexity within each time interval it  (at the preservation of 

invariants a, a o  and a system’s maximal admissible entropy production within each it ) can 
be reached, if this time interval acquires the minimal value, allowable by the VP during the 
macrodynamic process. A minimal complexity corresponds to a minimal admissible 0γ → , 
which limits a minimal system’s structural uncertainty (atγ =0.0072)).  

The MC connection to physics involves also specific thermodynamics evaluations and 
limitations of complexity at its implementation through the computations.  

The leading studies were performed by Ch. Bennett [40], R. Feynman [41], others. •  
The considered mechanism of cooperative dynamics reveals the MC origin and its 

connection to the dynamic and physical phenomena and parameters.  
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The MC’s invariant information measure emerges as an indicator of the cooperative 
phenomena, in particular, from different superimposing processes.  

This invariant complexity measure also evaluates the quantity of information required to 
join an object j with an object k (secs.7.1,7.2), imposing, in a particular, a discrete connection 
of these objects by the needle control, which can be expressed by the information code. 

A sequential cooperation of all n  eigenvalues for the model’s operator spectrum 
generates the cooperative information hierarchical network (IN) (Fig.6.5), which we use for 
the information evaluation of a cooperative complexity in the multi-dimensional processes 
(sec.1.7.5).  

1.7.6. The IN Cooperative Mechanism with the Complexity Measure 

The following questions arise: What is the general mechanism coordinating the formation 
of cooperative information structures in the multi-dimensional cooperative dynamics?  

What are an indicator and a measure of the structural cooperation?  
Below we show that the general mechanism is an information cooperative network (IN), 

initiated by the VP application with its MC function as the indicator and measure of the 
embedded cooperative dynamics.  

The IN incoming information string of the model eigenvalues is ranged automatically 
according to this mechanism(ch.1.5), which assigns the information measure following from 
the VP solution.  

The mMCδ  for the IN’s current hierarchical level ( )i il m depends on the triplet’s number 

im  enclosed into this triplet’s level from the previous levels, while the differential tMCδ  

(7.1a) evaluates an instant production of information at every ( , 1i i + ) cooperation. 

Cooperation with each following node sequentially changes the IN’s current MC( im ,γ ). 

Complexity of a total IN is determined by MC( nm ,γ ), at / 2 1nm n= − of a final IN’s node, 
according to formulas (7.29-7.31) and at preserving γ  within the IN.  

The information measure of the starting eigenvalues’ string, together with the values of 

1
t
oα , i

αγ , γ , and a(γ ) allow us to calculate the IN’s dimension ( n ), restore the complete 
cooperative dynamics with the IN’s space-time hierarchical information structure (Fig. 5.5), 
including the sequence of cooperative resonance frequencies, the MC-function at each IN’s 
hierarchical level, and for a whole IN. 

Let us find the limitations on the IN’s cooperative dynamics, its parameters, and the 
complexity.  

Proposition 7.5 (P7.5).  

The model eigenvalues’ sequence (… 1,
t
i oα − , t

ioα , 1,
t
i oα + ), satisfying the triplet’s formation, is 

limited by the boundaries for (0 1)γ ∈ → , which  
 (a) at 0γ →  forms a geometrical progression with  

 
2 2

1,( ) ( )t t t t
i o io i o ioα α α α− −= + ,  (7.37) 
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representing the geometric “gold section” at t
ioα ≅ 0.618 1,

t
i oα −  and the ratio  

 

 

1, 0.618
t
i o

t
io

G
α
α
+= ≅ ;  (7.38) 

and  

(b) at 1γ →  the sequence 1, 2,, , ,...t t t
io i o i oα α α+ + forms the Fibonacci series, where the 

ratio 1, 2, 2/t t
i o i o

αα α γ+ + =  determines the “divine proportion” 1.618PHI ≅ , satisfying  

 PHI ≅ G +1;  (7.39) 
and the eigenvalues’ sequence loses its ability to cooperate. 

Proof. At 0γ → , the solution of (5.42)(ch.1.5) at a( 0γ → )=0.231 brings 1 2.46αγ ≅  
and 2 4.47,αγ ≅  2 1 23/ 1.82α α αγ γ γ= ≅ .  

The ratio 1 1
1 1,( ) / (2.46) 0.618t t

io i o
αγ α α− −

−= ≅ ≅  for the above eigenvalues forms a 

“golden section” satisfying for  
G = 1 1

1 1,( ) / (2.46) 0.618t t
io i o

αγ α α− −
−= ≅ ≅  to the equation (7.37); and the “divine 

proportion” PHI ≅ 1.618. The above relations hold true for each primary pair of the triplets’ 
eigenvalues sequence, while for the third eigenvalue we get the ratio 

1
1, 23/ ( ) 0.549t t

i o io
αα α γ −

+ = ≅ . These prove P7.5a.  

The solution of (1.5.42) at a( 1γ → )=0 brings 1 2 1α αγ γ= = , at which we have 

1, 1, 2, ,...t t t t
i o io i o i oα α α α− + += = = = and the eigenvalues’ sequence loses its ability to cooperate, 

disintegrating into the equivalent and not connected elements, which proves P7.5b •  
 

Comments 7.10. In a chain of connected information events, the appearance of an event 
carrying 1γ →  leads to a chaos and decoupling of the chain; the moment of this event’s 
occurrence a real world is dangerous.  

The above relations allow one to predict it by measuring a current event’s information 
a o and using (5.36a) to computeγ .  

At approaching γ 1→ , we get a 0.58767o→− , which is an equivalent of 0.8462448 
bit, and the corresponding time’s ratio of the following and preceding intervals is 

1 / 1.8254i iτ τ+ = with the eigenvalues’ ratio / 1.9956964io itα α ≅ − .  

At 1γ =  this equation gives a o ( 1) 0γ = =  with both information contributions for the 

regular control a ( 1) 0γ = =  and the needle control a 2 ( 1) 0o γ = = . 

This means that at a locality of 1γ = , both the event’s information a o and the time 

undergo the jump, which could be the indicators of approaching 1γ = . 
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Comments 7.11. With a decay of the cooperative model (at 1γ → ), its current dimension 

in  is changed. A minimal IN potential’s growth (from the in  dimension) corresponds to a 
possibility of adding the two cooperating eigenvalues (doublet) to the last triplet’s eigenvalue 
of the in  dimensional system, forming a new system of 1in +  dimension, and so on.  

Thus, we get the sequence of the feasible systems’ dimensions 1 2, ,i i in n n+ + , which 

satisfy a simple relation 1 2i in n+ = + , forming the Fibonacci sequence.  

The proportion PHI  (at 1γ → ) expresses the completion of the cooperative dynamics 
in one subsystem and a potential start of the cooperation in a subsequent subsystem, 
exhibiting a boundary between the evolved subsystems.  

Corollary 7.3.  
The complexities of the IN’s node’s dimensions 1,i in n−  at 0γ →  are connected by relations  

 1 1( ) ( ) | ( ) ( ) |i i i iMC n MC n MC n MC nδ δ δ δ
+ += +

,  (7.40)  
following from (7.37), where according to (7.28):  

 
1

1 1, 1,( ) ( / ) ;t
i i o o i oMC n vδ α −
− − −= a a 1`( ) ( / ) ;t

i io o ioMC n vδ α −= a a
  

(7.41) 

and subsequently 
 

 
2 1

2 1, 1,( ) ( )  ( / )t
i i o o i oMC n vδ α −
+ + += a a . 

ecause the triplet’s eigenvalues sequence forms a triplet’s code (ch.1.6) the ability of 
generating this code is also limited by the conditions of P7.4a,b. •  

Let us study the elementary cooperation of two processes ( ,i k ), represented by the 

corresponding iIN , kIN  with different iγ , kγ  and determine the cooperative complexity.  

3
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Figure 7.4. The cooperative schema for joining of two subsystems ( ,i k ), represented by 

corresponding iIN , kIN  with different iγ , kγ . 
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Proposition 7.6  
Suppose the first eigenvalue 1

itα  of the iIN  joins the first eigenvalue 1
ktα  of the kIN  during 

a time interval itΔ  (Fig.7.4) according to the equation (7.22), (7.25), and assume that both 

iIN ( iγ ), kIN ( kγ ) are given, their starting dimensions ,i kn n  and 1
itα ( iγ , in ), 

1
ktα ( kγ , kn ) are known, as well as all other networks’ eigenvalues.  

Then the complexity increment, reduced to the segment’s time it  and related to the 

corresponding volume’s contribution ( )i iv t , acquires the form 

 iktMCδ = a 2( )o iγ
1
ikρ a ( )/iγ a o( )iγ a ( )kγ /a o ( )kγ  

 × {1+ 1
ikρ a ( )kγ /a o ( )kγ [a o( )iγ /a ( )/iγ

1]− } / ( )i iv t ,  (7.42) 

which is determined by the invariants  
 

 a( iγ )= 1
itα it , a 1( )=  k kt ktγ α , a 1

o ( )=i io itγ α , a 1
o ( )=k ko ktγ α  ,   (7.43)  

 

and the relations  
 

 
1 1 1 1 1 1, exp( )(2 exp )it i kt i it it i it ip p t tα α α α α −= = Δ − Δ , 1 1 1

ikko ioα α ρ=  .  (7.43a) 
 

Proof. From (7.43,7.43a) follow 
 

1
ioα ip a ( )/iγ a o( )iγ = 1

koα a ( )kγ /a o ( )kγ , ip a ( )/iγ a o( )iγ = 1
ikρ a ( )kγ /a o ( )kγ ,   (7.44) 

from which we have 

 ip = 1
ikρ a ( )kγ /a o ( )kγ [a ( )/iγ a o( )iγ 1]−  .  (7.44a) 

Applying (7.44a) to equality  
 

 
1 1 2( )it ioα α= (a ( )/iγ a o( )iγ 2) 2( )i ip p+ ,  (7.44b) 

and using (7.44), we get the information contribution in the forms:  
 

 
1 1 2( )ik ioH α= 1

ikρ a ( )/iγ a o( )iγ a ( )kγ /a o ( )kγ  

 × {1+ 1
ikρ a ( )kγ /a o ( )kγ [a ( )/iγ a o( )iγ 1]− },   (7.45) 

 
1
ikH =a 2( )o iγ

2/ it
1
ikρ a ( )/iγ a o( )iγ a ( )kγ /a o ( )kγ  

 × {1+ 1
ikρ a ( )kγ /a o ( )kγ [a o( )iγ /a( iγ ) 1]− }  (7.46) 

 

and finally we come to (7.42) at the corresponding volume’s contribution ( )i iv t .•  
 

Comments 7.12. The obtained relations allow us to evaluate both the condition of 
cooperation (7.44a) and the cooperative complexity (7.42) by the INs’ information invariants 
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and the ratio 1
ikρ  of the initial cooperated eigenvalues. If the ( ,i k ) cooperation is performed 

by joining of the first iIN - kIN triplets during the time interval 3itΔ  when the iIN  node’s 

eigenvalue 3
itα  cooperates with the kIN node’s eigenvalue 3

ktα , then the formula (7.44a) 
acquires the view 

 3ip a ( )/iγ a o ( )iγ = 3
ikρ a ( )kγ /a o ( )kγ .   (7.47) 

 

Using the ratio of starting triplets’ eigenvalues and the 3ip , expressed through 3itΔ , we get  
 

 
3
ik 3 3/ko ioρ α α= , 3ip = 3 3 3 1

3 3exp( )(2 exp )it it i it it tα α α −Δ − Δ .   (7.47a) 
 

For the triplets, by exchanging 3
ikρ  with 1

ikρ , we come to the formula for the MC 
complexity, analogous to (7.42).  
The related formulas follow from joining any other corresponding iIN - kIN nodes.  
From equations (7.47),(7.44) we receive 

 

 3ip / ip = 3
ikρ / 1

ikρ ,   (7.48) 
which shows the proportionality between the time’s parameters and the ratio’s of cooperating 
eigenvalues. Within each IN, the ordered eigenvalues’ ratios 

1 3 1 3
13 0 0 13 0 0( ) / , ( ) /i i i k k k
α αγ γ α α γ γ α α= = , depending on the fixed ( kγ , iγ ), are preserved. 

Because of that, the ratio  
 
                               1 3

ik ik 2 2 2 3 4 5/ ( ) ( ) / / ( )i i i k i k
k i t t t t i

α αρ ρ γ γ γ γ α α α α γ= == = = =  
(on the right side of (7.48)) is also fixed for both the INs’ ranged cooperating eigenvalues.  

This leads to the fixed ratio (on the left side of (7.48)), or to the possibility of an 
automatic cooperation of all interacting iIN - kIN  eigenvalues if the cooperation of any two 
eigenvalues of these networks has occurred.  

Actually, the automatic cooperation requires the sequential supply of the produced 
information from each previous cooperating eigenvalue to each following cooperation (see 
also ch.1.6).  

Such a supply is possible for any ordered cooperating sequence satisfying the VP, which 
leads to the automatic creation of each IN.  

If the ratio on the right of (7.48) is fixed for the iIN - kIN cooperation, then the MC 
complexity also gets fixed and stays the same for all cooperating eigenvalues.  

This means that the MC is changed only with the cooperation of eigenvalue having a 
distinctive γ .  

Proposition 7.7.  
Let us consider the cooperative dynamics for a set of triplets with differentγ , assuming that 

this set forms an IN where the cooperation of a triplet’s i eigenvalue 3
i
tα  with triplet’s k 

eigenvalue 3
k
tα  satisfies the relation (7.44), (7.44a) and  
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1

3 3 3 3, exp( )(2 exp( )i ik k ik i i
t t t t t ik t ikp p t tα α α α −

Δ Δ= = Δ − Δ .  (7.49) 
Then the entropy’s consumption for the triplet’s node k , corresponding (5.42a), gets the 

invariant form: 
 

k k i g ( , )γ γ =2a ( )iγ / 1 ( )k
αγ γ +a ( )kγ / 2 ( )k

αγ γ +a ( )kγ  
 =a ( )kγ [2a ( )iγ /a ( )kγ

1
1( ( ))k
αγ γ − + 1

2( ( ))k
αγ γ − +1],  (7.49a) 

where the k k i g ( , )γ γ  establishes the information connection between any cooperating i , k 
triplets, modeling the IN’s cooperative phenomena. 

Proof. For such an IN, the 3
k
tα  is obtained by the cooperating a pair ( 4

k
tα , 5

k
tα ) that 

forms the doublet 
 

 3 5 4
k k k
t t oα α α⇒ = a ( )kγ /a o ( )kγ 2

kp = 5
k
oα a ( )kγ /a o ( )kγ , 

 
1

2 5 4 5 4 2/ / ( ( ))k k k k k
o o t t kp αα α α α γ γ −= = = ,  (7.49b) 

while the sequence of the cooperating triplet’s eigenvalues 3 1 2 3 4 5( , ), ( , )i i i k k k
t t t t t tα α α α α α is 

characterized by the ratios  
 

 
1

3 3 3 1/ ( ( ))k i ki
t t k

αα α ρ γ γ −= = , 1 1 3 1 3 3( ) / , ( ) /i i i k
i t t k t t

α αγ γ α α γ γ α α= =  .   (7.50) 

In such a sequence, the ratios ik
tpΔ = 2

kp  (and therefore the interval iktΔ ) are connected to kγ  

through the parameter of multiplication 1 ( )k
αγ γ  of the adjoint triplet.  

This connects (5.42a) to the related equation (7.49a) at 
 
                                a ( )iγ /a ( )kγ =1, k k ig ( , )γ γ = g (γ ).•   
 

Comments 7.13. The k k i g ( , )γ γ component 2a ( )iγ / 1 ( )k
αγ γ (which depends on the 

triplet’s invariant and the nearest ratio 1 ( )k
αγ γ ) measures the information contribution of a 

merging phenomenon (defined by the ratio), created by the cooperation.  
A complex system represents a composition of these phenomena, which indicate an 

emergence of complexity.  
The IN structure and the invariants allow the numerical evaluation of these phenomena 

by the amount of generated quantity and quality of information.  
Because each k-triplet’s node encloses information k k ig ( , )γ γ =2a ( )kγ  following from 

(1.5.42a), equation (7.49a) acquires the form  
 

 a ( )kγ [2a ( )iγ /a ( )kγ
1

1( ( ))k
αγ γ − + 1

2( ( ))k
αγ γ − +1]=2a ( )kγ ,  

and we come to  
 2a ( )iγ /a ( )kγ

1
1( ( ))k
αγ γ − + 1

2( ( ))k
αγ γ − =1,  

or (1− 1
2( ( ))k
αγ γ − ) 1 ( )k

αγ γ =2a ( )iγ /a ( )kγ ,  (7.50) 
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which determines the invariant condition, connecting iγ , kγ of the nearest triplets.  
Application of this condition allows us to get a chain of cooperating triplets, forming a 

harmonic ensemble of the sequentially coordinating frequencies, defined by the eigenvalues 
ratios (ch.1.6).  

This leads to a synchronization of cooperating triplets-nodes, stabilizing the chain.  
The computational example (for (7.50)) brings the following sequence of the IN’s 

cooperating triplets’ parameters:  
 
( 1 2 3 4 ) (0.72 0.42 0.62 0.5)γ γ γ γ→ → → ⇒ → → → ,  

which corresponds to the ratio’s sequence of information frequencies related to ( )i k
αγ γ , 

where the first one starts from the last frequency of the triplet with 1γ =0.72.  
The computation results [35,42] show that for a range of the feasible 

γ →(0.0072−0.8), only a limited collection of (0.4 0.7)kγ → −  exists with the 
frequency’s ratios between 4.08 and 2.049, which satisfies (7.50).  

In spite of these limitations, the absolute range of actual cooperating frequencies is 
essentially wider, depending on the specific frequencies’ band for such a cooperating 
subsystem according to its particular dimension and the locations of ending frequency, as well 
as this frequency band.  

For example, even for  

kγ =γ = 0.5, 1 12
α αγ γ= =2.215, 2 13

α αγ γ= = 3.895, and n=22,  
the frequency band is between 0.00015 and 500, i.e. 1:3300000.  

At the subsystems’ cooperation, this band extends more radically, leading to the 
synchronization and generation of the stable subsystems’ chain (within the limited kγ ).  

 
Comments 7.14. Each triplet encapsulates three symbols representing a code of the 

cooperating eigenvalues 1 2 3( , , )α α α , which carry the information transferred by these 

eigenvalues and evaluated by quantity of information 3a(γ )(ch.1.6).  

The model’s control adds one more symbol ( 1v ) to this code: 1 2 3 1( , , , )vα α α , evaluated 
by a total quantity of information 4a(γ ), which possesses 1.44 bits at γ = 0.5 .  

In particular, this is precisely the quantity of information necessary to encode each DNA 
codon or each 3 nucleotides of 20 aminoacides.  

If the IN’s starting eigenvalues’ string is aranged by the invariant ratios of the nearest 
eigenvalues, evaluated by quantity of information 3a(γ ) with the eigenvalues ratio 

12 1 2 3 4 13 1 3 3 5( ) / / ,...., ( ) / / ,....α αγ γ α α α α γ γ α α α α= = = = , 
 then this four letter’s code’s word preserves also its sequence: 

1 2 3 1( , , , )vα α α ⇒ 3 4 4 2( , , , )vα α α ⇒ ( 1 1, ,i i iα α α− + ,… ),  
while the last symbol of the previous code transfers the node’s information to the first 

symbol of subsequent code, and so on.  
This code possesses a hierarchical complexity for both the code’s dynamic and 

geometrical structures [36].  
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Such a code’s geometry consists of a set of the curved quasi-quadrate cells, whose 
sequence forms a hyperbolic cellular structure located along the IN nodes in the information 
geometric space, and the IN geometrical boundary is encoded by this code (ch. 1.6.3).  

The above structures possess the cooperative complexity satisfying relations (7.37), 
(7.38), and (7.50).  

The quantity of information a o , accumulated by each following IN’s triplet includes the 
structural information from the previous triplet (by its third extremal segment), which also 
depends on the node’s geometric location.  

The corresponding hierarchical information measure for each node has an increasing 
quality of information.  

Even though the triplet’s code preserves information of both the code word’s and the 
code symbols’ sequence, each IN’s node’s code consists of a new sequence of distinctive 
frequencies 1 1 1 1~ , ~ , ~i i i i i if f fα α α− − + + , which are capable of encoding all initial string 
symbols. A single triplet can generate various combinations of the four code symbols at 
different γ  bringing an analogy to the DNA triplet’s code.  

A system’s genetic information is encoded by a sequence of multiple combinations of 
these four symbols.  

 
Comments 7.15. The MC specific consists of providing a precise complexity measure for 

a dynamic irreversible process and evaluating the above complexities by the hierarchical 
structure of information contributions in bits of information.  

The VP’s defined intervals of observations, when the contributions are measured, allow 
the formalization of both an observer and the localities of the contributions, their hierarchical 
structuring according to quantity and quality of information, and a successive computation of 
the total complexity of a distributed IN.  

The IN structure, as an information model of a complex system, with its MC depends on 
both the number of its elements-segments and mostly on the links-nodes, connected them in a 
cooperative.  

A cooperative system can be controlled via an element (link) binding the cooperative 
together.  

Information form of such a link is a common code, which not only can sustain a ranged 
subsystem’s connection but also assemble not physically bound subsystems through their 
feed-back communication.  

Such a code is also an indicator and a measure of the system’s complexity.  
Finally the initial complexity measures (secs.7.1, 7.2) are expressed via the information 

invariants of a cooperative process and the related information code, allowing both 
constructive measurement and computation of complexities for a real observed system.  

These complexity measure’s essentials connect the formal mathematical and 
thermodynamic meaning of the complexity with theory information and communication 
theory.  



The Macrodynamic and Cooperative Information Complexities 259

1.7.7. The Equations of the Spatial Information Cooperative 
Dynamics. Information Attraction and Complexity 

Here we examine the role and contribution of space information dynamics to cooperation 
and complexity. 

The information cooperative dynamics include the equalization of the model eigenvalues 
and the consolidation of the equal eigenvectors into a common information unit.  

The regular and needle controls, applied as a function of time, provide the equalization of 
the eigenvalues, while the consolidation of eigenvectors requires a space movement.  

Let us analyze this process, considering the cooperation of two local, dynamic, space 
models (triples) transformed into diagonal form: 

 

 /i i idx dt xλ= , /k k kdx dt xλ= ,   (7.51) 
 
where ix , kx  are the model’s macrocoordinates, iλ , kλ  are the eigenvalues corresponding to 
the matrices  

 
3 3

1 1|| || , || ||l l
i i i k k kA Aλ λ= == = .   (7.51a) 

 
If the equalization of the model’s eigenvalues had been reached at the moment it o+ : 

 

 ( ) ( )i i k it o t oλ λ+ = +   (7.52) 
 
during the cooperative dynamics, then the cooperation is accomplished after the coincidence 
of the model’s eigenvectors ix , kx , generally defined in a Riemann’s space 3R  with the 
invariant metric 

 

 
2 3 3 3 3

, 1 1 1 2 2 3 1, || || , ( , , )T i i i i i i
i i ij i j ids g dx dx g g x x e x e x e== = = , 3 0g ≠ ,   (7.53) 

 
where the vectors 1 2 3 1 2 3( , , ), ( , , )i i i k k k

i ke e e e e e e e= = , represent the local orths (fundamental 

orthogonal triad’s vectors), defined in the considered Riemann’s space 3R , whereas each of 

ie , ke  is a tangent vector to a curve–trajectory of the eigenvector space movement in 3R . 
(We assume that the phase speed’s vector and the corresponding state’s vector are 

defined at each 3R point). 
 
Definition 7.3. Let us move vector ix  toward equalization with vector kx , considering an 

increment idx  on the path interval ids ds=  between ix , kx .  
Then, at the VP fulfillment, metric (7.53) in the cooperative motion is described by the 

equation of a geodesic line in 3R , written in the traditional coordinate form [38]: 
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2

2 , , , 1, 2,3
i i i
j j m n

mn

d x dx dxK j m n
ds ds ds

= − = ,  (7.54) 

 
where j

mnK  is a Gaussian curvature at a ( )ii ikx sδ δ -locality, which along the geodesic is 
defined by the vector equation 

 

 /i i idx ds K x= − ;  (7.55) 

iK  is the operator’s representation of the j
mnK  components.  

At a positive cooperative speed /idx ds >0 and ix >0, the space gets a negative curvature 

iK <0 corresponding an attraction; and at iK >0, we get repulsion.  
That is why the vector speed in (7.55) defines an intensity of information attraction (or a 
repulsion), determined by the space curvature iK . (The vector’s derivations here and below 
mean that the derivations for each vector’s components are similar to (7.54).  
Along the geodesic line (7.54), the vector undergoes a parallel displacement, where the vector 
increment according to (7.55) depends linearly and homogeneously upon the increments of 
the related coordinates, and only the first vector of curvature is significant).  

 
Comments 7.16. The space curvature, defining the cooperative speed, is a fundamental 

source of both the complexity and the cooperative dynamics.  
At the VP filfullment, the iK  satisfies the following expressions via the fundamental 

tensor 3g : 
 

 
3 1 31/ 2( ) /iK g dg ds−=  .   (7.56) 

The formula for a scalar curvature iK  is expressed through the determinant of the 
fundamental tensor in this eigenvector’s space:  

 

 
1 3 1

1 2 3( ) / , det || ||, ( ) | |i i i i
ijK g g s g g g x x x− −= ∂ ∂ = = .   (7.57)  

 
Proposition 7.8. 

Assume that the eigenvalues of matrix 3
, 1|| ||l

i i i jA λ ==  (7.51a) are simple with the distinctive 

roots, and the related eigenvectors 1 1 2 2 3 1( , , )i i i i i ix e x e x e are mutually orthogonal (the matrix 
satisfies the conditions for a Vandermonde matrix [39]).  

Then the curvature in the considered geometrical phase space (7.57) has the form  
 

 
3

i i
i o odK

ds
α α

= − ,  (7.58) 
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where i i
o oReα λ= , 1 2 3

i i i i
oλ λ λ λ= = = . 

 
Proof. The above matrix’s conditions allow expressing the space components 

( 1x , 2x , 3x ) for each eigenvector in (7.53) through the eigenvalues:  
 

 1 1 2 2

2 2 2
1 2 3 3 3{1, , ( ) }, {1, , ( ) }, {1, , ( ) }i i i i i ix x xλ λ λ λ λ λ= = = , 1,2,3 0i

jλ = ≠ .   (7.59)  

 
According to the cooperative dynamics, the eigenvectors ( 1 2 3, ,x x x ) underwent the 

consolidation into a single eigenvector 1 2 3( , , ) ox x x x→ , 2(1, , )o o o ox eα α=  with the real 

eigenvalues o oReα λ= .  
The eigenvector’s space coordinates are formed in the process of the equalization and 
transformation of the corresponding eigenvalues 
                      

1 1 2 2

2 2 2 2
3 3{(1, , ( ) ), (1, , ( ) ), (1, , ( ) )} (1, , ( ) )i i i i i i i i

o oλ λ λ λ λ λ α α→ ,  

which specifically take the form: 
                      

1 1 2 2

2 2 2 2
3 3{(1, , ( ) ) (1, , ( ) ) (1, , ( ) )} (1, , ( ) )i i i i i i i i

o oλ λ λ λ λ λ α α= = → .  

Applying (7.57) we get  
 

 
1 2 3 2( ) |1 ( ) |, / ( ) / 3( ) ( ) /i i i i i

o o o o og g s s sα α α α α− − −= ∂ ∂ = ∂ ∂ = − ∂ ∂ .   (7.59a)  
 
Assuming that vector 2(1, , ( ) )i i i i

o o o ox eα α=  is cooperating with the analogous 

eigenvector 2(1, , ( ) )k k k k
o o o ox eα α= , at | 3 | | |i k

o oα α= , the curvature (7.57) gets the form 

(7.58). •  
 
Comments 7.17. At the transformation of an initial fundamental tensor (in (7.57), with 

three eigenvectors (7.59)) to its form (in (7.59a), with the cooperated eigenvectors (7.59)), the 
curvatures changed twice: first, at the eigenvectors’ equalization, and second, after forming a 
triplet with| 3 | | |i k

o oα α= . 
 As a result, we come to three different topological structures at the cooperation of the 

curved subspaces with the above eigenvectors (including the initial one with the three 
different eigenvectors (7.59)).  

Because these transformations arise under the jump-wise control actions; the conversions 
to these structures have the forms of discrete (jump-wise) transitions.  

This means that the discrete geometrical boundaries between these structures are 
topological indicators of the merged cooperative phenomena.  

The cooperative complexity’s connection to the curvature implies that the discrete 
boundaries are also the topological indicators of complexity for a structure in information 
geometry. (A shared volume of the cooperating structures could be formed by “stitching” of 
the merged boundaries).  
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The DSS code-cells, distributed in a fabric of information space geometry (Fig. 6.5, 
ch.1.6), present an elementary form of these discrete structures.  

Specific code sequence determines the geometrical structure to be built in this IG space 
location. 

 
Comments 7.18. Unification of the cooperating eigenvectors produces an information 

cooperative mass iM , which is defined by the information value of an elementary phase 
volume υ  forming at the cooperation:  

 

 iM = 3 idivSυ ,  (7.60) 
 
where 3 idivS  is the instant quantity of information generated at joining of the above three 
eigenvectors. Using the relations 
                                          / , / , /i i

i i i tcdivS S t H S t H MCδυ= −∂ ∂ = −∂ ∂ =   

at / ,tH V MC Vδ δ δ υ= = , the space speed /c ds dt= , and (7.60), we write curvature 
(7.58) in the form 

 
i

t iK MC Mδ= − ,  (7.61) 
where  
 1 13 , , 3 3i k k k i i

i k o oM H c M H c H Hυ υ α α− −= = = = = ,   (7.61a)  
 
and k

oα , kH  are the model’s eigenvalue and Hamiltonian accordingly after the cooperation, 

at a joint vector kx .  

The information, localized in the space (due to / ,k k
o kH S tα= = −∂ ∂  

/ /i i
od ds dH dsα = ), generates an increment of fundamental metric’s tensor (in the forms 

(7.56, or 7.57)), analogously to the “metric’s relative density”, which changes the curvature. 
It is clearly seen that the curvature iK  turns to zero if any of 

                                     /iS t∂ ∂ = i
oα− , 2 2/( )iS t∂ ∂ i

oα= −   

equals to zero, or c →∞ (which contradicts to 0i
oα ≠ at 0ua ≠  in 1.1.1, sec. 1.1.1).  

Because /iS t∂ ∂  and 2 2/( )iS t∂ ∂  are the entropy production and its derivative (or an 

amount of the entropy’s acceleration), memorized at the cooperation, the curvature conceals 
the corresponding information of cooperation, possessing the cooperative system’s 
complexity and information mass.  

Moreover, the curvature is a result of both the cooperation and the memorized 
information mass, or a cooperated information mass, which generates complexity.  

The cooperation decreases uncertainty and increases information mass.  
According to (7.61a), the information mass 13 i

k oM cα υ−= can be encoded (in terms of 

3 i
oα (ch.1.6)) by the IN triplet code for each phase volume υ  related to speed c .  
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Therefore, the curvature in (7.61) also can be ecoded using both the complexity’s 

tMCδ and mass’ iM codes.  

By substituting /iS t∂ ∂ = i
oα−  and /c s t= ∂ ∂ , we get the information mass’ expression by 

the entropy derivation along ds  for a phase volumeυ :  
 
                          3 /k iM S sυ= − ∂ ∂  , or 3 /k iM dS dsυ= − .                                 (7.61b) 
 
Considering an entropy divergence − /i iS c t∂ ∂ = idivS , let us find a maximal 

admissible space speed ioc , carrying idivS . 

Using the IN invariant’s relation /iS t∂ ∂ =|a | /o it , at the minimum admissible 

iot ≈1.33 1510−×  (defined by the minimal time-interval of the light wavelenght 
74 10iol m−= × ), and a maximum of the normalized * idiv S = idivS /|a o |≈ 1/137 

(sec.1.6.4), we get the maximal information speed 
 

 ioc = 1( * )i it div S − ,  (7.62)  

evaluated by ioc = moc ≈1.03 1710× Nat/s.  
This maximum restricts the cooperative speed and a minimal information curvature at other 
equal conditions.  

From (7.62) it also follows that a bound into space information ( * idiv S ) limits the 
maximal speed of incoming information, imposing an information connection on the time and 
space.  

The ratio *
kc = 9/ 0.343 10mo koc c ≅ × Nat/m= 0.343 gigaNat/m (in a light wavelength 

meter) limits a maximal information space speed. In this case, each light wavelength 
carries 137≅ Nats during 1.33 1510−× sec, which are delivered with speed of light.  

The physical mass-energy that satisfies the law of preservation energy (following the 
Einstein equation [38]), is distinguished from the information mass (7.60), which does not 
obey this law.  

According to [38] the multiplication of a mass on g  defines the mass density *
iM , 

which following (7.58) and (7.60), acquires the form 
 

 
*
iM = 3 1 1 2( ) 3 3 ( )i i i

o o oc cα υ α υ α− − − −= .   (7.63) 
 
In the simulated IN hierarchy [30, 35] (see also Fig.5.5), the values of cooperating 

eigenvalues kl
oα  decrease with a growing number of the hierarchical level 1,2,.., ,..,l k m= , 

which leads to an increasing of *
iM ( l ).  
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Comments 7.19. According to equation (7.51), function 1( ) /i
o i ix x tα −= ∂ ∂  corresponds 

to a relative information flow.  
Let us consider an information macrostate ix  to be an elementary information charge iq , 

whose flow /iq t∂ ∂ = i ic divq−  characterizes the charge’s divergence from a volume iυ =υ , 

we get relation 1 *( )i i iq divq q−− =  describing a relative concentration of the charge within the 
volume.  

With growing the divergence, the relative information charge *
iq decreases, and vice 

versa, the charge concentration increases with decreasing the divergence from the volume. 
Writing the mass density *

kM  (7.63) in the form * 3 * 2( ) ( )k k k kM c q υ=  and taking into 

account k k k kV c fυ = = , where kf  is an elementary cross section of volume kυ , we get  
 

 
* 2 * 2( ) ( )k k k kM c q f=  ,  (7.64) 

 
which is associated with an internal information charge’s power, carried by an elementary 
space square. 

With growing the divergence, the concentration of the charge power in a volume 
diminishes, indicating a decline of a quality of the information power.  

The information power at kc = moc : 

 
* 2 * 34

1 10
kk mo k cM c M =≅ × , * * 2

1 1[( ) ]
k kk c k k cM q f= ==   (7.64a)  

 
reaches a maximum at a fixed *

1kk cM =  ,whose mass’s density characterizes the information 

power’s concentration at a fixed 1kc = , or it describes a related power’s “quality” 
(connected to a decrease of a uncertainty density).  

The power, corresponding to the information equivalent of speed of light 
83 10koc ≅ × m/s, is  

 
* 2 16 *

19 10
kko ko kocM c M =≈ ×  .  (7.65)  

 
The information power for a relative speed * /k mo koc c c=  : 
 

 
*

* * 2 * 2 18
1

( ) [( ) ] 1.176 10
k

k k k k c
M c q f

=
= × ,  (7.65a) 

 
at * 1kc =  defines the related information mass * * * 2( 1)kr k kM M c= = , which is equal to 

* *
* * 2

1 1
[( ) ]

k k
k k kc c

M q f
= =
= .  

 
From (7.65a) we get the ratio  
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* 2 * 2 2 34

1[( ) ] / [( ) ] ( / ) 10
k k k

kn
c k k c c k k c k mop q f q f c c −

= == = × ,  (7.65b) 

 
or from (7.64a), (7.65a) we have  
 

 
* *

* 2 * 2 2
1

[( ) ] / [( ) ] ( )
kk k

kn
k k c c k k kc c

p q f q f c= =
= =  ,  (7.65c) 

 
which presents in each case the information power, related to the power at 1kc = and at 

* 1kc =  accordingly; while, in general, both power’s components are unequal:  
 

 
* 2 * 2

1 1[( ) ] [( ) ] ,[ ] [ ]
k k k kk c c k c k c c k cq q f f= = = =≠ ≠ .  (7.65d) 

 
Applying the IMD approach to equation (7.51), we come to its information analogy: 

i qi qiq Xρ= , where qi qi iX grad S=  is an information force acting on a charge iq  within a 

flow iq , and qiρ  is a medium’s conductivity to transfer the flow.  

The IMD equation for the VP’s constraint (ch.1.3) in the form / 2i j i jX x X X∂ ∂ = − , at 

,i i i j j jX Xσ α σ α= = , with the corresponding coefficients of a resistance: 
1 1( ) , ( )i qi j qjσ ρ σ ρ− −= = and the information flows accordingly (connected to the 

information mass (7.60)):  

                                       
/ , /i ki i i j kj j jM c M cα υ α υ= = ,  

lead to the equations  

 ij m ki kjF G M M= , 1/ 2 /ij i jF X x= − ∂ ∂ ,  (7.66) 

 
where the parameter of the resistance’s ratio  

 

 
/ , / , /f f f f

m i i i i i j j jG f fσ σ σ σ σ σ= = = , at / , /i i i j j jf c f cυ υ= =
 
 (7.66a)

 
 

 
characterizes an ability of a medium to resist for a mutual exchange of the information flows 
at the interaction of the information mass ,ki kjM M  under the action of a force ijF ; and 

,f f
i iσ σ  are the medium’s relative coefficients of resistance (related to the elementary 

squares if , jf  accordingly).  

Equation (7.66) determines the force acting between the masses, which are generated by the 
corresponding space curvatures (7.60) in the interactive cooperative dynamics.  
The mass is formed by an influx of information charges { iq } and by the force qijF , 

controlling the flows interaction, where the force qijF is a derivative of the elementary 

information force qiX :  



Vladimir S. Lerner 266 

 
1/ 2 /qij qi jF X q= − ∂ ∂ .   (7.66b) 

 
If iq  represents an elementary “information fermion” (particularly a “graviton”), then 

qiX  corresponds to an elementary “information boson”, acting on iq , which has a physical 

analogy of an elementary gravitation particle that carries a gravitation force.  
Physical matter’s particle-a boson affects a fermion like a “messenger”, which transfers 

information, potentially, in some information code. The hypothetical Higgs boson supposes to 
bind the elementary particles into a matter (similar to the needle control’s binding the 
information).  

We may assume that the message code is based on the four symbols’ optimal information 
code, which the Nature has already invented by the DNA code.  

Thus, the information boson-fermion pairs’ communication code pretends to be a united 
information language, which describes all known four elementary interactions. 

For example, such a code could be memorized by gluons, holding a silent in the early 
Universe (as possible seeds of an external intelligence).  

Gluons, as the elementary color exchange particle, underlying the particle interactions, 
are represented by eight pairs of bi-colored charges-octets (carrying three kinds of color and 
anti-color units). The generated color’s charges specify the binding exchange forces, acting 
between the interacting quarks and gluons (as an analogy of needle control).  

This means that a specific color force can be encoded by any pair of such a three bits’ 
information code (whose binary digit handles eight messages), which is memorized in 
anticipation of interactions. The triplet’s code can encode these three color-anticolor forces, 
which binds the quarks’ color triplet.  

Such a potential general information systems theory with a unified information language 
could serve as an information approach to a theory of everything. 

 
Example 7.2. Let us find the curvature for an elementary triplet, formed by joining of 

three of the cones’ vertices with the fundamental tensor’s coordinates (sec.1.5.4): 
 

 

1

2

3

cos cos( sin )
sin cos cos( sin ) sin sin( sin )
sin sin cos( sin ) cos sin( sin )

g
g
g

ψ ϕ ψ
ψ ϕ ϕ ψ ϕ ϕ ψ
ψ ϕ ϕ ψ ϕ ϕ ψ

=
= −
= +

  (7.67) 

 
where ϕ  is the projection of the space angle for the spiral’s radius vector ρ at the cone’s 
base (Figs. 5.6, 6.2), ψ  is the angle at the cone’s vertex. The invariant metric of information 
space has the following expression via the model’s information invariant, defined at the 
moments of cooperation it : 

 

inf|| || || ( ) ( ) || || ( ) || || ||i i i i omes ds mes t t mes t mes invρ ϕ μ= ∂ ∂ = = =a,  (7.68) 
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where mes is the information measure of the metric. Indeed. For each the i -cone, the radius 
vector iρ  is equal sin( sin )i i i ibρ ϕ ψ= , where ib  is the parameter for each cone’s radius 

vector /i i ib μ ϕ= , iμ  is a piece of the dynamic trajectory at the cone’s surface.  
At the moment of cooperation, the above vector and the angles acquire the increments 

 
( ) ( ( ))i it b tδρ μ= , δ ( )itϕ π= , δ ( ) / 6itψ π= , ( ) sin ( ) / 2i it tδϕ δψ π= ,  (7.68a) 

 
and mes || ( )otμ || obtains the invariant informational measure  

 

 inf|| ||mes inv =a .  (7.68b) 
 
Each of the IN cell-code’s (ch.1.6) space metric mds , defined by the cell m diameter, 

acquires the invariant information measure inf || ||mmes ds = ( , )m mψa a , which depends upon 

both the invariant a ( )γ and the cell space angle mψ ( )γ of its location within the IN.  

Writing the formula (7.57) for the metric’s components (7.67) at i constψ ψ= = , we have 
 

 

3
1

123
1

1/ 2 | | /j j
j

K g g ϕ−

=

= ∂ ∂∑  .  (7.69) 

 

By taking the derivative /jg ϕ∂ ∂  of 1 2 3( , , )jg g g g=  and considering /jg ϕ∂ ∂  at 

the condition (7.67), after the substitution to (7.69), we get 123K ≈ −0.4.  
We come to the information attraction of the triplet’s eigenvectors.  
Finding the information mass and complexity requires to know the triplet’s cone phase 

volume:  
                                      3 2 2 1( ) ( ) ( ) ,i i i iV t c t tg t tπ ψ− −= = Δ ,  

where the triplet’s space speed ic  is defined by applying a natural constrain ( ( )) 0iS tμΔ →  

to the triplet’s space geometry. This determines ic = ic ( itΔ ).  

For instance, at 3 3 13, 1.2i t t t= Δ = − = , we get 1
3( )c − ≈ 0.0125 and 

3
3 3( ) 0.1957 10V t −Δ ≈ × .  

Using formula (7.63) in the form 
 

 
*

3( )iM tΔ ≈3 3 3( )V tΔ  (a/ 2
3 )tΔ 1

3( )c − , we get *
3( )iM tΔ ≈ 0.169 310−× .  

The calculated complexity in (7.61) leads to 
3

30.4435 10tMCδ −= − ×  and the 

corresponding curvature is 0.433iK = − . 
Therefore both formulas (7.57) and (7.61) for the curvature illustrate the comparative 

results with a relative (to their average) error 4%± , even at a rough approximation.  
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Example 7.3. Let us find a maximal information curvature, formed at a locality of a single 
triplet’s node when all three eigenvectors are joint into a single one dimensional vector. 
According to formula (7.58 ) the curvature is 

3 33 t tK α α= − , where 2
3 32( )t

t tα α=  and 3
3 6 oK t−= − a 3  at 3oα = ao

1
ot
− .             (7.70) 

We can evaluate this result using the minimal time interval ot = iot ≈ 1.33 1510−× , 

corresponding the light’s wavelength ol = 74 10iol m−= × , and the invariant 

a ( 0) 0.25γ → ≅ , we get 45
3 2.5 10K ≅ − × .  

We also evaluate the cooperative complexity at this location: 
 

 
2 1 3 7

3 36( ) 6( )t t t m oMC v c tδ α π− − −= = a 2 ,  (7.70a) 
 
at 171.03 10m moc c= ≅ × , getting a maximal 511.64 10tMCδ ≅ × , which corresponds to a 

maximal IN’s compression to a single one-dimensional node at 0γ → .  

The above mc is obtained in Nat/s at a ln 2 1.44o≅ ≅ bit.  

This maximal information speed, evaluated in gigabit per sec, is 81.483 10mc ≅ × gigabit/s.  
We assume that this is a limit, imposed on information transmission not by the channel’s 

characteristics, but a source’s ability to produce a maximal information during a minimal 
admissible time interval of the light wave.  

At this condition, each elementary light wavelength’s time interval carries 
34 15 1910 1.33 10 1.33 10−× × = × Nat.  

Because each light wavelength’s space interval carries the same information, each light 
wave’s meter holds 19 7 261.33 / 4 10 10 0.3325 10× × = × Nat, or 170.3325 10× gigaNat/m, 

which corresponds to 17 150.4788 10 50 10× ≅ × gigabit/m, delivering each second 
90.5 10≅ × gigabit with speed of light. This is a limit of a maximal information compression 

up to a single bit in the final IN’s triplet’s node. •  
The equations (7.58), (7.65) show how the curvature of the geometrical space 3R , 

determined by the space fundamental tensor, enfolds an inner uncertainty-entropy, becoming 
an attribute of cooperative dynamics.  

The cells' structure of the curved information space conceals information of the 
cooperative dynamics.  

This space curvature evaluates an intensity of information cooperative attraction, 
complexity and information mass, generated at cooperation.  

The bound information along with the curvature imposes the restrictions on a linear 
information speed, which jointly with the information mass determine an information 
cooperative power.  

In the above information space, the geometrical metric is determined by information 
invariants, whereas in the physical space, the geometrical metric is determined by physical 
invariants.  

Dynamic processes in both spaces are governed by related variation principles: for the 
information and physical path functionals accordingly.  
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The physical and informational attractions are determined by the same curvature of the 
geometrical space, which are both a source of attraction and a carrier of information. 

 Since a physical space’s curvature generates gravitational attraction, the gravitational 
and informational attractions are connected by an inner uncertainty, enclosed by both 
physical and informational fields and expressed by information invariants.  

Such an invariant information measure (as an equivalent) of physical attraction links 
physical and information spaces, information and physical geometries, as well as the related 
dynamics, serving for their mutual transformation.  

Because the cooperation requires a curvature, it causes both uncertainty and curvature. 
This means that the curve space is a result of the cooperative dynamics, whereas both 
uncertainty and curvature are inseparable and mutually dependable space’s attributes.  

The curved space embraces the cooperated information structures and the IN’s 
information codes, which the geometrical curvature enfolds.  

Therefore, the IN’s code is a primary information structure of a curved space.  
Actual formal originator of cooperative dynamics is the variation principle, which also 

virtually causes the formation of the curved space and the code. 

1.7.8. Connection to Kolmogorov’s Complexity 

Algorithmic Kolmogorov’s (K) complexity [1] is measured by the relative entropy of one 
object (k) with respect to other object (j), which is represented by a shortest program in bits.  

The kjMCδΔ  complexity measures the quantity of information (transmitted by the relative 

information flow), required to join the object j with the object k, which can be expressed by 
the algorithm of a minimal program, encoded in the mMCδ  (IN) communication code.  

This program also measures a “difficulty” of obtaining information by j from k in the 
transition dynamics.  

The kjMCδΔ  represents the information measure between order and disorder in 

stochastic dynamics and it can detect determinism amongst the randomness and singularities.  
Because the IPF has a limited time length and the IPF strings are finite, being an upper 

bound, the considered cooperative complexity is computable in opposition to the 
incomputability of Kolmogorov’s complexity.  

The MC-complexity is able to implement the introduced notion and measure of 
information independent on the probability measure by applying the IN information code for 
the object’s processes.  

In the IPF-IMD, an object is represented by random processes, while their observations 
are measured by dynamic processes; and this approach’s aim is to reveal the object’s 
information in a form of its genetic code.  

This approach differs from both the Shannon information of an object’s random events’ 
observation and the Kolmogorov encoding of an individual object’s description (in a binary 
string) by a shortest algorithm; the algorithmic complexity is not required the description’s 
probability function.  

 





 
 
 
 
 
 

Chapter 1.8 
 
 
 

THE EVOLUTIONARY DYNAMICS 
AND THE INFORMATION LAW OF EVOLUTION 

 
 
 
The bi-level macromodel, following from the solution of variation problem for 

information path functional, embraces the following regularities of the evolutionary 
dynamics: creation of an order from stochastics, evolutionary hierarchy, stability, adaptive 
self-controls and a self-organization with copying information and a genetic code.  

The equations’ regularities allow us to formulate the mathematical law of evolution, 
based on a minimax variation principle (VP) for the informational path functional.  

The chapter shows that the VP single form of information law, which defines the above 
regularities, is capable of a prognosis the evolutionary dynamics and its specific components: 
the evolution potentials, diversity, speed, and genetic code.  

1.8.1. Introduction 

In spite of numerous publications on evolution theory [1-10, other], the central questions 
concerning the existence of a general evolutionary law for Life, remains unanswered. (Please 
see the references to ch.1.8). 

E. Schrödinger [11], analyzing a physical aspect of Life, concludes that an organism 
supports itself through orders that it receives from its environment via the maximization of a 
negative entropy, as a general principle, connecting its dynamics and stochastics.  

Darwinian law’s modern formula [12], stating that “evolution is a result of genetic 
variances through ordering by the elimination and selection”, focuses on a competitive 
“struggle for Life” amongst organisms.  

G. Dover [13] emphasizes on the genes’ cooperative phenomena: “the central feature of 
evolution is one of tolerance and cooperation between interacting genes and between 
organisms and their environment… Genes are born to cooperate”.  

An informational aspect of evolution in [14] symbolizes “the cooperation and ordering 
with a creation of information code that transfers the novelties during an evolutionary cycle.” 
Are there any connections between all these formulas, covering them under a general law?  
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Most publications in mathematical biology [15-16, others] do not allow for a quantitative 
prognosis of the law phenomena, and only support the law by experimental and/or simulation 
data. For example, [16] describes the result of simulation, depending on priory chosen 
parameters, without a detailed insight of the dynamic mechanism of micro-macroevolution.  

In such approaches, many essential evolutionary phenomena are missing.  
We show that instead of a “punctuated equilibrium” [17,5], evolution depends on a 

punctuated nonequilibrium where the microlevel’s stochastic fluctuations contribute to the 
macrolevel’s dynamics, generating a dynamic potential of evolution.  

A principal aspect of evolutionary law is an ability to predict the process development 
and phenomena based on the law mathematical forms.  

The existing mathematical formalism does not satisfy these requirements.  
Some mathematical publications [6,7,17-20, others] present the evolution equations, 

which are not bound by a general principle related to a unique law.  
The existing situation in evolution theory is dominated by diverse assumptions, concepts, 

methods, and hypotheses. The unique formalism of evolutionary law, as well as general 
systemic regularities of evolution, expressed in information form are still unknown.  

This chapter goal is to find the mathematical forms of general regularities of 
evolutionary process, based on a single variation principle as a mathematical law. 
Approaching to this problem with a broad and rather formal point of view, we apply and 
finalize our results (ch.1.1-1.6), and introduce the informational evolutionary mechanisms of 
evolution, not dependable on specific material substances [22].  

An observed evolutionary process is affected by stochastic perturbations, which activate 
the process dynamics, involving a wide diversity of superimposing process' of distinct nature. 
Such a complex random object can be modeled by information interactions, making the 
information description a universal language for disclosing the object's information 
regularities. The solved variation problem (ch.1.3) leads to a dynamic model of open system 
with an irreversible macroprocess, originated by a random microprocess.  

The known variation problems produce the equation of a close system with a reversible 
processes. Applying the variation principle to the path functional’s information measure leads 
to revealing a systemic connection of the functional process’ events and finally to building an 
information network not only for the process events but also for a complex object multi-
dimensional process, which models their systemic regularities.  

Following the information path functional’s and variation principle’s results (ch.1.1-1.7), 
we establish a mathematical form of evolutionary law and study the law regularities.  

1.8.2. The Equations Regularities and the Evolutionary Law  

We finalize the above results focusing on the equations regularities following from the 
VP as an evolutionary law. 

 
Proposition 8.1(P1). At the fulfillment of relations 
 

ux a=� , kx L X=� ,  
1( ) ( ) ( ), ( ) 1/ 2 ( ) ( ), ( ) [ ( ) ( ) ]T

tx A x A r r r E x xτ τ τ τ τ τ τ τ τ−= − = =� � � �    (8.1) 
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the dynamics and stochastics are connected by equations: 
 
 ( , ) 2 ( , )kL x o b x oτ τ+ = + , ( ) ( ) ( )u Ta o o X oτ σσ τ τ− = − − ,   (8.1a) 
 

 1( ) ( )(2 ( ) ) 1/ 2 | ln( ( ) ) |t
o o

dA b b t dt b t dt
dt

τ τ

τ
τ τ

τ τ −
=

− −

= =∫ ∫ , 

 

 2 ( ) [ ( ) ( ) ]T

o

b t dt E x x
τ

τ

τ τ
−

=∫ � � ,  (8.2) 

 
where the dynamic operator depends on the gradient of dynamic potential  

 

T 1 T 1( )( ) (2 ( ) ) , ( ) 1 / 2( ( ) ) ( ),
( ) o o

XgradX t dt X t dt x
x

τ τ

τ τ

ττ σσ τ σσ τ
τ

− −

− −

∂
= = − = −
∂ ∫ ∫       (8.3) 

 
defined by the process diffusion at the DP localities.  

 
Proof. The joint consideration of equations (8.1), following from ch.1.3.T3.2 (1.3.47, 

1.3.48), (sec.1.3.5), connects the shift vector and the diffusion component (of the initial 
stochastic equation) at the DP’s border in the forms (8.1a),(8.2) and brings the conjugate 
vector and its gradient to the forms (8.3) accordingly. •  

 
Comment 8.1. The potential, corresponding to the conjugate vector, which satisfies (8.3) 

at the DP, loses its deterministic dependency on the shift vector, becoming the function of 
diffusion and a state vector at the DP vicinity, and when T 0σσ → , it acquires a form of the 
δ -function. Out of the DP, the gradient does not exist as well as the potential function in 
form (8.3) and the potential relations (8.1).  

At the dynamic gradient’s growth, the diffusion part in (8.3) tends to decrease, which 
diminishes an effect of randomness on the dynamics, and vice versa.  

 
Comment 8.2.The DPs divide the macrotrajectory on a sequence of the extremal segments 

limited by the “punched” DP’s localities.  
The microlevel randomness provides the various information contributions at each DP 

locality, determined by function (3.163), which (taking into account (8.1a)) depends on 
( ( )tb b x τ= �  being limited by a specific microlevel environment.  

Each DP locality is defined by a relative irreversible time interval a 
 

                              
* 1

12( 1), ~ ( ),ok k
k k k k

k o

t St t
t

δδδ δ τ τ+
Δ

= = − −
a

                                  (8.4) 

 
which is reduced with decreasing γ  and growing a ( )o γ , and vice versa.  
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At small γ , relation (1.5.42c) is evaluated by  
 

 ( )kS S tδ δΔ = Δ ≅ 2( )o γa ,  (8.4a)  
 
which for (8.4) leads to * 0ktδ → .  
This means that decreasing γ  diminishes the influence of randomness on the macrolevel 

dynamics. But actual SδΔ  is random that cannot satisfy exactly (8.4a).  
 
Proposition 8.2(P2). 

 The evolution dynamic equation within each k -segment: 
 

1 1 1 1| ( ) | | ( ) | exp[ (| ( ) | )]{2 exp[ (| ( ) | )]}o o o
k k k k k kA A A E Aτ τ τ τ τ τ −= − − −   

  (8.5) 
 

depends on the operator ( )o
kA τ at the beginning o

kτ  of the segment time interval 

 kt = 1
kτ

o
kτ− , identified at a moment 1

1k k oτ τ+ = + , while the segment’s ending operator  

1( )kA τ  is renovated at a moment 1
o
kτ +  (which does not belong to this segment).  

These operators, identified at the punched localities 1(..., , ,...)k kτ τ τ +=  according to 
(8.1), (8.2), satisfy the relations  

1
1 1| ( ) | | ( ) |,| ( ) | | ( ) | | ( ) | .o o

k k k k kA A A A Aτ τ τ τ τ+ += = ≠      (8.6) 
  
Existence of the joint solutions (8.4), (8.5) and (8.2) corresponds to the model ability for 

renovation under the microlevel randomness and controls.  
Proof follows from P1 and (ch.1.3). •  
 
Comments 8.3. The results of chs.1.3 and ch.1.4 allows finding the length of the extremal 

segment and the related time intervals for equations (8.1-2),(8.5) applying the invariant 
relations (sec.1.3.5). The operator renovation is accompanied by changing the operator sign.  

In particular, at ( ) 2 ( )o o
i k i kv xτ τ= −  we get 1

1( ) ( ),k kA o Aτ τ+ − = −  and at 
1 1

1 1 1 1( , , ) 2 ( ) 2 ( )( , )o o
i k k k i k i k k kv x xδ τ τ τ τ τ τ τ+ + + += − + , 1,.. , 1,...,i n k m= = , (8.7) 

we have 
 1 1 1 1( ) ( ) ( ( )), ( ) ( ( )) ( ) ( ( )),o o o o

k k i k k j k k j kA A A Aτ τ λ τ τ λ τ τ λ τ+ + + += − = − = = − = −     (8.8)  

where 1( ), ( )k kA Aτ τ + satisfies (8.1) and ( )o
kA τ , 1( )o

kA τ +  satisfies (8.5).  
 
Comments 8.4. According to (8.5) the evolutionary dynamics (within a segment) depend 

on the segment operators’ ( ), kA t t t≤  function of time, determined by the model’s inner (self) 
controls and followed both dynamics’ and controls’ renovations at each DP.  
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Switching the self-control at the moments 1
kτ , 1

o
kτ +  coordinates the dynamics’ consumed 

information and the external information, supplied at each DP 1( , )k kτ τ + .  
This coordination is driven by the macrodynamics, which provides the self-control switch 

in a hunt for external information surplus and for the above coordination, following from the 
VP.  

Therefore, the actual hunt is directed on getting a maximum information, corresponding 
to the VP fulfillment, and such a model is motivated by this drive, which seeks the 
evolutionary changes. The models, which do not possess the motivated drive, lose the ability 
for a continuation of the coordinated dynamics and stochastics, and might stop their 
evolutionary process because of either a lack of necessary information, or an impossibility of 
assimilation (accumulation) of its surplus. These models do not satisfy the VP law.  
 
Comments 8.5. The segment’s local information speed (along a chain of extremal segments):  

 

 1 1 1 1
1 1| ( ) ( ) | | ( ) ( ) |j o oi

k i k k j k

dxdx x x
dt dt

τ τ τ τ− −
+ +=   (8.9) 

 
connects an extremal segment’s eigenvalue ((at moment 1

1k k oτ τ += − ): 

1 1 1 1| ( ) | ( ) ( ) |i
i k k i k

dx x
dt

λ τ τ τ−= , the current eigenvalue 1
1 1 1( ) | ( ) ( ) |j

j k k j k

dx
x

dt
λ τ τ τ−

+ + +=  

identified at each 1kτ + , and the segment’s eigenvalue (at the following moment 1
o
kτ + ): 

1
1 1 1| ( ) | | ( ) ( ) |jo o o

j k k j k

dx
x

dt
λ τ τ τ−

+ + += .  

This connection expresses a requirement for the extremal segments to fit each other in the 
evolutionary cooperative dynamics(with building a related IN hierarchy, ch.1.5).  
A decrease of the contribution from diffusion with an increase of the gradient (while both 
comply with the VP) intensifies a growing impact of the each following dynamics on the 
evolutionary development. These link up the gradient of dynamic potential, local 
evolutionary speeds, and the evolutionary conditions of a fitness.  

 
Proposition 8.3 (P3).  

An average information speed along the trajectory of evolutionary dynamics:  
 

           1
[ ( )] 1/ 4 [ ( )] 1/ 4 ( ), 1,...,

n
o

i k
i

E H o Tr A o k mτ τ λ τ
=

+ = + = =∑
 

1

1
1/ 8 / [(( ( )) ] ( ), 1,...

k

n

i t o i k
i

d dt gradX t gradX o k mτ τ−
= +

=

= − + =∑ ;                    (8.10) 

 
is generated by the trace-sum of the local speeds–the negentropy productions, or by the sum 
of the above potential’s gradient at the DP’s localities.  
 
Proof follows directly from (8.4) and sec. 1.3.4, Comments 4.2. •  
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Comments 8.6. The average speed depends on the entire spectrum’s eigenvalues, or a 
total dynamic potential, representing a whole system with space distributed subsystems 
(sec.1.7.5), called a “population”, which accumulates an emergence of new random features 
for this population.  

The speed grows with adding each following eigenvalue, even though this eigenvalue 
decreases.  

A local speed, measured by a decreased eigenvalue in the above trace, declines; that 
weakens the evolutionary dynamics’ average speed.  

A minimal eigenvalue, corresponding to a local maximum of the dynamic gradient, limits 
the evolutionary speed.  

The evolution speed grows with enlarging the population’s dimension.  
 
Corollary 8.1.  

Minimization of the entropy ( )kS tΔ at each segment’s time interval (according to the VP) 
leads to a maximization of a gradient of dynamic potential at the segment end, or to a 
minimization of the corresponding diffusion contribution (on the right part of (8.3)).  

Indeed, after integrating (8.10): 
 

1

1

( ) 1 / 8 / [(( ( )) ] ( )
k k

n

j j
jt t

SE t dt d dt gradX t gradX t dt
t

−

=

∂
− = −

∂ ∑∫ ∫   (8.11) 

 
during the segment time interval kt = 1

kτ
o
kτ− , we get 

 

 
1

( )( ( ) 1/ 8[ ln | ( ) | ln | ( ) |]o
j k j k j kE S t gradX gradXτ τΔ = − +   

 
11/ 8ln[| ( ) | / | ( ) |]o

j k j kgradX gradXτ τ= . 
 
The condition  

 

 
1

( )min ( ( ) min[| ( ) | / | ( ) |]o
j k j k j kE S t gradX gradXτ τΔ =  (8. 11a) 

 
for each fixed ( )o

j kgradX τ at beginning of the interval leads to 

                                                
1max | ( ) |j kgradX τ |  

at the interval end, or to  

                                                 

1

1

2min[ ( ) ]
k

k

o

j t dt
τ

τ

σ
+ −

∫ ,  

according to (8.3).  
 
Thus we get 

1

1

1 2
( )min [ ( )] max | ( ) | min[ ( ) ]

k

k

k

o

j k j jE S t gradX t dt
τ

τ

τ σ
+ −

Δ → → ∫ .           (8.12) 
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Comments 8.7. For a stable process at each segment and the fulfillment  

1

min | ( ) | min | ( ) | min ( ), ( ) 0 
n

o o
i i k i k

i

E H o Tr A oτ τ λ τ λ τ
=

+ = + > <∑ ,             (8.13) 

(sec.1.3.5), the eigenvalue at the beginning of the extremal segment:  

1| ( ) | | ( ) | ( ) ~o
i k i k k k kt tλ τ λ τ τ+= −                                                                           (8.13a)  

decreases, which leads to decreasing  also | ( ) |i kλ τ at each DP-locality.  
 
Comments 8.8. While by the end of each extremal’ segment, the gradient reaches a local 

maximum, these maximums are decreasing along the extremal segments’ chain with the 
diminishing impacts of the dynamic contribution from a stochastic drive at DPs, as well as 
lessening of the local eigenvalues at the following segments.  

Decrease of each ( )o
i kλ τ  leads to related increase of the intervals between the punched 

localities 1( ) ~k k ktτ τ+ −  (following the invariant relations sec.1.3.5)). 

 
Proposition 8.4. 

 (i). Let us have a sum of the relative derivations of the model eigenvalues spectrum, 
preserving the spectrum stability at the current derivations:  

 

 1

n
i

i i

D
λ
λ=

Δ
= ∑ ,  (8.14)  

 
while each spectrum’s variation is produced by the increment of diffusion according to (8.1-
8.3), or the related dynamic potential. We call (8.14) a model’s diversity. 

Then the relative increment of the averaged speed in (8.10):  
 

 

ˆ
ˆ
HH

HΔ
Δ

=   (8.15) 

 
is determined by the model diversity  H DΔ =  .  (8.15a) 

 
Because a sum of the identified eigenvalues for each extremal segment is equal to an 

averaged local Hamiltonian according to (8.10), the proof follows straight.   
(ii). Let us have max D = oD  ,which defines the spectrum’s maximal variation, limited 

by a model’s ability to preserve the spectrum dimension n.  
Then oHΔ = oD  measures a maximal increment of the average evolutionary speed ( oHΔ ), 

which we call a potential of evolution eP = oHΔ  (for a given macrosystem’s dimension, related 

to the population); eP  evaluates a maximum among the admissible model’s variations, 
accumulated during the model operator’s renovations under the stochastic drives (for given 
subsystems’ population).  
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From these follow that extending the population by increasing dimension n and growing 
the sum in (8.10), raises the potential of evolution. •  

 
Proposition 8.5 (P5).  

The model limitations on the potential of evolution eP =max *

1
( )

i n

io
i

a γ
=

=
∑ , which 

counterbalances to the admissible eigenvalue’s deviations (ch.1.7, Prop.7.1), are determined 
by the fulfillment of the following equations preserving each triplet’s dimension:  

 
*
ioα =1 −

αi+1,o
t αi−1, o

t

(αio
t )2 = 11 i i

i i

α α

α α

γ γ
γ γ
− Δ

− = =ε , ( ) ( ) ,i invαγ γ γ =a   

 

 γ i
α (γ )=

αio
t

αi+1,o
t =

ti+1

ti

,inv=   
ti−1

ti

=
ti

ti+1

,inv=  (8.16) 

 
where 1( ), ( )i i

α αγ γ γ γ−  are the triplet eigenvalue’s ratios. •  
 

Comments 8.9. For a triplet, this ability will be compromised, if either αio
t approaches 

α i
t
−1, or αi

t
+1 approachesα i+1, o

t , because if both |αio
t − αi−1, o

t |→ 0,|α io
t − αi+1,o

t |→ 0 ,  

the triplet disappears, and the macromodel dimension decreases according to m =
n−1

2
. 

Actually, the above minimal eigenvalue’s distance is limited by the admissible minimal 

relative 
Δαio

t

αio
t ≅ 0.0072  at perturbations *.itα *.itα  

The maximal distance between both α i−1, o
t  and αio

t , αio
t  and α i+1, o

t  at the fixed α i−1, o
t , 

α i+1, o
t  satisfies to the known condition of dividing a segment with (α i−1, o

t ,αio
t , α i+1, o

t ) in the 

mean and extreme ratio: 
αi−1, o

t

α io
t =

αio
t

αi+1,o
t , which coincides with the above formulas for the 

triplet's invariant (8.16).  
The triplet's information capacity to counterbalance the maximal admissible deviations 

defines the triplet's potential m
eP :  

max max | ( ) |m i
e

i

P
α

α

γ ε γ
γ
Δ

= = .                                                                             (8.17)  

For an entire macromodel with m  such triplets, the total potential is n
eP =m m

eP . 
 
Proposition 8.6.  

The macromodel potential n
eP is limited by the maximum acceptable increment of dimension 

that sustains the macrostates’ cooperation:  
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n

eP ≅ 1 / 3 m , m =
n−1

2
.  (8.18)  

A maximal ε (γ )  at the permissible deviations of γ i
α (γ ) , which preserves the triple 

macrostates' cooperation and the triplet formation, corresponds to the minimal admissible 
γ ≅ 0.00718, which for γ 1

α = 2.46 , 2 1.82αγ =  brings max ε ≅ 0.35  and 
n

eP =m m
eP ≅ 1 / 3 m . •  

 
Comments 8.10. Potential n

eP  differs from eP , which generally does not support the 

evolution process’s hierarchy. The model’s acceptable potential n
eP  that can adapt variations 

not compromising the IN hierarchy, we call adaptive potential aP = n
eP .  

Relation n
eP ≤ eP  limits the variations, acceptable by the model that restrict the maximal 

increment of dimension and sustain the model’s cooperative functions.  
At the variations within the aP  capabilities, the generated mutations enable creating a 

new dimension with a trend to minimize both γ  and the system uncertainty (ch.1.6). 
Extending the aP  capability can bring instability, accompanied by growing γ  and a 
possibility to jeopardize the system cooperation.  

The adaptive model’s function is implemented by the adaptive feedback-control, acting 
within the aP  capabilities.  

The triplet's robustness, which preserves the triplet’s invariants under admissible 
maximal error (at current and fixed γ = γ *), is satisfied if the related adaptive potential 
holds the relation analogous to (8.17):  

 

 aP = max ( *)ε γ .  (8.19) 

In a chain of connected information events, the appearance of an event carrying 1γ → , 

leads to oa ( 1) 0γ = =  when both information contributions from the regular control 

a ( 1) 0γ = =  and the needle control 2( 1) 0o γ = =a  turn to zero.  

At a locality of 1γ = , both the event’s information oa and the related time undergo a 

jump, which could be the indicators of approaching 1γ = .  

This means, the appearance of an event carrying 1γ →  leads to a chaos and decoupling 
of the chain, whereas the moment of this event’s occurrence could be predicted (ch. 1.7).  

 
Comments 8.11. Let us show that at the equal deviations of the model parameter γ i

α : 

±Δγ1
α ,±Δγ 2

α  , the model threshold |ε(Δγ )|  is asymmetric.  
Indeed. The macromodel with γ = 0.5 has γ 1

α = 2.21 , γ 2
α = 1.76  and get 

εo = 0.255 . Admissible deviations Δγ1
α = 0.25,Δγ 2

α = 0.08 correspond to the 



Vladimir S. Lerner 280 

macromodel with γ ≅ 0.01, γ 1
α = 0.246 , γ 2

α = 1.82 , which determines ε1 ≅ 0.35 and 
Δε(Δγ 1

α ,Δγ 2
α ) = ε1 − ε o = 0.095 .  

At Δγ 1
α = −0.25 , Δγ 2

α = −0.08  we have the macromodel with γ = 0.8, γ 1
α = 1.96 , 

γ 2
α = 1.68, which determines ε2 ≅ 0.167  and Δε(−Δγ 1

α ,−Δγ 2
α ) = ε2 − εo = −0.088 .  

It is seen that at the equal deviations, the model potential, defined by  
 

 maxε = maxε1 ≅ 0.35 , (8.20) 
tends to increase at a decreasing of γ , and vice versa.  
An essential asymmetry of |ε(Δγ )|  and therefore the dissimilar Pm  are the result of the 
macromodel fundamental quality of irreversibility. •  

Therefore, evolution dynamics, which follow from VP, is accompanied by the following 
main features: 

 
-A tendency of decreasing γ  that diminishes the influence of randomness on the 

macrolevel dynamics; 
- A decrease of the contribution from diffusion with the increase of the dynamic gradient 

that intensifies a growing impact of the each following dynamics on the evolutionary 
development; 

-An average evolutionary information speed (for a population of subsystems) is declined, 
weakening during the time of evolution; 

-A nonsymmetrical adaptive potential leads to both rising the system’s adaptive 
capability (at decreasingγ ) with expanding the potential ability to correct a current error and 
increasing of the impact of a dynamic prehistory on current changes.  

1.8.3. A Mechanism of an Enhancement of the Acceptable 
Mutations 

According to P.8.4, the sum of the relative increments of the eigenvalues spectrum 
measures the system’s potential diversity 

 

 
1

n
i

i i

D λ
λ=

Δ
=∑ , 1( ) 1/ 2 [ ( )( ( ) ) )]

k

k o

T T
i k i i k i i t dt

τ

τ

λ τ σ σ τ σ σ
−

−Δ = Δ ∫ ,  (8.21)  

 
which determines the system’s admissible variations, preserving the spectrum stability at 
current deviations.  

A max D = oD  defines the spectrum’s maximal variation, limited by a system’s ability to 

preserve the spectrum dimension n; oD = eP  measures a maximal potential of evolution eP  
and brings a maximal increment of the average evolutionary speed  
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ˆ

, maxˆ
o

o
HH D D H H

HΔ Δ Δ
Δ

= = = = = eP   (8.22) 

for a given macrosystem’s dimension, related to the subsystem’s population.  
The required spectrum’s stability at current derivations brings a direct eP  dependency on 

the maximum admissible deviations, preserving the fixed triplet’s invariants, or a fixed γ  
and the triplet code.  

If the fluctuations generate the admissible deviations, the model enables generating the 
feedback-controls that support a structural robustness for each IN's node.  

In this case, ( )e rP Pγ =  represents the model potential of robustness, which expresses 
the model ability to counterbalance the admissible eigenvalue’s deviations (acting within the 

rP  capacity).  

The rP  restriction (by the triplet’s invariants and the code) limits its capacity for the 
model’s evolution. A potential code, which has been generated by the potential of robustness, 
is a DSS’s evolutionary predecessor.  

Creating new macromodel characteristics is possible by changing the invariant and the 
code.  

Let us analyze when it is possible.  

During the o -window of the applied control, when the model is open for the 

environmental interactions, the external perturbations could cohere with the microlevel 

randomness (Fig.8.1). The perturbation of a high frequency represents a noise, which is the 

subject of the model filtration. Thus, the model frequency’ coherence with the environmental 

frequency and/or with other interacting macromodels might occur at a lower frequency, 

theoretically, at any o -windows within the segment’s chain of a given dimension, and also at 

the chain end, corresponding to the o -window of the IN final node.  

The mutations, generated by the coherent frequencies, are more powerful, compared with 

others competing within the window. Such a coherence creates a kind of cooperation between 

the external and internal model's processes, in particular, during the stochastic resonance.  
A current eigenvalue ( )k kα τ ~ ( )k kω τ could be modified by a resonance 

frequency 1 ( )k kω τ , which can bring an increment of the eigenvalue in (8.21): 

( ) ~ ( )k k k kδα τ δω τ  according to relations 1( ) ( ) ( )k k k k k k kα τ δα τ α τ δτ+ = + .  

The new 1 ( )
k

o
k δ

α τ = − 1 ( )k k kα τ δτ+ , fixed at the beginning of following segment 
k

o
δ

τ , 

changes the primary invariant a( kτ )= ( )
k

o o
k kα τ τ  that acquires a new value 

a 1 ( )
k

o
δ

τ = 1 ( )
k k

o o
k δ δ

α τ τ .  
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An essence of stochastic resonance consists of a coincidence of a deterministic 
frequency, defined by the eigenvalue ( )k kα τ , with a resonating frequency of a random 

environment 1 ( )k kω τ .  
This leads to the modified time-space dynamics at the following segments and changing 

the quantity of information, carried by corresponding section of DSS code.  
In the stochastic resonance, the primary frequency ( )k kω τ  attracts some frequencies of 

external fluctuations, selecting the nearest of them, while forming the resonance frequency 
1 ( )k kω τ .  

According to the VP, the newborn 1 ( )k k kα τ δτ+  should bring a local maximum to the 
information speed, which allows getting a maximum of the information (negentropy) 
production from the environment.  

In a common environment, such this model’s eigenvalue 1 ( )k k kα τ δτ+  possesses an 
advantage in the survival, comparing with other competing models, having the smaller 
eigenvalues and the information productions.  

This allows the model detecting and accepting the mutations beneficial for the model's 
processes and providing a directed evolution [9, 14], accompanied by the code’s renovation. 

The information environment should be able to supply this maximum via a cooperative 
interaction of an external information source with the internal 1 ( )k k kα τ δτ+ , therefore 
establishing the information exchanges-communications between them.  

Without the cooperation with a coherent frequency 1 ( )k kω τ , a new ( )k kδα τ  could not 
be obtained (at a first place) from the random microlevel’s environment.  

The external frequency resonance 1 ( )k kω τ during interval kδτ  provides an external 

entropy ( )e kS τ∂ taken from the microlevel random process for the cooperation between 
1 ( )k kω τ and 1 ( )k k kα τ δτ+  (while ( )e kS τ∂  is limited by the parameters of stochastic 

equation, ch.1.1). This elementary entropy defines the renovated invariant a 1 ( )
k

o
o δ
τ , which 

determines the following interval of discretization 1
k k

o
kt δ δδ τ τ= −  with  

1
kδ

τ =a 1 ( )
k

o
o δ
τ  / 1 ( )

k

o
k δ

α τ  at known 1 ( )
k

o
k δ

α τ = − 1 ( )k k kα τ δτ+ .  

Each macromodel, built according to the VP with the limitation ch.1.7), which enters to the 
environment, should have a limited maximum of invariant  a1 ( )

k

o
o δ
τ to be acceptable by the 

existing environmental information systems, providing ( )e kS τ∂ .  

At this condition, the macrolevel’s 1 ( )k k kα τ δτ+ would be able to cooperate with an 
external frequency (eigenvalue), having the coinciding information speeds, to produce 
information a1 ( )

k

o
o δ
τ , available in a current information environment.  

Such ability depends on both the model’s individual characteristics (invariants, 
eigenvalues, and a capacity of generating an attraction frequency) and the local environment, 
delivering the model’s resonance frequency. 
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On Fig.8.1 we analyze the possible cooperative schemas in the local macrosystems’ 
environment. Some of the 1 ( )k k kα τ δτ+ could be attracted by the eigenvalues of the same  
spectrum, forming a doublet or triplet of the IN current spectrum (the IN node’s attractor).  

Other, with a higher 1 ( )k k kα τ δτ+ , can not be included in the nearest systems’ INs, but 
are capable to attract another local eigenvalue with a lesser value to start a new IN and its 
DSS code. Such a local macromodel opens a possibility of creating a new generation of the 
systems.  

Each of the IN’s local hierarchical level could be a dead end of a specific evolutionary 
tree.  

Indeed. The modified code’s section (with a changed parameter of uncertainty kγ ) might 
encode a distinctive phenomenon’s component, compared to a preceding (primary) code’s 
section. The modified eigenvalue and a new kγ  change the primary spectrum of the model 
eigenvalues, and a perhaps its dimension, taking into account also a possibility of attaching 
the new eigenvalue to the final IN node.  

 

 

Figure 8.1. An illustration of the competition and selection for the state’s variations at the DP locality, 
brought by: the external frequencies 1, 2f f , the controls 1, 2v v , the microlevel mic , and the 

external influences fe , with forming the multiple node’s spots 1, 2, 3sn sn sn , generated by a chaotic 
attractors; the node, selected from the spot, is memorized. b) Chaotic dynamics, generating an attractor 
(ca) at joining the cone’s processes, which forms the following cone’s basin. 

Therefore, the renovations of both the model’s eigenvalues and the invariant modify the 

code and initiate the above mutations, which enhance and memorize the appearance of new 

features (including new subsystems) and a future model’s development.  
The random mutations, generating a rising macromodel’s dimension, contribute to 

growing eP .The average amount of the triplet’s potential:  
 

 Pa ≈ 1 / 3m (γ = 0.5)  ,  (8.23) 

(a) 
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generates an information capacity equals to ≈ 33% of the quantity of the non-redundant 
information in ao  bits, accumulated by each triplet.  

This information is encoded only by three letters of the double spiral optimal code (DSS), 
generated by the controls (ch.1.6).  

The maximal acceptable variation of information, corresponding to the 33% capacity of 
triplet’s potential, might change just one letter to the non-redundant three letters of the 
minimal DSS code.  

According to the model's mechanism, the applied control can provide the forth letter to 
the initial minimal three triplet's letters.  

The control works like a switch changing the letter’s sequence.  
The switch represents a memorized control signal ( ) 2 ( )v xτ τ= − , (memorized at each o

kτ ) 
which acts upon the subsequent dynamics.  

The code’s switch provides an additional capability for adapted evolution. 
The existence of the adaptive IN capacity creates a model's potential redundancy (PR), 

which is automatically added to the initial non-redundant IN. The PR leads to an ability of 
correcting the errors under the admissible perturbations, preserving the invariants, which 
provides the model's error correction mechanism to the IN and its DSS code.  

The adaptive PR control minimizes the error of accepted external information, preserving 
and protecting the internal IN's cooperative structure.  

Following the VP, the most probable evolution of the modified eigenvalues goes in the 
direction of their lessening, leading to a decrease of the model invariant a( kγ ) (reducing a 
contribution of an external control) and a decrease of the model’s uncertainty parameterγ  
that is beneficial to improvement of a system's functioning.  

These effects associate with the above nonsymmetry of potential eP , which provides an 
increase in an internal negentropy production and shows a self-organization trend and 
automatic improvement under mutations.  

The model stability assumes a balance between the IN's geometrical border BMS 
(ch.1.6), being a source of model negentropy, and the external entropy.  

Such a coordination is performed along all BMS surface, with some space distributions of 
the dynamic operator's λ (e)-eigenvalues spectrum.  

A diversity of the external environment creates an essential variety of the BMS forms and 
their cooperative key-lock connections (Fig.8.2) with different λ (e)-space distributions, 
which are supposed to compensate for the environmental influence.  

A lack of such variety or a lack of some noncompensated values of this spectrum brings 
the model’s instability.  
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Figure 8.2. The BSM geometrical structures: a),b),c),d),e), f)- formed by the control’s information 
cooperative key-lock connections; ,m m− + are the interacting information masses (sec.1.7.4) (virtual or 

a real). 

The discrete eigenvalues spectrum determines the allocation of the BMS's λ (e)  with 
some discrete spatial interval δ l  and the space curvature, defined by the model dynamic 
invariants.  

 

 

Figure 8.2.a. A BSM surface made by a sequence of the triplets (1,2,3,…). 

The BMS’ entropy is proportional to the entropy density and the value of the BMS square 

2
nF  (Fig.6.4b). Assuming a fixed entropy density for the maximal δ l (γ →0)=0.372=const, 

we may determine the maximal elementary BMS square (δ F) for each triplet: 
δ F=π 3/4(δ l )2 . A BMS surface, made by the triplet’s sequence (1,2,3), is shown on 
Fig.8.2a. The total square for all BMSs with (n-1)/2 triplets approaches  

F(γ →0) ≅ 0.32(n-1)/2. This F is close to the value of the adaptation potential Pm  
(8.23), providing a maximal contact between the external mutations and the adaptive model's 
resistance throughout a “genotypic fitness surface” [2].  

The information geometry (Fig.6.5), enfolding the varieties of genetic codes, is an actual 
space of interactions, variances, and mutations.  
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An intrinsic macrodynamic geometry reveals its new role as a source of the memorized 

defect of dynamic information, at the formation of the macrostructure, and as an attribute of 

adaptation. 

1.8.4. The Conditions of the Model’s Self-control, Adaptation, and 
Self-organization 

Let us find such a control, which, acting automatically, is able to accomplish model 
performance within capacities of both the model's adaptive and evolution potentials.  

We consider the model's optimal controls function  
 

 ui(ti ) = αi
tvi(ti) , vi (ti ) = −2xi(ti) ,  (8.24) 

 
applied at discrete moment ti , while xi (t)  satisfies to the controllable local differential 
equation for a segment (in a diagonal form):  

 
 ( )ix t� = t

iα− xi (t) .  (8.25) 
 
Then, the optimal control  
 
 ( ) 2 ( ) 2 ( )t

k i k k i k iu t v t x tα= − = − �  ,  (8.26)  
 
can also be applied using a derivative ( )k ix t� .  
Considering a sequence of macrostates, satisfying the relations for the phase coordinates [14]: 

( ) ( )i i k ix t x t=� , 1( )l ix t + , xm (ti+ 2 )  for the subsequent discrete moments (ti+1, ti+ 2 ) , we come 
to the macrostates' connections:  

 
                          ( ) ( )k i i ix t x t= � , xl (ti+1) = 1( )k ix t +� , 2 2( ) ( )m i l ix t x t+ += � .              (8.27) 
 
If the macrostates' sequence is numbered according to the time's sequence, we come to 

the relations 
 

1 1 1 1 2 2 2( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) ( ),...f i i i k i i i m i i i l i m i i ix t x t x t x t x t x t x t x t x t− − + + + + += = = = =� �� � ���   

   (8.28)  
which satisfy to 1( ) ( )k i k ix t x t− = � , or 1( ) ( )k kx xτ τ− = �  for any following k −1,k,k +1  

macrostates at fixed it τ= .  

This shows that each xi−1(ti)  is able to perform the optimal control function, applied to 
the following xi (ti) , and the generation the model optimal processes can be possible by 
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originating only an initial optimal macrostate xi (to ) , applied as a control xi (to ) = ui+1(to )  to 
the equation  

 

 1 1, 1 1( ) ( ) ( )t
i i o i i ox t x t u tα+ + + += +� .  (8.29)  

 
At ui+1 (to ) =αi+1, o

t xi+1 (to ) , we get the initial 1 1, 1( ) 2 ( )t
i o i o i ox t o x t oα+ + ++ = +� ,  

which can be applied as a control  

 

                                        ui+1 (τo )= 12 ( )i ox τ+− � =−2αi+1,o
t xi+1(τo )   

at the moment τo , following the initial to , where to −τo =δ to .  

The sequence of the regular control’s differences:  
 

 δui+1(τo ) = ui+1( to ) − ui+1(τo ) = xi (to ) 12 ( )i ox τ+− � ,  (8.30) 

 
applied at a small δ to , forms the starting needle control.  

The above relations provide the fulfillment of   

 

                               αi+1, o
t xi+1 (to )= 1( )i ox t+� = xi (to )=ui+1 (to ) .             (8.31)  

 
Starting from the moment τo , the optimal control ui+1 (τo )= 12 ( )i ox τ+− �  will be applied 

to the equation (8.31), generating the model optimal processes.  
Such processes that mutually control each other are the superimposing processes [14].  
Let us show that if the optimal model's phase coordinates are connected by relation  
 

 xi−1(to ) = αio
t xi(to )   (8.32)  

at the initial moment to ,  
then at the DP moment ti , relation 1( ) 2 ( )i i i ix t x t− = − �  is correct with the relative error  

 
 | / | exp( )exp( ) 2(1 / )i i i i ox x invαε δ γ= = − − − =a a a a ,  (8.33)  

 
where the assumption (8.32) corresponds to the considered equality (8.31), and the equation 
(8.33) fulfills Prop.1.5.4. 

Indeed, let us find the difference 1| | | 2 ( ) ( ) |i i i i ix x t x tδ −= −�  between the actual 2 ( )i ix t�  

and xi−1(ti) , determined by the optimal solution of 1 1 1 1( ) ( ) ( )t
i i i i ix t x t v tα− − − −= +�  at fixed 

xi−1(ti−1 ) : xi−1(ti) = xi−1 (ti−1)(2 − expα i−1
t (ti − ti−1)) , 

whereαi−1
t ti−1 =a(γ ) ,αi−1

t ti = γ i
α (γ )a(γ )  and, therefore (2 − expα i−1

t ti − ti−1)) = inv .  

      This leads to  
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xi−1(ti)

xi−1(ti−1 )
= inv (γ ) .  

Using for each fixed xi (ti) , xi−1(ti−1 )  the solutions:  

 
xi (ti) = xi(to )(2 − expαio

t (ti − to)) , xi−1(ti−1 ) = xi−1(to )(2 − expαi−1, o
t (ti−1 − to ))  

at  
(2 − expα io

t ( ti − to )) = (2 − expαi−1,o
t (ti−1 − to )) = inv ,  

we get  

                                                          
xi(ti)

xi (ti−1)
=

xi (to )

xi−1 (to )
.  

From that, taking into account (8.32), we get  

 

                                                    
xi(to )

xi−1(to )
=(αio

t )−1 =
xi(ti)

xi (ti−1)
.  

By the substitution it into  

 
|δxi |= |2αi

txi(ti) − 2xi−1(ti ) + xi−1(ti)expαi−1,
t (ti − ti−1 ))  

we obtain  

 
ε i =|

δxi

xi−1

(ti−1 )|= 2αi
t xi (ti)

xi (ti−1)
− 2 + expαi−1

t (ti − ti−1 ))
 

 =|2
α i

t

αio
t − 2+exp(γ i

αa)exp(− a)|, 

where 
α i

t

αio
t =

α i
t ti

αio
t ti

=a/ao .  

Finally we come to (8.33). •  
Let us find the condition at which an analog of relation (8.32) can be true with ε i = 0. 

Assuming  
 1 1( ) ( )i o i i ox t k x t+ −=� ,  (8.34)  
 

we will determine such ki , which brings ε i = 0, proving that ε i = 0 is achieved at  
 

 ki =ao /2a(2-exp(γ i
αa)exp(− a)).  (8.35) 

 

Indeed, substituting (8.34) in the form 1
1

( )( ) i o
i o

i

x tx t
k
+

− =
�

 into equation  



The Evolutionary Dynamics and the Information Law of Evolution 289

                          ε i = |2α i
t xi(to )

xi−1(to )
− 2+exp(γ i

αa)exp(− a)|,  

we get  

                                
1

( ) ( )
( ) ( )

i o i o i
i t

i o i o io

x t x t kk
x t x t α+

=
�

  

and have 

ε i = |
2α i

tki

αio
t − 2+exp(γ i

αa)exp(− a)|=|2a/ao ki − 2+exp(γ i
αa)exp(− a)| .  (8.35a). 

By requiring ε i = 0, we come to the ki  satisfying to (8.35).  

Thus, the arrangement of the model's initial conditions as the phase coordinates, 

satisfying to the relations (8.27) and (8.32), guaranties the model's self-controllability, which 
is an equivalent of applying the optimal control v = −2x(ti ) .  

We also need to prove that the model's self-control ui(ti )=−2αi
txi(ti) , applied at each 

ti , is able to achieve the adaptivity within the admissible gate threshold ε .  

Each of these optimal controls, applied at ti  within τ i , will be determined by the 

corresponding (αit ± Δαit ) :  
 

 

* ( )( )
( )

t
i i i

i i t
i i i

u tu t
u t

α
α

Δ Δ
Δ = = =∓ *

itα .  (8.36)  

 
If *

itα  belongs to the admissible *
iτα , which preserves the invariant a(γ ), then this 

control also preserves both model’s invariants a ( )o γ . Those keep γ  constant and, therefore,  

also preserves γ i
α (γ ) and thus provides a(γ )γ i

α (γ )=inv  at the above admissible *
iτα (γ ). 

 Such a self-control accomplishes the model's robustness.  

Some of a self-control, acting within maxε , is able to minimize the maximal admissible 

triplet's error  

                                       
2

1 1

1 *i
i

i i

t t
t t+ −

− = Δ (γ )  

under the perturbations of * ( )itα γΔ  for any allowable Δγ ∈Δγ m .  

Such a control compensates the acceptable * ( )itα γΔ , unrestricted by the robustness 

potential rP , but limited by adaptive potential aP .  

The implementation of max ε = aP  initiates the adaptive control, which provides the 
preservation of each triplet within the n  dimensional IN and adapts the acceptable variations.  
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Thus, the macromodel’s self-controls are able to support both the robustness’ and 
adaptive potentials that guarantees the stability, preservation of the model triplets, and the 
total model's dimension n .  

The adaptive potential’s asymmetry contributes decreasing γ and growing the potentials 
of both dynamics and adaptation.  

The evolutionary dynamics, created by a multidimensional eigenvalues’ spectrum, forms 
a chain of interacting extremal segments, which are assembled in an ordered organization 
structure of the information hierarchical network (IN).  

A cooperative coupling stabilizes the forming structure, while each triple generates an 
order attracting other couples and triples, and so on.  

The space distributed IN’s structural robustness is preserved by the feedback actions of 
the inner controls, which provide a local stability at the admissible variations.  

This control supports a limited ( )e rP Pγ =  that determines the potential of robustness.  
The requirements of preserving the evolutionary hierarchy (Eqs (5.5.1)-(5.53)), impose 

the restrictions on the maximal potential of evolution eP  and limit the variations, acceptable 
by the model.  

The model’s adaptive potential aP ≤ eP , which adapts the variations, not compromising 
the IN hierarchy, restricts the maximal increment of dimension, contributed to the adaptation. 
The punched evolution’s nonequilibrium accumulates the changes by an hierarchy of the 
selections and adaptations, with following a local equilibrium at each hierarchical level.  

The adaptive model’s function is implemented by the adaptive feedback-control, acting 
within the aP  capabilities.  

The self-control function is determined by the conditions (8.26), (8.27), and (8.36) of a 
proper coordination for a chain of superimposing processes, where each preceding processes 
adopts the acceptable variations of each following process.  

The above optimal controls are synthesized, as an inner feedback, by the duplication of 
and copying the current macrostates at the beginning of each segment, which are memorized 
and applied to the segment.  

The adaptive potential’s asymmetry contributes the model’s evolutionary improvement.  
A sequence of the sequentially enclosed IN’s nodes represents a discrete control logic to 

design the IN.  
The applied control, which adds the forth letter to the initial minimal three triplet's code 

letters, provides the model's error correction mechanism to the IN’s DSS code, and also 
provides a discrete filtering of the randomness, acting at the o-window.  

The IN geometrical border forms the external surface where the macromodel is open for 
the outside interactions. At this surface, the interacting states compete for delivering a 
maximum of dynamic potential’s gradient. Selected states are copying and memorized by the 
model control, contributed to the code.  

The control provides a directional evolution with the extraction of a maximum 
information from the environment of competing systems, while the acquired DSS code can be 
passed to a successor [22].  



The Evolutionary Dynamics and the Information Law of Evolution 291

1.8.5. The Evolution of the Model Invariants and a Potential 
Macroprocess’ Cyclicity 

The model invariants’ a o , b o dependency on γ  follows from equations (sec.1.3.5, 1.5.4): 

 2(sin( ) cos( )) exp( ) 0o o oγ γ γ γ+ − =a a a ;  (8.37)  

 2cos( ) sin ( ) exp( ) 0o o oγ γ γ− − =b b b .  (8.38) 
The macromodel evolves toward a minimal γ →0 during the process of adaptation, while 
the evolution increases the number n of consolidated subsystems. With increasing γ →1, n 
is decreasing. At γ →0, the movement approaches the uncertainty zone UR.  

a).  
 

b).  

Figure 8.3. a). The evolution of the model invariants with a loop between information subspaces RS +  
and RS− ; b). A schematic of the cyclic process. 

At the UR locality, both equations (8.37),(8.38) have the nearest solutions: 
a o ( 0γ → )≈0.768, b o ( 0γ → )≈0.7. Other nearest solutions correspond to 

a o ( 1γ → )≈0.3, b o ( 1γ → )≈0.3.  
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This allows representing the invariant’s evolution at (0 1)γ ⎯⎯→→ ←⎯⎯  by Fig. 8.3a.  

Let us analyze this evolution process.  
The consolidation process, preserving invariant a o , develops along the line of switching 

controls, corresponding a( γ ) t
i it invα= = , at a region of the real entropy’s (RS+) 

geometrical locality. The macrosystem can evolve along this line at a constant total entropy 
S=S e +S i  if the internal entropy (S i >0) is compensated by an external negentropy (S e <0), 
delivered from the environment. Until the entropy production is positive, the time direction is 
also positive, and the entropy is a real Sa . The irreversible states create the systemic order. 
Another character of the macrodynamics takes place along the switching line 
bo (γ )= 0( )t

i it tα − inv= (where it
− is the time interval preceding to the starting moment to ) 

at a region of the geometrical locality (RS− ), where the macromovement with an imaginary 
time of jt= it

− , holds the imaginary entropy bS . The movement along this line preserves the 

entropy bS  but the second law as well as any real physical law is not fulfilled.  

The evolution at (0 1)γ ⎯⎯→→ ←⎯⎯  keeps the invariant ratio 

 / ~b aS S bo (γ ) /a o ( γ ).  (8.39) 
The macrosystem, which satisfies the VP information law, is adaptive and self-controlled. 
The controlled macroprocess, after a complete cooperation, is transformed into an one 
dimensional consolidated process  

 xn (t )= xn (tn−1)(2 − exp(αn−1
t t ),  (8.40)  

which at tn−1=
ln 2

αn −1
t  is approaching the final state xn (tn )= xn (T ) =0 with an infinite phase 

speed 

 1( ) t tn
n n n

n

x t
x

α α −= = −
� 1

1 1exp( )(2 exp( )t t
n n n nt tα α −
− −− →∞ .  (8.41)  

The model cannot reach the zero final state xn (tn ) = 0 with ( )n nx t� =0.  
A periodical process arises as a result of alternating the movements with the opposite 

values of each two relative phase speeds 
( )
( )

n k

n n k

x t
x t

+

+

�
, k =1,2 and under the control switches; the 

process is limited by the admissible error * n

n

x
x

ε Δ
=  and/or the related time deviations of 

switching control * */ .m i i iot tε α≤ Δ = •  (sec.1.8.3). Such a nonlinear fluctuation can be 
represented [23] by the superposition of linear fluctuations with the frequency spectrum 
(ω1

* ,...,ωm
* ) proportional to the imaginary components of the eigenvalues (β1

* ,...,βm
* ), where 

ω1
*  and ωm

*  are the minimal and maximal frequencies of the spectrum accordingly.  
Proposition 8.7.  

A nonlinear fluctuation is able to generate a new model with the parameter  
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,  (8.42) 

where ( )lo otα = *( )i n ktα + , ( )lo otβ = *( )i n ktβ + are the new model’s starting real and imaginary 
eigenvalues. 

Proof. During the oscillations, initiated by the control action, a component *
iβ  is selected 

from the model’s imaginary eigenvalues 1
1Im ( )=Im[  (2 exp )  ] ,i i i

n n nt tλ λ λ −
−− − at each 

1( , )n k n kt t t+ − += .  
We come to relation 

 Im ( )i
n n ktλ + = ( )i

n n kj tβ + = 1 1
1

1 1

cos( ) sin( )
2 cos( ) sin( )

i i
i n k n k
n k i i

n k n k

t j tj
t j t

β ββ
β β
+ − + −

+ −
+ − + −

−
−

− +
 ,  (8.43) 

at * *, 0i
i n k i kβ β β π+= ≠ ± . It seen that ( )i

n n ktβ +  includes a real component  

 1
1 2 2

1 1

2sin( )( )
(2 cos( )) sin ( )

i
i i n k
n n k n k i i

n k n k

tt
t t
βα β

β β
+ −

+ + −
+ − + −

= −
− +

,  (8.44) 

at * *( ) 0i i n ktα α += ≠ , with the corresponding parameter 

 *
iγ =

( )
( )

i
n n k
i
n n k

t
t

β
α

+

+

= 1

1

2cos( ) 1
2sin( )

i
n k

i
n k

t
t

β
β
+ −

+ −

−
.  (8.45) 

These eigenvalues * * *( ) ( ) ( )i n k i n k i n kt t j tλ α β+ + += ± , at some moment t0 > tn , could 

give a start to a new forming macromodel with ( ) ( )lo lo o lo ot j tλ α β= ± , with the initial real 

( )lo otα = *( )i n ktα + , the imaginary ( )lo otβ = *( )i n ktβ + , and the parameter 
( )
( )

lo o
lo

lo o

t
t

βγ
α

=  

equals to (8.42). •  
Comments 8.12. This new born macromodel might continue the consolidation process of 

its eigenvalues. Therefore, returning to some primary model’s eigenvalues and repeating the 
cooperative process is a quite possible after ending the preceding consolidations and arising 
the periodical movements. This leads to the cyclic macromodel functioning when the state 
integration alternates with the state disintegration and the system decay. (The time of the 

macrosystem decay increases with an increase in the accuracy * n

n

x
x

ε Δ
=  of reaching the 

given final state). Because the system instability corresponds to 1γ ≥ , while 

0γ → corresponds to the start of the cooperative process, we might associate the cycle start 

(at the end the invariant loop (Fig.8.3b)) with the model’s oscillations at 1γ ≥ (generating the 

spectrum *( )i n ktλ + ), and the cycle end with the start of the new born macromodel at 0γ → .  

In this case, 0γ →  can be achieved at 12cos( ) 1i
n k tβ + − → , or at  

                 1( ) ( / 3 ), 1, 2,...i
n k t k kβ π π+ − → ± = ,  
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with 
                   ( )i

n n ktα + = ( )m
lo otα = m

loλ 10.577 i
n kβ + −≅ − , ( )lo otβ ≅ 0,  

whereas 1γ =  corresponds to 1( ) 0.423 (24.267 )i o
n k t radβ + − ≈ ,  

with  
                      *( )i n ktβ + ≅ 10.6 i

n kβ + −− .  

Here *( )i n ktβ + ≅ ( )m
lo otα  determines the maximal frequency *

mω  of the fluctuation by the 
end of the optimal movement. The new macromovement starts with this initial frequency.  

Proposition 8.8.  
The maximal frequency’s ratio, generated by the initial (n-1) dimensional spectrum with an 
imaginary eigenvalue 1, 1,( )n o n otβ − −  (at the end of the cooperative movement at (γ =1)):  

 
*

1
1, 1,

( )
( )

mi n k
n

n o n o

t l
t

β
β

+
−

− −

=   (8.46)  

is estimated by the invariant  
 

 1
o

0.577 / 3 ( 1)
a ( )/a(  ) ln 2

m
nl

π γ
γ γ −= = .  (8.47)  

Proof. Let us estimate (8.46) using the following relations.  
Because 1, 1,( )n o n otβ − − = 1, 1,( )n o n otα − −  at 1γ =  and *( )i n ktβ + ≅ ( )m

lo otα , we come to  

                                                          1
1, 1,

( )
( )

m
m lo o
n

n o n o

tl
t

α
α−

− −

= .  

Applying relations 1, 1, 1, 1( ) ( )n o n o n t nt tα α− − − −= a o (γ )/a(γ ) and using 

( )m
lo otα =− 0.577 / 3π , we have  

 1
1, 1 o 1, 1

( ) 0.577 / 3 ( 1)
( ) a ( )/a(  ) ( )

m
mlo o o
n

n o n o n t n o

t t l
t t t t

α π γ
α γ γ α −

− − − −

= = = .  (8.48) 

Assuming that a minimal ot  starts at 1 1( )o n nt t o t t− −= + ≅ , and using (8.42): 

1, 1( ) ln 2n t n ot tα − − = , at 1, 1 1( )n t n ntα α− − −= , we get the invariant relation (8.47). •  

Comments 8.13. The ratio (8.47) at a o (γ =1)=0.58767, a(γ =1)=0.29 brings 

1( 1) 0.42976m
nl γ− = ≈ . Because 1, 1,( )n o n otα − −  is the initial eigenvalue, generating a starting 

eigenvalue ( )m
lo otα of a new model, their ratio 1, 1,( )

( )
n o n o m

lm
lo o

t
t

αα
γ

α
− − = determines the parameter 

of the eigenvalue multiplication for the new formed model, equal to 1
1( )m m

l nl
αγ −

−= , or at 

1γ = , we get m
l
αγ ≈2.327. For the new model, the corresponding parameter lγ → 0, at 

which the cooperative process and the following evolutionary development might start, holds 
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true. For a new formed potential triplet, satisfying relations (8.16), we get the eigenvalues and 
their parameters of multiplication in the forms:  

 1, ( )m
l o otα − = 1, 1,( )n o n otα − − ≈ − 1.406, ( )m

lo otα ≈− 0.60423, 1, ( )m
l o otα + ≈ − 0.26,  

with  

 ,
1

1,

( )
( ) 2.3296

( )

m
l o om

l
l o o

t
t

α α
γ γ

α−
+

= ≈  and 1,
1, 1

1,

( )
( ) 5.423

( )

m
l o om

l l
l o o

t
t

α α
γ γ

α
−

− +
+

= ≈ .  (8.49)  

If the optimal cooperation in the new formed model is continued, both parameters lγ  and 
m

l
αγ will be preserved, which determines both model’s invariants and the information genetic 

code. The transferred invariants are the carriers of the evolutionary hierarchical organization, 
self-control, and adaptation (while the adaptation process could change both lγ  and m

l
αγ ).•  

The above analysis shows that even after ending the consolidations and initiating the 
periodical movements with a potential system’s decay, it is quite possible the automatic 
generation of a new macromodel by the end of functioning of a current model, and with 
transferring of the emerged model’s basic parameters, invariants, and code to the new model. 
This leads to the model’s cyclic functioning, initiated by the two mutual controllable 
processes, which should not consolidate by the moment of the cycle renovation.  

The initial interactive process may belong to different macromodels (as “parents”), 
generating a new macrosystem (as a "daughter"), which "inherits" the “parents” code’s 
genetics, accumulated in the transferred basic parameters and invariants. Thus, in the cyclic 
macromodel functioning, after the model disintegration, the process can repeat itself with the 
state integration and the transformation of the imaginary into the real information during 
dissipative fluctuations at the end of the “parents” process and the beginning of the 
“daughter’s generation. An individual IN’s macromodel life-time (ch.1.5) is limited by its 
number n of the ranged eigenvalues (the local entropy’s densities) and a maximal value of 
this density. At growing these information densities, the macromodel’s life-time is shortening. 

The structural stability, imposed by the VP, affects a restoration of the system structure in 
the cyclic process through a reproduction. A new born system sequentially evolves into anew 
IN that embraces its dynamics, geometry, and the DSS code. The optimal control, which 
preempts and determines the process dynamics at each extremal segment, is memorized at the 
segment starting time moment. This means that such a memorized control sequence (a code) 
can remember both the previous and the prognosis segment’s dynamics.  

Therefore, IN’s DSS code, represented by the digits of these control sequence, is able to 
remember a preceding behavior of a complex system and pass it to a successor.  

As a result, the successor might do both repeats some behavior of its predecessor and 
anticipates its own future behavior.  

These information system’s features, following from the VP (that determines the optimal 
control and optimal dynamics), probably explain the biosystems behavior, which can 
anticipate some of their future behavior.  

Among the behavioral set, remembered by the code (and initiated by the VP), is also the 
system’s reproduction with transferring its code to the successor. That is why a successor, 
possesing this code (which memorizes the previous behavior and can encode the future 



Vladimir S. Lerner 296 

dynamics), is able to anticipate and preempt its behavior including the reproductive dynamics. 
From that also follows that the path functional’s punctuated information dynamics is also 
responsible for a prediction of the reproductive dynamics  

Comments 8.14. At the fixed *
mε , the environment generates the random initial 

eigenvalues at the beginning of the cycle through the mutation.  
Therefore, the model cannot precisely repeat both the cycle time and its amplitude.  
Since the law of increasing entropy is not violated, each of the following cycles has a 

tendency of fading and chaotization of the periodical processes.  
The model of the cyclic functioning includes the generator of random parameters that 

renovates the macromodel characteristics and peculiarities. The model's adaptive potential 
increases under the actions of the random generator even if the randomness carries a positive 
entropy. Such an adaptive, repeating, self-organizing process is the evolutionary cycle.  

The above conditions for the existence of the adaptation potential and the model's cyclic 
renewing impose a limitation on the minimal admissible macromodel's diversity. With similar 
reproductive dynamics for all population, the reproduction, applied to a set of the 
macromodels, having a maximum diversity, brings a maximum of adaptive potential, and 
therefore, would be more adaptive and beneficial for all set, potentially spreading through the 
population. Such an evolution trend is confirmed in a latest publication [25].  

Generally, the nonsymetrical Pm  creates a possibility of the automatic macromodel's 
evolution and improvement. Each macrosystem dimension n is characterized by an 
appropriate optimal code and the universal mechanism of the code formation. This coding life 
program encapsulates all essential information about a given macrosystem, including its 
hierarchical structure’s organization and a possibility of the restoration of the initial system 
macrostructure. The existence of such a universal mechanism of the code transformation 
allows opening the communications between interacting macrosystems. The macrosystem 
that is able to continue its life process by renewing the cycle, has to transfer its coding life 
program into the new generated macrosystems and provide their secured mutual functioning. 

A specific invariant information unit of this program ( )oo oh γ= a =Cp  defines channel 
capacity Cp , which incorporates the initial model's parameters and positive time course, 
carrying the second law.  

An imaginary information’s equivalent is a potential source of these substances.  
At the RS−→RS+ transformation, a positive time can create a start of systemic 

cooperation. The genetic code can reproduce the encoded macrosystem by both decoding the 
final IN's node with a reproduction of a particular IN, and decoding the specific position of 
each node within the IN structure.  

An association of INs with different (n,γ ) can mutually interact as a system, creating the 
negentropy-entropy exchanges between them analogous to a crossover. Their ranged 
frequencies could be wrapped up in each other changing the subsystem invariants and inner 
codes. The corresponding subsets of minimal programs, encoded the system information, can 
communicate (by Cp (γ o )) using a common code language, generated by the unified 

parameters (γ o, no )  according to relations: 



The Evolutionary Dynamics and the Information Law of Evolution 297

 
So = Si(

i
∑ ai (γ i)ni , ( ) ,o o

oS nγ= a Si =a i(γ i )ni  ,  (8.50) 

where Si , a i ,γ i ,ni  are a subsystem’s entropy and invariants, So , , ,o o
o nγa  are the entropy 

and invariants of the unified system. The external subsystems, with distinct invariants and 
multiple interactions can provide more diversity and adaptivity to the communicated system. 

 The ability of a macrosystem to counterbalance the perturbations, preserving both 
stability and adaptivity, characterizes the macrosystemic robustness.  

The macrosystem with a growing dimension has longer discrete intervals, and therefore 
possesses more robustness. The increase of adaptive potential with a growing dimension, 
following from (8.18), has a limit, defined by the condition of non coincidence of the nearest 
eigenvalues αio  with αi+1, o , which leads to changing the macrosystem's dimension.  

Growing the diversity has two options:  
(1)-uncoupling the macrostate connections between triplets and/or doublets, which is 

limited by admissible time deviations of switching controls εm
* ≤ (Δti / ti )m . The limitation 

is εm ≤ aio
* . Within this limitation, the adaptive potential provides a robustness to the control 

code, managing these connections;  
(2)-changing the macromodel's dimension by a decrease of a distance between the nearest 

eigenvaluesαio , αi+1, o , or by augmenting the additional independent eigenvaluesαn +1,o .  

The ratio of the considered thresholds m* = ε m / εm
*  depends on γ , taking the values 

m* (γ = 0.1) = 3 , m* (γ = 0.5) = 4 , m* (γ → 1) = 7 . 
This means that the creation of a new dimension requires from 3 to 7 times more 

deviation from the initial eigenvalues than it’s necessary to change the robustness of the 
adaptive code. Each of these thresholds decreases with growing γ , but εm

*  declines at faster 
rate. The adaptive macromodel, whose adaptive potential is able to compensate the admissible 
εm

* , can preserve both the robustness and the dimension within a limited diversity according 

to the relation εm ≤ mm
*ε m

* , mm
* = m* (γ ≤ 0.8) .  

At γ →  0 the movement approaches the uncertainty zone UR.  
At the allocation of the total macromodel's spectrum within the UR, each DP's moment of 

uncoupling the process correlations and the intervals between them, including the last one, 
turn to zero with a maximal γ →1. 

1.8.6. Requirements for the Model Self–organization. 
The Results of Computer Simulations  

Let us find a minimal dimension no , which is able to generate the both controls for a 
single triplet in an equilibrium ( 0.5γ = ). Because, according to sec.1.6.1, each triplet 
requires ≅ 4 bits information, while producing ≅ 1bit, it is needed a minimum 3 starting 
triplets to generate 3 bits, and the additional 2ao +a≅ 1 bit can be obtained by connecting the 
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third node to the 8-th extremal segment of the spectrum’s dimension. Thus, no =8 is the 
macromodel's minimal dimension that is able to produce a single triplet dimension 3.  

We come to a chain of the self-productive subsystems dimensions 8 and 3. A sequential 
adjoining a new generated triplet to 8-th dimensional subsystem not only successively 
increases the triplet’s chain, but also creates the progressive growth of the cooperated 
dimensions, increasing gradually from the set of the 8-dimensional subsystems by attracting 
the generated them triplets from the different space-time subsystem's location.  
These self-generated system's chains can spread and expand gradually like a spider's web. 

The maximal admissible dimension of the macromodel capable for the cooperative 
attraction is found from nm = γ m / γ o , where parameter γ m  evaluates a maximal threshold 
that limits the macromodel's decay, and parameter γ o  evaluates a minimal interval between 
the starting eigenvalues, where producing a single cooperation is possible.  

It is shown that each * 0.007148oγ γ= ≈  can bring a minimal increment of the 

cooperating dimension Δno =1. The value of γ o  also determines a macromodel's 
sensitiveness to perturbations at possible deviations of γ  at time interval ti  (within the o-

window). At γ m ≈ 2.2, the computation brings the interval's ratio ti / ti+1 =1 , which leads 
to repeating the interval’s sequence and the impossibility of the model for further cooperation. 
Using the above values we get nm ≅ 308 . 

For a macrosystem, operating in an equilibrium (γ =0.5), the minimal admissible relative 
distance between the nearest eigenvalues, belonging to different dimensions, is 
Δαio

t

αio
t 0.025≈  (for ε ≈ 0.975), which corresponds to γ o

e ≈ 0.0244 and determines the 

maximal realistic dimensionno
e ≈ 90 , potentially crated in the equilibrium, with the triplet's 

number mo
e = 46 . 

The adaptive mechanism, operating within the cycle with its nonsymmetrical adaptive 
potential, can deliver a positive negentropy of mutations, selected from external fluctuations. 
This leads toward the decreasing of γ → 0  and a possibility of a growing dimension of 
n =n(γ ) , accompanied by increasing the MC-complexity.  

So, each cycle may deliver a positive feedback, carrying the system's improvement and 
acceleration of the reproductive process. This creates the macromodel's self-organization as a 
tendency of its components, producing the negentropy surplus, toward an automatic 
formation of the joint macrostructures.  

The mutations and control’s actions, changing the model’s structural information, are the 
sources of the negentropy surplus for the self-organization.  

Let us analyze the increment of the model the structural information, generated at 
cooperation.  

A total entropy increment (Sdv ), generated by both the macrodynamics (Sd ) and 
geometry (Sv ), affects changing the information volume in process of spatial movements.  

According to sec.1.7.6-1.7.7, Sv  should be deducted from Sd =miαioti :  

 Sdv =Sd − Sv =miαiot i − lnV * , V*= ( ) /i oV m V , iiotα =a o  , (8.51) 
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where mi is the number of the initial phase flows {αio } joined together at DP; ( )iV m  is the 
volume of the consolidated phase flows, considered comparatively to the volume of a single 
phase flow Vo  at that moment. If Vo  is equal to the initial triplet’s volume (Vo3 ), then this 
triplet’s entropy is Sd =a o , and the increment total entropy of the dimension n has view:  

 Sdv =a o (γ )m− ln V3
* (m,γ ,k); V3

* =Vn+1 /Vo3 ; m=(n− 1)/2,  (8.52) 

where V3
*  is the relative information volume, equals to the ratio of the total volume (Vn ), 

(formed during the n DP’s intervals of the optimal movement) to the information volume 
(Vo3 ), (sec.1.5.4), considered as the initial one in the adaptive self-organization.  

Gradient of the Sdv  increment, produced at changing the system dimensions from a 
current (n ) to some nearest (n '):  

 ' '( ) ( ) ( )dv dv dvgradS n n S n S n− = −   (8.53) 
measures the degree of functional ordering in the considered evolutionary self-organizing 
cooperative process.  

The model asymmetry and self-organization are a motivating power of evolution, whose 
moving evolutionary force is defined by the equality 

 / 0dvgrad S Sγ ∂ ∂γ= − Δ > ,  (8.54) 

where dvSΔ  is an increment of Sdv <0 during each considered evolutionary cycle, associated 
with changing γ , which can bring also a new dimension.  

The computer simulation demonstrates the following peculiarities and limitations of the 
model’s evolution and self-organization.  

There exists a crucial limit of complexity that gives a start to the jump-wise changing of 
the systemic characteristics creating the negentropy production necessary for the self-
organization.  

Renewing of the macromodel lifetime depends on its ability for the self-organization.  
The initiation of the macromodel's self-organization is possible by starting its at a 

minimal dimension in the phase space with n>8.  
A total space entropy, generated by m  triplets, according to (8.51), decreases while the 

triplets' volume V(m) , related to a single phase volume Vo , increases. 
Simulation reveals an increase of Sdv  with the rise of dimensions n and then decrease it, 

at changing the Sdv  sign by approaching n<18, γ <0.55; the Sdv  acquires the most negative 
values at the higher dimensions (n>50).  

In these cases, the number of information states, defining the informational volume 
V(n) , increases faster than the rise of the entropy in the macrodynamic process. So, the 
negentropy, generated at n=50, γ =0.522, is enough to compensate for the total entropy, 
which is necessary to generate a new single triplet with S3d =0.684 (γ =0.522) • 3=2.052.  

At forming each new triplet, a maximal relative volume V* = V (n) / Vo(no )  (related to 
the initial macrounit volume Vo(no) ) is growing ~ 10 times.  

The volume ratio * ( 7) / ( 1)o o oV V n V n= = = ≅ 103  is a necessary condition for 
starting the process of self-organization. A maximal volume, corresponding to the most 
"active" cooperation, is characterized by the negentropy maximum (at γ →10−4 ).  
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Therefore, the simulated self-organization is possible at dimensions n≥50.  
The mutations, even if they are able to change the INcode, can create only a discrete set 

of the model's macrostructures, capable for the consolidations.  
This means that not all of the potential n -dimensional macromodels with an arbitrary 

initial operator's spectrum (which are possible in the cooperative self-organization process) 
could even exist.  

The IN consolidating macrostructure permits the existence of only a selected, limited set 
of the macromodel's, defined by the admissible values of the parameter of multiplication of 
the operator's eigenvalues γ i

α (γ ) , for γ ∈(0,0.8] .  
Results of simulation [21] shows that at 0.8γ →  the model decays in a chaotic 

disintegration. After that, there exists a possibility of a model reproduction in a cyclic 
evolutionary process by transferring the DSS code to the new model [22].  

The admissible (0.0072 0.8)γ ∈ −  and maxn , along with the time irreversibility, lead to 
the following limited ratio of the models’ maximal and minimal volumes [24]: 

11
max min/ 287.5 10V V = × .  

The simulation of the model adaptive self-organizing process shows that at small n, a 
number of neighboring subsystems with a similar MC complexity do exist. With growing n, 
the number of close-complex neighboring subsystems decreases sharply.  

The MC (ch.1.7) defines the degree of the macrosystem organization and the resulting 
entropy increment that is able to overcome a crucial limit of complexity, creating self-
organization. The value of the minimal attracting forces (sec.1.7.6) can be evaluated by the 
local value of the function macrosystemic complexity MCn −1 at the final interval of 

consolidation tn−1. The limit on maximal dimension nm  imposes the restriction on minimal 
value of attracting force enables maintain the cooperation.  

This limit is computed by knowing tn−1= t
n m −1

 and ao (γ ). 
As the MC-complexity increased, the gap between the nearest subsystems’ dynamic and 

geometrical properties, increases radically. The informational "individuality" of the 
subsystem is continually supported, as "further" away (in terms of the MC complexity’s 
values) this subsystem is located from the neighbor subsystems.  

Such distance has a limit, defined by a minimal stable parameter γ , and a maximal n, 
corresponding to a dynamic equilibrium between the system and its environment.  

The condition of self-organization is fulfilled at the optimal ratio of the above systems 
dimension n/n1 =1.14. In particular, at n=60, the dimension n1 =52 corresponds to the 
generation of the subsystem of minimal dimension Δn=no =8, which is capable for starting 
the self-organization.  

The considered minimal volume ratio *oV  determines a threshold or starting the model’s 
process of self-organization.  

The conditions of cooperation, self-organization (at a macrosystem’s formation) and a 
macrosystem's stability (to resist the environmental perturbations and struggle for a survival) 
impose an essential limit on the diversity of all possible macrosystems.  

A macrosystem that possesses a negentropy maximum (at γ = 0 ), is most "active" for 
self-organization. The model's γ = 0  can only be approached, but not reached, because of 
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impossibility of the complete elimination of the uncertainty of any macrosystem.  
Moreover, because each macrostate is wrapped in the uncertainly zone, none of the 

macrostates can be measured with zero error. Both the IN code and its communication 
language contain the intrinsic uncertain errors that constrain the formation of information 
macrostructure and impose the limitations on the coding language correctness.  

A time-space sequence of the considered cycles defines the evolution's trend.  
Finally, the macromodel attributes are: complexity; structural stability; adaptivity; 

robustness, evolution, and self-organization; the joint mechanism of selection, competition, 
cooperation; the limited lifetime of the ordered processes’ existence; the generation of new 
peculiarities in a renewed periodical process (by the end of the cooperation and ordering); the 
possibility of generating macromodels and systemic structures by transferring the model code 
during the evolutionary cycle that creates systemic novelties.  

Because the natural macrostructures are distributed in space, ordering and self-
organization are possible for a natural system in a real-time process without violating the 
second law. Condition (8.54), as an indicator of extensive negentropy's self-reproduction in 
the evolutionary cycle, with the above attributes and the MC complexity of cooperative 
structure, composes an informational definition of Life.  

1.8.7. Evaluation of Some Prognostic Parameters 
of the Evolutionary Dynamics. Example 

At the adaptation, the model intends to approach a minimal 0γ → (independently on the 
dimension). In the theoretical limit, the invariant acquires the value 

0
lim
γ →

a ( )o γ =a ( ) 0.768o
o γ = − , which is unable to generate any new dimension.  

At the nearest * 0.0072γ = , a ( *) 0.762443796o γ = − , the model is capable of 
producing just a single dimension. The corresponding gradient of dynamic potential at 

*( )iS tΔ =a ( *)o γ , acquires the value *( ) exp[igradX t = a ( *)o γ ]= 2.143508122 , whose 
information can generate a single dimension.  

At the above theoretical limit 
0

lim
γ →

a ( )o γ =a ( ) 0.768o
o γ = − , 

( ) exp[o
igradX t = a o

o ]=2.155451038, the generation of new dimensions is blocked.  
During the evolution, the model adapts a decreasing diffusion contribution, limited by  

( ) min 0.46394o Tr dt
τ δτ

τ

τ σ σ
+

= =∫ at a ( )o
o γ , and *( ) 0.466525r τ =  at a ( *)o γ .  

At any 0.8, (0.0072 0.8)γ γ→ ∈ − , *γ γ< , the related potentials and variations 
cannot change in the model dimension. This limits the increment spectrum, the diversity, 
evolution potential, and the average speed of evolution. At a minimal admissible 

* 162.66 10it
−= × (defined by the light wave time interval), we get the maximal eigenvalue 

*
ioα = a * 16( *) / 0.286633 10o itγ = × , which also limits the related maximal entropy 

production within *
it . At the preservation of invariant ao  and a system maximal admissible 



Vladimir S. Lerner 302 

entropy production within each it , the model time intervals acquire the minimal values, 
allowable by the VP during the evolutionary process. The maximal model’s dimension, 
determined by a sequence of all possible INs is limited by 178

max 1.59 10n = × .  

Both the limited *γ and maxn restrict a maximal model’s complexity (ch.1.7).  
The above relations constrain the evolutionary development and model’s improvement. 

The evolution equations and limitations allow the computer simulation and a comprehensive 
prognosis of the evolutionary dynamics.  

Results of simulation [21] shows that at 0.8γ →  the model decays in a chaotic 
disintegration. After that exists a possibility of a model reproduction in a cyclic evolutionary 
process by transferring the DSS code to a new model.  

The admissible (0.0072 0.8)γ ∈ −  and maxn , along with the time irreversibility 
(ch.1.6), lead to the following limited ratio of the models’ maximal and minimal volumes: 

11
max min/ 287.5 10V V = ×  [24].  

1.8.8. Information Mechanism of Assembling the Node's 
Frequencies and Automatic Selection 

The IN models a mechanism of assembling the initial information frequencies into the 
doublets and triples, encoding their combinations by the IN's code. The primary cooperative 
structure is a doublet. Adding a single component to the doublet creates a triplet.  

The assembling mechanism forms a zone of key-lock connections by applying the needle 
controls at DPs (Fig. 8.4) and generates the chaotic attractors by interfering the frequency 
components of the doublet or triplet within this zone. The basin of cooperative chaotic 
attractor is able to "capture" the augmented nodes. A minimal optimal number of these 
attractors is equal to 2, 3, or 7 (as an extra triplet).  

The dynamic movement of each frequency-code toward cooperation is modeled by the 
spiral on the IN's cone (Figs.8.4) in the spatial dynamics.  

Applying the needle control at the DP changes impulsively the control sign needed for 
the doublet's cooperation. In the IN geometry, this is associated with the formation of the 
opposite directional orthogonal cones within the key-lock zone (for the doublet) (Fig.8.4). 
The superimposing frequencies interfere in a common base of the opposite cones, initiating 
the chaotic dynamics, which synchronize both frequencies.  

The chaotic attractor models the IN cooperative node.  
The consolidation dynamics are governed by the optimal control, which copies, 

duplicates, and memorizes the macrostates at the DP. This means, each previous state controls 
each following state, involving in the consolidations and building a self-controlling process. 

According to IMD formalism, an ensemble of the model's equal probable macrostates, 
generated by random initial conditions, is able of transferring to a random ensemble of the 
model's microstates at the DP locality. By applying the optimal control at DP, the IMD model 
selects the most informative and the equal probable microstates as new macrostates, working 
as a discrete filter at each DP locality within a given model's dimension.  

By duplicating and copying, both the regular and needle controls deliver the additional 
macrostates toward the cooperation. They should compete for the subsequent selection and 
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cooperation with the set of the random states, brought by the microlevel.  
The cooperated macrostates, formed by the ensemble of the probable states, carry the 

assembling frequencies, which represent a new model's dimension.  

 

Figure 8.4. An elementary schema of assembling of a pair of frequencies into the encoded spot-node by 
applying both regular (v1,v2) and impulse controls (δ v1, δ v2) with a schematic location of the 
corresponding cone's 1, 2 spirals having the initial frequencies f1,f2; cd-chaotic dynamics, created by 
the superimposing f1,f2 with the chaotic attractor ca. 

The macromodel automatically works as an error correction mechanism at each DP's 
locality, selecting among all interfering frequencies the most probable ones and memorizing 
their resulting chaotic attractor as the node. The selected synchronized frequency maximizes a 
contribution from the competing neighboring frequencies, affecting the cooperation.  

After the cooperation, the model enables the error correction at a new dimension.  
The resulting dynamic node has an appropriate cone geometry (Fig.8.4), which is 

characterized the cone sizes, defining its length, and the direction.  
Within the IN's geometrical structure, the vertex of this cone forms a specific limited spotted 
area that encodes the cone's location.  

The cone's vertex actually "sharpens" the selected common synchronized movement into 
the node spot. The process of filtering and selecting of the synchronized frequencies is 
accompanied not only by the influence of the random microlevel's ensemble. 

The resulting dynamic node has an appropriate cone geometry (Fig.8.4), which is 
characterized the cone sizes, defining its length, and the direction. Within the IN geometrical 
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structure, the vertex of this cone forms a specific limited spotted area that encodes the cone 
location. The cone vertex actually "sharpens" the selected common synchronized movement 
into the node spot.  

The model process of filtering and selecting of the synchronized frequencies is 
accompanied not only by the influence of the random microlevel's ensemble. At each DP, the 
environmental influence brings the external random perturbations to the macrolevel states.  

Applying both the regular and needle controls contributes to multiplying the competing 
copies. Each DP opens a gate where the random microlevel and external perturbations may 
affect the macrolevel, bringing together the six ensembles: two from each macrostates, 
delivered for cooperation, two copies of each these ensembles, carried by the control's 
duplication, the ensemble of microstates, and an ensemble of the external perturbations.  

This essentially multiplies the number of possible frequencies for subsequent 
cooperation, creating a geometrical ensemble of the opposite cones and the spirals on them 
(Fig.8.4), which open a possibility of forming different combinations of assembling 
frequencies and multiplying the number of the node spots.  

But not all possibilities could be accomplished, because of existing the limited 
differences on these frequencies, defined as the model admissible frequency’s cooperative 
gate.  
 

 

Figure 8.5. a,b).The schematics of the communication process between the assembling nodes: 1-the 
cone' spirals, 2-the sequence of the communicating cone's cross sections F1(ti) F2 (ti)  with the pieces 
of cone's spirals 3 on them. 

The selected competing frequencies should be able to overcome an admissible threshold, 
as the gate border. The frequencies that unable overcoming the gate make the potential 
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competing random variations. If the cooperation is not accompanied by the presence of the 
microlevel ensemble (when only four of the above macro-ensembles are interfering), the 
assembling frequencies would be renovated only under the controls actions.  

The influence of the microlevels’ states would add new properties to this a primary 
cooperative ensemble, increasing the number of different states for subsequent cooperation. 
The error correction mechanism will select a certain renovated maximal probable ensemble 
among the five of considered ensembles. The survived frequencies, which have passed 
through the threshold gate, or theirs interfering combinations can bring new encoded 
combinations, multiplying the number of assembling frequencies.  

The influence of external perturbations on the cooperation can bring, first, the additional 
changes in the joint assembling macrostates, and second, increases the number of the 
multiplying nodes, satisfying both the admissible threshold and the error filtering.  

This can generate the additional node spots, which are not predictable by the initial input. 
Applying both the regular and needle controls contributes to the reproduction of the 

competing copies that increase the effectiveness of the selective process.  
This finally creates a local evolution process at each DP's locality, which brings the 

multiple variations and renovations to the states, competing for cooperation, and selects such 
of them-successful that survive under both the limited threshold gate and the error filtering.  

The evolution generates a creativity in a reflection the external information, which is 
automatically memorized in the multiple renovated node' spot.  

Copying in digital code, which is the base of the IN coding language, significantly 
contributes to the selection's effectiveness, comparing with possible analogous processes.  

The IN triplet's digital code is carried by the macromodel's double spiral chain (Fig.6.4).  
The sequentially interaction of the IN information frequencies binds the initial code's 

symbols into the enclosed coding string in such a way that each following node includes the 
inner code of each previous node. The final IN's node binds all initial encoded symbols, 
accumulating a total network's nonreduntant information.  

This means, knowing the final node opens a possibility for disclosing a total chain of 
initial symbols.  

The impulse δ -needle control (Fig.8.5a) connects the transmitter's and receptor's nodes 
and initiates the signal propagation, transmitted between them. This is associated with adding 
a macrostate (carried by the control) to transmitting node at the moment of transmission, and 
removing it after the transmission occurs. On the receptor's node, the propagation's and 
control's action initiates adding a macrostate to the current macrostate, which indicates the 
occurrence of the transmission, and releasing the macrostate after the propagation occurs.  

A piece of specific spiral on the cone surface represents a signal carrier at each fixed 
moment. Theδ -control serves only as a messenger, which does not carry these pieces, but 
rather induces the formation of the corresponding macrostate-piece by the receptor.  

During the time of communication, a spiral form of a signal, initiated by the transmitter, 
is reproduced by the receptor. This signal carries the IN inner code of the primary message, 
and each particular spiral's piece on the cone surface's cross section also carries the current 
code's symbol. Each code word corresponds to some IN's frequency.  

The spiral curve (as the macroprocess' space representation), transfers this transmitter's 
frequency to the receptor's frequency. The δ -control process' space representation, which is 
modeled by the considered conjugated nonlinear oscillations (Fig.8.5a), connects these 
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frequencies, but does not carry the spiral pieces. Specifically, the fist part of the δ -control 
impulse adds the − 2 x(τ )  to a current macrostate + x(τ )  of transmitting node forming a 
virtual macrostate − x(τ + o / 2) ; the second part brings +2 x(τ + o)  to the− x(τ + o / 2)  
that transfers new macrostate x(τ + o)  to the receptor's node.  

This means applying a virtual regular the control − x(τ ) − x(τ + o) =− 2 x(τ )  between 
the nodes. If both macrostates of the communicated nodes have opposite signs (± x(τ ) , 
∓ x(τ + o) ) at the moment of cooperation (τ ,τ + o ), then the actual regular 
control− 2 x(τ ) ≅ −x(τ ) − x(τ + o)  performs the same function. On Figs.8.5a,b are shown 
both cases. For the nodes with the macrostates of the equal signs (Fig.8.5a), the controls are 
both− 2 x(τ )  at (τ ,τ + o / 2)  and 2 x(τ + o)  at (τ + o / 2, τ + o) , or the corresponding 
−v(x(τ )) + v(−x(τ )) and v(−x(τ + o)) − v(x(τ + o)) , applied to the cones I-IIa. For the 
nodes with the macrostates of the opposite signs (Fig.8.5b), the control − 2 x(τ )  is applied at 
the moment (τ ,τ + o / 2)  to the corresponding cones I and IIb.  

The considered nonlinear oscillations v(l, t) of opposite directions, connecting the nodes 
at the singular point (chaotic attractor ca), are generated by a an actual nonlinear form of the 
control function v(x)  (which approximates the discrete controls) Figs.8.5a,b.  

The control also manages a propagation channel, connecting the nodes geometry, which 
memorizes the transmitting macrostate by the key-lock connection after the cooperation.  

Synchronization of each of cooperating nodes stimulates a sequential synchronous 
resonance's excitation of a total network, accompanied by a wave, propagating with some 
velocity. A possibility of self-exciting synchronization exists by overcoming a threshold of 
mutual re-excitation, by analogy with an ensemble of nonlinear oscillators.  

A sequence of the self-assembling INs can be involved in this self-organizing process.  
This means, that a whole assembling synchronized process, accompanied by the IN 

node's cooperation, growing their dimensions, generating the controls, and the different IN's 
connections, can be governed by the selective adaptive mechanism of considered evolutionary 
cycle.  

The environment may affect any of these key-lock connections at every of the o-moments 
of time. The ensembles can grow under both the direct competition and a better surviving.  

An appearance of a memorized state depends upon the threshold of the resonance 
excitation for the adjacent nodes. In the IN each node is evaluated by both particular quantity 
of information and the path to this node by the information functional measure. This brings an 
information measure of a selective novelty for each node and their assemblies.  

The corresponding attractors, capturing the informational distinctive patterns, are 
nonredundant.  

A selective informational real-time search, competition, cognition, and recognition may 
be very effective. 

An automatic initiation of common information measure (during the evolution) occurs by 
fixing the intervals ti  between the resonances and the coherent frequencies ω i , which define 

the information invariant a(γ ) ~ ti ω i  as an elementary quantity information. Selecting two 

or three intervals with equal a(γ )  and decreasing ω i+1  will not only preserve their common 

information measure, but also (with increasing 1it + and a decreases of the contribution from 
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the diffusion) bring to the corresponding macrostate, having a higher adaptive potential and a 
capacity for cooperation. 

A sequential memorizing them as a single node automatically (at each fixed ti  and 
synchronized frequencies ω i ) produces the IN code of evolutionary development.  

The selective process is governed by the controls, self-generated in the evolution.  
The asymmetry of the adaptive potential is accompanied by increasing the macrosystemic 

stability and growing the macrocomplexity.  
The automatic selection works among the resonance's (assembling) nodes competing for 

a limited area space. The preference would be automatically given to such ones, which are 
able to occupy this area. All others will be excluded.  

A primary DSS four letter's code defines γ  that can predict future a(γ ) with τ j ,ω j . 
But obtaining the very primary DSS code and starting the evolution process require applying 
a non random initial control (chs.1.1-1.3). 

The evolutionary mechanism of competition and selection automatically carries the 
common information measure.  

The common information scale leads to a common evaluation of the different node's 
(logical) combinations for their comparison and choosing of a less redundant.  

This brings a growth of a novelty for the selected nodes. 

1.8.9. The Functional Schema of the Evolutionary Informational 
Mechanisms. A Summary 

The considered laws and regularities determine the unified functional informational 
mechanisms of evolution presented on Fig. 8.6, which include:  

-the system macrodynamics MS, defined by the model operator )),(,( vxtA τ  that is 
governed by the inherited double spiral structure DSSo ; 

-the control replication mechanism RE1 that transforms the DSSo  code into the initial 
controls vo  and delivers vo  as the MS input programmable controls; 

-the IN, formed in the process of the macrostates' cooperation and the macromodel 
renovation, generating a renovated DSS1; 

-the mechanism of mutations MT, delivering external perturbations, which act on the 
total system;  

-the adaptative and the self-organizing mechanisms AS, stimulated by the MT, which 
generate (G) the fluctuations ξ ;  

-the replication control mechanism RE2, which selects the macrostates )(τx  at DP 
't τ= and forms the current control )(τv =− 2 )(τx by the duplication of )(τx ,  

-the coupling of the two macrostates CP that carry both parents’ DSS1 and DSS2 
invariants;  

-the generation of stochastic dissipative fluctuations SDF after coupling, while forming 
new macrosystemic invariants (γ o, no )  that define a new DSSo

o , initiating the new MS and 
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IN, which are renovating under the MT and the AS, in the process of functioning (a previous 
inherited DSS2 minimizes a possible SDF set, generating a new DSSo

o ); 
-repeating the whole cycle after coupling and transferring the inherited invariants to a 

new generated macrosystem.  
The IMD software packet (part 2) has simulated the main mechanisms of the 

evolutionary cycle.  
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Figure 8.6. The functional schema of the evolutionary informational mechanisms. 

A Summary  

The evolutionary dynamics, created by the multi-dimensional eigenvalues’ spectrum, 
form a chain of interacting extremal segments, which are assembled in an ordered 
organization structure of the information hierarchical network (IN).  

The space distributed IN’s structural robustness is preserved by the feedback actions of 
the inner controls, which provide a local stability at the admissible variations.  

This control supports a limited ( )e rP Pγ =  that determines the potential of robustness.  
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The requirements of preserving the evolutionary hierarchy impose the restrictions on the 
maximal potential of evolution eP  and limit the variations, acceptable by the model.  

The model’s adaptive potential aP ≤ eP , which adapts the variations, not compromising 
the IN hierarchy, restricts the maximal increment of dimension, contributed to the adaptation.  

The punched evolution’s nonequilibrium accumulates the changes affecting the hierarchy 
of the selections and adaptations, with following a local equilibrium at each hierarchical level.  

The adaptive model’s function is implemented by the adaptive feedback-control, acting 
within the aP  capabilities.  

The self-control function is determined by the conditions of a proper coordination for a 
chain of superimposing processes, where each preceding process adopts the acceptable 
variations for each following process and controls it.  

The optimal controls are synthesized, as an inner feedback, by the duplication of and 
copying the current macrostates at the beginning of each segment, which are memorized and 
applied to the segment.  

The adaptive potential’s asymmetry contributes the model’s evolutionary improvement.  
A sequence of the sequentially enclosed IN’s nodes, represented by a discrete control 

logic, creates the IN code as a virtual communication language and an algorithm of minimal 
program to design the IN.  

The optimal IN' code has a double spiral triplet structure (DSS), shaped at the localities 
of the sequential connected cones' spirals, which form the time-space path-line of transferring 
the IN's information through the triplet's hierarchy.  

The applied control adds a forth letter to the initial minimal three triplet's code letters, 
which provides the model's error correction mechanism to the IN and its DSS code.  

It also provides discrete filtering of the randomness, acting at the DP-window.  
The control’s potential of robustness might generate a DSS’s evolutionary predecessor.  
The IN’s geometrical border forms the external surface where the macromodel is open 

for the outside interactions. At this surface, the interacting states compete for delivering a 
maximum of the dynamic potential’s gradient.  

The selected states are copied and memorized by the model control, contributed to the 
code. 

Information attraction (sec.1.7.6) plays a crucial role in biological mutations and mating, 
which become the selective evolutionary processes (instead of a poor random) by a 
discriminative matching to some complementary information curvatures (characterized by a 
similar quality and quantity of information).  

Any naturally made curvature conceals genetic information; which is a source of the 
curvature formation.  

The informational DNA code; produced by Nature during a long term evolution; is a 
general and a native systems language.  

The code, as a source of the information curvature (sec.1.7.6), can be considered as a 
predecessor of information geometry and evolution dynamics. 

The evolution dynamics are accompanied by the following main features: a tendency of 
decreasing γ  that diminishes the influence of randomness on the macrolevel dynamics; a 
decrease of the contribution from diffusion with the increase of the dynamic gradient that 
intensifies a growing impact of the each following dynamics on the evolutionary 
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development; an average evolutionary information speed (for a population) is declined, 
weakened during the time of evolution; a nonsymmetrical adaptive potential (at decreasingγ ) 
leads to both rising the system adaptive capability and increasing an impact of a dynamic 
prehistory on current changes.  

In the evolution dynamics, adaptation, self-organization, ordering, and copying arise 
naturally if the IPF VP is fulfilled. 

The evolutionary model possesses two scales of time: a reversible life-time equals to a 
summary of the time intervals on the extremals segments  

                                                     
1

i n
r

e i
i

T t
=

=

= ∑ ,  

and the irreversible life-time counted by a summary of the irreversible time elementary 
intervals between the segments equal to  

                                                2( 1)
a

i
i i

o

St t
δ

δ Δ
= − ,  

where iSδΔ is an elementary information contribution between the segments generated by a 
random process.  

If each information contribution from a random process between the segments iSδΔ is 

compensated by the needle control action iSδΔ =a 2
o , then the irreversible time does not exist, 

means that the macroprocess’s dynamics cover the random contributions.  
At any iSδΔ >a 2

o  the stochastics affect dynamics bringing the macroprocess’ 
irreversibility. 

The above results describe the regularities of evolutionary hierarchy, stability, potential 
adaptation, adaptive self-controls and a self-organization; coping, genetic code, and the 
error correction, which follow from the VP as a single form of mathematical law that defines 
the above regularities and is able to prognosis the evolutionary dynamics and its specific 
components: potential, diversity, speed, complexity. 

The particular biological regularities, generalized by the information law, are confirmed 
in numerous experimental data, described in many specific publications [1-13, 15-17, others], 
supporting Darwinian evolutionary theory. 

 
 
 



 
 
 
 
 
 

Chapter 1.9 
 
 
 

THE PHYSICAL ANALOGIES RELATED 
TO THE INFORMATION PATH FUNCTIONAL 

 
 

1.9.1. The Connection between the Information Path Functional 
(IPF) and the Kolmogorov’s (K) Entropy of a Dynamic 
System, and the Relations to Physics 

The K-entropy is an entropy per unit of time, or the entropy production rate, measured by 
a sum of the Lyapunov characteristic exponent (LCE) [1-5]. (Please see the references to 
ch.1.9). 

LCE describes a separation between the process trajectories, created by the process 
dynamic peculiarities.  

In the IMD model, the separated extremal segments are resulted from the piece-wise 
dynamic approximation of a random process’ entropy functional.  

The partition (and the following merge) is initiated by the model controls actions 
(fulfilling the VP), which also carry out the transitions between the process dimensions, 
physically associated with the phase transformations, chaotic movement and related physical 
phenomena [6-9].  

Let us find the LCE for the IMD model.  
At the DP, each of these controls switches the process extremal segment from a local 
movement exp( )it io ix x tλ= − , satisfying a local process’ stability, to a local movement  

 
 exp( ), ( , )i i o ix x t t oτ τ τλ τ τ= ∈ − , (9.1) 

corresponding to a local process’ instability, which brings a separation between these two 
process’ movements. Here iox is an initial condition at a beginning of the i-segment; with the 

macroprocess’ eigenvalue iλ , i ox τ is a starting state at the moment t oτ= − (near the 

segment end), iτλ  is the eigenvalue at oτ −  approaching τ  (which depends on 
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( )gradX oτ − (ch.1.8.1) that potentially initiates these dynamics, approximating the between 
segment’s stochastics at t τ→ ). 

The LCE is measured by a mean rate of exponential divergence (or convergence) of two 
neighboring trajectories: one of them describes an initial nondisturbed movement itx , another 

one is the disturbed movement ix τ (for this model at DP). A local LCE: 
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expresses the exponential divergence ix τ  from the movement itx  along the extremal segment 

( ix τ  starts at the moment t= oτ −  by the end of the movement |it t o i ox xτ τ= − → , which 

precedes the beginning of the disturbed movement ix τ ).  

At iτλ >0, the process is instable and chaotic: the nearby points, no matter how they 
close, will diverge to any arbitrary separation. These points are instable.  

At iτλ <0, the process exhibits asymptotic stability in a dissipative or a non-conservative 

system. The LCE zero at iτλ =0 indicates that the system is in a steady state.  
A physical system with this exponent is a conservative. Such a system exhibits Lyapunov 

stability. Although this system is deterministic, there is no process’ order [8,9] in this case.  
Exponent (9.1) approximates the dynamic divergence of the extremal segments at a 

window between the segments; and the LCE (9.1a) characterizes the information dynamic 
peculiarities arising at the DP localities; some of them have been studied in chs.1.4-1.8. (See 
also the LCE example in ch.2.2.1, (2.2.23a)).  

In particular, under the optimal control, applied to iτλ  at the nearest moment δτ  
following τ , the eigenvalue changes according to equations 

                       1( ) exp( )[2 exp( )]i i i i ivτ τ τ τ τλ λ λ δτ λ δτ −= − − ,  

which at 0δτ →  reaches a limit: 
0

lim i iτ τδτ
λ λ

→
= − .  

Such a discrete (jump-wise) LCE renovation, is a phenomenon of a controllable process, 
specifically at the process’ coupling, and could serve as a LCE indicator of this phenomenon.  

The K entropy is the nonlinear dynamics counterpart of physical the Boltzmann-Gibbs 
entropy [10], which is directly connected to the Shannon information entropy.  

In the IMD model, the DPs are the crucial points of changes in a dynamical evolution 
with the fixed entropy path functional’s production rates (PFR), given by the sum of positive 
LCE.  

According to relation (secs.1.3.5,1.8.1), the PFR, being equal to the sum of the operator 
positive eigenvalues:  
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coincides with the K entropy at these crucial points.  

http://monet.unibas.ch/~elmer/pendulum/bterm.htm#orbit
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This additivity of the discrete linear rate (at DPs) for both the K entropy and PFR 
corresponds to a thermodynamic extensivity of the Boltzmann-Gibbs entropy [11], which is 
important in a connection between statistical mechanics and chaotic dynamics.  

The extensivity of entropy is an essential requirement, with which thermodynamics can 
be constructed [11-13]. This may be the case even if a system energy is nonextensive [12].  

A sufficient important is the linear growth of the K entropy and the thermodynamic 
extensivity of the Boltzmann-Gibbs entropy only in the long-time limit and in the 
thermodynamic limit, respectively.  

As it’s known [11], a physical quantity to be a temporally extensive should satisfy its 
linear grow in time. Thus, for example, the K entropy possesses the temporal extensivity for 
chaotic dynamical systems.  

The IMD model holds the open system’s qualities such as a nonlinearity and 
irreversibility (at the DP), and the stationarity and reversibility within each extremal segment, 
corresponding to a system’s conservativity.  

These phenomena allow applying the IMD model for a wide class of real systems, which 
can exhibit the above alternative behaviors at different stages of dynamic evolution [14, 15].  

Most publications on this subject are based on the models of the linear phenomenological 
irreversible thermodynamics, using fluctuations from a stationary state, or a quasi equilibrium 
process [16-19].  

Foundation of nonlinear irreversible thermodynamics in [20] is based on the n-
dimensional correlators and their connections to the measured physical macrovariables. 

We consider information approach with the macroprocess’ irreversibility arising from a 
random movement at the entropy functional’s punched localities; while the relations for 
preservation energy might not be fulfilled. 

The main problem consists of math difficulties of applying a macro evolution approach 
to a random process and random entropy.  

Some publications use an informational approach to a process of self-organization, 
applying a control’s parameter for the evaluation of irreversibility in the state’s transition 
[21].  

The equations for a controllable irreversible information macroprocess, applying the VP 
for the information path functional (defined on the solution of a controllable stochastic 
equation), brings the irreversible kinetic macroequation with its connection to diffusion.  

The irreversibility is a consequence of the jump-wise changing of the equation operator 
with transferring kinetics into diffusion and vice versa along with the renovating operator on a 
new extremal. 

Applying the Shannon entropy measure to n-dimensional random process with the 
statistical dependent events leads to the unsolved problem of the long terms n-dimensional 
correlations, while these events are a naturally connected by the entropy path functional.  

The lack of additivity—even for the statistically independent events—leads to the 
problem related to the lack of thermodynamic extensivity [13].  

Considered in [22,23] a degree-α and α-norm entropy measures satisfy a “pseudo-
additive” relation, associated with a nonextensive thermodynamics, rather than the additive 
relation, provided by the Shannon and Renyi [24] entropies.  
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The evolutionary path functional entropy is defined by a simple sum of the local 
entropies at each DP, according to (1.3.150), (1.3.156a), sec.1.3.5, and (9.1b), which is 
applied to an extensive dynamic system.  

But the extensivity is locally violated at the random window between the extremal 
segments.  

The IN evolutionary PFR forms a ranged sum, satisfying the VP.  
The maximal and minimal PFR values characterize the maximal and minimal speeds of 

evolutionary process according to ch.1.8. A current PFR is defined by a sequential enclosure 
each of a previous model’s eigenvalue to the following one, which are connected by the IN 
structure. This allows getting the cooperative complexity for all process (ch.1.7), as well as 
the PFR measure at each stage of evolution.  

The IN final node’s eigenvalue characterizes both the system’s terminal evolutionary 
speed and the system cooperative complexity.  

Applying the IPF leads to revealing complex regularities and uncertainties of a random 
process by building a system of the INs with the information invariants and encoding a chain 
of the events, covered by the random process.  

IPF measures the process uncertainty by the entropy functional and allows minimizing 
uncertainty by the optimal control actions.  

The IPF Hamiltonian, which determines both the instant entropy production and the 
macromodel operator, also defines the LCE, representing Lyapunov’s function of the process 
stability. That connects the stability to the process uncertainty. 

The process optimization by the controls actions changes the LCE sign at the DP 
allowing the stability of cooperative process concurrently with the minimization of its 
uncertainty.  

The above results connect the model’s Uncertainty, Regularity, and Stability.  

1.9.2. An IPF Analogy with the Feynman Path Functional 
in Quantum Mechanics and Informational Form of 
Schrödinger’s Equation 

Feynman's path functional introduces the integral of a wave probability function (ϕ ) in 
Quantum Mechanics (QM): 

 

  
( )

( )

( ( ), ( )) ( ),
x T

x s

P x s x T Dx tϕ= ∫ exp( / )jSϕ = ħ ,  (9.2) 

where S  is a function of action, and Dx = dxi
i =1

n→ ∞

∏  is is a differential along a given "particle" 

trajectory ( )tx x t= , which measures a total probability P (x(s), x(T ))  for the trajectory to 

pass through a sequence of the gates, defined by discrete values of Δxi = dxi

Δ ti

∫ (ti ) ; ħ is 

Plank’s constant. 
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Formula (1.1.14), ch.1.2 is an analog of (9.2) at ( ) ~ ( ), ~ exp{ }t
sDx t P dω ϕ ϕ− .  

These relations become apparent when the path functional (9.2) is written through the 
mathematical expectation taken along the trajectory (according to [27]) with some measure 
P s,x (dx) : 

 

 P (x(s), x(T ))= ][ϕxE = ∫
)(

)(
, )(

Tx

sx
xs dxPϕ ,  (9.3) 

even though the trajectories, along which the Feynman path functional was defined, are 
nonrandom [26, 27]. Actually, such expressions for both path functional and the 
corresponding Wiener integral lead to Schrödinger’s equation [27] in QM. 

Let us consider a transitional probability ( , , , )tP P s x t B= (ch.1.1) of a diffusion process 

( , , )t t tx x t x ξ=  and find the probability function at a small interval tΔ  following t : 
 

 ( , ) ( , , , )tu s x P s x t BΔ= ,  (9.4) 

which is connected to the process’ additive functional ( )t
sϕ ω by relation

   

 
,

( )

[ exp{ ( )}] ( , )t
s x s

x t B

E u s xϕ ω
∈

− =∫ .  (9.5)
  

Then the above function ( , )u u s x=  satisfies the Kolmogorov differential equation [28] 
 

 

2

2( , ) ( , ) ( , )u u ua s x b s x V s x u
s x x

∂ ∂ ∂
− = + −

∂ ∂ ∂ ,  (9.6) 
where function ( , )V s x we specify below. 

Using the representation of a function ( , , )ou s x λ  (with a paramerter oλ−∞ < < ∞ ) via 

a characteristic function of a random real functional Ψ , we have : 
 

 
,( , , ) exp[ ], ( , ( ))o o

s x
s

u s x E j t x t dt
τ

λ λ ψ= Ψ Ψ = ∫ ,  (9.6a) 

where τ  is a moment of exit from some interval tΔ , or it might be a constant Tτ =  [28]. 

In this case, Ψ corresponds to the additive functional T
sϕ (ch.1.1):  

 

1 11/ 2 ( , ) (2 ( , )) ( , ) ( ( , )) ( , ) ( )
T T

T u T u u
s t t t t t

s s

a t x b t x a t x dt t x a t x d tϕ σ ξ− −= +∫ ∫ .  (9.7) 

Such a function ( , , )ou s x λ  at a fixed oλ , for which holds true (9.6a), satisfies 
differential equation (9.6) with a real or complex non random function  
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 ( , ) ( , )oV s x j s xλ ψ= − .  (9.7a) 

The equation for the function ( , , ) ( , )u s x h u s x=  with (9.7a) and 1o hλ −=  (where 

h can be the uncertain constant oh  in ch.1.6, or be the Plank constant ħ) acquires the form  
 

 

2
1

2( , ) ( , ) ( , )uu u ua s x b s x jh s x u
s x x

ψ−∂ ∂ ∂
− = + +

∂ ∂ ∂
,  (9.8) 

 
where function  

 

 ( , )s xψ 11/ 2 ( , ) (2 ( , )) ( , )u T ua s x b s x a s x−=   (9.8a) 
 
is connected to the entropy functional (ch.1.1): 

 

 

1
,1 / 2 [ ( , ) (2 ( , )) ( , ) ]

T
u T u

s x
s

S E a s x b s x a s x dt−= ∫ . (9.9) 

Using the information path functional [ ]tS S x= , defined on its extremals ( )tx x t= , and 
applying the sec.1.3.5 results, we get the information Hamiltonian 

 
  11/ 2( ) (2 )TH x b x−= ,.

ux a= ,  (9.10) 
which satisfies (9.8a) in the form  

 

 ( , ) ( , ).s x H s xψ =    (9.10a) 

For this Hamiltonian the fulfillment of the variation principle: 
S H
t

∂
− =

∂
leads to equation 

 

 

11/ 2( ) (2 )u T uS a b a
t

−∂
− =

∂
.  (9.10b) 

 
Following ch.1.3, we consider a distribution of functional (9.9) on ( , )t x Q∈  as a function of 

current variables ( , )S S t x= , which satisfies the Kolmogorov (K) equation, applied to the 
math expectation of functional (9.9) in the form  
 

 

2
1

2( ) 1/ 2( ) (2 )u T u T uS S Sa b a b a
t x x

−∂ ∂ ∂
− = + +

∂ ∂ ∂
 .  (9.11) 

Equations (9.10a), (9.11) can be satisfied at each point ( , )t x Q∈  of the functional field, 

except a certain set oQ Q⊂ , , [0, ], { }, 1,...,o n o o
kQ R k mτ τ τ= × Δ Δ = = =  

where hold true the relations  
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2

2( ) 0, ( , ), ( , ).u T u uS Sa b a a t x b b t x
x x

∂ ∂
+ = = =

∂ ∂
 (9.12) 

The differential constraint (9.12) corresponds to operator’s equation  
 

 

2

2[ ] 0, uLS x L a b
x xτ

∂ ∂
= = +

∂ ∂
, ( )x xτ τ=  , ( , ) ox Qτ ∈ ,  (9.13) 

which can be applied to (9.8) in the operator form 
 

                     
2

2[ ] 0, .uLu x L a b
x xτ

∂ ∂
= = +

∂ ∂
                                               (9.13a) 

This constraint, imposed on equation (9.8), brings the dynamic solutions for function 
( , )u t x , while (9.13) allows fulfilling the variation conditions for the IPF and selecting the 

extremal trajectories ( )tx x t= .  
The constraint (9.13), establishing a connection between the microlevel’s diffusion and 

macrolevel’s dynamics, is relevant only at some “punched” points of the space 
o n oQ R= × Δ , while macroequations (9.10), (9.10a) acts along each extremal, except the 

related discrete points (DP) (1.3.153) of states ( )x xτ τ= { ( )}kx τ= , for which the 
information path functional (IPF) coincides with the entropy functional. 

The solutions of (9.13) allow selecting the discrete states ( ) { ( )}, 1,...,kx x k mτ τ= = , 

considered to be the boundary points [28] of a diffusion process: lim ( ) ( )
t

x t x
τ

τ
→

= , which (at 

the limitation in sec.1.3.5), bring a quantum character of generation for both the macrostates 
and the macrodynamic’s information at the VP fulfillment.  

Actually, the macrostate ( )x τ , approaching a random ( )x τ , is not a dynamic state, and 
the momentsτ  can be determined with some probability [28]. 

At these conditions, applying a current time course s t→  to the equations (9.8), (9.13a), 
we come to their dynamic form as an information analogy of Schrödinger equation  

 

 1 ,u jh Hu
t

−∂
− =

∂
  (9.14) 

where the IPF’s ( , )S S t x= , defined on the extremals, performs a role of a function of 

action along the trajectory ( , )tx t x of ( )tu u x= . 

The solutions of (9.14) ( , )u u t x= at some given Hamiltonian ( , , )H H x x t= are not 
distinguished from the solutions of a traditional Schrödinger equation [26,27,29].  

Each particular solution of this equation determines the complex amplitude of a wave 
function; the corresponding probability is equal to the square of absolute value of the wave 
function.  

 At the condition  
 

 
2 *| | | ( , ) ( , ) |u u t x u t x= ,  (9.14a) 



Vladimir S. Lerner 318 

the wave functions interfere, became entangled.  
Imposing the constraint (9.13) on classical dynamics binds the equations for conjugate 

variable in n-dimensional system (ch.1.3,3.3.56c).  

Constraint (9.13a) for function ( )tu u x= on the extremals, at the punched localities 

( )t tx x τ= , acquires the form  

                                                   

2( ) | |
( ) ( ) ( )

T

t t t

u u u
x x xτ τ τ
∂ ∂ ∂

=
∂ ∂ ∂

,                                 (9.14b) 

which for the conjugated  

                                                           ( )t

u
x τ
∂

∂
and *( )

( )t

u
x τ
∂

∂  
leads to  

                                                           

2 *| | ( )
( ) ( ) ( )t t t

u u u
x x xτ τ τ
∂ ∂ ∂

=
∂ ∂ ∂

.                      (9.14c) 

Conditions (9.14b,c), following from the IPF dynamic constraint, are written via the 

probability densities at the ( )tx τ  localities for the process trajectories, which specify (9.14a) 

at these localities.  

Each complex solution of (9.14), satisfying (9.14b,c), allows selecting a specific locality 

with particular bound state, where the dynamic solutions for ( , )u t x  interfere, becoming 

entangled.  

In addition to this, for Hamiltonian (9.10), the solutions of (9.13) allow selecting the 
quantum information states ( )xτ , which provides the instants of the solution’s 

( )u u xτ= interference. According to IMD, the related extremal segments join together at 
these instants forming the cooperative (bound) states. Example 9.1 illustrates it.  

For the considered multi-dimensional process, Hamiltonian H  is defined for each 
extremal segment of this process, while for a whole process’ trajectory should be applied an 

averaged Hamiltonian ˆ [ ]H E H= .  
The corresponding function ˆ ˆ( , )u u t x=  satisfies the equation 
 

  1 ˆ ,u jh Hu
t

−∂
− =

∂
  (9.15) 

where this Hamiltonian can be expressed via the model’s eigenfunctions according to 
Prop.1.3.5.6, (1.3.162),(1.3.162a), while the set of quantum macrostates is determined by the 
solutions of (9.13), considered for each multi-dimensional extremal.  
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For such an ensemble of extremal trajectories, conditions (9.14b,c) determine a set of the 
punched localities with corresponding ensemble of bound states. 

Applying the equations of extremals (1.3.154) with matrix (1.3.171) we get 
ˆ [ ]vH Tr A= , where at each kτ , 1...,k m=  the matrix’ eigenvalues 1( ) |v v n

iA λ ==  take the 
real values and its imaginary components turn to zeros.  

The result, as it is shown in ch.1.3, follows from the constrain equation (9.13). 
This means that for the complex conjugated 1( , )v v

i iλ λ + with the solutions of (9.15): 

1ˆˆ ˆ( ) ( )exp[ ( )]v
i io iu t u t jh dtλ−= − ∫ , 1

1 , 1
ˆˆ ˆ( ) ( ) exp[ ( ( ) )]v

i i o iu t u t jh t dtλ−
+ += − ∫   (9.15a) 

at the moment kτ  hold true the relations  
 

 1( ) ( )v v
i k i kλ τ λ τ+= , Im ( ) 0

k

v
i tt τλ = = .  (9.15b) 

Specifically for 1,v v v v v v
i i i i i ij jλ α β λ α β+= + = −  , according to (9.15a), we have  

 1ˆˆ ˆ( ) ( )exp[ ( ( ) ( )) )],v v
i io i iu t u t h j t t dtα β−= − −∫  

 1
1 ,

ˆˆ ˆ( ) ( )exp[ ( ( ) ( ) )],v v
i i o i iu t u t h j t t dtα β−
+ = − +∫  

 
and following (9.14a) we get these solution’s amplitude  

2 * 2 1 2
1

ˆˆ ˆ ˆ ˆ ˆ| | | ( ) ( ) | ( ) exp[ ( ( ) ( ) ( ( ) ( )) ] ( ) ,v v v v
i i i io i i i i iou u t u t u t h j t t j t t dt u tα β α β−

+= = − − + − + =∫   

  (9.15c)  
where the moment of the solution’s interference is found from (9.17a) in the form 

( ) 0v
i kβ τ = . These solutions also satisfy (9.14c), which is confirmed by the substitutions. 

 
Example 9.1. 

Let us have v
io iojλ β= , 1,

v
i o iojλ β+ = −  at a fixed 0ioβ ≠ .  

Then according to Example 1.3.1 we get  
 

v v v
i i ijλ α β= + , 1

v v v
i i ijλ α β+ = −  at  

12 sin( )[5 4cos( )]v
i io io iot tα β β β −= − − , 1[2cos( ) 1][5 4cos( )]v

i io iot tβ β β −= − − .  
 
At ( ) 0v

i kβ τ = , 2cos( ) 1 0io kβ τ − = , we have / 6io kβ τ π= , / 6k ioτ π β= , and 
1/2( ) (3)v

i k ioα τ β−= − .  
At this moment, the solutions:  
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1
,

ˆˆ ˆ( ) ( ) exp[ ( ( ) )],
k

o

v
i k i o i

t

u u t h j t dt
τ

τ λ−= − ∫ 1
1 , 1

ˆˆ ˆ( ) ( ) exp[ ( ( ) )]
k

o

v
i k i o i

t

u u t h j t dt
τ

τ λ−
+ += − ∫ , 

with 1 1( ) ( ) ( ), Im ( ) Im ( ) 0v v v v v
i k i k i k i k i kλ τ λ τ α τ λ τ λ τ+ += = = =  coincide, and the solution’s 

interference satisfying (9.14a), (9.14c).•  
The considered information Hamiltonian (9.10) is different from the energy Hamiltonian 

in QM; and ( , )u t x  or ˆ( , )u t x represents an information wave function, while the QM’s 
related function is amplitude of probability for a physical particle.  

A more general information description can be applied to any information events 
including the physical ones.  

Both (9.13) and (9.14) determine the information wave functions as the dynamic 
approximation of the diffusion process by the corresponding amplitudes of the probabilities.  

IMD with the random microlevel, the discrete intervals of imaginary information, whose 
interaction (collapse) generates real information, and the code, can be considered as an 
information analogy of QM.  

It’s possible that the QM dynamics cover stochastic dynamics laying underneath, which 
carry the information code (to be transformed into a matter, sec.1.9.3)).  

A specific of these stochastics consists of the fulfillment of equation in partial derivations 
(9.12), which can be used for finding the discrete interval between quantum interactions.  

The dynamic macroprocess and its wave function characterize a prognostic movement 
among the probable random trajectories in information dynamics.  

This approach connects the process’ probability functional (defining the path functional) 
with the process entropy functional and expresses both of them via the integrand (9.7) of 
related stochastic equation. 

Considering the random process as a starting source for a macroprocess and using the 
macrolevel’s complex wave functions equations, we found that the interference (a “collapse”) 
of the information wave functions corresponds to transferring the macroprocess with a 
complex operator to a microprocess with a real operator at each discrete point (DP).  

DPs open an access to random process for the control and identification of the renovated 
macrooperator at each extremal segment’s end via the measurement of correlation functions 
(ch.1.3, other).  

From this follows a discrete character of measurements in the IMD bi-levels model at the 
DPs, where the eigenfunctions of the macrooperator undergo a jump-wise change. Prior to the 
DP occurrence, both the macro- and microvariables in this model are unobserved. 

Thus, the joint solutions of (9.13), (9.14) allow to determine a formal “observer”,which 
provides a quantum measurement of a random object that extracts its maximal information.  

Such an observer also self-transforms an initial information measure (EF) into its 
dynamic form (IPF) and then to the information algorithm and code. 

These IMD specifics connect it to a measurement and control in quantum dynamic 
systems [30]. 

The corresponding DSS quantum code (ch.1.6), generated at DP localities (according to 
1.3.153), potentially can be applied for a quantum computation [31].  

The quantum states define the quants of a discrete time, which, using the information 
invariants (ch.1.3), determines the quants of related information.  

This means that a discrete time carries information. 
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1.9.3. About the Invariant Transformation of the Model 
Imaginary Eigenvalues and Information 

The macromodel initial pure imaginary eigenvalues λ1,2 (± jt* )  can be transformed into 
the real eigenvalues using transformation (sec.1.3.5): 

 )exp(2
)exp(
jt

jtTo ±−
±

−=    

carried by the imaginary control's feedback v = −2x j(to)  and applied at some initial 

moment to . This transformation can be considered as a special conformal reflection of the 

line ± j  into a shape w(z) =
az + b

cz + d
 at z = exp(± jt) , a=1, b=0, c=− 1, d=2 with the 

invariant points z1 = 0, z2 = 1, w(z = 0) = 0 ,w(z = 1) = 1.  
Such a reflection transforms the ± j  lines of an Euclid geometry into the curved lines on 

the Riemann shape w(z) .  
The angle between a pair of curves at each point z  is transformed into an equal angle (by 

its value and the marked course direction) between the curves in the shape w(z) .  
This leads to the transformation of the initial parallel pair of lines ± j  into the 

intersecting curves on the Riemann's shape w(z) .  

Following the connection to Quantum Mechanic, each of these eigenvalues ± j  

corresponds to the pair of wave functions ψ1 = exp( jt ) ,ψ 2 = exp(− jt) .  
The property of being the harmonic wave functions is an invariant under the conformal 

mapping.  
Because of that, transformation oT  creates a pair of transformed wave functions  

 
ϕ1 = −

ψ1

2 − ψ1

, ϕ2 = −
ψ2

2 − ψ 2

,   

which can actually intersect on the Riemann shape w(z) .  
A set of imaginary events, described by the wave functions, have a unobserved 

probabilistic tendency P =|ϕ1 + ϕ2|
2  that is transformed into a real observed event at a point 

of their intersection.  
A curved shape, corresponding to Riemann geometry, is formed by the local IN's space 

dimensions at the DP vicinities.  
A virtual transformation above, that is able to generate a positive entropy production 

(chs.1.3,1.7), becomes irreversible.  
This means, that the transformation implementation requires consuming an energy that 

converts its virtuality into a reality.  
A similar transformation undergoes each third extremal segment of the IN node (starting 

with the imaginary eigenvalues).  
The transformation can also be expressed via the model imaginary invariants (secs.1.3.5, 

1.5.4). 
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By knowing an elementary imaginary information b o = ioβ τ and using the above 

transformation in the form 1Re{( )exp( )[2 exp( )] }o o oj j j −− =b b b a , can be found the 

elementary real information a generated by b o .  

According to Example 1.3.2, a pure imaginary initial io iojλ β= ± corresponds to the 

segment’s invariant b o / 6π= , which at a 12 sin( )[(5 4cos( )]o o o
−= −b b b is able to 

produce, by the segment end, the real elementary information a ≅ 0.303 Nat, or ≅ 0.44 bit. 
Using relation 2

o ≅a 2a, we have 2 0.606o ≅a Nat and 0.778o ≅ −a Nat.  
Applying formula ch.1.6 for the relative irreversible time: 

 
2

*
2

o o
i

o

tδ − +
=

a a a
a

,  

we get *
itδ ≅ 0.215.  

Thus, the above real information allows starting a needle control and irreversible real time. 
Real information starts with a positive entropy production, evaluated by an elementary 

ioα , which is able to initiate a real time course with starting elementary time interval 

ioτ = oa / ioα , following the generation of a, 2
oa , oa and ioα .  

At o
io jλ = ± , 1ioβ = , the time interval, corresponding the imaginary information, holds 

an imaginary time / 6o
ioτ π= .  

In the dynamic systems theory [1,35, other], the transformations exist with invariant 
measures, which preserve an entropy as their metric or topological invariant (depending on 
the symbolic or topological dynamics). A numerical value of the entropy invariant serves as a 
measure for classification of these transformations.  

The transformations with invariant measure are purely mathematical and virtual even 
though they are able to produce information.  

For example, the transformation of a symbol’s x  doubling ( ) 2T x x= has topological 
entropy ( ) log 2h T = ; for the rotation on a circle, the entropy ( ) 0h T = , and for the 

transformation of the full shift on k symbols, the entropy is ( ) logh T k= .  
Thus, there exists a wide class of transformations of symbolic information, which does 

not require consuming energy. 
The IPF variation principle virtually transforms the entropy functional’s uncertainty into 

both imaginary and real informational dynamics.  
The imaginary dynamics satisfy Hamiltonian dynamics for a close system, while the real 

dynamics take place in an open system. 
IMD operates with two kinds of transformations: reversible within each segment’s 

interval and irreversible out of these intervals. Each reversible transformation preserves the 
invariant amount of information (for example, expressed by the imaginary invariant), which 
satisfies the conservation law for information as it virtual logical substance.  

For the irreversible transformation, an open system gets additional information from the 
environment (including a control), and both direct and inverse transformations become 
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nonequivalent. The irreversible transformation, even being a virtual, might produce real 
information and require energy.  

Memorizing by copying does not consume energy in a virtual computation. But each 
renovation of the copied information erases the previous one and actually consumes energy. 
Both irreversible logic and memory, implemented in a software for a dynamic virtual 
computation, can transform the encoding information into material (energy) substance. 

Supposedly, an external intelligence might transform information (a mind) into a matter. 

1.9.4. The Superimposing Processes, Control and Asymmetry. 
The IMD Relation to Nonequilibrium Thermodynamics (NT) 

IMD represents the informational form of NT equations considered under the action of 
control functions. The entropy functional has an analogy to the Onsager-Machlup functional 
in the NT [19], (ch.1.3).  

The IMD minimax principle, requiring a maximum entropy’s generation at the DP and its 
minimum at the extremals (where the information spending is minimal), is connected to the 
Prigogine minimal principle [15, 16].  

Its implementation initiates irreversibility, instability, cooperation, and appearance of the 
new ordered asymmetrical formations by an analogy with the Prigogine dissipative structures.  

The IMD irreversible macrodynamics and the general information mechanisms describe 
the regularities of the optimal synthesis of information macrostructures, which are associated 
not only with physics.  

There are various IMD connections with the NT equations.  
In a particular, the Onsager condition in irreversible linear thermodynamics [17] is a 

consequence of the detail equilibrium principle and the condition of symmetry of the linear 

operator ˆ l  in the equation ˆx lX= .  
The related n -dimensional IMD kinetic equation (ch.3) is  
 

 x LX= , ,t
Sx I X
x

∂
= =

∂
,  (9.16) 

where I is a vector of a information flow, X  is a vector of a information force, 2L b=  is a 
kinetic matrix, which generally could be asymmetrical and a nonlinear. 

The considering “punched” DP-localities provide a conjugation between the kinetics and 
diffusion: at ( ) TL oτ σσ− ≥ the kinetic flow transfers to diffusion; at ( )T L oσσ τ≥ + the 
diffusion flow transfers to kinetics.  

The cooperation brings a physical analogy of the states’ superposition into a compound 
state, accompanied by a nonsymmetry of the formed ordered macrostructures, the 
irreversibility at each DP, and the emerged nonlinear phenomena, accompanied by the 
creation of new properties.  

For a physical model, each its dimension represents a particular physical process, such as 
chemical, electrical, diffusion, mechanical, etc.; and their intersection creates new cross 
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phenomena like thermoelectrical, electrodiffusion, electrochemical, and electromechanical 
phenomena.  

The multi-dimensional superimposition embraces a potential inner “needle” control 
action, associated with modeling of the process’ jump-wise interactions.  

Indeed. In a chain of the superimposing processes ( , ), 1,2,.....ix t i nτ = , each current 

process ( i ) controls one or more of the following chain's processes ( 1i j+ = ) with a 
possibility of changing the operator in the NT macroequation 

 
njiXL

dt
dx n

ji
jij

i ,...,1,
1,

=≠= ∑
=

 .  (9.16a)  

 
The mutual cross phenomena, modeled by the applied control functions, connect the chain by 
relations 

 

dxi

dt
= Li Xi + ui ,  ui = LijXj

j =1

n

∑ ,i ≠ j ,  (9.16b) 

where the controls at the current i-segment:  
 

 ))','(( ltvuu ii δ=   (9.17)  

include the corresponding needle controls, applied at the DP-localities ( ', ')t l : 
 

 δv(t' , l) = −2x(t' ,l) + 2x(t ' +o,l) , ),'(2),'(2),'( tolxtlxtlv ++−=δ ,  (9.17a) 
which arrange the cross connections and change the operator components with a potential 
operator’s renovation.  

 
Example 9.2.  

Let us consider a single dimensional segment interacting with a following segment by 
applying controls in the IMD model:  

 

 1 11 1 1 12 2 2( ( )) ( ( ))x a x v a x vτ τ= + + + ,  

which corresponds to the NT form:  
 

 1 11 1 12 2x L X L X= + ;  

with  

                    11 11 11 1 11 1 1( ( )),x I L X a x v τ= = = +  12 12 12 2 12 2 2( ( ))x I L X a x v τ= = = + ; 

where 1τ , 2τ  are the moments of applying these controls at the segment beginning and end 

accordingly:  

                                              1 1 11 1 1 2 12 1 2( ) ( ), ( ) ( ) ( )u a v u a vτ τ τ τ τ= = . 

Under the action of the needle control 2 2( ) ( )v vδ τ τ=  at segment’s end, when 2 2( ) 0x τ = , 

we have at this moment  
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 12 2 2 2 12 2 2 1 2( ) ( ) ( ) ( ) ( )L X a v uτ τ τ δ τ τ= = .  

It seen that the segment’s control 1 2( )u τ , applied at the segments’ end, generates the 
between segment’s cross-information flow  
 
                                            12 2 12 2 2 2( ) ( ) ( )I L Xτ τ τ= ,  

while an increment 12 2( )a τ  is a result of 2( )vδ τ action and the eigenvalue renovation. •   
This means that, in modeling complex dynamics, the considered controls performs 

function of a cross-interacting superimposing processes, connecting the segments (in addition 
to the control functions in Comments 3.14).  

The vice versa is also true: in complex dynamics, the superimposing processes are 
modeled by the above control’s functions (see also ch.1.7 and [38]).  

The path functional extremals, as the solutions of the irreversible NT–IMD equations, 
also provide an analogy of the Onsager conditions at the end of each extremal segment.  

The kinetic operator 
 

( , ') ( ', )( ( ', ')) 2 ( ( ', ')) [ ( , ) ( , )*] [ ( , ) ( , )*]x t l x t l
x xL x t l b x t l E x t l t l E t l x t l
t t

∂ ∂
∂ ∂

= = = (9.17b)  

is changing by a jump at each time-space point (t' , l' ) of applying the discrete control where 
the relations 

 

 

Ii

Xi

(tj ' ,l' j ) = gi(tj ' ,l' j ) = gk (tj ' ,l' j ) =
Ik

Xk

(tj ' , l' j ) ,  (9.18) 

take pace; here gi  ,gk  are the subsequently equalized components of the generalized transient 
conductivity (admittance) (see also sec.1.7.6).  

The needle controls select them based on the variation condition (ch.1.3).  
The sequence of the chain dependable n -controllable components of these conductivities 

can be reduced to a single currently controllable conductivity, for example, to electrical 
conductivity (which is proportional to the diffusion conductivity) and whose measuring is the 
simplest.  

Following this and the connection between the diffusion and electroconductivity, an 
average entropy production of the controlled process in the IMD equations:  

 

 1
ˆ

1/ 2 e e
S
t

σ σ −∂Δ
=

∂
, ( ) ( )

t

e
t

b t dt
τ

σ τ
+

=∫ ,  (9.19) 

 

can be expressed via the nonlinear electroconductivity σe = ( )eσ τ , measured at the discrete 

points τ ; where (9.19) serves as an indirect indicator of the IPF averaged Hamiltonian. 
The nonlinearity of matrix L  (in 9.17) is a result of interactions, new effects and 

phenomena at the superimposition, which are modeled by the consolidation process of 
forming the cooperative macrostructure. 
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In the space consolidated model, these processes involve diagonalizing of the dynamic 
operator under the periodical rotations of a symmetrical transformation (chs.1.4,1.5).  

Such a procedure also decreases the number of components of the path functional's 
Lagrangian, minimizing the entropy production.  

This means that the space movement, directed toward diagonalizing of the dynamic 
operator (as an attribute of the space consolidation process, (secs.1.4.2, 1.4.3)), is a source of 
the generation of an additional negentropy for the cooperation.  

During this process, the ranged sequence of the triplet eigenvalues preserves the pair-
wise ratios: 

 

 λ1 / λ 2 = G1 ,λ 2 / λ3 = G2 ,λ 3 / λ 4 = G1 ,λ 4 / λ5 = G2 ,…,..  (9.20) 
 

defined by the IN multiplicators G1 1~ αγ , G2 2~ αγ , which are determined by the ratios of 

local entropies.  
The rotation spreads these ratios along each coordinate axis:lx →G1, ly →G2, lz →G1, and 

the ranged eigenvalues are distributed along each geometrical axis with their pair-wise 
multiplicators.  

For example, along the axes lx , ly , lz  can be selected the extremal segments that hold the 

following related multiplicators: 
 

 G( x )=λ1 / λ 4 =G1•G2•G1;G( y )=λ 2 / λ5 =G2• G1• G2; 
  G( z )=λ 3 / λ 6 =G1•G2•G1=G( x ) .  (9.20a) 
 

These segments define the formed macrostructure cell’s volumes (by analogy with Fig.6.4), 
which preserve the ratios of geometrical sizes proportional to invariant a o  as an elementary 

quantity information for each macrocell.  
The rotating matrix, applied to the ranged triplet eigenvalues, retains a symmetry of the 

group transformation with the preservation of the above multiplicators.  
The transformation of symmetry acts only within each discrete interval when VP is 

satisfied. 
The macrocells can be mutually transformed by a translation, analogous to crystal 

structures.  
Such a well-known transformation consists of the macrocell rotation on angle 

ϕ = 2π / n  with changing the linear sizes in p-times, where n and p are connected by 

relation n = 2π (arccos
1 − p

2
)−1 .  

The indexes n and p of an order in the rotating symmetry take the values: n=(2,3,4,6), 
p=(3,2,1). The considered macromodel can keep these values for G1•G2≥2, G2≥1 
(at (0.0 0.8)γ ≅ − ), which bring p≥1.  

For a real macrosystem, having G1• G2≥2, G2>1.5, the above relations define p=3, n=2. 
In this case, a macrocell (x) with xG = G1• G•G1=3 has the linear sizes in three times 
longer than the related macromodel's initial cell, that had been rotated on angle ϕ .  



The Physical Analogies Related to the Information Path Functional 327

Therefore, the above transformation of rotation allows building the consolidated 
macrosystem from the macrocell’s size formed at any starting model’s DPs.  

The needle controls bind the macrocells according to the joint model’s multiplicators.  
The consolidation in form of triplet structures and the distribution of the eigenvectors by 

three with preservation of their multiplicators are a consequence of the three-dimensionality 
of the geometrical space, where existence of the geometrical symmetrical transformations 
follows from VP. This brings the existence a common symmetry of transformation for all 
macrocells, representing a phenomenon that connects dynamics and geometry.  

The macrostructures with considered multiplicators enable the preservation of the 
symmetry only at very narrow values of the macrocell parameters.  

Generally, macrocells with the arbitrary multiplicators cannot be transformed into each 
other by symmetrical transformations (ch.1.5). By the consolidation moment, three of such 
macrocells have almost equal sizes, and they are able to form the joint macrocell with the 
triple linear sizes, having a single dimension. By the end of discrete interval, the matrix 
elements complete diagonalzing, allowing the joint macrocells’ rotation toward a subsequent 
triplet’s cooperation.  

The consolidated cells are asymmetrical; they cannot coincide using the symmetrical 
transformations.  

The needle controls consolidate the asymmetrical local instable irreversible macrostates 
into stable cooperative structures at each new discrete interval.  

The triple cell’s formations are analogous to the three-critical phase transformations of 
the second order with a specific connection the kinetics, diffusion and the symmetry order in 
crystals.  

The space distributed model’s process has a spiral space structure (chs.1.5, 1.6) on a cone 
with a possible left (L) or right (R) direction of the spirals, which are typical for a real 
process’ superposition. In a macrosystem with superimposing processes, each i-asymmetrical 
(L or R) process can control the subsequent (i+1) (R or L) asymmetrical process.  

The superimposing processes of an opposite asymmetry’s direction are able to create a 
force (analogous to Lorentz's force), which can be a physical source of rotation of the 
geometrical coordinate system in the space consolidated model.  

This means that in the superimposing processes, the asymmetry is a capable to control a 
system’s geometry and change the macrodynamics by rotating the dynamic operator (Fig 9.1). 
Both the rotating symmetry and its inner rotating mechanism are specific characteristics of 
macromolecule polymers [31].  

 

 

Figure 9.1. Operations with superimposing processes: 1-Asymmetry, 2-Rotation, 3-Diagonalization of 
dynamic operator, 4-Dynamics, 5-Geometry. 
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A set of the macromodel triplets create a specific shape of corresponding key-lock 
connections according of their LRL-RLR-… asymmetry sequence, which could be used for 
the macromodel recognition and creation of a communicating information language (initiated 
by such a sequence) (part 2).  

IMD introduces a common information description for both superimposition and controls 
by revealing the information mechanism of the cross phenomena.  

In particular, the IN cooperative nodes model the integral phenomena of such 
superpositions as thermodiffusion, electrokinetic, electrochemical cross interactions, others.  

The process’ superimposition is a source of the IN code.  
The controls, generated by this code, in turn, might initiate these processes, which can 

lead to a self-organization system.  
Nature produces a conjunction of natural interactive processes, while the IMD models 

this by the functions of the inner control and the INs. 
Physically, the discrete intervals are the distances between the diffusion barriers, 

generated by microlevel at the DP δ -localities.  
The points of compensation diffusion and kinetics (sec.1.7.3) hold the chain connection. 

The interacting processes form the spiral space chain of macrostructures based on their 
subsequent dynamic consolidation.  

The coefficients of kinetics l i , diffusion bi , and correlations r  are connected according 
to the equations of chs.1.3,1.7 and can be expressed through the model invariant ( )γa . 

The information analogies of thermodynamic forces X and mass are considered in sec. 
1.7.6.  

Let us analyze the connection between the object’s observed physical states and the 
modeled information states and operators.  

Assume we observe the physical states ˆ , 0,1,...,jx j n= , determined by the object’s 

thermodynamic processes. These states are connected with the information states 
, 1,...,ix i n=  using relations [20]: 

 
1 1ˆ ˆ,o i ix x xθ θ− −= − = , ‘  (9.21)  

where θ  is a thermodynamic temperature. 
The kinetic equation for the physical states acquires the form 
 

 1
ˆ ˆ ˆˆ ˆ , ( )n

i i i i i ix A x A λ == =  ,  (9.22) 

where each eigenvalue îλ  can be identified applying the considered correlation relations: 
 

 
1ˆ ˆ ˆ1/ 2 ,i i ir rλ −= 2ˆ ˆ[ ]i ir E x= ,  (9.23)  

which is determined by the controlled random ˆix . 
Let us find the connection between the eigenvalues (9.23) and ones in the information 

form of (9.22):  

 1, ( )n
i i i i i ix A x A λ == =   (9.24) 

using for iλ  the analogous relations 1 ˆ1/ 2 , [ ]i i i i ir r r E xλ −= = .  
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Substituting (9.21) into (9.23) and using (9.24) we get  
 

 
1ˆ /i i d dtλ λ θ θ−= − .  (9.25) 

Integrating both sides of (9.25) at the corresponding segment’s time interval it  we receive 
 

 
ˆln ( )i i i i i it C t tθ λ λ+ = − ,  (9.26) 

at i i ijλ α β= + , ˆ ˆˆi i ijλ α β= +  and î iβ β= . 
For a real temperature, relation (9.26) acquires view  
 

 ˆln ( )i i i i i it C a t tθ α+ = − , where i itα =a ( )γ . 

It is seen that temperature at each it  becomes a function of the identified ˆiα  and parameter 
γ . 

Indeed. Using the invariant relation î i i it tβ β= = b ( )γ at the known î iβ β=  and it , we 

find b and then, applying the function b ( )γ (ch.1.5), we get the corresponding γ  that allow 

finding a ( )γ . 

      After that the temperature can be found by formula  
 

 ln ( )it Cθ + = a ( )γ ˆi itα− ,  (9.27) 
 
at the known a ( )γ  and ˆiα , it . 

     In the case of unknown it , it can be found from a joint solution of equations (9.27) and  
 

 it = a ( )γ 1 1ˆ( / )i d dtα θ θ− −+ ,  (9.27a) 

following (9.25) at it = a ( )γ / iα , which leads, in particular, to the solution of  
 

 
ydt =∫ a ( )γ 1ˆ( )iy yα −+ , 1 /y d dtθ θ−= .  (9.27b) 

     Knowing θ  and the controlled ˆix allow finding the information states ix and apply all 
IMD results. 

For the controllable physical states and the identified object’s operator, some 
thermodynamic relations and functions can be available. 

The inner energy U can be found using the Hamiltonian, determined by the observed 

physical states: ˆˆ ˆ[ ( , )]Tr A x tΗ = :  

                                                   ˆU dt= Η∫ . 

These relations allow us to identify a thermodynamic potential 
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                                                1U Sθ −Γ = − ,  
or a free energy 
 

                                                 U SθΦ = − ,  
which leads to finding the main thermodynamic functions including a pressure 
 

                                                / VΡ = −∂Φ ∂   
at a given volume V or its model’s relations (chs.1.5, 1.7).  

It is important to point out that a notion of a local equilibrium temperature ikθ in our 

model can be useful only to the cooperated states ( , )i k , satisfying condition  
 

 / /i i k k ikU S U S θ∂ ∂ = ∂ ∂ = .  (9.28) 

where the cooperation occurs at ( )ikt o τ= . 
Applying the above relations to the model:  
 

 
ˆ ,i i iU tλ∂ = iS∂ = a o ( iγ ) −a( iγ ), ˆ

k k kU tλ∂ = , kS∂ = a o ( kγ ) −a( kγ ),  
we get accordingly  
 

 iθ = (a( iγ ) 1
i i it dθ θ−− )((a o ( iγ ) −a( iγ ) 1)− ;  (9.29a) 

 

 kθ = (a( kγ ) 1 /k k kt d dtθ θ−− )((a o ( kγ ) −a( kγ ) 1)− .  (9.29b) 
At the moment of cooperation we have  

 

 ( ) ( ) ( )i ik k ik ik ikt t tθ θ θ= = ,  (9.30a)  
and the condition of a local equilibrium leads to 

 

 / ( ) / ( ) 0i ik k ikd dt t d dt tθ θ= =  .  (9.30b) 

Therefore, the condition (9.28) requires just i kγ γ= , which is fulfilled for a given IN.  
This means that all nodes of a given physical IN (where (9.28), (9.30a,b) hold true) keep the 
same thermodynamic temperature. 

The IN models the superimposition of macroprocesses with revealing of the created 
phenomena and singularities. 

1.9.5. About the Notion of a System 

Let us define a system as a set of interactions exchanging their common substance, e.g., 
energy, material, information, etc.  

The term “interaction” includes an acceptance and generation of this substance for the 
sets.  
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The term set is defined in a mathematical meaning as a collection of the interactive 
elements.  

The entropy functional (sec.1.1.1) integrates the sets’ information measures into the 
common information measure, bringing a unity of the information interactions, which 
constitutes the notion of a system.  

Thus, this formalism defines a system by a set of interactions exchanging information as 
the common substance.  

This substance carries uncertainty of different forms of multiple physical and/or virtual 
interactions having universal information measure.  

Uncovering a system’s regularities by minimizing its uncertainty is formalized by a 
variation principle which, by imposing the constraint (ch.1.3), provides the systems’ dynamic 
model. 

Actually, a formal preservation of a process’ invariant measure leads to a variation 
principle [33, 34], which for an open dynamic system requires information exchanges–
interactions and brings a capability for the information integrations (ch.1.5).  

Universality of the probability measure and its information form (sec.1.1.1) makes 
information the basic substance for a diverse nature of interactions.  

The information, unifying the interaction’s description, integrates them into some 
primary information units-subsystems and then binds them into a system. 

The essence of information interactions is concretized in and in ch.1.3, where the 
exchanges between the system’s external and internal entropies occur at a set of the 
macrostates’ discrete points (DP)(sec.1.3.5), which determine the set of interactions, where 
also the state’s cooperation takes place. In these exchanges-interactions, the internal entropy, 
being a source of the information dynamics, is also spent on building the structure of a 
cooperative hierarchical IN, which contains the process’ genetic information (ch.1.6).  

The external information, delivered at the DP, compensates the total internal information.  
The IN represents a formal connection of its element into a system, assembled by the 

mathematical equations, following from a single variation principle, as a distinction of 
existing systemic approaches [37], where such connections are usually formed artificially by 
different combinations of postulates, and/or, intuitive, arbitrary, and even rational concepts. 

A system structure we specify by the IN, with an admissible range of γ ; while each IN 
with a fixed and different γ  describes the structure of a subsystem.  

Then the considered IN’s invariants (depending on γ ) determine the parameters of any 
particular subsystem’s triplet and its complexity.  

The subsystems’ set depends on the collection of γ  (bound by Prop.7.4, ch.1.7)), whose 
admissible values γ → (0.0 − 0.8) follow from the model’s simulation [35] and the condition 
of a subsystems’ stability, consistent with the preservation of the total model’s entropy S.  

A collection of such subsystems, which keeps the total S constant, forms a system, where 
S consists of two parts: imaginary I and real information R.  

For example, a source of information (TV, radio, others) generates information waves; an 
observer accepts only its part, which is a real information for the observer, resulting from the 
observer’s interaction and entanglement with the wave.  

Other part of information, which actually exists, but is unavailable for the observer, 
constitutes an imaginary information for the observer.  
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In the considered macromodel, the relation between the imaginary and real information is 
determined by the model’s parameterγ  evaluating a ratio of the imaginary and real parts of 
eigenvectors (eigenvalues) in the form γ =I/R, and we get S=(1+γ )R, or γ =S/R −1.  

At γ =0.8, S/R=1.8, and at γ =0, we come to S/R=1.  
Thus, the R/S range is between 1 and 0.555, and the I/S range is between 0 and 0.445.  
At the minimal feasible γ =0.0072, the practical rage is narrower: R/S=0.9928 to 0.555, 

and I/S=0.0072 to 0.445. (In sec. 1.9.3 we consider one of the invariant transformations of the 
model's imaginary eigenvalues to the real eigenvalue).  

The number of diverse subsystems within a single system (distinguished by the γ  of a 
starting eigenvalue’s sequence) is determined by the ratio (0.8 −0.0072)/0.0072=110.111…, 
while each subsystem, having the same fixed γ , might consist of a maximal element’s 
number n =90.  

This means that each system may include any of 90110 different combinations of those 
90 subsystems representing the maximal number of diverse systems, having the distinct 
information characteristics and are capable of producing specific codes.  

The complexity arises by joining of the above sets and subsystems into a system, 
becoming an integral system’s characteristic.  

An individual macrosystem’s complexity, measured by its minimal algorithm’ program, 
encoded in the IN code, allows the systems’ classification by the level of complexity.  

The model’s controls, as a carrier of the subsystems’ integration and the code, are also a 
source and a part of the system’s complex dynamics.  

The IPF-IMD notions of a system, system structure, complexity, and the code establish a 
foundation of information systems science with the related computer-based methodology, 
software, and applications (part 2). 
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Chapter 2.1 
 
 
 

SOLUTION OF THE CONTROL PROBLEMS 
FOR A COMPLEX OBJECT 

 
 

2.1.1. The Control Problems for a Complex Object 

The complex objects with a wide diversity of interactions and the superimposing 
processes of distinct nature are extensively studied in theory of dynamic and stochastic 
systems, control and systems theories, theory of information, and physics.  

Multiple interactions create uncertainty and randomness, associated with the object's 
probabilistic description, and/or with the information necessary for the object measurement 
and identification.  

Modeling of the complex interactions still remains an actual problem, which involves 
identification the random processes by a corresponding dynamic model.  

The object optimization problem includes an optimal control of a stochastic system [1-5, 
other] with a selection (filtering) of a suitable (needed) dynamic signal by a control, 
minimizing a random noise. (Please see the references to ch.2.1).  

For the complex objects, a practical interest represents the model restoration during a 
joint solution of both the identification and the optimal control problems (in a real-time), 
allowing to obtain a current optimal model of the observed process, which could have been 
changed during observation.  

Since the remarkable publications [6-10], many years passed but significant new results 
in this area have not been achieved.  

A complete solution of this problem is unknown.  
The conventional methods for the model's identification by an object's experimental data 

[11-13, other] do not use the concurrent identification, combined with optimal control.  
The IMD with the information path functional (IPF), applied for a dynamic modeling of a 

variety of information interactions, integrates their multiple information interactions.  
The IMD, instead of modeling each particular random object (by the known methods), 

builds a class of information dynamic models with a class of synthesized control functions 
(applied to a wide class of random objects), and then specifies both of them to each particular 
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random object. This allows avoiding some crucial obstacles, complicating the solution of the 
dual control [9] and other related problems.  

Building of such a common model requires, first, using a broad-spectrum class of models 
for the initial controllable random object, secondary, developing a mathematical formalism 
and methodology, being applicable to this class of models, to produce a wide-ranging 
dynamic model, reflecting the regularities of this class of objects.  

The initial control problem (ch.1.1,1.3) of reaching a maximal closeness of a controllable 
random process with a given programming process is performed via the approximation of the 
random process by a macroprocess with a minimum uncertainty, using the IPF minimum as a 
performance criterion.  

Applying the IPF mathematical formalism (part1), we focus this chapter on the IPF 
applied methodology and the procedure for the solution of the above control problems 
illustrated by detailed examples.  

The methodology and procedure have been implemented in the developed package of the 
computer programs. 

The specifics of the obtained solutions are the following: 
 

• the initial random process is approximated with a minimal functional uncertainty 
(maximal probability on the trajectories) by the IPF extremal segments;  

• between the extremal segments exists a “window”, where the random 
information affects the dynamic model’s operator, creating its piece-wise 
dependency upon the observed data; 

• the synthesized optimal controls start at the beginning of each segment, act along 
the segment, and connect the segments in the macrodynamic optimal process;  

• the discrete interval of the applied controls, associated with the segment’s length 
(which is defined by the VP invariants), are found in the process of identification 
of the segment’s operator. 

 
These specifics allow proceeding the identification of the dynamic operator at each 

extremal segment in real-time under the optimal control action and during the object’s current 
motion. The optimal controls, connecting a set of the extremal segments for a multi-
dimensional object, are able also to solve the problem of the object’s state consolidation and 
aggregation with building a cooperative hierarchical information network (IN) of a complex 
object. Moreover, this procedure can proceed concurrently during the object optimal motion, 
combined with optimal control and the operator identification.  

A complex object is characterized by a diverse nature of different superimposing 
processes, creating the cross-phenomena (thermo-diffusion, electro-kinetics, and many 
others). Modeling of such objects presents a very complicated problem, studied in irreversible 
thermodynamics, where it can be solved only for simple examples.  

In the above dynamic model, these cross-phenomena arise between the extremal 
segments, when the model dynamic operator is renovated at the beginning of each following 
segment. This allows us to identify those phenomena concurrently during the procedure of the 
operator restoration.  

The IPF connection to information theory brings both a universal information structure of 
the dynamic macromodel and a common information language (including the model’s 
generated code) for description of the complex object’s regularities in distinct 
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interdisciplinary objects with a diverse nature of superimposing processes in a variety of 
complex objects.  

The above outline shows that the IPF solutions of the considered control problems differ 
essentially from ones used in the control and identification of the stochastic and deterministic 
systems (including all cited references). That is why our references to the related 
contributions are limited.  

Actually, the IPF presents an information analogy of Feynman’s path functional, applied 
in quantum mechanics, with the references [ch.1.1-1.9], which are not related to control 
theory. Below we analyze more specifically the comparison of the IPF approach with the 
known contributions to the considered control problems.  

The IPF dynamic model, identification equations, and optimal control follow directly 
from the analytical solution of the single variation problem for the considered class of the 
random objects and are not introduced separately as the explicit equations, or specific 
problems (as it is widely accepted).  

The applied optimal control and the correctly restored (by using the identification 
equations) dynamic operator for each segment are fit precisely to their analytical solutions 
and do not require the sequential step-wise approximations. The procedure of the operator 
restoration does not involve any iteration if the needed correlations (for the identification 
equations) are measured and computed correctly (by well known methods).  

The known methods of joint identification and optimization (generalized, particularly, in 
[14], others) include first identification and then finding the optimal control, which does not 
allow obtaining a current optimal model of an observed object.  

Most of these methods apply a special control for the object identification and then form 
another optimal control after the solution of identification problem, using the statistical 
estimations and sequential iterations. The IPF approach is not connected to Kalman’s 
filtration [10] that deals with the parameters’ estimation in adaptive control.  

Compared to the Feldbaum [9] dual control, the IPF approach does not contain a 
sequential improvement of both observation and controls. (Both the applied optimal control 
and the correctly restored dynamic operator for each segment are identical to their analytical 
solutions).  

The known entropy and probability methods (including the related extremal problems), 
applied in control systems [15], traditionally evaluate an object process by the probability 
measure for the random states and corresponding Shannon’s entropy measure as the 
uncertainty function of the states.  

The process’ IPF integral information measure evaluates a process’ trajectory by an 
integral probability, defined on the random trajectories. That is why the IPF approach and 
methodology differ from the Kalman adaptive control, the Feldbaum dual control, the 
adaptive design [25,26], and other related contributions, even thought a final target for some 
of them appears the same. Because the IPF is defined by started functions of shift and 
diffusion, the IPF optimum predicts each extremal’s segments movement not only in terms of 
a total functional path goal, but also by setting at each following segment the renovated 
values of these functions, identified during the optimal movement, which currently correct 
this goal. The concurrently synthesized optimal control provides each action with a maximal 
Markov’s probability at each segment. This optimal dual strategy at each current movement 
cannot be improved (even theoretically) because it defined by an extremal of a total path to a 
terminal state, which is updated at each optimal control’s action. 
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The IPF, as a functional measure of a priory given performance criterion, can be applied 
to any specific performance criterion [28, others].  

The chapter organizes as the flowing.  
In secs.2.1.2.1, 2.1.2.2 we introduce the methodology and the examples solving the 

identification problem for both concentrated and distributed objects. In sec.2.1.3 we solve the 
above control problems, focusing on the joint solution of the optimal control and 
identification problems (secs.2.1.3.1, 2.1.3.2), and the solution’s methodology with the 
procedure including the consolidation problem, which is finalized by building the object’s 
cooperative information network (in ch.2.1.3.3). Both methodology and procedure are 
supported by the examples, which also demonstrate the concurrent object’s identification 
under the optimal control actions. The IPF applied equations and the theoretical results with 
the detailed proofs can be found in part1. The examples, implementing the procedure, 
formalize the practical applications and illustrate both IPF approach and the methodology. 

2.1.2. Solving the Identification Problem  

2.1.2.1. The Identification of the Concentrated Object's Models 

Let us consider the problem of restoration of operator of the random process that is 
defined by the differential equation of a homogenous system:  

 
 x = A x + ˜ g , A = A ( t' , x ),  (1.1) 

where ˜ g  is a known function of time, depending on initial conditions of the state vector 
x = x (0), with its probability density function ( (0))p p x= .  
If equation (1.1) is obtained, for example, by averaging a stochastic differential equation, then 
˜ g  is defined by the moments of random process ( )x t .  

We will show that matrix A  can be expressed through the moments of vector x .  
Writing the solution (1.1) in the form:  

                                
0

(0) exp( ) ( )
t

x x A g dτ τ τ= + −∫ ,  

we get the covariation matrix r of vector x , defined on this solution: 

 )( TxxEr =
0

( ) {exp [ (0) exp( ) ( ) ]
t

Tr E xx E At x A g dτ τ τ= = + −∫  

 
)}exp(])exp()(~)0([

0

tAdAgx T
t

TTT −−+× ∫ τττ  .  

and its derivative  
 

 
T Tr Ar rA k k= + + + , )](~)([ tgtxEk T= , )](~)([ tgtxEk TT = .  (1.1a) 

At the fulfillment of the symmetry condition 
 
 Ar = rAT  (1.2) 
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we get the relation  

                                                    
11/ 2( )TA r k k r−= − − .  

In particular, for a conservative model with ( ) 0g t = , we have 

 
11/ 2A rr R−= = . (1.3) 

Because matrix A  is a nonrandom, it can be taken out of the mathematical expectation's 
operation according to the equality 

 

 
1[ ] [ ] [ ]{ [ ]}T T T TR E xx E xx AE xx E xx A−= = = = . 

The identification of stationary and nonstationary objects is performed by analogy. 
Considering x = x1, x = x2 , x1 = (x1,... xn) , x2

1( ,... )nx x=  as an object's input 
variable, we come to the identification equations 

 

 x2 = Rx1 , R(t,τ ) = r12 (t,τ)r11
−1(t,τ ) , ])()([),( 12

),(12 1
T

tx txtxEtr
τ

τ = ,  

 
])()([),( 11

),(11 1
T

tx txtxEtr
τ

τ = . 

Form r12 (t,τ) = R(t)r11(t,τ )  coincides with the equation for an optimal linear operator 
in the problem of optimal linear filtration.  

If the random functions x1 (t) , x2 (t)  are connected stationary, then this equation acquires 
the form 

                                   r12 (t,τ) = R(t)r11(t − τ) . 

 If x1 (t)  and x2 (t)  are connected by a differential equation, with a corresponding 

impulse transitive function g (τ ) = g, g(−τ) = 0 , then the following equations are satisfied:  

 x2 (t)= gT (τ )x1(t − τ)dτ
0

∞

∫ ,r21(τ )= x2 (s − τ)x1(s)T ds;
0

∞

∫   

 x2 (s − τ) = gT (v)x1(s − t − τ)dv
0

∞

∫ , 

 r21(τ )= gT(v)x1(s − t − τ )x1T
(s)dsdv

0

∞

∫0

∞

∫ ,r21(τ )= gT (v)r11(t − v)dv
0

∞

∫ . 

The last one corresponds to well-known Wiener-Hoph's equation. 
By substitution it into the initial identification equation we get 

 

 
R(t,τ ) = gT(v)r11(t − v)dv

0

∞

∫0

∞

∫ • [r11
−1 (t, τ)] , 

where the weight-function satisfies to the Wiener-Hoph equation, as a condition of optimal 
filtration, based on minimization of the average mean square error.  
Because of that, R is also the optimal operator for this problem.  

This analysis shows the connections of the path fuctional’s identification equations ch.1.3 
with the above problems.  
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The condition of the operator’s symmetry is fulfilled automatically for path functional 
extremal’s differential operator satisfying the VP.  

 
Example. The object at microlevel is described by equation 
 

 
2 2

1 1( )x x xα σξ σ ξ= − + + , α < 0 . 
A simple macroequation for mathematical expectations is 

 

 
2 2

1 1[ ] [ ]x x E x E xα σ ξ σ ξ= − − + . 

Using the indications x1 = x , 1 1 2x ax x= + , we write this equation in the form 
 

 
2 2

1 2 1 2 1 1( ) [ ] [ ]x ax x ax x E x E xα σ ξ σ ξ= + = − + − + , 

 2 2
2 1 2 1 1 1 2( ) [ ] [ ] ( )x ax x E x E x a ax xα σ ξ σ ξ= − + − + − + . 

We obtain the system  
 

 1 1 2x ax x= + , 2 2
2 1 2 1 1( ) ( ) [ ] [ ]x a a x a x E x E xα α σ ξ σ ξ= − + + + − + , 

 
which corresponds to the initial equation (1.1) at  

 

 ˜ g 1 = 0 , 2 2
2 1 1[ ] [ ]g E x E xσ ξ σ ξ= − + . 

We can chose parameter a  to get the symmetrical matrix A in the form 
 

 
A =

−a,1

1,a
 , or a(α + a) = 1, a = −α / 2 ± (α 2 / 4 −1)1/ 2 . 

In this case, the condition (1.2) is satisfied and we can use it for the identification of 
equation (1.3).  

If equation (1.1) is a nonlinear, for example because of ˜ g = ˜ g (x ) , then the correlation 
matrix k  in (1.1a) depends on the parameters of the function ˜ g (x) , and for the solution we 
first, express (1.1) through the equation for mathematical expectations  

[ ]m E x= :  

 [ ( , )].m Am E g x t= +  (1.4) 
Secondly, we substitute (1.1) into (1.4):  

 

 1/ 2 [ ( , )] [ ( , )] [ ( , ) ]T Tm r E g x t E xg x t E g x t x= + − − ,  (1.5) 
and then solve the algebraic equation with respect to the above parameters of function ˜ g (x) . 
Using a serial representation of this function, we may specify the coefficient of 
decomposition via the moments of x -vector. 

 
Example. Let ˜ g (x) = xxT B, then 

                                   [ ( )] , [ ]T TE g x rB k M xB xx= = ,  
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and by substitution of above equations into (1.5) we obtain the linear equation with 
respect to the components of vector B .  

For a second order object's equation we have  
 

 
˜ g (x) =

b1x1
2 + b2 x1 x2

b1x1 x2 + b2x2
2

,
222121

122111)](~[
rbrb

rbrb
xgE

+

+
= , 

 ][][],[][

][][],[][
3
22

2
211

2
2122

2
11

2
2122

2
112

2
12

3
11

xEbxxEbxxEbxxEb

xxEbxxEbxxEbxEb
k

++

++
= . (1.6) 

 
Example. The identification of the nonlinear object's model: 
 

 ( )( ),i i j i ix a x x v= + i, j = 1,.. ,n , 

where vi  is a control, and the function ai(x j) can be an essential nonlinear; for this example, 
in the form of a jump-vise changing operator 

 

 

ai(x j) =

ϕ i(xj )

aisign[xj (t) − xj (τ )]

φ i(xj )

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 , 

α2 < [x j(t ) − xj(τ)] < α1

α1 < [x j(t) − x j(τ)] < αo

αo < [x j(t) − x j(τ)] < α3

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

. (1.7) 

In this case, the identification of unknown operator is possible at the moments of 
decoupling of the time correlations at DP{τ i}when the control executes the condition 

 

 
2( ) 2 [ ( ( ))( ( ) ) ]

ii v i j i j i ir E a x x vτ τ τ= + = ]))([())((2 2
iijviji vxExa

i
+ττ   (1.8) 

and the extraction of unknown operator from operation of conditional mathematical 
expectation takes place. Indeed. According to (1.2,1.8) we get the sought operator:  
 

 
1 2( ) 1 / 2 ( ) ( ) ( ( )) [( ( ) ) ]

ii i i i j i v j i iR r r a x E x vτ τ τ τ τ−= = +  

 
2 1{ [( ( ) ) ]}

iv j i iE x vτ −× + = ai(x j(τ i)) .  (1.9) 

 
Example. Let the object model at microlevel is described by the equation 
 

 x x xxα αβ+ + + c ˜ x + ˜ u = 0,  
with the random parameters α ,β ,c , whereα ,c  have the continuous uniform distributions 
with the means αo  ,co  accordingly.  

Writing the model in a system form, we get  
 

 1x = ˜ x 2 , 2x − c˜ x 1 − α ˜ x 2 − α β ˜ x 1 ( ˜ x 2 + ˜ v ), α β ˜ x 1 ˜ v = ˜ u . (1.10) 
The control ˜ v  is chosen from the condition of decoupling the correlation: 

])~~(~[ 2
21 vxxE +αβ = ])~~[(]~[][ 2

21 vxMxME +αβ = ])~~[(]~[ 2
21 vxMxEo +βα ,  (1.11) 
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which can be fulfilled at the control jump at DP.  
Then the matrix R(τ i)  identifies the above operator.  
The macromodel of the microlevel equations: 
 

 

1
1 2 1 1 2 2

1

, [ ], [ ]xx x x E x x E x
x

= = = , 2x =− (co

x1

x2

+ αoβ x1 +αo ), 

 u = − (co

x1

x2

v + αoβ x1 v +αo v ),  (1.12) 

is identified by the equations  

 

 

1 11

2 22

,0
0,

x R
x R

= , 1
11

1

xR
x

= =
1

2

x
x

, 2
22

2

( )
( )
xR

x v
τ

τ
=

+
=− (co

x1

x2

+ αoβ x1(τ)+αo ) .  

  (1.13) 

2.1.2.2. The Identification of the Space Distributed Object's Models 

Let us consider the object with a matrix differential equation 
 

 

∂x

∂ t
= A

∂x

∂ l
;A = A(x,t,l) , (1.14) 

where x  is vector of the state coordinates, l  is a vector of the space coordinates.  
This form (ch.1.4) is applied to some equations of mathematical physics, such as the 

diffusion, heat transfer, wave functions, Laplace's and Helmgoltz's equations.  
The identification problem consists of the restoration of the operator by observation of 

the equation's solutions (processes) in the form  
 

 x(t,l) = T1T2x0 ; T1 = T1(t, l0 ),T2 = T2( t0 , l )  (1.15) 

with the random initial conditions ( , )o o ox x t l= , and a given probability density p( xo )=po . 

The boundary conditions ( , ) ( )ox x t l x l= =  for the observed process, we assume, are 
included naturally into equation (1.15).  

At first, we determine the operator of the ordinary differential equation 
 

 

∂x

∂t
= A1 x  , A1 = A1(x,t,l) ,  (1.16) 

which according to equation (1.15), takes the form 
 

 

∂x

∂ t
=T1'T1

−1 T1T2 x0  , T1'T1
−1 = A1  , T1'=

∂
∂t

T1. (1.17) 

 
Using for the identification of equation (1.16) the relations  
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 R1 =E[ x x * ]−1 E[ x (
∂x

∂ t
) * ],  

 E[ x x * ]=E[T1T2 x0 x0
* (T1T2 ) * ]=T1T2 E[ x0 x0

* ](T1T2 ) *   (1.18) 
 
with the symmetry conditions   

 

 E[ x (
∂x

∂ t
) * ]=E[(

∂x

∂ t
) x * ], E[ x (

∂x

∂ l
) * ]=E[(

∂x

∂ l
) x * ]  

and the solutions (1.15), we come to equations 
 

 E[ x (
∂x

∂ t
) * ]=E[(T1T2 x0 x0

* *
2T *

1T *
1T * 1

1( )T − *
1T '].  

The nonrandom functions can be taken out of the operation of mathematical expectation.  
We get the equality R1 = A1  from relation  
 

 E[ x (
∂x

∂ t
) * ]=T1T2 E[ x0 x0

* ](T1T2 ) * (T1'T1
−1 ) * =T1'T1

−1 E[ x x * ]. (1.19) 

Let us determine the operator of the equation 
 

 

∂x

∂l
= A2 x ; A2 = A2 ( l ,t, x ) (1.20) 

that can be written in the form 
 

 

∂x

∂ l
=T2 T2

−1 T2 T1
* x0

* , T2 T2
−1 = A2  , T2 '=

∂
∂t

T2  . (1.21) 

By the substitution the solution of equation (1.15) into relation 
 

 R2 =E[ x x * ]−1 E[ x (
∂x

∂ l
) * ], (1.22) 

we obtain  
                                                E[ x x * ]=T1T2 E[ x0 x0

* ](T1T2 ) * ,  
and 

 E[ x (
∂x

∂ l
) * ]=T2 'T2

−1 E[ x x * ] , R2 =T2 'T2
−1 = A2 . (1.23) 

 
After substituting (1.16), (1.20) to the initial equation, we come to equality A1 x =A A2 x , 
which has to be satisfied for all nonzero x  in (1.15),(1.17),(1.19),(1.21),(1.23).  
Writing this equality in the form A1 x x * =A A2 x x * and applying the math expectations, 
we determine the unknown operator by the formula A= A1 A2

−1.  
Operator A2

−1 can be identified directly using relation  
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 R2
−1=E[ x x * ]{E[ x (

∂x

∂ l
) * ]}−1 .  

If the operators depend on the state coordinates, then the extraction of the considered 
nonlinear functions follows from the condition of decoupling of the time-space correlations, 
for example, by applying the controls u (t, l )=u (t, lo )u ( to , l ) to the object.  

For this purpose we write the equation (1.16) in the form  

                                                      
∂x

∂t
= A1 ( x +v1 ),  

where A1v1 =u (t, lo ) is the time dependable control, applied at the space point lo  of the 
space distribution; v1 =v1 (t, lo ) is the control, reduced to the state coordinates x (t, lo ).  

By analogy, we write equation 

                                                      
∂x

∂ l
= A2 ( x +v2 ),  

where A2v2 =u ( to , l ) is the control, applied at the moment to  to the space distribution; 
v2 =v2 ( to , l ) is the control, reduced to the state coordinates x ( to , l ).  

Operators (1.19), (1.23) are identified during the process of optimal movement, at first, 
by applying the optimal control u (t, lo ) at the fixed point ( lo ), and then by the distribution of 
the controls as the function of l .  

Such an identification and the optimal control are combined in the time and space.  
If the increments of the space coordinates become zeros, then we get a concentrated model.  
If the increments of the time state coordinates become zeros, then we get a static model.  
On the contrary, we will continue the identification procedure until we obtain the distributed 
model in the form (1.20).  

Some of the mass', heat transfer's and chemical kinetic's processes are described by the 
integral-differential equations: 

 

 

∂x(l)

∂ t
= A(l, l' )x(l' )dl'

l'
∫ . (1.24) 

Such a form can also be reduced to the equations in partial derivations: 
 

 

∂x

∂ t
= divL∇X  (1.25)  

with x = x (t, l ), X = X (t, l ) as the conjugate vectors and L( x , l ,t) as a matrix function of the 
kinetic coefficients.  
At X =h x  (with h as an inverse covariation function), the equation (1.25) acquires the form 

 

 

∂x

∂ t
= ∇L∇hx , (1.26) 

where ∇  is a Hamilton operator in the equation for a gradient and divergence:  
 
                                                 ∇ X =grad X , ∇ L=div L .  
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In a particular, the equation (1.25) at constant L ( l ), h ( l ) leads to a diffusion equation 
(ch.1.4) with the operator  

 R=
dr

dt
r−1 , r =E[ x x * ].  

 
The transformation of the equation (1.26) to form (1.24) is given in [16].  

Following this transformation, we write operator (1.25) in the form 
 

 
∇L∇hxδ (l − l' )dl'

l'
∫ = Adl'

l'
∫ =∇L∇h ,  

where δ ( l - l ') is a three-dimensional δ -function.  
We will identify the integral operator assuming that the solutions (1.24) are observed: 
 

 x =T1T2 x0
* ; T1 = T1(t, l0 )  , T2 = T2 (t0,l ) , x0 = x (t0, l0 ) . (1.27) 

Using (1.27) we write the equation 
 

 

∂x

∂ t
= A0 T1 T2 x0

* , A0 =T1'T1
−1 , (1.28) 

whose operator is identified by applying (1.18),(1.19). We obtain the equalities 
 

 R0 = A0 , R0 =E[ x ( l ) x ( l ) * ]−1 E[
∂x

∂ t
( l ) x ( l ) * ]. 

Using (1.24) and (1.28), and integrating both equality's sides by l , we get  

 

 l
∫ A0xdl =

l
∫ [ Adl'

l'
∫ ] x d l .  

Integral equation A0 = Adl'
l'
∫  defines the unknown operator.  

For the space variable l ' we get  
 

 A =− div A0 .  
The symmetry condition for (1.24) leads to equation  
 

 

∂R0 (l,l' ,t)

∂ l
=

∂R0 (l' ,l,t)

∂ l'
. 

 
Example. Let us consider the distributed one-dimensional object, described by the heat-

transfer equation  
 

 

∂x

∂ t
= A

∂ 2 x

∂l2 , x = x1 , l = l1, A = a2 =Const (1.29) 
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at a given initial probability density and a known initial distribution p(xo ) = p(xo, lo )  along 
the line x(to , l) = x(l) , with the solution (1.29):  

 x(t,l) = xo exp(ikl − k 2a2t ), (1.30) 
where k is a constant determined by a boarder conditions. 

The problem consists of the restoration of operator A .  
We find the solution by two steps.  

First, we identify the operator of the ordinary differential equation  

                                                
∂x

∂t
= A1x, A1 = A1(x,t,l)  

by relation 

                                           )],(),([]),([ 12
1 ltxlt

t
xEltxER

∂
∂−= .  (1.31) 

By substituting the solution (1.30) into (1.31) we obtain  
 

 R1 = −k2 a2 = A1 . (1.32) 

Then we identify the operator of equation 
∂ 2x

∂ t2 = A2 x  in its system form: 

 

∂x1

∂l
= r12x2 , 

∂x2

∂l
= r21x1 , x = x1 , 

∂x1

∂l
r12

−1 = x2 .  (1.33) 

At r12 = r21  , the symmetry condition for this operator: 

 

 
R2 =

0,r12

r21,0
 , 

∂ 2x

∂l2 = r12 r21 x1 , A2 = r12
2 ,  

is fulfilled.  
From that we find the unknown operator of the initial equation  

 

 A = A1A2
−1 = a2 . (1.34) 

Writing the system (1.33) in the form 
 

 

∂x1

∂l
= x2 , 

∂x2

∂ l
= A1x1 ,  

we satisfy the symmetry condition at A2 = −k 2 =1, which leads us directly to (1.34). 
 
Example. The distributed object is described by one-dimensional wave equation 
 

  

∂ 2x

∂ t2 =A
∂ 2x

∂l2 , A = c2 = const , (1.35) 

at the given initial conditions ( , ) ( )ox t l x l= , and the known initial probability density  
p( xo )=p( x ( to , lo )).  
The solution of the equation has the form  
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 ( , ) ( , )exp( )o ox t l x t l ikl ickt= ± ± . (1.36) 

Let us determine operator 1R  of the system 

 1 2 1 1 2( , , ) ,r l l t d d= = 121 2
12 2 21 1 1 12 21

21

0,
, , ,

, 0
ax xa x a x R a a

al l
∂ ∂

= = = =
∂ ∂

,
 

which we represent by the analogy with (1.33) in the form  
 

 

∂x1

∂l
= r12x2 , 

∂x2

∂l
= r21x1 , R2 =

0,r12

r21,0
 , r12 = r21 .  

Using the relations (1.20), (1.31) and the solutions (1.36), we get the solutions:  
 

 
R1 =

0,±ick

±ick,0
, R2 =

0,±ik

±ik,0
.  

Returning to the initial form of both equations, we come to equations 
 

 

∂ 2x

∂ t2 = A1x , A1 = a12
2  ,

∂ 2x

∂l2 = A2 x , A2 = r12
2  , A = A1A2

−1 = a12
2 r12

−2 = c2 . 

 
Example. The identification of an object, described by an integral-differential equation in 

the form 
 

 

∂x

∂t
(l1,t) = A(l1,l2 ,t)x(l2,t)d

l2

∫ l2 ; 
∂x

∂t
(l2,t) = A(l1,l2,t)x(l1,t)d

l1

∫ l1  (1.37) 

at given initial probability distribution p[x(l1
o,l2

o ,0)] = po .  
First, we identify the operators  

 

1 2

1
1 1 1 1 2 2 11/ 2 ( , ) ( , , )

l l

r l t r l l t dl dl−∫ ∫ = R1d
l1

∫ l1 ,
2 1

1
2 2 2 1 2 1 21/ 2 ( , ) ( , , )

l l

r l t r l l t dl dl−∫ ∫ = R2d
l2

∫ l2 ,  

using relations  
 

 1 2 1( , , )r l l t = )],(*),([ 12 tlxtlxE , r2 (l1,l2 ,t) = )],(*),([ 21 tlxtlxE , 
 

 r1 (l1, t) = )],(*),([ 11 tlxtlxE , r2 (l2 ,t) = )],(*),([ 22 tlxtlxE  
and the solution of system (1.37) in the form x(l1, t) = x1 , x(l2,t) = x2 . 

At computation of the functions  

 
)],(*),([2),( 111

1 tlxtl
t
xEtl

t
r

∂
∂

∂
∂

= , )],(*),([2),( 222
2 tlxtl

t
xEtl

t
r

∂
∂

∂
∂

= , 

we use the initial object’s equation and their solutions.  
We have equation 
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Etl

t
r

=),( 1
1

∂
∂

{[ A(l1, l2 , t)x(l2, t)d
l2

∫ l2 ]x * (l1, t )} .  (1.38) 

Because x (l1, t ) does not depend on l2 , we may input it under the integral sign.  
Then (1.38) acquires the form 
 

 
Etl

t
r

=),( 1
1

∂
∂

{[ A(l1, l2 , t)x(l2, t)
l2

∫ x *( l1, t)dl2 ]}.  (1.39) 

Because A(l1,l2,t) is a nonrandom function(as well as 2dl ), we may write 

 

 
212211

1 )],(*),([),,(),(
2

dltlxtlxEtllAtl
t
r

l
∫=

∂
∂

, (1.39a) 

 
R1d

l1

∫ l1 = ∫ ∫ −

1 2

12
1

1212211 )],(*),([)],(*),([),,(
l l

dlldtlxtlxEtlxtlxEtllA  

 
,),,(

1 2

12211∫ ∫=
l l

dlldtllA  

 
R2d

l2

∫ l2 = ∫ ∫ −

2 1

21
1

2121212 )],(*),([)],(*),([),,(
l l

dlldtlxtlxEtlxtlxEtllA  

 
,),,(

2 1

21212∫ ∫=
l l

dlldtllA   

and we can get the sought operators from the relations  

 

 

∂R1

∂l2
),,,( 121 tllA= ∂R2

∂l1
).,,( 212 tllA= .  (1.40) 

The symmetry conditions in the form 
 

                                                     A1(l1,l2,t) ),,( 212 tllA=   
and the equations for 

 1 2,R R   
lead to the equalities  

 

∂R1

∂l2
=

∂R2

∂l1
, 1

1
2 2 2 1 2 1

1

[ ( , ) ( , , ) ]
l

r l t r l l t dl

l

∂

∂

−∫
= 1

2 2 2 1 2( , ) ( , , )r l t r l l t−
1d=  

 

2

1
1 1 1 1 2 2

1
2 1 1 1 1 2

2

[ ( , ) ( , , ) ]
( , ) ( , , ) ,l

r l t r l l t dl
d r l t r l l t

l

∂

∂

−

−= = =
∫

  

which determines the equalization of local operators d1 ,d2  at the DP, preceding their 
subsequent cooperation. 
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2.1.3. Solving the Optimal Control Problem  

2.1.3.1. A Joint Solution of the Optimal Control and Identification Problems. 
The Basic Results 

Solving this problem is based on results of ch.1.3. Specifically from theorems T.3.1 and 
T.4.1 follow that the DPs divide the macrotrajectory on a sequence of the extremals’ 
segments, defined by the solutions of the model equations, and the regular (step-wise) 
controls are applied at each segments. These extremals provide a piece-wise approximation of 
the initial entropy functional with the aid of the controls.  

Both regular and needle δ -controls, solving the VP, we call the optimal controls, which 
start at the beginning of each segment, act along the segment, and connect the segments in the 
macrodynamic optimal process.  

The δ -control, acting between the moments ( , )k o kτ τ− also performs a decoupling 
(a“decorrelation”) of the pair correlations at these moments.  

The reduced control presents a projection of control ut  on each of the state 
macrocoordinates, which is consistent with the object’s controllability and identifiability [17, 
other]. This control specifies the structure of the controllable drift-vector ua = A ( x + v ) and 
the model  

 

 /dx dt = A ( x + v ) (2.1) 

dynamic operator, which is identifiable using the identification equations for the correlations 
functions, or the equation, connecting directly the operator  

 

 

1( ) 1/ 2 ( )( ( ) )
o

A b b t dt
τ

τ

τ τ −

−

= ∫ . (2.1a) 

with the dispersion matrix b(t).  

The control provides also the fulfillment of equality  

 
| ( ) | | ( ) |, ( ) 0, ( ) 0ji

k k i k j k
i j

dxdx o x x o
x dt x dt

τ τ τ τ= + ≠ + ≠ , , 1,...,i j n=  . (2.1b) 

which identifies each following DP according to equations sec.1.3.5.  
The reduced controls, built by the memorized macrostates, are an important part of the 

macrosystem’s structure, providing a mechanism of a self-control synthesis.  

These controls are also applied for a direct programming and the process’ prognosis.  
The solution of the optimal control problem, combined with the identification, we 

consider for the object, observed discretely at the moments τ ∈{τk }, k = 1,. .. ,m , and 
transformed by the applied control to the terminal state xT =0.  

Let us apply a transformation G to the model (2.1), transforming it to a diagonal form. 
We get the equations 
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1/ ( ), ,dz dt A z v A G AG G−= + = = ( )ijG L∈ ( Rn ), detG≠ 0,∀ t o∈ Δ ,  

 z=G x , v =Gv ,  (2.2)  
 

 xT = , 1( )ij
n
i jo O= = ⇔ zT = , 1( )ij

n
i jo O= = , 2 ( ),v z τ= −  

 

 
, 1

( , )
( ( )

( , )
jv n

ij i j
i

v
A A I

z t
τ

δ
•

=
•

= + = 1( ( ))n
i itλ = ,  (2.2a)  

where the piece-wise matrices A , A  are fixed within the intervals of the control 
discretization , 1,..., 1kt k m= − , and are identifiable at each of these intervals, while the 

matrices eigenvalues (2.2a) are connected according to relations (2.1b); I is identity matrix. 
 

Theorem 2.1 (T2.1).  
Transferring the system (2.2),(2.2a) to an origin of its coordinate system by the optimal 
controls, applied at the time intervals , 1,...,kt k m= , requires the existence of a minimum of 

two matrix’s 1( )v k n
i iA λ ==  eigenvalues, which at each of these moments satisfy the condition 

of connecting these intervals (1.3.64a,b), sec.1.3.5 in the form: 
 

 | | | |, , 1,..., , 1,..., 1k k
i j i j n k mλ λ= = = −  (2.3) 

with the number of the control discrete intervals equal to n . 
Proof. By applying (2.2), and (2.3) using the matrix function (2.2a) under the control 

12 ( )kv z τ −= − , we come to the recurrent relations connecting the nearest λ i
k , λ i

k −1 : 
 
                        1 1 1 1exp( )(2 exp( ))k k k k

i i i k i kt tλ λ λ λ− − − −= − − .                                   (2.4) 
Then solutions of (2.2) acquire the form  

 

 
1 1

1( ) (2 exp( ) ( )k k k
i k i k i kz t t z tλ − −

−= − . (2.5) 

By writing the solution on the last control’s discrete interval mt T= : 

 
1

1 1( , ) (2 exp( ) ( ) 0, ( ) 0, 1,..., ,m
i i i m i mz T T z t z t i nλ −

• − −= − = ≠ ==   (2.6) 

we get the relation, defining T through a preceding eigenvalue, which satisfies to all previous 
equalizations: 

 
 T= 1mt − +ln2/|λ i

m−1 |,λ1
m−1 >0, λ1

m−1 =λ 2
m−1 ....=λn

m−1 >0. (2.7) 
The positivity of the above eigenvalues can be reached at applying the needle controls in 

addition to the above step-wise controls.  
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If these controls are not added, more general conditions below are used. 
The equalizations of the eigenvalues at other discrete intervals, leads to the chain of the 

equalities for n ≥ m :  
 
  |λ1

m −1 |=|λ 2
m −1 |=....=|λ n

m −1 | (2.8)  

        |λ1
m − 2 |=|λ 2

m− 2 |=.....=|λ n−1
m− 2 |,…, 

          |λ1
m − i−1 |=|λ 2

m − i−1 |=....=|λ n− i
m − i−1 |,…, 

 
 |λ1

1 |=|λ 2
1 |=.....=|λ n− m+2

1 |, (2.8a) 

and for m ≥ n  leads to the following chain of the equalities: 

 

 |λ1
m −1 |=|λ 2

m −1 |....=|λ n
m−1 |, (2.9) 

         |λ1
m− 2 |=|λ 2

m− 2 |=.....=|λ n−1
m− 2 |,…,  

         |λ1
m − i−1 |=|λ 2

m − i−1 |=....=|λ n− i
m− i−1 |,…, 

 |λ1
m − n+1 |=|λ 2

m − n+1 |.   (2.9a) 

 
The system of equations (2.8), (2.9) defines the sought (m-1) moments of the controls 

discretization.  
In a particular, from equation (2.8) the relation (2.8a) follows, which is inconsistent with 

the condition of a pair-wise equalization of the eigenvalues (2.3) at n>m.  
The system (2.9) is a well defined, it agrees with (2.1),(2.2) and coincides with (2.8) if the 

number of its equations equals to the number of the equation state’s variables.  
Thus, equations (2.7), (2.8), (2.9) have a sense only when n=m.  
The n-dimensional process requires n discrete controls applied at (n-1) intervals, defined 

by (2.8), (2.3) at the given starting conditions for equations (2.2). •   
 
Remark. In the case of the matrix’ renovation, each following solution (2.5) begins with a 

renovated eigenvalue, forming the chain (2.8), (2.9).  
 
Theorem 2.2 (T2.2).  

The fulfillment of conditions (2.3) leads to an indistinctness in time of the corresponding 
transformed state’s variables: 

 

 

ˆˆˆ ˆ ,
ˆ

i i
i j ij

j j

z z
z z G

z z
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

; ˆ
ijG =

cos , sin

sin ,cos
ij ij

ij ij

ϕ ϕ

ϕ ϕ

−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

 ijϕ = arctg(
( ) ( )
( ) ( )

j k i k

j k i k

z z
z z

τ τ
τ τ

−

+
) , 0,1,2...N Nπ± =   (2.10) 
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in some coordinate system, built on the states 1(0 ... )nz z and rotated on angle ijϕ in (2.10). 

To prove we consider the geometrical meaning of the condition of equalizing of the 
eigenvalues as a result of the solutions of the equations (2.1), (2.2).  

Applying relations (2.3) to the solutions of (2.8) for a nearest ,i j , i ≠ j , we get 
 

 

d zi

zidt
=

d z j

zjdt
 ; zj ( t , • )=

zj (τk .)

zi(τk.)
zi ( t , • ), i, j = 1,...,n , k = 1,...,(n −1), (2.10a) 

where the last equality defines a hyper plane, being in a parallel to the axis 0, 0i jz z= =   

in coordinate system 1(0 ... )nz z .  

By rotating this coordinate system with respect to that axis, it is found a coordinate system 
where the equations (2.10a) are transformed into the equalities for the state variables îz  in 

form (2.10). The corresponding angle of rotation of coordinate plane (0 )i jz z is determined 

by relation (2.10). Due to the arbitrariness of k = 1,...,(n −1), i, j = 1,.. .,n  the foregoing 
holds true also for any two components of the state vector and for each interval of 
discretization. By carrying out the sequence of such (n −1)  rotations, we come to the system 

1̂ ˆ(0 ... )nz z , where all the state variables are indistinguishable in time.•   

Comments 2.1. If a set of the discrete moments (τk
1 ,τk

i ,τk
N k ) exists (for each optimal 

control vk ) then a unique solution of the optimization problem is reached by choosing a 

minimal interval τk
i  for each vk , which accomplishes the transformation of the above system 

to the origin of coordinate system during a minimal time.  
The macrovariables are derived as a result of memorizing of the states zi (τk ), 

i, k = 1,... ,n , being an attribute of the applied control in (2.2), which are fixed along the 
extremal segments.  

The transformation ˆ( )ijG G×  transfers { xi } to new macrovariables { ˆiz }, whose pair-

wise indistinctness at the successive moments {τk } agrees with the reduction of numbers of 
independent macrocoordinates. This reduction has been referred as the states' consolidation. 
The successive equalization of the relative phase speed in (2.10a), accompanied by 
memorization of zi (τk ), determines an essence of the mechanism of the states’ ordering.  

Therefore, the problem of forming a sequentially consolidated macromodel is solved in a 
real–time process of the optimal motion, combined with identification of the renovated 
operator. Whereas both equalization and cooperation follow from the solution of the optimal 
problem for the path functional.  

The macromodel is reversible within the discrete intervals and is irreversible out of them. 
Thus, a general structure of the initial object (1.1.1.1)(used also in physics), allows modeling 
a wide class of complex objects with superimposing processes, described by the equations of 
irreversible thermodynamics (ch.1.9).  
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According to the extremal properties of the information entropy, the segments of the 
extremals approximate the stochastic process with a maximal probability, i.e., without losing 
information about it. This also allows us to get the optimal and nonlinear filtration of the 
stochastic process within the discrete intervals [18].  

2.1.3.2. The Procedure of the Joint Identification, Optimal Control, 
and Consolidation 

Let an object (as the initial stochastic equation, ch.1.1.1) is characterized by unknown 
drift vector ( , )u ua a t x= (which includes the function of applied control) and a diffusion 

matrix ( , )t xσ σ= , measured via dispersion matrix 1/ 2 Tb σσ= .  

We assume that the object initial conditions sx  as well as initial [ ]T
s s sr E x x= and 

sσ are known. 
The object dynamic model is described by the macrolevel equations 
 

 , , ( )x Ax u u Av x A x v= + = = + , 
whose matrix ( , )kA A tτ= is a subject of the object identification under control 

2 ( ),v x τ= −  formed as the function of the object state vector’s macrocoordinates at the 
moments τ (of the matrix identification) and fixed during the discrete intervals kt  between 
the moments τ  of the object observation.  
The object drift vector and the model are connected by relation 

 

 ( , , ( , )) ( , )( ( , ) ( , ))u
k k ka t x t A t x t v tτ τ τ τ τ= +   (2.11)  

with the same applied control. 
Solving jointly the problems of optimal control and identification includes the following 

sequence.  
The procedure starts with applying initial control ( ) 2 [ ( )]

o

o
o t ov E xττ τ= −  at the 

moment o s oτ = +  where a related non random macrostate can be defined also via 
1/2( ) | ( ) | .i o i ox rτ τ≅   

Under this control action the initial matrix is identifies by relations  
 
 1( ) ( ) ( ), ( ) ( ( ), 1,...,o o o o i oA b r A i nτ τ τ τ λ τ−= = = .  (2.11a)  
 
The starting external control 1( ) ( ) ( ) ( )o

o o o ou b r vτ τ τ τ−= also follows from these equalities.  

Matrix (2.11a) is changing under the above controls’ action: ( , )o oA A tτ= , and by the end of 

a first interval 1kt t == , some of the matrix eigenvalues will satisfy the condition (sec.1.3.5): 
 
                                   1Im ( ) 0i ktλ = = , or 1 1| ( ) | | ( ) |i k j kt tλ λ= == ,  

which determine the interval duration.  
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At this interval’s end 1τ , the macrostate 1( )x τ is defined and a second control 

1 12 ( )v x τ= − is applied.  
Under this control action, the model matrix is identified by relations  
 

 1

1
1 1 1 1 1 1( ) ( ) ( ), ( ) [ ( ) ( )]TA b r r E x xττ τ τ τ τ τ−= = .  (2.11b) 

After that, this matrix continues to change: 1 1( , )A A tτ=  within a next interval 2kt t == of the 

applied control 1 12 ( , )v x tτ= − , when by its end 2τ  the next control 2 22 ( )v x τ= − is applied, 
and the identification of the related matrix takes place: 
 
                              

2

1
2 2 2 2 2 2( ) ( ) ( ), ( ) [ ( ) ( )]TA b r r E x xττ τ τ τ τ τ−= = ,  

and so on.  
Thus, the problem solution consists of measuring the object covariation matrix vr  and its 

derivative 2 ( )vr b τ= (or using just ( )b τ  in (2.1a)) to identify ( )A τ , and then, under action 
of the currently applied control, computing the discrete interval for applying the following 
control, when by interval’s end, the identification of new macromodel’s operator proceeds.  

Finding the discrete intervals using condition (1.364a,b), (2.3) for the macromodels of the 
second and third orders we illustrated in Examples 1.5.1, 1.5.2a, ch.1.5. 

For the model (2.2), number of the discrete intervals is equal to the number of the 
independent state variables (T2.1), and (n -1) moments of the switching control are 
determined by the considered system of the equalities at given initial conditions.  

This control is able to transfer the object to a given final state along an optimal trajectory.  
If there exists a set of the moments  (τ k

1,... ,τk
j ,. .. ,τk

N1 ) , then the unique solution of the 
optimization problem (in the terms of selection of a single kτ for each found control tv ) is 

achieved by choosing the minimal j
kτ = kτ  for each k .  

A chosen kτ  ensures a minimal time for the above transformation.  

For example, considering Cn
2 =

n!

(n − 2)!2!
 of the possible equalities (2.3):  

 

 λ i
1 =

λi
o exp(−λi

oτ1 )

2 − exp(−λi
oτ1 )

=
λ j

o exp(−λ j
oτ1)

2 − exp(−λ j
oτ1)

=λ j
1 , , 1,..., , ,i j n i j= ≠   (2.12) 

we find all roots for each of the equalities, and select a such one that corresponds to the 
minimal τ1 = min

j =1,..., N1

(τ1
1,. .., τ1

j , .. ., τ1
N1 ) , which defines the first moment of switching 

control.  
Using the indications  
 

                           
α =

γ ij
o −1

γ ij
o =α (i, j) , γ ij

o =
λ i

o

λ j
o , η = exp(−λi

oτ1)>0,  

the equality (2.12) for (λ i
1,λ j

1 ) ) is reduced to a simple form  
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ηα −

α
2

η + α −1 = 0 , (2.12a) 

which follows directly from the equalization of the eigenvalues at τ1 (following (2.3)).  
All discrete moments {τk } are found by the analogy:

   

                                       
τk = τk −1 + min

j =1,...,N1

{τk
j} j =1

Nk , τk > τk −1,  

where {τk
j  }are the roots of equations (2.12).  

The last moment of discretization τn =T (when the control is turned off), is found from 
equation (2.7), or by solving the corresponding Cauchy problem [19-21,other].  

Let us consider the procedure of the macrostate consolidation.  
The condition of the eigenvalues equalization satisfying (2.3) for the matrix: 
 

 

11 12

21 22

( ), ( ),
, ( ), ( )

v vdef ii k ij k

v v
ji k jj k

A Aa a
a

a a A A

τ τ

τ τ

⎛ ⎞⎛ ⎞
⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, a = aT , (2.12b) 

2/12
2,1 ]det)

2
)([(

2
)( aaTraTr

−±=λ , 2 2 2
11 22 12

( )( ) det ( ) 4( ) 0,
2

Tr a a a a a− = + =   

leads to a11=a22 , a12=0, e.g., to the matrix diagonalization.  

The model is reduced to the diagonal form ( )z A z v= + , 1( , )k kt t t−∈ , and then is 
transferred to a new rotating coordinate system toward achievement of the equalization of 
phase coordinates in (2.10).  
Angle ϕij of the coordinate plane’s (0zi zj ) rotation is found from (2.10): 

 

 ϕij = ),(),(
),(),(

••

••

+
−

kikj

kikj

zz
zz

arctg
ττ
ττ

Nπ± ,  (2.12c) 

for N=0,1,2,....Using the above relations for any two components of the state vector and for 
each discrete intervals 1( , )k kt t− , and providing (n -1) of such rotations, we arrive at the 

coordinate system 1̂ ˆ(0 ... )nz z , where all state variables are undistinguished in time.  
The transformation of the initial state coordinates into this coordinate system leads to an 
origin of new macrostate variables.  

Thus, during the model optimal motion, the problem of the successive states' cooperation 
gets the simultaneous solution with the identification problem.  

Because, the IPF extremal segments approximate the random process with a maximal 
information, the optimal controls, selecting these segments, also provide an optimal discrete 
filtration of random process (within each discrete interval).  

The controlled discrete filter passes a signal through only at the moments of the object 
operator renovation, when the information entropy reaches a maximum.  
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Such a device, implementing the decoupling of time-correlations, selects a stochastic 
equivalent of the extremal states by applying the discrete controls, which cut the random 
process at the moment of reaching the above maximum. 

 The discrete filter that provides both control and selection of the above points, also 
forms, computes, and applies the optimal controls.  

The nonsearch control device [18] implements the above control and filtration.  
Let us apply the dynamic model to a class of nonlinear objects, whose model can be 

presented by equation 

 ( )i i jx a x= , 
2 1

1 0

0 3

( ), | |

( ) sgn , | | , ( ( ) ( ))
( ), | | ,

i j

i j i j o j

i j

x

a x a x t x
x

φ δ δ δ

δ δ δ δ δ τ
ψ δ δ δ

< <⎛ ⎞
⎜ ⎟

= < < = −⎜ ⎟
⎜ ⎟< <⎝ ⎠

,  

 , , 1,...,i j i j n≠ = ,   (2.13) 

where 0 1 2 3, , ,δ δ δ δ  are fixed at the intervals of observations (τ , ot ); ( )i jxφ , ( )i jxψ are the 

nonlinear functions.  
For such objects, the identification of unknown operator ( )i ja x  is possible, using matrix 

1( ) 1/ 2vR rrτ −=  at the Markovian moments iτ  of decoupling the time correlations, when 

the control ( )i i iv v x=  fulfills the condition  
 

 
2 2( ) 2 [ ( ( ))( ( ) ) ] 2 ( ( )) [( ) ]

i ii i v i j i i i i i j i v i ir E a x x v a x E x vτ τ τ τ= + = + , (2.13a) 

which leads to selecting the nonlinear operator out of the sign of the conditional mathematical 
expectation. By substituting both ( )i ir τ  and 2( ) [( ) ]

ii i v i ir E x vτ = +  into ( )vR τ we come to 

 
                                        ( ) ( ( ))v i i j iR a xτ τ= .  

Fixing ( )v iR τ  simultaneously with ( )i ix τ allows restoring this, previous unknown nonlinear 
operator.  

The condition of consolidation (2.3) for equations 
 
                    ( ( ))( )i i j k i ix a x x vτ= + , ( ( ))( )j j i k j jx a x x vτ= + ,  

with controls  
 

                                    2 ( ),j j kv x τ= −  2 ( )i i kv x τ= −  
is satisfied at  
 

                                      | ( ( )) | | ( ( )) |i j k j i ka x a xτ τ= ,  

which defines the operator of cooperative model. 
 
Example. Let us start with the second order object’s stochastic equation as the microlevel 

model at [ , ]t s T∈ :  
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 d˜ x 1( t, •) = a1(t, ˜ x t ,u)dt +σ11(t )dξ1(t, •)+σ 12 (t)dξ 2 (t, •) , ˜ x 1(s, •) = ˜ x 1s ,  

 d ˜ x 2 (t, •) = a2 (t, ˜ x t ,u )dt +σ21(t)dξ1 (t, •)+σ 22 ( t)dξ 2( t, •) , ˜ x 2 (s, •) = ˜ x 2 s .  (2.14) 
 

Suppose the task at the macrolevel is given by a constant vector x t
1 = x o

1∀t ∈Δ , x o
1 ∈ R2

, 

which is chosen to be a beginning of coordinate system (0 x 1 x 2 ).  

Then at 1
t t tx x x= −  (ch.1.1), t tx x= .  

The macrolevel model tx = At ( xt +vt ) requires the identification of matrix tA  using 
 
                    1 1

1 1( ) 1/ 2 ( ) ( ) , ( ) 2 ( )v vR r r r bτ τ τ τ τ−= = , 1( , ),oτ τ τ= o s oτ = + ,        

(2.14a) 
which we specify by the following equations:  

 

 1( , )x t • = A11(t)( x1 (t,•) +v1 (t,•) )+ A12(t ) (x2 (t,•) +v2 (t,•) ), 1 1( , ) sx s x• = ,   

    2 ( , )x t • = A21(t )( x1 (t,•) +v1 (t,•) )+ A22(t) (x2 (t,•) +v2 (t,•) ), 2 2( , ) sx s x• = , 
 

1

2

( , )
( , )t

x t
x

x t
•

•

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 1

2

( , )
( , )t

v t
v

v t
•

•

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 11 12

21 22

,
( )

,
A A

A t
A A

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,                                             

(2.14b) 
 

11 12

21 22

,
,

b b
b

b b
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

=
2 2
11 12 11 21 12 22

2 2
11 21 12 22 21 22

( ), ( )1
2 ( ), ( )

σ σ σ σ σ σ

σ σ σ σ σ σ

⎛ ⎞+ +
⎜ ⎟⎜ ⎟+ +⎝ ⎠

, 

 

1 1 1 1 2 2 11 12
1

2 1 1 2 2 2 21 22

( [ ( ( , ) ( , ))]), ( [ ( ( , ) ( , ))]) ( ), ( )
( ) 2

( [ ( ( , ) ( , ))]), ( [ ( ( , ) ( , ))]) ( ), ( )
E x x t v t E x x t v t b b

r
E x x t v t E x x t v t b b

τ τ

τ τ

τ τ
τ

τ τ
• • • •

• • • •

+ +⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠⎝ ⎠

, 

 
2

1 1 1 1 2 2
2

2 2 1 1 2 2

( [( ( , ) ( , ))] ), ( [( ( , ) ( , ))( ( , ) ( , ))])
( )

( [( ( , ) ( , ))( ( , ) ( , ))]), ( [( ( , ) ( , )) ])v

E x t v t E x t v t x t v t
r

E x t v t x t v t E x t v t
τ τ

τ τ

τ
• • • • • •

• • • • • •

⎛ ⎞+ + +
= ⎜ ⎟⎜ ⎟+ + +⎝ ⎠

, 

 

2

1 1 1
2

0, 1

1 , 1

[ ] ( , ) , , [ , ),
[ ]

[ ] ( , ) , , [ , )

o o o o
R

R

E P x dx x x t
E

E P x dx x x t Tτ τ τ τ

τ τ τ

τ τ

•

•

•=

⎧ ⎫= = ∈
⎪ ⎪⎪ ⎪= ⎨ ⎬

= = ∈⎪ ⎪
⎪ ⎪⎩ ⎭

∫

∫
.                                        (2.15) 

The object observation is a discrete time process with the elements of At  as the piece-wise 

functions of time, which are fixed within each of two discrete intervals 1[ , )oτ τ ,(τ1,T] , 

while the controls ( ) 2 ( )t tv o x oτ τ± = − ±  are applied at the localities of these moments: 
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 1 1 1

1 1 1 1( ( ), ( ), ( ), ( ))o
o o oo o o o T oτ τ τ τ τ τ τ τ± = = + = − = + = − .                           (2.15a) 

This identification problem consists of the restoration ( )tA τ by known ( )b τ , 1( )r τ , 

using here the model solutions ( , )tx t • (with the applied controls ( , )tv t • ), which are  
considered to be the equivalents of the object under observation.  

Using (2.14a,b),(2.15) , we write (2.14a) via these solutions in matrix forms:  
 
                               ( ) [( ( , ) ( , ))( ( , ) ( , )) ]T

v t t t tr t E x t v t x t v t• • • •= + +  
and  

1( ) [ ( , )( ( , ) ( , )) ( ( , ) ( , )) ( , ) ]

[( ( , ) ( , ))( ( , ) ( , )) ] [( ( , ) ( , ))( ( , ) ( , )) ] ,

T T
t t t t t t

T T
t t t t t t t t t t

r t E x t x t v t x t v t x t

A E x t v t x t v t E x t v t x t v t A

• • • • • •

• • • • • • • •

= + + +

= + + + + +
which at  t τ= , ( ) 0tv τ = , acquire the view  

 

                     ( ) [ ( )( ( ) ] ( )T
v t tr E x x rτ τ τ τ= = 1( ) ( ) ( ) ( ) ( )t tr A r r Aτ τ τ τ τ= + .  

After substitution these relations in (2.14a), at symmetrical ( )r τ , ( )tA τ , we come to 
 

                          
1( ) ( )v tR Aτ τ= or 1 1( ) ( ) ( ) ( ),v tR b r Aτ τ τ τ−= =                                  (2.15b) 

which validate the correctness of the identification relation (2.14b).  
It’s seen that 1( )vR τ  does not depend on the probability distributions of an initial state 

vector, which is important for many applications.  
Let us have the matrix, identified at the first moment oτ :  

                                       

2,3
( )

3,10oA τ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  

with eigenvalues        λ1
0 =11, λ 2

0 =1.  
At xt +vt = yt , the fundamental system and general solutions of (2.14a) within interval 

1[ , )ot τ τ∈  under control 1( , )o
t o ov τ τ  have the forms:: 

 

 Yt = 11 12

21 22

( ), ( )
( ), ( )

y t y t
y t y t

⎛ ⎞
⎜ ⎟
⎝ ⎠

=
exp(11 ),3exp(11 )

3exp(11 ),exp( )
t t

t t
⎛ ⎞
⎜ ⎟−⎝ ⎠

, x0 = 10

20

x
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

, y0 =− x0 , 

 y1 (t, •)=C1 exp(11t) − 3C2 exp(t) , y2 (t,•) =3C1 exp(11t) +C2 exp(t) .  
 

Using the following initial conditions and constantsC1 ,C2 : 
 

 C1 − 3C2 =− x10 , 3C1 +C2 =− x20 ,C1 =− 0.1( x10 +3 x20 ), C2 =0.1(3 x10 − x20 ), 
we get the solution of Caushy problem in the form 
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 y1 (t, •)=− 0.1[ x10 (exp(11t) +9exp(t))+3 x20 (exp(11t) − exp(t))], 
 y2 (t,•) =− 0.1[3 x10 ( )11exp( t )− exp(t))+ x20 (9exp(11t) +exp(t))]. 

Then we find the moment τ1  of switching the optimal control using condition (2.3) in the 
form 

                          

1 1 1 1 2 1

1 1 1 1 1 2 1

( ) 11 exp(11 ) 3 exp( )
( ) ( , ) exp(11 ) 3 exp( )o

x t C t C t
x t v C t C tτ •

−
=

− + −  

 

2 1 1 1 2 1

2 1 2 1 1 2 1

( ) 33 exp(11 ) exp( )
( ) ( , ) 3 exp(11 ) exp( )o

x t C t C t
x t v C t C tτ •

+
= =

− + +
, 

                                    1 1( ) 2 ( )o
o ov xτ τ= − , 2 2( ) 2 ( )o ov xτ τ= − .                                    (2.16) 

 
We get equation  

 1 1 15exp(11 ) 11exp(10 ) 1 0, 0t t t− + = >  (2.16a) 

having the unique root τ1 ≅ 0.7884. 
Application of formula (2.12a) also leads to (2.16), using parameters  

 

 γ 12
o =γ 12

o =
λ1

o

λ2
o =11, α =10/11, η =exp(11t) .  

These relations illustrate the independency of the discrete moment on a chosen coordinate 
system.  
The model solution within interval 1( , ]t Tτ∈  have the forms 
 
                             1 1 1 2 2 1( ) (2 exp(0.7 ) ( ); ( ) (2 exp(0.7) ( ).x t t x x t xτ τ= − = −      (2.16b)   

We also obtain the eigenvalues at momentsτ1  and the final T: 

 

1 1
1 2 1 1

1

ln 211, 0.851,Tλ λ τ
λ

= ≅ = + ≅ )( 1τA ≅
11,0
0,11

⎛ ⎞
⎜ ⎟
⎝ ⎠

 .  (2.17) 

If the identified matrix is negative: 

                                     
2, 3

( )
3, 10oA τ

− −⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

,  

then the momentτ1  is found by analogy:  
 

1 1 1 1 2 1

1 1 1 2 1 2 1 1 2 1

11 exp( 11 ) 33 exp( ) exp( )
( ) exp( 11 ) 3 exp( ) ( ) 3 exp( 11 ) exp( )o o

C C C
v C C v C C

τ τ τ
τ τ τ τ τ τ

− − + −
=

− + − − − − + − + −
  

   (2.17a) 
This equality leads to equation  
 

15exp( 11 ) 11exp( 10 ) 1 0, 0t t t− − − + = >  having root τ1 ≅ 0.193. 

The negative eigenvalues at this moment τ1: 
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                                                λ1
1 =λ 2

1 ≅ − 0.7                                                     (2.17b) 
are changed by applying the needle control, which brings 

                                                   λ1
1 =λ 2

1 ≅0.7,   

with T=0.193+
ln 2

0.7
≅ 1.187 .  

Applying both identification’s and model’s equations, we can find the model matrix at the 
moment τ1  whose elements are determined by relations 

 

 )( 111 τA =
2exp(12τ1 ) − 2.2exp(11τ1) − 1.8exp(τ1 )

exp(12τ1) − 2exp(11τ1) − 2exp(τ1 ) + 4
,  

                  )( 112 τA = )( 121 τA =
3(exp(12τ1 ) − 2.2exp(11τ1 ) + 0.2exp(τ1 ))

exp(12τ1) − 2 exp(11τ1 ) − 2 exp(τ1) + 4
, 

                   )( 122 τA =
10exp(12τ1 ) −19.8exp(11τ1) − 0.2 exp(τ1 )

exp(12τ1) − 2exp(11τ1) − 2exp(τ1 ) + 4
.              (2.17c) 

 
The numerical solutions for this matrix are: 

 

 )( 1τA ≅
11.006, 0.00077

0.00077,11.004
−⎛ ⎞

⎜ ⎟−⎝ ⎠
≅

11,0
0,11

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (2.17d) 

 
Comparing both results for )( 1τA (2.17) and (2.17d) we come to the conclusion that we 

have identified At∀t ∈(τ1,T )  with a high precision (defined by a computation accuracy), 
which does not depend on a chosen coordinate system.  

The step-wise control provides changing the matrix ( )A τ  sign at any of τ -localities. 

The optimal processes within the discrete interval 1( , )t Tτ∈  with the matrix’ eigenvalues 
(2.17d): 

 1 1 1 2 2 1( ) (2 exp(11 ) ( ); ( ) (2 exp(11 ) ( ),x t t x x t t xτ τ= − = −  
are distinctive only by the starting states ( 1 1( )x τ , 2 1( )x τ ).  
Analogous form has optimal processes with the matrix negative eigenvalues in (2.17b): 

 

 1 1 1 2 2 1( ) (2 exp(0.7 ) ( ); ( ) (2 exp(0.7 ) ( ).x t t x x t t xτ τ= − = −   
 
Therefore, the matrix’ identification proceeds during the optimal control action at each 
extremal segment.  

Let us determine the phase trajectories of the dynamic model at both discrete intervals.  
At first, we will find these trajectories for the diagonalized system at 1[ , )ot τ τ∈ : 
 

 

dz1

dz2

= −
−λo

1

− λ0
2

z1

z2

, 2 1/
2 1| |

o o

z z λ λι= ± , ι ∈R1 , 2 1/
2 1| | ( ) / ( )

o o

o oz z λ λι τ τ± = . 
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The phase trajectories of this system (Fig.1.1a,b) present the ι  -parametrical family of the 
curves with a singular tangle-point in (0,0) (a “knot”).  

 

Figure 1.1.(a-c). The phase pictures of dynamic model in the initial coordinate system at the first 
discrete interval. 

The phase picture (Fig.1.1a) is turned over on the angle ψ , defined by transformations 

 Gt =G =
cos ,sin

sin ,cos
ψ ψ

ψ ψ
⎛ ⎞
⎜ ⎟−⎝ ⎠

 , 1[ , )ot τ τ∈ , G−1=GT , detG =1,  

 
and we come to the following equations 

 

 zt =G xt , tz =G tx ( )oGA τ= ( xt +vt ) ( ) T
oGA Gτ= ( zt +v t ),  

 ( ) T
oGA Gτ =

0
1

0
2

, 0

0,

λ

λ

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

.  

At the initial eigenvalues 0
1λ = 11− ,λ 2

0 = 1− , let us find angle ψ .  
We get relations  

 

( ) T
oGA Gτ = 11 12 11 12

21 22 21 22

(( ) cos ( ) sin ), ( ( ) sin ( ) cos )
(( ) cos ( ) sin ), ( ( ) sin ( ) cos )

GA GA GA GA
GA GA GA GA

ψ ψ ψ ψ
ψ ψ ψ ψ

+ − +⎛ ⎞
⎜ ⎟+ − +⎝ ⎠  
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 =
11,0
0,1

⎛ ⎞
⎜ ⎟
⎝ ⎠

,  

( )oGA τ = 11 21 22 12

11 21 12 22

( cos sin ), ( sin cos )
( sin cos ), ( sin cos )
a a a a

a a a a
ψ ψ ψ ψ
ψ ψ ψ ψ

+ +⎛ ⎞
⎜ ⎟− + − +⎝ ⎠

, 

 a11 cos2 ψ +a12 sin2ψ +a22 sin2 ψ =11, 
and the equations for the anglesψ are: 

 

 

1

2
(a22 − a11 )sin2ψ +a12 cos2ψ =0, a11 sin2 ψ − a12 sin2ψ +a22 cos2 ψ =1;  

 tg2ψ =2
a12

a22 − a11

=− 0.75, ψ =
1

2
arctg2

a12

a22 − a11

+
kπ
2

,  

 k=0,± 1,± 2,…., ψ1=ψ |k= 0 ≅ −
π
2

, ψ 2 =ψ |k = −1 ≅ −0.6π , ψ 3 =ψ |k =1 ≅ 0.4π .  

 
From the same equations we get the equality 

 

 cos 2ψ =
(11 −1)(a22 − a11)

(2a12) 2 + (a22 − a11)2 =− 0.8,  

which leads to the equivalent expressions for ψ  at both intervals, because of the fulfillment 
of  
 
                                                    cos2 2ψ ≡ (1 + tg 2 2ψ )−1 .  
 

The model phase picture in the initial coordinate system (0 x1 x2 ) is given on Figs.1.1b-d, 
which we got after turning the coordinate system on Figs.1.1a (with the phase picture) on the 
angles ( 1 2 3, ,ψ ψ ψ ), determined by the matrix’s identified components (2.17c).  

We come to  
 
a11(x1 +v1) x2 +a12 (x2 +v2 ) x2 =a21( x1 + v1 ) x1 +a22 ( x2 + v2 ) x1 ;a12=a21; (2.18) 

' 2 ' ' 2 ' ' '
11 1 12 1 2 22 2 13 1 23 2 232 2 2 0,a x a x x a x a x a x a+ + + + + =   

where 
' ' ' '
11 21 12 22 11 22 12 13 21 1 22 2; 1 / 2( ); ; 1 / 2( );a a a a a a a a a v a v= = − = − = −  
' '
23 11 1 12 2 331 / 2( ), 0a a v a v a= − + = . 

 
The equation of a second order for a line (2.18) we will transform to a canonic form after 

transferring the beginning of the line’s coordinate system into the line's center, using equation  
 

  ' ' 2 ' ' ' ' ' 2
11 1 12 1 2 22 2( ) 2 ( )a x a x x a x+ + +

I3

I2

=0, (2.18a) 
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where x= x1
' + xo and xo =( x1

o , x2
o ) are the coordinates of the beginning of system coordinates 

(0 x1
' x2

' ) being transformed into the system coordinates (0 x1 x2 ), which satisfy the equations  
 

 
' ' ' ' ' '
11 1 12 2 13 12 1 22 2 230, 0,o o o oa x a x a a x a x a+ + = + + =   

with the parameters of transformation  
 

 I2=det
' '
11 12
' '
12 22

,

,

a a

a a

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=det 12 22 11

22 11 12

,1/ 2( )
1/ 2( ),
a a a

a a a
−⎛ ⎞

⎜ ⎟− −⎝ ⎠
=inv, I2=− 25,  

 

 I3 = det

' ' '
11 12 13
' ' '
12 22 23
' ' '
13 23 33

, ,

, ,

, ,

a a a

a a a

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=det
1 2

1 2

1 2 1 2

3, 4,1/ 2(3 10 )
4, 3, 1/ 2(3 2 )
1/ 2(3 10 ), 1/ 2(3 2 ),0

v v
v v

v v v v

+⎛ ⎞
⎜ ⎟− − +⎜ ⎟
⎜ ⎟+ − +⎝ ⎠

, 

 

 I3 = −1 / 4 (33v 2
1 +327v2

2 +196v1 v2 )=inv, 

                                  

I3

I2

=− 0.01(33v 2
1 +327v2

2 +196v1 v2 ).                                  (2.18b) 

After a simplification we obtain the equations 
 

 a "
11 (x1

" )2 +a "
22 (x2

" ) 2 +
I3

I2

=0, 
"
1
"
2

x

x

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=
cos ,sin

sin ,cos
ϑ ϑ

ϑ ϑ
⎛ ⎞
⎜ ⎟−⎝ ⎠

'
1
'
2

x

x

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

,  

 ctg2ϑ = a'
11 − a'

22

2a'
12

=0.75;  

 

 I2=inv<0; I2=det
" "
11 12

" "
12 22

,

,

a a

a a

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=det
"
11 " "

11 22"
22

, 0
0

0,

a
a a

a

⎛ ⎞
= <⎜ ⎟⎜ ⎟

⎝ ⎠
, 

 
" '
11 12a a= sin 2 ϑ + a'

11 − a'
22

2
cos 2 ϑ , "

11a > 0
def

,  

 
" '
22 12a a= − sin 2 ϑ − a'

11 − a'
22

2
cos 2 ϑ , "

22a < 0
def

. 

 
At I3<0 we get the canonical equation of a hyperbola with respect to the real axis (0' x1

") and 

the imaginary axis−  (0' x2
" ) (Fig. 1.2a):  

 

(x1
" )2

[(
I3

I2 a"
11

)
1

2 ]2

− (x2
" )2

[(
I3

−a"
22 I2

)
1

2 ]2

=1.  (2.19) 

At I3>0 we come to other hyperbola on Fig.1.2a, with respect to the real axis (0' x2
" ) and 

the imaginary axis− (0' x1
"):  
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(x1
" )2

[(− I3

I2a
"
11

)
1

2 ]2

− (x2
" ) 2

[(
−I3

−a"
22 I2

)
1

2 ]2

=− 1. (2.20) 

 
At I3=0 we get a couple of the equations that satisfy to the coordinates of the points, located 
on the straight lines, represented the asymptotes of the hyperbolas (2.19),(2.20) (Figs. 1.2b,c): 

 

 

x1
"

(
1

a "
11

)
1

2

+ x2
"

(
1

− a"
22

)
1

2

=0, x1
"

(
1

a "
11

)
1

2

− x2
"

(
1

− a"
22

)
1

2

=0. (2.21) 

 
On the coordinate plane (0' x1

" x2
" ), the phase picture of relation (2.16) represents a couple of 

the conjugated hyperbolas with the asymptotes, defined by equation (2.21) and a saddle 
singular point (0,0) (Fig. 1.2d). 

 

 

Figure 1.2. The phase pictures of the dynamic model (a-c) and the relation (2.16) (d) at the second 
discrete interval after the transforming to the initial coordinate system. 

The phase trajectories of the dynamic system at the second discrete interval, after 
switching the control, are  

 1 11 1 1( , ) ( 0) ( , )y t A y tτ• •= + =λ1
1y1(t, •) , t ∈(τ1,T ) , 
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2 ( , )y t • = A22 (τ 1 + 0) y2 (t, •) =λ 2
1 y2 (t, •) , λ1

1 =λ 2
1 ; 

dy1

dy2

=
y1

y2

, y1 = ±|C| y2 , C ∈ R1 , 

± |C | =
y1(τ1,•)

y2 (τ1,•)
=

x1 (τ1, •)

x2 (τ1,•)
; x1 + v1 =

x1 (τ1, •)

x2 (τ1,•)
( x2 + v2 ).  

 
The phase picture at t ∈(τ1,T)  presents a family of the straight lines 

                               

1 1
2 1

1 1

( , )
( , )

xx x
x

τ
τ

•

•
=                                                                        (2.22) 

with parameter 
),(
),(

12

11

•

•

τ
τ

x
x

. 

The phase picture of equality 

                              1 1

1 1

( , )
( , )

x
x

τ
τ

•

•
= 2 1

2 1

( , )
( , )

x
x

τ
τ

•

•
, t ∈(τ1,T )   

has the form  
 

A22 (τ 1 + 0) v2 (τ1 + 0 ) x1 (t,•) = A11 (τ 1 + 0 ) v1 (τ1 + 0 ) x2 (t,•) , x1 =
x1 (τ1, •)

x2 (τ1,•)
x2 .  (2.23)  

At the second discrete interval, the phase pictures of the dynamic model (2.23) and 
relation (2.22) coincide.  

Because of that, their relative phase speeds are equal at t ∈(τ1,T ) , when the dynamic 
system's differential constraint (2.17) is imposed on the extremals by the microlevel’s 
stochastics (via Kolmogorov’s equation (ch.1.3)).  

The comparison of the Figs.1.1,1.2 for (2.22),(2.23) illustrates the geometrical 
interpretation of the constraint action.  

At the moment of applying the control, the phase pictures of the dynamic model and 
relation (2.15) are changed by the jumps. This leads to the renovation of matrix A (τ1 + 0)  
with respect to matrix A (τ1 − 0) , and it creates the new model's peculiarities.  

Let us find the jump of the phase speed at 1τ :  
 

      xδ (τ1, •) =(τ 1, •) = x (τ 1 + 0, •) − x (τ 1 − 0, •)  
              =− A (τ1 + 0) x (τ1, •) − A (τ1 − 0) ( x (τ1, •)+v0 ) 

                =− ( A (τ1 + 0)+ A (τ1 − 0) ) x (τ1, •)+2 A (τ1 − 0) x0  
                       =[− A (τ1 + 0)+ A (τ1 − 0) Y (τ 1) +2 A (τ1 − 0) )] x0 . 

 
Remark.  

The values  ϖi = lim
t→ ∞

1

t
ln

δxi(xi ,t)

δxi(xi , 0)
 (2.23a) 
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define the Lyapunov indicators (ch.1.9) (as an averaged speed of the exponential divergence 
of the nearest trajectories), whose positive sum is connected to Kolmogorov's differential 
entropy hϖ : hϖ = ϖi

i
∑ .  

For the classical integrated Hamiltonian systems, all indicators equal to zero and hϖ ≡ 0 •.  
From the phase speed's expressions and the previous relations we have  
 

 A (τ1 + 0)+ A (τ1 − 0) ≅
13,3
3,21

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 2 A (τ1 − 0)=
4,6
6, 20

⎛ ⎞
⎜ ⎟
⎝ ⎠

;  

 

13,3
3, 21

⎛ ⎞
−⎜ ⎟

⎝ ⎠
Y (τ 1) +

4,6
6, 20

⎛ ⎞
⎜ ⎟
⎝ ⎠

=K= 11 12

21 22

,
,

K K
K K

⎛ ⎞
⎜ ⎟
⎝ ⎠

, xδ (τ 1, •) =K x0 , 

 

 K11 =2.2exp(11τ1 )+10.8exp(τ1 ), K12 = K21 =6.6exp(11τ1 )− 3.6exp(τ1 ), 

 K22 =19.8exp(11τ1 )+1.2exp(τ1 )− 22. 
At τ1 =0.7884, we obtain the numerical results:  

 

K=
12848.65,38532.75
38532.75,115602.66

⎛ ⎞
⎜ ⎟
⎝ ⎠

,  

which determine the values of both jumps:  

1xδ (τ 1, •) =51381.4, 2xδ (τ 1, •) =154135.41 at x0 =
1
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Therefore the changes of model’s original nonlinear operator are also identified at the 
DP ( )iτ  by the jump-wise sequence of ( )iA τΔ .  

For the solution of the consolidation problem, we rotate the initial coordinate system on 
angle ϕ  to find such a coordinate system (0 z1

' z2
' ), where the optimal processes are 

undistinguished.  
Using the relations for consolidation, we get  
 

 ϕ 12 =ϕ =arctg(
x2 (τ1, •) − x1(τ1, •)

x2 (τ1, •) + x1(τ1, •)
)+kπ , k=0,± 1,± 2,...,  

 

 x (τ1, •)= 1 1

2 1

( , )
( , )

x
x

τ
τ

•

•

⎛ ⎞
⎜ ⎟
⎝ ⎠

=
5839.294,17511.88
17511.88,52537.66

⎛ ⎞
⎜ ⎟
⎝ ⎠

1
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

=
23351.17
70049.54

⎛ ⎞
⎜ ⎟
⎝ ⎠

, at x0 =
1
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

and the angle  

                            ϕ =arctg
46698.37

93400.71
+kπ ≅ arctg0.5+kπ , ϕ | k =0 ≅ 0.1472π . 

Applying to the equal model eigenvalues (2.17d) a transformation, leading to the equalization 
of corresponding state coordinates 1 1 2 1( ) ( )x xτ τ= , allows us to characterize each pair of the 
state vectors by a single joint vector.  
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The consequent realization of this process for a multi-dimensional system leads to building 
the object’s cooperative information network (IN), considered in the next section.  

The identification method depends on the accuracies of computing the correlations 
functions ( )ij kr τ  and on the feedback effect in a close-loop control.  

The identification of the actual object’s operator in the close-loop control has been 
implemented on the electro-technological process using a direct measuring of the diffusion 
conductivity according to (sec.1.9.4).  

It expedites the close-loop dynamics and minimizes the related error, compared to 
statistical method of computing the correlation function.  
This error was not exceeded 10%. 

The considered results explain the procedure and the numerical solutions of the joint 
optimal control, identification, and consolidation problems, which brings the state’s 
cooperation during the optimal control and identification.  

Let us show that the synthesized optimal controls provide both the identification of A 
(and/or A ) and solving the Boundary-value problem.  

We prove it by reducing the object's equation (2.1) to a diagonal form via transformations  
 
                                        z = T x, A = T −1AT .  
The problem consists of transferring the equation's solution  
 

 z( t) = exp (λ (t − τ ))z(τ ) + (exp (λ (t − τ) ) − 1)u  (2.24) 
from its initial condition z( to = s) = z(s)  to a given final state z(T )=0 by applying the 
optimal control u = u (s,τ) .  

This control is represented by the piece-wise function of the state vector z( s,τ ) = z( τ i )  
at the control's discrete points τ = {τ i}  and with some coefficients of control's amplification 

 
                                            μ = {μ i} : u = μz(s,τ ) .  

Matrix A  is a piece-wise function, whose eigenvalues {λ i } are fixed at τ = {τ i}  and 
are identified by the corresponding correlation functions r( t)  using  

 

 
1( ) 1/ 2 ( ) ( ), ,i iR t r t r t R R r r−= = = , r( t)= )],(),([ tsztszE T   (2.25) 

with z(s, t)  (2.24) at the corresponding time interval.  
The amplification’s coefficients satisfy the condition  

 

 ( )1 1 1
( , ..., , ) 0 n

n i i
z Tμ μ − =

=  (2.26) 

at a sought final moment T.  
We analyze this problem solution considering a three-dimensional matrix (3 3× ) in 

(2.25), with a maximum of three discrete intervals (i =1,2,3), applying the optimal controls 
at these intervals: 

 

 u1 = −2z(s) , u2 = μ 2z(s + τ 1) + (μ 2 + 1)u1 , u3 = μ 3 z( s + τ 2 ) . (2.27) 
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The eigenvalue within the first discrete interval is identified by the relation 
 

 R1 (t − s )=−λ1 exp(λ1(t − s))[(2 − exp λ1(t − s)]−1 ,  

 R1( s − 0) =λ 1 , R1 (s + 0) = 1λ− ,  (2.28) 
and within the second discrete interval we get  

 

R2 (t − (s + τ1)) =λ 2 ((t − (s + τ 1)) =λ1[1 − 2(2 − exp(λ1τ 1)
−1 ]exp[λ2 (t = (s + τ 1)]  

 × {exp[λ 2 (t − (s + τ1)](1+ μ 2 )[1− 2(2 − exp(λ1τ1 )−1]+ 

 [2(1 + μ 2 )(2 − exp (λ1τ1 )−1 − μ 2 ]}−1

.                                               (2.28a) 
 
From that, at the moment t = ( s + τ 1)  we get  
 
                                                     R2 (s + τ1)=λ 2 = λ1[1 − μ 2]

−1 .  
The last equation identifies the second eigenvalue as the function of the control’s coefficient. 
The eigenvalue at third discrete interval t = s + τ 1 + τ 2  is identified by relation  

 

 R3 (s + τ1 + τ 2 + 0) =λ 3 =λ1[1 − 2(2 − exp(λ1τ1) −1 ]exp[λ2 (τ 2 )]  
              ×{(1 + μ3 )[exp[(λ 2τ2 )](1 + μ2 )[1 − 2(2 − exp(λ1τ1)

−1]  
                               +[2(1 + μ 2 )(2 − exp (λ1τ1 )−1 − μ 2 ]}−1 .  (2.28b) 
 

Let have  
 
μ 2[2 (2 − exp(λ1τ1 )−1 − 1] + 2(2 − exp(λ1τ 1) −1 = β[1 − 2(2 − exp(λ1τ 1) −1 ]   
at β = −[μ 2 + 2exp(−λ1τ1 )−1] .  

 
Then formula for λ 3  acquires the form: 

 

 λ 3 =
λ1 exp[λ 2(τ2 )]

(1 + μ3){[exp[(λ 2τ2 )](1 + μ2 ) − [μ2 + (2exp(−λ1τ1 )−1]}
 (2.29) 

 
and the solution of the equation at the last discrete interval is 

 
z( t − (s + τ1 + τ 2 )) = [exp (λ 3 (t − ( s + τ 1 + τ 2 ))(1 + μ 3 ) − μ 3 ]z( s + τ 1 + τ 2 ) . (2.30) 
 
This solution reaches the final state z( T = s + τ1 + τ 2 + τ 3) = 0   
if exp [λ 3( T − s + τ1 + τ 2 )] =μ3[1 + μ3 ]−1.  

The equation (2.29) has a solution only at the condition 
 

 [exp[(λ 2τ2 )](1 + μ 2 ) − [μ2 + (2exp (−λ1τ1 )−1] >0. (2.30a) 
Indeed. At 
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                                                                 μ 3 >0,  
we have 
 
                                                           μ3[1 + μ3 ]−1<1,  
and therefore  

                                                        exp [λ 3 ( T − s + τ1 + τ 2 )] <1,  
 
from which 
                                                                      λ 3 > 0 ;  
and at the condition (2.31) is fulfilled because  
 
                                                              λ1 < 0 , 1 + μ 3 < 0 .  
At 

                                                  μ 3 < −1 < 0 ,μ3[1 + μ3 ]−1 >1  
we get  

                                                        exp [λ 3 ( T − s + τ1 + τ 2 )] >1.  
From that follows λ 3 > 0 and the fulfillment of (2.31), because  
 
                                                                 λ 1 < 0 ,1 + μ 3 > 0 .  
Using condition (2.30a) we come to relations 

 

 μ 2 (exp(λ2 τ 2) − 1)exp (λ 2τ 2 ) − 2 exp(−λ1τ 1) > 0 ,  
 μ 2 (exp(λ2 τ 2) − 1) > exp (λ 2τ 2 ) − 2 exp(− λ1τ 1) .    (2.30b) 

Let 

                                               μ 2 < −1, λ 2 < 0 , exp (λ 2τ 2 ) < 1,  
then the relation 
 
                                                          μ 2 (exp(λ2 τ 2) − 1   
is a negative at μ 2 > 0 , or it is a positive at −1 < μ 2 < 0  and cannot exceed 1.  
Relation  
                                                       2 exp(− λ1τ 1) − exp(λ 2τ 2 )>1,  
and therefore inequality (2.30b) cannot be true at μ 2 < −1. 
Thus we come to  

 μ 2 < −1, λ 2 > 0  and exp (λ 2τ 2 ) > 1,  

 0 > μ2 > [2exp (−λ1τ1 ) − exp(λ2 τ 2 )][exp(λ2τ 2 ) − 1]−1.  
 
This means that we have relations:  

 0)]exp()exp(2[ 2211 <−− τλτλ ,  

                                           exp (λ 2τ 2 ) > 2 exp (−λ1τ1 ) ,  

 )exp()2exp(ln)exp( 1122 τλτλ −> , 

 λ 2τ 2 > ln 2 − λ1τ 1, λ1[1 + μ 2 ]−1 τ2 > ln 2 − λ 1τ1 , 
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μ2 >

2exp(−λ1τ1 ) − exp(λ 2τ2 )

exp(λ 2τ2 ) −1
,  

   μ2 >
2exp(−λ1τ1 ) − exp(λ 2τ2 ) −1 +1

exp(λ2τ2 ) −1
= 1

1)exp(
1)exp(2

22

11 −
−

−−
τλ

τλ
,μ 2 < −1;  

                          2 exp(− λ1τ 1) − 1>1, λ 2 > 0 , exp (λ 2τ 2 ) − 1 >0. 
 

The following condition:  

μ2 > −1+
2 exp(−λ1τ1) −1

exp(λ 2τ2 ) −1
> 0   

contradicts to μ 2 < −1.  
This means that μ 2  can be chosen equal − 2.  
 

Therefore, we finally get 
 
                       3λ ≅ −

1
31 ]1[ −+ μλ   

at the initial λ 1( s = t o) > 0 , and μ 3 =− 2.  
The optimal process is analogous to shown on Fig.1.5.3 (having just two discrete time 
intervals). 

Thus, the optimal control in the form v = −2x(τ )  satisfies the considered Boundary-
value problem.  

The IMD approach leads to the solution of both the optimal problem for information path 
functional and, in particular cases, to the Cauchy (Boundary-value) problem for a many-
dimensional dynamic object.  

Comparing to Bellman's method of dynamic programming [24], the IMD achieves the 
solution of a "bottleneck"-dimensional problem by the successive consolidation and reducing 
the model's dimensions and finally reaching a single dimension in the IN’s upper level nodes 
(ch. 1.5).  

The IMD model is able to reveal a nonlinear structure of an object, whose dynamics and 
structure are changed in the process of functioning, with a possibility of the sequential 
adaptive control and identification at each model's time-space interval.  

The IMD also brings a constructive integral measure of current information, which 
evaluates both the concurrent observation and modeling, and leads to a direct computer 
implementation of the considered method and procedure of the joint optimal control, 
identification, consolidation, and filtration. 

2.1.3.3. Building the Object Cooperative Information Network  

The object random process, approximated by a sequence of the extremal segments; is 
identified by the object diffusion matrix ( ), 1,.. , 1, ..,j kb j n k mτ = = (according to (2.1a)) at 

the segment’s punched locality, preceding each current segment.  
Thus, a total model’s macrotrajectory is determined by the sequence of both the identified 

punched localities (window) and above diffusions at the window.  
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A cooperative macroprocess is formed by the sequential selecting of the extremal 
segments and sticking the nearest segments in a chain by applying both the regular and 
“needle” controls.  

The object macrotrajectory with n extremal segments requires ( 1)n −  of such controls. 

Each of them needs a minimal quantity of information 2(  )o o+ ≅a a a  bit to perform both 
control tasks.  

Hence, the macrotrajectory can be encoded by a sequence of the segment diffusions 
(identified at the windows) and both the regular and the needle controls, producing the 
segments’ chain.  

If a quantity information needed to encode the diffusions is bH , then a total chain can be 

encoded by quantity of information cH  equals  
 

 ( 1)c b oH H n≅ + −a , (2.31) 
where a minimal codeword length is found using the Shannon formula for optimal coding.  

A sequential process’ consolidation leads to a cooperative information network (IN), built 
on a multi-dimensional spectrum of the object operator’s eigenvalues, identified during the 
optimal motion.  

The eigenvalues’ spectrum forms an interacting chain, which is assembled in an ordered 
organization structure of the IN hierarchy.  

Each IN node is encoded by the triplet code, and a total IN is encoded by a last node 
triplet’s code.  

The IN synthesis for a real object implements the formal results, considered in chs.1.5-
1.6,1.8. 

The space distributed IN’s structural robustness is preserved by the feed-back actions of 
the inner controls ( ( ), ( ))v vτ δ τ , which provide a local stability at the admissible variations.  

This control, acting within the aP  capabilities, supports a limited ( )e rP Pγ =  that 
determines the potential of robustness (ch.1.8) . 

The potential’s code, generated by the potential of robustness, is a DSS’s evolutionary 
predecessor.  

The requirements of preserving the evolutionary hierarchy (1.8.1)-(1.8.3) impose the 
restrictions on the maximal potential of evolution eP  and limit the variations, acceptable by 
the model.  

The model adaptive potential aP ≤ eP , which adapts the variations, not compromising the 
IN hierarchy, restricts the maximal increment of dimension. 

The punched evolution’s nonequilibrium accumulates the changes by the hierarchy of 
selections and adaptations, with the following local equilibrium at each hierarchical level.  

The self-control function includes the conditions (secs. 1.5.3, 1.8.3) of a proper 
coordination for a chain of superimposing processes, where each preceding processes adopts 
the acceptable variations of each following process.  

The above optimal controls are synthesized, as an inner feedback, by the duplication of 
and copying of the current macrostates at the beginning of each segment, which are 
memorized.  
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The adaptive potential’s asymmetry contributes the model’s evolutionary improvement.  
A sequence of the sequentially enclosed IN’s nodes, represented by the code logic, is a 

virtual communication language and an algorithm of minimal program to design the IN.  
A double spiral triplet structure, shaped at the localities of the sequential connected 

cones' spirals, forms the time-space path-line of transferring the IN information through the 
triplets’ hierarchy.  

The applied control adds the forth letter to the initial minimal three triplet's code letters, 
which provides the model error correction mechanism to the IN and its DSS code.  

 It also provides discrete filtering of the randomness, acting at the DP-window.  
The IN’s geometrical border (ch.1.6) forms the external surface where the macromodel is 

open for the outside interactions.  
At this surface, the interacting states compete for delivering a maximum of dynamic 

potential’s gradient.  
The selected states, copied and memorized by the model control, contribute to the code. 

The control provides a directional evolution with the extraction of a maximum information 
from the environment of the competing systems, while the acquired DSS code can be passed 
to a successor.  

A new born system sequentially evolves into anew IN that embraces its dynamics, 
geometry, and the DSS code.  

The synthesized INs for the specific objects are shown on Figs. 1.5.5,1.6.3, 1.6.4.  
 
 



 
 
 
 
 
 

Chapter 2.2 
 
 
 

THE INFORMATION MODELING OF THE ENCODING-
DECODING PROCESSES AT TRANSFORMATION 

OF BIOLOGICAL AND COGNITIVE INFORMATION 
 
 

2.2.1. The Objective and Methodology 

Using the Informational Macrodynamics (IMD), the chapter focuses on information 
modeling of the encoding-decoding mechanisms for the transformation and synthesis of some 
biological and cognitive functions that these mechanisms enable to generate.  

Through the synthesis and encoding of information in the cooperative dynamics of 
cognitive information processing, we are trying to understand the information nature of some 
neurodynamic processes and intelligence.  

As an alternative to experimental DNA discovery, the considered double spiral 
information structure (DSS) and its coding language implement the IMD analytical model. 
The pieces of the DSS information code are synthesized into meaningful units, integrated by 
an information network.  

Moreover, we consider the double chain spiral structure (DSS) as a common genetic 
generator for any optimal macrostructures. 

Like the fundamental DNA bio-mechanisms, many biological processes are well-known, 
while others are still subjects of extended bio-research and finding the systemic regularities.  

The following important questions still are not resolved:  
How is valuable information encoded into the DSS? How is the encoded DSS 

information translated along with its decoding? Are there any mechanisms that count the 
number of such translations? What is an effective procedure for the integration, synthesis, 
and compression of information into the DSS? Can these procedures be automatically 
created? What are the limitations on these processes?  

By searching for the answers on these questions, we focus on the information systemic 
essence of these mechanisms, which are crucial for the understanding the regularities of the 
corresponding biological mechanisms.  
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The analysis of the cognitive information processing shows that its mechanism of 
information synthesis includes a preliminary encoding-decoding procedure, whose code’s 
duration embodies the total time required for the translation of information, which 
characterizes also its life-time duration.  

The applied methodology is based, first, on analyzing and modeling a general 
information structure of the information network and its DSS code for encoding and 
transferring information; secondary, on developing a mathematical model dealing with the 
interactive information flows for this general IN's structure; third, on revealing the 
regularities, mechanisms, and effective procedures for encoding, translating, decoding, 
concentrating, and synthesizing of information along with the limitations on these processes; 
and fourth, on utilizing these results for a wide scope of biological and cognitive applications.  

The well-known compression methods [1,others](see the references to ch.2.2) are based 
on eliminating redundant information that increases the entropy, for example, the repeating 
symbols and images. These traditional methods compress only redundant information.  

In addition, there are many specific technical restrictions on the compression ratio for 
each particular method.  

We believe, a capability of compression of a nonredundant information represents a 
uniqueness of biosystems and a specific of human intellectual processing.   

Conventional compression methods do not use the dynamic information network and its 
dynamic logic, which are created naturally by the observed processes. 

Our goal is a maximal compression of nonredundant information, that means performing 
the compression after the elimination of redundancies, for example, by applying traditional 
methods and its "cognitive versions" considered below.  

2.2.2. An Inner Information Structure of the IN with the Ranged 
and the Nonranged Sequences of the Starting Eigenvalues. 
The DSS Code 

The developed information dynamic network (IN) (ch.1.5) represents a sequentially 
enclosed, nested, dynamic structure that arranges the input information into the IN starting 
string and then orders it by creating the hierarchical organized information nodes.  

The IN structure describes the hierarchy of the informational connected spatial dynamic 
macromodels, generated by the corresponding stochastic microlevel's information processes, 
which are also used for the model identification.  

The IN nodes carry information that enfolds the parameters of the model operator.  
The nodes' interactive dynamics model both the micro-and macrolevel's interactions.  
The series of IN nodes' information interactions convey a dynamic logic of the entire 

micro-macro model.  
The IN is able to compress the total information into the ending node that accumulates 

the IN complete information, which can be used for the restoration of the enclosed spatial 
macrodynamics.  

The IN functions include modeling the micro-macrodynamics, dynamic logic, 
concentration, ordering, and synthesis of information. The IN consists of the hierarchy of 
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interacting information doublets, forming the triplets, sequentially enclosed each other 
(Fig.1.5.5). Each triple node is a product of the inner interactive processes.  

Here we intend to analyze the detailed (within a node) dynamics, which were substituted 
before by a "solid" node (Figs.1.5.5, 1.6.3).  

The specifics of the IN consist of the possibility of binding the nodes' sequence by the 
defects of information, produced by the information flows that interact at each node.  

A comprehensive analysis of the IN dynamics below contributes to the constructive 
understanding of the concentration and synthesis of information by the IN double spiral 
structure (DSS) of the code (ch.1.6).  

Let us consider an arbitrary sequence of incoming information symbols 
(s

1
,s

2
, .. .,s

i
, .. .,s

m
) , which are encoded into a corresponding sequence of the IN symbols 

(γ 1, γ 2 ,. .., γ i , .. .,γ n )={γ n} (Fig.2.1).  
 

 

Figure 2.1. The sequence of the initial data symbols 1 2 3 4 5( , , , , )iγ γ γ γ γ γ , which are encoded into 

the nodes: 1 1 1 21 21 321 321 4321 4321 54321 54321( ( ), ( ), ( ), ( ), ( ))ia a t a t a t a t a t , 2 1 2 21 21( ( ), ( ),ia a t a t  

321 321 4321 4321 54321 54321( ), ( ), ( ))a t a t a t , 3 3 3 321 321 4321 4321 54321 54321( ( ), ( ), ( ), ( ))ia a t a t a t a t , 

4 4 4 4321 4321 54321 54321( ( ), ( ), ( ))ia a t a t a t ,  5 5 5 54321 54321( ( ), ( ))ia a t a t , 5 5 5 54321 54321( ( ), ( ))ia a t a t , 

and then are bound into the IN's final nodes ,..,1 54321( )ijklt t ; 1 2( , ,...)iα α α  are the network’s arcs.  

We assume that at the transformation of the current {s
i
}  symbols to the {γ i} symbols, 

the repeating redundant symbols from the {s
i
}  sequence are removed.  

For this reason, the total sm  numbers of the {s
i
}  sequence do not coincide in general 

with the total nγ  numbers of the {γ i} sequence. For example, a set of {γ i} symbols is able to 
encode a fixed alphabet, whose letters are ranged according to their information content, and 



Vladimir S. Lerner 376 

a current {s
i
}set carries a sequence of the nonranged word letters ( iw ) from this alphabet. In 

this case, the corresponding collection of the IN starting symbols {γ w} will not be ranged. 
This is an example of an arbitrary current sequence {γ i}.  

If a self-ranged sequence {γ i} is generated for each corresponding incoming arbitrary 
sequence {s

i
} , which is encoded by {γ i} in accord with some dictionary, the result is the 

ranged starting sequence, which was considered in ch.1.5.  
The IN introduces a measure of information for each of these symbols: 

(α
10
,α

20
,. .. ,α

i0
, .. .,α

n0
)  that binds the sequence of {γ i} to the {α

i0
} sequence, and the 

initial {s
i
}  symbols acquire the IN information measure in terms of {α

i0
}.  

The IN dynamic structure transforms {α
i0
} to the corresponding {α

i
} information 

symbols by a sequence of time-steps {t
i
} in such a way that the invariant relations α

10
t

i
=ao  

are accomplished at each step, where ao  is measured by a Shannon quantity of information 
that is preserved during each {t

i
} step's operations for a given IN.  

The IN structural information invariant ( )o γa = ( , )o
mo o mψa a (ch.1.6) provides the 

connection to a total Shannon quantity of the incoming information ΔS = nao (γ ) to be 

encoded into the IN, where n  is the number of the initial {γ i} symbols or their information 
IN's equivalents {α

i0
} (in particular at n =nγ ).  

For the transformed sequence {α
i
}, the IN operations preserve another invariant a(γ ) by 

the relations α1
t

i
=a, where both IN invariants are connected by the IN structural parameter 

γ , which depends on the sequences' ratio α
i−1,0

/ α
i 0
= γ i

α (γ ) .  
The IN cooperative dynamics are directed on a sequential assembling of the triplets’ 

structures in such a way that each current triplet sends its information to the following doublet 
for joining with forming a new triplet.  

The triplet’s assembled information conveys it for generating the next triplet's structure.  
This leads to the sequential encapsulation of the conveyed information into a final IN 

triplet, which accumulates exclusively the information ao (γ ) that has not been transferred to 
other IN's nodes.  

The encapsulated information has increasing value (quality) (ch.1.6) compared to the 
incoming information. The information value of the current ao (γ ) is evaluated by the 
number of previous assembled triplets m  through their information ao (m ), where m  can 

also be identified via the corresponding resonance frequency ( )m mω α .(ch.1.6).  
Thus, with a growing number of enclosed triplets, the IN dynamics sequentially reduce 

the flow of "free" information, transferred to each following nodes, with concentrating the 
minimal entropy ao (γ )  into the final node. This entropy defines the optimal code-word's 

length l =ao (γ ) / ln n  to encode-decode each of the n  starting IN strings, which equals to 

1l bit≅  per n  starting symbols at γ = 0.5 .  
For example, the IN can encapsulate the five subsequent nonredundant letters of the 

word: "robust" into the letter "t".  
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This word has a minimal Kolmogorov (K) complexity [2], measured by the word entropy 
(as a characteristic of the word randomness) and is incompressible by traditional methods.  

By encoding this word into the IN starting symbols and applying the IN cooperation, the 
K complexity is minimized to its limit-the complexity of a single letter. Conventional 
methods minimize K and the corresponding "free" entropy by eliminating redundancies.  

The considered compression minimizes the entropy bound into the IN nodes and provides 
the ability for a successively accumulation of the sequentially transmitted information.  

Each triplet in the IN structure can be encoded, as a minimum, by the sequence of three 
IN string’s symbols α1t ,α2t ,α 3t . The examples and details are considered in sec.1.6.7, 
where its shown that each letter sequence of the triplet code can be represented by a 
corresponding sequence of the IN string's symbols or their ratios. The vice versa is also true: 
any sequence of the IN string can be encoded by the subsequence of the chosen alphabet's 
letters, and each triplet is encoded by a minimum of three letters from this alphabet.  

The model adaptive potential (ch.1.8) generates additional informational capacity equal 
to ~1/3, bringing one more letter to the nonredundant three letters of the minimal DSS code. 
The adaptive capacity creates the model potential redundancy, which provides the error 
correction mechanism to the DSS minimal code with the total letter's permutations 4 3 = 64 . 

The various (even redundant) combinations of these letters essentially extend the 
encoding string. This code's m = n /2 sequence describes the sequential IN model of the 
independent m -triplets. The sequence of the enclosed triplet's codes represents the IN's 
nested structure.  

The quantity of information carried by the final triplet for a four letter's code equals  
 

 a 2
o ( γ )+a( γ ). 

The initial string of symbols describe the object specifics and can be found by the object 
identification; the string can also classify the different objects in terms of their basic 
parameters (n, γ ,k) (representing the object's information path functional). The final IN's 
triplet carries the code of these parameters.  

For a given IN with a fixed (n= *n ,γ =γ * , k=k * ), each triplet has the same three letter 
code, but the microlevel influences and the mutations, which affect the parameters (n,γ ,k), 
are able to modify the code of the following triplets. This leads to diverse combinations of the 
code letters, generating an evolving DSS chain, which encodes the variations of the object 
characteristics. The fourth letter-symbol of the IN fixed triplet code carries the repeating ratio 
of the triplet's letters.  

For example, α 4t =0.34891 brings the same ratio γ 34
α = α3 t / α 4 t =2.2155 as γ 12

α  has 
(sec.1.6.7). This fourth letter compensates for the code possible errors, contributing to the 
adaptation potential. Under the mutations, this letter can bring a new ratio to the code 
sequence, which together with the ratioγ 12

α , identifies the code ratios γ 23
α , γ 34

α  for a new 
modified triplet. This letter-symbol also serves as a bridge between each next triplet's code. 
Each triplet's code is responsible for the generation of three superimposing processes, and the 
cross-phenomena that they create.  
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The fixed IN's DSS encodes n such processes, arranged by the string's αit  values, which 
form a “solid” macrostructure with m = n/2 cross-phenomena, sequentially enclosed in each 
other.  

The DSS can also encode the triplets' sequences belonging to a distinct, fixed IN that 
brings a variety of macrostructures with different basic parameters.  

Any such DSS code is not predetermined by the first triplet's code. The four letters of this 
extended DSS code would have more combinations in an expanded sequence.  

The specific object's code depends upon particular triplet's sequence, which can be fixed, 
translated, or developed through the considered model of evolution under competition and 
superposition of the inheritance-mutation mechanisms (ch.1.8).  

The code, being translated into appropriate environment, is able to build the 
correspondent object's spatial dynamic model, determined by the basic parameters (n,γ , k) 
that specify the model's operator eigenvalues {αio} and invariants.  

Example of the Bio-process' Code 

The modeling of a simple auto regulatory process [3] by the IMD equations and the 
identified basic parameters (n=6, γ =0.2,k=6) reveals the following minimal  DSS code for a 
particular IN (with the object’s superimposing processes): (1, 2.423693, 1.821067).  

The DSS code for other related model of the regenerative processes with basic 
parameters (n=6, γ =0.3,k=6) is (1, 2.366832, 1.798496).  

The similarities between these codes can be seen. However, their differences vanish with 
essential growth the number of superimposing processes.  

The examples demonstrate the possibility of developing a universal code structure for a 
variety of system models.  

The information evolutionary cyclic model (ch.1.8) includes the mechanism of generating 
the genetic information through the inherited DSSo, mutations, adaptation, and self-
organization, encoding, concentration and synthesis by the IN and the renovated DSS1 code, 
which can be transferred and inherited by other model's generation.  

We consider here the process of encoding, concentration and synthesis of new 
information by the IN and the generation of the DSS1 code. The translation and decoding of 
this information belong to the generation of a newborn model.  

2.2.3. Mathematical Model of the IN with an Arbitrary Sequence 
of the Starting Eigenvalues 

Considering the arbitrary starting sequence {γ i}, encoded into the IN corresponding 
nonranged {αio} sequence, we develop the IN mathematical model for the Fig.2.1 schematics 
to reveal the IN extensive regularities.  

The IN dynamics transform the {α
i
} sequence into the {α i

*} information sequence 
during a time interval Ti  according to the formula  
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* 1{2exp[ ( / 1)] 1}i i
i i i i

i

a Ta a T t
t

−= − −  (2.1) 

where ai
* = α i

*Ti  and i i ia tα= = a(γ i ), with the possibility of changing the structural 

parameter γ → γ i . 

The same relation is true for any previous transformed symbols αi−1
* : 

 

 
ai−1

* =
aiTi−1

ti−1

{2exp[ai(Ti−1 / ti−1 −1)] −1}−1, ai−1
* = α i−1

* Ti−1  . (2.2). 

At the moment Ti , the information ai−1
* (Ti−1) interacts with the information ai

*(Ti )  
generating information Ai (Ti ).  

The reverse is also true: ai
*(Ti )  interacts with ai−1

* (Ti−1)  generating the information 
Ai−1 (Ti−1); Ai−1 , Ai  characterize information, produced at the node interactions. 

The interactive information forms the elementary cyclic processes between the i −1  and 
i  arcs and between the correspondent i −1 , i  nodes (Fig.2.2), and vice versa.  

The interactions involve the sources of external entropies ai−1
* , ai

*  at each ti−1  and ti  
intervals accordingly, and the internal entropies Ai−1 , Ai  as the products of interactions at 
each previous Ti−1, next Ti , and following Ti+1  intervals accordingly.  

 

 
Figure 2. 2. An elementary cyclic information process between the IN's nodes i −1 , i , and i +1 . 
 
The Ai−1 (Ti−1) can also consume information from a previous ( i − 2 ) cycle, and 

information Ai (Ti ) can contribute to a following (i +1 ) cycle.  
The information delivered to the i -node in a right directional cycle (Fig.2.2) is 
                                                    Ai−1 − ai−1

* +ai
* ;  
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the information delivered to the i −1-node in an inverse cycle direction, is  
                                                     Ai − ai

* +ai−1
* .  

Both internal information (entropies) bind the nodes (i −1,i)  and satisfy the balance 
equation: 

 Ai − ai
* +ai−1

* = Ai−1 − ai−1
* +ai

* . (2.3) 
The internal dynamic entropy for each cycle's arc, described by the equalities  

 

  Ai−1 (T
→

i−1

*

− 1) and ± Ai (T
←

i

*

− 1)  (2.4)  
of the corresponding entropy flows, should also satisfy the balance equation 

 

 Ai−1 (T
→

i−1

*

− 1)=± Ai (T
←

i

*

− 1) ,  (2.5) 
which takes into account  the entropy flows in both directions.  

The above equations use the indications  
 

 T
→

i−1

*

=
Ti

Ti−1

{2exp[Ai−1 (Ti / Ti−1 −1)] −1}−1 , (2.6) 

 

 T
←

i

*

=
Ti−1

Ti

{2exp[Ai(Ti−1 / Ti −1)] −1}−1 ,  (2.7) 

 

 
T
→

i

*

=
Ti+1

Ti

{2exp[Ai(Ti+1 / Ti −1)]−1}−1 . (2.7a) 

By coordinating the cyclical entropy flows with the external entropy sources for each 
node, we come to the following defects of information that contribute to the nodes' internal 
connections and virtually accumulate the bound information.  

For the node with Ai , taking into account the signs ∓ Ai  in (2.4), (2.5), we have the 
defect: 

                                               Ai−1 T
→

i−1

*

∓ Ai − ai−1
* .  

For the node with Ai−1  (at the signs ∓ Ai T
←

i

*

 ) we get the analogous equality 

                                               ± Ai T
←

i

*

+ Ai−1 − ai
* .  

With regard to the cycle's flows in the opposite direction, we obtain the balance equation  
 

 Ai−1 T
→

i−1

*

∓ Ai − ai−1
* =− (± Ai T

←
i

*

+ Ai−1 − ai
* )   (2.8) 

from which we come to  

 Ai−1 T
→

i−1

*

+ Ai−1 − ai−1
* =∓ Ai T

←
i

*

± Ai +ai
* , (2.8a) 

or to  
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 Ai−1 (T
→

i−1

*

+1)− ai−1
* =∓ Ai (T

←
i

*

− 1)+ai
* .  (2.8b) 

By getting to the next (i +1), or ( i − 2) step, the signs + will be changed on − , and the 

equalities (2.6),(2.7),2.7a) keep * *
i iT T≠
H G

, because both of them depend on diverse functions. 

The set of equations (2.1-2.8), at the known independent and nonranged variables ti−1 , ti  , 

Ti−1, Ti  , define ai−1
* , ai

* , and then Ai−1 , Ai .  
The arrows in the above equations reflects the irreversibility of the information 

transformations for both within each cyclic process and between the cycles.  
This means that all direct and inverse processes are nonequivalent, creating an entropy 

production according to Irreversible Thermodynamics and Information Macrodynamics.  
The interacting information flows (Fig.2.2) characterize the consolidating sequence of 

each pair of doublets, representing a cooperative triplet's structure in the IN. 
The transfer of information from the i  doublet to the i +1  doublet should satisfy the 

following balance equations, preserving both the entropy and its entropy production in the 
form  

 Ai + ai
* = Ai

' ,  (2.9) 
 

 (Ai + ai
*)(Ti )

−1 = Ai
' (Ti

' )−1  ,  (2.10)  

where the Ai
'  defect of information is transformed into the i +1  node at the moment Ti

' . 

Generally, Ai ≠ Ai
'  and Ti ≠ Ti

' .  

However, the fulfillment of both equations (2.9) and (2.10) leads to Ti = Ti
'  at Ai ≠ Ai

' . This 

is acceptable taking into account the continuity of the times Ti  and Ti
'  at the same i  node.  

Finally, an arbitrary elementary triplet (Fig.2.2.) is described by the system of basic nonlinear 
equations: (2.9)-(2.10) and also 

 

 Ai − ai
* +ai−1

* = Ai−1 − ai−1
* +ai

* , (2.11) 
 

 

*

11( 1)iiA T
→

−− + − ai−1
* =∓ Ai (T

←
i

*

− 1)+ai
* ,  (2.12)  

 

 

*

11( 1)iiA T
→

−− − = ± Ai (T
←

i

*

− 1).   (2.13) 
Looking at the functions in (2.1),(2.2),(2.6),(2.7),(2.7a), it’s seen that these Eqs. depends 

of current , ,i i it T A  at given 1 1 1, ,i i it T A− − − . 
By summing (2.11-2.12) and sequentially considering both of their opposite signs we get 

the equivalent equation  
 

 
*

1 12 i iT A
→

− − = ai
* +ai−1

* , (2.14) 
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where the system (2.11, 2.13) and (2.14) models an initial doublet. The source of external 
entropy for this doublet is the initial string {αio

t } according to the relations 
 

 
t
io itα = ao ( )iγ , a ( )iγ = t

iα it = ia , αi
t / α io

t =a ( )iγ /ao ( )iγ , 1,...,i n= ,  (2.15)   

where ao ( )iγ , a ( )iγ  are the invariants, which measure the elementary quantity of 
information for a chosen IN.  
Ai−1  stands for a current quantity of information, accumulated into a local i −1-node during 
each previous cycle; Ai  stands for a current quantity of information, accumulated into a local 
i -node during each of the following cycles.  

Each previous i −1-cycle is connected to the following i  cycle by a common i  node 

having, in general, the distinct parameters Ti , Ai  and Ti
' , Ai

'  for its corresponding previous 
and following cycles.  

This means that for each following i  cycle, Ti
'  represents an analog of an initial moment 

Ti−1 in the previous i −1-cycle.  
This assumption allows us to sequentially apply the same equations (2.11)-(2.14) for both 

the previous and following cycles, with Ai
' , Ti

' , Ti+1 , in the i  cycle and with Ai+1
' , Ti+1

' , 
Ti+2  in the i +1 -cycle, where each cycle models the IN's doublet elementary structure.  

Thus, applying the initial equations (2.11)-(2.14) for both the i −1-cycle and the 

following i  cycle with Ai
' , Ti

' , Ti+1 , we model an initial first triplet. Then considering the 

triple ( Ai
' , Ti

' , Ti+1 ), ( Ai+1
' , Ti+1

' , Ti+2 ), we model the second triplet, and so on.  
The triplet is formed as a result of a sequential adjoining of information generated in each 

i, i +1  cycle, each of which models the interactions of the inner processes into a joint node 
(Fig. 2.2). The above equations describe the inner node’s cyclic processes, which previously 
were substituted by a "solid" node.  

The model (Fig. 2.2) coincides with basic IN's model (Fig.1.5.5) at the condition  
 

 T1 = T2 = T3 = t3  (2.15a)  
for each triplet. In the above equations, each i +1 -node of the IN system's structure is based 
only on incoming information from the i -node, and vice versa. Each (i,i + 1)  element of the 
IN system's model enhances all necessary information about the IN total structure.  

This result has a more general meaning: the identification of any system's element can 
provide a comprehensive information regarding the whole system. 

The equations open the possibility of encoding a nonranged sequence of the IN's i - 
nodes into the final n -node, starting with the node i =1.  

At given the initial string {αio
t }, the values of ti−1 , ti ,…, determined by the above 

invariant equations (2.15), can encode, for example, the known alphabet's letters.  
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Then, Ti−1, Ti  and corresponding Ti
' ,Ti+1

'  can be found. At given ti , Ti  and ioα (or any 

iγ , iA ), a potential decoding procedure will be able to compute sequentially 

Ti−1,ti−1 and i oα − .  
A direct application of these nonlinear equations requires a complex mathematical 

analysis and an extensive numerical procedure that may not lead to a precise, simple, and 
explicit decoding procedure.  

The computer program for the numerical solution of this system has been developed by 
Dr. A. Treyger.  

An analytical solution would be more useful for analyzing the regularities in the 
transformation of information by the IN.  

After the linearization of the equations (2.11)-(2.14) we come to the corresponding 
simpler system (2.16)-(2.18), which we will write at first for the initial elementary doublet 
and then apply it sequentially, according to the above assumption, to the first and following 
triplets: 

 

  
A1

a
=

A2

a
− 2

T2

t2

+ 2
T1

t1
, a = ai = const ,  (2.16) 

 

 

A1

a
(
T2

T1

−1) = ±
A2

a
(

T1

T2

−1) , (2.17)  

 

  2
A1

a
(
T2

T1

) =
T2

t2

+
T1

t1
.   (2.18) 

Using only equation (2.18) we get  
 

 

A1

a
=

1

2

T1

t2

(1 +
T1

T2

t2

t1

) ,   (2.19)  

which by substitution into (2.16) leads to: 
 

 

1

2

T1

t2
(1 +

T1

T2

t2

t1
) =

A2

a
− 2

T2

t2

+ 2
T1

t1
,  (2.19a)  

 

  
T1

t1

(
T1

T2

− 4) = 2
A2

a
− 4

T2

t2

−
T1

t2

.    (2.19b) 

We come to equality 

 

t1 =
T1(

T1

T2

− 4)

2
A2

a
− T2

t2

(4 + T1

T2

)
.   (2.20)  
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After the substitution t1  from (2.20) and 
A1

a
 from (2.19) into (2.17), considering only the + 

sign, we get the quadratic equation regarding T1 (or corresponding T2 ) : 
 

 
T1

2 − 4[
T2

t2

(
a

A2

) +1]T2T1 + [4
T2

t2

(
a

A2

) + 3]T2
2 = 0 . (2.21)  

This equation allows the analytical solution by the formulas 
 

  
T1

T2

= 2[
T2

t2

(
a

A2

) +1] ± [2
T2

t2

(
a

A2

) +1] .  (2.21a)  

From which at the sign + we get 
 

 

T1

T2

= 4
T2

t2

(
a

A2

) + 3 ,  (2.22)  

or  

 

A2

a
=

4
T2

t2

T1

T2

− 3
  

(2.23)

 

that limits 
T1

T2

≠ 3 .  

The solution of (2.21) at  
 

  
T2

t2

(
a

A2

) = −
1

2
,  (2.24) 

leads to T1 = T2  , which corresponds to repeating the encoding sequence. The same result 
takes place at the sign −  in (2.21a). Only the condition   

 

 2
1)(

22

2 −>
A
a

t
T

  (2.24a)  

determines not the trivial and the real solutions of (2.21) at the above limitation.  
 Considering an inverse process, we take the sign − in (2.18), and for the system 

(2.16)− (2.18) we get the following quadratic equation 
 

 
(T1

− )2 − [6 −
4T2

−

t2
− (

a

A2

)−]T2
−T1

− + [5 −
4T2

−

t2
− (

a

A2

)−](T2
− )2 = 0    (2.25)  

with the solution   

 

T1
− =

T2
−

2
{[6 −

4T2
−

t2
− (

a

A2

)−] ± [(6 −
4T2

−

t2
− (

a

A2

)−)2 − 20 +
16T2

−

t2
− (

a

A2

)−]1/ 2} .   (2.25a) 
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Taking the sign + we get 
 

  
T1

−

T2
− = 5 −

4T2
−

t2
− (

a

A2

)−  .  (2.26) 

The sign − leads to 
T1

−

T2
− = 1 , which is useless at arbitrary t2

−  as well as the conditions  

 

 

4T2
−

t2
− (

a

A2

)− = 6 , 
4T2

−

t2
− (

a

A2

)− = 5 , and 
T2

−

t2
− (

a

A2

)− =1 .   (2.26a) 

These and above limitations are essential while using the solutions (2.22), (2.26) for both 
encoding and decoding.  

Using the indications 
T1

T2

= x1 , 
T1

−

T2
− = x1

− , we write the solution (2.22) in the form 

 

 

A2

a
=

4T2

t2 (x1 − 3)
   (2.27)  

for any x1 ≠ 3  , and the solution (2.26) in the form 
 

 
(
A2

a
)− = −

4T2
−

t2
−(x1

− − 5)
  (2.27a)  

for any x1
− ≠ 5 . The equation (2.18) acquires a simple form  

 

 A1 = −x1A2 , A1 = A1
'    (2.28a) 

for the first doublet and  

 Ai
' = −xiAi+1    (2.28b) 

 
for any i -th doublet, where according to (2.23): 

 

 

Ai+1

a
=

4Ti+1

ti+1(xi − 3)
   .   (2.28) 

Considering the next doublet, we add to the system (2.16)-(2.19) the linearized equations 
(2.9)-(2.10) in the form  

  
A2

'

a
=

A2

a
+

T2

t2

 .  (2.29)  

By substituting the solution (2.27) into (2.29) we get the equation: 
 

  
A2

'

a
=

T2

t2

(
x1 +1

x1 − 3
) =

A2

a

x1 +1

4
, 

A2
'

A2

=
x1 +1

4
   (2.30) 

that connects A2
'  and A2 , at any x1 ≠ 3 , x1 ≠ −1 .  
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Using (2.28a), we come to the connection between the entropies for previous A2  and the 
following doublets: 

 

 

A3

A2

= −
x1 + 1

4x2

,  (2.31)  

which can be applied for any i , i +1  doublets or a corresponding triplet:   
 

 

Ai+1

Ai

= −
xi +1

4xi+1

, 
Ai+1

'

Ai+1

=
xi +1

4
.  (2.31a) 

Applying the solution (2.27) to the next doublet we have 
 

 

A3

a
=

4T3

t3(x2 − 3)
,   (2.32)  

and considering the ratio of relations (2.27) and (2.28) we get  
 

 

x1 − 3

x2 −3
=

A3t3

A2t2

x2 .   (2.33)  

Substituting (2.31) into (2.33) we come to  
 

 

x1 − 3

x2 −3
= −

x1 +1

4

t3

t2

, or b2 = −
(x1 +1)(x2 −3)

4(x1 − 3)
=

t2

t3

. (2.34) 

The equation (2.34) connects the ratio of encoding symbols t2 ,t3  to their IN's reflections 
x1 , x2 .  
This formula can be extended to connect any i,i +1nodes:  

 

 
bi = −

(xi−1 +1)(xi −3)

4(xi−1 − 3)
=

ti

ti+1

, (2.34a)  

where for any i −1, i , (xi−1, xi )≠ 3, xi−1 ≠ −1. 
Using both the inverse solution (2.27) and the direct solution (2.26a), we can find their 

dependencies.  
By substituting (2.27) into (2.26a) we get  
 

 x1
− = 8 − x1 , x1

− ≠ −x1, (x1
− , x1) ≠ 8   (2.35)  

if holds true the equality 
 

 

T2
−

t2
− (

a

A2

)− =
T2

t2
(

a

A2

) .   (2.35a)  

Below we will show that equality (2.35a) is satisfied identically if (2.35) is true and vice 
versa.  

These equations acquire a more general form for any i −1, i  doublets: 
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 xi−1
− + xi−1 = 8,  xi−1

− ≠ −xi−1 , (xi−1
− , xi−1) ≠ 8 ,  (2.35b) 

 

  
Ti

−

ti
− (

a

Ai

)− =
Ti

ti

(
a

Ai

) . (2.35c) 

Using these equations, we can write the corresponding analogies of (2.30-2.31) for the inverse 
process: 

 

  (
A2

'

A2

)− = −
x1
− − 9

4
,  A2

' − = −x2
−A3

− , (
A3

A2

)− =
x1
− − 9

4x2
− , x1

− ≠ 9 .   (2.36) 

By analogy to equation (2.33) we get  
 

 
(

A3

A2

)− =
x1
− − 5

x2
− (x2

− − 5)

t2
−

t3
− .  (2.36a) 

Using both equations (2.36) and (2.36a), we get  for the inverse process:  
 

  b2
− =

(x1
− − 9)(x2

− − 5)

4(x1
− − 5)

=
t2
−

t3
−  (2.37) 

and applying (2.35) we come to the connection of the discrete intervals for both processes 
 

  bi
− =

(xi−1
− − 9)(xi

− − 5)

4(xi−1
− − 5)

= −
(xi−1 +1)(xi − 3)

4(xi−1 − 3)
= bi =

ti
−

ti+1
− .  (2.37a) 

Writing the ratio of the equations (2.35a) for i −1, i  doublets, we have  
 

  
Ti−1

− ti
−

Ti
− ti−1

− (
Ai

Ai−1

)− =
Ti−1ti

Ti ti−1

(
Ai

Ai−1

) , or 
xi
−bi

−(xi−1
− − 5)

xi
−bi

−(xi
− − 5)

=
xi bi (x1 − 3)

xi bi (xi − 5)
   (2.37b) 

after the substitution into (2.37b) the corresponding relations (2.36a,b).  
The last relation is fulfilled identically by applying (2.35).  
This proves that equation (2.35) is the necessary and the sufficient condition connecting 

the direct and inverse processes. 
The generated inverse process interacts with the direct information process in such a way 

that both of them create a local dynamic stability within each examined cycle according to the 
balance equations.  

The specifics of the system consist of enclosing the complete IN information's prehistory 
in the information, stored by the final node's An

'  according to the chain of relations: 
 

An
' = An + an

* , An = −
An−1

'

xn−1

, An−1
' = An−1 + an−1

* , An
' = an

* −
1

xn −1

(An−1 + an −1
* ) ,  

An−1 = −
An− 2

'

xn−2

, An−2
' = An− 2 + an− 2

* , An
' = an

* −
1

xn −1

(−
1

xn−2

(An− 2 + an− 2
* ) + an−1

* ) ,  
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An
' = an

* −
1

xn −1

(−
1

xn−2

(−
1

xn− 3

(An−3 + an −3
* ) + an− 2

* ) + an−1
* ) ,....     .   (2.38)  

It can be seen that the final node's information is not equal to the simple sum of the input 

information a∑

* = ai
*

i= n

i=1

∑ , because it contains the information {Ai} , generated by the 

interactions. In addition, the correspondent chain of nonlinear relations (by (2.8)− (2.10)) 
includes the inner connections between Ai  and ai

* .  
All chain is actually embedded in the final node's information.  
The IN macrosystemic complexity measures a cooperative complexity (ch.1.7) and arises 

not as a simple sum of the IN's interacting components but as their superimposing 
contributions accompanied by the creation of new information.  

From equations (2.38) it follows that the final node does not simply accumulate the IN's 
compressed input information, but rather synthesizes it. In the IN's hierarchy, each previous 
node synthesizes the information of all preceding nodes.  

The synthesis depends on the particular information contributions of the current pairs ai
* , 

ai+1
*  to the acting IN's interactive dynamics and therefore cannot be predicted a priori.  

The synthesized information incorporates the encoded symbols.  

2.2.4. The Procedure of Encoding, Compression, Synthesis, and 
Decoding of the IN Information 

Encoding begins with assigning the corresponding information measures {αio} to the 

initial nonredundant {γ i} symbols. After that, the IN dynamics execute the transformations 
{αio}→ {α i}→ {ti}→ {Ti}→ {Ai}, including the interactive dynamics between each of 
the i −1, i, i +1  cycles and within them. This leads to the encoding of each pair ti ,ti+1  into 

corresponding pairs Ti ,Ti+1 , or bi  into xi  according to formula (2.34a).  
The initial conditions for the considered system T1, A1  are supposed to be given along 

with the known t1 ,t2 . Instead of that, the very first x1  can be given. By continuing 
sequentially the encoding procedure according to (2.34a), we come to the final node with Tn , 
An ,tn , or  

  xn −1=
4Tna

tn An

+ 3 ,  (2.39) 

which accumulates the total encoded information.  
This procedure can contain an unlimited number of encoding symbols. It does not require the 
memorization of the encoded {γ i},{αio},{ti} ,{Ti} sequences if the connection between 

{αio} and {γ i} is given by the initial encoding relations. It is also unnecessary to range the 

initial symbols {γ i} as well as {αio}. The decoding procedure can start with the 
identification of xn −1 at the given Tn , An ,tn  using (2.39).  
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However, to find the previous Tn−1, An−1,tn −1, or xn −2 , and for a successive 
implementation of the formula (2.34a), some of these symbols have to be given, such as An−1, 
which according to formula (2.31a) defines xn −2  at given xn −1, and so on. Assigning of the 
sequence of An−1, An−2 ,...is the equivalent of a given sequence xn −2 , xn −3 ,....  

The above decoding equations imply that the sequence of the initial symbols {γ i} should 
be fixed and assigned a priory and therefore the sequence of the tn−1, tn−2 ,… should also be 

assigned. An initial arbitrary sequence of the {γ i} symbols cannot be decoded by the above 
procedure. Moreover, any equations (nonlinear or linear) directly connecting the sequence 
xn −2 , xn −3 ,… (in an addition to the basic encoding equation (2.34a)) during or after the 
encoding procedure, bind the initial {ti}  symbols.  

An assumption regarding the possible nonlinear connections tn−1, tn−2  , embedded into a 
sequence of the parameters bn−1(tn−1 ,tn)  and bn−2 (tn− 2,tn−1) , also brings the (tn−2 ,tn −1,tn )  
dependency that makes decoding of the arbitrary symbol's sequence problematical.  

The procedure should also take into account the restrictions, imposed by the relations 
(2.24a) and inequalities following from (2.34a).  

The decoding of previous events' occurrence requires the reconstruction of the events' 
prehistory. To initiate the reconstruction and decoding, any known process 
xn −1 = f (xn −2 ,xn− 3,... .)  can be used.  

A simple one should be connected with the above systems' equations.  
It would be most natural to apply the inverse process for this purpose, as an intrinsic part 

of the system.  
We have the following connections between the inverse and direct processes:   

 

A2
' −

A2
− = −

x1
− − 9

4
=

x1 +1

4
=

A2
'

A2

, 
A2

−

A2

=
A2

' −

A2
' , 

T2a

t2 A2

=
x1 − 3

4
, (2.40)  

 

 

T2
−a

t2
− A2

− = −
x1
− − 5

4
=

x1 −3

4
=

T2a

t2 A2

, 
T2

−

t2
− =

T2 A2
−

t2 A2

, (2.40a)  

where relations (2.40a) directly prove the correctness of (2.35a).  
Using (2.30),(2.36), we come to the equalities  

 

 

T2

t2

=
A2

'

a
(1−

A2

A2
' ) , 

T2
−

t2
− =

A2
' −

a
(1−

A2
−

A2
'− ) ,  (2.41) 

whose ratio at 
A2

'

A2

=
A2

'−

A2
− ,

A2
−

A2

=
A2

' −

A2
'  leads to 

T2
−

t2
− =

T2

t2

.  

From that, by applying (2.40a), we get 
A2

−

a
=

A2

a
. 

At these conditions, equation (2.35a) leads to  

                                       
T2t3

T3t2

=
T2

− t3
−

T3
− t2

− ,  
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which at the fulfillment of b2 =b2
− , brings the equality  

 
x2 =

T2

T3

=
T2

−

T3
− = x2

− .  (2.42) 

Equations (2.40)-(2.42) sequentially bind the known xn −1 not only to xn −2  and the 

following xn −3, xn−4 ,...  but also connect the sequence of tn,tn −1,tn− 2,.. . .  

This does not allow us to encode and decode arbitrary symbols {γ i}, even though a 
lossless decoding is possible according to (2.37a). Such decoding orders an arbitrary {γ i}.  

The fulfillment of (2.42) leads to the fixed xn −1 =
Tn −1

Tn

= 4  and to the sequence of 

 

  
tn−1

tn

= −
xn− 2 +1

4(xn−2 − 3)
, 

tn−2

tn−1

= −
xn− 3 +1

4(xn−3 − 3)
,...,  (2.43) 

leading to repeating the time ratios: 
 

  
t2

t3

= −
5

4
=

ti
ti+1

  and the following 
t2

t4

=
25

16
, 

t2

t5

= −
125

64
. (2.43a) 

The process starts with 
t2
t3

, because according to eq.(2.20): t1 = 0  at x1 = 4 .  

A secondary encoding, applied after that, brings periodically repeating bi  and xi . 
The inverse process, applied for decoding, therefore, is able to regularize the initial 

arbitrary and generally irregular (random) sequence of the {γ i} symbols leading to their 
ordering.  In general, the law of regularity complies with the equations (2.35),(2.39),(2.40) 
for any inverse process that determines the sequence of  

xi−2 = f (Ti−1, Ai−1,ti−1 ) , Ti−1 = Ti xi−1, Ai−1 = 4
xi−1

xi− 2 − 3
, ti−1 = ti−2 / bi ,  

or xi−2 = f (xi−1,ti−1 ) .  

For instance, the last relation can be given in a simple form 2 1i ix kx− −= , which 
according to (2.34a) leads to  

 

  bn−1 = −
(kxn−1 +1)(xn−1 − 3)

kxn −1 − 3
.   (2.43b) 

For example, at k = 2.5, xn−1 = 2 , we get the sequence of  
                                      bn−1 = 3 , bn−2 = −2.84 , bn−3 = −12.13,... 
This means that given k, xn −1,n , or k, x1,n  determine the encoding-decoding sequence 

and the IN structure along with the IN code.  
These three parameters can be encoded in the final IN's node analogous to the basic IN.  
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The inverse process' symbols xi−1
− , xi−2

− ,..carry the direct connection to the encoding 

process' symbols xi−1, xi−2 ,..  if they execute the equality (2.42) for any i − 2, i − 3,.. .by 

moving in the inverse time direction and working with the assumption ti
− = ti ,Ti

− = Ti .  

However, even for such conditions, the encoded connection between each Ti−1 and ti−1  is 
erased by the dependency on the inverse and direct processes. At the interaction of direct and 
indirect information flows, a chaotic process with a "mix up" might arise within each cycle 
(Fig. 2.2). This leads to an erasure of the prehistory and the impossibility of precise 
restoration of the encoded symbols. In an attempt to decode this bound process, a fixed 
sequence of the ranged symbols ti

*,ti−1
* ,ti−2

* ,...  is identified, which is dependent upon the 
equation of the inverse information process being used for decoding.  

The IN's decoding procedure can exist only for a given fixed sequence of initial symbols, 
which can be ranged by the IN. The ranged sequence of {ti

*}  defines a code of a secondary 
created IN*, which is analogous to the above considered IN code.  

For the symbols, ranged in the IN (Fig.1.5.5), the connection between each fixed and 
previous node is given by the IN's structural parameter γ , and the decoding procedure can 

easily be performed by the recurrent relations αn −1,o = α noγ i
α (γ ) . 

Compared the model (Fig. 2.1) to the basic IN (Fig.1.5.5), satisfying the condition 

(2.15a), which corresponds to x1 = x2 = 1,
t3
T2

=1 , we get, according to eq.(2.34a), 

                                        
t2

t3

= −
1

2
, 

T2

t2

= −2 .  

By substituting those into (2.39) we have 
A2

a
= −4 , and then using the equation (2.20) 

we get 
t1

T1

= −1.5  and 
t1
t2

= 3 .  

These ratios are closely related to the basic IN parameters γ i
α (γ ) , which acquire the 

values:   

 

t1
t2

= 2.5 − 2.1 , 
t2

t3

= 0.55 − 0.58 ,γ = (0.01− 0.75) .  (2.44)  

The basic IN, being not restricted by the considered limitations, has a more freedom in 
the variation of ranged {γ i} and corresponding codes.  

The IN basic parameters n, γ  are connected by the formulas (γ i
α (γ ))n−1 =

α1,o

αno

, where 

α1,o = maxαio , n = Fn (α1,o ) , and hence αno = Fα (α1,o ) .  
The ranged symbols also define the IN invariants ao (γ ), a(γ ) and therefore, the IN 

parameter of symbols' multiplication γ i
α (γ ) =

α io

αi+1, o

. 
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Decompression or decoding assume applying an auxiliary (or inverse) process for a 
"reading" and obtaining the encoded symbols that uncover the prehistory.  

In the considered encoding-decoding procedure (E-D) (Figs.2.3, 2.3a), the input arbitrary 
symbols generate an ordered sequenced logic as a "blueprint" for the secondary encoding. 
The ranging and ordering of the initial random symbols by the E-D in the process of 
compression-decompression is analogous to the creation of an incoming string {αio

* }~ {ti
*} 

for a new secondary formed information network (IN*), where {ti
*}  is the result of 

transformations of the initial sequence {ti}  after the E-D.  
The secondary IN* is able to identically compress and decompress the transformed 

ranged string of the initial information. Moreover, applying the E-D automatically creates this 
IN* based on the arbitrary input data. The secondary compression operations require a 
knowledge regarding the connection between {αio

* } and {αio}~ {γ i}, or about a direct 

encoding {γ i} into {αio
* }. After the compression of initial symbols {γ i} into the primary IN 

and the decompression of the ranged symbols {ti
*} , their connections with {γ i} are verified 

and corrected for a further compression into the IN* final node. During a secondary 
compression, formula (2.34a) and above relations are applied to the IN* (even though only 
the primary encoding works with arbitrary {γ i} up to their unlimited compression).  

The primary E-D serves as a preparatory operation necessary for the automatic 
organization of incoming information. Theoretically, any initial information can be 
transformed and organized by IN*, and its potentially unlimited sequence will be compressed 
into the IN* final node. The decompression of information is possible only after its ranging, 
because the fixed time intervals are the same, determined exactly for both direct and 
backward movements, being automatically generated by the primary E-D.  

In addition, the E-D encoded collection of symbols has been bound to this time-sequence 
by the secondary encoding. The compressed symbols, satisfied to equations (2.43),(2.43a), 
keep a fixed regularity of the considered time intervals {ti

*}  like a clock.  
This clock-time becomes embedded into the IN* final node after compression. For each 

random and finite {γ i}~ {bi} sequence, the total clock-time can be considered as a measure 
of the number of such symbols within the encoded sequence. Actually, this clock counts the 
number of encoding-decoding events corresponding to current {γ i} number.  

The final node memorizes and stores the time-clock that had collected these numbers. 
The time-clock does not depend upon the specifics of each particular event γ i  within the 

{γ i} sequence. Any random sequence with the equivalent γ i  numbers is able to generate the 
same time-course. This means that the E-D leads to averaging of the random sequences into 
nonrandom {ti

*}  intervals, or to a statistical correlation between the random γ i .  

The above {ti
* } sequence can be considered as a result of a large number of such a 

random E-D, not especially connected with any of them.  
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For a Gaussian random sequence, the entropy H(γ i , γ j )is defined via the mutual 
correlation function Rij  [5]:  

 

 ( , ) 1 / 2 ln(det ),i j
ijH Rγ γ =  ],[ ji

ij ER γγ= .  (2.44) 

Because the IN total entropy ΔS = nao (γ ) is determined by the equality 

H(γ i ,γ j )=ΔS , the IN parameters n , γ i
α (γ ), and γ i

α (γ ) become connected by the 

correlation function of the initial sequence, which expresses its statistical relation γ i
α (γ ) to 

the clock course: ],[~ ααα γγ jiijij ERR = .  
The ordered decompression can serve as a mechanism, which filters randomness and 

eliminates redundancies. The repeating code-word (carrying the quantity of information ao  
that provides the sequential decompression) is able to generate the decoding process' 
periodicity as an indicator of the process' ordering.    

Let us evaluate the difference in" reading" the symbols tk , tk+1 by the IN direct: 
tk → tk+1  and the inverse: tk+1 → tk  orders, which have the following relations to the inverse 

times: tk+1 = tk
− , tk = tk+1

− .  

Thus, even though their ratios are equal at bi = bi
− , the difference  

 

  Δbk =
tk

tk+1

−
tk+1
−

tk
− =

[(xk−1 +1)(xk − 3)]2 −16(xk−1 − 3)2

4(xk−1 − 3)
 (2.45) 

arises at each fixed tk , tk+1 moments. At xk = xk−1 = 4 , we get Δbk =0.45 .  
The backward movement is accompanied by a nonequality of their entropy ratios, leading 

to the difference  
 

 
δ(

Ak
'

Ak

) =
Ak

'

Ak

−
Ak
−

Ak
'− =

(xk −1 +1)

4
+

4

(xk −1
− − 9)

=
(xk−1 +1)2 −16

4(xk−1 +1)
,  (2.46)  

which at the same xk = xk−1 = 4  bringsδ(
Ak

'

Ak

)=0.45 ; and δ(
Ak

'

Ak

) = 0  if xk = xk−1 = −5 , 

or xk = xk−1 = 3 .  

The first equality's condition determines Δbk = 0  at 
tk

tk+1

=
tk+1
−

tk
− = 1, which is useless, the 

second one leads to a chaotic destruction of all IN's information (at 
Ak

a
→∞,

Tka

tk Ak

→ 0), 

meaning that the fulfillment of both δ(
Ak

'

Ak

) = 0  and Δbk = 0  is not possible.  

The difference between each direct and indirect time interval is initiated by generation of the 
entropy's surplus at crossing the doublet border, which is a result of the model irreversibility.  
This difference is exposed through the IN information equivalents {α ko,α k+1,o }.  
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Each symbol's location α ko  among the ranged set {αio } is characterized by the specific 

entropy productions α ko = ao /tk , α k=1o =ao /tk+1 .  
Their direct difference 

                                       α ko − α k=1o =ao ((tk )−1 − (tk+1)
−1)=δsk ,k+1   

generates the entropy surplus δsk ,k+1 .  

The inverse difference α k=1o − α ko =−δsk , k+1 requires a consumption of the equivalent 
defect of entropy.  

This determines the nonequivalence of moving from tk → tk+1  and from tk+1 → tk .  
The above relations evaluate an inner irreversibility of the symbols' order, encoded into 

the IN, and take into account both the information value of each symbol's pair, according to 
its location within the network, and the information irreversibility of the IN symbols' 
processing.  

This reflects the irreversibility of the human language's symbols in both the words and a 
brain information processing.  

Compared to the basic network, the built  IN* represents a sequence of the joint encoded 
doublets' structures with a decoding logic 

                                 xi
− → (Ti , Ti+1 )− → (ti ,ti+1)

− → (γ i , γ i+1)− ,  
performing a sequence of the direct A → B → C → D  and the analogous indirect 
operations up to the initial (γ i ,γ i+1 ) .  

The IN* represents a limited version of the basic IN, where the triplet's structures are 
formed by the sequential adjoining information generated by the doublets.  

2.2.5. Summarized Results 

The following correspondence between each pair of the symbols takes place: 
                                (γ i ,γ i+1 )→ (ti ,ti+1) → (Ti , Ti+1 )→ xi   

in the direct order operations of encoding. 
In the opposite order operations of decoding, we assume that the inverse correspondence is 
correct between each corresponding pairs: 
                                      xi

− → (Ti , Ti+1 )− → (ti ,ti+1)
− → (γ i , γ i+1)− .  

When an equivalence is reached between xi  and xi
− : xi = xi

−  (by applying the inverse 
operations) the inverse correspondence becomes incorrect.  
The accordance between the encoded (ti ,ti+1)  and decoded (ti ,ti+1)

−  is violated, even though 

(Ti ,Ti+1) =(Ti ,Ti+1)
− is still true (by using (2.40)− (2.42)). 

The inverse operation is able to erase the encoded symbols (Ti ,Ti+1)  using the reverse 
information flow, but cannot delete the inner logic defining the directed sequence of encoded 
symbols. Moreover, the logic is arranged by the erasure and is preserved without above 
symbols. The inverse information flow that provides xi = xi

−  carries the same entropy as the 
direct logic processes, which cannot be erased by the inverse operation.  
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A direct dynamic logic A → B → C → D , determined by the interactive complex 
dynamics, requires a time for its performance. The restoration of an inverse logic 
D → C → B → A  assumes the reconstruction of the logic prehistory associated with an 
inverse movement backward in time.  

It was shown that such a process cannot precisely restore this logic because the IN's 
dynamic time is irreversible.  

This analysis yields the following results: 
 
1. The authentic, direct logical sequence A → B → C → D  (or any other related direct 

series: A → C → B → D , applied to auxiliary nonredundant events), which is performed in 
real time, become false in the inverse direction.  

2. Such a deterministic logic incorporates entropy; therefore it is not a certain logic. An 
attempt to restore the direct logic releases uncertainty-entropy between both direct and 
inverse logics, determined according to (2.46). Each new combination of initial symbols, 
generated by an extension of the preceding results, introduces more diversity and provides 
more entropy-information into the direct logic. It is similar to the symbols of an alphabet and 
the rules of the proper grammar in a formal syntax. The introduction of a new extended 
language's alphabet or new formal axiomatic, as well as a new programming language, 
changes the initial entropy. 

3. The impossibility of complete elimination of this uncertainty in traditional logic 
requires the development of an unconventional logic with an inner uncertainty, where the 
error of accuracy could be within the inherent uncertainty of applying a logic's code. For 
example, the operation of adjoining doublets into a triplet structure is executed not precisely 
but with an inevitable error (ch.1.5).(On Fig.1.5.5, this error is enlarged for a better 
illustration.) As a result, the correct mathematical operations describing the triplet's formation 
should carry an internal uncertainty that would automatically cover these and a possibly other 
inherent inaccuracies.  

A human mind's inner uncertainly, we believe, is a consequence of these results. For this 
reason, we proposed [6] to operate with the IN information code (DSS), carrying the IN logic 
and its intrinsic uncertainty rather than using traditional mathematical logic in the Artificial 
Intellect (AI).  

The DSS implies an optimal three digit code, which, compared to traditional two digits 
(yes-no) code, has extending characteristics and opportunities for future applications.  
The DSS is related to DNA code, unveiled by Nature.  

4. Because the inverse logic cannot precisely repeat uncertain direct logic, a truth of 
direct logic is unverifiable by a proof based on the opposite assertion. This result is in the 
agreement with G o��del's theorem of incompleteness and Turing's uncomputability [7].  

Even the ranged IN starting numbers such as 4, 2,1,0.5,0.25,...., taken by absolute values 
(for example α1o =|4|≅ 3.5777±1.7888 j1, |α2o |= |2|≅ 1.7888± 8944 j2 ,  

              α3o = |1|≅ 0.8944 ± 0.4472 j3 ,.., αio , ji = (−1)1/ 2 ,...)  
bind a primary "free" entropy under the IN cooperations (chs.1.5-1.7).  
In this example, the IN has the parameters: γ = 0.5 , ao ≅0.72, a≅ 0.245 and it performs the 
following operations: j1 = 0  at the moment t1 ≅ 0.03494, forming 
α1 = 2 •3.5777 = 7.1554 ; j2 = 0  at t2 ≅ 0.06988, forming 
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α2 = 2 •1.7888 = 3.5776 ; j3 = 0  at t3 ≅ 0.13975, forming α3 = 2 • 0.8944 =1.7888, 
and so on.  
Approximately at the same moment t3

' = t3 + o the equalization of 

α1(t3) ≅ α 2 (t3 ) ≅ α3 =1.7888 takes place with their triplingα3 (t3
' ) = 3α3 (t3 ) = 5.3664 , 

while each IN algebraic operation (at the moments t1 ,t2 , t3 ) generates the equal entropy  

a≅ 0.245 , whose sum (in δs = 3a) binds it into a single triplet's node ao ≅ 0.75.  
Thus, a simple algebraic operation with the initially independent (random) numbers, which 
connects the numbers, is capable of releasing an entropy-uncertainty.  

In the considered example, the first of such operations is ranging the numbers.  
The encoding of initial arbitrary symbols into the IN's ordered starting symbols performs 

the regularization that decreases the initial randomness. The ordered symbols' sequence has a 
minimal uncertainty compared to any nonordered ones and is characterized by a minimal 
Kolmogorov's complexity. The ordered sequence is incompressible. 

5. The E-D has a more general meaning: creating an order through a backward 
movement. In other words, the inverse motion orders the events that occurred during the 
direct motion. The same way that encoding regularizes the direct process, the equivalent 
decoding orders the inverse process.  

The inverse motion can also be performed virtually by an imaginable (virtual) analysis of 
already executed actions. 

The scheme on Fig.2.3 establishes the connection of both the primary and the secondary 
E-D with the elements of Information Cognitive Processing (ICP) (Fig.2.3a).  

The incoming information is primarily encoded by an individual's IN code and is 
compared to existing information, stored in the dictionary of knowledge (DK). Only new, 
nonredundant information is filtered by this cognitive filter and is fixed using the DK labels. 
In particular, the considered information interactions model a consonance in a harmony of 
sounds, associated with the correct acceptance of the natural language words and/or 
sentences' semantics.  

A proper grammar is verified by the correct sounding word-sentence combinations; 
assuming that a natural language itself automatically carries a natural harmony, which 
enables both regularize and connect the language’ grammar and semantics serving for their 
verification.  

This approach is also relevant for the translation of visual information into the interacting 
frequencies. Through these interactions, the produced information not only binds the 
authentic symbols by the node frequencies ωm  but also synthesizes nodes into meaningful 
integrated units (words, sentences, thoughts);and the sequentially enclosed node’s connection 
orderly integrates these units.  

This means the final IN's node assembles not just an arbitrary collection of symbols but 
provides a meaningful synthesis.  

The synthesized unit can easily be recognized and memorized as a single word-concept's 
symbol in the DK's label code, which also carries the substantial symbols usable for 
decoding.  

Actually, fixing and labeling this information corresponds to memorizing it at the 
secondary encoding for synthesis and allows concentrating it for storage into long-term 
memory.  
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The memorization of composite symbols (that had been assembled into the final node for 
possible IN* decoding) takes place in the ICP's Data Base [6].  

The primary E-D generates a matrix logic structure for the memorization.  
Therefore, both the primary and secondary E-D mechanisms present an intrinsic part of 

the ICP in the process of acceptance of incoming information. The E-D is not executable for 
an initial nonredundant but an arbitrary symbol's sequence.  

The transformation of an arbitrary symbols' sequence into its ordered sequence releases 
an entropy which can be used to encode and decode the arbitrary sequence. 

 

 

Figure 2.3. Scheme of the E-D operations within the ICP: W-Webster's model, DB-Data base, DK-
dictionary of knowledge, STM-short-term memory, LTM-long-term memory, m-message, ws-word's 
symbol, sf-symbol's frequency, ew-encoded word, ec-encoded concept, sn-spot's node, wl-word's label, 
cl-concept's label.  

The E-D and ICP mechanisms not only model a comprehensive process of transformation 
information but rather are analogous to human perception, cognition, and accumulation of 
information [4,6]. During the perception, the initial random events are primarily encoded-
decoded by an individual’s code, a possibly stored in short-term memory; the compressed 
information is sent into long-term memory. The information retrieval depends upon its 
necessity in applications. If the stored information is not required, it can be forgotten.  

 

 

Figure 2.3.a. E is a primary encoding into IN, E* is a secondary encoding into IN*, D is a decoding; 
other indications are the same as on the Figs 2.3; the numbers 1-7 indicate a sequence of the above 
operations. 
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The final IN* node can be programmed to decompose and reveal the compressed 
information after reaching a fixed or limited number of the {γ i} event-symbols.  

Another option is the initiation of a signal for the destruction or erosion of total 
information based of a given final clock's time.  

This mechanism allows for both the effective acceptance of incoming information and its 
storage, memorization, and the automatic erasure of the unused information.  

The considered model also opens a constructive method of automatically counting 
arbitrary information and effectively storing it in a very compressed form, enabling feed-back 
control for different information proceedings. The synthesis of information in the form of 
thoughts and concepts is based on its proper collection, concentration, ordering, and revealing 
the inherent logical connections. These mechanisms have important AI applications. In a 
cognitive observer, discrete intervals of imaginary information ended with interaction 
(collapse) of information waves (ch.1.9), which generates real information, and a code. 

The cognitive dynamics include: selecting of a most informative events, ordering, 
memorizing, cooperating, encoding and integrating this information (into into an IN 
hierarchy), creating a base of knowledge, allowing its renovation, control, synthesis, 
creativity, and decision making.  

Cognitive system, implementing the evolutionary cooperative dynamics (ch.1.8), feeds 
itself with valuable information. All these and other related components are the IMD parts 
(which are theoretically founded in chs. 1.1-1.9 and applied in part.2).  

An observer’s cognition transforms unobserved imaginary information into observed real 
information (after an interactive “collapse” of the wave functions, ch.1.9).  

A notion of intelligence belongs to an observer as its ability to accept, use, and create the 
information. This ability we evaluate by an increasing quantity and quality of accepted 
information during the use and creativity. Such an increase becomes possible if an observer’s 
inner (accumulated) information is utilized in the cooperative dynamics of processing the 
accepted information. In these cognitive processes, different forms of encoding information 
are instrumental for its reception, recognition, distinction, and creation.  

An intelligence level is connected to an observer’s ability of creating a highest level of its 
IN hierarchy, measured by the highest quality (ch. 1.6) and cooperative complexity (1.7) of 
accepted information being transformed during the cooperative dynamics.  

A maximum complexity of the most valuable information could become a scale for the 
intelligence comparison.  

Each E-D operation depends on specific (tn , xn −1) or ( t1 , x1 ) sequences that determines 
the corresponding time intervals, associated with the transformation of distinctive 
information.  

The examined sequences of random events, which are embedded and compressed into a 
time clock, have a function analogous to that of a cell's telomerase at the DNA end [8].  

Six DNA bases are translated into RNA and then, using RNA as a template, are encoded 
into each DNA end by a repeating sequence of these bases.  

This is like a secondary E-D, which compensates the telomerase erosion after each cell 
reproduction and protects the DNA information from a potential loosing.  

A limited number of the secondary encoded base's tandem and the sequential erosion of 
these bases at each cell division restrict the telomerase life-time.  
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Because this process depends on individual's telomerase length and DNA specifics, the 
time intervals that identify the time's course and the life-times are strongly individual.  

The clock counts the time that is contributed to the entropy production (according to [8]) 
at each discrete interval of the transformation of information into a cell, which accumulates 
the entropy production.  

The telomerase measures and controls the processes of transforming DNA information 
into RNA, which regulates the biological clock of cell's reproduction, controlling the life 
spare of the cell, and possibly determining the life clock of the total organism.  

Until an individual consumes his negentropy, which compensates for the entropy 
production, he lives.  

However, the ability to compensate and therefore to accept the negentropy is declined 
when the entropy production (associated with a process of destruction) exceeds the available 
limit. This leads to a total collapse. Before that occurs, the accumulated entropy production 
decreases a "free entropy reserve", which is capable of compensating for errors in a self-
regulating system. This is a primary symptom of aging.  

The above IN* functions extend the fundamental functional connection between the IMD 
and biological processes [3], including functional mechanisms of evolution (ch.1.8) and brain 
information processing [4].  

A set of the IN final codes (that embed total information processing from a complex, 
multi-dimensional system) serves as an analogy of  DNA code with the telomerase time-clock 
at its end.  

The code's retrieval allows for the restoration of the initial complex process.  
We believe that the collection, encoding, and encryption of information into the IN* are 

the functions of the distinctive control mechanisms (as the brain's analogies) in the diverse 
natural systems, developed by the evolutionary dynamics.  

This means that the above biological mechanisms are created according to general 
information systemic principles implemented by biological processes and entities.  

Moreover, each mechanism‘s macrostate is described by a local uncertainty that requires 
an adequate language, having an inherent uncertainty, to operate with the macrodynamic 
states and complex processes.  

2.2.6. About Other Related Applications 

The IN optimal average codeword's length ln  follows from Shannon's 

formula: / lnnl H n= , where H  is entropy of a message, N  is the number of message's 
alphabet symbols.  

For the IN: with N =n , H =ΔS =ao (γ )n  we get ln =ao (γ )n / ln n .  

A code is decodable if its codeword lengths , 1,...il i =  satisfy to Kraft's inequality [9]:  

                                                 1il

i
N − ≤∑ . 

For the IN fixed codeword nl = ao (γ )n / ln n , this formula leads to 1nlnn− ≤  that 

brings the following limitation: ao (γ ) ln n / n , or ln n / n ≤ao (γ ).  
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For ao (γ )≤ 0.765 (Nats), the above inequalities are fulfilled at any n > 1.  
Thus, the IN code is decodable by Kraft. 
C. Shannon calculated the entropy of English as H ≅ 12 bits per word [1]. Encoding the 

word into the IN* minimizes this entropy down to the entropy of final node ao 1bit≅ .  
The difference 11HΔ ≅  bits can be spent to classify, range, and encode (label) the word 

into a corresponding IN* according to their novelty.  
The average optimal codeword's length to encode-decode each of m  words is equal 

lm = ΔH / lnm .  
Using English alphabet's symbols for labeling these words brings m =26 and lm ≈ 3  

(which is enough to encode 33 = 27 symbols).  
This means, a sequence of three symbols from a chosen new alphabet (for instance, a 

binary code) can encode each of m  words and is able to label each of these words by one 
letter of English alphabet. A label of a latest word (with entropy ao 1bit≅ ), being squeezed 
into the final INm  node, identifies all compressed chain.  

The ratio H /ao  determines the compression ratio 12r ≅  for each word. By applying n 
such IN*s we get 12r ≅ n, which even for a simple text with n=10 words brings the ratio to 
120.  

For example, a complete book can be compressed and stored as a single symbol. 
Conventional methods cannot reach such compression.  

The ordered decoding decreases the starting entropy by approximately the same ratio.  
This means that the ordered decoding releases a source's random entropy in the same way 

that compression reduces the potential redundancies.  
Therefore, the ordered decompression can serve as a mechanism of filtering and 

eliminating redundancies.  
Further compression should include nonredundant information that requires non 

traditional methods. 
The repeating code-word (carrying a quantity of information ao  that provides the 

sequential decompression) is able to generate the decoding process' periodicity as an 
indicator of the process' ordering.  

The encoded compressed file is encrypted by both the secondary code and the decoding 
algorithm. Only a possessor of both of these has access to the compressed file.  

This means that the encrypted information is well secure and uniquely protected, and can 
be sent for long term storage and memorization. Because the final element of the IN system 
compresses the total information, its capacity enhances and memorizes the total IN capacity. 
Cognitive processing [6], implementing a maximal acceptance of information with its 
minimal spending, orders and prioritizes incoming information in terms of a maximum 
informativeness, creating the ranged IN automatically.  

The considered systemic information model has feasible connections with the 
publications [10-19] in neurodynamics and many other scientific results.  

R. E. John [10], in a study of brain information processing through a purely biological 
point of view, provides the detailed and convincing results regarding the substances of the 
brain systemic biological phenomena. Such as a coherent chaotic activity, binding actions, 
self-synchronization; integration, hierarchical complexity, discretion of time, an occurrence of 
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the discrete stimulus' complex, and conscience; memory formation; neuron's 
communications; maximum entropy and generation of negentropy; quantum dynamic 
phenomena with a wave's collapse, and many others.  

All of these, are consequences of systemic information regularities, mathematically 
expressed by the minimax variation principle.  

It is believed that there are also other specific bio-mechanisms which follow from the 
information systemic model but have not yet been practically revealed.  

This is due to the fact that a systemic approach and Informational Macrodynamics are a 
new and mostly unknown and unexplored field, requiring bio-scientists of different 
backgrounds and working in specific areas. 

The importance of a systemic approach is supported by W.J. Freeman's research [11], 
which focuses on following mechanisms and features of the brain dynamics (in terms of 
information processing): 

 
• -bifurcations of the individual's space distributed chaotic dynamics (at a basin of 

the local attractors) initiate the coherent motion of selected frequencies; 
• -the local coherent dynamics are integrated sequentially and hierarchically; 
• -these cooperative dynamics carry a code which controls the current assembling 

mechanism of this dynamically created hierarchy;  
• -the hierarchy of these ordered aggregations forms an information network 

whose code is originated by the individual's genetics. 
 
Trying to explain these mechanisms in a unified approach, W.J. Freeman wrote: "It might 

be some of the principles in accordance with which the whole brain takes short steps and 
creates its own path into the future". We believe that such a systemic principle exists in the 
form of the IMD minimax variation, from which the above mechanisms follow (chs.1.5-1.8). 

R. Penrose, a well-known physicist and brain scientists [12], indicates the necessity of 
developing a new "missing theory at the fundamental level".  

We think that the missing theory is not physics but Informational Macrodynamics, which 
lay beneath physics and classic dynamic equations and also deals with the "virtual 
information and the codes of natural phenomena" (chs.1.6,1.7), leading to the macrodynamics 
of uncertainties. 

H. Stapp [13] emphasizes that the dynamic equations of classical physics, including the 
classical mechanics, cannot describe human consciousness.  

K. Pribrams' reference [14] to brain information processing, maximum and minimum 
uncertainty, and quantum mechanics are very interesting and directly connected with [4]. 

Roy S. and Kafatos M. [15] provide interesting ideas regarding probabilistic space-time 
representation of neuronal dynamics.  

The specifics of the considered (in chs.1.5,1.6) information geometry consist not just in 
expressing the initial probabilistic distributions in terms of information, but also in the ability 
to generate the distributed quantums of information (cells) according to its geometrical 
topology along with the initiation of a corresponding space-time metric by this information. 
The generated information enables the creation of a variety of functional geometrical 
configurations and diversity of hierarchical geometrical structures.  
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For instance, a brain’s accumulated information generates a cerebral chain of cooperating 
geometrical structures, characterized by shapes of curved subspaces, whose merged discrete 
boundaries “stitch” sequentially (ch.1.7). The discrete’s number and the curvatures of these 
topological structures, determined by the code of the accumulated information, are measured 
in the terms of cooperative complexity and quality of bound information.  

These specifics could not be found in known publications.  
The paper [16] provides the experimental results, which translate the entropy production 

into the measured signal, representing a carrier of different interactions. Such a verification 
supports the theoretical IMD equations connecting the different superimposing processes 
through interacting information flows, which pool into collective networks.  

The phenomena of the IPF formalism, with asymmetry in a future and past time, are 
essential for dealing with conscience's regularities [4, 6].  

The formalism also provides a mechanism for the transformation of imaginary into real 
information (ch.1.9) having a connection to evolution.  

Moreover, the mechanism reveals the information forces that arise at the border of the 
imaginary and real zones and estimates their ratios, evaluating a resistance, necessary for 
overcoming information barriers between these zones [4].  

According to [17]: "...Information about intensity of a stimulus is usually transmitted to 
the brain by frequency coding, and information about a quality by label-line coding...", which 
has a direct connection to the above results.  

The existence of DSS' triple code confirms the recent publication [18], uncovered that a 
neuron communicates by a trinary code, utilizing not only zeros and ones of the binary code 
but also minus ones.  

A human way of organizing and assembling the valuable information is described in [20]. 
We believe that a notion of cognition is related mostly to a reflection of external information 
and its conversion by a human neurodynamics.  

We focus on the details of the IMD connections to the neurodynamics experimental 
results in the following section. 

2.2.7. The Connections between Some Physical Neuronal Functions 
and Mechanisms and Their IMD Information Analogies  

We outline the common features and mechanisms of both neurodynamics and 
information macrodynamics (IMD), based on the following assumptions: 

 
• The IMD time-space dynamics is described by a sequence of the path functional’s 

extremal segments with the spiral trajectories located on a conic surface, while each 
segments represents a three dimensional extremal; 

• The physical dynamics of propagation through axon is modeled by the IMD 
information dynamics at a specific extremal segment, while a neuron can be modeled 
by a three-dimensional dynamic system with an applied control; 

• The spike generation is modeled by the impulse needle control during a window 
between the segments, while the needle control joins the corresponding segments; 
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• The IMD embraces both the individual and collective regularities of the information 
model and its elements, forming a multiple connection and a variety of information 
cooperative networks. 

• In the information cooperative networks’ nodes, the collected valuable information is 
conserved in an invariant form and sequentially enclosed with growing both 
information’s concentration and its volume; the nodes’ interaction is able to produce 
a new information.  

 
A comprehensive review of the physical dynamic principles in neuroscience [19], allows 

us to provide the following comparison of both the general principles of information 
macrodynamics and neuroscience and the specific neurophysical and informational 
features[18,21,25,26, others]  

 
• A spike is generated upon overcoming a threshold. The needle control arises at the 

end of the extremal segment, after the information, carried up by the propagating 
dynamics, compensates the segment’s inner information (determined by the segment 
macroequation). Quantity of this information is evaluated by the segment 
information invariant ao , while the needle control’s information is measured by a 2

o . 

This establishes, first, the direct connection between the information analogies of 
both spike and the threshold, secondary, brings the spike information measure for 
each its generation.  

• A spike, reaching the axon’s terminal, triggers the emission of transmitter, which 
binds the receptor of the following neuron. At the consideration of information 
transmission between the segment-transmitted and a segment-receiver (receptor), the 
needle control connects them and initiates the signal propagation between them 
(sec.1.8.7). The propagation is associated with adding a macrostate (carried by a 
control) to transmitter, and removing it after transmission occurs. At the receptor 
side, the propagation’s and the control’s actions initiate the addition of a macrostate 
to the current receptor’s macrostate, indicating the occurrence of the transmission, 
and release the macrostate after the propagation occurs. The needle control serves 
only as a messenger, which does not carry the macrostate, but rather induces the 
macrostate’s formation by the receptor (Figs.1.8.4,1.8.5).  
The details of this mechanism are in [4].  

• The interspike intervals carry the encoded information, the same way as the intervals 
of discretization between the applied needle controls do. An axon conductivity 
depends on the between neuron’s electrical conductance, which is determined in the 
IMD model by the diffusion conductivity of the cooperative connection, computed 
via the derivation of the correlation function (ch.1.5). An external signal through this 
conductivity (correlations) might modify a topology of a single, as well as a multiple 
connection, changing its macrodynamic functions (and a possibly leading to the 
distinct networks) under different input.  

• The IMD optimal elementary form of the multiple cooperative connections is a 
triplet, formed by the cooperation of two ordered segments into doublet, which is 
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coupling with a next ordered segment. The axon’s branching geometrical structure 
[20] is an example of the triplet cone’s connections (Fig.1.5.4), where at each triple 
point, the two cone’s vertexes are connected with the base of a third cone like two 
inputs and one output. The neuron communicates by the triplet code of cooperative 
dynamics (ch.1.6), whose existence has been experimentally confirmed in the recent 
publications [18], others. Cooperation of interacting neurons leads to a stimulus 
dependent ordering in the neuron groups, multiple encoding of an input signal as a 
result of coordinated activity. 

• Both neuronal dynamics and macrodynamics are strongly dissipative, based on 
stochastic dynamics of the controlled diffusion processes, whose macrobehavior 
includes chaotic dynamics with a possibility of different types of local and global 
bifurcations, associated with changing the structure, instabilities, and singularities. A 
three dimensional triplet’s dynamics generally generate such bifurcations as the 
limited orbits, saddles and attractors. A structural stable macrosystem encloses a set 
of the stable attractors, forming the triplet’s nodes of the information network (IN). 
As a neural system, the IN is organized as a hierarchical dynamic structure (in both 
the phase time-state and three dimensional spatial state) that utilizes such neural 
phenomena as the state’s coordination, synchronization, and cooperation, which are 
probabilistically dependent on the input signal, transformed into the specific output. 
Each behavioral event forms a starting condition for the next widow of time, which 
connects the events also in a space; the same information states’ sequence is 
generated by the “quants” (sec.1.3.5) at the widows between the information model’s 
segments. Coexistence of the multiple nodes-attractors at a given initial conditions 
characterizes a multistability of both neurodynamic and macrodynamic systems. In 
the triplet’s network, each previous triplet node enables sequential attraction of the 
following triplet’s node, with a possibility of their synchronization, generation of 
adaptive rhythms, and forming a transient behavior. A proposed “polychronization” 
of a neuronal network with the time delay of axonal activities and a group’s self-
organization [21], are consistent with the IN cooperative dynamics. In particular, it 
was shown (sec.1.5.2) that the macromodel eigevalues are capable of assembling into 
a cooperative, if its information frequencies operate with the sequential delay of 
incoming information, determined by the time intervals required for the following 
cooperations. The IN triplet’s connections can be changed depending on the current 
segment’s sequence, its information quantity, and their number, which leads to an 
alteration of network structure, reacting on incoming inputs. Changing the network’s 
connectivity is also associated with learning [19, 6].  

• The IMD mechanism of the IN building includes an automatic ordering the model 
segments evaluated by the information quantity of the segment’s eigenvalues (and 
the eigenvectors) in the process of this information acceptance for a specific 
sequence. Moreover, proceeding of these information quantities involves the 
automatic generation of the triplet’s structures with the corresponding space 
movement of the local space coordinate systems and forming a global IN’s 
coordinate system, which are determined by the eigenvectors’ inputs (ch.1.4). This 
automatic procedure not only transforms the spatial-temporal input to its spatial form 
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and finally to spatial-temporal output, but also establishes an ordered geometrical 
mapping relationship between them, allowing the exact localization of the 
transformed inputs. We assume that this transformation is carried by the spiral wave 
modes, represented by the model’s spirals on the cones.  

• The IMD model is characterized by a sequential growing of the information 
effectiveness of the needle (and regular) controls actions along the IN spatial-
temporal hierarchy. This is connected with changing the quality of the IN node’s 
information depending on the node’s location within IN geometry and corresponding 
spatial space (ch.1.6). The changes increase the intensity of the cooperative coupling, 
its competitive abilities, which make the segment’s synchronization more stable and 
robust against noise. It also affects the length of the discretization intervals, and an 
ability to adjoin more cooperating elements; increases the model’s hierarchical 
complexity (ch.1.7). In the IMD neuron model, this leads to the spike strengthening 
along the formed networks, affects the interspike intervals, increases the neuron’s 
chain ability for connectivity and self-organization. Growing the network 
effectiveness, quality, and intensity allows conserving and concentrating more 
valuable invariant information with increasing information volume.    

• The macrodynamics is reversible within a limited time-space intervals (contained by 
the segments) and irreversible out of these intervals (at the windows), representing an 
open system, for which the preservation laws are not satisfied at the moments of 
interaction when the external environment is able to change the model structure. The 
reversible and symmetrical macrodynamics, satisfying classical dynamics, are 
followed by the irreversibility and asymmetry, satisfying nonequilibrium 
thermodynamics. These uncertain macrodynamics, which characterize both 
neurodynamics and cognitive dynamics, connect randomness and regularities, 
stochastic and determinism, reversibility and irreversibility, stability and instability, 
symmetry and asymmetry.  

• As a neuronal subsystem, the information cooperative subsystem is ensembled from 
the interconnected units at each IN’s hierarchical level, all of which are similarly 
organized, preserving a local autonomy and a self-regulation at a diversity of the key-
lock cooperative connections (Fig.1.8.2). Such a cooperative dynamics are 
characterized by its specific cooperative complexity, including the hierarchical 
dependency (ch.1.7).  

• The multiple triplets and the IN nodes, created by various sensory inputs, do not 
assume establishing between them the specific encoder-decoder’s relationships. It 
could be many simultaneous senders and different receivers with distinct messages 
and transmissions processes, but with a universal coding language, determined by the 
triplet’s genetics. The universal time scale (and corresponding space locations) are 
established for a given system by its local clock course [22] (secs.2.2.3,2.2.4).  

• The macrodynamics, as the brain dynamics, are regular and robust in the presence of 
both intrinsic and external noises, and are the sensitive to incoming inputs, 
preserving the self-control and adaptivity at the limited inputs, and leading to the 
self-organization at overcoming of some thresholds, especially in the evolutionary 
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dynamics (secs.1.8.1-1.8.5). The specifics of these features include the error 
correction mechanism, a non symmetry of the adaptive potential, the acceptable 
mutations at a system’s diversity, and a renovation with growing the potential of 
evolution under these mechanisms. The IN evolution involves the triplet’s genetics, 
which is able to encode the different inputs features into distinct output patterns. The 
evolutionary dynamics includes compatibility and selectiveness with adaptive self-
controls, self- organization; genetic code, coping, and reproductivity.  

• The cognition includes extraction, selection of and ranging the facts depending on its 
informativeness (both the quantity and quality of the fact’s information content), 
building the fact’s hierarchical connections-as a key for understanding. These 
cooperative connections cohere and organize this information, aiming at crafting its 
meaning and remembrance. Motivated by that, “the large goups of neurons in the 
brain synchronize oscillatory activity in order to achieve coherence”. It seen that all 
these features possess both the neuron system and the IN information network. 
Actually, the short-term memory (STM) (or working memory) is modeled by the 
current control (both regular and needle), with fixing the double states at the 
segments’ cooperation. The long-term memory (LTM) performs a sequence of the 
cooperating triplet’s nodes-attractors, which guarantee the memory robustness. The 
LTM is generated after the STM forming, which has a limited capacity. Placing the 
LTM into a spatial IN occurs after removing the current multiple STM, which are not 
composing the IN nodes. STM is a dynamic process, while LTM is based on forming 
the structural connections. The working memory’s limited capacity by four to seven 
items is following from the triplet’s elementary dynamics at their minimal number 
and is in agreement with Miller’s magical number [23]. Therefore STM works until 
structural connections have not been made, and until the STM limited capacity has 
not been exceeded. After that the LTM starts, and it depends on the specific triplet’s 
element, which keeps the latest STM. “Each of the saddle point represents an event 
in sequence to be remembered.” 

• Learning needs a precise spike synchronization and the sequential memory encoding 
that requires a sequential generation of the temporal asymmetry, following from the 
properties of the network’s connections. The nonstationary activities between the 
attractors initiate the transient responses and their competing connections through the 
information communications, which bring a cooperative behavior. Therefore, each 
IN’s node-attractor, with a memory storage, enables transmitting information and 
attracting a following doublet or a triplet by overcoming some threshold (ch.1.8). 
Each triplet, attracting others, is capable of bringing an ordered cooperative 
connections, counteracting the between connections’ instabilities and singularities 
[24]. An asymmetrical coupling goes through a stochastic synchronization, which 
after cooperation keeps robustness of the renovated structure. The cooperative 
connections also arise between the different networks (INs), as well as between these 
nets’ individual elements: within each net and the elements-nodes, located at the end 
one of them and at the beginning of the next net [25].  
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• According to [19], “experimental evidence shows the existence of population code 
that collectively express a complex stimulus better than individual neurons” by a 
spatiotemporal code. And then… “the presence of network coding”, i.e. 
“spatiotemporal dynamic representation of incoming message, has been confirmed in 
several experiments.” Thus, the IN network’s cooperative code, portrayed through 
the triplet’s genetics, is a valid element of informational neurodynamics. Following 
the IMD, each component of this code has a dual representation: by the time moment 
(or the space location) of firing the needle control, or by the time (space) intervals 
between these impulses. The code’s universal time (or space location) is set up by a 
given system of the model equations, which determine the eigenvalues and 
eigenvectors, as well as through the variation principle that defines the invariant 
relations for these eigenvalues, eigenvectors, and the above time-space intervals.  

• The IMD model admits a creation of inner information, without a specific external 
input. It is possible by two ways: when a needle control connects the extremal 
segments by closing access of external information. In this case, a previously 
memorized information produces the needle control, which cooperates the segments, 
maintaining the new information structures that were not directly initiated by 
external inputs. Also the instable chaotic activity between the segments is a potential 
generator of new information at any of the considered dynamic moves. Another way 
uses the information triplet’s surpluses, generated by the triplet’s interactions. 
Physical processes associated with these mechanisms are connected to the 
phenomena of superimposing processes (ch.1.9). More powerful, three-dimensional 
visual information, compared with scalar auditory information, might trigger the 
production of this information. Actually the IN is activated by a string (eigenvalues) 
with a very low initial information, which is sequentially amplified through the 
contributions of cooperating triplets. Such a network is described by a system of the 
ordinary differential equations, which are joint by the cooperative double and triple 
connections (ch.1.5). The connection’s activities are synchronized, generating the 
network’s periodic rhythms. The IN possesses the inner harmony and anticipative 
functions (sec.1.6.9).  

The actual question is: What can IMD bring to neuroscience?  
 
We summarize the answer by concluding of what the IMD does: 
 
• Integrates the neurosystem information’s features, based on the path functional 

variation principle and its specific applications; these bring a complex information 
systemic approach; 

• Explains the information specifics of some neuronal functions, allowing a prediction 
of their behavior; this includes the origination of neuron stochastic dynamics and its 
local and global bifurcations; the memory formation and its accumulation at the 
attractors, or at the saddles (depending on the bifurcation’s specifics); details of the 
transmission information at the neuron’s communication, dependency the spike 
strength on a prehistory; a flexibility of the spike’s threshold, forming multiple 
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spatial locations, and many others, including the time delay’s connection with the 
neuron’s internal and cooperative dynamics;  

• Provides the explicit explanation of the code origination, with both dynamic and 
information points of view, and identifies the universal double spiral code with its 
information dynamic and geometrical structure; 

• Presents the formal information mechanisms of creation of both the triplet 
information structure and the hierarchical information network (IN), based on the 
ordered cooperative triplet’s information dynamics and forming the IN node’s 
attractors;  

• Explains the IN node’s sequential attraction, synchronization, competitions, 
anticipation of the future local operations, creativity, and forming cognitive 
structures; 

• Joins the concepts of robustness, adaptive control, self organization, evolution, and 
reproductivity. 

• Introduces the information mechanism of the error (noise) correction and the 
adaptive potential.  

 
It sounds amazing the fact that the IMD reveals the information analogies for most of the 

physical features and the specific neuronal mechanisms, which the neuroscience obtains 
during many years of experimental and theoretical research, even though the IMD actually is 
not using this research.  

This means, these features and mechanisms are governed by some general principle, or a 
law-the same as it’s imposed on the IMD.  

For the IMD, this law is formulated by the variation principle for a path functional, which 
models a formal acceptance of information regularities by a system (an observer).  

The cognitive applications of this formal model bring the cognitive dynamics (both 
reversible and irreversible) with the above results.  

 



 
 
 
 
 
 

Chapter 2.3 
 
 
 

INFORMATION MODELING AND CONTROL OF SOME 
INDUSTRIAL TECHNOLOGY PROCESSES 

WITH COMPLEX SUPERIMPOSING PHENOMENA 
 
 
 
This chapter’s goal is to apply both the Nonequilibrium’s (NT) and IMD’s equations for 

modeling of the considered complex objects and using the path functional’s (IPF) optimal 
Hamiltonian (as an object’s performance criteria) for the solution of the objects’ optimization 
problems.  

In a technology of the solidification (crystallization) process, we illustrate the physical-
technological connections between NT and IMD by identifying both physical meaning of the 
information macrocoordinates and the process’ physical relations to the object’s performance 
criterion.  

For the considered electrotechnology, in addition to that, we use a direct measurement of 
the diffusion conductivity (according to chs.1.3, 1.5, 1.7 − 1.9) within the chain of 
superimpositions by the related electroconductivities. This allows us to apply a simple 
procedure for the identification of the model operator (avoiding the computation of the 
correlation functions), and to express the IPF performance’s criterion directly through the 
measured electroconductivity.  

Both of these applications expedite the close-loop dynamics and allow building the 
automatic optimization system, based on the indirect control of the multiple superimpositions.  

These important results, which illustrate the IPF applications, have been implemented in 
practice. 

2.3.1. Process Solidification and its Application in Casting 
Technology 

Solidification (crystallization) plays an important role in many metallurgical and casting 
technologies.  

Basic solidification models were studied in [2 − 4] with the important contribution by 
A.N. Kolmogorov [2]. 
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Crystallization is created by the superimposing processes shown in Table.3.1, where 
phase coordinates ( xn −k

t , xn −k
l ) are presented as the derivatives and integrals of corresponding 

(n − k + 1) coordinate: temperature θ , rate of crystallization vc , concentration Δ C, rate of 
mass transfer vm, thermomechanical stressesσ , strains ε , density ρ , and pressure p .  

Actual number of the total n  variables for a specific object is a priory unknown.  
We use both the IMD and Nonequilibrium (NT) equations [1] to connect the traditional 

physical approach with the IMD modeling formalism.  
Let us illustrate first the NT application as a method of choosing thermodynamic 

coordinates and corresponding forces in the IMD equations.  
We start with thermoconductivity (T) as the basic phenomenon generating TH, K, D (in 

Table 3.1).  

Table 3.1. The main interrelated physical phenomena 

Physical phenomena and their notations Phase-space coordinates Phase-time coordinates

 xl xt

 

1. Thermomechanical stresses (TH) xn +1
l

 θdl ~ σ(l)∫  xn +1
t

 σ(t)  

2. Heat conductivity (T) (initial 

phenomenon) 
xn

l

 θ(l) ~
∂σ
∂ l

 xn
t

 θ(t) ~
∂σ
∂l

 

3. Crystallization (K) under temperature 

gradient
xn −1

l
 

∂θ
∂l

~ vc  xn −1
t

 
∂θ
∂t

~ ΔC  

4. Effective diffusion (D) under heat flow xn −2
l

 
∂ 2θ
∂l2 ~

∂vc

∂ l
 xn −2

t
 

∂ 2θ
∂t 2 ~

∂ΔC

∂ t
 

5. Mass transfer (M) xn −3
l

 
∂ 2ΔC

∂ l2 ~ vm  xn −3
t

 
∂ 2ΔC

∂ t2  

  
∂σ
∂l

~
∂ρ
∂t

~
∂ε
∂ t   

6. Phase conversions (PC) causing stresses 

and pressure 
xn −4

l

 
∂vm

∂ l
~

∂ 3θ
∂t3  xn −4

t
 

∂vm

∂ t
~ pdl∫

~
∂2ρ
∂ t2  

7. Hydrodynamic transformations in liquid-

solid (HD) 
xn −5

l
 

∂ 2vm

∂l2 ~ p(l)  xn −5
t

 p(t)  

8. Hydrodynamic mechanism (H) 

developing a pressure 
xn −6

l
 

∂ p

∂l
 xn −6

t
 

∂ p

∂t
 

 
In the process of transfer the heat and diffusion, the thermoconductivity is described by 

equation 
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a

∂2θ
∂l2 = b

∂ 2θ
∂t 2 +

∂θ
∂ t

,  (3.1) 

 
following from the Newton law for the heat flow: 

 

 
q = −λ∇θ −

∂θ
∂t

, b = a / vq ,  (3.2) 

where vq  is the speed of the heat distribution.  
In particular, at vq → ∞  we come to Fourier's equation 

 

 
a

∂2θ
∂ l2 =

∂θ
∂t

   (3.3) 

with a  as the coefficient of thermoconductivity.  
The hyperbolic equation in the form (3.1) can be obtained from the preservation condition for 
superimposing processes by drawing Monge's surfaces [3], for example, using the surfaces of 
the phase transitions, or the chemical transformations.  
An analogy represents the surface for a nonequilibrium entropy in the NT variation problem.  

The T is connected with TH by equation  
 

 
σ = β αEθdl

β o

∫ , σ ~ θdl∫  ,  (3.4) 

which relates the integral of temperature to the thermomechanical tensions σ , where α  is 
the coefficient of linear heat expansion for a non fixed metal ingot, E  is a module of 
elasticity, θ(t,l)  are the temperature distributions; β , βo  are the geometrical coefficients of 
the forming ingot’s volume.  

According to Stefan's equation [4], the linear speed of crystallization vc  is proportional to 
the temperature gradient: 

 

 

∂θ
∂l

~ vc  .  (3.5) 

In the theory of growing crystals [3,4,other], the formed spiral dislocations are functions 
of linear crystallization speed.  

Diffusion process is characterized by a difference of concentrations Δc  between liquid 
and solid phases.  

The material density ρ  is connected to a specific molar concentrations of the c k =
∂ck

∂ l
 

components by relation  
 

 
ρ = Mk

k =1

m

∑ ∂ck

∂ l
, ρ ~

∂Δc 

∂ l
 ,  (3.6) 

where Mk  is a component of the molar concentrations.  
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The density’s changes at phase transactions are characterized by the following equation 
of mass transfer: 

 

 

∂ρ
∂t

= −div(ρw)  , w = vd Δc  ,  (3.7) 

where vd  is a linear speed of movement for the particles of a given concentration.  

Function 
∂ρ
∂t

, according to relation 2

2

~))((
l

ccdiv
∂

∂ Δ
Δ∇  and the second Fick's law, 

satisfies to the following proportional dependencies 
 

 

∂ρ
∂t

~ (
∂Δc 

∂l
,vd

∂2 Δc 

∂l 2 ) .  (3.8) 

From other side, the relation  
 

 
~))((~ c

dt
d

t
m

Δ∇
∂
∂ ∂ρ

∂t
  (3.9) 

characterizes the increment of the carbon (or other components) mass, created by its 
concentration’s differences in the liquid and solid phases.  

When the solid phase is formed, at 
∂c 

∂l
= 0 , the relation Δc 1 ~

∂m1

∂t
 characterizes the mass 

speed for a graphitization process in a casting technology. 

Thermoflow qθ ~
∂θ
∂t

 and the difference of concentrations Δc  in an ingot create a 

thermodiffusion.  
Substance’s flow Ic , arising under a temperature gradient, represents Sorre's effect, 

which is described by equation 
 

 
Ic = cDcθ

∂Δθ 
θ∂l  

,
   

(3.10) 

where Dcθ  is a coefficient of thermodiffusion, and c  is an average molar concentration. 
The corresponding flow is  
 

 
Ic ~ Δc 

∂l

∂t
 .  (3.11) 

From that, taking into account (3.10), we get 

 

Δc

c
=

∂Δθ 
vcθ∂l

Dcθ , vc =
∂ l

∂ t
 ,  (3.11a) 

where vc is a linear speed of the carbon transfer, characterizing a linear graphitization speed. 
The diffusion’s overcooling is defined by the equation 
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∂Δθ 
vcθ∂l

=
θl − θs

D 
 ,  (3.12) 

where θ l ,θ s  are the liquid and solid temperatures accordingly, vc  is the crystallization speed, 
and D  is the coefficient of diffusion in the equation 

 

 

∂Δc 

∂t
= D 

∂2Δc 

∂l2  .  (3.13) 

Joint consideration of equations (3.11) and (3.12) leads to relation  
 

 

Δc 

c
=

v c (θ l − θs )Dcθ

voθD 
, 

Δc

Δθ
=

vc

D
 , vc =

v c
vo , D =

D 

Dcθ

,  (3.14) 

which connects the relative increment of concentrations Δc =
Δc 

c
 and the relative increment 

of temperature Δθ =
(θl − θs )

θ
 (defined by the state diagram Fe − C ), with the 

corresponding speeds of crystallization, graphitization, and the coefficients of diffusion.  
Changes in the density characterizes the diffusion processes with phase transformations, 

which determines the deformations ε , creating the concentration’s tensionsσo : 
 

 

Δσo

σ o
= σo ~ ε ~

∂Δc 

∂l
, 

∂ε
∂ t

~
∂σo

∂t
~

∂ρ
∂t

 .  (3.15) 

The hydrodynamic process we describe by the equation connecting the liquid mass’ 
center speed vm  with a hydrodynamic force ∇p :  

 

 

dvm

dt
= Lp∇p , vm ~

dm

dt
~

dρ
dt

,   (3.16) 

which in general case has the form of Nevier-Stock's equation:  
 

 

dvm

dt
= −

∇p + ∇η∇vm

ρ
+Δ(k +1 / 3η)∇vm +ρ−1 ρi

i =1

n

∑ Fi  ,  (3.17) 

where k  is a coefficient of the volume’s viscosity, η  is the coefficient of the shift’s 
viscosity, ρ i Fi  is the force vector acting upon i-mass unit, and ρ  is an average density, 
determined, for example, from equations (3.7), (3.8).  

Equation (3.17) for the considered problem is reduced to form (3.16) by dividing the 
hydrodynamic force ∇p  on two parts: ∇p = ∇p1 + ∇p2 , where ∇p1 is the force of 
hydrodynamic pressure, ∇p2  is the gravity force depending on the liquid height z  and a 
gravity acceleration g .  

The kinetic coefficient Lp(η, f ,Σ) = Lp  depends on density ρ  (in particular Lp = ρ−1 ), 

where ρ  is determined by η  and depends on the phase state f  and a technological weight’s 
specific Σ  (of the phase distributions along some square S), using the relations:  
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                                       ρ ~ η / m ,     m = m( f , Σ) , ∇p ~
∂p

∂l
.  

Equation (3.16) for a two phase zone, in particular, when the liquid speeds are small and 
dvm

dt
≈ 0 , acquires the form  

 

 vm = −∇( p + ρgz)m( f ,S) / η  ,  (3.18) 
which corresponds to Darci's equation in the theory of filtration. 

Finally the considered equations take into account a joint impact of thermal, 
thermodynamic, thermokinetic, thermodiffusion, strengthen, and hydrodynamic phenomena, 
which accompany the solidification process.  

In addition, the above equations select the phase variables and establish their connections 
to the dynamics, generated by the cross phenomenon effects.  

The phase variables, connected by relations 
 

 

∂xi +1

∂t
= xi

t , 
∂xi +1

∂l
= xi

l , i = 1, ... ,n ,  (3.19) 

with corresponding thermodynamic forces Xi
t , Xi

l  and kinetic coefficients Lii , Lij , Lji  

i, j = 1,...,n , have a distinct tensor dimension in the NT equations.  
For the considered thermodynamic phenomena, the selected phase variables (in relative units 
on Table 3.1) connect only the cross phenomena reflecting the systemic interconnections of 
the solidification processes. For the pair of thermokinetic (K) and thermodiffusion (D), the 
general thermodynamic flow and forces have the form 

 

 xn −1
t =

∂θ
∂t

= Iθ
t , xn −1

l =
∂θ
∂l

= Iθ
l , Xn −1

t =gradΔ θ , Xn −1
l =gradΔc  ,  (3.20) 

and we come to the following NT equations for the selected variables: 
 

 

∂θ
∂t

= Ln−1,n−1
t gradΔ θ , 

∂θ
∂l

= 1, 2
l
n nL − − gradΔc ,  (3.21)  

which are interconnected according to the time and space phase relations. 

Introducing for general flow Ii  the corresponding derivations 
dxi +1

dt
, in particular 

Iθ =
dθ
dt

, Ic =
dΔc

dt
, we come to the NT equations, which connect directly these 

phenomena: 
 
dΔθ

dt
= Ln−1,n−1 gradΔθ + 1, 2

l
n nL − − gradΔc , 

dΔc

dt
= Ln− 2,n−1 gradΔθ + Ln− 2,n− 2 gradΔc .  

  (3.22) 
 

Applying the above equations for a quasi equilibrium’s two phase zone, at  



Information Modeling and Control of Some Industrial Technology Processes… 415

                                                      

dΔθ
dt

=
dΔc

dt
=0,  

we come to well known relation, connecting the kinetic coefficients for the cross 
phenomena [1]: 

 

 Δθ = KLΔc , KL = −Ln−1,n− 2 / Ln −1,n−1 = −Ln− 2,n− 2 / Ln −2,n −1 .  (3.23) 
Analogous equations take into account other related phenomena.  

The variable for the basic phenomenon (n+1) generally depends on both time and space 
coordinates ( xl

n+1 , xt
n+1 )= 1( , )nx t l+ . 

At the fulfillment of the variation principle (ch.1.3), we come to the equations for the 
state variables x ={xi } ={xi(t, l)},i =1,.. .,n : 

 

 

t
t tx L X

t
∂
∂

= , 
l

l lx L X
t

∂
∂

= ,  (3.24) 

where the kinetic matrices are determined by the process' statistical characteristics at the 
microlevel:  

 

 1/ 2t tL r= , 1/ 2l lL r= .  (3.25) 
Modeling of the solidification phenomena follow from the direct connections of the matrix 
kinetic coefficients, thermodynamic flows, and thermodynamic forces.  
      The scalar form of these equations:  

 

 

∂xi

∂t
= Lii

t Xi
t + Lij

t X j
t  , 

∂xi

∂l
= Lii

l Xi
l+ Lij

l X j
l   (3.26) 

shows the influence of the cross phenomena’s forces and flows:  
 

 
t t t
ij ij jx L X= , l l l

ij ij jx L X= ,  (3.27) 

during the model space-time movement, with a dependency of each space coordinate on the 
space speed, at C =const, l = Ct , according to relations  

 

 
xl

n =
∂xn−1( t, l)

∂l
=

∂xn−1(t, l)

∂ t
C−1 = xt

nC−1 , l ={lx ,ly,lz} .  (3.28) 

We get the following connections of the coordinates and kinetic coefficients: 
 

 
11/ 2 ( )t t t t

ij jj j ij ij jr r x x L X− = = , 11/ 2 ( )l l l l
ii ii i ii ii ir r x x L X− = =  .  (3.29) 

The above relations take into account Curie's principle for interacting components of the 
same tensor dimension.  

This means that each space-time connection holds true only for the same number of both 
phase coordinates ( xi

t , xi
l ).  

System (3.26) − (3.29) is reduced to the Cauchy form 
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l
ix =λ i

t xi
t +λ j

t x j
t , λ i

t =1/2 t
iir (rii

t )−1 , λ j
t = 11/ 2 ( )t

ij jjr r − , 

 λ i
l =1/2 t

iir (rii
l )−1=C−1 λ i

t , λ j
l = 11/ 2 ( )t

ij jjr r − =C−1 λ j
t ,  (3.30) 

which takes into account both parts of the trajectory for each extremal segment.  
One of them, at '( )t

iix t t< , '( )l
iix l l< , corresponds to the process trajectory’s within 

the extremal’s segments (between the DP points) here: t ' = (t1, t2, .. ., tm ) ,l ' = (l1,l2, .. .,lm ) , 
which reflects the peculiarities of the each independent processes.  

Another one, at '( )l
ijx t t≥ , '(l

ijx l l≥ ), considered after passing the DP points of process 

interactions, reflects the processes' cross phenomena, arising at transferring kinetic into 
diffusion and back into kinetics (ch.1.7).  

At these points, the superimposing processes interact sequentially during the model's 
space-time movement and forming a cooperative hierarchical structure (chs.1.5, 1.6).  

In this hierarchy, each following extremal segment (at (t ≥ t ' ) , (l ≥ l' )) corresponds to a 
sequential equalization of the superimposing two or three process' components, accompanied 
by the local nonsymmetry and singularities.  

Specifically, the IN node’s hierarchical sequence for these segments describes the cross 
phenomena arising at the superimposition of the thermoconductivity, diffusion, and other 
processes in Table 3.1, whose interacting components are the main sources of solidification.  

Character of optimal dynamics and controls for the processes at the Table 3.1 are shown 
on Fig.3.1  

Considering the controls as the inner variables in the IMD-NT equations (chs.1.7,1.9), the 
synthesized optimal control functions, applied to these equations, are able to prognosis the 
most probable process evolution. 

Let us find the optimal hydrodynamic conditions, defining the process ingot’s maximal 
ordered and homogenous macrostructure without defects.  

For the solution, we apply the minimal conditions for the path functional’s space 
distributed Hamiltonian hv ( t, l), connected to the optimal function of the specific entropy 

production (chs.1.4,1.7, 1.9) ( , )o o t lσ σ=  (in our indication here).  
The problem consists of finding the optimal functions for hydrodynamic variables: 

pressure p , velocity υ  of the liquid phase movement, which are defined by the given 

function of the specific entropy production for a single space coordinate l=1: ( ,1)o oσ σ τ= .  
We consider the movement of a noncompressed Newton's liquid within a cylindrical 

channel (z,τ ), described by equations 
 

 

∂υ
∂τ

=Δυ −
∂p

∂z
, z =

zo

ro

, 2
o

t
r
ντ =   (3.31)  

with the border conditions:  
 

 υ(0, R) = ψ (R) , R =
r

ro

, υ(τ,1) = ϕ (τ )=0;
∂υ
∂R

= −2g(τ ).  (3.32) 

The tangent tension on the border, separating the liquid and solid phases, is given by 
relation  
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f = a1

∂υ
∂R

, a1 ~ μ , μ = ρν .  (3.33) 

Equations (3.31) − (3.33) are written for the relative variables: time τ , radius R, and one 
of the space coordinates l = z , with the initial absolute variable: time t , the kinematics’ ν  
and dynamic’ μ  viscosities, the current r  and the fixed ro  channel radiuses, the axis 
coordinate zo  and density ρ . 

The entropy production is connected with the tangent tension f  by relation  
 

 
2 2( , )f R a fσ τ = , a2 ~ μ .  (3.34)  

It is assumed that parameters a ,a1, ρ , ν  are given and fixed. 
The entropy production for the optimal IMD model is defined by equation 
 

 
2( ,1) ( ,1)t

o obσ τ α τ=  ,  (3.35)  

where ( ,1)t t
oα τ α=  is the model eigenvalue’s given function and b  here is the constant 

coefficient. Function g(τ ) (3.32) − (3.34) we express via α t  using (3.35) in the form 
 

 ( ,1)oσ τ = ( , )f Rσ τ , b2α t =a2 f 2 =a2 a1
2 (

∂υ
∂R

)2 , g = ±
b

2a1 a
(α t )1/ 2 .  (3.36) 

 

Figure 3.1. Optimal dynamic processes (A) and controls (B) for processes on the Table 3.1. 
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By solving equations (3.31) − (3.36) at an arbitrary function 
∂p

∂z
= f  and at the given α t , we 

obtain the following integral equation 
 

 
f (ε )exp(1− λk

2 (τ − ε ))dε
0

τ

∫
k=1

∞

∑ =C(α t)1/ 2  , C = ±
b

a
 ,  (3.37)  

 
where λ k

2  are the eigenfunctions in equation (3.31). The solution gets representation  

 
f = f k

k
∑ , f k (ε )exp(−λ k

2 (τ − ε))dε
0

τ

∫ =
C

2 k (α t)1/ 2 .   (3.38) 

 
After substituting (3.38) into (3.1 − 3.36), the field of velocities υ = υ(R,τ )  can be found. 

Let us consider the concrete results for function oσ , given by equations 
 

 oσ =α o σ , σ =σ (αo ,β o ,z), α o =αo (
ν

r 2
o
)−1  , β o =βo (

ν
r 2

o
)−1  , αo =αo ( γ ) ,  (3.39) 

where α o , βo ,αo  are determined by parameter γ  of the optimal model at given ro  and ν .  
The sought function f ' = ϕ  acquires the form 
 

 ϕ = ±25.1(
|αo |ro

2

4ν25.1 1/ 2

( )
[ ( )]

o

o

t
t

σ
σ 1/ 2

( )
[ ( )]

o

o

t
t

σ
σ + 1/ 2[ ( )]o tσ − 1/ 2(0)]oσ ).  (3.40) 

From that, at the initial conditions (0) 0oσ = , ( )o tσ =σ (t), we get the solutions:  
 

 (0) 0oσ = , ( )o tσ =σ (t),αo = −2.29,βo = −1.1456,γ =0.5, ϕo = ±25.1  

 ( 1/ 2

3.3 ( ) ( )
[ ( )]

o o

o

t t
t

σ σ
σ

+
).  (3.41) 

The applied program computes the functions for the pressure ϕo (t), its gradient Δϕo (t), 
and the velocity υ (t) at the channel axis z (Fig 3.2).  

These functions define the optimal laws for the pressure and velocity to reach the 
maximal ordered macrostructure.  

As a result of the optimization problem's solution, we have found the regularity of 
changes in the kinetic operator, characterized by a successive reduction in time of the optimal 
model’s intrinsic eigenvalues, which are equalized at the specified points (DP).  

The optimal dynamics at the boundary of the ingot cross section hold the boundary 
functional conditions for the distribution of the physical processes within the solidified 
ingot’s cross section.  

The computation procedure consists of identifying the real time-space parameters of the 
synthesized optimal model for a circular ingot’s cross section. 

The computation procedure consists of identifying the real time-space parameters of the 
synthesized optimal model for a circular ingot’s cross section.  
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Figure 3.2. The optimal hydrodynamic processes: the function of time for the pressure ϕo (t), its 

gradient Δϕo (t), and the velocity υ (t) at the channel axis z . 

The specific Hamiltonian hv , applied to calculate the renovated process parameters, is 
the main model’s indicator of the process dynamics and quality  

The synthesized optimal processes, found from the extremum of the path functional (ch.1.3), 
useful here for ordering of a metallic matrix’s structure, in terms of an uniform distribution of 
graphite and chemical elements along this matrix’s cross section (without a segregation).  

The results have been applied in the technology of the horizontal casting of ductile iron 
(HCC), and compared with experimental data and numerical simulation methods. A good 
agreement was confirmed between the predicted and practical data, as well as between the new 
and traditional methods [5,6]. The regularities of the pressure changing (Figs. 3.2) were used for 
the forming of the process optimal feeding law (Fig.3.3), when the corresponding velocity of 
liquid metal at the channel axis fulfills the above relations. 

 

Figure 3.3. The optimal feeding law of the impulse withdrawing ( , )
T c

C C l t= Δ Δ (the interval of 

drawing
T

lΔ , the time of stopping 
c

tΔ ). 
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It is confirmed that for the implementation of the directional solidification, the external 
pressure, as a control function, should satisfy the relation for oϕ (t).  

Other details of the practical results are in Appendix 2.3.1. 

Example of the Technological Object's Code 

The solidification modeling of casting technology processes, along with NT-IMD 
equations and the identified basic parameters (n=8,γ =0.3,k=6), reveals the following 
minimal DSS code for one of the particular IN for the superimposing processes: (1, 2.366832, 
1.798496).  

The DSS code for other related solidification model with basic parameters (n=8, 
γ =0.1,k=6) is (1, 2.460668, 1.82039755). 

2.3.2. Some Electrotechnological Processes  

In the considered electro metallurgical technologies, the produced process' outputs: 
ferrous, nonferrous metals, alloys', and concentrates, are formed by the physical-chemical 
superpositions analogous to Table 3.1.  

In addition to that, important are electrical conductivity, electrokinetic and 
electromagnetic phenomena, hydrodynamic filtration, accompanied by chemical reactions, 
heat and mass diffusion transfer.  

The mutual interaction of these process' components creates the object's IN, where a 
resulting superimposing process, which integrates the components interaction, is able to 
coordinate the local interactive processes.  

The process' quality depends on the speed of physical and chemical transformations, a 
starting composition of the materials, which are able to change the technological interactions, 
the expense of energy, the metal loses, and the productivity.  

These features characterize the technology as a multiple criterial process, for which a 
priori formulation of the performance criteria and applying the regular control methods are 
not possible.  

A high temperature and the aggressive chemical reactions in the control furnace zone 
make a direct measurement of such key’s technological parameters as temperature, speed of 
physical transformations, characteristics of chemical components, and the gas pressure very 
difficult.  

The essential physical and cross-interacting processes are not separated without losing 
technological information. For such superimposing processes, the path functional, IMD 
methods of macromodeling, optimal control, and an indirect measurement of the integrated 
macroparameters are the most effective.  

In particular, it is simple enough to use electrical conductivity for controlling the chain of 
superimposing technological transformations, as an intrinsic function of the integrated 
interactive processes.  

Hamiltonian hν  of the controlled process, according to the IMD equations, can be 

expressed via the electroconductivity σ e =σ e (t ' ,l' ) (ch.1.9) at the discrete points  
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                                      ( , ( )) ~lτ τ (t ' ,l' ) (ch.1.4, 1.5):  

 
' ' 1 ' '( , ) ~ ( , )e e eh t l k t lν σ σ −= .  (3.42) 

This Hamiltonian defines the optimization criterion in the form  
 

 minmax ke =ke
o , ke =

∂Ge

∂μ e

Ge
−1 , Ge ~ σe , μ e =

he

ho

,   (3.43) 

where the furnace's electrical conductivity Ge  is measured in the process of the electrode's 
movement he , with ho  as a level of a melting metal in a furnace; μ e  is a relative electrode's 
movement (Fig.A.3.2.2).  

The controlled function ' '( , )ek t l  of this indirect macroparameter indicates a path 

through a chain of the superimposing processes. Its optimal value ke
o ' '( , )t l  is changing 

along the IN’s line of switching control, by analogy with Fig.1.6.4, specifying the process’ 
sequence of the consolidating macrostates [19].  

The connection of the measured ke  with the main technological parameters has been 
established as a result of the practical work on many industrial objects [8-18].  

All through these projects, the methodology has been developed and implemented with 
the procedure of the minimization of the ke -function, which actually provides the optimal 
technological process with a minimum energy loss.  

The results of practical implementations the optimization procedure are in this chapter’s 
Appendix A.3.1., A3.2. 

Appendix. Additional Practical Results 

A.3.1. Control System in the Casing Technology 

The liquid metal feeding and the solidification processes in the systemic model are 
mutually interconnected by such a way that the speed of the liquid metal movement is 
coordinated with changing the density of the forming solidification bar.  

The time of solid skin formation, required for the start of draw, is governed by the 
conditions needed to control the elastic deformations and for compensation of a shrinkage.  

The optimal feeding law (Fig.3.3) C( ln )=C[ ln (tn ,ΔlT ,Δtc ,Δt )] satisfies these 
conditions, where tn  is the starting moment of changing linear feeding velocity C(t); tk  is the 
fixed time interval, Δt  is the current time interval, ΔlT  is the space interval of the feeding 
impulse duration (as an optimal control);Δtc  is the time interval of stopping the feeding 
impulses; Cl  is the average solidification speed.  

An increment of the ingot’s linear size satisfies the function 
                                                   ln = (C − Cl)tn−1,  

      where  

                                                
C =

ΔlT

Δt
(1 −

Δtc

tk

) , Δt =tk − tn   
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characterizes the average speed of feeding.  
This increment is necessary to compensate the inglot’s volume reduction during the time 

interval tn−1.  
The optimal informational model has been implemented as a CAD-CAM methodology 

for the design of the casting processes.  
A special feature of the developed IMD model consists of finding the intervals of 

withdrawal ΔlT  and pauses Δlc  (for each process) on the basis of its identified model, rather 
than being set externally according to the conventional approaches [5].  

The method and algorithm allow the computation of the optimal value of casting speed, 
the drawing and pause intervals, the cast iron temperature in the receiver, the cast ingot’s 
temperature, and the variation in the flow rate and water temperature in the die (Fig.A.3.1.1). 

The model is also used to determine the parameters of a die design and the cooling 
conditions. 

The IMD model calculates an amount of the chemical elements, for example Sn, Cu, Mo, 
which are capable to control the zone of effective diffusion under the real solidification 
conditions. The model calculates the phase transformations, in the presence of k points of 
overlapping phenomena, particularly, by the nodule count (NC) at the points where the 
element’s numbers (n − 2+k) are formed.  

 

 

Figure A.3.1.1. Schematic of the casting process. 

The model diffusion zone’s length is characterized by the segment l (n+1) of the helix on 
the cone (at the fixed angle at its vertex), where the number of elements 
L(n+1)/L(n+k − 1)• 2(n − 2 − k)(l+γ 2 )2  is located;  

L(n+1)=L(n,γ ) is the model space length in a solidification cone;  
Ln+k − 1=L(n,γ ) is the model length of the effective diffusion zone.  
The nodule count per unit of a cross-sectional area S=π R2 , precipitated at the k-th 

point, is  
NC=4π /[S(n − 2+k)2 (Ln+1/Ln+k − 1)2 (l+γ 2 )2 ],  

where n and γ  are the IMD model's parameters. 
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In the optimal model, graphitization occurs during spatial interval L(n-4) with the 
maximum NC (L(n-4)) nodule’s count.  

The computerized method calculates the NC with a sufficient accuracy [7] at any point 
along the entire cross section of the bar.  

The Automatic Control System Design and Development 
 
The developed information model has been used as an integrated computerized self-

adaptive module to control the real HCC parameters (Fig. A.3.1.2).  
The HCC machine, installed in jobbing foundry, was equipped with series of 

thermocouples to monitor and record iron temperature in the receiver, the cast bar 
temperature, and the water temperature in the die.  

These data was automatically input into the computerized control system with the 
developed software, which was able to adjust and concurrently control automatically the 
drawing parameters (speed and intervals) related to the actual process variables.  

Series of sequential experiments have confirmed that the practical value of the considered 
solidification model consists of not only in the process simulation, but also in the operative 
control of the casting process.  

The developed microprocessor for the self-controlled HCC system has functioned 
practically [8].  

The IMD approach has been successfully used for modeling of the ductile iron permanent 
mold casting, for engineering design of the feeding and cooling systems, in particular, for the 
synthesis and design of sectional die-coolant and drawing devices.  

Dr. Y.S. Lerner was a co-principal investigator in this project [7]. 

A.3.2. Control System in the Electrotechnology 

The optimization procedure has been automatized by designing the computer-based 
optimal control system (Fig. A.3.2.1).  

The automatic system includes the central computer (optimizer) that optimizes ke  by 
changing the control strategy for the local regulators.  

The optimizer's nonsearch procedure is based on a combination of the optimal control 
synthesis 

 v =v {ke (t')}, v (t')=(v1,v2 ,v3 ) and the identification methodology. 
 
The local controls consist of the following devices: 
 
• the regulator of the furnace electrode’s conductivity Ge =Ge (μ e ), v1 = Ge

o ; 

• the regulator of the furnace voltage V, v2 =Vo; 

• the regulator of the furnace loading (q) by changing the raw materials, as the function 

of indirect parameter q=q(
∂Ge

∂μ e

), v3 = qo  ; 
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• the electrode device controlling ho , which uses an additional electrode for measuring 
a total level of the melting metal in the furnace and the local contact’s 

conductivities:(Ge )mc , (
∂Ge

∂μ e

)mc ; 

• the above electrode devices also measures a level of the melting metal’s components 

(hmc ), as a function of the electroconductivities hmc =hmc (
∂Ge

∂μ e

)mc  of the 

components; 
• the controlling devices for automatic output of melting components from the furnace.  
 
The optimal control system has been implemented in industry for some acting ferrous and 

non-ferrous electrical technological objects [17].  
It was shown [15] that for these objects, the ke - criterion is also an integrated indicator of 

a similarity of the technological features, which is useful for the comparison of different 
electrical furnaces in terms of their power, geometry and dynamics.  

Such a comparative analysis is also important for a direct transfer of the experimental 
results into practice and the process’ improvement, applied to industrial objects and 
technologies.  

The direct transfer is also a part of the industrial applications of control systems, which 
had been developed on some experimental or similar objects.  

The prognosis for the optimal technology is based on a methodology of the process’ 
computer simulation with the optimal control.  

 
 

 

Figure A. 3.2.2. Optimal control system of the electrotechnological process. 

 
Analogous results have been achieved for the metallurgical electrolysis processes with a 

chain of electrical, chemical, and thermodynamic cross phenomena.  
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Both technological optimization and control systems, using the indirect measurement of 
the electrical conductivity, have been implemented on industrial objects.  

The electrolytic technology for manufacturing of the composite ligatures is an example of 
such an object [11].  

The process of a microwire casting in a microwave furnace has wide applications.  
Its high-speed technology is based on the superimposition of electromagnetic, heat and 

chemical interactions.  
The macromodel of the optimal process’ technology has been identified following the 

IMD identification methodology and the indirect measurement of the main furnace 
parameters.  

The results of computer simulation have predicted the optimal furnace parameters and the 
control systems structure [14].  

The designed optimal system has been implemented in acting microwave furnaces.  
The methods of macromodeling, identification and optimization have also been applied 

for some chemical technologies [10].  
The detailed original results of practical implementation are given in References [9 − 19] 

and also in [R] . 
The above results demonstrate the IPF-IMD approach viability and the effectiveness for 

complex objects with superimposing phenomena.  
 





 
 
 
 
 
 

Chapter 2.4 
 
 
 

AN ELEMENTARY INFORMATION MACRODYNAMIC 
MODEL OF A MARKET ECONOMIC SYSTEM 

 
 
 
Information represents a common and universal substance, active participating in a 

diversity of physical and/or virtual interactions, including various forms of economic 
interactions. 

Applying the IMD, we study the information regularities of economical dynamics and 
the mathematical evaluation of the economical system's processes, focusing on an elementary 
production-organization, the production's interaction and management, and the different 
market dynamics, by building their information systemic models. An organization is modeled 
by the hierarchical structure of information cooperative dynamic space distributed network. 
The found formal information mechanisms govern the market cooperative dynamics and 
impose the information restrictions on these processes. The considered systemic mechanisms 
of self-control, adaptation, and evolution represent a general attribute of an economical 
system. 

2.4.1. About Information Systems Modeling of a Modern 
Economy. The Objectives 

In the modern economy, the main exchanges occur through the transferring of 
information (in different forms of signals, physical signs, coded communications, etc.) 
between customers, producers, banks, investors, firms, and across the market.  

Even a business with a diversity of goods can be represented by an exchange of 
corresponding information structures and values, expressed, in particular, by their code 
substitutes. All participants in such a real and/or virtual business’ information produce, 
transmit, exchange, or consume information.  

Information appears as a universal equivalent of money, directly exchangeable with 
different commodities, including a human labor. Because exchanges exist in a social system, 
the quantitative and qualitative values of information can also evaluate social relations. 

Since modern economics become an information system, it is imperative to apply 
information systems theory for understanding the systemic regularities of the information 
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economy.  
A joint consideration of the economic system’s components intends to expose not only 

the inter components’ relations, necessary for the coordinated dynamic cooperation, but also 
to detect the inner components’ regularities, required to carry out the systemic relations for a 
whole system. 

The first problem in this direction is to develop the information models for each particular 
economic object (as a system’s component) such as a local business production and 
organization, a market, a bank, and others, and then modeling the information dynamic 
relations between them.  

The second is to model the specific cooperative dynamics and the phenomena, essential 
for the economic objects, and also to unify the models into the information system, using a 
common information language and the modeling methodology, applied to a variety of the 
object’s interactions and communications.  

The goal is to reveal the main information regularities of a market economic system, 
based on the mathematical formalism of cooperative dynamics, the modeling of the system's 
information structure, and an analysis the information exchange flows and communications 
throughout the whole system.  

Since the production and transformations of information are the basics of any 
information object, we focus on dynamic regularities of their main economic entities: an 
elementary production system and a market, at the conditions of free competition and open, 
unrestricted supply-demand processes.  

The developed methodology intends not only to identify a current object’s model with all 
specific phenomena, but also to improve the object’s functioning by optimal control and 
management, following from the system’s modeling.  

We believe that the information approach and the results of information system theory are 
able to bring a new understanding of economics, business relations, and communications, 
creating a breakthrough in the solution of important economic problems. The references’ 
analysis (to this chapter) shows that a system's information model of economics has not been 
developed yet.  

Evidently, the first information models of economics were considered by H. Theil [1]. 
There were the static models and the aggregation analysis, applied to the local economic 
problems with the entropy measure of employment, markets, incomes, industrial 
concentrations in the USA, and occupational diversity in cities, all of which can be linked to 
the growth and decline of social systems [2, 3].  

J. Marschak [4, 5] applied Shannon's information theory to economics with the "teams" 
approach and decentralized organizations.  

M. Aoki [6] developed a stochastic approach to macroecomic modeling based on 
stochastic dynamics and stochastic random combinatorial analysis. The approach uses 
Markov processes with probability distributions, determined by the Chapman-Kolmogorov 
equation. The author’s goal is to unveil stochastic regularities of the multi-agent interactive 
models, including power-laws in share or stock markets. Even not using information theory, 
M. Aoki emphasizes [7] on the key role of uncertainty in standard economic analysis and 
economic policy. 

J. Hirshleifer considers [8] uncertainty, arising in a market irreversible process of the 
“liquid” commodities, which can unfold the events over time. Actually, none of the known 
models directly minimize the uncertainty, providing the control actions and outcomes, in 
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terms of quantifiable and marketable production factors and products, or their prices.  
J. Hirshleifer [9] reviews a potential broad use of information theory for a wide 

description of multiple micro- and macro economic processes, including market and trading 
relations, technological productions, organizations, banking, money flows, price, multi-
person’s behavior, others.  

Unfortunately, none of the existing model covers such a broad approach.  
The development of the information dynamic model of macroeconomics, taking into 

account the interaction of the material, social-labor, and biological processes on the basis of 
the united information mathematical formalism represents an actual, never before 
uninvestigated problem.  

Considering a joint information description of different interacting elements, composing 
an economic system, we intend to find common information mechanisms and their 
mathematical expressions, governing the information economic processes and their 
regularities.  

Starting with the primary system’s components such as a cooperative behavioral 
production system and different forms of the market, we however will not take into account 
the government limitations, public and military policies, monopolies, and other specific 
restrictions and requirements, imposed on a free market economy. Even with such limitations 
and simplifications, our approach sounds productive and promising in revealing unknown 
information regularities of an economic system.  

An aim of the Information Systems Modeling [10-11] is to build a bridge between the 
mathematical modeling and systemic formalism and the world of information and 
information technologies to reveal the common information regularities of a variety of 
modeling objects with the final goal of exposing a specific information code for each object. 
For the problems solution we apply the path functional (IPF) mathematical formalism of 
revealing information regularities, generated by multiple random interactions, which are 
considered independent of the physical or virtual specifics, while all interactions generate 
information.  

The information model’s macroprocess with a set of macrotrajectories is determined by 
the considered class of the random microprocess (ch.1.1), generated by a variety of 
interactions. The macroprocess' information dynamic model (ch.1.3) describes the 
information structure and regularities of each economic entity. These include finding the 
model’s punched localities where a dynamic prediction is possible. 

The IMD approach leads to a general systemic macromodel, which incorporates the 
cooperative structure of the time-space hierarchical information network, the functional 
mechanisms of adaptation, self-organization, and evolution.  

Part 1 provides the fundamental basis for building the systemic information model of an 
economic system. The IPF specification for each object identifies its eigenfunctional, whose 
information form synthesizes a variety of economic, social, and intellectual processes of a 
modern economy. The IN, created by the particular functional, allows cooperating and 
structuring these processes in the forms of different organization, whose systemic integration 
is modeled by the IMD global cooperative structure. 

The designed information models and developed computer algorithms and programs are 
successfully applied to a diversity of physical and non-physical systems, including the 
economics.  

 



Vladimir S. Lerner 430 

2.4.2. An elementary Local Production System ( LP )  

The LP  represents an elementary information model of the interaction of an individual 
(labor process) and a production process in an organization, based on cooperative dynamics.  

We model the information production process by a synthesis of information, carried by 
the interaction of different information sources and operating by an individual, which 
cooperates with an organization.  
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Figure 4.1. a) An information structure of an elementary LP ; b) A schematic of the LPq set, being a 

components of LPp ; i
ok is a coefficient of the current information unit om , adjustable by the unit 

exchange market UM, Fig. 4.3. 

An individual participates in modern production by utilizing his brainpower, provided by 
knowledge, intellectual capabilities, and skills, becoming a key ingredient of economic 
activities and operational information sources, which generate the production process. The 
synthesis performs the IN optimal information structure (Fig.4.1a,b), where {αio} is the 
information, delivered by the source of production, including different materials and 
machines (and/or initial human labor), {gio}  is synthesized information (in the form of goods, 
or an intellectual product), and {hio} is information required to control the synthesis, 
delivered by a human being. The IN hierarchical structure (Fig. 4.1a,b) presumes that the 
above information components are located at corresponding hierarchical levels starting with 
number 01  at the lowest level ({α1o}, {g1o}, {h1o}), where the process is initiating, and 
ending at the highest  hierarchical level ({αno},{gmo}, {hmo} ), where a final product is 
synthesized. Because the IN optimal structure consists of the triplet's sequence 
(1,3,5,... ,7,..., m) , {gko} and {hko}  belong to corresponding triplets whose information 
contributions also take into account the information exchanges between hierarchical levels.  

Both the information productions gko  and human participation hko  depend upon their 

hierarchical location that determines the specific information values of information am
k , 

located at level k  with the total m  levels of the IN's hierarchy.  
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The hierarchical level is determined by a valueness of its eigenvalue αiτ
k , whose 

multiplication on time interval τ i
k , preceding the synthesis, defines the invariant am

k =αiτ
k τi

k . 

The amount am
k  measures the corresponding quantity of information, while αiτ

k  characterizes 
its quality at k  level.  

Therefore am
k  accumulates both quantitative and qualitative measures of a bound 

information, where k  characterizes the number of triplets being enclosed from the previous 
levels of hierarchy. 

The VP carries out ranging of the initial information sources {αio}, productions {gio} , 
and controls {hio} according to the information quantities and qualities, measuring the 
information economic valueness.  

The VP implementation also creates a triplet as an optimal information structure, 
synthesizing a local maximum of an output information. In the IN, formed by optimal triplet's 
connections, each triplet produces the same quantity of information, generating the constant 
maximal output surplus ds (γ )=a(γ )+ao

2 (γ ) , reached at the moment τs  of the triplet 
synthesis. A human plays a role of "synthesizer", which contributes the needle control's 
information ao

2 (γ )  assembling every triplet: ao
2 (γ )=hko . Each hko , spending the 

information ao
2 (γ ) , generates information surplus ds (γ ) , which produces the information 

form of goods-commodity gko =ds (γ ) . This determines a human relative information 

contribution rh (γ ) = hko / gko =ao
2 (γ ) /(ao

2 (γ )+a(γ )) at each level of the IN's hierarchy. 

The actual range of rh  follows from their numerical computations: ( 0.1) 0.715hr γ = ≅ , 

( 0.5) 0.66hr γ = ≅ , ( 0.8) 0.595hr γ = ≅ , where γ = 0.5 , corresponds to a local 
equilibrium. Thus, decreasing γ  corresponds to increasing a total information enclosure into 
a production (for example, by its modernization), leading as a result to an increase of the 
human contribution rh (γ ) . After producing the final information during the time interval 

n
sτ , the production process repeats itself being a periodical at each level.  

The outcome of information production is expressed in generating the maximal IN's 
information surplus equals ΔS = m(a(γ )+ao

2 (γ )) of information quantity and 

ΔSm =am
m (γ )  of a total information quality. Such an optimal ranged IN consists of repeating 

the ratios γ 1,2
α (γ ) = α1o / α2o  and γ 2,3

α (γ ) = α2o / α3o  for each subsequent triplet.  

Let us take for a unit of information production gj
k , the amount ds

k

 for a level k , related 

to the time of synthesis information at this level τs
k : ds

k(γ ) / τs
k = α j

k , where α j
k  has the 

same dimension as αio  does, which is measured by the units of information frequency mos
−1  

with a the measure's multiplier mo  that assumes a periodical adjustment. The corresponding 

information production for hj
k =ao

2 (γ ) , related to the time of synthesis information at this 

level τs
k , is ao

2 (γ ) / τs
k =β j

k .  
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The spectrum of {αio} describes the input IN parameters, while the {α j} represents the 

spectrum of output parameters with {β j}, modeling an information unit of a human 
participation.  

The set {αio
k ,α j

k ,β j
k}, for each hierarchy level k , depending on γ , characterizes the 

level's k  structural information, which measures the corresponding qualities of information 
according to their valueness. This can be used as an equivalent unit in the information-money 
exchanges on an information market.  

The same information IN's structure has each of the other local information production's 
models LPp : p = 1,... ,q  (Fig.4.1b) with information inputs {αio}

p =[{αio}
1 ,...,{αio}

q ] and 

information outputs {α j
p}=[{α j

m}1 ,.{α j
m}k .,α j

m}q ], {β j
p}=[{β j

m}1,..{β j
m}k .,{β j

m}q ]. Any of 

these components Αm
k ={αio

k ,α j
k ,β j

k} correspond to the information frequencies 

Ωm
l ={ω io

k ,ω j
k ,ω j

k}, measured in a common scale (of mos
−1 ) for all information producers' 

INs. This leads to the existence of an adequate comparison’s scale and equivalent 
mathematical expressions of different input and output belonging to diverse INs.  

The Αm
k  components measure the local entropy productions

∂Sm
k

∂ t
= Ωm

k , while their 

multiplication on a time interval τs
k  measures the corresponding quantity of information 

Qm
k =Ωm

k τs
k , generated at this interval.  

In some cases, each local output component may represent an intermediate product of 
information synthesis and can be exchanged on the information market; the same applies to 
each component of information input being exchanged on the information market. The 
mechanism of the LP , LP p  internal and their mutual competition is analogous to that 
considered in cooperative dynamics. 

Different electronic communications (LAN, INTRANET, INTERNET, others) 
implement the codes’ connections and virtual interactions within each LP  and between the 
LPp .  

2.4.3. An Information Model of a Local Market 

We assume a local information market ( LM ) is a region of the whole market where the 
information exchanges of the local information producers ( LPp ) take place.  

This means that at the market, some information producers supply information to their 
information consumers, or the supplied information finds and satisfies the demand for 
information at the condition of mutual competition.  

A set of mutual producers-suppliers interacts in such a market, exchanging a commodity.   
Let says the produced+Αm

k  value meets the demand of − Αm
l  value, with their 

information quality difference (price) Αm
k−l , which can be reached during a dynamic 

communication process between k -supplier and l -customer.  
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The questions are: How can the dynamics of this process be modeled and in what total 
time? Can a particular supplier and consumer possibly reach a common price? Does this 
common price exist? How can potential prices be compared? What are the limitations on this 
process? What are the information and mathematical mechanisms governing a local market?  

The answers can be found dealing with an IN set, modeled by the LPp , which are 
described by the time-spatial cooperative macrodynamics.  

The solution is based on the equilibrium of the information qualities, using the formula 
(analogous to (1.3.171): 

 

  
Αm

k exp(Αm
k τ m

k− l

2 − exp(Αm
k τm

k −l )
=

(−Αm
l )exp(−Αm

l τm
k− l)

2 − exp(−Αm
l τm

k− l)
= ±Αm

k−l ,   (4.1) 

where τ m
k− l is the time interval between the start and end of the communication process. If the 

solution of this equation exists, the component's common price Αm
k−l  can be reached.  

    The concrete sign of ±Αm
k− l  determines it as a new supply (with sign − ) or as a new 

demand (with sign + ). A buyer, based on his motivation, can change the final sign by 
applying the needle control. This transcendent equation expresses a partial solution of the 
main macrodynamic equation (chs.1.4 and 2.1) under the optimal control's action.  
This action means that any equilibrium solution, described by the equation (4.1), is most 
motivated by both the supplier and customer-buyer.  
After reaching the equilibrium price, both of them get the same quantity and quality of 
information, which expresses an equivalent exchange. The acquisition of this information is 
impossible if for the specific commodities the solution does not exist.  

Moreover, the comparison of different existing solutions can determine both the final 
price and continuation of this process, which could be chosen based on the best satisfaction 
during the competition at the market (between the LPp and their components).  

The equation (4.1) describes the dynamics of potential exchanges between any possible 
combinations of the components [{α io}

p ,{α j}
p ,{β j}

p ] .  
The competitions and exchanges can be performed also by the IN universal codes. In the 

case of spatial distribution of these components, the IMD equations transform the time 
intervals τ m

k− l  into corresponding spatial intervals of a considered space. This models a 

possible relocation of both LPp  and LM . 
The equation, applied to any components of the corresponding frequencies (Ωm

l ,Ωm
k ): 

 

 

Ωm
k exp(Ωm

k τm
k−l )

2 − exp(Ωm
k τm

k−l )
=
−Ωm

l exp(−Ωm
l τm

k−l )

2 − exp(−Ωm
l τm

k −l )
= ±Ωm

k −l  ,  (4.2) 

defines a common resonance frequency Ωm
k−l , reached in a process of the equalization of the 

initial unequal frequencies (Ωm
k ,Ωm

l ). Generally, the process acquires a form of stochastic 
resonance under the control's actions, analogous to that in cooperative dynamics.  
The details of such cooperative resonance attraction mechanism are considered in chs.1.6,1.7.  
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Figure 4.2. A scheme of interacting LPl
, LPk

 on an information market LM  and a stock market 

SM  with borrowing loans Lol
 from a bank B  and offering stocks Πs

k
; cr is a function of the bank 

credit, established by a governing regulator GR . 

Fig.4.2. shows the LM s’ dynamics of both LMA  and LMΩ , where the LMA  structure 
applies (4.1) , and the LMΩ  performs a cooperative resonance according to (4.2).  

The considered market can also bring new inputs {αio
* } to particular IN- LP production 

as a result of corresponding exchanges between different information commodities, including 
the initial {αio}

p , {α j}
p , and possibly {β j}

p , whose every pair is described by the above 
equations. For instance, in the form  

 

  
αio

k exp(αio
k τm

k−l )

2 − exp(α io
k τm

k−l )
=

(−α j
l )exp(−α j

lτ m
k− l)

2− exp(−α j
l τm

k− l)
= ±αio

( l−k )* ,  (4.1a)  

where αio
( l−k )*  is a component of a new {αio

* }.  

The renovated spectrum{αio
* }, according to the market reevaluation, brings new ratios 

(γ 1
αj (γ j ), γ 2

α j(γ j ))  in the input, changing the initial γ j .  

Fig. 4.2 illustrates a schematic of changes on the market for the kLP , lLP  outputs-
inputs, whereas qLP  could not find a buyer.  

From UM 
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These changes should preserve the optimal values of the above ratios, affecting only γ j , 
which maintains a maximal and constant output for each triplet within a given IN. The 
amount of this maximum depends on a particular γ  with the preservation of the above 
optimal ratios.  

For example, the maximal surplus ds  for different γ  satisfies to the following table: 
γ = 0.01,ds = 0.998 ;γ = 0.5, ds = 0.958 , γ = 0.8,ds = 0.912 , where decreasing γ  
corresponds to the modernization of production. The input reevaluation by the market with 
keeping an optimal relationship between the input components corresponds to the well-known 
"optimal input decision," minimizing "diminishing marginal returns" [12-15]. 

Equations (4.1)-(4.2) can also be applied to the informational exchanges between humans 
(for which the solutions exist). At the equal quantities and 
qualitiesQm

k = (Ωm
k τ m

k− l) = (Ωm
l τm

k−l ) =Qm
l , equation (4.2) has a trivial solution 

Ωm
l = Ωm

k =Ωm
k−l , which means that the initial equivalent information values do not produce 

new information, being an analogy to a copying process. 
The equations (4.1a), (4.2) also describe the transfer of information within each IN's level 

and between the levels. In this case, the equation (4.2) acquires the simple forms  

 

 

−α io
k exp(−α io

k τs
k )

2 − exp(−αio
k τs

k )
= ατ

k

  
(4.2a), 

 

(−α i+1,o
k+1 )exp(−αi+1,o

k+1 τo
k+1 )

2 − exp(−α j
lτ m

k− l)
=
ατ

k exp(ατ
kτs

k )

2 − exp(ατ
kτs

k )
= ±ατ

(k+1),  (4.2b) 

where Qm
k = αio

k τs
k =ao (γ *) , Qm

l = ατ
kτso

k , ατ
kτs

k =a(γ *) , τso
k = τo

k + τs
k − τo

k+1, and 

equation (4.2a) acts within level k , while (4.2b) acts between the level's k  and k +1 .  
These equations model the possible information communications between the 

components (Αm
k ,Αm

l )  within a given production LPq .  

     The resulting price Αm
k−l , achieved during communication time τ m

k− l , is distributed 

between the seller and buyer (Αml
k−l , Αmk

k−l ) generating their profits δ l ,δ k . 
The function of a whole market consists of minimizing the difference  
 

 Δ nl

nk = Smk

nk − Dml

nl , Smk

nk = |Αm
k

k=1, m=m ko

nk ,m k

∑ |, Dml

nl = |Αm
l |

l=1,m=m lo

nl , ml

∑  (4.3)  

between the total supply Smk

nk , and total demand Dml

nl , while maximizing each of them, where 
nk  is the number of suppliers, nl  is the number of customers-buyers, mko  and mk ,mlo  and 
ml  are the minimal and maximal levels of hierarchy for all suppliers and all customers-
buyers accordingly.  

The above function implements the initial minimax principle using the considered 
information mechanisms that execute the equations (4.1-4.2).  

Actually the condition of  
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  min
nk , nl

Δnl

nk = max
nk ,mk

Sm k

nk − max
nl , ml

Dml

nl   (4.4) 

is accomplished by mutual compensations of the local equilibriums: ±Αm
k−l

k ,l ,m
∑  in the form  

 
min
nk , nl

Δnl

nk = min
nk ,nl

±Αm
k− l

k, l=1,mko ,mlo

nk , nl , mk ,ml

∑  ,  (4.4a)  

where equations (4.1)-(4.2) fulfill the minimax principle at each local equilibrium, which 
satisfies to a best motivation of both suppliers and buyers.  

The fulfillment of (4.4a) minimizes a shortage of both total supply and demand and also 
eliminates of both overflows and the queues.  

The implementation of (4.4a) can also be done by Nash's equilibrium strategies [13, 14].  

Because each component of (Αm
k ,Αm

l )  satisfies to the relations Αm
k ~

∂Sm
k

∂t
, 

Αm
l ~

∂Sm
l

∂ t
, their nonzero difference:  

 

 |
∂Sm

k

∂t
−
∂Sm

l

∂t
|=|
∂ΔSm

k ,l

∂γ
|  (4.5) 

which initiates ±Αm
k− l  (not equals to this difference), is measured by the components unequal 

values, determined by the relative information quantities at each level (k − mk )  and 
(l − ml )  accordingly. These quantities (at the other equal conditions, including the triplets' 

number) are defined by the IN's corresponding γ k ,γ l . Thus, the existing difference (4.5) is 
characterized by the grad(γ ) , which is measured by an information force 

 

 
X(γ ) = −

∂ΔSm
k ,l

∂γ
= grad(γ ) > 0  , (4.6)  

where grad(γ )  corresponds to a local distinction between γ k ,γ l (atγ k ≠ γ l ), while each 

local maximum of 
∂Sm

k

∂ t
 and 

∂Sm
l

∂ t
 can be reached at a minimum of each IN's (γ k ,γ l ), 

satisfying to the VP. The tendency to  
 

 min(γ k )→ 0 , min γ l → 0 , (4.7) 
at the existence of the force (4.6) (that guaranties the implementation of 

 

 min(γ k )≠ min γ l ,nk ≠ nl   (4.8)  
for each IN on the market), leads to maximizing the surpluses ds (γ )  of both supply and 
demand by modernizing an effectiveness productivity (for example, in terms of Pareto-
efficiency [13-14]).  
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The maximization of force (4.6): max X(γ )  intensifies this tendency, which serves as a 
moving force in economics. Conditions (4.6)-(4.8), represent a moving force in the 
considered model's evolution, accompanied by decreasing γ , increasing system's dimension, 
complexity, and the capability for self-organization (ch.1.8). The uncertainty functional for a 
total market ΔS(xt (u)) =ΔS , defined on a market processes xt (u)  with the matrix  

 
An = (+Αm

k ,−Αm
l ),k,l = 1,... , p,m = n / 2 −1,n = (nk

k ,l=1

p

∑ + nl)  (4.9)  

and a potential control u(crin
k ,ko

i ) should satisfy to the VP.  
These results answer the very practical questions posed above.  
Different modern electronic communications ( E -Commerce, E -trade, E -Bank, others) 

connect LPp  and LM  and implement the inner LM  exchange’s operations. 

2.4.4. Managing the LP . A Bank and a Stock Market 

Assume that each of the LPp  ( LPk , ,l qLP LP ) manages its profit 

δ i
k = αi

k− l − α io
* −β i

k  (Fig. 4.2) to achieve a maximum growth of the sale k l
iα
− and a 

minimum of the spending *( )k
io iα β+ . 

Let us analyze the potential distribution of this income to outline an optimal profit’s 
management.  

A part of income pi
k  should go toward internal consumption, including the part αio

* . 

Another part ei
k  should be spent on modernization and a possible LPk  extension, or the 

income's accumulation. The difference δ i
k − (pi

k + ei
k )= πi

k  can be used to get additional 
profit; an option is to buy and sell stocks.  

As it was shown in [16], the optimal distribution between the components of 
informational income satisfies to the following relations: pi

k / δ i
k =0.287, 

ei
k / δ i

k =π i
k / δ i

k =0.3565.  

Therefore, each of the LPp  can go on a stock market SM  (Figs. 4.2, 4.3) with the 
corresponding portions of income π i

k ,π j
l , having different information values.  

An individual, getting an information earning βi
k , expects to distribute it in the related 

proportions, with the components βi
k = pi

kβ + ei
kβ + πi

kβ , where portion pi
kβ / βi

k  is spent on 

internal consumption, the portion ei
kβ / βi

k  can be used for improvement, development, 

learning, other professional remedies, and part π i
kβ / βi

k  can be used for getting additional 
profit.  
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Figure 4.3. Regional market RM , including a stock market SMR  and the unit market UMR ; a 

schematic of UM ; and Global Market GM  with the acting regional markets RM p , p = 1,... , N  

and the interacting (SM ,SMR ) and (UM ,UMR ).  

A potential kLP investment Πin
k =[π i

k , π i
kβ ,...,π j

k , π j
kβ ,…] (for example, to buy stock) 

varies upon each pL  portion of income ,k l
i jπ π  and depends on the bank’s B  credits-loans 

Lin
k = [ li

k, li
kβ , ... , lj

k,lj
kβ] . For the total investment ],,...,,[ ββββ ππππ k

j
k
j

k
j

k
j

k
i

k
i

k
i

k
i

k
in llllI =

 the 

credits-loan is k k k
in in inI L= Π , where the returned loans Lin

kb =(1+ crin
k )  assume a fixed credit 

coefficient crin
k , which can be controlled by some regulating organization ( RG ).  

At the SM , the supplied stocks +Πst
l  and the investors' demands - Iin

k , interact (Fig. 4.2) 
in a competitive environment, according to the market master's equations (4.1)-(4.2).  

The resulting cost Rk−l , achieved during the communication time T k− l , is distributed 

between an investor and stock-seller, generating their profits δ s
k , δs

l , where δ s
l = Rl

k−l
− Lin

kb  
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goes back to the corresponding component of LPl  , and δ s
k  goes to the LPk . An individual, 

earning β j
p  can also go to the local market LM , as a buyer Aj

p  of a potential supply Aj
q , 

after getting a loan Lop  from the bank (Fig. 4.2). Some individuals can also go directly to the 

stock market SM , with the loan's components included in Lol , as an element of a complex 

investor Iin
l , Fig. 4.2. An individual-producer can get all necessary services and products 

without money, paying only with valuable information, which an organization provides to 
him through a bank. From the above relations it follows that a decrease of each sale k l

iα
−  

declines the profit and decreases each investment l
iπ .  

A multiple decrease of sales on the market leads to a multiple decline of investments k
inI , 

or vice versa that corresponds to the Keynesian acceleration principle [12].  
The considered information economic functional relations are the model’s attributes 

rather than the economic examples.  
Multiple forms of electronic communications accomplish the interactions between 

LPk ,Πst
l , Iin

l , B , SM , with a code transmission of the above information.  
The multiple interactions also create an evolutionary process (ch.1.8) capable of 

adaptation and self-organization of the surviving subsystems.  
The notion and results related to both macrosystemic and cooperative complexities 

(ch.1.7) are applied for the considered economic model. At a small system’s dimension n , 
the number of neighboring subsystems having a similar complexity exists. But with growing 
n , the number of close-complex neighboring subsystems decreases sharply.  

As the MC-complexity increased, the gap between the dynamic and geometric properties 
of the nearest subsystems increased radically.  

The informational "individuality" of the subsystem is continually supported, as this 
subsystem is located further away (in terms of the classification complexity) from the 
neighboring subsystems. Such a distance has a limit, defined by a minimal stable parameter 
γ , and maximal n , which correspond to the dynamic equilibrium between the systems.  

At a minimal stable γ → 0 , when the human component in the synthesis of information 
increases, such distance approaches a maximum. Its optimal value is established in the 
process of mutual exchanges in the market, as an optimal feedback, which also brings the 
optimal ratios γ i

α . These ratios determine a related human contribution in each LP p  
synthesis-production by rh (γ ) , averaging 60%. The above condition satisfies the stability in 
an optimal distributed dynamic system with the market's feed-back to LP .  

The fluctuation of an average γ  within the considered threshold |ε(Δγ )| (ch.1.5,1.8) 
finally moves the model toward an equilibrium. But each of these γ  changes the model's 

invariants and the above n
sτ , which bring new information equivalents of the exchanges on the 

market. Decreasing γ  increases the invariant and corresponds to a deflation, while increasing 
γ  decreases the invariant, corresponding to inflation.  
Both of these processes, accompanied by the return to final stability, have a cyclic character.  
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The rh (γ )  value, exchanged on a market, directly connects the economical and social 
systems and in a limit leads to a social equalizing of all human beings (producers-exchangers) 
[17]. As a starting component of the information synthesis(αio ) , a human being can also be 
involved in this process. Moreover, the synthesis may occur between just two people, while the 
parameter rh (γ )  expresses a mutual relation between two human beings with equal 
contributions from {hmo} . This means, a human contribution from {hmo}  is equal to human 

contribution from {αno} . That is why the optimal ( 0.5) 0.66hr γ = ≅ . Even a single human 
being can synthesize useful (exchangeable) information. In this case, the brain is a producer of 
information. Neurological research shows that brain cells produce approximately 50% more 
information than is fed into the processing cell [18]. This is consistent with the above evaluation 
of rh (γ ) , characterizing a specific part of the labor's surplus, being averaged by all LP p .  

Therefore, an elementary equitable human's contribution should be compensated an 
average minimum 50% back from a fair economy and a social system. The rh (γ )  value also 
means that an elementary equitable human can control ≅ 66% of the average production at 
each LP  hierarchical level. Actually, the concrete contribution of each particular participant 
(in a random microelement) is not equal to rh (γ ) , and each human-producer will not get 
back exactly 50% from every LP . Moreover, even for an averaged participant, rh (γ )  is 

changed in the process of approaching a local equilibrium at γ → 0.5 . The value βi
k , which 

depends on a human's location at the k -level of the LP  hierarchy, determines the human's a 
total contribution and the potential income ΔSik =k aoo

hk , aoo
hk =aok

2 (γ ) .  
With increasing k → m , as the location is transferred on higher hierarchical level, this 

contribution-income grows, becoming unequal for the distinctive participants.  
A higher location at the LP  hierarchy requires more a brainpower in the LP , embodied 

into production. For example, at k =2 the average ikSΔ ≅ 100% guarantees a compensation 

to a worker for spending his labor in the synthesis. A worker, located at level k ' , produces 
additional surplus δΔSik

' = (k' − k) a oo
hk . If the worker has not gotten a payment for this 

surplus, the ratio rh
δ =(k ' − k) / k  becomes analogous to the Marx's rate of surplus-value 

/s v , which characterizes a degree of exploitation [17]. But in [17], the /s v  surplus was not 
embedded into the LP  exchange-final product, while the hr

δ  measure incorporates an entire 
relative difference of the information contributions to the synthesis, including a worker's 
portion. The 'k  growth is limited by an increase of the periodical time of production n

sτ  
(Fig.4.1a), which is restricted for each worker by the admissible maximal working hours at 
each hierarchical level. Another possibility for an organization consists in paying a complete 
earning to the worker, which could collect it and becomes a source of additional income by 
the stock market exchange, or creating an LP .  

The cooperation leads to both the labor's and social IN's hierarchical organization.  
The above analysis shows that a precise human's role in the LP -production determines 

not only his specific income but also his position in a hierarchical social system.  
For a human being, a minimax principle consists of getting a maximum information and 

its minimum spending. 
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2.4.5. Other Information Markets 

Some local markets are specific, like energy, transportation, construction, agricultural, 
real trade, insurance, healthcare, difference services, etc. Each of them can be represented by 
the considered information model of a local market where the information values of specific 
supply and demand are provided by corresponding sources of the INs (Fig. 4.1). These local 
markets ( LM 1, LM 2, ..., LM N) mutually interact (Fig. 4.3) by ranging their commodities 
to provide a shared worth, for example, in terms of aggregate supply and aggregate demand 
[19, 20, 21]. A set of local markets organizes a Regional Market RM , which includes a 
regional stock market SMR  that satisfies the equations (4.1)-(4.9), which minimize a 
difference between the regional supply S

RG
 and the total demands D

RG
: Δ

RG
.  

A set of interacting Regional Markets ( RM p , p = 1,... , N ) forms a Global Market 
(GM ), where an information unit's exchange market ( UN ) plays a distinctive role. The 
information scale units mo

i , used at different iRM , i =1,... ,n  (countries), could not be the 
same and would need a periodical verification and adjustments. This can be done at the UN , 
where these units are exchangeable on an information unit, accepted as a standard 
information measure mo

o  (analogous to the gold standard, or a dollar equivalent), supplied by 

some mo
o -source Sc  (Fig. 4.3). The exchanges acquire a form of buying and selling the 

different mo
i  to determine how many ko

i  units of mo
o  each mo

i  contains: mo
i =ko

i mo
o . 

The exchange process satisfies the equations (4.1)-(4.2), while the supply consists of 
providing a flow of mo

o , and the demands include the diversities of mo
i . Some of the mo

j  

could also serve as a supply for other mo
k , motivating to buy them. The found resulting ko

i  

changes the information scale for each LPp , affecting every one of LM p , B , SMR , RM p , 

and GM . The supplied flows of mo
i  (monetarism) and mo

o  can also regulate an economy. 

Interacting regional markets RM p  may include (along with SMR ) a local unit market UMR , 
while GM  interacts with local SMR  and UMR , forming the broad-spectrum SM and UM . 

The GM  that obeys the regularities of (4.1)-(4.9) minimizes a difference between the 
total supply S∑

and the total demands D∑
:Δ ∑

. A regulation takes place (by changing crin
k ) 

if the equilibrium condition min Δ∑ → 0  is not fulfilled automatically. This regulation can 
first be applied to a regional market to minimize its potential unbalance on the GM .  

Information that has been sold and exchanged on the above information markets can lose it 
value if it does not hold the equivalent of standard information measure. In this case, the 
uncontrollable market’s information exchanges lead to a collapse of the entire baking, market and 
a production systems, because, without an active standard equivalent, both quantity and quality of 
information are vanished in the circulating information flows (each such a market sells “nothing”).  

An integration of the interacting commodities for the graph structures RM  and GM  
(Fig. 4.3) can be evaluated by a multiplicative integral along the graph [22]. The random 
contributions to the graph's multiplicative integral are modeled by the conditional 
probabilities of a discrete Markovian process, distributed along the graph. Considering the 
Markov model with a recurring state, returning to the graph's starting node after the 
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completion of the process, we can determine the product (path) integral along the close graph 
loop by the entropy of the Markov model, which is defined by a logarithmic measure of the 
multiplicative path integral (ch.1.1). Finally, we get an analog of the integral information 
measure (ch.1.3), which is able to evaluate any of the RM , GM  inbalances, generated by 
the total contributions in the graph's loop. The stability of the market structure can be 
estimated by the Lyapunov function, determined by the information path functional (ch.1.3). 
Modern communication networks, including WAN, INTERNET, E-COMMERCE, and 
others, provide the RP p 's and GM 's connections, in which a coding language of different 
transactions plays an important role. Multiple information exchanges join different businesses 
into various forms of information organizations, whose cooperation keeps until the 
connecting controls are able to overcome environmental randomness (Ch.1.7). 

2.4.6. Example 

The examples of a practical implementation of the macrodynamic model, considered in [23, 
24], involves the prognosis of an optimal tax policy (Hu) for the cooperating LPp  producers 
(n=50), which continually consolidate their volumes V of production, starting with a basic 
volume Vb. 
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Figure 4.4.  
The dynamic prognosis of the optimal development and cooperation of the LPp  producers. 



An Elementary Information Macrodynamic Model of a Market Economic System 443

The computed dynamics (Fig. 4.4) characterize an increase of the relative volume of 
production V*=V/Vb, and a decrease of the relative price Pr*=Pr/ Prb, where Pr is a current 
price, Prb is a basic price.  

The Pr*, as a function of demands, is proportional to time (in years), with increasing the 
price from the volume of productions (in the price’s form: Vy=V*•  Pr*).  

The optimal controlling tax policy is decreasing (at the beginning), and then is increasing 
with growing the discrete intervals and the volume production.  

The joint relative price Prt (for the cooperating producers) has a tendency of decreasing at 
a continuation of the increasing the tax policy Hu. 

The modeling results show that involving new producers into the cooperative process will 
positively change this tendency.  

The methodology of the spatial-time synthesis was implemented on computers by the 
IMD software package.  

2.4.7. Summary  

Compared to the existing modeling methods, which have never used the information path 
functional, the IMD formalism, and the IN, this approach has the following advantages for the 
economic applications: 

• Unified information description of a variety of economic processes (including human 
interactions) by the two-levels systemic information model with stochastic processes 
at microlevel and dynamic processes at macrolevel, identifiable on a real object; 

• The IMD microlevel models stochastic dynamics using Markovian random 
processes, stochastic differential equations and Chapman-Kolmogorov equation, 
which essentially covers approach [6] dealing with related stochastic phenomena; 

• The minimax variation principle, applied to the introduced integral entropy measure, 
allows us to model, in addition to the stochastics, the dynamic macroequations with 
optimal control functions, which, via the found punched localities, unveil the dynamic 
regularities and cooperative phenomena of the random microlevel; while an 
interaction of the stochastics and macrodynamics reveals the chaotic phenomena, 
singularities, and specific resonances; 

• The model allows extracting a maximum of a minimum of available information 
from an economic object, while the optimal control functions determine the 
necessary actions, minimizing uncertainty of the systems;  

• The macrodynamic equations automatically allocate the discrete process’ intervals 
with the local reversible processes within each interval, the irreversible processes out 
of them, and the jump-wise stochastic and dynamic phenomena, memorized at the 
interval’s border; this allows revealing and minimizing the most essential systems 
uncertainties; 

• The model cooperative information is sequentially arranged, ordered, and enclosed 
into the hierarchical structured space distributed dynamic network (IN), where the 
information MC-function measures the complexity at each hierarchical level, and the 
IN node’s information is encoded into the double spiral model’s genetic code (DSS). 
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• The DSS accumulates and compresses both the micro- and macromodel’s 
information allowing its algorithmization, electronic transmission, and the systemic 
models’ communication using this code; 

• The model enables automatic filtration, adaptation with an improvement under a 
mutation and self-organization;  

• The information model of the local production systems LPp  hierarchically 
organizes into the IN, cooperating various labor and production processes (delivered 
by materials, machines, goods, human being, etc.), with the quantitative and 
qualitative measurement of produced structural information in a common scale, 
convenient for communication, trades, and exchanges on market;  

• The information model of a market establishes the information dynamic producer-
supply relations, described by the time-spatial balance equation, which determines 
the condition of equivalent exchanges and a possibility to reach a common price in a 
cooperative resonance process. The developed market’s master information 
equations determine both the equilibrium and the moving economic forces of self-
organization and evolution; 

• The information models of banking and stock market’s processes are connected to 
the optimal LP’s decisions in a profit’s management. The found optimal human’s 
contribution in the synthesis-production satisfies the LP stability with a market’s 
feedback and a human’s optimal information capability;  

• The information exchanges between varieties of markets, described by the master 
equations, are unified by a market, exchanging currently admitted units of 
information; the market periodically adjusts and validates a common information 
measure. An integration of the interacting markets, represented by the map-graph 
structures, allows us to evaluate the map’s nodal connections and the graph loop by 
the integral information measure and to find the equilibrium conditions; 

• The model’s algorithms and codes enable the direct communication and information 
transmission between all elements of market economy (in the terms of cooperative 
macrodynamics). 

The considered model’s features not only generalize economic information description 
but also detect unknown phenomena and new possibilities of managing and improving the 
economic objects, which none of existing models can reveal.  

In a "New Economy" [25], "the cost of information determines the size and shape of 
firm", but this is not just the cost of computers, but rather a firm's structural and operational 
organization, supported by modern computer applications and electronic communications.  

The economy is an uncertain system, whose complex processes' improvement consists of 
minimizing this uncertainty by finding a dynamic tendency which this uncertain covers.  

The obtained chain of the equations minimizes the process’ uncertainty, providing the 
methodology and mathematical tools for a dynamic information modeling of a given 
economic system. The IMD software implements the developed methodology. 

The IPF variation principle, as a law of minimum uncertainty, is implemented for 
economic system via the market balance relations. When this law is violated, the system 
experiences some essential changes, perturbations, associated with transferring to stochastics 
and chaotics; for complex multi-dimensional interactions, such changes could be dramatic, 
bringing catastrophic cataclysms (See also ch.1.7).  



 
 
 
 
 
 

Chapter 2.5 
 
 
 

AN OUTLINE OF THE COMPUTER BASED 
METHODOLOGY 

 
 

2.5.1. The Hierarchy of the Model’s Micro-and Macrovariables 
and Their Identification 

The model has the following hierarchy of micro-macrovariables: 
 

• Random variables at the statistical microlevel, defined by a statistical ensemble  
{ ˜ x i }; 

• Dynamic variables xi , defined on the extremal trajectory and by the model 
functions of the microlevel’s statistical ensemble;  

• Information flows I= ix and information forces X i , defined by the macromodel’s 
variables and their derivations; 

• Macrovariables, defined by the model eigenvalues and eigenfunctions, which 
determine the model’s self–frequencies as the spectral model characteristics, and 
the information wave functions;  

• Integrated macrovariables, defined via assembling of the macrovariables into the 
model’s cooperative units (doublet, triplet) composing the IN nodes, which are 
able to successively consolidate in the cooperative dynamics; 

• The information code of the integrated macrovariables. 
 

These variables are  
 

• identifiable automatically during the macrodynamic movement at the identified 
discrete points (DP) and through the model’s consolidation process; 

• measured in the unit of quantity of information, and for specific objects-in the 
unit of quality of information, determined by the variable’s hierarchy on their 
space-time locations in the cooperative dynamics. 
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This comprehensive system’s hierarchy of the information variables is detailed for a 
particular object by the object’s specifics, its dimension, and the peculiarities of the 
cooperative dynamics. 

Space boundaries between the variables are defined by the geometrical surfaces, 
separating the every formed macrostructure. Some of the boundaries limit a particular 
macrolevel hierarchy and the number of the corresponding macrovariables.  

The mechanism of the IN’s building includes an automatic ordering of the model 
segments’ evaluated by the information quantity of the segment’s eigenvalues (and the 
eigenvectors) in the processing of the segment’s sequence.  

The proceeding of these information quantities involves the automatic generation of the 
triplet’s structures with the corresponding space movement of the local space coordinate 
systems, and forming the IN’s collective large-scale coordinate system, which are determined 
by the eigenvectors’ inputs.  

This automatic procedure not only transforms the spatial-temporal input to its spatial 
form and finally to spatial-temporal output, but also establishes an ordered geometrical 
mapping relationship between them, allowing the exact localization of the transformed inputs. 

These transformations are carried by the model’s mechanism of space- time consolidation 
of the multiple spirals trajectories on the cones into the IN.  

The elements of the identification procedure include  
 
• Measuring the object's covariation matrix ( )ikr  and calculating the rank of this matrix 

(as a maximal number of the nonzero matrix’s determinants), which determines 
dimension n  of specific object; 

• Finding the macroequation’s spectrum of the initial eigenvalues: 
n

kiikik
n
iio rrdign 1,

1
1 )2/1()( =

−
= =λ , where n  is the rank of covariation matrix ( )ikr ; 

• Applying the diagonal form of macroequation ix = ioλ ix  for selecting the 

independent macrocoordinates, ordering their speeds ix = iI  as the information 
flows, and setting up the corresponding information forces:  

X i =1/2∑
=

−
n

k
kik xr

1

1 ;  

• Establishing the specific physical meanings of the information flows and forces using 
their connections to related physical variables (analogous to secs.1.7.5, 1.9.4). 

2.5.2.The Computer’s Restoration of the IMD Model 

The diagrams, implementing the procedures of the model restoration and simulation of its 
performance, are shown on Figs.5.1a, 5.1b, and 5.1c.  

On Fig.5.1a, the statistical data from the microlevel process tx = ( (0), )x x t are used to 
identify matrix A of the macrolevel equation by computation of the correlation function and 
its derivative during each discrete interval it , which compose the computed invariant a ( )γ . 
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Figure 5.1a. Diagram of computation of the optimal model's process x(t) = xi (t,l,u(ti )) , using the 

microlevel's random process ˜ x (t)  by calculating the correlation function r( t)  its derivative )(tr ; the 
object macrooperator A , invariant a, discrete interval ti ; these allow simulating the optimal 

macroprocess x(t) , the inner vi (ti )  and output ui(ti )  optimal controls. 
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Figure 5.1b. See the text. 

The computed variables allow to simulate the macroprocess tx = ( (0), )x x t , synthesize 

the inner control ( )iv t  and the output optimal control ( )iu t , using the calculation of the 

optimal model’s process ( ) ( ( ), )o ix t x v t t= , current feed-back input, and it .  
Fig.5.1b illustrates the scheme of computation of the optimal model's process 

x(t) = xi (t, l,u(ti )) , using a given space distributed information ΔS  per cross-section ΔF , 
the model's invariants INVAR, the time ti  and space li  discrete intervals, eigenvalues λ i(ti )  
of the model differential operator, and simulates the inner vi (ti )  and the output ui(ti )  
optimal controls.  

The methodology is based on the connection of the model macrodynamics with the 
corresponding information geometry (chs.1.4-1.6).  
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In this case, the microlevel stochastics are not used for the macromodel’s restoration. 
Instead, the restoration requires the computation of the model’s basic parameters: dimension 
n , uncertainty γ , and the curvature’s indicator k ; which allow finding the model optimal 
macroprocess, the synthesized optimal control, as well as the model’s hierarchy.  

The computation uses the primary parameters of a basic model (n o ,γ o ,k o ) and the 
known parameters of the object’s geometry. 
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Figure 5.1c. See the text. 

 
Diagram Fig.5.1c. presents the functional schema of the IMD software operations: 

computing invariants INVAR, discrete moments ti , space coordinates li , increment of 
volume Δvi , MC-function, speeds CT ,C  and their difference d(C) , the current space 
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parameters ki , polar coordinates ρ , and gradients GRAD ΔX / Δρ  for a given space 
distribution’s cross-section F*; with calculating its radius R , coordinates of center O- Ro , 
and a square S , which are used to compute the object space model’s minimal (optimal) 
parameter km .  

The output variables are: optimal dynamic process xi (t) , optimal controls ui(t) , 
eigenvalues λ i(ti )  of the model differential equation, distributed space-time process 
xi (ρ(k), ti ,t) , space’s current speed CT ( tT ,tc ) with the intervals of moving tT  and stopping 

tc , which are computed by averaging a speed CT dt∫ . 

An estimated time of computation for each of the diagrams is approximately 3-5 minutes 
on conventional PC.  

The computation can be performed during a real–time movement of the object’s cross 
section (Fig.5.1b), or through an input of the calculated object’s current statistics (Fig.5.1a).  

Solving the considered complex problem in a real-time by traditional computation 
methods requires the developing of mathematical methodology and the software, which are 
able to overcome the method’s high computational complexity.  

For solving even a part of the problem, the existing techniques require many hours’ 
computation on the modern main frames. 

2.5.3. The Structure of the IMD Software Package  

The software package transfers the IMD analytical methodology into the numerical 
procedures, computer algorithms and programs. 

The packet (consisting of 35 programs) includes the following modules for computation 
of:  

 
• the identification procedure for the restoration of the object's equations; 
• the parameters of space–time transformations and a time-space movement; 
• the OPMC parameters, processes, controls, and the IN structure; 
• the function of macrosystemic complexity;  
• the transformation of the informational macromodel's characteristics into the 

appropriate physical and technological variables (using the particular applied 
programs). 

 
The main software modules compute: 
 

• the basic optimal macromodel parameters (n,γ ,k); 
• the spectrum of the model’s eigenvalues{ }, , 1,...,io io io ioj i nλ λ α β= ± = ; 

• the macromodel informational invariants a ( )o io itγ α= , bo ( ) io itγ β= ;  

• the time-space intervals ( ,i it l ); 



Vladimir S. Lerner 450 

• the distribution of the optimal eigenvalues ( , )i i it lλ  and the optimal controls 

( , )i i iv t l ; 

• the geometrical macromodel’s coordinates and the space distributed 
macroprocesses ( , )i i ix t l ; 

• the procedure of the macrocoordinates’ cooperation and aggregation; 
• the IN hierarchical macromodel structure and its macrocomplexity. 

 
The formulas, algorithms, and numerical computation’s equations are given in the 

program descriptions (not included in this book).  
The IMD software programs have been used for the practical solutions of the different 

applied problems including chs.2.1-2.4 and other [25]. 
 



 
 
 
 
 
 
 
 
 

CONCLUSION 
 
 
 
The book introduces the following main math results: 

 
• the entropy integral functional (EF) and its connection to a stochastic differential 

equation, describing the model random process at the microlevel; 
• the dynamic approximation of the EF by the information path functional (IPF) 

defined at the model macrolevel; 
• the solution of variation problem for IPF with establishing the IPF constraint 

equation, connecting the microlevel randomness with the macrolevel dynamics;  
• the basic equations of informational macrodynamics (IMD), determined on the 

IPF extremal’s segments and the small windows between the segments, 
belonging to the microlevel; 

• the solution of IMD control problem with finding the specific needle controls, 
connecting the extremal segments through the window, where the information 
from the microlevel is extracted and the macrodynamics emerge;  

• finding a quantum nature of the extracted macrolevel’s information and its 
processing during each following extremal segment, as a basic link from the 
microlevel to the macrolevel information;  

• the solution of a cooperative dynamic problem by incorporating a set of the 
extremal segments into an assembled information structure; 

• finding the IPF information invariants and using them for a simplification of the 
obtained solutions;  

• building a cooperative ordered information network (IN) with a hierarchy of the 
elementary cooperative triplet’s nodes; 

• finding an IN genetic information code that is able to encode and decode the IN 
assembled information; 

• finding the IN information geometry; 
• finding the complexities of informational dynamics, their invariant information 

forms, limitations, and the connection to Kolmogorov’s complexity; 
• finding the math forms of evolution laws for the evolutionary macrodynamics; 
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• finding a dynamic limitation (constraint), imposed on a diffusion process, which 
forms a bridge to Schrödinger’s information equation (aimed at the cooperating 
information wave in a formal “observer”). 

 
Book considers information as an abstract entity (state, process), defined in math terms 

of the IPF certainty as an opposite of the related EF uncertainty.  
A random process eigenfunctional EF is transformed in the corresponding dynamic 

process eigenfunctional IPF, having the invariant information measure in terms of the 
Hamiltonian, eigenfunctions, and the IN triplet code.  

The transformation of randomness to the dynamics models a formal acceptance of the 
information regularities by a complex dynamic system.  

The IPF complex information in a form of information waves satisfies the information 
Schrödinger’s equation, which allows revealing this information to an observer.  

Such an observer self-transforms an initial information measure (EF) into its dynamic 
form (IPF) and then to the information algorithm and code.  

Revealing the dynamic regularities of a random process by applying a variation principle 
(VP) to the process’ information functional (as a universal attribute for any natural process) 
automatically brings the dynamic constraint, imposed discretely on the random process, which 
allows selecting (with a maximal probability) the process quantum states that represent both the 
process’ dynamics and randomness.  

The VP creates the dynamic equivalents for both EF and related IPF–at one side, and for 
random process and the IPF extremals’ segments (between the selected quanta) as the related 
intervals of a dynamic process– at another side. 

The IMD regularities are emerged in the cooperative dynamics, governed by the IPF 
variation law.  

At the variation law’s violation, the macrodynamics become random, losing its 
regularities with the potential chaotic and catastrophic cataclysms.   

In the IPF-IMD approach, an object is represented by multiple interactive processes, 
which are sources of random processes and uncertainty, and the approach aim is to reveal this 
object’s information in a form of its genetic code.  

This approach differs from both the Shannon information of an object random events’ 
observation and the Kolmogorov encoding of an individual object’s description by a shortest 
algorithm (this algorithmic complexity does not require the probability function in the object 
description).  

The IPF-IMD is able to implement the notion and measure of information independent on 
the probability measure by using directly the informational invariants and/or the IN 
information code.  

Actually, the IPF uses Shannon’s definition of quantity of information, which we apply to 
math expectation of the functional logarithmic probability on the process (dynamic) 
trajectories, whereas the Shannon’s quantity of information in the traditional information 
theory is applicable to the process’ static information.  

While Shannon’s information measure provides an optimal code for the process states (as 
the instants of the process cross-sections), the IPF, in addition to the process optimal 
encoding, allows building the process information structure by the dynamic IN and the 
hierarchy of its optimal codes.  
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Studying dynamics of evolution of information process, the IPF regularities is useful for 
the comparison, evaluation and design of a variety of information systems with complex 
information dynamics.  

Other than Markovian measures of the uncertainty (for example, fuzzy set’s integral 
uncertainty measure and many others) essentially extends the formulation and application of 
the information functional and IMD methodology. 

Uncertainty is a component of physical reality, but is also the basic element of computer 
coding language which creates a virtual reality, going beyond physics: as the real and 
imaginary informational images, algorithms, and software.  

The introduced unified math-information formalism for information modeling, which 
includes a common computer-based modeling methodology, algorithms, and the computer 
software, builds a bridge connecting the formalism to the world of information, intelligence, 
and information technologies.  

Book integrates the IPF theory, the IMD foundation, and a broad scope of their 
applications. 

The provided applications demonstrate just starting but also the productive steps toward 
utilizing these results in wide area of information science and technology.  

 
 





 

 
 
 
 
 
 
 
 
 
 

REFERENCES 
 
 

References to chs. 1.1-1.6 

[1] Feynman R. P. The character of physical law, Cox and Wyman LTD, London, 1963.  
[2] Feynman R. P. and Hibbs A. R. Path Integral and Quantum Mechanics, McGraw, New 

York, 1965.  
[3] Kac M. Probability and Related Topics in Physical Sciences, Interscience Publ. Inc, 

New York, 1957.  
[4] Wiener N. Cybernetics, Wiley, New York, 1948.  
[5] Albeverio S. A. and Høegh-Krohn R. J. Mathematical Theory of Feynman Path 

Integrals, Springer, Berlin, 1976.  
[6] Schulman L. S. Techniques and Applications of Path Integration, Wiley, New York, 

1981.  
[7] Kleinert H. Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, 

World Sc., Singapore, 1995.  
[8] Khandekar D. C., Lawande S. V., Bhagwat K. V. Path-Integral Methods and Their 

Applications, World Sc., Singapore, 1997.  
[9] Johnson G. W and Lapidus M. L. The Feynman Integral and Feynman's Operational 

Calculus, Oxford Univ. Press, Oxford, 2000.  
[10] Chung K. L., Zhao Z. From Brownian Motion to Schrödinger’s Equation, Springer, 

Berlin, 1995.  
[11] Sabelfeld K. K. Integral and probabilistic representations for systems of elliptic 

equations, Math. Comput. Modell. 23: 111–129, 1996.  
[12] Chi-Ok Hwang, Mascagni M., Given J. A. A. Feynman–Kac path-integral 

implementation for Poisson’s equation using an h-conditioned Green’s function, 
Mathematics and Computers in Simulation 62: 347–355, 2003.  

[13] Dynkin E. B. Controlled Markov Processes, Springer, Berlin/Heidelberg/New York, 
1979.  

[14] Gihman I. I., Scorochod A. V. The Controllable Random Processes, Naukova Dumka, 
Kiev, 1977.  

 



References 456 

[15] Fleming W. H., Soner H. M. Controlled Markov Processes and Viscosity Solutions, 
Springer, New York, 1993.  

[16] Stratonovich R. L. The conditional Markov processes and their applications in optimal 
control theory, Moscow University Press, Moscow, 1966.  

[17] Stratonovich R. L. Theory of Information, Soviet Radio, Moscow, 1975.  
[18] Freidlin M. I., Wentzell A. D. Random Perturbations of Dynamic Systems, Springer-

Verlag, New York, 1984.  
[19] Talay D. Stochastic Hamiltonian dissipative systems: exponential convergence to the 

invariant measure, and discretization by the implicit Euler scheme, Markov Processes 
and Related Fields 8(2): 163-198, 2002.  

[20] Komoike N. Operator Ordering in Stochastic Hamiltonian and Path Integral Formalism 
of Stochastic Quantization, Progress of Theoretical Physics, 86(2): 575-579, 1991.  

[21] Krylov N. V. Controlled Diffusion Processes, Springer-Verlag, New York, 1980.  
[22] Gihman I. I., Scorochod A. V. Theory of Stochastic Processes, Vol. 3, Nauka, Moscow, 

1975.  
[23] Gelfand I. M. and Fomin S. V. Calculus of Variations, Prentice Hall, New York, 1963.  
[24] Alekseev V. M., Tichomirov V. M., Fomin S. V. Optimal Control, Nauka, Moscow, 

1979.  
[25] Kolmogorov A. N., Fomin S. V. Elements of the Functions and Functional analysis, 

Nauka, Moscow, 1981.  
[26] Kolmogorov A. N. Theory of Information and Theory of Algorithms, Selected Works, 

Nauka, Moscow, 1987.  

[27] Dynkin E. B. Theory of Markov Processes, Pergamon Press, New York, 1960.  
[28] Prochorov Y. V, Rozanov Y. A. Theory Probabilities, Nauka, Moscow, 1973.  
[29] Küchler U., Sorensen M. Exponential Family of Stochastic Processes, Springer Series in 

Statistics, New York, 1997.  
[30] Graham R. Stochastic Methods in Nonequilibrium Thermodynamics, in: Proceeding of 

Workshop: Stochastic Nonlinear Systems in Physics, L. Arnold, R. Lefever (Eds), 
Springer, Bielefeld, 1981.  

[31] Lerner V. S., Roychel B. Z. Building the dynamic model of a random object and the 
solution of control problem, Coll. Dynamics of Systems: Control and Optimization (Ed. 
Y. I. Neymark): 41-58, University Press, Gorki, 1989.  

[32] Lerner V. S. Mathematical Foundation of Information Macrodynamics, J. Systems 
Analysis-Modeling-Simulation, 26 (1-4):119-184, 1996.  

[33] Lerner V. S. Information Systems Analysis and Modeling: An Informational 
Macrodynamics Approach, Kluwer Publ., Boston, 1999.  

[34] Lerner V. S. Variation Principle in Informational Macrodynamics, Kluwer-Springer 
Publ., Boston, 2003.  

[35] Michlin S. G. Mathematical Physics, Nauka, Moscow, 1967.  
[36] De Groot S. R. (Ed.) Thermodynamics of Irreversible Processes, International Physic 

School "Enrico Fermi", Bologna, 1960.  
[37] Prigogine I. Introduction to Nonequilibrium Thermodynamics, Wiley, New York, 1962.  
[38] Nikolis G., Prigogine I. Self-organization in Nonequilibrium systems, Wiley, New York, 

1977.  

 



References 457

[39] Onsager L., Machlup S. Fluctuations and irreversible processes, Phys. Review, 91:1505-
1521, 1953.  

[40] Durr D., Bach A. The Onsager-Machlup Function as Lagrangian for the Most Probable 
Path of Diffusion Process, Communications in Mathematical Physics, 60 (2):153-170, 
1978.  

[41] Brogan W. L. Modern Control Theory, Prentice Hall, New York, 1991.  
[42] Ma S. Modern Theory of Critical Phenomena, Benjamin/Cummings, New York, 1976.  
[43] Gammaitoni L., Hanggi P., Jung P., Marchesoni F. Stochastic Resonance, Review Mod. 

Phys. 70, 225, 1998.  
[44] Willems T., Shatokhin V., Buchleitner A. Stochastic resonance. Report on Progress in 

Physics, 67:45-105, 2004.  
[45] Strogatz S., Stewart I. Coupled oscillations and biological synchronization, Scientific 

American, 269(7):102-109, 1993.  
[46] Eykhoff P. Systems identification, parameters and state estimation, Wiley, New York, 

1974.  
[47] Muller T. G. and Timmer R. I. Parameter Identification Techniques for Partial 

differential equations, International Journal of Bifurcation and Chaos, 14 (6): 20053-
20060, 2004.  

[48] Lions J., L. Optimal Control of Systems governed by Partial Differential Equations, 
Springer, New York, 1971.  

[49] Fleming W. H., Rishel R. W. Deterministic and Stochastic Optimal Control, Springer, 
New York, 1975.  

[50] Biot M. Variation Principles in Heat Transfer, Oxford University Press, Oxford, 1970.  
[51] Schechter R., S. The Variation Method in Engineering, McGraw-Hill, New York, 1967.  
[52] Tsigler G. Extremal principles of Irreversible Thermodynamics and Solid Mechanics, 

Mir, Moscow, 1966.  
[53] Lerner V. S. Identification of the space distributed objects, Coll. Dynamics of Systems: 

Control and Optimization : (Ed. Y. I. Neymark): 63-72, University Press, Gorki, 1981.  
[54] Lerner V. S. Mathematical Foundation of Information Macrodynamics: Dynamic Space 

Distributed Macromodel, Systems Analysis-Modelling-Simulation, 35: 297-336, 1999.  
[55] Lerner V. S. The Information System Macro Functional and Physical Analogies, 

Systems Analysis-Modelling-Simulation, 41(2):1-64, 2001.  
[56] Glansdorf P., Prigogine J. Thermodynamic Theory of Structure, Stability and 

Fluctuations, Wiley, New York, 1971.  
[57] Prigogine J. and Glansdorf P. Variation Properties and Fluctuation Theory, Physics, 31: 

1242-1249, 1965.  
[58] Dyarmati I. Irreversible Thermodynamics. The Field Theory and Variation Principles, 

Mir, Moskow, 1974.  
[59] Lerner V. S. Dynamic approximation of a random information functional, Journal of 

Mathematical Analysis and Applications, 327 (1):494-514, 2007.  
[60] Lerner V. S. Solution to the variation problem for information path functional of a 

controlled random process, Journal of Mathematical Analysis and Applications, 
334(1):441-466, 2007.  

[61] Schilov G. E. Introduction to the Theory of Linear Spaces, Nauka, Moscow, 1956.  
[62] Bellman R. Introduction to Matrix Analysis, MCGraw, New York, 1960.  

 



References 458 

[63] Lerner V. S. Introduction to information systems theory: concepts, formalism and 
applications, International Journal of Systems Science, 35(7): 405–424, 2004.  

[64] Grishanin B. A., Stratonovich R. L. The value of information and the statistics needed at 
observing of a random process, Journal Technical Cybernetics, 6:4-12, 1966.  

[65] Brillouin L. Scientific Uncertainty and Information, Acad. Press, New York, 1964.  
[66] Krane K. Modern Physics, Wiley, New York, 1983.  
[67] Lichtenberg A. J., Lieberman M. A. Regular and Stochastic Motion, Springer, New 

York, 1983.  
[68] Lerner V. S. The boundary value problem and the Jensen inequality for an entropy 

functional of a Markov diffusion process, Journal of Mathematical Analysis and 
Applications, 353(1):154-160, 2009.  

[69] Lerner V. S. Building the PDE Macromodel of the Evolutionary Cooperative Dynamics 
by Solving the Variation Problem for an Informational Path Functional, International 
Journal of Evolution Equations 3(3):299-355, 2009.  

[70] Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers, MGraw 
Hill, New York, 1961.  

[71] Landau L.D and Lifshitz E.M. Mechanics, Nauka, Moskow, 1965. 

References to ch. 1.7 

[1] Kolmogorov A. N. Three approaches to the quantitative definition of information. 
Problems Information. Transmission, 1 (1): 1-7, 1965.  

[2] Kolmogorov A. N. Information Theory and Theory of Algorithms, Selected Works, 
Nauka, Moscow, 1987.  

[3] Chaitin G. J. Computational Complexity and Godel’s incompleteness theorem, SIGACT 
News, 9:11-12, 1971. 

[4] Chaitin G. J. Information-theoretic computational complexity. IEEE Trans. Information 
Theory, IT-20:10-15, 1974.  

[5] Bennett C. H. Logical depth and physical complexity, in: The Universal Turing 
Machine, R. Herken (Ed.), 227-258, Oxford University Press, 1988.  

[6] Bennett C. H. How to define complexity in physics, and why, in: Complexity, Entropy and 
Physics of Information, W. H. Zurek (Ed.),137-148, Addison Wesley, New York, 1991.  

[7] Lopez-Ruiz R., Mancini H. L. and Calbet X. A statistical measure of complexity, Phys. 
Letters A, 209: 321, 1995.  

[8] Calbet X and Lopez-Ruiz R. Tendency toward maximum complexity in an isolated non-
equilibrium system, Phys. Review E 6, 066116(9), 2001.  

[9] Nicolis G. and Prigogine I. Exploring complexity. W. H. Freeman, New York, 1989.  
[10] Solomonoff R. J. Complexity-based induction systems: comparisons and convergence 

theorems, IEEE Transactions on Information Theory, 24: 422-432, 1978.  
[11] Ebeling W., Jimenez-Montano M. A. On Grammars, Complexity and Information 

Measures of Biological Macromolecules, Journal Mathematical Bioscience, 52: 53-71, 
1980.  

[12] Huberman  B. A, Hogg T. Complexity and Adaption, Physica D, 22, 376-384, 1986.  
[13] Traub J. F, Wasilkowski G. W, Wozniakowski H. Information-Based Complexity, 

Academic Press, London, 1988.  

 

http://bruce.edmonds.name/combib/compref172.html


References 459

[14] Crutchfield J. P, Young K. Inferring Statistical Complexity, Physics Review Letters, 
63:105, 1989.  

[15] Lopez L. R., Caufield L. J. A Principle of Minimum Complexity in Evolution, Journal 
Lecture Notes in Computer Science, 496: 405-409, 1991.  

[16] Grassberger P. Information and Complexity Measures in Dynamical Systems, in: 
Information Dynamics, Atmanspacher H, Scheingraber H. (Eds.), 15-33, Plenum Press, 
New York, 1991.  

[17] Atmanspacher H., Kurths J., Scheingraber H., Wackerbauer R., Witt A. Complexity and 
meaning in nonlinear dynamical systems, Open Systems and Information Dynamics, 1, 
269-289, 1992.  

[18] Nicolis G. and Prigogine I. Exploring complexity. W. H. Freeman, New York, 1989.  
[19] Gell-Mann M. Lloyd S. Information Measures, Effective Complexity and Total 

Information, Journal Complexity, 2:44-52, 1996. 
[20] Bar-Yam Y. Multiscale complexity/entropy, Advances in Complex Systems, 7(1):47–63, 

2004.  
[21] Nikolis G., Prigogine I. Self-organization in Nonequilibrium Systems, Wiley, New York, 

1977.  
[22] Berry R. J., Ehlers C. J., Burgess D. R., Jr., Zachariah M. R., Marshall P. C.  

 A computational study of the reactions of atomic hydrogen with fluoromethanes: 
kinetics and product channels, Phys. Letters, 269: 107-116, 1997.  

[23] Prigogine I. From being to becoming: time and complexity in physical sciences, W. H. 
Freeman and Co., San Francisco, 1980.  

[24] Luan Chang-Fu. Entropy of Baker's Transformation, Chinese Phys. Lett. 20: 392-394, 2003.  
[25] Nicolis G., Turner J. Ann. New York Acad. Science: 316-351, 1977.  
[26] De Groot S. R. (Ed.) Thermodynamics of Irreversible Processes, International Physic 

School "Enrico Fermi", Bologna, 1960.  
[27] Stratonovich R. L. Theory of information, Sov. Radio, Moscow, 1975.  
[28] De Groot S. R. and Mazur P. Non-equilibrium Thermodynamics, N. Holland Publ. Co., 

Amsterdam, 1962.  
[29] Jabotinsky A. M. The concentrated oscillations, Nauka, Moscow, 1974.  
[30] Lerner V. S. Information Systems Analysis and Modeling:An Informational 

Macrodynamics Approach, Kluwer, 1999.  
[31] Lerner V. S. Information Functional Mechanism of Cyclic Functioning. Journal of 

Biological Systems, 9 (3):145-168, 2001.  
[32] Lin J. Divergence measures based on the Shannon entropy. IEEE Trans. on Information 

Theory, 37 (1):145-151, 1991.  
[33] Grosse I., Bernaola-Galván P., Carpena P., Román R. Analysis of symbolic sequences 

using the Jensen-Shannon divergence, Physical Review, E65, 8268-8275, 2002.  
[34] Grosse I., Herzel H., Buldyrev S. V, Stanley H. E. Species independence of mutual 

information in coding and noncoding DNA. Physical Review E61:5624-5629, 2000.  
[35] Lerner V. S. Macrosystemic Modelling and Simulation, Journal Systems Analysis-

Modeling-Simulation, 28 (5):149-184, 1997.  
[36] Lerner V. S. Information Geometry and Encoding the Biosystems Organization, Journal 

of Biological Systems, 13 (2):1-41, 2005.  
[37] Lerner V. S. Information complexity in evolution dynamics, Int. Journal of Evolution 

Equations, 3 (1):27-63, 2007.  

 



References 460 

[38] Einstein A. The meaning of Relativity, Princeton University Press, Princeton, 1921.  
[39] Ganthmacher F. R. Theory of Matrices, Nauka, Moscow, 1967.  
[40] Bennett Ch. H. Thermodynamics of Computation, Int. Journal of Theoretical Physics, 

21, 905, 1982  
[41] Feynman R. P. Feynman Lectures on Computations, Addison Wesley, New York, 1996.  
[42] Lerner V. S. Macrodynamic cooperative complexity in Information Dynamics, Journal 

Open Systems and Information Dynamics, 15 (3):231-279, 2008.  

References to ch. 1.8 

[1] Kastler G. Origin of Biology, Mir, Moskow, 1967.  
[2] Wright S. Evolution and genetics of population, vols. 1-4, 1968-1969, 1977-1978.  
[3] Kimura M. The Neutral Theory of Molecular Evolution, Cambridge Press, Cambridge, 1983.  
[4] Nicolis G. and Prigogine I. Self-Organization in Nonequilibrium Systems: from 

dissipative structure to order through fluctuations. Wiley, New York, 1977.  
[5] Michod R. E., Darwinian Dynamics: evolutionary transitions in fitness and 

individuality, Princeton University Press, Pricenton, 1999.  
[6] Murray J. D. Mathematical Biology, Springer, New York, 2002.  
[7] Hedrick P. W. Genetics Of Populations, Jones&Bartlett Publ., 2005.  
[8] Dyson F. J. Origin of Life, Cambridge Press, 1999.  
[9] Joyce G. F. Directed molecular evolution, Scientific Amarican, 267(6):90-97, 1992.  
[10] Dawkins R. The Selfish gene, Oxford University Press, New York, 1976 
[11] Schrodinger E. What Is Life? The physical aspect of the living cell, Cambridge 

University Press, Cambridge, 1944.  
[12] Mayr E. What Makes Biology Unique? Cambridge University Press, Cambridge, 2004.  
[13] Dover G. Dear Mr. Darwin, Letters on Evolution of Life and Human Nature, University 

of California Press, Berkeley-Los Angeles, 2000.  
[14] Lerner V. S. Variation Principle in Informational Macrodynamics, Kluwer-Springer 

Publ., Boston, 2003.  
[15] Turchin P. Complex Population Dynamics: a theoretical/empirical synthesis, Princeton 

University, Press, 2003.  
[16] Schwammle V. and Brigatti Ed. Speciational view of macroevolution: are micro and 

macroevolution decoupled? Phys. Reiew Letters, 90, 06-08-101-1, 2003. 
[17] Gould S. J. and Eldredge N. Punctuated equilibrium comes of age, Nature, 366, 223, 

1993.  
[18] Crandall M. G., Pazy A. Nonlinear evolution equations in Banach spaces, Israel Journal 

Math., 11:57–94, 1972.  
[19] Cockburn B., Grinberg G., and Londen S. O. On convergence to entropy solutions of a 

single conservation law, Journal Differential Equations, 128 (1):206-251, 1996.  
[20] Ao P. Laws in Darwinian Evolutionary Theory, Physics of Life Reviews, 2 (2): 117-156, 

2005.  
[21] Lerner V. S. Information Systems Analysis and Modeling: An Informational 

Macrodynamics Approach, Kluwer, 1999.  
[22] Lerner V. S. Information Functional Mechanism of Cyclic Functioning. Journal of 

Biological Systems, 9 (3):145-168, 2001.  

 



References 461

[23] Kolmogorov A. N. On the representation of continuos functions of many variables by 
superposition of continuous functions of one variable and addition, Dokl. Academy Nauk 
USSR, 114:953-956, 1978.  

[24] Lerner V. S. Computer simulation of the dynamic macromodels of the biological 
populations having the different complexities, Modeling of Population Dynamics: 51-54, 
Gorki University, 1989.  

[25] Greig D. “Other half” of Darwin’s theory passes test, Proceedings of the Royal Society 
B, October 7, 2008 online.  

[26] Lerner V. S. The evolutionary dynamics equations and the information law of evolution, 
Int. Journal of Evolution Equations, 3 (3):237-298, 2009.  

References to ch. 1.9 

[1] Kolmogorov A. N. Theory of Information and theory of algorithms, Selected Works, 
Nauka, Moskow, 1987.  

[2] Jaynes E.T. Information Theory and Statistical Mechanics in Statistical Physics, K. Ford 
(Ed), Benjamin, 1963. 

[3] Chirikov B. V. A Universal Instability of Many-Dimensional Oscillator Systems. Phys. 
Rep. 52, 264-379, 1979.  

[4] Lichtenberg A. I., Liberman M. A. Regular and Stochastic Motion, Springer, 1983.  
[5] Hilborn R. C. Chaos and Nonlinear Dynamics, 2nd ed., Oxford Univ. Press, 2000.  
[6] Beck C. and Schelgl F. Thermodynamics of Chaotic Systems: An Introduction, 

Cambridge Univ. Press, Cambridge, 1993.  
[7] Lifshitz E. M., Pitaevsky L. P. Physical Kinetics, Nauka, Moskow, 1979.  
[8] Stainley H. E. Introduction to phase transformation and critical phenomena, Oxford 

Univ. Press, Oxford, 1980.  
[9] Gross D. H. E. Microcanonical thermodynamics: Phase transitions in “small” systems, 

Lecture Notes in Physics, 66, World Scientific, Singapore, 2001.  
[10] Latora V. and Baranger M. Kolmogorov-Sinai Entropy Rate versus Physical Entropy, 

Phys. Review Letters, 82(3), 1999.  
[11] Shell M. S., Debenedetti P. G. and Panagiotopoulos At. Z. Saddles, in: The Energy 

Landscape: Extensivity and Thermodynamic Formalism, Phys. Review Letters, 92(3), 
2004.  

[12] Abe S. and Rajagopal A. K. Implications from invariance to the structure of 
nonextensive entropies, Phys. Review Letters, 83: 1711, 1999.  

[13] Abe S., Okamoto Y. (Eds). Nonextensive Statistical Mechanics and its Applications, 
Springer, 2001.  

[14] Nikolis G., Prigogine I. Self-organization in Nonequilibrium systems, Wiley, New York, 
1977.  

[15] Prigogine I. From being to becoming: time and complexity in physical sciences, 
Freeman, San Francisco, 1980.  

[16] Prigogine I. Etude Thermodynamique des Processus Irreversibles, Desoer, Liege, 1947.  
[17] De Groot S. R. and Mazur P. Non-equilibrium Thermodynamics, North Holland Publ., 

Amsterdam, 1962.  

 



References 462 

[18] Dyarmati I. Irreversible Thermodynamics. The Field Theory and Variation Principles, 
Mir, Moscow, 1974.  

[19] Durr D., Bach A. The Onsager-Machlup function as Lagrangian for the most probable 
path diffusion process. Communications in Mathematical Physics, 59 (2):153-170, 1978.  

[20] Stratonovich R. L. Nonlinear Irreversible Thermodynamics, Nauka, Moskow, 1985.  
[21] Zaripov R. G. Self-organization аnd irreversibility in nonextensive systems, Tat. Асаd. 

Sci. Publ. House "Fen", Kazan, 2002.  
[22] Tsallis C., Brigatti E. Nonextensive Statistical Mechanics: A brief introduction, in: 

Continuum Mechanics and Thermodynamics, 16, 223, 2004 
[23] Tallies C. Nonextensive generalization of Boltzmann-Gibbs Statistical mechanics and its 

Applications, Lectures, Inst. for Molec. Science, Okazaki, 1999.  
[24] Reyni A. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics 

and Probability, Vol. 1, Univ. California Press, Berkeley, 1960.  
[25] Lerner V. S. Macrodynamic cooperative complexity of biosystems, Journal of 

Biological Systems, 14 (1):131-168. 
[26] Feynman R. P. and Hibbs A. R. Path Integral and Quantum Mechanics, McGraw, New 

York, 1965.  
[27] Kac M. Probability and Related Topics in Physical Sciences, Interscience Publ. Inc, 

New York, 1957.  
[28] Prochorov Y. V, Rozanov Y. A. Theory Probabilities, Nauka, Moscow, 1973.  
[29] Bes D. R. Quantum Mechanics: A Modern and Concise Introductory Course, Springer, 

New York, 2007 
[30] Belavkin V. P. A Posterior Schrödinger Equations for Continuous Non-demolition 

measurement, Journal Math. Physics, 31, 2930-2934, 1990.  
[31] Feynman R. P. Feynman Lectures on Computations, Addison Wesley, New York, 1996.  
[32] Volkenstein M. V. The general biophysics, Nauka Moscow, 1978.  
[33] Ledrappier Fr., Walters P. A relativised variational principle for continuous 

transformations, Journal of London Math. Soc., 11, Ser. 16: 568-576, 1977.  
[34] Elsanousi S. A. A variational principle for the pressure of a continuous 2Z -action on a 

compact metric space, Amer. Journal of Math., 99:77-106, 1977.  
[35] Lerner V. S. Information Systems Analysis and Modeling:An Informational 

Macrodynamics Approach, Kluwer, 1999.  
[36] Lind D. A., Marcus B. An introduction to symbolic dynamics and coding, Cambridge 

University Press, 1995. 
[37] Lerner V.S. Information Systems Theory and Informational Macrodynamics: Review of 

the Main Results, IEEE Transactions on systems, man, and cybernetics—Part C: 
Applications and reviews, 37 (6):1050-1066, 2007.  

[38] Lerner V. S. Superimposing processes in the control problems, Stiinza, Kishinev, 1973. 

References to ch. 2.1 

[1] Astrom K. Introduction to stochastic control theory, Academic press, New York, 1970.  
[2] Balakrishnan A. V. Stochastic control: a function space approach, SIAMI on Control, 

10: 285-297, 1972.  

 

http://books.google.com/books?id=qSkNs3jr-DIC&dq=symbolic+dynamics&printsec=frontcover&source=bl&ots=-HxS3ztu5d&sig=_hfWsKaUZSh-dRQgixeFdRFVEbk&hl=en&ei=C4hTStJVhoSyA7rs8eEH&sa=X&oi=book_result&ct=result&resnum=4


References 463

[3] Fleming W. H., Rishel R. W. Deterministic and stochastic optimal control, Springer, 
New York, 1975.  

[4] Basar T. and Bernard P. H-Optimal control and related minimax design problems: A 
dynamic game approach, Birkhauser, Boston, 1995.  

[5] Yong J. and Zhou X. Y. Stochastic control: Hamiltonian systems and HJB equations, 
Springer-Verlag, New York, 1999.  

[6] Andronov A. A., Witt A. A., Pontryagin L. S. About statistical approach to dynamic 
systems, Journal of Experimental technical physics, 3:165-180, The USSR Academy of 
Science, 1933.  

[7] Wiener N. Cybernetics, Wiley, New York, 1948.  
[8] Zadeh L. A. Optimum nonlinear filters, Journal of Appl. Physics, 24 (4): 396-404, 1953.  
[9] Feldbaum A. A. Theory of Dual control, Journal Automatica and Telemechanics, 21 

(9):1240-1249, 1960; (11):1453-1464, 1961; 22(1):3-16, (2):129-142, Moscow.  
[10] Kalman R. R. E., Bucy R. S. New results in linear filtering and prediction theory, Trans. 

ASME: 95, 1961.  
[11] Sage A. P., Melsa J. L. System Identification, Acad. Press, New York, 1971.  
[12] Eykhoff P. Systems identification, parameters and state estimation, Wiley, New York, 1974.  
[13] Muller T. G. and Timmer R. I. Parameter Identification Techniques for Partial 

differential equations, Int. Journal of Bifurcation and Chaos, 14 (6), 20053-20060, 2004.  
[14] Lyashko S. I. Generalized Optimal Control of Linear Systems with Distributed 

Parameters, Kluwer, 2002.  
[15] Saridis G. N. Entropy control engineering, World Scientific, Singapur, 2001.  
[16] Achieser N. I. and Glazman I. M. Linear operator theory in Gilbert’s space, Nauka, 

Moscow, 1968.  
[17] Brogan W. L. Modern Control Theory, Prentice Hall, New York, 1991  
[18] Lerner V. S. The nonsearch control device, Patent 798702, Moscow, 1981.  
[19] Ambrosio L. F. and Pallara D. Functions of bounded variation and free discontinuity 

problems, Oxford Sc. Publ., Glarendon Press, Oxford, UK, 2000.  
[20] Boscain U. and Piccoli B. Optimal synthesis for control systems on 2-D Manifolds, 

Springer, Berlin, 2004.  
[21] Cesari L. Optimization-Theory and Applications, Springer, New York, 1983.  
[22] Shiffer M. M. Boundary-value problems in Elliptic partial differential equations, in: Modern 

mathematics for the engineer, Beckenbach E. F.(Ed), McGraw-Hill, New York, 1956.  
[23] Kolmogorov A. N. Information Theory and Theory of Algorithms, Selected Works, 

Nauka, Moscow, 1987.  
[24] Bellman R. Dynamic Programming, Invariant Imbedding and Two points Boundary-

value problems, Proc. Symposium on Two points Boundary-value problems, University 
Wisconsin, April, Wisconsin, 1959.  

[25] Narendra K. S. and Balakrishnan J. Adaptive Control Using Multiple Models, IEEE 
Transactions on Automatic Control, 42(2): 171-187, 1997.  

[26] Middleton R. H., Goodwin G. C, Hill D. J. and Mayne D. Q. Design Issues in Adaptive 
Control, IEEE Transactions on Automatic Control, 33 (1): 50-58, 1988.  

[27] Lerner V. S. Cooperative information space distributed macromodels, Int. Journal of 
Control, 81 (5):725-751, 2008.  

[28] Lerner V. S. Information macrodynamic modeling of a random object, Int.Journal of 
Systems Science, 40 (7), 729-744, 2009.  

 



References 464 

References to ch. 2.2 

[1] Sayood K. Introduction to DATA Compression, Morgan Kaufmann Publishers, San 
Francisco, 1996.  

[2] Li M., Vitanyi P. An Introduction to Kolmogorov Complexity and its Applications, 
Springer-Verlag, New York/ Berlin/London, 1997.  

[3] Lerner V. S. Information Macrodynamic Approach for Modeling in Biology and 
Medicine, Journal of Biological Systems: 5 (2) :215-264, 1996.  

[4] Lerner V. S. Information Modeling of Neuronal Dynamics, Journal of Biological 
Systems, 11(1):57-84, 2003.  

[5] Stratonovich R. L. Theory of Information, Soviet Radio, Moscow, 1975.  
[6] Lerner V. S. Informational Macrodynamics for Cognitive Information Modeling and 

Computation, Journal of Intelligent Systems, 11 (6): 409-470, 2001.  
[7] Chaitin G. J. Computational Complexity and Gödel’s incompleteness theorem, SIGACT 

News, 9:11-12, 1971. 
[8] Greider C. W. and Blackburn E. H. A telemetric sequence in the RNA of Tetrahymena 

telomerase required for telomere repeat synthesis. Nature 337: 331-337, 1989.  
[9] Cover Th. M., Joy A. Elements of Information theory, Wiley, New York, 1991.  
[10] John E. R. The neurophysics of consciousness, Brain Research Reviews, 39: 1-28, 2002.  
[11] Freeman W. J. How Brains Make Up Their Minds. Columbia University Press, New 

York, 2001.  
[12] Penrose R. Shadows of the Mind. Oxford University Press, Oxford, 1994.  
[13] Stapp H. How mind influences brain. Talk presented at International conference on 

QM3, Tucson, Arizona, 2003.  
[14] Pribram K. Brain mathematics. Talk presented at International conference on QM3, 

Tucson, Arizona, 2003.  
[15] Roy S. and Kafatos M. Space-time Representation and Information Processing in Brain 

Dynamics, Talk presented at International conference on QM3, Tucson, Arizona, 2003.  
[16] Korotaev S. and Serdyuk V. Experimental evidence of macroscopic nonlocality of the 

dissipative processes. Talk presented at International conference on QM3, Tucson, 
Arizona, 2003.  

[17] Glynn I. The origin and machinery of mind, Oxford University Press, Oxford, 1999.  
[18] Liu G. Local structural balance and functional interaction of excitatory and inhibitory 

synapses in hippocampal dendrites, Published online: 7 March 2004, Nature 
Neuroscience Magazine, April 7 (4): 373-379, 2004.  

[19] Rabinovich M. I., Varona P., Selverston A. I., Abarbanel H. D. I. Dynamical principles 
in neuroscience, Journal Reviews of modern physics, 78: 1214-1265, 2006.  

[20] Scott A. C. Stairway to the Mind, Springer-Verlag, Berlin, 1995.  
[21] Izhikevich E. M. Dynamical systems in neuroscience: The geometry of excitability and 

bursting, MIT Press, Cambridge, MA, 2006.  
[22] Lerner V. S. The information modeling of the encoding-deconding processes at transformation 

of biological information, Journal of Biological Systems, 12 (2):201-230, 2004.  
[23] Miler G. A. The magical number seven, plus or minus two: some limits on our capacity 

for processing information, Psychological Review, 63 (2):81-97, 1954.  

 



References 465

[24] Lerner V. S. Systemic mechanism of organizing and assembling information, Int. 
Journal Kybernetes, 43 (6):834-856, 2005.  

[25] Lerner V., Dennis R., Herl H., Novak J. Computerized methodology for the 
evaluation of level of knowledge, Cybernetics and Systems, An Int. Journal, 24:473-
508, 1993.  

[26] Mandell A. J. and Selz K. A. Entropy conservation in neurobiological systems. Journal 
Chaos, 7 (1):67-81, 1997.  

[27] Yomdin Y. Volume growth and entropy, Israel Journal Math. 57, 285–301, 1987.  

References to ch. 2.3 

[1] De Groot S. R. and Mazur R. Nonequilibrium Thermodynamics, Amsterdam, North-
Holland Publishing Co, 1962.  

[2] Kolmogorov A. N. About statistical solidification theory of metals, Izvestia Academy of 
Science USSR, 2:28-39, Moscow, 1937.  

[3] Chalmers B. Principles of Solidification, Wiley, New York, 1964.  
[4] Ohno A. The Solidification of Metals, Chin Shokan, Ltd., 1976.  
[5] Lerner V. S., Sobolev V. V., Trefilov P. M. Optimum conditions for cast iron 

solidification in horizontal continuos casting, Steel in the USSR, 19 (7): 316-317, 1989.  
[6] Lerner V. S., Lerner Y. S., and Tsarev G. G. Computer optimization of parameters for 

horizontal continuous casting in spheroid graphite cast iron, Journal Liteinoe 
Proizvodstvo, Metallurgy, 3: 25-27, 1988.  

[7] Lerner V. S. and Lerner Y. S. Solidification modeling of continuous casting process, 
Journal of Material Engineering and Performance, 14 (2):258-266, 2005.  

[8] Lerner V. S., Jelnis M. V., Dobrovolscis A. S., Tsarev G. G. The system of the process 
automatization, Journal Liteinoe Proizvodstvo, Metallurgy, 1: 16-17, 1990.  

[9] Antonovich A. L., Lerner V. S. Mathematical description of the physical and chemical 
saturated processes, Academy Science News, Physical and technical sciences, 3: 81-89, 
Kishinev, 1968.  

[10] Golovinscky L. V., Lerner V. S. The device for regulating the thermal process of 
electrical furnace, Journal Priborostroenie, 7: 19-21, 1962.  

[11] Lerner V. S. Automatic control of the electrolyser and the electrical furnace, The 
Information Technical Bulletin, Institute Information, 2: 45-52, Moscow, 1958.  

[12] Lerner V. S. Regulating the electrical power for electrical furnace, Journal Electricity, 
9: 73-78, 1959.  

[13] Lerner V. S. The theory of regulating the electrical power for electrical furnace, Journal 
Electricity, 7: 25-30, 1960.  

[14] Lerner V. S. The automatic device for measuring the melting level, Journal of Technical 
Measurement, 11: 56-59, 1962.  

[15] Lerner V. S., Platonov G. F. The connections of the geometrical sizes and technological 
peculiarities of the electrical furnaces with their regulating properties, University News, 
Journal Energetic, 8: 52-58, 1963. 

[16] Lerner V. S. Automatic control of the furnace voltage in the optimal system, Journal 
Electrotermia, 11: 17-19, 1964.  

 



References 466 

[17] Lerner V. S., Rudnitsky V. B., Osipov Ia., Ch. Automation of the electrical furnaces on 
the Pechenga Nickel Factory, Electrical melting processes: 22-42, Metallurgy, Moscow, 
1968.  

[18] Lerner V. S., Litvak Z. V., Chebotaru I. S. Identification of the microwire melting 
process and its optimization, Microwire and the resistance devices: 33-42, K. Mold., 
Kishinev, 1969.  

[19] Lerner V. S. Application of Physical Approach to Some Problems of Control, K. Mold, 
Kishinev, 1969.  

[20] Lerner V. S. Superimposing processes in the control problems, Stiinza, Kishinev, 1973.  

References to ch. 2.4 

[1] Theil H. Economics and Information Theory, North-Holland Publishing Co., 
Amsterdam, 1967.  

[2] Theil H. Statistical Decomposition Analysis, Elsevier, New York, 1972.  
[3] Rodin L. The Meaning and Validity of Economic Theory, Harper & Brothers Publishers, 

New York, 1956.  
[4] Marschak J. Economics of information systems. J. American Statist. Assoc. 66: 192-219, 

1971.  
[5] Marschak J. Economic information, decision, and prediction. Selected essays, II (II). 

Economics of information and organization. Theory and Decision Library, vol. 7, Reidel 
P. C., Dordrecht/Boston, Mass, 1980.  

[6] Aoki M. Modeling Aggregate Behavior and Fluctuations in Economics: Stochastic 
Views of Interacting Agents, Cambridge University Press, Cambridge, 2005.  

[7] Aoki M. Uncertainty, policy ineffectiveness, and long stagnation of the 
macroeconomics, UCLA, working paper, Los Angeles, 2003.  

[8] Hirshleifer J. Liquidity, Uncertainty, and the Accumulation of Information, UCLA, 
working paper, Los Angeles, 2003.  

[9] Hirshleifer J. Where are we in the theory of information? J. American Economic 
Association, 3 (2): 31-39, 1973.  

[10] Lerner V. S. Introduction to information systems theory: concepts, formalism and 
applications, Int. Journal of Systems Science, 35 (7): 405–424, 2004.  

[11] Lerner V. S. Information Systems Theory and Informational Macrodynamics: Review of 
the Main Results, IEEE Transactions on systems, man, and cybernetics—Part c: 
Applications and reviews, 37 (6): 1050-1066, 2007.  

[12] Black J. Oxford Dictionary of Economics, Oxford University Press, Oxford, 2002.  
[13] Wessels W. J. Economics, Barron's, New York, 2002.  
[14] Mansfield E. and Behravesh M. Economics USA, WW Norton & Co, New 

York/London, 1986.  
[15] Samuelson P. Foundations of Economic Analysis, Atheneum, New York, 1965.  
[16] Lerner V. S. Macroeconomic Analysis of Information Dynamic Model, Cybernetics and 

Systems, Int. Journal, 24 (6): 591-633, 1993.  
[17] Marx K. Capital. A Critique of Political Economy, Random House, Inc., New York, 1906.  
[18] Lerner V. S. Information Modeling of Neuronal Dynamics, Journal of Biological 

Systems, 11 (1):57-84, 2003.  

 



References 467

[19] Wold H. and Jureen L. Demand Analysis A Study in Econometrics, New York, 1953.  
[20] Gwartney J. D., StroupR. L., Sobel R. S. Economics, The Dryden Press, New York, 

2000.  
[21] Mukherji A. A simple examples of complex dynamics, Economic Theory, 14, 741-749, 

1999.  
[22] Lerner V. S., Kvitash V. I. The Integral Information Measure for Evaluating Relonic 

Map's Nodes Connections, Proceeding of the IASTED International Conference, ACTA 
Press, 339-341, 2003.  

[23] Lerner, V. S., Portugal, V. M. The Economic and Mathematic Model of Optimal 
Consolidation of the Productions Structures, Izvestia Academy of Science USSR, 5: 979-
981, Nauka, Moscow, 1991.  

[24] Lerner V. S. An Elementary Information Macrodynamic Model of a Market Economic 
System, Journal Information Sciences, 176 (22):3556-3590, 2006.  

[25] Alcaly, R. The New Economy, Farra, Straus & Giroux, 2004.  
[26] Lerner V. S. Information macromodel and information structure of a market economic 

system, Cybernetic and Systems, An Int. Journal, 39 (3):244-283, 2008.  

Selected Author’s Publication in Russian [R] (translated) 

Lerner V. S. On a method of correction of dynamic properties of Automatic Control Systems, 
Journal Automatics and Telemechanics, 22 (4): 443-456, 1961.  

Lerner V. S. Analysis of dynamic properties of a class of Automatic Control Systems, 
Journal Automatics, 6:26-35, 1961.  

Lerner V. S. Optimal operating conditions of physical and chemical converters, Physical-
Engineering Journal, 9 (1):25-33, 1965.  

Lerner V. S., Chebotary I. S. About a synthesis of an optimal control problem. In book: 
Application of mathematical methods and computers in science and technology I: 67-78, 
Academy of Science Moldova, 1965.  

Lerner V. S. The general models of electrical converters and their optimization, Izvestia 
Academy of Science USSR: Energy and Transport, 6: 31-39, 1966.  

Lerner V. S. About the process’ stability and optimality in control systems, Institute 
Polytechnic News: 41-46, Kishinev, 1966.  

Lerner V. S., Maximov Y. A. About a problem of optimal synthesis of the stable controls, 
Institute Polytechnic News: 47-51, Kishinev, 1966.  

Lerner V. S. Identification of a control object and the problem of optimal control synthesis, 
Institute Polytechnic News: 12-17, Kishinev, 1967.  

Lerner V. S. To a statistical foundation of an optimal control problem, Institute Polytechnic 
News: 8-23, Kishinev, 1968.  

Lerner V. S. About a cooperative functioning of an association of control systems and the 
conditions of the systems’ physical realization. In book: Application of mathematical methods 
and computers in science and technology II: 39-46, Academy of Science Moldova, 1968.  

Lerner V. S. The basics of Physical Approach for Control Problems, Seminar on Cybernetics, 
12:3-48, Academy of Science Moldova, 1969.  

Lerner V. S. Application of a Physical Approach to Some Control Problems, K. Moldova, 
Kishinev, 1969.  

 



References 468 

Lerner V. S., Shargorodsky M. T., Furer L. A. Modeling of a controlled Irreversible Process, 
Institute Polytechnic Reports, 33-35, Kishinev, 1970.  

Lerner V. S. The optimal system, implementing the physical functional’s minimum, Institute 
Polytechnic Reports, 202-203, Kishinev, 1971.  

Lerner V. S. Adaptive model for the identification and optimization of Irreversible Physical 
Process, Institute Polytechnic Reports, 201-202, Kishinev, 1971.  

Lerner V. S. The identification of the object’s processes with superimposing phenomena on 
the basis of the physical approach, J. Radiophysics, University News, 14 (11):1664-1676, 
1971.  

Lerner V. S. Optimal control of superimposing processes on the basis of physical approach, 
Journal Radiophysics, University News, 15 (11): 1608-1626, 1971.  

Lerner V. S. Applying the variation principle to the optimal control of superimposing 
macroprocesses, Seminar on Cybernetics, 43: 2-33, Academy of Science Moldova, 1972.  

Lerner V. S., Donin A. B. Building the mathematical models of some complex systems on the 
basis of physical approach, Seminar on Cybernetics, 49:3-38, Academy of Science 
Moldova, 1972.  

Lerner V. S. Superimposing Processes in the Control Problems, Stiintza, Kishinev, 1973.  
Lerner V. S. Solution of the problem of optimal control synthesis on the basis of physical 

approach, Institute Polytechnic Reports: 34-38, Kishinev, 1973.  
Lerner V. S., Donin A. B Analysis of the channel capacity for a class of information systems, 

Coll. Information Systems, 50: 5-28, Academy of Science Moldova, 1973.  
Truchaev R. I., Lerner V. S. Dynamic Models of Decision Making Processes, Stiintza, 

Kishinev, 1974.  
Lerner V. S. To the control theory of complex systems, Institute Polytechnic Reports: 104-

108, Kishinev, 1974.  
Lerner V. S., Furer L. A. Solution of some control problems on the basis of physical approach, 

Coll. Mathematical Models of Complex Systems: 22-34, Stiintza, Kishinev, 1974.  
Lerner V. S., Donin A. B., Jenin F. B. Analysis of macroscopic characteristics of a 

controllable information network, Coll. Energetics and Automatics, 19: 25-34, Academy 
of Science Moldova, 1974.  

Donin A. B., Jenin F. B., Lerner V. S. Macroscopic analysis of information networks for 
automatic control systems, Coll. Transport Cybernetics, 5:18-23, Kiev, 1974.  

Lerner V. S. Special Chapters to the Course “Optimal and Self-Controlled Systems”, 
University Press, Kishinev, 1977.  

Lerner V. S., Donin A. B., Shargorodsky M. T., Levin M. A. Solution to the problems 
identification, optimal control, and macroscopic description on the base of physical 
approach, Coll. Information Systems: 79-88, Stiintza, Kishinev, 1978.  

Lerner V. S., Gusack P. P. The macromodels of probabilistic distributions for microstructures. 
In book: Statistical Properties of Microstructures: 63-65, Moscow, 1978.  

Lerner V. S., Gusack P. P., Precup A. V. Dynamic macromodel of a regenerated process. In 
book: Third Union Conference on Biological and Medical Cybernetics, 2:71-74, 
Moscow, 1978.  

Lerner V. S. The optimal dynamic processes, minimizing the eigenfunctional of a 
macrosystem. Coll. Thermodynamics of Irreversible Processes and Mathematical Models 
of Transferred Phenomena, Reports of Regional Conference of Irreversible 
Thermodynamics: 36-37, Krasnodar, 1979.  

 



References 

 

469

Lerner V. S. Method of joint solution of the identification and optimal control for complex 
objects. In book: The Correlation - Extremal Control Systems: 261-265, Tomsk, 1979.  

Lerner V. S. The optimal and indirect parameters, minimizing the eigenfunctional of a 
macrosystem, Coll. Controllable Electric Drive: 60-74, Stiintza, Kishinev, 1980.  

Lerner V. S. Identification of the space distributed objects, Coll. Dynamics of Systems: 
Control and Optimization : 63-72, University Press, Gorki, 1981.  

Lerner V. S. The controlled dynamic macroprocesses of Irreversible Processes and their 
optimization, Coll. Dynamic of Systems: Optimization and Adaptation: 74-107, 
University Press, Gorki, 1981.  

Lerner V. S. Some inverse problems in theory of complex systems, Differential Equations,  
      17 (6): 1498-1501, 1981.  
Lerner V. S. Dynamic Model of the Origin of Order in a Controlled Macrosystem. In book: 

Thermodynamics and Regulation of Biological Processes: 383-397, Walter de Gruyter & 
Co. Berlin-New York, 1984.  

Lerner V. S., Roychel B. Z. Dynamic model of an automatic control for a random object, in 
book: The Design Methods for Dynamic Systems with Requirements of Correctness: 42-
43, Moscow, 1986.  

Lerner V. S., Roychel B. Z. The states’ consolidation in a space distributed macromodel of a 
random object. In book: Decomposition and Coordination in Complex Systems, part. 2: 
24-25, Moscow, 1986.  

Lerner V. S. Variation principle for Entropy of Distributions in Dynamics of Macrosystems. 
In book: Applied Problems for Macrosystems Control: 32-34, Moscow, 1987.  

Lerner V. S. Macrosystemic Approach to Solution of Control Problems under Condition of 
Indeterminacy, Trans. in English by Scripta Technical, Inc., 1989 from Journal 
Automatics, 5: 43-52, Kiev, 1988.  

Lerner V. S., Roychel B. Z. Building the dynamic model of a random object and the solution 
of control problem, Coll. Dynamics of Systems: Control and Optimization: 41-58, 
University Press, Gorki, 1989.  

Lerner V. S., Roychel B. Z. Space distributed macromodel of a random object with states’ 
consolidation. In book: Applied Problems for Macrosystems Control, 12-14, Moscow, 1989.  

Lerner, V. S. Computer simulation of the dynamic macromodels of the biological populations 
having different complexities, In Coll. Modeling of Population Dynamics: 51-54, 
University Press, Gorki, 1989.  

Lerner V. S., Portougal V. M. The economic and mathematic model of optimal consolidation 
of the productions structures, Izvestia Academy of Science USSR, 5: 979-981, 1991.  

Lerner V. S., Rudnitsky V. B. Automatic devices for the system’s automatization of electrical 
furnaces, K. Moldova, Kishinev, 1967.  

Lerner V. S. Automatization of the technology processes in electrical furnaces, The USSR 
Conference on Electrotermy, Moscow, 1969.  

Lerner V. S. Macrosystemic approach for modeling and control of the special casting 
processes. International conference on applying computers in casting technology: 3-4 
FOKOMP-88, Sofia, Bolgaria, 1988.  

 





 

 

 
 
 
 
 
 
 
 
 
 

ABOUT THE AUTHOR 
 
 

 
 
 
Professor Lerner V.S. has taught at California University at Los Angeles, West Coast 

University, National University (all in the USA), and also in the Universities of the former 

USSR (currently retired).  

He also lectures and consults worldwide.  

Dr. Lerner is the author and founder of Informational Macrodynamics, which is a new 

computer-based Information Systems Science.  

He is the author of 6 scientific books and more than 200 research articles.  

Dr. V.S. Lerner is the author of 24 inventions and 4 Computer Programs in the area of 

practical applications of his scientific results.  

Prof. Lerner's biography is listed in "Who is who in America", "Who is who in the 

World". 

 
 
 





INDEX

A

ABC, 225
academic, xiv, xv
access, 94, 96, 210, 320, 400, 407
accuracy, 23, 56, 81, 177, 178, 179, 189, 197, 199,

293, 361, 395, 423
achievement, 356
adaptation, xix, 225, 285, 289, 290, 294, 295, 301,

308, 310, 377, 378, 427, 429, 439, 444
adaptive control, 289, 337, 370, 408
adjustment, 431
age, 460
aggregate demand, 441
aggregate supply, 441
aggregation, ix, 141, 336, 428, 450
aging, 399
agricultural, 441
aid, 5, 57, 87, 143, 350
algorithm, 202, 205, 210, 269, 270, 309, 320, 332,

372, 400, 422, 452
alloys, 421
alternative, 224, 313, 373
alternative behaviors, 313
amplitude, 295, 318, 319
Amsterdam, 459, 461, 465, 466
analog, xviii, xix, 55, 62, 83, 125, 128, 239, 288,

315, 382, 442
ants, 90
application, xiii, xiv, 26, 48, 92, 97, 103, 104, 107,

167, 175, 211, 226, 244, 246, 252, 383, 410, 452
argument, 18, 19
arithmetic, 20, 21
Arizona, 464
assimilation, 242, 275
assumptions, 75, 80, 139, 272, 402
asymmetry, 141, 192, 193, 241, 280, 289, 299, 306,

309, 328, 372, 402, 405, 406
asymptotic, 312
attractors, 283, 302, 306, 401, 404, 406, 408
automatization, 465, 469
autonomy, 405

averaging, 338, 393, 439, 449
axon, 403, 404
axonal, 404

B

BAC, 225
baking, 441
Banach spaces, 460
banking, 429, 444
banks, 427
barriers, 328, 402
BCA, 225
behavior, 3, 241, 245, 295, 404, 406, 408, 429
bifurcation, 129, 148, 408
binding, xii, 172, 178, 236, 240, 259, 266, 375, 401
biological processes, 373, 399, 429
biophysics, 462
blocks, 212
borrowing, 434
boson, 266
bosons, 266
Boston, 456, 460, 463, 466
bottleneck, 370
boundary conditions, 51, 343
boundary value problem, 63, 458
brain, 394, 399, 401, 402, 406, 440, 464
branching, 239, 404
Brownian motion, 121
Brownian particle, 10
buyer, 433, 434, 435, 439

C

calculus, 4
capacity, 230, 233, 278, 281, 282, 283, 284, 296,

306, 377, 401, 406, 464, 468
carbon, 412, 413
carrier, 201, 221, 223, 269, 305, 332, 402
cast, 422, 423, 465
casting, 409, 412, 420, 422, 423, 424, 425, 465, 469
Cauchy problem, 356



Index474

cell, 205, 206, 208, 210, 211, 213, 215, 216, 267,
326, 327, 399, 440, 460

cell division, 399
channels, 239, 459
chaos, 253, 279
Chapman-Kolmogorov, 428, 443
chemical kinetics, 245
chemical reactions, 244, 245, 421
classical, 211, 366, 401, 405
classical mechanics, 401
classical physics, 401
classification, 237, 250, 322, 332, 439
codes, 169, 210, 216, 224, 225, 263, 269, 296, 332,

377, 378, 392, 399, 401, 432, 433, 444, 452
coding, 210, 224, 225, 296, 300, 305, 371, 373, 402,

406, 407, 442, 452, 459, 462
codon, 258
cognition, 226, 306, 397, 398, 402, 406
cognitive, xiv, 226, 373, 374, 396, 398, 405, 408
cognitive function, 373
cognitive process, 398
cognitive system, xiv
coherence, 281, 406
collective production, 227
Columbia, 464
Columbia University, 464
commodity, 432
communication, xix, 171, 202, 210, 216, 230, 233,

235, 239, 259, 266, 269, 300, 304, 305, 309, 372,
408, 432, 433, 435, 439, 442, 443, 444

compatibility, 406
compensation, 328, 422, 440
competition, 283, 300, 306, 307, 378, 428, 432, 433
complex interactions, 335
complex systems, xiv, xviii, 103, 230, 468, 469
complexity, x, xi, xiii, xviii, xix, xx, 229, 230, 231,

232, 233, 234, 235, 236, 237, 238, 239, 242, 243,
245, 246, 249, 250, 251, 252, 254, 255, 256, 257,
258, 259, 261, 262, 263, 268, 269, 270, 299, 300,
301, 310, 314, 332, 376, 377, 388, 396, 398, 401,
402, 405, 437, 439, 443, 449, 451, 452, 458, 459,
460, 461, 462

components, ix, x, xiii, 4, 60, 61, 70, 97, 101, 130,
145, 149, 158, 169, 173, 200, 212, 244, 245, 261,
265, 267, 271, 292, 298, 302, 310, 318, 324, 325,
326, 341, 354, 357, 388, 398, 411, 412, 416, 421,
424, 428, 429, 430, 432, 433, 435, 436, 437, 439

composition, 257, 421
computation, 63, 97, 100, 121, 199, 200, 229, 258,

259, 297, 320, 322, 348, 361, 409, 420, 422, 446,
447, 448, 449, 450

computer science, xv, xix
Computer simulation, 250, 461, 469
computing, xi, xii, 5, 355, 367, 368, 448
concentrates, 421
concentration, 230, 231, 232, 234, 264, 265, 374,

375, 378, 398, 403, 410, 412, 413
concrete, xiv, 121, 126, 242, 418, 433, 440
conductance, 404

conductivity, 105, 265, 325, 326, 367, 403, 404, 409,
410, 421, 424, 425

conjugation, 240, 323
connectivity, 404, 405
consciousness, 401, 464
conservation, 108, 112, 227, 322, 460, 465
consolidation, ix, x, xiv, xviii, xix, 129, 141, 142,

147, 148, 156, 164, 176, 177, 181, 185, 188, 189,
191, 192, 247, 259, 291, 293, 300, 303, 326, 327,
328, 336, 338, 354, 356, 358, 367, 370, 371, 445,
446, 469

constraints, xii, 5, 47, 51, 57, 67, 104, 114
construction, 441
consumers, 235, 237, 432
consumption, 257, 394, 437
continuity, 73, 381
control, x, xi, xii, xiii, xiv, xv, xvii, xviii, xix, 3, 4, 5,

6, 9, 11, 13, 15, 16, 17, 42, 47, 48, 52, 55, 57, 59,
61, 62, 67, 68, 69, 71, 75, 77, 78, 79, 81, 83, 84,
86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100,
104, 105, 106, 117, 118, 119, 121, 129, 130, 131,
132, 137, 138, 141, 142, 143, 145, 147, 148, 150,
151, 152, 161, 162, 165, 166, 168, 169, 170, 171,
173, 179, 195, 196, 197, 198, 199, 200, 201, 202,
205, 208, 209, 210, 212, 213, 214, 216, 217, 220,
221, 222, 223, 224, 240, 241, 243, 244, 245, 246,
247, 248, 251, 253, 258, 262, 266, 279, 281, 283,
284, 285, 286, 287, 288, 289, 291, 292, 295, 296,
298, 303, 305, 306, 307, 308, 309, 310, 312, 313,
314, 320, 321, 322, 323, 324, 325, 327, 328, 335,
336, 337, 338, 341, 342, 344, 345, 350, 351, 352,
354, 355, 356, 357, 359, 360, 361, 365, 366, 367,
368, 369, 370, 371, 372, 398, 399, 403, 406, 407,
408, 409, 416, 420, 421, 422, 423, 424, 425, 428,
430, 431, 433, 437, 440, 443, 447, 448, 451, 456,
462, 463, 465, 466, 467, 468, 469

convergence, 312, 456, 458, 460
conversion, 402
convex, 18, 19, 20
cooling, 422, 424
coordination, 53, 56, 190, 274, 275, 284, 289, 309,

372, 404
correlation, xii, 5, 16, 63, 87, 89, 98, 117, 119, 120,

121, 137, 148, 320, 329, 340, 342, 368, 393, 404,
409, 446, 447

correlation function, 63, 87, 89, 137, 320, 368, 393,
404, 409, 446, 447

correlations, 17, 90, 93, 297, 313, 328, 337, 341,
344, 350, 357, 367, 404

counterbalance, 278, 281, 296
couples, 175, 289
coupling, 289, 307, 312, 404, 405, 407
covering, 271
creativity, 305, 398, 408
credit, 434, 438
cross-sectional, 423
CRR, 9
crystallization, 409, 410, 411, 413
crystals, 327, 411



Index 475

customers, 427, 435
Cybernetics, 455, 458, 463, 465, 466, 467, 468
cycles, 295, 300, 381, 382, 389

D

Darwinian evolution, xiii, 310
Darwinian evolutionary theory, xiii, 310
decay, 178, 253, 293, 294, 297
decision making, 398
decisions, 444
decoding, 296, 373, 374, 378, 382, 383, 385, 388,

389, 390, 391, 392, 393, 394, 395, 396, 397, 398,
400

decomposition, 110, 153, 341
decompression, 392, 393, 400
decoupling, 93, 98, 253, 279, 341, 342, 344, 350,

357
defects, 375, 380, 417
definition, xvii, 14, 15, 18, 37, 54, 66, 82, 99, 119,

132, 186, 190, 211, 230, 301, 452, 458
deflation, 439
demand, 432, 433, 435, 436, 437, 441
dendrites, 464
density, 14, 29, 81, 82, 135, 208, 209, 263, 264, 265,

285, 295, 343, 346, 347, 410, 411, 412, 413, 414,
417, 422

derivatives, 9, 10, 13, 103, 108, 123, 137, 189, 410
destruction, 394, 398, 399
determinism, 141, 148, 269, 405
deviation, 25, 26, 106, 297
differential equations, xvii, 49, 103, 126, 131, 183,

443, 457, 463
diffusion, xvii, xviii, 4, 5, 8, 12, 14, 15, 16, 17, 33,

55, 65, 81, 82, 83, 84, 89, 90, 93, 94, 101, 105,
107, 119, 120, 121, 129, 130, 148, 230, 240, 243,
246, 273, 275, 276, 277, 280, 301, 306, 309, 313,
315, 317, 320, 323, 325, 326, 327, 328, 337, 343,
345, 354, 367, 371, 404, 409, 410, 413, 416, 421,
422, 423, 452, 458, 462

diffusion process, xvii, xviii, 4, 5, 14, 15, 16, 17, 65,
82, 83, 84, 89, 94, 243, 315, 317, 320, 404, 413,
452, 458, 462

direct measure, 409, 421
disclosure, ix, xi
discontinuity, 13, 48, 52, 71, 463
discretization, 162, 176, 194, 282, 351, 353, 354,

356, 403, 405, 456
discrimination, 239
dislocations, 411
disorder, 269
dispersion, 57, 87, 89, 91, 121, 180, 240, 350, 354
displacement, 261
dissipative structure, 241, 245, 323, 460
dissipative structures, 241, 245, 323
dissipative system, 119, 456

distribution, 50, 63, 84, 99, 128, 138, 152, 155, 156,
209, 210, 215, 239, 316, 327, 344, 345, 346, 348,
411, 419, 420, 433, 437, 448, 449

divergence, 110, 118, 263, 264, 312, 345, 366, 459
diversity, x, xiii, xiv, 103, 209, 213, 227, 271, 272,

277, 280, 284, 295, 296, 297, 300, 301, 310, 335,
395, 402, 405, 406, 427, 428, 429

division, 399
DNA, 201, 224, 258, 259, 266, 309, 373, 396, 399,

459
duality, 35
duplication, xix, 210, 289, 303, 307, 309, 372
duration, 166, 226, 355, 374, 422
dynamic systems, xix, 4, 322
dynamical system, 313, 459
dynamical systems, 313, 459

E

economic policy, 428
economic problem, 428
economics, xiv, xv, xviii, 427, 428, 429, 437
eigenvector, ix, 142, 143, 144, 145, 146, 147, 148,

158, 186, 187, 194, 216, 260, 261, 262
elastic deformation, 422
elasticity, 411
electrical conductivity, 326, 421, 425
electrical power, 465
electrolysis, 425
electromagnetic, 421, 425
electron, xvii, 3, 218
electron charge, 218
electronic communications, 432, 437, 439, 444
emission, 403
employment, 428
encapsulated, 210, 376
encapsulation, 376
encoding, ix, x, 100, 101, 201, 224, 226, 259, 270,

302, 314, 322, 373, 374, 377, 378, 382, 384, 385,
386, 388, 389, 391, 392, 393, 395, 396, 397, 398,
399, 400, 404, 406, 452, 459

encryption, 399
energy, xix, 219, 220, 227, 241, 264, 313, 319, 321,

322, 330, 331, 421, 422, 441
enlargement, 232
entanglement, 332
entropy, ix, xi, xii, xiii, xvii, xix, 4, 5, 14, 15, 16, 17,

18, 20, 34, 37, 42, 62, 63, 66, 67, 80, 81, 82, 83,
84, 86, 90, 91, 92, 98, 99, 100, 104, 106, 118, 119,
137, 148, 175, 176, 196, 197, 200, 202, 211, 230,
231, 232, 240, 244, 245, 246, 251, 257, 263, 269,
271, 276, 282, 284, 285, 291, 295, 296, 298, 299,
300, 301, 311, 312, 313, 314, 316, 317, 320, 321,
322, 323, 325, 326, 331, 332, 337, 350, 354, 357,
366, 374, 376, 377, 380, 381, 382, 393, 394, 395,
396, 397, 399, 400, 401, 402, 411, 417, 428, 432,
442, 443, 451, 458, 459, 460, 465



Index476

environment, xix, 4, 214, 215, 216, 227, 236, 242,
271, 273, 281, 282, 289, 291, 295, 300, 306, 322,
372, 378, 438

equality, 14, 17, 20, 28, 29, 38, 54, 57, 65, 73, 74,
76, 77, 78, 93, 95, 108, 110, 111, 114, 115, 116,
135, 139, 154, 178, 183, 186, 187, 191, 197, 218,
233, 235, 255, 286, 287, 299, 339, 343, 344, 346,
350, 353, 356, 360, 363, 366, 380, 383, 387, 390,
391, 393, 394

equilibrium, 148, 165, 176, 220, 289, 297, 298, 300,
308, 313, 323, 330, 331, 372, 415, 431, 433, 436,
439, 440, 441, 444, 458, 460

equilibrium price, 433
erosion, 398, 399
estimator, 39
estimators, 33
evolution, x, xiii, xviii, xix, 55, 121, 226, 271, 272,

274, 276, 277, 279, 280, 281, 282, 283, 284, 285,
289, 290, 291, 295, 296, 299, 300, 301, 305, 306,
307, 308, 309, 312, 313, 314, 371, 372, 378, 399,
402, 406, 408, 416, 427, 429, 437, 444, 451, 452,
459, 460, 461

evolutionary process, 272, 275, 300, 301, 309, 314,
439

excitability, 464
excitation, 306
execution, 193
exploitation, 440
external environment, xix, 284, 405
external influences, 283
extraction, 289, 341, 344, 372, 406

F

fabric, 210, 262
family, xii, xv, 8, 14, 31, 104, 105, 107, 141, 212,

361, 366
feedback, xix, 9, 78, 83, 89, 93, 203, 223, 245, 259,

289, 298, 308, 309, 321, 367, 371, 372, 398, 439,
444, 447

feeding, 420, 422, 424
Fermi, 456, 459
fermions, 266
Feynman, x, xi, xiii, xvii, 3, 15, 83, 251, 314, 315,

337, 455, 460, 462
filters, 393, 463
filtration, 100, 281, 337, 339, 340, 354, 357, 371,

414, 421, 444
firms, 427
fitness, xiii, 275, 285, 460
flexibility, 408
flow, 10, 11, 55, 105, 118, 119, 120, 214, 230, 231,

232, 233, 234, 235, 236, 240, 264, 265, 269, 298,
323, 325, 376, 395, 410, 411, 412, 414, 415, 422,
441

flow rate, 422
fluctuations, 241, 272, 281, 292, 295, 298, 307, 313,

460

focusing, 272, 338, 427
Fourier, 39, 121, 411
Fourier transformation, 39
fractal geometry, 216
free market economy, 429
freedom, 392
fulfillment, 10, 24, 33, 37, 38, 42, 44, 51, 52, 56, 62,

63, 71, 73, 74, 76, 78, 79, 82, 85, 86, 87, 89, 90,
93, 95, 96, 97, 108, 109, 112, 113, 114, 115, 116,
123, 125, 127, 128, 130, 137, 145, 146, 159, 164,
166, 174, 175, 176, 179, 183, 188, 191, 197, 244,
260, 272, 275, 277, 316, 317, 319, 320, 338, 350,
353, 363, 369, 381, 390, 394, 415, 436

furnaces, 424, 425, 465, 466, 469

G

gas, 421
Gaussian, 260, 393
gene, 460
generalization, 229, 462
generation, 90, 202, 212, 224, 225, 227, 258, 282,

286, 294, 295, 300, 301, 307, 317, 322, 323, 326,
331, 377, 378, 394, 401, 403, 404, 405, 406, 446

genes, 271
genetic code, x, xiii, xix, 169, 201, 210, 213, 216,

218, 270, 271, 285, 296, 310, 406, 443, 452
genetic information, xiii, xviii, 101, 259, 309, 331,

378, 451
genetics, 216, 295, 401, 406, 407, 460
geometrical parameters, 250
gluons, 266
gold, 252, 441
gold standard, 441
government, 429
graduate students, xv
graph, 441, 442, 444
graphite, 420, 465
gravitation, 266
gravity, 414
grouping, ix, 164
groups, 164, 404
growth, 10, 249, 253, 273, 297, 307, 313, 378, 428,

437, 440, 465

H

Hamiltonian, xix, 3, 4, 56, 69, 71, 72, 73, 84, 86, 88,
91, 100, 102, 119, 140, 175, 179, 194, 219, 221,
244, 247, 248, 263, 277, 314, 316, 318, 319, 322,
326, 330, 366, 409, 417, 420, 421, 452, 456, 463

harm, 226, 227, 396, 397, 407
harmonics, 226
harmony, 226, 227, 396, 397, 407
healthcare, 441
heat, 64, 343, 345, 346, 410, 411, 421, 425
heat transfer, 64, 343, 345



Index 477

height, 414
helix, 182, 184, 186, 191, 203, 204, 423
high temperature, 421
high-speed, 425
hippocampal, 464
Holland, 459, 461, 465, 466
homogenous, 119, 338, 417
House, 462, 466
human, 227, 374, 394, 395, 397, 401, 402, 427, 430,

431, 432, 439, 440, 443, 444
humans, 435
hydrodynamic, 413, 414, 417, 419, 421
hydrogen, 459
hyperbolic, 210, 213, 214, 216, 218, 227, 258, 411

I

identification, ix, x, xi, xii, xiv, xviii, xix, 4, 5, 6, 55,
57, 59, 63, 67, 74, 75, 78, 87, 90, 93, 94, 96, 97,
103, 104, 107, 117, 118, 120, 121, 141, 142, 145,
210, 225, 320, 335, 336, 337, 338, 339, 340, 341,
343, 345, 348, 350, 351, 354, 355, 357, 358, 359,
361, 367, 368, 370, 371, 374, 377, 382, 389, 409,
424, 425, 446, 449, 457, 463, 468, 469

identification problem, xviii, 337, 338, 343, 357, 359
identity, 49, 113, 351
ideology, 3
images, 374, 452
implementation, xiv, xix, 52, 56, 63, 86, 97, 112,

131, 179, 194, 251, 289, 321, 323, 371, 389, 420,
422, 425, 431, 436, 442, 455

income, 437, 438, 440
incomes, 428
incompatibility, 203
incompressible, 377, 396
independence, 26, 30, 459
independent variable, 142
indication, 174, 248, 417
indicators, 229, 240, 246, 253, 262, 279, 366
indirect measure, 421, 425
individual character, 282
individual characteristics, 282
individuality, 300, 439, 460
induction, 458
industrial, xiv, 422, 424, 425, 428
industrial application, 424
industry, 424
ineffectiveness, 466
inequality, 5, 18, 19, 25, 28, 29, 31, 35, 36, 37, 38,

64, 66, 67, 220, 370, 400, 458
infinite, 139, 179, 291
inflation, 439
information exchange, 282, 428, 430, 432, 441, 444
information processing, 373, 374, 394, 399, 401, 402
information production, 196, 282, 430, 431, 432
information retrieval, 397
Information System, xv, 427, 429, 456, 457, 459,

460, 462, 466, 468, 471

information systems, xi, 104, 267, 282, 332, 427,
452, 458, 466, 468

Information Theory, 458, 463, 466
inherited, 307, 378
inhibitory, 464
initial state, 66, 357, 359
initiation, xiv, 299, 306, 398, 402
insight, 272
instabilities, 148, 241, 404, 407
instability, 148, 241, 242, 245, 279, 284, 293, 311,

323, 405
instruments, 10, 11
insurance, 441
integrated unit, 397
integration, 60, 230, 293, 295, 332, 373, 401, 429,

441, 444
intellect, 227
intelligence, xix, 266, 322, 373, 398, 453
intensity, xiii, 209, 230, 261, 269, 402, 405
interaction, xix, 174, 218, 220, 231, 233, 242, 245,

266, 282, 305, 320, 331, 332, 391, 398, 403, 405,
421, 427, 429, 430, 443, 464

interactions, x, 103, 104, 128, 209, 210, 212, 213,
214, 227, 229, 230, 241, 266, 272, 281, 285, 289,
296, 309, 320, 323, 326, 328, 331, 335, 372, 374,
379, 382, 388, 396, 397, 402, 407, 416, 421, 425,
427, 428, 429, 432, 439, 443, 444

interdisciplinary, xiv, xv, xvii, 336
interference, 318, 319, 320
interpretation, 11, 366
interval, ix, 17, 66, 78, 95, 97, 99, 100, 101, 147,

148, 165, 166, 169, 170, 173, 174, 175, 176, 179,
180, 181, 182, 186, 187, 188, 190, 196, 197, 198,
199, 200, 205, 209, 211, 212, 220, 223, 234, 242,
243, 244, 246, 247, 248, 249, 251, 255, 256, 257,
260, 268, 273, 274, 276, 282, 285, 291, 297, 298,
300, 301, 315, 320, 322, 327, 329, 336, 352, 354,
355, 357, 358, 359, 361, 362, 363, 365, 366, 368,
369, 370, 378, 394, 399, 420, 422, 423, 431, 432,
433, 443, 446, 447

intrinsic, xix, 194, 285, 300, 389, 396, 397, 406, 419,
421

invariants, ix, x, xiii, xix, 6, 80, 95, 96, 97, 100, 104,
142, 146, 165, 168, 169, 170, 171, 172, 175, 176,
179, 181, 187, 200, 202, 205, 208, 209, 211, 212,
217, 247, 248, 249, 250, 251, 255, 256, 257, 259,
269, 279, 281, 282, 284, 285, 290, 294, 295, 296,
307, 314, 320, 321, 332, 336, 376, 378, 382, 392,
439, 447, 448, 449, 451, 452

inventions, 471
inversion, 158
investment, 438, 439
investors, 427, 438
ions, 245, 253, 394, 432
iron, 420, 422, 423, 424, 465
Israel, 460, 465
iteration, 337



Index478

J

Jung, 457

K

Keynesian, 439
kinematics, 417
kinetic instability, 246
kinetics, 104, 119, 129, 130, 230, 240, 244, 245, 246,

313, 323, 327, 328, 416, 459
Kolmogorov, x, xi, xiii, 31, 50, 84, 203, 269, 270,

311, 315, 316, 366, 376, 396, 409, 451, 452, 456,
458, 461, 463, 464, 465

Kolmogorov complexity, x

L

labeling, 397, 400
labor, 427, 430, 440, 444
Lagrange multipliers, 48
Lagrangian, xviii, 20, 48, 50, 54, 55, 56, 59, 85, 106,

107, 109, 112, 118, 120, 130, 135, 136, 137, 326,
457, 462

LAN, 432
language, xvii, xix, 104, 202, 210, 224, 229, 239,

266, 267, 272, 296, 300, 305, 309, 328, 336, 372,
373, 394, 395, 396, 397, 399, 406, 428, 442, 452

large-scale, 446
law, x, xiii, 9, 103, 130, 210, 226, 232, 251, 264,

271, 272, 275, 291, 295, 296, 301, 310, 322, 391,
408, 411, 412, 420, 422, 444, 452, 455, 460, 461

laws, xix, 104, 107, 108, 112, 138, 227, 307, 405,
419, 451

lead, 5, 19, 42, 59, 66, 70, 82, 118, 174, 219, 265,
300, 302, 315, 328, 349, 383, 441

learning, 404, 438
lifetime, 299, 300
limitation, 19, 37, 83, 282, 295, 296, 317, 384, 400,

452
limitations, xii, 10, 24, 33, 39, 56, 80, 89, 104, 128,

203, 251, 252, 258, 277, 299, 300, 301, 373, 374,
385, 392, 429, 433, 451

linear, 8, 10, 26, 51, 73, 103, 131, 153, 186, 202,
204, 215, 222, 223, 269, 292, 313, 323, 327, 339,
341, 389, 411, 412, 413, 422, 463

links, 269
liquid phase, 417
loans, 434, 438
local order, 172
localization, 405, 446
location, 183, 201, 202, 205, 206, 208, 209, 210,

211, 216, 220, 259, 262, 267, 268, 297, 302, 303,
394, 405, 407, 430, 440

London, 455, 458, 462, 464, 466
long-term, 397, 406

long-term memory, 397, 406
Los Angeles, xv, 466, 471
love, xv
lover, 137
LTD, 455
Lyapunov, 311, 312, 314, 366, 442
Lyapunov function, 442

M

machinery, 464
machines, 430, 444
macroeconomic, xiv
macroeconomics, 429, 466
macrosystem, 79, 93, 190, 277, 281, 291, 293, 294,

296, 298, 300, 307, 327, 332, 351, 404, 468, 469
magnetic, 194
magnetic field, 194
management, 427, 428, 437, 444
manifold, 174, 216
manufacturing, 425
mapping, 321, 405, 446
market, xiv, 427, 428, 429, 430, 432, 433, 434, 435,

437, 438, 439, 440, 441, 442, 444, 467
market economy, 444
market period, 444
market structure, 442
markets, 428, 438, 441, 444
Markov, xvii, xviii, xix, 3, 4, 5, 15, 27, 67, 82, 83,

93, 99, 121, 128, 337, 428, 441, 442, 455, 456,
458

Markov model, 441, 442
Markov process, 3, 4, 5, 67, 99, 428, 456
Markovian, 8, 105, 121, 357, 441, 443, 452
Marx, 440, 466
mass transfer, 410, 412
mathematical biology, 272
mathematical logic, 396
mathematical methods, 467
mathematics, xv, 3, 463, 464
Matrices, 460
matrix, 15, 16, 49, 55, 56, 57, 60, 62, 63, 69, 73, 74,

76, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102,
107, 112, 115, 117, 118, 119, 120, 122, 125, 128,
142, 143, 144, 145, 146, 147, 148, 149, 150, 151,
152, 157, 158, 160, 163, 164, 174, 182, 185, 186,
194, 214, 240, 243, 245, 261, 318, 323, 326, 327,
338, 339, 340, 342, 345, 350, 351, 352, 353, 354,
355, 356, 357, 358, 359, 360, 361, 366, 368, 371,
397, 415, 420, 437, 446

MCS, 250
meanings, 446
measurement, 3, 4, 63, 239, 259, 320, 335, 409, 421,

425, 444, 462
measures, ix, xiii, 8, 15, 18, 29, 34, 100, 176, 220,

229, 230, 232, 235, 236, 237, 238, 242, 243, 250,
257, 259, 269, 277, 280, 299, 313, 314, 322, 331,
388, 399, 424, 431, 432, 443, 452, 459



Index 479

melting, 421, 424, 465, 466
memorizing, 191, 303, 306, 354, 397, 398
memory, 322, 397, 401, 406, 408
memory formation, 401, 408
messages, 266, 406
metals, 421, 465
metric, 7, 81, 141, 206, 260, 263, 267, 269, 322, 402,

462
microstructures, 468
microwave, 425
military, 429
minors, 122
MIT, 464
modeling, ix, x, xi, xii, xiv, xv, xvii, xviii, xix, xx, 4,

5, 103, 104, 142, 241, 246, 257, 323, 325, 335,
354, 370, 373, 374, 378, 409, 410, 420, 424, 428,
429, 432, 443, 444, 453, 463, 464, 465, 469

models, xi, xii, xiv, 5, 7, 13, 81, 103, 104, 121, 128,
141, 194, 210, 216, 226, 227, 244, 250, 260, 272,
275, 282, 300, 302, 303, 313, 328, 331, 335, 336,
378, 382, 408, 409, 427, 428, 429, 432, 433, 443,
444, 452, 467, 468

modernization, 431, 435, 437
modules, 186, 449
mold, 424
Moldova, 467, 468, 469
molecules, 241
momentum, 220
money, 427, 429, 439
Moscow, 456, 457, 458, 459, 460, 461, 462, 463,

464, 465, 466, 467, 468, 469
motion, ix, 78, 107, 121, 164, 181, 187, 190, 240,

260, 336, 354, 357, 371, 396, 401
motivation, 226, 433, 436
movement, ix, xiii, xvii, xix, 3, 67, 86, 93, 115, 116,

117, 133, 138, 141, 142, 144, 145, 147, 152, 156,
160, 173, 177, 182, 186, 187, 190, 191, 194, 204,
206, 211, 215, 216, 233, 238, 259, 260, 290, 291,
293, 297, 298, 303, 311, 312, 313, 320, 326, 337,
345, 394, 395, 396, 405, 412, 416, 417, 421, 422,
445, 446, 449

multidimensional, ix, 172, 240, 272, 289, 336
multiple nodes, 164, 404
multiplication, 18, 109, 194, 220, 248, 257, 264, 294,

299, 392, 431, 432
multiplier, 28, 34, 205, 431
music, 226
mutation, xix, 295, 444
mutations, 225, 279, 281, 282, 283, 284, 285, 298,

299, 307, 309, 377, 378, 406

N

Nash, 436
natural, xii, xiii, 3, 4, 32, 78, 104, 105, 107, 130,

134, 138, 176, 268, 300, 301, 328, 389, 396, 397,
399, 401

network, ix, xiii, xiv, xviii, xix, xx, 101, 142, 164,
177, 201, 202, 204, 216, 238, 239, 251, 252, 272,
289, 305, 306, 308, 336, 338, 367, 371, 373, 374,
375, 392, 394, 401, 404, 405, 406, 407, 408, 427,
429, 443, 451, 468

neurobiological, 465
neurodynamics, 401, 402, 405, 407
neurons, 404, 406, 407
neuroscience, 403, 407, 408, 464
New York, 455, 456, 457, 458, 459, 460, 461, 462,

463, 464, 465, 466, 467
Newton, 411, 417
nodes, x, xiii, xviii, 164, 167, 169, 177, 180, 182,

191, 200, 201, 202, 204, 205, 206, 208, 209, 212,
216, 226, 227, 233, 238, 256, 259, 289, 302, 304,
305, 306, 307, 309, 328, 331, 370, 372, 374, 375,
376, 377, 379, 380, 382, 388, 397, 403, 404, 405,
406, 445, 451

noise, 81, 84, 281, 335, 405, 408
nonequilibrium, 119, 242, 272, 289, 308, 372, 405,

411
nonlinear, 55, 103, 168, 240, 292, 305, 306, 312,

313, 323, 326, 340, 341, 344, 354, 357, 358, 367,
370, 381, 383, 388, 389, 459, 463

nonlinear dynamics, 312
nonlocality, 464
normal, 123, 128, 139, 146, 147, 184, 189
novelty, 306, 307, 400
nucleotides, 258
numerical computations, 211, 431

O

observations, ix, xi, 259, 270, 357
occupational, 428
one dimension, 268
online, 461, 464
operator, ix, xii, xix, 4, 5, 8, 31, 32, 33, 37, 52, 55,

57, 63, 73, 74, 78, 79, 89, 90, 91, 92, 94, 95, 96,
103, 104, 117, 119, 121, 164, 173, 212, 223, 243,
246, 251, 261, 273, 274, 277, 284, 299, 307, 312,
313, 314, 317, 320, 323, 324, 325, 326, 328, 330,
336, 337, 338, 339, 340, 341, 342, 343, 344, 345,
346, 347, 348, 350, 354, 355, 357, 358, 367, 371,
374, 378, 409, 419, 447, 463

Operators, 345
opposition, 269
optimization, 104, 119, 314, 335, 337, 354, 356, 409,

419, 421, 422, 424, 425, 465, 466, 467, 468, 469
ordinary differential equations, 116, 407
organ, xviii, 180, 205, 338, 441, 444
organism, 271, 399
organization, 164, 168, 206, 210, 216, 239, 289, 294,

296, 299, 300, 308, 371, 378, 392, 404, 406, 408,
427, 428, 429, 430, 438, 439, 440, 444, 466

organizations, 428, 429
orientation, 205
orthogonality, 184



Index480

oscillations, 129, 245, 292, 293, 305, 306, 457, 459
oscillatory activity, 406

P

paper, 402, 466
parameter, 105, 106, 108, 117, 145, 168, 176, 180,

183, 192, 193, 200, 205, 218, 247, 248, 249, 257,
266, 267, 279, 282, 284, 292, 293, 294, 297, 299,
300, 313, 329, 332, 340, 366, 376, 379, 391, 392,
418, 424, 439, 440, 449

parents, 294, 295, 307
Pareto, 437
PART, 1, 333
partial differential equations, 463
particles, 10, 266, 412
partition, 311
perception, 226, 397
performance, 93, 104, 285, 336, 337, 395, 409, 421,

446
periodic, 407
periodicity, 393, 400
permittivity, 218
perturbation, 281
perturbations, xvii, 3, 13, 272, 278, 281, 284, 288,

296, 297, 300, 303, 304, 307, 444
phase space, 210, 261, 299
phase transformation, 241, 327, 413, 422, 461
phase transitions, 411
physical properties, 251
physical sciences, 459, 461
physics, 3, 218, 229, 251, 323, 335, 343, 354, 401,

452, 458, 463, 464
Plank constant, 218, 316
Poisson, 455
polar coordinates, 448
polymers, 328
poor, 309
population, 275, 276, 277, 280, 281, 295, 309, 407,

460
Portugal, 467
positive feedback, 298
power, 264, 265, 269, 299, 424, 465
prediction, 295, 408, 463, 466
preference, 306
pressure, 192, 330, 410, 414, 417, 419, 420, 421, 462
prices, 429, 433
probability, ix, xi, xvii, xix, 5, 7, 8, 10, 14, 15, 17,

23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 39,
42, 44, 45, 65, 73, 81, 82, 83, 84, 86, 93, 99, 105,
117, 121, 135, 241, 270, 314, 315, 317, 318, 319,
320, 331, 336, 337, 338, 343, 346, 347, 348, 354,
359, 428, 452

probability density function, 338
probability distribution, 14, 99, 348, 359, 428
probability theory, xi
producers, 427, 432, 442, 443

production, 62, 231, 232, 244, 245, 251, 252, 263,
282, 284, 291, 299, 301, 311, 312, 314, 321, 322,
325, 326, 381, 399, 402, 407, 417, 427, 428, 429,
430, 431, 434, 435, 440, 441, 442, 443, 444

productivity, 421, 437
profit, 437, 438, 439, 444
profits, 435, 439
prognosis, x, xiii, 55, 79, 93, 271, 272, 295, 301,

310, 351, 416, 424, 442
program, 202, 203, 205, 210, 269, 296, 309, 332,

372, 383, 419, 450
programming, 79, 93, 336, 351, 370, 395
propagation, 305, 306, 403
property, 8, 27, 105, 121, 210, 321
proportionality, 256
proposition, 31
public, 429
punctuated equilibrium, 272

Q

quanta, 220
quantum, xvii, 3, 90, 221, 317, 318, 320, 337, 401,

402, 451
quantum mechanics, xvii, 3, 337, 402
quantum state, 320
quarks, 266

R

radio, 332
radius, 146, 182, 183, 185, 194, 204, 205, 224, 249,

267, 417, 448
random, ix, x, xi, xii, xvii, xviii, xix, xx, 3, 4, 5, 7, 8,

13, 14, 17, 29, 45, 47, 55, 63, 66, 67, 76, 80, 83,
84, 90, 92, 94, 99, 100, 102, 103, 104, 105, 106,
107, 119, 120, 121, 128, 129, 131, 163, 211, 212,
270, 272, 274, 275, 281, 282, 283, 295, 303, 304,
307, 309, 310, 311, 313, 314, 315, 316, 317, 320,
329, 335, 336, 337, 338, 339, 342, 343, 355, 357,
371, 391, 392, 393, 396, 397, 399, 400, 428, 429,
440, 441, 443, 447, 451, 452, 456, 457, 458, 463,
469

randomness, ix, xviii, 54, 90, 269, 273, 274, 280,
281, 289, 295, 309, 335, 372, 377, 393, 396, 405,
451, 452

range, 200, 227, 249, 258, 332, 389, 400, 431
raw material, 424
raw materials, 424
reading, xv, 392, 393
real time, 101, 148, 322, 395, 420
reality, 222, 321, 452
reception, 398
recognition, 306, 328, 398
reconstruction, 210, 389, 395
reduction, 354, 419, 422
redundancy, 284, 377



Index 481

reflection, 32, 122, 193, 226, 305, 321, 402
regional, 438, 441
regular, xii, 5, 10, 11, 15, 31, 67, 79, 90, 94, 105,

126, 129, 131, 156, 196, 197, 200, 201, 202, 203,
208, 209, 217, 221, 223, 247, 250, 253, 259, 279,
286, 302, 303, 305, 350, 371, 405, 406, 421

regulation, 441
regulators, 424
relationship, 405, 435, 446
relationships, 15, 405
replication, 307
reproduction, 295, 296, 300, 301, 305, 399
research, xi, xiv, xv, 401, 408, 440, 471
researchers, xv
resistance, 265, 266, 285, 402, 466
returns, 435
rhythm, 226
rhythms, 226, 404, 407
RNA, 399, 464
robustness, 279, 281, 288, 289, 296, 297, 300, 308,

309, 371, 406, 407, 408
rotations, 144, 145, 147, 205, 326, 354, 357
Royal Society, 461
Russian, xiv, 467

S

sales, 439
satisfaction, 86, 113, 226, 433
scalar, 109, 194, 205, 206, 208, 212, 261, 407, 415
schema, 254, 302, 304, 308, 378, 448
schemas, 282
Schrödinger equation, 3, 317, 318
scientists, xv, 401
search, 174, 306
searching, xv, 373
second Fick's law, 412
seeds, 266
segregation, 420
selecting, 74, 96, 168, 211, 240, 281, 303, 317, 318,

357, 371, 398, 446
self-assembling, 306
self-control, 79, 93, 179, 274, 275, 285, 288, 289,

294, 309, 351, 372, 406, 427
self-organization, x, xiii, 246, 271, 284, 298, 299,

300, 301, 310, 313, 328, 405, 406, 429, 437, 444
self-organizing, 250, 295, 299, 300, 306, 307
self-regulation, 405
self-reproduction, 301
semantics, 396, 397
sentences, 396, 397
separation, 311, 312
series, 110, 153, 253, 374, 395, 423
services, 439, 441
set theory, 35
shape, 204, 211, 213, 216, 321, 328, 444
Shell, 461
shortage, 436

short-term, 397, 406
short-term memory, 397, 406
sign, 62, 78, 88, 98, 129, 138, 148, 149, 170, 171,

222, 274, 286, 299, 303, 314, 349, 357, 384, 385,
433

signals, 427
signs, 150, 189, 191, 222, 235, 305, 306, 380, 381,

427
similarity, 250, 424
simulation, xv, 165, 176, 250, 272, 299, 300, 301,

332, 420, 423, 424, 425, 446, 461, 469
Singapore, 455, 461
singular, xiii, 104, 121, 122, 123, 125, 128, 129, 130,

131, 135, 137, 138, 168, 183, 306, 361, 365
singularities, 104, 121, 122, 128, 129, 148, 269, 331,

404, 407, 416, 443
skills, 430
skin, 422
SMR, 438, 441
social relations, 427
social systems, 428, 440
software, x, xviii, 194, 307, 322, 332, 423, 443, 444,

448, 449, 450, 452, 453
solid phase, 411, 412, 417
solidification, 409, 414, 415, 416, 420, 422, 423, 465
solidification processes, 414, 422
solid-state, 107
solutions, xii, xiv, xv, xvii, xix, 4, 5, 7, 32, 39, 42,

43, 53, 55, 60, 61, 63, 81, 84, 89, 90, 92, 96, 101,
102, 104, 126, 130, 131, 138, 149, 153, 159, 162,
165, 175, 222, 246, 274, 287, 291, 317, 318, 319,
320, 325, 336, 337, 343, 345, 348, 349, 350, 352,
353, 359, 361, 367, 384, 385, 419, 433, 435, 450,
451, 460

sounds, 226, 396, 408, 429
Soviet Union, xv
space-time, xii, 104, 106, 142, 156, 181, 204, 209,

210, 213, 252, 297, 402, 416, 445, 449
spatial, 107, 122, 145, 147, 148, 170, 182, 203, 205,

206, 209, 212, 223, 224, 285, 298, 303, 374, 378,
404, 405, 406, 408, 423, 433, 446

spatial location, 408
spatiotemporal, 407
spectrum, ix, 142, 164, 166, 167, 170, 171, 172, 173,

174, 175, 176, 177, 178, 180, 181, 201, 202, 203,
209, 212, 226, 227, 246, 251, 275, 277, 280, 281,
282, 283, 284, 285, 289, 292, 293, 297, 299, 301,
308, 371, 432, 434, 446, 449

speed, x, xiii, 10, 55, 115, 117, 145, 147, 151, 152,
186, 190, 192, 215, 218, 222, 223, 230, 231, 232,
233, 234, 237, 246, 249, 260, 261, 262, 263, 264,
265, 268, 269, 271, 275, 276, 277, 280, 282, 291,
301, 309, 310, 314, 354, 366, 367, 411, 412, 413,
416, 421, 422, 423, 449

speed of light, 218, 264, 265, 269
stability, ix, x, xiii, xix, 54, 129, 148, 173, 174, 223,

227, 241, 271, 277, 280, 281, 284, 289, 295, 296,
300, 306, 308, 310, 311, 312, 314, 332, 371, 388,
405, 439, 440, 442, 444, 467



Index482

stages, 313
state control, 303
statistical mechanics, 3, 313
statistics, 449, 458
steady state, 312
stimulus, 401, 402, 404, 407
STM, 406
stochastic, xi, xii, xvii, xviii, 3, 4, 5, 7, 10, 11, 12,

15, 31, 33, 37, 81, 82, 101, 103, 105, 106, 129,
156, 240, 241, 242, 269, 272, 273, 277, 281, 282,
307, 313, 320, 335, 337, 338, 354, 357, 358, 374,
404, 405, 407, 408, 428, 433, 443, 451, 456, 457,
458, 461, 462, 463, 466

stochastic processes, 3, 443
stock, 428, 434, 437, 438, 439, 440, 441, 444
stock markets, 428
storage, 397, 398, 401, 406
strains, 410
strategies, 180, 436
strength, 192, 193, 208, 209, 226, 408
structuring, 210, 259, 429
students, xv
subdomains, 132
substances, 272, 296, 401
substitutes, 427
substitution, 36, 60, 70, 75, 76, 85, 151, 161, 178,

267, 287, 339, 341, 344, 383, 388
superimposition, xiii, 148, 220, 221, 241, 323, 326,

328, 331, 416, 425
superposition, 26, 51, 129, 240, 292, 323, 327, 378,

461
suppliers, 435, 436
supply, 256, 282, 432, 433, 435, 436, 437, 439, 441,

444
surplus, 217, 275, 298, 394, 431, 435, 440
survival, 282, 300
surviving, 306, 439
switching, 13, 17, 100, 179, 180, 186, 188, 190, 205,

208, 209, 210, 212, 213, 214, 216, 221, 223, 240,
291, 292, 296, 355, 356, 359, 365, 422

symbolic, 322, 459, 462
symbols, 34, 210, 225, 258, 259, 266, 305, 322, 374,

375, 376, 377, 379, 386, 388, 389, 390, 391, 392,
393, 394, 395, 396, 397, 400

symmetry, 60, 141, 146, 148, 193, 284, 323, 327,
328, 338, 340, 343, 346, 347, 349, 405, 406

symptom, 399
synapses, 464
synchronization, 227, 258, 306, 404, 405, 406, 407,

408, 457
synchronous, 306
syntax, 395
synthesis, x, xii, xviii, 4, 5, 6, 47, 67, 79, 93, 118,

130, 131, 142, 323, 351, 371, 373, 374, 375, 378,
388, 397, 398, 424, 430, 431, 432, 439, 440, 443,
460, 463, 464, 467, 468

systems, ix, x, xi, xiv, xvii, xviii, xix, 3, 65, 78, 103,
104, 107, 109, 119, 127, 137, 144, 147, 148, 163,
188, 193, 205, 226, 227, 230, 250, 253, 267, 282,

289, 300, 309, 313, 320, 332, 335, 337, 366, 372,
389, 399, 404, 405, 424, 425, 427, 428, 429, 439,
440, 441, 443, 444, 446, 452, 455, 456, 458, 461,
462, 463, 464, 465, 466, 467, 468, 469

T

tax policy, 442, 443
technology, xiv, xviii, 142, 409, 412, 420, 421, 424,

425, 453, 467, 469
telomerase, 399, 464
telomere, 464
temperature, xix, 329, 330, 331, 410, 411, 412, 413,

421, 422, 423
temperature gradient, 411, 412
temporal, 170, 209, 313, 405, 406
tension, 417
theory, xi, xiv, xv, xvii, xix, 3, 4, 84, 105, 107, 119,

211, 229, 259, 267, 271, 272, 322, 335, 336, 337,
401, 411, 414, 427, 428, 429, 452, 453, 456, 458,
461, 462, 463, 464, 465, 466, 468, 469

thermodynamic, 119, 232, 239, 241, 251, 259, 313,
328, 329, 330, 331, 410, 414, 415, 425

thermodynamic function, 330
thermodynamics, xviii, 4, 104, 119, 121, 251, 313,

323, 336, 354, 405, 461
third order, 157, 355
three-dimensional, 142, 145, 146, 147, 152, 182,

193, 204, 212, 345, 368, 403, 407
three-dimensional space, 142
threshold, 217, 218, 279, 288, 297, 300, 304, 305,

306, 403, 406, 408, 439
thresholds, 297, 406
time, ix, x, xiii, xix, 7, 9, 10, 17, 18, 63, 78, 90, 95,

96, 98, 99, 101, 103, 108, 121, 122, 138, 139, 141,
148, 160, 165, 168, 169, 170, 171, 172, 173, 174,
176, 177, 179, 181, 195, 196, 198, 199, 200, 210,
211, 212, 220, 222, 223, 226, 234, 243, 244, 245,
246, 247, 248, 249, 251, 253, 255, 256, 259, 264,
268, 269, 273, 274, 276, 279, 280, 286, 291, 292,
293, 295, 296, 297, 300, 301, 302, 305, 306, 309,
310, 311, 313, 317, 320, 322, 329, 338, 341, 344,
345, 351, 353, 354, 356, 357, 358, 359, 368, 370,
374, 378, 391, 393, 394, 395, 398, 399, 401, 402,
404, 406, 407, 408, 415, 417, 419, 420, 422, 428,
431, 432, 433, 435, 439, 440, 442, 443, 446, 447,
449, 459, 461

Timmer, 457, 463
tolerance, 271
topological, 262, 322, 402
topological structures, 262, 402
topology, 402, 404
trade, 441
trading, 429
trajectory, xiii, 24, 94, 128, 142, 172, 182, 183, 186,

203, 206, 210, 216, 221, 222, 223, 267, 275, 314,
315, 318, 337, 356, 416, 445

trans, 469



Index 483

transactions, 412, 442
transfer, 62, 64, 103, 182, 235, 265, 296, 343, 345,

346, 356, 381, 410, 413, 421, 424, 435
transformation, 14, 15, 26, 31, 34, 35, 39, 74, 81,

102, 104, 107, 108, 109, 110, 113, 114, 115, 141,
143, 144, 145, 147, 148, 149, 151, 155, 160, 161,
162, 183, 193, 203, 209, 212, 240, 241, 242, 245,
246, 262, 269, 295, 296, 320, 321, 322, 326, 327,
345, 351, 354, 356, 357, 373, 375, 383, 397, 399,
402, 405, 449, 452, 461, 464

transformation matrix, 115
transformations, xii, 37, 51, 73, 104, 107, 108, 144,

145, 147, 150, 158, 181, 193, 242, 243, 246, 262,
311, 322, 327, 332, 362, 368, 381, 388, 392, 410,
411, 421, 428, 446, 449, 462

transition, 14, 232, 234, 236, 244, 269, 313
transitions, 230, 234, 237, 244, 245, 262, 311, 460,

461
translation, 327, 374, 378, 397
transmission, 234, 239, 268, 305, 403, 408, 439, 443,

444
transportation, 441
trend, 279, 284, 295, 300
triggers, 403
two-dimensional, 148

U

uncertainty, xviii, 4, 106, 142, 156, 178, 191, 203,
208, 210, 211, 216, 218, 220, 251, 263, 265, 269,
279, 282, 284, 290, 297, 300, 314, 322, 331, 335,
336, 337, 395, 396, 399, 402, 428, 437, 443, 444,
448, 452

uniform, 342, 420
universality, 229, 239
USSR, 461, 463, 465, 467, 469, 471
uti, 447

V

validity, 71, 77

values, xix, 8, 10, 14, 17, 18, 26, 39, 68, 78, 93, 98,
101, 139, 142, 146, 155, 167, 176, 178, 179, 185,
189, 190, 191, 197, 199, 206, 209, 225, 226, 238,
242, 245, 249, 252, 264, 284, 291, 297, 298, 299,
300, 301, 314, 318, 327, 332, 337, 366, 367, 377,
382, 392, 396, 427, 430, 435, 436, 437, 441

variable, 29, 110, 132, 220, 339, 346, 415, 417, 445,
461

variables, 7, 8, 9, 10, 50, 61, 76, 83, 84, 105, 118,
122, 131, 164, 181, 202, 219, 220, 221, 249, 316,
353, 354, 355, 357, 381, 410, 414, 415, 416, 417,
423, 445, 446, 447, 449, 461

variation, ix, xi, xii, xiii, xvii, xviii, 3, 4, 5, 15, 45,
47, 48, 50, 53, 56, 62, 73, 82, 83, 84, 85, 86, 88,
97, 99, 100, 102, 104, 106, 110, 112, 113, 114,
120, 130, 138, 141, 164, 167, 174, 175, 227, 230,
240, 246, 247, 269, 271, 272, 277, 280, 283, 316,
317, 322, 325, 326, 331, 337, 392, 401, 407, 408,
411, 415, 422, 443, 444, 451, 452, 457, 463, 468

vector, 7, 9, 10, 11, 13, 16, 50, 52, 53, 54, 55, 69, 71,
79, 84, 86, 87, 94, 101, 105, 107, 108, 117, 118,
142, 144, 145, 148, 150, 151, 152, 162, 182, 183,
185, 186, 188, 194, 204, 206, 212, 224, 240, 260,
261, 262, 263, 267, 268, 273, 323, 338, 341, 342,
354, 355, 357, 358, 359, 367, 368, 414

velocity, 114, 306, 417, 419, 420, 422
virtual reality, 452
viscosity, 414
visible, 227

W

WAN, 442
water, 422, 423
web, 297
windows, xii, xviii, 5, 92, 104, 371, 405, 451
Wisconsin, 463
withdrawal, 422
working hours, 440
working memory, 406
writing, 76, 160, 352


	INFORMATION PATH FUNCTIONAL AND INFORMATIONAL MACRODYNAMICS

	CONTENTS
	ABSTRACT
	PREFACE
	ACKNOWLEDGMENTS

	INTRODUCTION
	PART 1.THE INFORMATION PATH FUNCTIONAL’S FOUNDATION

	INTRODUCTION
	THE INITIAL MATHEMATICAL MODELS

	1.1.1. Model of Microlevel Process
	1.1.2. Model of the Macrolevel Process
	1.1.3. The Feedback Equation-Control Law
	1.1.4. Model of Programmable Trajectories (as a Task) atMicrolevel
	1.1.5. Model of Programmable Trajectories (as a Task) at theMacrolevel
	1.1.6. The Equations in Deviations
	1.1.7. Model of Disturbances
	1.1.8. The Microlevel Process’ Functional
	1.1.9. The Jensen's Inequality for the Entropy Functional

	DYNAMIC APPROXIMATION OF A RANDOM INFORMATION FUNCTIONAL AND THE PATH FUNCTIONAL

	1.2.1. The Extremal Principle and the Problem Formulation
	1.2.2. The Problem Solution. Information Path Functional
	1.2.3. The Estimation of an Accuracy of the Probability’sApproximation

	THE VARIATION PROBLEM FOR THE INFORMATION PATH FUNCTIONAL AND ITS SOLUTION

	1.3.1. The Problem Formulation
	1.3.2. Solution to the Variation Problem
	1.3.3. The Minimum Condition for the Microlevel Functional
	1.3.4. The Optimal Control Synthesis
	1.3.5. A Summary of the Information Path Functional Approach.The IPF invariants

	THE INFORMATION SPACE DISTRIBUTED MACRO MODELS DEVELOPED BY THE SOLUTIONS OF THE IPF VARIATION PROBLEM

	1.4.1. Introduction
	1.4.2. The Variation Problem for Space Distributed Macromodel
	1.4.3. The Invariant Conditions at the Transformationof the Space Coordinates
	1.4.4. The Parameters of the Space Transformation and theDistributed Macromodels
	1.4.5. The IPF Macromodel’s Singular Points and the SingularTrajectories
	1.4.6. The IPF Natural Variation Problem, Singular Trajectories,and The Field’s Invariants for the IPF

	THE COOPERATIVE INFORMATION MACROMODELS AND INFORMATION NETWORK

	1.5.1. Introduction
	1.5.2. The Time-Space Movement Toward the Macromodel'sCooperation
	1.5.3. The Consolidation and Aggregation of the Model Processes.Forming an Information Network (IN)
	1.5.4. The IN Dynamic Structure
	1.5.5. Geometrical Structure of the Optimal Space DistributedCooperative Macromodel (OPMC).The IN Geometrical Structure

	THE IMD MODEL’S PHENOMENA AND INFORMATION CODE

	1.6.1. The Model Time Course and the Evaluationof the Information Contributions into IN.The Triplet Genetic Code
	1.6.2. The Model Information Geometry (IG), Its Specific,and the Structure
	1.6.3. The Model Uncertainty Zone and Its Evaluation
	1.6.4. Creation of the IN geometry and a Genetic Code of theInformation Cellular Geometry
	1.6.5. The Minimal Admissible Uncertainty and Its Connectionto Physics
	1.6.6. Information Structure of the model Double Spiral’s (DSS)Control Mechanism
	1.6.7. Examples of the DSS codes
	1.6.8. A System’s Harmony, Regularities, and the VP

	THE MACRODYNAMIC AND COOPERATIVE INFORMATION COMPLEXITIES

	1.7.1. Introduction
	1.7.2. The Notion of Interactive and Cooperative Complexitiesand Their Information Measures
	1.7.3. The Information Indicator of a Cooperative Complexity
	1.7.4. Illustration of Arising of the Information CooperativeComplexity at Discrete Points of Applied Controls
	1.7.5. The Complexity Invariant Measure in a CooperativeDynamic Process
	1.7.6. The IN Cooperative Mechanism with the Complexity Measure
	1.7.7. The Equations of the Spatial Information CooperativeDynamics. Information Attraction and Complexity
	1.7.8. Connection to Kolmogorov’s Complexity

	THE EVOLUTIONARY DYNAMICS AND THE INFORMATION LAW OF EVOLUTION

	1.8.1. Introduction
	1.8.2. The Equations Regularities and the Evolutionary Law
	1.8.3. A Mechanism of an Enhancement of the AcceptableMutations
	1.8.4. The Conditions of the Model’s Self-control, Adaptation, andSelf-organization
	1.8.5. The Evolution of the Model Invariants and a PotentialMacroprocess’ Cyclicity
	1.8.6. Requirements for the Model Self–organization.The Results of Computer Simulations
	1.8.7. Evaluation of Some Prognostic Parametersof the Evolutionary Dynamics. Example
	1.8.8. Information Mechanism of Assembling the Node'sFrequencies and Automatic Selection
	1.8.9. The Functional Schema of the Evolutionary InformationalMechanisms. A Summary

	THE PHYSICAL ANALOGIES RELATED TO THE INFORMATION PATH FUNCTIONAL

	1.9.1. The Connection between the Information Path Functional(IPF) and the Kolmogorov’s (K) Entropy of a DynamicSystem, and the Relations to Physics
	1.9.2. An IPF Analogy with the Feynman Path Functionalin Quantum Mechanics and Informational Form ofSchrödinger’s Equation
	1.9.3. About the Invariant Transformation of the ModelImaginary Eigenvalues and Information
	1.9.4. The Superimposing Processes, Control and Asymmetry.The IMD Relation to Nonequilibrium Thermodynamics (NT)
	1.9.5. About the Notion of a System


	PART 2. THE INFORMATION PATH FUNCTIONAL’S AND IMD’S APPLICATIONS 

	SOLUTION OF THE CONTROL PROBLEMS FOR A COMPLEX OBJECT

	2.1.1. The Control Problems for a Complex Object
	2.1.2. Solving the Identification Problem
	2.1.2.1. The Identification of the Concentrated Object's Models
	2.1.2.2. The Identification of the Space Distributed Object's Models

	2.1.3. Solving the Optimal Control Problem
	2.1.3.1. A Joint Solution of the Optimal Control and Identification Problems.The Basic Results
	2.1.3.2. The Procedure of the Joint Identification, Optimal Control,and Consolidation
	2.1.3.3. Building the Object Cooperative Information Network


	THE INFORMATION MODELING OF THE ENCODING DECODING PROCESSES AT TRANSFORMATION OF BIOLOGICAL AND COGNITIVE INFORMATION

	2.2.1. The Objective and Methodology
	2.2.2. An Inner Information Structure of the IN with the Rangedand the Nonranged Sequences of the Starting Eigenvalues.The DSS Code
	2.2.3. Mathematical Model of the IN with an Arbitrary Sequenceof the Starting Eigenvalues
	2.2.4. The Procedure of Encoding, Compression, Synthesis, andDecoding of the IN Information
	2.2.5. Summarized Results
	2.2.6. About Other Related Applications
	2.2.7. The Connections between Some Physical Neuronal Functionsand Mechanisms and Their IMD Information Analogies

	INFORMATION MODELING AND CONTROL OF SOME INDUSTRIAL TECHNOLOGY PROCESSES WITH COMPLEX SUPERIMPOSING PHENOMENA

	2.3.1. Process Solidification and its Application in CastingTechnology
	2.3.2. Some Electrotechnological Processes
	Appendix. Additional Practical Results
	A.3.1. Control System in the Casing Technology
	A.3.2. Control System in the Electrotechnology


	AN ELEMENTARY INFORMATION MACRODYNAMIC MODEL OF A MARKET ECONOMIC SYSTEM

	2.4.1. About Information Systems Modeling of a ModernEconomy. The Objectives
	2.4.2. An elementary Local Production System ( LP)
	2.4.3. An Information Model of a Local Market
	2.4.4. Managing the LP. A Bank and a Stock Market
	2.4.5. Other Information Markets
	2.4.6. Example
	2.4.7. Summary

	AN OUTLINE OF THE COMPUTER BASED METHODOLOGY

	2.5.1. The Hierarchy of the Model’s Micro-and Macrovariablesand Their Identification
	2.5.2.The Computer’s Restoration of the IMD Model
	2.5.3. The Structure of the IMD Software Package


	CONCLUSION
	REFERENCES
	ABOUT THE AUTHOR
	INDEX



