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PUBLISHERS’ NOTE

The major part of this volume has been translated from Karl Marzx,
Mathematicheskie Rukopsii, edited by Professor S.A. Yanovskaya,
Moscow 1968 (referred to in this volume as Yanovskaya, 1968). This
contained the first publication of Marx’s mathematical writings in
their original form, alongside Russian translation. (Russian trans-
lation of parts of these manuscripts had appeared in 1933.) We have
included the first English translation of Part I of the Russian edition,
comprising the more or less finished manuscripts left by Marx on the
differential calculus, and earlier drafis of these. We have not trans-
lated Part I1 of the 1968 volume, which consisted of extracts from and
comments on the mathematical books which Marx had studied. Pro-
fessor Yanovskaya, who had worked on these manuscripts since 1930,
died just before the book appeared. We include a translation of her
preface, together with six Appendices, and Notes to Part 1.

In addition, we include the following:

a) extracts from two leiters from Engels to Marx and one from Marx
to Engels, discussing these writings;

b) a review of Yanovskaya, 1968, translated from the Russian, by
the Soviet mathematician E. Kol’man, who died in Sweden in 1979,
and who had also been associated with these manuscripts since their
first transcription;

c) an article by Yanovskaya and Kol’'man on ‘Hegel and
Mathematics’, which appeared in 1931 in the journal Pod zramenem
markeisma . This has been translated from the version which appeared

. in the German magazine Unter dem Banner des Marxismus:

d) an essay on ‘Hegel, Marx and the Calculus’ written for this
volume by Cyril Smith.
The material from Yanovskaya 1968 has been translated by C.

Aronson and M. Meo, who are also responsible for translating the
review by E. Kol'man.

The letters between Marx and Engels, and the article by
Yanovakaya and Kol’'man, are translated by R. A. Archer
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S.A. Yanovskaya

PREFACE TO THE
1968 RUSSIAN EDITION

Engels, in his introduction to the second edition of Anti-Diihring ,
revealed that among the manuscripts which he inherited from Marx
were some of mathematical conrtent, to which Engels attached great
importance and intended to publish later. Photocopies of these man-
uscripts (nearly 1,000 sheets) are kept in the archives of the Marx-
Lenin Institute of the Central Committee of the Communist Party of
the Soviet Unjon. In 1933, fifty years after the death of Marx, parts of
these manuscripts, including Marx’s reflections on the essentials of
the differential calculus, which he had summarised for Engelsin 1881
in two manuscripts accompanied by preparatory material, were pub-
lished in Russian translation, the first in the journal Under the Banner
of Marxism (1933, no.1, pp.15-73) and the second in the collection
Marxism and Science (1933, pp.5-61). However, even these parts of
the mathematical manuscripts have not been published in the original
languages unil now.

In the present edition all of the mathematical manuscripts of Marx
having a more or less finished character or containing his own obser-
vations on the concepts of the calculus or other mathematical ques-
tions, are published in full.

Marx’s mathemartical manuscripts are of several varicties; some of

. them represent his own work in the differential calculus, its natire

and history, while others contain outlines and annotations of books
which Marx used. This volume is divided, accordingly, into two
parts. Marx’s original works appear in the first part, while in the
second are found full expository outlines and passages of
mathematical content.* Both Marx’s own writings and his obser-
vations located in the surveys are published in the original language
and in Russian translation.

* This volume contains a translation of the first part only.

Vi




VIII MATHEMATICAL MANUSCRIPTS

Although Marx’s own work, naturally, is separated from the out-
lines and long passages quoting the works of others, a full under-
standing of Marx’s thought requires frequent acquaintance with his
surveys of the literature. Only from the entire book, therefore, can a
true presentation of the contenss of Marx’s mathematical writings be
made complete.

Marx developed his interest in mathematics in connection with his
work on Capizal. In his letter to Engels dated January 11, 1858, Marx
writes:

‘T am so damnedly held up by mistakes in calculation in the
working out of the economic principles that out of despair I intend
to master algebra promptiy. Arithmetic remains foreign to me. But
I am again shooting my way rapidly along the algebraic route.’
(K.Marx 1o F.Engels, Works, Voi.29, Berlin, 1963, p.256.)

Traces of Marx’s first studies in mathematics are scattered in

passages in his first notebooks on political economy. Some algebraic

" expositions had already appeared in notebooks, principally those
dated 1846. It does not follow, however, that they could not have been
done on loose notebook sheets at a much later tme. Some sketches of
elementary geometry and several algebraic expositions on series and
logarithms can be found in notebooks containing preparatory material
for Critigue of Political Economy dating from April-June 1858.

In this period, however, the mathematical ideas of Marx proceeded
only by fits and starts, mostly when he was not occupied with any-
thing else. Thus on November 23, 1860 Marx wrote to Engels: ‘For
me to write is almost “out of the question”. Mathematics is the single
subject for which I still have the necessary *“quictness of mind”.’
(Marx-Engels, Works, Vol.30, Berlin, 1964, p.113) In spite of this he
invariably went on with his mathematical ideas, and already on July 6
1863 he wrote to Engels:

‘In my free time [ do differential and integral calculus. A propes!
I have a surplus of books and will send one to you if you want to
study this topic. I deem it almost indispensable for your military
studies. By the way, it is a much easier part of mathematics
(involving mere technique) than the higher parts of algebra, for
instance. Outside of knowledge of the usual algebra and
trigonometry there is nothing else necessary to study, except for
general familiarity with the conic sections.” (Ibid., p.362)
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Also, in the appendix to an unpreserved letter from the end of 1865
or beginning of 1866 Marx explained to Engels the essentials of the
differential calculus in an example of the problem of the tangent to the
parabola.

However, he was still concerned first of all with the basics of
mathematics in their connection with political economy. Thus in
1869, in relation to his studies of questions of the circulation of capital
and the role of promissory notes in inter-governmental calculations,
Marx familiarised himself with the long course of commercial
arithmetic, Feller and Odermann, which he outlined in detail (cf.
mss.2388 and 2400). It was characteristic of Marx’s survey techniques
that, coming across some gquestion of which he did not already feel
himself in command, Marx was not content until he had mastered it
completely, down to its foundations. Every time Feller and Oder-
mann used some mathematical technique, Marx considered it neces-
SAry to re-commit it to memory, even if it was known to him. In his
surveys of commercial arithmetic — these and alse much later ones,
<f. mss.3881, 3888, 3981 — are found insertions, moreover, of purely
mathemartical content in which Marx advanced even further into
fields of higher mathematics.

In the 1870s, starting in 1878, Marx’s thoughts on mathematics
acquired a more systematic character. Concerning this period Engels
in the introduction to the second edition of Cepital:

‘After 1870 came another pause caused mainly by the painfu]
illnesses of Marx. By habit, he usually filled his time studying;
agronomy, American and especially Russian land relationships,
monetary markets and banks, and finally natural science: geology
and physiology, and particularly his own mathematical work, all go
to make up the contents of numerous notebooks from this period.’
(Marx-Engels, Works, Vol.24, Berlin 1963, p.11)

At the same time the problems of applying mathematics to political
economy continued to interest Marx. Thus ina letter to Engels of May
31, 1873 Marx wrote:

‘I have just sent Moore a history which privatim had to be
smuggled in. But ke thinks that the question is unsolvable or at
least pro tempore unsolvable in view of the many parts in which facts
are still to be discovered relating to this question. The matter is as
follows: you know tables in which prices, calculated by percent
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efc., etc. are represented in their growth in the course of a year etc.
showing the increases and decreases by zig-zag lines. I have
repeatedly attempted, for the analysis of crises, to compute these
“ups and downs™’ as fictional curves, and I thought (and even now I
still think this possible with sufficient empirical material) to infer
mathematically from this an important law of crises. Moore, as I
already said, considers the problem rather impractical, and I have
decided for the time being to give it up.” (Marx-Engels, Works,
Vol.33, Betlin, 1966, p.82).

Thus it is clear that Marx was consciously leading up to the pos-
sibility of applying mathematics to political economy. Given the full
texts of all Marx’s mathematical manuscripts in the second part of our
book, it still does not fully answer the question of what impelled Marx
to proceed to the differential calculus from the study of algebra and
commercial arithmetic. Indeed the mathematical manuscripts of
Marx begin precisely in this period when Marx was concerned with
elementary mathematics only in connection with problems arising
from his study of differential calcuins. His studies of trigonometry
and the conic sections are found exactly in this context, which he
suggested to Engels to be indispensable.

In differential calculus, however, there were difficulties, especially
in its fundamentals — the methodological basis on which it was built.
Much light was thrown on this condition in Engels’s Anti-Duhring.

‘With the introduction of variable magnitudes and the extension
of their variability to the infinitely small and infinitely large,
mathematics, in other respects so strictly moral, fell from grace; it

" ate of the tree of knowledge, which opened up to it a career of most
colossal achievements, but at the same time a path of error. The
virgin state of absolute validity and irrefutable certainty of every-
thing mathematical was gone forever; mathematics entered the
realm of controversy, and we have reached the point where most
people differentiate and integrate not only because they under-
stand what they are doing but from pure faith, because up to now it
has always come out right.” (An#i-Déhring, p.107)

Naturally Marx was not reconciled to this. To use his own words,
we may say that *here, as everywhere’ it was important for him “to tear
off the veil of mystery in science’. (see p.109) This was of the more
importance, since the procedure of going from, elementary

—

PREFACE X1

mathematics to the mathematics of a variable quantity must be of an
essentially dialectical character, and Marx and Engels considered
themselves obliged to show how to reconcile the materialist dialectic
not only with the social sciences, but also with the natural sciences and
mathematics. The examination by dialéctical means of mathematics
of variable quantities may be accomplished only by fully investigating
that which constitutes ‘a veil surrounded already in our time by
quantities, which are used for calculating the infinitely small ~ the
differentals and infinitely small quantities of various orders’.
(Marx-Engels, Works, Vol.20, Berlin, 1962, p.30) Marx placed before
himseif exactly this problem, the elucidation of the dialectic of sym-
bolic calculation, operating ont values of the differential.

Marx thought about mathematics independently. The only person
te whom he turned was his friend Samuel Moore, whose under-
standing of mathematics was at times rather limited. Moore could not

" render any essential help to Marzx. Moreover, as can be observed in

remarks that Moore made concerning the 1881 manuscripts (which
Marx sent Engels) containing Marx’s expository ideas on the deri-
vation and meaning of the symbolic differential calcuius, Moore
simply did not understand these ideas. (cf. Marx’s letter 1o Engels,
this volume p.xxx)

Marx studied textbooks of differential calculus. He oriented him-
self with books used at courses in Cambridge University, where in the
17th century Newton held a chair of higher mathematics, the
traditions of which were kept by the English up to Marx’s day.
Indeed, there was a sharp struggle in the 20s and 30s of the last
century between young English scholars, grouped about the ‘Analy-
tical Society’ of mathematicians, and the opposing established and
obsolete traditions, converted into untouchable ‘clerical’ dogma, rep-
resented by Newton. The latter applied the synthetic methods of his
Principia with the stipulation that each problem had to be solved from
the beginning without converting it into a more general probiem
which could then be solved with the apparatus of calculus.

In this regard, the facts are sufficiently clear that Marx began
studying differential calculus with the work of the French abbot
Sauri, Cours complet de mathématiques (1778), based on the methods of
Leibnitz and written in his aotation, and that he turned next to the De
analyse per aegquationes numero lerminorum infinitas of. Newton
(cf.ms.2763). Marx was so taken with Sauri’s use of the Leibnitzian



X1t MATHEMATICAL MANUSCRIPTS

algorithmic methods of differentiation that he sent an explanation of it
(with application to the problem of the tangent to the parabola) in a
special appendix to one of his letters to Engels.

Marx, however, did not limit himself to Sauri’s Cours. The next text
to which he turned was the English translation of a modern (1827)
French textbook, J.-L.. Boucharlat's Eléments de calcul différentiel et du
calcul intégrel. Written in an eclectic spirit, it combined the ideas of
d’Alembert and Lagrange. It went through eight editions in France
alone and was translated into foreign languages (including Russian);
the textbook, however, did not satisfy Marx, and he next turned to a
series of monographs and survey-course books. Besides the classic
works of Euler and MacLaurin (who popularised Newton) there were
the university textbooks of Lacroix, Hind, Hemming and others.
Marx made scattered outlines and notations from all these books.

In these volumes Marx was interested primarily in the viewpoint of
Lagrange, who attempted to cope with the characteristic difficulties
of differential calculus and ways of converting calculus into an “algeb-
raic’ form, i.e., without starting from the extremely vague Newtonian
concepts of ‘infinitely small’ and ‘limit’. A detailed acquaintance with
the ideas of Lagrange convinced Marx, however, that these methods
of solving the difficulties connected with the symbolic apparatus of
differential calculus were insufficient. Marx then began to work out
his own methods of explaining the nature of the calculus.

Possibly the arrangement of Marx's mathematical writings as is
done in the second half of the volume permits a clarification of the way
in which Marx came onto these methods. We see, for example,
beginning with the attempt to correct Lagrange’s outlook how Marx
again turned to algebra with a complete understanding of the algeb-
raic roots of the differential calculus. Naturally, his primary interest
here was in the theorem of the multipie roots of an algebraic equation,
the finding of which was closely connected with the successive dif-
ferentiations of equations. This question was especially treated by
Marzx in the series of manuscripts 3932, 3933, appearing here under
the titles “Algebra I' and ‘Algebra IT'. Marx paid special attention to
the important theorems of Taylor and MacLaurin. Thus arrived his
manuscripts 3933, 4000, and 4001, which are impossible to regard
simply as outlines and the texts of which are, therefore, given in full.

Generally speaking in the outlines Marx began more and more to
use his own notation. In a number of places he used special notation
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for the concept of function and in places % for g- These symbols

:1;:) 121')1et passim a number of other manuscripts (cf. 2763, 3888, 3632

Convinced that the ‘pure algebraic’ method of Lagrange did not
solve the difficulties of the foundations of the differental calculus and
already having his own ideas on the nature and methods of the
calculus, Marx once again began to collect textual material on the
various ways of differentiating (cf. mss. 4038 and 4040). Only after
reading the expositions suggesting (for certain classes of functions)
the methods of ‘algebraically’ differentiating, only after constructing
sketches of the basic ideas did he express his point of view. These are
exhibited here in the manuscripts and variants published in the first
part of this volume. We now proceed to the contents of these man-
uscripts.

In the 1870s, from which date the overwhelming majority of Marx’s
mathematical works, contemporary classical analysis and charac-
teristic theories of the real numbers and limits were established on the
European continent (principally in the works of Weierstrass, Dede-
kind and Cantor). _

This more precise work was unknown in the English universities at
that time. Not without reason did the well-known English
mathematician Hardy comment in his Course of Pure Mathematics,
written significantly later (1917): ‘It [this book] was written when
anglysis was neglected in Cambridge, and with an emphasis and
enthusizgsm which seem rather ridiculous now. If I were to rewrite it
now I should not write (to use Prof. Littlewood’s simile) like a
“missionary talking to cannibals”,” (preface to the 1937 edition).
Hardy had to note as a special achievement the fact that in monog-
raphs in analysis ‘even in England there is now [i.e.,in'1937) nolack’.

It is not surprising therefore that Marx in his mathematical man-
uscripts may have been cut off from the more contemporary problems
in mathematical analysis which were created at that time on the
Continent. Nonetheless his ideas on the nature of symbolic dif-
ferential calculus afford interest even now.

Differential calculus is characterised by its symbols and ter-
minology, such notions as “differential’ and ‘infinitely small’ of dif-
ferent orders, such symbols as dx, dy, d%, d% ... %’—, ;%, :—3
and others. In the middle of the last century many of the instructional

H]




XIv MATHEMATICAL MANUSCRIPTS

books used by Marx associated these concepts and symbols with
special methods of constructing quantities different from the usual
mathematical numbers and functions. Indeed, mathemarical analysis
was obliged to operate with these special quantities. This is not true at
the present time: there are no special symbols in contemporary analy-
sis; yet the symbols and terminology have been preserved, and even
appear to be quite suitable. How? How can this happen, if the

corresponding concepts have no meaning? The mathematical man-

uscripts of Karl Marx provide the best answer to this queston.
Indeed, such an answer which permits the understanding of the
essence of all symbolic calculus, whose general theory was only
recently constructed in contemporary mathematical logic.

The heart of the matter is the operational role of symbols in the
calculus. For example, if one particular method of calculation is to be
employed repeatedly for the solution of a range of problems then the
special symbol appropriately chosen for this method briefly desig-
nates its generation, or as Marx calls it, its ‘strategy of action’. That
symbol, which comes to stand for the process itself, as distinct from
the symbolic designation introduced for the process, Marx called
‘real’.

Why then introduce an appropriately chosen new symbol for this?
Marx’s answer consists in that this gives us the opportunity not to
execute the entire process anew each time, but rather, using the fact of_
previously having executed it in several cases, to reduce the procedure
in more complicated cases to the procedure of the more simple ones.
For this it is only necessary, once the regularities of the particular
method are well-known, to represent several general rules of oper-
ation with new symbaols selected to accomplish this reduction. And
with this step we obtain a calculus, operating with the new symbols,
on its, as Marx called it, ‘own ground’. And Marx thoroughly
clarifies, by means of the dialectic of the ‘inverted method’, this
transition to the symbolic calculus. The rules of calculus allow us on
the other hand not to cross over from the ‘real” process to the symbolic
one but to look for the ‘real’ process corresponding to the symbol, to
make of the symbol an operator — the above-mentioned ‘strategy of
action’.

Marz did all this in his two fundamental works written in 1881 and
sent to Engels: *‘On the concept of the derived function’ (see p.3) and
“‘On the differential’ (p.15). In the first work Marx c¢onsiders the ‘real’
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method, for several types of functions, to find the derived functions and
differentials, and introduces appropriate symbols for this method (he
calls it “algebraic” differentiation). In the second work he obtains the
‘inverted method’ and transfers to the ‘own ground’ of differential
calculus, emiploying for this aim first of all the theorem on the derivative
of a product which permits the derivative of a product to be expressed as
the sum of the derivatives of its factors. Employing his own words,
‘thus the symbolic differential coefficient becomes the autonomous star-
ting point whose real equivalent is first to be found . . . Thereby,
however, the differential calculus appears as a specific type of calculus
which already operates independently on its own ground (Boden).
For its starting points :-: s % , belong only to it and are
mathematical quantities characteristic of it.” (pp.20-21). For this they
‘are suddenly transformed into operational symbols (Operationssy-
mbole), into symbols of the process which must be carried out . . . to
find their “derivatives”. Originally having arisen as the symbolic
expression of the “derivative” and thus already finished, the symbolic
differential coefficient now plays the role of the symbol of that oper-
ation of differentiation which is yer to be completed.’ (pp.20-21).

In the teachings of Marx there were not yet the rigorous definitions
of the fundamental concepis of mathematical analysis characteristic of
contemporary mathematics. At first glance the contents of his man-
uscripts appear therefore to be archaic, not up to the requirements,
say, of Lagrange, at the end of the 18th century. In actuality, the
fundamental principle characteristic of the manuscripts of Marx has
essential significance even in the present day. Marx was not acquain-
ted with contemporary rigorous definitional concepts of real number,
limit and continuity. But he obviously would not have been satisfied
with the definitions, even if he had known them. The fact is Marx uses
the ‘real’ method of the search for the derivative function, that is the
algorithm, fitst, to answer the question whether there exists a deriva-
tive for a given function, and secoad, to find it, if it exists. As is
well known, the concept of limit is not an algorithmic concept, and
therefore such problems are only solvable for certain classes of
functions. One class of functions, the class of algebraic functions, that
is, functions composed of variables raised to any power, is represented
by Marx as the object of ‘algebraic’ differentiation. In fact, Marx only
deals with this sort of function. Nowadays the class of functions for
which it is possible 1o answer both questions posed above has been
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significantly broadened, and operations may be performed on all
those which satisfy the contemporary standards of rigour and pre-
cision. From the Marxian point of view, then, it is essential that
transformations of limits were regarded in the light of their effective
operation, or in other words, thar mathematical analysis has been
built on the basis of the theory of algorithms, which we have described
here.

We are certainly well acquainted with Engels’s statement in the
Diialectics of Nature that ‘the turning point in mathematics was Descar-
tes’ introduction of veriable guentities, Thanks to this movement came

into mathematics and with it the dialectic and thanks to this rapidly -

became necessary differential and integral calculus, which arose simul-
taneously and which generally and on the whole were completed and
not invented by Newton and Leibnitz’ (Dialectics of Nature p.258).

But what is this ‘variable quantity’? What is a ‘variable’ in
mathematics in general? The eminent English philosopher Bertrand
Russell says on this point, ‘This, naturally , is one of the most
difficult concepts to understand,” and the mathematician Karl Men-
ger counts up to six completely different meanings of this concept. To
clucidate the concept of variables — in other words, of functions —
and that of variables in mathematics in general, the mathematical
manuscripts of Marx now represent objects of essential importance.
Marx directly posed to himself the question of the various meanings of
the concepts of function: the functions ‘of x* and functions ‘in x* —
and he especially dwelt on how to represent the mathematical oper-
ation of change of variables, in what consists this change. On this
question of the means of representation of the change of variables
Marx placed special emphasis, so much so that one talks charac-
teristically of the “algebraic’ method of differentiation, which he
introduced.

The fact is, Marx strenuously objected to the representation of any
change in the value of the variable as the increase (or decrease) of
previously prepared values of the increment (its absolute value). It
seems a sufficient idealisation of the real change of the value of some
quantity or other, to make the assertion that we can precisely ascertain
all the values which this quantity receives in the course of the change.
Since in actuality all such values can be found only approximately,
those assumptions on which the differential calculus is based must be
such that one does not need information about the entirety of values of
any such variable for the complete expression of the derivative func-
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tion f(x) from the given f{x), but that it be sufficient to have the
expression f{x) . For this it is only required to know that the value of
the variable x changes actually in such a way that in a selected (no
matter how small) neighbourhood of each value of the variable x
(within the given range of its valuc) there exists a value x,, different
from x, but no more than that. ‘x, therefore remains just exactly as
indefinite as x is.” (p.88)

It stands to reason from this, that when x is changed into x,,
thereby generating the difference x,— x, designated as Ax, then the
resulting x, becomes equal to x + Ax. Marx emphasised at this point
that this occurs only as g result of the change of the value x into the
value x, and does not precede this change, and that to represent this
x4 85 known as the fixed expression x +Ax carries with it a distorted
assumption about the representation of movement (and of all sorts of
change in general). Distorted because in this case here, ‘although in
x+Ax, Ax is equally as indeterminate in quantity as the unde-
termined variable x itself; Ax is determined separstely from x, =
distinct quantity, like the fruit of the mother’s womb, with which she
is pregnant.’ (p.87)

In connection with this Marx now begins his determination of the
derived function f(x) from the function f{x) with the change of x
into x,. As a result of this f{x) is changed into f{x ), and there arise
both differences x,— x and f{x,)— f(x), the first of which is
obviously different from zero as long as x, # x.

‘Here the increased x, is distinguished as x,, from irself, before it
grows, namely from x, but x, does not appear as an x increased by
Ax, 30 x4 therefore remains just exactly as indefinite as x is.” (p.88)

The real mystery of differential calculus, according to Marx, con-
sists in that in order o evaluate the derived function at the point x (at
which the derivative exists) it is not only necessary to go into the
peighbourhood of the point, to the point x, different from x, and to
form the ratio of the differences f{x,) — f{x) and x,— x that is, the

expression ﬂ:?_‘f‘), but also to remirn again to the point x; and
to return not without a detour, with special features relating to the
concrete evaluation of the function f(x), since simply setting x, = x

in the expression 22— f) yrng it into ) that s,
X

X4— X x—

into %,orin other words into meaninglessness.
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This character of the evaluation of the derivative, in which is
formed the non-zero difference x,— x and the subsequent — after the

construction of the ratio &i’l# — dialectical ‘removal’ of this
difference, is still preserved in the present-day evaluation of the
derivative, where the removal of the difference x,— x takes place
with the help of the limit transition from x, to x.

In his work ‘Appendix to the manuscript “On the history of the

differential calculus”, Analysis of the Method of d’Alembert’ Marx
also spoke of the ‘derivative’ essenrially as the limit of the value of the

ratio fEx'—)%’i), although he denoted it with other terms. In fact

the confusion surrounding the terms ‘limit” and ‘limit value’, con-
cerning which Marx observed, ‘the concept of value at the limit is
easily misunderstood and is constantly misunderstood’, prompted
him to replace the term ‘limit’ with ‘the absolute minimal expression’
in the determination of the derivative. But he did not insist on this
replacement, however, foreseeing that the more precise definition of
the concept of limit, with which he familiarised himself in Lacroix’s
long Trasté du calcul différentiel et du calcul intégral — a text which
satisfied Marx significantly more than others — could result further
on in the introduction of unnecessary new terms. In fact Marx wrote
of the concept of limit, ‘this category which Lacroix in particular

_ analytically broadened, only becomes important as a substitute for the

category “minimal expression’ ’ (see p.68).

Thus Marx clarified the essentials of the dialectic connected with
the evaluation of the derivative even in contemporary mathematical
analysis. This dialectic, not a formal contradiction, makes, as will be
shown below, the differential calculus of Newton and Leibnitz appear
*mystical’. To see this it is only necessary to recall that Marx by no
means totally denied the representation of any change in the value of
the variable as the addition of some ‘increment’ already having a
value. On the contrary, when one speaks of the evaluation of the result
of the already introduced change, one is induced to speak equally of
the increase of the value of the variable (for example, of the depen-
dence of the increase of the function on the increase in the inde-
pendent variable), and ‘the point of view of the sum’ x, = x4+ Ax orx,

= x + k, as Marx calls it, becomes fully justified. To this transition -

from the ‘algebraic’ method to the ‘differential’ one Marx specially
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devoted himself in his last work “Taylor’s Theorem’, which unfor-
tunately remains unfinished and is therefore only partially repro-
duced in the first part of the present book. (A very detailed descrip-
tion of this manuscript of Marx, with almost all of the text, appears in
the second part of the book, [Yanovskaya, 1968 pp.498-562]).

Here Marx emphasises that, while in the ‘algebraic’ method x,— x
consists solely for us as the form of a difference, and not as some
x3— x = & and therefore not as the sum x, = x + k, in the transition
10 the ‘differential’ method we may view A ‘as an increment (positive
or negative) of x. This we have a right to do, since x;— x = Ax and
this same Ax can serve, after our way, as simply the symbol or sign of
the differences of the x’s, that is of x,— x, and also equally well as the
quantity of the difference x,— x, as indeterminate as x,— x and
changed with their changing.

‘“Thus x,— x = Ax or = the indeterminate quantity & . From this it
follows that x, =x + k and f(x,) ot y, istransformed into f(x + &).
(Yanovskaya, 1968 p.522)

In this way it would be unfair to represent the viewpoint of Marx as
requiring the rejection of all other methods employed in differential
calculus. If these methods are successful Marx sets himself the task of
clarifying the secret of their success. And after this is shown to him,
that is, after the examined method has demonstrated its validity and
the cenditions for its use are fulfilled, Marx considers a transition to
this method not only fully justified but even appropriate.

Following his 1881 manuscript containing the fundamental results
of his thoughts on the essence of differential calculus, Marx chose to
send Engels a third work, concerned with the history of the method of
differential calculus. At first, he wanted to depict this history with
concrete examples of the various methods of showing the theorems on
the derivation of the derivative, but then he relfinguished this resolve
and passed on to the general characteristics of the fundamental periods
in the history of the methods of differential calculus.

Thisg third work was not fully put into shape by Marx. There remain
only the indications that he had decided to write about it and sketches
of the manuscript, from which we know how Marx constructed and
undertook the plan of his historical essay on this theme. This rough
copy is published in full in the first part of this book (see pp.73-106).
All of Marx’s indications that there should be introduced into the text
this or that page from other manuscripts are here followed in full. The
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manuscript gives us the possibility to explicate Marx’s viewpoint on
the history of the fundamental methods of differential calculus.
1) the ‘mystical differential calculus’ of Newton and Leibnitz,
2) the ‘rational differential calculus’ of Euler and d’Alembert,
3) the ‘pure algebraic calculus’ of Lagrange.

The characteristic features of the methods of Newton and Leibnitz
revealed, according to Marx, the fact that their creators did not see the
‘algebraic’ kernel of differential calculus: they began immediately
with their operational formulae, the origins and the meaning of
which remained therefore misunderstood and even mysterious, 50
that the calculus stood out as ‘a characteristic manner of calculation

different from the usual algebra’ {p.84), as a discovery, a completely -

special discipline of mathemarics as ‘different from the usual algebra
as Heaven is wide’ (p.113}.

To the question, ‘By what means . . . was the starting point chosen
for the differential symbols as operational formulae’ Marx answers,
‘either through covertly or through overtly metaphysical
assumptions, which themselves lead once more to metaphysical,
unmathematical consequences, and so it is at that point that the
violent suppression is made certain, the derivation is made to start its
way, and indeed quantities made to proceed from themselves.” (p.64)

Elsewhere Marx writes concerning the methods of Newton and
Leibnitz: ‘x; = x+Ax from the beginning changes into x; =x + dx

. where dx is assumed by a metaphysical explanation. First, it
exists, then it is explained.’ ‘From the arbitrary assumption the
consequence follows that . . . terms . . . must be juggled away, in
order to obtain the correct result.” (p.91)

In other words, so long as the meaning of infroduction into
mathematics of the differential symbols remains unexplained — more
than that, generally false, since the differentials dx, dy are identified
simply with the increments Ax, Ay — then the means of their
removal appear unjustified, obtained by a ‘forcible’, ‘juggling” sup-
pression. We have to devise certain metaphysical, actually infinitely
small quantities, which are to be treated simultaneously both as the
usual different-from-zero (nowadays called ‘Archimedean’) quantities
and as quantities which ‘vanish’ (transmute into zero) in comparison
with the finite or infinitely small quantities of a lower order (that s, as
‘non-Archimedean’ quantities); or, simpty put, as both zero and non-
zero at the same time. ‘Therefore nothing more remains,” writes Marx
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in this connection, “than to imagine the increments & of the variable to
be infinitely small increments and to give them as such independent
existence, in the symbols x, y etc. or dx, dy [etc] for example. But
infinitely small quantities are quantities, just like those which are
infinitely large (the word infinitely [small] only means in fact inde-
finitely small); the dy, dx . . . therefore also take part in the cal-
culation just like ordinary algebraic quantities, and in the equation
(y+ R)—y or k = 2xdx + dxdx the dxdx has the same right to
existence as 2xdx does.” . . ‘the reasoning is therefore most peculiar
by which it is forcibly suppressed’. (p.83)

The presence of these actually infinitely small, that is, formally
contradictory, items which are notintroduced by means of operations
of mathematically grounded consistency but are hypothesised on the
basis of metaphysical ‘explanations’ and are removed by means of
‘tricks’ gives the calculus of Newton and Leibnitz, according to Marx,
a ‘mystical’ quality, despite the many advantages they bring to it,
thanks to which it begins immediately with operating formulac.

At the same time Marx rated very highly the historical significance
of the methods of Newton and Leibnitz. ‘Therefore, he writes,
‘mathematicians really believed in the mysterious character of the
newly-discovered means of calculation which led to the correct (and,
particularly in the geometric application, surprising) result by means
of a positively faise mathematical procedure. In this manner they
became themselves mystified, rated the new discovery all the more
highly, enraged ali the more greatly the crowd of old orthodox
mathematicians, and elicited the shrieks of hostility which echoed
even in the world of non-specialists and which were necessary for the
blazing of this new path.’ (p.94)

The next stage in the development of the methods of differential
calculus, according to Marx, was the ‘rational differential calculus’ of
d’Alembert and Euler. The mathematically incorrect methods of
Newton and Leibnitz are here corrected, but the starting point
remains the same, ‘D’ Alembert starts directly from the poinz de départ
of Newton and Leibnitz, x, = x + dx. But he immediately makes the
fundamental correction: x; = x+Ax, that is x and an undefined,
but prima facie finite increment* which he calls 4. The transformation
of this A or Ax into dx . . . is the final result of the development, or

* By ‘finite increment’ the literature which Marx consulted understood a mon-zere
finite increment — S.A. Yanovskoya

dine..
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at the least just before the gate swings shut, while in the mystics and
the initiators of the calculus as its starting point.” (p.94) And Marx
emphasised that with this the removal of the differential symbols from
the final result proceeds then ‘by means of correct mathematical
operation. They are thus now discarded without sleight of hand.’
(p.96)

Marx therefore rated highly the historical significance of d’Alem-
bert’s method. ‘I’Alembert stripped the mystical veil from the dif-
ferential calculus, and took an enormous step forward,” he writes
{p.97.

However, so long as d’Alembert’s starting point remains the rep-
resentation of the variable x as the sum x + an existing element,
independent of the variable x , the inctement Ax - then d’Alembert
has not yet discovered the true dialectic process of differentiation.
And Marx makes the critical observation regarding d’Alembert:
‘D’Alembert begins with (x + dx) but corrects the expression to
(x+Ax), alias (x + k); a development now becomes necessary in
which Ax or k is transformed into dx, but all of that development
really proceeds.’ (p.128)

As is well known, in order to obtain the result % from the rato of
finite differences Ex-’—', d’Alembert resorted to the ‘limit process’, In

the textbooks which Marx utilised, this passage to the limit fore-
shadowed the expansion of the expression f(x + k) into all the powers
of &, in which revealed in the coefficient of % raised to the first power
was the ‘already contained’ derivative f{x).

The problem therefore became that of ‘liberating’ the derivative
from the factor » and the other terms in the series. This was done
naturally, so to speak, by simply defining the derivative as the coef-
ficient of A raised to the first power in the expansion of f{x + &} intoa
series of powers of k.

Indeed, ‘in the first method 1), as well as the rational one 2}, the
real coefficient sought is fabricated ready-made by means of the
binomial theorem; it is found at once in the second term of the series
cxpansion, the term which therefore is necessarily combined with k1.
All the rest of the differential process then, whether in 1) orin 2),is a
Iuxury. We therefore throw the needless ballast overboard.’ {p.98)

The same thing was done by Lagrange, the founder of the next

- ——
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stage in the development of the differential calculus: ‘pure algebraic’
calenlus, in Marx’s periodisation.

At first Marx liked very much Lagrange’s method, ‘a theory of the
derived function which gave a new foundation to the differential
calculus’. Taylor’s theorem, with which was usually obtained the
expansion of f{x+ k) into a series of powers of %, and which his-
torically arose as the crowning construction of the entire differential
calculus, with this method was turned into the starting point of
differential calculus, connecting it immediately with the mathematics
preceding calculus (yet not employing its specific symbols). Marx
noted with respect 1o this, ‘the real and therefore the simplest inter-
connection of the new with the old is discovered as soon as the new
gains its final form, and one may say, the differential calculus gained
this relation through the theorems of Taylor and MacLaurin.* There-
fore the thought first occurred to Lagrange to return the differential
calculus to 2 firm algebraic foundation.” (p.113)

Marx found at once, however, that Lagrange did not make use of
this insight. As is well known, Lagrange tried to show that ‘generally
speaking’ — that is, with the exception of ‘several special cases’ in
which differential caleulus is ‘inapplicable’ — the expression f{x + k)
is expandable into the series

S+ ph+ gh>+ rh2+ .. .,

where p, ¢, 1, . . . the coefficients for the powers of k, are new
functions of x, independent of %, and ‘derivable’ from fix).

But Lagrange’s proof of this theorem — in fact without much
precise mathemaric meaning — did not arise naturaily. “This leap

from ordinary algebra, and besides by means of ordinary functions

representing movement and change in general is as a fair gccomplt , it is

! ot proved and is prima facie in contradiction to all the laws of con-
f  ventional algebra . . .’ (p.177), writes Marx about this proof of

Lagrange’s.

And Marx concludes with respect to the ‘initial equation’ of Lag-
range, that not only is it not proved, but also that ‘the derivation of

- this equation from algebra therefore appears to rest on a deception’

p.117).
In the concluding part of the manuscript the method of Lagrange

" Mac mcuunns Theorem can be regarded — as it was by Marx (pp. 111, 112) — as a
wpacitl case of Taylor's Theorem. — Ed.
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appears as the completion of the method initiated by Newton and
Leibnitz and corrected by d’Alembert; as the ‘algebraicisation’ based
on Taylor by means of the method of formulae. ‘In just such a manner
Fichte followed Kant, Schelling Fichte, Hegel Schelling, and neither
Fichte nor Schelling nor Hegel investigated the general foundations of
Kant, of idealism in general: for otherwise they would not have been
able to develop it further.’ (p.119)

We can see that in a historical sketch Marx gives us a graphic
example of what in his opinion should be the application of the
method of dialectical materialism in such a science as the history of
mathematics.

Completion of the present edition of Mathematical Manuscripts of
Karl Marx required a great deal of preparation. The text of the
manuscripts was translated in full; they were arranged
chronologically; excerpts and summaries were separated from Marx’s

own statements; on the basis of analysis of their mathemarical content -

the manuscripts were collected into units which can be read as a whole
(in fact, many of the manuscripts do not make up notebooks, but are
rather of separate sheets of paper in no sort of order). In the vast
majority of cases it is known from which sources Marx drew his
excerpts, or which hé summarised. By comparison with the original
works all of Marx’s own comments have been identified in the sum-
maries; all of Marx’s independent work and notes have been trans-
lated into Russian.

The task of separating the personal opinions of Marx from his
summaries and excerpts invoived a series of difficultes. Marx wrote
bis summaries for his own benefit, in order to have at hand the
material he needed. As always, he made use of a large collection of the
most varied sources, but if he did not consider the account worth
special attention, if it was, for example, a contemporary textbook
compiled and widely distributed in England, then Marx very fre-
quently did not accompany his excerpts with an indication of from
where they were drawn. The task is complicated still further by the
fact that the majority of the books which Marx urilised are now
bibliographical rarities. In the final analysis all this work could only be
completed at first hand in England, whete, in order to resolve this
problem, were studied and invesrigated in detail the stocks of the
extant literature in these libraries: the British Museum, London and
Cambridge universities, University College London, Trinity and St.
James’s Colleges in Cambridge, the Royal Society in London, and
finally the private libraries of the eminent 19th century Englishmen
de Morgan and Graves. Inquiries were made in other libraries as well,
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such as that of St. Catherine’s College. For those manuscripts which
by nature were prepared from German sources, the German historian
of mathematics Wussing, at the request of the Institute, investigated,
the bibliographical resources of the German Democratic Republic.

Photocopies of several missing pages of the manuscripts were
kindly provided by the Institute of Social History in Amsterdam,
where the ariginals of the mathematical manuscripts of K. Marx are
preserved.

Since the manuscripts arc of the nature of rough drafts, one encoun-
ters omissions and even errors in the copied excerpts. The cor-
responding insertions or corrections are enclosed in square brackets.
As a resuit the square brackets of Marx himself are indicated with
double square brackets. Words which Marx abbreviated are written
out in full, but the text is basically unchanged. In places obsolete
orthography is even preserved.

The primary language of the manuseripts is German. If a reference
in the manuscripts is in French or English, Marx sometimes writes his
comments in French or English. In such cases Marx’s text turns out to
be so mixed that it becomes hard to say in what particular language the
manuscript is written.

The dating of the manuscripts also entailed great difficulties. A
detailed description of these difficulties is presented in the catalogue
of manuscripts. This last lists the archival number of the manuscript,
its assigned title, and the characteristics of either its sources or its
content. Where the title or subtitle is Marx’s own it is written in
quotation marks in the original language and in Russian translarion.
In the first part of the book the titles not originating with Marx are
marked with an asterisk.

The inventory of the manuscripts is given in the sequence of the
arrangement of the archival sheets. Marx’s own enumeration, by
number or letters, is given in the inventory together with the indi-
cation of the archival sheets, An indication of the archival sheets on
which they are found accompanies the published texts. All the manu-
scripts stem from fond 1, , opuscule 1.

The language of Marx’s mathematical manuscripts in many cases
departs from our usuval contemporary language, and in order to
understand his thought it is necessary to refer to the sources he used,
to make clear the meaning of his terms. In order not to interrupt
Marx’s text, we place such explanations in the notes at the end of the
book. Then, where more detailed information about the subject-
matter of the sources consulted by Marx is found necessary, it is given

in the Appendix. All such notes and references are of a purely infor-

mational character.

‘;
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In Marx’s texts are a great number of underlinings, by means of
which he emphasised the points of particular importance to him. All
these underlinings are indicated by means of italics.

The book was prepared by S§.A. Yanovskaya, professor of the M. V.
Lomonosov Moscow Government University, to whom also are due
the Preface, the Inventory of mathematical manuscripts {compiled
with the assistance of A.Z, Rybkin), the Appendices and the Notes.
Professor K.A. Rybnikov took part in the editing of the book, per-
forming among other tasks the greater part of the work of researching
the sources used by K, Marx in his work on the ‘Mathematical
Manuscripts’. In the preparation of the present edition the comments
and advice of Academicians A.N. Kolmogorov and 1.G. Petrovskii
were carefully considered.

A.Z Rybkin, chief editor for the physi¢al-mathematical section of
Nauka Press, and O.K. Senckina, of the Institute for Marxism-

Leninism of the Central Committee of the Communist Party of the

Soviet Union, directed all the work of editing the book, preparing it
for publication and proof-reading it. The book includes an index of
references quoted and consulted, as well as an index of names.
References in Marx’s text are denoted in the indices by means of
italics.

: thon absolutely correct.

ENGELS TO MARX

in London

August 10, 1881
Dear Mohr, '

. . . Yesterday I found the courage at last to study your mathe-
matical manuscripts even without reference books, and I was pleased to
find that I did not need them. I compliment you on your work. The
thing is as clear as daylight, so that we cannot wonder enough at the way
the mathematicians insist on mystifying it. But this comes

from the ome-sided way these gentlemen think. To put % = g,
firmly and point-blank, does not enter their skulls. And vet it is clear
that % can only be the pure expression of a completed process if

the last trace of the guanta x and y has disappeared, leaving the
expression of the preceding process of their change without any
quantity.

You need not fear that any mathematician has preceded you here.
This kind of differentiation is indeed much simpler than alt others, so
that just now I applied it myself to derive a formula I had suddenly
lost, confirming it afterwards in the usual way. The procedure must
have made the greatest sensation, especially, as is clearly proved, since

b the usual method of neglecting dxdy ¢ic. is positively false. And that is

the special beauty of it: only if % = % is the mathematical opera-

So old Hegel guessed quite correctly when he said that dif-
ferentation had for its basic condition that the varigbles must be
nuised to different powers, and at least one of them to at least the

second, or %, power. Now we also know why. _

If we say thatin y = f{x) the x and y are variables, then this claim
has no further consequences, as long as we do not move on, and x and
¥ are still, pro tempore, in fact constants. Only when they really
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change, i.e. inside the funcrion , do they indeed become variables, and
only then can the relation still hidden in the original equation reveal
- itself — not the relation of the two magnitudes but of their varia-

bility. The first derivative 21_33 shows this relation as it happens in
the course of real change, i.e. in each given change; the completed

derivative — 3-; shows it in its generality, pure, and hence we can

come from % to each %, while the latter itself only covers the special

casc. However, to pass from the special case to the general rela-
tionship; the special case must be abolished (cufgehoben) as such.
Hence, after the function has passed through the process from x to ¥’

with all its consequences, x* can be allowed calmly to become x again;
itis no longer the old x , which was variable in name only; it has passed
through actual change , and the result, of the change remains, even if
we again abolish (sufheben) ir.

At last we see clearly, what mathematicians have claimed for a long
time, without being able to present raticnal grounds, that the
differential-quotient is the original, the differentials dx and dy are
derived: the derivation of the formulae demands that both so-called
irrational factors stand at the same time on one side of the equation,

and only if you put the equation back into this its first form % =f(x),
as you can, arc you free of the irrationals and instead have their
rational expression,

The thing has taken such a hold of me that it not only goes round my
head all day, but last week in a dream I gave a chap my shirt-buttons to
differentiate, and he ran off with them.

Yours
FE
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ENGELS TO MARX

in Ventnor

London, November 21, 1882
Dear Mohr,

-« + . Enclosed a mathematical essay by Moore. The conclusion that
‘the algebraic method is only the differential method disguised’ refers

of course only to his own method of geometrical construction and is

pretty correct there, too. I have written to him that you place no vajue
on the way the thing is represenied in geometrical construction, the
application to the equations of curves being quite enough. Further,
the fundamental difference between your method and the old one is
that you make x change to x”, thus making them really vary, while the
other way starts from x + £, which is always only the sum of two
magnitudes, but never the variation of a magnitnde. Your x there-
fore, even when it has passed through x’ and again becomes the first
X, is still other than it was; while x remains fixed the whole time, if 2
is first added to it and then taken away again. However, every
graphical representation of the variation is necessarily the rep-
resentation of the completed process, of the result , hence of a quantity
which became constant, the line xjits supplement is represented as

-2+ k, two pieces of a line. From this it already follows that a

graphical representation of how x’, and again becomes x,
is impossible . .
!
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MARX TO ENGELS
in London

November 22, 1882

1, St Boniface Gardens,
Ventnor

Dear Fred,

. » . Sam, as you saw immediately, criticises the analytical method
applied by me by just pushing it aside, and instead busies himself with
the geometrical application, about which I said not one word. In the
same way, I could get rid of the development of the proper so-called
differential method — beginning with the mystical method of Newton
and Leibnitz, then going on to the rationalistic method of d’ Alembert
and Euler, and finishing with the strictly algebraic method of La-
grange {(which, however, always begins from the same original basic
outlook as Newton-Leibnitz} — I could get rid of this whole historical
development of analysis by saying that practicelly nothing essential
has changed in the geometrical application of the differential calculus,
i.c. in the geometrical representation.

The sun is now shining, so the moment for going for a walk has
come, 50 no more pro nunc of mathemancs, but I'll come back later to
the different methods occasionally in detail . . .

XXX




Two Manuscripts on
Differential Calculus




I

‘ON THE CONCEPT OF
THE DERIVED FUNCTION™!

I

Let the independent variable x increase to x4; then the
dependent variable y increases to y,.?

Here in I) we consider the simplest possible case, where x
appears only to the first power.

1} y = ax; when x increases to x,

Y1 =ax;and y,—y =a(x; — x) .

Now allow the differential operation to occur, that is, weletx,
take on the value of x. Then

X; =% x;—x =0,
thus :
alx;—x)=qg.0=0.

Furthermore, since y only becomes y, because x increases

to x,, we have at the same time
!

Thus

1 =Y Yi—y=0.

Yi—y =a(x,—x)

changes to 0 = 0.

First making the differentiation and then removing it there-
fore leads literally to nothing. The whole difficulty in under-
standing the differential operation (as in the negation of the
megation generally) lies precisely in seeing how it differs from

b such a simple procedure and therefore leads to real results.

3
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If we divide both a{x, — x) and the left side of the cor-
responding equation by the factor x, — x, we then obtain

i~y

X 17 x

Since y is the dependent variable, it cannot carry out any
independent motion at all, y, therefore cannot equal y and
y1—y = 0 without x, first having become equal to x.

On the other hand we have seen that x ; cannot become equal
to x in the function a(x, — x) without making the latter = 0.
The factor x, — x was thus necessarily a finite difference® when
both sides of the equation were divided by it. At the moment of
the construction of the ratio

¥1— ¥
xl_x

%4 — x is therefore always a finite difference. It follows that

Yi—y
x-l_x

is a ratio of finite differences, and correspondingly

y1—y _ Ay

x,—x Ax

Therefore

AT = a,
X{— X Ax

where the constant a represents the limit value (Grenswert) of
the ratio of the finite differences of the variables.®

Since ¢ is a constant, no change may take place in 1t; hence
none can occur on the right-hand side of the equation, which has
been reduced to ¢. Under such circumstances the differential
process takes place on the left-hand side

Yi—y Ay
el
X;— X o Ax?

DIFFERENTIAL CALCULUS 5

and this is characteristic of such simple functions as ax.

If in the denominator of this ratio x, decreases so that it
approaches x, the limit of its decrease is reached as soon as it
becomes x. Here the difference becomes x4 — x;, =x—x = 0

and therefore also y,—y = y—y = 0. In this manner we
obtain

[=—] =)

Since in the expression% every trace of its origin and its

meaning has disappeared, we replace it with % , where the
finite differences x; — x or Ax and y,—y or Ay appear
symbolised as cancelled or vanished differences, or ﬁ—i
changes to :—z .
Thus
&y
dx

The closely-held belief of some rationalising mathematicians
that dy and dx are quantitatively actually only infiritely small,

only approaching g, is a chimera, which will be shown even

=aq.

. more palpably under II).

As for the characteristic mentioned above of the case in

L. question, the limit value (Grenzwerr) of the finite differences is
therefore also at the same time the limit value of the diffe-
' rentials.

2) A second example of the same case is

y=x
_ 3 1 ¥ TX1— X35
¥»i T X

Ay 0 dy
~ =1 = =1,
Xy~ X Ax 0o ™" dx 1
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II

When in y = f(x}, the function [of] x appears on the
right-hand side of the equation in its developed algebraic expre-
sston,® we call this expression the original function of x, its first
modification obtained by means of differentiation the pre-
liminary ‘dertved’ function of x and its final form obtained by
means of the process of differentiarion the ‘derived’ functionof x.7

Dy=ax3+bx2+cx—e.
If x increases to x,, then
¥y =axi + bxi+ ex,;—e,
yi—y =alxi-x*) + blxi-x?) + clx,- %)
=a(x,—x) (x3+ x,x+ x2)

+0(x;—x)(x; +x)+celx,;—x).

Theréfore

- A
Y7y or > A a(x3 +xx+x2)+ b(x; +x)+ ¢,
X1— X Ax

and the preliminary ‘derivanve’ {is]

a(x? + xyx+ x2) + by + x3+ ¢
[and itJ is here the limit value (Grenzwert) of the ratios of the
finite differences; that is, however small these differences may
become, the value of 2x—y is given by that ‘derivative’. But thisis

not the same case as that under I) with the limit value of the
ratios of the differentials.*

* In a draft of this work {4146, P1.4), the following appears: ‘On the other
hand, the process of differentiation (Differentizlprozess) now takes place in
the preliminary “derived” function of x {on the right-hand side), while any
movement of the same process on [the left-hand side is necessarily pro-
hibited.” — Ed.

DIFFERENTIAL CALCULUS 7

When the variable x, is decreased in the function
a(xi + xx+x2}+ b(x, +x)+ ¢

until it has reached the limir of its decrease, that is, has become
the same as x, [then] x% is changed to x?, x;x to x2, and
%3 + x to 2x, and we obtain the ‘derived’ function of x:

3ax? + bx+c .

It is here shown in a striking manner:

First: in order to obtain the ‘derivative’, x, must be set = x;
therefore in the strict mathematical sense x, — x = 0, with no
subterfuge about merely approaching infinitely [closely].

Second: Although we set x; = x and therefore x,—x =0,
nonetheless nothing symbolic appears in the ‘derivative’.* The
quantity x, , although originally obtained from the variation of
X , does not disappear; it is only reduced to its minimum limit
value = x, It remains in the original function of x as a newly
introduced element which, by means of its combinations partly
with itself and partly with the x of the original function, finally
produces the ‘derivative’, that is, the preliminary derivative
reduced to its absolute minimum guantity. '

The reduction of x, to x within the first {preliminary)

‘derived’ function changes the left-hand side [from| % todor

0
: g , thus:

0 v ¥ 3.
2 g o i 3ax? + 2bx+ ¢,

L3

> % The drafi contains the following statement: *Finding “the derivative” from

l.l"le original function of x proceeds in such a manner, that we first take a Sfinite
differentiation (endliche Differentiation); this provides a preliminary “deriva-
tive” which is the Jimir value {Grengwert) of %i'. The process of differentiation

-", . (Differentialprozess) to which we then proceed, reduces this limir vaiue 10 its
_ sbsolute minimum quantity (Minimelgrosse}. The quantity x, introduced in
. the first differentiation does not disappear . . .” — Ed.

=

o
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so that the derivarive appears as the limit value of the ratio of the
differentials.

The transcendental or symbolic mistake which appears only
on the left-hand side has perhaps already lost its terror since it
now appears only as the expression of a2 process which has
established its real content on the right-hand side of the equ-
ation.

In the ‘derivative’

3ax® + 2bx+ ¢

the variable x exists in a completely different condition than in
the original function of x (namely, in ax® + bx? + cx—e). It
[this derivative] can therefore itself be treated as an original
function in turn, and can become the mother of another ‘deriva-
tive’ by the repeated process of differentiation. This can be
repeated as long as the variable x has not been finally removed
from one of the ‘derivatives’; it therefore continues endlessly in
functions of x which can only be represented by infinite series,
which [is] all too often the case.

3
The symbols.j-z%’ s 3—;”,
register of the ‘derivatives’ with respect to the original given
function of x . They are mysterious only so long as one treats
them as the starting point of the exercise, instead of as merely the
expressions of the successively derived functions of x . For it indeed
appears miraculous that a ratio of vanished quantities shoutd

etc., only display the genealogical

pass through a new, higher degree of disappearance, while

there is nothing wonderful in the fact that 3x2, for example, can
pass through the process of differentiation as well as its mother
x*. One could just as well begin with 3x? as with the original
function of x.

But nota bene. The starting point of the process of dif-

Sfeventiation actually is &y only in equations as [above] under I},
Hx

where x appears oﬁly to the first power. Then, however, as was
- shown under I, the result [is|:

DIFFERENTIAL CALCULUS 9

by _ @
Dx : dx’
. Here therefore as a matter of fact ne new limit value is found
from the process of differentiation which 2{ passes through; [a

result] which remains possible only so long as the preliminary

‘derivative’ includes the variable x, so long, therefore, as g’i

remains the symbol of a real process.*

Of course, it is in no sense an obstacle, that in the differential
calculus the symbols g—i’ s :—-:% » etc., and their combinations also
appear on the right-hand side of the equation. For one knows as
well that such purely symbolic equations only indicate the
operations which are then to be applied to the real funcrions of

variables,

2) y = agx™.
As x becoines x,, then y; = ax¥ and

y1—y = a(x} —x™)
=a(x;— x) (xT1 + x2x + x%x2 + etc,

up 10 the term xT™ x™1),

Therefore
Y-y Ay Ml o e 3,2
;’;":5: or Xx == a(x1 + x5 "x-i-xl x4+ ...

+ x|

We now apply the process of differentiation to this ‘pre-
liminary derivative’, so that

* The draft (P1.7) includes this sentence: “This can only come about, where
the preliminary “derived” function includes the variable x, through whose

motion, therefore, another truly new value may be formed, so that b

E is
the symbol of a real process.” — Ed.

i
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X, =x or x4~x =90

and
x™1 s changed into x™?;
T2 into x™3x = x™1 = ™1
xT3x2  into xM3g2 = g2 — gm-1
and finally,
xlm—ll! xm——l into xo-m xm—l _ xo-rm—l - xm—l .

We thus obtain the function x™! m times, and the ‘deriva-

tive’ is therefore max™". ]
Due to the equivalence of x; = x within the ‘preliminary

derivative’,* on the left-hand side ix-—y is changed 10 g or j—{;

therefore

All of the operations of the differential calculus could be
treated in this manner, which would however be a damned

useless mass of details. Nonetheless here is another example;

since up to now the difference x; — x appeared only once in the
function of x and therefore disappeared from the right-hand
side by means of the formation of

1=y Ay
or — .
X{— X Ax

This [is| not the case in the following:

3 y=a";
Let x become x; . Then

Y1 = ah

*On the right-hand side, that is. — Ed.

DIFFERENTIAL CALCULUS 11
Therefore
y1—y=av—a* =a“(a>>*-1) .
[Bu]
a** = [1+ (a— ™,
and
{1+ (a— D™=

(1= %) (k3 —x— 1)
1.2

1+ (x1—x)(a— 1) + (a— 1)2 + ete.®

Therefore
yi—y = a @1

(x4 —x) (1112* x— D(a— D2

=a*l(x;— x)a— 1)+

(x1— x)(x;—x— D (x,—x—2) (a— 1)? + etc.|.
1.2.3

+

- x— l(a— 12

x;—x— 1D (x,—x—2)

— 13 -
1.3.3 (a— 1)*+ etc.}.

4

Now as x, = x and thus x, — x = 0, we obtain for the
‘derivative’:

a* {(a— - %(a— D2+ %(a- 1)*— etc.|.
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— =g* a— 1) — %(a— D? + %(a— 1}*— etc.

If we designate the sum of the constants in parentheses A,
then

4y _ pgx -
dx Ac*

but this A = the Napierian logarithm of the number*a, so that:

X

d . d
Ex}l » or, when we replace y by its value: f—- =log a .a%,
X

and
da® = log a.a*dx .
Supplementary™® '
We have considered

1) cases in which the factor {x, — x) [occurs] only once in
[the expression which leads to] the ‘preliminary derivative’ —
i.e. [in] the equation of finite differences’* — so that by means
of the division of both sides by x; — x in the formation of

- Fa
1=y O
xi—x Nx

this same factor is therefore eliminated from the function of x.

2) (in the example d{a*)) cases in which factors of (x; — x)

remain after the formation of i—i 12
3) Yet to be considered is the case where the factorx; — x is

not directly obtained from the first difference equation { [which
leads to] the ‘preliminary derivative’).

* Original: ‘root’. — Trans.
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y=Ja?+x2,
y1 = Ja® +x7,

Y-y = Ja2+x"*{- Jaz+x2_;

we divide the function of x, the left-hand side as well, there-
fore, by x, — x. Then

yYi—¥
xl_x

(Or Ly, Ja?+x- Jaz + x?
Ax) X1— X '
In order to rationalise the numerator, [both] numerator and

denominator are multiplied by fa_'*‘_-é; x'-{r+ a? + x? » and we
obtain:

by _ a*+ x2— (a*+ x?)
Ax  (x— ) Ja? + x5+ Ja?+ x?)
_ x3— x?

(x1— x)(Ja? +x§ + JaT+ %

But

x3— x2
(x1— x)(Ja? + x3+ \/a2+ x?)

- (xa= x)x, % )
G D+ 2l s (T

So that:

Ly _ Xt X
Ax Ja? + x1 + Ja? + x¥
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Now when x, becomes = x, or x,— x = 0, then

So that
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dy 2x x

dy or d fa® + x* =wJa§df~—F .

ON THE DIFFERENTIAL®
|

-1} Let f(x) or ¥ = uz be a function to be differentiated; u
and 2z are both functions dependent on the independent var-
iable x. They are independent variables with respeet to the
function y, which depends on them, and thus on x.

¥ T u13,,
Yi—¥ = uggy - uz = z,{uy—w)+ u(z, - 2},
M-y Ay Hy— U z,—-z=ziﬁu+mﬁz

or — = 2, +u .
X=X Ax X;1—Xx X1—X Hx  Ax

*

Now on the right-hand side lct'x; =x,s0thatx, - x. =0,
likewise ¥, —u = 0, g,~ 2 = 0; so0 that the factor_z, in

:::; alsc goes to 2; finally on the left-hand side

Which equation, when all its terms are multiplied by the
common denominator dx, becomes
B) dy or d(uz) = z du + uds .
2) Consider for the time being the first equation A):
dy du dz

— =2t u—.

dx dx dx

* The last part of the equation was spparently added by Engels — Ed.
15

.,
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In equations with only one variable dependent on x, the final
resuit has always been

dy _
d_x _ﬁx) )

and f(x), the first derived function* of f(x), has been free!S of
all symbolic expressions, for example, mx™! when x™ is the
original function of the independent variable x. As a direct
result of the process of differentiation which f(x) had to pass
through in order to be transformed into f{x), its shadow image

(Doppelganger) (ﬁ) or %appeared as the symbolic equivalent on
the left-hand side opposite f{x), the real differential co-
efficient.’® Alternately ¥ or & found its real equivalent in f(x).

In equation A) by contrast, f{x), the first derivative of uz,
itself includes symbolic differential coefficients, which are
therefore present on both sides while on neither is there a real
value, Since, however, uz has been handled in the same manner
as the earlier functions of x with only one independent variable,
this contrast is obviously a result of the peculiar character of the
beginning function itself, namely uz. A more complete treat-
ment of this is found under 3).

For the moment, it remains {0 be seen whether there are any
twists in the denivanion of equation A).

On the right-hand side

e Ei Y u and 1% o as

Xy— X Ax Xy— X% Ax
bccomeg ,% , because x, has become = x, sothatx, —x =0,
0 0 du
92 p We put o,

In place of 0’0
that permissible, since these g figure here as the mulnpliers of

j—: without further ad_o. Was

the variables u and z respectively, while in cases with one

* Syﬂo_nzymous with ‘derivative’ — Trams.
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independent variable the single symbolic differential coef-

ficient — gor g - has no multiplier other than the con-

stant, 1?

If we place the primitive problematic form of :x—" s :—: on

the right-hand side it becomes: zg + u%. If we then multiply
z and u by the numerators of the % accompanying them,

we obtain: %+ -g-; and since the variables z and u themselves

become = 0,17 as are their derivatives as well, so that [we
obtain] finally:

2= 0 and not zd—u+ &
0 ax " Y dx”
‘This procedure, however, is mathematically false.
Let us take, for example
uy—u _ An |

x,-x ODx
one does not first obtain the numerator = 0 because one has
begun with it and set «, — « = 0, but rather the numerator only
becomes 0 or ¥, — u = 0 because the denominator, the dif-
ference of the independent variable quantities x , thatisx, — x,
has become = 0.
Therefore what arises opposite the variables # and z is not

0 but (%), whose numerator in this form remains inseparable
from its denominator. Consequently as a multiplier % then
could nullify its coefficients only when and so far as

0
-6——0.

Even in the usual algebra it would be false, in the case wherea



18 MATHEMATICAL MANUSCRIPTS

product P g takes the form P .g , to conclude immediately
that it must be = 0 , although it may be set always = 0 here,
since we can begin!® the nullification arbitrarily with
numerator or denominator.
2. 42

For example, P.’;_ g Let [because x = a] x2 be
0
0 3
and the last [term] may be set = 0, since g can just as
readily be 0 as any other number.

By contrast, let us reduce x2 — a2 to its factors, so that we
obtain

set = a2, so that x2 — 22 = (; we then obtain: P . 0

X—4a

P.:_a.(x+ a) = P{(x+ a), and sincex = a,1* = 2Pg .

Successive differentiation — for example, of x*, where J first
becomes = 0 only in the fourth derivative, since in the third the
vnriﬂblexbasmnoutandisreplsccdbyaconsum—-pwves
that — becomes 0 only under completely defined conditions.

Inonrcase,hawever,whu'etheongmo{o o:sknownto

z respectively, the

wo deserve, as above, the ‘uniformy’ (die Umfm)% gau

be the differential expression of &X 0

3) In the equations, suchasy = x™ , y = g* etc., which have
been treated previously, an original function of x stands opposite
a y ‘dependent’ on it.

Iny = uz, both sides contain ‘dependent {variables)’. While
here y depends directly on 4 and =, soin turn u and = [depend]
as well on x . This specific character of the original function uz
necessarily stamps on its ‘derivatives’ as well.

That u is a function of x, and £ another function of x
is represented by:

DIFFERENTIAL CALCULUS 19

u = fix), w,—u = flxg)~ fx),

and .
g=@x);  zi—2=@x)— @lx) .

But neither the beginning equation for f{x) nor for g(x)
leads to an original function of x, that is, a definite value* in x.
Consequently # and 2z figure as mere names, as symbols of
functions of x; therefore as well only the general forms of this
ratio of dependence {Abhangigheitsverhdilinis)

_fxq) - f(x) 2% _ 9lx)— @x)

X;— X X1— X Xy3— X Xi— X

is generated immediately by the process of taking the deriva-
tive. The process has now reached the point where x, is set =
x,sothat x; — x = 0, and those general forms are transformed
to.

du _ df(x)

dx ds

and the symbolic differential coefficients j: g become as
such incorporated into the *derivatives’.

In equations with only one dependent variable, 2 4 has no

other content at all than 7&“ s
the symbolic differential expression of

—y _fx)-fx) 2

x;—x X1— X

ESE have here. It is also merely

Although the nature of :—: s g — that is, of symbolic coef-

ficients in general — is in no way altered when they appear
within the derivative itself, and so on the right-hand side of the

% ‘Definitc expression’ is meant — Ed.

A
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differential equation as well, nonctheless their role and the
character of the equation are thereby altered.

Let us represent the original function of #z, in combination,
by f(x), and their first ‘derivative’ by f{x),

then becomes:

We have obtained this very general form for equations with
only one dependent variable. In both cases the beginning forms

of % arose from the process of taking the derivative
(Ableirungsprozesse), which transforms f{x) into f{x). Sosoon,
therefore, as f(x) becomes f{x), 4 stands opposite the latter

as its own symbolic expression, as its shadow image (Dop-
pelganger) or symbolic equivalent.

In both cases, therefore, z—fc plays the same role.

It is otherwise with g—: s ‘% Together with the other elements

of f{x), into which they are incorporated, in :—i they meet

with their symbolic expression or their symbolic equivalent,
but they themselves do not stand opposite the f{x), ¢{x)
whose symbolic shadow images they would bein turn. They are
brought into the world unilaterally, shadow figures lacking the
body which cast them, symbolic differential coefficients with-
out the real differential coefficients, that is, without the cor-
responding equivalent ‘derivative’. Thus the symbolic diffe-
rential coefficient becomes the qutonomous starting point whose
real equivalent is first to be found. The initiative is thus shifted
from the right-hand pole, the algebraic, to the left-hand one,
the symbolic. Thereby, however, the differential calculus also
appears as a specific type of calculation which already operates
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independently on its own ground (Boden). For its starting
points %‘ s % belong only to it and are mathematical quantities
characteristic of it. And this inversion of the method arose as a
result of the algebraic differentiation of uz. The algebraic method
therefore inverts itself into its exact opposite, the differential
method. *

Now, what are the corresponding ‘derivartives’ of the sym-

bolic differential coefficients :x—“ R j—z ? The beginning equation
X

¥.= uz provides no data for the resolution of this question. This
last [question] may still be answered if one substitutes arbitrary
original functions of x for # and z. For example,

u=x*; z=x%+ax? .
Thereby, however, the symbolic differential coefficients

g s :‘E are suddenly transformed into operational symbols
(Operationssymbole), into symbols of the process which must be
carried out with x* and x* + ax? in order to find their ‘deriva-
tives'. Originally having arisen as the symbolic expression of
the ‘derivative’ and thus already finished, the symbolic diffe-

rential coefficient now plays the role of the symbol of the

* The draft of the work ‘On the Differential’ (4148, P1.16-17) contains this

E paragry ph:

% s g? thrown over. Born within the derivative, they, together with the

dy

" temaining elements of the same, meet in °~ their own symbeolic expression,

dx

i therefore their symbolic equivalent. But they themselves exist withour equi-
. valent, real differential coefficients, that is without the derivative f{x) ,@{x}
[ whose symbolic expression they in turn had been. They are the completed
- @ifferential symbols whose real values figure as shadows whose bodies are 10

ba sought first. The problem has thus been turned around before one's eyes.
The symbolic differential coefficients have become autonomous starting
points, for whom the equivalent, the reat differential coefficient or the cor-
responding derived function, is first to be sought. Thereby the initiative has
been shifted from the right-hand pole to the left. Since this inversion of the
mathod originated from the algebraic manipulation of the function uz, it has
itself been demonstrated algebraically.’ — Ed.

.
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operation of differentiation which is yet to be completed.
At the same time the equation
dy _ du dz
ax Fat dx’
from the beginning purely symbolic, because lacking a side free
of symbols, has been transformed into a general symbolic oper-
ational equation.

I remark further that* from the early part of the 18th century
right down to the present day, the general task of the diffe-
rential calculus has usually been formulated as follows: to find
the real equivalent of the symbolic differential coefficient.

4)
dy du dz
A) = =z— —-.
)~ aT m
This is obviously not the simplest expression of equation A),
since all its terms have the denominator dx in common. Let this
be struck out, and then: '

B) d(uz) or dy = zdu+ udz .

Any trace in B) of its origin in A) has disappeared. It is
therefore equally as valid when u and z depend on x as when
they depend only reciprocally on one another, without any
relation to x at all.2! From the beginning it has been a symbolic
equation and from the beginning could have served as a sym-
bolic operational equation. In the present case it means, that
when

y = z2u ewc.,
that is = a product of any arbitrary number of variables mul-
tiplied together, then dy = a sum of products, in each one of
which one of the factors is treated as a variable while the other
factors are treated as constants, etc.

For our purpose, namely the further investigation of the
differential of ¥ in general, form B) nonetheless will not do. We
therefore set:

* The following is in the draft: ‘save for a few exceptions’. — Ed.

DIFFERENTIAL CALCULUS 23
u=x% z=x%+ax?.
so that
du = 4x*dx, dz = (3x? + 2ax)dx ,

as was proved earlier for equations with only one dependent
variable. These values of du , d2 are brought into equation A),
s0 that
& 4x3d 3x? + 2ax)dx
A) E”; = (x* + ax?) ’;x"+ L - *)

5 and then
dy 2 .
e T (x3 + ax®)4x3 + x*(3x% + 2ax) ;
therefore

dy = {(x* + ax?)4x® + x*(3x? + 2ax)} dx .

The expression in brackets is the first derivative of uz; since,
however, uz = f(x) , its derivative is = f{x); we now substirute
the latter in place of the algebraic function, and so:

dy = flx)dx .

We have already obtained the same result from an arbitrary
equation with only one variable. For example:

y = x",

d_y = mx™* = flx),
dx

dy = flx)dx .

! Ia general we have: if y = f{x), whether this function of x is
] now an original function in x or contains a dependent variable,
B then always dy = df(x) and df(x) = f{x)dx, and so:

B) dy = f(x)dx is the most generally valid form of the

L differential of . This would be demonstrable immediately also
¢ If the given f(x) were f(x, 2}, that is a function of rwo mutually
' independent variables. For our purposes, however, this would be

superfluous,
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It
1) The differennal
= f{x)dx

appears right away to be more suspicious than the differential
coefficient

d“; = flx)
from which it is derived.
In :; = — the numerator and denominator are inseparably

bound; in dy = f{x)dx they are apparently separated, so that
one is forced to the conclusion that it is only a disguised expre-
ssion for :

=f(x).0 or 0=10,

whereupon ‘nothing’s to be done’ (‘nix zu welle”).

A French mathematician of the first third of the 19th cen-
tury, who is clear in a completely different manner than the
_ well-known [to you] ‘elegant’ Frenchman,?? has drawn a con-

nection between the differential method and Lagrange’s algeb-
raic method: — Boucharlat says:

If for cxample dy _ 3x2, then ilialm,s , or rather its value

3x2, is the differential coefficient of the function y. Since %

is thus the symbol which represents the value 3x2, dx must
always stay (stehn)* under dy, but in order to facilitate algebraic
operation we treatjy—x as an ordinary fraction and g = 3x% asan
ordinary equation. By removing the denominator from the

equation one obtains the result
dy = 3x%dx ,
which expression is called the differential of y*.23

* The draft has: ‘remain’ (stehn bleiben) —
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Thus, in order *to facilitate algebraic operation’, one intro-
duces a demonstrably false formula which one baptises the
‘differential’,

In fact the situation is not so nasty.

*
In g the numerator is inseparable from the denominator,

but why? Because both only express a ratio if they are not
separated, somethmg tike (dans Pespéce) the ratio®* reduced to
its absolute minimum:

—y _ fix) = £x)

xl_x X1 — X

where the numerator goes to 0 because the denominator has
done so. Separated, both are 0; they lose their symbolic mean-
ing, their reason.

As soon, however, as x, — x = 0 achieves in dx a form which
is manifested without modification as the vanished differencein
the independent variable x, so that dy as well is a vanished
difference in the function of x or in the dependent {variable] y,
then the separation of the denominator from the numerator
becomes a completely permissible operation. Wherever dx
stands now, such a change of position leaves the ratio of dy to
dx undisturbed. dy = f{x)dx thus appears to us to be an
alternative form of

dy _ .
o = f{x)

and may always be substituted for the latter.2®
2) The differential dy = f{x)dx arose from A) by means of a

direct algebraic derivation (see 1,4), while the algebraic deri-
' vation of equation A) had already shown that the differential

symbol, somewhat like (dans Pespéce) the symbolic differential
coefficient which originally emerged as a purely symbolic
expression of the algebraically performed process of dif-
ferentiation, necessarily inverts into an independent starting

* ‘The drafi has: “In the form g _Ed.




point, into a symbol of an operation yet to be performed, into an
operational symbol, and thus the symbolic equations which
have emerged along the algebraic route also invert into sym-
bolic operational equations (Operationsgieichungen).

We are thus doubly correct in treating the differential
¥ = fl{x)dx as a symbolic operational equation. So we now
know a priori, that if

y = f{x) [then] dy = df(x},

that if the operation of differentiation indicated by df(x) is
performed on f(x), the result is dy = f{x)dx, and that from
this results finally

dy _
R ACOR

As well, however, from the first moment that the differental
functions as the starting point of the calculus, the inversion of
the algebraic method of differentiation is complete, and the
differential calculus itself therefore appears, a unique, specific
method of calculating with variable quantities.

In order to make this more graphic I will combine at once all
the algebraic methods which I have used, while setting simply
f(x) in place of a fixed algebraic expression in x, and the
‘preliminary derivative’ (see the first manuscript*) will be
designated as f1(x) ro distinguish it from the definitive ‘deriva-
tive’, f{x). Then, if

fx) =y, flx) =¥,

[then]
flx)— fix) =y~ yor Ay,
fUx) (x4 —x) =y, —y or Hy.

The preliminary derivative musit contain expressions in x

* See ‘On the Concept of the Derived Function’, p.3 above — Ed.
t The draft has: ‘must as a rule’ — Ed.
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and x exactly like the factor (x, — x) with the single exception
when f(x) is an original function to the first power:

_Y.i—¥ @
Fi(x) i x or .

We now substitute into f1(x)
x; =xsothatx,~x =0,

and thus obtain:
dy

(%) :g or -

and finally
flxydx =dy or dy = flx)dx .

The differential of y is therefore the conclusion of an algeb-
raic development; it becomes the starting point for differential
calculus operating on its own ground. dy, the differential®¢ of y
— considered in isolation, that is, without its [real] equivalent
— here immediately plays the same role as Ay in the algebraic
method; and the differential of x, dx, the same role as Ax does
there.

If we had, in

Ay _
Ax 10

cleared the denominator, then
ID Ay = flx) Ax .

On the other hand, beginning with the differential calculus as
a separate, complete type of calculating — and this point of

|~ departure has been itself derived algebraically — we start

immediately with the differential expression of I), namely:
ID dy = f{x)dx .
3) Since the symbolic differential equation (Gleichung des

Differentials) arises simply by the algebraic handling of the
most elementary functions with only one independent variable,
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it appears that the inversion of the method (Umschlag in der
Methode) could have been developed in a much more simple
manner than happened with the example
' ¥y =uz.

The most elementary functions are those of the first degree;
they are:

a)y = x, which leads to the differential coefficient% =1,s0
that the differential is dy = dx.

b)y = x+ab; it leads to the differential coefficient d—i =1,s0

that again the differendal is dy = dx. ’
)y = ax; it leads to the differential coefficient % =a, so that
the differential is dy = adx.
Let us take the simplest case of all (under 2)). Then:
y=x,
Y1 = %15

Yi~yorAy =x,—xor Ax.

D i%{—i or % = 1. Thus also Ay = Ax. In

X, is now set = x, or x; — x = 0, and thus:

gie

0 dy _ _
) o °r dx_l’ so that dy = dx.

Right at the start, as soon as we obtain I) % = 1, we are

forced to operate further on the left-hand side, since on the
right-hand side is the constant, 1. And therein the inversion of
the method , which throws the initiative from the right-hand side
to the left-hand side, once and for all from the ground up proves
to be in fact the first word of the algebraic method itself.

Let’s look at the matter more closely.
The real result was:
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I) ‘A—x =1
0 dy
II) 0 or EE =1

Since both I) and II) lead to the same result we may choose
between them. The setting of x, — x = ( appears in any case to
be a superfluous and therefore an arbitrary operation. Further:
we operate from here on in II) on the left-hand side, since on
the right-hand side ‘ain’t no way’, so that we obtain:

The final conclusion would be that g— = 0, so that the method

is erroneous with which g was obtained. At the first use* it

leads to nothing new, and at the second to exactly nothing.?’

Finally: we know from algebra that if the second sides of two
equations are identical, so alsc must the first sides be. It there-
fore follows that:

dy Dy

dx Ax’

Since, however, both x andy, the variable dependent on x, are
variable quantities, Ax while remaining a finite difference may
be infinitely shortened; in other words it can approach 0 as
closely as one wants, so that it becomes tnfinttely small; there-
fore the Ay dependent on it does so as well. Further, since

- & = & " dl - .
| d I follows therefrom that o really signifies, not the

extravagant g » but rather the Sunday dress (Sonntagsuniform)

of ﬁ—i, as soon as the latter funcrions as a ratio of infinitely

small differences, hence differently from the usual difference
calculation.
For its part the differential dy = dx has no meaning, or more

* Original: ‘coup’, French for ‘strike’, ‘blow’ — Trans.
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correctly only as much meaning as we have discovered for both
differentials in the analysis of % . Were we to accept the

interpretation just given,?® we could then perform miraculous
operations with the differential, such as for example showing
the role of adx in the determination of the subtangent of the
parabola, which by no means requires that the nature of dx and
dy really be understood. _

4) Before I proceed to section ITI, which sketches the his-
torical path of development of the differential calculus on an
extremely condensed scale, here is one more example of the
algebraic method applied previously. In order graphically to
distinguish it I will place the given function on the left-hand
side, which will always be the side of the initiative, since we
always write from left to right, so that the general equation is:

- ™+ Px™ 4 etc. +Tx+ U =0,
and not
0=x2 4 Pxm™! | etc, + Tx+ U.

If the function y and the independent variable x are divided
into two equations, of which the first expresses y as a function
of the variable u, whiie on the other hand the second expresses
# as a function of x , then both symbolic differential coefficients in
combination are to be found.?® Assuming:

D W=y, =y,

then

2) ¥4+ ax?2 =u; x3+axi=u, .

We deal with equation 1) for the present:

Wi-? =y,—-y,
wi—-w)=y1-y,
3u,—u) (u+u) =y,—y,

Yi—Y
-+ = _ T — .
3(;&1 _._“) P or "

b Therefore
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'Ontheleft-handsideu, isnowset =u,sothat s, —u =10
then:

3(u+u) =j—i,
3(2u) =j—i:
_dy
&‘_2;'

We now substitute for x its value x* + ax?, so that:

3) 6(x* + ax?) =j—“:.

Now applying ourselves to equation 2):
B+taxi-xP-ax*=u,—u,
(F-x)+a(xi-x*)=u,—u,
(1= x) 3+ x,x+x¥)F+alx;~x) (X3 +x) =ny—u,

Uy~ N Fa¥’s

X, — X o Ax-

(3 +xyx+ x*)+a(x; +x) =

We set x; = x on the left-hand side, so that x, —x = 0.

du
Ttxx+x)ta(x+x) = —.
{x xx+ x2)+ a(x + x) o
du
2 =
4)3;+Zax -
- We now multiply equations 3) and 4) together, so that:
d dy *°
5 34 ax?) (3x? + 2ax =dy4.-—~=—-.
) 6(x*+ ax?) ( | ) oy Miars
Thus, by algebraic means the operational formula
& b du
dx dy dx’
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has been found, which is also occasionally applicable to equ-
ations with two independent variables.

The above example shows that it is not witchcraft to trans-
form a development demonstrated from given functions into a
completely general form. Assume:

) y=fu), ¥1=fuy), y1—y=Ffu,)— Ru),
s0 that therefore
2) u=qg(x), U, =@(x,), Uy —u=glx,)— plx).

From the difference under 1) comes:

yi—y _fu)-fw)  dy _dfw)

U~ u u,—u  du  du

2

however, since df(u) = f(u)du,

dy _ f(w)du
du  du

consequently
dy _
3} du flu) .

From the difference under 2) follows:

ur—u _ 9(x1)— %) du _ do(x)
£,— X X;— X * dx  dx

and since dg(x) = @{x)dx ,

@' (x)dx
dx >

du _
dx
so that:

4 -=9).
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We multiply equation 3) by 4), so that:

dy du dyl :
5 wde T I ) . 9{x) Q.E.D.
N. III. The conclusion of this second instalment will follow,
as soon as I consult John Landen at the Museum.??
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FIRST DRAFT**

As soon as we reach the differentiation of f(u,z) [=uz], where
the variables u and 2z are both functions of x, we obtain — in
contrast to the earlier cases which had only one dependent
variable, namely, y — differential expressions on both sides, as
follows:

in the first instance

dy du dz

= 5 — —_

dx dx” %y’
in the second, reduced form

dy = zdu + udz,

which last also has a form different from that in one dependent
variable, as for example, dy = max™'dx, since here that

immediately gives us the % relieved of differential symbols

Ff(x) = max™*, which is by no means the case in dy =
zdu + udz, The equations with ome dependent variable
showed us once and for all how the derived functions of {func-
tions m] x, in this case of x™, were obtained through actual
differentiation [taking of differences] and their later can-
cellation, and ar the same time how there arose the symbolic

equivalent % = % for the derived function. The substi-
tution -g— = % here appears not only permissible but even

necessary, since % in its primitive (waldurspriinglichen)

37

- —
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form = any quantity, because % = X always leads to
0 =90 ¢ appears here, however, equal to an exactly

0
defined (ganz bestimmien) specific value, = mx™?*, and
is itseif the symbolic result of the operations whereby
this value is derived from x™; it is expressed as such

a result in % Thus gzx (= g) is established from its

origin as the symbolic value or differential expression of
the already derived f(x), not, conversely, f(x) obtained

by means of the symbol %

At the same time, however, as soon as we have achieved this
result and we therefore already operate on the ground (Boden)
of differential calculus, we can reverse [the process|; if, for
example, we have

x® = f(x) =y
to differentiate, we know immediately (von vornherein)

-

dy = mx™14dx
or
dy — m-1
3—1-‘ = mx .

Thus here we begin with the symbol; it no longer figures as
the result of a derivation from the function [of] x; rather instead
as already a symbolic expression®® which indicates which oper-
ations to perform upon f{x) in order to obtain the real value

of j—i y Le. f{x}. In the first case —g or ‘;—":"c is obtained as the

symbolic equivalent of f{x); and this is necessarily first, in
order to reveal the origin of % ; in the second case f{x) is

obtained as the real value of the symbol % . But then, where

the symbols % s g;’—; become the operational formulae

(Operationsformeln) of differential calculus,? they may as such
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formulae also appear onthéﬁgkt—hand side of the equation , as was
already the case in the simplest example dy = f{x)dx. If such an
equation in its final form does not immediately give us, asin this

case, % = f{x), etc., then this is proof that it is an equation

which simply expresses symbolically which operations are to be
performed in application to defined (bestimmten) functions.
And this is the case — and the simplest possible case —
immediately in d(ue) , where # and 2z are both variables while
both are also functions of the same third variable, i.e. of x.%”

Given to be differentiated f{x) ory = uz, where u and 2 are
both variables dependent on x. Then

Y1 S Uz
and
Y1~y =tz —uz.,
Thus:
' ATy 8sEy  uE
x1_x xl""'x X1— X
or
By _ uw = us
Ax X,—x
But

gy —ur =g, (us—u)+u(z,—2),
since this is equivalent to

Z1u1—21u+uzl—uz=zlul--us.

Therefore:

U8, — ug U — g4 2
it Rl 3 Mt A
X X X1— X Xy— X
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If now on both sides x, — x becomes =0,0rx, =x, then we
wouldhaveu, — u =0, sothat u, =4, and £, — 2 = 0, so that
2, = z; we therefore obtain

dy du dz

i fai T M

and therefore
d(uz) ordy = zdu + ude .

At this point one may note in this differentiation of uz — in
distinction to our earlier cases, where we had only one dependent
variable that here we immediately find differential symbols on
both sides of the equation, namely:

in the first instance

in the second _
d(uz) or dy = zdu + uds

which also has a different form from that with one independent
variable, such as for example, dy = f{x)dx; for here division by
dx immediately gives us % = f{x)dx which contains the specific
value (Speztalwert) free of symbolic coefficients, derived from
any function of x, f{x): which is in no sense the case in
dy = zdu + udz.

It has been shown how, in functions with only one independent
variable, from one functon of x, for example flx) = x™, a
second function of x, f{x), or, in the given case mx™? may be

derived by means of actual differentiation and subsequent can-
cellation alone, and at the same time how from this process the

symbolic equiva.lent% = ?—x for the derived function originates
on the left-hand side of the equation.

Further: the substitution g—= % here was not only permissible

but mathematically necessary. Since % in its own ﬁrimitive form

J—
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may have any magnitude at all, for g = X always gives 0 = 0.

Here, however, —g appears as the symbolic equivalent of a

conipletcly defined real value, as above, for example, mx™1,
and is itself only the resuit of the operations whereby this value
was derived from x™; as such a result it is firmly fixed

(festgehalten) in the form & .

dx
Here, therefore, where % [= % ) is established in its origin,
f{x) is by no means found by using the symbol %; rather
dy

instead the differential expression i |appears] as the symbolic
equivalent of the already derived function of x.

Once we have obtained this result, however, we can proceed
in reverse. Given an f(x), e.g. x™, to differentiate, we then
first look for the value of dy and find dy = mx™1dx, so that

% = mx"™ 1, Here the symbolic expression appears {figuriert)

as the point of departure. [We] are thus (so) already operating

on the ground of differential calculus; that is, % etc. already
perform as formulae which indicate which known differential
operations to apply to the function of x. In the first case

% (= % ) was obtained as the symbolic equivalent of f(x),
in the second f(x) was sought and obtained as the real

value of the symbols L s g% 5 ete.

dx
These symbols having already served as operational formulae
(Operationsformeln) of differential calculus, they may then also
appear on the right-hand side of the equation, as already hap-
pened in the simplest case, dy = f{x)dx. If such an equation in
its final form is not immediately reducible, as in the case

mentioned, 10 % = f{x), that is 1o a real value, then thart is

proof that i1 1s an equation which merely expresses symbolically
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which operations to use as soon as defined functions are treated
in place of their undefined [symbols].

The simplest case where this comes in is d(uz), where u and
z are both variables, but both at the same time are functions of
the same 3rd variable, e.g. of x.

If we have here obtained by means of the process of d.lf—
ferentiation (Differensierungsprozess) (see the beginning of this
in Book I, repeated on p.10 of this book*)

then we should not forget that u and z are here both variables,
dependent on x , s0 v is only dependent on x, because on ¥ and
2. Where with one dependent variable we had it on the symbolic
side, we now have the two variables ¥ and z on the right-hand
side, both independent with respect to y but both dependent on
x, and their character [as] variables dependent on x app-

ears in their respective symbolic coefficients :x-f and g-'; LI

we deal with dependent variables on the right-hand side, then
we must necessarily also deal with the differential coefficients
on that side.

From the equation

it follows:
d{ug) or dy = zdu+ uds.
This equation only indicates, however, the operations to per-

form when (sobald) u and z are given as defined functions.
The simplest possible case would be, for example,

u=ax, z=bx.

* See p.39 of this volume.
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Then

d(uz) or dy = bx.adx+ ax .bdx .
We divide both sides by dx, so that:

d B

d—i = abx + bax = 2abx
and

d‘l

‘d? = ab+ ba = ZQb

If we take, however, the product from the very beginning,
¥y or uz =ax.bx = abx?,
then

2

= 2abx , d o 4 = 2ab .

d2

d-y
= 2 -
uz or y = abx?, [

As soon as we obtain a formula such as, for example,

w =]z % , it is clear that the equation, ‘what we might
call’* general operational equation, [is] a symbolic expression

of the differential operation to- bc performed. If for exam-
ple we take [the] expression y 5 ,» Where y is the ordinate

and x the abscissa, then this is the general symbolic expressicn
for the subtangent of an arbitrary curve (exactly as
d(uz) = zdu+ udz is the same for the differentation of the
product of two variables which themseives depend on a third).
So long, however, as we leave the expression as it is it leads to
nothing further, although we have the meaningful rep-
resentation for dx, that it is the differential of the abscissa, and
for dy, that it is the differential of the ordinate.

In order to obtain any positive result we must first take the
equation of a definite curve, which gives us a definite value for
y in x and therefore for dx as well, such as, for example,

* In English in original text — Trans.
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¥* = ax, the equation of the usual parabola; and then by
means of differentiation we obtain 2ydy = adx; hence

dx = Zy—f:y. If we substitute this definite value for dx

into the general formula for the subtangent, y % , we then

obtain
Yydy
dy ady a’

and since y> = ax , [this]

which is the value of the subtangent of the usual parabola; that
is, itis = 2 X the abscissa. If, however, we call the subtang-

ent T, so that the general equation runs ygx; = 1, and

ydx = tdy. From the standpoint of the differential calculus,
therefore, the question is usually (with the exception of
&
dx '

The difficulty becomes evident if we then substitute the
original form -g for % etc.

Lagrange) posed thus: to find the real value for

d;y =z‘£‘+ud—z

dx dx dx
appears as

0 0 0

-—=z,. —+iu.—=

0 0 0’

an equation which is correct but leads nowhere (zu nichts), all

the less so, since the three % s come from different differ-

ential coefficients whose different derivations are no longer
visible. But censider:
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1) Even in the first exposition with one independent var-
iable, we first obtain

0 dy _ ) -
6 or > fix) s so that dy f'(x)dx. .
But since
dy _ 0 - - -
I 0’ dy =0anddx = 0,sothat ¢ = 0.

&
dx
% we nonetheless commit here a positive mistake, for g
is only found here as the symbolic equivalent of the real

dy
dx:l

Although we again substitute for 22 its indefinite expression

value f{x), and as such is fixed in the expression and

thus in dy = f(x)dx as well.

2) :1_: becomes %E or g, because the variable x
=

becomes = x,, or x; — x = 0; we thus obtain right away not

-,

0 but rather % for ; we know however in general that

|

g can have any value, and that in a specific case it has

the specific value (Spezialwert) which appears as soon as a

defined function of x enters for «; we are thus not only cor-

rect in substituting 3—’; for % , but rather we must do it, since

%:— as well as g appear here only as symbols for the differ-

ential operations to be performed. So long as we stop with the
result

so that

dy = zdu+ udz ,
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then :—: . % , du and dz also remain indefinite values, just
like % capable of any value.

3) In the usual algebra g can appear as the form for
expressions which have a real value, even though g can be a

x2 — g2
S we set

symbol for any quantity. For example, given

x = a sc that x— a = 0 and x2 = g2, and therefore x2 — a2 =
0. We thus obtain
x*~a* 0

x—a 0’

the result so far is correct; but since (6) may have any value it

. 2 _ a2
in no way proves that xx., : has no real value.

If we resolve x?—a? into its factors, then it =
{x+ a) (x— a) ; so that :

x2— g2
x—a

x—a
=(x+a).—=x+a;
x—~a

soif x—a =0, then x =q, sothereforex + a =a+ a = 2a.%

If we had the term P(x— aq) in an ordinary algebraic
equation, then if x = ¢, so that x — a = 0, then necessarily
P(x—a) = P.0 = 0; just as under the same assumptions
P(x?* — a®) = 0. The decomposition of x2 — g2 into its factors
{x+ a) (x— a) would change none of this, for

Px+ay(x—a)=Plx+a).0=0.
By no means, however, does it therefore follow that if the
term P, (%)had been developed by setting x = a, its value
must necessarily be = 0.

% may have any value because % = X always leads to:

0=X.0=O;butiustbecause%mayhaveanyvalucit
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need not necessarily have the value 0, and if we are acquainted
with its origin we are also able to discover a real value hidden
behind it.

x! — a?

So for example P. . ,if x =g, x—a = 0 and so

as well x? = g2, x2— 42 = 0; thus

x-q? 0
Tx-a . 0°
Although we have obtained this result in 2 mathemanrically
completely correct manner, it would nonetheless be mathemat-
ically false, however, to conclude without further ado that

P .% = 0, because such an assumption would imply that

% may necessarily have no value other than 0, so that

P.—-=P.0.

ole

It would be more relevant to investigate whether any other
result arises from resolving x2— a? imto its factors,
(x + a) (x— a); in fact, this transforms the expression to

P.(x+a).:—i; =P . (x+a).l,

and [when] x = g 10 P.2a or 2Pa. Therefore, as soon as
we operate (rechnen) with variables,?? it is all the more not
only legitimate but indeed advisable to fix firmly (fes+-
suhalten) the origin of % by the use of the differential symbols
b a

dx ? dx’
that they originate as the symbolic equivalent of derived func-
tions of the variables which have run through a definite process
of differentiation. If they are thus originally (urspriimglich) the
result of such a process of differentiation, then they may for that
reason well become inversely (umgekehrt) symbols of & process
yet to be performed on the variables, thus operational symbols

etc., after we have previously (urspringlich) proved
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{Operationssymbolen) which appear as points of departure rather
than results, and this is their essential use (Dienst) in differential
calculus. As such operational symbols they may even convey
the contents of the equations among the different variables (in
implicit functions 0 stands from the very beginning on the
right-hand side [of the equation| and the dependent as well as
independent vaniables, together with their coefficients, on the
left).
Thus it is in the equation which we obtain:

d(uz) dy  zdu udz

i ' dx dx + dx ~

From what has been said earlier it may be observed that the
dependent functions of x, z and u, here appear unchanged as z
and # again; but each of them is equipped (ausgestatzer) with the
factor of the symbolic differential coefficient of the other.

The equation therefore only has the value of a general equ-
ation which indicates by means of symbols which operations to
perform as soon as # and » are given respectively, as dependent
variables, two defined functions of x.

Only when |[we] have defined functions of [x] for « and z

may j:(= og) and ﬁ(= g] and therefore g—i(= g) as well
become 0, so that the value g = 0 cannot be presumed
but on the contrary must have arisen from the defined func-
tional equation itself.
Let, for example, # = x® + ax?; then

0, _du_ .,

(0] = = W+ Zax,

0 d*u

_ = . +

(0)1 dx? bt 2,

] du

b, =@ =6

0 du

), =z =0
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0 _
F 0.
The long and the short of the story is that here by means of

differentiation itself we obtain the differential coefficients in
their symbolic form as a result, as the value of [j—i in] the
differential equation, namely in the equation

dow) by i b

dx or dx dx dx

so that in this case

We now know, however, that ¥ = a defined function of x,
say f{x). Therefore :‘_: , in its differential symbol :—: ,

is equal o f{x)}, the first derived functonr of f{x). Just so
z = @(x), say, and so similarly % = ¢{x), ditto — of

@(x) . The original function itself, however, provides us neither
with u nor with z in any defined function of x, such as, for
example
u=x", z=|x

It provides us u and z only as general expressions for any 2
arbitrary functions of x whose product is to be differentated.

The equation states that, if a product, represented by uz, of
any two functions of x is to bedifferentiated, one is first 1o find
the real value corresponding to the symbolic differential

coefficient g , that is the first derived function say of f(x),

and to multiply this value by ¢(x} = 2; then similarly to find
the real value of % and multiply {it) by f(x) = «; and finally

to add the two products thus obtained. The operations of
differential calculus are here already assumed to be well-
known.

The equation is thus only a symbolic indication of the oper-
ations to be performed, and at the same time the symbolic

differential coefficients :'-: s g here stand for symbols of
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differential operations still to be completed in any concrete
case, while they themselves were originally derived as symbolic
formulae for already completed differential operations.

As scon as they have taken on (angenommen) this character,
they may themselves become the contents of differential equ-
ation, as, for example, in Taylor's Theorem:

Y1 =y+j—':h+ etc.

Bur then these are also only general, symbolic operational
equations. In this case of the differentiation of ug, the interest
lies in the fact that it is the simplest case in which — in
distinction to the developmen: of those cases where the inde-
pendent variable x has only one dependent variable y — diffe-

rential symbols due to the application of the original method

itself are placed as well on the right-hand side of the equation
(its developed expression), so that at the same time they enter as
operational symbols and as such became the contents of the
equation itself. :

This role, in which they indicate operations to be performed
and therefore serve as the point of departure, is their charac-
teristic role in a differential calculus already operating (sich
bewegenden) on its own ground, but it is certain (sicher) that no
‘mathematician has taken account of this inversion, this reversal
of roles, still less has it been necessary to demonstrate it using a
totally elementary differential equation. It has only been men-
tioned as a matter of fact that, while the discoverers of the
differential calculus and the major part of their followers make
the differential symbol the point of departure for calculus,
Lagrange in reverse makes the algebraic derivation*® of actual
(swirklichen) functions of the independent variable the point of
departure, and the differential symbols into merely symbolic
expressions of already derived functions.

If we once more return to d{uz), we obtained next as the
result (Produkt) of seiting x, — x = 0, as the result of the
differential operation itself:
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dx  “dx Ydx-

Since there is a common denominator here, we thus ebtain as
a reduced expression

dy = zdu+ udz.

This compares to (entspricht) the fact that in the case of only one
dependent variable we obtain as the symbolic expression of the
derived function of x, of f{x) (forinstance, of max™ ! , which is

flx) if ax™ = f(x)), :—”: on the left-hand side as its symbolic

expression

dy _
dx fx)
and of which the first resuit is
dy = flx)dx
(for example, % = max™*; dy = max™'dx, which is the

differential of the function y) (which last we may equally
re-transform to % = max™1 ) But the case

dy = zdu + udz

is distnguished once again by reason of the fact that the diffe-
rentials du, dz here lie on the right-hand side, as operational
symbols, and that dy is only defined after the completion of the
operations which they indicate. If
u=flx), z=q@(x)

then we know that we obtain for du

du = f{x)dx
and for [dz]

dz = @{x)dx
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Therefore: What is true for :—: s j—: N % , ﬁ—{ etc. is true for all com-
dy = @(x)f(x)dx+ f(x) p'(x)dx plicated formulae where differential symbols themselves appear
and - within general symbolic operational equations.
d
ﬁ = @(x)f(x) + fx) glx) .
In the first case therefore first the differential coefficient \
dy _ |
I fx)
is found and then the differential
dy = f{x)dx .

In the second case first the differential dy and then the

differential coefficient g- . In the first case, where the diffe-
rential symbols themselves first originate from the operations
performed with f(x), first the -derived function, the true
(ewirkliche) differential cocfficient, must be found, to which g—i
stands opposite (gegentibertrete) as its symbolic expression; and
only after it has been found can the differential (das Differential)
dy = f{x)dx be derived.

It is turned round (umgekehrt) in dy = 2du + udz.

Since du, dz appear here as operatiopal symbols and clearly

indicate operations which we already know, from differential
calculus, how to carry out, therefore we must first, in order to

find the real value of % , in every concrete case substitute for

u its value in x, and for 2 ditto — its value in x — in order to find

dy = @(x)f(x)dx + f(x) @'(x)dx;

and then for the first time division by dx provides the real value
of

% = @(x)f(x) + f(x)p(x) .




SECOND DRAFT*!
]

We start with the algebraic derivation of f{x), in order to

establish in this way at the same time its symbolic

differential expressions O or 2., and thus also discover its

0 dx
meaning. We must then turn it round, starting with the sym-
dz

bolic differential coefficients j—: > g 38 given forms in
order to find their respective corresponding real equivalents
flx), {x). And indeed, these different ways of treating the
differential calculus, setting out from opposite poles —and two
different historical schools — here do not arise from changes in
our subjective methods, but from the nature of the function uz
to be dealt with, We deal with it, as with functions of x with a
single dependent variable, by starting with the right-hand
pole and operating algebraically with it. I do not believe any
mathematician has proved or rather even noticed this necessary
reversal from the first method of algebraic derivation (his-
torically the second) whether for so elementary a function as uz
or any other. They were too absorbed with the material of the
calculus for this.
Indeed, we find that in the equation
0 dy du dz

6 or E;:z&;+uzc

& again springs in just the same way from the derivative

dx
occurring on the right, with u2 just as with functions of x witha

>4
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single dependent variable; but on the other hand the dif-

ferential symbols :—: s g—: are again incorporated in f{x) or the

first derivative of uz, and therefore form elements of the equi-
valent of %.

The symbolic differential coefficients thus themselves

. become already the object or content of the differential oper-

ation, instead of as before featuring as its purely symbolic result
(als symbolisches Resultat derselben).

With these two points, first, that the symbolic differential
coefficients as well as the variables become substantial elements
of the derivation, become objects of differential operations
(Drfferentialoperationen), second, that the question has changed
about, from finding the symbolic expression for the real diffe-
rential coefficient f(x), to finding the real differential coef-
ficient for its symbolic expression — with both these points the
third is given, that instead of appearing as the symbotic result of
the previous operation of differentiation on the real function of
x, the symbolic differential expressions now conversely
(tmgekehrt) play the role of symbols which indicate operations
of differentiation yet to be performed on the real function of x;
that they thus become operational symbols.

In our case, where

dy  du_ ds

a Cdx %o
we wotld no longer be able to operate unless we knew not only
that z and u are both functions of x but also that, just as with

y=x7,
real values in x are given for u and 2, such as, for example,

= x, 2= x34 2px2,

In that manner, then, g*: s g in fact stand as indicators of

operations whose performance (Ausfihrungsweise) is assumed
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to be well-known for any arbitrary function of x substltuted in
place of ¥ and =.

¢) The equation found is not only a symbolic operational
equation (Operationsgleichung), but also simply a preparatory
symbolic operational equation.

Since in

D d—y=z-+u

the denominator dx is found in all terms on both sides, its
reduced expression is thus:

II) dy or d{ug) = zdu + udz.

Straight away this equation says that when a product of two
arbitrary variables (and this is generalisable in further appli-
cations to the product of an arbitrary number of variables) is 1o
be differentiated, each of the two factors is 1o be multiplied by
the differential of the other factor and the two products so
obtained are to be added.

The first operational equation

thus becomes, if the product of two arbitrary variables is to be
differentiated, a superfluous preparatory equation which, after
it has served its purpose, namely that of a general symbolic
operational formula, leads directly to the goal.

And here it may be remarked that the process of the original
algebraic derivation is again turned into its opposite. We first
obtained there

Ay =y~
as the corresponding symbol for f(x,)— f(x), both usual
algebraic expressions (since f{x) and f{x,) have been givcn
as defined algebralc functions of x). Then [0

Xi—X

replaced by o whereupon f{x) — the first derived function
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of f(x) — became 5’3 » and we at last obtained, from the final
equation of the dlffmntual coefficient,

_— R
dx f‘tx ) P
the differential

dy = f{x)dx .

The above equation,* however, gives us the differentials
dy, du, dz as points of departure (Ausgangspunkie). Thus, were
in fact arbitrary defined functions of x to be substituted for u
and z, designated only as

u=f(x) and 2 = o(x),

then we would have
dy = @(x)df (x) + f(x)do(x) ,

and this d sign merely indicates differentiation to be per-
formed.
The result of this differentiation has the general form:

df(x) = flx)dx
and
do(x) = gp{x)dx .
So that
dy = @(x) flx}dx + flx)@(x)dx.

Finally,
= () () + A @),

Here, where the differential already plays the role of a
ready-made operational symbol, we therefore derive the diffe-
rential coefficient from it; while on the contrary in the original

* Equation II) — Trans.
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algebraic development the differential was derived from the
equation for the differential coefficient.

Let us take the differential itself, as we have developed itinits
simplest form, namely, from the function of the first degree:

- dy _ . |
y=ax, dx a,
of which the differential is
dy = adx .

The equation of this differential appears to be much more

meaningful than that of the differential coefficient,
0 dy _
5 O T4

from which it is derived.

Since dy = 0 and dx = 0, dy = adx is identical to 0 = 0. Yet,
we are completely correct 1o use dy and dx for the vanished —
but fixed, by means of these symbols, in their disappearance —
differences, y, — y and x, — x.

As long as we stay with the expression

dy = adx
or, in general,
dy = flx}dx ,
it is nothing other than a restatement of the fact that
d
2=l

which in the above case, = a, from which we may continue 1o
transform it further. But this ability to be transformed already
makes it an operational symbol (Operationssymbole). At once,
we see that if we have found dy = f{x)dx as a result of the
process of differentiation, we have only to divide both sides by

dx to find % = f{x), namely, the differential coefficient.
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Thus for example in 2 = ax
d(y?) = d(ax) , 2ydy = adx .
The last equation of differentials provides us with two equ-
ations of differential coefficients, namety:

dy a dx 2
E_Zy and dy a

I

But 2ydy = adx also provides us immediately with the
value ZA’? for dx , which for instance substitutes into the

general formula for the subtangent y‘diu; and finally helps to

establish 2x, double the abscissa, as the value of the subtangent
of the usual parabola.

1I

We now want to take an example in which these symbolic
expressions first serve the calculus as ready-made (fertige) oper-
ational formulae, so that the real value of the symbolic coef-
ficient is also found and then the reversed elementary algebraic
exposition may be followed.

1) The dependent function y and the independent variable x
are not united in a single equation, but in such a manner that y
appears in a first equation as a direct function of the variable u,
and then « in a second equation as.a direct function of the
variable x. The task: to find the real value of the symbolic diffe-
rentia! coefficient, % .

Let

a)y=flu), b)u=gk).

Next, 1) y = fu) gives:
dy _ df(u) _ fluddu _
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du _do(x) _ 9lx)dx _
D & dx dx Plx) -
So that
dy a'u
T =W .g)
But
dy du_dy
du dx dx’
So that
—y = flwolx) .
Example. If a) y = 3u?, b) u =x3+ ax?, then, by the
formula
dy _ d(3u?) _ _ )
e du 6u (= f(u)) ;

but the equation b) says u = x?+ ax?. If we substitute this
value for # in 6u, then

% = 6(x3+ ax?) (=flw) .

Furthermore:
du )
Ir =3x24 2ax (=¢ix)) .
So that
dy du Ay _ a2y (3,2 - ,
du - dx or 4x 6(x3+ ax?) (3x2 + 2Zax) (=f(w) .9p1{x)) .

2) We now take the equations contained in the last example
as the starting equations (Ausgangsgleichungen), in order to
develop them this time in the first, algebraic, method.
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a) y = 3u?, b) u = x*+ ax?.
Since y = 3u? , [then] y; = 3ujf, and

-~y =Xui—u?) = 3u,—u) (u, + u) .
Therefore

yi—y

4~ u = 3u, + u)

If now u; — u becomes = 0, then u, = u,and 3(u, + u) is
thus transformed to 3(u + u) = 6u.
We substitute for u its value in equation b), so that

dy = 6(x*+ ax?) .
dut

Further; since
¥ =x3+ ax? , [then] u; = x}+ axi ;
so that
u1¥ #=(x3+ax?3)— (x*+ ax?) = (x3—- 3 + a(x3 - x?) ,
y—u=(x;~2) (3 +x,x+xD+alx;—x) (x,+ %)
thus
g —
Xq— X

=(x+xx+x2)+a(x,+x).

If now x, — x becomes = 0 then x, = x, so that

x3 4+ xx+ x* = 3x2

and

a(x, +x) = 2ax .
Thus:

% = 3x2 + 2ax .

If we now multiply both equations together, we then obtain
on the right-hand side
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6(x%+ ax?) (3x* + Zax) ,
which corresponds to the eft-hand side

just as previously.
! In order to bring out the difference in the derivations more
' clearly, we shall place the defined functions of the variables on
| the left-hand side and the functions dependent on them on the
' right-hand side, since one is accustomed, following the general
equations in which only 0 stands on the right hand, to thinking
that the initiative is on the left-hand side. Thus:

a) 3u? =y; b3+ ax?2 =u.
!! Since
W=y, Wi=y,
T so that
3ui—u?) =y,—y
i or

i 3uy—u) (uy+u) =y,—y,
so that
s, 4wy =12
ul_ u

If now %, becomes =u,sothatu; — u = 0, [we] then obtain

Hu+uw or6u=d1.

du
If we substitute in 6u its value from equation b), then
PETME

R S,

t_
‘?

b e L '
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' Furthermore, if

¥+ax? =y,

then
x3+ax? = u,
and
xi+ ai‘%— B3—ax? =u;—u;

so that .
| (xi—xD+a(xi-x?) =u;—~u.
We further separate into factors:
(x4—x) 3+ xx+x2)+alx,—x) (x,+x) = u,;- .
Therefore

#y—

(x2+xx+x2)+ alx, + x) =
x]‘_x

3
now if x; = x, so that x, — x = 0, then

32+ 2ax = 2
dx

If we multiply the 2 derived functions together, then

6(x* + ax?) (3x* + 2ax) =g—‘z .

and if we put it in the usual order,

& du_dy

du * dx  dx

It is self-evident that due to its details and the frequently

difficult division of the first difference, f{x,)— f{x), into

terms which each contain the factor x, — x , the latter method is

not comparable to the historically older one as a means of
calculation. '

= 6(x3+ ax?) (3x% + 2ax) .
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On the other hand one begins this last method with dy, dx
and % as given operational formulae, while one sees them

arise in the first one, and in a purely algebraic manner as well.
And I maintain nothing more. And there in the |historically]
first method, how has the point of departure of the differential
symbols as operational formulae been obtained? Either through
covertly or through overdy metaphysical assumptions, which
themselves lead once more to metaphysical, unmathematical
consequences, and so it is at that point that the violent sup-
pression is made certain, the derivation is made to start its way,
and indeed quantities made to proceed from themselves.

And now, in order to give an historical example of beginning
from the two opposing poles, I will compare the solution of the
case of d(uz) developed above by Newton and Leibnitz on the
one hand, to that by Lagrange on the other hand.

1} Newton.

We are first told that when the variable quantities increase x ,
3 etc. designate the velocities of their fluxions, alias of the
increase, respectively, of x , y etc. Since furthermore the num-
erical sizes of all possible quantities may be represented by
means of straight lines, the momenta or infinitely small quania
which are produced are equal to the product of the velocities %,
3 etc. with the infinitely small time intervals t during which
they occur, thus = ut, ¥t and y1 .42

‘THIRD DRAFT’

~ If we now consider the differential of y in its general form, dy
= flx)dx, then we already have before us a purely symbolic
operational equation, even in the case where f{x) from the very
beginning is a constant, as in dy = d(ax) = adx. This child of

% or % = f(x) looks suspiciously like its mother.

For in % = %umnerator and denominator are inseparably bound

together; in dy = f{x)dx they are obviously separated, so that
one is forced to the conclusion: dy = f{x)dx is only a masked
expression for 0 = f(x) .0, thus 0 = 0 with which ‘nothing’s 10
be done’ (‘nichts 2u wolle’). Looking more closely, analysts in
our century, such as, for example, the Frenchman Boucharlat,
smell a rat here too. He says:*

In :—: = 3x2, for example, —g-alias :x_y, or even more ils
value 3x2, is the differential coefficient of the function y. Since
% is thus the symbol which represents the Limit 3x2, dx
must always stand under dy but, in order to facilitate algebraic
operation we treat % as an ordinary fraction and % = 3x?

as an ordinary equation, and thus by removing the denominator
dx from the equation obtain the result dy = 3x2dx, which
expression is called the differential of y."%* _

In order to “facilitate algebraic operation’, we thus introduce
a false formula.

* This is a ranslation of Marx’s German translation of a passage otiginally in
French — Trans. :

65
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In fact the thing (Sache) doesn’t behave that way. In %

(usually written (-g
(Minimalausdrucks) of y;—y, or of flx1)— f(x), or of the
increment of f{x), to the minimal expression of X=X, 0rto
the increment of the independent variable quantity x, pos-

sesses a form in which the numerator is inseparable from the

)), the ratio of the minimal expression

. . 0 .
denominator. But why? In order to retain g 3 the ratio of

vanished differences. As soon, however, as x, — x = 0 obtains
in dx a form which manifests it as the vanished difference of x,
and thus y, — ¥ = 0 appears as dy as well, the separation of
numerator and denominator becomes a completely permissible
operation. Where dx now stands its relationship with dy
remains undisturbed by this change of position. dy = df(x),
and thus = f(x)dx, is only another expression for

g—"; f = f{x) } , which must lead to the conclusion that f{x)
is obtained independently. How useful this formula dy = df{(x)

immediately becomes as an operational formula (Operationsfor-
mel), however, is shown, for example, by:

y* =ax,
d(y?) = d(ax) ,
2vdy = adx ;
so that
dx = by .
a

This value of dx , substituted into the general formula for the
subtangent, y %‘, then gives

ydy
Y a _ Yy ?
dy “ady a’

e —
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and since

2ax
vy =ax, [thus] = -

so that 2x , double the abscissa, is the value of the subtangent of
the vsual parabola.
However, if dy = df{x) serves as the first point of departure

(Ausgangspunkt), which only later is developed into % itseif,

then, for this differential of y tc have any meaning at all, these
differentials dy, dx must be assumed to be symbols with a

- defined meaning. Had such assumptions not originated from

mathematical metaphysics but instead been derived quite
directly from a function of the first degree, such as y = ax,

then, as seen earlier, this leads to i’ 1‘“: = a, which is trans-
ppn

formed to % = a. From here as well, however, nothing cer-

tain is to be got a priori. For since % is just as much = ¢

‘as % = a, and the, Ax, Ay, although finite differences

or increments, are yet finite differences or increments of unli-
mited capacity to contract (Kontraktionsfihigkeit), one then may
just as well represent dx, dy as infinitely small quantities
capable of arbitrarily approaching 0, as if they originate from
actually setting the equality x,— x = 0, and thus as well
¥1— ¥ = 0. The result remains identical on the right-hand side
in both cases, because there in itself there is no x, atall toset =
x ,and thus as well no x, — x = 0. This substitution = 0 on the
other side consequently appears just as arbitrary an hypothesis
as the assumption that dx , dy are arbitrarily small quantities.
Under (sub) IV) 1 will briefly indicate the historical develop-
ment through the example of d(uz) , burt yet prior to that will
give an example under (sub) III)4* which is treated the first time
on the ground of symbolic calculus, with a ready-made oper-
ational formula (fertigen Operationsformel), and is demonstrated
a second time algebraically. Enough (soviel) has been shown
under (sub) II), so that the latter method alone, by means of its
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application to so elementary a function as the product of two
variables, using its own resuits, necessarily leads to starting
points {(die Ausgangspunkie) which are the opposite pole as far as
operating method goes.

To (ad) IV,

Finally (following Lagrange) it is to be noted that the limir or
the }imit value , which is already occasionally found in Newton
for the differential coefficients and which he stll derives from
purely geometric considerations (Vorstellungen), still to this day
- always plays a predominant role, whether the symbolic expre-
sions appear (figurieren) as the limit of f(x) or conversely f(x)
appears as the limit of the symbol or the two appear together as
limits. This category, which Lacroix in particular analyrically
broadened, only becomes important as a substitute for the
category ‘minimal expression’, whether it is of the derivative as
opposed to the ‘preliminary derivative’, or of the ratio i"—_l ,

1
when the application of calculus to curves is treated. It is more
representable (vorstellbarer) geometrically and is already found
therefore among the old geometricians. Some contemporaries
{Modernen) still hide behind the statement that the differentials
and differential coefficients merely express very approximate
values.*s

SOME SUPPLEMENTS*¢

A) Supplement on the differentiation of uz .4’

1) For me the essential thing in the last manuscript on the
development of d(uz) was the proof, referring to the equation

dy | du, ds
dx dx dx’

that the algebraic method applied here reverses itself into the
differential method, since it develops within the derivative, and
thus on the right-hand side, symbolic differential coefficients
without corresponding equivalents, real coefficients; hence
these symbols as such become independent starting points and
ready-made operational formulae.

The form of equation A) lends itself all the more readily to
du dz
dx’ de’
produced within the derivative f{x), and the :—i, which
is the symbolic differential coefficient of f(x) and therefore
comprises its symbolic equivalent, standing opposite on the
left-hand side.

Confronting the character of :—: 1 j—: » 85 operational formulae,

A)

this purpose since it allows a comparison between the

I have been content with the hint that for any symbolic diffe-
rential coefficient an arbitrary ‘derivative’ may be found as its
real value if one substitutes some f(x) , 3x2 for example, for
and some @(x), x*+ ax? for example, for z.

I however could also have indicated the geometric applica-
bility of each operational formula, since for example, the gen-

eral formula for the subtangent of a curve =y%,whichhasa

69
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form generally identical to z%, u :‘—;,
products of a variable and a symbolic differental coefficient.
Finally, it could have been noted that y = uz [is| the simplest
elementary function (y here = y! , and uz is the simplest form of
the second power) with which our theme could have been

developed.

for they are all

48

A) Differentiation of ;f

3) Since dz is the inverse of d(uz), where one has mul-

tiplication, the other division, one may use the algebraically
obtained operational formula

d(uz) = zdu + udz
in order to find d; directly. I will now do this, in order that

the difference between the method of derivation and the simple
application of a differential result found previously which now in
turn serves as an operational formula, may stand out clearly.

We have thus simply formally concealed u in a product of two
factors. Nonetheless, the task is thereby in fact already solved,
since the problem has been transformed from the differentiation
of a fraction to the differentiation of a product, for which we have
the magic formula in our pocket. According to this formula:

¢ du = zdy+ ydz .
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We see immediately that the first term of the second side,
namely zdy , must remain sitting in peace at its post until the
crack of doom (genau vor Torschluss), since the task consists
L
z
expression in differentials of # and z. For this reason, on the
other hand, ydz is to be removed to the left-hand side. There-
fore:

precisely in finding the differential of y(= ) and thus its

d) du— ydz = zdy .

We now substitute the value of y, namely E , into ydz, so
that

u
du—;dz—zdy,

therefore

The moment has now come to free dy of its “sleeping partner’ *

2, and we obtain

* Original in English — Trans.
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I. FIRST DRAFTS

Newton: born 1642, 11727 (85 years old). Philosophiae
naturalis principia mathematica (first pubhshed 1687; c.f.
Lemma I and Lemma X1, Schol.)

Then in particular: Analysis per quantitatum series fluxiones
etc., first published 1711, but composed in 1665, while Letbnitz
first made the same discovery in 1676.

Letbnitz: born 1646, 11716 (70 years old).

Lagrange: born 1736, tduring the Empire (Napoleon I); heis
the discoverer of the method of variations. Théorie des fonctions
analytigues (1797 and 1813).

D’Alembert: born 1717, 11783 (66 years old). Traité des
fluides, 1744.

1) Newton. The velocities or fluxions, of for example the
variables x,y etc. are denoted by %,y e, For example if 4 and
x are connected quaniities (fluents) generated by continuous move-
ment, then # and % denote their rates of increase, and

therefore f the ratio of the rates at which their increments are

generated.

Since the numerical quantities of all possible magnitudes
may be represented by straight lines, and the moments or infi-
nitely small portions of the quantities generated = the products
of their velocities and the infinitely small time intervals during
which these velocities exist,*® so then [we have] T denoting
these infinitely small time intervals, and the moments of x and
y represented by tx and Ty, respectively.

76

HISTORICAL DEVELOPMENT 77

For example: y = uz; [with] ¥, #, 4 denoting the velocities at
which y, =, u respectively [are] increasing, then the momenis of
¥, &, % are Ty, t¢, 11, and we obtain

y=uz,

y+ 1y ={u+t+ti)(z+1%) =uz+ uts+ zra+ t3uz ;

hence
9y = utd+ 2ta+ tiaz .

Since T is infinitesimal, it disappears by itself and even more

‘as the product 124% altogether, since it is not that of the

infinitely small period of time T, but rather its 2nd power.

=1 7 = 1
(H v = Tnilfion’ then v 1 million X 1 mil]ion) )
We thus obtain

| 3 =uz+ du ,
or the fluxion of ¥y = uz is uz+ 24 .57

2) Letbnitz. The differential of uz is 10 be found.
u becomes u + du, z becomes z + dz; so that

uz + d(uz) = (u+ du) (z+ dz) = us+ udz + zdu + duds .

If from this the given quantity »2 is subtracted, then there
remains ude + zdu + dudz as the increment; dudz, the pro-
duct &’un infiniment petit du par un autre infintiment petit dz, (of
an infinitely small du times another infinitely small dz)* is an
infinitesimal of the second order and disappears before the

infinitesimals udz and zdu of the first order; therefore

d(uz) = udz + zdu 5

[3)] D’Alembert. Puts the problem in general terms thus:
If [we have] .

y =flx),
=fx+h);

* In French in the original. — Trans.
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[we are] to determine what the value of L;—y becomes when

the quantity & disappears, and thus what is the value of %.59

Newton and Leibnitz, like the majority of the successors
from the beginning performed operations on the ground of the
differential calculus, and therefore valued differential expre-
ssions from the beginning as operational formulae whose real
equivalent is to be found. All of their intelligence was con-
centrated on that. If the independent variable x goes to x4,
then the dependent variable goes toy,. x; — x, however, is
necessarily equal to some difference, let us say, = k. This is
contained in the very concept of variables. In no way, however,
does it follow from this thar this difference, which = dx, is a
vanished [quantity], so that in fact it = 0. It may represent a
finite difference as well. If, however, we suppose from the very
beginning that x , when it increases, goes to x + x (the T which
Newton uses serves no purpose in his analysis of the fun-
damental functions and so may be suppressed®®), or, with
Leibnitz, goes to x + dx, then differential expressions immedi-
ately become operational symbols (Operationssymbole) without
their algebraic origin being evident.

To 15* (Newiton).
Let us take Newton’s beginning equation for the product uz
that is to be differentiated; then:

y=uz,

y+ 1Ty = (u+ar) (z+21) .

* See pages 49-51 in this edition.
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If we toss out the Tt , a5 he does himself if you please, after he
develops the first differential equation, we then obtain:

y+y={u+a)(z+2),

yty=uz+uzg+ su+ 2,

f

y+y—uz =uz+ 3u+ uz .
So that, since uz = ¥,

Y =izt su+ gk

"~ And in order to obtain the correct result #z must be sup-

pressed.
Now, whence arises the term to be forcibly suppressed,, us?
Quite simply from the fact that the differentials y of y, 4 of
u,and £ of z have from the very beginning been imparted by
definition* a separate, independent existence from the variable
quantities from which they arose, without having been derived
in any mathematical way at all.

On the one hand one sees what usefulness this presumed

‘existence of dy , dx or y, % has, since from the very beginning,

as soon as the variables increase I have only to substitute in the
algebraic function the binomials y + ¥, x + x etc. and then may

- just manipulate (mangovrieren) these themselves as ordinary

algebraic quantities.
- T obtain, for example, if I have y = ax:

yty=ax+ax;
so that
y—ax+y=ax;
hence
y =ax.

1 have therewith immediately obtained the resuli: the diffe-
rential of the dependent variable is equal to the increment of

* Qriginal: ‘Difinition’, prestmably ‘Definition’ — Trans.
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ax , namely ax ; it is equal to the real value a derived from ax *
{that this is a constant quantity here is accidental and does
nothing to alter the generality of the result, since it is due to the
circumstance that the variable x appears here to the first
power). If I generalise this result,®! then I know y = f(x), for
this means that y is the variable dependent on x. If I call the
quantity derived from f(x), i.e. the real element of the incre-
ment, f{x), then the general result is:

¥ =fx)% .

I thus know from the very beginning that the equivalent of
the differential of the dependent variable y is equal to the first
derived function of the independent variable, multiplied by its
differential, that is dx or x.

So then, generally expressed, if

y =[x}
then

dy = f{x)dx

or y = the real coefficient in x (except where a constant appears
because x is to the first power) times £.

But ¥ = g% gives me immediatelyl’.; = g, and in general:
Y _
3 flx) .

I have thus found for the differential and the differential
coefficients two fully-developed operational formulae which
form the basis of all of differential caleunlus.

And furthermore, put in general terms, I have obtained, by
means of assuming dx , dy etc. or %, y etc. to be independent,
insulated increments of x and y, the enormous advantage,
distinctive to the differential calculus, that all functions of the
variables are expressed from the very beginning in differential
forms.

. ¥
* That1s,;=a—Traus.
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Were I thus to develop the essential functions of the vari-
ables in this manner, such as ax, ax*b, xy, 5, x", a*,
log x, as well as the elementary trigonometric functions
then the determination of dy, % would thus become

completely tamed, like the multiplication table in arithmetic.
If we now look, however, on the reverse side we find immedi-

ately that the entire original operation is mathematically false.
Let us take a perfectly simple example: y = x2. If x increases

~ then it contains an indeterminate increment % , and the variable

y dependent on it has an indeterminate increment &, and we
obtain '

y+h={x+h)?*=x2+2kx+ 1,
a formula which is given to us by the binom [ial theorem].
Therefore
yt+k—x* or y+ k—y = 2hx+ h?%;
hence
(y+R)—y or k= 2bx+ h?;

~ if we divide both sides by & then:

k
;—2x+k.

We now set A = 0, and this becomes

2x+h=2x+0=2x.

On the other side, however, % g2oes o % . Since, however,

y only went toy + k because x wentto x+ k,and theny + k

goes back 1o y when h goes to 0, therefore when x + A

goes back 1o x + 0, to x . So then % also goes to 0 and% = g,

which may be expressed as % or "—; . We thus obtain:
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or = 2x .

<o
e,

If on the other hand we [substitute h = Oj in
y+k—x2 =2+ h* or (y+R)—y=2xh+ k2

(h is only replaced by the symbol dx after it has previously been

set equal to O inits original form), we thenobtain k =0+ 0 =

¢, and the sole result that we have reached is the insight into our

assumption, merely thaty goestoy + k,if x goestox+ /. . .

sothatif x+ A =x+0=x,theny+k=y,o0r k = 0.
In no way do we obtain what Newton makes of it:

k= 2xdx + dxdx
or, in Newton’s way of writing:
§ = 2x% + %% ;

h only becomes x , and therefore 2 becomes v, as soon as # has
passed the hellish ride through 0, that is, subsequent to the
difference x, — x(or {x + h) — x) and therefore that of ¥y, — ¥
as well (= (v + k) — ¥) having been reduced to their absolutely
minimum expressions (Mimimalausdruck), x— x = 0 andy— ¥y
= 0.

Since Newton, however, does not immediately determine the
increments of the variables x, y, etc by means of mathematical
derivation, but instead immediately stamps % , ¥, etc on to the
differentials, they cannot be set = 0; for otherwise, were the
result 0, which is algebraically expressed as setting this incre-
ment from the very beginning = 0, it would follow from that,
just as above in the equation

+k)—y = 2xh+ h?,

h would immediately be set equal to 0, therefore £ = 0, and
consequently in the final analysis we would obtain 0 = 0. The
nullification of & may not take place prior to the first derived
function of x, here 2x, having been freed of the factor h
through division, thus:
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Yi Y _
2 2x+ k.
Only then may the finite differences be annulled. The diffe-
rential coefficient

j—i=2x

therefore also must have previously been developed,? before
we may obtain the differential

dy = 2xdx

Therefore nothing more remains than to imagine the incre-
ments k of the variable to be infinitely small increments and to
give them as such independent existence ,in the symbols %, y etc.
or dx , dy |etc.] for example. Butinfinitely small quantities are
quantities just like those which are infinitely large (the word
infinitely (unendlich) [small] only means in fact indefinitely
(unbestimmt) small); the dy, dx etc. or 3, % [ete.] therefore also
take part in the calculation just like ordinary algebraic quan-
tities, and in the equation above

(y+k)—y or k= 2xdx+ dxdx

the dxdx has the same right to existence as 2xdx does; the
reasoning (Raisonnement) is therefore most peculiar by which it
is forcibly suppressed, namely, by direct use of the relativity of
the concept of infinitesimal (unendlich klein). dxdx is sup-
pressed because it is infinitely small compared to dx , and thus
as well to 2xdx, or to 2xx. . .
But (Oder), if in
y = iz + fu+ ui

the # is suppressed because it is infinitely small compared to
#z or zu , then one would thereby be forced to admit mathemat-
ically that &z + #u is only an approximate value (Anngherung-
swert), in imagination as close as you like. This type of man-

oeuvre occurs also in ordinary algebra.
But then in walks the still greater miracle that by this method
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you don’t obtain an approximate value at all, but rather the
unigue exact value (even when as above it is only symbolically
correct) of the derived function, such as in the example

y = %%+ %% .
If you suppress here %x, you then obtain:
¥y = 2xx
and
;Y'_ =2x,

which is the correct first derived function of x2, as the
binom ial theorem} has already proved.

But the miracle is no miracle. It would only be a miracle if no
exact result emerged through the forcible suppression of x%.
That is to say, one suppresses merely a computational misiake
which nevertheless is an unavoidable consequence of a method
which brings in the undefined increment of the variable, i.e. 4,
immediately as the differential dx or %, a completed operational
symbol, and thereby also produces from the very beginning in
the differential calculus a characteristic manner of calculation
different from the usual algebra.

The general direction of the algebraic method which we have
applied may be expressed as follows:

Given f(x), first develop the ‘preliminary derivative’, which
we would like to call f1(x):

D fix) = % or %’c = fli{x).

From this equation it follows
Ay = fl{x)Ax .
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So that as well

Af(x) = fAx)Dx
(since y = f(x), [thus}] Ay = Af(x) ) .

By means of setting x, — x = 0, sothat y, — ¥ = ¢ as well,
we obtain

d
2) L=r@ .
- Then
dy = f(x)dx ;
so that also

df(x) = f(x)dx
(since y = f(x},dy = &f(x)) .
When we have once developed

) Af(x) = fAx)Ax,
then

2) dfix) = fx)dx
is only the differential expression of 1).

1} If we have x going t¢ x, , then
A) x;—x = Ax;

whence the following conclusions may be drawn

Aa) Ax =x,—x; a) x.— Ax =x;
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Ax, the difference between x, and x, is therefore positively
expressed as the increment of x; for when it is subtracted again
from x, the latter returns once more to its original state, to x.

The difference may therefore be expressed in two ways:
directly as the difference between the increased variable and its
state before the increase, and this is its negative expression;
positively as the increment,* as a result : as the increment of x to
the state in which it has not yet grown, and this is the positive
expression.

We shall see how this double formulation plays a role in the
history of differential calculus.

b) x; = x+ Ax |

x4 Is the increased x itself; its growth is not separated from it;
x4 is the completely indeterminate form of its growth. This
formula distinguishes the increased x, namely x,, from its
original form prior to the increase, from x, but it does not
distinguish x from its own increment. The relationship between
x, and x may therefore only be expressed negatively, as a
difference , as x, — x . In contrast, in

x; = x+ Ax

1) The difference is expressed positively as an increment
of x.

2) Its increase is therefore not expressed as a difference , but
instead as the sum of itself in its original state + its increment.

3) Technically x is expelled from its monomial into a bino-
mial, and wherever x appears to any power in the original
function a binomial composed of itself and its increment enters
for the increased x; the binomial (x + k)™ in general for x™.
The development of the increase of x is therefore in fact a
simple application of the binomial theorem. Since x enters as the
first and Ax as the second term of this binomial — which is
given by their very relationship, since x must be |there] before

the formation of its increment Ax — by means of the binomial,

* Marx added here in pencil ‘or decrement’ — Ed.

= RS g D s
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in the event only the funcuons of x will be derived, while Ax
figures next ro it as a factor raised vo increasing powers; indeed,
Ax to the first power must [appcar] , 50 that Ax! is a factor of
the second term of the resuiting series, of the first function, that
is, of x, derived, using the binomial theorem. This shows up
perfectly when x is given to the second power. x2 goes to
(x + h)?, which is nothing more than the multiplication of
x+Ax by itself, [and which] leads to x? + 2xAx+Ax?: thatis,
the first term must be the original function of x and the first
derived function of x2, namely [2]x here, comprises the second
term together with the factor Ax!, whick entered into the first
term only as the factor Ax® = 1. So then, the derivative is not
found by means of differentiztion but rather by means of the
application of the binomial theorem, therefore multiplication;
and this because the increased variable x, takes part from the
very beginning as a binomial, x+Ax.

4) Although Ax in x+Ax is just as indefinite, so far as its
magnitude goes, as the indefinite variable x itself, Ax is
defined as a distinct quantity, separate from x, like a fruit
beside the mother who had previously borne her (als Frucht
neben threr Mutter, bevor diese geschwangert war).

' x+Ax not only expresses in an indefinite way the fact that x
has increased as a variable; rather, it [also] expresses by how
much it has grown, namely, by Ax.

5) x never appears as x,; the whole development centres
around the increment Ax as soon as the derivative has been
found by means of the binomal theorem, by means, that is, of
substituting x+Ax for x in a definite way (in bestimmien

Grad). On the left-hand side, however, if in -2 y the Ax
becomes = 0, it finally appears as x, — x agam, so that:

Yim¥ _ Y1y *
Ax Xy—x

* Marx added here in pencil: 22 . — Ed.
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The positive side, where x, — x = 0 takes place, namely x,
becoming = x , can therefore never enter into the development,
since x; as such never enters into the side of the resultant series
(Entwicklungsrethe); the real mystery of the differential calcutus
makes itself evident as never before.

6) Ify = f(x) and y, = f{x+Ax), then we can say that in
using this method the development of y, solves the problem of
finding the derivative.

¢) x+Ax = x; (so that y+Ay =y, as well). Ax here may
only appear in the form Ax = x, — x , therefore in the negative
form of the difference between x; and x , and not in the positive
form of the increment of x, as in x, = x+Ax.

1) Here the increased x is distinguished as x, from itself,
before it grows, namely from x ; but x; does not appear as an x
increased by Ax, so x; therefore remains just exactly as inde-
finite as x is.

2) Furthermore: however x enters into any original func-
tion, so x; does as the increased variable in the original func-
tion now altered by the increase. For example, if x takes part in
the function x*, so does x, in the function x3.

Whereas previously, by means of substituting (x+Ax)
wherever x appeared in the original function, the derivative
had been provided ready-made by the use of the binomial,
leaving it burdened with the factor Ax and the first of other
terms in x burdened with Ax? etc., so now there is just as little
which can be derived directly from the immediate form of
the monomial— x3 — as could be got from x3. It does provide,
however, the difference x3— x*. We know from algebra that all
differences of the form x*— 43 are divisible by x — a ; the given
case, therefore, is divisible by x, — x. In therefore dividing
x3— x* by x, — x (instead of, [as] previously, multiplying the
term (x+ Ax) by itself to the degree specified by the function),
we obtain an expression of the form (x,— x)P, wherein
nothing is affected whether the original function of x contains
many terms (and so contains x to various powers) or as in our
example is of a single term. This x, — x passes by division to
the denominator of ¥, — ¥ on the left-hand side and thus pro-
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duces H there, the ratio of the difference of the function to
-

the difference of the independent variable x in its abstract
difference-formula (Differenzform). The development of the
difference between the function expressed in x, and that
expressed in x into terms, all of which have x, — x as a factor,
may well require algebraic manipulation (Mansver) to a greater
or lesser degree, and thus may not always shed as much light as
the form x3— x*. This has no effect on the method.

When by its nature the original function does not allow

the direct development into (x; — x) P, as was the case with

f(x}) = uz (two variables both dependent on x), (x;— x)
appears [in] the factor e Furthermore, after the re-
1

moval of x; — x to the left-hand side by means of dividing both
sides by it, x, — x still continues to exist in P itself (as, for
example, in the derivaton from y = a*, where we find

(x,-x)—-1
1.2

317y =a"{(a— D+

—_ I2
" (a— 1)* + etc.],

where setting x, — x = 0 produces
= a*{(a- - %(a— 102+ %(a— 1 etc.]);

this is only possibie when, as in the example just given, it so
happens that setting x,— x = 0 [allows] it to disappear, and
then always leaves positive results behind in its place. In other
words the (x, — x)s left behind in P may not be combined
with the rest of the elements of P as factors (as multiplicands).
P would otherwise be factorableinto P = p{(x, — x), and then,

since x,— x has already been set = 0, into p.0; hence
P=gq . . 6.5
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. . _ .3
The first finite difference, x3— x®, where y» = x

and y, = x3, has therefore been evolved to
-y =(x—0P,
hence
Yoy _ P.
X1— X

P, an expression combining x, and x,is =f* , the derivative_ of
the first finute difference, whence x; — x has been guite elimi-
nated, as well as those of higher degree, (x, — x)? etc, x, and
x may therefore only be combined in positive expressions, such

as x, +x, xlx,%, JX1x etc. Were therefore x; 1o be

. x
now set = x, these expressions would then become 2x, x?, 2

or 1, Jxx or x etc.,respectively, and only on the lefi-hand side,
where x; — x comprises the denominator, is ¢ produced and
therefore the symbolic differential coefficient etc.

HISTORICAL DEVELOPMENT 91

II. THE HISTORICAL PATH OF DEVELOPMENT

1) Mystical Differential Calculus. x, = x+ Ax from the
beginning changes into x, = x+ dx or x + %, where dx is
assumed by metaphysical explanation . First it exists, and then
it is explained.

Then, however, ¥, = y+dy or ¥y; = y+ y. From the
arbitrary assumption the consequence follows that in the
expansion of the binomial x + Ax or x + %, the terms in x and
Ax which are obtained in addition 1o the first derivative, for
instance, must be juggled away in order to obtain the correct
result etc. etc. Since the real foundation of the differential
calculus proceeds from this last result, namely from the diffe-
rentials which anticipate and are not derived but instead are

assumed by explanation, then % or% as well, the symbolic
differential coefficient, is anticipated by this explanation.
If the increment of x = Ax and the increment of the variable

1 dependent on it = Ay, then it is self-evident (versteht sick von

2 selbst) that i—i

This implies, however, that Ax figures in the denominator,
4 that is the increase of the independent variable is in the
¥' denominator instead of the numerator, not the reverse; while
the final result of the development of the differential form,
namely the differential , is also given in the very beginning by the
assumed differentials.*

represents the ratio of the increments of x and 5.

* Marx distinguishes the differendals (die Differentiellen) dx and dy, the
infinitesimals of the differences Ax and Ay, from the differential (das Diffe-
rennial): dy = f{x)dx. — Trans.

A,
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If I assume the simplest possible {(allereinfachste) ratio of the
dependent variable v to the independent variable x, theny =
x . Then I know that dy = dx or y = x . Since, however, I seek
the derivative of the independent [variable] x ,which here = %,
I therefore have to divide®™ both sides by x or dx, so that:

I therefore know once and for all that in the symbolic diffe-
rential coefficient the increment [of the independent variable]
must be placed in the denominator and not in the numerator.

Beginning, however, with functions of x in the second
degree, the derivative is found immediately by means of the
binomial theorem [which provides an expansion] where it
appears ready made (fix und fertig) in the second term combined
with dx or % ; that is with the increment of the first degree +
the terms to be juggled away. The sleight of hand (Eskamotage},
however, is unwittingly mathematically correct, because it only
juggles away errors of calculation arising from the original
sleight-of-hand in the very beginning.

x1 = x+ Ax is to be changed to

x; =x+dx or x+%,

whence this differential binomial may then be treated as are the '

usual binomials, which from the technical standpoint would be
very convenient.

The only question which still could be raised: why the mys-
terious suppression of the terms standing in the way? That
specifically assumes that one knows they stand in the way and
do not truly belong to the derivative.

The answer 1s very simple: this is found purely by exper-
iment. Not only have the true derivatives been known for a long
time, both of many more complicated functions of x as well as
of their analytic forms as equations of curves, etc., but they
have also been discovered by means of the most decisive exper-
iment possible, namely by the treatment of the simplest algeb-
raic function of second degree for example:
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y=x?
y+dy = (x+dx)? = x2 + 2xdx + dx* ,
y+3 = (x+ %)? = x2 + %+ 52 .

If we subtract the original function, x2(y = x?), from both
sides, then:

dy = 2x dx + dx*
¥ = 2%+ xix
I suppress the last terms on both [right] sides, then:
dy = 2xdx, §y=2x%, '

and further
dy _
dx =
or
2 =2,
%

We know, however, that the first term out of (x + )2 is x2 ;
the second 2xa ;if I divide this expression by @ , as above 2x dx
by dx or 2xx by %, we then obtain 2x as the first derivative of
%2, namely the increase in x ,5 which the binomial has added to
x2. Therefore the dx? or ix had to be suppressed in order to
find the derivative; completely neglecting the fact that nothing
could begin with dx? or xi* in themselves.

In the experimental method, therefore, one comes — right at
the second step — necessarily to the insight that dx? or &% has
to be juggled away, not only to obtain the true result but any
resuit at all.

Secondly, however, we had in

2x dx + dx? or Mxx+ %%

* Printed edition has misprint x% here. — Trans.
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the true mathemarical expression (second and third terms) of
the binomial (x + dx)? or (x + %)?. That this mathematically
correct result rests on the mathematically basically false assump-
tion that x, — x = Ax is from the beginningx, — x = dx or %,
was not known. %

In other words, instead of using sleight of hand, one cbtained
the same result by means of an algebraic operation of the
simplest kind and presented it to the mathematical world.

Therefore: mathematicians (man . . . selbst) really believed
in the mysterious character of the newly-discovered means of
calculation which led to the correct {(and, particularly in the
geometric application, surprising) result by means of a posi-
tively false mathematical procedure. In this manner they
became themselves mystified, rated the new discovery all the
more highly, enraged all the more greatly the crowd of old
orthedox mathemarticians, and elicited the shrieks of hostility
which echoed even in the world of non-specialists and which
were necessary for the blazing of this new path.

2) Rational Differential Calculus. I Alembert starts directly
from the point de départ (sic) of Newton and Leibnitz:
x; = x+ dx. But he immediately makes the fundamental
correction: x; = x +Ax, thatis, x and an undefined but prima
facie finite increment which he calls %. The transformation of
this 2 or Ax into dx (he uses the Letbnitz notation, like all
Frenchmen) is first found as the final result of the development
or at least just before the gate swings shut (vor Toresschiuss),
while in the mystics and the initiators of the calculus It appears
as the starting point (d’Alembert himself begins with the sym-
bolic side,* but first transforms it symbolically). By this means
he immediately succeeds in two ways.%”

a) The ratio of differences

fx+ h)— fx) _ flx+ B)— flx)

k X;1— X

is the starting point of his construction (Bildung).

* Traditionally the left-hand side — Trans.
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1) [the difference] f(x + k)— f(x), corresponding to the
given algebraic function in x, stands out as soon as you replace
x itself with its increment x + % in the original function in x ,
for example, in x3. This form (= y, — 3, if y = f(x)) is that of
the difference of the function , whose transformation into a ratio
of the increment of the function to the increment of the inde-
pendent variable now requires a development, so that it plays a
real role instead of a merely nominal one, as it does with the
mystics; for, if I have in these authors

flxy =x*,
fx+h) = (x+ k)3 =x%4+ 3x2h + 3xch? + B3,
then I know from the very beginning, that in
fx+ By~ f(x) = x>+ 3x2h+ 3xh? + - x3

the opposing sides are to be reduced to the increment. This
needn’t even be written down, since I see that on the second
side the increment of x> = the three following terms as well as
thatin f{x + k) — f(x), only the increment of f{x) remains, or
dy . The first difference equation (Differenzgleichung) therefore
only plays a role which from the very beginning is to disappear
again. The increments stand opposite one another on both

sides, and if I have them then I have from the definition of

dx, dy that ;—dyx or% is the ratio etc.; I therefore do not

need the first difference, formed by the subtraction of the
original function in x from the altered (by the replacement of x

by x+ k) function (the increased function), in order to
construct & or 2,
dx x
In d’Alembert it is necessary to hold fast to this difference
because the steps of the development (Entwicklungs-
bewegungen) are to be executed upon it. In place of the
positive expression of the difference, namely the increment, the
negative expression of the increment, namely the difference,
and thus f(x + h)— f(x), therefore comes to the fore on the

left-hand side. And this emphasis on the difference instead of

-
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the increment (‘fluxion’ in Newton) is foreshadowed at least in
the dy of Leibnitzian notation as opposed to the Newtonian y.

2) flx+ k)~ f(x) = 3x2h + 3xh? + B2,
When beth sides have been divided by &, we obtain

flx+ h)— f(x)
h .

Thereby is formed on the left-hand side
fix+ B)— fixy _ (x+R1)— flx)

h Xy— X

= 3x2 + 3ch + A2,

which therefore appears as a derived ratio of finite differences,
while with the mystics it was a completed rato of increments
given by the definitions of dx or £ and dy or .

3) Now when in

f+R)—fx) | fix+h)— flx)

k Xy— X
h is set = 0, or x; = x so that x, — x = 0, this expression is
transformed to %, while by means of this setdng & = 0 the

terms 3xk + k2 all become [zero| simultaneously, and this by
means of a correct mathematical operation. They are thus now
discarded without sleight of hand. One obtains:

0 dy 2
4)6 or .- 3x flx) .

Just as with the mystics, this already existed as given, as soon
as x became x + A, for (x+ h)? in place of x* produces
3+ 3x2k + etc., where 3x2 already appears in the second
term of the series as the coefficient of h to the first power. The
derivation is therefore essentially |the] same as in Leibnitz and
Newion, but the ready-made derivative 3x2 is separated in a
strictly algebraic manner from its other companions. It is no
development but rather a separation of the f{x) — here 3x? —
from its factor & and from the neighbouring terms marching in
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closed ranks in the series. What has on the other hand really
been developed is the left-hand, symbolic side, namely dx , dy,

and their ratio, the symbolic differential coefficient & = ©

dx 0
(rather the inverse, L %), which in turn once more generates

certain metaphysical shudderings, although the symbol has
been mathematically derived.

D’Alembert stripped the mystical veil from the differential
calculus and took an enormous step forward. Although his
Traité des fluides appeared in 1744 (see p.15%), the Leibnitzian
method continued to prevail for years in France. It is hardly
necessary to remark that Newton prevaiied in England until the
first decades of the 19th century. But here as in France earlier
d’Alembert’s foundation has been dominant until today, with
some modifications.

3) Purely Algebraic Differential Calculus. Lagrange, ‘Théorie
des fonctions analytiques’ (1797 and 1813). Just as under I) and
2), the first starting point is the increased x; if :

y or f(x) = etc.,

then it is y, or f(x+ dx) in the mystical method, y; or
f(x+ k) (= f(x + Ax)) in the rational one. This binomial
starting point immediately produces the binomial expansion on
the othert side, for example:

x™ 4+ mx™ 1k + erc.,

where the second term mx™ 1} already yields ready-made the
real differential coefficient sought, mx™1 .

a) When x + & replaces x in a given original function of x,
f(x + h) is related to the series expansion (Entwicklungsreihe)
opposite it in exactly the same way that the undeveloped general
expression in algebra, in particular the binomial, is related to its
corresponding series expansion , as (x + k)3, for example in

{(x+ k)P =x3+ 3x2h+ etc.,

* Sece p.76
t i.e. right-hand — Trans.

y .
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is related to its equivalent series expansion x*+ 3x2k+ erc.
With that step f(x + &) enters into the very same algebraic
relationship (only using variable quantities) which the general

expression has toward its expansion throughout algebra, the

relationship, for example, which a—_"—x in

2 k)
a x x x
=1l+—+— ++ e,
a a [/

a—Xx

has toward the series expansion 1+ etc., or which sin{x + &)
- sin(x + k) = sin x cos k + cos x sin k
has toward the expansion standing opposite it.

D’Alembert merely algebraicised (x 4 dx) or (x + £) into
(x+ h),and thus {x+ k) fromy+ dy,y+ v into fix+ k).
But Lagrange reduces the entire expression ((Fesamigusdruck)
to & purely algebraic character, since he places it, as a general
underdeveloped expression , opposite the series expansion to be
derived from it.

b) In the first method [} , as well as the rational one 2) , the
real coefficient sought is fabricated ready-made by means of the
binomial theorem; it is found at once in the second term of the
series expansion, the term which therefore is necessarily com-
bined with #'. ARl the rest of the differential process then,
whether in 1) or in 2), is a luxury. We therefore throw the
needless ballast overboard. From the binomial expansion we
know once and for all that the first real coefficient is the factor of
h, the second that of A2, and so on. The real differential
coefficients are nothing other than those of the binomially
developed series of derived functions of the original function in x
(and the introduction of this category of derived function one of
the most important). As for the separate differential forms, we
know that Ax is transformed into dx, Ay into dy, and that the

symbolic figure of % represents the first derivative, the sym-

dy

bolic figure )

represents the second derivative, the coeffic-

—
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ient of % k%, etc. We may thus allow the symmetry of half

of our purely algebraically obtained result to appear at the same
time in these its differental equivalent quantities (Dif
Jerentialdquivalenten) — a matter of nomenclature alone, all that
remains from differential calculus proper. The whole problem
is then resolved into finding (algebraic) methods ‘of developing
all kinds of functions of x + % in integral ascending powers of
h , which in many cases cannot be effected without great pro-
lixity of operation’.%8 o

Until this point there is nothing in Lagrange which could not
be a direct result of d’Alembert’s method (since this includes
also the entire development of the mystics, only corrected).

¢) While the development, therefore, of y, or f{x+ k) =
etc. steps into the place of the differential calculus up to now
[and thereby, in fact, clarifies the mystery of the methods
proceeding from

yt+dyory+y, x+dcorx+%,

namely that their real development rests on the application of
the binomial theorem, while they represent from the very
beginning the increased x, as x+ dx, the increased y, as
y+ dy, and thus transform a monomial into a binomial], the
task now becomes, since we have in f{x + k) a function without
degree before us, the general undeveloped expression itself only,
to derive algebraically from this undeveloped expression the
general, and therefore valid for all power functions of x, series
expansion.

Here Lagrange takes as his immediate starting point for the
algebraicisation of the differential calculus the theorem of Tay-
lor outlived by Newton and the Newtonians *® which in fact is the
most general, comprehensive theorem and at the same time
operational formula of differential calculus, namely the series
expansion, expressed in symbolic differential coefficients, of
y1 or fix+ k), viz:
¥y, or f(x+h)

= iy 4_5’_ E dsy hs - ‘—il h4
ylorf(x)) + dxh+dxz [2)  dx® 2.3] " dx*t [2.3.4]

+ etc.
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d) Investigation of Taylor’s and MacLaurin’s theorem to be
added here.” . .
e) Lagrange’s algebraic expansion of f(x + ) into an equi-

valent series, which Taylor’s j—z etc. replaces, and it may only

still be the symbolic differential expression of the algebraically
derived functions of x. (This is to be continued from here
on.”1)

IIT CONTINUATION OF EXTRACTS

¢} Continuation of [p.] 25*

Wehave x, — x = Ax from the beginning for the expression
of the difference x| — x; the difference exists here only in its form
as a difference (as, if y is dependent on x, y, — y is written for
the most part). Since we set x; — x = Ax, we already give the
difference an expression different from itself. We express, if
only in indeterminate form, the value of this difference as a
quantity distinct from the difference itself. For example, 4—2 is
the pure expression of the difference between 4 and 2; but 4—2
= 2is the difference expressed in 2 (on the right-hand side): a)
in positive form, so no longer as the difference; b) the sub-
traction is completed, the difference is calculated, and 4—2 = 2
gives me 4 = 2+2, The second 2 appears here in the positive
form of the increment of the original 2. Therefore in a form
directly opposite to the difference form (einer der Differenzform
entgegengesetzien Form). Justasa— b =c, a = b + ¢, where ¢
appears as the increment of &, so in x;— x = Ax, x, =
x + Ax, where Ax enters immediately as the increment of x .

The simple original setting x, — x = Ax = anything} there-
fore puts in place of the difference form another form, indeed
that of a sum, x; = x+ Ax, and at the same time simply
expresses the difference x; — x as the equivalent of the value of
this difference, the quantity Ax.

I’sjustthesamein x, — x = Ax, x, — Ax =x. Wehave the
difference form again here on the left-hand side, but this time as
the difference between the increased x, and its ownincrement,

* See p.84.
1 In English in the original.
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standing independent next to it. The difference between it and
the increment of x(=Ax) is a difference which now already
expresses a defined, if also indeterminate, value of x.

If however one leaves the mystical differential calculus,
where x, ~ x enters immediately as x, — x = dx, and one first
of all* corrects dx to Ax, then one begins from x,— x = Ax;
thus from x, = x+Ax; but this in tern may then be turned
round to x+ Ax = x, , so that the increase of x again attains the
undefined form x,, and as such enters directly into the cal-
culus. This is the starting point of our applied algebraic
method. : '

d) From this simple distnction of form there immediately
results a fundamental difference in the treatment of the calculus
which we demonstrate in detail (see the enclosed loose sheets)”?
in the analysis of d’Alembert’s method. Here we have only to
remark in general:

1} If the difference x, — x (and thus y, — ¥) enters immedi-
ately as its opposite, as the sum x, = x+Ax with its value
therefore immediately in the positive form of the increment Hx,
then, if x is replaced by x + Ax everywhere in the original
Sfunction in x, a binomial of definite degree is developed and the
development of x, is resolved into an application of the binomial
theorem. The binomial theorem is nothing but the general
expression which results from a binomial of the first degree
multiplied by itself m tmes. Multiplication therefore becomes
the method of development of x, [or] (x+Ax) if from the
beginning we interpret the difference as its opposite, as a sum.

2) Since in the general form x; = x+Ax the difference
Xx;— x, in its positive form Ax, in the form, that is of the
increment , is the last or second term of the expression, thus x
becomes the first and Ax the second term of the original
function in x when this is presented as a function in x + Ax.
We know from the binomial theorem, however, that the second
term only appears next to the first term as a factor raised to
increasing powers, as a multiplier, so that the factor of the first

* Original d’abord — Trans,
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expression in x (which is determined by the degree of the
binomial} is (Ax)® = 1, the multiplier of the second term is
(Ax)!, that of the third is (Ax)?, etc. The difference, in the
positive form of the increment, therefore only comes in as a
multiplier, and then for the first time, really (since { Ax)® = 1),
as the multiplier of the second term of the expanded binomial
{(x+AHx)™

3) If on the other hand we consider the development of the
functionin x itself, the binomial theorem then gives us for this
first term, here x, the series of its derived functions. For
example, if we have (x + k)*, where & is the known quantity in
the binomial and x the unknown, we then have

x*+ dxh 4+ erc.

4x3, which appears in the second term and has the factor
raised to the first power, is thus the first derived function of x,
or, expressed algebraically: if we have (x + k)* as the unde-
veloped expression of the binomial, then the developed series
gives us for the first increase of x* (for the increment) 4x3,
which enters as the coefficient of k. If, however, x is a variable
quantity and we have f{x} = x*, then this by its very growth
becomes f(x + k), or, in the first form,

f(x+Ax) = (x+Ax)* = x4 + 4x3Ax 4+ etc.

x*, which is provided for us in the usual algebraic binomial
(x+ k)* as the first term of the binom ial expansion], now
appears in the binomial expression of the variable, in (x +Ax)4,
as the reproduction of the original function in x before it
incressed and became (x +Ax) . Itis clear from the very begin-
ning by the nature of the binomial theorem that when f(x) = x*
becomes f(x + &) = (x + k)4, the first member of [the expan-
sion of] (x + A)* is equal to x*, that is, must be = the original
functionin x; (x + k)* must contain both the original function
in x (here x*) + the addition of all the terms which x* gains by
becoming (x + k)*, and thus the first term [of the expansion
of] of the binomial (x + k)* [is the original function].




104 MATHEMATICAL MANUSCRIPTS

4) Furthermore: the second term of the binomial expansion,
4x3h , provides us immediately ready-made (fix und fertig) with
the first derived function of x*, namely 4x3. Thus this deri-
vation has been obtained by the expansion of

flx+Ax) = (x+Ax)%;

obtained by means of the interpretation from the beginning of
the difference x; — x as its opposite, as the sum x + Ax.

It is thus the binomial expansion of f(x + Ax),ory,, which
f(x) has become by its increase, which gives us the first deriva-
tive, the coefficient of k (in the binomial series); and indeed
right at the beginning of the binomial expansion, in its second
term. The derivative is thus in no way obtained by dif-
ferentiation but instead simply by the expansion of f(x + %) or
¥, into a defined expression obtained by simple multiplication.

The crucial point (Angelpunkt) of this method is thus the
development from the undefined expression y, or f(x + &) to
the defined binomial form, but using not at all the development
of x, — x and therefore as well of ¥, — ¥ or f{x + h)— f(x) as
differences.

5) The only difference equation which comes out in this
method is the one which we obtain immediately:

Flx+Ax)=(x+Ax)*=x*+ 4x°Ax + 6x2Ax? + 4xAx? + Ax?,

when we write:
x4+ 4x3Ax + 6x2 Ax? + dx Axd+Axt— xt

putting the original function x*, which forms the beginning of
the series, back again behind, we now have before us the
tncrement which the original function in x obtained through the
use of the binomial expansion. Newton also writes in this way.
And so we have the increment

A3Ax + 6x? Ax? + 4xAx3+ Axt,
the increment of the original function, x*. This way we use, on

the other hand, no difference of any kind. The increment of y
comes from the increment of x, if
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yor f(x) =x*.
So that Newton also writes immediately:
' dy,to im y = 4x3% + etc.

6) The entire remaining development now consists of the
fact that we have to liberate the ready-made denivative 4x from
its factor Ax and from its neighbouring terms, to prise it loose
from its surroundings. So this is no method of development,
but rather a method of separation.

e) The differentiation of f(x) (as || general expression)

Let us note first of all (d’abord) that the concept of the
‘derived function’, for the successive real equivalents of the
symbolic differential coefficients, which was completely
unknown to the original discoverers of differential calculus and
their first disciples, was in fact first introduced by Lagrange.
To the former the dependent variable, y for example, appears
only as a function of x , corresponding completely to the original
algebraic meaning of function, first applied to the so-called
indeterminate equations where there are more unknowns than
equations, where therefore y, for example, takes on different
values as different values are assumed for x. With Lagrange,
however, the original function is the defined expression of x
which is to be differentiated; soif y or f{x) = x*, then x* is the
original function, 4x? is the first derivative, etc. In order to
lessen the confusion, then, the dependent y or f{x) is to be
called the function of x in contrast to the original function in the
Lagrangian sense, the original function in x , corresponding to
the ‘derived’ functions in x.

In the algebraic method, where we first develop f, the

ehmmary derivative or [the ratio of] finite differences, and
where we first develop from it the definitive derivative, f7, we
know from the very beginning: f(x) =y, so that a) Af(x) =
Ay, and therefore turned round Ay = Af(x). What is
developed next is just Af(x), the value of the finite difference
of fix).

We find
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-y by _
ix) —Ax,sothatAx x) .

And so as well:
Ay = fix)Ax ,
and since Ay = Af(x), ‘
Af(x) = filx)Ax . )
. - . . Taylor’s Theorem ' g
The next development of the differential expression, which 3 \
finally yields MacLaurin’s Theorem and
df(x) = f(x)dx , Lagrange’s Theory y
is simply the differential expression of the previously developed o of Derived Functions E
finite difference. : ‘:
In the usual method | ;

dy or df(x} = f(x)dx
is not developed at sll, rather instead, see above, the f(x) : '
provided ready-made by the binomial (x+Ax) or (x+ dx) is _ \ i
only separaied from its factor and its neighbouring terms.

mig.:xw<

i 107




1. FROM THE MANUSCRIPT ‘TAYLOR’S
THEOREM, MACLAURIN’S THEOREM, AND
LAGRANGE’S THEORY OF DERIVED
FUNCTIONS”?

I

Newton’s discovery of the binomial (in his application, also
of the polynomial) theorem revolutionised the whole of algebra,
since it made possible for the first time a general theory of
equations ,

The binomial theorem, however — and this the mathemati-
cians have definitely recognised, particularly since Lagrange —
is also the primary basis (Hauptbasis) for differential calculus.
Even a superficial glance shows that outside the circular func-
tions, whose development comes from trigonometry, all diffe-
rentials of monomials such as x™, o*, log x, etc. can be
developed from the binomial theorem alone.”™

It is indeed the fashion of textbooks (Lekrbuchsmode) now-
adays to prove both that the binomial theorem can be derived
from Taylor’s and MacLaurin’s theorems and the converse.”®
Nonetheless nowhere —not even in Lagrange, whose theory of
derived functions gave differential calculus a new foundation
(Basis) — has the connection between the binomial theorem
and these two theorems been established in all its original
simplicity, and itis important here as everywhere, for science to
strip away the veil of obscurity.

Taylor’s theorem, historically prior to that of MacLaurin’s,
provides — under certain assumptions — for any function of x
which increases by a positive or negative increment % ,7® there-
fore in general for f(x=+h), a series of symbolic expressions
indicating by what sertes of differential operations f(x +k) is to
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be developed. The subject at hand is thus the development of an
arbitrary function of x, as soon as it varies.

MacLaurin on the other hand — also under certain assump-
tions — provides the general development of any function of x
itself , also in a series of symbolic expressions which indicate
how such functions, whose solution is often very difficult and
complicated algebraically, can be found easily by means of
differential calculus. The development of an arbitrary function
of x, however, means nothing other than the development of the
constant functions combined wwith [powers of] the independent
oariable x ,77 for the development of the variable itself should be
identical to its variation, and thus to the object of Taylor’s
theorem.

Both theorems are grand generalisations in which the diffe-
rential symbols themselves become the contents of the equ-
ation. In place of the real successive derived functions of x only
the derivatives are represented, in the form of their symbolic
equivalents, which indicate just so many strategies of oper-
ations to be performed, independently of the form of the func-
tion of f(x + k). And so two formulae are obtained which with
certain restrictions are applicable to all specific functions of x
orx+ h,

Taylor's Formula:
flx+h) or ¥y,
2 3 4
dyh_'_d’y h +d3y h dYy h

Yt Rt T a1 123 at1.2.3.4 T o€
MacLaurin’s Formula:
fix) or y=

- Xy =t
- dx* 1 2 de 1.2.3 (dx4)1.2.3.4
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The mere appearance here shows what one might call, both
historically and theoretically, the arithmetic of differential cal-
culus , that is, the development of its fundamental operations is
already assumed to be well-known and available. This should
not be forgotten in the following, where I assume this acquain-
tance.

I

MacLaurin’s theorem may be treated as a special case of
Taylor’s theorem.

With Taylor we have
¥y = flx),
1 =flx+h)=f(x) or y+ dyh+ ;%h2+ctc
1 d
tTzs alan e

~ Ifweset x= 0 in f(x + ) and on the right-hand side as well,
in y or f(x) and in its symbolic derived functions of the form
%, zxﬁ, etc., so that they consist simply of the development
of the constant elements of x,?® then:

d% &y, B
k) 0’)*( )k+(dx3)_+(dx3)l 737

y: =f(x+ k) = f(0+ k) then becomes the same function of
which v = f(x) is of x; since % goes into f(h) justas x goesinto

f(x) and (y) into [ ) all trace of x is wiped out.

We therefore can replace 2 with x on both sides and then
obtain:
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fx) =) or AIO)+ (j—i)x+ (@] i2+ etc.

dx?) 1.2
dy x®
————— + etc.
Hamizs Tt
Or as others have written it,
x2 x3
fix) = A0+ £(0)x+ £(0) 13 + (0 133 + etc.

such as for example in the development of f(x) or (¢ + x)™:
(c+ 0™ =f0) =™,

m{c+ 00™x = mc™x = f(0)x etc.

In the following, where we come to Lagrange, I will no longer
consider MacLaurin’s theorem as merely a special case of Tay-
lor’s. Let it only be noted here that it has its so-called ‘failures’*
just like Taylor’s theorem. The failures all originate in the
former in the irrational nature of the constant function, in the
latter in that of the variable.”®

It may now be asked:

Did not Newton merely give the result to the world, as he
does, for example, in the most difficult cases in the Arithmetica

Unitversalis, having already developed in complete silence Tay-

lor’s and MacLaurin’s theorems for his private use from the L

binomial theorem, which he discovered? This may be answered
with absolute certainty in the negative: he was not one to leave %
to his students the credit (Aneignung) for such a discovery. In
fact he was still too absorbed in working out the differential

operations themselves, operations which are already assumed

to be given and well-known in Taylor and MacLaurin. Besides,

Newton, as his first elementary formulae of calculus show,

obviously arrived at them at first from mechanical points of
departure, not those of pure analysis.

* In English in quotes in the original — Trans,
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As for Taylor and MacLaurin on the other hand, they work
and operate from the very beginning on the ground of diffe-
rential calculus itself and thus had no reason (Anlass) to look for
its simplest possible algebraic starting-point, all the less so since
the quarrel between the Newtonians and Leibnitzians revolved
about the defined, already completed forms of the calculus as a
newly discovered, completely separate discipline of mathema-
tics, as different from the usual algebra as Heaven is wide (von
der gewohnlichen Algebra himmelweit verschiednen),

The relationship of their respective starting equations to the
binomial theorem was understood for itself, but no more than,
for example, itis understood by itself in the differentiation of xy

orf that these are expressions obtained by means of ordinary

algebra.

The real and therefore the simplest relation of the new with
the old is discovered as soon as the new gains its final form, and
one may say the differential calculus gained this relation
through the theorems of Tayler and MacLaurin. Therefore the
thought first occurred to Lagrange to return the differential
calculus to a firm algebraic foundation (auf strikt algebraische

_ Basis). Perhaps his forerunner in this was Fokn Landen, an

English mathematician from the middle of the 18th century, in
his Residual Analysis. Indeed, I must look for this book in the
[British] Museum before I can make a judgement on it.

III. Lagrange’s Theory of Functions

Lagrange proceeds from the algebraic basis (Begrundung) of
Taylor’s theorem, and thus from the most general formula of
differential calculus.

It is only too noticeable with respect to Taylor’s beginning
equation;

vy o flix+k)=y or f(x)+ Ak + Bh?2 + Ch®+ erc.

1) This series is in no way proved; f(x + %) is no binomial of
a defined degree; f(x + h) is much more the undefined general
expression of any function [of the variable] x which increases
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by a positive or negative increment 4; f(x+ k) therefore
includes functions of x of any defined degree but at the same
time excludes any defined degree to the series expansion itself.
Taylor himself therefore puts ‘ + etc.” on the end of the series.
However, that the series expansion which is valid for defined
functions of x containing an increment — whether they are
capable of representation now in a finite equation®® or an infi-
nite series — is no longer applicable to the undefined general
f(x) and therefore equally well to the undefined general f(x,)
or f(x + k), must first be proved. _

2) The equation is translated into the language of differentials
by virtue of the fact that it is twice differentiated, that is, y,
once with respect to & as variable and x constant, but then
again with respect to x as variable and % constant. In this
manner two equations are produced whose first sides are iden-
tical while their second sides are different in form. In order,
however, to be able to equate the undefined coefficients (which
are all functions of x) of these two sides, it is also necessary to
assume both that the individual coefficients A, B, etc., are
undefined, to be sure, but finite guantities, and that their accom-
panying factors % increase in whole and positive powers. ** I it is
assumed — which is not the case — that Taylor had proved
everything for f(x + &) aslongas the x in f{x) remains general,
then for that very reason it would not be valid at all as soon as
the funcuons of x took on definite, particular values. This
could be on the contrary irreconcilable with the treatment, by
means of its series,

d%y

dy 2
¥ y+d h+dx2h + etc.

In one word, the conditions or assumptions which are
involved in Taylor’s unproven beginning equation are naturally
found also in the theorem derived from it:

dy d:,y 2
Y1 y+dxh d’h + etc.

It is therefore inapplicable to certain functions of x which

e -

¥
v
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contradict any of the assumptions. Therefore the so-called
fatlures of the theorem.

Lagrange provided an algebraic founda‘uon for the beginning
equation (begrindet die Ausgangsgleichung algebraisch) and at the
same time showed by means of the development itself which
particular cases, due to their general character, that is, con-
tradicting the general, undefined character of the function of x,
are excluded.

H) 1) Lagrange’s great service is not only to have provided a
foundation in pure algebraic analysis for the Taylor theorem
and differential calculus in general,, but also and in particular to
have introduced the concept of the derived function, which all
of his successors have in fact used, more or less, although
without mentioning it. But he was not satisfied with that. He
provides the purely algebraic development of all possible func-
tions of (x + A) with increasing whole positive powers of & and
then attributes to it the given -name (Taufname) of the diffe-
rential calculus. All the conveniences and condensations (Tay-
lor’s theorem, etc.) which differential calculus affords itself are
thereby forfeited, and very often replaced by algebraic oper-
ations of much more far-reaching and complicated nature.

2) As far as pure analysis is concerned Lagrange in fact
becomes free from all of what to him appears to be metaphysical
transcendence in Newton’s fluxions, Leibnitz’s infinitesimals
of different order, the limit value theorem of vanishing quan-

tities, the replacement of % (: g) as a symbol for the diffe-

rential coefficient, etc. Sull, this does not prevent him from
constantly needing one or another of these ‘metaphysical’ rep-
resentations himself in the application of his theories and curves
etc.



2, FROM THE UNFINISHED MANUSCRIPT
‘TAYLOR’S THEOREM’

If therefore in Taylor’s theorem®? 1) we adopt the idea froma
4 spectfic form of the binomial theorem in which it is assumed that
in (x+ k)™ m is a whole positive power and thus also that the
factors appear as k = h®, k', k2, k3, eic., that is, that A [is
raised to a] whole, increasing, positive power, then 2) just as in
the algebraic binomial theorem of the general form, the derived
functions of x are defined and thereby finite functions in x. At
this point, however, yet a third condition comesin. The derived
functions of x canonlybe =0, = + o, = — o, justask!*! can
| only be = 271 or ™" (for example #1/?) when the variable x
takes on particular values, x = a, for example .53

Summed up in general: Taylor’s theorem is in general only
applicable to the development of functions of x in which x
becomes = x+ k or is increased from x to x, if 1) the
independent variable x retains the general , undefined form x; 2)
the orginal function in x itself is capable of development by
means of differentiation into a series of defined and thereby
finite, derived functions in x , with corresponding factors of &
;:;ith increasing, positive and integral exponents, so with A1, k2,

etc.,

All these conditions, however, are only another expression
for the fact that this theorem is the binomial theorem with
whole and positive exponents, translated into differential lan-
guage.
= Where these conditions are not fulfilled, where Taylor's

differential calculus the ‘failures™ of this theorem.

; * In English in original — Ed.
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theorem is not applicable, that is, there enter what are called in
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The biggest failure of Taylor’s theorem, however, does not
consist of these particular failures of application but rather the
general failure , that

y=flx) [and] y, = flxt+ k),

which are only symbolic expressions of a binomial of some sort
of degree,3* are transformed into expressions where f(x) is a
function of x which includes all degrees and thereby has ne
degree itself, so thaty; = f(x + k) equally well includes all
degrees and is itself of no degree, and even more that it becomes
the undeveloped general expression of any function of the
variable x, as soon as it increases. The series development
into which the ungraded f(x+ &) is expanded, namely
y+ Ah+ Bh* + Ch* + etc., therefore also includes all degrees
without itself having any degree.

This leap from ordinary algebra, and besides by means of
ordinary algebra, into the algebra of variables is assumed as
un fait accompli, it is not proved and is prima facie in contra-
diction to all the laws of conventional algebra, where v = f(x),
¥3 = flx+ &) could never have this meaning.

In other words, the starting-equation

v
y, or fix+h) =y or fix)+ Ak+ Bh?> +
+ Ch* + Dh*+ EB5 + etc.

is not only not proved but indeed knowingly or unknowingly
assumes a substitution of variables for constants , which flies in
the face of all the laws of algebra — for algebra, and thus the
algebraic binomial, only admits of constants, indeed only two
sorts of constants, known and unknown . The derivation of this
equation from algebra therefore appears to rest on a deception.

Yet now if in fact Tayvlor’s theorem — whose failures in
application hardly come into consideration, since as a matter of
fact they are reswricted to functions of x with which dif-
ferentiation gives no result® and are thus in general inac-
cessible to treatment by the differential calculus — has proved
to be in practice the most comprehensive, most general and

PR
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most successful operational formula (Operationsformel) of all
differential calculus; then this is only the crowning of the
edifice of the Newtonian school, to which he belonged, and of
the Newton-Leibnitz period of development of differential cal-
culus in general, which from the very beginning drew correct
results from false premises.

The algebraic proof of Taylor’s theorem has now been given
by Lagrange, and it in general provides the foundation (Basis)
of his algebraic method of differential calculus. On the subject
itself I will go into greater detail in the eventual historical part of
this manuscript.36

As a fusus historige [an aside in the story] let it be noted here
that Lagrange in no way goes back to the unknown foundation
for Taylor — to the binomial theorem, the binomial theorem in
the most elementary form, too, where it consists of only two
quantities, (x + a} or here, (x + k), and has a positive expo-
nent.

Much less does he go back further and ask himself, why the
binomial theorem of Newton, translated into differential form
and at the same time freed of its algebraic conditions by means
of a powerful blow (Gewaitstreich), appears as the com-
prehensive, overall operational formula of the calculus he
founded? The answer was simple: because from the very begin-
ning Newton sets x; — x = dx, so that x; = x+ dx. The
development of the difference is thus at once transformed into
the development of a sum in the binomial (x + dx) — whence
we disregard completely that it had to have been set x, — x =
Ax or b (so that x; = x + Ax or = x+ k). Taylor only
developed this fundamental basis to its most general and com-
prehensive form, which only becarne possible once all the fun-
damental operations of differential calculus had been dis-

covered; for what sense had his dy dy etc. unless one

dx* dx?
could already develop the corresponding j—:, j%, etc.

for all essential functions in x?
Lagrange, conversely, bases himself directly on Taylor’s theorem

ek TR
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(schliesst sich direkt an Taylor’s Theorem an), from a standpoint,
narurally, where on the one hand the successors of the
Newton-Leibnitz epoch already provide him with the corrected
version of x; — x =dx,sothataswelly, — vy =f(x + b)) — f(x),
while on the other hand he produced, right in the algeb-
raicisation of Taylor’s formula, his own theory of the derived
Junction. [In just such a manner Fichte followed Kant, Schel-
ling Fichte, and Hegel Schelling, and neither Fichte nor Schel-
{ing nor Hegel investigated the general foundation of Kant, of
idealism in general: for otherwise they would not have been able
to develop it furthcr].
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MANUSCRIPT APPENDICES

ON THE AMBIGUITY OF THE TERMS ‘LIMIT’
AND ‘LIMIT VALUE®

D x%;
a) (x+ k)3 = x*+ 3hx2+ 3h2x+ A3
b) (x+ A)®— x® = 3xZh+ 3xh2 + A3
+ k)3 x3
¢) (i+’i = 3x2 + 3xh + A2 .

If » becomes = 0, then

{(x+ 0)3—- x3 or x*—x3 0
0 0 0 '

—_ 3. —_ .
y=x* y;, =x%;

‘ y1—y =xi—x? = (x;~ x) (x}+ xyx+ x%) 3

- d
| EAburd or 2 = x4 xx+ x?;
X, — X dx
dy _ .,
I 3x® .
123
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II) Let us set x; — x = k. Then:
D (x,— xj (x3 + x,x+ x*) = h(x3 + x.x+ x2) ;
2) so that:
Ya—Jy
h

In 1) the coefficient of & isnot the completed derivative, like f’
above, but rather f/'; the division of both sides by %, there-

fore, also leads not to %, but rather

=x}+xx+x2 .

Fa A
uh! or A—i= 2+ xyx+ x?

etc., etc.
If we begin on the other side in I ¢), namely in

Ax+h)— flx) yi-
h o

Y =324 k4 A2,

from the assumption that the more the value of & decreases on
the right-hand side, so much the more does the value of the
terms 3xh + A? decrease,?® so that the value as well of the
entire right-hand side 3x? + 3xk + A% more and more closely
approaches the value 3x?, we then must set down, however: ‘yet
without being able to coincide with it’.

3x2 thus becomes a value which the series constantly
approaches, without ever reaching it, and thus, even more,
without ever being able 1o exceed it. In this sense 3x? becomes
the limit value®® of the series 3x2? + 3xh + k2,

On the other side the quantity y’—;y [or i’—i:—i) also
decreases all the more, the more its denominator » decreases.®°

Since, however, m_;_y_ is the equivalent of 3x2 + 3xh + A2

the limit value of the series is also the ratio’s own limir value in
the same sense that it is the limit value of the equivalent series.
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However, as soon as we set 2= 0, the terms on the right-hand
side vanish, making 3x2 the limit of its value; now 3x? is the
first derivative of x* and so = f(x). As f{x) itindicates that an
f(x) is also derivable from it (in the given case it = 6x) elc. ,
and thus that the increment f{x) or 3x2? is not = the sum of the
increments which can be developed from f(x) = x*. Were f(x)
itself an infinite series, so naturally the series of increments
which can be developed from it would be infinite as well. In this
sense, however, the developed series of increments becomes, as
soon as [ break it off, the limit 2alue of the development, where
limit value here is in the usual algebraic or arithmetic meaning,
just as the developed part of an endless decimal fraction
becomes the &mit of its possible development, a limit which is
satisfactory on practical or theoretical grounds. This has abso-
lutely nothing in common with the limit value in the first sense.

Here in the second sense the limit value may be arbitrarily
tncreased, while there it may be only decreased. Furthermore

M-y _ _ yvi—¥

h x1_x,

so long as / is only decreased, only approaches the expression

% ; this is a limit which it may néver attain and still less ex-

ceed, and thus far % may be considered its fimit value.*!

As soon, however, as y‘—}-’-’ is transformed to g = j—-:, the

latter has ceased.to be the limit value of yi;hy’ since the

latter has itself disappeared into its limit.®? With respect to its

earlier form, "‘—;3’ or : 1= : , we may only say that og is its
=
absolute minimal expression which, treated in isolation,
is no expression of value (Wertausdruck); but g [ or s—i J now has

3x? opposite it as its real equivalent, that is f{x).
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And so in the equation

g (o &)=

neither of the two sides is the limit value of the other. They do
not have alimiz relationship (Grenzverhdltnis) to one another, but
rather a relationship of equivalence (Aquivalentverhalmis). If 1

have g = 2 then neither is 2 the limit of g nor is -g— the limit

of 2, This simply comes from the well-worn tautology that the
i value of a quantity = the limit of its value.

The concept of the limit value may therefore be interpreted
wrongly, and is constantly interpreted wrongly (missdeutet). It
is applied in differential equations®® as a means of preparing the
way for setting x, — x or 2= 0 and of bringing the latter closer
to its presentation: -— a childishness which has its origin in the
first mystical and mystifying methods of calculus.

In the application of differential equations to curves, etc., it
really serves to make things more apparent geometrically.

COMPARISON OF D’ALEMBERT’S METHOD TO
THE ALGEBRAIC METHOD

Let us compare d’Alembert’s method to the algebraic one.%
D fix) ory = x°; |
a) flx+h) orys = (x4 h)? = x3+ 3x%h + 3xh2+ A3

b} filx+ k)— fix) or y1—y = 3x%h + 3xh2+ A3 ;

o f(x+:)-f(x) or J’lh‘y = 3x24 3xh+ h%;

if k =0

d)% or%=3x’=‘~f'(x).

I Ax)

a) flxy) or yy=xi;

i b) flxy)— flx) or y—'y = xi— 3

or y =x%;

= (2g~ x)(x%3+ xx + x2) ;

o fa0=r)
;1_x X1— X

= x2+ x,x+ x2

If x; becomes = x, then x, — x = 0, hence:

G
d) - or & _ (x2+4 xx+ x2) = 3x2 |
1] dx
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It is the same in both so far: if the independent variable x
increases, so does the dependent [variable] y. Everything
depends on how the increase of x is expressed. If x becomes
%;, then x;— x = Ax = h (an undefined, infinitely con-
tractibie but always finite difference).®®

If Ax or k is the increment by which x has increased, then:

a)x, = x+Ax, but also in reverse b) x+Ax or x+ h = x,.

The differential calculus begins historically with a); with the
fact, that is, that the difference Ax or the increment & (one
expresses the same thing as the other: the first negatively as the
difference Ax, the second positvely as the increment k) exises
independently next to the quantity x, whose increment it is and
thus which it expresses as increased, bur increased by k. It
thereby achieves the advantage from the very beginning, that
the original function of the variables cerresponding to this
general expression, as socon as it increases, is expressed in a
binomial of a defined degree, and therefore from the very
beginning the binomial theorem is applicable to it, Already, in
fact, we have a binomial on the general, the left-hand, side,
namely x+Ax [, such that f(x+4x)] or y, = ete.

The mystical differential calculus immediately transforms:

(x+Ax) into

{x + dx) or according 1o Newton, x + x.*% Thereby we have
also immediately obtained on the right-hand, the algebraic, side
a binomial in x + dx or x + £ which may be treated as an
ordinary binomial. The transformation from Ax to dx or x is
assumed a priori rather than rejected on mathematical grounds,
so that later the mystical suppression of terms of the developed
binomial becomes possible,

D’Alembert begins with (x +dx) but corrects the expression
to (x+ Ax), alias (x+ k); a development now becomes
necessary in which Ax or & is ransformed into dx, but all of
that development really proceeds (das ist auch alle Entwicklung,
die wirklich vorgeht).

Whether it begin falsely with (x + dx) or correctly with
(x + k), this undefined binomial placed in the given algebraic
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function of x transforms into a binomial of a defined degree —
such as (x + k) now appears in Iz) instead of x> — and even
into a binomial in which in the first case dx , in the other case k
appears as its last term, and also in the expansion as well as
merely a-factor to which the functions derived from the bino-
mial are externally attached (behafiet).

Therefore we find right in Ia} the complete first derivative of
x*, namely 3x2, as the coefficient in the second term of the
series, attached to 2. 3x? = f(x) remains unchanged from now
on. It is itself derived by means of no sort of process of dif-
ferentiation at all but rather provided from the very beginning
by means of the binomial theorem, indeed because from the
very beginning we have represented the increased x as a bino-
mial,

x+Ax =x+h,

as x increased by k. The entire problem now consists of uncou-
pling not the embryonic but the ready-made f(x) from its
factor k£ and from its other neighbouring terms.

In Ila} in contrast, the increased x, enters the algebraic
function in exactly the same form as x originally entered it;
x* becomes x3. The derivative f{(x) can only be obtained at
the end by means of two successive differentiations, and those
of quite distinct character indeed.

In equation Ib) the difference f(x + k)— f(x) or y,— y
now prepares the arrival of the symbolic differential coefficient;
mreal terms, however, all that changes is that it moves out of
second rank into the first rank of the series and therefore makes
possible its liberation from k.

InlIb) we obtain the expression of differences on both sides;
it has been so developed on the algebraic side that (x,— x)
appears as a factor beside a derived function in x and x, which
was obtained by means of the division of x3— x* by x, — «x.
Only the existence of the difference x}— x> made possible its
separation into two factors. Since

xl_x=h,
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the two factors into which x3— x* is resolved may also be
written k(x2 + x,x + x2). This points up a new difference with
Ib). k itself as the factor of the preliminary derivative is only
derived by means of the expansion of the difference x3— x?
into the product of two factors, while k2 as the factor of the
‘derivative’, exists just like the latter in Ia), already complete
before any difference has been develeped at all. That the nnde-
fined increase from x to x ; takes the separated form of the factor
h next to x, is assumed from the very beginning in I), but proved
(since x; — x = k) by means of the derivation in IT). Indeed, on
the one hand 4 is undefined in I) while on the other hand it is
already fairly well defined, since the undefined increase of x
already appears as a separate quantity by whick x has increased,
and thus as such it enters next to it.

In Ic), f{x) is now freed of its factor A; we thus obtain on

the left-hand side y‘;y or f&* ";)_f(x) , thus a still finite -

expression of the differential coefficient. On the other side,
however, we have reached the point where, when we set

h = 0in w , and this transforms into g = s—i .

we obtain on one side in Id) the symbolic differential coef-
ficient and on the other f{x), which appeared complete already
in Ia) but now has been freed of its neighbouring terms and
stands alone on the right-hand side.

Positive develepment only proceeds on the left-hand side,
since here the symbolic differential coefficient is produced. On
the right-hand side the development consists only of freeing
f(x) = 3x?, already found in Ia) by means of the binomiai,
from its original impediment. The transformation of £ into 0
or x4, — x = () has only this negative meaning on the right-hand
side.

InIlc), by contrast,a preliminary derivative is only obtained
by dividing both sides by x; — x (= k).

Finally, in IId) the definitive derivative is obtained by the
positive setting of x, = x. This x; = x means, however, setting
at the same time x; — x = {, and therefore transforms the
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finite ratio 222 on the left-hand side to % or & .
X,—x 0 dx

InI) the ‘derivative’ is no more found by setting x, — x= 0
or k = 0 than it is in the mystical differential method. In both
cases the neighbouring terms of the f(x) which appeared com-
plete from the very beginning have been tossed aside, now in a
mathematically correct manner, there by means of a coup
d’etat.



ANALYSIS OF D’ALEMBERT’S METHOD BY
MEANS OF YET ANOTHER EXAMPLE?®’

Let us now develop according to d’Alembert’s method:
a) flu)”® or y = 3u?;
b) flx) or u=x*+ ax
y =3, ey
flu) = 3u? . (1a)
flu+ h) =3+ ),

flu+ h)— flu) = 3(u+ k)2 — 3u2
3u? + 6uh+ 382 —3u2 = Guh + 342 (2)

(here is the derived function , already complete in the coefficient of h
by means of the binomial theorem),

fu+ B)— flu)
B

f(u) = 6u, already given complete in (2), is freed of its factor
k by means of division. :

= 6u+ 3h .

flut O fw) _ g,
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Substituting in here the value of u from equation b) gives

é-l’ = 6{x*+ ax?) .
du

Since y in a) is differentiated with respect to %, thus
(uy—u)y="h or h=(u,—u) s

since u is the independent variable.
And so:

@: 3 2
In 6(x*+ ax?) .

(This is obtained from f(x) ory = 3u? )
[We now develop b) in the same manner, so that]

b) f(x) or u=x%+ax?,
flx+ k) = (x4 k) + a(x+ k)2,
Sx+ )~ flx) = (x+ Rh)3+ a(x + k)2~ x3— ax?
=x3+ 3%+ 3xh2+ B [ - %3
+ ax®+ 2axh + ah? | — gx2
= (3x%+ 2ax)h+ (3x + adh?2 + k3,

flx+ k)= Rx)

p =32+ 2ax+ (3x+ adh+ k2 .

If we now set A = 0, on the second side:

0 du '
— _— = 2
b ofr ix 3x* + 2ax .

The derived function is already contained complete, how-
ever, in

fx+ k) = (x+h)3+ a(x+ h)?,
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since this produces
x3 4+ 3x2h + 3xh% + A+ ax? + 2axh + ah? .
Thus
¥+ ax?+ (324 2axdh+ (3x+ adh? + k3.

It already appears complete as the coefficient of h. This deriva-
tive is therefore not obtained by means of differentiation, but
rather by means of an increase from f(x) to f(x + k) and thus
from x* + ax? to (x+ k) + a(x + k). It is obtained simply
by virtue of the fact that when x becomes x + 2 we obtain a
binomial in x + % of defined degree on the second side, a
binomial whose second term, multiplied (behaftetes) by h, con-
tains the derived function of u, f(u), ready-made (fix und
Jertig),

The rest of the procedures serve only to liberate the f(x)
thus given from the very beginning from its own coefficient A
and from all other terms.

The equation

fle+ By~ fix) _

etc.
h

provides two things: first, it makes it possible 1o obtain the
numerator on the first side as the difference of f{x), presently
= Af{x}; on the second side, however, it provides the algeb-
raic opportunity to extract the original function given in x,
x? + ax2, from the product of (x + k)* + a(x + k)? etc.

So we continue. We have obtained for a):

B _ i3 g2

du—6(x + ax?),
and for b):

du = 3x2 + 2ax .

dx
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We multiply cd by = s 50 that
du dx

b du_dy
du ~dx  dx’
which was to be found. Let us substitute in here the values

found for % and d—“; so that
du dx

dy

= 6(x*+ ax?)(3x? + 2ax)
dx

and therefore, generally expressed, if we have:

- . B _ df(u) . du _ dfix)
y_f(u)S ‘E_ du ] u—f{x), ‘E— dx ]

hence
b de dy_dfw) din)

au dx ' dx du = dx

If we now substitute # = 1, — 2 into equation a) and
k = x;— x into equation b), things are so arranged that:

y or f(u} = 3u? ,
/ S+ (uy—uan =3+ (u,— u))?

= 3u? + 6u(u, —u)+ 3u,—uw)? ,

flu+ Gy —u))— flu) = 3u? + 6ulu, — u)
+ 3w, —w)(uy—u)— 3u?

hence:

St (y—w))— flu) = 6ulu, — u) + 3(u, — u)? ,

Jr—
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fu+ (uy—w))— fw) _

= 6u-+ 3(u,—u) .
u1_u

Hence [if] u, — # in the first term = 0, then

j‘-X=6u-t~0=6u.
du

This shows that when f(1) from the very beginning becomes
f(u + (u,— u)), then its increment appears as the positive
second term of a defined binomial on the second side, and this
second term, which is multiplied by (#,— u) or 2 by the
binomial theorem, immediately becomes the coefficient to be
found. If the second term is polynomial, as it is in

x3+ gx?, which becomes (x + k)* + a{x + h)?,
or

(x+ (x;— x)*+ alx+ (x,— x))%,

then we have only to sum the terms multiplied by x, — x to the
first power, alias A to the first power, as the coefficient of 2 or
x,— x; and we have again the complete coefficient.

This result shows:

1) that when in d’Alembert’s development x, — x = k is put
inreverse k = x, — x, thereby absolutely nothing is changed in
the method itself, rather the method simply brings out more
clearly how to obrain the binomial by means of f(x + k) or
f(x + (x4 — x)) for the algebraic expression on the other side in
place of the original function, in place of 3u? for example in the
given case.

The second term which one finds in that manner attached to
h or (x,; — x) is the complete first derived funcrion. The prob-
lem now consists of freeing it of kA or x, — x, which is easily
done. There the derived function is complete; it is therefore not
found by setting x, — x = 0, but rather freed of its factor
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(x4 — x) and accessories. Just as it is found by simple mul-
tiplication {the binomial development) as the second term
[with] x; — x, so it is finally freed of the latter by means of
division of both sides by x; — x.

The crucial procedure (Mittelprozedur), however, consists of
the development of the equation

fx+ A= flx) or fla+ (x3~x)—-flx) = [ ..].

The equation has the sole purpose (Zweck) here of making the
original function vanish on the second side, since the develop-
ment [of] f(x + k) necessarily contains f(x) together with its
increment developed by means of the binomial. This fx)] is
thus extracted from the second side.

Therefore what happens, for example, in
(x+hY¥+alx+h)2—x3>—ax? ,

is, that the first terms x* and ax® are extracted from the
binomial (x + &)%+ a(x + k)2; we thus obtain, multiplied by
h or (x; — x), thealready complete derived function as the first
term of the equation.

The first differentiation on the second side is nothing but the
simple subtraction of the original function from its increased
expression, which thus gives us the increment by which it has
increased and whose first term, multiplied by %, is already the
complete derived function. The other terms can only contain

“ h? etc. or (x; — x)? etc. as coefficients; they are reduced by

one power with the first division of both sides by x, — x, while
the first term emerges without any 4.

2) The difference from the method of f(x,)~ f(x) = etc.
lies in the fact that, when we have for example

fix) or u=x>+ ax?,
flxy) oruy =x3+ ax?,

the first increment (Anwachs) of the variable x by no means
provides us with f{x) ready-made from the very beginning.

d—
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flx)— fx) or ug—u =x}+ ax? — x>+ ax?) .

Here by no means is it a matter of extracting the original
function again, since x3 + ax% does not contain x* and ex? in
any form. On the contrary, this first difference equation pro-
vides us with an opportunity for development (Entwick-
lungsmoment), namely the transformation of both of the two
original terms into differences of [powers of] x, and x.

Namely, '

=(x} - %)+ alxi-x?.

It is now clear that when we again resolve both of these two
terms into factors of x; — x, we obrain functions in x, and x as
coefficients of x, — x, namely:

flx)—flx) or uy—u = (x1—x) (x%+ x,x+ x%)

+alxy— x) (kg +x) .

We divide this by x; — x, and the left-hand side as well, so that:

flx1)— flx) or Ya

= (xZ+xx+xH+alxy+x) .
X;— X X1 — X

By means of this division we have obtained the preliminary
derivative. Each of its parts contains terms in x, .

Thus we can finally obtain the first derived function in x only
when we set x; = x, so that ¥, — x = (, and then

x3 =x?, x1x = x?,
and thus:

3+ x;x+x?) =32 and x,;, +x =x+x = 2x;

so that:
a(2x) = 2xa .
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The result on the other [side]
df(x) - du _0

dx dc 0

Thus the derived function is here only obtained by setting
x; = x,sothat x, — x = 0. x, = x provides the final positive
result in the real function of x.

But x; =x alsoleads to x, — x = 0 and therefore at the same
time, beside this positive result, 1o the symbolic g or j—i on

the other side.

We could have said from the very beginning: we have to
obtain a derivative in x, and x in the end. This can only be
transformed into the derivative in x when x, is set = x; but
setting x; = x is the same as setting x, — x = 0, which
nullification is positively expressed by the formula x; = x
which is necessary for the transformation of the derivative to a
function of x, while its negative form, x, — x = 0, must provide
us with the symbol, '

3) Evenif this treatment of x, where an increment (x; — x =
Ay, for example, or ) is not independently introduced next to
it, was already well-known, something which is very probable
and of which I shall convince myself by ‘consulting J[ohn]
Landen at the [British] Museum, still its essential difference
cannot have been grasped.

What distinguishes this method from Lagrange, however, is

" that it really differentiates, so that the differential expression

also originates on the symbolic side, while with him the deri-
vation does not represent the differentiation algebraically, but
instead derives the functions algebraically directly from the
binemial and simply accepts their differential form ‘by sym-
metry’, since it 1s known from differential calculus that the first

derived function = %’ the second = j—?-: , etc,
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APPENDIX I

Concerning the Concept of ‘Limit’
in the Sources consulted by Marx

In order to give the reader accustomed to the contemporary use in
mathematics of the term °‘limit’ a correct understanding of Marx’s
critical remarks concerning this concept and of Marx’s interpretation
of it, we give first of all the definition of ‘limit’ {and clarifying
exampies) and the ways of using the word ‘limit’ contained in the
courses of Hind and Boucharlat which Marx possessed and studied
critically.

Hind’s course-book follows d’Alembert, which is to say that the
derivative was defined in it by means of the concept of limit. The
introductory chapter of the book was therefore entitled “The method
of limits’. However, neither in this chapter nor in the rest of the
textbook was there a definition of ‘limit’. There were only definitions
of the ‘limits’ of a variable in the restricted sense of the exact upper or
lower bounds to the multplicity of its value. (This multiplicity might
include, in particular, an ‘infinitely large’ value of the variable, desig-
nated by the symbol «. But there were no precisely defined correct
operations with this symbol: there was no concept of absolute value,
no + o and — «; it was considered simply self-evident, that for any

/_,a = 0,00 + ¢ = w, that for any finite @ (that is, distinct from 0, as
* well as from =) a.% = 0 and £ = 0.)

This concept of the limit of a function — a concept which of course
can only be surmised from the examples — was introduced in the
introductory chapter, implicitly, by means, as might be anticipated,
of identifying this limit (at the point coinciding with the exact upper
or lower bounds of the given multiplicity of the values of the argu-
ment) with one of the ‘limits’ (with the exact upper or with the exact
lower bound) of the corresponding multiplicity of values of the func-
tion. Since only monetonic or piecewise monotonic functions are
examined in this book, such a ‘limit’ appears in practice to be with the
(one-sided) limit in the more usual sense of the word, in which Hind
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actually uses the concept of limit in all the remaining parts of the
book. It turned out, however, that the introduction of this concept,
which was supposed to ‘improve’ the method of infinitely small
quantities, did not consciously attain that goal and was generally
unwarranted.

Actually, Hind might have replaced the evaluation of the one-sided
limit of a piecewise monotonic function f{x), defined on the interval
(a, ) by the solution of the following two problems as x moves to
+a:

1. Tofind a certain number « such that for ¢ < x < o the function is
monotonic (in the broad sense, i.e., non-decreasing or non-
increasing; for demonstration we will assume the function is here
monotonically non-decreasing);

2. To evaluate the point at the (by our assumption lower) boundary
of the possible values of the function on the interval (a, ), that is, for
a < x < @. Clearly, this will be the desired IEIE af(x).

Burt Hind did not proceed in this manner. Following Newton (see
the appendix ‘On the lemmas of Newton cited by Marx’) he con-
sidered the limit simply the ‘last’ value of the function of the ‘last’
value of the independent variable. In other words he looked at

xﬁi{l S(%) as the point of the lower boundary of the values of the

function not on the interval a <x<a but on the segment a <x=<a.
He assumed the ‘last’ value f{a) to be already defined; but in that case
all of the above procedure loses meaning, since o may take the value g,
and to find the lower boundary of all possible values of the function,
consisting now of only the one f{a), now becomes that same f{a).
This was just whar Marx wanted to say, apparently, when he noted,
obviously having in mind Hind’s determination, that itis meaningless
to treat 3x2 as the limit value of the function 3x2 as & goes to zero, later
terming such treatnent a *well-worn tautology’ (see pp. 124-6 and notes
90-92); where he calls generally ‘childish’ and “the origin of the first
mystical and mystifying method of calculus’ (see p.126) the actual
approach to the limit, the assumption, that the limit value of the
function is formed as its ‘last’ value at the ‘last’ value of the argument.
This circumstance, that the actual approach to the limit by no
means resolves the difficulties surrounding infinitely small quantities,
becomes particularly evident in the case when the ‘last’ value of the
independent variable is ‘infinity’. So, in particular, if we consider the
sequence {d,}, then the limit must be that member of the series for
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which n = o; so we regard a limit as the end (the last term) of an
infinite (that is, without an end) series of terms. It is hardly surprising
that this concept of the ‘actual limit’ should be no clearer than the
concept of ‘infinitely small quantities” which Marx called ‘mystical’.

As is well known, the definition of the limit of a function, not
requiring the carrying-out of an infinite number of steps and per-
mitting an exact formulation in terms of only finite variables and
paramelers, gained currency in mathemarics only after the time of
Cauchy, thatis, in the 70s of the last century. But even at this time the
authors of many widely-distributed textbooks did not clearly under-
stand that the limit was not to be interpreted actually; that even in
cases where the function is centinuous at the point a, that is, the limit
of the function f(x) as x —a is equal to f{a), nevertheless it must be

+ shown equal to f{e) on the condition that, no matter how closely x

approaches a4, it never reaches it,

With regard to Marx’s mathematical manuscripts it is essential for
us 1o note, that if the vaiue f{a) is undefined but the limit f{x) exists
as x—»q (corresponding to x over the interval (¢ — k,a + k)) then we
may simply predefine the function of f{x) at the point a, f(a), as that
limit, by definition. Such a predefinition of the value of the function is
also a predefinition of comtnuiry . The limit of the function f{(x) as
x—a Wwould in this case be the value of the already well-defined
function with x = @ . This however does not mean that one may treat
the value f(a) as the determination of the known single-valued func-
tion f(x}, but on the contrary only as a quantity at the end of an
infinite progression no matter how closely x approaches a. Indeed,
Marx himself obviously had such a predefinition of ‘continuity’ in

mind when he called the limit of the expression % as Ax—0,

'/the ‘absolute minimal expression’ of the ratio (see, for example, p.
125); by this he graphically had in mind the limit of this ratio as
Ax—0 under the condition that there exists a certain number o,

such thar for 0<Ax<a as Ax decreases so does the ratio %. By

maeans of this definition of a function Lacroix works out the example he

gives (see below p.153). But even so far in the construction of
mathematical analysis as Lacroix had gone beyond the metaphysical
‘principle of continuity’ of Leibnitz, which he regarded as a self-evident
axiom, nonetheless he did not consider any other definition of function
gencrally possible. Regarding the fact that Marx quite obviously
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allowed other means of definition of the ratio —E‘lx as Ay = Ax =0,
see p.18 and note 18.

We now give some of Hind’'s own words which may be necessary in
reading Marx’s manuscripts and from which follow the conclusions
set out above.

In his introductory chapter ‘On the method of limits” Hind begins
with definition number one, to wit:

By the limits of a quantity allowed to vary in value we intend those
values, between which are contained all those values which it may
have throughout all its changes; beyond which it may not extend
and distinct from which may be made the quantity; — provided
that they can be expressed in finite terms’ (that is, without the use
of the symbols 0 and/or o — S.A. Yanowvskaya. See Hind, p.1, our
1talics.)

With this definition there follows a series of examples, in which,
however, not once is brought into clear view nor once is demonstrated
that the ‘limit’ spoken of by the author actually fulfils the require-
ments formulated in Definition One. The first of these examples is the
following:

“The quantity ax, wherein x admits of all possible values from
zero or 0, to infinity, or », becomes 0 in the former case and « in
the latter; and consequently the limits of the algebraical expression
ax are 0 and oo: the first is the inferior, the second the superior
limir.” (Sic. It is here obviously assumed that ¢ > 0.)

Already the first example plunges the student into confusion. How
can the quantity @x be made to differ from the value » by finite
quantities, ‘a magnitude from which it may be made to differ by
quantities less than any that can be expressed in finite terms’? Indeed,
following Hind, when x assumes a finite value the difference o — ax
15 equal to infinity, but when x = oo, then ax = ¢, and the difference
co— o is undefined.

In the second example (it is necessary to consider, naturally, the
values in these conditions of x and a respectively) the lower and
upper limits of the expression ax+ b are found, appropriately
enough, at & and infinity.

In the third example the lower limit of the fraction %—2 , that is, g
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is found by simple substitution of {) in the place of x in the expression,
and the upper limit, %, by the substitution of e in place of x in the

b
a+
; .An explanat.ion of under what conditions the

b+
X

equivalent fraction

values given to ¢ and b respectively appeared actually in the lower and
upper limits does not accompany the example. There is not even a hint
of the question of whether if the values are tested they will satisfy the
adduced definition of ‘limits’ (to check, for example, that we are
Jooking at monotonic functions). The reader is thus pre-‘prepared’ to
find a limit to a function through the direct substitution into its
expression (or into its re-arranged expression in those cases where the
immediately given continuous expression is devoid of any meaning } of
the limit value of the independent variable.

The fourth and the sixth examples, exactly those examples which
typify point two of the intreductory chapter — in which proceeds the
gradual ‘ransition’ from the concept of inferior and superior limits of
the function to the more conventional concept of limit and in which is
revealed the actual character of Limit according to Hind — we repro-
duce here in full. From them it will become sufficiently clear what a
jumbled character is attributed to any general account of the concept
of limit by this author:

‘Example 4: The sum of the geometric series

a a
a+ -+ + e,
X X

! 1
i |
1_, a1
x

now, if n = 0, the inferior limir is manifestly = 0; butif n = w,%,

becomes 0, and therefore the superior limit is J—:x—l which is usually
called the sum of the series continued ad tnfinitum.

,__
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‘Example 6. If a regular polygon be inscribed in a circle, and the
number of its sides be continually doubled, it is evident that its
perimeter approaches more and more nearly to equality with the
periphery of the circle, and that at length their difference must
become less than any quantity that can be assigned; hence therefore,
the circumference of the circle is the limit of the perimeters of the
pelygons.’ (pp.2-3)

Here one no longer speaks of one of the ‘limits’ of the sequence nor
any more about the superior of the limits, as would naturally follow
from Definition One, but simply of the limit in the usual sense.

‘2. To prove that the Iimits of the ratios subsisting betreen the sine and
tangent of a circular arc, and the arc itself, are ratios of equality.

‘Let p and ¢’ represent the perimeters of two regular polygons of n
sides, the former inscribed in, the latter circumscribed abour, a
circle whose radius is 1, and circumference = 6.28318 etc. = 2m;
then (trig.)

, X . L
p—?nsm;,andp —Zntann,

hence

and if the value of # be supposed to be indefinitely increased, the
value of cos T is 1, and therefore p = p'; now, the peri-
phery of the circle evidently lies between p and p’, and therefore in
this case is equal to either of them; hence on this supposition, an #th

part of the perimeter of the polygon is equal to an nth part of the
periphery of the circle: that is,

. m_ 2n n . W _ T a
2sin—="—"=2rmn~—, or sin—===tan>,
n n n n n n

or the sine and the tangent of a circular arc in their ultimate or imiting
sate, are in a ratio of equality with the arc itself.’ (p.3)

The word ‘limit’ or ‘limits’ occurs here only in'the verbal formulation
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of the theorem, but recalling that formulation we see that
obe surmises that the fequirement is to show the equality of ﬂ';—’—‘ and

'4'—-:5 as x goes to 0. However, Hind’s proof can hardly be considered
satisfactory by’the standards of his time. Indeed, from the above
account it is evident that the author desires to show that

in > =T =tanasn = (N
My~ n

But even here, in order to have cos 3:7 = 1 when n = = he already
mumesthat%=0whenu=m,andther&forcaswellsin;5=sin0=0

and tan} = tan 0 = 0. That is, in order to prove equation (1) — from
which, of course, it by no means folows by itself the theorem on the
limit of the ratio s-l:—x as x—0 — the assumptions immediately

preceding the introduction by the author of this equation are missing
completely,

It remains equally difficult to explain how all this confusing account
could possibly demonstrate the superiority of this method of limits,
literally interpreted, over the method of infinitely small quantities, in
this case simply the identification of an infinitely small segment of the
perimeter of the circle with its chord.

In Boucharlat’s textbook as well (see p.vii) the method of limits is
treated as an improvement on the method of infinitely small quan-
tities: ‘repairing that which may be imperfect in this last’. There is,
however, no attempt in Boucharlat’s course to define what is meant by
'zfnd,s' to (such-and-such) a limit’ (or how to make certain that such-

d-such a guantity actually tends toward such-and-such a limit). In it
the concept of limit, as well as of ‘actual’, appears for the first time in
evaluating the derivative of the function y = x2, We reproduce hercin
full that passage which elicited critical remarks from Marx in his
manuscript ‘On the ambiguity of the terms “limit” and “limiting
muCQ!.’

‘By attending to the second [right-hand] side of equation (2)
YooY =+ kR, @

we see that this ratio is dimirished the more % is diminished, and
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that when & becomes 0 this ratio is reduced to 3x2. This term 3x?
is therefore the limit of the ratio -!'—;2, being the term to which

it tends as we diminish 4.
‘Since, on the hypothesis of & = 0, the increment of ¥ becomes

also 0, ’%—2 is reduced to g, and consequently the equation

(2) becomes
0

g = x° 3}
“This equation involves in it nothing absurd, for from algebra we
know that g may represent every sort of quantity; besides which it

will be easily seen, that since dividing the two terms of a fraction by
the same number the fraction is not altered in value, it foltows that
the smallness of the terms of a fraction does not at all affect its
value, and that, consequently, it may not remain the same whenits
terms are diminished to the last degree, that is to say, when they
become each of them 0. (pp.2-3)

For a correct understanding of the above-mentioned manuseript of
Marx it is essential to note that in Boucharlat’s account the transition

from the equation of the form % = ®(x,, x) (wherey = f(x)) to

an equation of the form ‘% = f{x) is presented as divided into those

parts to the left and to the right in the first equarion above: from
2 10 ¥ and from ®(xy, x) 10 f(x). And the limit of the

. A . - . .
ratio Ey — corresponding to the ﬂr?- of equation (2) — is

evidently considered equivalent to the expression g, denoted %' So,
in his determination of the differential of x, having deduced
the equation-‘% = 1, Boucharlat concludes: ‘Since the quantity A
does not enter into the second side of this equation, we see that to

pass to the limit it is sufficient to change "ﬁ’—! into % which

gives % = 1, and therefore dy = dx.” (p.6)

The case where the limit appears equal to zero Boucharlat treats as
equivalent to the nonexistence of a Limit. So, taking the derivative of
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y = b and obtaining the equation j—i = {, he concludes, ‘so there
is oeither limit nor differential’ (p.6).

Boucharlat obtains the limit of the ratio s'% as x—0 in essentially

the same manner as Hind, although in a more intelligible form. He
proves at first the theorem given as an example in his textbook, that
‘the arc is greater than the sine, and less than the tangent’. (p.24)
However, he makes no mention of the fact that immediartely follows,
viz:

sinx _Ssinx _ sinx
<< < =
1an x x sin x

]

that is, that the ratio %‘ lies between cos x and 1. All this aside,

following Hind, Boucharlat writes:

‘It follows from the above, that the limit of the ratio of the sine to
the arc is unity; for since, when thearchk . . . becomes nothing, the
sine coincides with the tangent; much more does the sine coincide
with the arc, which lies between the tangent and the sine; and,

consequently, we have, in the case of the limit, :%;’; or rather

A -1 (p.29)

The condition that for & = 0 the ratio 2% is “transformed’ into 2,
k 0

} thatis, in general, is undefined, and the conclusion drawn on no more
. ground than “the sine coincides with the arc’ when this last is changed
. Into zero, all these embarrass Boucharlat no more than they embarrass

| Hind.

We have dwelt long enough, obviously, on the treatment of the
concept of limit in the textbooks of Hind and Boucharlat in order 1o
clarify those passages in the manuscript ‘On the ambiguity of the
terms “limit’”’ and “limiting value” ’ in which Marx criticised these
suthors’ actual tramsition to the limit, {(concerning which see notes
90-92).

In order to understand other passages of the manuscripts, and in
particular Marx’s characteristic ratio treatment of the limit, closer to
the contemporary one, it is advisable to introduce certain opinions
regarding the concept of limit in other sources with which Marx
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familiarised himself, first of all the 3-volume Traité of Lacroix on the
differential and integral calculus, 1810.

Following Leibnitz, Lacroix considered all sorts of functions obey-
ing the requirements of the law of continuity, but considered the
passage to the limit to be the expression of this law, ‘c’est-d-dire de la loi
qui s’observe dans la description des lignes par le mouvement, et & aprés
laguelle les paints consécutifs d’une méme ligne se succedent sans aucun
intervalle.” (p.xxv) (‘that is, the law which is observed of lines when
described by [their] movement, and according to which there is not
the slightest interval between successive points of the same line”). For
any such change in the quantity is impossible to understand without
considering its two different values, between which the interval is
being considered, since the law of continuity must be expressed in
terms of it, that ‘plus il est petir, plus on se rapproche de la loi donz il " agit,
d laquelle la limite seule convient parfaitement’, (ibid: ‘the smaller it
becomes the more closely it approaches the law which it obeys, to
which only the limit fits with complete agreement’). Lacroix also
explains that this role of continuity in mathematical analysis seemed
to him appropriate in order to ‘employer la méthode des limites” (p.xxiv)
for the construction of a systemaric course-book of mathematical
analysis.

The concepts ‘infinite’ and ‘infinitely small’ Lacroix considers

-determined only in a negative sense, that is, as ‘Pexclusion de tout

Iimite, soit en grandeur, soit en petitesse, ce qui noffre qu'une sutte de
négations, et ne Sourqit jamdis constituter une notion positive’ {p.19 ‘the
exclusion of any limit whether of grestness or of smallness, this only
offers a series of negations and never rises to constitute a positive
notion’). And in a footnote on the same page he adds Pinfini est
necessairement ce dont on affirme gue les Bimites ne peuvent éire atteintes
par quelgue grandewr concevable que ce soit,” (‘the infinite is necessarily
that of which one believes its limits cannot be surpassed by any
conceivable quantity no matter how large”). In other words, Lacroix
does not accept any actual infinity: neither an actual infinitely large
quantity nor an actual infinitely small one.
Lacroix introduces the concept of limit in the following manner:

‘Let there be given a simple functioni_fi:ﬁ; in which we suppose

x to be augmented positively without end. In dividing the
numerator and divisor by x the result
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1+2

clearly shows that the function will always remain less than 4, but
will approach that value without a halt, since the part ; in the

denominator diminishes more and more and can be reduced to any
degree of smallness which one would want. The difference bet-
ween the given fraction and the value ¢ is expressed

ax a?

x+a x+a’

and becomes therefore smaller and smaller as x is larger, and could
be made less than any given quantity, however small; it follows that rhe
given fraction can approach a as closely as one would want: a is

therefore the limit of the functionx-% with respect to the indefinite

increase of x.

‘The terms which I now am stating comprise the true value
[which it is necessary to atrribute to] the word limit in order to
understand all of what it implies.’ (pp.13-14)

- Already in Lacroix there is no longer any assumption of a mono-
L tonic or piecewise monotonic function, and his limit is not, in general,
} & one-sided limit: the variable may approach its limiting value in any
i manner whatsoever. In place of the concept of absolute value Lacroix
. employs, although not consistently, the expression ‘value withour
 8ign’, the meaning of which, however, remains unspecified. He
¢ emphasised that the function may not only attain its limiting value but
j in general may even pass beyond, to oscillate in its vicinity. But
t Lacroix still did not formulate in clear terms the restriction on the
} independent variable that in its approach to its limiting value «o,
I related to the passage to the limit, it is assumed that it does not attain
. a, that is, that the limit is not to be understood actually. As long as the
function with which he is concerned is continuous, that is, its limits
coincide with the value of the function at the limiting value of the
independent variable, he expresses himself as would a man who
believed that the approach of the independent variable to its limiting
value must in the passage to the limit be completed by reaching that
value,

T —

R

!
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It must also be noted that Lacroix uses the same one word ‘limit’ for
the designation of the lmit — an end which as we have seen was
conceived by him in 2 much more general, more precise way, and
closer to the contemporary sense than anything in the concepts of the
textbooks of Boucharlat and Hind which Marx criticised — as he uses
in several instances for the designation of the limit value as well.

These lines on the concept of limit in the long treatise of Lacroix —
which, as we know, Marx considered his most reliable source of
information on the fundamental concepts of mathematical analysis,
such as function, limit etc. — are obviously sufficient to clarify what
Marx had in mind when he noted briefly regarding the concept of
Limit in Lacroix’s treatment, that ‘this category, brought into general
use in [mathematical] analysis largely by Lacroix’s example, acquires
great significance as a replacement for the category “minimal expre-
ssion™ * (p.68). It is clear, first of all, that Marx actually understood
what he was doing when he introduced, in dealing with the ambiguity
of the term ‘limit’, the concept of the ‘absolutely minimal expression’,
in the same sense as that which we recognise today in the concept of
limit, Marx foresaw, it is also clear, that with the concept of limir as
understood by Lacroix we are forced, after completely replacing,
obviously, the less satisfactory concept of limit, to perform the
unnecessary introduction of the special — new — concept of the
‘absolutely minimal expression’; in other words, we are faced with the
necessity of replacing the latter.

It is probably appropriate, in connection with this same extract
from the manuscripts of Marx which we are discussing at the moment,
but also with regard to a variety of other passages of the manuscripts,
to introduce the words of Lagrange with respect to the concept of limit
from the introduction to his Theory of Analytic Funciions (Oeuvres
Lagrange, Vol 1X, Paris, 1881),

Speaking about the attempts by Euler and d’Alembert to regard
infinitely small differences as absolutely zero, with only their ratios
entering into calculus, and to see these as the limits of the ratios of
finite or indefinitely small differences, Lagrange wrote (p.16):

‘Mais il faut convenir que celte idée, quotque just en elle-méme, n’est
pas assez clatre pour servir de principe d une science dont la certitude doit
éire fondée sur evidence, et surtout pour éire presentée aux com-
mencants.” (‘But it is necessary to admit that this idea, however
correct in itself, is not at all clear enough to serve as the principle of

APPENDICES 155

a science whose certitude must be founded solely on evidence and
must above all be presentable to beginners.”)

Later (p.18} he remarks, in connection with the Newtonian method
of the remaining ratios of disappearing quantities, that

‘cette méthode a, comme celle des limites dont nous avons parlé plus
haus, et qui n’en est proprement que la traduction algébraique, le grand
$mconvénient de considérer les quantités dans I'éiat ou elles cessent, pour
ainsi dire, d’étre quantité, car, guoigwon concoive toujours bien le
rapport de deux quantités, tant qw’elles demeurent fintes, ce rapport
wWoffre plus d Pésprit une idée clatre et precise aussitor que ses termes
deviennent Pun ot Uautre nuls @ la fois.” (“This method has, like that
of limits of which we spoke earlier and of which it is only the
algebraic translarion, the great inconvenience of having to consider
quantities in the state in which they, so to speak, cease to be
quantities; since however well one understands the ratio of two
quantities so long as they remain finite, such a ratio no longer
presents a clear and precise idea to the understanding uniess both
of its terms become zero simultaneously.”)

;.  Lagrange then turned to the attempts of ‘the clever English
L geometrician’ fJohn] Landen to deal with these difficulties, attempts
. which he valued highly, although he considered Landen’s method too
f awkward. (See Appendix IV, ‘John Landen's Residual Analysis,
E pp.165-173)

F *Of himself, Lagrange wrote that already in 1772 he maintained ‘the
b theory of the development of functions into a series containing the
: true principles of differential calculus separate from all consideration
of infinitely small quantities or of limits’. (p.19)

. Thus it is clear that Lagrange considered the method of Limits no
 more perfect than the method of infinitely small quantities and that
this was related to his understanding that the limit of which one
. speaks in analysis is understood actually as the “last’ value of the
¢ function for the ‘last’ (‘disappearing’) value of the independent var-
F able.
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ON THE LEMMAS OF NEWTON CITED BY MARX

On a separate sheet attached to his draft sketch of the course of
historical development of mathematical calculus, Marx referred to the
Scholivm of Lemma XI of Book One and the Lemma II of Book Two
of Newton's Principia, devoted to two fundamental concepts used by
Newton throughout his mathematical analysis, the concept of ‘limit’
and ‘moment’.

In the commentary (scholium) to Lemma XI of the first book to
Principia mathematica de philosophiae naturalis Newton attempts to
explain the concept of ‘ultimate (limiting) ratio’ and ‘ultimate sum’ by
means of a not very transparent comparison: ‘a metaphysical, not
mathematical assumption,” Marx characterised it. Indeed, Newton
writes:

‘Perhaps it may be objected, that there is no ultimate ratio of
evanescent quantities; because the ratie before the quantities have
vanished, is not the wltmate, and when they are vanished, is none.
But by the same argument it may be alleged that a body arriving ata
certain place, and there stopping, has no ultimate velocity; because
the velocity, before the bedy comes to the place, is not its ultimate
velocity; when it has arrived, there is none. But the answer is easy;
for by the ulrimate velocity is meant that with which the body is
moved, neither before it arrives at its last place, and the motion
ceases, nor after, but at the very instant it arrives; that is, that
velocity with which the body arrives at its last place, and with
which the motion ceases. And in like manner, by the ultimate ratio
of evanescent quantities is to be understood the ratio of the quan-
tities not before they vanish, nor afterwards, but with which they
vanish. In like manner the first ratio of nascent quantities is that
with which they begin to be. And the first or last sum is that with
which they begin and cease to be (or to be augmented or
diminished). There is a limit which the velocity at the end of a
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motion may attain, but not exceed. This is the ultimate velocity.
And there is a like limit in all quantities and proportions that begin
and cease to be.” (Sir Isaac Newton's Mathematical Principles of
Natural Philosophy, transl. Andrew Motte, rev. Florion Cajoni,
Berkeley, Univ. of Calif. Press, 1934, pp.38-39)

In present-day mathematics ‘the velocity of a body at the given
moment 2, is defined with the help of the mathematical concept of
limit, and the use by science of such a definition may lead to a variety
of considerations, including those of an ontological character, How-
sver, the scientific definition of the velocity of a body at a given
moment by means of a certain limit of the ratio of vanishing quantities
gan serve neither as 2 demonstration of the existence of such a limit

. BOr, a fortioni as a justification for the definition of this limit as ‘the
¥ ratio of the quantities not before they vanish, nor afterwards, but with

which they vanish,’ that is, as some sort of ratio of zeroes, the value of

k. which is somehow compared to the speed which a body must have at

the very moment when it reaches a place where its movement ends.

¥: Clearly, however, from such a ‘definition’ it is impossible to extract by
¥ mathematical calculations any corresponding limit, and we are essen-
[ tially in a logical circle: velocity at the moment t, is factually described as
8 certzin Bimit, the limit, itself, however, is then defined by means of
i the velocity at the moment 1,,, the existence of which in this case now

really seems to be some sort of ‘metaphysical, not mathematical,

E gisumption’. *

* Lemma II of the second book of Principia mathematica contains the

| following explanation of the concept of ‘moment’ (or infinitely small):

‘I understand . . . the quantities I consider here as variable and
ipdetermined, and increasing or decreasing, as it were, i)y a con-
zlnal motion or flux; and I understand their momentary incre-
ments or decrements by the name of moments; so that the incre-
ments may be esteemed as added or affirmative moments; and the
decrements as subtracted or negative ones. But take care not to
look upon finire particles as such. Finite particles are not moments,
but the very quantities generated by the moments. We are to
conceive them as the just nascent principles of finite magnitudes.
Nor do we in this Lemma regard the magnitude of the moments,

¥ Consisting in that the reflection is understood as the reflected object: the
contemplarion in our thoughts of the anticipated goals of abstract mathemat-
{cal concepts is understood as the real existence of the ideal object. — Ed.
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158 MATHEMATICAL MANUSCRIPTS

but their first proportion, as nascent. It will be the same thing if,
instead of moments, we use either the velocities of the increments
and decrements (which may also be called the motions, murations
and fluxions of quantities), or any finite quantities proportional to
those velocities.’

It is natural that this explanation — in which Newton once again
employs a ‘metaphysical, not mathematical assumption’, this time
with respect to the existence of differentials (‘moments’) — should
have interested Marx first of all.

But this lemma might also have attracted his attention insofar as in
it Newton attempts to show the formula for the differentiation of the
product of two functions without resorting to the suppression of the
infinitesimals of higher order.

This (unsuccessful) attempt proceeds in the following way: Let

A—-%a be the value of the function f(z) at the point &, B—1b
be the value of the function g() at the same point ¢y, and @ and b
increments of the respective functions f and g on the interval [Eos £1]-
(Lower we denote these Af and Ag respectively.) Then the increment
of the product f(¢).g(¢) on the segment ftos 4] is:
1. 1 1 1

(A+39)(B+ )~ (A= 39) (B 3¢
that is, Ab + Ba, which Newton also understood as the differential
(‘moment’) of the derivative of the functions f and g at ¢,. Bur here
Ab + Ba is not f{1,) /g + glte) f, but

(fao + S0 )0e + (gGe) + 306)8f

that is, different from flip) Ag + glto) &f by the same quantity of
Af. Ag whose suppression Newton wanted to avoid. Identifying,
although implicidy, Ab + Ba with f(z,) Ag + gt} Af , however New-
ton in fact employed such a suppression.

As is apparent from the first drafts of the piece on the differential
(see, for instance p.76), Marx at first wanted to elucidate the historical
path of the development of differential calculus by the use of the
example of the history of the theorem of the derivative. Therefore it is
not surprising that Lemma II should have drawn Marx’s atrention in
this connection.

Since the textbooks from which Marx made extracts do not spec-
ifically refer to Lemma XI of Book One or Lemma II of Book Two of
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the Principia, there is every reason to believe that Marx selected them,
Baving already immediately rejected Newton’s work.

Since the definition of the limit of the ratio of vanishing quantities by
means of the velocity of a body at a given mement ¢, contains no means
for the calculation of this limit, Newton actually employs for the

ormance of such calculation, rather than this definition, certain
; etical properties of limits sufficient to reduce the calculation of
the limits of ratios of vanishing quantities to the calculation of the limirs
themselves, the numerical value of which is supposed to be completely
#nd rigorously defined. Newton states these hypothetical properties
. firet of all in Lernma I of the first section of Book One of Principia: “The
r'gathod of first and last ratios of quantities, by the help of which we
#emonstrate the propositions that follow.” In his notes on the history of
| @Mferential calculus Marx refers to this lemma together with the
poholium to Lemma XI (see pp.75 and 76).
i . Lemma I states: ‘Quantities, and the ratios of quantities, which in
Jiy finite time converge continually to equality, and before the end of
st time approach nearer to each other than by any given difference,
gome ultimately equal.” (Newton's Principia revised by Florion
Bajori, Univ of Calif, Press, 1934, p.29) '
t . However, in the demonstration of this limit the existence of a limit as
Jrually reached at the end of the period of time in question is implicitly
amed. Actually, the demonstration is composed of a denial that the
of the quantities obtained ‘at the end of this time’ can be dis-
nguished from each other.
. Thus, &nt is always understood by Newton in an acwal sense and
Aerefore hardly surpasses ~— in mathematical precision and validity —
pbnitz’s actually infinively small differentials and their corresponding
enss, which, as is well known, Newton used in practice.
/
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APPENDIX HI

ON THE CALCULUS OF ZEROES
OF LEONHARD EULER

In order to understand those places in the manuscripts of Marx at
which the ratio % is regarded as a ratio of zeroes, at times equal to

the value of the derivative of ¥ with respect to x for all values of x and
at the same time something which can be treated as an ordinary

fracion — where, for example, the product % % equals the
‘fraction’ %, ‘cancelling’ the do’s — it is essential o have an
acquaintance with Euler’s attempt to construct the differentia] cal-
culus as a calculus of zeroes. This attempt deserves interpretation as
well in view of the fact that Marx specifically refers, in the list of
literature appended to his first draft of the history of differential
calculus, to chapter III of Euler’s Differential Caiculus , and that Marx
calls Euler’s account of the calculus ‘rational’,

The Differential Calculus by the great mathematician and member
of the St Petersburg Academy of Sciences Leonhard Euler was pub-
lished by the St Petersburg Academy in 1755. The basis for this work
lies in the attempt to regard differentials as at the point of equalling
zero in quantity, yet at the same time as different from zero: a zero
with a ‘history’ of its origin, with various designations (dy, dx
and so on) and allowed to be evaluated so that the ratio :% where

y = f{x), is distinguished by the fact that it is the derivative f{x) and
can be treated as an ordinary fraction.

Euler undertook this attempt in order to free mathematical analysis
from the necessity of treating differentials as actually infinitely small
quantities with a clearly contradictory character (appearing to be in
some sense zere and non-zero simultaneously). The assertion that
‘pure reason supposedly recognises the possibility that the thousandth
part of a cubic foot of substance is devoid of any extent’, Euler
considers ‘completely inadequate’ {in the sense of ‘inadmissible’, in
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context, see the translation [in Russian| of L. Euler, Differential
Calculus. Moscow-Leningrad, 1949, p.90).

‘An infinitely small quantity is no different from a vanishingly
small one, and thus exactly equal to zero. This includes the defin-
ition of infinitely small differentials according to which they are
smaller than any given quantity. Acrually, if the quantity is to be so
small that it is smaller than any possible given quantity, then it
could not possibly be not equal to zero; or if it is not equal to zero,
then there is a quantity to which it is equal, contrary to the
supposition. Thus, if one asks, what is the infinitely smalf quantity
in mathematics, we answer, that it is exactly equal to zero. Con-
sequently, this removes the mystery which is usually attributed to
this concept and which for many makes the calculus of infinitely
small quantities rather suspicious.” (p.%1)

Since the simple identification of the differential with zero did not
yield the differential calculus, Euler introduces ‘various’ zeroes,
establishing for them two types of equality, the ‘arithmetic’ and the
‘geometric’. In the ‘arithmetic’ sense ail zeroes are equal to each other,

and for any non-zero a, ¢ + 0 is always equal to a independently of
" the ‘sort’ of zero which is added to a. In the ‘geometric’ sense of the

word, two zeroes are equal only if their ‘ratio’ is equal to unity.
Buler did not clarify what he understands by the ‘ratio’ of two

L eroes. It is only clear that he atiributes to this ‘ratio’ the usual
¢ character of a ratio of non-zero quantities and that in practice by the
ratio of two ‘zeroes’ — dy and dx — he intends the same as that which

Is expressed in modern mathematical analysis by the term lim 2,
Ax— &%

I fo&‘ Euler’s theory of zeroes does not free mathematical analysis from the
& pecessity of the introduction of the concept of limit (and the difficulties

attending this concept).

Since for Euler zero becomes various zeroes (and in the ‘geometric’
sense they are not even equal to one another), it is necessary to use a
variety of symbols. ‘Two zeroes’, writes Euler, ‘may have any
geometric ratio to each other, while from the arithmetic point of view
their ratio is the ratio of equatity. Therefore, since zeroes may have any
ratio between them, in order to express these different ratios different
symbols are used, especially when it is necessary to determine the
geometric ratio between the two different zeroes. But in the calculus of
Infinitely small quantities nothing larger is formed than the ratio of
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162 MATHEMATICAL MANUSCRIPTS

various infinitely small quantities. Unless we employ different signs for
their designation everything will be an enormous mess and nothing
would be distinguishable.’ (p.91)

If, following this interpretation of dx and dy as ‘different’ zeroes,
the ratio of which is equal to f(x), we replace £ = f(x) with

dy = f{x)dx , then we have an equation the left and right sides of which
will be equal both in the ‘arithmetic” sense and in the ‘geometric’ sense.
Actually, the left and right will contain various ‘zeroes’, but all ‘zeroes’,
as already noted, are equal in the ‘arithmetic’ sense. Only insofar as the
ratio of dy to dx is completely equal to f{x) — that is, both in the

‘arithmetic’ and ‘geometric’ senses [the ratio ‘j—i : flx), where

¥ = f{x), is considered unity even if f(x) = 0] and if the “ratio’ of
zeroes is understood correctly as the usual operation of ratio, then we
have

dy: fx)ds = (2):f0) =1,

or, in other words, dy and f{x)dx are also equal in the ‘geometric’
sense.

Obviously, Marx had in mind just this ‘complete’ equivalence of
the equation (2] = f(x) with that of dy = f{x)dx in the sense not

only of the possibility of transition from each of them to the other but
also of the treatment of this (and with the strength of this) ‘ratio’ of
‘differential parts’ dy and dx as a usual ratio (as a fraction), whatever
the quality of the ‘differential parts’ dy and dx as zeroes (‘various’
zeroes, variously designated), when he transformed the first of these
equations into the second (see ibid, p.147).

For a more detailed account of the Euler zeroes and a history of the
ideas related to it the reader may consult the article, A.P. Yushkevich
‘Euler und Lagrange iuber die Grundlagen der Analysis’, in Sam-
melband su Ehren des 250 Geburistages Leonhard Eulers, Berlin, 1959,
pp.224-244, .

Here we are limiting consideration to two considerations of Euler
which are helpful in reading the manuscripts of Marx. The first con-
cerns the concept of the differential as the principal part of the incre-
ment of the function. This concept, which plays an essential role in
mathematical analysis, particularly in its foundations, Enler introduces
in the following way: ‘Let the increment @ of the variable x become
very small, so that in the expression ffor the increment Ay of the
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function y of x, that is; in] Pw+ Quw® + Re®+ etc.* the terms
Qu? , Rw® and all higher orders become so small that in an expression
Bot demanding a great degree of precision they may be neglected
compared to the first term Pw. Then, knowing the first differential
Pdx , we also know, admittedly approximately, the first difference, that
will be Pw; this has frequent use in many cases in which analysis is
&pplied to practical tasks’ (p. 105, ibid). In other words, having replaced
in the differential function y of x (that is, in Pdx, where P is the

. derivative of y with respect to x) the differential dx, equal to zero

according to Euler, with the finite [ron-zero] increment w of the
varisble dx, we obtain the very concept of the differential as the
peincipal part of the increment of the function, the starting point of
modern-day courses of mathematical analysis.

The analogous concept of the differential as the principal part of the

¢ Increment of the function is also in the manuscripts of Marx (see the
| 8ccount in manuscript 2768, p. 297 [Yanovskaya, 1968]).

The second consideration concerns the question of the choice of

 designations specific to differential calculus, that is, of differentials and
| derivatives. Here interest arises first of all from the fact that Euler
. Interprers the dot designations of Newton as symbolic of the diffe-
- pential, but not the derivative. In fact he writes, ‘the name “fluxions”
| first used by Newton for the designation of speed of growth, was by
| antlogy carried over to the infinitely small increments which a quantity
| sagumes when it as it were varies” (p.103). And similarly later, ‘The
 differentials which they fthe English] called “fluxions”, they marked
| with dots which were placed above the letters, 5o that y meant for them
| the first fluxion of y, § the second fluxion, ¥ the third fluxion and so
 on.'

| °zfl.'na manner of designation, however, did not satisfy Euler, and he

tinues: ‘Although this means of designation depends upon an arbit-

] rary rule, the designation need not be rejected if the number of dots is
j mot large, for they are easily indicated. If, however, it is required

' * The Differential Calculus of Euler begins with the calculus of finite dif-
| ferences and the theorem which states that ‘if the variable quantity x assumes
. 0 Incremental value w, then the consequential value of the increment of any
} function of x can be expressed as Pw+ Qw? + Rw*+ . . . etc., which
}  WMpression is either finite or continues infinitely.’ (Tbid, p. 103, see also p.61)

The proof of this theorem is based on the fact that the class of functions

' cotsidered by Euler consists of power fanctions: polynomials and elementary
i transcendental functions expanded into infinite power series which he treats
i a4 if they were finite polynomials — Ed.

1
;

S WP B

-

i &

e

i
"
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to write many dots, this method gives rise to a great deal of confusion
and inconvenience. In fact, the tenth differential, or tenth

fluxion, is extremely inconvenient to indicate thus: y where by our
means of designation, 4% is given easily. There arise occasions when it
is necessary to express differentials of much higher, and even infinite,
degree; on those occasions the English method of designation is not at
all appropriate.” (pp. 103-104)

About the analogous identification (in several instances) by Newton
and his followers of the ‘fluxions’ %, ¥ and so on, with the ‘moments’
(that is, the differentals) %, 19, and so on (where T is an ‘infinitely
small period of time’) Marx also spoke, when he noted (p.78) ‘1 plays
no role in Newton’s analysis of the foundations of functions and there-
fore may be ignored’, and that Newton himself voluntarily neglected ©
{oc.cit.). Marx used the same expressions, speaking of the method of
Newton, as ‘the differential of y or %, of u or 4, of z or 3°. (see p.79)

We must note in addition that Marx primarily emphasised the Leib-
nitzian symbology of the differential calculus over the symbology of
Newton and his followers (see p.94).

’—

APPENDIX IV
. John Landen’s Residual Analysis

Notice of Marx's intention to acquaint himself with the works of
John Landen in the British Museum is evident at several places in the
mathematical manuscripts of Marx (see p.33).

Marx saw in Landen a possible precursor of Lagrange, attempting
to ‘rebuild on strictly algebraic lines the foundation of differential
calculus’ (p.113), and he proposed that the Landen method should be
compared to the method Marx categorised as ‘algebraic dif-
ferentiation’, but he himself doubted that Landen really understood
the essential difference between this method and any other. To con-
vince himself of the truth of this proposal Marx wanted to study in the
Museum Landen’s Residual Analysis.

In the sources available to him Marx could find two earlicr opinions
of this book: in Hind's textbook (p.128, 2nd ed.) and in Lacroix’s long

b 'Treatise’ {Vol.I, pp.239-240) — which are in fact almost identical
| since Hind had essentially translated into English the appropriate
. passage from Lacroix. In Hind we read: “The notion of establishing
| this kind of caleulus [that is, differential calculus] upon principles
; purely algebraical, seems however to have originated with Mr John
t Landen, a celebrated English mathematician who flourished about
[ the middle of the 18th century. In what is termed his Residual
b Amalysis, the first object is to exhibit the algebraical development of

difference of the same functions of the quantities x and x’ divided

F by the difference of the quantities themselves, or the devel-
i opment of the expressionw, and afterwards to find what
F I8 called the special value of the result when x° is made = x and when

therefore all trace of the divisor x¥ — x has disappeared.’ (And in
Lacroix, ‘. . . and when this quotient Py — A M(x' — x)] is
obtained in order not to conserve any trace of the divisor + — x , one
tets ¥’ = x, since the final goal of the calculation is to arrive at a
special value of the above ratio.”)

Marx apparently did not succeed in his intention to study Landen’s
book in the British Museum. An analysis of the contents of the book,
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166 MATHEMATICAL MANUSCRIPTS

however, completely confirms Marx’s expressed opinion, which he
himself considered ‘highly probable’.

The complete title of the Landen book is ‘The Residual Analysis, a
new branch of the algebraic art, of very extensive use, both in pure
mathematics and natural philosophy . Book [, By Fohn Landen. London.
Printed for the author, and sold by L. Haws, W.Clarke and R.Collins,
at the Red Lion in Paternoster Row, 1764.

The preface begins with the words:

‘Having some time ago stumbled across a new and easy method of
investigating the binomial theorem with the help of a purely algeb-
raic process, | turned te see whether the means used to investigate
this theorem might be of service with other theorems, and I soon
found that a certain type of calculation founded on this method
may be used in many researches. I call this special method Residual
Analysis, since in all problems where it is used the basic tools which
we employ to obtain the desired result are those quantities and
algebraic expressions which mathematicians call residuals.’

Later the author criticises the fluxions calculus of Newton and the
differentials of Leibnitz as based on the introduction into mathema-
tics of undefined new ‘principles’. Those applied in the calculus of
fluxions of Newton he considers the explanation of the significant new
terms introduced into the theory, such as the not really existent but
nonetheless apparent (as self-evident) concepts, imaginary motion and
graphicaily continuous flow , which do not belong in any mathermatics of
clear and distinct ideas but do continue to speak for example of such
things as the speed of time, the velocity of velocity and so on as unneces-
sary in the proof (and therefore on the other hand serve as the means of
definition of several exact mathematical concepts). In the analysis of
Leibnitz he considers undefined the introduction, under cover of new
‘principles’, of infinitely small quantities and the quantity infinstely
smaller than any infinitely small quantity, the suppression of which
(when it is not a matter of accepted approximate results) is: ‘a very
unsatisfactory (if not erronecus} method to rid us of such quantities’
(p.IV). Landen believed that mathematics had no need of such alien
principles and that his Residual Analysis ‘does not require any prin-
ciples other than those accepted since antiquity in algebra and
geometry’, ‘no less (if not more) in use, than the calculus of fluxions or
differential*calculus’ {p.IV).

The starting-point of residual analysis is in the formula

F_ jT
H =a™ 4+ %+ .., + b <)
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{where r is a positive whole number) with the help of which and the
formulae* derived from it

2 m—1
.. 1+ 2+%1+ ...+ %
o —w’ _, - — @
v -w wF w o L0
1+;]+;] +...+;]
w wal wi
E 3 m - 1+;,+;1+ + =]
.:. !—r:-jl—’-—-i"_- —_— ﬂ—l w-r (3)
o—w v ” Zm r—m
1+ 217+ 217 4 4B T
? v

(where m and r are positive whole numbers), Landen obtains the
derivative of the power function x® for whole and fractional (positive

. or negative) values of p as a ‘special value’ of the ratio

xP— x3
xX— xl

W

b 8t x = x, . In other words, he predefines the ratic * =X at x = x,

X=X,

- o8 that which fulfils the equality of formulae (1), (2) and (3).

[ ¥ In order to show (2) using (1) it is sufficient to note that

/ O‘P—w% Lo w® 2" " ™" (ﬂF)'* (WP)'

o —w ﬂ“'w.’ #9_‘0 ’ F-

D —w ¢ —w

Pormula (3) follows easily from Formula (2}

of-of _ow)Fef-wlf) o F- P

v —w ’

(0w)” (o— w) (ow) P (w0 1)

o W BT

2 kiAo E

F e i

ik

il
[
™



Ii

168 MATHEMATICAL MANUSCRIPTS

The ‘special value’ of the ratio 7=, where y = fx), 3, = f{x1),
at x = x,, Landen designates [x— y].

He obtains the transition to the irrational powers in his cxamples
beginning with the determination of the ‘special value’ of the ratio
"-1’—_3‘— at o = w (the derivative of ¥*? with respect to @) by two
different means, one employing formu.la ()} withm =4 and r = 3, the
other by the same formula, but * smce = 1.333. . .’ using the pairs
(m = 13,333, r = 10,000), (m = 133 333, r = 100 000}, and so on.
Landen saves himself from the difficulties attending this infinite
process by remarking that the ‘final value’ of

1+1+1+ 1+ ...(13,333 times)
1+ t+ 1+ 1+ ... (10,000 times)

is obvmusly equal to , the quantity from which fthe number] 1.333
. is derived (p.7). _

After this he makes the transition to the case where 7 = /2 =
1.4142 . . ., treating it by means of the second method, that is, as he
himself notes, ‘approximately’, but such that it can in any case be
made more ‘closely approximate’, he again concludes that the “final
value' of

1+ 1+ 1+ 1+ ... (14,042 . . . times)
I+ 1+ 1+ 1+ ...(10,000. .. times)

“is equal to /2, the value from which Lthe number| 1.4142 etc. is
derived (by the taking of the root).” (p.8)

It is not surprising that Landen cannot construct his Residual
Analysis without employing in one form or another the concept of
fimit. However, in practice he speaks of the limit from the viewpoint
of Newton, treating the limit as the ‘final value’ (as the end) of an
infinite (that is, without having any end) sequence. Naturally he did
not in fact use this definition, but he approached by this means an
approximate evaluation of the point and of the convergence {or
divergence) of the process of their sequential values, which prompted
the concrete contents of the question to him.,

Like other mathematicians of his time, Landen considers it poss-
ible to employ freely divergent series in formally structured expre-
sstons of infinite series if the former only play an intermittent role in
the construction. If a series had to express the value of some sort of

/means of the division of the polynomial.) The task of finding the
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quantity which was subject to calculation, then in order for it to be
used it had to converge. Landen did not consider it necessary to
explain precisely what he had in mind for ‘convergent’ or ‘divergent’
series but instead, having expanded (by means of some sort of for-
mutive arrangement) the function into a series, he usually points out
the radius of convergence of the derived series and introduces
methods by which to ‘improve’ the convergence (1o replace the series
with another which converges ‘more rapidly’ to the same limit).
Landen thus, among the number of ‘principles’ ‘already accepted
since Antiquity in algebra and geometry’, obviously includes some
concepts of the passage to a limit, with which he deals in practice
(when speaking of an approximate calculation, for example). But he
had no general concept of ‘convergence’ or ‘limit’. Nor did he have
methods for calculating limits (or proving their non-existence) which
included a wide variety of classes of functions. Landen therefore
looked for a definition of the derivative (the ‘special value”) which
would contain within itself its own algorithm.

Just like Newton, he spoke in terms of the function of x as an
analogue of the concept of real numbers. In detail, just as any real
number can be regarded as the (finite or infinite) sum of powers to the
base 10, of which each one is denoted by the figures 0,1,2. . . 9, so
any function of x, according to Newton, ought to be represented as
the (finite or infinite) sum of powers of the base x , with each denoted
by numbers (coefficients)} — that is, as a power series. (A series was
considered ‘representing’ a certain function given in terms of a finite
‘algebraic’ expression if the series is obtained by formal manipula-
tion from the given function. So, for instance, the series
1+ x+x%+ ...+ x"+ .. .wasconsidered to ‘represent’ the func-

L since it can be obtained by the division of 1 by 1- x by
derivative of the function f{x) could be represented as equivalent to
the analogous task for the power x” and to the task, once knowing the
derivatives of the elements {or factors), of finding the derivative of the
sum. Just these problems Ianden solved first of all in his Residual
Amnalysis. The extension of these methods into functions of several
variables and into partial derivatives of various orders, accompanied
by a host of technical difficulties, Landen dealt with by means of
occasionally very clever formal calculations.

In this it is usually implicitly assumed that the power series cor-
responding to the function is single-valued , that is, if two power series
are to represent one and the same function of x, then the coefficients
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for each of the powers on them must be equal (hence the widespread
use of the so-called ‘method of undefined coefficients’).

As an exampie illustrating Landen’s use of these methods we
present his proposed (with several more precise definitions in use even
today) demonstration of the binomial theorem of Newton for the
general case of a binomial raised to a real exponent. Since Marx
devoted speciat attention to this theorem of Newton, primarily with
respect to the theorems of Taylor and MacLaurin {see for example
pp.109, 116}, Landen’s proof may provide interest in this connection.

Let

(@a+x)P=A;+Ax+Axr+ ..., (1)

where p is any real number and A, A, . . . are undefined coef-
ficients assumed to be independent of x. Letting x = 0 on both sides
of the equation yields A, = a®. The differentiation of the cornplete
equation (1) with respect to x {(Landen, of course, did not speak of the
derivative with respect to x but of the corresponding ‘special value’
which he had for Ax® where A is independent of x and r is real)
becomes

plat+ )™ = A+ 24,0+ 3422+ ... )
Multiplying equation (1) by p and equation (2) by (a + x), we obtain
pla+x)” =pA,+ pAx + pAx*+ . .., (1

pla+ x)® = aA,+ 2“22] 3“A‘ |x2+ @

from which, recalling the assumed single valuation of the expansion of
the expression p(a + x)® into a series of powers of x, we have

@Az =pA:, implies A, =24, =pamr,

A+ Ay =pA;, implies 4, =271 g, = BEZD foa

3aA,+ 2A; =pA;, implies A, = p—;ag A,

2.3 ?
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and therefore

) ragzy PO D (0= D) o

b Gror=oot a°-1+9(p
4 1 1.2.3

+ ...,

which is the binomial theorem of Newton.

Although the residual analysis of John Landen did not become an
averyday working instrument among mathematicians — Landen’s
notation was cumbersome and he {perhaps therefore) did not reach
the theorems of Taylor and MacLaurin — it does not follow that
, Landen’s work was generally without influence in the development of
. mathematics. Landen himself writes (p.45) that several of his
j theorems from the Residual Analysis have ‘struck the attention of Mr
i De Moivre, Mr Stirling, and other eminent mathematicians’. In his
' Traité (Vol 1, p.240) Lacroix agrees that he employs the Landen
¢ method as an ‘imitation a Palgébre’ for the proof of the binomial
| theorem and the expansion of exponential and logarithmic functions
} into a series. Lacroix’s textbook enjoyed a widespread popularity
unong mathematicians.

However, Lacroix’s notice was drawn to Landen through the influ-
f ance of Lagrange, whose Théorie des fonctions analytique 1.acroix made
b the basis for his Traité. In the introduction of this book, speaking of
 the difficulties remaining in the fundamental concepts of analysis
Jlecording to Newton, Lagrange writes: ‘In order 1o avoid these
dlﬁiculu&s, a skillful English geometer having made an important
ery in analysis, proposed to replace the method of fluxions,
'hlch until then all English geometricians used consistently, with
¢ another method, purely analytical and analagous to the method of
f differentials, but in which, instead of employing differences of var-
' lable quantities which are infinitely small or equal o zero, one uses at
- first the different values of these quantities which are then set equal,
| after having made, by division, the factor disappear which this equal-
ity sets equal to zero. By this means one truly avoids the infinitely
- small and vanishing quantities; but the results and the application of
this calculus are embarrassing and inconvenient, and one must admit
that this means of rendering the principles of calculus more rigorous
at the same time sacrifices its principal advantages, simplicity of

:
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method and ease of operation.” (In addition to the Residual Analysis
Lagrange also cites ‘the discourse on the same subject published
. . . in 1758, See Qeuvres des Lagrange, Vol. IX, Paris, 1881, p.18).

The last comment of Lagrange is obviously related to the fact that
Landen uses an extremely awkward notation and did not obtain the
differential and the operations with the differential symbols of cal-
culus.

Separate from Lagrange, Lacroix concludes that the method of
Landen ‘reduces essentially 1o the method of limits’ (Traité, p. XVII).

APPENDIX V

THE PRINCIPLES OF DIFFERENTIAL
CALCULUS ACCORDING TO BOUCHARLAT

Of the books of mathematical analysis available to Marx, obviously
of the greatest significance for the understanding of his manuseripts is
the textbook of Boucharlat, Elementary Treatise on the Differential and
Integral Calculus, with which Marx was acquainted in the English
version of the third French edition, translated by Blakelock and
published in 1828.

This textbook enjoyed a great popularity and was several times

- reprinted. Its eighth edition with the commentaries of M.H. Laurent,

saw the light in Paris in 1881. It was translated into a variety of foreign

‘languages, among them Russian.

Graduate of the Ecole Polytechnigue, professor of ‘transcendental’
(higher) mathematics, author of a series of textbooks of mathematics
and mechanics, Jean-Louis Boucharlat (1775-1848) was at the same
time a poet, and since 1823, professor of literature at the Parisian

.; Atheneum.

No doubt his literary accomplishments and clarity of exposition

| were responsible in no small part for the popularity of Boucharlat’s
i textbook. Itis clear that Marx did not turn his attention accidentally

to the course-book of Boucharlat.
_,.KAJI the same, despite the pretentions of the author to great rigour in

his account and to having perfected the ‘algebraic’ method of Lag-

range by means of the method of limits (see the introduction to the
fifth edition, 1838, p.VIII) the mathematical level of this course was
not very elevated. Even in the fifth {of 1338) and not only in the third
edition, the English translation of which Marx consulted, the con-
cepts of limit, function, derivative, differential are intreduced thus:*

polemicised with the author regarding the foundations of his methodoiogical essay, but
also invested a great deal of effortin the factual examination of the former. Therefore we
could hardly do without an acquainiance with the contents of this textbook. Here we
produce in detail the contents of the first twenty paragraphs of the course of Boucharlar.
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‘1. One variable is said to be a function of another variable, when
the first is equal to a certain analytical expression composed of the

second; for example, y is a function of x in the following equ-
ations:

2
¥y = Ja?—x2, y=x>- 3bx?, y=§, y =b+ ex?,

‘3. Let us take also the equation
y=x (D

and suppose that when x becomes x + &, ¥ becomes ', we have
then

¥ ={x+ h?

or, by expanding,

¥ =23+ 3xTh + 3xhZ+ B3
if from this equation we subtract equation (1) there will remain

¥—y =32+ 3xh2+ K,
and by dividing by &,

Lo = 3at+ 3xh+ 2. @
‘Let us look at what this result teaches us:

¥ — y represents the increment of the function y when x receives
the increment A, because this difference y' — y is the difference
between the new state of the value of the variable y and its original

state.
‘On the other hand since the increment of the variable x is %, it

follows from this that the expression -"—;—l is the ratio of the

increment of the function y to the increment of the variable x.
Looking at the second term of equation (2), we see that this ratio

Paragraphs which are specific to the course and particularly those towards which Marx
directed critical remarks are reproduced ic full. Passages in the manuscripts for whose
understanding an scquaintance with these paragraphs is necessary are accompanied by
citations to the pages of the Appendices on which the coatents of the paragraph are
reproduced.
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decreases together with the decrease of & and that whern % becomes
zero this ratio is transformed into 3x2,

‘Consequently the term 3x2 is the limit of the ratio "—hk-‘-’; it
approaches this term when we cause % to be decreased.

‘4. Since, in the hypothesis that 2 = 0 the increment of ¥ also
becomes zero, then Y= is transformed into %, and therefore

A
there is obtained from equation (2)
=3, )

“There is nothing absurd in this equation, since algebra teaches us
that g may represent any value at all. On the other hand it is clear

that since division of both parts of 2 fraction by one and the same
number does not change the value of the fraction, we may then
conclude that the smallness of the parts of a fraction has no effect at
all on its value, and that consequently it may remain the same
value, even when its parts attain the last degree of smallness, that
is, are transformed to zero.

“The fraction g which appears in equation (3) is a symbol which

has replaced the ratio of the increment of the function y to the
increment of the variable x; since no trace remains in this symbol

éz . N
= will remind

us that the function was ¥ and the variable x. But this dy and dx
will not cease to be zero, and we will have

Y =3, @

of the variéblc, we will represent it by %; then

2, or more precisely its value 3x2, is the differential coefficient

of the function y.
‘Let us note that since % is the sign representing the limit 3x?

(as equation (4) shows), dx must always be located beneath dy.
However, in order to facilitate algebraic operations it is permitted
to clear the denominator in equation (4), and we obtain dy =
3x2dx . This expression 3x2dx is called the differential of the func-
tion y.’ (pp.1-4)

In §§ 5-8 Boucharlat finds dy in the examples

— a3
X = (a7 2 (x7- .

y=a+ 32 y= ==
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3) From the fact that for & # 0
fat B =) - qee, b, @
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| In all these cases the expression for the increased value of y, that is (in
! Boucharlat’s notation) fory', is equal tof{x + k) —if y = f{x) —and
‘i is represented in the form of a polynomial, expanded in powers of 4
g (with coefficients in x), after which the ratio ¥ is casily represcn-
i ted as a polynomial of the same type. Setting & = 0 in this ratio gives

% » and multiplication by dx completes the search for the exp-

ression for the differential dy.

. §§ drawn the conclusion that for k = 0, that is, when fat k- fx) "z_ (x)
. joses all meaning, ('is transformed into g), equation (A ) retains sig-
j fdficance, that is, we should obtain

g = g(x,0) . B

{
|
{
Ll

‘9. The expression dx is itself the differental of x; let y = x,
m thern ¥ = x+ k, consequently ¥—y = h, and then

. i}_—y = 1. Since the quantity % does not even enter the second

Eln other words, it is considered @(x, k) should be defined (and
gontinuous) for A = 0 and rhat equation (B) follows logically from

jqunr.ion (A) — although the expression g is without meaning.

e e

i
il term of this equation, it is enough to change *=2 to :*: which

il will give % = 1; consequently, by our hypothesis, dy = dx.

4) The limit or differential equalling zero is rationalised as indi-
joating that ‘there is neither limit nor differential’ although at the same
) dy and dx are always zeroes (if @(x) #0, then the differential,
joqual to @(x) . 0, exists, if p(x) = 0, then it doesn’t). ,
It is not surprising that such a treatment of the fundamental con- .]
Loepts of the differential calculus did not satisfy Marx. And in fact the

m ‘10. We find in the same way that the differential of ax is adx;
I but if we had ¥ = ax + b we also would have obtained adx for the
a differential, whence it follows that the constant b, unaccompanied

by the variable x , provides no term at all upon differentiation or, in

other words, has no differential at all.
‘In addition one may note that if y = b, then in the case before
us, where ¢ is zerc in the equation y = gx+ b and where

therefore % = a is now reduced to :;:- = 1, there is necither
limit nor differential.’ {p.6)

We see from the above that according to Bouchariat:

_l) Tl3ere is neither a definition of limit, nor of derivative or
differential. All these concepts are explained only in examples, and
only such that the ratio f-("—t"—)kﬂ is represented as a polynomial

expanded in powers of &, with coefficients in x . The evaluation of the
limit of this ratio as #—0 is treated as the supposition that % = 0 in the
obtained polynomial. Here questions whether there exist other cases,
whether in such cases it is possible to ‘differentiate’, and if so, how, do
not even arise,

2) The passage from the derivative % = @(x) to the differential
dy = @(x)dx is regarded as an unlawful operation, carried out only in
order to “facilitate’ algebraic calculation.

t of his outlines of the opening paragraph of the course-book of
Boucharlat (see p.65 of the present edition) contains critical remarks
poncerning that author. But Marx was displeased in particular with
ihe fact that the fundamentat concept of differential calculus — the
goncept of the differential — appeared without foundation and its
stroduction justified only because it ‘facilitates algebraic operations’.
be the manuscript ‘On the Differential’, p.15).

i In 811 of Boucharlat’s book the remark is made, ‘sometimes the

acrément of the variable is negative; in that case we must put x— A

Jor x , and proceed as before’. In the example y = — ax? by this means
s obrained dy = — 3axZx, and the conclusion drawn: ‘We see that
this comes to the same thing as supposing dx negative in the diffe-
pential of v calculated on the hypothesis of a positive increment.” But
for Boucharlat dx is 0. The question of the meaning of ‘negative zero’
b never came into his head, however. (In the works of this period there
F was still no general concept of ‘absolute value’.)

}  Since the following three paragraphs,§§12-14, are particularly
' characteristic of Boucharlat’s course-book and since they are related
[ to & varicty of passages in the manuscripts of Marx, the text of these
¥ paragraphs is reproduced here in full.
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‘12. Before proceeding further, we must make one essential
remark; viz., thar in an equation, of which the second side is a
function of x, and which for that reason, we will represent gen-
erally by ¥ = f(x), if on changing x into x + k, and arranging the
terms according to the powers of kA, we find the following
development:

¥y =A+ Bh+ Ch?2+ DR+ etc. , )

we ought always to have y = A. .

‘For if we make h = 0, the second side is reduced to A . In regard
to the first side, since we have accented y only, to indicate that y
has undergone a certain change on x becoming x + k&, it follows
necessarily, that when & is 0, we must suppress the accent of ¥ and
the equation will be reduced then to

y=A.

*13. This will give us the means of generalising the process of
differentiation. For, if in the equation y= f(x) in which we are
supposed to know the expression represented by f(x) , we have put
x + k in place of x; and after having arranged the terms according
to the powers of %, are able to obtain the following development:

¥y =A+ Bh+ Ch2+ DR+ etc.
or rather, according to the preceding article,
¥y =y+ Bh+ Ch2+ etc. ,
we shall have
y—y=Bh+ Ch*+ ete.,

therefore

'y_Ty?B—i- Ch+ et

and taking the hmit, % = B; which shows us thar the differ-

ential coefficient is equal to the coefficient of the term which
contains the first power of k, in the development of f(x + A),
arranged according to ascending powers of k.

‘14, If instead of one function y, which changes its value in
consequence of the increment given to the variable x which it
contains, we have two functions, ¥ and 2, of that same variable x,

A
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snd we know how to find separately the differentials of each of
these functions, it will be easy, by the folowing demonstration, to
determine the differental of the product sv of these functions. For
if we substitute x + k in place of x, in the functions y and 2, we
shall ebtain two developments, which, being arranged according to
powers of &, may be represented thus,

y =y+Ah+ B+ etc., (5)
2 =z+Ah+ Bh+ e (6)
Pasting to the limit, we shall find
dy _ , . dz _ ...
D4, Z-x, ™

multiplying equations (5) and (6) the one by the other, we shall
obtain
2y =zy+ Azh+ Bzh®+ erc.+
+ Ayh+ AARE+ ete. +
+ Byh*+ etc.,
therefore

z’j;zy = Az+ Ay + (Bz+ AA+ By)h + etc;

: and taking the limit, and indicating, by a point placed before it, the
- expression to be differentiated, we shall get

4.2y

_dx_ =A3+A'y;

| and s’ﬁppressing the common factor dx,

d.zy = zdy + yd=.

‘Thus, to find the differential of the product of two variables, we
must multiply each by the differential of the other, and add the
products.’ (pp.6-8)

In §15 this is correctly used to determine the differential of the

;'_ product of three variables, in §16 to obtain the differential of the

fraction 2.
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In §17 the differential of the power function y = x™ for a positive m
is obtained from the formula

d.xyztuerc. dx dy dz  dr  du
m_?+_§+?+‘?+¥+ etc. &)

under the supposition that x,y,z,¢,u etc. are equal to x and are taken
m times.

§ 18 contains the formula for correctly differentiating a power func-
tion.

In §19 by the use of the formula for operation with the differential
symbols (having related the problem to previous cases) it is correctly
shown in the cases of fractional and negative exponents.

In§ 20 the differential of a power [function] is obtained immediately
by the expansion of (x + #)™ according to the binomial theorem of
Newton.

In the third edition of Boucharlat’s course-book, the English trans-
lation of which Marx used, there is a ‘Note Second’ in the appendices
with a title beginning, ‘Considerations which prove the solidity of
differentiation . . .’ Since this comment attracted Marx’s special
artention, its text is introduced here (in part):

“With the exception of the differentials of circular functions,
which, as we have already seen, are readily found by the formulae
of trigonometry, all the other monomial differentials, such, for
example, as those of x™, a*, log x, etc., have been deduced from
the binomial theorem alone. We have, it is true, had recourse to the
theorem of MacLaurin, in the determination of the constant A in
the exponential formulae, but we might have dispensed with it.’

Later, with the help of formal manipulations of infinite series which
are not at all well-founded from the modern point of view, it is shown
how this might be done, after which Boucharlat concludes:

‘It follows from this that the principles of differentiation rest al]
of them on the binomial theorem alone, and since that theorem has
been demonstrated, in the elements of algebra, with all the rigour
possible, we may conclude that our principles are founded on a
firm basis.” {p.362)

Thus it is clear that Boucharlar adhered to the viewpoeint of the
‘algebraic’ differental calculus of Lagrange, which he tried to
improve with the help of the concept of limit. His ‘improvement’,
however, reduced to the fact that whereas Iagrange wanted to avoid
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1 '. -the application of the then not yet well-based concept of limit and
@ smply defined the derivative of f(x)as the coefficient of the first
: ’ 'power of k in the expansion

¢ fx+ k) = fx)+ Ak + BR*+ CH + . . ., O

‘where A, B, C,. . . are functions of x, Boucharlat ‘uncovered’ the
¢ same derivative (“differential coefficient’) by means of the passage to
L the limit, which last, however, consisted simply of taking A = 0 in the
L gRpression

- fet B~ f(x) ”)h_ &) _ Ay Bh+ Ch+ ..., @

. which is derived purely formally from equation (1}. Bouchar]at gave
k o definition of the concept of ‘limit’ or any sort of commentary on it.
¥ He limited himself to hints to the effect that the limit is the last value
. of the unlimitedly close approach (that is not heving a last value) of a
 wariable quantity. No wonder that such a concept of limit could not
 powsibly satisfy Marx.

|
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APPENDIX VI

TAYLOR’S AND MACLAURIN’S THEOREMS AND
LAGRANGE’S THEORY QF ANALYTIC
FUNCTIONS IN THE SOURCE-BOOKS USED BY
MARX

1) These theorems, including Lagrange’s closely connected theory of
analytic functions, attracted Marx’s particular attention, and he spec-
ifically devoted a series of longer, more important manuscripts to
them (see mss 4000, 4001, 4300, 4301, 4302 [not translated] ). Inorder
to understand these manuscripts, particularly the critique to which
Marx subjected the proof of Taylor’s theorern which had been intro-
duced in the handbooks at Marx’s disposal, it is necessary to become
acquainted with these proofs and with the corresponding ideas of
Lagrange, Before we approach them, however, let us establish some-
thing of the history of Taylor’s and MacLaurin’s theorems.*
Taylor’s Thecrem is actually included as the 7th proposition of the
book Methodus incrementorum directa et inversa by the English
mathematician Brook Taylor (1685-1731), published in London in
1715. Taylor had already advised his teacher John Machin by letter of
this result in 1712. “Taylor’s Theorem’ was so called for the first time
in 1784 in the article ‘Approximations’ in the French Encyclopaedia
{Encyclopédie méthodigue) of Condorcet. In 1786 Simon Lhuilier also
used this title in the book Exposition élémentaire des calculs supérieure,
honoured by an award by the Berlin Academy of Sciences (the thesis
had been offexed in a competition of the Academy). Since that time

* As sources we have used: M. Cantor, Vorlesungen uber Geschichte der Mathematik , 2nd
ed, Vol.3, pp.378-382; D.D. Mordukhai-Boltovskoi, ‘Kommentarii k “Metodu raz-
nosteei” * (Cominentary on the ‘Method of Differences’) in the book Isaak Nyston,
Matematicheskio roboty, Moscow/Leningrad 1937, pp.394-396; M.V, Vygodskii, *Vst-
upitel'noe slovo k “Differentsial’'nomu ischisteniya”™ L. Eilera' (Introduction to L.
Euler’s 'Differential Calcndus’) in the book L. Euler, Differenssialnoe ischislenie,
Moscow/Leningrad, 1949, pp.10-12; G. Vileitner, Fstoriva matametibi o1 Dakaria do
serediny XIX stoletiva, Moscow 1960, pp.138-140; O. Becker & J.E. Hofmann, Ges-
chickte der Mathemasik , Bonn, 1951, pp.200-201, 219; G.G. Tseiten, Istoriva matematiki
v XVT i XVIT vekakh, Moscow/Leningrad, 1938, pp.412, 445; D.Ya. Stroik (Dirk
Struik), Kratkif ocherk istorii matematiki Moscow 1964, no. 153-154. For more complete
coverage see the book by M. Cantor, pp.378-382.
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theorem has entered all the handbooks of mathematical analysis
d 10 onc has called it anything else. We know nowadays, however,
t the Scottish mathematician James Gregory already possessed itin
e years 1671-72.
Both Gregory and Taylor approached “Taylor’s Theorem’ starting
m finite differences. At this point Taylor addressed himself
y to the problem of considering Newton’s deliberately utterly
'jague ecxplanation of his interpolation formulae. Newton had
f@btained his theorem by first allowing the independent variable to
liffer from zero by = (finite) increment and then — after a series of
Pansformations — returning it to zero ‘by dividing it into an infinitely
Yarge number of pieces’. If we replace Taylor's extremely cum-
ome notation by more modern notation, the proof appears as

: Let y = f(x), where x is a variable which is varied, as he says,
Baniformly’, that is, obtaining the successive values x, x+2Ax,
4 2Ax, .. ., x+ nAx = x+ k. Andlet the corresponding values
B £(x) be y (or ¥o), ¥1,¥2s - - - s ¥n. Let the successive differences
M¥erences of the first order) between y, jand y, (R =0, 1,.. .,
p=-1) be Ay, Ayy, . . . 5 Ayyy; the differences between these dif-
Jrences (differences of the second order) are A%y, Ay, ...,
%, ,; and so on. In order to visualise all this, let us write it in
ematic form:

x+ Hx x+ 24x x+3Ax ... x+ nix
¥ ¥z ¥ - ¥a
- by Ay, Ay, “e OByny
’ Ay Ay, .. Ay,
Ly . R AN T

It is then clear thar:
n=ytiy,
M=ynt+thy,, Ay, =ly+ily,
‘ BRL = ya+Ay,, Ay, = Ay, +AY, , Ay, = A+ Ay,

i
1
!
I
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Hence we further obtain:
fix+bx) =y, =y+hy,
flx+28x) =y, = +A0) + (Ay + AR) =y +20y +AY ,

fx+34x) = y; = (3 428y + %) + (Ay+A%) + (AZy +Ad)
= y+3Ay43A% + Aly,

Having observed the general regularity, Taylor concludes from this
that:

fx+ nfx) = y+ nAy+ %A‘w n(u—l-lz)-(;— 2 ns
+...+ AY, '¢))

which is Newton’s interpolation formula (for interpolation across
equal intervals). Its similarity to Newton’s binomial theorem is strik-
ing — particularly the fact that the coefficients in the expansion into
Ay, Aly, ... A" are exactly the same.

Setting nAx = k (Taylor used v instead of k), we will have:

- C h—Ax h—24x
n= Ay n_l——_Ax s B— 2= Ar

o= (=1 =___"‘(’:3; Dax

Substituting these values for #, (n— 1), (n— 2), . . . into for-
mula (1), Tayter obtained (in our notation):

_ hh— Ax) Ay
S+ b = yH’Ax 1.2 Ax?
4 b= Ax) (= 265) AY |
1.2.3 AT @

although he didn’t even write out the last term ,

hh— Ox) (h— 280x) .. . (h— (n— 1}Ax) A%
1.2...n Ax"®
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. Henow assumed & to be fixed, n to be actually infinitely large, and
b- A% io be actually infinitely smail (‘zero”), inferring that this

Ilnlformed —3 into the first fluxion ¥ ( according to Lelbmtz]
a into the second fluxion ¥ (?3 according to Leibnitz), and so
i on. This transforms formula (2) into:

Y .
f(Jt:+;‘z)—y+_vh+yl2+ylz3 s

 thet is, into Taylor’s series.
. _'Thus, even beginning with finite differences and only then “remov-
L iag’ them, Taylor still operated strictly in the style of Newton and
: Lefbnitz, with actually infinitely large and actually infinitely small
‘hlntlues and with the symbolic formulae of the calculus of fluxions,
ot wondering whether they had any ‘real equivalent’ and not bother-
Mg to consider, of course, the convergence of the obtained series (even
p the value of f(x + k)). One must note here that, although Taylor
an ardent adherent of Newton’s in the quarrel with Leibnitz and
srefore never used the latter’s notation nor ever cited him, it is
heless no accident that Euler presented the proof* in the lan-
of Leibnitz. As D.D. Mordukai-Boltovskoi notes, in essence
Taylor addressed the Newtonian fluzions from the Leibnitzian, not
bt Newtonian, standpoint, namely from that of finite differences (see
p Kommentarii cited in Yanovskaya, 1968, p.396).
y Al for the history of MacLaurin’s Theorem, it must be noted first of
 that it was already present in Taylor in the form of a special case of
theorem at x = 0. Itis true that, unlike MacLaurin, Taylor never
gaed the ‘MacLaurin series’ for the expansions already known at this
tdme, for &%, sin f, cos % which are more easily obtained using this
Furthermore, with respect to the manuscripts of Marx, who spec-
Fifically mentioned that he borrowed the ‘algebraic expansion’ directly
from MacLaurin, it must be noted that the proofs of MacLaurin’s
t Theorem (by the method of indeterminate coefficients) which were
presented in Boucharlat’s and Hind’s textbooks actually belonged 1o
. MacLaurin himself. Such direct borrowing from the author whose

- & 8all, Euler proved Taylor’s theorem following Taylor. See L. Euler, Differential
1 Calexdus, chapter 3, ‘On the Approximation of Finite Differences’, §§44-48,

C e mm =
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name the theorem bears may also have taken place, of course, with
reference to Taylor’s Theorem. The bibliographic list which Marx
compiled while preparing the historical sketch is apparent evidence
that he had decided to become acquainted with Taylor’s work in the
original, although he did not succeed in carrying out this intention.

2) We find the same order in which Marx criticised the proof of
Taylor’s Theorem in manuscript 4302, in Boucharlat’s textbook as
well (J.-L. Boucharlat, Elémens de calcul differérentiel, Sth ed., Paris,
1838; Marx apparently had an English translation done from a dif-
ferent edition).’

Having stated the problem of successive differentation in § 30
{pp.19-20) -— where, by the way, after having obtained 64 as the third
derivative of ax® he remarks (p.20), ‘here it is no longer pessible to
differentiate since 6¢ is a constant” — Boucharlat passes to Mac-
Laurin’s Theorem (§31, pp.20-21), proving it by assuming the proof
of Taylor’s Theorem (later proved in §§355-57, pp.34-37).

As was already mentioned, Boucharlat proves MacLaurin’s
Theorem by following MacLaurin himself. He apparently did not
read the latter’s work, however. [n fact, with respect to the title
‘MacLaurin’s Theorem’, Boucharlar writes, ‘this theorem, as
G.Pescock has noted, was discovered by G. Stirling in 1717, con-
sequently earlier than MacLaurin used it,’ although, 2s we have
already mentioned, MacLaurin fully acknowledged that Taylor
already had the theorem.

Boucharlat’s proof — which raises not a single question about the
correctness of the assumptions made, not to mention the convergence
of the series under consideration — we present below in almost literal
wanslation,

‘Let y be a function of x; let us expand it in terms of x and
assume;

y=A+Bx+ Cx%+ Dx®+ Ex*+ etc.; (16)
we obtain, differentiating and dividing by dx:
% =R+ 20x+ 3Dx%+ 4Ex*+ etc. ,
d>y 2
o 20+ 2.3Dx + 3. 4Ex?+ e1c.,
Ly

I = 2.3D+ 2.3.4Ex + etc.,

o 3
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| Let us denote by (v) that into which y is transformed when x = 0,
% by (%)that into whjch:"—x is transformed when x = 0,

by (%J thar into which %J?; is transformed when x =0,

#

the preceeding equations give us

b 0)=a, ()5, (=20, (1) = 20,

i whence we extract

d _1,dy 1y,
A=, B=(g) €= 3(gab P =33(a);

- substituting these values into (16), we will have

y =)+ (:’%')x"' %[gg}x2+ 2%,.(%'3]::3+ ... (A7

-and this is MacLaurin’s formula.’

.. In the following §§ 32-34 (pp.21-22) expansions are found by means
'MacLaurin’s formula for

a+ x

By this means the binomial theorem is derived from MacLaurin’s
jeorem in the third example. In the first appendix to our Sth edition
Boucharlat’s texbook entitled “Proof of Newton’s formulae by
poans of differential calculus’, a direct derivation {by the same
pthod of indeterminate coefficients) is given of Newton’s binomial
prem (for positive integer powers) by means of successive dif-
entiation. It appears as follows.
" Boucharlat begins with an expansion of {1+ 2™, from which the
Jequired expansion for (a+ x)™ is obtained by the substitution

- .:L, Assume, he says,

oy =T br, y=(atx)".

Yy =

(1+ 2)" =A+ Bz+ Cz2+ D2+ Ez*+ ... )
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Setting 2 = 0 he obtains A = 1 and consequently
(14 ) =1+ Bz+ Cz*+ Dz*+ Ez*+ ... .

Differentiating both sides of this equation with respect to z, he next
finds

m(l+ )" =R+ 2Cz+ 3D22 + 4Ez23+ etc.

Referring to the fact that this equation is valid for any z , Boucharlat
sets 2 = 0 and obtains by this means m = B. Differentiating once
more and again setting 2 = 0, he obrains

mim— 1) = 2C,
whence he finds

m(m— 1
¢-mm_1)
after which he concludes: ‘In the same manner all remaining coef-
ficients are determined, and upon substituting their values into equ-
ation (1) this equation is transformed to

m(m— l)zz_'_ mim— 1) (m-_—_i)z”_ et

(1+2)" =1+ mz+ 13 53

(pp.491-492).

3) Boucharlat also demonstrates Taylor’s Theorem by the method
of indeterminate coefficients. In this case he not only assumes that an
arbitrary function of many variables may be expanded into a series of
powers of any of the variables, but he also considers this expansion
unique; that is, that the coefficients of any two such expansions (in
powers of one and the same variable) must be equal. This makes it
possible to apply the method of indeterminate coefficients.

In order to arrive at this possibility, that is, of comparing the
coefficients of two expansions of one and the same function, Bouchar-
lat begins with a lemma which asserts that the derivatives of f{x + k)
with respect to x and to 4 are equal. Since Marx expresses dis-
satisfaction in manuscript 4302 (see Yanovskaya, 1968, p.540 [not
translated]) with the demonstration of this lemma in Boucharlat’s
course-book, while it is itnpossible even to understand pp.41-42 (see
Note 117 Yanovskaya, 1968 [not translated]) of manuscript 3888
without being acquainted with this proof, we present it here in full.
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. Devoted to this is §55 (pp.34-35), in which we read:

‘If in some function y of x the variable x changesto x + &, we
then obtain one and the same differential coeffictent both when x is
the variable while 4 is constant, and when k is the variable while x
Is constant.

If in order to show this we substitute x + & = x,*in place of x in
the equation y = f(x), we then have y, = f(x); the differential of

Flx ) will then be equal to some other function of x4, represented

by @(x,), multiplied by dx; consequently, dy, = ¢(x 1)dx, orif
. we replace x; by its value x + &,

dy, = e{x+ h)yd{x+ h) .

But the only change which the hypothesis that x is variable while 4
is constant introduces into this differential refers solely to the
factor d(x + k), which reduces to dx when x is variable while k is
constant; consequently, in this case we have

dy, = @lx+ h)dx ,

 whence we obtain

‘fx—“ —p(x+ k) . (35)

 “If on the other hand we make x constant while % is variable, the
-'g factor d(x + k) then reduces to dk and we will have

. dy, = @(x+ h)dk ,
: that is,

dy, - . 36)
ah plx+ )3 (
comparing these two values for @(x + &), we obtain
dys - dl 1
dx  dh

In the following § 56 Boucharlat extends this lemma to derivatives
of higher order and in §57 uses it to prove Taylor’s Theorem. He

% * Although Bouchariat does employ Lagrange’s notation for derived function, he

-dasignates the increased x and y (i.e. (x+ &) and fx+ k) das x" and y¥. We have

[ meplaced this designation with x,, ¥,.
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begins this ‘proof” with the folowing words on what he considers —
and as Marx calls it — his ‘starting equarion’ (37), applicable to any
function: ‘Let y, be a function of x + %; let us assume that when we
develop this function into powers of & we obtain

¥, =y+ Ah+ Bh2+ CE*+ etc., €£7))

whereA,B,C, . . . are unknown functions of x which are yet 1o be
determined.’

Differentiating equation (37) with respect to k and with respect to
x, and having obtained by this means '

% = A+ 2Bh+ 3CH*+ etc.
dy, _dy dA, 4B,
Te _dx+dxh+dxh etc., ,

Boucharlat then sets the coefficients of corresponding powers of % in
the two equations equal to each other, referring to the lemma, and by
this means obtains the expressions he needs for the coefficients 4 , B,
C, ... of y and its successive derivatives. Marx gives an account of
this proof on one occasion in manuscript 3888 (sheets 54-55; pp. 50-51
in Marx’s enumeration), where he compares it to the proof of Mac-
Laurin’s Theorem presented above, He criticises this proof in man-
uscript 4302, primarily for a lack of foundation for its initial
hypothesis.

The following §§58-61 in Boucharlat’s book contain examples of
expansions of f(x + &) by Taylor's formula in the case of f(x) equals
Jx, sinx, cos x, log x . Questions about the convergence of the series
obtained are not even mentioned. Cases of inapplicability of the
Taylor series are only considered in the very last paragraphs of the
first part of the book (devoted to differential calculus) which are
printed in small type.

The concluding §62 of the section on Taylor’s Theorem and its
applications is devoted to a proof of MacLaurin’s Theorem from
Taylor's Theorem. Marx reproduces this proof in full in manuscript
3888 (see sheets 55-56; pp.51-52 in Marx’s enumeration}.

Notes

|




NOTES

. { The following is a compiete, unabridged translation of notes to the
k 1968 Russian edition (referred to as Yanovskava, 1968), covering
! pages 1-139 in this edition. Commentary by the transtators is indi-
g cated by square brackets — Ed. |

f ' The manuscript was written in 1881 for Engels. This is the first
y work in a series of manuscripts conceived by Marx and devoted to a
I gystematic exposition of his ideas on the nature and history of dif-
¢ ferential calculus. In this work he introduces his concepts of algebraic
b differentiation and the corresponding algorithm for finding the
pfexivative for certain classes of functions. On the envelope enclosing
E4he manuscript there is the notation in Marx’s handwriting: ‘For the
MGeneral’. This was Engels’s nickname in Marx’s family because of his
Earticles on military questions. Having acquainted himself with the
fwanuscript, Engels answered Marx in a letter on 18 August 1881 (see
bh.axvii). The published German text of the manuscript repro-
ces exhaustively Marx’s text. Some of the preparatory material
f{drafts and supplements) is published on page 473 of Yanovskaya,
1968, Variant readings from the unpublished drafts are provided in
ffootnotes. The manuscript was published for the first time (not in full)
An 1933 in Russian translation in the collection Marxism and Science
¥ (Marksizm i estesrvoznanie), Moscow, Partizdat, 1933, pp.5-11; and in
| the journal Under the Banner of Marxism (Pod znamenem marksizma))
; No.1, 1933, p.15ff. This is the first time it has been published in
 German.

¥ 3 In order to avoid confusion with the designarion of derivarives,
| Marx’s notation x', ¥ , . . . for the new values of the variable has been
b replaced here and in all similar cases by x4, y4, . . .

i In the sources which Marx used there was as yet no concept of
l absolute value. Therefore Marx frequently (apparently in order to be
© positive) regards only the growth in the value of the variable, but
. sometimes (see p.109 of this volume and p.514 Yanovskaya, 1968) he
k. speaks also of the ‘increase of x” in a positive or negative increment A’.
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* In keeping with the accepted terminology of the source-books
which Marx consulted, a finite difference is here understood always to
be a non-zero difference.

4 Marx distinguishes in each equation two sides (where now we speak
of two parts), the left hand and the right hand which do not always
play symmetric roles. On the lefi-hand side of the equation he fre-
quently places two different, equivalent expressions joined by the
conjunction ‘or’.

¥ In the mathematical literature which was at Marx’s command the
term ‘limit’ (of a function) had no well-defined meaning and was
understood most often as the value the function actually reached at the
end of an infinite process in which the argument approached its
limiting value (see Appendix I, pp.144-145). Marx devoted an entire
rough draft to the criticism of these shortcomings in the manuscript,
‘On the Ambiguity of the Terms “Limit” and “Limit Value” ’
{pp.123-126). In the manuscript before us Marx employs the term
‘limit’ in a special sense: the expression, given by predefinition, for
those values of the independent variable at which it becomes unde-

fined. For Marx, the ratios ﬁi (at Ax = 0 this is transformed to %J

and ¥ 7 interpreted as the symbolic expression of the ratio ‘of
annulled or vanished differences’, that is, of %, are such expres-

sions. With respect to the rauo , Marx (influenced to a certain

degree by the definitions of this concept in Hind and Lacroix; see
Appendix 1, p.143) took this 10 be an expression which is identically
equal to this ratio when Ax # 0, but which has been predefined

by continuity when the ratio is transformed to g. The

‘limit’, at that point, consequently, must be the ‘preliminary deriva-
tive’ (concerning which see p.6 and note 7). Exemplifying

this, Marx writes {on p.6), with respect to the ratio 2 ZE where

¥y = ax*+ bx?+ cx+d: ‘The ““preliminary derivative”’
alx3+ xx+ x2) + b(x,+ x) + ¢ appears here as the limit of a ratio
of finite differences; that is, no matter how small we allow the dif-

ferences 1o become, the value of % will always be given by this
“derivative”.’ Later (on p.7), Marx mentions that setting x, equal to
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W %, that is, setting Ax = 0, ‘reduces this limit value to its absolute
i minimum quantity ,’ giving its ‘final derivative’.

Analogously, by ‘the limit of the ratio of differentials’ Marx in this

manuscript means the ‘real’ (‘algebraic® — see note 6) expression
,"which provides the value for this ratio; in other words, the derived

.:: function. Marx writes, however, that in the equation g—i’ = f(x),

' *neither of the two sides is the limiting value of the other. They
" approach one another, not in a limit relationship, but rather in a

“pelationship of equivalence,” (see p.126). But here, the concept of

E “mit’ (and of ‘limit value’) is used in another sense, close to the one
) accepted today. Marx uses the term ‘absolute minimal expression’
L {aee, for example, p.125) in a sense even closer to the contemporary
 goncept of limit, when he writes in another passage (see p.68) that it is
L fnterchangeable with the category of limit, in the sense given it by
| Lacroix and in which it has had great significance for mathematical

jflhllysis (for Lacroix’s definition, see Appendix T pp.151-153).

'$ By ‘algebraic’ Marx understands any expression which contains
: symbols neither of the derivative nor of differentials. Sucha use of the
storm ‘algebraic expression’ was characteristic of mathematical lit-
Lerature at the beginning of the 19th century.
[ Marx frequently distinguishes between the concepts ‘function of
'foon) x° and ‘function in {(jn) x’, that is, the function as a cor-
| respondence and the function as an analytical expression (see p.506
Yanovskaya, 1968). In the manuscript before us he does not adhere to
| this distinction strictly, speaking most of the time of simply ‘the
p fanction x (die Funktion x [rendered ‘the function of x” in English] Y,
.perhaps because he always has in mind only functions given by a
 certaih “algebraic expression’. He provides a correspondence relating
, the value of the dependent variable y to the value of the independent
variable x by means of the equation ¥ = f{x), where y is the

- dependent variable and f(x) is an analytic expression with respect to
: the appearance of the variable x in it.

_' 7 The essence of Marx’s method of algebraic differentiation consists
: of his predefinition (for x; = x) of the ratio of finite differences
i (having meaning only when x, = x),

Hxy) = 0

Xy — X

(H
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by means of continuity. With this goal in mind he writes down the
function p(x, ,x) , which coincides with (1) for all x; = x and which is
continuous as x, — x. Marx calls such a function @(x;, x) the
prelininary derived function of the function f{x), while the function
@(x,x), which is obtained from g(x, ,x} under the assumption that
x, = x, he calls the derivative of the function f(x). If this function
exists (which is a relevant question for the classes of function under
consideration), then it coincides with the present-day concept of the
derivative, namely:

lim fx) — fx) = f(x) .

Xy—>X X1— X

Already in Marx’s time well-known functions existed for which the
operation of differentiation was undefined (see p.117 of the present
edition [and note 85, p211]).

8 Marzx reproduces here the formal expansion of the function into a
series which is rypical of the mathematics books at his command,
having left to one side the questions of the series so obtained and the
agreement of the value of the function with the limits of the partial
sums.

9 .". : a symbol employed in the manuscrij:ts to srand for the word
‘consequently’.

19 The text entitled ‘Supplementary’ comprises the contents of a
separate sheet, appended to the manuscript, of independently num-
bered pages 1 and (on reverse) 2.

11 By equation of finite differences Marx clearly intends an expre-
ssion of the form

flx ) — flx) = (x,— x)p(x,, x) . See note 7

12 At this point $[amuel] Moore wrote in pencil ‘Nickt der Fall, diese
Factorensindx, — x— 1,x,~ x~ Zete.”(*Not the case. These factors
arex,— x— 1,x; — x— 2, etc.’.) Obviously Marx intends here not
the factors (xy — x)but rather the expression x, — x, and meant to say
that the transitdon to zero of the difference x, — x, having been
preserved in the expression for the preliminary derivative, does not
deprive the latter of meaning.

13 The manuscript dates from 1881. On the envelope attached to the
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! manuscript is written ‘II For Fred’ (I1 Fur Fred). Marx calls this
,' manuscript the ‘second instalment’ (see p.33), since, in it he continues
5 to set forth the views at which he arrived in the process of studying
E - mathematics. Engels showed the manuscript to Sf{amuel] Moore and
. conveyed the latter’s comments to Marx in his letter of November 21,

1882 (see p.xxix). The manuscript ‘On the Differential’ was first
published (not in full) in Russian translation in the 1933 collection

" Marxism and Science (Marksizm { estestvoznanie), pp.16-25; and in the
;. journal Under the Banner of Marxism (Pod znamenem marksizma),

1933, No.1.

¥ Marx thus assumes here that the functions # and z, which, as
subsequently becomes clear, are defined by means of the equations

E ¥ = f(x), 2 = @(x) (where f{x) and @{x) are expressions ‘in the

variable x*), are differentiable functions of x . The fact that no further
information on the functions f(x) and @(x) is required to prove the
theorem on the differential of the product of two functions, is

reflected in Marx’s graphic comments regarding g—:, g: ‘shadow

| figures lacking the body which cast them, symbolic differential coef-
"~ ficients without the real differential coefficients, that is without the
~ corresponding equivalent “‘derivative” (see p.20). Marx also dis-

cusses this specifically in his rough draft essays on the differential.

- Here and hereafter we shall write d{uz) instead of the contraction duz

which Marx used in his manuscripts.

F 15 The symbols for derivative and differential which are specific to
- differential calculus are intended here.

. 18 In the literature of the 18th-19th centuries the derivative was often
- called the ‘differential coefficient’, which is obviously related to the
- definition of the derivative as the coefficient of the first power of the

increment k of the independent variable x in the expansion of the
expression f(x + k) into a series of powers of k. The adjective ‘real’

: - refers to the fact that the expression for f(x) contains no symbols
4 which are restricted to differential calculus.

17 This way of speaking, in which as a result of multiplication by zero
‘the variables # and z themselves become equal to zero,” is explained
by the fact that in Marx’s time there still existed widespread con-
ceptions of mathematical operations on numbers as changing the
numbers themselves: the addition of the positive number & to a
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‘increases the number 4’, the multiplication of ¢ by 0 ‘changes the
number ¢ to zero’, and so on. These conceptions were put on a

" scientific basis only in the 20th century.

® The words ‘since we can begin the nullification arbitrarily with
numerator or denominator’ obviously mean that the predefinition

of an expression of the form %, which at x = g becomes %and

therefore loses any meaning, may be established for x = a ina number
of different ways. If we wish to preserve in the predefinition that
property of the ordinary fracton which makes it equal to zero

when the numerator is equal to zero, then the value of ﬁ—:% must be

zero. “T'o begin the nullification with the numerator’ in this case

simply means to set ﬁ“) equal to zero. Since, however, a fraction with

a denominator of 0 does not exist, ‘to begin the nullification with the
denoruinator’ makes it impossible to retain in the predefinition any-
thing of the properties of an ordinary fraction with a zero denom-

inator. Butif forall x # a % = p(x), and @(x) is continnous at the

point a(that is, lim ¢(x) = @(a)), then it is natural to set @

equal to @(a), retaining in this manner the equauon tp( )

even for x = a. If the numerator is also transformed to zero because
the denominator is set at zero, then the words ‘begin the nullification
with the denominator’ may be explained naturally as denoting: pre-
define in the above-mentioned manner, that is, ‘using continuity’. In
the books which Marx used, even including the large Traité of Lac-

roix, the preservation of the equation é_t(fa_; = @(a) in the case of

fla) = gla) = 0 was considered independent, in general, of whatever
may have been ‘derived’; it was a necessary consequence of the
metaphysical law of the continuity of ‘all real numbers’.

® There is a slip of the pen here in the text: instead of x = a there
appears x> = g2, Instead of correcting it, someone, apparently
Mocre, made insertion marks in the text in pencil, after which he
observed, ‘und da x> =g? .". x = + @ = = 2Pa oder 0," that is ‘and
since x* = g?, thenx = + a, [whence P(x + a)] = 2Pa or {=
Such an interpretation, however, clearly does not agree with the
overall context.
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Marx here calls the expression %, which was obtained by the
psition from a rario of finite differences to the derivative, the sym-
differential expression for i L y , corresponding to fx) = ) (x‘) ﬂx)

° 17

k91 Apparently this concerns the case where the choice of independent
[ varigble is not necessarily fixed, where either # or =z may be used as
; ¢ independent variable. In general, if # and z may be considered to
)  interchangeable functions of one and the same independent var-

bable, then assigning a value to either one of # and # determines the
;.f ilue of the independent variable and, of course, the value of the other
ffanction as well. In other words, what is intended here is the
imvarjance of the symbolic operational equation with respect to the
jehoice of independent variable.

;8 Apparently the word ‘dir’ (to you) in the phrase ‘der dir bekannte’
{which is known to you) was omitted during recopying, although it is
kpreserved in the notebooks. It is to be understood that this concerns
French mathematician 1..B. Franceceur, about whom Engels
ote to Marx in the letter of May 30, 1864. The word in quotation
atks, ‘elegant’, refers to Engels’s comment, ‘Einzelnes ist sehr eleg-
* {*Someone is very elegant’), and contains, obviously, a hint of an
ironic relationship of Engels to the author under discussion. Fran-
, like Boucharlat and some others, tried to combine the ‘algeb-
ic’ method of Lagrange (see pp.24) with the differential calculus of
M.ethnitz, all the while operating with the symbols of differentials.
_- larx’s note of irony about the ‘clarity’ with which this was done,
jsoncerns both Boucharlar and Francoeur. The first, in order to “facili-
' te algebraic operation’, introduced an absurd formula; the second,
'suggested that the differential ‘appears synonymous to the derivative
and differs from it only ambiguously’, consequently, he also wrote,
 'the derivative of x is ' = lordx = 1’

'-'

L% Theextractin quotation marks is a text translated from the French
f-of the books of J.-L. Boucharlat. See, for example Elémens de calcul
: differential et de calcul intégral fifth edition, 1838, p 4.

f:# The reduction to its ‘absolute minimum’ here obviously implies
B the stated predefinition of the ratio by continuity at x, = x; that s, in
. eisence, the transition to the limit where x, — x.
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25 See Appendix ITI, ‘On the Calculus of Zeroes of Leonhard Euler’,
p.16(

26 Marx here makes a distinction between the differential particles
(die Differenticllen) dx and dy, which represent the ‘removed’ dif-
ferences Ax and Ay, and the differential (das Differential) dv, which
is defined by the equation

dy = f(x)dx . (D

This last equation can be treated as an operational formula which
makes it possible to find the derivative f{x) by means of the already
determined differentials dy and dx, transforming equation (1) to its
equivalent (see note [24))

D~ . @

27 Marx’s argument against applying the method of treatment which
already took place in the ‘algebraic’ differentiation of the simplest
functions of first order consists of the following: 1) the step which
consists of assuming x, = x is superfluous, since the preliminary
derivative here already agrees with the final one; that is, that which is
specific to the ‘algebraic’ method of differentiation does not come to
light; 2) the extension to the general case of attributes of differential
functions of the first order may lead to the completely erroneous
conclusion that all derivatives of higher order, beginning with the
second, must be equal to zero.

28 That is, consider j—i a ratio of infinitely small quantities, as Leib-
nitz and Newton had done already.

29 That is, to find the derivative of ¥ with respect to x, considering y
as a function of x, given by the two equations:

1) y = 3u2, Du=x3+ax?. ,

30 Marx assumes here thar it has already been established that it is
correct to operate with differentials as if they were ordipary fractions
(see p-24 and Appendix V, p.173).

31 At this point in the manuscript Moore made the following note in
pencil: ‘On p.12(5) this is proved for the concrete case there inves-
tigated. Should it not be proved instead of assumed for the general
case also?’ [English is garbled in text; recovered from Russian trans-
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lation — Trans. | This note, however, is based on a misunderstanding.
The ‘development demonstrated from given functions’ consisted of

the symbolic expressions % and ‘511 which had been obtained as a

tesult of differentiation. Since, as Marx has already assumed, it is
correct to operate with such expressions as if they were conventional
fractions, the conclusion was natural that

dy du _dy

dudx dx’
32 Marx did pot write section III apparenily because he did not

succeed in carrying out his intention of studying John Landen’s book
in the British Museun (see Appendix IV).

9 Under this heading are combined three drafts of various sections of
the work, ‘On the Differential’, and several drafts supplementary to
it. For more details see pp. 459, 464, 477, 479 of Yanovskaya, 1968.

34 This excerpt is taken from notebooks which Marx entided ‘A. I'.

and “B (continuation of A). IT’ (sce pp.459, 464 of Yanovskaya 1968).
It begins on the last (unnumbered by Marx) page of the notebook “A.Y
and ‘B (continuation of A}. IT’ (see pp.459, 464 of Yanovskaya, 1968).
It begins on the last (annumbered by Marx) page of the notebook ‘A.T’

" gnd is inserted at various places in the notebook ‘B’ {Marx dis-

tinguished it with special markings). Part of the indicated draft was
first published in Russian in 1933 (see Under the Banner of Marxism
[Pod znamenem marksizma) No.l as well as Marxism and Science
[Marksizm i estestvoznanie|, pp.34-43).

¥ Marx everyhere calls ‘symbolic’ (as distinct from ‘algebraic’; see
note 6) those expressions which contain the symbols specific to dif-
ferential calculus, dx, dy etc. He calls ‘real’ those expressions of

~ functions which do not contain such symbols.

35 The ‘operational formulae of differential calculus’ here means
those symbolic expressions which indicate (see the text below) which
operations must be performed on a defined function to obtain the real
value of one or another derivative.

37 The notebook ‘A.I' ends at this point. At the end of the page is
written in Marx's hand, ‘Sieh weiter Heft II, p.9” (‘See further
notebook II, p.9’}. This indicates the notebook ‘B {continuation of

~A).
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38 Concerning the characteristics of this type of predefinition by
continuity and the possibilities of other predefinitions satisfving these
or other conditions, see note 18 and Appendix I, p.146.

3 That is, when we make the transition from the region of the usual
algebra to a function (the dependent variable) for which it is necessary
to predefine the ratio

flxa) = fx)

t,— %

which transforms to g atx, = x.

4 Marx usually calls expressions not contzining symbols specific to
differential calculus *algebraic’ (see note 6) or ‘real’ (see note 2). Here
and in several other passages he calls them ‘actual’ (zvirklicke). Since in
Russian mathematical literature the term ‘actual’ (number) carries
another meaning [namely ‘real number’ — Trans], the word “actual’
{expression) is translated as its synonym ‘real’ [that is in Russian
translation; in English ‘actual’ is not confusing — Trans|.

1 The manuscripts of the second and third drafts are in very rough
form: they contain many deletions and insertions. The first four pages
of the second draft are not preserved, so we begin with the first
complete paragraph. These two drafts, less some abridgements, were
first published in Russian in 1933 (Under the Banner of Marxism [Pod
snamenem marksizmal, No.l, and Marxism gnd Science [Marksizm i
estestvoznanie |, pp.26-34). See ‘Preliminary Dirafts and Variants of the
Manuscript, “On the Differential”’,” point a, p.477 | Yanovskaya,
1968].

#2 This entire paragraph (beginning with the words ‘when the var-
iable quantities increase . . . ") is Marx’s German translation of a
passage in Hind’s book (see T. Hind, 2nd edition, Cambridge, 1831,
p.108). The second draft breaks off at this point. The vacant space
(more than half a page) which Marx left after this paragraph is
apparent evidence that, not finding the desired quotation in Hind,
Marx put aside the contemplated research, obviously intending to
return to it later. '

Material on the differential of a product cbtained by the methods of
Leibnitz and Lagrange is contained in the text books of Hind and
Boucharlat (see Appendix V pp.173) As for Newton’s method, the
books mentioned do oot illustrate it.
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. b o The citation is from the book of Boucharlat (see, for example, J.-L.
i Boucharlat, 7th edition, Paris, 1858, pp.3-4).

i’ “ Here Marx projects a somewhat different enumeration of the
P sections of his work from that which he had followed earlier. In

~ Section II1 he plans to locate materials which in the second draft were

located in Section II; in Section IV, to comment on the historical
development of differential calcnlus by means of the example of the
history of the theorem on the differential of a product.

48 In connection with this paragraph see note 5 as well as Appendix I,

g ‘On the Concept of “Limit” in the Sources Cited by Marx’, p.151
i (where there is a discussion of how in Boucharlat’s textbook both
k- sides of the equation % = f{x) are treated as limits) and
pp.152-153 (where the discussion is about the concept of limit in
E Lacroix’s long Traité and Marx’s related concept of the word in this
| paragraph). Exactly what Marx had in mind in his treatment of the

symbolic expression as the limit of f{x} remains unclear. (Perhaps he

5:- simply had in mind the fact that the derivative was obtained as a result
. of the supposition that x; = x, that is, when the numerator

and denominator of the ratio g‘—i both have attained their limit value of

. zero, so that the expression f(x) must correspond not to i—i but

| to %.) Regarding Marx’s comment on Lagrange’s opinion of the

" ¢oncept of limit as understood by Newton, see p.154 as well.

' 4 Marx intended to write several supplements to ‘On the Dif-
_ ferential’, four sketches of which survive (for more detsils see

k' pp.479-490 [Yanovskaya, 1968), which presents a series of extracts

" from these sketches). Since the drafts are not finished, only two more

complete (and understandable) extracts from them are reproduced

b here. They are adapted from supplements to the second and third
i drafts.
b 47 This is Marx’s heading to section A) of the second draft of the

¢ supplement to the manuscript ‘On the Differential’. Only point 1),
} containing & short résumé€ of the basic work on the differential, is

. published here. The important supplementary material to the latter

work here is the direct indication of the geometric applicabiliy of
operational formulae. For more detail see p.479 [Yanovskaya, 1968].
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48 This is paragraph A) of the third draft of the supplement. The
heading is due 1o Marx. Published here is only point 3), in which
Marx (in his characteristically literary style) introduces the appli-
cation of the theorem of the differential of a product as an operational
formula for finding the derivative of a fraction.

4% With his manuscript ‘On the Differential’, Marx fulfilled 2 prom-
ise to write a specialised piece shedding light on the historical path of
the development of differential calculus. In sketches preceding this
letter [‘On the Differential’ was a letter to Engels — Trans|, he
expressed an intention to illustrate the history of differential calculus
by means of the history of the theorem on the differential of a product.
Obviously Marx succeeded in carrying out neither of these intentions
completely. Only the tentative drafts contained in the notebook ‘B
{continuation of A)', where they alternate with Marx’s computations
for his work on the differentizl, have survived. These drafts begin,
appropriatety for Marx's primary purpose, with an explanation of the
methods of Newton and Leibnirtz in the example of the theorem on the
differential of a product. For the same reason, only the beginning goes
like this and not the concluding section explicating the method of

d’Alembert. Later Marx passes to a more detailed discussion and

critique of the methods of Newton and Leibnitz in general. This
brings him to the general periodisation of the history of differential
calculus, in which three periods are distinguished: 1) the mystical
differential calculus of Newton and Leibnitz, 2) the rational dif-
ferential calculus of d’Alembert, and 3) the purely algebraic dif-
ferential calculus of Lagrange, the characterisation of which com-
prises the second part of the extant drafts of the history of differential
calculus. It was this part which Marx apparently decided to develop
into a third letter to Engels. The concluding part of the historical
drafts presents a more detailed exposition of the general ideas con-
tained in the first part, The drafts are published in full with the
exception of notes whose content refers to the work “On the Dif-
ferential’, which are omitted.

50 The bibliography which Marx presents in this list is accompanied
in many cases by indicatiens of the exact passages in the sources cited
where the fundamental concepts and methods of differential calculus
are discussed. These were not indicated in the textbooks at Marx’s
disposal. There is therefore every reason to suppose that Marx chose
these passages by consulting the corresponding works (in the library
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of the British Museum, apparently). The fact that Marx especially
distinguished (placed in a panel) the name John Landen is obviously
related to the fact that he had decided to acquaint himself particularly
well with J.Landen’s Residual Analysis, For more details on this see
Appendix IV. The sources for Marx's notation of the dates of birth
and death on the list are unknown. It is only clear that the sources did
not have the date of death of Lagrange.

51 Tn the scholium (lesson) to Lemma XI of the first book of Principia
Mathematica and in Lemma II of the second book, Newton explains
the fundamental conceprs of differential calculus which correspond to
our concepts ‘derivative’ and “differential’. For more details on these
lemmas of Newton see Appendix II, pp.156-159.

52 See Marx's outlines of these works (with his critical commentaries)
on pp.272-280 [Yanovskaya, 1968].

52 D’ Alembert’s Traité des fluides does not contain any material on the
" fundamentals of differential calculus. IXAlembert’s views on the

fundamental concepts of differential calculus were presented in his
articles in the Encyclopédie and in his Opuscules mathémangues. Itis not
known what attracted Marx’s attention to the Traité des fluides of

© d’Alembert.

3 The third chapter of part one of L{eenhard) Euler’s Institutiones

calculi differentialis deals with the question ‘Of Infinity and the

Infinitely Small’. For more details see Appendix III. ppl60-164.

58 This book was assembled by the Abbé Moigno ‘following the
methods and works of Cauchy, published and unpublished’. The first
volume of Moigno’s Lectures appeared in 1840, the second in 1844.

- 86 This conclusion (due to Newton) requires clarification: ‘since the
' numerical quantities of all possible magnitudes may be represented as

straight lines’, the variation of any guantity may be represented as a
sort of linear motion of variable velocity. And since during an
infinitely small interval of time the speed of motion can be considered
to be fized, then the path, nearly a point, corresponding to this small
time interval {of course corresponding also to the variation of our
quantity) is equal to the product of this speed (fluxion) and the
infinitely small time interval, 1. Therefore ‘moments, or infinitely
small portions of the quantities generated = the products of their

.velocities and the infinitely small time intervals’. Regarding the
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|
! ] '[| metaphysical nature of Newton’s attempt to provide a basis for the
' ;l‘! ) concepts of ‘fluent’, “fluxion’, and ‘moment’, corresponding to our
|
i

$1 This discusses the heuristic generalisation where, in the formula
y =ax, (1)

3 ¥ is simply treated as a certain function f{x}, while the constant g
becommes a new function f{x) derived from this f{x); according to this
formula (1) becomes a special case of the more general formula

y =flx)i . 2)

‘function’, ‘derivative’, and ‘differential’, defining them in terms of
mechanics, see Appendix II, ppl56-157.

%7 It was explained in Note 49 that Marx intended to return to the
illumination of the history of the development of differential calculus
by means of the example of the history of the theorem on the dif-

ferential of a product. So he left a vacant space following his
unfinished extract from Hind’s text. There, after being repeated one
more time this section is introduced as an example of the very theorem
on the differential of a product in Newton’s treatment. (This theorem
is introduced as example 3 in Hind’s textbook; see Hind, p.109.)

Since %, yare treated as increments, even though infinitely small, the
factor f{x) is therefore a function not cnly of x burt also of %; the
*derived’ function f{x) in formula (2) turns out not to be independent
of %. It is exactly this fact (which compelled the Newtonians to
suppress forcibly the terms containing % , even though the latter must

be different from zero for formula (2) to have any meaning) which
serves as the basis for the critique of the Newtonian definition of the

| derivative of the function y = f{x) as the ratitc:’;i , to which Marx
* returns several lines below.

|P|ﬂ 8 In Hind’s textbook Leibnitz’s method is not illustrated in the
example of the theorem on the differential of a product, so Marx
Wi : turned to Boucharlat’s textbook. This paragraph is an extract from
the latter work (see Boucharlat, p.165).

H‘, % This sentence appears in the extract from Hind’s textbook cited $2 That is, obtained in the form of a ‘real’ expression, not containing
T above (Hind, p.106). Further on, however, Marx does not introduce differential symbols.

s the theorem on the differential of a product as developed by Hind. - i i itted

4'!' After this text follow five pages in Marx’s notebook which have been » @ Several more lines of unclear meaning are omitted.

¢ If y = % and vy itself is x, then in order to obtain an equality in

k. which one side does contain the differential symbol % it is sufficient
- simply to divide both sides of the equality ¥y = £ by x.

'. 8% ‘Zuwachs in x’ (‘increase in x”) obviously signifies here a new

}» functionin x obtained from the initial function x? — in addidon to it,
E 80 to speak — by means of the binomial theorem: as the coefficient dx

: omitted (pp.16-20). They deal primarily with calculations concerning
i theorems on the differentiation of fractional and compound functions
HH . as well as the solution of problems related to the parabolic curve =
ax. Weretain only the comments, written at intervals on pp.16-18, in
i which Marx emphasises the fact that Newton and Leibnitz began
!I.'ﬂ' : immediately with the operational formulae of differential calculus.
i Then under the rubric ‘Ad Newton’ Marx subjects these methods

of Newton and Leibnitz to the criticism that all such methods, not-
withstanding all the advantages they bring, inevitably imply the
introduction of actually infinitely small quantities and their attendant
difficulties. Here again the theorem on the differential of a product is
used as the basic example.

¢ By %, ¥, # Newton and his followers usually signified the rate of
change (fluxion) of the variables x, y, z (fluents) the derivatives, that
is, of x, y, z, with respect to that variable which plays the role of
‘time’; by %, 19, T2 they designated the ‘moments’ corresponding
to the Leibnitzian differentials or infinitely small increments. How-
ever, the Newtonians often also used %, y, 2 for the ‘moments’ or
differentials. See Appendix III p.160.

_' in the expansion of (x + dx)2. _
;.- % Obviously this refers to the fact that the immediate result of the

application of the binomial is dy = 2Zxdx + dx?, not dy = 2xdx. But
the former equality appears to be mathematically correct only as a
result of an incorrect premise.

$7 The meaning of the expression ‘succeeds in two ways’ remains
obscure. After the colon there follows a point a) without a point b).
Perhaps the ‘rwo ways’ here are composed of first, the fact that on the

left-hand side the fraction %i is wansformed into % (and not

identified from the very beginning with %), and second,
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the fact that on the right-hand side the terms 3xk + h? are now
obtained by means of correct mathematical operations and not by
using some sleight of hand.

% The expression in quotation marks has been copied from Hind’s
textbook cited above (§99, pp.128-129).

® He obviously has iz mind that Taylor’s theorem was published in
his collection Methodus incrementorum in 1715, that is, during the life
of Newton, in whose works this theorem does not appear. See in
addition Appendix VI p.182.

7® For material related 1o the theorems of MacLaurin and Taylor, see
Pp.109-119 [this edition], 412, 441, 493, 498 (Yanovskaya, 1968].

7t For Marx’s exposition and critique of the fundamental ideas of
Lagrange’s theory of analytic functions, see p.113 of this editon.

7 This refers to rough-draft notes, divided into sections, part of
which are published in this edition under the general heading ‘First
Draft’. See pp.76-90 of this edition.

73 In the manuscripts devoted to the history of differential calculus
there are two passages, located almost immediately adjacent to one
another, at which Marx proposed to insert: 1) an investigation of the
theorems of Taylor and MacLaurin and 2) a discussion of Lagrange’s
theory of analytic functions (see p.97). Marx did not succeed in
accomplishing his intentions, although he had in his possession 2 great
deal of material on these subjects which he had collected from his
sources and which served as the foundation from which he arrived at
the point of view on the essence of differential calculus which he
presented in the works conveyed to Engels. This material is com-
prised primarily of outlines but also includes manuscripts containing
Marx’s summarising or critical comments. The most important of
these comments are contained in the manuscripts: 1) ‘Taylor’s
Theorem, MacLaurin’s Theorem, and Lagrange’s Theory of Derived
Functions’ (for more details see p.441 [Yanovskaya, 1968]) and 2)
‘Taylor’s Theorem’ (unfinished), extracts from which are reproduced
here, in order to amplify somewhat Marx’s intentions mentioned
above. For extracts from other outlines on the same subjects see
pp.281, 412 [Yanovskaya, 1968].

7 In the handbooks on differential calculus at Marx’s disposal the
derivatives of all elementary functions, except for the trigonometric
ones, were actually calculated by means of the binomial theorem.
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. Marx noted this himself in his manuscript, ‘Theorems of Taylor and
|: MacLaurin, First Systematisation of Material’ (see pp.419-420

anovskaya, 1968)). Subsequently Marx formulated for this class of

jon a different means of differentiation which he called the
| tglgebraic’ (see the manuscript ‘On the Concept of the Derived Func-
b ton’). Therefore it is clear that the present manuscript
¥ chronologically precedes ‘On the Concept of the Derived Function
t' and ‘On the Differential’.

' ™ Thus, in Hind’s textbook (Hind, pp.84-85), after the example

| sontaining the derivation of the binomial theorem by means of the
: sxpansion of (x + k)™ into the Taylor series there is introduced the
b’ derivation of the theorems of Taylor and MacLaurin from the
. binomial theorem.

% Here (see also p.514 [Yanovskaya, 1968]) Marx says s}raigﬁt out,
. that by ‘increment’ of the value of the variable x he ha.s in mind any
I change of this value, whether it be a positive or negative increment 4.

& Because, according to Marx, a function in x is a given expression,

. It represents a combination of symbols which is considered with

- pespect to the appearance in it of the variable x. )

[ In the given case we have before us the terms of the MacLsfurm
[ series, that is the product (‘combination’) of the two expressnc!ns:
L 1) x*(k=0,1,2,3...)and 2)its corresponding ‘constant function
FAUl(H]

} ™ Marx calls expressions not containing the variable x ‘constant
I functions’ of x. (¥), (gi—], (g%] and so on are expressions for f{x) and

jts successive derivatives in which all appearances of the variable x
| have been replaced by a constant — zero. The result of this sub-

.atitution in ¥ and in its corresponding derivative j—;{ is designated in
' the manuscripts as () and, correspondingly, (g}) This desig-

_' nation, which Marx borrowed from Boucharlat (see Boucharlar,
' p.40), has been preserved in this edition.

7 Marx does not explain what exactly he means here by ‘the irratim:ml
" pature of the constant (or variable) function’. Apparently it deals with

T the fact that in both cases the cause of the origin of ‘exceptions’ is .the
k. presence in the expansion of terms having no rational mathematical
b, meaning: in the first case without any continuity (such as, for exam-
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ple, a ‘fraction’ of the form g) ,» and in the second without defined

values of the variable x (such as, for example, ,ﬁ at x = a). The

‘mﬁpna]ity’ of such an expression does not imply that it necessarily
contains a radical sign (compare ‘algebraic irrationality’), but is used
as the opposite of intelligibility (rationality; compare the ‘rational
differential calculus of Euler and d’ Alembert’ with the opposite ‘mys-
ticism of Newton and Leibnitz’!). Marx gives a short general charac-
terisation of cases of inapplicability at the very end of the manuscript,
‘Theorems of Taylor and MacLaurin, First Systematisation of
Material’ (see pp.440 [Yanovskaya, 1968]).

80 .. . . .
By ‘representation in a finite equation’ here is obviously meant a
representation of the form

fx+ k) =P+ PR+ PR+ .. .+ P A",

where n is a positive integer, and P\(i = 0, 1,2, . .
of x.

.n) are functions

81 qu a more detailed exposition of the proof of Taylor’s theorem
contained in the sources used by Marx, an exposition necessary in
order to understand the critique to which Marx subjected it in the
following lines, see Appendix VI, p.182.

f" _This is an excerpt from the manuscript ‘Taylor’s Theorem’, which
is mserte:d here because it contains in a more concentrated form
Marx’s viewpoint on the insufficiency of the proof known to him of
Taylor’s theorem, on its ‘algebraic’ origin in the binomial theorem,
and on its essential difference from the latter (for more details on the
uafinished *Taylor’s Theorem’ see p.498 [Yanovskaya, 1968]). Since
!.he ﬁl"st paragraph of this extract presents difficulties in reading it in
isolation from the preceding text, we note here that in this paragraph
M.ax:x summarises the results of the previous section devoted to the
critique of the proof of Taylor’s theorem in Hind’s book. In it (see
Hind §74, pp.83-84; §§77-80, pp.92-96):

1) Taylor’s theorem is proved under the assumpuon that the expre-
ssion f{x + ) may be expanded into a series of the form:

Fx+h) = Ph®+ QWP+ RRY+ . . .,

where P, Q, R, . . . are functions of the variable x and the exponents
o, B, vy . . . are increasing positive integers.

.2) The “cases of inapplicability’ of Taylor’s theorem are considered,
with the result that for certain specific values of the variable x these
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mdmons are not fulfilled (some of the coefficients P, Q, R . . . are
L iaot defined — ‘do not have finite values’ at these points).
- 3) The attempt is made, following Lagrange, to show that,
y speaking, excluding, that is, certain specific values of the
Mble x, the conditions under which Taylor’s theorem has been
ed(the exponentsa, B, y. . . cannot take on negative or fractional
nlues the functions P, O, R. . . are not transformed ‘into infinity’)
¥ gre fulfilled for any function f(x) After this come Marx’s remarks
| devored to the insufficiency of this sort of attempt.

“ The words ‘x = a, for example’ refer to the example, examined by
. d, of the expansmn intoa Taylor series of the expresmon flx+ h)
e flx) =x*+ Jx—a. Atx = g the expression has the intel-
l:ule value (a+ k)2 + fh but the terms of the Taylor series rep-
lcntmg it give, accordmg to Hind, only ‘a?+ 2ah
k24 0+ w— oo+ o— etc.,notatall deﬁned’ (see Hind, p.93).

In the function y = f{x) , where y, = f{x + h} is only the symbolic
expression of a binomial of a certain power, one here naturally has in
[ mind the function y = x™, where m is a positive integer.

,' # A literal translation of this passage would be, ‘which in the course
. of differentiation can give no result’ (die auf dem Weg der Dif-
| forentiation kein Resultat lefern kinnen).

+96 | iterally: “in the possible historical part of this manuscript’ (beim
3 migen historischen Teil dieses Manuscripts).

| #7 In the manuscript ‘On the History of Differential Calculus’ Marx
| potes that from the simple difference in the form of representation of
the change in the value of the function originate essential differences
in the treatment of differential calculus (scc p.102). Regarding this he
| made reference to the ‘introductory pages’ in which he developed this
- thought ‘in the analysis of d’Alembert’s method’ (see ibid.) These
| sheets are of two groups: sheets of one group are marked with the
_ capnal Latin letters A o H (see p.471 [Yanovskaya, 1968)), and
sheets of the other group with small Latin letters from a ton (see p.498
anovskaya, 1968)).

Since d’Alembert defines the derivative by means of the concept of

] lumt, Marx naturally begins his analysis of the method with a critique
- of the concept of limit, the inadequacy of which is made clear with the
f material presented in Appendix I (see ‘Concerning the Concept of
“1 imit” in the Sources Consulted by Marx’, p.153). This part of the

b manuscript occupies sheets A to D (published under the title cor-

_ responding to its contents, ‘On the Ambiguity of the Terms “Limit”
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and “Limit Value” ). Also directly related to the above-mentioned
passage in the manuscript on the history of differential calcufus are
sheets E to H, published here under the title, ‘Comparison of d’Alem-
bert’s Method 1o the Algebraic Method'. And devoted 10 essentially
the same question are sheets a to g of the other group, which are
published here under the tide ‘Analysis of d’Alembert’s Method by
Means of yet Another Example’. (For the contents of the remaining
sheets of this group see pp.468-470 [Yanovskaya, 1968|.} In con-
formity with Marx’s reference to the appended separate sheets
devoted to the analysts of d’Alembert’s method, they are grouped
together here undet the general title, *Appendices to the Manuseript
“On the History of Differential Calculus”: Analysis of d’Alembert’s
Method’ (pp121-132).

8 In other words, it is proposed to consider here the expression
3x?+ 3xk + h? for non-negative values of x and & under the assump-
tion that % tends unboundedly towards zero, remaining different
from zero. We recall that in the sources which Marx used there was as
yet no concept of absolute value, so that he was not required to
consider the sum of all non-negative terms,

87 Here Marx comes to the basis for his later conclusion, that ‘the
concept of the limit value may be interpreted wrongly, and is con-
stantly interpreted wrongly’ (see p.126), as a consequence of which it
isappropriate to replace it by some new term which is unambiguously
understandable. As such he proposes the term ‘absolute minimal
expression’, by which is meant the limit in the usual present-day
meaning of the word (see p.126 and Appendix I, p.143). Marx’s
criticism of the ‘limit value’ defined here and of the way this concept is
used in Hind’s and Boucharlat’s textbooks refers first of all to the fact
that the ‘limit’ is considered there as actual; that is, it is regarded as
‘the last’ value of the function for ‘the last’ value of the argument, and
therefore represents ‘a childishness which has its origin in the first
mystical and mystifying method of calculus’ (see p.126). In this
particular paragraph he obviously has in mind the ‘limit value’ in the
meaning of the definition introduced by Hind (see Appendix I,
p.1435), who in practice treats it as coinciding with the one-sided limit
of a function where the argument approaches a certain number from
the right or from the left: in the given case, with the one-sided limit
from the right of the function 3x2+ 3xk + A2, considered as a func-
tion of & as & — +0. In contrast to Hind, however, Marx emphasises
that this ‘limit value’ only has meaning if it is not understood as taking
place but is calculated with the condition that & # 0 (here & > 0);
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b that is, he treats it exactly as we do today. At the same time thze
:-|ppl.ication of this to the function in consideration, E’mc’.4 + 3xh :I- h s
¥ does not violate the requirement contained in the definition of ‘limit
- value’ (as the exact upper or lower bound to the value of the vanabl.;:)
¢ with which Hind’s textbook begins. In fact, as Marx notes, this
. function firstly, as k approaches zero, constantly approaches its own
b Limit (the lower one, clearly), and secondly, consequently all the more
. pever passes beyond it; that is, it explicitly satisfies !}Oth cond.mong of
8 Hind’s definition (Hind himself usualty did not verify the satisfaction
b of these requirements; see Appendix I, p.145).

9 If the (one-sided) limit of the function 3x2+ 3xh+ h? at th'e
;- approach of & to zero (from the right; that is, as % decrease.:s)lls
Y interpreted actually, that is, the argument 4 is supposed to attain its
tmt (‘last’) value O, then from the multiplicity of values of the
‘function with respect to which, according to Hind’s definition, the
¥ limit must be the exact lower bound, it is sufficient to choose the set
k:consisting of only the one value of the function at h = 0(see Appex:dlx
f I, p.145), in the given case consequently of only one number 3x* —
| which, however, as Marx says below, it would be a ‘well-worn tautol-
.-»ogy’ to regard as the limit value for 3x2 as k approaches zero. In othe;
b words, to speak naturally of 3x? as the limit value of 3x2 + 3xh + h_

i a8 & approaches zero at the same time as regarding 3x? as the limit
 value of 3x2 itself as & approaches zero is not intelligible here — most
of all because it is in general superfluous: it gives us nothing new.

] 1 This expression % is considered here to be the limit of the quotient
j ¥3=¥  as was done similarly in Boucharlat’s textbook (see Appendix
f: Bp— X kY ] .

I: p. 149), but with the difference that here the limit value (here again

| in Hind’s sense) of the functions x, — x and y, — y as xq = +x is not
E understood by Marx in an actual sense, that is, it remains an assump-

'~ tion that x,# x (here x, > x).

[ 0 Here again reference is made to the fact that % { or%) is impossible

to interpret actually, that is, as the value of the ratio %2 - Yath=0,
F gince in that case, following Hind and obtaining the limiting expres-
| sion g- by simply supposing = 0, one would have 10 admit that the

consideration of this expression, in which no trace remains of the ratio

hb_—l which contained the variable k, as the limiting value for the
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same % (regarded as the ‘constant’ function of k) as & — +0, in
general gives no new result. However, for the expressionil{l when

considered for i distinct from zero (here k> 0), it is precisely % which,

standing opposite the derived function “as its real equivalent’, is, as
Marx says, ‘its absolute minimal expression’, that is, the limit in the
usual present-day sense.

% The original had initially: ‘applied in the above differential
equations’ (quf obige Differentialgleichungen), but Marx crossed out
the word ‘ebige’. It is however clezar that here as previously, this does
not concern equations in the proper sense of the word, but rather the

fundamental formulae of differential calculus having the form of

equalities.
%4 Here Marx wrote, ‘. . . to the geometric’, a clear slip of the pen.

% As already noted, the source-books employed by Marx did not
consider zero a finite quantity. Therefore this passage states that
however small the difference, x; — x = k& becomes, it always remains
different from zero.

96 Here Marx writes simply x + % instead of x + 1%. Concerning the
origins of such replacement, see pp.78-79 of this edition as well as note
60.

7 These notes represent the contents of shects a to g. Sheets h to n,
containing only first-draft fragments or unfinished notes the sense of
which is hard to make out, are not published here; concerning them
see the Description, pp.468-470 [Yanovskaya, 1968]. Sheets ato g are
devoted to an analysis of d’Alembert’s method applied to the same
example of a compound function which Marx considers in the man-
uscript ‘On the Differendal’.

%8 The symbols f{x), f{u) are employed here as contractions for the
expressions, ‘some function in x’ and “some (other) function in «’. In
the manuscript ‘On the Differential’ written later, Marx already
designates these functions with different letters in the analysis of the
same cxample. '

Additional material
on Marx’s Mathematical Manuscripts




E. Kol'man

Karl Marx and Mathematics:
on the ‘Mathematical Manuscripts’ of Marx*

f* The creation of the scientific theory of the revolutionary struggle of
jhe international proletariat 1o overthrow the capitalist system and 1o
gonstruct socialism made it necessary, as Marx himself indicated, to
Pamine social conditions from the point of view of materialism and
Malectics. These must be deduced from the entire complex of real
Bhenomena and verified by the manifold totality, both of the facts of
IMstory and of the reality of nature, society and human thought. Thus,
of the necessary prerequisites for the creation of scientific com-
Runism was the mastery of the sciences which study the governing
s of the development of nature, the mastery of their results and
ethods. At the same time the study of the natural sciences, and
[mathematics as well, from the point of view of their history and
Ateraction with the economic development of society, was necessary
be the practical activity of the proletariat as a class coming to power in
Mrder consciously to transform society.

With respect to mathematics, dialectical materialism had to solve
p closely interrelated problems. On the one hand, it was necessary
generalise the results of mathematics philosophically, and to incor-
ate them in the scientific world view, the world view of dialectical
Paterialism. On the other hand, the method of materialist dialectics
‘ghould be used ro illuminate the crucial problems of mathematics,
ithereby enriching the dialectic method. In large measure this work
gell to the share of F(riedrich] Engels, since Marx was almost com-
Epletely occupied with the validation of the laws of the economic
Pdevelopment of capitalism and with the practical guidance of the
Finternational workers’ movement. In spite of this Marx persistently
i kept track of the progress of natural sciences and the technical
% Translation of ‘K.Marks i Matematika (O ‘Matematicheskikh rukopisyakh' K.
r MarksaY, Voprosy tstorii estestvignanive i tekkniki, 1968, No.25, pp.101-112.
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achievements of his times, and for almost thirty years, from the late
{18]50s right up to his death, was occupied with mathematics a great
deal.

These studies were reflected in a number of observations scattered
throughout the works of Marx, both on the influence of mathematics
on philosophy and on the philosophic elucidation of specific problems
of mathematics. In addition, they were expressed in his wide-ranging
correspondence, particularly with Engels. Then they were used by
Marx in the preparation of his most important work »Capital. Finally,
the results of his studies were preserved in the extensive manuscripts
left behind on Marx’s death. These papers were devoted to various
problems of mathematics and its history, primarily the problem of the
logical and philosophic basis of the differential calculus.

Marx had two motives for his mathematical studies: polirical
economy and philosophy,

Although Marx repeatedly emphasised the specific nature and
extraordinary complexity of economic phenomena and the impos-
sibility of comparing them to biological, still less physical,
phenomena, nonetheless he considered the application of
mathematics not only possible but indeed necessary for the inves-
tigation of the general laws of economics. In Capital Marx employed a
mathematical form in writing down economic laws, by no means
solely for illustration. The analysis of the form of value and money,
the composition of capital, the rate of surplus value, the rate of profit,
the process of transformation of capital, its circulation and turnover,
its reproduction, its accumulation, oan capital and credit, differential
rents: — Marx accomplished ail of this by employing mathematics.
Proceeding by means of the simplest algebraic transformations from
one formula to another, he next analysed them, interpreted them
econormnically, and formulated new laws. By just such means, for
example, Marx derived the dependence of the rate of profit

- M
P~ cwm
{where C is constant capital, V is variable capital, and M is surplus
value)* on the organic composition of capital
C

O=V

* Constant capiral is capital investment; variable capital is labour wages; surpius value
is usually written S in English-language economic texts — Trans,
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B0 that
: A
i+o
bhere A =%§= is the rate of production of surplus value), and

itablished the law of the tendency of the average rate of profit to fall.
By the very same means he established the inter-relation between the
o sectors of capitalist reproduction: the first sector is the production
i the means of production:

Ci+ V;+ M, =T,
_ where T, is the total value of the producers’ goods sector)_, and the
poond sector is the production of the means of consumption,

F C2+ V2+ M2=Tz,

.
po that, for simple reproduction,*

Cg = Vl- Ml .
fe discovered thereby the general law of the formation of the costs of
pduction and the economic ‘mechanism’ inevitably leading, under

bonditions of premonopolistic capitalism, to strongly periodic

peonomic crises.}

y The still unpublished preparatory works to the third volume of

. . A.O
Papital contain Marxs detailed calculations of the quantity {7/, the

Mifference of the rate of surplus value A and the rate of profit P,
Brhere Marx represented its variations in the form of a variety of
gurves. Since the third volume of Capital, which is devoted to the
ocess of capitalist production taken as a whole, is a synthesis of the
flirst volume — the immediate process of the production of capital —
fand the second volume — the process of transformation of capital —
_J X tried in his rough drafts to supplement the complete and com-
Hyrehensive qualitative picture provided in his previous work with a
Fauantitative picture.

¥ Marx did not bring this work, which even in the case of simple
oduction demands rather complicated, although elementary,
aputations, to completion. The work, however, correctly posed

P=

#* In simple reproduction all the value added to the producers’ goods is invested in the
. machinery to produce consumers’ goods — Trams.

4 The significance of these schema for socialist economic planning is examined in the
" work of M. Ebeseldt (GDR), ‘Marx’s Schema of Repreduction and the interpretation of
k' Ambiguous Variables’, (in Russian) Ekonomika i matematicheskie merody , 1968, Vol IV,
F No.4, pp.531-535.
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the problem of the distribution of surplus value (in the costs of
production) under conditions of large-scale reproduction in both
sectors in order to obtain maximum profits and also derived the law of
periodic crises. These are problems which can only be solved by
means of contemporary methods of linear programming. The
mechanism of economic crises, however, can.also be studied
empirically, a method concerning which Marx wrote to Engels on
May 31, 1873:

‘I have just sent Moore a history which privatim had to be smuggled
in. But he thinks that the question is unsolvable or at least pro
tempore unsolvable in view of the many parts in which facts are stiil
to be discovered relating to this question. The matter is as follows:
you know tables in which prices, calculated by percent etc. etc. are
{'eprsented in their growth in the course of a year etc. showing the
increases ,and decreases by zig-zag lines. I have repeatedly
attempted, for the analysis of crises, to compute these “ups and
downs’ as fictional curves, and I thought {and even now I still
think this possible with sufficient empirical material) to infer
mathematically from this an important law of crises. Moore, as ]
already said, considers the problem rather impractical, and I have
decided for the time being to give it up.’*

The mathematician Samuel Moore, who was Marx’s adviser in
mathematics, was unfortunately not sufficiently well versed; he was
obviously unacquainted with Fourier analysis, that branch of applied
mathematics which deals with the detection of latent periodicities in
complex oscillatory processes, the foundations of which were already
contained in J. Fourier’s 1822 work, Analytic Theory of Heat.

Since Marx believed, according to Paul Lafargue,} that “a science is
not really developed until it has learned to make use of mathematics’,
he advanced the thesis of the possibility, indeed the necessity, of the
application of the mathematical method to research in the social
sciences, in political economy in particular. At the same time this did
not mean the replacement of political economy and its general laws
and methods by mathematics along the lines of the so-called
‘mathematical school’ of vulgar political economy, headed in England
by W. Jevons and in Italy by V. Pareto and others, which had sprung
up in the [18]80s in opposition to the bankrupt ‘historical school’ but

* SKZarl Marx-Friedrich Engels Werke [Gcrman edition] » Vol 33, Berlin, Dietz, 1966,
p-82.

1 Remaniscences of Marx and Engels, Moscow {1956], p.75.

B
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Jwhich, like the latter, also argued for a ‘harmony of inverests’ of all
lasses of capitalist society. Marx made the following observation, ina
Better 1o Engels on March 6, 1868, regarding one of the representatives
pf this school, Macleod: *. . . a puffed-up ass, who 1) puts every banal
putology into algebraic form and 2) represents it geometrically.’*
Bhus, according to Marx, as in any other specialised science so in
plitical economy, mathematics can be a powerful tool for research
paly within the limits of the validity of the theory of that specialised
bicience. Therefore, as his acquaintance the Russian jurist and pub-
feist M.M. Kovalevskii wrote,T Marx devoted himself to the study of
j' athematics in order to obtain the ability to apply the mathematical
Method as well as to examine profoundly the works of the
Imathematical school. :
t  Marx’s considered judgement on one of the most important prob-
Jems of the foundations of geometry, which he expressed m “The
Wheory of Surplus Value’, the unfinished 4th volume of Capital, in
pdnnection with a polemic with [Samuel] Bailey, who had incorrectly
fased the geometric analogy, may serve as an example of his
jphilosophical conclusions on the questions of mathematics. Marx
Jwrote:

“If a thing is distant from another, the distance is in fact a relation
f: . between the one thing and the other; bur ar the same time this
b.  distance is something different from this relation between the two
things. It is a dimension of space, itis a certain length which may as
well express the distance of two other things besides those com-
pared. But this is not all. When we speak of the distance as a
relation between two things, we presuppose something
. “intrinsic”, some “property”’ of the things themselves, which
b enables, them to be distant from each other. What is the distance
" between the syllable A and the table? The question would be
nonsensical. In speaking of the distance of two things, we speak of
the difference in space. Thus we suppose both of them to be
contained in space, to be points of space. Thus we equalise them as
being both existences of space, and only after having them
equalised sub specie spatii we distinguish them as different points of
space. To belong to space is their unity.’§

E * Karl Marx-Friedrich Engels Sochineniva [Russian edition|, Moscow, Val.32, p.33.

¥ + Remintscences of Marx and Engels, p.323,

¥ ¢ Karl Marx, Theories of Surplus Value: Volume IV of Capitel, part 111, Cohen and
- Ryazanskaya, trans., London, Lawrence & Wishart, 1972, p.143. Editors
j- Ryazanskaya and Dixon note that ‘Marx wrote this paragraph in English’.
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Here Marx, while analysing the process of abstraction by means of
which the geometric concept of ‘distance’ or ‘length’ originates,
focuses attention not only on the materialistic origin of this concept,
the basis of which lies in the ‘characteristic’ of two comparable
objects, but also on its relative character, on its indissoluble con-
nection with space, understood as a material, really existing entity.
And all this was in 1861-1863, during the unbroken predominance in
science of the Newtonian world view, some forty years before the
appearance of the theory of relativity, in which Einstein boldly took to
its logical conclusion the idea that ‘length’ is not simply a superficial
abstract measure of a physical body but an integral characteristic of
the spatial relationship of two bodies.

Marx’s statement on the statistical nature of economic mechanisms
as mechanisms of large-scale processes has an exceptionally great
methodological significance for mathematical statistics. These
mechanisms express the interactions of individual processes in the
laws of probability; they dominate over any variations from the mean.
Mary, repeatedly returned to this problem. For example, in the Grun-
drisse of 1857-1858 he wrote, in the chapier on money:

MATHEMATICAL MANUSCRIPTS

‘The value of commodities as determined by labour time is only
their goerage value. This average appears as an external abstraction
if it is calculated out as an average figure of an epoch, e.g. a pound
of coffee is one shilling if the average price of coffee is taken over,
let us say, 25 years; but it is very real if it is at the same time
recognised as the driving force and the moving principle of the
oscillations which commeodity prices run through during a given
epoch, This reality is not merely of theoretical importance: it forms
the basis of mercantile speculation, whose calculus of probabilities
depends both on the median price averages which figure as the
centre of oscillation, and on the average peaks and average troughs
of oscillation above or below this centre.*

Despite the misconception, current for a long time among the
majority of Marxists working in the field of economic statistics, that
Marx’s statements on stochastic processes apply only to capirtalist
economics, a misconception based on the non-dialectical rep-
resentation of the accidental and the necessary as two mutually exclu-

* Karl Marx, Grundrisse: Foundations of the Critique of Political Economy, trans. M.
Nicolaus, Penguin Books, London, p.137.

iy

RDDITIONAL MATERIAL 223
antitheses, these statements of Marx — to be sure, in 2 new
iterpretation — have enormous significance for a planned socialist
somy, in which, since it is a commodity economy, the law of large
never ceases toc operate.

¥ Hegel’s Science of Logic, especially the second section to the first
,' ook, ‘Quantity’, was undoubtedly a philosophical stimulus for
BMarx’s mathematical studies. The article ‘Hegel and Mathematics’,
, itten by the present author together with S.A Yanovskaya,* cites

this connection the following words of Engels:

NOELS

i<+ cannot fail to comment on your remarks on the subject of Old
k' Man Hegel, to whom you do not atribute a profound
; mathematical and scientific educarion. Hegel knew so much
" mathematics that not one of his students was capable of publishing
' the numerous mathematical manuscripts left behind after his
¥ death. The only person, so far as I know, sufficiently know-
Y ledgeable of mathematics and philosophy to perform such a task —
. is Marx.’}
f: In the ‘Philosophical Notebooks’ V.I. Lenin criticised§ the
mtements of Hegel on the calculus of infinitesimally small quantities
Bontained in the chapter ‘Quantity’, specifically, that “. . . the jus-
Bfication [for neglecting higher-order infinitesimals — E.K.] has
bonsisted only in the correctness of the results (“‘demonstrated on other
Rrounds™) . . . and not in the clearness of the subject . . ., that
IS, . . a certain inexactitude (conscious) is ignored, nevertheless the
psult obtained is not approximate but absolutely exact,” that ‘not-
withstanding this, to demand Rechtfertigung [justification — Trans. |
B here is “not asfuperfluous” “as to ask in the case of the nose for a
‘demonstration of the right to use it”.”** V.I. Lenin made the following
kremarks: ‘Hegel's answer is complicated, abstrus, etc. etc. It is a
} * This cdition p.235
'!' Afterword to 2nd German edition of Capital
'§ V.I Lenin, Collected Works, Vol.38, Moscow, Foreign Languages Publishing
House, 1963, pp.117-118.
| #* Note provided by editor of Lenin text: ‘An allusion to the couplet “The Question of
| Right” from Schiller’s satirical poem “The Philosophers”, which may be translated as
'%thIusedmymforamofmﬂ,
‘Indeed, what right have I 1o this, pray tell?’
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question of kigher mathematics . . .” “A most detailed consideration of
the differential and integral calculus, with quotations — Newton,
Lagrange, Carnot, Euler, Leibnitz etc., etc. — showing how interes-
ting Hegel found this “vanishing” of infinitely small magnimdes, this
“intermediate between Being and non-Being”. Without studying
higher mathematics all this is incomprehensible. Characteristic is the
tide Camot: “Refléxions sur la Métaphysique du calcul
infinitésimal™!!!’
It is undoubtedly true that Marx, who had written in 1873:

*The mystification which the dialectic suffered at the hands of
Hegel does not obscure>the fact that Hegel first gave a com-
prehensive and conscious representation of its general forms of
motion. It is necessary to stand it on its feet, in order to reveal the
rational kernel beneath the shell of mystification.’*

having already applied his dialectical materialist method which, in his
own words, was not only fundamentally ‘different from the Hegelian,
but is its direct antithesis’, since for Marx “the ideal is nothing other
than the material, perceived in a hbuman head and transformed within
it’,} was extremely tempted to try to discover the secret which seemed
to lie at the basis of differential catculus,

Marx’s studies of mathematics were kpoown from his cor-
respondence with Engels, particularly the letters from Marx to Engels
of January 11, 1858, May 20 1865, July 6, 1863, and August 25, 1879,
the letters from Engels to Marx of August 18, 1881 and November 21,
1882, and Marx’s answer of November 22, 1882, They may also be
evaluated from references in Engels’s preface to the second volume of
Capital, comments in Engels’s Anti-Diikring, and in his unfinished
manuscript, The Dialectics of Nature, published for the first time in
1925 in Moscow in the second book of the [Russtan-language|

Archives of Marx end Engels. The Karl Marx-Friedrich Engels Insti-
tute, which was founded in 1920, in carrying out the instructions of
V.I. Lenin in his letter of February 2, 1921§ to purchase the man-
uscri?ts of Marx and Engels located abroad (or photocopies of them),
ac_qmred_a great many, including photocopies of Marx’s mathematical
manuscripts preserved in the archive of the German Social-

* Karl Marx-Friedrich Engels, Sockizeniya, Vol.23, p.22.
} Ibid. -
§ Leninskii Sbornik, Moscow, 1942, Vo, 34, pp.401-402.
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E: Democratic Party — 863 closely-written quarter-sheets, apparently
-4ncomplete; the missing pages were later added, however, so that the
 antire collection came to a thousand sheets. To work on them the
 Institute commissioned the German mathematician E.Gumbel,
} whom R. Mateika and R.S. Bogdan helped to decipher the extremely
t difficult text.

l  In 1927 Gumbel published a report in Letopisi Marksizma on the
| manuscripts,* giving a short description of them. He classified the

f manuscripts into categories: calculations without any text at all;

 extracts from works read by Marx; outlines of his own works; and

. finally, finished original works.

i Gumbel correcily noted that Marx’s choice of sources seemed to be

¥ influenced by Hegel, and he presented a (far from complete} list of
L mathematical works which Marx had summarised: 13 authors and 18
b titles. Of these works, the oldest in time was the Philosophiae
{ Naturalis Principia Mathematica of Newton, 1687, and the most
E recent, the textbooks of T.J. Hall and J.W. Hemmings, 1852. They
! also included the classical works of d’Alembert, Landen, Lagrange,
I MacLaurin, Taylor and two other works of Newton, De Analysi per
b Aequationes Numero Terminorum Infinitas and Analysis per Quantitatum
. Series, Fluxiones et Differentias.

¥ The contents of the manuscripts, Gumbel indicated, deailt with
¥ arithmetic (for example, the effect of a discount on the rate of
| exchange, the paying off of a bill of exchange, discounts and rebates,
f raising to a power and extracting the root of an equation, exercises in
 taking the logarithm, and so forth), geometry (trigonometry, analytic
f geometry, conic sections), algebra (the elementary theory of
| equations, infinite series, the concept of function, Cardan’s Rule,
F progressions, the method of indeterminate coefficients), and dif-
 ferential calculus (differentiation, maxima and minima, the Taylor
| theorem). He reported that the original works which Marx had com-
b pleted would be published in t.l;lle 16th volume of [the Russian edition
 of] the Complete Works of Marx and Engels.

i In 1931, with the appointment of the well-known activist of the
 Bolshevik Party V.V. Adoratskii to be director of the Institute, work
| on the manuscripts was given a new direction. As head of the Marx
b Study Centre ar the time, I was acquainted with the transcribed

f * E. Gumbel, ‘On the Mathematical Manuscripts of K. Marx’, (in Russian) Letapisi
Marksizma, Moscow, 1927, Vol.3, pp.56-60.
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portion of the manuscripts and with the preparatory work toward
their pflblication, and I was convinced that E. Gumbel was unable to
appreciate completely either the importance of their publication or
their philosophical and historical-mathematical significance. At my
suggestion the board of directors of the Institute enlisted for the work
fm the manuscripts §.A. Yanovskaya, leading a team which was
joined by the mathematicians D.A. Raikovand A.I. Nakhimovskaya.

In London in 1931 the Second International Congress of the His-
to_ry of Science and Technology took place, at which a Soviet deleg-
ation tock part whose members included the author of these lines.
Thf: papers of our delegation came out as a separate book with the title
Sm.mce at the Crossroads.* Among the papers included was my Own
enuﬂf:q: ‘A Brief Report on the Unpublished Works of Karl Maﬂ;
pertaining to Mathematics, the Natural Sciences, Technology and
Their Histories’. This report discussed: first, the passages from 27
works of naFurai science which Marx copied and to which he supplied
commentaries: on mechanics, physics, chemistry, geology, biology,
as well as on electrical technology, metallurgy, agricultural chemistry,
and others; second, his works on technology (primarily dating to
1863), treating the history of mills, the history of looms, the problem
of automated production in mechanised factories, the development
from tools to machines and from machines to mechanised factories,
the effect of the mechanisation and rationalisation of production on
th.e development of the textile industry in England and on the situ-
ation of the proletariat in the period 1815-1863, the changes in the
social system of production at various stages of technological
d_evelopment, the interaction between labour and science, between
city and _oountryside, and so0 on; and third — Marx’s mathematical
manuscripts.

in Zurit_:h in 1932 there convened an International Congress of
Ma!hemaucians in which a Soviet delegation took part. At the
“Philosophy and History’ section of the congress I made the report, ‘A
New Foundation of the Differential Calculus by Kari Marx’,T which

* Science at the Crossroads: Papers presented to the Internation

‘ : 5 Congress of the
b};lsd;t.? of SCI;!I:: ggh 'Eefrl;rsloéogl{ h_e.ld intdln;don from June 2%th to July 3rd, 1931,
e Repudebtishud i e U , Kniga - Bush House, Aldwych, London WC2,

t E. KoFman, ‘A New Foundation of the Differential Calculys’ b i
Karl Marx’, fin

German], Verhandiungen des Intemationalen Mathematiker-Ko %

Sektions-Vertrige, Zurich, 1932, pp.349-351. ematiker-Kongresses, Vol.2,

b
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ssed one of the works contained in Marx’s manuscripts. It was of
lareat interest, both for the history of mathematics and for those
iealing with the philosophical problems of the scientific worker, since
iy contains a sketch of the historiczl development of the concept of the
fferential and a statement of Marx’s viewpoint on the foundation of
: ysis. This work is of the third category of the manuscripts, and
gonsists of five chapters: 1. The Derivative and the Differential
JCvefficient [the at that time so-called ratio, % ,2. The Differential and

[Differential Calculus, 3. The Historical Development of Differential
us, 4. The Theorem of Taylor and MacLaurin, 5. A Critique of
ewton’s Method of Quadratures.
L 'The first part of the third chapter, which forms the nucleus of the
L entire work, contains a brief account of the methods of Newton,
Y eibnitz, d’Alembert and Lagrange. The second part, which sum-
‘marises the first, consists of three sections with the following con-
btents: 1. Mystical Differential Calculus, 2. Rational Differential Cal-
L eulus, 3. Purely Algebraic Differential Calculus. In another fragment
[ Marx contrasts his own differential method to the methods of
Fd’Alembert and Lagrange. His method differs from the method of
[ Lagrange because Marx really differentiates, thanks to which dif-
 fevential symbols appear, while Lagrange applies differentiation to the
| algebraic binomial expansion.
I Ttis clear from both fragments that Marx, like Hegel, considered all
f efforts to provide a purely formal-logical foundation for analysis
" hopeless, just as the attempts to give, beginning with the graphic
I method, a purely intuitive-visual foundation to it had been naive. He
set himself the task of providing a foundation for analysis dialec-
F tically, relying on the unity of the historical and logical aspects.

£ Marx demonstrated both that the new differential and integral
E: calcutus came into existence from elementary mathematics, on its own
' ground, ‘as a specific type of calculation which already operates
¥ independently on its own ground,’ and that ‘the algebraic method
 therefore inverts itself into its exact opposite, the differential
| method’. (See p.21 in this edition.} Marx valued highly the work of
| Lagrange, but he did not consider him — as he was usually considered
| and as Hegel considered him — a formalist and conventionalist who
- introduced the basic concepts of analysis into mathematics in a purely
E superficial and derivative manner. Marx appreciated just the opposite
k in Lagrange, namely, that he revealed the connection between algebra

i
K
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and analysis, that he showed how analysis develops out of algebra.
‘The real and therefore the simplest connection of the new with the
old is discovered as soon as this new reaches its completed form, and
one may say that differential calculus gained this relation through the
theorems of Taylor and MacLaurin.” (See p.113}

At the same time, however, Marx reproached Lagrange for not
perceiving the dialectical character of this development, for sticking
for too long to the domain of algebra, and for insufficiently
appreciating the general laws and methods proper to analysis, so that
‘in this regard he should only be used as a starting point’. (See
Yanovskaya, 1968, p.417) Thus Marx, like a genuine dialectician,
rejected both the purely analytic reduction of the new to the old
characteristic of the methodology of the mechanistic materialism of
the 18th century, and the purely synthetic introduction of the new
from outside so characteristic of Hegel.

Reports and articles concerning Marx’s mathematical manuscripts
also appeared in 1932 in the journals Za Marksistsko-Leninskoe
Estestvoznanie, Vestnik Kommunisiicheskoe Akademii, and Front Nauki
i Tekhmiki.* There was a great deal of interest in the manuscripts
among the Soviet, as well as the foreign, learned public. Only in
1933, however, did it becorne possible, as a result of the work of the
team of scholars mentioned above, to publish the first extracts from
the manuscripts, in the journal Pod Znamenem Marksizma and simul-
taneously in the collection Marksizm i Estestvoznanie, issued on the
50th anniversary of Marx’s death by the Marx-Engels Institute. In
both publications, the extracts from the manuscripts were accom-
panied by the article ‘On the Mathematical Manuscripts of K. Marx'§
by the team leader S.A. Yanovskaya. The published extracts are three
works of Marx dating from the [18]70s and the beginning of the
|18]80s. Marx completely finished and prepared to send 10 Engels the
first two — “The Derivative and the Symbolic Differential Coef-
ficient’ and ‘The Differential and Differential Calcutus’. The third
work, ‘A Historical Sketch’, is an unfinished draft. From the latter,
which includes the sections: 1. Mystical Differential Calculus (that is,

* Za Marksisisho-Leninskoe Estestvosmanie, 1932, No.5-6, pp.163-168; Vestnik Kom-

munisticheskot Akademii, 1932, No.9-10, pp.136-138; Front Nauki i Tekhniki, 1932,
Ne.10, pp.65-69,

1 The original has 1932, an obvious misprint.

§ Pod anamenem marksizma, 1933, No.1, pp.14-115; Marksizm i estestvoznanie, 1933,
pp-136-180.

{  ADDITIONAL MATERIAL 229

_ Newton and Leibnitz), 2. Rational Differential Calculus (that is,
i d’Alembert) and 3. Purely Algebraic Differential Calculus (that is,

Lagrange); we introduce here in the team’s translation, section 1, in

order to acquaint the reader with Marx’s exposition. (pp.91-92)

1. Mystical Differential Calculus. x, = x+{x from the begin.
ning changes into x, = x + dx or x+ ¥ |Marx uses both the
symbol dx of Leibnitz and the & of Newton — E.K.] where dx is
assumed by metaphysical explanation. First it exists, and then it is
explained.

‘Then, however, ¥, =y + dy ory, =y + ¥. From this arbitrary
assumption the consequence follows that in the expansion of the
binomial x+Ax or x+ %, the terms in £ and Ax which are
obtained in addition to the first derivative, for instance, must be
juggled away in order to obtain the correct result, etc. etc. Since the
real foundation of the differential calculus proceeds from this last
restlt, namely from the differentials which anticipate and are not

. . , dv ;
derived but instead are assumed by explanation, then % ory , as

well, the symbolic differential coefficient, is anticipated by this
explanation.

‘If the increment of x = Ax and the increment of the variable
dependent on it = Ay, then it is self-evident (versteht sich von selbst)

that % represents the ratio of the increments of x and y. This

implies, however, that &x figures in the denominator, thar is the
increase of the independent variable is in the denominator insteact
of the numerator, not the reverse; while the final result of the
development of the differential form, namely thedifferential , is also
given in'the very beginning by the assumed differentials.*

“If T assume the simplest possible (allereinfachste) ratio of the
dependent variable ¥ to the independent variable x, then y = x.
Then I know that dy = dx or = %. Since, however, I seek the

derivative of the independent [variable] x, which here = %, I
therefore have to divide both sides by ¥ or dx; so that:

dy ¥
hacd 2 =1
i ¥k
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‘I therefore know once and for all that in the symbolic differential
coefficient the increment [of the independent variable] must be
placed in the denominator and not in the numerator.

‘Beginning, however, with functions of x in the second degree,
the derivative is found immediately by means of the binomial
theorem [which provides an expansion| where it appears ready-
made {(fix und fertig) in the second term combined with dx or %;
that is with the increment of the first degree + the terms to be
juggled away. The sleight of hand (Eskamotage) however, is unwit-
tingly mathematically correct, because it only juggles away errors
of calculation arising from the original sleight of hand in the very
beginning.

x; = x+Ax is to be changed to
X1 =x+dx or x+x,

whence this differential binomial may then be treated as are the
usual binomials, which from the technical standpoint would be
very convenient.

“The only question which still could be raised: why the mys-
terious suppression of the terms standing in the way? That
specifically assumes that one knows they stand in the way and do
not truly belong to the derivative. '

“The answer is very simple: this is found purely by experiment,
Not only have the true derivatives been known for a long time,
both of many more complicated functions of x as well as of their
analytic forms as equations of curves, etc., but they have also been
discovered by means of the most decisive experiment possible,

namely by the treatment of the simplest algebraic function of
second degree, e.g.;

y =x?
ytdy = (x+dx)? = x?+ 2dx+ dx?,
y+y =(x+ )T =x2+ W+ 22 .
. ‘If we subtract the original function, x%(y = x?) from both sides,
en: i

dy = 2xdx + dx*

¥ = 2x%+ %% ;
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I suppress the last terms on both [right] sides; then:
dy = 2xdx ,y = 2%,

and further
dy _
dx ?
or .
Y-
X

‘We know, however, that the first term out of (x + a)? is x?; the
second 2xa; if I divide this expression by a, as above 2xdx by dx or
2x% by %, we then obtain 2x as the first derivative of x2, namely the
increase in x, which the binomial has added to x2. Therefore the
dx? or % had to be suppressed in order to find the derivative;
completely neglecting the fact that nothing could begin with dx2 or
%% in themselves.

‘In the experimental method, therefore, one comes — right at
the second step — necessarily to the insight that dx? or %x hastobe
juggled away, not only to obtain the true result but any resultatall,

‘Secondly, however, we had in

2xdx + dx? or 2xx+ xx

the true mathematical expression (second and third terms) of the
binomial (x4 dx)2 or (x + %}2. That this mathematically corvect
result rests on the mathematically basically false assumption that
x,— x = Ax is from the beginning x, — x = dx or £, was not
knowm,

‘In other words, instead of using sleight of hand, one obtained
the same result by means of an algebraic operation of the simplest
kind and presented it to the mathematical world.

‘Therefore, mathematcians (man . . . selbst) really believed in
the mysterious character of the newly-discovered means of cal-
culation which led to the correct (and, particujarly in the geometric
application, surprising) results by means of a positively false
‘mathematical procedure. In this manner they became themselves
mystified, rated the new discovery all the more highly, enraged ail
the more greatly the crowd of old orthodox mathematicians, and
elicited the shrieks of hostility which echoed even in the world of
non-specialists and which were necessary for the blazing of this
new path,’
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In an analogons manner Marx critically analysed both the method
of d’Alembert as well as that of Lagrange and, as already mentioned,
opposed all three methods with his own. It consists of first forming,
for y = f(x), the ‘preliminary derivative’,
fxq)— flx)

X

X4

P(xx) =

which is assumed to be continaous at x,— x and whose value at x, =
x is equal to f{x). In the case of the power function y = x?, the ratio
(x5~ x")/(x,— x) 15 transformed inte the polynomial
7 xx32+ L.+ x™ 2, + x™), which for x, = gives f{x) =
nx™ !, Marx then introduces the symbolic representation of this pro-

cess, by which the ‘preliminary derivative’ % isreducedtof{x) = %,
where the symbolic differential coefficient j—i has an immediate
meaning only as a unit (and not as the two partial quantities dy and
dx). However, notes Marx, since the equality

dy = f(x)dx ™

is mathematically correct and is not reduced to the tautology
0=90

it th;refore is an operative formuls [emphasis in original — Trans.|,
ap]:!hcab-le to complicated functions, making it possible to reduce an
entire differentiation of its constituent functions. #n this way, he
points out, we obtain the dialectical reversal of the method: we now
proceed not only from the real mathematical process of the formation
of the derivative 1o its symbolic expression, but rather on the con-

trary, operating on the symbolic formula (*) and forming the ratio ?
X

we arrive at the expression of the derivative of the function. Con-
sequently Marx, having not only discovered that the differential is the
major linear portion of the increment but is also an operative symbol,
proceeded along a path which we today would call algorithmic sin the
sense that it consists of a search for an exact instruction for the
solution, by means of a finite number of steps, of a certain class of
problems. He was on a path which has been the fundamental path of
the development of mathematics. Thanks to the dialectical materialist
method which in his hands was a powerful, effective tool of research,
Marx was able, without being 2 mathematician sto rem the property
of the differential used as an operational symbol » thus anticipating, as
the Soviet mathematician V.I. Glivenko has shown, the idez of the
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eminent French mathematician G. Hadamard, enunciated in 1911 in
connection with the application of this concept of functional analysis *

Despite the philesophical and historical significance of the foun-
dation of differental calculus provided by Marx, it did not enter into
mathematics, which developed another path unknown to him. The
sources which he studied (and their number was significantly greater
than Gumbel reported in his article, which did not mention even those
textbooks of analysis, such as those of J.-L. Bouchariat and J. Hind,
which Marx ouilined in detail) made no mention of the works of A.
Cauchy (Cowrs d’analyse and Résumé des lecons sur le calcul
infinitésimal) in which in 1821-1823 he developed the theory of limits,
a theory which, although it contained shortcomings which were later
(1880) cleared up by K. Weierstrass, nonetheless incorporated a great
deal of rigour and rendered the foundation proposed by Marx
superfluous, although it did not diminish its historical and
philosophical value. Marx did not know and could not have known of
the work of the outstanding logician, mathematician and philosopher
of Prague, B. Bolzano, who in 1816-1817 defined the concepts of
limit, continuity, the convergence of series, and others — concepts
which laid the basis of present-day analysis — since these works as
well as others of 1830-1848 which contained the beginnings of set
theory and the theory of real numbers remained unknown for & long
time. Only a hundred years later did they become the property of
mathematician®. Naturally, Marx did not consider, therefore, the
problems of continuity, the differentiability of functions, the axiomat-
isation of analysis, and so on.

The value of Marx’s mathematical manuscripts, however, is by no
means restricted to his method providing a foundation for differentjal
calculus and his critique of preceding methods. The complete sig-
nificance of the manuscripts was only revealed when they were all
deciphered and scientifically systematised. Beginning with 1932 and
with the publication in 1933 of the three works mentioned from the
deciphered manuscripts {which Gumbel had not given the attention
they deserved), the Swedish mathematician Wildhaber first began
working on behalf of the Marx-Engels Institute. Work on the man-
uscripts was resumed in the 1950s, and somewhar later (1960-1962)
G.F. Rybkin became interested. All this work — deciphering, trans-
lation, research, and compilation of sources — was condacted under
the leadership of S.A. Yanovskaya, who, despite an extraordinary

* V.1, Glivenko, ‘The Concept of the Differential in Marx and Hadamard’ (in Russian
Pod Znamenem Marksiema, 1934, No.5, pp.79-85.
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load of teaching and preparing graduate students, despite a painfu}
illness, gave the enterprise all of her energy and her enormeus know-
ledge of the history of mathematics and its philosophical problems,
transforming it into her life’s work. $.A. Yanovskaya’s commentaries
on the manuscripts (both the one cited above and those contained in
the volume prepared by the Institute of Marxism-Leninism of the
Central Committee of the CPSU) by themselves constitute an impor-
tant scientific work. One of her many students, K.A. Rybnikov,
performed significant work in the preparation of the manuscripts for
publication (in particular, the difficult research and collation of sour-
ces). The volume was prepared for publication by the historian O.K.
Senekina, member of the Institute of Marxism-Leninism, and the
mathematician A.Z. Rybkin, editor of the Nauka press.

As a result 'of all this work lasting many years (S.A. Yanovskaya
laboured on the manuscripts until her death in October 1966), a book
has appeared which contains Marx’s ideas on a series of the most
important problems in the history of mathematics as a whole and ofits
individual concepts, as well as on their epistemological [original:
‘gnoseological’ — Trans.) significance, ideas which, despite the
head-spinning pace of the development of mathematics in the *80s of
the last century — among which and in particular including its
logical-philosophical basis — have not lost their contemporaneity in
the slightest. For historians of mathematics and for philosophers
working with the philosophical problems of mathemMics, Marx's
views will serve as a guide — not in the form of a quotation, every
letter of which is followed as if counting out an emergency ration, but
rather in the form of 2 matchless example of creative, concrete appli-
cation of dialectical thinking,

In addition, the mathematical manuscripts of Marx once again
confirm the truth of the words Engels spoke at the graveside of his
great friend. Speaking of Marx as the scientist who had discovered the
law of the development of human history and the law of motion of
capitalist production, Engels said: “Two such discoveries would be
enough for one lifetime. Happy the man to whom it is granted to make
even one such discovery. But in every single field which Marx inves-
tigated — and he investigated very many fields, none of them super-
ficially — in every field, even in that of mathematics, he made
independent discoveries.’™ ' :

-,
™,
RS

* Quoted from Marx-Engels Selected Works, Volume Two, p.153-154,\'Foreign Lan-
guage Publishing House, Moscow. The speech was re-translated into English from the
only written version, in the German-language Sozialdemokrat, Zurich, March 22 1883,

HEGEL AND MATHEMATICS

by Ernst Kol’man and Sonia Yanovskaya
From Unter dem Banner des Marxismus

The enormous interest shown in the study of Hegel by science in the
Soviet Union is best justified in Lenin’s philosophical legacy:

‘Modern natural scientists (if they know how 1o seek, and 1f we
learn to help them) will find in the Hegelian dialectics materialis-
tically interpreted a series of answers to the philosophical.problems
which are being raised by the revolution in natural science a_nd
which make the intellectual admirers of bourgeois fashion
“stumble’ into reaction.’

If materialism wishes to be militant materialism, it must set itself
such a task and work systematically at solving it, otherwise

‘eminent natural scientists will as often as hitherto be helpless in
making their philosophical deductions and generalisations. For
natural science is progressing so fast and is undergoing such a
profound revolutionary upheaval in ail spheres that it cannot pos-
sibly dispense with philosophical deductions.” (‘On the Sig-
nificance of Militant Materialism”)

Science and mathematics in the Soviet Union are uninterruptedly
engaged in strengthening and extending their philosophical foun-
dations with the help of the study of Hegel’s dialectics from .the
materialist point of view, in order to continue their struggle against
the pressure of bourgeoiss ideas and against the attempted rf.storauo.n
of the bourgeois world outlook as successfully and aggressively as it
has so far. ‘

What comes under consideration for the purposes of mathematics,
besides various passages from the various works and from the Marx-
Engels correspondence, and particularly Anﬁ-W@ and T!te
Dialectics of Nature and Lenin’s philosophical works, is also Marx’s
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previously unpublished manuscripts, of which the Marx-Engels Insti-
tute in Moscow possesses 865 closely-written quarto sheets in photo-
copy. Part of this work, mainly concerning the nature of dif-
ferentiation and Taylor’s Theorem, has already been deciphered.

How does the materialist dialectic assess the role of the Hegelian
philosophy of mathematics? Marxism-Leninism proceeds from the
principle that:

“The mystification that the dialectic suffers in Hegel’s hands in
no way prevents him from being the first to present its general form
of working in an all-embracing and conscious way. With him it
stands on its head. One must turn it right side up again in order to
discover the ratonal kernel within the mystical shell.’ (Marx,
Afterword to the Second Edition of Capital, 1873.)

He therefore, of course, also considered Hegel’s philosophy of
mathematics from the point of view of a criticism that distinguishes,
which knew how to separate the postive kernel of the material and its
faithful translation and transformation from the negative shell of the
mystically-distorted ideal. Thus we see the positive arid the negative
woven together in Hegel’s philosophy of mathematics and we pose
ol:lrlslelves the task of freeing the materialist kernel from the idealist
shell.

The attirude of the founders of Marxism to Hegel’s mathematical
views can be seen from the following quotation from Engels:

‘I cannot pass over without a comment on old Hegel, who they
say had no profound mathematical scientific education. Hegel
knew so much about mathematics that none of his pupils were in a
position to publish the numerous mathematical manuscripts
among his papers. The only man to my knowledge to understand
enough about mathematics and philosophy 1o be able to do that is
Marx.” (Engels, Letter to A. Lange, March 29, 1865)

We dialectical materialists see the merit of Hegelian philosophy in
the field of mathematics in the fact that Hegel:
1. was the first to brilliantly guess the objective genesis of quantity as
a result of the dialectic of quality;
2. correctly determined the subject matter of mathematics and cor-
respondingly also its role in the system of sciences and gave an
essentially materialistic definition of mathematics which smashes
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apart the framework of the bourgeois world-outlook with its charac-
teristic quantity fetishism (Kant and pan-mathematicism);

3. recognised that the field of differential and integral calculus is no
longer a merely quantitative field, but that it already contains qual-
itative moments and traits which are characteristic of the concrete
concept (unity of internally contradictory moments); and that con-
sequently

4, any attempt to reduce infinitesimal calculus to elementary
mathermnatics, to annihilate the qualirative leap between the two, must
from the outset be regarded as ill-fated;

5. mathematics, from its own resources, without the assistance of
theoretical philosophical thought, is not in a position to justify the
methods which it itself already uses;

6. the origin of differential calculus was determined, not by the
requirements of the self-development of mathematics, but its source
and foundation are to be found in the requirements of practice
(materialist kernel!);

7. the method of differential calculus represents an analogue of cer-
tain narural processes and therefore cannot be grasped out of itself but
only out of the essence of that field where this method finds its
application.

The weaknesses, mistakes and errors of Hegel's view of
mathematics, which follow with iron necessity from his idealistic
system, rest, from the dialectical materialist point of view, on the fact
that:

1. Hegel believes that the method of differential calculus as a
whole is a method alien to mathematics, so that within mathematics
no transition can be created between elementary and higher
mathematics; consequently however the concepts and methods of the
latter can only be brought into mathematics in an external and arbit-
rary manner, through external reflection, and do not arise through
dialectical development as a unity of the identity and difference of the
new and the old;

2. he thinks that such a transition is only conceivable outside of
mathematics in his philosophical system, whereas by and large he is
forced to carry the true dialectics of the development of mathematics
over to his philosophical system;

3. he often does this however in a distorting and mystifying way,and
in doing so replaces the then still unknown real relations with ideal,
fantastical relations and thus creates an apparent solution where he
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should have sharply posed an unsolved problem, and subjects himself
to the task of proving and defending that in the mathematics of his
day, which was often simply wrong;

4. he considered the factual develoment of mathematics 10 be a
reflection of the development of the logical categories, of these
moments of the self-development of the idea, and denied the pos-
sibility of constructing a mathematics which wouid consciously apply
the diatectical method and would therefore be able to discover the true
dialectic of the development of its own concepts and methods and not
simply take the qualitaive and contradictery moments into itself
through external reflection;

5. correspondingly he is not only not in a position to pose the task of
reconstructing mathematics through the methed of dialectial logic,
but he is forced to jog along behind the mathematics of his day despite
his correct criticism of its basic concepts and methods;

6. he prefers Lagrange's proof of infinitesimal calculus not because it
uncovers the real relationships between the mathematics of the finite
(algebra) and of the infinite (analysis) but because Lagrange brings
the differential quotient into mathematics in a purely external and
arbitrary way, whereby Hegel conforms to the usual shallow interpre-
tation of Lagrange;

7. he denies the possibility of a dialectical mathematics and in his
efforts to diminish the significance of mathemarics excessively, more
than it deserves, he totally denies the qualitative (dialectical) moments
in elementary mathematics {arithmetic). However, as their presence
was obvious to a dialectician like Hegel, while he drove them out at

one point (in the chapter on ‘Quantity’) he had to create them at
another (‘Measure”),

Hegel’s merit in correctly recognising the subject matter of
mathematics deserves to stand high in our estimation, particularly in
view of the fact that even today this question causes the greatest
difficulties in the most varied idealistic and eclectic philosophical
trends because they reflect material reality in a distorted way.

Thus the intitionists (Weyl, Brouwer), following Kant, take the
view that pure a priori intuition forms the subject matter of
mathematics, while the logicists, who since Leibnitz take mathematics
to be part of logic, see in axioms and theorems the laws of reason. The
formalists, like Hilbert, deny the existence of a particular subject
matter of mathematics at all, holding the latter to be a meye collection

|
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of rules that permit us to form various combinations and trans-
formations. The mechanistic empiricists, who classify mathematics as
part of physics and deny its specific nature, think that its subject
matter is physical space and physical time. Others, like Mach, seek its
subject matter in psychology, etc.

However, all these definitions lead to difficulties that none of these
philosophical systems is able to overcome. As we know, the neo-
Kantians (Bieberbach, Nelson) had to face not a few difficulties in
order to reconcile pure a priori contemplation with non-Euclidian
geometry. The logicists (Russell, Frege) were forced to take the view
that mathematics was grammar without subject, object, verb and
predicate, a grammar of the copula ‘and’, ‘or’, ‘if’, etc., in order to
turn it thus into a gigantic tautology incapable of providing any new
knowledge of the subject matter. The mechanistic empiricists were
unable to classify multi-dimensional geometry in their system and
were faced with the choice of recognising a mathematically possible
geometry but excluding the rest from mathematics. The formalists,
who have transformed mathematics into a sort of chess game with
empty symbols, are not in a position to explain its role in technology,
science and statistics. The conventionalists (Henri Poincaré), who
hold that lpath::matical concepts and operations are merely con-
venient, mentally econcmical conventions, thus avoid the question
posed and are unable to make any statement about the development of
these concepts.

Thus none of these philosophical schools, which all grasp one and
only one side of reality, is in a position to understand the link between
mathematics and practice and its laws of development. Hegel alone
gave mathematics a definition such as grasped the essence of the
matter, a definition which, quite independently of Hegel’s views, is
actually profoundly materialist. '

According to Hegel mathematics is the science of quantity, i.e. of a
determination of objects which does not describe them as such, in
what makes them specifically different from other objects and from
themselves at another stage in their development, but only from the
side that is external and indifferent towards change.

‘Pure mathematics deals with the space forms and quantity
relations of the real world -— that is with material which is very real
indeed. The fact that this material appears in an extremely abstract
form can only superficially conceal its origin from the external
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world. But in order to make it possible to investigate these forms
anc! relations in their pure state, it is necessary to separate them
entirely from their content, to put the content aside as irrelevant.’
(Engels, Anti-Drihring, 1878, pp.51-52)

This connection between mathematics and material reality repro-
duces the materialist interpretation of Hegel’s definition of the subject
matter of mathematics. The spatial relationships of our physical space
correspond to the requirements of this definition, and spatial forms
really are, according to Hegel, the subject matter of mathematics,
even though they do not exhaust it, since any relationship that offers
the possibﬂity of various quantitative ‘interpretations’ can become the
su'b]ect matter of mathematics. Thus for example the vortices dealt
with by vector analysis can belong just as much to a fluid as 1o
electrodynamics, which does not mean, however, that these
matherratical vortices are a product of the idea, but that in themselves
they reflect quantitative relations of real i.e. material reality.

Tl}us Hegel's definition grasps the actual essence of mathematics,
p_rowdes the possibility of grasping its link with material reality and
simultaneously shows the limits of mathematics, its place and role in
the system of sciences which, as a whole and in their development,
T'e.ﬂect objective (matetial) reality. From the standpoint of this defin-
ition the definitions quoted above can be not merely rejected a limine
{from the threshold) but actually overcome. In each one of
them moments of truth can be recognised, ‘one of the features, sides,
facets of knowledge’ which, one-sidedly exaggerated and distended
develops ‘into an absolute, divorced from matter, nature:

apotheosised’. (Lenin, ‘On the Question of Dialectics’, Volume 38,
Collected Works, p.363).

This can be done even though Hegel himself was not able fully to
overcome the one-sidedness of these definitions. For in Hegel there are
to be heard motifs which, often pretty eciectically jumbled, simply
echo not only Leibnitz’s logistics but also Kant's construction from
the .elem'ents of a priori contemplation, indeed even the con-
ventionalist and formalist denial of the objective correctness of
mathematical statements. Thus he does in fact correctly describe the
abs.tract, formal essence of the mathematical method, according to
which ‘first definitions and axioms are set up, to which theorems are
attached, whose proof consists merely in being reduced by the under-
standing to those unproven postulates’. (Hegel, System of Philosophy.)
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But he himself one-sidedly exaggerates the moment of tautology in

mathematics, closing his eyes to the evolution of this method which

" leads to the arbitrary and external character of the axioms being

sublated — even though to this day the majority of mathematicians
and philosophers of mathematics do not recognise this — and that in
the development of mathematics the formal-logical moments of
understanding are shouldered aside by the dialectical moments.

It is true that Hegel correctly notes the existence of the sensuous
moments in mathematics, but he relies too much on Kant by reducing
the whole content of mathematics like him to abstract sensuous
intuition. For he agrees with Kant that mathematics ‘does not have to

" do with concepts, but with abstract determinations of sensuous

intuitions’, wherein particularly ‘geometry has to do with the sen-
suous, or abstract intuition of space’, which is true to the extent that
the sensuous moment is particularly pronounced precisely in
geometry, but which must not be made absolute even in relation to

geometry. Moreover Hegel himself goes on to concede that even this

science, which only deals with these abstract sensuous perceptions,
‘nevertheless collides in its path, most remarkably, in':he end with
incommensurabilities and irrationalities where, if it wishes to proceed
further in determining, it is driven beyond the principle of under-
standing’. (Ibid.) Finally Hegel criticises, and rightly, the “sleight of
hand and charlatanry even of Newtonian proofs’ which tried to
present the laws of experience as the results of calculation. He is
completely correct when he claims that by no means every single
member of a mathematical formula, taken by itself, has to have a
concrete significance and that the mathemarical correciness of the
result is no guarantee of the real sense (i.e. which an existence
would correspond) of the result of the calculation. But at the same
time what this amounts to in Hegel is that in mathematical prop-
ositions in general he denies correctness as such in them themselves,
that he considers mathematics, as do today’s formalists, only from the
aspect of its inner logical consistency, and not of its objective truth,
i.e. only as a calculation, but not as a science which has its own subject
of research.

Being the science of the abstract determination of quantity,
mathematics can only portray one side of reality. Between it and
physics there is already an essential difference, a node, a transition to
the new quality. For physics already researches matter from the
gualitative, essential side. Its molecules, atoms and electrons are no
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longer indifferent relationships in which mutually differing things can
emerge without changing their quality, but precisely molecules,
atoms and electrons in the wholeness of their particularity, the
specific way they arise and develop. Therefore physics cannot be
reduced to mathematics; the role of mathematics in science is limited.
This standpoint is diametrically opposed to that of Kant, according to
which science is only worthy of the pame to the extent that
mathematics finds a place in it, .

By coming out against the fetishisation of quantity, which after all is
only a reflection of the abstract money-trading relations of the
bourgeois order, Hegel in this case actually burst apart the framework
of bourgeois philosophy. However, since he did not base himself on
another class, but was and remained a philosopher of the bourgeoisie,
he could only develop this, in its essence profoundly materialist
standpoint, in an idealist way, 'and thus to unbridled hypertrophy.
What was materialist in this standpoint of Hegel’s is made particularly
clear by the fact that it is precisely the notorious ‘mathematicisation’
of physics which has rendered the greatest service to idealism in
philosophy and science. Not in vain did the natural philosopher Abel
Rey, who clesﬁsed materialism, write that ‘the crisis in physics lies in
the conquest of the realm of physics by the mathematical spirit’ (Abel
Rey, La Théorie physique chez les physiciens, Paris 1907, quoted in
Lenin, Volume 14, p.309), a crisis in which “matter disappears’, only
equations remain (tbid).

All the same, what had happened in science — the drawing together
of the two sciences of physics and mathematics — was evaluated by
Lenin as a significant success for science. This is in complete harmony
with Hegel if we interpret him materialistically. Hege! it is true did
not recognise the development of concepts in mathematics, since he

did not count mathematics as part of philosophy, i.e. as a science
dealing with ‘concepts’. '

‘One could also conceive the idea of a philosophical mathematics
knowing by Notions, what ordinary mathematics deduces from
hypotheses according to the method of the Understanding. How-
ever, as mathematics is the science of finite determinations of
magnitude which are supposed to remain fixed and valid in their
finitude and not to pass beyond it, mathematics is essentially a
science of the Understanding; and since it is able to be this in a
perfect manner, it is better that it should maintain this superiority
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over other sciences of the kind, and not allow itself to become
adulterated either by mixing itself with the Notion? which isof a
quite different nature, or by empirical applications.” (Hegel,
Philosophy of Nature, Miller trans., p.38)

But that does not mean that he completely overlooked this

g development. No, he merely transferred it from mathematics in'to his
 gystem of philosophy and here he demanded complete unity of
. development.

Between geometry and mechanics there must be a unity, everything

b must be linked by a chain of dialectical deduction, by the chain of
i development. Even the fact that our space has precisely three dlmerlx-
K. sions must find its explanation in the unity of development, but this
¥ cannot be achieved with the means of mathematics alone, I:n!.u:3 as
f Hegel said, with the means of philosophy, as dialectical mat.enahsm
{ maintains with the means of physics. Between physics and
[ mathematics there is a unity of development and not of. reduction, a
] unity of identity and difference. For not only the one science bl:lt the
b other too represents, as we maintain, real i.e. material reality at
b different levels of its complexity and development. The geometry of

physical space and mechanics are two such fields, one standing

¥ directly above the other; between the principle of gravitation and the
b doctrine of the properties of material time-space there must therefore

be a link,, but at the same time a difference too. To discover this link

¥ we must develop geometry further, ‘physicise’ it, if one may use the
£ expression.

Einstein cotild not have developed his theory of relativity had not

A geometry progressed in the appropriate direction in which it f‘illed
' itself with physical content. Riemann’s differential geometry ‘sub-
' lates’ — using this term in Hegel’s sense — Euclidian geometry by
. Qllowing the latter validity only as a moment, by subordman.ng and
! incorporating the geometry of ‘rigid’ unchanging space toand into the

constant curvature of the geometry of a changeable ‘fluid’ space,

which only remains Euclidian in its infinitely small parts, of a space

where ‘either the reality on which the space is based forms a discrete
multiplicity or the basis of the measure relations must be sought
outside in forces operating on them to form them’, (ibid, p.284)
where therefore bodies are no longer ‘indifferent’ in their mutual
‘distance’ since the length of the path travelled depends on ‘hichry’. It
is not physics that is sublated and subsumed into mathematics, but
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{:nat.hf:matics that is developing and coming closer to physics by taking
into itself more and more qualitative moments of measure. This
devclqpxlnent is therefore proceeding completely in the sense of the
Fm.nerlahstically interpreted dialectical method of Hegel, even though
it just as completely contradicts his system, which could not tolerate
dialectics in ‘conceptless’ mathematics. '
T!nus the successes of the physical theory of relativity are no more to
be h.nl.ted to Hegel’s idealist system than they are to be with the
r(':latnu.st philosophy, they came into being thanks to the spontaneous
dialectics of the scientific researcher, which involuntarily reflects the
true dialectic of nature. But the failures which Einstein’s physical
Fheory of relativity is suffering at the momeant in its efforts to create an
image of '_‘he world that adequately reflects reality and at the same time
do'es justice to quantum relations, ape based on an inability to grasp
thls reality as a unity of continuity and the discrete, on the obstinate
desire to present it as the absolute continuum of ideal thought.
. By removing dialectics from nature, from science, and transferring
itto his philosophical system placed above nature, Hegel acts as a true
xdc?a‘list. For that very reason not only did he deny mathematics the
at‘nhty to proceed in a consciously dialectical way but he also, despite
his pronounced objectivism, falls into a purely subjective position in
mathematics.

‘To trear an equation of the powers of its variables as a relation of
th_e ﬁmcﬂqns developed by potentiation can, in the first place, be
said to be just a matter of choice or a possibility; . . . urility of such a
transformation has to be indicated by some further purpose or use;
ant.:l the sole reason for the transformation was its utility’ (Hegel?
Science of Logic, Miller trans., p.281) ,

— he wrote, in a style that we find again in Mach or Poincaré. For
the mathematically infinite, which emerges in mathematics in the
form. of the series, the transition of limir, fluxion, differential
quogents, the infinitesimal, etc., is no longer something merely quan-
titative from his standpoint, but already contains a qualitative
moment, so _that here mathematics cannot avoid the concept, whereas
thf: concept is supposed to be something alien to mathematics, some-
thing which is supposed to contradict all its laws, and thus
mathen‘:latics can only take it in an ‘arbitrarily lemmatic way’ from a
field ahen_ to mathematics. Hegel correctly states that elementary
mathematics would never have given birth to analysis out of itself,
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E-that it was driven to do so by the requirements of ‘application’, i.e. of

g practice, technique, science.

When Hegel writes: ‘The appearance of arbitrariness presented by

E the differential calculus in its applications would be clarified simply

by an awareness of the nature of the spheres in which its application is

§, permissible and of the peculiar need for and condition of this appli-
4 cation’, (ibid., p.284) this materialist kernel is in completely the same

' sense as Engels’s following claim concerning the material analogies of
i mathematical infinity:

i

F:

‘As soon, however, as the mathematicians withdraw into their
impregnable fortress of abstraction, so-called pure mathematics,
all these analogies are forgotten, infinity becomes something
totally mysterious, and the manner in which operations are carried
out with it in analysis appears as something absolutely incom-
prehensible, contradicting all experience and all reason.’ (Engels,
Dialectics of Nature, p.271)

But as a result of Hegels idealist blinkers he does not notice, and in
his time it was difficult to notice, how by this influence all the

j operations and concepts of mathematics came into motion and the

I whole mathematical edifice is renewed from the ground up. He
¥ correctly notes the failure of the attempts to assimilate the new
 concepts by the means of old ideas, butas a bourgeois philosopher
. who only intends to explain the world and not to change it, he does not

4 atall pose himself the task of transforming mathematics dialectically.

“Until the end of the last century, indeed until 1830, natural

scientists could manage pretty well with the old metaphysics,

because real science did not go beyond mechanics - terresirial and

cosmtic. Nevertheless confusion had already been introduced by

higher mathematics, which regards the eternal truth of lower

mathematics as a superceded point of view.” (Jbid,. p.203 [the
. words in italics were omirted in the original article — Ed.])

¥ So Engels claims, thus far agreeing with Hegel. But from here on the

" difference starts, because Engels goes on:

‘Here the fixed categories dissolved, mathematics had arrivedon a
terrain where even such simple relations as that of mere abstract
quantity, bad infinity, assumed a completely dialectical shape and
forced mathematics, against its will and without knowing it, to

become dialectical.” (Tbid.)
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According to Hegel these dialectical moments, which are alien to
the elementary mathematics of constant magnitudes, cannot be adop-
ted by mathematics at all. All the attempts by mathematics to assimi-
Eate them are in vain, for since mathematics is not a science of
ooncept", therefore naturally no dialectical development, no move-
ment of its concepts and operations on its own ground is possible, and
the (?nly possibility that remains open to it is to ‘agree upon a con-
veguon’ af-bitrarily, according to Lagrange to designate ‘derivatives of
a given primary function’ as the coefficients of a particutar member of
the development of Taylor’s series of that function. At best what can
be shown in this is the convenience and suitability of precisely that
and no other ‘convention’.

Tl'l(‘: great dialectician correctly criticises all the attempts under-
taken in his day to prove analysis, but in doing so he does not draw the
expected conclusion that these attempts failed because they did not
develop analysis dialectically but tried to reduce it to elementary
mathcmat%cs. He concludes rather that this is impossible in the field of
matl?ems_mcs, and that 1t is only possible in the interior of philosophy
anFl in his system of categories developing out of one another. While
driving c!ialectical development out of mathematics in this way and
tran.sferrfng it to his system of pure categories of logié, he often
subjects it to quite abstruse, sophistic and fantastic mystification. As
an Fmple of this one only needs to read how intensive quantity, after
uniting with its opposite, extensive quantity, goes over to an infinite
process, and more of the like. Hegel’s artificial, mystical and mys-
tlfy_mg T.ransitions confirm in this field too that idealist dialectics,
which 2ims to develop concepts out of themselves and does not reflect
real r?,lanons and transitions, the movement and development of
material reality, becomes fruitless because of its idealist moment; that
there can be noscientific dialectic other than the materialist dialectic.

Howeveir, by annihilating the inner dialectic of concept in
matheu'mn'c:s Hegel deprives himself of the opportunity of
rc\tolutlomsmg mathematics, at least in the interior of his
Phllosop_hical system, and is forced merely to transfer passively and to
prove’, instead of actively working and transforming, and at the best
to propose a change of name, like for example “development function’
instead of ‘derivative’. When Hegel claims that in the interior of his
system of logical categories he has not only proved the possibility but
Pas also given the true substantiation of that samc mathematical
mﬁnf'te in ail its varieties on which all previous attempts to sub-

stantiate analysis had come to grief, in fact he himself is labouring
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finder the same mental images against which he polemicises so shar-
dv. Thus for example he is right when he condemns as unscientific
ind anti-mathematical the method of neglecting infinitesimals of a
igher order on the basis of their quantitative insignificance and when
be declares the same method to be permissible on the basis of the
Prualitative meaning of these magnitudes. Since the differential is a
s nantitative-qualitative relation, in the development

n(n— ) n-27.2
1 17 x2dxc+ ...
khe form of sums appears as something external and unessential, from
bwhich therefore abstraction must be made. ‘Since what is involved is
fnot a sum, but arelation, the differential is completely given by the first
e, he writes (op.cit, p.265), and thus rescues himself with the same
fdodges and bolt-holes of which he completely accuses the creators of
finfinitesimal calculus, whom in fact he follows, at great pains to letin
fat the window what he has just thrown out at the door.
[ Precisely because Hegel, starting from his idealistic standpoint, did
 not pose the task and could not pose it of reconstructing mathematics
| by means of dialectical logic, but only tried to ‘substantiate’ it in the
binterior of his philosophical sytem as it stands, he never achieved even
Fthis task, despite a whole number of the most valuable comments, and
f had as good as no direct influence at all on the further development of
f mathematics although the latter, as we have already shown, was
i spontaneously proceeding precisely along a dialectical path.
f  What is much more responsible for the fact that Hegel’s dialectic
iexerted no influence on the development of science and mathematics
I the bourgeois narrowness that treated him like ‘a dead dog’. This
¥1ed 1o the situation where all that has remained alive from Hegel’s
f works is what Marx and Engels as the ideologists of the proletariat
£ have stood from its head on to its feet from his teachings and have
f placed at the service of the proletarian revolution.
. By overcoming the idealist dialectic in a materialist way, Marx,
b Engels and Lenin were enabled, in contrast to Hegel, to bequeath us
¢-truly scientific theoretical statements, i.e. appropriate to material
Freality, to practice, in the field of mathematics too, which serve us as
guidelines for research, scientific prediction and creation. The nodal
| points here are formed by-the Marxist-Leninist conception of the
" sources and powers of development of mathematics, of its essence, the
' interconnection and significance of its parts, of what is dialectical in
Y mathematics itself and of the role that mathematics has to play in

¥

f. relation to other sciences,

(x+ dx)*— x* = nx™"dx +
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‘But it is not at all true that in pure mathematics the mind deals
only with its own creations and imaginations. The concepts of
number and figure have not been derived from any source other
than the world of reality. The ten fingers on which men learat to
count, that is, to perform the first arithmetical operation, are
anything but a free creation of the mind. Counting requires not
only objects that can be counted, but also the ability to exclude ail
properties of the objects considered except their number — and
this ability is the product of 2 long historical evolution based on
experience. Like the idea of number, so the idea of figure is
borrowed exclusively from the external wotld, and does not arise in
the mind out of pure thought. There must have been things which
had shape and whose shapes were compared before anyone could
arrive at the idea of figure . . . Like all other sciences, mathematics
arose out of the needs of men: from the measurement of land and
the content of vessels, from the computation of time and from
mechanics. But, as in every department of thought, at a certain
stage of development the laws, which were abstracted from the real
world, became divorced from the real world, and are set up against
it as something independent, as laws coming from outside, to
which the world has to conform. That is how things happened in
society and in the state, and in this way, and not otherwise, pure
mathematics was subsequently applied to the world, although it
borrowed from this same world and represents only one part of its
forms of interconnection — and it is only just because of this that it
can be applied at all.’ (Engels, Anti-Didhring, pp.51-52)

And further on:

“The mystery which even today surrounds the magnitudes
employed in the infinitesimal calculus, the differentials and
infinities of various degree, is the best proof that it is still imagined
that what we are dealing with here are pure “free creations and
imaginations” of the human mind, to which there is nothing
corresponding in the objective world. Yet the contrary is the case.
Nature offers prototypes for all these imaginary magnitudes.’
(Engels, Anti-Diikring, p.436)

This conception naturally has nothing in common with thar of
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b sidered not as absolute, unchangeable, eternal truths, but as parts of

k' the ideological superstructure of human society tied to the latter’s
" fate. It thus goes without saying that the main Jaw of social develop-
' ment, the law of class struggle, cannot remain without influence on
" mathematics.
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“There is a well-known saying that if geometrical axioms affected
human interests attempts would certainly be made to refute them.
Theories of the natural sciences which conflict with the old pre-
judices of theology provoked, and still provoke, the most rabid
opposition.’

This standpoint, which thus has nothing in common with the claim
by Kautsky and Cunow that mathematics and the natural scienct.s
must be counted completely among the forces of production, whi_cl} is
the same as denying the class struggle within them, rejects the division
of sciences into exact — mathematics and the natural sciences — and
not exact — the social sciences.

The class standpoint in mathematics must not, however, be inter-
preted in such a way that all previous mathematics is rejected as a
whole and that in its place a mathematics constructed out of com-
pletely new elements must be set up according to totally new prin-
ciples. We take the position that the development of mathematics 1s
determined by the developing productive forces (whereby
mathematics itself has a reciprocal effect on the productive forces) and
consequently reflects material reality. However, the produc'tive _foroes
exert their effect on mathematics by means of the connectm-g link of
the production relations, which in class society are class re'lauons and
stamp the distorting class impress on mathematics. Thus
mathematics displays a dual nature.

‘Pﬁilosophical idealism is only nonsense from the standpoint of
crude, simple, metaphysical materialism. From the standpoint of
dialectical materialism, on the other hand, philosophical idealism
is a ome-sided, exaggerated, uberschwengliches (Dietzgen)
development {inflation, distention) of one of the features, aspects,

empiricists such as J.8. Mill, since unlike theirs it does not fimjt i facets of knowledge into at;[ absolu::.l; df!;(;f:d fromtlz(l{a::tdcrogrzz
" p 7 i e is no
cognition to induction, but in contrast to the ‘pan-inductionists’ that o nature, apotheosised . . . Human hiO;: ooty anproximates a
Engels laughs at considers the logical as the historical worked over. foll.ow) a sfrmght lme., but a curve which endless! )t' pp tioxxman iy
Thus mathematical concepts and conformities o law are con- 4 series of circles, a spiral. Any fragment, segment, sec
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curve can be transformed (transformed one-sidedly) into an inde-
pendent, complete, straight line, which then {if one does not see
the wood for the trees) leads into the quagmire, into clerical
obscurantism (where it is anchored by the class interests of the
ruling classes). Rectilinearity and one-sidedness, woodenness and
petrification, subjectivism and subjective blindness — voila the
epistemological roots of idealisn. And clerical obscurantism
(philosophical idealism), of course has epistemological roots, it is
not groundless; it is a sterile flower undoubtedly, but a sterile
flower that grows on the living tree of living, fertile, genuine,
powerful, omnipotent, objective, absolute human knowledge.’

(Lenin, ‘On the Question of Dialectics’, Collected Works, Vol.38,
p-363)

All the less can bourgeois mathematics be simply fejected, but on
the contrary it must be subjected to a reconstruction, since it rep-
resents the material world, albeit one-sidedly and distortedly, never-
theless objectively.

‘But if mathematics owes its origins to practice, if it reflects real
relations and conditions derived from material reality (albeit in a
completely abstract and distorted form), therefore it must be dialec-
tical. For “dialectics, so-called objective dialectics, prevails through-
out nature’ (Engels, Dialectics of Nature, p.211), and ‘the dialectics in
our head is only a reflection of real development which takes place in
the realm of nature and of human society and which follows the
dialectical forms’ {(Letter to Konrad Schmidt, November 1, 1891).
‘This mystical in Hegel himself, because the categories appear as
pre-existing and the dialectics of the real world as their mere reflec-
tion’ (Dialectics of Nature, p.203). And actually as we have already
said, Engels held that higher mathematics was dialectical since the
introduction of variables by Descartes brought into them at the same
time movement and therefore also dialectics. Hegel correctly noted
that new qualitative and dialectically internally contradictory
motnents thus penetrated into mathematics. But he overlooked what
Engels emphasised, that is to say that mathematics itself was thus
forced, although unconsciously and against its will, to become dialec-
tical and that therefore the dialectic of the development of its basic
concepts and methods must be sought within mathematics itself.

Nevertheless, elementary mathematics, just like formal logic, is not
nonsense, it must reflect something in reality and therefore it must
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. ‘contain certain elements of dialectics. Engels too can actually see it,in
. pontrast to Hegel.

“Number is the purest quantitative determination tl.:lat we know.
But it is chock full of qualitative differences . . . 16 is not merely
the sum of 16 ones, it is also the square of four, the fourth power of
two . . . Hence what Hegel says (Quantity, p.237) on the absence of
thought in arithmetic is incorrect.” (Ibid., pp258-259)

Even in elementary algebra and arithmetic hesees a ‘transformation

X of one form into the opposite’ which is ‘no idle trifling’ but ‘(.)ne of the
¢ most powerful levers of mathematical science withou.t which today
¥ hardly any of the more difficult calculations are carried out (ibid.,
| p.258)

Marx however saw, not only in agreement with Hegel, both the

impossibility of all attempts to provide a forma'l-logical subs!annauon
' of analysis, and also the childishness of trying to make it rest on
I sensuous intuition, on the graphic, etc. He not only fought for the
E dialectic of mathematics, particularly of analysis, but more than that
{ he undertook an independent attempt to build up a @alecueal _foun—
. dation based on the unity of the historical and the log_lcal. I.n domg 50
¥ Marx poses himself the task, as we have already mt:*n_uoned in passing,
E  of not reducing analysis to arithmetic, as the loglqsm, starting w1t_h
| Weierstrass, later tried to do, which, despite all their achievements in
b deepening the way in which mathematical problems are posed, led to

the well-known paradoxes of set theory which destroyed the whole

§. structure, not only mathematical but alsq logical, which had been
| specially erected for that purpose. Marx tries to show how the essen-
" tially new differential and integral calculus grows out of el‘ement?ry
£ mathematics itself and out of its own ground, appearng as a s:peaﬁc
type of calculation which already operates 'mdep.endentl'y on its own
r ground’, so that ‘the algebraic method therefore inverts itself into 1ts

i i i i in thi leap that
exact opposite, the differential method’, al,ad‘m this way as 2 leap
‘flies in the face of all the laws of algebra’. “This leap from ordinary

k. algebra, and besides by means of ordinary algebra , into the algebra of

ovariables . . . is prima facie in contradiction to all the laws of con-
ventional algebra.’ (See pp.20-21, p.117, this vol}nme — Ed) '
Just like Hegel, Marx is closest to Lagrange in his prof)f of analysis. .
But his conception of Lagrange is fundamentally different from
Hegel's conception. Hegel conceives Lagrangg, as we have already
seen, according to the usual shallow interpretation, so that Lagrange
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appears as a typical formalist and conventionalist introducing the
fundamental concepts of analysis into mathematics in a purely exter-
nal and al:bitrary manner. What Marx admires about him, on the
contrary, is the exact opposite; the fact that Lagrange uncovers the
connection between analysis and algebra and that he shows how
analysis grows out of algebra. “The real and therefore the simplest
C(_mnecu'ons between the new and the old’, Marx writes ‘are always
discovered as soom as the new takes on a rounded-out form, and one
can say that differential calculus obtained this relation through the
theorems of Taylor and MacLaurin. It thus fell to Lagrange to be the
first to reduce differential calculus to a strictly algebraic basis.” But at
tlTe same time Lagrange is criticised by Marx for overlooking the
dialectical character of this development and staying too long on the
ground of algebra and disparaging the conformity to law and method
of gna.lysis itself. For that reason ‘he can only be used as a starting
point in that respect’. Thus Marx, the true dialecrician, fights on two
fronts here too: against not only the purely analytical reduction of the
new to the old, which was so characteristic of the mechanical
fnethodology of the 18th century, but also against the purely synthetic
.mtrogluction of the new from outside, which is so typical of present-
day intuitionists also, which presents the principle of complete
mathe_-matical induction as that which is new, coming from outside,
from intuition and thus obliterates the transition between logic and
mathematics. Here too Marx fights for dialectical unity, for the unity
of analysis and synthesis.

F}'O{n the dialectical matertalist conception of mathematics as a
depiction, although extremely abstract, of the laws of moton of
xgaterial reality, it follows that dialectical materialism has 2 much
lngh'er estimation of the role of mathematics than Hegel did. Engels
pa‘mcularly emphasises that ‘a knowledge of mathematics and natural
science is necessary for a conception of nature which is dialectical and
at the same time materialist’, (Anzi-Diihring, p.16) although he does
not overiook the difficulties of applying it to the various branches of
knowledge and particularly emphasises that ‘the differential calculus
for the first time makes it possible for natural science to represent

g;tglsmam:ally processes and not only states’. (Dialectics of Nature,

‘The increasing difficulties offered to the mathematics of com-
plicated form.s of motion, piling up in an ascending series in leaps
from mechanics to physics, from physics to chemistry, from there to
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'- biology and onwards to the social sciences, do not, in the dialectical

materialist conception, entirely block its path, but allow it the pros-

pect of even ‘determining mathematically the main laws of capitalist
\ economic crisis’ (Marx, Letter to Engels, May 31, 1873).

Dialectical materialism considers the dialectic of concepts as only

i the conscious reflection of the dialectical movement of the real world,

and holds this interconnection to be valid, the determination of the
ideal by the material, of theory by practice as the leader in the final
analysis. It therefore follows that the standpoint of dialectical

F  materialism on the further development of science in general and also

of mathematics is the direct opposite of the standpoint of Hegel.
Whereas Hegel merely tries to substantiate what already exists, itisa

. matter here of a transformation, the conscious change, the recon-

struction of science on the basis of the guiding role of practice. This
attitude, which sharply distinguishes Marxism-Leninism from
Hegel's philosophy and all other idealist and eclectic world-outlooks,
enables it to see new paths of development in the territory of the
individual sciences and to protect science from stagnation and decay.

Present-day science, the natural science and mathematics of the
capitalist countries, is, just like the whole capitalist economic and
socio-political system, shaken by a crisis unparalleled in both its
extent and its profundity. The crisis of science, which itself serves as
the best testimony against the widespread but completely unfounded
belief that the natural sciences, like philosophy, are supposedly inde-
pendent of politics, shakes above all at the methodological roots. The
panic and the lack of perspective gripping the minds of the ruling class
in the social field is reflected in science, in the flight of the majority
back to mysticism, while ‘a2 portion of the bourgeois ideologists who
have raised themselves up to the level of comprehending theoretically
the historical movement as a whole . . . goes over to the proletariat’
(Marx and Engels, Communist Manifesto), strives to grasp its world
outlook and methodology, dialectical materialism, and to impose itin
science, and naturally feels itself drawn to the science of the victorious
proletarian revolution. The present-day crisis of science is, however,
destroying not only the philosophical justification of science, but the
skeleton of science itself. Not only does it deprive it of material means
and labour power, but it drives its thematics into the blind alley of
perspectivelessness, bringing ever closer the peril that the apparatus
of scientific theory itself will be blunted and will prove unable to solve
the problems of practice.

Thus Bertroux (P. Bertroux, L’Idéal Scientifique des
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Mathématiciens, 1920} for example shows the ways in which the
mathematician chooses his themes nowadays, and comes to the dis-
consolate conclusion that the overwhelming majority of the new
mathematical works consists in small improvements and
enlargements te and analogies of older works, that the method of
mathematical research that even Leibnitz complained of, which leads
to a flood of essays and to ‘disgust with science’, has gained and is
gaining ground, but that no other paths can be recommended to
mathematicians, but that they should continue to rely on ‘the general
tendencies of science in their age’. The origin lies in the separation in
principle of theory from practice peculiar to idealist philosophy, in the
stigma of planlessness borne by the entire capitalist system as a whole.
Only a philosophy which adopts the goal of adequately depicting the
movement of material reality can serve science as a reliable beacon to
preserve it from the deadly separation from practice, from the ‘ever-
green tree of life’. Only the principle of planning, whose introduction
is incompatible with the principle of the private ownership of the
means of production, with the dictatorship of the minority over the
majority, can save science from withering in empty abstractions and,
by unleashing the powers of scientific talent slumbering in the popu-
lar masses, bring it to a new and unimagined bloom.

Science in the Soviet Union, and mathematics as part of it, is strong
for this very reason that it possesses the dialectics of Hegel, materialis-
tically overcome and freed from idealist distortions, and the principles
of socialist planning, which for their part translate into reality the
doctrines of dialectical materialism, as a guideline, and new,
numerically growing mass cadres of the proletarian student body,
bringing forth new scientific powers out of themselves, as bearers.
The carrying out of the Five Year Plan, the electrification of the Soviet
Union, the construction of new railways, the setting up of giant
metallurgical works, of coal mines, etc., the industrialisation of col-
lective agriculture, the construction of socialist towns, the poly-
technicisation of the schools and the liquidation of elementary and
technical illiteracy, all this poses mathematics a great number of
questions which will be successfully solved in a planned way, with the
collaboration of all branches, in collective work and guided by the sole
scientific methodology of the materialist dialectic, and will be able to
have a fruitful effect on the development of mathematical theory.

Thus the philosophy of Hegel is materialised in both meanings of
the word in the Soviet Union: as to its content, and as & mass act
through the proletarian dictatorship. As such, however, it is the
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'-guarantee, that what is immortal even in Hegel's mathematical
E thoughts, from the private property of a privileged caste of acadernics,
. protected by a mystic veil, will become the common property of
[ millions of toilers.




HEGEL, MARX AND THE CALCULUS
by C. Smith
1. Marx’s Mathematical Work

In the preface to the second edition of Anti-Diihring, Engels refer-
red to the mathematical manuscripts that Marx had left, and said that
they were extremely important. But they remained inaccessible for
fifty years, only being published in Russian translation in 1933. In
1968, they were first made available in their original form, in the
Russian edition from which the present volume has been translated.
To this day, very little attention has been paid to them.*

But despite this, Engels’s assessment was right. Marx spent a great
part of the last few years of his life on this work which must be seen,
not as a curiosity of mathematical history, but as a significant con-
tribution to the development of dialectical materialism.

Marx was not a mathematician. In the course of his work on
Capital, he continually strove to overcome his lack of knowledge in
this field, so that he could apply algebraic methods to quantitative
aspects of political economy. Bur, from 1863, his interest turned
increasingly to the study of infinitesimal calculus, not just as a
mathematical technique, but in relation to its philosophical basis. By
1881, he had prepared some material on this question, and this forms
the greater part of this volume. It is clear that these manuscripts were
not intended for publication, being aimed at the clarification of Engels
and himself. Not only is the first manuscript marked ‘For the General’
and the second ‘Fir Fred’, but they are written in that mixture of
German, English and French in which the two men usually com-

municated.

Much ink has been spilled in recent years to try to show that Marx
did not agree with Engels’s work on the natural sciences. These efforts

* See D.J. Struik, *Marx and Mathematics’, Science and Sociery, 1948, pp.181-196. V.
Glivenko, Der Differentialbegriff bei Marx und Hadamard’, Unter dem Banner des Mar-
xismus, 1935, pp.102-110.
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are part of the hostility to the idea of the dialectics of nature and the
general attack on dialectical materialism as a whole. They never had
any basis in the published writings of Marx, or in his correspondence
with Engels. These manuscripts show, apart from anything else, that
Engels’s work was part of a joint project on the part of the two
founders of materialist dialectics. :

When we read the letter in which Engels gave his reaction to them,
we get a clue to their real significance. * Engels comments: ‘Old Hegel
guessed quite correctly when he said that differentiation had for its
basic condition that the variables must be raised to different powers,
and at least one of them to at least the second . . . power.” Leaving
aside for the moment the mathematical meaning of this remark, it
directs our attention to the connection of Marx’s work with its point of
origin: Hegel’s Science o ic, especially the section on Quantitative
Infimity (gﬂler mnslat{(i‘:g:p.238-3l3). Engels knows that this is
what Marx is referring to, without Hegel’s name being mentioned.

It is surprising that the editors of the manuscripts, who have been
so painstaking in following up all Marx’s mathematical references,
should have ignored this quite unmistakable connection. While the
conclusions of Hegel and Marx reflect the conflict between idealism
and materialism, of course, they discuss the same issues and refet to
many of the same authors. It is worth noting that, while Hegel often
stresses his opinion that mathematical forms are quite inadequate for
the expression of philosophical ideas, he nonetheless spends about
one-eighth of the Science of Logic on the question of mathematics,
most of this in relation to calcufus. Marx, on the other hand, never
echoes Hegel’s deprecatory attitude to mathematics.

2. The Crisis of Infinity

In the course of 2,500 years, mathematics has undergone a pumber
of profound crises, all of which may be traced to the question of the
infinite, Greek mathematics ran into this trouble in the 5th century
BC, from two directions. The first was when Zeno produced hxs
famous paradoxes.§ Apparendy his aim was to justify the contention

* Engels to Marz, August 10, 1881. See page xxvii-xxx for a ranslation of this letter
s two other items from the Marx-Engels correspondence.

+ Perhape Marx’s references to Newton's Principia were prompied by thosc of Hegel.
His references 1o John Landen certainly were.

§ See Lenin, Collected Works, Vol.38, pp.256-260.
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of his master Parmenides, that Being is one and unchanging, by
showing thar multiplicity and motmn led to contradiction, and were
therefore mere appearance.,

Al four of Zeno’s paradoxes — “Achilles and the Tortoise’, “The
Arrow’, “The Dichotomy’ and “The Stadivin’ — turn on the problems
of the infinitely small magnitude and the infinitely large number.
They demonstrate that movement is contradiction, as is the indefinite
divisibility of space and time.

Soon after they were launched on the academic world it was shaken
by a second bombshell. The followers of Pythagoras believed that
number — and that meant the set of integers 1, 2,3 . . . — was the
fundamental basis of all Being. But the geometrical theorem named
after their leader showed that the lengths of certain lines, for example
the diagonal of a square exactly one unit in size, could not be measured
in terms of integers. Today we would say that /2 is not a rational
number. They tried to keep this scandal a secret, but the terrible news
got out.

It is easy to see that this troubie also springs from the infinite, if you
try to write down as a decimal the number whose square is exactly 2.
Gree_k mathematics evaded the question of infinity from then on, by
restricting its attention to the relations between lines, areas and
volumes, without ‘ever attempting to reach a general conception of
number. .

It was partly in response to these problems of infinite divisibility
that the Ionian philosophers — Europe’s first physicists — developed
their conception of the atoms, indivisible pieces of matter constantly
moving in the void. This concept, revived after 2,000 years, became
the foundation for the mechanistic science of Galileo and Newton. As
we shall see, this attempt to avoid the contradictions of the infinitely
divisible continbum could achieve its great successes only within
definite Limits.
 Mathematics from the time of the Renaissance increasingly found
itself facing the question of movement, and this confrontation led in
the seventeenth century to the emergence of the algebraic geometry of
Descartes and of the calculus.* Movement meant that the moving
object had to pass through ‘every point’ of a continuous interval.

* Boyer, The History of Calculus, is still the best account. Baron, The Origins of the
Calcubus nmedewbdm:hepmdbefwcﬂewmmdl.ﬁhmu For a useful brief
account, see Struik, A Concise History of Mathematics.
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Science would not escape the problem of sub-dividing the interval
‘indefinitely’ into ‘infinitely small’ pieces. Up to the time Hegel was
writing (1813), mathematicians freely operated with such objects,
adding them up as if they were ordinary numbers. Sometimes they
obtained results which were correct and useful, and sometimes they
obtnained nonsense in algebra. '

Newton had to express in mathematical form the concept of instan-
taneous velocity. If an object is moving with uniform speed, this is
easy: simply divide the distance travelled by the time it took to cover
it. But what can be said about an object which is speeding up or
slowing down? We must find the average speed over some time
interval, and then consider smaller and smaller intervais. But to
obtain the velocity ‘at an instant’ would eatail dividing ‘an infinitely
small distance’ by an ‘infinitely small’ time. It wouid be the ‘ratio of
vanishing magnitudes’.

- Earlier writers, notably Galileo’s pupil Cavalieri, had written of
tindivisibles’, objects without length, which, when taken in infinite
number, somehow made up a finite length. Newton refused to take
this way out. The numerator and denominator of this ratio had to be
‘vanishing divisibles’. The distance travelled, say x, he called a
“fluent’, while its rate of chenge or instantaneous velocity he called its
“fluxion’, denoted x. A ‘moment’ of time ¢ he denoted ‘0’ — notto be
confused with 0 — so that the distance travelled during this moment
was ¥o. The ¥ was the “ultimate ratio’ between them which, he said,
had to be understood ‘not as the ratio before they vanish or after-
wards, but with which they vanish’. Only then could their powers —
squares, cubes, etc. — be taken as zero, or ‘neglected’. Both Newton
and Leibnitz who originated the differential calculus independently at
the same period, suruggled to explain what this meant. Leibnitz
invented the now standard notation ‘dx’, ‘df’ for his ‘differentials’,
whose ratio was the ‘differential quotient’ % .No wonder that Bishop

Berkeley madeé the most of this obscurity — Marx was to call it
‘mysticism’ — to ridicule the Newtonians. He called their *vanishing

. quantities’ ‘the ghosts of departed quantities’ and asked how anyone

who accepted such things could object to the mysteries of religion.*

* The full title of Berkeley's 1734 polemic, directed against Newton’s follower Halley,
it The Analysts or @ Discowse Addressed to an Infidel Mathematicion. Wherein i is
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Of course, as an Englishman, Newton could get round the prob-
lem: ‘everyone knew’ that things moved and possessed a velocity at
each instant of time. The contradictions of motion could be ighored.
This has been described as ‘empirical dogmatism’, in contrast with
the ‘metaphysical dogmatism’ of Leibnitz.

Throughout the eighteenth century the difficulty remained.
Mathematics developed in leaps and bounds, but the careful and
rigorous argumentation of the Greeks was thrown to the winds. The
phrase of d’Alembert summed up the attitude of the time: allez en
avant et la foi vous viendra (go ahead and faith will come). As great a
mathematician as Euler can find himself trying to base the calculus on
the multiplication and division of zeroes of different orders.*

3. Hegel and the Infinite

This is still the situation when Hegel takes up the issue. He con-
demns Leibnitz in particular for founding the calculus in 3 manner
which was as ‘non-mathematical as it is non-philosophical’ (op.cit.,
p-793).1 His aim in discussing the subject is, he says, ‘to demonstrate
that the infinitely small . . . does not have merely the negative, empty
meaning of a non-finite, non-given magnitade . . . but on the con-
trary has the specific meaning of the gualitative nature of what is
quantitative, of a moment of a ratio as such’. (op.ciz., p.267) To see the
sighificance of this, we must examine the part played by the ideas of
‘finite’ and ‘infinite’ in Hegel’s work, as against the meaning given 10
them by Kant in particular. _

For Kant, as for all bourgeois philosophy before Hegel, thought is
the activity of individual human beings, limited in their knowledge
and power of understanding by their own personal experience. These
‘finite beings’ cannot know things as they are ‘in themselves’, or the
interconnections between separate things. We come into contact with
unlimitedness, freedom, infinity, only when we obey the moral law,
and even this refers only to #mtention, not to the actual consequences of

conceived or more evidemtly deduced than religious mysteries and points of faith. ‘First Cast
the Beam Cut of Thine Oum Eye; and Then Shalt Thou See Clearly to Cast the Mote Out of
Thy Brother’s Eve’.

* E.T. Bell, in The Development of Mathematics, p.284, refers to ‘“The Golden Age of
Nothing’. See Appendix III for a discussion of Euler’s work,

t See also Lenin, op.cit.,, p.209.
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the actions of finite beings. The infinite is and must always remain
unattainable, never actualised.

Hegel spent his entire life fighting against this conception and
exposing its implications, and this with a passion with which he is
rarely credited. For him, the finite things we find in the world are
united with the infinite, and the limited consciousness of individual
people are elements of infinite Mind or Spirit. He condemned those
subjective ways of thought which saw the world as just a collection of
finite things, cut off from each other and from their totality.

Such an outlook could only look upon the infinite as the ‘non-
finite’, beyond our reach. This ‘bad’ or ‘spurious’ infinite was ‘what
ought to be and is not’, just the wearisome repetition of one finite
thing after another, followed by an empty ‘and so on’. Instead of
all-sided necessity, subjectivism only sees the endless chain of cause
and effect, and in place of the unlimited development of the human
Spirit it knows only the separate experiences of isolated hnman
atoms (op.cit., pp.109-156).* '

Spinoza had denied the scholastic ‘infinitum actu non datur’ — ‘there
is no actual infinity’. He saw that to determine something, to set a
boundary around it, was 10 negate everything else, and so to point
bevond the boundary. Hegel applauded this but went a huge step
further. The unity of the finite and the infinite was not something
fixed, ‘inert’, but contained ‘the negative unity of the self, i.e. sub-
jectivity’. What Hegel calls ‘Being-for-self’ is the negation of the
infinite back into the finite, thus the negation of negation, making the
finite a part of the ‘mutual determinant connection of the whole’.
Hegel saw this as the basis of ideslism, ‘the fundamental notion of
philosophy’. The isolated finite thing ‘has no veritable being’; the
negative element which kies at its heart is ‘the source of all movement
and self-movement’.t

Hegel develops this conception of the finite and the infinite in the
course of his examination of Quality, ‘the character or mode’ of Being.
He tries to show how ‘Being-for-self suppresses itself. The qualitative
character, which is the One or unit has reached the extreme point of its
characterisation, has thus passed over into determinateness (quality)
suppressed, i.e. into Being as Quantity.” In analysing Quantity, mag-

* Also Phenomenology of Spirit, Miller translation, pp.143-145; Encyclopaedia, Sec-
tions 93-95_

t Encyclopaedia, end of Sections 95, Also Lenin, op.cit., pp.108-119
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nitude (determinate quantity) and quaentum (how much), he is con-
cerned with ‘an indifferent or external character or mode, of such a
kind that a thing remains what it is, though its quantity is altered, and
the thing becomes greater or less’. (Encyclopaedia, sections 104-105)

Common sense, of course, is happy to take the idea of number for
granted. Hegel shows that it contains contradiction within it. ‘Every-
body knows’ that quantum can be altered. But, says Hegel, ‘not only
can it transcend every quantitative determinateness, not only can it be
altered, but it is posited that it must alter . . . Thus quantum impels
itself beyond itself . . . The limit which again arises in this beyond is,
therefore, one which simply sublates itself again and beyond to a
further limit, and so on to infinity’. (Science of Logic, p.225)

In the ‘bad infinity’ of the alternation of a particular quatity and its
negation, we at least have the interest of the difference between its two
terms. But in the endless sequence of quanta, each term is identical
with its successor, determinateness having been suppressed. This
Quantitative Infinite Progression moves towards ipfinity, but never
gets any closer to it, says Hegel, ‘for the difference between quantum
and its infinity is essentially not a quantitative difference’. It is in this
connection that Hegel discusses the calctlus.

Hegel is deeply dissatisfied with the vagueness of the
mathematicians about differentistion. Are the differentials dy, dx
finite quantities, which can be divided into each other? Or are they
zero? In that case their ratic would have no meaning — or any
meaning you like to give it. But dy or dx are not ‘quants’: ‘apart from
their relation they are pure nullities’. The mathematicians had tried to
treat them as in ‘an intermediate state ... between being and
nothing’, but this cannot exist. For ‘the unity of being and nothing
... is not a state . . . on the contrary, this mean and unity, the
vanishing or equally the becoming is alone their rush’, (Science of
Logic, pp.253-254)

4. Marx and Engels on the Infinite

So Hegel’s detailed examination of the calculus is not at all a
digression, but an investigation of the way science and philosophy had
dealt with questions which lay at the very basis of his outlook. Marx
and Engels, as materialists, did not accept Hegel’s idealism, of course.
But in their negation of Hegel’s system, they based themselves on this
same view of the relation between the finite and the infinite, with its
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profoundly revolutionary implications. Where Hegel saw ‘Spirit” as
the ‘infinite Idea’, Marx grasped the infinite experience of humanity
as the highest form of the infinite movement of matter. The develop-
ment of human powers of production meant the continual penetration
of this movement in all its continually-changing forms and inter-
connections.

The knowledge of each individual man or woman is limited, as is
the knowledge of the entire race at any particular time. But in the
struggle against nature, each finite person expresses in himself the
unlimited potential of mankind to master nature, and through this the
all-sided movement of matter of which he is a part.

That is why the positivist and the empiricist, who know only their
own ‘experience’, face the for them insoluble *problem of induction’.
Since they can never live long enough to ‘experience’ the infinite —
count it, or measure it, or classify it — they must deny its actuality.
Consequently, they can never grasp the essential universality of a law,
and are walled off from universal movement and all-sided inter-
connection.

Engels put the marnter very clearly. He accepts the statement of the
botanist Nageli that ‘we can know only the finite’,

‘in so far as only finite objects enter the sphere of our knowledge.
But the proposition needs to be supplemented by this: “fun-
damentally we can know only the infinite”. In fact all reai, exhaus-
tive knowledge consists solely in raising the individual thing in
thought from individuality into particularity and from this into
universality, in secking and establishing the infinite in the finite,
the eternal in the transitory. The form of universality, however, is
the form of self-completeness, hence of infinity; it is the com-
prehension of the many finites in the infinite . . .

‘Al true knowledge of nature is knowledge of the eternal, the
infinite, and hence essentially absolute. But this absolute know-
ledge has an important drawback. Just as the infinity of knowable
matter is composed of the purely finite things, so the infinity of
thought which knows the absolute is composed of an infinite
aumber of finite human minds, working side by side and suc-
cessively at this infinite knowledge, committing practical and-
theoretical blunders, setting out from erroneous, oae-sided and
false premises, pursuing false, tortuous and uncertain paths, and
often not even finding what is right when they run their noses
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against it (Priestley). The cognition of the infinite is therefore beset
with double difficulty, and from its very nature can only take place
in an infinite asymptotic progress.” (Dialectics of Nawure, pp.237-
238)

‘It is just because infinity is a contradiction that it is an infinite
process, unrolling endlessly in time and in space. The removal of
this contradiction would be the end of infinity. Hegel saw this quite
correctly, and for that reasen weaied with well-merited contempt
the gentlemen who subtilised over this contradiction.” {(Anti-
Diikring, pp.75-76) '

5. Marx and the Calculus

In his mathematical work, Marx echoes Hegel’s scorn for the vain
efforts of the mathematicians to evade the contradictions inherent in
motion, continuity and the infinity, But their atitudes to
mathematics were quite opposed. For the objective idealist Hegel,
mathematics, like natural science, occupied very lowly stages in the
unfolding of the Idea. Mathemarics, he thought, ought to be ‘stripped
of its fine feathers’. *The principle of magnitude, of difference not
determined by the Notion, and the principle of equality, of abstract
lifeless unity, cannot cope with that sheer unrest of life and its
absolute distinction . . . Mathematical cognition . . . as an external
activity, reduces what is self-moving to mere material, so as to possess
in it an indifferent, external, lifeless content.’*

But Marx sees that mathematical absiractions, purely formal as
they must necessarily appear, contain knowledge of self-moving mat-
ter, knowledge of generalised relationships between material objects
which is ultimately abstracted from social practice, and which is
indispensable for practice.

Hegel and Marx are each concerned to express the contradiction of
movement and change, as Hegel says, to ‘really solve the con-
tradiction revealed by the method instead of excusing it or covering it
up’. (Science of Logic, p.277)

Where Hegel only needs to expose the false methods of thought
which underly these ambignities, Marx feels impelled to go deeper
into the mathematical techniques themselves and provide an alter-

* Phenomenology, p.27 See pp.24-26. Also Encyclopaedia Sections 259, 267 (Philosophy
of Nawure).
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native. He wants to be able to develop the derivative %, not as an

approximation, but as an expression of the actual motion of the func-
ton f(x).

Un{(ikeﬂegd,ﬂmrefmmtheworkofd’ﬁhmbatonthjs
question (sce Appendix IV, p.165). He had not resolved the problem,
but had drawn attention to the weakness of ¢xisting mathematical
methods: its lack of a clear conception of fimeit. Marx atrempts to
answer this by the following means, which we summarise in modern
notation.

If we want to differentiate a function f{x), proceed as follows: take
x4 different from x and subtract the expression for f(x) from that for
fxy). Let us call this F(x, xy = flxy— fix), a function of fwo
variables x and x;. Now express F(x,x,, if possible, as
(xs— x)G{x,x,). Finally, in the function G, set x; = x, and call
G(x,x) = f(x), the derivative function. In this way, we avoid afl
wouble with “infinitely small quantities’. Those puzzling differentials
now have meaning only in the relationship df(x) = Fx)dx. (Marx
assumes without good reason that G will always be continucus at x,
= x). :

Nlustrating this with a simple example, take f{x) = x3,

x3—x = (x,—x) (xF+xpx+x9),
50 G(xx) =xi+xx+x?,
leading to f{x) = G(xx) = 3x2.

We should miss the whole point of this, however, if we did not heed
Marx’s remark at the start of the first manuscript: ‘First making the
differentiation and then removing it therefore leads literally to
nothing. The whole difficulty in understanding the differential oper-
ation (as in the negation of the negation generally) lies in seeing kow it
differs from such a simple procedure and therefore leads to real
results.” Marx is referring to the operations of first making x, dif-
ferent from x, and then making it the same as x once more. For only
through this double negation is the actual movement of f{x) registered
in the derivative f(x). This is the idea expressed by Hegel (and
referred to by Engels in his letter to Marx quoted above) when Hegel
says that “the calculus is concerned not with variable magnitudes as
such but with the relations of powers . . . the quantum is genuinely
completed into a qualitative reality; it is posited as actually infinire.”
(Science of Logic, p.253)
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Hegel’s comments on calculus were made just at the point when
mathematics was about to make a fresh effort to 1ackle these issues.
{The Science of Logic was published in 1813). During the next 70
years, the basic concepts of function, limit and number were com-
pletely transformed. But these new ideas were not known to Marx. As
this volume makes clear, his knowledge was drawn from textbooks
which, although they were still in use in his time, did not reflect the
newer developments.*

But this does not mean that the work of Marx and Hegel was
rendered valueless as a result of these changes, for the further expan-
sion of mathematical knowledge to this day continually encounters
the same problems, but at a deeper level.

6. Later Developments

When mathematicians before 1830 spoke of a fumction, what they
had in mind was roughly what Euler had described in the words:
‘some curve described by freely leading the hand’. Lagrange took it
for granted that such a ‘smooth’ object would have a “Taylor expan-
sion’: a + bx + cx*+ dx3. . . , and called it ‘analytic’. (The method
advocated by Marx will only work for such functions.) The more
general modern conception of functional relationship was clarified by
Dirichlet and others in the 1830s. It simply meant that to each of a
given set of values of ¥ corresponded 2 given value f(x). '

It was in 1821 and 1823 that Cauchy published his books which
attempted to give a logical definition of limiz. These ideas were tight-
ened up by Weierstrass in the 1860s. Now, to say that a function f(x)
tended to a limit as x tended to x,, meant the following: there exists a
number L such that, for any positive quantity €, however smalt,
there exists a quantity 8, such that whenever

Xo— d<x<xpt+ &, L—e< fAlx)<L+¢.

Using this idea, it was possibie to define continuity, and understand
the derivative f(x) as the limit of 82+ =A) 45 § tended to 0.+

* To ttus day, students are introduced to calculus with the aid of arguments drawn
essentially from the 18th century. The book by Lacroix, which Marx made so much use
of, was still being reissued in 1881.

1 These idens, as well as those of Cantor, were 10 some extervd anticipated in 1820-40
;y the Bohemian priest Bolzano, although his work was not generally appreciated until
ter.
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Could mathematicians now say that they had returned to the rigour
of argumentation of their Greek predecessors, but at the same time
grasped the nerttle of infinity? Was the new form of analysis able to
dispense with intuitive ideas of space and time? Not yet.

For the idea of ‘limit’ was still infected with intuition in the shape of
the continuous collection of numbers contained in the interval bet-
ween the two values. Weierstrass's definitions aimed to provide a
static framework for what was essentialty dynamic. Together with
Dedekind and others, he grappled with the continuwm of numbers,
clarifying many of the concepts of modern analysis. Then, in 1872,
Cantor’s work appeared, which tried for the first time to deal
rigorously with infinite sets of objects, 1o count the actually infinite,
and to provide a consistent arithmetic of ‘transfinite numbers’.*

In 1900, the leading figure in world mathematics, Henri Poincaré,
could confidently declare that ‘absolute rigour has been attained’. As
Bell reports him, Poincaré was quite certain that “all obscurity had at
last been dispelled from the continuum of analysis by the nineteenth
century philosophies of number based on the theory of infinite classes
. . . All mathematics, he declared, had finally been referred to the
natural numbers and the syllogisms of traditional logic; the
Pythagorean dream had been realised. Henceforth, reassured by
Poincaré, timid mathematicians might proceed boldly, confident that
the foundation under their feet was absolutely sound.” (Bell, The
Development of Mathematics, p.172. See also p.293.)

How wrong he was! In the early years of this century, the geometry
of Euclid, thought by Kant and nearly everyone else to be founded on
self-evident truths, was shown to be not the correct description of
actual space; even worse, the foundations of logic itself began to
shake. These problems of the foundation of mathematics and logic
were directly linked to the paradoxes of infinite sets.

Throughout this century, the search for an uncontroversial basis
for mathematical science has produced the sharpest controversy. In
the attempt to evade the paradoxes of the infinite, two opposite trends
have been at war. On the one side stand the formalists, constantly
trying to see mathematics as a game played with undefined symbols,
having no more meaning than chess. By setting out the rules of this
game in the form of consistent axioms, all the relations between the

* Byt while Cantor believed the infinitely large was actual he absolutely denied the
existence of the actually infinitely small.
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invented objects of the game can be worked out. Then, in 193],
disaster struck, in the form of the theorem of Godel: he showed that
the game called arithmetic could produce well-formulated problems
which were undecidable within the system.

Against the formalists stood the insuirionists , led by Brouwer and
Heyting, tracing their origins back to Kant. For them, mathematics
had at its basis certain unanalysable concepts which were given a
priori, Infinity was not among them, and mathematics had to be
reconstructed after expunging reference to such monsters.

7. What is mathematical knowledge?

These controversies appear to be of interest only to thoseengaged in
the mathematical game. In fact, however, the crisis which still wracks
the foundations of physics turns precisely on the contradictions of the
discrete and the continuous, the finite and the infinite. Some phy-
sicists have been led to consider the possibility of a ‘finitistic
mathematics’ as a way out of their troubles.*

Marx’s work on calculus did not only concern the préblems of
infinitesimals. Having explained his ‘algebraic method’ of dif-
ferentiating, he takes a further step which brings him very close to the
spirit of twentieth century mathematics. He describes the further
development of calculus in terms of a reversal of roles, in which the
symbols for the differendal coefficient are transformed into
‘operational formulac’ (Operationsformel), satisfying ‘operational
equations’. These ideas give a basis for a materialist conception of
mathematical knowledge which is of great importance for dialectical
materialism as a whole. For mechanical marterialism, formal abs-
tractions cairy great dangers. They are taken in isolation from the
movement from living perception to social practice, and the entire
process is seen in reverse, rather like the negative of a photograph. For
the abstract symbel is mistaken for the actual object of knowledge,
while the concrete object is seen only as mere background.

Modern mathematics has generalised the processes of algebra into
stratospheric levels of abstraction, where the objects of the science
seem to be completely undefined. All that we know about themn is the
rufes which govern their relationships to each other, and these seem to
I_:n_e _cle_cided by the will of the mathematician. Empiricists are then

* Se.eWeizsicker,The World View of Physics, Chapter 5. Also his contributions wo T.
Bastin {ed) Quantum Theory and Beyond .
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puzzled by the apparent coincidence which makes precisely these
abstract forms express the relationships of material processes. Marx’s
approach to the calculus, however, shows the dialectical relationship
between the abstract symbols and the movement of matter from
which they have been abstracted.

In discussing the nature of abstraction, Hegel attacks those views
which place the abstract on a lower level than “sensucus, spatial and
temporal, palpable reality’. ‘In this view, 1o abstract means to select
from the concrete object for our subjective purposes this or that mark’.
(Science of Logic, p.587, Lenin op.cit., pp.170-171).

Hegel — from his idealist standpoint, of course — thinks on the
contrary that ‘abstract thinking. . . is not to be regarded as a mere
setting aside of the sensuous material, the reality of which is not
thereby impaired; rather it is the sublating and reduction of that
material as mere phenomenal appearance to the essential ” (Science of
Logic, p.588) Hegel cannot allow these considerations to apply to
mathematics, which he regards as being unable to capture the richness
of movement and interconnection. Marxism, turning the dialectic on
to its material feet, grasps the way that mathematical abstractions,
seen in the context of the entire development of natural science and
technology, can contain real knowledge of the movement of matter.
This is the meaning of Engels’s description of mathematics as ‘an
abstract science which is concerned with creations of thought, even
though they are reflections of reality’. (Dialectics of Nature, p.218)

To the modern student of mathematics, these manuscripts of Marx
have, no doubt, an archaic appearance. But we have seen that the
questions with which they really deal are infinity, the relation between
thinking and being, and movement, the central philosophical issues.
As our brief look at the history of mathematics has shown, it is just
these questions which underlie the crisis which still wracks the foun-
dations of mathematics. These difficulties are linked with the
methodological problems facing many other branches of science,
problems which deepen with every major scientific advance.

A century ago, Marx and Engels paid particular attention to the
development of natural science and mathematics, precisely because
they knew that dialectical materialism could only live and grow if it
based itself on the most up-to-date discoveries of science and con-
cerned itself with the problems which these entailed for fixed, ‘com-
mon sense’ views of reality. Today, this is stll more vital than when
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Engels was preparing his articles against Diibring and his notes on the
dialectics of nature, and when Marx was writing these mathematical
MAanuscripts.

When we look at this work as a whole, another common feature is
striking: the way Marx and Engels return to Hegel for clarification.
Marxism is the negation of absolute idealism — but in the Hegelian
sense of simultancous abolition and preservation. Contrary to the
contention of various revisionist schools, Marx did not make a single,
once-for-alt break with Hegel, but continuously returned to Hegel to
negate his idealism, as did Lenin and Trotsky after him.

These manuscripts, therefore, may be seen as the last of Marx’s
returns to Hegel. They should be a spur to the Marxists of today to
take forward the fight for the dialectical marerialist method in con-
nection with the latest developments in mathematics and namiral
science through a still deeper struggle with Hegel.

Index
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