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PREFACE 
The purpos� of this monograph is to give an axiomatic 

foundation for the theory of probability. The author set himself 

the task of putting in their natural place, among the general 
notions of modern mathematics, the basic concepts of probability 
theory-concepts which until recently were considered to be quite 

peculiar. 

This task would have been a rather hopeless one before the 

introduction of Lebesgue �s theories of measure and integration. 

However, after Lebesgue's publication of his investigations, the 

analogies between measure of a set and probability of an event, 
and between integral of a function and mathematical expectation 

of a random variable, became apparent. These analogies allowed 
of further extensions ; thus, for example, various properties of 

independent random variables were seen to be in complete analogy 

with the corresponding properties of orthogonal functions. But 

if ·probability theory was to be based on the above analogies, it 
still was necessary to make the theories of measure and integra­

tion independent of the geometric elements which were in the 

foreground with Lebesgue. This has been done by Frechet. 
.. While a conception of probability theory based on the above 
general viewpoints has been current for some time among certain 
mathematicians, there was lacking a complete exposition of the 

whole system, free of extraneous complications. ( Cf., however, 

the book by Frechet, [2] in the bibliography.) 
I wish to call attention to those points of the present exposition 

which are outside the above-mentioned range of ideas familiar to 
the specialist. They are the following: Probability distributions 

in infinite-dimensional spaces (Chapter III, § 4) ; differentiation 

·and integration of mathematical expectations with respect to a 

parameter (Chapter IV, § 5); and especially the theory of condi-

tional probabilities and conditional expectations (Chapter V) . 
It should be emphasized that these new problems arose, of neces­

sity, from some perfectly concrete physical problems.1 

• Cf., e.g., the paper by M. Leontovich quoted in footnote 6 on p. 46; also the joint paper by the author and M. Leontovich, Zur Sta.tistik dsr kcmtinuier­lichen Sy8teme und des zeitlichen. Ve-rlaufea der ph1Jsikalischen Vorgiinge. Phys. Jour. of the USSR, Vol. 3, 1933, pp. 36�63. 

v 



vi Preface 

The sixth chapter contains a survey, without proofs, of some 

results of A. Khinehine and the author of the limitations on the 

applicability of the ordinary and of the strong law of large num­
bers. The bibliography CQntains some recent works which should 

be of interest from the point of view of the foundations of the 

subject. 

I wisq to express my warm thanks to Mr. Khinchine, who 

has read carefully the whole manuscript and propos'ed several 

improvements. 

Kljasma near Moscow, Easter 1933. 

A. Kolmororo., 
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Chapter I 

ELEMENTARY THEORY OF PROBABILITY 
We define as elementary theory of probability that part of 

the theory in which we have to deal with probabilities of only a 

finite number of events. The theorems which we derive here can 

be applied also to the problems connected with an infinite number 

of random events. However, when the latter are studied, essen­

tially new principles are used. Therefore the only axiom of the 

mathematical theory of probability which deals particularly with 

the case of an infinite number of random events is not introduced 
until the beginning of Chapter II (Axiom VI). 

The theory of probability, as a mathematical discipline, can 
and should be developed from axioms in exactly the same way 

as Geometry and Algebra. This means that after we have defined 

the elements to be studied and their basic relations, and have 
stated the axioms by which these relations are to be governed, 

all further exposition must be based exclusively on these axioms, 
independent of the usual concrete meaning of these elements and 
their relations. 

In accordance with the above, in § 1 the concept of a field of 

probabilitie8 is defined as a system of sets which satisfies certain 

conditions. What the elements of this set represent is of no im­

portance in the purely mathematical development of the theory 
of probability ( cf. the introduction of basic geometric concepts 

in the Foundatio'TUJ of Geometry by Hilbert, or the definitions of 

groups, rings and fields in abstract algebra). 
Every axiomatic (abstract) theory admits , as is well known, 

of an unlimited number of concrete interpretations besides those 

from which it was derived. Thus we find applications in fields of 

science which have no relation to the concepts of random event 
and of probability in the precise meaning of these words. 

The postulational basis of the theory of probability can be 

established by different methods in respect to the selection of 

axioms as well as in the selection of basic concepts and relations. 
However, if our aim is to achieve the utmost simplicity both in 

1 



2 I. Elementary Theory of Probablllty 

the system of axioms and in the further development of the 

theory, then the postulational concepts of a random event and 
its probability seem the most suitable. There are other postula­

tional systems of the theory of probability, particularly those in 

which the concept of probability is not treated as one of the basic 
concepts, but is itself expressed by means of other coneepts.1 
However, in that case, the aim is different, namely, to tie up as 

closely as possible the mathematical theory with the empirical 

development of the theory of probability. 

§ 1. Axiome1 
Let E be a collection of elements f, ..,, C, . . . , which we shall eall 

elementa,ry events, and it a set of subsets of E ; the elements of 
the set i'f will be called random events. 

I. if i8 a fielda of sets. 

II. tJ contains the set E. 
III. To each set A in i} is assigned a non-negative real number 

P(A). This number P(A) i8 called the probability of the event A. 

IV. P(E) equals 1. 

V. If A and B have no element in common, then 

P(A+B) = P(A) + P(B) 

A system of sets, i}, together with a definite assignment of 

numbers P(A), satisfying Axioms I-V, is called a field of prob­
ability. 

Our system of Axioms I-V is conBistent. This is proved by the 
following example. Let E consist of the single element � and let tf 

consist of E and the null set 0. P(E) is then set equal to 1 and 

P(O) equals 0. 

1 For example, R. von Misea[l]and [2] and S. Bernstein [1]. 
1 The reader who wishes from the outset to give a concrete meaning to the 

following axioms, is referred to § 2. 
• Cf. HAUSDORFF, Mengenlehre, 1927, p. 78. A system of sets is called a field 

if the sum, product, and difference of two sets of the system also belong to the 
same system. Every non�empty field contains the null set 0. Using Hausdorff's 
notation, we designate the product of A and B by AB; .the sum br_ A.+ Bin 
the case where AB = 0; and in the general ease by A+ 8; the difference of 
A and B by A-B. The set E-A, which is the complement of A, will be denoted by A". We shall assume that the reader is familiar with the fundamental rules 
of operations of sets and their sums, products, and differences. All subsets 
of W will be designated by Latin capitals. 



§ 2. The Relation to Experimental Data 3 

Our system of axioms is not, however, complete, for in various 
problems in the theory of probability different fields of proba­
bility have to be examined. 

The Construction of Fields of Probability. The simplest fields 

of probability are constructed as follows. We take an arbitrary 

finite set E = {e1• E1, • . • , E1J and an arbitrary set {P1• Pa• . • ..• P.t} 
of non-negative numbers with the sum Pt + P2 + . . .  + Pt = 1. 
li is taken as the set of all subsets in E, and we put 

P{E,., �'-'. · ., �i.a} = p,l +Pit+··· + /Ji,. 
In such cases, PH P2r • • •  , p,. are called the probabilities of the 

elementary events elr tz, . . . ' e" or simply elementary probabili­

ties. In this way are derived all possible finite fields of probability 
in which 0: consists of the set of all subsets of E. (The field of 
probability is called finite if the set E is finite.) For further 

examples see Chap. II, § 3. 

§ 2. The Relation to Experimental Data� 
We apply the theory of probability to the actual world of 

experiments in the following manner: 

1) There is assumed a complex of conditions, e, which allows 
of any number of repetitions. 

2) We study a definite set of events which could take place as 

a result of the establishment of the conditions e. In individual 

cases where the conditions are realized, the events occur, gener­

ally, in different ways. Let E be the set of all possible variants 
�1. ��� • • •  of the outcome of the given events. Some of these vari­
ants might in general not occur. We include in set E all the vari­
ants which we regard a priori as possible. 

3) If the variant of the events which has actually occurred 

4 The reader who is interested in the purely mathematical development of 
the theory only, need not read this section, sinee the work following it is based 
only upoJ\ the axioms in § 1 and makes no use of the present discussion. Here 
we limit ourselves to a simple explanation of how the axioms of the theory of 
probability arose and disregard the deep philosophical dissertation• on the 
concept of probability in the experimental world. In establishing the premises 
neceasary for the applicability of tbe theory of probability to the world of 
actual events, the author has used, in large measure, the work of R. v. Mise&, 
[1] pp. 21-27. 



I. Elementary Theory of Probability 
upon realization of conditions S belongs to the set A (defined in 
any way) , then we say that the event A has taken place. 

Example: Let the complex 5 of conditions be the tossing of a 

coin two times. The set of events mentioned in Paragraph Z)con­

sists of the fact that at each toss either a head or tail may come up. 

From this it follows that only four different variants (elementary 
events) are possible, namely: HH, HT, TH, TT. If the "event A" 

connotes the occurrence of a repetition, then it will consist of a 

happaning of either of the first or fourth of the four elementary 

events. In this manner, every event may be regarded as a set of 

elementary events. 

4) Under certain conditions, which we shall not discuss here, 

we may assume that to an event A which may or may not occur 

under conditions S, is assigned a real number P (A) which has 
the following characteristics : 

(a} One can be practically certain that if the complex of con­
ditions Sis repeated a large number of times, n, then if m be the 
number of occurrences of event A, the ratio rnjn will differ very 

slightly from P(A). 

(b) If P (A) is very smaUt one can be practically certain that 
when conditions e are realized only once, the event A would not 
occur at all. 

The Empirical Deduction of the Axioms. In general, one may 

assume that the system a of the observed events A, B, C, . . .  to 

which are assigned definite probabilities, form a field containing 

as an element the set E (Axioms I, II, and the first part of 
III, postulating the existence of probabilities). It is clear that 

O<m/nSl so that the second part of Axiom Ill is quite natural. 
For the event E, m is always equal to n, so that it is natural to 
postulate P(E) = 1 (Axiom IV). If, finally, A and B are non­

intersecting (incompatible), then m == m1 + m2 where m, mh m2 

are respectively the number of experiments in which the events 
A + B, A, and B occur. From this it follows that 

It therefore seems appropriate to postulate that P (A + B) 

P(A) + P (B) (Axiom V). 



§ 3. Notes on Terminology 5 

Rema,rk 1. If two separate statements are each practically 
reliable, then we may say that simultaneously they are both reli .. 

able, although the degree of reliability is somewhat lowered in the 

process. If, however, the number of such statements is very large, 

then from the practical reliability of each, one cannot deduce any­
thing about the simultaneous correctness of all of them. Therefore 

from the principle stated in (a) it does not follow that in a very 
large number of series of n tests each, in eack the ratio mjn will 

differ only slightly from P (A) . 

Remark 2. To an impossible event (an empty set) corre .. 
sponds, in accordance with our axioms, the probability P(O) = 05, 
burt the converse is not true: P(A) = 0 does not imply the im­
possibility of A. When P(A) = 0, from principle (b) all we can 

assert is that when the conditions 5 are realized but once, event 
A is practically impossible. It does not at all assert. however. that 

in a sufficiently long series of tests the event A will not occur. On 
the other hand, one can deduce from the prineiple(a) merely that 

when P(AJ = 0 and n is very large, the ratio m/n will be very 

small (it might, for example, be equal to 1/n). 

§ 3. Notes on Terminolo8Y 
We have defined the objects of our future study, random 

events, as sets. However, in the theory of probability many set­

theoretic concepts are designated by other terms. We shall give 

here a brief list of such concepts. 

Theory of Sets 
1. A and B do not intersect, 

i.e., AB = 0. 

2. AB . . .  N = 0. 

3. AB . . .  N ==X. 

4. A + B -f- . . .  + N = X. 

• ��- S 4. Fonnula (8). 

Random Events 

1. Events A and B are in­
compatible. 

2. Events A, B, . . .  , N are 

incompatible. 

3. Event X is defined as the 

simultaneous occurrence of 
events A, B� . . . , N. 

4. Event X is defined as the 

occurrence of at least one of 

the events A, B, . . . , N. 



6 

A. 

I. Elementary Theory of Probability 

Tkecwy of Sets 
5. The complementary set 

6. A= 0. 

7. A =  E. 

Random Even.ts 
5. The opposite event A 

consisting of the non .. oceur­
ence of event A. 

6. Event A is impossible. 

7. Event A must occur. 

8. The system 91 of the sets 
Ah A2, • • • , A,. forms a de­
composition of the set E if 
At + Az + . . . + A. = E. 

8. E1:Periment Z consists of 

determining which of the 
events A1, Ah . . .  , A,. occurs. 
We therefore call Ah Az, . . .  , 
A,. the possible results of ex· 
periment !I. 

(This assumes that the 
sets A, do not intersect,in 
pairs.) 

9. B is a subset of A: Bt= A. 9. From the occurrence of 
event B follows the inevitable 
occurrence of A. 

§ 4. Immediate Corollarie8 of the Axioms; Conditional 

Probabilities; Theorem of Bayes 

From A + A = E and the Axioms IV and V it follows that 

P(A) + P(A) = 1 
P(A) = 1- P(A) • 

Since E = 0, then, in particular, 

P(O) = 0 .. 

(1) 
(2) 

(3) 

If A, B, . . . , N are incompatible, then from Axiom V follows 
the formula (the Addition Theorem) 

P(A + B + . . .  + N) = P{A) + P(B) +.I.+ P(N). (4) 

If P(A) >0, then the quotient 

p {B)= P(AB) 
A P(A) (5)  

is defined to be the conditional probability of the event B under 
the condition A. 

From ( 5) it follows immediately that 
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P(AB) =P(A) P.t(B). (6) 

And by induction we obtain the general formula (the Multi-

plication Theorem) 

P (At AI·.· An) = P (AI) P A1 (A,) P A1A1 (A a) • • • P A1 At • • •  A11-1 {A .. ), (7) 
The following theorems follow easily : 

P.c(B) > 0, 

P.c(E) = 1, 

p ..t(B + C)= p A(B) + P.a{C). 

(8) 

(9) 
(10) 

Comparing formulae (8)-(10) with axioms 111-V, we find that 

the system � of sets together with the set function P A(B) (pro­

vided A is a fixed set), form a field of probability and therefore, 

all the above general theorems concerning P (B) hold true for the 

conditional probability P .. (B) (provided the event A is fixed). 

It is also easy to see that 

P ..4(A) = 1. 

From (6) and the analogous formula 

P (AB) = P (B) P8 (A} 
we obtain the important formula: 

(11) 

p (A)= P(A)_P..c(B) (12) B P(B) , 
which contains, in essence, the Theorem of Bayes. 

THE THEOREM ON TOTAL PROBABILITY: Let At+ A2 + . . .  + 
A,.= E (this assumes that the events Ah A2, . . . , A,. are mutually 
exclusive) and let X be arbitraty. Then 

P(X) = I='(A1)P..t.(X) + P(A1)PA,(X) + · · ·  + P(An) P.A"(X) . . (13) 

Proof: 

X =  A1X + A%X + .. . + A,.X; 
using (4) we have 

P(X) = P(A1 X) -tP(At X) + ... + P(A�� X) 
and according to (6) we have at the same time 

P(AX) = P (A,)P Ar (X) • 

THE THEOREM OF BAYES: Let At+ A:z + . . .  +A,.= E and 

X be arbitrary, then 
P(Ai) p AI(X) 

} P..r (A,)= P(Al) p ... (X)+ P(A.) p At(X) + ... : P(A,.) p A.(X)' <14> 
s = 1,2,), . . .  ,n. 
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A1, A2, • . .  , An are often called "hypotheses" and formula 

(14) is considered as the probability Px (A,) of the hypothesis 

A, after the occurrence of event X. [P(A,) then denotes the 
a priori probability of A,.] 

Proof: From (12) we have 

p (A·) = P(Ai) p At(X) 
x ' p (X) . 

To obtain the formula ( 14) it only remains to substitute for the 

probability P (X) its value derived from ( 13) by applying the 

theorem on total probability. 

§ 5. Independence 

The concept of mutual independence of two or more experi· 
ments holds, in a certain sense, a central position in the theory of 

probability. Indeed, as we have already seen, the theory of 
probability can be regarded from the mathematical point of view 

as a special application of the general theory of additive set func· 

tions. One naturally asks, how did it happen that the theory of 

probability developed into a large individual science possessing 

its own methods? 

In order to answer this question, we must point out the spe­

cialization undergone by general problems in the theory of addi­

tive set functions when they are proposed in the theory of 

probability. 

The fact that our additive set function P (A) is non-negative 

and satisfies the condition P (E) = 1, does not in itself cause new 

difficulties. Random variables (see Chap. III) from a mathe­

matical point of view represent merely functions measurable with 

respect to P(A), while their mathematical expectations are 

abstract Lebesgue integrals. (This analogy was explained fully 

for the first time in the work of Frechet6.) The mere introduction 
of the above concepts, therefol'e, would not be sufficient to pro­
duce a basis for the development of a large new theory. 

Historically, the independence of experiments and random 

variables represents the very mathematical concept that has given 

the theory of probability its peculiar stamp. The classical work 
or LaPlace, Poisson, Tchebychev, Markov, Liapounov, Mises, and 

• See Frechet [1] and [2J. 
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Bernstein is actually dedicated to the fundamental investigation 

of series of independent random variables. Though the latest 
dissertations (Markov, Bernstein and others) frequently fail to 
assume complete independence, they nevertheless reveal the 
necessity of introducing analogous, weaker, conditions, in order 
to obtain sufficiently significant results (see in this chapter § 6, 

Markov chains). 
We thus see,in the concept of independence, at least the germ 

of the peculiar type of problem in probability theory. In this 

book, however, we shall not stress that fact, for here we are 
interested mainly in the logical foundation for the specialized 
investigations of the theory of probability. 

In consequence, one of the most important problems in the 
philosophy of the natural sciences is-in addition to the well­

known one regarding the essence of the concept of probability 
itself-to make precise the premises which would make it possible 
to regard any given real events as independent. This question, 

however, is beyond the scope of this book. 

Let us turn to the definition of independence. Given n experi­

ments 11<1>, W<2> � • • • , 91<">, that is, n decompositions 

of the basic set E. It is then possible to assign r = r1r2 • • •  r" proba­
bilities (in the general case) 

Pq,9 • . . .  9,. = P(A�!) A�!> . . .  A��>)� o 

which are entirely arbitrary except for the single condition 1 that 

(1) 

DEFINITION I.  n experiments �< 1>, U<2>, • • • , !(<•> are called 
mutually independent, if for any qh qz, . • •  , q,. the following 

equation holds true : 

P(AmA<2> A<">) = P(Au>) P (A<2>) P(A<"1) (2) ,, ,. • . . q,. • q. IJt • • • f• • 

' One may construct a field of/robability with arbitrary probabilities sub­
ject only to the above-mentione conditions, as follows: E is composed of.,. 
elements �IU ft • . .  9,. • Let the corresponding elementary probabilities be Pfh fa • • •  ,,. , an<l finally let A� be the set of all �q, , ••• • 9• for which 
q, = q. 
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Among the r equations in (2), there are only r-r.-rz- . . . -r,.+ 
n- 1 independent equations8• 

THEOREM I. If n experiments �:c•), m;<z>, • • •  , I:C•> are mutu­

ally independent, then any m of them (m< n). �<,�J. �t<'->, . • . , 2((i,..� 
are also independent11• 

In the case of independence we then have the equations: 

P(A�:�>A��> ... A��>)= P{A�:l,) P(A�:·>) . . .  P(A�::'>) (8) 
(all i10 must be different.) 

DEFINITION II. n events A1, A2, • • •  , A,.. are mutually ifUlepen-­

dent, if the deconpositions (trials) 

E = At + A�c (k = 1, 2, ... , n) 

are independent. 

In this case r1 = rz = . . .  = r,.. = 2, r = 2"'; therefore, of the 2" 

equations in ( 2) only 21'l - n - 1 are independent. The necessary 
and sufficient conditions for the independence of the events Att Az, 
. . .  , A,. are the following 2• - n - 1 equations10 : 

(4) 

m = i, 2 • . . .• n, 

AU of these equations are mutually independent. 
In the case n. = 2 we obtain from (4) only one condition (22 -2-

• Actually, in the case of independenee, one may choose arbitrarily only 
r. + r, + . . .  + 1,. probabilities p•h == p (Au') so as to comply with the n 
conditions ' '� 

EP:l = 1. 
9 

Therefore, in the general case1 we have r-1 degrees of freedom, but in the 
case of .independence only .,., -r ,., + . . . + ,. "-n. 

' To prove this it is sufficient to show that from the mutual independence 
of n decompositions follows the mutual independence of the first n-1. Let us 
assume that the equations (2) hold. Then 

P{Au'Ar.!l A1·-••) �P(A111A111 A''"') !h !Ia • • • 'I•- 1 = � q, ""' • • • Y .. 
'" 

-P(A'11)P(A121) P(A'"-11) �P(A'"') = P(.A11')P(A121) P(A••-I)) 1/1 Y2 " ' ' f11- I """"" f11 91 'It ' " • fw- I It f• Q.E.D. 
• SeeS. N. Bernstein [1] p:p. 47-57. However, the reader can easily prove 

this himself (using mathemattcal induction). 
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1 = 1) for the independence of two events A 1 and A :a : 

P (A1A1) = P (At ) P (A2) , (5 ) 

The system of equations (2) reduces itself, in this case, to three 
equations, besides (5) : 

P (AtAt) = ·P (At) P (A2) 
P (AtA,) = P (At) P (A2) 

P (AtA.) = P (At) P (Az) 

which obviously follow from ( 5)  .11 

It need hardly be remarked that from the independence of 
the events A1, A2, . . •  , A,. in. pairs, i.e. from the relations 

it does not at all follow that when n > 2 these events are inde­
pendent12. (For that we need the existence of all equations (4) . )  

In introducing the concept of independence, no use was made 
of conditional probability. Our aim has been to explain as clearly 
as possibletin a purely mathematical manner, the meaning of this 
concept. Its applications, however, generally depend upon the 
properties of certain conditional probabilities. 

If we assume that all probabilities P(Av{i> ) are positive, then 
from the equations (3) it follows13 that 

p ,.tfl) �"·· • • •  ..t<'- - l) (A�::->) = p (A�=)) . 
•• " ,. - l  

(6)  

From the fact that formulas ( 6) hold, and from the Multiplica­
tion Theorem (Formula (7) ,  § 4) ,  follow the formulas (2) .  We 
obtain, therefore, 

THEOREM II : A necessary a,nd sufficient condition /or inde­

pendence of experiments !J(t), 9£C•>, • • •  , we•> in the case of poli-

u P (At  At) - P(A1) - P (A1 A1) =- P(A1) - P(A 1} P (A1) = P(A]) {t - P(.A,)} 
- P(A.J P{A.) , etc. 

sa This can be shown by the following simple example (S. N. Bernstein) : 
Let set E be composed of four elements l1 , � • •  f's , E. ;  the corresponding elemen­
tary probabilities fh, p�, p,, P• are each assumed to be "' and 

A = {Et . ll } .  B - {�t . l3},  C = fet . �c} • 
It is easy to compute that 

P (A )  = P (B) = P (C) = %, 
P (AB) c::::P (BC) = P (AC) = "' = ( �) ', 

P (ABC) = "'  + ( 'h )'. 
11 To prove it, one must keep in mind the definition of conditional proba­

bility ( Formula (5) ,  § 4) and substitute for the probabilities of products the 
products of probabilities according to formula (3) . 
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tive p1"0babilities P (A �'l) is that the conditional probability of 
the results AqO> of experiments mw under the hypothesis that 
several other tests vr<M, ¥J(i.>• � • • • w<i.t> have had definite reBUlts 
A <t:,) A <it> A <it> A <f.t) i o equal to the absolute probability 

'• ' till ' r, ' • • •  , D r.o 
P(AaCi> ) .  

On the basis of formulas ( 4 )  we can prove in an analogous 
manner the following theorem : 

THEOREM III. If all probabilities P (A�:) are positive, then a 
necessary and sufficient condition for mutual independence of 
the events A11 A:�u • • •  , A .. is the satisfaction of the equations 

p ..c.,, ..t�s . . .  A�� (A,) = p (.A.) (7) 
for a,n,y pairwise different i1, i2, . . .  , i�c, i. 

In the case n = 2 the conditions (7) reduce to two equations : 

p A. (A.) = P (A,) , I (8) pAs (Al) = p (Al) • 

It is easy to see that the first equation in (8) alone is a necessary 
and sufficient condition for the independence of A1 and Az pro­
vided P(Al) > 0. 

§ 6. Conditional Probahilltiea as Random Variables, 
Markov Chains 

Let I be a decomposition of the fundamental set E :  

E = A1 + A2 + . . .  + Ar, 

and x a real function of the elementary event f, which for every 
set AtZ is equal to a corresponding constant a.q. x is then called a 
random variable, and the sum 

E (x) = �ct0P(A0) 
f 

is called the mathe'lfULtical expectation of the variable x. The 
theory of random variables will be developed in Chaps. III and IV. 
We shall not limit ourselves there merely to those random vari­
ables which can assume only a finite number of different values. 

!'- random variable which for every set A11 assumes the value 
P ..... (B) , we shall call the conditional probability of the event B 
after the given experiment !l and sh!Ul desig'11Ll.f£ it by P• (B) . Two 
experiments t1<1> and 91<2> are independent if. and only if, 
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q = 1 , 2 , . . . , ,.t .  

Given any decompositions (experiments) � c 1>,  m<z> ,  • • • , 91<">, we 
we shall represent by 

�(1)�(2) • • •  i[(ff) 

the decomposition of set E into the products 

A.,l< t) A�!2> . • •  A o-�!'> 
Experiments �(1>,  ·2(<2>,  • • •  , i{Cn) are mutually independent when 

and only when 
Pwu •(I) • • •  1•• - u  (A�1) = P (A�1) , 

k and q being arbitrary14• 

DEFINITION : The sequence �[ (lJ, �<2> ,  • • .  , W(is), • • •  forms 

a Markov chain if for arbitrary n and q 
P91m 9fltl • • .  9{1• - n (A �1) = Pwr• - 11 (A;'1) . 

Thus, Markov chains form a natural generalization of se­

quences of mutually independent experiments. If we set 
Pt ... ,. (m, n) = PAf•t (A�111) m < n , 

"• . 

then the basic formula of the theory of Markov chains will assume 

the form : 

If we denote the matrix J I :Pq .. g,. (m , n) J j  
written as15 : 

p (k,n) = p ( k,m) p (m,n) 

k < m < n .  
· 

( 1 ) 

by p ( m, n) , ( 1)  can be 

k < m < n. (2) 

u The necessity of these conditions follows from Theorem II, § 5 ;  that they 
are also sufficient follows immediately from the Multiplication Theorem 
( Formula ( 7 )  of § 4 ) .  

u For further development of the theory of Markov chains, see R. v. Mises pl, § 16, and B. HosTINSKY, Methodes generales du oolcu.l des proba.bilites, 
• Mem. Sci. Math.n V. 52, Paris 1931. 



Chapter II 

INFINITE PROBABILITY FIELDS 
§ I. Axiom of Continuity 

We denote by � Am, as is customary, the product of the sets 
"' 

A.,. (whether finite or infinite in number) and their sum by <S Am • 

.. 

Only in the case-of disjoint sets A,. is the form I A,. used instead 

of 6A... Consequently, 
"' 

�A"' = A1 + A1 -f. · · · , 
IA .. = Al + A. + · · · � 

fll 

"' 

In all future investigations, we shall assume that besides Axioms 

I - V, still another holds true : 
VI. For a decreasing Bequence of e-ventB 

of tj, for which 

XIA,. = o , 
" 

tke following equa,tion holds � 

lim P (A,.) = 0 .  

( 1) 

(2) 

(3) 
In the future we shall designate by probability field only a 

field of probability as outlined in the first chapter, which also 
satisfies Axiom VI. The fields of probability as defined in the first 
chapter without Axiom VI might be called generalized fields of 

probability. 

If the system tr of sets is finite, Axiom VI follows from Axioms 
I - V. For actually, in that case there exist only a finite number 

of different sets in the sequence (1) . Let A" be the smallest 

among them, then all sets-Alofp coincide with A�c and we obtain then 

14 



§ 1. Axiom of Continuity 

Ai = At+p = i:l A,. ::::: o , 
• 

lim P (A,.) = P(o) = 0 . 

15 

All examples of finite fields of probability, in the first chapter, 
satisfy, therefore, Axiom VI. The system of Axioms I - VI then 
proves to be comi8tent and incomplete. 

For infinite fields, on the other hand,. the Axiom of Continuity, 
VI, proved to be independent of Axioms I - V. Since the new axiom 
is essential for infinite fields of probability only, it is almost im­
possible to elucidate its empirical meaning, as has been done, for 
example, in the case of Axioms I - V  in § 2 of the first chapter. 
For, in describing any observable random process we can obtain 
only finite fields of probability. Infinite fields of probability occur 
only as idealized models of real random processes. We limit our­
selves, arbitrarily, to only tkos.e models which sa.tisfy Axiom VI. 
This limitation has been found expedient in researches of the 
most diverse so.rt. 

GENERALIZED ADDITION THEOREM : If A 1 r  A2, • . .  , A," . . .  and 
A belong to �, then from 

A = l: A. (4) 
fl 

foUows the equa.ticm 
P (A) = � P (A,.) . (5) 

tl 

Proof : Let 

Then, obviously 

and, therefore, according to Axiom VI 

lim P (R.) = 0 " -+  00 • (6) 

On the other hand, by the addition theorem 

P (A) = P (At)  + P (Az) + . . .  + P (A,.) + P(R.) . (7) 

From ( 6) and (7 )  we immediately obtain (5 ) .  
We have shown, then, tha,t the probability P (A)  is a, com­

pletely additive set function on iJ. Conversely, Axioms V and VI 
hold true for every completely additive set function defined on 
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any field \}. * We canp therefore, define the concept of a field of 
probability in the following way : Let E be an arbitrary set, it a 

field of subsets of E, containing E, a,nd P ( A )  a non--nega.tive com .. 

pletely additive set function defined on if; the field 3' together 
with the set function P (A )  forms a field of probability. 

A COVERING THEOREM : If A, Au A2, • , • , A", . . .  belong to 3 

and 

A c 6 .A" , (8)  
" 

then 
P (.A) ;:a �  P (A,.) . (9) 

" 

Proof : 

A =  A 6 (An) = A A1 + A (A1 - A2 A1) + A (A3 - A3A1 - A3A 1) + · · · ,  
" 

P (A) = P (AA1) + P{A (A� - A2A 1)} + · · · � P (A1) + P (A3) + · · · .  

§ 2. Borel Fields of Probability 
>-\ The field ij is called a Borel field, if all countable sumsX A • 

of the sets A. from ij belong to s:. Borel fields are also called c'bm­
pletely additive systems of sets. From the formula 

6 A,. = A1 + (A1 - A1 A1) + (A3 - A3A1 - A3A1) + · 
· 

· 
( 1 )  

• 

we can deduce that a Borel field contains also all the sums @) A" 
II 

composed of a countable number of sets A" belonging to it. From 
the formula 

� A. = E - (5 A,. (2 ) . " 

the same can be said for the product of sets. 
A field of probability is a Borel field o/ probability if the 

corresponding field if is a Borel field. Only in the case of Borel 
fields of probability do we obtain full freedom of action, without 

danger of the occurrence of events having no probability. We 
shall now prove that we may limit ourselves to the investigation 

of Borel fields of probability. This will follow from the so-called 
extension theorem, to which we shall now turn. 

Given a field of probability ( ij, P) . As is known1, there exists 
a smallest Borel field Bit containing 'fl. And we have the 

• See, for example, 0. NtxooYM, Su.,. utte generalisation des intig.,.ales de M. J. Radon, Fund. Math. v. 15, 1930, p. 136. 
1 HAUSDORFF, Mengenlekre, 1927, p. 85. 
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EXTENSION THEOREM : It is al·ways possible to extend a non­

negative completely additive set funution P (A) , defined in if, 

to all sets of Bi; without losing either of its properties (non­

negativeness and complete additivity) and this can be done in 

only one way. 

The extended field B� forms with the extended set func­
tion P (A )  a field of probability ( BS, P) . This field of probability 
(B\}, P) we shall call the Borel extemion of the field OJ, P )  

The proof of this theorem, which belongs to the theory of 

additive set functions and �hich sometimes appears in other 
forms, can be given as follows : 

Let A be any subset of E ;  we shall denote by P* (A ) the lower 
limit of the sums 

for all coverings 

A c <S A,. 
ft 

of the set A by a finite or countable number of sets An of ij. It is 
easy to prove that P* ( A )  is then an outer measure in the 
Caratheodory sense2• In accordance with the Covering Theorem 
("§ 1 ) ,  P* ( A )  coincides with P (A )  for all sets of ij. It can be fur­

ther shown that all sets of rf are measurable in the Caratheodory 

sense. Since all measurable sets form a Borel field, all sets of BW 
are consequently measurable. The set function P* (A ) is, there­

fore, completely additive on BSo, and on Bit we may set 

P (A ) = p• (A ) . 

We have thus shown the existence of the extension. The unique­
ness of this extension follows immediately from the minimal 
property of the field BW. 

Remark : Even if the sets (events) A of it can be interpreted 
as actual and (perhaps only approximately) observable events, 
it does not, of course, follow from this that the sets of the extended 
field B'ij reasonably admit of such an interpretation. 

Thus there is the possibility that while a field of probability 
(tf, P) may be regarded as the image (idealized, however) of 

' CAKATHifiODORY, Vorle8ungm ii.be-r reelle Funktionen, pp. 237-258. (New 
York, Chels6a Publishing Compan11) . 
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actual random events, the extended field of probability (BiJ, P) 
will still remain merely a mathematical structure. 

Thus sets of Btl are generally merely ideal events to which 

nothing corresponds in the outside world. However, if reasoning 
which utilizes the probabilities of such ideal events leads us to a 
determination of the probability of an actual event of if, then, 
from an empirical point of view also, this determination will 
automatically fail to be contradictbry. 

§ 3. Examplee of Infinite Fields of Probability 

I. In § 1 of the first chapter, we have constructed various 

finite probability fields. 
Let now E = {,1 , Ea , . . .  , � • • . . . } be a countable set, and let lJ 

coincide with the aggregate of the subsets of E. 
All possible probability fields with such an aggregate n: are 

obtained in the following manner : 
We take a sequence of non-negative numbers p,., such that 

Pt + Pz + . .  · + p,. + . . .  = 1 
and for each set A put 

P (A )  = �'p .. .  
" 

where the summation Z' extends to all the indices n for which 
t. belongs to A. These fields of probability are obviously Borel 
fields. 

II. In this example, we shall assume that E represents the 

real number axis. At first, let iJ be formed of an possible finite 

sums of half-open intervals [a,, b)  = {a ... E < b} (taking into 
consideration not only the proper intervals, with finite a and b, 
but also the improper intervals [- oo; a) , [a1 + oo ) and [--OQ ; 
+ oo ) ) • i} is then a field. By means of the extension theorem, how .. 
ever, each field of probability on if can be extended to a similar 
field on Bi}. The system of sets BtJ is, therefore, in our ease 
nothing but the system of all Borel point sets on a line. Let us 
turn now to the following case. 

III. Again suppose E to be the real number axis, while tJ is 
composed of all Borel point sets of this line. In order to construct 
a field of probability with the given field tJ, it is sufficient to 
define an arbitrary non-negative completely additive set-function 
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P (A )  on iJ which satisfies the condition P (E)  = 1. As is well 
known: such a function is uniquely determined by its values 

P [- oo ;  x) = F (z) ( 1 )  
for the special intervals. [- oo; x) . The function F(x)  is called the 

di8tributi01t junction of f. Further on (Chap. Ill, § 2 )  we shall 

shown that F ( x) is non-decreasing, continuous on the left, and 
has the following limiting values : 

lim F(x) = F(- oo) = 0 , lim F(x) = F( + oo) --= t .  (2)  
· - - - • - + oo 

Conversely, if a given function F(x)  satisfies these conditions, 

then it always determines a non-negative completely additive set­
function P (A )  for which P (E)  = 1� 

IV. Let us now consider the basic set E as an n-dimensional 

Euclidian space R,., i.e., the set of all ordered n-tuples � = { Zt. x2, 

. . . , x. } of real numbers. Let � consist, in this case, of all Borel 

point-sets5 of the space R,.. On the basis of reasoning analogous 

to that used in Example II, we need not investigate narrower sys­
tems of sets, for example the systems of n-dimensional intervals. 

The role of probability function P (A )  will be played here, 
as always, by any non-negative and completely additive set­
function defined on iJ and satisfying the condition P ( E )  = 1. Such 

a set-function is determined uniquely if we assign its values 

(3) 
for the special sets L,, e&, . . . .... , where La, a, • . .  ,,. represents the 

aggregate of all � for which x, < a� ( i = 1,  2, . . . , n) . 
For our function F ( «-t ,  an . . .  , an) we may choose any function 

which for each variable is non-decreasing and continuous on the 
left, and which satisfies the following conditions : 

lim F(a1, a2 , • • •  , an) = F(a1, • • • , ai - l r  -oo, a;+ ! • • . • • a.,) = 0 ,  

I 
ill - -oo · 1 2 • = , . . . .  , n  

lim F(a1• a1 • • • • •  an) = F( +oo .  + oo ,  . . .  , +oo) = 1 .  4) 
II 

� ( 1 ) '  + •  + . .. + • F( ) 0 .� - I • .. «t - 81 cl , as - ft c._, • • . I a .. - Ea c,. > , 
� - · 

ci > 0 , i = 1 .  2 . 3 , . . . . n . 

1 Cf., for example, Lf!gESGUE, Legons BUr l'inUgration, 1928. p. 152-156. 
• See the previous note. 
' For a definition of Borel sets in R see HAUSDORFF, Msngenlehre, 1927, 

pp. 177-181. 
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F ( a,h � • • • .  , a,) is called the distribution function of the vari­

ables Xt, Xz, • . • , Xn• 
The investigation of fields of probability of the above type 

is sufficient for all classical problems in the theory of probabilitr. 
In particular, a probability function in R• can be defined thus : 

We take any non-negative point function / ( z1, z2, • • •  , x.,) 
defined in R", such that 

and set 

+co +oo +oo J J · · · J f (x1 ,  X1 , • . .  , x,.) d x1 dx,. . . .  d Xn = 1 
- no  - oo  - QQ  

P (A) = Jf . . .  f / (x1 . x1 ,  • • •  , x,.} dx1 dx • . . .  dx,. . (5) 
A 

/ (xlt xh . . .  , xll) is, in this case, the probability density at the 
point (:J;lt Xz, • • •  , Xn) ( cf. Chap. III, § 2) . 

Another type of probability function in R" is obtained in the 
following manner : Let {�t:} be a sequence of points of R", and 
let { /J.;, }  be a sequence of non-negative real numbers, such that 
� p, = 1 ; we then set, as we did in Example I, 

P (A )  = I'Pc. 
where the summation �� extends over all indices i for which t 
belongs to A.  The two types of probability functions in R• men­
tioned here do not exhaust all possibilities, but are usually con­

sidered sufficient for applications of the theory of probability. 

Nevertheless, we can imagine problems of interest for applica­
tions outside of this classical region in which elementary events 

are defined by means of an infinite number of coordinates. The 

corresponding fields of probability we shall study more closely 
after introducing several concepts needed for this purpose. ( Cf. 
Chap. Ill, § 3 )  . 

• Cf., for example, R. v. MISES [1] ,  pp. 13�19. Here the existence of proba· 
bilities for "al1 practically possible'' sets of an n-dimensional space is 
required. 

. . .  
� ·  

., 



Chapter III 

RANDOM VARIABLES 
§ 1. Probability Function1 

Given a mapping of the set E into a set E' consisting of any 
type of elements, i.e., a single-valued function u (�) defined on E, 
whose values belong to E'. To each subset A' of E' we shall put 
into correspondence, as its pre-image in E, the set u-1 (A') of all 
elements of E which map onto elements of A'. Let iJ<•> be the 
system of ali subsets A' of E', whose pre-images belong to the 
field ij. tf<•> will then also be a field. If \J happens to be a Borel 
field, the same will be true of lJ<•> . We now set 

p<t'> (A')  = P {u- 1 (A1} . ( 1 ) 

Since this set-function p< .. > ,  defined on �<w) , satisfies with respect 
to the field Sj<•> all of our Axioms I - VI, it represents a proba­
bility function on �<·>. Before turning to the proof of all the facts 
just stated, we shall formulate the following definition. 

DEFINITION. Given a single-valued function u(O of a random 
event �- The function p<-•> (A') , defined by ( 1 ) , is then called the 
probability function of u. 

Remark 1 : In studying fields of probability (if, P) , we call the 
function P (A ) simply the prob�ility function, but p<v> (A') is 
called the probability function of u. In the eaae u (O = �. PC•> (A') 
coincides with P (A ) .  

Rem.a'Y'k 2 :  The event u-1 (A') consists of the fact that u(�) 
belongs to A'. Therefore, P<•> (A') is the probability of u (E) c  A'. 

We still have to prove the above-mentioned properties of tjC•> 
and PC•> . They follow, however, from a single fact, namely : 

LEMMA. The Bum, product, arul difference of Olny pre-image 

seta u-1 (A') are the pre-images of the corresponding sums, prod­

ucts, and differences of the original sets A'. 

The proof of this lemma is left for the reader. 

21 
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Let A' and B' be two sets of if<•) . Their pre-images A and B 

belong then to 3. Since D is a field , the sets AB, A + B, and A - B_ 

also belong to if ;  but these sets are the pre-images of the sets A'B', 

A' + B', and A' - B', which thus belong to ijC•>. This proves that 

ij<w> is a field . In the same manner it can be shown that if 3 is a 
Borel field, so is n:<•>. 

Furthermore, it is clear that 

P<•> (E')  = P {u - 1 (E1} = P (E) = 1 . 

That pcu> is always non .. negative, is self-evident. It remains only 
to be shown, therefore, that p<K> is completely additive (cf. the 

end of § ll' Chap. II) . 

Let us assume that the sets A''" and therefore their pre-images 
u-1 (A'")' are disjoint. It follows that 

p(u) (� A�) = P {u- 1 (� A�} } = P {�u- 1 (A�)} 
. ,. " 

= 1:P {u- 1 (A�)} = � PC•) (A�) 
• IJ 

which proves th� complete additivity of pc"> . 
In conclusion

' 
let us also note the following. Let u1 (f) be a 

function mapping E on E', and 1.1.2 ( f') be another function, map­

ping E' on E". The product function �1t1 (�) maps E on E". We 
shall now study the probability functions P"•> (A') and P<»> (A") 
for the functions u1 (E) and u a) = UzU1 (f) . It is easy to show 
that these two probability functions are connected by the follow­
ing relation : 

§ 2. Definition of Random Variables and of 
Distribution Functions 

(2) 

DEFINITION. A real single-valued function x (E), defined on the 

basic set E, is called a random variable if for each choice of a real 
number a. the set {x < a.} of all e for which the inequality x < a  
holds true, belongs to the system of sets if. 

This function z ( �) maps the basic set E in to the set R1 of all 
real numbers. This function determines, as in § 1 ,  a field ij<s> of 
subsets of the set R2•  We may formulate our definition of random 
variable in this manner : A real function x (�) is a random variable 
if and only if rf(.t) contains every interval of the form ( -oor a.) . 
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Since �c.�> is a field, then along with the intervals (-oo1 a) it 
contains all possible finite sums of half-open intervals [a1 b) . If 

our field of probability is a Borel field, then g: and \j<sl are Borel 

fields ; tkere/ore, in this case tjCx> contains all Borel sets of R1• 

The probability function of a random variable we shall denote 
in the future by P<s) (A') . It is defined for all sets of the field if<,..> •. 

In particular, for the most important case, the Borel field of 
probability, p<s> is defined for all Borel sets of R1• 

DEFINITION. The function 
F<x> (a.) = p<s> (-oo, 4) = p {.x < a} '  

where - oo and + oo are allowable values of a, is called the distri­
bution. function of the ra.ndom variable x. 

From the definition it follows at once that 

( 1 )  

The probability of the realization of both inequalities a <  x < b, 
is obviously given by the formula 

P {x c [a ; fJ)} = F(�) (b) - p(s) (a) 
From this, we have, for a. <  b, 

F<x) (a,) < FCs� (b) 

(2) 

which means that F(x) (a) is a non-decreasing function. Now let 

lLt < a2 < . . . < a.. < . . . < b ; then 

�{x c: [a" ; b)} = 0 
n 

Therefore, in accordance with the continuity axiom, 

F<�:> (b) - F<11> (a .. ) = P{x c: [a,. ,  b)} 

approaches t;ero asn-+ + oo . From this it is clear that F<s) (a) i8 
continuom on the left. 

In an analogous way we can prove the formulae : 

lim F<,..> (a) = FCs> (- ao )  = 0, 

lim F<s> (a) = F<s> ( + oo )  = 1, 
a. -+ - oo ,  (8)  

a -+ + oo. (4) 

If the field of probability (iJ, P)  is a Borel field, the values of 
the probability function p<s> (A)  for all Borel sets A of R1 are 
uniquely determined by knowledge of the distribution function 
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F(�> (a) (ef. § 8, III in Chap. II) . Sinee our main interest lies in 
these values of P<z> ( A ) , the distribution function plays a most 

significant role in all our future work. 
If the distribution function F(z) (a) is differentiable, then we 

call its derivative with respect to a, 
d f<"> (a) = - f"'<�(a) , da 

the probability density of x at the point a.. 
iiJ 

If also F<�) (a) == f f<.r) (a) da for each a, then we may ex-
-oo 

press the probability function p<z> (A ) for each Borel set A in 

terms of f<x) (a) in the following manner : 

P(*) (A) = jJ<s> (a) da . (5) 
A 

In this case we call the distribution of x continuous. And in the 
general case, we write, analogously 

P<�> (A) = J dF(r) (a) . (6) 
A 

All the concepts just introduced are capable of generalization 

for conditional probabilities. The set function 

"''(A) = Ps(x c A) 
is the conditional probability function of x under hypothesis B. 
The non�decreasing function 

Fr;' (a) = Ps(x < a) 
is the corresponding distribution function, and, finally ( in the 

case where Ff (�r) is differentiable) 

4 f'f (a) = -;;;; fl'(a) 
is the conditional probability density of x at the point a under 

hypothesis B. 

§ 3. Multi-dimen&ional Distribution Funetioru 
Let now n random variables z1, Zz, • • •  , x,. be given. The point 

x = (x1, x2, • . • , x,.) of the n.-dimensional space R"' is a function 

of the elementary event l. Therefore, according to the general 

rules in § 1, we have a field tj<z • •  :�:, . · · · • 2:,.) consisting of 
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subsets of space R• and a probability function p< .. , s. , . . . . .. , (A') 
defined on il'. This probability function is called the n-dimensional 
probabilit11 function of the random va:, iableB x1, x2t . . .  , x ... 

As follows directl� from the definition of a random variable, 
the field if' contains, for each choice of i and a, (i  = 1 ,  2, . . . , n� 
the set of al1 points in R" for which Xc < a.. Therefore iJ' also con­

tains the intersection of the above sets, i.e. the set L .. .. . . . •• 
of al1 points of R,. for which all the inequalities xi <. ac bold 
(i = 1, 2, . . . , n} l. 

If we now denote as the n-dimensional half -open interval 

the set of all points in R", for which � < x, < bi, then we see at 
once that each such interval belongs to the field fj' since 

[ a1, a1 , • • • t a,. ;  b1, b1 1 • • • 1 b,.) 
= L"' 6t . . .  "• - L,, "• . . . "" - L6, "• "- • • •  &. - • 

• • - Leoa ,, . . .  b,. _ • ,,. • 

The Borel extension of the system of all n.-dimensional half­
open intervals consists of·all Borel sets in !P. From this it follows 
that in the case of a Borel field of probability, the field if contains 

all the Borel BetB in the space R•. 

THEOREM : In the case of a. Borel field of probability ea,ch, Borel 
function x = f (z., x2, . . .  , x .. ) of a. finite number of random vari­
ables Ztt Xt, • • •  , x1l i8 also a ra:ndom variable. 

All we need to prove this is to point out that the set of all 
points (xh x:, . . . , Zn) in R• for which x = / (x1, Xt, • • •  , x") < a, 
is a Borel set. In particular, all finite sums and products of random 
variables are also random variables. 

DEFINITION : The function 
rf•a• ._ • • • • 1 ••) {a a_ • ) =: P<•1• S. • · 

• ·' :.r.) (L��- ,. ) s:r '  1• � '  • • • , .... ._.. ... . . . . .. 

is called the n-dimensional distribution. function of the random 
variables xh X2, . • • , x". 

As in the one-dimensional case, we prove that the n·dimensional 
distribution function F'•" s. '  · · · �  ..,(a1, a.a, • . .  , a,.) is non-decreas­
ing and continuous on the left in each variable. In analogy to 
equations (3)  and (4)  in § 2, we here have 

1 The •t may also assume the infinite values ± • . 
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lim F(a1 , a1 , . · . . • a,.) = F(a1, • • •  , "• - �� - oo ,  ai+ h  . . . , a,.) = 0 .  (7) 
., _., --

lim.F{al, a1 ,  • • •  , -.) � F(+oo, +oo, . . .  , +oo) = t .  (8) 
._ -+ +Og, -. - +• . • . .  • ... -+ +oo 

The distribution function F<�. :1', • • •  s.) gives directly the values 

of p<z •• Sw. · · · · eo.> only for the speeial sets L . If our field how-.. .. . . . .. ' 

ever, is a Borel field, thenz pes,, :r:. , • · · • :E.l is uniquety determined for 
all Borel se.ts in R" by knowledge of the distribution function 
F<s:,, :r . . . . . , :r,.) .. 

If there exists the derivative 
il' f(aJ t a2 • • • • • n") = a  iJ a F�% •. s:. , . . . . �: .. > (a 1 ,  a1 , . . . • a,.) IJI lit • • • 4,. 

we call this derivative the n-dimensional probability density of 

the random variables x1r x2, . . • , x,. at the point ah a, ,. . . , a,.. If 
also for every point (G.t, a,, . . . , a,.)  

a1 111 a,. 

F<� .. ,., . " · • 7") (a 1 «2 • • •  u,.) = j f· . . j'f(aJ t «2 , • . .  , a,.) da1 da2 • • • dan , 
-oo --oo -OQ 

then the distribution of xh x2, . . . , Xn is called continuous. For 

every Borel set Ac R", we have the equality 

P<r., :r, ,  . . .  , :�;,.) (A ) = JJ . . .  jJ(a1, a2, • • •  , a,.) 4a1 da1 • • •  da,. . (9) 
( 

In closing this section we shall make one more remark about 

the relationships between the various probability functions and 

distribution functions. ��� 

Given the substitution S = (1 , 2 ,  
'J . i'J , 

• •  1o ' 

. . . . 

and let t 8 denote the transformation _ � 

%J = � (k = 1, 2, . . .  , n) 

of space R" into itself. It is then obvious that 

p(:riL• :zi• • • • •  , :r,,.) (A) = p<2:. ,1.,  . . .  ,s.J {r&1 (A)} . ( 10 )  

Now let x' = Pk (x)  be the "projection" of the space R" on the 

space R" (k < n) , so that the point (x1, Xz, • • •  , Xa) is mappedonto 
the point (Xt, x2, . . .  , x�c) . Then, as a result of Formula (2) in § 1, 

1 Cf. 6 3. IV in the Second Chapter. 
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p<z, , s" . . . • z.i) (A) = pc.rh � • • . . . •  �.> {p;•(A)} . (11) 

For the corresponding distribution functions, we obtain from 

( 10) and ( 11 )  the equations : 

F{:.:i, • :r.i, • • • •  , :ri,.) (n· n� a ·  ) - p<.r, , z: . . . .  , .fit) (a a a ) (12) � .. , ....... ' .. • .. • ,.. - l t I t • • • ' Jl I 

Ff:r� > :r • • . • .  , ::r.a-> (a a a •. ) - F<z, . �  . . . .  , :r•> (a a .. + oo  + _..) (13) 1 •  • • . . . •  a! - 1 • · · · ·  � ·  . . . .  , � .  

§ 4. Probabilities in Infinite-dimensional Spaces 
In § 3 of the second chapter we have seen how to construct 

various fields of probability common in the theory of probability. 

We can imagine, however, interesting problems in which the 
elementary events are defined by means of an infinite number 
of coordinates. Let us take a set M of indices p. ( indexing set) of 

arbitrary cardinality m . The totality of all systems 

¢ = {x,.} 
of real numbers x, , where 11- runs through the entire set M, we 
shall call the space RM (in order to define an element � in space 

RM, we must put each element ,. in set M in correspondence with 

a real number x,. or, equivalently, assign a real single-valued 

function x,. of the element p., defined on M) 3•  If the set. M consists 
of the first n natural numbers 1, 2, . . .  , n., then RM is the ordinary 

n--dimensional space R". If we choose for the set M all real num­

bers R1 f then the corresponding space RM = R• will consist of 
all real functions 

� (,a) = x,. 

of the real variable p.. 
We now take the set RM (with an arbitrary set M) as the 

basic set E. Let � = {x,.} be an element in E ;  we shall denote by 

P,..,. • . . .  ,. (E) the point (x,. • •  x,. • • . . .  , .x�&s) of the 11.-dimensional 

space R". A subset A of E we shall call a cylinder set if it can 
be represented in the form 

A = fJ,�! ,._ . . .  ,_(A�) 

where A' is a subset of R". The class of all cylinder sets coincides, 

therefore, with the class of all sets which can be defined by rela­

tions of the form 

• Cf. HAUSDORFF, Me:n.genleh-re. 1927, p. 23. 
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I (x,.., ,  :x1� • • • •  , x,...) = ·0 • (1)  
In order to determine a.n arbitrary cylinder set f> ,... ,., . . •  ,... (A ') by 

such a relation, we need only take as f a function which equals 0 
on A'. but outside of A' equals unity. 

A cylinder set is a, Bo-rel cylinder set if the corresponding set 

A' is a Borel set. AU Borel cylind.er sets of the space RM form tt 
field, which we shall henceforth denote by i)M'. 

The Borel extension of the field � we shall denote, as always, 

by BijM. Sets in BiJM we shall call Borel sets of the space RM. 

Later on we shall give a method of constructing and operating 

with probability functions on g:M, and consequently, by means of 

the Extension Theorem, on BijM also. We obtain in this manner 
fields of probability sufficient for all purposes in the case that the 

set M is denumerable. We can therefore handle all questions 
touching upon a denumerable sequence of random variables. But 
if M is not denumerable, many simple and interesting subsets of 
RM remain outside of Bi;M. For example, the set of all elements � 
for which "" remains smaller than a fixed constant for all 
indices p., does not belong to the system Bt}M if the set M is 
non-denumerable. 

It is therefore desirable to try whenever possible to put each 
problem in such a form that the space of all elementary events � 
has only a denumerable set of coordinates. 

Let a probability function P(A ) be defined on ijM. We may 

then regard every coordinate "" of the elementary event � 
as a random variable. In consequence, every finite group 
{x-,.. , ""' , • • •  , x,. • .) of these coordinates has an n-dimensional 

probability function P'"'.14• • • •  ,.. (A.) and a corresponding distribu� 

� From the above it follows that Borel cylinder sets are Borel sets definable 
by relations of type ( 1 ) .  Now let A and B be two Borel cylinder sets defined 
by the relations 

f (x1,, . :¥,.1 • • • •  , x11") = 0 ,  f (:¥,1.1 , .&'A.,, • , • , XJ.) = 0 • 

Then we can define the sets A +  Bt AB, and A-B respectively by the relations 
f · g = O , 

l' + r• = o . 
r + w (K) == o .  

where ro (x) = o for � + o and ro (0} = f If f and g are Borel funetions, so 
also are f·g, f + g' and f + w (g ) ; therefore, A +  B, AB and A -B are Borel 
eylinder sets. Thus we have shown that the system of sets a" is a field. 
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tion function F Ill/A• • • , �«fa  ( fLt, �. • • • , a,.) . It is obvious that for 
every Borel cylinder set 

A - p-1 (A') - P•P• · •  · I'• J 

the following equation holds : 

P (A) = P,.,,u. . . .  p. (A1 , 

where A' is a Borel set of R"'. In this manner, the probability 

function P is uniquely determined on the field itM of all cylinder sets 
by means of the values of all finite probability functions P lA•"' . • .  ,.,. 

for all Borel sets of the corresponding spaces R". However, for 
Borel sets, the values of the probability functions P IA•P• • • · �'• are 
uniquely determined by means of the corresponding distribution 

functions. We have thus proved the following theorem : 
T..he set of all finite-dimensional di8tribution junctions 

F�',, •• . . .  1,,. uniq'll£ly determines the probability function P(A) for 

aU sets in tfM. If P (A) is de fined on g:M, then ( according to the 
extension theorem) . it is uniquely dete-rmined on B�M by the 

values of the distribution functiont F �,,._ . . .  ,. • .  

We may now ask the following. Under what conditions does a 
system of distribution functions F ,1,., • • •  ,.. given a, priori define 
a field of probability on {lM ( and, consequently, on .,6tfM) ? 

We must first note that every distribution function F1,1P• • • .  ,.. 
must satisfy the conditions given in § 3, III of the second chap­

ter ; indeed this is contained in the very concept of distribution 
function. Besides, as a result of formulas (13)  and ( 14) in § 2, 
we have also the following relations : 

F ,..,,IIi. . . .  � (��t. , a&. ,  . . .  , a,J =: F,,,,,, . . .  ,,. (a1 , � ,  • • •  , a .. ) , (2) 
FIAsl'• . . •  p. (a1 , a1 , . . . , ak) = F,.,,. • . . .  1 •• (a1 , a2 , • • •  , alct +oo • . . .  , +oo) , (8)  

where k < n and (.� · � ·  · · · ·  �\ is an arbitrary permutation . . "1 • '• · • • • , •J 
These necessary conditions prove also to be sufficient, as will 
appear from the following theorem. 

FuNDAMENTAL THEOREM: EveTy system of distribution func­

titm8 F,.,,. • . . .  � ,  satisfy�'ng the conditions (2) and (3) , defines a 
probability function P (A )  on �M, which satisfies Axioms 1 - VI. 
This probability junction P (A ) can be extended (by the ex ten.. 

sion theorem) to Bi;M also. 
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Proof. Given the distribution functions F,.,p • . . .  , •• • satisfying 

the general conditions of Chap. II, § 3, III and also conditions (2)  
and ( 3 ) .  Every distribution function FP.•P.• · · ·  .... defines uniquely 
a corresponding probability function P P.t "• • • • �'" for all Borel sets 
of R• (cf. § 3) . We shall deal in the future only with Borel sets 

of R"' and with Borel cylinder sets in E. 
For every cylinder set 

A - p-1 (A') - PaPa · · .  PA ' 

we set 

(4) 

Since the same cylinder set A can be defined by various sets A', 

we must first show that formula ( 4 )  yields always the same 

value for P(A ) .  
Let (.xp., • x,. • • . . .  , x11J be a finite system of random variables 

x,. . Proceeding from the probability function P ... "'• . . .  ,... of these 

random variables, we can, in accordance with the rules in § 3, 

define the probability function P P.i, P-i • • • •  ..,,1 of each subsystem 

(x11i, • x,,, . . . . . x14ik) • From equations (2) and (3) it follows that 
this probability function defined according to § 3 is the same as 
the function P11'-•"'-· · · · Pik given a priori. We shall now suppose that 
the cylinder set A is defined by means of 

A = .,-1 (A') r�it.l'it . . ·�'it 
and simultaneously by means of 

A =  p-1 (A�} J•jliJi· • • • I"J,. 
where all random variables .x"'1 and xll, belong to the system 
(x,,, , x"'• , . . . • x�'J , which is obviously not an essential restriction. 

The conditions 

and 
(xllJ • X.a , • • . , x.. ) c A" I /1 r-Jtrl 

are equivalent. Therefore 

P Pi, �"i. · · · l'ik (A') = P P1 1"• . . • ,. .. {(x�'is • x"''· ' · · · • xllit) c A'} 

= p P.a P:• • • • "'" { ( .x.a.11 • x,.l. • · . .  ' .x �"; ... ) c: A '1 = p �"f1 �"I• · · · .a;,. (A") ' 

which proves our statement concerning the uniqueness of the 
definition of P(A ) . 
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. 

Let us now prove that the field of probability (ijM, P) satisfies 
all the Axioms I - VI. Axiom I requires merely that iJM be a field. 

This fact has already been proven above. Moreover. for an arbi­
trary p. :  

E = p-t (Rl) , ,. 
P (E) = P14 (R1) = 1 ,  

whieh proves that Axioms II and IV apply in this case. Finally, 
from the definition of P (A) it follows at once that P (A)  is non­

negative ( Axiom III) . 

It is only slightly more complicated to prove that Axiom V 
is also satisfied. In order to do so, we investigate two cylinder· sets 

A = p-1 (A') Pi, Pia • • • Pia: 
and B = p �: �'J, _ • .  111,_(B') . 
We shall assume that all variables x,��. and x14J belong to one inclu­

sive finite system (x,.. , x14. , • • •  , x14.,.) • If the sets A .  and B do not 
intersect, the relations( 

) , 
Xu_,. , Xu . , • • • , X,, . C: A • ,. ......,. t.t 

and ( xP.,. , xP.Ja , . . .  ' x��,J c B' 
are incompatible. Therefore 

or 

which concludes our proof. 

(Xp,: , "" ' I . . .  , X� . ) c: B'} 11 ,. , .. 

Only Axiom VI remains. Let 
Al :::;, AI :J . . .  ::;) A,. ::J • • •  

be a decreasing sequence of cylinder sets satisfying the condition 
lim P(A,.) = L > 0. 

We shall prove that the product of all sets A,. is not empty. We 

may assume!>' without essentially restricting the problem, that in 
the definition of the first n cylinder sets At, only the first n co­
ordinates %,.a: in the sequence 
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occur, i.e. 

For brevity we set 

P 1'1 �'• . . .  p,. (B) = P" (B) ; 
then, obviously 

P,. (B,.) = P (A,.) > L > 0. 

In each set B,. it is possible to find a closed bounded set U,. such 

that 
P,. (B,. - U,.) � ; • .  

From this inequality we have for the set 

the inequality 

Let, morever, 

V - p-t (U ) ,.. - PI ,. • • • •  ,.. " 

P (A,. - V .) < .!.._ - 2" . 

w. = vlv2 . . .  v •. 

From ( 5) it follows that 

P (A,. - W,.) < e. 
Since W,.. c V,. c A,. , it follows that 

P(W,.) > P (A,.) - t � L - t .  

(5) 

If e is sufficiently small, P (W,.) > 0 and W,. is not empty. We 
shall now choose in each set W,. a point �( .. ) with the coordinates 
x!". Every point �("+;> , p = 0, 1 ,  2, . . .  , belongs to the set V. ; 
therefore 

Since the sets U,. are bounded we may (by the diagonal method) 
choose from the sequence {�")} a subsequence 

for which the corresponding coordinates x��) tend for any k to 
a definite limit xk. Lett finally, E be a point in set E with the 
coordinates 

%pj: = Xt I 

X,. = 0 r !J =t= /ll • k = 1 , 2 , J ,  . . .  
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As the limit of the sequence (.t:�"ll, x�"') • . . . •  xi"')), i = 1, 2, 3, . . .  , the 
point ( xh x2, • . .  , x,.J belongs to the set U k· Therefore, e belongs to 

Aa c: Vt = P,-;,.�, • . . . f£" (Ui) 
for any k and therefore to the product 

A = FA1 • 

§ 5. Equivalent Random Variable• ; Varioua Kinde of Conver�Jence 

Starting with this pa.ragraph,, we deal excl'U8ively with Borel 

fields of probability. As we have already explained in § 2 of the 

second chapter, this does not constitute any essential restriction 
on our investigations. 

Two random variables x and y are called equivalent, if the 
probability of the relation x =Fy is equal to zero. It is obvious that 
two equivalent random variables have the same probability func­
tion : 

p<s> (A ) = pbl (A ) . 

Therefore, the distribution functions F<.r> and F<�l are also 
identical. In many problem& in the theory of probability we may 
substitute for any random variable any equivalent variable. 

Now let 
( 1 )  

be a sequence of random variables. Let us study the set A of all 
elementary events t for which the sequence ( 1) converges. If we 
denote by A�";! the sets of � for which all the following inequalities 

hold 
k = t .  2 • • . •  ' p 

then we obtain at once 

(2) 

According to § 3,  the set A�� always belongs to the field if,  The 
relation (2) shows that A, too, belongs to ij. We may, therefore, 
speak of tke probability of convergence of a 8equence of random 
voJriables. for it always 1uL8 a perfectly definite meaning. 

Now let the probability P (A )  of the convergence set A be 
equal to unity. We may then state that the sequence ( 1)  con­

verges with the probability one to a random variable x, where 



34 III. Random Variables 

the random variable x is uniquely defined except for equivalence. 

To determine such a random variable we set 

x = lim x,. 
on A, and x = 0 outside of A. We have to show that x is a random 

variable, in oth�r words, that the set A (a) of the elements � for 
which x < a, belongs to lj. But 

A (a) = A S SD{x,.+P < a} n P 
in case a <  O, and 

A (a) = A \S �{xn+p < a} +  A 
n " 

in the opposite case, from which our statement follows at once . 
If the probability of convergence of the sequence ( 1 )  to x 

equals one, then we say that the sequence ( 1)  converges almost 

surely to x. However, for the theory of probability, another con­

ception of convergence is possibly more important. 

DEFINITION. The sequence x1, x2, . . •  , x,., . . .  of random vari­

ables eonverges in probability ( converge en probabilite) to the 

random variable x, if for any · e > 0 , the probability 

P {lx .. - %( > e} 
tends toward zero as n -+- oo :; . 

I. If the sequence ( 1 )  converges in probability to x and also 

to x', then x and x' are equivalent. In fact 

P{\% � x'l > �} � P {l x,. - x l > 2�} + p· {lx. - x'l > 2!,.} ; 
since the last probabilities are as small as we please for a suffici­

ently large n it follows that 
P {lx - x' j > !} = 0 

and we obtain at once that 

P {x 9= x1 � � P {l x  - x' l > �} � 0 .  
* 

II. If -tke sequenee ( 1 )  almost surely converges to x, then it 

• This concept is due to Bernoulli ; its completely general treatment was introduced by E. E. Slutsky ( see [1] ) .  
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al8o converges to z in probability. Let A be the convergence set 

of the sequence ( 1 )  ; then 

i = P (A) � lim P {jx,-+P - xl < � .  p = 0, 1 ,  2 ,  . . •  } � limP{ Ixa - x l  < 4 ,  
a + oo  1l + ao  

from which the convergence in probability follows. 

III. For tke convergence in pTobability of the sequence ( 1 )  
the following cr.mditicm is both necessary and sufficient: For a,nv 
e > 0 there ezists an n such thaJ;, for eve'ry p > 0, the following 
inequality holds : 

Let F1 (a.) , Fa (a) , . . •  , F. (a.) , . . .  , F (a) be the distribution 
functions of the random variables xlt x2, . . .  , x., . . . , x. If the 

sequence x. converges in probability to x, the distribution func­
tion F (a) is uniquely determined by knowledge of the functions 
F, (a) . We have, in fact, 

THEOREM : Jf the sequence xh z2, . . .  , z�, . . .  converges in 

probability to x, the corresponding sequence of distribution June- · 
tions F. (a.) converges at .ea,ch point of continuity of F (a) to the 
distribution function F (a) of z. 

That F (a,) is really determined by the F,. (a) follows from the 
faet that F (tt) , being a monotone function, continuous on the left, 
is uniquely determined by its values at the points of continuity'. To 

prove the theorem we assume that F is continuous at the point 

a. Let a/ < a,;  then in case a: < a/, x,. � a, it is necessary that 

I x,. - x I  > a - a'. Therefore 
limP (x < a', x. �  a) = 0 .  

F(a') = P (x<a') � P(x,.<aJ + P(x<a', x,. �a) == F,. (a) + P(x<a', -'•� il) , 
F (a') ;a lim infF,. (a) + lim P (x < a', x,. � a) .  

F(a') � lim infF,. (a) .  (8) 
In an analogous manner, we can prove that from a" > a. there 
follows the relation 

F (a.") > lim sup F. (a) . (4) 

' I n  fact, it has at moat only a countable set of discontinuities (aee LEBESGUE, 
Le9ons 8U..,. l'in:Ug.,-a.tion.. 1928, p. 50. Therefore, the points of eontinuity are 
everywhere dense, and the value of the funetion F (a.) at a point of discon· 
tinuity is determined as the limit of ita "alues at the points of continuity 
on its left. 
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Since F (a') and F (a") converge to F (a.) for a' -+ «�t and a/ 

it follows from (3)  and ( 4)  that 
lim Fn (a) = F (a) , 

which proves our theorem. 



Chapter IV 

MATHEMATICAL EXPECTATIONS 1 

§ 1. Abetraet Lebelgtle Integrals 
Let z be a random variable and A a set of ij. Let us form, for a 

positive ,\, the sum 
.t ""  +oo 

_SJ. = � k ,t P{k 1 .=t :-c < (k + 1) J. , � c A} .  ( 1 )  
It - -oo 

If this series converges absolutely for every ,\, then as ,\ -+  0, 51 . 
tends toward a definite limit, which is by definition the integral 

f �P ( dE)  • (2) 
A 

In this abstract form the concept of an integral was introduced 

by Frechet2 ; it is indispensable for the theory of probability. 

(The reader will see in the following paragraphs that the usual 

definition for the conditional mathematical expectation of the 

variable x under hypothesis A coincides with the definition of 

the integral (2) except for a constant factor.) 

We shall give here a brief survey of the most important 
properties of the integrals of form (2) . The reader will find their 
proofs in every textbook on real variables, although the proofs 

are usually carried out only in the case where P (A ) is the Lebesgue 

measure of sets in R,.. The extension of these proofs to the general 

case does not entail any new mathematical problem ; for the most 

part they remain word for word the same. 

I. If a random variable x is integrable on A,  then it is in­
tegrable on each subset A' of A belonging to iJ. 

II. If x is integrable on A and A is decomposed into no 

' As was atated in § 5 of the third chapter, we are considering in this, aa well 
as in the following chaptera, Borel fislds of proba.bility only. 

I FdCHET, Sur l'inUgrak d'un.e fu:nctionmlll dundtU a ""' ens61nbU abst.rait, Bull. Soc. Math. France v. 43, 1916, p. Z48. 
37 
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more than a countable number of non-intersecting sets A� of i}, 
then Jx P (dE) == LJxP (dE) . 

A n ,A,. 

III. If x is integrable, !  x I is also integrable, and in that case 

IJ x P (dE) 1 � /lx l P (dE) . 
A A 

IV. If in each event �� the inequalities 0 < y < x hold, then 

along with z, y is also integrable3, and in that case 

f,., p (dE) � f X p (dE) • 

.A A 

V. If m < x < M where m and M are two constants, then 

m P (A) :;:; J x P {dE) :s;: M P {A) • 

.A 

VI. If x and y are integrable, and K and L are two real con­

stants, then Kx + Ly is also integrable, and in this case 

j(Kx + Ly) P(dE) = K f x P (dE) + L f y P(d£) . 
A A A 

VII. If the series 

converges, then the series 

�x� = x " 
converges at each point of set A with the exception of a certain 
set B for which P (B) = 0. If we set x = 0 everywhere except on 
A - B, then 

J x P (dE) = LJ x,. P(dE) . 
A n A 

VIII. If x and y are equivalent ( P fx =F y} = 0) , then for 

every set A of if 
f X P (clE) = J y P (dE) . 

A .A 
( 3) 

• It is assumed that 11 is a random variable. i.e., in the tenninology of the 
general theory of integration, measurable with respect to a .  
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IX. If (3)  holds for every set A of 0:, then x and y are 
equivalent. 

From the foregoing definition of an integral we also obtain 
the following property, which is not found in the usual Lebesgue 
theory. 

X. Let P1 (A) and P2 (A ) be two probability functions defined 

on the same field \}, P ( A )  = P1 (A)  + Pa (A ), and let x be integrable 

on A relative to P1 (A ) and P2 (A) . Then 

j x P (dE) == f x P1 (dE) + f x P1 (dE) . 

.A .A ..t 

XI. Every bounded random variable is integrable. 

§ 2. Absolute and Conditional Mathematical Expectations 

Let x be a random variable. The integral 

E ( x) = f xP (dE)  
E 

is called in the theory of probability the mathematical expectation 

of the variable x. From the properties III, riV, V, VI, VII, VIII, 
XI, it follows that 

I. I E (x )  I <  E ( lx l > ; 

II. E (y) < E (x)  if 0 < y < x everywhere ; 

III. inf (x)  < E (x)  :S sup (x)  ; 
IV. E (Kx + Ly) == KE(x)  + LE (y) ; 

V. E (� x,.) = � E (x,.), if the series � E ( l x,.J ) converges ; 
, 7l 

VI. If x and y are equivalent then 

E (x)  = E ( y) . 

n 

VII. Every bounded random variable has a mathematical 

expectation. 

From the definition of the integral, we have 
j: = + OQ  

E (x) = lim� km P{km ;;;; x < (k + t )  m} 
l =  - co  
1: - + co  

= lim l; km {F((k + 1 ) m) - F(km)} . 
1: = - co  



40 IV. Mathematical Expectations 

The second line is nothing more than the usual definition of the 
Stieltjes integral 

+oo J a dF(s:) (a) = E (x) . ( 1) 

Formula ( 1 )  may therefore serve as a definition of the mathe­

matical expectation E ( x)  . 

Now let u be a function of the elementary event e, and � be a 

random variable defined as a single-valued function x = x (u) 
of u. Then 

P {km � x < (k + 1) m} = p<u> {km � x (u) < (k + 1) m} ,  

where p<w> (A)  is the probability function of u. It then follows 

from the definition of the integral that 

f X P {dE) = J X p(u) (dE(u)) 
B Bftol 

and, therefore, 

E (x) = J x (u) p�u) (dE(")) (2) 
Ef"l 

where E<•> denotes the set of all possible values of u. 
In particular, when u itself is a random variable we have 

+go 
E (x) = J x P (dE} = J x (u) P(") (dR1) = J x {a) dF(") (a) . (3) 

B • --

When x (u) is continuous , the last integral in (3) is the ordinary 
Stieltjes integral. We must note, however, that the integral 

+ oo  J x (a) dF<•) (a)' 
- oo  

can exist even when the mathematical expectation E(x)  does not. 
For the existence of E ( x)  , it is necessary and sufficient that the 
integral +oo /lx: (a) I dF(u) (a) 

- oo  
be finite•. 

If u is a point ( uh u2, . . .  , u,.) of the space R", then as a result 

of (2) : 

• Cf. V. GLIVENKO, Swr les -valeurs probables de fcmctiom, Rend. Acead. 
Lincei v. 8. 1928. pp. 480�483. 
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E(x) = J J · . .  J x (u1 , u1 , . . . , u,.) p<va, "'· . . .  , u.) (d.Rn) . ( 4) 
R• 

We have already seen that the conditional probability P.a (A) 
possesses all the properties of a probability function. The corres� 
ponding integral 

Es (z) = J x Ps(tlE) ( 5 ) 
B 

we call the conditional mathematicaJ, expectation of the random 
variable z with respect to the event B. Since 

Ps {B) = 0 ,  

we obtain from ( 5) the equation 

E8(x) = J x Ps (dE) = J x P8 (dE) + J% P8 (dE) = J x P.IJ (dE) . 
E B j B 

We recall that in case A c.B, 

we thus obtain 

p {A) = P(AB) 
_ 

P CA )  
B P (B) - P (B) J 

EB (x) = P(�)� x P (dE) , 
B 

f x P (dE) = P(B)- E8 (%) . 
B 

From (6) and the equality 
Jx P (dE) = Jx P (dE) + jxP (dE) 

A+B A B 
we obtain at last 

E { ) _ P(A) EA (x) + P(B) E.,(x) 
A + B  X - - P(A + B} 

and, in particular, we have the formula 

E (x) = P (A) EA (x) + P (A) Ei(x) .  

(6) 

(7 ) 

(8) 

(9) 
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§ 3. The Tchebycheff Inequality 

Let f (x) be a non-negative function of a real argument x, 

which for x > a never becomes smaller than b > 0. Then for any 

random variable % 

P (x � a) ;:;;;; E{f�x)} , ( 1 )  

provided the mathematical expectation E{/ (x)} exists. For, 

E{/(x)} = jf(x} P (dE) > jf(x) P (dE} :> b P (x � a) , 
B {s� s} 

from which ( 1)  follows at once. 
For example, for every positive c , 

p ( � ) .s;: E ( eu) % Eo:  a - tra • (2) 

Now let /(x)  be non-negative, even, and, for positive x ,  non­
decreasing. Then for every random variable x and for any choice 
.of the constant a > 0 the following inequality holds 

In particular , 

P (J x l � a) :5: E{l(x}} 
- - /(a) . ( 3) 

P (J x - E(x) l � a) �  E f{x - E {x)} (4) � / (a) . 
Especially important is the case f (a:) = x2• We then obtain from 

(3) and (4) 

where 

P (l x l  >- a) < E��·) , 
P (! x - E(x) j :.:ii!: a) s; E{x - ,E {x)}• = o• (:) ' 

·a a 

o'(x) = E{x - E (x)}' 

(5 )  

(6) 

is called the variance of the variable x. It is easy to calculate that 

a1 (x) = E {x1) - {E(x)}2 . 

If I (:t) is bounded : 
l f (x) l < K , 

then a lower bound for P(  lx l  > a) can be found. For 
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E(/(.�)) -jt(x) P (dE) = (f(x) P (dE) + {f(x) P (dE) 
. {( s(<•} {lsf-= •} 

:;;;; / (a) P (Jx l < a) +  K P Ox! � a) ;:;;; / (a) + K P (jx j  E;. a) 

and therefore 

P (lx l  � a) ;c:: E{/lX)� - /(a) . (7 )  
If instead of I (x)  the random variable x itself is  bounded, 

l x l  < M , 
then / (x) < / (4/) , and instead of (7 ) ,  we have the formula 

p (lxf � a) � 
E (f(;�� / (a) . (8) 

In the case f ( :r; )  = x1, we have from (8) 

(9) 

§ 4. Some Criteria for Convergence 

Let 
( 1 )  

be a sequence of random variables and f ( x)  be a non-negative, 
even, and for positive x a monotonically increasing function'. 
Then the following theorems are true : 

I. In order that the sequence ( 1 )  converge in probability the 

following condition is sufficient : For each s -> 0 there exists an n 

such that for every p > 0, the following inequality holds : 

(2) 

II.  In order that the sequence ( 1) converge in probability to 
the random variable x, the following condition is sufficient : 

lim E{/(x. - x)} = 0 .  (3) 
. .... + aa  

III. If / (x) is bounded and continuous and / (0 )  = 0, then 
conditions I and II are also necessary. 

IV. If I ( x)  is continuous, I ( 0)  = o, and the totality of all 
x1, Za, • • •  , x,., . . .  , z is bounded,then conditions I and II are also 
necessary. 

1 Therefore f (�) "'> 0 if � :4: 0_ 
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From II and IV, we obtain in particular 

V. In order that sequence ( 1 )  converge in probability to x, 
it is sufficient that 

lim E ( x. - x ) Z = 0 • (4) 
If also the totality of all Xu x., . . .  , x", . . . , x is bounded, then the 

condition is also necessary. 
For proofs of I - IV see Slutsky [1]  and Frechet [1 ] .  How­

ever, these theorems follow almost immediately from formulas 
(3) and (8) of the preceding section. 

§ 5. Ditlerentiation and Integration of Mathematical Expeetationa 

with Reapeet to a Pa�ameter 

Let us put each elementary event t into correspondence with a 
definite real function x (t) of a real variable t. We say that x (t) 

is a ra.ndom function. if for every fixed t, the variable � ( t) is a 
random variable. The question now arises, under what conditions 
can the mathematical expectation sign be interchanged with the 

integration and differentiation signs. The two following theorems, 

though they do not exhaust the problem, can nevertheless give a 
satisfactory answer to this question in many simple cases. 

THEOREM I : If the m.atkematical expectation E [ x ( t) ] is finite 

for any t, and x ( t)  is always differentiable for any t, while the 

derivative x' ( t)  of x ( t)  with respect to t is always less in abso­

lute value than some e0fl.8tant M, then 
d 

dt E (x(t)) = E (x'(t)) . 
THEOREM II : If x ( t ) always remains less, in absolute value, 

than some constant K and is integrable in the Riemann sense, then 

j E ("(I)) dt = E (j" (I) dt] , 
provided E [� ( t ) ] is integrable in tke Riemann sense. 

Proof of Theorem I. Let us first note that x' ( t) as the limit of 
the random variables 

x (t + h) - x (l) 
h 

1 t 
h = 1 • 2 • · · · · n · · · ·  

is also a random variable. Since x' (t) is bounded, the mathe-
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matical expectation E [x' ( t) ] exists ( Property VII of mathe­

matical expectation, in § 2) . Let us choose a fixed t and denote 
by A the event 

The probability P ( A )  tends to zero as h  ...... 0 for every e > 0. Since 
� � (t + hl - .\'. (1) j � M, \ x  (t) l < M 

holds everywhere, and moreover in the case A 

then 

r %{! + "l- % {t) - x'(t) I �  l ,  

I E x (t + hl - E % (t} - E x'(t) I < E � � (t + h�- x (t) - x'(t) j 
= P (A) E,.. \ % (t + h�- %  (t� - x'(e) J + P (A) El l x (t + hk - x(t) - x'(t) I 
� 2M P (A )  + F- .  

We may choose the ( > 0 arbitrarily, and P ( A )  is arbitrarily 

small for any sufficiently small h. Therefore 

:, Ex (t) = lim E % (l + hl - Ex(t) = E x'(t) , 
A -+ 0  

which was to be proved. 

Proof of Theorem II. Let 
k=A 

s. = � � x (t + kh) , 
l::o:l , 

Since S. converges to J = J x ( t )  dt, we can choose for any 
Cl 

e > 0 an N such that from n > N there follows the inequality 

p (A) = P{JSl - II  > E} < E • 

If we set 
.t- .. 

S! = � � E x (t + kh) -= E(S,.) , 
k=l 

then 

J S! - E (J) j = j E (S. - J) j � E jS .. - J l 
= P(A) E,.. !S. - I I + P (A) E..i JS,. - Jli < 2 K P (A) + s :s;;; (2K + 1 ) E .  
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Therefore, S: converges to E (J) , from which results the equation 
6 JEx(t) dt = limS! = E (J) .  

, 

Theorem II can easily be generalized for double and �riple 
and higher order multiple integrals. We shall give an application 

of this theorem to one example in geometric probability. Let G be a 

measurable region of the plane whose shape depends on chance ; 

in other words, le� us assign to every elementary event � of a field 

of probability a definite measurable plane region G. We shall 
denote by J the area of the region G, and by P (x, y) the prob­
ability that the point ( x, y )  belongs to the region G. Then 

E (]) = J j P (x , y) dx dy .  
To prove this it is sufficient to note that 

] = J[f(x , y) dx dy , 
P(r, y) = E/(x, y) , 

where f (x, y) is the characteristic function of the regi.Jn G 
(/ (x, y) = 1 on G and / ( x, y) = 0 outside of G) 6• 

• Cf. A. KoLMOGOROV and M. LEONTOVICH, Zur Berechnung de'l' mittleren 
B'l'oum.schen FUiche, Physik. Zeitschr. d. Sovietunion, v. 4, 1933. 



Chapter V 

CONDITIONAL PROBABILITIES AND 

MATHEMATICAL EXPECTATIONS 

§· 1. Conditional Probabilities 

In § 6, Chapter I, we defined the conditional probability, P• (B} , 
of the event B with respect to trial !1. It was there assumed that 1: 
allows of only a finite number of different possible results. We 
can, however, define P11 (B) also for the case of an \! with an infinite 
set of possible results, i.e. the case in which the set E is partitioned 
into an infinite number of non-intersecting subsets. In particular, 
we obtain such a partitioning if we consider an arbitrary function 
u of � and define as elements of the partition w. the sets u = con­
stant. The conditional probability Pw.(B) we also denote by P. (B) . 

Any partitioning !I of the set E can be defined as the partitioning 
!tv which is uinduced" by a function u of � .. if one assigns to every �, 
as u(E) , that set of the partitioning ¥1 of E which contains t. 

Two functions u and u' of E determine the same p�rtitioning 
� = !(_. of the set E .  if and only if there exists a one-to-one cor­
respondence u' = f ( u) between their domains ijC•> and if<•'> such 
that u' (�) is identical with /u{t) . The reader can easily show that 
the random variables P. (B) and P.,(B), defined below, are in this 
case the same. They are thus determined, in fact, by the partition 
!l. = � itself. 

To define P. (B) we may use the following equation : 

( 1) 
It is easy to prove that if the set E<•> of all possible values of u is 
finite, equation ( 1 )  holds true for any choice of A (when P.(B) 
is defined as in § 6, Chap. I ) . In the general case (in which P. (B) 
is not yet defined) we shall prove that there always exists one 
and only one random variable P. (B) (except for the matter of 
equivalence) which is defined as a function of u and which satis­
fies equation ( 1 )  for every choice of A from iJ<•> such that 

47 
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P<•> (A) > 0. The {unctitm P. (B) of u thus determined to within 
equivalence, we call the con.ditional probability of B with respect 
to u (or, for a given u) . The value of P. (B) when u = a  we shall 
designate by P. (a; B) . 

The proof of the existence and uniqueneBs of P. (B) . If we 
multiply ( 1 )  by P {u c A} = P<•> (A) , we obtain, on the left, 

P {u c A} Puc .. (B) = P (B {u c A}) = P (B u- ' CA )) 

and, on the right, 

P { U C:: A} E{uc .t} P., (B) = J P" (B) P (dE) = J P 11 (B} P(tl) (d£(11)} 1 
{vc A} .d. 

leading to the formula 
P (B u - 1 (A)) = JP .. (B) P<•> (dE<•>) i (2) 

.. 

and conversely ( 1 )  follows from (2) . In the case P<•> (A) = 0, 
in which case ( 1 )  is meaningless, equation (2) becomes trivially 

true. Condition (2) is thus equivalent to (1) . In accordance with 
Property IX of the integral (§ 1, Chap. IV) the random variable 
x is uniquely defined (except for equivalence) by means of the 

values of the integral 

j,; P d(E) 
A 

for all seta of So. Since P. (B) is a random variable determined 
on the probability field (ij<•>, P<"> ),  it follows that formula (2) 

uniquely determines this variable P. (B) except for equivalence. 

We must still prove the existence of P., (B) . We shall apply 

here the following theorem of Nikodym1 : 

Let � be a Borel field, P (A) a non-negative completely additive 
set function defined on ij ( in the terminology of the probability 
theory, a random variable on (ij, P) ) ,  and let Q {A) be another 

completely additive set function defined on ij, such · that from 

Q (A ) 9=  0 follows the inequality P (A )  > 0. Then there exists a 

funetion / (l) (in the terminology of the theory of probability, 
a random variable) which is measurable with respect to D, and 
which satisfies, for eaeh set A of \}, the equation 

' 0. NIKODYM., Sur u.ne g41&6ra.lita.t.ion dea i:ntegrales de M. J. Ra. don, Fund. 
Math. v. 16, 1980 p. 168 (Theorem Ill) . 
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Q (A )  = f / (�) P (dE) . 
A 

In order to apply this theorem to our case, we need to prove 

1 o that 
Q (A ) = P (Bu-• (A) ) 

is a completely additive function on �ex> , 2°. that from Q (A )  ::fO  
follows the inequality p<v> (A ) > 0. 

Firstly, 2° follows from 

o � P{B u - 1 (A)) :a P (K-1(A)) � P<.,(A) . 

For the proof of 1 o we set 

A =  �A,. .  
then " 

u- 1 (A) = 2;u- 1 (A,.) 
" 

and B u- l (A) = 1;B u- l (A") . 
" 

Since P is completely additive, it follows that 

P (B u - •{A.)) = 1; P (B u-1 (..411)) , 
.. 

whieh ·was to be proved. 

From the equation ( 1 )  follows an important formula (if we 
set A == E<1c>) : 

P (B) = E (P.(B)) . (3) 

Now we shall prove the following two fundamental properties 

of conditional probability. 

THEOREM I. It is almost sure that 

O <  P. (B) < 1 .  - - (4) 
THEOREM II. If B i8 decomposed into at most a oountable 

number of s�ts B, : 
B = I B,. 

II 

then the following equality holds almost surety : 

P. (B) = � P., (Bn) . (5) 
II 

These two properties of P., (B) correspond to the two char­
acteristic properties of the probability function P(B) : that 
·0 < P (B) < 1 always, and that P (B) is completely additive. These 
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allow us to carry over many other basic properties of the absolute 
probability P (B) to the conditional probability P" (B) . However, 
we must not forget that P. (B) is, for a fixed set B, a random vari­
able determined uniquely only to within equivalence. 

Proof of Theorem I. If we assume--contrary to the assertion 
to be proved-that on a set M c E<•> with P<tt> (M) > 0, the in­
equality P. (B) > 1 + e, s >  0, holds true, then according to for­
mula ( 1 )  

P{.c:.V} (B) = E{•c::M} P. (B) 2 1 + e ,  

whieh is obviously impossible. In the same way we prove that 
almost surely P. (B) > 0. 

Proof of Theorem II. From the convergence of the series 

l; E IP. (B .. ) J  = l; E (P.<B .. )) = I P (B,.) = P (B) 
" " " 

it follows from Property V of mathematical expectation (Chap. 
IV, § 2) that the series 

"-, � P.(B,.) 
" 

almost surely con verges. Since the series 

2; �ucA} (  P., (B,.) j = .l' �vcA} (P.(B")) = l,; P{wc: A} (B,J = P{•c .. o(B) 
" " ft 

converges for every choice of the set A such that P<") (A) > 0, 
then from Property V of mathematical expectation just referred 
to it follows that for each A of the above kind we have the relation 

E(wc:..t} (� P. (Bn)) = � �wc..t} (P.(B11)) = P{ac: .t)(B) = �vcA}(P.,(B,.)), 

and from this, equation ( 5)  immediately follows. 
To close this section we shall point out two particular cases. 

If, first, u (�) = c ( a  constant) , then Pc(A ) = P(A) almost 
surely. If, however, we set uU) = t, then we obtain at once 

that P� (�) is almost surely equal to one on A and is almost surely 
equal to zero on A. P1 (A} is thus revealed to be the characteristic 
functicm of set A .  

§ 2. Explanation of a Borel Paradox 
Let us choose for our basic set E the set of all points on a 

spherical surface. Our if will be the aggregate of all Borel sets 

of the spherical surface. And finally, our P(A ) is to be propor­
tional to the measure of set A. Let us now choose two diametrically 
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opposite points for our poles, so that each meridian circle will be 
uniquely defined by the longitude 'I', 0 � 'P < n . Since 'I' varies 
from 0 only ton ,  - in other words, we are considering complete 
meridian circles (and not merely semicircles) - the latitude f) 

" # 
must vary from -n to +n (and not from - 2 to + 2. ) .  Borel set 

the following problem : Required to determine "the conditional 
probability distribution" of latitude 8, - n :a 8 < +n, for a 
given longitude 11' .. � 

It is easy to calculate that 
8a 

P11.{81 ;;;; 8 < 81} = !  /l cos8f dB . 
6, 

The probability distribution of 8 for a given V' is not uniform. 

If we assume that the conditional probability distribution of 
8 "with the hypothesis that � lies on the given meridian circle" 
must .be uniform, then we have arrived at a contradiction. 

This shows that the concept of a conditional probability with 
regard to an isolated given hypothesis whose probability equals 0 
is inadmissible. For we can obtain a probability distribution 

for 9 on the meridian circle only if we regard this circle as an 

element of the decomposition of the entire spherical surface into 
meridian circles with the given poles. 

§ 3. Conditional Probabilities with Respect to a Random Variable 
If x is a random variable and P� (B) as a function of � is 

measurable in the Borel sense, then P� (B)  can be defined in an 

elementary way. For we can rewrite formula (2)  in § 1 , to look 
as follows : 

P (B) Pf (A) = f Ps(B) p<s> (dE) . (1)  
A 

In this ease we obtain from { 1 ) at once that 
• 

P (B) F�t (a) = f P� (a ; B) dF<•> (a) • (2) 
-co 

In accordance with a theorem of Lebesgue2 it follows from (2) 
that 

. P;1 (a + h) - .J1'(a) Ps{a ;  B) = P(B) ltm F_, (a + h) _  F-'(a) h _.... 0 (3) 
which is always true except for a set H of points a for which 
p<x> (H) = 0. 

1 Lebesgue, l. c., 1928, pp. 301-302. 
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P., (a ; B) was defined in § 1 except on a set G, which is 

such that P(.�) ( G )  = 0. If we now regard formula (3 ) as the defi­
nition of P. (a ; B) (setting P. (a; B)  = 0 when the limit in the 

right hand side of ( 3) fails to exist) , then this new variable 
satisfies all requirements of § 1.  

If, besides, the probability densities t<�> (a) and It:' (a) exist 
and if J<z) (a.) > 0, then formula (3)  becomes 

. f;l (a) 
P.,(a, B) = P (B) 1., (a) . (4) 

Moreover, from formula ( 3 )  it follows that the existence of a 
limfl; in (3)  and of a probability density fCx> (a) results in the 

existence of t';> (a) . In that case 

P (B) f: (a) :;;; f<11> (a) .  (5) 

If P (B) > 0,  then from (4 ) we have 

/�:a:1 ( ) _ P., (a ; B) JOO (a) 
JJ fl - P(B) ' (6) 

In case f<x> ( a,) = 0, then according to (5) /(sJ (a.) = 0 and there­
fore ( 6) also holds. If, besides, the distribution of x is eontjnuous, 

we have 
+ co  +oo 

P(B) = E (P.(B)) = /Pe (a ; B) dF<s> (a) = jPs(a; B) /(s) (a) da . (7) 
-oo 

From (6)  and (7) we obtain 

ff (a) = +�(a ; B) Jl.c) (a) 
/Pz(a ; B) f-1(a) da 

- oo  

(8) 

This equation gives us the so-called Ba.yeK Theorem for continu­

ous distributions. The assumptions under which this theorem is 
proved are these : P z (B) is measurable in the Borel sense and at 

the point a is defined by formula (3) , the distribution of x is con­
tinuous, and at the point a there exists a probability density 
t<�) (a,) . 

§ 4. Conditional Mathematical Expectation& 
Let u be an arbitrary function of c, and y a random variable. 

The random variable Eu ( y )  , representable as a function of u and 
satisfying. for any set A of iJC"> with p<•> ( A )  > 0, the condition 
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que .A} {y) == �ac .A} E. (y) f ( 1 )  

is called (if it exists) tke conditional mathematical expectation of 

the variable y for known value of u. 
If we multiply ( 1 )  by p<v> (A ) ,  we obtain 

J y P (tlE) = J E. (y) P<•> (dE<•}) . (2) 
{ac ..t} A 

Conversely from (2) follows formula (1) . In case P<"> (A)  = 0, 
in which case ( 1 )  is meaningless, (2) becomes trivial. In the 
same manner as in the case of conditional probability ( § 1 )  we 
can prove that � ( y) is determined uniquely-except for equiva­

lence-by (2) . 

The value of E. (y) for u = a  we shall denote by E., (a,· y) . Let 
us also note that E. (y) , as well as Pv (Y) , depends only upon the 

partition 1:,. and may be designated by E8 .. (y) . 
The existence of E (y) is implied in the definition of E. (y) ( if 

we set A = E<"> , then E{uc A} (1/) = E (y) ) .  
We shall now prove that the .existence of E (y) is al8o sufficient 

for the existence of E .. ( y) . For this we only need to prove that by 
the theorem of Nikodym (§ 1), the set function 

Q (A) = f y P (dE) 
{Ile A} 

is completely additive on ij<•) and absolutely continuous with 

respect to P<") ( A ) . The first property is proved verbatim as in 
the case of conditional probability ( § 1 ) .  The second property­

absolute continuity�is contained in the fact that from Q (A ) +  0 
the inequality p<"> (A)  > 0 must follow. If we assume that 
P<•> (A)  = P {u c A} = 0, it is clear that 

Q (A)  = fy P (dE) = o ,  
. {vc: ..t} 

and our second requirement is thus fulfilled. 
If in equation ( 1 )  we set A = E<v.>, we obtain the formula 

E (y) = E E_ (y) • 

We can show further that almost surely 

fv(ay + bz) = aE., (y) + bE., (z) , 

(3) 

(4) 

where a and b are two arbitrary constants. (The proof is left to 
t.hP. TP.RrlP.r. ) 
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If u and v are two functions of the elementary event t, then 

the couple ( u, v) can always be regarded as a function of e. The 

following important equation then holds : 
E., E<u • .,> (y) = E. (y) . (5) 

For, E. ( y) is defined by the relation 

f(1u: .• t} (Y) = E{uc.t} E. (y) • 

Therefore we must show that E.,Ettl,t1) (y) satisfies the equation 

E{uc: ..t} (Y) = E{uc .t} E., Etu. ti) (Y) . (6) 

From the defl.nition of Efu.v> ( y)  it follows that 

E{uc.t} (Y) = E{uc .t} E(u,11) {Y) · (7)  

From the definition of EuEt  •• v )  (y) it follows, moreover, that 

E{"c: .t} E(u,v) (Y) = quc...t.} Ea E<u.v> {Y) . (8) 
Equation (6)  results from equations (7) and (8·) and thus proves 
our statement. 

If we set y = P,.. (B) equal to one on B and to zero outside of B, 
then Eu {y) = P" (B) , 

E(u,.} (Y) = Pcu, 11) {B) . 
In this case,from formula (5)  we obtain the formula 

E., P(v,•) {B) = P 11 (B) • (9) 

The conditional mathematical expectation Eu (Y) may also be 
defined directly by means of the corresponding conditional prob­
abilities. To do this we consider the following sums : 

J: - + oo  
S.t (u) = L k l  Pu {kl  .,a y < (k + 1 )  l} = � Rt . (10)  

1.: =  - oo  i 

If E (y) exists, the series ( 10)  almost certainly* converges. For 

we have from formula (3) , of § 1 ,  

E I R· I  = l kl l  p { kl ;iii y < (k + 1 )  l} . 
and the convergence of the series 

I! =  + oo  
l: l kl l P (kl � y < (k + 1 )  l} = _L E  I Rk( 1: - - c.l  J; 

• We use almost certainly interchangeably with a.lmost su:rely. 
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is the necessary condition for the existence of E ( y) (see Chap. IV, 

§ 1 ) .  From this convergence it follows that the series (10) con­
verges almost certainly (see Chap . IV, § 2, V) . We can further 

show, exactly as in the theory of the Lebesgue integral, that from 

the convergence of (10) f<Jr some A, its convergence for every A 
follows, and that in the case where series ( 10) converges, S1 (t.t) 
tends to a definite limit as A -+ 03• We can then define 

Ea(Y) = lim S,l(u) . (11)  
}. _. 0  

To prove that the conditional expectation E. (y) deflned by rela­

tion ( 1 1 )  satisfies the requirements set forth above, we need only 
convince ourselves that Eu (y) , as determined by ( 11 ) ,  satisfies 
equation ( 1 )  . We prove this fact thus : 

+oo 

. E{u c: .A} Eu (Y) = lim E{u c A} S.t (U) 
,t. _. O  

= lim L kA P{uc A} {kA :; y < (k + 1 ) A} = E{ucA} (Y) .  
l -+ O k = - oo  

The interchange of the mathematical expectation sign with the 
limit sign is admissible in this computation, since SA (u) con­
verges uniformly to Eu ( y) as A. -+ 0 ( a  simple result of Property V 

of mathematical expectation in § 2) . The interchange of the 

mathematical expectation sign and the summation sign is also 
admissible since the series 

1 =  + oo  
� E{uc: ... t} { l kA I  Pu [k l  � y < (k + 1 )  l] } A: =  - oa 

k =  + oo  
= 2:'1  kl l  P{a c.A} (kl < Y < (k + 1 )  l] 
k =  - Qc  

converges ( an immediate result of Property V of mathematical 

expectation) .  

Instead of ( 1 1 )  we may write 

Eu (y) = f y P,{dE) . ( 12 )  
E 

We must not forget here, however, that ( 12) is not an integral 

1 In this case we consider only a tountable sequence of values of ). ; then all probabilities P. {U :a; y  < (k + t ) ...l.} are almost certainly defined for all 
these values of }. . 
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in the sense of § 1, Chap. IV, so that (12)  is only a symbolic 
expression. 

If x is a random variable then we call the function of x and a 
�(a) = Ps (Y < a) 

the condttionaJ distribution function of y for known x. 
F. <y> (a) is almost certainly defined for every a. If a. < b then 

almost certainly 
Fr (a) :s;; F� (b) . 

From ( 1 1 )  and ( 10) it follows• that almost certainly 

It =  + o.:l 

Es {Y) = lim L k1 [F� ((k + t ) l) - J1'J (kl)] . (13) 
J. � o  J: =  - oo  

This fact can be expressed symbolically by the formula 
+ oa  

E� (y) = J a dF'f (a} ( 14) 
- oc  

By means of the new definition of mathematical expectation [( 10) 
and· ( 1 1 )] it is easy to prove that, for a real function of u ,  

E. [J (u) y] = / (u) E., (y) • ( 15)  

• Cf. footnote 3. 



Chapter VI 

INDEPENDENCE ; THE LAW OF LARGE NUMBERS 

§ I. Independence 

DEFINITION 1 : Two functions, u and v of t, are mutually inde­
pendent if for any two sets, A of �<w>, and B of tJC">, the follow­

ing equation holds: 

P (u c: A,  v c B) = P (u c A) P (v c B) = P<•> (A) P(•> (B) . ( 1 )  

If the sets E("> and E<v> consist of only a finite number of elements, 

E<•> = u1 + u1 + · · · + u,. • 

E(') = fJl + Va + . .  . + Vm • 

then our definition of independence of u and v is identical with 
the definition of independence of the partitions 

E = �{u = u1} . 

E = I{v = Vt} 
.t 

as in § 5, Chap. I. 

For the independence of u and v, the following condition is 
necessary and sufficient. For any choice of set A in if<"> the 

following equation holds almost certainly: 

P.(u c A) = P (u c A) .  (2) 

In the case p<v> (B) = O,both equations ( 1 )  and (2)  are satisfied, 
and therefore we need only prove their equivalence in the case 

p<v> (B) > 0. In this case ( 1 )  is equivalent to the relation 

P{•c:B} (u c A) = P (u c: A) 

and therefore to the relation 

E{t�c: B} P. {u c: A) = P (u c A)  • (4) 

On the other hand, it is obvious that equation (4) follows from 

67 
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(2) . Conversely since Pv (u c::A )  is uniquely determined by (4) 
to within probability zero, then equation (2 )  follows from (4) 
almost certainly. 

DEFINITION 2 :  Let M be a set of functions u14 (�) of �- These 
functions are called mutually independent in their totality if the 
following condition is satisfied. Let M' and M" be two non­
intersecting subsets of M, and let A' ( or A " )  be a set from iJ 
defined by a relation among ul' from M' ( or M") ; then we have 

P (A' A'') = P (A') P (A") . 
The aggregate of all'u1• of M' (or of M") can be regarded as 

coordinates of some function u' (or u" ) . Definition 2 requires 
only the indepen<U!nce of u' and u" in the sense of Definition 1 for 
each choice of non-intersecting sets M' and M". 

If uu -u.,, • • •  , Un are mutually independent, then in all cases 

P{u1 c:: A 1 , u3 c: A 1 • • • •  , u. c: A,.} 
= P ("t c AJ P (u1 c:: A3) • • •  P (u,. c A") , l ·  (5)  

provided the sets A k belong to the corresponding �(u.tl (proved 
by induction) .  This equation is not in general, however, at all 
sufficient for the mutual independence of ?.h, �� • • .  , u.. 

Equation (5 ) is easily generalized for the case of a countably 
infinite product. 

From the mutual independence of u, .. in each finite group 
(u� , u,, ,  . . .  , u..,,) it does not necessarily follow that all u1• are 
mutually independent. 

Finally, it is easy to note that the mutual independence of the 
functions u14 ts in reality a property of the corresponding parti­
tions 9.1.,11• Further, if u� are single-valued functions of the cor­
responding u,. , then from the mutual independence of u, follows 
that of u� . 

§ 2� Independent Random V ariablee 

If x1, x,, . . . , x,. are mutually independent random variables 
then from equation (2)  of the foregoing paragraph fo11ows, in 
particular, the formula 

( 1 )  

If in this case the field ij<%., s., . . . . s.d consists only of Borel sets of 
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the spac-e R", then condition ( 1 )  is also sufficient for the mutual 
independence of the variables xh Xz, • • • , x.,. 

Proof. Let x' = {xi, • xi. , . � . , x,.J and x" = (x1, . x1 • • • • • • x;,.) be 
two non-intersecting subsystems of the variables x1, Xz, • • •  , X11. 
We must show, on the basis of formula ( 1 )  , that for every two 
Borel sets A' and A" of Rk ( or R"') the following equation holds : 

P (x' c A', x" L A") = P (x' c A') P (x" c A") • (2) 

This follows at once from ( 1) for the sets of the fonn 

A' = {xi, < a1 , x�., < a1 , . • • , Xi&: < a.t} , 

A" = {.�i. < b1 ,  x;. < b3 , . . . • X;,. < bm} . 
It can be shown that this property of the sets A' and A "  is pre­

served under formation of sums and differences, from which 
equation (2)  follows for all Borel sets. 

Now let x = {x�} be an arbitrary (in general infinite) aggre­
gate of random variables. If the field if(."> coincides with the field 

B\}M (M is the set of all p.) , tke aggregate of equations 

F Pa P• . . .  P• (a1• a2 ,  • • • • a,.) = F p1 (at) F 1-'3 (a,.) . . .  F �" (a��) ( 3) 
is neeessary and BUffi,cient for tke mutual independenoe of tht­

variables x"' • 

The necessity of this eondition follows at once from formula 
( 1 ) .  We shall now prove that it is also sufficient. Let M' and M'' 
be two non-intersecting subsets of the set M of all indices p., and 
let A' (or A") be a set of B� defined by a relation among the x#£ 
with indices 14 from M' (or M") . We must show that we then have 

P (A' A") = P (A') P (A'') • (4) 
If A' and A" are cylinder sets then we are dealing with rela­

tions among a finite set of variables x�, equation ( 4)  represents 

in that case a simple consequence of previous results (Formula 

(2) ) .  And since relation ( 4) holds for sums and differences of 
sets A' ( or A") also, we have proved ( 4) for all sets of BijM 
as well. 

Now for every 14 of a set M let there be given a. priori a distri­
bution function F" (a) ; in that ca.se w� can comltruct a field of 

probability suck that certain random variables x,. in that field 

(14 tLBsuming all values in M) will be mutually independent, where 

� .. will have for its distribution function the F,�. (a) niven a priori. 
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In order to show this it is enough to take RM for the basic set E 
and BtjM for the field if, and to define the distribution functions 

F�'ll'• · " "'" ( see Chap. Ill, § 4) by equation (3) . 
Let us also note that from the mutual independence of each 

finite group of variables x�& (equation (3) ) there follows, as we 
have seen above, the mutual independence of all on B&M. In 
more inclusive fields of probability this property may be lost. 

· To conclude this section, we shall give a few more criteria for 
the independence of two random variables. 

If two random variables x and y are mutually independent 

and if E (x)  and E (y) are finite then almost certainly 

Es (Y) = E (y) 1 l 
E1 (x) = E (x} .  (5) 

These formulas represent an immediate consequence of the 
second definition of conditional mathematical expectation ( For­
mulas ( 10)  and (11 ) of Chap. V, § 4) . Therefore, in the case of 
independence both 

are equal to zero {provided u2 ( x )  > 0 and uZ (y) > 0) . The num­

ber f2 is called the CO'rrelation ratio of y with respect to x ,  and g2 

the same for x with respect to y (Pearson) . 

From ( 5)  it further follows that 

E (xy) = E ( x) E (y) • 

To prove this we apply Formula ( 15)  of § 4, Chap. V: 
E (xy) = E E:r: (xy) = E[x E� (y)] = E[x E {y)] = E(y) E (x) . 

Therefore, in the case of independence 

r = ¥ (x, y} - E(x) E (y} 
o (x) o (y) 

(6) 

is  also equal to zero ; r ,  as is  well known, is the correlation co­

efficient of x and y. 
If two random variables x and y satisfy equation ( 6) , then 

they are called uncorrelated. For the sum 

S = Xt + Xz + ." . .  + X,.. 
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where the X�r x21 • • •  , Xn. are uncorrelated in pairs, we can easily 

compute that 
o1 (s) = o11 (x1) + o1 (x1) + · · · + a1 (x11) .. (7) 

In particqlar, equation (7)  holds for the independent variables xk. 

§ 3. The La� of Large Numbers 
Random variables s of a sequence 

are called stable, if there exists a numerical sequence 

d1, dz , • • •  , dw., • • •  

such that for any positive € 

P {ls,. - d11 l  � .e:J 
converges to zero as n -+  oo .  If all E (sn)  exist and if we may set 

d,., = E (s") , 

then the stability is normal. 
If all s" are uniformly bounded, then from 

p { f s. - d. l � l} - 0 

we obtain the relation 
I E (s") - d,. l -+  0 

and therefore 

P {Js,. - E (s,.) l � e} -+ 0 .  

(1) 

n -+ +oo 

ft. - +oo (2) 
The stabil ity of a bounded stable sequence is thus necessarily 

normal. 

Let E (sn - E{s.))2 = a2 (s .. ) = �� . 
According to the Tchebycheff inequality, 

0� P { [s,. - E (s,.) r � e} s -T . t 

Therefore, the Ma,rkov Condition 
a! - o 

is sufficient for normal stability. 
n -+  +oo ( 3) 
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If s. - E ( s .. ) are uniformly bounded : 

I s" - E (s,.) I < M, 

then from the inequality (9)  in § 3, Chap. IV, 

o• - ,• 
P{js,. - E (s,.) l � s} � •M• . 

Therefore, in this case the Markov condition ( 3 ) " is also necessary 

for the stability of the s8. 
If 

and the variables x .. are uneorrelated in pairs, we have 
� = �� {at (x1) + a' (x1) + · · · + at (%,.) } . 

Therefore, in this case, the following condition is sufficient for \ 

the normal stability of the arithmetical means B .. : 

n1o! = at (x1) + trl (x1) + · · · + at(x,.) == o (nt) (4) 
(Theorem of Tchebycheff) .  In particular, condition (4) is ful­
filled if all variables x .. are uniformly bounded. 

This theorem can be generalized for the ease of weakly cor­
related variables x... If we assume that the coefficient of correla­
tion r,.,.1 of x-. and x,. satisfies the inequality 

'""' � c ( Jn - m{ )  
and that 

J: -= ft - 1  
c. = zc(k) , 

.t - o  
then a sufficient condition for normal stability of the arithmetic 
means s is1 

(6)  
In the case of independent summands x ,.  we can state a neces­

sary and sufficient condition for the stability of the arithmetic 

means s •. For every x. there exists a constant m. (the median of 
x.) which satisfies the following conditions : 

p (%" < m,.) � l , 

p (%. > m,.) � i . 
• It is obvious that "• • = 1 always. 
� Cf. A. KHINTCHINE, Sur la loi forfl. de8 grandes nombrtHI. C. R. de l'acad. 

sci. Paris v. 186. 1928. n. 285. 
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x,." = xk if [ Xt-mk I < n, 

x111t = 0 otherwise, 

S• - '*'• • + -"  ... • + . . .  + x  . ..  
n - 11 • 
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Then the relations 

icn t-n 
'5' P{Jx.t - m� [ > n} = Y P (xnt =I= x1) -+ 0 ,  n - +oo (6) �1 �1 

....... 
o1 {s:) = '5' o1 (zttt) = o (n2) (7)  k-1 

are necessary and sufficient for the stability of variables s .. 3• 

We may here assume the constants d,. to be equal to the E ( s,. *)  
so that in the case where 

E (s:) - E (s .. ) -+  0 fl -+  +oo 
(and only in this case) the stability is normal. 

A further generalization of Tchebycheff's theorem is obtained 
if we assume that the sn depend in some way upon the results of 
any n trials, 

'-lu ifa, • • • , 9ln r 

so that after each definite outcome of all these n trials s .. assumes 

a definite value. The general idea of all these theorems known as 
tke law of large numbers, consists in the fact that if the depend­

ence of variables s" upon each separate trial !h (k = 1, 2, . . . , n) 
is very small for a large n, then the variables sn are stable. If we 
regard 

as a reasonable measure of the dependence of variables Bn upon 

the trial wkt then the above-mentioned general idea of the law of 

large numbers can be made concrete by the following considera­
tions'. 

Let 

1 Cf ... A . .  KOLM�ORoy . t:Jber die Summen du-rch den Zufall bestimmter una.bhang.,qe,. Grossen, Math. Ann. v. 99, 1928, pp. 309-319 ( corrections and notes to th1s study, v. 102, 1929 pp. 484-488, Theorem VIII and a supplement 
on p. 318) . 

4 Cf. A. KOLMOGORO'\t'. Sur la loi des grandes nombres. Rend. Accad. Lincei 
v. 9, 1929 pp. 470-474. 
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Then 
s" - E (sn) = z1 + z1 + · - · + z • •  

E {z,.,t) = E Eg(1 11 • • • •  811: (s,.) - E E911 9(1 • • •  111: _ 1 (sn) = E (sn) - E (sn) = 0 .  
6t{z11.} = E (z!.t) = tf!�: . 

We can easily compute also that the random variables z"k ( k  = 
1, 2, . . .  , n) are uncorrelated. For let i < k ;  then� 

E., w. . . . •�- 1  (zn, z.�:) = z., E•� 'ita . . .  •�- 1 (z,.k) 
. = z,., e •.•. . . .  VII: - t [Ew • •• . . .  'It (s.) - Evr . .. . . .  'Kk - I (sn}] 
= Z8�t[Ee. • • . . .  Vl.t - 1 (s.) - E•• •• . . .  ll.t - 1 (s,.)] = 0 

and therefore 

We thus have 

o1{s.) = a1 (z. a) + o2 (z.3) + · · · + a2 (zu) = {1!1 + {!';,,. + · · · + fJ!11 • 

Therefore, the condition 

�. + P!t + . . .  + P! .. _. 0 n - + oo  
is sufficient for the normal stability of the variables Bn· 

§ 4. Notes on the Concept of Mathematical Expectation 

We have defined the mathematical expectation of a random 
variable x as 

+ oo  

E (x) = J x P(dE) = J a dF<z> (a) , 
B -oo 

where the integral on the righ,t is understood as 
+ oo  e 

E(x) = J a d-F<:r:> (a) = lim J a dF(s) {a) . 
-oo b 

b -+ - oo 
c - +oo 

The idea suggests itself to consider the expression 

+ b  
E• (x) = lim (a dF<s> (a) 

...:b 

• Application of Formula ( 15 )  in § 4, Chap. V. 

( 1 )  

(2) 
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as a generalized mathematical expectation. We lose in this case, 
of course, several simple properties of mathematical expectation. 

For example, in this case the formula 

E (x + y) = E (x) + E (y)  

is not always true. I n  this form the generalization is hardly 

admissible. We may add however that, with some restrictive 

supplementary conditions,definition ( 2 )  becomes entirely natural 
and useful. 

We can discuss the problem as follows. Let 

be a sequence of mutually independent variables, having the same 

distribution function F<z> (a.) = F<�·>(a) , (n = 1,  2, . . .  ) as x. 
Let ful'lther 

'*'• + x, + . . .  + x. 
s,. = . 

n 

We now ask whether there exists a constant E* (x)  such that 

for every E > 0 

lim P ( Is,. - E• (;x) J > t)= O, n - +oo . (3) 
The answer is  : If such a constant E• (x)  exists, it is expressed by 

Formula ( 2 ) . The necessary and sufficient condition that Formula 

(3)  hold consists in the existence of l imit (2)  and the relation 

P ( I  x I  > n) = o (!) . (4) 
To prove this we apply the theorem that condition ( 4)  is 

necessary and sufficient for the stabflity of the arithmetic means 
Sn, where, in the case of stability, we may set6 

+ II  
d,. = j a dF(%) (a) • 

- II  

If there exists a mathematical expectation in the former sense 

(Formula ( 1 )  ) , then condition ( 4) is always fulfilled7• Since in 
this case E ( x )  = E* (x) , the condition ( 3) actually does define a 

generalization of rthe concept of mathematical expectation. For 

the g.eneraJ,ized mathematical expectation, Properties I - VII 
' Cf. A. KoLMOGOROV • Bemerkun,qen zu meiner Arbeit, "Uber die Summen zufdlliger Grossrn." Math. Ann. v. l 02, 1929, pp. 484·488, Theorem XII. 
' lhi.d. 'T'hPn!'Pm XTTT 
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(Chap. IV, § 2)  still hold ; in general, however, the existence of 

E* l X I does not follow from the existence of e• (x) . 

To prove that the new concept of mathematical expectation 

is really more general than the previous one, it is sufficient to 

give the following example. Set the probability density fC�> (a) 
equal to 

j(s} ( ) _ 
C 

a 
- ( l a l  + 2)1 1n ( la l  + 2) • 

where the constant C is determined by 
+oo jt<*> (a) da = 1 .  

- CQ  

It is easy to compute that in this case condition (4) is fulfilled. 
Formula (2)  gives the value 

E• (x )  = 0, 

but the integral 
+eo +eo /Ia ( dF(s) (a) = f\a l /(:�) (a) da 

-oo - oo  

diverges. 

§ 5. Strong Law of Large Numbers ; Convergence of Serie& 
The random variables s, of the seque�ce 

are strongly Btable if there exists a sequence of numbers 
lit, d.z, . . . ' d,, . . .  

such that the random variables 

almost certainly tend to zero as n -+ +co . From strong stability 
follows, obviously, ordinary stability. If · we can choose 

d" = E (s" ) , 
then the strong stability is normal. 

In the Tchebycheff case, 

XJ + X.a + • • · + X  
S = • II 

� n • 



§ 5. Strong Law of Large Numbers; Convergence of Series 67 

where the variables x" are mutually independent. A suflicient8 
condition for the �ormal strong stability of the arithmetic means 

s" is the convergence of the series 

( 1 ) 

This condition is the best in the sense that for any series of con­
stants bn such that 

we can build a series of mutually independent random variables 

x. such that 
at(x.) = b" 

and the corresponding arithmetic means s" will not be strongly 

stable. 
If all Xn have the same distribution function F<•) (a.) ,  then the 

existence of the mathematical expectation 

+co 
E (x) = J a dF<"> (a) 

-oo 

is necessary and sufficient for the strong stability of s�� ; the sta­
bility in this case is always normal'. 

Again, let 

be mutually independent random variables. Then the probability 
of convergence of the series 

OQ 

�x.. (2) 
JJ-1 

is equal either to one or to zero. In particular, this probability 
equals one when both series 

00 

� E (x.) 
•-1 

converge. Let us further assume 

y,. == Xn in case r Xn I < 1 ,  
Yn = 0 in case I Xtt. 1 > 1. 

' Cf. A. KoLMOGORov; Sur la loi forte des grandes nombres, C. R. Acad. Sci. 
Paris v. 191, 1930, pp. 910-911.  

' The proof of this statement has not yet been published. 
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Then in order that series ( 1 )  converge with the probability one, 
it is necessary and sufficientt0 that the following series converge 
simultaneously : 

00 00 

� P { fx"] > t } , 
a=l � E (y,.) R=l 

s •  Cf. A. KHINTCHINE and A. KOLMOGOROV, On the Convergence of Series, 
Rec. Math. Soc. Moscow, v. 32, 1925, p. 668-677. 



Appendix 

ZERO-OR-ONE LAW IN THE THEORY 
OF PROBABILITY 

We have notieed several cru;es in which certain limiting 
probabilities are necessarily equal to zero or one. For example, 

the _probabilit-Y_ o_f_conve.rge.n_c� of_ !l: _ _  seri�.$.._Qf_indenendent r-_npom 
variables may_aJJSl:IID.e..QnJyJ;hese two values:: We shall prove now 

ageneral-th�orem including many �h ��ses. 
THEOREM : Let x.,  x2, . . . , x,., . . .  be any random variables and 

let I (x., x,, . . .  , Xn, • • •  ) be a Baire function2 of the variables 

Xt, X2, • • • , Xn, • • •  suck that the conditional probability 

p Su s, , . . . • z. {I (x) = o} 
of the relation 

remains, when the first n varia.bles Xu X2, • • •  , Z71 are known, equal 
to the absolute probability 

P{f (x) = o} ( 1 )  
/or every n. Under these conditions the probability ( 1 )  equals 
zero or one. 

In particular, the assumptions of this theorem are fulfilled if 
the variables Xn are mutually independent and if the value of the 

function / (:t)  remains unchanged when only a finite number of 

variables are changed. 
Proof of tke Theorem : Let us denote by A the event 

/ (z) = 0. 

We shall also investigate the field I of all events which can be 

defined through some relations among a finite number of vari-

' Cf. Chap. VI, § 5. The same thing is true of the probability P{s. - d. - o} in the strong law of large numbers ; at least, when the variables x. are mutu­ally independent. 
1 A Baire function is one which can be obtained by successive passages to the limit, of sequences of functions, starting with polynomials. 
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abies Xn· If event B belongs to I, then,according to the conditions 
of the theorem , 

P8 (A) = P (A ) .  (2) 
In the case P (A) == 0 our theorem is  already true. Let now 
P (A )  > 0. Then from (2) follows the formula 

p (B) = P., (A J P (B). __ P {B) A P(A )  - , (3)  

and therefore P (B)  and P A ( B )  are two completely additive set 
functions, coinciding on I ;  therefore they must remain equal to 
each other on every set of the Borel extension BSt of the field St. 
Therefore, in particular, 

P (A ) = PA (A ) = 1 ,  
which proves our theorem . 

Several other cases in which we can state that certain prob­
abilities can assume only the values one and zero, were discovered 

by P. Levy. See P. LtvY, Sur un theoreme de M. Khintchine, Bull. 
des Sci. Math. v. 55, 1931, pp, 145w160, Theorem II. 
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NOTES TO SUPPLEMENTARY BIBLIOGRAPHY 
The fundamental work on the measure-theoretic approach to 

probability theory is A. N. Kolmogorov's Grundbegriffe der 
W ahrscheinlichkeitsrecknung, of which the present work is an 

English translation. It is not an overstatement to say that for 
the past twenty-three years most of the research work in proba­

bility has been influenced by this approach, and that the axiomatic 

theory advanced by Kolmogorov is considered by workers in 

probability and statistics to be the correct one. 

The publication of Kolmogorov's Grundbegriffe initiated a new 
era in the theory of probability and its methods ; and the amount 

of research generated by the fundamental concepts due to Kolmo­

gorov has been very great indeed. In preparing this second edition 
of the English translation of .Kolmogorov's monograph, it seemed 

desirable to give a bibliography that would in some way reflect 
the present status and direction of research activity in the theory 
of probability. 

In recent years many excellent books _have appeared. Three of 
most outstanding in this group are those by Doob [ 12] ,  Feller 
[17 ] ,  arid Loeve [54) .  Other books dealing with general proba­
bility theory, and specialized topics in probability are : (2] , [3 ] ,  
[6] , [7] , [9) , [19] , [28] ,  [26] ,  (27J , [28] ,  [34 ] ,  [39] , [41 ] , [42] , 
[47] , [49 ] ,  [50] ,  [67 ] ,  {70] , [72] . Since these books contain many 
references to the literature, an attempt will be made in this bibli� 

ography to list some of the research papers that have appeared in 

the past few years and several that are in the course of publication. 
The model developed by Kolmogorov can be briefly described 

as follows : In every situation (that is, an experiment, observa­
tion, etc.) in which random factors enter, there is an associated 
probability space or triple (Q, t, p) , where D is an abstract space 
(the space of elementary events) , l is a CT-algebra of subsets of D 
(the sets of events) , and p (E)  is a measure (the probability of 

the event E) defined for E e �. and satisfying the condition 
p ( D )  = 1.  The Kolmogorov model has recently been discussed by 
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Los [56] , who considers the use of abstract algebras and o-algebras 
of sets instead of algebras and a-algebras. Kolmogorov [ 44] has 
also considered the use of metric Boolean algebras in probability. 

There are many problems, especially in theoretical physics, that 
do not fit into the Kolmogorov theory, the reason being that these 
problems involve unbounded measures. Renyi [68] has developed 
a general axiomatic theory of probability (which contains Kolmo­

gorov's theory as a special ease) in which unbounded measures 
are allowed. The fundamental concept in this theory is the condi­
tional probability of an event. Csaszar [10]  has studied the 
measure-theoretic structure of the conditional probability spaces 
that occur in Renyi's theory. 

In another direction, examples have been given by various 
authors which point up the fact that Kolmogorov's theory is too 
general. Gnedenko and Kolmogorov [27] have introduced a more 
restricted concept which has been termed a perfect probability 
space. A perfect probability space is a triple ( D, �' p)  such that for 
any real-valued ,e.-measurable function g and any linear set B 
for which { w : g ( (l)) e B} E �, there is a Borel set D e B such that 
P{ ro : g (ro) £ D} = P{ro : g (ro) e B}.  Recently, Blackwell [5 ]  has 
introduced a concept that is more restricted than that of a per­
fect space. The concept introduced is that of a Lusin space. A 
Lusin space is a pair ( Q, 0 such that (a) t is separable, and 
(b) the range of every real-valued �-measurable function g on 
!} is an analytic set. It has been shown that if (D , �. p) is a Lusin 
space and p any probability measure on t, then (Q, �. p) is a 
perfect probability space. 

In § 6 of Chap. I, Kolmogorov gives the definition of a Markov 
chain. In recent years the theory of Markov chains and processes 
has been one of the most active areas of research in probability. 
An excellent introduction to this theory is given in [ 17 ] .  Other 
references are [2] ,  [3 ] ,  (6] , [ 12] , [ 19 ] .  [23] , [26] , [34] , [39 ] ,  
(50 ] ,  [54] , [ 67] , [70] , [72] . Two papers of interest are those of 
Harris and Robbins [29 J on the ergodic theory of Markov chains, 
and Chung [8] on the theory of continuous parameter processes 
with a denumerable number of states. The paper by Chung unifies 
and extends the results due to Doob (cf. [ 12 ] ) and Levy [51 ] ,  

(52] ,  [53} .  
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A number of workers in probability are utilizing the theory of 
semi-groups [30] in the study of Markov processes and their 
structural properties [63] . In this approach, due primarily to 
Yosida [80 ] , a one-parameter (discrete or continuous) semi­
group of operators from a Banach space to itself defines the 
Markov process. Hille [32] and Kato (38] have used semi-group 
methods to integrate the Kolmogorov differential equations, and 
Kendall and Reuter [ 40] have investigated several pathological 
cases arising in the theory. Feller [18] and Hille [31 ]  have 
studied the parabolic differential equations arising in the con­
tinuous case. Doob [13]  has employed martingale theory in the 
semi-group approach to one-dimensional diffusion processes. 
Also, Hunt [33] has studied semi-groups of (probability) meas­
ures on Lie groups. 

Recently several papers have appeared which are devoted to a 
more abstract approach to probability and consider random vari­
ables with values in a topological space which may have an alge­
braic structure. In [14} ,  (21] ,  [22 ] ,  [58] ,  [59] , and [61 ] ,  problems 
associated with Banach-space-valued random variables are con .. 
sidered : and in [ 4]  similar problems are considered for Orlicz 

(generalized Lebesgue) spaces. Robbin� [69] has considered 
random variables with values in any compact topological group. 
Segal [75 }  has studied the structure of probability algebras and 
has used this algebraic approach to extend Kolmogorov's theorem 
concerning the existence of real-valued random variables having 

any preassigned joint distribution (ef. § 4 of Chap. III) .  Segal 
[76, Chap. 3, § 13] has also considered a non-commutative proba. 
bility theory. 

Prohorov [66] has studied convergence properties of proba­

bility distributions defined on Banach spaces and other function 
spaces. These problems have been considered also by LeCam [ 48] 
and Parzen [ 64] .  

The measure-theoretic definition and basic properties of condi­
tional probabilities and conditional expectations have been given 
by Kolmogorov (Chap. IV ; cf. also [ 12] and [54] ) .  Using an 
abstract approach, S. T. C. Moy (60]  has considered the prop. 
erties of conditional expectation as a linear transformation of 
the space of all extended real-valued measurable functions on a 
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probability space into itself. In [ 61 ]  she considers the conditional 
expectation of Banach-space-valued random variables. Naka­
mura ·and Turamuru [62] consider an expectation as a given 
operation of a C*-algebra ; and Umegaki [79 ] considers. condi­
tional expectation as a mapping of a space of measurable opera­
tors belonging to a �-integrable class associated with a certain 
W*-algebra into itself. The work of Umegaki is concerned with 
the development of a non-commutative probability theory. The 
results of Segal [74 ] ,  Dye [ 15 ] ,  and others, in abstract integration 
theory are utilized in the above studies. Other papers of interest 
are [ 1 ] ,  [16] , [36] , and [45 ] .  

The L. Schwartz theory of distributions (73] has been utilized 
by Gel'fand [24] in the study of generalized stochastic processes ; 
and by Fortet [20] and Ito [ 35] in the study of random 
distributions. 

Several books devoted to the study of limit theorems in proba­
bility are available :  [27 ] ,  [42] ,  [47 J ,  and [49] . In addition, [ 12 ]  
and· [54] should be consulted. Research and review papers of 
interest are {11 ] ,  [14 ] ,  [25] ,  (37] .  [46] , [55 ] , (57 ] , [65] , [71] ,  
(77 ] ,  and [78] . 
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