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PREFACE

The purpose of this monograph is to give an axiomatic
foundation for the theory of probability. The author set himself
the task of putting in their natural place, among the general
notions of modern mathematics, the basic concepts of probability
theory—concepts which until recently were considered to be quite
peculiar.

This task would have been a rather hopeless one before the
introduction of Lebesgue's theories of measure and integration.
However, after Lebesgue’s publication of his investigations, the
analogies between measure of a set and probability of an event,
and between integral of a funetion and mathematical expectation
of a random variable, became apparent. These analogies allowed
of further extensions; thus, for example, various properties of
independent random variables were seen to be in complete analogy
with the corresponding properties of orthogonal functions. But
if probability theory was to be based on the above analogies, it
still was necessary to make the theories of measure and integra-
tion independent of the geometric elements which were in the
foreground with Lebesgue. This has been done by Fréchet.
~ While a conception of probability theory based on the above
general viewpoints has been current for some time among certain
mathematicians, there was lacking a complete exposition of the
whole system, free of extraneous complications. (Cf., however,
the book by Fréchet, [2] in the bibliography.)

I wish to call attention to those points of the present exposition
which are outside the above-mentioned range of ideas familiar to
the specialist. They are the following: Probability distributions
in infinite-dimensional spaces (Chapter III, § 4) ; differentiation
‘and integration of mathematical expectations with respect to a
parameter (Chapter IV, § 5) ; and especially the theory of condi-
tional probabilities and conditional expectations (Chapter V).
It should be emphasized that these new problems arose, of neces-
sity, from some perfectly concrete physical problems.?

' Cf., e.g., the paper by M. Leontovich quoted in footnote 6 on p. 46; also the
joint paper by the anthor and M. Leontovich, Zur Statistik der kontinuier-
lichen Systeme und des zeitlichen Verlaufes der physikalischen Vorgéinge.
Phys. Jour. of the USSR, Vol. 3, 1933, pp. 35-63.

v



vi ' Preface

The sixth chapter contains a survey, without proofs, of some
results of A. Khinchine and the author of the limitations on the
applicability of the ordinary and of the strong law of large num-
bers. The bibliography caontains some recent works which should
be of interest from the point of view of the foundations of the
subject.

1 wish to express my warm thanks to Mr. Khinchine, who
has read carefully the whole manuscript and proposed several
improvements.

Kljasma near Moscow, Easter 1933.

A. Kolmogorov
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Chapter I

ELEMENTARY THEORY OF PROBABILITY

We define as elementary theory of probability that part of
the theory in which we have to deal with probabilities of only a
finite number of events. The theorems which we derive here ¢an
be applied also to the problems connected with an infinite number
of random events. However, when the latter are studied, essen-
tially new principles are used. Therefore the only axiom of the
mathematical theory of probability which deals particularly with
the case of an infinite number of random events is not introduced
until the beginning of Chapter II (Axiom VI).

The theory of probability, as a mathematical discipline, can
and should be developed from axioms in exactly the same way
as Geometry and Algebra. This means that after we have defined
the elements to be studied and their basic relations, and have
stated the axioms by which these relations are to be governed,
all further exposition must be based exclusively on these axioms,
independent of the usual concrete meaning of these elements and
their relations.

In accordance with the above, in § 1 the concept of a field of
probabilities is defined as a system of sets which satisfies certain
conditions. What the elements of this set represent is of no im-
portance in the purely mathematical development of the theory
of probability (cf. the introduction of basic geometric concepts
in the Foundations of Geometry by Hilbert, or the definitions of
groups, rings and fields in abstract algebra).

Every axiomatic (abstract) theory admits, as is well known,
of an unlimited number of concrete interpretations besides those
from which it was derived. Thus we find applications in ficlds of
science which have no relation to the concepts of random event
and of probability in the precise meaning of these words.

The postulational basis of the theory of probability can be
established by different methods in respect to the selection of
axioms as well as in the selection of basic concepts and relations.

However, if our aim is to achieve the utmost simplicity both in
1



2 I. Elementary Theory of Probability

the system of axioms and in the further development of the
theory, then the postulational concepts of a random event and
its probability seem the most suitable. There are other postula-
tional systems of the theory of probability, particularly those in
which the concept of probability is not treated as one of the basic
concepts, but is itself expressed by means of other concepts.
However, in that case, the aim is different, namely, to tie up as
closely as possible the mathematical theory with the empirical
development of the theory of probability.

§ 1. Axioms?

Let ¥ be a collection of elements ¢, v, ¢, . . ., which we shall call

elementary events, and § a set of subsets of E; the elements of
the set ¥ will be called random events.

I. & 18 a field? of sets.
II. & contains the set E.
III. Toeach set A in § is assigned a non-negative real number
P(A). This number P(A) 18 called the probability of the event A.
IV. P(E') equals 1.
V. If A and B have no element in common, then

P(A+B)=P(A) +P(B)

A system of sets, ¥, together with a definite assignment of
numbers P(A), satisfying Axioms I-V, is called a field of prob-
ability.

Our system of Axioms I-V is consistent. This is proved by the
following example. Liet E consist of the single element ¢ and let ¥

consist of E and the null set 0. P(F) is then set equal to 1 and
P(0) equals 0.

! For example, R. von Mises[1]and [2] and S. Bernstein [1].

* The readér who wishes from the outset to give a concrete meaning to the
following axioms, is referred to § 2.

' Cf. HAUSDORFF, Mengenlehre, 1927, p. 78. A system of sets is called a field
if the sum, product, and difference of two sets of the system also belong to the
same system. Every non-empty field contains the null set 0. Using HausdorfT’s
notation, we designate the groduct of A and B by AB; the sum by A+ B in
the case where AB=0; and in the general case by A + B; the difference of
A and Bby A-B. The set E—~ A, which is the complement of A, will be denoted
by 4. We shall assume that the reader is familiar with the fundamental rules
of operations of sets and their sums, products, and differences. All subsets
of g will be designated by Latin capitals.



§ 2. The Relation to Experimental Data 3

Our system of axioms is not, however, complete, for in various

problems in the theory of probability different fields of proba-
bility have to be examined.

The Construction of Fields of Probability. The simplest fields
of probability are constructed as follows. We take an arbitrary
finite set E = {&,,&,, ... &} and an arbitrary set {p;, ;... #u}
of non-negative numbers with the sum p, + p. + ...+ pr = 1.
& is taken as the set of all subsets in E, and we put

P{st,-,, fi,. .aay fi;} =pi + P, +0 + by

In such cases, p,, p;, . . . , Px are called the probabilities of the
elementary events §, &, . . ., & or simply elementary probabili-
ties. In this way are derived all possible finite fields of probability
in which § consists of the set of all subsets of E. (The field of
probability is called finite if the set E is finite.) For further
examples see Chap. 1I, § 3.

§ 2. The Relation to Experimental Data*

We apply the theory of probability to the actual world of
experiments in the following manner:

1) There is assumed a complex of conditions, &, which allows
of any number of repetitions.

2) We study a definite set of events which could take place as
a result of the establishment of the conditions &. In individual
cases where the conditions are realized, the events occur, gener-
ally, in different ways. Let £ be the set of all possible variants
&, &, . . . of the outcome of the given events. Some of these vari-
ants might in general not occur. We include in set E all the vari-
ants which we regard a priori as possible.

3) If the variant of the events which has actually occurred

‘ The reader who is interested in the purely mathematical development of
the theory only, need not read this section, since the work following it is based
only upo» the axioms in § 1 and makes no use of the present discussion. Here
we limit ourselves to a simple explanation of how the axioms of the theory of
probability arose and disregard the deep philosophical dissertations on the
concept of probability in the experimental world. In establishing the premises
necessary for the applicability of the theory of probability to the world of
t[ulzgual e;gnzt;, the author has used, in large measure, the work of R. v. Mises,

Pp. al-2%.



4 I. Elementary Theory of Probability

upon realization of conditions & belongs to the set A (defined in
any way), then we say that the event A has taken place.

Ezample: Let the complex & of conditions be the tossing of a
coin two times. The set of events mentioned in Paragraph 2)con-
sists of the fact that at each toss either a head or tail may come up.
From this it follows that only four different variants (elementary
events) are possible, namely: HH, HT, TH, TT. If the “event A”
connotes the occurrence of a repetition, then it will consist of a
happening of either of the first or fourth of the four elementary
evenfs. In this manner, every event may be regarded as a set of
elementary events.

4) Under certain conditions, which we shall not discuss here,
we may assume that to an event A which may or may not occur
under conditions &, is assigned a real number P(A) which has
the following characteristics:

(a) One can be practically certain that if the complex of con-
ditions & is repeated a large number of times, n, then if m be the
number of occurrences of event A, the ratio m/n will differ very
slightly from P(A).

(b) If P(A) is very smal], one can be practically certain that
when conditions & are realized only once, the event A would not
occur at all.

The Empirical Deduction of the Axzioms. In general, one may
assume that the system ¥ of the observed events A, B, C, ... to
which are assigned definite probabilities, form a field containing
as an element the set £ (Axioms I, II, and the first part of
III, postulating the existence of probabilities). It is clear that
0=m/n=1 so that the second part of Axiom III is quite natural.
For the event E, m is always equal to n, so that it is natural to
postulate P(E) =1 (Axiom 1V). If, finally, A and B are non-
intersecting (incompatible), then m = m, + m, where m, m,, m.
are respectively the number of experiments in which the events
A + B, A, and B occur. From this it follows that

m_ml s
n“n+n'

it therefore seems appropriate to postuiate that P(A + B) =
P(A) + P(B) (Axiom V).



§ 3. Notes on Terminology b

Remark 1. If two separate statements are each practically
reliable, then we may say that simultaneously they are both reli-
able, although the degree of reliability is somewhat lowered in the
process. If, however, the number of such statements is very large,
then from the practical reliability of each, one cannot deduce any-
thing about the simultaneous correctness of all of them. Therefore
from the principle stated in (a) it does not follow that in a very
large number of series of n tests each, in each the ratio m/n will
differ only slightly from P(A).

Remark 2. To an impossible event (an empty set) corre-
sponds, in accordance with our axioms, the probability P(0) = 05,
but the converse is not true: P(4) = 0 does not imply the im-
possibility of A. When P(A) = 0, from principle (b) all we can
assert is that when the conditions & are realized but once, event
A is practically impossible. It does not at all assert, however, that
in a sufficiently long series of tests the event A will not occur. On
the other hand, one can deduce from the principle(a) merely that
when P(A) = 0 and n is very large, the ratio m/n will be very
small (it might, for example, be equal to 1/7).

§ 3. Notes on Terminology

We have defined the objects of our future study, random
events, as sets. However, in the theory of probability many set-
theoretic concepts are designated by other terms. We shall give
here a brief list of such concepts.

Theory of Sets Random Events
1. A and B do not intersect, 1. Events A and B are in-
i.e.,, AB = 0. compatible,
2. AB...N=0. 2. Events A, B, ..., N are
incompatible.
3. AB... N=X. 3. Event X is defined as the

simultaneous occurrence of
events A, B,..., N.

4. A+B+...+N=X. 4. Event X is defined as the
occurrence of at least one of
the events 4, B,..., N.

*Cf. 8§ 4, Formula (3).
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Theory of Sets

5. The complementary set
A.

6. A=0.

7. A =FE.

8. The system % of the sets
A, A, ..., A, forms a de-
composition of the set FE if
A+ A, +...+A,.=E.

(This assumes that the
sets A do not intersect,in
pairs.)

9. Bisasubsetof A: B A.

Random Events

5. The opposite event A
consisting of the non-occur-
ence of event A.

6. Event A is impossible.
7. Event A must occur.

8. Experiment % consists of
determining which of the
events A,, 4,, ..., A, occurs.
We therefore call A,, 4, ...,
A, the possible results of ex-
periment .

9. From the occurrence of
event B follows the inevitable
occurrence of A.

§ 4. Immediate Corollaries of the Axioms; Conditional

Probabilities ; Theorem of Bayes

From A + 4 = E and the Axioms IV and V it follows that
P(A) +P(A) =1 (1)
P(A) =1—P(A) . (2)

Since £ = 0, then, in particular,

P(0)=0 . (3)

| If A,B, ..., N are incompatible, then from Axiom V follows
the formula (the Addition Theorem)

P(A+B+... + N)=P(A) + P(B)+...+ P(N). (4)

If P(A) >0, then the quotient

ACERE $2

P(4)

is defined to be the conditional probability of the event B under

the condition A.

From (5) it follows immediately that
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P(AB) =P(A)P,(B) . ‘ (6)

And by induction we obtain the general formula (the Multi-
plication Theorem)

P(d,Ady...A,) = P(A;) Pa,(4y) Paya(Aa) .- - Pasas... sn-i{4n) (7)

The following theorems follow easily:

P4(B)= 0, (8)
PAE)=1, 9)
PA(B + C) = P4(B) + P,(C). (10)

Comparing formulae (8) —(10) with axioms III—V, we find that
the system § of sets together with the set function P,(B) (pro-
vided A is a fixed set), form a field of probability and therefore,
all the above general theorems concerning P (B) hold true for the
conditional probability P,(B) (provided the event A is fixed).
It is also easy to see that

P(A)=1, (11)

From (6) and the analogous formula
P (AB)= P(B)Py(4)

we obtain the important formula:

P(4)P,.(B
Pa(d) = ZPE, (12)
which contains, in essence, the Theorem of Bayes.

THE THEOREM ON TOTAL PROBABILITY: Let 4, + A, + ... +

A, = E (this assumes that the events 4,, 4,,..., A, are mutually
exclusive) and let X be arbitraty. Then

P(X) =P (A4,)Ps(X) + P(A) Pg,(X) + --- + P(4,) P4, (X).. (13)
Proof :

X=AX+AX+...+ AX;
using (4) we have
P(X)=P(A4, X)+P(A, X)+...+ P(4. X)
and according to (6) we have at the same time
P(AX)=P(A)P, (X).

THBE THEOREM OF BAYES: Let A, + A, + ...+ 4, =F and

X be arbitrary, then PA)P.o(X)
_ i Ay S—
P = S TP X F PAYPAX) + - T PN Pa () |14

i=1:2|31'--y7‘.
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A, A, ..., A, are often called ‘“hypotheses” and formula
(14) is considered as the probability Px(A,) of the hypothesis
A; after the occurrence of event X. [P(A4;) then denotes the
a priori probability of A.]

Proof : From (12) we have
P(A:) P4, (X)

P(X)

Pg(d) =

To obtain the formula (14) it only remains to substitute for the
probability P(X) its value derived from (13) by applying the
theorem on total probability.

§ 5. Independence

The concept of mutual independence of two or more experi-
ments holds, in a certain sense, a central position in the theory of
probability. Indeed, as we have already seen, the theory of
probability can be regarded from the mathematical point of view
as a special application of the general theory of additive set func-
tions. One naturally asks, how did it happen that the theory of
probability developed into a large individual science possessing
its own methods?

In order to answer this question, we must point out the spe-
cialization undergone by general problems in the theory of addi-
tive set functions when they are proposed in the theory of
probability.

The fact that our additive set function P(A) is non-negative
and satisfies the condition P(E) = 1, does not in itself cause new
difficulties. Random variables (see Chap. III) from a mathe-
matical point of view represent merely functions measurable with
respect to P(A4), while their mathematical expectations are
abstract Lebesgue integrals. (This analogy was explained fully
for the first time in the work of Frécheté.) The mere introduction
of the above concepts, therefore, would not be sufficient to pro-
duce a basis for the development of a large new theory.

Historically, the independence of experiments and random
variables represents the very mathematical concept that has given
the theory of probability its peculiar stamp. The classical work
or LaPlace, Poisson, Tchebychev, Markov, Liapounov, Mises, and

 See Fréchet [1] and [2].



§ 5. Independence 9

Bernstein is actually dedicated to the fundamental investigation
of series of independent random variables. Though the latest
dissertations (Markov, Bernstein and others) frequently fail to
assume complete independence, they nevertheless reveal the
necessity of introducing analogous, weaker, conditions, in order
to obtain sufficiently significant results (see in this chapter § 6,
Markov chains).

We thus see,in the concept of independence, at least the germ
of the peculiar type of problem in probability theory. In this
book, however, we shall not stress that fact, for here we are
interested mainly in the logical foundation for the specialized
investigations of the theory of probability.

In consequence, one of the most important problems in the
philosophy of the natural sciences is—in addition to the well-
known one regarding the essence of the concept of probability
itself—to make precise the premises which would make it possible
to regard any given real events as independent. This question,
however, is beyond the scope of this book. '

Let us turn to the definition of independence. Given n experi-
ments AN, Y@, ., AW, that is, n decompositions
E=A¥’+A(ﬂﬁ+”'+A‘f? ".:1:2;‘-';”

of the basic set E. It is then possible to assign r = »,7,.. .7, proba-
bilities (in the general case)

ﬁQI Qs eeeflin Ea P(Atqi>Ag-:)' ‘- ASI:)) 2 O
which are entirely arbitrary except for the single condition’ that

2 Pun. (1)

'I|:9| sray

DEFINITION I. n experiments q¥, A®, ..., A= are called

mutually independent, if for any q,, g, . . . , ¢ the following
equation holds true:
PARAR ... AP) =PAD)P(4D)...P(4Y) .  (2)

" One may construct a field of dprohabxhty with arbitrar £ probabilities sub-
ject only to the above-mentmne conditions, as follows: E is composed of »
elements £g,4,...¢». Let the corresponding elementary proba ilities be
Pace... 00 and’ ﬁnally let A"' be the set of all & ,,. for which

‘h’=9
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Among the r equations in (2), there are only r-7—7,—. .. -7, +
n-1 independent equations®.

THEOREM I. If n experiments A™), A=, , .., A are mutu-
ally independent, then any m of them (m<n), AW, AW, Yti=)
are also independent®.

In the case of independence we then have the equations:

PARAD .. A = P(4D)P(4%)... P(4)  (3)
(all ¢z must be different.)

DEFINITION Il1. n events 4,, A,, ..., A, are mutually indepen-
dent, if the decompositions (trials)

E=A.+A, (k=1,2,...,m)
are independent.

Inthiscaser, =r, = ... = r, = 2, r = 2*; therefore, of the 2»
equations in (2) only 2-n -1 are independent. The necessary

and sufficient conditions for the independence of the events A,, 4,,
..., A, are the following 2* - n - 1 equations!?:

P(di, Ay, . Ai) = P(A;) P(4.). . . P(4.), (4)
m=1,2,...,n,
1§i1<i3< e <im§"-

All of these equations are mutually independent.
In the case n = 2 we obtain from (4) only one condition (22 -2 -

* Actually, in the case of independence, one may choose arbitrarily only
rnt+w+ ...+ #, probabilities Pt = P(Afl") so as to comply with the =

conditions
St

]
Therefore, in the general case, we have r—1 degrees of freedom, but in the
case of independence only v+ 7.+ ...+ r,-n.

* To prove this it is sufficient to show that from the mutual independence
of n decompositions follows the mutual independence of the first »-1. Let us
assume that the equations (2) hold. Then

P4 AD. .. Al™) =qZP(A;','A;‘,’. . AY)
= P4 ) P(AD) ... P(47") 'Z:P(A',':) = P4 P(4]) ...P(457").,
» Q.E.D.

* See S. N. Bernstein {1] pp. 47-567. However, the reader can easily prove
this himeelf (using mathematical induction),
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1 = 1) for the independence of two events 4, and A,:
P(A,4;) = P(A,)P(A,). (5)

The system of equations (2) reduces itself, in this case, to three
equations, besides (5):

P(AIZS) = 'P(Ai)P(A—z)
P(A—lAz) = P(A_x)P(Az)
P(zl-zz) = P(Z;)P(Z,) ’

which obviously follow from (6).m
It need hardly be remarked that from the independence of
the events A,, A,, ..., A, in pairs, i.e. from the relations

P(4:4y) = P(A)P(4)) )

it does not at all follow that when n>2 these events are inde-
pendent??. (For that we need the existence of all equations (4).)

In introducing the concept of independence,no use was made
- of conditional probability. Our aim has been to explain as clearly
as possible,in a purely mathematical manner, the meaning of this
concept. Its applications, however, generally depend upon the
properties of certain conditional probabilities.

If we assume that all probabilities P(A,) are positive, then
from the equations (3) it follows!® that

PA!I’A',":‘ Aff"- 2 (47) = P(a®) (6)
1 m -l

From the fact that formulas (6) hold, and from the Multiplica-
tion Theorem (Formula (7), § 4), follow the formulas (2). We
obtain, therefore,

THEOREM Il: A mecessary and sufficient condition for inde-
pendence of experiments NV, A, . . ., A in the case of posi-

" P(Aaz_:) = P(A4,) — P(A; 4;) = P(4,) — P(4,) P(4s) = P(4;) {+ — P(4,}}
= P(A,) P(4,) . ete.
 This can be shown by the following simple example (S. N. Bernstein) :

Let set E be composed of four elements §,, ;. &5, &; the corresponding elemen-
tary probabilities p,, p:, ps, P« are each assumed to be % and

4 = {el' sl}' B = {81- Ea}t C= {51. Eg}-
1t is easy to compu e that
P(A) =P(B) =P(C) =%,
P(AB)=P(BC) =P(AC) =% = (%)}
P(ABC) =% = (%)’.
* To prove it, one must keep in mind the definition of conditional proba-

bility (Formula (5), § 4) and substitute for the probabilities of products the
products of probabilities according to formula (3).
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tive probabilities P(AY) is that the conditional probability of
the results A, of experiments U under the hypothesis that
several other tests UMW, YU A have had definite results
AB A4S, A6, ...,Ag‘;’ i8 equal to the absolute probability
P(A,®).

On the basis of formulas (4) we can prove in an analogous
manner the following theorem:

THEOREM III. If all probabilities P(A.) are positive, then a
necessary and sufficient condition for mutual independence of
the events A,, A; . .., A, is the satisfaction of the equations

Pui, 4, 43, (A45) = P(4) (7)
for any pairwise different iy, 1,, . . . , iy, 1.
In the case n = 2 the conditions (7) reduce to two equations:
P4, (4;) = P(4,),
P4, (4;,) =P (4)).
It is easy to see that the first equation in (8) alone is a necessary

and sufficient condition for the independence of A, and A, pro-
vided P(A4,) > 0.

(8)

8§ 6. Conditional Probabilities as Random Variables,
Markov Chains

Let % be a decomposition of the fundamental set E':
E=A,+A.+...+A,

and z a real function of the elementary event ¢ which for every
set A, is equal to a corresponding constant a,. x is then called a
random variable, and the sum

E(zx) r-;a.qP(Aq)

is called the mathematical expectation of the variable z. The
theory of random variables will be developed in Chaps. III and IV.
We shall not limit ourselves there merely to these random vari-
ables which can assume only a finite number of different values.
A random variable which for every set A, assumes the value
P4, (B), we shall call the conditional probability of the event B
after the given experiment ¥ and shall designate it by Pg(B). Two
experiments %) and A are independent if, and only if,
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an(A?’) =P(Aqm) 9=1,2,...,%.

Given any decompositions (experiments) %), Y3, | N*) we
we shall represent by

DL (O (¢
the decomposition of set £ into the products
AgNALD LAY
Experiments A, %Y@, ..., Y™ are mutually independent when

and only when
Pam e . .. g -0 (A(qh) =P (A';’) ’

k and q being arbitrary®-.
DEFINITION: The sequence AW, A@, .., AW, ... forms
a Markov chain if for arbitrary n and ¢

Pumum U (LTS ) (A‘,?") = Pyn-» (A(em)°

Thus, Markov chains form a natural generalization of se-
quences of mutually independent experiments. If we set

Poman(m, 1) = PA:: (A5 m<n ,

then the basic formula of the theory of Markov chains will assume
the form:

pﬁ'?ﬂ(k’ 71) = qZ'Pﬂ’tqm(k' m) pﬂmﬂn(ml n)! k <mn. l (1)

If we denote the matrix ||pg.e.(m, n)]| by 2(m, n), (1) can be
written as*:
p{kn) = p(km)p(m,n) k<m<n. (2)

* The necessity of these conditions follows from Theorem 11, § 5; that they
are also sufficient follows immediately from the Multiplication Theorem
(Formula (7) of §4).

¥ For further development of the theory of Markov chains, see R. v. Mises
l;ﬂ, § 16, and B. HOSTINSKY, Méthodes générales du calcul des probabilités,
“Mém. Sci. Math.” V. 52, Paris 1931.



Chapter II

INFINITE PROBABILITY FIELDS
§ 1. Axiom of Continuity

We denote by ?2 A, as is customary, the product of the sets
A, (whether finite or infinite in number) and their sum by § A,.
Only in the caseof disjoint sets A, is the form 3’4, used instead
of %A,. Consequently, )

CAn=A,+ A4, + -,

m

;‘A,-_— A 4+ Ay + -,
DAp=A,4, .
In all future investigations, we shall assume that besides Axioms

I -V, still another holds true:
VI. For a decreasing sequence of events

A DA4;5-- D4, (1)
of &, for which
?Aa=0 ’ (2)

the following equation holds:
lim P (4,) = 0. # - oo (3)

In the future we shall designate by probability field only a
field of probability as outlined in the first chapter, which also
satisfies Axiom VI. The fields of probability as defined in the first
chapter without Axiom VI might be called generalized fields of
probability.

If the system & of sets is finite, Axiom VI follows from Axioms
I-V. For actually, in that case there exist only a finite number
of different sets in the sequence (1). Let A, be the smallest
among them, then all sets-A,,, coincide with A, and we obtain then

14
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Ap = Ayyp = D4n = 0,
limP(4,) = P(0) = 0.

All examples of finite fields of probability, in the first chapter,
satisfy, therefore, Axiom VI. The system of Axioms I - VI then
proves to be consistent and incomplete.

For infinite fields, on the other hand, the Axiom of Continuity,
V1, proved to be independent of Axioms I - V. Since the new axiom
is essential for infinite fields of probability only, it is almost im-
possible to elucidate its empirical meaning, as has been done, for
example, in the case of Axioms I-V in § 2 of the first chapter.
For, in describing any observable random process we can obtain
only finite fields of probability. Infinite fields of probability occur
only as idealized models of real random processes. We limit our-
selves, arbitrarily, to only those models which satisfy Axiom VL.
This limitation has been found expedient in researches of the
most diverse sort.

GENERALIZED ADDITION THEOREM: If A,, A:, ..., A, ...and
A belong to &, then from

follows the equation :
P(A)=;P(A-)- (5)
P : Let
roof Ro=3 4y .
m>n
Then, obviously E:D(R,,) =0,

and, therefore, according to Axiom VI
lim P(R;) =0 n—>o0 . (6)
On the other hand, by the addition theorem
P(A) =P(A,) +P(4:) +...+P(4,) +P(R,). (T)
From (6) and (7) we immediately obtain (5).

We have shown, then, that the probabidity P(A) is a com-
pletely additive set function on §. Conversely, Axioms V and VI
hold true for every completely additive set function defined on
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any field §.* We can, therefore, define the concept of a field of
probability in the following way: Let E be an arbitrary set, § a
field of subsets of E, conlaining E, and P(A) a non-negative com-
pletely additive set function defined on §,; the field § together
with the set function P(A) forms a field of probability.

A COVERING THEOREM: If A, A,, 4,, ..., A .. . belong to §
and
. Ac G4, , (8)
then "
P(A) = 3 P(4,). (9)
Proof : "

4=4 %(An) =AA, + A(4; — 4;4,) + 4(4; — A4, — A;A) + -+,
P(d) = P(44)) + P{A(4;, — A, A)} + --- S P(4y) +P(A) + ---.

§ 2. Borel Ficlds of Probability

The field § is called a Borel field, if all countable sums24s
of the sets A, from § belong to §. Borel fields are also called com-
pletely additive systems of sets. From the formula

S dn= A, + (4 — A, 4)) + (4, — A4y — A3 4,) + -+ (1)
we can deduce that a Borel field contains also all the sums C:.;:” A,

composed of a countable number of sets A, belonging to it. From
the formula

?A=E—§& (2)

the same can be said for the product of sets.

A field of probability is a Borel field of probability if the
corresponding field ¥ 138 a Borel field. Only in the case of Borel
fields of probability do we obtain full freedom of action, without
danger of the occurrence of events having no probability. We
shall now prove that we may limit ourselves to the investigation
of Borel fields of probability. This will follow from the so-called
extension theorem, to which we shall now turn.

Given a field of probability (%, P). As is known!, there exists
a smallest Borel field B§ containing §. And we have the

* See, for example, O. NIKoDYM, Sur upe géneralisation des intégrales de
M. J. Radon, Fund. Math. v. 15, 1930, p. 136.

! HAUSDORFF, Mengenlehre, 1927, p. 85.
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EXTENSION THEOREM : It is always possible to extend a non-
negative completely additive set function P(A), defined in §,
to all sets of BE without losing either of its properties (non-
negativeness and complete additivity) and this can be done in
only one way.

The extended field By forms with the extended set func-
tion P(A) a field of probability (B, P). This field of probability
(Bg, P) we shall call the Borel extension of the field (§, P)

The proof of this theorem, which belongs to the theory of
additive set functions and which sometimes appears in other
forms, can be given as follows:

Let A be any subset of E'; we shall denote by P*(A4) the lower
limit of the sums

SP(4.)

for all coverings
Ac %A,

of the set A by a finite or countable number of sets A4, of §. It is
easy to prove that P*(A) is then an outer measure in the
Carathéadory sense?. In accordance with the Covering Theorem
(§ 1), P*(A) coincides with P(A) for all sets of §. It can be fur-
ther shown that all sets of {} are measurable in the Carathéodory
sense. Since all measurable sets form a Borel field, all sets of B
are consequently measurable. The set function P*(A) is, there-
fore, completely additive on B%, and on B we may set

P(A) =P*(A).

We have thus shown the existence of the extension. The unique-
ness of this extension follows immediately from the minimal
property of the field Bg.

Remark: Even if the sets (events) A of ¥ can be interpreted
as actual and (perhaps only approximately) observable events,
it does not, of course, follow from this that the sets of the extended
field B¥ reasonably admit of such an interpretation.

Thus there is the possibility that while a field of probability
(% P) may be regarded as the image (idealized, however) of

3 CARATHEODORY, Vorlesungen iiber reelle Funktionen, pp.237-268. (New
York, Chelsea Publishing Company).
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actual random events, the extended field of probability (Bg, P)
will still remain merely a mathematical structure.

Thus sets of B¥ are generally merely ideal events to which
nothing corresponds in the outside world. However, if reasoning
which utilizes the probabilities of such ideal events leads us to a
determination of the probability of an actual event of &, then,
from an empirical point of view also, this determination will
automatically fail to be contradictory.

§ 3. Examples of Infinite Fields of Probability

I In 81 of the first chapter, we have constructed various
finite probability fields.

Letnow E = {4,, &. ..., &, ...} be a countable set, and let §
coincide with the aggregate of the subsets of E.

All possible probability fields with such an aggregate § are
obtained in the following manner:

We take a sequence of non-negative numbers p,, such that

Dr+Dt+ ... tpet...=1
and for each set A put
p(A) =Z’ N
n

where the summation J, extends to all the indices n for which
&, belongs to A. These fields of probability are obviously Borel
fields.

II. In this example, we shall assume that E represents the
real number axis. At first, let § be formed of all possible finite
sums of half-open intervals [a; b) = {e= & < b} (taking into
consideration not only the proper intervals, with finite @ and b,
but also the improper intervals [- oo; @), [a; + o©) and [~oc;
+ o0 )). & is then a field. By means of the extension theorem, how-
ever, each field of probability on § can be extended to a similar
field on BY. The system of sets Bg is, therefore, in our case
nothing but the system of all Borel point sets on a line. Let us
turn now to the following case.

III. Again suppose E to be the real number axis, while § is
composed of all Borel point sets of this line. In order to construct
a field of probability with the given field §, it is sufficient to
define an arbitrary non-negative compietely additive set-function
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P(A) on § which satisfies the condition P(E) = 1. As is well
known? such a function is uniquely determined by its values

P[-o; z) = F (%) (1)

for the special intervals [~ oo; ). The function F'(z) is called the
distribution function of ¢. Further on (Chap. III, § 2) we shall
shown that F(z) is non-decreasing, continuous on the left, and
has the following limiting values:

lim F(x) = F(—o0) =0, lim F(x) = F(+ o0) = 1. (2)

L—>—ad 2 —» 4 o0
Conversely, if a given function F(z) satisfies these conditions,

then it always determines a non-negative completely additive set-
function P(A) for which P(E) = 1}

IV. Let us now consider the basic set E as an n-dimensional
Euclidian space R*, i.e., the set of all ordered n-tuples ¢ = { z,, z,

.» .} of real numbers. Let § consist, in this case, of all Borel
point-sets® of the space R*. On the basis of reasoning analogous
to that used in Example II, we need not investigate narrower sys-
tems of sets, for example the systems of n-dimensional intervals.

The role of probability function P(4) will be played here,
as always, by any non-negative and completely additive set-
function defined on § and satisfying the condition P(E) = 1. Such
a set-function is determined uniquely if we assign its values

P(Lusa,...0n) = Flay, @9, - -1 an) (3)
for the special sets 1,,,...c., Where L, .  ,. represents the
aggregate of all ¢ for which z;<a, (i=1, 2, ..., n).

For our function F (a,, a,, . . ., a.) we may choose any function
which for each variable is non-decreasing and continuous on the
left, and which satisfies the following conditions:

lim F(a, a;,...,a,) = F(a,,..., @_1, —00,8j11,...,8,) =0,
a; —> —oo t=1,2,....n
lim Flay,a,,.-.,a,) = F(+00, +co, ..., 4-00) = 1. 4)
2 (—l)t'+"+.'.+"’p(“1—81‘1va'*_53 Car-s1@n — Ency) =0,
fw 1
T ma G >0, i=14.2.3.....%.

3 Ct.,, for example, LEBESGUE, Lecons sur Uintégration, 1928, p. 152-156.
‘* See the previous note.

$ For a definition of Borel sets in R see HAUSDORFF, Mengenlehre, 1927,
pp. 177-181.
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F(a,, a ..., a,) is called the distribution function of the vari-
ableszy, @, ..., Zp

The investigation of fields of probability of the above type
is sufficient for all classical problems in the theory of probability®.
In particular, a probability function in R* can be defined thus:

We take any non-negative point function f(z,, =z . .., Z,)
defined in R», such that

+ oo +oco 400

f f...fl(x,,x,,...,x,.)dxldx,...dx,,=1

-0 @ —® —%0

and set
P(a)= [/ ...Af,‘(x,,x,, e Xy dxdxy .. dx, . (B)

f(xy, @, ..., x,) is, in this case, the probability density at the
point (z,, z,, ..., z,) (cf. Chap. III, § 2).

Another type of probability function in R* is obtained in the
following manner: Let {&;} be a sequence of points of R*, and
let {f;} be a sequence of non-negative real numbers, such that
= p; = 1; we then set, as we did in Example I,

P(A) = 2" p,

where the summation 2 extends over all indices ¢ for which ¢
belongs to A. The two types of probability functions in R* men-
tioned here do not exhaust all possibilities, but are usually con-
sidered sufficient for applications of the theory of probability.
Nevertheless, we can imagine problems of interest for applica-
tions outside of this classical region in which elementary events
are defined by means of an infinite number of coordinates. The
corresponding fields of probability we shall study more closely

after introducing several concepts needed for this purpose. (Cf.
Chap. 111, § 3).

* Cf., for example, R. v. Mi1sgs [1], pp. 13-19. Here the existence of proba-
bilities dfo:u' “a]l practically possible’” sets of an n-dimensional space is
required.
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RANDOM VARIABLES

§ 1. Probability Functions

Given a mapping of the set E into a set E’ consisting of any
type of elements, i.e., a single-valued function % (¢) defined on E,
whose values belong to E’. To each subset A’ of E’ we shall put
into correspondence, as its pre-image in E, the set w*(A’) of all
elements of £ which map onto elements of A’. Let & be the
system of all subsets A’ of E’, whose pre-images belong to the
field §. F will then also be a field. If § happens to be a Borel
field, the same will be true of ). We now set

PWI(A) = P {u-1(d)}. (1)

Since this set-function P®), defined on §(*), satisfies with respect
to the field ™) all of our Axioms I- V], it represents a proba-
bility function on §). Before turning to the proof of all the facts
just stated, we shall formulate the following definition.

DEFINITION. Given a single-valued function %(¢) of a random
event £ The function P (A’), defined by (1), is then called the
probability function of u.

Remark 1: In studying fields of probability (%, P), we call the
function P(A) simply the probablhty function, but P™(4’) is
called the probability function of «. In the case u(¢) = ¢ P® (A4’)
coincides with P(A).

Remark 2: The event u*(A’) consists of the fact that w(¢)
belongs to A’. Therefore, P*) (A’) is the probability of u(£)= A’.

We still have to prove the above-mentioned properties of §*
and P}, They follow, however, from a single fact, namely:

LEMMA. The sum, product, and difference of any pre-tmage
sets u*(A’) are the pre-images of the corresponding sums, prod-
ucts, and differences of the original sets A’.

The proof of this lemma is left for the reader.

21



22 III. Randem Variables

Let A’ and B’ be two sets of ™). Their pre-images A and B
belong then to §. Since § is a field, the sets AB, A + B,and A-B.
also belong to §; but these sets are the pre-images of the sets A’B’,
A’ + B’, and A’ - B’, which thus belong to §). This proves that
™ is a field. In the same manner it can be shown that if ¥ is a
Borel field, so is F*).

Furthermore, it is clear that
P® (E’) = P{u-}(E)} =P(E) =1.
That P js always non-negative, is self-evident. It remains only
to be shown, therefore, that P() is completely additive (cf. the
end of § 1, Chap. II).

Let us assume that the sets A',, and therefore their pre-images
u1(A’,), are disjoint. It follows that

P 4) = P{u! (T 40} = P{Su~t(43))
- ;P{u“(A,.)} -;P‘“’(A;)

which proves the complete additivity of P®,

In conclusion let us also note the following. Let u,(¢) be a
function mapping E on E’, and %.(¢) be another funection, map-
ping E’ on E”. The product function %,u,(¢) maps E on E”. We
shall now study the probability functions P®}(A’) and P™) (A”)
for the functions u,(¢) and u(¢) = uzu.(¢). It is easy to show
that these two probability functions are connected by the follow-
ing relation:

PO(4”) = Pw{u(4")}. (2)

8§ 2. Definition of Random Variables and of
Distribution Functions

DEFINITION. A real single-valued function x(£), defined on the
basic set F, is called a random variable if for each choice of a real
number a the set {x < 4} of all ¢ for which the mequallty rz<a
holds true, belongs to the system of sets .

This function x(¢) maps the basic set E into the set R! of all
real numbers. This function determines, as in § 1, a field §*) of
subsets of the set R!. We may formulate our definition of random
variable in this manner: A real function x (¢) is a random variable
if and only if ) contains every interval of the form (-oog a).
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Since §‘* is a field, then along with the intervals (-oo; @) it
contains all possible finite sums of half-open intervals [a; b). If
our field of probability is a Borel field, then § and §? are Borel
fields; therefore, in this case F=? contains all Borel sets of R'.

The probability function of a random variable we shall denote
in the future by P(=) (A4’). It is defined for all sets of the field F¢=).
In particular, for the most important case, the Borel field of
probability, P(=) is defined for all Borel sets of R!.

DEFINITION. The function
F&) (a) = P# (-00,a) =P {x<a},

where — oo and + oo are allowable values of g, is called the distr:-
bution function of the random variable z.

From the definition it follows at once that

F®(—o0) =0, F (+o0) =1 . (1)
The probability of the realization of both inequalities a =z < b,
is obviously given by the formula

P{x < [a; b)} = F®{p) — F=)(a) (2)
From this, we have, for a < b,

F& (g) <F® (b)
which means that F(*)(a) is a non-decreasing function. Now let
6 <A< ... <0< ... < b;then
‘,'}.){x < [an; b)} =0

Therefore, in accordance with the continuity axiom,

F@ (b)) — F®(a,) = P{x c [a,, b)}
approaches zero asz— 4 oo. From this it is clear that F&)(a) i3

continuous on the left.
In an analogous way we can prove the formulae:

lim Fi)(g) = Fio) (~0) = 0, a——-o, (3)
Iim F9)(a) = F®( +o0) =1, a— + oo (4)

If the field of probability (&, P) is a Borel field, the values of
the probability function P)(A) for all Borel sets A of R* are
uniquely determined by knowledge of the distribution function
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F) (@) (cf. § 3, III in Chap. II). Since our main interest lies in
these values of P¢*)(A), the distribution function plays a most
significant role in all our future work.

If the distribution function F=}(a) is differentiable, then we
call its derivative with respect to a,

fo) @) = 7 FOa) ,
the probability density of z at the point a.
If also F*) (a¢) = f,f(')(a) da for each a, then we may ex-

press the probability function P(*?(A) for each Borel set A in
terms of f¢*)(a) in the following manner:

PO(4) = [ (a) da. (5)
A
In this case we call the distribution of x continuous. And in the

general case, we write, analogously

Pe)(4) = [dF®)(a) . (6)

4
All the concepts just introduced are capable of generalization

for conditional probabilities. The set function

P35 (d) = Pp(x c 4)
is the conditional probability function of x under hypothesis B.
The non-decreasing function

Fg(a) = Pp(x < a)
is the corresponding distribution function, and, finally (in the
case where F§ (a) is differentiable)

15 (a) = = F$a)

is the conditional probability density of z at the point @ under
hypothesis B.

§ 3. Multi-dimensional Distribution Functions

Let now » random variables z,, 2., . . ., z, be given. The point
z = (x4 %2 ..., o) Of the n-dimensional space R* is a function
of the elementary event ¢ Therefore, according to the general
rules in § 1, we have a field g = ..oz consisting of
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subsets of space R* and a probability function P % -...2(4")
defined on §'. This probability function is called the n-dimensional
probability function of the random va.iables z;, x,, . . . , Tn.

As follows directly from the definition of a random variable,
the field ' contains, for each choice of tanda; (: =1, 2, ..., n),
the set of all points in R* for which &< a;. Therefore % also con-
tains the intersection of the above sets, i.e. the set L,,, ...q.
of all points of R* for which all the inequalities z; < a; hold
(1=12,...,n).

If we now denote as the n-dimensional half-open interval

[@yy @zyevey@u)byy bay.on.,ba)

the set of all points in R*, for which a,=<2x;<b,, then we see at
once that each such interval belongs to the field §’ since

(@, ag, - .., ag; by, by, ..., b,)
- th.-..bu - Lﬂgbj-..b’ - Lb(ﬁ.b‘...bn _ - Lb;b;...bg—lﬂn‘

The Borel extension of the system of all n-dimensional half-
open intervals consists of-all Borel sets in RB». From this it follows
that in the case of a Borel field of probability,the field § contains
all the Borel sets in the space R*™.

THEOREM : In the case of a Borel field of probability each Borel
function x = f(z,, ., . . ., ,) Of a finite number of random vari-
ables z,, X, . . . , T, 18 als0 a random variable.

All we need to prove this is to point out that the set of all
points (z;, Zz ..., Z,) in R* for which z = f(z,, £, ..., Z.) < a,
is a Borel set. In particular, all finite sums and products of random
variables are also random variables.

DEFINITION : The function .
Flonze-ntd (g, ay, ..., 8,) = PEuTe 2Ly, a,)

is called the n-dimensional distribution. function of the random
variables z,, 25, . . . , Zs.

As in the one-dimensional case, we prove that the n-dimensional
distribution function Fwu=:--»%¥(q, @, ..., a,) is non-decreas-
ing and continuous on the left in each variable. In analogy to
equations (3) and (4) in § 2, we here have

! The 4; may also assume the infinite values 4 ,
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limF(ap ag. <. *s au) =F(ap ooy Biy, —00O, Bivtr - - > au) = on (7)
& —> —an

lim'F(al' gy o+« aﬂ) '—=F(+CD, +oo, ..., '*_m) = 1. (8)

@ —> +00,8; > 408, ...,80 = +%
The distribution function Fi# ...z gives directly the values
of Plsn®s. .- %) only for the special setsL, o, ... o,- If our field, how-
ever, is a Borel field, then? Pt =, ....70) i uniquely determined for

all Borel sets in R*» by knowledge of the distribution function
F, 2, cery Xm)

If there exists the derivative

o
f(a,,az. 5000 a,,) = 3o . o Fixn 2, ... 28) (ay. g, - - -, a,)

we call this derivative the n-dimensional probability density of
the random variables x;, x,, . . . , x, at the point a,, a,,. . ., a,. If
also for every point (a,, @z, ..., @)

a, o

Foaseorad(q qp .. . ay) =] j .. -/(a,, Ay, . .-, ay)da,da, ... da,,

~00 =00 —00

then the distribution of z,, ., . . ., . is called continuous. For
every Borel set Ac R®, we have the equality

PlEu s, -0 %0) (A) =[[ . .f/(al. a, ..., a)da,da,...da,. (9)
{

In closing this section we shall make one more remark about
the relationships between the various probability functions and
distribution functions. '

Given the substitution
S=(f’ 4?-. 5090 "n)
1, tay ..., tal
and let rgdenote the transformation -
% = %, (k=12,...,n)
of space R» into itself. It is then obvious that
P(’it"ir' ...,z,-.) (A) — p(z,,z., voes Zn) {rgl (A)} . (10)

Now let 2’ = p,(z) be the “projection” of the space B* on the
space R* (k< n), so that the point (x,, %, ..., 2,) is mappedonto
the point (z,, %2, ..., k). Then, as a result of Formula (2) in § 1,

?Cf. §3, IV in the Second Chapter.
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Plr 2, -z ( 4) — Plo, 2 [poVA)) (11)

For the corresponding distribution functions, we obtain from
(10) and (11) the equations:

F(zi,vz’i,’--.,*i,) (a{" Ay ooy a‘-) = F{x .2, ---.3'w)(al' g, ..., a‘) . (12)
Flx.xs, ---,2&)(‘21' Ag, ..., ak) - F(‘uf&- ---od’n)(all caey By, + 00, ,,,'+m).(13)

§ 4. Probabilities in Infinite-dimensional Spaces

In 8§ 3 of the second chapter we have seen how to construct
various fields of probability common in the theory of probability.
We can imagine, however, interesting problems in which the
elementary events are defined by means of an infinite number
of coordinates. Let us take a set M of indices x (indexing set) of
arbitrary cardinality m. The totality of all systems

§= {xp}
of real numbers x, , where u runs through the entire set M, we
shall call the space R¥ (in order to define an element ¢ in space
R™, we must put each element u in set M in correspondence with
a real number x, or, equivalently, assign a real single-valued
function x, of the element ., defined on M)>. If the set M consists
of the first n natural numbers 1, 2, .. ., %, then R™ is the ordinary
n~dimensional space R». If we choose for the set M all real num-
bers R*, then the corresponding space RM = RF will consist of
all real functions
. ${p) = x4

of the real variable p.

We now take the set R¥ (with an arbitrary set M) as the
basic set E. Let £ = {x,} be an element in E'; we shall denote by
Pus... n (&) the point (x,,x,....%.) of the n-dimensional
space R~ A subset A of E we shall call a cylinder sef if it can
be represented in the form

A= i)

Fhafig oo fin

where A’ is a subset of R*. The class of all cylinder sets coincides,
therefore, with the class of all sets which can be defined by rela-
tions of the form

¥ Cf. HAUSDORFF, Mengenlehre, 1927, p. 23.
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f(xp.: Zpggre =+, x,.,) =0 . (1)

In order to determine an arbitrary cylinder set 2.,,.,... ..(4) by
such a relation, we need only take as f a function which equals 0
on A’, but outside of A’ equals unity.

A cylinder set is @ Borel cylinder set if the corresponding set
A’ is a Borel set. All Borel cylinder sets of the space RM form a
field, which we shall henceforth denote by FM*.

The Borel extension of the field §¥ we shall denote, as always,
by B§M. Sets in B¥ we shall call Borel sets of the space RM.

Later on we shall give a method of constructing and operating
with probability functions on ¥, and consequently, by means of
the Extension Theorem, on BF¥ also. We obtain in this manner
fields of probability sufficient for all purposes in the case that the
set M is denumerable. We can therefore handle all questions
touching upon a denumerable sequence of random variables. But
if M is not denumerable, many simple and interesting subsets of
R™ remain outside of BF¥. For example, the set of all elements ¢
for which x, remains smaller than a fixed constant for all
indices p, does not belong to the system B#M if the set M is
non-denumerable.

It is therefore desirable to try whenever possible to put each
problem in such a form that the space of all elementary events ¢
has only a denumerable set of coordinates.

Let a probability function P(A) be defined on §¥. We may
then regard every coordinate x, of the elementary event ¢
as a random variable. In consequence, every finite group
(Xupo Zuys - - » %) Of these coordinates has an n-dimensional
probability function P,,,. ..(4) and a corresponding distribu-

‘ From the above it follows that Borel cylinder sets are Borel sets definable
by relations of type (1). Now let A and B be two Borel cylinder sets defined
by the relations

F®pye Bpge oooo %pg) =0, €%, ¥200 .0 0s X1) =0 .
Then we can define the sets A + B, AB, and A - B respectively by the relations
, *g = o,
,' + 8. =0,
4+ wE=o0,

where w{x) =0 for + 4 0 and @(0) = 1 If f and g are Borel functions, so
also are f.-g, +g’and '+ w(g); therefore, A + B, AB and A—-B are Borel
cylinder sets. Thus we have shown that the system of sets JF* is a field.
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tion function F,,, . ,..(¢ @, ..., a;). It is obvious that for
every Borel cylinder set

A = ’::‘I---FH(A') ’
the following equation holds:
P(4) =Pupy...un(4),

where A’ is a Borel set of R*. In this manner, the probability
function P is uniquely determined on the field §* of all cylinder sets
by means of the values of all finite probability functions P, ,.,...us
for all Borel sets of the corresponding spaces R*. However, for
Borel sets, the values of the probability functions P,,,,...,.. are
uniquely determined by means of the corresponding distribution
functions. We have thus proved the following theorem:

The set of all finite-dimensional distribution functions
Fyp,...n uniquely determines the probability function P(A) for
all sets in M. If P(A) 13 defined on §M, then (according to the
extension theorem) it i uniquely determined on BJIM by the
values of the distribution functionsF, ., ... un -

We may now ask the following. Under what conditions does a
system of distribution functions F,,,,..... given a priori define
a field of probability on §* (and, consequently, on BF¥) ?

We must first note that every distribution function F, . ..
must satisfy the conditions given in § 3, IIT of the second chap-
ter; indeed this is contained in the very concept of distribution
function. Besides, as a result of formulas (13) and (14) in § 2,

we have also the following relations:

Fﬁln‘-'...u“(ai;v Aipy -+« ai,.) = Fm;l,...pc.(alt Aay -0y an) ’ (2)

Fﬂx"t---#l(al' a!’ RIS § a!) =F[‘|Fa-.-[‘n(al’ a!' veeyg a&" +w' saey +w)| (3)

where & < n and (1 Z. .-

3 UK PR
These necessary conditions prove also to be sufficient, as will
appear from the following theorem.

FUNDAMENTAL THEOREM: Every system of distribution func-
tiong F, ... .., Satisfying the conditions (2) and (3), defines a
probability function P(A) on §M, which satisfies Axioms I- VI,
This probability function P(A) can be extended (by the exten-
sion theorem) to BFM also.

'::) is an arbitrary permutation.
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Proof. Given the distribution functions F, ,,... .., satisfying
the general conditions of Chap. II, § 3, 1II and also conditions (2)
and (3). Every distribution function F, ,,...,. defines uniquely
a corresponding probability function P, ,,...,, for all Borel sets
of R* (cf. § 3). We shall deal in the future only with Borel sets
of R~ and with Borel cylinder sets in E.

For every cylinder set

A — A1 . ( Al) ,

Mfls ...
we set

P(A) = pp. ,z....;c,(A.’) . (4)

Since the same cylinder set A can be defined by various sets A’,
we must first show that formula (4) yields always the same
value for P(4).

Let (x,,.x%,.,...,%,) be a finite system of random variables
x,. Proceeding from the probability function P, ,,. .. of these
random variables, we can, in accordance with the rules in § 3,
define the probability function P, u;...,;, 0of each subsystem
(%ugs Zugs « - -, %u,) - From equations (2) and (3) it follows that
this probability function defined according to § 3 is the same as
the function Py, . ...s;, givena priori. We shall now suppose that
the cylinder set A is defined by means of

A= Py, ()

and simultaneously by means of

S ;;':“ix"’“fm(A”)

where all random variables x, and xz, belong to the system
(¥py+ %pys + - ., %,) , Which is obviously not an essential restriction.
The conditions

(o T ) S 4
and

(%, » Xp v oo x,,m) cA”
are equivalent. Therefore

Pubige iy (4) = Py e {(x,,i‘, Tpgs +1 Fug,) © AI}
= Pro oo pn {(Fgy Figr - By ) AT} = Py (A7)

which proves our statement concerning the uniqueness of the
definition of P(A).
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Let us now prove that the field of probability (§¥, P) satisfies
all the Axioms I - V]. Axiom I requires merely that M be a field.
This fact has already been proven above. Moreover, for an arbi-
trary u:

E=p'(RY),
P(E) = P,(RY) =1,

which proves that Axioms II and IV apply in this case. Finally,
from the definition of P(A) it follows at once that P(A) is non-
negative (Axiom III).

It is only slightly more complicated to prove that Axiom V
is also satisfied. In order to do so, we investigatetwo cylinder sets

4= ﬁ,;fm oo 05, (4)
and B= v (B).

"7- i

We shall assume that all variables x,, and x,, belong to one inclu-

sive finite system (x,,,%,,.... %,) - If the sets A and B do not

intersect, the relations ,
(Bugr Xuugr -+ o2 %y ) € 4

(%uy,» Xy -+ s %0y, ) € B
are incompatible. Therefore

and

P(4 4+ B) = P,.,,,,__,,.,{(x,.‘ o By s ae oy x,,ﬁ) cd”
T (i e s ) < B
= Pm,,h“,,_{(xp‘.l, x,,t.‘, .awp x,.u) < A'}

+ PF‘”""”"{(x‘“fl' x"fs' ce x"im) CB’} = P(A) + P(B) )

which concludes our proof.
Only Axiom VI remains. Let
A, D4 DD 4yD -

be a decreasing sequence of cylinder sets satisfying the condition
limP(4,) =L > 0.

We shall prove that the product of all sets A, is not empty. We
may assume, without essentially restricting the problem, that in
the definition of the first » cylinder sets A, only the first n co-
ordinates x,, in the sequence

Xugr Bpagr ooy Bpgs oo o
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occur, i.e.
A, = 1’,;‘,,,__,,.,(3,.)-

For brevity we set
PMI‘. ere fin (B) = PH(B);

then, obviously
P.(B.) =P(A,) =L >0.

In each set B, it is possible to find a closed bounded set U, such
that

P(B Un)_-,—.:’qu

From this inequality we have for the set

Vo=t .. 1n(Un)
the inequality

P(A,-V,) < 5- (5)
Let, morever,

W.,=V,V,...V,.
From (5) it follows that
P (Au - Wn) é E-
Since W,cV,c 4, , it follows that
PW,)=P(4,) —e=L —ce.

If ¢ is sufficiently small, P(W,) > 0 and W, is not empty. We
shall now choose in each set W, a point ¢ with the coordinates
%, Every point ¢n+2, p =0, 1, 2, . . ., belongs to the set V,;
therefore

(ﬂ+ﬂ) (n+p) n+p) _ -1
(x By Ty ey B )_. R E) U,

Since the sets U, are bounded we may (by the diagonal method)
choose from the sequence {¢™} a subsequence

E(”l} s E(ﬂt) s e e(ml ,

for which the corresponding coordinates xj:;" tend for any k to
a definite limit z,. Let, finally, £ be a point in set £ with the
coordinates

Xy = X

2 =0, pF . k=1,2,3,...
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As the limit of the sequence (x{*), 20, ..., a{™),¢=1,2,3,..., the
point (24, Z,, . .., Z,) belongs to the set UU,. Therefore, £ belongs to

AycVy=p7? (U

fayly.

for any & and therefore to the product
A= ?Ag .

§ 5. Equivalent Random Variables; Various Kinds of Convergence

Starting with this paragraph, we deal exclusively with Borel
fields of probability. As we have already explained in § 2 of the
second chapter, this does not constitute any essential restriction
on our investigations.

Two random variables z and y are called equivalent, if the
probability of the relation z 4=y is equal to zero. It is obvious that
two equivalent random variables have the same probability func-
tion:

P (A) = PO (A).

Therefore, the distribution functions F(*? and F<¥ are also

identical. In many problems in the theory of probability we may

substitute for any random variable any equivalent variable.
Now let

Ty Loy oo ey Tuy v v (1)

be a sequence of random variables. Let us study the set A of all
elementary events ¢ for which the sequence (1) converges. If we
denote by A" the sets of £ for which all the following inequalities
hold

1
[x,,+,,—x,.|<;‘ k=1,2,....ﬁ
then we obtain at once
4 =DEDAM . (2)
mntp

According to § 3, the set A%y always belongs to the field &. The
relation (2) shows that A, too, belongs to §. We may, therefore,
speak of the probability of convergence of a sequence of random
variables, for it always has a perfectly definite meaning.

Now let the probability P(A) of the convergence set A be
equal to unity. We may then state that the sequence (1) con-
verges with the probability one to a random variable z, where
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the random variable z is uniquely defined except for equivalence.
To determine such a random variable we get

z = limz, N =+ 0o

on A, and z = 0 outside of A. We have to show that z is a random
variable, in other words, that the set A (a) of the elements ¢ for
which z < a, belongs to §. But

A(@) = 4§ D{xusp <a)
in case a = 0,and

Aa) = A%%}{xn+,<a} + 4

in the opposite case, from which our statement follows at once.

If the probability of convergence of the sequence (1) to x
equals one, then we say that the sequence (1) converges almost
surely to x. However, for the theory of probability, another con-
ception of convergence is possibly more important.

DEFINITION. The sequence z,, 2., . . ., Z,, . . . of random vari-
ables converges in probability (converge en probabilité) to the
random variable z, if for any € > 0, the probability

P{l%e — 2| > )
tends toward zero as n =+ oo 5,

I. If the sequence (1) conwverges in probability to x and also
to x’, then x and =’ are equivalent. In fact

P{|x — ') >}n}é P{lx,.—x| >2_1'E}+ P'{[x,—x’l)%;,};

since the last probabilities are as small as we please for a suffici-
ently large n it follows that

P{lx— x| > %} =0
and we obtain at once that

P{x=i=x'}§2|’{lx—x'|>;}‘]z0.

I1. If the sequence (1) almost surely converges to z, then it

. *This conce%: is due to Bernoulili; its completely general treatment was
introduced by E. E. Slutsky {see [1]).
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also converges to x in probabiiity. Let A be the convergence set
of the sequence (1) ; then
1 =P(A) slimp{lx,,.w— x]< £,$2=01,2,.. } = limP{|x,. —x| <e},
! > 0o

i >0

from which the convergence in probability follows.

1I1. For the convergence in probability of the sequence (1)
the following condition is both necessary and sufficient: For any
¢ > 0 there exists an n such that,for every p > 0, the following
inequality holds:

Plltasp — %l > e} <.

Let F,(a), F.(a), ..., F.(a), ..., F(a) be the distribution
functions of the random variables #,, 5 ..., Zp, . . . , 2. If the
sequence z, converges in probability to , the distribution func-
tion F(a) is uniquely determined by knowledge of the functions
F.(a). We have, in fact,

THEOREM : If the sequence x,, 3, . . . , &y, . . . CONVETGES N
probability to z, the corresponding sequence of distribution func--
tions F.(a) converges at each point of continuity of F(a) to the
distribution function F (a) of =z.

That F'(a) is really determined by the F', (a) follows from the
fact that F (a), being a monotone function, continuous on the left,
is uniquely determined by its values at the points of continuity®. To
prove the theorem we assume that F is continuous at the point
a. Let @' < a; then in case x < a/, z, = a it is necessary that

| z2s—2 | > a—a’. Therefore
limP(x<a, x,=a) =0,

F(a')=P(x<ad') < P(xa<<a)+P(x<d, a2 a) = F, (a) + P(x<d', 3o, = a),
F(a) = liminfF,(a) + limP(x<a’, xo=a),
F(a') < liminfF,(a). (3)
In an analogous manner, we can prove that from a” > a there
follows the relation

F(a”) = lim sup F.(a) . (4)

*Infact, it has at most only a countable set of discontinuities (see LEBESGUE,
Legons sur Uintégration, 1928, p. 50. Therefore, the points of continuity are
everywhere dense, and the value of the function F'(a) at a point of discon-
tinuz:yl ifs determined as the limit of its values at the points of continuity
on its left.
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Since F(a’) and F(a”) converge to F(a) for a' =+ @ and a'
it follows from (8) and (4) that

lim F,(a) = F(a),

which proves our theorem.



Chapter IV

MATHEMATICAL EXPECTATIONS'

§ 1. Abstract Lebesgue Integrals

Let x be a random variable and A a set of §. Let us form, for a
positive A, the sum

b = 400

.S,,.-.:Zk).P{k).sx<(k+1)l,£cA}. (1)
If this series converges absolutely for every A, thenas A — 0, S,
tends toward a definite limit, which is by definition the integral

[zP(aE) . (2)
A

In this abstract form the concept of an integral was introduced
by Fréchet?; it is indispensable for the theory of probability.
(The reader will see in the following paragraphs that the usual
definition for the conditional mathematical expectation of the
variable z under hypothesis A coincides with the definition of
the integral (2) except for a constant factor)

We shall give here a brief survey of the most important
properties of the integrals of form (2). The reader will find their
proofs in every textbook on real variables, although the proofs
are usually carried out only in the case where P(A) is the Lebesgue
measure of sets in R". The extension of these proofs to the general
case does not entail any new mathematical problem; for the most
part they remain word for word the same.

I. If a random variable z is integrable on A, then it is in-
tegrable on each subset A’ of A belonging to §.
II. If z is integrable on A and A is decomposed into no

* As was stated in § 5 of the third chapter, we are considering in this, as well
as in the following chapters, Borel fields of probability only.

' FRECHET, Sur lintégrale d'une functionnelle étendue & un ensemble
abstréit, Bull. Soc. Math. France v. 43, 1915, p. 248.

37
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more than a countable number of non-intersecting sets A, of §,

th
o [+P@E) = 3 [«P wE).
A

n An

II1. If z is integrable,| z | is also integrable, and in that case
[fxp(ds)| gﬂx[P(dE).
4 a

IV. If in each event ¢ the inequalities 0 = ¥ = z hold, then
along with z, ¥ is also integrable?, and in that case

[yP(dE) gfo(dE).

V. If m =< 2 =< M where m and M are two constants, then

mP(d) = [xP(dE) = MP(4).

4

VI If z and y are integrable, and K and L are two real con-
stants,then Kz + Ly is also integrable, and in this case

f(Kx + Ly) P(dE) = K [xP(dE) + L[yP(dE).
4 A A

VII. If the series
> [ 1% P(AE)
nAd
converges, then the series

gx,.==a:

converges at each point of set A with the exception of a certain
set B for which P(B) = 0. If we set £ = 0 everywhere except on
A - B, then

[xP(E) =2fx,.P(dE).
A n A

VIIL. If z and y are equivalent (P {x ¥ y} = 0), then for
every set A of &

[xP(dE) =fyP(dE). (3)
A A

' It is assumed that y is a random variable, i.e., in the terminology of the
general theory of integration, measurable with respect to §§ .



§ 2. Absolute and Conditional Mathematical Expectations 39

IX. If (3) holds for every set A of §, then 2 and ¥ are
equivalent.

From the foregoing definition of an integral we also obtain

the following property, which is not found in the usual Lebesgue
theory.

X. Let P,(A) and P.(A) be two probability functions defined
onthesamefield§, P(A4) = P,(A) + P.(A),andlet z be integrable
on A relative to P,(A4) and P,(A). Then

/xp(dE) =fo1(dE) +[x P,(dE).
A A A
XI. Every bounded random variable is integrable.

§ 2. Absolute and Conditional Mathematical Expectations

Let z be a random variable. The integral

E(z) = [2P(dE)
E

is called in the theory of probability the mathematical expectation -

of the variable 2. From the properties III, 1V, V, VI, VII, VIII,
XI, it follows that

L |E(x)| = E(lz]);
II. E(y) = E(x) if 0 = y = z everywhere;
1II. inf () < E(x) <sup (z);
1V. E(Kxz + Ly) = KE(z) + LE(y);
V. E (}r‘ x,,) = ; E(%4) if the series ; E(|x,]) converges;

VI. If x and y are equivalent then
E(x) = E(y).

VII. Every bounded random variable has a mathematical
expectation.

From the definition of the integral, we have

k=400
E(x) = limikm P{im < x < (k + 1) m}

k= —co

- ué’ffm{mk + 1)ym) — Fkm)}.

= — o0
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The second line is nothing more than the usual definition of the
Stieltjes integral
400
f a dF® (a) = E(x). (1)
Formula (1) may therefore serve as a definition of the mathe-
matical expectation E(x).
Now let u be a function of the elementary event ¢ and x be a

random variable defined as a single-valued function z = 2 (u)
of . Then

P{km < x < (k + 1) m} = PO {km < x(u) < (k + 1) m},

where P® (A) is the probability function of u. It then follows
from the definition of the integral that
[P (E) = [Pw)(aE®)
E B
and, therefore,
E(x) = j x(4) PW (dEW) (2)
Etw
where E ) denotes the set of all possible values of u.
In particular, when u itself is a random variable we have
+co
E(x) = f %P (dE) = [ x(4) PO (dRY) = [ %(a) dF®(a). (3)
E R —oo
When z (u) is continuous, the last integral in (3) is the ordinary
Stieltjes integral. We must note, however, that the integral
400 .
[ x(a)dF ™ (a)
can exist even when the mathematical expectation E(x) does not.

For the existence of E(z), it is necessary and sufficient that the
integral

+o0
[1(@)|4F® (a)
be finite®. o

If % is a point (u,, us, ..., #,) of the space R~ then as a result
of (2):

*Cf. V. GLIvENKO, Sur les valeurs probables de fonctions, Rend. Accad.
Lincei v. 8, 1928, pp. 480-483.
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E(x) =ff "f"(“n Ug, ..., Uy) Pl %2, ..y 4a) (dR™). (4)
Rn

We have already seen that the conditional probability Pz(A4)
possesses all the properties of a probability function. The corres-
ponding integral

Ep(z) = [x Pg(dE) (5)

E

we call the conditional mathematical expectation of the random
variable x with respect to the event B. Since

Pg(B) =0, fo,,(dE) =0,

B

we obtain from (5) the equation

Ep(x) =fx Ps(dE) =fx P(dE) +[x Py (dE) =fx Py (dE).
E B B B

We recall that in case A B,

_ P(4B) _ P{4)
s ) =Tm ~PE

we thus obtain

Eg(x) = %m!xP(d'E), (6)
[#PWE) = P(B)Es (3). (7
B

From (6) and the equality

fo(dE) =[xp(d5) +fo(dE)
A+B A B
we obtain at last

A)E, Es
Easplr) = A EAE T 2alt (8)

and, in particular, we have the formula

E(x) = P(4) E4(x) + P(4) Ex(x). (9)
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§ 3. The Tchebycheff Inequality

Let f(x) be a non-negative function of a real argument «,
which for = a never becomes smaller than b > 0. Then for any
random variable z

Plrza) < (1)
provided the mathematical expectation E{f(x)} exists. For,
E{/x} = [1(x) PWE) = [1(x) PWE) = bP(x = a),
E {z=a)

from which (1) follows at once.
For example, for every positive ¢,
P(x=a) = Eeif_:f) . (2)
Now let f(x) be non-negative, even, and, for positive 2, non-

decreasing. Then for every random variable x and for any choice
of the constant a > 0 the following inequality holds

P(xl=a) = -E-f,l(f,’;—’} (3)
In particular,
Px — Em)| 2 o) = BLEZELD, (4)

Especially important is the case f(z) = z2. We then obtain from
(3) and (4)

P(x| = o) < =57, (5)
Plx — E(n| 2 a) s 2 FOF _ M) (6)

where
o*(x) = E{x — E(x)}?

is called the variance of the variable z. It is easy to calculate that
a*(x) = E(x?) — {E(»)}.

If f(x) is bounded:
| f(z} | =K,

then a lower bound for P(|z| = a) can be found. For
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E(f(z) = [ 1(x) P(dE) = [ #(x) P(dE) + [/(x) P(dE)
. A{is]<a} {Iziza}
< /(@) P(x| <a) + KP()x| = a) < f(a) + KP(|x]| = a)

and therefore
P{lx| = a) = E________{f(x)}}r{-- 1a) (7
If instead of f(x) the random variable z itself is bounded,
lz|l=M,
then f(x) = f(M), and instead of (7), we have the formula
P(#] = o) 2 ZLEN-110), (8)

(M)
In the case f(z) = z* we have from (8)

Pl = a) 2 SEI=2 (9)

§ 4. Some Criteria for Convergence
Let

gy Ly e vy Lmyo-o (1)

be a sequence of random variables and f(2) be a non-negative,

even, and for positive * a monotonically increasing function®.
Then the following theorems are true:

I. In order that the sequence (1) converge in probability the
following condition is sufficient : For each £ > 0 there exists an n
such that for every » > 0, the following inequality holds:

E{{(Xpep — 2} <e . (2)

I1. In order that the sequence (1) converge in probability to
the random variable z,the following condition is sufficient:

lim E{f(z, — x)} = O. (3)

n> +oo

III. If f(z) is bounded and continuous and f{0) = 0, then
conditions I and II are also necessary.

IV. If f(z) is continuous, f(0) = 0,and the totality of all

Xy, L2y« + .y Lny + -+,  i8 bounded,then conditions I and II are also
necessary.

* Therefore f(z) > 0 if =+ 0.
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From II and IV, we obtain in particular
V. In order that sequence (1) converge in probability to z,
it is sufficient that
lim E(z,-2)*=0 . (4)

If also the totality of all z,, 2., ..., 2., . . ., 2 i8 bounded, then the
condition is also necessary.

For proofs of I1-IV see Slutsky [1] and Fréchet [1]. How-
ever, these theorems follow almost immediately from formulas
(3) and (8) of the preceding section.

§ 5. Differemiiation and Integration of Mathematical Expectations
with Respect to a Parameter

Let us put each elementary event ¢ into correspondence with a
definite real function z (¢) of a real variable {. We say that z (%)
is a random function if for every fixed ¢, the variable z(t) is a
random variable. The question now arises, under what conditions
can the mathematical expectation sign be interchanged with the
integration and differentiation signs. The two following theorems,
though they do not exhaust the problem, can nevertheless give a
satisfactory answer to this question in many simple cases.

THEOREM 1: If the mathematical expectation E[z(t)] is finite
for any t, and z(t) s always differentiable for any t, while the
derivative z’ (t) of T (t) with respect to t is always less in abso-
lute value than some constant M, then

L E() — E(xe).

THEOREM II: If z(t) always remains less, in absolute value,
than some constant K and is integrable in the Riemann sense, then

fE(xm)dt = E[fbx(t) dt],

provided E[x(t)] is integrable in the Riemann sense.

Proof of Theorem I. Let us first note that 2’(¢) as the limit of
the random variables

x(t + k) — x() . 1 1
i h—i.?,...,;....

is also a random variable. Since x’(f) is bounded, the mathe-
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matical expectation E{2’(f)] exists (Property VII of mathe-
matical expectation, in § 2). Let us choose a fixed ¢ and denote

by A the event
» By —
IA'(H- ',h AU x’(t)|>e.

The probability P(A4) tends tozero as h — 0 for every & > 0. Since

x(£+h’2——#,(¢)\§M' x| < M

holds everywhere, and moreover in the case A

i+ h)— v
Ix(—l-’z x(t)—-x(t)léc,

then

IEx(g_!_h’Z —Ex@®) %0 | < Elx(t+h’),——x(t) _x'(t)l

=P & | =20 _ | 4 pidyeg | LR =20 _ gy
=2MP(A4) + ¢.

We may choose the « > 0 arbitrarily, and P(A) is arbitrarily
small for any sufficiently small k. Therefore

EGt N B0 _exy,

d
—Ex (1) = lim
d! () A->0

which was to be proved.
Proof of Theorem II. Let

n

. k=n
Se=3 D A+ kA, k=222
k=1
[}

Since S, converges to J = f x(t) dt, we can choose for any
a

e > 0 an N such that from n = N there follows the inequality
P(A)=P{Si —J|>e<e.

If we set .
Py,
St =3 D Exlt+kh) =E(S),
k=1
then

|Sa — E(J)| = |E(Sa — )| = E|Sa — ]|
= P(A)E4|Sy — J| + P(A)E|Sy — J|i = 2KP(A) + & = (2K + 1)¢.
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Therefore, S} converges to E(J), from which results the equation
b
[Exnde =TimS; = E()).

Theorem II can easily be generalized for double and triple
and higher order multiple integrals. We shall give an application
of this theorem to one example in geometric probability. Let G be a
measurable region of the plane whose shape depends on chance;
in other words, let us assign to every elementary event ¢ of a field
of probability a definite measurable plane region G. We shall
denote by J the area of the region G, and by P(z, ) the prob-
ability that the point (z, ¥) belongs to the region G. Then

E(J)=[[P(x,y)dxdy.
To prove this it is sufficient to note that
J=[[lx.ydxdy,
P(x,y) = Ef(x, ),
where f(x,y) is the characteristic function of the region G
(f(x,y) =10on G and f(z, y) = 0 outside of G)°&.

*Cf. A. KoLM0GOROY and M. LEONTOVICH, Zur Berechnung der mittleren
Brownschen F'liche, Physik. Zeitschr. d. Sovietunion, v. 4, 1933

.



Chapter V

CONDITIONAL PROBABILITIES AND
MATHEMATICAL EXPECTATIONS

§ 1. Conditional Probabilities

In § 6, Chapter I, we defined the conditional probability, Py (B),
of the event B with respect to trial #. It was there assumed that %
allows of only a finite number of different possible results. We
can, however, define Pg{B) also for the case of an % with an infinite
set of possible results, i.e. the casein which the set E is partitioned
into an infinite number of non-intersecting subsets. In particular,
we obtain such a partitioning if we consider an arbitrary function
u of ¢ and define as elements of the partition ¥, the sets « = con-
stant. The conditional probability Py _(B)we also denote by P, (B).
Any partitioning % of the set E can be defined as the partitioning
%, which is “induced” by a function u of ¢, if one assigns to every &,
as u(¢), that set of the partitioning 9 of E which contains ¢.

Two functions » and «’ of ¢ determine the same partitioning
U, = A, of the set E, if and only if there exists a one-to-one cor-
respondence %' = f(u) between their domains § and *? such
that «’ (¢) is identical with fu(¢). The reader can easily show that
the random variables P,(B) and P.(B),defined below, are in this
case the same. They are thus determined, in fact, by the partition
A, = A, itself.

To define P,(B) we may use the following equation:

Puca)(B) = EquegyPu(B). (1)

It is easy to prove that if the set E<«) of all possible values of  is
finite, equation (1) holds true for any choice of A (when P,(B)
is defined as in § 6, Chap. I). In the general case (in which P,(B)
is not yet defined) we shall prove that there always exists one
and only one random variable P,(B) (except for the matter of
equivalence) which is defined as a function of 4 and which satis-
fies equation (1) for every choice of A from §* such that

47
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P (A) > 0. The function P.(B) of u thus determined to within
equivalence, we call the conditional probability of B with respect
to u (or, for a given u). The value of P,(B) when u = a we shall
designate by P.(a; B).

The proof of the existence and uniqueness of P.(B). If we
multiply (1) by P{uc A} = P™(A), we obtain, on the left,

P{uc A}Pyc4(B) = P(B{uc 4)) = P(Bu-*(4))
and, on the right,

P{uc A} Ewenr Pu(B) = [P.(B) P(E) = [Pu(B) P @EW),
{uc 4} 4

leading to the formula
P(Bu-!(4)) = [P,(B) PO (dE®), (2)
4

and conversely (1) follows from (2). In the case P*)(A4) = 0,
in which case (1) is meaningless, equation (2) becomes trivially
true. Condition (2) is thus equivalent to (1). In accordance with
Property IX of the integral (§ 1, Chap. IV) the random variable
z i8 uniquely defined (except for equivalence) by means of the
values of the integral

f xP d(E)

A
for all sets of . Since P,(B) is a random variable determined
on the probability field (F), P®), it follows that formula (2)
uniquely determines this variable P,(B) exeept for equivalence.

We must stiil prove the existence of P,(B). We shall apply

here the following theorem of Nikodym!:

Let & be a Borel field, P(A) a non-negative completely additive
set function defined on § (in the terminology of the probability
theory, a random variable on (%, P)), and let Q(A) be another
completely additive set function defined on §, such that from
Q(A)% 0 follows the inequality P(4) > 0. Then there exists a
function f(¢) (in the terminology of the theory of probability,
a random variable) which is measurable with respect to §, and
which satisfies, for each set A of &, the equation

' 0. NIKODYM, Sur une généralisation des intégrales de M.J. Ra don, Fund.
Math. v. 15, 1930 p. 168 (Theorem III).
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Q(4) = [£(&) P (dE).
A

In order to apply this theorem to our case, we need to prove
1° that

Q(A) = P(Bu—(4))

is a completely additive function on F, 2° that from Q(4) %0
follows the inequality P‘*)(A) > 0.
Firstly, 2° follows from

0 < P(Bu~'(A4) = P(x-1(4)) = P™(4).
For the proof of 1° we set
A= DA,.
u=1(4) = Du-1(4,)
n

Bu-1(4) = S Bu-1(4,).

then

and

Since P is completely additive, it follows that
P(Bux-1{A,) =D P(Bu-'(A,) ,
. n

which was to be proved.

From the equation (1) follows an important formula (if we
set A = E):

P(B) = E (Pu(B)). (3)

Now we shall prove the following two fundamental properties
of conditional probability.

THEOREM 1. It i3 almost sure that
0=P,(B) =1 (4)

THEOREM 11. If B is decomposed into at most a countable
number of sets B, :

B = 2 B,. ’
then the following equality holds almost surely:
Pu(B) =z Pu(Bn) . (5)

These two properties of P,(B) correspond to the two char-
acteristic properties of the probability function P(B): that
0 = P(B) =1 always, and that P(B) is completely additive, These
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allow us to carry over many other basic properties of the absolute
probability P(B) to the conditional probability P.,(B). However,
we must not forget that P, (B) is,for a fixed set B, a random vari-
able determined uniquely only to within equivalence.

Proof of Theorem I. If we assume—contrary to the assertion
to be proved—that on a set M c E® with P® (M) > 0, the in-
equality P,(B) =1 +¢, £> 0, holds true, then according to for-
mula (1)

Paacary(B) = Eqyery Pu(B) =1 + &,

which is obviously impossible. In the same way we prove that
almost surely P, (B) = 0.

Proof of Theorem II. From the convergence of the series
SEIPu(B] = SEPuB) = SP(Ba) = P(B)

it follows from Property V of mathematical expectation (Chap.

IV, § 2) that the series _,
2“, Pu(B4)

almost surely converges. Since the series
Z E{m:A}IPu (Bn)l e ZE(ueA}(Pu(Bn)) =Z P{ueA}(Bn) = P{ucA}(B)

converges for every choice of the set A such that P®) (A4) > 0,
then from Property V of mathematical expectation just referred
to it follows that for each A of the above kind we have the relation

E(ucA} (g Pu(Bu)) = ”ZE{ucA}(Pu(Bn)) = P{u:A}(B) = E(IH:A}(P“(BI)J,

and from this, equation (5) immediately follows.

To close this section we shall point out two particular cases.
If, first, u(¢) = c (a constant), then P.(A) = P(A) almost
surely. If, however, we set w(¢) = ¢ thenwe obtain at once
that P;(4) is almost surely equal to one on A and is almost surely
equal to zero on A. Pg(4) is thus revealed to be the characteristic
function of set A.

§ 2. Explanation of a Borel Paradox

Let us choose for our basic set E the set of all points on a
spherical surface. Our § will be the aggregate of all Borel sets
of the spherical surface. And finally, our P(A) is to be propor-
tional to the measure of set A. Let us now choose two diametrically
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opposite points for our poles, so that each meridian circle will be
uniquely defined by the longitude %,0=v < x . Since y varies
from 0 only tox, — in other words, we are considering complete
meridian circles (and not merely semicircles) — the latitude ©
must vary from —=z to +x (and not from ——;— to +§_). Borel set
the following problem: Required to determine ‘“the conditional
probability distribution” of latitude &, —ax<60 < +=x, for a
given longitude y.
It is easy to calculate that

6,
P, =0 <6, =1} j |cos@]dB .
9,

The probability distribution of @ for a given ¥ is not uniform.
If we assume that the conditional probability distribution of

© “with the hypothesis that ¢ lies on the given meridian circle”

must be uniform, then we have arrived at a contradiction.

This shows that the concept of a conditional probability with
regard to an isolated given hypothesis whose probability equals 0
is inadmissible. For we can obtain a probability distribution
for @ on the meridian circle only if we regard this circle as an
element of the decomposition of the entire spherical surface into
meridian circles with the given poles.

§ 3. Conditional Probabilities with Respect to a Random Variable

If z is a random variable and P.(B) as a function of x is
measurable in the Borel sense, then P.(B) can be defined in an

elementary way. For we can rewrite formula (2) in §1, to look
as follows:

P(B) P§ (4) = [P,(B) PO)(dE). (1)
4

In this case we obtain from (1) at once that

P(B) F§ (a) =fp,(a; B)dF®(a) . (2)

In accordance with a theorem of Lebesgue? it follows from (2)
that

2) -
P.(a; B) = P(B) hmg’,,xi:; - ﬁf:; heo (3)

which is always true except for a set H of points a for which
P& (H) = 0.
! Lebesgue, L. c., 1928, pp. 301-302.
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P.(a; B) was defined in § 1 except on a set G, which is
such that P (G) = 0. If we now regard formula (8) as the defi-
nition of P.(a; B) (setting P.(a; B) = 0 when the limit in the
right hand side of (3) fails to exist), then this new variable
satisfies all requirements of § 1.

If, besides, the probability densities f¢)(a) and f¥ (a) exist
and if f*)(a) > 0, then formula (38) becomes

)
Po(a; B) = P(B) 2 (4)
Moreover, from formula (3) it follows that the existence of a
limit in (3) and of a probability density f*)(a) results in the
existence of /' (a¢). In that case

P(B) f¥ (a) = [ (a). (5)
If P(B) > 0, then from (4) we have

f () = 200, (6)

In case f*)(a) = 0, then according to (5) f(£(a) = 0 and there-
fore (6) also holds. If, besides, the distribution of z is contjnuous,
we have

+o0 +o
P(B) = E(P.(B)) = | P.(a; B) dF®)(a) = ] P.(a; B) f(a)da. (T)

From (8) and (7) we obtain
f5(a) = —=@:B1 /%@ (8)

+oo

jT’,(a; B) f*(a) da

This equation gives us the so-called Bayes’ Theorem for continu-
ous distributions. The assumptions under which this theorem is
proved are these: P,(B) is measurable in the Borel sense and at
the point a is defined by formula (3), the distribution of z is con-
tinuous, and at the point a there exists a probability density

9 (a).

§ 4. Conditional Mathematical Expectations

Let u be an arbitrary function of ¢, and ¥ a random variable.
The random variable €,(y), representable as a function of u« and
satisfying, for any set A of ™ with P* (A4) > 0, the condition
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E{IGA)()') = E{ueA} Eq(}’) s (1)

is called (if it exists) the conditional mathematical expectation of
the variable y for known value of u.
If we multiply (1) by P® (A), we obtain

[yP@E) = [E.(y) PO E®). (2)
{uc 4) 4
Conversely from (2) follows formula (1). In case P (4) =0,
in which case (1) is meaningless, (2) becomes trivial. In the
same manner as in the case of conditional probability (§1) we
can prove that E,(y) is determined uniquely—except for equiva-
lence—by (2).

The value of E,(y) for u = a we shall denote by E.(a; ). Let .
us also note that E,(y), as well as P,(y), depends only upon the
partition %, and may be designated by Ey_ (y) .

The existence of E(y) is implied in the definition of E,(y) (if
we set A = E®), then Eyc 4 (y) = E(Y)).

We shall now prove that the existence of E(y) 18 also sufficient
for the existence of E,(y). For this we only need to prove that by
the theorem of Nikodym (§ 1), the set function

0(4) = [yP(@E)
{uc 4}

is completely additive on §®) and absolutely continuous with
respect to P() (A). The first property is proved verbatim as in
the case of conditional probability (§1). The second property—
absolute continuity-—is contained in the fact that from Q(A)<4:0
the inequality P®)(A) > 0 must follow. If we assume that
P®(A) =P {uc A} = 0,it is clear that

Q(4) = [yPWE) =0,
- {ec 4}

and our second Irequirement is thus fulfilled.
If in equation (1) we set A = E™, we obtain the formula

E(y) = E E.(y) . (3)
We can show further that almost surely
E“(Gy + bZ) = aEu(ZI) + bEu(z) ’ (4)

where a and b are two arbitrary constants. (The proof is left to
the reader.)
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If 4 and v are two functions of the elementary event ¢ then
the couple (u, v) can always be regarded as a function of £ The
following important equation then holds:

EuEun(¥) = Eu(y). (5)
For,E, (y) is defined by the relation

E(ucA}()’) == E{ucA}Eu(}') .

Therefore we must show that E.E, ., (¥) =satisfies the equation

E{'JGA}(}') = E{“:A}EuE(u,v)(y) . (6)
From the definition of E, ., () it follows that
Euc3(¥) = Eue 4}Eq,n (¥) - (7)
From the definition of E.E.. (¥) it follows, moreover, that
E{“': A} E(ll,v) ‘y) = E(ucd} Eu E(u,u) (}') o (8)

Equation (6) results from equations (7) and (8) and thus proves
our statement.

If weset y = P, (B) equal to one on B and to zero outside of B,
then Eu(y) = Pu(B),

E(«,v)(y) = P(u,v) (B) .
In this case,from formula (5) we obtain the formula

Eu P(u,o) (B) =P, (B) ‘ (9)

The conditional mathematical expectation E,(y) may also be
defined directly by means of the corresponding conditional prob-
abilities. To do this we consider the following sums:

bes 4+ 00

Siw) =ZkIP{RISy <+ ) =R.  (10)

k= —o0

If E(y) exists, the series (10) almost certainly* converges. For
we have from formula (3), of §1,

E|Ry| = [kA[P{r1 =y < (& + 1)},

and the convergence of the series
k= 400

2|k PRIy < (k+ N} = LE[R

= — 00

* We use almost certainly interchangeably with almost surély.
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is the necessary condition for the existence of E(y) (see Chap. 1V,
§ 1). From this convergence it follows that the series (10) con-
verges almost certainly (see Chap. IV, § 2, V). We can further
show, exactly as in the theory of the Lebesgue integral, that from
the convergence of (10) for some A, its convergence for every A
follows, and that in the case where series (10) converges, S, (%)
tends to a definite limit as A — 0. We can then define

Euly) = limS,(w). (11)
2>

To prove that the conditional expectation E,(y) defined by rela-
tion (11) satisfies the requirements set forth above, we need only
convince ourselves that E.(y), as determined by (11), satisfies
equation (1). We prove this fact thus:

"EweayEs(y) = ’l'i";E{ucA} Sa(u)

+o0

I>0k=—00

The interchange of the mathematical expectation sign with the
limit sign is admissible in this computation, since S, () con-
verges uniformly to E, (y) as A — 0 (a simple result of Property V
of mathematical expectation in §2). The interchange of the
mathematical expectation sign and the summation sign is also
admissible since the series

k=4 o0 .
2By {RA[Pu [k = y < (& +1) 1]}

k= +o20
=R Prucpylki <y < (B + 1)1]

k=—oo

converges (an immediate result of Property V of mathematical
expectation).

Instead of (11) we may write
Eu(y) = [yPuldE). (12)
E

We must not forget here, however, that (12) is not an integral

'In this case we consider only a ¢ountable sequence of values of 4; then

all probabilities P.{ki <y < (* + 1)} are almost certainly defined for all
these valuesof A.
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in the sense of § 1, Chap. IV, so that (12) is only a symbolic
expression.
If « is a random variable then we call the function of 2 and a

F¥(a) =P, (y < a)

the conditional distribution function of y for known x.

F.¥ (a) is almost certainly defined for every a. If @ < b then
almost certainly

F¥(a) = F2 ().

From (11) and (10) it follows* that almost certainly

k=42
E.(y) =lim 3 RAUFZ(k+ 1)) — FEGRA). (13)
This fact can be expressed symbolically by the formula
+ o0
E.() = [adF¥(a) (14)

By means of the new deﬁnitio_n of mathematical expectation {(10)
and (11)]it is easy to prove that,for a real function of u,

E.[/(#) y] = /(u) Euly) . (15)

‘ Cf. footnote 3.



Chapter VI

INDEPENDENCE; THE LAW OF LARGE NUMBERS

§ 1. Independence
DEFINITION 1: Two functions, ¥ and v of ¢ are mutually inde-
pendent if for any two sets, A of §*), and B of F), the follow-
ing equation holds:

Pluc A, veB)=Puc A)P(vc B) = PO(A)PO(B). (1)
If the sets E») and E? consist of only a finite number of elements,

E®M=u +uy+ -« + #,,

E®) = 9 +v3+ -0+ Vs,

then our definition of independence of u and v is identical with
the definition of independence of the partitions

E ==,
E=2{v=1u

as in § 5, Chap. L.

For the independence of u and v, the following condition is
necessary and sufficient. For any choice of set A in ™ the
following equation holds almost certainly:

P(xucA)=PucA), (2)

In the case P (B) = 0,both equations (1) and (2) are satisfied,
and therefore we need only prove their equivalence in the case
Pt (B) > 0. In this case (1) is equivalent to the relation

P{.QB;(uc:A) = P(uc A) (3)
and therefore to the relation
EfpegyPy(t c A) = P(uc A) , (4)

On the other hand, it is obvious that equation (4) follows from

67
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(2). Conversely since P,(u cA) is uniquely determined by (4)
to within probability zero, then equation (2) follows from (4)
almost certainly.

DEFINITION 2: Let M be a set of functions u, (£) of ¢ These
functions are called mutually independent in their totality if the
following condition is satisfied. Let M’ and M” be two non-
intersecting subsets of M, and let A’ (or A”) be a set from ¥
defined by a relation among «, from M’ (or M”) ; then we have

P(A’A") =P (4)P(4").

The aggregate of all's, of M’ (or of M"”) can be regarded as
coordinates of some function «' (or »”). Definition 2 requires
only the independence of 4’ and #” in the sense of Definition 1 for
each choice of non-intersecting sets M’ and M".

If u,, 4, ..., #, are mutually independent, then in all cases

Plu,c 4;, uc 4,, ..., 4, 4,)
=P(u,c 4,)P(usc 4,)...P(u,c 4,), }'

provided the sets A, belong to the corresponding §“? (proved
by induction). This equation is not in general, however, at all
sufficient for the mutual independence of u,, u,, . . . , U,

Equation (5) is easily generalized for the case of a countably
infinite product.

From the mutual independence of %,, in each finite group
(%5 #uys -+ -» ) it does not necessarily follow that all «, are
mutually independent.

Finally, it is easy to note that the mutual independence of the
functions #, is in reality a property of the corresponding parti-
tions'%“. Further,if «; are single-valued functions of the cor-
responding u,,, then from the mutual independence of «, follows
that of *,.

(5)

§ 2. Independent Random Variables

If z,, 2., . . ., 2, are mutually independent random variables
then from equation (2) of the foregoing paragraph follows, in
particular, the formula

Flay %, ..., 20) (a4, Ay, ..., By) = jach (al.) Fzy) (“:) ... Flan(g) (1)
If in this case the field §@n = ....s9 consists only of Borel sets of
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the space Rn, then condition (1) is also sufficient for the mutual

independence of the variables x., &, . .., Ta.
Proof. Let ' = (%, x;,,...,%;,) and x"= (x;.x;,....%;) be
two non-intersecting subsystems of the variables z;, z., . .., @,

We must show, on the basis of formula (1), that for every two
Borel sets A’ and A” of R* (or R™) the following equation holds:

Prcd,x"cA)=P@xcA)Px"c A"). (2)
This follows at once from (1) for the sets of the form
A ={x<a), 2, < ag, ..., < a3},
A= {x;, < by, %5, < by, ..., Xj < bp).

It can be shown that this property of the sets A’ and A” is pre-
served under formation of sums and differences, from which
equation (2) follows for all Borel sets.

Now let £ = {z.} be an arbitrary (in general infinite) aggre-
gate of random variables. If the field §*) coincides with the field
B§M (M is the set of all p), the aggregate of equations

Fuius...om(@y, 89, ..., ay) = Fy (a;) Fp,(ag) . .. Fu, (@) (3)

i8 necessary and sufficient for the mutual independence of the
variables x, .

The necessity of this condition follows at once from formula
(1). We shall now prove that it is also sufficient. Let M’ and M”
be two non-intersecting subsets of the set M of all indices y, and
let A’ (or A”) be a set of Bg¥ defined by a relation among the x,
with indices 4 from M’ (or M”). We must show that we then have

P(A’'A”) = P(4")P(4") . (4)

If A’ and A” are cylinder sets then we are dealing with rela-
tions among a finite set of variables x,, equation (4) represents
in that case a simple consequence of previous results (Formula
(2)). And since relation (4) holds for sums and differences of
sets A’ (or A”) also, we have proved (4) for all sets of BF¥
as well,

Now for every u of a set M let there be given a prior: a distri-
bution function F, (a) ; in that case we can construct a field of
probability such that certain random variables x, in that field
(1 assuming all values in M) will be mutually independent, where
x. will have for its distribution function the F.. (a) given a priort.
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In order to show this it is enough to take R¥ for the basic set E
and BJM for the field &, and to define the distribution functions
Fipe...nn (see Chap. 111, § 4) by equation (3).

Let us also note that from the mutual independence of each
finite group of variables x, (equation (3)) there follows, as we
have seen above, the mutual independence of all on BgM. In
more inclusive fields of probability this property may be lost.

‘To conclude this section, we shall give a few more criteria for
the independence of two random variables.

If two random variables x and y are mutually independent
and if E(x) and E(y) are finite then almost certainly

E.(y) = E(), \
E,(x) = E(x).

These formulas represent an immediate consequence of the
second definition of conditional mathematical expectation (For-

mulas (10) and (11) of Chap. V, § 4). Therefore, in the case of
independence both

(5)

= E(EW) —E.0]'_*[E.0)) gng gt = E(EE 5O _ o (E,6)
o? () "ot (y) o? (x) T TG

are equal to zero (provided o*(xz) > 0 and ¢*(y) > 0). The num-
ber f2 is called the correlation ratio of y with respect to z, and g2
the same for x with respect to ¥ (Pearson).

From (5) it further follows that
E(zy) = E(z) E(y) - (6)
To prove this we apply Formula (15) of § 4, Chap. V:
E(xy) = EE.(xy) = E[xE;(y)] = E[xE(y)] = E(y) E(x) .
Therefore, in the case of independence

, _ Etxy) - EXEW)
o @o )

is also equal to zero; r, as is well known, is the correlation co-
efficient of x and y.

If two random variables z and y satisfy equation (6), then
they are called uncorrelated. For the sum

S=zxz,+tz,+...+ 2,
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where the z,, z,, . .., 2. are uncorrelated in pairs, we can easily
compute that

0’(3) = oz(xl) + oz(xt) + e + oz(xn) v R (7)

In particular, equation (7) holds for the independent variables z,.

§ 3. The Law of Large Numbers
Random variables s of a sequence
81,82 -« 38ny s

are called stable, if there exists a numerical sequence

dy,dzy...,dy...
such that for any positive e
P{lsa — du} = £}
converges to zero as n — oo . If all E(8,) exist and if we may set
d. = E(84),

then the stability is normal.
If all s, are uniformly bounded, then from

P{lsn—ds|=¢} =0 % —> 400 (1)
we obtain the relation
|E(sn) — du| =+ 0 # — 400
and therefore
P{|sn — E(so)] =€) = 0. # —+ 400 (2)

The stability of a bounded stable sequence is thus necessarily
normal.

Let E(s, — E(s,))? = a%(s,) = ot

According to the Tchebycheff inequality,
P{lsn — E(s)| 2 ¢} = .
Therefore, the Markov Condition
o> 0 n - oo (3)
is sufficient for normal stability.
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If s,—- E(s,) are uniformly bounded :

l 8n — E(sn) | g M!
then from the inequality (9) in § 3, Chap. IV,

P{isn— Efsn)| = 6} = 20"

Therefore, in this case the Markov condition (3) is also necessary
for the stability of the s,.

If
— Htaxt--+4a,

Sp .

and the variables z, are uncorrelated in pairs, we have
0} = 5 {0(x) + (%) + -+ + 0% (m)}.

Therefore, in this case, the following condition is sufficient for
the normal stability of the arithmetical means s,:

n ol =) +ot(x) + --- + ot(x) =o(nt)  (4)

(Theorem of Tchebycheff). In particular, condition (4) is ful-
filled if all variables z, are uniformly bounded.

This theorem can be generalized for the case of weakly cor-
related variables z,. If we assume that the coefficient of correla-
tion .. of z, and z, satisfies the inequality

Tmn = (|8 — m|)
and that

k=n-—

Ca= ch(k)'
k=0

then a sufficient condition for normal stability of the arithmetic
means s is?

Cnai = 0(”2). (5)

In the case of independent summands x, we can state a neces-
sary and sufficient condition for the stability of the arithmetic
means 8,. For every z, there exists a constant m, (the median of
x,) which satisfies the following conditions:

P(xﬂ<mn) = *;
P(za >m,) =< §.

' It is obvious that r,, — 1 nlways.

* Cf. A. KHINTCHINE, Sur la lot fortedes grandes nombres. C. R. de I'acad.
sci. Paris v. 186. 1928. p. 2B5.



§ 3. The Law of Large Numbers 63

We set
Lnpg = Ty if | L—My ] é n,

s: —_ xnl +xa! + b +I-'
” .

Then the relations
E=n k=n
‘Z:P{]xk — m, | > n} ==; P{Xar %) >0, > 400 (6)
-] =} .

o*(s2) = 3ot zar) = o) (7)

=1
are necessary and sufficient for the stability of variables s,2.

Wemay her'e assume the constants d, to be equal to the E(s,*)
so that in the case where

E(ss) — E(s)) = 0 n — +oo

(and only in this case) the stability is normal.

A further generalization of Tchebycheff’s theorem is obtained
if we assume that the s, depend in some way upon the results of
any »n trials,

Ay Ay oo, Uy

so that after each definite outcome of all these » trials s, assumes
a definite value. The general idea of all these theorems known as
the law of large numbers, consists in the fact that if the depend-
ence of variables g, upon each separate trial %, (k =1, 2,..., n)
is very small for a large n, then the variables s, are stable. If we
regard

ﬁzk = E[EK.!,..J&(S") - Eﬂ.ﬂ....ﬂl&»l("’-ﬂ)]fa

as a reasonable measure of the dependence of variables s, upon
the trial %, then the above-mentioned general idea of the law of

large numbers can be made concrete by the following considera-
tions*.

Let Anp = E‘!.!l....ﬂh(su) - Eum....u._n(su) .

'Cf. A. KoLMOGOROY . Uber die Summen durch den Zufall bestimmter
unabhdngiger Grossen, Math. Ann. v, 99, 1928, pp. 309-319 (corrections and

notes tgltél;xs study, v. 102, 1929 pp. 484-488, Theorem VIII and a supplement
on p. .

*Cf. A. KOLMOGOROY. Sur la loi des grandes nombres. Rend. Accad. Lincei
v. 9, 1929 pp. 470-474.
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Then
Sp — E(Sn) =2 +za + -0+ 2,
E(znk) = EEﬂ.ﬂg...ﬂh(sn) - EE%W,...G.-|($1|) = E(sn) - E(S,,) =0.
0 (zq) = E(z,)) = ﬂ?ut-

We can easily compute also that the random variables z,, (k =
1, 2,...,n) are uncorrelated. For let i < k; then®

E‘H;ﬁl. ...ﬁt_l(zlu’znk) = 2g; Eﬁ:ﬂn...lg-;(znk)
= ZniEoty ety ... tas [Eet, s ... 0 {Sn) — Eot, 2, ... 20, (Sn)]

= 3;-‘[5&!....%—:(3-) - E!.I....un-n(sn)] =0

and therefore
E(z,uznk) = 0.
We thus have _
G"(S") = az(zal) + oz(zuz) + e + az(znn) = ﬂll + ﬂ?ﬂ + e + ﬁin -
Therefore, the condition

ﬂ!g!l+ﬂ£2+"'+ﬁ?¢n"0 n—> 4o
is sufficient for the normal stability of the variables s,.

§ 4. Notes on the Concept of Mathematical Expectation

We have defined the mathematical expectation of 2 random
variable = as
+ o0
E(x) = f xP(dE) = [ adF®(a) ,

E ~00

where the integral on the right is understood as

400 A
E(x) =[ad.F(r)(a) = lim/adF(”(a)' ?:: ;: (1)

The idea sugpgests itself to consider the expression

+b
E*(x) = lim ( adF® () b doo  (2)
~b

* Application of Formula (15) in § 4, Chap. V.
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as a generalized mathematical expectation. We lose in this case,
of course, several simple properties of mathematical expectation.
For example, in this case the formula

E(z + v) = E(x) + E(y)

is not always true. In this form the generalization is hardly
admissible. We may add however that, with some restrictive
supplementary conditions,definition (2) becomes entirely natural
and useful.

We can discuss the problem as follows. Let

X1y Xy ooy Xy, - -
be a sequence of mutually independent variables, having the same
distribution function F)(a) =F*)(q), (n=1,2,...) as z.
Let further

_xl+x2+"'+xu
Sy = p .

We now ask whether there exists a constant E*(x) such that
for every ¢ > 0

limP(|sy — E*(x)] >€)=0, n-++4o0. (3)

The answer i8 : If such a constant E* () exists, it 18 expressed by
Formula (2). The necessary and sufficient condition that Formula
(3) hold consists in the existence of limit (2) and the relation

P(lx|>m =o(%) (4)

—~).

To prove this we apply the theorem that condition (4) is
necessary and sufficient for the stability of the arithmetic means
3., where, in the case of stability, we may set®

+n
dy = j adF® (a).
-n

If there exists a mathematical expectation in the former sense
(Formula (1)), then condition (4) is always fulfilled’. Since in
this case E(z2) = E*(xz), the condition (3) actually does define a
generalization of the concept of mathematical expectation. For
the generalized mathematical expectation, Properties I.VII

*Cf. A. KOLMOGOROV . Bemerkungen 2u meiner Arbeit, “TTber die Summen
zufdlliger Grossen.” Math. Ann, v. 102, 1929, pp. 484-488, Theorem XII.

' Ihid. Thenrem XTIT
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(Chap. 1V, § 2) still hold; in general, however, the existence of
E*| | does not follow from the existence of E*(z).

To prove that the new concept of mathematical expectation
is really more general than the previous one, it is sufficient to
give the following example. Set the probability density ) (a)
equal to

@ (a) = ¢
26 = T armaa v

where the constant C is determined by
+o0

//(‘)(a) da=1.

—

It is easy to compute that in this case condition (4) is fulfilled.
Formula (2) gives the value

E*(x) =0,

but the integral
+00 +oo
flaldF(’) (@) :ﬂa”(’)(a) da
—~00 —o0

diverges.

§ 5. Strong Law of Large Numbers; Convergence of Series
The random variables s, of the sequenée
S1y 82 - cc38nyp.en
are strongly stable if there exists a sequence of numbers
dydy..oydo ...
such that the random variables
8p~d,

almost certainly tend to zero as # -+ 400 . From strong stability
follows, obviously, ordinary stability. If 'we can choose

du = E(S..) ?

then the strong stability is normal.
In the Tchebycheff case,

_xl+x!+"'+xn
Sp= p ’
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where the variables z, are mutually independent. A sufficient®
condition for the normal strong stability of the arithmetic means
8, is the convergence of the series

> (1)

n=]
This condition is the best in the sense that for any series of con-

stants b, such that o ,
ba
2 =t

nwl

we can build a series of mutually independent random variables

z, such that
o (x,) = b,
and the corresponding arithmetic means s, will not be strongly
stable.
If all z, have the same distribution function F¢) (a), then the
existence of the mathematical expectation
+co
E(x) = [ a dF®) (a)
is necessary and sufficient for the strong stability of s,; the sta-
bility in this case is always normal®.
Again, let
Tty BzgeeeyLuyene

be mutually independent random variables. Then the probability
of convergence of the series

s, (2)

n=1

is equal either to one or to zero. In particular, this probability
equals one when both series

iE(x,.) and i‘a’ (%)

=1 nm]
converge. Let us further assume

Yo = Znincase [z, | =1,

Y» =0incase|2,| > 1.

* Cf. A. KoLMoGOROvV,” Sur la loi forte des grandes nombres, C. R. Acad. Sci.
Paris v. 191, 1930, pp. 910-911.

* The proof of this statement has not yet beén published.
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Then in order that series (1) converge with the probability one,
it is necessary and sufficient?® that the following series converge
simultaneously :

ZPlnl>1, ZEp) and Fot

29 Cf, A. KHINTCHINE and A. KoLmoGoruv, On the Convergence of Series,
Rec. Math. Soc. Moscow, v. 32, 1925, p. 668-6717.




Appendix

ZERO-OR-ONE LAW IN THE THEORY
OF PROBABILITY

We have noticed several cases in which certain limiting
probabilities are necessarily equal to zero or one. For example,
the probability of convergence of a series of independent random
variables may assume only these two values!, We shall prove now
a general theorem including many such cases.

THEOREM: Let x,, %3y . . . , Zp - . . D€ any random variables and
let f(xy, 35 ..., %y, . . .) be a Baire function® of the variables
Ty, Ly v ooy Ty - - . SUCh that the conditional probability

Pz,. Lyov -y Iu{/(x) = 0}
of the relation

Fy s % oo Byis as) =0
remains, when the first n variables z,, x., . . ., x, are known, equal
to the absolute probability
P{f(x) = 0} (1

for every n. Under these conditions the probability (1) equals
zero or one.

In particular, the assumptions of this theorem are fulfilled if
the variables z, are mutually independent and if the value of the
function f(x) remains unchanged when only a finite number of
variables are changed.

Proof of the Theorem: Let us denote by A the event

f(x) =0.

We shall also investigate the field  of all events which can be
defined through some relations among a finite number of vari-

' Cf. Chap. VI, § 5. The same Pthing ids trug of the probability
Sp — Gy >

in the strong law of large numbers; at Jeast, when the variables », are mutu-
ally independent.

' A Baire function is one which can be obtained by successive passages to
the limit, of sequences of functions, starting with polynomials.

69
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ables z,. If event B belongs to &, then,according to the conditions
of the theorem,

Pa(4) = P(4). (2)

In the case P(A) = 0 our theorem is already true. Let now
P(A) > 0. Then from (2) follows the formula

Ps(A4)P(B). _

and therefore P(B) and P,(B) are two completely additive set
functions, coinciding on &; therefore they must remain equal to
each other on every set of the Borel extension Bf of the field &.
- Therefore, in particular,

P(A) = P4(4) =1,

which proves our theorem.

Several other cases in which we can state that certain prob-
abilities can assume only the values one and zero, were discovered
by P. Lévy. See P. LEVY, Sur un théoréme de M. Khintchine, Bull.
des Sci. Math. v. 55, 1931, pp. 145-160, Theorem I1.
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NOTES TO SUPPLEMENTARY BIBLIOGRAPHY

The fundamental work on the measure-theoretic approach to
probability theory is A. N. Kolmogorov’s Grundbegriffe der
Wahrscheinlichkeitsrechnung, of which the present work is an
English translation. It is not an overstatement to say that for
the past twenty-three years most of the research work in proba-
bility has been influenced by this approach, and that the axiomatic
theory advanced by Kolmogorov is considered by workers in
probability and statistics to be the correct one.

The publication of Kolmogorov’s Grundbegriffe initiated a new
era in the theory of probability and its methods; and the amount
of research generated by the fundamental concepts due to Kolmo-
gorov has been very great indeed, In preparing this second edition
of the English translation of Kolmogorov’s monograph, it seemed
desirable to give a bibliography that would in some way reflect
the present status and direction of research activity in the theory
of probability.

In recent years many excellent books have appeared. Three of
most outstanding in this group are those by Doob [12], Felier
[17], and Loéve [54]. Other books dealing with general proba-
bility theory, and specialized topics in probability are: [2], [3],
(6], [71, (9], [19], 28], [26], (27}, [28], [34], [39], [41], [42],
[47], [49], [50}, [67], {70], [72]. Since these books contain many
references to the literature, an attempt will be made in this bibli-
ography to list some of the research papers that have appeared in
the past few years and several that are in the course of publication.

The model developed by Kolmogorov can be briefly described
as follows: In every situation (that is, an experiment, observa-
tion, etc.) in which random factors enter, there is an associated
probability space or triple (£, & p), where 2 is an abstract space
(the space of elementary events), ¢ is a -algebra of subsets of 2
(the sets of events), and p(E) is a measure (the probability of
the event E) defined for E e¢¢ and satisfying the condition
?( 2)=1. The Kolmogorov model has recently been discussed by

17
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Lo$ [56], who considers the use of abstract algebras and -algebras
of sets instead of algebras and o-algebras. Kolmogorov [44] has
also considered the use of metric Boolean algebras in probability.

There are many problems, especially in theoretical physics, that
do not fit into the Kolmogorov theory, the reason being that these
problems involve unbounded measures. Rényi [68] has developed
a general axiomatic theory of probability (which contains Kolmo-
gorov’s theory as a special case) in which unbounded measures
are allowed. The fundamental concept in this theory is the condi-
tional probability of an event. Csaszar [10] has studied the
measure-theoretic structure of the conditional probability spaces
that occur in Rényi’s theory.

In another direction, examples have been given by various
authors which point up the fact that Kolmogorov’s theory is too
general. Gnedenko and Kolmogorov [27] have introduced a more
restricted concept which has been termed a perfect probability
space. A perfect probability space is a triple (Q, ¢ ») such that for
any real-valued ¢-measurable function g and any linear set B
for which {w : g (w) € B} e ¢, there is a Borel set D ¢ B such that
P{w : g(0) e D} = P{w : g(w)e B}. Recently, Blackwell [5] has
introduced a concept that is more restricted than that of a per-
fect space. The concept introduced is that of a Lusin space. A
Lusin space i8 a pair (£, ¢) such that (a) ¢ is separable, and
(b) the range of every real-valued ¢-measurable function g on
L2 is an analytic set. It has been shown that if (R, £, p) is a Lusin
space and p any probability measure on ¢ then (Q,¢ p) is a
perfect probability space.

In § 6 of Chap. I, Kolmogorov gives the definition of a Markov
chain. In recent years the theory of Markov chains and processes
has been one of the most active areas of research in probability.
An excellent introduction to this theory is given in [17]. Other
references are [2], [3], [6], [12], [19], [23], [26], [34], [39],
[60], [64]), [67], [70], {72]). Two papers of interest are those of
Harris and Robbins [29] on the ergodic theory of Markov chains,
and Chung [8) on the theory of continuous parameter processes
with a denumerable number of states. The paper by Chung unifies
and extends the results due to Doob (cf. (12]) and Lévy [51],
{62], [63].
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A number of workers in probability are utilizing the theory of
semi-groups [30] in the study of Markov processes and their
structural properties {63]. In this approach, due primarily to
Yosida [80], a one-parameter (discrete or continuous) semi-
group of operators from a Banach space to itself defines the
Markov process. Hille [32] and Kato [38] have used semi-group
methods to integrate the Kolmogorov differential equations, and
Kendall and Reuter [40] have investigated several pathological
cases arising in the theory. Feller [18] and Hille [31] have
studied the parabolic differential equations arising in the con-
tinuous case. Doob [13] has employed martingale theory in the
semi-group approach to one-dimensional diffusion processes.
Also, Hunt [33] has studied semi-groups of (probability) meas-
ures on Lie groups.

Recently several papers have appeared which are devoted to a
more abstract approach to probability and consider random vari-
ables with values in a topological space which may have an alge-
braic structure. In [14], [21], [22], [58], [69], and [61], problems
associated with Banach-space-valued random variables are con-
sidered; and in [4] similar problems are considered for Orlicz
(generalized Lebesgue) spaces. Robbins [69] has considered
random variables with values in any compact topological group.
Segal [75] has studied the structure of probability algebras and
has used this algebraic approach to extend Kolmogorov’'s theorem
concerning the existence of real-valued random variables having
any preassigned joint distribution (cf. § 4 of Chap. III). Segal
[76, Chap. 3, § 13] has also considered a non-commutative proba-
bility theory.

Prohorov [66] has studied convergence properties of proba-
bility distributions defined on Banach spaces and other function
spaces. These problems have been considered also by LeCam [48]
and Parzen [64].

The measure-theoretic definition and basic properties of condi-
tional probabilities and conditional expectations have been given
by Kolmogorov (Chap. IV; cf. also [12] and [54]). Using an
abstract approach, S. T. C. Moy [60] has considered the prop-
erties of conditional expectation as a linear transformation of
the space of all extended real-valued measurable functions on a
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probability space into itself. In {61] she considers the conditional
expectation of Banach-space-valued random variables. Naka-
mura and Turamuru [62] consider an expectation as a given
operation of a C*-algebra; and Umegaki [79] considers condi-
tional expectation as a mapping of a space of measurable opera-
tors belonging to a L.-integrable class associated with a certain
W*.algebra into itself. The work of Umegaki is concerned with
the development of a non-commutative probability theory. The
results of Segal [74], Dye [16], and others, in abstract integration
theory are utilized in the above studies. Other papers of interest
are [1], [16], [36], and [45].

The L. Schwartz theory of distributions [73] has been utilized
by Gel'fand {24] in the study of generalized stochastic processes;
and by Fortet [20] and Ité [35] in the study of random
distributions.

Several books devoted to the study of limit theorems in proba-
bility are available: [27], [42], {47], and [49]. In addition, [12]
and [54] should be consulted. Research and review papers of
interest are {11], [14], [25], [37]). [46], [565], [57], [65], [71],
{77], and [78].
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