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Preface

Right after Marc Yor’s death which deeply distressed us in January 2014, devoting
a volume of the Séminaire de Probabilités to his memory appeared natural and
essential to us. This Séminaire, created by Paul-André Meyer, was quite successfully
continued, owing notably to many years of Marc’s untiring activity. We have
called for contributions from his friends, collaborators, and former students (with
apology for possible omissions). This special volume gathers precious and moving
testimonies, as well as many scientific articles.

Beyond this homage to Marc as a man and a mathematician, we wish that this
volume will incite young researchers to become acquainted with his work and to
draw from it inspiration towards new openings.

We want to thank all authors and referees; they kept the fixed deadlines. We also
want to thank our publisher Springer who made this volume possible, and especially
Ms. McCrory for her valuable help.

We also draw attention to the special issue “Marc Yor, La passion du mouvement
brownien”, numéro spécial Gazette des Mathématiciens-Matapli, 2015, and to the
links on Zhan Shi’s homepage <http://www.proba.jussieu.fr/~zhan/>.

Versailles, France Catherine Donati-Martin
Vandceuvre-les-Nancy, France Antoine Lejay
Versailles, France Alain Rouault
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Témoignages

Jacques Azéma, Pauline Barrieu, Jean Bertoin, Maria Emilia Caballero,
Catherine Donati-Martin, Michel Emery, Francis Hirsch, Yueyun Hu,
Michel Ledoux, Joseph Najnudel, Roger Mansuy, Laurent Miclo, Zhan Shi,
and David Williams

Conversation avec Jacques Azéma

Questions posées par : Catherine Donati-Martin, Nathanaél Enriquez, Sonia
Fourati et Alain Rouault a la brasserie Saint-Victor, Paris V¢, le 9 février 2015.

Premier contact

Comment as-tu connu Marc ?

Je lui ai fait passer un DEA, il avait dix ans de moins que moi. Je ne sais pas
comment il a pu me prendre comme directeur de mémoire. Je lui ai proposé un
sujet, comme souvent, un sujet que je ne connaissais absolument pas, comme test. 11
y avait des choses compliquées, des ensembles de capacité nulle. Pour la these il est
parti avec Priouret. Un jour ou il exposait une histoire de champ, quelqu’un a dit :
« C’est de la bouillie pour les chats ! ». Yor était furieux. Moi, comme je n’avais rien
dit, il m’a gardé une profonde admiration. Je crois que le fait qu’il m’ait bien aimé,
ca vient de son DEA.

Collaboration scientifique

Quand tu écrivais des articles avec lui, ca se passait comment ?

C’était bien. C’est étonnant qu’on ait travaillé si longtemps ensemble parce que
nous étions tellement différents, voire a 1’opposé. D’abord comme culture : moi,
c’était les Markov, lui c’était le calcul stochastique. Devant un probleme donné,
typiquement les temps locaux ou le probleme de Skorokhod, j’insistais sur I’idée
markovienne et Marc disait qu’avec le calcul stochastique ¢a prenait une demi-ligne.

xi
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Du coup vous mainteniez les deux explications, ou bien il n’y en avait qu’une qui
sortait?

Non, on prenait celle de Yor, ne serait-ce que pour des questions de rédaction.
D’abord, personne ne connaissait plus les Markov... Yor n’aimait pas 1’infini
dimensionnel. Moi, je n’aimais ni n’aimais pas, je ne comprenais pas. Lui, il
comprenait un peu mais il savait que ce n’était pas son truc. Un jour, a propos de je
ne sais quoi, il me dit : « Peut-&tre que Malliavin ou ses disciples s’occuperont de
ca quand ils seront revenus sur terre ».

J’ai conscience d’avoir participé a une espéce d’aventure scientifique que plus
personne ne connait, a part nous, et sans doute infiniment plus importante que ce
que tout le monde connait. On a de la chance, moi j’ai eu de la chance. Par hasard. ..

C’est le cas de le dire !

Le séminaire

Comment étes-vous, Marc et toi, devenus rédacteurs du Séminaire de Probabilités ?

Quand Meyer nous a confié le Séminaire c’était pour une raison : il en avait assez
de refuser des articles. Il espérait que Yor allait pouvoir refuser des articles. En fait,
Yor les réécrivait. Un peu plus tot, Walsh était venu en France et nous avions fait un
groupe de travail sur les temps locaux. Walsh est génial ; il a une intuition proba-
biliste incroyable. Il avait plein d’idées, de petites idées tres simples alors que Yor,
ce qui 'intéressait, c’était la plus grande généralité. Il y a eu de nombreuses contri-
butions, tres techniques par les gens du labo, que nous avons décidé de publier. 11
fallait donc relire tout ¢a. Je me sentais incapable de le faire, alors j’ai dita Yor : « Je
me charge de I’introduction ». C’était une bonne idée parce que j’ai repris les idées
de Walsh dans le cadre des martingales continues. Ca m’a passionné parce que je me
suis dit qu’a partir des idées de Walsh on pouvait tout dérouler y compris la formule
d’Itd. Yor a commencé par raler et puis je suis arrivé a dégonfler BDG, au moins
dans un sens. On a donc fait cette introduction et le volume est paru dans la collec-
tion Astérisque.! Meyer a vu ce volume et a été séduit, peut-&tre par cette introduc-
tion qui remettait tout en place, tres différente de ce qu’il avait fait, lui, au Séminaire.
11 a donc vu que nous étions capables d’éditer un volume, il nous a refilé le bébé.>

Et avant vous, ¢a se passait comment ?

N

Les tout premiers volumes étaient composés a partir des exposés faits au
Séminaire de Strasbourg, par des Strasbourgeois ou des Parisiens. Au sein de 1’école
de Strasbourg, ’ambiance était ainsi : on ne se piquait pas les idées, on se les
donnait. Meyer invitait des étrangers de passage en Europe, des « Américains-
Frangais », comme les appelait Stroock, c’est-a-dire ceux qui avaient intégré un peu

"Volume 52-53, 1978.

2N.D.L.R. : les volumes XIV a XX ont été édités par Azéma et Yor et les volumes XXI & XXXVII
par Azéma, Yor et Meyer, Emery, Ledoux.
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ce qu’avait fait Meyer, comme Chung... Au début, personne ne pensait a envoyer
a Meyer un papier en lui demandant de le publier dans le Séminaire de Strasbourg.
Meyer a développé sa publication a partir de feuilles ronéotées au début et puis c’est
devenu petit a petit un endroit ou ¢a devenait pas mal d’étre publié, y compris par
des gens qui n’étaient jamais venus a Strasbourg, des Américains qui envoyaient
leurs papiers. Meyer publiait tout ce qu’il faisait, plus tout ce qu’il réécrivait. Ca
faisait déja la moitié du Séminaire. Moi, j’ai continué a y publier.

Quels étaient les rapports de Yor et Meyer ?

IIs ont toujours été bons. Yor m’aimait bien, mais la personne qu’il admirait c’était
Meyer.

Et concretement, la réalisation d’un volume, ¢a se passait comment ?

Quand je m’en occcupais avec Yor, les contributions de Strasbourg arrivaient tout
empaquetées, prétes a tre publiées, on ne savait pas comment était faite la chirurgie
interne. Nous, on ne s’occupait que des Parisiens et des autres provinciaux.

Dans ce qui n’était pas le paquet de Strasbourg, c’est vous qui relisiez les articles ?

Meyer ne réintervenait pas. Yor faisait la plus grande partie du travail. Il
réécrivait, c’est plutdt moi qui refusais des articles. Apres, Yor venait me voir, on
discutait il me disait qu’il y avait quand méme des choses intéressantes. Yor passait
tous les deux jours dans mon bureau pour le Séminaire ; ¢ca me permettait de le voir
et de discuter de maths, parfois de maths dans le Séminaire. Il prenait tout le paquet
et a la fin de I’entretien, il partait sans un mot de reproche. Il savait ol étaient rangés
les papiers pour le Séminaire, dans un coin de mon bureau. Il passait parfois discuter
avec moi quand il pensait que c’était quelque chose qui m’intéressait. On ne pouvait
pas dire que je ne faisais strictement rien.

Vous envoyiez quelquefois a des rapporteurs ?

Quand Yor n’était vraiment pas au courant, ce qui arrivait assez peu souvent, on
pouvait envoyer a un rapporteur ou discuter avec quelqu’un. Il réécrivait, ou donnait
des indications extrémement précises. Ca arrivait parfois qu’il envoie I’article quand
c’était vraiment en dehors de ses domaines de compétence. Mais la vedette des
vedettes pour Marc, c’était quand méme Pitman. Il était tombé amoureux du
Théoréme de Pitman. Je me souviens, un jour oll j’avais mauvaise conscience,
d’avoir demandé & Meyer d’enlever mon nom du Séminaire, et Meyer m’a dit
quelque chose qui, vu la suite des événements avec Yor me parait prophétique, il
m’a dit : « Az€ma, ne t’en va pas, ou c¢a va devenir trop sérieux ». Maintenant que
j’y repense. ..

Et pour susciter des articles, contacter des gens, comment vous faisiez ?

Déja, Yor avait beaucoup d’étudiants... Il y avait une tradition parmi de
nombreux probabilistes de se tourner spontanément vers le Séminaire pour publier.
Si une soumission arrivait et qu’on ne connaissait pas du tout I’auteur, on faisait un
vrai travail de referee, contrairement & ce que certains ont pu dire.
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En regardant les volumes, je trouve que le Séminaire de Proba s’est ouvert a plein de
sujets différents : systemes de particules, hypercontractivité, log Sobolev. Ce n’était
dans les champs de compétence ni de Meyer, ni de vous ?

Ca doit étre di a Ledoux. Je I’avais rencontré par I’intermédiaire de Fernique,
puis je ’avais vu a Saint-Flour. J’avais trouvé qu’il était tres fort. Quand il a fallu
un peu s’élargir, nous avons pensé a lui pour se joindre au Comité de Rédaction.

Durant notre conversation, les points suivants ont été abordés :

Les relations internationales

Yor a joué un role fondamental. Il connaissait David Williams. Un peu avant le
congres de Durham, dans les années 80, au moment du début du Calcul de Malliavin,
Williams avait envoyé quelques chercheurs anglais au labo de proba et Yor s’est
occupé d’eux comme s’ils avaient été irlandais. Il connaissait la carriere de tous ces
jeunes Anglais : Rogers, Barlow. .. En fait, ce sont les Francais, en particulier Yor,
qui ont persuadé les Anglais que de nouveaux champs probabilistes existaient et ca
s’est conclu en apothéose par le fait que Williams organise ce sommet de Durham
avec le calcul de Malliavin. Donc ¢a a été un peu le début de la révolution anglaise
des probabilités animée par tous ces jeunes et ¢a doit beaucoup a Yor.

Les jeunes

Yor poussait beaucoup ses éleves. Avec ses appréciations, on ne pouvait pas
tellement distinguer entre quelqu’un de moyen et quelqu’un de bon. Il disait :
« Quelqu’un qui aime les mathématiques, ¢ca ne peut pas étre quelqu’un d’inexistant,
il ne faut pas le décourager, il faut méme le pousser ». En soit ¢’était quelque chose
de formidable. Heureusement qu’il n’avait pas beaucoup de sens tactique, sinon ¢a
aurait pu faire une mafia.

Les mathématiques financieres

Les banques avaient conclu un contrat avec le labo, qui devait leur faire un cours
pour leur section R & D, salle de marchés et c’est Yor qui s’en était chargé. Il s’ était
vu suggérer un jour par un correspondant, payé 1 000 dollars par aprés-midi (alors
que lui, était payé 1000 dollars tous les 5 ans) : « Ce serait bien de mettre tout ¢a
au propre » (sous-entendu plutot dans le style papier glacé que dans celui de vos
torchons habituels).
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Plus tard, il a été atteint par la critique contre les maths financieres. Il se sentait
responsable. Il avait répondu 2 la tribune de Michel Rocard.? Il était persuadé qu’il
était en partie responsable. Yor n’avait pas completement tort. Quand on voit la
chance ou la malchance qu’on a eue avec les produits dérivés. C’est 6 ou 7 fois le
PIB mondial....

Pourquoi n’as-tu pas souhaité rédiger d’éloge de Marc ?

Faire un éloge de Yor, c’était vraiment tres difficile. J’ai essayé vraiment mais
quand j’ai relu, j’ai vu que je parlais plus de moi que de Yor. J’étais trop lié avec lui,
les choses dont je me souviens, ce sont des choses qu’on a faites ensemble. Tous
les ans, on devait faire un rapport pour le CNRS alors bien entendu j’étais en retard
pour le rendre, le bibliothécaire n’était pas content. Je lui dis : « Cette année j’ai fait
deux articles et je les ai faits tous les deux avec Yor donc allez voir la bibliographie
de Yor parce que lui, il a stirement rendu a temps ». La méme année, moi, j’avais
deux articles, il en avait peut-&tre cinquante.

Marc avait organisé un séminaire avec les physiciens. Tout le monde venait
voir Marc des qu’il y avait des problemes de probabilités, Duplantier par exemple.
C’était bien, parce que sa faiblesse, c’est qu’il ne se posait pas toujours des bons
problémes, mais si tu lui posais n’importe quel probleme, en tout cas s’il était
soluble par le calcul stochastique, trois jours apres il avait la solution.

Ce qui m’impressionnait toujours, c’était ses tableaux. Quand il expliquait
quelque chose au tableau, il commengait par la premicre ligne puis la deuxieme
etc jusqu’en bas du tableau et ensuite pour continuer, il écrivait entre la premiere
et la deuxieme ligne, etc... Il se ménageait toujours un petit espace en bas a droite
pour écrire le résultat final. En fait si on voulait faire un musée Yor, ce n’est pas
le musée de tous ses brouillons qu’il faudrait faire mais c’est le musée de tous ses
tableaux.

Il écrivait en spirale et il n’y avait pas une faute de calcul. Il faisait le calcul
devant toi en direct, alors que moi j’oubliais toujours le Y2 dans la formule d’Ito,
alors Marc me regardait dans les yeux et disait : « Ah, Azéma!... » Et ¢a, ¢’était au
bout de trois ans parce que, les trois premieres années, a chaque fois, il fallait qu’il
me rappelle la formule d’It6.

Yor, c¢’était quelqu’un qui était fondamentalement bon, il n’était extraordinaire-
ment pas rancunier. Il y a des gens qui lui ont fait des crasses mais je ne I’ai jamais
entendu dire du mal de personne.

En guise d’hommage

Au revoir, Marc, au revoir I’infatigable, au revoir le passionné 1’inquiet, au revoir
le magicien aux yeux bleus, Adieu.
Jacques Azéma
* Kk ok Kk Xk

3Marc Yor, « Ebauche de réponse a M. Michel Rocard » — Images des Mathématiques, CNRS,
2009.
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Lettre a un Grand Monsieur
Pauline Barrieu

Cher Monsieur,

Vos legons de mathématiques, vos conseils de chercheur, votre exemple m’ont
faconnée, m’ont guidée et éclairée depuis ma these jusqu’a aujourd’hui encore.

Votre patience, votre gentillesse, votre disponibilité sans faille, votre droiture,
votre loyauté, votre sensibilité, votre humanité. .. j’ai eu le tres grand privilege de
connaitre ce Grand Monsieur que vous étiez.

Il me reste également en mémoire nos conversations plus récentes sur la poésie,
pour laquelle nous partagions ce grand attrait, notamment les Haikus, allant a
I’essentiel, élégants et subtils, comme une tres belle preuve mathématique.

Aussi aujourd’hui, pour hononer votre mémoire, je me suis permis de choisir ce
Haiku, qui, je I’espere, vous aurait plu :

Sur le sentier de montagne

Le soleil se leve

Au parfum des pruniers.
Bashd (1644-1694)

Chapeaux bas, un Grand Monsieur s’en va.
* k Kk K Kk

Souvenirs d’une thése avec Marc
Jean Bertoin

C’est Jean Giraud, alors responsable du département de mathématiques a ’ENS
Saint-Cloud, qui m’avait conseillé sans la moindre hésitation de m’adresser a Marc
quand je lui avais fait part de mon intention de m’orienter vers les probabilités. J’ai
alors rencontré Marc pour la premiere fois dans le bureau qu’il occupait dans le
couloir 56-66 a Jussieu. Méme si les piles de documents soigneusement rangés sur
sa table de travail atteignaient déja une hauteur respectable, ce n’étaient la que les
prémices de ce qu’allait devenir plus tard son antre a Chevaleret, ol s’entasseraient
les cartons et les dossiers.

Marc m’a tout de suite plu par sa gentillesse, sa grande simplicité, et la lueur
dans ses yeux quand il expliquait des mathématiques ; et apreés cette rencontre,
j’ai décidé de suivre le DEA de Probabilités du Laboratoire éponyme. Le cours
intitulé « Temps locaux browniens et théorie des excursions » que Marc y donnait,
était de loin le plus dense et le plus difficile de tous. C’était surtout un cours
d’une incroyable richesse. Marc s’attachait a explorer tous les aspects de chaque
résultat, a le faire apparaitre dans des contextes différents, a I’étendre. Il commencait
souvent par dire : « Cherchons a mieux comprendre... », puis nous guidait a la
découverte d’une variété insoupconnée d’identités en loi qu’il reliait les unes aux
autres. Lorsqu’il entamait un calcul au tableau, sa main restait d’abord en suspens



Témoignages xvii

quelques secondes, semblant hésiter un moment pour choisir I’endroit précis ou
la craie allait se poser. Puis la main dansait, et le tableau se couvrait de formules
jusque dans les moindres recoins. A la fin d’une démonstration, il se retournait vers
nous, les yeux brillants, et un petit sourire se dessinait sous sa moustache. Apres ses
cours, j’essayais maladroitement de refaire les calculs de transformées de Laplace de
fonctionnelles de processus de Bessel que Marc avait enchainés comme par magie.

A la fin de I’année du DEA, j’ai demandé a Marc s’il accepterait d’encadrer ma
these. Marc m’explique qu’il revenait de Strasbourg ot Meyer lui avait posé une
question a propos des processus de Dirichlet que venait d’introduire Hans Follmer.
Il sort de la poche de son veston une enveloppe pliée en quatre. La question de
Meyer était griffonnée au dos de I’enveloppe, il me la tend. J’avais maintenant un
sujet de these, j’étais officiellement thésard ! Aujourd’hui, oi pour entamer une
these il faut auparavant rédiger un projet détaillé avec un plan de travail précis pour
assurer un financement, obtenir une bourse ou une allocation, signer une charte, etc.,
I’anecdote peut faire sourire. Mais quand méme, étre encadré par Marc Yor, sur un
sujet suggéré par Paul-André Meyer, il y avait de quoi étre fier. Et je le suis encore.

Pendant les deux ans ou j’ai préparé ma these a Paris, Marc a été d’une
disponibilité et d’une gentillesse a toute épreuve. Tous ses anciens étudiants peuvent
témoigner de méme. On pouvait passer le voir a n’importe quel moment pour
lui poser des questions, discuter d’un probleme, ou lui présenter ses premieres
trouvailles, sans jamais avoir I’impression de le déranger ou de I’ennuyer. La these
était assez avancée quand j’ai di partir pour le Mexique et y effectuer un séjour
de deux ans au titre de la coopération. Je suis arrivé a Mexico en septembre 1986,
un an apres le terrible tremblement de terre qui I’avait frappé ; les séquelles du
séisme étaient encore visibles partout dans la ville. Je n’avais jamais quitté I’Europe
auparavant, et j’ouvrais les yeux sur un pays fascinant qui continue de m’émerveiller
pres de trente ans apres. J*aurais aisément pu alors me détourner des mathématiques,
il y avait tant de choses a découvrir. Découverte d’une autre culture, d’autres modes
de vie, d’autres gens, découverte de soi-méme au fond bien sir.

En 1986 au Mexique, le coit d’un appel téléphonique vers la France était pro-
hibitif, et il n’y avait évidemment pas encore d’internet ni de courrier électronique ;
la plupart des communications transatlantiques se faisaient par voie postale. La
poste mexicaine était alors peu fiable ; il fallait utiliser la valise diplomatique et
compter deux bonnes semaines entre I’envoi d’une lettre et sa réception. Marc
est la personne avec laquelle j’ai le plus correspondu pendant ces deux années,
davantage qu’avec ma famille ou mes amis. J’ attendais avec impatience ses courriers
qui répondaient a ceux que j’avais envoyés un mois plus tot, et aurais reconnu sur
I’enveloppe son écriture souple entre mille. Il me semble qu’écrire lui procurait un
plaisir tout particulier ; peut-étre est-ce en partie pour cela qu’il s’est longtemps
refusé a utiliser le courrier électronique, préférant correspondre par fax dont il
était au Laboratoire de tres loin le plus gros utilisateur. Malgré les milliers de
kilometres qui nous séparaient, Marc répondait assidument a mes questions, relisait
et commentait les manuscrits que je lui envoyais, posait de nouvelles questions. Je
n’aurais probablement pas achevé ma these sans son soutien, ses encouragements, et
les stimulations constantes qu’il apportait. Il y a quelques mois, en faisant le tri des
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affaires de Marc dans son bureau de Jussieu, Monique Jeanblanc a trouvé un dossier
avec des copies de nos correspondances de cette époque. Elle me les a renvoyées, je
les relis avec une profonde émotion.

Tous ceux qui ont bien connu Marc savent combien il était peu au fait des
choses administratives. J’en ai fait ma premiere expérience quelques mois apres
avoir soutenu ma theése, lors d’une candidature au CNRS en 1987. Les auditions
devaient avoir lieu en décembre ; elles étaient alors purement formelles : il fallait
seulement signer une feuille de présence et j’avais entendu dire qu’un candidat dans
I’incapacité de se déplacer pouvait demander a quelqu’un d’autre de signer a la
place. Je me renseigne aupres de Marc, soucieux d’éviter un voyage en France au
moment ol ma compagne était en toute fin de grossesse a Mexico. Marc répond
qu’il était trés important que je sois présent, que cela montrerait ma détermination.
Je m’exécute malgré les difficultés que cela représentait. Apres avoir signé la feuille
d’émargement, j’explique les circonstances de ma présence a Bernard Prum, qui
présidait la section pour les mathématiques du Comité National. Bernard s’en
étonne, et confirme que Marc aurait pu sans probleme venir signer a ma place.
Je rentre a Mexico, David nait quelques jours plus tard. Cette année 1a, j’échoue
au concours du CNRS. Je suis évidemment dégu, et suis prét a prendre un poste
d’enseignant dans un lycée a mon retour en France. Marc me réconforte, continue
de m’encourager, stimule de nouveaux travaux, et je suis admis au concours suivant
grice a son soutien.

Je n’évoquerai pas ici mes relations avec Marc durant les nombreuses années
que j’ai passées au Laboratoire de Probabilités, il me suffira de dire que I’influence
considérable qu’il a eu sur mes propres recherches est une évidence. En juillet 2011,
lorsque je quitte le Laboratoire, Marc organise une journée spéciale a I’occasion
de mon départ. Il prépare une affiche pour I’annonce, elle représente une carte du
Mexique et une carte de France reliées par un pont. Lors de cette journée, Marc
montre aux participants un charola d’Olinla* que je lui avais offert en revenant du
Mexique, pour le remercier de son aide tout au long de la préparation de ma these.

Marc avait une foi sans faille dans la science. Infatigablement, il a su communi-
quer sa passion a ses étudiants, a ses collegues, il les a aidés, encouragés, stimulés.
Jai conscience que ma vie professionnelle aurait probablement pris une tournure
bien différente si je n’avais rencontré Marc il y a un peu plus de trente ans, s’il ne
m’avait transmis une part de son savoir, guidé mes premieres recherche, mais surtout
s’il ne m’avait soutenu dans des moments déterminants. Je suis particulierement
heureux d’avoir eu la chance de cotoyer pendant toutes ces années non seulement
I’'un des plus grands probabilistes au monde, mais bien davantage, un homme
passionné, profondément généreux, et qui a toujours su rester modeste et pudique.
Un homme rare.

* k Kk Kk X

“Plateau en bois peint réalisé par des artisans du Guerrero.
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Maria Emilia Caballero

I would like to give a brief testimony of my first visit to the “Laboratoire de
probabilités (LP)”, when it occupied one and a half corridors of the former building
of the “Université de Paris VI” and the “Université de Paris VII”. The first thing
that surprised me was the friendly atmosphere of this very special “laboratoire”.
Professors were very accessible, casually dressed and you could see many young
people, some of them finishing their PhD’s, others already appointed to some
other University and beginning their careers, all of them strongly attracted by the
presence of people like Marc Yor and the feverish activity that he displayed: his
course which gave birth to the now famous book “Continuous Martingales and
Brownian Motion”, the organization of seminars on fine properties of Brownian
Motion and the discussions that took place in his entourage played a central role
in creating this exciting academic space. Among the young students were : Jean-
Frangois Le Gall, Jean Bertoin, Sonia Fourati, Philippe Biane, Nathalie Eisenbaum,
Catherine Donati-Martin, and many others. They were all very busy, but they had
time to discuss, not only interesting mathematical subjects, but also a great variety
of topics. Many more mathematicians came from nearby universities every week
to the Tuesday’s Probability Seminar. These young students and researchers are all
now accomplished mathematicians.

My discovery of the LP determined my future mathematical activity. Before this,
I was mainly an analyst and from this point on, I became more and more interested
in probability theory and the various activities of the group leaded by Marc Yor. This
derived in a fruitful collaboration between the Institute of Mathematics at UNAM
(University of Mexico) and the LP from the University of Paris VI, especially with
Jean Bertoin who incidently came to Mexico some time after my stay in Paris in
the eighties. All this allowed us, later on, to sign an exchange program between the
mentioned institutions and the doors of the LP have always been opened to Mexican
scholars. Marc Yor was always a wonderful host for these visitors and found the time
to discuss mathematics with most of us. Once I asked him if he had time to discuss a
certain problem. He answered without hesitation: “this is not a good question, since
the answer to it is: no, I do not have time; but I will gladly discuss the question you
have”.

* Kk Kk Kk Kk

Marec et le Séminaire de Probabilités
Catherine Donati-Martin

A T’occasion des soixante ans de Marc, H. Geman et le LPMA (Paris 6) ont
organisé¢ un colloque en juin 2009 a I'institut Henri Poincaré. Cet événement
a rassemblé de nombreux enseignants-chercheurs et étudiants. Ce furent deux
journées riches en exposés de qualité, en convivialité et en émotion. Marc fut
tres touché par cette initiative et par les témoignages d’amitié de ses collegues et
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d’anciens étudiants. J’avais eu ’honneur et la joie de prononcer 1’allocution de
cloéture de ce colloque, que je reproduis ici.

Comme beaucoup d’orateurs de ces deux jours, Marc a guidé mes premiers
pas dans la recherche et je voudrais souligner sa trés grande disponibilité, son
enthousiasme, ses grandes qualités humaines : toujours ouvert aux échanges avec
les autres, par exemple les étudiants du laboratoire, les invités de passage. Une
petite anecdote personnelle a ce sujet : jeune thésarde au laboratoire de probabilités
de Paris 6 il y a plus de 20 ans, j’assistais aux exposés du séminaire de probabilités
(le grand séminaire du mardi) ou je cotoyais les plus grands probabilistes mais o
Jje n’avais jamais vu exposer de thésards. Marc est invité a donner une conférence
a ce séminaire, tout naturellement, il me propose de partager ’affiche avec lui en
exposant un travail que nous venions de terminer sur les inégalités de Hardy et
nous avons donc fait un exposé a deux voix; marque de confiance qui est restée
gravée dans ma mémoire. J'ai pu constater a de nombreuses reprises que Marc a
constamment a ceeur de mettre en avant ses étudiants.

Marc a beaucoup contribué au développement de I’école probabiliste, je vou-
drais évoquer ici une des facettes de son implication dans la diffusion des
probabilités a travers I'énorme travail accompli au sein de la rédaction du
Séminaire.

Un bref historique du Séminaire de Probabilités : le séminaire est né d’une
rencontre entre Paul-André Meyer et Klaus Peters, responsable des mathématiques
chez Springer. La volonté était de créer une publication qui mélerait a la fois des
articles d’exposition, des articles de débutants et de probabilistes confirmés. Le
séminaire de Strasbourg (nom d’origine) publierait les travaux des conférenciers
invités a Strasbourg mais la plupart des « exposés » n’auraient pas lieu sous
forme orale. Tres vite, le séminaire a franchi les frontieres avec des publications
d’amis d’outre-Manche puis de toutes nationalités. A partir de 1980 (volume 14),
le dénveloppement des probabilités a amené le déplacement de la rédaction a Paris
out elle a été prise en charge par Jacques Azéma et Marc Yor.

Quelques années plus tard, le comité de rédaction s’est structuré avec l’arrivée
de Michel Emery et Michel Ledoux.

Au cours de ses vingt-cing ans de présence au comité de rédaction, Marc a
Jjoué un role clé, en développant le séminaire et en lui donnant un positionnement
aujourd’ hui mondialement reconnu.

Au dela de son apport scientifique propre (pas moins de 80 articles parus dans le
Séminaire), il a mis au service du Séminaire sa légendaire capacité de travail, son
exigence de qualité et de perfection, re-rédigeant certains articles pour les rendre
plus clairs, dans la droite lignée de P.-A. Meyer.

De par sa renommée et son réseau de relations parmi les meilleurs probabilistes
du monde, il a attiré vers le Séminaire des scientifiques de grande valeur, dont
beaucoup sont aussi des amis, apportant ainsi un esprit d’ouverture et un label
de qualité incontestable au Séminaire.

C’est ainsi que la nouvelle équipe qui a pris la succession du comité de rédaction
en 2006 et dont j’ai I’honneur de faire partie, a hérité d’une publication reconnue
et méme indispensable a la communauté probabiliste du monde entier. [. .. |
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Le séminaire a bien stir évolué. Méme si aujourd’hui, tous les articles sont
expertisés par un referee anonyme, le Séminaire n’est pas un journal scientifique
classique. A coté d’articles originaux & la pointe de la recherche, I’on y trouve des
cours spécialisés, des articles permettant d’avoir une vision globale ou différente
sur un sujet déja connu et c’est, j’en suis siire, un atout considérable.

1966-2009 : 43 ans d’existence du Séminaire! Cette longévité exceptionnelle
pour un séminaire est sans aucun doute dii au dynamisme des éditeurs et tout
particulierement de Marc. Les éditeurs de ce volume sont heureux de dédier le
volume 42 a Marc pour ses 60 ans. [... ]

Depuis 2009, Marc a toujours manifesté son intérét pour le Séminaire et nous
a apporté une aide précieuse par la relecture de nombreux articles. J’ai quitté le
LPMA en 2011 et Marc a organisé une journée spéciale pour mon départ et celui de
Frédérique Petit.

Depuis mon arrivée a Versailles, nous échangions avec Marc par mail et chacun
sait qu’envoyer un mail et utiliser un ordinateur n’etait pas tres naturel pour Marec. ..

Un de ses derniers courriels en décembre 2013 (il proposait de nous apporter
une aide financiere pour les Journées de Probabilités 2014 a Luminy, sur ses crédits
IUF) :

Chere Catherine,

C’est avec plaisir que je voudrais vous aider pour le montant que vous souhaitez. |[... |
Alain m’a donné hier le Séminaire 45. Magnifique ! Félicitations. Amitiés, Marc

* k Kk Kk Kk

Instantanés
Michel Emery

C’était il y a une vingtaine d’années. Au téléphone, je signale incidemment a
Marc que Lester Dubins vient d’étre hospitalisé & Luxembourg, une jambe cassée.
Il m’interrompt : « Quand pouvons-nous y aller ? Es-tu libre jeudi ? » Plus proche
de Lester que lui, j’ai un peu honte. Il a fait ses huit heures de train et nous avons
passé quelques moments a bavarder avec Lester.

Plus récemment, début XX1°. Dans son bureau a Chevaleret, & peine avons-nous
ouvert les dossiers du prochain volume du Séminaire, que le téléphone sonne. C’est
le service des archives du Rectorat, a qui les désamianteurs de Jussieu viennent
d’envoyer des documents exhumés d’une gaine technique, probablement stockés
1& par le secrétariat de Maurice Fréchet. Dans le lot, des papiers de Doblin, dont
une carte postale de I’armée ; 1’expertise de Marc est sollicitée. Nous passons notre
apres-midi aux archives, dans les combles de la Sorbonne surchauffés par le soleil
de juin. Tant pis pour le Séminaire, il attendra !

Printemps 1991, a Haifa. De notre hotel, sur la hauteur, Marc et Jacques Azéma
descendent un soir se promener dans le centre. Le lendemain, Jacques charrie
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gentiment Marc sur ses aventures supposées avec les filles du port; et Marc de
piquer un fard comme une jouvencelle.

On I’a dit et répété : Marc poussait a 1’extréme la modestie et la disponibilité;
son bureau ne désemplissait pas de collegues et surtout d’étudiants, aux questions
desquels il répondait avec patience-tout en tenant au téléphone un co-auteur outre-
Atlantique et en rédigeant un fax. Mais je retiens surtout son regard bleu s’illuminant
lorsque s’ offrait I’occasion d’aider un jeune débutant ; et aussi un miracle toujours
renouvelé : aupres de lui, on ne se sentait pas ridiculement petit.

* k Kk Kk Kk

Souvenirs
Francis Hirsch

Mes souvenirs de Marc Yor remontent a presque 45 ans. C’était en octobre
1969, Marc avait 20 ans, et j’accueillais la nouvelle promotion de 'ENSET (Ecole
Normale Supérieure de 1’Enseignement Technique, qui allait devenir, des années
plus tard, I’'Ecole Normale Supérieure de Cachan).

I1 m’a raconté, longtemps aprés, qu’il avait été recu a 1'Ecole Polytechnique,
mais que son expérience du Service Militaire au camp du Larzac, par laquelle il
avait commencé sa « scolarité », I’avait incité a démissionner de cette prestigieuse
école.

Nous étions dans ’effervescence qui suivit Mai 68, et toute 1’Université en était
bouleversée... Tout semblait possible et les plus belles utopies fleurissaient. A
I’ENSET, on multipliait les « assemblées générales » : Marc intervenait rarement,
mais, quand il le faisait, c’était avec passion. Il cherchait a faire partager ses
convictions profondes, sans étre toujours bien compris.

C’est avec une passion encore bien plus forte que, des cette époque, il s’est
véritablement lancé dans les mathématiques et qu’il y a consacré toute son intel-
ligence et son extraordinaire énergie. Il s’est tout de suite intéressé aux Probabilités
et est rentré en 1973 au CNRS (en méme temps que Claude Kipnis, qui était de
la méme promotion que lui a 'ENSET). On ne sait pas qu'un de ses premiers
sujets d’étude a été la théorie quantique des champs a laquelle, a cette époque,
Philippe Courrege cherchait a intéresser les mathématiciens francais. Il éprouvait
aussi beaucoup d’attirance pour la théorie des nombres, qui a été le sujet de sa
« deuxieme thése ».

Apres sa sortie de I’ENSET, nous n’avons cessé d’avoir des relations et de
nous rencontrer en diverses occasions. A chacune de ces rencontres, il me parlait
de questions mathématiques qu’il pensait pouvoir m’intéresser, mais ce n’est qu’a
partir de 2005, lorsque j’ai pris ma « retraite », que nous avons vraiment collaboré
et que nous sommes devenus véritablement amis. Je me rappelle que nous parlions
aussi assez souvent de littérature : il m’a ainsi fait découvrir la littérature irlandaise
qu’il aimait profondément.
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Ces dernieres années ont constitué pour moi et grace a lui, une expérience intense
et tellement enrichissante !
Peu avant sa mort, il me suggérait encore de nouveaux problemes, et se disait
« partant » pour les étudier avec moi. . .
* kx Kk Kk Kk

Lectures on Infinity
Yueyun Hu and Zhan Shi

Hardly anything distinguishes Saint-Chéron from other villages in the surround-
ing, in this part of the far suburb of Paris. A church dominates this small town from
the hill, whereas a railway lies along the valley in the south and goes towards Paris.
We are 38 km away from the capital. By train, it takes an hour; you had better arrive
at the station in time because if you miss the train, you need to wait another half of
an hour, and the waiting time is doubled in the weekend.

Marc Yor spent 29 years at Saint-Chéron, from 1985 until the last day. The small
and quiet village is not very far from Marc Yor’s birth place, Brétigny-sur-Orge,
where he grew up for the entire childhood. Marc had some elderly relatives living at
Saint-Chéron when he moved here with wife and children. The family was pleased
with this well preserved small village, and installed itself in a house only a few
meters away from the church. The house partly sat beside an ancient laundry, which
was immediately served as a wonderful playground for children. For quite a long
period, Marc was committed to the local junior football club. He trained the kids on
Wednesday evening, and went for matches in the weekend. At Saint-Chéron, seldom
anyone was aware that Marc Yor was an eminent mathematician whose name was
printed in the dictionary, but everyone knew him as the coach of the football team.

Before arriving at Saint-Chéron, Marc Yor had spotted its north part, the quartier
de Baville, a vast area filled with endless fields, groves and footpaths. Baville
became Marc’s favourite place for walking and jogging. When someone visited him
at Saint-Chéron, there was a fair chance that the visitor got invited for a walk there.

We were invited several times for an excursion at Baville. It was on such
occasions that we came to know Marc Yor better as a person, not just as a
mathematician or as our teacher. Our conversation, though invariably starting with
mathematics and with the problems we were working on, turned gradually to other
topics as the walk went on. We discovered Baville, the castle and its surroundings
with fascination, but our attention was essentially focused on the conversation. We
learnt that in his youth, Marc’s dream was to become a sailor; shortly after having
obtained his Baccalauréat, Marc made, in September 1967, a tour around world
on the Ville de Tananarive. We also realised that Marc was an enthusiastic admirer
of the Russian literature, especially of Dostoyevsky and Solzhenitsyn; during one
of the long walks that lasted more than an afternoon, he recited some of the Elder
Zosima’s lectures. Once, Marc was told that, in our effort of French learning, we
were reading a novel which was widely considered as representing the Everest of
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world literature; with disarming thoroughness, he made a convincing analysis of the
main characters, leading to the conclusion that the novel was much overestimated.

Our last visit at Saint-Chéron was also in the open air, but exceptionally, without
any walk. In September 2011, we (together with several others) were invited by
Marc Yor to spend an afternoon in a private garden, which was reputed as among
the most beautiful in the village, and which was usually not available for visits.
The garden was marvellous, the discovery of plants pleasant. And in the middle of
the garden, Marc was seen to be seriously discussing with one of the junior guests,
a soon-to-be-seven-years-old boy, and their topic of discussion was ...infinity! At
that time, Marc was preparing an article on the notion of infinity for the Lettre
de I’Académie des sciences, and he was making a case study of his method with
the young boy. The junior was not aware of what infinity meant exactly, but was
obviously rather excited at discussing on something of which he had some vague
feeling or imagination, with an adult who was more than willing to use a language
which was within the boy’s capacity of understanding.

Nothing distinguishes Saint-Chéron from other villages. The church dominates
from the hill. Marc rests in the nearby, not far from his favourite jogging area. We
have learnt the notion of infinity.

* k Kk Kk Kk

Poznan 2010
Michel Ledoux

Une conférence est organisée a 1’occasion du centenaire de la naissance de
J. Marcinkiewicz. L’événement est chargé d’émotion, quelques jours apres 1’acci-
dent d’avion du gouvernement polonais a Katyne, lieu méme de la disparition de
J. Marcinkiewiez soixante-dix ans plus tot.

Marc Yor donne un exposé sur les pénalisations du mouvement brownien.
Comme a son habitude, il entraine, au tableau noir, un auditoire attentif depuis
quelques observations initiales fascinantes, jusqu’aux mécanismes les plus profonds
et subtils qu’il met en évidence et souhaite faire partager.

En fin de journée, nous prenons le tramway pour rejoindre 1’hotel en centre-ville.
A batons rompus, il évoque quelques aspects de sa vie personnelle, et notamment
une tante atteinte de la maladie d’Alzheimer qu’il vient voir tous les jours, tot
le matin, pour la lever et I’installer avant I’arrivée des services de santé, de la
difficulté de communiquer, de trouver des personnels compétents et bienveillants. La
conversation allant, je lui mentionne que ma belle-sceur vient de recueillir son pere,
atteint de cette maladie, chez elle, et qu’elle est un peu désemparée sur la marche a
suivre. Le lendemain, Marc me tend deux pages manuscrites de son écriture claire
et serrée (il aimait tant écrire, des mathématiques, des lettres), détaillant conseils et
recommandations a I’intention de ma belle-sceur, lui souhaitant bon courage.

La conférence se poursuit.

* k Kk K Kk
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Une excursion avec Marc Yor®
Roger Mansuy

Ce 9 janvier 2014, Marc Yor s’est éteint. Le grand public (et méme certains
collegues) ne connait pas ce mathématicien de premier plan et expert interna-
tionalement reconnu en probabilité. Difficile de résumer une si riche carriere en
quelques mots : plus de 400 articles de recherche avec un nombre exceptionnel de
collaborateurs et d’étudiants encadrés, une descendance scientifique pléthorique, un
livre de référence sur le calcul stochastique continu,® un role éditorial important,7
un siege a I’Académie des Sciences... Il est aujourd’hui quasiment impossible
d’évoquer le moindre résultat fin sur le mouvement brownien ou les processus de la
galaxie brownienne sans citer Marc Yor ou I'un de ses éleves.

L’humilité est sGirement une des premieres qualités que tous ceux qui 1’ont connu
mentionnent : il la couplait avec une forme de timidité, la peur de négliger le mérite
des autres,® la mise en avant de ses co-auteurs. A 1’heure de peser I'importance
d’une ceuvre scientifique ou la persistance des idées, cette humilité apparait comme
un obstacle a une juste reconnaissance. J’espere que d’autres, plus avertis, viendront
lui rendre un hommage appuyé détaillant ses premiers travaux en théorie des
processus dans la veine de Paul-André Meyer, 1’étude du mouvement brownien
plan, les fonctionnelles quadratiques du mouvement brownien et les excursions,
les fonctionnelles exponentielles et 1’utilisation du théoreme de Girsanov, les
pénalisations. .. et les mathématiques issues de la finance.’

J’ai eu la chance d’étre son étudiant, de bénéficier de ses lumiéres, de son soutien
et de son aide. Mais plus que le matheux, ¢’est un homme que j’ai rencontré, entier,
riche, émouvant, inoubliable. J’aimerais reconstituer une journée avec Marc Yor ou
pas tres loin de lui. Une journée « ordinaire ».

Voyage en 2004 ou 2005 au troisieme étage d’un batiment de la rue du Chevaleret
ou les mathématiciens de Jussieu ont trouvé refuge le temps du désamiantage. Plus
précisément, nous avons monté trois étages dans 1’aile D. Il est tot, voire tres tot
pour les usages de la recherche, disons 7:20, nous avons rendez-vous; les couloirs
sont déserts et tous les bureaux fermés et obscurs. Tous ? Non ! Un bureau résiste
encore et toujours a cette nuit : celui de Marc Yor. La lumiere est allumée, la
porte grande ouverte laisse voir des piles et cartons de documents savamment triés
(un jour, il a dit, avec beaucoup d’autodérision, qu’il était stirement plus facile

S Article paru dans Image des Mathématiques — CNRS 2014. Avec 1’aimable autorisation des
Editeurs.

6 Continuous Martingales and Brownian Motion, avec Daniel Revuz, Springer.

7Particulierement les décennies avec la coordination du Séminaire de Probabilités de Strasbourg
aux éditions Springer et le travail aux Comptes-Rendus de 1’ Académie des Sciences.

$Nous avons finalement placé 15 pages de références dans les 150 pages du Lecture Notes Random
Times and Enlargements of Filtrations in a Brownian Setting.

Voir ses tribunes dans Matapli et dans la Gazette des Mathématiciens reprises sur Images des
mathématiques ou il explique sa position sur les mathématiques financiéres comme partie des
mathématiques et sur la responsabilité des mathématiciens.
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d’expliquer son dernier calcul que le rangement de son bureau), un étroit passage
de sa chaise jusqu’au téléphone, I’emplacement d’une seconde chaise (ce matin-1a,
elle est occupée des remarques obtenues pendant son trajet en RER), un tableau noir
qui n’a pu étre effacé depuis quelques jours (faute d’acces, on y retrouve un reste de
formule d’It6) mais nulle part la moustache du propriétaire des lieux.

Pour le trouver, il faut avancer d’une dizaine de metres et aller a la bibliotheque
du laboratoire. Avec le passe du labo, il a pu ouvrir la porte et s’adonner a ses
taches matinales : lire les fax puis répondre a ses correspondants et coauteurs (rétif
a ’ordinateur, il peut ainsi communiquer rapidement et archiver tous les échanges)
et lire les dernieres revues (en apprenant les sommaires d’une maniere qui lui permet
souvent de répondre plus vite qu’un thésard avec MathSciNet ou ZentralBlatt). Si
nous sommes entrés discretement, nous avons de grandes chances de le voir plié sur
un brouillon tres soigné en train de mener un calcul.

C’est d’ailleurs une constante, tout au long de la journée lorsque nous le
croiserons en train de faire des mathématiques seul, il sera en train de faire un
« calcul ». Certes, les calculs dont on parle ici sont fort élaborés et, pour Marc, faire
un calcul, ce n’est pas simplement obtenir le résultat mais désosser chacune des
étapes, en isoler tous les arguments pour les généraliser ou les transposer a d’autres
situations. Suivre un calcul a ses cotés réclame souvent une bonne concentration et
une culture probabiliste au-dela du sujet du calcul. Marc Yor est un calculateur hors
norme qui a transformé la dextérité technique en un art. Cette compétence rare qui
réclame discipline et finesse de compréhension lui a souvent permis de voir ce que
personne d’autre ne voyait.

Revenons a la bibliotheque et manifestons-nous d’un raclement de gorge :
salutations polies et installation rapide, nous entrons dans la danse. Nous dressons le
bilan de ce que nous avons fait ou essayé de faire, nous nous intéressons a la liste des
blocages rencontrés ; Marc donne quelques réponses rapides (il faudra tout débriefer
pendant la journée pour étre siir d’avoir tout suivi a sa vitesse) et des références
indispensables auxquelles nous n’avions pas pensé. Il y a une forme d’urgence car
des que le labo se réveillera ou qu’un correspondant lointain téléphonera, notre
temps de Marc Yor diminuera rapidement. Sachant qu’il accueille tout le monde
avec bienveillance, il est tres (trop) sollicité : ce temps du matin est un privilege que
nous envient tant d’étudiants ou de chercheurs.

Fin de la séquence bibliotheque, on retourne dans notre bureau de thésards et
on essaie de se débrouiller seul, de faire germer toutes les idées ou indications.
On plaisante avec d’autres thésards d’une remarque récurrente ou d’une lubie du
moment. Quelques portes plus loin, ¢a bourdonne : discussions expertes, coups de
téléphone, visites... Au hasard d’un passage dans le couloir, on peut croiser deux
personnes qui attendent leur tour pour discuter avec Marc Yor. Lorsqu’il est a son
bureau, la matinée est souvent un marathon et on se surprend de sa facilité a changer
de sujet sans perdre le fil des discussions ou sortir un brouillon sur lequel il a écrit
quelques pistes pour le probleme « neuf » que I’on amene.

Le vendredi déroge a cette routine : tout d’abord car il y a un groupe de travail
important a 11 h; ensuite car Marc Yor a doublé ce rendez-vous d’un groupe de
travail pour ses thésards, collaborateurs du moment, visiteurs : le WIP (pour Work
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In Progress), lieu ou, nerveux et stressé, chacun de ses thésards fera ses premiers
exposés, entendra ses premieres félicitations, écoutera les suggestions de Marc ou
de ses camarades thésards. A ce moment-12 , la « famille » travaille ensemble.

Avant de repartir pour une apres-midi aussi frénétique que la matinée (voire
davantage avec le réveil du continent américain, le travail sur les Comptes rendus de
I’ Académie des sciences ou le séminaire du labo le mardi), la pause déjeuner offre
I’occasion de sortir un peu des mathématiques (mais pas toujours). Devant un filet
de poisson, Marc peut intervenir dans les discussions d’actualité, évoquer le football
ou I'un de ses enfants ou petits-enfants. .. Il ne monopolise jamais la parole mais
est écouté.

Passons directement a la fin de la journée : nous avons 1’occasion de recroiser
Marc a la bibliotheque, nous allions reposer un livre avant de partir mais Marc a
réfléchi et il a une réponse plus convaincante a une discussion du matin, on s’installe
a nouveau : nous avons méme droit a un petit regard en coin et un sourire lors
d’une remarque pertinente (la journée est donc fructueuse). La fatigue semble avoir
davantage de prise sur nous que sur lui, nous ne suivons plus aussi assidiment :
a peine voyons-nous le mouvement du bic et 1’éclat de son alliance Claddagh, il
regarde sa montre et, d’un seul coup, il est pressé, expédie son dernier commentaire
et se dépéche d’empaqueter ses affaires pour ne pas rater le train qui le ramene dans
I’Essonne.

La journée a été longue, plus encore pour Marc et pourtant il trouvera un instant
dans le RER ou chez lui pour refaire un calcul, vérifier une référence, créer une
nouvelle connexion entre deux articles. ..

Evidemment toutes les journées n’avaient pas cette structure; la richesse des
rencontres et les possibilités de la recherche permettent des « extras ». Voici
quelques souvenirs personnels.

— Une semaine WIP en Normandie : Marc avait rassemblé ses thésards dans une
longere pour organiser un groupe de travail intensif. Chaque jour, nous faisions
des exposés (préparés dans la soirée, la nuit...); les pauses étant dévolues au
football dans le jardin, a aller chercher du pain a vélo, a écouter Joseph Najnudel
nous interpréter une gnossienne centrée réduite sur le piano droit de la maison. ..

— Les tres longs remerciements lorsque nous avons pensé a 1’anniversaire de sa
femme lors de ’Ecole d’été de Saint Flour en 2002.

— Un voyage aux Etats-Unis pour aller faire un cours 2 Columbia University avec
les évocations matinales du panneau Sakura Park.

— La derniere relecture des épreuves d’un livre un samedi matin sous un kiosque
du jardin du Luxembourg.

— Une longue discussion sur un article en collaboration qui nous plaisait bien :
comment lui donner un titre un peu accrocheur ? Au bout d’une bonne vingtaine
de propositions, on finit par s’accorder sur Harnesses, Lévy bridges and Mon-
sieur Jourdain comme si ’on faisait une bonne blague aux gens qui liraient ce
texte : des sourires a chaque fois qu’on en reparlait.

* k Kk Kk Xk
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Témoignage et hommage
Laurent Miclo

Les deux cours qui ont décidé de mon orientation scientifique ont été ceux
dispensés par Marc Yor en magistere lors de I’année universitaire 1986/1987.
Pourtant leur début a été assez déroutant. Il fallait d’ailleurs qu’il le soit : nous
étions plusieurs étudiants provinciaux fraichement débarqués a Paris avec une idée
encore assez vague de ce qu’étaient les mathématiques qui allaient nous occuper,
malgré nos classes préparatoires. A 1’époque la théorie des probabilités n’était
pas enseignée avant la troisieme année d’université et nous étions plus disposés
a apprécier de belles égalités que des raisonnements presque sirs. .. Notre premier
contact avec les probabilités fut donc le cours de Marc, qui commenca par une
définition et des propriétés abstraites des tribus. Ce fut suffisamment aride pour
qu’il en résulte un certain brouhaha dans 1’amphithéatre de I'THP. Marc décida de
donner plus de chair & ces concepts. .. en nous parlant directement du mouvement
brownien, ce qui n’arrangea pas vraiment la compréhension (enfin du moins la
mienne, car je ne saurais préjuger de celle des mathématiciens célebres en devenir
de I’ auditoire).

Mais, peut-étre intrigués par un objet mathématique si différent de ce que nous
avions pu rencontrer jusqu’alors, nous sommes revenus aux séances suivantes, puis
nous avons rempilé pour le cours du second semestre. Pour les plus mordus, nous
avons également participé a un groupe de travail ou nous travaillions les exercices
du livre culte que Marc était en train d’écrire avec Daniel Revuz. Le style de
Marc, son accessibilité bienveillante et jusqu’a I’élégance de son écriture au tableau,
avaient fini par nous séduire et en un an, nous sommes passés du niveau zéro de la
théorie de I’aléa a certaines propriétés fines des solutions d’équations différentielles
stochastiques. Surtout il nous avait transmis cette intuition assez particuliere aux
probabilités. Bien siir j’ai suivi d’autres cours excellents, dans divers domaines des
mathématiques, mais c’est & ceux de Marc que je suis resté le plus attaché, presque
sentimentalement.

On m’a rapporté a plusieurs reprises que Marc ne craignait pas d’enseigner
en premicre année d’université, prenant le risque de n’étre pas apprécié a sa
juste valeur et alors que sa renommée aurait pu lui permettre de ne revendiquer
que des « cours prestigieux ». Bien qu’il était un puits de connaissance (quand
devenu chercheur, je continuais de lui poser des questions, j’étais siir de repartir
avec plusieurs références), il était doué de cette qualité assez rare de ne jamais
prendre ses interlocuteurs du haut de son savoir. Il était académicien, mais rien
dans son authentique simplicité et dans sa gentillesse ne le suggérait. Au contraire,
a chaque fois que j’avais la chance de le retrouver, notamment aux Journées de
Probabilités de Luminy, il était extrémement modeste, cherchant a relativiser ses
propres contributions et portant une attention sincére aux travaux des jeunes.

Je n’ai pas revu Marc ces dernieres années, alors qu’enflaient les polémiques sur
les mathématiques financieres. Mais dans le fait qu’il ait pu en étre terriblement
affecté, je n’ai pergu qu’une autre manifestation de son irréductible intégrité.
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C’est autrement que par cette lettre que j’aurais voulu pouvoir exprimer
ma profonde gratitude a Marc, en particulier pour I’héritage mathéma-
tique et I’honnéteté exigeante qui continueront de nous servir de modeles.

x * * ok *
Joseph Najnudel

De ce que j’ai vécu avec Marc Yor, il m’est difficile de choisir un unique
événement particulier a raconter. Voici quelques souvenirs qui me viennent natu-
rellement : la premiere fois qu'on s’est parlé, et qu’il m’a donné mon sujet de
mémoire de DEA (I’homotopie du mouvement brownien sur la sphere privée de
trois points), quelques jours avant de partir pour le Japon, le traditionnel séminaire
WIP (work in progress) du vendredi matin, avec ses nombreux étudiants en these, les
cours que nous avons faits ensemble, en particulier en octobre 2005 a 1’Université
de Warwick, et en juillet 2006 a Torgnon, un village italien de la Vallée d’Aoste.
C’est dans ce village que nous avons également regardé ensemble la finale France-
Italie de la Coupe du Monde de football avec les participants de 1’école d’été !
A Torgnon, j’ai également fait un concert d’orgue, puis deux autres concerts 2
I’église de Saint-Chéron, en décembre 2009 et avril 2010 : les trois concerts d’orgue
que j’ai faits dans ma vie ont donc été organisés par Marc... Je serai toujours
reconnaissant pour toute I’aide que Marc m’a apporté, pour ses qualités humaines
et son enthousiasme pour la recherche. Je garderai toujours le souvenir de notre
collaboration, en particulier a la fin de ma these et au début de mon post-doc, ot nous
nous appliquions a essayer de percer le mystere des pénalisations browniennes. . .

* k Kk Kk Kk

An Appraisal of Marc’s Work
David Williams

In 2007, I was asked to write a brief appraisal of Marc’s work. I wrote:

“Marc Yor has made an immense contribution to Probability Theory, perhaps the
greatest contribution of any European of the post-Meyer generations. Interestingly,
he has made most of his contribution in a quite different way from Meyer. Meyer
could be said to follow in the magnificent Bourbaki tradition, developing the
fundamentals of a huge area of Probability Theory. In the early part of his career,
Yor made important contributions in this spirit to Martingale Theory and Stochastic-
Integral Theory. But for most of his career, he has preferred to concentrate on
concrete problems. The number of papers he has written is astonishing. Yet all
are of real interest, most contain surprises, and all develop the theory via the
concrete in that results true in much wider contexts (and stated and proved in those
wider contexts) may be found throughout his work on very concrete things. He
continually asks of a surprising concrete result: “What are the real reasons why it is
true?’. He seems always to believe that each explanation matters, leads somewhere
— very much in the spirit in which Gauss (rightly) regarded quadratic reciprocity
(although I am not comparing Yor, brilliant though he is, to Gauss!). We all firmly
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believe that if anything regarding Brownian motion, diffusions, stochastic integrals,
martingales, excursion theory, mathematical finance, the Riemann zeta-function,
Bessel functions, theta functions, etc, can be calculated, then Marc can calculate it,
even if no-one else can. We know that if we read a Yor paper, then, firstly, we shall
enjoy it and be surprised, and, secondly and equally importantly, our understanding
of the global structure of the subject will be enhanced. He is someone of whom
France should be very proud, someone upholding the tradition of the greatest of all
probabilists, Paul Lévy.”

How much more this is true now. But the greatest truth about Marc is that he was
a wonderful person, kind and generous. Our thoughts go out to his family.



Marc et le dossier Doeblin

Bernard Bru

1 Introduction

Nous voudrions parler de la rencontre de Marc Yor avec Wolfgang Doeblin, c’est-
a-dire d’une courte période de travaux historiques menés a bien par Marc entre
2000 et 2001, suivie d’innombrables interventions entre 2001 et 2013 partout dans
le monde, qui ont fait du dossier Doeblin probablement 1’une des manifestations
mathématiques les plus largement connues de la période récente. On ne sait pas si ce
dossier sera repris par les générations futures, comme le dossier Galois 1’est encore
périodiquement, mais on est certain au moins d’une chose : il a commencé d’exister
par I’action et les travaux de Marc seul. Un cas d’histoire des mathématiques unique
a bien peu pres par son ampleur, qu’il s’agit de raconter brievement.

Wolfgang Doeblin est né a Berlin le 17 mars 1915. Son pere, le grand écrivain
allemand Alfred Doeblin, est un antinazi de la premiere heure. Exilé a Paris pendant
I’été 1933 avec sa famille, Wolf (le diminutif familial de Wolfgang) y fait I’essentiel
de ses études universitaires, a I’issue desquelles il entreprend des recherches en
calcul des probabilités, commencées au début de I’année 1936 et interrompues au
moment de son incorporation en novembre 1938. Doeblin reprend son travail de
recherche, quelques heures volées a ses obligations militaires, pendant I’été 1939
puis I’hiver 1939-1940 et le printemps 1940, alors qu’il cantonne dans les Ardennes
et en Lorraine dans des conditions extrémes (1). En ce trés court laps de temps, il a
cependant réussi a publier un ensemble de mémoires assez exceptionnels pour que
Paul Lévy [1955] fasse de lui I’égal d’Abel et de Galois « pour avoir résolu a un
si jeune age et en si peu de temps des problemes aussi difficiles » et qu’on puisse
affirmer, assurément, que W. Doeblin est, avec Khinchin, Kolmogorov et Lévy, un
des maitres et des créateurs de la nouvelle théorie des probabilités de 1’entre-deux-
guerres (2). C’est en tout cas 1’avis de tous les témoins du temps des plus modestes
aux plus considérables qui ont eu acceés aux travaux de Doeblin. Par exemple,
Gnedenko écrit dans son hommage a Khinchin qui mieux que quiconque savait la
profondeur des travaux de Doeblin ([1961], p. 9) : «I remember how proud he was
that in our science there had appeared such a bright new representative as V. Doblin,
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while at the same time he mourned Doblin’s untimely death at the hands of Hitler’s
executioners. » Quant a Doob, qui n’était généralement pas complaisant dans ses
jugements mathématiques, lorsqu’il apprit en 1991 que Doeblin avait déposé un pli
cacheté a I’ Académie des sciences avant de mourir, il fit ce commentaire laconique :
ce doit étre « quelque chose ». C’est Doob qui avait rédigé les premiers comptes
rendus des travaux de Doeblin pour les Math. Reviews de 1940, et ses Stochastic
Processes sont d’esprit doeblinien, comme on sait.

Bref, Doeblin, malgré la brieveté de sa carriere mathématique, n’a jamais été
un inconnu, un héros solitaire, incompris, rejeté par la médiocrité ambiante. S’il
y a un mythe Doeblin, il ne releve pas de ce genre-la, qu’on associe parfois a
Galois ou Abel, a tort le plus souvent. Les travaux de Doeblin ont été reconnus
comme fondamentaux des la fin des années 1930 par les plus grands noms de la
discipline a laquelle ils étaient consacrés. Cette reconnaissance s’est poursuivie
longtemps apres la guerre, au fur et a mesure que des savants découvraient que leurs
travaux les plus récents étaient énoncés déja dans des mémoires de Doeblin peu
accessibles (3). De sorte qu’il n’est pas tres étonnant qu’on ait souhaité célébrer,
ici ou 13, le cinquantenaire de sa mort tragique et de son ceuvre inachevé. Il faut
citer en particulier le bel article de synthese de T. Lindvall [1991] et le colloque de
Blaubeuren, Cohn [1993] (4). C’est a I’occasion de ces célébrations, qu’on a tenté
une nouvelle recension des manuscrits de Doeblin déposés aux archives littéraires
de Marbach en Allemagne avec les archives de son pere et en divers fonds d’archives
parisiens, d’ou il ressortait que Doeblin avait déposé un pli cacheté « sur 1’équation
de Kolmogoroff », c’est-a-dire la théorie des diffusions en dimension un, theme
qu’il avait abordé au printemps 1938 et sur lequel il avait publié plusieurs notes tres
peu explicites entre 1938 et 1940.

Il serait trop long de décrire les péripéties de cette histoire, d’autant qu’elle
est restée relativement confidentielle et marginale au sein de la communauté
probabiliste alors en grande activité (5). Des problemes difficiles sont résolus et
plusieurs théories sont développées aux applications multiples, martingales, calcul
stochastique, étude fine du mouvement brownien, etc. qui semblent tout a fait
absentes de 1’ceuvre de Doeblin. Ce qui peut expliquer que le dossier Doeblin n’ait
guere passionné les mathématiciens, non plus que le public curieux d’histoire et de
littérature, intéressé par son pere Alfred (6). Finalement, en avril 2000, les ayants
droit de W. Doeblin demanderent officiellement I’ ouverture du pli dont il s’agit. Ce
qui fut fait par la commission des plis cachetés de I’ Académie, le 18 mai 2000, dans
I'indifférence quasi générale. Pierre Dugac qui avait suivi toute I’affaire au titre de
la commission étant décédé en mars 2000, c’est Jean-Pierre Kahane qui se chargea
du dossier et me le remit, étant bien entendu que je ne ferais que la partie technique
du travail, transcription et annotations sommaires pour restituer le texte dans son
époque, et qu’il appartiendrait a la Commission de décider ce qu’il y avait lieu d’en
faire. A la rentrée 2000, le travail préliminaire était achevé et Jean-Pierre Kahane
nous apprit que Marc avait accepté d’évaluer le dossier, au nom de 1’ Académie des
sciences.
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On ne sait pas quelles raisons ont poussé Marc a se charger d’un dossier a priori sans
rapport visible avec ses centres d’intéréts, d’autant qu’il était débordé de travail. La
premiere raison qui vient a ’esprit est son sens du devoir. Marc avait été élu a
I’ Académie en 1997. 1l a pu se sentir obligé d’accepter cette tache ingrate, qu’il
était sans doute un des seuls, quai Conti, a pouvoir mener a bien dans des délais
raisonnables. Il existe naturellement mille autres raisons parmi lesquelles il faut
placer au premier rang la curiosité insatiable de Marc pour tout ce qui touche aux
mathématiques et son immense capacité de travail et d’enthousiasme.

Donc en novembre 2000, Marc m’a téléphoné pour que je lui remette le « dossier
Doeblin », c’est-a-dire la photocopie du manuscrit original, sa transcription, les
notes et divers documents pouvant lui permettre de se faire une idée de son
contenu. Ici commence notre récit, ou tout est baigné, on le verra, dans une sorte
de poésie singuliere. Marc savait que je me déplacais le moins possible. Dans ces
conditions, tout rendez-vous devenait problématique. Marc m’a proposé que nous
nous retrouvions un soir, apres son travail, dans la rotonde de la station de métro
Porte d’Orléans, a deux pas de la maison. Par la ligne 4, il rejoindrait ensuite le RER
C et son domicile de Saint-Chéron, en commencant a travailler sur le dossier. On
sait que Marc travaillait tous les matins et tous les soirs dans le RER, au cours de ses
longs trajets de chez lui au laboratoire et retour. Le RER C était son second bureau
ou il n’était dérangé par personne. Ainsi fut fait et tous les rendez vous de travail sur
le dossier Doeblin ont eu lieu de la m&me fagon a la station Porte d’Orléans, vers 19
heures, entre deux métros.

Il faut rappeler que cette station était alors en travaux, la ligne 4 devant étre
prolongée jusqu’a Montrouge. De sorte que I’éclairage treés ancien avait été tout
a fait négligé et qu’il régnait dans la rotonde comme dans toute la station une
atmosphere lugubre et un froid glacial. Le métro parisien ne passe pas pour
étre particulierement convivial, mais a I’automne 2000, le terminus de la ligne 4
ressemblait assez au Berlin des années d’apres-guerre, et tout y paraissait hors du
temps, ce qui est sans doute propice a un travail historique de fond. Quelque temps
plus tard, mais tres rapidement, Marc m’a téléphoné pour me dire que le dossier était
extraordinaire, qu’il fallait tout publier et m’a fixé un autre rendez-vous orléanais
pour me donner ses corrections et ses ajouts. De nouveau, dans la rotonde du métro
Porte d’Orléans, Marc m’a remis le dossier entierement annoté et complété et m’a
raconté 1’histoire suivante. Il avait commencé a lire le dossier dans le RER, sans
a priori, en souhaitant se débarrasser au plus vite de ce travail sur commande. Un
soir, m’a-t- il dit, il en était arrivé au paragraphe XV intitulé « changements de
variables » et 1a il avait eu un choc, une révélation. Sous ses yeux, il voyait I’énoncé
et la démonstration d’une formule d’Itd analogue a celle qu’il enseignait depuis dix
ans dans son cours de DEA, a ceci preés qu’il n’y avait pas d’intégrale par rapport au
mouvement brownien, une intégrale d’Itd, mais un mouvement brownien changé de
temps. Marc savait naturellement que Kolmogorov dans son mémoire fondamental
[1931] avait consacré un paragraphe aux changements de variables (7). Sous les
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conditions de Kolmogorov, la loi d’une diffusion satisfait a I’équation parabolique
de Kolmogorov, et les techniques de changement de variables dans les équations
paraboliques sont classiques a 1’époque et permettent sous certaines conditions de
se ramener a I’équation de la chaleur. Mais la c¢’était tres différent. Les diffusions
générales de Doeblin s’expriment (au moins localement) a 1’aide d’un mouvement
brownien changé de temps. On obtient une formule de changement de variables a
I’aide de ce méme mouvement brownien changé de temps d’une autre fagon. Dans
les deux cas, il s’agit d’un calcul brownien, un calcul stochastique, dont Marc était
I’un des maitres incontestés et qu’il appliquait a mille situations tout a fait actuelles.
Doeblin faisait du calcul stochastique, c’est-a-dire cette sorte particuliere de calcul
des schémas stochastiques en deux parties, une partie classique, correspondant a la
composante non aléatoire du mouvement, la dérive, et une partie brownienne pour
la composante aléatoire.

Donc Doeblin avait fait aussi du calcul stochastique (8) et se trouvait ainsi au
cceur de la théorie moderne, celle de Marc et des probabilistes des universités de 1’an
2000. De plus sa théorie des diffusions utilisait, et anticipait donc d’une trentaine
d’années, les méthodes de martingales qui conduiraient dans les années 1960 aux
travaux fondamentaux de Stroock et Varadhan (9). Voila qui était formidable.
L’enthousiasme de Marc a cette lecture fut tel qu’il attira I’attention du voyageur
assis en face de lui, dont on ne sait rien, et qui, probablement, rentrait chez lui apres
sa journée de travail. Ce dernier, intrigué par le comportement tres inhabituel de
son vis-a-vis, lui demanda ce qu’il lisait avec tant de passion et Marc commenca
aussitot a lui raconter I’histoire du soldat Doblin et bien siir, emporté par son élan,
la formule d’Itd et son rdle en calcul stochastique. Peut-étre qu’en donnant, dans le
RER C, pour cet unique auditeur, sa premiere conférence sur le pli cacheté, prit-il
conscience qu’il y avait la quelque chose d’unique, un trésor qu’il fallait partager ?
Toujours est-il, qu’arrivé a Saint-Chéron, il rédigea un rapport enthousiaste pour
la commission académique, qui décida aussitdt de publier le pli cacheté dans les
Comptes rendus de I’Académie, une procédure prévue par les réeglements, bien que
tres exceptionnelle. C’est Marc qui en fut I’éditeur, avec I’efficacité et le sérieux que
I’on connait (10) et le pli cacheté parut dans le dernier numéro des Comptes rendus
de I’année 2000. A ’occasion de sa sortie, 1’ Académie, par I'intermédiaire de son
Service de presse, envoya un communiqué a I’ AFP résumant toute 1’affaire, qui fut
aussitot repris par toute la presse francaise et étrangere. Il y a 1a un phénomene
classique d’emballement médiatique, avec cette particularité, classique pour tout ce
qui touche aux sciences, de concerner un texte totalement illisible et des résultats
dont I’énoncé méme est parfaitement impénétrable, pour qui n’est pas spécialiste
du sujet. Ainsi le dossier Doeblin devenait I’affaire Doeblin. Un soldat de vingt
ans, mort pour la France en 1940, avait envoyé, quelques heures avant sa mort, un
document exceptionnel qui anticipait les calculs financiers les plus sophistiqués. Les
journaux rivaliserent d’imagination sur ce theme, faute de pouvoir pénétrer un sujet
irréductiblement technique dont on savait seulement qu’il était 1ié mystérieusement
aux salles de marché des grandes banques. D’ailleurs, on était en 2000 et les
mathématiques financieres semblaient devoir assurer la paix et la prospérité du
monde pour I’éternité.
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Dans cette cacophonie, Marc resta imperturbable. Il répondit a toutes les
demandes d’interviews, participa a deux documentaires importants ou il tenait le
premier rdle, sans ostentation, avec une exigence scientifique tres remarquable. Un
éditeur parisien, voulant surfer sur cette vague stochastique inattendue, demanda
a Marc Petit, écrivain, peintre, poete et germaniste, de raconter toute 1’affaire, le
Berlin d’avant 1933, I’exil a Paris des écrivains allemands anti-nazis, I’IHP a la fin
des années trente, la guerre de 1939—1940 en France, etc. La premiere chose qu’il
fit fut de demander un rendez-vous a Marc, lequel eut lieu dans un café proche
de Jussieu. Les deux hommes sympathiserent aussitot. Marc tint a expliquer a
I’écrivain la partie mathématique du dossier, notamment les changements de temps
du mouvement brownien qui permettent d’écrire les diffusions de Doeblin. Marc
utilisa pour cela la nappe en papier recouvrant leur table, qui fut bientdt entierement
couverte de formules écrites trés soigneusement de cette écriture si reconnaissable,
avec ses notations tres précisément écrites et ses signes intégrales en arabesques
andalouses. A la fin de 1’entretien, Marc Petit qui n’avait rien compris emporta la
nappe. Elle lui servit de support mathématique virtuel pour écrire son livre. Elle est
maintenant déposée a 'IMEC, avec toutes les archives de Marc Petit (11).

Un point chagrinait Marc particulierement. Le communiqué de I’Académie
évoquait la formule d’Itd, une locution que les journalistes et les commentateurs
du pli ignoraient tout a fait. Mal conseillés sans doute par des personnes mieux
informées qu’eux, mais pas suffisamment, ils transformerent allégrement la locution
formule d’Itd en intégrale d’It6, qui sonnait mieux. De sorte que Doeblin fut
proclamé par la presse mondiale et la rumeur publique inventeur de I’intégrale d’Itd.
C’était un contresens évident pour qui avait lu le pli et ’analyse qu’en avait faite
Marc. Il n’y a pas dans le pli la moindre trace d’intégrale stochastique. Selon certains
témoignages, celui de Laurent Schwartz en particulier, Doeblin aurait dit a Lévy, au
cours d’un repas dominical, qu’il voulait s’intéresser a I’intégrale stochastique, mais
il n’en a rien fait a notre connaissance, et, en tout cas, il n’y a pas d’intégrale par
rapport au mouvement brownien dans le pli de 1940 (12). I1 était donc parfaitement
injuste de priver 1t6 de son intégrale. Pour que les choses soient dites et redites,
Marc multiplia des lors les rectificatifs, notamment dans [2001], [2002] et dans tous
les exposés qu’il fit sur ce sujet de 2001 a 2013. Nous n’avons d’ailleurs pas réussi
a recenser toutes les interventions de Marc sur le pli cacheté de Doeblin, plusieurs
dizaines en tout cas, partout dans le monde et devant les publics les plus variés.

Peu a peu, dans I’indifférence générale et le scepticisme du plus grand nombre, a
force de détermination, Marc réussit a ébranler quelque peu le panthéon probabiliste
de la fin du 20°™ siécle, dont les plus hautes marches étaient occupées sans conteste
par Kolmogorov, pour I’axiomatique moderne des probabilités, Lévy pour 1’étude
fine du mouvement brownien, Doob pour la théorie des martingales et Itd pour le
calcul stochastique. Tout le monde savait bien que c’était simpliste (13), mais ce
n’était pas totalement faux et suffisait amplement. Il n’y avait pas lieu de s’y attarder
plus longuement. La recherche n’attend pas et elle est loin devant. Marc, 1’un des
chercheurs les plus actifs et les plus brillants de la théorie, en engageant sa réputation
qui n’était pas mince, entreprit au contraire, pendant plus de dix ans, avec une
énergie considérable, de faire une place dans I’histoire a Doeblin et a d’autres dont
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on n’entendait plus parler, et de montrer que ce n’était pas sans intérét aussi bien
pour I’enseignement que pour la recherche, en tout cas pour son enseignement et
pour sa recherche (14). Marc a d’abord lu Doeblin parce qu’on le lui avait demandé
et qu’il fallait bien tenter de comprendre ce que le soldat téléphoniste avait fait.
Mais il a senti, soudain, que ce texte mal écrit sur un cahier de brouillon aux pages
déchirées, le concernait personnellement, au moins concernait les mathématiques
qu’il pratiquait, et que cela enrichissait son travail, mathématiquement sans doute,
mais aussi humainement, par le tragique et la beauté de toute I’histoire et les valeurs
qu’elle portait, qui étaient aussi les siennes, rigueur intellectuelle et morale, valeur
de I’exemple et du sacrifice, valeur extraordinaire de la vie des gens ordinaires,
le soldat Beaujot ou le passager du RER C, (15), ... Au paragraphe suivant nous
essayons d’analyser sommairement la démarche historique de Marc, sans prétendre
y réussir en rien.

3 Questions d’histoire

D’abord une remarque évidente. Si Marc n’avait pas été Marc, il n’aurait vu dans le
pli de Doeblin qu’un texte comme les autres appartenant a la préhistoire de la théorie
des diffusions, apres ceux de Kolmogorov et Feller, et le pli serait retourné dans sa
boite, aux Archives de 1’ Académie, a la disposition d’un éventuel érudit intéressé par
les documents rares et curieux. C’est bien parce que Marc avait enseigné cent fois le
calcul stochastique, en avait fait la théorie et 1’avait appliquée plus que quiconque,
qu’il a vu dans le RER C brusquement que Doeblin faisait ce qu’il faisait cinquante
ans apres lui. De sorte qu’on peut dire que le Doeblin que Marc a révélé est le
Doeblin de Marc plus que le véritable dont on ne saura jamais rien. Mais cette
remarque s’applique a toute étude mathématique d’histoire des mathématiques. Soit
elle s’en tient au mot a mot sans chercher a aller au-dela et a comprendre ce qui
n’est pas encore exprimé, mais qui est 1a sans doute et qui se dévoilera plus tard. Elle
releve alors de I’histoire externe, qui est fort intéressante, mais éloigne généralement
des mathématiques vivantes. Soit elle interprete le fond que le mot & mot ne révele
pas et cette interprétation dépend plus ou moins fortement des connaissances et des
recherches personnelles de I’historien en question, quelque précaution qu’il prenne
pour s’en affranchir et s’en tenir au texte qu’il étudie (16).

Il faut donc chercher plus loin ou ailleurs. Le mieux est encore de prendre un
autre exemple et de le comparer a celui du Doeblin de Marc. Pour faire simple,
choisissons le dossier Galois que tout le monde connait, ce qui permet d’aller vite.

Evariste Galois est mort, a 20 ans, des suites d’un duel, le 31 mai 1832. 11
avait publié quelques tres courts articles aux Annales de Gergonne et au Bulletin
de Férussac, mais son principal mémoire avait été refusé par Poisson pour exces
de concision et d’obscurité, ce qui n’était pas faux. A sa mort, tous ses papiers
ont été conservés par son ami Michel Chevalier, qui, a plusieurs reprises, a tenté
d’y intéresser les plus grands mathématiciens du temps, sans succes, jusqu’a ce
que Liouville s’en empare, les étudie longuement et annonce a 1’Académie en



Marc et le dossier Doeblin XXX Vil

1843, qu’ils contiennent une « solution aussi exacte que profonde » d’un « beau
probleme » de théorie des équations. Il ajoutait qu’il allait publier dans son Journal
I’ensemble des travaux de ce jeune savant accompagné des explications nécessaires,
(17). Ce qu’il fit en 1846, mais sans aucune explication, de sorte qu’on peut penser
que, s’il s’est convaincu de la justesse de la démonstration de Galois, il n’en a pas
saisi le fond, ce qui maintenant s’appelle la théorie de Galois (18).

La publication des (Fuvres de Galois ne parait pas avoir eu de conséquences
immédiates. Un mémoire de 1831 résolvant de fagon incompréhensible un probleme
déja plus ou moins traité par plusieurs savants, Lagrange, Ruffini ou Abel, qui,
d’autre part, ne relevait pas des « sciences mathématiques » les plus hautes du
moment, analyse, physique mathématique ou mécanique analytique, n’intéressait
visiblement pas grand monde. Quant aux circonstances particulieres de la mort de
Galois, il valait mieux n’en plus parler. Elle mettait en cause 1’honneur d’une jeune
fille de bonne famille. Le devoir de réserve s’imposait.

Tout ¢a était bien triste, mais c’était du passé. Le Galois de Liouville disparut
donc a son tour, malgré le bel hommage que lui avait rendu le savant toulois en
introduction de son édition. Ce n’est pas parce que Galois est mort tragiquement a
20 ans, et qu’il a écrit des mathématiques, qu’il est devenu Galois, (19). Toutefois,
grice a Liouville, on disposait maintenant d’une édition facilement accessible des
ceuvres de Galois. 11 suffisait que quelqu’un les lise ou s’y essaye.

C’est ce qu’a fait, aprés d’autres, Camille Jordan a la fin des années 1860.
Jordan est I'un des premiers mathématiciens francais a avoir développé la théorie
des groupes. Il connaissait I’ceuvre mathématique de Galois, au moins d’apres le
Cours d’Algebre de Serret (20). I n’est donc pas surprenant, qu’il ait publié en
1870 un traité sur les équations algébriques, dont la préface commence par un bref
historique du sujet et se poursuit ainsi : « Ces beaux résultats n’étaient pourtant
que le prélude d’une plus grande découverte. Il était réservé a Galois d’asseoir
la théorie des équations sur sa base définitive, en montrant qu’a chaque équation
correspond un groupe de substitutions, dans lequel se refletent ses caracteres
essentiels, et notamment tous ceux qui ont trait a sa résolution par d’autres équations
auxiliaires ... ». En 1870, en France, Jordan était le seul ou ’'un des seuls a pouvoir
lire Galois de cette facon. Le Galois de Jordan était né, le Galois de la théorie de
Galois, dont la vie si courte prenait des lors une dimension nouvelle et rendait sa
mort plus tragique encore. Apres le Galois de Jordan, sont nés une suite presque
ininterrompue de Galois, dont le plus connu est celui de Bourbaki qui en fait
Iinitiateur de la vision bourbachique des mathématiques, d’une partie de celle-ci
en tout cas, selon laquelle pour résoudre un grand probleéme, il faut lui associer une
structure dans laquelle se refletent ses caracteres essentiels, comme le dit si bien
Jordan, dont on réédita sur le champ le traité. Le Jordan de Bourbaki était né par la
méme occasion.

Il est inutile de développer davantage. Nous avons rappelé cet exemple trés connu
seulement pour mettre en perspective le travail historique de Marc. Une ceuvre aussi
riche et aussi visionnaire que celle de Doeblin (ou de Galois, ou de Lévy, ou d’Itd,
ou de tant d’autres) ne peut étre comprise d’emblée comme un tout cohérent et
figé. On ne peut certainement pas la comprendre en totalité en la rapportant aux
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seules mathématiques de son temps. Elle ne prend sa véritable dimension qu’en
étant réinterprétée, si possible, avec I’aide des mathématiques actuelles, en attendant
les mathématiques futures qui permettront peut-étre de nouvelles réinterprétations.
Une ceuvre vraiment grande peut se relire sans cesse, s’enrichir des mathématiques
nouvelles comme elle peut les enrichir. Le travail historique de Marc s’inscrit dans
ce courant et il est remarquable. (21).

Adieu Marc et merci.

Notes
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Sur I’ceuvre de Doeblin et sa chronologie compliquée, on verra Lévy [1955],
Lindvall [1991], Cohn [1993], Doeblin [2000], Charmasson et al. [2005],
Mazliak [2007a, b], Doeblin [(Euvres]. Tous les grands traités de probabilité de
I’apres-guerre comportent une ou plusieurs sections sur les travaux de Doeblin.
On verra notamment les ouvrages classiques de Gnedenko-Kolmogorov,
Doob, Chung, Loeve, Feller, etc. Sur la vie de Wolfgang Doeblin, on se
reportera aux références précédentes et bien slr au beau livre de Marc Petit
[2003].

Sur les mathématiques de I’entre-deux-guerres en France et a 1’étranger, en
particulier sur la théorie des probabilités, on dispose d’un grand nombre
de textes tres intéressants. On consultera notamment Barbut et al. [2004],
Brissaud [2002], Droesbeke [2003], Heyde, Seneta [2001], Kahane [1998],
Leloup [2009], Mazliak, Shafer [2009], Pier [1994], Siegmund-Schultze
[2001, 2009] ...

Par exemple, Feller [1954a] ajoute en note que le critere d’accessibilité des
diffusions & une dimension qu’il vient de découvrir se trouve énoncé dans la
note [1939a] de Doeblin, lequel d’ailleurs avait fait le calcul de té€te au cours
d’une apres midi d’aolit 1938, alors qu’il randonnait dans le Jura, comme son
carnet de recherche nous I’apprend, Doeblin [1938b]. De Feller également on
verra le commentaire sur les « ensembles de puissances » de Doeblin [1940b],
dans son volume 2, [1971], p. 592 : « The technical difficulties presented by the
problem at that time were formidable. » Rappelons que Feller était le critique
le plus vigilant des a peu pres probabilistes de son temps et qu’il n’était pas
tendre du tout, Doeblin non plus d’ailleurs. A propos de ce méme mémoire
de Doeblin [1940b], on peut lire aussi Jain et Orey [1980] qui écrivent « At
the time we started working on these problems, we knew Doeblin’s famous
paper [1940b] only second hand. When we finally turned to the original
we were surprised to learn that the main part of our Proposition 1.11 was
already in [1940]. ... Actually, our partial ignorance of the contents of [1940b]
was fortuitous because without it we might well have been discouraged
from attempting further progress. » D’autant plus décourageant que la fin du
mémoire [1940b] rédigé a Givet au printemps 1939, alors que son auteur suit
un peloton de caporal, n’a jamais été terminé et que son brouillon envoyé a
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sa famille en 1940 et déposé aux archives de 1’Académie des sciences par
sa mere vers 1955, n’a jamais été élucidé. Le texte de Doeblin est codé et
incompréhensible. Quant aux résultats principaux, ils sont énoncés dans une
note particulierement énigmatique [1939b] que Lévy [1956] n’a pas réussi a
comprendre, et personne apres lui.

On peut citer encore les travaux de Chung [1964, 1992], Orey [1971], Duflo

[1990], Brémaud [1999], etc. sur la théorie générale des chaines selon Doeblin
[1940a], ou ceux de Lindvall [1992] sur la méthode du couplage de Doeblin,
[1938a], etc. Pour des informations actualisées de premier ordre, on se
reportera également aux (Euvres de Doeblin a paraitre avec les commentaires
tres intéressants de Iosifescu, Mason, Nummelin et Seneta.
Larticle de Torgny Lindvall [1991] a joué un rdle considérable dans la
« redécouverte » mathématique de W. Doeblin. Son article présente de fagon
tres claire les principaux résultats publiés de Doeblin et des éléments de
biographie importants et originaux. Lindvall a mené une véritable enquéte
historique pour retrouver les traces du savant disparu en 1940. 11 s’est rendu
a Housseras, le village vosgien ou Wolf est mort et ou il est enterré avec ses
parents. Il a compris tres tot que 1’ histoire du soldat Doblin était exceptionnelle
et avait une valeur universelle. Il a en particulier écrit pour une revue suédoise
grand public un bel article commémoratif [1993]. C’est a notre connaissance
la premiere apparition du dossier Doeblin en dehors du monde mathématique,
si I’on excepte I’article ignoré du germaniste Louis Huguet [1984].

Lindvall a prononcé la conférence inaugurale du colloque en 1’honneur

de Doeblin qui s’est tenu a Blaubeuren en 1991. Ce colloque organisé par
K. L. Chung et H. Cohn était présidé par Doob. Il a donné lieu a une intéres-
sante publication, Cohn [1993]. On peut évidemment s’étonner que le colloque
ne se soit pas tenu a I'THP o Doeblin avait fait I’essentiel de ses recherches,
mais cela s’est avéré impossible. Apres tout, peut-étre était-il préférable que le
colloque se tint en Allemagne, ou Heinrich Hering de 1’université de Gottingen
avait trouvé un lieu et un financement ? Blaubeuren est une charmante petite
ville du district de Tiibingen, connue pour ses remarquables abris sous roche
paléolithiques ou I'on a retrouvé la plus ancienne fliite connue, vieille de
35000 ans, et 1’on sait que Doeblin était passionné de musique classique, de
Mozart en particulier, de sorte que le lieu n’était pas si mal choisi.
Pier [2000] ne cite Doeblin qu’une seule fois et seulement par ricochet, a
propos des travaux de Lindvall sur le couplage des diffusions. Doeblin avait
mis au point cette méthode des ses premiers travaux sur les chaines de Markov
homogenes a nombre fini d’états, au premier semestre 1936, ([1938a], n°® 2) et
on ne savait pas encore en 2000, qu’il I’avait étendue au cas des diffusions dans
le pli cacheté alors dans les réserves de 1’ Académie des sciences. Dans Pier
[1994] consacré aux mathématiques des années 1900-1950, Doeblin n’est cité
dans aucun des articles, mais seulement dans les « guidelines », p. 24-26, qui
proposent une bibliographie sommaire des travaux importants de la période, et
seulement parce que son nom a été ajouté in extremis par Pierre Dugac, I’'un
des éditeurs principaux du volume.
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On peut également évoquer a cet égard le peu d’intérét suscité en France
par le colloque de Blaubeuren, supra note 4. Les raisons en sont multiples,
mais il n’est guere douteux que la réception eit été différente, si les travaux
ou seulement le nom de Doeblin avaient rappelé quelque chose, en 1990, aux
probabilistes francais les plus en vue. Certains congressistes de Blaubeuren
s’étonnerent publiquement de cette quasi absence francaise a une conférence
en ’honneur d’un Frangais mort pour la France. S’agissait-il 1a, une fois en-
core, d’une manifestation de cette arrogance hexagonale si souvent brocardée
par nos amis anglo-saxons ? Fort heureusement, la délégation frangaise, peu
nombreuse, mais de qualité, en avait vu d’autres et ’incident n’eut pas de
conséquences facheuses.

Quoi qu’il en soit, force est de constater qu’en 2000, plus personne ne se
passionnait pour la vie et I’ceuvre de Wolfgang Doeblin, ou si peu que ce n’est
pas la peine d’en parler.

Alfred Doeblin est un des tres grands écrivains du 20° siecle, mais il n’est pas
facile a lire, surtout en traduction francaise. Son roman Berlin Alexanderplatz
est un grand livre. Nous conseillons également la lecture de Voyage et destin
[2002] qui fait une description étonnante de la débacle de juin 1940, et qui,
a de certains moments, semble annoncer ou vivre le suicide de Wolf dans les
Vosges.

Kolmogorov [1931], § 17. On verra pour des commentaires Shiryaev [1989]
[1999]. Serge Bernstein a également une formule de changement de variables
dans son cadre [1932], p. 300, [1938], p. 24. Rappelons que c’est Doeblin qui
a corrigé et édité ce mémoire important, Bernstein n’ayant pu se rendre au
Colloque de Geneve de 1937, ou Doeblin était présent. On verra a ce sujet
Cohn [1993].

La formule d’Itd dans le cadre d’Itd a été publiée dans [1950] et [1951],
mais son réle fondamental en calcul stochastique n’a été compris que quinze
ou vingt ans plus tard. On verra notamment Meyer [2000], (et [1966] ou la
formule d’Itd n’apparait pas encore), et aussi Yor [2008].

Pour plus de détails, le lecteur se reportera a la superbe introduction rédigée
par Marc, [2000b] p. 1033—1035 et aussi a son article [2002], et naturellement
au texte de Doeblin lui-m&me qui est trés concis, mais dit ’essentiel. On
sait que Doeblin construit ses diffusions de la facon suivante. Ce sont
des mouvements continus, dont la loi satisfait a 1’équation de Chapman-
Kolmogorov, sous les conditions de Kolmogorov-Feller qui définissent ses
« coefficients » (la dérive et le coefficient de diffusion) et a une condition
supplémentaire de continuité a 1’infini qui fait que par un changement de
variables qui ramene I’infini en 1, il est continu partout avec probabilité un,
(ce qu’il n’est pas en général, les diffusions de Doeblin filant a I’infini en
un temps fini avec probabilité positive et se réfléchissant pour redescendre
aussitot sans discontinuité). Si on leur soustrait ensuite la somme cumulée
de leur composante non aléatoire, il reste une martingale au sens de Ville,
continue, et « donc » un mouvement brownien changé de temps. C’est un
des théoremes de Doeblin, avant les théorémes analogues des années 1960.
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Un nouveau changement de variables ne fait que changer ce changement de
temps qui dépend seulement de la composante aléatoire du mouvement, son
coefficient de diffusion. C’est donc une véritable formule stochastique.

On peut voir a ce sujet le bel article d’exposition de Varadhan [2001] et les tres
nombreux ouvrages récents sur ce sujet dont certains (tres peu) sont indiqués
en bibliographie.

Marc avait lu attentivement non seulement la transcription, mais aussi 1’ origi-
nal du pli. Il avait constaté qu’a plusieurs reprises, le transcripteur avait corrigé
discretement les inadvertances diverses d’un texte tres technique qui n’avait
pas été relu par son auteur. On sait que les historiens les plus consciencieux
sont coutumiers de la chose pour éviter de surcharger leurs éditions de
manuscrit de notes critiques. Une pratique bien compréhensible, mais sans
doute coupable, qu’ils sont les premiers a dénoncer séverement chez leurs
collegues. Marc accepta les corrections tacites qu’il prit soin cependant de
vérifier. C’est également Marc qui précisa a 1’éditeur de fagon tres détaillée la
mise en page compliquée, les titres, les photos, etc.

On verra la Lettre de I'IMEC, 12 (2013), p. 18.

Doeblin n’a pas besoin d’intégrale stochastique puisqu’il utilise les chan-
gements de temps, dans la continuité des travaux de Lévy sur les sommes
de variables indépendantes, mais avec des outils entierement nouveaux,
notamment la théorie des martingales continues. Rappelons incidemment que
Ville avait développé a I'IHP en 1938 devant Doeblin et Fortet la premiere
théorie des martingales a temps continu [1938, 1939], que Doob a portée aux
sommets que 1’on sait, Meyer [2000]. Rappelons que les premieres intégrales
stochastiques par rapport au mouvement brownien remontent aux travaux de
Wiener a la fin des années vingt et surtout a Itd pendant la guerre et beaucoup
d’autres ensuite. On verra McKean [1969].

L’axiomatique de Kolmogorov est implicite chez un grand nombre d’auteurs
notamment chez Borel qui a proposé, en 1909, sa mesure comme modele
du tirage au sort d’un point sur I’intervalle unité, lequel assure de surcroit,
« miraculeusement », que son développement en base deux résulte d’un jeu
de pile ou face infini et donne a ce dernier une base mathématique qu’il
n’avait pas encore. Quant a la définition de Kolmogorov de la probabilité
conditionnelle, dans le cadre de son axiomatique, elle est encore loin de rendre
compte de la complexité d’une notion que I’on trouve déja présente au XVIII®
siecle dans les travaux de Moivre, Bayes et Laplace. Les travaux de Lévy
sur le mouvement brownien commencent en 1939, longtemps apres ceux de
Bachelier, Wiener, Khinchin et les savants de I’école polonaise. La théorie des
martingales de Doob est implicite dans tout le calcul des probabilités classique,
et explicite dans la these de Ville et les travaux de Lévy et Bernstein sur les
variables dépendantes. Le calcul stochastique d’Itd vient apres ceux de Wiener,
Bernstein, Lévy, etc.

On sait que les documentaires tournés par Marc ont servi et continuent de
servir de support a 1’enseignement de la théorie des probabilités, aux Etats-
Unis notamment.
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Sur le soldat Beaujot, on verra Doeblin [2000], Petit [2003], Handwerk et al
[2007], Ellinghaus et al. [2008], etc.
Il ne faut en rien simplifier ces questions (comme nous le faisons ici), et
privilégier une approche au détriment des autres. Comme on sait, 1’histoire
des sciences est une « discipline polymorphe ». Elle est ce regard attentif
tourné vers le passé, les cultures, les sociétés, les hommes qui ont accompagné
le développement des sciences. C’est aussi une recherche d’origines et de
paternité, une enquéte sur les méthodes, les problemes, leur évolution, dont
la science moderne a besoin pour se comprendre, s’assumer, s’enseigner et se
développer. C’est également une fagon de faire revivre le passé, le réinventer
pour le transformer en un présent enrichi de culture et de tradition, etc. ... Et
chacune de ces approches a sa spécificité et son importance.
Académie des sciences, séance du 4 septembre 1843, C. R., 17 (1843), p. 448—
449 : «... j’espere intéresser I’ Académie en lui annongant que dans les papiers
d’Evariste Galois, j’ai trouvé une solution aussi exacte que profonde de ce
beau probleme : « Etant donnée une équation irréductible de degré premier,
décider si elle est ou non résoluble a I’aide de radicaux. » « Le Mémoire de
Galois est rédigé peut-€tre d’une maniere un peu trop concise. Je me propose
de le compléter par un commentaire qui ne laissera, je crois, aucun doute sur
la réalité de la découverte de notre ingénieux et infortuné compatriote. »
Liouville a publié les « (Euvres mathématiques » de Galois a 1’automne
1846, Galois [1846], précédé d’un « avertissement » rappelant la vie et la mort
du jeune savant, ibid. p. 381-384.
Sur la théorie de Galois, la littérature est immense et se poursuit actuellement
de facon intensive. Nous ne la rappelons pas ici. On peut toujours voir le
classique Bourbaki [1960], qui a sa propre lecture, cela va sans dire.
Il ne manque pas de jeunes mathématiciens morts tragiquement a la guerre
ou en montagne par exemple. Mais peu d’entre eux sont devenus durablement
des mythes ou des icones. Qu’on songe a Heinrich Kornblum, René Gateaux,
Robert Jentzsch, Jacques Herbrand, Paul Urysohn, Raymond Paley, etc. La
mort tragique, ’extréme jeunesse ne suffisent pas. Il faut que 1’ceuvre reste
vivante, qu’elle soit relue dans une autre perspective, avec des yeux différents.
Et ces relectures successives font autant partie de 1’histoire des mathématiques
que des mathématiques historiques, celles qui se font.
Serret [1866] vol. 2, Section IV, « Les substitutions ». Dans 1’introduction
de son volume 1, Serret écrit, p. 4, que le « résultat important » de Galois a
été « le point de départ des recherches auxquelles se sont livrés depuis sur
cette maticre MM. Hermite, Kronecker, Betti et plusieurs autres géometres
éminents. » Sur le role fondamental de Betti qui a comblé les trous et les non-
dits du manuscrit de Galois, on verra par exemple Jordan [1870], et aussi le
beau cours de Dugac [1988].
Marc suit la longue tradition des mathématiciens historiens, les Allemands
d’avant 1933 notamment, qui, en lisant, dans le texte, Archimede ou Gauss,
projettent certes sur ces auteurs illustres, mille fois commentés, les ma-
thématiques qu’ils savent, mais aussi en retour comprennent davantage les
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mathématiques qu’ils croient savoir, pour ’honneur de I’esprit humain et
la plus grande gloire des mathématiques. On verra notamment les travaux
historiques importants de Dieudonné ou de Weil qui procedent sans doute de
la mé&me tradition. On sait bien que cette suite de lectures différentes n’est pas
réservée aux seules mathématiques. On la trouve dans les autres sciences, dans
les arts, en littérature, en musique etc. Mozart a été entendu de mille facons.
Une grande ceuvre est vivante. Elle ne meurt jamais tout a fait. Elle renait sans
cesse et devient source d’inspiration nouvelle.
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Integral Representations of Certain Measures
in the One-Dimensional Diffusions Excursion
Theory

Paavo Salminen, Ju-Yi Yen, and Marc Yor

Abstract In this note we present integral representations of the It6 excursion mea-
sure associated with a general one-dimensional diffusion X. These representations
and identities are natural extensions of the classical ones for reflected Brownian
motion, RBM. As is well known, the three-dimensional Bessel process, BES(3),
plays a crucial role in the analysis of the Brownian excursions. Our main interest
is in showing explicitly how certain excursion theoretical formulae associated with
the pair (RBM, BES(3)) generalize to pair (X, X"), where X* denotes the diffusion
obtained from X by conditioning X not to hit 0. We illustrate the results for the pair
(R—, Ry) consisting of a recurrent Bessel process with dimension d— = 2(1 — @),
a € (0,1), and a transient Bessel process with dimension dy = 2(1 + «). Pair
(RBM, BES(3)) is, clearly, obtained by choosing o = 1/2.

1 Introduction and Main Formulae

1.1.  Our main aim in this paper is to extend some identities between o-finite
measures associated with the pairs (BM, BES(3)) and (RBM, BES(3)) to a general
pair (X, X™), where X is a one dimensional diffusion which satisfies the hypotheses
from [12], that is: X is regular, recurrent, and taking values on Ry := [0, co) with
0 as an instantaneously reflecting boundary point. We keep the notation from [12];
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in particular, m is the speed measure, S is the scale function of X with S(0) = 0,
S(0c0) = o0, and

_d d

~ dmds
is the canonical form of the infinitesimal generator of X.

Let Hy := inf{r : X, = 0} denote the first hitting time of 0 and introduce a new
diffusion X via

= X;, t<Hop,
X[ =
d, t>H,

where 8Ais a point isolated from R4 (a “cemetery” point). The semigroup of the
process X is given by

P,(x,dy) := Pu(X, € dy) = Pu(X, € dy; 1 < Hp), x > 0.

Diffusion X' is now defined as the h-transform of X with & := S, that is, the
expectation associated with X7, XOT = x > 0, is given by

Ex[FrS(Xt/\Ho)] _ Ex[FrS(Xt)1r<Ho]

e
ElR= =50 S

ey

where F, is an .%, = 0{X; : s < t}-measurable positive functional. The notation P)I
stands for the probability measure of X" initiated at x > 0. Notice that writing (1)
as follows:

EolFLey) = SOE! [ Fi—~ | I
[ t (I‘<H())] ('x) 'x I‘S(Xt) ( )
presents X as an h-transform of X* with h(x) := 1/S(x). We refer to [8, 13] for
pioneering works on A-transforms and excursions; for A-transforms in general, see
[4].

Finally, we remark that 0 is an entrance-not-exit boundary point for XT.
Consequently, we may extend the semigroup P,T (x,), which a priori is defined
on (0,00), to [0, 00) so that the induced process is a diffusion. The diffusion X*
generalizes in our framework the BES(3) process. The discussion to follow revolves
around these three Markov processes: X, XT and X.
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1.2.  Let us state first the identities in question for the pair (BM, BES(3)) found,
e.g.,in [2, p. 79]:

o0 o0 o0
/ dth):/ leS’O/ duw"(-;u <), )
0 0 0
o0 o0 du
AW! = | ——— W, 3
/0 0= o Vo 0w ®
1
. _ w0~
Wi (Gt < ¢) = E [G,Zwt], 4)
o0 o0
/i dtwi(;t<:§)=‘/i da (P§)re. 5)
0 0

In (2)—(5), W, denotes Wiener measure associated with standard Brownian motion
{B; : t > 0} initiated at 0. We may view W, as a measure defined in the canonical
space C of continuous functions o : Ry — R. Let

G =o{w(s) s <t}

denote the smallest o-algebra making the co-ordinate mappings up to time ¢
measurable and take %’ to be the smallest o-algebra including all o-algebras &, t >
0. The notation w is used for the It6 excursion measure and w its restriction to
positive excursions. Recall that the excursion space for excursions from 0 to 0
associated with B, and also with the diffusion X, is a subset of C, denoted by E,
and given by

E:={¢e€C:2(0)=0,3¢(e) >0suchthate(r) 0V t € (0,Z(¢))
ande(r) =0V t> ¢(e)},
where ¢ is called the lifetime of a generic excursion. The notation &; is used for the
trace of %, on E. The superscript 7, e.g., in W’ and w’, means the distribution of the
path obtained by killing at time ¢. This operation is used also at random times. In (2)
7; denotes the inverse local time, that is,
7= inf{t: L, > I},
where {L; : t > 0} is the standard Brownian local time, i.e., such that

{|B/| =L : t>0} (6)

is a Brownian motion. Clearly, this normalization of the Brownian local time
normalizes also the excursion measure w in (2). Given two trajectories w and w’ in C
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we define the third one w'ow’, where w' denotes w killed at time 7, by concatenation,
i.e.,

w s<t
(Wt o W/)(S) — S , , =5
wetw,_,—w, s=>1

The symbol o in (2), and also in (7), means the image of the product measure under
this application of the concatenation of the trajectories with killing at 7;. In (3),
Wo .0 is the law of Brownian bridge, starting and ending at 0, over the time interval
[0, u]. In (4), G, is an arbitrary %;-measurable positive functional and E® (also P®)
refer to the three-dimensional Bessel process. Here the quantity 1/(2 w,) may be
seen as the Radon-Nikodym density of w with respect to P(()3) when restricted on %;.
Finally, on the RHS of (5), we have the law of the three-dimensional Bessel process
(R; : t = 0) stopped at the last passage time of a > 0, i.e., at

Yo :=sup{t >0:R, = a}.
In [2], identities (2)—(5) proved to be quite useful for the study of a number
of Brownian functionals. See also [11], Exercise 4.18 in Chap. XII, as well as the

notation preceding Proposition 4.6 in the same reference.
For an illustration of (2), consider the formula:

W{Awm€Wwﬂ

wo[ /0 S exp(—)m)] /0 " due M w(fe)): u < ©)

L * —Au .
m/() due ™ w(f(e,); u <?).

Broadly speaking, (2) is a formal manner of writing the compensation formula for
Brownian excursions.

1.3. We now state the extensions of identities (2)—(5) to our general diffusions
framework. Again, we postpone the definition of some symbols after the statement

of the identities:
o0 o0 o0
/ dr P, :/ dipy o/ dun’(-;t <0), 7
0 0 0

o0 o0
/ ﬂwzf dit pa(0, 0)Poo. ®)
0 0
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n(Gir <) =E) [G, ©)

S(w t)]
/oodtnf(-;t<§)=/°Om(da)(P§)Ya. (10)
0

0
In (7)-(10), Py denotes the law of X starting at 0, while n is the excursion measure

when {L, : t > 0} the local time at 0 is taken to be

1 t
L = leR)m(O 5 /0 ds1(o<x,<e)

and 7; denotes the right continuous inverse of ¢ +— L,. The measure Pg can be
defined as

E![G] = n(G, S(): 1t < 0). an

which is equivalent to (9). In (8), Py, 0 denotes the law of the X-bridge of duration
u starting and ending at 0, and p,(0, 0) is the value of the semigroup density p,(x, y)
of X when x = y = 0. This density is taken with respect to the speed measure, i.e.,

Pi(x,dy) := Py(X; € dy) = p,(x,y)m(dy).

In general, we keep the notation introduced in Sect. 1.2. We also refer the reader to
a related paper [10] where formulae with some similar flavor as (7)—(10), but based
on the decomposition at the maximum, are found.

We remark that (7) and (8) admit quite similar proofs as (2) and (3), whereas (9)
and (10) may be considered as different results.

1.4. The organization of the paper is as follows:

* in Sect. 2, we prove (7)—(8), and recall some important facts from [12].

* in Sect. 3, we prove (9)—(10).

* in Sect. 4, we discuss the excursion bridges and the Ito representation of n.

e in Sect.5, we illustrate the discussion with an example and take X to be a
recurrent Bessel process, with dimension d— = 2(1 — «), @ € (0, 1), and x?
the corresponding transient Bessel process with dimension d+ = 2(1 + ).

2 Proofs of (7) and (8)

2.1.  Proof of (7): The result is obtained—as in the Brownian case—using the
compensation formula from the excursion theory, see [2, p. 80], also [1, p. 119].
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2.2.  Proof of (8): For a 6;-measurable positive functional G, we have
o0 o0
| @Eaic) = k[ ar.cl
0 0
o0
ol dLEoslG]

= /Ooo E() [dLM] EO,u,O [Gu]’

where in the second equality we used conditioning and the fact that the measure
induced by u + L, is supported by the random set {t : X; = 0}. The last
equality follows from Fubini’s theorem, and the proof is concluded by recalling
that Ey[dL,] = p,(0,0)du (see [7, p. 183]).

3 Proofs of (9) and (10)

3.1.  Preliminaries: Before proving (9) and (10), we recall some key facts and
formulae needed in the proofs (see [12]).

Firstly, under n, the process {¢; : t > 0} is a Markov process with entrance law
n(g, € dx) = m(dx)f(t) and semigroup

Py(x,dy) = Py(X, € dy; t < Hp), x > 0,
where Hy is the first hitting time of 0 and fy9 is its P,- density
P.(Hy € dt) = fw(t)dt.

We use the notation p, and p,T for the semigroup densities associated with Xand X',
respectively, that is

Py(x,dy) = pi(x.y)m(dy),

Pl dy) = p! (x, y)ym (dy).

Notice from the A-transform description of XT that taking the derivative with respect
to the speed measure of XT given by

m'(dy) := (S(v))*m(dy) (12)

produces the symmetric density. Hence, ST (x) = —1/S(x) is an appropriate scale
function for X*.
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Next recall that the law of the last passage time at x > 0 for X' is given by (see,
e.g., [9] and [3] p. 27)

Pl(r.cdy) _ plO.x) _ plOx
dt C SMoo) =St () ST(x)

13)

where §7(00) = lim, 00 ST (z) = 0 since it is assumed that X is recurrent implying
S(c0) = co. The distributions of H, for X and y; for X" can be connected via time
reversal. Indeed, {X; : 0 < < Hy} under P, when time reversed from Hj, is identical

in law with {X,T 10 <t < y,}under Pg , see [13] (and [3, p. 35]). Consequently,

P, (Hy € dr) = P} (y, € d),

which yields
fo®) = pl 0.0 ). (14)
Thanks to the formula
4 lal‘(xs )’)
Jy) = 15
pi (x,y) S@S0) (15)

we obtain (see also [7, p. 154]) the useful identity

T ﬁt(—xvy)
S =18 50)

(16)

3.2.  Proof of (9): We first show (9) for G; = ¢(e;), where @ is a generic function
and &, the value of the generic excursion at time ¢. In this case (9) is equivalent with

/ m(dx)e()fio() = / ' (dp! (o,x)%x)w(x),
and this holds if and only if
p!(0,%)

m(dx)fio(r) = m" (d")W' (17)

But since m" (dx) = (S(x))?m(dx), (17) is a simple consequence of (14).
To show (9) for a general 6;-measurable positive functional, introduce for 0 <

h<b<---<ti,keN,andx; >0,i=1,2,--- k

A= n(e, €dxy, &, €dxa, ... & €dxy)
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and

. )
B:= P, (X, de,X de,...,X € dx .
0 ( n 1 5] 2 3 k) S()/.k)

We prove that A = B and, then, (9) holds by a standard extension argument. Using
the characterization of the law of the excursion process given at the beginning of
Sect. 3.1 yields

A= m(dxl).f)cm(tl)ﬁtz—tl (x1, x2)m(dxs) - . .. 'ﬁtk—tk—l (oek—1, X )m(dxy,).

On the other hand,
"(dxa)
m Xk
B = p,T1 (0,x1)mT (d)cl)p,Tz_,1 (xl,)cz)mT (dxy) - ... 'p,Tk_,k_l (xk_l,xk)m.
From (17), the equality of A and B boils down to the following identity
Iatz—tl (.X] ) xz)m(dxz) Teeet ﬁtk—tkfl (xk—l l} xk)m(dxk)
"(dxa)
m Xk
= S(Xl)PrTz—rl (e, x)m (dx) - 'Per—rk_l (oek—1, x%) . (18)
S(xk)
which holds since
e y) = 121G VR (dx) = S*(x)m(dx).
S()SG)
Notice that (18) can also be proved using
13,(x, dy) = P,T’h(x, dy), (19)

where h(x) := 1/S(x) and
P (rdy) = m P} (x.dy)h(),

as already observed in (1°).

3.3.  Proof of (10): With the help of (9), we may write (10) as

/0 thT[G,S (Xt)] / m(da) E}[G,,]. (10
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Insert here a generic function f to obtain

* e L "
| aroE][65s] = [ manElr006,) (10")
Conditioning on y, the RHS of (10”) equals
| mao) [ ¥ < anorfiGilr, = 1.
From (13) it follows (see also [9])

E} G|y = 1] = E}[G/|X, = a],

and, because f is a generic function, (10”) is equivalent with

1 1 (y” dt) 1 _ "
EO[G S(X,)] / m(da )O—EO[G,|X,_a] (10"

The LHS of (10”) can be written as

/ P! 0. aym’ (da)mET[thXt _

which is seen to be equal with the RHS of (10”) after making therein use of (13)
and (12). This completes the proof.

3.4. Two corollaries of (9): Firstly, choosing in (9) G, = S(e;) gives

n(S(e);t <) =1, (20)
since X' is conservative.
Secondly, it holds
1
n(f(e) Gi lo=o)) = EJ [fO0O) EJ[GIX] < . @
S(X)

which is obtained using the following formulae deduced from (9)

ne cdut <) =Pl(X e dx)— )

S(x)
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and

n(Gils; = x) = E}[G/|X; = A]. 9"

4 Excursion Bridge

4.1. From the description of n given in Sect.3.2 we deduce for 0 < #; < f, <
o<ty < t,keN,andx; >0,i=1,2,---,kthat

n(e, €dxy, &, €dxy, -+, &, €dx,{ €dt)
= m(dxl)ﬁclo(tl)f’rz—n (-xlsXZ)m(d-XZ) T
e Dty =1, X)) mAdxi) o 0(t — ti)dt.

Recall (see [12, Theorem 2]) that

Sro(®)
SG)

n(¢ € df) = p} (0,0)dt = lim
x—0

and define the probability measure governing the excursion bridge of length ¢ via
the finite dimensional distributions defined by

n(e, €dxi, &, €dxy,+- &4 €Edxi|§=1)
1 o
=7 m(dx)fx,0(t1)Pr— (X1, X2)m(dxz) - ... (22)
p: (0,0)

eoo Pty (1, xi)m(dxi)f 0 (2 — 1).

Using (12), (14), and (15) we may rewrite the RHS of (22) as

p,T1 (0,x1) m? (d)cl)pg_,1 (xl,)cz)mT (dxp) - ...

Pl 0,0

P G xm T (dx)p, (0. (23)

We let also Pg.t,O denote the measure induced by the finite dimensional distribution

in (23) indicating that this measure may be seen as the law of X when started at
0 and conditioned to be at O at time 7. Using this notation we formulate the It6
representation of n as:

o0
n:/ du p} (0,00P) . 24)
0
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It is also well motivated to write (24) as follows

o0
n= / du p!(0,0)P .. (25)
0
Indeed, for all x, y > 0 it holds

Pl =P, (26)
The proof of (26) follows from (1’), which implies that f’x and Pi admit the same
bridges laws. However, it is perhaps of interest to show directly that the finite
dimensional marginals of Piu’y and P, , coincide. Let 0 < 11 < «-- < 1, < u
and consider

P_I,u’y(th S d.x1, .. .,th S dxn)

. PN(X, €dxi,....X, €dx, X, €dy)
' Pl (X, € dy)
PG xymt(dx) - ph, (o, y)mt (dy)
i, y)m? (dy)

_ ﬁt] (-xv .X]) 2 . . i’u—r,, (-xns y) S(.X)S(y)

= 50080y O A T S0) Puley)

Iau—tn (-xns y)
f)u(x, )’)

= ﬁn (x, -xl)m(d-xl) Tee '131‘,,—1‘,,_1 (-xn—lv-xn)m(dxn)

IA’X(X,1 edxy,.... X, €dx,, X, €dy)
P.(X, € dy)
= Ax,u,y(Xrl edxy,... ,X[” S dxn).

4.2. From (23) it is seen that the following absolute continuity relation holds for
u<t

P, O)]

El [F.] = E}|F,
’ [ p!(0,0)

27)

where F, is a %,-measurable positive functional. Our aim is to prove the following
extension of this relation:

ptT—x (XY ’ O) (-

mMQmOMZEW%M&mEmMmﬂ 28)
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with F, and G, a 6,- and a %;-measurable, positive variable, respectively, and u +
s <t

We analyze the RHS of (28). Therein, Ex,,_x,o denotes the law of the X bridge
starting from x and ending at O at time ¢ — s (see also [6]). Hence,

i Ax[Fqu“O(t_—s_“)]_ (29)

Eyi—solFu] = E frolt—s)

Since X is an h-transform of X1 with h(x) = 1/S(x), see (19), it follows that the
RHS of (29) writes

frolt=s—u) 1 o Plsma(Xu, 0)
=E |F,————|,
St —s) S(Xu)] [ p(x, 0) ]

where we have used (14). Substituting the RHS of (30) into (28) yields

SWE![F. (30)

ol

o Ly [t

X
pl(X,,0)

P (X, 0)
P! (0,0) ]]

Pj_(s+u)(Xu+s’ 0)]

! (0,0)

=K [G‘YE;X [F

=K [G‘Y(FM o 6,)

= E],[Gs(F. o 6)].

where in the second step we have applied the Markov property and in the third
formula (27). Formula (28) is now completely proven.

5 The Bessel Case

5.1.  In this section, we look at the particular case when X is the Bessel process
with dimension d_ := 2(1 — &), o € (0, 1), reflected at 0. We let R_ denote this
process. Choosing

1
S(a) =a** and m(da) = " a'"*da (31

as the scale function and the speed measure, respectively, the differential operator
associated with R_ takes the form

_d d_1d2+1—2ad
T dmdS  2da® 2a¢ da’
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and the transition density with respect to m can be found frome.g. [3, p.134] (notice,
however, that the normalization therein is different than in the present case). In
particular, we have fora > 0

&

o
P00 = s e (= 5, ).

For the process X T, i.e., the h-transform of R_ killed at Hy using & = S, we have
the scale function and the speed measure given as

1
S'a) = —a and m'(da) = —a't*da,
o

respectively. Consequently, X' is identified as the Bessel process with dimension
d+ = 2(1 + «) and we let R denote this process. The operator associated with
R+ is

_d d _1& 1+2d
 dmtdSt  2da? 2a da’

+

The transition density from 0 with respect to m' is given by
2

1 0.a) = — 1 _@
pl‘ (O’a)_ 2at1+0‘1_'(05) exp( zt)‘

Consequently,

2

4 20
p: (0,a) a a
Pl(y, edr) = — dt = —ar 32

o (7a € dn) S™(a) 20+ (o) eXp( Zt) (32)

and it is seen that the common law of Hj under P, and y,, under Pg is the reciprocal
of a gamma variable, precisely a®/2g,, where g, denotes a gamma variable with
parameter «.

‘We remark that the same choice of m as in (31) is made in [5], where it is noticed
that with this normalization of the local time it holds

{(R-(0)* =L : 1= 0}

is a martingale (cf. (6)).
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5.2

P. Salminen et al.

We conclude by illustrating identities (9) and (10) in finding the law of the

excursion length in this particular Bessel case. Putting G, = 1 in (9) yields

BN U U DY B S 1
0> =E)[gos] = [ 55 el 0ant@o

oo a a2 J
_/0 20T (o + Dt eXp(_Z) “

1
20 (o + D)

The same expression results also from (10) when we use therein a generic
function f :

/ def(On(E > 1) = /0 m(da)EL [ (72)]

0
d 2
Z/o d’f(”/ T+ e P (3

where formula (32) is applied. We refer to [5] for the above and further results
on excursions of Bessel processes; in particular, for a discussion on different
normalizations of the local time.
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Epilogue

The work reported in this paper was initiated by Marc Yor together with Ju-Yi Yen
in summer 2012. They contacted Paavo Salminen in spring 2013 concerning some
open problems in the paper at that time. The trio then started to work together but
was unable to finish before Marc Yor’s sudden death in January 2014. The present
version is written by Paavo Salminen and Ju-Yi Yen during summer and autumn
2014 and is a revision of earlier versions with Marc Yor.



Sticky Particles and Stochastic Flows

Jon Warren

Abstract Gawedzki and Horvai have studied a model for the motion of particles
carried in a turbulent fluid and shown that in a limiting regime with low levels
of viscosity and molecular diffusivity, pairs of particles exhibit the phenomena of
stickiness when they meet. In this paper we characterise the motion of an arbitrary
number of particles in a simplified version of their model.

1 Introduction

It was Marc Yor who first explained sticky Brownian motion to me. He was
interested in Chitasvili’s argument regarding it being a weak but not strong solution
to the associated SDE, and Marc showed me his beautifully handwritten notes on
the topic. It was part of a wonderful, inspiring summer spent in Paris as a student.

The motivation for this paper comes from a work by Gawedzki and Horvai [4],
in which the authors study a model for the motion of particles carried in a turbulent
fluid. The trajectories of two distinct particles (X;(7),7 > 0) and (X»(¢),7 > 0) are
each described by a Brownian motion in R? with a covariance of the form

(X1.X0) (1) = /0 V(X1 (s) — Xa(s))ds. (1

The d x d matrix valued function i is invariant under the natural action of the
orthogonal group and consequently the inter-particle distance ||X;(r) — X»(¢)|| is
a diffusion process on Ry. For different choices of the covariance function ,
different qualitative behaviours are observed, and these correspond to different
boundary conditions at 0 for the diffusion describing the inter-particle distance.
See also Le Jan and Raimond [8] for a description of these phases. Gawedzki and
Horvai study the case where 0 is both a entrance and exit boundary point, and the
function ¥ is not smooth at the origin. They then introduce a viscosity effect acting
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18 J. Warren

at small scales by replacing ¥ by a smooth covariance function obtained from v
by smoothing in a neighbourhood of the origin. Particles moving in this regularized
flow never meet, and O is now a natural boundary point for the diffusion describing
the inter-particle distance. They then further vary the model and consider particles
whose motion is affected by molecular diffusivity, modelled by adding, for each
particle, a small independent Brownian perturbation to the motion of the flow. If the
additional diffusivity and the scale at which viscosity acts both are taken to zero
in an appropriate balance then Gawedzki and Horvai show that the inter-particle
distance || XV () — X (#)|| converges to a diffusion on R4 with the boundary point
being sticky: that is a regular boundary point at which the diffusion spends a strictly
positive amount of time.

Sticky boundary behaviour was first identified by Feller, as described in the
article [11]. Subsequently the process which is a Brownian motion on R4 with a
sticky boundary at 0 was studied as an example of a stochastic differential equation
with no strong solution, see Chitashvili [2] and Warren [13], and recent work by
Engelbert and Peskir [3] and Bass [1]. Stochastic flows in which the inter-particle
distance evolves as a sticky Brownian motion have been studied by Le Jan and
Raimond [10], Le Jan and Lemaire [7], by Howitt and Warren [5, 6], and by
Schertzer et al. [12].

In this paper we study a simplification of the Gawedzki-Horvai model. Our
goal is to address, in this simplified setting, the question raised by Gawedzki and
Horvai of characterizing the behaviour of N particles. We take the dimension of the
underlying space to be d = 1, and the motion of distinct particles, in the absence
of viscosity or molecular diffusivity, to be given by Brownian motions which are
independent of one another until the particles meet.

Let ¥ be a real-valued, smooth, positive definite function on R, satisfying
¥v(0) =1, |¥(x)| < 1forx # 0, and ¥ (x) — 0 as |x| = co. Define the constant a,
which we assume is strictly positive, via

1_—12/()C)—>a2asx—>0. 2
X

For each n there exists a smooth flow of Brownian motions associated with the
scaled covariance function v (nx), the N point motion of which has generator

2

1 0
DA UCEEN) 3)
ij

xix;

As n tends to infinity the covariance functions v (nx) converge to the singular
covariance 1o(x), and correspondingly, the N-point motions associated with the
flows converge to systems of coalescing Brownian motions.
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Fix a constant » > 0 and for n > 1, we define generators

= - Z v (n(x — xj) 2n2 Z 4)

which are perturbations of the generators (3) by addition of the Laplacian with
coefficient b?/2n?. This works against coalescence by giving each particle in the
flow a small amount of independent diffusivity. As a consequence paths of particles
in the flow can cross and the N-point motions are no longer associated with a flow
of maps.

The two effects: approximating a coalescing flow by smooth flows, and adding
diffusivity, are in balance as we pass to the limit, as can be seen by the following
analysis of the 2-point motion. Let (X}, X;) be the two point motion with generator
G*". Tt is enough to consider the difference Z(f) = X; — X,(¢) which is a diffusion
on the real line in natural scale and with speed measure

dz

m(d2) = 1+ b°n~% — Y (nz)

&)

As n tends to infinity m, weakly converges to the measure m(dz) = dz + 0~ '8y(dz)
where the constant 6 is given by

_ o dz 7
912/ = __ X (6)
oo D* + @’7 ab

Thus the limiting diffusion describing |X; — X5| is a sticky Brownian with the
parameter 6 describing the degree of stickiness at 0. See, for example, [3] for the
construction of sticky Brownian motion via a time change of Brownian motion. The
limit of the two point motion is determined by this, together with X; and X, each
being Brownian motions.

This leaves open the limiting behaviour of the perturbed N-point motions for
N > 3. Consistent families of diffusions in RY whose components are Brownian
motions evolving as independent Brownian motions whenever they are unequal
were studied in [5]. For such processes there are times at which many co-ordinates
co-incide and it is necessary to describe the sticky behaviour at such times. This is
specified by families of of non-negative coefficients (6(k : [); k,I > 1). Thinking of
the N-point motion as a system of N particles 8(k : [) gives the rate, in an excursion
theoretic sense, at which a clump of k 4 [ particles separates into two clumps one
consisting of k particles and the other of / particles. The result of this paper is the
following identification of these co-efficients for our model.

Theorem 1 The N-point motions with generators GN" converge in law as n tends
to infinity to the family of sticky Brownian motions associated to the family of
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parameters (0(k : 1);k,1 > 1) with 0(k : [) given by

P
————1(X1, X2, .. Xk < 2 < Xpf1s - - - Xkt1)dXdz
//Rk+l (27)k+D/2 (x1, 2 k k1 k1)

The form of the parameters 6(k : [) given in this result is highly suggestive of
the underlying mechanisms at work. The variables xi, . . . , x;+; chosen according to
a Gaussian measure can be thought of as the positions of a cluster of k 4 [ particles
experiencing independent diffusivity, and the variable z represents a “singularity” in
the underlying flow that causes the cluster to separate into two. Of course this is far
from being rigorous.

To give Theorem 1 a precise meaning we must specify the law of the family of
sticky Brownian motions associated to the family of parameters (6 (k : [); k,[ > 1).
We do this by means of a well-posed martingale problem, following [5].

Suppose (O(k : I);k, 1 > 1) is a family of nonnegative parameters satisfying the
consistency property

Ok:)=0k+1:D)+0k:14+1) @)

For our purposes in this paper we may also assume the symmetry 6 (k : [) = 6(/ : k).
We now recall the main result from [5] concerning the characterization of consistent
families of sticky Brownian motions.

We begin by partitioning R" into cells. A cell E C RY is determined by some
weak total ordering < of the {1,2,...N} via

= {x e RV : x; < x;if and only if i < j}. 8)

Thus{x eR¥ :x = =x3, (xeR¥ 1 x; <xy =x3land {x e R3 : x| > xp >
x3} are three of the thirteen distinct cells into which R? is partitioned.

Suppose that I and J are disjoint subsets of {1,2, ..., N} with both I and J non-
empty. With such a pair we associate a vector v = v;; belonging to RV with
components given by

0 ifigIulJ,
vi=13+1 ifiel, 9)
—1 ifiel.

We associate with each point x € RV certain vectors of this form. To this end note
that each point x € R" determines a partition 7 (x) of {1,2,...N} such that i and
Jj belong to the same component of 7 (x) if and only if x; = x;. Then to each point
x € RY we associate the set of vectors, denoted by V(x), which consists of every
vector of the form v = vy; where I U J forms one component of the partition 7 (x).
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Let Ly be the space of real-valued functions defined on RY which are continuous,
and whose restriction to each cell is given by a linear function. Given a set of
parameters (9(k Dkl > 0) we define the operator AIOV from Ly to the space
of real valued functions on R which are constant on each cell by

ALf@) = D 0V (). (10)

vEV(x)

Here on the righthandside 6(v) = 6(k : [) where k = |I] is the number of elements
in I and [ = |J| is the number of elements in J for I and J determined by v = vy;.
V,f (x) denotes the (one-sided) gradient of f in the direction v at the point x, that is

Vo) = lim (/s + €0) ~9). an

We say an RV-valued stochastic process (X(¢); ¢ > 0) solves the A% -martingale
problem if for each f € Ly,

f(X@) - /0 t A f(X(s))ds is a martingale,

relative to some common filtration, and the bracket between co-ordinates X; and X;
is given by

(X, X;) () = /0 tl(Xi(s) =X(s))ds  fort> 0.

In particular (X;)(z) = t. According to the main result of [5], for any given starting
point x € RV, a solution to the Aﬁ,—martingale problem exists and its law is unique.
Itis a process with this law that we refer to as a family of N sticky Brownian motions
associated with the parameters (Q(k Dk >1).

2 Heuristic Derivation of Exit Probabilities

Let us write (X ®;t > O) for the co-ordinate process on N dimensional path space,
and we will write X(7) for the projection X(f) onto the hyperplane RY = {x € RV :
> x; = 0}. Suppose that X when governed by a probability measure P¥¥ evolves
as the family of N mutually sticky Brownian motions associated with a parameters
0 = (0(k: 1);k,1> 1) started from x € R". Consider, for € > 0, the neighbourhood
D(e) of the origin 0 in R} given by

D(e) ={x € RS’ smax(x; —xj) < €}. (12)

g
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We know from [5] that the exit distribution of X from D(€) can, for small €, be
described in terms of the 6(k : [) parameters. In fact if 7(¢) denotes the first time
that X leaves this set, we have

N P 1
lim -E)[T(e)] = - , (13)
cdoe 7] 2! (V)O(k : N — k)
and, for each cell E that corresponds to a (ordered) partition of {1,.2,..., N} into
two parts having sizes k and [ = N —k,
Ok :1)
limPY? (X(T(¢)) € E) = (14)
o ? (XTe) < B) YL (MK N —k)

Notice how this is consistent with the idea that 6(k, N — k) describes the rate at
which a cluster of N particles splits.

In view of these observations on the behaviour of sticky diffusions we can
reasonably expect to be able to identify the parameters 6 (k : /) arising in the limiting
behaviour of our N point motions with generators (4) by investigating how these
processes, for n large, leave neighbourhoods of the origin. Interestingly very close
to the origin, at distances of the order 1/n%, the N point motions are spherically
symmetric, but at larger distances a coalescence effect leads to exit distributions
concentrated on points corresponding to the cluster of particles splitting into two
subclusters.

We will suppose that X when governed by probability measures P evolves as
a diffusion with generator GV starting from x € R". Notice that the generators
GN are invariant under shifts (x;,xa,...xy) — (x| + A, x> + h,...xy + h), and
consequently the projection X (1) of X(¢) is a diffusion also. In view of (13) and (14)
it is natural to study the exit time and distribution of X from D(€) under P’OV’” in order
to determine the parameters 6 (k : /) associated with the limiting N point motion. We
will estimate the exit distribution (non-rigorously) by approximating the behaviour
of X on two different scales.

Let B(r) denote the ball of radius r in R},

B(r)={xe RS’ x|l <

Now, for a fixed small € > 0, the map x — V¥ (x) is approximately quadratic for
x € (—e€,€) and we use this to approximate the covariance matrix of X in the ball
B(e/n). Observe that if the matrix A has entries 1 — a*(x; — x;)* then for vectors
u,v € RY we have (1, Av) = 2a*(u, x)(v, x). Consequently we can approximate X
under PV within the ball B(e/n) as (n=2Z(n%t);t > 0) where Z is a diffusion with
generator 1" given by, in spherical co-ordinates in RY),

P p b? ? (N—-2)p*d b?
N_ 22 2 _ 2.2
" arﬁ—}—?v (?—}-ar)ﬁ TE—FﬁASNﬂ' (15)
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In particular, the rescaled radial part of X is approximated as a diffusion on (0, co)
with generator

oL\ (N—2)bd
- S M 16
Hoa = (2+ar)dr2+ 2 dr (10

The expected time taken for this diffusion to first reach a level » when started from
0 is equal to fy(r) where fj is the increasing solution to

HY fo =1, So(0) = 0.

The function f;(r) is asymptotically equal to r/(yab), see [14], where

_\/7 rwvge 1 ||x||e—||x||2/zd ;
PENE T -0/~ I Jeo e & a7

Thus we have the estimate

E,) " [exit time from B(e/n) ] ~ ﬁ' w

Moreover, because of the spherical symmetry of ", the exit distribution from this
ball is the uniform measure on sphere.

We next consider X started from a point x on the sphere of radius €/n which
we will assume has distinct co-ordinates. Let o be the permutation so that x,(1) >
Xg(2) >+ > Xg(w), and denote by x° the vector (xg(1), X5(2), - - * » Xo()). Our second
approximation applies to X until it first leaves the domain D(e) \ D(1/(en?)). If
two particles come close to each other, then they have a negligible probability of
separating by a significant distance prior to the exit time 7 from the domain. Thus
we can treat X similarly to (the projection to RN ) of a system of N coalescing
Brownian motions. In particular this means that if X exits via the outer part of the
boundary then it does so with )A(i’ (r) — )A(]‘\’,(t) ~ €. Consequently applying the
optional stopping theorem to the martingale f(‘f () — }A(l‘\’, (1) gives rise to the estimate

o o

PV (X exits D(e) \ D(1/(en?) via the outer boundary) ~ al S\ (19)
€

Moreover if X does exit via the outer boundary then as it does so there are only two
clusters of particles (see Lemma 4 for the corresponding statement about coalescing
Brownian motion), and applying the optional stopping theorem to X” (0 — X7, ()
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gives
PV (X7 (v) — X2, () ~ O fori # k, and X{ (v) — X7, (v) ~ €)

~ BT (20)
€
We now make use of a renewal argument. The diffusion with generator (15)
is ergodic, with an invariant measure whose density decays at infinity, see [14].
Consequently, taking account of the scaling by a factor of n* we expect that the
process X spends all but a negligible amount of time at a distance of order 1/n?
from the origin prior to exiting D(¢). From this inner region it makes excursions to
the sphere of radius €/n and, each time it does, it has a small probability of exiting
D(¢) rather than returning to the inner region. When it does return to distances of
order 1/n> we can assume by mixing that it is starts afresh and forgets its history.
Thus X makes approximately a geometrically distributed number of excursions to
the sphere of radius €/n before exiting D(¢), and we conclude, neglecting the time
spent outside the ball B(e/n), that the expected time to exit D(€) is estimated by

EI(;,’H [TB(e/n)]
E)" [P)A(](’}B( / )(X exits D(e) \ D(1/(en?)) via the outer boundary )]’

where T/, denotes the first time of exiting the ball B(E /n). Slmllarly we estimate
that the probablhty of exiting D(e) at time Tp() with X,+1 (Tpe)) — X (Tpe)) ~
for all i # k and Xk+1(TD(€)) Xk(TD(e)) A € is approximately

EY" [PV (Xi(1) = Xip1 (1) & O fori # k, Xi(1) — Xt 1(7) = €)]

X(The/n)
| [PN p (X exits D(€) \ D(1/(en?)) via the outer boundary ) |

X(T(e/n))

where, as previously, 7 is the exit time of D(€) \ D(1/(en?)). Thus, in view of (13)
and (14), and taking thecell E = {xl =X = ... =X < Xp4] = Xp42 = ... = XN},
we guess that the parameter 6 (k : N — k) associated with a limiting N-point motion
should be equal to the limit as n tends to infinity and € tends to zero of

€ X ENn[Pg(y}B( e/m) (X,'(‘L') —)A(v,'+1(‘1,') ~ 0 fori 7é k, Xk(‘lf) —)A(k_H(‘L') ~ 6)]

2B} " [Tp(e/m)

Substituting in our estimates from (18) and (20) and using the fact that the exit
distribution from B(€/n) is uniform we arrive at

b
ree min z; — max zi))+dz. Q1)
2 Jon—2 l<i<k k+1<i<N
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in which the integral over the unit sphere S¥=2 C R} is taken with respect to
Lebesgue measure on the sphere normalized so f sN—2 dz = 1. When we rewrite the
spherical integral as a Gaussian integral this agrees the value given in Theorem 1.

3 Proof of Main Result

In view of the characterization of a family of sticky Brownian motions by the Aﬁ,—
martingale problem, it is a natural strategy to prove Theorem 1 by considering
smooth approximations f;, to a given function f € Ly and to derive, using weak
convergence, from the martingale property, under PV, of

FUX(@0) — /0 GV (X (s))ds 22)

that
FX@) — / A9 F(X(s5))ds,
0

is a martingale under P¥-Y. There are difficulties to be overcome in pursuing this
which arise because Afvf is not continuous. A key step is to establish the weaker
statement described in the following lemma, which gives information about how the
limiting process leaves the main diagonal D = {x € R¥ : x; = x, = ... = xy}. Let
L?V denote the subspace of Ly containing those functions which are invariant under
shifts (xy,x2,...,x,) = (x1 + h,x2 + h, ..., x, + h), and consequently identically
equal to 0 on D.

Lemma 1 Fixx € RY, and suppose that P, is a subsequential limit of the family of
probability measures (Piv Min > 1). Then for any convex f € LY,

2 () = FX(1) — ALF(0) /0 1(X(s) € D)ds

is a submartingale under P,, where the family of parameters 0 are specified as in
Theorem 1.

We will prove this lemma by applying weak convergence to PV martingales
given at (22). But it turns out that we must carefully select suitable smooth
approximations f,. In fact we will choose f,(x) = n?g(n"2x) where the function
g is determined according to the next proposition which is adapted from [14].

Recall that the generators GN rescaled and restricted to R’(;’ , converge to HN
given by (15). The constant y was defined at (17).
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Proposition 1 Let f : SN2 — R be a square integral function on the unit sphere
SV-2 C RV, Let

¢ = c(f) = yab /SN?zf(ddZ

where the integral is with respect to normalized Lebesgue measure on the sphere.
There exists a unique solution to

HNg =c
satisfying g(0) = 0 and

lim g(rz)/r = f(2) uniformly for z € S¥ 2.
r—>o00

Moreover ify +— |yllf 7/ Iyll) is @ convex function on RY™" then so too is y + g(y).

Proof (of Lemma 1) Let f € LS’ be convex, and consider its restriction to S¥72 C
RY). Let ¢ = c(f) = yab [ f(z)dz and let g be the corresponding solution to
HNg = c described in Proposition 1. Extend g to a function on R" invariant under
shifts (x;,x2,...,x,) = (x; + A, x2 + h,...,x, + h), and set g,,(x) = n_zg(nzx).
We want to estimate GV"g,(x) in a neighbourhood of the diagonal D. We write

GVgu(x) = = Zw n(x; —x,)) gn( )+ 2 ore Z - zgn(x)

1 i
=13 iZJ(w (13 =) = 1+ &5 =3)") 5 )
1 ooy 9 L o
+ 3 Z(l a“n”(x; — xj) )3xixjgn(x) + o Z,: 8xi2gn(X)

(23)

The first term in braces appearing here can be controlled as follows. Recall x denotes
the orthogonal projection of x onto RS’ and that B(r) is the ball of radius r in RS’ .
Given K > 0 let

2

d
38
XiXj

2

_gn(-x)

= n"? max sup
i 0x;x;

i zeB(K/n?)

M(K) = max sup < 00.

YW xeB(K)
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Then given € > 0, we may by (2), choose ng so that for all n > ng, and x so that
X € B(K/n?),

|¢n(x,- —x) — 1 +a*n’(x; — xj)z‘ < n?(x; —x)* <

€
N2KM(K) ~ N2M(K)’
and this then entails that the first term in braces is no larger than € in modulus.
Because of the shift invariance of g, the second term in braces appearing in Eq. (23)
is equal to (’H,N g) (nx), which in turn is equal to c(f).

Next we claim that

c(f) = AL (0).

To verify this it is enough, by linearity, to check it for functions of the form

f(x) = (minx; — max xi)+
€y €M)
where 7 = (71, 7y) is an ordered partition of {1, ..., N} into two non-empty parts.
For such f the gradients V,f(0) appearing in the definition of Aﬁ,f (0) are all zero
except for Vv, -, f(0) which equals 2. Thus, recalling the values assigned to the
parameters (6 (k : [) in Theorem 1,

b
A?Vf(()) = 29(|7'[1|, |7'[2|) = ;l/—/ (minzi — I.IelaXZi))+dZ = C(f)
‘N 1€m

SN—2 i€

Observe that because g, is smooth and convex, ghn gn 1s continuous and non-
negative everywhere. This fact, together with the above paragraphs allows us to
conclude that given K > 0 and € > 0, for all sufficiently large n we have

an(X(0) — (A4 (0) — ) /0 1X(s) € B(K/n))ds 24)

is a submartingale under PV,

Fix times s < ¢ and let @ be a bounded, non-negative and continuous function
on the path space C([0, 5], RY). Note that the boundary behaviour of g implies that
lgn(x) — f(x)|/(1 + ||x||) — 0 as n — oo uniformly for x € R" , and that since
EV[[IX(s)]|] and EN"[||X(7)||] are bounded uniformly in n, the weak convergence
of (a subsequence of) PV to P, implies that (along the subsequence)

N [@(X(0), < 5) (8 (X)) — £a(X ()|

E[o(X().r < 9(F(X(®) —FX$))]-
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Let ¢ : R) — [0, 1] be a continuous function satisfying ¢k (x) = 0 for [|x[| > 1/K
and ¢g(x) = 1 for ||x|| < 1/(2K) Then we also have by weak convergence (along
the subsequence) that

ENn |:45(X(r), r< s)/ ¢K(}A((u))dui|
—E [@(X(r), r< s)/ ¢K()A((u))du:|

>E |:®(X(r), r<s) /II(X(M) € D)du:| .

For a given € > 0, if we choose K large enough, then by virtue of Lemma 2, for all
sufficiently large n,

EN" [@(X(r), r<s) / t 1X () € B(K/nz))du:| +e

> EN |:45(X(r), r<s) /T¢K()A((u))du:| .

From these statements and the fact that the process at (24) is a submartingale for
large enough n, it follows that

E[2(X (1.7 = ) (X)) ~f(X(5))]
> (AL (0) —¢) (E [cp(X(r), r<s) / t 1(X(u) € D)du} — e)

Consequently, s < t, @ > 0 and € > 0 being arbitrary, Z isa submartingale under
P as desired. |

We may now give the

Proof (of Theorem 1) Fix xo € RY. Because the marginal laws of each component
(X,-(t); t > 0) converge as n — oo it follows that the family of probability measures
(PY":n > 1) is tight. Thus it suffices to show that any limit point Py, solves the
Ajov-martingale problem starting from xo.

We know, from the analysis of the speed measures in the Introduction, that each
pair of components (X;, X;) converges in law to a pair of Brownian motions whose

difference is a sticky Brownian motion and consequently
20X, X) (1) = (X0, Xi) (1) + (X5, X;) (1) — (Xi — X;) (0)

=2 [ 10609 # X)as
0
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under Py, . Thus it suffices to show that

FEW) - /0 ACF(X(5))ds 25)

is a P,,-martingale for each f € LV. By the addition of a suitable linear function we
may assume that f € L. In fact we claim that it is enough that for every convex
f € LY the expression at (25) defines a submartingale. We verify this claim as
follows. For a general f we may consider g(x) = ¢ ZKJ» |x; — x;j| + f(x) which for
sufficiently large c is convex. We would then have that the corresponding process
g(X(@) — fot Aﬁ,g(X (s))ds is a submartingale. But we also know that the difference
of each pair of components of X is a sticky Brownian motion with parameter § =
26(1 : 1), and thus,

t
1Xi(1) — X;(n)| — 46(1 1)/ 1(Xi(s) = Xj(s))ds
0
is a martingale. Now we also observe that

Afg() = 4c0(1: 1) Y 1(xi = x)) + AL ().

i<j

And so we deduce that (25) must be a submartingale. But we can consider
g(x) = ¢ |x; — xj| — f(x) in the same manner, and hence deduce that (25) is a
supermartingale.

We now proceed with the proof of the theorem. The result holds for dimension
N = 2, and we argue by induction on N. So assume the result holds for dimension
N — 1, and consider a convex f € Lf)v . By the Meyer decomposition theorem,
associated with the P,, submartingale f(X(¢)) is some continuous increasing process
A(7). Let Uy = {x € RV : x; > x;forall i € my,j € my} for some ordered partition
7w = (my,m) of {1,2,...,N} into two parts. According to Lemma 3, on Uy, f(x)
can be written as a sum of fi(x;;j € m;) and f>(x;;j € m2). Applying the inductive
hypothesis the processes

(0 € ) — /0 AC FX(s):) € mi)ds

for i = 1,2 are both martingales. Consequently, the compensator A of f(X(f)) must
satisfy

dA(1) =(AL fi(X;(0):j € m1) + AL fi(X;(1): ] € m2))dt



30 J. Warren
on the set {t : X(¢) € Uy }. Noting that
(Azlfl (xj;j € m) + Af,zfi(xj;j € JTz))Z A}O\lf(x) forx € Uy,
and letting 7 vary we conclude that in fact
dA(t) = A%f(X(1))dt on {t : X(f) # 0}.
Finally applying Lemma 1 we deduce that dA must dominate Aﬁ,f (X(1))dt on {t :
X () = 0} and that (25) must be a submartingale. By our previous discussion since

this holds for every convex fe LS’ in fact (25) is a martingale and the inductive step
is complete. O

4 Some Lemmas

Lemma 2 Given t and € > 0 there exist ¢, ¢’ and ny such that

lwﬁfumm—&mmwm%ﬂ“}“
0

foralln > ngandx € R".

Proof Under PV, the process Z = X; — X; is a diffusion in natural scale with speed

measure m, given by (5). It can thus be represented as a time changed Brownian
motion:

Z(1) = B(1/),

where t” is the inverse of the increasing functional

1 [ ds
2 /0 1 + b2n=2 — Y (nB(s))

and B a standard Brownian motion starting from x; — x;. Consequently

ds
1+ b*n=2 — Yy (nB(s))

A'mmww@m

is a random variable with the same distribution as

Aumm—&wmwmﬁﬂws
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has under PY". Note that for all sufficiently large n,

1 1

S < forall z € R
2 S Tt =gy T F

whence 7' < 4 and

ds 4t

| e BN sy = | B

where fu(z) = 1 /nz,c/)(|z|)(l + b’n? — W(nz))_l. Now rewriting this integral
using the occupation time formula, and taking expectations we see that it is enough
to verify that

| sz

can be made arbitrarily small for all sufficiently large n ¢ sufficiently large and
¢’ sufficiently small. This is easily checked using the assumptions on i and in
particular using that thereisa § > 0 and a constant M < oo so that for all sufficiently
large n,

2

2 -2 =1
(1 +bn T — w(nz)) < EYC L

forz € (=6/n,8/n)

whilst
(14 b0 = y(n2))" < Mforz e R\ (=§/n.8/n).

|

Lemma 3 Let m = (1, m2) be an ordered partition of {1,2, ..., N} into two non-
empty parts, and define

U ={xeRY :x; > xforalli € m\,j € m3}.
Thenf € LN can be expressed as
f) =filxiii € m) + f2(x;1) € m2) forall x € Uy

for some fy € LM, f, e L™,

Proof By subtracting a linear function we can assume f € LS' . Now suppose that
a given x € Uy satisfies x; > 0 > x;foralli € m,j € m. Lety € RY have
components y; = x; fori € m; and y; = 0 otherwise. Likewise let z € R" have
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components z; = x; for i € m, and z; = 0. Then both y and z lie in the closure of the
cell that contains x, and by the linearity of f restricted to the closure of that cell,

J@) =) + /().

Consequently we define fi(x;;i € m1) = f(y) and f>2(xj;j € m2) = f>(2), extending
each linearly within cells so as to functions f; € L™ and f, € LI™!. O

Lemma 4 Suppose that B\(t) > By(t) > --- > By(t) are a system of coalescing
Brownian motions on R. Let Tx = inf{t > 0 : Bi(t) — By(t) = R}, and let r
denote B1(0) — Bn(0). Then there exists a constant C such that for all r and R with
0<r<R/2,

P(TR < 00 and there exists some i with B1(Tg) > B;(Tg) > BN(TR))
< C(r/R)’.

Proof Fori =2,3,...,N — 1, let A; be the event
TR < oo and Bl(TR) > B,'(TR) > BN(TR)

Since the event in question is the union of these events, it is enough to prove
the desired estimate holds for each A;. Projecting the three dimensional process
(Bl(t),Bi(t),BN(t)) onto the plane {x € R® : x; + x; + x3 = 0} we see A; can be
identified with the event that a two dimensional Brownian motion started at a point
satisfying y; = r exits the domain

VER*:0 <y <R |y| <y/V3}

via the boundary y; = R. By comparing with a wedge with a circular outer
boundary and interior angle 77/3 and solving the appropriate Dirichlet problem this
exit probability is easily seen to by bounded by C(r/R)>. O

5 Stochastic Flows of Kernels

Returning to the motivation coming from Gawedzki and Horvai it is natural to
interpret the results from this paper in terms of the stochastic flows. As remarked
in the introduction the consistent family of N point motions with generators GV
do not correspond to any stochastic flow of maps. However according to the theory
developed by Le Jan and Raimomd [9] they are associated with the more general
notion of a flow of kernels.

Let W = (W(t, x),t > 0,x € R) denote the centred Gaussian process
with covariance function ¥ (n(x; — x)) min(¢y, f;). Suppose By, Bs, ..., By are real
valued Brownian motions, independent of each other and W. Then a diffusion with
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generator GV can be obtained, at least in a formal sense, by solving the stochastic
differential equations

t

X,'(l‘) =x + / dW(S,X,'(S)) + 2B,'(l). (26)
0 n

The stochastic flow of kernels (KS,,, s < t) associated with family GN describes a
cloud of infinitesimal particles moving in this manner. It can be obtained by filtering
on W,

K(),t(xl,A) = P(X1 (l‘) S A|W) 27

These kernels have smooth densities which satisfy a stochastic partial
differential equation of advection-diffusion type. If v(¢,y) denotes the density
of ['v(0,x)Ko,(x, -)dx at y, then

t

19
v =000 = [ Lenawe + [ veaw e
o 0y 0
1 1 9%
+ E(bz+ 1) /0 a_yz(s’ y)ds, (28)

where W, (t,y) = 0W(¢,y)/dy. Simulations showing a realization of the density of
Ko.1(0, -) for two different sets of parameter values are shown in Fig. 1.

As n tends to infinity, the convergence of the N point motions suggests that
these flows of kernels should converge to the flow of kernels associated with a
consistent family of sticky Brownian motions. See, for example, Theorem 8 of
[7] for appropriate notions of convergence for flows of kernels. Flows of kernels
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Fig. 1 Simulated realizations of the density of the kernel Kj (0, -) associated with generators
GN'1. The parameters are a = 20, b = 0.375 in (a), and @ = 60, b = 0.125 in (b)
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associated with sticky Brownian motions were first considered by Le Jan and
Raimond [10]. For a general splitting rule, they were defined by Howitt and
Warren [5], and have subsequently been studied extensively in [12]. In general the
parameters of a consistent family of sticky Brownian motions can represented in
terms of a splitting measure v as

1
o(k: 1) = /0 (1 = )" v(dg) 29)

For the parameters 6(k : [) given by Theorem 1, the measure v is given by

q(1—¢q) dg
¢ (@1 (q)

where ¢ denotes the standard Gaussian density, and @ the corresponding distribu-
tion function. The right and left speeds of the flow are defined by

v(dg) = (30)

1 1
_ —1 _ _ —1
/3+—2/0 ¢v(dg) and f_ = 2/0(1 )~ v(dg) 31)

and with v given by (30) are both infinite. Thus according to the Theorem 2.7 of
[12], the support of the corresponding kernels is almost surely equal to R. However,
by Theorem 2.8 of [12], for any s < ¢ and x the measure Kj,(x, -) is purely atomic.
This seems consistent with the simulations which show the mass becoming more
concentrated as the parameters a and b increase and decrease respectively. It is less
evident from these simulations that, in the limit, the set of points carrying the mass
is dense.
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Infinitesimal Invariance for the Coupled KPZ
Equations

Tadahisa Funaki

Abstract This paper studies the infinitesimal invariance for R?-valued extension of
the Kardar-Parisi-Zhang (KPZ) equation at approximating level.

1 Introduction and Main Result

Once Marc Yor told me that he was interested in the Euclidean quantum field
theory at the very beginning of his academic carrier. My guess is that this gave
him a motivation to study stochastic processes and martingale problems in infinite-
dimensional spaces in [9], though it is not clearly stated. Hairer [8] has recently
developed the theory of regularity structures and succeeded to construct solutions
of ill-posed stochastic partial differential equations (SPDEs) including the dynamic
@4 model with d < 3 and the KPZ equation. The present paper is related to the KPZ
equation and deals with infinite-dimensional diffusion operators.

In [6], we studied the KPZ equation especially from a viewpoint of finding
its invariant measures. Since the KPZ equation is an ill-posed stochastic partial
differential equation, we need to introduce a regularization of the noise and, at
the same time, a renormalization for the nonlinear term in an appropriate manner
to find invariant measures. The equation studied there was scalar-valued, while
we treat R?-valued coupled equation in this paper. In [6], we first used the
lattice approximation and then passed to the continuum limit. In particular, the
infinitesimal invariance of the corresponding infinite-dimensional diffusion operator
was obtained. In this paper, we show this infinitesimal invariance without relying on
the lattice approximation, but by directly approaching to the continuum system. This
is done only for the regularized equation. In [6], due to the Cole-Hopf transform
and relying on a similar method for establishing Boltzmann-Gibbs principle, the
regularization of the noise was eventually removed. For our coupled equation, the
Cole-Hopf transform is not available in general so that the same method does not
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work. Our hope is that the methods of [8] or [7] would work in our situation too, but
we will not discuss this here.

We consider the following R?-valued extension of the KPZ equation for A(z, x) =
(h*(t,x))%_, onR:

1 1 .
h = Eaﬁha + Eqg;axhﬂaxm + W%(t,x), xeR, (1)

for1 < < d, where W(z,x) = (W(z, x))g=l is an R-valued space-time Gaussian
white noise. In particular, it has the correlation function

E[W* (6, ) WP (5, y)] = 8 8(x — »)8(1 — 5),

and (T éxy)lsa,ﬂ,ysd are given constants; see [3]. We use Einstein’s convention and
§%f denotes Kronecker’s §. From the form of the Eq. (1), the constants Fg‘y ought to
satisfy Fg‘y = Fy"k.

In this paper, we consider (1) only at approximating level; see (3) below. To
show the infinitesimal invariance for the KPZ approximating equation (3), we need
the additional condition on Fé)‘y:

a _ pa _ B
Fﬁy_ryﬂ_rya’ @)

forall o, B, y.

Remark 1.1 To discuss a random evolution of loops on a manifold, [5] considered
the SPDE (1) with x € S(= [0, 1] with periodic boundary condition), F/;‘y =
F/gy (), which express the Christoffel symbols on a manifold, and W(z, x) replaced
by a smooth noise.

We now introduce KPZ approximating equation. Let n € C5°(R) be a function

satisfying n(x) > 0,7(x) = n(—x) and fR nx)dx = 1. We set n°(x) = n(x/e)/e
for e > 0, n2(x) = 1 * n(x), and n5(x) = n2(x/e)/e. Note that n5(x) = n° * n°(x).
Define the smeared noise:

We(t,x) = (W (1,3))g (W®).n"(x—-)).

a=1 —
and consider the following R?-valued KPZ approximating equation for 7 =

he(t,x) = (h*°(t, x))g:l:

1 1 .
d,h* = Eaﬁha + 51“,;3;(8)511/3 A —ESPYY x4+ WE(1,x), x€eR, (3)

for1 < o < d, where

£ = /R 1)y (= 15(0)).
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Noting that the solution 4 of the SPDE (3) is smooth in x, we are concerned with the
associated tilt process 0,/.

Let v? be the distribution of d,(B * n°(x)) on € = C(R; R?), where B is the R?-
valued two-sided Brownian motion satisfying B(0) = 0. Note that v° is a probability
measure which is independent of the choice of the value of B(0). Then, the main
result of this paper is formulated in the following theorem; see Theorem 3.1 below
for more detailed statements.

Theorem 1.1 The probability measure v¢ on € is infinitesimally invariant for the
tilt process 0.h of the SPDE (3).

2 Generator and Associated Gaussian Random Measure

To state Theorem 1.1 more precisely, we introduce the (formal) generator of the
process h(t) determined by (3). Let Zy be the class of all tame functions @ on ¥,
that is, those of the form:

d)(h) :f((hv @l)v cee (hs (pn>)v h e (gv (4‘)

withn = 1,2,....f = f(z1,....22) € C2(R"), 91 ...,¢, € CP(R;RY), where
(ho) = Y, [z h*()e*(x)dx for ¢ = (qo“(x))izl. We define its functional
derivatives by

De®(x;h) 1=y 0.f((h. 1), ..., (h, )i (x), (5)
i=1

Diﬂ¢(-xlsx2; h) = Z aziazf'f((hv @l)v e (hs (le))(p:'x(xl)@jﬂ(-xZ)v (6)
ij=1

for 1 <o, B <d.Let Zyv be the class of all @ € Iy with ¢; satisfying fR gidx =
0,1 < i < n. This is a natural class of functions for tilt variables, since, under the
equivalence relation & ~ h + ¢ with some ¢ € R, it holds ®(h) = ®(h + c) if
@ € Yy v so that @ is a function on the quotient space € = € /~. For the function
® € Yy, though we write its variable by A, the height £ itself has no meaning.
In particular, if % is differentiable, @ € Zy v can be considered as a function of its
tlt b’ = dh: if @(W) = f((H, ¢1), ..., (W, @u)), then (I, @) = —(h,¢’) and ¢’
satisfies the condition fR ¢'dx = 0, which is the additional condition imposed to
® € Py.v with ¢ replaced by ¢’.
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For @ € Yy, define two operators £ and &7° by
1
2ot =53 [ D20t gt —v)duds
2 o R2

1
+ = / O2h* (x) Dy D (x; h)dx,
2 Jr

1
A P(h) = 3 /R Iy (0hP .17 — €°8°7) % nfy(x) Do P (x; h)dx.

Recall that we use Einstein’s convention. Then, .£* := £ + &/° is the (formal)
generator corresponding to the SPDE (3). In fact, by applying Itd’s formula and
denoting h() by h;, we have that

;D (h;) = (Do ®(x; hy), 0:17 (X))

1 . .
+ E(D§ﬂ¢>(x1,x2; he), WEe (2, x) )WEP (1, x2) ) o

and note that
AWE* (x)dWEP (x2) = 8% nf (x1 — xo)dt.

The limit as ¢ | 0 of v® for tilt variables (and therefore defined on ‘195) can be
identified with the R%-valued Gaussian random measure v on (R, Z(RR)) determined
from dB. More precisely saying, under v, R?-valued random variables {M(A) =
(M*(A))4_,;A € B(R)} are given and

1. {M%(-)}4_, are independent system.

2. M*(A) "2 N(0, |A]) for each a.

3.If {A; € ZBR)}_, are disjoint, then {M*(A;)}/_, are independent and
M®*(UL,A;) = Y i) M*(A;) holds a.s. for each a.

Such M(A) can be constructed from M((a, b]) := B(b) — B(a) in terms of the R9-
valued two sided Brownian motion {B(x); x € R} satisfying, for instance, B(0) = 0.

Recall that the multiple Wiener integral of order n = (ny,...,ny) € Zilw Zy =
{0,1,2,...}, with a kernel ¢, € i,z(R“), R" := R" x --- x R™_ that is ¢, =
(pn(x{, o ,x,ll1 U ;x‘li, o ,xﬁfd) S Lz(R") being symmetric in ny-variables for each

1 <« <d,is defined by

1
I(pn) = E/}Rn (pn(x{,...,x,lll;...;x‘f,...,xzd)

x dB'(x})---dB'(x,,) -+ dB (x{) ---dB(x; ).
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where n! = ny!---ngl. Set 4 = {I(gn) € L*(%€,v); ¢n € L2(R™)} for |n| > 1
and 74 = {consz}. Then, the well-known Wiener-Itd (Wiener chaos) expansion of
@ € = L*(¥.v) is given by

@ = I(pa) € P ., (7)

with some ¢y € R and g, € L*(R"), where I(¢o) = @0, and

1
”d)”§2(\,) = Z ”I((pn)'liZ(u) = Z E”@n”iZ(Rn) (8
n n .

holds because of the orthogonality and then by Itd isometry. The expansion (7)
identifies @ € L*(¢, v) with the element ¢ = {¢n}n € D, L2(R™) of the symmetric
Fock space. The reason to do this is that it gives an explicit representation of the
functional derivative D,: For each x € R, D, ®(x) has representation {Dg,@p(x)}n
where Dy oy (x;-) € 2 (R™%") with §* e Zﬁ_ defined by (6%)g = 8P is given by

Ll 1. .o o . LA
Daqon(x,xl,...,xnl,...,xl,...,xna_l,...,xl,...,xﬁd)
o o o o . LA
:——E 8w<pn(x1,... nl,...,xl,...,xi_l,x,xi,...,xna_l,...,xl,...,x;ld)
1. . o o . . d d
8x7<pn(xl,...,xnl,...,x,xl,...,xnu_l,...,xl,...,xnd . 9)

The factor - arises when we replace ] w1th 1)" and the second equality is
due to the symmetry of ¢,. The minus 51gn appears due to the integration by parts
{p,¥") = —{(¢’, ¥) for R-valued functions ¢ and .

We will denote n whose arth components n,, are given by m, and non-specified
components are all 0 by n(« : my). For example, n(« : 3) = (0,...,0,3,0,...,0)
with n, = 3 forasingle« andn(e : 2,8 : 1) = (0,...,0,2,0,...,0,1,0,...,0)
withng, = 2,ng = 1 fora # B.

3 Infinitesimal Invariance

We now prove the following theorem, a kind of integration by parts formula, due to
the Wiener-It6 expansion.
Theorem 3.1 Assume the condition (2) on T, é"y. Then, for every ¢ > 0 and ® <

Du v, which has kernels ¢n(q:3) € I:z(R3) N C(l) (RY), @n:2.6:1) € iz(R(z’l)) N Cé (R?)
and Qu(a:1.6:1,y:1) € L*RH)N Cé (R3) of the third order Wiener chaos determined by



42 T. Funaki
(7) for every different 1 < «, B,y < d, we have that

/,Q/S@(h)vg(dh) =0. (10)
Moreover,

/ﬁgdﬁ(h)vs(dh) =0. an
Proof Recalling that 9,4 = 9,(B * 1°) under v°, by 1t6’s formula, we have that

oo = [ = y)as ) [ =)
— lpﬂy(x) + gagﬂy’ (12)

where ¥#7 (x) = w&P7 (x) is a Wiener functional of second order given by

007 = [ e =B (B ), (13)

if B # y and

WhP (x) = / 0 (x — xD)ynf (x — x0)dBP (X )aBP (:F). (14)
RZ
Therefore, we have that
2 / A D(h)We(dh) = / _v(dB) / Iy, WP s 5 (x) Do P (x: B n°)dx
€ R
= / _v(dB) / rg P (x) @, (x)dx, (15)
€ R
where
Dy(x) =D (x) = Ang(x —y)D@(y; B * n°)dy.

Note that 7 € g1,y if B # y and WP € 4 p). Because of the
orthogonality in the Wiener-It6 expansion, to compute the integral in (15), we may
just pick up the J#g.1,,:1)-component (for B # y) and J%;(s:2)-component in the
Wiener-1t6 expansion of @, (x). Or, we may find the corresponding kernels of these
components, which are obtained in the following in five different cases separately.



Infinitesimal Invariance for the Coupled KPZ Equations 43

Case 1 (¢ = B = y): The kernel of J%;g:2)-component of D, @ (y; B * 1°), with
variables denoted by (x{,x5), is given by

/ Do@n(a:3) (v; 21, 25)0° (] — 200" (x5 — 23)dz{dz3,
R2
where, from (9),

Da@n(a:B) (-x; xllx s xg)

= — {0 @n(e:3) (.17, X5) + 022 Pn(a:3) (] X.x5) + Dz Pn(a:n) (6] . 15, )}
(16)

Case 2 (a # B = y): The kernel of the same as above, with variables denoted by
(x’lﬁ , xg), is given by

/2 Da@n(a:l,ﬁ:Z)(y; Zé{}v Zg)"lg(x? - Z}f)ﬂs(xg - Zg)dz?dZZﬁ’
R
where

Da‘ﬂn(a:l,ﬂsz) (x§x/137x/23) = _ax‘f(;on(a:l,ﬂsz) (x;x'f,xg)-

Case 3 (a = B # y): The kernel of J%p.1,,:1)-component of D, @ (y; B * n°), with
variables denoted by (xf ,x]), is given by

/ Daniarzyn 02212 (] =) (] —2)deq ]
R
where

Dy @n(a:2,y:1) (x: x}f,xil)

= —%{3X;19<Pn(a:2,y:1)(X, X)) + angpn(a:ly:l)(x}]gvX; X}
Case 4 (a = y # B): The kernel of the same as above is given by
| Dot s D 6 = o = ]
where

Dy @n(a2.:1) (x; x‘f, xil)

= —%{3)({%(0(:2,,3:1)()6, x{:x}f) + ax;(pn(a:Z,ﬂzl)(x}ll7X; x}f)}.
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Case 5 (a,y, p are all different): The kernel of the same as above is given by

/2 Da@n(a:l,ﬁ:l,y:l)(y; legv Z?)"IE(Xf - leg)ns(-xl —Z )dele ’
R
where

Da(pn(oc:l,ﬂ:l,y:l)(X;xllgyx)l/) = _ax‘f(pn(a:l,ﬂ:l,y:l)(X;xllg;x)l/)-

The goal is to show that the sum in the right hand side of (15) vanishes. Recalling
(14), the contribution from Case I to this sum is given by

rg / dx/3 Do @nie:3) (v: 21 2)15 (6 — )15 (x — 2)my (x — 23)dydzdz;
R R
_ Z / dxE|Dqy@n(a:3)(x + Ri;x + Ry, x + R3)]

1 d
=3 Z Iy, / dxE [;Wn(uﬁ)(x +Ri.x+ Ry, x+ R3)}}
- i

=0,

since @n(:3) € C(l) (R3), where R;, R, R3 are independent random variables with the
same distributions 75 (x)dx. For the third line, we have used (16) and the symmetry
of the distribution of (R}, R, R3) under permutations.

From (14), the contribution from Case 2 is given by

Zpﬁﬂ/dx/ Da@nart (i 21 )05 (x = )05 (x = 2 (x — 5)dydzy dz)
ot

— _ Z Fﬂﬁ / de[axtfgon(a;l,ﬂ;z)(x +Ri;x+ Ry, x+ R3)]
oy

= Z /dXE Y ¢n(p2.y) (6 + Ri.x + Rotx + R3)].
B#y

The last equality follows by rewriting « into y and noting the symmetry of the
distribution of (R, R,, R3). From (13), the contribution from Case 3 is given by

/ dx / D npenyiny (s 2 250 — s x — s (x — 2 dyd L]
ﬁ#y

:——Z /deaﬂ(pn(ﬂZy1)(X+R1,X+R2,X+R3)
B#y

+ 3Xg€0n(ﬁ:2,y:1)(x + Ri,x + Ry;x + R3)]
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From (13), the contribution from Case 4 is given by

Fﬂyy A dx /R‘ Dy(pn(ysz,ﬂ:l)(YQ Z)l/, Zf)”li(x - y)'li(x — 3 )772()5 - Zl)dydzllgdzl

-7 Z / de[ax{‘Pn(y:z,ﬂ:l)(x +Ri,x+Ry;x+R3)
ﬁ#y

+ 3x;<ﬂn(y:2,ﬂ:1)(x + Ri,x+ Ry;x + R3)]

Z /de3ﬂwn(ﬂzy1)(X+R1,X+R2,X+R3)
ﬁ#y

+ 3x/23</’n(5:2,y:1)(x + Ri,x+ Ry;x + R3)].

The last equality follows by interchanging the roles of 8 and y. Thus, since Fyﬁ =

Fﬁﬁ V the sum of contributions from Case 3 and Case 4 becomes

Z /de3ﬁ(pn(ﬂzy1)(X+R1,X+R2,X+R3)
B#y

+ 3x§<ﬂn(ﬂ:2,y:1)(x + Ri,x+ Ry;x + R3)].

Therefore, from the condition (2), we see that the sum of contributions from Case 2,
Case 3 and Case 4 becomes

Z /de(aﬁ+3/3+3V)(pn(ﬂzy1)(X+R1,X+R2,X+R3)]
B#y

d
= - Z Fﬁyﬁ / dxE |:_{(pn(/3:2,y:l)(x + Ry, x+Ry;x+ R3)}}
B#y R dx
= 07

since gn(g2,y:1) € Cp(R3).
Finally, from (13), the contribution from Case 5 is given by

*
) Fﬁ‘y/Rdx/w Datntoct pi1.yen) (20 205 (x — y)n5 (x — 2 )ns (x — 2} )dydz] dz,
Z Iy, /dXE ¢ @1 p:1y:1) (X + R X + Ro;x + Rs3)]

1 *
= —gz %F/gyAdXE[ax‘fgon(a:l,ﬂ:l,y:l)(x +Ri;x+ Ry;x + R3)]
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+ Faﬂy / dXE[axf(Pn(azl,ﬂzl,yzl)(x + Ri;x + Ry x + R3)]
R
+F5ya /RdXE[aX’l’(Pn(a:l,ﬂ:l,y:l)(x +Ri;x+ Rysx+ R3)]}

by interchanging the roles of o, 8 and y, where }_* means the sum over all different
a, B, y. Therefore, since F/gy = ny = Fﬂya hold from (2), the above sum becomes

1 * d

=—= E Iy, / dxE | —{@n(e:1,8:1,y:1) (X + Ri;x + Ro; x + R3)}
3 R dx

= O’

since @n(:1.p:1.:1) € CH(RY).
These prove (10). The other identity (11) follows from (10), since v? is reversible
for the tilt process d,h = d,4° of the R?-valued SPDE:

1 .
dh = Eaﬁh + Wi(t,x), x€R, )

which determines an Ornstein-Uhlenbeck process, and this shows that

| s onan =0

for all @ € Zy. The reversibility of v° is shown as follows: First, recall the well-
known fact that ¢, which is a centered Gaussian measure on ¢ with covariance

operator ( -9+ c)_l, is reversible for the SPDE with a mass ¢ > 0:
¢ 1 2pc € e i
3,h = EBXh — Eh + W(t,x), X € R,

see e.g. [4], Proposition 6.1. Therefore, the distribution u“* of B¢ * n° is reversible
for h® = h¢ x n°, where B¢ is distributed under u°. Thus, the distribution v*? of
d, (B¢ * 1) is reversible for the tilt process d,4“°. On the other hand, we easily see
that h“* satisfies the SPDE:

1 .
QhE = ~02hF — SHC + WA x), x € R
2 2
Letting ¢ | 0, since v and 9,h“° converge to v® and d,/4°, respectively, we see the

reversibility of v for the tilt process of the SPDE (17).
The proof of the theorem is completed.
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Remark 3.1

ey

(@)

The operators .Zf; and .2/° are symmetric and asymmetric with respect to v°,
respectively, that is,

/ WL Ddv* / O LEWdV”,

and
/W;zfsqbdvs = —/(D;zfsllfdvg.

Indeed, the asymmetry of <7* follows from (10) by noting that &7*(@V¥) =
VD 4+ Y.

If Echeverria’s result [2] can be extended in our setting and if the well-
posedness of the .Z°-martingale problem is shown (this is true at least on
the torus S instead of R), Theorem 3.1 proves that v is invariant under the
time evolution determined by the R?-valued KPZ approximating Eq. (3). The
result of [1] extends that of [2] to an infinite-dimensional setting, however the
condition assumed in [1] is rather strong and we cannot apply it in our setting.

Acknowledgements The author thanks Herbert Spohn for suggesting the problem discussed in
this paper. He also thanks Jeremy Quastel for helpful discussions and Michael Rockner for pointing
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Patterns in Random Walks and Brownian
Motion

Jim Pitman and Wenpin Tang

Abstract We ask if it is possible to find some particular continuous paths of unit
length in linear Brownian motion. Beginning with a discrete version of the problem,
we derive the asymptotics of the expected waiting time for several interesting
patterns. These suggest corresponding results on the existence/non-existence of
continuous paths embedded in Brownian motion. With further effort we are able
to prove some of these existence and non-existence results by various stochastic
analysis arguments. A list of open problems is presented.

AMS 2010 Mathematics Subject Classification: 60C05, 60G17, 60J65.

1 Introduction and Main Results

We are interested in the question of embedding some continuous-time stochastic
processes (Z,,0 < u < 1) into a Brownian path (B;;z > 0), without time-change or
scaling, just by a random translation of origin in spacetime. More precisely, we ask
the following:

Question 1 Given some distribution of a process Z with continuous paths, does
there exist a random time 7T such that (Br4+, — Br;0 < u < 1) has the same
distribution as (Z,,0 < u < 1)?

The question of whether external randomization is allowed to construct such a
random time 7, is of no importance here. In fact, we can simply ignore Brownian
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motion on [0, 1], and consider only random times 7 > 1. Then (B;0 < ¢t < 1)
provides an independent random element which is adequate for any randomization,
see e.g. Kallenberg [40, Theorem 6.10].

Note that a continuous-time process whose sample paths have different regu-
larity, e.g. fractional Brownian motion with Hurst parameter H # %, cannot be
embedded into Brownian motion. Given (B;; ¢t > 0) standard Brownian motion, we
define g, := sup{r < 1;B, = 0} the time of last exit from 0 before r = 1, and
dy = inf{tr > 1;B, = 0} the first hitting time of 0 after t+ = 1. The following

processes, derived from Brownian motion, are of special interest.

* Brownian bridge, which can be defined by
0 1
b, = ——By,:0<u<1]),

and its reflected counterpart (|b2[;0 < u < 1).
* Normalized Brownian excursion defined by

1
ey = ————|By, +uid,— |;O§u§1).
( m 81 (di—g1)

¢ Brownian meander defined as

1
my = —|B +u(l— |,O§u§l)
( JT—g g1tu(l—gr)

¢ Brownian co-meander defined as

1
my .= ———|Bg—u@;—n]:0<u<1]}].
(= = Bar-wac )

e The three-dimensional Bessel process

(R = VB2 + @r s @0 su=).

where (B); ¢ > 0) and (B;/; u > 0) are two independent copies of (B; 1 > 0).
¢ The first passage bridge through level A # 0, defined by

(Fj’b’;O <u<l 9 (B.;0 <u<1) conditionedon 1 =1,

where 7 := inf{t > 0; B, = A} is the first time at which Brownian motion hits
A # 0. Note that for A < 0, (F*0 < u < 1) @ (=F*br:0 < u < 1), and

(F ?_b; + |A]; 0 < u < 1) is distributed as three dimensional Bessel bridge ending

at [A| > 0, see e.g. Biane and Yor [10].
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¢ The Vervaat transform of Brownian motion, defined as

V, = Biyy — B forOfufl—t;Ofufl ’
B._14u+B —B;forl—7<u<l
where t := argming<,<1B;, and the Vervaat transform of Brownian bridge with
endpoint A € R

b, —b* for0<u<l-—7
VA,:: T+u T -7 = 0<u<l]y,
(" {b3_1+u+x—b§for1—z5u51 ==

where (b*;0 < u < 1) is Brownian bridge ending at A € R and 7 :=

argming<,<1b}. Tt was proved by Vervaat [85] that (V)0 < u < 1) @

(,;0 < u < 1).ForA <O, (VLW;O < u < 1) has the same distribution as
Vi, + A0 <u<1).

1—u

The Brownian bridge, meander, excursion and the three-dimensional Bessel
process are well-known. The definition of the co-meander is found in Yen and
Yor [91, Chap.7]. The first passage bridge is studied by Bertoin et al. [8]. The
Vervaat transform of Brownian bridges and of Brownian motion are extensively
discussed in Lupu et al. [56]. According to the above definitions, the distributions of
the Brownian bridge, excursion and (co-)meander can all be achieved in Brownian
motion provided some Brownian scaling operation is allowed. Note that the
distributions of all these processes are singular with respect to Wiener measure. So
itis a non-trivial question whether copies of them can be found in Brownian motion
just by a shift of origin in spacetime. Otherwise, for a process (Z;,0 < ¢t < 1) whose
distribution is absolutely continuous with respect to that of (B;,0 < t < 1), for
instance the Brownian motion with drift Z, := 9t + B, for a fixed ¢}, the distribution
of Z can be easily obtained as that of (B4, — B7,0 < t < 1) for a suitable
stopping time T 4 1 by Rost’s filling scheme. We refer readers to Sect.3.5 for
further development.

The question raised here has some affinity to the question of embedding a given
one-dimensional distribution as the distribution of By for a random time 7. This
Skorokhod embedding problem traces back to Skorokhod [80] and Dubins [24]-
who found integrable stopping times 7' such that the distribution of By coincides
with any prescribed one with zero mean and finite second moment. Monroe [64, 65]
considered embedding of a continuous-time process into Brownian motion, and
showed that every semi-martingale is a time-changed Brownian motion. Rost [76]
studied the problem of embedding a one-dimensional distribution in a Markov
process with randomized stopping times. We refer readers to the excellent survey
of Obloj [69] and references therein. Let X, := (B4, — B;0 <u < 1) fort > 0 be
the moving-window process associated to Brownian motion. In Question 1, we are
concerned with the possibility of embedding a given distribution on C[0, 1] as that
of X7 for some random time 7.
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Let us present the main results of the paper. We start with a list of continuous-
time processes that cannot be embedded into Brownian motion by a shift of origin
in spacetime.

Theorem 1 (Impossibility of Embedding of Normalized Excursion, Reflected
Bridge, Vervaat Transform of Brownian Motion, First Passage Bridge and
Vervaat Bridge) For each of the following five processes Z := (Z,;0 < u < 1),
there is no random time T such that (Br+, — Br;0 < u < 1) has the same
distribution as Z:

the normalized Brownian excursion Z = (e,;0 < u < 1);

the reflected Brownian bridge Z = (|b°|;0 < u < 1);

the Vervaat transform of Brownian motionZ = (V,;0 <u < 1);

the first passage bridge through level A # 0, Z = (Fff””; 0<u<ly

the Vervaat transform of Brownian bridge with endpoint A € R, Z:(V,f; 0<
u<1).

Lk L~

Note that in Theorem 1(4), (5), it suffices to consider the case of A < 0 by time-
reversal. As we will see later in Theorem 4, Theorem 1 is an immediate consequence
of the fact that typical paths of these processes cannot be found in Brownian motion.
The next theorem shows the possibility of embedding into Brownian motion some
continuous-time processes whose distributions are singular with respect to Wiener
measure.

Theorem 2 (Embeddings of Meander, Co-meander and 3-d Bessel Process) For
each of the following three processes Z := (Z,,0 < u < 1) there is some random
time T such that (Br+, — Br;0 < u < 1) has the same distribution as Z:

1. the meander Z = (m,;0 <u < 1).
2. the co-meander Z = (m,;0 <u < 1).
3. the three-dimensional Bessel process Z = (R,;0 < u < 1).

The problem of embedding Brownian bridge »° into Brownian motion is treated
in a subsequent work of Pitman and Tang [73]. Since the proof relies heavily on
Palm theory of stationary random measures, we prefer not to include it in the current
work.

Theorem 3 ([73]) There exists a random time T > 0 such that (Br4+, — Br;0 <
u < 1) has the same distribution as (bg; 0<u<l).

In Question 1, we seek to embed a particular continuous-time process Z of unit
length into a Brownian path. The distribution of X resides in the infinite-dimensional
space Cy[0, 1] of continuous paths (w(¢);0 < r < 1) starting from w(0) = 0. So
a closely related problem is whether a given subset of Cy[0, 1] is hit by the path-
valued moving-window process X; := (B;+, — B;;0 < u < 1) indexed by > 0. We
formulate this problem as follows.

Question 2 Given a Borel measurable subset S C Cy[0, 1], can we find a random
time 7 such that X7 := (Br4+, — Br;0 < u < 1) € S with probability one?
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Question 2 involves scanning for patterns in a continuous-time process. By
the general theory of stochastic processes, assuming that the underlying Brownian
motion B is defined on a complete probability space, {37 > 0 such that (Byy, —
B7;0 < u < 1) € S} is measurable. See e.g. Dellacherie [20, T32, Chap. I], Meyer
and Dellacherie [21, Sect. 44, Chap. III], and Bass [2, 3]. Assume that

P(3T > 0 such that (By4+, —Br;0 <u<1)eS8)>0.
Then there exists some fixed M > 0 and p > 0 such that
PAT:0<T <Mand (Br+,—Br;0<u<1)eS)=p>0.

We start the process afresh at M + 1, and then also

PAT:M+1<T<2M+1land Br4,—Br;0<u<1)eS) =p>0.
By repeating the above procedure, we obtain a sequence of i.i.d. Bernoulli(p)
random variables. Therefore, the probability that a given measurable set S C Co[0, 1]
is hit by the path-valued process generated by Brownian motion is either 0 or 1:

P[3T > 0 such that (By4+, —Br;0 <u<1)e S| =0orl. @))]

Using various stochastic analysis tools, we are able to show that

Theorem 4 (Impossibility of Embedding of Excursion, Reflected Bridge, Ver-
vaat Transform of Brownian Motion, First Passage Bridge and Vervaat Bridge
Paths) For each of the following five sets of paths S, almost surely, there is no
random time T > 0 such that (Br4+, — Br;0 <u <1) € §:

1. the set of excursion paths, which first return to 0 at time 1,
S=E&:={we0,1];w() >w(l) =0for0 <t <1};
2. the set of reflected bridge paths,
S =RBR? := {w e G0, 1];w(r) = w(l) =0for0 <1< 1};

3. the set of paths of Vervaat transform of Brownian motion with a floating negative
endpoint,

S=VB" :={w e (0, 1];w(r) > w(l) for 0 <t < 1 and inf{t > 0;w(r) < 0} > 0};
4. the set of first passage bridge paths at fixed level ). < 0,

S =FP" = {weCl0,1;w() >wl)=Afor0 <1< 1}
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5. the set of Vervaat bridge paths ending at fixed level A < 0,
S = VB :={we FP*inf{r > 0;w(t) < 0} > 0} = {w € VB ;w(l) = A}.

Observe that for each A < 0, VB is a subset of VB~ and FP*. Then
Theorem 4(5) follows immediately from Theorem 4(3) or (4). As we will see in
Sect. 3.1, Theorem 4(5) is also reminiscent of Theorem 4(1) in the proof.

It is obvious that for the following two sets of paths S, almost surely, there is a
random time 7 > 0 such that (B4, — B7;0 < u < 1) € S almost surely:

* the set of positive paths,
S=M:={we0,1];w() >0for0 <t <1};
« the set of bridge paths, which ends at A € R,
S = BR* := {w € G0, 1]; w(1) = A}.

The case of positive paths is easily treated by excursion theory, as discussed in
Sect. 3.5. Bridge paths are obtained by simply taking 7 := inf{r > 0; B,+; = B, +
A}, see Pitman and Tang [73] for related discussion. In both cases, T+ 1 is a stopping
time relative to the Brownian filtration. For a general measurable S C Cy[0, 1], it is
easily shown that if there is a random time 7 such that (By4+, —Br;0 <u <1) e S
almost surely, then for each € > 0 this can be achieved by a random time 7" such
that 7 4 1 4 € is a stopping time relative to the Brownian filtration.

In the current work, we restrict ourselves to continuous paths in linear Brownian
motion. However, the problem is also worth considering in the multi-dimensional
case, as discussed briefly in Sect. 4.

At first glance, neither Question 1 nor Question 2 seems to be tractable. To gain
some intuition, we start by studying the analogous problem in the random walk
setting. We deal with simple symmetric random walks SW(n) of length n with
increments £1 starting at 0. A typical question is how long it would take, in a
random walk, to observe a pattern in a collection of patterns of length n satisfying
some common properties. More precisely,

Question 3 Given for each n € N a collection A" of patterns of length L(A"), what
is the asymptotics of the expected waiting time ET(A") until some element of A"
is observed in a random walk?

We are not aware of any previous study on pattern problems in which some
natural definition of the collection of patterns is made for each n € N. Nevertheless,
this question fits into the general theory of runs and patterns in a sequence of discrete
trials. This theory dates back to work in 1940s by Wald and Wolfowitz [87] and
Mood [66]. Since then, the subject has become important in various areas of science,
including industrial engineering, biology, economics and statistics. In the 1960s,
Feller [29] treated the problem probabilistically by identifying the occurrence of a



Patterns in Random Walks and Brownian Motion 55

single pattern as a renewal event. By the generating function method, the law of the
occurrence times of a single pattern is entirely characterized. More advanced study,
of the occurrence of patterns in a collection, developed in 1980s by two different
methods. Guibas and Odlyzko [37], and Breen et al. [12] followed the steps of
Feller [29] by studying the generating functions in pattern-overlapping regimes.
An alternative approach was adopted by Li [55], and Gerber and Li [34] using
martingale arguments. We also refer readers to the book of Fu and Lou [32] for
the Markov chain embedding approach for multi-state trials.

Techniques from the theory of patterns in i.i.d. sequences provide general
strategies to Question 3. Here we focus on some special cases where the asymptotics
of the expected waiting time is computable. As we will see later, these asymptotics
help us predict the existence or non-existence of some particular paths in Brownian
motion. The following result answers Question 3 in some particular cases.

Theorem 5 Let T(A") be the waiting time until some pattern in A" appears in the
simple random walk. Then

1. for the set of discrete positive excursions of length 2n, whose first return to 0
occurs at time 2n,

EM = {w e SW(Q2n);w(i) > 0for1 <i<2n—1andw?n) =0},
we have
ET(E¥) ~ 4y/mn’; &)
2. for the set of positive walks of length 2n + 1,
ML= e SWRn + 1);w(i) > 0for 1 <i <2n+ 1},
we have
ET(M>t) ~ 4n; 3)
3. for the set of discrete bridges of length n, which end at A, for some A € R,
where A, := [A/n] if [A/n] and n have the same parity, and A, := [A/n] + 1
otherwise,
BR*" := {w € SW(n): w(n) = A,},
we have

chpn < ET(BR*") < Crn  for some clyry and Clyr > 0; 4)
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4. for the set of negative first passage walks of length n, ending at A, with A < 0,
FP*" = {we SWhn);w(i) > w(n) = A, for0 <i<n-—1},

we have

T /\2 n 4 12 5
ﬁexp 5 n <ET(FP*") < XeXp 5 n4. (5)

Now we explain how the asymptotics in Theorem 5 suggest answers to Ques-
tion 1 and Question 2 in some cases. Formula (2) tells that it would take on average
n > n steps to observe an excursion in a simple random walk. In view of the
usual scaling of random walks to converge to Brownian motion, the time scale
appears to be too large. Thus we should not expect to find the excursion paths £
in Brownian motion. However, in (3) and (4), the typical waiting time to observe
a positive walk or a bridge has the same order n involved in the time scaling for
convergence in distribution to Brownian motion. So we can anticipate to observe
the positive paths M and the bridge paths BR* in Brownian motion. Finally in (5),
there is an exponent gap in evaluating the expected waiting time for first passage
walks ending at A, ~ [A,/n] with A < 0. In this case, we do not know whether
it would take asymptotically # steps or much longer to first observe such patterns.
This prevents us from predicting the existence of the first passage bridge paths F P
in Brownian motion.

The scaling arguments used in the last paragraph are quite intuitive but not
rigorous since we are not aware of any theory which would justify the existence
or non-existence of continuous paths in Brownian motion by taking limits from the
discrete setting.

Organization of the Paper The rest of the paper is organized as follows.

» Section 2 treats the asymptotic behavior of the expected waiting time for discrete
patterns. There Theorem 5 is proved.

» Section 3 is devoted to the analysis of continuous paths/processes in Brownian
motion. Proofs of Theorems 2 and 4 are provided.

» Section 4 discusses the potential theory of continuous paths in Brownian motion.

A selection of open problems is presented in Sects. 2.5 and 4.

2 Expected Waiting Time for Discrete Patterns

Consider the expected waiting time for some collection of patterns

An c {an’M2n+l’BRk,n"/—_ka,n}
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as defined in the introduction, except that we now encode a simple walk with m steps
by its sequence of increments, with each increment a +=1. We call such an increment
sequence a pattern of length m. For each of these collections A", all patterns in the
collection have a common length, say L(A"). We are interested in the asymptotic
behavior of ET(A") as L(A") — oo.

We start by recalling the general strategy to compute the expected waiting
time for discrete patterns in a simple random walk. From now on, let A" :=
AT, -+ LA} 4u ), Where A7 is a sequence of signs £1 for 1 <i < #A". That is,

A} = Al Al an,  Where Af = £1 for I <k < L(A").

Let T(A?) be the waiting time until the end of the first occurrence of A?, and let
T(A") be the waiting time until the first of the patterns in 4" is observed. So T(A")
is the minimum of the T(A}) over 1 <i < #A".

Define the matching matrix M(A"), which accounts for the overlapping phe-
nomenon among patterns within the collection .A”". The coefficients are given by

L(A™)—1 noAn
Gl(Ai,A-)
M(A"); = § Tf for 1 <ij <#A", (6)

=0

where €,(A}, A7) is defined for A} = Ajj ---Aj; .y and A7 = A}, -~ AY 4, as

= A"

I ifA =45 LA (7)

el(Af’,Aj’»‘) — 140" ”f‘:’lL(.A”)—l
0 otherwise,

for 0 <! < L(A")— 1. Note that in general for i # j, M(A"); # M(A"); and hence

the matching matrix M(A") is not necessarily symmetric. The following result,

which can be read from Breen et al. [12] is the main tool to study the expected

waiting time for the collection of patterns.

Theorem 6 ([12])

1. The matching matrix M(A") is invertible and the expected waiting times for
patterns in A" := {A,--- A} 1.} are given by

1 1 T_ 1 L .
(ET(A’I’)"”’ET(AZA”)) = o MAY T (L D @®)

2. The expected waiting time till one of the patterns in A" is observed is given by
#A"

: = ; = i my—=le1 ... T
ET(A") ; ET(A}) 2n(1’ S DOMAY) (A, D) 9)
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In Sect. 2.1, we apply the previous theorem to obtain the expected waiting time
for discrete excursions £, i.e. (1) of Theorem 5. The same problem for positive
walks M2 +! bridge paths BR*?" and first passage walks FP*" through A, ~
A/, i.e. (2)—(4) of Theorem 5, is studied in Sects. 2.2-2.4. Finally, we discuss the
problem of the exponent gap for some discrete patterns in Sect. 2.5.

2.1 Expected Waiting Time for Discrete Excursions

For n € N, the number of discrete excursions of length 2n is equal to the n — 1th
Catalan number, see e.g. Stanley [82, Exercise 6.19 (i)]. That is,

1(2n—-2 1 3
g — " ~ 2Py (10)
n\n—1 4w

Note that discrete excursions never overlap since the starting point and the
endpoint are the only two minima. We have then €(E7, E;’) =§forl <ij< #HEM
by (7). Thus, the matching matrix defined as in (6) for discrete excursions £ 21 has
the simple form

M(E™) = Ly (#E™ x #£ identity matrix).

According to Theorem 6,

2n

e 4y/mn3, (11)

V1 <i<#&™ ET(E') =2*" and ET(E") =

where #£2" is given as in (10). This is (2). O

2.2 Expected Waiting Time for Positive Walks

Let n € N. It is well-known that the number of non-negative walks of length 2n + 1
is (2:), see e.g. Larbarbe and Marckert [52] and Leeuwen [84] for modern proofs.
Thus the number of positive walks of length 2n + 1 is given by

2n 1 1
M = ~—=2"n"1, 12
i R~ (12)
Note that a positive walk of length 2n + 1 is uniquely determined by

* its first 2n steps, which is a positive walk of length 2n;
* its last step, which can be either 41 or —1.
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As a consequence,

1 1 |
HM? = M T~ 22y (13)
2 J

Now consider the matching matrix M(M?'+1) defined as in (6) for positive walks
ML M(M?H1Y s no longer diagonal since there are overlaps among positive
walks. The following lemma presents the particular structure of this matrix.

Lemma 1 M(M?*'Y) is a multiple of some right stochastic matrix (whose row
sums are equal to 1). The multiplicity is

I RMY) 2
1+ =2~ (14)
L R

Proof Let 1 < i < #M?'*! and consider the sum of the ith row

# A2 #M2FL 2y 2n+1 2n+1
€1(M; , M: )
Z M(M2n+l)ij — Z Z%
!
j=1 j=1 =0 2
m 1#M2u+1
LTS g o
=0 =1

where for 0 < [ < 2n and Miz"*'l,l\/lj-z"'H e M2+l 61(M3"+1,A412"+1) is defined as
in (7). Note that eo(M;" ™", M}"*") = 1 if and only if i = j. Thus,

#M2n+l
Z GO(M?"H,IWJ»Z"H) =1. (16)

j=1
In addition, for 1 <[ < 2n,

#MZIH-I
Z € Mt'2n+l’Mz'2n+l)
Jj=1
_ 2n+1 2n+1. 20+l _ a2n+l In+1  _ ap2n+l1
= #{M; eM M =M My L = ML
. n+1  _ ag2n+1 2n+1 _ ag2n+l AR .
Note that given M;] = Mj1+1 s Mg = sz,H_l, which implies that

Mflﬂj_'l L. Mj22nn_:-ll is a positive walk of length 2n — I + 1, we have

sz’H‘1 e M¥H! e M].zl’”'1 jzan is a positive walk of length .
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Therefore, for 1 <[ < 2n,

#MZIH-I
o et M = k(M) (17)

Jj=1

In view of (15), (16) and (17), we obtain for all 1 < i < #M?' 7! the sum of ith
row of M(M?'1) is given by (14). Furthermore, by (12) and (13), we know that
k(M) ~ ﬁle_% as [ — oo, which yields the asymptotics Ji;\/ﬁ |

Now by Theorem 6(1), M(M?>*+1) is invertible and the inverse M(M?>'T1)~1 is
as well the multiple of some right stochastic matrix. The multiplicity is

ol k(M’))_l JT
1+ ~ YT
(1+280) -

Then using (9), we obtain

22n+1
ET(M* 1) = — ~ 4n. (18)
(1 Y] M )) A2+

This is (3). O

2.3 Expected Waiting Time for Bridge Paths

In this part, we deal with the expected waiting time for the set of discrete bridges.
In order to simplify the notations, we focus on the set of bridges of length 2n which
end at A = 0, that is BR®?". Note that the result in the general case for BRM",
where A € R, can be derived in a similar way. Using Theorem 6, we prove a weaker
version of (4): there exist Z’%R and C%R > 0 such that

&pn? < ET(BR") < Chrn. (19)

Compared to (4), there is an exponent gap in (19) and the lower bound is not optimal.
Nevertheless, the lower bound of (4) follows a soft argument by scaling limit,
Proposition 1. We defer the discussion to Sect. 2.5. It is standard that the number
of discrete bridges of length 2n is

2n 1 1
#BRO = ~—2"p"2, 20
()~ Lo o
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Denote BR%?" := {BR?,.--, BR;ZRo,zn} and M(BR%*") the matching matrix

of BR"?". We first establish the LHS estimate of (19). According to (8), we have

T 0.2n
1 )) _ #BRY" o

ET(BRY")’ " ET(BRZ, .., 221

(1,---, HM(BR™*) (

Note that the matching matrix M (BR**") is non-negative with diagonal elements
M(BR""); > €o(BR}",BR}") = 1,

for 1 <i < #BR"?". As a direct consequence, the column sums of M (BRO’Z”) is
larger or equal to 1. Then by (9) and (21),

2n

R0 VT

ET(BR%*") >

where #8R%?" is defined as in (20). Take then E%R = /7.
Now we establish the RHS estimate of (19). In view of (21), it suffices to work

out an upper bound for the column sums of M(BR*?"). Similarly as in (15), for
1 <j < #BR">,

#BRO2" 2n—1 | #BRO™"
> MER =1+ 5 > alBRBRY) @
i=1 =1 i=1
and
H#BRO2

> «(BR?".BR")
i=1

= #{BR" € BR"™:BR} = BR[",,.--- . BR;"_, = BR.)"}

in—l —

n—I
= #{discrete bridges of length / which end at Z BRJ%Q’}
k=1

! l
= <z+22=’1 BR};) < ([1]), (23)
-2 2

where the last inequality is due to the fact that (]Z() < ([1]1/2) for0 < k < 1. By (22)

and (23), the column sums of M(BR"*") are bounded from above by

2n—1
1(1 4
1+y ~ ——n?.
=0 21([%]) nn
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Again by (9) and (21),

4n’/ T

R

IET(BRO’Z") < 22n

Hence we take C,, = 4.0

2.4 Expected Waiting Time for First Passage Walks

We consider the expected waiting time for first passage walks through A, ~ A/n
for A < 0. Following Feller [29, Theorem 2, Chap. II1.7], the number of patterns in

FPM s
#]_-PA,n_ﬂ ) L dex _A_z 32" -1 (24)
=\t PAT2 ) V="
3

For FP*" := {FP!, ... [FP" } and M(FP*") the matching matrix for

#FPIn
FP*" we have, by (8), that
1 1 "owEpie
(1’... s I)M(f’])/x,n) Lo, — . (25)

The LHS bound of (5) can be derived in a similar way as in Sect. 2.3.
2" T A2
~ . J=—exp|—|n,
#FPH" 222 P\ 2

where #7P*" is defined as in (24). We get the lower bound of (5).
For the upper bound of (5), we aim to obtain an upper bound for the column sums
of M(FP*"). Note that for 1 < j < kAf

ET(FP*") >

P

#FPphe n—1 . #FPp*"

3 M(]:pks”)ijzl-pZ% > a(FPi. FP) (26)

i=1 =1 i=1
and

#FPAa

Y. a(FPLFP)

i=1

= #{FP? S ]:’]))»,”;FP:ll = FP;?I'H’”' ’FPn — FP;ln}

in—l —
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Observe that {FP! € FP*";FP} = FP}, .-~ ,FP}_, = FPl} # @ if and
only if Y| FP% < 0 (otherwise Y \Z\ FP4 = Y "i_ FPl = A, — Y FP) <
An, which implies FP} ¢ FP*™). Then given FP} = FP},,, -+ ,FP,_, = FP},
and Y _, FP <0,

FP} € FP*"
!
&= FP,_,, -+ FP}, is afirst passage walk of length / through Z FPy < 0.
k=1

Therefore, for1 </ <n—1land1 <j < kxfpn,

#FPI | St FP.| l

_ k=1 jk

> «(FP}.FP}) = I e <z+z’k_1F ;)-
2

i=1

27)

From the above discussion, it is easy to see for 1 <j < #F P* -

#F PN #F PN

> MFPM; < Y MEFPH e

i=1 i=1

where FP;.’* is defined as follows: FP;.’*k =—1ifl <k<A,—-1;A,—1<k<n-—1
and k — A, is odd; k = n. Otherwise‘FP]’.‘*k =1.

—6 1 1 1 1 1 1 1 1 L

0 5 10 15 20 25 30 35 40 45 650

Fig. 1 Extreme patterns FP}.
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The rest of this part is devoted to estimating Zfzflpm M(FP* ™). By (26) and
27,

#F PN

> M(FPM")y

i=1
Mul_ n—1 n—1
I Ml=2( 1
+ l 21 (1 . |+1) + Z N (1—A5|+2)

=2,
[—|A,| odd I—|A,| even

l 8A
<24 || Z 211([ ]) —n

=[]

i

Thus, the column sums of M(FP*") are bounded from above by £/ %n% By (9)
and (25),

mm

]ET(]_-sz,n) < \/ 8A/7'”’lZ \/7exp (AZ)

C#FPA

This is the upper bound of (5). OI

2.5 Exponent Gaps for BR*" and FP*"

It can be inferred from (19) (resp. (5)) that the expected waiting time for BRM"
where A € R (resp. FP*" where A < 0) is bounded from below by order n? (resp.
n) and from above by order n (resp. n%). The exponent gap in the estimates of first
passage walks F’ P is frustrating, since we do not know whether the waiting time
is exactly of order n, or is of order >> n. This prevents the prediction of the existence
of first passage bridge patterns F P* in Brownian motion.

From (9), we see that the most precise way to compute ET(BR*") and
ET(FP*") consists in evaluating the sum of all entries in the inverse matching
matrices M(BR*")~! and M(FP*")~!. But the task is difficult since the structures
of M(BR*") and M(FP*") are more complex than the structures of M(£2") and
M(M?>*1). We do not understand well the exact form of the inverse matrices
M(BR*") ™! and M(FP*")~1.

The technique used in Sects. 2.3 and 2.4 is to bound the column sums of the
matching matrix M(BR*") (resp. M(FP*")). More precisely, we have proved that

O(1) < column sums of M(BR*") < O(n%) for each fixed A € R; (28)

O(1) < column sums of M(FP*") < (’)(n%) for each fixed A < 0. (29)
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For the bridge pattern BR%?", the LHS bound of (28) is obtained by any
excursion path of length 2n, while the RHS bound of (28) is achieved by the
sawtooth path with consecutive +1 increments. In the first passage pattern F prn
where A < 0, the LHS bound of (29) is achieved by some excursion-like path, which
starts with an excursion and goes linearly to A ./n < 0 at the end. The RHS bound
of (29) is given by the extreme pattern defined in Sect.2.4, see Fig. 1. However,
the above estimations are not accurate, since there are only few columns in BRM"
which sum up either to O(1) or to O(n% ), and few columns of FP*" which sum up
either to O(1) or to (’)(n%).

Open Problem 1

1. Determine the exact asymptotics for ET(BR*") where A € R, as n — oo.
2. Determine the exact asymptotics for ET(FP*") where A < 0, as n — o0o.

As we prove below, for A € R, ET(BR*") < n by a scaling limit argument.
Nevertheless, to obtain this result only by discrete analysis would be of independent
interest. Table 1 provides the simulations of the expected waiting time ET(FP~'")
for some large n.

ET(FP?)
ET(FP)
n 100 200 500 1000 2000 5000 10,000
ET(FP™,) | 179.805 | 358.249 | 893.041 |1800.002 |3682.022 |8549.390 | 12231.412
Estimated ¢ 0.9945 | 0.9968 1.0112 1.0375 1.0205 1.0335

Table 1 Estimation of ¢ by log / log(:',—f), where n;, is the next to n; in the table

The result suggests that ET(FP~"") be linear, but possibly with some log-
correction. Yuval Peres made the following conjecture:

Conjecture 1 (Peres (personal communications)) For A < 0, there exist c)}p and
C%p > 0 such that

pnlnn < ET(FP*") < Chpnlnn. (30)

This is consistent with Theorem 4(4), that we cannot find a first passage bridge with
fixed negative endpoint in Brownian motion.

Now let us focus on the lower bound (4) of expected waiting time for bridge
pattern BR’. For n € 2N, we run a simple random walk (RWj)en until the first
level bridge of length n appears. That is, we consider

(RWF,,+I< — RWFn)OkaVl’ where F,, := inf{k > 0; RWiyn = RWk}. (31
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For simplicity, let RW; for non-integer k be defined by the usual linear interpolation
of a simple random walk. For background on the weak convergence in C[0, 1], we
refer readers to Billingsley [11, Chap. 2].

Proposition 1 The process

RWF,,-I—nu _RWF,, : 0<u<1
Vn T

converges weakly in C[0, 1] to the bridge-like process
(BF+u—Br;0 <u<1), whereF :=inf{t > 0;B,4+; — B, = 0}. (32)

The process (S; := B;+1—By;; t > 0) is a stationary Gaussian process, first studied
by Slepian [81] and Shepp [79]. The following result, which can be found in Pitman
and Tang [73, Lemma 2.3], is needed for the proof of Proposition 1.

Lemma 2 ([71, 78]) For each fixed t > 0, the distribution of (S,;t <u <t+1)is
mutually absolutely continuous with respect to the distribution of

By = V2(E+B)it<u<t+1), (33)

where & ~ N(0,1). In particular, the distribution of the Slepian zero set restricted
to[t,t+1], ie. {u € [t,t+1]; S, = 0} is mutually absolutely continuous with respect
to that of {u € [t,t + 1];& 4+ B, = 0}, the zero set of Brownian motion starting at

&€ ~N(0,1).

Proof of Proposition 1 Let PV be Wiener measure on C[0, c0). Let}P’S (resp. ]P’W)
be the distribution of the Slepian process S (resp. the distribution of B defined as in
(33)). We claim that

F :=inf{t > 0; w41 = wy},
is a functional of the coordinate process w = {w;t > 0} € C[0,00) that is
continuous PW a.s. Note that the distribution of (X := wig1 — wyst > 0) under PW
is the same as that of (w;; ¢ > 0) under PS. In addition, x € C[0, o0) is a functional
of w € C[0, o0) that is continuous PW a.s. By composition, it is equivalent to show
that
F' :=inf{t > 0;w, = 0},

is a functional of w € C[0, co) that is continuous PS a.s. Consider the set

Z :={w € C[0, 00); F" is not continuous at w} = UpeqZ,,
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where Z, := {w € C[0,00);F’ € [p,p + 1] and F’ is not continuous at w}. It is
obvious that PY(Z) = 0 and thus PV(Z,) = 0 for all p > 0. By Lemma 2, PS is
locally absolutely continuous relative to PV, which implies that PS (Z,) = Oforall

p > 0. As a countable union of null events, PS(Z) = 0, and the claim is proved.
Thus, the mapping

Er C[0,00) E} (W;;l‘ > 0) — (WF+M —wp0<u< 1) € C[O, 1]
is continuous PW a.s. According to Donsker’s theorem [23], see e.g. Billingsley

[11, Sect. 10] or Kallenberg [40, Chap. 16], the linearly interpolated simple random
walks

RWy,
(%;t > 0) converges weakly in C[0, 1] to (B; ¢ > 0).
n

So by the continuous mapping theorem, see e.g. Billingsley [11, Theorem 5.1],

= RWini o
Ero NG ;1> 0] converges weakly to Zr o (By;t > 0). O

Note that T(BR*") = F, + n. Following the above analysis, we know that
T(BR*")/n converges weakly to F + 1, where T(BR’") is the waiting time until
an element of BR*" occurs in a simple random walk and F is the random time
defined as in (32). As a consequence,

T(BR™"
liminfE¥ >EF+ 1, since EF < oo.

n—>00 n

In particular, EF < C%R — 1 = 3 as in Sect.2.3. We refer readers to Pitman and
Tang [73] for further discussion on first level bridges and the structure of the Slepian
zero set.

3 Continuous Paths in Brownian Motion

This section is devoted to the proof of Theorems 2 and 4 regarding continuous paths
and the distribution of continuous-time processes embedded in Brownian motion.
In Sect. 3.1, we show that there is no normalized excursion in a Brownian path, i.e.
Theorem 4(1). A slight modification of the proof allows us to exclude the existence
of the Vervaat bridges with negative endpoint, i.e. Theorem 4(5). Furthermore, we
prove in Sect. 3.2 that there is even no reflected bridge in Brownian motion, i.e.
Theorem 4(2). In Sects. 3.3 and 3.4, we show that neither the Vervaat transform
of Brownian motion nor first passage bridges with negative endpoint can be found
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in Brownian motion, i.e. Theorem 4(3), (4). We make use of the potential theory
of additive Lévy processes, which is recalled in Sect.3.3. Finally in Sect. 3.5, we
provide a proof for the existence of Brownian meander, co-meander and three-
dimensional Bessel process in Brownian motion, i.e. Theorem 2, using the filling
scheme.

3.1 No Normalized Excursion in a Brownian Path

In this part, we provide two proofs for Theorem 4(1), though similar, from different
viewpoints. The first proof is based on a fluctuation version of Williams’ path
decomposition of Brownian motion, originally due to Williams [88], and later
extended in various ways by Millar [61, 62], and Greenwood and Pitman [36]. We
also refer readers to Pitman and Winkel [72] for a combinatorial explanation and
various applications.

Theorem 7 ([36, 88]) Let (B;;t > 0) be standard Brownian motion and & be
exponentially distributed with rate %192, independent of (B;;t > 0). Define M =
argminpg)B;, H := —By and R := Bg + H. Then H and R are independent
exponential variables, each with the same rate ©. Furthermore, conditionally given
H and R, the path (B;; 0 < t < §) is decomposed into two independent pieces:

¢ (B;0 <t < M) is Brownian motion with drift —9 < 0 running until it first hits
the level —H < 0;

* (Be—y — B:; 0 <t < & — M) is Brownian motion with drift =% < 0 running until
it first hits the level —R < 0.

Now we introduce the notion of first passage process, which will be used in the
proof of Theorem 4(1). Given a cadlag process (Z;;¢t > 0) starting at 0, we define
the first passage process (7—,;x > 0) associated to X to be the first time that the
level —x < 0 is hit:

T_y = inf{t > 0;Z, < —x} forx > 0.

When Z is Brownian motion, the distribution of the first passage process is well-
known:

Lemma 3

1. Let W be Wiener measure on C[0, 00). Then the first passage process (t—y; x > 0)
under W is a stable(%) subordinator, with

EW[exp(—at_,)] = exp(—x@) fora > 0.

2. For 9 € R, let W” be the distribution on C[0, 00) of Brownian motion with
drift v.
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Then for each fixed L > 0, on the event t—; < 0o, the distribution of the first
passage process (1_;0 < x < L) under W? is absolutely continuous with

respect to that under W, with density Dz = exp(—9L — '92—2r_L).

Proof The part (1) of the lemma is a well known result of Lévy, see e.g. Bertoin et
al. [8, Lemma 4]. The part (2) is a direct consequence of Girsanov’s theorem, see
e.g. Revuz and Yor [74, Chap. VIII] for background. O

Proof of Theorem 4(1) Suppose by contradiction that P(T < oco) > 0, where T is
a random time at which some excursion appears. Take & exponentially distributed
with rate %, independent of (B;; ¢ > 0). We have then

PTr<&<T+1) >0. (34)
Now (T, T + 1) is inside the excursion of Brownian motion above its past-minimum
process, which straddles £. See Fig. 2. Define
* (t—x;x > 0) to be the first passage process of (B¢, — Bg;t > 0).

By the strong Markov property of Brownian motion, (Bg4, — Bg;t > 0) is still
Brownian motion. Thus, (7—,;x > 0) is a stable(%) subordinator by part (1) of
Lemma 3. Also, define

* (0—x;x > 0) to be the first passage process derived from the process (Bz—; —
Bg;0 <t < § — M) followed by an independent Brownian motion with drift —1
running forever.

According to Theorem 7, (Bz—; — B¢; 0 < t < § — M) is Brownian motion with
drift —1 running until it first hits the level —R < 0. Then (0—_,;x > 0) is the first

1.5

0.5

0 01 02 03 04 05 06 07 08 09 1

Fig. 2 No excursion of length 1 in a Brownian path
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passage process of Brownian motion with drift —1, whose distribution is absolutely
continuous on any compact interval [0, L], with respect to that of (7_,;0 < x < L)
by part (2) of Lemma 3.

Thus, the distribution of (o—, + 7—,; 0 < x < L) is absolutely continuous relative
to that of (t_5,;0 < x < L). It is well known that a real stable(%) process does not
hit points, see e.g. Bertoin [5, Theorem 16, Chap. I1.5]. As a consequence,

P(o—y + 17—y = 1 for some x > 0) = 0,

which contradicts (34). [

Proof of Theorem 4(5) Impossibility of embedding the Vervaat bridge paths vB*
with endpoint A < 0. We borrow the notations from the preceding proof. Observe
that, for fixed A < 0,

P(o_x + 17—y = 1 for some x > 0) = 0.

The rest of the proof is just a duplication of the preceding one. O

We give yet another proof of Theorem 4(1), which relies on Itd’s excursion
theory, combined with Bertoin’s self-similar fragmentation theory. For general
background on fragmentation processes, we refer to the monograph of Bertoin [7].
The next result, regarding a normalized Brownian excursion, follows Bertoin [6,
Corollary 2].

Theorem 8 ([6]) Let e := (e,;0 < u < 1) be normalized Brownian excursion and
F¢ := (F{;t > 0) be the associated interval fragmentation defined as F{ := {u €
(0,1); e, > t}. Introduce

e A= (At = 0) the length of the interval component of F¢ that contains U,
independent of the excursion and uniformly distributed;
o & :={&;1t> 0} a subordinator, the Laplace exponent of which is given by

8 ' | ) 8 11
D% (q) := q\/;/o 12(l—-n"2 = q\/;B(q + 5 5); (35)

Then (A;;t > 0) has the same law as (exp(=§,,);t > 0), where

u 1
Py = inf{u > O;/ exp (—EE,) dr > t} . (36)
0

Alternative Proof of Theorem 4(1) Consider the reflected process (B; — B,;t > 0),
where B, := info<,<,B, is the past-minimum process of the Brownian motion.
For e the first excursion of B — B that contains some excursion pattern & of
length 1, let A, be the length of such excursion, and e* be the normalized
Brownian excursion. Following It6’s excursion theory, see e.g. Revuz and Yor [74,
Chap. XII], A, is independent of the distribution of the normalized excursion e*.
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As a consequence, the fragmentation associated to e* produces an interval of length

—. Now choose U uniformly distributed on [0, 1] and independent of the Brownian
motlon According to Theorem 8, there exists a subordinator £ characterized as in
(35) and a time-change p defined as in (36) such that (A,;¢ > 0), the process of the
length of the interval fragmentation which contains U, has the same distribution as
(exp(—&,,);t = 0). Note that (A,;¢ > 0) depends only on the normalized excursion
e* and U, so (A,;¢ > 0) is independent of A.. It is a well known result of Kesten
[41] that a subordinator without drift does not hit points. Therefore,

1
IP’(/\,: A—forsometzo) =0,

e

which yields the desired result. (I

3.2 No Reflected Bridge in a Brownian Path

This part is devoted to proving Theorem 4(2). The main difference between
Theorem 4(1) and (2) is that the strict inequality By, > By for all u € (0,1) is
relaxed by the permission of equalities By, = By for some u € (0, 1). Thus, there
are paths in C[0, 1] which may contain reflected bridge paths but not excursion paths.
Nevertheless, such paths form a null set for Wiener measure. Below is a slightly
stronger version of this result.

Lemma 4 Almost surely, there are no random times S < T such that By = By,
B, > Bs foru € (S,T) and B, = B,, = Bs for some S <v <w < T.

Proof Consider the following two sets
T := {there exist S and T which satisfy the conditions in the lemma}
and

U= U {B attains its minimum for more than once on [s, #]}.
s,t€Q

It is straightforward that 7 C U. In addition, it is well-known that almost surely
Brownian motion has a unique minimum on any fixed interval [s, 7] for all 5,7 € R.
As a countable union of null events, P({/) = 0 and thus P(7) = 0. O

Remark 1 The previous lemma has an interesting geometric interpretation in terms
of Brownian trees, see e.g. Pitman [71, Sect. 7.4] for background. Along the lines
of the second proof of Theorem 4(1) in Sect.3.1, we only need to show that
the situation in Lemma 4 cannot happen in a Brownian excursion either of an
independent and diffuse length or of normalized unit length. But this is just another



72 J. Pitman and W. Tang

way to state that Brownian trees have only binary branch points, which follows
readily from Aldous’ stick-breaking construction of the continuum random trees,
see e.g. Aldous [1, Sect. 4.3] and Le Gall [53].

According to Theorem 4(1) and Lemma 4, we see that almost surely, there
are neither excursion paths of length 1 nor reflected bridge paths of any length
with at least two intermediate returns in Brownian motion. To prove the desired
result, it suffices to exclude the possibility of reflected bridge paths with exactly one
reflection. This is done by the following lemma.

Lemma 5 Assume that0 < S < T < U are random times such that Bs = Br = By
and B, > Bg foru € (S,T) U (T, U). Then the distribution of U — S is absolutely
continuous with respect to the Lebesgue measure.

Proof Suppose by contradiction that the distribution of U — § is not absolutely
continuous with respect to the Lebesgue measure. Then there exists p, g € Q such
that U — S fails to have a density on the event {S < p < T < ¢q < Uj}. In fact, if
U—Shasadensityon{S <p <T < q < U} forall p,g € Q, Radon-Nikodym
theorem guarantees that U — S has a density on {S < T < U} = Up4e0iS <p <
T < g < U}. Note that on the event {S < p < T < g < U}, U is the first time
after g such that the Brownian motion B attains inf,¢[, 4 B, and obviously has a
density. Again by Radon-Nikodym theorem, the distribution of U — S has a density
on {S < p < T < g < U}, which leads to a contradiction. (]

Remark 2 The previous lemma can also be inferred from a fine study on local
minima of Brownian motion. Neveu and Pitman [68] studied the renewal structure
of local extrema in a Brownian path, in terms of Palm measure, see e.g. Kallenberg
[40, Chap. 11].

More precisely, denote

* ( to be the space of continuous paths on R, equipped with Wiener measure W;
» E to be the space of excursions with lifetime ¢, equipped with [t6 measure n.

Then the Palm measure of all local minima is the image of %(n x n x W) by the
mapping E X Ex C 3 (e,¢/,w) — w € C given by

Witit(e) ifr < —§(e’),
- e, if—-¢()=<t=<0,
e, if0<rt<¢(e),
Wi—¢(e) if t > &(e).

See Fig.3. Using the notations of Lemma 5, an in-between reflected position T
corresponds to a Brownian local minimum. Then the above discussion implies that
U — S is the sum of two independent random variables with densities and hence
is diffuse. See also Tsirelson [83] for the i.i.d. uniform sampling construction of
Brownian local minima, which reveals the diffuse nature of U — S.
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BM Excursion’
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Local minimum
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Fig. 3 Structure of local minima in Brownian motion

3.3 No Vervaat Transform of Brownian Motion in a Brownian
Path

In the current section, we aim to prove Theorem 4(3). That is, there is no random
time 7 such that

(BT+u —Br;0<uc< 1) e VB~.
A similar argument shows that there is no random time 7 such that
(Br+u—Br;0 <u<1) e VBT,

where VB' = {w € C[0,1];w(f) > 0for 0 < ¢ < 1 and sup{t < L;w(r) <
w(l)} < 1}. Observe that (V,;0 < u < 1) is supported on VB' U VB~. Thus, the
Vervaat transform of Brownian motion cannot be embedded into Brownian motion.

In Sect. 3.1, we showed that for each fixed A < 0, there is no random time T
such that (Br4+, — Br;0 <u < 1) € VB*. However, there is no obvious way to
pass from the non-existence of the Vervaat bridges to that of the Vervaat transform
of Brownian motion, due to an uncountable number of possible final levels.

To get around the problem, we make use of an additional tool-potential theory
of additive Lévy processes, developed by Khoshnevisan et al. [43, 44, 47-49]. We
now recall some results of this theory that we need in the proof of Theorem 4(3).
For a more extensive overview of the theory, we refer readers to the survey of
Khoshnevisan and Xiao [45].
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Definition 1 An N-parameter, R?-valued additive Lévy process (Z:t € RY) with
Lévy exponent (¥!, ..., ¥N) is defined as

N
Zy:=Y 7 fort=(n.....ty) €RY, (37)
i=1
where (Ztl1 it >0),...,(2ZN e IN = 0) are N independent R4-valued Lévy processes
with Lévy exponent 11/1, A

The following result regarding the range of additive Lévy processes is due to
Khoshnevisan et al. [49, Theorem 1.5], [47, Theorem 1.1], and Yang [89, 90,
Theorem 1.1].

Theorem 9 ([47, 49, 89]) Let (Z;;t € Rﬁ’_) be an additive Lévy process defined as
in (37). Then

E[Leb(Z(RY ))]>o<:>/ ]_[ ( )d§ < o0,

14+ ¥i(0)

where Leb(-) is the Lebesgue measure on R, and Re(-) is the real part of a complex
number.

The next result, which is read from Khoshnevisan and Xiao [46, Lemma 4.1],
makes a connection between the range of an additive Lévy process and the polarity
of single points. See also Khoshnevisan and Xiao [45, Lemma 3.1].

Theorem 10 ([43, 46]) Let (Zi;t € RN) be an additive Lévy process defined as in
(37). Assume that for each t € RN, the distribution of Z; is mutually absolutely
continuous with respect to Lebesgue measure on R?. Let z € RY \ {0}, then

P(Z; = z for somet € RY 1) >0+ ]P(Leb(Z(R )>0)>0.

Note that ]P’(Leb(Z(RQV_) > 0) > 0 is equivalent to [Leb(Z(R )] > 0.
Combining Theorems 9 and 10, we have:

Corollary 1 Let (Z;;t e RI_Y_) be an additive Lévy process defined as in (37).
Assume that for eacht € RY , the distribution of Z; is mutually absolutely continuous
with respect to Lebesgue measure on RY. Let 7 € R? \ {0}, then

P(Zt—zforsometeR)>0<:>/l—[Re( )d§'<oo

1+ ¥i()
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Proof of Theorem 4(3) We borrow the notations from the proof of Theorem 4(1) in
Sect. 3.1. It suffices to show that

P(o— + 17—, = 1 forsome 1,1, > 0) = 0, (38)

where (0, ;#; > 0) is the first passage process of Brownian motion with drift —1,
and (7—,;t, > 0)isa stable(%) subordinator independent of (0, ;#; > 0). Let
Zy = Zrl1 + Zrz2 =0y + 1, fort = (11,1) € Rﬁ_. By Definition 1, Z is a 2-
parameter, real-valued additive Lévy process with Lévy exponent (¥!, ¥?) given
by

wl() = V14 42exp [—i%‘m} —1 and ¥2(¢) = V|Z|(1 — i sgnk)

for { € R, which is derived from the formula in Cinlar [16, Chap. 7, Page 330] and
Lemma 3(2). Hence,

1 1 1 1
Re(lwwo) BEGETT=NE (” m)

and

Re( 1 ): 1+ /¢ '
1+ ¥2(0) 1+ 21¢] + 2)¢]

Clearly, & : { — Re (1+l1£1(§)) Re <1+‘112(§)) is not integrable on R since £ () ~

ﬁél as |¢| — oo. In addition, for each t € Ri, Z, is mutually absolutely continuous

with respect to Lebesgue measure on R. Applying Corollary 1, we obtain (38). O

3.4 No First Passage Bridge in a Brownian Path

We prove Theorem 4(4), i.e. there is no first passage bridge in Brownian motion by
a spacetime shift. The main difference between Vervaat bridges with fixed endpoint
A < 0 and first passage bridges ending at A < 0 is that the former start with an
excursion piece, while the latter return to the origin infinitely often on any small
interval [0, €], € > 0. Thus, the argument used in Sect. 3.1 to prove the non-existence
of Vervaat bridges is not immediately applied in case of first passage bridges.
Nevertheless, the potential theory of additive Lévy processes helps to circumvent
the difficulty.
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Fig. 4 No first passage bridge of length 1 in a Brownian path

Proof of Theorem 4(4) Suppose by contradiction that P(T < oo) > 0, where T is
a random time that some first passage bridge through a fixed level appears. Take &
exponentially distributed with rate %, independent of (B;; t > 0). We have then

P(T<&<T+1)>0. (39)

Now (T, T +1) is inside the excursion of Brownian motion below its past-maximum
process, which straddles £. See Fig. 4. Define
* (t—x;x > 0) to be the first passage process of (B¢, — Be;t > 0).

By strong Markov property of Brownian motion, (Bg4;—Bg; t > 0) is still Brownian
motion. Thus, (7—y;x > 0) is a stable(%) subordinator. Let M := argmax ¢ B;. By
a variant of Theorem 7, (Bz—; — B¢; 0 < t < £ — M) is Brownian motion with drift
1 running until it first hits the level By — B¢ > 0, independent of (_,; x > 0).

As a consequence, (39) implies that

P(r_, = land BIT_I = |A| — x for some (x,[) € Ry x [0,1]) > 0, (40)

where (B,T ;t > 0) is Brownian motion with drift 1, independent of %-stable
subordinator (7—,;x > 0). By setting #; := xand t, := 1 — I, we have:

P(r—y = land BIT_Z = |A| — x for some (x,) € Ry x [0, 1])
=P(t—, +» =1land B,T2 + 11 = |A| for some (71, 1;) € Ry x [0, 1])

< P[(t—y, 1) + (12, B}) = (1, |A]) for some (11,1) € R%] (41)
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LetZ = Z} + Z} := (1. 1) + (tz,B,Tz) for t = (1,1,) € R%. By Definition 1,
Z is a 2-parameter, R?-valued additive Lévy process with Lévy exponent (¥, ¥?)
given by

2
(e 0) = VIOl — iV Glsgnd + &) and W8, 5) = %— i(C1 + &),

for (¢1,¢2) € R2. Hence,

1 1
Re(l T avl(zl,m)Re(l T wz(;l,zz))

A+ VD (1+%
_ D (1+5) ]:=E(§1,§2).

2\ 2
[+ VDR + (Vasents + 2] [ (14 5) + G+

Observe that { — Z(¢1, () is not integrable on R?, which is clear by passage to
polar coordinates ({1, $2) = (pcos 8, \/psin0) for p > 0, 6 € [0,2x). In addition,
for each t € R%r, Z; is mutually absolutely continuous with respect to Lebesgue
measure on R2. Applying Corollary 1, we know that

P(Z, = (1,|A]) for some t € R3) = 0.
Combining with (41), we obtain:
P(z—x =land BIT_Z = |A| — x for some (x,/) € Ry x [0, 1]) =0,

which contradicts (40). O

It is not hard to see that the above argument, together with those in Sect. 3.2
works for Bessel bridge of any dimension.

Corollary 2 (Impossibility of Embedding of Reflected Bridge Paths/Bessel
Bridge) For each fixed A > 0, almost surely, there is no random time T such that
(Br4+u—Br:0 <u <1) e RBR*
={w e C[0,1;w(@®) = 0for0 <t <1andw(l) = A}.

In particular, there is no random time T > 0 such that (Br4+, — B7;0 < u < 1) has
the same distribution as Bessel bridge ending at A.
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3.5 Meander, Co-meander and 3-d Bessel Process
in a Brownian Path

We prove Theorem 2 in this section using It6’s excursion theory, combined with
Rost’s filling scheme [13, 75] solution to the Skorokhod embedding problem.

The existence of Brownian meander in a Brownian path is assured by the
following well-known result, which can be read from Maisoneuve [58, Sect. 8],
with explicit formulas due to Chung [15]. An alternative approach was provided
by Greenwood and Pitman [35], and Pitman [70, Sects. 4 and 5]. See also Biane and
Yor [9, Theorem 6.1], or Revuz and Yor [74, Exercise 4.18, Chap. XII].

Theorem 11 ([9, 35, 58]) Let (¢');cn be the sequence of excursions, whose length
exceeds 1, in the reflected process (B; — B,;t > 0), where B, := info<,<; By is
the past-minimum process of the Brownian motion. Then (¢';0 < u < 1)jen is
a sequence of independent and identically distributed paths, each distributed as
Brownian meander (m,;0 < u < 1).

Let us recall another basic result due to Imhof [38], which establishes the
absolute continuity relation between Brownian meander and the three-dimensional
Bessel process. Their relation with Brownian co-meander is studied in Yen and Yor
[91, Chap. 7].

Theorem 12 ([38, 91]) The distributions of Brownian meander (m,;0 < u < 1),
Brownian co-meander (m,;0 < u < 1) and the three-dimensional Bessel process
(R.; 0 < u < 1) are mutually absolutely continuous with respect to each other. For
F :C[0, 1] = R a measurable function,

1 E[FOn:0 <u= D] =E[ VT EFR:0=us<D):
2 E[F(n;0<u<1)]=E [%F(RM;O <u< 1)].
1
According to Theorem 11, there exist 7}, 75, - -+ such that

m' = (Br.4y —Br;0<u<1) (42)

form a sequence of i.i.d. Brownian meanders. Since Brownian co-meander and the
three-dimensional Bessel process are absolutely continuous relative to Brownian
meander, it is natural to think of von Neumann’s acceptance-rejection algorithm
[86], see e.g. Rubinstein and Kroese [77, Sect.2.3.4] for background and var-
ious applications. However, von Neumann’s selection method requires that the
Radon-Nikodym density between the underlying probability measures is essentially
bounded, which is not satisfied in the cases suggested by Theorem 12. Nevertheless,
we can apply the filling scheme of Chacon and Ornstein [13] and Rost [75].

We observe that sampling Brownian co-meander or the three-dimensional Bessel
process from i.i.d. Brownian meanders (m');cy fits into the general theory of Rost’s
filling scheme applied to the Skorokhod embedding problem. In the sequel, we
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follow the approach of Dellacherie and Meyer [22, Sects. 63—74, Chap. IX], which
is based on the seminal work of Rost [75], to construct a stopping time N such that
m" achieves the distribution of /2 or R. We need some notions from potential theory
for the proof.

Definition 2
1. Given a Markov chain X := (X,),en, a function f is said to be excessive relative
to X if

(f (Xn))nen is F, — supermartingale,

where (F,)nqen is the natural filtration of X.
2. Given two positive measures y and A, p is said to be a balayage/sweeping of A
if

w(f) < A(f) for all bounded excessive functions f.
Proof of Theorem 2 Let ™ (resp. uf) be the distribution of Brownian meander

(resp. the three-dimensional Bessel process) on the space (C[0, 1], F). By the filling
scheme, the sequence of measures (1", leR),-eN is defined recursively as

wo = (W =t oand  ulf = (-1, (43)
and for eachi € N,
wiy = Q) - = and = () - et = ), (44)

where p}'(1) is the total mass of the measure p'. It is not hard to see that the
bounded excessive functions of the i.i.d. meander sequence are constant u” a.s.
Since uR is absolutely continuous with respect to ™, for each u™ a.s. constant
function ¢, u®(c) = u™(c) = c. Consequently, X is a balayage/sweeping of ™ by
Definition 2. According to Theorem 69 of Dellacherie and Meyer [22],

R =0, where uf :=| lim uf.
=00

Now let dy be the Radon-Nikodym density of g relative to u™, and fori > 0, d;
be the Radon-Nikodym density of " relative to u” | (1) - ™. We have
pf = (1 = ) + (ug — ) + -
= (" = po) + (g (1) - ™ = p) +--
= (1 =do)p™ +dop™ (1) - (1 —di)p™ + - . (45)
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Consider the stopping time N defined by

N:=inf{n>0:=) logdi(m) > &¢ . (46)
i=0

where (d;)ien is the sequence of Radon-Nikodym densities defined as in the
preceding paragraph, (m');ey is the sequence of i.i.d. Brownian meanders defined
as in (42), and £ is exponentially distributed with rate 1, independent of (') ;ex.

From the computation of (45), for all bounded measurable function f and all
keN,

k—1 k
E[f(n"):N = k] = Elf(n"): = ) Jlogdi(m) <& < =} _logdi(m)]
i=0 i=0

= E[do(m°) - - - dj—1 (m* ) (") (1 — die(m"))]
= (ppy (1) - ™ = )f
= (up_y — 1S

where (", uX);en are the filling measures defined as in (43) and (44). By summing
over all k£, we have

E[f(m"): N < oo] = 1u*f.
That is, m" has the same distribution as R. As a summary,
(Bry+u — B1y; 0 < u < 1) has the same distribution as (R,;0 < u < 1),

where (7});en are defined by (42) and N is the stopping time as in (46). Thus
we achieve the distribution of the three-dimensional Bessel process in Brownian
motion. The embedding of Brownian co-meander into Brownian motion is obtained
in the same vein. O

Remark 3 Note that the stopping time N defined as in (46) has infinite mean, since

EN = Z,uf”(l) = 00.
ieN

The problem whether Brownian co-meander or the three-dimensional Bessel pro-
cess can be embedded in finite expected time, remains open. More generally, Rost
[76] was able to characterize all stopping distributions of a continuous-time Markov
process, given its initial distribution. In our setting, let (P;),>o be the semi-group of
the moving window process X; := (Bi4y — B;;0 < u < 1) fort > 0, and u" be
its initial distribution, corresponding to Wiener measure on C[0, 1]. Following Rost
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[76], for any distribution u on C[0, 1], one can construct the continuous-time filling
measures (i4s, i1} )i>0 and a suitable stopping time 7 such that

=+ g =V Piar.

Thus, the distribution u is achieved if and only if e = 0, Where poo =
lim,, o ;. In particular, Brownian motion with drift (4¢ + B;;0 < ¢t < 1) for a
fixed ¥, can be obtained for a suitable stopping time 7 + 1.

4 Potential Theory for Continuous-Time Patterns

In Question 2, we ask for any Borel measurable subset S of Cy[0, 1] whether S is
hit by the moving-window process X; := (B4, — B;0 < u < 1) fort > 0,
at some random time 7. Related studies of the moving window process appear in
several contexts. Knight [50, 51] introduced the prediction processes, where the
whole past of the underlying process is tracked to anticipate its future behavior. The
relation between Knight’s prediction processes and our problems is discussed briefly
at the end of the section. Similar ideas are found in stochastic control theory, where
certain path-dependent stochastic differential equations were investigated, see e.g.
the monograph of Mohammed [63] and Chang et al. [ 14]. More recently, Dupire [25]
worked out a functional version of Itd’s calculus, in which the underlying process
is path-valued and notions as time-derivative and space-derivative with respect to a
path, are proposed. We refer readers to the thesis of Fournié [31] as well as Cont
and Fournié [17-19] for further development.

Indeed, Question 2 is some issue of potential theory. In Benjamini et al. [4] a
potential theory was developed for transient Markov chains on any countable state
space E. They showed that the probability for a transient chain to ever visit a given
subset S C E, is estimated by Capy(S)—the Martin capacity of the set S. See
also Morters and Peres [67, Sect.8.3] for a detailed exposition. As pointed out
by Steven Evans (personal communications), such a framework still works well
for our discrete patterns. For 0 < o < 1, define the a-potential of the discrete
patterns/strings of length n as

00
GD{(EI’EI/) = ZakPk(e/,e”)
k=0

= (%)" Houe) = ()} + 7 ia <%)k

where €/, €’ € {—1, 1}", and P(:, -) is the transition kernel of discrete patterns/strings
of length 7 in a simple random walk, and oy (resp. ©): {—1,1}" — {—1,1}"* the
restriction operator to the last n — k strings (resp. to the first n — k strings). The
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following result is a direct consequence of the first/second moment method, and we
leave the detail to readers.

Proposition 2 (Evans (personal communications)) Let T be an N-valued random
variable with P(T > n) = «&", independent of the simple random walk. For A" a
collection of discrete patterns of length n, we have

1 27" 2"
— Capy(A") <P(T(A") <T) <
21—« l—«a

Capy(A™Y),

where for A C {—1, 1}",

Capy(A) := |infs " G*(€.€")g(e)g(e"): g = 0. g(A) = {0}

e e’ e{—1,1}"

-1

and Z gle)=1

ee{0,1}"

Now let us mention some previous work regarding the potential theory for path-
valued Markov processes. There has been much interest in developing a potential
theory for the Ornstein-Uhlenbeck process in the Wiener space Cy[0, 00), defined as

Z;:=U(t,-) fort>0,

where U(t,-) := e "/>W(¢', -) is the Ornstein-Uhlenbeck Brownian sheet. Note that
the continuous-time process (Z;; ¢ > 0) takes values in the Wiener space Cy[0, co)
and starts at Zy := W(1, -) as standard Brownian motion. Following Williams [60], a
Borel measurable set S C Cy[0, 00) is said to be quasi-sure if P(Vf > 0,7, € §) = 1,
which is known to be equivalent to

Capou(S°) = 0, (47)

where
o0
Capoy(S°) = / ¢ "P(AT € [0, 1] such that Z; € $)dt (48)
0

is the Fukushima-Malliavin capacity of S¢, that is the probability that Z hits S°
before an independent exponential random time with parameter 1. Taking advantage
of the well-known Wiener-1t6 decomposition of the Ornstein-Uhlenbeck semigroup,
Fukushima [33] provided an alternative construction of (47) via the Dirichlet form.
The approach allows the strengthening of many Brownian almost sure properties
to quasi-sure properties. See also the survey of Khoshnevisan [42] for recent
development.
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Note that the definition (48) can be extended to any (path-valued) Markov
process. Within this framework, a related problem to Question 2 is

Question 4 Given a Borel measurable set S, C Cy[0, 00), is

Capyw(Seo) i= /Ooo e "P[AT < [0, 7] such that @7 o B € Suo]dt
=0or >0?
where (©);),> is the family of spacetime shift operators defined as
®,0B:= (Bj4+, — B;;u>0) forallz> 0. (49)

It is not difficult to see that the set function Capyw is a Choquet capacity
associated to the shifted process (B;+, — B;;u > 0) for t > 0, or the moving-
window process X; := (B;+, — B;;0 < u < 1) for t > 0. For a Borel measurable
subset S of Cy[0, 1], if Cappw (S ®1 Co[0, 00)) = 0, where

S®1 Col0,00) := {(wil,<1 + (Wi + W) 1>1)=0;w € Sand w' € Co[0,00)}  (50)
is the usual path-concatenation, then
P(3T > 0 such that X7 € S] =0,
i.e. almost surely the set S is not hit by the moving-window process X. Otherwise,
P[3T € [0,1] such that X7 € §] > 0 for some ¢ > 0,

and an elementary argument leads to P[37 > 0 such that X7 € §] = 1.

As context for this question, we note that path-valued Markov processes have
also been extensively investigated in the superprocess literature. In particular, Le
Gall [54] characterized the polar sets for the Brownian snake, which relies on earlier
work on the potential theory of symmetric Markov processes by Fitzsimmons and
Getoor [30] among others.

There has been much progress in the development of potential theory for
symmetric path-valued Markov processes. However, the shifted process, or the
moving-window process, is not time-reversible and the transition kernel is more
complicated than that of the Ornstein-Uhlenbeck process in Wiener space. So
working with a non-symmetric Dirichlet form, see e.g. the monograph of Ma and
Rockner [57], seems to be far from obvious.
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Open Problem 2

1. Is there any relation between the two capacities Capx and Capyw on Wiener
space?

2. Propose a non-symmetric Dirichlet form for the shifted process (©;0B),>o, which
permits to compute the capacities of the sets of paths £, M, BR* .. etc.

This problem seems substantial already for one-dimensional Brownian motion.
But it could of course be posed also for higher dimensional Brownian motion, or
a still more general Markov process. Following are some well-known examples of
non-existing patterns in d-dimensional Brownian motion for d > 2.

e d = 2 (Evans [28]): There is no random time 7 such that (By4+, —B7;0 <u < 1)
has a two-sided cone point with angle o < 7;

e d = 3 (Dvoretzky et al. [27]): There is no random time 7 such that (B, —
B7;0 < u < 1) contains a triple point;

* d > 4 (Kakutani [39], Dvoretzky et al. [26]): There is no random time 7 such
that (Br4+y4 — Br; 0 < u < 1) contains a double point.

We refer readers to the book of Morters and Peres [67, Chaps. 9 and 10] for historical
notes and further discussions on sample path properties of Brownian motion in all
dimensions.

Finally, we make some connections between Knight’s prediction processes
and our problems. For background, readers are invited to Knight [50, 51] as
well as the commentary of Meyer [59] on Knight’s work. To avoid heavy mea-
sure theoretic discussion, we restrict ourselves to the classical Wiener space
(Col0, 00), F, (Fi)i=0. PY), where (F;)>0 is the augmented Brownian filtrations
satisfying the usual hypothesis of right-continuity.

The prediction process is defined as, for all # > 0 and S a Borel measurable set
of Cy [0, OO),

ZV (Soo) := P[0, 0 B € Soo| Fl,

where ©, o B is the shifted path defined as in (49). Note that (ZV),> is a strong
Markov process, which takes values in the space of probability measure on the
Wiener space (Co[0, 00), F). In terms of the prediction process, Question 2 can be
reformulated as

Question 5 Given a Borel measurable set S C Cy[0, 1], can we find a random time
T such that

EZY (S ®; Co[0, 00)) = 1?

where S ®; Cy[0, 0o) is defined as in (50).
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Bessel Processes, the Brownian Snake
and Super-Brownian Motion

Jean-Francois Le Gall

Abstract We prove that, both for the Brownian snake and for super-Brownian
motion in dimension one, the historical path corresponding to the minimal spatial
position is a Bessel process of dimension —5. We also discuss a spine decomposition
for the Brownian snake conditioned on the minimizing path.

1 Introduction

Marc Yor used to say that “Bessel processes are everywhere”. Partly in collaboration
with Jim Pitman [13, 14], he wrote several important papers, which considerably
improved our knowledge of Bessel processes and of their numerous applications. A
whole chapter of Marc Yor’s celebrated book with Daniel Revuz [15] is devoted to
Bessel processes and their applications to Ray-Knight theorems. As a matter of fact,
Bessel processes play a major role in the study of properties of Brownian motion,
and, in particular, the three-dimensional Bessel process is a key ingredient of the
famous Williams decomposition of the Brownian excursion at its maximum. In the
present work, we show that Bessel processes also arise in similar properties of super-
Brownian motion and the Brownian snake. Informally, we obtain that, both for the
Brownian snake and for super-Brownian motion, the (historical) path reaching the
minimal spatial position is a Bessel process of negative dimension.

Let us describe our results in a more precise way. We write (W),>o for the
Brownian snake whose spatial motion is one-dimensional Brownian motion. Recall
that (Wy),>0 is a Markov process taking values in the space of all finite paths in R,
and for every s > 0, write {; for the lifetime of W,. We let N stand for the o-finite
excursion measure of (W;),>o away from the trivial path with initial point 0 and zero
lifetime (see Sect. 2 for the precise normalization of Ny). We let W, be the minimal
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spatial position visited by the paths W, s > 0. Then the “law” of W, under Ny is
given by

3
No(Wy < —a) = 52 (1)

for every a > 0 (see [9, Sect. VI.1] or [12, Lemma 2.1]). Furthermore, it is
known that, Ny a.e., there is a unique instant s, such that W, = W, ({s,).
Our first main result (Theorem 1) shows that, conditionally on W, = —a, the
random path a + W, is a Bessel process of dimension d = —5 started from a
and stopped upon hitting 0. Because of the relations between the Browian snake
and super-Brownian motion, this easily implies a similar result for the unique
historical path of one-dimensional super-Brownian motion that attains the minimal
spatial value (Corollary 1). Our second result (Theorem 2) provides a “spine
decomposition” of the Brownian snake under Ny given the minimizing path W, .
Roughly speaking, this decomposition involves Poisson processes of Brownian
snake excursions branching off the minimizing path, which are conditioned not to
attain the minimal value W,.. See Theorem 2 for a more precise statement.

Our proofs depend on various properties of the Brownian snake, including its
strong Markov property and the “subtree decomposition” of the Brownian snake ([9,
Lemma V.5], see Lemma 3 below) starting from an arbitrary finite path w. We also
use the explicit distribution of the Brownian snake under Ny at its first hitting time
of a negative level: If b > 0 and S}, is the first hitting time of —b by the Brownian
snake, the path b + Wy, is distributed under No(: | S, < 00) as a Bessel process of
dimension d = —3 started from b and stopped upon hitting O (see Lemma 4 below).
Another key ingredient (Lemma 1) is a variant of the absolute continuity relations
between Bessel processes that were discovered by Yor [17] and studied in a more
systematic way in the paper [13] by Pitman and Yor.

Let us briefly discuss connections between our results and earlier work. As a
special case of a famous time-reversal theorem due to Williams [16, Theorem 2.5]
(see also Pitman and Yor [14, Sect.3], and in particular the examples treated in
subsection (3.5) of [14]), the time-reversal of a Bessel process of dimensiond = —5
started from a and stopped upon hitting O is a Bessel process of dimension d = 9
started from O and stopped at its last passage time at a — This property can also be
foundin [15, Exercise XI.1.23]. Our results are therefore related to the appearance of
nine-dimensional Bessel processes in limit theorems derived in [12] and [11]. Note
however that in contrast with [12] and [11], Theorem 1 gives an exact identity in
distribution and not an asymptotic result. As a general remark, Theorem 2 is related
to a number of “spine decompositions” for branching processes that have appeared
in the literature in various contexts. We finally note that a strong motivation for
the present work came from the forthcoming paper [2], which uses Theorems 1
and 2 to provide a new construction of the random metric space called the Brownian
plane [1] and to give a number of explicit calculations of distributions related to this
object.
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The paper is organized as follows. Section2 presents a few preliminary results
about Bessel processes and the Brownian snake. Section 3 contains the statement
and proof of our main results Theorems 1 and 2. Finally Sect.4 gives our
applications to super-Brownian motion, which are more or less straightforward
consequences of the results of Sect. 3.

2 Preliminaries

2.1 Bessel Processes

We will be interested in Bessel processes of negative index. We refer to [13] for
the theory of Bessel processes, and we content ourselves with a brief presentation
limited to the cases of interest in this work. We let B = (B;),>0 be a linear Brownian
motion and for every @ > 0, we will consider the nonnegative process R =

(R;“)),Zo that solves the stochastic differential equation

dR® = dB, — 1% dr, )
t

with a given (nonnegative) initial condition. To be specific, we require that Eq. (2)
holds up to the first hitting time of 0 by R®,

7@ :=inf{t > 0: R = 0},

and that R;a) = 0 fort > T'®. Note that uniqueness in law and pathwise uniqueness
hold for (2).

In the standard terminology (see e.g. [13, Sect.2]), the process R® is a Bessel
process of index v = —a — %, or dimension d = 1 — 2«a. We will be interested
especially in the cases® = 2 (d = —3) and o = 3 (d = —5).

For notational convenience, we will assume that, for every r > 0, there is
a probability measure P, such that both the Brownian motion B and the Bessel
processes R start from r under P,.

Let us fix 7 > 0 and argue under the probability measure P,. Fix § € (0, r) and
set

T .= inf{t > 0: R® =8},
and

Ts := inf{t > 0 : B; = §}.
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The following absolute continuity lemma is very closely related to results of [17]
(Lemma 4.5) and [13] (Proposition 2.1), but we provide a short proof for the
sake of completeness. If E is a metric space, C(R4, E) stands for the space of
all continuous functions from R4 into E, which is equipped with the topology of
uniform convergence on every compact interval.

Lemma 1 For every nonnegative measurable function F on C(R4+,R4),

Er[F((R:i)Tgm)tZO)] = (g) [F((an)t>o) exP( Ot(l + ) /Ta ds

Proof Write (.%;),>o for the (usual augmentation of the) filtration generated by B.
For every t > 0, set

ro\® ol to ”\T“ds
M,:z( ) exp ( )/

tINTs

An application of 1td’s formula shows that (M;),>o is an (.%;)-local martingale.
Clearly, (M,);>0 is bounded by (r/§)® and is thus a uniformly integrable martingale,
which converges as t — oo to

Mo = (g)a eXP(_M/OTﬁg

We define a probability measure Q absolutely continuous with respect to P, by
setting Q = M - P,. An application of Girsanov’s theorem shows that the process

tINTs ds
B _
o “/o B,

is an (.%;)-Brownian motion under Q. It follows that the law of (B;ar;)s>0 under Q
coincides with the law of (R(“)T (a)) » under P,. This gives the desired result. O

The formula of the next lemma is probably known, but we could not find a
reference.

Lemma 2 Foreveryr > 0 and a > 0,

E[exp(_sf”dt(ﬁRw)—z)]:1_( Ly’
' 0 ! r+a’’

Proof An application of 1t6’s formula shows that

R® \? IAT®
M= |1- —Zt exp(—S/ ds(a+R§2))_2)
R§ ) +a 0
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is a local martingale. Clearly, M, is bounded by 1 and is thus a uniformly integrable
martingale. Writing E,.[M;] = E,[My] yields the desired result. O

Remark An alternative proof of the formula of Lemma 2 will follow from forthcom-
ing calculations: just use formula (4) below with G = 1, noting that the left-hand
side of this formula is then equal to No(—b — ¢ < W, < —b), which is computed
using (1). So strictly speaking we do not need the preceding proof. Still it seems a
bit odd to use the Brownian snake to prove the identity of Lemma 2, which has to
do with Bessel processes only.

2.2 The Brownian Snake

We refer to [9] for the general theory of the Brownian snake, and only give a short
presentation here. We write % for the set of all finite paths in R. An element of #
is a continuous mapping w : [0, (] — R, where { = () > 0 depends on w and
is called the lifetime of w. We write W = w({(w)) for the endpoint of w. Forx € R,
we set #; = {w € # : w(0) = x}. The trivial path w such that w(0) = x and
{(w) = x is identified with the point x of R, so that we can view R as a subset of #.
The space # is equipped with the distance

dw,w') = [Lw) — L | + Sug [W(t A L) — W (A L)l
>

The Brownian snake (W;),>o is a continuous Markov process with values in #.
We will write {, = {w,) for the lifetime process of W;. The process ({;)s>0 evolves
like a reflecting Brownian motion in R.. Conditionally on ({;)s>0, the evolution of
(Wy)s>0 can be described informally as follows: When £, decreases, the path W; is
shortened from its tip, and, when ¢, increases, the path W; is extended by adding
“little pieces of linear Brownian motion” at its tip. See [9, Chap. IV] for a more
rigorous presentation.

It is convenient to assume that the Brownian snake is defined on the canonical
space C(Ry, %), in such a way that, for ® = (ws)s>0 € C(R4,#'), we have
W,(®w) = w;,. The notation P, then stands for the law of the Brownian snake started
from w.

For every x € R, the trivial path x is a regular recurrent point for the Brownian
snake, and so we can make sense of the excursion measure N, away from x, which
is a o-finite measure on C(R4, %#). Under N,, the process ({;)s>0 is distributed
according to the Itd measure of positive excursions of linear Brownian motion,
which is normalized so that, for every ¢ > 0,

Nx<sup§'s > s) = %

s>0
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We write o := sup{s > 0 : {; > 0} for the duration of the excursion under N,. In a
way analogous to the classical property of the It6 excursion measure [15, Corollary
XII.4.3], Ny is invariant under time-reversal, meaning that (W, —gv0)s=0 has the
same distribution as (W;)s>o under N, .

Recall the notation

A

Wy = inf Wy = inf inf W(¢),

0<s<o 0<s<0 0<t<(

and formula (1) determining the law of W, under Ny. It is known (see e.g. [12,
Proposition 2.5]) that N, a.e. there is a unique instant sy € [0, o] such that VAVSm =
We. One of our main objectives is to determine the law of W . We start with two
important lemmas.

Our first lemma is concerned with the Brownian snake started from Py, for some
fixed w € #, and considered up to the first hitting time of 0 by the lifetime process,
that is

no := inf{s > 0 : {; = 0}.

Then the values of the Brownian snake between times 0 and 7y can be classified
according to “subtrees” branching off the initial path w. To make this precise, let
(a4, Bi), i € I be the excursion intervals away from O of the process

é‘s — min é‘r
0<r<s

before time 79. In other words, the intervals («;, B;) are the connected components
of the open set {s € [0, no] : {; > ming<,<;s {,}. Using the properties of the Brownian
snake, it is easy to verify that Py, a.s. for every i € I, W, = Wg, is just the restriction
of w to [0, {,,], and the paths W;, s € [o;, B;] all coincide over the time interval
[0, £o,]- In order to describe the behavior of these paths beyond time {,, we introduce,
for every i € I, the element W' = (W!);>¢ of C(R4,#) obtained by setting, for
every s > 0,

Wé(t) = W(ai-l-f)/\ﬂi(gai +1, 0=r= Cé = é-(ai"'s)/\ﬂi - é-ai‘

Lemma 3 Under Py, the point measure

Z S(g'ui’Wl') (dt, da))

iel
is a Poisson point measure on Ry x C(R4, #') with intensity

2 l[o,g(w)] (t) dr Nw(t) (da))
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We refer to [9, Lemma V.5] for a proof of this lemma. Our second lemma deals
with the distribution of the Brownian snake under Ny at the first hitting time of a
negative level. For every b > 0, we set

Sy :=inf{s >0: W, = —b}

with the usual convention inf @ = oo.

Lemma 4 The law of the random path Ws, under the probability measure No(- |
S, < 00) is the law of the process (REZ) — b)o<;<7 under Py,

This lemma can be obtained as a very special case of Theorem 4.6.2 in [6].
Alternatively, the lemma is also a special case of Proposition 1.4 in [5], which relied
on explicit calculations of capacitary distributions for the Brownian snake found in
[8]. Let us briefly explain how the result follows from [6]. For every x > —b, set

3

up(x) == Ny(Sp < 00) = 2+ b2

where the second equality is just (1). Following the comments at the end of Sect. 4.6
in [6], we get that the law of Ws, under the probability measure No(: | S, < 00) is
the distribution of the process X solving the stochastic differential equation

A
dX, = dB, + 2(X,)dr, Xo =0,
up

7
and stopped at its first hitting time of —b. Since Z—Ib(x) = —)ﬁ we obtain the desired
result.

3 The Main Results

Our first theorem identifies the law of the minimizing path W, .

Theorem 1 Let a > 0. Under Ny, the conditional distribution of Wy, knowing that
W, = —a is the distribution of the process (R§3) — “)OstSTU)’ where R® is a Bessel
process of dimension —5 started from a, and T® = inf{t > 0 : R§3) = 0}.

In an integral form, the statement of the theorem means that, for any nonnegative
measurable function F on %4,

No(F(W,,)) = 3 /0 ” % E, [F((R?’ - a)OS,STm)]

where we recall that the process R® starts from a under P,.
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Proof We fix three positive real numbers §, K, K’ such that § < K < K’, and we let
G be a bounded nonnegative continuous function on %#j. For every w € %, we then
set

5(w) ;= inf{t > 0 : w(r) = =8}

and F(w) := G((W(1))o<i<s(w)) if Ts(W) < 00, F(w) := 0 otherwise.

For every real x and every integer n > 1, write [x], for the largest real number of
the form k27", k € Z, smaller than or equal to x. Using the special form of F and
the fact that S|_w,), 1 sm as n 1 00, Ny a.e., we easily get from the properties of the
Brownian snake that F (WS[—W*]H) = F(W;,), for all n large enough, Ny a.e. on the
event {W, < —§}. By dominated convergence, we have then

No(F(Ws, )I{—K" < Wy < —K})
- ngrgo NO(F(WS[*W*]n)l{K = [_W*]n =< K/})

dim Y No(F(Wse) USior < oobt{  min_ W > —(k+ D27"}).
K2n<k<K’'2n

3)

Letb > § and ¢ > 0. We use the strong Markov property of the Brownian snake
at time S, together with Lemma 3, to get

NO(F(WS,,) 1S, < oo} 1{ min W, > —b — s})

Sp<s<o

gsp
- NO(F(WS,,) 148, < 0o} exp ( 2 / dt Ny, (o(Ws > —b — e)))
0

= NO(F(WSb) 1S, < oo} exp ( -3 /0 ® (b+e+ st(t))_z))

3

7
— ﬂ Eb [F((R§2) — b)OstsT(z)) exp ( -3 /(; dr (8 4 R£2))—2):| (4)

using (1) in the second equality, and Lemma 4 and (1) again in the third one. Recall
the definition of the stopping times Tga) before Lemma 1. From the special form of

the function F, and then the strong Markov property of the process R® at time T,iz_) ™
we obtain that

)
E, [F((R;2> I ( —3 / dr (s + R;a)_z)]
0

7
= B[ G(RP = b)) exp (=3 /0 dr (e + R |
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@

= B G(RY = b)) exp (=3 /0 e+ R)2)
x Ep-g exp (-3 /0 et &3] )

Using the formula of Lemma 2 and combining (4) and (5), we arrive at

NO(F(WSb) 148, < oo} 1{ min W, > —b — g})

Sp<s=<o
3 b—35§ \2
—_ —— 1 _— —
2b? ( (b -8+ 8) )
2,
x E,,[G((Rﬁz’ —B)yeyeq ) OXP ( 3 / dr (e + Rﬁz’)—z)].
S=l— 0
Hence,

lim s—lNO(F(WS,,) 1S, < oo} 1{ min W, > —b — g})

Sp<s<o
3 2,
= (s @ _ _ - @)\—2
= ( PO 5))Eb[G((R, Dyererr) exp (=3 /0 ar(®?)2)].

At this stage we use Lemma 1 twice to see that

e
O 9 oo (3 [ )]

= (L)ZE;,[G((Bt —b)o<i<1,_5) €XP ( - 6/0Tb8 ds)]

b—3 B2
_(_b ! 3
=(=5) Blo@ b))
Summarizing, we have
. _1 . A~
!E}})e No (F(Wg,,) 1{S, < oo} 1{ Sbnslzga Wy > —b — s})

3
_ —Eb[G((Rf’) ~b),_, gg&)].

b3
Note that the right-hand side of the last display is a continuous function of
b € (8, 00). Furthermore, a close look at the preceding arguments shows that the
convergence is uniform when b varies over an interval of the form [§', 00), where
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8" > 8. We can therefore return to (3) and obtain that

No(F (W, )l{—=K" < Wy < —K})

K/
= lim dbano(F(st ) 1S, < oo}l{ min W, > —[b],,—z—"})
n—o00 [ bl 8 Spplp <s=<0
K/
-3 /K EE,,[G((R, —b)oﬁggﬁ)].
The result of the theorem now follows easily. O

We turn to a statement describing the structure of subtrees branching off the
minimizing path Wy, . In a sense, this is similar to Lemma 3 above (except that we
will need to consider separately subtrees branching before and after time sy, in the
time scale of the Brownian snake). Since sy, is not a stopping time of the Brownian
snake, it is of course impossible to use the strong Markov property in order to apply
Lemma 3. Still this lemma will play an important role.

We argue under the excursion measure Ny and, for every s > 0, we set

;y = g(xm—h&‘)/\a s ;Y = ;(Sm—S)VO‘

We let (Ezi,l;i), i € I be the excursion intervals of {; above its past minimum.
Equivalently, the intervals (a;, b;), i € I are the connected components of the set

{s20:65> min E,}

0<r<s

Similarly, we let (sz,lv)j), Jj € J be the excursion intervals of E‘Y above its past
minimum. We may assume that the indexing sets / and J are disjoint. In terms of
the tree .7; coded by the excursion ({;)o<s<o under Ny (see e.g. [10, Sect. 2]), each
interval (a;, 13,-) or (4, l;j) corresponds to a subtree of 7 branching off the ancestral
line of the vertex associated with sp,. We next consider the spatial displacements

corresponding to these subtrees. For every i € I, we let W = (Wv(i) )s>0 €
C(R4, #) be defined by

Wy) (t) = Wsm-‘r(ai-i-s)/\l;i(é‘»ym'i‘ai + t) ’ 0 E 4 S §5m+(&i+J)Al;i - é.Sm"'&i'
Similarly, for every j € J,
W_S(]) (t) = W&‘m—(tvl_,'+s)/\}v1j(§sm_éj + t) ’ 0 S ! S C‘Ym—(tvl_,'-FS)/\/ij - é-Sm_éj'

We finally introduce the point measures on Ry x C(Ry, #’) defined by

N =D b awiy . A =D b wo.

iel jeJ
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If o = (ws)s>0 belongs to C(Ry, #), we set ws = inf{ws() : s > 0,0 <t <

S(w -

Theorem 2 Under Ny, conditionally on the minimizing path W, the point mea-
sures A (dt,dw) and A (dt, dw) are independent and their common conditional
distribution is that of a Poisson point measure with intensity

2 1[0.{;,“] (t) l{w*>VAVA-m} dr Nme 0) (da))

Clearly, the constraint w, > VAVXm corresponds to the fact that none of the spatial
positions in the subtrees branching off the ancestral line of p;(sm) can be smaller
than W, = me, by the very definition of Wi,.

Proof We will first argue that the conditional distribution of N given W is as
described in the theorem. To this end, we fix again §, K, K’ such that0 < § < K <
K’, and we use the notation t5(w) introduced in the proof of Theorem 1. On the
event where W, < —§, we also set

S= Y B a0y

i€l
Comta; <t (W)

Informally, considering only the subtrees that occur after sy in the time scale of the
Brownian snake, .#5 corresponds to those subtrees that branch off the minimizing
path W;,, before this path hits the level —§.

Next, let @ be a bounded nonnegative measurable function on the space of all
point measures on Ry x C(R4, #') — we should restrict this space to point measures
satisfying appropriate o -finiteness conditions, but we omit the details — and let ¥ be
a bounded continuous function on C(R4, #). To simplify notation, we write W<,
for the process (Wsas, )s>0 viewed as a random element of C(R4, #), and we use
the similar notation W<g,. For every b > 0, let the point measure Jlé(b) be defined
(only on the event where S, < 0o) in a way analogous to JV:g but replacing the path
W;,, with the path Wy, : To be specific, Ji/;(h) accounts for those subtrees (occurring
after Sj in the time scale of the Brownian snake) that branch off W, before this path
hits —6.

As in (3), we have then

No (¥ (Wei) =K' = Wa = =K} D))

= Jim > NO(‘I’(WSSkz—n) 1{Siy— < oo}
K2"<k<K'2"

1{ min VAVX>—(k+1)2‘”}q§(%(k2*n))). (6)

Sip—n <s<o
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The point in (6) is the fact that, Ny a.e., if n is sufficiently large, and if k > K27"
is the largest integer such that Syo—» < oo, the paths W, and Ws,,, are the same

up to a time which is greater than t5(Wj,, ), and the point measures N5 and f/i;s(kT )
coincide.
Next fix b > § and, for ¢ > 0, consider the quantity

NO(lI/(W<Sb) 1S, < oo} 1{ min W, > —b — g} @(w“”)) %)

Sp<s<o

To evaluate this quantity, we again apply the strong Markov property of the
Brownian snake at time S;. For notational convenience, we suppose that, on a certain
probability space, we have a random point measure .# on Ry x C(R4, #') and, for
every w € #), a probability measure [1,, under which . (dt, dw) is Poisson with
intensity

2 l[oygw](t) dr NW(,) (da)).
By the strong Markov property at S, and Lemma 3, the quantity (7) is equal to
No (¥ (W5, 1S, < 00} M, (LA ({(1, @):0x < —b— &}) = 0} (Mzyqny) )

where .#/<+;(ws,) denotes the restriction of the point measure . to [0, 75(Ws,)] x

C(R4,#). Write ng) for the restriction of the path Wg, to [0, 75(Ws,)]. We have
then

M, (KA (10.0) 00 < b = 8}) = 0} D(Meq )
= My, (A ((1.0) 00 < ~b—e}) = 0)
x My, (O (Msqws,) | A ({(1,0) : 04 = b —e}) = 0)
= My, (A ((1.0) 00 < ~b—e}) = 0)
Mo (@) | A ({(1.0) s 02 < ~b—e}) = 0).

using standard properties of Poisson measures in the last equality. Summarizing, we
see that the quantity (7) coincides with

No (% (Ws,) HWs,. b+ £) 1{S) < 00} My, (A ({(1,0) : 0 < —b—}) = 0)),
®)

where, for every w € %#; such that 75(w) < oo, for every a > §, H(w,qa) :
H ((w(#))o<t<rs(w)» @), and the function H is given by

H(w,a) = qs(///) V/({(r ®): wx < —a)) = o)
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this definition making sense if w € %} does not hit —a. By the strong Markov
property at S, and again Lemma 3, the quantity (8) is also equal to

NO(W(W<S,,)H(WS,,,19 4 &) 14S, < 00} 1{ min W, > —b — s})
- Sp=<s=<

a

We may now come back to (6), and get from the previous observations that
No(¥(Way) {—K' < W < =K} &(A}))

= lim Y NO(W(WSSW)H(WSW,(k+1)2—")

n—>o0

K2n<k<K/2n
1S < 00} 1{Sk25n§1}§g W, > —(k + 1)2—"})
= tim No(%(Wsi_y,y,) HWs_y, o [-Wadi =27 K = [-We], < K'})
= No (¥ (Wzpp) HWiy, —Wa) =K' < W, < —K}).

To verify the last equality, recall that the paths Wy _,, , and W, coincide up to their
first hitting time of —§, for all n large enough, Ny a.e., and use also the fact that the
function H(w, a) is Lipschitz in the variable a on every compact subset of (4, c0),
uniformly in the variable w.

From the definition of H, we have then

No(¥ (W) UK’ = We < =K} & (A}))

= NO(lI/(WSSm)l{—K/f W <—K} M0 (@(///)‘///({(t, ©):wr < Wy)) = 0)),

where Wﬁi) denotes the restriction of Wy, to [0, ts(Wj,, )]. From this, and since Wy =
Ws,.» we obtain that the conditional distribution of .45 given W<, is (on the event
where W, < —§) the law of a Poisson point measure with intensity

210055 Wag) (D Ly o,y 47 Ny (5 (do).

Since § is arbitrary, it easily follows that the conditional distribution of N given
W<, is that of a Poisson measure with intensity

2 l[o’gwlvm] ) l{w*>W3m} dr ijm () (da))

Note that this conditional distribution only depends on W, _, meaning that N s

conditionally independent of W<, given Wi, .
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Since the measure Ny isv invariant under time-reversal, we also get that the
conditional distribution of .4” given Wj is the same as the conditional distribution
of N given W, . Finally, A is a measurable function of W<, and since N
is conditionally independent of W<, given Wy , we get that N and N are
conditionally independent given W . O

4 Applications to Super-Brownian Motion

We will now discuss applications of the preceding results to super-Brownian motion.
Let i be a (nonzero) finite measure on R. We denote the topological support of u
by supp(i) and always assume that

m := inf supp(u) > —oo.

We then consider a super-Brownian motion X = (X;),>0 with quadratic branching
mechanism v () = 2u? started from j. The particular choice of the normalization
of ¥ is motivated by the connection with the Brownian snake. Let us recall
this connection following Sect.IV.4 of [9]. We consider a Poisson point measure
Z(dx,dw) on R x C(R4, #') with intensity

p(dx) Ny(dw).
Write

P(dx. dw) =Y 8 o (dx, do)

i€l

and for every i € I, let {! = $(wi)» § = 0, stand for the lifetime process associated
with @’. Also, for every r > 0 and s > 0, let £7(¢) be the local time at level r and
at time s of the process ¢'. We may and will construct the super-Brownian motion X
by setting Xy = w and for every r > 0, for every nonnegative measurable function
g onR,

X 9) =3 /0 4, p(@)), ©)

i€l

where the notation d,¢’(¢’) refers to integration with respect to the increasing
function s — £7(¢).

A major advantage of the Brownian snake construction is the fact that it also
yields an immediate definition of the historical super-Brownian motion ¥ = (¥,),>0
associated with X (we refer to [4] or [7] for the general theory of historical
superprocesses). For every r > 0, Y, is a finite measure on the subset of #
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consisting of all stopped paths with lifetime . We have Yy = pu and for every
r>0,
(Y, @) Z/ Ayl (& d(0)), (10)
i€l
for every nonnegative measurable function @ on 7. Note the relation (X,, ¢) =
J Y (dw) o(W).
The range ZX is the closure in R of the set
| supp(X,).
r>0

and, similarly, we define A7 as the closure in # of

[ supp(¥,).

r=0

We note that

= supp(n) U (U{d);' s> 0})

iel
and
Y = supp(p) U (U{a)é 1S > 0})
iel
We set

= inf %X.

From the preceding formulas and the uniqueness of the minimizing path in the case
of the Brownian snake, it immediately follows that there is a unique stopped path
Winin € 2" such that W, = my. Our goal is to describe the distribution of wp,. We
first observe that the distribution of my is easy to obtain from (1) and the Brownian
snake representation: We have obviously my < m and, for every x < m,

u(du)
(u— x)2

(1)

P(mxy > x) = exp

Note that this formula is originally due to [3, Theorem 1.3]. It follows that

p(du) )

P(mx =m) = exp( w—m)?

Therefore, if [(u — m)~>u(du) < oo, the event {my = m} occurs with positive
probability. If this event occurs, Wi, is just the trivial path m with zero lifetime.
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Proposition 1 The joint distribution of the pair (Wnin(0),mx) is given by the
formulas

HWmﬂ»smnwfx):3[;dy(4M(5?35)“p(‘% (Sggﬂ’

for every a € [m, c0) and x € (—oo, m), and

P(mxy = m) = P(my = m, Wnin(0) = m) = exp(— % %)

Proof Fix a € [m,00), and let y’, respectively p” denote the restriction of u to
[m, a], resp. to (a, 00). Define X, respectively X", by setting X, = ', resp. X =
w1, and restricting the sum in the right-hand side of (9) to indices i € I such that
x' € [m, a], resp. x' € (a,00). Define Y’ and Y” similarly using (10) instead of (9).
Then X', respectively X” is a super-Brownian motion started from p’, resp. from u”,
and Y’, resp. Y” is the associated historical super-Brownian motion. Furthermore,
(X’,Y’) and (X", Y") are independent.
By (11), the law of mys has a density on (—oo, m) given by

Sy () = 3(/[%“] (5?33) exp ( - ; /[m!a] (531’;;2) . ye€ (—oo,m).

On the other hand, if x € (—o0, m),
P(Wnmin(0) < a, my < x) = P(myr <x, myr > my)
= [ a0 PO > ),
—00

and we get the first formula of the proposition using (11) again. The second formula
is obvious from the remarks preceding the proposition. O

Together with Proposition 1, the next corollary completely characterizes the law
of wmin. Recall that the case where my = m is trivial, so that we do not consider this
case in the following statement.

Corollary 1 Let x € (—oo,m) and a € [m, 00). Then conditionally on my = x and
wmin(0) = a, the path W, is distributed as the process (x + R§3) Jo<i<r® under
PCI_X'

Proof On the event {my < m}, there is a unique index iy, € I such that
my = min{@™" : 5 > 0}.

Furthermore, if sp;, is the unique instant such that my = ‘A’)éﬂﬁv we have Wy, =
i . . o
o™, and in particular x;,;, = Wmin(0).
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Standard properties of Poisson measures now imply that, conditionally on my =
x and Win (0) = a, @™ is distributed according to N, (- | Wi = x). The assertions
of the corollary then follow from Theorem 1. O

We could also have obtained an analog of Theorem 2 in the superprocess setting.
The conditional distribution of the process X (or of Y) given the minimizing
path wp,, is obtained by the sum of two contributions. The first one (present
only if Wpin < m) corresponds to the minimizing “excursion” w™ introduced
in the previous proof, whose conditional distribution given wp,;, is described by
Theorem 2. The second one is just an independent super-Brownian motion X started
from p and conditioned on the event mg > Wi, We leave the details of the
statement to the reader.
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Abstract Let X be a regular linear diffusion whose state space is an open interval
E C R. We consider the dual diffusion X* whose probability law is obtained
as a Doob A-transform of the law of X, where & is a positive harmonic function
for the infinitesimal generator of X on E. We provide a construction of X* as a
deterministic inversion /(X) of X, time changed with some random clock. Such
inversions generalize the Euclidean inversions that intervene when X is a Brownian
motion. The important case where X* is X conditioned to stay above some fixed
level is included. The families of deterministic inversions are given explicitly for the
Brownian motion with drift, Bessel processes and the three-dimensional hyperbolic
Bessel process.
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Since then he passed away. May his soul rest in peace!

The main objective of this paper is to study analytical aspects of the stochastic
Doob duality. We elucidate a striking equivalence between stochastic Doob duality
of one-dimensional diffusions X and X* and a simple analytical transformation /(X)
of trajectories of a diffusion via a deterministic inversion /.

The construction was known for the case where X is a three-dimensional Bessel
process started at a positive Xp, the dual process X* is a Brownian motion killed
when it hits 0 and the inversed process is 1/X, which is a Brownian motion
conditioned via a Doob h-transform to stay positive. The processes X* and 1/X
coincide up to a time change, see [18].

It was also known [18] that the three-dimensional hyperbolic Bessel process can
be realized via a Doob transform as a Brownian motion with negative unit drift
conditioned to stay positive. This work was inspired by the search and discovery of
an inversion

1
1(X;) = 3 In coth X,

of the three-dimensional hyperbolic Bessel process (X;). When I(X;) is appropri-
ately time changed, we obtain a Brownian motion with negative unit drift, see
Sect.5.2.

The main result of this paper says that an analytical inversion / can be constructed
for any pair of dual linear diffusions X and X*, see Theorem 1.

A direct application of this result is a better understanding of the conditioned
diffusions X*: they are obtained, up to a time change, as an analytical transformation
I(X) of the original diffusion X. Both the families of inversions and the random
clocks involved in the construction have interesting features and deserve their own
right of mathematical interest.

Our original motivations for the search of deterministic inversions of stochastic
processes come from potential theory, where a crucial role is played by the Kelvin
transformation, related to the inversion with respect to the unit sphere /(x) =
x/||x||?, see e.g. [3, 4]. One of the other reasons why we worked on this topic is
a strong need of such analytical tools to develop the potential theory of various
important processes, e.g. hyperbolic Brownian motions and hyperbolic Bessel
processes.

Taking into account the results of [3] for stable processes, it is natural to ask
whether such analytical constructions of conditioned processes should also be
available for one-dimensional self-similar processes. In a work in progress, this
question and some related topics are studied in collaboration with L. Chaumont.

The paper is organized as follows. In Sect.2 we introduce basic notions and
notations on diffusions X with a state space E and we explain precisely the objectives
of the paper. We start Sect.3 with the construction of a family of inversions
associated with a diffusion X. The construction involves a reference scale function
s and not the speed measure of X. We note that the inversion of the state space E
in the direction of s is uniquely characterized by the fixed point xy. Also, among
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the set of inversions in the direction of s, the s-inversion with fixed point xy is
uniquely characterized by the associated positive harmonic function 4. Thus, the
family of inversions we obtain is a one parameter family of involutions indexed
by the fixed point xy. In Sect.4, we state and prove our main result. That gives
the path construction of X* in terms of the inverse of X in the direction of s with
respect to a point xo € E. Section5 is devoted to applications. We point out in
Corollaries 3 and 4 some new results that we obtain for Bessel processes and the
hyperbolic Bessel process of dimension 3.

2 Preliminaries on Dual Processes and Inversions

Let X := (X;,t < {) be a regular diffusion with life time { and state space E =
(I,r) € R which is defined on complete probability space (§2, (%):>0, P). Unless
otherwise specified, we assume that X is killed, i.e. sent to a cemetery point A, as
soon as it hits one of the boundaries; that is { = inf{s, X; = [ or X; = r} with the
usual convention inf{@} = +oo0.

Our objectives in this paper are summarized as follows. Given a positive function
h which is harmonic for the infinitesimal generator L of X, i.e. Lh = 0, we give an
explicit construction of the dual X* of X with respect to i(x)m(dx) where m(dx) is
the speed measure of X. The distribution of X* is obtained by a Doob h-transform
change of measure of the distribution of X. We shall see that X* is either the
process itself, i.e. the process is self-dual, or the original diffusion conditioned to
have opposite behaviors at the boundaries when started from a specific point x( in
the state space; this is explained in details in Proposition 4 below. We refer to the
original paper [7] by Doob for h-transforms and to [5] where this topic is surveyed.
The procedure consists in first constructing the inverse of the diffusion with respect
to a point xo € E which is a deterministic involution of the original diffusion. Time
changing then with an appropriate clock gives a realization of the dual process. In
order to say more, let us fix the mathematical setting. Suppose that X satisfies the
s.d.e.

X, = Xo + / o (X,)dW, + / b(X,)ds, t<¢, (1)
0 0

where Xy € E, (W,,t < {) is a standard Brownian motion and 0, b : E — R
are measurable real valued functions. Assume that o and b satisfy the Engelbert-
Schmidt conditions

o #0and1/0% b/o’ € L} (E), )

where L} (E) is the space of locally integrable functions on E. Condition (2)
implies that (1) has a unique solution in law, see Proposition 5.15 in [12]. We write

(ZX,t > 0) for the natural filtration generated by X and denote by 2.7 (E) the set
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of diffusions satisfying the aforementioned conditions. For background on diffusion
processes, we refer to [1, 5, 10, 12, 17-19].

LetX € 2.#(E).Fory € E, let H, = inf{r > 0; X; = y} be the first hitting time
of y by X. Recall that the scale function of X is any continuous strictly increasing
function on E satisfying

Pr(Ho < Hp) = (s(x) — s(B))/ (s(@) — s(B)) 3)

forall | < @ < x < B < r. This is a reference function which is strictly increasing
and given modulo an affine transformation by s(x) = fcx exp (-2 [ “b(r)/o*(r)dr)dz
for some ¢ € E. For convenience, we distinguish, as in Proposition 5.22 in [12], the
following four different subclasses of diffusions which exhibit different forms of
inversions, i.e. mappings / : E — E such that [ o I(x) = x, for all x € E, and
I(E) = E (for a more precise definition of an s-inversion, see Definition 1). We say
that X € 2% (E) is of

e Type 1l if —oo < s(I) and s(r) < 4o00;
e Type2if —oco < s(I) and s(r) = +o0;
e Type3ifs(l) = —ooand s(r) < 4o00;
e Type4if s(l) = —oo and s(r) = +oo.

Type 4 corresponds to recurrent diffusions while Types 1-3 correspond to transient
ones. Recall that the infinitesimal generator of X is given by Lf = (02/2)f" + bf’
where f is in the domain Z(X) which is appropriately defined for example in [10].
For xy € E let h be the unique positive harmonic function for L satisfying h(xo) = 1
and either

1/h(r) if X is of type 1 with 25(xp) # s(l) + s(r);
h(i) =41 if X is of type 1 and 2s(xp) = s(I) + s(r) or type 4;
0 if X is of type 2;

or
h(r) = 0if X is of type 3.

If X is of type 4 or of type 1 with 2s(xg) = s(/) 4+ s(r) then & = 1 otherwise 4 is
specifically given by (9) which is displayed in Sect. 3 below.

Let X* be the dual of X, with respect to h(x)m(dx), in the following classical
sense. For all # > 0 and all Borel functions f and g, we have

/ FOIPg(h@m(dx) = / P (h@)m(d)
E E

where P, and P} are the semigroup operators of X and X*, respectively. The
probability law of X* is related to that of X by a Doob A-transform, see for example
[8]. To be more precise, assuming that X5 = x € E then the distribution P} of X* is
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obtained from the distribution P, of X by the change of measure

h(X,
P 5 = h( (x))

dPylz,., t<&. “)

We shall denote by E¥ the expectation under the probability measure P}; X* has
the infinitesimal generator L*f = L(hf)/hforf € 2(X*) = {g: E — E, hg €
2(X)}. The two processes (h(X;),t < ¢) and (1/h(X}),t < {*) are continuous local
martingales. We shall show that the former process can be realized as the latter when
time changed with an appropriate random clock. Thus, the expression of either the
process X* or X, which are both E-valued, in terms of the other, involves the function
I(x) = h~'(1/h(x)) which is clearly an involution where it is well defined. We will
show in Proposition 2 that/ : E — E.

For general properties of real valued involutions, we refer to [24, 25]. Now,
indeed, an intuitive formulation of our main result is that, when # is not constant,
the processes (1/h(X),t < ¢*) and (h(X,),t < A¢), if both are started at xo, have
the same law, where, for ¢t > 0,

A= / 17(X,)02(X,) /0 o I(X,) ds, )
0

7, is the inverse of A;, and I’ stands for the derivative of I. Two interesting features
of the involved clocks are described as follows. First, 7, = A¥ where AY is
defined as above with X replaced by X*. Second, {* (resp. {) and A (resp. A7)
have the same distribution; these new identities in distribution for killed diffusions
resemble the Ciesielski-Taylor and Biane identities, see [2, 6]. We call the process
(I(X;),t < ¢) the inverse of X with respect to xo. We know that Doob A-transforming
X amounts to conditioning it to behave in a particular way at the boundaries. Our
construction sheds light on the exact behaviour of the Doob A-transformed process
at the boundaries.

In the transient case, the general construction of X* from X discovered by
Nagasawa, in [16], applies to linear diffusions; see also [14, 18]. We mention that
this powerful method is used by Sharpe in [23] and by Williams in [26] for the study
of path transformations of some diffusions. While the latter path transform involves
time reversal from cooptional times, such as last passage time, the construction we
present here involves only deterministic inversions and time changes with random
clocks of the form (5). Although we only consider one dimensional diffusions in this
paper, inversions of stable processes and Brownian motion in higher dimensions are
studied in [3] and [27], respectively.



112 L. Alili et al.
3 Conditioned Diffusions and Inversions

Let X € 2.% (E). To start with, assume that X is of type 1 and let h : E — R4
be a positive harmonic function for the infinitesimal generator L of X satisfying
0 < h(l) < h(r) < oco. Let X* be the dual of X with respect to h(x)m(dx).

We are ready to state the following result which motivates the construction of
inversions; to our best knowledge, the described role of the h-geometric mean xg
and the A-arithmetic mean x;, which are defined below, for X and X™*, has not been
known.

Proposition 1 Suppose that X is of type 1. The following assertions hold true.

1) There exists a unique xo € E such that h*(xo) = h(l)h(r). We call xo the
h-geometric mean of {l, r}. Furthermore, for x € E, we have P.(H, < H,) =
P¥(H, < H)) if and only if x = xo.

2) There exists a unique x; € E such that 2h(x;) = h(l) + h(r). We call x| the
h-arithmetic mean of {1, r}. Furthermore, for x € E, we have P,(H, < H,) =
P.(H, < H;) = 1/2 if and only if x = x,.

Proof

1) Since 4 is continuous and monotone, because it is an affine function of s, if 4 is
increasing (resp. decreasing) then the inequality i(l) < /h(D)h(r) < h(r) (resp.
h(r) < v/h(Dh(r) < h(l)) implies the existence and uniqueness of xy. Because
—1/h is a scale function for X*, see for example [5], applying (3) yields

P.(H; < Hy) = (h(x) = h(r)) / (h(D) — h(r))

and

PY(H, > Hy) = (1/h(x) = 1/h(1D)) / (1/h(r) = 1/h(D) .

These are equal if and only if x = x.
2) The proof is omitted since it is very similar. |

As his monotone, we find r = h™! (h2 (x0)/ h(l)). This expression of r in terms of
xo and [ allows us to introduce the mappings we are interested in. The last formula
exhibits the function 7 : x — h™! (hz(xo) / h(x)) which is well defined on E by
monotonicity of h. Clearly, I is a decreasing involution of E with fixed point xp.
Next, observe that h o I o h~! : x — h*(xg)/x is the Euclidian inversion with fixed
point A(xo).

We return now to the general case and assume that X is of one of the types 1-4.
Our aim is to determine the set of all involutions associated to X which lead to the
set of Mdbius real involutions

ax+ b

ki
cxX—a

a2+bc>0, a,b,ceR; .

MI = w: R\{a/c} - R\{a/c}; w(x) =
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Note that the condition a® + bc > 0 for w € .# . ensures that @, when restricted
to either of the intervals (—o0o, a/c) and (a/c, +00), is a decreasing involution. Let
us settle the following definition.

Definition 1 Let s and s~! be, respectively, a reference scale function for X and its
inverse function, and xo € E. A mapping I : E — E is called the inversion in the
direction of s, or s-inversion, with fixed point x if the following hold:

1) Iol(x) =xforx € E;
2) solos e #.7;
3) I(E) =E;

4) I(xo) = xo.

If so 1o s ! is the Euclidian reflection in x, then I is called the s-reflection in xj.

Since [ is defined on the whole of the open interval E, it is necessarily continuous.
This, in turn, implies that it is a decreasing involution such that /(/) = r. The
objective of our next result is to show the existence of the inversion of E in the
direction of s in case when s is bounded on E i.e. for diffusions of type 1.

Proposition 2 Let xo € E and assume that s is bounded on E. Then, the following
assertions hold.

1) The inversion of E in the direction of s with fixed point x is given by

57 (2(0) /5(x) if 5*(x0) = s(Ds(r);
I(x) = § 571 (2s(x0) — s(x)) if 2s(x0) = s() + s(r);
s ((s(x) + a)/(bs(x) — 1)) otherwise,
where
a = (2s(Ds(r) — s(xo) (s(D) + 5())) (2 (o) — s(Ds() ™" 5(x0)
and

b = (25(0) — (s(1) + 5()) (*(o) — s(Ds(r) -

2) If 2s(xo) # s(l) + s(r) then I = h™'(1/h) where

_ | (bs(0) = 1)/ (bs(xo) — 1) if s*(x0) # s(D)s(r):;
h(x) = :
s(x)/s(x0) otherwise.
Furthermore, h is continuous, strictly monotonic and satisfies h # 0 on E.
Proof

1) We shall first assume that s> (xo) # s(1)s(r). We look for I such that sofos™!(x) =
(x4 a)/(bx—1) where a and b are reals satisfying ab + 1 # 0. Since the images
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of [ and x¢ by I are respectively r and xy, we get the following linear system of
equations

bs*(xg) —a = 2s(xp); ©)
bs(D)s(r) —a = s(l) + s(r).

Solving it yields a and b. We need to show that ab 4+ 1 # 0. A manipulation of
the first equation of (6) shows that 1 4+ ab = (bs(xy) — 1)2. In fact, we even have
the stronger fact that s(x) # 1/b on E which is seen from 1/b > s(r) if 2s(xg) >
s(l) + s(r) and 1/b < s(I) if 2s(xo) < s(I) + s(r). Finally, if s*(xo) = s(})s(r)
then clearly I(x) = s~ (s(x0)/s(x)).

2) Assume that 2s(xo) # s(I) + s(r). Let us first consider the case s?(xo) # s(I)s(r).
Setting h(x) = (s(x) — 1/b)/5 we then obtain

N (1/h(x)) = 57" ((s(x) + (b8* — 1/b))/(bs(x) — 1)) .

Thus, the equality I(x) = A~'(1/h) holds if and only if § = ++/1 + ab/b which,
in turn, implies that 2(x) = £(bs(x) — 1)/(bs(xp) — 1). Since A is positive, we
take the solution with plus sign. Since % is an affine transformation of s, it is strictly
monotone and continuous on E. Finally, because s # 1/b, as seen in the proof of (1),
we conclude that /2 does not vanish on E. The case s?(xg) = s(I)s(r) is completed by
observing that this corresponds to letting b — oo and § = s(x) above which gives
the desired expression for 4. |

Now, we are ready to fully describe the set of inversions associated to the four
types of diffusions described in the introduction. The proof of the following result
is omitted, keeping in mind that when s is unbounded on E, by approximating E by
a family of intervals (o, f) C E where s is bounded, using continuity and letting
o« — land B — r we obtain an expression for /.

Proposition 3 All kinds of inversions of E in the direction of s with fixed point
Xxo € E are described as follows.

1) X is of type 1 with 2s(x0) # s(I) + s(r) then the inversion is given in
Proposition 2.
2) X is of type 2 then we have

100 = 57" (s() + (s(xo) = s(D)*/ (s(x) = s(1))) - @)
3) X is of type 3 then we have
1(x) = 57" (s(r) = (s(r) = 5(x0))*/ (s(r) — 5(x))) . ®)

4) X is of type 4 or type 1 with 2s5(xo) = s(I) + s(r) then I is the s-reflection in x.
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Remark 1 Observe that the s-inversions described in Proposition 3 solve G(x,y) =
0 in y, where G is the symmetric function G(x, y) = As(x)s(y) — B(s(x) + s(y)) — C
for some reals A, B and C. This is in agreement with the fact that 7 is an involution,
see [25].

Remark 2 The inversion in the direction of s with fixed point xy does not depend on
the particular choice we make of s. Tedious calculations show that the inversion of
E in the direction of s is invariant under a Mobius transformation of s.

Going back to Proposition 1 we can express the inversions of Proposition 3 in
terms of the harmonic function 4 instead of the reference scale function s. For that
we need to compute the positive harmonic function 4 described in the introduction
for each of the types 14 of diffusions. We easily get

::(();:)))—_11 if X is of type 1 and 2s(xp) # s(I) + s(r);
if X is of type 1 and 2s(xp) = s(I) + s(r) or type 4;

if X is of type 2; ©)

1
h(x) = s(x)—s()
s(xo)—s())

s(r)—s(x)

s(r)—s(xo)

if X is of type 3.

Note that the case where X is of type 1 and x; is the s-geometric mean is covered in
the first case by letting b — oo to obtain k(x) = s(x)/s(xo). In the following result,
which generalizes Proposition 1, we note that the first assertion could serve as the
probabilistic definition for s-inversions.

Proposition 4 The following assertions hold true.

1) A function I : E — E is the s-inversion with fixed point xo € E if and only if
I(E) =Eandforallx € E

Py (Hy < Hiwy) = P}, (Hiy < Hy) (10)

where P* is the distribution of the Doob transform of X by some positive
harmonic function k. Furthermore, the s-inversion and the k-inversion of E with
fixed point xq are equal and k = h.

2) Let Qy, be the probability law of (I(X;),t < {) when Xo = xo. Then formula (10)
holds true when Py, is replaced by Qy,. We call the process (I(X;),t < {) the
inverse with respect to xo of (X;,t < ). The fixed point xy of the involution I is
seen to be the unique level at which the paths of the latter processes intersect.

Proof

1) If xp is the s-arithmetic mean of {/, r} or X is of type 4 then we are looking for
I : E — E such that P, (H, < Hjw) = 1/2. Using (3) we get (s(xp) — s o
I(x))/(s(x) —s o I(x)) = 1/2 which gives that I is the s-reflection. For the other
cases, using (10) and the fact that —1/# is a scale function for X*, we find that
I(x) = h™"(h(x0)?/h(x)) so that I is an h-inversion with fixed point xo. The “only
if” part is straightforward following a similar reasoning to that of the proof of
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Proposition 1 giving I to be either the A-reflection or the h-inversion with fixed

point xo.
2) The first part is easily seen by using the first assertion. The interpretation for the
fixed point x( follows from the fact that x is the unique fixed point of /. |

For completeness, we explain now how to define rigorously a diffusion Y; obtained
by conditioning a transient diffusion X, to hit one boundary of an interval before
another with a prescribed probability a. By a natural definition, it holds if for any
bounded ﬁ}x -measurable functional G and ¢ > 0, we have

E,[G(Ys,s <1),t <] = aE,,[GX;,s < 1)t < {|H; < H}]
+(1 - a)E, [GX,,s <1),t <|H, < H.

For conditioning a transient diffusion to avoid one of the boundaries we refer, for
example, to [9, 13, 22].

We show in the following Proposition that the dual process X* can be realized as
X conditioned in the sense of Doob to exits the segment [/, r] at the endpoints / and
r with some specified probabilities.

Proposition 5 Assume that X is transient and let h be given by (9). Let p be the
probability that X, when started at xo, exits [I,r] at I. X conditioned to exit [l, r] at
[ with probability ¢ = 1 — p is a realization of the dual X* of X with respect to
h(x)m(dx).

Proof By construction, we have h(xo) = 1. Assume at first that X is of type 1. Let
us decompose 4, in terms of /; and A, which are defined below, as follows

« ) —h(D)  h(r) —h(¥)

") =5 =hay TP he) i) 4 )+ PTG
where
« _ h(xo0) —h(]) _ h*(x)=h*"()
B G E U e UR R
and
« _ h(r)—hxo) = h*(r)—h*(x0) .,
= =m0 "0 T e e Do < HD-

But, we have that ¢* = p and p* = ¢ when X and X* are started at x,. Thus, for any
bounded ﬁ}x -measurable functional G and ¢ > 0, we can write
IE;‘O[G(XJ,S <t <] =E,[hX)GX;,s <1),t <]
= qE [m(X)G(X;,5 < 1),t <]
+pE, [h(X)G(X;, s < 1),t < ).
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Next, since our assumptions imply that p = P, (H; < H,) € (0, 1), we have

]P)X’[Hz < Hr]
Ex[)[h[(Xr)G(XJ,S < [),[ < é.] = EXO[G(XS,S < l)m,

= EXO[G(XWS f t),t < §|Hl < Hr]

<]

where we used the strong Markov property for the last equality. Similarly, for the
other term, since g € (0, 1) we get

Eqo[(h(X)G(Xs,s < 1),1 < {] = E[G(X,,s < 1),1 < {|H, < H]].

The last two equations imply our assertion. Assume now that 4(r) = oo. Then
h(l) = 0 and PP,;-a.s. all trajectories of the process X tend to / and p = P, (H, <
H;) = 0. We follow [22] to define X conditioned to avoid / (i.e. never to hit / in a
positive time) as follows. For any bounded .% X -measurable functional G and ¢ > 0,
we set

E! [G(X;,s <0, 1 <] = ¢1¢i—>mrEx"[G(X“s <t),t<{|H, < H

X0

=1lmE, [GX,,s <1),t < H, < H]/Py,(H, < H))
= lmE, [ X,)GX;,s < 1),t < Hy AN Hj
a—>r

= E,[h(X)G(X;.s < 1), 1 < ]

where we used the strong Markov property for the third equality and the monotone
convergence theorem for the last one. In this case P} -a.s all trajectories of the
process X* tend to r and p* = P} (H; < H,) = 0 which completes the proof
of the statement. The case i(l) = —oo and h(r) = 0 can be treated similarly. |

Remark 3 From the point of view of Martin boundaries, the functions 4; and h,
which appear in the proof of Proposition 5 are the minimal excessive functions
attached to the boundary points / and r, see [5, 20, 21]. That is the Doob
h-transformed processes obtained by using 4; and %, tend a.s., respectively, to / and r.
Harmonic functions having a representing measure with support not included in the
boundary set of E are not considered in this paper since we do not allow killings
inside E.

4 Inversion of Diffusions

Let X € 92.%(E) and s be a scale function for X. For xy € E, let I : E — E be the
inversion of E in the direction of s with fixed point xy. Let / be the positive harmonic
function specified by (9). Let X* be the dual of X with respect to h(x)m(dx). As
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aforementioned, the distribution of X* is obtained as a Doob A-transform of the
distribution of X by using the harmonic function A, as given in (4). Clearly, if X
is of type 1 (resp. of type 2 and drifts thus to I, of type 3 and drifts thus to r or
of type 4) then X* is of type 1 (resp. of type 3 and drifts thus to r, of type 2 and
drifts thus to [ or of type 4). It is easy to see that the inversions of E in the direction
of s given in Proposition 3 are differentiable on E. Recall that for a fixed ¢t < ¢,
7, is the inverse of the strictly increasing and continuous additive functional A, :=
for 1?(X,)02(X,)/0? o I(X;) ds; T,* and A} are the analogue objects associated to
the dual X*. Recall that the speed measure m(dy) = 2dy/(c>%s’) of X is uniquely
determined by

E([Hy A Hg] = / Gy(x,y) m(dy)
J
where

Gy(x.y) = c(s(x Ay) = s(@))(s(B) — s(x v y))/(s(B) — s())

for any J = (o, ) S E and all x,y € J, where ¢ is a normalization constant and
Gy (., .) is the potential kernel density relative to m(dy) of X killed when it exits J; see
for instance [18, 19]. Recall that —1// is a scale function and m* (dx) := h?(x)m(dx)
is the speed measure of X*. We are ready to state the main result in this paper.
The proof we give is based on the resolvent method for the identification of the
speed measure, see [18, 19, 23]. Other possible methods of proof are commented in
Remarks 6 and 7.

Theorem 1 With the previous setting, let I be the s-inversion of E with fixed point
xo € E. Assuming that Xo, X; € E are such that 1(Xo) = X| then the following
assertions hold true.

1) Forallt < ¢, v, and A} have the same distribution.
2) The processes (X[, t < {*) and (I(Xy,),t < A¢) have the same law.
3) The processes (X, t < §) and (I(X*\),t < A’g*) have the same law.

Remark 4 Note that if the starting point is the fixed point of 7, i.e. Xo = X, then
both processes X and X* start from x. However, our result holds true and is proven
in the general case Xy € E provided that X§ = I(Xo).

Proof (of Theorem 1)
1) Let ¢ > 0 be fixed and set n, = I(X;,). Because 1, is the inverse of A;, we can

write A;, = t. Differentiating and extracting the derivative of t; yields

d a2 ol(X,)

a" T TP (X )o? (X))
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Integrating yields

0= / t (I'o/(0 0 1)) (Xe,)ds = AL
0

The proof of the first assertion is complete once we have shown that  and X*
have the same distribution which will be done in the next assertion.

2) First, assume that £ is not constant. In this case, x — —1/h(x) is a scale function
for n since —1/h o I(X;,) = —h(X,,) is a continuous local martingale. Next, let
J = (o, B) be an arbitrary subinterval of E. We proceed by identifying the speed
measure of 1 on J. By using the fact that the hitting time Hy of y by 1 equals
AH,(},) for y € E, we can write

Hia) AHi()
E[(x) [HZ /\Hg] = E[(x) |:/ dA,:|
0

I(a)
_ /, |, Gun@ )00 0o o 10}~ (@
I(«)
—2 / Gy (1) I (3) (0% 0 1(3)s' ()} dy
1(B)

B
= 2/ Gy (), I G) (~h o 1) ()}~ dy.

On the one hand, we readily check that {o%(y)(s o I)(y)} ~'dy = h*(y)m(dy) =
m*(dy) for y € J. On the other hand, we have

h —h((x
Giin(I(x),1(y)) = (h(I(x) A L(y)) — h(I(B))) (I;O({;za)) Elz()I(\I/B)I)(y))

—h* (@) + " (x A y)
—h*(e) + h*(B)

= (=h*(xVvy) + h*(B))
= Gj(x,y),

where h* = —1/h and G7 is the potential kernel density of X* relative to m™ (dy).
The case when 4 is constant can be dealt with similarly but by working with s
instead of . This shows that the speed measure of 7 is the same as that of X*
in all cases. Now, since ¥ = A/ we get ¥ = A* which, in turn, implies that
AX = ¢*. Finally, using the fact that / is an involution gives

H} =inf{s > 0,/(Xay) = y} = ‘L';I(y) = Apy,

for y € E. The assertion is completed by letting y tend to either of the boundaries
to find {* = A; and { = A}, as desired.
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3) The proof is easy using (1) and (2), the fact that / is an involution and time
changes. |

Remark 5 The resolvent method used in the proof of Theorem 1 suggests that it
could be not necessary to suppose that X solves a diffusion s.d.e. We conjecture that
variants of Theorem 1 are true for “nice” Markov processes. For example, analogue
inversions are known for symmetric stable processes, see [3]. As mentioned in the
introduction, inversions of a more general class of self-similar Markov processes
are studied in a joint work with L. Chaumont.

Remark 6 Since X satisfies the s.d.e. (1), by Girsanov’s theorem, we see that X*
satisfies ¥, = X + [y 0(Ys)dBs + [o(b + o2h' /h)(Y;)ds for t < {* where B is a
Brownian motion which is measurable with respect to the filtration generated by X*
and ¢* = inf{s, Y; = [ or Yy = r}, see for example [8]. Long calculations show
that 7 also satisfies the above s.d.e. which, by Engelbert-Schmidt condition (2), has
a unique solution in law. This gives a second proof of Theorem 1. Note that the use
of Itd’s formula for 7 is licit since I € €2(E).

Remark 7 Another way to view the main statements of Theorem 1 is the equality
of generators

1 o2(x ) B *
and
1 O'z(x) . ~
12(x) Uz(l(x))L (gol) (I(x)) = Lg(x)

forallx € E, g € Z(X) andf € 2(X*). However, the main difficulty of this method
of proof is the precise description of domains of generators.

The focus now is on the cases where X is transient and drifts a.s. either to / or to r
ast — (,i.e. X is of type 2 or 3. Clearly, if X is of type 2 (resp. type 3) then X* is
of type 3 (resp. 2). Hence, for our purpose, it is enough to consider the case where
X is of type 2, in which case formula (3) gives that / is hit a.s. before r.

Corollary 1 IfX € 2.% (E) is of type 2 then { = H, and A} o = = A7, have the same
distribution. Furthermore, A}, o < 00 with probability 1 lfand only lf

/C(s(x) —s(D)m(dx) <00, I<c<r. (11
1

Proof The first claim is a straightforward consequence of Theorem 1. Next, {* =
H* because X; — r as. ast — {. Now by Feller’s classification of boundaries,
{ < o0 as., and hence AH* < 00 a.s., if and only if (11) holds, see e.g. p. 745
in [26]. |
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So far we made the assumption that attainable boundaries are killing and the process
cannot be started from such points. We stress out however that, in the following
result, we assume that / is an entrance not an exit (and not an absorbing or killing)
point for the dual diffusion X*. The following result gives a path construction of the
diffusion which we obtain when we apply the time reversal property to X* (or X).

Corollary 2 Assume that X € 9.% (E) is of type 2 and satisfies (11). Introduce the
last passage time of X at the fixed point xo € E of the s-inversion I, i.e.

Ly, = sup{t: X, = xo}.

Then the time inverted process (X}
“X(

—t S
0

L3 |X5 = 1) and (I(X5), 1 < Al |Xo =

Xo) are identical in law.

Proof Let h be given by (9). Then s*(x) = —1/h(x) is a scale function for X*
and s*(/) = —oo. Thus, condition (11) implies that / is an entrance not exit point
for X*, see [11]. Furthermore, the process X*, when started at /, is X conditioned
never to return to / in a positive time Now, on the one hand, we have that
(X;,t < Hi|Xo = xp) and (X7 Lt *|X5 = 1) have the same distribution,
see for example Theorem 2.5 1n0 [26]. On the other hand, we know by Theorem 1
that (X,, 7 < {|Xy = xo) and (I(X:*),t < A «|Xo = x0) have the same law. |

- X()

Remark 8 Theorem 2.11 of [15] states that if X € 2.7 (E) with s(r) < oo and

f 1 E — R is a non-negative Borel function, then it holds that fog f(Xy)ds < o0 a.s.,
on the event {lim, ,; X; = r}, if and only if

[ 60 = sy@man <o 1<c<r
Keeping the setting of Corollary 1 and applying the above to X*, with

o*(x)

m*(x) = (s(x) —s())*m(dx) and f(x) =1?(x ) o in oI

we obtain the necessary and sufficient condition
[ 670 =5 nreom* @

1 1(c)
= m/l (s(x) —s(D)ym(dx) < 00, I<c<r,

for the finiteness of both AZ‘* and ¢. This is in agreement with the aforementioned
corollary.
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5 Applications

5.1 Inversions of Brownian Motions Killed upon Exiting
Intervals

Assume that X is a Brownian motion killed upon exiting the interval E = (I, r). Let
Xo = xo € E. If E is bounded then we obtain the inversions

x% /x, if x20 =Ir;
I(x) = 3 2xg — x, if2xg =14 7r;
(x + a)/(bx — 1), otherwise,

where
2lr — xo(I+r) 2x0— (L +7)
CZZZ—X() and b:2—
x5 —Ir Xy —Ir

We distinguish three cases appearing in the form of the inversion /. In the first case,
equation x; = Ir implies that / and r are of the same sign. If / > 0 then X* is the
three-dimensional Bessel process killed upon exiting E. If [ < 0 then —X* is the
three-dimensional Bessel process.

In the second case, X* is a Brownian motion killed when it exits E. In the third
case, X* satisfies the s.d.e. X" = B;+xo —l—fot(X;“—l/b)_lds fort < £*.If xg is below
the arithmetic meani.e. xo < (I+r)/2thenxo—1/b = (xo—r)(xo—1)/ (2x0—(I+7)).
By uniqueness of the solution to the s.d.e. R, = Ry + B; + for (1/Ry)ds driving the
three-dimensional Bessel process R, we get that X* = 1/b+ R, with Ry = xo—1/b
killed when R exits the interval (I—1/b, r—1/b). If xj is above the arithmetic mean
then we find X" = 1/b — R,, where R is a three-dimensional Bessel process started
at 1/b — xo, where R is killed as soon as it exits the interval (1/b—r,1/b —1).

If [ is finite and r = oo or [ = —oo and r is finite then by Proposition 3 we
respectively obtain

I(x) =1+ and I(x) = r

(xo —1)? (r — x0)?
x—1 r—x

If r = 400 then a similar reasoning as above gives that X" = [ + R, where R is a

three-dimensional Bessel process started at xo —I. If | = —oo we obtain X;" = r—R;
where R is a three-dimensional Bessel process started at » — xo. If 2xg = / 4 r or
| = —o0 and r = 400 then we obtain the Euclidian reflection in xg, i.e. x — 2x9—x,

and X* is a Brownian motion killed when it exits E. Note that for E = (0, o0)
the conclusion from our Theorem 1 is found in Lemma 3.12 on p. 257 of [18].
That is (X;,t < H,) is distributed as (1 /X:‘*, t < A%)), where t,* is the inverse of

AY = fot (X*)~*ds. In this case X* is the three-dimensional Bessel process; see our
last example given in Sect. 5.3 for Bessel processes of other dimensions. If £ = R
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then / is the Euclidian reflection in xy. Finally, observe that the set of inversions of E
we obtain for the Brownian motion killed when it exits E is precisely .# . (E) :=
{le #Y5;I1(E)=E}

5.2 Inversions of Drifted Brownian Motion and Hyperbolic
Bessel Process of Dimension 3

Set B;” ) = B; + ut, t > 0, where B is a standard Brownian motion and u € R,
w # 0. Thus, B® is a transient diffusion which drifts to +oo (resp. to —oo) if
w > 0 (resp. i < 0). Let us take the reference scale function s(x) = —e 2**/(2u).
Observe that s is increasing for all i # 0. Moreover lim,_,o s(x) = 0if © > 0 and
lim, oo s(x) = 0if & < 0. We take X to be B killed when it exits (1, 7) € R.
Letus fix xo € E.

If we take E = R then by Proposition 3, even though X is of type 2 if © < 0
and of type 3 if u > 0, the inversion of E in the direction of s is the Euclidian
reflection in xo. X* is the Brownian motion with drift u* = —pu in this case. If s(J)
and s(r) are finite then using Proposition 2 we obtain appropriate, but in most cases
complicated, formulas for /. For Brownian motion with drift the case of the half-line
is the most interesting. Take for instance E = (0, co) and process X; = xo + B; + jut
starting from some point xo > 0 and killed at zero. We consider two cases: if © < 0
then s(0) = —1/(2u) > 0, s(c0) = oo and X is of type 2; if u > 0 then s(0) =
—1/2u) < 0, s(c0) = 0 and X is of type 1.

First, let & < 0. If X is of type 2 then, by Proposition 3, we have only one possible
inversion: 1(x) = s~ (s(l) + (s(xo) — 5(1))*/(s(x) — s(I))), which gives

1) = @I ™ In (€72 — 14 (1 — & 200 /(e — 1))
If we choose xo = (2|p|)~" In(1 + +/2) then the above formula simplifies to
109 = @D ™ I (€7 + 1)/~ 1) = @lu) ™" Incoth(|ulx).
Now, if ;& > 0 then X is of type 1. Because e™2** # 0 implies s?(xg) # s(0)s(00) =
0 only two cases are possible. Either 2s(xg) = s(0) + s(co) = s(0), which gives

X0 = ﬁ In2, and then we have s-reflection I(x) = —ﬁ In(1 — e72*) or 2s(xy) #
5(0) + s(o0) and then the formula from Proposition 3 gives the inversion

1 1 —2ux ( ,A41x0 _2 2/4X0
I(x)=—1n( +e e ¢ )).

1 —e 21

This in turn simplifies if we choose e**0 —2¢%%0 = 1, that is, if xo = ﬁ In(1+ \/5)
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Then

1+ 21
1 —e 21

1 1
I(x) = — ln( ) = — Incoth(ux).
21 21

e T2

7 and then X*, being an

It is easy to check that if u < 0, then A(x) =

h-process, has generator L*f(x) = %f”(x) + | u| coth(||x)f’ (x). In particular, if u =
—1 then I(x) = %ln cothx and X* has generator L*f(x) = %f”(x) + coth(x)f’ (x).
This recovers the well-known fact that B, — ¢ conditioned to avoid zero is a three-
dimensional hyperbolic Bessel process. The novelty here is that we get X* as a
time changed inversion of B; — r. If u > 0, then A(x) = <241 and X* has

V2
the generator L*f(x) = %f” (x) + ptanh(ux)f’(x). Note that we have shown the
following particular result.

Corollary 3 Let X be a three-dimensional hyperbolic Bessel process on (0, 00) and
I(x) = %ln cothx. Then, I(X) is a time-changed drifted Brownian motion B; — t
conditioned to avoid 0. In particular, the functional

L] /°° ds
4y (cosh(X,)sinh(X))

has the same distribution as the first hitting time of 0 by the Brownian motion with
minus unity drift. In other words, we have

2
X
P(As € dr) = P 3e‘%dt, t>0,

2t

where xy = %ln(l + V2).

5.3 Inversions of Bessel Processes

It is known that two Bessel processes of dimensions 6 and 4—4§, respectively, are dual
one to another, see e.g. [5, 8, 18]. Our focus here is on the construction of the latter
dual. To say more, let X be a Bessel process of dimension § > 2. Thus, E = (0, c0),
0 is polar and X has the infinitesimal generator Lf (x) = % S (x) + (6 — 1)/ (2x)f' (x)
forx € E, see [8, 18]. Let v = (§/2) — 1 be the index of X. The scale function of X
may then be chosen to be

—x ifp > 0;
s(x) = 4 2logx ifv = 0;
X2 otherwise.
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X is recurrent if and only if § = 2, see for example Proposition 5.22 on p. 355 of
[12]. First, when § = 2 the inversion of E in the direction of s is the s-reflection
x — xé /x. For the other cases, the inversion of E in the direction of s with fixed
point 1 is found to be x — 1/x. Furthermore, X* is a Bessel process of dimension
4 — § < 2. Observe that in the two considered cases the involved clock is A, =
fot (x0/X)* ds. Hence, we have shown the following result which is a particular case
of Proposition 1.11 on p. 447 of [18].

Corollary 4 Let X be a Bessel process of dimension § € R, killed at 0 if § < 2,
starting from Xo > 0 and I(x) = 1/x. Then I(X) is a time-changed Bessel process of
dimension 4 — §. In particular, the functional fooo ds/X?, when X is a Bessel process
of dimension § > 2, has the same distribution as the first hitting time of zero by the
Bessel process of dimension 4 — 6.
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On A-Transforms of One-Dimensional Diffusions
Stopped upon Hitting Zero

Kouji Yano and Yuko Yano

In memoriam, Marc Yor

Abstract For a one-dimensional diffusion on an interval for which 0 is the regular-
reflecting left boundary, three kinds of conditionings to avoid zero are studied. The
limit processes are h-transforms of the process stopped upon hitting zero, where /’s
are the ground state, the scale function, and the renormalized zero-resolvent. Several
properties of the h-transforms are investigated.

1 Introduction

For the reflecting Brownian motion {(X;), (Px)xe[0,00)} and its excursion measure n
away from 0, it is well-known that ]P’S [X;] = x for all x > 0 and all 7> 0, where
{(X)), (P°),c0.00)} denotes the process stopped upon hitting 0, and ¢ + n[X,] is
constant in > 0. Here and throughout this paper we adopt the notation u[F] =
J Fdu for a measure u and a function F. The process conditioned to avoid zero
may be regarded as the h-transform with respect to A(x) = x of the Brownian
motion stopped upon hitting zero. The obtained process coincides with the three-
dimensional Bessel process and appears in various aspects of n (see, e.g., [11, 21]).

We study three analogues of conditioning to avoid zero for one-dimensional dif-
fusion processes. Adopting the natural scale s(x) = x, we let M = {(X;);>0, (P)rer}
be a D,,D;,-diffusion on I where I' = [0,/) or [0,/] and I = I’ or I’ U {I}; the
choices of I’ and I depend on m (see Sect.2). We suppose that 0 for M is regular-
reflecting. Let M = {(X;);>0. (P°).c;} denote the process M stopped upon hitting
zero. We focus on three functions which are involved in conditionings to avoid zero.
The first one is the natural scale s(x) = x. The second one is given as follows. When
!’ is natural, we set y» = 0 and h, = s. When 7’ is not natural, it was shown in
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[17, Theorem 3.1] that the g-resolvent operator GS on L*(dm) for M° is compact
and is represented by the eigenfunction expansion Gg =3 (q—y) ' ® fu with
0>y >y, > --- ] —o0;in this case we write Y« = y; and hs = fi. The obtained
function A4 is the second one. The third one is

ho(x) = 1lim{r,(0,0) — r,(x,0)}, @))]
q40

where r,(x,y) denotes the resolvent density with respect to the speed measure. We
will prove hy always exists and we call kg the renormalized zero-resolvent.

We now state three theorems concerning conditionings of M to avoid zero. Their
proofs will be given in Sect.5. We write (:#;),>¢ for the natural filtration. Let 7,
denote the first hitting time of a. The first conditioning is a slight generalization of
a formula found in [24, Sect. 2.2].

Theorem 1.1 Let x € I' \ {0}. Let T be a stopping time and Fr be a bounded
Fr-measurable functional. Then

PX[FT; T < Ta < T()] 0 XT
lim =P\ Fr—:T <T4«]|, 2)
atsupl PX(Ta < To) X

where Ty = sup,¢; T,. (If  is an isolated point in I, we understand that the symbol
lim,4qup; means the evaluation at a = 1.)
The second conditioning is essentially due to McKean [17, 18].

Theorem 1.2 Ler x € I' \ {0}. Let T be a stopping time and Fr be a bounded
Fr-measurable functional. Then

;
seo Pyt < Tp) x

P.[Fr;T <t < Ty ol . €7 The(Xr)
=P\ Fr———;T : 3
T e () <0 3

The third conditioning is an analogue of Doney [6, Sect. 8] (see also Chaumont—
Doney [3]) for Lévy processes. For g > 0, we write e, for the exponential variable
independent of M.

Theorem 1.3 Ler x € I' \ {0}. Let T be a stopping time and Fr be a bounded
Fr-measurable functional. Then

“)

lim
q10 P, (eq < To)

Py[Fr;T < e, < To) o[ ho(Xr) }
=1Ir, T ) T x| .
ho(x)

The aim of this paper is to investigate several properties of the three functions
hs«, hy and s and of the corresponding A-transforms.

We summarize some properties of the h-transforms of M° as follows (see Sect. 2
for the definition of the boundary classification and see the end of Sect.4 for the
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classification of recurrence of 0; here we note that m(co) < oo if and only if O is
positive recurrent):

(1) If m(oco) = oo, we have that s, h, and hy all coincide. If I/ for M is natural with
m(o0) < 0o, we have that s and A, coincide.
(i) For the h-transform of M° for h = s, hy or h, the boundary 0 is entrance.
(iii) For the h-transform of MO for h = s,

(a) the process explodes to oo in finite time when I’ for M is entrance;

(b) the process has no Killing inside the interior of I and is elastic at I’ when //
for M is regular-reflecting;

(c) the process is conservative otherwise.

(iv) For the h-transform of M° for h = hy, the process is conservative.
(v) For the h-transform of M° for h = hy when m(c0) < oo, the process has killing
inside.

Let us give an example where the three functions are distinct from each other.
Let M be a reflecting Brownian motion on [0, /'] where both boundaries 0 and /' are
regular-reflecting. Then we have

’ 2

. WX
hy(x) = g sin—, ho(x) =x— o7

o x€[0,1]. (5)

We shall come back to this example in Example 4.2.
We give several remarks about earlier studies related to the h-transforms for the
three functions.

1°). The h-transform of M° for h = s is sometimes used to obtain a integral
representation of the excursion measure: see Salminen [23], Yano [29] and
Salminen—Vallois—Yor [24].

2°). The penalization problems for one-dimensional diffusions which generalize
Theorem 1.2 were studied in Profeta [19, 20].

3°). The counterpart of 4 for one-dimensional symmetric Lévy processes where
every point is regular for itself has been introduced by Salminen—Yor [25] who
proved an analogue of the Tanaka formula. Yano—Yano—Yor [33] and Yano [30,
31] investigated the h-transform of M° and studied the penalisation problems
and related problems. For an approach to asymmetric cases, see Yano [32].

This paper is organized as follows. We prepare notation and several basic
properties for one-dimensional generalized diffusions in Sect.2 and for excursion
measures in Sect.3. In Sect.4, we prove existence of hy. Section5 is devoted
to the proofs of Theorems 1.1, 1.2 and 1.3. In Sect. 6, we study invariance and
excessiveness of iy and s. In Sect. 7, we study several properties of the A-transforms.
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2 Notation and Basic Properties for Generalized Diffusions

Let /m and § be strictly-increasing functions (0,/) — R such that /m is right-
continuous and § is continuous. We fix a constant 0 < ¢ < [’ (the choice of ¢
does not affect the subsequent argument at all). We set

F = //l >y>x>cdﬁ1(x)d§(y), Fy = //1 >y>x>cd§(x)dﬁ1(y). (6)

We adopt Feller’s classification of the right boundary // with a slight refinement as
follows:

(1) If F{ < oo and F, < oo, then ' is called regular. In this case we have

5(I'—) < oo.
(ii) If F; < oo and F, = oo, then !’ is called exit. In this case we have 5(I'—) < oo.
(iii) If F; = oo and F, < oo, then I is called entrance. In this case we have
(=) < oo.

(iv) If F| = oo and F, = oo, then [’ is called natural. In this case we have either
5(I'=) = oo or m(I'=) = oo. There are three subcases as follows:

(a) If5(I'=) = oo and m(I'—) = oo, then ' is called type-1-natural.

(b) If 5(I'=) = oo and m(I'=) < oo, then !’ is called rype-2-natural.

(¢) If5(I'—) < oo and m(I'—) = oo, then I’ is called type-3-natural or natural-
approachable.

The classification of the left boundary 0 is defined in a similar way.
Let m be a function [0, c0) — [0, co] which is non-decreasing, right-continuous
and m(0) = 0. We assume that there exist / and [ with 0 < I’ < [ < oo such that

strictly-increasing on [0, '),
mis 14 flat and finite on [/, ]), (7)

infinite on [/, 00).

We take /i = mq) and the natural scale 5(x) = s(x) = x on (0,/) to adopt
the classification of the boundaries 0 and I'. We choose the intervals I’ and I as
follows:

(1) If 7' is regular, there are three subcases related to the boundary condition as
follows:

(a) IfI' <1 = oo, then !’ is called regular-reflectingand I' = I = [0,1].

(b) If ' < I < oo, then ! is called regular-elastic,I' = [0, and I = [0,]'] U
{B.

(c) Ifl' =1 < oo, then I’ is called regular-absorbing, I’ = [0,1) and I = [0, I].

(ii) If 7' is exit, then!’ =1 < oo, I’ =[0,]) and I = [0, ]].
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(iii) If 7 is entrance,then !’ =l = oo andI' = I = [0, 00).
(iv) If 7 is natural, then// =l < occand I’ =1 = [0, ]).

We always write (X;);>0 for the coordinate process on the space of paths
w : [0,00) - R U {3} with {(w) € [0,00) such that  : [0,{(w)) — R
is continuous and w(f) = 9 for all t+ > {(w). We always adopt the canonical
representation for each process and the right-continuous filtration (.%;),>¢ defined
by # =\, 00X, u <s).

We study a D,,D,-generalized diffusion on I where O is the regular-reflecting
boundary (see Watanabe [28, Sect. 3]). Such a process can be constructed from the
Brownian motion via the time-change method. Let {(X,);>0, (P?),er} denote the
Brownian motion on R and let £(z, x) denote its jointly-continuous local time. Set
A(r) = fl £(t, x)dm(x) and write A~! for the right-continuous inverse of A. Then the
process {(Xa—1():>0 (PB),es} is a realization of the desired generalized diffusion.

Let M = {(X:)r=0, (Px)rer} denote the D, D,-generalized diffusion. We denote
the resolvent operator of M by

wmzﬁAeWmﬂ,qw. 8)

For x € I, we write
T, = inf{t > 0: X, = x}. ©)]
Then, for a,x, b € I with a < x < b, we have

PUT, > T}) = Z_a.

(10)

Note that, whenever [ € I, we have P,(T; < oo) = 1 forall x € [ and [ is a trap
for M.
For a functionf : [0,/) — R, we define

#@=A® F@dm(). (1

0.y]

We sometimes write s(x) = x to emphasize the natural scale. For ¢ € C, we write
¢, and ¥, for the unique solutions of the integral equations

¢=1+qJp, and v, =s+qJy, onl0,]), (12)

respectively. They can be represented as

o0 o0
$g=) q'J'1 and Y, =) q'J's. (13)
n=0 n=0
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Let g > 0. Note that ¢, and v, are non-negative increasing functions. Set

o =i 3% = [ e as
Then there exist o-finite measures o and 6* on [0, o) such that
H(g) = / ! o(d§) and ; = / ! o* (d§). (15)
.0c) 41§ qH(q)  Jooc) 4+ §
Note that
=t = [ T = oy 0.l (o

If we write m(co) = lim,_, o m(x), we have

1 1
= limgH(q) = o({0}) = @ = 0, 00). 17
7o ;= limg (@) = o({0}) [ éds) r(o0) € [0,00) (17)

Note that 79 = 0 whenever [ < co. We define
1

Pq (x) = ¢q(x) - H(Q)

Yy (x). (18)

Then the function p, is a non-negative decreasing function on [0, /) which satisfies

s
Pg = 1—%+q.]pq. (19)

We define
rq(x,y) = rq(y,x) = H(Q)‘ﬁq@)ﬁq@) 0<x=<y xye€ I (20)

In particular, we have r,(0,x) = r,(x,0) = H(g)py(x) and r,(0,0) = H(g). It is
well-known (see, e.g., [13]) that

et = 1Y) e s 1)
rq()’s y)
In particular, we have
,0 _
0q(x) &0 _ Pe™], xerl, g>0. (22)

T 70,00
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We write M’ = {(X,)r>0, (P,)rer} for the process M killed upon hitting /. We write
R; for the resolvent operator of M’. It is well-known (see, e.g., [13]) that rq(x,y) is
the resolvent density of M’ with respect to dm, or in other words,

Ry = [ 10, )
I/
We have the resolvent equation
/ 1 (6, Y)rp(y, 2)dm(y) = W, x.zel', q.p>0. (24)
r -

If [ € I, we define

rg(l,y)=0 forye I, (25)
1

rgx, ) = — — R;l(x) forxel, (26)
q
1

b = <. @7)

and define a measure m on I by

m(dy) = 1y (y)dm(y) + 1(dy). (28)

We emphasize that r,(x, y) is no longer symmetric when either x or y equals /.

Proposition 2.1 The formulae (21) and (23) extend to

Pye] = ra(%.y). x,yel, qg>0, (29)
Vq()’, y)
Ryf() = /, FOIryCy)i(dy). xel, g> 0. (30)

Proof Supposel € I.
First, we let x = [ Then we have Pjfe=®] = 0 = &)

rg(y.y)

Pled] = | = % We also have R,f() = P[[° e f(X,)di] = f()/q =

f(Dry(l, )m({l}). Hence we obtain (29) and (30) in this case.
Second, we assume x € I’. On one hand, we have

for y € I' and

o0
1
/ e P (t > T)dt = =P, [e "] = r, (I, )P [e~1""]. (31
0 q
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On the other hand, we have

o0 o0
1
/ e "P.(t > T))dt = / e_‘f’{l —PuX; € I’)} dt = — — R;l(x) = rq(x, D).
0 0 q

(32)
Hence we obtain (29) for y = L Using (23), we obtain
&ﬂn=RJm+fmAweWRazEMr (33)
= /1 FO)rg(x, y)dm(y) + f(Drg(x, Hm({1}), (34)
which implies (30). O

3 The Excursion Measure Away from (0

Fory € I, we write (L;(y))>o for the local time at y normalized as follows (see [9]):

IP’X[/ e_‘”dL,(y):| =ryx,y), x€l, g>0. (35)
0

We write L, for L,(0). Let n denote the excursion measure away from O correspond-
ing to (L;);>0 (see [1]), where we adopt the convention that

X, =0forallt >T,, mn-ae. (36)

We define the functional N, by

%thmﬂw@ﬂ,q>u 37)
0

Then it is well-known (see [22]) that n can be characterized by the following
identity:

R,f(O
Nyf = rqq(J(;,(O)) whenever f(0) = 0. (38)
In particular, taking f = 103, we have
1 1
n[l — e_qT"] = 39)

~ 70,00 H(g)
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and, by (14), we have

. 1 1

We write M® = {(X));>0, (P)ses} for the process M stopped upon hitting 0 and

l\;vrite R2 for the resolvent operator of M°. By the strong Markov property of M, we
ave

Ryf(x) = RYf(x) + Po[e™ IR, £(0). (41)
The resolvent density with respect to m(dy) is given as

rq(x, O)Vq(o, y)

(X y) = rgx.y) — -(0,0) forx,y 1. 42)
Note that r)(x,y) = ¥, (x)p,(y) for x <y and that
rO X,
Pg[e_qu] = gx.) _ V) forx,yel,x <y. (43)

0y Ye0)

Note also that (L(y))>o is the local time at y such that

Pg[ / ” e_q’dL,(y)i| =r(xy), xyel\{0} g>0. (44)
0

The strong Markov property of n may be stated as
n[Fr G o 7] = n[FsP§ [G]], (45)

where T is a stopping time, Fr is a non-negative .#r-measurable functional, G is a
non-negative measurable functional such that 0 < r[F7] < oo or 0 <n[Gofr] < co.
Let x,y € I be such that 0 < x < y. Because of the properties of excursion paths
of a generalized diffusion, we see that X under n hits y if and only if X hits x and in
addition X o @y, hits y. Hence, by the strong Markov property of n, we have,

n(Ty < 00) = n({T, < 00} 0 Or, N {T, < 00}) (46)
= PY(T, < oo)n(T, < o0) (47)
=P(Ty < To)n(T, < 00) (48)

= I0(T, < 0). (49)
y
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This shows that xn(7, < 00) equals a constant C in x € I \ {0}, so that we have
C
n(T, <o0)=—, xel\{0}. (50)
X
If [ € I, then we have
C=In(T; <o00) =In(Ty =00) = 1. (51)

The following theorem generalizes this fact and a result of [4].
Theorem 3.1 (See also [4]) In any case, C = 1.

Theorem 3.1 will be proved at the end of Sect. 6.
The following lemma is the first step of the proof of Theorem 3.1.

Lemma 3.2 (See also [4]) The constant C may be represented as

C = limn[X]. (52)
t}0

Proof By definition of C, we have

C= sup xn(T, < 00). (53)
xel\{0}

Sincen(t < Ty < 00) P n(Ty < oo0) ast | 0, we have
C = sup xsupn(t < Ty <o0) 54)
xel\{0} >0

=sup sup xn(t < Ty < o0) (55)
>0 xel\{0}

=lim sup xn(t < T, < 00). (56)
0 xer\{o}

Because of the properties of excursion paths of a generalized diffusion, we see that
X under n hits T, after ¢ if and only if X does not hit x nor O until ¢ and X o 6; hits x.
Hence, by the strong Markov property of n, we have,

sup xn(t < Ty <o00) = sup xn({Ty <oo}o b, N{t<TATo}) 67
xel\{0} x€I\{0}
= sup nrxPyx, (T, < Tp);t < Ty A T) (58)
xel\{0}
= sup n[X;t < Ty ATp. (59)
xel\{0}

We divide the remainder of the proof into three cases.
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(1) The case ! < oo. Since Ty < T; forx € I \ {0}, we have

(59) = n[X,;;1 < T) A To) (60)
=n[X; 1t <To] —n[X: T <1 < To]. (61)

Since n(T; < 00) < 0o, we may apply the dominated convergence theorem to
obtain

n[X; Ty <t <To] <n[Xi;Ti < o9] TS 0, (62)
t0

which implies Equality (52), since n[X;;t < To] = n[X/].
(ii) The case I’ < I = oo. The proof of Case (i) works if we replace [ by /',
(iii) The case ' = [ = oo. Since T, 1 00 as x — 00, we have

(59) = lim n[X;;t < Ty A Ty] = n[X;;t < T) (63)
X—>00
by the monotone convergence theorem. This implies Equality (52). O

4 The Renormalized Zero Resolvent

Forg > O and x € I, we set
hy(x) = r4(0,0) — ry(x, 0). (64)

Note that i, (x) is always non-negative, since we have, by (29),

h
1O _p 1y =iy, (65)
H(g)
The following theorem asserts that the limit A := limg h, exists, which will be

called the renormalized zero resolvent.

Theorem 4.1 Forx € I, the limit ho(x) := limg g hy(x) exists and is represented as

ho(x) = s(x) — g(x) = x — g(x), (66)

where

g(x) = mJ1(x) = mo /: m(y)dy. 67)
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The function hy(x) is continuous increasing in x € I, positive in x € I\ {0} and zero
at x = 0. In particular, if my = 0, then hy coincides with the scale function, i.e.,
ho(x) = s(x) = x

Proof For x € I', we have
hq(x) = H(@){1 — pg(x)} = x — qH(q)J py(x) o moJ1(x), (68)

where we used the facts that 0 < p,(x) < I and p,(x) — 1 — (= 1if my > 0) as
g | 0 and used the dominated convergence theorem. If / € I, we have

hy(l) = r,(0,0) = H(q) — 1, (69)
g0

and hence we obtain sy(l) = I, which shows (66) for x = [, since 7y = 0 in this
case.

It is obvious that kg is continuous. If 7y = 0, then hy(x) = x is increasing in
x € I and positive in x € I\ {0}. If 7y > 0, then we have mom(y) < 1 forally € /
and mom(y) < 1 forall y < I, so that ho(x) is increasing in x € I and positive in
x € I\ {0}. The proof is now complete. O

Example 4.2 Let 0 < I’ < [ = oo and let m(x) = min{x,['}. In this case, M is
a Brownian motion on [0, '] where both boundaries 0 and /' are regular-reflecting.
Then we have

U 2
ha(x) = ;sinz—;, ho() =x= 5. xe[0.0). (70)
Note that we have g = 1/m(oc0) = 1/I' and
6u() = cosh . /gx for x € [0,7], 1)
o, (1) + (;S;(l’)(x =1l forxe (I',00),
V() = sinh/\/ﬁx/\//ﬁ/ forx € [0,7], 72)
Yol) + VL) x—1) forx e (I, 00),

H(q) = (73)

1
J/qtanh /gl ’
We study recurrence and transience of 0.
Theorem 4.3 For M, the following assertions hold:

(i) O is transient if and only if | < oo. In this case, it holds that

P(Ty = 00) = %C forxel. (74)
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(ii) 0 is positive recurrent if and only if my > 0. In this case, it holds that

ho(x)

To

]P)x [TO] =

forx el (75)

(iii) 0 is null recurrent if and only if | = oo and wy = 0.

Although this theorem seems well-known, we give the proof for completeness of
the paper.

Proof
(i) By the formula (21), we have, for x € I’,

— (e -1 =7
(76)

Pu(Ty = 00) = lim Py[1 — e=11] = lim] Y2
q40 a0 | H(q)

Hence O is transient if and only if [ < oco. If x = [ € I, it is obvious that
P)(Typ = oo0) = 1. This proves the claim.

(i) Since (1 —e™)/x 1 1 as x | 0, we may apply the monotone convergence
theorem to see that

1 h h
P, [To] = lim ~P,[1 — e~70] = lim o) _ folx) (17
0 q

alo gry(0,0)  mp

for x € I. This shows that P, [T)] < oo if and only if 7y > 0, which proves the
claim.
(iii) This is obvious by (i) and (ii). |

We illustrate the classification of recurrence of 0 of Theorem 4.3 as follows:

=00 < o0
w9 =0 (1) Null recurrent (3) Transient
79 >0 (2) Positive recurrent Impossible

(1) 7 is type-1-natural
(2) I is type-2-natural, entrance or regular-reflecting
(3) I’ is type-3-natural, exit, regular-elastic or regular-absorbing

5 Various Conditionings to Avoid Zero

We prove the three theorems concerning conditionings to avoid zero. We need the
following lemma in later use.
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Lemma 5.1 For any stopping time T and for any x € 1, it holds that
PU[X7; T < o0] < x. (78)

Proof By [2, Proposition 11.2.8], it suffices to prove that PY[X;] < x for all # > 0.
Note that x < liminf, o P[X,] for all x € I by Fatou’s lemma. By the help of [2,
Corollary I1.5.3], it suffices to prove that

PO[X7,: Tx <oo] <x forxel\K (79)

for all compact subset K of 1.

Let K be a compact subset of / and let x € I \ K. Let a = sup(K N (0,x)) U {0}
and b = inf(K N (x,)) U {I}. Since 0 and [ are traps for P, we have Tx = T, A T},
on {Tx < oo}, PY-a.e. and thus we obtain

P[Xr,; Tk < 00] < PU[X7,a1,] = aP(T, < Tp) + bP(T, > Tp) = x, (80)

which proves (79) for x ¢ K. Hence we obtain the desired result. O
First, we prove Theorem 1.1.
Proof of Theorem 1.1

(i) Suppose that //(= 1) is entrance or natural. By the strong Markov property, we

have
aP[Fr; T < T, < Ty] = aPy[FrPx, (Ta < To); T < Ta A To) (81)
= PX[FTXT; T < Ta AN T()] (82)
= POFXr: T < T, (83)

since X7 = 0 on {T > To}, PY-a.s. By the fact that li7o7,3; = lir<00}, Pl-a.s.
and by Lemma 5.1, we may thus apply the dominated convergence theorem to
see that (83) convergesas a 1 [ to IP’E[FTXT; T < o0]. Since aP (T, < Tp) = x,
we obtain (2).

(ii) Suppose that ' is regular-elastic, regular-absorbing or exit. By the strong
Markov property, we have

l]P)x[FT; T<T < To] = ZPX[FTPXT(TZ < To); T <T; N To] (84)
= P[Fr X T < T)). (85)
Since P,(T; < Ty) = x/I, we obtain (2).

(iii) In the case where I is regular-reflecting, the proof is the same as (ii) if we
replace [ by ', and so we omit it. O

Second, we prove Theorem 1.2.
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Proof of Theorem 1.2 By McKean [17] (see also [29]), we have the following facts.
For y € R, let ¥, be the solution of the integral equation ¥, = s + yJ,. Then we
have the eigendifferential expansion

e = [ @ 0w o) (56)

for the spectral measure 6. We now have

P.(Ty € dt Ty € dt
MED_ [ ewsan. "EER - [ o)

dr (—00.0) dr (—00.0)

(87)
and, for r > 0,
. P(To > 1) . n(Typ>t—r) _
Iim ———= =1 , lim ———= =, 88
=00 n(Ty > 1) «) o0 n(Ty > 1) ¢ (88)

We note that y, equals the supremum of the support of € and that hy = ¥, . If I’ is
natural, exit, regular-absorbing or regular-elastic, we see that yx = 0 and . = s.
By the strong Markov property, we have

PFrT <t < To) =P Fr Py, (To > t —1)|,—p: T < 1]. (89)
Since we have

1
n(Ty > 1) = n(Ty < Ty, Too b, >1) = =Py(T > 1), (90)
’ y

we have Py(Ty > t —r) < yn(Ty > t — r). Hence, by Lemma 5.1 and by the
dominated convergence theorem, we obtain

lim ———P[Fr;T <t < To] = P)[Fre " h(Xr): T < o0]. 91)
t—o0o n(Ty > 1)

Dividing both sides of (91) by those of the first equality of (88), we obtain (3). 0O

Third, we prove Theorem 1.3.

Proof of Theorem 1.3 By (65), we have

H(q)Px(eq < To) = hy(x) w ho(x). 92)
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Note that
o0
]P)X[FT; T < e; < T()] =P, [FT/ 1{,<T0}qe_‘”dt:| 93)
T
o
= ]P)x [FTe_qT/ 1{;+T<T0}qe_q’dt:| (94)
0
=P [Fre e, + T < Ty (95)
=P [Fre™ L, <p,y 0 0: T < To] . (96)

By the strong Markov property, we have

H(@Q)P[Fr: T < ey < To] = H(q)P:[Fre™Px, (e, < To): T < Ty (97)
= PY[Fre " hy(X7): T < o0], (98)

since hy(X7) = 0 on {T > To}, P%-a.s. Once the interchange of the limit and the
integration is justified, we see that (98) converges as g |, 0to P[Frho(X7); T < o0,
and hence we obtain (4).

Let us prove hy(x) < xforg>O0andx € I.If x € I, we use (19) and we have

hy(x) = H(@){1 — p,(0)} = x — gH(@)Ipy(x) < x. 99)

If I € I, we have hy(l) = H(g) < I. We thus see that the integrand of (98) is
dominated by X7. By Lemma 5.1, we thus see that we may apply the dominated
convergence theorem, and therefore the proof is complete. O

6 Invariance and Excessiveness

Let us introduce notation of invariance and excessiveness. Let 4 be a non-negative
measurable function on E.

(i) We say h is a-invariant for M° (resp. for n) (a € R) if e ¥ P[h(X,)] = h(x)
for all x € E and all + > O (resp. there exists a positive constant C such that
e *n[h(X,)] = C forall ¢ > 0).

(ii) We say his a-excessive for M° (resp. for n) (a > 0) if e *'P[h(X,)] < h(x) for
all x € E and all t > 0 and e *'P°[h(X,)] — h(x) as t | O (resp. there exists a
positive constant C such that e™*'n[h(X;)] < C for all ¢ > 0 and n[h(X,)] — C
ast | 0).

(iii) We say h is invariant (resp. excessive) when h is O-invariant (resp. 0-excessive).
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We give the following remarks.

(i) As a corollary of Theorem 1.2, the function /. is yx-invariant for M°.
(i) As a corollary of (i), the function s is invariant for M* when I’ for M is natural,
exit, regular-absorbing or regular-elastic.
(iii) As a corollary of Lemma 5.1, the function s is excessive for MO when I for M
is entrance or regular-reflecting.
(iv) As a corollary of Theorem 1.3, the function Ay is excessive for MPO.

In this section, we prove several properties to complement these statements.
Following [8, Sect. 2], we introduce the operators

_ o St —flx—¢)
D (x) = sg}?o m(x +¢e) —m(x—¢g’) (100)

whenever the limit exist. Note that f(x) = ¥,(x) (resp. f(x) = py(x)) is an
increasing (resp. decreasing) solution of the differential equation D,,Dsf = qf
satisfying f(0) = 0 and D, f(0) = 1 (resp. f(0) = 1 and D, f(0) = —1/H(g)).

Theorem 6.1 The function hy is y«-invariant for n when U for M is entrance or
regular-reflecting.

Proof By [7, Sect. 12]), we see that if D,,D,f = F and D,,D;g = G then
D, {gDsf —fDsg} = gF —f G. (101)
Hence we have

(g =y )¥ypg = Dm{WY*DSPq - quxl/fy*} . (102)

Integrate both sides on I’ with respect to dm, we obtain
@=70) [ ¥ 0p, @) = 1. (103
1/

where we used the facts that p,(0) = ¥, (0) = 1, ¥,,(0) = ¥, _(I') = 0, ¥, (/') <
oo and p;(I') = 0. This shows that

Ryja(0)
H(qg)

Nyhi =

| s o = (104)

qg—7vs

Hence we obtain e 7*'n[h«(X;)] = 1 for a.e. t > 0. For 0 < s < ¢, we see, by the
yx-invariance of A, for M°, that

e n[he(X)] = e n[Py [ha(Xi—9)]] = €77 n[ha(X,)], (105)
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which shows that 1 — e "*'n[h«(X;)] is constant in # > 0. Thus we obtain the
desired result. O

For later use, we need the following lemma.

Lemma 6.2 For0 < p < g, it holds that

H(p)
/(OJ PO 0N < s P (106)

Consequently, it holds that R;wp (x) < o0.

Proof Let x < I'. Using the fact that 0p = 0 and the resolvent equation, we have

/ Py ()dm(y) < / Py H(P)d()dm() (107)
(0,x] (0,x]
< oG L0y oy
1 7,(0,x) — ry(0,x)
— . 109
H(q)pp(x) q—p (109)
RO H(p) o)

~ H(@)py(x)(g—p)  H(g)(g—p)

Letting x 1 /', we obtain (106). O
We compute the image of the resolvent operators of Ay.

Proposition 6.3 For g > 0 and x € I, it holds that

M@ 50 m

Ryho(x) = = (111)
h
ROho(x) = 0w _ ”—gm —e~4T0), (112)
q
1 o
Njhg = — — ———. (113)
g ¢H(Q)

Proof Suppose x € I'. Let 0 < p < ¢g/2. On one hand, by the resolvent equation,
we have

Ryhy(x) = 1,(0.0) /I (e, y)in(dy) — /, ()1 (v, 0)iin(dly) (114)

_ 7(0.0)  1p(x.0) = ry(x.0) (115)
q q—p
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_h® + rg(x.0)  pH(p)

g-r q-r q(q@—p)
N ho(x) N rq(x,0) 3 @'
plo g q q?

(116)

(117)

On the other hand, for y € I’, we have

hp(y) = H(p){1 — pp (")} = ¥p(y) = H(p){dp(y) — 1} = ¥g2(y). (118)

By Lemma 6.2, we see by the dominated convergence theorem that R h,(x) —
R;ho(x) as p | 0. Hence we obtain (111) forx € I'.
Suppose [ € I and x = [. Then we have

qRqho(D) = gho(Dry (1, Himn({1}) = ho(D), (119)

which shows (111) for x = [, since r,(/,0) = 0 and mp = 0 in this case. Thus
we obtain (111). Using (41), (38), (111) and (29), we immediately obtain (112) and
(113). O

We now obtain the image of the transition operators of /.

Theorem 6.4 Fort > 0 and x € 1, it holds that
t
FOllo (X)) = ho(x) — 70 / Py(s < To)ds. (120)
0
t
nlho(X)] =1— nO/ ds/ e o™ (df). (121)
0 [0,00)

Consequently, for M° and n, it holds that hy is invariant when my = 0 and that hy is
excessive but non-invariant when 1oy > 0.

Proof By (112), we have

ho(x) o
q

o0
RYho(x) = / e IP.(1 < Tp)dt, (122)
0

which proves (120) for a.e. > 0. By Fatou’s lemma, we see that P°[y(X,)] < ho(x)
holds forall t > O and all x € I. For 0 < s < t, we have

POlho(X,)] = PY[PY [ho(Xi—»)]] < PY[ho(X,)]. (123)

This shows that # — P%[h(X,)] is non-increasing. Since the right-hand side of (120)
is continuous in # > 0, we see that (120) holds for all ¢ > 0.
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By (113), we have

1 o 1
Noho = = = 20 o* (df) (124
4 9 g Joooyqa+é
1 o0
=Lom P [ etora, (125)
q q Jo [0,00)

which proves (121) for a.e. > 0. For 0 < s < ¢, we have
n[ho(X)] = n[P [ho(Xi—5)]] < nlho(X,)]. (126)

from which we can conclude that (121) holds for all ¢ > 0. O

We have already proved that s is invariant for M* and n when 9 = 0. We now
study properties of s in the case where 7y > 0. In the case (= o0) is entrance,
the measure Py denotes the extension of M starting from /' constructed by a scale
transform (see also Fukushima [10, Sect. 6]).

Theorem 6.5 Suppose wy > 0. Then the following assertions hold:

(i) If U is type-2-natural, then the scale function s(x) = x is invariant for M* and
n.
(ii) If U is entrance or regular-reflecting, then, for any ¢ > 0 and any t > 0,

X Ye(x)
Rys() = = = ===y, (1), (127)
q q
1
Nys = —Py[l —e 9], (128)
q
n[X;] = Py(t < To), (129)
where
Pyle~4T0) if I'for M is entrance,
xq(I) = i r oy . . § . (130)
I\ 7D ()¢ ifl for M is regular-reflecting.

Consequently, s(x) = x is excessive but non-invariant for M° and n.

Proof By (19), we have, forx € I’,

M) = —
A0 =g 0 piam0) (13
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Since I’ = I when 7y > 0, we have

1 1
/I, PUONIMO) = =R, 1(0) = (132)

H(q) qH(q)

We write p,(I') = lim4y p,(x). Recalling g is defined by (67) and using (132), we
obtain

l/
Ng=m [ o [ oy PO (133)
T ' /
=2 [ asmwey (134
l/
=-= dm(y)/ Py (x)dx (135)
I/ y
=20 [ antp, ) = pu(1) (136)
) 1 ,
=) Iy . 137
i~ o] (137)

(i) If I’ is type-2-natural, then, by [12, Theorem 5.13.3], we have p,(I') = 0. By
(113), we obtain Nys = 1/q. Since ¢ — n[X;] is non-decreasing, we obtain
n[X;] = 1forall r > 0. We thus conclude that s is invariant for n. The invariance
of s for M° has already been remarked in the beginning of this section.

(ii) We postpone the proof of (127) until the end of the proof of Theorem 7.5. Let
us prove (128) and (129).

If /' is regular-reflecting, we have p, (') = Py[e™9"]. If /' is entrance, then we
may take limit as x 1 I’ and obtain

pg(l') := lim p, () = lim Pyle™"] = Pyle™"™] (138)
N N
(see Kent [14, Sect. 6]). Since mym(co) = 1, we obtain
1 o0
Nys = Ngho + Nyg = —Pr[l — e 0] = / e Py (t < Tp)dt. (139)
q 0

This proves (128) and r[X;] = Py(r < Tp) for a.e. t > 0. Since t — Py(t < Tp)
is continuous (see Kent [14, Sect. 6]) and by Lemma 5.1, we can employ the same
argument as the proof of Theorem 6.4, and therefore we obtain (129).

Suppose that s were invariant for M°. Then we would see that n[X,] =
n[]P’)O(Y [X;—s]] = n[X,] for 0 < s < t, which would lead to the invariance of s for
n. This would be a contradiction. O
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Remark 6.6 An excessive function £ is called minimal if, whenever u and v are
excessive and & = u 4 v, both u# and v are proportional to A. It is known (see
Salminen [23]) that s is minimal. We do not know whether /¢ is minimal or not in
the positive recurrent case.

We now prove Theorem 3.1.

Proof of Theorem 3.1 In the case where my = 0, we have hy(x) = x by
Theorem 4.1. Hence, by Theorem 6.4, we see that n[X;] — 1 as ¢t | 0, which
shows C = 1 in this case.

In the case where mp > 0, we obtain C = 1 by Theorem 6.5 and Lemma 3.2. The
proof is therefore complete. O

7 The h-Transforms of the Stopped Process

We study A-transforms in this section. For a measure p and a function f, we write
£ for the measure defined by fu(A) = [ LS.

Since hsx is ys-invariant, there exists a conservative strong Markov process
M" = {(X)rz0, (P}*)xer} such that

e " h (X))

P+ = = ="UP0 on.% fort>0andx €1\ {0}, (140)
By (x)
]P’g* =e "™h(X)n on.Z fort> 0. (141)
We set
mh* (x) = / he()2i(dy), s (x) = / P (142)
(0,x] c h* (y)2

where 0 < ¢ < I’ is a fixed constant, We define, for g > 0,

Py ()
i avihaiiéd forx,y € I\ {0},
ey) = Hho) v (143)

rq+y* (O’ y)
——=——"— forx=0andy e\ {0}
h(y)rg+y.(0,0)

Then, we see that rfj’* (x,y) is a density of the resolvent RZ* for M.
Theorem 7.1 For M"*, the following assertions hold:

(i) For ¢ > 0, ¢>h* = w"”* (resp. p = p";”*) is an increasing (resp.
decreasing) solutlon of Dmh* D f = qf satisfying f(0) = 1 and Dg.f(0) = 0
(resp. f(0) = oo and D f(0) = —1).

(ii) M"™ is the D, Dgs -diffusion.
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(iii) O for M"= is entrance.
(iv) U for M" is entrance when I for M is entrance;
U for M is regular-reflecting when I for M is regular-reflecting.

Proof (i) For ¢ € R and for any function % such that D, D;h exists, we see that

Dthyh(‘”‘W) = iDm{ths(w‘”‘)‘)} (144)
h h? h
1
= ﬁDm{hDsl//q+a - 1pq+0thh} (145)
_ _ DmDsh Ipq+o¢
_(q+a = )—h . (146)

Taking h = hy and & = y.. we obtain D, s D+ ¢>f1’* = 61¢Z*- In the same way we
obtain D, i« D pZ* = q,oZ*. The initial conditions can be obtained easily.

Claims (ii) and (iii) are obvious from (i).

(iv) Suppose that I’ for M is entrance or regular-reflecting. Then . is bounded,
so that /' for M"* is of the same classification as ' for M. Since M"* is conservative,
we obtain the desired result. O

We now develop a general theory for the A-transform with respect to an excessive
function. Let & > 0 and let & be a function on I which is a-excessive for M° and n
which is positive on 7 \ {0}. Then it is well-known (see, e.g., [5, Theorem 11.9])
that there exists a (possibly non-conservative) strong Markov process M" =
{X)i>0, (P’;)Xel} such that

—ath X
BT()’)JPQ on .7 fort> 0andx € I\ {0}, (147)
X

Ly Ph = e h(X)n on.Z fort > 0. (148)

Ly P =

We note that M" becomes a diffusion when killed upon hitting /if [ € I. If « > 0,
we see by [5, Theorem 11.9] that the identities (147) and (148) are still valid if we
replace the constant time 7 by a stopping time 7T and restrict both sides on {7 < oo}.
We set

. o dy
m'(x) = / h(y)?m(dy), s"(x) = / — (149)
(0,x] c h()))z
where 0 < ¢ < I’ is a fixed constant, We define, for ¢ > 0,
}’0 X,

i % forx,y € I'\ {0},
) = by 150
(=0 T 0.9) (150

WO)ryra(0,0) %= Oandy € T\ {0}
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Then, we see that rf]’(x, y) is a density of the resolvent RZ for M".

Lemma 7.2 Suppose that h(x) < V441(x) for all ¢ > 0 and all x € I. Define
L'"(y) = L/(y)/h(y)* for y € I\ {0}. Then the process (L!(y)):>0 is the local time at
y for M" normalized as

o
]Pf;[/o e—’I’dLﬁ(y)} =ri(xy), xel yel\{0}. (151)
It also holds that
ERY)
Pile™h] = L2 xel yel\{0}. (152)
[=="] (v, y)

Proof Since ]P’i' is locally absolutely continuous with respect to ]P)g, we see that
(L!(y)):>0 is the local time at y for M". Let x,y € I\ {0}. For u > 0, we note
that n,(y) = inf{r > 0 : L,(y) > u} is a stopping time and that X, ,) = y if
nu(y) < oo.Let0 = up < u; < ... < uy,. Then, by the strong Markov property, we
have

o (™ h o| g—anye [
A [ souto| = el |

1j—1 ()

f(t)dLr(y)} ; (153)

in fact, we have (153) with restriction on {n,,(y) < T.} and then we obtain (153)
by letting ¢ | 0. Hence, by the monotone convergence theorem, we obtain

P"[ / f(t)dL”(Y)} m )lh(y) PE?[ / h e‘“’f(t)st(y)} . (154)

Letting f(#) = ™%, we obtain (151) for x € I \ {0}.

Letx = 0andy € I'\ {0}. For p > 0, we write e, for an independent exponential
time of parameter p. By the strong Markov property, we have

P4 [ / - e—qdeﬁ(y)] = Pi[e™ r)(Xe,.y)] - (155)
e

P

On one hand, we have
(155) < P{[rh(Xe,.y)] = / (0, x)r) (x, y)m'" (dx) (156)

- p%q g0 = 0.0} = 750.). (157)
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On the other hand, since we have h(x) < ¥,44(x), we have

Paral) oy, (158)

(155) = Bie™ie, < T] ZES — )

By the monotone convergence theorem, we obtain (151) for x = 0.
Using (151) and using the strong Markov property, we obtain

Ph[foo —qtdLh(y)] _ Z(x’y)
PA[[° e adLl ()]~ rh(.y)

Pile=?"] = (159)

This shows (152). ]

Theorem 7.3 For M®, i.e., the h-transform for h = s, the following assertions
hold:

(i) Forqg>0,¢, = w" (resp. py = ")ls an increasing (resp. decreasing) solution
of DysDgf = qf sansﬁmg f(0) = 1 and Dgsf(0) = 0 (resp. f(0) = oo and
Dsf(0) = —1).

(ii) M’ is the D, Dss-diffusion.

(iii) O for M’ is entrance.

(iv) I for M® is of the same classification as I for M when I < oo, i.e., I for M is
exit, regular-absorbing, regular-elastic or type-3-natural;
U for M® is type-3-natural when ' for M is natural;
' for M® is exit when I'(= oo) for M is entrance with fcoo x2dm(x) =
I for M® is regular-absorbing when I'(= oo) for M is entrance with
[ ¥2dm(x) < ooy
U for M® is regular-elastic when I' for M is regular-reflecting.

Proof Claim (i) can be obtained in the same way as the proof of (i) of Theorem 7.1.
Claims (ii) and (iii) are obvious from (i).
(iv) Suppose I’ for M is exit, regular-absorbing or regular-elastic. Then we have
I" < 0o, and hence it is obvious that I’ for M* is of the same classification as !’ for M.
Suppose I’ for M is natural. Then we have

/ / dm’ (x)ds*(y) = / xdm(x) > / / dxdm(y) = o0 (160)
I'>y>x>c I'>x>c I'>y>x>c

and
11,
// ds*(x)dm*(y) = / (— - —) y-dm(y) > / ydm(y) = oo
I'>y>x>c I'sy>c\C Y U'>y>2¢
(161)

Thus we see that I’ for M* is natural. Since s*(') = 1/c — 1/I' < oo, we see that /'
for M® is type-3-natural.
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Suppose /(= o0) for M is entrance. Then we have

/ /oo>y>x>c dm’ (x)ds*(y) = / /oo>y>x>C dxdm(y) + cfm(o0) — m(c)} < 0.
(162)

In addition, we have

/ / ds*(x)dm’(y) = / (l — l) y2dm(y), (163)
00>y>x>c oco>y>c\C Y

which is finite if and only if fL * x2dm(x) is finite.

Suppose I’ for M is regular-reflecting. Then it is obvious that /' for M? is regular.
Since M* has no killing inside [0, 1) and since M? is not conservative, we see that
M has Killing at /. Since we have

P(T, < ) = %]P’ZO,(TX <Tp) = % <1 forallx </, (164)
we see that M* has killing at I'. Thus we see that I for M* is regular-elastic. O
Remark 7.4 When !’ = oo and | comrme x?dm(x) < oo, the left boundary oo is called

of limit circle type. See Kotani [15] for the spectral analysis involving Herglotz
functions.

Theorem 7.5 Suppose I' for M is entrance or regular-reflecting. For M?, it holds
that

Plle™%] = qu(’“)Xq(z’), g>0 xel'\{0}, (165)

where y,(I') is given by (130).

Proof Suppose !’ is entrance. Then we have

Ple%] = limP’[e="] = lim 2 - w"(x). (166)
AT
By [12, Theorem 5.13.3], we have
lim —— = lim L = py(I') = Pyle=i™)]. (167)
A Yg(v) ot Y (y)
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Suppose /(= 00) is regular-reflecting. Then we have

- tomaTyyps oty — 1D 1o

Pile™*] = Pile" P} [e™%] = D) F Ry () (168)
_ %(X) pq(l/)
== V) / Yy (x)xdm(x). (169)

Since Dm{l//; (x)x — ¥, (x)} = q¥,(x)x, we obtain

l/
g ()

Thus we obtain (165). O

/m] Vawdn(s) = L0 =0} = 1{ T )} (170)

We now give the proof of (127).
Proof of (127) Note that

1-Ple] =gq / dte ™ P > 1) = =~ / dre™"PY[X,] = —gR)s(x).
0 X Jo X
171)

Combining this fact with (165), we obtain (127). ]

Theorem 7.6 For M™, i.e., the h-transform for h = h, the following assertions
hold:

(i) For g > O, (;SZO = 1//4 (resp. ,0 = p") is an increasing (resp. decreasing)
solution of D, D, h()f = qf sansfylng f(0) = 1 and Dyof(0) = 0 (resp.
f(0) = oo and Dgf (0) = —1).

(ii) MM js the D, 1o D o -diffusion with killing measure ”" dmh0

(iii) O for M" s entrance;
(iv) U for M™ is natural when I for M is type-2-natural;
U for M is entrance when I for M is entrance;
U for M is regular when l' for M is regular-reflecting.

(For the boundary classifications for diffusions with killing measure, see, e.g., [13,
Chap. 4].)

Proof Claim (i) can be obtained in the same way as the proof of (i) of Theorem 7.1.
@ii) For f = w" or f = ~L, we have

(D Dy — @)f — o (172)
ho

since D,,Dshg = —mp. This shows (ii).
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Claim (iii) is obvious from (i).
(iv) Suppose I’ for M is type-2-natural. Then it is obvious that lim,4 pZ" (x) =0.
Since we have D, {hop), — pghy}t = (qho + 70)pg, We have

Dy py’ (x) = (hop; = pghp) () = =1 + |~ (gho(x) + m0)py(x)dm(x). ~ (173)

(0.x]
Hence, by Proposition 6.3, we obtain
1
lim Do p (x) = —1 + ——R,(gh. 0) = 0. 174
fim Do pg (*x) + H@) 4(qho + 70)(0) (174)
Thus we see that  for M™ is natural.
Suppose I’ for M is entrance. Note that
ho(x
o) :x/ dm(2) +/ zdm(z). (175)
TTo (x,00) (0,x]

Since we have f(o o) zdm(z) < oo, we see that

ho(l') := liTr?ho(x) = 710/ zdm(z) < oo. (176)

(0,00)

This shows that 7 for M’ is of the same classification as I’ for M.
The last statement is obvious. ]

Remark 7.7 General discussions related to Theorems 7.3 and 7.6 can be found in
Maeno [16], Tomisaki [27] and Takemura [26].
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h-Transforms and Orthogonal Polynomials

Dominique Bakry and Olfa Zribi

Abstract We describe some examples of classical and explicit A-transforms as par-
ticular cases of a general mechanism, which is related to the existence of symmetric
diffusion operators having orthogonal polynomials as spectral decomposition.

MSC classification: 33C52, 31C35, 35K05, 60J60, 60J45

1 Introduction

When the first author of this paper was a student, he was attending the DEA course
of Marc Yor, about Brownian motions and the many laws that one would compute
explicitly for various transformations on the trajectories. It looked like magic, and
was indeed. In particular, the fact that conditioning a real Brownian motion to
remain positive would turn it into a Bessel process in dimension 3, that is the norm
of a three-dimensional Brownian motion, seemed miraculous. Of course, there are
much more striking identities concerning the laws of Brownian motion that one may
find in the numerous papers or books of Marc Yor (see [26] for a large collection of
such examples). The same kind of conditioning appears in many similar situations,
and specially in geometric models. This is related to the fact that we then have
explicit & (or Doob)-transforms.

This relation between conditioning and A-transform was first put forward by
Doob [11], and is described in full generality in Doob’s book [12]. However, this
kind of conditioning has been extended in various contexts, and very reader friendly
explained by Marc Yor and his co-authors, in particular in [27, 29]. The fact that
conditioning a d-dimensional model to remain in some set produces a new model
in the same family (whatever the meaning of “family”’), moreover with dimension
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d+2, appears to be a general feature worth to be further understood. It turns out that
the most known models have a common explanation, due to an underlying structure
related to orthogonal polynomials. The scope of this short note is to shed light on
these connections.

The paper is organized as follows. In Sect. 2, we present the langage of symmetric
diffusion operators that we shall use in the core of the text, and explain what
h-transforms are. Section 3 gives a few classical and known examples (some of
them less well known indeed). They all follow the same scheme, explained in
Sect. 4, which provides the general framework, related to the study of orthogonal
polynomials which are eigenvectors of diffusion operators. The last Sect. 5 provides
further examples, as applications of the main result, inspired from random matrix
theory.

2 Symmetric Diffusion Operators, Images and h-Transforms

2.1 Symmetric Diffusion Operators

We give here a brief account of the tools and notations that we shall be using
throughout this paper, most of them following the general setting described in [4].
A symmetric diffusion process (£;) on a measurable space E may be described by
its generator ., acting on a good algebra o/ of real valued functions (we shall be
more precise about this below). The diffusion property is described through the so-
called change of variable formula. Namely, wheneverf = (fi,:-- .f,) € &7, and if
@ : R? — R is a smooth function such that @(f) € o together with 9;®@(f) and
0;9(f), Vi,j =1---n, then

L@(f) =Y 5L + Y 4PN f). )

i

where I'(f, g) is the square field operator (or carré du champ), defined on the
algebra <7 through

P(f.8) = 3 (£08) ~F2 () ~ 82 (N).

This change of variable formula (1) is some “abstract” way of describing a
second order differential operator with no O-order term. It turns out that the operators
associated with diffusion processes satisfy I"(f,f) > 0 for any f € 7, and that the
operator I is a first order differential operator in each of its argument, that is, with
the same conditions as before,

r@(f).9) =Y _ PN (f.9). )
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In most cases, our set E is an open subset £2 C R”, and the algebra .« is the set
of smooth (that is ¥°°) functions §£2 +— R. Then, using formula (1) for a smooth
function f : 2 — R instead of @ and (xy,--- ,x,) instead of (fi,--- ,f,), we see
that . may be written as

Z(f) =) '@ + Y b, 3)
ij i
and similarly

r(f.g) =Y g'(x)fos.

ij

In this system of coordinates, g/ = I'(x;, x;) and b’ = Z(x;). The positivity of the
operator I just says that the symmetric matrix (g¥)(x) is non negative for any x €
£2, which is usually translated into the fact that the operator is semi-elliptic. In the
same way, the absence of constant term translates into the fact that for the constant
function 1, that we always assume to belong to the set .27, one has .Z’(1) = 0, which
is an easy consequence of (3).

It is not always wise to restrict to diffusion operators defined on some open
subsets of R”. We may have to deal with operators defined on manifolds, in which
case one may describe the same objects in a local system of coordinates. However,
using such local system of coordinates in not a good idea. In Sect. 5.1 for example,
we shall consider the group SO(d) of d-dimensional orthogonal matrices. The
natural algebra <7 that we want to use is then the algebra of polynomial functions
in the entries (m;) of the matrix, and the natural functions @ acting on it are
the polynomial functions. Since the polynomial structure will play an important
role in our computations, it is not wise in this context to consider local system of
coordinates (the entries of the matrix cannot play this rdle since they are related
through algebraic relations).

Coming back to the general situation, the link between the process (£;) and the
operator .Z is that, for any f € o7,

.mmﬂm—ﬁzm@m

is a local martingale, and this is enough to describe the law of the process starting
from some initial point & = x € E, provided the set of functions . is large enough,
for example when .2 contains a core of the so-called domain of the operator .7, see
[4], Chap. 3, for more details.

The law of a single variable &;, when & = x, is then described by a Markov
operator P;, as

P(f)(x) = Ex(f(§)).
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and, at least at a formal level, P, = exp(z.Z) is the semigroup generated by .Z.

In most of the cases that we are interested in, the operator . will be symmetric
in some IL?(u) space. That is, for some subset o7, of ., which is rich enough to
describe P, from the knowledge of . (technically, as mentioned above, a core in
the domain 2(.¢)), one has, for f, g in &

[rz@an= [ szman.

This translates into the integration by parts formula

[rz@an=- [ ro.oau. 4

For an operator given in an open set £2 C R” by the formula (3), and when the
coefficients g¥ and b’ are smooth, one may identify the density p(x) of the measure
W, when p(x) > 0, by the formula

1 N
L) = — Y 0i(pghof).
=5 §ij: (ps"3))

which gives

b = (s"0;log p + d;g"). (5)

J

an easy way to recover p up to a multiplicative constant provided (g¥) is non
degenerate, that is when .Z is elliptic. We call this measure p the reversible measure.
Indeed, whenever the measure u is a probability measure, and under this symmetry
property, then the associated process (&;) has the property that, whenever the law
of & is u, then for any ¢t > 0 the law of (§—;,s € [0,7]) is identical to the law of
(&, 5 € [0, 1]). This justifies in this case the name “reversible”, which we keep in the
infinite mass case, following [4].

Through the integration by parts formula, the operator .Z (and therefore the
process and the semigroup themselves, provided we know something about a core
in the domain), is entirely described by the triple (£2, I', i), called a Markov triple
in [4].

Thanks to the change of variable formula (1), it is enough to describe an operator
in a given system of coordinates (x) to describe .Z(x') = b’ and I'(x',¥) = g¥.
Indeed, this determines .Z(®(x)), for any @ at least €. As outlined earlier, we
do not even require that these functions x' form a coordinate system. They may be
redundant (that is more variables than really necessary, as for example in the SO(d)
mentioned above), or not sufficient, provided the computed expressions depend only
on those variables, as we do for example in Sect. 5.
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Moreover, it may be convenient in even dimension to use complex variables, that
is, for a pair (x, y) of functions in the domain, to set z = x + iy and describe .Z’(z) =
Lx)+iZ©y), I'(z,2) = I'(x,x) — I'(y,y) +2il(x,y) and I'(z,z2) = I'(x,x) +
I'(y,y), and similarly for many pairs of real variables, or a pair of a real variable
and a complex one. This will be used for example in Sects. 3.4 and 5.2. However, we
shall be careful in this case to apply -Z only to polynomial functions in the variables
(x,y), replacing x by %(z—f—Z) and y by %(Z—Z). Then, the various change of variable
formulae (on .Z and I') apply when considering z and z as independent variables.

As we already mentioned, it may happen that we can find some functions X;, i =
1,---, k such that, for any i, £ (X;) depend only on (X, --- , X;) and that the same
is true for I"(X;, X;) for any pair (i, /). Then, writing X = (X1, -+, Xi) € RX, setting
B'(X) = Z(X') and GY(X) = I'(X;, X;), one writes for any smooth function @ :
R > R, Z(@(X)) = Z(@)(X), where

Z =Y "GIX)%+ Y BiX)d;.
ij i

which is a direct consequence of formula (1). When such happens, the image of the
process (§;) with generator 2" under the map X is again a diffusion process (é,) with
generator .Z. In this situation, we say that .Z is the image of .Z through the map X.

Some caution should be taken in this assertion concerning the domains of the
operators, but in the examples below all this will be quite clear (our operators will
mostly act on polynomials). When ¢’ is symmetric with respect to some probability
measure (, then £ is symmetric with respect to the image measure i of u through
X. With the help of formula (5), it may be an efficient way to compute fi.

2.2  h-Transforms

Given some diffusion operator .Z on some open set in RY, we may sometimes find
an explicit function /4, defined on some subset §2, of §2, with values in (0, co) such
that .Z(h) = Ah, for some real parameter A > 0. We then look at the new operator
RN acting on functions defined on £2;, described as

20 = 5 L) - 3f

is another diffusion operator with the same square field operator than .Z. This is the
so-called & (or Doob’s) transform, see [4, 11, 12]. Indeed, thanks to formula (1), one
has

L) = ZL(f) + 2T (logh.f).
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When the operator . is symmetric with respect to some measure p, then £ is
symmetric with respect to du;, = h*du.

Considering functions with support in £2;, the application D : f +— hf is
an isometry between L?(u;) and L2(u). It is worth to observe that .Z"® =
D~ (% — Md)D: every spectral property (discreteness of the spectrum, cores, etc.)
is preserved through this transformation.

For example, if f € IL?(u) is an eigenvector of . with eigenvalue —A,, then f/h
is an eigenvector of .2 with eigenvalue —(1; + A).

Also, at least formally, for the semigroup P;h) associated with 2™ one has

PO = P,

In general, one looks for positive functions # which vanish at the boundary of
£21, and there is a unique such function A satisfying .2 (h) = —Ah, usually called the
ground state for .Z on £2,. This situation appears in general in the following context.
When & is elliptic on £2 C R”, and whenever £2; is bounded, with 5_21 C £2, there
one may consider the restriction of .Z on £2;. If we impose Dirichlet boundary
conditions, then the spectrum of this operator consists of a discrete sequence 0 >
Ao > A; > -+ > A,---. The eigenvector h associated with Ag is strictly positive
in £2; and vanishes on the boundary 952;. This is the required ground state / of the
operator .Z on £2;.

In probabilistic terms, the operator .Z® is the generator of the process (&),
conditioned to stay forever in the subset £2;. However, this interpretation is not
that easy to check in the general diffusion case. We shall not be concerned here with
this probabilist aspect of this transformation, which is quite well documented in the
literature (see [12] for a complete account on the subject, and also [27, 29] for many
examples on conditioning), but rather play around some algebraic aspects of it in
concrete examples. However, for the sake of completeness, we shall briefly explain
the flavor of this conditioning argument in the simplest example of finite discrete
Markov chains, where all the analysis for justification of the arguments involved
may be removed.

For this, let us consider a finite Markov chain (X},) on some finite space E, with
probability transition matrix P(x, y), (x,y) € E?, which would play the rdle of P, in
the diffusion context. For simplicity, let us assume that P(x,y) > O for any (x,y) €
E?. Consider now a subset A € E, and look at the restriction P, of the matrix P to A x
A. The Perron-Frobenius theorem asserts that there exists a unique eigenvector Vj
for P4, associated with a positive eigenvalue 11, which is everywhere positive. This
eigenvector Vj corresponds to the ground state & described above in the diffusion
context. Then, one may look at the matrix Q on A x A, defined through

_% )
HoVo(x)

which is a Markov matrix on A x A. This Markov matrix Q plays on A the rdle of
exp(-Z™) when h is the ground state on £2;.

O(x,y)

P(x,y),
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Fix nown > 0 and N > n. Let Ay be the event (Xy € A,---,Xy € A). For the
initial Markov chain (X,,) with transition matrix P and for Xy = x € A, consider now
the law of (Xy, - - - , X;;) conditioned on Ay. When F(Xy, - -- , X)) = fo(Xo) - - - f(Xn),
it is quite easy to check that

E(Fy. - X)lay) _
E(14,) ON(1/Vp)(x)

E(F (X0, X) 0V (1/ Vo) (Xa) )

where E denotes the expectation for the law of a Markov chain with matrix
transition Q.

Now, using the irreducibility of the Markov matrix Q, one sees that, when N
goes to infinity, both V™" (1/Vy)(X,,) and Q" (1/Vy)(x) converge to [ Vlodv, where
v is the (unique) invariant measure for the matrix Q. In the limit, we recover the
interpretation of the transition matrix transition Q as a matrix of the conditioning of
the Markov chain (X)) to stay forever in A.

Coming back to the general case, it is worth to observe that, at least formally,
the transformation . +— £® is an involution. Indeed, £ (}) = —% and
(ZMy(/h = £ However, in the usual context of ground states, the interpretation
of the associated process as a conditioning is more delicate, since 1/h converges to
infinity at the boundary of the domain £2;.

It is not in general easy to exhibit explicit examples of such ground states #,
but there are many very well known examples in the literature. We shall show that
in the realm of diffusion processes which are associated to families of orthogonal
polynomials, there is a generic argument to provide them, and that this family of
examples cover most of the known ones, either directly, either as limiting cases.

Remark 1 Observe that, beyond the case where # is a positive eigenvector for .2,
one may use the same transformation for any positive function 4. One m;y then
look at M (f) = L.2(hf) = Z(f) + 2 (logh.f) + Vh, where V. = L2 In
particular, with operators in R” of the form .Z(f) = A(f)+V log V-Vf, which have
reversible measure Vdx, one may use h = V=1/2_ which transforms in an isospectral
way .Z into a Shrodinger type operator Af + Vf, associated with Feynman-Kac
semigroups. This allows to remove a gradient vector field, the price to pay is that
one adds a potential term. This technique may be used to analyse spectral properties
of such symmetric diffusion operators through the techniques used for Shrodinger

operator (see [4], for example).

3 Some Examples

3.1 Bessel Operators

We start form the Brownian motion in R. The operator .Z is given by .Z(f) = % .
Here, I'(f.f) = %f’z and p is the Lebesgue measure. If we consider £2 = (0, co)
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and h = x, one has A = 0 and 2" (f") = 1(f” + 2f’). This last operator is a
Bessel operator %3. More generally, a Bessel process Bes(n) with parameter n has
a generator in (0, co) given by

n—1

1
Pu(f) = E(f” + Tf/)’

and it is easily seen, when n > 1 is an integer, to be the generator of ||B;|, where
(By) is an n-dimensional Brownian motion (indeed, %, is the image of the Laplace
operator %A under x — ||x||, in the sense described in Sect.2). This %5 operator
is also the generator of a real Brownian motion conditioned to remain positive.
Observe however that the function 4 is this case does not vanish at the infinite
boundary of the set (0, c0), and that the probabilistic interpretation would require
some further analysis than the one sketched in the previous section.

From formula (5), it is quite clear that a reversible measure for the operator %,
is ¥ 'dx on (0, 00), which for n € N*, is also, up to a constant, the image of the
Lebesgue measure in R” through the map x — ||x]|.

This h-transform may be extended to the general Bessel operator. Indeed, for any
n > 0, one may consider the function %,(x) = x>~", for which %, (h,) = 0, and
then %’i,h”) = By p.

The change of %, into %4—, is perhaps more clear if we consider the generator
through the change of variable x + x2, that is if we consider the generator of the
process (£2) instead of the process (§;) with generator 4,. A simple change of
variable provides the image operator

Bo(f) = 20" + nf’, (©6)

for which the reversible measure has density p(x) = x”~2/2, and the function A is
nothing else than 1/p.

Under this form, we shall see that it is a particular case of a phenomenon
related to orthogonal polynomials, developed in Sect. 4, although here there are no
polynomials involved here, the reversible measure being infinite.

Remark 2 1t is not hard to observe that for 0 < n < 2, the process (&) with
associated generator %, and starting from x > 0 reaches O in finite time. Then,
Py, is the generator of this process conditioned to never reach 0. However, it is
well known that the Bessel operator is essentially self-adjoint on (0, co) as soon as
n > 3 (see [4], p. 98, for example). This means that the set of smooth function
compactly supported in (0, 00) is dense in the L? domain of %,. Since this is
a spectral property, it is preserved through A-transform and this also shows that
it is also essentially self-adjoint for any n < 1. In particular, there is a unique
symmetric semigroup for which the generator coincides with %, on the set of
smooth compactly supported functions. On the other hand, for 1 < n < 2, since
the associated operator hits the boundary in finite time, there are at least two such
semigroups with %, as generator acting on smooth functions, compactly supported
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in (0, 0o): the one corresponding to the Dirichlet boundary condition, corresponding
to the process killed at the boundary {x = 0}, and the one corresponding to
the Neumann boundary condition, corresponding to the process reflected at the
boundary. Through A-transforms, one sees then that there are also at least two
positivity preserving semi groups in the case 2 < n < 3, which may be a bit
surprising since then the associated process does not touch the boundary. However,
although the Dirichlet semigroup is Markov (P;(1) < 1), its h-transform is Markov
(P,(1) = 1), while the h-transform of the Neumann semigroup (which is Markov),
satisfies P,(1) > 1.

3.2 Jacobi Operators

This is perhaps the most celebrated case of known explicit A-transform, since it is
closely related in some special case to the Fourier transform on an interval. The
Jacobi operator on the interval (—1, 1) has generator

Sap(f) = A=) = ((@ + B)x+a—B)f

and is symmetric with respect to the Beta distribution on (—1, 1) which is C, g(1 —
X)L + x)Pdx, C..p being the normalizing constant. We always assume that
o, B > 0. There is a duality through A-transforms exchanging Z, g and _#>_q>—g,
the function 4 being (1 — x)'™*(1 — x)'~#, that is, as in the Bessel case in the
appropriate coordinate system, the inverse of the density measure.

In a similar way that the Bessel process may be described as a norm of a
Brownian motion, one may see the symmetric Jacobi operator (¢ = ) as an image
of a spherical Brownian motion in dimension 2«. Namely, if one considers the unit
sphere S" in R"*!, and looks at the Brownian motion on it (with generator Agn
being the Laplace operator on the sphere), and then one looks at its first component,
one gets a process on (—1,1) with generator .#"/>"/2. (We refer to Sect. 3.5 for
details about the spherical Laplacian, from which this remark follows easily, see
also [4, 31].) One may also provide a similar description in the asymmetric case,
when the parameters v and 8 are half integers. In this case, %, g is, up to a factor
4, the image of the spherical Laplace operator acting on the unit sphere S?**2f~!

through the function X : S22~ 1~ [—1, 1] defined, for x = (x1,+- , Xag428) €
R2a+2ﬂ as

20
X)) =-1+2) x.
i=1

The operator _#, g may be diagonalized in a basis of orthogonal polynomials,
namely the Jacobi polynomials. They are deeply related to the analysis on the
Euclidean case in the geometric cases described above. For example, when o =
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is an half-integer, then, for each degree k, and up to a multiplicative constant, there
exists a unique function on the sphere which depends only on the first coordinate
and which is the restriction to the sphere of an homogeneous degree k£ harmonic
polynomial in the corresponding Euclidean space: this is the corresponding degree
k Jacobi polynomial (see [4, 31] for more details). In other words, if Pi(x) is
one of these Jacobi polynomials with degree k corresponding to the case o =
B = n/2, then the function (x,--+ ,x,+1) — ||x||kPk(”§—‘”) is an homogeneous
harmonic polynomial in R"*!. A similar interpretation is valid in the asymmetric
case, whenever the parameters « and 8 are half-integers, if one reminds that the
eigenvectors of the Laplace operator on the sphere are restriction to the sphere of
harmonic homogeneous polynomials in the ambient Euclidean space (see [31]).

Fora = B = 1/2, ¢, p this is just the image of the usual operator f” on (0, )
through the change of variables 6 +— cos(6) = x. More generally, in the variable 6,
Y«.p may be written as

&> (a+p—Dcos(®)+a—p d
Sab = 4g2 sin(0) do’

For o« = B = 1/2, corresponding to the arcsine law, the associated orthogonal
polynomials P,ll/ 21/2 are the Chebyshev polynomials of the first kind, satisfying

prll/2,1/2(cos(9)) = cos(nb).

For« = B = 3/2, corresponding to the semicircle law, they correspond to the
Chebyshev polynomials of the second kind, satisfying the formula

sin(0)P3/%3/%(cos(0)) = sin(nd).

These formulae indeed reflect the h-transform between #1/21/2 and #3/2:3/2,

While PY/*"?(cos(9)) is a basis of L?((0, 7)., dx) with Neumann boundary condi-

tions, sin(@)Pz/z’?’/2 (cos(8)) is another basis of L. ((0, ), dx), corresponding to the

Dirichlet boundary condition. This is the image of the eigenvector basis for .£3/%:3/2
through the inverse 4 transform, the function 4 being in this system of coordinates
nothing else than (sin §) .

For n = 1, one gets the projection of the Brownian motion on the circle,
which is locally a Brownian motion on the real line, up to a change of variables.
The first coordinate x; on the sphere plays the role of a distance to the point
(1,0,---,0) (more precisely, arccos(x;) is the Riemannian distance on the sphere
from (1,0,---,0) to any point with first coordinate x;), and we have a complete
analogue of the case of the one dimensional Brownian motion. Namely,

Proposition 1 The Brownian motion on the half interval (identified with the circle)
conditioned to never reach the boundaries is, up to a change of variable, the radial
part of a Brownian motion on a three dimensional sphere.
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3.3 Laguerre Operators

This is the family of operator on (0, co) with generator
Ly () =x" + (@ —xf,
which is symmetric with respect to the Gamma distribution
du'® = Cox* e dx.

For ¢ > 0, the Laguerre family of operators is another instance of diffusion
operators on the real line which may be diagonalized in a basis of orthogonal
polynomials: these polynomials are the Laguerre polynomials, and are one of
the three families, together with Jacobi polynomials and Hermite polynomials, of
orthogonal polynomials in dimension 1 which are at the same time eigenvectors of
a diffusion operator, see [2]. The Laguerre operator is closely related to the Ornstein-
Uhlenbeck operator defined in (7), and plays for this operator the same rdle that the
one played by Bessel operators for the Euclidean Brownian motion.

It is indeed quite close to the Bessel generator under the form (6), and in fact
the Bessel operator may be seen as a limit of Laguerre operators under proper
rescaling. It is also a limit of asymmetric Jacobi operators, also under proper
rescaling (see [4]). The function h = x'™¢ satisfies Z4)(h) = (¢ — 1)h, and the
h-transform of Ly 18 L(o—a).

As mentioned above, when « is a half-integer n/2, the Laguerre operator may be
seen as the radial part of the Ornstein-Uhlenbeck operator in R"” with generator

POV = A —xV, (7

which is symmetric with respect to the standard Gaussian measure. More precisely,
fora = n/2, XOUf(@) = 2(.,2’”(0[)}‘)(@). It is therefore an image of the n-
dimensional Ornstein-Uhlenbeck operator in the sense of Sect. 2. In other words, the
Laguerre process with generator 2.%,,/») is nothing else than the squared norm of an
Ornstein-Uhlenbeck process in R". For « = 1/2, this corresponds to the modulus
of a one dimensional Ornstein-Uhlenbeck, that is the one dimensional Ornstein-
Uhlenbeck operator itself on (0, c0), and we get, as the particular case forn = 1/2,

Proposition 2 The law of an Ornstein-Uhlenbeck operator in dimension 1, condi-
tioned to remain positive is the same as the law of the norm of a three-dimensional
Orntein-Uhlenbeck operator.

3.4 An Example in R*

The following example, less well known, had been pointed out by Koornwinder
[22], not exactly under this form of h-transform, but in terms of duality between
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two families of orthogonal polynomials in dimension 2. It shows that the law of
a Brownian motion in the plane, conditioned not to reach the boundaries of an
equilateral triangle, has the law of the spectrum of an Brownian SU(3) matrix.

This example, closely related to root systems and reflection groups in the plane,
consists in observing the image of a planar Brownian motion reflected along the
edges of an equilateral triangle. This triangle generates a triangular lattice in the
plane, and this image is observed through some function Z : R?> ~ R? which has
the property that any function R? > R which is invariant under the symmetries
among the lines of the lattice is a function of Z. This image of R? through the
function Z is a bounded domain in R?, with boundary the Steiner’s hypocycloid.

The Steiner hypocycloid (also called deltoid curve) is the curve obtained in the
plane by rotating (from inside) a circle with radius 1 on a circle with radius 3. Is
is the boundary of a bounded open region in the plane which we call the deltoid
domain £2p. It is an algebraic curve of degree 4. Its equation may be written in
complex coordinates as {D(Z, Z) = 0}, where D is defined in Proposition 5.

Fig. 1 The deltoid domain

Consider the following application R? - R?, which is defined as follows. Let
(1,/,7) be the three third roots of units in the complex plane C, and, identifying R2
with C, let Z(z) : R? — R be the function

2 = 5(exp(1 - 2)) + expliGi-2) + exp(if-2))),

where z) - z; denotes the scalar product in R2.
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‘We have

Proposition 3 Let L be the lattice generated in the plane by the points with
coordinates My = (0,47/3) and M, = (27/3,27/~/3), and T the (equilateral)
triangle with edges {(0,0), M, M }.

1. The image of R? under the function Z is the closure 2p of the deltoid domain.
2. Z : R? — R? is invariant under the symmetries along all the lines of the lattice
L. Moreover, it is injective on the triangle T.

We shall not give a proof of this, which may be checked directly. We refer to [32]
for details. As a consequence, any measurable function R? — R which is invariant
under the symmetries of L may be written f(Z), for some measurable function f :
2 D R.

The particular choice of this function Z is due to the fact that the Laplace operator
in R? has a nice expression through it. Using complex coordinates as described in
Sect. 2, one has

Proposition 4 For the Laplace operator A in R? and its associated square field
operator I', one has

rz2)=2-7221Z72)=72-72
I'Z,2) =1/2(1-27), (3)
AQZ) =-Z,A(Z) = —Z.

This may be checked directly. One sees that the Laplace operator in R? has
an image through Z in the sense described in Sect. 2, given in Proposition 4. This
describes the generator of the Brownian motion in the plane, reflected along the lines
of this lattice, coded through this change of variables. One may express the image
measure of the Lebesgue measure on the triangle in this system of coordinates. With
the help of formula (5), we get

Proposition 5 Let D(Z,Z) = I'(Z,2)* — I'(Z,Z)I'(Z,Z), where I is given by
Eq.(8). Then,

1. D(Z,Z) is positive on 2p.

2. {D(Z,Z) = 0} is the deltoid curve (that is the boundary of 2p).

3. The reversible measure for the image operator described by (8) has density
D(Z,Z)~'/2 with respect to the Lebesgue measure.

4. If we write 7 = exp(i(1 - 2)), z2 = exp(i(j - 2)), z3 = exp(i(j - 2)), then

D(Z,Z) = —(z1 — 22)* (22 — 23)* (23 — 21)%/ (2%3%).

Remark 3 Observe that thanks to the fact that |z;] = 1 and 712,73 = 1, the
expression (z; — z2)2(z2 — z3)2(z3 —z1)%is always non positive. Moreover, given
a complex number Z in the deltoid domain §2p, there exist three different complex
numbers (z1, 22, z3) With |z;] = 1 and 717,73 = 1 suchthat Z = %(zl +22+23). They
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are unique up to permutation, and are the solutions of X> — 3ZX? 4+ 3ZX — 1 = 0.
Indeed, for such numbers z;, 22, z3,

= _ _ _ 1 1 1
Z=u+n+n=—4+—+—=28+202 +22-
1

One may now consider the family of operator .Z® defined through

rz,2)=z2-7221Z72)=72-72
I'Z,2) =1/2(1-27), )
LNZ) = —-AZ, LDZ) = -AZ,

which is symmetric with respect to the measure u; = D(Z,Z)**>/%dZ, with
support the set {D(Z,Z) > 0} (where dZ is a short hand for the Lebesgue measure
in the complex plane) as a direct (although a bit tedious) computation shows from a
direct application of formula (5) (see Sect. 4 for a proof in a general context which
applies in particular here).

This family of operators plays a rdle similar in this context to the one played
by the family _#, g for Jacobi polynomials introduced in Sect. 3.2 or for the family
£« introduced in Sect. 3.3 for Laguerre polynomials.

This density equation (5) indicates that, for any pair of smooth functions
compactly supported in {D(Z,Z) > 0}, the integration by parts (4) holds true.
Indeed, we have a much stronger result, which extends this formula to any pair of
smooth functions defined in a neighborhood of £2. This relies of some miraculous
property of 352 itself, which has as boundary equation {D(Z, Z) = 0} and for which

I'(Z,2)0;D + I'(Z,Z)3;D = —3ZD,

I'(Z.2)3;D + I'(Z.Z)d3D = —3ZD. (10
In particular, I'(Z, D) and I'(Z, D) vanish on {D = 0}. This is a sufficient (and
indeed necessary) for the integration by parts formula (4) to be valid for any
pair smooth functions restricted on the set {D > 0}, in particular for any pair of
polynomials (see [5]). Since on the other hand the operator .#*) maps polynomials
in (Z, Z) into polynomials, without increasing their total degrees, the restriction of
£ on the finite dimensional space of polynomials with total degree less than k
is a symmetric operator (with respect to the L?(u;)-Euclidean structure) on this
linear space. We may therefore find an orthonormal basis of such polynomials
which are eigenvectors for #M and therefore construct a full orthonormal basis
of polynomials made of eigenvectors for .Z%.

These polynomials are an example of Jack’s polynomials associated with root
systems (here the root system A»), see [15, 24], generalized by MacDonald [23-25],
see also [8, 17, 18], and for which the associated generators are Dunkl operators of
various kinds, see [14, 20, 21, 28, 30].
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For A = 4, it turns out that this operator is, up to a scaling factor 8/3, the
image of the Laplace (Casimir) operator on SU(3) acting on the trace of the matrix.
More precisely, on the compact semi-simple Lie group SU(3), we associate to each
element E in the Lie algebra ¢ a (right) vector field Xg as follows

Xe(f)(8) = 3i(f(ge™))=o-

Then, one chooses in the Lie algebra ¢ an orthonormal basis E; for the Killing form
(which is negative definite), and we consider the operator £ = ), Xéi. This is the
canonical Laplace operator on the Lie group, and it commutes with the group action,
from left and right: if L,(f)(x) = f(xg), and R,(f)(x) = f(gx), then XL, = L,.Z
and ZR, = R,.Z. For the Casimir operator acting on the entries (z;) of an SU(d)
matrix, one may compute explicitly this operator, and obtain, up to a factor 2, the
following formulae

L5V (zy) = —2—(d_l),fd+l)zk1, L5V () = —2—(d_l),fd+l)2k1

FSU(d)(Zkla qu) = _szqzrl + %ZklZmp I (zu, zrq) = Z(Skrglq - %Zklzrq)‘

(1)

A Brownian motion on SU(d) is a diffusion process which has this Casimir
operator as generator (there are of course many other equivalent definitions of this
Brownian motion).

On SU(3), if one considers the function SU(3) + C which to g € SU(3)
associates Z(g) = %trace (g), then one gets for this function Z and for this Casimir
operator, an image operator which is the operator %.Z @), where Z™ is defined
through Eq.(9). Of course, one may perform the computation directly, or use
the method described in Sect.5.2 to compute from the operator given of SU(d)
through formulas (11), the actions of the generator and the carré du champ on the
characteristic polynomial P(X) = det(XId — g) (see also [7] for another approach,
together with [6] for nice connections with the Riemann-Zeta function).

It is worth to observe that functions on SU(3) which depend only on this
renormalized trace Z are nothing else but spectral functions. Indeed, if a matrix
g € SU(3) have eigenvalues (A1, A5, A3), with |A;] = 1 and 114,43 = 1, then
a spectral function, that is a symmetric function of (11, A,, A3), depends only on
A1 + Ay + A3 = 3Z and, as observed in Remark 3, A1 A, + Ads; + AsA; = 3Z.

Then, using the function D which is the determinant of the metric involved in
Eq. (10), one may check directly that

LI(D(Z,2)57/6) = (24 - 5)D(Z,2)~M/S,
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so that one may use the function 4 = D(Z, Z)®~2Y/¢ to perform an h transform on
Z™ and we obtain

(LN = P52,

Indeed, as we shall see in Sect. 4, this A-transform identity relies only on Eq. (10).
In particular, moving back to the triangle through the inverse function Z~!, for A =
1, which corresponds to the Brownian motion reflected at the boundaries of the
triangular lattice, the / transform is .2¥), which corresponds to the spectral measure
on SU(3). Then, for this particular case A = 1, we get

Proposition 6 A Brownian motion in the equilateral triangle T, conditioned to
never reach the boundary of the triangle, has the law of the image under Z=' of
the spectrum of an SU(3) Brownian matrix.

3.5 An Example in the Unit Ball in R?
Another example comes from the spherical Brownian motion on the unit sphere

§d — {(x1,-++ , Xqp1) € Rd+l’2xlg — 1)

To describe the Brownian motion on S¢, we look at its generator, that is this the
spherical Laplace operator may. It may be described through its action on the
restriction to the sphere of the coordinates x;, seen as functions S? + R. Then,
for the Laplace operator A5 and its associated carré du champ operator I", one has

ASd(X,') = —dx,-, F(x,-,xj) = 8,:,' —X,'.Xj. (12)

This operator is invariant under the rotations of R?*!, and as a consequence its
reversible probability measure is the uniform measure on the sphere (normalized
to be a probability). A system of coordinates for the upper half sphere {x;+; >
0} is given by (x1,---,xg) € By, where By = {3 x> = ||x||> < 1} is the unit
ball in R?. In this system of coordinates, and thanks to formula (5), one checks
easily that, up to a normalizing constant, the reversible measure is (1 — ||x||?)~"/2dx,
which is therefore the density of the uniform measure on the sphere in this system
of coordinates (see [4]).

Now, one may consider some larger dimension m > d and project the Brownian
motion on S” on the unit ball in R? through (xi,--+ ., %u+1) + (X1, -, Xq).
Formula (12) provides immediately that this image is again a diffusion process with
generator

f(m)(xi) = —mXx;, F(xi,xj) = SU —_ xixj, (13)
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that is the same formula as (12) except that now m is no longer the dimension of
the ball. Once again, formula (5) provides the reversible measure for this operator,
which is, up to a normalizing constant, (1 — ||x||>)"~1=9/2dx, which is therefore the
image measure of the uniform measure of the sphere through this projection.

As before, the boundary of the domain (the unit ball) has equation {1—||x||> = 0},
and we have a boundary equation

I (x;, log(1 — [Ix|I*)) = —2x;, (14)

similar to Eq. (10).
Now, it is again easily checked that, for the function & = (1 — ||x|?)~("~1=9/2,
one has

L™ (h) = d(m—d— 1)h,
so that one may perform the associated A-transform for which
(f(m))(h) — $(2d+2—m)'

In the case where m = d, one sees that 2@, which is the Laplace operator in this
system of coordinates, is transformed into .+, which is the projection of the
spherical Laplace operator in S¢*2 onto the unit ball in R,

As a consequence, we get

Proposition 7 A spherical Brownian motion on the unit sphere S C RIH!
conditioned to remain in a half sphere {x;+1 > 0}, has the law of the projection
of a spherical Brownian motion on S*? onto the unit ball in R?, lifted on the half
upper sphere in R4+1,

4 General h-Transform for Models Associated
with Orthogonal Polynomials

We shall see in this section that all the above examples appear as particular
examples, or limit examples, of a very generic one when orthogonal polynomials
come into play. Everything relies on a boundary equation similar to (10) or (14),
which appears as soon as one has a family of orthogonal polynomials which are
eigenvectors of diffusion operators.

Let us recall some basic facts about diffusion associated with orthogonal
polynomials, following [5]. We are interested in bounded open sets 2 C R,
with piecewise 4! boundary. On §2, we have a probability measure i with smooth
density p with respect to the Lebesgue measure, and an elliptic diffusion operator
% which is symmetric in I.?(i). We suppose moreover that polynomials belong to
the domain of ., and that . maps the set & of polynomials with total degree
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less than k into itself. Then, we may find a I’ (1) orthonormal basis formed with
polynomials which are eigenvectors for .Z. Following [4], this is entirely described
by the triple (§2, I, t), where I" is the square field operator of .Z.

We call such a system (£2, I, 1) a polynomial system.

Then, one of the main results of [5] is the following

Theorem 1

1. The boundary 052 is included in an algebraic surface with reduced equation
{P = 0}, where P is a polynomial which may we written as P\ - - - Py, where the
polynomials P; are real, and complex irreducible.

212 =3% gffa%j+2,. b'0;, where the coefficients g¥ are polynomials with degree
at most 2 and b* are polynomials with degree at most 1.

3. The polynomial P divides det(g¥) (that we write det(I") in what follows, and
which is a polynomial with degree at most 2d).

4. For each irreducible polynomial P, appearing in the equation of the boundary,
there exist polynomials L; , with degree at most 1 such that

Vi=1,---.d Y gldlogP, = L. (15)
J

5. Let §2 be a bounded set, with boundary described by a reduced polynomial
equation {Py---Py = 0}, such that there exists a solution (g',L;;) to Eq.(15)
with (gV) positive definite in 2. Call T'(f.f) = Y_;8"3ifd;f the associated
squared field operator. Then for any choice of real numbers {1, - , o} such
that P{" --- P{* is integrable over S2 for the Lebesgue measure, seiting

Py ey (dX) = Copp oo o P -+ - P,

where C, ... o, is a normalizing constant, then (2, I, [y, .. o) IS a polynomial
system.

6. When P = Cdet(I"), that is when those 2 polynomials have the same degree,
then there are no other measures | for which (82, I', i) is a polynomial system.

Remark 4 Equation (15), that we shall call the boundary equation (not to be
confused with the equation of the boundary), may be written in a more compact form
I’ (x;,log P,) = L;,. Thanks to the fact that each polynomial P, is irreducible, this
is also equivalent to the fact that I"(x;,log P) = L;, for a family L; of polynomials
with degree at most 1.

One must be a bit careful about the reduced equation of the boundary {P = 0},
when P = P; - - - P;. This means that each regular point of the boundary is contained
in exactly one of the algebraic surfaces {P;(x) = 0}, and that foreachi = 1,--- ,k,
there is at least one regular point x of the boundary such that P;(x) = 0. In particular,
for a regular point x € 92 such that P;(x) = O, then forj # i, Pj(x) # Oina
neighborhood % of such a point, and P;(x) = 0 in % N 2. It is not too hard to see
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that such a polynomial P;, if real irreducible, is also complex irreducible (if not, it
would be written as P> + Q%, and P = Q = 0 on % N 9£2). It is worth to observe
that since P divides det(I") and that (g¥) is positive definite on £2, then none of
the polynomials P; appearing in the boundary equation may vanish in 2. We may
therefore chose them to be all positive on £2.

The reader should also be aware that Eq.(15), or more precisely the compact
form given in Remark 4, and which is the generalization of Egs. (10) and (14),
is a very strong constraint on the polynomial P. Indeed, given P, if one wants to
determine the coefficients (g¥) and L;, this equation is a linear equation in terms
of the coefficients of g/ and L;, for which we expect to find some non vanishing
solution. But the number of equations is much bigger than the number of unknowns,
and indeed very few polynomials P may satisfy those constraints. In dimension
2 for example, up to affine invariance, there are exactly 10 such polynomials,
plus one parameter family (see [5]). The deltoid curve of Sect.3.4 is just one of
them.

Remark 5 We shall not use the full strength of this theorem in the examples
developed here. The important fact is the boundary equation (15), which may be
checked directly on many examples, and is the unique property required for the
general h-transform described in Theorem 2.

Given a bounded set §2 and an operator I satisfying the conditions of Theorem 1,
and for any choice of {«y, -+ , o} such that P‘f b ~sz is integrable over §2 for the
Lebesgue measure, we have a corresponding symmetric operator %, ... . For this
operator, as was the case in Sects. 3.4 and 3.5, one may extend the integration by
parts (4) to any pair of polynomials, and this provides a sequence of orthogonal
polynomials which are eigenvectors of the operator %, ... 4, -

Conversely, the boundary equation (15) is automatic as soon as we have a
generator on a bounded set with regular boundary, and a complete system of
eigenvectors which are polynomials. But it may happen that those conditions are
satisfied even on non bounded domains, and even when the associated measure
is infinite (this appears in general in limits of such polynomial models, as in the
Laguerre and Bessel cases). We may therefore give a statement in a quite general
setting.

Theorem 2 Assume that a symmetric positive definite matrix (g7) on some open set
Q2 C RY, is such that for any (i,j), gV is a polynomial of degree at most 2. Let us
call I' the associated square field operator. Suppose moreover that we have some
polynomials Py, positive on §2, such that, for any k,

Vi=1,-.d Y g¢'0;logP, =Y I'(x.logP) = Li. (16)

where L;y are degree 1 polynomials. For any (ai,--- o), let [iq, .. o be the
measure with density P{" --- P} with respect to the Lebesgue measure on 2, and
let 2y, ... o, be the generator associated with the Markov triple (§2, I, Lo, - a)-
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Then, there exist constants cy, such that, for any (o1, --- , o), the function h =
P - P satisfies

Lo e (h) = =) e,
k

Moreover, (Lo 0) P = L) e —ar-

Proof We shall prove the assertion with ¢; = Zi 0;iLi k.
With p = P{'--- P*, we write our operator %, ... o, as

i i

where
bi= 0ig"+ ) ogldjlogP, = 0;8" + Y e,Li,. (17)
j rj j r
With
L= g'05+ > 95"0:
ij i
then

Lo () = Zo() + Y_ il (log P, f). (18)

What we want to show is %y, ... ¢, (h) = ch, or
L, o (logh) + I'(logh,logh) = c.

With logh = — ), o; log P;, and comparing with Eq. (18), this amounts to

Z(logh) = — Zaq.,%(log P,) =c.

We may first take derivative in Eq. (16) with respect to x; and add the results in i
to get

Zgijf),j log P, + Z 3;(g")d;log P, = Z oiLir = cr,
i i i

that is % (log P,) = ¢y
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It remains to add these identities over r to get the required result.
Comparing the reversible measures, it is then immediate to check that
(L) = Ly e~y O

Remark 6 The function h is always the inverse of the density with respect to the
Lebesgue measure, in the system of coordinates in which we have this polynomial
structure. Of course, the choice of the coordinate system is related to the fact that,
in those coordinates, we have orthogonal polynomials (at least when the measure
is finite on a bounded set). In the Bessel case, for example, which is a limit of a
Laguerre models, one has to change x to x* to get a simple correspondence between
the & function and the density. The same is true in many natural examples, where one
has to perform some change of variable to get the right representation (for example
from the triangle to the deltoid in Sect. 3.4).

Remark 7 In many situations, there are natural geometric interpretations for these
polynomial models when the parameters (o, - - , o) are half integers, in general
with o; > —1/2. The case o; = —1/2 often corresponds to Laplace operators, while
the dual case o; = 1/2 often corresponds to the projection of a Laplace operator in
larger dimension.

S Further Examples

We shall provide two more examples, one which follows directly from Theorem 2,
and another one on a non bounded domain with infinite measure. One may provide a
lot of such examples, many of them arising from Lie group theory, Dunkl operators,
random matrices, etc. However, we chose to present those two cases because they
put forward some specific features of diffusion operators associated with orthogonal
polynomials.

5.1 Matrix Jacobi Processes

This model had been introduced by Doumerc in his thesis [13], and had also been
studied in the complex case, especially from the asymptotic point of view in [9, 10].
It plays a similar role than the one-dimensional Jacobi processes for matrices. One
starts from the Brownian motion on the group SO(d). Since SO(d) is a semi-simple
compact Lie group, it has a canonical Casimir operator similar to the one described
in Eq.(11). If O = (my) is an SO(d) matrix, then the Casimir operator may be
described through its action on the entries m;;. One gets

ZL(my) = —(d — Dmy,  T'(myg, mgp) = Sy (gp) — MipMai- (19)



178 D. Bakry and O. Zribi

Observe that when restricted to a single line or column, one recovers the spherical
Laplace operator on S~! described in Eq. (12).

An SO(d)-Brownian matrix is then a diffusion process with generator this
Casimir operator on SO(d).

It is again clear from the form of the operator .Z that it preserves for each k € N
the set of polynomials in the entries (mm;) with total degree less that k. However,
these “coordinates” (m;;) are not independent, since they satisfy algebraic relations,
encoded in the fact that 0O* = Id. We may not apply directly our main result
Theorem 2. We shall nevertheless look at some projected models on which the
method applies.

One may extract some p X g submatrix N by selecting p lines and g columns,
and we observe that the generator acting on the entries of this extracted matrix N
depend only on the entries of N. Therefore, the operator projects on these extracted
p % g matrices and the associated process is again a diffusion process: we call this
the projection of the Brownian motion in SO(d) onto the set .#), , of p x g matrices.
Thanks to formula (5), one may compute the density of the image measure, with
respect to the Lebesgue measure in the entries of N. Whenever p 4 g < d, it happens
to be, up to a normalizing constant det(Id — NN*)@~1=P=9/2_ith support the set
£2 = {N,NN* < 1d}. This formula is easy to check if we recall that, for a matrix M
with entries (m;),

—1
Om; log det(M) = M,

a consequence of Cramer’s formula.

When p + g > d + 1, there are however algebraic relations between the entries
of N and the image measure has no density with respect to the Lebesgue measure.
For example, when p + g = d + 1, then the measure concentrates on the algebraic
set {det(Id — NN*) = 0}. It may be checked that it has a density with respect
of the Lebesgue measure of this hypersurface. Indeed, one may fix p and ¢ and
consider d as a parameter. It is worth to observe that the function det(Id — NN*)* is
not integrable on the domain £2 whenever ¢ < —1. Moreover, when o« > —1 and
a — —1, the probability measure with density Cydet(Id — NN*)® concentrates on
the set {det(Id — NN*) = 0}, and the limit is a measure supported by this surface
with a density with respect of the surface measure. Things become even worse as the
number p + ¢q increases, the measure being concentrated on manifolds with higher
and higher co-dimensions.

We are in a situation different from the sphere case here, since we may not
chose the parameters in which the operator has a nice polynomial expression
as a local system of coordinates. Indeed, the Lie group SO(d) is a d(d — 1)/2
manifold. Since we want algebraically independent coordinates, we are limited to
pq ones, with p + ¢ < d, we may have at most d’>/4 algebraically independent
such polynomial coordinates, which for d > 2 is less than the dimension of the
manifold.
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It is worth to observe that, again when p + g < d, one has pg variables, the
determinant of the metric I" is a degree 2pq polynomial, whereas det(Id — NN*) =
det(Id — N*N) is of degree at most 2 min(p, g). We are not in the case of maximal
degree for the boundary equation. When p + ¢ = d, the density measure is
det(Id — NN*)~'/2, but the corresponding operator is not a Laplace operator (for
which the density of the measure would be det(1")~!/2). Since we are in the situation
of orthogonal polynomials as described in Sect. 4, we know that we may perform an
h-transform.

For the particular case where d = p + ¢, we get

Proposition 8 The matrix N projected from an SO(d)-Brownian matrix on M,
conditioned to remain in the set {NN* < 1d} has the law of the projection of a
SO(d + 2)-Brownian matrix on M), .

5.2 Brownian Motion in a Weyl Chamber

This last example is again quite well known, but it happens to fit also with the
general picture associated with orthogonal polynomials, although no orthogonal
polynomials are associated with it. Indeed, it does not follow directly from the
setting of Sect. 4, on the one side because it is non compact, on the other side because
the reversible measure in this situation is infinite. But it satisfies all the algebraic
properties described is Sect. 4, and we may then check that we may apply the result
for the associated h-transforms. Indeed, one may replace in what follows Brownian
motion by Ornstein-Uhlenbeck operators, which have as reversible measure a
Gaussian measure with variance 2, and then let o go to infinity. In the Ornstein-
Uhlenbeck case, we are in the setting of orthogonal polynomials, however with a non
bounded domain. But this would introduce further complication, since the Brownian
case gives simpler formulas.

As described above, the A-transform is easy to compute in a system of coordinates
which have some relevant polynomial structure. Here, one good choice for the
coordinate system are the elementary symmetric functions in d variables. We
shall perform mainly computations on these elementary symmetric functions of
the components of the d-dimensional Brownian motion, following [3]. In R, one
may consider the Brownian (B!,---,B?) and reflect it around the hyperplanes
which are the boundaries of the set {x; < --- < x4}, which is usually called
a Weyl chamber. To describe this reflected Brownian motion, it is easier to
consider the elementary symmetric functions which are the coefficients of the
polynomial

d d
PX) =[x -x) =) aX’
i=1 i=0



180 D. Bakry and O. Zribi

where a; = 1 and the functions a;,i = 0,---d — 1 are, up to a sign, the
elementary symmetric functions of the variables (x;). The map (x;) +— (a;) is
a diffeomorphism in the Weyl chamber {x; < --- < x4} onto its image. To

understand the image, one has to consider the discriminant disc(P), a polynomial in
the variables (a;), which is, up to a sign (—1)#@=1/2_the following (2d—1) x (2d—1)
determinant

1 ag—1 aqg—r e dg 0o -0
0 1 ag—1 e dyp dg ot 0
0 0 1 cay ap 0
. . ap_2 ap ap
1 (d — 1)ad_1 (d — 2)ad_2 e Al 0o --- 0
0 1 (d—Dag—y - 2ar a; -+ 0
0 0 1 -+ 3a3 2a --- 0

...... 2a2 a

It turns out that this discriminantis [ ], _ ; (% —x;)?. The image of the Weyl chamber
is the connected component £2 of the set {disc(P) # 0} which contains the image
of any polynomial with d real distinct roots, and the image of the boundary of the
Weyl chamber is 0£2, a subset of the algebraic surface {disc(P) = 0}. It is not
hard to observe (by induction on the dimension d) that the image of the Lebesgue
measure dx; - - - dx; on the Weyl chamber is nothing else than 1, disc(P)_l/ 2 [1da:.

Now, the Brownian motion in R may be described, up to a factor 2, through

F(xi,xj) = Sija A(Xi) =0.

We want to describe this operator acting on the variables (ao, - - - , a4—1). Since any
of the functions a; is a polynomial with degree 1 in the variables x;, one has A(a;) =
0,j=0,---,d. To compute I'(a;, a;), it is simpler to compute

(PX), P(Y)) = Y X'VT(a;, ).

ij
We obtain

Proposition 9 The image of the operator A in R" on the coefficients of the
polynomial P(X) = [[;,(X — x;) is given by

I'(P(X),P(Y)) = %{(P/(X)P(Y) — P'(Y)P(X))., A(P(X)) = 0. (20)
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Proof The second formula is a direct consequence of A(a;) = 0, while for the first,
it is simpler to look at I"(log P(X), log P(Y)).

I'(log P(X).log P(Y)) = Y I'(log(X — x;), log(Y — x;))

y

1
=Ly )

3 1 1 (PX) PY)
=) X —x)(Y —x) Y—X(P(X) B P(Y))'

i

|

Remark 8 From formula (20), it is clear that I"(a;, a;) are polynomials with degree
2 in the variables a;.

The image of the Brownian motion B, in the variables (a;) is nothing else than
the Brownian motion reflected through the walls of the Weyl chamber. Its generator
is described through the I' operator given in Eq.(20) and it is the image of the
Laplace operator on the Weyl chamber. Since it is an Euclidean Laplace operator,
the reversible measure is, up to a constant, det(I” )_l/ 2 and this shows that the
determinant det(/") of the metric is, up to a constant, disc(P).

Moreover, from the general representation of diffusion operators (3), and the
Eq. (5) giving the reversible measure, we have, with p = disc(P)~"/2, b; = 0,

> T(aa)dylogp == 8y I (ar.a). 21)
i J

Since 9, I"(a;, a;) is a polynomial with degree at most 1 in the variables a;, this is
nothing else than the boundary equation (15) for general polynomial models. We
may therefore apply the general result described in Sect. 4.

In order to identify the result of the A-transform, an important formula relating
I' and the discriminant function is the following

Proposition 10 For the operator I' defined in (20), one has
I'(P(X),logdisc(P)) = —P"(X). (22)

Proof One may find a proof of this formula in [3], but the one we propose here is
simpler. To check Eq. (22), it is enough to establish it in a Weyl chamber {x; < x; <

+ < x4} where P(X) = [[(X — x;) and disc(P) = [],_;(xi — xj)%, since the map
(x1,+++ ,x%) > P(X) is a local diffeormorphism in this domain.
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In those coordinates, I"(x;, x;) = §; and, from the change of variable formula (2),
one has

I'(log P(X).disc(P)) = 2 ) " I'(log(X — x;).log(x; — x:))

ij<k

:42XM (65— 5.

ij<k

From which one gets

1

—m%—&

I'(log P(X),logdisc(P)) = —ZZ
i#j

On the other hand,
P’ PN/ P'\2 1
PO Fay
P P P ' r (X —_ xi)(X —_ Xj)

1
= — =2 .
; X—xi X-—ux xl—x/ ZX Xi Xj — X;

From this we get

P//
I'(log P,logdisc(P)) = 5

which in turns gives (22). |

Proposition 10 is central in the identification of various processes with the
same I' given by (20). It turns out that the same process with this I" operator
and reversible measure disc(P)!/? has a nice geometric interpretation: namely,
it is the Dyson complex process, that is the law of the spectrum of Hermitian
Brownian matrices, introduced by Dyson [16]. In the same way, the case where
the reversible measure is the Lebesgue measure corresponds to Dyson process for
real symmetric matrices, and p = disc(P)>/? corresponds to Dyson process for
symmetric quaternionic matrices, see [1, 3, 19].

Let us show a direct way to check this (first in the real symmetric case, where
it is simpler). The Brownian motion on symmetric matrices is nothing else that the
Brownian motion of the Euclidean space of symmetric matrices M, endowed with
the Euclidean norm || M||? = trace (M?). When M = (m;;), this may be described as

1
I (myj, myg) = E(Sikgjl + 8ubp), £ (my) = 0.
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One may look at its action of the characteristic polynomial P(X) = det(XId — M).
We get

Proposition 11 For the characteristic polynomial associated with a Brownian
symmetric matrix, one has

I'(log P(X),log P(Y)) =

1 (PX) P(Y) _ 1,
Y—X(P(X) B P(Y))’ LPX) = =3P

Proof To compute I' (P(X), P(Y)) and Z(P(X)). In order to apply the change
of variable formula (3), we may apply the general formulas for the determinant
function

Om;; logdet M = M;l, Oy Omyy log det M = —Mj;th_.l,

which are direct consequences of Cramer’s formulas for the inverse matrix.
Then the formulas are direct applications of the chain rule formula. O

We may now compare with Eq.(22) to see that the reversible measure for
the spectral measure for Brownian symmetric matrices, given by the general
formula (5), in the system of coordinates which are the coefficients (a;) of the
characteristic polynomial, is the Lebesgue measure.

We may perform the same computation for Hermitian matrices. In this situation,
one would consider a complex valued matrix M with entries (z;;) and satisfying

I (zij.zi) = 0, T'(zjj, zu) = 8, £ (z;) = 0.

One may again perform the same computation on P(X) = det(XId — M), and we
get

Proposition 12 For the characteristic polynomial associated with a Brownian
Hermitian matrix, one has

I'(P(X),P(Y)) = ﬁ(P’(X)P(Y) —P(Y)P(X)), ZP(X) = —P".

We do not give the proof, which follows along the same lines that the one of
Proposition 11. More details may be found in [3].

As a consequence, comparing with Egs. (22) and (5) in the system of coordinates
given by the coefficients of P(X), the density of the reversible measure for the
Hermitian Dyson process is disc(P)!/? whereas the density of the reversible measure
of the Brownian motion in the Weyl chamber is disc(P)~!/2.

Transferring back to the Weyl Chamber through the local diffeomorphism
between the coefficients of P(X) and the roots (x; < x; < --- < x4) of P(X).
We obtain
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Proposition 13 The Brownian motion conditioned not to reach the boundary of the
Weyl chamber {x| < --+ < x4} has the law of the spectrum of an Hermitian d x d
matrix.
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On an Optional Semimartingale Decomposition
and the Existence of a Deflator in an Enlarged
Filtration

Anna Aksamit, Tahir Choulli, and Monique Jeanblanc

Abstract Given a reference filtration F, we consider the cases where an enlarged
filtration G is constructed from I in two different ways: progressively with a random
time or initially with a random variable. In both situations, under suitable conditions,
we present a G-optional semimartingale decomposition for [F-local martingales.
Our study is then applied to the question of how an arbitrage-free semimartingale
model is affected when stopped at the random time in the case of progressive
enlargement or when the random variable used for initial enlargement satisfies
Jacod’s hypothesis. More precisely, we focus on the No-Unbounded-Profit-with-
Bounded-Risk (NUPBR) condition, also called non arbitrages of the first kind in
the literature. We provide alternative proofs of some results from Aksamit et al.
(Non-arbitrage up to random horizon for semimartingale models, short version,
preprint, 2014 [arXiv:1310.1142]), incorporating a different methodology based on
our optional semimartingale decomposition.

1 Introduction

We are interested in some specific enlargements of a given filtration, namely the
progressive one and the initial one. The progressive enlargement G of a filtration F
with a random time (a positive random variable) t, is the smallest filtration larger
than F making 7 a stopping time. It is known that any F-martingale, stopped at
time 7 is a G semi-martingale. In this paper, we do not consider the behavior of
F-martingales after t, which is presented in [3], and requires specific assumptions
on the random time 7.

A. Aksamit * M. Jeanblanc (P<)

Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université
d’Evry-Val-d’Essonne, UMR CNRS 8071, Evry, France

e-mail: ania.aksamit@ gmail.com; monique.jeanblanc @univ-evry.fr

T. Choulli

Mathematical and Statistical Sciences Department, University of Alberta, Edmonton,
AB, Canada

e-mail: tchoulli @ualberta.ca

© Springer International Publishing Switzerland 2015 187
C. Donati-Martin et al. (eds.), In Memoriam Marc Yor - Séminaire

de Probabilités XLVII, Lecture Notes in Mathematics 2137,

DOI 10.1007/978-3-319-18585-9_9


mailto:ania.aksamit@gmail.com
mailto:monique.jeanblanc@univ-evry.fr
mailto:tchoulli@ualberta.ca

188 A. Aksamit et al.

Then, we study the case where the enlarged filtration G is constructed from F
as an initial enlargement, that is, adding to all the elements .%; of the filtration F a
random variable £. We focus on a specific situation where the hypothesis (##7), i.e.,
the property that each F-martingale remains a G-semimartingale, is satisfied. More
precisely, we shall assume that the [F-conditional law of £ is absolutely continuous
with respect to the unconditional law of & (Jacod’s hypothesis, see Definitionl
below).

The goal of the paper is to study the impact of the new information for arbitrage
opportunities in a financial market: assuming that one deals with an arbitrage free
financial market with F-adapted prices, can an agent using G-adapted strategies
realize arbitrage opportunities? More precisely we study how the No-Unbounded-
Profit-with-Bounded-Risk (NUPBR) condition (see Definition 3 below) will be
preserved in the enlarged filtration. The NUPBR condition is related to other no
arbitrage conditions like No Free Lunch with Vanishing Risk (NFLVR) or (classical)
No Arbitrage, see [8, 21]; in particular the NUPBR condition is equivalent to both
NFLVR condition and No Arbitrage condition. This condition is also closely related
with the notion of log-optimal portfolios and optimal growth rate portfolio and is
proved to be an appropriate condition to study some financial notions like numéraire
portfolio, or market viability (see [7, 14, 23, 24, 26, 27, 30] and the references
therein). A general study of the NUPBR condition, and a list of references on the
subject can be found in Kabanov et al. [22].

The literature on arbitrage conditions in an enlarged filtration is important, even
if the subject is not so popular in mathematical finance. Quite surprisingly, the
hypothesis that all the investors have the same knowledge is usually done in the
literature, even if this hypothesis is not satisfied in reality. The main difficulty is that
it is not easy to compare stochastic processes in various filtration (the most common
approach is filtering study). Here we are interested in the opposite direction: some
investor has an information larger than the one generated by prices of asset he
is willing to trade. For progressive enlargement, the case of classical arbitrages
is presented in [11], and it is proved that, for a class of random times (called
honest times) arbitrages can occur in the case where the market described in the
filtration F is complete and arbitrage free (see also [15] for the Brownian case).
However, to the best of our knowledge, no necessary and sufficient conditions are
known in an incomplete model. The recent literature concerns a weaker notion
of arbitrages, called No-Unbounded-Profit-with-Bounded-Risk (NUPBR), deeply
related with optimization problems, see [7]. A first paper on that subject was [11],
in which the authors are dealing with continuous processes. Many examples of
progressive enlargement (in particular for discontinuous processes) are given in
[2]. A general study, giving necessary and sufficient condition for the stability of
NUPBR condition is presented in [5]. A different proof of some results of that paper
(mainly sufficient conditions), based on another representation of the deflators (see
Sect. 2.3 for definition), is given in [1]. We shall explain here how our results are
linked with the ones in [1]. The recent paper of Song [33] contains also a study of
deflator in a progressive enlargement setting.
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The case of initial enlargement was studied under the name of insider trading.
Many papers, including [12, 13] and the thesis [6] present results under an
assumption stronger that the Jacod’s absolute continuity hypothesis.

In the first section, we recall some basic definitions and results on enlargement of
filtration and on arbitrage opportunities. Section 3 addresses the case of progressive
enlargement with 7 and F-martingales stopped at 7. In Sect.3.1, we introduce
a particular optional semi-martingale decomposition, which will be useful in the
sequel, and we give the link between this decomposition and the deflator exhibited
in the literature (see [1, 5]). In Sect. 3.2, we provide alternative and shorter proofs
of some results from [5], and give a condition so that the NUPBR condition
is preserved, using a methodology different from the one used in [5] avoiding
the introduction of optional integral, and based on our optional semimartingale
decomposition.

Section 4 presents the case of initial enlargement. In Sect. 4.2, we give an optional
decomposition result for the F-martingales, when the added random variable
satisfies Jacod’s hypothesis.We also obtain a result concerning the relationship
between the predictable brackets of semimartingale computed in both filtrations.
Then, we address the question of stability of the NUPBR condition. The results
presented in this last section were obtained in parallel and independently of [1].

The last Sect. 5 presents a link between our optional decomposition and abso-
lutely continuous change of measures.

2 Preliminaries

Let (£2,9,P) be a complete probability space and F = (.%;);>0 be a filtration
satisfying the usual conditions. We say that a filtration G = (¥)>0 is an
enlargement of ¥ if, for each ¢ > 0, we have %, C ¥,.

We recall some standard definitions and set some notation. For a filtration H, the
optional o-field on £2 x R, denoted by &'(H), is the o-field generated by all cadlag
H-adapted processes and the predictable o-field on £2 x R4, denoted by & (H), is
the o-field generated by all left-continuous H-adapted processes. A stochastic set or
process is called H-optional (respectively H-predictable) if it is &'(H)-measurable
(respectively & (IH)-measurable).

For an H-semimartingale Y, the set of H-predictable processes integrable with
respect to Y is denoted by L(Y,H) and for H € L(Y,H), we denote by H . Y the
stochastic integral [, HdY;.

As usual, for a process X and a random time ¥, we denote by X” the stopped
process. For a given semimartingale X, &(X) stands for the stochastic exponential
of X. The continuous local martingale part and the jump process of a cadlag
semimartingale X are denoted respectively by X¢ and AX.
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2.1 Progressively Enlarged Filtration

Consider a random time t, i.e., a positive random variable. Then, we define
two F-supermartingales, which are the cornerstone for the classical enlargement
decomposition formulae (2) and (3), in a progressive enlargement framework (see
[19]), given by

Z, =Pt >t|%) and Z :=P(r > 1|.%).

In other terms, Z is the optional projection of 1., whereas Z is the optional
projection of 1y ;1. Let A? be the F-dual optional projection of the increasing process
A := T oo[; then (see [19]), the process

m:=Z+A° ey

is an F-martingale. Furthermore, Z=7_+ Am.
We denote by F* = (#]);>0 the right-continuous progressively enlarged
filtration with the random time t, i.e.,

Fl = (F Vot rs).

s>t

The following result from [20] states that any F-local martingale stopped at 7 is
an F*-semimartingale.

Proposition 1 Let X be an F-local martingale. Then, X" is an F*-semimartingale
which can be decomposed as

n INT 1 F
X' =X + d(X, m)" )
o Zs_

where X is an F*-local martingale.

In what follows, we will refer to the equality (2) as the predictable decomposition
of the F*-semi-martingale X*.

Remark 1 The decomposition (2) contains a predictable bracket computed in F.
When working in a larger filtration G, predictable brackets are computed in G. As
can be seen in [5], we face the problem of comparison of the two different brackets.

Remark 2 Tt is rather easy to check that Z_ does not vanish on the set { < t}.
However, the first time where this process vanishes will play an important role.

Remark 3 Using the F-local martingale

1
N: =& (Z—]l{z>0} .m) s (3)
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Kardaras [25] notes that the decomposition (2) can be written X/ = X, +

I ﬁd(X, N)E,

2.2 Initially Enlarged Filtration

Let £ be a random variable valued! in (R, ).

Definition 1 The random variable £ satisfies the Jacod’s absolute continuity hy-
pothesis if there exists a o-finite positive measure 7 on (R, %) such that for every
>0,

P(¢ € du|#)(w) < n(du), P-as..

As shown by Jacod [17], without loss of generality, i can be taken as the law of £.
We do not impose any condition on 7, in particular, it is not necessarily atomless.
The random variable § satisfies the Jacod’s equivalence hypothesis if

P(§ € du|%)(w) ~ n(du), P-a.s..

Let F°® = (#°®), be the right-continuous initial enlargement of the
filtration F with the random variable £, i.e.,

7O =(FVo®).

s>t

The following result is due to Jacod [17, Lemme 1.8]. We give here the
formulation of Amendinger as it provides a nice measurability property (see [6,
Remark 1, p. 17]).

Proposition 2 For ¢ satisfying the Jacod’s absolute continuity hypothesis, there
exists a non negative 0 @ JB-measurable function (t,w,u) — q'(w) cadlag in t
such that

(i) foreveryu, na.s., the process (q¥,t > 0) is an F-martingale, and if the stopping
time R" is defined as

R":=inf{t: ¢ = 0} “4)

one has ¢* > 0 and ¢*. > 0 on [0, R"[ and ¢" = 0 on [R", oo,
(ii) for everyt > 0, the measure g (w)n(du) is a version of P(§ € du|.%;)(w).

'The random variable £ can take values in a more general space without any difficulty.
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It is rather clear that we shall have to deal with the family of processes (¢*,u €
R), that we shall call parametrized processes.

Definition 2 Consider a mapping X : (f,w,u) — X'(w) on Ry x £ x R with
values in R. Let ¢ be a class of F-optional processes, for example the class of
F-(local) martingales or the class of F-locally integrable variation processes. Then,
(X", u € R) is called a parametrized ¥ -process if for each u € R the process X"
belongs to _# and if it is measurable with respect to O'(F) @ Z.

By [34, Proposition 3], the second condition can be obtained by taking appropriate
versions of processes X“.

The next theorem gives, in the case of Jacod’s equivalence hypothesis, a
particular change of measure making the reference filtration F and the random
variable £ independent, see [32], [6, Proposition 1.6], [12].

Theorem 1 Assume that the Jacod’s equivalence hypothesis is satisfied, so that
P& € du|.%) = ¢'n(du) with ¢! > 0, (n ® P)-a.s. Then

(a) the process qlﬁ is an F°© -martingale,

(b) the probability measure P*, defined as

dP* 1
P |%o<s) =73
q:

has the following properties:

(i) under P*, T is independent from %, for any t > 0,
(i) P*|z, =Plz,
(iii) P*|s6) = Ploce).

Remark 4 Note that, under Jacod’s equivalence hypothesis, if the price process S
is such that there are no arbitrages in IF, then there are no arbitrages in G. Indeed,
taking [P as an equivalent martingale measure in I, the previous result proves that
P* is an equivalent martingale measure in G.

We now recall the computation of F-predictable and F-optional projections of
Fo®_adapted processes. The first part is due to Jacod [17, Lemme 1.10], the second
part is found in Amendinger [6, Lemma 1.3].

Lemma 1 Assume that the Jacod’s absolute continuity hypothesis is satisfied.

(i) Assume that the map (t,w,u) — Y/'(w) is Z(F) ® %B-measurable, positive or
bounded. Then, the F-predictable projection of the process (Yf),zo is given by

PE(YY), = / Yi'ql n(du) t=>0. (5)
R
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(ii) Assume that the map (t,w,u) — Y'(w) is O(F) ® ZB-measurable, positive or
bounded. Then, the F-optional projection of the process (Yf)tzo is given by

”’F(Yé)F/Y?q?n(du) t>0. (6)
R

As noticed in Jacod [17, Corollary 1.11], Lemma 1 implies in particular that
RS =0 P-as. (7
where R is defined through (4), or equivalently nt > 0 and q,g_ > 0, fort > 0,

IP-a.s. Therefore, the IF*®)-optional process (ié t > 0) is well-defined.
gt

The F°®)-semimartingale predictable decomposition of an F-local martingale is
given in [17, Theorem 2.5] in the following way:

Proposition 3 Let X be an F-local martingale. Then, under Jacod’s absolute
continuity hypothesis

t

N 1

X=X+ [ gl ®)
0 gs—

where X is an F*©-local martingale.

To ensure the existence of well measurable versions of dual projections of
parametrized processes, we assume from now on that the space Ll(.Q,g ,P) is
separable. Then, we apply [34, Proposition 4].

In the next proposition, we extend Proposition 3 to a class of parametrized [F-
local martingales.

Proposition 4 Assume Jacod’s absolute continuity hypothesis. Let (X*,u € R) be
a parametrized F-local martingale. Then

t

5 1

el =X§+/ —d(X",q")} =
0 gs—

where X is an F°®-local martingale.

Proof Let X be of the form X! () = g(u)x;(w) where x is an F-martingale and g
is a Borel function. Then, X¢ = g(£)x and, using Jacod’s decomposition given in
Proposition 3, for r > s, we have

EX; — X§|.779) = g(O)E(x — x| 77©)

1
= g(HE ( / ——d(x, q“>v|u=g)9;"9)
s gy—
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1
= (/ Td(Xu,qu)v“:g)jSa(g)) .
s gy—

For a general X, we proceed by Monotone Class Theorem. O

2.3 Local Martingale Deflators and Related Notions

As announced before, we shall study the No Unbounded Profit with Bounded Risk
(NUPBR) condition. We start with some definitions for a general filtration H.

Definition 3

(a) Let (X*,u € R) be a parametrized H-semimartingale. We say that (X“,u € R)
satisfies No Unbounded Profit with Bounded Risk condition in the filtration H
(we shall write NUPBR(H)) if for each T < oo, the set #7(X) defined as

Hp(X) := {(H.X")r: H e LELX"Y), H.X"> —1 and u € R}

is bounded in probability.

(b) A process Y is called an H-local martingale deflator for (X*,u € R) if it is a
strictly positive H-local martingale such that (YX*,u € R) is a parametrized
H-o-martingale.

(c) A process Y is called an H-supermartingale deflator for (X*,u € R) if it is
a strictly positive H-supermartingale such that for each H € L(H, X*) with
H.X" > —1, the process (1 + H . X*)Y is an H-supermartingale.

As proved in [29] in full generality, condition (a) and the existence of a
supermartingale deflator stated in Definition 3(c) are equivalent. Moreover, as
shown in [31], for a process X (instead of a family of processes as above), condition
(a) and the existence of a local martingale deflator are equivalent. So, we have the
following theorem:

Theorem 2 For a semimartingale X, the NUPBR condition is equivalent to the
existence of a local martingale deflator which is equivalent to the existence of a
supermartingale deflator.

The following proposition is a parametrized version of [5, Proposition 2.5].

Proposition 5 Let (X",u € R) be a parametrized H-adapted semi-martingale.
Then, the following assertions are equivalent.

(a) The process (X", u € R) admits an H-local martingale deflator.
(b) There exist a P (H) @ B-measurable parametrized process (¢",u € R) such
that 0 < ¢" < 1 and an H-local martingale deflator for (¢" . X", u € R).
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(c) There exists a sequence of H-stopping times (T,),>1 that increases to oo such
that for each n > 1, there exist a probability Q, on (82, Fr,) such that Q, ~ P
and an H-local martingale deflator for (X*)™, u € R) under Q,.

3 Progressive Enlargement up to a Random Time

3.1 Optional Semimartingale Decomposition for Progressive
Enlargement

In this section, we derive an F*-semimartingale decomposition of any [F-local
martingale stopped at 7, different from the one given in Proposition 1. Let us start
with the definition of an important F-stopping time, namely

R:=inf{r>0 : Z, = 0},

and define the F-stopping time R as

R:= R{ZR=0<ZR—} = R]l{ZR=0<ZR—} + OO]I{ZR=0<ZR—}”

We establish an optional decomposition in the following theorem. By optional
decomposition, we mean that we write a semi-martingale as a martingale plus an
optional bounded variation process.

Theorem 3 Let X be an F-local martingale. Then the process

INT
— 1 P’]F
X, = Xtt B / Z_d[X’ m]X + (AX]~e ]l[k,oo[)mI )
0

is an F*-local martingale.

Proof First of all, let us recall that for any [F-local martingale, the stopped process
X7 is an F*-semimartingale as stated in Proposition 2. Let H be an F*-predictable
bounded process. Then, there exists an F-predictable bounded process J such that
Hlp = Jlp . By [19, Sect. IV-3 and Lemme (5,17)], the [F-martingale m given in
(1) satisfies that for each H'!(FF) martingale Y, one has E(Y;) = E([m, Y]s). Thus,
we have

E((H.XYo0) = E(( . X)7)) = E([J . X, m]oo)

* J,Zy
=E — 1L ndlX, m]
(/ S 1 1)

[e.]
+E (/(; J‘Y]l{z=0<zr}d[x, m]y) .
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Since {Z =0 < Z_} = [R] and Amgz = —Zy_ on {R < 0o}, we can write
]1{2=0<Z_} . [X, m] = AXR Amk ]1[1}’00[ = _ZR_AXR ]l[k,oo['

Furthermore, due to the fact that J and [X, m] are F-adapted, we obtain
. v Js
E(H.X)) =E Z_H{ZQO}d[X’ mls
0 s

=) ( /0 iz d (4%, 11[,},00[)&) .

Then, as JZ_ is F-predictable, it holds that

. (/ooo fiid (Axk ]l[ie,oo[)x) =E ( /0 1z d (AX,~e 11[;?’00[)1’ ’F)

and we obtain:

E((H.X")o) = E (/O gﬂ{zpo}d[x, m]s)
_E ( / Sz d (4% ]1[,100[)?’F)
_E ( / 5 Lol ) ( /0 "Hd (4% ]1[,100[)?’F)

where we have used the facts that J is predictable and that Z_ is the predictable
projection of 1jp . That ends the proof. O

Remark 5 In [9, Sect.77, Chap. XX] an optional semimartingale decomposition
is mentioned (without any proof) in the form: given an F-local martingale X, the
process

_ INT 1
X =X — / —d[X, m]
0 ZS

is an F*-local martingale. This decomposition is valid for any F-local martingale
if and only if R = oo P-as. In particular, if all F-martingales are continuous, then
R = oo P-a.s. and the above formula is valid. The condition R = oo P-a.s. will play
an important role in the study of stability of NUPBR condition.

Remark 6 The F’-local martingale X which appears in (9) can be expressed in
terms of the F-local martingale N defined in (3). Indeed, from equalities N =
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N_ (]1{2_>0}Z% + ]l{z_zo}) and N = 1+N_--1¢; .. mand the fact that Z_ > 0
on [0, ], it follows that

111 [X ]—111 [X,N]
= ] = ,m| = — ] = , .
Z[O.] N ol

We will now study some particular martingales which will be important for the
construction, under adequate conditions, of deflators for price processes and we
will give the relation of our construction with previous works, in particular [5,
Proposition 3.6]. The next lemma defines an F*-local martingale LP" which is the
corner stone in the construction of the deflator.? Due to this lemma, we avoid the
use of optional integrals done in Eq. (3.9) in [5, Proposition 3.6].

Lemma 2

(a) The F*-predictable process Z%]I[O,r] is integrable with respect to m, the F'-
martingale part from the optional decomposition of m obtained in (9).
(b) Let

1
LPr = —1lpq.m.

Then

72 1

Lpr = m E ]1[0.1'] @ r;l,

where m is the F*-local martingale part in the predictable decomposition of m
(8) and © stands for the optional stochastic integral.

Proof In the proof, we set L = LP' for simplicity.

(a) Being caglad, the process 2%11[0.1] is locally bounded.

(b) The F*-continuous martingale part and the jump part of Zl_ll[o.ﬂ . m are given

by
1 € 1 , 1 .
(—]l[o,r] . m) = —1pq- (m‘ — Z_]llo’t] . (m‘)F)

1 _ Am F
A (Z—]l[o,z] . m) = 71[01] -7 (11[1?]) ]l[(lf]v

where m€ is the F-continuous martingale part of m. Let us now compute the [F*-
continuous martingale part and the jump part of L. By definition of the optional

2The upper script “pr” stands for progressive.
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stochastic integral and Lemma 3.1(b) in [5], we have:

. 2 (Y,
=" PP = )
72 + A(m)F 7)1
1 o PTgogary) .
= —1pq- mc — %ﬂ[&rl ..

As{Z =0 < Z_} is a thin set,’ the set {”’F(]l{§=0<zi}) # 0} is also thin, and from
continuity of m¢, we conclude that

X 1 e
L= —1pq.-m".

In the proof of Proposition 3.6 in [5], it is established that the jump process of L is
given by

Am
AL = —1p = p’]F<]1{Z=0<z_}) L. (10)
This completes the proof. O

The link between the F*-local martingale LP" and the F*-adapted process #,

where N is defined in (3), is made precise in the next lemma.

Proposition 6 Let N be defined in (3).

(a) The process # is an F*-supermartingale which can be written
1 . p.F

N ¢ (‘(U’r) - (]lmoo[).m) |

(b) The process <= is an F*-local martingale if and only if R = oo. In that case

N‘[
v =& (=(LP)).
Proof

(a) By Itd’s formula and the obvious equality dN = N_ i1{27>0}dm

1 INT 1 INT 1
— =1- ——dN; ——d(N°),
| Nz +f

t N

1 1 1
— - —_ AN,
> (Ns Nt )

s—

AT 1 AT 1 (Amy)z
=1- dmy ——d{m°), —_—,
/0 Nz +/0 Nz dms + 2 NyZ, 7,

3Aset A C 2 x [0, 0o[ is thin if, for all @ € £2 the set A(w) is countable.
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where we have used the fact that Z = Z_ + Am. We continue with

1 AL | 1 1 X (Am)?

— =1- dl — .m— — . (m") — 2

N; / Ny (Z_ me gz =2 )
p.F

1—/ N ( o m—f—(]l[ROO[) )

where the second equality comes from Theorem 3 applied to the F-martingale
m. Finally we conclude that

1 1 _ pF
1? =& —Z—_ﬂ[oif] . — (]l[k,oo[)_/\t .

(b) From the previous equality, we see that the process % is an [F*-local martingale

p.F
if and only if (]l[ie oo[) = 0. The last equality is equivalent to
’ ‘AT

0=5 (1), ) =B ([ 2t (1)) ) =B (7 Mg

which in turn is equivalent to R = oo, P-a.s. since Zz_>0on {R < oo}. O

3.2 Deflators for Progressive Enlargement up to t

In this section, we give alternative proofs, based on the optional semimartingale
decomposition, to results in [1] and to Theorem 2.23 and Corollary 2.18(c) from
[5] (or their general versions in [4]). In Proposition 7(a), we determine an F*-local
martingale deflator for a large class of F-local martingales. In Proposition 7(b), an
F*-supermartingale deflator for [F-local martingales is studied.

We introduce an F-predictable process VP which is crucial for proofs therein
(also used in [5]). Denoting by R the accessible part of the F-stopping time R, we
set

p.F
Vpr (]l[Ra oo[)

t/\‘L'

Using the process VP' we study, in the next proposition, a particular [F*-
supermartingale which will play the role of a deflator for some F-local martingales.

Proposition 7 Assume that X is an F-local martingale such that

AXz =0 on {R<oo}.
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(a) If X is quasi-left continuous, then YP" := & (—L") is an F*-local martingale
deflator for X".
(b) The process YP' := &(—LP" — V™) is an F*-supermartingale deflator for X*.

Proof
(a) In the proof, we set Y = YP" and L = LP" for simplicity. Using integration by

parts and the optional decomposition (9) given in Theorem 3 for X and then for

m, we obtain:

YX* = XL.Y4+Y_.X"+[V,X"]
- 1
=X .Y4+Y_.X+ Y_Eﬂ[oif] . [m, X]
=Y 1. (AXkll[Roo[)p’]F —Y 1. [L, X]

. - 1 _ 1
=X_.Y+Y_.X+ Y_E]I[OJ] «m, X] + Y_?]l[o,t] « [[m], X]
1
_Y_E]I[O’t] . [(Amk]l[R!OO[)I”F,X] — Y_]l[(),t] . (AXkﬂ[k’oo[)p’]F

Y_ _
_Z__]I[O’t] . [m, X]
=h+bL+L+L+1+1+ 1.

In a first step, we study the sum of third and seventh term of the last expression

I—i—I—Y(—l——l)]l [mX]=-Y_—1 [m, X]
=Y_|= 4. |m,X| = _ = 1] - |m,
3 7 7 [0,7] 77 [0.7]

Am
— Y_—1pgAmAX,
> Y- 1pq

where the third equality comes from the fact that {Am # 0} is a thin set. We
add the term 4 to the previous two

1 Am _
I+ (+ D) =) Y_?n[o,r](Am)zAx -> Vo= lpgAmAX
A 1 1
= =Y v SR axuy, (—Azh - :Am)
Z z_ Z

=2 Y—%Aﬂ[&rl - (]l[ie]) ’

where the last equality comes from (10). Note that, by Yoeurp’s lemma (which
states that, for a predictable bounded variation process V and a semimartingale
Y, [V,Y] = AV .Y, see, e.g., [18, Proposition 9.3.7.1]), properties of dual
predictable projection, and the fact that ”(AV) = A(V?), the fifth term in the
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expression for YX© is equal to

1 1
Is = —Y_E]l[o,,] (Amglg P X] = —Y_E]l[o,,] PE(Amplg) . X

Z_
2 Y-l (A AX,

where the last equality is due to Amp = —Z;_ and the fact that the process
Finally, using the fact that Z_ + Am = Z, we get

Z_
L+ I+65L+6L)= Z Y—7]1[0,1:] ”’]F(ﬂ[ie])AX

+>° Y—%AXH[OJI - (%ﬂ)
= Y-lpg ") AX.
Summing up we have that
YX'=X..Y+VY_.X
+ ) Vol (L) AX = Yol q - (Axkﬂ[km[)pf

If X is an F-quasi-left continuous local martingale, using the predictability of
P’F(]l[k]) and AXz = 0 on {R < oo}, then
YX'=X_.Y+Y_.X
which implies that YX" is a local martingale, hence Y is an F*-local martingale
deflator for X°. L
(b) In the proof, we set Y = YP', L = LP" and V = VP for simplicity. Let H be an
[F*-predictable process such that H . X > —1. By integration by parts, we get

A+H.X)Y=(0+H.X)_.Y+HY_.X°
—HY_.[X".L]—-HY_.[X",V].

Note that
HY_.[X",V] = ZH Y- 1. p’]F(ﬂ[ie])AX-

Then, using the same arguments as in the proof of (a), we get

~ ~ ~ - ~ p.F
(L H. XY = (14 H X)L ¥+ BV X = BT g (X))
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In particular, if AXz = 0 on {R < oo}, then Y is an F*-supermartingale deflator for
X" and X* satisfies NUPBR(F?). This ends the proof of the proposition. O

Proposition 8 Let X be a process such that AXz = 0 on {R < 00} and admitting
an F-local martingale deflator. Then X* admits an F*-local martingale deflator.

Proof There exist a real-valued F-predictable process ¢ and a positive F-local
martingale K such that

0<¢p <1 and K(¢.X) isanF-local martingale.

Then there exists a sequence of [F-stopping times (v,), that increases to infinity such
that the stopped process K" is an F-martingale. Put Q, := K,, . P ~ P. Then, by
applying Proposition 7 to (¢ . X)"" under Q,, we conclude that (¢ . X)""\* satisfies
NUPBR(F?) under Q,. Thanks to Proposition 5, NUPBR(FF*) under P of X" follows
immediately. O

The next result provides explicit F*-local martingale deflators for F-local
martingales. The proof differs from the one of Theorem [5, Theorem 2.23] and is
based on the optional semimartingale decomposition and direct computations.

Theorem 4 The following conditions are equivalent.

(a) The thin set {Z =0< Z_} is evanescent.

(b) The F-stopping time Ris infinite (R = c0).

(c) ForanyF-local martingale X, the process X* admits Y™ as F*-local martingale
deflator, hence, satisfies NUPBR(FF).

(d) For any (bounded) process X satisfying NUPBR(IF), the process X satisfies
NUPBR(F").

Proof The equivalence between (a) and (b) is obvious from definition of R.
The implication (b)=>(c) follows from Proposition 7. To prove (c)=-(b) (and
(d)=(b)), we consider the F-martingale

p.F
X =1~ (]1[,100[) .

Note that P(r = R) = E(AA2) = E(Z; — Z) = 0 (since 0 = Z; > Z > 0). This
implies that T < R and

T PF

is a predictable decreasing process. Thus, from [5, Lemma 2.6], X* satisfies
NUPBR(F?) if and only if it is a null process. Then, we conclude that R is infinite
using the same argument as in the proof of Lemma 6(b). The implication (c) = (d)
follows from Proposition 8. O
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4 Initial Enlargement Under Jacod’s Hypothesis

In this section, we study initial enlargement of filtration and NUPBR condition un-
der Jacod’s absolute continuity hypothesis. We extend some results of Amendinger
[6] that require both Jacod’s equivalence hypothesis and Theorem 1.

4.1 Optional Semimartingale Decomposition for Initial
Enlargement

In this subsection, we develop our F?®-optional semimartingale decomposition
of parametrized F-local martingales. We first decompose the F-stopping time R“,
introduced in (4), as R* = R* A R* with

R'=Riy .o and R'=R{. _ (11)

Clearly R* is an F-predictable stopping time and {R* = oo} C {R" = 00} so

p.F pE
(Lgre.o0r) |u=s=(]1[ieu,oo[) lu=¢-

In the following lemma, we express the F7®)-dual predictable projection in terms of
the [F-dual predictable projection. This is a result for initial enlargement case similar
to the one given in [5, Lemmas 3.1(a) and 3.2] for progressive enlargement case.

Lemma 3 Let (V¥,u € R) be a parametrized F-adapted cadlag process with
locally integrable variation (V € <,.(IF)). Then the following properties hold:

(a) The F°®_dual predictable projection of V¢ is

FO® 1 v oupF
(VEPE™ = q—g-(q VO =t (12)

(b) If (V*,u € R) belongs to o7} (F) (respectively V € o/ *(F)), then the process
(U", u € R) with

1
U= <.V (13)
q

belongs to 7} (F°®) (respectively to o/ T (F°®)).
(c) If (V*,u € R) belongs to (), the process (U* = qLE V' u e R)is well

defined, its variation is F*®-locally integrable, and the F°® -dual predictable
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projection of Ut is given by

Fo©

) 1 u\P-F
(Ué)lv = q_f . (]l{qu>0} LV )p IM=E‘

Proof

(a) We apply the predictable semimartingale decomposition given in Proposition 4
to the parametrized F-local martingale (X*,u € R) = (V* — (V*)PF, u € R),
obtaining

N L,
VE = X5+ (VOPE| e + £ (V" q")" =t

3 u\P-F Aqu u e
= X5 (Lggeooy - V) lumt Ty - V') st

S 1
=X eV e

which proves assertion (a).
(b) Suppose that (V*,u € R) € ,Q{l;t(F) For fixed u, let (¥,).>1 be a sequence

of [F-stopping times that increases to infinity such that E (Vz’;”) < oo. Then,

E (Ul’;n) < 00 since

19,, 1 ﬂn
E(U3) =E< / | =E | [ 1ot av;
t

<E (V) < oo,

where the last equality comes from (6) applied to qi;,]l{q;f>0}.

(c) Suppose that (V*, u € R) € 7,.(F), and denote by W := VT +V~ its variation.
Then (W",u € R) € .;zfl:; (F), and a direct application of (b) implies that

(i W ue R) € o/t (FY).

qég- loc

As a result, we deduce that U given by (13) for the case of V = V* — V™ is
well defined and has variation equal to qis . W which is F?®-locally integrable.

For each n > 1, let us consider the parametrized process (U;,, u € R) with

" 1
U

0= lie=i sV
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Due to (12), we derive

Fo® 1 w\P»
™ = - (g V) e

. pF®
Hence, since (U¢)PF © = lim, o0 (UE) by taking the limit in the above
equality, we get

o (&) 1 u p,JF
(Ug)p’]F = q_é . (]].{qu>0} .V )1 |u=t¢.
This ends the proof. O

Remark 7 The above lemma allows us to make precise the link between predictable
brackets in F and in G. Indeed, for two F martingales X and Y

X, V) = (x, v = qig (g X Y] e

1 " F 1 " F
q_g . (Q— . [Xv Y])p |u=§ + q_f . (ACI . [X, Y])p |u=$

- Aq“ p.F
X+ (> . AXAY ) u=e.

We are now ready to state, in the next theorem, the main result of this section
with a proof based on Lemma 3.

Theorem 5 Let (X*, u € R) be a parametrized F-local martingale. Then,
t
VE Lyt ! u -
Xt = Xt _/(; ;d[xf’ qé]é + (AXTQM]I[R”,OO[)[ |u=é§ (14)

is an F°®)-local martingale. Here, R is defined in (11).

Proof From the predictable decomposition given in Proposition 4, X can be written
as

p.F |

N 1 F 1
XE = Xé + q_%' . (]l{qu>0} . [XM’qM])p |M=E + q_f . (]l{qu=0} . [Xu’qu]) M=§
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Using Lemma 3(c) and the fact that Ag;, = —q%,

R 1 [),]Fa(é) pF

1 u -
= X ) (A ) et

where
) A ! 1 p’]FJ(é)
¢ g

is proved to be an F?®)-local martingale. O

In [6], the process qlé was studied in the case of a random variable £ satisfying

Jacod’s equivalence hypothesis, and was proved to be an F°®-local martingale.
Here we work under a weaker assumption, and we show that the martingale property
established in [6] fails in the general case.

In the next two lemmas, we study the properties of the process ¢f. In Lemma 4 we
define particular F°®)-local martingales based on ¢f. Then, in Lemma 5, we focus
on the process ql_s’ which is proved to be an F°®-supermartingale, and we give its
semimartingale decomposition. We give a necessary and sufficient condition such
that qlé is an F?®)-]local martingale.

Lemma 4 Let g¢ be the F°©)-local martingale part of ¢ given by (14), i.e.,
1 pF
7= — — 15— N
g = e ¢°] —¢- - (]l[Ru,oo[) |u=¢.

Then, the F°®-predictable process % is integrable with respect to g¢ and the F°®-

local martingale
L:=—.3 (15)

is such that 1 — AL' > 0.*

Proof The process % is caglad so it is locally bounded.
&

4The upper script *“i” stands for initial.



Optional Decomposition and NUPBR 207
The definition of g¢ implies

: 1 p.F
1—AL' =1—— (Aq — (Aqs) ) + A (]llku’oo[) lu=¢

gt
Aqg F
= 1 - ? + p: (H[RU]) |M g
qé‘

= q; + p]F(]l[R“]) lu=¢ > 0,

which completes the proof. O

Under Jacod’s equivalence hypothesis, as stated in Theorem 1, the process qlé is

true F?©-martingale and provides an interesting change of probability.
Lemma 5

(a) The process qlé is an F°® -supermartingale with Doob-Meyer decomposition

oo bz (11 )p'F | (16)
_—= — g0 — . Ru u=Eg-
¢ (¢5)2 gt "\ el ¢

Equivalently, it can be written as a stochastic exponential of the form

o)

(b) The process qf is an F°©)-local martingale if and only if R* = oo P ® n-a.s.
Then = &(=LH).

(c) In pamcular, the process ig is a true B -martingale if and only if R* = 00
P ® n-a.s. (i.e., under Jacod’s equivalence hypothesis).

Proof

(@ (¢, u € R) is a parametrized F-martingale, then by Proposition 4, ¢ is
an F°®_semimartingale. By (7), ¢¢ is strictly positive. Then, qis is an Fo@).
semimartingale, and by definition of the bracket, as

1
=1 A
g (¢°)* Cd

Applying (14), we finally get that

Lt 1 e
~ = ——.q——.(~u ) —.
¢ ()2 gt "\ Rod §

14t

The exponential form immediately follows.
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p.F
(b) Since % . (11[1@, oo[) lu=¢ is an o _predictable increasing process, the
& ,

p.F
process qlé is an F°®-local martingale if and only if (]l[ieu,oo[) lu=¢ = 0.

The last condition is equivalent to have that, for each ¢

=E ((]l[ku,oo[)f’F|u=§) =E ( o.F ((]1[1%“,00[)p,]17|u=5)t )
=k ( A(]l[ieu,oo[)i’ 'Fq?n(du)) = /R E (L)) m(c),

where the second equality comes from (6). Next, by Yoeurp’s lemma we
conclude that, for each ¢

0= /R]E(/th?_d ((]1[@:,00[)[7’ ) ) n(du) = / (qR“ ]l{Ru<,}) n(du)

which in turn is equivalent to R" > t, P ® n-a.s. for each 7 since q;ie“_ > (. Thus,
qig is an F°®-local martingale if and only if R* is infinite P ® 7-a.s.

(c) The “if” part is shown in Theorem 1. We show “only if” part here. Assume

that the process qis is a true F°®-martingale. Then, for each ¢ > 0, we have

( ) = 1. On the other hand, using Lemma 1(ii), we have that

1 1
’ (?) - (/IR Eﬂ{q?‘”}‘ﬁ”(d“)) = /R]P’(q? > 0)1(du)

= / P(R" > )5(du),
R

which shows that R* = oo, P ® n-a.s. O

In [6], Amendinger establishes that under Jacod’s equivalence hypothesis, for any
[F-martingale X, the process X/¢f is a G martingale. In the following proposition,
we investigate the F°®)-semimartingale decomposition of a parametrized [F-local
martingale X when £ is plugged in and when multiplied by from previous lemma.

Proposition 9 Let (X“,u € R) be a parametrized F-local martingale. Then )q(—g is
an F°®_semimartingale with F© -local martingale part equal to
D ¢ 1

X —— .+ —.X,
© @2 3
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and F°® _predictable finite variation part equal to

1

u P
_q_f . (Xiguﬂ[feﬂ,oo[) lu=t¢-

Proof We compute, applying integration by parts formula:

X xtexe. ] X5+[Xf 1}
¢ 0T g g "qt

XE Xi _¢ Xi 1 p.F

1 1 1 -
+_ .XE + _ [XE’ qs] — = . (AXgu]l Ru ) |u=
3 ¢4t < Rl E

1
(@2 X (4*)2 4 X1

where the second equality comes from (16). It follows that

Xt X d s L g

— = - g+ —.

g NCO a
1 ( pF Agt AXE
o (X ) et X5 g+ - [4]
gt " \TRCIRNed O (45)24¢

; veo L (xe -
R R

|

As a corollary, from Proposition 9, we recover [16, Proposition 5.2] on universal
supermartingale density.

Corollary 1 If X is a positive F-supermartingale, then, ;—s is an FoE.
supermartingale.

Proof Let X be decomposed as X = MX — VX where MX is a positive F-local
martingale and V¥ is an increasing F-predictable process. Then, AZ—; is an Fo©).-
supermartingale since from the positiveness of M*, by Proposition 9, we get that

p.F
q% . (Mgull[ﬁﬂ,oo[) lu=¢ is an [Fo©)_predictable increasing process. Moreover, as
qlg is an F°®_supermartingale and VX is predictable and increasing, the process
—‘;—; is as well an F°®)_supermartingale which ends the proof. O
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4.2 NUPBR Condition for Initial Enlargement

In this section, we focus on the NUPBR condition in an initial enlargement
framework. Using simple arguments based on our optional semimartingale de-
composition, we prove the stability of the NUPBR condition with respect to
an initial enlargement of filtration under Jacod’s absolute continuity hypothe-
sis. In Proposition 10, we give F°®-local martingale deflators for quasi left-
continuous parametrized F-local martingales and F°®-supermartingale deflators
for parametrized F-local martingales. In Theorem 6, we present a necessary
and sufficient condition such that any parametrized F-local martingale satisfies
NUPBR(F°®). We close this section by giving two particular examples of initial
enlargements under Jacod’s hypothesis. We refer the reader to [1] for a study similar
to the one contained in this section using fully different methodology.

We denote by R““ the accessible part of the F-stopping time R* and we define
the process V' as

. p.F
Viim 30 7 () it = (Vuooer)  lums: (17

0<s<t

Proposition 10 Let L be defined in (15), and let (X", u € R) be a parametrized F-
local martingale (see Definition 2) such that AX%M =0on{R" < 00} PQ® n-a.s.

(a) If (X", u € R) is quasi-left continuous, then the process Y' := & (—Li) is an
F°®_local martingale deflator for X £,

(b) In general, the process Y' := &(—L! — V') is an F°® -supermartingale deflator
for XE.

Proof

(a) Using the optional decomposition (14) given in Theorem 5, firstly for X¢ and
then for ¢¢, we obtain

VXt =x5 .Y + v x5+ Y X9
. . _ 1
=xt .yl +Y‘_.X5+Y‘_—§.[X5,q$]
q
—YL L (AXE Pl — YL L XE]

[[4°]. X°]

. .- 1 .
=XV 47X v — LX)+ Y .
¢ (¢°)?

1
Yz (A L) lums. X°]

i u Y]_ P
—YL L (AXG Do) =g — r X, 1.
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We continue, computing the various brackets:

YL A

yixt =xt.yi 47 X5 — Z (Ag5)?AXE
6] q_

T AxXEAG EJFZ( =

Y qE_ F ; p.F
3 P A lem X (AXE N oeg) =

= XL Y 4 YL X )Y P (L) = AXE

p.F
Vo (AXE M oey) it

i i Y, i pF
= XL Y 4 YL XS )Y P (g = AXE
Yl— u o u pF
e (B - X" 1) lume.

where the last equality follows from Ag%, = —¢%, _on {R" < 00}.
Since (X*,u € R) is an F-quasi-left continuous local martingale and
AX%, = 0 on {R* < 0o}, the two last terms are null, and Y'X? is an F°)-
local martingale. Therefore, Y' is an F°®)-local martingale deflator for X¢.
(b) Let H be an F°®-predictable process such that H . X > —1. Then, by
integration by parts, we get
AI+H.XHY =(1+H.XH_.Y+HY X —HY .[x5 L]

—H Y [X5, V).
Note that
HY' L [XE, V] =Y " HYL PP (1) L=t AX.
Then, using the same arguments as in the proof of Theorem 10, we get
A+H.XY' =(0+H.X_.Y'+HY .X¢
vi u P
—H 7 (AXa V) it

and the assertion is proved. O

Proposition 11 Let (X“,u € R) be a parametrized process admitting an F-local
martingale deflator such that AX“ =0on {R” < 00}, n-a.e. Then X¢ admits an

F°®_local martingale deflator.
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Proof Let (X“,u € R) be a parametrized F-semimartingale admitting an F-local
martingale deflator, i.e., there exist a real-valued parametrized predictable process
(¢", u € R) and a positive F-local martingale L such that

0<¢"<1 and (L(¢p".X"),u€R) isaparametrized F-local martingale.

Then, there exists a sequence of F-stopping times that increases to infinity (7},),
such that L™ is a martingale. Put Q, := Lz, . P ~ P. Then, by applying
Proposition 10 to ((¢*. X*)™, u € R) under Q,, we conclude that (¢%. X¥)"» satisfies
NUPBR(F’®)) under Q,. Thanks to Proposition 5, NUPBR(F°®) property under
PP of X¢ follows immediately. O

Theorem 6 The following conditions are equivalent.
(a) The thin set {q" = 0 < q" } is evanescent n-a.e.
(b) The F-stopping time R" is infinite P ® n-a.s.

(c) For any parametrized F-local martingale (X", u € R), the process X¢ admits an
F°®_local martingale deflator qlé (and satisfies NUPBR(IF°©)),

(d) For any parametrized (bounded) process (X*,u € R) admitting an F-local
martingale deflator, the process X¢ admits an F°®-local martingale deflator
(and satisfies NUPBR(F®))).

Proof The equivalence between (a) and (b) is obvious from the definition of R™.
The implication (b) =(c) follows from Proposition 10. To prove (c)=>(b), we
consider a parametrized F-martingale (M, u € R) with

Mu = ]l[ku’oo[ - (]l[ku’oo[)p'F-

Then, due to the equality RY = 00 established in (7), it is clear that

£ -
ME = — (]1[,@,’00[) o=t

is decreasing. Thus, M¢ satisfies NUPBR(F?®) if and only if it is a null process.
Then, we conclude that R is infinite using the same argument as in the proof of
Lemma 5(b). The implication (c) = (d) follows from Proposition 11. |

In the two following examples we look at two extreme situations.

Example 1 LetF be a filtration such that each F-martingale is continuous. Then, the
NUPBR condition is preserved in an initially enlarged filtration for any parametrized
F-local martingale from the reference filtration.

Example 2 Let B be a ¢-measurable set such that P(B) = % and consider the
filtration F = (%), defined as

F =1{0,2}forr€[0,1] and % :={0,B,B, 2} forre[l,o0].
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Define a random variable & as £ := 1g + 2 - 1. The random variable £ satisfies
Jacod’s hypothesis with density (¢*, u € {1,2}) equal to

q' = T+ 2 Lge=13 1100
¢ =T+ 2 Lig=nylj o

Let the filtration F°¢) = (ﬁ,g(g))rzo be an initial enlargement of the filtration F with
£ ie.,

F°O .= (g, B, B, 2} for te]0,00].

Let X be an F-martingale defined as

1
X:= (]l{s=1} - 5) Lpt oo

Then, X is an F”®)-predictable process. Thus, by [5, Lemma 2.6] it does not satisfy
NUPBR(F?®). Note that here, the set {g* = 0 < g" } is not evanescent, and that R"
is not equal to infinity.

S Connection to Absolutely Continuous Change of Measure

In this section, we study the relationship between our optional semimartingale
decompositions in progressive and initial enlargement of filtration cases and our
optional semimartingale decomposition in an absolutely continuous change of
measure set-up. First let us recall [28, Theorem 42, Chap. III].

Theorem 7 Let X be a P-local martingale with Xy = 0. Let Q be a probability
measure absolutely continuous with respect to P, and define {; := Ep(% |.%,). Let
ri=inf{r > 0:{ = 0} and 7 := r(;,_~qy. Then

X:=X-— % X+ (AX: np,oo[)"’]p (18)

is a Q-local martingale.

It is clear that Theorem 7 implies the same type of decompositions as the two
decompositions stated in Sects. 3.1 and 4.1.

_ p.F
Up to random time 7: X=X+ 5. [X",N] - (AXkﬂ[ie oo[)
’ A
F
— pP-
Under Jacod’s hypothesis: X¢ = X + q% X5 ] - (AX,%u]l[ku,oo[) lu=¢

Under measure Q: X=X+ % L [X 8] - (AXF]I[?,OO[)NP
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In each of the three cases, there is a different mechanism to ensure the strict
positivity of N7, ¢f and ¢. In the case of progressive enlargement up to a random
time, we stop at 7. In the case of initial enlargement with random variable satisfying
Jacod’s hypothesis, we plug £. In the case of absolutely continuous change of
measure, the process ( is strictly positive Q-a.s.

The optional decomposition in the change of measure case can be used in the
same way to obtain similar result on stability of the NUPBR condition with respect
to absolutely continuous change of measure.

We remark here that the set introduced in Definition 3 may become bigger under
absolutely continuous change of measure as under the new measure the condition
H.X > —1 is more likely satisfied.

Let ¢ given by (18) in terms of the Radon Nikodym density £, and define a Q-
local martingale L* by

L¢ = —.¢.
Z ¢

Let us denote by 7 the accessible part of the stopping time 7, and set

Ve = (Lpeool)

Using the processes L* and V“ we study, in the next lemma, the behaviour of
particular Q-deflators.
Proposition 12

(a) Let Y* := & (—L%). If X is a quasi-left continuous local martingale and AX; =
0 on {F < oo} P-a.s., then Y* is a Q-local martingale deflator for X.

(b) Let Y° := &(—L* — V). Let X be a P-local martingale such that AXy = 0 on
{F < 0o} P-a.s., then Y* is a Q-supermartingale deflator for X.

Proof

(a) Using integration by parts and the optional decomposition (18) given in
Theorem 7 for X and then for ¢, we obtain

VX = X_ .Y+ YO X + [V X]

_ 1
=X Y YL X+ Y- L[4 X] = YL (AX L oo’ — YL [L4X]

Z
XYy R o Yi% JEx)+ Y%uzm
1 ¢
RN (Gl Loo) . X] = Y2 (AX; L o) — ;—:[C - X.
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We continue, adding the two terms which contain [¢,X] and computing the
brackets
Y® AL
¢e-

+Z PP(nn)AX Y L (AX A oop)””

Y“X:X_.Y“+Yi.5f—z AXA§+Z (Ag) AX

=X_ Y YLK+ Y VPP AX - YO L (AXpeo)” (19)

Since for any P-quasi-left continuous martingale X, the process »F (IR AX is
null and AX; = 0, Y is a Q-local martingale deflator for X.

(b) Let H be a predictable process such that H . X > —1. Then, by integration by
parts, we get

1+H.X) Y =(1+H.X)_.Y'+HY . X—HY".[X,[]—H Y*.[X, V“].
Note that
HY* . [X. V] =Y HY" ""(Ip)AX.

Then, using the same arguments as in the proof of Theorem 12 to derive (19),
we get

- - - _ - P
(+H. 0P = (14 H.X)- . 7+ HYL X = HPE L (AXtg )

and the assertion is proved. O

Proposition 13 Let X be a process admitting a P-local martingale deflator such
that AXE = 0 on {{ < oo}. Then X admits a Q-local martingale deflator.

Proof Let X be an P-semimartingale satisfying NUPBR(PP). Thanks to Proposition 5
and Theorem 2, we deduce the existence of a real-valued predictable process ¢ and
a positive P-local martingale K such that

0<¢p<1 and K(¢.X) isalP-local martingale.

Then there exists a sequence of stopping times (v,), that increases to infinity such
that the stopped process K is a P-martingale. Put P, := K,,, . P ~ P and

Kvn Q é‘

=gk YT B, Ky

PP
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Define (' := Ep, (]E;?—’év)lﬂ'}) and note that the condition that {{ =0 < {_}
is P-evanescent implies that {¢" = 0 < {"} is P,-evanescent. Then, by applying
Proposition 12 to (¢ . X)" under P,, we conclude that (¢ . X)'» satisfies
NUPBR(Q),,). Thanks to Proposition 5, since Q, ~ @Q, NUPBR(Q) property of

X immediately follows. O

We recover [10, Theorem 5.3] and [10, Proposition 5.7] with alternative proof in
the next result.

Theorem 8 The following conditions are equivalent.

(a) The thin set { = 0 < {_} is P-evanescent.

(b) The stopping time ¥ is infinite P-a.s.

(c) Any P-local martingale X admits Y as a Q-local martingale deflator, so X
satisfies NUPBR(Q).

(d) Any (bounded) process X satisfying NUPBR(P) satisfies NUPBR(Q).

Proof The equivalence between (a) and (b) is obvious from the definition of 7.
The implication (b)=>(c) follows from Proposition 12. To prove (c)=>(b) (and
(d)=(b)), we consider the P-martingale

X = Tpoo— (Ipeo)” -

Then, due to 7 = oo (Q-a.s. we have that, under Q,

p,IP
X = = (Lool)’

is a predictable decreasing process. Thus, X satisfies NUPBR(Q) if and only if it is
anull process. Then, we conclude that S is infinite using the same argument as in the
proof of Lemma 6(b). The implication (c) = (d) follows from Proposition 13. O

Acknowledgements The authors are thankful to the Chaire Marchés en Mutation (Fédération
Bancaire Francaise) for financial support and to Marek Rutkowski for valuable comments that
helped to improve this paper.

We thank also the anonymous referee for his(her) helpful comments.

References

1. B. Acciaio, C. Fontana, C. Kardaras, Arbitrage of the first kind and filtration enlargements in
semimartingale financial models. Preprint (2014) [arXiv:1401.7198]

2. A. Aksamit, T. Choulli, J. Deng, M. Jeanblanc, Arbitrages in a progressive enlargement setting.
Arbitrage, Credit Inf. Risks, Peking Univ. Ser. Math. 6, 55-88 (2014)

3. A. Aksamit, T. Choulli, J. Deng, M. Jeanblanc, Non-arbitrage under a class of honest times.
Preprint (2014) [arXiv:1404.0410]

4. A. Aksamit, T. Choulli, J. Deng, M. Jeanblanc, Non-arbitrage up to random horizon for
semimartingale models, long version. Preprint (2014) [arXiv:1310.1142v2]



Optional Decomposition and NUPBR 217

5.

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.
31

32.

A. Aksamit, T. Choulli, J. Deng, M. Jeanblanc, Non-arbitrage up to random horizon for
semimartingale models, short version. Preprint (2014) [arXiv:1310.1142]

J. Amendinger, Initial enlargement of filtrations and additional information in financial
markets. Ph.D. thesis, Technischen Universitit Berlin, 1999

T. Choulli, J. Deng, J. Ma, How non-arbitrage, viability and numéraire portfolio are related.
Finance Stochast (2014). arXiv:1211.4598v3

. E. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing.

Math. Ann. 300(1), 463-520 (1994)

. C. Dellacherie, P.A. Meyer, B. Maisonneuve, Probabilités et potentiel: Chapitres 17 a 24.

Processus de Markov (fin), compléments de calcul stochastique (Hermann, Paris, 1992)

C. Fontana, No-arbitrage conditions and absolutely continuous changes of measure. Arbitrage,
Credit Inf. Risks, Peking Univ. Ser. Math. 6, 3—18 (2014)

C. Fontana, M. Jeanblanc, S. Song, On arbitrages arising from honest times. Finance Stochast.
18, 515-543 (2014)

A. Grorud, M. Pontier, Insider trading in a continuous time market model. Int. J. Theor. Appl.
Finance 1(03), 331-347 (1998)

A. Grorud, M. Pontier, Asymmetrical information and incomplete markets. Int. J. Theor. Appl.
Finance 4(02), 285-302 (2001)

H. Hulley, M. Schweizer, M6-on minimal market models and minimal martingale measures,
in Contemporary Quantitative Finance (Springer, New York, 2010), pp. 35-51

P. Imkeller, Random times at which insiders can have free lunches. Stochastics 74(1-2), 465—
487 (2002)

P. Imkeller, N. Perkowski, The existence of dominating local martingale measures. Finance
Stoch. Published on line: 13 June 2015 doi: 10.1007/s00780-015-0264-0

J. Jacod, Grossissement initial, hypothese (#”) et théoréme de Girsanov, in Grossissements
de Filtrations: Exemples et Applications (Springer, New York, 1985), pp. 15-35

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial Markets (Springer,
New York, 2009)

T. Jeulin, Semi-martingales et grossissement d’une filtration (Springer, New York, 1980)

T. Jeulin, M. Yor, Grossissement d’une filtration et semi-martingales: formules explicites, in
Séminaire de Probabilités XII (Springer, New York, 1978), pp. 78-97

Y. Kabanov, On the FTAP of Kreps-Delbaen-Schachermayer, in Statistics and control of
stochastic processes (Moscow, 1995/1996) (1997), pp. 191-203

Y. Kabanov, C. Kardaras, S. Song, On local martingale deflators and market portfolios (2014)
[arXiv:1501.04363]

Karatzas, 1., Kardaras, C. The numéraire portfolio in semimartingale financial models. Finance
Stochast. 11(4), 447-493 (2007)

C. Kardaras, Market viability via absence of arbitrage of the first kind. Finance Stochast.
16(4), 651-667 (2012)

C. Kardaras, On the stochastic behaviour of optional processes up to random times. Ann. Appl.
Probab. 25(2), 429464 (2015)

K. Larsen, G. Zitkovi¢, On utility maximization under convex portfolio constraints. Ann. Appl.
Probab. 23(2), 665-692 (2013)

E. Platen, A benchmark approach to finance. Math. Finance 16(1), 131-151 (2006)

P. Protter, Stochastic Integration and Differential Equations: Version 2.1, vol. 21 (Springer,
New York, 2004)

D.B. Rokhlin, On the existence of an equivalent supermartingale density for a fork-convex
family of stochastic processes. Math. Notes 87(3—4), 556-563 (2010)

J. Ruf, Hedging under arbitrage. Math. Finance 23(2), 297-317 (2013)

M. Schweizer, K. Takaoka, A note on the condition of no unbounded profit with bounded risk.
Finance Stochast. 28(2), 393405 (2013)

S. Song, Grossissement de filtration et problémes connexes. Ph.D. thesis, Université Paris VI,
1987


http://dx.doi.org/10.1007/s00780-015-0264-0

218 A. Aksamit et al.

33. S. Song, Local martingale deflators for asset processes stopped at a default time S° or right
before S*~. Preprint (2014) [arXiv:1405.4474]

34. C. Stricker, M. Yor, Calcul stochastique dépendant d’un parametre. Zeitschrift fiir Wahrschein-
lichkeitstheorie und Verwandte Gebiete 45(2), 109-133 (1978)



Martingale Marginals Do Not Always Determine
Convergence

Jim Pitman

Abstract Baéz-Duarte (J. Math. Anal. Appl. 36, 149-150, 1971, http://dx.doi.org/
10.1016/0022-247X(71)90025-4 [ISSN 0022-247x]) and Gilat (Ann. Math. Stat.
43, 1374-1379, 1972, http://dx.doi.org/10.1214/a0ms/1177692494 [ISSN 0003-
4851]) gave examples of martingales that converge in probability (and hence in
distribution) but not almost surely. Here such a martingale is constructed with
uniformly bounded increments, and a construction is provided of two martingales
with the same marginals, one of which converges almost surely, while the other does
not converge in probability.

1 Introduction

Recent work of Marc Yor and coauthors [4] has drawn attention to how properties
of a martingale are related to its family of marginal distributions. A fundamental
result of this kind is Doob’s martingale convergence theorem:

* if the marginal distributions (u,,, n > 0) of a discrete time martingale (M,,,n > 0)
are such that [ |x|u,(dx) is bounded, then M, converges almost surely.

Other well known results relating the behavior of a discrete time martingale M,, to
its marginal laws p,, are:

* foreachp > 1, the sequence [ |x|Pu,(dx) is bounded if and only if M, converges
in 17,

e limy_ o SUp, fIX\>y |x| pn (dx) = 0, that is (M,),>0 is uniformly integrable, if and
only if M,, convergesin L'.

We know also from Lévy that if u, is the distribution of a partial sum S, of
independent random variables, and w, converges in distribution as n — oo, then
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S, converges almost surely. These results can be found in most modern graduate
textbooks in probability. See for instance Durrett [2].

What if the marginals of a martingale converge in distribution? Does that imply
the martingale converges a.s? Bdez-Duarte [1] and Gilat [3] gave examples of
martingales that converge in probability but not almost surely. So the answer to this
question is no. But worse than that, there is a sequence of martingale marginals con-
verging in distribution, such that some martingales with these marginals converge
almost surely, while others diverge almost surely. So by mixing, the probability
of convergence of a martingale with these marginals can be any number in [0, 1].
Moreover, the same phenomenon can be exhibited for convergence in probability:
there is a sequence of martingale marginals converging in distribution, such that
some martingales with these marginals converge in probability, but others do not.

The purpose of this brief note is to record these examples, and to draw attention
to the following problems which they raise:

1. What is a necessary and sufficient condition on martingale marginals for every
martingale with these marginals to converge almost surely?

2. What is a necessary and sufficient condition on martingale marginals for every
martingale with these marginals to converge in probability?

Perhaps the condition for almost sure convergence is Doob’s L'-bounded
condition. But this does not seem at all obvious. Moreover, L!-bounded is not the
right condition for convergence in probability: convergence in distribution to a point
mass is obviously sufficient, and this condition can hold for marginals that are not
bounded in L. See also Rao [5] for treatment of some other problems related to
non-L!-bounded martingales.

2 Examples

2.1 Almost Sure Convergence

This construction extends and simplifies the construction by Gilat [3, §2] of a
martingale which converges in probability but not almost surely, with increments
in the set {—1,0,1} See also Bdez-Duarte [1] for an earlier construction with
unbounded increments, based on the double or nothing game instead of a random
walk.

Let (S,,n = 0,1,2,...) be a simple symmetric random walk started at Sp = 0,
with (S,+1 — S,,n = 0,1,2,...) a sequence of independent U(£1) random
variables, where U(+£1) is the uniform distribution on the set {+1} := {—1, +1}.
Let0 =Ty < T, < T, < --- be the successive times n that S, = 0. By recurrence
of the simple random walk, P(T,, < co) = 1 for every n. Foreach k = 1,2, ... let
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M® be the process which follows the walk S, on the random interval [T}, T¢] of
its kth excursion away from 0, and is otherwise identically 0:

MW = §,1(T1—; <n <Ty)

where 1(---) is an indicator random variable with value 1 if --- and O otherwise.
Each of these processes M® is a martingale relative to the filtration (F,,) generated
by the walk (S,), by Doob’s optional sampling theorem. Now let (A;) be a sequence
of events such that the o-field Gy generated by these events is independent of the
walk (S,,n > 0), and set

o0
M, =Y MO 1(A)
k=1

So M, follows the path of S, on its kth excursion away from O if A; occurs, and
otherwise M, is identically 0. Let G, for n > 0 be the o-field generated by G
and F,. Then it is clear that (M,,, G,) is a martingale, no matter what choice of the
sequence of events (Ay) independent of (S,). The distribution of M, is determined
by the formula

o0
P(M, = x) = ) P(Sy = x,Tro1 <n < T)P(AY)
k=1

for all integers x # 0. A family of martingales with the same marginals is thus
obtained by varying the structure of dependence between the events A, for a given
sequence of probabilities P(A;). The only way that a path of M,, can converge is if
M, is eventually absorbed in state 0. So if N := )", 1(Ax) denotes the number of
events Ay that occur,

P(M,, converges) = P(N < 00).
Now take P(Ax) = py for a decreasing sequence p; with limit 0 but ), py = oo,
for instance py = 1/k. Then (A;) can be constructed so that the A; are mutually
independent, and P(N = oo) = 1 by the Borel-Cantelli lemma. Or these events can
be nested:
A2 A D A3

in which case

P(N > k) = P(Ay) | 0as k — oo,
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so P(N = oo) = 0 in this case. Thus we obtain a sequence of marginal distributions
for a martingale, such that some martingales with these marginals converge almost
surely, while others diverge almost surely.

2.2 Convergence in Probability

Let us construct a martingale M,, which converges in distribution, but not in
probability, following indications of such a construction by Gilat [3, §1].

This will be an inhomogeneous Markov chain with integer values, starting from
My = 0. Its first step will be to M; with U(£1) distribution. Thereafter, the idea
is to force M, to alternate between the values 1, with probability increasing to
1 as n — oo. This achieves U(=%1) as its limit in distribution, while preventing
convergence in probability by the alternation. The transition probabilities of M,, are
as follows:

P(Myiy = M, + 1| M, with M, ¢ {£1}) = 1/2 1)
PMypr=—1[M,=1)=1-27" 2

PMyyy =2 —1|M, =1)=27" 3

PMypr = +1 M, =-1)=1-27" C))

PMypy =-2"""+1|M, =-1)=27". (5)

The first line indicates that whenever M, is away from the two point set {£1}, it
moves according to a simple symmetric random walk, until it eventually gets back to
{1} with probability one. Once it is back in {£1}, it is forced to alternate between
these values, with probability 1 — 27" for an alternation at step n, compensated
by moving to (2""! — 1) with probability 27". Since the probabilities 2" are
summable, the Borel-Cantelli Lemma ensures that with probability one only finitely
many exits from {1} ever occur. After the last of these exits, the martingale
eventually returns to {1} with probability one. From that time onwards, the
martingale flips back and forth deterministically between {£1}.

A slight modification of these transition probabilities, gives another martingale
with the same marginal distributions which converges almost surely and hence in
probability. With My = 0 as before, the modified scheme is as follows:

PMyy1 =M, £ 1|M, withM, ¢ {£1}) =1/2 (6)
PMyt1 = 1M, =1)=1-27" @)
P(Mn+l =2t |Mn = 1) = Z_npn (8)

P(Myqy = -2""" +1|M, =1)=27"g, ©)
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PMyi1 = —1|M,=—1)=1-27" (10)
PMygy = =2""" +1|M, = —1)=27"p, (11)
P(Mn+l = 2n+1 -1 |Mn = _1) = 2—nqn (12)

where
pni=1/2—-2"and g, :=1—p,

are chosen so that the distribution with probability p, at 2"*! —1 and g, at —2" ! 41
has mean

P2 =D+ g (2" 1) = 1.

In this modified process, the alternating transition out of states £1 is replaced by
holding in these states, while the previous compensating moves to +(2"+! — 1)
are replaced by a nearly symmetric transitions from £1 to these values. This
preserves the martingale property, and also preserves the marginal laws. But the
previous argument for eventual alternation now shows that the modified martingale
is eventually absorbed almost surely in one of the states +1. So the modified
martingale converges almost surely to a limit which has U(=%-1) distribution.

These martingales (M, ) have jumps that are unbounded. Gilat [3, §2] left open
the question of whether there exist martingales with uniformly bounded increments
which converge in distribution but not in probability. But such martingales can be
created by a variation of the first construction of (M) above, as follows.

Run a simple symmetric random walk starting from 0. Each time the random
walk makes an alternation between the two states =1, make the walk delay for
a random number of steps in its current state in 1 before continuing, for some
rapidly increasing sequence of random delays. Call the resulting martingale M,,. So
by construction, M| has U(+) distribution,

M, = (—1)k_1M1 for Sy <n <T;
for some increasing sequence of randomized stopping times
1251 <T1 <Sz<T2<~~~,

and during the kth crossing interval [T}, Si+1] the process M, follows a simple
random walk path starting in state (—1)*~'M; and stopping when it first reaches
state (—1)*M;.

The claim is that a suitable construction of the delays Ty — S; will ensure that
the distribution of M, converges to U(%1), while there is almost deterministic
alternation for large k of the state M, for some rapidly increasing deterministic
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sequence f;. To achieve this end, let #{ = 1 and suppose inductively fork = 1,2, ...
that #;, has been chosen so that

P(M,, = (=1)*"'M}) > 1 — ¢ for some ¢ | 0 as k — oo. (13)

Here M, € {1} is the first step of the simple random walk. The random number of
steps required for random walk crossing between states 1 is a.s. finite. So having
defined #;, we can choose an even integer #4 so large, that f;4;/2 > # and all of
the following events occur with probability at least 1 — €;4;:

s My, p= (=1)*='M;, meaning that the (k — 1)th crossing between %1 has been
completed by time S < fx+1/2;

* the kth crossing is started at time T} that is uniform on [t;41/2, ty+1) given Sy <
ter1/2;

* the kth crossing is completed at time Syt < ty+1, SO0 M,, = (—D)*M, for Spq1 <
n = fgt1.

Moreover, t;41 can be chosen so large that the uniform random start time of the kth
crossing given Sy < fx/2 ensures that also

P(Mn € {:bl}) >1—2¢ forall 4 <n < tr4

because with high probability the length Sy — T} of the kth crossing is negligible
in comparison with the length #.4,/2 of the interval [t;+1/2, fx+1] in which this
crossing is arranged to occur. It follows from this construction that M, converges in
distribution to U(=£1), while the forced alternation (13) prevents M, from having a
limit in probability.

A feature of the previous example is that sup, M, = —inf, M, = oo almost
surely, since in the end every step of the underlying simple symmetric random walk
is made by the time-changed martingale M,,. A similar example can be created from
a standard Brownian motion (B;,t > 0) using a predictable {0, 1}-valued process
(H;,t > 0) to create successive switching between and holding in states £1 so that
the martingale

t
Mr = / H[dB[
0

converges in distribution to U(41) while not converging in probability. In this
example, fooo H,dt = sup, M, = —inf; M, = oo almost surely.

Acknowledgements Thanks to David Aldous for drawing my attention to Gilat [3].
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Martingale Inequalities for the Maximum
via Pathwise Arguments

Jan Obléj, Peter Spoida, and Nizar Touzi

Abstract We study a class of martingale inequalities involving the running max-
imum process. They are derived from pathwise inequalities introduced by Henry-
Labordere et al. (Ann. Appl. Probab., 2015 [arxiv:1203.6877v3]) and provide an
upper bound on the expectation of a function of the running maximum in terms
of marginal distributions at n intermediate time points. The class of inequalities is
rich and we show that in general no inequality is uniformly sharp—for any two
inequalities we specify martingales such that one or the other inequality is sharper.
We use our inequalities to recover Doob’s 7 inequalities. Further, for p = 1 we
refine the known inequality and for p < 1 we obtain new inequalities.

1 Introduction

In this article we study certain martingale inequalities for the terminal maximum
of a stochastic process. We thus contribute to a research area with a long and rich
history. In seminal contributions, Blackwell and Dubins [7], Dubins and Gilat [14]
and Azéma and Yor [2, 3] showed that the distribution of the maximum X7 =
sup, .7 X, of a martingale (X;) is bounded above, in stochastic order, by the so called
Haray-Littlewood transform of the distribution of X7, and the bound is attained.
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This led to series of studies on the possible distributions of (XT,}_(T), see Carraro
et al. [10] for a discussion and further references. More recently, such problems
appeared very naturally within the field of mathematical finance. The original result
was extended to the case of a non trivial starting law in Hobson [16] and to the case
of a fixed intermediate law in Brown et al. [9].

The novelty of our study here, as compared with the works mentioned above,
is that we look at inequalities which use the information about the process at n
intermediate time points. One of our goals is to understand how the bound induced
by these more elaborate inequalities compares to simpler inequalities which do not
use information about the process at intermediate time points. We show that in our
context these bounds can be both, better or worse. We also note that knowledge of
intermediate moments does not induce a necessarily tighter bound in Doob’s L7-
inequalities. Our main result is split into two Theorems. First, in Theorem 2.1, we
present our class of inequalities, indexed with an n-tuple of functions ¢, and show
that they are sharp: for a given ¢ we find a martingale which attains equality. Second,
in Theorem 3.1, we show that no inequality is universally better than another: for
¢ # ¢ we find two processes X and X which show that either of the inequalities can
be strictly better than the other.

Throughout, we emphasise the simplicity of our arguments, which are all
elementary. This is illustrated in Sects.2.2-2.4 where we obtain amongst others
the sharp versions of Doob’s [P-inequalities for all p > 0. While the case p > 1
is already known in the literature, our Doob’s L”-inequality in the case p € (0, 1)
appears new.

The idea of deriving martingale inequalities from pathwise inequalities is already
present in work on robust pricing and hedging by Hobson [16]. Other authors have
used pathwise arguments to derive martingale inequalities, e.g. Doob’s inequalities
are considered by Acciaio et al. [1] and Obi6j and Yor [19]. The Burkholder-
Davis-Gundy inequality is rediscovered with pathwise arguments by Beiglbock and
Siorpaes [6]. In this context we also refer to Cox and Wang [12] and Cox and Peskir
[11] whose pathwise inequalities relate a process and time. In a similar spirit, bounds
for local time are obtained by Cox et al. [13]. Beiglbock and Nutz [5] look at general
martingale inequalities and explain how they can be obtained from deterministic
inequalities. This approach builds on the so-called Burkholder’s method, a classical
tool in probability used to construct sharp martingale inequalities, see Osgkowski
[20, Chap. 2] for a detailed discussion.

In a discrete time and quasi-sure setup, the results of Bouchard and Nutz [8] can
be seen as general theoretical underpinning of many ideas we present here in the
special case of martingale inequalities involving the running maximum.

Organisation of the Article We first recall a remarkable pathwise inequality
obtain by Henry-Labordere et al. [15] and some related results. The body of the
paper is then split into two sections. In Sect. 2 we derive our class of submartingale
inequalities and demonstrate how they can be used to derive, amongst others, Doob’s
inequalities. Then, in Sect. 3, we study if a given inequality can be universally better
than another one for all submartingales.
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1.1 Preliminaries

We assume that a filtered probability space (2, F, (F;), P) is fixed which supports
a standard real-valued Brownian motion B with some initial value X, € R. We will
typically use X = (X;) to denote a (sub/super) martingale and, unless otherwise
specified, we always mean this with respect to X’s natural filtration. Throughout,
we fix arbitrary times 0 =ty <) <Hh =< ... <t, =:T.

Before we proceed to the main result, we recall a remarkable pathwise inequality
from Henry-Labordere et al. [15]. The version we give below appears in the proof
of Proposition 3.1 in [15] and is best suited to our present context.

Proposition 1.1 (Proposition 3.1 of Henry-Labordere et al. [15]) Let w be a
cadlag path and denote w, := SUP)<s<s Ws- Then, for m > wy and {; < --- <
L < m:

i=1

(0 — Cig1) T Wy yy — @y
- Z ( + ]l{lnsc?)z,,éiJrlSwri :

m—Eip Y=

Next, we recall a process with some special structure in view of (1). This process
has been analysed in more detail by Obt6j and Spoida [18].

Definition 1.2 (Iterated Azéma-Yor Type Embedding) Let &,...,&, be non-
decreasing functions on (Xy, 00) and denote B, := sup,<, By. Set 7o = 0 and for
i=1,...,ndefine

= inf{r >t B, < &(B)). @

A continuous martingale X is called an iterated Azéma-Yor type embedding based

oné = (§&,...,§)if
(Xti’)_(ti) = (BTI.,BTI.) a.s. fori=0,...,n. 3)

Note from the non-decrease of the &;’s that tp < inf{t > H; : B, < & (1)} for
Hy =inf{t > 0:B, > 1} and then t; < inf{t > t;_ : B, < &(B,_,)},i=2,....n
It follows that 7; < oo as. for all i = 1,...,n. Further, X being a martingale
implies that B;, are integrable and all have mean Xj. In particular, 7, < oo a.s. More
importantly, it follows from the characterisation of uniform integrable martingales
in Azéma et al. [4] that (B;a,,, t > 0) is uniformly integrable. Indeed, we have, with
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H,=inf{t>0:B, = x},

m xP [sup |Bins, | > x:| < lim xP [HX < Hmax_sfl(_x):l + xP [Bis, > x]
xX—>00 1S

li
x—00 >0

= lim
X—>00

(x(maxi &7 (—x) — Xo)

max; £ (—=x) + x

+xP[X,, > x]) =0,
since (X, : t < t,) is uniformly integrable and max; &' (—x) — Xy \, 0. Conversely,
if (Biaz, 1 t > 0) is uniformly integrable then an example of an iterated Azéma-Yor
type embedding is obtained by taking

X, =8B _,l._l), for i1 <t<t,i=1,...,n. “4)

5
Ii/\(ri_lvtij

Finally, we recall a version of Lemma 4.1 from Henry-Labordere et al. [15].

Proposition 1.3 (Pathwise Equality) Let § = (&1,...,&,) be non-decreasing
right-continuous functions and let X be an iterated Azéma-Yor embedding based
on &. Then, for any m > Xy with &,(m) < m, X achieves equality in (1), i.e.

]l{)'(,nzm} = T,(X,m.{(m)) a.s., (5)
where

$i(m) = min §;(m), i=1,...,n (6)
jZi

We note that if we work on the canonical space of continuous functions then (5)
holds pathwise and not only a.s. We also note that the assumption that X is an iterated
Azéma-Yor type embedding, or that (B, ;) is a uniformly integrable martingale,
may be relaxed as long as X satisfies (3).

2 (Sub)martingale Inequality and Its Applications

We present now an inequality on the expected value of a function of the running
maximum of a submartingale which is obtained by taking expectations in the
pathwise inequality of Proposition 1.1. We then demonstrate how this inequality
can be used to derive and improve Doob’s inequalities. Related work on pathwise
interpretations of Doob’s inequalities can be found in Acciaio et al. [1] and Oblgj
and Yor [19]. Peskir [21, Sect. 4] derives Doob’s inequalities and shows that the
constants he obtains are optimal. We give below an alternative proof of these
statements and provide new sharp inequalities for the case p < 1.



Martingale Inequalities for the Maximum via Pathwise Arguments 231
2.1 Submartingale Inequality

We first deduce a general martingale inequality for E [¢ (}_(T)], similarly as in
Proposition 3.2 in [15], and prove that it is attained under some conditions. Define

= {I; =(C1,...,8) : & (Xo,00) = R is right-continuous,
§i(m) < -+ < §u(m) < m, neN}. (7

In order to ensure that the expectations we consider are finite we will occasionally
need the technical condition that

¢1(m) . ¢ (m) 1

£2° := liminf > (0 and lim sup = 0 for some y < . ®)
m—00 m Mm—>00 mY — é'loo
Theorem 2.1 Let¢ = ({1, ...,80) € Z. Then,
(i) for any cadlag submartingale X: for any m > Xy we have
_ (X = Gm)t S (X — G +
B[Ry = m] <] 30 K= i) Z( L= G (m) o
= m={Li(m) m — i1 (m)

and, more generally, for a right-continuous non-decreasing function ¢,

B[p0n] <UB(.6.5) = o+ [ 3 E[157 )] apom

(Xo,00) i=1
(10)

where

@ =&m)* @ =Gm) "
m — &i(m) m — i1 (m)

A" (x) == Liicny (11)

(ii) if ¢y is non-decreasing and satisfies, together with ¢, the condition (8), there
exists a continuous martingale which achieves equality in (10).

Remark 2.2 (Optimization over{) If X and 1y, ..., 1, are fixed we can optimize (10)
over { € Z to obtain a minimizer {*. Clearly, more intermediate points # in (10)
can only improve the bound for this particular process X. However, only for very
special processes (e.g. the iterated Azéma-Yor type embedding) there is hope
that (10) will hold with equality. This is, loosely speaking, because a finite number
of intermediate marginal law constraints does not, in general, determine uniquely
the law of the maximum at terminal time ¢,,.
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Proof of Theorem 2.1 Equation (9) follows from (1) by taking expectations.
Then, (10) follows from (9) by integration and Fubini’s theorem:

E[¢(kn)] = E [¢>(Xo) + /( . l{x,zm}dqs(m)} .

Note that for a fixed m, E [|)Lf’m(X,l.)|] <oofori=1,...,n, since E[X;] < o0
by the submartingale property.
If ¢, is non-decreasing and ¢ (m) > am for m large, @ > 0, we define X by

X, = BTL’MQ ifr <1,
Brzl ift > 1,
where B is a Brownian motion, By = X, and 7, := inf{u >0 : B, < {;(B,)}.

Excursion theoretical considerations, cf. e.g. Rogers [22], combined with asymp-
totic bounds on ¢; in (8), allow us to compute

- 1 1
P [th > y] = exp ( / ) < const - exp (—/ dz)
Xoy] £ é‘l(z) 1y 202

= const - y‘ﬂ

for large y. We may take « such that y < 1/(1 — «) in (8) which then ensures that
E[¢(X,,)] < oco. Further, note that for large y, inf>o X, < —y implies Xoo = X;, >
y/a and hence it follows that

lim yP |:sup |X:| > y:| < const- lim yl_ﬁ =0
y—>00 TZO y—>00

which in turn implies that (X, : # > 0) is a uniformly integrable martingale, see
Azéma et al. [4]. Finally, one readily verifies together with Proposition 1.3 that

Tn(X, m,;) - T](X, m,;) = ]]‘{)_(,1 Zm} = ]]'{XIV,ZW'}'

and then the claim follows from

B[] =00 + [ E[Lg,. |0

(Xo,00)
= ¢ (Xo) + /(x )UB (X, Lpnoo). §) dp (m)

=UB(X.¢.%)

where we applied Fubini’s theorem. O
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2.2 Doob’s IP-Inequalities, p > 1

Using a special case of Theorem 2.1 we obtain an improvement to Doob’s
inequalities. Denote pow” (m) = mP, {,(m) := am.

Proposition 2.3 (Doob’s L’-Inequalities, p > 1) Let (X;);<r be a non-negative
cadlag submartingale.

(i) Then,

IA

E[X7] UB (X, pow”, g,%l) (12a)

p
p P p P
— ) E(X;| - —X. 12b

IA

(ii) For every € > 0, there exists a martingale X such that

0= (LY EN]-—Lx—E[x] < (13)
= p—l T p—l 0 T €.

(iii) The inequality in (12b) is strict if and only if either holds:

_ -1

E [X’T’] < oo and Xt < P Xo with positive probability. (14a)
E [)_(’T’] < oo and X is a strict submartingale. (14b)

Proof Let us first prove (12a) and (12b). If E [X}] = oo there is nothing to show.

In the other case, Eq. (12a) follows from Theorem 2.1 applied withn = 1, ¢(y) =
pow”(y) = y” and &; = {,—1. To justify this choice of ¢; and to simplify further the

P
upper bound we start with a more general {; = {, o < 1 and compute

_ Xr — +
E[X}] — X} < UB (X.pow’. £y) — X} = E[ pyt HLZ y}
Xo y—ay

AT v, X
a 1 &1 — @y
=E / Y ———dy
Xo y—oy
XT
—
< E y”‘ gy
Xo y—ay

__r 1 E &p_l_XP—l
p—11l—« o 0

XT]
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1 1

—alp—1)
Sp_l(l_a)ap—lE[Xp]_ p—o X

Top-Dl-a)"”

15)

where we used Fubini in the first equality and the submartingale property of X in

the last inequality. We note that the function o — T=oa=T attains its minimum at

ar = %. Plugging @ = «* into the above yields (12b).

We turn to the proof that Doob’s L”-inequality is attained asymptotically in the
sense of (13), a fact which was also proven by Peskir [21, Sect.4]. Let Xy, > 0,
otherwise the claim is trivial. Set o* = ’%1 and take ¢* < o ;= £ :_:l < 1. Let
X7 = B;, where B is a Brownian motion started at X, and 7, := inf{u > 0 : B, <

«B,}. Then by using excursion theoretical results, cf. e.g. Rogers [22],

P[X L Y\
> =e — = | =
[Xr > y] Xp( /on_az Z) (XO)

and then direct computation shows

S + €
E[xf;]zpe X7,

By Doob’s L7-inequality,

B = (525 ) Bl - Lo = (S) B [0 - Lox

and one verifies

p —1 p
P_) . |p*te P ey P_xr
p—1 p+e € €l0 p—1
This establishes the claim in (13).
Finally, we note that in the calculations (15) which led to (12b) there are three
inequalities: the first one comes from Theorem 2.1 and does not concern the claim

regarding (14a)—(14b). The second one is clearly strict if and only if (14a) holds.
The third one is clearly strict if and only if (14b) holds. O

Remark 2.4 (Asymptotic Attainability) For the martingales in (ii) of Proposition 2.3
we have

p Y P Py
UB(X, P ;—): — ) E|X;| - ——X
pow CITI (p—l) [ T] p—1 0

and E[X}] - coase — 0.
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2.3 Doob’s L'-Inequality

Using a special case of Theorem 2.1 we focus on Doob’s Llog L type inequalities.
We recover here the classical constant e/ (e — 1), see (17b) , with a refined structure
on the inequality. A further improvement to the constant will be obtained in
subsequent section in Corollary 2.7. Denote id(m) = m, and

—oo ifm<1,

¢, m) = (16)

am ifm>1.

Proposition 2.5 (Doob’s L'-Inequality) Let (X,),<r be a non-negative cadlag
submartingale. Then:

(i) with 0log(0) := 0 and V(x) := x — xlog(x),

IA

E[X7] UB (X, id, gi) (17a)

IA

ﬁ (E [Xr log (X1)] + V(1 v Xo)). (17b)

(ii) in the case Xo > 1 there exists a martingale which achieves equality in
both, (17a) and (17b) and in the case Xy < 1 there exists a submartingale
which achieves equality in both, (17a) and (17b).

(iii) the inequality in (17b) is strict if and only if either holds:

- - 1
IE[ T] < ooand Xr > 1, Xr < —Xo with positive probability, (18a)
e
E[Xr] <occandXr > 1, E[X7] > XV 1, (18b)
E [_T] < 00 and X7 < 1 with positive probability. (18¢)

Proof Let us first prove (17a) and (17b). If E [}_(T] = oo there is nothing to show.
In the other case, Eq. (17a) follows from Theorem 2.1 applied with n = 1, ¢(y) =

idy) =yand §; =¢,.
In the case Xp > 1 we further compute using {; = ga ,a <1,

E[Xr] - Xo < UB (X.id.¢,) — Xo
%TVX()X _ )fTTX _
—E / Tl < E / 2Ty
Xo y—ay x, (1—0a)y
X X X
- Y g|Zt log o —log(Xo); | — Y & —T—Xo
l—«a o o l—«a o
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Choosing @ = ¢! gives a convenient cancellation. Together with the submartingale
property of X, this provides

e e 1
E[Xr] —Xo < —E [Xrlog (X7)] — ——E [X7] log(Xo) + Xo
e—1 e—1 e—1
eXo log(Xo) n Xo

1 1 (19)

< 2 _E[(Xp) log (X7)] -
e—1

This is (17b) in the case X, > 1.
For the case 0 < Xy < 1 we obtain from Proposition 1.1 forn =1,

P [XT > )’] < inf E [(XT — §)+] < = [(XT - Oly)+]
i<y y—2¢ y—ay

for « < 1 and therefore
o0

E[XT]_XOZ/ P& = y]dy
Xo

< —Xo)+/ooP[XT EY]dy
1
< (X0 + S B(Xplog ] + == (0)

by (19). This is (17b) in the case Xy < 1.
Now we prove that Doob’s L!-inequality is attained. This was also proven by
Peskir [21, Sect. 4]. Firstly, let Xy > 1. Then the martingale

X:(B#,m) . where r; = inf{r: eB, < B}, Q1)
=" Ju<r

1
e

and B is a Brownian motion with By = Xy, achieves equality in both (17a) and (17b).
Secondly, let Xy < 1. Then the submartingale X defined by

Xo ift<T/2,
B - ift>7T/2,

T2——17 \*1

(22)

where B is a Brownian motion, By = 1, achieves equality in both, (17a) and (17b).
Finally, we note that in the calculations (19) which led to (12b) there are three
inequalities: the first one comes from Theorem 2.1 and does not concern the claim
regarding (18a)-(18c). The second one is clearly strict if and only if (18a) holds.
The third one is clearly strict if and only if (18b) holds. In addition, in the case
Xo < 1 there is an additional error coming from (20). Note that, in the case when
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E [XT] < o0,

Elxr =0 _ . El&r—0"]
y=2¢ (>—o0  y—{

(=00

=1.

Hence, the first inequality in (20) is strict if and only if (18c) holds. The second
inequality in (20) is strict if and only if (18a) or (18b) holds. O

2.4 Doob Type Inequalities, 0 <p < 1

It is well known that if X is a positive continuous local martingale converging a.s. to
zero, then

_ X
Koo ~ 30 (23)

where U is a uniform random variable on [0, 1]. More generally, for any
non-negative supermartingale X, with a deterministic Xy, we have! P [Xoo > x] <
Xo/x, for all x > X,. Hence, for any non-negative supermartingale X and p > 1

p 1 P P
(][ G-

and (24) is attained. We now generalize (24) to a non-negative submartingale.

Proposition 2.6 (Doob Type Inequalities, 0 < p < 1) Let X be a non-negative
cadlag submartingale, Xo > 0, and p € (0, 1). Denote m, :== X" [X}] forr <1.
Then:

(i) there is a unique & € (0, 1] which solves

1—
my@™? = Lpnfl (25)
1—p+pa
and for which we have
- x? _ p
E[X)] < X’ma? =—"2 4+ x27' £ (E[X;]—X
[x7] = Xgmyd T —p+pa 0 1—p+p5{( [X7] 0)
(26a)
Xy p—1_P
< T X l_p(E[XT]—XO). (26b)

I'This follows by applying the optional sampling theorem at the stopping time inf{t > 0 : X, ¢
(0, n)} and using dominated convergence theorem when letting n — oo.
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(ii) there exists a martingale which attains equality in (26a). Further, for every
€ > 0 there exists a martingale such that

Xg p—1 P 4
0= E'FXO S(E[XT]_XO)_E[XT] <€ @7

Proof Following the calculations in (15), we see that

) 1 1 . _ ,
E[X}] < X} + e _p)uz[—al XD+ pX? IXT] = X'f (@),

where, with the notation m, introduced in the statement of the Proposition,

1 + —otl_f’m,, + pmy
—a  (I-a)-p

flo) == T a € [0,1].

Next we prove the existence of a unique & € (0, 1] such that f(&) = minyep 1 f().
To do this, we first compute that

h(a)

f/(“) = m,

where h(e) :=1—p + pmi — (1 — p + po)mpo™.

By direct calculation, we see that 4 is continuous and strictly increasing on (0, 1],
with h(0+) = —oo and h(1) = 1 — p + pm; — m,. Moreover, it follows from the
Jensen inequality and the submartingale property of X that m, < m! and m; > 1.
This implies that #(1) > 0 since 1 — p + px —x” > 0 for x > 1. In consequence,
there exists @ € (0, 1] such that 2 < 0 on (0,&] and & > 0 on [&, 1]. This implies
that f is decreasing on [0, @] and increasing on [&, 1], proving that & is the unique
minimizer of f.

Now the first inequality (26a) follows by plugging the equation ~(&¢) = 0 into
the expression for f. The bound in (26b) is then obtained by adding strictly positive
terms. It also corresponds to taking o = 0 in the expression for f. This completes
the proof of the claim in (i).

As for (ii), the claim regarding a martingale attaining equality in (26a) follows
precisely as in the proof of Proposition 2.3. Let @ € (0, 1) and recall that 7, =
inf{t : B, < ozB,} for a standard Brownian motion B with By = X, > 0. Then,
similarly to the proof of Proposition 2.3, we compute directly

1
- X 1—a
P(B,, > y) = B(B,, > ay) = (—0) L yE X (28)
y

Computing and simplifying we obtain E [Bf, | = l—pl+pot Xg, and hence E [B7,] =

l_zj_ng , while E [B,,] = Xj. It follows that & = « solves (25) and equality holds
in (26a). Taking o arbitrarily small shows (27) holds true. |
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We close this section with a new type of Doob’s LInL type of L' inequality
obtained taking p ' 1 in Proposition 2.6. Since &(p) defined in (25) belongs to [0, 1]
there is a converging subsequence. So without loss of generality, we may assume
a(p) — &(1) for some &(1) € [0, 1]. In order to compute &(1), we re-write (25)
into

g(p) —g(1)

P = m, where g(p) := pm,Q(p) — (1 —p + pm)a(p)’. (29)

We see by a direct differentiation, invoking implicit functions theorem, that
. Xr  Xr . . Xr
'M=a)(1+E|—=—In=—|]—-a)mha(E|—|.
for=a (12 w2]) smaoe]]
Then, sending p — 1 in (29), we get the following equation for &(1):

R Xr . Xp Xr . .
a(1) (1 +E [X—Oln X—OD —E [X—J (1 + &(1) In&(1)). (30)

We note that this equation does not solve explicitly for &(1). Sending p — 1 in the
inequality of Proposition 3.4 we obtain the following improvement to the classical
Doob’s Llog L inequality presented in Proposition 2.5 above.

Corollary 2.7 (Improved Doob’s L' Inequality) Let X be a non-negative cadlag
submartingale, Xy > 0. Then:

- E[X E[X7rInX Xo — E [X7]In X|
E[XT]S [AT]: [(XrInX7] + Xo [Xr] In X,

31
a 1+alna 3D

where & € (0, 1) is uniquely defined by (31).

Note that the equality in (31) is a rewriting of (30). To the best of our knowledge the
above inequality in (31) is new. It bounds E [)_(T] in terms of a function of E [X7] and
E [X7 In X7], similarly to the classical inequality in (17b). However here the function
depends on & which is only given implicitly and not explicitly. In exchange, the
bound refines and improves the classical inequality in (17b). This follows from the
fact that

-1
1+alnaze—, a € (0,1).
e

We note also that for X; := Bt pg» @ € (0, 1), we have & = « and equality is
attained in (31). This follows from the proof above or is verified directly using (28).
The corresponding classical upper bound in (17b) is strictly greater expect for o =
1/e when the two bounds coincide.
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3 Universally Best Submartingale Inequalities

As mentioned in the introduction, the novelty of our martingale inequality from
Theorem 2.1 is that it uses information about the process at intermediate times.
In the previous section we saw that careful choice of functions ¢ in Theorem 2.1
allowed us to recover and improve the classical Doob’s inequalities. In this section
we study the finer structure of our class of inequalities and the question whether the
information from the intermediate marginals gives us more accurate bounds than
e.g. in the case when no information about the process at intermediate times is used.
In short, the answer is negative, i.e. we demonstrate that for a large class of ’s there
is no “universally better” choice of ¢ in the sense that it yields a tighter bound in the
class of inequalities for E [¢(X7) ] from Theorem 2.1.

3.1 No Inequality is Universally Better than Other

To avoid elaborate technicalities, we impose additional conditions on { € £ and ¢
below. Many of these conditions could be relaxed to obtain a slightly stronger, albeit
more involved, statement in Theorem 3.1. We define

F = {C € Z : ¢tare continuous} (32)
and
P = {I; € Z° . ¢ are strictly increasing, liminf §im) >0,
m—00 m (33)

and {; = --- = ¢, on (Xo, Xo + €], for some € > O}.

Before we proceed, we want to argue that the set Z arises quite naturally. In the
setting of Remark 2.2, if X is a martingale such that its marginal laws

/’Ll ::E(X[l)s ey /*’Ln ::E(Xr”)

satisfy Assumption @ of Oblgj and Spoida [18], [(x — )T pui(dx) < [(x —
&) pit1(dx) for all ¢ in the interior of the support of p;4+1 and their barycenter
functions satisfy the mean residual value property of Madan and Yor [17] close to
Xp and have no atoms at the left end of support, then the optimization over § as
described in Remark 2.2 yields a unique f " € Z. Hence, the set of these % seems
to be a “good candidate set” for §’s to be used in Theorem 2.1.
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The statement of the Theorem 3.1 concerns the negative orthant of 2,

F(p, E) = {c € 7 . UB(X,4,¢) < UB (X,¢,E) for all cadlag
(34)
submartingales X and < for at least one X },

and hence it complements Theorem 2.1. Part (ii) in Theorem 2.1 studied sharpness
of (10) for a fixed ¢ with varying X while Theorem 3.1 studies (10) for a fixed X
with varying ¢.

Theorem 3.1 Let ¢ be a right-continuous, strictly increasing function. Then, for
C € 7 such that (8) holds we have
Z(g.E) = 0. (35)

The above result essentially says that no martingale inequality in (10) is univer-
sally better than another one. For any choice E € Z, the corresponding martingale
inequality (10) can not be strictly improved by some other choice of { € Z°5, i.e.
no other { would lead to a better upper bound for all submartingales and strictly
better for some submartingale. The key ingredient to prove this statement is isolated
in the following Proposition.

Proposition 3.2 (Positive Error) Let & € 2 and & € % satisfy & # ¢. Then
there exists a non-empty interval (my, m;) C (Xo, 00) such that

UB (X, Ljm.oo)- E) < UB (X, Linoo). §) for all m € (my. my),

where X is an iterated Azéma-Yor type embedding based on some ,§

Proof To each C € % we can associate non- decreasing and continuous stopping
boundanes’g = (51, . E,,) which satisfies

ti(m) = m>in§,(m) Vm > Xo. (36)
Jj=t
Further, since E ¥ implies that E ; are all equal on some (X, Xo + €] we may take

§ such that
Em) <---<E&(m)<m  Vme (Xo,Xo+e), (37a)
E(m) = &(m) Vm > Xo + €. (37b)
for some € > 0. A possible choice is given by

Em) = Em) + (m — Ex(m)) " ’(X°+€E‘m)+, m>Xe i=1.....n.
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but we may take any ,§ satisfying (36)—(37b). Let X be an iterated Azéma-Yor type
embedding based on this &, e.g. we may take X given by (4) since (Bja;, : t > 0)
is uniformly integrable by the same argument as in the proof of Theorem 2.1. Let
J = 1. Using the notation of Definition 1.2, it follows by monotonicity of ’§ (37b)
and (36) that on the set {B;, = E;(Bz,) Brj > Xo + €} we have B, = &‘](B ) <
§,+1 (Btj). Therefore, the condition of (2) in the definition of the iterated Azéma-Yor
type embedding is not satisfied and hence 711 = 7;. Consequently,

X, =X, ==X, and X, =X, ==X,
R (38)
on the set {X,j =§(X,), X; = Xo + 6}

forallj > 1.
Take 1 < j < n. Denote y := max{k < n : 3t < Hy,4¢s.t. By < &(Br)} v 0,

where H, := inf{u > 0 : B, = x} and H := {3 = j— 1, Hy,1c < 0o}. By (37a)
we have P [H] > 0. Further, by using {;(m) < --- < {,(m) < m we conclude by the
properties of Brownian motion that P [H N {B;, € O}] > 0 for O C (X, + €, 00)

an open set. Relabelling and using (37b) yields

P [X,_/. = §(X,). X, € 0.X,_, <Xo+ e] > 0 for all open O C (Xp + €, 00).
(39)

By E # ¢ either Case A or Case B below holds (possibly by changing € above).
In our arguments we refer to the proof of the pathwise inequality of Proposition 1.1
given by Henry-Labordere et al. [15] and argue that certain inequalities in this proof
become strict.
Case A: There exist my > m; > Xy + € and j < n s.t. fj(ml) > Ci(my). Set
= (my,my), and take m > my. Then, on {X,j = Ej()_(,j), )_(,j € (’)}, it follows
from (38) and Proposition 1.3 that
TXom ) = GiXm ) > 0= 1y o1 =Lg,5,p = TulXm.0). as

me,/.

where the strict inequality holds by noting that (X;, — ¢ (m))T > 0forallm e
(m1, my) on the above set and then directly verifying that the second inequality
of Eq. (4.3) of Henry-Labordere et al. [15] applied with { and X is strict.

Case B: There exist my > m; > Xo + € and j < ns.t. {j(my) < {j(my). Take m €
O = (m,my). Then, on {X, = §(X,). X, € 0.1 (m.00), X,_, < Xo +¢f, it
follows again from (38) and Proposition 1.3 that

TaXom8) = GEm > 1=1, 1= 1ge,) = TaXom £), as.
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where the strict inequality holds by observing that the last inequality in Eq. (4.3)
of Henry-Labordere et al. [15] applied with { and X is strict because (X; —
¢i(m))t = 0> X; — ;(m) for all m € O on the above set.

Combining, in both cases A and B the claim (36) follows from (39). O

Proof of Theorem 3.1 Take § € Z°® such that strict inequality holds for one
submartingale in the definition of 27°®, see (34). We must have { # &.

As in the proof of Proposition 3.2 we choose a § such that (37a)—(37b), (36) hold
and let X be an iterated Azéma-Yor type embedding based on this &. Propositions 1.1
and 1.3 yield

E [Lpmoo)(X,)] = UB (X, Lpn.o0)- E) <UB(X.lpoo8)  Vm> Xy
and by Proposition 3.2

UB (X, ]l[m,oo), E) < UB (X, ]l[m,oo)v C)

for all m € O where O C (X, 00) is some open set. Now the claim follows as in
the proof of Theorem 2.1. O

Remark 3.3 In the setting of Theorem 3.1 let El, Ez €7, El # Ez, and assume

that (8) holds for (¢, E 1) and (¢, E 2). Then there exist martingales X! and X? such
that

UB( E)<UB(X‘,¢,EZ),
UB <X2,¢>, El) > UB (X2,¢>, Ez) .

This follows by essentially reversing the roles of E ' and EZ in the proof of
Theorem 3.1.

3.2 No Further Improvements with Intermediate Moments

We now use the results of the previous section to show that beyond the improvement
stated in Proposition 2.3 no sharper Doob’s I” bounds can be obtained from the
inequalities of Theorem 2.1.

Proposition 3.4 (No Improvement of Doob’s /- Inequallty from Theorem 2.1)
Letp > 1and & € & be such that Li(m) # é'p—l (m) = —m for some m > Xy and
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some j. Then, there exists a martingale X such that

_ p ! Pl _ p P ~
(p— 1) E[X7] o1 1XO < UB (X,pow”,g). (40)

Proof Leta > "% =: o* and take X* satisfying

0=X'==X" B, =X'=--=X"

-1’ i = i

where B is a Brownian motion started at X, and 7, = inf{u > 0 : B, < {,(B,)}. It
follows easily that for this process X¢,

UB (X“, pow”, §,~) < UB (X“, pow?, & )

and hence it is enough to prove the claim for n = 1 and E = Z‘j
Foralla € (a*,a* 4+ €), € > 0, Proposition 3.2 yields existence of a non-empty
open interval Z, such that

UB (X*, Linoo Ga) < UB (X*, Ljnooy, ;) for all m € Z,.
In fact, taking € > 0 small enough, Z, can be chosen such that

m Ia > (ml,mz), X() <m <m. (41)

a€(a*,a*+e)

We can further (recalling the arguments in Case A and Case B in the proof of
Proposition 3.2) assume that for all @ € (a*, a* + €):

UB (x“, L o0)- Z,-) — UB (X*. Ljnoo). &a) = 8 > O forall m € (my. my).

The claim follows by letting « | o* and using the asymptotic optimality of (X%),,
see (13). O

In addition to the result of Proposition 3.4 we prove that there is no “intermediate
moment refinement of Doob’s [P-inequalities” in the sense formalized in the next
proposition. Intuitively, this could be explained by the fact that the pth moment of
a continuous martingale is continuously non-decreasing and hence does not add
relevant information about the pth moment of the maximum. Only the final pth
moment matters in this context.

Proposition 3.5 (No Intermediate Moment Refinement of Doob’s L7 -Inequality)
Letp>1,0=0n<n=<...<ty=Tanda,...,a, € R
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) IfE [}_(i] <>, aE [Xf:] for every continuous non-negative submartingale X
with Xy = 0, then also

(e

G If (E [}_(ﬂ)l/p < YL aE[X, —X,_, PDYP for every continuous non-
negative submartingale X with Xy = 0, then also

(#ﬁ)@wmwsilmmm—&me-
i=1

Proof From Peskir [21, Example 4.1], or Proposition 2.3 above, we know that
Doob’s [P-inequality given in (12b) is enforced by a sequence of continuous
martingales (Y<) in the sense of (13), i.e.

p
p
(,,Tl) E[I;P]<E [I}lﬁa;alYf IP} +

Further, we may take Y¢ with Y5 = 0. We first prove (i). By scalability of the
asymptotically optimal martingales (Y¢) we can assume

5P +e, €>0.

E[X;]=E[lY;F].
In addition we can find times u; < --- < u,,—1 < t, such that
E[X{]=E[lY,l]. 1<i<n-1.

Furthermore, by a simple time-change argument, we may take u; = #;. Therefore,
using asymptotic optimality of (Y¢) and the assumed inequality, we have

(72) s = (32 e

<E [malepr} +€
1<T

<Za, [IYilP]+€ = Za, [X7] +

We obtain the required inequality by sending € \ 0 in the above.
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We next prove (ii). Taking a martingale which is constant until time #_; and
constant after time #; and using the fact that Doob’s L7 inequality is sharp yields

(L) <aq;foralli=1,...,n.
p—1

The required inequality follows using triangular inequality for the 7 norm. O

Remark 3.6 1t follows from the above proof that we may also formulate Proposi-
tion 3.5(i) in terms of L” norms instead of the expectations of the p-th moment. Also,
analogous statements as in Proposition 3.5 hold for Doob’s L! inequality. This can
be argued in the same way by using that Doob’s L! inequality is attained (cf. e.g.
Peskir [21, Example 4.2] or Proposition 2.5 above), and observing that the function
x > xlog(x) is convex.
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Polynomials Associated with Finite Markov
Chains

Philippe Biane

Abstract Given a finite Markov chain, we investigate the first minors of the
transition matrix of a lifting of this Markov chain to covering trees. In a simple
case we exhibit a nice factorisation of these minors, and we conjecture that it holds
more generally.

1 Introduction

The famous matrix-tree theorem of Kirchhoff gives a combinatorial formula for the
invariant measure of a finite Markov chain in terms of covering trees of the state
space of the chain. One can provide a probabilistic interpretation of Kirchhoff’s
formula by lifting the Markov chain to the set of covering trees of its state space,
see e.g. [1] or [2], Sect. 4.4. This yields a new Markov chain, whose transition matrix
can be constructed from the transition matrix of the original Markov chain. In this
paper, we investigate the first minors of this new matrix, which are polynomials
in the entries of the original transition matrix. We will see that in a simple case,
that of a Markov chain evolving on a ring, these polynomials exhibit a remarkable
factorisation. We expect that such factorisations hold in a much more general
context. This paper is organized as follows: we start in Sect.2 by recalling some
general facts about finite Markov chains and their invariant measure. In Sect. 3 we
describe how to lift the Markov chain to its set of covering trees. In Sect.4 we
introduce a polynomial associated to the Markov chain, and show that in the case
of a Markov chain with three states it has a nice factorisation. We generalize this
observation to the case of Markov chains on a ring in Sect. 5, which contains the
main result of the paper.
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2 Finite Markov Chains and Invariant Measures

We start by recalling some well known facts about finite Markov chains.

2.1 Transition Matrix

We consider a continuous time Markov chain M on a finite set X. Let Q = (gj))ijex
be its matrix of transition rates: g; > 0 if i # j € X and Zj g; = 0 for all i.

2.2 Invariant Measure

An invariant measure for M (more exactly, for Q) is a nonzero vector u(i),i € X,
with nonnegative entries such that ), u(i)¢q; = 0forallj € X. An invariant measure
always exists, it is unique up to a multiplicative constant if the chain is irreducible.

2.3 Projection of a Markov Chain

Let N be a Markov chain on a finite state space Y, with transition matrix R =
(ri)kiey, and p : Y — X be a map such that, for all i,j € X and all k € Y such that
p(k) = i, one has

gi= Y T (1)
lep™1()

then p(N) is a Markov chain on X with transition rates g;;. Furthermore, if v is an
invariant measure for R, then i defined as

pi = vk @
kep™ (D)

is an invariant measure for Q.

2.4 Oriented Graph and Covering Trees

To the matrix Q is associated a graph (X, E) with X as vertex set, and E as edge set,
such that there is an edge from i to j if and only if g;; > 0. This graph is oriented, has
no multiple edges, and no loops (edges which begin and end at the same vertex). Let
i € X, a covering tree of (X, E), rooted at i is an oriented subgraph of (X, E) which
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Fig. 1 An oriented graph,

and a covering rooted tree \C>
5 01e

is a tree and such that, for every j € X, there is a unique path from j to i in the graph
(paths are oriented). The Markov chain is irreducible if and only if for all i,j € X
there exists a path from i to j in the graph (X, E). If this is the case then for every
vertex i € X there exists a covering tree rooted at i.

Figure 1 shows an oriented graph, together with a covering tree rooted at the
shaded vertex (beware that a Markov chain corresponding to this graph is not
irreducible).

2.5 Kirchhoff’s Matrix Tree Theorem

We assume that the Markov chain is irreducible. For i € X let Q) be the matrix
obtained from Q by deleting row and column i and let (i) = det(—Q"), then
it is well known, and easy to see that p is an invariant measure for Q. Indeed, if
Q' is obtained by deleting row i and column j, then det(—QW) = det(—Q) =
det(—Q"), since the sum of each line is 0, and det(—Q) = Y, g; det(—Q") = 0
for all j, by expanding the determinant along columns. That p has positive entries
follows from irreducibility and Kirchhoff’s formula:

pli) =y () 3)

teT;

where the sum is over the set 7; of oriented covering trees of X, rooted at i, and 7 ()
is the product of the gy, over all oriented edges (k, /) of the tree 7. See [2], Sect. 4.
More generally, if {i;,...,i} C X, then Kirchhoff’s formula also applies to the
determinant of the matrix obtained from Q by deleting columns and rows indexed by
i1,...,ix. This determinant is equal, up to a sign, to the sum over oriented covering
forests, rooted at iy, .. ., i, of the product over edges of the forest.

3 Lifting the Markov Chain to Its Covering Trees

3.1 The Lift

Notations are as in the preceding section, furthermore we assume that Q is
irreducible. The set of oriented covering rooted trees of (X, E) is T = U,;exT;. Let
the map p : T — X assign to each tree ¢ its root (i.e. p maps 7; to i). There exists



252 P. Biane

T T

The tree s The tree t

an irreducible Markov chain on 7 whose image by p is a Markov chain on X with
transition rates Q, and the vector (7 (¢));er is an invariant measure for this Markov
chain. In particular by (2) the invariant measure & projects by p to the invariant mea-
sure p and this construction provides a probabilistic interpretation of Kirchhoff’s
formula (3). This Markov chain can be described by its transition rates ry, s, t € T.
Let s be a covering tree of X, rooted at 7, and let j € X be such that g;; > 0. There is
a unique edge of s coming out of j. Take out this edge from s and then add the edge
(i,7). One obtains a new oriented tree ¢, rooted at j (see Fig. 2 for an example). One
puts then ry, = g;;. For all pairs s # ¢ which are not obtained by this construction,
one puts ry, = 0. This defines a unique matrix of transition rates (ry);.se7-

It is clear that these transitions define a Markov chain which projects onto M by
the map p.

Theorem 1 The Markov chain with transition rates R is irreducible, and the vector
7 is an invariant measure for this Markov chain.

The proof can be found in [1].

3.2 An Example

LetX = {1,2,3} and

Aaw
O=\upnb
cVvV
withA = —a—w, u = —=b —u, v = —c — v. We assume that a, b, c,u,v,w > 0.

The graph (X, E) looks as follows:
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Each covering rooted tree ¢ can be indexed by the monomial 7(r). There are
nine such covering trees: first cu, uv, bc rooted at 1, then av, ac, vw rooted at 2, and
finally uw, bw, ab rooted at 3. With this ordering of 7, the transition matrix for the
lifted Markov chain is

A00 0a0O0 wO0O
0A0 a00 w0O
00A 0a0 OwO

0u0 £L00O 00b
R=|u000po0 005b
0u0 00u 0H0

c00 00v vO0O
00c 00v OvO
00c vOO OO0V

Figure 3 shows the oriented graph. We have shown, for each vertex, its projection
onto X (namely 1, 2, or 3) and for each oriented edge, its weight (a, b, c, u, v or w).

Fig. 3 The graph T



254 P. Biane

4 A Polynomial Associated to the Markov Chain

4.1 The Polynomial

We consider, as in the previous sections, an irreducible Markov chain on a finite set
X with transition matrix Q and its canonical lift to 7, with transition matrix R. For
t € T, consider the matrix R obtained from R by taking out row and column #, and
let p(1) = det(—R™), then p is an invariant measure for R, and gives a generating
function for covering trees of the graph 7. If we fix the graph (X, E), then p() is
a polynomial in the variables g;;, where we keep only the pairs (i,j) forming an
edge in E. Since  and p are invariant measures of the lifted Markov chain, they
are proportional so that there exists there exists a function, ¥(g;;), independent of ¢,
such thatforallt e T,

p(t) = m(¥

Actually it is not difficult to see that ¥(g;) is a polynomial. Indeed one has
¥ = p(t)/n (1), and 7 (¢) is a monomial so that, by reducing, ¥ = P/m with P
a polynomial and m a monomial prime with P. In particular, p(f) = 7 (1)P/m is a
polynomial for all ¢, hence m divides 7 (¢) for all . But the 7 (¢) have no common
divisor, since a variable gy, cannot divide 7 (¢) is ¢ is rooted at k, therefore m = 1.

4.2 Some Examples

If |X| = 3, with the notations of Sect. 3.2, one can compute

Y(a,b,c,u,v,w) = (bc + cu + uv)(av + ac + vw)(ab + bw + uw)

M1 X0

iex \ teT;

so that ¥ is the product of all symmetric rank two minors of the matrix —Q (a
symmetric minor of rank k of a matrix of size n, is the determinant of a submatrix
obtained by deleting n — k rows and the n — k columns with the same indices). I
have computed the polynomial ¥ for various graphs with four vertices and found in
many cases that ¥ can be written as a product of symmetric minors of the matrix
—Q. I could not compute in the case of [X| = 4 and the graph (X, E) is a complete
graph, but by putting some of the variables equal to 1 to make the determinant easier
to compute, the results suggest that the formula for ¥ in this case should be

¥ = my(Q)’ms(Q)*
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where my (Q) is the product of all symmetric minors of rank k of —Q.

Based on this small evidence it seems natural to conjecture that for any
irreducible graph (X, E) the polynomial ¥ should be a product of symmetric minors
of the matrix —Q. Which minors appear, and what are their exponents, should
depend on the graph and encode some of its geometry. By symmetry, in the case
of a complete graph on n vertices, the result should be a product ]_[Z;ll m,t’? for some
exponents v;. Guillaume Chapuy (private communication, October 2014) has done
some further computations for n = 5 and conjectured that v} = (k—1)(n—1)""*"".
One can check that, at least, this gives the correct degree. In general the degree of
W is |T| — n, and in the case of a complete graph, |T| = n"~', moreover there are
(Z) symmetric minors of rank k, which are polynomials of degree k, and

n—1
3 (Z)k(k D) =

k=2

as follows easily from the binomial formula.
In the following I obtain a result for the case where the graph is a ring: X =
{1,2,...,n} and the edges are (i, i £ 1) (where i £ 1 is taken modulo n).

Theorem 2 If (X, E) is a ring of size n > 3, then ¥ is the product of the symmetric
minors of sizen — 1:

v = mn—l(Q)

The proof of Theorem 2, which is the main result of this paper, occupies the next
section.

5 Proof of Theorem 2

In this section, (X, E) denotes a ring, namely, X = {1,2,...,n} and the edges are
(i,i£ 1) (here and in the sequel i & 1 is always taken modulo n). I will illustrate this
with n = 4, as in Fig. 4.

Fig. 4 The ring (X, E) with e e
n=4
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5.1 Structure of the Graph T

For each pair (i,j) € X? there exists a unique covering tree of (X, E), rooted at i,
which has no edge between j and j + 1. Let us denote this covering rooted tree by
[i,j]. For example, if n = 4 here are the trees denoted by, respectively, [2, 3] and
[3, 3] (here and in the sequel the roots are shaded):

@O @@
@

It is easy to check that these are all covering rooted trees of (X, E), in particular

|T| = n?. Let us now describe the structure of the graph on 7 induced by the lifting
of the Markov chain.

First consider the trees indexed by the pairs [i, f]. The trees [i,i] and [i + 1,7 + 1]
are connected by an edge labelled g; ;4 €.g.

OO ., OO
> @

()~

These trees form an oriented ring in 7"

b4
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The trees indexed by pairs [i, i — 1] are connected by edges labelled ¢; ;—1:
: q32
—

They form another oriented ring:

9
© o
cxe

There are also edges in the two directions between [, j] and [i 4 1, /], labelled by

é)@ = @

These form lines of length n:
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S \/
n=4

One can represent the graph 7 by putting two concentric oriented rings of size
n, with opposite orientations, and joining the vertices of the rings by sequences of
vertices connected by double edges, see Fig. 3 for n = 3 and Fig. 5 for n = 4:

5.2 The Symmetric n — 1 Minors of —Q

We will use the following lemma.
Lemma 1 The symmetric n — 1 minors of —Q are prime polynomials.

Proof Leti € Q, then det(—Q?), the symmetric n — 1 minor corresponding to i
is a polynomial with degree at most one in each variable. More precisely, using
Kirchhoff’s formula this minor is the generating function of covering trees rooted at
i and it can be written as ag;—;; + B where « and S are polynomials of degree O in
gi—1.;- Moreover § is a monomial since there exists a unique covering tree of (X, E)
rooted at i which does not contain the edge (i — 1, i). It follows that any nontrivial
factorisation of this polynomial can be written as

agi-1i + B = (ygi-1. +8)n “

where y, 8, n have degree 0 in g;—;; and n§ = . In particular, 7 is a nontrivial
monomial, therefore there exists a variable gy which divides ag;—;; + B, and this
means that the edge (k, /) belongs to all covering trees rooted at i. Clearly this is
not possible, therefore a nontrivial factorisation such as (4) does not exist, and the
symmetric minor is a prime polynomial.
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5.3 A Preliminary Lemma

Consider the restriction of the graph T to the sets of vertices

G={[,n,12, 11,3 1],....[n 1. [1, 1]}

and

We will need the following lemma.

Lemma 2 The generating function of the set of covering forests of G, rooted at
[1,n] and [1, 1] is equal to det(—QV), the generating function for the set of covering
trees of X, rooted at 1. The same is true with H instead of G.

Proof One can check easily that the restriction of the projection p to G induces
a bijection between the covering forests of G rooted at [1,n] and [1, 1] and the
covering trees of X rooted at 1 (observe that [1,n] and [1, 1] both project to 1),
and this bijection preserves the labels of the edges. The same is true for H and the
lemma follows.
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We will now prove that the symmetric minor det(—Q") divides the symmetric
minor det(—R("]). By symmetry it is enough to prove this for i = 1. By Kirchhoff’s
formula, we know that the polynomial det(—R{!-'D) is the generating polynomial of
the covering trees of T rooted at vertex [1, 1].

Let K = GUH and let L = T \ K. The part of the graph T containing K looks
like

Observe that the only way one can enter the set K by a path coming from L is
through the vertices [2, 1] or [n,n]. Let now t be a covering tree of 7, rooted at
[1, 1]. If we consider the set of vertices L U {[2, 1], [n, n]} together with the edges of
T coming out of elements of L, we obtain two disjoint trees, rooted respectively at
[n,n] and [2, 1]. Let us now fix such a pair of trees A and B, and consider the set of
covering trees 7 of T, rooted at [1, 1], which induce the pair (A, B). There are three
possibilities for the edge coming out of [1, ] in such a tree:

(i) it connects to [2, n]
(ii) it connects to [n,n — 1] which belongs to A
(iii) it connects to [n, n — 1] which belongs to B.

If we are in the first case then the restriction of the tree to G forms a covering
forest of G, rooted at [1,n] and [1, 1]. Furthermore any such forest can occur,
independently of the trees A and B. It follows that the generating function of trees
in case (i) is a multiple of the generating function of such covering forests, which is
det(—Q") by Lemma 2.

In case (ii) the same argument as in (i) can be applied, so we conclude again that
the generating function of such trees is a multiple of det(—Q").
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Finally in case (iii) the edge ([2, 1], [1, n]) cannot belong to the tree, but a similar
reasoning, this time with H instead of G, shows that the generating function of such
trees is a again multiple of det(—Q().

From this, summing over all three cases, and all pairs (A, B) we conclude that
det(—RUL1D) the generating function of the set of covering trees of T, rooted at
[1,1], is a multiple of det(—Q"). Since det(—R1) = 7([1,1])¥ and 7([1, 1])
is a monomial which is prime with det(—Q") it follows that det(—Q") divides
the polynomial ¥. By symmetry, this is true of all the det(—Q®), for i € X and
since these are distinct prime polynomials, we conclude that ¥ is a multiple of
m,—1 = [];det(—Q?). The degree of the polynomial det(—R"1)) is n? — 1, the
degree of m,,—; is n(n — 1) and the degree of 7 ([1, 1]) is n — 1. It follows that ¥ and
m,— are proportional.

In order to find the constant of proportionality, we consider the generating
function of the covering trees of T, rooted at [n,n]. This generating function is
det(—R) = 7 ([n, n])W. I claim that the coefficient of the monomial

n—1
! l_[ Tiit1 )
i=1

in det(—R") is 1. Indeed for each i < n there are exactly n edges in 7 which are
labelled g, ;+1, and one of the edges labelled g,,; goes out of [r, n] so it cannot belong
to a tree rooted at [n, n], therefore there exists at most one covering tree rooted at
[, n] whose product over labelled edges is equal to (5). On the other hand, one can
check that, taking the graph formed with all these edges, one obtains a covering tree
rooted at [n, n], see e.g. Fig. 6 for the case of n = 4.

Fig. 6 The covering e or Q\ /O
X\ N
Nt
-
7 o

4 o
4 o

It remains now to check that the coefficient of 7([n, n]) [, det(—Q?) is 1. This
follows from the fact that for each i there exists a unique covering tree of X rooted
at i, whose labels are all of the form gy 4+ 1. Taking the product over these trees one
recovers the product (5).

This completes the proof of Theorem 2. O
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5.5 Final Remark

If we look at formula

det(—=R"™)y = 7 ([n.n]) [ | det(-Q")

i=1

there is a combinatorial significance for both sides of the equality. The left hand
sides is the generating function for covering trees of T rooted a [, n] whereas the
right hand side is the generating function of the n-tuples of rooted covering trees
of (X, E) rooted at 1,2, ..., n. It would be interesting to transform our proof of this
formula into a bijective proof by exhibiting a bijection between these two sets which
respects the weights. This could shed some light on the general case.
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On o -Finite Measures Related to the Martin
Boundary of Recurrent Markov Chains

Joseph Najnudel

Abstract In our monograph with Roynette and Yor (Najnudel et al., A Global View
of Brownian Penalisations, MS] Memoirs, vol. 19, Mathematical Society of Japan,
Tokyo, 2009), we construct a o-finite measure related to penalisations of different
stochastic processes, including the Brownian motion in dimension 1 or 2, and a large
class of linear diffusions. In the last chapter of the monograph, we define similar
measures from recurrent Markov chains satisfying some technical conditions. In the
present paper, we give a classification of these measures, in function of the minimal
Martin boundary of the Markov chain considered at the beginning. We apply this
classification to the examples considered at the end of Najnudel et al. (A Global
View of Brownian Penalisations, MSJ Memoirs, vol. 19, Mathematical Society of
Japan, Tokyo, 2009).

1 Introduction

In a number of articles by Roynette, Vallois and Yor, summarized in [14], the authors
study many examples of probability measures on the space of continuous functions
from R4 to R, which are obtained as weak limits of absolutely continuous measures,
with respect to the law of the Brownian motion. More precisely, one considers the
Wiener measure W on the space ' (R4, R) of continuous functions from R4 to R,
and endowed with its canonical filtration (.%),>¢, and the following o-algebra

F = \/ 7.

s>0

One then considers (I7),>0, a family of nonnegative random variables on 4’ (R4, R),
such that

0 < Ew[l7] < oo,
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and for r > 0, one defines the probability measure

I;
Q= Ew[l7]

Under these assumptions, Roynette, Vallois and Yor have shown that for many
examples of families of functionals (I7);>0, one can find a probability measure Qu
satisfying the following property: for all s > 0 and for all events A, € %,

Q4] = QuolAl)

In our monograph with Roynette and Yor [11], Chap. 1, we show that for a large
class of functionals (I7)s>0, the measure Qo exists and is absolutely continuous
with respect to a o-finite measure W, which is explicitly described and which
satisfies some remarkable properties. In Chaps. 2—4 of the monograph, we construct
an analog of the measure W, respectively for the two-dimensional Brownian motion,
for a large class of linear diffusions, and for a large class of recurrent Markov chains.
In a series of papers with Nikeghbali (see [8, 10]), we generalize the construction to
submartingales (X;)s>0 satisfying some technical conditions we do not detail here,
and such that X; = N, + A, where (Ny);>0 is a cadlag martingale, (A)>0 iS an
increasing process, and the measure (dA;) is carried by the set {s > 0, X; = 0}. This
class of submartingales, called (X'), was first introduced by Yor in [18], and their
main properties have been studied in detail by Nikeghbali in [12].

In the present paper, we focus on the setting of the recurrent Markov chains,
stated in Chap. 4 of [11]. Our main goal is to classify the o-finite measures
which can be obtained by the construction given in the monograph. In Sect. 2, we
summarize the most important ideas of this construction, and we state some of the
main properties of the corresponding o-finite measures. In Sect. 3, we show that
these measures can be classified via the theory of Martin boundary, adapted to the
case of recurrent Markov chains. In Sect. 4, we study the behavior of the canonical
trajectory under some particular measures deduced from the classification given in
Sect. 3. In Sect. 5, we apply our results to the examples considered at the end of our
monograph [11].

2 The Main Setting

Let E be a countable set, (X,,),>0 the canonical process on ENo, (Fn)n>o its natural
filtration, and ., the o-algebra generated by (X,,),>0. We define (Py)cr as a fam-
ily of probability measures on the filtered measurable space (ENo, (F)n>0, F o)
which corresponds to a Markov chain, i.e. there exists a family (p,;), .c£ of elements
in [0, 1] such that for all k > 0, x, ...,x; € E,

IEDX(XO =x0.X1 =x1,..., X = xk) = ]]-x0=xpx0,x1px1,xz coe Py
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The expectation under P, will be denoted E,. Moreover, we assume the following
properties:

* Forallx € E, p,y, = 0 for all but finitely many y € E.

¢ The Markov chain is irreducible, i.e. for all x, y € E, there exists n > 0 such that
Pi(X, =y) > 0.

* The Markov chain is recurrent, i.e. for all x € E, Py (), Lx,=« = oo) =1.

Using the results in Chap. 4 of [11], the following proposition is not difficult to
prove:

Proposition 1 Let xy € E, and let ¢ be a function from E to R, such that ¢(xo) =
0, and ¢ is harmonic everywhere except at x, i.e. for all x # x,

Edo(XD)] =) peyo () = p().

YEE

Then, there exists a family of o-finite measures (Q") er on (EN°, F,) satisfying
the following properties:

e Forall x € E, the canonical process starts at x under QY ie.

Q¥ (Xo # x) = 0.

e Forall x € E, the canonical process is transient under QLY ie. forall x,y € E,

Qe Z 1x,=y =00 | =0.

n>1
e Foralln > 0, for all nonnegative, .%,-measurable functionals F,,

Q" (Fa Lviznxitn) = ExFap(X)].

where Q"% (H) denotes the integral of H with respect to Q.
Moreover; the two last items are sufficient to determine uniquely the measure Q.

Remark 1 If we refer to our joint work with Nikeghbali [9], we observe that
under Py, (¢(X,))n>0 is a the discrete-time submartingale of class (X'), as stated
in Theorem 3.5 of [9]. Moreover, one checks that Q1 is the corresponding o-finite
measure, denoted 2 in [9], as soon as ¢(y) > 0 for all y # xo.

Proof The second and third items are respectively Proposition 4.2.3 and Corol-
lary 4.2.6 of [11]. The first item is a consequence of the second and the third. Indeed,
by taking F,, = Lx,+,, we getforalln > 0,

@;Ow (]lX(ﬁéx,Van,Xk;éxo) = EX[(p(Xn)]lX(ﬁéx] = Ov
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and then, by taking the union for all n > 0,

Q% (Xo # x,3n > 0, Vk > n, X # xo)

— X0 § —
- @x() ¢ XO 7é .X, ]le=X() < o0 - 07
k>0

and then
QU (X0 #£) =0
by the transience of the canonical process under Q" .

It remains to prove that the second and the third items uniquely determine Qy"*.
From the third item, we have forall n > m > 0,

QﬁOs‘ﬂ (Fnﬂszm,Xkaéxo) = QﬁOs‘ﬂ (Fn]l‘v'ke{m,m+1,...,n—1},X1<;£x0]lezn,Xkaéxo)

Moreover,
Qi(w) (Vk > m, X; 75 X0) = Ex[(P(Xm)] < 00,

since ¢(X,,) is almost surely in a finite subset of E. Indeed, by assumption, for all
y € E, there exist only finitely many z € E such that p, . > 0. Hence, the measure

X0
]leZm,XkaéX() : Qx() ¢

is finite and uniquely determined for all sets in .%,, for all n > 0. By monotone
class theorem, this measure is uniquely determined. Taking the increasing limit for
m — 00, the measure

X0,
]lElsz,szm,Xk#xo . QXO'W

is also uniquely determined. Now, the property of transience which is assumed
implies that this measure is Q.

The homogeneity of the Markov chain can be stated as follows: for all n > 1,
x,y € E,

]]'any ' IEDX = ]an=y : (]P))(Cn) o )/')’

where P o Q denotes the image of P ® Q by the map from EN0 x ENo to ENo, given
by

(o, x1,x2,...), V0, Y1, Y2+ ) > (X0, X1, X025 + oo Xy V15 V2, V35 - -2 )
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In other words, conditionally on X,, = y, the canonical trajectory under P, has the
same law as the concatenation of the » first steps of the canonical trajectory under
P,, and an independent trajectory following IP,.

The following result shows that the family of measures (@) ek satisfies a
similar property: informally, it can be obtained from (P,).cx and (Q\*%),er itself
by concatenation of the trajectories.

Proposition 2 Foralln >0, x,y € E,
Ix,=y - Q¥ = 1x,=- (P)((”) o Q).

Proof If n = 0, the two sides of the equality vanish for all y # x, since the canonical
trajectory starts at x under Q;"¥ and P,. If n = 0 and y = x, the equality we want to
show is also immediate. Hence, we can assume n > 1. Letp > n > 1, and let F), be
a ﬂp-measurable, nonnegative functional. We have

(]an =y’ Qﬁo-‘/’) (FI’IleZP,Xk ?éx())
= Qio-‘/’ (FpﬂXn=yﬂVkZp,Xk ;éx(,) = IE.vc [Fp]lX,,=y(p(Xp)]

= Z Pxx1Pxixp -+ - vpxnfl.yEx[Fp(p(Xp) |X1 =X, X1 = X1, Xy = y]~

X1.,X2,.0Xn—1 €F

Now, the functional F, is nonnegative and ﬂ‘p-measurable, so there exists a function
@ from EPt! to R, such that

F, = ®(Xo,....X,).
We get, using the Markov property:

(]an=y : @iow) (FP]leZp.stﬁm)

= Z Pxx\Pxixs -+ -

X1,X2 5000 Xp—1 EE

X anfl,yEx[dﬁ(XO’ ce 7Xp)(p(X]7)|Xl = Xly..- 7Xn—1 = xn—l’Xn = y]

= Z PxxiPxixy - - - apx,,_l,yEy[¢(x07 Xlyenn ,Xn—l,y,Xu cee ,Xp_n)¢(Xp—;1)]

X1,X2,e0e Xn—1 EE

= Z Pxx\Pxixs -+ -

X1,X2 5000 Xp—1 EE
X pxn_1.yQ:VV0"p [@(X(), X1y oo s Xn—1,Y, Xi,... sXp—n)]leZp—n.Xk;ﬁxo])

=P ® Qio’w[ﬂyn=y(p(Y0, WY Z,2,... 7Z11—p)]leZp—n,Zk§éxo]’
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where in the last line, (Y,, Z,),>0 denotes the canonical process on the space ENo %
E™o where the measure P, ® Q)" is defined. Hence

(Lx,=y - Q%) (FpLvisp i)
= P)((n) ° Q;’OJP []lxll:y@(Xo, ceey XVHXVH‘ls Xn+27 cee 7Xp)]leZp,Xk7éx0]

= (Lx,=y" (P;((n) o Q;O’(p)) (FP]IVkZPqXHéxo) :

Hence, the two measures stated in the proposition coincide on all functionals of the
form F,1vi> x,+£x, if p > n, and then on all functionals of the form

Follvizpxiteg = (Fglvkegp...q—13 Xitvo) Lvkzq X0
for all ¢ > p > n. Using the finiteness of the measure Q" restricted to the set
{Vk > p,Xi # xo}, and the monotone class theorem, one deduces that the two
measures we are comparing coincide on all sets included in {Vk > p,X; # xo}.
Taking the union for p > n, and using the property of transience satisfied by the
measures Q)"*, y € E, one deduces that the two measures we are comparing are
equal.

Knowing the result we have just proven, it is natural to ask which families of
o-finite measures (Qy)yeg on (ENO, F o) satisfy, forall x,y € E,n > 0,

Ix,=y - Qi = 1x,—, - PV 0 Q). (1)

We know that all linear combinations, with nonnegative coefficients, of families of
the form (P,).cx and (Q}"),er satisfy this condition. It is natural to ask if there are
other such families of measures. We do not know the complete answer. However,
we have the following partial result:

Proposition 3 Let (Qy).er be a family of o-finite measures such that (1) holds for
allx,y € E, n > 0. Then:

o If Q, is a finite measure for at least one x € E, then there exists ¢ > 0 such that
Qx = cP,forallx € E.
o [ffor some xy,x; € E,

o) :=Qy (Vk > 0, X # x0) < 00 2)



On o-Finite Measures Related to the Martin Boundary of Recurrent Markov Chains 269

forall x € E, and

Qy (Z lxmy = oo) =0, 3)
k=0

then ¢(xo) = 0, Ex(p(X1)) = ¢(x) for x # xo and Q, = Q}** for all x € E.

* Moreover; if the conditions of the previous item are satisfied, then (2) and (3) are
satisfied for all xy, x1,x € E. The fact that (3) holds for all xy, x; € E means that
the canonical process is transient under Q, for all x € E.

Proof Let us assume that QQ,, has finite total mass for some xo € E. Fory € E, let
¥ (y) be the total mass of Q. For all n > 1, for any nonnegative, .%,-measurable
functional F,, and for all y € E, we deduce from (1):

on [Fn]lX,,=y] = (P;(cz) © Qy)[Fn]IX,Fy] = Exo [Fn]an=y]@y(1) = Ip(y)IExo [Fn]IX,,=y]v

and then, by adding these expressions for all y € E:

on [Fn] = Exo [FnW(Xn)]

For F,, = 1, we get

By [ (Xn)] = ¥ (x0).

By assumption, ¥ (xo) < oo, and one deduces that ¥ (X,,) is P,-almost surely finite
for all n > 1. Since the Markov chain is assumed to be irreducible, one deduces that
¥(y) < oo forall y € E. On the other hand, if F, is nonnegative, .%,-measurable,
and then also .%,1-measurable, one has

Exo [an(Xn+l)] = @xa [Fn] = Exo [an(Xn)]s

and then

EXO[W(Xn+1)|3Zn] = W(Xn)’

ie. (Y(X,))n=1 is a Py -martingale. Since this martingale is nonnegative, it con-
verges almost surely. On the other hand, since (X, ),>0 is recurrent and irreducible, it
visites all the states infinitely often. One easily deduces that v is a constant function,
let ¢ > 0 be this constant. One has

Qu[Fn] = cEx[Fal,

and then Q,, and cPP,, are two finite measures which coincide on all .%,, n > 1, and
then on all %,. Moreover, since we have now proven that the total mass of Q, is
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finite for all x € E, we can replace, in the previous discussion, xy by any x € E. We
then deduce that Q, = cPP, forall x € E.
Now, let us assume (2) and (3) for some xo,x; € E and all x € E. For all y # x,

Lyy=y - Q= Txy=y - (]P)(cO) o @y)

is the measure identically equal to zero, since Xy = x # y almost everywhere under

P,, and then under (]P)(CO) o Q,). Hence, Xy = x almost everywhere under Q,. It is
then obvious that

@(X()) = QX()(Vk 2 07 Xk 7é XO) = O

Moreover, for all x # xo,

o(x) = Q(Vk > 0, X # x0) = Qu(Vk > 1, Xk # x0)

— ZQX(XI =y, Vk>1,X; # xp)

yEE

=Y @V oQ)(X; =y. Yk = 1. X # x0)

yEE

= Z}P’X[Xl = y]Qy(Vk > 0, X; # xo)
yEE

= 3 PX1 = yle() = Ep(X))].

YEE

Now, for all .%,-measurable, nonnegative functional F,, we get:
Qx[Fn]leZn,Xk;ﬁxo] = Z(P,((n) o Qy)[Fn]lX,,=y,Van,Xk7éxo]
yEE

= D ElFullx,=]Qu(Vk > 0, X, # x))

yEE

=Y ¢OEJF,1x,=]

YEE

= X[an(Xn)] = Q;O,W [Fn]leZn,Xkaéxo]'

Hence, Q, and Q" coincide for functionals of the form Fylyisp x4y, then for
functionals of the form

Fpﬂszn,Xk;éxo = FpﬂVkE{n,..., —1},Xk7éx0]lvk2p,xk#x0
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for p > n, then for all events of the form A N {Vk > n, Xj # x0}, A € o, then for
their union forn > 1,i.e. AN {3n > 1, Yk > n, X; # xo}. This implies Q, = Q\*¥,
provided that we check that under these two measures, the canonical process hits xg
finitely many times, i.e.

o o
Q. (Z Lxy=vy = OO) = Qio’(p (Z Lx,=y = oo) =0.
k=0 k=0
Now, for all n > 0, we have by assumption

o0 o0
0= Qxl (Z ]le=x0 = OO) = ZQX] (Xn =), Zﬂxk=x0 = OO)
k=0 k=n

yEE

=> PP oQ) (Xn =y, ) Ay = oo)

y€EE k=n

- ZP’” X = Y)Qy (Z Ly,=x, = OO) )
k=0

yEE

which implies that

o0
Q (Z Lx=xy = oo) =0
k=n

for all y € E such that P, (X, = y) > 0. Since the Markov chain is irreducible, we
deduce that

00
Qx (Z ]le=x0 - OO) =0
k=n

for all x € E. On the other hand, the transience of the canonical trajectory under
% stated in Proposition 1, implies that

00
Qi(w) (Z ]le=X0 — oo) =0,
k=n

which completes the proof that Q, = Q"“. The transience of the canonical process
under Q, = Q,** for all x € E means that (3) is satisfied for all xo,x; € E. It only
remains to check that (2) holds for all x, xp € E, i.e. thatforall x,y € E,

QO#(Vk > 0, X, # y) < 00,
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If g., denotes the last hitting time of xy by the canonical process, which is finite
almost everywhere since the process is transient, we get:

Q" (Vk = 0,Xi # y)

= QY (Yk = 0, X ¢ {x0,3}) + ) Q¥ (gy = n,Vk = 0,Xc # )

n>0

< QP*(Vk = 0, X # x0)

+ Y QO (X, =x0. V€ {0. 1. .0} Xp # 3. Vhk = n+ 1. X # xo)

n>0

= o(x) + ZEx[ﬂxn=x0,Vke{0,1,...,n},Xn;éyﬁl’(Xn+1)]

n>0

= o(x) + ZEx[]lX,,=x0,Vk€{0,l,...,n},X,,;éyEx[@(Xn+l)|fg.n]]'

n>0

Now, on the event X,, = xo, the conditional expectation of ¢(X,+1) given ., is
equal to

K :=Eylo(X)] = D pryye().

yEE

where K is finite since py,, = 0 for all but finitely many y € E. If T, denotes the
first hitting time of y by the canonical trajectory, we then get:

QU (VK = 0.Xk #) < 9() + KBy | Y Lxmron | = 0(0) + KEJLY ],
n>0

where L; denotes the number of hitting times of x at or before time n. It is then
sufficient to check that E, [L’;;_l] is finite. Now, if for p > 1, 7;* denotes the p-th
hitting time of x(, we get, using the strong Markov property:

BALY = pl = Pifr < T,] = B < ] (B [5° < 1)) < PP~
where
P=P, [13‘" < T

It is not possible that P = 1, otherwise, by the strong Markov property,

Poln—1<T]>P,[r <T)] =1
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for all n > 1, and then the canonical trajectory would never hit y under IP,,, which
contradicts the fact that the Markov chain is irreducible and recurrent. Now, since
P < 1, the tail of the law of L’}?_l under P, is exponentially decreasing, which
implies that '

X0
EX[LT},_I] <00
and then
QY*(Vk = 0,X; # y) < oo.
A corollary of Proposition 3 is the following result, already contained in Theo-

rem 4.2.5 of [11]:

Corollary 1 Let xo,x1 € E, and let ¢y, be a function from E to Ry such that
¥y (x0) = 0 and E, @y, (X1)] = ¢x,(x) for all x # xo. Then, the function ¢, given
by

On (x) = Q7 (VE > 0, X # x1)

vanishes at x|, takes finite values and is harmonic at any other point than Xx.
Moreover, we have, for all x € E, the equality of measures

X1.Px; _ ¥0.¥xg
X - X .

Proof We know that (1)—(3) are satisfied for Q, = QY% and @ = @y,. By the last
item of Proposition 3, (2) and (3) are still satisfied if we replace x( by xi, i.e.

@x () := Qx (Vk > 0,X; # x1) <00

and

o0
Qxl (Z ]]-Xk=xl = OO) =0.
k=0

Now, from the second item of Proposition 3, ¢,, vanishes at x; and is harmonic at
any other point, and Q, = M

From this corollary, we see that in order to describe a family of measures of the
form (Qio’%" )xeE, the role of x( can be taken by any point in E, so the choice of x; is
not so important. In the next section, we will clarify this phenomenon, by studying
the link between the measures of the form Q*¥, and the Martin boundary of the

Markov chain induced by (P,).cg. We will use the following definition:

Definition 1 We will say that a family (Q,).cg of o-finite measures on (ENO, Foo)
is in the class 2, with respect to (P,),eg, if and only if (1), (2) and (3) hold for
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all x,xp,x;,y € E and n > 0, or equivalently, iff it is of the form (Q\**),er for
some xp € E, and for some function ¢ which is nonnegative, equal to zero at xo and
harmonic for (P,),cg at any point different from x.

3 Link with the Martin Boundary

In [7], Martin proves that one can describe all the nonnegative harmonic functions
on a sufficiently regular domain of R?, by a formula which generalizes the Poisson
integral formula, available for the harmonic functions on the unit disc. This
construction has been adapted to the setting of transient Markov chains by Doob
[1] and Hunt [3], and then to the setting of recurrent Markov chains by Kemeny and
Snell in [4], and by Orey in [13]. The construction is also described in a survey by
Woess (see [17], Sect. 7.H.).

Let us first recall a possible construction of the Martin boundary, for a transient
Markov chain on the countable set E. For x,y € E, let g,, be the transition
probability of the Markov chain from x to y, and let G be the Green function:

G(xv y) = Z(qk)x,y
k=0

where ¢* is defined inductively by

(qo)x,y = L=y, (qk+1)x.,y = Z(qk)x,z‘h,y-

ZEE

Let us fix xo € E, and let us assume that G(xo,y) > 0 for all y € E, i.e. any state in
E is accessible from xg by the Markov chain. Let K, be the function, from E to R,
given by

_ Gxy)
Ky (x,y) = Glo)

One can prove that

Cy,(x) :==sup K, (x,y) < 00
yEE

and then, if w = (w,)yeg is a summable family of elements in R* , one can define a
distance py, ., on E by

|Kx(,(Z,x) - Kxo(zv V| + L= — ]lz=y|
xo,w X5 = w. .
P (x.7) 1= D W o+

ZE€EE
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The Martin compactification of E is the topological space E, induced by the
completion of the metric space (E, px,.w): up to homeomorphism, E does not depend
on the choice of w and the point x such that G(xg,y) > Oforally € E. The spaceE
is compact, its subspace OE : E\E is a closed set inE, called the Martin boundary
of E.

If G(xo,y) > O forall y € E, and if x € E, then the function y — K, (x,y)
is Lipschitz (with a constant at most [1 + Cy,(x)]/wy), and then the function K,
from E x E to R4 can be uniquely extended by continuity to the set E x E. For all
a ek , the function x — K, (x, @) is superharmonic for the transition probabilities
(Gxy)xyek ie. forallx € E,

Ky, (x,00) > Z CIX,yKXO (. o),

yEE

and it can be harmonic only for « € dE. We define the minimal boundary of E as the
set d,,E of points € 9E, such that the function x — K, (x, &) is minimal harmonic,
i.e. it is harmonic, and for any harmonic function ¢ : E — R such that 0 < ¥ (x) <
K, (x, ) for all x € E, there exists ¢ € [0, 1] such that ¥ (x) = cK,,(x, ) for all
x € E. The following result holds:

Proposition 4 The set 0,E is a Borel subset of 0E which, up to canonical
homeomorphism, does not depend on the choice of xy. Moreover, for any choice
of xo, a nonnegative function ¥ from E to R is harmonic if and only if there exists a
finite measure [y, on 0,E, such that for all x € E,

V() = /3 K ()i @)

If it exists, the measure [Ly x, is uniquely determined.

Let us now go back to the assumptions of Sect. 2. In this setting, the canonical
process (X,)n>o0 is irreducible and recurrent under P, for all x € E, and all the
nonnegative harmonic functions are constant. Indeed, if ¢ : E — R is harmonic,
(¥ (Xn))n>1 is a nonnegative martingale, and then it converges a.s., which is only
possible for ¢ constant, since (X,),> hits all the points of E infinitely often. Then,
the definition of the Martin boundary should be modified in order to give a non-
trivial result. The idea is to kill the Markov chain at some time in order to get a
finite Green function. The time which is chosen occurs just before the first strictly
positive hitting time of some xy € E. The Green function we obtain in this way is
given by

Gyy(x,y) = Ey [L%éo—l] . 4)
where

T, :=inf{n > 1,X, = xo}.

X0
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Recall that L denotes the number of hitting times of x at and before time #. It is easy
to check, using the strong Markov property, that the tail of the distribution of L, is

exponentially decreasing, which implies that Gy, (x, y) is finite. Moreover, Gy, (xo(i y)
is strictly positive, since all the states in E are accessible from xj (recall that the
Markov chain is irreducible), and then they are also accessible without returning to
Xo. Hence, one can define, similarly as Ky, (x, y) in the transient case:

GXO(X, y)

L,(x,y) (= ————.
O(X Y) Gy, (x0,)

The function Ly, induces a distance §,,,, on E, given by

ILXO(Z’x) - on(zv )’)| + I]lz=x - 112=y|
Sx wlX, = w - - .
0w (%, Y) E z Do) + 1

Z€EE

where, as before, w := (wy),eg, and where

Dy, (z) := sup Ly, (z,y) < oo.
yEE

The completion of (E, §y,,) induces a topological space E, called, as before, the
Martin compactification of E: it is possible to prove that the topological structure of
E does not depend on w and xo.

The transitions of the Markov chain killed just before going to xy at of after time
1 are given by (py 1y, )xyee- A function ¢ from E to R is harmonic with respect
to these transitions if an only if the function ¢ given by

QD(X) = ¢ ()C) ]lx;ﬁxo

is harmonic for the initial Markov chain at any point except xp, and if

§(x0) = D peyp(y) = Efo(X))].

YEE

The map going from ¢ to ¢ is linear and bijective. By continuity, one can extend
Ly,(x,a) toallx € Eand a € E. For « fixed this function is, as in the transient
case, superharmonic with respect to the transitions (py, 1,y )xyeE, and it can only
be harmonic for « in the boundary JE of E, which is, as in the transient case, called
the Martin boundary of the Markov chain. The minimal boundary 9,,E is the set of
o € OF such that x > Ly, (x, o) is minimal harmonic for (py 1,y )xye£. As in the
transient case, one can show that all harmonic functions for (py 1,4y, )xye£ can be
written, in a unique way, as the integral of x — L, (x, «) with respect to du (o), p
being a measure on the minimal boundary 0d,,E. Stating this precisely, and writing
this in terms of ¢ rather than ¢ gives the following:
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Proposition 5 The set 0,,E is a Borel subset of OE which does not depend on the
choice of xo. Moreover, for any xo € E, a nonnegative function ¢ from E to R, such
that ¢(xo) = 0, satisfies E[o(X1)] = @(x) for all x # xq if and only if there exists a
finite measure [iy 5, on 0,E, such that for all x # xo,

o) = [ Ly iy @
AnE
If it exists, the measure |4y x, is uniquely determined, and has total mass equal to

(;Z(XO) = Exo [@(Xl)]

Now, we can use this result in order to classify the families of measures
(QY?)ek introduced in Sect. 2.

Since the Markov chain is irreducible and recurrent, it admits a nonnegative
stationary measure, which is unique up to a multiplicative constant. If we fix the
constant of normalization, one gets a function 8 from E to R, such that for all
y€E,

BO) =Y peyB).

yEE

Moreover, the function B never vanishes. One then gets the following result:

Proposition 6 For o € 0,,E, and for all xy € E, the function

) Ly, (x, )
Do = X > W XFEX0»

which vanishes at xy, is harmonic at every point except xo. Moreover, the family of
. X0,@xp.c0
o -finite measures (Q; )xek does not depend on xy.

Proof The fact that ¢, , is harmonic everywhere except at xo comes directly from
the definition of the minimal Martin boundary. Moreover, if xo,x; € E, we have
proven in Proposition 4.2.10 of [11] that Q;"*** = Q}"*"* for all x € E, if and
only if for all ¢ € (0, 1), there exists A > 0 such that for all x € E, ¢ (x) +
@y, o (x) > A implies

(1 = €)prya(x) < @xa(x) < (14 €)@y alx).
One easily checks that this condition is implied by:

SuEp |(pxo,0£ (x) — Px (-x)| < o0.
xX€
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It is then sufficient to prove this bound for all xy, x; € E such that xo # x;. Now, a
classical construction of the stationary measure 8 implies, using (4), that

B()
GX 'x 9 = _5
()( 0 y) ,B(XO)
which implies, for all x # xo,
Ly, (x, ) . Gy, (x,y) . Gyx,y)
7. (x) — — I 1 —_r 77

Blxo)  r—urek B(xo)G(t0,y)  y—areE  B(y)

and for x # xj,

. Gy(xy)
Pra() = lim B0)

It is then sufficient to prove

IGxo (x’ y) - le (xv y)l
sup
x€E\{x0.x1 },yEE ﬂ(y)

Let Gy, be the Green function of the Markov chain corresponding to (Py),er,
killed just before its first strictly positive hitting time of the set {xo, x1 }:

y
Groon (1,) = Ex [L<T1-0AT£1 y-1l:
where T is the first strictly positive hitting time of z. It is sufficient to prove

|G, (x,) — Gyyxy (%, Y)] < 00

sup

x€E\{x0.x1 },yEE :3 (y)
and
Gx ) - Gx X )
sup |Gy, (x,y) 01 (X, 9)] < 00
x€E\{xo,x1},yEE /3 (y)

Let us show the first bound: the second is obtained by exchanging xo and x;. If 7!
denotes the p-th hitting time of x;, one gets for all x € E\{x¢,x1},y € E,

[ oo
Gxo ()C, y) = IEx Z 11X,,€y,n<T;Oi|
Ln=0

- x|
- oo p+1

1 o1l
= Ex E ]lX,,ey,n<T;0 + Ex E E ]lX,,Ey,n<T£0
=0 =1,

p=1 5
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Since x # x; and then 7} = T;l , the first term of the last sum is exactly Gy, ., (%, ),
and by the strong Markov property:

x|
Tyt —1 T;l -1
— X1 !
IEx E ]lX,lEy,n<T;0 = Px[fp < TXO]EXI E ]lX,lEy,n<T;0
n=‘t,),cl n=0

= Gy (xls)’)Px[T;fl <T ]

X0

Hence,

oo
Gy (x,y) = Gy (£, ) + Gy (x1,7) pr[t;;q < T;/co]
p=1

= Gxo,xl (.X, }’) + Gxo,xl (xlay)EX[L);éo_l]
= Gy (6, ) + Grg g (¥1, ) Gy (x, x1).

It is then sufficient to check

Sup Gxo,xl (.X1,y)GxO(X, xl) <
x€E\{xo.x1 }.yEE B)

Now,

BO)
B(x1)

and using the Markov property at the first hitting time of xj,

Gy (x1,Y) < Gy (x1,y) =

GX() (.X, Xl) E GX() (.Xl ) -xl)v
which implies

Gy (61, ) Gry (X, x1)  Gyy(x1,x1)
sup <
x€E\{x0.x1 },yEE :3 (y) ,3 (-xl)

Since the normalization of 8 is supposed to be fixed, the result we have just proven
allows to write, for all @ € 9,,E,
Qa . X0,$xq,
X T Wx s
since the right-hand side does not depend on xy € E.

Using the minimal boundary, one deduces a complete classification of the
families of o-finite measures in the class 2.
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Proposition 7 Let (Qy)cer be a family of o-finite measures on (EN, Zo.). Then
(Qy)xek is in the class 2 if and only if there exists a finite measure |1 on 0, E such
that for all A € Foo, x € E,

@w=ﬁEwwwwy

In this case, | is uniquely determined.

Proof Letus assume Q, = Q" for all x € E. By Proposition 5, there exists a finite
measure /Ly y, o0 d,,E such that for all x € E,

P(x) = Tz, /3 Ly (x, 0)d by x, ().
E

m-

For all n > 1, and for all nonnegative, .%,-measurable functionals F,,, one has
QX[Fn]]-Van,Xk7éX()] = ]EX[Fn(p(XVl)]
= Ex |:Fn]1X,,7éxo /3 ELX() (an a)du(p,xo (a)i|
= E, |:Fn/a ,B(XO)(pxo,a (Xn)dﬂw,xo (05):|
IV[E

=AEmm%mewmmmm»

= /{) - Qa [Fn]lezn,Xkaéxo] d(IB(xo)l'L(ﬂ,XO (O{)) (5

Using the monotone class theorem and the fact that the canonical process is transient
under Q, and Q%, one deduces, for all A € F,

@W=LE@wwmx

where the measure

uw:=_p (XO)MQO,X() (cr)

is finite. Let us prove the uniqueness of u. If for two finite measures © and v, and
forall A € o,

/’@wwm=/ Q(A)dv (),
InE InE
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then for xy € E,
[ @ wane = [ @ @i,
OmE OmE
and for all n > 1, B, € .%,, one gets, by taking A = B, N {Vk > n, X; # xo},

/ EL[L, ¢ 0 (Xo)ldpt () = / Eu{L, uy0 (X)]d0 (@),
InE

W E
ie.
E:[1p,01(X,)] = Ex[1p,02(X,)].
where
00 = [ puodn@
InE
and

20 = [ puative),
OmE
For y € E, taking B, = {X,, = y} gives
EX[ﬂXn=y(Pl(Xn)] = EX[]an=y(P2(Xn)]7
ie.
(pl(y)]P)x[Xn = y] = (pZ(y)]P)x[Xn = y]-

Since the Markov chain is irreducible, there exists n > 1 such that P,[X,, = y] > 0,
which implies that ¢;(y) = ¢2(y), i.e. forall x € E,

/ o0 (i) = / G0V (@),
onE InE

and then for x # xo,

Ly, (x, ) _ Ly, (x, )
/amE B(x0) d“(“)_/amE By @

The uniqueness given in Proposition 5 implies that . = v.
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It remains to show that any family (Q,),eg of measures such that forall A € %,
e = [ Qdue
IV[E

has the form (Q"*)cf if p is a finite measure on 9,,E. Indeed, by reversing the
computation given in (5) and by replacing (i, x, by 1/ (B(x0)), one deduces that for
F, nonnegative and .%,-measurable,

QX(Fn]]-Van,Xk7éX()) = Q;O!(p (Fn]]-Van,XkaéX())s

where
Ly (x, )
00 = L, [ 2D i)
2 Sz Bxo)
Since the canonical process is transient under Q, and Q;"*, one deduces that Q, =
Qio,‘/"

The result we have just proven gives a disintegration of all families of measures in
the class 2, in terms of the families (Q¢)eg for a € 9,,E.

4 Convergence of the Canonical Process Under Q¢

In this section, we study the canonical trajectory under Q%, for « in the minimal
boundary of the Markov chain corresponding to (P,).cg. The main statement we
will prove is the following result of convergence:

Proposition 8 For all x € E, and for all @ € 0,E, (Q%)-almost every trajectory
tends to o at infinity.

Proof The proof of this statement will be done in several steps. A difficulty in the
study of Q¢ is the fact that this measure is not finite in general. Hopefully, Q¢
can be proven to be equivalent to probability measures, which can be explicitly
described. Moreover, one can choose such a probability measure, in such a way that
the corresponding random trajectory is a transient Markov chain.

Proposition9 Forr € (0,1), x,xo € E, @ € 0,,E, let

1 r
Vparr (X) 1= m [:ﬁ + Ly (x, a)]lxs*éX():I :

Then, if LY denotes the total number of hitting time of xo by the canonical trajectory,
the measure

X0
]P)xo,a,r -— rLoo

* o I//.X(),Ot,r(x) . QX
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is the probability distribution of a Markov chain, starting at x, with transition
probabilities (q;\"")xyeE, where

qx(),a g Ip‘)(() o, r()’)
o Vo0 ,(x) Py
if x # xo, and
qxo R — Ilb.)(() o, r(y)
X0,y

WXO a r(XO) Pros-

Proof The discussion at the beginning of Chap. 4 of [11] shows the following: if
©(x0) = 0 and ¢ is harmonic at all points different from x, then for

Ve = 7 Exlp(X)] + ¢ (),
the measure
(r) rLoo -Qu¥
is finite and satisfies, for all n > 0, and for all F,, nonnegative, .%,-measurable,
HO (F) = By, (%) F),

where L)’ | is the number of hitting times of xy at or before time n — 1.
In the case we consider here, we have

_ _ Ly, (x, @)
PX) = Pypalx) = B(x0) Lz,

and by applying Proposition 5 to ji, x, equal to 1/8(xo) times the Dirac mass at o,

E,lp(X)] = @

the total mass of p, .. Hence,

r n Ly, (x, a)
(1=rBxo)  PB(x)
(r) = WXO o, r(x) ]P)XO % r

Yy (x) =

X?éxo wxo o, r(x)

and then for n > 0, F,, nonnegative and .%,-measurable,

]P);O'a'r(Fn) — |:WX() o, r(X )rE\O i|

1//,(0 o,r (x)
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Takingn = 0 and F,, = 1, we deduce that P{>*" is a probability measure. Moreover,
for all yo, y1,...,y, € E,

P (Xo = yo. .-+, Xn = yn)

l—lp w)«) ar(n) Z;“ 0 Lyj=xo
)’()—X YisYi+1 xo wr (X)

n—l1 n—1
_1 I1» l—[ Voo (1) T e
— TYo=x Vi Yi+

j=0 AN wxo o r(y])

j=0

n—1
= Lyy=x l_[ (I’) Yit VaarOs41) Il>;—*0)
j =0 7o wxo o r(y])

X001
= Lyy=x l_[ D541

which proves the desired result.

Since the canonical trajectory is transient under Q¢, it is also transient under P{*",
since the two measures are absolutely continuous with respect to each other. Hence,
one can consider the Martin boundary of the corresponding transient Markov chain.
If we take xy as the reference point, we need to consider the Green function Gy, .,
given by

o0
Grpar(X,y) i= ) PO (X = y),
k=0
and the function K, o, given by
Gy or(x. )
Kxo,a,r(xy y) = e
GX(),O(,V'(-xOs y)

One then gets the following result:

Proposition 10 For all x,y € E, one has:

Kypor(x,y) = zﬁ;) = r(()i))) (1 + on (x, y)]lxsﬁxo) :

The Martin boundary associated to the transient Markov chain corresponding to
(P{0*") vef is canonically homeomorphic to the Martin boundary associated to the
recurrent Markov chain corresponding to (Py),ecg, and the analogous statement
is true if we replace the Martin boundary by the minimal boundary. Moreover,



On o-Finite Measures Related to the Martin Boundary of Recurrent Markov Chains 285

the function 1 is a minimal harmonic function, for the Markov chain given by
(P0*")ver, which corresponds to the point o of the minimal boundary 0,,E.

Proof Forx,y e E,n > 1,

PP, = ) = B, | el s, |

Vo (%)
_ Ir//xo,m,r(y) E, I:rL’Xl(Ll]lX,,=y:| ’
wXO,a,r(x)
and then
Vw0 | o ™
Gxo,a,r(xa,)’) xoar Z]lxn_} + er Z ﬂX,,—}
wxo o, V( ) 0+1
n=r,

Using the strong Markov property, one deduces

Grpar(x.3) = zzz—gi (B:|zr, |+ =Ea |1, - 1))

Now, under P,,
L}fX() = L}%xo—l + Ly=yy = L;';O—l]l)‘?éxo + Ly=x
and under P,

L}f;o - Lﬁ = (L}f;o—l + ]1y=xo) —Ly=y = L;;O—l-

Hence,
‘onar(y) r
Gx ,a,r(xay) ( =xy + Gx (X,Y)]lx x T _Gx (X(),y)) .

0 Vo er () 0 0 Fx0 1 — %

In particular,

wxg.a.r(y) r

Gx a,r s = ——=(1 =x —Gx s .
s (X0, ) Vamr(0) ( y=xo + 77 G (%0 Y))

Taking the quotient of the two expressions, we get, after dividing the numerator and
the denominator by rGy, (xo, y)/(1 —r), and by checking separately the cases y # x
and y = x,

Ky or(x,y) = ‘Z;O = r(()i))) (1 + on (x, y)]lxsﬁxo) :
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For x, (y4)u>1 in E, it is then clear that K, .(x,y,) converges if and only if
Ly, (x,y,) converges: this equivalence is also true for x = xo, since Ky, o (X0, yn) =
Ly, (x0,y,) = 1. This equivalence implies the equality, up to a canonical homeomor-
phism, of the Martin boundaries associated to (Py)ceg and (P{*") ef.

Let us now check the equality of the minimal boundaries. It is straightforward to
check that there is a bijective map % from the set of functions ¢ from E to R for
which ¢(x0) = 0 and E,[p(X1)] = ¢(x) if x # xo, to the set of functions & from E
to R which are harmonic with respect to the Markov chain associated to (IP}*%") .ef.
This map is given as follows:

R(p) ) = 0 + T—Ey [pX))]).

1
ol

and one has

L@_l(h)(x) = wxo,a,r(x)h(x) - rExo [on,a,r(xl)h(XI)L

It is obvious that Z and %#~' are linear maps, and that % sends nonnegative
functions to nonnegative functions. Moreover this last property is also true for .
Indeed, if & is nonnegative, then %"%h) is harmonic for (IP,).cg at every point
except xo, vanishes at xp and is bounded from below by

—C:= _VEX() [wX(),a,r(Xl)h(Xl)]-

Hence, forall x € E,
T (W)(x) = BB () Xunr )] = Bl (1) (X)L, on] = —CPA[T, > 11,
and letting n — oo,
2 (h)(x) = 0,
since by the recurrence of the canonical process under P,

P,[T,, > n] — 0.
n—>oo

One deduces that % and %' preserve the minimality of the corresponding
harmonic functions. Moreover, one has for all y € 9,,F,

1 : r
K74 ((pxos)/) (x) = m (mon(x, )/)llx#)co + :Exo [(PXO,V(XI)])
! r
= m (LX()(-x7 y)]lx#x() + :)
r

= T B i) 007
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In the second equality, we use that

1
Exo [(pxo,y (X1)] ,3 (x0) s
which is a consequence of Proposition 5 applied to 1/8(xp) times the Dirac measure
at y. Since y € 0,,E, ¢x,,, is minimal as a nonnegative function vanishing at xo and
(Py)ceg-harmonic outside xo, Z(¢y,.,) is then minimal as a (IP}>*") cg-harmonic
function, and by the previous computation, x — Ky, 4 -(x, ¥) is also minimal, which
implies that y is also in the minimal boundary of E for the transient Markov chain
(PX0*7),er. Using the reverse map %!, we deduce similarly that any point in the
minimal boundary for (£7}0%"),¢ is also in the minimal boundary for (Py)er. We
have then the identity (up to canonical homeomorphism) between the two minimal
boundaries.

Moreover, for y = o, we get the following:

wxo o V(-xo) ( 1 -r
Kypar(x,0) = ———— | 1 + ——Ly,(x,0) 1,
0.2 Vo e (0) , 0 Fx0

= (I—:r) ,B(X()) wx(),a,r(XO)'

Hence, if we refer to Proposition 4, the constant function equal to 1 can be written
as follows:

= /8 Kl au(h)

where

r

= 80{3
(1 - r):B(XO) on,a,r(xo)

n

8, denoting the Dirac measure at «. Since w is carried by «, and ¢ € 9,E by
assumption, the last statement of Proposition 10 is proven.

We can now easily finish the proof of Proposition 8. Applying Theorem 3.2. of
Kemeny and Snell [4] to the transient Markov chain associated to P}>“" and to the
constant harmonic function 2 = 1, and using the last statement of Proposition 10,
we deduce that P}>°%"-almost surely, the canonical trajectory tends to «. Since Q%

is absolutely continuous with respect to P{**" (with density r_LOOO), the canonical
trajectory also tends to o under Q.

From the fact that (Q).cr satisfies the condition (34) and from Proposition 8,
we deduce the following informal interpretation: under Q¢, the canonical process
corresponds to the Markov chain given by P, conditioned to tend to « at infinity.
Of course, this interpretation is not rigorous since Q¢ is not a probability measure
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in general, and even not a finite measure. Moreover, under P, the canonical process
is recurrent, so it cannot converge to a point of the Martin boundary.

S Some Examples

In this section, we look again at the examples given in Chap. 4 of [11].

5.1 The Simple Random Walk on 7

The simple random walk on Z is the Markov chain given by the transition
probabilities (py )y yez Where pyxy1 = pxr—1 = 1/2and p,, = 0if |[y—x| # 1. For
all x € Z, p., = 0 for all but finitely many y € Z, and the simple random walk is
irreducible and recurrent. We can then do the construction given in Chap. 4 of [11]
and in the present article. If we take xo = 0, we get, by using standard martingale
arguments,

Go(0.y) =1

forall y € Z, and for all x € Z\{0} and y € Z,

Go(x.y) = 2(Jx| A [yDLgy>o.
Hence, Ly(0,y) = 1 and for x # 0,

LO(x’y) = 2(|x| A |y|)]lxy>0-
We deduce that the Martin boundary of the standard random walk has exactly two
points. We denote these points —oo and oo, the distinction between them being
given by the formulas:

L()(x, o0) = 2x4 + 1,—, L()(x, —o0) = 2x— + 1,=.

This notation is justified by the following fact: a sequence of points in Z tends to co
in the Martin compactification of Z if and only if it tends to oo in the usual sense,

and the similar statement is true for —oco. If we normalize the stationary measure by
taking B(x) = 1 for all x € Z, we get

©0,00(X) = 2X4, @0 —00(X) = 2x_.

The nonnegative functions ¢ such that ¢(0) = 0 and ¢ is harmonic at all x # 0 are
exactly the linear combinations of ¢y, and ¢y oo With nonnegative coefficients.
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We deduce that the minimal boundary of Z is equal to its Martin boundary, i.e. has
the two points —oo and co. The families of o -finite measures in the class 2 are then
exactly the families of the form (¢Q%° + BQ°°)ez for @, B > 0. Hence, we do
not obtain other measures than those given in Sect. 4.3.1 of [11].

5.2 The Simple Random Walk in 7>

In this case, we have E = Z? and the transition probabilities are given by DPry = 1/4
if |[x—y|| = I and p,, = O otherwise. It has been shown that in this situation, there
exists, up to a multiplicative constant, a unique nonnegative function which vanishes
at (0,0) and which is harmonic everywhere else. This property is, for example,
stated in Sect. 31 of [15] (statement P3), in the case where we replace the simple
random walk by a general irreducible, recurrent, aperiodic Markov chain in Z2, for
which the increments are i.i.d. random variables. Since the simple random walk is
not aperiodic, the result in [15] doesn’t apply directly. However, it is easy to deal
with this problem: if a is a nonnegative function, vanishing at (0, 0) and harmonic
elsewhere for the transitions (px.y), yez2, then for E' := {(a,b) € 7%, a + b even},
the restriction of a to E’ is harmonic, except at (0, 0), for the transition p? obtained
by iterating two steps of the Markov chain with transition p, i.e. (pz)w is 1/16 for
[lx = y|| = 2,1/8 for ||x — y|| = +/2 and 1/4 for x = y. This Markov chain on
E' is irreducible, recurrent, aperiodic, and then the restriction of a to E’ is uniquely
determined up to a multiplicative constant. Now for x € Z*\E’, a(x) is the average
of the four numbers a(x &+ (0, 1)), a(x & (1, 0)), where x £ (0, 1) and x & (1, 0) are
in E’, so it is also uniquely determined. We have already written the expression of a
in Sect.4.3.5 of [11]: if the multiplicative constant is suitably chosen, then a is the
so-called potential kernel, given by

N N
a(x) = lim_ (Z P00y (Xy = (0.0) = ) Pu(X, = (0. 0))) :
n=0

n=0
In Sect. 15 of [15], some explicit values of a are given. If x = (0, 0), then a(x) = 0,

if ||x|| = 1, then a(x) = 1, and forall n > 1,

4 &1
=1

Knowing these values is sufficient to successively recover all the values of a, by
only using the fact that a is harmonic, and that a has the same symmetries as the

lattice Z2. For example, we get

4a(1,0) = a(2,0) + a(0,0) + a(1, 1) + a(1, 1),
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and then

a(2.0) = 4a(1,0) — a(0,0) — 2a(1,1) = 4 — ;

Similarly,

4a(1,1) = a(1,2) + a(2,1) + a(1,0) 4+ a(0, 1) = 2a(2, 1) + 2a(1,0),

a(2,1) = 2a(1,1) — a(1,0) = ;—1

and so on. In particular, for all x € 72, alx) € Q + %Q. The following

asymptotics has been given by Stohr [16], then improved and generalized by Fukai
and Uchiyama [2]:

2y +log8
S 00/ 1P,

2
a(x) = — log|[x|| +
T

where y is the Euler-Mascheroni constant.

The uniqueness of a, up to a multiplicative constant, shows that the simple
random walk in Z? has a Martin boundary with only one point, which can naturally
be denoted oco. If we go back to the definition of the Martin boundary given here,
we deduce that for all x € Z*\{0},

G0.0)(x,y)

G00)((0,0).y) Ilise0 Calx)

for some constant C > 0. Since the counting measure is invariant for the simple
random walk we deduce that G)((0,0),y) = 1 for all y € Z2, and then for

x #(0,0),

EJ(L. | — Ca(x).

T007 |1y]j>o0

Moreover, by the Markov property, for y # (0, 0),

1
y _ y
IE((l()) [LT(/O.O)] = Z § : EX[LT(().O)]’
x€{(0,1),(0,—1),(1,0),(=1,0)}

and then, by letting ||y|| — oo,

=1 > Ca(x) = Ca(0,1),

4 x€{(0,1),(0,—1),(1,0),(—=1,0)}
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and then C = 1, and

,
Edlry,) o a0,

Since the Martin boundary of E has only one point in this example, the class 2
contains only the nonnegative multiples of the family of measures (QP°)cz2-

The results given here on the simple random walk in Z or Z?2, its potential kernel
and its Martin boundary has been adapted to more general random walks on groups.
For example, see Kesten [5] or Kesten and Spitzer [6].

5.3 The “Bang-Bang Random Walk”

This Markov chain is given in Sect.4.3.2 of [11]. We have E = Ny, the set of
nonnegative integers, and the transition probabilities are given by pp; = 1, and for
ally > 1, pyy1 =¢q€(0,1/2),pyy1 =1 —gand p,y = 0for [y —x| # 1 (in
[11], only the case ¢ = 1/3 is considered, but the generalization is straightforward).
It is easy to check that the Markov chain is irreducible and recurrent. Moreover, for
a = (1 —¢q)/q, (@*~1),5¢ is a martingale under PP, for all n € Ny. By a standard
martingale argument, one deduces that for 0 < x <y,

ot —1

PX(Ty < T()) = . 1.

Now, for all y > 0, under PPy

* With probability ¢, X; = y + 1 and then the Markov chain goes almost surely
back to y before hitting 0.

* With probability 1 — g, X; = y — 1, and then the conditional probability that the
Markov chain goes to 0 before returning to y is

ol -1

y l(T >T())—1—}—_1

Hence, the probability that the Markov hits 0 before returning to y is

BT <) = (-0 = (- (- 1/a e = L2200

If we choose xy = 0, we deduce

@ -1 _1-lg/U-gP

Go(y,y) = _
o) = T e 1—2¢q
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Applying the Markov property to the first hitting time of y, we deduce that for x >
y >0,

GO(xv Y) = GO(yv Y)

andfory > 0,x <y,

Golx.y) = a*—1
YT U g

If x > 0, one obviously has

Go(x,0) =0,
one has

Gy(0,0) =1,
and forall y > 0,

a—1 1

GO(O,)’) = G()(l,y) = m = M

For x,y > 0, one gets

g™ —1)

Lo(x,y) = (1-29)

and

Lo(0,y) = 1.

Hence, for all x € Ny, Lo(x,y) converges when y goes to infinity. The Martin
boundary has then only one point denoted co, and

Lo(x, 00) = %,Lo(o,oo) =1.

In this setting, the exists a unique stationary probability measure, given by

1—2q
p0) = —
2(1—¢q)
and for all x > O,
1—-2q

= =g
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With this normalization, we get for all x > 1:

2q(1 —q)

(1—29)° (o« —1).

©0,00(x) =

We then get, up to a multiplicative constant, a unique family of o-finite measures
(Q2°)xeny. described in Sect. 4.3.2 of [11] in the case ¢ = 1/3, and then o = 2.

5.4 The Random Walk on a Tree

Here, we consider an infinite k-ary tree for k > 2. It can be represented by the
set E of all finite (possibly empty) sequences of elements in {0, 1,...,k — 1}. The
transition probabilities we consider are given by pg ;) = 1/kforallj € {0,... .k —
1}, pry = 1/2, pyx = 1/2k if x is a nonempty sequence and y is obtained from x by
removing the last element: we will say that y is the father of x and x is a son of y. All
the other transition probabilities are equal to zero. With these transitions, under P,
for any x € E, (L,)n>1 is a reflected standard random walk if L, denotes the length
of the sequence X,,. One deduces that the Markov chain is irreducible and recurrent.
We choose xop = 0. Letx,y € E, x,y # 0, and let 7 be the last common ancestor of
x and y. It is clear that under PP,, the canonical process almost surely hits z before y.
Using the strong Markov property, we deduce that for z = @,

Go(x.y) =0,
and for 7 # @,
Go(x,y) = Go(z,y)-
Let zo = @,z1,22,...,% = y be the ancestors of y, the sequence z; having j

elements. Under IP’ZJ., 2 <j<p-—1,X; =z with probability 1/2, X; = zj11
with probability 1/2k and X is another son of z; with probability (k — 1)/2k. One
deduces

1 1 k—1
Gy(z,y) = EG@(Zj—lvy) + ﬂGﬂ(Zsz)’) + TG@(Zj’y)’

and then

k 1
Go(z.y) = k_’__lG@(Zj—lsy) + k_’__lG@(Zj+lsy)-

Similarly, for p > 2,

1
Gg(z1,y) = T 1G@(zz,y)
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and

1 1

G@(yv )’) = G(ZJ(Z[;, )’) =1+ EG(ZJ(Zpa )’) + EGQ(Z‘D—IJ’)’
ie.
Gop(y,y) =2+ Gp(zp—1,)-

Finally, forp = 1,

1

G@(yvy) = 1 + EG@()”)’) = 2

From these equations, we deduce for 1 <j < p,

20 — 1)
Go(zj,y) = ————.
@(Zj y) kp_l(k_ 1)
Hence, for x,y # @,
20 — 1)
G 9 = —’
o(x.y) = 1)

where j denotes the number of elements of the last common ancestor of x and y.
Moreover, one has Gg(x, @) = 0 forx # 0, Gg(9,0) = 1, and fory = z, # 0,

1 2
Go(@.y) = 2 Go(z1.y) = 1.
We then get for x,y # 0,

k(K —
Latvy =5

Lg(x,0) =0, Lg(D,y) = Lg(@,0) = 1.

3

Now, let (x,).>1 be a sequence in E which converges in its Martin compactification.
If the length of x, does not tend to infinity, then x, takes the same value infinitely
often, and then the limit of x, is equal to this value. If the length of x, tends
to infinity, then for all m > 1, x, has at least m elements for n large enough.
Necessarily, there exists a sequence y, of m elements such that x, starts with
ym infinitely often. Now, let us assume that another sequence y/, satisfies the
same property. In this case, the last common ancestor of x, and y,, is y,, itself
infinitely often, and some strict ancestor of y,, infinitely often. Hence, Lg(x,, )
is k(k™ — 1)/ (k — 1) infinitely often, and k(¥ — 1)/ (k — 1) for j < m infinitely often,
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which contradicts the convergence of (x,),>1 in the Martin compactification of E.
Hence, for all m > 1, there exists a sequence y,, of length m such that x,, starts with
ym for all n large enough. Conversely, if (x,),>; satisfies the property given in the
previous sentence, then for all x € E different from @, and for n large enough, the
last common ancestor of x, and x is the same as the last common ancestor of y,, and
x, if m > 1 is larger than or equal to the length of x. Hence, for n large enough,

Lg(x,x,) = Lg(X, Ym),

which implies the convergence of (x,),>; in the Martin compactification of E. If
(x4)n>1 converges to a limit which is not in E, then the limit - in the Martin boundary
of E is defined by the function

x> Lg(x,a) = lim Lg(x,x,) = Lg(x, ynm),
n—o0

if m > 1 1is at least the length of x. The sequences (y,,)m>1 are compatible with each
other, i.e. for all m > 1, y,, is the father of y,,+;. Hence, there exists an sequence yso
such that for all m > 1, y,, is the sequence of the m first elements of y,. We deduce
that o € OF is identified by the function:

k(K — 1)

Lg(x,a) = 1,=
X+ Lg(x,a) g+ 1

]lxaé@s
where j is the largest integer such that the j first elements of x and y, are the same.
The function x — Lg(x, @) depends only on the sequence y, and one easily checks
that we obtain different functions for different infinite sequences. Hence o can be
identified with ye. We deduce that dE can be identified with the set of all infinite
sequences of elements in {0, 1, ...,k — 1}. Intuitively, these sequences correspond
to the “leafs of the tree”. The topology of JF is given by the following convergence:
2’2 )u>1 converges to Yoo if and only if for all kK > 1, the k-the element of yf;2 and
the k-th element of yo, coincide for all but finitely many n > 1. The topology of E
is also induced by the distance D such that D(ys, ys,) = 27, where k is the first
integer such that the k-th elements of yo, and y, are different. If we normalize the
stationary measure in such a way that 8(0) = k/(k — 1), we get

0300 () = K — 1

where j is the largest integer such that the j first elements of y, and x coincide. This
function is nonnegative, zero at ¥ and harmonic at every other point. It is minimal
among such functions. Indeed, let ¢ be a function satisfying the same properties,
which is smaller than or equal to ¢g,. . For m > 0, let E, be the subset of E
consisting of sequences whose m first elements coincide with those of y. Let
F, = E,\En+1. If y,, is the sequence of the m first elements of y., then for
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x € Fyy, under Py, X,, is in F,,\{yn} foralln < T, . Now, for all z € F,,,

which implies, since ¢ is harmonic at all points in Fy,\{yu}, that (¢(Xuar,, ))n>0 i
a bounded martingale. Hence, under P,,

p(x) = 9(Xo) = Ei[p(X7,,)] = ¢ (ym)-

Hence, ¢(x) depends only on the largest m such that the m first elements of x and
Yoo coincide. It is then sufficient to check that there exists C > 0 such that ¢(y,,) =
C(k™ — 1) for all m > 0. Now, this result is a consequence of the fact that ¢(yy) =
(@) = 0 and the harmonic property of ¢, which imply that form > 1,

1 k—1 1
©Qym) = §¢(Ym—l) + Tfﬂ(ym) + 5(<P(ym+1)-

We have then proven that ¢g , is minimal, and then the minimal boundary 9,,E is
equal to the Martin boundary dE. We have then again a complete description of the
families of measures (Q%),eg for @ € 9,,E. In the case k = 2, all these measures
were already described in Sect.4.3.3 of [11]. Integrating with respect to a finite
measure on d,,E gives all the possible families of measures in the class 2. Note that
in this example, the Martin boundary is uncountable.

Acknowledgements I would like to thank Ph. Biane and Ph. Bougerol for the discussion we had
on the possibility of a link between the Martin boundary and the o -finite measures studied here.
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Loop Measures Without Transition Probabilities

Pat Fitzsimmons, Yves Le Jan, and Jay Rosen

Abstract The goal of this paper is to define and study loop measures for Markov
processes without transition densities. In particular, we prove the shift invariance of
the based loop measure.

Subject Classifications: Primary 60K99, 60J55; Secondary 60G17

1 Introduction

To the best of our knowledge, Brownian loop measures first appeared in the work
of Symanzik on Euclidean quantum field theory [12], where they are referred
to as ‘blob measures’. Then discrete random walk loops were used in statistical
mechanics (see in particular Brydges et al. [2]). Brownian loop measures next
appear in the work of Lawler and Werner [7]. In [8] loop measures associated
with a large class of Markov processes are defined and studied. In all these cases
it is assumed that the underlying Markov process has transition densities. The
goal of this paper is to define and study loop measures for Markov processes
without transition densities. In particular, we prove the shift invariance of the
based loop measure. Loop measures for processes with finite potential densities but
without transition densities are discussed in [5]. Such a situation can occur for non-
symmetric processes, such as Poisson processes with drift. In the present paper we
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give an alternative construction, assuming only that the potential densities u(x, y)
are finite off the diagonal. We allow them to be infinite on the diagonal, and in this
case the construction of [5] breaks down. A simple example is spelled out at the end
of the introduction.

Let X = (2, %, X,, 6, P*) be a transient Borel right process [11] with state
space S, which we assume to be locally compact with a countable base. We use
the canonical representation of X in which 2 is the set of right continuous paths
® :[0,00) > Sap = SU A with A ¢ S, and is such that w(r) = A for all
t > ¢ =inf{t > 0|w(r) = A}. Set X;(w) = (7).

Let m be a Borel measure on S which is finite on compact sets. We assume that
with respect to m, X has strictly positive potential densities u*(x,y), « > 0, which
satisfy the resolvent equations. We set u(x, y) = u’(x,y), and assume that u(x, y) is
excessive in x for each fixed y.

Let ,(x) = u(x, z). If we assume that u is finite, then the /s -transform of X is a
right process on S, see [11, Sect. 62], with probabilities P*/"=. Let 0** = u(z, z)P/"=.
We can then define the loop measure as

u®=/@{9mmx ()

for any .# measurable function F. Loop measures for processes with finite potential
densities but without transition densities are discussed in [5]. In the present paper
we assume that the potential densities u(x, y) can be infinite on the diagonal, but are
finite off the diagonal. Assuming that all points are polar, we show how to construct
a family of measures 0%, z € S, which generalize the measures Q%% = u(z, z)P¥/":
in the case of finite u(x, y).

After constructing Q%*,z € § and defining the loop measure p using (1), we
show how to calculate some important moments. We assume that

syﬁwwwﬂmwfmm<w @)

for any compact K C S. For exponentially killed Brownian motion in R? this means
that d < 3.

Theorem 1 For any k > 2, and bounded measurable functions fi, ..., fr with
compact support
k o0
w|T1[ sy )
=170

k
= /M(Xl,xz)u(xz,m)"'M(Xk,xl)nfnj(xj)dm(xi),

ﬂE@P j=1
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where 9’,9 denotes the set of permutations of [1,k] = {1,2,...,k} on the circle.
(For example, (1,2,3), (3,1,2) and (2,3, 1) are considered to be one permutation
T e 9739 .)

Our assumption (2) will guarantee that the right hand side of (3) is finite. Note
that if X = 1 our formula would give

" ( /0 " ) drj) = [ utw s ant) = . @

for any f > 0, by our assumption that the potentials u(x,y) are infinite on the
diagonal.

For fi, ..., fi as above consider more generally the multiple integral
M = Z / Fey X)) -+ fruo (X)) dry -+ - dr, 5)
o Y0=r=-=n=t
€T,

where fke denotes the set of translations 7 of [1, k] which are cyclic mod k, that is,
for some i, 7 (j) = j+i, mod k, forallj =1, ..., k. In the proof of Theorem 1 we
first show that

k
2 (MJ;lé--..fk) = /u(xl,xz)u(xz,x3) e u(xe, x1) l—[ﬁ'(xj) (). ©
Jj=1
Equation (3) will then follow since
E oo o
= s

There is a related measure which we shall use which gives finite values even for
k=1.Set

v(F) = / 0% (F) dm(2). ®)

Assume that for any & > 0, any compact K C S, and any K which is a compact
neighborhood of K

sup  u%(z,x) < o0. 9
z€ke, xeK
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Theorem 2 For any k > 1, o > 0, and bounded measurable functions fi, ..., fx
with compact support

k oo
(1 / fi(X,) die™ (10)
=170

k
= 3 [ ) ) [T ) di) ),

TEDPy Jj=1

where &Py, denotes the set of permutations of [1, k|, and both sides are finite.

We call u the loop measure of X because, when X has continuous paths, u is
concentrated on the set of continuous loops with a distinguished starting point (since
Q™" is carried by loops starting at x). Moreover, in the next Theorem we show that
it is shift invariant. More precisely, let p, denote the loop rotation defined by

puo(s) = Z(s + umod ¢(w)), if 0 < s < ¢(w)
, otherwise.
Here, for two positive numbers a, b we define a mod b = a — mb for the unique
positive integer m such that 0 < a —mb < b.
For the next Theorem we need an additional assumption: for any § > 0 and
compact K € §

/ Py(z, dx)u(x, 2) dm(z) < oo, (11
K

Theorem 3 p is invariant under p,, for any u.

Note that if we have transition densities ps(z, x) then

/ Ps(z, dyu(x, 2) dm(z) = / / psGu(e. ) dm@ dm@)  (12)
K K

_ /K ( /8 oop,(x,x)dt) dm(x).

In our work [5] on processes with transition densities, it was always assumed that
sup, f8°° p:(x,x) dt < oo forany § > 0, which indeed gives (11).

For the next Theorem we assume that the measure m is excessive. With this
assumption there is always a dual process X (essentially uniquely determined), but
in general it is a moderate Markov process. We assume that the measures U (,y) are
absolutely continuous with respect to m for each y € S.
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For CAF’s L)', ... L* with Revuz measures vy, ..., 1, let
A=y / ALy - dLy . (13)
0<r|<-<r <t
ﬂE,?k@ Sr=sSrn=s

We refer to A;""* as a multiple CAF.

Theorem 4 For any k > 2, and any CAF’s L}',...L;* with Revuz measures
Viyeooh Vi
k
p(AL ) = /u(xlsxz)u(x25x3) <o u(xg, X1) l_[ dvj(x;). (14)
j=1
and

k k
w|[Iee ] = > /u(xlsXZ)”(xLxS)"'u(xk»xl)l_[ dv; (x;). (15)
j=1

JTG@,? J=1

The finiteness of the right hand side of (15) will depend on the potential densities
u(x,y) and the measures vy, ..., v;. For a more thorough discussion see [9, (1.5)]
and the paragraph there following (1.5).

We now describe some simple processes without transition densities but with
potential densities which are finite off the diagonal and infinite on the diagonal.
Consider the space-time process, see [11, Sect. 16], associated with Brownian
motion or any other reasonable process X € S with finite transition densities p,(x, y)
with respect to m. The forward space-time process (X;, r+1¢) does not have transition
densities, but does have potential densities

u((x, }"), (yv S)) = Ps—r(X, )’) . 1{S>r}

which blow up as (x,7) — (y,s). This process, taking values in S x [0, c0) has no
loops but its projection on S x [0, 1) (the time coordinate being taken modulo 1) can
have loops. We could also include negative Poissonian jumps in the time coordinate.

With the results of this paper, most of the results of [5, 9, 10] on loop measures,
loop soups, CAF’s and intersection local times will carry over to processes without
transition densities.

2 Construction of Q%*

Let us fix z € S and consider the excessive function f,(x) := u(x, z), finite and
strictly positive on the subspace S; := {x € S : x # z}. Doob’s A-transform theory
yields the existence of laws P*%, x € S, on path space under which the coordinate



304 P. Fitzsimmons et al.

process is Markov with transition semigroup

h;
Pi(x,dy) :== Pi(x,dy) h—g; (16)

See, for example, [11, pp. 298-299]. Now consider the family of measures
n:(dx) := Py(z, dx)h;(x). a7

Since we assume that the singleton {z} is polar, the transition semigroup (P;) will not
charge {z}, so these may be viewed as measures on S, or on S. Adopting the latter
point of view, it is immediate that ()~ is an entrance law for (P?). There is a
general theorem guaranteeing the existence of a right process with one-dimensional
distributions (77) and transition semigroup (P?); see [6, Proposition (3.5)]. The law
of this process is the desired O**. Aside from the entrance law identity n;P; = n;, ,
their result only requires that each of the measures 7n? be o-finite, which is clearly
the case in the present discussion.
With this we immediately obtain, for0 < #; < --- < f,

k k k
O | [5G | = ni @) [ ] Pioy, (-1, d) [ [ (18)
j=1 =2

j=1

k k
= l—[ Py (xj—1, dx)) Hﬁ(xj)u(xk, 2)
=1

j=1

with 7 = 0 and xy = z. Hence

k
o< [ [1506) ds 19)

< << <00 j=1

k
— [ uteoxuter) -+t 2 [ ] ) iy,

j=1

so that

k o]
o [T1 /0 fi(X,) dt; (20)
j=1

k
= 3 [ utexoutn ) uta. ) [T o) .

TE Py j=1
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Returning to (18) with 0 < #; < --+ < #; and using the fact that { > # implies
that £ = #, + ¢ o 0, we have

k
O | [ [ £ix)e™ 1)

j=1

k
= Q%7 nfi(th)e_wk (e—af ° efk)

Jj=1
k

k
— l_[ Pg—fj—l (.x]'—l s d.x]') l_[fj(xl')hz(-xk)ka'Z (e—a{) ]
j=1

j=1

Note that by (16) and the fact that X has «-potential densities for all « > 0

0 0

[P [ g D)
_/0 /Spf“’dy)hz(xk)dt

N
= / O e IO

Combining this with our assumption that the «-potential densities satisfy the
resolvent equation we see that

¢
h () P (e_aé) = h;(x) P™** (1 — 05/ e dt) (23)
0

= hy(xx) — ath, (xp) P** (/0 e "y (X)) dt)

— u(i?) —a / W G )y, 2) dm(y) = 1 (xp. 2).

Using this in (21) we obtain

k
o | T Thxpe (24)

J

j=1
k k
= l_[ Py (1. dxpu® (. 2) l—[fj(xj).
j=1

J=1
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‘We then have

k
Qz.,z 6—0@/ l—[ﬁ(Xt,) dtj (25)
0<t) <<t <00 j=1

k
= [ ). 2) [ ) dn

j=1

and consequently
k o0
o\ I [ e as 26)
=170

k
= Z / u® (z, x)u” (x1, x2) -+ u* (X, 2) l—[fn_,-(xj) dm(x;).
TEDP j=1

3 The Loop Measure and Its Moments

Set
w(F) = /QZ’Z (?) dm(z). 27)

Proof of Theorem 1 We use an argument from the proof of [5, Lemma 2.1], which
is due to Symanzik [12].

It follows from the resolvent equation that the potential densities u”(x,y) are
continuous and monotone decreasing in B, for x # y. Using this together with
the resolvent equation and the monotone convergence theorem we obtain that for

Xk 75 X1
o o d o
u® (xg, 2)u®(z, x1) dm(z) = ——u* (xy, x1). (28)
K dO{
Hence using (25)

/Qz,z (e—anélow-fk) dm(z) (29)

k
== Z /”a(th)M”(XZ,M)"'M”(Xk—l,Xk)ﬁua(xk,xl)l_[fnj(xj)dm(xj)

neg](@ ]=l
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k
= —%/ua(xl,xz)ua(xz,xg,)---uo‘(xk_l,xk)ua(xk,xl)l_[ﬁ(xj) dm(x;).

Jj=1

For the last step we used the product rule for differentiation and the fact that in the
middle line we are summing over all translations mod k.
Since, as mentioned, #* (x, y) is monotone decreasing in & for x # y,

b(ry) = Jim () (30)
exists and
[ oerrane = im ["e [Powayma=o. 6

Hence v(x,y) = 0 for m-a.e. y. Integrating (29) with respect to « from O to oo and
using Fubini’s theorem we then obtain (6). Equation (3) then follows by (7).

To show that the right hand side of (3) is finite we repeatedly use the Cauchy-
Schwarz inequality and our assumption (2). See the proof of [9, Lemma 3.3]. O

Proof of Theorem 2 The formula (10) follows immediately from (26). When k > 2,
the right hand side of (10) can be shown to be finite by repeatedly using the Cauchy-
Schwarz inequality, our assumption (2) and the fact that u*(x, z) is integrable in z
for any ¢ > 0. When k = 1, if K is a compact set containing the support of f; and
K is a compact neighborhood of K, then

[ [ et 2 dmoy ance
= /K / u® (z, x)u® (x, 2)f1 (x) dm(x) dm(z)
+/I~<E/u°‘(z,x)u°‘(x, 2)fi (x) dm(x) dm(z2).
Using (2)
/K(/ Wz u (%, DR ) dm(x)) dm(z) (32)

< m(K) sup / (2 (r. s () dimx) < 0o,
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and using (9)
/n‘ / u®(z, x)u®(x, 2)f1 (x) dm(x) dm(z) (33)

< C/ (/ u*(x,z) dm(z))ﬁ (x) dm(x) < oo.

4 Subordination

The basic idea in our proof that the loop measure is shift invariant is to show that
the loop measure can be obtained as the ‘limit’ of loop measures for processes with
transition densities. These processes will be obtained from the original process by
subordination.

We consider a subordinator 7, which is a compound Poisson process with Levy
measure ¢y so that

o0

X (Ct)j —c * X j
EX(f (X)) =) e E @) v, (34)
=t 7 0
If we take v to be exponential with parameter 6, then ¥*/ (ds) = Jj;(lgj e ds so
that we have
(ct)! _. [ s/ —s0
E o) =Y e [ o e as 35)
j; J! 0 I'(j)
Hence the subordinated transition semigroup
~ (ct)) _. [ §1e/ 0
Py =Y e [ pean e as (36)
’ ; itk r(j)
Noting that
[od) 1 e dj—l o0 0 dj—l 0
/0 P(x,A)s e ds = d@T/o Py(x,A)e " ds = = U’ (x,A), (37

we see that i’,(x, dy) is absolutely continuous with respect to the measure m on S,
and we can choose transition densities p;(x, y).
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From now on we take & = ¢ = n, and use (n) as a superscript or subscript to

denote objects with respect to the subordinated process, denoted by X,(") .

Lemma 1
1
o _ o/ (14a/n)
u(n)(x, y) = 1+ a/n)zu (x, ). (38)
In particular,
UGy (X, ¥) = U (x,y) = ux, y). (39)
Proof
o0
%M@bAeWmem (40)

e *ds.

1 & / Iy
§ / ( & ) Ps(x, dy)s :
atnsJo \atn r(j

2 oo 0 i-1/,2 (G—1)
" / P(x, dy) Z I /(e + ) e | ds
0

BCE: < ()
% et
= M T T P (x, dy) ds
(o +n)? /0 ( )
n2 00 s n—i
n (@t
= e )
1
- = a/(l+a/n) d .
e ) dmty)
O
Lemma 2 For any a,w;,j = 1,...,k and continuous compactly supported f;,j =
I,...,k
k k k
s [ [Ty (T | TTas @
+j=1 =1 j=1

k k k
= /R e | TThexpe | T as.
j=1 j=1

+j=1
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Proof Recall (24). For0 <) <--- <t

k
[ [£x)et (42)
j=1
k k
=[P, Gmr deu® G 2) [ i)
Jj=1 J=1
with the corresponding
o Hﬁ (X;e s (43)

k
= HP(")f G- dguy () [ T )

Jj=1

Using (43) we see that

k
J. [1e; Hﬁ(X"”) < @)
j=1

+ j=1
k k X
—at Az ) —
=2 / [Te o | [T e | TT a4
e, {Oitlf"'Stksoo}jzl i1 H
Y
= Z / l—[ P(n):t_lZF/m (1. doy)
5 Josnsesuzon iy 1 <
k k
() (X 2) l_[fnu) () ]_[ dt;
j=1 j=1
k k
06+Z;<=ja[ o
= Z l_[U(n) (xj—lyd.xj)l/l(n)(Xk,Z) l_[f”(j)(xj)
n€P j=1 =1
k
0‘+Z;C:jal o
=2 l_[ “m (1. 2y (0. 2) [ e () dm(y).
TE€Py j=1 =1

Equation (41) now follows from (39), (2) and the dominated convergence
theorem. O
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It follows from (41) that for a.e. #;,--- , 1
k k
Tim 00 ([ £ ) = 05 | [T e | (45)
=1 j=1
Lemma 3 Forany a,a;,j = 1,...,k and continuous compactly supported f;,j =
1,....k

k
lim / k ]"[ %l l—[f(X(")) ) 4y (46)
n— R !

j=1

+ j=1

k
/k He %ty l_[];(X,])e 1_[ dt;.
Ky j=1 j=1
Proof By (44)

/Rk 1_[ “va l_[ff (x;")e l—[dff (47)

+ j=1

. k
= / H ?nJ;Z[:ja'(Xi—l,xi)u7n>(xk,z) [ [/ () dm(x) dimz).

TEPy = j=1

If k > 2, then using the resolvent equation we see that

+/1

k
(Z al)/ [Te v 1—[ £ TT (48)
j=1

. k
= /H ‘(an)LZl:jal(xj—l,xj)“((ln)(xk’xl)nf”(f)(xf)dm(xj)

TE€EPy j=1
k
at+Yh +34
- /H ey Qe = G ) | [ e () dim(y).
TE€EPy = j=1

and (46) for k > 2 then follows from (39), (2) and the dominated convergence
theorem. Here we repeatedly use the Cauchy-Schwarz inequality. See the proof of
[9, Lemma 3.3].
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Whenk =1,
/ ey (fl (XM)eet ) dr, (49)
R

.
— [ [ sy iy 224 00 i)

Note that by (38) we have u‘("n) (x,z) < u®?(x,z) for n sufficiently large. We can
then use the argument from the proof of Theorem 2 and the dominated convergence
theorem to get (46) for k = 1. O

It follows from (46) that

k

k k
tim [ TTe v | [T | TT a G0
j=1

+ j=1 J=1
k k k

= [ TTeom [ T1ses | T
T =1 =1 =1

for all continuous exponentially bounded functions g. We will be particularly
interested in g of the form

k — e Bt
1_[j=l(1 e )e_ag-

g(é‘) = 1—[jk=1(1 _ e—ajé‘)

hs(Z) (51

where 0 < hy(¢) < 1 is a continuous function with 4;(¢) = 0 for ¢ < s.

5 Invariance Under Loop Rotation

Proof of Theorem 3 Because the lifetime ¢ is rotation invariant (¢ (p,@) = ¢(w) so
long as {(w) < 00), the rotation invariance of the loop measure

F
nn = (%) (52
is equivalent to that of the measure v.
We note that by (11)
V06 = [ Paedf ) dn(o) < oo (53)

for any § > 0 and bounded measurable f with compact support.
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We next recall some ideas from [5]. Let us define the process X to be the periodic
extension of X; that is,

X, = Xi—qt, '1fq§'§t<(q+1)§',q=0,1,2,... (54)
X, if¢=o00
It will be convenient to write
_ o0 _ o0
I, (f) = / e “f(X,) dt, I,(f) := / e Mf(Xy) dr. (5%)
0 0
The key observation is that
= 1 (f)
Io(f) = ;f_ (56)
1—e
for all « > 0. This follows from
—_— o0 —_—
L= [ e®ar
0
© g+t _
= e_atf(Xt) dt
4=0"45
= Z et / eUf(X)dt = ——— () .
0 1— e‘“f
q=0
The rotation invariance of p or v is equivalent to the following Lemma.
Lemma 4
k k
T En e | = v [ [T ED s (57)

J=1 J=1

Jorall0 <ty <---<tyandr > 0and all f; > 0 continuous with compact support.

Let 0 < h4({) < 1 be a continuous function with /;({) = 0 for { < 5. To prove
Lemma 4 we first prove the following.

Lemmas$s Forallk > 1,and 0 < t1,-+- 1 < s and all f; = 0 continuous with
compact support

k k
v [ [TAE0hs@) | = v | TTHE D) |- (58)

j=1 j=1
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Proof of Lemma 5 Using first (56) and then (50) we have that

Y [Teom Hf(x<n>)<1—e—ﬂ/f>e “h(0) l"[dff

+ j=1
T £ (n) (n) ) —ag
= lim /Rk He %y Hf (X _ajg) e hy(0) l_[dtz
+=1 J=1
. )
— ojtj o
- [, e [ i= =g | T
+ j=1 j=1
k
f — e B e~
/Rk ]_[e %ty Hf,(X,)(l e PYe ™ hy(2) Hdt, (59)
+ j=1
It follows from this that fora.e. 0 < #{,--- , %
lim o 1‘[f (X0,) (1 = e P ny(0) (60)
k
[TA&)( = e P ny(2)
j=1
The same calculations show that for any r > 0,
Tim v© l—[f, (X 4,) (1= e 5y 0) (61)
k
[ 16 &0 = e PEehy(£)
J=1
fora.e.0 <1, , . Since v™ is invariant under loop rotation, see [5, Lemma 2.4]
for the simple proof, it follows from our last two displays that fora.e. 0 <1, -+, #
k
[ [6&y0( = e#5)en(0) (62)

Jj=1

k
[[H&NQ =P hy(£)

J=1



Loop Measures Without Transition Probabilities 315

We now use an argument from [5] (see from (5.31) there until the end of the
paragraph). By Fubini we can find a set T € (0, s) with full measure such that for
all t; € T we have that (62) holds for a.e. 15, ..., #; € (0, s). Using (53) with § = ¢,
the boundedness and continuity of the f; and the right continuity of X, it follows from
the Dominated Convergence Theorem that (62) holds for all (#1,1,...,%) € T X
[0, 5)*"!. Let now f; , be a sequence of continuous functions with compact support
with the property that f; , 7 1. By the above, (62) with f; replaced by f; ,, holds for
all (t1, ta, ..., 1) € T, x [0, )k~ for an appropriate T;, C (0, s) with full measure. In

particular 7 = N, T, # @, and we can apply the Monotone Convergence Theorem
with #; € T to conclude that

k
v [ (=P [AE 1 = e PE)e™ny(0) (63)

Jj=2

k
=v | (1= PO][HENA =P hy(£)

j=2
forall 15, ..., % < s. Applying once again the Monotone Convergence Theorem for
Bj — oo, — 0 we obtain
k k
v [ [T 0n @ | = v | ] &R0 (64)
=2 =2
forall 1, ..., % < s. Since k is arbitrary, we obtain our Lemma. O

Proof of Lemma 4 Fix 0 < t; < --- < . Choose a sequence s, | #. It is clear that
we can choose kg, so that iy, (§) 1 1, <. Lemma 4 then follows from Lemma 5 by
the Monotone Convergence Theorem. O

6 The Loop Measure and Continuous Additive Functionals

Before proving Theorem 4 we will need two facts about continuous additive
functionals (CAFs). The first says that to each CAF A of X is associated a measure
V4 on S such that for any measurable function f

Unf(x) = E° /0 FOX,) dA, = /S W) valdy).  VxeS.  (69)

v, is referred to as the Revuz measure of A. The second fact we need is that if a CAF
has Revuz measure v with respect to X, it has Revuz measure % - v with respect to
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the A-transform of X. Following the proof of Theorem 4 we will discuss these facts
and provide references.

Proof of Theorem 4 To prove (15) it is enough to prove the additive functional
version of (19). We consider first our Borel right process X. These considerations
will then be applied to the i-transform of X using h, = u(-, z) for fixed z € S.

Let A/ (G = 1,2,...) be CAFs of X with Revuz measures v;. Using the Markov
property, see for example Theorems 28.7 and 22.8 of [11], and (65) at the last step

E* /{ [ [ 44, (66)
0

<t <tr <+ <t <00} =1
[o') n
=E* / / [ 144 | © 6, dA;,
0 {0<ty<--<t, <00} =2

n

3]
j 1
=Ef / E* / [ [ 44, | da;
0 {0<t2<~~~<t,1<oo}j=2

- / u(x, x1)EN / [ [ 44 | vi(ax).
S {0

<th <<t <00} =2

and then by induction

n

E* / [ a4, (67)
{0<t; <ty <<t <00} =1 !
= / e, X)u(xr.x2) w0 [ ] vildy).
s ,
j=1

Notice that by our assumption that u(x,x;) is excessive in x for each xj, the
expressions in (67) are excessive functions of x. Thus if n = (7,) is an entrance
law, then writing E” for the measure under which the one-dimensional distributions
are given by the entrance law we have

E" / [ [ 44, (68)
{

0<t] <tp<-<t, <00} j=1

=1 lim / 1:(dx)E* / dAl,
o Jg ' {0<ty <ty <+ l—[ y
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n
=1 li¢r(r)1/ n,(dx)/ u(x, x))u(xy, x2) -+ - w(xy—1, x,) 1_[ vj(dx;)
o Jg s :
j=1

=/ g(xl)u(xlvx2)"'u(xn—l,xn)l_[\)j(dxj'),
S’l

j=1

where g(x1) :=* lim,yo [ 7,(dx)u(x, x1). Here the notation 1 lim, o f(r) means that
f(?) increases as t decreases to 0.

Now apply the above to the A-transform of the original process X, with h, =
u(-, z) for a fixed z € S, as described in Sect. 2. This process has potential density
u'(x,y) = u(x,y)/h,(x) with respect to the measure h,(y) m(dy). Also, if a CAF
has Revuz measure v with respect to X, it has Revuz measure 4, - v with respect to
the h-transform process. Thus by (67)

E% /{ ) [ [ 44, (69)

<t} <tr)<++<t, <00} i=1

_ u(x,x1) u(x;, x2)  u(xu—1,X%,) T~ L
_/sn h@) b)) E”’ZW) vj(d)

= hzix) . M(X,Xl)u(xl,xz) . ..u(xn_l,xn) hz(xn) 1_[ Vj(d)qi)

j=1

= e, - uC ) w2 T vy,

hz (x) sn j=1

When we use the entrance law n?(dx) = P;(z,dx)h,(x), the function g of the
preceding paragraph is

1 lim ni (dou’ (x, x1) =1 lim P (z. doju(x.x1) = u(z.x). (70)

Thus, using the definition of Q“* from Sect. 2,

n

o~ / [aa;, = / u(z,xu(ex) - u(n ) [ [vidy). @D
0<t) <+ <1,<00 ._ Y

Jj=1 Jj=1

Similar considerations work for the a-potentials, and the argument given in the
proof of Theorem 1 proves (15). O

We now discuss the facts mentioned at the beginning of this section.
Given a right-continuous strong Markov process X (more precisely, a Borel right
Markov process) and an excessive measure m, there is always a dual process X
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(essentially uniquely determined), but in general it is a moderate Markov process:
the Markov property holds only at predictable times.
In what follows f and g are non-negative Borel functions on S. By duality

/ £ Ug(midx) = / 0F () g y)m(dy). 72)
S S

where the kernel U is the potential kernel of the moderate Markov dual of X. Under
our assumptions it follows from [1, VI, Theorem 1.4] that the potential density u
can be chosen so that x — u(x,y) is excessive for each y, and y — u(x,y) is co-
excessive (that is, excessive with respect to the moderate Markov dual process X)
for each x. Equation (72) implies that

0 (y) = /S (. Y)f () m(d). (73)

for m-a.e. y. Since both sides of (73) are co-excessive, they agree for all y.
By [4, (5.13)] we have the Revuz formula

/S FOOUng(x) m(d) = /S 7 ()80 va(dy). (74)

where vy is the Revuz measure of the CAF A with respect to m. Feeding (73)
into (74) and varying f we find that

Usg(x) = /S u(r. y)8() va(dy). 75)

first for m-a.e. x, then for all x because both sides of (75) are excessive. This
proves (65).

One subtlety: the laws Pr of X are only determined modulo a class of sets (“m-
exceptional”) defined in [4], see (3.4) for the definition of the term, and then Remark
(5.14); but that class is not charged by v, so the exception causes no problem.

To establish the second fact that we needed, let t; be the right continuous inverse
of A;, and let f be a positive measurable function. Using the change of variables
formula, [3, Chap. 6, (55.1)] and then Fubini

E" ( /0 oof(Xr) dA,) = E/" ( /0 oof(xmo)du) (76)

= /(; EX/h (f(Xt(u))) du.
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Using [11, (62.20)] and then Fubini we have

o0 1 o0
/ E" (f(Xeq)) du = m/ E* (f(Xew)hXew)) du (77

0
- h(x) (/ S Xe@)h(Xew) du)

Using the change of variables formula once again, the last two formulas show that

5/ (/0 F(X,) dAt) _ mEx (/ FX)h(X,) dA) (78)

Using (65) we see that

p/h ( /0 X dAr) - %x) /S uCe NFOIRE) va(dy). (79)

This shows that if a CAF has Revuz measure v with respect to X, then it has Revuz
measure & - v with respect to the h-transform of X. (Recall that we use “}(IZ’(})’) for the
potential densities of the A-transform process.)
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The Joint Law of the Extrema, Final Value
and Signature of a Stopped Random Walk

Moritz Duembgen and L.C.G. Rogers

Abstract A complete characterization of the possible joint distributions of the
maximum and terminal value of uniformly integrable martingale has been known
for some time, and the aim of this paper is to establish a similar characterization for
continuous martingales of the joint law of the minimum, final value, and maximum,
along with the direction of the final excursion. We solve this problem completely
for the discrete analogue, that of a simple symmetric random walk stopped at some
almost-surely finite stopping time. This characterization leads to robust hedging
strategies for derivatives whose value depends on the maximum, minimum and final
values of the underlying asset.

1 Introduction

Suppose given i > 0, and suppose that (¢, F;),ez+ is @ symmetric simple random
walk on the grid hZ, started at zero. Define S; = sup,, &, I, = inf;< &, g,+ =
influ<t:§ =8,},g =influ <t:§ =1,},andlet

oo=+41 ifgr>g
=-1 else. @))]
The process S records the running maximum of the martingale, and the process o
records whether the martingale is currently on an excursion down from its running
maximum (¢ = +1) or on an excursion up from its running minimum (¢ = —1).

We refer to the process o as the signature of the random walk.
Suppose that T is an almost-surely finite (F;)-stopping time, and write

X = gt/\T
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for the stopped process. The paper is concerned with the possible joint laws m of
the quadruple (I, X7, St, 07), which we will abbreviate to (1, X, S, o) where no
confusion may arise.

Clearly the law m must be defined on the set X = (—hZ") x hZ x hZ* x
{—1, +1}, and evidently we must have m(I < X < S) = 1; but beyond this, is
it possible to state a set of necessary and sufficient conditions for a probability m
on X to be the joint distribution of (I;, X7, S, o7)? The motivation for this attempt
is twofold. Firstly, the joint law of (X, S) has been characterized completely (for
general local martingales, not assumed to be continuous or uniformly integrable) in
[8]; and developed by Roynette, Vallois and Yor [9] to characterize the joint laws
of (Br, Lr) for almost-surely finite stopping times T of the Brownian motion with
local time L at zero. Can the methods of those papers be extended to deal with the
running minimum also? The second reason to look at this problem is the interesting
recent work of Cox and Obloj [3] which finds extremal martingales for various
derivatives whose payoffs depend on the maximum, minimum and terminal value
of the underlying asset. This builds to some extent on the earlier work of Hobson and
others ([7][1][2]), which addresses similar questions for derivatives whose payoffs
depend only on the maximum and terminal value of the underlying asset. Many of
the results of this literature can be derived alternatively using the results of [§8], by
converting the problem into a linear program. This approach is more general, but
leads to less explicit answers in the specific instances analyzed to date.

What we shall find here is that it is possible to generalize the results of [8] to
cover the joint law of (I,X, S, o), but that the statements are more involved. For
this reason, we shall restrict our analysis to a symmetric simple random walk taking
values in a grid hZ for some i > 0, stopped at an almost-surely finite stopping time.
The main result is presented in Sect. 2. The proof of necessity is in Sect. 2.1, and
requires only the judicious use of the Optional Sampling Theorem. The proof of
sufficiency, in Sect. 2.2, is constructive, and requires suitable modification of some
of the techniques of [8]. We then show in Sect. 3 how this characterization can lead
to robust hedging schemes and extremal prices for derivatives whose payoff depends
on the maximum, minimum, terminal value and signature.

2 The Main Result

We take a symmetric simple random walk (&, F;),cpz+ on hZ for some fixed & > 0;
in general, the filtration () is larger than the filtration of the random walk, to allow
for additional randomization. Stopping & at the almost-surely finite stopping time 7
creates the martingale X, = &,,7. We use the notation of the Introduction, and notice
that

gt+ = Sup{u =t: Su > Su—h}v gt_ = Sup{u =t Iu < Iu—h}v (2)
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emphasizing the fact that we are dealing with strict ascending/descending ladder
epochs, to use the language of Feller [5]. The process o is defined as before at (1).

Definition 2.1 We say that the probability measure m on X = —hZ™ x hZx hZ™ x
{—1, +1} is consistent if there is some almost-surely finite (F;)-stopping time T
such that m is the law of (Ir, X7, S7, o7).

2.1 Necessity

For x € hZ we define the hitting time
H, = inf{u : & = x}, 3)

with the usual convention that the infimum of the empty set is 4+oco. In what follows,
we will let a, b stand for two generic members of hZ ™", and will be studying the exit
time H, A H_, = inf{u : &, ¢ (—a,b)} and related stopping times. The measure
m says nothing directly about these stopping times, but by way of the Optional
Sampling Theorem we are able to deduce quite a lot of information about them if
the law m is consistent. Indeed, assuming that m is consistent, we are able to find
the probability that H_, < H}, (for example) in terms of m-expectations of functions
defined on X. The expressions derived make perfectly good sense even if m is not
consistent, but it may be that the expressions do not in general satisfy positivity or
other properties which would hold if m were consistent. For this reason, we will
denote by m(Y) the expression for the m-expectation of a random variable Y which
would be correct if m were consistent; if m is not consistent, all we have is an
algebraic expression without the desired probabilistic meaning, and the use of the
symbol /m warns us not to assume properties which need not hold.

The first result we need is the following, which illustrates the use of this
notational convention.

Proposition 2.2 For any a, b € hZ™ we have

a—m@+X;:S<bl>—-a)

(Hy < Hey) = Sk —ob-a) &
(Ho < Hy) = 2" s = _ y(—a.b). )

Proof We use the Optional Sampling Theorem at the time H, A H_, to derive the
two equations

1 =m(H-, < Hy) + m(H, < H_;) + m(S < b,I > —a) (6)
0=—am(H-, < Hy) + bm(H, < H_;) + m(X;S < b,I > —a). @)



324 M. Duembgen and L.C.G. Rogers

Solving this pair of linear equations leads to the conclusion that

mH, <H_,) ={a—m(a+X;S <b.l>—a)}/(a+b),
mH_q < Hy) ={b—m(b—X;S<b,I>—a)}/(a+Db),

as claimed. O

If m is consistent, then we would have for any a, b € hZT not both zero that

ﬁ’l(H_a <H, <H_,}) = ﬁ’l(H_a <H, <H_,)
= m(Hp < H—4—p) —m(Hy, < H-,)
= ﬁ’l(Hb < OO,I(Hb) = —Cl).
This is because on the event {H_, < H, < H_,—_,} the hitting time H}, is finite, and

so cannot be equal to H_,; the second equality follows from the inclusion {H, <
H_,} € {H, < H_,—}. We will therefore introduce the notation

Vi(—a,b) = ¢(b,—a—h) —¢(b,—a), (®)
1//— (_av b) = (p(_av b + h) - ¢(_av b) (9)

Notice that Y4 (—a, b) is defined as an algebraic expression in terms of m via (8)
and (4); if m is consistent, then V¥4 (—a, b) is equal to m(H, < oo, I(Hp) = —a), but
no such interpretation holds in general.

The necessary condition we derive comes from considering what may happen
if the event By = {H, < o0,I(H,) = —a} occurs. When this event occurs, the
martingale X does reach b before being stopped, and at that time H;, the minimum
value is —a. Thereafter, one of three things will happen:

(i) X reaches b + h before reaching —a — h and before T';
(i) T happens before X reaches either —a — h or b + h;
(iii) X reaches —a — h before reaching b + h and before 7.

The next result derives a necessary condition from the Optional Sampling Theorem
appliedat H_,—, A Hpyp AT.

Proposition 2.3 Define the events
B4+ = {H, < 00,I(Hp) = —a)}, B_ ={H_, < 00,S(H-,) = b}, (10)
set pr = m(Bx) = ¥4 (—a,b), and set

p+o=m(S=b,1 = —a,0 =+1), p—o=mlS=b,1=—a,0=-1).
(11)
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If we denote

m(X;S=b,I = —a,0 = £1)
vy = =m(X|S=bI=—ao0==%l), (12)
P+o

then the conditions!

pro__ M (13)
P+ b+h—v+

_ h
p-o _ (14)

p- —a+h+v-

are necessary for m to be consistent.

Proof We introduce the notation

P+ =m(H_y < Hy < Hyyp < H_4p),
P+— =m(H_y < Hy < H_4—j, < Hp1p),
p— =m(H, < H_, < H_4—j, < Hpyy),
p—+ =m(Hy < H-4 < Hpypy < H—4p).

Using the Optional Sampling Theorem, we have similarly to (6), (7) the equations

P+ = P++ +Pp+o+pi— (15)
bp+ = b+ Mp++ —(a+Wpy— +mX;S=b,I=—a,0 =+1). (16)

If we write py, = py/px forx € {— 4}, y € {—,0,+} the Egs.(15), (16) are
expressed more simply in conditional form:
1 =Pyt +Pr—+Dto a7
b= (b+hpsr+ —(a+h)p+- + prov+. (18)

The value of p4( is known from m, as is the value of vy, and since we assume that
m is consistent the values of p1 = ¥4 (—a, b) are also known from m. Therefore
we can solve the linear system (17), (18) to discover

~ b+a+h—(a+h+v+)ﬁ+o

- 19
P+ b+a+2h (19
- h—(b+h—vy)p+o

= . 20
P+ b+a+2h (20)

'If either of p4 is zero, then the inequalities (13), (14) have to be understood in cross-multiplied
form, when they state vacuously that 0 < 0.
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In order that p4_ as given by (20) should be non-negative, we require that

m(S=>b,I=—a,0 =+1) h
P+o = =

P+ _b+h—v+’

21

which is condition (13). Necessity of (14) is derived similarly. O
Remarks

(i) The necessary conditions (13), (14) come from the requirement that p4_ and
P—+ should be non-negative. Do we know for sure that p4 4 and p__ are non-
negative? The definition (12) of vy guarantees that —a < v4+ < b, so if (21)
holds then we know that p4+¢ < 1. From (19) we see then that p > 0. Since
all the summands on the right-hand side of (17) are non-negative, we learn that
they are probabilities summing to 1.

(ii) Notice that we have two expressions for m(Hp+, < 00, [(Hp+,) = —a), either
as p++ + p—+, or as Y4 (—a, b + h). Confirming that these are the same is an
important step in the proof of sufficiency.

2.2 Sufficiency

We have now identified necessary conditions (13) and (14) for m to be consistent.
The main result of this paper is that these conditions are also sufficient.

Theorem 2.4 The probability measure mon X = —hZ+* x hZ x hZ™ x{—1, +1} is
consistent if and only if m(I < X < S) = 1 and necessary conditions (13) and (14)
hold.

Proof Necessity has been proved, so what remains is to show that conditions (13)
and (14) are sufficient. Not surprisingly, the proof of this is constructive.

We require a probability space (€2, F, P) rich enough to carry an IID sequence
Uy, Uy, ... of UJ0, 1] random variables, and an independent standard Brownian
motion (B;). Let Y = o(Uy, Uy,...), and let (G,) be the usual augmentation of
the filtration (U Vv o (B; : s < t)). Define (G,)-stopping times

oy =0, Qpt1 = inf{t > a, : |B, — Bg,| > h},

the process £, = B(x,) and the filtration F,;, = G,, so that (&, F;),ez+ 18 @
symmetric simple random walk. As before, define S, = sup,, &;, I; = inf;<, & for
tehZt. -

The construction borrows the technique of [8], where we firstly modify the given
law m so that the conditional distribution of X7 given {S; = b, I = —a, oy = s}
is a unit mass on the expected value m[X7 |St = b,Iy = —a, oy = s]. If we
can construct a martingale with this degenerate conditional law, then we can build
the required distribution of Xr given {Sr = b,Ir = —a, oy = s} by Skorokhod
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embedding in a Brownian motion. So we may and shall suppose that?
m[XT=v|ST:b,IT=—a,aT:s]=1, (22)

where v = m[Xr | St = b, It = —a, o7 = 5].

The construction is sequential, and the proof that it succeeds is inductive. Let
7, = inf{t : S, — I, = nh}, and set 0,, = o, the corresponding stopping time for the
Brownian motion. The construction of 7 begins by setting 7 = 0 if Uy < m(S =
I = 0), otherwise T > h = 1. The sequential construction supposes® we have
found that T > 1,, and S;, = &;,, = b, I, = —a. Then we place a lower barrier
£ € [—a — h, b + h] by the recipe

{ = Uy if U, < 0
=—a—nh else
where v+ is defined in terms of m by (12), and 6 is defined by

m(S=b,I=—a,(I=—|—1)_m(S=b,I=—a,0=+l)_ h
V4 (—a,b)  m(Hp <00,I(Sp) = —a)  b+h—vgt
(23)

P+o =

with the notation of Proposition 2.3; in view of the fact that we have assumed the
necessary conditions (13) and (14), we can assert* that 0 so defined is a probability:
0 < 6 < 1. We now run the Brownian motion B forward from time o, until it first
hits £ or b + h. If £ = vy and B hits £ before b + h, then we will stop everything at
that time, and declare that X; = v4; otherwise, we will reach either —a—h or b+ h
and declare that T > t,4,. If we determine that T > 7,4, we take a further step of
the construction.
For each n > 1, let 0, be the combined statement’

() foralla,b € hZ*,0 <a+b <nh

P(Hy =T, I(Hy) = —a) = Y1 (—a.b) 24)
P(H—a =< T, S(H—a) = b) = w—(_as b) (25)

2There is no reason why v need be a multiple of 4, but this does not matter; if s = 4, say, we shall
use the Brownian motion living in the original probability space, starting at b and run until it first
hits either the upper barrier b + h or the lower barrier, which will be randomized, taking value v
with suitably-chosen probability 6, otherwise taking value —a — h.

3We provide details of what happens if S;, = ,,; the treatment of the case I, = &,, is analogous.
4We shall establish in the inductive proof that 14 are non-negative.
3The functions v/ are defined in terms of m by (4), (5), (8), (9).
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(i)
PS=xI=—-yX=z0=s5)=mS=x,]1=—y,X=2z0=y5) (26)

foralls € {—1,1},x,y,z, € hZ,x,y > 0,x + y < nh.

We shall prove by induction that Q,, is true for all n > 0, establishing the statement
first for n = 1. We prove (24), leaving the analogous proof of (25) to the diligent
reader. Taking b = 0, a = h, (24) says that

P(Hy < T, I(Hy) = —h) = ¥4+ (=h,0),

and both sides are readily seen to be equal to zero; taking b = h, a = 0, (24) says
that

P(Hy =T, I(Hy) =0) = ¥+(0.h)

h—mh+X;S < h,I>—h) 0
2h Bl

=1i[1-mS=X=1=0)]

which is clearly true, because if the construction does not stop immediately at time 0
(an event of probability m(I = X = S = 0)) then with equal probability the process
steps at time 1 to £=/4. The second statement (26) holds because we have constructed
the probability of / = X = § = 0 correctly.

Now suppose that Q; has been proved to hold for k < n; we have to
prove (24), (25) and (26) for n + 1. To prove (26), suppose that x, y € hZ™' and
X 4+ y = nh. By construction, the random walk will be stopped before the range
S — I increases to (n + 1)k if and only if the barrier £ happens to be positioned at
v+ and that barrier is hit before the Brownian motion rises to » + h. Conditional on
the event By = {T > 1,, S;, = &, = b, I, = —aj}, the probability of that joint
event is

h

0 X ——.
b+h—v+

27)

By the inductive hypothesis (24) we have that the probability of the conditioning
event By is ¥4 (—a, b); so from the definition (23) of 8 we learn that

PSr=b, Iy =—a, 0o =+1)=m(S=b,I =—a, 0 =+1).
Given that this event happens, the conditional distribution of X7 is correct, by the

Skorohod embedding construction of X7 with mean v4. Therefore (26) has been
proven for any x, y € hZ with x + y = nh, and for any z € hZ, s € {—1, 1}.
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It remains to prove assertion (i) of Q0,4+, and for this we recall some of the
notation of the proof of Proposition 2.3. Fora, b € WZt, a + b = nh, we write
p+ =P(B4) =P(H, =T, I(Hy) = —a),
p_=PB_)=PH_,<T, S(H_,) = b)

which in view of the truth of Q,, we know are equal to ¥4 (—a, b) and ¥_(—a, b)
respectively. If we now define

P++ = PB4, Hpppy <T ANH_(—p)

P+— =PBy,H oy <T AHpyp)

p+o =PB4.T < 1y41)

p—+ = P(B—.Hp4n =T NH_qp)

p— = P(B_,H—4—n < T A Hptp)

p-o =PB-,T < 1y41)

then by exactly the same Optional Sampling argument which led to (19), (20), we
conclude that

_(bt+a+hpy—(a+h+vy)pto

28
Pt b+a+2h (25)

hp+ — (b +h—v4) pto
_= 29
P b+a+2h %)

hp— —(a+h+v-)p—o
= 30
P=+ a+b+ 2h 0
_@+b+hp_—(b+h—v_)p_y a1

== a+b+2h
and now the task is to prove (after cross-multiplying by a + b + 2h) that

(a@a+b+2n){psy +p—+}=(@+b+20) Y1 (—a, b+ h), (32)

and the minus analogue, which is just the same argument mutatis mutandis. Firstly
we develop the left-hand side using (28), (29) and their analogues for B_ to obtain
LHS = (a+ b+ W)Y (—a,b) — (a+ h+ vy)po+
+hy_(—a,b) — (a+h+ v-)p—o
=(a+b+h){eb,—a—h)—eb,—a)}
+h{p(—a, b+ h) —¢(—a,b)}
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—(a+hmS =b,I =—a)—mX;S=b,I =—a)
=a+h—m@@+h+X;S<b,I>—-a—h)

—{a—ma+X;S<b,I>—a)}

—h(p(® — a) + ¢(—a, b)) + hgp(—a, b + h)

—m(a+h+X;S=0b,1=—a)

=h—m@+h+X;S<b,I>—-a—nh)

+m(a+X;S <b,I > —a)

—h{l —m(S < b,I > —a)} + ho(—a,b + h)

—ma+h+X;S=b,1=—a)

=-mla@a+h+X;S<b,I>—a—h)

+ma@a+h+X;S<b,I>—a)

—m(a+h+X;S=b,1=—a)+ ho(—a,b+h)
=-—-m@a+h+X:(A2UA3)\A)) + ho(—a,b + h)

M. Duembgen and L.C.G. Rogers

where A} = {S < b,I > —a},Ay = {S < b,I > —a—h}and A3 = {S = b,] = —a}.

Noticing that A} € A, and Aj is disjoint from A, the region of integration is

A UA)\A ={S<bl=—-alUA3={S<b,l=—-a}={S<b+h,I= —a}.

Hence the left-hand side is equal to

LHS = —ma+h+X;S<b+ h, I =—a)+ ho(—a,b + h).

Turning now to the right-hand side of (32), we have

RHS = (a+b+2h){eb+h,—a—h)— b+ h,—a)}
=a+h—ma@a+h+X:S<b+hI>—-a—h)—heb+ h,—a)

—{a—m@@+X:S<b+hl>—-a)}

=h—m@+h+X:S<b+hlI>—-a—h)

+m@a@+h+X;S<b+h,I>—a)

—hm(S < b+ h,I>—a)—hp(b+ h,—a)
=h{l—-mS<b+hlI>—-a)—eb~+h —a)}

—ma@a+h+X;S<b+hI=—a).

(33)

(34)
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Comparing (33) and (34), we see that we have to prove

ob+h,—a)+ o(—a,b+h)=1—m(S <b+h,I>—a), (35)
which is evidently true from the definition (4), (5) of ¢. O
3 Hedging

Theorem 2.4 provides us with necessary and sufficient conditions for a measure m
on X to be consistent. In principle, this allows us to construct extremal martingales,
and robust hedges for derivatives.

Let us firstly see how this works in the context of the joint law of (S, X) studied
in [8]. We begin by recalling some of the results of that paper. We let X; = B;.7 be
a Brownian motion stopped as an almost-surely finite stopping time 7', with S; =
sup, <, Xy, and with § = Soo, X = Xoo. With this terminology, Theorem 3.1 of [8]
says the following.

Theorem 3.1 The probability measure i on RT x R is the joint law of (S, S — X)
for some almost-surely finite stopping time T if and only if

(ﬂ M@@Omz/ ¥ u(dr. dy). (36)
(t,00) xRt (0,00)

If (Xy)1>0 is also uniformly integrable, then inequality (36) holds with equality:

(ﬂ mn@0w=/ ¥ u(dr.dy). (37)
(1,00) xR+ (0,00)

Finally, if (37) holds, and if X € L',

// |t = y| pu(dt, dy) < oo, (38)

then . is the joint law of (S, S — X) for a uniformly integrable martingale (X;)s>o.

Proof See [8]. The final assertion is not in [8], but can easily be deduced. In view of
the first assertion, there is some stopping time 7' < oo such that u is the joint law of
(S, S—X). By multiplying (37) by some non-negative test function ¢ and integrating
with respect to t we discover that

(@) = pu((S—X)¢(S)) (39)
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where ®(r) = fot @(y) dy. Taking ¢(x) = I{,~p) for some b > 0 we find that
bu(S > b) = u(X:S>b). (40)
Using the fact that X € L', we can let b 1 oo in (40) to prove that limpseo b (S >

b) = 0. Lemma 2.3 of [8] gives the result. O

Remark Standard monotone class arguments show that (36) is equivalent to the
statement that

(@) = pu((S—X)e(S)) (41)
for all non-negative test functions, which again is equivalent to the statement that
bu(S>b)>uX:8>») (42)

for all b > 0. Likewise, (37) is equivalent to (39) for all non-negative test functions
@, which again is equivalent to the statement (40):

WX=b:S>b)=0 Vb>0. (43)

An important and typical® use of this would be to try to find an extremal
martingale, which would in turn lead to a maximum possible derivative price and
a robust hedging strategy. So, for example, suppose that we observe call option
prices C(K) for every strike K at acommon fixed expiry time’ for some (discounted)
asset, and suppose that the asset has continuous paths (X;)o</<1, and is a uniformly-
integrable martingale in the pricing measure.

Suppose now that we are given some derivative whose payoff at time 1 is
G(S1,X1), where S| = supg,«; Xi; what is the most expensive the time-0 price
of this derivative can be?

The time-0 price of the derivative is given by

G(s,x) q(ds, dx) (44)
I

where ¢ is the joint law® of (S, X). Now provided the law ¢ satisfies the conditions

/ x—K)t g(ds,dx) = C(K) VK (45)

5The papers ([7][1][2]) give examples of this kind. The recent paper of Galichon, Henry-Labordére
and Touzi [6] strengthens [1] to multiple time points.

7Let us suppose that the expiry is 1.

8 As before, when the time subscript of a process is omitted, we understand it to be 1.
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and (see (43))

/f (x—=>) q(ds,dx) =0 Vb >0 (46)
s>b

then ¢ is the joint distribution of (S, X) for some continuous martingale whose
law at time 1 agrees with the data contained in the call prices. The problem of
finding the most expensive time-0 price is therefore the problem of maximizing the
linear objective (44) over non-negative probability measures g subject to the linear
constraints (45) and (46). Writing the problem in Lagrangian form,’ we seek

L(a,n,A) = sup[ //{G(s,x) —a— /(X—K)+ n(dK)

=0

+ / Oo(x — b)Igopy A(db)) q(ds, dx) + o + / C(K) n(dK) }
0
47)

From standard linear programming results, we would expect that for dual feasibility
we must have

G(s.x) <a+ / (x—K)* n(dK) — /0 Oo(x — b)I(s-py A(db) (48)

everywhere, with equality everywhere that the optimal ¢ places mass; and that the
dual problem will be

inf[ o+ / C(K) n(dK) i| (49)

over (a, 1, A) satisfying (48). These equations have a simple and beautiful interpre-
tation. The dual-feasibility relation (48) expresses a robust hedge; if we hold « in
cash, n(dK) calls of strike K, and sell forward A(db) units of the underlying when S
reaches the level b, then we generate a contingent claim at the terminal time which
will always dominate the claim G which we have to pay out. The dual form of the
linear program (49) says that the cost of constructing such a hedge, which is of
course & + [ C(K) n(dK), must be minimized.

The primal problem seeks to find the most expensive that the derivative G(S, X)
can be, given the market prices C(K); and the dual problem seeks the cheapest super-
replicating hedge. The characterization (43) of the possible joint laws of (S, X) tells
us what the form of the hedge (48) must be.

This linear programming approach to the problem is also used in [4].
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Our goal now is to try to use Theorem 2.4 to similarly bound the price of,
and to super-replicate, contingent claims which depend on the maximum, terminal
value, minimum, and direction of the final excursion for a stopped symmetric simple
random walk. To understand how this is to be done, we focus on the ‘plus’ versions
of the necessary and sufficient conditions (13). We shall also suppose that the
martingale X is uniformly integrable, to avoid having to bother about side issues.

The condition (13) can be restated in terms of the measure m as

mb+h—X:S=b,1=—-a,0=41) < hy4(—a,b) (50)
= h{p(b,—a—h) —¢(b,—a) }
in the notation of Sect.2. From the definition (4) of ¢(b, —a), from the fact that
m(X) = 0, and the Optional Sampling Theorem result that m(a + X : I < —a) = 0,
we have
(a+Db)yob,—a)y=a—ma+X:S<b,I > —a)
=ma@+X: S>borl <—a)
=ma@+X:S>b,I> —a)
=(a+bmS>b,1>—-a)—mb—-X:S>b,I>—a).

Thus the inequality (50) may be re-expressed after some simple rearrangement as

0<hm(S>b,I=—a)— mb—X:S>b,I>—a—h)

a+b+nh
+L mb—X:S>b,I>—a)

a+b -
—mb+h—X:S=b,1=—a,0=+1).

This inequality for all a, b € hZ™% not both zero, together with the ‘minus’
analogues, is necessary and sufficient for a probability measure m to be the joint
law of (1,X, S, 0). Just as we did at (47) for derivatives depending only on (X, S),
we can construct the Lagrangian for this problem, which would give us terms of the
form

h

— 2 w-xI o
a+b+h( Ms>b15—a—n}

A:b (Z - W) = A:;I: hI{SZb,I=—a} -

h
+a_+b b =X is>pr5—ay — b+ h—X)(5—p1=—ao=t1} —W i|,

(51
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where w > 0 is a non-negative slack variable to handle the inequality constraint.
Dual feasibility will therefore require that )k:'b > 0, and at optimality we will have
the complementary slackness condition /\:;, w = 0.

In the situation of derivatives depending only on (X, S), we had terms of the
form A, (X — a)l(s-q}, Which were interpreted as forward purchase of the underlying
asset when the supremum process reaches a new level. This forward purchase
interpretation determines a hedging strategy which can be implemented in an
adapted fashion. However, it is very far from clear that the random variable Z
defined at (51) can be realized by some adapted trading strategy. For example,
the term involving (b — X)I(s>p 1~—q could be interpreted as a forward sale of the
underlying when the price first gets to b; but this trade should only be put on if
I > —a, and it is not known at time Hj; whether or not the ultimate infimum 7/ will
be greater than —a or not.

Nevertheless, we can specify an adapted trading strategy which will subreplicate
the random variable Z, as follows. We construct a random variable Y which is the
final value of the adapted hedging strategy made up of three component positions:

1. At Hp, buy forward i/ (a + b + h) units of the underlying if I(H,) > —a — h, and
come out of the position at time H_,_;

2. At Hy, buy forward —h/(a + b) units of the underlying if /(Hp) > —a, and come
out of the position at time H_;

3. At Hp, buy forward 1 unit of the underlying if /(H,) = —a, and come out of the
position at time Hp4+p A H_y—j.

Now clearly the random variable

Z = hlg>p1=—ay — (b —X)(s>b 15—a—n}

a+b+nh
h
+a+_b b =X ssp15—ay — (b +h—X)5—p =g 5=+1} (52)

will be zero if S < b or if I < —a — h, so to understand Z we may suppose that
H, <oo=H_,.

But before we narrow our attention down to the event {H, < oo = H_,_;}, we
should consider what happens off that event to Y. If H, = oo, then none of the
component positions of Y is ever entered, so ¥ = 0 in that case. If H, < oo and
H_,_;, < oo, then we have three cases to consider:

(i) When I(H,) > —a, the strategy enters positions 1 and 2 at time Hp, and closes
out both when the infimum falls to —a and then to —a — k; position 1 loses A,
position 2 gains £, so altogether Y = 0;

(i) When I(H,) = —a, the strategy enters positions 1 and 3. If Hy4+, < H_,—,
then position 3 makes a gain of & when it is closed out, but position 1 makes
a loss of & when it is closed out, so overall zero gain. On the other hand, if
H_,—; < Hpyp, then position 1 makes a loss of & when it is closed out, and
position 3 makes a loss of (¢ + b 4+ h) when it is closed out, so overall Y =
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—(a+ b+ h)—h < 0, and as we shall subsequently see, this is the only
situation in which Y is strictly less than Z;
(iii) When I(Hp) < —a — h, none of the positions is entered, and ¥ = 0.

We now have to compare the values of Z and Y on the event {H;, < co = H_,_;},
breaking the comparison down into seven cases as presented in the following table.
In the first two rows, we see what happens if / > —a, and in the remaining rows,
we are considering situations where I = —a. The reader is invited to check through
each of the entries of the table, and confirm the findings reported there. The only
entry that requires comment is the penultimate row, in the column for Z. In this row,
we are in the situation where S = b and I = —a, so we get a contribution to Z
from the first term in (52), and from the second term, none from the third term, and
none from the fourth term, because if H, < H_, < Hp4, = 00 it must be that the
signature o is —1 / What we see from the table is that in every case the value of Z
is equal to the value of Y.

H_yp = 00 z Y

Hy < Hptp <00 =H—, = it~ e
Hy <Hptp =00=H_, S — it i~ et
H_, < Hj, < Hy4), < 00 h—% %441
H_, <H, <Hpyp = 00 h—:f;_i_(;—i-(X—b—h) 5-(1)-(;-3,"')(_1’
H, < H_;, < Hpy), < 00 h— :ﬂf,’_ﬁ :(fb_ﬁ +h

Hy, <H_;, < Hpyp = 00 h— :f;.ﬁ, 5-(1)-(;-3, +h

Hy, < Hyyj < H_, < 00 h— :ﬂf,’_ﬁ :(f,,_ﬁ +h

Thus we may conclude that ¥ < Z in all instances, and the only situation in
which the inequality is strict is when H_, < H, < H_,—;, < Hpyp,.

Now we explain how these observations lead to a super-replicating hedging
strategy. For this, let us denote by Z:; then random variable we have been calling
Z up till now; this is because in the Lagrangian we have to consider such random
variables (and their ‘minus’ analogues) for all a, b € hZ™ not both zero. Suppose
that we have some derivative G(I, X, S, o) whose price we wish to maximize subject
to the distribution of X matching call price data, just as we did for derivatives
depending only on (X, S) in the first part of our discussion in this section. We would
find ourselves with a Lagrangian form similar to (47):

L(a, A, n) = sup[/{G(I,X,S,a)—a—/(X—K)+n(d1<)

m=>0

+ Y A5 (Zy —wh) } dm(.X.S.0) + o + / C(K) n(dK) } }
a,b, %

(33)
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with obvious notation. Now dual feasibility imposes the condition

G(.,X,5,0) <a+ /(X—K)+n(dK) - Z \EzE (54)
a,b,+

<ot [@-K@0 - Y 25vE 69
a,b,t

in another obvious notation. The interpretation of (55) is that the derivative G is
super-replicated by the adaptively-realizable hedge given by a position in calls and
a position in the Y-hedges.

At optimality, complementary slackness tells us that if A;';] > 0 then w;';] =0,
and therefore the inequality (50) must hold with equality. Tracing this back to the
condition (13), and its derivation from (20), we find that equality in (50) is equivalent
to the statement that p— = 0. What this means is that on the event {H_, < H), <
H_,_;} we cannot have H_,_;, < Hp4p,, and as we saw, this was the only situation
where Y < Z. We may therefore conclude that for the optimal m™*, not only will (54)
hold with equality m*-a.e., but also (55) will hold with equality m*-a.e. In other
words, if the joint law m is the optimal joint law, the hedging strategy expressed
by (55) is a perfect replication of the contingent claim—there is no slack.

Summary

The main result of the paper is a characterization of the possible joint laws of
(1,X,S,0) for a stopped symmetric simple random walk. A natural and intriguing
question is whether it is necessary to include the signature o in the random vector,
or whether we can indeed find a characterization of all possible laws of (Z, X, S). At
the moment, we cannot provide an answer to this natural question, though it may
be possible using some of the approach of [9] to make progress. Another interesting
question is whether we can deduce the corresponding result for Brownian motion.
At one level, we could formally pass to a limit, assuming some continuous joint
density exists, but the resulting conditions are not particularly easy to interpret. This
leads one to believe that there may be some other characterization that admits a
clean interpretation, rather in the style of the results of [8, 9].

LCGR Remembers Marc Yor

Marc and I had met at numerous conferences before I first visited him at Jussieu in
October 1987. As I made my way to Paris VI, I wondered what kind of office this
stellar young professor would have; something with a big carpet and a view over the
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Seine perhaps? But no. His office had no view or carpet, but contained several desks,
one for himself, others for students and visitors, and contained also a tangible aura
of scholarly intensity emanating from Marc himself and compelling those around
to try to match his effort. Anyone who spent time with Marc will remember many
things about him: how he stroked his moustache when thinking; his earnest tone,
almost reverent, as he explained the things he was working on; his generous support
of junior colleagues; how he seemed when listening to be partly exploring some
background maths question—if so, he was nevertheless completely in touch with
what was being said, because any humorous remark would draw from him a gentle
chuckle and a flash of his bright eyes.

One event of that week in October stays in my mind. The visit had been
sponsored by the British Council, and their representative in Paris wanted to arrange
a photoshoot for a publicity magazine they were producing. So one afternoon, Marc
and I (together with Francois Murat and John Ball, who was also visiting on the
British Council scheme) went up the main tower at Jussieu, where the plan was to
have some beautiful pictures of us ‘doing mathematics’ with marker pens on the
windows, with a view of the Eiffel Tower through the window. Of course it took
ages to set the photos up, of course it was rather artificial, and I could sense that
Marc was eager to get finished and back to work, but he co-operated politely and
patiently, because he was under an obligation to the British Council representative to
help. And to me that event displayed two of Marc’s most important characteristics:
no-one was more committed to mathematical research, which is why we admired
him, but he always gave priority to his obligations to others, whoever they may have
been, which is why we loved him.
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Convergence Towards Linear Combinations
of Chi-Squared Random Variables:
A Malliavin-Based Approach

Ehsan Azmoodeh, Giovanni Peccati, and Guillaume Poly

Abstract We investigate the problem of finding necessary and sufficient conditions
for convergence in distribution towards a general finite linear combination of
independent chi-squared random variables, within the framework of random objects
living on a fixed Gaussian space. Using a recent representation of cumulants in
terms of the Malliavin calculus operators I'; (introduced by Nourdin and Peccati,
J. Appl. Funct. Anal. 258(11), 3775-3791, 2010), we provide conditions that apply
to random variables living in a finite sum of Wiener chaoses. As an important by-
product of our analysis, we shall derive a new proof and a new interpretation of
a recent finding by Nourdin and Poly (Electron. Commun. Probab. 17(36), 1-12,
2012), concerning the limiting behavior of random variables living in a Wiener
chaos of order two. Our analysis contributes to a fertile line of research, that
originates from questions raised by Marc Yor, in the framework of limit theorems
for non-linear functionals of Brownian local times.

MSC 2010: 60F05; 60G15; 60HO07

1 Introduction

The aim of this paper is to provide necessary and sufficient conditions (expressed
in terms of Malliavin operators), ensuring that a sequence of random variables
living in a finite sum of Wiener chaoses converges in distribution towards a
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finite linear combination of independent centered chi-squared random variables.
As discussed below, we regard the results of the present paper as a first step
towards the solution of an open and notoriously difficult problem, namely: can
one derive necessary and sufficient analytical conditions, ensuring that a given
sequence of smooth functionals of a Gaussian field converge in distribution towards
an element of the second Wiener chaos? Finite linear combinations of independent
chi-squared random variables represent indeed the most elementary instance of
random objects living in the second Wiener chaos of a Gaussian field (see Sect. 2.4
below for a discussion of this point). More sophisticated examples—that are
crucial for applications and lay at present largely outside the scope of Malliavin-
type techniques—include the so-called Rosenblatt distribution; see e.g. [21] for a
detailed discussion of these objects.

1.1 Overview

We refer the reader to [10], as well as Sect.2 below, for any unexplained notion
evoked in the present section. Let W = {W(h) : $} be an isonormal Gaussian
process over some real separable Hilbert space §) and let ¢ > 1. For every
deterministic symmetric kernel f € $©4, we denote by I,(f) the multiple stochastic
Wiener-It6 integral of f with respect to W. Random variables of the form I,(f)
compose the so-called gth Wiener chaos associated with W. The concept of Wiener
chaos represents a rough infinite-dimensional analogous of the Hermite polynomials
for the one-dimensional Gaussian distribution (see e.g. [10, 17] for a detailed
discussion of these objects).

The following two results, proved respectively in [15, 16] and [7] contain an
exhaustive characterization of normal and Gamma approximations on Wiener chaos.
As in [7], we denote by F(v) a centered random variable with the law of 2G(v/2) —
v, where G(v/2) has a Gamma distribution with parameter v/2. In particular, when
v > 1is an integer, then F(v) has a centered y? distribution with v degrees of
freedom.

Theorem 1

(A) (See [15, 16]) Denote by D the Malliavin derivative associated with W. Let
N ~ A4(0,1), fix g = 2 and let 1,(f,) be a sequence of multiple stochastic
integrals with respect to W, with each f, an element of 4 such that E[I, (f)? =
1. Then, the following are equivalent, as n — oo:

(i) 14(fn) converges in distribution to N;
(i) Elly(f)*] > EN'] = 3;
(i) ¢ " IDL(f)l5 = 1in L2().

(B) (See [7]) Fix v > 0, and let F(v) have the centered Gamma distribution
described above. Let ¢ > 2 be an even integer, and let 1,(f,) be a sequence
of multiple integrals, with each f, € $°7 verifying E[l,(f,)?] = 2v. Then, the
following are equivalent, as n — oo:
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(i) 14(fn) converges in distribution to F(v);
(i) Ell,(f)*] = 12E[L,(f,)*] = E[F(v)*] = 12E[F(v)’] = 12v* — 48v;
(i) DL (£IG = 2414(fu) —2gv — 0, in L*(Q).

The line of research associated with the content of Theorem 1 originates from
some deep questions asked by Marc Yor, about the asymptotic behavior of non-
linear functionals of Brownian local times (partially addressed in [18, 19]). As
demonstrated e.g. in [16], results of this type are intimately connected to the
powerful technique of Brownian time changes and associated limit theorems (a
beautiful discussion of these topics can be found in [20, Chaps. V and XIII]): as
such, they provide a drastic simplification of the so-called method of moments for
probabilistic approximations.

Theorem 1 has triggered a huge amount of applications and generalizations, in-
volving e.g. Stein’s method, stochastic geometry, free probability, power variations
of Gaussian processes and analysis of isotropic fields of homogeneous spaces. See
[7] for an introduction to this field of research. See [6] for a constantly updated web
resource, with links to all available papers.

As anticipated, the aim of the present paper is to address the following question:
for a general q, is it possible to prove a statement similar to Part (B) of Theorem 1,
when the target distribution F(v) is replaced by an object of the type

k
Foo = ) ai(N] = 1), (1

i=1

where k is a finite integer, the o;, i = 1,...,k, are pairwise distinct real numbers,
and {N; :i = 1,...,k} is a collection of i.i.d. A (0, 1) random variables?
The following remarks are in order

— In the case ¢ = 2 (that is, when the involved sequence of stochastic integrals
belongs to the second Wiener chaos of W), the question has been completely
answered by Nourdin and Poly [11]. See also the subsequent Theorem 2.

— The case k = a; = 1 corresponds to Part (B) of Theorem 1, in the special case
v =1

— When k = 2 and oy = % = —ap, then one has that Fo, has the same law as
the random variable N; X N,. It is a well-known fact that the law of this random
variable belongs to the general class of Variance-Gamma distributions: it follows
that, in this special case, convergence towards F, could be studied by means of
the general Malliavin-Stein techniques developed by Eichelsbacher and Thile in
the (independently written) paper [3] (see also [4] for some related estimates).
We observe that, in contrast to the present paper, the techniques developed in
[3] yield explicit rates of convergence in some probability metric. On the other
hand, our approach allows one to deal with target probability distributions that
fall outside the class of Variance-Gamma laws, as well as to deduce necessary
conditions for the convergence to take place.
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In order to deal with the previously stated problem, one cannot rely on techniques
that have been used in the previous literature on related subjects. In particular:

(a) For a general choice of k and ¢y, - - - , o there is no suitable version of Stein’s
method that can be applied to the random variable F, in (1), so that the
Malliavin-Stein approach for normal and Gamma approximations developed in
[8] cannot be used.

(b) For a general choice of k and «;, -+, o, it seems difficult to represent the
characteristic function of F, as the solution of an ordinary differential equation:
it follows that the characteristic function approach exploited in [7, 15] is not
adapted to the framework of the present paper.

(c) The analytical approach used in [11] (for the case ¢ = 2) cannot be applied in
the case of a general order g > 3 since, in this case, the characteristic function
of a non-zero random variable of the type I,(f) is not analytically known.

The main contribution of the present paper (stated in Theorem 3) is a full
generalisation of the double implication (iii) <> (i) in the statement of Theorem 1-
(B) to the case of a general target random variable of the form (1) and of a general
sequence of random variables living in a finite sum of Wiener chaoses. Our approach
is based on a suitable extension of the method of moments, that relies in turn on
several extensions of the results proved in [11]. One should notice that our findings
involve the operators I'; from Malliavin calculus, as introduced in [9] (see also [10,
Chap. 8]).

Remark 1 For the time being (and for technical reasons that will clearly appear in
the sections to follow), it seems very arduous to extend the double implication (ii)
<> (1) in the statement of Theorem 1-(B).

1.2 Plan

The paper is organized as follows. Section 2 contains some preliminary materials
including basic facts on Gaussian analysis and Malliavin calculus. Section3 is
devoted to our main results on a general criterion for convergence in distribution
towards chi-squared combinations, whereas Sect. 4 provides some examples.

2 Elements of Gaussian Analysis and Malliavin Calculus

This section contains the essential elements of Gaussian analysis and Malliavin
calculus that are used in this paper. See for instance [10, 14] for further details.
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2.1 Isonormal Processes and Multiple Integrals

Let $ be a real separable Hilbert space. For any g > 1, we write %7 and 9 to
indicate, respectively, the gth tensor power and the gth symmetric tensor power of
$; we also set by convention H®° = §©° = R. When ) = L*(A, &, n) =: L*(w),
where p is a o-finite and non-atomic measure on the measurable space (A, /),
then H®1 = [*(A, &7, u?) =: [*(u?), and H = L2(AY, &/, u?) = L}(u9),
where L2(u9) stands for the subspace of L?(119) composed of those functions that
are p?-almost everywhere symmetric. We denote by W = {W(h) : h € $} an
isonormal Gaussian process over $). This means that W is a centered Gaussian
family, defined on some probability space (£2,.%, P), with a covariance structure
given by the relation E [W(h)W(g)] = (h, g)s. We also assume that # = o (W),
thatis, .Z is generated by W, and use the shorthand notation L?(Q) := L*(2,.%, P).

For every g > 1, the symbol C, stands for the gth Wiener chaos of W, defined
as the closed linear subspace of L?($2) generated by the family {H,(W(h)) : h €
9, ||h]l = 1}, where H, is the gth Hermite polynomial, defined as follows:

2 2

Hy(x) = (—=1)%e? @(e 2 ) 2)

We write by convention Cy = R. For any ¢ > 1, the mapping 1,(h®7) = H, (W (h))
can be extended to a linear isometry between the symmetric tensor product £©¢
(equipped with the modified norm /¢! |-|| 5®,) and the gth Wiener chaos C,. For
q = 0, we write by convention Ip(c) = ¢, c € R.

It is well-known that L?(2) can be decomposed into the infinite orthogonal sum
of the spaces C,: this means that any square-integrable random variable F € L*(Q)
admits the following Wiener-Ito chaotic expansion

F =Y 1,f), (3)
q=0

where the series converges in L*(R2), fy = E[F], and the kernels f, € %9, ¢ > 1,
are uniquely determined by F. For every ¢ > 0, we denote by J, the orthogonal
projection operator on the gth Wiener chaos. In particular, if F € L*(Q) has the
form (3), then J,F = 1,(f,) for every g > 0.

Let {ex, k > 1} be a complete orthonormal system in $). Given [ € HOP and
g € %4, for every r = 0,...,p A g, the contraction of f and g of order r is the
element of H®P+4=2) defined by

o

f®g= Z (fseil®...®e,-,)ﬁ®r®(g,e,-l®...®e,-r)yj®r. @

i1seir=1
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Notice that the definition of f ®, g does not depend on the particular choice
of {ex, k > 1}, and that f ®, g is not necessarily symmetric; we denote its
symmetrization by f®,g € HP+472) Moreover, f ® g = f ® g equals the tensor
product of f and g while, forp = ¢, f ®, ¢ = (f, &) y®,. When ) = LA, o7, 1)
andr = 1,...,p A g, the contraction f ®, g is the element of L?(u?*T97%") given by

f®rglxt, ... xp1g-2r) 5
= f‘(-xlv“‘7-xp—l”aala"'aar)
Ar
X8(Xp—rg1s -+ s Xptg—2r a1, ... ar)dp(ar) ...du(a,).

It is a standard fact of Gaussian analysis that the following multiplication formula
holds: if f € H©P and g € $H9, then

PAg
Ip(f)lq(g) = Z r! (ii) (z)lp+q—2r(f®rg)- (6)

r=0

2.2 Malliavin Operators

We now introduce some basic elements of the Malliavin calculus with respect to the
isonormal Gaussian process W. Let . be the set of all cylindrical random variables
of the form

F=gW(@1).....W(gn) . )

where n > 1, g : R" — R is an infinitely differentiable function such that its
partial derivatives have polynomial growth, and ¢; € §,i = 1, ..., n. The Malliavin
derivative of F with respect to W is the element of L*($2, §) defined as

"9
DF = 3 L (W(g)..... W(g) .
i=1

In particular, DW(h) = h for every h € §. By iteration, one can define the mth
derivative D" F, which is an element of L*(Q2, $©™), for every m > 2. Form > 1
and p > 1, D™ denotes the closure of . with respect to the norm || - ||, ,, defined
by the relation

Il = EUFPI+ Y E[IDFI .

i=1

We often use the (canonical) notation D> := (1), (),>; D"
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Remark 2 1t is a well-known fact that any random variable F that is a finite linear
combination of multiple Wiener-Itd integrals is an element of D°°.

The Malliavin derivative D obeys the following chain rule. If ¢ : R* — R is
continuously differentiable with bounded partial derivatives and if F = (F}, ..., F,)
is a vector of elements of D!2, then ¢(F) € D'? and

"9
Dy(F) = Y E(FDF. ®)
i=1 !

Note also that a random variable F as in (3) is in D!'? if and only if
2211 q|lJ,F ||i2 @ < and in this case one has the following explicit relation:

o
E[IDFI3] = > 4llVeF 72 q)-
q=1

If 5 = L*(A, o7, ) (with u non-atomic), then the derivative of a random variable
F as in (3) can be identified with the element of L>(A x ) given by

o0
DiF =Y gl (fy(1), 1€A. ©)
g=1
The operator L, defined as L = Z;io —qJ, 1s the infinitesimal generator of the
Ornstein-Uhlenbeck semigroup. The domain of L is
o
DomL = {F € I(Q) : Y ¢* |JyF |2, < 00} = D*2.
q=1

For any F € L*(Q), we define L™'F = Y22 —%Jq(F). The operator L™ is
called the pseudo-inverse of L. Indeed, for any F € L*(Q2), we have that L™'F €
DomL = D??2, and

LL™'F = F—E(F). (10)

The following integration by parts formula is used throughout the paper.

Lemma 1 Suppose that F € D'? and G € L*(R2). Then, L™'G € D*? and

E[FG] = E[F)E[G] + E[(DF,—DL™'G)]. (11)
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2.3 On Cumulants

The notion of cumulant will be crucial throughout the paper. We refer the reader to
the monograph [17] for an exhaustive discussion of such a notion.

Definition 1 (Cumulants) Let F be a real-valued random variable such that
E|F|™ < oo for some integer m > 1, and write ¢r(f) = E[¢"F], t € R, for the
characteristic function of F. Then, forj = 1,...,m, the jth cumulant of F, denoted
by «;(F), is given by

o
K (F) = (—i)lﬁ log ¢r(t)]i=o0- (12)

Remark 3 When E(F) = 0, then the first four cumulants of F are the following:
«1(F) = E[F] = 0, 2(F) = E[F?] = Var(F), 3(F) = E[F’], and

k4(F) = E[F*] — 3E[F?]°.

The following standard relation shows that moments can be recursively defined in
terms of cumulants (and vice versa): fix m = 1,2..., and assume that E|F |erl <
00, then

m

EF™' =) ("f) ki1 (F)E[F™]. (13)

i=0

Our aim is now to provide an explicit representation of cumulants in terms
of Malliavin operators. To this end, it is convenient to introduce the following
definition (see e.g. [10, Chap. 8] for a full multidimensional version).

Definition 2 Let F' € D*. The sequence of random variables {I';(F)}i>0 C D™ is
recursively defined as follows. Set I'y(F) = F and, forevery i > 1,

[(F) = (DF, —DL™'Ti_ | (F))s.

For instance, one has that T';(F) = (DF,—DL™'F)g. The following statement
provides an explicit expression for I';(F), s > 1, when F has the form of a multiple
integral.

Proposition 1 (See e.g. Chap. 8 in [10]) Let ¢ > 2, and assume that F = I,(f)
with f € 4. Then, foranyi > 1, we have

q lig—2r1—...=2ri—1]Aq

Ti(F) = Z Z Cq(rl"“’ri)l{f1<q}"'1{r1+...+r,-,1<’7q}

r=1 ri=1

X I(i+l)q—2r1—...—2ri((' .. (f®r1f)®r2f) .. 'f)®rif)v
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where the constants cy(r1, . . ., ri—2) are recursively defined as follows:

2
&) = 4t~ 1)!(3: i) ,

and, fora > 2,

cq(ris ... 1)

aqg—2ri—...—2r,—1—1\[gqg—1
:q(ra_l)!( r—1 )(V _1 Cq(rlw‘wra—l)‘

The following statement explicitly connects the expectation of the random
variables I';(F) to the cumulants of F.

Proposition 2 (See again Chap. 8 in [10]) Ler F € D°°. Then F has finite moments
of every order; and the following relation holds for every i > 0:

Kit1(F) = {E[Li(F)]. (14)

We also use the following result taken from [1] throughout the paper.

Lemma 2 Let X € D*°. Then, the relation

E(¢W 0T, (X)) (15)

= EX¢* (X)) = > E(@*“ ) (X)E(T,—(X))
s=1
holds for every k-times continuously differentiable mapping ¢ : R — R.

The next section is devoted to the elements of the second Wiener chaos.

2.4 Some Relevant Properties of the Second Wiener Chaos

In this subsection, we gather together some properties of the elements of the second
Wiener chaos of the isonormal process W = {W(h); h € $)}; recall that these are
random variables having the general form F = L(f), with f € $©2. Notice that,
if f = h ® h, where h € §) is such that ||k||s = 1, then using the multiplication
formula (6), one has L(f) = W(h)?> — 1 2 N2 — 1, where N ~ .4 (0, 1). To any
kernel f € H©2, we associate the following Hilbert-Schmidt operator

A H—=>9H g—fRig.
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It is also convenient to introduce the sequence of auxiliary kernels
frels:p=1}ca® (16)
defined as follows: f ®(11)f = f, and, forp > 2,
rel’r=(ref ") e . a7

In particular, f ®(12) f = f®f. Finally, we write {0y ;};>1 and {ef ;};>1, respectively,
to indicate the (not necessarily distinct) eigenvalues of Ay and the corresponding
eigenvectors.

Proposition 3 (See e.g. Sect.2.7.4in [10]) Fix F = L,(f) with f € $H°2.

1. The following equality holds: F = ijl ozf,j(sz — 1), where {Nj}j=1 is a
sequence of i.i.d. N (0,1) random variables that are elements of the isonormal
process W, and the series converges in L* and almost surely.

2. Foranyi > 2,

ki(F) =271 — DY af =271 = DI x (F @] f.f)ge2.

Jj=1

3. The law of the random variable F is completely determined by its moments or
equivalently by its cumulants.

3 Main Results

Throughout this section, we assume that {W (k) : h € $} is a centered isonormal
Gaussian process on a separable Hilbert space $) having {e;};>1 as a complete
orthonormal basis.

3.1 A New View of Reference [11]

We now fix a symmetric kernel fo, € $©? such that its corresponding Hilbert-
Schmidt operator As, (see Sect.2.4) has a finite number of non-zero eigenvalues,
that we denote by {oz,-}f;l. To simplify the discussion, we assume that the eigenval-
ues are all distinct. In order to deal with the case of possibly repeated eigenvalues,
one has to modify the polynomials P and Q below, as explained in [11, page
8]. As anticipated, we want to study convergence in distribution towards the
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random variable
k
Foo :=h(foo) = Y i (N — 1), (18)

where {N;}*_, is the family of i.i.d. .#7(0, 1) random variables appearing at Point
1 of Proposition 3. Following Nourdin and Poly [11], we define the two crucial
polynomials P and Q as follows:

o) = (P()’ (H(x—a)) 19)

Note that, by definition, the roots of Q and P correspond with the set {0, o, . . ., o }.

The starting point of our discussion is the following result, proved in [11]: it
provides necessary and sufficient conditions for a sequence in the second Wiener
chaos of W to converge in distribution towards F.

Theorem 2 (See [11]) Consider a sequence {Fn}u>1 = {L(fu)}n>1 of double
Wiener integrals with f, € $©2. Then, the following statements are equivalent, as
n— oo:

law

(i) Fn = Foo;
(ii) the following two asymptotic relations are verified:

1. k,(Fp) = k(Fso), forall2 <r <k+ 1= deg(P),

2 Zdeg(Q) 01(0) _ kr(Fu)

=2 iem 0

The original proof of Theorem 2 is based on methods from complex analysis, and
exploits the fact that (owing to the representation stated at Point 1 of Proposition 3)
the Fourier transform of a random variable with the form I, (f) can be written down
explicitly in terms of the eigenvalues {y ;}. Our aim in this section is to prove that
condition (ii) of Theorem 2 can be equivalently stated in terms of contractions and
Malliavin operators. Such equivalent conditions naturally lead to the main findings
of the paper, as stated in Theorem 3, that will also provide (as a by-product) an
alternate proof of Theorem 2 that does not make use of complex analysis (see, in
particular, Remark 5 below). We start with a crucial lemma, that is in some sense
the linchpin of the whole paper.

Lemma3 Let F = L(f), f € 9% be a generic element of the second Wiener
chaos of W, and write {ay j}j>1 for the set of the eigenvalues of the associated
Hilbert-Schmidt operator Ay we have

QO &)

rl 2 (r=1)!

r=2
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Jj=1
deg(P) (r)
_ Z (O)f ®(r)f on
r=1 r! §®2
deg(P) 2
1 P")(0)
= 5E( ; = (Fr—l(F) —E(Fr_l(F)))) , (22)

where the operators I,(+) have been introduced in Definition 2. In particular, for the
target random variable F » introduced at (18) one has that

20O k(Feo)

o 2l r = 1)

r=2

deg(P)
1 PO
-1 E( ()

2
i (D1 (Foo) = E(Tm <Foo)))) : 23)

r=1

Proof In view of the second equality at Point 2 of Proposition 3, one has that
% = ijl af” i from which we deduce immediately (20). To prove (21),
observe that Point 1 of Proposition 3, together with the product formula (6), implies
that the kernel f admits a representation of the type f = > =191 ® 1j, where
{n;} is some orthonormal system in §). It follows that, for » > 1, one has the

representation f ®, g f= Z;>1 oy ;1 @ 1j, and therefore

deg(P) deg(P)

(r) (r)
ZP (O)f®lr)f S @ ZP (0)

r=1 Jj=1

Taking norms on both sides of the previous relation and exploiting the orthonormal-
ity of the n); yields (21). Finally, in order to show (22), it is clearly enough to prove
that, forany r > 1,

L(f o f) = { 1 (F) — E(T,—1(F))}. (24)

2r-1
We proceed by induction on r. It is clear for r = 1, because ['y(F) = F and E(F) =
0. Take r > 2 and assume that (24) holds true. Without loss of generality, we can
assume that $§ = L*(A, <7, ), where p is a o-finite and non-atomic measure on
the measurable space (A, «7). Notice that, by definition of T',(F) and the induction
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assumption, one has
[(F) = (DF.=DL™' T, ()5 = (20(f0 .27 1(F @] f0,.)

- Zr/A {700 f &7 F0)5 + B(f) ® (7 &1 1)(0.)) }d(o

=2(f.f ® flgor + 2 L(f @V f),

where we have used a standard stochastic Fubini Theorem. This proves that (24) is
verified for every r > 1. The last assertion in the statement follows from (20), as
well as the fact that the eigenvalues «; are all roots of Q.

The next proposition, which is an immediate consequence of Lemma 3, provides
the announced extension of Theorem 2.

Proposition 4 Assume {F,},>1 = {L(f.)}n>1 be a sequence of double Wiener
integrals with f, € $Y©2. Then the following statements are equivalent to either
Point (i) or (it) of Theorem 2, as n — oo.

(a) The following relations 1.-2. are in order:

1. k,(Fy) > k;(Fso), forall2 <r <k+ 1 =deg(P), and
2

2 E(Z’;:} 2O (T (F) —E(rr_m)))) ~0.

(b) The following relations 1.-2. are in order:

1. k,(F,) = k;(Foo), forall2 <r<k+ 1= deg(P), and

2
deg(P) P™) (0
Zeg( ) P ()fn ®(r)ﬁ1

r=1

2.

— 0.

H®?

As anticipated, our aim in the sections to follow is to show that the equivalence
between Condition (a) in Proposition 4 and Condition (i) in Theorem 2 is indeed
valid for sequence of random variables living in a finite sum of Wiener chaoses. The
next statement provides a first, non dynamical version of this fact.

Proposition 5 Let the polynomial P be defined as in (19) and consider again the
random variable Foo = I (foo) defined in (18). Let F be a centered random variable
living in a finite sum of Wiener chaoses, i.e. F € @?il Ci. Moreover, assume that

() k(F) =k, (Foo), forall2 <r <k+1 = deg(P), and
(ii)

k+1 PO(0) 2
E( Z o1 (Fr—l(F) - E(Fr—l(F)))) =0.

r=1

Then, F'2 Foy, and F € C,.
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Proof Let ¢ be a smooth function. Using the integration by parts formula
(Lemma 1), Assumption (ii) in the statement and Proposition 2, we obtain

BEOF) = 3 0 p0F) + EGOETHE)

r=0

k—1
= > 0 pgoy) + O pgo)
r=0 ’ :
(25)
+ Xk: mP(r)(O)E((P(k)(F))
(r—Dir!

K  Ak—r+1

-2

r=1

r=1

PY(0)E(¢p™ (F)T,— (F))

On the other hand, using (15) we obtain that

E@W(F)T,—1(F)) = E(Fp“~""D(F))

r—1 (26)
= > E@* TV (F)ET,-1-(F)).
s=1

Using the relation E(I',—1—4(F)) = k,—s(F)/(r — s — 1)!, and therefore deduce that,
for every smooth test function ¢

B0 = 3 0 g0 + D gy

r=0
k—r+1
Y z(r_—f)’,(?ﬂ’) OEGO(F))
r=1 o

2k—r+l

k
_ Z p p» (O)E[Fd)(k_(r_l))(F)]
r=1 :

+ Z 27 o) 3 Eig P
s=1 :
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Considering the test function ¢ (x) = x" with n > k, we infer that E(F"*!) can be
expressed in a recursive way in terms of the quantities

E(F"),E(F"™"),-- E(F"™), ka(F), -+ , k1 (F)

and PM(0), ---, PP(0). Using Assumption (i) in the statement together with last
assertion in Lemma 3, we see that the moments of the random variable Fo, also
satisfy the same recursive relation. These facts immediately imply that

E(F")=E(FL), n=>1,

and the claim follows at once from Point 3 in Proposition 3. To prove that, in fact,
F € C,, we assume that M is the smallest natural number such that F' € @?il Ci.
Hence F ¢ @?i_ll Ci. Therefore, by applying [5, Theorem 6.12] to F, Fo, and the
fact that F faw Fs, we deduce that M = 2. Let assume that F = I,(g) + L (h)
for some g € $ and h € $H®2. Considering the trivial sequence {F,},>; such that
F, = Fso, n > 1, using the fact that F faw Fo and applying [11, Theorem 3.1], we
deduce that I;(g) is independent of I»(h). Let {As_ x}i>1 and {A;}k>1 denote the
eigenvalues corresponding to the Hilbert-Schmidt operator Ay and A;, associated
with the kernels fo, and /& respectively (see Sect. 2.4). Exploiting the independence
of I;(g) and I,(h) and Point 2 in Proposition 3, we infer that

S A= YA vzt

kelN keN

As a result, Lemma 6 in Appendix implies that for some permutation 7 on N we
have Aok = An @ for k > 1, which in turn implies

ZA}OO,,( = Zxﬁ’k. (27)

keN kelN

On the other hand, from F = I;(g) + L(h) ™ F 0, and computing the second
cumulant of both sides, one can easily deduce that if k>(11(g)) = E(I,(g))*> =
||g||f5 # 0, then the equality (27) cannot hold. It follows that I;(g) = 0, and
therefore F' € C;.

One of the arguments used in the previous proof will be exploited again in
the next section. For future reference, we shall explicitly state the needed double
implication in the form of a lemma.

Lemma 4 Let F be a centered random variable, with finite moments of all orders
and such that k,(F) = k;(Foo), forall2 < r < k + 1 = deg(P). Then, F = Fy if
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and only if, for every polynomial mapping ¢ : R — R,

k—1

E(Fp) = o) = 3 B0 +

r=0

Kk+l( )

———E@@"(F)) (28)

k 2k—r+lKr(F) " ®
+ZWP OE@ )

r=1

—r+1

—Z — PO OEF )]

k —1

k—r+
Y5 PO ZE [ "(F)]%-

r=1

In the next section, which contains the main findings of the paper, we shall show
that a slight variation of Condition (a) in Proposition 4 is basically necessary and
sufficient for convergence in distribution towards F, for any sequence of random
variables living in a finite sum of Wiener chaoses.

3.2 A General Criterion

We recall that the rotal variation distance dty between the laws of two real-valued
random variables X and Y is defined as

diy(F,G) = sup |P(F e A)—P(G e A)|, (29)
A€B(R)

. . TV
where the supremum is taken over all Borel sets A € R. We also write F,, — F to
indicate the asymptotic relation dyv (F,, F) — 0.

The next theorem is the main finding of the paper. Recall that the random variable
F oo has been defined in formula (18).

Theorem 3 Let {F,},>1 be a sequence of random variables such that each F, lives
in a finite sum of chaoses, i.e. F, € @?il C; forn > 1 and some M > 2 (not
depending on n). Consider the following three asymptotic relations, as n — 00:

(i)

F,—% Fo.: (30)
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(ii) The following relations 1.-2. are in order:

1. k,(F,) = k;(Foo), forall2 <r<k+ 1= deg(P), and

r=1 yp1pr—1

2. E(Zk+1 P (0) (Fr—l(Fn) — E[F,_I(Fn)]) ’Fn) L_2> 0.

(iii) The following relations 1.-2. are in order:

1. k,(F,) = k;(Foo), forall2 <r<k+ 1= deg(P), and

2 E( S 29 (Tt (F) — BT (F)])

Ll
F,] — 0.

Then, one has the implications (if) — (i) and (i) — (iii).

Remark 4 We remark that, in the special case k = 1 = «y, the condition appearing
at Point 2 of item (ii) in Theorem 3 is implied by the relation

E(T\(F,) —F, —2)° - 0. 31)

When F, = I,(f,), this corresponds to the condition appearing at Point (iii) of
Part (B) of Theorem 1, by taking into account the fact that, for a multiple integral
F = I,(f) of order g, we have the relation I'|(F) = é||DF||_2¢J Note that, as
explained in [7], the asymptotic relation (31) cannot be fulfilled by a sequence F),
such that F,, = I,(f,) with ¢ odd and E[F?] — 2.

In order to prove Theorem 3, we need an additional lemma.

Lemma 5 (See Theorem 3.1 in [12]) Let {F,},>1 be a sequence of non-zero ran-
dom variables living in a finite sum of Wiener chaoses, i.e. F, € @?io Ci, Vn> 1.
Assume that the sequence {F,},>1 converges in distribution to some non-zero target
random variable F, as n tends to infinity. Then,

supE(|Fn|") <00, Vr=>1, (32)

n>1

TV
and F,, — F. Moreover, the distribution of F is necessarily absolutely continuous
with respect to the Lebesgue measure.

Proof of Theorem 3 Proof of (ii) — (i) Assumption 1 in (ii) implies that
sup,>; E (Fﬁ) < o0. Hence, the sequence {F,},> is tight. This yields that,
for any subsequence {F, }>1, there exists a sub-subsequence {F,, };>1 and

a random variable F such that F,,kl Li)” F, as [ tends to infinity. In order to
show the desired implication, we have now to show that, necessarily, F' has
the same distribution as F. To simplify the discussion, we may assume that
{Fn,q }1>1 = {Fn}n>1. By exploiting (32) together with the fact that the sequence
{Fu}n>1 lives in a fixed finite sum of Wiener chaoses, we deduce that, for every
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polynomial ¢,
E (Fup(Fn)) = E(Fp(F)), n— oo. (33)
and
Wy (Fy) — Wy(F), asn— oo, 34)

where we have used the notation (28). By virtue of Lemma 4, in order to show
the desired implication, it is then sufficient to prove the asymptotic relation

)E(F,,qs(F,,)) — W, (F)| = 0. n— oo, (35)

for every polynomial ¢. To show (35), we can use several times integration by
parts (see Lemma 1) to infer that

E(Fup (F.)) = Wy(F)

k+1

(r)
=2'E [cp“‘) (Fn)E( > f,z—,(_()? (D1 (F) = B, (F) F)}
r=1""
< 2VE(@W(F))’

k+1 (0 2
e (S22 i - ) )

Now, a standard application of Lemma 5 shows that

supE(c;S(k)(Fn))2 < 00,

n>1

and (35) follows by exploiting Assumption 2 at Point (ii).
Proof of (i) — (iii) The proof is divided into several steps. Take ¢ € € >° with
support in [-M, M] where M > 0 and [|¢pP o0 < 1.

Step 1. We have:

k+1 (r)
E(d)(k) (F,) Z P7©) (Fr—l(Fn) - E(Fr—l(Fn)))>
r=1

r12r-1

k+1 (r)
-y PO ™ E DT (Fo))
r=1

r12r—1
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k+1

PO
)Y o) (L1 )
1 oy
e R
r=1
k+1 (r) 0
—Zf,zf_) ZE@“‘ MEDET1-5(Fy)
r=1""
1 p PO(0)
_E@D(F,)) Z e ECi (F)

k
=Y E(¢V(F) (@aFy + br)) .

r=0

In the last line we have used the Proposition 2 which relates the E(T,)
to the cumulants, so that {a, ,, b, ,}o<,<x denote constants which are linear
combinations of the k + 1 first cumulants of F,. Since (30) holds and
since {F,},>1 is bounded in every L”(2) in virtue of Lemma 5, for each
re{l,2,--- k4 1} the continuous mapping Theorem implies that

k

kr(Fa) = 277 r = DY o =k (Foo) -

i=1

This yields that

(¢<k) (F) oI 559 (T (F) — E(rr_l(Fn))))

E<¢(k)(Foo) ErE T (T (Foo) = (T (F w)))) =
(36)

where we have used Lemma 3.

Step 2. The conclusion at Step 1 implies that, for each fixed ¢ € €>° with
support in [-M, M], such that ||¢® ||, < I, we have:

k+1 (r)
E(¢(k)(Fn) Z I;zr(_ol) (F’_I(F") N E(F’_I(F")))) -0 37)
r=1 "



358 E. Azmoodeh et al.
For convenience we set
G =6 € €] 1¥oo = 1. supp(@) © [-M. M]}.

Exploiting again the arguments used in Step 1 we infer that

1 b (o
E(aﬁ(k’(Fn) > r.zr(_l) (i) - E(Fr—l(F"))))
r=1 "

k

=Y E(¢V(F)) (@aFu + br)) .

r=0
One has that

sup
PEE

k k
Y E(@D(F) @aFu +bra)) =Y E(@7(F)) (@rooFy + br,w>)‘

r=0 r=0
k

= sup Z ||¢(r)”oo (lar,n - ar,oo| Sull)E(|Fn|) + |br,n - brool)
n=

PEEu r=0

nzl r=0

k
= Mk (SupE(anD + 1) Z (|ar,n - ar,ool + |br,n - broo')
— 0,

where we have used the fact that for ¢ € &), and for any 0 < r < k, we

have ||¢"||ooc < MF. On the other hand, we know that F, BEAAN Foo. The
n—o0

following equality holds

k
SUE($(F) (oo + b))

r=0

k

ZE (¢(r)(Fn) (ar,OOFﬂ + br,OO))

r=0

k
_ Z E (¢ (Foo) (aro00Fo0 + b,,oo))‘ .

r=0
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The expression on the right-hand side of the previous equality is bounded by

k
Y aroo |E (¢ (Fi)Fn — ¢ (Foo) Foo) |

r=0

k
+ ) broo [E (¢ (Fa) — ¢ (Foo))|

r=0

k
< MM (Z r.o0 + b,,oo) drv(Fu, Foo).

r=0

To obtain the previous estimate, we have used the facts that

sup [¢”(0)xl| <M and (9o < ME.
X€[—M .M]

Now, letting n — oo, we deduce that

k
sup | Y E(¢7(Fy) (@r.0oFu + broo))| = 0. (38)

$€8u | =

as well as

k
sup | Y E (¢ (Fy) (@raFo + bra))| = 0. (39)

P€éu | =

Step 3.

Let %) be the set of Borel functions bounded by 1 and supported in
[-M, M]. By density we have

k
sup Z E (¢(r) (F,) (aruFy + br,n))‘
P€Eu r=0
k+1 P(r)(o)
= sup |E («zs‘k)(Fn) ; o (r,_l(Fn) - E(r,_l(Fn»)
k+1 P(,) (O)
= s |E (¢<Fn) ; e (r,_1<Fn> — E(r,_l(m))
(Step2)
—_—

n—>o0
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)

k+1 (r) 0
E («zs(Fn) B (VA E(r,_l(m))) ‘
r=1

To achieve the proof, we notice that

k1 50
E (‘E (Z O (0 () — E(Ca ) F)
r=1

ri2r—1

= sup
$lloo=<1

ri2r—1

< sup
PET M

k+1 (r) 0
E (q&(m > O (r B (Fn))))
=1

k+1 5 (p) 0
+E (l{an|>M} Z };z—r(_l)(rr—l(Fn) - E(Fr—l(Fn))) ')
r=1 "
k+1 P(r)(o)
= s [E (q&(m ; 57 (T (F) = EC i ()

+vP(F,| > M)

rl2r-1

K+ o 2
x sup E(ZP (O)(r,_l(m—E(Fr_l(Fn))))-

r=1

We get the desired result by letting first n — oo and next M — oo. We
recall that the sup over n in the latter inequality is well defined in virtue of the
Lemma 5 which provides the boundedness of all moments.

|

Remark 5 (On Theorem 2) As anticipated, Theorem 3 allows one to deduce an
alternate proof of the implication (ii) — (i) in Theorem 2. Indeed, if Assumption (ii)
in Theorem 2 is verified, one can apply (22) to deduce that

rl 2r-1

deg(P) 1) 2
E( y 20 (r,_l(Fn)—E(r,_l(Fn)))) 0,

r=1

and the conclusion follows immediately from Theorem 3, as well as a standard
application of Jensen’s inequality.
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4 Example: Two Eigenvalues

We will now illustrate the main findings of the present paper by considering the case
of a target random variable of the type Foo = I (foo), Where the Hilbert-Schmidt
operator Ay, associated the kernel fo, has only two non-zero eigenvalues «; # s,
thus implying that

Foo =ay (N = 1) + o2 (N; — 1) (40)

where N and N, are independent .4 (0, 1) (see Proposition 3).

Theorem 4 Assume that Foo = I (foo) is given by (40). Let ¢ > 2 and {F,}n>1 =
{1,(f2) }n=1 be a sequence of multiple Wiener integrals of order q such that

. 2N . 2 —
n1—1>noloE(Fn) = 2nll>n;o ”fn”ﬁ@q =1

Assume that, as n tends to infinity, we have

(a) (ﬁ1®gﬁuﬁ1)5®q — 0, when q is even, and
(b) the following three asymptotic conditions (b1)—(b3) take place:

(b1)

q_(24=20nq g—1 2
2
~Pr—1)l(s = 1)!
b )

rts=q
qg—1\[2q—2r—1 - ~
X n rn n
) s
+ 1 2
o o — -
e Ca V1] I Y- YAy B
2 2 5—1 2
H®a
(when q is not even or oy = —ay, then the term in the middle — involving the

contraction of order % — is removed automatically).
(b2) forall2 < k <2q—2, we have

4 (2q=20ng g—1 2
Y3 r=Dis—1)!
r=1 s=1 r—1

(rs)#(%.9)

r4s#q
3g—2(r+s)=k
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1\ (2g—2r—1\, . . .
x<‘s1_ 1)( qs_rl )(ﬁ1®rﬁ1) &/,

—1 2
o + a2 . qg—1 -
e - 1! oo
5 > q(r )(r_l)f®f

% #r=1
2q—2r=k

2

— 0.
H®kK

(b3) forall2q—1 <k < 3q— 4, we have

q (24=2r)Aq 2
q—1 qg—1 2g—-2r—1
2 e () ()

(r9)#(%.9)

r+s#q
3g—2(r+s)=k

— 0.
HOkK

X (fa®:fn) ®sf

Then,

law

F, > Fs.

Proof In this case, a simple application of Jensen’s inequality shows that the second
moment of the quantity appearing on the left-hand side of Point 2 of Theorem 3-(ii)
is bounded from above by

2

(Fl(Fn)_E(Fl(Fn))) +051012Fn) .

E FZ(Fn)_E(FZ(Fn)) _al + o
4 2

The claim follows immediately from Proposition 1, orthogonality of multiple
Wiener integrals, Theorem 3 and the fact that when ¢ is even

2
s (F,) = 2E(Ta(F,)) = 244!(3 - 1>!<Zj i) (Fu® afofi) 50
2

In the special case when o} = —a, = %, the target random variable Foo = I (foo)
in the limit takes the form
1

1 aw
Foo = 5 (V1) =3 (3= 1) M )
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where N; and N, are independent .47(0, 1). If the elements F, of approximating
sequence take the special form of multiple Wiener integrals of a fixed order, then
we have the following result. One should notice that, in this special case, the result
stated below can be alternatively deduced from the findings contained in [3]. For a
free counterpart of the next result, see [2, Theorem 1.1].

Corollary 1 Assume that Foo = L(foo) is given by (41). Let ¢ > 2 and {F}n>1 =
{1,(f2) }n=1 be a sequence of multiple Wiener integrals of order q such that

lim E(F2) =2 lim | f,]%e, = 1.
n—00 n—oo

Assume that, as n tends to infinity, we have

(a) (fn®%fnsfn>f)®q — 0, when qis even,
(b) and moreover

(b1)

4 (2q4=2r)nq g—1 2
Yo > Fer=Dis—1)
r=1 s=1 r—1

r+s=gq

—1\[{2g—2r—1 o
X(f_ 1)( ! s_rl ) (fi®:f) s o =

(b2) forall2 < k < 3q— 4, we have

q_(q=2r)nq g—1 2 g—1
; ; (r—l)!(s—l)!(r_l) (s_l)

(rs)#(4.9)

2

— 0.
H®a

r+s#q
3g—2(r+s)=k
2g —2r—1 2
—2r— . .
x( 1 ) X (/&) &sfu|  — 0.
s—1
£H®k

Then,

law

F, > Fs.

Remark 6 Notice that when ¢ is odd, the assumption (a) of Theorem 1 and
restriction (r,5) 7# (4,¢) in the sums of (b2) can be removed. In other words, it
is known that for any multiple Wiener integral F = I,(f) of odd order, we have
k3(F) = 2E(I'2(F)) = 0.
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Example 1 Let g > 2 be an even integer. Consider two sequences {G,},>1 =
{1,(8n)}n=1 and {H,},>1 = {I;(h,)}n>1 of multiple Wiener integrals of order ¢
where g, h, € %4 for n > 1. We assume that as n tends to infinity we have

law
@ Gy = Goo = (N2 1).
law lﬂv 1

(b) H, > Hoo = 5(N* —1).
(c) Cov(G?, H?) — 0.

We consider the sequence {F, },>1, where
F,=1,f) =G, —H,=1,(ga. —hy), n>1.

Then [13, Theorem 4.5.] implies that as n tends to infinity, we have

(G Hy) ™S (Goo. Hoo).

where the random variables G, and F, are independent. Hence, in particular we

obtain that F), oy Fs where F is given by (41). We can also justify the later
convergence with the help of our result, namely Corollary 1. To this end, first notice
that relation (3.6) of [13] implies that

Cov(G. Hy) = E(GHY). (42)

Therefore, using assumption (c¢) we obtain that x5 (F,) — k2(Fso) = 1. According
NS

to [7, Theorem 1.2] point (iii), assumption (a) implies that for constant ¢, = 4%,

we have ||gn®%g,, — 48nll5®s — 0, and moreover ||g, ®, gull®cs—21 — 0, for all

r=1,--,g—1and r # %, and similarly for the kernels /4, by assumption (b).
Hence

‘E(GiHn)‘ ‘(gn®%gns hn)j“j®q

= ‘(gn‘é%gn — Cq&n> hn).?)®q + Cq<gn, hn)g@q

= ”gn@%gn - ngn”ﬁ@’quhn”ﬁ@q + qu!IE(Gan)I

— 0,

by assumptions (a), (b), and (42). In a similar way, one can see that E (G,,Hfl) — 0.
Hence

«3(F,) = k3(G,) — 3E(G2H,) + 3E(G,H,) — k3(H,) — 0,

and therefore, the assumption (a) of Corollary 1 is verified. To check assumption
(b2), take indices r and s such that (r,s) # (£, g). Now, it is enough to show that
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[(fu®:fn) ®full g@a—2—29 — 0. Using the identity (f, &) ®fu = (fu®1fn) ®s8n—
(fn®:fn) ®shy, it reduces to show that || (£, ® /1) ®s&nll s®6—2—290 — 0. On the other
hand,

”(ﬁ1®rﬁ1)®sgn”ﬁ®(34*2r*2ﬂ = ”ﬁ1®rﬁ1”ﬁ®(24*2") llgn |55
< lgalsn {182 @renll i

+ 2||gn®rhn”_ﬁ®(24*2r) + ”hn®rhn”yj®(24*2r>}

— 0.

To obtain the last convergence, notice that (see [13, Theorem 3.1]) assumption (c)
tells us that

||gn®rhn”5“j®(2q—2r) — 07 Vr - 15 25 Tt q

Hence the assumption (b2) of Corollary 1 is also verified. In similar way, one can
check that assumption (b1) also satisfies.
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FIR-MTH-PUL-12PAMP (PAMPAS) from Luxembourg University.

Appendix

Lemma 6 Let {a;}ren and {bi}ren be two sequences in I'(IN) such that for all
p > 1 we have

dYoa =>4 (43)

Then, there exists a permutation 7w on natural numbers IN such that ay = by for
allk > 1.

Proof Let R[X] denote the ring of all polynomials over real line. Then, relation (43)
implies that for any polynomial P € R[X], we have

D aP(a) =) biP(by). (44)

keN kelN
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Let M := max{||all; ). |6l < oo. Then by a density argument, for any
continuous function ¢ € C([—M, M]), we obtain

Y awp(a) =) bip(by). (45)

kelN kelN

For any i € IN, we can now choose a continuous function ¢ such that ¢(a;) = 1 and
¢ = 0 on the set {gj|la; # a;} U {b;|b; # a;}. This implies that, for some integer ;,
we have a; = by,. It is now sufficient to take 7 (i) = k;.
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Mod-Gaussian Convergence and Its
Applications for Models of Statistical Mechanics

Pierre-Loic Méliot and Ashkan Nikeghbali

In memoriam, Marc Yor

Abstract In this paper we complete our understanding of the role played by
the limiting (or residue) function in the context of mod-Gaussian convergence.
The question about the probabilistic interpretation of such functions was initially
raised by Marc Yor. After recalling our recent result which interprets the limiting
function as a measure of “breaking of symmetry” in the Gaussian approximation
in the framework of general central limit theorems type results, we introduce
the framework of L'-mod-Gaussian convergence in which the residue function is
obtained as (up to a normalizing factor) the probability density of some sequences
of random variables converging in law after a change of probability measure. In
particular we recover some celebrated results due to Ellis and Newman on the
convergence in law of dependent random variables arising in statistical mechanics.
We complete our results by giving an alternative approach to the Stein method to
obtain the rate of convergence in the Ellis-Newman convergence theorem and by
proving a new local limit theorem. More generally we illustrate our results with
simple models from statistical mechanics.

1 Introduction

Let (X,,)nen be a sequence of real-valued random variables. In the series of papers
[3, 8, 10, 12, 13], we introduced the notion of mod-Gaussian convergence (and more
generally of mod-¢ convergence, with respect to an arbitrary infinitely divisible

law ¢):
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Definition 1 The sequence (X),),en is said to converge in the mod-Gaussian sense
with parameters f, — oo and limiting (or residue) function 6 if, locally
uniformly in R,

tnt

1E[ei’Xn]eT2 =0() (1 + o(1)),

where 6 is a continuous function on R with 8(0) = 1.

A trivial situation of mod-Gaussian convergence is when X,, = G, + Y, is the sum
of a Gaussian variable of variance ¢, and of an independent random variable Y,, that
converges in law to a variable Y with characteristic function 8. More generally X,
can be thought of as a Gaussian variable of variance ¢,, plus a noise which is encoded
by the multiplicative residue 6 in the characteristic function. In this setting, 6 is not
necessarily the characteristic function of a random variable (the residual noise). For
instance, consider

1 n
Xo=—5) Y

i=1

where the Y; are centred, independent and identically distributed random vari-
ables with convergent moment generating function. Then a Taylor expansion of
E[e"Y] shows that (X,,),en converges in the mod-Gaussian sense with parameters
n'/3 Var(Y) and limiting function

31 (ir)3
0(1) = exp (—E[Y @) ) ,
6
which is not the characteristic function of a random variable, since it does not go
to zero as t goes to infinity. In 2008, during the workshop “Random matrices, L-
functions and primes” held in Ziirich, Marc Yor asked the second author A. N. about
the role of the limiting function 8. In [14] it is proved that the set of possible limiting
functions is the set of continuous functions 6 from R to C such that 6(0) = 1
and 0(—f) = 6(r) for t € R. But this characterization does not say anything
on the probabilistic information encoded in 6. We now wish to develop more on
probabilistic interpretations of the limiting function and the implications of mod-
Gaussian convergence in terms of classical limit theorems of probability theory.
We first note that by looking at E[ei®»/v"], one immediately sees that mod-
Gaussian convergence implies a central limit theorem for the sequence (5—’;7):

X
NG
where the convergence above holds in law (see [10, § 2-3] for more details on this).

On the other hand, with somewhat stronger hypotheses on the remainder o(1) that
appears in Definition 1, a local limit theorem also holds, see [13, Theorem 4] and [3,

— 00 N (0, 1), (1)
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Theorem 5]. Thus, if G, is a centred real Gaussian random variable with variance ¢,
then

m(B)
2,

for relatively compact sets B with m(dB) = 0, m denoting the Lebesgue measure.

In [8], it is then explained that by looking at Laplace transforms instead of
characteristic functions, and by assuming the convergence holds on a whole band
of the complex plane, one can obtain in the setting of mod-Gaussian convergence
precise estimates of moderate or large deviations. In fact these results provide a new
probabilistic interpretation of the limiting function as a measure of the “breaking of
symmetry” in the Gaussian approximation of the tails of X,, (see Sect. 1.1 for more
details).

The goal of this paper is threefold:

P[X, € B] = P[G, € B] (1 + o(1)) = (1 + o(1))

* to propose a new interpretation of the limiting function in the framework of
mod-Gaussian convergence with Laplace transforms; these results allow us in
particular to recover some well known exotic limit theorems from statistical
mechanics due to Ellis and Newman [5] and similar one for other models or
in higher dimensions.

* to show that once one is able to prove mod-Gaussian convergence, then one can
expect to obtain finer results than merely convergence in law, such as speed of
convergence and local limit theorems. Results on the rate of convergence in the
Curie-Weiss model at critical temperature § = 1 were recently obtained using
Stein’s method (see e.g. [4]), while the local limit theorem, to the best of our
knowledge, is new (at high temperature, with 8 < 1, a local limit theorem is
stated in [18, §4.2]).

* to explore the applications of the results obtained in [8] on the “breaking of
symmetry” in the central limit theorem to some classical models of statistical
mechanics. In particular our approach determines the scale up to which the
Gaussian approximation for the tails is valid and its breaking at this critical scale.

Our results are best illustrated with some classical one-dimensional models from
statistical mechanics, such as the Curie-Weiss model or the Ising model. To illustrate
the flexibility of our approach, we shall also prove similar results for weighted
symmetric random walks in dimensions 2 and 3. The statistics of interest to us will
be the total magnetization, which can be written as a sum of dependent random
variables. These examples add to the already large class of examples of sums of
dependent random variables we have already been able to deal with in the context
of mod-¢ convergence.

In the remaining of the introduction we recall the results obtained in [8] which
led us to the “breaking of symmetry” interpretation, as well as an underlying method
of cumulants that enabled us to establish the mod-Gaussian convergence for a
large family of sums of dependent random variables. The important aspect of the
cumulant method is that it provides a tool to prove mod-Gaussian convergence
in situations where one cannot explicitly compute the characteristic function. We
eventually give an outline of the paper.
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1.1 Complex Convergence and Interpretation of the Residue

We consider again a sequence of real-valued random variables (X,,),en, but this time
we assume that their Laplace transforms E[e**"] are convergent in an open disk of
radius ¢ > 0. In this case, they are automatically well-defined and holomorphic in
a band of the complex plane B, = {z € C, |Re(z)| < ¢} (see [16, Theorem 6],
and [7] for a general survey of the properties of Laplace and Fourier transforms of
probability measures).

Definition 2 The sequence (X,),en is said to converge in the complex mod-
Gaussian sense with parameters f, and limiting function v if, locally uniformly
on 3.,

Ele®]e™ = y () (1 + o(1)).

where ¥ is a continuous function on B, with {(0) = 1. Then, one has in particular
convergence in the sense of Definition 1, with 6(f) = v (if).

In this setting which is more restrictive than before, the residue ¥ has a natural
interpretation as a measure of “breaking of symmetry” when one tries to push
the estimates of the central limit theorem from the scale ./, to the scale #,. The
previously mentioned central limit theorem (1) tells us that:

P[X, > a1,| = (\/;2_7;/ e dx) (14 0(1))

for any a € R. In the setting of complex mod-Gaussian convergence, this estimate
remains true with a = o(4/f,), so that if ¢ = o(1), then

1 w X2
PX, >et,] = —/ e 2 dx | (14 o(1)),
(VZ?T e/Tn )
tnsz
© T Utol) ifl>es> —
= — 0 1 & ,
J2mt, & it

where the notation a, > b, stands for b, = o(a,). Then, at scale ¢,, the limiting
residue ¥ comes into play, with the following estimate that holds without additional
hypotheses than those in Definition 2:

iy

c 2

2wt x

the remainder o(1) being uniform when x stays in a compact set of R%} N (0, c).
Notice that this formula does not follow directly from the calculation of P[X,, > e&f,,]

Vx e (Os C)v P[Xn = -XIn] = W(x) (1 + 0(1))5 ()



Mod-Gaussian Convergence and Its Applications for Models of Statistical Mechanics 373

with ¢ = o(1); thus, it requires additional tools in order to be proven, see [8]. The
estimate of positive large deviations has the following counterpart on the negative
side:

iy

Vx e (0,¢), PX, < —xt,] = Z/_TZX ¥ (—x) (1 + o(1)).

So for instance, if (¥,),en is a sequence of i.i.d. random variables with convergent
moment generating function, mean 0, variance 1 and third moment E[Yf] > 0, then
X, = nl% Y i, Y; converges in the complex mod-Gaussian sense with parameters

n'/3 and limiting function ¥ (z) = exp(E[Y?] z*/6), and therefore for x > 0,
- 2/3 1/6 E[Y’]»’
P| Y ¥ = xn®? | = P[N(0.1) = xn'/] exp =) +o)).
i=1

Thus, at scale n?/3, the fluctuations of the sum of i.i.d. random variables are no
more Gaussian, and the residue v (x) measures this “breaking of symmetry”: in the
previous example, it makes moderate deviations on the positive side more likely
than moderate deviations on the negative side, since ¥ (x) > 1 > ¥ (—x) forx > 0.

Remark 3 The problem of finding the normality zone, i.e. the scale up to which
the central limit theorem is valid, is a known problem in the case of i.i.d. random
variables (see e.g. [9]). The description of the “symmetry breaking” is new and
moreover the mod-Gaussian framework covers many examples with dependent
random variables (see also [8] for more examples).

Thus, the observation of large deviations of the random variables X, provides a
first probabilistic interpretation of the residue v in the deconvolution of a sequence
of characteristic functions of random variables by a sequence of large Gaussian
variables. In Sect. 3, we shall provide another interpretation of v, which is inspired
by some classical results from statistical mechanics (cf. [5, 6]).

1.2 The Method of Joint Cumulants

The appearance of an exponential of a monomial Kx'>> as the limiting residue
in mod-Gaussian convergence is a phenomenon that occurs not only for sums of
i.i.d. random variables, but more generally for sums of possibly non identically
distributed and/or dependent random variables. For instance,

1. the number of zeroes of a random Gaussian analytic function Z,in(J\/'@)k 7 in
the disk of radius 1 — %, the variables (N¢), being independent standard complex
Gaussian variables;

2. the number of triangles in a random Erdos-Rényi graph G(n, p);
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are both mod-Gaussian convergent after proper rescaling, and with limiting function
of the form exp(Lz?), with the constant L depending on the model (see again [8]).
The reason behind these universal asymptotics lies in the following method of
cumulants. If X is a random variable with convergent Laplace transform E[e?] on a
disk, we recall that its cumulant generating function is

(r)
log E[e®] = Z Kr—f}() Z, 3)
r>1 :

which is also well-defined and holomorphic on a disk around the origin. Its
coefficients k") (X) are the cumulants of the variable X, and they are homogenenous
polynomials in the moments of X; for instance, kV(X) = E[X], k®X) =
E[X?] — E[X]?, and «® (X) = E[X?] — 3E[X?] E[X] + 2E[X]’.

Consider now a sequence of random variables (W,),en with kM(W,) =0, and
forr > 2,

K (W,) = K, o, (1 + 0(1)), 4)

with &, — +o00. This assumption is inspired by the case of asum W,, = Y ", ¥; of
centred i.i.d. random variables for which «”(W,) = nx"”(Y). If Eq. (4) is satisfied,
then one can formally write

~2/3 K(z)(Wn) Z2 N (a )_1 K(S)(Wn) Z3

Wn
1 E Z(Ofu)l/3 = (o
P :

(r)
+ 0 gty

r>4
K72 K3z K, 7 _
= (an)l/3 T + 6 + Z %(O‘n)l /3
r>4 :
~ (« )1/3 Kzzz K3 2
- 2 6
whence the mod-Gaussian convergence of X, = (ozn)_l/ 3w, with parameters

K; (et,)'/3 and limiting function exp(K3 z*/6). The approximation is valid if the
o(1) in the asymptotics of k®(W,,) is small enough (namely o((e,)~'/?)), and if the
series ) -, can be controlled, which is the case if

vr, k(W] < (Cr) o (5)
for some constant C. The method of cumulants in the setting of mod-Gaussian

convergence amounts to prove (4) for the first cumulants of the sequence (X,),en,
and (5) for all the other cumulants. From such estimates one then obtains
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mod-Gaussian convergence for an appropriate renormalisation of (W,),>3, with
limiting function exp(K, z"/r!), where r is the smallest integer greater or equal than
3 such that K, # 0.

This method of cumulants works well with sequences (W,,),en that write as sums
of (weakly) dependent random variables. Indeed, cumulants admit the following
generalization to families of random variables, see [15]. Denote £, the set of
partitions of [[1,r] = {1,2,3,...,r}, and u the Mobius function of this poset (see
[19] for basic facts about Mobius functions of posets). If IT € £,, then

p() = (=)= @) - 1)!

where £(IT) = sif [1 = m U m U --- U 7, has s parts. The joint cumulant of a
family of r random variables with well defined moments of all order is

o)
k(Xi... X)) =Y (D) [TE|]]X
i=1

nen, JET;

It is multilinear and generalizes Eq. (3), since

o
K X ,...,Xr = - 10 EeZ1X1+"'+ZrXr
(X1 e e PR ZI=...=Z,‘=0( glE 1)
K(X7'~'5X) == K(r)(X).
———
r times

Suppose now that W = W, = > ', ¥; is a sum of dependent random variables. By
multilinearity,

KOW) = Y kWi, V), 6)

so in order to obtain the bound (5), it suffices to bound each ‘“elementary”
joint cumulant «(Y;,,...,Y; ). To this purpose, it is convenient to introduce the
dependency graph of the family of random variables (Yi,...,Y,), which is the
smallest subgraph G of the complete graph on n vertices such that the following
property holds: if (Y;)ie; and (Y))jes are disjoint subsets of random variables with
no edge of G between a variable Y; and a variable Y}, then (Y;);e; and (Y;);e; are
independent. Then, in many situations, one can write a bound on the elementary
cumulant «(Y;,,...,Y;) that only depends on the induced subgraph G[ij, ..., ]
obtained from the dependency graph by keeping only the vertices iy, ..., i, and the
edges between them. In particular:

1. k(Y;,...,Y;,) = 0if the induced graph G[i, . .., i,] is not connected.
2. if |Y;| < 1foralli then |« (Y;,....Y;)| < 21 ST(Gliy, ..., i,]), where ST(H)
is the number of spanning trees on a (connected) graph H.
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By gathering the contributions to the sum of Formula (6) according to the nature
and position of the induced subgraph GJij,...,i,] in G, one is able to prove
efficient bounds on cumulants of sums of dependent variables, and to apply the
method of cumulants to get their mod-Gaussian convergence. We refer to [8] for
precise statements, in particular in the case where each vertex in G has less than
D neighbors, with D independent of the vertex and of n. In Sect. 5, we shall apply
this method to a case where G is the complete graph on n vertices, but where one
can still find correct bounds (and in fact exact formulas) for the joint cumulants
k(Yi,...,Y;): the one-dimensional Ising model.

1.3 Basic Models

As mentioned above, the goal of the paper is to study the phenomenon of
mod-Gaussian convergence for probabilistic models stemming from statistical
mechanics; this extends the already long list of models for which we were able to
establish this asymptotic behavior of the Fourier or Laplace transforms [8, 10, 13].
More precisely, we shall focus on one-dimensional spin configurations, which
already yield an interesting illustration of the theory and technics of mod-Gaussian
convergence. Given two parameters « € R and 8 € R, we recall that the Curie-
Weiss model and the one-dimensional Ising model are the probability laws on spin
configurations o : [1,n] — {£1} given by

2
1 n . ,3 n .
CWa,ﬁ(U) = m eXxpl o ZU(Z) —+ % (Z U(l)) 5 (7)

i=1 i=1

1 n . n—1 . .
I,p(0) = Z.0ap) exp (a ;o(z) + 5 (; o()o(i+ 1))) . (8)

The coefficient @ measures the strength and direction of the exterior magnetic field,
whereas f measures the strength of the interaction between spins, which tend to
align in the same direction. This interaction is local for the Ising model, and global
for the Curie-Weiss model. Set M,, = Y ", o(i): this is the total magnetization of
the system, and a random variable under the probabilities CW, g and I, g.

In Sect.2, we quickly establish the mod-Gaussian convergence of the magne-
tization for the Ising model, using the explicit form of the Laplace transform of
the magnetization, which is given by the transfer matrix method. Alternatively,
when o = 0, in the appendix, we apply the cumulant method and give an explicit
formula for each elementary cumulant of spins (see Sect. 5). This allows us to prove
the analogue for joint cumulants of the well-known fact that covariances between
spins decrease exponentially with distance in the one-dimensional Ising model. This
second method is much less direct than the transfer matrix method, but we consider
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the Ising model to be a very good illustration of the method of joint cumulants.
Moreover it illustrates the fact that one does not necessarily need to be able to
compute precisely the moment generating function of the random variables.

In Sect. 3, we focus on the Curie-Weiss model, and we interpret the magnetiza-
tion as a change of measure on a sum of i.i.d. random variables. Since these sums
converge in the mod-Gaussian sense, it leads us to study the effect of a change
of measure on a mod-Gaussian convergent sequence. We prove that in the setting
of L'-mod-Gaussian convergence, such changes of measures either conserve the
mod-Gaussian convergence (with different parameters), or lead to a convergence in
law, with a limiting distribution that involves the residue . We thus recover some
results of [5, 6] (in particular [5, Theorem 2.1]), and extend them to the setting of Ll-
mod-Gaussian convergence. In Sect. 4, using Fourier analytic arguments, we quickly
recover the optimal rate of convergence of the Ellis-Newman limit theorem for the
Curie-Weiss model which was recently obtained in [4] using Stein’s method, and
then we establish a local limit theorem, thus completing the existing limit theorems
for the Curie-Weiss model at critical temperature CW ;.

2 Mod-Gaussian Convergence for the Ising Model:
The Transfer Matrix Method

In this section, (0(i))efi,,) is @ random configuration of spins under the Ising
measure (8), and M,, = Z?=1 o (i) is its magnetization (Fig. 1). The mod-Gaussian
convergence of M, after appropriate rescaling can be obtained by two different
methods: the transfer matrix method, which yields an explicit formula for E[e?"];
and the cumulant method, which gives an explicit combinatorial formula for the
coefficients of the series log E[e™]. We use here the transfer matrix method, and
refer to the appendix (Sect. 5) for the cumulant method.

The Laplace transform E[e?"] of the magnetization of the one-dimensional Ising
model is well-known to be computable by the following transfer matrix method, see
[1, Chap. 2]. Introduce the matrix

T = (ez_‘_—g e:z_;’__/;) s
€ €

T T T T 1T 1 T Ty 1 1 Ty [ T T 117171

Fig. 1 Two configurations of spins under the Ising measures of parameters (¢ = 0, § = 0.3) and
@=0.8=1
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and the two vectors V. = (e®,e™®) and W = (). If the rows and columns
of T correspond to the two signs +1 and —1, then any configuration of spins
0 = (0(i))ief1,,) has under the Ising measure I, g a probability proportional to
Vo) To().02To2).03) * * - To(—1).0(m)- Therefore, the partition function Z, (L, ¢, B) is
given by

Z,(Loa,p) = Z Vo) To (1.0 To2).03) * ** Tom—1).0()
o(1),....0(n)
VT)"'W =ay (M) +a_(Ao)"",

where

ef sinh® o + e~ # ef sinh? o + e #
a— = cosha —

a+ = cosha + ;
Ve sinh? o + e—28 Ve sinh? o + e—28

Ay =ef cosha + Ve sinh? o + e=28: A_=¢P cosha — Ve2B sinh? o + 28,

Indeed, A4+ are the two eigenvalues of 7, and a4 and a_ are obtained by
identification of coefficients in the two formulas

Zi(La,f) ="+ *
Z([La, B) = X P 4 e 20HF L 2e7F,
Then, the Laplace transform of M, is given by

" = Z, (Lo +z,B)

]:E vé
sl Z.@a, B)
In particular,
JoE My 0 P sinh
B, 5[M,] = Baple™ | _ 0 ez Lo f)=n—— S o,
0z =0 O Ve sinh? o + e—28

whence a formula for the (asymptotic) mean magnetization by spin:

ef sinh«

m= .
Ve sinh? o + e=28

A more precise Taylor expansion of Z, (I, « + z, 8) leads to the following:
Theorem 4 Under the Ising measure 1y g, M";I—_/;”m converges in the complex mod-
Gaussian sense with parameters

1/3 e P cosha

t, =
" (e?f sinh® o + e28)3/2
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and limiting function

2ef sinh® o + (3ef — e™3F) sinh 3)

=exp|—
Ve P ( 6(e2f sinh® o + e~28)5/2

Proof In the following, we are dealing with square roots and logarithms of complex
numbers, but each time in a neighborhood of R* , so there is no ambiguity in the
choice of the branches of these functions. That said, it is easier to work with log-
Laplace transforms:

Mp—nm

1og1Ea,ﬁ[ L :|:10gZ (]1 ot 1/3 ﬁ)—logzn(u,a,ﬁ)—znz/?’m
10an(]LOh B) =logay (e, B) + (n—1)log A4 (a, f) + o(1)
logZ, (Lo + —7=.8) = logay (o + —. )
£ (n—1)loghs (a +— 1/3 ﬂ) +o(1)
= 10ga+(oz,ﬂ) + (n—1)log A4 (a, B)

+an? (10g/1+(06 ()]

3 92

z nl/ 0
TW (log A+ (a, B))

3 3

9
+ EF (log A+ (a, B)) + o(1).

Thus, it suffices to compute the first derivatives of log A+ («, 8) with respect to «:

log A+ (a, B) = log (eﬁ cosha + ve?f sinh? o + e—zﬂ)

5 ’ sinh
Z (log A0, ) = i
dor Ve2B sinh® o + e=28
52 e~ cosha 5
P (logA+(a,B)) = (2 sinh o + e—28)3/2 =0

2e¢f sinh® o 4+ (3¢f — e73F) sinh v

83
% (log/\«-l—(aa 13)) =- (ezﬁ sinhZOl + e—2ﬁ)5/2 = KS‘

We therefore get

2.2 3
Mp—nm o K
:|=n1/3—z+ 35 o). 0

log By 5| & a7
8 ’ﬁ[ 2 6
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By using Formula (2), this result leads to new estimates of moderate deviations
for the probability P, 4[M,, > nim + n'/3x]. In the special case when « = 0, the
limiting function ¥ (z) of Theorem 4 is equal to 1, and one has to push the expansion
of logZ,(L, 0, B) to order 4 to get a meaningful mod-Gaussian convergence (the
same phenomenon will occur in the case of the Curie-Weiss model):

Theorem 5 Under the Ising measure Iy g, %—/ﬂ converges in the complex mod-

Gaussian sense with parameters t, = n'/> e** and limiting function

3e%f — 2f
7).
24 )

¥ (2) = exp (—
Proof This time one has to compute the fourth derivative of log A1 (o, B), which is

4
% (log A4 (ar, B)) = (2¢P sinh® o + (3e? — e™*F) sinh )
o

d 1
X JE— p—
da ( (€2 sinh® o + e~26)5/ 2)
6ef sinh? o cosha + (3e? — e ) cosha
(€2 sinh® a + e~28)5/2

The second term is the only contribution when o = 0, equal to —(3e® —e?#). Thus,

My 2,2 (3668 _ o284
:|=nl/zaz_(e ez +o(1). O

log B 4| & »7t
8 O*ﬂ[e 2 24

3 Mod-Gaussian Convergence in L! and the Curie-Weiss
Model

In this section, (X,).en is a sequence of random variables with entire moment
generating series E[e*X"], and we assume the following:

(A) One has mod-Gaussian convergence of the Laplace transforms, i.e., there is a
sequence #, — +oo and a function ¥ continuous on R such that

2

V() = B[e™]e™ ">

converges locally uniformly on R to (7).
(B) Each function v, and their limit ¥ are in L' (R).
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We denote [P, the law of X,,

2
2n

(Xn)?
Ele2m

and Y, a random variable under the new law Q,. Note that hypothesis (3) implies
that Z, = E[e®")*/2] is finite for all n € N. Indeed,

X _u?? ) _ Xn—tn0)?
wn(t) dt =K e 2 d[ =E|le 2 e 20 dt
R R R
2w &w)?
= t— ]E e 2n .

Therefore the new probability measures Q,, are well defined. The goal of this section
is to study the asymptotics of the new sequence (Y, ),en. As we shall see in Sect. 3.3,
the Curie-Weiss model defined by Eq.(7) is one of the main examples in this
framework. However, it is more convenient to look at the general problem, and we
shall introduce later other models concerned by our general results.

@n [dx] = P, [dx] > 9)

3.1 Ellis-Newman Lemma and Deconvolution of a Large
Gaussian Noise

Suppose for a moment that hypothesis (A) is replaced by the stronger hypotheses
of Definition 2, with ¢ = 400 and therefore B, = C. Fix then 0 < a < b,
and consider the partial integral E[e®»*/2n 1, .-y _, ,]. By integration by parts of
Riemann-Stieltjes integrals, one has:

b 2 tnb b 2
/ e P,[dx] = [—ern P,[X, > x]i| + / - e Py[X, > x]dx
In In

a tha a n

b b ty,,\'z
o[ X > tnx]:| / tixe 2 P,[X, > t,x]dx
a a

b b
( gf:? \/;/ w(x)dx) (1 + 045(1))

tn / W(X)dx) (1 4 045(1))
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because of the estimates of precise deviations (2). In this computation, o,,(1) is
uniform for a, b in compact sets of (0, +00). In fact this estimate remains true for
a,b in a compact set of R; hence, a and b can be possibly negative. If the estimate
is also true with a = —oo and b = 400, then

E[e®* /20 1, 4ex, <ib]

E[eXn)?/2i]

JE [y

= — (1+ o(1))
VE 3 v dx

_ fab Y(x) dx

Ty dx

Qultwa <Y, < t,b] =

(I +o(1)),

o) (f—:)neN converges in law to the density ¥ (x)/ fR ¥(x) dx.

We now wish to identify the most general conditions under which this conver-
gence in law happens. To this purpose, it is useful to produce random variables
with density ¥, (x)/ fR ¥ (x) dx. They are given by the following Proposition, which
appeared in [5] as Lemma 3.3:

Proposition 6 Let G, be a centred Gaussian variable with variance [l, and

independent from Y,. The law of W,, = G, + % has density Y, (x)/ fR ¥, (x) dx.

Remark 7 This Proposition is related to the so-called Hubbard-Stratonovich trans-
formation, which is commonly used in mean-field theory in order to replace a
problem with interacting particles with a sum or integration over non-integrating
systems. We refer to [2, p. 46] and references therein for precisions on this method
coming from statistical mechanics.

Proof Denote Z, = E[e®)’/2] and fy(x)dx (respectively, Py) the density
(respectively, the law) of a random variable X. One has

SUEN R ( [ o u)P;:[du]) dx
L )
- \/; /. ( [ @n[dy]) e
= — \/7/ ( P dy]) g
_ Zi \/;/_; Y (x) dx.

2
2 dx
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Making w go to 400 gives an equation for Z, = ,/ 2%’, fR Yn(x) dx. One concludes
that:

w

P, <] = S P4

f_ oo ¥n (x) dx
This important property was not used in our previous works: to get the residue of
deconvolution v, of a random variable X,, by a large Gaussian variable of variance
t, (that is to say that one wants to remove a Gaussian variable of variance 7, from
X,), one can make the exponential change of measure (9), and add an independent
Gaussian variable of variance #,,: the random variable thus obtained, which is 7, W,
with the previous notation, has density proportional to ¥, (w/t,) dw.

3.2 The Residue of Mod-Gaussian Convergence as a Limiting
Law

We can now state and prove the main result of this Section. We assume the
hypotheses (A) and (B), and keep the same notation as before.

Theorem 8 The following assertions are equivalent:

(i) The sequence (%)nEN is tight.
(ii) The sequence (%)nEN converges in law to a random variable with density
Y (x)/ [z ¥(x)dx.
(iii) The convergence , — 1, which is supposed locally uniform on R, also
occurs in L'(R).

We shall then say that (X,)nen converges in the L'-mod-Gaussian sense with
parameters t, and limiting function . In this setting, the residue W can be
interpreted as the limiting law of (X,)nen after an appropriate change of measure.

1
A
(f—:)neN converges to a law u if and only if (W,),en converges to the law . If (iii)
is satisfied, then by Proposition 6,

Proof Since the Gaussian variable G, of variance — converges in probability to 0,

so the cumulative distribution functions of the variables W, converge to the
cumulative distribution function of the law v (x)/ [ ¥ (x) dx, and (ii) is established.
Obviously, one also has (ii) = (i). Finally, if (iii) is not satisfied, then by Scheffe’s
lemma one also has

/R Yulw) dx > /R V() dx.
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However, by Fatou’s lemma, [ ¥ (x) dx < liminf, e [p ¥u(x) dx. Therefore, the
non-convergence in L! is only possible if fR Y(x)dx < limsup,_, o fR V() dx.
Thus, there is an ¢ > 0 and a subsequence (7 )ren such that

Vk e N, /wnk(x)deS—f—/w(x)dx.
R R

Then, forall a, b € R,

limsup Pla < W,, < b] = limsup (

k—00 k—00

Pvn@dd [y
fR Y (x) dx ~ liminfi 0 fR Y, (x) dx

fR W (x) dx -
T e+ v dx

which amounts to saying that (W),),en (and therefore (%)HGN) is not tight; hence, (i)
implies (iii). |

To complete this result, it is important to compare the two notions of complex
mod-Gaussian convergence and of integral L'-mod-Gaussian convergence. Though

there are no direct implication between these two assumptions, the following
Proposition shows that the latter notion is a stronger type of convergence:

Proposition 9 Let (X,),en be a sequence that converges in the L'-mod-Gaussian
sense with parameters t, — oo and limiting function ¥ € LY(R). The estimate of
precise large deviations (2) is then satisfied.

Proof Recall that Z, = E[e®)*/20] =/ 3= [z ¥n(x) dx. We want to compute

0 o0 \'2 o0 n 142
PIX, > t,x] = / P,[dy] = Z, / e Q,ldy] = Z, / e 2 Py |dul.
thx thX X n

Suppose for a moment that we can replace the law of Y” by the one of W,, = G, +
in the previous computation. Then, one obtains from Proposmon 6

*° i t, o0 tpu?
Z,,/ e 2 Py,[du] = —/ e 2 Y,(u)du.
X 2” X

Fix ¢ > 0. Since v, converges locally uniformly to the continuous function , there
is an interval [x, x + 7] such that for n large enough and u € [x, x + 7],

Y (x) —& < Yu(u) <Y (x) +e.
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Therefore, for n large enough,

x+n tnu
W o) / <[ e e +o / du
\ i
1yx? 2
e e
W@ —e)— W@ +e)
X+ u? ’nxz
Indeed, by integration by parts, fx "e="2" du is asymptotic to “——. On the other

hand, since ¥, —11 ¥, for the remaining part of the integral,

o0 tnu n(x 2 oo th(x 2 0
/ 2 Y,(u)du <e” =i ( Y (u) du) ~e = ( ¥ (u) du)
x+n x+n x+n

which is much smaller than the previous quantities. Therefore, assuming that one
can replace % by W,,, we obtain the asymptotics

2

_ ity

P[X, > t1] = ﬁ v (1 + o(1))

for all x > 0; this is what we wanted to prove. Finally, the replacement <~ W, is
indeed valid, because

e n u? tn W2 © e n W2
/ e 2 Py,[du] = |:e P[W, < u]i| —+—/ toaue 2 P[W, < uldu

o

~ [e—’”z“z P(Y, /1, < u]i|

o0
:/ e
X

by using on the second line the fact that both Y” and W, converge in law to the same
limit, and therefore have equivalent cumulatlve distribution function on R.. O

o0 t”uz
+/ taue” 2 P[Y,/t, < uldu

X

e [du]

In the same setting of L!-mod-Gaussian convergence, one has similarly the
estimates on the negative part of the real line, and around 0, as described on page
372 in the setting of complex mod-Gaussian convergence.
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3.3 Application to the Curie-Weiss Model

Consider i.i.d. Bernoulli random variables (o(i));>; with Plo(i)) = 1] = 1 —
Plo(i) = —-1] = % for some @ € R. We set U, = >_;_, 0(i), so that

h n
E[GZU”] — (%}fa)) = (coshz + sinh z tanh )"
cosho

IE|: ZUn—';/tsmhwj| (cosh(zn_1/3) + sinh(zn~1/3) tanh(x)n
c n =

ezn71/3 tanh o

. 1/3 i
Up—n tanha n SlnhO{
logE|e® 275 | = — - 72 +o(l)
2 cosh” o 3cosh’ o
. I . 1/3
so one has complex mod-Gaussian convergence of Ly—niahe n’ﬁ;}mha with parameters c:shz o

and limiting function exp(— ;304 %),

If o = 0, then the term of order 3 disappears in the Taylor expansion of the
characteristic function, and one obtains instead

Un /2.2 4
logE|e‘ "/ | = — — +o(1),
g [ } 5 2 (1
hence a complex mod-Gaussian convergence of X, = ’flj—/ﬁ with parameters n'/?

and limiting function exp(—z*/12). Since this function restricted to R is integrable,
this leads us to the following result, which originally appeared in [5] (without the
mod-Gaussian interpretation):

Theorem 10 Let X, = n~'/* Y i, 0(i) be a rescaled sum of centred 1 indepen-

dent Bernoulli random variables. It converges in the L'-mod-Gaussian sense, with
8

oL . 4 . -
parameters n'/? and limiting function exp(—13)- As a consequence, if Y, = n 4p,

is the rescaled magnetization of a Curie-Weiss model CWy | of parameters o = 0
and B = 1, then Y, /n"/? converges in law to the distribution

exp(—’l‘—;) dx
I exp(—%) dx

Proof The function () is in our case
t2n1/2 t n
= 2 _
Yu(f) =e (cosh n1/4) ,

and we have seen that it converges locally uniformly to ¥ () = exp(—%). By
Scheffe’s lemma, to obtain the L!-mod-convergence, it is sufficient to prove that

fR ¥ (t) dt converges to fR exp(—%) dt. This is a simple application of Laplace’s
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Fig. 2 The function 1.5}

”2
f(u) =e~ 2 coshu

method:

2nl/2 t n u2 "
/Wn(t)dtz / e” (cosh —) dt = n1/4/ e 2 coshu | du
R R nl/4 R

and the function u — e_% coshu attains its global maximum at © = 0, with a
Taylor expansion 1 — % + o(u*), see Fig. 2.

Then, the exponential change of measure (9) gives a probability measure on spin
configurations proportional to

Y,)? 1
oo () = o (B ).

so it is indeed the Curie-Weiss model CW, ;. O

Remark 11 The method of change of measures that was used so far has allowed
us to treat the fluctuations of the Curie-Weiss model at critical temperature § = 1.
One may ask what happens for other values of the temperature. The case of high
temperature (0 < B < 1) is treated later in Theorem 13, see in particular the end
of Example 14. For low temperatures (8 > 1), there is no more a limiting law for
M, though one can state a central limit theorem for conditioned versions of the
magnetization. As far as we know, our results cannot be applied to this case.

It is easily seen that the proof of Theorem 10 adapts readily to the case where
Bernoulli variables are replaced by so-called pure measures, so we recover most
of the limit theorems stated in [5, 6]. However, by choosing the setting of mod-
Gaussian convergence, we also obtain new limit theorems for models that do not
fall in the Curie-Weiss setting. The following result explains how it would work to
replace the Bernoulli distribution by more general ones; cf. [14, Proposition 2.2].

Proposition 12 Let k > 2 be an integer, and let (By)n>1 be a sequence of i.i.d
random variables in L for some r > k + 1, such that the first k moments of B,
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are the same as the corresponding moments of the Standard Gaussian distribution.
Then the sequence of random variables

1 n
(nl/(k+l) Z B")
k=1

converges in the mod-Gaussian sense with parameters

n>1

1, = nk=D/G+D),

and limiting function

0(r) = e (k+1)v

where cyy denotes the (k + 1)-th cumulant of B;.

When the random variables B, have an entire moment generating function, then
one can replace ¢ with —if to obtain mod-Gaussian convergence with the Laplace
transforms. If B; is symmetric, then k is necessarily an odd number of the form
25 — 1 and hence

525 €28
y(r) = eV E

In the case of the Bernoulli random variables, s = 2 and ¢4 = —1/12. In order
to have our theorem of L!-mod-Gaussian convergence to hold, we need to find
conditions on the distribution of B; such that ¢, is negative and that fR ¥, converges
to fR Y. The conditions in [5, 6] precisely imply these. But within our more general
framework, following the discussion in Sect. 1.2, we could well imagine a situation
which fulfils the assumptions of Theorem 8 but where the initial symmetric random
variables are not necessarily i.i.d but simply independent or even weakly dependent.
The following paragraph yields an example of such a setting.

3.4 Mixed Curie-Weiss-Ising Model

Consider the one-dimensional Ising model of parameter « = 0, and 8 arbitrary. We
have shown in Sect.2 the complex mod-Gaussian convergence of (n~"/*M,),en
with parameters n'/? e*# and limiting function ¥ (z) = exp(—(3e® — e?#) z*/24).
Restricted to R, this limiting function is integrable, and again one has L!-mod-
convergence. Indeed, recall that

e ZLE) 1 Ai(0.B) )
B =2 Co.p) z(“ ﬂ)( hﬂ) ot ﬁ)(Zcoshﬂ) )
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It will be convenient to work with n='/* M,,, | instead of n~'/* M,, in order to work
with n-th powers. Then,

_al/2e282
2

Y (t) = E[etw:l e

_nl/4 )\'+(u’ﬂ) _EZISTMZ "
/an(odr— - [aws) (—Zcoshﬂ c )

A—(u, _2p2\"
—i—a_(u,ﬂ)(%sh'?e : ) du

and for every parameter 8 > 0, the functions

A p) _an Aot ) ene
2 cosh B 2 cosh B

attain their unique maximum at u = 0, see Fig. 3 for the graph of the first function.
Their Taylor expansions at u = 0 are respectively

3e08 — 28

24

1 u* +o(w* and tanhB + o(1),

so again by the Laplace method we get lim,—oo [ ¥ (r) df = [, ¥(¢) dt and the L'-
mod-convergence. As a consequence, consider the random configuration of spins o
on [1, n] with probability proportional to

n—1 n 2
exp | B (Z o()o(i + 1)) + ﬁ (Z U(i))
i=1

i=1

2B .
Fig. 3 The function f(u, B) = Azﬁfh}? e~ 2 (using MATHEMATICA)
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This model has a local interaction with coefficient 8 and a global interaction with
coefficient eZLﬁ’ so it is a mix of the Ising model and of the Curie-Weiss model. The
previous discussion and Theorem 8 show that its magnetization satisfies the non
standard limit theorem

M, W (x) dx _ 3¢ —e?
e _\n_) —_— th = —_—— .
WA T @dx 4% eXp( %

3.5 Sub-critical Changes of Measures

In the mixed Curie-Weiss-Ising model, one may ask what happens if instead of j
and e%ﬂ one puts arbitrary coefficients for the local and the global interaction. More
generally, given a sequence (X,),en that converges in the L!-mod-Gaussian sense
with parameters #, and limiting function v, one can look at the change of measure

with y € (0,1) (for y > 1, the change of measure is not necessarily well-
defined, since the hypotheses (A) and (B) do not ensure that E[e?®"*/24] < +00).
These subcritical changes of measures do not modify the order of magnitude of the
fluctuations of X,,, and more precisely:

Theorem 13 Suppose that (X,).en converges in the L'-mod-Gaussian sense with
parameters t, and limiting function . Then, if (X,(ly))neN is a sequence of random
variables under the new probability measures Qilw , it converges in the L'-mod-

In

Gaussian sense with parameters =

and limit t — w(ﬁ)

Example 14 Consider a random configuration of spins o on [1, n] with probability
proportional to

n—1 n 2
exp | B (Zo(l’)(f(i n 1)) n zy—n (Za(i)) ,
i=1 i=1

with y < e?#. The total magnetization of the system has order of magnitude n'/2,
and more precisely, one has the central limit theorem

M, e?p
) — =00 N(O, m) ,
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. . . 28
and in fact a L!-mod-Gaussian convergence of %—/’;, with parameters '/ 2 i o~ and

limiting function

(3% — 2Py x* )

v = ool Sy

In particular, if 8 = 0 and one considers the Curie-Weiss model at high temperatures
(y < e
parameters n'/2 and limiting function

X4
Ve = exp(_ 12(1— y)Z) ‘

Proof (of Theorem 13) We denote as before (V,,),en a sequence of random variables
under the laws Q,, = (1) . We first compute the asymptotics of Z(y) = E[eV(X") /2]

= 1), then there is a L'-mod-Gaussian convergence of ¥ 1 /4M” with

z0 =7, Ele= (=1 /2

= \/g ( [R e dx) E[e™ 50 (1 4+ o(1)
= \/; ( /R e dx) E[e™ 5 ] (1 + 0(1))

= [ (o)
-V

by using on the third line an integration by parts as in the proof of Proposition 9
to replace % by W,; and the Laplace method on the fourth line to compute

i e (=12/2 4 (x) dx. The same computations give the asymptotics of

E[eXt7&n?/2] = 7. R[en—(1=1)¥)?/20]

R
= \/g ( A w(x)dx) B[ ] (14 0(1))

’111‘2 1 t
=e20=7 T w(l ) (I +o0(1))
-V Y
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with again a Laplace method on the fourth line. Since

2
]E[el‘X;(,y)] _ E[etxn‘H/(Xn) /Ztn]

’

Z;Sy)

this shows the hypotheses (A) and (B) for the sequence (X,(ly))neN, with parameters

1’_”y, and limiting function W(ﬁ). Then, since (Y, /,).en converges in law, by

using the implication (ii) = (iii) in Theorem 8 for the sequence (X,(ly) )neN, We see
that the mod-Gaussian convergence of Laplace transforms necessarily happens in
LY (R). ]

3.6 Random Walks Changed in Measure

In this section, we shall make a brief excursion in the higher dimensions. Since
we do not want to enter details on mod-Gaussian convergence for random vectors
(for which we refer the reader to [8, 13]), we shall only consider the simple case
X = XD, ..., X®)is a random vector with values in R? such that E[exp(z; X" +
-+ 24X D)] is entire in C¢. We shall say that the sequence (X,,) of random vectors
converges in the complex mod-Gaussian sense with parameter #, and limiting
function ¥ (z1,--- ,zq4) if the following convergence holds locally uniformly on
compact subsets of C%:

. (21)? + -+ + (z2)?

Yn(t) = Elexp(@X,” + -+ + 2X,")] exp (‘ 2

) — W(Zl,...,zd).

In this vector setting, the assumptions (A) and (B) of Sect. 3 now simply amount to
the fact that the convergence above holds locally uniformly for t = (#(V, ..., {®) e
R? and that v/, and ¥ are both in L! (R?).

Following the case d = 1 we denote P, the law of X, on R,

Ilx11?
e 2tn

11X 112
E |:e 2 :|

and Y, a random variable under the new law Q,. Note that here again hypothesis (3)
implies that Z, = E[e!¥I°/24] is finite for all n € N. Indeed, with the notation
(u,v) = uyvy; + -+ - + uqvy, we have

/ V() dt = ]E|:/ e(t,xn)_xn ||2x||2 dti| _ El:euz(;;l (/ o Hxn;lrlnrllz dt):|
R4 R4 R4
27 \? 1,11
=\ Ele 2 |.

Quldx] = P,[dx],
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Therefore, the new probabilities Q,, are well-defined and

£, \4/2
Z, = ]E[ellxnlv/zrn] = (2_) / Y, (1) dt.
T R4

Then it is clear that Proposition 6 holds with G, being a Gaussian vector with
covariance matrix 1/¢, I; where I, is the identity matrix of size d. Similarly one
can establish an analogue of Theorem 8 in R

Let W, be a simple random walk on the lattice Z?=?: at each step, each of the 2d
neighbors of the state that is occupied has the same probability of transition (2d)~!.
The d-dimensional characteristic function of W,, = (W,(ll), R ,ﬁ‘“ ) is

W otz coshzy + - 4 coshzz \"
Ele* ] = y .

Therefore, one has the asymptotics

7] W},l)+“‘+zdw,(,d)
logE| e nl/4
@)+ + @) @)+ @) 1
=nlog| 1 -
" Og( + 2dn'/? 24dn toln
2@l G)? 3@ 4+ @)’ —d(@) e+ @)Y
2d 24d?
+ o(1).

One obtains a d-dimensional complex mod-Gaussian convergence of X,, = n='/4 W,
. 12 oL .
with parameters “-- and limiting function

3@ 4+ @)D —d (@) e+ (Zd)4)) '

Y(z1,...,24) = €Xp ( Al

In [8], we used this mod-convergence to prove quantitative estimates regarding the
breaking of the radial symmetry when one considers random walks conditioned to
be of large size (of order n** instead of the expected order n'/%). With the notion
of L'-mod-Gaussian convergence, one can give another interpretation, but only for
d = 2 or d = 3. Restricted to R, the limiting function is indeed not integrable for
d>4:ift, ..., t5 € [-1,1], then

3(() + 4 )) —d (@) + -+ () <3((0)* + (d— 1) —d (1)*
<@ -=d)(t)* +6(d—1)(1)*
+3(d—1)%
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So, restricted to the domain R x [—1, 1], (11, ..., 1;) < K exp(a(t;)* — b(1)?)

for some positive constants a, b and K; therefore, this function is not integrable.
On the other hand, if d = 2 or d = 3, then v is integrable on R?, and one has

L!-mod-Gaussian convergence. Indeed, when d = 2, the limiting function is

(10)

B (t)* + ()* + 6(t1t2)2)
96 ’

V(1. 1) = exp (
which is clearly integrable; and the residues

M} _nl 2@ 4a)?)
e 4

Yu(t1, 1) =E |:e a7

converge locally uniformly on R? to ¥/ (¢, t2), but also in L' (R?). Indeed,

n
cosh -1- + cosh 2, 22+
/ Vu(ti, ) dty dty = / ( nl 7 A g dt dt,
R2 R2

coshu; + coshuy _ @ +w?\”
= pl/2 T e s duy duy,
2 2

. _ 2+ )? . .
and the function (uy,u;) +— We 7 reaches its unique global

maximum at #; = up = 0, with Taylor expansion

()t 4 )t + 6(uun)?
96

1 +o(lull®)

around this point (see Fig. 4).

w2 +w)?
4

Fig. 4 The function f(u;, u;) = w e~
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Thus, by using the multi-dimensional Laplace method, the limit of the integral
Jr2 Ynlt1. ) dty dty is [ ¥ (1, 12) dty diz, and the L' convergence is shown. Simi-
larly, when d = 3, the limiting function is

_(l1l2)2 + (nt)* + (l2l3)2)

(1)

Y (ty, by, 13) = exp ( 36

and the following computation shows that it is integrable:

)2 242
/ W(x,y,z)dxdydzzf e 5% (/ e_;gxzdx) dydz
R’3 R? R

A sin2 6
=3\/E/ e~ 1 drdf

* 2 46
= 12437 e dr/ < 400
r=0 9=0 +/sin 0

L s integrable at 0. On the other hand, the residues

since
A/sin 6

Wi +ow? +wd)

Yt th,3) =E |:e W17

:| a2+ 1) +1)?)
e 6

converge to ¥ (1,1, ;) locally uniformly on R? and in L!(R?). Indeed, one has
again

coshu; + coshuy 4+ coshus _ @ +w)?+as? \"
/ Yult1, 12, 13) dt = nl/Z/ ( e s du
R3 R3

3

and the function in the brackets reaches its unique maximum at u; = u, = u3 = 0,
with Taylor expansion corresponding to the limiting function ¥ after application of
the Laplace method.

The multidimensional analogue of Theorem 8 thus yields the following multidi-
mensional extension of the limit theorem for the Curie-Weiss model:

Theorem 15 Let W, be a simple random walk in dimensiond < 3. If V,, is obtained
from W, by a change of measure by the factor exp(d |W,||?/2n), then
V., N ¥(x)dx
n3/4 n—>oQo IR3 1//(x) dx’

where W (x) = exp(—x*/12) in dimension 1, and r is given by Formulas (10)
and (11) in dimension 2 and 3.
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Fig. 5 A two-dimensional random walk changed in measure by elWall®/n here with n = 10,000

Remark 16 Suppose d = 2. Then, there is a limit in law not only for n‘;ﬁ, but in fact
for the whole random walk (n‘s%)ksm viewed as a random element of C(R, R?) or
of the Skorohod space D(R, R?), see Fig. 5.

4 Local Limit Theorem and Rate of Convergence
in the Ellis-Newman Limit Theorem

We keep the same notation as before and note [, = fR Y,(x)dx and I =

Jr V¥ (x) dx.

In this section we wish to provide a quick approach based on Fourier analysis,

1. to compute the Kolmogorov distance between the rescaled magnetization
Y,/n'/? = M,/n** in the Curie-Weiss model and the random variable Wy,
with density v (x) /I, where ¥ (x) = exp(—x*/12). This problem was recently
solved in [4] using Stein’s method. As in [4], our method would cover many
more general models as well: it is just a matter of specializing Lemmas 17 and
18 below which are stated in all generality.

2. to prove a new local limit theorem for the rescaled magnetization n~'/*M,, in
the Curie-Weiss model. Here again we shall indicate how one can establish local
limit theorems in more general situations.

4.1 Speed of Convergence

Getting back to our special case of the Curie-Weiss model, we denote X, =
nllT >, B; a scaled sum of £1 independent Bernoulli random variables; Y, the
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random variable with modified law

2
e P, [dy]
(Xn)? ’

E[ezn‘/2:|

G, an independent Gaussian random variable of variance #; and W, = % + G,.
It follows from the previous results that the law of W, has density

W (x) 1 a2 X \"
= —¢e 2 (cosh ) ,
In In 1/4

Q [dy] =

4
. i .
e” 12. We hence wish for an upper

which convergesin L! ¥ _ L
oo o0

bound for the Kolmogorov distance between % and Wq. For this we shall need
the following general lemmas.

Lemma 17 Consider the two distributions W,, = w and Weo = %.ldx. The

Kolmogorov distance between them is smaller than

¥ — Yulls

Ioo

(1+ o(1)).

Proof Fix a € R, and suppose for instance that [, ¥ (x) dx > [, ¥, (x) dx. We have

Fu, (@) — Fyo (@) = (f—aoo Yn(dx [T ¥ () dx)

1, 1,

N (f_”oo yde [ v dx)

I, I

_ L (I/fn(X)— (x)) dx

(/ I/f()d) (1/f() V() dx

Iooly
LW ) =) dx [T, (V@) = yn()) dx
= I i I
Ao @@ v dy Y — Yl
- I, - I,

Writing Fy, (a) — Fw,(a) = (1 — Fy,(a)) — (1 — Fw.(a)), one sees that the
inequality is in fact valid with an absolute value on the left-hand side. Since
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I, = Iso(1 + 0(1)), this shows the claim. If [, ¥,(x) dx > [ ¥ (x) dx, it suffices to
exchange the roles played by 1, and ¥ to get the inequality. O

The asymptotics of the L'-norm |y — ¥,||1 in the Curie-Weiss model are
computed as follows. Noting that one always has ,(x) > 1 (x), it suffices to
compute

al/2,2 n 2 n
/wn(x) dx = / e 2 (cosh(xn_1/4)) dx = n1/4/ (e_l cosh(u)) du.
R R R

By the Laplace method (see [22, Formula (19.17), pp. 624-625]), the asymptotics

of the integral is
1214 (L 1234 (3
( @) +ni 12771 ) + smaller terms.

n

=

2 10

The first term corresponds to I = fR Y(x)dx = fR e™/12 4y, As a consequence,

IV = Yulw _ 1 VI2T(G)
T e s (T

The main work now consists in computing dKol(n%, W,). We start by a Lemma
which is a variation of arguments used for i.i.d. random variables in [21, p. §7]. In
the following, given a function f € L'(R), we write its Fourier transform f‘ &) =
Jrf(x) €* dx. Recall that the function

N
e 2 if |§] < L
v(é) = )
0 otherwise.
is even, of class C* and with compact support [—%, %]. We set p, = v, so that

pu0 =5 [ v@re g

by the Fourier inversion theorem. By construction, the Fourier transform of p, has
support equal to [—% %] Set now

= @
Jelp<())7dy

By construction, p is smooth, even, non-negative and with integral equal to 1.
Moreover, p is up to a constant equal to v * v(§), so it has support included
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into [—1, 1]. The convolution of p with characteristic functions of intervals will
allow us to transform estimates on test functions into estimates on cumulative
distribution functions. More precisely, for a € R and ¢ > 0, set p.(x) = é p(3),
and ¢, ¢(x) = ¢.(x — a), where ¢, is the function 1(_o0 0] * pe. One sees ¢, as a
smooth approximation of the characteristic function 1(—sc 4.

For all a, ¢, ¢, has Fourier transform compactly supported on [—— —] More-
over, it has negative derivative, and decreases from 1 to 0. Later, we will use the
identity

Pe(ex) = ¢1(x) = ¢ (x).

On the other hand, we have the following estimates for K > 0 (we used SAGE for
numerical computations):

1

2 1.0166—

1 " _
= ﬁ [v7(§)|dE = —,

o (K)| = / T () e ke g

2nK?

1
1 2
[eon2ay=5- [ 1v@Pde = 0.01050..
R 27 Jo
Therefore, for any K > 0,

(px(K))?  _ 99

p(K) = p(=K) = m I

¢(K) =1-9(-K) :/0 p(K +y)dy < %

Lemma 18 Let V and W be two random variables with cumulative distribution
functions Fy and Fy. Assume that for some & > 0

IE[¢a,£(V)] - E[¢a,£(W)]I < Bs,

where the positive constant B is independent of a. We also suppose that W has a
density w.r.t. Lebesgue measure that is bounded by m. Then,

sup |Fy(a) — Fw(a)| < 2(B + 10m) e.

a€R

Proof Fix a positive constant K, and denote § = sup,cp |Fv(a) — Fw(a)| the
Kolmogorov distance between V and W. One has

Fy(a) = E[ly<d] < E[patkec(V)] + E[(1 = patkee(V)) lv<d
=< E[¢a+K€,£(W)] + E[(l - ¢a+K€,£(V)) 1V§a] + Be.
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The second expectation writes as

E[(l - ¢a+K€,s(V)) 1V§a]

[ = B 1o o) d

=~ [ (= ) o) Fr() s
= [ B9 1) Fu d

+ /R (1= Guskee () 1a(x) Fy(x) d.

For the first integral, since Fy(x) > Fy(x) — 6 and the derivative of ¢4 ke, is
negative, an upper bound on /; is

/ B0 1 o0y () Fur () dx — 8 / B+ ko) Ty<al)
R R
- A; B s ko () 1 oo () Far () i + (1 — oo (@) 8
_ /R Bl ke (00 1 Cooa @) F(x) dx + (1 — §(—K)) 8.

As for the second integral, it is simply (1 — @u4k.(a))Fy(a), and by writing
Fyv(a) < Fw(a) + 8, one gets the upper bound on /,

/R (1 = Pupee () 1u(0) Fy () dx + (1 — Goskes (@) 8

- /R (1 = Gu e () 1a(3) F () dx + (1 — $(=K)) 6.
One concludes that

E[(l - ¢a+K€,s(V)) 1V§a] = E[(l - ¢a+K€,6(W)) 1W§a] + 2(1 - ¢(_K))5

On the other hand, if m is a bound on the density fy of W, then
o0
E[¢a+Ks,£ (W) lwza] = / ¢a+Ks,£ (Y)fW(Y) dy
o0 o0
<[ po-a-kdy=m [ 0Ky
a 0

Ems/ ¢(u—K)du <me (K + 4.82),
0



Mod-Gaussian Convergence and Its Applications for Models of Statistical Mechanics 401

by using on the last line the bound ¢ (x) < ;37% As a consequence,

E[¢¢1+K£,S(W)] = E[¢¢1+K£,5(W) 1W§a] +m (K + 482) &

33
Fy(a) < Fw(a)+ B+ m(K+4.82)e+2 i 8.
Similarly, Fy(a) > Fy(a) — (B + m(K + 4.82))e —2 % 8, so in the end

66
§ = sup|Fy(a) = Fw(@)| = B +m (K +4.82) ¢ + -5 8.

a€R

As this is true for every K, one can for instance take K = ~/132, which gives

85é(B+m(3/13_2+4.82))g52(B+10m)g. O

We are going to apply Lemma 18 with V = n’% and W = W,,. First, notice that
a bound on the density of W, is

W)l _ 1 2

=

= — =m
I, Io  12V41(3)

On the other hand, using the Fourier transform of the Heaviside function

oo (€) = € (mso(s) + é) ,

we get

n 1 Fl/\ ~ 2
e[ g (22)] - B0 ml = = [ @ i) (57 — 1) at
nl/

2xl, -1
o [ ae (D) e (1)
= 2, - p:(§)e £ Ya(§) | el 1) dg;
Yn 1 ;1 R R 5
’E[ff’as(m)] —E[¢a,s(Wiz)]’ =< W /_l_ |p(8)| |1//n(£:)|ezfl/2 dg

52
by controlling e2:!/2 — 1 by its first derivative (notice that we used the vanishing of
this quantity at £ = 0 in order to compensate the singularity of the Fourier transform

of the Heavyside distribution). Since ||p||Lee = ||p[l1 = 1, the previous bound can
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be rewritten as

‘ [%( 1/2)] E[%(W)]‘—Wf o)l 57 .

We then need estimates on the Fourier transform of /1//:, and more precisely
estimates of exponential decay. To this purpose, we use the following Lemma, which
is related to [17, Theorem IX.13, p. 18]:

Lemma 19 Let f be a function which is analytic on a band {z € C | |Im(z)| < c}.
Forany b € (0,¢),

&) < z( sup [+ ia>||u) el

—b<a<b

assuming that the supremum is finite.

Proof Notice that the Fourier transform of 7,f(-) = f(- + ia) is

/ T f (x) e dx = /f(x + ia) ¥ dx = (/ f(x + ia) e “HDE dx) e
R R R

By analyticity of the function in the integral, using Cauchy’s integral formula, one
sees that the last term is also

(/ et dx) e =F (&) e,

R

(see the details on page 132 of the book by Reed and Simon). It follows that
F©)1 < FOIE +e) < [ G+ @) < Inef Il +leaf . O

Thus we need to compute for a > 0 the L'-norm of ¥, (- + ia). We write

x+ia\!|"
cosh (W)‘

1/2(2_g2)

[Y(x +ia)| =e™ 2

nl/242 X . a %
|wn(x)|e 2 cosz< 1/4) +tanh2< 1/4) sin’ <W)
_ 2 X ) a 2
= |1ﬂn(x) € — tanh (m)) s (m)

For n large enough, sz(—/) = n‘%—“— and on the other hand, 0 < tanh? ( A ) <

3 w7
2
m, SO
L+ i W22 /2,2 2 A 22
M <e Z exp _na (1—tanh2(i)) 1_a_ <e3e 2.
Y (x) 2 ni/4 3nl/2
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Since ¥, (x) behaves as ™12 the previous Lemma can be applied, with an
asymptotic bound

2)2

at at a4 (x—a
Va( +ia) || Ses /e ER dx=e'1* /e ¥ dx
R R
<e (2J§a+100)

by cutting the integral in two parts according to the sign of x*> — 3a*>. We have
therefore proven:

Proposition 20 For any b > 0,
Vn(§)] < K(b) e,

4
where K(b) = 2t (2v/3b + Is) and where the symbol < means that the
inequality is true up to any multiplicative constant 1 + ¢, for ¢ > 0 and n large
enough.

We can now conclude. Fix b > 0, and D < 2b. On the interval [-Dn'/?, Dn'/?],

we have
& H D
2nl/2 — bl§l =~ (b_ an/z) = -l (b— 5) )

Therefore, with ¢ =

Dnl/2?
Yy K(b D
‘ I:d)as( 1/2)i| _]:E[¢a’€(Wn)]‘ < ﬁ /Re_(b—j)‘f‘ d%‘
- K(®)
" oo (5= 2)
K(b)D
Tloo (5= )

2

So, Lemma 18 appliesto V = = /2 and W = W, with

i (X WY <o K®D 10\ 2 Kb) 10
Kol nl/z’ n ~ T[Ioo (b— g) Ioo - Ioonl/Z T[(b— g) D .

Taking b = D = 0.77, we get finally

g (X )< 2 (2K®)  10Y 1027
o\ W) 2 m \ e T ) S
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Adding the bound on dk, (W, W) yields then:
Theorem 21 For n large enough,

Y, -
dm( 1/2,Woo) <12

Notice that we have only used arguments of Fourier analysis and the language of
mod-Gaussian convergence in order to get this bound.

4.2 Local Limit Theorem

Combining Proposition 20 with Theorem 5 in [3] on local limit theorems for mod-¢
convergence, we obtain the following local limit theorem for the magnetization in
the Curie-Weiss model:

Theorem 22 [n the Curie-Weiss model, if we note M, for the total magnetization,
then we have:

2
lim nl/ZPn_1/4M,,€B = — m(B),
Tim n'/2P| | = GArg @

for relatively compact sets B with m(0B) = 0, m denoting the Lebesgue measure.

Proof With the notation of Sect.4.1, ¥, = n~'/*M, and we need to check

assumptions H1, H2 and H3 of [3] for (¥,),en in order to apply Theorem 5 in
loc. cit.

e H1. The Fourier transform of the limiting law u(dx) = (x) & of )1'”2 is in the
Schwartz space, hence is integrable.
52

e H2. The Fourier transforms w,;_@ ex!/2 of )1'72 converge locally uniformly in &
n n

towards the Fourier transform %i) Indeed, by Theorem 10,

Yn(x) w(x)

—_—
I, LIR) —7 Ioo

~ 52
o Lz ";(5) and the term e2:'/? converges locally uniformly to 1.
° H3 Fmally, we have to prove that for all k > 0,

Juk(§) = [e ”1/2:| 1|§|§kn1/2
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is uniformly integrable. Following Remark 2 in [3], it is enough to show that

o]

for £ such that || < kn'/? for some non-negative and integrable function / on
RR. This is a consequence of Proposition 20: since |¥,(§)| < C(k) e ¢! for any
k > 0, one can write

<h()

B | || = Iwn(é')lezjf/2
I,

C(k) e—k|g|+2n%

Io

€l s

I

=
=

for any || < kn'/?2. We can hence apply Theorem 5 of [3] with Z—Z(O) =
1/15,and the value of I, was computed in the proof of Lemma 18. O

Remark 23 A similar result would more generally hold for ¥, whenever one has
some estimates of exponential decay on ,,(§) similar to the one given in Lemma 20:

1
lim 1, P[Y, € B] = — m(B).
n—o00 Ioo

In particular, the result holds for the random walks changed in measure studied in
Sect. 3.6.

Remark 24 The idea behind the proof the local limit theorem above and which is
found in [3] is the following: thanks to approximation arguments, one can show that
it is enough to prove the local limit theorem for functions whose Fourier transforms
have compact support (instead of indicator functions 1z). Then, one uses Parseval’s
relation for such functions f to write:

Elf(Y,)] = — w”—@eﬁif(—é) dt

27 Jp I, t

and then use the assumptions to conclude.



406 P.-L. Méliot and A. Nikeghbali

5 Mod-Gaussian Convergence for the Ising Model:
The Cumulant Method

In this appendix, we give another combinatorial proof of the mod-Gaussian
convergence of the magnetization in the Ising model, without ever computing the
Laplace transform of M,. This serves as an illustration of the cumulant method
developed in [8].

5.1 Joint Cumulants of the Spins

When o = 0, one can realize the Ising model by choosing o (1) according to a
Bernoulli random variable of parameter %, and then each sign X; = o(i))o(i + 1)
according to independent Bernoulli random variables with

eﬂ

PIX;=1]=1-PX; = —1] = oo

In particular, one recovers immediately the value of the partition function
Z,(1,0,8) = 2"(coshB)""!. We then want to compute the joint cumulants of
the magnetization M,; by parity, the odd cumulants and moments vanish. By
multilinearity, one can expand

n

kM) = D k@@).....0(0).

so the problem reduces to the computation of the joint cumulants of the individual
spins, and to the gathering of these quantities. Notice that the joint moments of the
spins can be computed easily. Indeed, fix ij < i < --- < iy, and let us calculate
Elo (i) - - -0 (ia)]. If i,—1 = iy, then the two last terms cancel and one is reduced
to the computation of a joint moment of smaller order. Otherwise, notice that

Efo (i1) - - - 0 (i2r—2)0 (f2,—1)0 (i2,)] = E[o(i1) - - - 0 (i2r—2) Xi, -, Xiy_ 1 +1 * - - Xip,—1]
=E[o(i)) - 0(iar—2)] x> =1 where x = tanh j.
By induction, we thus get E[o(i}) - - -0 (ip,)] = x(27)F =i ++liz=iz—1) Let us

then go to the joint cumulants. We fix i; < i < -+ < iy, and to simplify a bit the
notations, we denote i} = 1, i = 2, etc. We recall that the joint cumulants write as

ko).....o2r) = Y pdD ] E|:l_[o(a):|,

1€, A€ll acA
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where the sum runs over set partitions of [1, 2r]. By parity, the set partitions with
odd parts do not contribute to the sum, so one can restrict oneself to the set 7, even

of even set partitions. If A = {a; < --- < ay} is an even part of [1, 2r], we write
FPA) — y(az—ap)+-t+(ay—ay—1) Thus,

k(o@).....o2) = > udD) [+

neDZr.even Aell

In this polynomial in x, several set partitions give the same power of x; for instance,
with 27 = 4, the set partitions {1,2,3,4} and {1, 2} Ll {3, 4} both give x>~ D+G+4)
Denote P3,, the set of set partitions of [1,2r] whose parts are all of cardinality 2
(pair set partitions, or pairings). To every even set partition I7, one can associate
a pairing p(IT) by cutting all the even parts {a] < ay < -+ < ax—1] < ay} into
the pairs {a; < as},...,{ax—1 < aa}. For instance, the even set partition [T =
{1,3,4,5} {2, 6} gives the pairing (1, 3)(4, 5)(2, 6). Then, with obvious notations,

k(o@).....oQo) =Y p()PD. (12)

1€ even

In Eq. (12), two important simplifications can be made:

1. One can gather the even set partitions /T according to the pairing p = p(I1) €
B,, that they produce. It turns out that the corresponding sum of Mdbius
functions F(p) has a simple expression in terms of the pairing, see Sect. 5.1.3.

2. Some pairings p yield the same monomial x” and the same functional F(p). By
gathering these contributions, one can reduce further the complexity of the sum,
see Sect. 5.1.2.

In the end, we shall obtain an exact formula for k(c(1), ..., 0 (2r)) that writes as a
sum over Dyck paths of length 2r — 2, with simple coefficients; see Theorem 28.

5.1.1 Pairings, Labelled Dyck Paths and Labelled Planar Trees

Before we start the reduction of Formula (12), it is convenient to recall some facts
about the combinatorial class of pairings. We have defined a pairing p of size 2r to
be a set partition of [1, 2r] in r pairs (a1, b1), .. ., (ar, by). There are

cardPy, = 2r— D! = 2r— 1)(2r—3)---3 1

pairings of size 2r, and it is convenient to represent them by diagrams given
in Fig. 6.

On the other hand, a labelled Dyck path of size 2r is a path § : [0, 2r] — N with
2r steps either ascending or descending, such that:

* the path § starts from 0, ends at 0 and stays non-negative;
» each descending step 6(k) > 8(k+1) is labelled by an integer i with i € [1, §(k)].
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1 2 3 4 5 6 7 8 9 10

Fig. 7 The labelled Dyck path corresponding to the pairing of Fig. 6

Fig. 8 The labelled planar rooted tree corresponding to the pairing of Fig. 6

From a labelled Dyck path of size 2r, one constructs a pairing on 2r points as
follows: one reads the diagram from left to right, opening a bond when the path
is ascending, and closing the i-th opened bond available from right to left when
the path is descending with label i. For instance, if one starts from the Dyck path
of Fig. 7, one obtains the pairing of Fig. 6. This provides a first bijection between
pairings p and labelled Dyck paths §.

By considering a Dyck path as the code of the depth-first traversal of a rooted
tree, one obtains a second bijection between pairings of size 2r and labelled planar
rooted trees with r edges. Here, by labelled planar rooted tree, we mean a planar
rooted tree with a label i on each edge e that is between 1 and the height A(e)
of the edge (with respect to the root). For instance, the following labelled tree T
corresponds to the Dyck path of Fig. 7 and to the pairing of Fig. 6: see Fig. 8.

We shall denote T, the set of planar rooted trees with r edges (without label), and
©,, the corresponding set of Dyck paths (again without label); they have cardinality

1 2r
card¥, = card ©,, = C, = —( )
r+1
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1 2 3 4 5 6 7 8 9 10

AONY

Fig. 9 Bijection between non-crossing pairings, Dyck paths and planar rooted trees

They correspond to the subset 1y, of B3, that consists in non-crossing pair partitions
of [1,2r]; a bijection is obtained by labelling each edge or descending step by 1,
and by using the previous constructions. For instance, the non-crossing pairing, the
Dyck path and the planar rooted tree of Fig. 9 do correspond.

In what follows, we shall always use the letters v, § and T respectively for non-
crossing pairings, for Dyck paths and for planar rooted trees. We shall then use
constantly the bijections described above, and denote for instance v(7') for the non-
crossing pairing associated to a tree T, or §(v) for the Dyck path associated to a
non-crossing pairing v. We shall also use the exponent + to indicate the following
operations on these combinatorial objects:

« transforming a non-crossing pairing v of size 2r — 2 in a non-crossing pairing v+
of size 2r by adding the bond {1, 2r} “over” the bonds of v.

« transforming a Dyck path § of length 2r — 2 in a Dyck path §* of length 2r by
adding an ascending step before § and a descending step after 6.

« transforming a rooted tree T with r — 1 edges in a rooted tree T with r edges by
adding an edge “below” the root.

All these operations are compatible with the aforementioned bijections, so for
instance v(TT) = (v(T))" and §(v*) = (S(v))T.

5.1.2 Uncrossing Pairings and the Associated Poset

Let us now see how the combinatorics of pairings, Dyck paths and planar rooted
trees intervene in Formula (12). We start by gathering the set partitions /7 with the
same associated pairing p = p(IT). Thus, let us write

Ko).....o@) = Y 2" | Y ulD) = D] ¥ Fp).

PGq32r neDZr.even peer
p(I)=p
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l_.._l].@l._.l

Fig. 10 The operation of uncrossing on a pairing

where F(p) stands for the sum in parentheses. Notice that x” is invariant if one
replaces in a pairing two crossing pairs {aj, a3}, {az, a4} with a; < a; < a3 < a4 by
two nested pairs (but non-crossing) {a;, a4}, {az, as}; indeed,

(a3 —a1) + (a4 — az) = (a4 — a1) + (a3 — ay).

We call uncrossing the operation on pairings which consists in replacing two
crossing pairs by two nested pairs as described above, and we denote p; > p if
there is a sequence of uncrossings from the pairing p; to the pairing p,; this is a
partial order on the set 3, (Fig. 10).

Proposition 25 The poset (P, <) is a disjoint union of lattices, and each lattice
contains a unique non-crossing set partition v, which is the minimum of this
connected component of the Hasse diagram of (Bar, <). Moreover:

1. On the lattice L(v) associated to v € Ny, the monomial x* and the functional
F(p) are constant (equal to x” and F(v)).
2. The cardinality card L(v) = N(v) is given by:

Nw) = ] he.TO)),

e€E(T(v))

where h(e,T) is the height of the edge e in the (planar) rooted tree T, and E(T)
is the set of edges of a tree T.

Proof First, notice that if p; < p, in *P,,, then there is a sequence of pairings going
from p; to p, such that every two consecutive terms p and p of the sequence differ
only by the replacement of a simple nesting by a simple crossing. By that we mean
that we do not need to do replacements such as the one on Fig. 11, which creates 3
crossings at once.

Indeed, denoting (i,j) the crossing of the i-th bond with the j-th bond, bonds
being numeroted from their starting point, one has (1,3) = (1,2) o (2,3) o (1,2),
which is a composition of simple operations of crossing; and the same idea works
for nestings of higher depth. Thus, the Hasse diagram of the poset (3, <) has
edges that consist in replacements of simple nestings by simple crossings.

This being clarified, it suffices now to notice that via the bijection between
pairings and labelled Dyck paths explained in Sect.5.1.1, the replacing a simple
nesting by a simple crossing corresponds to the raising of a label by 1: see Fig. 12.

In particular, if p; and p, are two comparable pairings in (., <), then the
corresponding labelled Dyck paths have the same shape; and for a given shape
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| r— | o | .11

Fig. 11 The crossing of a nesting that is not simple

I —ll

1 2
1 1

Fig. 12 The operation of uncrossing is a change of labels on Dyck paths

d € ©,,, there is exactly one corresponding non-crossing pair partition v = v(§),
which is minimal in its connected component in the Hasse diagram of (5, <).
Endowed with <, this connected component L(v) is isomorphic as a poset to the
product of intervals

[T li.ae.T)].
e€T(v)

Indeed, the order on the set of labelled trees of shape T'(v) induced by (L(v), <)
and by the bijection between pairings and labelled trees is simply the product of the
orders of the intervals of labels. This proves all of the Proposition but the invariance
of F(-) on L(v) (the invariance of x() was shown at the beginning of this paragraph);
we devote Sect. 5.1.3 to this last point and to the actual computation of the functional
F(). O

Assuming the invariance of F(-) on each lattice L(v), we thus get:
k(o(M).....o2r) = Y xF(p)= Y x*N)F(), (13)
PEP2, VEN,,

where N(v) is explicit. Hence, it remains to compute the functional F(p).

5.1.3 Computation of the Functional F

The main result of this paragraph is:

Proposition 26 The functional F(-) is constant on L(v), and if v is a non-crossing
pairing, then

Fo)y=0) [ e Tw)—1)
I ee, ?(Tv()v))?é 1
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if T(v) has a single edge of height 1, and 0 otherwise.

Lemma 27 The functional F vanishes on pairings associated to labelled rooted
trees with more than one edge of height 1.

Proof Suppose that I7 is an even set partition with p(IT) = p; p being a pairing
of size 2r associated to a labelled Dyck path that reaches O after 2a steps, with
2r = 2a + 2b,a > 0 and b > O (this is equivalent to the statement “having more
than one edge of height 1”’). We denote p; and p; the pairings associated to the two
parts of the Dyck path. There are several possibilities:

either IT can be split as two even set partitions I1; and IT, of [1,2a] and
[2a + 1, 2r], with respectively k and [ parts, and with p(IT;) = p; and p(IT,) =
P25

or, IT is one of the k x [ possible ways to unite two such even set partitions 11,
and I, by joining one part of I1; with one part of I1y;

or, I1 is one of the (é) X (é) x 2! possible ways to unite two such even set partitions
I1; and IT; by joining two parts of IT; with two parts of I1y;

or, I1 is one of the (l;) X (é) x 3! possible ways to unite two such even set partitions
I1; and IT; by joining three parts of I1; with three parts of I1,;

etc.

So, F(p) can be rewritten as

> =t ((r — DI —k(-2)!+ (’;) (;) 21(r—3)!
p(IT)=p1

p(Ih)=p>

Oe-e)

where t = k + [. However, for every possible value of k > 1 and / > 1, the term in
parentheses vanishes. Indeed, assuming for instance k < I, we look at

k K\ (1\ (k+1—1)"
(41— 1) (_1)x()<)< )
X=ZO X X X

. I\ (k+1—-1-
— K= D! Y (1) (x)< +k_x x)

x=0

:k!(l—l)!(kzl) =0

by using Riordan’s array rule for the second identity. O
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Thus, F vanishes on pairings p associated to labelled trees with more than one
edge of height 1. In other words, if F(p) # 0, then {1,2r} is a pair in p, and we
can look at the restricted pairing 0 = pj[2,2-—1], Which is of size 2r — 2; and we can
consider F as a functional on B3,,—,. To avoid any ambiguity, we denote this new
functional

GlpePo) = Y (D un)

pIl)=p

We then expect the formula G(p) = (—1)" [[,e E(T(p)) 1(€). We proceed by induction
on labelled rooted planar trees, and we look at the action of adding a leave of
label 1 to the tree, and of increasing a label of an edge by 1. To fix the ideas, it is
convenient to consider the following example of pairing p, and the associated set of
set partitions IT with p(IT) = p. The pairing p of Fig. 13 is associated to the labelled
planar rooted tree on Fig. 14, and it has functional G(p) = (—1)33!14+-2x(—=1)22! =
—2. We denote N(I, p) the number of set partitions such that p(IT) = p and
£(IT) = I. Hence,

G(p) =) N(.p) (=D)'I!

=1

1. Adding an edge. Suppose that one adds an edge with label 1, to obtain for
instance: see Fig. 15. Set p’ for the new pairing; notice that it is obtained from p
by inserting a simple bond —. The set partitions [7’ with p(IT") = p’ are of
two kinds:

e

.
Fig. 13 A pairing of size 2r = 6 (the upper diagram) and the associated set of set partitions,
which contains 3 elements

Fig. 14 The labelled planar rooted tree associated to the pairing of Fig. 13
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Fig. 15 Addition of an new edge of label 1 to the planar rooted tree

r=a e b b

R wvuwen v 1 |

Fig. 16 Set partitions where the new bond is left alone

(= e SRR IR eI

(=2 I - 171_._._1

Fig. 17 Set partitions where the new bound is integrated in another part

a. those where the new bond is left alone. They all come from a set partition I7
with p(IT) = p by simply inserting the new bond: see Fig. 16.

These terms give the following contribution to G(p’):
Gw(p) ==Y N(p) (=) ([ + D).
=1

b. those where the new bond is linked to another part of a set partition IT with
p(IT) = p. Starting from a set partition I7 with p(IT) = p, the number of parts
of IT that can actually receive the new bond is £(/1) — (h(e) — 1), because the
new bond cannot be linked to the h(e) — 1 parts that go above him. In our
example: see Fig. 17.

These other terms give the following contribution to G(p'):

Gy () =D N(.p) (=)' 1" (I + 1 = h(e)).
=1
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We conclude that G(p") = G)(p') + Gy (p") = —h(e) G(p), so the formula for
G stays true when one adds an edge of label 1.

2. Raising a label. As explained before, raising a label corresponds to adding a
simple crossing to the pairing p, which is done by exchanging two ends b and d
of two simply nested pairs {a < b} and {¢ < d} of p. This does not change the
structure of the set of even set partitions IT with p(IT) = p; that is, N(/, p) =
N(l, p) for every L. So, the formula for G also stays true when one raises a label.

Since every labelled rooted tree is obtained inductively from the empty tree by
adding edges and raising labels, the proof of Proposition 26 is done.

5.1.4 Expansion of the Joint Cumulants as Sums Over Dyck Paths

Recall that x¥ stands for x@—al+-+@—ay—1) jf y is the pairing {a; <
az}, ..., {axy—1 < az}. We adopt the same notations with Dyck paths and planar
rooted trees, so x% or x” stands for x¥ if § = §(v) orif T = T(v). We also denote D3,
the image of ©,,—, in D,, by the operation § — §1. Notice that if A = (§(7))*
with T tree with r — 1 edges, then

2r—1

[ #e @ +n=T]] a4
i=1

e€E(T)

A; denoting the value of the Dyck path A after i steps. Starting from Eq. (13) and
using the explicit formulas that we have obtained for N(v) and F(v), we therefore
get:

Theorem 28 For every indices 1 < --- < 2r,

2r—1
k@().....o20) = ()" Y (H 8,-) X

sedy \i=l

Example 29 The two non-crossing pairings of size 4 are s o—» and
& «—— 3, the associated powers of x are

x(6—1)+(5—4)+(3—2) (6—1)+(5—-2)+(4-3)

and x
and the associated quantities G(v) are 4 and 12, so, with r = 3,

K(U(l), e 0,(6)) — 4X6+5+3_4_2_1 + 12x6+5+4—3—2—1‘
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Theorem 28 has several easy corollaries. First of all, we see immediately from
it that the sign of a joint cumulant of spins is prescribed, which was a priori non-
obvious. On the other hand, applying Theorem 28 to the case r = 1 yields

k(0 (i), () = <V,

that is, the correlation between two spins decreases exponentially with the distance
between the spins. More generally, one can use Theorem 28 to get a useful bound
on cumulants. Notice that the minimal exponent of x that appears in the right-hand
side of the formula is

§ @D H(@r D= (2r-2)+(2r-3)—Q2r—4) +--+3-2) -1

Indeed, it is easily seen that the exponent of x in x’ increases when one makes a

rotation of a leaf of T in the sense of Tamari (cf. [20]). Since all trees are generated
by leaf rotations from the tree with all edges of height 1 (c¢f. [11]), the previous claim
is shown. It follows that

2r—1
IK(O'(I), o 0(2r))| < Z 1_[ 81' X(Zr)+((2r—1)—(2r—2))+"'+(3—2)—1'

se®3, i=1
The quantity
2r—1
o =Y. ( 8,-) = > | T] h@ ((e) +1)
se@r \i=l Te€X,—1 \e€E(T)

has for first values 1,2, 16,272, 7936, .. ., and a simple bound on Q(r) is (2r — 2)!,
see Proposition 37 hereafter. Hence, a generalization of the exponential decay of
covariances is given by:

Proposition 30 For any positions of spins iy < iy < --- < iy,

|K(O’(i1), o U(in))| < (2r _ 2)! xi2r+(i2r—1—izr—z)+"'+(i3—iz)—i1_

5.2 Bounds on the Cumulants of the Magnetization

As explained in the introduction, we now have to gather the estimates given by
Theorem 28 to get the asymptotics of the cumulants k> (M,,) of the magnetization.
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5.2.1 Reordering of Indices and Compositions

Since the joint cumulants of spins have been computed for ordered spins i} < i, <
. < iy, in the right-hand side of the expansion

n

kM) = D k@@).....0(0).

i],eeninp=1

we need to reorder the indices iy, ..., iy, and take care of the possible identities
between these indices. We shall say that a sequence of indices i, . . ., i, has type ¢ =
(c1,...,c;) with the ¢; positive integers and |c| = Zﬁ:l ¢; = r if, after reordering,
the sequence of indices writes as

A o o _ _ _ +/ —
h=h=...= lcl < lc1+l - lc1+2 - = lC1+cz < lC1+C2+l =

Here, i,’( stands for the k-th element of the reordered sequence. For instance, the
sequence of indices (3,2, 3,5,1,2) becomes after reordering (1,2,2,3,3,5), so
it has type (1,2,2,1). The type of a sequence of indices of length r can be any
composition of size r, and we denote €, the set of these compositions. Conversely,
given a composition of size r and length /, in order to construct a sequence of indices
(i1, - .., i) with type c and with values in [1, n], one needs:

* to choose which indices i will fall into each class (i}, ..., ié_l), (..., i’CH_Cz),

etc.; there are

r r!

c]  cley!-oq
possibilities there.

e and thento choose | <j; <j, < -+ <jy<nsothatj, =i =--- =i

oy oy
=i == g, el

As a consequence,

2
) =Y 3 C’ K (0D 0 (ee) )

€&y, 1<ji<p<<ge) <n

=) Y Y ZC’ C(8) B(n, ¢, §)

c€Cyr §€D3
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where C(§) = 1_[12:11 8 is the quantity computed in the previous paragraph, and

B(n, c, 8) = Z xz{a</7}6u(8)(i/7_iﬂ) ,

1<ji<ja<<jee)=<n

the indices i being computed from the indices j according to the rule previously
explained, namely,

J1 =101 ==,
J2 =le41 = = et
Jeo) = leytteyo+1 = 0 = Do

Example 31 Suppose r = 1. There are two compositions of size 2, namely, (2) and
(1, 1), and one trivial tree with 0 edge; therefore,

k@ (M,) = B(n, (2), ) + 2B(n,(1,1), )

=1 I<ji<ja=<n

i i n o0 21 =
The double geometric sum has the same asymptotics as » =1 ) h=ji+1% =
X
n T’ SO

1
k@ (M,) ~n Y e
1—x

It is not hard to convince oneself that the approximation performed in the
previous example can be done in any case, so that a correct estimate of B(n, ¢, §)
is n B(c, §), with

B(C, 5) = Z xZ{a<b}eu(5)(ib—ia)'

0=j1<j2<<je(e)

In this new expression, the indices j are unbounded (except the first one, fixed to 0),
and what we mean by approximation is that

nB(c,8) = B(n,c,§) + O(1),

with a positive remainder corresponding to terms of the geometric series with
indices larger than n. So:
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Fig. 18 Identifications of
indices corresponding to the

composition ° °
c=(3,2,1,2,2)
Fig. 19 Contraction of the

diagram of a non-crossing
partition along a composition

Ju J2 J3 Ja Js
Proposition 32 An upper bound, and in fact an estimate of |k ?"” (M,)| is

WM@hNSHZ:§:<?)Ma&C@.

c€Cy, §€D3,

5.2.2 Computation of the Functional B

There is a simple algorithm that allows to compute B(c, §) for any Dyck path § and
any composition c. Let us explain it with the path § associated to the non-crossing
pairing v of Fig.9 and with the composition ¢ = (3,2, 1,2, 2). This composition
¢ corresponds to some identifications of indices, which we make appear on the
diagram of the pairing v as follows: see Fig. 18.

We now contract the green edges added above, obtaining thus: see Fig. 19.

This new diagram corresponds to the following simplification of the sum B(c, §):

B(C, 5) — E xi]o+i9+ig—i7+i6—i5—i4+i3—i2—i1
0=i|=ir=i3<iy=Ii5<ic<i7=Ig<i9g=i}|(
= E xFoFis=2ia=h because of the identities of indices;

0=i] <ig<ig<i7<I9y
= Z K V5T FU5=2)+030) by relabeling the indices.

0=j1<j2<j3<ja<Js

So, the new diagram, which we call the contraction of v along ¢ and denote v |,
can be read similarly as the previous diagrams of pairings, that is to say that

B(c.8) = Z x(V(S))L-’

0=j1<j2<j3<ja<js5

where x"¥¢ stands for the product of factors x*~%, {a < b} running over the bonds of
the contracted diagram v ..
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Given a contracted diagram p = v |, of length £(c), denote §;(p) the number
of bonds opened between j; and j»; 8,(p) the number of bonds opened between j,
and j3; d3(p) the number of bonds opened between j3 and js; efc. up to 8¢)—1(p).
For instance, in the previous example, there is one bond opened between j; and j,
(the one starting from j;); 3 bonds opened between j, and j; (the previous bond,
which has not been closed, and the two bonds starting from j,); and 2 bonds opened
between j3 and j4 and between j; and js5. So (81, 62, 83, 84) = (1,3,2,2).

Proposition 33 Set p = (v(§)) .. One has

to—1 x8i(p)
B(c.§) = [] =5

=

Example 34 Consider the previous contracted diagram ps, and the corresponding
sum

Bs = Z KUs=+0Gs=2)+(3—70)

0=j1<j2<j3<ja<Js
We reduce inductively the size of the contracted diagram as follows. We first write

Bs = Z 2Us=i)+ (a0 +(a=2)+(3—7)

0=j1<j2<j3<ja<js

00
Z Ua=in+Ga—j2)+(s—) Z 2Us—ja)

0=j1<j2<j3<Ja Js=ja+1

x2

1 —x2

(Ga=i1)+Gs—i)+Gs—in) 0
XU+ Ga=2)+03—i2) | — By,
Z 1 — x%4 4

0=j1<j2<j3</s

where By is the sum corresponding to the diagram p4 which is obtained from ps by
identifying j4 and js5: see Fig. 20.
We can then do it again to go to size 3:

B, Z 20a=73)+ (3= +03=)+G3—2)

0=j1<j2<j3</s

o0
Z xB=D+2(3=0) Z 2Ua=i3)

0=j1<j2</3 Ja=j3+1

2 83
X Z L2 | = X )
1 — .Xz 1 — x83

)

0=j1<j2</3
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Fig. 20 Reduction of the
diagram of Fig. 19

Ju J2 J3 )4
Fig. 21 Further reduction of
the diagram of Fig. 19

Ji J2 J3

where Bj is the sum corresponding to the diagram p3; which is obtained from p4 by
identifying j; and js: see Fig.21. Two more operations yield similarly the factors

82 1
X X
=5 and et

Proof (of Proposition 33) The algorithm presented above on the example gives
clearly a proof of the formula by induction on £(c). Indeed, at each step of the
induction, the term that is factorized is

o Se(c)—1
2 x&(c)—l(jz(c)—jz(c)—l) — X
9
.- 1 — xSew—1
Jte)=jtey—1+1

because J¢)—1 is the number of bonds ending at ji). Then, as for the other
factor, one obtains it by replacing jic) by jec)—1 in the sum B(c,§), and this
amounts to do the identification between j¢)—1 and jy() in the contracted diagram.
This identification and reduction to lower length does not change the values

81, ..., 8¢()—2, so the formula is proven. O
We recall that a descent of a composition ¢ = (cy, ..., c¢) is one of the integers
ci,cp+ce,cr+cy+c3,..,c0 -+ co—y.

For instance, the descents of ¢ = (3,2, 1,2,2) are 3, 5, 6 and 8. The set of descents
D(c) of a composition ¢ of size r can be any subset of [1,r — 1], so in particular,
card @, = 2"~!. The contraction of diagrams along compositions presented at the
beginning of this paragraph satisfies the rule:

{81(0). .. Seiy1(p)} = {84, d € D(c)} if p = (v(§)) e

So, B(c, ) = ]_[deD(c) %, and Proposition 32 becomes:
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Theorem 35 An upper bound, and in fact an estimate of |k *" (M,,)| is

ey
kM| _ 33 A@0) Be.§) )
" c€€yr §eDJ,
. n ¥ —

with A(c) = (), B(c.8) = [Tyep(e) 7o and C(8) = [T, 6.

Example 36 Suppose r = 2. There is one Dyck path in @7, with C(§) = 2 since
81 = 63 = 1 and §, = 2. The compositions of size 4 are (4), (3, 1), (2,2), (1, 3),
(2,1,1),(1,2,1),(1,1,2) and (1, 1, 1, 1); their contributions A(c) B(c, §) are equal
to

4x 6x2 4x 123 1222 1253
l—x" 1—=x2" 1—=x" (1=x0-x»" 1-x2" (1-x)1—-x2"
24x*
(1—x2(1—-x)

L,

So,

@) ~2n (1+ &x n 6x> n 12x° n 24x3
| >~ 2n
I—-x 1-x2 (1-x2 (1A-x01-x2

24x*
oo —xZ))

2
~2n (1+x)((11+;13x+x) =n(3e% —e&?).
—x

5.2.3 Explicit Bound on Cumulants and the Mod-Gaussian Convergence

By examining the asymptotics of the first cuamulants written as rational functions in
x, one is lead to the following result. Set

P)=|>" Y A(©B(.8)CE) | (1-x>".
c€Cyr §€D3,
For instance, Py(x) = 1 + xand Py(x) = 2 (1 + x)(1 + 4x + x?).
Proposition 37 For every r > 1 and every x € (0, 1),

@n! @r=2)!

0=P == or
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Proof For every composition ¢ and every path §, B(c, §) (1—x)* ! is a non-negative

and convex function of x on [0, 1]. Therefore, 0 < P,(x) < xP,(0) + (1 —x) P.(1).
When x = 1, all the rational functions B(c, §) (1 — x)*~! vanish, except when c has
2r — 1 descents, that is to say that c = (1, 1, ..., 1). Then, A(c) = (2r)!, and

27’—1 1 1
1. B bl 8 = r ey
XEH (C ) =1 51‘ C(8)
Therefore,
~ . @20 @r=2)
P.(1) = 2r)! (card ®3,) = FRTEETE

On the other hand, when x = 0, all the rational functions B(c, §) (1 —x)*~! vanish,
except when ¢ has no descent, that is to say that ¢ = (2r). Then, A(c) = 1 and

P,(0) = Q(r) = Y A@).

5eD3,

Among all Dyck paths in D7, the one with the maximal product of values G(§) is
0,1,2,...,r—1,r,r—1,...,2,1,0). So,

P.(0) <r!'(r—1!(card®3) = 2r—2)! < P,(1).

It follows that P,(x) < xP,(1) + (1 —x) P.(1) = P,(1). O
Corollary 38 For every r,

k@ (M,)| < n@r— DI Qr=23)1E* + 1>

Proof Indeed,

i P, (x)
KC(M,)| < n Ce%;g;* A(c)B(c,8)C@) | =n 1 —x)r1
Pl) L\ et er-2)
—n(l_x)Zr—l_n(l_x) r! (}’—1)'

Replacing x by tanh § allows to conclude, and this gives another proof of Theorem 4.
We rewrite the logarithm of the Laplace transform of n~'/4M,, as

KM o, Ly KOM)2 KM KOO S,

ont © RE 24n £ 2!

r=1
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The series on the right-hand side is smaller than

° — 1" - 3N

2 : (2r 1)(2 ()2'}’ 3 (eﬂ 1)2r—1 Z2rnl—r/2 < n_1/2 E :((eZﬂ I)Z)Zr n—(r—3)/2
r)l

r=3 r=3

P (€ 4+ 1)2)° ’
- 1—((e* + 1)2)2n~1/2

so it goes uniformly to zero on every compact set of the plane. On the other hand,
we have seen that k@ (M,)) = ne?? —0(1) and -« (M,,)) = n (3e% —e?)—0(1),
so we conclude that

My _ nl/22B 2 3PPy A _
E|:ez n1/4i| e 2 =e bz} (1 +0(n 1/2)) .

and this is indeed the content of Theorem 4. ]

Remark 39 The method of cumulants that leads to Corollary 38, and eventually to
Theorem 4, is developed in much more details in [8]. In particular, our approach to
the computation of cumulants of sums of dependent random variables coming from
complex systems can be made quite general. Thus, givenasum S = ), .., X,, one
can obtain powerful bounds on k" (S) by:

1. first, computing explicitly the elementary joint cumulants (X, , Xy, . . ., Xy,),
as in Theorem 28;

2. then, find clever rules in order to sum these cumulants and keep correct
bounds. In this second part, one needs in particular to identify which elemen-
tary cumulants k™ (Xy,, Xy, , ..., X,,) give the main contribution to k™ ) =
D, KO XKy, Xy X)),

An important open problem of combinatorial and geometric nature would be to
adapt the arguments of this section to the two-dimensional Ising model, for which
one cannot compute explicitly the generating function E[e™"]. We expect the
methods of cluster expansion (cf. [2, Chap. 5]) to be powerful tools in this setting.
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for comments on the combinatorics of the cumulants of the one-dimensional Ising model. We
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On Sharp Large Deviations for the Bridge
of a General Diffusion

Paolo Baldi, Lucia Caramellino, and Maurizia Rossi

Abstract We provide sharp Large Deviation estimates for the probability of exit
from a domain for the bridge of a d-dimensional general diffusion process X, as the
conditioning time tends to 0. This kind of results is motivated by applications to
numerical simulation. In particular we investigate the influence of the drift b of X.
It turns out that the sharp asymptotics for the exit probability are independent of the
drift b, provided it satisfies a simple condition that is always satisfied in dimension 1.
On the other hand we produce an example where this assumption is not satisfied and
the drift is actually influential.

AMS 2000 subject classification: 60F10, 60J60

1 Introduction

Even if the subject of Large Deviations was not one of the most visited among the
many objects of investigation in the large scientific production of Marc Yor, he was
able to provide three original contributions in this field [14, 22, 23]. On the other
hand bridges and conditioned processes have been at the heart of many of his most
important contributions. In this short note we investigate some points concerning
the asymptotics of conditioned processes when the conditioning time goes to 0.

The investigation of Large Deviation and sharp Large Deviation estimates in this
context goes back to [4], where the case of the Brownian bridge and the asymptotics
of the exit probability from a general domain D were investigated. This line of
research was continued in the subsequent years [5, 7, 17].

These results were motivated by applications to simulation: actually when
simulating the path of a stochastic process (with the Euler scheme e.g.) which is
killed at the exit from some domain D it is important to be able to compute the
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probability for the conditioned diffusion with X;, = x, X; , = y to exit from D in
the time interval [t,,, f,,+1], where #,, 1,4+ are consecutive times in the time grid and
Xi,» X1, 4, denote the corresponding simulated positions.

Established numerical evidence indicates that the naive approximation of the
exit time by the smallest of the values #; such that X;, ¢ D produces an error that
decreases to 0 very slowly, so that this approach is in practice useless. The value of
the exit probability for the conditioned process, or at least its asymptotics, allows to
produce an improved algorithm that better detects the exit time, see [4, pp. 1645—
1646], for a more complete explanation. See also [11, 17] for estimates concerning
this improved simulation scheme.

When the simulation concerns a general diffusion, usually the exit probability
of the conditioned diffusion is approximated by the corresponding quantity of
the diffusion obtained by freezing its coefficients (at x = X, e.g.), thus taking
advantage of the well known asymptotics of the Brownian bridge. The need of a
more thorough investigation is now prompted by applications to finance, e.g. for
the numerical computation of barrier options. This is of particular importance in the
case of stochastic volatility models, the question being of producing a more accurate
estimate or, possibly, to assess the accuracy of the freezing procedure.

Let us remark that problems concerning the simulation of conditioned processes
have recently received much attention in connection to a rich context of applications,
see [10, 12, 13] e.g.

In this note we investigate sharp Large Deviation estimates for the exit probabil-
ity, highlighting a particular feature that has some interest from a theoretical point of
view. It has been proved [3, 8] that the (non sharp) Large Deviation asymptotics for
conditioned diffusions do not depend on the drift b of the non conditioned process
X as in (1). It has been a general belief that this remains true also for the sharp
Large Deviation asymptotics of the bridge of a diffusion. This was actually proved
for a large family of one dimensional diffusion processes in [5]. We prove that in
the multidimensional setting this property holds only if the drift satisfies a simple
condition, always satisfied in dimension 1.

Our results stem from two main tools: the asymptotics of the exit probability from
a domain provided by W.H. Fleming and M.R. James [15], and the asymptotics for
small time of the transition density of a diffusion investigated by S.A. Mol¢anov
[20] and G. Ben Arous [9].

Our goal here is mainly to put forward the main ideas and techniques, without
trying to look for minimal regularity assumptions.

2 Conditioned Diffusions

Let X be a d-dimensional (possibly inhomogeneous) diffusion process with transi-
tion density p. The conditioned diffusion given X, = y, t > 0, is associated to the
transition density

p(u,v,x,2)p(v,t,2,y)

, 0<u<v<i, x,z€R?.
plu,t,x,y)

p(u,v,x,z7) =
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Remark that this is a time inhomogeneous transition density, even if X was time
homogeneous. Let us assume moreover that X is the solution of the Stochastic
Differential Equation (SDE)

dX, = b(X,) dt + o(X,) dB, (1)

(we consider therefore a process X that is time homogeneous) and let us denote by
L its generator

d

L:;Zaq(z) +Z (Z)

ij=1

where, as Esual, a = oo*. By a straightforward computation (see also [19]), the
generator L, of the conditioned diffusion is

d
~ —~ 0
Ly=L+Y b'(zv)—, 0<v<rt,
’ Z i )3Zi -
where

b (zv) = p(t—vzy)zau(z) —p(t—v,2,)

—Zaq(Z) logp(t v,2,¥)

ie.
B(z.v) = a(Q) Vlogp(t —v.2.) @

The conditioned diffusion has therefore the same distribution as the solution of the
SDE

dg, = (b(&) + b (6,v)) dv + 0(&,) dB,

for v < t. Let 5}, = &, the time changed conditioned diffusion so that it is defined
on [0, 1[; 1" is the solution of

(with respect to a possibly different Brownian motion). We can therefore obtain
estimates concerning the conditioned diffusion using the Freidlin-Wentzell Large
Deviation estimates as soon as we are able to compute the limit

P(z,v) = lim 10 (z,1v) )
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uniformly on compact sets [1, 6, 21] and prove that the limit function b’ is smooth
enough. Recall that

B(z.10) = a(2) Vlog p(t(1 = v).2.7) ©

Let us denote by ﬁ;g the law of i with the starting condition 7, = x. Let D C R?
be an open set with a smooth boundary and v = 7, the exit time from D. Let us
now assume that a(x) = o0* (x) is non degenerate for x € D. The Freidlin-Wentzell
theory of Large Deviations states that

limrlogP(t < 1) =— inf  I(y) =: —Ly, . (6)
t—0 ” y(s)=x,7(y)<l

I, denoting the rate Freidlin-Wentzell function

1
1 / (@) " Gy = P16, 0)). Yo — Py, 0)) dv i y is absolutely continuous

L(y)=42/;
+o0 otherwise .
(N
3 The Sharp Asymptotics
We want to prove the stronger result
g:i(x,5) == /P\ifv(r < 1) ~cpge il 3

ast — 0, for some constant ¢, ; > 0. We stress the relevant fact that ¢, ; is a constant
independent of ¢ (see Remark 2 for more comments).

We shall investigate the situation where the positions x (the starting point of the
process) and y (the conditioning position) are close to each other. This is justified
by the application mentioned in Sect. 1, x and y being consecutive positions in a
simulation scheme.

The computation of the asymptotics (8) was performed in [4] in the case where
X is a multidimensional Brownian motion. The idea there was to take advantage of
the results of W.H. Fleming and M.R. James [15]. Let us recall these estimates. Let
X? be the solution of

dX: = bo(X2,v)dv + Jea(X)dB,, v>s
X;=xeD.

€))

Let T > 0 be fixed and let us assume that

lin%) be(x,v) = b(x,v)
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uniformly for (x,v) on the compact sets of D x [0, T]. Let us define the function
u:Dx[0,T[— Rby

u(x,s) = inf  I(y) (10)

y(s9)=x7(y)<T

where is is, similarly as in (7),

T
T.6) % / (a(ys) ™' 7 — B(ys, ), Yo — b(yv, v)) dv  if y is absolutely continuous
sWY) = s

~+o00 otherwise .
1D

It can be shown that u is the solution of the Hamilton-Jacobi problem

ou ~ 1 .

% + (b, Vu) — E(aVu, Vu) =0 in Dx]0,T]|

N
u(x,s) =0 on dD x [0, T] (12)
u(x,s) - +oo ass /T, xeD

to be considered in the sense of viscosity solutions [16] and in the classical sense at
each point of differentiability of u.
Now let N C D x [0, T'], T" < T and define

Bx,s) = b(x,s) — a(x)Vu(x,s), (x,s) eN . (13)

Let y, s be the solution of

Yas(V) = B(yas(v), v)

14
Yas(s) = x (1

and set £, = inf{v > s, (yxs(v), v) & N}, moreover define

n = {(Vx,x(t)tsx t)ts), (x,8) € N} .

Assumption 1

a) N is an open set;

b) ue €*°(N);

¢) N is a Region of Strong Regularity (RSR) w.r.t. B, i.e. Il is a C* manifold,
relatively open in ON, (y;(v), V)vels.rx,] crosses I non tangentially and I't C
oD x (0,T"). "

The following result is a particular case of Theorem 4.2 of [15] which provides
an asymptotic expansion for the exit probability, at least for starting points (x, s)
belonging to a set N as in Assumption 1. We shall discuss later the meaning of this
assumption.
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Theorem 1 Let D be a bounded open set with a smooth boundary. Let N C D x
[0,T'],T" < T satisfy Assumption 1. For the SDE (9) assume that o is infinitely
many times differentiable and bounded, the drift b, is Lipschitz continuous uniformly
with respect to € and enjoys the development

b, = b+ ¢b, + o(¢) (15)

uniformly on compact sets of N where b, by are C* functions. Then for (x,s) € N
the following expansion holds

PE (1 <T)=e " e " “)(1 + o(e)) (16)

uniformly on compact subsets of N, where w is givenin (10) or (12)andw : N — R*
is the solution of

0 . 1 -
8_W + (b —aVu,Vw) = —3 tr(a - Hessu) — (b;, Vu) inN
s
w=20 on dD x [0, T[NN .

7)

Remark 1 The original result in [15] deals with a more general situation in
particular providing a full development of ¢ +— P; (r < T). Beware of some
notation mismatch between Theorem | and the original Theorem 4.2 of [15]; in
particular our b, corresponds to b, there. Remark also that Theorem 1 applies to a
general diffusion, not necessarily obtained by conditioning.

The hypotheses in Theorem 1 ensure that for (x,s) € N, there exists a unique
minimizing path for the quantity in the right-hand side of (10), which moreover
coincides with the solution y, s of the ordinary Eq. (14) for v € [s, #{ ], £} turning
out to be the first time at which y,; reaches dD. Furthermore, the differential
systems (17) for w can be solved by characteristics: one has to solve the ordinary
Eq. (14) and then

we.s) = [(5 e Hess ) (u(0).0) + (5102 0).0) Vuslya(w).0) ) o
S (18)

Remark 2 Tt is useful to point out two features of Theorem 1. First, because of
Assumption 1c), it holds for starting points (x, s) such that the characteristic yy
reaches the boundary D at a time £}, < T.

Second, remark that Large Deviations estimates state that the asymptotics, as
¢ — 0, of the quantity of interest P (v < T) are, in general, of the form c(¢) e t/e,
where ¢ is a subexponential function of ¢, i.e. such that lim,_,elogc(e) = 0.
Theorem 1 states that, under the assumptions considered, the term before the
exponential, ¢, is a constant as a function of €.

A typical situation where Theorem 1 does not apply, for instance, is when dX; =
VedB, and D =] — oo, L[ for some L > 0. In this case y,(v) = x4+ *=*(L—x), so
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that for every (x, s) € D x [0, T], y. 5 reaches the boundary 0D = {L} at time T = 1.
Therefore there exists no subset N C D x [0, T] satisfying Assumption 1 and we are
outside the range of Theorem 1. Actually by the reflection principle,

Pi(r = 1) =P( sup {x+ ve(B, — By} = L)

s<v<l

(L—)?

Jee 2=

L—x 2
JE )~ 21l —s)(L —x)

so that here the term before the exponential is not a constant, whatever the starting
point.

On the other hand the assumptions of Theorem 1 are satisfied in most cases where
X? is the time changed bridge of a diffusion conditioned to be at some pointy € D
at time &, in the sense that, up to a time-change, a “large” subset N of D x [0, 1]
satisfies Assumption 1.

= 2P(B1 —_B,>

4 Applications and Remarks

In this section we see how to adapt Theorem 1 to the case of the asymptotics (8) for
the exit probability of a conditioned diffusion.

A first problem arises from the fact that the drift of the time changed conditioned
diffusion has a singularity at time v = 1 (think of the case of the Brownian bridge
where b(x,1) = —1%;) so that Theorem 1 cannot be applied with 7 = 1. This
difficulty is easily overcome, as remarked in [4], because it turns out that

P <1)~P(z <1-6) (19)

for some § > 0, in the sense that the difference between these two probabilities
is exponentially negligible as t+ — 0. In order to see this, recall Large Deviation
estimates recently obtained for conditioned diffusions (see [3, 18] for the case of
a compact manifold). These state that, as + — 0, the time changed conditioned
diffusion starting at x at time s satisfies a Large Deviation Principle with rate
function given by

Js(y) = Js(y) ify1=y

Ti(y) =
’ +o00 otherwise

(20)

where

1 1
—/ (@™ (yu)yw. Y0) dv  if y is absolutely continuous
Sy)y =412/

400 otherwise
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and y denotes a minimizing geodesic (see below) joining x to y. Therefore we have

tlogPl(t < 1) ~— inf  Jy(y).
’ ys=x,7(y)<l

Assume that there exists a unique 7 minimizing the right-hand side above, then we
can split

Pi(r < 1) =Pz < LU D) + Pz < L,LU®, D)), 1)

where U(7, 7) denotes a neighborhood of radius 5 of the minimizer p. As the
infimum of J on the set of paths {t < 1, U(n, y)“} is strictly larger than the infimum
over {t < 1,U(n, 7)}, the rightmost term in (21) is exponentially negligible. Let us
choose n = %dist(y, dD) and let § be such that dist(p,,y) < n foreveryv > 1 — 4.
Then forevery y € U(n,y) and v > 1—4§ we have dist(y,,y) <2n = % dist(y, oD).
Therefore if 7(y) < 1, then necessarily t(y) <1 —6.

A second question in order to apply the Fleming-James Theorem 1 to our
problem is to determine the development of the drift in Eq. (3), i.e. of finding vector
fields b and b (of course depending on the conditioning point y) such that

(b(2) + (2, )t = b(z,v) 4 thi(z,v) + o(t), ast— 0

uniformly on compact sets and then to compute the corresponding quantities # and w
of Theorem 1. As explained in Sect. 2 this requires the development of the quantity
V. logp(¢(1 — v), z,y), appearing in the expression of X given in (5).

The tool to this goal is provided by Molcanov results [20] (see also [2],
Theorem 1.1, p. 56) together with those of Ben Arous [9]. Let us assume that
a = oo™ is elliptic. One can then consider on R? the Riemannian metric associated
to the matrix field a~': let us define the length of a smooth curve ¢ : [0, 1] — R by

1
1© = [ ikt
and the corresponding Riemannian distance by

d(x.y) = e . (22)

inf
£L0)=x5(1)=y

Under an assumption of closeness of the points x, y, to be made precise below, we
have [20] the development as t — 0

d 1
logp(t,x,y) ~ = log(2rt) + log H(x,y) — -d(x, ¥)* +Ax,y) (23)

where d denotes the Riemannian distance (22) of the metric ™!, H(x,y) =
(detexp.(£))~'/2, exp, denoting the exponential map of the Riemann structure
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associated to the metric a~! and £ the tangent vector at ¢ = 0 of the minimizing
geodesic joining x to y, and

1
Alx.y) = /0 (@ FbF). ) di 24)

Y denoting again the unique geodesic joining x to y. These results are obtained under
some regularity assumptions on the coefficients b and o, that should be 4 times
differentiable.

As mentioned above this development holds under the hypothesis for the two
points x,y to be close i.e. such that they are joined by a unique geodesic along
which they are not conjugated. It is a well known fact in Riemannian geometry that
for every y there exists a neighborhood %, of points x such that this assumption is
satisfied for every x € %,.

Both H and d are quantities only depending on the metric ™! and not on the drift
b which appears only in the quantity (24).

Moreover Théoreme 3.4 in [9] allows to state that the behavior as + — 0 of
V. logp(t, x,y) is obtained by taking formally the derivatives of the right-hand side
in (23). We have therefore, as t — 0,

1
Velogp(t(1 = v)..x.y) ~ =5 Vad(x. ) + 1(VelogH(x.y) + V.A(x.y)) .
(25)

In addition the expansions (23) and (25) are uniform for x in compact sets of points
that are connected to y by a unique geodesic along which they are not conjugated.

We plan, in a forthcoming paper, to use the development (25) in order to be able
to obtain explicitly the values of the constants ¢ = e ™™, £, & = u(x, s) appearing
in the asymptotics (8) for the most common models of stochastic volatility. In this
note, as pointed out in the introduction, we just wish to investigate the question
whether the drift b has an influence in the development (8). We already know that
the answer is no for a large class of diffusions in dimension d = 1 [5] and also, in a
multidimensional setting, if X is a Brownian motion with a constant drift: the bridge
of a Brownian motion with a constant drift is exactly equal to a Brownian bridge, so
here to the (constant) drift has no effect. We start first with an example.

Example 1 Let
dX; = MX, dt + dB; (26)
be a d-dimensional Ornstein-Uhlenbeck process where M is a d x d-dimensional

matrix. Let us start computing the development of the drift of this diffusion
conditioned by X; = y as t — O.
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The transition density p(z,x,-) is the density of a N(eM'x, S,)-distributed r.v.,
where

t
S, = / eMueM™u gy
0
Therefore

d 1
logp(t(1 —v),z,y) = —3 log2m — 3 log det(Sy(1—v))

1, _ v —v
_ 5 (Sr(ll—v)(y _ eMt(l )Z), (y _ eMt(l )Z))

and
1
Ve logp(t(1 —v),.3) = 3 M OIS (- MO0
1
+ E (y _ eM[(l—v)Z)*St—(ll_v)eMl‘(l—v) .

Writing down the developments as ¢ — 0 of the various terms appearing above we
have

12 1
Sy =1t + M +M*)E +o(@), S'= " (I— (M +M*")% + o(t)
eM =T+ 1M* +o(r), ™ =1+ 1tM+ o(t)

so that

. 11 1 1
eM st = ;I—E(M+M*)+M*+0(1): ;I+§(M*—M)+o(1)

11 1 1
Sle™ = ?I—E(M—i—M*)—l—M—i-o(l): ?I—i-E(M—M*)—i—o(l).

Alsoy —eMz =y — 74 7 —eMz = y — z — Mtz + o(t), hence, uniformly for z in
compact sets,
1 1

*1(1—v) ¢—1 -
EeM «1 U)St(l—v) (y—eM1=0) ) = 3 (

1
t(1—v)

H—% (M—M*)+a(1)) (y—z—M1(1—v)z+o(t))

o=z o e——
_2(z(1—v)+2(M M)y —2) Mz+a(1)).
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Similarly

1 _ _ _
E (Y _ eMt(l v)Z)*St(ll_U)eMr(l v)

_1 y—< 1 * *
= §<t(1—v) 50— M=)~ M z+o(1))

and putting things together, after some straightforward computations, we find,
uniformly for z in compact sets,

-z 1
yor —t(M +M*)z+ o(1) .
1—v 2

tV, logp(t(l — v),z,y) =

Remark that the same result would have been obtained very quickly using (25), as
here H(x,y) = 1 and d(x,y) = |x—y|. Therefore the asymptotics for the drift of the
bridge of X given X, = y is

(@) + D (2 )) = 2= — 1 1M + M*)z + tMz + o(f)

1—v 2
—2Z 1

= 2T L M= MY+ o(h) .
1—v 2

Hence we are as in (15) with

- - 1
b(z,v) = f—z, bi(z,v) = 3 (M —M*)z.

Remark that b; = 0 if and only if the matrix M is symmetric. Therefore, in general,
the quantity w which determines the value of the constant ¢ in the expansion (8)
depends on the drift z — Mz, unless M is symmetric.

To be more precise let us consider the case where D is the half-space {z, (v,z) <
k) for some v € RY |v| = 1 and k > 0. Let x,y € D and let us evaluate the
expansion (8) for the process X conditioned by X; = y, where t denotes the exit
time from D.

Note first that the function u defined in (10) coincides with the one for the bridge
of the Brownian motion, i.e.

) = o (k= (V) (= 7)) @)

(it is also easy to check that such a function u satisfies (12)). Of course A,y = 0 (u
is a linear function of x) and

Vu(x,s) = —ﬁ (k—(y,v))v.
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Therefore the sharp asymptotics as the conditioning time ¢ tends to 0 of the exit
probability g,(x,s) (8) for the diffusion starting at X; = x and conditioned by
X[ =Y, IS

Gi(x, 5) ~ e e ) (28)
where, recalling (18),
wes) = = = o) [ 01 =MW 29)
Yx.s being the solution of
Ves(0) = D(s().0) = Va(yes(v).v) . pusls) = x (30)

and © = t;  the time at which y,; reaches the boundary dD. Straightforward
computations lead to the solution

Yes) =x+ ——(n—x) s<v<rt, 31
T—S

where

k—(x,V) k_(-xvv>
T = s+(1—s) and n=x+ pTa r—

STy P O=2+2(k—(r. )W)

(32)

Remark that 7 < 1 and n € 9D does not depend on s; y,, is the line segment
connecting x to 7. Going back to (29) we have

wr.s) = — (k— (y.¥)) / (v, (1 = M) 2= 0)) i

which gives easily

k—(x,v)

k=, v)
2k—(x+y,v)

w(x,s) = (k—(y. V))[ 2k—{x+y, v)

(v, (M=M*)(y—)+ log ) (v, (=)

(33)
(w(x, s) does not depend on s). Therefore for the quantity g,(x, s) in (8) we have

st::( k—{y,v) )—M—ON»HJM—M*W)e_ﬁ%%ggg%ﬂlwiM_Mﬁo_n)
’ 2k — (x 4+ y,v)
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and

b= o (k= W) (= V)
We stress that the expansion (8) depends indeed on the matrix M unless it is
symmetric: if M is any symmetric matrix, its value has no influence on (8), which is
then exactly the same as if X was the Brownian motion, i.e. w = 0.

We did not bother to check the assumptions of Theorem 1. It is not however
difficult, given the computations above, for a given x € D, to construct a RSR
containing (x,0). Indeed remark that thanks to the expression of 7 in (32), every
characteristic y,, reaches dD at a time that is strictly smaller than 1. One can
therefore construct a RSR of the form N = {(z,5);z € D, < T'}, for some T’
such that ;| < T" < 1 — § where § is given in (19). The only remaining assumption
to be checked is that D is assumed there to be bounded, which is not our case. This
point is explained in the next remark.

Remark 3 Tt is easy to show that the asymptotics for the probability of exit from an
open set D is, by a standard localization argument, the same as for the exit from a
suitable bounded subset D C D. To be precise, a repetition of the argument leading
to (19) yields

qi(x,s) ~ /ls)yci(t <LU®m.7).

where U(n, y) is_a neighborhood of radius 7 of the minimizer y  for
infy =x (y)<1 Jo(y) J being given in (20). One can then set D to be the intersection
of D with a bounded neighborhood of the support of 7, chosen in such a way as to
preserve the smoothness of the boundary.

The previous example shows, among other things, that the sharp Large Deviation
estimate of the exit probability of the bridge of a multidimensional Ornstein-
Uhlenbeck process depends on the drift of the original process, unless the matrix
M is symmetric. This is a phenomenon that is better investigated in the following
statement.

Proposition 1 Let X be the d-dimensional diffusion process that is the solution of
the SDE

dX, = b(X,) dt + o(X,) dB, (34)

and assume that a = o0™ is elliptic and that b and o are four times differentiable.
Let us denote 1" the corresponding process conditioned by X, = y, t > 0 and time
changed (see (3)). Let x be close enough to y, in the sense that x and y are joined by
a unique geodesic y of the metric a~' along which they are not conjugated. Then if
there exists a potential U : RY — R such that V U = a~'b, the development for the
drift of n' up to the first order as t — 0 does not depend on b.
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Proof We must prove for the drift (b(x) + b (x,tv))t of the time changed
conditioned process 7" a development of the form (b(x) + b (x, 1)t = b(x,v) +
tby (x, v) 4 o(r) where neither b nor b; depend on b and which is moreover uniform
on a compact neighborhood of y. Recall the development (25): thanks to (24), if
V U = a~'b we have of course

Alx.y) = Uy, = Uy =UQ) - UW®)

and V,A(x,y) = —VU(x) = —a~'(x)b(x). Hence, by (25), as t — 0, uniformly in
a compact neighborhood of y

B (x, 1) = a(x)Vylog p(t(1 — v), x, y)
1
~ a)(VelogH@.y) = 5

so that the drift of the time changed conditioned process is

Vid(x,3)? —a b))

(b(x) + D" (x, 1))t ~ th(x)

+ ta(x)(Vx logH(x.») — 5-

S Vel — b))

= ta()Vilog H(x.y) = 5 a(x)Vid(x,y)* ,

1
(1-v)
thus b(x,v) = —5i=5a()Vid(x,y)*, whereas bi(x,v) = a(x)V,logH(x,y)

(remark that b; does not depend on v). Both d(x,y) and H(x,y) are quantities
associated to the Riemann metric a~' and neither of them depends on b. O

Remark 4 If the hypotheses in Theorem 1 are satisfied, then the drift of the
unconditioned diffusion does not influence the sharp asymptotics for the probability
of exit from the domain D, i.e. neither u nor w in (16) depends on b in (34). Recall
that D could be unbounded, actually the argument in Example 1 holds in great
generality.

Coming back to Example 1, of course if M is symmetric then the drift z > Mz
turns out to be the gradient field of the potential U(z) = %(Mz, z). We have
therefore proved that, whenever the Fleming-James Theorem 1 can be applied,
the asymptotics (8) do not depend on the drift b of the original diffusion as far
as a~'b is a gradient field and also (Example 1) that the drift can be influential if
this assumption is not satisfied.
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Large Deviations for Clocks of Self-similar
Processes

Nizar Demni, Alain Rouault, and Marguerite Zani

In memoriam, Marc Yor

Abstract The Lamperti correspondence gives a prominent role to two random
time changes: the exponential functional of a Lévy process drifting to oo and its
inverse, the clock of the corresponding positive self-similar process. We describe
here asymptotical properties of these clocks in large time, extending the results of
Yor and Zani (Bernoulli 7, 351-362, 2001).

1 Introduction

This problem is an extension of a question raised by Marc Yor during the defense
of the thesis of Marguerite, under the supervision of Alain, long time ago in
2000. The last part of this thesis was dedicated to the study of large deviations
principles (LDP) for Maximum Likelihood Estimates of diffusion coefficients (for
squared-radial Ornstein—Uhlenbeck processes, squared Bessel processes and Jacobi
processes). The main tool there was a convenient Girsanov change of probability.
This method allowed to convert the computation of Laplace transform of some
additive functionals into the computation of Laplace transform of a single variable.
This trick was used before in [24], p. 26, or [19], p. 30, where Marc Yor called it
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“reduction method”. In those times, Marc was interested in exponential functionals
of Brownian motion, Lamperti transform and Asian options and he guessed that
this LDP could be applied to the Bessel clock and solved effectively the problem
with Marguerite in [26] a couple of weeks later. Marc suggested to extend it to
the Cauchy clock and gave a sketch of proof, but a technical difficulty stopped
the project. Meanwhile, Marguerite and Nizar published a paper [12] on Jacobi
diffusions where the reduction method is again crucial. Recently, the three of us
felt the need to revisit the problem of Cauchy clock with the hope of new ideas.

We planned to discuss with Marc, and promised him we would keep him
informed of our progress. We did not have the time. ..

In this paper, we extend the methods and results of [26] to a large class of
clocks issued from positive self-similar Markov processes. In Sect. 2 we recall some
basic results about the Lamperti correspondence between these processes and Lévy
processes and we give the definition of the clocks. We also define a generalized
Ornstein-Uhlenbeck process which will be useful in the sequel. In Sects. 3 and 4,
we present the main results: Law of Large Numbers and Large Deviations for the
clocks. In Sect. 5 we show some examples illustrating our main theorems.

2 Positive Self-similar Markov Processes and Lamperti
Transformation

In [17] Lamperti defined (positive) semi-stable process which are nowadays called
positive self-similar Markov process.

Definition 1 For « > 0, a positive self-similar Markov process (pssMp) of index «,
is a [0, 0o)-valued strong Markov process (X, Q,), a > 0 with cadlag paths, fulfilling
the scaling property

(law)

({bXp—er, 1 =2 0}, Qa) =" ({X1,1 = 0}, Qpa) ey

for every a,b > 0.

Lamperti [17] has shown that these processes can be connected to Lévy processes
by a one-to-one correspondence, that we develop below. We refer to Kyprianou [15]
especially Chap. 13 for properties of Lévy processes and pssMp. One can also see
[4] for the Lamperti’s correspondence. One can notice that there is a little confusion
in the notion of index of these processes. In [17], [3] and [2] the index is 1/,
and in [4, 6, 15], the index is a. We take this latter convention. These processes
have a natural application in the theory of self-similar fragmentations: see [1],
references therein, and [5]. For other areas of application, such as diffusions in
random environments, see Sect. 6 of [4].
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2.1 FromXtoé

Any pssMp X which never reaches the boundary state 0 may be expressed as the
exponential of a Lévy process not drifting to —oo, time changed by the inverse of its
exponential functional. More formally, if (X, (Q,)4>0) is a pssMp of index o which
never reaches 0, set

(1) = / r & =0 @)
0 s

and let A® be its inverse, defined by

AP =influ>0:TOw) > 1}, (3)
and let £ be the process defined by

& = log Xy () —logXo, (1>0). 4
Then, for every a > 0, the distribution of (&, > 0) under Q, does not depend on a

and is the distribution of a Lévy process starting from 0.
Moreover, if we set

t
A1) = / "5 ds 5)
0
and t® its inverse defined by
t©@) = inf{lu>0: 7€ W) =1 (6)
we have
@) = T®(x2). (7

Let us remark that the self-similarity property (1) leads to the following relation:

the law of TX (.b™%) under Q, is the law of 77X (.) under Qp,. (8)

2.2 Fromé&toX

Let (&) be a Lévy process starting from 0 and let P and E denote the underlying
probability and expectation, respectively.
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Fix a > 0. Let .&7® be its exponential functional defined by (5). When £ drifts
to —oo, this functional is very popular in mathematical finance (see [25]), with
important properties of the perpetuity .27 ®) (c0). Here, we rather assume that £ does
not drift to —oo i.e. satisfies, lim sup,y o, & = 0o. We define the inverse process t(®)
of <7® by (6).

For every a > 0, let Q, be the law under P of the time-changed process

Xi = aexpé e g, (>0), ©

then (X, (Q4)a>0) is a pssMp of index o which never reaches 0 and we hav