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Preface

The work that follows was born as a cooperative enterprise within the
Logic Lab inthe Department of Philosophy at SUNY Stony Brook. Thefirst
chapter represents what was historically the first batch of work, devel oped
by Patrick Grim and Gary Mar with the essential programming help of
Paul St. Denis. From that point on work has continued collaboratively in
amost all cases, though with different primary researchers in different
projects and with a constantly changing pool of associated undergraduate
and graduate students. At varioustimesand in various waysthework that
follows has depended on the energy, skills, and ideas of Matt Neiger,
Tobias Muller, Rob Rothenberg, Ali Bukhari, Christine Buffalino, David
Gill, and Josh Schwartz. We have thought of ourselves throughout as an
informal Group for Logic and Forma Semantics, and the work that follows
is most properly thought of as the product of that group. Some of Gary
Mar's work has been supported by a grant from the Pew foundation.

Some of the following essays have appeared in earlier and perhaps
unrecognizable versionsin ascattered variety of journals. Thefirst chapter
is a development of work that appeared as Gary Mar and Patrick Grim,
"Pattern and Chaos: New Imagesin the Semantics of Paradox/' Noils XXV
(1991), 659-695; Patrick Grim, Gary Mar, Matthew Neiger, and Paul S.
Denis, "Sdf-Reference and Paradox in Two and Three Dimensions,”
Computers and Graphics 17 (1993), 609-612; and Patrick Grim, "Sdf-
Reference and Chaosin Fuzzy Logic," |EEE Transactionson Fuzzy Systems, 1
(1993), 237-253. A report on parts of this project also appeared as "A
Partially True Story" in lan Stewart's Mathematical Recreations column for
the February 1993 issue of Scientific American. A version of chapter 3was
published as Paul S. Denis and Patrick Grim, "Fractal Images of Formal
Systems," Journal of Philosophical Logic, 26 (1997) 181-222. Chapter 4
includes work first outlined in Patrick Grim, "The Greater Generosity of
the.Spatialized Prisoner's Dilemma,” Journal of Theoretical Biology 173
(1995), 353-359, and "Spatidization and Greater Generosity in the
Stochastic Prisoner's Dilemma," BioSystems 37 (1996), 3-17. Chapter 5
incorporates material which appeared as Gary Mar and Paul St. Denis,
"Chaos in Cooperation: Continuous-valued Prisoner's Dilemmas in



Infinite-valued L ogic/' I nternational Journal of Bifurcation and Chaos4 (1994),
943-958, and " Redl Life" International Journal of Bifurcation and Chaos, 6
(1996), 2077-2086. An earlier verson of some of the work of chapter 6
appeared as Patrick Grim, " The Undecidability of the Spatialized Prison-
e'sDilemma," Theoiy and Decision, 42 (1997) 53-80. Earlier and partial
drafts have occasionally been digtributed as grey-covered research reports

from the Group for Logic and Formal Semantics.
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I ntroduction

Thestrategiesfor making mathematical modelsfor observed phenomena havebeen
evolving sinceancient times. An organism—physical, biological, or social—is
observedin different states. Thisobserved system isthetarget of themodeling
activity. [ tsstatescannot really be described by only afew observabl e parameters,
but we pretend that they can.

—Ralph Abraham and Christopher Shaw, Dynamics. The Geometry of
Behavior®

Computersareuseless. They can only giveyou answers.
—Pablo Picasso?

This book is an introduction, entirely by example, to the possibilities of
using computer models astools in philosophical researchin general and in
philosophical logic in particular. The accompanying software contains a
variety of working examples, in color and often operating dynamicaly,
embedded in a text which parallels that of the book. In order to facilitate
further experimentation and further research, we have aso included all
basic source code in the software.

A picture is worth a thousand words, and what computer modeling
might mean in philosophical research is best illustrated by example. We
begin with an intuitive introduction to three very simple models. More
sophisticated versions and richer variations are presented with greater
philosophical care in the chapters that follow.

11 GRAPHING THE DYNAMICS OF PARADOX

| madea practice of wandering about thecommon every night fromeleven till one,
by which means| cameto knowthethreedifferent noisesmadeby nightjars. (M ost
peopleonly knowone.) | wastrying hard to solvethe contradictions[of the set-
theoretical paradoxes|. Every morning | would sit down beforea blank sheet of
paper. Throughout theday, with abrief interval for lunch, | would stareat the
blank sheet. Often when evening cameit wasstill empty. ...It wasclear tome

that | could not gel on without solving the contradictions, and | wasdetermined
that no difficulty should turn me aside from the completion of Principia



Mathematica, but it seemed quite likely that the whole of the rest of my life might
be consumed in looking at that blank sheet of paper. What made it the more
annoying was that the contradictions were trivial, and that my time was spent in
considering matters that seemed unworthy of serious attention.

—Bertrand Russell, Autobiography: The Early Years®

Consider the Liar Paradox:

The boxed sentenceisfase.

Is that sentence true, or isit false?

Lef sstart by supposing itistrue. What it saysisthat it isfase. Soif we
start by assuming it true, it appears we're forced to change our verdict: it
must be fase.

Our verdict now, then, isthat the boxed sentence isfase. But here again
werun into the fact that what the sentence saysisthat itisraise. If what it
saysisthat it isfdseand it isfase, it appearsit must be true.

We're back again to supposing that the boxed sentenceis true.

Thiskind of informal thinking about the Liar exhibits a clear and simple
dynamics. a supposition of ‘true’ forces us to ‘false, the supposition of
'false' forces us back to 'true’, the supposition of 'true' forces us back to
'false', and so forth. We can model that intuitive dynamics very simply in
terms of a graph.

Asinfigurel, wewill let 1 represent 'true' at thetop of our graph, and let
0 represent ‘false’ at the bottom. The stages of our intuitive deliberation—
‘now it looks like if strue... but now it looks like if s false...'—will be
marked asif in moments of time proceeding from left to right. Thiskind of
graph is known as a time-series graph. In this first simple philosophical
application, atime series graph allows us to map the dynamic behavior of
our intuitive reasoning for the Liar asin figure 2.*

1

0 Loo.._j

PR S — 1.

Stages of deliberation
Figurel lime-seriesgraph.
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Figure2 Time-series graph for intuitive reasoning in the Liar Paradox.

Figure3 Time-series graph for the Chaotic Liar.

Figure4 Escape-time diagram for a Dualist form of the Liar Paradox.
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Thissimple model isthe basic foundation of some of the work of chapter
1. There such a model is both carried into infinite-valued or fuzzy logics
and applied to awide range of sdf-referentia sentences. One of these—the
Chaotic Liar—has the dynamics portrayed in figure 3. The model itsdlf
suggests richer elaborations, offering images for mutually referentia
sentences such as that shown in figure 4. Smilar modeling is extended to
some intriguing kinds of epistemic instability in chapter 2.

12 FORMAL SYSTEMS AND FRACTAL IMAGES

The logician Jan Lukasiewicz speaks of his deepest intuitive feglings for
logic in terms of a picture of an independent and unchangeable logica
object:

... | should like to sketch a picture connected with the deepest intuitive
fedlings| always get about logistic. This picture perhaps throws morelight
than any discursive exposition would on the real foundations from which
this science grows (at least so far as | am concerned). Whenever | am
occupied even with the tiniest logistical problem, eg. trying to find the
shortest axiom of the implicational calculus, | have the impression that |
am confronted with a mighty construction, of indescribable complexity
and immeasurable rigidity. This construction has the effect upon me of a
concrete tangible object, fashioned from the hardest of materials, a
hundred times stronger than concrete and steel. | cannot change anything
in it; by intense labour | merely find in it ever new details, and attam
unshakeable and eternal truths—Jan L ukasi ewicz, *W obronie Logistyki'

Herewe offer another simple model, onewe develop further in chapter 3in
an attempt to capture something like a Lukasiewiczian picture of formal
systems as awhole.

As any beginning student of forma logic knows, a sentence letter p is
thought of as having two possible values, true or fdse:

P
T
F
It is in terms of these that we draw a simple truth table showing

corresponding values for 'not p': if p happens to be true, 'not p' must be
fase if p happens to be false, 'not p' must be true:

P ~P
T F
F T

What we have drawn for p and ~ p aretwo two-line truth tables. But these
are of course not the only two-line combinations possible. We get al four
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possihilities if we add combinations for tautologies (thought of as always
true) and contradictions (thought of as always fase):

L p ~-p T
F T F T
F F T T

Now consider the possibility of assigning each of these combinations of
truth and falsity a different color, or a contrasting shade of gray:

J p ~p T
F T FT
F F T T

With these colors for basic value combinations we can paint simple
portraits of classica connectives such as conjunction (‘and’) and digunc-
tion Cor"). Figure 5 isa portrait of conjunction: the value colors on its axes
combine in conjunction to give the values at points of intersection. The
conjunction of black with black in the upper left corner, for example, gives
us black, indicating that the conjunction of two contradictions is a
contradiction as well.

Figure 6 isasimilar portrait of digunction. When we put the two images
side by side it becomes obvious that they have a certain symmetry: the
symmetry standardly captured by speaking of dijunction and conjunction
as dual operators.® What this offers is a very simple matrix model for
logical operators. In chapter 3 we attempt to extend the model so as to
depict forma systems as a whole, allowing us aso to highlight some
surprising formal relationships between quite different formal systems.
One result is the appearance of classical fractal patterns within value
portraits much like that outlined above. Figure 7 shows the pattern of
tautologies in a more complicated value space, here for the operator
NAND (or the Sheffer stroke) and for a system with three sentence letters

Figure5 Value matrix for conjunction.
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Figure 6 Vdue matrix for digunction.

Al
y V
VY
V V

VyVy

Figure 7 Tautologiesin avalue space for three sentence | etters: the Sierpinski gasket.

and thus 256 possible truth-table columns. The image that appears is
familiar within fractal geometry as the Sierpinski gasket.’

13 CELLULAR AUTOMATA AND THE 'EVOLUTION OF
COOPERATION': MODELS IN SOCIAL AND POLITICAL PHILOSOPHY

Imagine a group of people beyond the powers of any government, al of
whom are out for themselves aone: an anarchistic society of self-serving
egoists. This is what Hobbes imagines as a state of war in which "every
man is Enemy to every man" and life asaresult is "solitary, poore, nasty,
brutish, and short".®
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How might socia cooperation emerge in a society of egoists? This is
Hobbes's central question, and one he answers in terms of two "general
rules of Reason". Since there can be no security in a state of war, it will be
clear to al rational agents "that every man, ought to endeavor peace, as
farre as he has hope of obtaining it; and when he cannot obtain it, that he
may seek, and use, all helps, and advantages of Warre". From this Hobbes
claims to derive a second rational principle: "That a man be willing, when
others are so too... to lay down thisright to all things; and be contented
with so much liberty against other men, as he would alow other men
against himselfe."?

In later chapters we develop some very Hobbesian models of socia
interaction using game theory within cellular automata (akin to the "Game
of Life').’° The basic question is the same: How might social cooperation
emerge within a society of salf-serving egoists? Interestingly, the model-
theoretic answers that seem to emerge often echo Hobbes's second
principle.

The most studied model of social interaction in game theory is
undoubtedly the Prisoner's Dilemma. Here we envisage two players
who must simultaneously make a 'move’, choosing either to ‘cooperate’
with the other player or to 'defecf against the other player. What the
standard Prisoner's Dilemma matrix dictates is how much each player will
gain or lose on a given move, depending on the mutual pattern of
cooperation and defection:

Player A
Cooperate | Defect
Cooperate | 3,3 0,5
PInvrirT 'K
Defect 5,0 1,1

If both players cooperate on a single move, each gets 3 points. If both
defect, each gets only 1 point. But if one player defects and the other
cooperates, the defector gets a full 5 points and the cooperator gets
nothing. Because it favors both mutual cooperation and individual
defection, the Prisoner's Dilemma has been widely used to study options
for cooperation in an egoistic society. In amodel that we use extensively in
later chapters, members of a society are envisaged in a spatial array,
following particular strategies in repeated Prisoner's Dilemma exchanges
with their neighbors. Figure 8, for example, shows a randomized array in
which each cdl represents a single individual and each color represents
one of eight ssimple strategies for repeated play. Some of these are vicious
strategies, in the sense of always defecting against their neighbors. Some
are extremely generous, in the sense of cooperating no matter how often
they areburned. A strategy of particular interest, called | it for Taf, returns
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Figure 8 Randomized spatial array of eight Prisoner's Dilemma strategies.

like for like, cooperating with a cooperative partner but defecting against a
defector. "lit for Taf carries a clear echo of Hobbes's second ‘rule of
Reason': "Whatsoever you require that others should do to you, that do ye
to them".**

Some strategies, in some environments, will be more successful than
others in accumulating Prisoner's Dilemma points in games with then-
neighbors. How will a society evolve if we have cdls convert to the
strategy of their most successful neighbor? Will defection dominate, for
example, or will generosity?

Figure 9 shows atypical evolutioninavery simple case, in which Tit for
Ta evolves as the standard strategy. In later chapters we explore more
complicated variations on such amodel, using ranges of more complicated
meta-strategies and introducing forms of cooperation and defection that
are 'imperfecf both probabiligtically and in terms of degrees. An
undecidability result for even a very smple Spatialized Prisoner's
Dilemma appears in chapter 6.

14 PHILOSOPHICAL MODELING: FROM PLATONIC IMAGERY TO
COMPUTER GRAPHICS

Here we've started with three simple examples of philosophical model-
ing—simple so as to start simple, but also representative of some basic
kinds of models used in the real work of later chapters.
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Figure9 Evolution of randomized array toward dominance by Tit for Tat.

We are in fact heirs to a long tradition of philosophical modeling,
extending from Plato's Cave and the Divided Line to models of socia
contracts and John Rawls's original position. If one is looking for
philosophical models, one can find them in Heraclitus's river, in Plato's
charioteer model of thetripartite soul, in Aristotl€'s squares of opposition, in
thelevelsof Dante'sInferno, Purgatorio, and Paradiso, in Locke'simpressions
onthemind and in Descartes's captained soul inthe sixth meditation. Logic
as a whole, in fact, can be looked upon as a tradition of attempts to
model patterns of inference. Philosophical modeling isnothing new.

In many cases, philosophical models might be thought of as thought
experiments with particularly vivid and sometimes intricate structures.
Just as thought experiments are more than expository devices, so models
can be. The attempt to build intellectua models can itsdf enforce
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requirements of clarity and explicitness, and can make implications clear
that might not be clear without an attempt at explicit modeling. The
making of models can also suggest new hypotheses or new lines of
approach, showing when an approach is unexpectedly fruitful or when it
faces unexpected difficulties.

The examples of computer modeling we introduce here are conceived of
in precisely this tradition of philosophical model building and thought
experiments. All that is new are the astounding computational resources
now available for philosophical modeling.

As our subtitle indicates, we conceive of the chapters that follow as
explorations in philosophical computer modeling. In no case are they
intended as the fina word on the topics addressed; we hope rather that
they offer some suggestive first words that may stimulate others to carry
the research further. The topics we address, moreover—paradoxes and
fuzzy logic, fractds and simple formal systems, egoism and altruism in
game theory and cellular automata—are merely those topics to which our
curiosities have happened to lead us. We don't intend them in any sense as
a survey of waysin which computer modeling might be used; indeed our
hope is that these exploratory essays will stimulate others to explorations
of quite different philosophical questions as well.

In each of the following chapters the computer allows usto literally see
things the complexity of which would otherwise be beyond our
computational reach: fractal images showing the semantic behavior of a
wide range of pairs of mutually referential sentences, vivid images of
patterns of contradiction and tautology in forma systems, and evolving
visual arrays demonstrating a wide socia effect of loca game-theoretic
interactions. Whether these models answer questions which we might not
have been able to answer without them is another matter. Often our logical
results, such as the forma “definability of chaos in chapter 1 or the
undeddability of the Spatialized Prisoner's Dilemma in chapter 6, were
suggested by our computer work but might also conceivably have been
proven without it. We don't want to claim, then—at least not yet—that the
computer is answering philosophical questions that would be in principle
unanswerable without it. In no way do the astounding computational
abilities of contemporary machines offer a substitute for philosophical
research. But we do think that the computer offers an important new
environment for philosophical research.

Our experience is that the environment of computer modeling often
leads us to ask new questions, or to ask old questions in new ways—
questions about chaos within patterns of paradoxical reasoning or
epistemic crises, for example, or Hobbesian questions asked within a
spatialization of game-theoretic strategies. Such an environment also
enforces, unflinchingly and without compromise, the central philosophical
desideratum of clarity: oneisforced to construct theory in the form of fully
explicit models, so detailed and complete that they can be programmed.
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With the astounding computational resources of contemporary machines/
moreover, hidden and unexpected consequences of simple theories can
become glaringly obvious. "A computer will do what you tell it to do, but
that may be much different from what you had in mind/'*?

Although difficult to characterize, it is also dear from experience that
computer modeling offers a possibility for thoroughly conceptual work
that is nonetheless undeniably experimental in character. Simple theories
can be tested in a range of modeled counterfactual 'possible worlds—
Hobbesian models can be tested in worlds with and without perfect
information or communication, for example, or with a greater or lesser
Rawlsian Veil of ignorance. One can also, however, test theoretical
variations essentially at will, feeling one's way through experimental
mani pul ation toward a conceptual core: ahypothesis of precisely what itis
about atheory that accounts for the appearance of certain resultsin certain
possible worlds.

It must also be admitted with regard to computer modeling—as with
regard to philosophical or intellectual modeling in general—that models
can fal. All models are built with mgjor limitations—indeed that is the
very purpose of models. Models prove useful both in exposition and in
exploration precisaly becausethey'resmpler, and thereforeeasier to handle
and easier to track, than the bewildering richness of the full phenomena
under study. But the possibility always remains that one's model captures
too few aspects of the full phenomenon, or that it captures accidental rather
than essential features. One purpose of labeling ours as explorations in
computer modeling is to emphasize that they may fail in this way. When
and where they fdl short, however, it will be better models that we will
have to strive for.

Computer modeling is new in philosophy and thus may be misunder-
stood. We should therefore make it clear from the beginning what the book
is not about. What is at issue here is not merely the use of computers for
teaching logic or philosophy. That has its place, and indeed the Logic Lab
inwhich much of thiswork emerged was established as a computer lab for
teaching logic. Here, however, our concentration is entirely on exploratory
examples of the use of computer modeling in philosophical research. We
will also havelittleto say that will qualify as philosophy of computation or
philosophy about computers—philosophical discussions of the prospects
for modeling intelligence or consciousness, for example, or about how
computer technology may affect society. Those too are worthy topics, but
they are not our topics here. Our concern is soley with philosophical
research in the context of computer modeling.

Our ultimate hope is that others will find an environment of computer
modeling as philosophically promising as we have. We offer a handful of
sample explorations with operating software and accessible source codein
the hope that some of our readers will not only enjoy some of these initial
explorations but will find tools useful in carrying the exploration further.
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SOME BACKGROUND SOURCES

Weattempt throughout the book to make our explanations of the modeling
elements we use as simple and self-contained as possible. Some readers,
however, may wish for more background information on the elements
themselves. For each of the topics listed below we've tried to suggest an
easy popular introduction—the first book listed—as well as a more
advanced but till accessible text.

Fuzzy and Infinite-Valued L ogic

Bart Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic, New York: Hyperion, 1993.
Graeme Forbes, Modern Logic, New York: Oxford University Press, 1994.

Nicholas Rescher, Many-Valued Logic, New York: McGraw-Hill, 1969; Hampshire, England:
Gregg Revivals, 1993.

Chaos and Fractals

James Gleick, Chaos: Making a New Science, New York: Penguin Books, 1987.

Manfred Schroeder, Fractals, Chaos, Power Laws: Minutesfrom an Infinite Paradise, New York:
W. H. Freeman and Co., 1991.

Cdlular Automata

William Poiindstone, The Recursive Universe: Cosmic Complexity and the Limits of Scientific
Knowledge, Chicago: Contemporary Books, 1985.

Steven Wolfram, Cellular Automata and Complexity, Reading, Mass.: Addison-Wesley, 1994.
Game Theory

William Poiindstone, Prisoner's Duemma, New York: Anchor Books, 1992.

Robert Axelrod, The Evolution of Cooperation, New York: Basic Books, 1984.
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Chaos, Fractals, and the Semantics of
Par adox

Logicians, it is said, abhor ambiguity but love paradox.
—Barwiseand Etchemendy, TheLiar®

Semantic paradox has had along and distinguished career in philosophical
and mathematical logic. In the fourth century BC, Eubulides used the
paradox of the liar to challenge Aristotle's seemingly unexceptional
notion of truth, and this seemed to doom the hope of formulating the laws
of logic in full generality.” The study of the paradoxes or insolubilia
continued into the medieval period in work by Paul of Venice, Occam,
Buridan, and others.

The Liar lies a the core of Cantor's diagonal argument and the
"paradise" of transfiniteinfinitiesit givesus. Russell's paradox, discovered
in 1901 as a smplification of Cantor's argument, was historicaly
instrumental in motivating axiomatic set theory. Godel himsdf notes in
his semantic sketch of the undecidability result that "the analogy of this
argument with the Richard antinomy leapsto theeye. Itisclosdly related to
theliar' too...".* Thelimitative theorems of Tarski, Church, and Turing
can al be seen as exploiting the reasoning within the Liar.* Godel had
explicitly noted that "any epistemological antinomy could be used for a
similar proof of the existence of undecidable propositions.” In the mid
1960s, by formalizing the Berry paradox, Gregory Chaitin demonstrated
that an interpretation of Godel's theorem in terms of agorithmic
randomness appears not pathologically but quite naturally in the context
of information theory.

In recent years philosophers have repeatedly attempted to find solutions
to the semantic paradoxes by seeking patterns of semantic stability. The
1960s and the 1970s saw a proliferation of "truth-value gap solutions' to
the liar, including proposals by Bas van Fraassen, Robert L. Martin, and
Saul Kripke.® Effortsin the direction of finding patterns of stability within
the paradoxes continued with the work of Hans Herzberger and Anil
Gupta.” More recent work in this tradition includes Jon Barwise and
John Etchemendy's The Liar, in which Peter Aczel's set theory with an



anti-foundation axiom is used to characterize liar-like cycles, and Haim
Gaifman's "Pointers to Truth".®

In this chapter we take a novel approach to paradox, using computer
modeling to explore dynamical patterns of sdf-reference. These computer
models seem to show that the patterns of paradox that have been studied
in the past have been deceptively simple, and that paradox in general has
appeared far more predictable than it actualy is. Within the semantics of
sdf-referential sentences in an infinite-valued logic there appear a wide
range of phenomena—including attractor and repeller points, strange
attractors, and fractas—that are familiar in a mathematical guise in
dynamical semantics or 'chaos theory. We cal the approach that reveas
these wilder patterns of paradox dynamical semantics because it weds the
techniques of dynamical systems theory with those of Tarskian semantics
within the context of infinite-valued logic.

Philosophical interest in the concept of chaos is ancient, apparent
aready in Hesiod's Theogeny of the eighth century BC. Chaostheory inthe
precise sense at issue here, however, is comparatively recent, dating back
only to the work of the great nineteenth-century mathematician Henri
PoincarS. The triumph of Newtonian mechanics had inspired Laplace's
classic statement of determinism: "Assume an intelligence which at agiven
moment knows all the forces that animate nature as well as the situations
of all the bodies that compose it, and further that it is vast enough to
perform a calculation based on these data_ For it nothing would be
uncertain, and the future, like the past, would be present before its eyes."®
In 1887, perhaps intrigued by such possibilities, King Oscar 1l of Sweden
offered the equivalent of aNobel prize for an answer to the question "Isthe
universe stable?' Two years later, Poincarg was awarded the prize for his
celebrated work on the "three-body problem.” PoincarS showed that even
a system comprising only the sun, the earth, and the moon, and governed
simply by Newton's law of gravity, could generate dynamical behavior of
such incalculable complexity that prediction would be impossible in any
practical sense. Just as Einstein's theory of relativity later eliminated the
Newtonian idea of absolute space, PoincarS's discovery of chaos even
within the framework of classical Newtonian mechanics seemed to dispel
any Laplacian dreams of real deterministic predictability.

We think that the results of dynamical semantics, made visible through
computer modeling, should similarly dispel thelogician's dream of taming
the patterns of paradox by finding some overly simplistic and predictable
patterns.

Perhaps the main reason why these areas of semantic complexity have
gone undiscovered until now is that the style of exploration is entirely
modern: it isakind of "experimental mathematics' in which—as Douglas
, Hofetadter has put it—the computer plays the role of Magellan's ship, the
astronomer's telescope, and the physicist's accelerator.® Computer
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graphic analysis reveals that deep within semantic chaos there are hidden
patterns known as fractals—intriguing objects that exhibit infinitely
complex sdf-affinity at increasing powers of magnification. This fractal
world was previously inaccessible not because fractals were too small or
too far away, but because they were too complex to be visuaized by any
human mind.

It should be emphasized that we are not attempting to 'solve’ the
paradoxes—in thelast 2,000 years or so attempts at solution cannot be said
to have met with conspicuous success. Rather, in the spirit of Hans
Herzberger's 'Naive Semantics and Anil Gupta's 'Rule of Revison
Semantics/** we will attempt to open the semantical dynamics of sdif-
reference and sdlf-referential reasoning for investigation in their own right.
Here we use computer modeling in order to extend the tradition into
infinite-valued logic. Unlike many previous investigators, we will not be
trying to find simple patterns of semantic stability. Our concern will rather
be with the infinitely intricate patterns of semantic instability and chaos,
hidden within the paradoxes, that have untili now gone virtually
unexplored.

11 FROM THE BIVALENT LIARTO DYNAMICAL SEMANTICS

The medieval logician Jean Buridan presents the Liar Paradox as follows:

It is posited that | say nothing except this proposition 1 speak fasdy.'
Then, it isasked whether my propositionistrueor fase. If you say that itis
true, thenitisnot as my proposition signifies. Thus, it follows that it is not
true but false. And if you say that it is fase, then it follows that it is as it
signifies. Hence, itistrue."*3

Reduced to its essentials, the bivalent Liar paradox is about a sentence
that asserts its own falsehood.™

The boxed sentenceisfase.

Is the boxed sentence true, or isit fase? Suppose it is true. But what it
says isthat if sfdse, so if we suppose it is true it follows that if s fdse
Suppose, on the other hand, that the boxed sentence is fase. But what it
saysisthat if sfase, and soif itisfase, if strue. So if we assume if strue,
we'reforced to say itisfase; andif wesay itisfalse, we'reforcedto say itis
true, and so forth.

According to Tarski'sanalysis,™ the paradox of the Liar depends on four
components.
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Firgt, the paradox depends on sdf-reference. In this case, the «df-
referenceis due to the empirical fact that the sentence 'the boxed sentence
isfase is the boxed sentence:

The boxed sentence is fal se’=the boxed sentence.

Secondly, we use the Tarskian principlethat the truth value of a sentence
stating that a given sentence is true is the same as the truth value of the
given sentence. Tarski's principle is often formulated as a schema:

(T) The sentence fp' istrueif and only if p.*®

Tarski'sfamous exampleisthat 'snow iswhite' istrueif and only if snow is
white. In the case of the Liar paradox, this gives us

Theboxed sentenceisfalse istrueif and only if the boxed sentenceisfase.

Third, by Leibniz's law of the substitutivity of identicals, we can infer
from the first two steps that

The boxed sentence is true if and only if the boxed sentence is fase.

Fourth, given the principle of bivalence—the principle that every
declarative sentence is either true or false—we can derive an explicit
contradiction. In the informa reasoning of the Liar, that contradiction
appears as an endless oscillation in the truth values we try to assign to the
liar: true, fdse, true, false, true, fase,

The transition to dynamical semantics from this presentation of the
classica bivalent Liar can also be made in four steps, each of which
generalizes to the infinite-valued case a principle upon which the classical
Liar is based. We generalize the principlesin reverse order.

The first step, which may be the hardest, is the step from classica
bivalent logic to an infinite-valued logic—from two values to a continuum.
The vast bulk of the literature even on many-valued logic adheres to the
classical conception that there are only two truth values, 'true’ and 'false,
with occasiona deviations allowing some propositions to have a third
value or none at al. Here, however, we wish to countenance a full
continuum of values. This infinite-valued logic can be interpreted in two
very different ways. The first—more direct than the second but also most
philosophically contentious—is to insist that the classicd Aristotelian
assumption of bivalence is simply wrong.

Consider, for example, the following sentences:

1. Kareem Abdul-Jabbar is rich.
2. In caricatures, Bertrand Russdll 1ooks like the Mad Hatter.
3. New York City isalovely placeto live.

Are these sentences true, or are they fdse? A natural and unprompted
response might be that (1) is very true, that (2) is more or less true (see
figure 1), but that (3) isalmost completely false. Sentences like these seem
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Figurel Moreor lesstrue: In caricatures, Bertrand Russell looks like the Mad Hatter.

not to be simply true or simply fase: their truth values seem rather to lieon
some kind of continuum of relative degrees of truth. The basic
philosophical intuition is that such statements are more or less true or
fase: that their truth and fagty is a matter of degree.

J. L. Austin speaks for such an intuition in his 1950 paper "Truth": 'In
casesliketheseit is pointless to insist on deciding in simple terms whether
the statement is 'true or false'. Is it true or false that Bdfad is north of
London? That the galaxy isthe shape of afried egg? That Beethoven wasa
drunkard? That Wellington won the battle of Waterloo? There are various
degrees and dimensions of success in making statements: the statementsfit
the factsmore or lessloosely... ".*” George Lakoff asks: "In contemporary
America, how tall do you have to beto be tall? 58'? 59"? 510"? 511"? 62
62'? Obvioudly there is no single fixed answer. How old do you have
to be to be middle-aged? 35? 37? 397 40?7 42? 45? 50?7 Again the concept is
fuzzy. Clearly any attempt to limit truth conditions for natural language
sentences to true, fase, and 'nonsense’ will distort the natural language
concepts by portraying them as having sharply defined rather than
fuzzily defined boundaries."'® If we take these basic philosophical
intuitions serioudy, it seems natural to model relative 'degrees of truth'
using values on the [0, 1] interval. The move to a continuum of truth
values is the fird and perhaps hardest step in the move to infinite-valued
logics, and is a move we will treat as fundamental in the model that
follows.™

, It should also be noted that there is a second possible interpretation for
infinite-valued logics, however, which avoids at least some elements of
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philosophical controversy. Despite the authority of classica logic, some
philosophers have held that sentences can be more or less true or fase.
Conservative logicians such as Quine, on the other hand, have stubbornly
insisted that truth or falsity must be an all-or-nothing afair.® Yet even
those who are most uncompromising in their bivalence with regard to
truth and fasity are quite willing to admit that some propasitions may be
more accurate than others. If s clearly more accurate to say, for example,
that Madagascar is part of Mozambique than to say that Madagascar is off
the coast of Midway. If the swallows are returning to Capistrano from a
point 20 degrees north-northeast, the claim that they are coming from a
point 5 degrees off may qudify as fairly accurate. But a claim that they are
coming directly from the south can be expected to be wildly and uselessly
inaccurate.

If our basic values are interpreted not as truth values but as accuracy
values, then, an important measure of philosophical controversy seems
avoidable. Accuracy isquite generally agreed to be a matter of degree, and
from there it seems a small step to envisaging accuracy measures in terms
of values on the [0,1] interval.

In the case of an accuracy interpretation, however, there are other
guestions that may arise regarding a modeling on the [0,1] continuum.
Even in cases in which accuracy clearly is a matter of degree, it may not be
clear that there is a zero point corresponding to something like 'complete
inaccuracy'. Consider, for example, the claim in sentence (4).

4. Kareem is seven feet tall.

If Kareem is precisely seven feet tal—by the closest measurement we can
get, perhaps—then we might agree that the statement has an accuracy of 1,
or a least close to it. But what would have to be the case in order for
sentence (4) to have an accuracy of O: that Kareemis 3 feet tall? O feet tall?
100 feet tall? In these cases we seem to have accuracy as amatter of degree,
something it isat least very tempting to model with area interval, and we
also seem to have an intuitively clear point for full accuracy. We don't,
however, seem to have a clear terminus for ‘full inaccuracy'.21

One way to avoid such a difficulty is to explictly restrict our accuracy
interpretation to the range of cases in which the problem doesn't arise.

Consider, for example
5. Theidand lies due north of our present position.

The accuracy of (5) can be gauged in terms of the same compass used to
indicate the true position of the island. If the island does indeed lie
perfectly to the north, (5) can be assigned an accuracy of 1. If theidand lies
in precisely the opposite direction, however—if it is in fact due south—
then the directional reading of (5) isaswrong asit can be. In such acaseit
seems quite natural to assign the sentence an accuracy of O.
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Figure2 Compassmodel of accuracy.

Accuracy in the case of (5), unlike (4), does seem to have a natural
terminus for both ‘full accuracy' and ‘full inaccuracy”: here degrees of
accuracy modeled on the [0,1] interval seem fully appropriate. A similar
compass or dial model will be possible for each of the following sentences:
The swallows arrive at Capistrano from the northwest.

The lines are perpendicular.
The roads run parallel.

Lunch is served precisely at noon.

A [0,1] interval model for degrees of accuracy will also be appropriate in
many cases in which thereis no convenient compass or dial. In each of the
following cases, for example, we aso have a clear terminus for full
accuracy and inaccuracy:

The story was carried by all the mgjor networks.

fully inaccurate if carried by none

Radio waves occur across the full visible spectrum.

fully inaccurate if they don't occur within the visible spectrum at all

The eclipse was complete.

fully inaccurate if no eclipse occurred

There are thus at least two possible interpretations for the basic values of
our infinite-valued logic: that they model degrees of truth, and that they
model degrees of accuracy. The first interpretation, involving an explicit
abandonment of bivalence for truth and falsity, is perhaps the philosophi-
cally moreavant-garde. It isthat interpretation wewill use throughout this
chapter: we will speak quite generally of sentences or propositions 'more

or less true' than others. It should be remembered, however, that an
alternative interpretation is possible for those whose philosophical
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scruples are offended at the thought of an infinite range of truth values:
both philosophical and formal results remain much the same if we speak
merely of propositions as more or less accurate than others. In chapter 2,
with an eye to a variety of epistemic crises, we will develop the accuracy
interpretation further.

The first step in the transition to dynamical semantics, then, is to
abandon bivalence and to envisage sentences as taking a range of possible
values on the [0,1] continuum. A second step isto generalize the classical
logical connectives to an infinite-valued context. Here we will use a core
logic shared by the familiar Lukasiewicz system L~ and an infinite-valued
generalization of the strong Kleene system.?

Let us begin with the logical connective 'nof. Just asa glass is as empty
asit is not full, the negation of a sentence p isastrue asp is untrue. The
negation of p, in other words, istrueto the extent that p differsfrom 1 (i.e,
from completetruth). If p hasatruth value of 0.6, for example, p'snegation
will have a truth value of 1 minus 0.6, or 0.4. Using slashes around a
sentence to indicate the value of the proposition expressed by the sentence,
the negation rule can be expressed as follows:

[-pl =1-/pl.?3

In both Kleene and Lukasiewicz systems, a conjunction will be as fase as
its falsest conjunct. The value of a conjunction, in other words, is the
minimum of the values of its conjuncts:

[(p&q)/ =Min{/p/,/q/}.

A digunction will be as true as its truest digunct, or as true as the
maximum of the values of its diguncts:

I(pvq)/ = Max{/p/,/ql}.

Formal considerations cast a strong presumption in favor of treating
conjunction and digunction in terms of Min and Max, and cast an only
slightly weaker presumption in favor of the treatment of negation above.”
The same cannot be said, unfortunately, for implication: Kleene and
Lukasiewicz part company on the conditional, and here it must simply be
admitted that there are a number of alternatives. The Kleene conditional
preserves the classical equivalence between (p -> g) and (~p v Q):
I(p~q)/ =Max{l-/p/,/ql}.

The Lukasiewicz conditional does not preserve that equivalence; however,
it does preserve standard tautologies such as (p -> p):

[(p->q)/ =Min{l,I-/p/ +/q/},
or

I if/p/</ql
/(p'+<\'9;'}|-/P/+/q/ it/p/>/q/
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Inwhat followswewill not rely on the conditional and so will not in fact
have to choose between Kleene and Lukasiewicz. We will use the
Lukasiewicz biconditional, however, which can be independently moti-
vated. The classical biconditional (p +* @) holds just in case there is no
difference in truth value between p and g. The Lukasiewicz biconditional
holds precisely to the extent that there is no difference in truth value
between p and q: its value is 1 minus the absolute difference in value
between p and q:

I(p«*q)/ = |-Abs(/p/-1q/).

All the connectives outlined match the classica connectives when
restricted to classical values of 0 and 1.

Having abandoned bivalence, and having generalized our classica
bivalent logic to an infinite-valued logic, our third step is to generalize the
classicd two-valued Tarskian (T) schemato allow for degrees of truth.

Let us begin with an example. Consider the statement:

Patrick isa good golfer.

Consider aso the 'second-order' statement asserting that the statement
that Patrick is a good golfer is completely true—that it has the value 1:

Itiscompletely truethat Patrick isa good golfer.

Suppose for the moment that the actual value of the statement that Patrick
isagood golfer is, say, 0.4:

Patrick is a good golfer.

04
How true, then, is the second-order statement?
Itiscompletely truethat Patrick isa good golfer.

04

If sclear that the truth-value of this second-order statement will depend on
two things. on the actual truth value (0.4) of Tatrick isagood golfer', and
on the attributed value of complete truth (1). Our second-order statement
will be untrue to the extent that the actual value and the attributed value
differ. In this case the actual and the attributed val ue differ by (1 — 0.4) or
0.6. Our second-order statement is 0.6 untrue, and is therefore itsdf 0.4
true:

Itiscompletely truethat Patrick isa good golfer.
04
04
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Notice that we would have been closer to the truth had we claimed that
Tatrick isagood golfer' was only haf true, corresponding to an attributed
value of 0.5

It ishalftruethat Patrick isa good golfer.

In that case our second-order statement would have been as untrue as
the difference between the actual value (0.4) and the attributed value (0.5).
Our second-order statement would have been only 0.1 untrue and thus 0.9
true:

Itishalftruethat Patrick isa good golfer.
04
[-Abs(0.5-0.4) =09

With this background we can generalize the Tarskian CD schemato the
infinite-valued case by allowing for degrees of truth. Well use the notation
'Vtp' to represent the assertion that the proposition p hasthevaluetrue, or
t. The Tarskian (T) schema can then be expressed in the form

Vip ** p.

Suppose we have some fixed statement t that is completely true. Saying
that p is completely true will then amount to saying that it has the same
valueast. Thebiconditional, aswehavenoted, can beread in both classica
and infinite-valued logic as holding just in case its components have the
sametruth value. Intermsof the biconditional, then, the statement thatp is
completely truewill have the same val ue as abiconditional between p and
the completely true statement t:

IVtp/=/(top)/.
Using the outline given for the biconditional above, we have
IVtpl/ = 1-Abs(t-/p/).

The value of a proposition Vtp asserting that aproposition p hasthe value
of t is 1 minus the absolute difference between t and the value of the
proposition p.

If we now smply replace the Tarskian t throughout by a variable v
ranging over truth values in the range [0,1], we obtain Resdller's 1969
valuation schema for infinite-valued logic:

IVvpl = |-Abs(v-/pl).

Intuitively, thisVvp schema states that the proposition that p hasthevalue
Vv is untrue to the extent that the value of p differs fromv.

According to one interpretation, the absolute difference between v and
thevalueof p can beinterpreted asthe error of our estimate. In theseterms,
the Vvp schema says that the truth value of a second-order sentence
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asserting that a sentence has the value v differs from complete truth (i.e,
from the value 1) by the error of our estimate:

Vvp/ 1 Abs(v-/p/)
ir ft
absolute truth aror of estimate

To this point we have characterized our logic as ‘infinite-valued'
throughout, but there are also two modeling tools that we will borrow
from 'fuzzf logics. Although the two terms are often used interchange-
ably, 'fuzzy' logics standardly include not only the semantic predicates
'true’ and 'false' but others generated by recursive application of linguistic
modifiers, including 'very' and ‘fairly’.? 'Very' is consistently treated in
terms of squaring in the literature of fuzzy logic: if a statement is 0.6 true,
the statement that it is'very' trueitsdf hasthe significantly smaller value of
0.6 sguared, or 0.36. Tairly' is modeled in terms of square roots. if a
statement is 0.6 true, the safer hedged statement that it is 'fairly’ true is
treated as having a higher value of Voi6 or approximately 0.77.%° Here the
genera strategy seems quite plausible: stronger 'very' statements must
pass more severe tests, with predictably lower truth values, weaker ‘fairly’
statements the contrary. No one, as far as we know, would try to give a
philosophical defense of these convenient modelings as precisely those
appropriate to ordinary uses of linguistic hedges.

So far we have abandoned bivalence, generalized our logic to aninfinite-
valued context, and generalized the Tarskian (T) schema to alow for
degrees of truth. Our fourth and final step is to model sef-reference using
functional iteration.

Well begin to model sdf-reference by replacing the actual value of the
proposition p with estimated values x,. We will then recycle these
estimated values through the Vvp schema to obtain new estimates. The
genera idea of functional iteration is that of feedback.”” We start by
inputting some initial value into a function and obtain some output, then
recycle the output as a new input, and so forth.

v recycled output
initial input f(x)

The subject of nonlinear dynamics or chaos theory is precisaly the
behavior of such iterated functional sequences. The fact that self-reference
can be modeled as functional iteration thus affords us a a range of well-
developed concepts and graphical techniques for understanding the
semantics of paradox.
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12 THE SMPLE LIAR IN INFINITE-VALUED LOGIC

Theclassicd Liar, limited to two truth val ues, forces a semantic oscillation:
if true it must be false, so the intuitive reasoning goes, but if fase it must
then be true_ That semantic dynamics can be represented in what is
caled a time-series graph, though here we substitute for time an abstract
series of points of deliberation. Figure 3 shows the intuitive dynamics of
the classicd Liar-"an oscillation between 0 and 1—in terms of such a
graph.”®

We have now left bivalence far behind, however, expanding our logic to
an infinite range of truth-values between 0 and 1, modifying our logical
connectives and the Tarskian (T) schema to match, and modeling sdf-
reference as functiona iteration. We can certainly expect paradoxes to
behave differently in thisnew logical realm. How will the Liar behaveinan
infinite-valued context?

Theboxed sentenceisfdse.

Lef scal the boxed sentence V. Suppose that we start with an estimated
valuedf, say, 1/4for b. Given this estimate and taking the value of 'false' to
be 0, we can usethe Vvp schemato calcul ate the value of the statement that
bisfdse

Vbl = 1-Abs(0-1/4).

Thisgivesavalueof 3/4. The statement that b isfalse, however, isprecisaly
what b itself asserts. Starting from our initial estimate, therefore, what the
Vvp schema gives usis a new or revised estimate for b. Starting with an
estimate of 1/4, we are forced to a revised estimate of 3/4.

If b has avalue of 3/4, however, the statement that b isfase will have a
value df:

IVib/ = 1-Abs(0-3/4).

- F Y 1L T 0T 3 00

Figure3 Time-series graph for intuitive reasoning in the classica Liar.
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That b isfalseisprecisdy what b asserts, so from an estimate of 3/4weare
forced to a further revised estimate of /4

We can think of the Liar ascontinuing in thisway to generate a series of
revised estimates, each calculated in termsof itspredecessor. For any initial
edimate xo, the series of successively revised estimatesis given by

XA -AbsCO-xJ.

For aninitial valueof 1/4, thisgivesusthe oscillation between 1/4 and 3/4
shown in thefirgt frame of figure4. For an initial value of 2/3 we get the
oscillation between 2/3 and 1/3 shown in thesecond frame. I n theinfinite-
valued case, any initial value v generates a periodic alternation between
thevaluesv and (1 - v). The onefixed point for theinfinite-valued Liar is
1/2, which returns at each step an identical revised value of 1/2.

Were we to graph continued iteration using time-series graphs we
would haveto extend them indefinitely to theright. An alternative to this

l—1—1 I | ' |

T

Figure4 The simple Liar with initial valuesof 1/4,2/3,and 1/2.
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isaweb diagram, in which repeated iteration of afunction isrepresented by
plotting ordered pairs of successive iterations in ‘phase space’. We offer a
schematic introduction to web diagrams in figure 5 by plotting the same
information on a time-series graph and on the corresponding web
diagram. Here we start with an initia estimated value XQ—0.1, in this
case—indicated by the arrow in the time-series graph at the Ieft. On the
web diagram to the right we plot this value on the x-axis of the Cartesian
plane, again using an arrow to indicate our starting point. In the web
diagram we now move vertically until we reach the descending diagonal
line. This line is the graph of our function, X,.i=I — Abs(0 — x,) in
iterated form, plotted heresimply asy = 1— Abg(0— x). Moving vertically
from our starting point Xa we hit this function line a a y-value
corresponding to 1 — Abs(0 — XQ). They value of theintersection point is
thus xi, the next value of our iterated series, and corresponds to the firgt
peak in the time-series graph.

To continue iteration through our function, we want to convert the y-
value of this first intersection point to a new x-value. That way we'll be
abletorecyclexi throughthefunction to get X2, then recycle x, through our
function to get X3, and so forth. In a web diagram we convert our first y-
value to an x-value simply by reflecting that value dff the x =y line, which
is the ascending diagonal in the web diagram. From our first point of
intersection, we move horizontally to the right until we hit the x =y line.
The point of intersection here has an x-coordinate corresponding to what
was our y-coordinate a minute ago—an x coordinate that therefore
represents our value xi. With that new x-coordinate in hand, we can move
verticaly to our function line again—down this time—intersecting our
function line at a point with a y-value corresponding to x,. This matches
the valley in our time-series graph. We continue the process to plot the
continuing series of revised estimates. At each step, we reflect our last
value dff the x=y line to obtain a new value from the graph of our
function.

Pt

*

Figure5 Time-seriesgraphwith corresponding web diagram.
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13 SOME QUASI-PARADOXICAL SENTENCES

Now let usgo beyond the simpleLiar. In thinking of the semantic behavior
of sentences on the model of iterated functions, it seems natural to
entertain sentences that refer not merely to their own truth values but to
their estimated truth-val ues.”®

The Vvp schema can be modified to capture salf-referential sentences of
this sort. Asin the case of the simple Liar, the place alotted for the actual
value of the proposition p in the Vvp schema can be thought of asoccupied
by a series of estimated values x,. But here we'll also replace the asserted
valuev with afunction S(x,) that attributes avalue to the sentencein terms
of its previously estimated value. A canonical reading might be

This sentence is as true as SXn).

With such an approach, we can explorefor their own sake the dynamics of
a range of sdf-referentia sentences which are in some ways even wilder
than the Liar. Consider for example a sentence we call the Half-Sayer:

This sentenceis astrue.as half its estimated value.

In terms of our Vvp schema, the successive values for the Half-Sayer will
be given by the algorithm

xN =1 -Abs(l/2 « x, - XJ.

Consider also a second sentence, which we call the Minimalist:

This sentence is as true as whichever is smaller: its estimated value or the
opposite of its estimated value.

Herewetake the opposite of avaluev tobe 1 — v. An dternative reading
for the Minimalist is

This sentence is as true as the estimated value of the conjunction of itself
and its negation.

Successive values for the Minimalist will then be given by the algorithm
Xny = 1 - AbCMinfXn, 1 - x™ - Xj.

Let us calculate some specific values for these sentencesin order to get a
fed for their self-referentia dynamics.

Suppose you estimate the Half-Sayer to be 1/2 true. What that sentence
assertsthat itisastrueashdf our estimate—given an estimateof 1/2, what
it assertsthat itis1/4 true. According to our Vvp schema, the value of the
Half-Sayer will then be

I-Abs(1/4-1/2),

or 3/4. From an initia estimate of 1/4, the Vvp schemathusforcesustoa
revised estimate of 3/4. But given an estimate of 3/4, what the Half-Sayer
assertsis that itsvalueis amere 3/8. Continuing this pattern of reasoning
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through the Vvp schema, the Half-Sayer leads us to a series of successve
values 5/8, 11/16, 22/32, 42/64, .... In the limit the series converges
to 2/3. Theweb diagram for the Half-Sayer (in figure 7) showsthe cascade
toward 2/3, an attractor fixed point.*°

We can aso graph the dynamic behavior of the Minimalist in a web
diagram. Aninitial estimate of 0.6, as shown on theleft in figure 8, givesus
a series of values diverging outward to a Liar-like oscillation between 1
and 0. Aninitial estimate closer to 2/3—0.66, shown on theright—givesus
a different series, which again moves to an infinite oscillation between 1
and 0. Here 2/3 serves as aunstabl efixed point or afixed point repeller in
phase space.

Let us sum up a few points made visible in the investigation of these
quasi-paradoxical sentences. The Half-Sayer and the Minimalist, in ways
far from apparent from their surface structures alone, reveal precisdy
opposite dynamical behaviors in terms of attractor and repeller fixed
points: the Haf-Sayer exhibits an attractor fixed point precisely where the

— ‘ \

Figure 7 The Hdf-Sayer for inputs of 0.5 and 0.916.

1 —

Figure8 TheMinimaligt for initial values 0.6 and 0.66.
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Minimalist exhibits a repeller fixed point. The semantic behaviors of the
Minimalist and the simple Liar are identical within a classical logic: each
gives an oscillation between 0 and 1. The behaviors of the two sentences
diverge sharply in an infinitevalued context, however. Within a
continuum of values, as we have seen, the Liar oscillates between any
initial valuex and 1 — x. Perhapsunexpectedly, itisthe Minimalist rather
than the smple Liar that converges on the infinite classica oscillation
between 0 and 1.

The Simple liar, the Half-Sayer, and the Minimalist offer some striking
examples of the kinds of formal lessons that dynamical semantics has to
offer. The fact that each of these sentences exhibits fixed points might aso
be thought to offer afurther lesson: that the 'solution’ tothe Liaris1/2, for
example, and that the 'true’ value of the Half-Sayer and of the Minimaist
correspond to their two (very different) fixed points of 2/3.

The appeal of such an approach, of course, is that within an infinite-
valued logic a value of 1/2 can be assigned to the Liar without the
contradiction of further dynamic revision. The sameis true for 2/3 in the
other cases. Here we want to express a hit of hesitation regarding the
attempt to jump at fixed points as full solutions for phenomena of sdf-
reference, however. One difficulty, which will appear in further examples,
is that there are many cases with multiple fixed points; if afixed point is
identified with a 'true’ value, precisely which of these will qudify as the
'true’ value? There are in fact very simple cases, such as the Truth-teller,
that have an infinite number of fixed points:

Thissentenceistrue.
Xny =1 - Abg(l - X]

The infinite-valued Truth-teller is a perfect generalization of its classical
relative, which can consistently be assigned a value of either true or false.
The infinite-valued Truth-teller can be stably assigned any value
whatsoever in the [0,1] interval: any estimate qualifies as a fixed point.
Here, it seems, we simply have too many fixed points to count as a
'solution’: are we to say that each of these infinite values is the sentence's
‘true’ truth value?

Another difficulty, familiar from the Strengthened Classical Liar but also
present in an infinite-valued context, is that the search for fixed points will
not offer a fully general solution to paradoxical or other self-referential
phenomena. Consider for example a Strengthened Infinite-valued Liar:

6. This statement has a truth-val ue other than precisely 1.

. If assumed to have afull 1 asitstruth value, sentence (6) will have some
lesser value: given what (6) says, it will in that case be twtrue to some
extent. If the sentence is assumed to have any truth value other than
precisely 1, onthe other hand, it apparently will be simply and totally true.
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We might also consider the following sentence:
7. This sentence has absolutely no fixed-point truth value other than 0.

Suppose (7) does have some fixed point other than 0. In that case, what (7)
saysappearsto besimply fase, with avalue of 0. The assumption of afixed
point other than O is thus itsdlf unstable: we are forced to revise such an
assumption downward, apparently being driven to the conclusion that the
'solution’ for (7) is that it has only one genuine fixed point: zero. In that
case, however, what (7) says would seem to be simply true....®! As
indicated earlier, our concern throughout is less with a search for
'solutions' than with the attempt to model the semantical dynamics of a
range of self-referential sentences as phenomena worthy of study in then-
own right.

Here we also want to offer two close relatives of the Half-Sayer and the
Minimalist which employ linguistic Tiedges borrowed from the literature
of fuzzy logic. Aswasindicated in section 1.1, 'very is standardly treated
in fuzzy logic in terms of a squaring function, whereas 'fairly' istreated in
terms of square roots. Given a value of 0.9 for Taul is tall', fuzzy logic
assignsavalueof (0.9)>= 0.81 for Taul isverytall'. Given avalue of 0.25 for
Taul isagood tennis player', fuzzy logic assignsavalue of V025=05 for
Taul is a fairly good tennis player'. Treated as hedges on the entire
sentence, 'fairly' and ‘very’ arecalculated in general by squaring or square-
rooting (respectively) the value the entire sentence would have without
them.

Consider then two sentences that we might term the Modest | iar and the
Emphatic Liar:

Modest Liar:  This sentenceis fairly false.
Emphatic Liar:  This sentenceisvery fase.

For 'this sentence is false' without a modifie—the simple Liar—the Vvp
schema gives us

Xn+"-AbstO-xJ.

For the Emphatic liar, the right-hand sideis squared in order to reflect the
force of the added hedge 'very":

XA d-AbsCO-xJ)?
which reduces to simply
Xn+i=a-x, )2
For the Modest Liar we will use a square root instead:
X,+1 = VI-AbstO-x".

The dynamics of the Modest Liar and the Emphatic Liar are shown in
web diagrams in figure 9. The general behavior of the Modest Liar is like

Chaos, Fractals, and the Semantics of Paradox
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Figure9 TheModegt Liar and the Emphatic Liar for initial estimates of 0.3.

that of the Haf-Sayer, though with a different fixed point. For any seed
value, it turns out, the Modest Liar converges inexorably on a fixed-point
attractor of (-1 +V5)/2. The Emphatic Liar, on the other hand, parallels
the Minimalist, but with an unstabl e repeller fixed point at (3— V5)/2. For
any other values, it moves to the oscillation between 0 and 1 characteristic
of the classical Liar.

Both fuzzy fixed points, interestingly enough, are related to the golden
ratio, labeled ¢ by mathematicians because of its extensive work in
the sculpture of the Greek artist Phidias. The golden ratio is widely used
as an aesthetically perfect proportion, employed for example in the
Parthenon, daVinci'sMona Lisa, and Salvador Dali's The Sacrament of the
Last Supper.® Here we find it in the semantics of fuzzy sdf-reference as
well.

14 THE CHAOTIC AND LOGISTIC LIARS

With these quasi-paradoxical sentences as background, we are ready to
construct a natural infinite-valued variant of the Liar which generates a
particularly complex dynamical semantics. This sentence, like those
considered above, self-attributes a value in terms of previously estimated
value.

Consider a sentence that asserts not that it issimply false, but rather that
it hasthevalueof itsestimated fal sehood:

This statement isastrue as it is estimated to be false.

This sentence perversely asserts that it is as true as the value of its
estimated falsehood. Since the estimated falsehood of a sentence turns out
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to be equivalent to 1 minus its estimated value, the successive values for
this boxed sentence will be given by the algorithm

VAl-Absai-xJ-xJ.

We cdl this boxed sentence the 'Chaotic Liar' because its dynamical
semantic behavior—in contrast to the metronomic predictability of the
simple Lia—is genuinely chaotic in a precise, mathematically definable
sense. It is interesting to note that the value this sentence attributes to
itsdlf—the value it says it has—is precisdly that given by the full algorithm
for the smple infinite-valued Liar:

Chaotic Liar: Xpe1 = 1 - Abs((l - Xj - Xj
'This statement isastrue as..." (1-xj

= [-Abs(0-x,)
Simple Liar: X,+1 = 1 - Abs(0 - Xn).

Plotting the iterated values for the Chaotic liar in a time-series graph
(herefor aninitial estimate of 0.314), we obtain theirregular, non-repeating
chaotic pattern shown in figure 10. The dynamics of the Chaotic Liar is
better portrayed, however, by the evolution of its web diagram (figure 11).

One point of interest is that the Chaotic Liar has not one fixed point but
two: oneat 0 and oneat 2/3. Of greater interest for our purposes, however,
is the fact that al the elements of chaos as mathematically defined are
present in the dynamical semantics for the Chaotic Liar:

A function f: J > Jischaoticon J if

1. f has sensitive dependence on initial conditions;
2. fistopologically transitive;

3. the set of period points is dense in J.*

-

Figure 10 The Chaotic Liar for an initia estimate of 0.314.
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Figure 11 Progressive web diagram for the Chaotic Liar, for initid value of 0.314.

The requirement of density is that the closure of the period points—the
periodic points together with limit points that series of periodic points
approach—constitute the entire interval. A topologically transitive
function is one points of which eventually move under iteration from
one arbitrarily small neighborhood to any other. Though stronger and
weaker characterizations of chaos appear in the literature, all agree that the
quintessential element is sensitive dependence on initia conditions.
Sensitive dependence has been picturesquely dubbed the "butterfly effect"
to stand for the metaphorical idea that a butterfly flapping its wings in
Brazil could set off a tornado in Texas a week later.* A better expression of
the idea would be that two states of a deterministic system that differ at
time t only in whether a butterfly is flapping its wings or not may differ at a
later time in the presence or absence of a Texas tornado. A function is
sensitive to initial conditions if, for any arbitrarily small neighborhood
around any chosen point and for any arbitrarily large distance within the
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interval, there is some point in the immediate neighborhood which
eventually diverges by that large distance from the chosen point.

This central idea of senstive dependence is already quite clearly
outlined in Poincare's discussion of chance:

A very dight cause, which escapes us, determines a considerable effect
which we can not help seeing, and then we say this effect is due to chance.
If we could know exactly the laws of nature and the situation of the
universe at the initia instant, we should be able to predict exactly the
situation of this same universe at a subsequent instant. But even when the
natural laws should have no further secret for us, we could know theinitial
situation only approximately. If that permits us to foresee the subsequent
situation with the same degree of approximation, thisisall wereguire, we say
the phenomenon has been predicted, that it isruled by laws. But thisis not
always the case; it may happen that dight differences in the initial
conditions produce very great differences in the fina phenomena; a dight
error in the former would make an enormous error in the latter. Prediction
becomes impossible and we have the fortuitous phenomenon.*

We can illustrate the sensitive dependence to initial conditions of the
Chaotic Liar by observing the rapid spread of successive values when
plotting a time-series overlay graph for initial values of 0.314 increasing by
increments of 0.001 (figure 12).%

The basic algorithm for the Chaotic Liar is in fact a very simple and
paradigmatically chaotic function, known as a 'tent map' because of
the shape of its graph and more familiar in the mathematical guise

Xn+e1 = 1-Abs(2x,-1)or
f2xn forO<x<l/2
UO-Xn) for1/2<x<I.%

This characterigtic algorithm isincluded in a group of mere 'mathematical
curiosities in Robert May's important paper applying chaos theory to
ecology.® The work above indicates that this function is significantly more

Figure 12 lime-series overlay, for aninitia value of 0.314 increasing by increments of 0.001.
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than a mere mathematical curiosity, however: it is in fact a natural
generaization of the classica bivalent Liar paradox into the ream of
infinite-valued logic. The Chaotic Liar is one of the simplest and most
straightforward routes from dynamical semantics into semantic chaos.

Asafina examplein this section we want to introduce the Logistic Liar,
a relative of the Chaotic Liar with a dynamics that corresponds to the
logistic map, perhaps the most throughly studied function in nonlinear
dynamics.

We can get the Logistic Liar from the Chaotic Liar in two steps. The
Chaotic Liar asserts

This sentence is astrue as it is estimated to be false.

Successive values are calculated in terms of the algorithm

Xnep = 1 - Abs((l - xj - X]j.

The firg step toward the Logigtic Liar is to add an initial negation,
rendered either as'itisnot the case...' or 'itisfasethat...". Our standard

rule for negation, /~p/=1 —/p/, gives us the following sentence and
algorithm:

It isfalse that this sentenceisastrue asit is estimated to be false.
XXMM -a-AbsKIl-xJ-xJ).

For the Logidtic liar, however, we also take the second step of adding the
fuzzy hedge 'very":

It is very fdse that this sentenceis astrue as it is estimated to be fase,

or

It isvery much not the case that this sentenceisastrueasit is estimated to
be false.

As outlined, 'very' is standardly modeled in the fuzzy logic literature by
squaring the value that the sentence would have without it. Revised values
for the full Logigtic Liar will thus be given by

Xng = (1 - (1 - Abs((l - Xj - Xj))2

Figure 13 shows a developing web diagram for an initia value of 0.312.

It is clear from figure 13 that the dynamics of the Logistic Liar
correspond to an inverted form of the Logigtic or Quadratic equation,
standardly rendered as X,.i =4xn(I — X,). For valuesin the [0,1] interval
our agorithm for the Logistic Liar amounts to

XA = (1 -(1-Abs((l -xj-xj))>
= |-4x,(I-x,).

We might also obtain a non-inverted form of the Logistic by adding a
further negation outside of the scope of 'very"
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Figure 13 Progressive web diagram for the Logidtic Liar.

Itisnot very fse that this sentenceis astrue asit isestimated to befdse
Another routeto anon-inverted Logigtic isthefollowing. Onefairly literd
reading of the Chaotic Liar is

Thereisno difference between the degree of truth and the degree of fasty
of this sentence.

If we replace the notion of absolute difference with a notion of variance
borrowed from datistics’ where the variance between two vaues is the
square of their difference, we get the following sentence and dgorithm:

There is no variance between the degree of truth and the degree of

falgty of this sentence.

Xn+l=1-((1-X7)-Xn)?2

This dgorithm is precisdy equivaent to the Logistic Xnsi =4xn(l - xj.3°
With smdler values k used in place of the congtant 4, the Logigtic map

yieldsawidevariety of dynamic behaviors. Asshowninfigure 14a, it has

Chaos, Fractds, and the Semantics of Paradox
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Figure 14 The Logigtic equation with different parameters: () fixed pointsfor values< 3; (b)
acycleof period 2; (c) acycle of period 3; (d) full chaos corresponding to the Logistic Liar.

fixed-point attractors for values of k less than 3. Figure 14b shows an
example of a cycle of period 2. Figure 14c shows an example of a cycle of
period 3. According to a theorem by Sarkovskii any one-dimensional map
which has a cycle of period 3 will also have periods of al other cycles.
"Period three implies chaos."*°

Increasing the value of k yieldsthe well-known period doubling route to
chaos.** (Simply increasing k, however, does not simply make things more
complicated since there are still windows of periodic behavior.) With k=4
we have the full chaotic behavior on the [0,1] interval corresponding to the
dynamics of the Logistic Liar (figure 14d).

The Chaotic and Logigtic Liars, we think, are prime examples of sdf-
referential dynamics in infinite-valued logics more complex and more
intricately unstable than previously studied patterns of paradox.
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15 CHAOTIC DUALISTS AND STRANGE ATTRACTORS

Let us now turn to a somewhat more complicated class of examples,
involving not a single salf-referentiad sentence but two mutually referential
sentences with interacting semantics.

Ashasbeen clear since at |east the Middle Ages, beyond the Simple Liar
lies an infinite series of Liar cyclesin which indirect sdf-reference replaces
the direct sdf-reference of the Liar. The simplest of these is the Dudlist,
which Buridan presents as follows. 'The case may be posited that Socrates
utters only this [proposition! Tlato speaks fasdy’ and Plato, conversely,
only this proposition 'Socrates speaks truly' Then it is asked whether that
proposition of Plato is true or false. And similarly also, it could be asked
concerning Socrates' proposition."** Reduced to its essentials, we have one
sentence which says a second sentence is true, and a second sentence
which saysthe fird is fdse:

X: Yistrue.
Y: Xisfdse

The Liar-like pattern of reasoning should be clear: if X istrue, thenY is
true, but what Y clamsisthat X isfdse. Soif X istrue, X must be fdse.
Suppose, on the other hand, that X isfalse. Sncewhat Y saysisthat X is
false, Y must then betrue. But if Y istrue, then X must betrue, sincethat is
precisely what X claims. If X isfase, then, X must be true. The point, of
course, intheDudist asinthe Liar, isthat X istrueif and only if itisfase.
(Indeed either statement is true if and only if it is fase)

Here we want to concentrate on some infinite-valued variations on the
Dualist. Consider first two sentences that speak of each other in tones
reminiscent not of the Simple Liar but of the Chaotic Liar:

X: XisastrueasY.

Y: YisastrueasX isfase.

Sentence X clamsitisastrueassentence Y. Sentence Y, on the other hand,
clamsthat itisastrue as X isfdse.

What X saysisthat its truth value is that of Y. Using the Vvp schema,
then, we can compute the value of X as 1 minus the absolute difference
of thevalues of X and Y. Giveninitia estimates of x, and y, for X and Y,
we will thus be forced to a revised estimate x,.; for X in terms of the
algorithm

Xn+1=1-Abs(yn-Xn).

What Y says, ontheother hand, isthat it istrueto the extent that X isfase,
or that its value is the opposite of that of X. With the same x,, and y,,, then,
thevalue of Y at the next estimate will be given by a second algorithm:

Vn+ir-Absai-xJ-yJ.

Qiaos, Fractals and the Semantics of Paradox



Suppose that we start with an initial estimated value of 1/8 for each of
our two sentences. Likethe Chaotic Liar, the Chaotic Dualist will thenforce
us to a series of revised estimates. In the case of the Chaotic Dualist,
however, we will have a series of revised estimates for each of our
sentences—a sevies of revised estimate pairs.

Let us start by estimating that each sentence is 1/8 true. Step by step,
recalculation through our two Vvp schemas will force us to the series of
revised pairs of values numbered sequentialy in figure 15. Graphically
represented as Cartesian coordinates, these value pairs outline the
triangular upper haf of the unit square as they move toward a final fixed
point of (0,1).

Other pairs of initial values in the Chaotic Dualist give us periodic
behavior: initia estimates of 0.4 and 0.6, for example, give us a repeating
period of four points. Throughout the [0,11 interval, however, the
triangular upper half of the unit square remains as a persistent constraint.

Further variations of the Dualist lead us into the ream of strange
attractors. Wehave already considered some simple examplesof attractors.
A fixed-point attractor, for example, isapoint in phase spacetoward which
the system converges. A limit cycleisa closed loop representing a periodic
cycle. A strange attractor takes the form of a bounded region of chaotic
orbits in phase space.

Here, for example, consider a dight variation on the Chaotic Dualist—
one which uses the same two sentences as before but which employs a
dightly different pattern of reasoning with regard to them.
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X: XisastrueasY.Y: Y isastrueas X isfalse

Figure 15 Revised values for the Chactic Dualist with initial etimates of (1/8,1/8).
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What the algorithms we've used for the Chaotic Dualist above actually
capture is not merely our two sentences X and Y, however; they also
capture a particular pattern of reasoning. Starting with a pair of estimates
for X and Y, we have in effect calculated simultaneously arevised estimate
for X intermsof thoseinitial estimatesand arevised estimatefor Y interms
of those same initial estimates.

But one might think of the same two sentences in terms of a dslightly
different pattern of reasoning. When confronted with X and Y, one might
first calculate arevised estimate for the first sentence in terms of our initial
estimates, but then calculate a revised estimate for the second sentence in
termsof theinitial estimate for Y and the most recently revised estimate for
X. Inrecaculating the value for Y, in other words, one might use not the
initial estimate for X but the most recently revised estimate. Instead of
calculating the values for X and Y simultaneoudy, in short, we might
choose to calculate their values successively. This successive pattern of
reasoning can be represented simply by replacing one occurrence of X,
with X1 in our previous algorithms:

Xns1 = I-Abs(yn-Xn)
Vn+lr-AbsCa-X”"-yn).

For awiderange of initial values, thisrevision gives usavery persistent
attractor that we cal the 'origami attractor'. Initial values (0.1, 0.9), for
example, give us the developing pattern of successive values shown in
figure 16a

The persistence of such an attractor is clearly evident if we superimpose
graphs for arange of initial points. We can, for example, plot a graph for
initial values (0, 0) and then overlay that with the graph for (0, 0.1), then
with the graph for (0, 0.2), and so forth. Figure 16b shows the origami
attractor as it appears in such an overlay diagram for initia points (x, y)
wherex andy rangefrom O to 1inintervalsof 0.05. Here, for programming
convenience, we have used a smaller number of iterations for each input,
resulting in a degree of graininess. Nonethel essthe general convergence of
our points on trgjectories within a single well-defined attractor is clear.

Thethird variation of the Dualist we want to consider isoneinwhich the
first member of our Dualist pair is replaced with a sentence reminiscent of
the Half-Sayer:

X: X istrueto hdf theextent that Y istrue.
Y: Yisastrueas X isfase

Herethe second sentence, asbefore, saysthat it istrueto the extent that the
first sentenceisfase. Thefirg sentence, however, now saysthat itistrueto
Jul//the extent that the second sentenceis. Thisgivesusan entirely different
attractor.

Chaos, Fractals, and the Semantics of Paradox



Figure 16 Theorigami attractor for successive computations of the Chactic Dualist

Following the pattern of successive reasoning outlined above, we get the
following formulae for the Half-Dudist:

Xn+1=I'AbS(|/2.yn'Xn)i
yoH =1 - Abs((l -V H) - yp).

The attractor pattern for the Half-Dualist takes the general form of two
ellipses. For initia values (0.8,0.3) it emergesin the form shown in figure
17a An overlay diagram using initial values in increments of 0.1 shows
dlipses in much the same position but of differing sizes depending on
initial values. For some values, only a fourfold scattering of dots or a
central cross-pattern emerges (figure 17b).*

X: Xistruetohalf theextent that Y istrue.
Y:YisastrueasX isfalse

Figure17 Traedoriesfor the Half-Dualigt.
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16 FRACTALSIN THE SEMANTICS OF PARADOX

Our three variations—the Chaotic Dualist with a simultaneous calculation
of valuesfor X and Y, the Chaotic Dualist with successive calculation, and
the Half-Dudist—exhibit three quite different patterns of attractors.

Here we can also introduce another way of graphically analyzing the
semantic behavior of these threevariations: aform of computer analysis, it
turnsout, that revealsfractal images within semantics. Technically, fractals
are sets with a fractiona or non-integer dimension, one measure of which
is the Hausdorff dimension.* More intuitively, their essentia property is
simply that of sdf-affinity at descending scales. subsets or subsections of a
fractal object bear a compelling though often complex affinity to the whole.
The fact that fractal images appear within the semantics of paradox serves
to emphasize the deep and intricate complexity of the logical phenomena
a issue. One particularly intriguing form in which fractals emerge in the
semantics of paradox is within escape-time diagrams.

The algorithms we have introduced above for variations on the Dualist
give us revised values as series of ordered pairs. Now imagine those pairs
of values as points in the Cartesian plane, and envisage each series of
ordered pairs as tracing a path through the plane (figure 18).

Imagine also a chosen threshold of some kind. One quite natural
threshold is that shown in figure 18 as an arc a given distance from the
origin (0, 0). Since the origin represents 'double fasity' (a value of O for
both sentences), such a threshold would correspond to a certain positive
truth value for both of our sentences.

Different paths of points may require different numbers of iterations to
move beyond our chosen threshold. An escape-time diagram plots initial
points of paths accordingly, distinguishing them by color. Those points on
the planethat generate paths reaching the chosen threshold in oneiteration
are given one color, those pointsthat generate paths reaching the threshold
in two iterations are given another color, and so on. The result is a static
portrait which nonetheless captures some of the dynamic charcteristics of
regions of points under iteration through the functions at issue.

/>

Figure 18 Escapetime diagrams color coding for number of iterations to escape beyond a
given threshold.

Chaos, Fractals, and the Semantics of Paradox



X: XisastrueasY.
Y: YisastrueasX isfalse.

Figure 19 Escape-time diagram for simultaneous computation in the Chaotic Dualist.

Figure 19 shows an escape-time diagram for our first version of the
Chaotic Dualist in which revised values for X and Y are caculated
simultaneously. In this case we have picked a threshold of a little over 1
from the origin, or from 'double falsity’. What these intricately nesting
colored aresas reflect, then, are different numbers of iterations required for
different points (Le, pairs of values) to move beyond that semantic
threshold. This figure shows only the unit square, reflecting the fact
that semantic values for x and y within our logic are confined to the
interval [0,1]. Formaly, however, this image is merely the centra
section of the larger one shown in figure 20. To produce this larger
image we've simply expanded values for x and y a bit over a unit in
each direction.

To make the structure of these escape-time diagrams even clearer,
particularly in black and white, we can erase the colored areas so as to
emphasize merely the interfaces between areas. Here we plot only those
points at which the number of iterations required to reach our chosen
threshold changes. In such avariation figures 19 and 20 become the fragile
traceries shown in figure 21.

The clear fractal character of these images is of course visualy
compelling. Nonetheless what is being graphed within the unit square, it

Chapter



Figure20 A forma expansion of the Chagctic Dualist for valuesfrom —14 to +2.4.

should be remembered, is smply information regarding the semantic
behavior for different inputs of a pair of English sentences.

Figure 22 shows an escape-time diagram for our second version of the
Chaotic Dualist in which values for our two sentences are computed
successively. Thisisthevariation that gave usthe 'origami' attractor above.
(This diagram and the next are for values between —2 and +6.)

Our fina variation, the Half-Dualist gave us a double dlipse attractor.
Its escape-time diagram is shown in figure 23.

Despite the fact that our attractors for the three variations on the Chaotic
Duadist are so different (as different for example, as the origami and
double dlipse attractors) the general shape of their corresponding escape-
time diagrams are quite clearly related. We can't claim to understand all
features of these images, and further work is clearly needed. It is
nonethel esstempting to speculate that what oneis seeing in the similarities
of these images is a visual representation of deep similarities in the sdf-
referential semantics of these variants—similarities that might otherwise
remain hidden in the complex details of their semantic behavior.

Chaos, Fractals, and the Semantics of Paradox



Figure 21 Traceries for the Chaotic Dualist, showing points at which numbers of ex
iterations change.
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Figure22 Sequentia computation of the Chaotic Liar escape-time diagrams corresponding
to the origami attractor.

X: Xistrueto haf theextentthat Y istrue.
Y:Yisastrueas X isfalse.

Figure23 TheHaf-Dudist.

Thereare, of course, an infiniterange of further variationson the Dualist.
One family of such variations—the Fuzzy Dualiss—seems worthy of
special note.

Condder a pair of statements obtained from the Chactic Dualist by
appending "It is very false that" to thefirst of our satementsand ‘It is
fairly false that" to the second. Tredting ‘it is false thaf as a form of
negation, and using fuzzy hedges as before to modify the value of the
sentence as a whole, this gives us the following Fuzzy Dualit pair:

X: ltisvery falsethat X isastrueasY.

Chaos, Fractals, and the Semantics of Paradox
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Figure24 Attractorsfor the Fuzzy Dualist, calculated simultaneously fleft) and sequentially
(right).

Y: ltisfairly fasethat Y isastrueas X isfase.
X""a-a-Absfo-x7))2
Yl =Yi-O-Absai-xJ-yJ)

For a simultaneous caculation of revised values, this gives us the
persistent attractor shown in an overlay diagram in the first frame of
figure 24. A sequential calculation will use these dlightly different
algorithms:

x"hd-d-Absfo-xJ))?
Yni =71 - (1 - Abs((l - XnH) - yn))

This gives us the quite different overlay diagram shown in the second
frame of figure 24. Figure 25 shows the corresponding escape-time
diagrams for this Fuzzy Dualist in the two forms of computation, here
using a threshold of 0.8 from the origin.

17 THE TRIPLIST AND THREE-DIMENSIONAL ATTRACTORS

Beyond the Dualist lie various Tripligt variations, in which not two but
three mutually referentia sentences speak of one another's values. With
three values in place of two, of course, our attractors leave the two-
dimensional plane and take the form of three-dimensional logica objects.
Here again we'll simply offer a few examples.

Consider, for example, a trio of sentences each of which says that its

. valueis hdf the value of the difference between the other two. For awide

range of values, this gives us an attractor we cal the 'Minerva'. Seen from
the perspective of just two dimensions, it develops in the form shown in
figure 26. Figure 27 shows alessfully iterated form of the Minervarotated
in three dimensions.
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Figure25 Escape-timediagramsfor the Fuzzy Dualist calculated smultaneoudy (top) and
sequentialy (bottom).

Consider a similar trio of sentences each of which says that its value is
one-fourth the difference between the others. Here a braided attractor
appears. Seen from the perspective of just two dimensions, it develops as
shown in figure 28.

Figure 29 shows a smplified version, rotated in three dimensions.

Corresponding to the two-dimensional escape-time diagrams of the
Chaotic and Logigtic Dualists will be three-dimensional escape-time solids
for. Triplist variations. Here each point in a three-dimensional space is
colored in terms of how many iterations are required for the initial set of
values (X, y, z) represented by that point to reach a certain distance from
(0, 0, 0) under iteration. Figures 30 and 31 show escape-time diagrams for
the attractors above.*

Chaos, Fractals, and the Semantics of Paradox



Xnel = 1 - Abs(X,-1/2 ¢« Abs(y,- zj)
Yoti = 1 - Abs(y,-1/2 ¢ Abs(x, - Z)
zni = 1-Absfz,-1/2+ Abs"-y,))

Figure26 TheMinerva

Figure 27 The Minerva rotated in three dimensions.

As a final image we offer a three-dimensional escape-time solid for a
Fuzzy Triplis. Here each sentence says that its value is different from the
claim that the other sentences have very much the same value. Expressed
in terms of the biconditional:

X: ~(X«>itisverytruethat Y-0-2)
Y: ~(Y«»itisverytruethat X«*Z)
Z: ~(Z«»itisverytruethat X«»Y)
The escape-time solid for the Fuzzy Triplig is shown for two angles in
figure 32.
In this chapter we have attempted to introduce, for the most part by

example, arange of dynamical phenomenathat appear in clear visual form
with computer modeling of sdf-reference in infinitevalued and fuzzy
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Xpsi = 1-Abs(Xn-1/4« Abs(y, - zj)
Yt = 1- Abs(y,-1/4+ Abs(Xn - Z])
Zni = 1-Abs(z, -1/4+ Abs-7,))

Figure28 The Thunderbird.
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Figure29 The Thunderbird rotated in three dimensions.

Figure 30 Escape-time solid for the Minerva
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Figure31 Escape-time solid for the Thunderbird.

Figure 32 Escape-time solid for a Fuzzy Triplist.

logics. Thisisintended, however, asmerely an introduction; agreat deal of
further work remainsto bedone. Thereismuch even in theimages offered
above that we can't yet claim to understand fully.

The promise of such an approach, of courseg, isthat images such asthese
may have someimportant thingstotdl us: thefact that fractal imagesand
drange attractors emerge so naturally from an infinite-valued semantic
analysis of paradox, for example, seems not only to offer some grange
beauty but also an intriguing promise of some deeper truths. Computer
modeling of this sort affords a link—an immediate visual link—between
logic and geometry. It isthereforetempting to speculate that what such an
approach may promisein thelong run isthe possibility of arange of logical
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and metaogica results dreamt of in geometrical imagery and proven by
geometrical means.

18 PHILOSOPHICAL AND METALOGICAL APPLICATIONS

In the next chapter we want to extend the application of some of the
modeling tools introduced here beyond semantic dynamics to certain
aspects of epistemic dynamics and certain sorts of epistemic crises.

The basic idea is this. Suppose that you receive information, of various
shades of accuracy, from a number of sources with different track records
of reliability. Some of the information you receive from these sources may
be fairly straightforward. But some information received may itsdf be
about the accuracy of other information or even about the genera
reliability of some of your other sources. This picture of conflicting
information from conflicting sources, it can be argued, characterizes our
epistemic lives quite generally. Information sets within such a model, we
will want to show, can exhibit dynamic and chaotic phenomena quite
similar to those introduced above.

In this final section we also want to note some metalogical applications
related to the work above. We present these results in a standard form
which makesit clear that they could, in principle, have been arrived at and
proven without the work in computer modeling outlined above. Here we
would emphasize 'in principle, however. We know full well that our own
routetotheresultslay essentially throughwork in modeling; wewould not
have focused on these results in any other way.

Within a classically bivalent framework, the Strengthened Liar has long
been the bane of attempts to solve the simple Liar. If one says that the Liar
is neither true nor fase but has some third semantic value C (neither-true-
nor-false, for example), oneisimmediately confronted with a Strengthened
Liar that seems to embody all the old problems anew:

This sentence is either false or has semantic value C.

If true, the sentence is untrue. If it has either of the alternative values, on
the other hand, it appears it must be simply true. Aswe noted above, the
Strengthened liar can aso be extended into infinite-valued logics in ways
that seem to indicate that fixed-point 'solutions’ will be similarly
inadequate as general treatments of sdlf-referential paradox.

Here we want to use the genera structure of the Strengthened Liar
together with some of the work above to motivate limitative theorems
regarding the forma undefinability and effective undecidability of chaos.
The deep structure of these results corresponds to that of a Strengthened
Liar combined with the Chaotic Liar. We cdl the following sentence the
Strengthened Chagtic Liar:
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Either the boxed sentence has a chaotic semantic behavior or it isas
true as it estimated to be fase.

Here we will assume that having a chaotic semantic behavior, as defined
strictly above, is itsdf a bivalent afar. But then does the Strengthened
Chaotic Liar have a chaotic semantic behavior or not? If it does have a
chaotic semantic behavior, it will be completely true in virtue of its first
digunct. But the semantic behavior of a sentence that is completely true
will clearly not qudlify as chaotic—it will have the constant value 1
regardless of previous estimates. If the Strengthened Chaotic Liar does not
have a chaotic semantic behavior, itstruth-value will depend entirely on its
second digunct. But the semantic behavior of that second digunct will
mimic the behavior of the Chaotic Liar, which we know to be semantically
chaotic. We have derived a contradiction in either case.

This paradox can be used—much as Godel used the Richard paradox, as
Tarski used the Liar, and as Chaitin used the Berry paradox—to motivate a
class of limitative theorems regarding chaos itsdf.

We offer a firgt form of the basic result using Godel numbering and a
form of diagonalization. Here we will be concerned with formal systems
intended to deal with real arithmetic and adequate for number theory.
Systems of red arithmetic include, for example, Rogers's system R, taken
from Montague's formulation and equivalent to Tarski's theory of real
closed fields* The condition 'adequate for number theory' requires
merely three additional axioms for 'is an integer'. We concentrate on
systems of real arithmetic because our target islimitative results regarding
chaos theory; chaotic functions are paradigmaticaly defined on the reals.

Formal systems of real arithmetic such as those at issue, however—
precisely because they remain forma systems—contain only denumerably
many expressions and thus cannot contain as many numerals as there
are reals.*” One difficulty this creates is that the notion of representation
of a function that is standard within number theory cannot be carried
over to real arithmetic without qualification. Within number theory,
an n-place function f on natural numbers is said to be represented by
a formula F(xi, ..., Xy Xp+i) just in case, for any natural numbers
Pi, ...,Pn,j,iff(pi,...,Pn)=j/

I" V*n+|(F(H> .ooo?” . *n+|) folad *n+| :J)

wherepi, ..., ppandj are numeralswithin the system at issue for pi, ...,
p. and j respectively.”® Within formal systems for the reals, on the other
hand, there simply won't be numeralspi, ..., pnandj for al real numbers
pi, ...,pnrandj.

One way to accommodate this cardinality problem is to follow Tarski's
1931 work on the definability of sets of reals. We continue to address
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functions genuinely on the reals, but we use the notion of functions
determined within formal systems for real arithmetic instead of a notion of
functions represented within such systems. Tarski outlines'definabl e’ sets of
realsasfollows. "A set X isadefinable set (or adefinable set of order n) if there
is a sentential function (or a sentential function of order n at most) which
contains some variable of order 1 as its only free variable, and which
satisfies the condition that, for every real number x, x e X if and only if x
satisfies this function/*® Using 'determined' in place of Tarski's 'definable
for the sake of clarity, and treating one-place functions on the reals as sets
of ordered pairs of reals, we can similarly speak of afunction x on thereals
as determined by a functional expression f just in case, for every pair of
reals x, xe X if and only if x satisfies f°

With this background, we can offer a first form of limitative result
regarding formal treatment of chaos: given any consistent formal system of
rea arithmetic T adequate for number theory, the set T of Godel numbers
of expressions that determine functions f(x) chaotic on theinterval [0,1] is
undefinablein T.

Theorem 1A on the formal undefinability of chaos: Thereis no function ¢
representable in t such that

1 if#f(x)eT

c(#(x)) = .
D= o ifseogr.

Proof Suppose, for a proof by contradiction, that such a function c is
represented in T. There will then be a class of expressionsthat determine a

class of functions g such that, for a fixed Godel number #fo(x) of an

expression determining a one-place function,

_ -(y-y) ifc(#o(x)) = |
9 = 1 _ Abs((l — y) — y) otherwise.

Different numbers #fo(X) in such a schema will give us different
functions g, of course. If #f¢(x) is the Godel number of an expression that
determines a function that is chaotic on [0,1], assuming ¢, we will have a
g(y) that will simply give us a constant series of Is for al iterations. If, on
the other hand, #fo(x) is the Godel number of an expression that
determines a function not chaotic on [0,1], assuming ¢, we will have a
g(y) that givesus 1 — Abs((I — y) —y) asoutput. That formula, of course,
is the formula of the Chaotic liar, chosen here precisely because it is
paradigmatically chaotic on thereal interval [0,1].

On the assumptions above, by the diagonal lemma, there will be an
expression that determines a function g, where #G(x) isthe Godel number
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of the expression at issue:

Ji-(y-y) ifoHG(X» = i
11 - Abs((l -y) -y) otherwise.™

But will G(y) be chaotic on theinterval [0,1] or not?

Suppose that it is. In that case, on the assumption of a represented
function ¢, and since #G(x) is the Godel number of an expression that
determines G(x), it will be the case that c(#G(x)) = 1. By the specifications
of G, then, G will give us a constant output of Isfor any y. In that case G
will clearly not be chaotic on the interval [0,1], and we have derived a
contradiction.

Suppose instead that G(y) is not chaotic on [0,1]. Assuming function ¢
represented, c(#G(x)) =0. By the specification of G, then, G gives us
1— Abs((l —y) —Yy). But Gwill then bechaotic ontheinterval [0,1]; here
again we have derived a contradiction.

Within any consistent system of real arithmetic adequate for number
theory, then, there can be no function c represented. It follows that within
any such system the set T of Godel numbers of expressions that determine
functions f(x) chaotic on the interval [0,1] is undefinable in the formal
sense. .

As related results, it should be noted, T will be nonrecursive and
undecidable. Assuming Church's thesis, then, there can be no effective
method for deciding whether an arbitrary expression of asystemsuchasT
determines a function chactic on the interval [0,1].

We have offered thisfirst approach to limitative results regarding chaos
through Godel numbering and diagonalization simply because these may
be somewhat more familiar to philosophical logicians. A second approach,
structurally similar but somewhat more el egant, can be sketched following
Rice's Theorem in recursion theory.>

Theorem |B on the non-calculability of chaos: Let C be the set of chaotic
functions defined on the set of partially recursive functions F on the real
interval [0,1]. Assume that toc[l - Abs((I - x) - x)] isin C but that Xx]l],
the constant function identical to 1, is not in C. Then the index set 1(C) =
{i: f, € C} isnot effectively calculable.

Proof Assume, for proof by contradiction, that the index of chaotic
functionsis Ardefinable. We havethat Xx[| — Abs((I — x) — x)Jissomef,in
C and that Xx[I] is some f. not in C. Then we may define the diagonal
function d(x) to be/, if ix e C, and d(x) to bei otherwise. By the fixed-point
lemma, there will be ak such that i*=fd#). Hence, by the definition of d(x),
we have fjteC if and only if d(fc)=;; but since ifix) is the non-chaotic
constant functionidentical to 1, wehavefc € Cif and only if f* £C, whichis
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a contradiction. Contrary to our assumption, therefore, 1(C) is not X-
definable. It follows by Church's theds that the index set of chaotic
functionsis not effectively calculable. .

In onetradition, the paradoxesaretreated not assimple puzzleswaiting
for solution but as possible keys to a better under standing of incomplete-
ness phenomena and semantics in general. Here, using the tools of
computer modding and dynamical systems theory, we have attempted to
extend that tradition into the realm of infinite-valued logics.

Paradox is not illogicality, but it has been a trap for logicians: the
semantic paradoxes look jugt a little smpler and more predictable than
they actually are Even in some of the most recent and logically
sophisticated work on cyclical regularity in the semantic paradoxes, ther
deeper and more complex semantic patterns have remained hidden. Our
attempt, rather than a search for semantic stability or smple patterns
within the paradoxes, has been to offer some glimpses of the infinitely
complex, chaotic, and fractal patter nsof ssmanticinstability that havegone
virtually unexplored.
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Notes on Epistemic Dynamics

We recelve a variety of messages, dl claiming to be genuine information,
from avariety of sources. Asaresult, we have arange of different and often
conflicting inputs. Some inputs give accurate information, or at least give
accurate information under certain conditions or some of the time. Some
do not. Our job as epistemic agents is to tell the difference: to figure out
what information to accept as genuine, to what extent, and from what
SOUrcCes.

This genera epistemic predicament appears in classical philosophical
form in terms of questions regarding input from different senses.
Montaigne, for example, has us

... think of the arguments, consequences, and conclusions which we infer
by comparing one sensewith another.... We can seefrom that how vital it
would be for our knowledge of truth if we lacked another sense, or two or
three senses. We have fashioned a truth by questioning our five senses
working together; but perhaps we need to harmonize the contribution of
eight or fen senses if we are ever to know, with certainty, what Truthisin
essence.

On March 2,1693, William Molyneux sent Locke a question regarding
inputs from different senses. Locke included Molyneux's question, with
his answer, in the second edition of An Essay Concerning Human Under-
standing:

...I shal here insert a problem of that very ingenious and studious
promoter of real knowledge, the learned and worthy Mr. Molineux, which
he was pleased to send me in a letter some months since; and it is this—
"Suppose a man born blind, and now adult, and taught by his touch to
distinguish between a cube and a sphere of the same metal, and nighly of
the same bigness, so asto tell, when he felt one and the other, which isthe
cube, which the sphere. Suppose then the cube and sphere placed on a
table, and the blind man bemadeto see: quaere, whether by hissight, before
hetouched them, he could now distinguish and tell whichistheglobe, which
the cube? To which the acute and judicious proposer answers, Not. For,
though he has obtained the experience of how a globe, how a cube affects
his touch, yet he has not yet obtained the experience, that what affects his
touch so or so, must affect his sight so or so; or that a protuberant anglein



the cube, that pressed his hand unequally, shall appear to hiseye asit does
in the cube." —I agree with this trunking gentleman, whom | am proud to
cal my friend, in his answer to this problem; and am of opinion that the
blind man, at first sight, would not be able with certainty to say which was
the globe, which the cube, whilst he only saw them; though he could
unerringly name them by his touch, and certainly distinguish them by the
difference of their figures fet.?

We can imagine an even more radical Molyneux-like situation in which
the data from our senses conflict: in which something fedslike a cube and
yet looks like a sphere. A range of contemporary split-brain studies, on
patients in which the corpus callosum hasbeen cut, involvesatechniquein
which conflicting information of thistypeis sent to the two hemispheres of
the brain.® Because the hemispheres are communicatively isolated, two
incompatible responses are elicited: averbal response controlled by the left
hemisphere, for example, contradicts a motor response controlled by the
right. Of particular interest is the individual's often smooth incorporation
of theseincompatible responses, asif both had been intended, when asked
to explain his behavior.*

The case of different messages from different senses is only an
immediately perceptual instance of a quite general epistemic predicament,
however. Our epistemic lives are filled with different and often conflicting
inputs: inputs of conflicting experimental data, for example; of incompa-
tible meter readings; of contradictory eyewitness testimony; of contra-
dictory messageswithin human relationships; of rival claimsor analysesor
interpretations from rival texts or by rival theorists; of conflicting
approaches from different disciplines; of warring religious, scientific, and
political authorities. Conflicts appear between such levelsaswell aswithin
them. Our job as epistemic agents is to make sense of it all: to sort the
conflicting messages into the credible and the incredible, the more accurate
and the less accurate, those messages that we act upon and those that we
ignore.

The most extreme cases of informational conflict appear as motivations
for Pyrrhonistic skepticism from Sextus Empiricus on. In the Apology for
Raymond Sebond, for example, Montaigne repeatedly fuds the fires of
skepticism with lists of contradictory authorities:

Thales was the firg to inquire into such matters: he thought God was a
spirit who made all things out of water; Anaximander said that the gods
are born and die with the seasons and that there are worlds infinite in
number; Anaximenes said God was Air, immense, extensive, ever moving;
Anaxagoras was the first to hold that the delineation and fashioning of all
things was directed by the might and reason of an infinite Spirit; Alcmaeon
attributed godhead to the Sun, the Moon, the stars and the soul;
Pythagoras made God into a Spirit diffused throughout al nature and
from whom our souls are detached; for Parmenides God was a circle of
light surrounding the heavens and sustaining the world with its heat_
Chrysippus made a chaotic mass of al these assertions and included
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among his thousand forms of gods men who had been immortalized.
Diagoras and Theodorus bluntly denied that gods exist_

So much din from so many philosophica brainboxes! Trust in your
philosophy now! Boadt that you are the onewho has found the lucky bean
in your festive pudding!®

A skeptical passage from Humein thisregard reads asif written by Kafka:

The intense view of these manifold contradictions and imperfections in
human reason has so wrought upon me, and so heated my brain, that | am
ready to regject al belief and reasoning, and can ook upon no opinion even
as more probable or likely than another. Where am I, or what? From what
causes do | derive my existence, and to what condition shall | return?
Whose favour shall | court, and whose anger must | dread? What beings
surround me? and on whom have | any influence?

Such extreme cases of informational conflict and resultant epistemological
crisis are not merely phenomena of philosophical skepticism. Alasdair
Maclntyre notes the ubiquity of such crisesin ordinary life

What is an epistemological crisis? Consider, fird, the situation of ordinary
agents who are thrown into such crises. Someonewho has believed that he
was highly valued by his employers and colleagues is suddenly fired;

someone proposed for membership of a club whose members were all, so
hebelieved, closefriendsisblackballed. Or someonefdlsinloveand needs
to know what theloved onereally feds, someonefallsout of loveand needs
to know how he or she can possibly have been so mistaken in the other....

It is in such situations that ordinary agents who have never learned

anything about academic philosophy are apt to rediscover for themselves
ye(;si ons 01; the other-minds problem and the problem of the justification of

induction.

In this chapter we will not deal with full skepticism or full
epistemological crisis. But we will take serioudy the idea that our general
epistemic predicament is one in which we have to make sense of
conflicting information from various inputs. One characteristic of our
genera predicament which makes the task particularly difficult—a
characteristic emphasized by both Hume and Macintyre—is that some
of the messages received from different sources are themselves directly or
indirectly about either the accuracy of other messages or the genera
reliability of other sources. One of our experiments may indicate that an
important variable was not in fact held constant in an earlier test, for
example; if oneof our metersisright, another of our metersisonly roughly
and intermittently reliable; two of our friends are unanimous in telling us
that another of our friendsisno truefriend at dl; against the background of
one dtatistical measure the data from another is highly misleading; one of
our investigators in the field claims that the report shortly to be filed by
another field investigator isinaccurate; one of our secret agentsreportsthat
another has defected and his reports are not to be trusted, though it may in
fact be that first agent who has defected and the second who is sending
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reliable reports; each of a handful of respected authorities warns us that
trust in the othersis misplaced. One of our aimsin what followsistotry to
model this type of mutual reference within conflicting sources of
information. Clearly some of the tools used in chapter 1 for modeling
tangled reference in the semantic case will be applicable in the epistemic
case aswell.

In the simplest cases of informational conflict, we may finaly decide that
one input is simply to be discounted. We decide that one batch of data
must have been tainted, for example, or that the scientistsareright: you can
never trust politicians. But there is also an enormous range of more
complicated ways that we use to deal with informational conflict. We may
decide that batches of data that initially appeared to be contradictory are
not—what they indicate instead, we decide, are real differences that
depend on subtle changes in experimental conditions. We may decide that
rival interpretations are both partially true, or capture something of the
truth, that conflicting authorities are addressing different and incommen-
surable questions, and the like. Deliberation as to how to deal with a
particular case of informational conflict, moreover, may not be instanta-
neous. Epistemic deliberation may rather display a complex dynamics: we
may change our minds repeatedly but systematically, going through a
series of revised 'takes’ on the situation. Nice attempts at axiomatizing
some of the simpler concepts in the dynamics of belief change, including
expansion of bdief sets, contraction, and a form of revision in which
minimal changes are madeto makeway for expansion, appear in achain of
recent work stemming from van Benthem and Gardenfors.? Veltman
makes the intriguing further proposal in his 'updating semantics’ that the
meaning of a sentence should be construed not in terms of its truth-
conditions but its epistemic dynamics: "you know the meaning of a
sentence if you know the changes it brings about in the information state
conveyed by the sentence/”® The work discussed here, though motivated
by the same basic convictions about the philosophical importance of
epistemic dynamics, starts from an independent base and offers an
importantly different approach. Our attempt, in which shades of accuracy
and tangled reference play a much more fundamenta role, is to offer at
least a starting model for some of the wilder and more complex dynamical
phenomena of informational conflict.

Findly, it should be noted that there are some cases in which we may
decide that informationa conflict is not something that is going to be
resolved at al: that it is something we're going to have to live with. One
can imagine extreme cases of informational conflict that are genuinely
unlivable, approaching the abstract philosophical world of the skeptic or
the al-too-immediate world of the institutionalized paranoiac. In less
extreme cases, however, informational conflict may be recognized to be
irresolvable and yet nonetheless manageable. We certainly do evolve
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strategies of containment and control for dealing with some varieties of
epistemic chaos, and this too should be reflected in the model.

21 TOWARD A SMPLE MODEL: SOME BASIC CONCEPTS

The model we have to offer, designed to deal primarily with cases of
tangled epistemic reference, is ultimately avery simple one. Here we want
to outline it carefully, piece by piece, in order to make clear both its core
motivation and some of its artificialities.

Our model will ultimately bewritten in terms of a continuum of degrees
of estimated accuracy for different reports from different epistemic sources.
It helps to start with a simple sketch of our epistemic predicament,
however, drawn in terms of simple bivalent truth and fasty.

At times, we can tell the truth-value of what someone has told us from
internal evidence alone. If what he's told us is the following, for example,
we can be sure that what he's said is false:

This statement is both true and false.’’

At other times we can tell from internal evidence that what someone has
told usis true:

This statement is not both true and false*

There are also stranger cases, of course. In some cases, it seems clear that
internal evidenceisthe only evidence that will be relevant—that issues of
truth and falsity won't be settled by additional information from outside—
and yet it is also clear that internal evidence is insufficient to decide the
matter. One such caseis the Truth-teller, outlined in the previous chapter:

This sentenceistrue.

In the strangest cases of all, internal evidence seems adequate to convince
usthat neither of our standard values can be consistently assigned: suchis
the case of the classical Liar.

Sdf-reference as simple and explicit as these extreme cases, however, is
epistemically rare.'” The great bulk of our knowledge concerns situations
inwhich it is clear that internal evidence is not al that counts:

1. The solid crust of Venusis less than 100 meters thick.

To establish the truth or falsity of (1) we clearly need more than internal
evidence. What we rely on, of course, is information gathered directly or
gleaned by inference from further sources. Patterns of inference involved
can be very complicated and are in many cases poorly understood—
inference to the best explanation, for example, or inference guided by the
simplest available theory.

What we want to emphasize here is that the larger patterns of inference
even for cases such as (1) will often involve questions of consistency and
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internal coherence—questions of internal evidence. Though rarely sdf-
referential in any simple sense, these larger patterns of inference also quite
generaly involve larger sets of claims with tangled patterns of chalenge
and support. The further information from which we infer (1), for example,
may consist of ablurred image through a telescope, mechanical pen marks
on paper reflecting spectroscopic analyses, transmitted impulses decoded
as video photographs from satellites, or a weighted combination of all
these and more. It may beinformation that we ourselves gather, or that we
accept from others. For any caselike (1), however, it seemsinevitable that
the pattern of epistemic support will involve an epistemic predicament of
competing information. Woven into that web of epistemic support will be
data regarding other data and claims regarding the validity of other
claims—claims as simple as the observation that we should not be swayed
by the fact that the whole of Venus appears smaller than amillimeter to the
naked eye, for example, or as complex as corrections for red shift. In any
such casewewill aso berelying on information regarding the reliability of
general sources of information—information as simple as the clam that
what purport to be photographs from a satellite have not been faked, or as
complex as the theoretical support for spectrographic analysis. The great
bulk of our knowledge has the look of (1), non-self-referential and for
which internal evidence alone is insufficient. But even that knowledge
relies on larger patterns of epistemic support which are referentidly
tangled, essentially incorporating information regarding the accuracy of
other information, and of source claims regarding the general reliability of
other sources of information.

This picture of our epistemic predicament is reminiscent of Quine's web
of belief, "impinging on experience at its edges,” though here phrased
in terms of lines of epistemic support rather than logical connections
and with an emphasis on the patterns of tangled reference within such a
web:

The totality of our so-caled knowledge or beliefs, from the most casual
matters of geography and history to the profoundest laws of atomic
physics or even pure mathematics and logic, is a man-made fabric which
impinges oh experience only along the edges. Or, to changethefigure, total
scienceislike afield of force whose boundary conditions are experience. A
conflict with experience at the periphery occasions readjustments in the
interior of the field. Truth values have to be redistributed over some of our
statements. Reeval uation of some statements entailsreevaluation of others,
because of their logica interconnections—the logica laws being in turn
simply certain further statements of the system, certain further elements of
the fidd. Having reevaluated one statement we must reevaluate some
others, which may be the statements logicaly connected with the first or
may be the statements of logical connections themselves.*®

The epistemic picture we've offered here, however, is also deliberately less
contentious than Quine's. one can see the appropriateness of the web
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metaphor without daiming that there can be no anaytic connections or
points of pure epistemic foundation within the web.

Before leaving bivalence behind we should note examplesin which itis
not single sdf-referentia sentences but mutually referential sets of
sentences that allow us to establish truth values internaly. Consider for
example a case from Anil Guptain which two people, A and B, make the
following claims:

Al: Venusisnot aplanet but a star.

A2: All of the claims made by B are true.

A3. At least one of the clams made by B isfase.
Bl: Venusisnot a star but a planet.

B2: At most one of the claims made by A istrue.

Which of A's claims are true? As Gupta points out, we reason quite
naturally in thefollowing way: Since A2 and A3 contradict each other, they
cannot both be true. We know on independent grounds that Al is fase.
Thus at most one of A's claims can be true, and therefore B2 is true. We
know on independent grounds that Bl is true, and thus know that all of
B's cllaims are true. It must therefore be A2 that is true and A3 that is
fase.

Such cases, though till restricted to questions of internal evidence and
dtill clearly artificial, come one step closer to the tangled patterns of
epistemic support and denial that we have sketched as defining the general
human predicament. Patterns of mutual reference, both to the accuracy of
claims and the general reliability of information sources, will be one of the
phenomena that we want our model to capture.

In this chapter we present an epistemic model in terms of degrees of
accuracy. As indicated in chapter 1, the assumption of bivalence can be
challenged even for truth. Accuracy, on the other hand, seems on the face
of it a matter of degree: we ordinarily think of one piece of information as
more accurate than another, of a measurement or a piece of data as highly
accurate, of some statement or clam as hopeessly and uselesdy
inaccurate. A natural first step, then, is to model degrees of accuracy
using valuesin the [0,1] interval. For purposes of epistemic modeling we
can think of clams as having a very respectable accuracy of 0.9, for
example, or apitifully low accuracy of 0.1. Again asin chapter 1, even this
first modeling assumption limits us to cases in which we can speak of both
complete accuracy and complete inaccuracy. Although not all cases satisfy
that assumption, if s not hard to find awide range of cases that do—cases
of accuracy in compass orientation, in time of day, in angles of alignment,
in percentage or proportion, and the like. A further question for modeling
appears even in simple compass cases, however. Consider

Theisland lies due north of our present position.
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If the idand does indeed lie due north, we can happily accord the
statement an accuracy of 1. If the island lies due south, the statement
couldn't be farther off—and thus gets an accuracy of 0. If the idand is
somewhere in between—18° east of north, for example—then the
statement is clearly inaccurate to some degree. But how much?

The simplest answer isto mark off the compassat regular intervals. If the
island is 18° east of true north, our statement is assigned an accuracy of 0.9.
If theisland is directly west, the statement that it lies due north would be
considered haf accurate—precisely as inaccurate, intuitively enough, as it
would have been were the island due east. In even this simple compass
model there are clearly more complicated ways of treating relative
accuracy. We might for example square proportions, so that a statement
that is 18> off would be treated not as 0.9 accurate but ((180-18)/
180)?=0.81 accurate. On that measure, a report 90° off in either direction
would be assigned an accuracy of only 1/4. For our purposes, however, we
need not deci de between such alternatives; it will be enough to assume that
some consistent way of speaking of relative accuracies is in place.

Further complications should be noted. Measures of accuracy quite
plausibly depend upon context: we may treat a statement about the
direction from which the swallows arrive as incredibly accurateif it isoff a
mere five degrees, for example, although we would reject as unacceptably
inaccurate a report, off by precisely the same five degrees, of a torpedo
approaching. This is one of the features that makes comparison between
different cases problematic. It may be only fairly accurate to say that lunch
is served as nhoon, just as it may be only fairly accurate to say that a story
was carried by al the mgor networks. But suppose the story was in fact
carried by six of seven mgjor networks. Just when would lunch have to be
served for the first statement to be as accurate as the second in such a
case? All that can be said hereis that our approach in modeling will be to

? B°

Figurel A compassmodd of accuracy.
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abstract from problems of contextual sensitivity and cross-context
comparison. This limitation can be enforced in examples if we think of
all the statementswithinin agiven set asbeing of the sametype (degrees of
isand-location, for example) and considered in the same context.

All modelsinvolvelimitations; that iswhat makesthem models. Thereis
therefore no shame in admitting that ours is a deliberately smplified
picture of degrees of accuracy for a carefully restricted class of statements.
What is of interest is whether even such a simple model is adequate to
capture important aspects, including dynamic aspects, of situations
involving conflicting and referentially tangled information.

Within both a compass model of accuracy and an interval model more
generaly it seems natural to model the inaccuracy of a statement p as
1 - /p/, where/p/ istaken asits degree of accuracy. Within such a model
we can moreover think of predicates as coming in matched pairs of
opposites. 'north' and 'south’, '18° and 198°, 'noon' and 'midnighf,
‘parallel' and 'perpendicular'. Negation within such a model can then be
treated as an 'opposite-operator': to add a negation to a sentence is to
change its basic predicate to. its paired opposite. Wherep is

The swallows arrive at Capistrano from the northwest,

for example, the claim that the swallows do not arrive from the northwest
can be taken as

The swallows arrive at Capistrano from the southeast.

Our claimisnat, of course, that negation only functionsin thisway. Within
the modeling constraints specified above, however, such a reading of
negation allows aformal treatment of accuracy parallel to that outlined for
truth in the previous chapter and familiar from multivalued logics and
probability theory. Construing negation as an opposite-operator, we can
treat the accuracy of a claim's negation as 1 minus the accuracy of the
origina claim. Using /p/ here to indicate not a truth-value but an
accuracy-value for p,

[~pl =1-Ip/

A conjunction will only be as accurate as its least accurate conjunct, and
a digunction as accurate as its most accurate digunct:

[(p&q)/ = Min{/pl,/ql}
/(pvq)/ = Max{/pl/,/ql}

Another important tool which we will borrow from the previous chapter
and adapt to the concept of accuracy rather than truth is the Vvp schema.
Suppose a statement p is accurate to degree 0.8. How accurate then is a
second-order accuracy claim to the effect that p is only haf accurate? In

what follows we use 'Vvp' to represent the proposition that a statement p
has an accuracy of v. Intuitively, a Vvp statement about the accuracy of
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another statement p will be as inaccurate as it is df the target—as
inaccurate as the real accuracy of p differs from the attributed accuracy v.
Our Vvp schema from chapter 1 can thus be reinterpreted in terms of
accuracies.

IVvpl = 1-Abs(v-/p/)

The fina elements we will carry over to the epistemic context are the
algorithmic treatments of linguistic hedges found in the literature of fuzzy
logic. 'Very' wewill treat in terms of asquaring function; 'fairly” in terms of
square roots. In the case of accuracies/ as in the case of truth, al that we
want to claim is that such a model does seem to capture roughly the right
features of such linguistic hedges—stronger 'very’ statements must pass
more severe tests, weaker fairly’ statements the contrary.

With these components of a simple model of accuracy in hand, let us
return to the sketch of our epistemic world with which we began. What
does our epistemic predicament look like when characterized in terms not
of bivalent truth and falsity but rather of a continuum of degrees of
accuracy?

Much that was said for the bivalent case still holds. Our job as epistemic
agents is il to gauge the accuracy of information from a variety of
incoming sources—though perhaps to gauge it in terms of relative degree
of accuracy—and we will in general have to do so in terms of competing
claims regarding both the accuracy of particular pieces of information and
the general reliability of particular sources of information. As in the
bivalent case there will be statements capable of evaluation on interna
evidence aone, though the dynamics of evaluation may be importantly
different. Consider for example an analogue of the Half-Sayer of chapter 1.

This statement is haf as accurate as it is estimated to be.

Though written here in terms of accuracy rather than truth, the formal
behavior of the Haf-Sayer will be the same. Any initial accuracy Xo
assumed for such a sentence will force a series of revisions in accord with
the Vvp schema and modeled by the following formula:

Xn+~M-Absttl-xJ-xJ

Theresultisaseries of revised estimates of accuracy driving toward afixed
point of 2/3 (figure 2). An accuracy evaluation of 2/3 is thus the only one
consistently assignable to such a sentence—a value assignable on internal
grounds alone.*®

Some sentences regarding degrees of accuracy behave better than their
close cousins regarding bivalent truth and fasity. The classica Liar is of
course notorious for its ill-behaved periodicity. Corresponding to the
classica Liar, however, is a sdlf-referentia claim of total inaccuracy akin to
the Infinite-valued Liar:

This statement is entirely inaccurate.
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Thisstatement is half as accurate asit isestimated tobe/
Figure2 An accuracy form of the Half-Sayer with initial estimate of 0.234.

Like the Infinite-valued liar, this accuracy variation will take 1/2 as its
fixed point. We can in fact solve for such a fixed point algebraicaly by
starting with the Vvp schema itsdf:

IVvpl = 1-Abs(v-/p/)
Sincein this case p is the Vvp sentence,
Ip/ = 1-Abs(v-/p/)

Our accuracy Liar claimsit isentirely inaccurate. The attributed valuev is
therefore O:

Ip/ = 1-Abs(0-/p/)
For 0 < p < 1, then,

/Pl = 1-/P/
2-/pl =1
/Pl = V2

Despite the fact that 1/2 is a fixed point for which agebraic solution is
possible, however, it is not an attractor fixed point—there is no series of
progressive approximations, as in the case of the Half-Sayer, drawing us
inexorably toward that point.

There are also many sentences regarding degrees of accuracy which are
not so well-behaved, of course. One exampleisan accuracy analogue of the
Minimalist of chapter 1:

The true accuracy of this sentence is whichever is smaller: its estimated
accuracy or its estimated inaccuracy.
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Such a sentence behaves like the Liar when restricted to classical values of
Oand 1. For casesother than 0 and 1, however, itistheaccuracy Minimalist
rather than an accuracy Liar that converges on the behavior of the classical
Liar.

Within an epistemic predicament drawn in terms of degrees of accuracy,
then, as in one drawn in terms of bivalent truth and fadty, there will be
statements for which internal evidence alone seems relevant. Here too,
however, these would seem to be limiting cases. The standard message for
which we will need to gauge accuracy will rather be something like

A torpedo approaches from 18°,
or
The enemy attacks at sunrise.

In either case an estimation of accuracy demands additional information,
and here as before that information can be expected to be tangled in aweb
of competing claims about the relative accuracy of particular pieces of
information or the relative reliability of various sources. A great part of the
epistemic predicament takes the character of "Who do you trust?, though
in the case of degrees of accuracy the question becomes 'Who do you trust,
and how much?*®

Here as before we should note that there will be wider puzzle cases
involving not strict sdlf-reference but tangles of mutually referentia claims.

2. This statement has an accuracy of 1/2. Accuracy:
3. Statement (2) is 1/2 accurate. Accuracy:
4. Statements (2) and (3) have the samevalue.  Accuracy:
5. This statement has the same value as (4). Accuracy:

Is there any consistent set of accuracy assignments—any 4-dimensional
fixed point, as it were—that can be given to the sentences of this set?
Indeed there is. Statement (2), for reasons outlined regarding the Haf-
Sayer above, can only be given an accuracy of 2/3. Statement (3) is
therefore 1/3 off-"and itself gets an assignment of 2/3. Statement (4) is
then fully accurate. Statement (5) will have avalue of 1 - Abs(l - /(5)/),
and can therefore consistently be assigned any value within the [0,1]
interval.

Here we have made sdf-referential and mutually referential sentences
regarding accuracy both explicit and direct. Most of the patterns of df-
and mutual-reference that appear within standard epistemic situations are
neither: a message that applies to a class of messages including itsalf may

* rest on considerations of external evidence and may even call for empirical
investigation. The same holds true for messages that turn out on
investigation to apply to each other. Patterns of reference become more
tangled and more complex when it is not merely the accuracy of particular
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messages but the general reliability of certain sources of information that is
at stake. We think one should not be deceived, then, by the puzzle-like
character of explicit examples. Similar tangles of mutual reference may be
buried under epistemic and deliberative situations as common as the
following—a fictional example, but only barely so:

Imported mgor-ticket items, including high-end computers over $5,000
and automobiles, tend to have very similar sales curves.

IBM has found that its sales are inversely related to those of the mgor
American car manufacturers. when people buy cars, they don't buy
computers (or at least IBM computers). They decide to gear their
production scheduling to well-known annual trends in automobile sales.

General Motors has noted a decline their share of the market over the last
few years, directly related to an increase in the sales of imports.

Hitachi intends to introduce the first of its fifth-generation computers at
Christmas.

The prospect for such tangles seems greater, rather than less, given the now
massive use of computerized trading algorithms. It has been claimed that a
computer-assisted slide of the stock market of precisely this type occurred
in September of 1986 due to a positive feedback loop in the buy-sell
programs of mgjor investment and brokerage houses, which introduced an
instability in the system.?

In the outline above we have emphasized fixed points in cases of f-
and mutual-reference, characterizing fixed-point solutions as the only
accuracy values consistently assignable to particul ar sentences or pieces of
information. Here as in chapter 1, however, we remain suspicious of the
notion that such fixed points should be taken without question as solutions
for phenomena of sdf-reference. Again, such an approach would seem to
face embarrassing questions in the case of sentenceswith multiple or even
infinitely many fixed points and would seem incapable of the full
generality required to deal with Strengthened Infinite-valued Liars and
thelike. Our interest in this chapter lieslessin seeking simple solutions to
epistemic instability than in providing a model that captures some of the
complex dynamics of epistemic predicaments.

There is one final modeling tool that we wish to add, mentioned in
informal discussion throughout. This is the notion of background
reliability or epistemic reputation—a measure of trust applied not to
individual claims but to genera sources of information. In the absence of
independent confirmation or disconfirmation regarding a particular piece
of information, or even in supplement to externa information, we
commonly gauge a statement's reliability in terms of the general reliability
of its source: "Consider the source" Ceteris paribus, a source of
unexceptionally accurate information in the past will be believed this
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time around aswdll. Information from a source with a checkered history of
inaccuracy will be treated with suspicion and epistemic reserve.

It is clear, then, that the reliability of a source is a function of its past
accuracy. But precisely how? One modeling option isto take the reliability
of asource to be simply the average of past statement accuracies. For some
purposes, however, such a policy might be far too conservative. Secret
agents in the British secret service of SmUey's People™ have an unhappy
tendency to defect to the other side. The use of a simple average would
force usto treat as prima facie reliable awhol e series of lies from arecently
defected double agent, simply because that source had given accurate
information for a long period in the distant past. Simple averaging
generally fails to warn us of progressive patterns in inaccuracy: a
dangerous inaccuracy that developed quite suddenly in the last ten
reports would be treated as ho more serious in terms of estimated
reliability than would ten juvenile inaccuracies committed years ago or a
scattered pattern of random error noise throughout a record of service.
At the other extreme, it is clear that a reliability measure that represented
only the accuracy of the last five statements that could be checked, regard-
less of the source's previous history, would have magor shortcomings
aswell.

In what follows, wel'll think of reliability, like accuracy, as on a scale
between 0 and 1, and we'll use a recursive model for updating. Given a
past reliability R, for a source and ameasurement of / p/ for the accuracy of
a current statement p, our new reliability Rn.; will be calculated as:

Rn+1=((2-Rn) + /p/)/3

The reputation for a source at any time, on such a model, is a weighted
average of its past reputation and the accuracy of the most recent piece of
information received. Such a formula has the advantage of combining
recent accuracy and background reputation in a way that avoids both a
simple averaging formula and one mat neglects some element of the past
entirely. But it is of course only one of an infinite number of formulag, even
of this general type, that do so: we might have considered a heavier
weighting for R™ for example, or a formula that considers the average of
the |ast five statements rather than simply the value of p.?* Wedon't claim
that this formula offers the only or even the most plausible measure
of rdiability. What it does offer is a ssimple model with which to
start to envisage some of the more complicated aspects of epistemic
dynamics.

Among those more complicated aspects are messages regarding not the
.accuracy of other statements but the reliability of general sources. Given a
background reliability of 0.7 for a source, how accurate are we to gauge a
message that its reliability is 0.6? For questions like thiswe will usea dight
variation on the Vvp schema Where Vrs is a statement attributing a
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reliability r to a source swith true reliability [s], we calculate the accuracy
of Vrsas

IVrsl = 1-Abs(r-[s])

The claim that a source has a reliability of 0.6, for example, when its
reliability is actually 0.7, is to underestimate it by 0.1; that claim of
reliability itsdf we will therefore assign an accuracy rating of only 0.9.

Itis dear on such amodel that estimates of reliability for a source can be
sensitive to judgments of accuracy regarding recent pronouncements,
which may themselves be statements about—and hence be judged in terms
of—estimates for the rdliability of other sources. "You can't trust
stratigraphic dating," say the radiocarbon people. "Radiocarbon isn't
entirely reliable," say the molecular geneticists. "The molecular genetics
model remains largely speculative," say the excavators. Interestingly
enough, the notion of reliability of a sourceis closer to the substance of the
original Epimenides paradox than is either truth or accuracy of a particular
utterance. For decades philosophical logicians have introduced Epime-
nides the Cretan, who says:

All Cretans are Liars

and have then taken great pains to 'purify' the paradox into a single sdf-
referential sentence asserting its own falsehood. In this original form of the
paradox, however, it is clearly the reliability of Cretans in genera as an
informational source that Epimenides impugns, rather than the truth or
accuracy of a particular claim.

In this section we've tried to sketch the background motivation for a
small handful of conceptual tools. In what follows, we indicate some
features of epistemic dynamics that appear in models employing these
tools. It is worth emphasizing that the phenomena that follow are
phenomenaaobservablewithinthismodel of epistemic predicaments. Itisan
entirely appropriate question at a humber of stages whether these are
aspects of epistemic phenomena themselves, genuinely captured and
revealed in the chosen model, or are in some way merely artifactual,
limited to this particular model and doomed to disappear in a more
sophisticated or more intuitive alternative. Such a question is not always
easy to answer. Philosophical modeling of this type offers, we think, some
surprising new toolsfor conceptual imaging. That isitspromise. Butthatis
also why we think it proper to handle al such modeling with a significant
measure of methodological caution.

2.2 SELF-REFERENCE AND REPUTATION: THE SIMPLEST CASES
Agent 007 hasbeen giving usaccurateinformation for years, on the basis of

which he has a sterling background reputation of 0.96. His most recent
message, however, leaves us puzzled:
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6. This piece of information is only half as accurate as you think it is.

What 007 has sent usis an accuracy version of the Half-Sayer. By this point
we are familiar with the dynamics of accuracy estimates for such a
message. But how will it affect our estimate of 007's reliability?

Our gauge of an agenfs reliahility isimportant not only for its own sake
but because that reliability estimate will be used essentially as a default
accuracy value regarding further statements for which we do not have, or
do not yet have, independent confirmation or disconfirmation. If 007's next
message is that there is a mole highly placed in the organization, for
example, or that the enemy's nuclear warheads have been rendered
harmless, or that they have not, how much credence we give that next
message will depend ceteris paribus on our estimate of 007's general
reliability. What hangs on reliability estimates is thus not merely the merit
of our agent but the believability of the next message that we receive from
him—a message that may be of quite immediate importance.

The reliability formula introduced on intuitive grounds above calls for
updating background reliahility in terms of the accuracy of the most recent
piece of information p:

Rn.I=((2-Rn) + /p/)/3

In updating 007's reputation, then, we need some estimate of the accuracy
of this most recent message. Let us start with a simple guess: that message
(6) has an accuracy of 1/2. In light of that rating, 007's reliability would
have to be updated as ((2 « 0.96) + 0.5)/3, or approximately 0.81. (Money-
penny is of the opinion that it serves James right for sending such an
explicitly sdf-referential message.) On reflection, however, it is clear that
we cannot assign a value of 1/2 to the message received. That message is
itself a Vvp statement, claiming that a particular sentence p—itsdf, as it
happens—has an accuracy haf of what it is estimated to have. If it is
estimated to be half-accurate, the value that (6) self-ascribes will be hdf of
that. Using the Vvp schema we are thus forced to revise our estimate as
follows:

IVvpl = I-Abs(v-/p/)
/(6)/ =1 - Abg((0.5 « 0.5) - 0.5)
/(6)/ =1-0.25

/(6)/ = 0.75

It appears we have done 007 an injustice by our firgt calculation. We're
forced on second thought to revise our initial estimate for (6) upwards to
«0.75. Using 0.75 in place of 0.5,007's reputation should be updated not to
0.81 but rather to ((2 * 0.96) +0.75)/3, or 0.89. That is sgnificantly better.
Sorry, James.

On further reflection, however, it is clear that we still don't have an
appropriate assignment for the accuracy of this most recent message. If we
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estimate its accuracy at 0.75, since it says it has an accuracy of only haf of
that, the Vvp schema will force us to recalibrate its accuracy as
(05« 0.75) - 0.75), or 0.625. 007's reputation would then be updated as
((2 = 0.96) + 0.625)/3, or approximately 0.85. With continued deliberation,
our estimates for the accuracy of (6) and our corresponding gauge of 007's
general reputation converge to single values:

Accuracy of Message General Reputation
Qs 0.96

0.75 0.89

0. 625 0. 8483333
0. 6875 0. 8691667
0. 62625 0. 85875
0.671875 0. 8639583
0. 6640625 0. 8613542
0. 6679688 0. 8626562
00. 6660156 0. 8620052
0. 6669922 0. 8623307
0. 6665039 0. 862168
0.666748 0. 8622493
0. 66626 0. 8622087
0. 666687 0. 862229
0. 6666565 0. 8622188
0. 6666718 0. 8622239
0. 6666641 0. 8622214
0. 6666679 0. 8622226
0. 666666 0. 862222
0. 666667 0. 8622223
0. 6666665 0. 8622221
0. 6666667 0. 8622223
0. 6666666 0. 8622222
0. 6666667 0. 8622222
0. 6666667 0. 8622222

Given an initid guess of 1/2, the estimated accuracy for message (6)
converges on 0.6666667. Against an initial background reputation of 0.96,
007's reputation converges correspondingly on 0.8622222. Had our initial
guess regarding the accuracy of the message been 0.234, and had 007's
initial reputation been 0.8, estimated accuracy would again have
converged on 0.6666667 and 007's updated reputation would have
converged on 0.7555556. Had 007 started with an abysmal reputation of
0.3, message accuracy would have converged on 0.6666667 and his
reputation would have risen to 0.422222,

* Inall casesthe value of (6) will convergeon 2/3, regardless of our initia
accuracy estimate, with the updated reputation changing from any initial
R to ((2 « R)+2/3)/3. In this first simple case, in other words, updated
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reputation shadows the dynamics of the sef-referential piece of informa-
tion at issue. This pattern is perhaps dearer in time-series graphs, shown
for threeexamplesin figure 3. Hereonelineindicatesrevisionsin accuracy
estimates, garting at different values; the other indicates the effect of such
revisions on reputation updates.

A more revealing way of illustrating the pattern is in terms of web
diagrams, outlined in chapter 1. In figure4, the collapsing spiral showsthe
evolution of accuracy estimatesfor message (6—a convergencein all cases

AS

Initial background reliability = 0.96 Initial accuracy estimate for Half-Sayer = 05

2 T O O A

Initial background rdiability = 0.8 Initial accuracy estimate for Half-Sayer = 0.234

LI I I B

Initial background rdiability = 0.3 Initial accuracy estimatefor Half-Sayer = 0.9

Figure3 Timeseries graph for the Half-Sayer with influence on background reputation.
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on an attractor fixed point of 2/3. The line descending from the upper left
comer in each caseisour graph for the Half-Sayer function; the solid line
ascending from the lower |eft corner isthex=Yy lineused in graphing the
web. Thethird linegraphed in each of theframesin figure4 representsthe
effect on the background reputation of the agent. linesat different heights
reflect the different background reputations in our three cases. For any
paint in the evolution of accuracy estimates for message (6), indicated by

initid value for Half-Sayer = 0.5 initial value for Half-Sayer = 0.234
background reputation = 0.96 background reputation = 0.8
i \ .

initia value for Haf-Sayer = 09
background reputation = 0.3

Fgure4 The Haf-Sayer with shadowed reputation.
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the y-value for a point of intersection with the graph of the Half-Sayer
function, the corresponding value for reputation will be the y-value of a
point on the reputation line directly below or above that point of
intersection. As accuracy values for (6) evolve, in other words, they cast a
vertica 'shadow' on areputation line. Accuracy estimates for (6) converge
on 2/3 in al cases; different initial reputation values converge on the y-
values of points marked roughly with asterisks.

For our first example, however, we have chosen a peculiarly well-
behaved self-referential sentence. What if our agent—still with a sterling
background reputation of 0.96—sends us a version of the Minimalist
instead?

7. This piece of information is as accurate as whichever is smaller: your
estimate of its accuracy or of its inaccuracy.

For any initial estimate other than 2/3, the evaluation of (7) will converge
on a periodic oscillation between 0 and 1. What this means intuitively is
that deliberation regarding the accuracy of (7) starting from almost any
initial estimate—for which there might be various grounds, including the
background reputation of the agent—will fail to reach any tidy conclusion.
If reputation is updated using accuracy estimates for the most recent
information from a source, we will be unable to reach a final point for
updated evaluation of reliability aswell. Unable to decide the accuracy of
(7) on the simple model at issue, we will aso be unable to decide on the
generad reliability of its source.

The behavior of progressive accuracy estimates for (7), shadowed by
corresponding estimates for reliability, is shown for a background
reliability of 0.96 in the time-series graph of figure 5. A corresponding
web diagram appears as figure 6. Both make it clear why our reliability
estimates for an agent uttering (7) will themselves become periodic. For a
background reputation of 0.96, the period established for reputation
estimates will be between 0.64 and 0.973333, the y-values of the points
marked with asterisks on the reputation linein figure 6. For abackground

S 1V T T T TT T T 11

I T I

Initid background rdliability = 096 Initial accuracy estimate for minimalist = 0.66
Fgure5 lime-seriesgraph for the Minimdi.
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Figure 6 Web diagram for the Minimalist Bac§ground reputation=0.96, initial accuracy
estimate=0.66.

reputation of 0.6, on the other hand, reputation estimates will oscillate
between 0.4 and 0.733333. For a background reputation of 0.2 the period
will be between 0.466667 and 0.133333. We can aso solve for find results
algebraicaly: if our value for (7) cycles periodically between 0 and 1, our
update R of a reliability estimate starting from an initial background
reliability of Z will cycle correspondingly between 2Z/3 and (2Z + D/3.%

The simplelesson isthat the unsettled epistemic behavior of some pieces
of information produces unsettled estimates of reliability regarding their
source. On the intuitive formulae built into our simple model, at least,
background reliability estimates carry no guarantee of stability: estimates
of reliability for a source can prove unstable by contagion from the
instability of the accuracy of pieces of information received from that
source. The instability of a reliability estimate is important not only in its
own right, of course, but also because it signals a lack of any stable
accuracy estimate usable as a default regarding the next message from our
source. If reliability for our agent is to some extent undecidable, the initia
credibility of his next message will be as well.

An extreme case of reputation-contagious instability isthat of full chaos.
Let us suppose, against abackground reputation of 0.7, say, that Agent 007
transmits the following piece of information:

8. Thisisasinaccurate as your accuracy estimate for it.

Such a message is of course an accuracy version of the Chaotic Liar, a
sentence fully chaotic on the [0,1] interval. The chaotic evolution of (8) for
aninitia value of 0.234 isshown in the lighter line of the time-series graph
of figure 7. Corresponding revisions in update estimates for an initia
background estimate of 0.96 are shown in the darker line. A web diagram
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of the same information appears in figure 8. The evolution of accuracy
estimates for our chaotic message forms the tangled inner web, spanning
the [0,1] interval. Corresponding revisions to an initia background
reputation of 0.96 will be the y-values of those points projected onto the
wide tent drawn as a dark line at the top. Figure 9 shows both forms of
graph for the same message, but with an initial accuracy estimate of 0.678
against a background reliability of 0.3.

Itisclear that an epistemically chaotic piece of information from a source
can force the background reliability estimate for that source to become
chaotic as well. Unlike the chaos of message (8), however, the chaos of
background reliability will not be chaos on the full [0,1] interval. The
reliability shadow of informational chaoswill be bracketed chaos, confined

no. . . . . . it s 1

initial value for chaotic liar = 0.324
background reputation = 0.96

Figure 7 The Chaoatic liar with reputation shadow.

o

initial value = 0.324
background reputation = 0.96

Figure8 The Chactic Liar with reputation shadow (top black tent).
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initial value = 0.678
background reliability = 0.3

Z / T

Figure9 The Chaatic Liar with reputation shadow.

to a smaler range of values. For a background reputation of 0.96, for
example, reputational chaos will be confined to the interval
[0.64,0.97333...], corresponding to [((2 0.96) + 0)/3, ((2 » 0.96) +1)/3].
For a background reputation of 0.3 the window of chaos will be
[0.2, 0.53333...]. In each case chaos is confined to a third of the unit
interval.

Confined chaos is in some sense controlled chaos. Even if our
computations cannot lead us to a final reputational value for a source
that sends a message such as (8), we can know that our revised estimates
will remain within a certain range. If we start with a background
reputation of 0.96, for example, our reliability estimates are sureto remain
above 0.64. Message (8) in effect forces us to replace a representation of
background reliability in terms of a point with an image of reliability as
chaos within a particular segment interval. Further complications arise if
we envisage an agent sending not just one piece of sdf-referentid
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information but severa. Consider the interesting case of an agent in high
standing—carrying a background reputation of 0.96, say—who first sends
us an accuracy variant of the Minimalist:

7. This piece of information is as accurate as whichever is smaller: your
estimate of its accuracy or of its inaccuracy,

followed by an accuracy version of the Chaotic Liar:
8. Thisis as inaccurate as your accuracy estimate for it.

Given a background reputation of 0.96, used also perhaps as an initia
accuracy estimate, (7) will force an eventual oscillation in reliability
estimates between 0.97333 and 0.64. For the first of these—a reliability
estimate of 0.97333—message (8) would generate an interval of reputa-
tional chaos between 0648 and 0.99222. For the second of these—a
reliability estimate of 0.64—(8) would generate an interval of reputational
chaos between 0.42666 and 0.76. In other words, if our epistemic situation
is first one of periodically unstable indecision with regard to reputation
based on receipt of message (7), it will become a situation of periodic
indecision with regard to the two chaotic intervals generated on the basis
of each period point by message (8). Putting these together, receipt of both
messages will leave us with a range of computational uncertainty
extending from 042666 and 0.97333, significantly greater than the 1/3
spread incumbent on (7) alone.

Chaos and indecision need not always get worse, however: onthe model
a issue, df-reference appears capable of dampening or lessening
epistemic instability as well as producing it. Consider a case, for example,
inwhich our rogue agent starts with abackground reliability of 0.96, sends
us the bhizarre messages (7) and (8), but then sends (6) as well:

6. This piece of information is only half as accurate as you think it is.

Ddliberation regarding (7) and (8), as outlined above, leaves us with an
interval of computational uncertainty regarding reliability that extends
from 0.42666 and 0.97333; (6), as we know, seeks a find fixed accuracy
estimate of 2/3. For the low end of our reliability interval, then—0.4266—
(6) will force arevised reliability estimate of 0.50644. For the high end of the
interval—0.97333—the additional message will force arevision to 0.86422.
Vaues within the original window of chaos will similarly be revised to
values within this smaller interval. Though computational chaos remains,
the receipt of self-referential message (6) has narrowed the range of that
chaos significantly: from almost 0.55 to 0.36.

One last point to note about series of saf-referentiadl messages is that
their ultimate effect on reputation can depend quite crucially on the order
inwhich they are sent. This perhaps should not be surprising, sinceit holds
for pieces of non-sef-referential information as well. The background
reliability formula employed in the current model puts greatest emphasis
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on the accuracy measure for the most recent piece of information, giving it
a weight of 1/3 relative to a weight of 2/3 for previous background
reputation. Thus a source with abackground reliability of 0.96 from which
we receive a series of statements with independently established
accuracies 0.5,0.5, and 1 will end up with ardiability of 0.8029. A source
with a background reliability of 0.96 from which the same statements are
received in a different order—1, 0.5, 0.5—will end up with a revised
reliability estimate of 0.7104 instead.?* In the sdf-referentia case, a source
with background reliability 0.96 from which we receive the three messages
above, but in a different order—(6), (7), and then (8—will end up with an
overlapping chaos spread from 0.38266 to 0.93888: a spread of dightly
greater than 0.55 rather than 0.36.

The epistemic undecidability these examples display is, we think, of an
important but litde noticed type. Ignorance and uncertainty in fact form a
range of related phenomena, of varioustypesand from various sources, for
whichitisinstructiveto at least try to construct a rough taxonomy. Such an
attempt, we think, shows this type of computational instability to occupy
an interesting but little noticed place in the general structure.

On the bottom of a hierarchy of ignorance we might posit a class of
indeterminacy that is in the world itsdf, or at least that appears in the
world at its first characterization in terms of basic categories. Whatever its
real character, base level mdeterminacy appearsto be of at least two types:
the applicational indeterminacy of vague categories, for which fuzzy logic
has been offered as a model, and the indeterminacy of events for which
there are merely probabilities, including most notably purely statistical
phenomena for which a probabilistic description would be the only one
possible.

On a second rung of ignorance appear those aspects of uncertainty that
arise during the process of gathering evidence. Here aso there are at least
two types: epistemic indeterminacy due to incomplete evidence, and
mdeterminacy due to more complete but conflicting evidence. In the first
case epistemic indeterminacy is dueto gaps in the evidence; in the second
caseitisdueto conflicting gluts. The differences between this second rung
and the firg are emphasized by Robert Klir, who characterizes modeling
attempts for this level as 'fuzzy measures, of which probability theory is
only the most familiar option.*

On athird rung of ignorance appears epistemic mdeterminacy not in the
phenomena or basic categories themselves, not in underdetermination or
overdetermination of evidence, but arising from computational difficulties
beyond the evidence-gathering stage: uncertainty due to difficulties of
information processing. All the dataisin, but our computers are down.

One familiar form of third-rung ignorance is computational complexity.
Here we include classes of problems involving some variable v (the
number of towns a salesman visits, for example) or Turing-encodable in a

Notes on Epistemic Dynamics



string of length I, but in which the resources required for computation
increase faster than any polynomial onv or /: therealm of the NP-hard. We
lack information in the general case because it lies beyond computational
reach—corresponding to second-rung questions for which we have
inadequate evidential support.?®

A second type of epistemic indeterminacy on this third rung, however,
appears to be the computational instability we have emphasized
throughout the examples above and which appears in richer variety in
the work below. In these cases we face computational complexity of a
different kind: instability and chaos incumbent not on too little computing
power, in a sense, but on too much. It is not that we lack a computable
answer to a particular problem, but that computation refuses to yield a
unigueanswer: patternsof sdf- and mutual-reference generate series of too
many computabl e answers. This new type of computational indeterminacy
thus corresponds on the computational level to those questions on the
second level for which thereis not alack of evidential support but a glut of
conflicting and contradictory evidence.

The fourth rung of ignorance—one we will not pursue here, but which
does appear in both the first and last chapters of the book—is that of full
forma undecidability. Here lies a range of problems agorithmically
unapproachable altogether—questions for which computation by any
algorithm is not merely NP-hard but logically impossible.

23 EPISTEMIC DYNAMICSWITH MULTIPLE INPUTS

Our epistemic model is easily extended, with some beautiful results, to the
case of multiple and mutually referential epistemic sources, starting with
epistemic Dualists.?’

Here asinthe case of singleinputsthereisarange of fairly well behaved
cases. Consider for example messages received from Agents 001 and 002,
who have background reputations of 0.9 and 0.2. Agent 001 sends a
message reading as follows:

9. The next message received from 002 will be 0.8 accurate.
Agent 002 sends the following message:
10. The last message received from 001 has a accuracy of 0.1.

If we assume initial accuracy estimates of, say, 0.9 and 0.2 for these two
messages, a computation would proceed as follows. Since what the first
saysisthat the second has an accuracy of 0.8, the accuracy of that second-
order Vvp sentence will be recalculated through the Vvp schema as
1— Abg(0.8—0.2) =1— 0.6, or 0.4. By asimilar computation, 'simulta-
neous’ in that it is blind to the deliberation we've just gone through, we
find our second sentence's accuracy claim regarding thefirst will be 0.8 off
and will thus itsdf be recalculated as having an accuracy of 0.2.
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On a simultaneous computation we therefore revise our initial estimates
for our two messages from (0.9, 0.2) to (0.4, 0.2). But now let us consider
the sentences again. If message (10) hasavalue of 0.2, theclaimin (9) that
(10) has a vaue of 0.8 will be 06 dff, which as it happens is entirely
consistent with (9)'s currently assigned value of 0.4. If (9) hasavalue of 0.4,
however, the claimin (1) that (9) hasavalue of 0.1 must be 0.3 off—giving
(10) avalue of 0.7 rather than 0.2. At thisiteration accuracy estimates have
been revised to (0.4, 0.7). On further reflection, these values will lead us to
(0.9,0.7) and then to (0.9, 0.2). We have therefore completed a periodic re-
evauation of accuracies from (0.9,0.2) through (0.4,0.2), (0.4,0.7),
(0.9, 0.7), and back to (0.9, 0.2).

Given simultaneous computation, most initial accuracy estimates for
these two messages will give us a similarly fourfold periodicity. A
sequential  computation, on the other hand, gives us a two-fold
periodicity—in this case between (0.9, 0.2) and (0.4, 0.7). The fixed point
for both computations, however, is the same: accuracy estimates of (0.65,
0.45) can be assigned without epistemic instability.

Not al cases of mutual reference will be as well behaved as this first
example. Consider thefollowing two messages, for example, received from
001 and 002 respectively:

11. Thisis as accurate as 002's next message is inaccurate.
12. Thisis as accurate as 001's last message.

Here we can use the following Vvp schemas:
Xner = I-Abs((l-yn)-Xn)

ynHi =0 - AP

Initial accuracy estimates of 0.9 and 0.2—read off our agents' background
reliabilities, perhaps—and sequentia calculation give us the pattern of
recomputed accuracy value pairs (X, y) plotted as Cartesian coordinatesin
figure 10. This is, in fact, a very robust attractor: other pairs of initial
estimates are attracted to precisely the same twisted path. Figure 11 makes
this persistence clear in terms of an overlay, as before, for initial accuracy
estimates at 0.05 intervals between (0, 0) and (1,1). Chaotic behavior,
rather than attraction to a persistent period, appears across the range of
possible initia estimates.

Confined chaos, we've noted, isin some sense controlled chaos, and the
computational chaos in such a case is quite predictably bounded. The
attractor in figure 10 does not cover the entire unit interval on either
dimension, and thus we know that in the depths of repeated computation
certain valuesbeyond the edges—thepair of values (0.1, 0.1), for exampl e-
will not appear. Wein fact know quite abit morethan that: given the shape
or the attractor we also know that (0.5, 0.6), for example, will not appear in

s(yn - Xn+i).
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Figure 10 Accuracy estimates for messages (11) and (12) starting with 0.9,0.2.

Figure 11 Overlay diagram: accuracy estimates for (11) and (12) for al initial estimates
between (0, 0) and (1, 1) in0.05 intervals.

the depths of computation. For the present, however, wewill concentrate
mer ey on theouter limitsof chaotic gpread within each dimension.

If computations for the accuracy of (11) and (12) refuse to stabilize, of
cour e, the samewill be true of our updatesfor background rdiability. In
this case we can think of the revised rdiability estimates for Agent 001 as
‘shadows' of our chagtic attractor projected vertically onto the rdiability
line marked 001 in figure 12—a line that plots

y = «2.0.9) +x)/3

and that therefore models the effect of an accuracy value x on a
background rdiability of 0.9. Prgjection onto the reputation line works
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Figure 12 Attractor of accuracy points with reputation shadow lines for Agent 001 and
Agent 002.

asfollows. Every accuracy revision pair for (12) and (13) isrepresented by a
point on our twisted attractor. Its shadow on 001's reliability line will be a
point with the same x-coordinate, and the y-coordinate of that point
represents our update for Agent 001's reliability at that stage in the
computation. Line 002 in figure 12 graphs a similar reputation line for a
background reputation of 0.2:

X = ((2.0.2) +y)/3.

A shadow for any point in the accuracy attractor, projected horizontally to
the 002 line, will therefore give an x-value corresponding to our estimate
for Agent 002's reliability at that stage in the computation.

Such an image makes graphically clear how reliability computations
dampen the wild behavior of accuracy estimates: the range of y-values for
shadowson line 001, and the range of x-valuesfor shadowsonline002, are
significantly smaller than the range of x and y valuesin thefull attractor. If
we now graph points for revision pairs not of accuracy estimates but of
reliability updates we will therefore get a miniature of the origina
attractor, shown in figure 13 for background reliabilities of 0.9 and 0.2 and
corresponding accuracy estimates for our two messages. Here chaos,
though of precisely the same form as in previous figures, is more severely
confined. The position of this miniature attractor within the unit square
depends on which background reliabilities we start with. Its size,
interestingly enough, does not: for any background reliability and any
initial estimate of accuracies, the reputational chaos wreaked by the
referential tangle of (11) and (12) will be confined to a range of dlightly
more than 0.26 on each axis.
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Figure 13 Reputational chaos for Agents 001 and 002 with background reputations 0.9,0.2.

One of the lessons here is that reputational chaos may remain within
tolerable limits for some purposes despite a much wider range of chaos
regarding estimates of accuracy. In avariety of cases it may be enough to
know that the reliability of our informational sources lies within a
manageably small interval; the fact that computational chaos appears
within that interval, inherited from a greater computational chaos of
mutually referential messages, may be of less practical significance. That
may alow us a tolerable range of accuracy estimates for the next message
down the line, for example, even if it does not deliver us a point-value.

Not al Dualist predicaments generate attractors as robust as this.
Consider another pair of messages received from agents 001 and 002, once
again computed sequentially:

13. Thisis half as accurate as the next message received from Agent 002.
14. Thisis as accurate as the last message from Agent 001.

Xng =1 - Abs((5* yn) - X]

yn+i=l-Abs(Xn+1-Yn)

If we start with an assumption of full inaccuracy for both sentences—a
value of 0 in each case—the trgjectory that maps our revised estimates
takes the form of the oval in the first frame of figure 14, formed
progressively by an apparently chaotic dance of points around the
perimeter. If we choose initial estimates of 0 and 0.3 the trgjectory takes
the same shape, but this time forms the significantly smaller oval shownin
the second frame of figure 14. The same oval but with radically different
sizes, indicating a radically different range for computational instability,
appears across the range of possible estimates. Figure 15 shows an overlay
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Figure 14 Trgectoriesfor (13) and (14) withinitial estimates (0, 0.3) (l&ft) and (0, 0) (right).

Figure 15 Overlay diagram for initia estimates for (13) and (14) between 0 and 1 in 0.1
intervals

of patterns of attraction for estimates between (0, 0) and (1,1) in intervals
of 0.1. Here as above it is clear that computational chaos will be strictly
confined. This case differs from that of the robust attractors above,
however, in that the range of computational instability is itsdf sensitive to
our initial accuracy estimates. For initial accuracy estimates of 0 and 0.3,
messages (13) and (14) generate a range of computational chaos of only
0.0308 in the computed accuracy of the first message and 0.0436 in the
computed accuracy of the second. For an initial assumption of total
inaccuracy for each message, on the other hand, the range of computa-
tional chaosisamuch moresignificant 0.2020 inthefirst caseand 0.2857 in
the second.
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An even greater variety of patterns of attraction appears for different
accuracy estimates in the case of the foUowing pair of messages, very
smilar to the Half Dualist of chapter 1.

15. Thisis as accurate as Agent 002's next message is inaccur ate.

16. Thisis half asaccurate as the last message received from Agent 001.
xMNl-AbsCa-y”™-xJ

yn*l-AbsttI®. x™-yJ

For someinitial estimates, sequential computation of these two messages
generates trajectories in the form of four tiny ovals, shown in the central
frame of figure 16. For other initial etimatesonly two ovalsform, small in
some cases and large in others, as shown in the firg and third frames.
Figure 17, an overlay showing trajectories for values between (0, 0) and

(1,1) in 0.1 intervals, shows some of the variety of patterns of attraction
formed for different values.

o£7

Figure 16 Trgectories for messages (15) and (16) with initid estimates of (0.78, 0.23),
(0.95, 05), and (0.9, 0.9).

Figure 17 Overlay diagram for messages (15) and (16) in 0.1 intervals.
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For initial estimates 0.95 and 0.5 (asin the second frame of figure 16) our
accuracy values for our first statement are radically unstable between
0.1449 and 0.9999, with accuracy values for our second statement unstable
in a similarly extensive range between 0.1819 and 0.9863. For initid
estimates 0.78 and 0.23, on the other hand, computational instability for
our second message is till between 0.2569 and 0.9431, but uncertainty
with regard to the first statement is confined to a much smaller range
between 0.3759 and 0.6977. For some cases, moreover, it may not be simply
the absolute range of epistemic instahility but its particular shape that is
important—the fact that instability in each caseis distributed in such away
that central areas are |eft clear, for example.

Background reputation is part of this picture in two ways. If we use
background reputation as our guide in making first estimates for
accuracies—an intuitive procedure quite consistent with the general use
of background reputations—it is clear that the range of computational
instability for accuracy estimates will be contingent on our background
reliabilities. But of course reputation is aso updated in terms of recent
accuracy estimates. If we are unable to establish any fina estimate of
accuracy in a case of tangled reference, we will have to accept a
corresponding range of computational chaos with regard to reputation.

For some sets of referentially tangled messages, differences in back-
ground rdiability and/or accuracy estimates make a great deal of
difference in ultimate epistemic instability—a great deal of difference with
regard to the amount of computational chaoswewill haveto livewith. For
some initial estimates, read off some background reliabilities, computa-
tional instability may remain small and relatively manageable, a source of
ignorance but not a serious threat. For other reiability and accuracy
estimates, computational instability for those same sets of messages can be
expected to be considerable. In some cases, moreover, small differencesin
background reliabilities and initial estimates make only small differences
in the amount of computational chaos at stake. In other cases, however,
things may be much more seriously dependent on initia informational
conditions: small differences or small uncertainties with regard to our
initial reliability and/or accuracy estimates can result in major differences
in the amount of computational chaos.

One vivid way of mapping these characteristics of epistemic predica
ments of these sorts is in terms of epistemic hazard maps. Consider
messages (13) and (14) again. Each pair of initial accuracy estimatesfor our
two messages can be plotted as a point in the unit square using our values
(X, y) asCartesian coordinates. Different initial accuracy estimate pairswill
generate different degrees of computational chaos, and we can map the
interval of computational chaos produced by a particular point in terms of
color. If the spread of chaos for a particular point islessthan 0.1, that point
can be colored asafe dark blue. If it is somewhat greater—between 0.1 and
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0.2—it can be colored a somewhat less safe green. Chaos between 0.2 and
0.3 can be signaled by light blue, chaos between 04 and 05 carrying a
warning red, between 0.5 and 0.6 carrying a shocking magenta, and so
forth. The result is a map showing epistemic 'danger areas'. Those areas
with colors corresponding to higher spreads of computational chaos will
be areas of accuracy or reliability estimate in which the utterance of a pair
of mutually referential sentences signals an area of mgjor computational
chaos. Those areas with colors corresponding to lower spreads of
computational instability, on the other hand, can be treated as relatively
safe: for background reputations in these areas, for example, receipt of
mutually referentia reports like those above may be much less significant.

An epistemic hazard map of this type is shown for sentences (13) and
(14) in figure 18. Here we've used shades of color to graph the interval of
computational chaos for our first message. In black and white, as shown
here, a spider-webbing of dark grey in areas of white indicates a high
hazard area of greater than 0.2. Mgor portions of white indicate
computational chaos spreads between 0.15 and 0.2. From there colors
progress toward the center of target and heart-shapes with degrees of
decreasing hazard safety. The outer grey indicates a hazard between 1 and
15, the next darker band a hazard between 0.075 and 1, the darkest grey in
the target areas a hazard between 0.05 and 0.075, with a lighter band
indicating a hazard between 0.025 and 0.5 and a central grey indicating a
very safe area between 0 and 0.025. Safe areas form targets floating in a

Thismessageis hdlf as accurate asthe next one recaived from Agent 002
Thisis as accurae asthelagt message from Agant 001

Fgure 18 Epigaric hezard map.

Chepter 2



93

general sea of higher hazard, forming a complex pattern not easily
predictable from merely the form of our mutually referential messages. A
similar hazard map appears if we graph the interval of computational
chaos for our second agent instead.

Figure 19 graphsthe sameinformation topographically. Hereheightina
third dimensionisused, rather than color, to indicate danger with regard to
computational chaos. The higher ranges represent ridges of danger,
marking contiguous patterns of coordinates, which can be expected to lead
to wide computational instability in this case when taken as accuracy
estimates or as background reliabilities on which such estimates are made.
The valleys are by contrast relatively safe.

Reputational updates, we know, shadow computational patterns for
accuracy. Figure 20 makes this graphic by portraying the range of
reputational chaosfor our first agent incumbent on recei pt of messages (13)
and (14), using coordinates to represent background reliabilities for our

Thismessageishalf asaccurate asthenext onereceived from Agent 002.
Thisisasaccurate asthelast message from Agent 001.

Figure 19 Topographical epistemic hazard map.
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Thismessageishdf asaccurate asthe next onereceived from Agent 002.
Thisisasaccurate asthe last message from Agent 001.

Figure20 Reputationd hazard map.

two agents and assuming initial accuracy estimates to be read off those
background reliabilities. In black and white, we've used white to indicate
an ingtability interval in reputational computations between 0.05 and
0.075, grey toindicate ahazard between 0.025 and 0.5, and black asafe area
between 0 and 0.025. What is visually obvious is that the pattern of
computational chaos for reputation shadows the pattern for accuracy
outlined above. The same basic pattern, though for somewhat different
values, appears in the reputational hazard map for our second agent. In
both cases, of course, degrees of reputational instability dictate degrees of
uncertainty regarding the degree of accuracy to accord the next message
received from an agent. This reputational hazard map might thus also be
read as a map of background reputations for which future accuracy
projections will be uncertain.

A hazard map for another set of messages—(15) and (16) above—is
shownin figure 21. Thisisamore dangerous epistemic territory altogether.
Oneclear indication of greater danger isthewider spread of computational
instability, calling for a different color scale. For purposes of black and
white illustration, we indicate hazard intervals greater than 0.8 in white.
Hazards between 0.6 and 0.7 are indicated with adark grey, those between
0.5 and 0.6 by avery light grey, followed by three more greys of increasing
darkness in the centers of the targets. These indicate hazard intervals
between 0.4 and 0.5, between 0.3 and 0.4, and below 0.3. All values are for
intervals of instability in the computation of accuracy for our second
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Thisisasaccurate asthe next messageisinaccurate.
Thisishdf asaccurate asthe last message received.

Figure 21 Epigemic hazard map.

message. Figure 22 shows the same hazard map in topographical form.
Because of the depth of field in this case, however, we've attempted an
alternative topographic mapping, which plots a sampling of points as
small spheres. Here degree of hazard is indicated by both spatial
orientation and distinct coloration. There is also a second sense, beyond
meresize of intervals, in which the mapsin figures 21 and 22 portray more
dangerous epistemic territory than those above. Clear in these maps are
areasinwhich noonecolor or level predominates, inwhich onehasinstead
a blizzard of different hazard measures. These areas are dangerous not
because they are areas of uniformly wide computational instability, which
is at any rate predictable and fairly insensitive to slight changes in initial
values, but because they are areas in which infinitesimal differences in
initial estimates or background reputation can cause radicaly divergent
results in degree of computational instability. In such areas any margin of
error might be fatal. Here in fact our hazard maps seem to indicate
importantly unpredictable amounts of hazard: computational intractability
regarding computational intractability itsdf.

Here asbeforeit isimportant to remember that we are working within a
particular model—a particularly simple mode—of epistemic dynamics.
Within the basic assumptions of that model, however, the graphs above
offer not merely intriguing fractal images but real information: information
as to when background reliabilities or background accuracy estimates
generate different degrees of computational instability in the context of
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Thisisasaccurate asthe next messageisinaccurate.
Thisishdf asaccurate asdie last message received.

Figure 22 Topographicd epistemic hazard map.

mutually referential pieces of information. In more realistic cases, in which
tangled reference might appear indirectly or implicitly maps of this type
might in principle provide an important guide for navigating the shoals of
at least one type of epistemic indeterminacy.

Here we offer another fractal image, which we find intriguing but
significantly less informative in the long run. Consider messages (15) and
(16) again, but in this case computed simultaneously rather than
sequentialy. In such a case we get a robust attractor rather than a range
of different attractors for different initial values: the pentagonal attractor
shown in figure 23. Using the same tools as those above, we can graph
intervals of computational instability for different pairs of initial estimates
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Figure23 Attractor for smultaneous computation of (15) and (16).

or background réliabilities. If we do thisfor asimultaneous computation of
(15) and (16), though only for iterated revisions 10 through 20, we get the
marvelous array of fracta insects shown in the first frame of figure 24. In
black and white, hazard areas between 0.3 and 0.35 are shown in white and
intervals between 0.25 and 0.3 are shown in black, using shades of grey for
values above and below these. Unlike the hazard maps above, however,
the image of figure 24aisvery much an artifact of limited iterations. By 40
iterations the insects have been eaten by fractal images into the scattered
values of figure 24b, well on their way to a two-dimensional form of
Cantor dust.?® By the hundredth generation, shown in figure 24c, the
image is dominated by only two values, indicating intervals between 0.3
and 0.35 and 0.25 and 0.3. By the five-hundredth generation almost all
values have converged on the interval between 0.25 and 0.3.

What is happening in this case, it appears, is that over increased
iterations bordering points traverse more and more similar areas within
the attractor of figure 23, reflected in more and more similar intervals of
instability. Since we are dealing with a persistent attractor for awide range
of values, we can expect the convergenceto a single color demonstrated in
the iterative evolution of figure 24. In the hazard maps above, by contrast,
different values generate quite different attractors—as different as the
various patterns and sizes of scattered ovals noted for an intuitively
sequentia rather than simultaneous computation for (15) and (16). Deeper
iteration remains trapped in these different attractors, and thus the
information offered in the above hazard maps remains constant: what
these show us are robust differences in intervals of computational
instability that are not remediable smply by deeper computation.

Here we have confined ourselves to simple cases of two agents and two
mutually referential messages. That seems appropriate in afirst modeling.
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Figure 24 Stages in computational spread for a simultaneous treatment of (15) and (16),
shown for () iterations 10-20; (b) iterations 10-40; and (c) iterations 10-100.

More complex results can be expected for cases of tangled reference
involving both accuracy and updated reputation for three agents or more.
(Some hint of those complexities appears aready in the three-dimensional
images drawn for the Triplist variations in chapter 1)

24 TANGLED REFERENCE TO REPUTATION

In the cases considered so far our messages have concerned accuracy,
amounting either to statements regarding their own accuracy or concern-
ing the accuracy of some other piece of information. An important feature
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of the philosophical sketch of epistemic predicaments with which we
began, however, is that information received as input may concern not
only the accuracy of some other piece of information but the general
reliability of some epistemic source. One thing texts may tell us is to
distrust particular texts; onething we may learn from sensory experienceis
to distrust particular sensory experiences. David Lewis invokes a
reputational dilemma of this type for inductive methods, defined as
systematic ways of letting available evidence govern one's degree of belief
in hypotheses:

The trouble is that you need an inductive method to estimate anything,

even to estimate the accuracy of various inductive methods. And your

selection of a method with the highest estimated accuracy will come out

differently depending on which method you use to makethe estimate. It is
asif Consumer Reports, Consumer Bulletin, etc., each published rankings of
the consumers’ magazines, as they do of other products You would have

to know which one'to read in order to find out which one to read.?

In this final section we want to introduce some implications of our smple
reputational model for this aspect of epistemic predicaments.

Let us suppose that Agent 007, with a sterling background reputation of
0.96, sends us the following message:

17. You're wrong about my reliability: I'm only haf as reliable as I'm
reputed to be.

Using x for the accuracy of message (17) and r for reputation, we can frame
abasic Vrs schemafor (17)—the Vvp-like schema for reputations outlined
in section 2.1—as

x = I-Abs((1/2-r)-r).

Allowing for computational sequence and our formula for reputation,
computations might more completely be represented in terms of the pair of
formulae

Xner = 1-AbS((1/2.17)-Tn).

"n+l

= ((2.n) + xan)/3
wherer, is aseries of revised reputation updates and r, remains our initial
background reputation.

In such a case our first concern, of course, is with the accuracy of (17).
The only information we have in terms of which its accuracy can be
gauged, however, is our independent estimate of 007's reiahility,
compounded over years of messages received and verified. That back-
ground reputation stands at 0.96, and thus—at first estimate, at least—we
will take (17) to have an accuracy of 1 - Abg((0.5 « 0.96) - 0.96), or 0.52.
0Q7 has sent us a message of middling accuracy.

The second computational step isto update agent reputation. Using our
standard updating formula of R,.i = ((2 * RJ+ p)/3, then, we revise our
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reliability estimate for 007 to 0.81333.... 007's rdiability, once thought to
be a full 0.96, now appears on the books as a mere 0.81 or so.

But what then of the accuracy of (17)? Here it is important to note that
there are in fact two ways this message can be read. On one reading, Tm
only half asreliable as Tm reputed to be' involves reference to a particular
reliability rating at a particular time: 'as reliable as I'm reputed to be' is
functioning asa rigid designator for our initial reliability estimate of 0.96.%
As arigid designator, it might be intended to tag that numerical value,
whatever it is, even if 007 himsdf doesn't know precisely what his
background reputation happensto be. Here, however, wewant to track the
behavior of (17) on another reading, in which 'as I'm reputed to be'
functions as a floating or flaccid designator, indicating different reputa-
tions in different contexts. On such a reading, (17) will refer to shifting
values in the course of shifting reputational calculations. For normal
contextsthismight bealessredlistic way of reading amessagelike (17), but
messages demanding such an interpretation certainly can be sent. Our
concern is with their dynamics.

On this second reading, the revised estimate for 007's reliability which
we reached above will force a further re-evaluation of the accuracy of (17).
We now think that our agenf sreliability is 0.81. But 007's message is that
histruereliability is haf of what it is estimated to be. How accurate thenis
(17)? Against the background of our revised estimate, the Vrs schema sets
itsaccuracy at 1 - Abs(0.81/2 - 0.81), or 0.595. Given our revised take on
hisreliability, 007's statement is more accurate than we thought it was. But
here again we will have to revise our reliability estimate, to
((2 = 0.96) +0.595)/3, giving us a reliability of 0.838. Note that here we
continue to use 0.96 as the background reliability R, in our formula.

The evolution of revisions for accuracy estimates for (17), reflected in
reliability estimates for 007, is shown in atime series graph in thefirst part
of figure 25. Final convergenceisto an accuracy estimate of approximately
0.5828 and areliability estimate of approximately 0.8343. These values can
be solved for algebraicaly using a Vrs schema written directly in terms of
our reputational formula:

p=1-Abs((0.5r)-r)

p=1-Abg[05¢ ((2°0.96+p)/3)] - [(2+0.96+p)/3])
for ((2 « 0.96) + p)/3 positive,

p = 1-[0.5.((2-0.96 + p)/3)]

p =1-[0.96/3+ 0.5p/3]

p=1-0.32-p/6
7/6p = 068
p = ~ 05828
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Initial R=0.96 Initial P= 052

F\

"I'm half asreliableas|'m reputed tobe"

Final Ace. = 05828571
Final Rep. = 0.8342857

"I'm half asreliable asI'm reputed to be"

Figure 25 Time series graph for an initial rdiability of 0.96 (top), and soping graph of final
fixed pointsfor all initial reiabilities on the x-axis.

Our fixed point for R can then be solved for using the abovevaluefor p in
our original reputational formula.

In theinformal reasoning abovewe started with an accuracy estimatefor
(17) read off our background rdiability: If 007'sreputation is 0.96, and he
saysit ishalf that, his gatement must have an accuracy of 0.52. Onelesson
of thealgebraic treatment, however, isthat it doesn't in fact matter whether
we gstart with a different initial etimate for the value of (17) or not: given
any initial estimate, the ddiberation abovewill bring us to the same fixed
point for thereputation of our agent. Somewhat surprisngly, both thefinal
accuracy for astatement such as(17) and thefinal rdiability estimate of our
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agent depend only on our initial reliability estimate. We can therefore
construct the simple graph for (17) shown in the second part of figure 25.
Here fina reputation for a case in which message (17) isreceived is shown
as a direct function of initial reputation.

A similar convergence to fixed points, variable with regard to initia
reputation but blind to choice of initial accuracy estimates, appears for the
following messages regarding reputation:

18. My truereliability isterribly unappreciated: I'mtwiceasreliableas|'m
reputed to be.

x =1-Abs((2.r)-r)

19. My true reliability is precisely the opposite of my reputation.
x =1-Abs((l-r)-r)

20. My real reputation is zero.

x =1-Abs(0-r)

21. My rea reputation is whichever is smaller: my reputation or its
opposite.

x=1—Abs(Min(r,1—r)—r)

Messages (17) through (21) are clearly related to sdf-referentia statements
concerning accuracy or truth considered earlier: (17) is a rdiability
variation on the Half-Sayer, (19) an analogue of the Chagtic liar, (20) a
reputational variant on theinfinite-valued Liar, and (21) an anal ogue of the
Minimdigt. In their earlier instantiations regarding truth or accuracy, such
messages generated semantic behavior ranging from periodic, for the
infinite-valued Liar, to a repellor point in the case of the Minimalist and
chaos in the case of the Chaotic Liar. Where it is background reputation
rather than immediate message accuracy that isreferred to, however, al of
these analogues give us a well-behaved convergence on fixed points,
dependent only on the background reputation with which we begin.*
Time-series graphsfor (18) through (21), each using aninitial reputation of
0.9 and aninitial accuracy estimate of 0.2, appear in figure 26.

There will also of course be two-agent cases of tangled reference
involving reputation. Consider for example agents 003 and 004, each of
whom sends a single message regarding the other's reliability:

22. Agent 003 isoverrated: hisreliability isonly haf what it is estimated to
be.

23. Agent 004's reputation is exactly the opposite of what it should be.
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Tine series graph:
Tit twice as reliable as I'n reputed to be

Tine series graph:
Hy true reliabilitg is the opposite of ng reputation

Tine series graph:
tig true reliabilitg is zero

S e &

Tine series graph: ) )
Ihj true reliabilitg is whicheuer is snaller:
* ng reputation or its opposite

Figure 26 Time series graphs for sentences (18) through (21), showing conver gence on fixed

points.

Notes on/Epigemic Dynamics



104

Using r3, for the updated reputation of our first agent and r4, for the
updated reputation of our second, we can envisage (22) and (23) in terms of
the basic Vrs schemas:

x = 1-Abs((0.5-r3,)-r3,)
y = |-Abs((l-r4,)-r4,),

although complicated by sequential updating of reputations in terms of
accuracy estimates for x and y.

Let us assume a background reliability for each—0.3 for Agent 003,
perhaps, and 0.4 for Agent 004. On a sequentia procedure of revision, but
without repeated statements, we would then evaluate (22) for accuracy in
terms of our background estimate for Agent 004 and would update our
estimate for 003 accordingly. We would then evaluate (23) for accuracy in
terms of our updated reliability for 003 and go on to update 003's reliability
inturn. Repeating the process, wein fact reach afixed point. Accuraciesfor
(22) and (23) converge on 0.72 and 0.88, respectively, with agents 003'sand
004's reliabilities converging on 0.44 and 0.56.

How differences in initial reliabilities affect our final valuesis shown in
figure 27. Initia reliabilities for 003 are plotted between 0 and 1 on the x-
axis, and those for 004 on the y-axis, so that the coordinates (x, y) of any
point indicateinitia reliabilities (r003, r004). In black and white, white and
the bottom three greys represent areas in which 003's fina reliability is
higher; black and the top three greysrepresent areasin which 004 achieves
a higher find reputation.

Figure 27 The effect of background reliabilities for 003 (x-axis) and 004 (y-axis) in the case of
messages (22) and (23). Black and the top three greysindicate areas of initial reliabilities for
which 004's find reliability exceeds 003's, by decreasing intervals of 0.01. White and the
bottom three greys indicate areas in which 003's fina reliability trumps 004's.
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The reputation-referential clams we've considered have been extra-
ordinarily well-behaved, converging conveniently on fixed points
throughout. Consider findly a mixed category, however, in which a
message may concern both accuracy and reputation. Here we might begin
with
This message has an accuracy inverse to my reliability.

Or, somewhat more colloguially:

This message is asinaccurate as| am generally reliable.
AN[-AbsCO-r)-n)

Here T and 'my* areused in reference not to these messages, of course, but
to the agent or source that sent them. The basic Vrs schema for such a
message we can represent as

X =1-Abs((l-x)-r)

where x is the accuracy of our message and r represents the background
reliability of the agent. In principle, evaluation of such a statement and
updating of background reliability requires two initial values. an estimate
for x and an estimate for r. When pressed for an initial estimate for X,
however, it seemsquite natural to pull avaluefrom background reputation
r, so that x =r. Our modeling below relies on this smplifying assumption.
Infigure 28 we haveplottedinitial r and x values (r = x) betweenOand 1 on
the x-axis, withy points plotted for computationsthrough 100 iterations. A
few initial iterations have been ignored in order to allow points to settleto
an attractor in each case. The area shown in grey represents plots for
accuracy through 100 iterations for our message above. The area shownin

Thismessageisasinaccurateas| am generally reliable

Figure 28 Values for 100 iterations, with r=x along the x-axis. Grey=accuracy values,
black=revised reputation.
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black represents the corresponding reflection on computations of updated
reputation. As a whole the graph shows bands of computational
instability, with a middle window, for al reputation-accuracy values
between 0 and 1, though both the position and extent of the computational
instability varies with background values. Here instability itsef seems to
follow a clear and gradual course.

Consider also an emphatic form of our message, in which we add a
'very’, standardly modeled in fuzzy logic in terms of squaring:

It isvery true that this satement is asinaccurate as| am reiable.
AN(l-AbsCd-"-1))?2

This gives us, once again calculated for x=r on the x-axis, the range of
values shown in figure 29. Here it is clear that background reliability can
make a great deal of difference. Up to the crisis point of approximately
0.25, our sentence is extremely well-behaved: for reputations below that
threshold it gives us a manageable fixed point for both accuracy and
reliability. From that crucia point on, however, we have computational
chaos of varying degrees and patterns, including a clear window above
0.8 at which point we return to a period of 3. For reputations greater than
0.25 in general, however, such a message is a very real computational
hazard.

A similar case appears if we use the square-root hedge applied for
fairly":
It isfairly true that this statement is asinaccurate as| am reliable.
Xn*Va-Abstfl-x"-r))

If svery truethat thisisasinaccurateas| am reliable.

Figure 29 Values for 100 iterations, with r =x along the x-axis. Grey=accuracy values,
black=revised reputation.
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Theresult is shown in figure 30. What is clear is that for most background
reliabilities this is a much safer piece of information to receive in terms of
computational complexity. For amost any background reliability it gives
us a well-managed fixed point or a manageably small interval. The
exceptions are background reliabilities above roughly 0.8 and especialy
above 0.9. If this generally 'safe’ message is received from an agent with
very high reliability the cost in computational instability may be
considerable.

The form that some of these graphs seem to approach is reminiscent of
certain graphs for the period-doubling route to chaos. This impression is
strengthened if we consider a mixed-referential sentence dlightly farther
afidd:

It isvery true that thisistwice asinaccurate as| am generally reliable.
XAN-AbsCe-a-x"-r))2

The graph for this sentence, which appears as figure 31, can be seen as a
distorted mirror image of figure 32, which shows the route to chaos for the
Logistic or Quadratic equation Xn.i=4x,(l-x,), perhaps the most
studied formulain non-linear dynamics. Asindicated in chapter 1, smaller
values k in place of 4 in the Logigtic yield a variety of dynamic behavior.
For values of k less than 3 the Logistic map exhibits fixed point attractors;
for dightly higher values it has periods of 2,4, and so forth, to full chaos:
the 'period-doubling route to chaos.* In figure 32, however, our pattern
graphs more than just changes in the parameter of a formal equation.
Within the limits of our model, it reflects a real phenomenon of epistemic

If sfairly truethat thisisasinaccurateas! am reliable.

Figure 30 Values for 100 iterations, with r=x along the x-axis. Grey=accuracy values,
black=revised reputation
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Itisvery truethat thisistwiceasinaccurate as| am generally reliable.

Figure31 Valuesfor 100 iterations message (64) with r =x along the x-axis. Grey=accur acy
values, black=revised reputation.

XxM-Q-a-xJ-x.

Figure32 Thegandard period-doubling routeto chaosfor the Quadratic equation, shown
with Q from 28to 4.
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chaos. What plays the role of an artificial parameter in this caseistherole
of an agent's background reputation and initial accuracy estimate based on
that reputation. Starting from the right, for some reputationscloseto 1, itis
clear that receipt of a message such as above would cause arelatively small
problem of a closdly confined period-two oscillation. With a background
reputation in the range of 0.75 that period will be doubled to four, then will
increase into chaos. Within the chaotic realm, however, 'windows' do
appear, with for example a visible period of 3 against a background
reputation of approximately 0.36.

25 CONCLUSION

Our epistemic situation generally is onein which wereceive varying pieces
of information—or what purports to be information—from a variety of
sources. Our job as epistemic agents is to make sense of that information.
John Stuart Mill makes the point eloquently in A System of Logic:

Todraw inferences has been said to be the great business of life. Every one
has daily, hourly, and momentary need of ascertaining facts which he has
not directly observed, not from any general purpose of adding to his stock
of knowledge but because the facts themselves are of importance to his
interests or to his occupations. The business of the magistrate, of the
military commander, of the navigator, of the physician, of the agriculturist
ismerely to judge of evidence and to act accordingly... asthey do thiswell
orill, sothey dischargewell or ill the dutiesof their several calings. Itisthe
only occupation in which the mind never ceases to be engaged and is the
subject, not of logic, but of knowledge in general .**

One of theinevitable complications of this'great business of life' isthat it
often includes judging in terms of information about information—
information reflecting on the accuracy of itsdf, or on the accuracy of other
information—and information about general sources of information. To
live without ignorance is beyond us—the most we can hope for is to
manage our inevitable ignorance with some degree of success. The same,
we think, holds true for the ignorance incumbent on computational
complexity that has been our focus here. What we have tried to offer in this
chapter are some modeling tools for epistemic dynamics, designed to
capture and display some of the intricate, complex characteristics of our
epistemic predicaments. That, we hope, is a first step toward a deeper
understanding.
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Fractal Images of Formal Systems

Whileat Princeton, | cameto know Einsteinfairly well. | used to goto hishouse
onceaweek to discusswith himand Godel and Pauli— Godel turned out to bean
unadulterated Platonist, and apparently believed that an eternal 'not' waslaid up
in heaven, wherevirtuouslogiciansmight hopeto meet it her eafter.

—Bertrand Russall, Autobiography®

Concerning my 'unadulterated' Platonism, itisno more'unadulterated' than
Russell's own in 1921. ...At that time Russell had met the 'not’ even in this
world, but later on under theinfluence of Wittgenstein he choseto overlookit.
—Kurt Godel, quotedin Hao Wang, Reflectionson Kurt Godel?

[ Russell had written " Logicisconcerned with thereal worldjust astruly as
zoology, thoughwith itsmoreabstract and general features.”]

Familiar formal systemsinclude prepositional calculus, predicate calculus,
higher-order logic and systems of number theory and arithmetic. As
standardly outlined, these consist of a grammar specifying well-formed
formulae, together with a set of axioms and rules. Derivations are series of
formulae, each of which is either an axiom or is generated from earlier
items by means of the rules of the system; the theorems of the system are
simply those formulae for which there are derivations.

Given this standard approach to forma systems, however, attempts to
envisage forma systems as a whole seem of necessity remotely abstract
and incomplete. As a psychological matter, if one is asked to imagine
predicate calculus in its entirety, one seems at best able to conjure up an
image of the axioms and the (psychologicaly) empty category of
'‘whatever follows from them'. The incompleteness of such a psychological
picture accords perfectly with constructivist or intuitionist approaches to
formal systems. It may even seem to confirm them.

*One classica statement of constructivism is Heyting's:

... must ill make one remark which is essential for a correct
understanding of our intuitionist position: we do not attribute an existence
independent of our thought, i.e., atranscendental existence, to theintegers
or to any other mathematical objects. Even though it might be true that



every thought refers to an object conceived to exist independently of it, we
can nevertheless let this remain an open question. In any event, such an
object need not be completely independent of human thought. Even if they
should be independent of individual acts of thought, mathematical objects
are by their very nature dependent on human thought. Their existence is
guaranteed only insofar as they can be determined by thought. They have
properties only insofar as these can be discerned in mem by thought. But
this possibility of knowledge is revealed to us only by the act of knowing
itsdlf. Fai th3i n transcendental existence, unsupported by concepts, must be
rejected...

It is clear that there are alternatives to constructivism, however, and we
are certainly not endorsing an approach such as Heyting's. On the
contrary, the work of this chapter can be seen as an attempt to motivate
realistic and non-constructivist interpretations of formal systemsby giving
them avisual presence. In what follows we will outline some importantly
different and immediately visual ways of envisaging formal systems,
including a modeling of systems in terms of fractds. The progressively
deeper dimensions of fracta images can be used to map increasingly
complex well-formed formulae (wffs) or what we will term Value spaces,
which correspond directly to columns of traditional truth tables. Within
such animage, theorems, contradictions, and various forms of contingency
can be coded interms of color or shading, resulting in avisually immediate
and geometrically suggestive representation of systems as infinite wholes.
One promise of such an approach, it is hoped, is the possibility of asking
and answering questions about forma systems in terms of fractal
geometry. As a psychologica matter, complete fractad images of formal
systems seem to correspond to arealist and non-constructivist approach to
forma systems.

Paul Bernays emphasizes the contrast between these two approaches,
using Euclid as a constructivist and David Hilbert as arealist or Platonist:

If we compare Hilberf s axiom system to Euclid's... we notice that Euclid
speaks of figuresto be constructed, whereas, for Hilbert, systems of points,
straight lines, and planes exist from the outset. Euclid postulates: One can
join two points by a straight line; Hilbert states the axiom: Given any two
points, there exists a straight line on which both are situated. 'Exists refers
here to exigence in the system of straight lines_ [T]he value of
platonistically inspired mathematical conceptions is that they furnish
models of abstract imagination. These stand out by their simplicity and
logical strength. They form representations which extrapol ate from certain
regions of experience and intuition.*

In this chapter we want to use the computer to portray visualy, and in
progressively deeper and more reveaing ways, the forma systems that
Bernays refers to as "models of abstract imagination.”

We begin with the example of tic-tac-toe, a simple game rather than a
simple formal system, in order to introduce both the general approach and
a number of the tools to be used at later stages. We then offer some first
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maps of familiar formal systems in terms of enumerations of formulae,
starting with 'rug’ images and moving on to a more complete portrayal in
terms of fractal embedding. An aternative semantic portrayal of forma
systemsin terms of Value spaces and 'value solids', however, turns out to
be significantly more revealing. The semantic approach offers a number of
surprises. The firg of these is the appearance of the Sierpinski triangle, a
familiar fractal, as the pattern of tautologies in standard value spaces. A
second surprise is an intriguing correspondence between the value solids
for classica logic and sets of competing connectives for infinite-valued
logics. A fina surprise, which we don't yet understand in full depth, isa
clear connection between fractal images of forma systems and cellular
automata: the value spaces of standard logics, it turns out, can be
generated step-by-step using elementary two-dimensional cellular auto-
mata

3.1 THE EXAMPLE OF TIC-TAC-TOE

Although our primary concern is with fracta images for formal theories
rather than for games, many of the techniques can be made clear by
constructing a fractd image for the simple game of tic-tac-toe.

The first player in tic-tac-toe, conventionally labeled X, has a choice of
one of nine squares in which to place his marker. The opposing player O
then hasachoice of one of the remaining eight squares. On X's next turn he
has a choice of seven squares, and so forth. There are thus a total of
9x8x7x ...3x2x1 possible series of moves, giving us 362,880 possible
tic-tac-toe games. Some of these are wins for X, some for O, and some
draws (wins for neither player). Thefractal image shown in figure 1 offers
an analytic presentation of al possible tic-tac-toe games.

In figure 1 we've emphasized the divisions corresponding to the nine
basic squares of the tic-tac-toe game. Figure 2 shows progressive
enlargements, which track the course of a particular game. Here X's first
move isto the upper left-hand corner of figure 1, which isthen enlarged as
2A. The upper l€ft square is now occupied, having already been played by
X, but O can choose any of the remaining eight sgquares for the second
move of the game. In the series of moves shown, player O chooses the
upper right corner, which is then enlarged as 2B. In the color version,
patterns of yellow and blue can be used to indicate wins for O and X,
respectively. In the complete view of the fracta in figure 1, however, the
yellow wins in particular are small enough—meaning deep enough in the
game—so as to be practically invisible. Were the resolution of our
illustration great enough, and our eyes sharp enough, we would be able to
seedl suchwinsembedded in theimage. Winning strategies, asamatter of
fact, could be thought of as routes through the fractd toward those
winning games.
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Figure1l Fractal image of al possible Tic-Tec-Toe games.

Tictac-toe is convenient as an illustration because we have only two
players and only three final outcomes of concern (awin for X, awin for O,
or adraw), and because the game has a definite terminus after nine plays.
The principles of a game fractal could in principle be extended to checkers
and even chess, though if salso clear that these would become explosively
complex in short order.”

In what follows we apply some of the same graphic techniquesto ssimple
formal systems, first with simpler ‘rug’ images but moving eventually to
full frecta images of formal systems. In such an application wffs or
equivalence classes of wffs will replace moves or series of moves in the
example of tic-tac-toe, colors for wins and draws will be replaced with
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Figure2 Navigating deeper into thelic-Tac-Toefractal: one sample path.

colors coded to theorems, contradictions, and various contingencies, and
the fractal images used will be infinitely rather than merely finitely deep.

32 'RUG'ENUMERATION IMAGES

We begin with an extremely simple forma system, for which we will
construct severa different forms of images. The system at issue is
propositional logic, made even simpler by restricting it to a single sentence
letter p. In order to make things simpler till, we use a single connective:
either the Sheffer stroke |, which can be read as NAND, or the dagger !,
which can be read as NOR. As is well known, either NAND or NOR
suffices as a complete base for all Boolean connectives.

Our godl, then, is to construct an image of truth-values for all formulae
expressible in terms only of p and | or |. The values at issue are merely
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four, equivalenttop, ~p (p | p or p|p), tautology T, or contradiction . In
figures 4 through 8 we use light grey for p, dark grey for ~p, white for
tautologies, and black for contradictions.

Let us start with a simple 'rug" pattern with an enumeration of all
formulae expressible in terms of our single sentence letter and single
connective. For a first enumeration the plan of the rug is laid out
schematically, as in figure 3. Here formula 1 is p | p, formed by a single
stroke between the formula heading its row and the formula at the top of
its column. That formula, now simply labeled T, is then placed in the
second position along each axis. Formula 2 isformed asa "dash producf of
the formula heading its row and its column—in the form (row | column)—
inthesameway. Formula2isthus(p 11) or (p| (p | p)). Formula2isadded
as the third formula on each axis. Formula 3 is ((p|p) | p), formula 4 is
(p1(p! (pIp)) formulaSis((p|p) |(p|p)). formula6is((p|(p|p)) [p).and
so forth. The pattern continues to generate progressively longer formulae,
constituting in the abstract an infinite partial plane extending to the bottom
and right and containing all formulae of our simple single-sentence-letter
form of prepositional calculus.

In figure 4 the schema is shown in shades of color. Squares correspond
directly to the formulae indicated in the schematic sketch above, including
formulae along the axes, and are colored in terms of their values: as noted,
light grey=p or equivalent formulae, dark grey=p|p or ~p, white
represents tautologies T, and black represents contradictions L The first
graph in figure 4 is a smaller fragment of the upper |eft corner of the rug,
with the values of formulae indicated on axes aswell. The second imagein
figure 4 shows a larger section, incorporating the first. Here a number of

p1 2 3 4 5 6 7

p| 3 6 10
I

11225 9
I
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/
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Figure3 A diagonal enumeration of formulae.
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Figure4 Rug diagramsfor a single sentence-letter form of prepostional calculus using the
Sheffer groke NAND, diagonal enumer ation.
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Figure5 Rug diagrams for a single sentence-letter form of propositional calculus using the
dagger NOR, diagonal enumeration.
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systematic features are immediately evident. Thefirdt isthat theimagesin
figure 4 are symmetric, reflecting the fact that x | y has the same value as
y | x for any formulae x and y The 'stripes' in the rug are aso obvious,
reflecting the fact that both x | _L and * | x will be tautologous for any x:
once any formula on either axis has the value +, any formula composed of
it with a single stroke will have the value T. Closer attention shows that
rowsinwhich thevalue of theformulaat thetopis T will simply reflect the
value of the formulae on the column axis, with the same being true for
columns with the value T and the formulae listed along the top.

Figure 5 shows the rug pattern created from the same enumeration of
formulae but in which the Sheffer stroke | is replaced with the NOR
connective |. Side by side, figures 4 and 5 also serve to make obvious
certain relationships between these two connectives. a contradiction on
either side of the stroke gives us a tautology, for example, whereas a
tautology on either side of the dagger gives us a contradiction. It is clear
that dagger tautologies mirror Sheffer stroke contradictions, and dagger
contradictions correspond to Sheffer tautologies: a graphic expression of
the familiar duality of the stroke and dagger. For systems with only one
sentence letter, moreover, it is clear that the colors for areas other than
contradictions and tautologies are identical. In these simple systems, any
formula equivalent to p or to ~p written in terms of the Sheffer stroke
retainsthat valueif written in terms of the dagger. In none of these casesdo
our images offer genuinely new information regarding the stroke and
dagger, of course—all the facts indicated are well known—though these
patterns do make such features vividly evident.

Figures 7 and 8 show a rug pattern using a different enumeration of
formulae, following the alternative schematic in figure 6. Nothing, it
should be noted, dictates any particular form for enumeration in such a
display; nothing dictates the diagonal enumeration of figure 3 over the
square enumeration of figure 6, for example, nor either of these over any of
the infinite alternatives. There is therefore an meliminable arbitrariness to
the choice of any particular rug pattern for aformal system. It is also clear,
however, that certain properties of pattens—including those noted
above—will appear regardless of the pattern of enumeration chosen.
Pattern-properties invariant under enumeration can be expected to
correspond to deep or basic properties of the system.

The rug patterns sketched here are for an extremely simple form of
propositional calculus, explicitly restricted to just one sentence letter. Can
such an approach be extended to include systems with additional sentence
letters aswell? One way of extending the enumeration schematato include
twa sentence letters rather than one is simply to begin with the two
sentence letters on each axis. In dl other regards enumeration can proceed
as before (see figure 9). With two sentence | etters, of course, four colors no
longer suffice for values of tautologies, contradictions, and al possible
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Figure 7 NAND using square enumeration.

Figure8 NOR using square enumeration.
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Figure9 Enumerationsfor prepostional calculuswith two sentenceletters.

shades of contingency. For a system with both p and q we will require
sixteen colors in al, corresponding to the sixteen possible truth tables
composed of four lines, or equivalently the sixteen binaries composed of
four digits.

Complete color shade patterns for prepositional calculuswith p and g—
employing a complete palette of contingencies—are shown in figure 10.
These represent NAND and NOR with our initial diagonal enumeration
scheme. Although anumber of the characteristics noted above with respect
to prepositional calculus involving a single sentence letter still hold, one
does not: itisno longer true that contingent values match between NAND
and NOR versions. That property, though provable for propositional
calculus with a single sentence letter, disappears in richer systems.

In both figures 10 and 11 the number of colors at issue becomes even
more bewildering in larger sections of the display. In figure 11 we have
compensated for this difficulty by eliminating al colors for various
contingencies in alarger array, leaving only black for tautologies and grey
for contradictions.® Figure 11 shows an extended view of tautologies and
contradictions for NAND and NOR in our first pattern of enumeration.

In theory, any finite number of sentence letters can be added at the
beginning of an array in the manner of the enumerationsin figure 9. For n
sentence letters, however, the number of colors required to cover al
contingenciesis 2 raised to 2" colors. At three variables, therefore, we have
aready hit 28 or 256 contingency colors. At four variables we hit 65,536.

In theory the full countable set of sentence letters required for standard
propositional calculus might also be introduced along the axes, by simply
adding an additional sentence letter at some regular interval (figure 12).

Fractal |mages of Formal Systems
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Figure 10 Propositional calculus with two sentence letters, diagonal enumerations.

Becausethe standard propositional calculusislimited to finite connectives,
we would here require countably many contingency colors as well.
Similar representations of forma systems beyond propositional calculus
are undoubtedly possible for forms of predicate calculus as well. One way
to start mapping a form of predicate calculus that has multiple quantifiers
but is limited to monadic predicates applied to variables, for example, is
* the following. In a first grid we enumerate all combinations of n-place
predicates and variables, givingus Fx, Fy, Fz,...Gx, Gy, Gz, Thesewe
canthink of asa series of propositional functions PI, P2, P3,..., which can
be introduced into a grid for full propositional logic by simply placing
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Figure 11 Black tautologies and grey contradictions in diagonal enumeration.

them between our progressively introduced sentence letters—p, PI, g, P2,
r, P3...—in an expansion of an enumeration pattern such as that outlined
infigure 12. Quantification over formulaeinvariablesx, y, z... might then
beintroduced by adding spaced occurrencesfor V x, V'y, V zaong just one
axis. Here the application of a lone quantifier to formulae in its row could
be interpreted as a universal quantification in that variable over that

Fractal Imaged of Formal Systems



o A O W N R, T

1 2 3 q 45 6 r p 1 2 3 g4 5 6T

3 6/ 10 1 4-*5
2-*3 6
5 /9 Q«-8«-7
8
10-*

o o0 b O W N - T
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Figure 13  An enumeration scheme for quantification.

formula.” All other intersections would be interpreted as before, in terms
for example of the Sheffer stroke (figure 13). Existential quantification can
be expressed in terms of universal quantification and negation, and the
|latter can be expressed by the Sheffer stroke in familiar ways.®

Figure 13 is limited to monadic predicates applied to variables simply
because the scheme becomes complicated so quickly even in that case. A
representation of polyadic predicates limited to variables would demand
only the further complication that we include al n-valued predicate letters
paired with n-tuplets of our variables. These can be generated in separate
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grids first so as to form a single enumeration, then introduced into the
main grid in the position of PI, P2, P3___

The purpose of outlining such a schema is to show that rug images of
formal systems can be extended to forms of predicate calculus. On seeing a
dog wak on two legs, Abraham Lincoln is reputed to have said, "The
amazing thing is not that he does it well but that the thing can be done at
all/' In even the simple case of prepostional logic with a single sentence
letter, artificiaity was introduced by arbitrary choices of enumeration for
wffs. In the schema outlined for predicate calculus this artificidity is
magnified many times over—by repeated arbitrary choices regarding
forms of enumeration within a grid, by choices of how to incorporate
different infinite classes of formulae on the axes, and by choices of how to
incorporate quantification into the grid. The end product succeeds in
showing that the thing can be done; but it should not be expected, we
think, to give any particularly perspicuous view of the theorems of the
calculus.

If we return for a moment to the simple form of propostional calculus
restricted to a single sentence letter, it should be clear that either of the

Figure 14 A progressive enumeration of single-letter propositional calculus showing
formula length and value.
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enumerations offered above will generate progressively longer wifs. It is
not true, of course, that the length of wffs within such an enumeration
increases monotonically; formula 10 in our original enumeration is shorter
than formula 9, for example. Along the diagonal of either schema,
however, formulae do increase in size with each step. How does such an
enumeration look if we graph the formulae sequentially in terms of length
with colors assigned for value? The beginning of such a result, using
NAND and our first enumeration, is shown in figure 14. We have chopped
this up for illustration purposes only: the series should be thought of as a
seamless series continuing from the right side of each row to the left side of
that beneath it. Shading used is the same as in the rug patterns above
except that tautologies are indicated in white with horizontal cross-
hatching so that height will be visible. In the program used for generating
thisimage, one can continue to flip through progressively longer wifswith
no apparent repeat of color patterns.

33 TAUTOLOGY FRACTALS

The rug enumeration patterns offered above are perhaps the most direct
way to attempt to model acompleteformal system in terms of the values of
its wffs. There is one large respect in which these patterns do not
correspond to the fractd outlined for tic-tac-toe, however. That fractal
exhibits al possible tic-tac-toe games in afinite area: all tic-tac-toe games
are contained within the largeinitial square, though progressive moves are
exhibited more 'deeply’ at decreasing scales. The rug patterns offered
above, on the other hand, are not in principle exhibitable in a finite space:
al occupy an infinite plane extending without limit to the right and
bottom. It is also possible, however, to outline fractals for at least smple
systems of propositional calculus which do embed information in a finite
space in the way the tic-tac-toe fractal does. In the case of systems with
infinite wffs, of course, the corresponding fractal must be infinitely deep.
For a simple form of propositional calculus with one sentence letter and a
single connective | such afracta is shown in figure 15.

The form of the fractal in figure 15 can most easily be outlined
developmentally (see figure 16). We start from a single triangle occupying
the whole space, representing the formula p and assigned light grey as the
contingent value of p. Wethen take hdf of this space and divideit into two
smaller triangles. One of these triangles represents the Sheffer stroke
formulae (a | b) for the formula a of the divided triangle over al formulaeb
exhibited in the whole graph before division—including formula aitsdf, of

* course. The other small triangle represents the symmetrical Sheffer stroke
formulae (b|a) for al formulae b previously exhibited over the present
formula a. At thefirst step both of these amount to smply (p | p), colored
dark grey as arepresentation of the contingent value ~p. At the next step
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Figure15 Frartal image of prepositional calculus with one sentence letter and NAND.

(pip)

pip plp

Figure 16 A developmenta outline of the fractdl.

we take each of the new triangles thus created, dividethem into two, and
embed in each of thesesmaller trianglesan appropriately colored image of
the whole—representing Sheffer stroke formulae (alb) of the present
formulae over all formulae previoudy exhibited and Sheffer stroke
formulae (bla) of all formulae previoudy exhibited over the present
forjnula.

At each step anew set of more complex formulaeis created, and at each
sep all Sheffer groke combinations of eements of this new set with all
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formulae previously exhibited, including itsdf, are embedded in the total
image. Tautologies are colored white and contradictions black. All
formulae of our simple formal system are thus represented with their
value colors somewhere in the infinite depths of the fractal. Indeed al
formulae except p are represented redundantly—(p | p) appears twice at
the first step, for example (representing the present formula p over the
previous formula p and vice versa), and later complexes with (p|p) on
either side will carry the redundancy further. The complete fractal
represents the entire prepositional calculus formulated in terms of the
Sheffer stroke for a single sentence | etter, infinitely embedded on the model
of the tic-tac-toe fractal with which we began.

Modeling in terms of tautology fractals can be extended to more than a
single sentence letter by starting with a larger number of initial areas: an
initial triangle with two magjor divisions for p and g, for example, with
three for p, g, and r, and so forth. Any of these could then be subdivided
precisely as before, once again embedding the whole image into each
subdivision. If wewish, we can even envisage an initial trianglewith room
for infinitdly many sentence letters arranged Zeno-style in infinitey
smaller areas. The embedding procedure would proceed as before, though
of course each embedding would involve the mirroring of infinitely many
areas into infinitely many. We haven't yet tried to extend such a pattern to
guantification.

34 THE SIERPINSKI TRIANGLE: A PARADOXICAL INTRODUCTION

In the following section we want to outline another way of visualizing
simple forma systems. An important fractal image that appears there,
however—and which surprised us when it did—deserves a brief
introduction of its own. Here we want to introduce that fractd in terms
of paradox, in ways i“eminiscent of some of the work of chapter 1.

Zeno's paradox of the Stadium comes in two forms. In the progressive
form, the argument is that Achilles will never be able to run across the
Stadium. For him to do so, he would first have to reach the halfway point.
Once there, he would have to reach the halfway point of the remaining
distance, then the hdfway point of the remaining distance, and so on ad
infinitum. If space and time are infinitely divisible, so the argument goes,
Achilles could never reach the other side; to do so would requiretraversing
an infinite number of points in a finite amount of time.

In the regressive form of the paradox, Achilles can't even get started.
Before he could reach the halfway point, Achilleswould first have to reach
apoint halfway to the haf way point. In order to reach that, hewould first
have to reach the point halfway to it, and so on ad infinitum. If space and
time are infinitely divisible, the argument goes, motion could never be
initiated. For Achillesto get started at all would require him to traverse an
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Figure 17 A geometric representation of the infinite regresses in the progressive and
regressive forms of Zeno's Stadium paradox.

infinite number of points in a finite amount of time. Both forms of Zeno's
paradox are represented geometrically in figure 17.

Having looked at the path of Achilles geometrically, lefs examine his
path arithmeticaly. Since the argument proceeds in terms of halving
distances throughout, a binary decimal notation proves particularly
perspicuous. In such notation, 0.1 represents 1/2, 001 represents 1/4,
0.001 represents 1/8, and so forth: a1 inthe nth decimal place representsa
value of 1/2".

In the progressive form of the paradox, Achilles must first reach the half-
way point 1/2, then the further point 3/4, then the further point 7/8, and so
forth:

Fraction Binary Representation

12 01
3/4 011
7/8 0111
9/16 01111

In the regressive form of the paradox, before he reaches the half-way point
he must reach the 1/4 point, but before that he must reach the 1/8 point,
before that the 1/16th point, and so forth:

Fraction Binary Representation

1/2 01
14 0.01
1/8 0.001
1/16 0.0001

From the arithmetic point of view, then, the positions in the progressive
form of Achilles’ route are generated by appending a T after the binary
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point. The positions in the regressive form—postions of repeated
halving—are generated by appending a 'C after the binary point.’

The classicd Zeno paradox is expressed throughout in terms of one
dimension: the one-dimensional line of Achilles route across the stadium.
But consider also a variation in which Achilles is traveling between three
points arranged in a triangle. We can envisage him placed randomly
within this triangular stadium, and so confused as to follow the rule:

The Trivaent Achilles. | run halfway to one of the three points chosen at
random.

We can imagine marking the points on which Achilles route might
converge. This two-dimensional version of Zeno's Achilles, dubbed the
Chaos Game by Michad Bamsey,”” generates the fractal Sierpinski
triangle or gasket shown in figure 18.

There is another way of obtaining the Sierpinski fractal, important for
some of our results regarding formal systems in the following section. In
thisvariation, whichwemight call the Escapist Achilles, we again begin by
choosing any point inside the triangle. Here, however, we envisage
Achillesrunningin straight linesfromthe pointsof thetriangle, following a
deterministic rather than a randomized rule:

The Escapist Achilles: | run twice the distance away from the nearest
point.

If we plot those initial points from which Achilles can never break out of
the triangle—those points from which there will be no escape—we once
again obtain the Sierpinski triangle of figure 18.*

Figure 18 The Serpinsi triangle.
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A Zeno-like paradox with three points may seem reminiscent of liar-like
paradoxes with three speakers—the Triplist variations of chapter 1. And
indeed thereisan intriguing connection. Consider aTriplist in the tradition
of Buridan, discussed by Tyler Burge and Brian Skyrms:*

Socrates: What Plato saysistrue.
Plato: What Socrates saysisfase.
Chrysippus: Neither Socrates nor Plato speak truly.

Assuming abivalent evaluation scheme, let us suppose that what Socrates
says is true. Then what Plato says is fase, since we assumed Socrates to
speak truly and Plato says that he does not. On this assumption what
Chrysippus says is aso fase, since what Socrates says is assumed to be
true. If Socrates is assumed to speak truly, in other words, the other two
speakers must be speaking fasdy. Indeed the lesson holds for any of the
speakers: if any of them speak truly, the others do not.

But of course the Triplist also has a Liar-like dynamics. We started out
assuming that what Socrates says is true. But what Socrates says is that
what Plato saysistrue. If what Plato saysistrue, then what Socrates (and
Chrysippus) say must befalse.... If we represent bivalent truth and falsity
by 1 and O, respectively, our progressive evauations for the three
statements above might look as follows:

Socrates: 10 0101...
Plato: 010000...
Chrysippus: 001010...

At every placein the series, precisely one statement will have avalue of
1; the others will have a value of 0. Different patterns of evaluation, in
fact—starting with the assumption that Socrates speaks truly, or Plato
instead, or Chrysippus instead, and moving from that point to the
implications for one rather than the other speaker—will give us different
patterns of this basic form. For each progressive pattern of evaluation,
there is such a series of triplesin 1 and 0, and for each such pattern of
triples there is an infinite pattern of reasoning regarding the three
sentences above. This pattern too, it turns out, maps directly on to the
Sierpinski triangle. Herelet usthink of the vertices of our triangle as axesx,
y, and z, plotting the position of a point within the triangle in terms of a
binary decimalsand these axes. Vertex x will havethe coordinates(1, 0O, 0),
representing afull T for the x-value and O for the other two. Verticesy and
z will have coordinates (0,1, 0) and (O, 0,1), respectively. Using binary
notion, a midpoint on the side across from the x-vertex will have a value
(0,1).1, 0.1), and so forth. Consider now the possibility of transferring our
progressive values for the Triplist above into decimals in this axis system.
The first value for each of our three speakers will be the first value to the
right of the decima in the three coordinates of such a system, the second
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value the second place, and so forth. The pattern above, for example, thus
becomes the triplet (0.100101..., 0.011000..., 0.001010...). Manfred
Schroeder has shown that the set of all such values is precisaly the set of
points of the Sierpinski triangle.”®

The Sierpinski triangle thus seems to emerge in surprising ways from
two-dimensiona generalizations of the Zeno paradoxes and from a Triplist
version of the Liar. These connections, however, we did not recognize
immediately. Thefirst surprise was the appearance of the Sierpinski within
a fractal representation of standard logical connectives.

35 A SIERPINSKI TAUTOLOGY MAP

In the rug patterns of section 3.3 we graphed an enumeration of formulae
for smple forms of propositional calculi, coloring the grid locations of
formulae in terms of their values. For forms of propositional calculuswith
n sentence | etters, we noted, there are 2 raised to 2" such colors or values—
essentially, a color for each possible truth table of length 2". Here we
consider a different type of display for such systems, constructed using
those values themselves on the axes rather than enumerated wiffs. This
frees us from particular enumerations of formulae sinceit frees us from the
formulae themselves, the value space is constructed not in terms of
particular formulae but in terms of the values of equivaence classes of
formulae.
Consider two sentence letters p and g in standard truth-table form:

P q P q
T T 11
T F 10
FT 0 1
F F 0 O

For the four-line truth tables appropriate to two sentence letters there are
sixteen possible combinationsof T and F, or 1 and 0. Theseinclude solid Os,
corresponding to a contradiction or necessary falsehood; solid s,
corresponding to atautol ogy; the pattern 1100, corresponding to the value
of p; and the pattern 1010, corresponding to g. The sixteen values for two
sentence letters can be thought of ssimply as all four-digit binaries. These
can be arranged in ascending order along the two axes of a two-
dimensional display. Following the approach above we can think of these
values as distinguished by color as well (figure 19).

Combinatorial values for any chosen binary connective can now be
mapped in the interior value space. If our value map is that of the Sheffer
stroke, for example, the value of (J. | £) will appear at the intersection of
0000 and 0000, the value of (T | p) at the intersection of 1111 and 1100, etc.
In terms of the colors on our axes the complete graph for the Sheffer stroke
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Figure19 Thebasic plan of avalue space in terms of binary representations and colors.

Figure20 Thevalue space for a Sheffer strokein 16 values.

Fractal Images of Forma Systems



appears in figure 20. A Sheffer stroke between J_and 0000 or any other
value, of course, amounts to a tautology. In figure 20,0000 is represented
using the darkest grey, tautologies are shown in black, and this fact is
represented by black values representing tautologiesin all cases along the
left column and along the top row—all cases in which a value of 0000
appears on either side of the stroke. A Sheffer stroke between two
tautol ogies, on the other hand, amounts to a contradiction, indicated by the
dark grey square at the intersection of two black axis values in the lower
right corner. As awhol e the graph represents the val ue space for all Sheffer
stroke combinations of our sixteen values.*

A particularly intriguing festure of the value space appears more
dramatically if we emphasize tautologies by whiting out al other values
(figure 21). The fractal pattern formed herein black is of course that of the
Sierpinski triangle. If we expand our value space to that of three variables,
with 256 values corresponding to al eight-digit binaries, an even finer
representation of the Sierpinski triangle appears (figure 22). At any
number of variables, given a standard listing of binaries corresponding to
truth table values, the. tautologous Sheffer combinations will form a
Sierpinski triangle. As indicated below, we can in fact think of diagrams
with increasing numbers of sentence letters as increasingly finer
approximations to a full system, with infinitely many sentence letters
and infinitely many values. For that diagram, the tautol ogies of the system
form an infinitely fine Sierpinski dust.

The main connective of figures 20 through 22 is NAND or the Sheffer
stroke. A similar display for NOR, or the dagger, appearsin figure 23. Here

Figure21 The Sierpinski gasket of tautologies in the Sheffer stroke.
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Figure22 The Sierpinski gasket of tautologies for NAND in 256 values.

there is only one tautology, at the intersection of 0000 and 0000. The
Sierpinski triangle does show up again, however, as a graph of
contradictions in the lower right-hand corner. Other connectives generate
other patterns in value space. 'And' and 'or', for example, are shown in
figure 24. Inthe case of 'and' the persistent image of the Sierpinski triangle
appears in the upper left as avalue pattern for contradiction; in the case of
‘or' it appears in the lower right as a value pattern for tautology. In
material implication the Sierpinski triangle shifts to the lower Ieft as a
value pattern for tautology.

In the course of our research the appearance of the Sierpinski triangle
within the value space of propositional logic came as a surprise. But its
appearance can easily be understood after the fact, as we will see below.

We can think of value space displays for forms of propositional calculus
with increasing numbers of sentence letters as approximations to a fuller
system. As long as we have some finite number of sentence letters n we
will have finitely many value spaces, corresponding to all possible truth
tables of length 2". The full propositional caculus toward which our
approximations seem to build, however, isnot limited to any finite number
of sentence letters. it includes a countably infinite number instead. What
then would the complete val ue space for the full system look like?

Here we will continue to think of value spaces as corresponding to
possible truth tables, encodable in terms of binaries. Truth tables of any
given length 2", however, can offer value spaces appropriate only to a
system limited to n sentence letters. For a full system with a countably
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Figure23 NOR.

infinite number of sentence letters the basic strategy will have to be
extended to what are in effect truth tables of infinite length. This is less
difficult than it may at first appear. In constructing finite truth tables for n
variables the standard procedure is to start with a sentence letter
represented as 0101... to length 2", to represent the next sentence letter
with 00110011... to that length, the third with 00001111..., and so forth.
For infinite truth tables adequate to finite complexes of countably many
sentence letters, our firgt sentence letter p can be thought of as having an
infinite truth table that startswith 01010101 Our second sentence letter
g can be thought of as having the infinite truth table that starts
00110011..., our third sentence letter r as having the infinite truth table
000011111..., and soforth. Each of our sentenceletters, in other words, can
be thought of as having infinitely periodic truth tables that otherwise
follow the standard scheme used for constructing truth tables of finite
length. Therewill alwaysberoomfor ‘'one more' sentenceletter sinceit will
always be possible to introduce a larger period of Os and Is for the next
sentence letter needed. Sentence letters of a full form of prepositional
calculus can thus be thought of as corresponding to a subset of the periodic
binary decimals. those that aternate series of Os and Is of length 2" for
somen.

Any set of values for any finite set of sentence letters will have an
appropriate line in this infinite extension of truth tables, and in fact will
have a line that will itsdf reappear an infinite number of times. Since the
infinite truth tables for our sentence letters are periodic in this way,
complex sentences formed of finitely many connectives between finitely
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Figure24

many sentence letterswill be periodic aswell. The largest period possible
for a complex sentence of this sort will in fact be the longest period of its
sentenceletter components. All values for the full propostional calculus
will thusberepresented by periodic binary decimals. It isimportant to note,
however, that not all periodic binary decimals will have corresponding
formulae; those periodic in multiples of 3, for example, will not be prod-
ucible by finite combination from sentencelettersperiodicin powersof 2.
Theimportant point hereissimply that any value spacefor finitely many
sentence letters can be thought of as an approximation to this richer
system, adequateto propostional calculusasawhole. Inthericher system,
of course, the sguares of the value spaces illustrated above shrink to mere
points in value space, jus as values on the axes shrink to mere points on
the continuum. Although these points do not by any means exhaust the
full [0,1] interval—they congtitute merdy a subset of the periodic
decimals—they can be envisaged as embedded within it. It is easy to
show that these value points are " densg' in the continuum, in the sense
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that given any interval within the continuum therewill beaformulawith a
value within that interval.'® The argument below regarding the appear-
ance of the Sierpinski triangle applies to afull continuum as well asto the
envisaged subsets, and isvalid both for the full propositional calculus and
for the envisaged approximations to it.

In terms of NAND or the Sheffer stroke the appearance of the Sierpinski
triangle can be outlined as follows. Similar explanations will apply for the
other connectives. Let us emphasize that the binary representations of
values on each axis of our value spaces, whether finite or infinite,
correspond to columns of a truth table. The value assigned to any value
space or point v is a function of the truth-table values from which it is
perpendicular on each axis. In asking whether a point in the value space
represents a tautology in a graph for NAND, for example, what we're
really asking is whether the truth tables of these two axis values share any
line in which both show a T. If there is such a line, their combination by
way of NAND isnot atautology. The value point v will havethevalueof a
tautology if and only if its axis values at no point show a T on the same
line.

Consider now the Escapist Achilles route to the Sierpinski triangle,
which generatesthe fractal in terms of arule for doubling distance from the
nearest vertex. For any given triangle, thereis a set of points which, when
distance is doubled from the nearest vertex, will be 'thrown' outside of the
triangle itsedlf—moare precisaly, which will map under doubling from the
nearest vertex to points outside the triangle itsdf. These pointsin fact form
aninverted trianglein the center (figure 25). Thereis a further set of points
which, when distance is doubled from the nearest vertex, will be thrown
into this central region-"and thus which will be thrown out of the triangle
upon two iterations of the 'doubling from nearest vertex' procedure. The
Sierpinski triangle is composed of al those points that remain within the
triangle despite unlimited iteration of such a procedure.’’” The Escapist
Achilles route to the Sierpinski triangle, it turns out, corresponds quite
neatly to its appearance as a map of tautologies in the value space for
NAND.

Consider the diagram of a unit square in figure 26, and the upper
triangle marked between A (0,1), B (0, 0), and C (1, 0). This'inverted' form
of the unit square corresponds to our axesfor val ue spaces above. Werewe
to characterize the Escapist Achillesrule of doubling the distance from the
closest vertex in terms of x and y values for particular points within this
triangle, our rules could be rendered as follows:

If Bisclosest, (Xn, yn) = (2%, 2y)
If Alisclosest, (xw Yn) =(2%, 1 - 2(1 - y))
If Cisclosest, (X" yn) =(1 - 2(1 - X), 2y)

These will give us the Sierpinski triangle by the Achilles rule of doubling
the distance from the nearest vertex.
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Figure25 The Achilles doubling-the-distance route to the Sierpinski gasket.

B (0, (18)

fle,D

Figure 26 Converting doubling-the-distance to numerical transforms.

Hereif sclear that doubling the distanceisin all cases amatter of either
multiplying an axis value by 2 or subtracting 1 from a multiplication by 2.
But now let us envisage the axes of our unit square as marked in terms of
binary decimals. For binary decimals multiplication by 2 involves smply
moving adecimal point oneplaceto theright: 2 times0.001 is0.01; 2 times
001is0.1.1 - 2(1 — x) equals2x — 1, which movesthe decimal point one
place to the right and lops off' any ones that thereby migrate to the left of
the decimal point. The crucia point isthat for binary decimal expression of
axis values, both forms of transformation preserve the order of digits
which remain beyond the decimal point. Iterated application of such
transformations to pairs of values (X, y) thus effectively moves down each
series of binary digitsoneat atime, checking for whether a1 occursin both
places. If it does, our iterated transformations have resulted in two values
both of which are greater than 1/2 as expressed in binary, and the point
will therefore have migrated under iteration outside the region of the dark
triangle.

The points of the triangle ABC which will not migrate out under an
iterated Achilles procedure of doubling the distance from the nearest
vertex—the 'non-escaping’ points of a Sierpinski triangle in that upper
region—are therefore those points (X, y) such that the binary representa-
tion of x and y do not both have a 1 in the same decimal place. Given our
representation of values in terms of binary decimals, those points that
generate tautologies under NAND are precisely those same points: points
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with axis values with no Is in corresponding truth-table lines, or
equivalency with no Is in corresponding decimal places of their binary
representation. Theinitially startling appearance of the Sierpinski triangle
as amap of tautologies under the Sheffer stroke can thus be understood in
terms of (i) what a binary representation of values means and (ii) a
corresponding rendering of the Escapist Achilles route to the Sierpinski in
terms of binaries. An outline for the appearance of the Sierpinski in the
value space of other connectives can be drawn along the same lines.™®

The Escapig Achilles route to the Sierpinski does involve a full-
continuum unit square. As indicated above, even the full prepositional
calculus has a value space short of that full continuum; although each
sentence letter and each connective corresponds to an infinite decimal,
these form a subset of even the merely periodic decimals. None of that,
however, affects the basic mechanism of the argument above, which turns
merely on the question of whether two decimals share a particular value at
any place. Multiplication by 2 from the closest vertex simply ‘checks' them
place by place. Thusthefact that our value space for propositional calculus
comprises a mere subset of the full unit square tells us simply that
tautologies in the case of NAND, for example, will constitute an infinitely
fine Sierpinski dust within that grainy unit square.

One of the promises of a graphic approach to formal systems of this sort
is that there may be results of fractal geometry that can be understood as
facts about the logical systems at issue. Here the appearance of the
Sierpinski triangle as a map of theorems in value space offers a few minor
but tantalizing examples. It is well known that the points constitutive of
the Sierpinski triangle within a continuous unit square are infinitely many,
but nonetheless 'very few’ in the sense that a random selection of points
has a probability approaching zero of hitting such apoint. The sameistrue
of the full propositional calculus and its infinitary extension; there will be
infinitely many complexes with the value of tautology in such a value
space, but the probability will approach zero of hitting atautology interms
of a Sheffer combination of random axis values.

A similar point can be expressed in terms of area. Within any finite
approximation to an infinitely fine-grained unit sgquare, the Sierpinski
triangle retains a definite area. Within any val ue spacelimited to n sentence
letters, tautologies retain a similar area of value space. In the case of an
infinitely-grained unit square, on the other hand—whether fully contin-
uous or not—the Sierpinski triangle has an area approaching 0. Within the
full propositional calculus the relative area of tautologies will similarly
amount to zero. In terms of the Sheffer stroke, tautologies end up
distributed as unconnected points within value space on the model of
three-dimensional Cantor dust.™

One measure commonly used in fractal geometry—the origin, in fact, of
the term ‘fractal'—is the notion of fractional dimension. One definition of
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such a notion is the Hausdorff dimension: For smooth curves, an
approximate length L(r) can be given as the product N ¢ r of the number
N of straight-line segments of length r required to 'cover' the curve from
one end to the other. Asr goes to zero, L(r) approaches the length of the
curve as afinite limit. For fractal curves, on the other hand, it is standard
for L(r) to go to infinity asr goesto zero, since what are being 'covered' are
increasingly fine parts of the curve. The Hausdorff dimension d of the
intricacy of fractal curves is that exponent d such that the product N « r®
staysfinite. The Hausdorff dimension of the Sierpinski triangleisknown to
belog 3/log 2 »1.58. Given the work above, if s clear that we will be able
to sign the same fractal measure to tautol ogies within the val ue space of the
Sheffer stroke.

36 VALUE SOLIDSAND MULTI-VALUED LOGICS

A dlight variation in the representation of the val ue spaces outlined above
offers an intriguing comparison with a way of envisaging connectives in
multi-valued logics, including infinite-valued or fuzzy logics.

Rather than graphing valuesin our val ue space in terms of color, the use
of binary decimals makesit easy to graph them intermsof height in athird
dimension. A vaue of 0.0000 will graph as 0, a value of 0.1000 as the
decimal equivalent 0.5,0.1100 as 0.75, and so forth. A fairly rough graph of
this sort for NAND, seen from a particular angle, appearsin figure27. This
corresponds directly to figure 20, though herethe originisin theright rear
corner. Smoother forms of the value solid for NAND, from two angles,
appear in figure 28. Because the rough solids are often more revealing of
basic structure, however, we will continue with these throughout. Vaue
solids for conjunction, digunction, and material implication appear in
figure 29. In each casethe origin is shown in the |eft figure at the front left,
and in the right figure at the rear right. These value solids make obvious
the relationships between NAND and OR, the dual character of
conjunction and disjunction, and the rotation properties of negation.
Perhaps more significantly, however, these value solids for smple classica
systems also show a striking resemblance to a very different type of solid
that can be drawn for connectives within multi-valued or infinite-valued
logics.

In this second type of solid, values on the axes represent not truth-table
columns but degrees of truth. Within this value solid, height at a certain
point represents the degree of truth of acomplex of two sentenceswith the
axis values of that point. In one standard treatment of infinite-valued
connectives, for example, the value of a conjunction of sentencesp and qis
the minimum value of the two, represented as:

Ip&ql/ = Min(/p/,/q/).
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Figure27 A value solid for NAND.

Figure28 Smoother forms of the value solid for NAND.

The value solid of this type for conjunction will thus at each point have a
height corresponding to the minimum of its axis values.

There are, however, rival setsof connectivesthat have been proposed for
multi-valued and infinite-valued or fuzzy logics. One such set, perhaps
most common within multi-valued and fuzzy logics, is shown in the left
column of figure 30. Another set, grounded more directly in the original
multi-valued logic of Lukasiewicz,® is shown in the right column. It
should be emphasized that the value solids appropriate to connectives in
infinite-valued logic are radicaly different from the value solids for
systems outlined above. In system value solids, for example, 0.1000 might
represent atruth table in which thefirstline hasa T' and the others do not.
Inthat regard it is perfectly symmetrical to 0.0001, which simply hasa T'
on a different line. Using similar binary decimals for the values of
sentences in an infinite-valued logic, on the other hand, a statement with
sthe value 0.1000 would be haf true. One with avalue of 0.0001 would be
amost completely fase. Given this radical difference, the value solids
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Figure29 Vdue solids.

Fractal Images of Formd Systems
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outlined here for classical systems and those sketched below for infinite-
valued logics seem much more alike than they have any right to be.
Intriguingly, the system solid for each connective seems to embody a
compromise between the corresponding infinite-valued connective solids.
The system-solid for 'or', for example, amounts neither to'Max' nor to the
Lukagewicz 'or'. It rather appears to be a compromise, in which some
values corregpond to one treatment of the infinite-valued connective and
someto ancther.

AND

min(/p/,/ql) Lukasiewicz max(0,/p/+/q/-1)

a0

. w,n .m

OR

max(/p/,/ql)

BN RRRAY

4

1)
(8.8) (1,8) (8.8) (1,8)

Figure30 Rival infinite-valued connectives.
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Implication
max(I-/p/,/q/l) Lukasiewicz min (I,I-/p/+/q/)

®,1) y
(18) 0,8 (1.8

Figure 30 (continued).

Indeed this is precisely what is happening. How it occurs—and why
there is such a resemblance between these two radically different kinds of
value solid—becomes clear if we return to two dimensions and consider a
simple form of our basic value grid. In a system grid for 'or', in which we
are caculating the truth-table values for an 'or' between truth-table values
on the axes, the value assigned to any intersection point is what might be
caled a'bitwise or' of the values on the corresponding axes. A '1' occursin
any row in the value of that intersection point just in caseaT occursin that
row in one or the other of the corresponding axisvalues. Inbitwise 'or' the
I's cannat of course add together and carry to another row:

0 0 0

1 1 1
1 0 bhitwiseor= 1
0 1 1

Thevalues assigned in a system grid for 'or’, then, correspond to abitwise
‘or'. The values assigned to intersection points in an infinite-valued grid
will be more complicated, amounting to either the maximum of the axis
values p and q or, in the case of the Lukasiewicz 'or’, to Min(l, p+q).
Nonethel ess these three val ues for intersection points occasionally overlap.

In the simple case of three-digit binary decimals, in fact, where we take
111 as the closest approximation to 1 in the Lukasiewicz formula, every
bitwise 'or' is equal to either Max, the Lukasiewicz 'or', or both. Thisis
reflected in the grids shown in figure 31. On the left are mapped those
intersection points in which a bitwise 'or' corresponds to ‘Max'. On the
right are mapped those intersection points in the grid in which bitwise 'or’
corresponds to the Lukasiewicz 'or'. (Where either contradiction or

Fractal Images of Formal Systems



146

oo o

oo

oo
rRO
oo R
P o
YN
PR
oo
oo
o
Pro
0 =
Por
PR
PR

Figure31 Convergence of hitwise 'or' with 'ma*' Qeft) and the Lukasiewicz 'or' (right) in 8
values.

tautology is involved—000 or 111—Max' and the Lukasiewicz 'or’
coincide, accounting for agreement in the two diagrams around the
outside border.) Here it is clear that (a) the middle areas, exclusive of the
edges, are the negatives of each ather, (b) together these two graphs will
therefore cover the entire area of the grid, and (¢) each middle area
represents asimple Sierpinski triangle, rotated 90 degrees from its position
in the other graph. A value solid for bitwise 'or' geared to just three-digit
binaries, then, corresponds at each intersection point to one or the other of
the two infinite-valued connectives outlined above: the eight-valued
system solid constitutes a perfect Sierpinski compromise between the two
infinite-valued solids.

The result does not generalize in this pure form to system- and infinite-
valued solids of more than eight units on aside, however. In more complex
cases the Sierpinski patterns persist, but their overlap fails to cover the
entire area. For agrid of 256 values on each side, figure 32 shows in black
thoseintersection pointsin which bitwise 'or' equals one or the other of our
two infinite-valued connectives. The holes |eft are the holes formed by one
Sierpinski triangle overlying another rotated at 90 degrees. Even in more
complex systems a sort of compromise remains, however. For in all cases
the bitwise 'or' for an intersection point will equal either one of the two
infinite-valued 'or's above or will have avalue between them, lessthan the
Lukasiewicz 'or' but greater than smply 'Max'. Similar compromises hold
in the case of the other connectives. Thusin an intriguing way value solids
for smple systems map a compromise among the quite different value
solids appropriate to rival connectives within infinite-valued or fuzzy
logic.
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Figure 32 Points in 256 values at which bitwise 'or' eguas one of the infinite-valued
connectives.

37 CELLULAR AUTOMATA IN VALUE SPACE

One of the connections that came as a mgjor surprise in our work was the
link between fractal images for formal systems and the evolution of simple
cellular automata.

Cellular automata consist of a lattice of discrete sites, each of which may
take on values from a finite set. In classical (synchronous) automata the
values of sites evolve over discrete time steps from an initial configuration
So in accord with deterministic rules that specify the value of each sitein
terms of the values of sites in a chosen neighborhood n. The two-
dimensional value graphs outlined for systems above might also be
thought of on the model of two-dimensional automata arrays of this type.
What we were surprised to find was that the distribution of values under
particular connectives within such arrays can also be generated by smple
automata rules.

Consider, for example, an array corresponding to a system value space
with sixteen units along each axis, such as that shown in figure 19. Here,
however, we are concerned only with the lattice of spacesitsdf. Each cdl in
such a lattice, with the exception of those at the edges, is surrounded by
eight neighbors. We are concerned in particular with just three of these
neighbors, which we will term 'southeastern’ neighbors and which are
marked with Xsin the sketch below.
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Let usstart with a'seed' in the lower right-hand corner of our sixteen-by-
sixteen grid, consisting of one darkened square. Consider now the
following cellular automata rule:

A square will be darkened on the next round if and only if exactly one
southeastern neighbor is darkened on the current round.

The series of steps in the evolution of a sixteen-sided array under this
simple rule is shown in figure 33. The surprising fact is that the squares
occupied by black in each step in this evolution correspond precisely and
in order to the values occupied by 0000, 0001, 0010, ... in our original
value space for the Sheffer stroke. Careful comparison with figure 20, for
example, showsthat thesinglecdl ‘alive' inthefirg step of theevolutionin
figure 33 corresponds to that cell in our value space with a truth-table
value of 0000, the daughter cdls aive in the second step correspond to
those cellswith avalue of 0001, those alive in the third step correspond to
those cdlls with a semantic value of 0010, and so forth. What this simple
cellular automaton is doing, in other words, is 'ticking off' progressive
values for NAND plotted in value space. By the sixteenth step—the array
for the value 1111—the display evolves into the Sierpinski pattern for
tautologies noted in section 3.4. An exactly similar progression through all
values represented appears if we begin with 256 values on each side
instead of 16. This same simple automata rule, in fact, generates
progressive values in the proper places for a value space corresponding
to NAND regardless of the number of cellsin our value space: for any finite
approximation such an automaton is in effect constructing a value space
for a limited form of propositional calculus.

Other equally simple automata will generate value spaces for the other
connectives outlined above. With precisely the same rule and starting
point, but thinking of our values in reverse—from 1111 to 0000 in the case
of a sixteen-sided value space, for example—the value space generated
step by step is that of conjunction. The value space for digunction is
generated by beginning in the upper left hand corner with the value 0000
following a second rule, symmetrical to that above:

a KID
H o
o oo

Chapter 3



|Fpi

Figure 33 A cdlular automata generation of the Serpinski tautology gasket.

A squarewill be darkened on the next round if and only if exactly one
northwest neighbor is darkened on the current round.

This second rule and garting place, thought of as enumerating values in
order from 1111 through 0000, generates the value space for NOR or the
dagger. Further changesin rule and beginning position give us a cdlular
automaton adequate to implication.

A bit of thought shows that indeed these rules must generate the
progressive values noted within the lattice of any value space. The
following twelve paragraphs offer some of the details, those who wish to
skip over these may want to go directly tothelast paragraph of the section.

Condgder as an example the case of 'or', evolution for which will begin
from the upper Ieft corner with the second rule above. The 'or' of the
system-value grid, it will be remembered, is what we have termed a
'bitwiseor', givinga T inany row jus in case at least one of itsdiguncts
hasa 1 in that row. Regardless of the number of binary digitsin our value
representation, it should also benoted, each step alongtheaxisamountsto
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addition by 1: our values are listed in binary sequence ... 000, ...001,

... 010, and so forth. What we want to show for the general case, therefore,
given axes numbered in binaries of any given number of digits, is that the
central cell marked D below will take a binary value of n+1 if and only if
precisely one of the cells marked x takes a value of n.

KIDD

Wefirst show, left to right, that if just one of the squares marked x has a
value n, y must have the value n +1. Consider to begin with the case in
whichitis A that isthe squarewith value n, using x and y to represent the
axisvalues which combinein abitwise 'or' to giveus A. Axisvalues for D
arethen of coursex+1 andy+1.

X

y-A B e
CDD
DDD

In this case, since B does not havethe value n, the bitwise compound 'y
or x+1' must have a different value from bitwise 'y or xf. (For ease of
exposition wewill simply use 'or’ for ‘bitwise or' throughout.) Since C has
avalue other than n, 'x ory + V must smilarly differ from'y or x'. If either
X ory ends in O, then, both must end in O: were only one to end in 0,
addition to that one would not change the value of their bitwise 'or', and
thus either B or C would equal A, contrary to hypothesis. The same
argument applies not only to a0 in the last digit position but in any first
position counting from theright: x hasafirst 0 in agiven position counting
from theright if and only if y also hasafirgt 0 in that position. Otherwise
either B or C would equal A, contrary to hypothesis.

Either x and y will contain no zeros, therefore, or they will sharea0in
the samefirst position from theright. If neither contains zeros, A occupies
the lower right-hand corner of the lattice and there is no place for D; the
position exhibited does not form a part of our lattice. In al other cases x
andy sharea0 inthe samefirst position fromtheright. Adding 1 to eech—
moving along the axesfromx to x +1 and fromy toy +1—will closethat O
with a1, changing dl Istoitsright to Osin each case. The series of digits
represented by x and y will stay the samein all other regards. A bitwise 'or’
between x+ 1 and y + 1 will therefore give us an increase of precisely 1
over the value of the bitwise 'or’ between x and y: givenavalue of nfor A,
D will take avalueof n+1.
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Consgder secondly thecasein which it isB that carriesthevaluen, once
again using x and y to represent A's axis values.

X

y-A B e
CDD
DDD

Since BN Qx and y cannat share ether a final 0 or a rightmog 0 in the
same place. If they did, addition of 1 to either would produce the same
change from A in a bitwise 'or’, giving us B=C, contrary to hypothesis.
Oneof x and y, then, hasa rightmos O farther to theright than the other.
Since B#A, it mugt bey that has a O furthest to theright: otherwise x's
furthest right Owould be'masked’ by Isiny, and thusthebitwise (x+1or
y) would equal that of (x or y), contrary to our hypothesisthat B # A.
In thiscase x and y therefore have the form:

x: ..111
y: ...O0il
for some number of Is (perhaps none) to the right of y*s 0. It is dear,
therefore, that x +1 and y side by side will have the form:
x + 1. ...000
y: ...0il
since addition of 1tox will have changed somezerototheleft of y'stoal
with all Isto itsright changed to Os. B's value is that of a bitwise 'or’
between these two. But then it isdear that adding 1 toy will result in an
increaseof precisdy 1for thebitwisecompound (x +1or y+1). Thusif Bis
thecdl with avalueof n, D must again takeavalueof n+1. A symmetrical
argument shows that if it is C that is the single northwest neighbor with
valuen, D mug again takea valueof n+1.

For the case of 'or' we have shown that if precisdy one of the neighbors
northwest of any D hasavalue of n, D must itsdf takeavalueof n+1. It

auffices for the rest of our judtification to show that if a cdl D hasa value
n +1, oneand only one of its northwest cells must have a value n.

AB-
y-CDD
DDD
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We specify that D hasavaluen+1, generated as the bitwise compound (X
ory). Subtraction of 1 from either x or y amountsto changing its rightmost
1 toaOand all Osfrom thereto theright to Is.

Suppose now that x and y have arightmost 1 in the same position. In
that case subtracting 1 from each will result in a subtraction of 1 from
bitwise (x or y), and thus A—representing (x - 1 or y - 1)—will have the
valuen. Subtraction of 1 from just one of these, however, cannot resultinn.
In that case arightmost 1 in either x or y will changeto a0, but the other
will have a rightmost 1 which masks that change in terms of the bitwise
‘or'. What will changein the bitwise'or' isthat all digitsto theright of that
place (if any) will change from 0 to 1. Sincethis can only represent a figure
equal to or greater than n+1, however, it cannot equal n.

Suppose secondly that x has the furthest 1 to theright: thaty hasaOin
that position and at all places to the right. Subtracting 1 from x will then
changeitsrightmost 1 to a0 and al Ostoitsright to I's. Becausey has only
Osfrom that position to the right, the change from bitwise (x ory) to (x - 1
ory) will be precisaly the same, representing a subtraction of 1, and thusit
will be C that has avalue of n.

In this case subtracting 1 from only y or from both x and y could not
result in n. Subtraction of 1 from n +1 demands that the rightmost 1 in
n+1 be changed to a0, with al Ostoitsright (if any) changed to I s. Given
our hypothesis, however, the rightmost 1 in n+1 must correspond to x's
rightmost 1. Because y has Os from that point to the right, subtraction of 1
from y must result in Is from that point to the right, which will of course
aso appear in those positions in any bitwise 'or’ involving y — 1. Thus
neither (x ory - 1) nor (x - 1 nory - 1) will have a0 in the position of x's
rightmost 1; y - 1 will mask anything in that position and to theright with
Is. Since a0 in that position is what avalue of n would demand, neither A
nor B can have avalue of n.

A similar argument can be constructed for the caseinwhichitisy that is
assumed to have the furthest 1 to the right.

Tosumup: if asingle northwest neighbor hasavalue of n, acdl will take
avaueof n+1, and if acdl has avalue of n +1 one and only one of its
northwest neighborswill have avalue of n. Thus a cell will take avalue of
n+1 if and only if precisely one of its northwest neighbors carries a value
of n.

Similar arguments can clearly be constructed in the case of other
connectives. What they demonstrateis theinevitability of the cellular rules
outlined for value spaces of any chosen dimension. It must be confessed,
however, that despite such an explanation we continue to find something
magical in the fact that such simple automata rules can generate a value
space appropriate to prepositional calculus for any chosen approximation.

We offer the cdlular automata generation of value spaces as a
phenomenon well worthy of further study. Here we're also tempted to
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engage in a bit of wild speculation, however, noting alink to the fictiona
substance 'computronium’, introduced in another context and for another
purpose by Norman Margolus and Tommaso Toffoli.”* As envisaged by
Margolus and Toffdli, ‘computronium’ would be a ‘computing crystal’: a
mineral substance capable of functioning as a ready-made CPU. We can
envisage ourselves building computers with shining chunks of compu-
tronium at their core. The speculation which the work of this chapter
invitesisthat there may be natural processes that follow something akin to
the simple cellular automata rules above and that thereby 'grow* units
instantiating val ue spaces appropriate to forms of prepositional calculus. If
so, might there not be natural processes capable of ‘growing’ something
like computronium? The lattice positions of computronium might be
occupied by particular molecules or by molecules in particular states, for
example, with the directionality of our rules above corresponding perhaps
to magnetic orientation.

38 CONCLUSON

Our attempt here has been to open for consideration some new ways of
envisaging and analyzing simple forma systems. What these approaches
have in common isa clear emphasis on visual and spatial instantiations of
systems, with perhaps an inevitable affinity to fracta images. Our hope,
however, is that in the long run such approaches can offer more than a
visual glimpse of systems as infinite wholes; that new perspectives of this
type might suggest genuinely new results. In the manner of the three
simple examples offered in our finad sections—the Sierpinski map of
tautologies in value space, formal paralels between value solids for
systems of propositional logic and the quite different value solids
appropriate to infinite-valued connectives, and an approach to the values
of propositional calculus in terms of cellular automata—our hope is that
visual and spatial approaches to forma systems may introduce the
possibility of approaching some logical and metalogical questions in
terms of geometry. Number-theoretical analysis of logical systemsforms a
familiar and powerful part of the work of Godel and others. Analysisin
terms of geometry and fractal geometry, we want to suggest, may be a
promising further step.
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The Evolution of Generodity in a
Hobbesan M odd

What, then, is the conduct that ought to be adopted, the reasonable course of
conduct, for this egoistic, naturally unsocial being, living side by sidewith similar
beings?

—Henry Sidgwick, Outlines of the History of Ethics

Under what conditions will cooperation emerge in a world of egoists without
central authority?

—Robert Axelrod, The Evolution of Cooperation®

The portrait Thomas Hobbes paints of socia organization is onein which
cooperation arises from an initial state of purely egoistic competition
among isolated individuals. Hobbes's claim is that this can indeed occur;
his philosophical project is an attempt to show how.

liie state of nature with which Hobbes begins is one of unfettered
individualistic egoism:
.. .during the time men live without a common Power to keep them all in
awe, they arein that condition which is called Warre; and such awarre, as
is of every man, against every man_Whatsoever therefore is consequent
to atime of Warre, where every man is Enemy to every man; the sameis
conseguent to the time, wherein men live without other security, than what
their own strength, and their own invention shall furnish them withall. In
such condition, there is no place for Industry; because the fruit thereof is
uncertain; and consequently no Culture of the Earth; no Navigation, nor
use of the commodities that may be imported by Sea; no commodious
building; no Instruments of moving, and removing such thing as require
much force; no Knowledge of the face of the Earth; no account of lime; no
Arts; no Letters; no Society, and which isworst of all, continuall f eare, and

danger of violent death; And the life of man, solitary, poore, nasty, brutish,
and short. (Leviathan, Chapter XI11)?

With such individualistic egoism as a starting point, how might genuine
socia cooperation—uwith all its benefits—arise? Hobbes's answer, to which
wewill return, isthat the emergence of cooperationisdictated by a L aw of
Nature, "a Precept, or generall Rule found out by Reason':



And because the condition of Man... is a condition of Wane of every one

against every one; in which case every oneis governed by his own Reason;

and thereis nothing he can make use of, that may not beahelp unto him, in
preserving his life against his enemyes ... there can be no security to any

man (how strong or wise soever he be) of living out the time, which
Natureordinarily allowethmentolive. And consequently it isaprecept, or

generall ruleof Reason, That every man, ought to endeavor Peace, asfarreashe
hashopeof obtainingit; and when he cannot obtain it, that hemay seek, and use,
all helps, and advantagesof Warre. Thefirst branch of which Rule, containingthe
first,and Fundamentall Law of Nature; which is, to seek Peace, andfollowit. The
second, the summe of the Right of Nature; whichis, By all meanswe can, to

defend our selves. (Leviathan, Chapter XI1V)

This firg Fundamental Law of Nature might seem merely to reinforce
egoism. But from this first principle, Hobbes proposes, follows another:

FromthisFundamentall Law of Nature... isderived thissecond Law; That
aman bewilling, when othersaresotoo, asfarre-forth, asfor Peace, and defence of
himself heshall think it necessary, tolay down thisright to all things; and be
contented with so much liberty against other men, ashewould allow other men
against himself. For aslong as every man holdeth this Right, of doing any
thing he liketh; so long are all men in the condition of Warre. But if other
menwill not lay down their Right, aswell as he; then thereis no Reason for

any one, to devest himsdfe of his; For that were to expose himself to Prey,
(which no manisbound to) rather than to dispose himselfeto Peace. Thisis

that Law of the Gogpdll; Whatsoever you requirethat othersshould dotoyou,
that dol}/ etothem. And that Law of all men, Quodtibi fieri non vis, alteri ne
feceris.” (Leviathan, Chapter XIV)

In this chapter we will follow Hobbes in attempting to model conditions
under which cooperation might evolve within what appears to be—
indeed, what is constructed to be—a society of salf-serving egoists. Our
model will in many ways be even starker than Hobbes's: our individuals
will be merely the cdlls of a spatialized grid, behaving entirely in terms of
simple game-theoretic strategies and moativations specifiable in terms of
simple matrices. Despite this formalization, however, the basic purpose of
the model remains entirely Hobbesian in tone: our interest is how
something resembling cooperation and even generosity can arise as a
dominant pattern of interaction in even a simple computer model
constructed fundamentally in terms of individual self-interest.

Here several warnings are appropriate. The first should by now be
familiar: that what we have to offer is a model, and that all modeling has
limitations. As Robert Axelrod notes regarding precisely the kinds of
models we want to pursue here,

The value of any formal model, including game theory, is that you can see
some of the principles that are operating more clearly than you could
without the model. But if s only some of the principles. You have to leave
off alot of things, some of which are bound to be important.®
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A more specific warning is also appropriate. Ultimately our philosophical
concern is with questions of sdlf-interest, cooperation, and generosity—
guestionsclearly in the general domain of ethics. Our models, on the other
hand, are merely abstract mathematical constructions. Parts of those
congtructions represent agents with particular interests and particular
interactive strategies, but what this means is that the behavior and
dynamics of those parts of the construction areintended to be analogousin
some sense to the behavior of genuine agents, with rea interests in real
social interaction. If our models are successful ones, the analogy will hold
and we will indeed have captured formally some aspects of phenomena
that are of more than merely formal interest.

Although there are some who might argue the point, wethink it is clear
that true generosity and cooperation do not literally appear within our
mathematical models—the forma individuals of our algorithms or the
pixel-displayed cdls of our cellular automata are simply not the kinds of
things that can be literally generous or cooperative. The same can be said,
in fact, for self-interest and egoism: the elements of our formal models are
not entities that have genuine interests or can act egoigtically to maximize
them. In the same way that our models of socia individuals are not of rea
socia individuals, the dynamics intended to model cooperative or gener-
ous behavior do not constitute instances of real cooperation or generosity.

In other areas such awarning would probably be unnecessary: no oneis
tempted to think that the numbers used to tally farm produce are
themselves a form of numerical farm produce. In the tradition of modeling
we want to build on here, however, it is quite standard to speak of the
dynamics used to model cooperative or generous behavior as itsdf
‘cooperative’ or 'generous. As we think will be clear from some of the
examples that follow, in practice it is almost impossible to avoid thinking
of certain dynamics of these models as the 'spread of cooperation’
or the 'triumph of generosity'. For the most part we will simply follow
genera practice, without fighting this informa tendency. In sober
introduction, however, we think it important to bracket this as a mere
way of speaking.

There are two philosophically important reasons to be wary of this
informa tendency. The first is that the formal dynamics are in fact
dynamics intended to model genuine cooperation or generosity by real
agents. They are intended as in some way analogous to the real thing.
Whether our formal dynamics model that behavior successfully, how-
ever—whether the analogy actually holds—is a separate question. One
danger of the tendency to refer to modeling dynamics as 'cooperative' or
'generous is that one may forget that the separate question remains open.

Another philosophical danger is that this kind of modeling might be
improperly viewed as supporting various kinds of reductionism in ethics.
At their base, what our models show is that certain parameters favor the
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spread, in a clearly defined sense, of certain forma game-theoretic
strategies. If we are right in thinking that such parameters may in some
sense model real situations, and that those strategies are importantly
analogous to rea cooperative or generous behavior, we perhaps get
conclusions relevant to theoretical sociology, economics, and socia and
political philosophy regarding the socia dynamics of certain patterns of
cooperative and generous behavior. Thisisthe optimistic hope. But even a
glorious satisfaction of that hope would not yet tell us that the socia
dynamics we have uncovered are what 'justify' cooperation, generosity, or
some other aspect of ordinary ethics. No such result alone would show that
cooperation, generosity, or other aspects of ordinary ethics 'reduce to' or
‘are merely' behaviors that display successful socia dynamics. Both of
these are strong philosophical claims that have appeared occasiondly in
the sociobiology literature and in some philosophical treatments of game-
theoretic models.® We regard such claims as requiring a great deal of
argument above and beyond the kind of modeling results at issue here.

Hobbes, interestingly enough, offers a theory of how certain forms of
socid cooperation might arise but does not seem to offer unambiguous
answers as to what extent his work either supports or amounts to an
ethical theory. Commentators disagree: Michael Oakeshott claimsthat civil
philosophy, the subject of the Leviathan, is concerned purely with causes
and effects "Civil philosophy is settling the generation or constitutive
causeof civil association."” In much the same spirit, Johann P. Sommerville
claims that "it is doubtful whether it makes sense to describe Hobbes as
having any genuine moral system at all."® Our models will be
"Hobbesian" in only this minima sense. There are aso traditions in
which Hobbes is interpreted as a moral reductivist or eliminativist in a
much stronger sense, as maintaining that morality isto be either explained
or explained away interms of abasic model of socia dynamics. Again, this
issue we regard as an area that demands philosophical work well beyond
the reach of the models themselves.

41 THE PRISONER'SDILEMMA

[A problem of isolation] arises whenever the outcome of the many
individuals' decisions made in isolation is worse for everyone than some
other course of action, even though, taking the conduct of the others as
given, each person's decison is perfectly rational. This is simply the
general case of the prisoner's dilemma of which Hobbess state of natureis
theclassical example. (John Rawls, A Theory of Justice)®

The most studied model in game theory is undoubtedly the Prisoner's
Dilemma. The formal structure of the game was developed in the work of
Merrill Flood and Melvin Drescher at the Rand Corporation around 1950.
The popular story that givesthe Prisoner's Dilemmaits nameis credited to
Rand consultant Albert W. Tucker.™
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Lefty and Scarface, arrested for bank robbery, are kept in separate cdlsto
prevent any communication between them. The District Attorney has
enough evidenceto convict each of alesser charge—breaking and entering,
perhaps—but will need a confession to convict either of them for the more
serious charge of bank robbery. The D.A. therefore approaches Lefty and
says.

"_efty, 1've got to admit that the evidence against you guysis pretty thin.
If you both stonewall, you'll probably get off with two years each.

'If Scaface confesses to the bank robbery and you try to stonewall,
on the other hand, | promise you well let him walk and we'll nail you
for five years for the robbery. I'll make you the same deal: If you
confess and Scarface stonewalls, we'll let you walk and nail himfor the five
years.

"If you both confess, well, then we'll get you both. With a little benefit
for a guilty plea you guys will be looking at four years each.”

Here there is no deception; the D.A. makes the same offer to each
prisoner, and each knows that the same offer has been made on the other
side. Lefty faces a clear dilemma: whether to try to cooperate with Scarface
by stonewalling, in the hope that Scarface will stonewall as well, or to
defect on Scarface by turning state's evidence. Scarface, of course, is faced
with the same dilemma, of whether to cooperate with his accomplice or to
defect against him. Such is the Prisoner's Dilemma.

Inadlightly moreforma sketch of the situation, each of two players can
either cooperate C or defect D. Therearefour possible payoffs for a player:
areward R, contingent on mutual cooperation, a punishment P, in the case
of mutual defection, a temptation T for the player who defects against
cooperation on the other side, and a sucker's payoff Sfor the player who
cooperates only to be faced with defection. Technicdly, a Prisoner's
Dilemma requires that payoffs be ordered such that the best a player can
hope for is the temptation of defection against cooperation on the other
side, the worst a player can achieve is the sucker's payoff, and mutual
cooperation is preferable to mutual defection: T>R>P>S  Mutua
cooperation is also to be more highly rewarded than any simply repeated
pattern of alternating exploitations: 2« R> T+ S The specific payoff
matrix used throughout the literature is the following, where numbers to
the left are read as gains for player B and those on the right are read as
gains for player A.

Player A
Cooperate | Defect
Cooperate | 3,3 0,5
DIA\Ipr B
Defect 50 11
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The story of Lefty and Scarface uses precisely this matrix, though in the
story we've expressed outcomes negatively in terms of years in prison.
When recast in terms of years of freedom out of the next five we get the
standard payoff grid above.

The philosophical force of the Prisoner's Dilemma, of course, is a stark
contrast between egoidtic rationality and collective benefit. If Player B
choosesto cooperate, itisto Player A'sadvantageto defect: A then getsfive
points in place of a mere three for mutual cooperation. If Player B chooses
to defect, itistill in Player A'sinterest to defect: in that case A salvages at
least the one point from mutual defection rather than the zero of the
sucker's payoff. Thus whatever Player B chooses to do, the rational thing
for A to do isto defect: defection is dominant in the Prisoner's Dilemma.

The situation is a symmetrical one, in which all information regarding
payoffs is common knowledge; what is rational for one player is rational
for the other. Two rational players in the Prisoner's Dilemma can thus be
expected to defect against each other, economic rationality on each side
resulting in the payoff situation that is clearly worse than mutual
cooperation for each player and is collectively the least desirable of all.
The rational attempt to maximize gains on each side seems inevitably,
predictably, to fail.

Even in this simple form the analogy between the Prisoner's Dilemma
and Hobbes's state of nature should be clear. In each case the pursuit of
individual advantage resultsin a situation worse for al parties; the game-
theoretic result of mutual defection corresponds to something like
Hobbes's state of war, "where every man is Enemy to every man." The
payoff for mutual defection—particularly repeated mutual defection, or
defection on al sides—might well be read as that of a life inevitably
"solitary, poore, nasty, brutish, and short.”

The Prisoner's Dilemma would be fascinating even if it were merely
a formal problem. But it does not appear that it is: the conditions
of the Prisoner's Dilemma seem to arise quite spontaneously in a
range of bargaining situations. David Gauthier offers a thinly disguised
example:

Consider two nations, which for convenience (and disclaiming any
apparent reference to real nations as purely coincidental) we shall call
the US and the SU. They are both engaged in an arms race, the dangers of
which are appreciated by both, for neither wants all-out war with the other.
Mutual disarmament would remove the threat of war, and would not, let
us suppose, have other disadvantages (such as depressing the economy),
so that both strongly prefer mutual disarmament to continuation of the
arms race. However, there is no way to ensure compliance with an
agreement to disarm, and each knows that, were it alone to disarm, it
would be at the other's mercy, whereasif it alone were to remain armed, it
would be theworld's dominant power. Each prefers the armsrace, despite
the risk of al-out war, to being a the mercy of the other, and each prefers
the prospect of being top nation to mutual disarmament. Hence, before
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concluding an agreement to disarm, each represents the aftermath to itself
thus:

VU
Comply | Violate

tmc  Comply | 2nd, 2nd | 1, 4th

Violate | 4th, 1t 3rd, 3rd

The structure of this situation precisely parallels that faced by [Lefty and
Scarface]. Hence the reasoning is also parallel. Whatever the other does,
violation maximizes one's own utility. The only outcomein equilibriumis
mutual violation. Needless to say, the US and the SU do not conclude an
agreement which would not be worth the paper on which it was
written...."

The dominance of defection in Prisoner's Dilemma situations is in fact
used in a story by Edgar Allan Poe written more than a hundred years
before Flood and Drescher's formal work. Poe's "The Mystery of Marie
Roget: A Sequel to The Murders in the Rue Morgue™ centers on the
mysterious disappearance of agirl, later found murdered. Inthe story, asin
the real case on which it is based, a reward is offered together with a
promise of pardon:

.. .The Prefect took it upon himsdf to offer the sum of twenty thousand
francs for the conviction of the assassin, or, if more than one should prove
to have been implicated, for the conviction of any one of the assassins. In
the proclamation setting forth this reward, a full pardon was promised to
any aocompllce who should come forward in evidence against his
fellow...

Genera speculation in the story is that the kidnap and murder was the
work of a gang. Poe's detective C. Auguste Dupin argues the contrary,
using reasoning based essentially on the dominance of defection in the
Prisoner's Dilemma:

| shall add but oneto the arguments against agang, but this one has, to my
own understanding at least, a weight altogether irresistible. Under the
circumstances of large reward offered, and full pardon to any king's
evidence, it is not to be imagined, for a moment, that some member of a
gang of low ruffians, or of any body of men would not long ago have
betrayed his accomplices. Each one of a gang, so placed, is not so much
greedy of reward, or anxious for escape, as fearful of betrayal He betrays
eagerly and early that he may not himself be betrayed.*®

The reasoning that leads to defection in a single round of the Prisoner's
Dilemma leads also to defection on the last round of any known finite
series of plays. If you and | know we are to play exactly one-hundred
rounds, whatever cooperation we may have developed in the meantime,
it seems predictable that we will defect against each other on the
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one-hundredth round. The situation on the last round, after all, is precisely
that of a single round. Defection is dominant: whatever you do, | will be
better off if | defect.

It can be argued that this reasoning extends to the ninety-ninth round as
well. The one-hundredth, after all, is awrite-off: both of us, knowing that
the other is rational, can predict that the other will defect on the one-
hundredth round. Nothing we do on the ninety-ninth round will change
the outcome of the one-hundredth, and thus the ninety-ninth round is
essentially the last round in which cooperation is in question. But then it
seems that defection will be dominant on the ninety-ninth round as
well: no matter what you do on that round, | will be better of if
| defect. Knowing that the other player is rational, then, both players can
predict mutual defection on the ninety-ninth round. But then the
ninety-eighth round is essentially the last round in which cooperation is
in question___

By similar reasoning, it can be argued that on any round within aknown
finite seriestherational play will be defection: the dominance of defection
seems to infect any finite series of known length inductively from the Track
end'. If that reasoning is sound, the general lesson of the Prisoner's
Dilemma would be the same in both single and predictably finite rounds:
in either case playersindividuaistically rational in terms of the dominance
of defection will quite predictably end up with scores lower over al than
players ‘irrational’ in opting for cooperation.'*

Although thisline of reasoning extending the dominance of defection in
a single round to the dominance of defection in every round of a series of
known finitelength is often outlined in the theoretical literature, it does not
seemto begeneraly believed. Inthe classc Gamesand Decisions, R. Duncan
Luce and Howard Raiffa recognize the force of the argument but exclaim
"If we were to play this game we would not take the second [defect]
strategy at every move!"*® Robert Axelrod treats the result as something of
atheorem, but seems happy to leaveit behind with the claim that it will not
apply in the more redlistic case in which players interact an indefinite
number of times.’® Anatol Rapoport and Albert M. Chammah claim that
"Confronted with this paradox, game theoreticians have no answer.
Ordinary mortals, however, when playing Prisoner's Dilemma many times
in succession hardly ever play DD one hundred percent of the time."*’
William Poundstone treats the reasoning as a backward induction
paradox, but notes that "Game theorists fedlings about the back-
ward induction paradox have been equivocal. The prevailing opinion
has long been that it is 'valid' in some abstract sense but not practical
advice."*®

Suspicion regarding the argument can be strengthened by noting its
similarity to the reasoning of the Surprise Examination Paradox. An
instructor announces to his students that they will have a surprise examin
one of the next five days, where 'surprise’ means that they will not know
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the day before it occurs that the exam will occur on the following day. The
students argue that he cannot truthfully make such an announcement.
Their reasoning is as follows:

The exam cannot be on Friday. If it were, Monday through Thursday
would have passed without an exam. We would thus know it must be on
Friday, and it wouldn't then be a surprise.

Friday is therefore out. But then the exam cannot be on Thursday. If it
were, Monday through Wednesday would have passed without an exam.
We would know by the reasoning above that it couldn't be on Friday,
leaving Thursday as the only possbility. So we would know on
Wednesday night that the exam would be given on Thursday, and it
wouldn't be a surprise. Thursday and Friday are out. But then the exam
cannot be on Wednesday

Sometimes the paradox is presented with a punch line. Having
convinced themselves that the exam cannot be given at al, the students
are completely surprised when the instructor keeps hisword and handsiit
out on Tuesday.

The similarity of this reasoning to that of the argument for dominant
defection throughout a series of known finite length is worth noting
because of course the Surprise Examination is treated standardly in the
philosophical literature as a paradox, thought to hide some fallacious piece
of logical legerdemain. That the same form of reasoning is thought of as
valid in the theoretical economics literature, though perhaps inapplicable
in some practical sense, indicates that important work remains to be done
in bridging the two bodies of work.

The Prisoner's Dilemma is not the only two-person game that might be
significant in modeling particular bargaining situations. Another gameis
that of Chicken, in which the cost of mutual defection fals below that of
being defected against. Using the same numbers as before, Chicken can be
outlined in terms of a matrix as follows:

Player A
Cooperate | Defect

Dlaver B Cooperate | 3,3 15
Defect 51 0,0

Consider also the game of Stag Hunt, sometimes called a 'trust dilemma,
‘assurance game', or 'coordination’ game. Here mutual cooperation takes
on the highest value for each player; everything isfine aslong as the other
player does not defect. Cooperation against defection, however, remains
far inferior to defection against either cooperation or defection:
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Cooperate | Defect

Cooperate | 5,5 0,3

Defect 3,0 1

Stag Hunt takes its name, interestingly enough, from a passage in
Rousseau emphasizing that each individual involved in a collective hunt
for a deer may abandon his post in pursuit of a rabbit adequate merely for
his individual needs:*

When it came to tracking down a deer, everyone redlized that he should
remain dependably at his post; but if a hare happened to pass within reach
of one of them, he undoubtedly would not have hesitated to run off after it
and, after catching his prey, he would have troubled himsdf little about
causing hiscompanionsto losetheirs. (Rousseau, Discourse onthe Origin of
Inequality)®

Our present attempt isto use the Prisoner's Dilemma matrix asthebasis
for studying Hobbesian models of cooperation. The Stag Hunt matrix
might prove appropriate for the study of models of cooperation in the
tradition of Rousseau instead. All of these are symmetric and non-zero-
sum games: no player isadvantaged in the bargaining situation, and losses
on one side need not equa gains on the other—it is possible for both
players to lose. No other game, however, has captured the attention that
the Prisoner's Dilemma has, either in formal terms or in application. What
the Prisoner's Dilemma seems to capture, in a particularly pointed way, is
the conflict between the best situation for all concerned and a rationa
individualistic pursuit of egoistic ends. As such the model embodies the
essential assumptions of Hobbes, and it can be taken as a vindication of
Hobbes's basic vision that this smple model has become "the e. coli of
socia psychology,” applied extensively in theoretical sociology, economics,
and theoretical biology over the past thirty years.

In what follows we will explore some new and richer variations of
Hobbesian models, which yield some positive results regarding the
evolution of cooperation and generosity that we think would have
surprised even Hobbes himsdf.

4.2 CLASSICAL STRATEGIESIN ITERATION

The Prisoner's Dilemma becomes both more interesting and more redlistic
" asamodel of biological and socia interaction when it is made open-ended:
when players are envisaged as engaging in repeated games, never
knowing when or whether they might meet again. In the indefinitely
iterated Prisoner's Dilemma players must take into account the effects of
their current choices on future interactions, with no clear terminusin sight.
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Here competing strategies for unlimited play emerge, including for
example a 'vicious' strategy of universal defection (A11D), or a come-on
initial cooperation followed thereafter by vicious defection (Deceptive
Defector). The strategy called Tit for Tat (TFT) cooperates on thefirst round
and thereafter smply repeatsits opponent's play from the previous round.
Each of these simple examples is a 'reactive’ or 'one-dimensiona’
strategy in the sense that it depends only on the opponent's play in the
previous round. Reactive strategies can be characterized in general by
triples (i,c,d), where i indicates the starting play, ¢ the response to
cooperation, and d the response to defection on the other side. The
eight simple reactive or one-dimensional strategies can thus be set out in
binary fashion as follows, with 1 standing for cooperation and O for
defection:**

i | c|d]| reactivestrategy

0 | AlwaysDefect (A11D)

o | O

1 | Suspicious Doormat

Suspicious Tit for Tat

1| 1| Suspicious Quaker

| O] O O] O
=
o

Deceptive Defector

=
o | O
o

1 | Gullible Doormat

1| 0| Titfor Tat (TFT)

11| 1| Quaker (ALIC)

In 1980, Robert Axelrod announced a computerized Prisoner's Dilemma
tournament. Participants were invited to submit any strategy they
wished, no matter how complicated, as long as it could be written as a
(Fortran) program. Submissions for the tournament came in from game
theorists in economics, psychology, sociology, political science, and
mathematics.

In Axelrod's tournament each strategy was pitted against every other in
a 'round robin'—each player played every player, including itself—with
the 'winner' being the strategy that collected the most points overall. The
strategies included were only those submitted together with a player that
gavezzrandom responses. The winner was the ssimple reactive strategy
TFT.
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Even more surprising was the result of a second tournament, run after
announcing and publicly analyzing the results of the first. Participants
were once again invited to submit any programmable strategy, however
complex. The result of this second and significantly larger tournament was
again avictory for TFT.

Axelrod and Hamilton went on to develop an 'ecological' model in
which strategies "reproduce” in any round as afunction of their success. In
such a model a strategy competes in the next round in a percentage
proportionate to its success on the previous round. Using the same
strategies as in the second tournament above, TFT eventualy displaced all
competitors.?*

TFT wasthe clear victor in al of Axelrod's competitions, despite the fact
that it is by no means guaranteed to winin every situation. It canin fact be
easily shown that no strategy will triumph in every situation. Suppose, for
example, that the opposing player is playing A11D. The best onecan doin
such asituation isfollow a strategy that always defects. TFT will do worse
in any finite number of rounds simply because it will lose on the first
round. Suppose, on the other hand, that one's opponent is playing a
strategy caled GRIM (no relation to one of the authors), which starts dff
cooperating but which given any defection against it constantly defects
from that point on. In that case the best possible strategy is one that never
defects.

TFT triumphed in Axelrod's tournaments, then, despite the fact that
neither it nor any other strategy is guaranteed to win in every situation.
TFT triumphed, in fact, despite the fact that it never does better in direct
competition with any single opponent. TFT will never get a higher score
than its opponent; at best it will match it. Against Quaker (A11C), for
example, it will get an identical score. In any finite series against A11D it
will do dightly worse. Thekey to TFT's success in Axelrod's tournaments
was thus not crushing victories against al or even any competing
strategies. TFT's success liesrather in the fact that it does consistently well
against other strategiesin general, including doing very well against itsdf,
thereby racking up a higher total score than its competitors overall.

Another way of considering strategiesisto ask under what conditions a
strategy S might successfully invade a uniform population of strategy S2
in the ecologica model outlined above. TFT, it turns out, is collectively
stable in the sense that no single mutation can invade it by srategic
advantage. Itisn't alonein thisregard: A11D is collectively stableaswell.®
Although single mutations of TFT cannot invade A11D, however, Axelrod
showed that a 'duster' of TFT can, where 'cluster’ is defined in terms

- of a higher probability of interactions between members of the cluster.
This last fact will offer an intriguing comparison with some of our later
results.

Axelrod's classc results are unanimous in awarding high marksto TFT.
This result is perfectly in accord with Hobbes, whose second Rule of
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Reason is very much in the spirit of TFT: 'Thisisthat Law of the Gospell;
Whatsoever you requirethat others should do to you, that do ye to them. And that
Law of all men, Quod tibi fieri non vis, alteri nefeceris’ {Leviathan, X1V). More
recent work, however, suggests that both Hobbes's concluson and
Axelrod's model may fail to do judtice to the level of cooperation and
generosity to be expected from a society of egoists. Thiswork suggests that
within more redlistic constraints it is not TFT but another family of
strategies that should be regarded as the ultimate winners.

43 GENEROSITY IN AN IMPERFECT WORLD

The world of the Axelrod tournaments is a world of perfect information
and flawless action, clinically free of either communicative noise or
executive error. Cooperation or defection on the other side are seen in
all cases for precisely what they are. When a strategy dictates defection
or cooperation, the defection or cooperation is executed without
any possibility of error. The model that Martin Nowak and Karl
Sigmund envisage, by contrast, is one designed to model a world much
more like ours: a world of imperfect communication and/or possible
mistakes in action, in which the transition from interpretation of an
opponent's move to a reaction to it is always open to some possibility of
error.

Nowak and Sigmund concentrate on stochastic reactive strategies, which
respond to a single previous move by an opponent but which assign mere
probabilities for cooperation or defection. Here again different strategies
can be envisaged in terms of ordered triples (i, ¢, d), thoughi will be taken
asthe probability of cooperation intheinitial round, c asthe probability of
cooperation following a cooperative move by an opponent, and d the
probability of cooperation following an opponent's defection. Classica
TFT would remain (1,1,0) as before, since the probabilities it dictates are
entirely deterministic probabilities of 1 or 0. A11D would be represented as
(0,0,0). But given a continuum of stochastic possibilities we might also
introduce other strategies, including various degrees of more generous
TFT (GTFT) such as (1,1,0.1) and (1,1,1/3) J%® Each of these begins with
cooperation and rewards cooperation with full cooperation, but each is
‘generous' in the sense of forgiving defection against it with a probability
of 0.1 and 1/3 respectively.

Nowak and Sigmund envisage competitions between probabilistic
strategies in terms of the convenient mathematical fiction of infinite
games. In an iterated game between two simple deterministic strategies—
TFT and A11D, for example—a periodic pattern of play will inevitably be
established. The value for an 'infinite’ game for one of these players is
simply the average gain per play across that repeated period, and thus
represents the value that the average score per round on games of
increasing finite length will approach. Although the play of genuinely
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stochastic strategies cannot be expected to be periodic, scores for an
'infinite’ game here too represent merely the limits of average scores that
games of increasing length will approach. One simplification that this
affords is that for strategies with nondeterministic stochastic values for ¢
and d—values other than either 0 or 1—therole of theinitial valuei can be
ignored: the influence of any initial value i will be outweighed in the long
run by the stochastic values envisaged for ¢ and d. For their purposes
Nowak and Sigmund are thus able to tag strategies by values (c,d)
alone.

Using Axelrod and Hamilton's technique for updating strategy
proportionsin a population on the basis of relative successin the previous
round, Nowak and Sigmund report an evolution in which TFT plays a
pivotal role but in which the ultimate winner is not TFT but 'Generous Tit
for Tef (GTFT)—the stochastic strategy (1,1/3), returning cooperation
with 2(:7oopera1:ion but forgiving defection with cooperation a third of the
time.

With n= 100 different reactive strategies uniformly distributed on the unit
square, evolution proceeds in most cases towards Al1D: those (c,d)-
strategies from the sample which are closest to (0,0) increase in frequency,
while al others vanish__ The outcome alters dramatically if one of the
initial strategies (added by hand or by chance), isTFT, or very closetoit___
The first phase is practically indistinguishable from the previous run. The
strategies near A11ID grow rapidly. TFT and all other reciprocating
strategies (near (1,0)) seem to have disappeared. But an embattled
minority remains and fights back. The tide turns when 'suckers are so
decimated that exploiters can no longer feed on them. Slowly at firgt, but
gathering momentum, thereciprocators comeback, and the exploiters now
wane. But the TFT-like strategy that caused this reversal of fortune is not
going to profit from it: having eliminated the explaiters, it is robbed of its
misson and superseded by the strategy closest to GTFT [with
(c, d) = (1,1/3)]. Evolution then stops.?

Their genera characterization is as follows:

Wefindthat asmall fraction of TFT playersisessential for the emergence of
reciprocation in a heterogeneous population, but only paves the way for a
more generous strategy. TFT is the pivot, rather than the aim, of an
evolution towards cooperation.?

Hereit isimportant to stress, however, that Nowak and Sigmund'sis a
pool of strategies envisaged as interacting in a world of inevitable error
and imperfect communication. For that reason, none of thetriplets (i, c, d)
used involves a full probability of O or 1 in any position: referencesto TFT
and A11ID in the quotes above, for example, must be read as references to
their instantiation in an imperfect world, in which they appear only in the
guise of stochagticaly imperfect variations such as (0.99,0.01) and
(0.01,0.01). As noted, Nowak and Sigmund assume games between
strategies of infinitelength in whichinitial values can beignored. Formaly,
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these are caculated in terms of a payoff formula for strategies § = (g, A\))
and 2 = (¢, dy) asfollows:

V(svssy) = | +4t'-t-tt/
where

t=ft +(C "d%]/[ " @ " X2 - dy)]
f=&+(c-dM/II - (- do)(a - d)).

The assumption that initial values can be ignored, however, makes sense
only if full values of 0 and 1 are disallowed in accord with the assumption
of aworld of imperfect information.* The payoff formula above is in fact
mathematically undefined for crucial values of 0 and 1.

What if a pure TFT, without communication or executive error, were
somehow included in Nowak and Sigmund's sample? A pure TFT would
quite predictably block the evolution that Nowak and Sigmund trace
toward more generousforms. No more generous strategy { 1,1, X) for X >0
would grow strategically in an environment occupied by (1,1,0) because
payoffs for any such GTFT against TFT would be precisely the same as
thosefor TFT against itself. Were a genuinely errorless TFT included in the
sample, then, it could be expected not only to take possession but to
stubbornly maintain it.

Nowak and Sigmund's work should therefore not be read as in any way
contradicting the classic Axelrod's results. The world of Nowak and
Sigmund's model is simply a different world from that of earlier models.
If s agritty world of ubiquitous and inevitable stochastic noise, and the
failure for TFT reported for such a world is simply a failure for a
stochadtically imperfect instantiation of the classic strategy. That failure
alone should perhaps not be too surprising. Part of TFT's successis dueto
the fact that it does so well in competition with itsdf; in a world of pure
information, two TFT players simply rack up an uninterrupted series of
mutual cooperations:

CCcCcCccccc...
CCCccccccece...
Given any chance of error on either side, however, a spontaneous defection
will occur. The opponent will react to that with a further defection,

prompting another from the other side, prompting another from his
side_ Any error will therefore produce an echo effect, reducing TFT's

play to alternating defections against cooperation and lowering its average
score from 30 to 2.5:

c'ccbcCcbceCbC.
cccCcDCDCD...

The echo dfect will continue until a spontaneous defection either reducesit
further to mutual defection or restores it to mutual cooperation. As Per
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Molander showed in earlier work, the presence of any amount of stochastic
noise is sufficient in the long run to reduce the payoff for two TFT players
to precisaly that of two random players.®

In figure 1 we reproduce the Nowak and Sigmund result using a
population of 121 purely stochastic strategies (¢, d) at 0.1 intervalswith full
valuesof 0 and 1 replaced with 0.01 and 0.99, giving us apool of strategies
(0.01,0.02), (0.01,0.1), (0.01,0.2),... (0.99,0.9), (0.99,0.99). Each strategy
plays al others represented in an infinitely iterated Prisoner's Dilemmain
accordance with the payoff formula outlined above. At each generation
n+ 1 the proportion p,+1 (S) of astrategy siscomputed as a function of its
previous proportion p,(s) and its success V(s, m) against represented
strategies m weighted by their proportions pn(m): pn+1(S) = frs1(S)/
£fh+1(m) for al strategies m, where for any strategy s fu.i(s) =
P.(%) * E(V(>>™) * P, ("»"°" g strategies m.

Twelve thousand generations are shown. As is clear from the chart,
stochastically imperfect A1ID and its relatives are early winners, but are

<0.99.8.1>

<0.998.2>

48.99.0.>

170

<0.990.3>

Figurel TheNowak and Sigmund result: evolution toward GTFT in aworld of imperfect
information. Population proportionsfor labeled strategies shown over 12,000 gener ationsfor
an initial pool of 121 stochagtic strategies (¢, d) at 0.1 intervals, full value of 0 and 1 replaced
with 001 and 0.99.
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effectively eliminated by stochasticaly imperfect TFT, (0.99,0.01), by the
250th generation. This stochastic approximation to TFT isunableto sustain
its victory, however—it peaks and fdls immediately, supplanted by the
more generous strategy (0.99,0.1). This strategy's tenure is longer, but in
due course it too is supplanted, by strategy (0.99,0.2), which is more
generous till in the face of defection on the other side. (0.99,0.2) is
eventually conquered by (0.99,0.3), the closest approximationinthisrunto
aGTFT of (1— 8,1/3). From this point on there will be no further changes:
(0.99,0.3) remains in possession.

Most remarkable, perhaps, is the fact that evolution not only proceeds
beyond stochastically imperfect TFT but proceeds in such clear steps, with
(0.99,0.1) achieving clear dominance before (0.99,0.2) even beginsitsrise,
for example. Nowak and Sigmund speak of TFT in such a model as
performing a 'policing’ function, clearing thefield of the 'vicious' defecting
strategies in order to pave the way for greater generosity. Each more
generous strategy up to (0.99,0.3) canin fact be seenin thisrole—itisonly
against a dominant background of TFT that (0.99,0.1) can prove
successful, only against a dominant background of (0.99,0.1) that
(0.99,0.2) can rise to prominence, and only against dominant background
of (0.99,0.2) that our approximation to GTFT can ultimately prove
triumphant.

44 SPATIALIZATION OF THE PRISONER'S DILEMMA

An argument can clearly be made that the stochastic imperfection of
Nowak and Sigmund's model is an aspect of realism: that both biological
and sociologicad worlds are gritty worlds of error and imperfect
information, and that this is quite properly reflected in a model in which
stochastic noise is unavoidable. Though technically unchallenged, the
success of apure TFT in Axelrod's model, classically free of error, becomes
less interesting from an application™ standpoint—including the applica-
tional standpoint of social and political philosophy.

In this section we want to add just one further aspect of realism to the
stochastic model. Tak of clustering in previous work suggests a spatial
model for the Prisoner's Dilemma, in which we envisage an array of
players with different strategies interacting with their immediate
neighbors. This is precisdy the kind of model obtained if competing
game-theoretic strategies are instantiated as a two-dimensional array of
cellular automata.

The most familiar example of cdlular automata is undoubtedly the
Game of Life, developed by John H. Conway. The game is envisaged as
beginning with a configuration of cells, which evolves through continuing
generations on an infinite chess board. In the initial configuration and at
each succeeding generation each cell or square of the array iseither aliveor
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dead. The neighbors of acdl are simply thosethat border it, and acdl'slife
or death on each generation is contingent on the life and death that
surround it:

Birth Rule: A cdl dead at generation t will come aive at generation t +1
if exactly three neighbors are dlive at t.

Survival Rule: A cdl that is alive at generation t will remain aive at t+1
if it is surrounded at t by precisely two or three live neighbors.

From these as the only conditions for birth and survival follows a death
rule:

Death Rule: A cell will be dead at generation t H-1 if it has fewer than two
live neighbors or more than three live neighbors at time t.

A cdl in Conway's Game of Life is therefore born from precisely three
parents. It can die either from loneliness, when it has less than two
neighbors, or from overcrowding, when it has more than three.

An initial configuration consisting of either a single live cdl or two live
celssideby sidewill disappear in the second generation by the death rule:
both cells die of loneliness. Consider however the case of a line of three
cells, as shown in the first frame of figure 2. On a second generation the
middle cel will survive, sinceit hastwo neighbors. Cells on each end will
disappear, since they each have only one live immediate neighbor.
Consider also, however, the cellsimmediately above and below the center
at our initia generation t. At t they touch three cells, and thus will come
aliive on generation t + |.

Theresult isthat the horizontal line of three cells shown in the first frame
of figure 2 will become the vertical line of three cells shown in the second
frame. By reasoning symmetrical to that just given, the vertical line will
revert to ahorizontal line of threein the third generation, and so forth. The
configuration is called the Blinker because of its clear periodicity of two
generations.

Figure2 TheBlinker configuration in Conway's Game of Life
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The Game of Life abounds with simple shapesthat demonstrate startling
ranges of behavior. A simple arrangement of five cdls called the r-
Pentomino, for example, shown in figure 3, explodes into a prodigious
variety of patterns that stabilize only after 1103 generations. A pattern
crucia for theoretical reasons is the Glider, an alternating configuration of
fivecdlsthat travel sacrossthearray inthe manner illustrated infigure 4. It
isthe Glider and crucialy the Glider gun, a configuration that shoots out a
stream of these shapes, which Conway used as the core of his
demonstration of universal computation in the Game of Life. In chapter
5 we will return briefly to other configurations in Conway's Game of Life;
we will return to issues of universal computation and undecidability in
chapter 6.

Figure3 r-Pentomino in Conway's Game of life.

* m

Figure4 Movement of the Glider in Conway's Game of Life
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The Game of Life is merely the most familiar example, however, of a
wider class of cdlular automata. What these have in common is
simultaneous parallel processing: cels in an array can take on any of
some number of states, with the state of a cell at generation t+1 dictated
by the states of cdlsinits neighborhood at generation t. The states possible
for cells, the rules for state change, and the size and shape of the relevant
neighborhood will dictate different forms of cellular automata. In each
case, however, the evolution of an array is the result not of some master
‘top-down' plan but of simultaneous local and independent computations
at the level of individual cdlls.

In what follows we want to use cellular automata to add a further
dimension of realism, the dimension of space to the Hobbesian models
introduced in the previous sections. We envisage each cdl within a two-
dimensional array as playing against each of its neighbors and obtaining a
local score as its total in these competitions. Each cdl then surveys its
neighbors. If no neighboring cdl has a higher score, it retains its original
strategy. If a cell has a neighbor or neighbors with higher scores, on the
other hand, it converts to that neighboring strategy with the highest
score—or is replaced by that strategy, perhaps, depending on one's
perspective. In the case of two neighborswith equal scores higher than that
of the central cdl, the strategy of one is chosen randomly. The result
is a Spatialized Prisoner's Dilemma, in which success is computed in
all cases against loca competitors. Reproduction—the spread of a
strategy—proceeds locally as well. Both features, we think, constitute a
further measure of realism with an eye to either biologica or socia
application.

As a first example, consider an array composed of our eight simple
reactive strategies, limited to a convenient 64 x 64 cdl array. The array
wraps around—cells on the bottom row have 'neighbors' on the top and
those on the extreme | eft have 'neighbors’ on the right—so the topol ogy of
our space is technically that of atorus.

We begin by assigning to each cell one of our eight simple strategies for
the Prisoner's Dilemma, chosen at random. Theideaisthento let each cdll
play against each of its neighbors in, say, two hundred rounds of the
Prisoner's Dilemma (the length used in Axelrod's original tournament). At
that stage each cdl compares its total score with that of each of its
immediate neighbors, defecting to (or being absorbed by) a neighbor with
a superior total score.

For programming purposes the procedure can be simplified by
proceeding in two steps. The first is to draw up a matrix of results of
.our eight strategies in competition with each other in two hundred games.
With strategies represented on the axes in terms of their binary
representations, this gives us the following matrix:
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(0,00 (001 (01,00 (011 (100) (101 (1,1,0) (1,1,1)

200 9% 200 9% 204 1000 204 1000
1 400 450 94 6 1000 450 1000
200 450 200 600 203 450 500 602
1 4 595 598 5 8 599 602
199 91 203 995 202 A 206 998
0 0 450 993 4 400 450 998
199 450 500 599 201 450 600 600
0 0 597 597 3 3 600 600

Competition between each cdll in our cellular automata array over two
hundred games with any neighbor can now be calculated in terms of the
values shown. The total score of any cdl in a particular generation will
simply be the sum of matrix values corresponding to its competition with
the strategies that are its immediate neighbors.

The evolution of a64 x 64 toroidal array from arandom configuration of
our eight ssimple reactive strategies is shown in the progressive frames of
figure 5. Here AlID and Deceptive Defector (1,0,0) seem to be the early
winners, with AlID progressively triumphing over Deceptive Defector. As
AlID threatensto take over, however, TFT thrivesin its environment, with
Deceptive Defector and Suspicious TFT maintaining themselves as trace
elements at crucia interfaces. In the end, however, it is TFT that conquers
al other strategies in order to occupy the screen alone—a very nice
vindication of TFT's robustness in the spatial model.

It is clear from such an evolution that TFT does not simply conquer al
other strategies from the outset. It isthe 'vicious defecting strategies AlID
and Deceptive Defector that initially seem to do that, and in fact TFT only
comes into its own once the vicious strategies have eliminated large
numbers of 'sucker' strategies. TFT'striumph even at that stage is not due
to any particularly high score it makes against the vicious strategies—a
look at the matrix makesiit clear that TFT scores lower against either AlID
or Deceptive Defector than they do against it—but because TFT does so
much better with its own kind than the deceptive strategies do with their
own kind. TFT's success and ultimate triumph in a spatial environment
stem from its ability to maintain at least a decent score against the early-
winning defectors while gaining fully cooperative scores with itsdf.
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In Morals by Agreement, David Gauthier outlines a strategy he calls
‘constrained maximization'. Though Gauthier's strategy is not ssmply TFT,
his explanation for its success could apply perfectly to the evolution seenin
figure 1:

... constrained maximizers, interacting one with another, enjoy opportu-
nities for co-operation which others lack. Of course, constrained
maximizers sometimes lose by being disposed to compliance, for they
may act co-operatively in the mistaken expectation of reciprocity from
others who instead benefit at their expense. Nevertheless, we shall show
that under plausible conditions, the net advantage that constrained
maximizers reap from co-operation exceeds the exploitative benefits that
others may expect.. ,

There is also a downside to the fact that TFT's success derives from its
interaction with its own kind. Given a configuration in which, as it
happens, TFT does not start with large enough clusters, it will be deprived
of the benefit of cooperative scores with itself and will asaresult be unable
to survive and grow. In such a case—rare but not impossible in random
initial configurations—defective strategies A11D and Deceptive Defector
may end up in an equilibrium of mutual defection. This fact is the starting-
point of the work on forma undecidability in the Spatialized Prisoner's
Dilemma that appears in chapter 6.

45 A NOTE ON SOME DEEPER STRATEGIES

While il within Axelrod's classical constraints of perfect information, we
might consider the possibility of expanding our sampling of strategies
beyond the simple eight used above. One way to do so—a move to 'two-
dimensional’ strategies that we will consider in chapter 5—is to consider
strategies calculated in terms of the last moves by players on each side.
Another extension is to consider strategies 'two-deep’, in the sense that
response is caculated in terms of the last two plays by one's opponent.

Two deep' dtrategies can be thought of as ordered six-tuples
(il,il, cc, cd, dc, dd). Here il and il represent the set of initial moves by
our player—00, 01, 10, or 11. The third value cc dictates the strategy's
reaction to two successive cooperations by an opponent, cd areaction to a
cooperation followed by a defection, dc a reaction to a defection followed
by a cooperation, and dd a reaction to two defections. We have a total of
sxty-four such strategies, shown in the matrix on page 179 (il and il
unseparated for clarity):

In this list strategies A11ID and A11C remain unambiguous. It becomes
much less clear, however, which strategy to label TFT or Suspicious TFT.

Figure 5 Progressive conquest by TFT in randomized array of eight reactive strategies,
shown in three-generation intervals.
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The 'puresf TFT is perhaps that strategy we have labeled TFT here:
(12,1,0,1,0). This starts in a mode of pure cooperation, defecting only
against defection by an opponent in the immediately preceding round. But
we aso have (11,1,1,0,0), which might be seen as a 'delayed’ TFT,
marked as DTFT above. DTFT starts fully cooperative and responds to
defection with defection only after a delay of one round. For each of these
strategies, moreover, we have three grades of more 'suspicious TFT and
DTFT, starting with an initial 01, 10, or 00. The four different strategies
marked TF2T might be considered versions of Two Tits for a Taf, since
they react with defection against a defection on either or both of the two
previous rounds. A single defection against them thus gets counted twice,
first as CD and then as DC. A double defection gets counted threetimes: as
CD, DD, and DC. Also marked are four moretolerant versions of TFT—Tit
for Either Tat, or TET—which defect only against defections by an
opponent on both of the previoustwo rounds. Strategieslabeled TF2T and
TET include initially suspicious variations. One lesson of trying to label
strategies in the transition from simple reactive strategies to 'two-deep'
variations is that we often end up not with single unambiguous
strategies—a single unambiguous TFT, for example—but classes of related
strategies instead.

What happens in a randomized spatial competition between 'two-deep'
strategies? In order to distinguish not eight strategies but sixty-four we
have resorted to illustrations employing sixteen colors with and without
central dots of contrasting colors. Started from a random distribution, one
way evolution can proceed is that represented in figure 6 (only generations
1,4, 8,16, 24, and 32 are shown, with some simplifications for black and
white reproduction). Here asbeforethe broad family of 'vicious' strategies,
variations on A11D, generally tend to be early winners, gobbling up initial
territory at the expense of surrounding suckers. In the second generation of
the full series, each of the top twenty-five strategies defects in the face of
double cooperation. In the third generation each of the top ten strategies
defects in the face of both double cooperation and double defection, with
defection as well in the case of CD, DC, or both. At this point in the
evolution no strategy that returns cooperation for double cooperation
appears in the top seventeen.

By the sixth generation, however, pure TFT (11,1,0,1,0) has established
itsdf in third place, and by the twefth generation it occupies the bulk of
the territory, maintaining that position through the twenty-fourth round.
Once pure TFT is in possession, however, the possibility opens for
exploitation by a dightly Suspicious Tit for Tat, (01,1,0,1,0), labeled
.simply STFT in the chart above. Since only the previous round counts for
pure TFT, this more suspicious version can exploit pure TFT by means of
an unpunished defection on the first play alone. In the evolution shown in
figure 6 it is thus this more suspicious STFT that turns out to be the
ultimate winner.
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(00,0,0/0,0) | Always Defect (A11D) (10,0,0(0,0)
(00,0,0/0,1) (10,0,0/0,1)

(00,0,0/ 1,0 (10,0,0/ 1,0
(00,0,0/1,1) (10,0,0|1,1)
(00,0,1/0,0) (10,0,1/0,0)
(00,0,1/0,1) (10,0,1/0,1)

(00,0,1| 1,0 (10,0,1/ 1,0)

(00,0,1] 1,1 (10,0,1 1,1)
(00,1,0/0,0) | A Tit for 2 Tats (TF2T) (10,1,0/0,0) | aTF2T
(00,1,0/0,1) (10,1,0/0,1)
(00,1,0/1,0) | a Suspidous TFT (STFT 2) | (10,1,0/1,0) | STFT 3
(00,1,0] 1,1) (10,1,0/ 1,1
(00,1,1/0,0) | aSDelayedTFT (SDTFT 1) | (10,1,1/0,0) | SDTFT 2
(00,1,1/0,1) (10,1,1/0;1)

(00,1,1/ 1,0) | Tit for Either Tat (TET) (10,1,1/ 1,00 | TET
(00,1,1/1,2) (10,1,1/ 1,1)
(01,0,0/0,0) (11,0,0/0,0)

(01,0,0/ 0,1) (11,0,0/0,1)

(01,0,0/ 1,0) (11,0,0/ 1,0)

(01,0,0] 1,1 (11,0,0| 1,1)
(01,0,1/0,0) (11,0,1/0,0)
(01,0,1/0,1) (11,0,1/0,1)

(01,0,1| 1,0) (11,0,1] 1,0)

(01,0,1] 1,2) (11,0,11,1)
(01,1,0/0,0) | aTF2T (11,1,0/0,0) | aTF2T
(01,1,0/0,1) (11,1,0/0,1)
(01,1,0/1,0) | STFT (11,1,0/1,0) | TFT
(01,1,0| 1,1 (11,1,0/ 1,1)
.(01,1,1/0,0) | SDTFT 3 (11,1,1/0,0) | DTFT
(01,1,1/0,1) (11,1,1/0,2)

(01,1,1/ 1,0) | TET (11,1,1/ 1,00 | TET
(01,1,1,1,1) (11,1,1,1,1) | A1IC
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Totd conquest by any single strategy in a 'two-deep' competition turns
out to be the exception rather than the rule, however. A much more
common pattern of evolution is one toward a stable equilibrium among
several strategies. A smple exampleis showninfigure 7 (once again with
some simplifications for black and white reproduction). Relatives of A11ID
are once again early winners, and are once again conquered by apure TFT,
which eventually givesway to a suspiciousvariant. But herea Delayed Tit
for Tat (1,1,1,1,0,0), which rewards cooperation two rounds ago with
cooperation, also shows some success both against the later defecting
strategies and in the context of a pure TFT. In the end, a few generations
beyond the last frame shown in figure 7, islands of this DTFT form a stable
equilibrium with the dominant STFT. Small purely rectangular islands of
pure TFT remain as well. From that point on nothing changes, and no
single strategy conguers the entire field.

The successof DTFT in the context of TFT iseasily understandable: each
starts with cooperation on the first two rounds, and rewards that double
cooperation with cooperation from then on. Thus DTFT and TFT are
playing games of full cooperation with each other throughout.

The stability of DTFT with a suspicious STFT is a bit harder to
understand. In games of two-hundred rounds, as employed in this model,
thetwo strategies set up apattern of periodic play inwhich STFT winsby a
single round of defection against cooperation.®®* At the same time,
however, DTFT plays a game of full cooperation with its own kind. STFT
does not—its full cooperation with itsdf is marred by a first round of
mutual defection. Here it must be remembered that in the move from one
generation to the next cels adopt the strategy of the highest-scoring
neighbor, and thus the fact that a cdl stays with a particular strategy may
indicate not that that cdl is doing particularly well with that strategy but
that a neighboring cdl is. This alows for the possibility of a 'buffer
situation’, which appears to be what is happening here. In the right
configuration acell c of DTFT can be next to another cell d of DTFT, which
does very well from mutual cooperation. On each generation cdl ¢
'‘changes’ to that same strategy. Despite the deceptive appearance of
stability cell ¢ may itsalf not be doing very well in direct competition with a
neighboring STFT cell, which may maintainitsstrategy as STFT becauseits
total score is higher than that of its DTFT neighbor.

In other cases other strategies may play a significant role in a fina
equilibrium. Here a TF2T (1,1,1,0,0,0) is particularly interesting. This
TR2T plays against both TFT and DTFT, as well as against itsdf, in pure
cooperation, and thus can establish an easy equilibrium with these. Games
between TF2T and STFT produce a far poorer score than games between

Figure6 One pattern of evolution in arandomized array of 64 classicd '2-deep' strategies:
conquest by a suspicious TFT shown for generations 1, 4, 8, 16, 24, and 32. (Some
simplifications made for black and white presentation.)

The Evolution of Generosity in a Hobbesian Model



innrngi

..... Eisisiind
LLVALLES. VT Ty g L HIH L H AT PP
S
] = ‘I ol 1t ]I_’lllll II lIII L
L
|
I
| |
HiltiliL | | [
JiiH
|
|
BYARTT "liitnmw

H 811818 fl Suspicious TFT D 111818 Pure TFT D 111188 BTFTO 111118 TF2T

182 Chapter 4



DTFT and STFT, but produce an identicaly poor score for both sides:
TF2Ts score against STFT isthe same as STFTs .score against it, and thus
an equilibrium between STFT and TF2T isalso possible. The possibility of a
three-way equilibrium between DTFT, STFT, and TF2T appearsto depend
crucialy on spatial arrangement, the buffer phenomenon noted above, and
trace elements of pure TFT or other strategies.

With sixty-four strategies and an array as small as that shown, it turns
out, the particular course of evolution is highly dependent on initial
configuration. Is the robustness of TFT vindicated in this more
complicated spectrum of strategies? We can say that most of the successful
strategies noted are cooperative on both initial rounds, and all of the
successful strategies noted are cooperative on at least the second initial
round. That isat least a TFT-like general feature: strategies vicious enough
to start with a series of two defections do not ultimately succeed. All of the
strategies noted al so share the TF2T feature of responding to a series of two
cooperations on the other side with cooperation. None cooperates in the
face of two defections on the other side. Just as the question of what
strategy counts as TFT becomes more complicated in this richer
environment, however, the question of whether TFT-like strategies till
prove robust becomes more complicated. What we can say is that
successful strategies share at least a partial initial cooperativeness, an
ability to respond with cooperation to a pattern of cooperation on the other
side, and an ability to defect in the face of a pattern of defection on the
other side.

The general idea of using cdlular automata in a spatialization of the
Prisoner's Dilemma should be clear, though to this point we have confined
ourselves to the assumption of perfect communication and execution
characterigtic of a classic environment. What spatialization captures, and
earlier models such as the Axelrod-Hamilton do not, is the fact that
interaction must proceed localy, with any global evolution merely the
consequence of changes at the local level.

Such a spatialization, we think, is entirely appropriate to a Hobbesian
model. As originaly printed, the 1651 title page of Hobbes's treatise
portrays the emergent Leviathan as a giant composed of a myriad of small
individuals (figure 8). Hobbes's opening passage, remarkably enough,
both refers to that Leviathan as an automaton and anticipates the
contemporary claim that cellular automata might be thought of as
exhibiting artificid life

Figure 7 Another pattern of evolution: to equilibrium primarily between a suspicious TFT
and aDTFT, shown for generations 1,4,8,16,24, and 36. (Some simplifications made for black
and white reproduction.)
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Nature (the Art whereby God hath made and governes the world) isby the
Art of man, as in many other things, so in this also imitated, that it can
make an Artificial Animal. For seeing life is but a motion of Limbs, the
beginning whereof isin some prindpall part within; why may we not say,
that all Automata (Engines that move themselves by springs and wheels as
doth awatch) have an artifidall life?... Art goes yet further, imitating that
Rationall and most excellent worke of Nature, Man. For by art is created
that great LEVIATHAN called a COMMONMWEALTH, or STATE, (in latineavnAS)
which is but an Artifidall Man___*
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Figure 8 The 1651 title page of Hobbes's Leviathan.
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46 GREATER GENEROSTY IN AN IMPERFECT SPATIAL WORLD

The illustrations of the Spatidized Prisoner's Dilemma offered in the
previous sections were explicitly limited to Axelrod's world of perfect
information and execution: aworld in which cooperations and defections
are always seen for what they are and in which attempts to defect or
cooperate always come off without a hitch. In the work of Nowak and
Sigmund, we've noted, that assumption is replaced with the more redlistic
notion of a world of imperfect information and execution. One result of
that move to greater realism is the apparent victory not of a stochastically
imperfect TFT but of the significantly more generous GTFT, which forgives
defection against it with a probability of 1/3.

What happens when we turn to a spatialized form of the stochastic
Prisoner's Dilemma? Once the full story is in, it turns out that
spatialization as an additional move toward realism favors an even greater
level of generosity. In a first smple study, we used the same stochastic
strategies introduced by Nowak and Sigmund: 121 purely stochastic
strategies(c, d) at 0.1 intervalswith full values of 0 and 1 replaced with 0.01
and 099, giving us a pool of strategies (0.01,0.01), (0.01,0.1),
(0.01,0.2),... (0.99,0.9), (0.99,0.99). Following Nowak and Sigmund,
competitive scores were also calculated in terms of infinite games
between strategies. Here, however, strategies were randomly instantiated
ascdlsin a 100 x 100 array. Cells played against immediate neighbors as
outlined in the previous sections, gaining a total loca score from those
competitions and converting to the strategy of any neighbor with a higher
local score.

With afull 121 strategiesrepresented, such an array ishighly sensitiveto
initial configuration: much depends on which strategies are eliminated by
immediate neighbors in the first few generations. Both (0.8,0.2) and
(0.9,0.1) can be important players in random arrays and can in fact
establish an equilibrium: both compromise their probability of cooperation
against cooperation to precisaly the degree that they show any probability
of cooperation against defection. Unless it is eliminated in early rounds,
however, it isthe more cooperative (0.99,0.1) that tends to dominate both
of these. A typica evolution to (0.99,0.1) is shown in 1l1-generation
intervals in figure 9 (with some simplifications for black and white
presentation). Even (0.99,0.1), of course, isjust barely more generousthan
a stochastically impure TFT of (0.99,0.01). Strategies approximating
Nowak and Sigmund's GTFT did not seem to play a dominant role in
these first spatialized tournaments.

Itis clear that a primary factor in these first results is the limit of our
spatial array, however. Such an array inevitably imposes not only a
sengitivity to the precise initial configuration, but a significantly greater
'death factor' than is present in the population proportion algorithm used
in both Axelrod and Hamilton's and Nowak and Sigmund's work. That
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algorithm isinfact strongly biased against extinction: although a strategy's
proportion in the population may diminish at each stage, it never dies
completely unless it scores a full zero against all existing strategies. None
of Nowak and Sigmund's stochastic strategies has a true score of zero
against any other. In the evolution plotted in figure 1, the proportion of
stochastically imperfect TFT fdls at one point before its rise to somewhat
more than hdaf of its origina representation. But the more generous
(0.99,0.2) fdls to less than a millionth, and (0.99,0.3) fdls to less than a
billionth. If representation in aproportion lessthan that corresponding to a
single individual counts as 'death’, a generosity level of even (0.99,0.1)
would thus require a population in tens of thousands merely to survive, a
generosity leve of (0.99,0.2) would demand a population of nearly one
billion, and bare survival of a generosity level of (0.99,0.3) would demand
a population in the hundred trillions.

Within thelimitsof afinite array of automataof any manageable size, on
the other hand, the death of a strategy can become very fina very quickly.
For this reason aone, although we can easily assume Nowak and
Sigmund's pool of stochastic strategies and incorporate their payoff for
infinite games in a spatial context, a tournament of this type imposes a
sgnificantly different reproductive algorithm. Given the array limits of
this first attempt at spatial modeling and the very small proportions to
which more generous strategies fal in the population-proportion model it
is perhaps not too surprising that the upper end of the Nowak and
Sigmund generosity result is cut off. (0.99,0.3), our closest representation
of GTFT, always seems to be extinguished much too early.

Here we should also mention another difference in the evolution of this
first model. Even with a total population as small as ten thousand, we've
noted, convergence is often to a strategy dightly more generous than
stochastically imperfect TFT. But the evolutionary mechanism operativein
this gpatialization is quite different than that in the origina results of
Nowak and Sigmund. Within the population proportion algorithm, as
indicated in figure 1, the pattern of the result is an early and almost total
victory by stochastically imperfect TFT, followed step by step by successful
invasions of more generous variations. Without the presence of stochas-
tically imperfect TFT, Nowak and Sigmund indicate, evolution to more
generous strategies cannot proceed. But that is not the characteristic
evolution of the spatial model shown in figure 9; thereit is clear that there
isadirect victory by (0.99,0.1) without the necessity of prior conquest by a
statistically imperfect TFT (0.99,0.01).

In two more sophisticated studies we used variations on this basic
model to try to compensate for the effects of small arrays and small

Figur? 9 The Spatidized Stochagtic Prisoner's Dilemma, showing an evolution from a
randomized array of 121 stochadtic strategiesto conquest by (0.99, 0.1). Frames are a eleven-
generation intervals. (Some smplifications made for black and white reproduction.)
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computer memories. In each case we used a randomizing procedure in
which alimited sample of strategies compete in a given area, and in which
losers are progressively replaced by alternatives. Theideaisthat inalarge
enough array there would be areas where dgnificant numbers of
individuals from any given handful of strategies compete, carrying the
result of that competition into other areas. We simulate the larger areain
bits, as it were, by progressively randomizing competing strategies into
our 100 x 100 array. With such a procedure, the role of the death factor—
the fact that all representatives of a strategy in a small randomized array
may die very quickly, although that strategy might prove very successful
in an environment that will evolve later on—seems properly minimized. In
these more sophisticated spatial models it is not GTFT that is ultimately
favored, however, with a forgiveness probability of 1/3 in the face of
defection, but more generous strategies still.

In a second series of studies we began with a randomized 100 x 100
array of just 8 stochastic strategies chosen from the pool of 121. Each cell
played against its neighbors as outlined above. When a strategy died—
with no representatives left—a new competitor was sprinkled in a random
eighth of the cdls of the array, just as the original strategies had been
sprinkled in. New competitors were chosen randomly from the pool,
allowing a possibility of repetition. This procedure was introduced purely
for the computational reasons outlined above, with the appearance of new
strategies thought of merely asasampling procedure acrossthe pool of 121
strategies. Only later did we note that limitation to a fixed number of
competing strategies is consistent with the broad outlines of E. O. Wilson
and Robert MacArthur's Theory of Island Biogeography'.*® On that
theory, supported by a range of surprising data, the number of resident
species on an island is proportionate to land area. It follows that the
number of species in a given area will be constant over time: though
different species appear and go extinct, the number of species over all
remains the same, precisaly as is true of strategies in our second formal
model .

Convergenceto a particular strategy in the formal ecology of our second
model would clearly constitute a strong argument in favor of that strategy:
any such strategy must have arisen and must have maintained itsdf in
competition with substantial distributions of large numbers of potential
rivals. Given Nowak and Sigmund's work, we would not have been
surprised had GTFT triumphed. As it happened, however, our results
showed convergence quite standardly to significantly greater levels of
generosity. Convergence was amost always to a strategy in the range of
(0.99,0.4) through (0.99,0.6), locked in equilibrium with trace elements of
other strategies in such away as to block further incursions. Nobody fully
dies and thus no further strategies are introduced. Sometimes even
(0.99,0.7) establishes itsdf as the dominant strategy, though generally with
significantly more areas of incursion by other strategies in equilibrium.
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Figure 10 showstypical end-stateswith (0.99,0.4) and (0.99,0.6) in final
possession, locked in equilibrium with trace elements of other strategies (a
64 x 64 array is shown for the sake of clarity, though the work itsdf was
generally runwith thelarger 100 x 100 array). The generosity result for this
model is very resilient. Although it may take longer to develop, the basic
resultisthe sameif we start with 16 strategiesrather than 8, if weintroduce
only 1% of an alternative strategy when onedies, or both. It also remainsif
we deepen approximations to 0 and 1 in our stochastic strategies to
0.000001 and 0.999999, if we sharpen approximations of GIFT in asimilar
way, or both.

In this second series of studies it became clear that it was the possibility
of small clusters that was crucia to ecologica dynamics. In a third series
we therefore varied the model so as to introduce with each generation a
gpatial cluster of just 6 cells of arandom strategy somewherein the display.
Rather than replace a full 12.5% of the display only on the death of a
strategy, we replaced a clustered 0.06% of the display with a randomly
chosen strategy at each generation. This allowed for a variable number of
strategies to be represented at a time, rather than a constant 8 as in the
model above. It also allowed usto avoid the artificia locking’ phenomena
of the second model, in which 8 strategies in equilibrium can prevent the
introduction of further competitors.

In this third model an even clearer dominance by (0.99,0.5) and
(0.99,0.6) was evident. In these studies the standard result is convergence
to domination by one or the other of these strategies, in clear possession of
the field but with trace elements of other strategies present in equilibrium
but unable to expand. Often subdominant strategies appear in the form of
periodic blinkers. Figure 11a shows (0.99,0.6) in possession, with trace
elements of (0.99,04), (0.3,0.1), (0.1,0.7), and other strategies in
equilibrium. Figurelib shows (0.99,0.5) in possession with trace elements
of (0.99,0.3) and other strategies® As a whole, then, this series of
spatialized studies indicates a victory for strategies far more generous in
the face of defection than mere GTFT—strategies with generosity ranges
up to and including 0.6 rather than GTFT's mere 1/3.

Within the spatial context there is one clear victory for pure GTFT:
Nowak and Sigmund's (1 — 8,1/3) emerges quite clearly as the strategy
with the highest score against itsdf that is impervious to spatial invasion
by a single unit of any other strategy. What our more generous
experimental results emphasize, however, is that imperviousness to
invasion by a single unit is not of ultimate importance in a spatial ecology
of thiskind. Though GTFT isimperviousto invasion by asingle unit of any
other strategy, it does prove vulnerable to invasion by small clusters of
some more generous strategies, themselves vulnerable in turn to invasion
by much less generous strategies. No strategy isimpervious to invasion by
small clusters of all other strategies.

The Evolution of Generosity in a Hobbesian Modd
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Figure 10 Hie Spatialized Stochagtic Prisoner's Dilemma: equilibria dominated by greater
generodity. Generated from eight initial strategies, randomly chosen and distributed, with
dead strategies replaced by randomly chosen alternatives in similar 1/8 proportions.

Within a spatial model, it turns out, it becomes important to distinguish
between different notions of invasion. In particular, it proves necessary at
least to distinguish invasion as () growth, such that for some generation
thereis a succeeding generation in which thereis a greater number of units
of theinvader, (b) sustained growth, such that for every generation thereis
some succeeding generation in which there is a greater number of units of
theinvader, and () invasion to conquest, such that for any arbitrary area,
that areais eventually occupied entirely by the invader. Figure 12a shows
two forms of salf-limiting invasion: the unsustained periodic growth of a
single unit of (0.01,0.01) in a fidd of (0.9,0.6), shown in one-generation
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H 899 0.66 3037
0.99 0.40 312
0.30 0.10 177
0.01 0.70 146
0.70 0.90 34
0.90 0.30 27
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0.10 0.50 25
0.50 0.00 20
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Figure 11 Examples of evolution to greater generosity with a variable number of random
strategies, blocks of sx of a randomly chosen strategy dropped in each generation.

intervals, and the sustained but sdf-limiting growth of (0.8,0.99) in afied
of (0.99,0.6), shown for generations 1,4,7, and 12. Three common patterns
of invasion to conquest appear in figure 12b, hereillustrated by (0.99,0.9)
invaded by a single unit of (0.01,0.8), (0.99,0.4) invaded by a square of
nine units of (0.99,0.6), each shown in intervals of two generations, and
(0.99,0:99) invaded by a single unit of (0.5,0.6), shown for generations 1,4,
8, and 12.

Invasion patterns for GTFT provide a particularly instructive example.
Although GTFT is still impervious to invasion by asingle unit of any other
strategy, a GTFT of (0.9999999,0.3333333) is invadable to conquest by
clusters as small as four units of, for example, (0.9999999,0.5). It is also
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invadable, though not to conquest, by clusters of strategies as generous as
(0.9999999,0.9999999), or stochagtically imperfect A11C The complex
dynamics of an invasion of stochastically imperfect GTFT by A1C isin fact
quiteintriguing.® The growth of acluster of sixteen unitsof A11C in afield
of GTFT, each with a stochastic imperfection of 0.0000001, is shown at
intervals of Sx generations in figure 13. Here coding in terms of greysis
used to indicate dynamics: black indicates a cdll of the invading strategy
that has not changed in the last round, white a cell of the invaded strategy
that has not changed, vertical stripesacdl that hasbeen invaded in the last
round, and grey a cdl that has reverted to the invaded strategy.”® GTFT,
then, though invulnerable to invasion by a single unit of aternative
strategies, is vulnerable to invasion by small clusters of some more
generous strategies. In this way it resembles pure non-stochastic A11D,
which although not invadable by asingle unit of pure TFT, isinvadable by
small clusters of TFT.

Strategies more generous than GTFT, up to and including
(0.9999999,0.6666666), prove invadable by other strategies but seem
invadable to conquest by no others in at least standard patterns of small
clusters. Here our work took the form of an empirical survey, using
rectangular blocks of two and six cells, crosses of four, and square blocks of
four, nine, and sixteen. In acomputerized survey we dropped each of these
patterns, for each of our stochastic strategies, into a background field of
every other stochastic strategy. The program waswritten to signa whether
aninvasion had progressed to fill aparticular border in achosen number of
generations. On the basis of this survey the region that emerged as
optimal—in the sense of offering a strategy with the highest score against
itself impervious to invasion to conquest from a small cluster of any other
strategy—seemed to be that centered on (1 —E, 2/3). That strategy we
termed Torgiving Tit for Taf (FTFT).*

Here a great deal of anaytic work remains to be done. It should be
possible to work out patterns of spatial invasion for clusters of particular
shapes given particular ratios of Prisoner's Dilemma scores. That analytic
work will require consideration of a bewildering number of cases,
analyzing potential growth for cdls with certain scores at particular
positions in particular shapes—at corners, along straight edges, in single
protuberances, and next to nicks in straight edges, for example. Our
conjecture is that further analytic work will both confirm and explain the
preeminence of FTFT in a stochastic spatialization.

The noteworthy feature of Torgiving lit for Taf, of course, is that it
displays twice the generosity of Nowak and Sigmund's 'Generous Tit for
Taf in the face of defection on the other side. Thisis even more remarkable
inlight of the fact that essentially all that we have added to the Nowak and
Sigmund model is spatialization by way of two-dimensional cellular
automata. Spatialization alone seems to favor an important increasein the
level of generosity one can expect to evolve in a Hobbesian model.
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Figure 12 (a) Two common forms of self-limiting invasion; (b) three patterns of invasion to
conquest.
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Figure 13 A fidd of strategy (0.9999999,0.3333333> invaded by a sixteen-square block of
(0.9999999,0.9999999), shown at intervals of four generations. Vertica lines indicate cdls
which have been invaded in the last generation; grey indicates those that have reverted to the
original strategy in the last generation.

We should aso note some limitations of the above work. Building
explicitly on the work of Nowak and Sigmund, it is smilarly limited to
one-dimensional or reactive strategies, which consider only the previous
move of the opponent. Chapter 5 isdevoted to work on more complex two-
dimensional strategies in a continuous-valued rather than stochastic
environment. Work on Hobbesan environments with the intriguing
possibility of 'opting ouf—of choosing not to compete at al—we leave
to others or to another context.* Variations employing asynchronous
updating—in which not al cells are updated simultaneously—are left for
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Figure 13 (continued).

further study as well, though on an experimental basis we have tried a
limited form of asynchronous updating for results throughout by
computing only a random 50% or 25% of arrays on each generation.*®
As might be expected, precise patterns of propagation dependent on the
particular configuration of a group, such as those in figures 12 and 13,
prove vulnerable to change from synchronous to asynchronous updating.
Within the experimental limits noted, however, results regarding the
greater success of generous strategies in a spatial environment seem to
remain. It may also be that the stochastic character of the strategies at issue
diminishes the differential effects of synchronous and asynchronous
updating.**
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Figure 13 (continued).

4.7 CONCLUSION

In this chapter we have tried to approach Hobbes's question of how
cooperation might arise in a community of self-seeking egoists without
central control. The central question is traditional; the tools with which
we'vetried to exploreit are not. Our attempt has been to approach Hobbes
in terms of computer modeling, replacing the state of nature of Hobbes's
informal imagination with arrays of players pursuing explicit strategiesin
an environment of competition characterized by the terms of the iterated
Prisoner's Dilemma.

Within Axelrod's classica mode—a world of perfect communication
and errorless execution—we've seen it is TFT that isfavored. That result is
perfectly in accord with Hobbes, who proposes as a second "generall Rule,
found out by Reason" the principlethat "Whatsoever you requirethat others
should do to you, that do ye to them" (Leviathan, Chapter XIV). What is
surprising—and, we think, would have been surprising to Hobbes—is that
two ways of making that model moreredistic favor 'generosity’ above and
beyondthelevel of TFT. Inthework of Nowak and Sigmund, themovetoa
world of imperfect information and/or execution favors not an imperfect
TFT but the more generous stochastic strategy GTFT, which almost
invariably rewards cooperation with cooperation but forgives defection
against it with a probability of 1/3. In this chapter we have added a further
measure of realism, a Spatialized Prisoner's Dilemma. In a spatialized
model still more generous strategies are favored. By some measures the
optimal strategy here appearsto be Torgiving Tit for Taf (FTFT), inwhich
the probability of forgiving defection is a full 2/3—twice the generosity
level of GTFT. What is surprising is that these generous or forgiving
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strategies are favored in what remains essentially a society of egoists,
without the central control of Hobbes's envisaged Leviathan. All payoffs
are defined explicitly in terms of the Prisoner's Dilemma matrix and the
spread of strategies is governed throughout by calculation of those
strategies with the highest total scoresin local competition. All processing
remains on the individual level and in parallel. Hobbes might well have
been surprised at the high level of cooperation and generosity that evolves
in even this stark a state of nature.

We've noted a number of areas in which important formal exploration
needs to be done. Some of these we will take up, with an emphasis on
continuous-valued rather than stochastic models, in chapter 5. Thereisalso
important philosophical work in interpretation that remains to be
explored.

We have given in to the temptation throughout to speak of TFT as a
‘cooperative' strategy and of GTFT and FTFT as ‘generous or ‘forgiving'.
In each case these informal characterizations can be cashed out in purely
formal terms: TFT responds to 'C with 'C in the Prisoner's Dilemma, and
GTFT and FTFT have significant and high probabilities, respectively, of
responding to T/ with 'C. As emphasized in the introduction, however,
the almost unavoidable tendency to think of these as literally 'generous’ or
‘forgiving' carries an important philosophical danger. It is hard when
viewing the evolution of a cellular automata array such as those above not
toroot for TFT, GTFT, or FTFT asthe'good guys' in some moral sense. The
danger is that we will misconstrue both ethics and our formal results by
using a terminology borrowed from the realm of ethics but defined merely
in formal terms. It is clear for example that cooperation, irrespective of
group or god, is not always a moral good. The formal feature referred to
informally as 'generous or 'forgiving' may in some cases amount to
tolerating injustice or abetting a felony. In a full philosophical treatment it
will aso be important to recognize interpretation in terms of ‘generosity’,
'forgiveness, and aricher behavioral and moral terminology in general, as
a distinct move above and beyond the formal results themselves. Here we
have followed the generd literature in using these informal categories to
characterize formal results. As work continues and becomes more
sophisticated this may well be something it becomes important to leave
behind, separating the interpretation from the pure results in much the
way that formal semantics is separated from syntax in standard logic.

Another remaining philosophical task will be much more difficult. We
have emphasized even in the introduction that the formal strategies at
issue are not themselves literally 'cooperative' or 'generous’: they are at
best mere models of genuinely cooperative or generous behavior. None-
thelessthereisa clear intuitive motivation for categorizing strategiesin this
informal way: there do seem to be strong intuitive anal ogies between these
formal behaviors and the real attitudes of real agents, including attitudes
we standardly characterize in moral terms. The hard philosophical task
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that remains is to clarify and fill out those intuitive analogies. Precisdy
which characteristics of a socia environment do our models capture, and
which do they fal to capture? In precisely which ways do certain
characteristics of our formal strategies resemble genuine cooperation and
generosity, and in which ways do they not?

Any further questions of the implications of the models offered here
hang on the answers to these hard interpretation” questions, and not on
the formal results alone. The formal models alone may show that certain
analogues of some forms of moral behavior show a certain dynamics
under particular constraints of interaction. What that shows us about
morality, however, depends on the strength and precise character of the
analogy—the hard question posed above. Certainly it does not follow from
these models alone that moral behavior isto be ‘judtified' in terms of such
dynamics, let alone that there somehow really is no genuine morality.

Even Hobbes, we've noted, seems to offer no unambiguous answers to
guestions of moral justification or reduction. It would be equally wrong,
we think, to expect full answers to such questions from the contemporary
Hobbesian models offered here.
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Real-Valued Game Theory: Real Life,
Cooper ative Chaos, and Discrimination

Thepractical difficulty is not so much in knowing when to cooperate or defect but
to decide what is going on. In the real world, it is not always obvious whether
someone hasacted cooperatively or defected.

—William Poundstone, The Prisoner's Dilemmal

Nobody, aslong as he moves among the chaotic currents of life, iswithout trouble.
—Carl Jung

The theory of justice is a part, perhaps the most significant part, of the theory of
rational choice.

—John Rawls, A Theory of Justice?

In the previous chapter, we used the Prisoner's Dilemma to introduce
Hobbesian models of socid interaction. There, however, we limited
ourselves to a spatialized form of stochastic models, designed to capture a
world of imperfect information. In this chapter we want to take spatialized
models in a different direction, increasing their realism in terms not of
probabilities of cooperation and defection but of degrees of cooperation and
defection. In thereal world it isnot merely true that one sometimes doesn't
know whether an action should be construed as cooperative or not; very
often the act really is more or less cooperative, lying on a genuine
continuum between cooperation and defection. Here we pursue such an
intuition by considering a continuous-valued form of the Prisoner's
Dilemma and constructing Hobbesian models of social interaction in terms
of it.

Once game theory is viewed in terms of continuous values, severd
important connections with the material of early chapters become clear.
One of these is a compelling connection between continuous-valued game
theory and the infinite-valued logica connectives. Ancther is a clear
connection between continuous-valued game theory and chaos.

In thefina section of this chapter we apply some of these game-theoretic
tools to a very rea socia problem: the issue of discrimination. This final
applicational study, we think, serves to underscore both the power of this



form of modeling and the importance of distinguishing carefully between
work in sociad modeling and work in genuine social ethics.

51 REAL LIFE

Our ultimate goa inwhat followsis to provide further spatialized forms of
the Prisoner's Dilemma, made more redlistic by the incorporation of
imperfect degrees of cooperation and defection. We begin with Conway's
whimsical but suggestive Game of Life, however, to demonstrate some of
the important differences that a shift to a continuum of values can make.

Asoutlined in the previous chapter, Conway's Game of Lifeisplayed on
an infinite board of sgquare cells. At time 0, each cdl is either completely
alive (1) or completely dead (0). Onceaconfiguration is set, patternsevolve
at each tick of a clock according to threerules, the Birth Rule, the Survival
Rule, and the Death Rule:

Birth Rule: A cell dead at generation t will come alive at generation t+1
if exactly three neighbors are alive at t.

Qurvival Rule:  Acdl that is aive at generation t will remain aive at t+1
if it is surrounded at t by precisely two or three live neighbors.

Death Rule: A cdl will be dead at generation t +1 if it has fewer than two
live neighbors or more than three live neighbors at generation t

There are a number of intriguing denizens of Conway's Game of Life.
Fundamental for Conway's universal computability result, for example, is
the Glider, introduced in chapter 4. A configuration known asthe Pinwheel
generatesfour Glidersat its corners (figure 1). The Cheshire Cat disappears
over severa generations to a single paw print (figure 2).

Conway's Game of Life, however, makes the simplifying assumption
that each cdll is either completely alive or completely dead: each cell has a
precise value of 1 or 0 on each generation. What happens when this
smplifying restriction to bivalence is relaxed? What if we allow cdls to
take on a continuum of values in the real-valued internal [0,1]? This
possibility is not without precedent in nature. Yeadt spores, for example,
come alive from a relatively dormant state when the conditions are right,
and so it is natural to describe the dormant spores as neither fully alive nor
fully dead.®> Why not construct a variation of Conway's Game of Life that
countenances real-valued degrees of life and death? We call this game
"Real Life" It turns out that Redl Life, unlike Conway's Game of Life,
exhibitsasensitivedependenceoninitial conditionsthat ischaracteristic of
chaotic systems.

We can represent the rulesfor Conway's Game of Life graphically. There
are two cases to consider. If the center cell is dead, then, according to the
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Figure 1 The Pinwheel in Conway's Game of Life generates Gliders. Generations 1 through
12 are shown.
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Figure2 InConway's Gameof Life, the Cheshire Cat leavesa single paw print. Generations
1 through 8 are shown.
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Birth Rule, it will comealiveif it hasexactly threelive neighbors. The Birth
Rule is represented by the graph on the left in figure 3. Here the x-axis
represents the total amount of life in the nine-cell neighborhood at time t,
and the y-axis represents the life of the center cell at timet +1. The second
caseiswhenthe center cdl isalready alive. Accordingto the Survival Rule,
the center cdl will stay alive if it has no less than two and no more than
threelive neighbors. Counting the center cell, which isassumed to bealive,
thismeansthat the center cdll will stay aliveif thetotal amount of lifeinthe
nine neighborhood area is three or four. The Survival Ruleis represented
by the graph on the right in figure 3.

These graphic representations of Conway's Rules of Life suggest a
natural way to generalize the bivalent rules to the real-valued case. We
smply replace the vertical lines in the graphical representation of
Conway's rules with tent functions whose sides have a slope of plus or
minus 1. The resulting rules for Red Life are shown in figure 4. We can
evenformulate asingle "fuzzy" rulefor Red Life. We superimposethe last
two graphsin figure 4 and introduce a parameter c, to range from 0 to 1,
representing thelife of the center cdll (figure 5). Inthisfuzzy rule, the Birth
and Survival Rules coincide on values less than 3 and on values greater
than 5, and differ on theinterval from 3 to 5. The Birth Rule specifies what
happens in this interval when ¢=0, and the Survival Rule specifies what
happens when c=1. When the value of ¢ ranges between 0 and 1, the
Survival Ruleis represented by a shifting line with a slope of minus 1 and
an M-intercept of 4 +c.

Let £ be the sum of al the life in the nine-cell neighborhood at time
t and c;.+;, be the degree of life of the center cdl at time t+ 1. Then c.4,
the degree of life of the center cdl a time t+1, is given by

Birth Rule Survival Rule
In Conway's Game of Life In Conway's Game of Life

012345 6 789 01234567289
Total Lifein Neighborhood Tota Lifein Neighborhood

Figure3 A graphical representation of the rules of Conway's Game of Life.
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Birth Rulein Real Life Survival Rulein Real Life

1 1
09+ n 09 %
08t 0a+
07t 071
06 ¢ 08¢
051 05+
047 044
a3t a3y
02¢ 02+
a1t 014

0 0

¢ 12 3 4587 8 9 01 23 4 567 &8
Total Degree of Lifein Neighborhood Total Degree of Lifein Neighborhood

Figure 4 A graphica representation of therules of Red Life. Here vertical lines are replaced
with tent functions.

Fuzzy Rulefor Real Life

1
09+ "
081
07+
08+
051
044
03¢
021
011

. |

01 2 34 S 67809
Total Degree of Life in Neighborhood
Figure5 A single "fuzzy" rulefor birth and survival in Red Life

Max{0, Min{l, f(£¢, ¢)}}, where

[0 ifO<E(<2+cor £:,>4+ ¢
f(Et"y)= -Et+(4+c) if3<Et<4+c
[Et-2 if2<£t<3

Or more simply:
Cly =1+05¢-Abs(3+05°¢ - £y),

where the function has a maximum of 1 and a minimum of 0.
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Redl Life contains Conway's Game of Life as a special case. When the
initial values of the cellsin Redl Life arerestricted to thevalues 0 and 1, the
outcome is identical to Conway's Game of Life Y& Red Life exhibits
intriguing behavior in the interval between 0 and 1 that is not realized in
Conway's Game of life. Here we have found it convenient to represent
different degrees of life with different color codes by dividing the [0,1]
interval into 16ths (figure 6). Here numerica values in particular
intervals—values from O up to |/16th, for example, or from |/16th up to
2/16th—are assigned particular shades for purposes of illustration.

Gliders are perhaps the most famous of the self-perpetuating patternsin
Conway's Game of Life. As outlined in chapter 4, the existence of Gliders
enabled Conway to provethat the Game of Life can be used to instantiate a
Universal Turing Machine.” In figure 1 above, we saw that the Pinwheel
evolvesinto four Gliders. In Red Life, aternatively, we have the freedom
to vary theinitial values of thelive cdlls. If theinitial value of thelive cells
had been set at 0.992, the Pinwheelswould evolveinto glider-like patterns,
which instead of reproducing themselves eternally, quickly disappear
(figure 7). If, onthe other.hand, theinitial value had been 0.994, the pattern
would have evolved into four static glider-like shapes. If the initial value
had been the intermediate value 0.993, the pattern would quickly grow
and eventually cover the entire cellular automaton playing field. In Red
Life, therefore, the Pinwheel exhibits an intuitively sensitive dependence
on theinitial conditions regarding degrees of life. A formal demonstration
of sensitive dependence in a strict sense, a characteristic feature of chaotic
functions is offered below.

Intuitively sensitive dependencein Redl Life can aso beillustrated with
the pattern whimsically dubbed the Cheshire Cat.> In Conway's Game of
Life, the Cheshire Cat pattern evolvesinto asingle paw print (seefigure 2).
In Redl Life, with an initial value of 0.666, the Cheshire Cat evolves into
two such paw prints instead of one. Increasing the initial value by 0.001,
however, leads to a pair of multicolored paw prints (figure 8a). Decreasing
theinitia value by 0.001, on the other hand, appears to give the Cheshire
Cat more than the proverbial 9 lives. With an initial value of 0.75, the cdlls
of the Cheshire Cat take on the cyclical values 1/4,1/2, 3/4, and 1. This
Cheshire Cat, faithful to its namesake, eventually vanishes altogether.®

« [on E3 [4-5) ~[8,9) © [12.137
o 79 H [5.6) H8[9-10) . [13-14)
o [23) H [6.7) « [10.11) + [14.15)
. [34> . [7.8) . [11.12) « [15.16]

Figure6 Shading key for Redl Life
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Figure 7 In Redl Life, the Pinwheel can evolve into disappearing Gliders. Generations 1
through 16 are shown.

It is clear, then, that Real Life offers a range of behavior that a merely
stochastic Life could not. Replacing Conway's rules with ones that
afforded merely a probability of life or death in certain circumstances only
removesthe determinacy of the patterns. The moveto continuousvalues of
life and death retains determinacy but opens a range of more complex
phenomena.

52 CHAOTIC CURRENTSIN REAL LIFE

Interestingly, the rules for even Conway's binary Game of Life contain a
self-referential element: whether a cell is alive or dead depends on the
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Figure 8a The Cheshire Cat in Redl Lifewith aninitial value of 0.667, generations 45 through
56 shown.

number of itsown live neighbors. Therulesfor Conway's Game of Lifecan
be stated in a way that makes this sdlf-referential element explicit:

| will be dive at time t., if, and only if, either | am not aive and exactly
three of my neighbors are alive at time t,, or | am already alive and either
threeor four cdlsin my neighborhood (including myself) arealive at timef,

In this respect, the logic of Life is similar to the logic of saf-referentia
sentences. One of the most intriguing self-referential sentences considered
in chapter 1 was the Chaotic Liar, a natural infinite-valued generalization
of theclassical Liar. Recall that in contrast to the classical Liar, whichistrue
if it is fase, the Chaotic Liar asserts that it is true to the extent that it is
estimated to be fase:

This statement is as true as it is estimated to be fase.

The Chaotic Liar is perhaps the ssimplest generalization of the classical Liar
«in our infinite-valued saf-referentia logic.
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Figure8b The CheshireCat in Redl Lifewith aninitial value of 0.665, generations 25 through
36 shown.

The Birth and Survival Rules for Red Life can aso be stated as infinite-
valued sdf-referential sentences. Lef s cal the number of cels required
for birth the '‘Genesis Constant/ The Birth Rule then states that the center
cdl is aive to the extent that the sum total of life in the neighborhood
does not differ from the Genesis Constant g=3. The corresponding
algorithmiis:

Cc+1 = I-Abs(3-£,),

where £ is the sum total of lifein the neighborhood at time * and ¢+ is
thelife of the center cell at timet 4-1 and the functionis assumed to have a
maximum of 1 and a minimum of 0. The Survival Rule states that the
center cdl stays dive if and only if the total degree of life in the
neighborhood is 3 or 4 (including the center cdl) at time t,. The
corresponding algorithm is:

Cct+1 = 1.5-Abs(4-£,),

where the function again is assumed to have a maximum of 1 and a
minimum of 0.

We have already illustrated the fact that Redl Life exhibits an intuitively
sensitive dependence on initia values, characteristic of chaotic functions.

Real-Value*Game Theory: Real Life, Cooperative Chaos, and Discrimination



How can we establish the relationship between the rules of Red Life
and chaotic functions more formally? Recall that we obtained a single
fuzzy rule that incorporates the Birth and Survival Rules by intro-
ducing a constant c for the degree of life ranging from 0 to 1 of the center
cell:

Cur =1+05°c-Abs(3+05¢°c - £),

where the function is assumed to have amaximum of 1 and a minimum of
0. Lef s introduce some additional parameters into the fuzzy rule and
amplify the initial configuration to a single cell. Consider the dynamical
function (again with a maximum of 1 and a minimum of 0):

C+1 = 1 +h-Abs(g+ h- c/m),

wheregisthe Genesis Constant, his the height of the peak of thetent above
1, and misafactor that variesthe slope of the tent function. The parameter

g determines the center line of the peak of the graph of the fuzzy rule. The

parameter h determines how wide theinterval isin which thereis neither

too little nor too much life to sustain the life of the center cell. The
parameter m determines the rate at which the center cell makes the
transition from death to life, or conversdly. Now if we set g=1, m=1/2

and set h=0, we obtain the standard chaotic tent function for the [0,1]

interval.

Depending on the value of the initia center cell, successive generations
will appear as nested series of variously evolving sguare patterns.
Consider now the cells along a diagonal extending from the center cell.
Notice that the corner of the outermost evolved squarewill be the only live
cdl in the neighborhood of the next cell along that diagonal. The cdls
propagating from the diagonals of the origina center cel will therefore
assumetheiterated values of a chaotic tent function. Figure9, for example,
shows the diverging patterns evolving from center cells having the initial
seed values of 0.918 and 0.919, respectively. In the accompanying chart
one can verify that the values of the cdls propagating along the diagonals
are precisdly those of the iterated tent function for the initia seed
values.

Red Life, therefore, demonstrates al the complexities of chaos. Though
it contains Conway's Game of Life as a specia case, Redl Life exhibits a
wider range of dynamical phenomena. It isinteresting to note that our use
of the chaotic tent function in Red Life follows a precedent set by Robert
May, who used the chaotic logistic function to model ecological growth
and decline.” The salf-referentia rules of Redl Life can be formulated
naturally within the context of a sdf-referentia infinite-valued logic, and
the patterns of Red Life exhibit the sensitive dependence on initia
conditions characteristic of chaotic systems. With regard to matters of life
and death, therefore, patterns in Readl Life are more subject than are
Conway's to the turbulence of the "chaotic currents of life."
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Generation 0 | 0918 | 0919

Generation 1 | 0.164 | 0.162

Generation 2 | 0.328 | 0.324

Generation 3 | 0.656 | 0.648

Generation 4 | 6688 | 0.704

Generation 5 | 0.624 | 0.592

Generation 6 | 0.752 | 0.816

Generation 7 | 0496 | 0.368

Figure9 Cellspropagatingalongthediagonals of theoriginal center cell assumetheiterated
values of the chaotic tent function.

53 REAL-VALUED PRISONER'S DILEMMAS

Redl Life has its fascinations, but for our purposes here it is merely an
example: an example of the subtle and mgor differences that can appear—
importantly, asign of chaos—when we open our consideration to include a
full continuum of values. In what follows we want to apply that same
lesson to spatiadlized game theory by considering cellular automata
instantiations of a continuous-valued Prisoner's Dilemma.

Recall that in the origina Prisoner's Dilemma, two suspects are
imprisoned separately. The District Attorney does not have enough
evidence to convict the pair for their suspected crime. He does, however,
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have enough to imprison each on a lesser charge. Wishing to obtain a
conviction for a more serious charge, the Didtrict Attorney offers to be
lenient in sentencing the prisoner who will 'squeal’ on his accomplice. If
one prisoner squeals (i.e., defects on his accomplice) while the other 'sits
tighf (i.e, cooperates with his accomplice), the prisoner who defects will
get off scot-free while the one who cooperates will be sentenced to 5 years.
If both prisoners independently reect the Digtrict Attorney's offer (i.e,
they cooperate with each other), each prisoner will be sentenced to 2 years.
However, if both prisoners squeal (i.e., defect) on each other, both will
be sentenced to 4 years. Assuming a year in prison has a utility of - 1,
we obtain the following payoff matrix, with values shown for the row

player:
Cooperate | Defect

Cooperate | -2 -5

Defect 0 -4

If we represent not negative years in prison but positive years of freedom
out of the next 5 years, we obtain the standard payoff matrix for the
Prisoner's Dilemma:

Cooperate | Defect

Cooperate | R=3 S=0

Defect T=5 P=I

Here, asbefore, T isthetemptation to defect, Risthereward for cooperation,
Pisthe punishment for defection, and Sisthe sucker's payoff. Technicaly, a
Prisoner's Dilemma matrix requires that T>R>P>S and 2 R>T+S.

No matter how convincingly one spins the standard Prisoner's Dilemma
story, however, it remains artificial in a number of respects. ‘Confession’ is
treated as an all-or-nothing affair, for example, with distinct punishments
alotted interms of it. But surely the normal case is oneinwhich thereare
degreesof cooperation withtheauthoritiesaswell asdegreestowhich each
prisoner can |ceep the faith' with the other. Each prisoner may be more or
less open about the details of the crime, and in return the authorities can be
more or less generous in their treatment. In real life, cooperation (or
defection) israrely an all-or-nothing affair. Our choices are often amatter of
cooperating and defecting to a certain degree, rather than of cooperating or
defecting completely, and our rewards often depend on the relative levels
of cooperation or defection.

Suppose, for example, that the prisoners can choose various leves of
cooperation with the Didgtrict Attorney. Let us say that the first prisoner
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neither wants to play the 'stool pigeon' nor be taken for the 'sucker'. He
compromises and divulges only haf the information the District Attorney
requests. The second prisoner independently arrives at the same
compromise. What happens when both the prisoners cooperate only
50%7?We might expect the penalty for each to be somewherebetween2to 4
years (the sentences for mutual cooperation and mutual defection,
respectively). What would the payoffs be if one prisoner cooperates 75%,
say, while the other cooperates only 25%? How can we generaize the
above hivalent payoff matrix for continuoudly varying levels of coopera-
tion between the prisoners?

One way would be to generalize the payoff matrix to the payoff plane
shown in figure 10. This plane is the union of two triangular planes, one
determined by the triple of points {(0,0, P), (1,1, R), (0,1, T)} and the
other determined by {(0,0,P), (1,1,R), (1,0, 9}. Given an ordered pair
(xy) specifying the first and second player's respective levels of
cooperation, we can calculate the first player's payoff i(X, y) as:

(T-P+P, if*>y
X9 1(S-P) + (R- 9+.P, tiy>X.

Notice that the corner values of the payoff plane are precisely the values—
T, R, P, S—of the standard bivalent Prisoner's Dilemma payoff matrix. The
payoff plane is symmetrical along the x=y line, so the second player's

payoff is given by f(y, x).

T=5

Px1

I S=8

(0,1)

(0,0) (1,0)

Figure 10 A continuous-value payoff plane for the Prisoner's Dilemma
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In what followswewant to return to a spatialized Hobbesian model, but
with this new continuous-valued Prisoner's Dilemma at its base. One
question will be whether continuous-valued forms of generosity evolve
here as well. Here we will want to examine not only one-dimensional or
reactive continuous-valued strategies, which respond to the last move by
the opponent, but deeper forms of two-dimensional strategies, which
respond to the configuration of play by both players on the previous
round. In afurther section wewill aso show a connection between some of
these deeper strategies modeling and the nonlinear dynamics of <df-
referential sentences explored in chapter 1.

In chapter 4 we outlined Nowak and Sigmund's work regarding
stochastic strategies, which cooperate or defect according to some
probability other than 0 or 1. Nowak and Sigmund found Generous Tit
for Tat (GTFT), which responds to defection with cooperation with a
probability of 1/3, to be superior to TFT. By not responding to defection
with defection 100% of the time, in particular, GTFT was able to avoid
destructive bouts of backbiting exhibited by stochastically imperfect TFT.
But Nowak and Sigmund's strategies, though stochastic, are till bivalent:
though governed by probabilities, their cooperation and defection on any
round are still all-or-nothing affairs. Does their generosity result carry over
to genuinely continuous-valued Prisoner's Dilemmas?

The one-dimensional strategies can be generalized to continuous-valued
oneshy allowing fractional valuesintheordered triple (i, c, d) specification
of a dtrategy, where i, ¢, and d represent degrees of cooperation. The
continuous-valued counterpart to Nowak and Sigmund's stochastic GTFT,
for example, wouldbe(1,1,1/3). What thismeansis perhaps clearest when
represented graphically (figure 11). A11D, in a continuous-valued context,
will always defect no matter what the other player'slevel of cooperation. It
can thus berepresented by theliney=0. TFT, on the other hand, defectsin
responseto defection (0, 0) and cooperatesin responseto cooperation (1,1).
One continuous-valued generalization of TFT is a strategy that mirrors its
opponent's previous level of cooperation. This continuous-valued TFT is
graphically represented by theliney = x connecting the endpoints (0, 0) and
(1,1). In general, a linear continuous-valued generalization of a strategy
(i,c,d) is given by y = (c—d)x+ d and represented by a line whose
endpointsare (0, d) and (0, ¢).

Hereit is helpful to introduce some descriptive terminology. A strategy
will be called friendly to the extent it cooperates on the first move, and
suspicious to the extent it defects. A cooperative strategy responds to
cooperation with cooperation, whereas a defective strategy responds to
cooperation with defection. Findly, astrategy will be called exploitableif it
responds to defection with cooperation, and unexploitableif it respondsto
defection with defection.

Consider a tournament between two continuous-valued strategies,
Generous TFT = (1,1,0.3) (GTFT), which is initialy friendly, fully
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Always Defect = <0,0,0> Tit for Tat = <\\p>

Suspicious Door mat = <0,0,1> Generous TFT =<I,1,1/3>
Figure11 Graphical representations of continuous-valued one-dimensional drategies

cooperative in the face of cooperation, but mildly exploitable by defecting
strategies, and a strategy we'll call Skeptical Reserved TFT = (0.2,0.7,0)
(SRTFT), which is mildly unfriendly (‘skeptical’), not fully cooperative
(‘reserved’), and completely unexploitable. In round one, GTFT plays 1
and SRTFT plays0.2. Play inround 1 canthen berepresented as(1, 0.2). We
then use the graphs of the strategies to obtain their next pair of moves. The
graph for GTFT is specified by y = (1 - 0.3) « x+ 0.3, and the graph for
SRTFT is specified by y = 0.7 « x. Hencewe havethat GTFT's next moveis
y=(1-03)¢02+0.3=044. SRTFT'snextmoveisy = 0.7+ 1 = 0.7. Play
inround 2 is thus (0.44, 0.7). This can be represented graphicaly in the
manner of figure 12. We then use the payoff plane to obtain the respective
payoffs. Here aretheresultsfor the first 20 rounds, listed with cooperation
levels and payoffs for GTFT first in each pair, shown in the following
matrix. ANN

Thetotal score after twenty roundsis 3.32 for GTFT and 5.27 for SRTFT.

At the Fourth Summer Institute on Game Theory and Economics at the
State University of New York at Stony Brook, July 1993, participants at
the conference were invited to submit infinite-valued one-dimensional
strategies to compete in a spatialized tournament of continuous-valued
strategies. In thistournament each cell of an array played each of its eight
neighbors in a competition of 200 games. At that point each cdll surveyed
its neighbors. If any did better in local competition, the cell adopted the
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Round | Cooperation | Payoffs
Levels
1 (100, 020) | (0.06, 0.46)
2 (044, 070) | (0.29, 0.16)
3 (0.79,030) | (0.11, 0.35)
4 (051, 055) | (0.21, 0.19)
5 (068,036) | (0.14, 0.30)
6 (055,048 | (0.18, 022)
7 (063,038 | (0.15,027)
8 (057,044) | (017,023
9 (061, 040) | (0.15, 0.26)
10 (058, 042) | (0.17, 0.24)
1 (060, 040) | (0.16, 0.25)
12 (058,042) | (0.16, 0.25)
13 (059, 040) | (0.16, 0.25)
14 (058, 041) | (0.16, 0.25)
15 (059, 041) | (0.16, 0.25)
16 (058,041) | (0.16, 0.25)
17 (059, 041) | (0.16, 0.25)
18 (058,041) | (0.16, 0.25)
19 (058,041) | (0.16, 0.25)
20 (058, 041) | (0.16, 0.25)
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Figure 12 A graphical computation of payoffsin a game between GTFT (1,1,0.3) and SRFT

(02,07, 0).

drategy of a neighbor with a maximal score. The results after 1000
generations, expressed in terms of the percentage of the field occupied by

particular grategies, were the following:

Strategy Population %
1 (1.0,1.00,0.20) 1843%
1 {0.0,0.80,0.10) 022%
1 (0.8,0.80,0.10) 000%
1 (0.0,0.50,0.00) 000%
1 (1.0,1.00,0.50) 1865%
1 (1.0,1.00,0.40) 1848%
1 (0.0,0.00,1.00) 022%%
1 (1.0,0.51,0.49) 000%
(1.0,0.9754,0.0001) | 000%
(0.0,0.90,0.00) 2.00%
(0.9,1.00,0.40) 103%
(1.0,1.00,0.80) 6.88%
(1.0,1.00,0.00) 45M%
[ (2.0,0.90,0.00) 000%

Continuesover|eaf
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Strategy Population %
(0.9,1.00,0.10) 0.20%
(1.0,1.00,1.00) 156%
(0.0,1.00,0.00) 0.22%
(1.0,1.00,0.00) 6.10%
(0.5,1.00,0.00) 0.2%
(1.0,1.00,0.66) 10.21%
(1.0,1.00,0.33) 12.7%

Inaspatial tournament with 27 bivalent strategies, using only thevalues
1,0.3, and 0, we found that TFT and GTFT eventually take over, with TFT
occupying about 75% of the field. In a similar tournament limited to
suspicious strategies, the suspicious version of GTFT (0,1,0.3) completely
takes over thefield. In a spatial tournament among the friendly strategies
of this sort, we obtained similar results to the trivalent tournament
mentioned above.

By increasing the pool of strategies that cooperated fully in the face of
cooperation but were less than completely friendly on the initia play, we
were able to increase significantly the final percentage of GTFTs In one
tournament, for example, we obtained the following results:

Strategy Coding Round0 Round1l Round?2

Generous TFT | (1.0,1.0,0.3) | 3303% 91.72%  92.07%

TFT (1.0,1.0,0.0) | 3367% 7.86% 7.91%

Reserved TFT | (0.7,1.0,0.0) | 33.30% 042% 0.02%

Skeptical TFT | (0.3,1.00.0) | 3308%  000%  000%

In general, we took our results to confirm a Nowak and Sigmund-like
result for the spatial and continuous-valued Prisoner's Dilemma. In the
spatia setting, moreover, we found that strategies even more generous
than GTFT (for example, (1.0,1.0,0.4)) do even better. In chapter 4 it
became clear that spatialization favors stochastic generosity. What these
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studies indicate is that loca spatial modeling favors continuous-valued
generosity as well.

GTFT's superiority to TFT in these competitions, it isimportant to note,
is due to its 'generosity’—its willingness to risk exploitability for the sake
of breaking a vicious cycle of mutual defection. TFT is completely
unexploitable, and therefore it is constrained to rigidly pay back defection
with defection. GTFT'sweakness, on the other hand, isthat itsgenerosity is
Adiscriminate. This weakness is exposed when the competition is
expanded to two-dimensional strategies, which we turn to next.

54 pavLov AND OTHER TWO-DIMENSONAL STRATEGIES

A reactive or one-dimensional strategy isonefor which each move, after the
firgt, is strictly determined by the opponent's previous move. A two-
dimensional strategy is one for which each move, dfter the first, is strictly
determined not by merely by its opponent's previous move but by the
previous pair of moves by both players® In later work Nowak and
Sigmund report that in the case of stochastic strategies the two-
dimensional strategy known as pPavLov is superior to GTFT.?

Gib'l responds to defection with an ~discriminate generosity 1/3 of the
time. pavLov, on the other hand, can be more discriminating with its
generosity. If its opponent defected while it cooperated, PaviLov will defect.
But paviov will respond generously by cooperating after mutual
defection. PavLov's strategy, which Nowak and Sigmund characterize as
'win-stay lose-shift', can be summarized in a matrix. PAVLOvV cooperates
only after mutual cooperation or mutual defection; that is, it cooperates
after O but defects after e:

Cooperate | Defect

D 2
Cooperate 1“:01 S=0

PAVT nv

Defect T=5 HP=\I

Two-dimensiond strategies can be represented as ordered five-tuples
(i, g,c,d,dy). Herei isthe strategy'sinitial response. The values C\ and ¢,
represent the strategy's responses to cooperation on the part of its
opponent. The strategy's response to mutual cooperation in the previous
round (i.e, [1,1]) is designated as C\; the strategy's response when it
defected while its opponent cooperated (i.e, [1, 01) is designated c,. The
values d\ and d, represent the strategy's response to defection on the part
of itsopponent. Hered, isthe strategy's response to being taken advantage
of in the previous round (i.e, its opponent defected while it cooperated,
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[0,1]), and d; is the strategy's response to mutual defection (i.e., [0, O]).
There will be thirty-two two-dimensional bivalent strategies:

1 (11,1,  17)(0,1,1,1,1)
2| (1,1,1,10 18 (0,1,11,0)
3/(1,1,1,01 19 (0,1101)
4 (1,1,1,00 | 20| (0,1,1,0,0)
5(1,1011) 21| (0,1,011)
6 (1,1,0,1,0) | 22| (0,1,0,1,0)
71(1,1,001) | 23| (0,1,0,0,2)
8 (1,1,0,0,0) | 24 | (0,1,0,0,0)
9 (1,0,1,1,1) | 25 (0,0,1,1,1)

10 | (1,0,1,1,0) | 26 | (0,0,1,1,0)
1| (1,012,071 | 27| (0,0,1,0,1)
12 | (1,0,1,0,0) | 28| (0,0,1,0,0)
13 (1,0,0,1,1) | 29| (0,0,0,1,1)

14| (1,0,0,1,0) | 30| (0,0,0,1,0)

16| (1,0,0,0,0) | 32| (0,0,0,0,0)

PAVLOV cooperatesif and only if the previous pair of moveswere the same.
So pavLov is specified by (1,1,0,0,1). One-dimensiona strategies are
special cases of two-dimensional strategiesin which C\—c, and d\ = d$ for
example, TFT = (1,1,1,0,0).

Here again it is useful to introduce some descriptive terminology. Let us
say that the value C\ is a measure of a strategy's constructiveness or
destructiveness. A constructive strategy will tend to continue to cooperate
after there has been mutual cooperation, whereas a destructive strategy
will give in to the temptation to defect. The value c, is a measure of a
strategy'sbeing merciful or exploitative. A merciful strategy will cooperate
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after successfully defecting on a cooperating opponent, whereas an

exploitative strategy will continue to press its advantage by continuing

to defect. The value &\ measures the strategy's tendency to be forgiving or

vengeful. A forgiving strategy will continue to cooperate even dfter its
opponent has defected when it cooperated; a vengeful strategy will defect

after its has been 'burned’ when its opponent defected whileit cooperated.

Findly, thevalued, measuresthestrategy'sdovish or hawkish tendencies. A
dove will attempt to turn the tide of mutual defection by giving

cooperation a chance. A hawk will insist on defection after a previous

round of mutual defection.

Using this terminology, TFT can be characterized as completely friendly
on initial play, constructive, and merciful, but also completely vengeful
and hawkish. pavLov, on the other hand, is completely friendly on initial
play, constructive, and dovish, but also completely exploitative and
vengeful.

Nowak and Sigmund show pPaviov to be superior to GTFT in a
nonspatial competition. IspavLov still superior to GTFT oncewe spatialize
the Prisoner's Dilemma? Is there another a two-dimensional strategy that
is superior even to pavLov in a spatial context? The answer to both
guestionsis 'yes’. pAvLOV is consistently beaten in spatial competition by
strategy 8 above, the continuous-valued counterpart to a Grim strategy.™®
GRM s initialy completely friendly and constructive, but it is also
completely exploitative, vengeful, and hawkish. Here, for example, is a
typical tournament ranking after twenty generations of a two-dimensional
bivalent spatial tournament:

Strategy | Coding Population
Percentage
GRIM <1,1.0,0,0) | 91.2%

PAVLOV (1,1,0,0,1) 70%

Titfor Tat | (1,1,1,0,0) | 14%

Converse | (1,1,1,0,1) 04%

GRIM cooperates if you cooperate with it, but any defection on your part
leads to unrelenting defection, no matter how many times you cooperate.
This rigid lack of generosity is reminiscent of TFT, and suggests that we
look to more generoudly continuous-valued two-dimensional strategies.
Are there continuous-valued strategies that are superior to GRIM in same
way that GTFT is superior to TFT?"
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Continuous-valued two-dimensional strategies can be represented
graphically as the union of two triangular planes, each determined
by one of the triples{ (1,1, ¢V, (0,0, dv), (1,0,c,)}and{(l,l,c,), (0,0, d,),
(0,1, di)}. These continuous-valued two-dimensional strategies are sped-
fiedby:

c dypix + d d +d >
Six y) I_II(CZJ<*2) + (CI gZ) $+ dy, t|y>x

The number of possible strategies is now fairly large compared to the
size of our playing field. Tournament outcomes are therefore fairly
sengitive to the initial distribution of strategies. We can simulate some of
the effects of alarger playing field, however, by introducing clustering. Ina
larger playing field, there would tend to be more and larger dusters of
smilar strategies. Such dusters could modd the effects, for example, of
families or other groupings with similar strategies.

Restricting ourselves to a 64 x 64 playing field, we dedded to simulate
the effect of alarger playing fied by clustering instead of making theinitial
distribution completely random. Here we assigned a cluster value to the
distribution as a whole. The duster value is a probability assigned that a
cdl will match one of the four adjacent cells generated before it—three cells
to the left and one directly above it—rather than the strategy it would
otherwise be assigned randomly. If a cel does duster, each of those
previous cdlsis given an equal chance of its strategy being copied by the
new cell.” A duster value of 0 thus gives us a completely random
distribution—a probability of O that an otherwise random strategy
assignment will be superseded by clustering. At the beginning of the
series of strategy assignments we read 'probability of matching one of four
preceding cells' to mean 'probability of matching preceding cells up to
four'. A duster value of 1 would thus mean that whichever strategy
appeared firs would occupy the whole playing fidd. Practicaly speaking,
with a 64 x 64 field, we found 85% was the highest duster value we could
use without biasing the initial percentages of each strategy too much.
Higher values tended to result in so much dustering that some strategies
had drastically higher initial percentages than others, thus giving an
unnatural bias to certain random strategies.

Spatial tournaments run with dustering suggest that being friendly and
congtructive has dgnificant survival value. Recdl that TFT, which
dominated the one-dimensional bivalent tournament, exhibited these
qualities. In the continuous-valued case, however, GTFT's generosity gave
it an advantage over TFT by breaking destructive cydes of mutual
defection. In the spatial setting, moreover, PAVLOV remains superior to
GTFT since PAVLOV'S two-dimensionality allows its generosity to be more
discriminate.”® PavLov, however, is mdiscriminatdy dovish and loses to
the completely hawkish GRIM.
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Our continuous-valued two-dimensional patial tournaments appear to
favor drategies that are less bivalent—srategies more hawkish than
PAVLOV, but moredovish than Grim. The addition of variations of PAvLOV
with a range of hawkish/dovish values ranging from 0.1 to 0.9 strongly
favored merciful and non-explaitative srategies like TFT. Clugtering, in
fact, hinders domination by Grim and improves the chances of
congructive and merciful drategies like TFT. Here for example is the
result of one of the gpatial two-dimensional bivalent tour naments after 20

generations:
Strategies | Coding Cluster | Cluster | Cluster | Cluster
=0% | =20% | =50% |, =85%
GRIM {1,1,0,0,0) | 91.2% 88.2% 77.9% 65.6%
PAVLOV (1,1,0,0,2) 7.0% 9.0% 12.9% 24.7%
TFT (1,1,1,0,0) | 1% 2.2% 7.3% 6.0%
Converse | (1,1,1,0,1) 04% 0.6% 1% 3%

Herein contrag areresults of a tournament including hawkish to dovish
variations of pavLov ranging from 0.1 to 0.9, with a clustering value of
85%. The chart shows results after 60 generations.

Strategy Coding Popul ation %
TFT (1,1,1,0,0) | 614%
GRIM (1,1,0,0,0) 195%
PAVLOV (1,12,0,0,1) 15.0%
Converse (1,1,1,0,2) 2.9%

Skeptical PavLOV (0,1,0,0,1) 0.8%

Dovish Skeptical Paviov | (0,1,0,0,0.6) 0.4%

Clugering appears to benefit TFT by the formation of cooperatives in
which TFT's mer cifulness facilitates mutual cooperation.
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We shal now turn our attention to a natural embedding of our
continuous-valued two-dimensional strategies in an infinite-valued logic.
In this context PAVLOV leads quite naturally to chaotic cooperative
dynamics.

55 COOPERATIVE CHAOS IN INFINITE-VALUED LOGIC

Theinfinite-valued logic we shall use hereisthat outlined in chapters 1 and
3. Our basic connectives are:

I~pl =1-Ipl/
I(pAQq)/ = Min{/p/,/q/)}
I(pva)/ =Max{/p/./al)},

where/p/ stands for the value of the proposition p. Herewe shall insist on
the Lukasiewiczian conditional:

I(P- q) =Min{l, 1 -/p/ +/9/)}.

Given the standard definition of the biconditional as the conjunction of a
conditional and its converse, the value of abiconditional will be the extent
to which the values of its constituents do not differ, that is,

I(p~q)/ = 1-Abs(/p/-/q/).

The naturalness of this embedding is confirmed by the fact that the two-
dimensional strategies that emerged as dominant in our two-dimensional
bivalent tournament correspond to standard logical connectives. Ignoring
the initial move, the remaining four values in the specification of a two-
dimensional strategy correspond to the final column of a truth table for
standard binary logica connectives:

Strategy | Coding Symbol | Connective

GRIM (1,1,0,0,0) | (pAg) | Conjunction

PAVLOV (1,1,0,0,1) | (P«*q) | Biconditional

Titfor Tat | (1,1,1,0,0) | p Left Projection

Converse | (1,1,1,0,1) (p<-q) Converse Conditional

Thewinning strategies of the bivalent two-dimensional spatial tournament
can, in fact, al be expressed in sentences using standard logical
connectives:
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GRIM: | will cooperateif, and only if, both my opponent cooperated and |
cooperated.

PAvVLOV: | will cooperate if, and only if, my opponent cooperated if and
onlyif | cooperated.

TFT: | will cooperate if and only if my opponent cooperated.

CONVERE | will cooperate if, and only if, my opponent cooperated if |
cooperated.

Our basic drategies can thus aso be exhibited in terms of the
Lukasiewicizian truth solids introduced in chapter 3. This surprising
graphical correspondence isillustrated in figure 13.

Having embedded our two-dimensional strategies within an infinite-
valued logic, we can now take advantage of ‘dynamical semantics,
outlined in chapter 1 as an application of dynamical systems theory to
study the semantic paradoxes. We will present PAVLOV in our infinite-
valued logic using the following scheme of abbreviation:

p.: | cooperated ingamen
g,. My opponent cooperated in game n
Pn+1: | will cooperatein gamen+1.

PAVLOV can then be expressed as a nested biconditional:

P« 1, « P,)

It seems natural to interpret the truth-value of the proposition p,,+; as
PAVLOV'S level of cooperation in game n+1. The sdf-referentia
component in the above strategies can then be modeled by iteration.
Using the infinite-valued Lukasiewiczian rule for the biconditional, we
obtain the following dynamical system for PAVLOV:

*H = 1-Abs(ym-X,),

where /ppst/ = X1,  Ipn/ =%,, and /q, /=Y.

Let us further assume that the opponent's level of cooperation can be
expressed as a function OP(x,) of PAvLOV'S level of cooperation X.
PAVLOV'S successive levels of cooperation can then be computed using the
algorithm

X,+1 = I-Abs(OP(x,)-*,).

If, for example, PAvVLOV is playing Quaker, which always cooperates
completely, then PAVLOV will continue to cooperate at its initial level of
cooperation. A completely suspicious PAvVLOV (0,1,0,0,1) will continueto
defect completely, a completely friendly pavLov (1,1,0,0,1) will continue
to cooperate completely, and a moderately suspicious PAVLOV
(1/3,1,0,0,1) will continue to cooperate at aleve of 1/3.

Suppose PAVLOV isplaying astrategy that cooperates at 50% of PAVLOV'S
current level of cooperation. PAVLOV'S successive levels of cooperation is
then given by
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Figure 14 Cooperation with PAVLOV to alevel of 50% of PAVL OV Slevel of cooperation yields
a fixed-point attractor at 2/3, corresponding to the Half-Sayer of chapter 1.

Alternatively, we may suppose PavLOV is playing an opponent who
cooperates to the extent that their previous levels of cooperation differed.
The two components of the dynamical system are then given by:

Y +1=ADS(y,-*,)
and
*H = 1-Abs(yn-X,,).
If PAvLOVS opponent initialy defects to the extent paviLov initidly
cooperates, we would again obtain
*n+1 = |-Abs((|-*n)-*n)
as a description of pavLov's successive levels of cooperation. This
dynamical system is the now familiar Chaotic Liar (figure 15).

We can aso go on to model 'very” and ‘'fairly” in terms of squares and
square roots, in the tradition of fuzzy logic outlined in chapter 1. This

would allow afuzzy variation of PavLOv, whose strategy can be expressed
as follows:

I will cooperate in game n+1 if, and only if, my opponent's level of
cooperative was not very different from my level of cooperation in game n.

Given an opponent's previous level of cooperation is y,, PAVLOV'S
successive moves are then given by:

*nH = i-(yn-*»)2-

Considering again the perverse case in which PavLov's opponent defects

to the extent that PavLOV cooperates, we find that PAVLOVS responses are
given by the famous logistic map (figure 16):

*yH = | -((' -*") -Xn)2 =4X,,(| '*" .
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Figure 15 Defection to the extent that a continuous-valued PAVLOV cooperates yields the
chaotic tent function, corresponding to the Chaotic Liar of chapter 1.

Another fuzzy variation of PAVLOV that also yields the logistic map is:

I will cooperate in game n+1 if, and only if, the value of my opponent's
being very cooperative was not very different from the value of my being
very cooperative in game n.

Here asin previous chapters, the emergence of chaos suggeststhe presence
of fractal images. One way to investigate the cooperative dynamics
between our continuous-valued PAVLOV

*«+i=l-Abs(yn-Xg)

and a continuous-valued ANTI-PAVLOV

ynH = 1-Abs((1-X,)-Y.,),

which cooperates to the extent PAVLOV defects, would be to use an escape-
time diagram of the form outlined in chapter 1. In our escape-time
diagram, we assign each point in the coordinate plane a different color
depending on the number of iterations it takes the point to move under
iteration across some chosen threshold. A natural threshold would be a
specified vector distance d =,/x* + y* from (0, 0) or complete mutual
defection. Herewe have chosen athreshold to bedightly over 1, or avector
distance of combined cooperation levels equal to complete cooperation. In
figure 17 the four corners of the unit square are the tangent points of the
four circles. Figure 17 asawhole, however, exhibitsafamiliar fractal image
in which the cooperation levels for x and y are extended a unit in each
direction.

The Prisoner's Dilemma has become a paradigm of game theory, often
used to illustrate the evol ution of cooperation. In this chapter we havetried
to make it more redlistic, not only by developing it in the spatial context
of a cdlular automata playing fied, but by replacing the standard
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Figure 16 PAVLOV'S opponent defectsto the extent that PAVLOV cooper ates: the L ogistic map.

Figure 17 An escape-time diagram with a threshold of mutual cooperation between a
continuous-valued PAVLOV and ANTI-PAVLOV: the Chaotic Dualist of chapter 1.
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assumption of bivalence with degrees of cooperation and defection.
Spatialization brings about the emergence of continuous-valued strategies
more successful than TFT, more generous that GTFT, and less dovish than
PAVLOV. It turns out we can embed the continuous-valued Prisoner's
Dilemma within an infinite-valued logic, alowing us to build on earlier
results in proving that the cooperative dynamics between continuous-
valued strategies are paradigmaticaly chaotic. The presence of chaos
signals a practical unpredictability that is characteristic of many red life
choice situations.

56 THE PROBLEM OF DISCRIMINATION

A number of philosophers and socia scientists have tried to extract
profound conclusions about the evolution of cooperation and the nature of
ethics from smplified Prisoner's Dilemma tournaments. We have noted
previously how tempting it is to think of strategies such as TFT and GTFT
as themselves genuinely 'cooperative’ or 'generous’ in an ethical sense,
rather than simply as mathematical models of certain forma dynamics.
From there some havetreated it as a short step to the conclusion mat these
models show how genuine ethics evolves as an epiphenomenon of socia
dynamics, or even show that ethics is nothing more than that strategy of
socid interaction that has proven evolutionarily dominant. Philosopher of
biology Michagl Ruse has expressed this Darwinian position in particu-
larly blunt terms:

Oncewe seethat our moral bdiefs are simply an adaptation put in place by
natural selection, in order to further our reproductive ends, that is an end
to it. Morality is no more than a collective illusion fobbed dff on us by our
genes for reproductive ends.™

Ruse candidly admitsthat hisDarwinian naturalism, rather than explaining
the biologica basis of mordity, ends up explaining away any reason we
have for believing in morality at al. However, rather than attempting to
judtify his claims Ruse assumes its correctness to answer charges of its
implausibility:

Morality remains without foundation. Y, to ask one final question, Why
does such a thesis as is being argued for here seem so intuitively
implausible? Why does it seem—or so it appears to many people—so
ridiculous to argue that morality is not more than an illusion of genes?
Why does it seem so silly to suggest that moral claims are on par with the
rule in cricket law that mere should be six ballsto an over?  Thereisa
simple answer and when seen it adds to the evolutionist's case rather than
detracts from it. The simple fact is that if we recognized morality to be no
more than an epiphenomenon of our biology, we would ceaseto believein
it and stop acting upon it. At once, therefore, the powerful forces which
make us co-operators would collapse. Unfortunately, from a biological
point of view, although some of usmight get an immediate gain, most of us
would be losers.
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We have said before that we are deeply suspicious of any such leap: at the
very least, any such position demands a great deal of argument above and
beyond what mere formal modeling can provide.

A clear—and formal—indication of how wrong-headed it can be to
identify morality with successful strategies can be found in a range of
strategies that haven't yet been discussed in the literature. One point of
interest about these strategies is that they show a dear pattern of
evolutionary dominance in a wide range of environments, and yet are
dearly not strategies we are tempted to characterize as genuinely ethical.
Another point of interest is that these strategies offer quite dear analogues
to a very real social problem: race, class, gender discrimination. In these
fina few sections we want to consider an issue that is quite seriously
a real life issue, though we will approach it in terms of forma game
theory.

Wecall astrategy discriminatory if it adopts one strategy against players
of another color and a different strategy against strategies of its own color.
Discriminatory TFT (DTFT), in particular, adopts the strategy of TFT with
strategies of its own color but adopts the strategy of Always Defect (A11D)
when playing strategies of other colors. In the classical bivalent Prisoner's
Dilemmas of the Axelrod studies, we've seen, it is TFT that is given the
highest marks. But TFT fares poorly in competition against DTFT. DTFT
punishes individual efforts to establish an impartial, color-blind TFT, and
DTFT, once entrenched, is stable.’®

In a firs tournament we pitted the eight possible bivalent one-
dimensiona or reactive strategies against two forms of DTFT. The two
DTFTs quickly eliminated al the first-order strategies with the possible
exception of dusters of TFT. This clustering result is somewhat surprising,
since TFT individualy aways has a lower individual score against a
neighboring DTFT. In a spatial modd, small dusters of TFT could survive
in spite of the fact that a TFT on the 'front lines alwayslosesto DTFT. The
reason why acooperative community of TFT can surviveisthat aTFT from
within the TFT community achieves an even higher score than the
opposing DTFT and so steps in to replace the TFT on the 'front lines.
Spatiaization, therefore, models the survival value of cooperative
communities (figure 18).

The surviving communities of TFT, however, are quite marginalized and
static. It is interesting to note that an initial distribution with an even
higher percentage of Quakers (A11C) isdetrimental to TFT. Quakers, while
peacefully co-exigting with TFT, are easily exploited by DTFT. The
Quakers, in effect, occupy regions that will be eventually occupied by
exploitative strategies such as A11ID and DTFT. We mention this
phenomenon now since we later investigate conditions that contribute to
the survival of strategies more generous or forgiving than regular TFT but
less exploitable than Quaker.
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Figure 18 The eight simple reactive strategies are readily diminated by the two DTFTs
(shown in white and grey), with the possible exception of clusters of TFT (shown in black).
Here after 12 generations TFT survives in stable but marginalized communities.

What if we include all discriminatory strategies in such a tournament—
all reactive strategies that may treat others differently than they treat
themselves? Since there are eight reactive or one-dimensional strategies/
there will be sixty-four such discriminatory strategies. In a second
tournament we explored whether DTFT would still emerge as the
dominant strategy from an evolutionary tournament involving competi-
tionwith all possible discriminatory strategies. In our model we coded the
sixty-four possible discriminatory strategies as a pair of triples or a six-
tuple. The firg triple of the code represents what strategy is adopted with
its own color; the second triple represents the strategy adopted against al
others. Thus, for example/ we have

Discriminatory TFT DTFT (120,000)
Discriminatory Quaker DQ (112,000)
(Color-Blind) Tit for Tat TFT (110,110)

Rather than simple displacement by the winner in the center cell, we
decided to useagenetic algorithmto preserve somediversity and variability
within the population. The basic idea of genetic algorithmsisto hybridize
coded characterizations—in this case, coded characterizations of strate-
gies—much as chromosomes are crossed in sexual reproduction. In
general/ genetic algorithms proceed on two lines of code by randomly
choosing a break point in each line and by combining code before that
break point from one element with code after that break point from the
other.’ Here we used a genetic algorithm to cross the strategy of a center
cedl with that strategy obtaining a maximal score in the nine-cell
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neighborhood. To implement genetic crossing, we rolled a six-sided die
and flipped a coin as randomizing devices. We can explain the method
with a smple example. Suppose the dierall isfour and theflip is heads.
The genetic crossing is the result of taking the first four elements of the
winning strategy and concatenating it with the last two eements of the
drategy in thecenter. If, on theother hand, theresult istails, wereversethe
order of which segment is first in the crossing: we take the first four
dements of the center strategy and concatenate it with the lagt two
eements of the winning drategy. The grategy that is the result of the
genetic crossing replaces the center cdll at each generation.

Genetic algorithms allow for a measure of elegance. Seeding the fidd
with a random digtribution of all sixty-four discriminatory strategies
would lead to overcrowding. Using a genetic algorithm, however, we
found that we could smulate a random distribution by seeding the field
initially with jugt the two pure drategies—A11D and A1C (‘Adam and
Eve)—asshown in thefirg frame of figure 19. By thethird generation, the
genetic algorithm reaults in an explosion of diversty, smulating a field
with a random digtribution of discriminatory strategies (figure 19b). The
use of genetic algorithms also allows for the possibility that a strategy
eliminated at an earlier stage could bereintroduced by genetic crossingat a
later stage. In thisway, cooper ative Strategiesthat arenot well suited toan
early competitive environment may be reintroduced to prove themselves
successful at a later stage.

fl 110888 DTFT

I, 1111BB  Q/DOBfector

Figure 19 Evolution of a genetic algorithm-evolved fidd of discriminatory drategies.
Generation 1, seeded with jug A11D and A11C, explodes into a wide range of diversity by
generation 3. By generation 21 an equilibrium isestablished between DTFT (white), X3 (light
grey), and Quaker /Deceptive Defector (black).
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In our second tournament we used a genetic algorithm with bivalent
discriminatory strategies to see whether DTFT and DQ would still emerge
as dominant in competition with a fuller range of strategies. Figure 19
shows such atournament at generations 1,3, and 21. Wefound it istypical
for an array to reach equilibrium by generation 21 or so, with a clear
dominance by the discriminatory strategies DTFT (here 52%), DQ
(35%), and a discriminatory combination of Quaker with Deceptive
Defector (8%). In a field of discriminatory strategies, TFT is no longer
the optimal strategy: discrimination is more successful than impartial
fairness.

Itisclear from even these ssmple examples that discriminatory strategies
play an important and domineering role in the smple game theoretic
environments at issue. This comes as close as a forma argument can, we
think, to making the philosophical point that socialy dominant strategies
need not in any way be genuinely ethical ones.

5.7 CONTINUITY IN COOPERATION, THE 'VEIL OF IGNORANCE,
AND FORGIVENESS

In the previous section, we limited our discussion of models of
discrimination to classically bivalent strategies, which cooperate or defect
fully and determinately on any given round. What happens if we once
again open our modeling to encompass a range of degrees of cooperation
and defection?

With an eye to the problem of discrimination, we aso want to add
another continuous value to our model: that of a 'veil of ignorance'. One
thing that a formal model of race, class, or gender discrimination can give
us is away of investigating how one might disarm discrimination. One
influential philosophical model in this regard is of course that of John
Rawls, whose Theory of Justice uses a 'veil of ignorance' regarding
information such as one's socia standing or ethnic background's to cancel
out the effects of partiality. In apolitical context, the veil of ignorance could
correspond to limiting access to a job applicant's sex, race, or ethnicity.
Morerecently, in"Darwin Meets The Logic of Decision," Brian Skyrmshas
argued that the precondition for normal cooperation in the strongly shared
fate of somatic-line cells is analogous to the cooperation Rawls tried to
engineer behind the 'veil of ignorance'.*® Skyrms dubs this the ‘Darwinian
Vil of Ignorance.

We modeled the idea of a vell of ignorance in our tournaments by
limiting the extent to which a strategy could correctly identify the color of
its opponent. Theintuitiveideais that we could undermine the advantage
of discriminatory strategies by 'dimming the lights.' Clearly such a
limitation would affect only discriminatory strategies like DTFT, since the
simplereactive strategies are too unsophisticated to take advantage of such
information.
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Let us define an impartial strategy as a discriminatory strategy inwhich
thefirst tripleisidentical to the second. We modeled aveil of ignorance by
introducing a stochastic parameter v as a measure of the extent to which a
strategy is ableto correctly identify the color of its opponent. If the random
number generator gives us a value less than v, then the discriminatory
strategy will choosethewrong strategy—it playsagainst itsown color what
it normally plays against its opponent, and vice versa.

The imposition of a veil of ignorance does, we found, make some
important differences in the evolution of arrays of strategies. But in a fidd
of standard strategies, either bivalent or continuous-valued, a vell of
ignorance below a level of mere randomness does not simply defeat
disaiminatory strategies or restore the dominance of impartiality.

In athird series of computer tournaments, we investigated the effect of
small imperfections in the degrees of cooperation and defection among the
eight reactive strategies and two dominating discriminatory strategies
DTFT and DQ. Herewe simply replaced values of full cooperation for such
strategies with acooperation of 99%, values of full defection with values of
cooperation of 1%. In such an environment, a veil of ignorance set at 04
typicaly led to an intriguing symbiotic relationship between imperfect
versions of DQ and Suspicious TFT (010, 010). This is represented by the
zig-zag graph in figure 20. STFT is of course an impartial strategy, but DQ
isnot. Thethird mgor strategy on the graph, which makes a comeback and
subsists a a subsidiary level, is A11D.

A full tournament incorporating al multivalent disaiminatory strate-
gies would require strategy coding strings of length twelve, quickly
exceeding the speed and memory limitations of our computers. To increase
the generality of our results, therefore, we decided to combine discrimi-
natory strategies with multivalent reactive strategies.

To model multivalent strategies, we used two binary bits each to codei,
¢, and d in the standard three-tuple representations of reactive strategies.
We chose to represent the valences 1, 2/3,1/3, and 0 by the codes (1,1),
(0,1), (1, 0), and (O, 0), respectively. Thus, Generous TFT = (1,1,1/3)
would be coded by the binary string (11,11,10), while Forgiving
TFT = (1,1,2/3) would be coded by the binary string (11,11,01).

To combine multivalence with discrimination we adopted a method that
allowed usto read the binary code for a strategy in two ways. In this dual
coding system each six-tupleis alternatively read as a multivalent reactive
strategy asabove, aswell asabivalent discriminatory strategy. Rather than
simply concatenating two triples, we interweave them. The odd numbered
elements of the six-tuple code the bivalent reactive strategy played with
the strategy's own color; the even numbered elements code the strategy
adopted against all other strategies. Thetwo i valuesfor the discriminatory
strategies are then combined to determine the i value for the multivalent
strategy, and similarly for ¢ and d. This method of interweaving allows the
alternate values for i, ¢, and d to be adjacent to one another and to be
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Figure20 Symbiods between DQ and STFT in a fidd of dightly imperfect versons of the
eight reactive Srategiestogether with DTFT and DQ, shown over 1000 gener ations. Herethe
veil of ignoranceis st at 0.4.

i\

combined into the multivalent srategy. This method also makes it less
likely that the genetic algorithm would separate information that is
* relevant to the strategy'sinitial response, its response to cooper ativeness,
or itsresponse to defection.

In this final tournament we used the dual coding for srategies, which
therefore played alternatedy as discriminatory strategies and multivalent
drategies. Here veil levels of 1/3 and 2/3 were dgnificant points of
ingability. Above a veil level of 1/3, generous strategies such as 111110,
alternatively read as Quaker/TFT and GTFT (1,1,1/3), play an important
role. Above a veil level of 2/3, drategy 111101, alternatively read as
Quaker/Doormat and FTFT, iscearly dominant. Runsof 1000 gener ations
areshown in figure 21.

We began with the perhaps disurbing result that discriminatory
grategies DTFT and DQ have a decisve advantage over color-blind,
impartial TFT. Such aresult seemsto provide both a prediction of success
and a drategic rationale for discriminatory practices and separatist
movements that violate our intuitive conceptions of justice as fairness or
impartiality.

The optimigtic side of the tournaments offered here is that there are
prospectsfor environmental changes, worthy of further investigation, that
can resoreamagjor rolefor impartiality, gener odty, and for giveness. Dual-
coding a modd intended to capture a full spread of impartial and
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111G10 Quaker/STET <1, 1/3, 1/3>
111110 Quake/TFT  <1,1,1/3>=GIFT
11000G TFTMID <1,1,8>=TFT
110Q10 TFT/STFT <1,6,1/3>
111000 Quaker/RID <1,1/3,8>

0=033
111101 Quaker/Doormat <1,1,2/3> =FIFT
110101 TFT/Doormat <1,2/3,2/3>
noooo TFT/mm <1,e,0>
110100 TFT/Decepthie Defector <1,2/3,8>
110001 TFT/SDoormat <1,0,2/3>

2=0.66

Figure21 Thefina tournament, with dual coding and different levels of vell of ignorance.
v =*1/3 and v=2/3, shown in the first two graphs, are important instability points (strategies
arelisted in the order they appear at the extreme right of the screen). Above v=1/3 generous
strategies play a mgor role. Above v=2/3 FTFT clearly dominates.
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111181 ForgiuingTFT

i?7=0.75

Figure21 (continued).

discriminatory strategies, for example, drawn in terms of a range of
degrees of cooperation and defection, suggests that a high enough veil of
ignorance may allow even Forgiving TFT to prevail over discrimination.

58 CONCLUSION

What we've attempted in this chapter is a series of explorations in
continuous-valued game theory. From the initial example of Conway's
Game of Life it is clear that the move to continuous values introduces
important differences. It aso introduces, interestingly enough, al the
elementsof classical chaos. Moreimportant for socia application, perhaps,
is the fact that such a result is evident in a fidd of two-dimensional
strategies within a continuous-valued and spatialized Prisoner's Dilemma.
In the final sections of the chapter we tried to take the idea of socia
application serioudly enough to examine the particular phenomenon of
discrimination, with the intent of introducing modeling tools suggestive
for further forma investigation of both possible causes and potential
cures.
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Computation and Undecidability in the
Spatialized Prisoner's Dilemma

In the Scienza nuova of 1744, Vico assures us that socid interactions,
because made by us, will therefore be understandable by us:

But in the night of thick darkness enveloping the earliest antiquity, so
remote from ourselves, there shines the eternal and never failing light of a
truth beyond all question: that the world of civil society has certainly been
made by men, and that its principles are therefore to be found within the
modifications of our own human mind. Whoever reflects on this cannot
but marvel that the philosophers should have bent all their energies to the
study of the world of nature, which, since God made it, He alone knows;
and that they should have neglected the study of the world of nations, or
civil world, which, since men had made it, men could come to know.*

Karl Marx, though in pursuit of scientific history in a spirit inspired by
Vico, cameto take asignificantly less optimistic view of full intelligibility. If
Vico's 'modifications of our own human mind' are ideas or aspects of
consciousness, the principles of history are to be found not within
modifications of mind but rather in the conditions of our material
existence. ThusMarx abandons Vico's assurancethat the civil world isone
which 'sincemen madeit, men could cometo know’. He concludesinstead
that any science of history must fdl short of the philosophical intelligibility
of a complete abstract recipe:

Where speculation ends—in rea life—there rea, positive science
begins  Empty talk about consciousness ceases, and real knowledge
has to take its place. When redlity is depicted, philosophy as an
independent branch of knowledge loses its medium of existence. At the
best its place can only be taken up by a summing-up of the most general
results, abstractions which arise from the observation of the historica
development of men. Viewed apart from real history, these abstractions
have in themselves no value whatsoever. They can only serve to facilitate
the arrangement of historical material, to indicate the sequence of its
separate strata. But they by no means afford a recipe or schema, as does
philosophy, for neatly trimming the epochs of history. (Marx and Engels,
The German | deology, Part One)

At least at first glance, the forma model we offer here seems to support
Marx's side of the debate. What it shows is that there are forma



computational limits to the predictability of socia evolution even in a
model that is constructed in terms of the simplest of principles ‘within the
modifications of our own human mind'. Read in this spirit, what we have
to offer is a vindication of Marx against Vico by way of—af al people—
Turing and Godel.

The related limitative results of Godel, Turing, Rice, and Chaitin carry
well-deserved reputations as solid metamathematical theorems. But for
most purposes such results seem safely distant from immediate concerns.
These are, dfter al, results regarding axiomatic arithmetic, abstract
machine theory, recursion theory, and agorithmic information theory.
None of these is the duff of everyday applied mathematics or
mathematical modeling in the 'real’ worlds of working physics, engineer-
ing, economics, or theoretical biology. Certainly such metamathematical
results seem very far from the concerns regarding socia intelligibility
guoted above in Vico and Marx.

In this chapter, however, we want to bring formal undeddability a little
bit doser to such concerns. More precisaly, wewant to bring undeddability
as dose as the Prisoner's Dilemma, explored in previous chapters as a
standard paradigm of game theory. Although till abstrad (and abstrad in
respects essential for the results that follow), the model of the Prisoner's
Dilemma has carved itsdlf a central applicational role within theoretical
biology and economics over the past thirty years. It has been referred to as
thee. coli of socia psychology.® If undeddability shows up here, it shows
up even in some of our simplest attempts to understand ourselves as
biological and social organisms.

Whether such a result would really refute Vico, of course, is another
matter. What we do show is that the smplest of socia prindples, far from
guaranteeing a simple sociad sdence, may explode in computational
complexity to full formal undeddability. But in fairness to Vico it must be
admitted that complexity and undeddability are familiar aspects of
contemporary mathematics. One way Vico makes his central claim in the
Scienza nuova is by assuring us that social sdence, construded also from
human concepts, should prove as intdligible as mathematics.

6.1 UNDECIDABILITY AND THE PRISONER'S DILEMMA

In the preceding chapters we have explored a range of Hobbesian models,
construded on the basis of a range of variations on the Prisoner's
Dilemma. In the later sections of chapter 4, for example, the stochastic
representation of a world of imperfed information played a mgjor role. In
.chapter 5 we shifted to a full continuum of values for cooperation and
defection. Here, with an eye to the issue of undeddability, we want to
return to a simpler model much like that with which we began. The
spatialized model we will use to explore undeddability is one based on a
simple and classical Prisoner's Dilemma
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On each round Players A and B each choose one of two options, to
‘cooperate’ (C) or 'defect’ (D). The standard payoffs, listed with gains for
player B to the left and for player A to theright, are as follows:

Player A
Cooperate | Defect
N Cooperate | 3,3 0,5
r layer D ~ ~ A~ -
Defect 5,0 11

This simple model, as we've noted, seems to capture in miniature
something of the tension between individual acquisitiveness and the goals
of collective cooperation, which is of course precisdly why it has been so
widely used in economics and theoretical biology. Indeed it captures that
tension in a particularly pointed way: each player's apparently rational
pursuit of his or her own advantage leads predictably to an inferior
outcome for all. Defection is dominant: given either choice by the other
player, | will do better if | defect. My rational choiceinasingleround, then,
seems to be defection. Knowing that the other player is equally rational, |
know that he or she will follow the same course of action. In an attempt to
maximize our gains, then, we will choose a course of action which we
know will get us each a score of only 1—this despite the fact that we also
know we could each achieve a far superior score of 3 by the simple option
of joint cooperation.

In an iterated Prisoner's Dilemma, competing strategies emerge for
extended play over time. The simplest of these are reactive strategies,
which respond only to the opponent's last play, including Quaker (A11C),
Always Defect (A11D), Deceptive Defector, Tit for Tat (TFT) and Suspicious
Tit for Tat (STFT).* Due primarily to the work of Robert Axelrod, it will be
remembered, TFT has established a reputation as a particularly robust
strategy in the classicd iterated Prisoner's Dilemma.®

For present purposes we will once again use the convenient mathemar
tical fiction of infinitely iterated games, applied here to a classical rather
than stochastic Prisoner's Dilemma® Often it is easy to predict that
strategies pitted against each other in an iterated game are bound to settle
down into some monotonously repeated pattern of play. From their
specifications, for example, we might be able to tell that a pair of Strategies
Sl and S2 will establish and then simply repeat a pattern such as the
following:

Strategy 1: DDCDCDCDCDCDCDCDCDCDCDCDCD...
Strategy 22 CDCDDCCCDCCDDCCCDCCDDCCCDC,...
repeated unit of play

Computation and Undeddability in the Spatialized Prisoner's Dilemma



The longer afinite iterated game we play, the more the relative scoresin
this repeated unit will matter and the less will matter any differences in
score before that period was established or in any fragmentary period
played at the very end. Average scores within the repeated unit of play
alone can thus be taken as a limit toward which average scores will tend
over finite games of increasing length. What we take as the score of
Strategy 1 versus Strategy 2 in an infinitely iterated game is simply that
limit.

In this examplethe scores for each strategy over the repeated unit of play
stack up as follows:

I'spoints:. 31053505
Strategy 1: CDCDCDCD
Strategy 2:. CDDCCCDC
2spointss 31503050

Strategy |'s average over the repeated period is 22/8 or 2.75. This is the
limit toward which its average score will converge in games of increasing
length and is thus what we take as its pure score in a game of infinite
length. Strategy 2's average score is 2.125.” Though scores for infinitely
iterated games are used throughout this chapter, the basic results will also
hold for finite games of sufficient length.

In the Spatialized Prisoner's Dilemma, of course, we add a further
dimension: that of space. Players with different strategies are envisaged
as competing against immediate neighbors in a two-dimensional field
in the manner outlined in previous chapters. In the model used here
each player competes with its neighborsin an infinitely iterated Prisoner's
Dilemsma and converts to the strategy of any neighbor with a higher
score.

Terrel Carver'sgloss on Marxist theory in the Cambridge Companion to
Marx might almost have been written with such a model in mind:

Human agents are rational actors who are defined by their class relations
and who choose among possiblestrategiesin order to realizetheir interests
under circumstances of material and socia constraint characteristic of a
specific period of historical development, [our italics]®

As should now be familiar, fields of strategies in the spatialized
Prisoner's Dilemma evolve in the manner of cellular automata. Figure 1
starts from a randomized field of the eight reactive strategies, including
ANC, A11D, TFT, STFT, Suspicious Quaker, and three others.’® Each cell
plays its neighbors in an infinitely iterated Prisoner's Dilemma, resulting
,in the evolution shown here for generations 1, 3, 5, and 10. A11D and
Deceptive Defector, shown using gray and white respectively, seem the
early winners. As these threaten to take over, however, black clusters of
TFT grow and thrive in the new environment they've established. In the
end it is TFT that conquers all other strategies, ultimately occupying the
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Figurel Conquest by TFT in arandom array of eight smplereactive srategies.

field aone; by the twenty-sixth generation the screen is entirely black.
Figure 1 thus shows once again anice vindication of the robustness of TFT
in a spatial context.™

Although this is a standard result for a random configuration of these
eight strategies, it should be noted that conquest by TFT is not inevitable.
Figure 2 shows the evolution of an array with the same eight strategiesin
the same proportions but in which TFT does not invade to conquest. Inthe
evolution of this second array A11D and Deceptive Defector retain their
dominance, quickly establishing an equilibrium with each other, and with
occasiond individua hold-outs by TFT and STFT. Figure 2 shows
generations 1, 2, 3, and 5; from this point on the array is frozen in static
equilibrium with no further change.

Computation and Undecidability in the Spatialized Prisoner's Dilemma



242

Figure2 Evolution to equilibrium dominated by A11D and Deceptive Defector in an array of
the same dtrategies in the same proportions.

A question often arises with regard to arrays of strategies in the
gpatialized Prisoner's Dilemma whether one or another strategy will grow
to conquest (TFT or A1ID, say) or whether some equilibrium will be
established among different strategies. With genuinely infinite arrays in
mind, rather than computer-limited finite displays, the question might be
posed as follows. Given a particular initial configuration, will a single
strategy Seventually grow to dominate any arbitrarily chosen finite area of
the array? It is clear from the simple examples above that the answer to
such a question in a particular case may depend not merely on the
strategies represented, and not merely on their proportions, but on details
of their initial spatial configuration as well.
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Let us suppose a standard infinite background. In the simplest case this
will consist of aninfinite plane of cellsall of which are occupied by asingle
strategy—a sea of some strategy B stretching unbroken in every direction.
In the midst of this background we insert a smaller finite configuration
composed of various strategies—an island patchwork of cells with
different strategies, dropped in the midst of the infinite sea of B (figure
3). The result of such an insertion may be different in different cases. Some
finite configurations dropped into our infinite sea may result in
progressive conquest by a single strategy, dominating its neighbors and
expanding ever outward. Some configurations may do something entirely
different—they might disappear completely for example, or remain static
and unchanged. They might churn forever internally without expansion,
or periodically pulse through cycles of expansion and contraction.

For any chosen background, is there a step-by-step procedure—an
algorithm—that will tell usin each case the result of embedding a certain
finite configuration? Isthere an algorithm that will tell us, say, whether or
not an embedded finitearray will result in progressive conquest by asingle
strategy S? Given a computer big enough or fast enough, a mind without
limits of attention span or memory or attention to detail, is there some
systematic computation that will tell usin each case whether an embedded
finite array will result in progressive conquest or not?

The work outlined below answers this question firmly in the negative.
Thereisno effective procedure that will in each case tell uswhether or not a
given configuration of Prisoner's Dilemma strategies embedded in a
uniform background resultsin progressive conquest.* Despite the fact that

Figure3 A finite configuration of srategies dropped in an infinite sea.
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it is one of the simplest models available for basic elements of biological
and socid interaction, the spatialized Prisoner's Dilemma proves formally
undecidable in the full classical sense.

The proof introduces undecidability into game theory in three steps. In
section 6.2, two classes of abstract machines are introduced: close relatives
of Turing machines, on the one hand, and forms of Minsky register
machines, on the other.** These abstract machines are outlined in just
enough detail to indicate their computational universality and to sketch
some fairly standard undecidability results for them, patterned on the
familiar Halting Problem. Section 6.3 indicates how such machines, wired
to auxiliary 'strategy bombs, can be instantiated within a particular
species of cdlular automata. The evolutionary behavior of such cellular
automata directly simulates the behavior of the relevant machines.

From these firgt two steps we will be able to conclude that the classica
undecidability of the abstract machines at issue also appears within the
class of cellular automata constructed to model them. The last piece of
legerdemain appearsin section 6.4, inwhichitisshownthat thereisaset of
describable Prisoner's Dilemma strategies, spatial arrangements of which
will constitute cellular automata of precisely the type outlined in section
6.3. Undecidability thus carries over to the Spatialized Prisoner's Dilemma
aswell.

The strategy of the argument as awhole parallels J. H. Conway's proof
of universal computation and undecidability in the Game of Life."* Here as
there the trick is to show that a particular species of cellular automata is
capable of instantiating logical mechanisms adequate for arbitrary
computation and that are thus sufficient to raise the Halting Problem.
Therulesfor the Game of Life, however, were quite deliberately selected in
the hopes of producing such a result; the appearance of a related result
within the familiar and widely applied decision-theoretic model at issue
hereisby no meanstrivial. Inthework that follows, on the other hand, the
complexities of two components are in something of a baance: the
complexities of (a) instantiating a Turing- or Minsky-like machine within a
celular automata, and (b) defining essential components of that
cellular automata in terms of spatial competitions between Prisoner's
Dilemma strategies. We have accepted significant complications in (b),
obvious from a glance at the appendix, in order to keep (8 as simple
as possible. Complications deferred to computations regarding com-
peting strategies allow us to use a cdlular automata instantiation of
abstract machines in terms of wires and gates much simpler than
Conway's.

. We would not want to claim that the basic result at issue could be
demonstrated only by means of computer-instantiated models. Quite the
contrary. Undecidability for the Spatialized Prisoner's Dilemma is in a
clear tradition of limitative results extending from Turing and Godd to
Rice and Chaitin, and it might in principle be demonstrated without the
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computer simulations used here. As a matter of practice rather than
a matter of principle, however, our development of the argument was in
fact heavily dependent on computer experimentation. A great deal of
tinkering with arrays and alternative strategies was necessary in order to
construct Prisoner's Dilemma instantiations for basic Boolean gates, for
example. Though the fina result itsdf is thus not in principle tied to
computers, we find it difficult to imagine what it would have been like to
work out the crucial details without the constant aid of computer
modeling.

6.2 TWO ABSTRACT MACHINES

Turing machines are undoubtedly the most familiar abstract model of
mechanical computation. Operating in terms of a specified machine table
governing a finite number of internal states, a standard Turing machine
moves back and forth over a finite number of symbols on atapeinfinitein
both directions. All processing isinterms of discrete steps. At each step the
machine is able to read only the symbol in the square on which it stands;
given that information and the rules of its machine table it either leaves
that symbol or substitutes another, and then moves l€ft, right, or halts. The
beauty of Turing's conception of an abstract machine, of course, is not just
its smplicity but its power: anything computable by any device,
computable in any sense, it appears will be computable by a standard
Turing machine.”

Somewhat less familiar in philosophical circles are other abstract
machines, provably equivalent to Turing's. To any Turing machine will
correspond a machine of any of these alternative classes, which performs
precisely the same computation. There is no loss of power in Turing
machine variations that are limited to a single symbol beyond the blanks
ontheir infinite tape, for example. Thereisno loss of power invariationsin
which the tape is infinite only in one direction (‘semi-infinite), or in which
the machine is limited both to a single symbol and a semi-infinite tape.
Thereisno lossin power evenin Turing machines that have lost the ability
to erase symbols entirely, and which can therefore never change a once-
written symbol.’® If we allow a machine two semi-infinite tapes, any
computation can in fact be done by a machine that has lost the ability to
either erase or write on itstapes, and is able only to detect when one of its
tapes has come to an end.*’

In this section we want to outline two classes of abstract machines. The
first can be thought of as a variant on standard Turing machines, which
uses a tape expandable on one end as needed—the equivalent of a 'semi-
infinite' tape. Rather than moving back and forth on its tape, however, this
variant sits perfectly still: anon-touring Turing machine. Its tape comesto
it in the form of an ever-circling loop, marching its parade of symbolsin a
single direction past the reading and writing head of the machine. At each
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pass the machine may change a symbol and may add spacesto enlarge the
loop. It then waits patiently for the parade of symbols on its tape to pass
again. Well show below that any computational task performable by a
standard Turing machine will be performable by this close cousin as well.
Such a machine appearsin somewhat more detail in figure 4. Here block
A represents afinite computational unit; all else in the diagram represents
the mechanism of the tape loop, which in the manner of Turing machines
everywhere serves both as input device and as an infinitely expandable
externa memory. Among standard Turing machines, differences from
particular machine to particular machine consist in their internal statesand
the machine table that governs them. In the present class of machines,
differences from machine to machine consist entirely in the contents of
their computational unit A. Because the structure of the tape loop is a
constant from machine to machine, we will be able to enumerate machines
of this type in terms of the contents of their computational units alone.
Wewill assumethat aclose-up of unit A for any machinewould reveal a
finite tangle of wires. All we redly need to demand of such 'wires,
however, is that they be paths along which something called 'electrons
travel at astandard rate. If wethink of wires as marked off in units, we can
think of electrons as traveling at the rate of one unit per 'tick' of time,
uniform for the machine as a whole. No electrical propertiesin any richer
sense are required.*® Within a computational unit wires will turn corners
and cross each other either with interaction or without. Some wire
configurations can be expected to function as diodes, alowing electron
motion in one direction but not another along a wire. These in turn may
form part of the construction of 'or' and 'nof gates. It has long been clear
that this handful of elements offers a compl ete base for Boolean functions
in any number of variables; with any form of wires capable of forming
these basic elementswe can rest assured that some configuration will serve
the nonmemory functions of any computational unit we might desire.™
For present purposes we want the tape loop to be instantiated in a
pattern of wiresaswell. What will loop', in fact, won't be a paper tape but

?S S ?

Figure4 Abdract machinewith tape loop.
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a series of electron impulses along a wire. In a simple model, one might
envisage aclosed loop of wire around which our signal circulates, running
through the read and write head of our computational unit each time
around. Were our tape or memory of alimited size, in fact, that is all that
wewould need. In order to model an infinitely expandable memory, onthe
other hand, we need to model an infinitely expandable wireloop. Figure 4
shows one way of doing so. Here a series of linked loops extend infinitely
to the left, to be tapped into as needed. We can think of our signal as
running initially around the smallest loop at the right. If and when the
signa length requires, we create a longer course to accommodate it by
closing and opening gates so that it runs around the equivalent of two
loops. Should additional signal length eventually require a further
addition we tap into the third loop to the left, and so forth.

Those who wish to skip the morbid details of the tapeloop areinvited to
pass over the next eleven paragraphs or so. For those who want the details,
the construction of one version of this type of tape loop is shown in figure
5. Here an encoded input, marked with some coding a for its beginning
and co for its end, enters from the right as afinite series of spaced electron
pulses along the wire. At the first branch the coded series moves straight
ahead, with adiode blocking similar travel northward. It passes through a
counter unit marked Cl which istriggered by the beginning code ato start
a 100-tick 'clock'’. If the end co of the encoded message arrives before the
clock hasticked off its 100 pulses, Cl returnsto its starting position. If not,
asingle pulseis sent by a southerly route to signal block SI and ClI then
returns to its starting position.

After triggering Cl, the signal moves l€ft into a labyrinth of twists and
turns. The labyrinth is 150 tick-units long, let us say, designed so that an
impulse sent south from CI can arrive at Sl before the beginning of the
message series arrives at the juncture above Sl. On receiving an impulse

471-7 LC1
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Figure5 Tapeloop details.
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from Cl, S| starts a constant pulse of 150 electrons at the standard clocked
interval and then resets. Above it in the diagram, marked with an
ampersand, is an ‘and' gate. Thus if the series of signals is less than 100
units, the serieswill travel through the labyrinth and branch up to the 'and'
gate, where it will meet a steady series of positive pulses from Sl.
Wherever an electron appears in the signal series, the 'and' together with
the positive pulse from Sl will transfer an electron through the gate;
wherever an electron fails to appear in the signal, the 'and’ will fail to be
satisfied and no electron will go through. If it is less than 100 units long,
then, thesignal serieswill effectively travel up through the 'and' gateto the
upper wire and to the right, on to the computational unit at A. Our
working loop will be complete. Because of branching just before the 'and'
gate a doppelganger of the signal series will aso continue to the l€ft, into
C2 and beyond, but in that direction the signal travels harmlesdly into an
infinite limbo of unused coils of wire.

What if the signal seriesis morethan 100 unitslong? In that case SI will
not be triggered. Sl will send no series of pulses, the 'and' gate will never
be satisfied, and the signal will fail to cycle north. It will however travel
left to a second counter C2, which at the beginning signal a starts a clock
of 200 tick-units. If the end signal co arrives before the clock reaches 200,
a signa is sent to 2, which begins a regular series of 250 pulses. All
else operates as before. If the signa series is longer than 100 units but
less than 200, then, it will cycle north not at the first juncture but the
second.

The structure of linked loops continues infinitely to the left, with
labyrinth units increasing by any regular interval and the clocked units of
C and S components increasing accordingly. For illustration additive units
of 100 have been used, but increasing powers of 10 could do aswell. The
purpose of the whole should be clear: any finite message will trigger a
recycling loop large enough to accommodate it. Because C and Sunits are
reset each time they are triggered, the loop is ready for a new message of
any finite length leaving the computational unit and circling around again.
The infinite loop structure as a whole opens up or closes dff in accord with
the current length of the signal.

Here the important point is simply that a tape loop can be conceived of
entirely in terms of wires and basic gates. In the form outlined, the tape
loop consists only of lengths of wire (including infinite wires) linked with
diodes, 'and’ gates, and devices C and S. C and S devices can be thought of
as simple finite computational devices in their own right, easily con-
structed from wires and standard gates. In each case the crucial timing
element can be simply a loop of wire of a certain length.

Improvementson thistapeloop mechanismareclearly possible. Figure 6
shows a simpler variation in that it operates with a few factory-identica
units instead of ever-larger clocks and signal-generators. Here the only
requirements are required are a beginning-detector B (triggered by a), an
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Figure6 Tapeloop with sSimpler components.

end-detector E (triggered by co), a 'repeater’ R, and a signal box. The
repeater simply generates a stream of pulses when triggered, and
continues to do so until reset. The signal box outputs a single pulse if an
input from an end-detector E has been received at x and one from a
beginning-detector B has not, resetting on a signa at r. Given these
elements the function of progressively longer clock devices in the version
above can be replaced simply by increasing wire lengths between
beginning- and end-detectors as the structure extends infinitey to
the left.

To this point messages carried on the tape loop have been specified as
series of clocked electron pulses along a wire, marked with a coding for
beginning and end. This is again a matter of mere detail, and here again
thereisawiderange of alternatives. For the sake of concreteness, however,
it may be useful to specify encoding in a particular form. The beginning
signal a, we might suppose, consists of two contiguous Is; the ending
signal co consists of three. Thesearewhat our beginning- and end-detectors
can detect. Between beginning and end is a series of spacesto betreated as
registers, separated by dividers which double as addresses. The first
register space appears immediately following the beginning signal, and
requires no further address. The second register space is marked by an
initial address of 1111 (using one more 1 than our ending signal), the third
by 11111, and so forth. As a whole the message then takes the following
form, with ellipses to indicate register spaces.

11...1111.. 11111 ... [l

Register contents can be envisaged in monadic notation, suitably
disambiguated from their addresses. One simple way to do this is to
begin and end register contents with Os inserting Os between any digits
within them as well.® A content register of '5' would thus become
01010101010. 'C would become 000. A complete message with beginning
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and end markers but using only three registers, containing numbers 5,0,
and 1, respectively, would then appear as follows:

1101010101010111100011111010111

Given some appropriate convention for message encoding, a tape loop
of the form outlined constitutes an infinitely expandable external memory
for the computation center at A. The tape might be thought of as
containing an infinitely expandable number of memory registers, each of
which is capable of holding an arbitrarily large integer. It has long been
known that such a memory, together with the arbitrary Boolean power of a
finite computation center composed of wires, 'or', and 'nof gates, is
aufficient for the computational universality familiar in standard Turing
machines.?!

An alternative conception of register contents offers a still more direct
link with Turing machines. On this alternative conception the firg two
registers of the signal might be envisaged as containing 'position' and
'state’ numbers, with al other registers arbitrarily limited to simple
contents of either O or 1. Operations on the looped signal can now be
thought of as corresponding directly to those of a Turing machine on a
single semi-infinite tape. The Turing machine's semi-infinite tape contents
will correspond digit by digit to the register contents of our looped signal
beyond the second register. Changes in position and state in the Turing
machine, on the other hand, will correspond to changes in the position-
and state-numbersinthefirst two registersof thelooped signal. Giventhese
conventions the quintuplets of any Turing machine table can be rewritten
directly as programmed instructions within the wired computational unit
of our looped machine.

Corresponding to any Turing machine, then, will be an abstract machine
of the sort outlined. Any Turing-computable function—given Church's
thesis, any computable function at al—will be computable by a wired
computation center attached to an empty tape loop itsdf instantiated in a
pattern of wires.

Herewe also want to outline a second type of abstract machine, one that
uses no tape at all. Little differs at its core: here again we find a
computational unit composed of atangle of 'wires'. In place of the familiar
Turing tape, however, we find two registers, which can be thought of as
storage pits, each capable of holding a single arbitrarily large integer. In
place of tape reading- and writing-abilities, we insist only that the
computational core of the machine be capable of adding a single unit to a
register, of subtracting a unit, and of checking whether thereis anythingin
aregister at all—whether its contents are zero. These abstract devices welll
refer to as Minsky register machines. The proof that they are equivalent to
Turing machines—that they can simulate any Turing machine and can be
simulated by Turing machines in return—appears in classic work by
Minsky.?
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In the paragraphs above we took some pains to show that all
components of looped Turing machines could be instantiated in a network
of wires. Here computational units are essentidly the same, and comments
on wiring for computational units can thus be expected to carry over. The
new elements at issue are the Minsky registers. Can these be wired?

The answer is 'yes, athough details quickly become complex. A
complete outline of register wiring isl€ft to alater section. For the moment
we ask you to trust us: in the sense we will require, Minsky register
machines can indeed be wired. We thus have two forms of abstract
machines, differing essentialy only in the form of their externa memory,
each of which can be instantiated as a pattern of electrons traveling along
wires.

The reason for introducing two forms of abstract machines rather than
oneisto offer two forms of the basic proof at issue. In the discussion above
it may be the looped Turing machine that appears more complex. In later
sections that more complex machine allows for a much ssmpler model in
terms of cellular automata and the Prisoner's Dilemma, however, and thus
for a conceptually simpler form of the basic undecidability argument. The
Minsky register machinewill require a more complicated modeling. But in
the end it will also allow a more elegant formulation of undecidability.?
The two machines thus offer something of a trade-off. By having both on
hand we hope to be able to introduce certain steps of the argument in a
conceptually simple form and yet be able to finish them off with abit more
generality and elegance.

Each of our two forms of abstract machines, we've said, isequivalentto a
standard Turing machine: any systematic computation or step-by-step
procedure whatsoever can be performed by some form of either machine.
Along with such a parallel to standard Turing machines comesaparallel to
the standard Halting Problem. A dlight variation on the Halting Problem
will be at the core of the results below.

A simple presentation of the problem can be borrowed from John
Conway:** We know that a Turing machine, and thus an abstract machine
of either sort at issue here, can be constructed for the express purpose of
investigating any explicitly specified, and arbitrarily hard, arithmetical
guestion. We might construct a looped Turing machine to search for
counterexamples to Goldbach's conjecture, for example—that every even
number greater than 2 is the sum of two primes. Programmed to proceed
even integer by even integer, checking alternative sums of lesser primes
one by one, our machine could be designed to indicate that it has found a
counterexample either by printing a particular message on its tape or by
some convenient auxiliary signa—a single pulse sent down a designated
signal wire, for example. A Minsky register machine could of course be
constructed to the same effect.

We can then envisage arange of machines, for arange of purposes, built
with convenient signal wires. Our Goldbach machine, a carefully designed
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pattern of wires, is to send a pulse down its signa wire when a
counterexample to Goldbach's conjecture is found. Our Fermat register
machine, itsdf merely a different pattern of wires, isto send a pulse down
its signal wire if and when it reaches a set of integer values satisfying
(X + I)W+3 + (y + 1)W+3 — (Z + 1)W+3.

Because both looped Turing machines and Minsky register machines are
distinguished from each other by the finite contents of their computational
units, all machines of either set can be listed, or enumerated, in terms of
those contents. They can, in effect, be ‘coded' by their central wiring
diagrams, and we can compile a list of machines in terms of those wiring
codes alone. Those machineswith auxiliary signal wireswill smply forma
partial list.

The crucial question, however, isthis: Isthere an algorithm that will tell
us, for any machine on thelist, whether it will or will not eventually send a
pulse down its signal wire? The answer is 'no'. If there were such an
algorithm, it would effectivdly tell us whether arbitrary difficult
arithmetical problems have solutions. But as Conway notes, "mathema-
tical logicians have proved that there's no technigque which guarantees to
tell when arbitrary arithmetical problemshave solutions."? There can thus
be no algorithm that predicts in each case the behavior of our abstract
machines.

In somewhat deeper detail, and without unnecessary appeal to the
authority of mathematical logicians, classica undecidability for either
family of abstract machines might be outlined as follows. Let us conceive
of al machines at issue as starting on inputs and rigged with a uniform
output signal. In the case of looped Turing machines, the input will be an
initial finite configuration of symbols on the feed wire shownto the right of
thetapeloopinfigures4 and 5. In the case of Minsky register machinesthe
input can be thought of as a similar signa series fed directly into the
computation center. Output for our chosen class of machines we specify in
terms of a specid signal wire, located at some conveniently uniform corner
in each machine, and down which an electron may or may not eventually
be sent. That signal wire might be thought of asthelead to alight bulb, for
example, flashing 'on' just in case a Goldbach machine has found a
counterexample.

Our different machines can be fed different inputs. Some machines,
started on some inputs, will eventualy send a pulse down their signa
wire. Others, started on other inputs, will not. Within agiven class, we've
said, machines at issue differ only in the finite contents of their
computation centers and can be indexed accordingly. Some machines,
started on an input that happens to correspond to their own index,?® will
eventually send an 'on' signal. Some will not.

I's there a machine that will send an 'on’ signa just for a particular class
of inputs: theindex numbers of machinesthat don't send asignal when fed
their own numbers? No. For suppose there were such a machine, and
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suppose it were fed its own number. It would then flash an 'on' signal just
in case it would never flash an 'on' signal. The supposition boxes us in
contradiction: there can be no such machine.

We can aso ask a more general question. Is there a machine that will
signal whether or not a numbered machine, started on a given input, will
eventualy send an 'on' signa? No. For given that machine, we could
construct the machine we've just proven impossible simply by fiddling
with signal wires and attaching an initial message duplicator.?’

Given Church'sthesis, any algorithm whatsoever can be instantiated by
either a looped Turing or Minsky register machine. If so, the signaling
problem isformally undecidable. Thereis no effective decision procedure,
no step-by-step computation, and no systematic chain of thought that
will predict in all cases the signaling behavior of the abstract machines at
issue.

None of this should be too surprising: the familiar undeddability of the
Halting Problem has simply been carried over to two dightly different
species of abstract machines. The details are interesting, perhaps, but the
general result is uncontroversial. In the following sections, however, we
want to put these results to work in a new way—first in the context of a
particular type of cellular automata, and then in application to the
Spatialized Prisoner's Dilemma.

6.3 COMPUTATION AND UNDECIDABIUTY IN COMPETITIVE
CELLULARAUTOMATA

In this section we want to change the subject, leaving abstract machines
and classica undeddability resultsbehind for amoment to sketch a species
of cdlular automata. The particular species with which we will be
concerned is in fact a dlightly unusual one, most easily outlined for
example in terms of a two-step rather than the usual one-step pattern of
computation. Well begin with a smpler one-step relative, however, in
order to outline some basic ideas.

Thissimpler cellular automaton, dubbed ‘wireworld by A. K. Dewdney,
first appeared in a prograinming environment called the Phantom Fish
Tank, created by Brian Silverman of Logo Computer Systems.”® Two-
dimensiona cdlular automata consist of regular spatial arrays of cells,
each of whichisinaparticul ar state at any given time. Each cell operatesas
asimplefinite-stateautomaton that it follows rules for state change written
in terms of its current state and the states of its proximate neighbors.
Within Silverman's wireworld the rules of state change arewritten in such
away that certain configurations of cells end up mimicking the behavior of
electrons moving along wires. Silverman's wires can turn and cross, with
further configurations that function as diodes, 'and’, 'or', and 'nof gates.
With these we can construct cellular automata equivalent to any finite
computer.
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Wireworld operatesin termsof just four cellular states: at any giventime
acdl might be of abackground state b, might be awire cell w, an electron
head e or electron tail t. The rules are simple. With each tick of the
automata clock, or within each generation of the array's development,
electron heads e become electron tails t and electron tails t become wire
celsw. Wire cells become electron headsjust in case they are bordered by
one or two electron heads. Background cells never change. Figure 7 shows
asample: asimple 'or' gate for Silverman's wireworld, incorporating two
diodes. In black and white, the background b is coded white, wire cellsw
appear as grey, and electron heads and tails e and t appear as black and
dotted cdlls respectively. One can work through the rules by hand in order
to watch the electron head and tail as they move right through the first
diode and then branch at the junction, with one copy traveling south and
the other extinguishing at the diode on the right.

Because wireworld can be used to simulate the operation of arbitrary
finite computers, and because the looped tape mechanism of section 6.2
can itsdf be simulated using (infinite) Silverman wires, we are ableto carry
over a simple undecidability result regarding wireworld. Consider
any enumeration of finite wireworld arrays that might serve as our com-
putational units for looped Turing machines. Consider further those
finite cellular automata arrays composed of particular computational
units together with particular inputs, including perhaps their own
enumerations as inputs. We can think of all such machines as rigged with
a designated signal wire and embedded in a standard tape loop
background.

Is there any algorithm or effective procedure that will tell us whether or
not an arbitrary finite array of cdls, following Silverman's rules and
embedded in a background corresponding to an infinite tape loop, will
generate a positive signa? By a dight variation on the argument of section
6.2 the answer is 'no’. Were there such an agorithm, we would in effect
have an agorithm that would decide for any machine whether or not it
would generate a positive signal if started on its own encoding. Since we
know there can be no algorithm of the latter sort, we know there can be

Figure7 Slverman 'or' with diodes.
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none of the former sort either: the evolution of wireworld displays proves
formally undecidable.?

Thework that follows uses this same basic idea: the abstract machines at
issue are simulated within certain types of cellular automata in order to
carry over the result of abstract undecidability. Here as in Silverman's
wireworld, moreover, the strategy will be to model within cdlular
automata the movement of electrons along wires, allowing the construc-
tion of basic components adequate as a complete base for Boolean
operations.

Beyond these points of common strategy, however, things become
significantly more complex. Silverman's rules require a simple one-step
computation for each cell: any cell can calculate state change merely by
noting itsown state and, if itisawire cell, how many eectron heads adjoin
it. The cdlular automata we want to consider here, in contrast, are
‘competitive’ automata, most naturaly envisaged in terms of a more
elaborate two-step computation. Here cells will be thought of as gaining
particular scores in competition with their immediate neighbors, thereby
amassing a total score in their immediate neighborhood. In a second step
they then compare their score with that of their immediate neighbors.
Should a neighbor have a higher loca score, they convert to that
neighbor's strategy or state. If thought of as a form of rules for cellular
automata in general, of course, these may seem peculiarly complicated.
Conceived of as a prospective link with a Spatialized Prisoner's Dilemma,
on the other hand, they should seem exactly right.

The basic rule set for our competitive automata might be thought of as
follows. At each evolutionary generation, or tick of the automata clock,
each cdl of an array is playing one of four strategies against al of its
neighbors. These dtrategies can be thought of in terms of functions:
background b, wire w, electron head e, and eectron tail t. In black and
whitethey arerepresented aswhite, gray, black, and dotted cells. Standard
game scores can be determined in advance for each two-color competition:
wiresw get a standard score of 3 in competition with electron tailst, let us
say. A background cel b achieves only a score of 0.868 against any
nonbackground competitor.

At each tick of the dock each cdll competes in this way against its eight
neighbors and totals its score. It then stands back to survey its neighbors,
converting to the strategy of a neighboring cell should there be one that
achieved a higher local score. A wire cell might thus become an electron
head because of the higher local score of a neighboring e cell. An electron
tail might become awire cell because thet cell'sloca score was lower than
that of its w neighbor.

Can the behavior of electron movement along wires, configurations for
wire crossings and Boolean gates be modeled in this more competitive
wireworld? The short answer is 'yes, athough computation and gate
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configurations are necessarily more complicated than those of the original
wireworld.

The following game scores, arrived at by the simple expedient of
excruciating and |aborious experimentation, give us an operating wire-like
smulation. Here W represents the score of strategy w in competition
againgt itsdf, 'we' the score of wire against electron head, etc.:

ww 2412 ew 2485
we 2534 ee 2412
wt 3.000 et 2542
wb 2472 eb 2472
tw 2.583 bw 0.868
te 2.567 be 0.868
tp 2412 bt 0.868
th 2472 bb 2.667

How all this works can be illustrated by considering the not-so-simple
phenomenon of a single wire consisting of strategy w maintained on a
background field of b. At each tick of the automata clock, each cell of an
array competes against its eight immediate neighbors. In order for aw cell
to remain w, therefore, no non-w neighbor can have ahigher score. For itsb
neighbors to remain background b, on the other hand, they must be in
contact with ab cell thetotal score of whichisgreater than the score of their
w neighbor. With the scoreslisted above, aw wire cell in contact with two
other ws (the continuation of its 'wire' left and right) and 6 background bs
receives a total score of 19.656, higher than that of a background b in
contact with 5 bsand 3 ws (15.939), but less than the score of abackground
b cdl surrounded by 8 bs (21.336). In each competitive round thew cells of
the wire thus dominate their neighboring bs, but are counterbalanced by
the proximity and higher score of background cells in competition with 8
background cells. The w wire remains tenuously balanced between
extinction and explosion within a surrounding field of background b.
Given the scores above, a similar balance keeps electron e and tail t cells
from either vanishing or exploding when placed on an otherwise blue
wire.

The simulation of electron travel along a wire—an e and t pair moving
on a strip of w against a background of b—is achieved by awarding an e
cdl bordering awire cell w a higher total scorein context, at cell bordering
an e a higher score than its e neighbor, and aw cell bordering at a higher
score still. The result is the one-cell-per-clock-tick simulation of movement
illustrated in figure 8. Black and white coding is as before: white for
the background, grey for wires, and black and dotted cells for eectron
heads and tails respectively. The redlity of the computation, of course, is
that of a field of static cells, which merely change strategies as the
result of perpetual competition with their neighbors. No cel literaly
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Figure8 Electron moving along wire in competitive automata.

1 1 ¢

Figure9 Diodein operation: electrons pass left to right but saf-extinguish right to left.

moves. In familiar cinematic fashion, however, the inescapableimpression
given by an evolving array is one of electron pairs moving aong thin
wires.

Itis clear that a wire-like simulation adequate for computation will call
for more than merely electron movement along straight wires. The scores
above have in fact been carefully selected to allow for électron movement
around what turn out to be two importantly different types of corners—
solid and nicked. They have aso been sdected to saisfy a crucia
sengitivity of wire w cells to eectron heads e, fine-tuned enough to allow
both for electron branching and for a loll' function used as a basic element
indiodes and fundamental operators. All of these details can be seenin the
operation of a diode, illustrated by selected frames in figure 9. Here
electron travel is allowed left to right but blocked by self-extinction right to
|eft.

The complications of wire-crossing are illustrated in figure 10. Here an
electron can travel south to north without propagating to cause
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Figure10 Wirecrosing, allowing dectron trave dther south to north or west to eadt.

interference east or west, or can travel west to east without propagating
north or south. Traveling north, as illustrated, the electron will divide
a the first branch with copies proceeding unharmed through each of
two diodes. At the central cross it will propagate in al three forward
directions. The copy moving west, however, will be killed at the first
diode. The one moving right will be extinguished by a kill from the
doppelganger that split off earlier. The one moving north will continue
through. A late twin generated to the left, at a kill site needed for travel
west to east, will be harmlessly extinguished at a diode down its left
passageway .

'Or' and 'nof gates are shown in figure 11. The 'or' gate is asceticaly
simple and sdlf-evident. The operation of the negation loop, however, cals
for some explanation. Here a timing convention is assumed for signals
within the constructed machine; for purposes of illustration we've
assumed a convention of 34 spaces between consecutive signal units sent
along awire. A signa series ... 11111... will thus actually consist of a
string of pulses sent 34 spaces apart on awire, or arriving each 34 ticks of
the automata clock. We can represent the zeros of a signal series
...10101... by leaving out eectrons at the relevant intervals. What
negation requires is an inverter designed to convert a series of spaced
sgnals—1011001100, say—to its negative image: 0100110011. The 'nof
gate illustrated in figure 11 achieves this by generating impulses in its
lower loop in synch with our standard signal rate, sending these out to a
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Figure1l 'Or' and 'nof gates.

point vulnerable at a Toll' gate. A signal series is thought of as arriving
through a diode from the left. If at the 34-space interval a timed electron
representing a T arrives at the kill gate, it and the electron generated by
the lower loop mutually annihilate and no pulseis sent out to theright. If
at the 34-space interval no electron arrives, on the other hand—signaling a
'0—the pulse generated by the lower 1oop travels out undisturbed to the
right. An electron copy to the left is extinguished by the diode. A signaled
T from the I€ft therefore gives us a ‘0" to theright and a 'O’ givesusa T,
exactly as required.

With these basi ¢ elements we can simulate, within a competitive cellular
automata array, any finite arrangement of wires and standard gates. There
will therefore be finite configurations of cells within two-dimensional
arrays that correspond to the computational units of looped Turing
machines, and also configurations that correspond to computational units
together with chosen inputs. Using infinite wires, these same basic
edements auffice for the construction of the standard tape loop. The
undecidability results shown for looped Turing machines, therefore, carry
over to competitive cellular automata as well: there is no algorithm that
will tell us, for arbitrary finite configurations of our four strategies dropped
into thefield of an infiniteloop, whether the evolution of that configuration
will result in behavior corresponding to a positive signal.

Can a Minsky register machine be similarly embedded within
competitive cellular automata? The computation center of such a machine
will consist of wiresand standard gates much likethat of the looped Turing
machine. Since such a machine requires not an infinite tape but merely two
registers with finite contents, however, it will be sgnificantly more
compact.® Instantiated within a cellular automata array, in fact, such a
machine could be thought of as a finite configuration dropped into the
simple infinite field of a single background strategy. In the end this
will allow us a simpler and more elegant formulation of the basic un-
decidability at issue. The technical aspects of the simulation we have
to offer for Minsky registers, on the other hand, are somewhat more
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complex. As outlined below, for example, it uses not four basic strategies
but twelve. ™

What is required of a Minsky register, it will be remembered, is that the
computation center be ableto add oneto the register's contents, to subtract
one, and to check whether the register hasanythinginit at all—whether its
contents are zero. We will continue to think of the computation center as
'‘wired' using four basic strategies. wire w, background b, electron head e,
and electron tail t. Messages from the computation center to memory
registers will thus be envisaged in the form of standard electrons
composed of electron head-electron tail et pairs, although particular
messages may require carefully timed sequences of such pairs down
particular wires. In the simulation design of the memory register itsdf, on
the other hand, we have chosen to use a handful of different electronswith
relative scores tuned to perform different tasks. In addition to the familiar
et electron pair wewill use et2 asa 'special electron’, in which the standard
tail tis replaced by a variant strategy t2. We will also use two further
electron pairs, €2t and e3t, in which the standard electron head e is
replaced by variants €2 and €3, and a find electron e2t3, in which €2
replaces e and t3 replaces t.

The relative scores of these strategies, together with four more, arelisted
in Table|.*® Herewe add strategy m for amemory tip, ¢ for acollar, d for a
diode collar, and b2 as a variation on our standard background. The
function of each of these will be explained in due course. An asterisk in
place of a competitive score indicates that for present purposes any score
will do in that place.

A complete schematic for a competitive automata memory register
appears in figure 12. Its operation becomes more comprehensible
when outlined bit by bit. The core of the memory register appears in
the upper right hand corner: a 'fat wire' three w cells wide, tipped with
a column of memory tip m. Thisisthe memory site itsdf, where an integer
is stored and where the fundamental operations of addition, sub-
traction, and zero-checking are accomplished. All else that appears in
figure 12 is simply management machinery—the circuitry required in
order for a computation center to control these functions within the
fa wire by sending timed combinations of standard electrons down
standard wires.

A larger or smaller integer is stored in memory in terms of the length of
the fat wire segment itsdlf: alonger triple segment corresponds to a larger
integer, a shorter segment to a smaller one. Although the fat segment is
never reduced to atruelength of zero, we can think of agiveninitia length

*as representing our '0'. By convention we might for exampl e represent our
zero as the sixth cdll to the right of the collar of strategy ¢ (represented in
black and white using horizontal stripes). A positive integer can then be
represented in terms of cells to the right beyond that point, perhaps using
two cdls for each unit: a segment longer by two cells represents an integer
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Tablel <

ww =2.412 ew =2485|tw =2.583| bw =0.868
we =2.534 ee =2412|te =2.567| be =0.868
wt =3.000 et =2.542 | tt =2.412 | bt =0.868
wh =2.472 eb =2.472 | tb =2.472| bb =2.612
wm =2.495 em =2.341| tm =2.485| bm =1.216
we2 =2.534 ee? =1.000 | te2 =2.567 | be2 =0.868
wh2= 2502 eb2 =2.526 | th2 =2.526 | pb2 =2.615
wt2 =3.000 et2 =2.542 | tt2 =2.412 | pt2 =1.841
wd =2.472 ed =2.472|td =2472|pd =2.615
we3 =2.534 ee3 =2.412 | te3 =2.567 | pe3 =0.868
wc =2.472 | ec =2472|tc =2472| pe =2.615
wt3 =3.000 | et3 =2.542 | tt3 =2.412 | pt3 =0.868
mw =2.485 e2w =2.485 | b2w =0.859 | t2w =2.583
me =2.419 e2e =1.000 | b2e =0.867 | t2e =2.567
mt =2.999%" | e2t =2.542 | b2t =0.867 | t2t =2.412
mb =2.469 e2b =2.472 | b2b =0.849 | t2b =2.470
mm =2.412 e2m =2.759 | b2m =0.929 | t2m =2.180
me2 =2.886 e2e2 =2.412 | b2e2 =0.867 | t2e2 =*

mb2 = 2.476 e2b2 = 2472 | b2b2 = 2.667 | t2b2 = 2.472
mt2 =2.189 e2 =* b2t2 =0.867 | t2t2 =2.412
md =2.472 e2d =2.472 | b2d =* t2d =2.472
me3= 0.692 e2e3= 1.000 | b2e3 =* t2e3=*

mc =2.472 e2c =2.472 | b2c =* t2c =2.472
mt3 =2.999 e2t3 =2.542 | b2t3 =0.867 | t2t3 =2.412
dw =0.868 e3w =2.485| cw =0.868 | t3w =2.583
de =0.868 e3e =2.412 | ce =0.868| t3e =2.567
dt =0.868 e3t =2.542 | ct =0.868 | t3t =2.412
db =0.849 e3b =2.472 | cb =0.849 | t3b =2.472
dm =0.868 e3m =2.340 | cm =0.868 | t3m =2.485
de2 =0.868 e3e2 =2.458 | ce2 =0.868 | t3e2 =2.567
db2 =* e3b2="* ch2 =* t3b2 = 2.526
dt2 =0.868 e3t2 =* ct2 =0.868 | t3t2 =2.412
dd =2.667 e3d =2.472 | cd =- t3d =2.472
de3 =0.868 e3e3 =2.412 | ce3 =0.868 | t3e3 =2.567
dc = e3c =2.472 | cc =2.667 | t3c =2.000
dt3 =0.868 e3t3 =2.542 | ct3 =0.750 | t3t3 =2.412
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Figure 12 Schematic for a Minsky register.

larger by one.® What is required for Minsky memory is thus the ability to
make the fat segment grow to the right in order to represent addition, to
makeit shrink to the, lft in order to represent subtraction, and the ability to
check whether its length at any point corresponds to our specified zero
mark.

Figures 13 and 14 illustrate how addition and subtraction are
accomplished within the memory core itsdlf. A crucia part of the process
in each case is played by the memory tip of the core, composed of strategy
m and shown as dark grey in black and white. This memory tip flashes
from a single to a double column every second generation as an effect of
our competitive scores. Thetotal scores generated for asingle row of mare
such that they overpower the w neighbors to their left, m's score against
itsdlf is then insufficient to maintain the advantage, however, and the core
returns to a single rather than a double m tip.

Selected steps in the process of addition are shown in figure 13.% Here
we send a carefully timed et pair—our standard eectron—into the
memory core. On encountering the triple rows of the fat segment the
electron itself expands to a tripled form, continuing its movement to the
right. Once the e head of the electron reaches the m tip of the memory core,
however, the high scores of m against e cause an explosion of the m tip
both to the left and to the right, forming a triple block of nine cdlls. In the
next generation the wire strategy w eliminates the electron tail t, and from
there eats away at the memory tip until it is again down to asingle column
of three. In the process, however, the memory tip of m is eaten down to
its extreme right position, which now is one unit further to the right
than whereit started. By sending a standard electron into the memory core
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Figure 13 Addition.
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Figure 14 Subtraction.



Figure 14 (continued).

we have thus expanded it to the right by one cdl. If we repeat the
process we will have lengthened it by two cells—the equivalent of adding
by one.

The process of subtraction, shown in figure 14, is more complicated in
several regards: it uses a special eectron with a different timing and also
requires a supplementary second step. Here the electron sent into our
memory core is of the form et2, with a standard electron head e but a
variant tail of strategy t2. In black and white, t2 is marked by a grey dot.
Scores for strategies t2 and e have been chosen so that this special electron
will travel down both a single and triple wire precisely as did its standard
et predecessor. In the case of subtraction, however, timing differs by a
single tick—enough to keep eectron head e and memory tip m from
coming into direct contact. What happens instead is that our electron
effectively drives the memory tip df the end, ultimately leaving only a t2
tipinitsplace asthe special electron’'s payload. Strategy t2, however, hasa
set of scores much more vulnerablein competition with background b than
those of m. In two generations the t2 tip has been eliminated, leaving a
memory core composed entirely of wire strategy w—without any tip at
al—one unit shorter than the original.

A second step isrequired to restore the memory tip. Hereagainweuse a
special electron, though in this case our eectron is composed of a head of
strategy €2 and three tails of strategy m. In black and white coding a
hollow dot isused for €2, with m portrayed asdark grey. Despiteitssize, a
four-cell e2mmm electron travels down our standard wire and into the
memory corejust aswould astandard et electron. At the end of theregister
the e2 head disappears, but them tailsremain. Eventually these shrink to a
singleflashing row. That new row, however, sits at thetip of our shortened
memory segment; in two steps we have successfully shortened our
memory core by a single cell. On repeating our two-step process we will
have shortened our memory core by two cels—the equivaent of
subtracting by one.*
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What of the zero-check? Here the basic trick isto send a special eectron,
designed to bounce back, into the memory core. We carefully note when it
is sent, and wait expectantly for its return. If our memory coreisin fact of
the length corresponding to our chosen ‘zero', the electron will bounce
back in a predictable number of generations. If our memory coreis longer,
the bouncing eectron will not have returned by the appointed time and we
will know that our contents are not zero. Therole of the control mechanism
inall of this, of course, istiming and registering the return of the prodigal
electron. The crucia phenomenon required within the memory coreitsdf is
the bouncing electron.

In this case the eectron used is a carefully timed te2 pair. Sent down the
single wire, it travels into the triple core precisaly as did its predecessors.
The €2 head istimed to meet a double column of strategy m at thetip, with
relevant scores chosen to give e2 with an m backing an advantage over its
own t tail. The result, shown in figure 15, is that our electron loses its tail
and the e2 head starts to move Ieft trailed by cells of strategy m extending
from the end of the memory core. Our origina te2 eectron is thus
transformed into something peculiarly different—a trail of ms with an e2
at the head growing in the opposite direction—but it does give usthe basic
mechanism of an electron’bounce. That, at any rate, is the theory; things
become messier in practice. Were our returning €2 head to travel left
through the collar of strategy ¢, moving smoothly from a triple wire to a
single, its return could be used for the zero-mark timing check precisely as
outlined above. Here we face a complication, however: the strategies
outlined, carefully chosen to satisfy other desiderata, are such that the
returning e2 ends up stuck at the bottleneck transition from three wires to
one. Thereit remains in the form of the flashing unit of strategy €2 shown
in the final frames of figure 15.

The flashing unit at the bottleneck can till be exploited as part of the
timing strategy of our zero check, however. Given amemory core precisealy
aslong as our chosen 'zero mark’, our special electron will bounce back to
establish a bottleneck in a predictable number of generations. If the
memory core is longer than zero, on the other hand, a bottleneck will not
have been established by the appointed time. Our timing check can till be
completed from the left, therefore, if we perform a secondary bounce off
the bottleneck. This secondary bounce can be accomplished by sending
down an e2mmm series at the proper time followed by a specia electron
composed of an electron head e2 and atail of strategy of t3. Our €2t3 pair is
shown in black and white using a hollow-dotted e2 and a white dot on
black for t3.%

As awhole, then, the zero-check proceeds by sending a carefully timed
€2t down the lead wire of the memory core, followed by a synchronized
e2mmm and e2t3. The entire process is illustrated in figures 15 and 16
taken together. If our memory isat 'zero', the e2t electron will bounce back
to establish a bottleneck at precisely the time that the later e2mmm is
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Figure 15 Zero-check dectron 'bounce’ in the memory core.
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Figure 16 (.continued).

scheduled to hit it. That will extend the bottleneck Ieft in such away that
our specia e2t3 electron will reverseitsdf Ieft in theform of an e2 trailed by
ms, returning along the singlewireby an appointed timeto tell usthat our
memory wasindeed at the zero mark. If our memory islonger than 'zero',
on the other hand, and a bottleneck has not yet been established, our
e2mmm will travel into the memory core and the e2t3 electron will simply
be extinguished at the ¢ collar of the memory register.®® Our bouncing
electron e2t will eventually return down the memory core in the form of a
e2mmm trail, meeting the incoming e2mmm head-on and establishing a
stationary flashing 'block’. By that time our €2t3 electron will have
vanished. If memory is greater than zero, then, there will be no message
sent back down the single wire.

All of this accomplishes the desired result: a memory register at 'zero'
will bounce back a specia electron, whereas a memory register containing
some greater integer will not. The process does leave us with avery untidy
memory unit, however. If the process of our double bounce registers a
'zero', we are left with a solid memory core of strategy m and a &Zmmm
trail extending left from abottleneck of strategy €2. If our memory islonger
than zero we have a flashing block stuck deep in the memory core. A
supplementary clean-up process is thus required, triggered by the
appropriate response received in our check. In the nonzero case, two
specia €3t electrons are sufficient for clean-up duty; our memory register is
returned to a solid band of wire strategy w with an aternating memory tip

Computational Undecidability in the Spatialized Prisoner's Dilemma



Figure 17 Clean-up in the non-zero case.
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of m. The processisillustrated in figure 17, coding €3 with awhite triangle
against black and t with a black dot. In the zero case our fina return
detector can be built so as extinguish the e2 head of the single-wire
e2mmm trail when it is encountered. The headless string of mswill shrink
back to the bottleneck, where two €3t pairs again auffice to restore the
original memory core.

All basic functions of Minsky register memory, then, can be accom-
plished in the context of our competitive cellular automata: addition by
one, subtraction by one, and zerocheck. Therest of theregister schematicin
figure 12 portrays the management mechanism, which in efect converts
messages received in terms of normal electrons from the computation
center into pulses of specia eectrons sent into the memory core.

For those interested in the details we provide close-ups of a few of the
essential management components.

One component used repeatedly in the schematic is a two-loop
conversion mechanism, which takes a normal electron as input and sends
some special electron out the other side. A simplified illustration of the
basic principle appears in figures 18a and 18b. Essentia to the process is
the fact that strategy scores have been chosen so that a standard electron et
pair can extinguish any other specia electron pair at akill site. Without an
electron input from the left, therefore, the two loops shown generate
electronsthat mutually annihilate at the last kill site, much inthe manner of
negation (figure 183). An electron input, however, kills off an et pair from
the first loop and therefore allows a specia electron to escape from the
second; we have effectivdly converted a normal electron to a specia
dectron (figure 18b). Any particular synchronization for particular
electrons with respect to other parts of the register mechanism can be set
by the length of the output wire.

The one special eectron that consists of more than a pair, the e2mmm
guadruplet used in the zero-check procedure and required for memory
replacement within the subtraction procedure, turns out to be the hardest
to control. Because such an electron refuses to turn a standard wire corner
within a standard background field, for example, a different background
strategy b2 is used for the e2mmm breeding loop in the upper l&ft hand
corner of the schematic. In other regards the double-loop mechanism is
similar to others in the schematic: loop-generated e2mmms and standard
etsmutually annihilate at an upper kill site, unless an electron signal is sent
in on the first input line from the l&ft. When an e2mmm is released to the
right, however, a copy also travels south, calling for the later head-on kill
provided by a delayed electron on the western loop.

In-its passage to the memory core, the e2mmm quadrupl et ill needsto
pass through two kill gates at x and y in figure 12, required for other
purposes. Transfer at each point is choreographed using one timed electron
from the rear and one from the south, as illustrated in figure 19. For this
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output from the right. (For purposes of illustration a diode left of each loop is omitted and
loops are shortened accordingly.)
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Figure19 e2mmm trander.

reason provision was also made near the e2mmm loop for sending
independent et pairs down the feed wire and out to the right.

The one management mechanism |eft to be described is the component
of the zero-check that registers whether or not ae2mmm trail has bounced
back from the memory core in the time required to signal a memory
contents of zero. Here two standard electrons are used at gate y in the
manner illustrated in figure 20. If an e2mmm series has arrived at the
proper time, only one of these will travel south to a final detector (as
shown). If an e2mmm has not arrived, indicating a memory contents
greater than zero, both dectrons will travel south to be registered. The
signal required at thefinal detector isthussimply '2 = not zero, 1 = zero'.*°

We note one final complication. In tweaking strategies to achieve the
basic mechanisms of a Minsky register, a dight change in scores has been
required for strategy b against itsdlf. In theinitial outline of strategy scores
for basic wires in section 6.3, bb appears as 2.667; in Table 1, for the
full Minsky register, it appears as 2.612. The only basic mechanism this
afects is the T-branch, of for example the origina diode, which now
requires the protective collar of strategy d (for ‘diode collar') shown in
figure 21.

Although details are somewhat complicated, then, a Minsky register
machine can effectively be wired within our cellular automata. Unlike a
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Figure 20 Zero-check mechanism.
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Figure21 Diodevariant.

looped Turing machine, moreover, which requires the complex back-
ground of an infinite tape loop, a Minsky register machineis el egantly sdf-
contained. Because register contents are always finite, the initial state of
any Minsky register machine can beinstantiated as afinite configuration of
strategies dropped into an unbroken infinite sea of a uniform background
b, shown in black and white as an unbroken sea of white.
Thisalowsus, findly, amore elegant statement of formal undecidability
for the competitive automata at issue. Is there any algorithm that will tell
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us in each case what the result of embedding a finite configuration of
strategiesin a sea of strategy b will be? Because those finite configurations
will include the instantiations of arbitrary Minsky register machines,
equivalent to Turing machines, the answer must be 'no'.

Here we can also make undecidability a bit more graphic.

Let us add two additional strategies to those outlined above—f and a,
for 'flask' and 'acid'. These are shown in black and white using square dots
and vertical stripes. A short set of scores for f and a, in competition with
our four basic strategies, is as follows:™

wf =2.412 ef =2.485
wa= 0.857 ea =0.857
tf =2.583 bf =0.868
ta =0.857 ba =0.857
fw =2.412 aw = 4.428
fe =2.534 ae =4.428
ft =3.000 a =4.428
fb =2.472 ab =4.428
ff =2.412 af =0.868
fa =2.472 aa =2.667

Beyond these scores the crucial requirement is simply that acid awill get a
very high score against any other strategy, which will get very low score
against it. We can dtipulate that all other strategies score 0.857 in such a
competition, with as score an overpowering 4.428. Scores <} and &g for
strategies <> other than those shown won't matter and can be listed as *.

What these two additional strategies alow is the construction of a
'strategy bomb': adevicethat will keep hostage and harmlessa small patch
of acid—strategy a—unless a pulseis sent down a particular wire. Given a
pulse down that wire, on the other hand, our acid strategy will be released
to expand without obstacle ever outward, progressively conquering all
strategies in its path. Such a bomb is shown in figure 22 using a centra
block of nine a cdls surrounded by a protective border of f. Left alone it
remains harmless. Send a single pulse down itsfeed wire, however, and an
all-invading cloud of acid will be released.

Consider now arbitrary finite arrangements of six basic strategies, our
origind four plus f and a, embedded in a standard infinite field that
contains the cellular equivalent of a tape loop. Is there any algorithm or
step-by-step procedure that will tell usin each case whether the result will
be a progressive conquest by strategy a or not?

Condider, dternatively, arbitrary finite arrangements of al fourteen
strategies, embedded in a uniform infinite field of background strategy b.
Given a computer large enough or fagt enough, a mind without limits on
attention span or memory or attention to detail, is there any systematic
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Figure 22 Explosion of strategy bomb.

mental or mechanical calculation that will tell us in each case whether or
not the result will be progressive conquest by strategy a?

In each case the answer is 'no'.

Abstract machines of either looped Turing or Minsky register config-
uration can be constructed to look for solutions to arbitrarily hard
arithmetical problems. Either type of abstract machine, suitably wired to a
strategy bomb, can further be instantiated as an array of competitive
cellular automata. Thus to arbitrarily difficult arithmetical problems will
correspond arrays of the relevant set of strategies that will or will not result
in a progressive conquest by acid strategy a depending on whether thereis
a solution to the problem at issue. Were there an algorithm that sorted the
relevant arrangements into those that would result in conquest and those
that would not, it would give us as well an algorithm suitable for deciding
whether arbitrarily difficult arithmetical problems have solutions. Since
there can be no algorithm of the latter sort, there can be no algorithm of the
former sort either.

This is the Conway form of the proof. In somewhat more complete and
traditional detail the argument can be presented in three steps: Minsky
register machines, as outlined, can be instantiated as competitive cellular
automata arrays. Those arrays can themselves be thought of as encoded,
either directly or in terms of the abstract machine they instantiate. The first
guestion is whether there can be any algorithm that decides, for arbitrary
machine-configuration encodings of this type, whether the larger array
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composed of that machine-configuration started on its own encoding as
input will result in conquest by strategy a or not.

The answer is no. If there were such an algorithm, it could be com-
puted by a Minsky register machine, and that machine could in
turn be instantiated as a cellular array with a strategy bomb fixed to the
relevant signal wire in such a way that a positive answer would
prevent, and a negative answer would produce, a progressive conquest
by strategy a. That machine-configuration would itsdf be assigned an
encoding.

Consider the array composed of that machine-configuration begun on its
own encoding as input. Were that array not to result in conquest by a, the
core machine would give a negative answer, exploding the strategy bomb,
which would result in precisely the conquest at issue. Were the array to
result in conquest, on the other hand, the instantiated machine would
never send asignal, and the array has been constructed so that no conquest
by acid will in that case take place. The array at issue would thusresult in
conquest by strategy ajust in caseit would not. The contradiction shows us
that there can be no such array, and thus there can be no machine and no
algorithm of this first type.

As a second step, we can ask whether there can be an algorithm that
decides, for any machine-configuration and any input, whether the result
will bean unlimited conquest by acid strategy a. Again, theanswer isno. If
there were, that algorithm would be computable by an abstract machine
from which the machine above could be obtained simply by adding an
initial input duplicator (for the machine-arrays at issue here, achievable
simply by abranching wire). We've seen that there can be no machine and
thus no algorithm of that first type, and thus there can be no algorithm of
this more genera second type either.

Consider findly just finite configurations of our fourteen strategies,
dropped into unlimited seas of a uniform background. Will any algorithm
decide for each case whether the result will be unlimited conquest by
strategy a or not? Again, no. Since the possible configurations at issue
include those corresponding to Minsky register machines started on any
input, an algorithm of this find type would give us an agorithm that told
us, for any machine-configuration and any input, whether it would result
inunlimited conquest by a. By the second step above there can be no such
algorithm, and thus there can be no algorithm of thisfinal sort either. There
is no agorithm adequate to decide the genera question of conquest for
arbitrary, finite configurations of competitive strategies.

At this point we've moved from the classic undecidability of abstract
machines, via their instantiation within competitive cellular automata, to
the undecidability of competitive celular arrays. The structure of these
results thus parallels the basic strategy of Conway's proof for universal
computation and undecidability in the Game of Life though here the
automata at issue are of an importantly different and more complex kind.*?
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It is the particular characteristics built into these automata that alow for
the find application outlined in the next section.

64 COMPUTATION AND UNDECIDABILITY IN THE SPATIALIZED
PRISONER'SDILEMMA

The final step is to show that the undecidability discussed for abstract
machinesin section 6.2 and carried over to competitive automata in section
6.3 is ultimately an undecidability that appears within game theory as
well: the undecidability of the Spatialized Prisoner's Dilemma.

This is in fact the easiest step of al. The requirements are simply
the specifications for a set of Prisoner's Dilemma strategies that will
generate payoffs in infinite games, which correspond to the scores
used in constructing the competitive celular automata of section
6.3 above. A set of strategies satisfying that requirement is exhibited in
Appendix A.

Although other approaches are surely possible, the general idea of the
particular construction used hereisto have each strategy—w, €, t, b, etc—
begin its infinite series of play with a short signature set of cooperations
and defections. Strategy w always begins with four defections, strategy e
with three defections and a cooperation, and so forth. The strategies at
issue are thus designed to begin play with what amounts to an identifying
code. Given that convenient self-labeling, the behavior of each strategy on
our list can be specified in terms of the codes of its opponents, which
affords a great deal of flexibility in the fine-tuning of desired scores.
Strategy b can be written as a series of individual clauses: If opponent
started DDDD, play..., if opponent started DDDC, play.../ and so forth.
What is at issue are infinite games, as noted in the introduction, and the
strategies listed in Appendix A arein all cases designed to set up periodic
competitive play. Their scores thus depend in the end only on average
scores over the infinitely repeated period of play; scoring within the initial
signature set can simply be ignored. Because finite games of increasingly
length will progressively swamp any initial scoring in precisely the same
way, the basic results at issue could also be shown for finite games of
sufficient length.®®

Evidence that configurations of Prisoner's Dilemma strategies in fact
constitute competitive automata arrays adequate to model either of our
basic abstract machines—and therefore inherit their undecidability—need
go no further than such a list of particular strategies. Though clumsy,
perhaps, the proof could hardly be more constructive. It isaso possible to
take amore genera approach. Using the basic techniques indicated above,
we can in fact design Prisoner's Dilemma strategies that will give us
essentially any desired competitive scores between 1 and 3 for each
strategy. This suffices to specify the overwhelming majority of scores
required in the present case. Where one of a pair of strategiesisbelow 1 or
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above 3 we can also pinpoint a highest and lowest possible score for an
opposing strategy, and can design a strategy to give us any chosen score
between those points. Algebraic details for this more general approach are
outlined in Appendix B.

Cooperative behavior is a basic fact of both economics and biology.
Accounting for that fact is a theoretical challenge, and both theoretical
economics and theoretical biology have imported resources from game
theory in the attempt to do so. The primary model appealed to in both
disciplines has been the Prisoner's Dilemma, which in iterated and
spatialized forms offers a compelling picture of surprising but intelligible
ways in which cooperation can arise from and serve the needs of sHf-
interest. These game-theoretic models thus constitute some of our simplest
attempts at understanding this aspect of ourselves as both biological and
socid organisms.

What the work above indicates is that forma undecidability shows up
evenin these ssimple models. Inthat sense classic limitative results refuse to
keep their intellectual distance, safely locked away in the higher reaches of
axiomatic arithmetic, abstract machine or algorithmic information theory.
The phenomenon of undecidability, it turnsout, characterizes even some of
our simplest models of ourselves. To the extent that Vico representsathesis
of transparent intdligibility in the socia sciences, with Marx arguing
the contrary, such a result offers forma support for Marx's side of the
debate.

An important qualification should aso be noted, however. One clearly
unrealistic aspect of the models used throughout is that they employ an
infinite two-dimensional field. That feature is in fact crucia for our
undecidability results—the modeling of arbitrary Minsky Register
machines, for example, requires an infinite background sea in order
to alow memory cores to expand as needed. The core undecidability
result can therefore only be said to apply to our models in an abstract
form, rather than immediately to the non-abstract phenomena that they
model .**

None of this, moreover, should be taken as indicating that game-
theoretic modeling is somehow conceptualy doomed or hopeless, any
more than standard Godel results indicate that arithmetical programming
is doomed or hopeless. None of it indicates that there is anything wrong
with our attempts to use the Spatialized Prisoner's Dilemma as a model
within either biology or economics. If anything, the work aboveisrather a
reflection on the surprising depth of even the ssimple models we now use.
Simple as they are, these abstract models are sufficient for the classical
phenomena of universal computation and formal undecidability. Thus
even if biological or economic phenomena were themselves as simple as
some of our simplest existing modelsfor them, the basic abstract principles
of those phenomena would afford a complexity comparable to some of our
richest mathematics.
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principle of non-contradiction, is as follows:
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of falsity).

An importantly different form of reasoning, to the same conclusion, is as follows:

If the statement isfalse, then clearly it isfalse. Ifit istrue, it isboth trueand falseand therefore
false. In either case, therefore, we can conclude that the statement is false.

11. Here again there are two possible lines of reasoning:

If the statement isfalse, then it isfalsethat it isnot both trueand false. If it isfalsethat it isnot
both trueand false, it must betruethat it isboth trueand false. But that isa contradiction, and
thus cannot be true. Thus the statement cannot be false; it must be true. (No similar
contradiction follows from an assumption of truth). If the statement is true, then clearly it is
true. If it isfalse, then it isfalsethat it isnot both true and false. It must then betruethat it is
both trueand false. Thusif it isfalseit isalsotrue: assumption of either truth or falsity leadsto
the conclusion that it is true.
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13. W. V. Quine, 'Two Dogmas of Empiricism," in From a Logical Point of View, Cambridge,
Mass.: Harvard University Press, 1961. See also Quineand J. S. Ulian, The Web of Belief, New
York: Random House, 1978. Note we need not deny the philosophical possibility of points of
epistemic foundation, what Quine elsewhere calls the "fancifully fancyless medium of
unvarnished news." The dream of epistemic foundationalism has always been that there are
pieces of information the truth or falsity of which is not a matter of internal content and yet
which are themselves free of the complications painted for epistemic predicaments discussed
here: the incorrigible epistemic atoms from which all elseis constructed. Even if such a view
is true, however—even if some species of sense-data acquaintances or observation sentences
are free of the general epistemic predicament sketched above—it is clear that the evalua-
tion of most middle-sized empirical claims is embedded within such a predicament, subject
to evaluation only within a tangle of claims regarding the acceptability of other claims
and information regarding the reliability of general sources of information. If
epistemic foundationalism is false, on the other hand, all empirical claims are of this
type.

14. Anil Gupta, 'Truth and Paradox," Journal of Philosophical Logic 22 (1982) 1-60, reprinted in
Robert L. Martin, Recent Essayson Truth andtheLiar Paradox, Oxford University Press, 1984, pp.
175-235; see p. 210. The version of Gupta's puzzle offered here is in fact closer to that
presented by Barwise and Etchemendy in The Liar (Oxford Univ. Press, 1987, pp. 23-24),
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smplified from Gupta's original by the dimination of several claims established on external
grounds. If wediminateall such daimsweget apurer example, sill decidablewithin mutual
reference:

Al: All of theclaims madeby B aretrue

A2 At least oneof thedaimsmadeby B isfalse.

Bl: At mog oneof the claimsmadeby A istrue

The contradiction between Al and A2 shows usthe truth of BI, which in turn showsusthe
truth of Al.

Cassssimilar to Gupta's, interestingly enough, are offered by Louis Sachar in a children's
puzzlebook entitled SidewaysArithmetic from Wayside School (New York: Scholagtic, Inc., 1989).
One of Sachar's Smpler examplesisthe following:

C. Theanswer tothis satement isthe same asthe answer to satement D.

T F
D. Theanswer to this satement isdifferent from the answer to satement C.
T F

If weanswer T to (C), weare obliged to answer T to (D). But then (D) isfalse, and thus at
least one of our answersiswrong. The alternativeisto answer *F to (C), which allowsusto
answer T to (D), without internal incondstency.

15. On these critical points| am obliged to Leon Porter for helpful correspondence—PG
16. A somewhat smilar caeis
A. Thisgatement isfairly accurate

Using the representation of the hedge 'fairly’ outlined above, the value of (A) will be
the square root of the value of This statement is accurateé smpliciter. Revised values for
(A) can thus be represented by putting the right hand side of such Vvp schema under the
radical

xAM-Absd-x,,).
For positive x, lessthan 1 this can be smplified to

X,H =VV

This satement is fairly accuraté has two fixed points; it can condsently be assgned an
accuracy of either O or 1. Those two fixed points have a very different status, however. Oisa
repdler fixed point valuesarbitrarily closeto O aredriven, through revison, farther away. 1is
an attractor fixed point, drawing non-zerovaluestoit likeamagnet. Thedynamicsfor (A) is
shown in a web diagram on the left below.

Sentence (B) isemphatic wher e (A) wasmodest, using a boastful 'very accurate in place of
'fairly accurate':

B. Thisgtatement isvery accurate
Using the squaring function to modd 'very', revised valuesfor (B) will be given by

*n+l = Xn*

The fixed points, interestingly enough, are precisdy the sasme 0 and 1 are again the only
conggtent accuradiesassgnable. Here, however, it is1that istherepdler point and Othat isthe
attractor point. Thedynamicsfor (A) and (B) areshown in theillugtrations.

Notes



L i 1 1 1 1 1 A—1

1- 1

A Thisgtatement isfairly accurate with initial value of 0.13.

i $

- [

B Thisgatement isvery accurateé with initial value of 0.%.

17. J. B. Gunn has done dgnificant work in solving various sdf-referential sentencesin this
sense. Seefor example " Notes on an Algebraic Logic of Sdf-Reference” unpublished. | am
obliged to Gunn for extensive and very helpful correspondence—PG

18. The daim that the basic epigemic quegtion is "Who do you trug?"' is one Aladair
Madntyre made informally years ago. Like many of Madntyresdictums, it hastaken mea
long timeto fully appredateitstruth.

19. A point emphasized in Kripke, " Outline of atheory of Truth," Journal of Philosophy 71
(1975), 690-715.

20. Heinz Pages, The Dreamsof Reason, New York: Simon and Schugter, 1988, p. 145.
21. John leCarrl, SmUey' sPeople, New York: Knopf, 1980.
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22. For some purposss it might also be important to have a rdiability etimate that hedges
againg over-confidence In such a caseit might bethe squar e of theformula abovethat ismore

appropriate
K»H  =((&-**) +/p/)/3f

In cases where we worry about underestimating reiability the square root of the formula
might be used ingtead:

RoH = JW-K*)+ [*/)[*).

Moreover, no provison has been made here for different types of information counting
differentially in areputational formula. For amorerealistic modd of reputation asapplied to
scret agents, for example, we might also want to incorporate a measure of informational
importance. On that more complex modd it would be accurate and important information
which createsa positivereputation and important inaccur acy which can damageit.

23. 1/2istheonly initial estimatefor (40) that will not force usto an oscillation between 0 and
1. In that case, of course, we escape an oscillation in the background reiability etimate as
well.

24. Thisisafeatureof the current modding for rdiability updating which would not hold for
a smple averaging formula.

25. GeorgeJ. Klir and Tina A. Falger, Fuzzy Sets, Uncertainty, and I nformation, Englewood
Cliffs New Jersey: Prentice Hall, 1988. Note also that the familiar debates over interpretation

of probability theory might be viewed as debates over whether it should be construed as a

theory of level-one or level-two phenomena.

26. Sandard examples of computational complexity involve problems with complete

information and exact solutions. A class of problems involving partial information

ingead—thereby combining some aspects of this rung with that beneath it—has been

introduced asdisplaying 'information-based complexity' by Edward W. Packd and J. F. Traub
(" Information-basad complexity,” Nature 328 (July 1987), 29-33).

27. Thelocusclassicusfor Dualigt formsof theLiar isthe Sophismata of Jean Buridan (c. 1295
1356). Buridan's own treatment of the problem, however, extends beyond smple truth and
faldty to casesmoreclosaly rated to those at issue here, induding cases of coordinated action
and even deontic questions of promise-kegping. See John Buridan, Sophismson Meaningand
Truth, tr. by Theodore Kermit Scott, New York: Appleton-Century Crofts, 1966, pp. 219-221.

28. Take a line ssgment and remove the middle third. For each of the remaining segments
remove the third, and so on. Cantor dust is the set of points that remains after an infinite
number of iterations an infinite set of pointswith no length.

Interegtingly, Aristotle comesvery closeto thenotion of Cantor dust in On Generation and
Corruption. Arigoatle has us imagine a body " divisible through and through, whether by
bisection [i.e., by progressvebisection adinfinitum], or generally by any method whatever" ;

Since, therefore, the body is divisible through and through, let it have been divided. What,
then, will remain? A magnitude? No: that isimpossible, sncethen therewill be something not
divided, whereasex hypothesi the body wasdivisiblethrough andthrough. But if it be admitted
that neither a body nor a magnitude will remain, and yet divison is to take place, the
condtituentsof thebody will either bepoints(i.e., without magnitude) or absolutely nothing. If
its congituents are nothings, then it might both come-to-be out of nothings and exis as a
composte of nothings and thus presumably the whole body will be nothing but an
appearance. But if it consists of points, a Smilar absurdity will result: it will not possess any
magnitude. (1.2,316a 15-30, tr. by H. H. Joachim)

29. David Lewis, " Immodes InductiveMethods™ Philosophy of Science 38 (1971), 54-63; p. 55.
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30. The notion of rigid designators is of course taken from the work of Saul Kripke. See for
example"Naming and Necessity" in Donald Davidson and Gilbert Harman, eds., Semantics of
Natural Language, Dordrecht: D. Reiddl, 1972, pp. 253-355.

31. Indefinite repetition of such messages givesan even more stableresult: regardiess of either
initial accuracy estimates or initial background reputation we get a unique fixed point for each
of the messages. Under unlimited repetition (17) converges on both an accuracy and
reputation value of 2/3, precisdly like its Haf-Sayer relative. (18), claiming areliability twice
its agent's reputation, converges to find values of 1/2 for both accuracy and reputation.
Dynamic behavior is not parallel to accuracy anadogues throughout, however (19),
corresponding to the Chaotic Liar, converges to a value of 2/3 precisdly as does (17). (21)
convergesto 1/2, rather than oscillating periodicaly for other values. For (22), the correlate to
the Minimalit, 2/3 forms an attractor rather than a repellor fixed point.

32. Seefor example Manfred Schroeder, Fractal s, Chaos, and Power Laws, op. tit, chapter 12.

33. InErnest Nagel, ed., John Suart Mill's Philosophy of Scientific Method, New Y ork: Hafner
Publishing Company, 1950; p. 11.

CHAPTER 3

1. Autobiography, vol. 2, New York: Bantam Books, 1968, pp. 326-327.

2. Hao Wang, Reflectionson Kurt Godel, Cambridge, Mass.: MIT Press/Bradford Books, 1987,
p. 112.

3. Arend Heyting, "The Intuitionist Foundations of Mathematics,”" in Rudolf Camap, Arend
Heyting, and Johann von Neumann, "Symposium on the Foundations of Mathematics,"
Erkenntnis (1931), 19-121, reprinted in Paul Benacerraf and Hilary Putnam, Philosophy of
Mathematics, second edition, New Y ork: Cambridge University Press, 1983, pp. 52-61, p. 53.

4. Paul Bernays, "L 'enseignement math& natique,” 1t ser. Val. 34 (1935), pp. 52-69, transl ated
by C. D. Parsons as "On Platonism in Mathematics," in Paul Benacerraf and Hilary Putnam,
Philosophy of Mathematics, second edition, New Y ork: Cambridge University Press, 1983, pp.
258-271, pp. 258-259.

5. The game fractd outlined here can be thought of as a fractdly embedded form of the
familiar game tree. See for example A. K. Dewdney, The New Turing Omnibus, New York:
Computer Science Press, 1993, esp. ch. 6, and A. L. Samuel, "Some studiesin machinelearning
using the game of checkers," in Computersand Thought, eds. E. A. Feigenbaum and J. Feldman,
New York: McGraw-Hill, 1968, pp. 71-108.

6. Because of color manipulations, the shades on the axes in these illustrations are no longer
reliable.

7. Mere propositional formulae might either be assigned a specid ‘formula value,
representing the fact that they fdl short of full forma sentences, or be treated as carrying
the truth-values of their universally quantified forms.

8. Here we've purposely limited the scheme to monadic predicates applied to variables.

Constants a, b, c... could also beinterwoven with variablesin the plan above, but at the cost
of serious complications. The difficulty for a map including both Fa and VxFx, for example, is
that these are not easily linked in waysreflected in the Sheffer stroke, the core connective of the
map. It would be easy to assign each of these formulae an independent contingency color, but

the map would then fall to reflect the fact that ~ Fa ->-~ VxFx, for example, is a tautology:

such a map would exhibit not all tautologies of monadic propositiona calculus but merely
those dependent on the connective NAND alone. A complete map of tautologies for the full

propositional calculus would thus require a structure beyond the one proposed here.
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9. Ancther intriguing representation is possiblein terms of Conway numbers. In Conway's
system, a'1' can betaken to represent a unit forward and a 'O’ a unit backward; however,
whenever thereisachangefrom T to'C or from 'V to'1' in the sequence, unitsare halved.
Bdow, for example, isa binary treerepresenting some of the finite Conway numbers.

w/

101

/8
1611

5/8

12 1010

AN
. / -
\

A binary tree representing some Conway numbers

In termsof Conway numbers, theprogressveand regressve Achillesseriesareasfollows:

Fraction Conway Represntation
1/2 10

3/4 101

7/8 1011

9/16 10111

Fraction Conway Represmntation
1/2 10

14 100

18 1000

1/16 10000

10. Michad Bamdey, FractalsEverywhere, San Diego: Academic Press, 1988. On the Sieipinski
triangleor gasket in general seefor example Robert L. Devaney, Chaos, Fractals, and Dynamics,
Menlo Park: Addison-Wedey, 1990; Heinz-Otto Peitgen, Hartman Jurgens and Digmar
Saupe, Fractalsfor the Classroom, New Yark: Springer-Verlag, 1992; and A. J. Crilly, R. A.
Earnshaw, and H. Jones, eds., Fractalsand Chaos, New Yark: Springer-Verlag, 1991.

11. SeeManfred Schroeder, Fractals, Chaos, Power Laws, New York: W. H. Freeman, 1991, p. 21
ff.

12. Tyler Burge " TheLiar Paradox: Tanglesand Chains" Philosophical Studies41 (1982), 353-
366; Brian Skyrms, " Intendonal Aspects of Semantical Sdf-Reference” in Robert L. Martin,
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Recent Essayson Truth andtheLiar Paradox, New Yark: Oxford Univer sty Press, 1984, pp. 119-
131.

13. Manfred Schroeder, loc. cit.

14. Herethereisa grong affinity to August Stern's matrix logic, outlined in brilliant detail in
hisMatrix Logic (Amserdam: Elsevier Science Publishers, 1988), Matrix Logic and Mind
(Amgerdam: Elsevier, 1992) and The Quantum Brain (Amsterdam: Elsevier, 1994). The
connections Sern drawsto the logic of quantum phenomena are well worth further sudy.

15. It istempting—but would be migaken—to try to use this schema asa representation not
only for thefull propogtional calculus, but for afull infinitary prepostional calculus, allowing
for infinite formulae involving infinite connectives by way of conjunction, digunction, or
Sheffer drokes (Infinitary systems of this type appear in Leon Henkin, " Some Remarks on
Infinitdly Long Formulas" in International Mathematical Union and Mathematical I ngtitute of
the Polish Academy of Sciences, eds,, I nfinitistic Methods, New York: Pergamon Press 167-183,
and in Card Karp, Languageswith Expressionsof | nfinite Length, Amserdam: North-Holland,
1964).

Thisistempting for onereason because infinite digunctions of sentence letter s represented
in thisway might seem to offer non-periodicbinary decimals. A smpleexample consstsin the
digunction of all our atomic sentence Ietters, giving us the truth table 0111..., with no
repetition of itsinitial zero. For a more interegting example, congder an infinite digunction
which leaves out someof the set of sentenceletters. Leaveout only the second sentenceletter,
asoutlined above, and you would appear to get thedigunctivevalue01011111.... Leave out
only thethird and you would appear to get the pattern 01110111.... In general, leaving out
thenth sentenceletter from an infinitedigunction of all sentenceletter sappearstointroducea
zero in the (2" + I)th place. If every even sentence letter of the st were left out, so the
reasoning goes, theresult would be a classc non-periodic decimal in which Os are separated
by ever-increasng expanses of | s.

An interpretation of infinitely-extended truth tables is also tempting given that universal
quantification can be thought of as an infinite conjunction, existential quantification as an
infinite digunction. Werethis schemeinter pretablein such away, then, it would offer amode
not only for propostional but for predicate calculus. Restricted to finite connectivesit can at
best correspond only to arbitrarily large finite models for propostional calculus.

The difficulty that blocks both of these tempting moves, however, is that the infinite
extenson of truth tables outlined, although adequate for arbitrarily large finite complexes,
cannot be thought of as adequate for genuindly infinite complexes. This becomes evident if
oneasksat what point in thetablewewill find arow which representsa T valuefor all of our
sentenceletters it isdear that such arow can have no (finite) placein thescheme. A sandard
diagonal argument gives the same result: there will be an infinite complex of our sentence
lettersthat has no correponding row in the table, and thus the table is not be adequate for
representation of all valuesin a genuindy infinitary system. For that werequiretruth tables
somehow not merdy of countably infinite but of uncountable length.

16. Hereweareobliged to an anonymousreader.

17. SeeManfred Schroeder, Fractals, Chaos, and Power Laws, New York: W. H. Freeman and
Co., 1991, esp. pp. 20-25.

18. The correspondence between the Serpinski triangle and the value spacefor NAND might
also beunderstood in termsof a 'throw-ouf procedure. Consider a value space structured as
in figure 21, and envisaged asinitially filled. A NAND compound istruejug in case at least
oneof itscomponentsisfalse, and thusrepresentsatautology if thereisno casein which both
componentsaretrue Tofind theentriesin aNAND spacethat form tautologiesunder NAND,
we can therefore procead by repeatedly discarding any cell for which corresponding bitsin
both of itsaxisvaluesare 1.
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Starting with the entire value space, it is clear that thefirst (leftmost) bit in all valuesin the
bottom hdf of theleft axisis1.Itisalsoclear that thefirst bitin all valuesintheright haf of the
top axisis 1. Any point of intersection between these valueswill thus have two Isin the first
bit position, and thus will not be a tautology. We ‘throw ouf the lower right quadrant as a
potential area for NAND tautologies.

We can now repeat the procedure with each of the three remaining quadrants, concentrating
on the second digit. The lower haf of each quadrant is governed by a 1 in the second hit
position on the left axis. The right haf of each quadrant is governed by a 1 in the second
position on the top axis. These intersections will fall as tautologies, and thus we 'throw ouf
each of their lower right comers.

If we proceed in this manner we will end up with an image of the Sierpinski triangle. The
genera procedure will be the same regardless of the number of values on our axes (or their
length in hits), and thus it is clear that we will get a similar Sierpinski triangle for NAND
regardless of the number of valuesinthe system. The general procedurewill also carry over to
other connectives, sincewe can in each case phrase rules similar to the principle used above—
that we find where NAND isaways true by discarding areasin which corresponding bitsare
both 1. Here we are obliged to the careful work of an anonymous reader.

19. See Gerdd A. Edgar, Measure, Topology, and Fractal Geometry, New York: Springer-Verlag,
1990.

Other topological properties of logical interest may hold in theinfinitely-grained case. It has
been conjectured, for example, that any non-tautology will have a circle around it of some
dimension that contains only non-tautologies, whereas any non-point circle around any
tautology, however small, will aso contain non-tautologies.

20. Lukasiewicz himsdf outlined his system in terms of implication and negation. Here we
take as a Lukasiewicz 'or' the classca transform from implication: /pv o/ =/ ~p -*e g/,
with 'and’ by asimilar transformation. See Nicholas Rescher, Many-valued Logic, New York:
McGraw-Hill, 1969.

21. Tommaso Toffdi and Norman Margolus, "Programmable Matter Concepts and
Redlization," Physica D 47 (1991), 263-272; see also lvan Amato, "Speculating in Precious
Computronium,” Science 253 (August 1991), 856-857.
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80, P. Crowley offers an alternative way to represent basic strategies in terms of hierarchical
rules. In Crowley's representation A11D appears as the single rule /:D, indicating that
whatever you did on the last move (indicated before the slash), and whatever the opponent
did on thelast move (indicated after theslash), the movedictated after thecolon isD. Insucha
representation A1C appearsas/:C. TFT isrepresented as:

/:C
/D:D

using the provision that higher order rules—roughly, those which fit the situation in more
specific detail—supersede lower-order rules. When conditions of two or more rules of the
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25. Despite some confusion in theliterature, however, neither TFT nor ALLD strictly qualifies
asan 'evolutionarily stable strategy' or ESSin the sense of Maynard Smith, Evolution and the
Theory of Games, Cambridge: Cambridge Univ. Press, 1982. Representing the payoff for a
player x against a player y in a given series of games as P(X, y), Smith's formal definition
specifies that a strategy x is evolutionarily stable just in case P(x, x) > P(y, X) or both
P(x, X) =P(y, x) and P(x, y) > P(y, y) for all strategiesy #Xx. It is true that both TFT and A11D
resist invasion in that no other strategy can get a higher score against TFT or A11D than they
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get againg themselves and at the sametime get an equal or higher score againg itself than
they get againg it. But there are strategiesthat do precisdy aswell againg TFT and A11D as
they do againgt themsdlves and that also do aswell with their own kind as TFT and A11D do
with them: A1IC doesaswell in acontext of TFT as TFT does, for example, and Suspicious Tit
for Tat (STFT) doesaswell in a context of A11ID as A11D does. The conditionsof Smith'sformal
definition arethusnot fulfilled for either TFT or A11D, and nether qualifiesasan ESS With an
eyeto natural selection, asNowak and Sgmund note, although such strategiescannot invade
by drategic advantage, they can invade by something like genetic drift (see Nowak and
Sigmund, " Game-Dynamical Aspectsof the Prisoner'sDilemma," Applied Mathematicsand
Computation 30,1989,191-213, and " Ocillationsin the Evolution of Reciprodity,” Journal of
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GameDynamics" Journal of Logic, Language, and I nformation 1 (1992), 111-130. Asindicated
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indicated in Nowak, " An Evolutionarily Stable Strategy May Be Inaccessble Journal of
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of Conflict Resolution 29 (1985), 611-618.
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May, " Evolutionary gamesand spatial chaos" Nature 359 (1992), 826-829; M. Nowak and R.
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[.C

L>D

/D:C

/D:C

Even themeasure of optimality used here, it should be noted, concernstheinvasion potential
of asingle srategy within afied of another srategy. Within more complicated spatial fieldsit
is dear that combinations of several drategies can offer some surprisng mechanisms of
invasion.

42. SeeP.Kitcher, " The Evolution of Human Altruism,” Journal of Philosophy 90 (1993), 497-
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assumed to have a collar of strategy d (for "diode collar") similar to that shown below at the
neck of thememory core. A revised diodeisshowninfigure 21. If onelooksa w, t, e, anddin
place of w, t, e, and b, on the other hand, relative scores can be thought of as carried over
without any change at all.

34. A convention of two cells per unit proves convenient because of timing. The end of the
memory core consistsof atip of strategy m that changes from one column to two every second
generation, and a number of basic functions are accomplished by specid €electrons timed to
meet that tip in either its single or double form. By using two units (or any even number) to
represent each integer increase we avoid having to change timing for specid eectrons
depending on the number stored in our memory register.

For purposes of exposition wetend to usethe sixth cell to theright of the ¢ collar asour zero-
mark throughout and will add and subtract integersin terms of multiples of two units. Within
a fully operating machine it might prove convenient to increase unit multiples still further or
to use a zero-mark somewhat further to the right. Memory cores of dightly different lengths
are used for purposes of illustration in the figures.

35. Not al frames are shown, of course; the attempt is merely to make the process of addition
understandable. Thefirgt two frames are separated by 8 generations, the second and third by 3
generations, the third and fourth by 2 generations, with al othersin one-generation sequence.
It should also be noted that the length of the memory core is chosen here and in other figures
merely for the sake of illustrative convenience; the process remains the same whatever is
chosen as our 'zero mark'.

36. Here as in other figures an incomplete selection of frames is shown, intended merely to
illustrate the general mechanisms of the process. The length of the memory core reflects only
illustrative convenience as well.

37. Thedistance between thesein figure 16 is chosen merely for purposes of illustration, asis
the length of the memory core. In actual operation the machine may require a significantly
greater length between them. Timing is crucid in terms of even and odd: even at greater
distance there will be an odd number of cdls between the electron heads, as shown, and an
odd number of cells between them and the advancing head of the e2mmm trail in the memory
core.

38. Thisisin fact the reason for using the specid strategy t3.

39. The fact that these electrons also travel Ieft from the upper junction causes a minor
complication. For this reason we envision the feed wire from the e2mmm loop as long enough
to contain a chain of oncoming e2mmms. Moving to the left, an independent et eventually
meets an oncoming e2mmm head-on in mutual annihilation. This means, however, that an
e2mmm of the chain will not be present to mutually extinguish with its standardly
synchronized nemesis from the standard et loop. In feeding in an independent et in the first
place we thus arrange for a timed electron to cancel the next electron output from the et loop
aswell.

40. These electronsarethought of as originating from the wire south of junction x, with copies
to the left eliminated by independent ets from the e2mmm region, controlled as outlined
above.

41. These can bethought of as appended either to our origind list of four strategies for looped
Turing machines or to the dightly revised four of Table 1.

42. Berlekamp, Conway, and Guy, op. cit.

43. These strategies are of course not assimple as TFT or A11D, of course; that would be too
much to expect. It is quite possible, however, that sgnificantly simpler strategies than
constructed here could be found with the same computational capabilities.
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44. Were we to impose 'practical’ finite limits on arrays, formal undecidability would be
avoided. Tractical undecidability,’ in the form of unmanageable complexity, would remain.
For finitearrays given certain srategy assgnmentsto n chosen cdlls, the question of whether
asingle strategy will prove triumphant appear sto be exponential in n. If we cut the question
further down to size, asking whether conquest will occur by a time limit which we car efully
specify using somefigurepolynomial in n, our problem isstill NP-complete. See Patrick Grim,
" An NP-Complete Question Regar ding the Spatialized Prisoner's Dilemma," research report
#94-03, Group for Logic and Formal Semantics, Philosophy, SUNY at Stony Brook.

45. Within a repeated period of play it will not matter if the pattern for two strategiesis for
example

Player A: CDCDCDCD
PlayerB: CDCDCDDD

or

Player A: CCCCDDDD
PlayeeB: CCCDDDDD

Scoring remains the same as long as the pairs played remain the same, regardless of their
order.

46. If x is nonterminating we can set d at the place of any desred approximation.
47. For supposeany x and y, condructed from blocks of Ks, Ls and Ms
11.33...55...

K L M

11.33...00...

Isthat thehighest y possiblefor that x7 No. For the sake of smplicity we consder the case of
jugt oneK:

1 33...55...
1 33...55...

Wewill get the sameréative scoresby tripling al units:

111 333333..555555...

Il 333333..5555505...

But now congder replacing theinitial block of 3 Kswith the following:

5 5 3

M M L

0 0 3

Thiswill givethe same scorefor x over that initial subperiod, but a sgnificantly higher score
for y. Thusfor our original x therewill be a higher y. The argument can berepeated for any

number of Ks and thusfor any x the highest y will includeno Ks Algebraically, usingK, L,
and M asthe number of plays of each typein the established period, it isdear that

K+3 +5M 3L +1)+5M +K-1)
K +L + M K+L+M

will hold for K > 1/2, with the case of K =0 trivial. Because series of play with the same
proportionsof K, L, and M will havethe sameaver age scor e, we can alwaysensurethat K isa
multiple of 3 convenient for replacement by twoMsand an L.
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48. | am grateful to Steve Majewicz for assstance with the algebraic treatment in this
stion—PG
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1. Book VI, 509d-n510b. 1r. by Paul Shorey.
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Afterword

Represent them then, asit were, by a line divided into two unequal sectionsand
cut each section again in thesameratio—thesection, thatis, of thevisibleand that
of theintelligible order—and then asan expression of theratio of their comparative
clearness and obscurity you will have, as one of the sections of the visible world,
images____As the second section assume that of which thisis a likeness or an
image___Wouldyou bewillingtosay, said |, that thedivision in respect of reality
andtruth or the oppositeisexpressed by the proportion—asistheopinableto the
knowable so isthe likenessto that of which itisalikeness?

—Plato, Republic!

"Would you tell me, please, which way | ought to go from here?"
" That depends a good deal on whereyou want to get to," said the Cat.

—L ewisCarroll, Alice's Adventuresin Wonderland

Our attempt here has been to offer a sample, rather than a survey, of
explorations in philosophical computer modeling. Surveys are possiblein
retrospect, only when a full terrain has become visible. What we have tried
to offer here are merely the first glimpses of a new territory.

The work of the preceding chapters has focused on models for semantic
paradox, for varieties of epistemic chaos, for forma systems, and for a
variety of Hobbesian models of socid interaction simply because these are
the areas of exploration to which our curiosities have happened to lead us.
Continuous values, the different perspectives afforded by richer dimen-
sions, and forma undecidability have been recurring themes throughout.
These happen simply to be our first areas of exploration, however, with
unifying themes dictated by our own philosophical interests.

Our hope is to have offered a suggestive first word in philosophical
computer modeling—a set of examples indicating some of the surprising
applications and intriguing results that are possible when the computer is
employed asatool of philosophical imagination. In the long run we expect
others will develop radicaly different forms of" computer modeling,
applied to radically different questions in radically different philosophical
areas. Given the processing power of the contemporary computer, we
expect those further explorations to offer a technological sophistication
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extending the andent tradition of conceptual modding in deep and
important ways. We also expect, given its power, that the philosophical
computer will extend the andent tradition of conceptual modeling in
unpredictable ways.

Patrick Grim

Gary Mar
Paul &. Denis

Afterword
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APPENDIX A: COMPETITIVE STRATEGIESADEQUATE FOR A

MINKY REGISTER MACHINE

In the specifications that follow, please note that
010101...01
100 plays

indicates 100 Prisoner's Dilemma competitions, in the first of which the
player defects, in the second of which he cooperates, and so on. The
notation above thus specifies a block of 100 plays. The notation below, in

contrast:

, 01010101010,
100 times

indicates that a block of 11 set moves is to be repeated 100 times. It thus

gpecifies a sequence of 1100 plays.

Strategy w: Start with 0000. Then:

If opponent started 0000, play 11111111111100000, repeat.

If opponent started 0001, play 010101. ..01. followed by 011, repeat.
100 plays

If opponent started 0010, play 111111111100, repest.

If opponent started 0011, play 1000000000. followed by 000000, repest.
10times

If opponent started 0100, play 01010101... 01, followed by 11111000001

500 plays

If opponent started 0101, play 010101.. .01. followed by 011, repeat.
100 plays

If opponent started 0110, play 1000000000, followed by 0000000000000, repest.
20times

If opponent started 0111, play 111111111100, repest.

If opponent started 1000, play 100000000Q followed by 000000, repest.
10times

If opponent started 1001, play 010101. ..01. followed by 011, repeat.
100 plays

If opponent started 1010, play 1000000000, followed by 000000, repesat.
10times

If opponent started 1011, play 111111111100, repest.

Strategy e Start with 0001. Then:

If opponent started 0000, play 101010.-.10. followed by 111, repeat.
100 plays
If opponent started 0001, play 11111111111100000, repeat

If opponent started 0010, play 010101 ...01. followed by 111... 111, and 111, repeat.

180 plays 20plays
If opponent started 0011, play 1000000000. followed by 000000, repeat.
10times

(gives ww=2.412)
(gives we=2.534)

(gives wt=3.000)
(giveswb = 2472)

(gives wm=2.495)
(gives we2=2.534)
(gives wb2=2.502)

(gives wt2=3.000)
(gives wd=2.472)

(giveswe3=2534)
(giveswc=2472)

(giveswt3=3.000)

(gives ew=2.485)

(gives ee=2.412)
(gives et=2.542)

(gives €b=2.472)

If opponent started 0100, play 11111111111111000000, followed by .11111... 11, repeat, (gives em = 2.341)

31 times 20plays
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If opponent started 0101, play repeated O.
If opponent started 0110, play 1000000000 followed by 00000000001, repest.

(givesee2=1)
(gives eb2=2.526)

(gives ed=2.472)

20times

If opponent started 0111, play 010101... 01 followed by 111... 111, and 111, repeat. (gives &2 = 2542)
180 plays 20 plays

If opponent started 1000, play .1000000000. followed by 000000, repesat.
10times

If opponent started 1001, play 11111111111100000, repest.
If opponent started 1010, play .1000000000. followed by 000000, repest.
10times

(gives ee3=2.412)
(givesec=2472)

If opponent started 1011, play 6i0A10A1... 0L followed by 111.. .111. and 111, repeat. (gives et3 = 2542)

180 pllays 20 Plays

Strategy t: Start with 0010. Then:
If opponent started 0000, play 111111111101, repest.

If opponent started 0001, play .101010...iq followed by 111... 111 and 011, repeat.

180 plays 20 plays
If opponent started 0010, play 11111111111100000, repest.
If opponent started 0011, play 1000000000 followed by 000000, repest.

(gives tw=2.583)
(giveste=2567)

(gives tt=2.412)
(gives th=2.472)

(gives tm =2.485)

(gives th2=2.526)

10 times

If opponent started 0100, play .111111. ..111, followed by 000 000, followed by O,

repest. 19,854 plays 5146 plays

If opponent started 0101, play 101010. ..iqg followed by 111 111, and 011, repeat. (gives te2 = 2.567)
180 plays 20 plays

If opponent started 0110, play 1000000000 followed by 00000000001, repest.
20times

If opponent started 0111, play 11111111111100000, repest.
If opponent started 1000, play 1000000000 followed by 000000, repest.

10times

If opponent started 1001, play .101010... ig followed by 111... 111 and 011, repest.
180 plays 20 plays

If opponent started 1010, play .1000000000 followed by 000000, repest.
10times

If opponent started 1011, play 11111111111100000, repeat.

Strategy b: Start with 0011. Then:
If opponent started 0000 play il followed by 111100, repest.

10times
If opponent started 0001 play IOOOOO followed by 111100, repest.
10times
If opponent started 0010 play IOOOOQq followed by 111100, repeat.
10times
If opponent started 0011, play 111. ..111, followed by 000...00q repest.
1612 plays 180 plays

(For bb=2.667, as outlined earlier in the paper If opponent started 011, play
111111111100, repest.)
If opponent started 0100, play 111... 111, followed by 000...000. followed by

187 plays 213 plays
.1010... 10, repest.
402 plays
If opponent started 0101, play 1111000000. followed by 111100, repest.
10times
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(givestt2=2412)
(gives td=2.472)

(gives te3 =2567)
(gives tc=2.472)

(gives tt3=2.412)

(gives bw = 0.868)
(gives be=0.868)
(gives bt=0.868)

(gives bb =2612)

(gives bm = 1.216)

(gives be2=0.868)



If opponent started 0110, play 1000000000 followed by 000000, repedt. (gives bb2=2615)
20 times 3times

If opponent started 0111, play 1111... 111 foUowed by ,000...00ft repeat 1871 times, (gives bt2=1841)

1292 plays 708 plays
foUowed by 1010... 101ft repeat 629 times, repeat whole.
2000 plays

If opponent started 1000, play ,1000000000 foUowed by 000000, repest. (gives bd=2.615)
20times

If opponent started 1001, play ,1111000000 foUowed by 111100, repedt. (gives be3=0.868)
10times

If opponent started 1010, play ,1000000000 foUowed by QXKXX}, reped. (gives be=2.615)
20 times 3times

If opponent started 1011, play 1111000000 foUowed by 111100, repest. (gives bt3=0.868)
10times

Strategy m: Start with 0100. Then:

If opponent started 0000, play 01010101... 01, foUowed by 11111000000 (gives mw=2.485)
500 plays
If opponent started 0001, play 1111111111111100000ft foUowed by 1010 ...Ift repest, (gives me=2.419)
31 times 20plays

If opponent started 0010, play 111111. ..111, foJowed by 010101... 01, foUowed by O, (gives

repeet. 19,854 plays 5146 plays mt = 2.99992)

If opponent started 0011, play 111 ...111, foUowed by 000... 000, foUowed by (givesmb = 2.469)

0000--.0Q, repedt. 187 plays 213plays

402 plays

If opponent started 0100, play 11111111111100000, repet. (gives mm=2.412)

If opponent started 0101, play 111... 111, foUowed by 000000000000, repeat 2373 (gives me2 = 2.886)

100plays
times, foJowed by 0000... Oft repeat 127 times, repest whole.
200 plays

If opponent started 0110, play ,1000000000 foUowed by 000111, repest. (gives mb2=2.476)
12times

If opponent started 0111, play 111 ...1111. foUowed by 000...00ft repeat 55 times, (gives mt2 = 2.819)

1184 plays 816 plays
foUowed by 000...00ft repeat whole.
200 plays

If opponent started 1000, play ,1000000000, foUJowed by 000000, repedt. (gives md=2.472)
10times

If opponent started 1001, play 101010000010 foUowed by 111111111111, repeat. (gives me3=0692)

90times

If opponent started 1010, play ,1000000000, foUowed by 0000 repest. (gives mc=2.472)
10times

If opponent started 1011, play 111111.. .111, foUowed by 010101.. .01, foJowed by O, (gives

repedt. 19,854 plays 5146 plays mt3=2.99992)

Strategy €2: Start with 0101. Then:

If opponent started 0000, play ,101010... 10 foJowed by 111, repedt. (gives e2w=2.485)
100plays

If opponent started 0001, play repested O. (givese2e=1)

If opponent started 0010, play 010101... 01. foUowed by 111... Il and 111, repeat. (gives e2t=2.542)
180 plays 20 plays

283 Computation and UndecidabiUty in the Spatialized Prisoner's Dilemma



If opponent sarted 0011, play ,1000000000, followed by 000000, r epeat

10times
If opponent started 0100, play 111... 111, followed by 000000000000, r epeat 2373

188 plays
times, followed by .0101... 01, repeat 127 times, repeat whole.
200 plays

If opponent gtarted 0101, play 11111111111100000, repest.
If opponent started 0110, play 1000000000, followed by 000000, repest.

10times

If opponent sarted 0111, *

If opponent garted 1000, play ,1000000000, followed by 000000, repest.

10times
If opponent garted 1001, play 111... 1111 followed by 000.. .0000, repeat 521 times,
69% plays 1304 plays
521 times, followed by ,2101010... 10, repeat 729 times, repeat whole.
20000 plays
If opponent sarted 1010, play 1000000000 followed by 000000, repest.
10times
If opponent garted 1011, play 010101. ..01 followed by 111...111, and 111, repest.
180 plays 20plays

Strategy b2: gart with 0110. Then:
If opponent started 0000, play 1111000000, followed by 1111101111100, repest

20times

If opponent started 0001, play 1111000000 followed by 11111111111, repest.
20times

If opponent started 0010, play ,1111000000, followed by 11111111111, repest.
20times

If opponent sarted 0011, play 1111000000 followed by 111111, repest.
20 times 3times

If opponent garted 0100, play 1111000000 followed by 111111, r epeat
12times

If opponent started 0101, play ,1111000000, followed by 111100, r epeat
10times

If opponent garted 0110, play 111... 1111, followed by 000. ..00ft repest.

1667 plays 3B plays

If opponent started 0111, play 1111000000 followed by 111100, repest.

10times

If opponent gtarted 1000, *

If opponent started 1001, *
If opponent garted 1010, *

If opponent garted 1011, play 1111000000 followed by 11111111111, repeat
20times

Strategy t2: Sart with 0111. Then:

If opponent started 0000, play 111111111101, repest.

If opponent started 0001, play 101010...10 followed by 111. ..111, and 011, repeat.
180 plays 20plays

If opponent started 0010, play 11111111111100000, r epest.
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(gives e2b=2.472)

(gives e2m=2.759)

(givese2e2=2412)
(gives
e2b2=2472)
(any drategy will
do. givese2t2)
(gives e2d=2.472)

(gives
€2e3=0.9999)

(givese2c=2472)

(gives e2t3=2.542)

(gives b2w=0.859)
(gives b2e=0.867)
(gives b2t=0.867)

(gives b2b=0.849)

(gives
b2m=0.9285)
(gives
b2e2=0.868)
(gives
b2b2=2.667)
(givesb2t2=0.868)

(any drategy, gives
b2d)

(any grategy, gives
b2e3)

(any drategy, gives
b2c)

(gives b2t3=0.867)

(gives t2w=2.583)
(gives t2e=2.567)

(givest2t=2.412)



If opponent started 0011, play ,1111... |11, followed by 000...00ft repeat 1871 times,

1292 plays 708 plays
followed by 0000. ..0000, repest 629 times, repeat whole.
2000 plays

If opponent started 0100, play 111... 1111 followed by 000 00Q, repeat 55 times,

1184 plays 816 plays
followed by ,111... |11, repeat whole.
200 plays
If opponent started 0101, *

If opponent started 0110, play .1000000000 followed by 000000, repest.
10times

If opponent started 0111, play 11111111111100000, repest.

If opponent started 1000, play 1000000000 followed by 000000, repest.
10times

If opponent started 1001, *

If opponent started 1010, play 1330000000 followed by 000000, repeat.
10times
If opponent started 1011, play 11111111111100000, repest.

Strategy d: Start with 1000. Then:

If opponent started 0000, play 1111000000 followed by 111100, repest
10times

If opponent started 0001, play 1111000000 followed by 111100, repeat
10times

If opponent started 0010, play ,1111000000 followed by 111100, repeat
10times

If opponent started 0011, play 1111000000, followed by 111111, repeat
20times 3times

If opponent started 0100, play 1111000000 followed by 111100, repest.
10times

If opponent started 0101, play ,1111000000 followed by 111100, repeat
10times

If opponent started 0110, *

If opponent started 0111, play 1111000000 followed by 111100, repest.
10times

If opponent started 1000, play 111... 1111 followed by 000. ..00ft repeat.

1667 plays 333plays
If opponent started 1001, play 111100000Q followed by 111100, repeat
10times
If opponent started 1010, *

If opponent started 1011, play 1111000000 followed by 111100, repeat
10times
Strategy €3: Start with 1001. Then:
If opponent started 0000, play ,101010... 10 followed by 111, repeat.
100 plays
If opponent started 0001, play 11111111111100000, repest.

If opponent started 0010, play 010101. ..01 followed by 111... 111, and 111, repeat.

180 plays 20 plays
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(givest2b =2470)

(givest2m =2.180)

(any strategy will
do. givest2e?)
(gives t2b2=2.472)

(givest2t2=2412)
(givest2d = 2472)

(any Strategy. Gives
t2e3)
(givest2c=2472)

(gives t2t3=2.412)

(gives dw=0.868)
(gives de=0.868)
(gives dt=0.868)
(gives db =0.849)
(gives dm=0.868)
(gives de2=0.868)
(any Strategy. Gives
db2)

(gives dt2=0.868)
(gives dd =2.667)
(gives de3=0.868)
(any strategy, gives

dc)
(gives dt3=0.868)

(gives e3w=2.485)

(gives e3e=2.412)
(gives e3t=2.542)



If opponent started 0011, play ,1000000000, followed by 000000, repeat.
10times
If opponent started 0100, play 000000000000 followed by 111111111111, repest.
90times

(gives e3b=2.472)

(gives e3m=2.340)

If opponent started 0101, play 111. ..1111 followed by 000... 0000, repeat 521 times, (gives e3e2=2.458)

69% plays 13004 plays
followed by 000000... 00, repeat 729 times, repeat whole.
20000 plays
If opponent started 0110, *

If opponent started 0111, *

If opponent started 1000, play ,1000000000. followed by 000000, repest.
10times

If opponent started 1001, play 11111111111100000, repeat.

If opponent started 1010, play 1000000000 followed by 000000, repeat.

10times
If opponent started 1011, play 010101 ...01. followed by 111... 111 and 111, repeat.
180 plays 20plays

Strategy ¢: Start with 1010. Then:

If opponent started 0000, play 1111000000 followed by 111100, repest.
10times

If opponent started 0001, play 1111000000, followed by 111100, repest.
10times

If opponent started 0010, play 1111000000 followed by 111100, repeat.
10times

If opponent started 0011, play 1111000000 followed by 111111, repeat
20 times 3times

If opponent started 0100, play .1111000000. followed by 111100, repesat.
10times

If opponent started 0101, play .1111000000 followed by 111100, repeat.
10times

If opponent started 0110, *

If opponent started 0111, play .1111000000. followed by 111100, repest.
10times

If opponent started 1000, *

If opponent started 1001, play 1111000000 followed by 111100, repeat.

10times
If opponent started 1010, play 111... 1111 followed by 000...00ft repeat.
1667 plays 333plays

If opponent started 1011, play 1000, repest.

Strategy t3: Start with 1011. Then:
If opponent started 0000, play 111111111101, repeat.

If opponent started 0001, play .101010.. .Ift followed by 111...111. and 011, repeat.

180 plays
If opponent started 0010, play 11111111111100000, repest.
If opponent started 0011, play .1000000000 followed by 000000, repest.
10times

20plays
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(any strategy. Gives
€3b2)

(any strategy. Gives
€3t2)

(gives e3d=2.472)

(gives e3e3=2.412)
(gives €3c=2.472)

(gives e3t3=2.542)

(gives cw=0.868)
(gives ce=0.868)
(gives ct=0.868)
(gives ch=0.849)
(gives cm =0.863)
(gives ce2=0.868)
(any strategy, gives
ch2)
(givesct2 =0.868)
(any drategy, gives
cd)
(gives ce3=0.868)
(givescc=2667)
(givesct3=0.75)
(gives t3w=2.583)

(givest3e=2.567)

(gives t3t=2.412)
(gives t3b=2.472)



If opponent started 0100, play .111111...111, foUowed by 000.. .000, foJowed by O,  (gives t3m=2.485)

repeat. 19,854 plays 5146 plays

If opponent started 0101, play 101010... Ift foUowed by 111...111. and 011, repeat.  (givest3e2 = 2.567)
180 plays 20 plays

If opponent started 0110, play .1000000000. foUowed by 00000000001, repest. (gives t3b2=2.526)
20times

If opponent started 0111, play 11111111111100000, repeat. (gives Bt2=2412)

If opponent started 1000, play .1000000000 foUowed by 000000, repest. (gives t3d=2.472)
10times

If opponent started 1001, play .101010... 10, foUowed by 111... 111, and 011, repeat.  (gives Be3=2.567)
180 plays 20 plays

If opponent started 1010, play 0000, repest. (gives Be=2.000)

If opponent started 1011, play 11111111111100000, repesat. (givesOt3=2412)

287

APPENDIX B: AN ALGEBRAIC TREATMENT FOR COMPETITIVE
STRATEGIES

Using the basic techniques outlined in section 6.4, it is possible to design
Prisoner's Dilemma strategies that will give us essentially any desired
competitive score between 1 and 3 for each strategy. Where one of apair of
strategies scores below 1 or above 3 we can aso pinpoint the highest and
lowest possible score for an opposing strategy, and design a strategy to
give us any chosen score between those points.

Let us begin with an intuitive algebraic recipe for competitive strategies
with desired scores between 1 and 3. In each round of a Prisoner's
Dilemma there are just four scoring possibilities.

1350
Player A DCDC
PlayerB DCCD
1305

For periodic infinite games between any players A and B, therefore,
averages for each player over the repeated period of play will consist of
some combination of these score pairs, summed for each player and
divided by the length of the repeated period of play.*®

Consider first the special case where wewish A and B to have identical
strategies generating the same scorex between 1 and 3. What isrequired is
simply theright relative number of 3sand Ison each side: theright relative
numbers p and g of joint cooperations and defections, respectively.
Algebraicaly, since each p generates 3 points on each side, each g nets 1,
and thelength of our period can simply be of lengthp + g, what wewant is:
3p+lq

p+q

which we can transform as
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If opponent started 0100, play .111111...111, foUowed by 000.. .000, foJowed by O,  (gives t3m=2.485)

repeat. 19,854 plays 5146 plays

If opponent started 0101, play 101010... Ift foUowed by 111...111. and 011, repeat.  (givest3e2 = 2.567)
180 plays 20 plays

If opponent started 0110, play .1000000000. foUowed by 00000000001, repest. (gives t3b2=2.526)
20times

If opponent started 0111, play 11111111111100000, repeat. (gives Bt2=2412)

If opponent started 1000, play .1000000000 foUowed by 000000, repest. (gives t3d=2.472)
10times

If opponent started 1001, play .101010... 10, foUowed by 111... 111, and 011, repeat.  (gives Be3=2.567)
180 plays 20 plays

If opponent started 1010, play 0000, repest. (gives Be=2.000)

If opponent started 1011, play 11111111111100000, repesat. (givesOt3=2412)
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APPENDIX B: AN ALGEBRAIC TREATMENT FOR COMPETITIVE
STRATEGIES

Using the basic techniques outlined in section 6.4, it is possible to design
Prisoner's Dilemma strategies that will give us essentially any desired
competitive score between 1 and 3 for each strategy. Where one of apair of
strategies scores below 1 or above 3 we can aso pinpoint the highest and
lowest possible score for an opposing strategy, and design a strategy to
give us any chosen score between those points.

Let us begin with an intuitive algebraic recipe for competitive strategies
with desired scores between 1 and 3. In each round of a Prisoner's
Dilemma there are just four scoring possibilities.

1350
Player A DCDC
PlayerB DCCD
1305

For periodic infinite games between any players A and B, therefore,
averages for each player over the repeated period of play will consist of
some combination of these score pairs, summed for each player and
divided by the length of the repeated period of play.*®

Consider first the special case where wewish A and B to have identical
strategies generating the same scorex between 1 and 3. What isrequired is
simply theright relative number of 3sand Ison each side: theright relative
numbers p and g of joint cooperations and defections, respectively.
Algebraicaly, since each p generates 3 points on each side, each g nets 1,
and thelength of our period can simply be of lengthp + g, what wewant is:
3p+lq

p+q

which we can transform as
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3p+q=x(p+0q)
3p+g=xp+xq
and finally

Bx)p = (x-ha.

Given a particular choice for x, (3-x) and (x — 1) will be numbers
between 1 and 3. If x isa terminating decimal of d decimal places, we can
do judtice to our egquation above and obtain integer values for p and g by
settingpat (x - 1) » 10* and g at (3- x) « 10* .*® Among those strategiesthat
will give us a score of x againg each other in infinite play will then be the
following:

A: Play p Csfollowed by g Ds, repest.
B: Play p Csfollowed by q Ds, repeat.

A dightly more complex recipe will give us grategies which generate
any chosen unequal scor esbetween 1and 3. Herean intuitiveway to build
on the previousresult isto think of our desired scoresy and z asresulting
from some pattern of regular divergence tacked on to a previous pattern
establishing a 'middle poinf of equal score. A strategy designed in such a
way will consst of two parts. afirg pattern that establishesan appropriate
'middle poinf, followed by a second pattern that addstheright amount of
divergenceto reach our desredy and z.

By convention we specify y as our higher score and A as our higher-
scoring player. The desired divergence in scores can be produced smply
by repetitions of an unequal round:

5
Playjer A D
Player B C
0

What we want then is some "'middle poinf x and two series of plays of
length r and s such that

(x.r)+5s

r+s -~
and

(xr) + 0Os

r+s
Algebraically, these give us.
(X-r) +5s=yr +ys
and
(Xer)=zr + zs.
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Subtracting each side of the lower equation from the corresponding side of
the upper equation,

55=(-2r+(y-2s
G-U-2)s=(-2r.

Given specific choices for y and z, then, we will be ableto solve for sand r.
If y and z are terminating decimals with d the greater number of decimal
places, we can obtain integer values for r and s by setting s at (y - z) « 10
andrat (5-(y-2) e 10~

With values established for r, s, y and z, we can return to either of our
initial equations in r and s above to obtain the necessary value for our
middle point x. A series of plays that will produce that middle point as an
average score can then be constructed using a subroutine of p mutual
cooperations and g mutual defections following our first recipe above.

To obtain our desired pair of unequally scoring strategies A and B, we
can then construct a period of repeated play consisting of two parts: onein
which the average score is x for each player, the other in which A scores 5
points on every round to B's 0. The length ratio of the first component of
play to the second will ber/s. Since p + q plays of mutual cooperation and
mutual defection have been calculated to give us an average score of x, the
following strategy specifications will always give us our desired y and z:
Strategy A: Play p Cs, followed by g Ds, repeat r times, then play
se (p+ q) Ds, repeat whole.
Strategy B: Play p Cs, followed by g Ds, repeat r times, then play s (p + q)
Cs, repeat whole.

Such a recipe assures us of Prisoner's Dilemma strategies which when in

competition with each other will give us any chosen scores between 1 and
3.

Two strategies cannot both score lower than 1, of course, nor can two
both score greater than 3. Nonethel ess for a score x lower than 1, or ascore

y greater than 3, there is generally a considerable latitude for the score on
the other side.

For a score X, 0<x < 1, what is the highest score y possible for an
opponent? Here let us return to our four possibilities on each play, coding
them conveniently as K, L, M, and N:

KLMN
1350
Player A (scorey) DCD C
Player B (scorexy DCC D
130 5

With player A and scorey as the higher by convention, we can eliminate
pattern N from consideration; any relative scores for y > x obtained using
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N can also be abtained, in a shorter period, without it. Note also that any
0<x<1can beobtained using only combinationsof L and M, and that the
highest y for any given value of x will be that with the highest proportion
of Mstoall plays. Becausethe scorefor K isso low, that proportion will be
highest when thereareno playsof typeK. Alternately put: For any scoresx
and y, under our assumptions, obtained using a combination of scoresK, L,
and M, thereispair of scoreswith thesamex and ahigher y obtained using
only Lsand Ms.*’

Under the present assumptions, then, Ks can be diminated from
congderation aswell. For 0<x<l1andusingL, and M for the numbers of
each type of play in a repeated period, thisgivesus:

_3L-M)M 3L +5M
X L+M Y~ L+M
or

3L 3L +5M

~L+M YY" L+M '
From the left equation we have:
3L =x(L +M)

L =A(L +M).

We are of course concerned only with ratios between types of play L and
M. Let usthus'normalize L at 1. Wethen have:

1=n(1+M)

M =0 I

and our praoportions between play typesM and L will be

M N

L 1

Subgtituting these proportionsin our right-hand equation for y above,

>

15 2
y__g___3_=5~2f3x_
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21

For 0<x< 1, therefore, our highest possible y is 5—2/3*. As
X -*- 0, max y -> 5. Similar calculations show that for 0<x < 1, y'slowest
possiblevalueis5 — 4x. Asx-* 1, miny -+ 1. For agiveny > 3, on the
other hand, the lowest possible x is 5 — y/4 and the highest possible is
75— 15y. Asy-*5 minx-> 0; asy -+ 3, max x > 3. For any chosen
pair of values in those ranges it is possible to construct a recipe for
appropriate strategies in the spirit of the simpler cases above.®

All of this assures us of strategies A and B which in competition with
each other will give us chosen values x and y in a considerable range—a
rangewithinwhich al pairsof scoreslisted in Table 1 comfortably lie. With
the coding trick for initiad sequences outlined above the result can be
extended from pairs of strategies to a recipe for constructing afinite set of
strategies in competition with each other. The strategies used in Appendix
A do not in fact dl follow the computational pattern outlined above,
though it is clear that equivalent strategies could be generated that would.
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