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Preface

The ‘chaos’ introduced in the following pages reflects phenomena in
mathematics and the sciences, systems where (without cheating)
small differences in the way things are now have huge consequences
in the way things will be in the future. It would be cheating, of
course, if things just happened randomly, or if everything
continually exploded forever. This book traces out the remarkable
richness that follows from three simple constraints, which we’ll call
sensitivity, determinism, and recurrence. These constraints allow
mathematical chaos: behaviour that looks random, but is not
random. When allowed a bit of uncertainty, presumed to be the
active ingredient of forecasting, chaos has reignited a centuries-old
debate on the nature of the world.

The book is self-contained, defining these terms as they are
encountered. My aim is to show the what, where, and how of chaos;
sidestepping any topics of ‘why’ which require an advanced
mathematical background. Luckily, the description of chaos and
forecasting lends itself to a visual, geometric understanding; our
examination of chaos will take us to the coalface of predictability
without equations, revealing open questions of active scientific
research into the weather, climate, and other real-world
phenomena of interest.

Recent popular interest in the science of chaos has evolved



differently than did the explosion of interest in science a century
ago when special relativity hit a popular nerve that was to throb for
decades. Why was the public reaction to science’s embrace of
mathematical chaos different? Perhaps one distinction is that most
of us already knew that, sometimes, very small differences can have
huge effects. The concept now called ‘chaos’ has its origins both in
science fiction and in science fact. Indeed, these ideas were well
grounded in fiction before they were accepted as fact: perhaps the
public were already well versed in the implications of chaos, while
the scientists remained in denial? Great scientists and
mathematicians had sufficient courage and insight to foresee the
coming of chaos, but until recently mainstream science required a
good solution to be well behaved: fractal objects and chaotic curves
were considered not only deviant, but the sign of badly posed
questions. For a mathematician, few charges carry more shame
than the suggestion that one’s professional life has been spent on a
badly posed question. Some scientists still dislike problems whose
results are expected to be irreproducible even in theory. The
solutions that chaos requires have only become widely acceptable in
scientific circles recently, and the public enjoyed the ‘I told you so’
glee usually claimed by the ‘experts’. This also suggests why chaos,
while widely nurtured in mathematics and the sciences, took root
within applied sciences like meteorology and astronomy. The
applied sciences are driven by a desire to understand and predict
reality, a desire that overcame the niceties of whatever the formal
mathematics of the day. This required rare individuals who could
span the divide between our models of the world and the world as it
is without convoluting the two; who could distinguish the
mathematics from the reality and thereby extend the mathematics.

As in all Very Short Introductions, restrictions on space require
entire research programmes to be glossed over or omitted; I
present a few recurring themes in context, rather than a series of
shallow descriptions. My apologies to those whose work I have
omitted, and my thanks to Luciana O’Flaherty (my editor), Wendy
Parker, and Lyn Grove for help in distinguishing between what



was most interesting to me and what I might make interesting
to the reader.

How to read this introduction
While there is some mathematics in this book, there are no
equations more complicated than X = 2. Jargon is less easy to
discard. Words in bold italics you will have to come to grips with;
these are terms that are central to chaos, brief definitions of these
words can be found in the Glossary at the end of the book. Italics is
used both for emphasis and to signal jargon needed for the next
page or so, but which is unlikely to recur often throughout the book.

Any questions that haunt you would be welcome online at http://
cats.lse.ac.uk/forum/ on the discussion forum VSI Chaos. More
information on these terms can be found rapidly at Wikipedia
http://www.wikipedia.org/ and http://cats.lse.ac.uk/preditcability-
wiki/ , and in the Further reading.

http://cats.lse.ac.uk/forum/
http://cats.lse.ac.uk/forum/
http://www.wikipedia.org/
http://cats.lse.ac.uk/preditcabilitywiki/
http://cats.lse.ac.uk/preditcabilitywiki/
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Chapter 1

The emergence of chaos

Embedded in the mud, glistening green and gold and black,

was a butterfly, very beautiful and very dead.

It fell to the floor, an exquisite thing, a small thing

that could upset balances and knock down a line of

small dominoes and then big dominoes and then

gigantic dominoes, all down the years across Time.

Ray Bradbury (1952)

Three hallmarks of mathematical chaos
The ‘butterfly effect’ has become a popular slogan of chaos. But is it
really so surprising that minor details sometimes have major
impacts? Sometimes the proverbial minor detail is taken to be the
difference between a world with some butterfly and an alternative
universe that is exactly like the first, except that the butterfly is
absent; as a result of this small difference, the worlds soon come to
differ dramatically from one another. The mathematical version of
this concept is known as sensitive dependence. Chaotic systems
not only exhibit sensitive dependence, but two other properties as
well: they are deterministic, and they are nonlinear. In this
chapter, we’ll see what these words mean and how these concepts
came into science.

Chaos is important, in part, because it helps us to cope with

1



unstable systems by improving our ability to describe, to
understand, perhaps even to forecast them. Indeed, one of the
myths of chaos we will debunk is that chaos makes forecasting a
useless task. In an alternative but equally popular butterfly story,
there is one world where a butterfly flaps its wings and another
world where it does not. This small difference means a tornado
appears in only one of these two worlds, linking chaos to
uncertainty and prediction: in which world are we? Chaos is the
name given to the mechanism which allows such rapid growth of
uncertainty in our mathematical models. The image of chaos
amplifying uncertainty and confounding forecasts will be a
recurring theme throughout this Introduction.

Whispers of chaos
Warnings of chaos are everywhere, even in the nursery. The
warning that a kingdom could be lost for the want of a nail can be
traced back to the 14th century; the following version of the familiar
nursery rhyme was published in Poor Richard’s Almanack in 1758
by Benjamin Franklin:

For want of a nail the shoe was lost,

For want of a shoe the horse was lost,

and for want of a horse the rider was lost,

being overtaken and slain by the enemy,

all for the want of a horse-shoe nail.

We do not seek to explain the seed of instability with chaos, but
rather to describe the growth of uncertainty after the initial seed is
sown. In this case, explaining how it came to be that the rider was
lost due to a missing nail, not the fact that the nail had gone
missing. In fact, of course, there either was a nail or there was not.
But Poor Richard tells us that if the nail hadn’t been lost, then the
kingdom wouldn’t have been lost either. We will often explore the
properties of chaotic systems by considering the impact of slightly
different situations.
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The study of chaos is common in applied sciences like astronomy,
meteorology, population biology, and economics. Sciences making
accurate observations of the world along with quantitative
predictions have provided the main players in the development of
chaos since the time of Isaac Newton. According to Newton’s Laws,
the future of the solar system is completely determined by its
current state. The 19th-century scientist Pierre Laplace elevated
this determinism to a key place in science. A world is deterministic
if its current state completely defines its future. In 1820, Laplace
conjured up an entity now known as ‘Laplace’s demon’; in doing so,
he linked determinism and the ability to predict in principle to the
very notion of success in science.

We may regard the present state of the universe as the effect of its

past and the cause of its future. An intellect which at a certain

moment would know all forces that set nature in motion, and all

positions of all items of which nature is composed, if this intellect

were also vast enough to submit these data to analysis, it would

embrace in a single formula the movements of the greatest bodies of

the universe and those of the tiniest atom; for such an intellect

nothing would be uncertain and the future just like the past would

be present before its eyes.

Note that Laplace had the foresight to give his demon three
properties: exact knowledge of the Laws of Nature (‘all the forces’),
the ability to take a snapshot of the exact state of the universe (‘all
the positions’), and infinite computational resources (‘an intellect
vast enough to submit these data to analysis’). For Laplace’s
demon, chaos poses no barrier to prediction. Throughout this
Introduction, we will consider the impact of removing one or more
of these gifts.

From the time of Newton until the close of the 19th century, most
scientists were also meteorologists. Chaos and meteorology are
closely linked by the meteorologists’ interest in the role uncertainty
plays in weather forecasts. Benjamin Franklin’s interest in
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meteorology extended far beyond his famous experiment of flying
a kite in a thunderstorm. He is credited with noting the general
movement of the weather from west towards the east and testing
this theory by writing letters from Philadelphia to cities further
east. Although the letters took longer to arrive than the weather,
these are arguably early weather forecasts. Laplace himself
discovered the law describing the decrease of atmospheric pressure
with height. He also made fundamental contributions to the theory
of errors: when we make an observation, the measurement is never
exact in a mathematical sense, so there is always some uncertainty
as to the ‘True’ value. Scientists often say that any uncertainty in an
observation is due to noise, without really defining exactly
what the noise is, other than that which obscures our vision of
whatever we are trying to measure, be it the length of a table, the
number of rabbits in a garden, or the midday temperature.
Noise gives rise to observational uncertainty, chaos helps us to
understand how small uncertainties can become large
uncertainties, once we have a model for the noise. Some of the
insights gleaned from chaos lie in clarifying the role(s) noise
plays in the dynamics of uncertainty in the quantitative
sciences. Noise has become much more interesting, as the study
of chaos forces us to look again at what we might mean by the
concept of a ‘True’ value.

Twenty years after Laplace’s book on probability theory appeared,
Edgar Allan Poe provided an early reference to what we would now
call chaos in the atmosphere. He noted that merely moving our
hands would affect the atmosphere all the way around the planet.
Poe then went on to echo Laplace, stating that the mathematicians
of the Earth could compute the progress of this hand-waving
‘impulse’, as it spread out and forever altered the state of the
atmosphere. Of course, it is up to us whether or not we choose to
wave our hands: free will offers another source of seeds that chaos
might nurture.

In 1831, between the publication of Laplace’s science and Poe’s
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fiction, Captain Robert Fitzroy took the young Charles Darwin on
his voyage of discovery. The observations made on this voyage led
Darwin to his theory of natural selection. Evolution and chaos have
more in common than one might think. First, when it comes to
language, both ‘evolution’ and ‘chaos’ are used simultaneously to
refer both to phenomena to be explained and to the theories that are
supposed to do the explaining. This often leads to confusion
between the description and the object described (as in ‘confusing
the map with the territory’). Throughout this Introduction we will
see that confusing our mathematical models with the reality they
aim to describe muddles the discussion of both. Second, looking
more deeply, it may be that some ecosystems evolve as if they were
chaotic systems, as it may well be the case that small differences in
the environment have immense impacts. And evolution has
contributed to the discussion of chaos as well. This chapter’s
opening quote comes from Ray Bradbury’s ‘A Sound Like Thunder’,
in which time-travelling big game hunters accidentally kill a
butterfly, and find the future a different place when they return to it.
The characters in the story imagine the impact of killing a mouse,
its death cascading through generations of lost mice, foxes, and
lions, and:

all manner of insects, vultures, infinite billions of life forms are

thrown into chaos and destruction . . . Step on a mouse and you

leave your print, like a Grand Canyon, across Eternity. Queen

Elizabeth might never be born, Washington might not cross the

Delaware, there might never be a United States at all. So be careful.

Stay on the Path. Never step off!

Needless to say, someone does step off the Path, crushing to
death a beautiful little green and black butterfly. We can only
consider these ‘what if’ experiments within the fictions of
mathematics or literature, since we have access to only one
realization of reality.

The origins of the term ‘butterfly effect’ are appropriately shrouded
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in mystery. Bradbury’s 1952 story predates a series of scientific
papers on chaos published in the early 1960s. The meteorologist Ed
Lorenz once invoked sea gulls’ wings as the agent of change,
although the title of that seminar was not his own. And one of his
early computer-generated pictures of a chaotic system does
resemble a butterfly. But whatever the incarnation of the ‘small
difference’, whether it be a missing horse shoe nail, a butterfly, a sea
gull, or most recently, a mosquito ‘squished’ by Homer Simpson, the
idea that small differences can have huge effects is not new.
Although silent regarding the origin of the small difference, chaos
provides a description for its rapid amplification to kingdom-
shattering proportions, and thus is closely tied to forecasting and
predictability.

The first weather forecasts
Like every ship’s captain of the time, Fitzroy had a deep interest in
the weather. He developed a barometer which was easier to use
onboard ship, and it is hard to overestimate the value of a
barometer to a captain lacking access to satellite images and radio
reports. Major storms are associated with low atmospheric
pressure; by providing a quantitative measurement of the
pressure, and thus how fast it is changing, a barometer can give
life-saving information on what is likely to be over the horizon.
Later in life, Fitzroy became the first head of what would become
the UK Meteorological Office and exploited the newly deployed
telegraph to gather observations and issue summaries of the
current state of the weather across Britain. The telegraph allowed
weather information to outrun the weather itself for the first time.
Working with LeVerrier of France, who became famous for using
Newton’s Laws to discover two new planets, Fitzroy contributed to
the first international efforts at real-time weather forecasting.
These forecasts were severely criticized by Darwin’s cousin,
statistician Francis Galton, who himself published the first
weather chart in the London Times in 1875, reproduced in
Figure 1.
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1. The first weather chart ever published in a newspaper. Prepared by
Francis Galton, it appeared in the London Times on 31 March 1875



If uncertainty due to errors of observation provides the seed that
chaos nurtures, then understanding such uncertainty can help us
better cope with chaos. Like Laplace, Galton was interested in the
‘theory of errors’ in the widest sense. To illustrate the ubiquitous
‘bell-shaped curve’ which so often seems to reflect measurement
errors, Galton created the ‘quincunx’, which is now called a Galton
Board; the most common version is shown on the left side of Figure
2. By pouring lead shot into the quincunx, Galton simulated a
random system in which each piece of shot has a 50:50 chance of
going to either side of every ‘nail’ that it meets, giving rise to a bell-
shaped distribution of lead. Note there is more here than the one-
off flap of a butterfly wing: the paths of two nearby pieces of lead
may stay together or diverge at each level. We shall return to Galton
Boards in Chapter 9, but we will use random numbers from the
bell-shaped curve as a model for noise many times before then. The
bell-shape can be seen at the bottom of the Galton Board on the left
of Figure 2, and we will find a smoother version towards the top of
Figure 10.

The study of chaos yields new insight into why weather forecasts
remain unreliable after almost two centuries. Is it due to our
missing minor details in today’s weather which then have major
impacts on tomorrow’s weather? Or is it because our methods,
while better than Fitzroy’s, remain imperfect? Poe’s early
atmospheric incarnation of the butterfly effect is complete with the
idea that science could, if perfect, predict everything physical. Yet
the fact that sensitive dependence would make detailed forecasts of
the weather difficult, and perhaps even limit the scope of physics,
has been recognized within both science and fiction for some time.
In 1874, the physicist James Clerk Maxwell noted that a sense of
proportion tended to accompany success in a science:

This is only true when small variations in the initial circumstances

produce only small variations in the final state of the system. In a

great many physical phenomena this condition is satisfied; but there

are other cases in which a small initial variation may produce a very
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great change in the final state of the system, as when the

displacement of the ‘points’ causes a railway train to run into

another instead of keeping its proper course.

This example is again atypical of chaos in that it is ‘one-off’
sensitivity, but it does serve to distinguish sensitivity and
uncertainty: this sensitivity is no threat as long as there is no
uncertainty in the position of the points, or in which train is on
which track. Consider pouring a glass of water near a ridge in the

2. Galton’s 1889 schematic drawings of what are now called ‘Galton
Boards’
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Rocky Mountains. On one side of this continental divide the water
finds its way into the Colorado River and to the Pacific Ocean, on
the other side the Mississippi River and eventually the Atlantic
Ocean. Moving the glass one way or the other illustrates
sensitivity: a small change in the position of the glass means a
particular molecule of water ends up in a different ocean. Our
uncertainty in the position of the glass might restrict our ability to
predict which ocean that molecule of water will end up in, but only
if that uncertainty crosses the line of the continental divide. Of
course, if we were really trying to do this, we would have to
question whether any such mathematical line actually divided
continents, as well as the other adventures the molecule of water
might have which could prevent it reaching the ocean. Usually,
chaos involves much more than a single one-off ‘tripping point’; it
tends to more closely resemble a water molecule that repeatedly
evaporates and falls in a region where there are continental divides
all over the place.

Nonlinearity is defined by what it is not (it is not linear). This kind
of definition invites confusion: how would one go about defining a
biology of non-elephants? The basic idea to hold in mind now is
that a nonlinear system will show a disproportionate response: the
impact of adding a second straw to a camel’s back could be much
bigger (or much smaller) than the impact of the first straw. Linear
systems always respond proportionately. Nonlinear systems need
not, giving nonlinearity a critical role in the origin of sensitive
dependence.

The Burns’ Day storm
But Mousie, thou art no thy lane,

In proving foresight may be vain:

The best-laid schemes o mice an men

Gang aft agley,

An lea’e us nought but grief an pain,

For promis’d joy!
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Still thou art blest, compar’d wi me!

The present only toucheth thee:

But och! I backward cast my e’e,

On prospects drear!

An forward, tho I canna see,

I guess an fear!

Robert Burns, ‘To A Mouse’ (1785)

Burns’ poem praises the mouse for its ability to live only in the
present, not knowing the pain of unfulfilled expectations nor the
dread of uncertainty in what is yet to pass. And Burns was writing
in the 18th century, when mice and men laid their plans with little
assistance from computing machines. While foresight may be pain,
meteorologists struggle to foresee tomorrow’s likely weather every
day. Sometimes it works. In 1990, on the anniversary of Burns’
birth, a major storm ripped through northern Europe, including the
British Isles, causing significant property damage and loss of life.
The centre of the storm passed over Burns’ home town in Scotland,
and it became known as the Burns’ Day storm. A weather chart
reflecting the storm at noon on 25 January is shown in the top
panel of Figure 4 (page 14). Ninety-seven people died in northern
Europe, about half of this number in Britain, making it the highest
death toll of any storm in 40 years; about 3 million trees were blown
down, and total insurance costs reached £2 billion. Yet the Burns’
Day storm has not joined the rogues’ gallery of famously failed
forecasts: it was well forecast by the Met Office.

In contrast, the Great Storm of 1987 is famous for a BBC television
meteorologist’s broadcast the night before, telling people not to
worry about rumours from France that a hurricane was about to
strike England. Both storms, in fact, managed gusts of over
100 miles per hour, and the Burns’ Day storm caused much
greater loss of life; yet 20 years after the event, the Great Storm of
1987 is much more often discussed, perhaps exactly because the
Burns’ Day storm was well forecast. The story leading up to this
forecast beautifully illustrates a different way that chaos in our
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models can impact our lives without invoking alternate worlds,
some with and some without butterflies.

In the early morning of 24 January 1990, two ships in the
mid-Atlantic sent routine meteorological observations from
positions that happened to straddle the centre of what would
become the Burns’ Day storm. The forecast models run with these
observations give a fine forecast of the storm. Running the model
again after the event showed that when these observations are
omitted, the model predicts a weaker storm in the wrong place.
Because the Burns’ Day storm struck during the day, the failure to
provide forewarning would have had a huge impact on loss of life,
so here we have an example where a few observations, had they
not been made, would have changed the forecast and hence the
course of human events. Of course, an ocean weather ship is
harder to misplace than a horse shoe nail. There is more to this
story, and to see its relevance we need to look into how weather
models ‘work’.

Operational weather forecasting is a remarkable phenomenon in
and of itself. Every day, observations are taken in the most remote
locations possible, and then communicated and shared among
national meteorological offices around the globe. Many different
nations use this data to run their computer models. Sometimes an
observation is subject to plain old mistakes, like putting the
temperature in the box for wind speed, or a typo, or a glitch in
transition. To keep these mistakes from corrupting the forecast,
incoming observations are subject to quality control: observations
that disagree with what the model is expecting (given its last
forecast) can be rejected, especially if there are no independent,
nearby observations to lend support to them. It is a well-laid plan.
Of course, there are rarely any ‘nearby’ observations of any sort in
the middle of the Atlantic, and the ship observations showed the
development of a storm that the model had not predicted would be
there, so the computer’s automatic quality control program simply
rejected these observations.
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3. Headline from The Times the day after the Burns’ Day storm



4. A modern weather chart reflecting the Burns’ Day storm as seen
through a weather model (top) and a two-day-ahead forecast targeting
the same time showing a fairly pleasant day (bottom)



Luckily, the computer was overruled. An intervention forecaster
was on duty and realized that these observations were of great
value. His job was to intervene when the computer did something
obviously silly, as computers are prone to do. In this case, he tricked
the computer into accepting the observations. Whether or not to
take this action is a judgement call: there was no way to know at the
time which action would yield a better forecast. The computer was
‘tricked’, the observation was used. The storm was forecast, and
lives were saved.

There are two take-home messages here: the first is that when our
models are chaotic then small changes in our observations can have
large impacts on the quality of our foresight. An accountant looking
to reduce costs and computing the typical benefit of one particular
observation from any particular weather station is likely to vastly
underestimate the value of a future report from one of those
weather stations that falls at the right place at the right time, and
similarly the value of the intervention forecaster, who often has to
do nothing, literally. The second is that the Burns’ Day forecast
illustrates something a bit different from the butterfly effect.
Mathematical models allow us to worry about what the real future
will bring not by considering possible worlds, of which there may be
only one, but by contrasting different simulations of our model, of
which there can be as many as we can afford. As Burns might
appreciate, science gives us new ways to guess and new things to
fear. The butterfly effect contrasts different worlds: one world with
the nail and another world without that nail. The Burns effect
places the focus firmly on us and our attempts to make rational
decisions in the real world given only collections of different
simulations under various imperfect models. The failure to
distinguish between reality and our models, between observations
and mathematics, arguably between an empirical fact and scientific
fiction, is the root of much confusion regarding chaos both by the
public and among scientists. It was research into nonlinearity and
chaos that clarified yet again how import this distinction remains.
In Chapter 10, we will return to take a deeper look at how today’s
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weather forecasters would have used insights from their
understanding of chaos when making a forecast for this event.

We have now touched on the three properties found in chaotic
mathematical systems: chaotic systems are nonlinear, they are
deterministic, and they are unstable in that they display sensitivity
to initial condition. In the chapters that follow we will constrain
them further, but our real interests lie not only in the mathematics
of chaos, but also in what it can tell us about the real world.

Chaos and the real world: predictability and a
21st-century demon

There is no more greater an error in science, than to believe that just

because some mathematical calculation has been completed, some

aspect of Nature is certain.

Alfred North Whitehead (1953)

What implications does chaos hold for our everyday lives? Chaos
impacts the ways and means of weather forecasting, which affect us
directly through the weather, and indirectly through economic
consequences both of the weather and of the forecasts themselves.
Chaos also plays a role in questions of climate change and our
ability to foresee the strength and impacts of global warming. While
there are many other things that we forecast, weather and climate
can be used to represent short-range forecasting and long-range
modelling, respectively. ‘When is the next solar eclipse?’ would be a
weather-like question in astronomy, while ‘Is the solar system
stable?’ would be a climate-like question. In finance, when to buy
100 shares of a given stock is a weather-like question, while a
climate-like question might address whether to invest in the stock
market or real estate.

Chaos has also had a major impact on the sciences, forcing a close
re-examination of what scientists mean by the words ‘error’ and
‘uncertainty’ and how these meanings change when applied to our
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world and our models. As Whitehead noted, it is dangerous to
interpret our mathematical models as if they somehow governed
the real world. Arguably, the most interesting impacts of chaos
are not really new, but the mathematical developments of the last
50 years have cast many old questions into a new light. For
instance, what impact would uncertainty have on a 21st-century
incarnation of Laplace’s demon which could not escape
observational noise?

Consider an intelligence that knew all the laws of nature precisely
and had good, but imperfect, observations of an isolated chaotic
system over an arbitrarily long time. Such an agent – even if
sufficiently vast to subject all this data to computationally exact
analysis – could not determine the current state of the system and
thus the present, as well as the future, would remain uncertain in
her eyes. While our agent could not predict the future exactly, the
future would hold no real surprises for her, as she could see what
could and what could not happen, and would know the probability
of any future event: the predictability of the world she could see.
Uncertainty of the present will translate into well-quantified
uncertainty in the future, if her model is perfect.

In his 1927 Gifford Lectures, Sir Arthur Eddington went to the
heart of the problem of chaos: some things are trivial to predict,
especially if they have to do with mathematics itself, while other
things seem predictable, sometimes:

A total eclipse of the sun, visible in Cornwall is prophesied for

11 August 1999 . . . I might venture to predict that 2 + 2 will be

equal to 4 even in 1999 . . . The prediction of the weather this time

next year . . . is not likely to ever become practicable . . . We should

require extremely detailed knowledge of present conditions, since

a small local deviation can exert an ever-expanding influence.

We must examine the state of the sun . . . be forewarned of volcanic

eruptions, . . . , a coal strike . . . , a lighted match idly thrown

away . . .
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Our best models of the solar system are chaotic, and our best
models of the weather appear to be chaotic: yet why was Eddington
confident in 1928 that the 1999 solar eclipse would occur? And
equally confident that no weather forecast a year in advance would
ever be accurate? In Chapter 10 we will see how modern weather
forecasting techniques designed to better cope with chaos helped
me to see that solar eclipse.

When paradigms collide: chaos and controversy
One of the things that has made working in chaos interesting over
the last 20 years has been the friction generated when different
ways of looking at the world converge on the same set of
observations. Chaos has given rise to a certain amount of
controversy. The studies that gave birth to chaos have
revolutionized not only the way professional weather forecasters
forecast but even what a forecast consists of. These new ideas often
run counter to traditional statistical modelling methods, and still
produce both heat and light on how best to model the real world.
This battle is broken into skirmishes by the nature of the field and
our level of understanding in the particular system of which a
question is asked, be it the population of voles in Scandinavia,
a mathematical calculation to quantify chaos, the number of
spots on the Sun’s surface, the price of oil delivered next month,
tomorrow’s maximum temperature, or the date of the last ever solar
eclipse.

The skirmishes are interesting, but chaos offers deeper insights
even when both sides are fighting for traditional advantage, say, the
‘best’ model. Here studies of chaos have redefined the high ground:
today we are forced to reconsider new definitions for what
constitutes the best model, or even a ‘good’ model. Arguably, we
must give up the idea of approaching Truth, or at least define a
wholly new way of measuring our distance from it. The study of
chaos motivates us to establish utility without any hope of achieving
perfection, and to give up many obvious home truths of forecasting,
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like the naı̈ve idea that a good forecast consists of a prediction that
is close to the target. This did not appear naı̈ve before we
understood the implications of chaos.

La Tour’s realistic vision of science in the real world
To close this chapter, we illustrate how chaos can force us to
reconsider what constitutes a good model, and revise our beliefs as
to what is ultimately responsible for our forecast failures. This
impact is felt by scientists and mathematicians alike, but the
reconsideration will vary depending on the individual’s point of
view and the empirical system under study. The situation is nicely
personified in Figure 5, a French baroque painting by Georges de la
Tour showing a card game from the 17th century. La Tour was
arguably a realist with a sense of humour. He was fond of fortune
telling and games of chance, especially those in which chance
played a somewhat lesser role than the participants happened to
believe. In theory, chaos can play exactly this role. We will interpret

5. The Cheat with the Ace of Diamonds, by Georges de la Tour, painted
about 1645
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this painting to show a mathematician, a physicist, a statistician,
and a philosopher engaged in an exercise of skill, dexterity, insight,
and computational prowess; this is arguably a description for doing
science, but the task at hand here is a game of poker. Exactly who is
who in the painting will remain open, as we will return to these
personifications of natural science throughout the book. The
insights chaos yields vary with the perspective of the viewer, but a
few observations are in order.

The impeccably groomed young man on the right is engaged in
careful calculations, no doubt a probability forecast of some nature;
he is currently in possession of a handsome collection of gold coins
on the table. The dealer plays a critical role, without her there is no
game to be played; she provides the very language within which we
communicate, yet she seems to be in nonverbal communication
with the handmaiden. The role of the handmaiden is less clear; she
is perhaps tangential, but then again the provision of wine will
influence the game, and she herself may feature as a distraction.
The roguish character in ramshackle dress with bows untied is
clearly concerned with the real world, not mere appearances in
some model of it; his left hand is extracting one of several aces of
diamonds from his belt, which he is about to introduce into the
game. What then do the ‘probabilities’ calculated by the young man
count for, if, in fact, he is not playing the game his mathematical
model describes? And how deep is the insight of our rogue? His
glance is directed to us, suggesting that he knows we can see his
actions, perhaps even that he realizes that he is in a painting?

The story of chaos is important because it enables us to see the
world from the perspective of each of these players. Are we merely
developing the mathematical language with which the game is
played? Are we risking economic ruin by over-interpreting some
potentially useful model while losing sight of the fact that it, like all
models, is imperfect? Are we only observing the big picture, not
entering the game directly but sometimes providing an interesting
distraction? Or are we manipulating those things we can change,
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acknowledging the risks of model inadequacy, and perhaps even our
own limitations, due to being within the system? To answer these
questions we must first examine several of the many jargons of
science in order to be able to see how chaos emerged from the noise
of traditional linear statistics to vie for roles both in understanding
and in predicting complicated real-world systems. Before the
nonlinear dynamics of chaos were widely recognized within science,
these questions fell primarily in the domain of the philosophers;
today they reach out via our mathematical models to physical
scientists and working forecasters, changing the statistics of
decision support and even impacting politicians and policy makers.
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Chapter 2

Exponential growth,

nonlinearity, common sense

One of the most pervasive myths about chaotic systems is that they
are impossible to predict. To expose the fallacy of this myth, we
must understand how uncertainty in a forecast grows as we predict
further and further into the future. In this chapter we investigate
the origin and meaning of exponential growth, since on average a
small uncertainty will grow exponentially fast in a chaotic system.
There is a sense in which this phenomenon really does imply a
‘faster’ growth of uncertainty than that found in our traditional
ideas of how error and uncertainty grow as we forecast further into
the future. Nevertheless, chaos can be easy to predict, sometimes.

Chess, rice, and Leonardo’s rabbits:
exponential growth
An oft-told story about the origin of the game of chess illustrates
nicely the speed of exponential growth. The story goes that a king of
ancient Persia was so pleased when first presented with the game
that he wanted to reward the game’s creator, Sissa Ben Dahir. A
chess board has 64 squares arranged in an 8 by 8 pattern; for his
reward, Ben Dahir requested what seemed a quite modest sum
of rice determined using the new chess board: one grain of rice
was to be put on the first square of the board, two to be put on
the second, four for the third, eight for the fourth, and so on,
doubling the number on each square until the 64th was reached. A
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mathematician will often call any rule for generating one number
from another one a mathematical map, so we’ll refer to this simple
rule (‘double the current value to generate the next value’) as the
Rice Map.

Before working out just how much rice Ben Dahir has asked for, let
us consider the case of linear growth where we have one grain on
the first square, two on the second square, three on the third, and so
on until we need 64 for the last square. In this case we have a total
of 64 + 63 + 62 + . . . + 3 + 2 + 1, or around 1,000 grains. Just for
comparison, a 1 kilogram bag of rice contains a few tens of
thousands of grains.

The Rice Map requires one grain for the first square, then two for
the second, four for the third, then 8, 16, 32, 64, and 128 for the last
square of the first row. On the third square of the second row, we
pass 1,000 and before the end of the second row there is a square
which exhausts our bag of rice. To fill the next square alone will
require another entire bag, the following square two bags, and so
on. Some square in the third row will require a volume of rice
comparable to a small house, and we will have enough rice to fill the
Royal Albert Hall well before the end of the fifth row. Finally, the
64th square alone will require billions and billions, or to be exact,
263 (= 9, 223, 372, 036, 854, 775, 808) grains, for a total of
18,446,744,073,709,551,615 grains. That is a non-trivial quantity of
rice! It is something like the entire world’s rice production over two
millennia. Exponential growth quickly grows out of all proportion.

By comparing the amount of rice on a given square in the case of
linear growth with the amount of rice on the same square in the
case of exponential growth, we quickly see that exponential is much
faster than linear growth: on the fourth square we already have
twice as many grains in the exponential case as in the linear case
(8 in the first, only 4 in the second), and by the eighth square, at the
end of the first row, the exponential case has 16 times more!
Soon thereafter we have the astronomical numbers.
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Of course, we hid the values of some parameters in the example
above: we could have made the linear growth faster by adding
not one additional grain for each square, but instead, say,
1,000 additional grains. This parameter, the number of
additional grains, defines the constant of proportionality between
the number of the square and the number of grains on that
square, and gives us the slope of the linear relationship between
them. There is also a parameter in the exponential case: on
each step we increased the number of grains by a factor of two,
but it could have been a factor of three, or a factor of one and a
half.

One of the surprising things about exponential growth is that
whatever the values of these parameters, there will come a time at
which exponential growth surpasses any linear growth, and will
soon thereafter dwarf linear growth, no matter how fast the linear
growth is. Our ultimate interest is not in rice on a chess board, but
in the dynamics of uncertainty in time. Not just the growth of a
population, but the growth of our uncertainty in a forecast of the
future size of that population. In the forecasting context, there will
come a time at which an exponentially growing uncertainty which is
very small today will surpass a linearly growing uncertainty which is
today much larger. And the same thing happens when contrasting
exponential growth with growth proportional to the square of time,
or to the cube of time, or to time raised to any power (in symbols:
steady exponential growth will eventually surpass the growth
proportional to t2 or t3 or tn for any value of n.). It is for this reason
among others that exponential growth is mathematically
distinguished, and taken to provide a benchmark for defining
chaos. It has also contributed to the widespread but fundamentally
mistaken impression that chaotic systems are hopelessly
unpredictable. Ben Dahir’s chess board illustrates that there is a
deep sense in which exponential growth is faster than linear growth.
To place this in the context of forecasting, we move forward a few
hundred years in time and a few hundred miles northwest, from
Persia to Italy.
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At the beginning of the 13th century, Leonardo of Pisa posed a
question of population dynamics: given a newborn pair of rabbits in
a large, lush, walled garden, how many pairs of rabbits will we have
in one year if their nature is for each mature pair to breed and
produce a new pair every month, and newborn rabbits mature in
their second month? In the first month we have one juvenile pair. In
the second month this pair matures and breeds to produce a new
pair in the third month. So in the third month, we have one mature
pair and one newborn pair. In the fourth month we once again have
one new born pair from the original pair of rabbits and now two
mature pairs for a total of three pairs. In the fifth month, two new
pairs are born (one from each mature pair), and we have three
mature pairs for a total of five pairs. And so on.

So what does this ‘population dynamic’ look like? In the first month
we have one immature pair, in the second month we have one
mature pair, in the third month we have one mature pair and a new
immature pair, in the fourth month we have two mature pairs and
one immature pair, in the fifth month we have three mature pairs
and two immature.

If we count up all the pairs each month, the numbers are 1, 1, 2, 3, 5,
8, 13, 21 . . . . Leonardo noted that the next number in the series is
always the sum of the previous two numbers (1 + 1 = 2, 2 + 1 = 3,
3 + 2 = 5, . . . ) which makes sense, as the previous number is the
number we had last month (in our model all rabbits survive no
matter how many there are), and the penultimate number is the
number of mature pairs (and thus the number of new pairs arriving
this month).

Now it gets a bit tedious to write ‘and in the sixth month we have
12 pairs of rabbits’, so scientists often use a short-hand X for the
number of pairs of rabbits and X6 to denote the number of pairs in
month six. And since the series 1, 1, 2, 3, 5, 8, . . . reflects how the
population of rabbits evolves in time, this series and others like it
are called time series. The Rabbit Map is defined by the rule:
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Add the previous value of X to the current value of X, and take

the sum as the new value of X.

The numbers in the series 1, 1, 2, 3, 5, 8, 13, 21, 34 . . . are
called Fibonacci numbers (Fibonacci was a nickname of
Leonardo of Pisa), and they arise again and again in nature: in the
structure of sunflowers, pine cones, and pineapples. They are of
interest here because they illustrate exponential growth in time,
almost. The crosses in Figure 6 are Fibonacci’s points – the
rabbit population as a function of time – while the solid line
reflects two raised to the power λt, or in symbols 2λt , where t is
the time in months and λ is our first exponent. Exponents which
multiply time in the superscript are a useful way of quantifying
uniform exponential growth. In this case, λ is equal to the
logarithm of a number called the golden mean, a very special
number which is discussed in the Very Short Introduction to
Mathematics.

6. The series of crosses showing the number of pairs of rabbits each
month (Fibonacci numbers); the smooth curve they lie near is the
related exponential growth
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The first thing to notice about Figure 6 is that the points lie close to
the curve. The exponential curve is special in mathematics because
it reflects a function whose increase is proportional to its current
value. The larger it gets, the faster it grows. It makes sense that
something like this function would describe the dynamics of
Leonardo’s rabbit population since the number of rabbits next
month is more or less proportional to the number of rabbits this
month. The second thing to notice about the figure is that the points
do not lie on the curve. The curve is a good model for Fibonacci’s
Rabbit Map, but it is not perfect: at the end of each month the
number of rabbits is always a whole number and, while the curve
may be close to the correct whole number, it is not exactly equal to
it. As the months go by and the population grows, the curve gets
closer and closer to each Fibonacci number, but it never reaches
them. This concept of getting closer and closer but never quite
arriving is one that will come up again and again in this
book.

So how can Leonardo’s rabbits help us to get a feel for the growth of
forecast uncertainty? Like all observations, counting the number
of rabbits in a garden is subject to error; as we saw in Chapter 1,
observational uncertainties are said to be caused by noise. Imagine
that Leonardo failed to notice a pair of mature rabbits also in the
garden in the first month; in that case, the number of pairs
actually in the garden would have been 2, 3, 5, 8, 13, . . . The error in
the original forecast (1, 1, 2, 3, 5, 8 . . . ) would be the difference
between the Truth and that forecast, namely: 1, 2, 3, 5 . . . (again, the
Fibonacci series). In month 12, this error has reached a very
noticeable 146 pairs of rabbits! A small error in the initial number
of rabbits results in a very large error in the forecast. In fact, the
error is growing exponentially in time. This has many implications.

Consider the impact of the exponential error growth on the
uncertainty of our forecasts. Let us again contrast linear growth and
exponential growth. Let’s assume that, for a price, we can reduce
the uncertainty in the initial observation that we use in generating
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our forecast. If the error growth is linear, and we reduce our
initial uncertainty by a factor of ten, then we can forecast the
system ten times longer before our uncertainty exceeds the same
threshold. If we reduce the initial uncertainty by a factor of 1,000,
then we can get forecasts of the same quality 1,000 times longer.
This is an advantage of linear models. Or, more accurately, this is
an apparent advantage of studying only linear systems. By
contrast, if the model is nonlinear and the uncertainty grows
exponentially, then we may reduce our initial uncertainty by a
factor of ten yet only be able to forecast twice as long with the
same accuracy. In that case, assuming the exponential growth in
uncertainty is uniform in time, reducing the uncertainty by a
factor of 1,000 will only increase our forecast range at the same
accuracy by a factor of eight. Now reducing the uncertainty in a
measurement is rarely free (we have to hire someone else to count
the rabbits a second time), and large reductions of uncertainty
can be expensive, so when uncertainty grows exponentially fast,
the cost sky-rockets. Attempting to achieve our forecast goals by
reducing uncertainty in initial conditions can be tremendously
expensive.

Luckily, there is an alternative that allows us to accept the simple
fact that we can never be certain that any observation has not been
corrupted by noise. In the case of rabbits or grains of rice, it seems
there really is a fact of the matter, a whole number that reflects the
correct answer. If we reduce the uncertainty in this initial condition
to zero then we can predict without error. But can we ever really be
certain of the initial condition? Might there not be another bunny
hiding in the noise? While our best guess is that there is one pair in
the garden, there might be two, or three, or more (or perhaps zero).
When we are uncertain of the initial condition, we can examine the
diversity of forecasts under our model by making an ensemble of
forecasts: one forecast started from each initial condition we think
plausible. So one member of the ensemble will start with X equal to
one, another ensemble member will start with X equals two, and so
on. How should we divide our limited resources between computing
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more ensemble members and making better observations of the
current number of rabbits in the garden?

In the Rabbit Map, differences between the forecasts of different
members of the ensemble will grow exponentially fast, but with an
ensemble forecast we can see just how different they are and use
this as a measure of our uncertainty in the number of rabbits we
expect at any given time. In addition, if we carefully count the
number of rabbits after a few months, we can all but rule out some
of the individual ensemble members. Each of these ensemble
members was started from some estimate of the number of rabbits
that were in the garden originally, so ruling an ensemble member
out in effect gives us more information about the original number of
rabbits. Of course, this information need only prove accurate if our
model is literally perfect, meaning, in this case, that our Rabbit Map
captures the reproductive behaviour and longevity of our rabbits
exactly. But if our model is perfect, then we can use future
observations to learn about the past; this process is called noise
reduction. If it turns out that our model is not perfect, then we may
end up with incoherent results.

But what if we were measuring something that is not a whole
number, like temperature, or the position of a planet? And is
temperature in an imperfect weather model exactly the same thing
as temperature in the real world? It was these questions that
initially interested our philosopher in chaos. First, we should
consider the more pressing question of why rabbits have not taken
over the world in the 9,000 months since 1202?

Stretching, folding, and the growth of uncertainty
The study of chaos lends credence to the meteorological maxim that
no forecast is complete without a useful estimate of forecast
uncertainty: if we know our initial condition is uncertain then we
are not only interested in the prediction per se, but equally in
learning what the likely forecast error will be. Forecast error for any
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Exponential growth: an example from
Miss Nagel’s third grade class

A few months ago, I received an email written by an old

friend of mine from elementary school. It contained another

email that had originated from a third grader in North

Carolina whose class was studying geography. It requested

that everyone who read the email send a reply to the school

stating where they lived, and the class would locate that place

on a school globe. It also requested that each reader pass on

the email to ten friends.

I did not forward the message to anyone, but I did write an

email to Miss Nagel’s class stating that I was in Oxford,

England. I also suggested that they tell their mathematics

teacher about their experiment and use it as an example to

illustrate exponential growth: if they sent the message to ten

people, and the next day each of them sent it to ten more

people, that would be 100 on day three, 1,000 on day four,

and more emails than there are email addresses within a

week or so. In a real system, exponential growth cannot go

on forever: eventually we run out of rice, or garden space, or

new email addresses. It is often the resources that limit

growth: even a lush garden provides only a finite amount

of rabbit food. There are limits to growth which bound

populations, if not our models of populations.

I never found out whether Miss Nagel’s class learned their

lesson in exponential growth. The only answer I ever

received was an automated reply stating that the school’s

email in-box had exceeded its quota and had been closed.
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real system should not grow without limit; even if we start with a
small error like one grain or one rabbit, the forecast error will not
grow arbitrarily large (unless we have a very naı̈ve forecaster), but
will saturate near some limiting value, as would the population
itself. Our mathematician has a way to avoid ludicrously large
forecast errors (other than naı̈veté), namely by making the initial
uncertainty infinitesimally small – smaller than any number you
can think of, yet greater than zero. Such an uncertainty will stay
infinitesimally small for all time, even if it grows exponentially fast.

Physical factors, like the total amount of rabbit food in the garden
or the amount of disk space on an email system, limit growth in
practice. The limits are intuitive even if we do not know exactly
what causes them: I think I have lost my keys in the car park; of
course they might be several miles from there, but it is exceedingly
unlikely that they are farther away than the moon. I do not need to
understand or believe the laws of gravity to appreciate this.
Similarly, weather forecasters are rarely more than 100 degrees off,
even for a forecast one year in advance! Even inadequate models
can usually be constrained so that their forecast errors are bounded.

Whenever our model goes into never-never land (suggesting values
where no data have ever gone before), then something is likely to
give, unless something in our model has already broken. Often, as
our uncertainty grows too large, it starts to fold back on itself.
Imagine kneading dough, or a toffee machine continuously
stretching and folding toffee. An imaginary line of toffee connecting
two very nearby grains of sugar will grow longer and longer as these
two grains separate under the action of the machine, but before it
becomes bigger than the machine itself, this line will be folded back
into itself, forming a horrible tangle. The distance between the
grains of sugar will stop growing, even as the string of toffee
connecting them continues to grow longer and longer, becoming a
more and more complicated tangle. The toffee machine gives us a
way to envision limits to the growth of prediction error whenever
our model is perfect. In this case, the error is the growing distance
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between the True state and our best guess of that state: any
exponential growth of error would correspond only to the rapid
initial growth of the string of toffee. But if our forecasts are not
going to zoom away towards infinity (the toffee must stay in the
machine, only a finite number of rabbits will fit in the garden, and
the like), then eventually the line connecting Truth and our forecast
will be folded over on itself. There is simply nowhere else for it to
grow into. In many ways, identifying the movement of a grain of
sugar in the toffee machine with the evolution of the state of a
chaotic system in three dimensions is a useful way to visualize
chaotic motion.

We want to require a sense of containment for chaos, since it is
hardly surprising that it is difficult to predict things that are flying
apart to infinity, but we do not want to impose so strict a condition
as requiring a forecast to never exceed some limited value, no
matter how big that value might be. As a compromise, we require
the system to come back to the vicinity of its current state at some
point in the future, and to do so again and again. It can take as long
as it wants to come back, and we can define coming back to mean
returning closer to the current point than we have ever seen it
return before. If this happens, then the trajectory is said to be
recurrent. The toffee again provides an analogy: if the motion was
chaotic and we wait long enough, our two grains of sugar will again
come back close together, and each will pass close to where it was at
the beginning of the experiment, assuming no one turns off the
machine in the meantime.
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Chapter 3

Chaos in context:

determinism, randomness,

and noise

All linear systems resemble one another, each nonlinear system is

nonlinear in its own way.

After Tolstoy’s Anna Karenina

Dynamical systems

Chaos is a property of dynamical systems. And a dynamical system
is nothing more than a source of changing observations: Fibonacci’s
imaginary garden with its rabbits, the Earth’s atmosphere as
reflected by a thermometer at London’s Heathrow airport, the
economy as observed through the price of IBM stock, a computer
program simulating the orbit of the moon and printing out the
date and location of each future solar eclipse.

There are at least three different kinds of dynamical systems. Chaos
is most easily defined in mathematical dynamical systems. These
systems consist of a rule: you put a number in and you get a new
number out, which you put back in, to get yet a newer number out,
which you put back in. And so on. This process is called iteration.
The number of rabbits each month in Fibonacci’s imaginary garden
is a perfect example of a time series from this kind of system. A
second type of dynamical system is found in the empirical world of
the physicist, the biologist, or the stock market trader. Here, our
sequence of observations consists of noisy measurements of reality,
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which are fundamentally different from the noise-free numbers of
the Rabbit Map. In these physical dynamical systems – the Earth’s
atmosphere and Scandinavia’s vole population, for example –
numbers represent the state, whereas in the Rabbit Map they were
the state. To avoid needless confusion, it is useful to distinguish a
third case when a digital computer performs the arithmetic
specified by a mathematical dynamical system; we will call this a
computer simulation – computer programs that produce TV
weather forecasts are a common example. It is important to
remember that these are different kinds of systems and that each is
a different beast: our best equations for the weather differ from our
best computer models based on those equations, and both of these
systems differ from the real thing the Earth’s atmosphere itself.
Confusingly, the numbers from each of our three types of systems
are called time series, and we must constantly struggle to keep in
mind the distinction between what these are time series of: a
number of imaginary rabbits, the True temperature at the airport (if
such a thing exists), a measurement representing that temperature,
and a computer simulation of that temperature.

The extent to which these differences are important depends on
what we aim to do. Like la Tour’s card players, scientists,
mathematicians, statisticians, and philosophers each have different
talents and aims. The physicist may aim to describe the
observations with a mathematical model, perhaps testing the
model by using it to predict future observations. Our physicist is
willing to sacrifice mathematical tractability for physical relevance.
Mathematicians like to prove things that are true for a wide range
of systems, but they value proof so highly that they often do not
care how widely they must restrict that range to have it; one
should almost always be wary whenever a mathematician is
heard to say ‘almost every’. Our physicist must be careful not to
forget this and confuse mathematical utility with physical
relevance; physical intuitions should not be biased by the properties
of ‘well-understood’ systems designed only for their mathematical
tractability.
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Our statistician is interested in describing interesting statistics
from the time series of real observations and in studying the
properties of dynamical systems that generate time series which
look like the observations, always taking care to make as few
assumptions as possible. Finally, our philosopher questions the
relationships among the underlying physical system that we claim
generated the observations, the observations themselves, and the
mathematical models or statistical techniques that we created to
analyse them. For example, she is interested in what we can know
about the relationship between the temperature we measure and
the true temperature (if such a thing exists), and in whether the
limits on our knowledge are merely practical difficulties we might
resolve or limits in principle that we can never overcome.

Mathematical dynamical systems and attractors
We commonly find four different types of behaviour in time series.
They can (i) grind to a halt and more or less repeat the same fixed
number over and over again, (ii) bounce around in a closed loop like
a broken record, periodically repeating the same pattern: exactly
the same series of numbers over and over, (iii) move in a loop that
has more than one period and so does not quite repeat exactly but
comes close, like the moment of high tide drifting through the time
of day, or (iv) forever jump about wildly, or perhaps even calmly,
displaying no obvious pattern. The fourth type looks random, yet
looks can be deceiving. Chaos can look random but it is not random.
In fact, as we have learned to see better, chaos often does not even
look all that random to us anymore. In the next few pages we will
introduce several more maps, though perhaps without the rice or
rabbits. We need these maps in order to generate interesting
artefacts for our tour in search of the various types of behaviour just
noted. Some of these maps were generated by mathematicians for
this very purpose, although our physicist might argue, with reason,
that a given map was derived by simplifying physical laws. In truth,
the maps are simple enough to have each come about in several
different ways.
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Before we can produce a time series by iterating a map, we need
some number to start with. This first number is called an initial
condition, an initial state that we define, discover, or arrange for
our system to be. As in Chapter 2, we adopt the symbol X as short-
hand for a state of our system. The collection of all possible states X
is called the state space. For Fibonacci’s imaginary rabbits, this
would be the set of all whole numbers. Suppose our time series is
from a model of the average number of insects per square mile at
mid-summer each year. In that case, X is just a number and the
state space, being the collection of all possible states, is then a line.
It sometimes takes more than one number to define the state, and if
so X will have more than one component. In predator-prey models,
for instance, the populations of both are required and X has two
components: it is a vector. When X is a vector containing both the
number of voles (prey) and the number of weasels (predators) on
the first of January each year, then the state space will be a two-
dimensional surface – a plane – that contains all pairs of numbers.
If X has three components (say, voles, weasels, and annual
snowfall), then the state space is a three-dimensional space
containing all triplets of numbers. Of course, there is no reason to
stop at three components; although the pictures become more
challenging to draw in higher dimensions, modern weather models
have over 10,000,000 components. For a mathematical system,
X can even be a continuous field, like the height of the surface
of the ocean or the temperature at every point on the surface of
the Earth. However,  our observations of physical systems will
never be more complicated than a vector, and since we will only
measure a finite number of things, our observations will always be
finite-dimensional vectors. For the time being, we will consider the
case in which X is a simple number, such as one-half.

Recalling that a mathematical map is just a rule that transforms one
set of values into the next set of values, you can define the
Quadrupling Map by the rule:

Multiply X by four to form the new value of X.
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Given an initial condition, like X equals one-half, this mathematical
dynamical system produces a time series of values of X, in this case
½ × 4 = 2, 2 × 4 = 8, 8 × 4 = 32 . . . and the time series is 0.5, 2, 8, 32,
128, 512, 2048 . . . And so on. This series just gets bigger and
bigger and, dynamically speaking, that is not so interesting. If a
time series of X grows without limit like this one does, we call it
unbounded. In order to get a dynamical system where X is bounded,
we’ll take a second example, the Quartering Map:

Take X divided by four as the new X

Starting at X = ½ yields the time series 1/8, 1/32, 1/128, . . . . At first
sight, this is not very exciting since X rapidly shrinks towards zero.
But in fact, the Quartering Map has been carefully designed to
illustrate special mathematical properties. The origin – the state
X = 0 – is a fixed point: if we start there we will never leave, since
zero divided by four is again zero. The origin is also our first
attractor; under the Quartering Map the origin is the inevitable if
unreachable destination: if we start with some other value of X, we
never actually make it to the attractor, although we get close as the
number of iterations increases without limit. How close? Arbitrarily
close. As close as you like. Infinitesimally close, meaning closer
than any number you can name. Name a number, any number, and
we can work out how many iterations are required after which X
will remain closer to zero than that number. Getting arbitrarily
close to an attractor as time goes on while never quite reaching it is
a common feature of many time series from nonlinear systems. The
pendulum provides a physical analogue: each swing will be smaller
than the last, an effect we blame on air resistance and friction. The
analogue of the attractor in this case is the motionless pendulum
hanging straight down. We will have more to say about attractors
after we have added a few more dynamical systems to our
menagerie.

In the Full Logistic Map, time series from almost every X bounces
around irregularly between zero and one forever:
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Subtract X2 from X, multiply the difference by four and take the

result as the new X.

If we multiply components of state variables by other components,
things become nonlinear. What is the time series in this case if we
again start with X equals one-half? Starting with ½, X minus X2 is
¼, times four is one, so our new value is one. Continuing with X
now equal to one, we have X minus X2 is zero. But four times zero is
always zero, so we’ll get zeros forever. And our time series is 0.5, 1,
0, 0, 0 . . . This does not blow up, but it is hardly exciting; recall the
warning about ‘almost every’.

The order of the numbers in a time series is important, whether the
series reflects monthly values of Fibanocci’s rabbits or iterations of
the Full Logistic Map. Using the short-hand suggested in Chapter 2,
we will write X5 for the fifth new value of X, and X0 for the initial
state (or observation), and in general Xi for the ith value. Whether
we are iterating the map or taking observations, i is always an
integer and is often called ‘time’.

In the Full Logistic Map with X0 is equal to 0.5, X1 is equal to 1, X2

is 0, X3 is 0, X4 is 0, and Xi will be zero for all i greater than four as
well. So the origin is again a fixed point. But under the Full Logistic
Map small values of X grow (you can check this with a hand
calculator), X = 0 is unstable and so the origin is not an attractor.
A time series started near the origin is in fact unlikely to take one of
the first three options noted at the opening of this section, but to
bounce about chaotically forever.

Figure 7 shows a time series starting near X0 equals 0.876; it
represents a chaotic time series from the Full Logistic Map. But
look at it closely: does it really look completely unpredictable? It
looks like small values of X are followed by small values of X, and
that there is a tendency for the time series to linger whenever it is
near three-quarters. Our physicist would look at this series and
expect it to be predictable at least sometimes, while, after a few
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calculations, our statistician might even declare it random.
Although we can see this structure, the most common statistical
tests cannot.

A menagerie of maps

The rule that defines a map can be stated either in words, or as an
equation, or in a graph. Each panel of Figure 8 defines the rule
graphically. To use the graph, find the current value of X on the
horizontal axis, and then move directly upward until you hit the
curve; the value of this point on the curve on the vertical axis is
the new value of X. The Full Logistic Map is shown graphically in
Figure 8 (b), while the Quarter Map is in panel (a).

An easy way of using the graph to see if a fixed point is unstable is to
look at the slope of the map at the fixed point: if the slope is steeper
than 45 degrees (either up or down); then the fixed point is

7. A chaotic time series from the Full Logistic Map starting near
X0 equals 0.876. Note the series is visibly predictable whenever X is near
zero and three-quarters
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8. Graphical presentation of the (a) Quarter Map, (b) Full Logistic Map, (c) Shift Map, (d) Tent Map, (e) Tripling Tent Map,
and (f) the Moran-Ricker Map





unstable. In the Quartering Map the slope is less than one
everywhere, while for the Full Logistic Map the slope near the
origin is greater than one. Here small but non-zero values of X grow
with each iteration but only as long as they stay sufficiently small
(the slope near ½ is zero). As we will see below, for almost every
initial condition between zero and one, the time series displays true
mathematical chaos. The Full Logistic Map is pretty simple; chaos
is pretty common.

To see if a mathematical system is deterministic merely requires
checking carefully whether carrying out the rule requires a random
number. If not, then the dynamical system is deterministic: every
time we put the same value of X in, we get the same new value of X
out. If the rule requires (really requires) a random number, then the
system is random, also called stochastic. With a stochastic system,
even if we iterate exactly the same initial condition we expect the
details of the next value of X and thus the time series to be different.
Looking back at their definitions, we see that the three maps
defined above are each deterministic; their future time series is
completely determined by the initial condition, hence the name
‘deterministic system’. Our philosopher would point out that just
knowing X is not enough, we also need to know the mathematical
system and we have to have the power to do exact calculations with
it. These were the three gifts Laplace ensured his demon possessed
200 years ago.

Our first stochastic dynamical system is the AC Map:

Divide X by four, then subtract ½ and add a random number R to

get the new X.

The AC Map is a stochastic system since applying the rule requires
access to a supply of random numbers. In fact, the rule above is
incomplete, since it does not specify how to get R. To complete the
definition we must add something like: for R on each iteration, pick
a number between zero and one in a manner that each number is
equally likely to be chosen, which implies that R will be uniformly
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distributed between zero and one and that the probability of the
next value of R falling in an interval of values is proportional to the
width of that interval.

What rule do we use to pick R? It could not be a deterministic rule,
since then R would not be random. Arguably, there is no finite rule
for generating values of R. This has nothing to do with needing
uniform numbers between zero and one. We’d have the same
problem if we wanted to generate random numbers which
mimicked Galton’s ‘bell-shape’ distribution. We will have to rely on
our statistician to somehow get us the random numbers we need;
hereafter we’ll just state whether they have a uniform distribution
or the bell-shaped distribution.

In the AC Map, each value of R is used within the map, but there is
another class of random maps – called Iterated Function Systems,
or IFS for short – which appear to use the value of R not in a
formula but to make a decision as to what to do. One example is the
Middle Thirds IFS Map, which will come in handy later when we
try to work out the properties of maps from the time series that they
generate. The Middle Thirds IFS Map is:

Take a random number R from a uniform distribution between zero

and one.

If R is less than a half, take X/3 as the new X

Otherwise take 1 – X/3 as the new X.

So now we have a few mathematical systems, and we can easily
tell if they are deterministic or stochastic. What about computer
simulations? Digital computer simulations are always
deterministic. And as we shall see in Chapter 7, the time series
from a digital computer is either on an endless loop of values
repeating itself periodically, over and over again, or it is on its
way towards such a loop. This first part of a time series in which
no value is repeated, the trajectory is evolving towards a periodic
loop but has not reached it, is called a transient. In
mathematical circles, this word is something of an insult, since
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mathematicians prefer to work with long-lived things, not mere
transients. While mathematicians avoid transients, physical
scientists may never see anything else and, as it turns out, digital
computers cannot maintain them. The digital computers that
have proven critical in advancing our understanding of chaos
cannot, ironically, display true mathematical chaos themselves.
Neither can a digital computer generate random numbers. The
so-called random number generators on digital computers and
hand calculators are, in fact, only pseudo-random number
generators; one of the earliest of these generators was even based
on the Full Logistic Map! The difference between mathematical
chaos and computer simulations, like that between random
numbers and pseudo-random numbers, exemplifies the
difference between our mathematical systems and our computer
simulations.

The maps in Figure 8 are not there by chance. Mathematicians
often construct systems in such a way that it will be relatively simple
for them to illustrate some mathematical point or allow the
application of some specific manipulation – a word they sometimes
use to obscure technical sleight of hand. The really complicated
maps – including the ones used to guide spacecraft and the ones
called ‘climate models’, and the even bigger ones used in numerical
weather prediction – are clearly constructed by physicists, not
mathematicians. But they all work the same way: a value of X goes
in and a new value X comes out. The mechanism is exactly the same
as in the simple maps defined above, even if X might have over
10,000,000 components.

Parameters and model structure
The rules that define the maps above each involve numbers other
than the state, numbers like four and one-half. These numbers are
called parameters. While X changes with time, parameters remain
fixed. It is sometimes useful to contrast the properties of time series
generated using different parameter values. So instead of

44

Ch
ao

s



defining the map with a particular parameter value, like 4, maps
are usually defined using a symbol for the parameter, say α. We
can then contrast the behaviour of the map at α equals 4 with
that at α = 2, or α = 3.569945, for example. Greek symbols are
often used to clearly distinguish parameters from state variables.
Rewriting the Full Logistic Map with a parameter yields one of
the most famous systems of nonlinear dynamics: the Logistic
Map:

Subtract X2 from X, then multiply by α and take the result as the

new X.

In physical models, parameters are used to represent things like
the temperature at which water boils, or the mass of the Earth,
or the speed of light, or even the speed with which ice ‘falls’ in the
upper atmosphere. Statisticians often dismiss the distinction
between the parameter and the state, while physicists tend to
give parameters special status. Applied mathematicians, as it
turns out, often force parameters towards the infinitely large or
the infinitesimally small; it is easier, for example, to study the flow
of air over an infinitely long wing. Once again, these different points
of view each make sense in context. Do we require an exact solution
to an approximate question, or an approximate answer to a
particular question? In nonlinear systems, these can be very
different things.

Attractors
Recall the Quartering Map, noting that after one iteration every
point between zero and one will be between zero and one-quarter.
Since all the points between zero and one-quarter are also between
zero and one, none of these points can ever escape to values greater
than one or less than zero. Dynamical systems in which, on average,
line segments (or in higher dimensions, areas or volumes) shrink
are called dissipative. Whenever a dissipative map translates a
volume of state space completely inside itself, we know immediately
that an attractor exists without knowing what it looks like.
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Whenever α is less than four we can prove that the Logistic Map
has an attractor by looking at what happens to all the points
between zero and one. The largest new value of X we can get
is the iteration of X equals one-half. (Can you see this in
Figure 8?) This largest value is α/4, and as long as α is less than
four this largest value is less than one. That means every point
between zero and one iterates to a point between zero and α/4
and is confined there forever. So the system must have an
attractor. For small values of α the point X equals zero is the
attractor, just like in the Quartering Map. But if α is greater
than one, then any value of X near zero will move away and the
attractor is elsewhere. This is an example of a non-constructive
proof: we can prove that an attractor exists but, frustratingly,
the proof does not tell us how to find it nor give any hint of its
properties!

Multiple time series of the Logistic Map for each of four different
values of α are shown in Figure 9. In each panel, we start with
512 points taken at random between zero and one. At each
step we move the entire ensemble of points forward in time.
In the first step we see that all remain greater than zero, yet
move away from X equals one never to return: we have an
attractor. In (a) we see them all collapsing onto the period one
loop; in (b) onto one of the two points in the period two loop;
in (c) onto one of the four points of the period four loop. In (d),
we can see that they are collapsing, but it is not clear what the
period is. To make the dynamics more plainly visible, one
member of our ensemble is chosen at random in the middle
of the graph, and the points on its trajectory are joined by a line
from that point forward. The period one loop (a) appears as a
straight line, while (b) and (c) show the trajectories alternating
between two or four points, respectively. While (d) first looks like
a period four loop as well, but a closer look shows that there are
many more than four options, and that while there is regularity in
the order in which the bands of points are visited, no simple
periodicity is visible.
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To get a different picture of the same phenomena, we can
examine many different initial conditions and different values
for α at the same time, as shown in Figure 13 (page 63). In this
three-dimensional view, the initial states can be seen randomly
scattered on the back left of the box. At each iteration, they move
out towards you and the points collapse towards the pattern shown
in the previous two figures. The iterated initial random states are
shown after 0, 2, 8, 32, 128, and 512 iterations; it takes some time
for the transients to die away, but the familiar patterns can be seen
emerging as the states reach the front of the box.

Tuning model parameters and structural stability
We can see now that a dynamical system has three components: the
mathematical rule that defines how to get the next value, the
parameter values, and the current state. We can, of course, change
any of these things and see what happens, but it is useful to
distinguish what type of change we are making. Similarly, we may
have insight into the uncertainty in one of these components, and it
is in our interest to avoid accounting for uncertainty in one
component by falsely attributing it to another.

Our physicist may be looking for the ‘True’ model, or only just a
useful one. In practice there is an art of ‘tuning’ parameter values.
And while nonlinearity requires us to reconsider how we find ‘good
parameter values’, chaos will force us to re-evaluate what we mean
by ‘good’. A very small difference in the value of a parameter which
has an unnoticeable impact on the quality of a short-term forecast
can alter the shape of an attractor beyond recognition. Systems in
which this happens are called structurally unstable. Weather
forecasters need not worry about this, but climate modellers must;
as Lorenz noted in the 1960s.

A great deal of confusion has arisen from the failure to
distinguish between uncertainty in the current state, uncertainty
in the value of a parameter, and uncertainty regarding the
model structure itself. Technically, chaos is a property of a
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9. Each frame shows the evolution of 512 points, initially spread at
random between zero and one, as they move forward under the Logistic
Map. Each panel shows one of four different values of α, showing the
collapse towards (a) a fixed point, (b) a period two loop, (c) a period four
loop, and (d) chaos. The solid line starting at time 32 shows the
trajectory of one point, in order to make the path on each attractor
visible





dynamical system with fixed equations (structure) and specified
parameter values, so the uncertainty that chaos acts on is only
the uncertainty in the initial state. In practice, these distinctions
become blurred and the situation is much more interesting, and
confused.

Statistical models of Sun spots
Chaos is only found in deterministic systems. But to understand its
impact on science we need to view it against the background of
traditional stochastic models developed over the past century.
Whenever we see something repetitive in nature, periodic motion
is one of the first hypotheses to be deployed. It can make you
famous: Halley’s comet, and the Wolf Sun spot number. In the
end, the name often sticks even when we realize that the
phenomenon is not really periodic. Wolf guessed that the Sun
went through a cycle of about 11 years at a time when he had less
than 20 years’ data. Periodicity remains a useful concept even
though it is impossible to prove a physical system is periodic
regardless of how much data we take. So are the concepts of
determinism and chaos.

The solar record showed correlations with weather, with economic
activity, with human behaviour; even 100 years ago the 11-year
cycle could be ‘seen’ in tree rings. How could we model the Sun
spots cycle? Models of a frictionless pendulum are perfectly
periodic, while the solar cycle is not. In the 1920s, the Scottish
statistician Udny Yule discovered a new model structure, realizing
how to introduce randomness into the model and get more
realistic-looking time series behaviour. He likened the observed
time series of Sun spots to those from the model of a damped
pendulum, a pendulum with friction which would have a free
period of about 11 years. If this model pendulum were ‘left alone
in a quiet room’, the resulting time series would slowly damp down
to nothing. In order to motivate his introduction of random
numbers to keep the mathematical model going, Yule extended the
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analogy with a physical pendulum: ‘Unfortunately, boys with pea
shooters get into the room, and pelt the pendulum from all sides at
random.’ The resulting models became a mainstay in the
statistician’s arsenal. A linear, stochastic mainstay. We will define
the Yule Map:

Take α times X plus a random value R to be the new value of X

where R is randomly drawn from the standard bell-shaped

distribution.

So how does this stochastic model differ from a chaotic model?
There are two differences that immediately jump out at the
mathematician: the first is that Yule’s model is stochastic – the
rule requires a random number generator, while a chaotic model
of the Sun spots would be deterministic by definition. The second
is that Yule’s model is linear. This implies more than simply that
we do not multiply components of the state together in the
definition of the map; it also implies that one can combine
solutions of the system and get other acceptable solutions, a
property called superposition. This very useful property is not
present in nonlinear systems.

Yule developed a model similar to the Yule Map that behaved more
like the time series of real Sun spots. Cycles in Yule’s improved
model differ slightly from one cycle to the next due to the random
effects, the details of the pea shooters. In a chaotic model the state
of the Sun differs from one cycle to the next. What about
predictability? In any chaotic model, almost all nearby initial
states will eventually diverge, while in each of Yule’s models even far
away initial states would converge, if both experienced the same
forcing from the pea shooters. This is an interesting and rather
fundamental difference: similar states diverge under deterministic
dynamics whereas they converge under linear stochastic dynamics.
That does not necessarily make Yule’s model easier to forecast, since
we never know the details of the future random forcing, but it
changes the way that uncertainty evolves in the system, as shown in
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Figure 10. Here an initially small uncertainty, or even an
initially zero uncertainty, at the bottom grows wider and moves
to the left with each iteration. Note that the uncertainty in the
state seems to be approaching a bell-shaped distribution, and
has more or less stabilized by the time it reaches the top of the
graph. Once the uncertainty saturates in a static state, then all
predictability is lost; this final distribution is called the ‘climate’
of the model.

10. The evolution of uncertainty under the stochastic Yule Map.
Starting as a point at the bottom of the graph, the uncertainty spreads to
the left as we move forward in time (upwards) and approaches a
constant bell-shaped distribution
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Physical dynamical systems
There is no way of proving the correctness of the position of

‘determinism’ or ‘indeterminism’. Only if science were complete or

demonstrably impossible could we decide such questions.

E. Mach (1905)

There is more to the world than mathematical models. Just about
anything we want to measure in the real world, or even just think
about observing, can be taken to have come from a physical
dynamical system. It could be the position of the planets in the solar
system, or the surface of a cup of coffee on a vibrating table, or the
population of fish in a lake, or the number of grouse on an estate, or
a coin being flipped.

The time series we want to observe now is the state of the physical
system: say, the position of our nine planets relative to the Sun, the
number of fish or grouse. As a short-hand, we will again denote the
state of the system as X, while trying to remember that there is a
fundamental difference between a model-state and the True state, if
such a thing exists. It is unclear how these concepts stand in
relation to each other; as we shall see in Chapter 11, some
philosophers have argued that the discovery of chaos implies the
real world must have special mathematical properties. Other
philosophers, perhaps sometimes the same ones, have argued that
the discovery of chaos implies mathematics does not describe the
world. Such are philosophers.

In any event, we never have access to the True state of a physical
system, even if one exists. What we do have are observations,
which we will call ‘S’ to distinguish them from the state of the
system, X. What is the difference between X and S? The unsung
hero of science: noise. Noise is the glue that bonds the
experimentalists with the theorists on those occasions when they
meet. Noise is also the grease that allows theories to slide easily
over awkward facts.
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In the happy situation where we know the mathematical model
which generated the observations and we also know of a noise
model for whatever generated whatever noise there was, then we
are in the Perfect Model Scenario, or PMS. It is useful to
distinguish a strong version of PMS where we know the parameter
values exactly, from a weak version where we know only the
mathematical forms and must estimate parameter values from the
observations. As long as we are in either version of PMS, the noise is
defined by the distance between X and S, and it makes sense to
speak of noise as causing our uncertainty in the state, since we know
a True state exists even if we do not know its value. Not much of this
picture survives when we leave PMS. Even within PMS, noise takes
on a new prominence once we acknowledge that the world is not
linear.

What about the concepts of deterministic and random, or even
periodic? These refer to properties of our models; we can apply
them to the real world only via (today’s) best model. Are there really
random physical dynamical systems? Despite the everyday use of
coin flips and dice as sources of ‘randomness’, the typical answer in
classical physics is: no, there is no randomness at all. With a
complete set of laws it may (or may not) be too difficult for us to
calculate the outcomes of coin flips, rolling dice, or spinning a
roulette: but that is a problem only in practice, not in principle:
Laplace’s demon would have no difficulty with such predictions.
Quantum mechanics, however, is different. Within the traditional
quantum mechanical theory, the half-life of a uranium atom is as
natural and real a quantity as the mass of the uranium atom. The
fact that classical coin tosses or roulette are not best modelled as
random is irrelevant, given the quantum mechanical claim for
randomness and objective probabilities. Claims for – or against –
the existence of objective probabilities require interpreting physical
systems in terms of our models of those systems. As always. Some
future theory may revoke this randomness in favour of
determinism, but we are on the scene only for a vanishingly
small interval. It is relatively safe to say that some of our best
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models of reality will still admit random elements as you read these
words.

Observations and noise
Over the last few decades, a huge number of scientific papers have
been written about using a time series to distinguish deterministic
systems from stochastic systems. This avalanche was initiated in the
physics literature, and then spread into geophysics, economics,
medicine, sociology, and beyond. Most of these papers were
inspired by a beautiful theorem proven by the Dutch
mathematician Floris Takens in 1983, to which we will return in
Chapter 8. Why were all these papers written, given that we have a
simple rule for determining if a mathematical system is
deterministic or stochastic? Why not just look at the rules of the
system and see if it requires a random number generator? It is
common to confuse the games mathematicians play with
constraints placed on the work of the natural (and other) scientists.

Real mathematicians like to play intellectual games, like pretending
to forget the rules and then guessing if the system is deterministic
or stochastic from looking only at the time series of the states of the
system. Could they clearly identify any deterministic system given
the time series from the infinitely remote past to the infinitely
distant future? For fixed points and even periodic loops, this game
is not challenging enough; to make it more interesting, consider a
variation in which we do not know the exact states, but have access
only to noisy observations, S, of each state X. The origin S is
commonly, if somewhat misleadingly, thought of as being related to
the addition of a random number to each true X. In that case, this
observational noise does not affect the future states of the system,
only our observations of each state; it is a very different role from
that played by the random numbers R in the stochastic systems, like
the Yule Map where the value of R did impact the future since it
changed the next value of X. To maintain this distinction, random
influences that do influence X are called dynamic noise.
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As noted above, mathematicians can work within the Perfect Model
Scenario (PMS). They start off knowing that the model which
generated the time series has a certain kind of structure, and
sometimes they assume they know the structure (weak PMS),
sometimes even the values of the parameters as well (strong PMS).
They generate a time series of X, and from this a time series of S.
They then pretend to forget the values of X and see if they can work
out what they were, or they pretend to forget the mathematical
system and see if, given only S, they can identify the system along
with its parameter values, or determine if the system is chaotic, or
forecast the next value of X.

At this point, it should be pretty easy to see where their game is
going: our mathematicians are trying to simulate the situation that
natural scientists can never escape from. The physicists, earth
scientists, economists, and other scientists do not know the rule, the
full Laws of Nature, relevant to the physical systems of scientific
study. And scientific observations are not perfect; they may be
invariably uncertain due to observational noise, but that is not the
end of the story. It is a capital mistake to confuse real observations
with those of these mathematical games.

The natural scientist is forced to play a different game. While
attempting to answer the same questions, the scientist is given only
a time series of observations, S, some information regarding the
statistics of the observational noise, and the hope that some
mathematical map exists. Physicists can never be sure if such a
structure exists or not; they cannot even be certain if the model
state variable X really has any physical meaning. If X is the number
of rabbits in a real garden, it is hard to imagine that X does not
exist, it is just some whole number. But what about model variables
like wind speed or temperature? Are there real numbers that
correspond to those components of our state vector? And if not,
where between rabbits and wind speed does the correspondence
break down?
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Our philosopher is very interested in such questions, and we all
should be. LeVerrier, the Frenchman who worked with Fitzroy to
set up the first weather warning system, died famous for discovering
two planets. He used Newton’s Laws to predict the location of
Neptune based on ‘irregularities’ in the observed time series of
Uranus’s orbit, and that planet was duly observed. He also analysed
‘irregularities’ in the orbit of Mercury, and again told observers
where to find another new planet. And they did: the new planet,
named Vulcan, was very near the Sun and difficult to see, but it was
observed for decades. We now know that there is no planet Vulcan;
LeVerrier was misled because Mercury’s orbit is poorly described by
Newton’s Laws (although it is rather better described by Einstein’s).
How frequently do we blame the mismatch between our models
and our data on noise when the root cause is in fact model
inadequacy? Most really interesting science is done at the edges,
whether the scientists realize it or not. We are never sure if today’s
laws apply there or not. Modern-day climate science is a good
example of hard work being done at the edge of our understanding.

The study of chaos has clarified the importance of distinguishing
two different issues: one being the effects of uncertainty in the state
or the parameters, the other being the inadequacy of our
mathematics itself. Mathematicians working within PMS can make
progress by pretending that they are not, while scientists who
pretend – or believe – that they are working within PMS when they
are not can wreak havoc, especially if their models are naı̈vely taken
as a basis for decision making. The simple fact is that we cannot
apply the standards of mathematical proof to physical systems, but
only to our mathematical models of physical systems. It is
impossible to prove that a physical system is chaotic, or to prove it is
periodic. Our physicist and mathematician must not forget that
they sometimes use the same words to mean rather different things;
when they do, they often run into some difficulty and considerable
acrimony. Mach’s comment above (page 53) suggests that this is not
a new issue.
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Chapter 4

Chaos in mathematical

models

We would all be better off if more people realised that simple nonlinear

systems do not necessarily possess simple dynamical properties.

Lord May (1976)

This chapter consists of a very short survey of chaotic mathematical
models from zoology to astronomy. Like any cultural invasion, the
arrival of nonlinear deterministic models with sensitive dependence
was sometimes embraced, and sometimes not. It has been most
uniformly welcomed in physics where, as we shall see, the
experimental verification of its prophecies has been nothing short of
astounding. In other fields, including population biology, the very
relevance of chaos is still questioned. Yet it was population
biologists who proposed some of the first chaotic models a decade
before the models of astronomers and meteorologists came on the
scene. Renewed interest in this work was stimulated in 1976 by an
influential and accessible review article in the journal Nature. We
begin with the basic insights noted in that article.

The darling bugs of May

In 1976, Lord May provided a high-profile review of chaotic
dynamics in Nature that surveyed the main features of
deterministic nonlinear systems. Noting that many interesting
questions remained unresolved, he argued that this new perspective
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provided not just theoretical but practical and pedagogical value as
well, and that it suggested everything from new metaphors for
describing systems to new quantities to observe and new parameter
values to estimate. Some of the simplest population dynamics are
those of breeding populations when one generation does not
overlap with the next. Insects that have one generation per year, for
example, might be described by discrete time maps. In this case Xi

would represent the population, or population density, in the ith

year, so our time series would have one value per year, and the map
is the rule that determines the size of next year’s population given
this year’s. A parameter α represents the density of resources. In the
1950s, Moran and Ricker independently suggested the map shown
in Figure 8(f ) (page 40). Looking at this graph, we can see that
when the current value of X is small, the next value of X is larger:
small populations grow. Yet if X gets too big, then the next value of
X is small, and when the current value is very large, the next value is
very small: large populations exhaust the resources available to each
individual, and so successful reproduction is reduced.

Irregularly fluctuating populations have long been observed, and
researchers have long argued over their origin. Time series of
Canadian lynx and both Scandinavian and Japanese voles are, along
with the Sun spot series, some of the most analysed data sets in all
of statistics. The idea that very simple nonlinear models can display
such irregular fluctuations suggested a new potential mechanism
for real population fluctuations, a mechanism that was in conflict
with the idea that ‘natural’ populations should maintain either a
steady level or a regular periodic cycle. The idea that these random-
looking fluctuations need not be induced by some outside force like
the weather, but could be inherent to the natural population
dynamics, had the potential to radically alter attempts to
understand and manage populations. While noting that ‘replacing a
population’s interactions with its biological and physical
environment by passive parameters may do great violence to the
reality’, May provided a survey of interesting behaviours in the
Logistic Map. The article ends with ‘an evangelical plea for the
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introduction of these difference equations into elementary
mathematics courses, so that students’ intuition may be enriched by
seeing the wild things that simple nonlinear equations can do’. That
was three decades ago.

We will consider a few of these wild things below, but note that the
mathematicians’ focus on the Logistic Map is not meant to suggest
that this map itself in any sense ‘governs’ the various physical and
biological systems. One thing that distinguishes nonlinear
dynamics from traditional analysis is that the former tends to focus
more on the behaviour of systems rather than on the details of any
one initial state under particular equations with specific parameter
values: a focus on geometry rather than statistics. Similar dynamics
can be more important than ‘good’ statistics. And it turns out that
the Logistic Map and the Moran-Ricker Map are very similar in this
way, even though they look very different in Figure 8(f ) (page 40).
The details may well matter, of course; the enduring role of the
Logistic Map itself may be pedagogical, helping to exorcize the
historical belief that complicated dynamics requires either very
complicated models or randomness.

Universality: prophesying routes to chaos
The Logistic Map gives rise to amazingly rich varieties of behaviour.
The famous bifurcation diagram of Figure 11 summarizes the
behaviour of the map at many different values of its parameter in
one figure. The horizontal axis is α and the dots in any vertical slice
indicate states which fall near the attractor for that value of α. Here
α reflects some parameter of the system: if X is the number of fish in
the lake, then α is the amount of food in the lake; if X is the time
between drips of the faucet, then α is the rate of water leaking
through the tap; if X is the motion of rolls in fluid convection, then
α is the heat delivered to the bottom of the pan. In models of very
different things, the behaviour is the same. For small α (on the left)
we have a fixed point attractor. The location of the fixed point
increases as α increases, until α reaches a value of one, where the
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fixed point vanishes and we observe iterations which alternate
between two points: a period two loop. As α continues to increase,
we get a period four loop, then period eight, then 16, then 32. And
so on. Bifurcating over, and over again.

Since the period of the loop always increases by a factor of two, these
are called period doubling bifurcations. While the old loops are no
longer seen, they do not cease to exist. They are still there, but have
become unstable. This is what happened to the origin in the Logistic
Map when α is greater than one: X only stays at zero if it is exactly
equal to zero, while small non-zero values grow at each iteration.
Similarly, points near an unstable periodic loop move away from it,
and so we no longer see them clearly when iterating the map.

There is a regularity hidden in Figure 11. Take any three consecutive
values of α at which the period doubles, subtract the first from the
second, and then divide that number by the difference between the
second and the third. The result leads to the Feigenbaum number,
~4.6692016091. Mitch Feigenbaum discovered these relationships,
working with a hand calculator in Los Alamos in the late 1970s, and

11. Period doubling behaviour in the Logistic Map as α increases from
2.8 to ~3.5; the first three doublings are marked
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the ratio is now known by his name. Others also found it
independently; having the insight to do this calculation was
stunning in each case.

Since the Feigenbaum number is greater than one, values of α at
which bifurcations occur get closer and closer together, and we have
an infinite number of birfurcations before reaching a value of α near
3.5699456718. Figure 12 indicates what happens for larger values
of α. This sea of points is largely chaotic. But note the windows of
periodic behaviour, for instance the period three window where α
takes on the value of one plus the square root of eight (that is, about
3.828). This is a stable period three loop; can you identify windows
corresponding to period five? Seven?

Figure 13 puts the figures of the Logistic Map in context. Randomly
chosen values for α and X0 form a cloud of points on the t equals
zero slice of this three-dimensional figure. Iterating the Logistic
Map forward from these values, the transients fall away, and the
attractors at each value of α slowly come into view, so that after 512
iterations the last time slice resembles Figure 12.

12. A variety of behaviours in the Logistic Map as α increases from a
period four loop at α = 3.5 to chaos at α = 4. Note the replicated period
doubling cascades at the right side of each periodic window
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13. Three-dimensional diagram showing the collapse of initially random values of X0 and α at the left rear side of the box
falling toward their various attractors as the number of iterations increases. Note the similarity of the points near the right
forward side with those in Figures 11 and 12



It would be asking too much to expect something as simple as the
Logistic Map to tell us anything about the behaviour of liquid
helium. But it does. Not only does the onset of complicated
behaviour show a qualitative indication of period doubling, the
actual quantitative values of the Feigenbaum numbers computed
from many experiments agree remarkably well with those
computed from the Logistic Map. Many physical systems seem to
display this ‘period doubling route to chaos’: hydrodynamics (water,
mercury, and liquid helium), lasers, electronics (diodes,
transistors), and chemical reactions (BZ reaction). One can often
estimate the Feigenbaum number to two-digits’ accuracy in
experiments. This is one of the most astounding results reported in
this Introduction to chaos: how could it be that simple calculations
with the Logistic Map can give us information that is relevant to all
these physical systems?

The mathematician’s fascination with this diagram arises not only
from its beauty but also from the fact that we would get a similar
picture for the Moran-Ricker Map and many other systems that at
first instance appear quite different from the Logistic Map. A
technical argument shows that the period doubling is common in
‘one-hump’ maps where the hump looks like a parabola. In a very
real and relevant sense, almost all nonlinear maps look like this very
close to their maximum value, so properties like period doubling
are called ‘universal’, although not all maps have them. More
impressive than these mathematical facts is the empirical fact that a
wide variety of physical systems display unexpected behaviour that,
as far as we can see, reflects this mathematical structure. Is this not
then a strong argument for the mathematics to govern, not merely
describe, Nature? To address this question, we might consider
whether the Feigenbaum number is more akin to a constant of
geometry, like π, or a physical constant like the speed of light, c. The
geometry of disks, cans, and balls is well described using π, but π
hardly governs the relationship between real lengths, area, and
volumes in the same way that the values of physical constants
govern the nature of things within our laws of nature.
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The origin of the mathematical term ‘chaos’
In 1964 the Russian mathematician A. N. Sharkovski proved a
remarkable theorem about the behaviours of many ‘one-hump’
maps: namely that discovering a periodic loop indicated that others,
potentially lots of others, existed. Discovering that a period 16 loop
existed for a particular value of the parameter implied there were
loops of period eight and of four and of two and of one at that value;
while finding a loop of period three meant that there was a loop of
every possible period! It is another non-constructive proof; it does
not tell us where those loops are, but nevertheless it is a pretty neat
result. Eleven years after Sharkovski, Li and Yorke published their
enormously influential paper with the wonderful title ‘Period Three
Implies Chaos’. The name ‘chaos’ stuck.

Higher-dimensional mathematical systems
Most of our model states so far have consisted of just one
component. The vole and weasel model is an exception, since the
state consisted of two numbers: one reflecting the population of
voles, the other the population of weasels. In this case, the state is a
vector. Mathematicians call the number of components in the state
the dimension of the system, since plotting the state vectors would
require a state space of that dimension.

As we move to higher dimensions, the systems are often not maps
but flows: a map is a function that takes one value of X and returns
the next value of X, while a flow provides the velocity of X for any
point in the state space. Think of a parsnip floating under the
surface of the sea; it is carried along by the current and will trace
out the flow of the sea. The three-dimensional path of the parsnip in
the sea is analogous to a path traced out by X in the state space, and
both are sometimes called trajectories. If instead of a parsnip, we
follow the path of an infinitesimal parcel of the fluid itself, we often
find these paths to be recurrent with sensitive dependence. The
equations are deterministic and these fluid parcels are said to
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display ‘Lagrangian chaos’. Laboratory experiments with fluids
often display beautiful patterns which reflect the chaotic dynamics
observed in our models of fluid flow. Without examining the
differential equations that define these velocity fields, we will next
touch several classic chaotic systems.

Dissipative chaos
In 1963, Ed Lorenz published what became a classic paper on the
predictability of chaotic systems. He considered a vastly simplified
set of three equations based on the dynamics of a fluid near the
onset of convection which is now called the Lorenz System. One can
picture the three components of the state in terms of convective
rolls in a layer of fluid between two flat plates when the lower plate
is heated. When there is no convection, the fluid is motionless and
the temperature in the fluid decreases uniformly from the warmer
plate at the bottom to the cooler plate at the top. The state X of the
Lorenz model consisted of three values {x,y,z}, where x reflected the
speed of the rotating fluid, y quantified the temperature difference
between rising and sinking fluid, and z measured the deviation
from the linear temperature profile. An attractor from this system is
shown in Figure 14; by chance, it looks something like a butterfly.
The different shading on the attractor indicates variations in the
time it takes an infinitesimal uncertainty to double. We return to
discuss the meaning of these shades in Chapter 6, but note the
variations with location.

The evolution of uncertainty in the Lorenz system is shown in
Figure 15; this looks a bit more complicated than the corresponding
figure for the Yule Map in Figure 10 (page 52). Figure 15 shows the
kind of forecast our 21st-century demon could make for this system:
an initial small uncertainty at the bottom of the panel grows wider,
then narrower, then wider, then narrower . . . eventually splitting
into two parts and beginning to fade away. But depending on the
decisions we are trying to make, there may still be useful
information in this pattern even at the time reflected at the top of
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14. Three-dimensional plots of (above) the Lorenz attractor and
(below) the Moore-Spiegel attractor. The shading indicates variations
in uncertainty doubling time at each point



15. The probability forecast our 21st-century demon would make for
the 1963 Lorenz System. Contrast the way uncertainty evolves in this
chaotic system with the relatively simple growth of uncertainty under
the Yule Map shown in Figure 10 on page 52



the panel. On this occasion the uncertainty has not stabilized by the
time it reaches the top of the graph.

In 1965, mathematical astronomers Moore and Spiegel considered
a simple model of a parcel of gas in the atmosphere of a star. The
state space is again three-dimensional, and the three components of
X are simply the height, velocity, and acceleration of the parcel. The
dynamics are interesting because we have two competing forces: a
thermal force that tends to destabilize the parcel and a magnetic
force that tends to bring it back to its starting point, much like a
spring would. As the parcel rises, it finds itself at a different
temperature than the surrounding fluid and this feeds back on its
velocity and its temperature, but at the same time the star’s
magnetic field acts as a spring to pull the parcel back towards its
original location. Motion caused by two competing forces often
gives rise to chaos. The Moore-Spiegel attractor is also shown in
Figure 16.

Chaos experiments have always pushed computers to their limits,
and sometimes slightly beyond those limits. In the 1970s, the
astronomer Michael Hénon wanted to make a detailed study of
chaotic attractors. For a given amount of computer power there
is a direct trade-off between the complexity of the system and
the duration of the time series one can afford to compute.
Hénon wanted a system with properties similar to Lorenz’s
1963 system that would be cheaper to iterate on his computer.
This was a two-dimensional system, where the state X consisted
of the pair of values {x,y}. The Hénon Map is defined by the
rules:

The new value of x i + 1 is equal to one minus yi plus α times xi
2;

the new value of y i + 1 is equal to β times xi.

Panel (b) of Figure 16 shows the attractor when α is 1.4 and β is 0.3;
panel (a) shows a slice of the Moore-Spiegel attractor made by
combining snapshots of the system whenever z was zero and
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16. Two-dimensional plots of (a) a slice of the Moore-Spiegel
attractor at z = 0; and (b) the Hénon attractor where α is 1.4 and β is
0.3. Note the similar structure with many leaves in each case



growing. This type of figure is called a Poincaré section and
illustrates how slices of a flow are much like maps.

Delay equations, epidemics, and medical
diagnostics
Another interesting family of models are delay equations. Here both
the current state and some state in the past (the ‘delayed state’) play
a direct role in the dynamics. These models are common for
biological systems, and can provide insight into oscillatory diseases
like leukaemia. In the blood supply, the number of cells available
tomorrow depends upon the number available today, and also the
number of new cells that mature today; the delay comes from the
gap in time between when these new cells are requested and when
they mature: the number of cells maturing today depends on the
number of blood cells at some point in the past. There are many
other diseases with this kind of oscillatory dynamics, and the study
of chaos in delay equations is extremely interesting and productive.

We leave the discussion of mathematical models for a paragraph to
note that medical research is another area where insights from our
mathematical models are deployed for use in real systems. Research
by Mike Mackey at McGill University and others on delay equations
has even led to a cure for at least one oscillatory disease. The study
of nonlinear dynamics has also led to insights in the evolution of
diseases that oscillate in a population, not an individual; our models
can be contrasted with reality in the study of measles, where one
can profitably consider the dynamics in time and in space. The
analysis of chaotic time series has also led to the development of
insightful ways to view complicated medical time series, including
those from the brain (EEG) and heart (ECG). This is not to suggest
that these medical phenomena of the real word are chaotic, or even
best described with chaotic models; methods of analysis developed
for chaos may prove of value in practice regardless of the nature of
the underlying dynamics of the real systems that generate the
signals analysed.
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Hamiltonian chaos
If volumes in state space do not shrink in time there can be no
attractors. In 1964, Hénon and Heiles published a paper showing
chaotic dynamics in a four-dimensional model of the motion of a
star within a galaxy. Systems in which volumes in state space do not
shrink, including those of Newtonian celestial mechanics commonly
used to predict eclipses, and which trace the future of the solar
system and spacecraft within it, are called Hamiltonian. Figure 17
is a slice from the Hénon-Heiles system, which is Hamiltonian.
Note the intricate interweaving of empty islands in a sea of chaotic
trajectories. Initial states started within these islands may fall onto
almost closed loops (tori); alternatively they may follow chaotic
trajectories confined within an island chain. In both cases, the order
in which the islands in the chain are visited is predictable, although
exactly where on each island might be unpredictable; in any case,
things are only unpredictable on small length scales.

17. A two-dimensional slice of the Hénon-Heiles attractor. Note the
simultaneous loops, and a chaotic sea with many (empty) islands
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Exploiting the insights of chaos
In the three-year period between 1963 and 1965, three
independent papers appeared (by Lorenz, by Moore and Spiegel,
and by Hénon and Heiles), each using digital computers to
introduce what would be called ‘chaotic dynamics’. In Japan, chaos
had been observed in analogue computer experiments by
Yoshisuke Ueda, and Russian mathematicians were advancing
upon a groundwork laid down by over a century of international
mathematics. Almost 50 years later, we are still finding new ways
to exploit these insights.

What limits the predictability of future solar eclipses? Is it
uncertainty in our knowledge of the planetary orbits due to
the limited accuracy of our current measurements? Or future
variations in the length of the day which alters the point on the
surface of the Earth under the eclipse? Or the failure of
Newton’s equations due to effects (better) described by general
relativity? We can see that the Moon is slowly moving away
from the Earth, and assuming that this continues, it will
eventually appear too small to block the entire Sun. In that
case, there will be a last total eclipse of the Sun. Can we
forecast when that event will occur and, weather permitting,
where we should be on the surface of the Earth in order to
see it? We do not know the answer to that question. Nor do we
know, for certain, if the solar system is stable. Newton was well
aware of the difficulties nonlinearities posed for determining
the ultimate stability of only three celestial bodies, and
suggested that insuring the stability of the solar system was a
task for God. By understanding the kinds of chaotic orbits
that Hamiltonian systems admit, we have learned many things
about the ultimate stability of the solar system. Our best guess,
currently, is that our solar system is stable, probably. Insights
like these come from understanding the geometry in state space
rather than attempting detailed calculations based upon
observations.
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Can we safely draw insights from mathematical behaviour of
low-dimensional systems? They suggest new phenomena to look
for in experiments, like periodic doubling, or suggest new
constants to estimate in Nature, like the Feigenbaum number.
These simple systems also provide test beds for our forecast
methods; this is a bit more dangerous. Are the phenomena of
low-dimensional chaotic systems the same phenomena that we
observe in more complicated models? Are they so common that
they occur even in simple low-dimensional systems like Lorenz
1963 or the Moore-Spiegel system? Or are these phenomena
due to the simplicity of these examples: do they occur only in
simple mathematical systems? The same even in or only in
question applies to techniques developed to forecast or control
chaotic systems, which are tested in low-dimensional systems:
do these things happen even in or only in low-dimensional
systems? The most robust answer so far is that difficulties
we identify in low-dimensional systems rarely go away in
higher-dimensional systems, while successful solutions to
these difficulties which work in low-dimensional systems
often fail to work in higher-dimensional systems. Recognizing
the danger of generalizing from three-dimensional systems,
Lorenz moved on to a 28-dimensional system about 50 years ago;
he is still creating new systems today, some in two dimensions and
others in 200 dimensions.

Chaos and nonlinearity impact many fields; perhaps the deepest
insight to be drawn here is that complicated-looking solutions are
sometimes acceptable and need not be due to external dynamic
noise. This does not imply that, in any particular case, they are not
due to external noise, nor does it lessen the practical value of
stochastic statistical modelling, which has almost a century of
experience and statistical good practice behind it. It does suggest
the value in developing tests for which methods to use in a given
application, and consistency tests for all modelling approached.
Our models should be as uninhibited as possible, but not more so.
The lasting impact of these simple systems may be in their
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pedagogical value; young people can be exposed to the rich
behaviours of these simple systems early in their education. By
requiring internal consistency, mathematics constrains our flights
of fancy in drawing metaphors, not so much as to bring them in line
with physical reality, but often opening new doors.
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Chapter 5

Fractals, strange attractors,

and dimension(s)

Big fleas have little fleas

upon their backs to bite’em.

And little fleas have lesser fleas,

and so ad infinitum.

A. de Morgan (1872)

No introduction to chaos would be complete without touching upon
fractals. This is neither because chaos implies fractals nor because
fractals require chaos, but simply because in dissipative chaos real
mathematical fractals appear as if from nowhere. It is just as
important to distinguish mathematical fractals from physical
fractals as it is to distinguish what we mean by chaos in
mathematical systems from what we mean by chaos in physical
systems. Despite decades of discussion, there is no single generally
accepted definition of a fractal in either case, although you can
usually recognize one when you see it. The notion is bound up in
self-similarity: as we zoom in on the boundary of clouds, countries,
or coastlines, we see patterns similar to those seen at the larger-
length scales again and again. The same thing happens with the set
of points in Figure 18. Here the set is composed of five clusters of
points; if we enlarge any one of these clusters, we find the
enlargement looks similar to the entire set itself. If this similarity is
exact – if the zoom is equivalent to the original set – then the set is
called strictly self-similar. If only statistical properties of interest
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are repeated, then the set is called statistically self-similar.
Deciding exactly what counts as a ‘statistical property of interest’
opens one of the discussions that has prevented agreement on a
general definition. Disentangling these interesting details deserves
its own Very Short Introduction to Fractals; we will content
ourselves with some examples.

In the late 18th century, fractals were widely discussed by
mathematicians including Georg Cantor, although the famous
Middle Thirds set that bears his name was first found by an Oxford
mathematician named Henry Smith. Fractal entities were often
disavowed by their mathematical parents as monstrous curves in
the 100 years that followed, just as L. F. Richardson was beginning
to quantify the fractal nature of various physical fractals. Both
physical and mathematical fractals were more warmly embraced by
astronomers, meteorologists, and social scientists. One of the first
fractals to bridge the divide – and blur the distinction – between a
mathematical space and real-world space appeared about 100 years
ago in an attempt to resolve Olbers’ paradox.

A fractal solution to Olbers’ paradox
In 1823, the German astronomer Heinrich Olbers encapsulated a
centuries-old concern of astronomers in the concise question: ‘Why
is the night sky dark?’ If the universe were infinitely large and more
or less uniformly filled with stars, then there would be a balance
between the number of stars at a given distance and the light we get
from each one of them. This delicate balance implies that the night
sky should be uniformly bright; it would even be difficult to see the
Sun against a similarly bright day-time sky. But the night sky is
dark. That is Olbers’ paradox. Johannes Kepler used this as an
argument for a finite number of stars in 1610. Edgar Allan Poe was
the first to suggest an argument still in vogue today: that the night
sky was dark because there had not been enough time for light from
far-away stars to reach the Earth, yet. Writing in 1907, Fournier
d’Albe proposed an elegant alternative, suggesting that the
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distribution of matter in the universe was uniform but in a fractal
manner. Fournier illustrated his proposal with the figure
reproduced in Figure 18. This set is called the Fournier Universe. It
is strictly self-similar: blowing up one of the small cubes by a factor
of 5 yields an exact duplicate of the original set. Each small cube
contains the totality of the whole.

The Fournier Universe illustrates a way out of Olbers’ paradox: the
line Fournier placed in Figure 18 indicates one of many directions
in which no other ‘star’ will ever be found. Fournier did not stop

18. The Fournier Universe, showing the self-similar structure, as
published by Fournier himself in 1907
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at the infinitely large, but also suggested that this cascade
actually extended to the infinitely small; he interpreted atoms as
micro-verses, which were in turn made of yet smaller particles, and
suggested macro-verses in which our galaxies would play the role of
atoms. In this way, he proposed one of the few physical fractals with
no inner cut-off and no outer cut-off: a cascade that went from the
infinitely large to the infinitesimally small in a manner reminiscent
of the last frames of the film Men in Black.

Fractals in physics
Big whorls have little whirls,

which feed on their velocity.

And little whirls have lesser whirls,

and so on to viscosity.

L. F. Richardson

Clouds, mountains, and coastlines are common examples of
natural fractals; statistically self-similar objects that exist in real
space. Interest in generating fractal irregularity is not new:
Newton himself recorded an early recipe, noting that when beer
is poured into milk and ‘the mixture let stand till dry, the surface
of the curdled substance will appear as rugged and mountainous
as the earth at any place’. Unlike Newton’s curdled substance, the
fractals of chaos are mathematical objects found in state spaces;
they are true fractals as opposed to their physical counterparts.
What is the difference? Well, for one thing, a physical fractal only
displays the properties of a fractal at certain length scales and not
at others. Consider the edge of a cloud: as you look more and
more closely, going to smaller and smaller length scales, you’ll
reach a point at which the boundary is no more; the cloud
vanishes into the helter-skelter rush of molecules and there is no
boundary to measure. Similarly, a cloud is not self-similar on
length scales comparable with the size of the Earth. For physical
fractals, fractal concepts break down as we look too closely; these
physical cut-offs make it easy to identify old Hollywood special
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effects using model ships in wave tanks: we can sense the cut-off
is at the wrong length scale relative to the ‘ships’. Today, film
makers in Hollywood and in Wellington have learned enough
mathematics to generate computer counterfeits that hide the cut-
off better. The Japanese artist Hokusai respected this cut-off in
his famous ‘Great Wave’ print of the 1830s. Physicists have also
known this for some time: de Morgan’s poem allowed its cascade
of fleas to continue ad infinitum, while the cascade whorls in
L. F. Richardson’s version face a limit due to viscosity, the term
for friction within fluids. Richardson was expert in the theory
and observation of turbulence. He once threw parsnips off one
end of Cape Cod canal at regular intervals, using the time of their
arrival at a bridge on the other end of the canal to quantify how
the fluid dispersed as it moved downstream. He also computed
(by hand!) the first numerical weather forecast, during the First
World War.

A Quaker, who left the Met Office in the First World War to
become an ambulance driver in France, Richardson later became
interested in measuring the length of the border between nations
in order to test his theory that this influenced the likelihood of
their going to war. He identified an odd effect when measuring the
same border on different maps: the border between Spain and
Portugal was much longer when measured on the map of Portugal
than it was when measured on the map of Spain! Measuring
coastlines of island nations like Britain, he found that the length of
the coastline increased as the callipers he walked along the coast to
measure it decreased, and also noted an unexpected relationship
between the area of an island and its perimeter as both vary when
measured on different scales. Richardson demonstrated that these
variations with length scale followed a very regular pattern which
could be summarized by a single number for a particular
boundary: an exponent that related the length of a curve to the
length scale used to measure it. Following fundamental work by
Mandelbrot, this number is called the fractal dimension of the
boundary.
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Richardson developed a variety of methods to estimate the fractal
dimension of physical fractals. The area-perimeter method
quantifies how the area and perimeter both change under higher
and higher resolution. For one particular object, such as a single
cloud, this relationship also yields the fractal dimension of its
border. When we look at many different clouds at the same
resolution, as in a photograph from space, a similar relationship
between areas and perimeters emerges; we do not understand why
this alternative area-perimeter relation seems to hold for collections
of different-sized clouds, given that clouds are famous for not all
looking the same.

Fractals in state space
We next construct a rather artificial mathematical system
designed to dispel one of the most resilient and misleading
myths of chaos: that detecting upon a fractal set in state
space indicates deterministic dynamics. The Tripling Tent
Map is:

If X is less than a half then take 3X as the new value of X,

Otherwise take 3 minus 3X as the new value of X.

Almost every initial state between zero and one flies far away from
the origin; we will ignore these and focus on the infinite number of
initial conditions which remain forever between zero and one. (We
ignore the apparent paradox due to the loose use of ‘infinity’ here,
but note Newton’s warning that ‘the principle that all infinities are
equal is a precarious one’.)

The Tripling Tent Map is chaotic: it is clearly deterministic, the
trajectories of interest are recurrent, and the separation between
infinitesimally close points increases by a factor of three on each
iteration, which implies sensitive dependence. A time series from
the Tripling Tent Map, along with one from the stochastic Middle
Thirds IFS Map, are shown in Figure 19. Visually, we see hints that
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19. A time series from (a) the stochastic Middle Thirds IFS Map and (b) the deterministic Tripling Tent Map. The lower
insets show a summary of all the points visited: approximations to the Middle Thirds Cantor set in each case



the chaotic map is easier to forecast: small values of X are always
followed by small values of X The two small insets at the bottom of
Figure 19 each show a set of points visited by a long trajectory from
one of the systems, they look very similar and in fact both reflect
points from the Middle Thirds Cantor set. The two dynamical
systems each visit the same fractal set, so we can never distinguish
the deterministic system from the stochastic system if we only look
at the dimension of the set of points each system visits; but is it any
surprise that to understand the dynamics we have to examine how
the system moves about, not only where it has been? This simple
counter-example slays the myth noted above; while chaotic systems
may often move on fractal sets, detecting a finite dimensional set
indicates neither determinism nor chaotic dynamics.

Finding fractals in carefully crafted mathematical maps is not so
surprising, as mathematicians are clever enough to design maps
which create fractals. One of the neatest things about dissipative
chaos is that fractals appear without the benefit of intelligent
design. The Hénon Map is the classic example. Mathematically
speaking, it represents an entire class of interesting models; there is
nothing particularly ‘fractal-looking’ in its definition, as there is in
the Middle Thirds IFS Map. Figure 20 shows a series of zooms from
where, as if by magic, self-similar structures spring out. Surely this
is one of the most amazing things about nonlinear dynamical
systems. There is no hint of artificial design in the Hénon Map, and
fractal structure appears commonplace in the attractors of
dissipative chaotic systems. It is not required for chaos, nor vice
versa, but it is common.

Like all magic, we can understand how the trick works, at least after
the fact: we have chosen to zoom in about a fixed point of the
Hénon Map, and looking at the properties of the map very, very
close to this point reveals how much to zoom in order to make its
self-similarity so striking. The details of the repeated structure, a
thick line and two thinner lines, depend on what happens far away
from this point. But if Hénon is really chaotic and the computer
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trajectory used to make these pictures is realistic, then we have a
fractal attractor naturally.

The traditional theory of turbulence in state space reflected
Richardson’s poem: it was thought that more and more periodic
modes would be excited and tracing the linear sum of all those
oscillations would require a very high-dimensional state space. So
most physicists were expecting the attractors of turbulence to be
high-dimensional doughnuts, or mathematically speaking, tori.
In the early 1970s, David Ruelle and Floris Takens were looking
for alternatives to smooth high-dimensional tori and ran into
lower-dimensional fractal attractors; they found the fractal
attractors ‘strange’. Today, the word ‘strange’ is used to describe
the geometry of the attractor, specifically the fact that it is a fractal,
while the word ‘chaos’ is used to describe the dynamics of the
system. It is a useful distinction. The precise origin of the phrase
‘strange attractor’ has been lost, but the term has proven an

20. A series of zooms into the unstable fixed point of the Hénon Map,
which is marked with a ‘ + ’ on each zoom. The same pattern repeats over
and over, until we start running out of data points
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inspiring and appropriate label for these objects of mathematical
physics. Since Hamiltonian systems have no attractors at all, they
have no strange attractors. Nevertheless, chaotic time series from
Hamiltonian systems often develop intricate patterns with stark
inhomogeneity and hints of self-similarity called strange
accumulators which persist for as long as we run our computers.
Their ultimate fate remains unknown.

Fractal dimensions
Counting the number of components in the state vector tells us the
dimension of the state space. But how would we estimate the
dimension of a set of points if those points do not define a
boundary; the points that form a strange attractor, for example?
One approach reminiscent of the area-perimeter relation is to
completely cover the set with boxes of a given size, and see how the
number of boxes required increases as the size of the individual
boxes gets smaller. Another approach considers how the number of
points changes, on average, as you look inside a ball centred on a
random point and decrease the radius of the ball. To avoid
complications that arise near the edge of an attractor, our
mathematician will consider only balls with a vanishingly small
radius, r. We find familiar-looking results: near a random point on a
line the number of points is proportional to r1 , about a point in a
plane it is proportional to πr2 , and about a point from the set which
defines a solid cube, it is proportional to 4/3 πr3 . In each case, the
exponent of r reflects the dimension of the set: one if the set forms a
line, two if a plane, three if a solid.

This method can be applied to fractal sets, although fractals tend to
have holes, called lacunae, on all scales. While dealing with these
logarithmic wrinkles is non-trivial, we can compute the dimension
of strictly self-similar sets exactly, and immediately notice that the
dimension of a fractal is often not a whole number. For the Fournier
Universe, the dimension is ~0.7325 (it equals log 5/log 9) while
the Middle Thirds Cantor set has dimension ~0.6309 (it equals
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log 2/log 3); in each case, the dimension is a fraction bigger than
zero yet less than one. Mandelbrot took the ‘fract’ in ‘fraction’ as the
root of the word ‘fractal’.

What is the dimension of the Hénon attractor? Our best estimate is
~1.26, but while we know there is an attractor, we do not know for
certain whether or not, in the long run, this attractor is merely a
long periodic loop. In maps, every periodic loop consists of only a
finite number of points and so has dimension zero. To see this, just
consider balls with a radius r smaller than the closest pair of points
on the loop; the number of points in each ball is constant (and equal
to one), which we can write as proportional to r0 , and so each has
dimension zero. In Chapter 7, we shall see why it is hard to prove
what happens in the long run using a computer simulation. First,
we will take a closer look at the challenges to quantifying the
dynamics of uncertainty even when we know the mathematical
system perfectly. For real-world systems, we only have noisy
observations, and the problem is harder still.
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Chapter 6

Quantifying the dynamics

of uncertainty

Chaos exposes our prejudices when we examine the dynamics of
uncertainty. Despite the hype regarding unpredictability, we shall
see that the quantities used to establish chaos place no restriction
whatsoever on the accuracy of today’s forecast: chaos does not
imply that prediction is hopeless. We can see why the link between
chaos and predictability has been so badly overstated by looking at
the history of the statistics used to measure uncertainty. Additional
statistics are available today.

Once scientists touch on uncertainty and predictability, they are
honour-bound to clarify the relevance of their forecasts and the
statistics used to quantify their uncertainty. The older man looking
out of la Tour’s painting may have provided the younger man with
accurate tables of probabilities for every hand from a deck of
52 cards, but he knows those probabilities do not reflect the game
being played. Likewise, our 21st-century demon can quantify the
dynamics of uncertainty quite accurately, given her perfect model,
but we know we do not have a perfect model. Given only a collection
of imperfect models, how might we relate the diversity of their
behaviours to our uncertainty about the future state of the real
world?
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The decay of certainty: information without
correlation
When it comes to predicting what a system will do next, data on the
recent state of the system often provide more information than
data on some long past state of the system. In the 1920s, Yule
wanted to quantify the extent to which data on this year’s Sun spots
provide more information about the number of spots that will
appear next year than ten-year-old data do. Such a statistic would
also allow him to quantitatively compare properties of the original
data with those of time series generated by models. He invented
what is now called the auto-correlation function (or ACF), which
measures the linear correlation between states k iterations apart.
When k is zero the ACF is one, since any number is perfectly
correlated with itself. If the time series reflects a periodic cycle, the
ACF decreases from one as k increases, and then returns to equal
one whenever k is an exact multiple of the period. Given data from a
linear stochastic system the ACF is of great value, but as we will
soon see, it is of less use when faced with observations from a
nonlinear system. Nevertheless, some statisticians went so far as to
define determinism as linear correlation; many are still reeling from
this misstep. It is well known that correlation does not imply
causation; the study of chaos has made it clear that causation does
not imply (linear) correlation either. The correlation between
consecutive states of the Full Logistic Map is zero despite the fact
that the next state is completely determined by the current state. In
fact, its ACF is zero for every separation in time. How then are we to
detect relationships in nonlinear systems, much less quantify
predictability, if a mainstay of a century of statistical analysis is
blind to such visible relationships? To answer this question, we first
introduce base two.

Bits and pieces of information
Computers tend to record numbers in binary notation: rather than
use the ten symbols (0,1,2,3,4,5,6,7,8, and 9) we learn in school,
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they use only the first two (0 and 1). Instead of 1000, 100 and 10
representing 103 , 102 and 101, in binary these symbols represent 23,
22 and 21 that is, eight, four, and two. The symbol 11 in base two
represents 21 + 20, i.e. three, while 0.10 represents 2—1 (one-half )
and 0.001 represents 2—3 (one-eighth). Hence the joke that there
are ten kinds of mathematicians in the world: those who
understand binary notation and those who do not. Just as
multiplying by ten (10) is easy in base ten, multiplying by two (10)
is easy in base two: just shift all the bits to the left, so that
1.0100101011 becomes 10.100101011, that is where the Shift Map
gets its name. Similarly dividing by two: its just a shift to the right.

A computer usually uses a fixed number of bits for each number,
and does not waste valuable memory space storing the ‘decimal’
point. This makes dividing a bit curious: On a computer, dividing
001010010101100 by two yields 000101001010110; but then
dividing 001010010101101 by two yields the same result!
Multiplying 000101001010110 by two yields 00101001010110Q,
where Q is a new bit the computer has to make up. So it is for every
shift left: a new bit is required in the empty place on the far right. In
dividing by two, a zero correctly appears in the empty place on the
far left, but any bits that are shifted out the right side this window
are lost forever into the bit bucket. This introduces an annoying
feature: if we take a number and divide by two, and then multiply
by two, we may not get back to the original number we started with.

The discussion thus far leads to differing visions of the growth and
decay of uncertainty – or creation of information – in our various
kinds of mathematical dynamical systems: random systems, chaotic
mathematical systems and computerized versions of chaotic
mathematical systems. The evolution of the state of a system is
often visualized as a tape passing through a black-box. What
happens inside the box depends on what kind of dynamical system
we are watching. As the tape exits the box we see the bits
written on it; the question of whether the tape is blank when it
enters the back of the box, or if it already has the bits written on it,
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leads to spirited discussions in ivory tower coffee rooms. What are
the options? If the dynamics are random, then the tape comes into
the box blank and leaves with a randomly determined bit stamped
on it. In this case, any pattern we believe we see in the bits as the
tape ticks constantly forward is a mirage. If the dynamical system
is deterministic, the bits are already printed on the tape (and unlike
us, Laplace’s demon is in a position to already see all of them);
we cannot see them clearly until they pass through the box, but they
are already there. Creating all those bits of information is
something like a miracle either way, and it seems to come down to
personal preference whether you prefer one big miracle or a regular
stream of small ones: in a deterministic system the picture
corresponds to creating an infinite number of bits all at once:
the irrational number which is the initial state; in the random
system, it looks as if new bits are created as at each iteration. In
practice, it certainly seems that we do have some control over
how accurately we measure something, suggesting that the tape
is pre-printed.

There is nothing in the definition of a chaotic system that prevents
the tape from running backwards for a while. When this happens,
prediction gets simple for a while, since we have seen the tape back
up, we already know the next bits that will come out when it runs
forward again. When we try to cast this image into the form of a
computational system, we run into difficulty. The tape cannot really
be blank before it comes into the box: the computer has to ‘make up’
those new bits with some deterministic rule when it left-shifts, so
they are effectively already printed on the tape before it enters the
box. More interesting is what happens in a region where the tape
backs up, since the computer cannot ‘remember’ any bits it loses on
a right-shift. For constant slope maps we are always shifting left or
always right, the tape never backs up. The computer simulation is
still a deterministic system, although the variety of tapes it can
produce is much less rich than the tapes of the deterministic
mathematical map it is simulating. If the map being simulated has
regions of shrinking uncertainty, then there is a transient period
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during which the tape backs up, the computer cannot know which
bits were written on it; when the tape runs forward again the
computer uses its internal rule to make up new bits and we may find
a 0 and a 1 overprinted on the tape as it comes out of the box a
second time! We discuss other weird things that happen in
computer simulations of chaotic mathematical systems in
Chapter 7.

Statistics for predicting predictability
One of the insights of chaos is to focus on information content. In
linear systems variance reflects information content. Information
content is more subtle in nonlinear systems, where size is not the
only indicator of importance. How else might we measure
information? Consider the points on a circle on the X,Y plane with a
radius equal to one, and pick an angle at random. Knowing the
value of X tells us a great deal about the value of Y – it tells us that Y
is one of two values. Likewise, if we do not know all of the bits
needed to completely represent X, the more bits of X we learn, the
more bits of Y we know. Although we will never be able to decide
between two alternative locations of Y, our uncertainty regarding
the two possible locations shrinks as we measure X more and more
accurately. Not surprisingly, X and Y have a linear correlation of
zero in this case. Other statistical measures have been developed to
quantify just how much knowing one value tells you about the
other. Mutual Information, for instance, reflects how many bits of Y
you learn, on average, when you learn another bit of X. For the
circle, if you know the first five bits of X, you know four of the first
five bits of Y; if you know 20 bits of X, you know 19 of Y; and if you
know all the bits of X, you know all but one of the bits of Y. Without
that missing bit, we can’t tell which of two possible values of Y is the
actual value of Y. And unfortunately, from the linear-thinking point
of view, the bit you are missing is the value of the ‘largest’ bit in Y.
Nevertheless, it is more than a bit misleading to interpret the fact
that the correlation is zero to mean you learn nothing about Y upon
learning the value of X.
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What does Mutual Information tell us about the dynamics of the
Logistic map? Mutual Information will reflect the fact that knowing
one value of X exactly gives us complete information on future
values of X. While given a finite precision measurement of X,
Mutual Information reflects how much we know, on average, about
a future measurement of X. In the presence of observational noise
we would tend to know less about future values of X the further they
fall in the future since the corresponding bits of the current value
of X will be obscured by the noise. So Mutual Information tends
to decay as the separation in time increases, while the linear
correlation coefficient is zero for all separations (except zero).
Mutual Information is one useful tool; the development of
custom-made statistics to use in particular applications is a growth
industry within nonlinear dynamics. It is important to know exactly
what these new statistics are telling us, and it is equally important
to accept that there is more to say than traditional statistics can
tell us.

Our model of the noise gives us an idea of our current uncertainty,
so one measure of predictability would be the time we expect that
uncertainty to double. We must avoid the trap of linear thinking
that suggests the quadrupling time will be twice the doubling time
in a non-linear system. Since we do not know which time will be
of interest (the doubling-time, tripling-time, quadrupling time,
or . . . ), we will simply refer to the q-tupling time near a particular
initial condition. The distribution of these q-tupling times is
relevant to predictability: they directly reflect the time we expect
our uncertainty in each particular forecast to go through a given
threshold of interest to us. The average uncertainty doubling time
gives the same information averaged over forecasts from this model.
It is convenient to have a single number, but this average may not
apply to any initial state at all.

The average uncertainty doubling time is a useful statistic of
predictability. But the definition of mathematical chaos is not made
in relation to doubling (or any q-tupling) time statistic, but rather in
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relation to Lyapunov exponents which we define below. This is
one reason that chaos and predictability are not as closely related as
they are commonly thought to be. The average doubling time gives a
more practical indication of predictability than the leading
Lyapunov exponent, but it lacks a major impractical advantage
which mathematicians value highly and which, as we shall see,
Lyapunov exponents do possess.

Chaos is defined in the long run. Uniform exponential growth of
uncertainty is found only in the simplest chaotic systems. Indeed,
uniform growth is rare amongst chaotic systems which usually
display only effective-exponential growth, or equivalently
exponential-on-average growth. The average is taken in the limit of
an infinite number of iterations. The number we use to quantify this
growth is call the Lyapunov Exponent. If the growth is a pure
exponential, not just exponential-on-average, then we can quantify
it as two raised to the power λ t, where t is time and λ is the
Lyapunov exponent. The Lyapunov exponent has units of bits per
iteration, and a positive exponent indicates the number of bits our
uncertainty has grown on average after each iteration. A system has
as many Lyapunov exponents as there are directions in its state
space, which is the same as the number of components that make
up the state. For convenience they are listed in decreasing order,
and the first Lyapunov exponent, the largest one, is often called
the leading Lyapunov exponent. In the sixties, the Russian
mathematician Osceledec established that Lyapunov exponents
existed for a wide variety of systems and proved that in many
systems almost all initial conditions would share the same
Lyapunov exponents. While Lyapunov exponents are defined by
following the nonlinear trajectory of a system in state space, they
only reflect the growth of uncertainty infinitesimally close to that
nonlinear reference trajectory, and as long as our uncertainty is
infinitesimal it can hardly damage our forecasts.

In as much as computing Lyapunov exponents requires averaging
over infinite durations and restricts attention to infinitesimal
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uncertainties, adopting these exponents in the technical definition
of mathematical chaos places this burden on identifying a system as
chaotic. The advantage here is that these same properties make the
Lyapunov exponent a robust reflection of the underlying dynamical
system; we can take the state space and stretch it, fold it, twist it,
and apply any smooth deformation, and the Lyapunov exponents
do not change. Mathematicians prize that kind of consistency, and
so Lyapunov exponents define whether or not a system has sensitive
dependence. If the leading Lyapunov exponent is positive, then we
have exponential-on-average growth of infinitesimal uncertainties,
and a positive Lyapunov exponent is taken to be a necessary
condition for chaos. Nevertheless, the same properties that give
Lyapunov exponents their robustness make them rather difficult to
measure in mathematical systems, and perhaps impossible to
measure in physical dynamical systems. Ideally that should help us
remain clear on the difference between mathematical maps and
physical systems.

While there is no alternative with the mathematically appealing
robustness of Lyapunov exponents, there are more relevant
quantities for quantifying predictability. Knowing the average time
it took a train to travel from Oxford to central London last week is
more likely to provide insight into how long it will take today, than
would dividing the distance between Oxford and London by the
average speed of all trains which ever ran in England. Lyapunov
exponents give us an average speed, while doubling times give us
average times. By their very nature, Lyapunov exponents are far
removed from any particular forecast.

Look at the menagerie of maps in Figure 8 (page 40): how would we
calculate their Lyapunov exponents or doubling times? We wish to
quantify the stretching (or shrinking) that goes on near a reference
trajectory, but if our map is nonlinear then the amount of stretching
will depend on how far we are from the reference trajectory.
Requiring the uncertainty to remain infinitesimally close to the
trajectory circumvents this potential difficulty. For one-dimensional

94

Ch
ao

s



systems we can then legitimately look at the slope of the map at
each point. We are interested in how uncertainty magnifies with
time. To combine magnifications we have to multiply the individual
magnifications together. If my credit card bill doubles one day and
then triples the next, the total increase is six times what I started
with, not five. This means that to compute the average
magnification per iteration we must take a geometric average.
Suppose the uncertainty increases by a factor of three in the first
iteration, then by two, then by four, then by one third, and then by
four: over all that is a factor of 32 over these five iterations: so on
average the increase is by a factor of two per iteration, since the fifth
root of 32 is two, that is: 2 × 2 × 2 × 2 × 2 = 32. We are not interested
in the arithmetic average: 32 divided by 5 is 6.4 and our uncertainty
never grew that much on any one day. Also note that although the
average growth is by a factor of two per day, the actual factors were
3, 2, 4, 1–3 , and 4: the growth was not uniform and on one day the
uncertainty actually shrunk: if we can bet on the quality of our
forecasts in a chaotic system and if we can bet different amounts on
different days, then there may be times where we are much more
confident in the future. Another myth bites the dust: chaos does not
imply prediction is hopeless. In fact, if you can bet against someone
who firmly believes that predicting chaos is uniformly hopeless, you
are in a position to educate them.

The fact that some of the simplest cases (and most common
examples) of chaos have constant slopes has lead to the
overgeneralization that chaos is uniformly unpredictable. Looking
back at the six chaotic systems in Figure 8 (page 40), we notice that
in four of them (Shift Map, Tent Map, Quarter Map, and Tripling
Tent Map), the magnitude of the slope is always the same. On
the other hand, in the Logistic Map and the Moran-Ricker Map, the
slope varies a great deal for different values of X. Since a slope with
absolute value less than one indicates shrinking uncertainty, the
Logistic Map shows strong growth of uncertainty at values of X
near zero or near one, and shrinking of uncertainty for values of X
near one-half! Likewise, the Moran-Ricker Map shows strong
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growth of uncertainty near zero and at values near one, where the
magnitude of the slope is also large, but shrinking at intermediate
and high values of X, where the slope is near zero.

How might we determine an average that extends into the infinite
future? Like many mathematical difficulties, the easiest way to solve
this one is to cheat. One reason that the Shift Map and the Tent
Map are so popular in nonlinear dynamics is that while the
trajectories are chaotic, the magnification of uncertainty is the same
at each state. For the Shift Map, every infinitesimal uncertainty
increases by a factor of two on each iteration. So the apparently
intractable task of taking an average as time goes to infinity
becomes trivial: if the uncertainty grows by a factor of two on every
iteration then it grows by a factor of two on average, and the Shift
Map has a Lyapunov exponent of one bit per iteration. Computing
the Lyapunov exponent of the Tent Map is almost as easy: the
magnification is either a factor of two or a factor of minus two,
depending on which half of the ‘tent’ we are in. The minus sign does
not effect the size of magnification: it merely indicates that the
orientation has flipped from left to right, and we can safely ignore
this. Again we have one bit per iteration. The same trick works for
the Tripling Tent Map, but it has a larger slope of three, and a
Lyapunov exponent of ~1.58 bits per iteration (the exact value is
log2(3) ). Why do we keep taking logarithms instead of just talking
about ‘magnifying factors’ (Lyapunov numbers)? And why base
2 logarithms? This is a personal choice, usually justified by its
connection to binary arithmetic, its use in computers, a preference
for saying ‘one bit per iteration’ over saying ‘about 0.693147 nats per
iteration’, and the fact that multiplying by two is relatively easy for
humans.

The graph of the Full Logistic Map reveals a parabola, so the
magnification at different states varies, and our trick of taking the
average of a constant appears to fail. How might we take the limit
into the infinite future? Our physicist would simply fire up a
computer and compute finite-time Lyapunov exponents for many
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different states. Specifically, he would compute the geometric
average magnification over two iterations for different values of X,
and then the distribution corresponding to three iterations, then
four iterations, . . . . And so on. If this distribution converges
towards a single value, then he might be willing to count this as an
estimate of the Lyapunov exponent, as long as the computer is not
run so long as to be unreliable. As it turns out, this distribution
converges faster than the Law of Large Numbers would suggest.
Our physicist is happy with this estimated value, which turns out to
be near one bit per iteration.

Our mathematician, of course, would not dream of making such an
extrapolation. She sees no analogy between a finite number of
digital computations, each of which is inexact, and an exact
calculation extended into the infinite future. From her point of
view, the value of the Lyapunov exponent at most values of α
remains unknown, even today. But the Full Logistic Map is special,
and demonstrates the second trick of mathematicians: substituting
sin θ for X in the rule that defines the Full Logistic Map, and using
some identities from trigonometry, she can show that the Full
Logistic Map is the Shift Map. Since the Lyapunov exponents do
not change under this kind of mathematical manipulation, she can
prove that the Lyapunov exponent really is equal to one bit per
iteration, and explain the violation of the Law of Large Numbers in
a footnote.

Lyapunov exponents in higher dimensions
If the model state has more than one component, then uncertainty
in one of its components can contribute to future uncertainty in
other components. This brings in a whole new set of mathematical
issues, since the order in which you multiply things together
becomes important. We will initially avoid these complications by
considering examples where the uncertainty in different
components do not mix, but we must be careful not to forget that
these are very special cases!
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The state space of the Baker’s Map has two components, x and y, as
shown in Figure 21. It maps a two-dimensional square back into
itself exactly with the rule:

If x is less than one-half:

Multiply x by 2 to get the new value of x and divide y by 2 to get the

new y.

Otherwise:

Multiply x by 2 and subtract one to get the new value of x and

divide y by 2 and add one half to get the new y.

In the Baker’s Map, any uncertainty in the horizontal (x)
component of our state will double on each iteration, while those in
vertical (y) are cut in half. Since it is true on every step it is also true
on average. The average uncertainty doubling time is one iteration
and the Baker’s Map has one Lyapunov exponent equal to one bit
per iteration, and one exponent equal to minus one bit per iteration.

21. Schematic showing how points in the square evolve forward under
one iteration of (left) Baker’s Map and (right) a Baker’s Apprentice
Map
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The positive Lyapunov exponent corresponds to growing
uncertainty, while the negative one corresponds to shrinking
uncertainty. For every state, there is a direction associated with
each of these exponents; in this very special case these directions
are the same for all states and thus they never mix uncertainties
in x with uncertainties in y. The Baker’s Map itself was carefully
crafted to avoid the difficulties caused by uncertainty in one
component contributing to uncertainty in another component.
In almost all two-dimensional maps, of course, such uncertainties
do mix, so usually we cannot compute any positive Lyapunov
exponents at all!

We can see why one might think predicting chaos is hopeless from
the left panels of Figure 22, which show the evolution of a mouse-
shaped ensemble over several iterations of the map. But remember
that this map is a very special case: our hypothetical baker is very
skilled in kneading, and can uniformly stretch the dough by a factor
of two in the horizontal so that it shrinks by a factor of two in the
vertical, before returning the lot back into the unit square. It is
useful to contrast the Baker’s Map with various members of the
family of Baker’s Apprentice Maps. Our hypothetical apprentices
are each less uniform, stretching a small portion of the dough on the
right side of the square a great deal, while hardly stretching the
majority of the dough to the left at all, as shown in Figure 21.
Luckily, all members of the Apprentice family are skilled enough
not to mix the uncertainty in one component into another, so we
can compute doubling times and Lyapunov exponents of any
member.

As it turns out, every Apprentice Map has a leading Lyapunov
exponent greater than the Baker’s Map. So if we adopt the leading
Lyapunov exponent as our measure of chaos, then the Apprentice
Maps are each ‘more chaotic’ than the Baker’s Map. This conclusion
might cause some unease, when considered in light of Figure 22,
which shows, side by side, the evolution of an ensemble of points
under the Baker’s Map and also under Apprentice number four. The
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22. A mouse-like ensemble of initial states (top) and four frames,
showing in parallel the evolution of this ensemble under both the
Baker’s Map (left) and the fourth Baker’s Apprentice Map (right)



average doubling time of an Apprentice Map can be much greater
than the Baker’s Map, even though its Lyapunov exponent is also
greater than that of the Baker’s Map. This is true for an entire
family of Apprentice Maps, and we can find an Apprentice Map
with an average doubling time larger than any number one cares to
name. Perhaps we should reconsider the connection between chaos
and predictability?

Positive Lyapunov exponents with shrinking
uncertainties
As long as our uncertainty is smaller than the smallest number we
can think of, it can hardly pose any practical limit on our forecasts,
and as soon as that uncertainty grows to be measurable, then its
evolution need no longer be reflected by Lyapunov exponents in
any way whatsoever. Even in the infinitesimal case, the Baker’s
Apprentice Maps show that Lyapunov exponents are misleading
indicators of predictability, since the amount the uncertainty grows
can vary with the state the system is in. And it gets better: in the
classic system of Lorenz 1963 we can prove that there are regions of
the state space in which all uncertainties decrease for a while. Given
a choice as to when to bet on a forecast, betting when entering such
a region will improve your odds of winning. Predicting chaotic
systems is far from hopeless, betting against someone who naı̈vely
believes it is hopeless might even prove profitable.

We end this discussion of Lyapunov exponents with one more word
of caution. While a direction in which uncertainty neither grows
nor shrinks implies a zero Lyapunov exponent the converse is not
true: a Lyapunov exponent of zero does not imply a direction of no
growth! Remember the discussion of the exponential that
accompanied Fibonacci’s rabbits: even growth as fast as the square
of time is slower than exponential and will result in a zero Lyapunov
exponent. This is one reason why mathematicians are so pedantic
about really taking limits all the way out to the infinite future: if we
consider a long but finite period of time, then any magnification at
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all would suggest a positive Lyapunov exponent – exponential,
linear or even slower than linear growth will yield a magnification
greater than one over any finite period, and the logarithm of any
number greater than one will be positive. Computing the statistics
of chaos will prove tricky.

Understanding the dynamics of relevant
uncertainties
As we noted above, an infinitesimal uncertainty cannot cause us
much difficulty in forecasting; once it becomes measurable, the
details of its exact size and where the state is in the state space come
into play. To date, mathematicians have found no elegant method
for tracking these small but noticeable uncertainties, which are, of
course, most relevant to real-world forecasting. The best we can do
is to take a sample of initial states, called an ensemble, make this
ensemble consistent both with the dynamics of our model and the
noise in our observations, and then see how the ensemble disperses
in the future. For our 21st-century demon that is enough: given her
perfect model of the system and of the noise, her noisy observations
of previous states reaching into the distant past, and her access to
infinite computer power, her ensemble will accurately reflect the
probability of future events. If a quarter of her ensemble members
indicate rain tomorrow, then there really is a 25% chance of rain
tomorrow, given the noisy observations available to her. Decreasing
the noise increases her ability to determine what is more likely to
happen. Chaos is no real barrier to her. She is uncertain of the
present, but can accurately map that uncertainty into the future:
who could ask for anything more? Our models, however, are not
perfect and our computational resources are limited: in Chapter 9
we contrast the inadequacy with which we must deal with the
uncertainty which she can accommodate.

The nonlinear zoo contains more than mere chaos. It need not be
the case that the smaller the uncertainty, the more tame its
behaviour. There are worse things than chaos: it could be the case
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that the smaller the uncertainty, the faster it grows, leading to an
explosion of infinitesimal uncertainties to finite proportions after
only a finite period. This is not as outlandish as it might sound: it
remains an open question whether or not the basic equations of
fluid dynamics display this worse-than-chaos behaviour – one of
those few mathematical questions with a one million dollar reward
attached to it!
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Chapter 7

Real numbers, real

observations, and computers

The mathematician very carefully defines irrational numbers. The

physicist never meets any such numbers . . . The mathematician

shudders at uncertainty and tries to ignore experimental errors.

Leon Brillouin (1964)

In this chapter we examine the relation between the numbers in our
mathematical models, the numbers we observe when taking
measurements in the world, and the numbers used inside a digital
computer. The study of chaos has helped to clarify the importance
of distinguishing these three sorts of number. What do we mean by
different kinds of number?

Whole numbers are integers; measurements of things like ‘the
number of rabbits in my garden’ come naturally as integers, and
computers can do perfect mathematics with integers as long as they
do not get too big. But what about things like ‘the length of this
table’, or ‘the temperature at Heathrow Airport’? It seems these
need not be integers, and it is natural to think of them as being
represented by real numbers, numbers which can have an infinitely
long string of digits to the right of the decimal point or bits to the
right of the binary point. The debate over whether or not these real
numbers exist in the real world dates back into antiquity. One thing
that is clear is that when we ‘take data’ we only ‘keep’ integer values.
If we measure ‘the length of this table’ and write it down as 1.370
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the measurement does not appear to be an integer at first sight, but
we can transform it into an integer by multiplying by 1000; anytime
we are only able to measure a quantity like length or temperature to
finite precision – which is always the case in practice – our
measurement can be represented using an integer. And in fact our
measurements are almost always recorded in this way today, since
we tend to record and manipulate them using digital computers,
which always store numbers as integers. This suggests something
of a disconnect between our physical notion of length and our
measurements of length, and there is a similar break between our
mathematical models, which consider real numbers, and their
computerized counterparts, which only allow integers.

Of course a real physicist would never say that the length of the
table was 1.370; she would say something like the length was 1.370
± 0.005, with the aim of quantifying her uncertainty due to noise.
Implicit in this is a model of the noise. Random numbers from the
bell-shaped curve is without doubt the most common noise model.
One learns to include things like ‘± 0.005’ in order to pass science
classes in school; it is usually seen as an annoyance but what does it
really mean? What is it that our measurements are measuring? Is
there a precise number that corresponds to the True length of the
table or the True temperature at the airport, but just obscured by
noise and truncated when we record it? Or is it a fiction, and the
belief that there should be some precise number just a creation of
our science? The study of chaos has clarified the role of uncertainty
and noise in evaluating our theories by suggesting new ways to see if
such True values might exist. For the moment we will assume the
Truth is out there and that we just cannot see it clearly.

Nothing really matters
So what is an observation exactly? Remember our first time series,
which consisted of monthly numbers of rabbits in Fibonacci’s
mythical garden. In that case, we knew the total number of rabbits
in the garden. But in most studies of population dynamics we do not
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have such complete information. Suppose for instance that we are
studying a population of voles in Finland. We put out traps, check
them each day, release the captives, and keep a daily time series of
the number of voles captured. This number is somehow related to
the number of voles per square kilometre in Finland, but how
exactly? Suppose we observe zero voles in our trap today. What does
this ‘zero’ mean? That there are no voles in this forest? That there
are no voles in Scandinavia? That voles are extinct? Zero in our trap
could mean any or none of these things and thus illustrates two
distinct kinds of uncertainty we must cope with when relating our
measurements to our models. The first is simple observational
noise: an example would be to miscount the number of voles in the
trap, or to find the trap full, leaving open the possibility that more
voles might have been counted on that day if a larger trap had been
used. The second is called representation error: our models
consider the population density per square kilometre, but we are
measuring the number of voles in a trap, so our measurement does
not represent the variable our models use. Is this a shortcoming of
the model or the measurement?

If we put the wrong number into our model we can expect to get the
wrong number out: garbage in, garbage out. But it seems that our
models are asking for one kind of number, while our observations
are offering a noisy version of another kind of number. In the case of
weather forecasting where our target variables – temperature,
pressure, humidity – are thought to be real numbers, we cannot
expect our observations to reflect the true values exactly. This
suggests that we might look for models with dynamics which are
consistent with our observations, rather than taking our
observations and our model states to be more-or-less the same
thing and trying to measure the distance between some future state
of our model and the corresponding target observation. The goal of
forecasting linear systems is to minimize this distance: the forecast
error. When forecasting nonlinear systems it becomes important to
distinguish the various things bound up in this quantity, including
uncertainties in observation, truncation in measurement, and the
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difference between our mathematical models, our computer
simulations of them, and whatever it was that actually generated
the data. We first consider what happens when we try to put
dynamics into a digital computer.

Computers and chaos
Recall that our three requirements for mathematical chaos were
determinism, sensitive dependence, and recurrence. Computer
models are deterministic to a fault. Sensitive dependence reflects
the dynamics of infinitesimals, but on any given digital computer
there is a limit to how close two numbers can be, beyond which the
computer sees no difference at all and will treat them as if they were
the same number. No infinitesimals, no mathematical chaos. A
second reason that computers cannot display chaos arises from the
fact there is only a finite amount of memory in any digital
computer: each computer has a limited number of bits and thus
only a limited number of different internal states, so eventually the
computer must return to a state it has already been in, after which,
being deterministic, the computer will simply run in circles,
repeating its previous behaviour over and over forever. This fate
cannot be avoided, unless some human or other external force
interferes with the natural dynamic of the digital computer itself. A
simple card trick illustrates the point nicely.

What does this imply for computer simulations of the Logistic
Map? In the mathematical version of the map, the time series from
iterating almost any X between zero and one will never contain the
same value of X twice, no matter how many iterations we consider.
As the number of iterations increases, the smallest value of X
observed so far will slowly get closer and closer to zero, never
actually reaching zero. For the computer simulation of the Logistic
Map there are only about 260 (about a million million million)
different values of X between zero and one, so the time series from
the computer must eventually include two values of X which are
exactly the same, becoming stuck in an endless loop. After this
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happens, the smallest value of X will never decrease again, and any
computation along this loop, whether it be the average value of X or
the Lyapunov exponent of the map, will reflect the characteristics of
the particular loop, not the mathematical map. The computer
trajectory has become digitally periodic, regardless of what the
mathematical system would have done. And so it is for all digital
computers. Computers cannot do chaos.

There may be more than one digitally periodic loop: shuffle a deck
of cards and place some of them in a large circle so that the first card

23. Two ways to deal the computers-can’t-do-chaos card trick, if the
deck of cards is large enough a time will come when everyone will find
themselves on the same card even when they are placed on a line as in
the upper panel
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Card tricks and computer programs

Ask a friend to pick a secret number between, say, 1 and 8,

and then deal out a deck of cards as shown in Figure 23.

Counting a face card as a ten and an ace as a one, ask your

friend to count out her secret number and take the number

of the card she lands on as her new number. If her number

was one, she would land on the six of spades, and with the

new number six, she would move forward to the four of

clubs; if her original number was three, she would have hit

the three of diamonds, then the ace of hearts, and so on. Try

it yourself using Figure 23 and stop when you hit the jack of

hearts. How did I know you would hit the jack of hearts? For

the same reason that computers cannot display chaos.

Everyone hits the jack of hearts.

What does this have to do with computers? A digital com-

puter is a finite state machine: there are only a limited num-

ber of bits inside it which define its current state. Encoded in

the current state of the machine is the rule that determines

which state comes next. In the card game there were ten

possible values at each location. If players on two different

cards move forward to land on the same card, they remain

identical from then on; unless one takes great care, nearby

states in a computer will collapse in the same manner. A

modern computer has many more options, but only a finite

number, so eventually it will hit a configuration (an internal

state) it has hit before, and after that happens it will cycle in

the same loop forever. The card trick works in an analogous

way: everyone starts off with their own initial number,

updating and moving forward. But once two of these paths

converge onto the same card, they stay together forever. For
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follows the last card dealt. Determining which loop each card ends
up in yields a list of all the loops. Which is larger: the number of
cards that are actually on loops or those on transients? Shuffle the
cards and repeat the experiment to see how the number of loops
and their lengths change with the number of cards dealt. In the
same way, artificially changing the number of bits a computer uses
for each value of X turns it into a mathematical microscope for
examining the digitally fine structure of the map, using the

the particular cards on the table, everyone will hit the jack of

hearts; no one will hit the ace of spades unless they start

there. To see this, try starting with each value. If you pick

one, you land on the six, then the four, then the jack; while

picking two hits the five, the four, and the jack; picking three

lands on the three, the ace, the four, and the jack; picking

four, the two, the ace, the four, and the jack; picking five, the

six and the jack; picking six, the ace, the four, the jack; pick-

ing seven, the four and the jack; picking 8, the ace, the two,

and the jack. All values lead to the jack. Place the cards in a

circle and we have a finite state machine where every starting

point must lead to a periodic loop, but there may be more

than one loop.

By projecting the cards on a screen, you can use this demon-

stration with a large audience. Take a number yourself, and

deal out cards until you think everyone has converged. Then

ask people to raise their hands if they are on, in this case, the

jack of hearts. There is a wonderful look of surprise on the

faces of the audience when they realize that they are all on

the same card. They will converge faster if you restrict the

deck to cards with small values. If you are willing to stack the

deck to get more rapid convergence, what order would you

place the cards?
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computer dynamics to examine the length scales where there would
be far too many boxes to count them all.

Shadows of reality
Reality is that which, when you stop believing in it, doesn’t go away.

P. K. Dick

Our philosopher and our physicist find these results disturbing. If
our computers cannot reflect our mathematical models, how might
we decide if our mathematical models reflect reality? If our
computers cannot realize a mathematical system as simple as the
Logistic Map, how can we evaluate the theory behind our much
more complicated weather and climate models? Or contrast our
mathematical models with reality? The issue of model inadequacy
is deeper than that of uncertainty in the initial condition.

One test of model inadequacy is to take the observations we already
have and ask if our model can generate a time series that stays close
to these observations. If the model were perfect there would be at
least one initial state that shadowed any length of observations we
might take, where by shadowing we mean that the difference(s)
between the model time series and the observed time series is
consistent with our model for the noise. This gives our model for the
noise a much higher status than it has ever had in the past. Can we
still expect shadows when our models are not perfect? No, not in
the long run, if our model is chaotic: we can prove that no
shadowing trajectory exists. Noise will not go away, even when we
stop believing in it. In imperfect chaotic models, we cannot get the
noise to allow a coherent account of the difference between our
models and the observations. Model error and observational noise
are inextricably mixed together. And if observations, model states,
and real numbers really are different kinds of number – like apples
and orangutans – what did we think we were doing when we tried
to subtract one from another? To pursue that question, we must
first learn more about the statistics of chaos.
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Chapter 8

Sorry, wrong number:

statistics and chaos

I have no data yet, and it is a capital mistake to theorise before one

has data.

(Holmes to Watson in A Scandal in Bohemia, A. C. Doyle)

Chaos poses new challenges to statistical estimation, but these need
to be seen in the context of the challenges statisticians have been
dealing with for centuries. When analysing time series from our
models themselves, there is much to be gleaned from statistical
insight and basic rules of statistical good practice. But our physicist
faces an ‘apples and oranges’ problem when contrasting chaotic
models with observations of the real world, and this casts the role of
statistics in a less familiar context. The study of chaotic systems has
clarified just how murky the situation is. There is even
disagreement as to how to estimate the current state of a system
given from noisy observations, which threatens to stop us from
making a forecast before we even get started. Progress here would
yield fruit on issues as disparate as our ability to foresee
tomorrow’s weather and our ability to influence climate change
50 years from now.
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The statistics of limits and the limits of statistics
Consider estimating some particular statistic, say the average
height of all human beings. There may be some disagreement
over the definition of the population of ‘all human beings’ (those
alive on 1 January 2000? those alive today? all those who have ever
lived? . . . ), but that need not distract us yet. Given the height of
every member of this population a well-defined value exists, we just
do not know what its value is. The average height taken over a
sample of human beings is called the sample-average. All
statisticians will agree on this value, even if they disagree about
the relationship of this number to the desired average over the
entire population. (Well, almost all statisticians will agree.) The
same cannot be said for sample-Lyapunov exponents. It is not clear
that sample-exponents of chaos can be uniquely defined in any
sensible way.

There are several reasons for this. First, computing the statistics of
chaos, like fractal dimensions and Lyapunov exponents, requires
taking limits to vanishingly small lengths and over infinitely long
durations. These limits can never be taken based on observations.
Second, the study of chaos has provided new ways of making
models from data without specifying exactly how to build them. The
fact that different statisticians with the same data set may arrive at
rather different sample-statistics makes the statistics of chaos
rather different from the sample-mean.

Chaos changes what counts as ‘good’
Many models contain ‘free’ parameters, meaning parameters
which, unlike the speed of light or the freezing point of water,
we do not already know with good accuracy. What then is the
best value to give the parameter in our model? And if the purpose
of the model is to make forecasts, why would we use a value
from the lab or from some fundamental theory, if some other
parameter value provided better forecasts? Modelling chaotic
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systems has even forced us to re-evaluate, arguably to redefine,
‘better’.

In the weak version of the Perfect Model Scenario, our model has
the same mathematical structure as the system which generated the
data, but we do not know the True parameter values. Say we know
that the data was generated by the Logistic Map, without knowing
the value of α. In this case, there is a pretty well-defined ‘best’: the
parameter value that generated the data. Given a perfect noise
model for the observational uncertainty, how do we extract the best
parameter values for use tomorrow given noisy observations from
the past?

If the model is linear, then several centuries of experience and
theory suggests the best parameters are those whose predictions fall
closest to their targets. We have to be careful not to over-tune our
model if we want to use it on new observations, but this issue is
well known to our statistician. As long as the model is linear and
the observational noise is from the bell-shaped distribution, then we
have the intuitively appealing aim of minimizing the distance
between the forecast and the target. Distance is defined in the usual
least squares sense: based on adding up the squares of the
differences in each component of the state. As the data set grows,
the parameter values we estimate will get closer and closer to those
that generated the data – assuming of course that our linear model
really did generate the data. And if our model is nonlinear?

In the nonlinear case our centuries of intuition prove a distraction if
not an impediment. The least squares approach can even steer us
away from the correct parameter values. It is hard to understate the
negative impact that failure to react to this simple fact has had on
scientific modelling. There have been many warnings that things
might go wrong, but given the lack of any clear and present danger
– and their ease of use – such methods were regularly (mis)applied
in nonlinear systems. Predicting chaos has made this danger clear:
suppose we have noisy observations from the Logistic Map with
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(unknown to us) α = 4, even with an infinite data set, the least
squares approach yields a value for α which is too small. This is not
a question of too little data or too little computer power: methods
developed for linear systems give the wrong answer when applied to
nonlinear questions. The mainstay of statistics simply does not hold
when estimating the parameters of nonlinear models. This is a
situation where ignoring the mathematical details and hoping for
the best leads to disaster in practice: the mathematical justification
for least squares assumes bell-shaped distributions for the
uncertainty both on the initial state and on the forecasts. In linear
models, a bell-shaped distribution for the uncertainty in the initial
condition results in a bell-shaped distribution for the uncertainty in
the forecasts. In nonlinear models this is not the case.

This effect is almost as important as it is neglected. Even today, we
lack a coherent, deployable rule for parameter estimation in
nonlinear models. It was the study of chaos that made this fact
painfully obvious. Recently Kevin Judd, an applied mathematician
at the University of Western Australia, has argued that not only the
principle of least squares but the idea of maximum likelihood
given the observations is also an unreliable guide in nonlinear
systems. That does not imply that the problem is unsolvable:
our 21st-century demon can estimate α very accurately, but
she will not be using least squares. She will be working with
shadows. Modern statistics is rising to the challenge of nonlinear
estimation, at least in cases where the mathematical structure of
our models is correct.

Lies, damn lies, and dimension estimates
A young student once had the intention,

to quantify fractal dimension.

But data points are not free,

and, needing 42-to-the-D,

she settled for visual inspection.

(after James Thieler)
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While Mark Twain would probably have liked fractals, he would
have without doubt hated dimension estimates. In 1983, Peter
Grassberger and Itamar Procaccia published a paper entitled
‘Measuring the Strangeness of Strange Attractors’, which has now
been cited by thousands of other scientific papers. Most papers
gather only a handful of citations. It would be interesting to use
these citations and examine how ideas from the study of chaos
spread between disciplines, from physics and applied mathematics
through every scientific genre.

The paper provides an engagingly simple procedure for estimating,
from a time series, the number of components the state of a good
model for a chaotic system would require. The procedure came
complete with many well-signposted pitfalls. Nevertheless, many if
not most applications to real data probably lie in one or the other of
those pits. The mathematical robustness of the dimension is what
makes capturing it such a prize: you can take an object and stretch
it, fold it, roll it up in a ball, even slice it into a myriad of pieces and
stick the pieces back together any old way, and you will not alter its
dimension. It is this resilience that effectively requires huge data
sets to have a fighting chance at meaningful results. Regrettably,
the procedure tended towards false positives, and finding chaos
by measuring a low dimension was fashionable. An unfortunate
combination. Interest in identifying low-dimensional dynamics and
chaos was triggered by a mathematical theorem, which suggested
one might be able to predict chaos without even knowing what the
equations were.

Takens’ Theorem and embedology
Time series analysis was re-landscaped in the eighties as ideas from
physicists in California led by Packard and Farmer were given a
mathematical foundation by the Dutch mathematician Takens;
with that basis new methods to analyse and forecast from a time
series appeared apace. Takens’ Theorem tells us that if we take
observations of a deterministic system which evolves in a state
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space of dimension d, then under some very loose constraints there
will be a nearly identical dynamical model in the delay space
defined by almost every single measurement function
(observation). Suppose the state of the original system has three
components a, b, and c, the theorem says that one can build a model
of the entire system from a time series of observations of any one of
these three components; this is illustrated with real observations in
Figure 24; taking just one measurement, say of a, and making a
vector whose components are values of a in the present and in the
past, results in a delay-reconstruction state space in which a model
equivalent to the original system can be found. When this works, it
is called a delay embedding. The ‘almost every’ restrictions are
required to avoid picking a particularly bad period of time between
the observations. By analogy: if you observed the weather only at
noon, then you would have no inkling of what happened at night.

Takens’ Theorem recasts the prediction problem from one of
extrapolation in time to one of interpolation in state space. The
traditional statistician who is at the end of his data stream and
trying to forecast into an unknown future, while Takens’ Theorem
places our physicist in a delay-embedding state space trying to
interpolate between previous observations. These insights impact
more than just data-based models; complicated high-dimensional
simulation models evolving on a lower-dimensional attractor
might also be modelled by much lower-dimensional, data-based
models. In principle, we could integrate the equations in this
lower-dimensional space also, but in practice we set up our
models as physical simulations in high-dimensional spaces; we
can sometimes prove that lower-dimensional dynamics emerge,
but we have no clue how to set up the equations in the relevant
lower-dimensional spaces.

Comparing Figure 24 with Figure 14 makes it clear that the
observations of the circuit ‘look like’ the Moore-Spiegel attractor,
but how deep is this similarity, really? Every physical system is
different. Often when we have little data and less understanding,
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24. An illustration suggesting Takens’ Theorem might be relevant to
data from Machete’s electric circuit carefully designed to produce time
series which resemble those of the Moore-Spiegel System. Delay
reconstruction of one measurement in the lower panel bears some
resemblance to the distribution in the upper panel, which plots the
values of three different simultaneous measurements. Contrast these
with the lower panel of Figure 14 on page 67



then statistical models provide a valuable starting point for
forecasting. As we learn more, and gather more data, simulation
models often show behaviour ‘similar’ to the time series of
observations, and as our models get more complicated this
similarity often becomes more quantitative. On the rare occasions
like this circuit when we have a vast duration of observations, it
seems our data-based models – including those suggested by
Takens’ Theorem – often provide the best quantitative match. It is
almost as if our simulation models are modelling some perfect
circuit, or planet, while our data-based models more closely reflect
the circuit on the table. In each case, we have only similarity;
whether we use statistical models, simulation models, or delay-
reconstruction models, the sense in which the physical system is
described by any model equations is unclear. This is repeatedly seen
in physical systems for which our best models are chaotic; we would
like to make them empirically adequate, but are not always sure
how to improve them. And with systems like the Earth’s
atmosphere, we cannot wait to take the required duration of
observation. The study of chaos suggests a synthesis of these three
approaches to modelling, but none has yet been achieved.

There are several common misinterpretations of Takens’ Theorem.
One is that if you have a number of simultaneous observations you
should use only one of them; Takens allows us to use them all! A
second is to forget that Takens’ only tells us that if we have low-
dimensional deterministic dynamics then many of its properties are
preserved in a delay-reconstruction. We must be careful not to
reverse the if-then argument and assume that seeing certain
properties in a delay-reconstruction necessarily implies chaos, since
we rarely if ever know the True mathematical structure of the
system we are observing.

Takens’ Theorem tells us that almost any measurement will work.
This is a case where the ‘almost any’ in our mathematician’s
function space corresponds to ‘not a single one’ in the laboratories
of the real world. Truncation to a finite number of bits violates an
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assumption of the theorem. There is also the issue of observational
noise in our measurements. To some extent these are merely
technical complaints; a delay reconstruction model may still exist
and our statistician and physicist can rise to the challenge of
approximating it given realistic constraints on the data stream.
Another problem is more difficult to overcome: the duration of our
observations needs to exceed the typical recurrence time. It may
well be that the required duration is not only longer than our current
data set, it may be longer than the lifetime of the system itself. This is
a fundamental constraint with philosophical implications. How long
would it take before we would expect to see two days with weather
observations so similar we could not tell them apart? That is, two
days for which the difference between the corresponding states of
the Earth’s atmosphere was within the observational uncertainty?
About 1030 years. This can hardly be considered a technical
constraint: on that time scale the Sun will have expanded into a red
giant and vaporized the Earth, and the Universe may even have
collapsed in the Big Crunch. We will leave our philosopher to ponder
the implications held by a theorem that requires that the duration of
the observations exceed the lifetime of the system.

In other systems, like a series of games of roulette, the time between
observations of similar states may be much less. The search for
dimensions from data streams is slowly being replaced by attempts
to build models from data streams. It has been conjectured that it
almost always takes less data to build a good model than it does to
obtain an accurate dimension estimate. This is another indication
that it may prove more profitable to pay attention to the dynamics
rather than estimate statistics. In any event, the excitement of
constructing these new data-based models brought many
physicists into what had been largely the preserve of the
statistician. A quarter of a century down the line, one major
impact of Takens’ Theorem was to meld the statisticians’
approach to modelling dynamical systems with that of the
physicists. Things are still evolving and a true synthesis of these
two may yet emerge.
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Surrogate data

The difficulty of getting to grips with statistical estimation in
nonlinear systems has stimulated new statistical tests of
significance using ‘surrogate data’. Scientists use surrogate data in a
systematic attempt to break their favourite theories and nullify their
most cherished results. While not every test that fails to kill a
conclusion makes it stronger, learning the limitations of a result is
always a good thing.

Surrogate data tests aim to generate time series which look like the
observed data but come from a known dynamical system. The key
is that this system is known not to have the property one is hoping
to detect: can we root out results that look promising but in fact are
not (called false positives) by applying the same analysis to the
observed data and then to many surrogate data sets. We know at
the start that the surrogate data can show only false positives, so if
the observed data set is not easily distinguished from the
surrogates, then the analysis holds few practical implications. What
does that mean in practice? Well suppose we are hoping to ‘detect
chaos’ and our estimated Lyapunov exponent turns out to be 0.5: is
that value significantly greater than zero? If so then we have
evidence for one of the conditions for chaos.

Of course, 0.5 is greater than zero. The question we want to answer
is: are random fluctuations in an estimated exponent likely to be as
big as 0.5 in a system (i) which produced similar-looking time
series, and (ii) whose true exponent really was not greater than
zero? We can generate a surrogate time series, and estimate the
exponent from this surrogate series. In fact, we can generate 1,000
different surrogate series, and get 1,000 different exponents. We
might then take comfort in our result if almost all of 1,000
estimates from the surrogate series are much less than the value of
0.5, but if the analysis of surrogate data often yields exponents
greater than 0.5, then it is hard to argue that the analysis of the real
data provided evidence for a Lyapunov exponent greater than zero.
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Applied statistics
In a pinch, of course, one can drive a screw with a hammer.
Statistical tools designed for the analysis of chaotic systems can
provide a new and useful way of looking at observations from
systems that are not chaotic. Just because the data do not come
from a chaotic system does not mean that such a statistical analysis
does not contain valuable information. The analysis of many time
series, especially in the medical, ecological, and social sciences, may
fall into this category and can provide useful information,
information not available from traditional statistical analysis.
Statistical good practice protects against being mislead by wishful
thinking, and the insight obtained can prove of value in application,
regardless of whether or not it establishes the chaotic credentials of
the data stream.

Data Assimilation is the name given to translating a collection of
noisy observations into an ensemble of initial model-states. Within
PMS there is a True state that we can approximate, and given the
noise model there is a perfect ensemble which, though available
only to our 21st-century demon, we can still aim to approximate.
But in all real forecasting tasks, we are trying to predict real
physical systems using mathematical systems or computer
simulations. The perfect model assumption is never justified and
almost always false: What is the goal of data assimilation in this
case? In this case, it is not simply that we get the ‘wrong number’
when estimating the state of our model that corresponds to reality,
but that there is no ‘right number’ to identify. Model inadequacy
appears to take even probability forecasts beyond our reach.
Attempts to forecast chaotic systems with imperfect models are
leading to new ways of exploring how to exploit the diversity of
behaviour our imperfect models display. Progress requires we never
blur the distinction between our mathematical models, our
computer simulations and the real world that provides our
observations. We turn to prediction in the next chapter.
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Chapter 9

Predictability: does chaos

constrain our forecasts?

On two occasions I have been asked [by members of Parliament],

‘Pray, Mr. Babbage, if you put into the machine wrong figures, will

the right answers come out?’ I am not able rightly to apprehend the

kind of confusion of ideas that could provoke such a question.

Charles Babbage

We are always putting the wrong numbers into our machines; the
study of chaos has refocused interest in determining whether or not
any ‘right numbers’ exist. Prediction allows us to examine the
connection between our models and the real world in two
somewhat different ways. We may test our model’s ability to predict
the behaviour of the system in the short term, as in weather
forecasting. Alternatively, we may employ our models when
deciding how to alter the system itself, here we are attempting to
alter the future itself towards some desirable, or less undesirable,
behaviour, as when using climate models for deciding policy.

Chaos poses no prediction problems for Laplace’s demon: given
exact initial conditions, a perfect model and the power to make
exact calculations, it can trace a chaotic system forward in time as
accurately as it can a periodic system. Our 21st-century demon has
a perfect model and can make exact calculations, but is restricted to
uncertain observations, even if they extend at regular intervals into
the indefinite past. As it turns out, she cannot use these historical
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observations to identify the current state. She does, however, have
access to the a complete representation of her uncertainty in the
state given the observations that were made, some would call this
an objective probability distribution for the state but we need not go
there. These facts hold a number of implications: even with a
perfect model of a deterministic system, she cannot do better than
make probability forecasts. We cannot aspire to do better, and this
implies that we will have to adopt probabilistic evaluation of our
deterministic models. But all of these demons exist within the
Perfect Model Scenario, we must abandon the mathematical
fictions of perfect models and irrational numbers if we wish to offer
honest forecasts of the real world. To fail to make it clear that we
have done so would be to peddle snake oil.

Forecasting chaos
And be these juggling fiends no more believ’d,

That palter us in a double sense;

That keep the word of promise to our ear,

And break it to our hope.

Macbeth (Act V)

Those who venture to predict have long been criticized even when
their forecasts prove accurate, in a technical sense. Shakespeare’s
play Macbeth focuses on predictions which, while accurate in some
technical sense, do not provide effective decision support. When
Macbeth confronts the witches asking them what it is that they do,
they reply ‘a deed without a name’. A few hundred years later,
Captain Fitzroy coined the term ‘forecast’. There is always the
possibility that a forecast be internally consistent from the
modellers’ perspective while actively misdirecting the forecast
user’s expectations. There lies the root of Macbeth’s complaint
against the witches: they repeatedly offer welcome tidings of what
would seem to be a path to a prosperous future. Each forecast
proves undeniably accurate, but there is little prosperity. Can
modern forecasters who interpret uncertainty within their
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mathematical models as though it reflected real-world probabilities
of future events hope to avoid the charge of speaking in a double-
sense? Are they guilty of Macbeth’s accusation in carefully wording
their probability forecasts, knowing full well we will allow the
excuse of chaos to distract us from entirely different goings on?

From accuracy to accountability
We can hardly blame our forecasters for failing to provide a clear
picture of where we are going to end up at if we cannot give them a
clear picture of where we are at. We can, however, expect our
models to tell us how accurately we need to know the initial
condition in order to ensure that the forecast errors stay below some
target level. The question of whether or not we can reduce the noise
to that level is, hopefully, independent of our model’s ability to
forecast given a sufficiently accurate initial state.

Ideally, a model will be able to shadow: there will be some initial
state we can iterate so that the resulting time series remains close to
the time series of observations. We have to wait until after we have
the observations to see if a shadow exists, and ‘close’ must be
defined by the properties of the observational noise. But if there is
no initial state that shadows, then the model is fundamentally
inadequate. Alternatively, if there is one shadowing trajectory there
will be many. The collection of current states whose pre-histories
have shadowed so far can be considered indistinguishable: if the
True state is in there we cannot identify it. Nor can we know which
of them will continue to shadow when iterated forward to form a
forecast, but we could take some comfort from knowing the typical
shadowing times of forecasts started from one of these
indistinguishable states.

It is fairly easy to see that we are headed towards ensemble forecasts
based upon candidates who have shadowed the observations up to
the present. Realizing that even a perfect model couldn’t yield a
perfect forecast given an imperfect initial condition, in the 1960s,
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the philosopher Karl Popper defined an accountable model as one
that could quantify a bound on how small the initial uncertainty
must be in order to guarantee a specific desired limit on the forecast
error. Determining this bound on the initial uncertainty is
significantly more difficult for nonlinear systems than it is for linear
systems, but we can generalize the notion of accountability and use
it to evaluate whether or not our ensemble forecasts reasonably
reflect probability distributions. Our ensembles will always have a
finite number of members, and so any probability forecast we
construct from them will suffer from this finite resolution: if we
have 1,000 members then we might hope to see most events with a
1% chance of happening, but we know we are likely to miss events
with only a 0.001% chance of happening. We will call an ensemble
prediction system accountable if it tells us how big the ensemble
has to be in order to capture events with a given probability.
Accountability must be evaluated statistically over many forecasts,
but this is something our statistician knows how to do quite well.

Our 21st-century demon can make accountable forecasts: she will
not know the future but it will hold no surprises for her. There will
be no unforeseeable events, and unusual events will happen with
their expected frequency.

Model inadequacy
With her perfect model, our 21st-century demon can compute
probabilities that are useful as such. Why can’t we? There are
statisticians who argue we can, including perhaps a reviewer of this
book, who form one component of a wider group of statisticians
who call themselves Bayesians. Most Bayesians quite reasonably
insist on using the concepts of probability correctly, but there is a
small but vocal cult among them that confuse the diversity seen in
our models for uncertainty in the real world. Just as it is a mistake
to use the concepts of probability incorrectly, it is an error to apply
them where they do not belong. Let’s consider an example derived
from Galton’s Board.
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Look back at Figure 2 on page 9. You can buy modern incarnations
of the image on the left on the internet, just Google ‘quincunx’. The
machine corresponding to the image on the right is more difficult to
obtain. Modern statisticians have even questioned whether Galton
actually built that one, although Galton describes experiments with
the version, they have been called ‘thought experiments’ since even
modern efforts to build a device to reproduce the expected
theoretical results have found it ‘exceedingly difficult to make one
that will accomplish the task in a satisfactory manner’. It is not
uncommon for a theorist to blame the apparatus when an
experiment fails to match his theory. Perhaps this is merely an
indication that our mathematical models are just different from the
physical systems they aim to reflect? To clarify the differences
between our models and reality, we will consider experiments on
the Not A Galton (NAG) Board shown in Figure 25.

The NAG Board: an example of pandemonium
The NAG Board is ‘Not A Galton Board’. It was originally
constructed for a meeting to celebrate the 150th year of the Royal
Meteorological Society, of which Galton was a member. The NAG
Board has an array of nails distributed in a manner reminiscent of
those in a Galton Board, but the nails are spaced further apart and
imperfectly hammered. Note the small white pin at the top of the
board, just to the left of half way. Rather than using a bucket of lead
shot, golf balls are allowed through the NAG Board one at a time,
each starting in exactly the same position, or as exactly as a golf ball
can be placed under the white pin by hand. The golf balls do make a
pleasant sound, but they do not make binary decisions at each nail;
in fact, they occasional move horizontally past several nails before
falling to the next level. Like the Galton Board and Roulette, the
dynamics of the NAG Board are not recurrent: the dynamics of each
ball is transient and so these systems do not display chaos. Spiegel
suggested this behaviour be called pandemonium. Unlike the
Galton Board, the distribution of golf balls at the bottom of the
NAG Board does not reflect the bell-shaped distribution;
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nevertheless, we can use an ensemble of golf balls to gain a
useful probabilistic estimate of where the next golf ball is likely
to fall.

But reality is not a golf ball. Reality is a red rubber ball. And it is
dropped only once. Laplace’s demon would allow no discussion of

25. The Not A Galton Board, first displayed at a meeting held in St
John’s College, Cambridge, to celebrate the 150th year of the Royal
Meteorological Society. Note the golf ball falling through the board does
not make simple binary choices
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what else might have happened: nothing else could have happened.
The analogy here is to take the red rubber ball as the Earth’s
atmosphere and the golf balls as our model ensemble members. We
can invest in as many members as we choose. But what does our
distribution of golf balls tell us about the single passage of the red
rubber ball? Surely the diversity of behaviour we observe between
golf balls tells us something useful? If nothing else, it give us a lower
bound on our uncertainty beyond which we know we cannot be
confident; but it can never provide a bound in which we can be
absolutely confident, even in probabilistic terms. By close analogy,
examining the diversity of our models can be very useful, even if
there is no probability forecast in sight.

The red ball is much like a golf ball: it has a diameter slightly larger
but roughly the same as a golf ball and it has, somewhat more
roughly, a similar elasticity. But the red ball which is reality can do
things that a golf ball simply cannot do: some unexpected, some
not; some relevant to our forecast, some not; some known, some
not. In the NAG Board, the golf ball is a good model of reality, a
useful model of reality; and an imperfect model of reality. How are
we to interpret this distribution of golf balls? No one knows.
Welcome to frontline statistical research. And it gets better. We
could always interpret the distribution of golf balls as a probability
forecast conditioned on the assumption that reality is a golf ball.
Would it not be a double-sense to proffer probability forecasts one
knew were conditioned on an imperfect model as if they reflected
the likelihood of future events, regardless of what small print
appeared under the forecast?

Our ensembles are not restricted to using only golf balls. We might
obtain green rubber balls of a slightly smaller diameter and repeat
the experiment. If we get a distribution of green balls similar to our
distribution of golf balls, we might take courage – or better, take
hope – that the inadequacies of our model might not play such a
large role in the forecast we are interested in. Alternatively, our two
models may share some systematic deficiency of which we are not
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aware . . . yet. But what if the distributions of golf balls and green
balls are significantly different? Then we cannot sensibly rely on
either. How might quantifying the diversity of our models with
these multi-model ensembles allow us to construct a probabilistic
forecast for the one passage of reality? When we look at seasonal
weather forecasts, using the best models in the world, the
distribution from each model tends to cluster together, each in a
different way. How are we to provide decision support in this case,
or a forecast? What should be our aim? Indeed, how exactly can we
take aim at any goal given only empirically inadequate models? If
we naı̈vely interpret the diversity of an ensemble of models as a
probability, we will be repeatedly misled; we know at the start that
our models are imperfect, so any discussion of ‘subjective
probability’ is a red herring: we do not believe in (any of) our
models in the first place!

The bottom line is rather obvious: if our models were perfect and
we had the resources of Laplace’s demon, we would know the
future; while if our models were perfect and we had the resources of
our 21st-century demon, then chaos would restrict us to probability
forecasts, even if we knew the Laws of Nature were deterministic. In
case the True Laws of Nature are stochastic, we can envision a
statistician’s demon, which will again offer accountable probability
forecasts with or without exact knowledge of the current state of the
universe. But is the belief in the existence of mathematically precise
Laws of Nature, whether deterministic or stochastic, any less
wishful thinking than the hope that we will come across any of our
various demons offering forecasts in the woods?

In any event, it seems we do not currently know the relevant
equations for simple physical systems, or for complicated ones. The
study of chaos suggests that difficulty lies not with uncertainty in
the number to ‘put in’ but the lack of an empirically adequate model
to put anything into: chaos we might cope with, but it is model
inadequacy, not chaos, that limits predictability. A model may
undeniably be the best in the world, but that says nothing about
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whether or not it is empirically relevant, much less useful in
practice, or even safe. Forecasters who couch predictions they
expect to be fundamentally flawed with sleight-of-hand phrases
such as ‘assume the model is perfect’ or ‘best available information’,
may be technically speaking the truth, but if those models cannot
shadow the past then it is not clear what ‘uncertainty in the initial
state’ might mean. Those who blame chaos for the shortcomings of
probability forecasts they devised under the assumption their
models were perfect, models they knew to be inadequate, palter to
us in a double-sense.
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Chapter 10

Applied chaos: can we see

through our models?

All theorems are true,

All models are wrong.

All data are inaccurate.

What are we to do?

Scientists often underestimate the debt they owe real-time
forecasters who, day after day, stand up and present their vision of
the future. Prominent among them are weather forecasters and
economists, while professional gamblers risk more than their image
when they go to work. As do futures traders. The study of chaos has
initiated a rethink of modelling and clarified the restrictions on
what we can see through our models. The implications differ, of
course, for mathematical systems where we know there is a target to
take aim at, and physical systems where what we aim for may well
not exist.

Modelling from the ground up: data-based models
We will consider four types of data-based models. The simplest are
persistence models which assume that things will stay as they are
now. A simple dynamic variation on this theme are advection
models, which assume the persistence of velocities: here, a storm
moving to the east would be forecast to continue moving to the east
at the same speed. Fitzroy and LeVerrier employed this approach in
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the 1800s, exploiting telegraph signals which could race ahead of an
oncoming storm. The third are analogue models. Lorenz’s classic
1963 paper ends with the sentence: ‘In the case of the real
atmosphere, if all other methods fail, we can wait for an analogue.’
An analogue model requires a library of past observations from
which a previous state similar to the current state is identified; the
known evolution of this historical analogue provides the forecast.
The quality of this method depends on how well we observe the
state and whether or not our library contains sufficiently good
analogues. When forecasting a recurrent system, obtaining a good
analogue is just a question of whether or not the library’s collection
is large enough given our aims and the noise level. In practice,
building the library may require more than just patience: how
might we proceed if the expected time required to observe
recurrence is longer than the lifetime of the system itself?

Traditional statistics has long exploited these three approaches
within the context of forecasting from historical statistics. Takens’
Theorem suggests that for chaotic systems we can do better than
any of them. Suppose we wish to forecast what the state of the
atmosphere will be tomorrow from a library. The situation is shown
schematically in Figure 26. The analogue approach is to take the
state in the library which is nearest to today’s atmospheric state,
and report whatever it did the next day as our forecast for
tomorrow. Takens’ Theorem suggests taking a collection of nearby
analogues and interpolating between their outcomes to form our
forecasts. These data-based delay reconstruction models can prove
useful without being perfect: they need only outperform – or merely
complement – the other options available to us. Analogue
approaches remain popular in seasonal weather forecasting, while
roulette suggests a data-based modelling success story.

It is easy to put money on a winner in roulette: all you have to do is
bet one dollar on each number and you’ll have a winner every time.
You’ll lose money, of course, since your winner will pay $36, while
you’ll have to bet on more than 36 numbers. ‘Play them all’

133

A
p

p
lied

 ch
ao

s: can
 w

e see th
ro

u
g

h
 o

u
r m

o
d

els?



strategies lose money on each and every game; casinos worked this
out some time ago. Making a profit requires more than placing a
winning bet every time: it requires a probabilistic forecast that is
better than the house’s odds. Luckily, that can be achieved short of
the harsh requirements of empirical adequacy or mathematical
accountability.

The fact that bets can be placed after the ball is in play makes
roulette particularly interesting to physicists and the odd
statistician. Suppose you record whenever the ball passes, say, the
zero with the big toe on your left foot, and whenever zero passes a
fixed point on the table with the big toe on your right foot; how
often could a computer in the heel of your cowboy boot correctly
predict which quarter of the roulette wheel the ball would land on?
Predicting the correct quarter of the wheel half of the time would
turn the odds in your favour: when you were right you’d win about
four times the amount you lost, leaving a profit of three times your
gamble, and you’d lose it all about half the time; so on average,
you’d make about one and a half times the stake you put at risk.
While the world will never know how many times people have tried
this, we can put a lower bound of once: the story is nicely told by
Thomas Bass in ‘The Newtonian Casino’.

26. A schematic illustration of interpreting between analogues to make
a forecast in a data-based state space. Knowing where the image of each
nearby point falls, we can interpolate to form a forecast for the point
marked ‘*’
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Simulation models
What if the most similar analogues did not provide a sufficiently
detailed forecast? One alternative is to learn enough physics to
build a model of the system from ‘first principles’. Such models
have proven seductively useful across the sciences, yet we must
remember to come back from model-land and evaluate our
forecasts against real observations. We may well have access to the
best model in the world, but whether or not that model is of any
value in making decisions is an independent question.

Figure 27 is a schematic reflecting the state space of a UK Met.
Office Climate model. The state space of a numerical weather
prediction (NWP) model falls along similar lines, but weather
models are not run for as long as climate models, and so one often
simplifies them by assuming things that change slowly, such as the
oceans, sea ice or land use, are effectively constant. While the
schematic makes models look more elaborate than the simple maps
of previous chapters, once transfered onto a digital computer, the
iteration of a weather model is not any more complex really, just
more complicated. The atmosphere, along with the ocean, and the
first few metres of the Earth’s crust in some models, is effectively
divided up into boxes; model variables – temperature, pressure,
humidity, wind speed, and so on – are defined by one number in
each box. In as much as it contains an entry for every variable in
every grid-box, the model state can be rather large, some have over
10,000,000 components. Updating the state of the model is a
straightforward if tedious process: one just applies the rule for each
and every component, and iterates over and over again. This is what
Richardson did by hand, taking years to forecast one day ahead. The
fact that the calculations focus on components from ‘nearby’ cells
gave Richardson the idea that a room full of computers arranged as
shown in Figure 28 could in fact compute the weather faster than it
happened. Writing in the 1920s, Richardson’s computers were
human beings. Today’s multiprocessor digital supercomputers use
more or less the same scheme. NWP models are among the most
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complicated computer codes ever written and often produce
remarkably realistic-looking simulations. Like all models, however,
they are imperfect representations of the real-world system they
target, and the observations we use to initialize them are noisy. How
are we to use such valuable simulations in managing our affairs?
Can we at least get an idea of how much we should rely on today’s
forecast for next weekend?

27. A schematic reflecting the way weather and climate models divide
both the atmosphere and the ocean into ‘‘grid points’’. Here each grid
point in the atmosphere represents approximately a 250 km by 250 km
square, which means that about six points account for the whole of
Britain as shown above
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28. A realization of Richardson’s dream,
in which human computers work in
massively parallel style to calculate the
weather before it happens. Note the
director in the central platform is shining
a light on northern Florida, presumably
indicating that those computers are
slowing down the project (or perhaps the
weather there is just particularly tricky to
compute?)



Ensemble weather prediction systems
Latest EPS giving northern France an edge over Cornwall. Do you

have a travel agent who can advise on ferry bookings? Tim

email dated 5 August 1999

In 1992 operational weather forecasting centres on both sides of the
Atlantic took a great step forward: they stopped trying to say exactly
what the weather would be next weekend. For decades, they had
run their computer simulations once a day. As computers grew
faster, the models had grown more and more complicated, limited
only by the need to get the forecast out well before the weather
arrived. This ‘best guess’ mode of operation ended in 1992: instead
of running the most complicated computer simulation once and
then watching as reality did something different, a slightly less
complex model was run a few dozen times. Each member of this
ensemble was initialized at a slightly different state. The forecasters
then watched the ensemble of simulations spread out from each
other as they evolved in time towards next weekend, and used this
information to quantify the reliability of the forecast for each day.
This is an Ensemble Prediction System (EPS).

By making an ensemble forecast we can examine alternatives
consistent with our current knowledge of the atmosphere and our
models. This provides significant advantages for informed decision
support. In 1928, Sir Arthur Eddington predicted a solar eclipse
‘visible over Cornwall’ for 11 August 1999. I wanted to see this
eclipse. So did Tim Palmer, Head of the Probability Forecast
Division at the European Centre for Medium-range Weather
Forecasts (ECMWF) in Reading, England. As the eclipse
approached, it seemed Cornwall might be overcast. The email from
Tim quoted at the beginning of this section was sent six days
before the eclipse: we examined the ensemble for the 11th, noting
that the number of ensemble members suggested clear sky over
France exceeded the corresponding number for Cornwall; the same
thing happened on the 9th and we left England for France by ferry.
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There we saw the eclipse, thanks to playing the odds suggested by
the EPS, and to a last minute dash for better visibility made
possible by Tim’s driving skills on tiny French farm roads in a
right-hand-drive car; not to mention his solar eclipse black-out
glasses. The study of chaos in our model suggests that our
uncertainty in the current state of the atmosphere makes it
impossible to say for certain, even only a week in advance, where
the eclipse will be visible and where it will be obscured by clouds.
By running an ensemble forecast with the aim of tracking this
uncertainty, the EPS provided effective decision support
nevertheless: we saw the eclipse. We did not have to assume
anything about the perfection of the model and there were no
probability distributions in sight.

Since the EPS first became operational in 1992, no ensemble
forecast was generated for the Burns’ Day storm of January 1990.
ECMWF has kindly generated a retrospective ensemble forecast
using the data available two days before the Burns’ Day storm
struck. Figure 4 (on page 14) shows the storm as seen within a
modern weather model – called the analysis – along with a
two-day-ahead forecast using only data from before the time of
the critical ship observations discussed in Chapter 1. Note that
there is no storm in the forecast. Twelve other ensemble members
also from two days before the storm are shown in Figure 29;
some have storms, some not. The second ensemble member in
the top row looks remarkably like the analysis; the member two
rows below it has what looks like a super-storm while other
members suggest a normal British winter’s day. As the critical
ship observations were made after this EPS forecast, this
ensemble would have already provided an indication that a
storm was likely, and significantly reduced the pressure on the
intervention forecaster. At longer lead times, the ensemble from
three days before Burns’ Day has members with storms over
Scotland, and there is even one member from the four-day-ahead
ensemble forecast with a major storm in the vicinity. The ensemble
provides early warning.
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29. An ensemble of forecasts from the ECMWF weather model, two
days in advance of the Burns’ Day storm: some show storms, some do
not. Unlike the single ‘best guess’ forecast shown in Figure 4 on page 14,
here we have some forewarning of the storm





At all lead times, we must cope with the Burns effect: our collection
of ECMWF weather ‘golf balls’ shows the diversity of our model’s
behaviour to aid us when we ‘guess and fear’, without actually
quantifying the uncertainty in our real-world future. In fact, we
could widen this diversity, if we have enough computer power and
questioned the reliability of certain observations, we might run
some ensemble members with those observations while omitting
them in others. We will never see another situation quite like the
Burns’ Day storm of 1990. We might decide where to take future
observations designed to maximize the chance of distinguishing
which of our ensemble members were most realistic: those with a
storm in the future or those without?

Rather than wasting too much energy trying to determine the ‘best’
model, we might learn that ensembles members from different
models were of more value than one simulation of an extremely
expensive super-model. But we should not forget the lessons of the
NAG Board: our ensembles reveal the diversity of our models not
the probability of future events. We can examine ensembles over
initial conditions, parameter values, even mathematical model
structures, but it seems only our 21st-century demon can make
probability forecasts which are useful as such. Luckily, an EPS can
inform and add value without providing probabilities that we would
use as such for decision making.

Just after Christmas in 1999, another major storm swept across
Europe. Called T1 in France and Lothar in Germany, this storm
destroyed 3,000 trees in Versailles alone and set new record high
insurance claims in Europe. Forty-two hours before the storm,
ECMWF ran its usual 51-member EPS forecast. Fourteen members
of the 51-member ensemble had storms. It is tempting to forget
these are but as golf balls on a NAG Board, and interpret this as
saying that there was about a 28% probability of a major storm.
Even though that temptation should be resisted, we have here
another EPS forecast with great utility. Running a more realistic,
more complicated model once might have shown a storm, or might
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have shown no storm: why take the chance of not seeing the storm
when an EPS might quantify that chance? Ensemble forecasting is
clearly a sensible idea, but how exactly should we distribute limited
resources between using a more expensive model and making a
larger ensemble? This active research question remains open. In the
meantime, the ECMWF EPS regularly provides a glimpse of
alternative future scenarios seen through our models with
significant added value.

How to communicate this information in the ensemble without
showing the public dozens of weather maps also remains an open
question. In New Zealand, where severe weather is rather common,
the Meteorological Service regularly makes useful probabilistic
statements on their website – statements like ‘two chances in five’.
This adds significant value to the description of a likely event. Of
course, meteorologists often display a severe weather fetish, while
energy companies are happy to exploit the significant economic
value in extracting useful information from more mundane
weather, every day. And those in other sectors with operational
weather risk are beginning to follow suit.

Chaos and climate change
Climate is what you expect. Weather is what you get.

Robert Heinlein, Time Enough for Love (1974)

Climate modelling differs fundamentally from weather
forecasting. Think of the weather in the first week in January a
year from now. It will be mid-summer in Australia and mid-
winter in the northern hemisphere. That alone gives us a good
idea of the range of temperatures to expect: this collection of
expectations is climate – ideally reflecting the relative probability
of every conceivable weather pattern. If we believe in physical
determinism, then the weather next January is already
preordained; even so, our concept of the climate collection is
relevant, as our current models are not able to distinguish that
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preordained future. The ideal ensemble weather forecast would
trace the growth of any initial uncertainty in the state of the
atmosphere until it became indistinguishable from the
corresponding climate distribution. Given imperfect models, of
course, this doesn’t ever quite happen, as our ensemble of model
simulations evolves towards the attractor of the model not that of
the real world, if such a thing exists. Even with a perfect model,
and ignoring the impacts of human free will noted by Eddington,
accurate probability forecasts based on the current conditions of
the Earth would be prevented by influences just now leaving the
Sun, or those due to arrive from beyond the solar system, of
which we cannot know today, even in principle.

Climate modelling also differs from weather forecasting in that it
often contains a ‘what if’ component. Altering the amount of carbon
dioxide (CO2) and other greenhouse gases in the atmosphere is
analogous to changing the parameter α in the Logistic Map; as we
change parameter values, the attractor itself changes. In other
words, while weather forecasters try to interpret the implications a
distribution of golf balls holds for the single drop of a red rubber
ball in the NAG Board of Figure 25 (page 128), climate modellers
add the complication of asking what would happen if the nails were
moved about.

Looking at just one run of a climate model carries the same dangers
as looking at just one forecast for Burns’ Day in 1990, although the
repercussions of such naı̈ve over-confidence would be much greater
in the climate case. No computing centre in the world has the power
to run large ensembles of climate models. Nevertheless, such
experiments are made possible by harnessing the background
processing power of PCs in homes spread about the globe (see
www.climateprediction.net). Thousands of simulations have
revealed that a surprisingly large range of diversity exists within one
state-of-the-art climate model, suggesting that our uncertainty in
the future of real-world climate is at least very large. These results
contribute to improving current models. They fail to provide
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evidence that the current generation of climate models can
realistically focus the questions of regional detail, which, when
available, will be of great value in decision support. A frank
appraisal of the limitations of today’s climate models casts little
doubt upon the wide consensus that significant warming has been
seen in the data of the recent past.

How wide is the current diversity among our models? This depends,
of course, on what model variables you examine. In terms of planet-
wide average temperature, there is a consistent picture of warming;
a goodly number of ensemble members show a great deal more
warming than was previously considered. In terms of regional
details, there are vast variations between ensemble members. It is
hard to judge the utility of estimated precipitation for decision
support, even for monthly rainfall over the whole of Europe. How
might one distinguish what are merely the best currently available
forecasts from forecasts that actually contain useful information for
decision makers in the climate context?

In reality, carbon dioxide levels and other factors are constantly
changing, weather and climate merge into a single realization of a
one-off transient experiment. Weather forecasters often see
themselves as trying to extract useful information from the
ensemble before it spreads out across the ‘weather attractor’;
climate modellers must address difficult questions about how the
structure of that attractor would change if, say, the amount
of carbon dioxide in the atmosphere was doubled and then held
constant. Lorenz was already doing active research here in the
1960s, warning that issues of structural stability and long transients
complicate climate forecasts, and illustrating the effects in systems
not much more complicated than the maps we defined in Chapter 3.

Given that our weather models are imperfect, their ensembles do
not actually evolve towards realistic climate distributions. And
given that the properties of the Earth’s climate system are
constantly changing, it makes little sense to talk about some
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constantly changing, unobservable ‘realistic climate distribution’ in
the first place. Could any such thing exist outside of model-land?
That said, coming to understand chaos and nonlinear dynamics has
improved both the experimental design in and the practice of
climate studies, allowing more insightful decision support for
policy makers. Perhaps most importantly, it has clarified that
difficult decisions will have to be made under uncertainty. Neither
the fact that this uncertainty is not tightly constrained nor the fact
that it can only be quantified with imperfect models, provides an
excuse for inaction. All difficult policy decisions are made in the
context of the Burns effect.

Chaos in commerce: new opportunities in Phynance
When a large number of people are playing a game with clear rules
but unknown dynamics, it is hard to distinguish those who win with
skill from those who win by chance. This is a fundamental problem
in judging hedge-fund managers and improving weather models,
since traditional scores can actually penalize skilful probabilistic
play. The Prediction Company, or PredCo, was founded on the
premise that there must be a better way to predict the economic
markets than the linear statistical methods that dominated
quantitative finance two decades ago. PredCo set out upon a
different path blazed by Doyne Farmer and Norm Packard, along
with some of the brightest young nonlinear dynamicists of the day,
who gave up post-docs for stock options. If there was chaos in the
markets, perhaps others were being be fooled without randomness?
Sadly, confidentiality agreements still cloud even PredCo’s early
days, but the continued profitability of the company indicates that
whatever it is doing, it is doing it well.

PredCo is one example of a general move towards Phynance,
bringing well-trained mathematical physicists in to look at forecast
problems in finance, traditionally the statistician’s preserve. Is the
stock market chaotic? Current evidence suggests our best models of
the markets are fundamentally stochastic, so the answer is ‘no’. But
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neither are they linear. To take one example, the study of chaos has
contributed to fascinating developments at the interface of weather
and economics: many markets are profoundly affected by weather,
some are even affected by weather forecasts. Many analysts so fear
that they might be fooled by randomness that they are religiously
committed to fairly simple, purely stochastic models, and ignore the
obvious fact that some ensemble weather forecasts contain useful
information. For energy companies, information on the uncertainty
of weather information is being used daily to avoid ‘chasing the
forecast’: buying high, then selling low, then buying high the same
cubic metre of natural gas yet again as the weather forecast for next
Friday’s temperature jumps down, then up, then down again, taking
the expected electricity demand for next Friday along with it at each
jump. That fact has put speculators in hot pursuit of methods to
forecast the next forecast.

The study of chaos leads to efficiency beyond short-term profit;
Phynance is making significant contributions to the improved
distribution of perishable goods with weather-related demand,
ship, train and truck transport, and demand forecasting in general.
Better probabilistic forecasts of chaotic fluctuations in wind and
rain significantly increase our ability to use renewable energy,
reducing the need to keep fossil fuel generators running on
‘standby’, except on days of truly low predictability.

Retreating towards a simpler reality
Physical systems inspired the study of chaotic dynamical systems,
and we now understand how our 21st-century incarnation of
Laplace’s demon could generate accountable probability forecasts
of chaotic systems with her perfect model. Whether purely data-
based or derived from today’s ‘Laws of Nature’, the models we have
to hand are imperfect. We must contend both with observational
uncertainty and with model inadequacy. Interpreting an ensemble
forecast of the real world as if it were a perfect model probability
forecast of a mathematical system is to make the most naı̈ve of
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forecasting blunders. Can we find a single real-world system in
which chaos places the ultimate limit on our forecasts?

The Earth’s atmosphere/ocean system is a tough forecasting nut to
crack; physicists avoid a complete retreat to mathematical models
by examining simpler physical systems on which to break their
forecasting procedures and theories of predictability. We will
track the course of this retreat from the Earth’s atmosphere to
examine the last ditch, and then examine what lies there in some
detail. Lorenz noted the laboratory ‘dish pan’ experiments of
Raymond Hide to support chaotic interpretations of his computer
simulations in the early 1960s. Offspring of those experiments are
still rotating in the Physics Department of Oxford University, where
Peter Read provides the raw material for their data-based
reconstructions. Thus far, probabilistic forecasts of these fluid
systems remain very imperfect. Experimentalists around the
globe have taken valuable data both from fluid systems and from
mechanical systems motivated by the chaotic nature of the
corresponding physical models. Real pendulums tend to heat up,
changing the ‘fixed’ parameters of simulation models while leaving
the regions of state space on which data-based models were trained.
Even dice wear down, a bit, on each throw. Such is the nature of the
real world.

Physical systems providing large volumes of data, low observational
noise levels, and physically stationary conditions might prove more
amenable to the tools of modern nonlinear data analysis.
Ecosystems are right out. Fast, clean, and accurately instrumented
lasers have proven rich sources, but we do not have accountable
forecast models here or when studying the dynamics of more exotic
fluids like helium. At the last ditch we find electronic circuits:
arguably simple analogue computers. A manuscript reporting
successful ensemble forecasts of these systems is likely to be
rejected by professional referees for having taken too simple a
system. So much greater the insight when we fail to generate
accountable forecasts for these simplest of real-world systems.
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Figure 30 shows ensemble forecasts of observed voltages in a circuit
constructed to mimic the Moore-Spiegel system. Forecasts from
two different models are shown. In each panel, the dark solid line
shows the target observations generated by the circuit, while each
light line is an ensemble member; the forecasts start at time equals
zero; the ensemble was formed using only observations taken
before that time. The top two panels show results from Model One,
while the bottom two show results from Model Two. Look at the two
panels on the left, which show simultaneous forecasts from each
model. Every member of the Model One ensemble runs away from
reality without warning just before time 100, as shown in the upper
panel; the Model Two ensemble in the lower panel manages to
spread out at about the correct time (or is it a bit early?), and the
diversity of this ensemble looks useful all the way to the end of the
forecast. In this case, we may not know which model was going to
prove correct, but we can see where they began to strongly diverge
from each other. On the panels to the right, both models fail at
about the same time, in about the same way.

In each case, it appears that the forecasts provide insight into the
likely future observations, but that the point in the future when this
insight fails is not well reflected by either ensemble system. How
can we best interpret this diversity in terms of a forecast?

Analysis of many forecasts from different initial conditions shows
that, interpreted as probability forecasts, these ensembles are not
accountable. This seems to be a general result when using arguably
chaotic mathematical models to forecast real-world systems. I know
of no exceptions. Luckily, utility does not require extracting useful
probability estimates.

Odds: do we really have to take our models
so seriously?
In academic mathematics, odds and probabilities are more or less
identical. In the real world this is not the case. If we add up the
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30. Ensemble forecasts of the Machete’s Moore-Spiegel Circuit. The
dark line shows the observations; the light lines are the ensemble
members; the forecast starts at time zero. The two panels on the left
show ensemble forecasts for the same data but made by two different
models; note that the ensemble in the lower panel manages to catch the
circuit even when the model in the upper panel loses it near time 100.
Forecasts from a second initial condition by these same two models is
shown in the two panels on the right where the ensembles under both
models fail at about the same time





probability of every possible event, then the sum of the probabilities
should be one. For any particular set of odds-on, we can then define
the implied probability of an event from the odds on that event. If
the sum of the implied probabilities is equal to one, then this set of
odds are probabilistic odds. Outside mathematics lectures,
probabilistic odds are rather hard to find in the real world. The
related notion of ‘fair odds’, where the odds are fixed and one is
given the option to take either side of a bet, suggests a similar sort of
ivory tower ‘wishful thinking’; implied probabilities from odds-
against do not complement those from odds-on. The confusion at
the heart of both conceptions comes largely from blurring the
distinction between mathematical systems and the real-world
systems they model. At the racetrack or in a casino, the implied
probabilities sum to more than one. A European roulette wheel
yields 37/36, while an American wheel yields 38/36. In a casino this
excess ensures profit; scientifically, we might exploit this same
excess to communicate information about model inadequacy.

Model inadequacy can steer us away from probability forecasts in a
manner not dissimilar to the way in which uncertainty in the initial
condition steers us away from the principle of least squares in
nonlinear models. Theory for incorporating probability forecast
systems into a decision support by maximizing expected utility – or
some other reflection of the user’s goal – is well developed. A
‘probability forecast’ which would not be used as such in this setting
should perhaps not be called a probability forecast at all. A theory
for incorporating forecast systems which provides odds rather than
probabilities for decision support could, no doubt, be constructed.
Judd has already provided several worked examples.

It appears that accepting the inadequacy of our own models, while
being ignorant of the inadequacy of the models to which the
competition has access, requires we aim for something short of fair
odds. If an odds prediction system can cover its losses – breaking
even when evaluated over all comers while covering its running
costs – then we can say it generates sustainable odds. Sustainable
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odds then provide decision support which does not result (has not
yet resulted) in catastrophe nor instilled the desire to invest more in
improving those odds in order either to gain greater market share
or to cover running expenses.

Ensembles over all the alternatives one can think of to sample
might lead to sustainable odds, allowing the diversity within
multi-model ensembles to estimate the impact of model
inadequacy. The extent to which the sum of our implied
probabilities exceeds one provides a manner to quantify model
inadequacy. One wonders if, as we understand some real-world
system better and better, we can expect the implied probabilities of
our odds forecasts to ever sum to one for any physical system?

Moving to forecast systems which provide odds rather than
probabilities releases our real-world decision support from
unnatural constraints due to probabilities, which may be well-
defined only in our mathematical systems. It is an awkward but
inescapable fact that sustainable odds will depend both on the
quality of your model and on that of the opposition. Decision
making would be easy if accountable probability forecasts were on
offer, but when model diversity cannot be translated into (a decision
relevant) probability, we have no access to probability forecasts.
Pursuing risk management as if we did for the sake of simplicity is
foolhardy. And while odds might prove useful in hourly or daily
decision making, what are we to do in the climate change scenario,
where it appears we have only one high-impact event and no truly
similar test cases to learn from?

We have reached the coal face of real-world scientific forecasting.
The old seam of probability is growing thin and it is unclear exactly
which direction we should dig in next. If chaotic dynamical systems
have not provided us with a new shovel, they have at least given us a
canary.
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Chapter 11

Philosophy in chaos

You don’t have to believe everything you compute.

Is there really anything new in chaos? There is an old joke about
three baseball umpires discussing the facts of life within the game.
The first umpire says ‘I calls’em as I see’em.’ The second umpire says
‘I calls’em as they are.’ Finally, the third says ‘They ain’t, until I
calls’em.’ The study of chaos tends to force us towards the
philosophical position of the third referee.

Complications of chaos

Do the quantities we forecast exist only within the forecast models
we construct? If so, then how might we contrast them with our
observations? A forecast lies in the state space of our model and,
while the corresponding observation is not in that state space,
are these two ‘subtractable’? This is a mathematical version of
the ‘apples and oranges’ problem: are the model state and
the observation similar enough that we can meaningfully
subtract one from the other to define a distance, to then call a
forecast error? Or are they not? And if not, then how might we
proceed?

Evaluation of chaotic models has exposed a second fundamental
complication that arises even in perfect nonlinear models with
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unknown parameter values: how do we determine the best
values? If the model is linear, then we have several centuries
of experience and theory which convincingly establish that the
best values in practice are those that yield the closest agreement
on the target data, where closest is defined in a least squares
sense (smallest distance between the model and the target
observations); likelihood is a useful thing to maximize. If our
model is not linear, then our centuries of intuition often prove a
distraction, if not an impediment to progress. Taking least squares
is no longer optimal, and the very idea of ‘accuracy’ has to be
rethought. This simple fact is as important as it is neglected.
This problem is easily illustrated in the Logistic Map: given the
correct mathematical formula and all the details of the noise
model – random numbers with a bell-shaped distribution –
using least squares to estimate α leads to systematic errors.
This is not a question of too few data or insufficient computer
power, it is the method that fails. We can compute the optimal
least squares solution: its value for α is too small at all noise
levels. This principled approach just does not apply to nonlinear
models because the theorems behind the principle of least
squares repeatedly assume bell-shaped distributions. The shape
of these distributions is preserved by linear models, but
nonlinear models distort the bell-shape, making least squares
inappropriate. In practice, this ‘wishful linear thinking’
systematically underestimates the true parameter value at
every noise level. Recent (mis)interpretations of climate
models have floundered due to similarly wishful linear thinking.
Our 21st-century demon will be able to estimate α very accurately,
but she will not be using least squares to do so! (She will be looking
for shadows.)

Philosophers have also wondered whether fractal intricacy might
establish the existence of real numbers in nature, proving that
irrational numbers exist even if we can only see a few of the
leading bits. Strange attractors offer nothing to support such
arguments that cannot be obtained from linear dynamical
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systems. On the other hand, chaos offers a new way to use both
models and our observations to define variables in remarkable
detail – if our models are good enough – via states along the shadow
from an empirically adequate nonlinear model. If our model
shadows the observations for an extended time, then all the
shadowing states will fall into a very narrow range of values,
providing a way to define values for observables like temperature to
a precision beyond that at which our usual concept of temperature
breaks down. We will never get to an irrational number, but an
empirically adequate model could supply a definition of arbitrary
accuracy, using the observations while placing the model into a role
not unlike that of the third umpire. That said, the traditional
connection between temperature and our measurements of it via a
noise model, remains safe until useful shadowing trajectories are
shown to exist.

Another philosophical quandary arises in terms of how to define the
‘best’ forecast in practice. Probabilistic forecasts provide a
distribution as each forecast, while the target observation we verify
against will always be a single event: when the forecast distribution
differs from one forecast to the next, we have yet another ‘apples
and oranges’ problem and can never evaluate even one of our
forecast distributions as a distribution.

The success of our models tends to lull us towards the happy
thought that mathematical laws govern the real-world systems of
interest to us. Linear models formed a happy family. The wrong
linear model can be close to the right linear model, and seen to be
so, in a sense that does not apply to nonlinear models. It is not easy
to see that an imperfect nonlinear model is ‘close to’ the right model
given only observations: we can see that it allows long shadows, but
if the two models have different attractors – and we know that the
attractors of very similar mathematical models can be very different
– then we do not know how to make ensembles that produce
accountable probability forecasts. We must reconsider how our
nonlinear models might approach Truth, in the case that Truth can
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be encapsulated in some ‘right’ model. We have no scientific reason
to believe that such a perfect model exists. Our philosopher might
turn from muddy issues raised on the quest for Truth and
contemplate the implications of there being nothing more than
collections of imperfect models. What advice might she offer our
physicist? If new computer power allows the generation of
ensembles over everything we can think of (initial conditions,
parameter values, models, compilers, computer architecture, and so
on), how do we interpret the distributions that come out
scientifically? Or expose the folly of hiding from these issues behind
a single simulation from a particularly complicated ultra-high-
resolution model?

Lastly, note that when working with the wrong model, we may ask
the wrong question. Who is who in la Tour’s card game? The
question assumes a model in which each player can be only a
mathematician or a physicist or a statistician or a philosopher, and
that there must be a representative of each discipline at the table.
Perhaps this assumption is false. As real-world scientists, can each
of our players take on every role?

The burden of proof: what is chaotic, really?
If we stay with mathematical standards of proof, then very few
systems can be proven to be chaotic. The definition of mathematical
chaos can only be applied to mathematical systems, so we cannot
begin to prove a physical system is chaotic, or periodic for that
matter. Nevertheless, it is useful to describe physical systems as
periodic or chaotic as long as we do not confuse the mathematical
models with the systems we use them to describe. When we have
the model in hand, we can see whether it is deterministic or
stochastic, but even after knowing it to be deterministic, proving
it to be chaotic is non-trivial. Calculating Lyapunov exponents
is a difficult task, and there are very few systems for which we can
do this analytically. It took almost 40 years to establish a
mathematical proof that the dynamics of the 1963 Lorenz System
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were chaotic, so the question regarding more complicated
equations like those used for the weather is likely to remain open for
quite some time.

We cannot hope to defend a claim that a physical system is chaotic
unless we discard the mathematicians’ burden of proof, and with it
the most common meaning of chaos. Nevertheless, if our best
models of a physical system appear to be chaotic, if they are
deterministic, appear to be recurrent, and suggest sensitive
dependence by exhibiting the rapid growth of small uncertainties,
then these facts provide a working definition of what it means for a
physical system to be chaotic. We may one day find a better
description of that physical system which does not have these
properties, but that is the way of all science. In this sense, the
weather is chaotic while the economy is not. Does this imply that if
we were to add a so-called random number generator to our
weather model we no longer believe real weather is chaotic? Not at
all, as long as we only wish to employ a random number generator
for engineering reasons, like accounting for defects in the finite
computerized model. In a similar vein, the fact we cannot employ a
true random number generator in our computer models does not
imply we must consider the stock market deterministic. The study
of chaos has laid bare the importance of distinguishing between
our best models and the best way to construct computer
simulations of those models. If our model structure is imperfect,
our best models of a deterministic system might well turn out to be
stochastic!

Perhaps the most interesting question of all to come out of chaotic
forecasting is the open question of a fourth modelling paradigm: we
see our best model fail to shadow, we suspect that there is no way to
fix this model, either within the deterministic modelling scheme of
our physicist, or within the standard stochastic schemes of our
statistician. Can further study of mathematical chaos suggest a
synthesis that will give us access to models that can at least shadow
physical systems?
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Shadows, chaos, and the future
Our eyes once opened, we may pass on to a yet newer outlook of the

world, but we can never go back to the old outlook.

A. Eddington (1927)

Mathematics is the ultimate science fiction. While mathematicians
can happily limit their activities to domains where all their
assumptions hold (‘almost always’), physicists and statisticians
must deal with the external world through the data to hand and the
theories to mind. We must keep this difference in mind if we are
going to use words like ‘chaos’ when speaking with mathematicians
and scientists; a chaotic mathematical system is simply a different
beast than a physical system we call chaotic. Mathematics proves;
science struggles merely to describe. Failure to recognize this
distinction has injected needless acrimony into the discussion.
Neither side is ‘winning’ this argument, and as the previous
generation slowly leaves the field, it is interesting to observe some
members of the next generation adopt an ensemble approach:
neither selecting nor merging but literally adopting multiple
models as a model and using them in unison. Rather than playing
as adversaries in a contest, can our physicist, mathematician,
statistician, and philosopher work as a team?

The study of chaos helps us to see more clearly which questions
make sense and which are truly nonsensical: the study of chaotic
dynamics has forced us to accept that some of our goals are
unreachable given the awkward properties of nonlinear systems.
And given that our best models of the world are nonlinear – models
for the weather, the economy, epidemics, the brain, the Moore-
Spiegel circuit, even the Earth’s climate system – this insight has
implications beyond science, extending to decision support and
policy making. Ideally, the insights of chaos and nonlinear
dynamics will come to the aid of the climate modeller, who, when
asked to answer a question she knows to be meaningless, is
empowered to explain the current limits to our knowledge and
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communicate the available information. Even if model
imperfections imply that there is no policy-relevant probability
forecast, a better understanding of the underlying physical process
has aided decision makers for ages.

All difficult decisions are made under uncertainty; understanding
chaos has helped us to provide better decision support. Significant
economic progress has already been made in the energy sector,
where the profitability of using information-rich weather ensembles
has led to daily use of uncertainty information from trading floors of
the markets to the control rooms of national electricity grids.

Prophecy is difficult; it is never clear which context science will
adopt next, but the fact that chaos has changed the goal posts may
well be its most enduring impact on science. This message needs to
be introduced earlier in education; the role of uncertainty and the
rich variety of behaviour that mathematically simple systems reveal
is still largely unappreciated. Observational uncertainty is
inextricably melded with model error, forcing us to re-evaluate what
counts as a good model. Our old goal to minimize least squares has
been proven to mislead, but should we replace them with a search
for shadows, for a model with good-looking behaviour, or the ability
to make more accountable probability forecasts? From our new
vantage point, we can see more clearly which questions make sense,
calling forth challenges to the foundational assumptions of
mathematical physics and to applications of probability theory. Are
our modelling failures due to our inability to select the correct
answer from among the available options, or is there no suitable
option on offer? How do we interpret simulations from models
which are not empirically adequate? Regardless of our personal
beliefs on the existence of Truth, chaos has forced us to rethink what
it means to approximate Nature.

The study of chaos has provided new tools: delay reconstructions
that may yield consistent models even when we do not know the
‘underlying equations’, new statistics with which to describe

160

Ch
ao

s



dynamical systems quantitatively, new methods of forecasting
uncertainty, and shadows that bridge the gaps between our models,
our observations, and our noise. It has moved the focus from
correlation to information, from accuracy to accountability, from
artificially minimizing arguably irrelevant error to increasing utility.
It rekindles debate on the status of objective probability: can we
ever construct an operationally useful probability forecast, or are we
forced to develop novel ad hoc methods for using probabilistic
information without probability forecasts? Are we quantifying our
uncertainty in the future of the real world or exploring the diversity
in our models? Science seeks its own inadequacy; coping with
constant uncertainty in science is not a weakness but a strength.
Chaos has provided much new cloth for our study of the world,
without providing any perfect models or ultimate solutions. Science
is a patchwork, and some of the seams admit draughts.

Early in the film The Matrix, Morpheus echoes the words of
Eddington that open this last section:

This is your last chance. After this, there is no going back. You take

the blue pill and the story ends. You wake up in your bed and you

believe whatever you want to believe. You take the red pill and you

stay in Wonderland and I show you how deep the rabbit hole goes.

Remember that all I am offering is the truth. Nothing more.

Chaos is the red pill.
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Glossary

Mathematicians are like a certain type of Frenchman; when you talk

to them they translate it into their own language, and then it soon

turns into something completely different.

Goethe, Maxims and Reflections (1779)

These entries are not meant to provide precise definitions, but
are intended to convey the main idea for quick reference. Some
terms hold different shades of meaning when used by
mathematicians (M), physicists (P), computer scientists (C), or
statisticians (S). Definitions and discussion can be found in the
CATS’ Forum at www.lsecats.org and in books listed in the further
reading.

almost every (M): A mathematical catch phrase to warn that even

though something is 100% true, there are instances when it is false.

almost every (P): Almost every.

attractor: A point or collection of points in state space which some

other collection of states approach nearer and nearer as they are

iterated forward.

basin of attraction: For a particular attractor, the collection of all

states that will eventually approach it.

Burns effect: An expression that encapsulates the difficulty that

incomplete foresight and imperfect models bring to attempts at

rational decision making.
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butterfly effect: An expression that encapsulates the idea that small

differences in the present can result in large differences in the future.

chaos (C): A computer program that aspires to represent a chaotic

mathematical system. In practice, all digital computerized dynamical

systems are on or evolving towards a periodic loop.

chaos (M): A mathematical dynamical system which (a) is

deterministic, (b) is recurrent, and (c) has sensitive dependence on

initial state.

chaos (P): A physical system that we currently believe would be best

modelled by a chaotic mathematical system.

chaotic attractor: An attractor on which the dynamics are chaotic. A

chaotic attractor may have a fractal geometry or it may not; so there

are strange chaotic attractors and chaotic attractors that are not

strange.

conservative dynamical systems: A dynamical system in which a

volume of state space does not shrink as it is iterated forward. These

systems cannot have attractors.

delay reconstruction: A model state space constructed by taking

time-delayed values of the same variable in place of observations of

additional state variables.

deterministic dynamics: A dynamical system that can be iterated

without recourse to a random number generator, whose initial state

defines all future states under iteration.

dissipative dynamical system: A dynamical system for which, on

average, a volume of state space shrinks when iterated forward under

the system. While the volume will tend to zero, it need not shrink to a

point and may approach a quite complicated attractor.

doubling time: The time it takes an initial uncertainty to increase by a

factor of two. The average doubling time is a measure of

predictability.

effectively exponential growth: Growth in time which, when averaged

into the infinite future, will appear to be exponential-on-average, but

which may grow rather slowly, or even shrink, for long periods of

time.

ensemble forecast: A forecast based on the iterates of a number of

different initial states forward (perhaps with different parameter

164

Ch
ao

s



values, or even different models) and in so doing reveals the diversity

of our model(s) and so provides a lower bound on the likely impacts of

uncertainty in model-based forecasts.

exponential growth: Growth where the rate of increase in X is

proportional to the value of X, so that as X gets larger, it grows even

faster.

fixed point: A state of a dynamical system which stays put; a

stationary point whose future value under the system is its current

value.

flow: A dynamical system in which time is continuous.

fractal: A self-similar collection of points or an object that is self-similar

in an interesting way (more interesting than, say, a smooth line or

plane). Usually, one requires a fractal set to have zero volume in the

space that it lives, as a line in two dimensions has no area, or a surface

in three dimensions has no volume.

geometric average: The result of multiplying N numbers together and

then taking the Nth root of the product.

indistinguishable state: One member of the collection of points which,

given an observational noise model, you would not expect to be able to

rule out as having generated the observations actually generated by

some target trajectory X. This collection is called the set of

indistinguishable states of X and has nothing to do with any

particular set of observations.

infinitesimal: A quantity smaller than any number you can name, but

strictly greater than zero.

iterate: To apply the rule defining a dynamical map once, moving the

state forward one step.

linear dynamical system: A dynamical system in which sums of

solutions are also solutions, more generally one that allows

superposition of solutions. (For technical reasons, we do not wish to

say ‘involves only linear rules’.)

Lyapunov exponent: A measure of the average speed with which

infinitesimally close states separate. It is called an exponent, since it

is the logarithm of the average rate, which makes it easy to distinguish

exponential-on-average growth (greater than zero) from exponential-

on-average shrinking (negative). Note that slower-than-exponential
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growth, slower-than-exponential shrinking, and no-growth-at-all are

all combined into one value (zero).

Lyapunov time: One divided by the Lyapunov exponent, this number

has little to do with the predictability of anything except in the most

simplistic chaotic systems.

map: A rule that determines a new state from the current state; in this

kind of mathematical dynamical system, time takes on only discrete

(integer) values, so the series of values of X are labelled as Xi where i is

often called ‘time’.

model: A mathematical dynamical system of interest either due to its

own dynamics or the fact that its dynamics are reminiscent of those of

a physical system.

noise (measurement): Observational uncertainty, the idea that there is

a ‘True’ value we are trying to measure, and repeated attempts provide

numbers that are close to it but not exact. Noise is what we blame for

the inaccuracy of our measurements.

noise (dynamic): Anything that interferes with the system, changing

its future behaviour from that of the deterministic part of the

model.

noise model: A mathematical model of noise used in the attempt to

account for whatever is cast as real noise.

non-constructive proof: A mathematical proof that establishes that

something exists without telling us how to find it.

nonlinear: Everything that is not linear.

observational uncertainty: Measurement error, uncertainties due to

the inexactness of any observation of the state of the system.

pandemonium: Transient dynamics that display characteristics

suggestive of chaos, but only over a finite duration of time (and so not

recurrent).

parameters: Quantities in our models that represent and define certain

characteristics of the system modelled; parameters are generally held

fixed as the model state evolves.

Perfect Model Scenario (PMS): A useful mathematical sleight-of-

hand in which we use the model in hand to generate the data, and

then pretend to forget that we have done so and analyse the ‘data’

using our model and tools. More generally, perhaps, any situation in
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which we have a perfect model of the mathematical structure of the

system we are studying.

periodic loop: A series of states in a deterministic system which closes

upon itself: the first state following from the last, which will repeat

over and over forever. A periodic orbit or limit cycle.

Poincaré section: The cross-section of a flow, recording the value

of all variables when one variable happens to take on a particular

value. Developed by Poincaré to allow him to turn a flow into

a map.

predictability (M): Property that allows construction of a useful

forecast distribution that differs from random draws from the

final (climatological) distribution; for systems with attractors, this

implies a forecast better than picking points blindly from the

attractor.

predictability (P): Property that allows current information to yield

useful information about the future state of a system.

prediction: A statement about the future state of a system.

probabilistic: Everything that is not unequivocal, statements that

admit uncertainty.

random dynamics: Dynamics such that the future state is not

determined by the current state. Also called stochastic dynamics.

recurrent trajectory: A trajectory which will eventually return very

close to its current state.

sample-statistic (S): A statistic (for example: the mean, the variance,

the average doubling time, or largest Lyapunov exponent) that is

estimated from a sample of data. The phrase is used to avoid

confusion with the true value of the statistic.

sensitive dependence (P): The rapid, exponential-on-average,

separation of nearby states with time.

shadowing (M): A relationship between two perfectly known models

with slightly different dynamics, where one can prove that one of the

models will have some trajectory that stays near a given trajectory of

the other model.

shadowing (P): A dynamical system is said to ‘shadow’ a set of

observations when it can produce a trajectory that might well have

given rise to those observations given the expected observational
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noise; a shadow is a trajectory that is consistent with both the noise

model and the observations.

state: A point in state space that completely defines the current

condition of that system.

state space: The space in which each point completely specifies the

state, or condition, of a dynamical system.

stochastic dynamics: See random dynamics.

strange attractor: An attractor with fractal structure. A strange

attractor may be chaotic or non-chaotic.

time series (M, P, S): A series of observations taken to represent the

evolution of a system over time; the location of the nine planets, the

number of sunspots, and the population of mice are examples. Also,

the output of a mathematical model. Also (S): Confusingly, the model

itself.

transient dynamics: Ephemeral behaviour as in one game of roulette,

or one ball in either the Galton Board or the NAG Board, since

eventually the ball stops. See pandemonium.
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The full 51-member forecast, along with a number of colour illustrations

in this Very Short Introduction, can be found in L. A. Smith (2002)
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