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PREFACE 

T HE present book is primarily a treatise on induction. As 
such its aim is to examine, in the light of standards of 

logical correctness, various types of argument which can be 
grouped under the common heading of induction. I shall 
sometimes talk of this examination as a reconstruction of argu-
ments. 

Treatment of induction is intimately connected with treat-
ment of probability. On the foundations of probability there 
has been an extensive literature within recent years. So far, 
however, no altogether satisfactory basis has been provided on 
which to accomplish the tasks set forth in this book relating to 
so-called Inductive Probability. It has therefore been necessary 
to devote considerable space to a discussion of probability in 
general. 

Considering the importance of the subject, the number of 
books which deal with induction is extraordinarily small. This 
observation was made by the late Lord Keynes in his admirable 
Treatise on Probability. It remains substantially true even to-day. 
What has been written on induction since the appearance of 
Keynes' book in 1921 has, with few exceptions, been confined 
either to a description and criticism of Mill's methods, or to 
a discussion of the Problem of Hume. 

In the last few years, however, a new interest in the subject 
seems to have awoken, chiefly among authors influenced by 
modern logic. It was, in fact, to be expected that the rapid dev-
elopment of logic in our times, having long since found fruitful 
applications in the fields of mathematics and the exact sciences, 
should at last become felt also in the backward realm of induc-
tion. 

The hope of contributing to the opening of a new era in the 
history of the subject, in which the topic of induction shall no 
longer deserve the name of a scandal to philosophy, has en-
couraged me to publish the present book. It is, however, only 
after great hesitation that I submit my work to the public. The 
more insight I have acquired into the subject-matter of my 
investigation, the more I have been compelled to narrow the 
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PREFACE 
range and relevance of my exposition in order to secure it upon 
a solid foundation. Yet most of what is said here is bound to be of 
a merely provisional and relative nature. I know that the con-
tribution of this book to the subject is but a feeble beginning, 
in need of completion and extension in several directions. 

A main defect of most logical investigations into the nature 
of scientific thinking is that of oversimplification and of the 
assimilation of cases to general patterns which they do not 
really fit. This defect is due to two reasons: failure to state 
arguments with sufficient precision and lack of insight into the 
complex nature of scientific thought and practice. In this book 
I have been mainly concerned with making arguments clear. 
The problem to what extent the arguments have the power to 
illuminate by reconstruction the actual procedures of science 
is, on the whole, not discussed. This onesidedness may perhaps 
create the impression that the author claims for abstract ideas 
a relevance and applicability which they do not possess. I hope 
to be able later to compensate for this narrowness, and I am 
anxious to dissociate myselffrom any claims to an all-embracing 
and unrestricted applicability of my ideas for the purpose of 
understanding the nature of scientific thought. 

The author from whom I have learnt most is undoubtedly 
Keynes. It seems to me that next to Francis Bacon, his has been 
the most fertile mind seriously to occupy itself with the questions 
which are the main topic of this inquiry. I have also drawn 
much inspiration from the works of von Mises and Reichenbach 
on probability. 

During the course of my studies I have been very much 
indebted to my friend, Professor C. D. Broad ofTrinity College, 
Cambridge. Already as a research student in England before 
the war I had the privilege of having detailed discussions with 
him on the topics of induction and probability. He has also 
been good enough to read the manuscript of the present book 
and he has contributed to the development of my thoughts with 
numerous valuable suggestions. Without his unselfish assistance 
and interest this monographic exposition of my ideas would 
probably not have been written. 
Cambridge, G. H. VON WRIGHT. 
December, I 948. 
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Chapter One 

INDUCTION AND ITS PROBLEMS 

I. On the Division of Knowledge. Anticipation and 
Induction 

O F human knowledge there are two main branches which 
may be called formal and material knowledge respectively. 

Their difference can be superficially described by saying that 
formal truth is tautologous and formal falsehood (self-)contra-
dictory, whereas material truth consists in agreement and 
material falsehood in disagreement with facts. Formal truth is 
also called necessary, logical or analytic; material truth con-
tingent, empirical or synthetic. 

The possession of material knowledge may summarily be said 
to depend upon three basic faculties of our cognitive life, viz., 
memory, observation, and anticipation. We remember facts 
which have been, observe (or experience) facts which are, and 
anticipate facts to come. Whether and to what extent these 
three faculties can be sharply separated and defined indepen-
dently of one another, is a problem which we shall not discuss here. 

Of anticipation we can distinguish two types, according to 
whether the anticipatory activity is dependent upon information 
afforded by observation and memory, or not. Anticipation of 
the first kind we shall call anticipation from experience, or 
induction. Whether and in what sense of the above word 
'dependent' non-inductive anticipation actually occurs, is 
another problem which we pass over. 

Of anticipation from experience there are again two sub-
types. 

The first sub-type may, as a first approximation, be described 
as follows: From the information that something has been the 
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A TREATISE ON INDUCTION AND PROBABILITY 

case under certain conditions and that the conditions are re-
peated we anticipate that the same thing will be the case again. 
Anticipation of this kind which occurs in animals as well as in 
men, we shall call induction of the first order. 

Induction of the first order can be studied from several points 
of view. Here we mention four: 

First, it can be studied from an ethological or behaviouristic 
point of view, as the acquisition of habits or characteristic 
responses to stimuli. This study, being part of the psychology of 
learning, may, at least in the simplest cases, successfully employ 
the pattern of conditioned reflexes, roughly in the sense of 
Pavlov and Watson. 

Secondly, it can be studied from a neurological point of view, 
as the acquisition of certain functional and possibly also 
structural units by the nervous system, which are causally 
responsible for the functional units of molar behaviour or habits. 

Thirdly, it can (sometimes) be studied from a phenomeno-
logical or introspective point of view, as expectation, belief, 
and related states of consciousness, arising in the mind under 
certain conditions. 

Fourthly, it can be studied from a logical point of view, as a 
sort of inference or argument. From the propositions that 
something has been the case under certain conditions and that 
the conditions are repeated we infer, as we say, the proposition 
that the same thing will be the case again. The conclusion of 
such an argument we shall call a prediction. 

The second sub-type of anticipation from experience might, 
as a first approximation, be described as follows: From the 
information that something has been the case under certain 
conditions we anticipate that, if the same conditions are re-
peated, then the same thing will be the case again. Anticipation 
of this description, which seems to be characteristically human, 
we shall call induction of the second order. 

Induction of the second order can also be studied under the 
behaviouristic aspect of habit, the neurological aspect of inter-
connexions in the nervous system, and the phenomenological 
aspect of expectation, though this study seems to be of a much 
more subtle and complicated nature than in the case of induc-
tion of the first order. Whether, from the points of view of 
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INDUCTION AND ITS PROBLEMS 

psychology and nervous physiology, the two sub-types of antici· 
patory activity are fundamentally different, or whether the 
second cannot somehow be reduced to the first, is a debatable 
question. 

Finally, induction of the second order can be studied under 
the logical aspect of inference. From the proposition that some-
thing has been the case under certain conditions we infer, as we 
say, the proposition that, if the same conditions are repeated, 
then the same thing will be the case again. The conclusion of 
such an argument we shall call a theory. 

Of theories we can distinguish two basic types, according to 
whether the inductive conclusion is intended unrestrictedly to 
apply to all cases in which the conditions are fulfilled, or to a 
restricted number of such cases only. Theories with numerically 
unrestricted range of application we shall call laws (Laws of 
Nature). 

(It is clear that our use of the words 'theory' and 'law' 
cannot pretend to be co-extensive with all actual uses of them 
in ordinary language or scientific discourse.) 

Given a theory and a proposition to the effect that, in a 
particular case, certain conditions are fulfilled, a prediction 
can be deduced. It may be regarded as one of the chief purposes 
of making theories, to provide thereby a basis for the deduction 
of predictions. 

In this book the study of induction will be mainly confined 
to the logical aspect of inference.-It should be stressed that, 
in ordinary life as well as in science, conscious inference by 
no means always accompanies anticipatory activity. The logic, 
therefore, of making predictions and theories is not so much a 
study of actual intellectual procedures as of certain 'ration-
alized counterparts' of them. This fact, however, does not 
diminish the importance oflogical study for a true understand-
ing of one of the principal aspects of human cognition. 

2. On the Division cif Science. The 'savoir pour prevoir' 
Science, or the methodical search for and attainment of know-

ledge, is sometimes divided into formal and material science, 
15 



A TREATISE ON INDUCTION AND PROBABILITY 

according to whether its aim lies in one or the other of the two 
main branches of human knowledge which we distinguished at 
the beginning of the previous section. 

Material science may be further subdivided into theoretical 
and descriptive science. The distinguishing feature of theoretical 
science is the anticipation of facts from experience. Descriptive 
science is the systematic recording of facts. 

Without claiming to be exhaustive, the above divisions 
exhibit certain types of scientific activity of which the actual 
sciences are a mixture. Any one of the actual sciences has, as a 
rule, a formal as well as a material, and a theoretical as well as 
a descriptive component. Purely formal, purely theoretical, 
and purely descriptive science thus represent borderline cases 
of a three-dimensional scale for the typological arrangement of 
actual sciences. 

Formal science is sometimes called deductive. The antici-
pation of truth from experience is but another word for 
induction. Theoretical material science may therefore be called 
inductive. 

The aim of science has frequently been characterized-by 
the words savoir pour privoir or some equivalent phrase-as 
being to provide a basis for (successful) predictions. It is plain 
from the above that, strictly speaking, this applies only to that 
form of material science, which is here called theoretical. The 
characterization mentioned is not immediately applicable to 
formal science. Nor is it valid for descriptive material science, 
except in the normative sense of setting up an ideal. To what 
extent such a normative claim is justifiable will not be discussed 
here. 

The above characterization of the aim of science is thus an 
exaggeration; The emphasis which has been laid on it is, 
however, illustrative of the important position which induction 
holds in the realm of scientific activity. 

3. Induction and Discovery 
Any act of anticipation from experience may be said to have 

been preceded by an act of discovery. From the failure to 
16 



INDUCTION AND ITS PROBLEMS 
distinguish sharply between anticipation and discovery mis-
understandings and disputes have arisen. 

Discovery, as a preliminary phase of induction, consists in 
the detection of a feature common to a set of particular data. 
Anticipation, on the other hand, is the extension of this feature 
to unexamined cases. 

Sometimes the process of discovery is altogether trivial. 
Such is, e.g., the case when, from the fact that some ravens are 
black, we anticipate the blackness of all ravens. When such 
'primitive' instances of inductive inference are regarded from 
the point of view of logic, one is apt wholly to ignore the 
component of discovery, all the emphasis being laid upon the 
aspect of anticipation. 

In more 'advanced' cases the opposite tendency becomes 
visible. Consider, e.g., the well-known law for the refraction of 

light s~n !X = c. Before Snell, pairs of corresponding angles 
szn f3 

(X and f3 had been recorded in tables. Snell detected a feature 
common to all such recorded correspondences. His law, 
however, embodies much more than the discovery of this 
feature; it also provides a rule which makes the prediction of 
new pairs of corresponding angles possible. Here the anticipa-
tion follows as a trivial matter of course, the discovery having 
once been made. 

An example frequently mentioned in the literature on induc-
tion, 1 is Kepler's series of conjectures as to the orbit of Mars. 
Observation had informed Kepler of the position of the planet 
at various points in its path, and from this information the 
orbit itself was to be 'induced'. After having tried and rejected, 
so we are told, no less than nineteen assumptions as to the true 
orbit, he finally discovered the law which agreed with the 
observations. But, as Mill rightly pointed out in his polemic 
against Whewell concerning the nature of induction, 2 the mere 
discovery that the observed positions of Mars were correctly 
represented by points on an imaginary ellipse, did not constitute 
an inductive inference. It became an induction only when 

1 For a detailed analysis see Apelt, Die Theorie der Induction (1854), pp. 19-24 
and 144-g. 

2 Mill, A System of Logic (1843), book. III, chap. II, §3. 
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A TREATISE ON INDUCTION AND PROBABILITY 
combined with the assumption that Mars would continue to 
revolve in that same ellipse, and that the positions of the planet 
during the time which intervened between two observations 
must have coincided with the intermediate points of the curve. 
This, however, is obscured in saying, as we usually do, that 
Kepler discovered the form of Mars' orbit. 1 Laws of Nature, 
strictly speaking, are not discovered, but established through 
a process of inference on the basis of discoveries made. 

The making of discoveries in science is a worthy object of 
systematic study. It can be pursued from several points of view. 

An important aspect of discovery is the phenomenological, 
by which we shall understand the scientists' own records of how 
their discoveries have come into being as a result of mental 
activity and effort. Valuable contributions to the phenomen-
ology of discovery have been made by great men of science like 
Helmholtz and Mach, Claude Bernard and Poincare, Faraday 
and Darwin. 

In addition to this aspect of discovery from within, so to speak, 
there is also the psychological and sociological aspect from 
without. What are the main features of the discoverer's intelli-
gence? What are his habits of working? What influence upon 
his ingenuity is to be attributed to factors of heredity, social 
environment, education, etc.?2 

Finally it may be asked, whether discovery can or cannot 
be studied from the point of view oflogic. We need not attempt 
to answer the question here. We shall only draw attention to 
two traditional mistakes which have originated from a confusion 
of the logical aspect of anticipation with that of discovery. 

The first mistake may be schematically described as follows: 
The possibility of a Logic of Induction, studying the inferen-

tial mechanism of inductive reasoning, is thought to imply the 
possibility of a Logic of Discovery, providing rules or precepts 
for the invention of truths in science. This mistake has deep 
roots in the history of philosophy. It underlies the famous 

1 Apelt (op. cit., p. 19) speaks of 'die logische Form jener merkwiirdigen und 
klassischen Induction, durch welche Keppler die wahre Figur der Marsbahn ent-
deckte und welche stets als Muster und Vorbild des inductorischen Verfahrens 
in der Naturforschung gegolten hat.' 

2 Cf. the works of Jacques Picard, Essai sur les conditions positives de ['invention 
dans les sciences (1928) and Essai sur la logique de ['invention dans les sciences (1928). 
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Lullyan Ars magna which was also supposed to be an ars 
inventiva veritatum. It is, in particular, connected with the 
universal reaction in the sixteenth and seventeenth centuries 
against Aristotelian logic as being 'useless.' Descartes, Pascal, 
and the authors of the so-called Port Royal Logic are typical 
representatives of the view that logic ought to be somehow 
'inventive.' In much the same spirit Zabarella, Galileo, and 
Leibniz expressed their opinions on induction and methodology. 
But by far the most important example of the confusion in 
question is found in the writings of Francis Bacon, who was 
strongly convinced that his contributions to the logical study 
of inductive inference were to make scientific discovery as 
independent of 'the acuteness and strength of wits' as had the 
invention of the compass made the drawing of exact circles 
independent of 'the steadiness and practice of the hand.' 

One hundred years ago, William Whewell expressed in 
several works on induction the opinion that discoveries are, as 
he put it, 'happy guesses' or 'leaps which are out of the reach 
of method.' At the same time, Claude Bernard stressed similar 
views in polemics against Bacon. 

As a criticism of the confusion of the logical study of scienti-
fic arguments with the invention of scientific truths, the attitude 
of Whewell and Claude Bernard towards discovery is funda-
mentally sound. If over-emphasized, however, it easily becomes 
unjustly discouraging to the systematic study of discovery as a 
psychological phenomenon. 'Il ne faut pas exagerer le mystere, ni 
faire de l'invention un miracle,' as Picard1 rightly says. And if 
carried to the extreme, it promotes a new confusion as regards 
the relation of induction to discovery. This second mistake may 
be schematically described as follows: 

The impossibility of a Logic of Discovery, which ought to 
help us to find scientific truths, implies also the impossibility 
of a Logic of Induction, which gives an account of the logical 
mechanism of anticipation from experience. This mistake is 
obviously connected with the reaction in the last hundred years 
against unwarranted claims for logic in the realm of discovery. 
The reaction, as such, is undoubtedly sound and reflects a new 
and deepened understanding of the nature of the logical. It has, 

Essai sur les coruiitiorzs positives de ['invention dans le.1 sciences, p. 7. 
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however, unduly neglected the inferential aspects of induction 
and must therefore to some degree be held responsible for the 
regrettable fact that, in spite of the enormous development of 
logic in recent times, the logical study of inductive procedures 
has not advanced very much from the state in which Mill left it. 

Once the difference between anticipation and discovery is 
clearly apprehended, it should also be evident that past con-
troversy over the possibility and nature of a Logic of Discovery 
has no direct bearings on the discipline which is the main theme 
of this book and for which 'Logic of Induction' is the appro-
priate name. 

4· The Justification of Induction 
Aristotle, who made the first attempt at a systematic treat-

ment of induction, was already aware of the fact that inductive 
inference in our sense of the word has a non-demonstrative or 
inconclusive character. But Hume was the first to realize the 
full importance of this feature, in seeing that any type of 
argument, by means of which 'we can go beyond the evidence 
of our memory and senses,' is inductive and hence inconclusive. 
In view of this, it became a problem of first-rate importance, 
how to justify inductive inferences and, in particular, belief in 
the material truth of inductive conclusions. This is, in short, 
the problem of the Justification of Induction which is also 
rightly called the Problem ofHume. 

The problem of how to provide a justification of induction 
has been the object of a vast and, in part, highly perplexing 
discussion in philosophy since the days ofHume. The 'sceptical' 
conclusions of Hume as to the possibility of such a justification 
have been difficult for philosophers to tolerate. The gigantic 
labours of Kant in the philosophy of knowledge were essentially 
devoted to showing that Hume was mistaken. Since Kant's 
efforts, on this crucial point at least, were not very successful, 
it has become the burden of succeeding philosophical systems 
to 'save' induction from Humean scepticism. Solutions were 
offered by Fries and the neo-Friesians, by Bradley and the 
English neo-Hegelians, by Meyerson, Whitehead, and many 
others. In contemporary philosophy new escapes have been 
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proposed from the 'intellectual suicide' 1 recommended to 
science by Humeanism. 

The problem of justification transcends the realm of a logical 
study of induction as understood in this book. No sharp 
boundaries can, however, be drawn. But it is important to be 
aware of two traditional mistakes analogous to those mentioned 
in the previous paragraph as confusing the aspects of discovery 
and anticipation. 

The first mistake is to think that the possibility of a Logic of 
Induction would imply a complete solution of the Problem of 
Hume. This mistake may be said to be implicit in Mill's 
writings on induction and in a vast number of text-books on 
the subject which follow his lines. It can be attributed to the 
joint influence of the failure clearly to apprehend that the 
canons of inductive logic cannot raise inductive arguments to 
conclusive power, and of the deep-rooted deductivistic ideal 
that legitimate reasoning must ultimately be demonstrative. 

The second mistake arises when the alleged impossibility of 
solving the Problem of Hume is thought to imply the impossi-
bility of a Logic of Induction. This mistake is typical of certain 
earlier writers of the logical empiricist trend of thought. It can 
be attributed to the joint influence of a clear insight into the 
non-demonstrative nature of induction, and of that same 
deductivistic ideal, just mentioned, which off-handedly identi-
fies inconclusive reasoning with alogical argument. 

* * * * * 
The justification of Induction constitutes, it would seem, a 

'philosophical' problem in a peculiar sense. What is meant by 
this can be imperfectly explained by saying that it is a problem, 
the essential issue of which is to make clear wherein the problem 
itself consists. Many of the perplexities with which it has been 
traditionally loaded, seem to arise from the fact that the dis-
putants have entered the discussion without a clear idea as to 
the goal which was to be attained. 

A suitable way of attacking the problem will therefore be 
to discuss the meaning of the word 'justification.' This discussion 
will reveal that there are, in fact, several different senses m 

1 Reichenbach, Experience and Prediction ( 1 938), p. 344· 
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which a proposed justification of induction can be understood. 
Here we mention some. 

i. The step which takes us from the premisses of an inductive 
inference to the conclusion is of a non-demonstrative nature. 
The converse step, however, is, in the case of induction of the 
second order, demonstrative: from the conclusion the premisses 
follow. This asymmetry is of some importance for the justi-
fication of theories and laws. 

It would be an oversimplification offacts to think that know-
ledge of the premisses of an inductive inference is always prior 
in time to the introduction of the conclusion. The priority in 
question normally prevails, if the discovery of the feature which 
is common to a set of given data presents no difficulties. If, 
however, this is not so it may happen that we first, as the result 
of guesswork, hit upon the theory or the law and thereupon 
establish the premisses as the result of deduction from the 
suggested conclusion and subsequent verification of the deduced 
results through observation. The difficulty of not knowing the 
premisses until after reaching the conclusion is peculiar to 
situations in which the raw material, so to speak, for the con-
struction of the inductive inference is afforded by data of 
measurement which have to be interpreted in terms of 
mathematical relationship (functionality). Good examples 
would again be afforded by Snell's law for the refraction of 
light and Kepler's laws for the movements of the planets. The 
recorded pairs of angles or the observed positions of Mars did 
not, as such, constitute premisses for an inductive inference. 
They first became premisses when it was shown that they 
possessed the feature prescribed by the respective laws in 
question. 

If we thus succeed subsequently in showing that certain data 
afford premisses for a proposed conclusion, it is very natural 
indeed to say that our suggestion as to the conclusion has now 
been justified. This is an important sense in which we may and 
actually do talk of the justification of inductions in science. 

We shall call this approach to the problem of justification 
the 'inventionistic' approach. It is intimately associated with a 
main trend in the history of scientific ideas which we may very 
roughly describe as the hypothetico-deductive. Among represen-
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tatives of this trend of thought are found, beside professional 
philosophers, some also of the foremost innovators of theoretical 
science. One of its spiritual ancestors was Plato. His famous 
idea of 'saving the phenomena' was a sort of carte blanche 
justification for the making of theories and laws (according to 
a certain general pattern), from which the observed phenomena 
of nature could be deduced. It was partly against the misuse 
of this idea that Newton's hypotheses non fin go was directed. 

In philosophy, the most emphatic spokesman of the inven-
tionistic approach to the problem of justifying induction is, no 
doubt, William Whewell. In the opinion of Whewell, the 
deduction of the premisses of an inductive inference from the 
conclusion constitutes 'the criterion of inductive truth, in the 
same sense in which syllogistic demonstration is the criterion 
of necessary truth.' 1 Thus 'deduction justifies by calculation 
what induction has happily guessed.' 2 Induction and deduction 
are, in a characteristic sense, inverse operations of the mind. 3 

Against the background of a clear conception of the dif-
ference between discovery and anticipation it is not difficult 
to see how far the inventionistic approach will take us. The 
justification which it provides concerns the discovery of a common 
feature among given data, this discovery being first tentatively 
put forward in the shape of a proposed inductive conclusion. 
But it certainly does not give a justification for the act of 
anticipating the same feature in new data, which is also involved 
in putting forward the conclusion. For the mere fact that the 
given data of observation fall under the theory or law and thus, 
in this sense, justify its introduction, is no guarantee that the 
theory or law will hold also for future observation. 

It is interesting to note that there is a tendency among 
supporters of this view of the philosophy of induction to com-
pensate for the failure of the inventionistic approach to justify 
anticipation by taking up a conventionalist attitude as regards 
the universal truth of inductive conclusions. This was, e.g., 

1 Whewell, Novum Organon Renovatum (3rd Ed. 1858), p. 115. 
I Ibid. 
8 The view of induction and deduction being inverse operations has chiefly 

become associated with the name ofjevons. It should, however, be observed that 
Jevons did not confuse the verification of data deduced from the law with the 
verification of the law itself. This point has been overlooked by several critics of 
Jevons's opinions on induction (Erdmann, Meinong, Venn). 
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what Whewell did. 1 The conventionalistic attitude constitutes 
another approach to the problem of justification and will be 
discussed presently. 

ii. It frequently occurs in advanced branches of theoretical 
science that data of observation suggest a certain uniformity 
which strikes us because we do not know how it fits in, so to 
speak, with other Laws of Nature. It may be that at first we 
even refuse to give it the name of a 'law' and refer to it merely 
as an 'empirical rule' or something of that sort. Later on it 
happens that we are able to 'explain' the rule, i.e., we succeed 
in showing that it is, in fact, just a logical consequence of an 
already accepted law. This deductive connexion then serves as 
a justification of our first tentative inference from the observa-
tions to the uniformity. 

As an example we may take Bradley's account of the aberra-
tion of the light of the fixed stars. Measurement of the yearly 
parallax of two stars led Bradley to the discovery of an ( ap-
parent) movement of the stars, the so-called ellipse of aberra-
tion. The rule for this movement was an inductive conclusion 
from the observations. Later Bradley succeeded in accounting 
for the movement as a joint effect of the movement of the earth 
and the finite velocity of light. This time his rule followed as a 
deductive conclusion from other Laws of Nature. 

The above example illustrates another important sense in 
which we may and actually do, talk of the justification of 
inductions. We shall call this approach to the problem the 
deductivistic. Its most prominent spokesman in philosophy is 
perhaps E. F. Apelt. His little book Die Theorie der Induction 
(1854) still deserves attention; like the writings of William 
Whewell, it bears witness to its author's close contact with the 
realities of scientific practice. According to Apelt, laws are 
inductively inferred from particular observations and deduc-
tively justified from more generallaws.2 

1 cr. my thesis The Logical Problem qf Induction (I 94I)' pp. 70 and 2 I 5· 
2 Apelt, op. cit., pp. 74-5: 'Die Induction bringt also nur die Untersatze des 

theoretischen Lehrgebaudes. In der vollendeten Theorie miissen diese Untersatze 
auf doppelte Weise festgestellt werden: einmal theoretisch oder, wie die Englander 
sagen, deductiv d. i. als Lehrsatze, die durch systematische Ableitung aus ihrer 
Prinzipien folgen, das anderemal inductiv als Erfahrungssatze, die aus der Com-
bination der Thatsachen folgen. Das erstere ist die Aufgabe der mathematischen 
Naturphilosophie, das andere die eigentliche Aufgabe der Naturforschung.' 
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The deductivistic approach may be said to provide a 
justification of the anticipatory aspect of law. It is, however, 
clear that this justification has a purely relative value. It makes 
the truth of some inductive conclusions depend upon the truth 
of others. The psychological importance of such a concatena-
tion of our beliefs may nevertheless be considerable. 

It is interesting to note that there is also among supporters 
of the deductivistic approach to the justification problem a 
tendency to compensate for its relativity by taking up a con-
ventionalistic line as regards the question of the truth of the 
laws from which the deductions are made. This was clearly the 
case with Apelt. 1 It should, however, be observed that if the 
supreme laws are true by convention, then the inductively 
established laws which are subsequently deduced from them 
also become true by convention. 

iii. The man of science, if asked what it is that justifies him in 
drawing a certain inductive conclusion from his observations, 
would probably answer in a great many cases by pointing 
neither to the fact that the observations can be deduced from 
the conclusion, nor to the fact that the conclusion is a conse-
quence of other laws, but to the fact that the observations have 
been made in a certain methodical way so as to support the 
emergence of this conclusion, as opposed to other ones, from 
the data affording premisses to the inductive argument. This 
answer to the question of justification is particularly close at 
hand whenever the scientific problem is one of tracing a causal 
connexion in a bundle of phenomena. 

This means that the justification of the inductive conclusion 
lies in the conformity of the argument to certain methodological 
standards or canons of induction. We shall call this approach 
to the problem of justification the inductivistic approach. The 
description of the standards involved constitutes one of the chief 
tasks of the Logic oflnduction. (Cf. below Chap. IV.) 

It has long been clear to philosophers that no inductive 
canons, however skilfully employed, can make the conclusion 
emerge with certainty from the premisses of the inductive 
argument, unless combined with some principles which them-
selves transcend memory and observation. These principles 

1 Cf. The Logical Problem of Induction, pp. 38-39. 
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are usually mentioned under names like 'the Law of the 
Uniformity of Nature' or 'the Law of Universal Causation.' It 
is obvious that unless we can establish these principles as true 
on some other basis than that of induction, then the relativity 
of the deductivistic approach to the problem of justification will 
attach to the inductivistic approach also. 

There have been many efforts to establish the truth of some 
supreme principles justifying induction. Kant, broadly speaking, 
tried to show that these principles are embodied among the 
very preconditions of knowledge. Knowledge, as he puts it, 
would not be 'possible,' if some such principles were not true. 
Since, so he seems to reason, knowledge is possible, the principles 
must be true. Here, however, he has begged the question. 1 It 
can, moreover, be shown that even if Kant had been successful 
in trying to establish his preconditions of knowledge, he would 
not have succeeded in justifying induction, because the 
principles which he had in mind were not strong enough to 
enable us to raise any particular inductive conclusion to the 
rank of certainty. 2 The same is largely true of other attempts 
undertaken for a similar purpose. (Cf. below Chap. V.) 

iv. We now mention the conventionalistic approach to the 
problem of justification. Its essence can be described as 
follows: 

The leap from the premisses to the conclusion in inductive 
inference is a leap from the world of material into the world of 
formal knowledge. If it were not so, we could never be sure 
that future experience will not refute the conclusion. By taking 
the conclusion as true by convention, i.e., by making the 
presence of the feature which is common to the data of observa-
tion a defining criterion of the presence of the conditions under 
which this feature will be repeated, it becomes irrefutable by 
experience. 

It is obvious that such a transition from the material to the 
formal sphere of knowledge frequently takes place in connexion 
with inductive reasoning. We shall have occasion to return to 
this point later. (Cf. below Chap. VI.) It is, moreover, reason-
able to assume that this transition, whether conscious or uncon-

1 Cf. The Logical Problem qf Induction, pp. 27-33. 
2 Cf. ib., pp. 33-5· 
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scious, often actually serves as a justification of our belief in the 
semper et ubique of inductively established Laws of Nature. 

The conventionalistic attitude towards the justification 
problem was something of a philosophic fashion at the begin-
ning of this century. The first to point out the important role 
of convention in the formation of natural law was Henri 
Poincare. Poincare, however, was also clear about the limita-
tions of this view of induction. Not so always the representatives 
of what may here be called radical conventionalism (Cornelius, 
Dingler, Schuppe, le Roy). 

As already observed (cf. above p. 15), a theory or law can be 
used for predicting that, certain conditions being fulfilled, a 
certain feature will be observed. If such a prediction fails, then 
it must, from the conventionalistic point of view, be because 
either the fulfilment of the conditions prescribed by the law 
or the absence of the feature is only 'apparent' in the case in 
question. Thus conventionalism explains why unsuccessful pre-
dictions need not be interpreted as refutations of the theories or 
laws from which they were made. But conventionalism does not 
explain, why, in a great many cases, predictions actually are 
successful and why, as a rule, we do not resort to the conven-
tionalistic remedy against refutation. Here the question of the 
justification of induction recurs and demands a new answer. 1 

v. Inductive inference, so long as it does not transcend the 
boundaries of material knowledge, cannot raise its conclusions 
to demonstrative certainty. But it is thought capable of con-
ferring upon them a lower or higher degree of probability. This 
fact is supposed to cast new light on the problem of justification. 
-Inductive inference is frequently also called probable in-
ference and contrasted with deductive inference which is called 
certain. 

Of the probabilistic approach to the justification problem 
there are two variants which must be carefully kept apart. 

The first variant assumes that the justification of induction 
in terms of probability should provide some sort of guarantee 
that inductive predictions will be successful, if not immediately, 
at least 'in the long run.' A typical representative of this view 
is Reichenbach. 

1 Cf. The Logical Problem of Induction, pp. 48-64 and 209-13. 
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There is a straightforward way of making probability imply 
predictive success, viz. by accepting the so-called Frequency 
Interpretation of the concept of probability. On this inter-
pretation, however, propositions about probabilities themselves 
become inductive or anticipatory. 

The second variant refuses to accept success in predictions 
as a standard by which to justify induction. 'The validity of the 
inductive method does not depend on the success of its predictions,' 
says Keynes, 1 the most conspicuous advocate of this opinion. 

Of the positive characteristics of this second variant it will 
suffice here to mention that it takes probability either as a 
notion which cannot be made explicit in terms of other ideas, 
or as interpretable in terms, e.g., of possibility or belief, which 
do not necessarily make propositions about probabilities 
inductive. 

It appears that both variants can be worked out in a manner 
which gives them undeniable merits as contributions to the 
justification problem. The following point, however, should be 
carefully observed: 

The first variant, if it accepts the Frequency Interpretation, 
can ultimately justify induction only in a relative sense which 
makes it possible to raise the same problem on a new level. The 
second variant again, whether or not it accepts an interpretation 
of probability, proves nothing about the future course of 
things. Thus, on the interpretation mentioned, the first variant 
shares a characteristic weakness with the deductivistic and the 
inductivistic theories, and the second a similar weakness with 
the inventionistic and conventionalistic approaches to the 
problem of justification. 

The crucial question has been whether a solution to the 
Problem of Hume could be found, which would assure us of 
success in prediction without begging the question. The 
traditional view of the eighteenth and nineteenth centuries 
was that there did in fact exist such a solution, in virtue of cer-
tain theorems of the Calculus of Probability known as the 
Principles (Laws) of Great Numbers. These laws seemed some-
how to make possible the deduction of frequencies 'in the long 
run' from non-inductive assumptions about possibilities. The 

1 A Treatise on Probability (1921), p. 221. 
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fallacy of this reasoning was for the first time exposed with full 
clarity by Robert Leslie Ellis in his important paper On the 
Foundations of the Theory of Probabilities (I 842). To-day the 
essentials of Ellis's criticism are universally accepted.1 

Generalizing this criticism we may say that if a guarantee of 
success in predictions is to be established by deduction, then it 
must rely on premisses which themselves involve inductive 
assumptions. On the other hand, it is difficult to see what other 
way, besides the deductive, of foretelling success would really 
deserve the name of a 'guarantee.' 2 Hence it would appear that 
the idea of merging the two variants of the probabilistic 
approach to the justification problem into one doctrine com-
bining the advantages of both, is an illusion. 

* * * * * 
We have now seen that there are several different ways in 

which we may and actually do talk of a justification of in-
duction. Each way answers to a certain practical demand 
which may be felt in connexion with inductive reasoning. 
None of them, it seems, answers to all such demands. In the 
concrete situation, as it occurs in science or in practical life, 
the various justifications are valued for their merits of meeting 
one definite demand rather than criticized for their demerits of 
not meeting others. The scientist who has hunted for the cause 
of some interesting phenomenon and claims to have found it, 
will certainly, in the eyes of himself and his colleagues, have 
justified his claims, if his experiments and observations are 
shown to have been up to the current standards of accuracy 
and methodical performance. The validity of universal causa-
tion and other assumptions on which he must rely if his con-
clusion is to be indisputably true, do not even enter the question. 
Nor would he necessarily regard his conclusion as unjustified 
even if it later turned out to be false. 

It is only when the problem of justification is raised so to say 
'in vacuo,' i.e., not in relation to a concrete situation, that the 
demerits of the respective justifications first become obvious 
and the philosophic problem discussed with so much fervour 
in the last 200 years becomes urgent. This detachment from 

1 Cf. The Logical Problem Q[ Induction, pp. 159--64 and 237-40. 
2 Cf. ib., pp. 155-9, 164-9, 236-7, and 24o-2. 
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practical thinking is, of course, no sign that the problem is un-
important. But it is a point which deserves some attention. 

The analysis of the word 'justification' and the working out 
of alternative senses in which induction may be said to be or 
not to be justifiable, is a procedure which will ultimately take 
us to the very foundations of human knowledge, to the discussion 
of expressions like 'to know,' 'to believe,' 'to be certain,' 'to 
prove,' etc. If a solution of the Problem of Hume is expected 
once and for all to bring out the whole relevance of this dis-
cussion to induction; then claims as to a 'solution' already seem 
in principle inappropriate and narrow-minded. 

But the philosophic situation can also be regarded from 
another point of view. As may be seen from the sketchy remarks 
earlier in this section, the working out of the various justifica-
tions of induction shows the demerits as well as the merits of the 
alternatives. Each alternative permits certain conclusions in 
regard to justification and does not permit certain others. The 
alternatives, moreover, seem to be of two basic types, depending 
upon whether they permit demonstrative conclusions concern-
ing success in predictions, or not. It is characteristic of the 
former alternatives that they are based on premisses which are 
themselves inductive, whereas the latter need not go beyond 
the limits of actual observation. It is not unplausible to assume 
that some of the intellectual discomfort traditionally associated 
with the Problem of Hume has been nourished by attempts to 
establish a guarantee of predictive success on non-inductive 
premisses without a full awareness of the fact that a 'guarantee' 
cannot then mean the same as a demonstration. In so far as 
clarity on this important point can make the discomfort 
vanish, it would not be inappropriate to talk of a solution to 
the Problem of Hume attained through an analysis of the 
meaning of 'justification.' 

5· The Three Problems of Induction 
We have in this chapter tried to distinguish between three 

main problems of induction which have been traditionally 
intertwined: The mainly psychological problem of discovery or 
of the origin of inductive inferences in science, the logical 
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problem of analysing the inferential mechanism of induction, 
and the specifically philosophical problem of justification. 

The problems of discovery and justification will not be 
further discussed in this book. With the Justification of Induc-
tion I have dealt at length in a previous publication, to some 
passages of which I have ventured to refer above. 1 

The main topic of this book is the logic of inductive inference. 
The logic of Induction may conveniently be divided into two 
parts, depending on whether the question of the truth and 
falsehood of the conclusions alone enters the discussion, or 
whether there is the further question of the probability of the 
conclusions also. 

The first part may be called the Logic of Inductive Truth. 
It is treated in Chaps. IV, V, and VI. 

The second part may be called the Logic of Inductive 
Probability. It is treated in Chaps. VIII, IX, and X. 

The apparatus and technical vocabulary of logic needed for 
the investigation are presented in an introductory chapter 
(Chap. II.) This apparatus is used in Chap. III to restate in 
more precise terms the logical form of inductive arguments and 
their various parts, as loosely outlined at the beginning of the 
present chapter. 

A special chapter (Chap. VII) is devoted to a general treat-
ment of probability. 

* * * * * 
We need not here dwell upon the old controversy over the 

'possibility' of a Logic of Induction. This controversy has been 
largely due to the failure to separate the task of logical analysis 
from the tasks of promoting scientific discovery and of justifying 
our belief in induction respectively. The principal confusions 
on this point have been outlined above. Once the distinction 
has become clear, it will no longer be necessary to present an 
argument in defence of the possibility of studying induction 
from the point of view oflogic. Investigation into the respective 
problems of induction can therefore be pursued unhampered 
by false pretensions and misleading expectations. 

1 The term 'logical problem of induction' was used in that book to cover the two 
problems which we have here distinguished as the problem of logical analysis and 
the problem of justification respectively. 
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Chapter Two 

PRELIMINARY CONSIDERATIONS ON 
LOGIC 

1. On Propositions 

A PROPOSITION is that so-and-so (is the case). 
Propositions are expressed or symbolized by sentences. 

The Logic of Propositions studies propositions as 'unanalysed 
wholes' and sentences as symbols of such unanalysed proposi-
tions. 

Propositions can be related to truth-values. Truth-values 
are truth and falsehood. 

For the relation of propositions to truth-values we have the 
following two principles: 

i. Every proposition is true or false. 
ii. No proposition is true and false. 

A proposition is called a truth-function of n propositiOns, 
if there is a rule for the determination of the truth-value of the 
proposition for each combination of truth-values in the n 
propositions. 

The following seven truth-functions are defined separately: 
By the negation( -proposition) of a given proposition we 

understand that proposition which is true if, and only if, the 
given proposition is false. If a expresses a proposition, then a 
expresses its negation. 

By the conjunction( -proposition) of two propositions we 
understand that proposition which is true if, and only if, both 
the propositions are true. If a and b express propositions, then 
a&b expresses their conjunction. 
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By the disjunction(-proposition) of two propositions we 
understand that proposition which is true if, and only if, at 
least one of the propositions is true. If a and b express proposi-
tions, then avb expresses their disjunction. 

By the implication( -proposition) of a first proposition, called 
the antecedent(-proposition), and a second proposition, called 
the consequent(-proposition), we understand that proposition 
which is true if, and only if, it is not the case that the ante-
cedent is true and the consequent false. If a expresses the 
antecedent and b the consequent, then a--+b expresses their 
implication. 

(Henceforth, in talking about implications, explicit reference 
to the order of propositions will not be made. The order is 
assumed to be clear to the reader from the context.) 

By the equivalence(-proposition) of two propositions we 
understand that proposition which is true if, and only if, both 
the propositions are true or both are false. If a and b express 
propositions, then a+---+b expresses their equivalence. 

By the tautology(-proposition) of n propositions we under-
stand that proposition which is true for every combination of 
truth-values in the n propositions. 

By the contradiction(-proposition) of n propositions we 
understand that proposition which is false for every combination 
of truth-values in the n propositions. 

In virtue of i and ii above, every proposition is a truth-
function of itself. 

Truth-functionship is transitive. If a proposition is a truth-
function of n propositions and every one of these is a truth-
function of m 1• ••• , mn further propositions, then the first 
proposition is a truth-function of the latter propositions. 

It follows from the definition of a truth-function that if a 
proposition is a truth-function of n propositions, then it is also 
a truth-function of any m+n propositions which include among 
themselves the original n propositions. 

We call a the negation-sentence of a, and a&b the conjunc-
tion-, avb the disjunction-, a~b the implication, and a+---+b the 
equivalence-sentence of a and b. 

A sentence which is neither the negation-sentence of another 
sentence, nor the conjunction-, disjunction-, implication-, or 
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equivalence-sentence of two other sentences, is called an atomic 
sentence. 

By a molecular complex of n sentences we understand: 

1. Any one of the n sentences themselves and their nega-
tion-sentences. 

ii. The conjunction-, disjunction-, implication-, or equiva-
lence-sentence of any two of the n sentences. 

m. The negation-sentence of any molecular complex of the 
n sentences, and the conjunction-, disjunction-, impli-
cation-, or equivalence-sentence of any two molecular 
complexes of the n sentences. 

The n sentences are called the constituents of their molecular 
complexes. If the sentences are atomic, they are called atomic 
constituents. 

(It is sometimes convenient to call the propositions expressed 
by the n sentences, constituents of the propositions expressed by 
their molecular complexes.) 

As to the use of brackets we adopt the conventions that the 
symbol & has a stronger binding force than v, - , and ~; the 
symbol v than- and+--*; and the symbol - than +--+. Thus, 
e.g., if a, b, c, d, and e are sentences, we can instead of 
(((a&b)vc)-d)+-*e write simply a&bvc-d+-*e. 

In virtue of the transitivity of truth-functionship, any 
molecular complex of n sentences expresses a truth-function of 
the propositions expressed by the n sentences themselves. Which 
truth-function of the propositions expressed by its constituents 
a molecular complex expresses, can be investigated and decided 
by means of truth-tables. The technique of constructing truth-
tables is supposed to be familiar to the reader. 

A molecular complex which expresses the tautology (contra-
diction) of the propositions expressed by its atomic constituents 
will be called tautologous (contradictory) and said to express 
formal truth (falsehood) in the Logic of Propositions. 

If two sentences express the same proposition, they are 
called identical. It is sometimes convenient to say that identical 
sentences express identical propositions. If a and b are sentences, 
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the proposition that they are identical may be expressed a =h.l 
If two molecular complexes are identical, their equivalence-

sentence expresses the tautology of the propositions expressed 
by their atomic constituents. 

If one sentence is identical with the conjunction-sentence of 
itself and another sentence, the first sentence is said to entail 
the second. The second sentence is said to follow from the first. 
The relation of entailment is also said to subsist between the 
expressed propositions. 

If the first of two molecular complexes entails the second, 
then their implication-sentence expresses the tautology of the 
propositions expressed by their atomic constituents. 

If a and band care sentences, the following pairs of molecular 
complexes are identical: 

1. a and ~. (Law of Double Negation.) 
ii. a---+h and b---+a. (Law of Contra position.) 
iii. a&b and avb, and avb and a&b respectively. (Laws of de 

Morgan.) 
1v. a&b and b&a, and avb and bva respectively. (Laws of 

Commutation.) 
v. (a&b)&c and a&(b&c), and (avb)vc and av(bvc) respec-

tively. (Laws of Association.) 
Vl. a&(bvc) and a&bva&c, and avb&c and (avb)&(avc) 

respectively. (Laws of Distribution.) 

In virtue of the Laws of Association we can omit brackets 
from conjunctions of conjunction-sentences and from dis-
junctions of disjunction-sentences. Thus, e.g., we write a&b&c 
for (a&b) &c and avbvc for (avb)vc. We can henceforth talk ofthe 
conjunction and disjunction of n propositions and of n-termed 
conjunction- and disjunction-sentences respectively. 

Any molecular complex can be transformed into certain so-
called normal forms. 

1 It should be observed that, whereas a~b expresses a 'relation' (equivalence) 
between the propositions expressed by the sentences a and b, a= b expresses a 'rela-
tion' (identity) between the sentences a and b themselves. It might be suggested 
that we should write 'a'='b' and not a= b. We shall, however, avoid the use of 
quotes throughout. 
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Let there ben atomic sentences. We select m (0:::; m:::;n) of those 
sentences and the negation-sentences of the remaining n-m 
sentences and form their conjunction-sentence. The formation 
of the conjunction-sentence can take place in n! different ways, 
but the conjunction-sentences thus formed are all identical, for 
which reason we regard it as immaterial which way is chosen. 

n 
The selection of m sentences can again take place in ~ (::,) 

m=O 
or 2n different ways. Thus we get 2n conjunction-sentences, no 
two of which are identical. 1 

In a similar manner we form of those n atomic sentences 2n 
disjunction-sentences. 

If the two extreme cases of o- and 1-termed conjunction-
and disjunctionwsentences are included, it can be shown that 
any molecular complex of the n atomic sentences is identical 
with a o-, 1- or . . .or 2n-termed disjunction of the above 
conjunction-sentences and also with a o-, 1- or ... or 2n-termed 
conjunction of the above disjunction-sentences. The disjunction 
of conjunction-sentences we call its perfect disjunctive normal 
form in terms of the n atomic sentences, and the conjunction of 
disjunction-sentences its perfect conjunctive normal form. 

If the molecular complex expresses the contradiction of the 
propositions expressed by its atomic constituents, its perfect 
disjunctive normal form vanishes, i.e., is a o-termed disjunction, 
whereas its perfect conjunctive normal form is made up of all 
the above 2n disjunction-sentences. If the molecular complex 
expresses the tautology of the propositions expressed by its 
atomic constituents, its perfect conjunctive normal form 
vanishes, and its perfect disjunctive normal form is 2n-termed. 

The technique of finding the perfect normal forms of a given 
molecular complex will not be described here. 

A proposition is said to be logically totally independent of n 
propositions, if, for no combination of truth-values in the n 
propositions, is there a rule determining the truth-value of the 
proposition. 

n propositions are said to be logically totally independent, 

1 n! means the product of the n first cardinals and (;:) is an abbreviation for 
n! : m! (n·m)! 
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if every one of the propositions is logically totally independent 
of the remaining n-I propositions. 

If a proposition is logically independent of another propo-
sition, they are mutually logically independent. Be it observed, 
however, that any two of n propositions may be mutually 
logically independent without then propositions being logically 
totally independent. The converse is not possible. 

* * * * * 
A sentence which does not express formal truth or falsehood, 

is said to express a material proposition. 
We call a material proposition verifiable, if it is possible to 

come to know the truth of it, and falsifiable, if it is possible to 
come to know its falsehood. 

According to a certain opinion among philosophers, no 
material proposition is ultimately verifiable or falsifiable. The 
proposition is accepted or rejected on the basis of certain evi-
dence in its favour or disfavour, but this evidence is never 
thought sufficient for complete verification or falsification 
respectively. There is always the possibility that the accumula-
tion of further evidence will affect a change in our attitude as 
regards the truth-value of the proposition.-It should be 
observed that the discussion throughout this book is neutral in 
respect of this opinion. 

2. On Properties 
Propositions can be analysed into parts which are not them-

selves propositions. There are two principal ways of analysis. 
The first way we call the Aristotelian view of propositions. 
According to it, to assert a proposition is to attribute a property 
to a thing (an object, an individual). The 'thing' may itself be 
a property. The second we call the relational view of proposi-
tions. According to it, to assert a proposition is to assert a 
relation between a number of things. 

We shall here assume that every proposition can be analysed 
in the Aristotelian way. 

Let there be a proposition which is analysed in the Aristote-
lian way. If the proposition is true, we say that the property is 
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present in the thing and call the thing a positive instance of the 
property. If the proposition is false, we say that the property 
is absent from the thing and call the thing a negative instance 
of the property.-Presence and absence (of a property in a 
thing) are called presence-values (of the property in the 
thing). 

It will be convenient to adopt some rudimentary form of a 
Theory of Logical Types. The reasons and the justification for 
this will not be discussed here. 

The positive instances of a property are said to constitute 
the extension of the property. 

The extension of a property is a set or a class. The positive 
instances of the property are also called members of the set. 
Whether every set or class is also the extension of a property 
need not concern us here. It should, however, be observed that 
whenever we introduce a name for~ specified set, this name is 
treated as the name of a property, viz., the property of being a 
member of the set in question. 

The (positive and negative) instances of a property are said 
to constitute a Universe of Things. The properties which 
are present or absent in a thing are said to constitute a Universe 
of Properties. 

It will be assumed that each member of a given Universe of 
Things constitutes the same Universe of Properties, and vice 
versa. This enables us to speak of corresponding universes (of 
things and properties). 

Henceforth in talking about properties and things in the same 
context we always tacitly assume that they are properties and 
things from corresponding universes. 

On the above assumptions as to division into universes, we 
obtain the following two principles for the relation of properties 
to presence-values from the corresponding basic principles of 
the preceding paragraph for the relation of propositions to 
truth-values: 

1. Every property is present or absent in a given thing. 
n. No property is present and absent in a given thing. 

A property is called a presence-function of n properties, if 
there is a rule for the determination of the presence-value of the 
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property in a thing for each combination of presence-values of 
the n properties in the same thing. 

The following seven presence-functions are defined sepa· 
rately: 

By the remainder or negation( -property) of a given property 
we understand that property which is present in a thing, if and 
only if the given property is absent in the same thing. If A 
denotes, i.e., is the name of, a property, then A denotes its 
remainder or negation. 

Similarly we define the product or conjunction-, the sum 
or disjunction-, the implication-, and the equivalence-property 
of two properties. If A and B denote properties, then A&B 
denotes their product or conjunction, AvB their sum or dis-
junction, A-+B their implication, and A~B their equivalence. 

Finally, we define the tautology( -property) of n properties 
as that property which is present, and the contradiction(-pro-
perty) of n properties as that which is absent, in a thing for every 
combination of presence-values of the n properties in the thing. 

If properties are represented as squares within a square, we 
can represent any presence-function of them as a shadowed 
part of the square: 

contradiction of A A tautology of A 

A&B AvB A+-+B 

In virtue of i. and ii. above, every property is a presence-
function of itself. 
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Presence-functionship is transitive. (Cf. above p. 33.) 
It follows from the definition of a presence-function that if a 

property is a presence-function of n properties, then it is also 
a presence-function of any m+n properties which include 
among the!!J.selves the original n properties. 

We call A the negation-name of A, and A&B the product- or 
conjunction-, AvB the sum- or disjunction-, A-+B the implica-
tion-, and A+---">-B the equivalence-names of A and B. 

A name of a property which is neither the negation-name of 
another name of a property, nor the conjunction-, disjunction-, 
implication-, or equivalence-name of two other names of 
properties is called an atomic name. 

By a molecular complex of n names of properties we under-
stand: 

1. Any one of the n names themselves and their negation-
names. 

n. The conjunction-, disjunction-, implication-, or equiva-
lence-name of any two of the n names. 

m. The negation-name of any molecular complex of the n 
names, and the conjunction-, disjunction-, implica-
tion-, or equivalence-name of any two molecular 
complexes of the n names. 

The n names are called ·the constituents of their molecular 
complexes. If the names are atomic, they are called atomic 
constituents. 

(It is sometimes convenient to call the properties denoted by 
the n names, constituents of properties denoted by their mole-
cular complexes.) 

As to the use of brackets we adopt the same conventions as 
in the Logic of Propositions. 

In virtue of the transitivity of presence-functionship, any 
molecular complex of n names of properties denotes a presence-
function of the properties denoted by the n names themselves. 
Which presence-function of the properties denoted by its con-
stituents a molecular complex denotes, can be investigated and 
decided by means of presence-tables. The technique of con-
structing presence-tables is strictly analogous to that of con-
structing truth-tables. 
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A molecular complex which denotes the tautology (contra-
diction) of the properties denoted by its atomic constituents 
will be called tautologous (contradictory) and said to denote 
formal presence (absence) in the Logic of Properties. 

If two names denote the same property, they are called 
identical. It is sometimes convenient to say that identical names 
denote identical properties, and that names which are not 
identical denote different properties. If A and B are names of 
properties, the proposition that they are identical may be 
expressed A =B. 

If two molecular complexes of names are identical, their 
equivalence-name denotes the tautology of the properties 
denoted by their atomic constituents. 

If one name of a property is identical with the conjunction-
name of itself and another name of a property, the first name 
is said to entail the second. The relation of entailment is also 
said to subsist between the denoted properties. 

If the first of two molecular complexes of names entails the 
second, then their implication-name denotes the tautology 
of the properties denoted by their atomic constituents. 

Analogous laws to those of Double Negation, Contraposition, 
de Morgan, Commutation, Association, and Distribution in the 
Logic of Propositions are valid in the Logic of Properties. 

In virtue of the Laws of Association we can henceforth talk 
of the product and sum of n properties and of n-termed con-
junction- and disjunction-names of properties respectively. 

If there are n properties denoted A 1, ••• , Am we shall use 
IIAn to denote their product and ~An to denote their sum. 

Further, given any set of properties (from the same universe), 
we can talk of the product of all members of the set, meaning 
the property of which it is true that a thing is a positive instance 
of it if, and only if, the thing is a positive instance of every 
property from the set. 

Similarly, given any set of properties (from the same uni-
verse), we can talk of the sum of all members of the set, meaning 
the property of which it is true that a thing is a positive instance 
of it if, and only if, the thing is a positive instance of some 
property in the set. 

The normal forms of molecular complexes of names of 
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properties are strictly analogous to the normal forms of mole-
cular complexes of sentences. If the two extreme cases of o- and 
x-termed conjunction- and disjunction-names are included, 
any molecular complex of n names of properties has a perfect 
disjunctive and a perfect conjunctive normal form in terms of 
then names. 

The perfect disjunctive (conjunctive) normal form of a 
molecular complex in terms of n names might be called the 
perfect disjunctive (conjunctive) normal denotation, in terms 
of the n names, of the property denoted by the molecular 
complex. 

Suppose that a property which is a presence-function of n 
given properties is not also a presence-function of m (m<n) of 
those n properties. If this is true, then the property's perfect 
disjunctive (conjunctive) normal denotation in terms of atomic 
names of the n properties will be called a smallest perfect dis-
junctive (conjunctive) normal denotation. 

Be it observed that the perfect disjunctive and the perfect 
conjunctive normal forms of a molecular complex in terms of 
n names are 'complementary' in the sense that if the first is 
an m-termed disjunction-name, the second is a 2 11-m-termed 
conjunction-name, and vice versa. 

Consider n atomic names of properties and the 2" names 
which we get by taking m (o~m~n) of those names and the 
negation-names of the remaining n-m names and forming 
(order being irrelevant) their conjunction-name. (Cf. above 
p. 36.) If there are 2" things which are positive instances of the 
respective properties denoted by the 2" conjunction-names, we 
say that those things constitute the Total Variation in the 
realm of the properties denoted by the n atomic names. 

A property is called logically independent of another 
property, if, given the presence-value of the second property 
in a thing, there is no rule determining the presence-value of 
the former in the same thing. 

A property is called logically totally independent of n 
properties, if, for no combination of presence-values in the n 
properties, is there a rule determining the presence-value of the 
first property. 

A property is called logically totally independent of (the 
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properties in) a set of properties (from the same universe), if it 
is logically totally independent of any n properties in the set. 

n properties are called logically totally independent, if every 
one of the properties is logically totally independent of the n- r 
other properties. 

The properties in a set of properties (from the same universe) 
are called logically totally independent, if any n properties 
from the set are logically totally independent. 

* * * * * 
If no instance of a property is positive, the property is called 

empty. 
If at least one instance of a property is positive, the property 

is said to exist. 
If all instances of a property are positive, the property is 

called universal. 
The proposition that the property denoted by A exists, will 

be expressed by the sentence E A. 
The proposition that the property denoted by A is empty, is 

the negation-proposition of the above. It can thus be expressed 
by the sentence E A. As an abbreviation for this sentence we 
shall use E A. 

The proposition that the property denoted by A is universal, 
we shall understand as the proposition that the negation of the 
property denoted by A is empty. It can thus be expressed by the 
sentence E A. As an abbreviation for this sentence we shall use 
UA. 

Propositions to the effect that a property is empty, exists, 
or is universal we call quantified. The sentences expressing 
them are also called quantified. The symbols E and U are called 
quantifiers. 

A proposition to the effect that a property exists is called an 
Existential Proposition. A proposition to the effect that a 
property is universal is called a Universal Proposition. Accord-
ing to the above, the negation of an Existential Proposition is a 
Universal Proposition, and vice versa. 

If the implication-property of two properties is universal, 
the first property is said to be included in the second. If A and B 
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are names of properties, inclusion can thus be expressed by the 
sentence U A__,.B, As an abbreviation of this sentence we shall 
useAcB. 

If the equivalence-property of two properties is universal, 
the properties are called co-extensive. If A and B are names 
of properties, co-extension can thus be expressed by the 
sentence U A~ B. As an abbreviation of this sentence we shall 
use A ==B. 

A proposition to the effect that a property is included in 
another property we call a Universal Implication, and a 
proposition to the effect that two properties are co-extensive a 
Universal Equivalence. 

(Universal Implications and Equivalences are Universal 
Propositions.) 

It is important not to confuse inclusion with implication and 
entailment, nor co-extension with equivalence and identity. 

By an instance of an Existential Proposition we understand 
a proposition to the effect that a thing is a positive instance of 
the property the existence of which is being asserted (in any 
sentence expressing the Existential Proposition). By an instance 
of a Universal Proposition we understand a proposition to the 
effect that a thing is a positive instance of the property the 
universality of which is being asserted (in any sentence express-
ing the Universal Proposition). 

The thing is said to afford the instance. 
If an instance of an Existential or Universal Proposition is a 

true proposition, we call it a confirming instance. If it is a false 
proposition, we call it a disconfirming instance. 

If the instance is confirming and if it entails the Existential 
or Universal Proposition, we call it a verifying instance. If the 
instance is disconfirming and if its negation entails the negation 
of the Existential or Universal Proposition, we call it a falsifying 
instance. 

Any confirming instance of an Existential Proposition is a 
verifying instance, and any disconfirming instance of a U niver-
sal Proposition is a falsifying instance. 

Unless the property, the existence or universality of which is 
being asserted, is known to have one instance only, no discon-
firming instance of an Existential Proposition is a falsifying 

44 



PRELIMINARY CONSIDERATIONS ON LOGIC 

instance, and no confirming instance of a Universal Proposition 
is a verifying instance. 

In order to avoid confusion, sentences using the symbols 
E, U, C, or == will be enclosed within brackets, if they occur 
as constituents of molecular complexes of sentences. 

We lay down the following Principle of Existence: 
If a property is the disjunction of n properties, then the 

proposition that the property exists is the disjunction of the 
proposition that the first ofthe n properties exists, and ... , 
the proposition that the last of the n properties exists. 

Let there be a molecular complex of sentences, the consti-
tuents of which express Quantified Propositions. Let the 
number of constituents be k and let the number of atomic 
names of properties which occur in the complex be n. 

Consider the 2n names which we get by taking m ( o::::; m::::; n) 
of those atomic names and the negation-names of the remaining 
n-m atomic names and forming (order being irrelevant) their 
conjunction-name. Consider the 2n properties denoted by these 
conjunction-names. The 2n sentences expressing that the first of 
the 2n properties exists, and . . ., and that the last of the 2n 
properties exists, we shall call the existence-constituents of the 
molecular complex of sentences. 

As observed above, any Universal Proposition is the negation 
of an Existential Proposition. Hence the molecular complex is 
identical with another molecular complex of k sentences, all 
of which express Existential Propositions. 

Consider the k properties, the existence of which is expressed 
in the constituents of this second molecular complex of sen-
tences. Any one of them has a perfect disjunctive normal 
denotation in terms of the above n atomic names. This means 
that any one of the k properties is a disjunction of o, I, or ... , or 
all, of the above 2n properties denoted by conjunction-names 
derived from the atomic names. Hence, in virtue of the Principle 
of Existence, any one of the k constituents of the second mole-
cular complex expresses the disjunction of o, I, or ... , or all, of 
the propositions expressed by the above 2n sentences which we 
called existence-constituents. 

Since truth-functionship is transitive, the second molecular 
complex of sentences expresses a truth-function of the pro-
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positions expressed by the 2n existence-constituents. Since the 
second molecular complex is identical with the first, the first 
also expresses a truth-function of the propositions expressed by 
the 2n existence-constituents. 

Thus any molecular complex of sentences, the constituents 
of which express Quantified Propositions, expresses a truth-
function of the propositions expressed by the existence-con-
stituents of the complex. Which truth-function the molecular 
complex of sentences expresses can be investigated and decided 
by means of truth-tables. 

A molecular complex of quantified sentences which expresses 
the tautology (contradiction) of the propositions expressed by 
its existence-constituents will be called tautologous (contra-
dictory) and said to express formal truth (falsehood) in the 
Logic of Properties. 

If two molecular complexes of quantified sentences are 
identical, their equivalence-sentence expresses the tautology 
of the propositions expressed by its existence-constituents. 

If the first of two molecular complexes of quantified sen-
tences entails the second, then their implication-sentence 
expresses the tautology of the propositions expressed by its 
existence-constituents. 

3· On Relations 
If x 1 and . . . and xn are names of things and R is the name 

of a relation, then R(x 1, •• • ,xn) will be used to express the 
proposition that the relation denoted by R subsists between the 
things denoted by x 1 and ... and xn. 

If the number of related things is n, the relation is called 
n-adic or n-termed. 

It is essential to the relational view of propositions that the 
things should be taken in a certain order. 

An ordered set of n things will be called simply an order. 
Let there be a proposition which is analysed in the relational 

way. If the proposition is true, we say that the relation subsists 
in the order, and call the order a positive order of the relation. 
If the proposition is false, we say that the relation does not 
subsist in the order, and call the order a negative order of the 
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relation.-Subsistence and non-subsistence (of a relation in an 
order) are called subsistence-values (of the relation in the order). 

The rudimentary form of a Theory of Logical Types adopted 
for properties will be extended to relations. 

The positive orders of a relation are said to constitute its 
extension. The (positive and negative) orders of a relation are 
said to constitute a Universe of Orders. 

The relations which subsist or do not subsist in an order are 
said to constitute a Universe of Relations. 

The first members of each positive order of a relation are said 
to constitute its first positive domain, and the first members of 
negative orders only its first negative domain. The first members 
of each (positive or negative) order of a relation are said to 
constitute the first domain of the relation. 

Similarly we define the second positive domain, negative 
domain, and domain of a relation. Etc. 

It is assumed that the first, second, and further domains of a 
relation are Universes of Things in the sense defined in the 
Logic of Properties. (Cf. above p. 38.) 

It is further assumed that the relations which subsist in the 
several orders of a given relation constitute the same Universe 
of Relations, and vice versa that the orders of each relation 
which subsists in a given order constitute the same Universe 
of Orders. This enables us to speak of corresponding Uni-
verses of Orders and Relations in the Logic of Relations. 

Henceforth in talking about relations and orders in the same 
context we always tacitly assume that they are relations and 
orders from corresponding universes. 

If the first, second and further domains of a relation consti-
tute the same Universe of Things, the relation is called homo-
geneous, otherwise non-homogeneous. 

On the above basis we obtain the following two principles 
from our initial principles for the relation of propositions to 
truth-values: 

1. Every relation subsists or does not subsist in a given 
order. 

u. No relation subsists and does not subsist in a given order. 
A relation is called a subsistence-function of n relations, if 

there is a rule for the determination of the subsistence-value of 
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the relation in an order for each combination of subsistence-
values of the n relations in the same order. 

In strict analogy to the corresponding truth- and presence-
functions we can define the negation of a given relation, the 
product or conjunction, the sum or disjunction, the implication, 
and the equivalence of two relations, and the tautology and the 
contradiction of n relations. 

Analogous symbols will be used. 
We thereby define what is meant by an atomic name of a 

relation, and by a molecular complex of n names of relations. 
Any molecular complex of n names of relations denotes a 

subsistence-function of the relations denoted by the n names 
themselves. Which subsistence-function it denotes can be 
investigated and decided by means of subsistence-tables. 

A molecular complex which denotes the tautology (contra-
diction) of the relations denoted by its atomic constituents will 
be called tautologous (contradictory) and said to denote formal 
subsistence (non-subsistence) in the Logic of Relations. 

Analogous laws to those of Double Negation, Contraposition, 
de Morgan, Commutation, Association, and Distribution in 
the Logic of Propositions and Properties are valid in the Logic 
of Relations. 

Molecular complexes of names of relations have normal forms 
analogous to the normal forms of sentences and names of 
properties. 

The idea of independence of relations is analogous to the 
idea of independence of propositions and properties. 

The Aristotelian view of propositions can be applied to 
relational propositions in virtue of the following device: 

An order can be treated as a thing and a relation which 
subsists in the order can be viewed as a property of the order. 

This extension of the thing-property view to relational pro-
positions is of some importance. It implies that whenever we 
talk of properties in the subsequent treatment of inductive 
inference and of natural law, the word 'property' should be 
understood to cover both properties in the genuine sense and 
relations viewed as properties of ordered sets of things. 

If x is the name of a thing and A is the name of a property, 
then A(x) or simply Ax will be used to express the proposi-
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tion that the property denoted by A is present in the thing 
denoted by x. 

For the quantification of relational propositions (sentences) 
we shall use the traditional quantifiers ('operators') ( ) and 
(E). 

When ( ) or (E ) is prefixed to a sentence, the blank is filled 
by a name which occurs in the sentence. It is convenient to say 
that the sentence is quantified in that name. 

The sentence (x) Ax is identical with U A and the sentence 
(Ex)Ax is identical with EA. 

Thus the quantifiers ( ) and (E ) can always replace the 
quantifiers U and E respectively. The latter quantifiers, how-
ever, can replace the former quantifiers, not only before 
sentences expressing the presence of a property in a thing, but 
also before sentences expressing the subsistence of a relation 
between a number of things. 

The replacement of the quantifiers ( ) and (E ) by the 
quantifiers U and E and the related problems of formal truth, 
identity, and entailment in sentences involving the symbols 
( ) and (E ) need not be discussed here. 

4· On Numbers 
The name of a number is a numeral. 
Let p and q be names of real numbers. 
-pis called the negative numeral of p, and P+q the sum-, 

p-q the difference-, p · q the product-, and p: q the quotient-
numerals of p and q. 

A numeral which is neither the negative numeral of another 
numeral, nor the sum-, difference-, product- or quotient-
numeral of two other numerals is called an atomic numeral. 

By a molecular complex of n names of real numbers we 
understand: 

1. Any one of the n numerals themselves and their negative 
numerals. 

ii. The sum-, difference-, product- or quotient-numeral 
of any two of the n numerals. 
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iii. The negative numeral of any molecular complex of the 
n numerals, and the sum-, difference-, product- or 
quotient-numeral of any two molecular complexes of 
then numerals. 

The n numerals are called the constituents of their molecular 
complexes. If the numerals are atomic, they are called atomic 
constituents. 

Any molecular complex of n names of real numbers denotes 
a real number. Which real number it denotes can be calculated 
from its atomic constituents. 

(The only exception is the quotient-numeral of two numerals, 
both of which denote zero.) 

If two numerals denote the same number, they are called 
identical. It is sometimes convenient to say that identical 
numerals denote identical numbers. 

If p and q are numerals, the proposition that they are identical 
will be expressed P=q. 

As to the use of brackets we adopt the convention that the 
symbol+ has a weaker binding force than -, :, and ·; the symbol 
- than : and ·; and the symbol : than ·. Thus, e.g., if p, q, r, s, 
and tare numerals, we can instead of P+(q-(r: (s · t))) write 
simply P+q-r: s · t. 

If p and q are numerals, we can for p · q write simply pq. 
In virtue of the associative principles we can omit brackets from 
sums of sums and products of products. We can henceforth talk 
of sums and products of n numbers and of n-termed sum- and 
product-numerals respectively. n 

Let p1, ••• , pn be the names of n real numbers. Then l: p,. 
n m=-=1 

or simply l:p,. is the name of their sum, and II p,. or simply lip,. 
Of their product, m=I 

< is the symbol for being smaller than and > the symbol for 
being greater than. 

Let p and q and 8 be names of real numbers. Then the 
sentence p~ q is identical with (p<q)v(p=q) and the sentence 
p?;:;q with (p>q)v(p=q). Further, the sentence p=q±8 is 
identical with (p~ q+ 8) &(p~q-8) &( 8?;!;o). 

We decide to reserve the Latin letters g, h, i,j, k, l, m, n, u, v 
and w and the Greek letters p. and " for cardinal numbers. 
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Similarly, we decide to reserve p, q, r, s, t, S, and E for real 
numbers (usually in the interval from o and I inclusive). 

5· On Sequences 
Properties may be divided into denumerable and non-

denumerable. 
Non-denumerable properties are not treated in this inquiry. 
That a property is denumerable means that its positive 

instances can be counted.- That the positive instances can be 
counted again means that a dyadic relation of a certain kind 
can be established between the positive instances and cardinal 
numbers. Such a relation we shall call a wqy of counting (the 
positive instances of) the property. 

A dyadic relation (let us call it R), is a way of counting the 
positive instances of a property, (let us call it H), if, and only if, 
the following three conditions are fulfilled: 

1. Anything, which is a positive instance of the property 
(denoted) H, is related by the relation (denoted) R, to 
a cardinal number. 

ii. If a positive instance of His related by R to a cardinal, 
then it is not related by R to any other cardinal. 

m. If a positive instance of His related by R to a cardinal, 
then no other positive instance of H is related by R 
to the same cardinal. 

In addition to i-iii, let two more conditions be fulfilled: 

iv. For the cardinals (denoted) m and n, of which the former 
is not greater than the latter, and for any cardinal 
greater than m and smaller than n there is a positive 
instance of H related to it by R. 

v. For no cardinal smaller than m or greater than n above 
is there a positive instance of H related to it by R. 

If there is a relation R and a property H satisfYing the con-
ditions i-v, then R is called a dense way of counting Hand His 
said to be finite. m+ I-n is said to denote the cardinal number 
of H. In symbols .Nc (H, m+I-n). 

If, in iv and v and their symbolic expressions, all reference 
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to the cardinal called n is suppressed, we get two modified 
conditions iv' and v '. If there is a relation R and a property 
H satisfying the conditions i-v ', then R is a dense way of count-
ing H and H is said to be denumerably infinite. 

Two ways, R and R', of counting Hare called different, if 
it is not the case that all positive instances of Hare related to 
the same cardinal number by R and by R '. 

If R is a way of counting the property denoted HvH, then 
R is also a way of counting any other property from the same 
Universe of Properties. 

By then first positive instances of H, when His counted in the 
way R, we shall mean the positive instances of H related by R 
to cardinals not greater than n. It is clear that this definition 
corresponds to the ordinary use of language only if R is a dense 
way of counting H, and if the smallest cardinal to which there 
corresponds a positive instance of His 1. For technical purposes, 
however, the more comprehensive use will be convenient. 

* * * * * 
Any property H and relation R, which satisfy the conditions 

i-iii above, are said to constitute a sequence. We shall use 
H,R as a symbol for the sequence. 

(This is a particular case of the general concept of a sequence 
which, however, we do not need here.) 

If R is a way of counting H, then R can be used for denumera-
ting, i.e., naming by means of numerals, the positive instances 
of H. Thus we may introduce the name x1 for the positive 
instance of H, which is related by R to the cardinal I ,x 2 for 
the positive instance related to the cardinal 2, and so on. 

If R is a dense way of counting H, beginning from I, then 
we shall sometimes, when the names of the property and the 
way of counting are irrelevant in the context, symbolise the 
sequence by means of a row of names of numerated things, e.g., 
Xl, • • ., Xm • • • 

According to whether the property His finite or ( denumer-
ably) infinite, we shall call the sequence H,R finite or (de-
numerably) infinite. 

As is well known, an (infinite\ sequence p 1, ••• , Pm ... of 
real numbers is said to converge towards or to approach as its 
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limit the real number p, if for any quantity S, however small 
but greater than o, there exists a cardinal m such that for all 
greater cardinals n the absolute amount of the difference be-
tween p and Pn is smaller than S. In symbols: 

(I) (S) (Em) (n) (o>o&n>m-+Pn=P±S). 
It is often convenient to say that the number Pn approaches p 

as its limit. 
The cardinal m is called a point of convergence (towards p, 

associated with S). 
As an abbreviation for (I) we shall use lim (pn, p). 
A sequence p1, •• • ,pn, ... of real numbers is said to have a 

partial limit (limes partialis) at p, if it is the case that Pn 'again 
and again' comes 'infinitely near' top. In symbols: 

(2) (S) (m) (En) (o>o-+n>m&Pn=P±S). 
The cardinal n is called a point of condensation. 
As an abbreviation for (2) we shall use plim(pnl p) · 
Of particular interest to us are sequences of real numbers in 

the interval from o to I inclusive. 
According to the Bolzano-Weierstrass Principle any sequence 

of real numbers in the interval from o to I (or any other closed 
interval) must have at least one partial limit. 

Any sequence in the interval from o to I (or any other closed 
interval) may have more than one partial limit. 

If a sequence of real numbers p 1, ••• , pnl ... in the interval 
from o to I has a partial limit at p and no other partial limit, 
then it approaches pas a limit. This can easily be shown as follows: 

Suppose that p were not the limit. This assumption, the 
denial of ( 1), means that there would exist an interval round p 
such that Pn will again and again fall outside this interval 
(including its limits). In symbols: 

(3) (ES) (m) (En) (o>o&n>m&Pn=P±S). 
But for numbers between o and I inclusive, Pn=P±S entails 
o~Pn <P-S v P + S<Pn~ I, meaning that Pn will again and again 
fall inside either the interval from o top-S or the interval from 
P+S to 1. But from the Bolzano-Weierstrass Principle it then 
follows that there is a partial limit within either or both ofthose 
intervals. This, however, is contrary to the datum that p is the 
sole partial limit. It follows by contraposition that p as sole 
partial limit is also the limit. 
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That a sequence of real numbers p 1, ••• , Pm ... in the interval 
from o to I inclusive converges towards p, could also be 
expressed according to the above, by denying the existence of 
a partial limit at any other value than p. In symbols: 

(4) (q) (ES) (Em) (n) (q=~ S>o&(n>m-+Pn=q±S)). 
m is here called a point of divergence (from q). 

* * * * * 
Let there be a property A and a sequence of properties 

At, ... , Am .... 
Let the following three conditions be fulfilled: 

1. Any property of the sequence is included in its successor 
property. In symbols: 

(5) (n) (An CAn+ 1), 
ii. Any positive instance of the property A is also a positive 

instance of at least one property from the sequence of properties 
A 1, ••• , An, .... In symbols: 

(6) (x) (Ax-+ (En)Anx). 
iii. Anything, which is a positive instance of at least one 

property from the sequence of properties A1, ••• , An, ••• , is also 
a positive instance of the property A. In symbols: 

(7) (x) ((En)Anx-+Ax). 
If these three conditions are fulfilled, we say that the se-

quence of properties A 1, ••• , Am .•. approaches as its limit the 
property A. 

Let the following three conditions be fulfilled: 

i '. Any property of the sequence A~> ... , Am •.• (except 
A1) is included in its predecessor property. In symbols: 

(8) (n) (An+ 1 C AJ. 
ii '. Any positive instance of the property A is a positive 

instance of all properties from the sequence A~> ... , 
Am .••. In symbols: 

(g) (x) (Ax-+ (n)Anx). 
iii'. Anything, which is a positive instance of all properties 

from the sequence A 1> •• , An, •. , is a positive instance 
of the property A. In symbols: 

(xo) (x) ((n)Anx-+Ax). 
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If these three conditions are fulfilled, we also say that the 
sequence of properties A H ••• , Am ... approaches as its limit 
the property A. 

That A 1, ••• , Am ... approaches A as its limit, will be denoted 
lim(Am A). Thus the sentence lim(Am A) is identical with the 
disjunction-sentence of the conjunction-sentence of (5) and 
(6) and (7) and the conjunction-sentence of (8) and (9) and 
( ro). 

The following illustrations to the two cases, when a sequence 
of properties is said to approach a certain property as its limit, 
may be useful to consider: 

From the left-hand picture we can immediately read off 
the following important facts: For every n the product An&An+ 1 

is identical with An. For every n the product An&A is identical 
with An. 

From the right-hand picture again we read off: For every n 
the product An&An+l is identical with An+l· For every n the 
product An&A is identical with A. 

* * * * * 
Let1 there be a sequence ofproperties A 1, ••• , Am •.. (from 

the same Universe of Properties). 
Then there is also a sequence of negation-properties 

Al, ... ,Am .... 
We shall call the first sequence the positive and the second 

the negative A-sequence. We may also say that both sequences 

1 The reading of the rest of this paragraph may be postponed until after Chap. 
VII, §12. 
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are made up of the same properties, taken positively and 
negatively respectively. (This mode of speech is, of course, 
logically objectionable, but sometimes convenient to use.) 

A conjunction (disjunction) of properties from the positive 
A-sequence we call, accordingly, a positive conjunction (dis-
junction), and a conjunction (disjunction) from the negative 
A-sequence we call a negative cortiunction (disjunction). A 
conjunction (disjunction) of properties, some of which belong 
to one and some to the other of the two sequences, we call a 
mixed conjunction (disjunction). 

It will be convenient to regard the members of the two 
A-sequences themselves as positive and negative conjunctions 
(disjunctions) of one single constituent only. 

A mixed conjunction is called consistent or not-contradictory, 
if none of its constituents is the negation of another of its con· 
stituents. A positive and a negative conjunction are said to 
contradict one another, if at least one of the constituents of the 
first conjunction is the negation of a constituent of the second 
conjunction, or vice versa. 

By the A-constituents of a positive or negative conjunction 
(disjunction) we understand the positive A-properties of which 
(or of the negation-properties of which) it is a conjunction 
(disjunction). 

Consider the arrangement of the members of the positive 
A-sequence into groups, according to the following scheme, the 
constructive principle of which should be obvious to the reader: 

Scheme I 

At, 
A2, AlA2, 
As, A 1As, A 2As, A1A 2A 3, 

A,, A 1A 4, A 2A 4, A 3A 4, A 1A 2A 4, A 1A3A 4, A 2A 3A 4, A 1A 2A 3A 4 , 

By inserting conjunctions we generate from this scheme a se-
quence of properties A 1, A 2, A 1 &A 2, A 3, A 1 &A 3, A 2&A 3, • • • • 

This sequence contains only the positive conjunctions. For 
these conjunctions we introduce in order the new names 
K 1, ••• , Km .... Thus (the name) K 1 is identical with (denotes 
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the same property as the name) A 1, K 5 is identical with A 1 &A 3 , 

etc. We refer to this sequence as the (one-dimensional) K-
sequence. 

By inserting disjunctions we generate from this scheme a 
sequence of properties A 1, A 2, A 1vA 2, A 3, A1vA 3, A 2vA 3, •••• 

This sequence contains only the positive disjunctions. For these 
disjunctions we introduce in order the new names M 1, ••• , 

Mm . . . and refer to the sequence as the (one-dimensional) 
M-sequence. 

If we take the negation-properties of the members of each 
group and, provided the group has more than one member, 
join the negation-properties by conjunction, we get a sequence 
of properties A 1 , A 2, A1 &A 2, A 3 , A 1 &A 3 , A 2&A 3 , • • • • This 
sequence contains only negative conjunctions. For these con-
junctions we introduce in order the new names L 1, •• • ,Ln> ••• 
and refer to the sequence as the (one-dimensional) L-sequence. 

(The sequence of all negative disjunctions will not be 
needed.) 

It would be possible to give a rule for the calculation, for 
any given value of n, of the number of A-constituents of the 
conjunctions Kn, Ln and the disjunction Mn respectively. It 
may, however, be regarded as inconvenient that the number 
of such constituents cannot be directly read off from the indices 
of the names of the respective members of the K-, L-, and 
M-sequences. 

In order to do away with this inconvenience, we rearrange 
the groups of Scheme I so that we get: 

Scheme II 
A 1, A 2, A 3, A 4, • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • . • • • 

A 1A 2, A 1A 3, A 2A 3, A 1A 4, A 2A 4, A 3A 4, •••••••••••••••••• 

A 1A 2A 3, A 1A 2A 4, A 1A 3A 4, A 2A 3A 4, •••••••••••••••••••••• 

A1A2AaA4, ......................................... . 

(The principle of rearrangement should be obvious to the 
reader.) 

We can now split up the one-dimensional K-, L-, and M-
sequences into two-dimensional K-, L-, and M-sequences: 
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Here (the names) 1K 1, 2K 1, etc. are identical with (the names) 
A1, A 2, etc.; (the names) 1K 2, 2K 2, etc. with (the names) 
A 1 &A 2, A 1 &A 3, etc.; (the names) 1K 3, 2K 3 , etc. with (the names) 
A 1&A 2&A 3, A 1&A 2&A 4, etc.; and so on. 

Further 1L 1, 2L 1, etc. are identical with iC, 1 2, etc.; 1L 2, 2L 2, 

etc. with A1 &12, A1&13, etc.; and so on. 
Finally 1M 1, 2M 1, etc. are identical with A 1, A 2, etc.; 1M 2, 

2M 2, etc. with A1 vA 2, A1vA 3, etc.; and so on. 
Thus nKm is the conjunction, and nMm the disjunction of 

the same m properties from the positive A-sequence. nLm again 
is the conjunction of the corresponding properties from the 
negative A-sequence. nK1 and nM1 are both identical with Am 
and nL 1 is identical with An. 

In the two-dimensional K-, L-, and M- sequences the number 
of A-constituents of the conjunctions and disjunctions respec-
tively can be directly read off from the lower indices of their 
names. 

Given i and n, the A-constituents of the conjunction i Kn are 
uniquely determined. m of those n constituents are selected. 
The selection can take place in (;;.) different ways. Consider the 
conjunctions of the properties thus selected. Consider then the 
disjunction of all these (;;.) conjunctions. Its A-constituents are 
uniquely determined, given i, n, and m. We call the disjunction 
of these conjunctions ~Q,n. 

Similarly, given i and n, the A-constituents of the conjunction 
iLn are uniquely determined. m of those n constituents are 
selected. The selection can again take place in (;;.) different 
ways. Consider the conjunctions of the negations of the 
properties thus selected. Consider then the disjunction of all 
these (;;.) conjunctions. Its A-constituents are uniquely deter-
mined, given i, n, and m. We call the disjunction ofthese con-
junctions ~Rn, 
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(It is easy to see, though of no particular importance, that 
:~ is the same as iMn. For consid~r what presence-functions 
of A-constituents they represent; 'Mn is a disjunction of n 
members from the positive A-sequence.:~ again is the dis-
junction of those n members from the positive A-sequence, the 
conjunction of which is iKn. But, as was observed above, the 
A-constituents of iKn are the same as those of iMn. Therefore 
iQn and 1Mn are disjunctions of the same A-constituents.) 
' Consider the property ~~&n-/nR". We leave it as an 
exercise to the reader to satisfy himself that this property is 
the disjunction of all the (::,) mixed conjunctions which can be 
formed of n given A-constituents by taking m of them positively 
and the remaining n-m ones negatively. 

For the disjunction, of all the (;:.) mixed conjunctions which 
can be formed of n given A-constituents by taking m1 of them 
positively and the remaining n-m 1 ones negatively, and of the 
(;:,) mixed conjunctions which can be formed of n given A-
constituents by taking m 2 of them positively and the remaining 
n-m2 ones negatively, and ... , and of the (,:k) mixed conjunc-
tions which can be formed of n given A-constituents by taking 
mk of them positively and the remaining n-mk ones negatively, 
-we introduce the name m., ;.4" ,mk• 

Let us next consider two groups of properties when grouped 
according to Scheme II above; say, the (group of properties 
named by the names in the) k:th group of the g:th horizontal 
row and the n:th group of the m:th horizontal row. Let us 
assume that g~m. It is now possible to express, in terms of 
arithmetical conditions for indices, what it means to say that 
all properties in the first group also occur in the second group. 
Any one of the g indices in the first group may be identical with 
some one of the m indices in the second group. Thus there are 
in all gm equations or identity-sentences, expressing identity of 
indices. That every index in the first group is identical with some 
index in the second group means that of those gm equations g 
are simultaneously valid. This again is possible in m!:g! different 
ways, since all indices in the same group are different and con~ 
sequently can be identical with one index only in the other 
group. The proposition that all properties in the first group 
also occur in the second group is thus expressed by an m!:g! -termed 
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disjunction-sentence of g-termed conjunction-sentences of 
identity-sentences between indices. The indices are uniquely 
determined, given g, k, m, and n. For the proposition in question 
we shall introduce the sentence Inc (n, m, k, g). 

Considering the meaning of the expressions, it is easy to see 
that Inc (n, m, k,g) entails kMe c nMm-

Similarly, it is easy to see that Inc (n, m, k, g) entails nKm C kKz 
and also nLm C kLg. 

The conjunction-sentence of the negation-sentences of the 
gm identity-sentences above, expresses the proposition that no 
property (named) in the k:th group of the g:th horizontal row 
of Scheme II also occurs in the n:th group of the m:th horizontal 
row. For this proposition we introduce the sentence Exc ( n, m, k, g). 

It follows that Exc (n, m, k, g) means that at least one property 
(named) in the k:th group of the g:th horizontal row of Scheme II 
also occurs in the n:th group of the m:th horizontal row. 

Considering the meaning of the expressions, it is easy to see 
that Exc ( n, m, k, g) means that the mixed conjunctions k Kg & n Lm 
and nKm & kLc are contradictory. Exc (n, m, k, g) consequently 
means that the mixed conjunctions in question are not-contra-
dictory or consistent. 

Similarly, Exc (n, m, k, g) entails that the positive conjunctions 
kK8 and nKm respectively contradict the negative conjunctions 
nLm and kL8 respectively. Exc (n, m, k, g) entails that the positive 
and negative conjunctions in question do not contradict each 
other. 

Let there be a sequencep 1, •• • ,pn> ... ofreal numbers between 
o and I inclusive. 

From this sequence we can derive another sequence I-p 1, ••• , 

I-Pn> ... ofreal numbers between o and I inclusive. 
We shall call the sequences the p- and the I-p-sequences 

respectively. 
The products and sums of members of the p- and I-p-se-

quences respectively can be arranged into sequences in accord-
ance with schemes, which correspond to Scheme I and Scheme II 
above for the arrangement of products and sums of members 
of the positive and negative A-sequences respectively. 

Thus we get a sequence of products 1r 1, ••• , 1rn, ••• of 
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ft- numbers corresponding to the one-dimensional K-sequence, 
a sequence of products p 1, ••• , Pm ••• of 1-ft-numbers corres-
ponding to the one-dimensional L-sequence, and a sequence of 
sums o- 1, ••• , o-m ••• of ft-numbers corresponding to the one-
dimensional M-sequence. 

These sequences may in their turn be split up into two-di-
mensional sequences: 

17T 1, ••• , n1T 1> • • • 1 p 1> • • • , n p 1> • , • 10'" 1> • • • , n 0'" 1 , • • • 

corresponding to the two-dimensional K-, L-, and M-sequences. 
It should be noted that "1r1 and "o- 1 are both identical with 

ftn, and that "p 1 is identical with I-ftn· 
From "1rm we derive iiim in the same way that we derived 

'!Qm from "Km-
The II-numbers are sums of products of ft-numbers. 
(Sums of products of 1-ft-numbers are not needed.) 
It should be observed that, just as 7Qm is identical with "Mm, 

so ~nm is identical with "o-m· (Cf. above p. 59·) 
Let there be a two-dimensional sequence of real numbers 

between o and 1 inclusive: 

1ftm, • • • ' "ftm, • • • 

Consider the one-one-correspondence between this sequence 
and the two-dimensional K-sequence, which makes 1K 1 answer 
to 1ft 1, etc. Then to fQm there will answer a sum '/8"' of members 
of this two-dimensional ft-sequence. 

If the respective members of the sequence ft 1, ••• , ftn, • •• 
happened to be identical in order with the respective members 
of the sequence 1ft 1, ••• , "ft ~> ••• , then ~lim would be identical 
with nem. 

1 
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Let there, finally, be two one-dimensional sequences of real 
numbers between o and 1 inclusive: p 1, •.•• , Pn, •.• and q1, ••• , 

qn> •••• 
For p 1 q1 we introduce the new name w1, and ... , and for 

Pn qn the new name wn. 
For the sum of all w-numbers with the same indices as the 

A-constitutents ofnMn we introduce the name nOm. 



Chapter Three 

THE FORM OF INDUCTIVE ARGUMENTS 
LAWS OF NATURE 

I. Induction as Inference 

WE are now in a position which enables us to describe our 
object of study, loosely outlined in Chap. I, in the more 

precise terms of logic which were introduced in Chap. II. 
As already observed (p. 20), one of the essential character-

istics of inductive inference is its inconclusive or non-demon-
strative nature. This means that the conclusion of the argument 
never follows from the (conjunction ofthe) premisses. 

There is a type of conclusive or demonstrative argument 
which bears a superficial resemblance to inductive inference. 
It is sometimes called Complete, Perfect, or Non-Problematic 
Induction and contrasted with the inconclusive or non-
demonstrative type of argument, which is then called 
Incomplete, Imperfect, or Problematic Induction. 

Inductive inference in the genuine sense should, of course, 
be distinguished also from certain types of demonstrative 
argument in logic and mathematics, which are called 'induc-
tive'; such as, e.g., so-called Bernoullian Induction, or reasoning 
from n to n+x. 

In replacing our previous rough description of inductive 
inference by a more exact one, it is convenient to start from 
induction of the second order, or induction leading to theories 
(as opposed to predictions). 

The conclusion of an inductive inference of the second order 
is a Universal Implication or Equivalence. 

A theory is thus a Universal Implication or Equivalence. 
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As we have seen (p. 43 f.), aU niversal Implication or Equiva-
lence is a proposition to the effect that an implication-property 
or equivalence-property is universal. If the property in question 
is ( denumerably) infinite, the theory is said to have the numeri-
cally unrestricted range of application (p.15) which entitles it 
to the name of a law (Law of Nature). 

The premisses of an inductive inference of the second order 
are confirming instances of the conclusion, i.e. the Universal 
Implication or Equivalence. This definition of the premisses 
is considerably more comprehensive than the one given (p. I 5) 
for the purpose of a first approximation, as will be seen from 
the following considerations. 

A confirming instance of a Universal Implication is a true 
proposition to the effect that a thing is a positive instance of 
the implication-property under consideration. 

It should be observed that one and the same property can 
be the implication-property of different antecedents and con-
sequents. E.g., the implication-property of the property (called) 
A as antecedent and the property (called) B as consequent i~the 
same as the implication-property of B as antecedent and A as 
consequent. 

Given an antecedent and a consequent and a Universal 
Implication it follows from the structure of the implication-
property that there are three types of confirming instances of 
the Universal Implication: 

1. Confirmations afforded (p. 44) by things, in which 
both the antecedent and the consequent of the 
implication-property are present. 

n. Confirmations afforded by things, in which the ante-
cedent is absent and the consequent present. 

m. Confirmations afforded by things, in which both the 
antecedent and the consequent are absent. 

It can be seen that any negative instance of the antecedent 
is a positive instance of the implication-property, irrespective 
of whether it is a positive or a negative instance of the con-
sequent. The same is true, mutatis mutandis, of any positive 
instance of the consequent. Thus anything, which is known to 
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be a negative instance of the antecedent or a positive instance 
of the consequent, is known as such to afford a confirming 
instance of the Universal Implication. This fact, which has 
startled some philosophers, we shall refer to as the Paradox of 
Confirmation. 

A confirming instance of a Universal Equivalence is a true 
proposition to the effect that a thing is a positive instance of the 
equivalence-property under consideration. From the structure 
of the equivalence-property it follows that there are two types 
of confirming instances of Universal Equivalences, correspond-
ing mutatis mutandis to i and iii above. It further follows that the 
Paradox of Confirmation does not arise in connexion with 
Universal Equivalences. 

We now turn to induction of the first order. 
By the test-conditions of a Universal Implication, given an 

antecedent and a consequent, we shall understand propositions 
to the effect that the antecedent is present (first test-condition), 
or absent (second test-condition); or that the consequent is 
present (third test-condition), or absent (fourth test-condition), 
in a thing. Similarly, we define mutatis mutandis the four test-
conditions of a Universal Equivalence. 

From the Universal Implication and its first test-condition 
we can deduce its third test-condition, i.e., from the conjunction 
of the Universal Implication and the first test-condition the 
third test-condition follows. From the Universal Implication and 
its fourth test-condition we can again deduce its second test-
condition. But from the Universal Implication in conjunction 
with its second or third test-condition none of its other test-
conditions can be deduced. We, therefore, decide to call the 
first and the fourth test-condition of a Universal Implication 
real, and the second and third apparent. 

From the Universal Equivalence and its first test-condition 
we can deduce its third test-condition, and vice versa. From the 
Universal Equivalence and its second test-condition we can 
deduce its fourth test-condition, and vice versa. Thus all the 
test-conditions of a Universal Equivalence are real. 

The conclusion of an inductive inference of the first order is 
a test-condition of a certain Universal Implication or Equiva-
lence. 
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The premisses of an inductive inference of the first order are: 

1. Confirming instances of this same Universal Implication 
or Equivalence, and : 

n. A test-condition of it, from which, in conjunction with 
the Universal Implication or Equivalence, that test-
condition which is the conclusion can be deduced. 
(Cf. above p. 15). 

It should be observed that the Universal Implication or 
Equivalence is only 'imaginary': it does not enter into the 
argument. 

It should be clear from the above considerations, in what 
sense induction of the second order can be regarded as logically 
more 'basic' than induction of the first order. 

Throughout this book it will be assumed that the conclusions 
of inductive arguments of the second order are theories in the 
stronger sense of laws. This limitation is here, on the whole, of 
technical importance only. 

2. The Logic of Conditions 
Having briefly examined the form of inductive inferences as 

wholes, we shall now turn to a closer examination of the form 
of inductive conclusions. We shall here be concerned only with 
conclusions of inductive arguments of the second order, i.e., with 
Universal Implications and Equivalences. 

Dr. That (the property denoted by) A is a Sufficient 
Condition of(the property denoted by) B means that whenever 
A is present, then B is also present, or that A C B. 

D2. That (the property denoted by) A is a Necessary 
Condition of(the property denoted by) B means that whenever 
B is present, then A is also present, or that B C A. 

D3. That (the property denoted by) A is a Necessary-and-
Sufficient Condition of (the property denoted by) B means 
that whenever, and only whenever, A is present, then B is also 
present, or that A == B. 

A Universal Implication or Equivalence thus establishes a 
connexion of condition between properties ('terms,' 'factors'). 
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A connexion of condition between properties may also be 
called a connexion of law or nomic connexion. 

On the basis of Dr-D3 and some additional definitions to 
be given later, it is possible to prove a number of theorems 
concerning Sufficient, Necessary, and Necessary-and-Sufficient 
Conditions. The system constituted by the definitions and 
theorems, may be called the Logic of Conditions. 

(The Logic of Conditions is thus the logic of nomic con-
nexion.) 

Tr. If A is a Sufficient Condition of B, then B is a Necessary 
Condition of A. The converse of this is also true. 

The theorem follows immediately from Dr and D2. 
T2. The following four propositions are identical, viz. 

1. that the presence of A is sufficient for the presence of B, 
n. that the absence of A is necessary for the absence of B, 

m. that the absence of B is sufficient for the absence of A, 
and 

IV. that the presence of B is necessary for the presence of A. 

Proof: A C B is identical with B CA. It follows from Tr that 
each one of the identical sentences can be read in two different 
ways as expressing a relation of condition. Thus there are four 
different ways of reading in all. These are the ways mentioned 
in the theorem. 

T3. That A is a Necessary-and-Sufficient Condition of B 
can be expressed in sixteen different ways in terms of Sufficient 
and Necessary Conditions. Of those sixteen ways we mention 
the following four, vi;:;., 

1. that the presence of A is sufficient for the presence of B 
and the absence of A for the absence of B, 

n. that the presence of A is sufficient as well as necessary 
for the presence of B, 

m. that the absence of A is necessary for the absence of B 
and the presence of A for the presence of B, and 

iv. that the absence of A is necessary as well as sufficient 
for the absence of B. 

Proof: A = B is identical with i. (A C B) &(A C B), ii. (A C B) 
& (B C A), iii. (8 c A)&(B C A), and iv. (B C A)&(A C B). 
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It follows from Tr that each one of the constituents of the con-
junction-sentences can be read in two different ways. Thus 
each one of the conjunction-sentences themselves can be read 
in four different ways, and there are in all four times four, or 
sixteen, different ways of reading. Among them will be found 
the four ways mentioned in the theorem. 

T4. The relation of being a Necessary-and-Sufficient Con-
dition is reflexive, symmetrical, and transitive. 

Proof: A = A is tautologous. A == B is identical with B == A. 
(A== B)&(B ==C) entails A= C. 

T5. The relation of being a Sufficient Condition is reflexive 
and transitive, but not symmetrical. 

Proof: A C A is tautologous. (A C B) &(B C C) entails A C C. 
A C B is not identical with B C A. 

T6. The relation of being a Necessary Condition is also re-
flexive and transitive, but not symmetrical. 

Proof: A C A is tautologous. (B C A)&(C C B) entails C CA. 
A C B is not identical with B C A. 

A property may have more than one Sufficient or Necessary 
Condition. If this is the case, we speak ofPlurality of Conditions. 

T7. Let a property be the sum ofn properties. If this property 
is a Sufficient Condition of a given property, then every one of 
the n properties is also a Sufficient Condition of the given 
property. Conversely, if every one of the n properties is a Suffi-
cient Condition of a given property, then their sum is also a 
Sufficient Condition of the given property. 

Proof: AvB C Cis identical with (A C C)&(B C C). 
TO. Let a property be the product of n properties. If this 

property is a Necessary Condition of a given property, then 
every one of then properties is also a Necessary Condition of 
the given property. Conversely, if every one of the n properties 
is a Necessary Condition of a given property, then their product 
is also a Necessary Condition of the given property. 

Proof: A C B&C is identical with (A C B)&(A C C). 
T9. Let a Sufficient (Necessary) Condition of a given property 

be a presence-function of n properties. Such a Sufficient 
(Necessary) Condition is, in general, the sum (product) of a 
plurality of Sufficient (Necessary) Conditions of the given 
property, every one of which is the product (sum) ofm of then 
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properties and of the negation-properties of the remaining 
n-m properties. 

Proof: The theorem follows immediately from T7 ( TB) and 
from the fact that the name of the Sufficient (Necessary) Con-
dition of the given property has a perfect disjunctive ( conjunc-
tive) normal form in terms of the names of the n properties. 

The qualification 'in general' means 'unless the Sufficient 
(Necessary) Condition happen to be the contradiction (tauto-
logy) or product (sum) of then properties.' 

The status ofNecessary-and-Sufficient Conditions with regard 
to plurality is somewhat different from that of Sufficient and 
Necessary Conditions. 

TIO. If a property has several Necessary-and-Sufficient 
Conditions, they are co-extensive, and thus Necessary-and-
Sufficient Conditions of one another. 

Proof: (A ==B) &(A = C) entails B = C. 
TII. Let a Necessary-and-Sufficient Condition of a given 

property be the sum (product) of n properties. Then, in general, 
no one of the n properties is also a Necessary-and-Sufficient 
Condition of the given property. 

Proof: Neither A=BvCnor A=B&C entails (A=B)v(A=C) . 
. The qualification 'in general' means 'unless all the other n-1 

properties happen to be empty (universal).' 
Tr2. Let a Necessary-and-Sufficient Condition of a given 

property be a presence-function of n properties. Such a Neces-
sary-and-Sufficient Condition is not, in general, the sum or 
product of a plurality of Necessary-and-Sufficient Conditions 
of the given property, every one of which is the product or sum 
of m of the n properties and the negation-properties of the 
remaining n-m properties. 

Proof: The theorem immediately follows from Tr I and 
considerations as regards the perfect normal forms of the name 
of the Necessary-and-Sufficient Condition. 

The qualification 'in general' means 'unless the given 
property happens to be empty or universal.' 

Tij. If A is a Necessary-and-Sufficient Condition of B, then 
the sum of A and any of A's Sufficient Conditions is a Necessary-
and-Sufficient Condition of B. So also is the product of A and 
any of A's Necessary Conditions. 
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Proof: (A= B)&(C C A) entails AvC = B, and (A=B)& 
(A C C) entails A&C =B. 

T14. If A is a Sufficient Condition of B, then the product of 
A and any property is also a Sufficient Condition of B. 

Proof: A C B entails A&C C B. 
T15. If A is a Necessary Condition of B, then the sum of A 

and any property is also a Necessary Condition of B. 
Proof: B C A entails B C AvC. 
T16. Any empty property is a Sufficient Condition of any 

property._ 
Proof: E A entails A C B. 
T17. Any universal property is a Necessary Condition of any 

property. 
Proof: U A entails B C A. 
The following theorems concerning the interrelatedness of 

Sufficient and Necessary Conditions should be mentioned: 
T18. If the absence of at least one of a number of properties 

is sufficient for the absence of a certain property A, then the 
presence of all those properties is necessary for the presence of 
A. And the converse of this holds also. 

Proof: BvC C A is identical with A C B&C. 
T19. If the absence of every one of a number of properties 

is necessary for the absence of a certain property A, then the 
presence of at least one of those properties is sufficient for the 
presence of A. And the converse of this holds also. 

Proof: A C B&C is identical with BvC CA. 
T2o. If the absence of every one of a number of properties is 

sufficient for the absence of a certain property A, then the 
presence of at least one of those properties is necessary for the 
presence ~A..:. An~ the converse of this is also true. 

Proof: B&C C A is identical with A C BvC. 
T21. If the absence of at least one of a number ofproperties 

is necessary for the absence of a certain property A, then the 
presence of all those properties is sufficient for the presence of A. 
And the converse of this is also true. 

Proof: A C BvC is identical with B&C CA. 
The last four theorems serve to illustrate the fact that the 

negation of a property is just as much a 'property' as the 
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property itself. This is clear from the point of view oflogic. It is 
usually, but not always, evident from the point of view of 
ordinary language also. Frequently language uses a 'positive' 
expression for the absence as well as for the presence of a 
property. The negation, e.g., of the property of having a 
constant temperature is the property of having a variable 
temperature. 

Again, the last two theorems should make it quite clear, 
that if conjunction~properties be accepted as Sufficient Condi-
tions (which they obviously must), then disjunction~properties 
must be accepted as Necessary Conditions (which prima facie 
is perhaps less evident and sometimes even disputed). To give 
an example: If it be sufficient in keeping the volume of a gas 
constant to keep the pressure and the temperature constant, 
then it will be necessary in effecting a variation in the volume 
to let the pressure or the temperature be varied. 

Let £/>0 denote a set of logically totally independent properties. 
D4. That A is a Sufficient (Necessary, Necessary-and-

Sufficient) Condition of B in £/>0 means that A is a Sufficient 
(Necessary, Necessary~and~Sufficient) Condition of B and a 
presence-function of some n properties in £/>0• 

Ds. That A is a Greatest Sufficient Condition of B in £/>0 

means that A is a Sufficient Condition of B in £/> 0 and that no 
member or conjunction of members of £/>0 which includes (but 
is not included in) A is a Sufficient Condition of B. 

D6. That A is a Smallest Necessary Condition of B in £/>0 
means that A is a Necessary Condition of Bin £/> 0 and that no 
member or disjunction of members of £/> 0 which is included 
in (but does not include) A is a Necessary Condition of B. 

D7. That A is the Total Sufficient Condition of B in 4>0 
means that A is the sum of all Greatest Sufficient Conditions of 
Bin £/>0 • 

DB. That A is the Total Necessary Condition of B in £/>0 

means that A is the product of all Smallest Necessary Conditions 
of Bin £/> 0• 

It is of no interest to introduce the notions of Greatest, 
Smallest, and Total Necessary-and-Sufficient Conditions, since 
the Necessary-and~Sufficient Conditions of a property are all 
co~extensive (Tro). 
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T22. A property's Total Sufficient Condition in rp0 is co-
extensive with the sum of all its Sufficient Conditions in rp0• 

Proof: Let A be the Total Sufficient Condition of B in rp0 • 

Let C be any Sufficient Condition of B in rp0• C is either a 
Greatest Sufficient Condition of B in rp0 , or not. In the first 
case it is as such included in A. In the second case it is per 
dejinitionem included in some Greatest Sufficient Condition of B 
in rp0 and, since inclusion is transitive, in A. But C C A entails 
AvC ==A. 

T23. A property's Total Necessary Condition in rp0 is co-
extensive with the product of all its Necessary Conditions in 
r/Jo· 

Proof: Let A be the Total Necessary Condition of B in rp0 • 

Let C be any Necessary Condition of B in t/>0• Cis either a 
Smallest Necessary Condition of B in t/>0, or not. In the first 
case it as such includes A. In the second case it per definitionem 
includes some Smallest Necessary Condition of B in tf>o and, 
since inclusion is transitive, also A. But A C C entails A&C ==A. 

T24. Given a property A and a set t/>0, in every positive in-
stance of A the Total Necessary Condition of A in t/>0 must be 
present. 

This immediately follows from D2, D4, D6, DB, and TB. 
T25. Given a property A and a set t/>0, in some positive 

instance of A the Total Sufficient Condition of A in tf>o may be 
absent. 

This follows from Dr, D4, D5, D7, and T5 and T7. 
The above difference between Sufficient and Necessary 

Conditions is of importance for the study of inductive inference. 
D9. That A is a Determined Property in t/>0 means that in 

every positive instance of A the Total Sufficient Condition of 
A in t/>0 is present. 

T26. If A is a Determined Property in t/>0, then its Total 
Sufficient Condition in t/>0 is its Necessary-and-Sufficient 
Condition. 

This immediately follows from D3 and D9. 
T27. If A is a Determined Property in t/>0, then its Total 

Necessary Condition in t/>0 is also its Necessary-and-Sufficient 
Condition. 

Proof: Let B be the Total Sufficient and C the Total Neces-
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sary Condition of A in cp0• According to T26 we have A =B. 
This entails A C B. Thus B is a Necessary Condition of A. 
According to T23 we have C = C&B. (B C A) &(A C C) entails 
B c C. B c C entails B = C&B. (C- C&B)&(B = C&B) 
entails B = C. (A = B) &(B = C) entails A = C. Thus C is the 
Necessary-and-Sufficient Condition of A. 

T28. If A is a Determined Property in c/>0, then its Total 
Sufficient Condition in cp0 and its Total Necessary Condition 
in c/>0 are co-extensive. 

This immediately follows from T26 and T27. 
Dw. That A is a Contributory Condition of B in r/> 0 means 

that A is a Necessary Condition in r/>0 of at least one Sufficient 
Condition of Bin r/>0 • 

Drr. That A is an Indispensable Contributory Condition of 
B in r/>0 means that A is a Necessary Condition in r/> 0 of all 
Sufficient Conditions of B in r/>0 • 

Dr2. That A is a Substitutable Requirement of Bin cp0 means 
that A is a Sufficient Condition in r/>0 of at least one Necessary 
Condition of B in r/>0 • 

Dr3. That A is a Counteracting Condition of Bin r/>0 means 
that A is a Contributory Condition of B in r/>0• 

T29. If A is a Counteracting Condition of Bin r/>0 , then A is 
a Substitutable Requirement of B in r/>0• 

Proof: A&C C B is identical with B C AvC. 
In order to cut out the trivialities which may arise in virtue 

of Tr6 and Tr7 we shall henceforth adopt the following 
convention: 

Cr. By a Sufficient Condition we shall never understand a 
property known to be empty and by a Necessary Condition we 
shall never understand a property known to be universal. 

In order to cut out the trivialities which may arise in virtue 
of Tr4 and Trs we shall henceforth adopt the following con-
vention: 

C2. By a Sufficient Condition (in a set cp0) we shall always 
understand a Greatest Sufficient Condition (in cp0) and by a 
Necessary Condition (in a set r/>0) we shall always understand 
a Smallest Necessary Condition (in r/>0). 

In view of T9 we shall henceforth adopt the following con-
vention: 
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C3. By a Sufficient Condition (in a set c/>0) we shall always 
understand a product ofm (o~m~n) of some n (1~n) properties 
(in c/>0), and the negation-properties of the remaining n-m 
properties; and by a Necessary Condition (in a set cf>0) we shall 
always understand a sum of m (o~m~n) of some n (1~n) 
properties (in c/>0), and the negation-properties of the remaining 
n-m properties. 

It should be noted that the introduction of C3 does not mean 
any limitation in the scope of our treatment of conditions. It 
does not follow that Sufficient Conditions which are other 
presence-functions than products, or that Necessary Conditions 
which are other presence-functions than sums, of m of some n 
properties and the negation-properties of the remaining n-m 
properties, are henceforth omitted from treatment, but simply 
that their treatment is reducible to cases of Plurality of Con-
ditions in virtue of T9. 

It should be noted that, in view of TI2, it is not possible to 
extend C3 to Necessary-and-Sufficient Conditions without 
effecting a real limitation of the scope of inquiry. 

A Greatest Sufficient Condition (Smallest Necessary Con-
dition) of A in c/>0 which is a one-termed product (sum) we shall 
call Simple (in c/>0). A Greatest Sufficient Condition (Smallest 
Necessary Condition) of A in c/>0 which is a more-than-one-
termed product (sum) we shall call Complex (in c/>0). It is 
convenient to let the number of terms of the products (sums) 
measure the degree of complexity of the condition. 1 -complex 
conditions are simple. 

A Necessary-and-Sufficient Condition of A in c/>0 which is a 
presence-function of a single property in c/>0 will be called 
Simple (in c/>0). A Necessary-and-Sufficient Condition of A in 
c/>0 which is not Simple (in c/>0) will be called Complex (in c/>0). 

It is convenient to let the minimum number of properties in 
c/>0 of which a Necessary-and-Sufficient Condition of A in c/>0 is a 
presence-function, measure its degree of complexity. 

It is to be observed that the conditioning relation, as defined 
here, has nothing to do with relatedness in time. If, for instance, 
it is admitted that rain is a Sufficient Condition of the ground 
becoming wet, it follows that the ground becoming wet is a 
Necessary Condition of rain. This, however, may appear 
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awkward from the point of view of ordinary language. The 
difficulty raised by ordinary language indicates that our 
popular notions of conditioning are influenced by our popular 
notions of causality. 

What is the connexion between the conditioning relation 
and causality? It is not unplausible to assume that the notion 
of condition could be used for what might be called a partial 
analysis of the notions of cause and effect. By this we mean that 
causal relationship would imply a conditional relationship, 
i.e., a nomic connexion, though not conversely. 

If the converse were also the case, the analysis might be 
called total. It is not unplausible to think that what is required 
in order to make the suggested partial analysis of causal relation-
ship total, is at least the introduction of certain qualifications 
as regards relatedness in time. Everyone seems to think that 
the effect cannot come into existence before the cause, and most 
people are further inclined to hold that the cause must come 
into existence before the effect. 

If a partial analysis of causality in terms of conditions is 
accepted, one might, in conformity with our definitions above, 
distinguish between sufficient cause, necessary cause, necessary-
and-sufficient cause, contributory cause, indispensable con-
tributory cause, substitutable cause, and counteracting cause. 
To what extent similar distinctions apply to the notion of effect 
will not be considered here. 

Further, if a partial analysis of causality in terms of condition 
is accepted, it is plausible to assume that the notion of a 
Determined Property will throw some light upon what philo-
sophers, scientists, and ordinary people mainly have in mind 
when talking vaguely of phenomena as being causally deter-
mined. 

It may be suggested that the principle 'nothing occurs without 
a cause' should be understood as implying that all properties 
are Determined Properties. We shall refer to this principle, 
without pretending to historical adequacy, as the Principle of 
Determinism. 

It should, however, be observed that the notion of a Deter-
mined Property, as defined by us, is a relative notion. It is 
relative to the selection of a set of properties cp0• There is, more-
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over, no set embracing 'all' properties, since the ~election of 
the set is always confined to a certain Universe of Properties. 
(Cf. Chap. II, §2.) 

It is fairly obvious that the Principle of Determinism cannot 
be claimed to apply to all Universes of Properties. It hardly 
applies to the various universes of what may be called 'formal' 
properties, e.g., properties of numbers. Its utmost range of 
application seems to be the various universes of what may be 
called 'material' properties, e.g., properties of physical things. 

Let us assume that we are clear about the Universe(s) of 
Properties to which the Principle of Determinism is intended to 
apply. It may now be suggested that the principle means that 
all properties in any such universe are Determined Properties 
in regard to the rest of the universe. 

This identification of cfoo with the rest of the universe in 
question-i.e., with the universe exclusive of the Determined 
Property itself-is, however, open to an objection. For, given 
a property, we can always define a Sufficient Condition of it in 
each instance of its occurrence. E.g., the property 'being the 
n:th positive instance of H when His being counted in the way 
R' is a Sufficient Condition of H. Some such condition, more-
over, is present in each positive instance of H. Thus His a 
Determined Property in its own universe (exclusive of itself). 

The trivialities arising from the possibility of defining such 
'artificial' properties are avoided if cfoo is identified, for any given 
property in the universe in question, not with all the remaining 
properties as such in that universe, but with all the remaining 
properties of which the given property is logically totally 
independent. 

Thus we may suggest the following definition of a property 
being 'absolutely' determined: 

A property is a Determined Property, if it is a Determined 
Property in the set of all properties (in its universe) of which it 
is logically totally independent. 

We may then suggest the following interpretation of the 
principle that 'nothing occurs without a cause' or the Principle 
of Determinism: 

All properties (in a certain universe) are Determined Pro-
perties. 
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(It is fairly obvious that still further restrictions and quali-

fications are needed in order to make the Principle of Deter-
minism plausible, but they will not be discussed in this inquiry.) 

Finally, if a partial analysis ofcausality in terms of conditions 
is accepted, the Logic of Conditions would come to include that 
important branch of the logic of actual reasoning, both in the 
sciences and in practical life, which may be called the Logic of 
Causal Analysis. This would imply that whenever we reason in 
causal terms, whether in connexion with scientific observation 
and experimentation, or for or against opinions on matters of 
ethics and politics, whether in order to trace the interconnexion 
of events in the history of nations or in that of single individuals, 
we constantly apply the Logic of Conditions (and the principles 
of inductive inference based upon it). 

Simple though this logic is in theory, investigation would 
probably show that there are, in practice, more errors com-
mitted through breaches of its principles than through breaches 
of those in any other elementary branch of logical thinking. 
Even in philosophic and scientific works there is often confusion 
of thought, arising from neglect of the principal distinctions in 
regard to the conditioning relation, and their implications. We 
shall later have occasion to give some examples of this. They will 
serve to confirm the opinion that the Logic of Conditions pos-
sesses a not inconsiderable didactic value for training our 
minds to reason clearly. 

Note.-The first attempt known to me at a systematic treatment of the Logic of 
Conditions is to be found in C. D. Broad's article " The Principles of Demonstra-
tive Induction I" in Mind 39 (1930). 

The Logic of Conditions was further developed in my thesis The Logical Problem 
Q[ Induction (1941), in my paper "Nagra anmarkningar om nodvandiga och 
tillrackliga betingelser" in Ajatus II (1942), and in Broad's article "Hr. Von 
Wright on the Logic of Induction I" in Mind 53 (1944). 

3. Statistical Laws 
Consider two properties ('factors', 'terms'). One might 

suggest that there are two basic ways in which they can be 
connected by law. The first asserts an invariable connexion: 
all positive instances of the one property are also positive 
instances of the other, or, to put it otherwise, the one property 
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is totally included in the other. The second asserts a statistical 
correlation: a proportion p of the positive instances of the one 
property are positive instances of the other as well, or, to put it 
otherwise, a proportion p of the one property is included in the 
other. 

In the case of total inclusion the law is a Universal Implica-
tion or Equivalence. In the case of partial inclusion we shall 
call the law a Statistical Law. 

The traditional attitude has long been, to regard Statistical 
Laws as somehow philosophically subordinate to laws of the 
'causal type' asserting invariable connexions. This attitude, 
however, is gradually being reversed, thanks to the development 
of modern science and, not least, to the rise of Quantum 
Physics. It seems reasonable to ask whether all uniformities of 
nature are not at bottom statistical only, and whether Universal 
Implications and Equivalences are not 'idealizations' or 
'approximations' on the basis of high-degree statistical corre-
lations. A Logic of Induction, therefore, which takes account 
only of laws asserting invariable connexions, is in constant 
danger of losing touch with the actual procedures of science. 

In order to bring out the relevance of the above objection 
and warning, it will be our first duty to scrutinize the logical 
foundations of the division of Laws of Nature into invariable 
and statistical uniformities. It will be seen that the difference 
between the two types of law is not merely that of a simple 
contrast, but is more intricate than would appear at first sight. 

* * * * * 
It is of great importance to stress that the phrase 'a certain 

proportion of (the property denoted by) His included in (the 
property denoted by) A', makes sense only on condition that 
the property His either 

1. finite 
or ii. replaced by a sequence H, R. 

Thus the notion of 'a proportion of an infinite population' 
is, as such, meaningless. It need not, however, be rejected; we 
can make its use legitimate by introducing a way of counting 
the population. 
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We shall soon be in a position to see why the idea of a pro-
portion, if not explicitly restricted to finite populations, must 
be taken in relation to a way of counting things, i.e., of ordering 
them into a sequence. The tendency to ignore this relational 
aspect of proportions is particularly strong in cases where there 
exists a temporal succession of the things, determining · a 
'natural' way of counting them. 

Let us first consider the alternative that His finite. In this 
case H has a cardinal number n. The same is true of the product 
of Hand any property. Thus, in particular, A &H has a cardinal 
number m (m~n). The ratio m: n indicates the proportion of H 
included in A or, as we may also put it, the relative frequency 
of A's among H's. 

Let us then turn to the alternative in which we have a 
sequence H, R. For the part of the sequence which consists of 
the n first positive instances of H (p. 52) we introduce the 
symbol RHn. This part can be treated as a finite property. It 
has a cardinal number (which equals n if R is a dense way of 
counting Hbeginning from r). So also has any part of it which 
originates from the product of Hand any property, e.g., A. The 
ratio of the cardinal numbers of A&aN .. and aNn indicates the 
relative frequency of A's among then first H's. That this ratio 
has the value Pn we can express by Fr(A, H, R, n, ftn). 

The values P .. form a sequence of rational numbers. 
Let lim (p.., p) be the case (for the definition of lim seep. 53). 

On this assumption we say that a proportion p of His included 
in A, or that the relative frequency of A's among H's is p, when 
His counted in the way R. This proposition can be expressed 
(n)Fr(A, H, R, n, p..)&lim(p .. , p). As an abbreviation for the 
expression we introduce F(A, H, R, p). 

The proportion is thus the limiting frequency of A's among 
then first H's, n being indefinitely increased. The phrase 'the 
n first H's' indicates the essential fact that the proportion is 
viewed relative to a way of counting H. 

If H is finite, then the sequence of values Pn terminates at a 
certain cardinal m. We make the sequence infinite by adopting 
the convention that, for n>m,p .. always equals Pm· This makes the 
concept of a limiting frequency apply also to finite populations. 

If His infinite, then the Statistical Law F(A, H, R, p) can be 
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neither verified nor falsified on the basis of statistical observa-
tions alone, i.e., on the basis of observed relative frequencies in 
finite parts or 'samples' from H, R. This exemption of Statistical 
Laws from proof and disproof by experience has been the sub-
ject-matter of much discussion. We need not enter into the 
problem here. But it ought to be stressed that the above-
mentioned peculiarity of Statistical Laws in respect of decid& 
bility, does not affect the logical legitimacy (consistency) of the 
concept of a proportion as defined in this book. 

If p is o or I, we call the proportion extreme. If p is o, we 
call the proportion minimal or imperceptible. If p is greater 
than o, we call the proportion perceptible. If p is I, we call the 
proportion maximal. 

The proposition that a maximal proportion of His included 
in A or that IOO per cent of the H's are A's, should not be con-
fused with the proposition that H is totally included in A or 
that all H's are A. The latter proposition entails the former, but 
not vice versa. That 100 per cent of the H's are A's is logically 
compatible with the existence of even an infinite number of 
H's which are not A's. 

Analogously, the proposition that a minimal proportion of 
His included in A or that o per cent of the H's are A's should 
not be confused with the proposition that no H's are A's. The 
limiting frequency of primes, for instance, among the cardinals 
is o and yet there is, according to a well-known theorem, an 
infinite number of primes. 

Bearing this in mind, we shall say that '(all or) practically all' 
H's are A, if a maximal proportion of H is included in A, and 
that '(no or) practically no' H's are A, if a minimal proportion 
of His included in A. 

The necessity of taking the notion of a proportion, when 
applied to infinite populations, as relative to a way of counting, 
is clearly seen from the fact that by re-ordering a sequence 
H, R, i.e., by replacing R with a different way of counting, R ', 
we may alter or even totally destroy the limiting frequency of 
A's among then first H's. This is best shown by means of an 
example. 

Let us assume that one dense way R of counting H would be 
such that exactly every odd-numbered member of the sequence 
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was a positive instance of A and every even-numbered not. Let 
us then use another way R' of counting H, thereby re-ordering 
the sequence in such a manner that between any two positive 
instances of A two negative instances of A regularly occur. The 
original and the re-ordered sequence, i.e., H, R and H, R', 
contain the same members, i.e., the positive instances of H; but 
whereas the limiting frequency of A's among then first positive 
instances of His I : 2 in the first sequence, it is I : 3 in the second. 
It should be added that the re-ordering affects the proportion 
solely on condition that it is not restricted to a finite part of the 
original sequence. 

In the example just mentioned the limiting frequency was 
altered as a consequence of re-ordering. But it can also be 
destroyed. Let the members of the above sequence H, R be re-
ordered by means of a new way R' of counting, such that the 
first two members of H, R' are the first two members of H, R 
which are not A, the next four members of H, R' are the first 
four members of H, R which are A, the next six members of 
H, R' are the last six of the first eight members of H, R which 
are not A, the next twelve members of H, R' are the last twelve 
of the first sixteen members of H, R which are A, the next 
twenty-four members of H, R' are the last twenty-four of the 
thirty-two first members of H, R which are not A, and so on. 
(The rule should now be obvious to the reader.) In this sequence 
the relative frequency of A's among then first H's perpetually 
oscillates between the two extremes I : 3 and 2 : 3 inclusive. We 
recognize ( cf. p. 53) that these extremes, and also any value 
between them, are partial limits of Pn, or of the relative fre-
quency of A's among then first H's. 

The partial limits can be altered by re-ordering, but, in virtue of 
the Balzano-Weierstrass Principle (p. 53), cannot be destroyed. 

We have now compJeted our analysis of the notion of partial 
inclusion or of Statistical Law. It remains to consider what its 
relation is to total inclusion or Universal Implication. 

What it means for a sequence of real numbers to approach a 
limit was defined in expression (1) of Chap. II, §5. It was, how-
ever, observed, that if the numbers fall within a finite interval, 
the approach to a limit can also be defined by means of ex-
pression (4) of Chap. II, §5. Since the value of a relative 
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frequency must lie in the interval from o to I inclusive, it 
follows that both definitions apply to Statistical Laws. 

The proposition expressed in (1) of Chap. II, §5 can be 
viewed as a Universal Implication to the effect that every value 
8 which has the 'property' of being greater than o, also has the 
further 'property' of being associated with a point of conver-
gence m of a certain sequence towards a value p. An instance of 
this Universal Implication is provided by every proposition to 
the effect that there exists such a point of convergence for a 
particular value 8. The instances of the Universal Proposition 
in question are thus Existential Propositions. 

The proposition expressed in (4) of Chap. II, §5 can be 
viewed as a Universal Implication to the effect that every value 
q which has the 'property' of being different from p, also has the 
further 'property' of being associated with a point of diver-
gence m of a certain sequence from the value q itself. An instance 
of this Universal Implication is provided by every proposition 
to the effect that there exists such a point of divergence for a 
particular value q. The instances of the Universal Proposition 
in question are thus Existential Propositions. 

Thus it is possible to view the Statistical Law expressed in 
F( A, H, R, p) as a Universal Implication. This, moreover, can be 
done in two different ways. Depending upon which way is 
chosen, the instances of the law are propositions to the effect 
that, in the sequence of relative frequencies Pn of A's among the 
n first H's, there exist either points of convergence towards a 
given value p associated with particular values of a quantity 8 
which is greater than o, or points of divergence from particular 
values of a quantity q which is different from p. 

* * * * * 
We can now return to the points ma.de at the beginning of 

this section. 
It has been shown that our original definition of Laws of 

Nature as Universal Implications or Equivalences is, in fact, 
sufficiently general to embrace also Statistical Laws. This 
means that inductive inference leading to Statistical Laws is a 
sub-species of inductive inference of the second order, as pre-
viously defined by us. Thus the logical study of induction, as 
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undertaken in this book, is relevant not only to a narrow type 
of inductive conclusion, but is the study of the most general 
and comprehensive pattern of such inference. 

All this, however, does not at all stultify the demand for a 
special study of inductive inference as leading to Statistical 
Laws. It is to be regretted that not much attention is paid to 
this study within the limits of the present book. The subject is 
comparatively new and still remains largely a desideratum in 
Inductive Logic. 

Just as we can distinguish between induction of the first order 
leading to predictions, and induction of the second order 
leading to theories (laws), so we can also distinguish between 
induction leading to statistical predictions and induction lead-
ing to statistical theories (laws). The part of the Logic of 
Induction which studies the making of statistical predictions 
and theories (laws) may be called the Logic of Statistical 
Inference. 

This part of the Logic of Induction is, however, not the 
only one deserving a particular study.-Another fundamental 
division of the Laws of Nature, beside that into propositions 
dealing with total and partial inclusion, is the division into 
Qualitative and Quantitative Laws, the hitter being those in 
which the properties ('terms', 'factors') related by law are, in 
one sense or other, measurable. Here again we could regard 
Qualitative Laws as the all-embracing type of law and show 
that Quantitative Laws are a sub-species. 

A systematic treatment of what might be called the Logic 
of Quantitative Induction is another urgent desideratum in 
Inductive Logic. It is astonishing how little has actually been 
done in this important field of research. Bacon's description of 
the Tabula graduum sive comparative and Mill's account of the 
Method of Concomitant Variations are almost all that is 
available, and these contributions, it seems, do not really con-
tain anything that is peculiar to Quantitative Laws of Nature, 
but merely apply to such laws results emerging from the 
general Logic oflnduction as treated by the authors mentioned. 
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Chapter Four 

INDUCTION AND ELIMINATION 

1. The Methods of Induction 

I N this and the next two chapters, the relation between 
premisses and conclusions of inductive arguments of the 

second order will be studied, considerations as to probability 
being for the present excluded. 

The premisses of an inductive argument can be characterized 
as non-demonstrative evidence in favour of the conclusion. It is 
the aim of the various so-called Methods of Induction to afford 
principles guiding us in the accumulation and use of this 
evidence. 

It is customary to distinguish between two chief Methods of 
Induction. 

The first method consists simply in the multiplication of 
things which afford confirmations of a certain law. Or else it 
consists in the multiplication of premisses in support of the 
conclusion. For such a method the number of things (premisses), 
as such, is relevant. We call it Induction by Simple Enumera-
tion (inductio per enumerationem simplicem) or Enumerative 
Induction. 

It is obvious that from the mere use of Enumerative Induction 
no (demonstrative) conclusions can be drawn as regards the 
truth-values of laws. 

Whether from such a use of Enumerative Induction conclu-
sions can be drawn as to the probability of laws, has been a 
matter of controversy. It is a well-known fact that an increase in 
the number of confirming instances of a law is regarded, as a 
rule, as contributing to its probability. It is uncertain, however, 
whether this increase in probability can be regarded as a 
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genuine effect of the increasing number of premisses in support 
of the conclusion, or whether it must be attributed to the 
hidden force of some other inductive method operating 'behind 
the scenes.' This question will be a chief object of discussion in 
Chap. IX. 

The second method consists in the examination of things 
affording confirmations of a certain law, with regard to their 
resemblance and difference. It may add new premisses to 
already given ones, but the number of premisses is not in itself 
relevant. We shall presently introduce a name for this method 
also. 

Use of this second method does permit (demonstrative) con-
clusions as to the truth-values of laws. Remembering what was 
said previously (p. 44f.) about verifying and falsifying instances 
of Universal Propositions, it is clear that these conclusions are 
always in the negative, i.e. relate to the falsehood of laws. 
The method, therefore, has rightly been called 'a negative 
approach to the truth.' What is meant by this can be made 
clearer as follows: 

Consider a set of Universal Implications or Equivalences. 
It will be assumed that the properties in question are all from 
the same Universe of Properties. 

Any one of the members of the corresponding Universe of 
Things either affords a confirming or a disconfirming instance 
of any one ofthe given laws, i.e., the Universal Implications or 
Equivalences. 

Consider next a set of things from this universe. It can be used 
for dividing the above set of Universal Implications or Equi-
valences into two groups. The first group consists of those laws, 
of which all the members of the set of things afford confirma-
tions. The second group consists of those of which at least one 
member of the set of things affords a disconfirming instance, or 
else of which not all the members of the set afford confirmations. 
Considering the asymmetry of Universal Propositions in 
respect of verification and falsification (p. 44f.), we call the laws 
of the first group compatible and those of the second group 
incompatible with the set of things. 

Let there now be two sets of things. Let the first set be in-
cluded in the second, i.e., let any member of the first set be a 
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member of the second set also. It is clear that the group oflaws 
which are compatible with the second set of things is included 
in the group of laws which are compatible with the first set of 
things. For any member of the former group of laws must be 
compatible with both sets of things, whereas any member of 
the latter group of laws mev' be incompatible with the second set 
of things. 

Consequently, an increase in the number of things affording 
confirmations, or else in the number of premisses, of a certain 
inductive conclusion, may effect a decrease in the number of 
laws which are compatible with the set of things (premisses). 
Whether and in what degree such a decrease will take place 
depends entirely upon the resemblance and difference between 
the things. To account for the nature of this dependence has 
traditionally been one of the chief tasks of the Logic of In-
duction. 

Induction which is not by simple enumeration is thus a 
procedure of elimination or exclusion of laws from compati-
bility with facts. We shall call this method Induction by Elimi-
nation or Exclusion, or Eliminative Induction. It is a negative 
approach to the truth in the sense that it makes the conclusion 
of an inductive argument appear to stand out more and more, 
so to speak, among a number of initially 'concurrent' conclu-
sions (laws). Its logical mechanism rests on the fundamental, 
though trivial, fact that no confirming instance of a law is a 
verifying instance, but that any disconfirming instance is a 
falsifYing instance. It is the immortal merit of Francis Bacon to 
have first realized the importance of this fact for the logical 
study of induction. 

Induction by Elimination evidently represents a much more 
advanced mode of inductive procedure than Induction by 
'simple' Enumeration. It has been claimed that Eliminative 
Induction is the genuinely 'scientific' and 'methodical' way of 
inductive reasoning, as against the 'unscientific' and 'un-
methodical' procedure of Enumerative Induction. To what 
extent and in what sense this claim can be justified will be 
investigated in Chap. IX. 
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2. The Method of Elimination. General Remarks 
A convenient mode of studying the logic of elimination will 

be to study the eliminative method in its application to certain 
basic questions concerning nomic connexions between pro-
perties. Those questions are: 

1. What are the Necessary Conditions of a given property? 
na. What are the Sufficient Conditions of a given property? 
iifi. What are the Sufficient Conditions of a given property 

in a given positive instance of it? 
m. What are the Necessary-and-Sufficient Conditions of a 

given property? 

The division of the second question, but not of the first, into 
two sub-questions, should be understood against the back-
ground of the important difference between Sufficient and 
Necessary Conditions which was pointed out in T24 and T25 of 
Chap. III, §2. Whereas, in any positive instance of a property, 
every one of its Necessary Conditions must be present, any given 
one of its Sufficient Conditions may be absent. 

The given property we call the conditioned property. 
The properties which we are seeking we call (actual) con-

ditioning properties. To any one of the (actual) conditioning 
properties there corresponds what we shall call an actual nomic 
connexion. 

The properties among which the (actual) conditioning 
properties are sought, we call initially possible conditioning 
properties. To any one of the initially possible conditioning 
properties there answers what we shall call an initially possible 
nomic connexion. 

By a datum of elimination, we shall understand any true 
proposition to the effect that a certain one of the initially pos-
sible conditioning properties has been excluded. 

The data of elimination are afforded by things which are 
instances of the conditioned property (and of the actual and 
possible conditioning properties). In the case of questioni, above, 
the data are afforded by positive instances of the conditioned 
property which are negative instances of some of the initially 
possible conditioning properties. In the case of question ii 
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(a and {3), the data are afforded by negative instances of the 
conditioned property which are positive instances of some of 
the initially possible conditioning properties. In the case of 
question iii, the data are afforded either by positive instances 
of the conditioned property which are negative instances of 
some of the initially possible conditioning properties, or by 
negative instances of the conditioned property which are 
positive instances of some of the initially possible conditioning 
properties. 

Supposing the instances of the conditioned property to be 
denumerable (p. 5 I), we can order them into a sequence 
XI, • • ., Xm • • • • 

Let ¢>0 denote a set of initially possible conditioning properties 
of a given conditioned property. 

According to what was said in the preceding section of this 
chapter, we can divide the initially possible nomic connexions 
which answer to the members of t/>0 into two groups, according 
to whether or not they are compatible with x1, i.e., according 
to whether x 1 affords a confirming or a disconfirming instance 
of the respective nomic connexions (laws). The set of possible 
conditioning properties which answer to the members of the 
first of these groups of laws we denote t/> 1 • The members of ¢> 1 

are called the remaining possible conditioning properties of the 
given conditioned property relative to x1• r/> 1 is co-extensive with 
r/>0 or not, according to whether x1 affords data of elimination 
or not. 

Similarly, we can divide the initially possible nomic con-
nexions which answer to the members of t/>0 into two groups, 
according to whether or not they are compatible with x1 and 
x2• On the basis of this division we introduce the set of pro-
perties t/>2, the members of which are called the remaining 
possible conditioning properties of the given conditioned 
property relative to x1 and x2• t/>2 is included in t/> 1• t/>2 is co-
extensive with t/> 1 or not, according to whether or not x2 affords 
data of elimination, not already afforded by x1• 

Analogously, we introduce t/>3 , etc. 
Thus we produce a sequence t/> 1, ••• , 4>m •••• 
Finally, we divide the initially possible nomic connexions 

which answer to the members of r/>0 into two groups, according 
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to whether or not they are compatible with all things in the 
universe, i.e., according to whether or not they are true propo-
sitions. The set of possible conditioning properties which 
answers to the members of the first of these groups of laws we 
denote </>. The members of </> are the actual conditioning 
properties of the given conditioned property, among the set 
</> 0 of initially possible conditioning properties. 

It can be shown that the sequence of properties </> 1, ••• , <Pm ••• 
approaches as its limit the property</>. For, first, every property 
<Pn+t is included in <Pn· Secondly, whatever is a positive 
instance of</>, i.e., every actual conditioning property (in </>0) 

of the given conditioned property, is also a positive instance of 
every one of the properties </> 1, ••• , <Pm .•. , i.e., of the remaining 
possible conditioning properties (in </> 0). And thirdly, whatever 
is a positive instance of all the properties </>1> ... , <Pm ••• , i.e., 
belongs to all the fields of remaining possible conditioning 
properties, is also a positive instance of </>, i.e., is an actual 
conditioning property of the given conditioned property. 

(It should be carefully observed that the last statement only 
holds good on condition that the sequence x1, ••• , xm •.. , on 
the basis of which the sequence <f>H ••• , <Pm ..• has been defined, 
is a denuineration either of all instances of the conditioned 
property, i.e., of all things in the universe in question, or at 
least of all instances of the conditioned property which may 
afford a datum of elimination, i.e., of at least all positive or all 
negative instances of the conditioned property, as the case may 
be (cf. above p. 87 f.). We shall have occasion to discuss the 
relevance of this condition later, in Chap. IX.) 

Thus we have shown that the three conditions are fulfilled 
(cf. above p. 54 f.) which define lim(</>n, </>). The range of actual 
conditioning properties of a given conditioned property is the 
limiting extension approached by the ranges of remaining 
possible conditioning properties. One might also say that the 
range of actual conditioning properties marks the limit of 
elimination. 

The four questions stated at the beginning of this section 
correspond to four basic modes of application of the general 
Method of Elimination. For these modes or sub-methods we 
shall use separate names, viz. the Direct Method of Agreement, 
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corresponding to question i, the Inverse Method of Agree-
ment, corresponding to question iia, the Method of Difference, 
corresponding to question iip, and the Joint Method, corres-
ponding to question iii. 

Of each of the four sub-methods of the Method of Elimination 
we may further distinguish two cases. We shall call them the 
Simple Case and the Complex Case respectively. They differ in 
the composition of the set of initially possible conditioning 
properties of a given conditioned property. 

Let cfoo again denote a set of logically totally independent 
properties from one and the same universe. 

In the Simple Case, the set of initially possible conditioning 
properties consists of: 

i. the members of some such set cfoo and the negation-pro-
perties of the members, or: 

ii. those of the properties mentioned in i, which are 
present in a given positive instance of the conditioned 
property (Method of Difference). 

In the Complex Case, the set of initially possible conditioning 
properties consists of: 

1. the members of some such set cfoo and all sums of some 
m (o~m~n) of some n (1~n) members of cfoo and the 
negation-properties of the remaining n-m members 
(Direct Method of Agreement), or: 

ii. the members of some such field cfoo and all products of 
some m ( o~ m~ n) of some n ( 1 ~ n) members of cfoo and 
the negation-properties of the remaining n-m members 
(Inverse Method of Agreement), or: 

iii. those of the properties mentioned in ii which are 
present in a given positive instance of the conditioned 
property (Method of Difference), or: 

IV. the members of some such set cfoo and all presence-
functions-the tautology and the contradiction, how-
ever, being excluded-of some n (x~n) members of cfoo 
(Joint Method). 
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The Simple Case of each of the sub-methods is included in 

the Complex Case of the same sub-method as an extreme 
alternative. For expository as well as historical reasons it is, 
however, convenient to treat the two cases separately. 

Let there be a set of initially possible conditioning properties 
in the sense of the Simple Case (i or ii). Suppose that k only of 
the corresponding initially possible nomic c'onnexions are 
compatible with a given set of things. (Cf. p. 85.) Then k is 
said to determine or to measure the state of analogy among the 
things, in respect of the initially possible conditioning properties 
(or nomic connexions). If k equals r, we speak of Perfect 
Analogy. If k equals o, we speak of Total Elimination. 

Let there be a set of initially possible conditioning properties 
in the sense of the Complex Case i ,ii, or iii. Consider the sub-
set which consists only of n-termed products or sums. Suppose 
that k only of the corresponding initially possible nomic con-
nexions are compatible with a given set of things. Then k is 
said to determine or to measure the state of analogy on the 
n-level among the things, in respect of the initially possible 
conditioning properties (or nomic connexions). If k equals r, 
we speak of Perfect Analogy on the n-level. If k equals o, we 
speak of Total Elimination on the n-level. 

Let there be a set of initially possible conditioning properties 
in the sense of the Complex Case iv. Consider the sub-set which 
consists of properties which are presence-functions of some n 
properties in cfoo but not of a lesser number of properties. Suppose 
that k only of the corresponding initially possible nomic con-
nexions are compatible with a given set of things. Then k is 
said to determine or to measure the state of analogy on the 
n-level among the things, in respect of the initially possible 
conditioning properties (or nomic connexions). If k equals r, 
we speak of Perfect Analogy on the n-level. If k equals o, we 
speak of Total Elimination on the n-level. 

By Absolutely Total Elimination we understand Total 
Elimination on all levels. By Absolutely Perfect Analogy we 
understand Perfect Analogy on a certain level in combination 
with Total Elimination on all other levels. 

The case of (Absolutely) Perfect Analogy and of (Absolutely) 
Total Elimination are of particular interest, not least from the 
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point of view of scientific practice. We shall therefore devote 
special attention to them in the logical examination of the 
inductive methods. 

* * * * * 
The traditional Logic of Induction has, with a few non-

systematic exceptions, been limited to a treatment of what is 
here called the Simple Case of the sub-methods of the general 
Method of Elimination. This 'traditional' treatment is sub-
stantially identical with the contributions of Bacon and Mill to 
the subject. (See Chap. VI, §4.) 

It is, however, clear that a treatment which claims to 
provide an adequate logical instrument for reconstructing the 
actual procedures of science, must account for the Complex 
Case also. The importance of solving the various problems of 
formal logic which arise in connexion with this account (see 
§§ 6-8 of this chapter) should not be overrated. But it seems 
to me undeniable that the study of a Logic of Induction which 
advances beyond the tables of Bacon and the canons of Mill is 
of some interest, not only to the professional logician and 
philosopher, but also to anyone who is concerned with the 
design of experiments and the methodical performance of 
observations in scientific research. 

The demand for a particular treatment of the Complex Case 
is also made urgent by the fact that there is a tendency, in the 
development of science, to emphasize more and more the 
complexity of conditional relations and nomic connexions. 
Thus, to mention only one example, the rise of Gestalt-Psycho-
logy and the introduction of laws of a new type, called Gestalt-
laws, (which are sometimes claimed to be radically different 
from the laws of classical physics and tradition.al associationist 
psychology), would seem to be essentially a transition from 
nomic connexions in the sense of the Simple Case of the ind uc-
tive methods, to nomic connexions in the sense of the Complex 
Case, in the realm of biological and mental phenomena. 

It is not unlikely that an analysis of the notion of Gestalt and 
kindred ideas in terms of the Logic of Conditions would contri-
bute to the clarification of a number of obscure questions in the 
philosophic foundations of modern science. The Gestalt, in 
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some uses of the word, seems to be a disjunction of Substitutable 
Requirements within a 'frame' of (Indispensable) Contributory 
Conditions of a phenomenon. 

In view of all this, the extension of the 'classical' Logic of 
Induction treating only the Simple Case, to a 'modern' Logic 
of Induction dealing with the Complex Case also, might be 
regarded as a counterpart, in the study of scientific method, to 
a main trend in the development of scientific ideas. 

3· The Method of Agreement. The Simple Case 
A. The Direct Method. 
The conditioned property is called H. 
The (actual) conditioning properties are Necessary Condi-

tions of H. 
Let ¢0 denote a set oflogically totally independent properties 

from the same universe as H. It is understood that His logi-
cally totally independent of the properties in ¢0• 

The initially possible conditioning properties are the proper-
ties in ¢0 and their negation-properties. 

The method is based on the following Principle of Elimina-
tion: Whatever is absent in the presence of the conditioned 
property cannot be a Necessary Condition of it. 

Consequently, the data of elimination are afforded by 
positive instances of the conditioned property which are nega-
tive instances of some of the initially possible conditioning 
properties. (Cf. above p. 87.) 

The remaining possible conditioning properties, relative to 
n positive instances of the conditioned property, are those of 
the initially possible conditioning properties which are common 
to all (present in every one of) then instances. 

Given a positive instance of H, any one of the properties in 
¢0 is either present or absent in this instance. If a property is 
present, its negation-property is absent, and if a property is 
absent, its negation-property is present. It follows that any 
positive instance of H excludes or eliminates exactly half of the 
initially possible conditioning properties from being Necessary 
Conditions of H. 
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We shall call the effect of elimination exerted separately by 

each thing which may afford a datum of elimination, the im-
mediate eliminative effect. 

Two things are said to differ (or to vary) in respect of a 
property, if one of the things is a positive and the other thing 
a negative instance of the property. Two things are said not to 
differ in respect of a property, if the things are either both 
positive or both negative instances of the property. 

Let there be a positive instance of H. Then any other positive 
instance of H eliminates as many initially possible conditioning 
properties, not already eliminated by the first instance, as there 
are properties in cfoo in respect of which the two instances differ. 
Generally speaking, any additional positive instance of H 
eliminates as many initially possible conditioning properties, 
not already eliminated by previous positive instances of H, as 
there are properties in c/>0 in respect of which the additional 
positive instance of H differs from all the previous positive 
instances of H. 

We shall call the effect of elimination exerted by an additional 
thing which may afford a datum of elimination, (as opposed to 
previous things), the additional eliminative effect. 

Thus in the Simple Case of the Direct Method of Agreement, 
the immediate eliminative effect has a constant magnitude 
equal to half of the initially possible conditioning properties, 
whereas the additional eliminative effect is proportionate to the 
(extension of the) sub-set of properties in c/>0, in respect of which 
an additional positive instance of the conditioned property 
differs from every one of a number of previous positive instances 
of the conditioned property. 

If two positive instances of H differ in respect of all the 
properties in c/>0, we have attained Total Elimination of the 
initially possible conditioning properties. If two positive 
instances of H differ in respect of all but one of the properties in 
cp0, we have attained a Perfect Analogy. 

Thus in the Simple Case of the Direct Method of Agreement 
Total Elimination and Perfect Analogy respectively are attain-
able in a minimum of two 'steps' ('observations', 'experiments'). 

B. The Inverse Method. 
The conditioned property is called H. 
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The (actual) conditioning properties are Sufficient Conditions 
of H. 

Let rfoo mean the same as in the Direct Method. 
The initially possible conditioning properties are the same 

as in the Direct Method. 
The method is based on the following Principle of Elimina-

tion: Whatever is present in the absence of the conditioned 
property cannot be a Sufficient Condition of it. 

Consequently, the data of elimination are afforded by nega-
tive instances of the conditioned property which are positive 
instances of some of the initially possible conditioning proper-
ties. (Cf. above p. 87.) 

The remaining possible conditioning properties, relative to 
n negative instances of the conditioned property, are those of 
the initially possible conditioning properties which are absent 
in every one of the n instances. 

For analogous reasons to those in the Direct Method, any 
negative instance of H eliminates exactly half of the initially 
possible conditioning properties from being a Sufficient Con-
dition of H. 

Similarly, any additional negative instance of H eliminates 
as many initially possible conditioning properties, not already 
eliminated by previous negative instances of H, as there are 
properties in rfoo in respect of which the additional instance 
differs from all the previous instances. 

Thus in the Simple Case of the Inverse Method of Agreement 
the immediate and the additional eliminative effects have the 
same magnitude as in the Simple Case of the Direct Method of 
Agreement. 

If two negative instances of H differ in respect of all the 
properties in rfo0, we have attained Total Elimination, and if 
they differ in respect of all but one of the properties in rfo0, we 
have attained Perfect Analogy. Thus also in the Simple Case 
of the Inverse Method of Agreement, these 'ideal' states of 
elimination are attainable in a minimum of two 'steps' ('obser-
vations,' 'experiments'). 

* * * * * 
The Method of Agreement, in its Direct and Inverse form, 

is the reasoning mechanism underlying inductive (or 'causal') 
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arguments from a minimum of constancy amid a maximum of 
variation. It brings out the relevance of the methodological 
device, well-known from scientific observation and experi-
mentation alike, of 'varying the circumstances.' 

4· The Method of Difference. The Simple Case 
The conditioned property is called H. 
The (actual) conditioning properties are Sufficient Conditions 

of H. 
Let tf>o mean the same as in the Method of Agreement. 
The initially possible conditioning properties are those of the 

properties in t/>0 and their negation-properties which are present 
in a given positive instance of H. 

The Principle of Elimination is the same as in the Inverse 
Method of Agreement. 

Consequently, the remaining possible conditioning properties 
(relative to the given positive and n negative instances of the 
conditioned property) are defined in the same way as in the 
Inverse Method of Agreement. 

In Contrast to the Simple Case of the Method of Agreement, 
the immediate eliminative effect exerted by any thing which 
may afford a datum of elimination does not have a constant 
magnitude in the Simple Case of the Method of Difference. If 
a negative instance of H has no initially possible conditioning 
properties in common with the given positive instance of H, 
then it is wholly ineffective for the purpose of elimination. If, 
again, it has all initially possible conditioning properties in 
common with the given positive instance of H, it effects Total 
Elimination, and if it has all but one of the initially possible 
conditioning properties in common with the positive instance, 
it establishes a Perfect Analogy. 

Let there be a negative instance of H. Then any other 
negative instance of H eliminates as many initially possible 
conditioning properties as there are properties in t/>0 in respect 
of which it agrees with the given positive instance of Hand 
differs from the first negative instance of H. Generally speaking, 
any additional negative instance of H eliminates as many 
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initially possible conditioning properties as there are properties 
in tfoo in respect of which it agrees with the given positive 
instance of Hand differs from all the previous negative instances 
of H. 

Particular importance has traditionally been attached to the 
case where one negative instance of the conditioned property 
suffices to establish a Perfect Analogy. This is the unique case 
which Mill describes under the title Method of Difference. 

* * * * * 
The method of Difference is the reasoning mechanism under-

lying inductive (or 'causal') arguments from a minimum of 
variation amid a maximum of constancy. It brings out the 
relevance of the methodological device, well-known in particu-
lar from scientific experimentation, of 'removing a factor which 
leaves other circumstances unchanged.' 

Note.-Suppose that one negative instance of H is compared with positive 
instances of H. Then any property which is common to the negative instance and 
at !!;ast one of the positive instances is excluded from being a Sufficient Condition 
of H. It follows by contraposition that the negation-property of any such property 
is excluded from being a Necessary Condition of H. 

This fact might suggest that there are two forms of the Method of Difference, 
one in which the (actual) conditioning properties are Sufficient and another in 
which they are Necessary Conditions of the conditioned property, exactly as there 
are two forms, the Direct and the Inverse, of the Method of Agreement. This 
suggestion, however, is misleading. For the negation of any property which is 
present in at least one of the positive instances of H cannot be a Necessary Con-
dition of H, quite independently of whether or not it is present in the negative 
instance of H. Thus the result to which the suggested 'inverse' application of the 
Method of Difference would lead, can already be anticipated from the negative 
instances of H according to the Direct Method of Agreement. The peculiar interest 
of the Method of Difference arises solely from the fact that a property's Sufficient 
Conditions, as opposed to its Necessary Conditions, need not all be present in any 
positive instance of the property. (Cf. above p. 72.) 

The above was not clearly recognized by me in the paper Ni'lgra antlldrkningar 
om nOdviindiga och tillrtickliga betingelser, where I distinguished between two forms 
of the Method of Difference in analogy with the two forms of the Method of 
Agreement. 

5· The Joint Method. The Simple Case 
The conditioned property is called H. 
The (actual) conditioning properties are Necessary-and-

Sufficient Conditions of H. 
Let tfoo mean the same as in the Method of Agreement. 
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The initially possible conditioning properties are the same 

as in the Method of Agreement. 
The method is based on the following Principle of Elimina-

tion: Whatever is absent in the presence or present in the 
absence of the conditioned property, cannot be a Necessary-
and-Sufficient Condition of it. 

Consequently, the data of elimination are afforded by 
positive instances of the conditioned property which are 
negative instances of some of the initially possible conditioning 
properties and by negative instances of the conditioned pro-
perty which are positive instances of some of the initially 
possible conditioning properties. (Cf. above p. 88.) 

The remaining possible conditioning properties, relative to 
m positive and n negative instances of the conditioned property, 
are those of the initially possible conditioning properties which 
are present in every one of the m positive instances and absent 
in every one of the n negative instances. 

As will be seen, the Principle of Elimination which is used in 
the joint Method is the disjunction of the eliminative principles 
used in the Direct and Inverse Method of Agreement, and in 
the Direct Method of Agreement and the Method of Difference 
respectively. It follows that each one of the methods mentioned 
can be used separately for ascertaining Necessary-and-Sufficient 
Conditions. The remaining possible Necessary Conditions, 
relative to n positive instances of a conditioned property, are 
the same as the remaining possible Necessary-and-Sufficient 
Conditions, relative to the same instances of the conditioned 
property. Similarly, the remaining possible Sufficient Condi-
tions, relative to n negative or to one positive and n negative 
instances of a conditioned property, are the same as the 
remaining possible Necessary-and-Sufficient Conditions, rela-
tive to the same instances of the conditioned property. 

It is, however, also possible to make a joint use of the methods 
for ascertaining Necessary-and-Sufficient Conditions. The idea 
is to compare a set of remaining possible Necessary Conditions 
and a set of remaining possible Sufficient Conditions of the 
conditioned property. The common members of both sets will 
constitute a set of remaining possible Necessary-and-Sufficient 
Conditions of the property. 
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We obtain the remaining possible Necessary Conditions after 

resort to the Direct Method of Agreement. We obtain the 
remaining possible Sufficient Conditions either after resort to 
the Inverse Method of Agreement or to the Method ofDifference. 

Thus there are two possibilities of a joint use of the methods. 
The first is to combine the Direct Method of Agreement with 
the Inverse Method of Agreement. The second is to combine 
the Direct Method of Agreement with the Method bf Dif-
ference. We shall call the method originating from the first 
combination the Double Method of Agreement, and the 
method originating from the second the Joint Method of 
Agreement and Difference. 

The fact that there are two forms of the Joint Method has 
introduced considerable confusion into traditional descriptions 
of the method. 

A. The Double Method of Agreement. 
Let there be m positive instances of Hand n negative instances 

of H. 
The effect of elimination depends 'here upon two factors, 

viz., variation among the members of the two sets of instances 
taken separately, and resemblance between the members of the 
two sets taken jointly. Any property which is not common to all 
the positive instances, and the negation of any property which is 
not common to all the negative instances, cannot be a Necessary-
and-Sufficient Condition of H. On the other hand, any property 
which is common to at least one positive and one negative 
instance cannot be a Necessary-and-Sufficient Condition of H. 

We shall call the effect of elimination which depends upon 
the first factor the variation-effect, and that which depends 
upon the second factor the resemblance-effect. 

The resemblance-effect is independent of the variation-
effect. This means that the effect of elimination due to resemb-
lance between the members of the two sets of instances taken 
jointly may be considerable, though there is little or even no 
variation among the members of the two sets taken separately. 
Alternatively, the remaining possible Necessary Conditions, 
relative to the m positive instances of H, may be many, and so 
may the remaining possible Sufficient Conditions, relative to 
the n negative instances of H. But the common members of the 
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two sets of remaining possible conditions, i.e., the remaining 
possible Necessary-and-Sufficient Conditions, may nevertheless 
be few. 

The variation-effect is not, however, independent of the 
resemblance-effect. That there is variation in respect of a 
certain property among the members of a set of things means 
(cf. p. 94.) that the property is present in at least one member 
and absent in at least one member of the set. It follows that if 
there is variation in respect of a property, both among a set of 
positive, and among a set of negative instances of H, then there 
is resemblance in respect of the property and in respect of its 
negation-property between the members of the two sets of 
things taken jointly. For then there exists at least one positive 
and at least one negative instance of H which agree in respect 
of the property in question, and also at least one positive and 
at least one negative instance of H which agree in respect of its 
negation-property. It is therefore not possible to imagine a 
situation where there is little or no resemblance between the 
members of the two sets of instances taken jointly, but much 
variation among the members of the two sets taken separately. 

In view of the above, it is clear that the resemblance-effect is, 
in fact, responsible for the total effect of elimination, and that 
the variation-effect can consequently be neglected.-Let there 
be one positive and one negative instance of H. If the two 
instances differ in respect of no one of the properties in c/>0, 

then we have attained Total Elimination of the initially possible 
conditioning properties. If the two instances differ in respect of 
one and one only of the properties in c/>0 , then we have attained 
a Perfect Analogy. Thus Total Elimination and Perfect Analogy 
are attainable in a minimum number of two 'steps' ('observa-
tions,' 'experiments'). 

B. The Joint Method of Agreement and Difference. 
Let there again be m positive and n negative instances of H. 
The remaining possible Necessary Conditions are those 

properties in c/>0, or their negation-properties, which are present 
in all the m positive instances of H. The remaining possible 
Sufficient Conditions are those properties in c/>0, or their 
negation-properties, which are present in a given one of the 
.m positive instances of H, and absent in all the n negative 
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instances of H. The common members of these two sets of 
remaining possible conditions constitute a set of remaining 
possible Necessary-and-Sufficient Conditions of H. 

The effect of elimination can again be attributed to two 
factors, resemblance and variation. The former is in fact 
responsible for the total effect of elimination. Total Elimination 
and Perfect Analogy are attainable in a minimum of two 
'steps' ('observations', 'experiments'). 

It is clear that the set of remaining possible Sufficient Con-
ditions will, as a rule, consist of different properties according 
to the choice of the one positive instance of H. The common 
members of the sets of remaining possible Necessary Conditions 
and remaining possible Sufficient Conditions-i.e., the members 
of the set of remaining possible Necessary-and-Sufficient 
Conditions-are, however, the same independently of this 
choice. This is proved as follows: 

Suppose that there existed a property A which is one of the 
initially possible Necessary-and-Sufficient Conditions of H and 
which is: 

1. common to the sets of remaining possible Necessary 
Conditions and remaining possible Sufficient Con-
ditions of H, when x is the positive instance of H 
which has been chosen, and: 

n. not common to the sets of remaining possible Necessary 
Conditions and remaining possible Sufficient Con-
ditions of H, wheny is the positive instance of Hwhich 
has been chosen. 

Part i of the supposition implies that A is present in all the 
m positive instances and absent in all then negative instances of 
H. Part ii of the supposition again implies that A is either 
absent in y or present in at least one of the n negative instances 
of H. The two parts of the supposition thus lead to contradictory 
consequences. It follows by contraposition that the result to 
which use of the Joint Method of Agreement and Difference 
will lead us, is independent of the choice of any particular 
instance of the m positive instances of H to be compared with 
all the n negative instances of H. 

* * * 
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It can be proved that, given m positive and n negative 

instances of the conditioned property, the use of the Double 
Method of Agreement, and of the Joint Method of Agreement 
and Difference will lead to the same remaining possible 
Necessary-and-Sufficient Conditions. 

Suppose that there existed a property A which is one of the 
initially possible Necessary-and-Sufficient Conditions of Hand 
which is: 

1. one of the remaining possible Necessary-and-Sufficient 
Conditions, relative to m positive and n negative 
instances of H, when the Double Method of Agree-
ment has been used, and: 

ii. not one of the remaining possible Necessary-and-
Sufficient Conditions, relative to the same m positive 
and n negative instances of H, when the Joint Method 
of Agreement and Difference has been used. 

Part i of the- supposition implies that A is present in all the 
m positive and absent in all the n negative instances of H. Part ii 
of the supposition again implies that A is either absent in at 
least one of the m positive instances or present in at least one of 
the n negative instances of H. Since the two parts of the sup-
position thus lead to contradictory consequences, it follows by 
contraposition that the two forms of the Joint Method must 
lead to concordant results when applied to the same 'material 
of observation or experimentation.' 

6. The Method of Agreement. The Complex Case 
A. The Direct Method. 
The conditioned property is called H. 
The (actual) conditioning properties are Necessary Condi-

tions of H. 
Let ,P0 mean the same as in the Simple Case. 
The initially possible conditioning properties are all propel"" 

ties which are the sums of some m (o~m~n) of some n (x~n) 
properties from ,P0, and the negation-properties of the remaining 
n-m properties. 
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Let us suppose that ¢>0 has k members. It will be of some 
interest to calculate, on this supposition, the number of initially 
possible conditioning properties of different degrees of com-
plexity from I to k and also the sum total of initially possible 
conditioning properties. 

The number of sums of (n of) some n properties from ¢>0 is 
(!), which can also be written (!)(h~n). The number of sums of 
n-1 of some n properties from t/>0 and the negation-property of 
the sole remaining property is Cn~,)(k-n/'). The number of 
sums of m of some n properties from ¢> 0 and the negation-
properties of the remaining n-m properties is Cn~m)(k-n,;tm). 
Finally, the number of sums of ( o of some n properties and) 
the negation-properties of (the remaining) n properties from 
t/>o is (!)' which can also be written (!) c:). 

Thus the number of initially possible conditioning properties 
n 

of degree of complexity n equals :1: Cn~m)(k-n;:m) which equals 
n n m=o 

:1: (:)(;:,). Since :1: (;:,) equals 2", we can further simplify the 
m=o m=o 
expression to 2n(!). 

Consequently, the sum total of initially possible conditioning 
k 

properties is l:: 2"(:). 
n=x 

When nisI, we get the number of initially possible condition-
ing properties of the Simple Case which is 2k. 

When n is 2, we get the number of initially possible condition-
ing properties of the second degree of complexity. This number 
is 2k(k-I). 

When n is 3, we get the number of initially possible condition-
ing properties of the third degree of complexity. This number 
is (4-k(k-r)(k-2)): 3· 

Finally, when n is k we get the number of initially possible 
conditioning properties of the maximal degree of complexity. 
This number is 2k. 

The Principle ofElimination is the same as in the Simple Case. 
Consequently, the data of elimination are afforded by 

positive instances of the conditioned property which are 
negative instances of some of the initially possible conditioning 
properties. 
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The remaining possible conditioning properties, relative to n 
positive instances of the conditioned property, are defined as 
in the Simple Case. 

Suppose again that cfoo has k members. Given a positive 
instance of H, any one of the k properties in cfoo is either present 
or absent in this instance. If a property is absent, its negation-
property is present. Thus in any positive instance of H, n of 
the k properties in cp0 are present, and the negation-properties 
of the remaining k-n properties. The number of properties 
which are products of some m (r~m~k) of those k properties 

k 
of the positive instance of H is ~ (~), which equals 2k-1. Any 

m=I 
one of these 2k-r products is present in the positive instance 
of H. The negation of any one of them is absent. But the nega-
tion of a product of some m properties is, according to the Rules 
of de Morgan, the sum of the negations of the m properties. 
Thus it is one of the initially possible conditioning properties of 
H. Since it is absent in the presence of H it is eliminated from 
being a Necessary Condition of H. 

Thus the immediate eliminative effect exerted by any single 
positive instance of the conditioned property, amounts to 

k 
~ (~) or 2k- 1 initially possible conditioning properties, where 

m=I 
k is the number of members of cp0• 

When m is r, we get the immediate eliminative effect of 
the Simple Case, which is k or half of the initially possible 
conditioning properties of the Simple Case. 

When m is 2, we get the immediate eliminative effect among 
initially possible conditioning properties of the second degree 
of complexity, which is (k(k-r)): 2!. 

When m is g, we get the immediate eliminative effect among 
initially possible conditioning properties of the third degree of 
complexity, which is (k(k-r)(k-2)): g!. 

Finally, when m is k we get the immediate eliminative effect 
among initially possible conditioning properties of the maximal 
degree of complexity, which is 1. Thus each positive instance 
of H excludes exactly one of the 2k initially possible condition-
ing properties of maximal complexity from being a Necessary 
Condition of H. 
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It should be noted that the ratio of the number of immediately 
excluded properties to the number of initially possible condi-
tioning properties is I : 2 or I : 21 for the I -complex properties, 
I : 4 or I : 22 for the 2-complex properties, I : 8 or I : 23 for the 
3-complex properties, and finally I : 2k for the k-complex or 
maximally complex properties. 

The additional eliminative effect of any additional positive 
instance of His, as in the Simple Case, equal to the number of 
initially possible conditioning properties, in respect of which 
the additional positive instance of H differs from every one of 
a number of previous positive instances of H. The minimum of 
difference is when the additional instance differs from some 
previous instance in respect of no property from ,P0• The maxi-
mum of difference is, when the additional instance differs from 
all previous instances in respect of all properties from .Po· In the 
minimum case the additional eliminative effect is o, and in the 
maximum case it equals the immediate eliminative effect. The 
maximum effect, however, can occur only if there is either only 
one previous instance, or if all the previous instances differ from 
one another in respect of no one of the properties from .Po· 

It should be noted that even though there be no property 
from ,P0, in respect of which a certain additional instance differs 
from all the previous instances, the additional eliminative 
effect-consisting then entirely of properties of the second or 
higher degree of complexity-may yet be considerable. For 
absence of difference in respect of properties from .Po does not 
exclude considerable difference in respect of properties which 
are sums of properties from .Po and their negation-properties. 

The following theorems will now be proved concerning Total 
Elimination and Perfect Analogy: 

Tr. Total Elimination on then-level entails Total Elimina-
tion on any lower level. 

Proof: For a certain n-complex initially possible conditioning 
property to be eliminated, means that there is some thing in 
which the conditioned property is present and the n-complex 
property absent. That the n-complex property is absent means 
that every one of the n properties of which it is a sum is absent. 
That every one of the n properties is absent means that any 
property which is a sum of some m of the n properties is also 
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absent. Since any property of lower degree of complexity than 
n is a sum of some m of some n properties, it follows that, if all n-
c;omplex initially possible conditioning properties have been 
eliminated, then all initially possible conditioning properties of 
lower degree of complexity have also been eliminated. 

It is clear that Total Elimination on them-level is compatible 
with any state of elimination on higher levels. 

T2. Perfect Analogy on then-level entails Total Elimination 
on any lower level. 

Proof: Consider an n- I -complex initially possible condition-
ing property. It is a sum of some m (o~m~n-I) of some n-I 
properties from 4>o and the negation-properties of the remaining 
n-1-m properties. Consider a g: th property from 4>o and its 
negation-property. The sums of the n-I-complex property, and 
this g:th property, and its negation-property, respectively, are 
two n-complex initially possible conditioning properties. The 
elimination of either of the n-complex properties entails the 
elimination of the n-1-complex property. Perfect Analogy on 
the n-level entails that at least one of the two n-complex pro-
perties has been eliminated. Thus Perfect Analogy on the 
n-level entails Total Elimination on then- I -level which in its turn, 
according to TI, entails Total Elimination on any lower level also. 

T3. Perfect Analogy on the n-level entails that no initially 
possible conditioning property from a higher level has been 
eliminated, which includes the only non-eliminated n-complex 
property. 

Proof: That an initially possible conditioning property from 
a higher level includes the only non-eliminated n-complex 
property means, that the first property is the sum of the same 
n properties as the second property, and of some additional 
properties. It follows that the elimination of the first property 
would entail the elimination of the second property. Hence, by 
contraposition, the non-elimination of the second property 
entails the non-elimination of the first property. 

It is clear that Perfect Analogy on then-level is compatible 
with any other state of elimination on higher levels except those 
states which are excluded in virtue of T3. 

T4. Absolutely Total Elimination entails Total Variation in 
the realm of properties in 4>0 , and vice versa. 

106 



INDUCTION AND ELIMINATION 
Proof:· Let the number of members of tfoo be k. Absolutely 

Total Elimination entails Total Elimination on the highest, 
or k-level. Total Elimination on the highest level again, accord-
ing to T1, entails Absolutely Total Elimination. 

As we know, the number of initially possible conditioning 
properties of maximal degree of complexity is 2k. As we also 
know, the immediate eliminative effect exerted by any single 
positive instance of the conditioned property among initially 
possible conditioning properties of maximal degree of com-
plexity is 1. 

Thus for the attainment of Total Elimination on the highest 
level, and a fortiori of Absolutely Total Elimination, a minimum 
of 2k positive instances of the conditioned property is needed. 
Any two of these 2k instances must differ in respect of at least 
one of the k properties from tfo0• This is only possible, if the 2k 

instances constitute a Total Variation in the realm of the k 
properties. (C£ above p. 42.) 

Ts. Absolutely Perfect Analogy entails Perfect Analogy on 
the highest level, and vice versa. 

Proof: Perfect Analogy on the highest level entails, accord-
ing to T2, Total Elimination on all other levels, and thus 
Absolutely Perfect Analogy. Perfect Analogy on any other 
level but the highest entails, according to T3, that there is no 
Total Elimination on higher levels, and thus no Absolutely 
Perfect Analogy. It follows by contraposition that Absolutely 
Perfect Analogy entails Total Elimination on all other levels 
but the highest, and thus Perfect Analogy on the highest 
level. 

Let tfoo have k members. It follows from T4 and T5 that the 
minimum number of positive instances of the conditioned 
property needed for the attainment of Absolutely Perfect 
Analogy is 2k-1. 

A multitude of questions can be raised concerning the way 
in which the mechanism of elimination functions for the pur-
pose of attaining various states of analogy. From the point of 
view of scientific observation and experimentation, two questions 
seem to be of particular interest: 

a. What is the minimum number of positive instances of the 
conditioned property which are needed for the attainment of 
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Perfect Analogy on then-level in combination with a maximum 
of elimination on (lower and) higher levels? 

Let us describe the only n-complex initially possible condi-
tioning property which is to remain uneliminated as 'the 
critical property.' 

Perfect Analogy on the n-level entails Total Elimination on 
all lower levels, and is compatible with any other state of 
elimination on higher levels except those states which are 
excluded in virtue of T3. Hence the meaning of 'maximum' is 
clear. 

The question can be answered only on the supposition that 
cfoo has k members. 

We divide the properties in cfoo into two groups. The first 
group consists of those n properties, of some m of which, and 
of the negation-properties of the remaining n-m, the critical 
property is a sum. The second group consists of the remaining 
k-n properties. 

There are, in all, 2n-1 possible ways in which the properties 
of the first group can be present or absent in a positive instance 
of the conditioned property without effecting the elimination 
of the critical property. (Cf. above p. 107.) 

There are, in all, 2k-n different ways in which the properties 
of the second group can be present or absent in a thing. 

Thus there are, in all, (2n-x)·2k-n or 2k-2k-n possible ways in 
which the properties of either group, i.e., the properties in cfoo 
can be present or absent in a positive instance of the conditioned 
property without effecting the elimination of the critical 
property. 

It will not be difficult for the reader to convince himself that 
2k-2k-n is the minimum number of positive instances of the 
conditioned property which are needed for the attainment of 
Perfect Analogy on the n-level, and a maximum of elimination 
on other levels. 

If n is x, the formula gives the minimum number of 'steps' 
('observations,' 'experiments') by which we may succeed in 
eliminating all but one of the initially possible conditioning 
properties of the Simple Case, and all of the initially possible 
conditioning properties of the Complex Case save those which 
include the sole non-eliminated property of the Simple Case. 
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This number is 2k-2k-I or 2k : 2. The minimum number of things 
needed is thus exactly half of the minimum number needed to 
effect Absolutely Total Elimination. (Of. above p. I07.) 

If n is 2, the formula gives the minimum number of 'steps' 
by which we may succeed in eliminating all initially possible 
conditioning properties of the Simple Case, all 2-complex 
initially possible conditioning properties but one, and all other 
initially possible conditioning properties save those which 
include the sole non-eliminated 2-complex property. This 
number is 2k-2k-z or (3·2k) : 4 or 2k( I : 2 +I : 4). The minimum 
number of things needed is thus three-quarters of the number 
needed to effect Absolutely Total Elimination. 

If n is 3, the minimum number of 'steps' is 2k-2k-J or 
(7·2k): 8 or 2k(1 : 2+1: 4+I: 8). 

In general, the ratio of the minimum number of positive 
instances needed for attaining the Perfect Analogy in question 
to the minimum number needed for effecting Absolutely Total 
Elimination is I : 21+ I : 2 2 + ... +I : 2n. For n equal to k, we 
get I : 2 1+ I : 2 2 + ... +I : 2k or (2k-I) : 2k which, multiplied by 
2k, gives 2k-I, or the minimum number needed for attaining 
Absolutely Perfect Analogy. 

{3. What is the minimum number of positive instances of 
the conditioned property needed for the attainment of Total 
Elimination on the n-level? 

The question can be answered only on the supposition that 
.Po has k members. 

The criterion of Total Elimination on the n-level is that for 
any one of the n-complex initially possible conditioning pro-
perties, there is at least one positive instance of the conditioned 
property which is a negative instance of then-complex property. 
That a thing is a negative instance of a sum of n properties 
means that it is a negative instance of every one of the n 
properties themselves. In general, a thing is a negative instance 
of more than one n-complex initially possible conditioning 
property. Thus the minimum number of things needed will be 
less than the number of n-complex initially possible condition-
ing properties, which is 2n(!). What will it be? 

(The qualification 'in general' means 'unless n happens to 
equal k.') 
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The 2k maximally complex initially possible conditioning 

properties are divided into groups, and the groups are sym-
metrically arranged according to the following principle.-The 
first group consists of the sole property which is the sum of the 
k properties in c/>0• The last group consists of the sole property 
which is the sum of the negations of the k properties in c/>0• The 
number of members in each of these groups is thus r, or (~). 
The second group consists of all properties which are the sum of 
some k- I properties in c/>0, and the negation of the remaining 
one property. The last group but one consists of all properties 
which are the sum of one property in c/>0, and the negations of 
the remaining k-r properties. The number of members in each 
of these groups is k, or (~). The third group consists of all 
properties which are the sum of some k-2 properties in t/>0, and 
the negations of the remaining 2 properties. The last group but 
two consists of all properties which are the sum of some 2 pro-
perties in t/>0, and the negations of the remaining k-2 properties. 
The number of members in each of these groups is (~). The 
number of members in the group-pairs steadily increases. If 
k is an odd number, it reaches its maximum in the two central 
groups of (<k+~l, 2 ) members each, the first of which consists of 
all properties which are the sum of some (k+ I): 2 properties in 
c/J0, and the negations of the remaining ( k- I) : 2 properties; and 
the second of which consists of all properties which are the sum 
of some ( k- I) : 2 properties in t/>0, and the negations of the re-
maining (k+ I): 2 properties. If k is an even number, it reaches 
its maximum in the single (asymmetrical) central group of 
(k\) members which consists of all properties which are the 
sum of exactly half of the properties in t/>0, and the negations of 
the remaining half. 

We shall speak of these groups as the first, the second, etc., 
k-group. · 

Similarly, the 2n(!) n-complex initially possible conditioning 
properties are symmetrically arranged into groups. The first 
group consists of all sums of some n properties in t/>0, and the 
last group of all sums of negations of some n properties in t/>0• 

The second group consists of all sums of some n-I properties 
in t/>0 and the negation of the remaining one property, and the 
penultimate group consists of all sums of one property in t/>0 and 
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the negation of some n-I other properties. The number of 
members in the group-pairs steadily increases. Ifn is odd, there 
are two (symmetrical) central groups, and if n is even, there is 
only one (asymmetrical) central group. 

We shall speak of these groups as the first, the second, etc., 
n-group. 

Two cases must be distinguished. 
Case i. n is an even number. 
A negative instance of the sole member of the first k-group is 

a negative instance of all members of the first n-group, and a 
negative instance of the sole member of the last k-group is a 
negative instance of all members of the last n-group. Negative 
instances of all members of the second k-group, but not negative 
instances of some of the members only, are negative instances of 
all members of the second n-group. Negative instances of all 
members of the penultimate k-group, but not negative instances 
of some of the members only, are negative instances of all 
members of the penultimate n-group. Finally, negative instances 
of all members of the n : 2th k-group, but not negative instances 
of some of the members only, are negative instances of all mem-
bers of then: 2th n-group. Negative instances of all members 
of the n : 2th k-group from the end, but not negative instances of 
some of the members only, are negative instances of all members 
of the n : 2th n-group from the end. 

If n is not greater than k- I, then negative instances of all 
members of the second k-group are also negative instances of 
all members of the first n-group. Similarly, negative instances 
of all members of the penultimate k-group are also negative 
instances of all members of the last n-group. 

Further, if n is not greater than k-2, then negative instances 
of all members of the third k-group are also negative instances 
of all members of the first and second n-groups. Similarly, 
negative instances of all members of the third k-group from the 
end are also negative instances of all members of the penultimate 
and ultimate n-groups. 

Finally, if n is not greater than k-n : 2, then negative instances 
of all members of the n : 2 + I th k-group are also negative 
instances of all members of the first and second anc! . . . and 
n : 2th n-groups. Similarly, negative instances of the respective 
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membc::rs of the n : 2th k-group from the end are also negative 
instances of the respective members of the first and second 
and ... and n: 2-1th n-groups from the end. (It should be 
observed that the n-groups, counting from each end, coincide 
in the n : 2th group.) 

That n is not greater than k-n : 2 can also be expressed as 
nL2k: 3· 

Thus, if n is not greater than 2 : 3 of k, negative instances of 
the members of the n : 2 + Ith and the n : 2th k-groups from the 
beginning and the end respectively are also negative instances 
of the members of all n-groups. 

As we know, the number of members of the two k-groups is 
(n~2) and (n:~-I) respectively. 

Thus (/2) +(n:~-I) positive instances of the conditioned 
property, which are negative instances of the respective mem-
bers of the two k-groups, will effect Total Elimination of n-
complex initially possible conditioning properties. Since the 
number of members of the k-groups increases towards the 
middle of the group-arrangement, it follows that (n \) + (n :~-I) 
is the minimum number. 

The above result is valid only on the supposition that n is 
'small' relative to k, i.e. not greater than 2 : 3 of k. 

Suppose that n exceeds k-n : 2 by 1. In this case negative 
instances of the respective members of then: 2+ xth k-group are 
also negative instances of the respective members of the second 
and ... and n : 2th n-group, but not of the members of the first 
n-group. The smallest k-group which is such that negative 
instances of its members are also negative instances of the 
members of the first n-group, is the first k-group. It has 1, or 
(!),member. Thus the minimum number of instances needed is 
V2) +(n :~-I)+(!). 

Suppose that n exceeds k-n: 2 by 2. In this case negative 
instances of the respective members of the n : 2+ xth k-group 
are also negative instances of the respective members of the 
third and ... and n : 2th n-group, but not of the members of the 
two first n-groups. Similarly, negative instances of the respective 
members of the n : 2th k-group from the end are also negative 
instances of the respective members of the second and ... and 
n: 2-Ith n-group from the end, but not of the members of the 
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last n-group. The smallest k-groups which are such that negative 
instances of their members are negative instances of the two 
first and the last n-groups respectively, are the two first and 
one last k-groups respectively. Thus the minimum number of 
instances needed is Cn~z)+Cn:~-~)+(~)+2(~). 

Suppose that n exceeds k-n : 2 by 3· Analogous considerations 
to those above would give the minimum number as 
(n~z) +(n:~-r) +(~) +2((~) +(~)). 

The rule for calculating the minimum number is already 
discernible. If n exceeds k-n : 2 by m, then the number is 
(n ~ J + (n :~-r) +(.!r) + 2( (~) +(~) + • • •+(,!J). 

The maximum value by which n can exceed k-n : 2, is n : 2, for 
which value n equals k. This limiting case corresponds to Total 
Elimination on the k-level, i.e., to Absolutely Total Elimination. 
The minimum number of things needed for its attainment is, 
according to our formula above, (k~J+2((~)+(~)+ ... +(k:~-1)). 
But, n being even, this number equals 2k. 

Case ii. n is an odd number. 
The reasoning in the case where n is even can easily be 

modified so as to apply to this case, the treatment of which is 
somewhat simpler. 

We have again to distinguish between the alternative that 
n is 'small' relative to k, meaning here that n is not greater than 
(2k+ 1): 3, and that n is 'great' relative to k, meaning that n 
exceeds ( 2k+ 1) : 3· 

If n is small the minimum number of instances needed for 
Total Elimination on then-level is 2((n-~, 2). 

Ifn is great and if it exceeds k-(n-1): 2 bym2 then the minimum 
number of instances needed is 2((~+(~)+ ... + Cm~r)+((n-~: 2)). 

The maximum value by which n can exceed k-(n-1): 2, is 
(n-1): 2, for which value n equals k. Thus Absolutely Total 
Elimination can be effected in a minimum number of 
2((~)+ (~) + ... + ((k-~: 2)). But, n being odd, this number 
equals 2k. 

The following remarks should be added for special values of 
n: 

If n is I and k is equal to or greater than I, then Total 
Elimination can be effected in 2 'steps'. This is already known 
to us from the Simple Case. 
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If n is 2 and k is equal to, or greater than, 2, then Total 
Elimination can be effected in k+ I 'steps'. If, e.g., k is 3, then 
Total Elimination of all 2-complex initially possible condition-
ing properties can be effected in 4 'steps'. 

If n is 3 and k is equal to, or greater than, 4, then Total 
Elimination can be effected in 2k 'steps'. If, e.g., k is 5, then 
Total Elimination of all 3-complex initially possible condition-
ing properties can be effected in I o 'steps'. 

The cases where n is 'small' as compared with k might, from 
the point of view of actual observation and experimentation, 
be regarded as the normal cases. The more complicated 
formulae for cases where n is 'great' as compared with k, will 
certainly be very seldom relevant to actual considerations about 
the eliminative value of examined instances. 

B. The Inverse Method. 
The combinatorial calculations are the same as in the Direct 

Method. 
The conditioned property is called H. 
The (actual) conditioning properties are Sufficient Conditions 

of H. 
Let ~0 mean the same as in the Simple Case. 
The initially possible conditioning properties are all pro-

perties which are the products of some m ( o ~ m ~ n) of some n 
(I ~ n) properties from ~0, and the negation-properties of the 
remaining n-m properties. 

If ~0 has k members, the total number of initially possible 
k 

conditioning properties is ~ 2n(:). 
n~I 

The Principle of Elimination is the same as in the Simple 
Case. 

Consequently the data of elimination are afforded by 
negative instances of the conditioned property, which are 
positive instances of some of the initially possible conditioning 
properties. 

The remaining possible conditioning properties, relative to 
n negative instances of the conditioned property, are defined as 
in the Simple Case. 

If ~0 has k members, the immediate eliminative effect 
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exerted by any single negative instance of the conditioned 

k 
property, amounts to ~ (~) or 2k- I initially possible condition-

m=I 
ing properties. 

The additional eliminative effect exerted by any additional 
negative instance of the conditioned property, is, as in the 
Simple Case, equal to the number of initially possible condi-
tioning properties in respect of which the additional negative 
instance differs from every one of a number ofprevious negative 
instances. It should be noted, that even though there be no 
property from </> 0 in respect of which a certain additional 
instance differs from all the previous instances, the additional 
eliminative effect-consisting then entirely of properties of the 
second or higher degree of complexity--may yet be consider-
able. 

For Total Elimination and Perfect Analogy the above 
theorems Tr- T5 are valid. (Only in T3 for 'includes' we should 
read 'is included in.') 

Suppose </>0 has k members. 
Then Absolutely Total Elimination and Absolutely Perfect 

Analogy are attainable in a minimum number of 2k and 2k- I 
'steps' respectively. 

The minimum number of 'steps' in which we can attain 
Perfect Analogy on then-level, in combination with a maximum 
of elimination on (lower and) higher levels, is 2k-2k-n. 

The minimum number of 'steps' in which we can attain 
Total Elimination on then-level is, again, somewhat differently 
calculated, according to whether n is even or odd and whether 
it is 'small' or 'great' relative to k. 

Case ia. n is even and not greater than 2: 3 of k. The minimum 
number is (n~z)+(n:~_,). 

Case ib. n is even and greater than 2: 3 of k. The minimum 
number is (n\)+(n:~-,)+(m\)+2((!)+(~)+ ... +(,:..2)), where 
m is the amount by which n exceeds k-n: 2. When m reaches 
its maximum value n : 2, i.e., when n equals k, the expression 
assumes the value 2k. 

Case iia. n is odd and not greater than (2k+ I): 3· The mini-
mum number is 2((n-~: 2). 

Case iib. n is odd and greater than (2k+ r): 3· The minimum 
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number is 2((~)+(~)+ ... +(,:1)+((n-~: 2)). When m reaches its 
maximum value (n-1): 2, i.e. when n equals k, the expression 
assumes the value 2~<. 

7· The Method cif Difference. The Complex Case 
The conditioned property is called H. 
The (actual) conditioning properties are Sufficient Conditions 

of H. 
Let r/>0 mean the same as in the Method of Agreement. 
The initially possible conditioning properties are, those of 

the initially possible conditioning properties in the Complex 
Case of the Inverse Method of Agreement which are present 
in a given positive instance of H. 

Suppose that r/> 0 has k members. Any one of the properties in 
r/>0 is either present or absent in the given positive instance of H. 
The number of properties which are the products of some n 

k 
(I~ n~ k) of k properties is I: (:) or 2k- I. This therefore is the 

n=I 
total number of initially possible conditioning properties. 

The number of n-complex initially possible conditioning 
properties is (:). If n is I, this number is k (the Simple Case). 
If n is 2, the number is (k(k-1)): 2. If n is k, the number is I. 

The Principle of Elimination is the same as in the Inverse 
Method of Agreement. 

Consequently, the remaining possible conditioning pro-
perties (relative to the given positive instance and n negative 
instances of H) are defined as in the Inverse Method of Agree-
ment. 

The fact that no two of the initially possible conditioning 
properties contradict each other, makes the treatment of the 
Complex Case of the Method of Difference much easier than 
the Complex Cases of the Method of Agreement. 

The immediate eliminative effect exerted by any single 
negative instance of H, does not have a constant magnitude. If 
the negative instance differs from the positive instance in 
respect of all properties in r/>0 , it is wholly ineffective for the 
purpose of elimination. If the negative instance differs from the 
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positive instance in respect of no property in </> 0, it effects Abso-
lutely Total Elimination. 'Normally,' the immediate elimina-
tive effect is between these two extremes. 

The additional eliminative effect exerted by any additional 
negative instance of H, amounts to the number of initially 
possible conditioning properties in respect of which the 
additional negative instance agrees with the given positive 
instance and differs from all the previous negative instances. It 
should be noted that the additional negative instance may not 
differ from any of the previous negative instances in respect of 
any property in </> 0, and yet be of value for the purpose of 
elimination. 

For Total Elimination and Perfect Analogy the theorems 
TI-T3 of §6 are valid. (Only in T3 for 'includes' we should 
read 'is included in'.) So also is the theorem Ts for Absolutely 
Perfect Analogy. Instead of T4 we have the following theorem 
for Absolutely Total Elimination: 

T4'. A negative instance ofthe conditioned property which 
differs from the given positive instance of the conditioned 
property in respect of no property from </> 0, effects Absolutely 
Total Elimination. 

(This has already been observed above.) 
The following two questions will be discussed here: 
a. What is the minimum number of negative instances of 

the conditioned property needed for the attainment of Perfect 
Analogy on the n-level, in combination with a maximum of 
elimination on (lower) and higher levels? 

'Maximum' means the same as in problem a in the Complex 
Cases of the Method of Agreement. 

The problem can be solved only on the supposition that </>0 

has k members. 
Let there be n negative instances of H which satisfy the 

following two conditions: 
1. Any one of the negative instances differs from the given 

positive instance of H in respect of one and one only of 
the properties in c/>0 • 

n. No two of the negative instances differ from the given 
positive instance of H in respect of the same pro-
perty in </>0• 
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Under these conditions any less-than-n-complex initially 

possible conditioning property is present in some negative 
instance of H, and consequently eliminated. The same is true 
of all n-complex initially possible conditioning properties, with 
the one exception of the product of the n properties in which 
the negative instances differ from the given positive instance of 
H. The same is true of all more-than-n-complex initially possible 
conditioning properties, with the exception of those included 
in the only non-eliminated n-complex property. Consequently, 
the n things satisfying the conditions i and ii above establish 
a Perfect Analogy on the n-level, in combination with a maxi-
mum of elimination. It is easy to see that n is the minimum 
number. 

If n equals k, we have the case of Absolutely Perfect Analogy, 
which is thus attainable in a minimum number of 'steps' equal 
to the number of properties in cp0 • 

~. What is the minimum number of negative instances of 
the conditioned property which are needed for the attainment 
of Total Elimination and Perfect Analogy respectively on the 
n-level, in combination with a minimum of elimination on 
(lower and) higher levels? 

'Minimum' here means all more-than-n-complex initially 
possible conditioning properties. Or else it means no elimina-
tion on the higher levels. 

The problem can be solved only on the supposition that cp0 

has k members. 
Let there be (:) negative instances of H which satisfy the 

following two conditions: 

1. Any one of the negative instances differs from the given 
positive instance of H in respect of all but n of the 
properties in cp0• 

ii. No two of the negative instances differ from the given 
positive instance of H in respect of the same properties 
in cp0• 

From i, it follows that no more-than-n-complex initially 
possible conditioning property can be eliminated, i.e., be present 
in some of the negative instances of H. From ii, it follows that 
any n-complex initially possible conditioning property is 
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eliminated, i.e., is present in some negative instance of H. The 
(:) instances thus effect Total Elimination on the n-level without 
effecting any elimination on higher levels. It is clear that 
(~) is the minimum number of instances which can achieve this. 

Ifn is I, the minimum number of instances needed is k. Total 
Elimination on the lowest level without elimination on higher 
levels can thus be attained in a minimum number of 'steps' 
equal to the number of properties in cp0• 

If n is k, the minimum number of instances needed is I. This 
is the case of Absolutely Total Elimination which, as we already 
know, can be effected by a single negative instance of the 
conditioned property. 

If we remove one of the above (:) negative instances of H 
satisfying conditions i and ii, we would then have a Perfect 
Analogy on the n-level without having eliminated any more-
than-n-complex initially possible conditioning property. It is 
clear that (!)-I is the minimum number of instances which can 
achieve this. 

If n is k, the minimum number of instances needed is W-r 
which equals o. Absolutely Perfect Analogy is thus attainable 
in o 'steps'. This is simply another way of saying that the 
number of k-complex, or maximally complex, initially possible 
conditioning properties, is I. 

8. The Joint Method. The Complex Case 
The conditioned property is called H. 
The (actual) conditioning properties are Necessary-and-

Sufficient Conditions of H. 
Let cp0 mean the same as in the Simple Case. 
The initially possible conditioning properties are all the 

properties-the tautology and the contradiction, however, being 
excluded-which are presence-functions of some n (I L n) 
properties in cp0• 

Suppose that cp0 has k members. 
The total number of initially possible conditioning properties 

is then 2(2k)-2. 
As we know (p. 40), a property which is a presence-function 
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of n properties is also a presence-function of any greater number 
of properties which include among themselves the n properties. 
Thus the initially possible conditioning properties which are 
presence-functions of n properties in cp0, include among them-
selves all initially possible conditioning properties which are 
presence-functions of some m of the n properties. In view of this 
the number of initially possible conditioning properties which 
are presence-functions of n given properties in cp0 , but not of 
any lesser number of properties, is 2(2n).2(2n-r). 

n properties can be selected from among k properties in 
(!) different ways. Thus the number of initially possible 
conditioning properties which are presence-functions of some 
n properties in cp0, but not of any lesser number of properties, 
i.e., the number of n-complex initially possible conditioning 
properties, is (~) ( 2(2n).2(2n-r)). 

If n is I, we get the initially possible conditioning properties 
of the Simple Case. Their number, as we already know, is 2k. 

If n is 2, we get the 2-complex initially possible conditioning 
properties. Their number is 6k(k-r). They are thus three times 
as many as in the Complex Cases of the Method of Agreement. 
(Cf. above p. 103.) 

If n is k, we get the maximally complex initially possible 
conditioning properties. Their number is 2(2k).2(2k-r). 

k 
It should be noted that ~ (!)(2(2")-2(2n-r)) equals 2(2k)-2. 

n=I 

The Principle of Elimination is the same as in the Simple 
Case. 

Consequently, the data of elimination are afforded by 
positive instances of the conditioned property which are 
negative instances of some of the initially possible conditioning 
properties, and by negative instances of the conditioned 
property which are positive instances of some of the initially 
possible conditioning properties. 

The remaining possible conditioning properties, relative to 
m positive and n negative instances of the conditioned property, 
are defined as in the Simple Case. 

As in the Simple Case, the idea underlying the use of the 
Joint Method in the Complex Case is to compare a set of 
remaining possible Necessary Conditions, and a set of remaining 
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possible Sufficient Conditions, of the conditioned property. 
The common members of both sets will constitute a set of 
remaining possible Necessary-and-Sufficient Conditions. 

As in the Simple Case, there are two forms of the Joint 
Method in the Complex Case also. We call them, as before, 
the Double Method of Agreement and the Joint Method of 
Agreement and Difference. 

We shall not deal separately with the two sub-methods for 
the Complex Case. As was shown, their employment in the 
Simple Case necessarily leads to concordant results when 
applied to the same 'material of observation or experimenta-
tion.' (C£ above p. 102.) The proof applies immediately to the 
Complex Case also. 

As in the Simple Case, the effect of elimination depends 
upon two factors, viz., variation among the members of a set 
of positive instances and a set of negative instances of the 
conditioned property, taken separately; and resemblance 
between the members of two such sets taken jointly. The 
resemblance-effect is independent of the variation-effect and 
responsible for the total eliminative effect. (C£ above p. 100). 

For Total Elimination and Perfect Analogy none of the 
theorems Tr- T5 of §6 are valid. Instead we have the following 
theorems: 

Tr'. Total Elimination on the n-level is compatible 
with, but does not entail, Total Elimination on any lower 
level. 

Proof: Let there be a property which is a presence-function 
ofn properties but not of any m (1~ m<n) ofthem. Let there be 
another property which is a presence-function of some m 
(I~ m<n) of the n properties. (This second property is then also 
a presence-function of the n properties.) Consider the combi-
nations of presence-values in the n properties, for which the 
first property is present in a thing, and those for which it is 
absent. Suppose that the second property were present for 
exactly the same combinations and absent for exactly the same 
combinations. This would entail that the two properties were 
identical, and hence that the first property was a presence-
function of the same m properties as the second property, which 
is contrary to our assumptions. Thus there must exist at least 
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one combination of presence-values in the n properties, for 
which either the first property is present and the second absent, 
or the first absent and the second present. In other words: 
either the presence of the first property in a thing must be com-
patible with the absence of the second property in it, or the 
absence of the first property must be compatible with the 
presence of the second. 

That a certain n-complex initially possible conditioning 
property is eliminated, means that either there is a thing in 
which the conditioned property is present and the n-complex 
property absent, or one in which the conditioned property 
is absent and the n-complex property present. The elimi-
nation of an n-complex property never entails the elimination 
of a less-than-n-complex property, since either the presence 
of the n-complex property is compatible with the absence 
of the less-than-n-complex property, or its absence is com-
patible with the presence of the less-than-n-complex one. For 
the same reason, however, the elimination of any given 
n-complex property is compatible with the elimination of 
any given less-than-n-complex property. Thus, in particular, 
the elimination of all n-complex properties is compatible with, 
but does not entail, the elimination of allless-than-n-complex 
properties also. 

T2'. Perfect Analogy on then-level is compatible with, but 
does not entail, Total Elimination on any lower level. 

Proof: That a certain n-complex initially possible condition-
ing property is not eliminated, means that there is no thing in 
which it is either present in the absence of, or absent in the 
presence of, the conditioned property. Since either the presence 
of the n-complex property is compatible with the absence of 
any given less-than-n-complex property, or its absence with 
the presence of the less-than-n-complex one, it follows that the 
non-elimination of the n-complex property is compatible with, 
but does not entail, the elimination of the less-than-n-complex 
property. 

T3'. Perfect Analogy on then-level is compatible with, but 
does not, entail, Total Elimination on any higher level. 

This follows immediately from the considerations which led 
us to Tr' and T2'. 

122 



INDUCTION AND ELIMINATION 
T4'. A negative and a positive instance of the conditioned 

property which do not differ in respect of any of the properties 
in c/>0, effect Absolutely Total Elimination. 

Proof: Consider an initially possible conditioning property. 
In order not to be eliminated, this property must be 
present in the positive instance and absent in the negative 
instance, of the conditioned property. The initially possible 
conditioning property is a presence-function of some n pro-
perties in c/>0• Each one of these n properties has the same 
presence-value in the positive, and in the negative, instance of 
the conditioned property. Since the initially possible condition-
ing property is a presence-function of the n properties, it is 
either present or absent for the combination of presence-values 
which the n properties happen to have in the two instances. If 
it is present, it must be present in both instances, and if it is 
absent it must be absent in both instances, of the conditioned 
property. It cannot be present in the positive and absent in the 
negative instance. Hence it must be eliminated. 

(This theorem is the same as T4' of §7.) 
T5'. Absolutely Perfect Analogy is attainable on any level of 

complexity. 
This follows immediately from the fact that Perfect Analogy 

on the n-level is compatible with Total Elimination on any 
lower level (T2') and any higher level (T3'). 

That Absolutely Perfect Analogy is attainable on any level, 
constitutes a great advantage of the Joint Method over the 
Method of Agreement and the Method of Difference. The 
Joint Method is the only method of elimination where it is 
possible to 'isolate' one single property of any degree of com-
plexity, (in a certain set c/>0), and to maintain that no other 
property of lower or higher degree of complexity can actually 
be a conditioning property of the conditioned property in 
question. In the Method of Agreement and the Method of 
Difference the corresponding result is possible only for the 
relatively unimportant and 'trivial' case, where the sole non-
eliminated property is itself of maximal complexity. 

The following question remains to be discussed: 
What is the minimum number of instances needed for the 

attainment of Absolutely Perfect Analogy on the n-level? 
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The problem can be solved only on the supposition that c/>0 

has k members. 
We shall call the only non-eliminated n-complex property 

'the critical property.' 
Consider the perfect disjunctive and conjunctive normal 

denotations of the critical property in terms of the names of the 
k properties of c/>0• Tautology and contradiction being excluded, 
the first is a I- or ... or 2k-I-termed disjunction-name of k-
termed conjunction-names. The second is a I- or ... or 2k-I-
termed conjunction-name of k-termed disjunction-names. Let 
the first normal denotation be an m-termed disjunction. In 
consequence of the complementary nature of the normal forms 
(p. 42), the second will then be a 2k-m-termed conjunction. 

Let there be m positive instances of H satisfying the following 
two conditions: 

1. Each one of the positive instances is also a positive 
instance of some of the m k-termed conjunctions, of 
which the critical property is a disjunction. 

11. No two of the positive instances are positive instances of 
the same k-termed conjunction. 

Further, let there be 2k-m negative instances of H satisfying 
the following two conditions: 

i'. Each one of the negative instances is also a negative 
instance of some of the 2k-m k-termed disjunctions, 
of which the critical property is a conjunction. .. , 

11. No two of the negative instances are negative instances 
of the same k-termed disjunction. 

Consider next one of the initially possible conditioning pro-
perties other than the critical property. Its perfect disjunctive 
normal denotation in terms of the names of the k properties in 
c/>0, is either a less-than-m-termed, or an m-termed, or a more-
than-m-termed disjunction-name of k-termed conjunction-
names. Accordingly, its perfect conjunctive normal denotation 
is either a more-than-2k-m-termed, or a 2k-m-termed, or a 
less-than-2k-m-termed conjunction-name of k-termed disjunc-
tion-names. 

Suppose the normal disjunctive denotation to be less-than-
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m-termed or m-termed. Then at least one of the m-positive 
instances of H which satisfy the conditions i and ii above, is a 
negative instance of the initially possible conditioning property 
in question. For otherwise, all the m positive instances of H 
would also be positive instances of at least one of the less-than-
m, or m k-termed conjunctions, and this would contradict 
conditions i and ii. Hence any initially possible conditioning 
property, (other than the critical property), the perfect dis-
junctive normal denotation of which is a less-than-m-termed 
or m-termed disjunction of k-termed conjunctions, is eliminated. 

Suppose next the normal disjunctive denotation to be 
(m-termed or) more-than-m-termed. Then at least one of the 
2k-m negative instances of H which satisfy the conditions i 1 and 
ii 1 above, is a positive instance of the initially possible condition-
ing property in question. For otherwise, all the 2k-m negative 
instances of H would also be negative instances of at least one 
of the (m or) less-than-2k-m k-termed disjunctions of which the 
property in question is a conjunction, and this would contra-
dict conditions i 1 and ii1• Hence any initially possible condi-
tioning property, (other than the critical property), the perfect 
disjunctive normal denotation of which is an (m-termed or) 
more-than-m-termed disjunction of k-termed conjunctions is 
eliminated. 

Consequently, them positive, and the 2k-m negative instances 
of the conditioned property establish an Absolutely Perfect 
Analogy on then-level. The sum of m and 2k-m is 2k. It is not 
difficult to see that 2k must be the minimum number. 

It is interesting to observe that the minimum number de-
pends only on the number k of properties in cp0, and not on the 
degree n of complexity in the critical property. The minimum 
number is the same for all degrees of complexity. What varies 
is the number of positive and negative instances, respectively, 
of the conditioned property. Not even these numbers, however, 
depend upon the degree of complexity n, as here defined, but 
upon the number (m) of terms in the perfect disjunctive normal 
denotation, (in terms of the names of the k properties in cp0), of 
the critical property. (This number m could also be used to 
measure the degree of complexity of the initially possible con-
ditioning properties. Such a measure would, however, be 
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somewhat awkward, considering that the k properties in cp0, 

and their negation-properties, would then themselves be 2k-•_ 

complex.) 

9· Elimination and the Practice of Science 
The four sub-methods of the general Method of Elimination 

exhaust the ways in which the eliminative mechanism may 
operate. 

The four standard questions corresponding to the four sub-
methods described, do not, however, exhaust the multitude of 
problems raised in actual scientific investigation into nomic 
connexions. In order to understand the nature of the eliminative 
procedure in science in its full concreteness, we should always 
bear in mind that the types of problem here treated with the 
instruments of logic represent isolated and simplified aspects of 
situations which will, as a rule, be of a highly complicated 
structure. On the other hand, those aspects provide, so to speak, 
the logical 'atoms' out of which the more complicated situations 
can be reconstructed. 

We shall not work out here the reconstruction of actual cases 
from the practice of science. But let us briefly consider some 
patterns for a combined use of the various inductive methods. 
We shall distinguish the following types of complication: 

1. Problems of conditioning relations which are more 
general than the types of question treated under the 
head of the four methods. 

The most general question as to nomic connexion which 
deserves attention would seem to be this: What nomic con-
nexions prevail among the members of a set of properties cp0? 
The question is attacked by inquiring, with regard to any pair 
of presence-functions of members of cp0, what criteria for invali-
dating laws can be applied in given contexts of things. 

From an initial question of this general character there will 
frequently emerge, in the course of investigation, questions of 
a more determinate nature, such as: What factors (properties) 
are connected with a specified factor (conditioned property)? 
This question, being a disjunction of all (or some) of the stan-
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dard questions treated under the head of the four methods, is 
attacked by successively applying the eliminative principles of 
the respective methods to the case under consideration. 

The next stage would then be the emergence of the four 
questions themselves. This, however, is not the last stage into 
which such a situation may develop. We have also to consider: 

n. Problems of conditioning relations which are more 
specific than the types of question treated under the 
head of the four methods. 

Thus we might, e.g., select two factors (properties) Hand A 
and ask whether they are connected by law in a specific way. 
We examine, say, a number of positive instances of Hand find 
that, in spite of much variation in the accompanying circum-
stances, A is a common feature of them all. Suppose, however, 
that it is impracticable for us to produce a still greater variation 
in the instances, whereby to increase our confidence in the 
assumption that A really is a Necessary Condition of H. We 
may then resort to negative instances of A, and examine them 
as to the presence or absence of H. The 'typical' case, known from 
scientific experimentation, occurs when the change-over from 
positive instances of H to negative instances of A takes the form 
of a removal of A from the original positive instances of H. If, so 
far as our experience goes, this removal invariably makes the 
nature of the instances of H turn over from positive to negative, 
then, in so far as the accompanying circumstances remain un-
affected by the removal, we have reason to believe that His a 
Sufficient Condition of A. Since the law that H is a Sufficient 
Condition of A is logically identical with the law that A is a 
Necessary Condition of H, we have in this case supported the 
same law by resort to two different methods of elimination. 

iii. Problems which do not directly involve a question of 
conditioning relations, but rather of finding Con-
tributory Conditions, Indispensable Contributory 
Conditions, Counteracting Conditions or Substitut-
able Requirements, of a given property. 

1v. Problems of conditioning in which the conditioned 
property is viewed as a presence-function of some 
other properties. 
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It should be observed, that if the conditioned property is 
a disjunction, then positive instances of it can be provided in as 
many different ways as the disjunction has terms. Similarly, if 
the conditioned property is a conjunction, negative instances 
of it can be provided in as many ways as there are terms in the 
conjunction. 



Chapter Five 

INDUCTION AND DEDUCTION 

1. The Supplementary Premisses of Induction 

I NDUCTIVE reasoning, as it stands, is non-demonstrative. It 
is an old idea that what entitles us to speak of induction as 

'inference' is the fact that in inductive reasoning certain pre-
misses are suppressed which, in combination with the stated 
premisses, would make the argument conclusive or demonstra-
tive. Or as Mill says, following Archbishop Whateley, 'Every 
induction may be thrown into the form of a syllogism, by 
supplying a major premiss.' 

We shall call the stated or explicit premisses of an inductive 
inference (of the second order) the instantial premisses. 1 We 
shall call the suppressed or implicit premisses, needed for 
making the argument conclusive, the supplementary premisses. 
The latter are sometimes also called the 'presuppositions' of 
induction. 

In Chap. III, §r the nature of the instantial premisses was 
made clear.-It should be observed that in Induction by 
Elimination the instantial premisses of the argument are not, 
strictly speaking confirming instances of the conclusion but data 
of elimination (p. 87), i.e., disconfirming instances of 'con-
current' conclusions. However, the things which afford the 
disconfirming instances of these 'concurrent' conclusions also 
afford confirming instances of the conclusion itself. 

Whether the supplementary premisses really are at the back 
of the reasoner's mind, when he draws inductive conclusions, 
need not be discussed here. The idea that they are, or should 
be ( !) present seems to me an unrealistic construction inspired 

1 The term 'instantial premiss' I have taken from W. E. Johnson. 
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by the deep-rooted prejudice that sound reasoning must always 
be syllogistic or deductive. From the point of view of under-
standing the nature of human knowledge it is desirable that 
this deductivistic prejudice should be given up and that the 
existence of 'genuine' species of reasoning other than the 
demonstrative should be acknowledged. (Cf. above p. 2 I). 

But even if we do not subscribe to the view that induction, 
qua inference, is deduction from partially suppressed premisses, 
it is an important task of the Logic of Induction to make clear 
the nature of the supplementary premisses. 

In Chap. IV, §I we distinguished between two chief Methods 
of Induction: Induction by Enumeration and Induction by 
Elimination. 

In the case of Induction by Enumeration one supplementary 
premiss is needed. It states, broadly speaking, that if some 
things afford confirming instances of a certain inductive con-
clusion, then all things afford confirming instances of this con-
clusion. We might refer to this premiss as the Postulate of the 
Uniformity of Nature. It is a very sweeping principle. Further 
discussion of its more precise content will not concern us here. 

In the case of Induction by Elimination two supplementary 
premisses are needed. 

The first premiss is of an existential nature. It states the 
existence of actual conditioning properties of a certain con-
ditioned property. We shall call it the Deterministic Postulate. 

The second premiss is concerned with the selection of the 
initially possible conditioning properties (the set c/>0). It states 
two things: first, that the range of initially possible conditioning 
properties includes the actual conditioning properties, and 
secondly, that the state of analogy (p. gi) among any given 
number of things in respect of the initially possible conditioning 
properties, can be settled on the basis of an enumeration of the 
data of elimination. We shall call it the Selection Postulate. 

Attempts to prove the truth of the supplementary premisses 
independently of, or prior to, the inductive conclusions which 
they are to support, are well-known from the history of the 
subject. 

Here we are not directly interested in the problem of truth. 
Our primary interest is in what may be called the problem of 
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reconstruction, i.e. laying down the exact content of the 
supplementary premisses which, in combination with the 
instantial premisses, make inductive inference demonstrative. 
The second problem has traditionally been neglected at the 
expense of the first. 

The reconstructive task could also be described as one of 
determining the 'distance' separating induction from demon-
strative inference. There obviously has been, and is, a tendency 
to regard the distance as comparatively short, i.e., to regard the 
supplementary premisses as relatively modest principles. 
Further there has been, and is, a tendency to regard the 
distance as fairly uniform, i.e., to assume the exact content of 
the supplementary premisses as the same, if not for all, at least 
for large groups of inductive inferences. 

Now the reconstruction of the supplementary premisses 
clearly shows that these two presuppositions as to the distance 
separating induction from deduction are mistaken. The pre-
misses are far more sweeping than Is apparent from a super-
ficial glance. Further, and perhaps even more important, the 
premisses are not the same from case to case; their exact con-
tent essentially depends upon the individual nature of the case 
to which they are applied. 

It is evident that attempts to prove the truth of the supple-
mentary premisses of induction have been greatly encouraged 
by the two presumptions which our reconstruction shows to be 
mistaken. Once the reconstructive undertaking has been accom-
plished, it is difficult to see how these attempts could be con-
tinued with any reasonable hope of success. The reconstruction 
thus becomes indirectly relevant to the question of proving the 
premisses. The task before us will be a most instructive lesson 
in the limitations ofthe power of the human intellect to advance 
by argument 'beyond the evidence of our memory and senses.' 

2. The Deterministic Postulate 
This supplementary premiss chiefly occurs under the name 

of the Principle of Determinism or Law of Universal Causation. 
Its meaning, in the various authors who have employed it, is 
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usually obscure. This is so for two chief reasons. First they have 
not clearly distinguished between the different kinds of logical 
conditioning which are inherent in the popular notions of 
causality and law. Secondly, they have not dearly realized that 
causal determination is relative to a set of properties within a 
Universe of Properties. 

In Chap. III, §2 we suggested the following (partial) analysis 
ofthe Principle ofDeterminism in terms of conditional relation-
ship: 

Every member of a certain Universe of Properties is a Deter-
mined Property in the set of all members, of which it is logically 
totally independent. 

If the Deterministic Postulate is understood in the suggested 
way, it would follow (p. 72 f.) that for every property of a 
certain universe there is a set of initially possible conditioning 
properties which contains at least one Necessary Condition, at 
least one Sufficient Condition, and at least one Necessary-and-
Sufficient Condition of the property. The postulate would 
thus enable us to conclude from a state of Absolutely Perfect 
Analogy among things in respect of this range, to the truth of 
a particular Law of Nature. 

We shall not here discuss to which Universes of Properties 
the postulate could possibly be applied. 

It should be observed that the above form of the Determinis-
tic Postulate is the weakest which satisfies the following two 
conditions: 

i. Its content is independent of whatever sub-method of 
the general Method of Exclusion is being used. 

n. Its content is independent of the individual nature of 
the conditioned property. 

It seems that any form of the Deterministic Postulate which 
can claim for itself an 'intuitive plausibility' must satisfy at least 
these two conditions. 

It is easy to see that the above weakest form of the Determinis-
tic Postulate ceases to be effective as a supplementary premiss 
of induction as soon as we have to reckon with Plurality or with 
Complexity of Conditions. 

Let us first consider Plurality of Conditions. 
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If the given conditioned property has several conditions of a 
certain kind, then a state of Absolutely Perfect Analogy can 
never be attained. The utmost attainable by means of elimina-
tion is a reduction of the set of initially possible conditioning 
properties so that it contains only the actual conditioning pro-
perties of the given conditioned property. The attainable state 
of analogy is thus determined by the number n of actual con-
ditioning properties. 

In order to conclude from a state of analogy, other than an 
Absolutely Perfect Analogy, to the truth of particular Laws of 
Nature we m:ust rely on a stronger form of the Deterministic 
Postulate. It states: 

A given member of a certain Universe of Properties has 
(at least) n Sufficient (Necessary, Necessary-and-Sufficient) 
Conditions in the set of members of which it is logically totally 
independent. 

One and the same member of the universe may have a 
different (minimum) number of the different kinds of condition, 
i.e., of Sufficient, Necessary, and Necessary-and-Sufficient 
Conditions. If this is the case, the stronger form of the Deter-
ministic Postulate does not satisfy condition i above, i.e., its 
content varies according to which sub-method of the general 
Method of Elimination is used. 

Different members of the universe may have a different 
(minimum) number of conditions of the same kind. If this is the 
case, the stronger form of the Deterministic Postulate does not 
satisfy condition ii above, i.e., its content varies according to the 
choice of the conditioned property. 

Thus only in cases which must be regarded as 'exceptional' 
rather than 'normal' does the stronger form of the Deterministic 
Postulate satisfy the conditions i and ii which seemed to be 
minimum requirements, as it were, if the postulate is to claim 
'intuitive plausibility' in its favour. 

Let us next consider Complexity of Conditions. 
As will be remembered, a Perfect Analogy on the n-level as 

to the initially possible Necessary Conditions of a given con-
ditioned property entails, that no property of superior com-
plexity has been eliminated, which itself includes the sole non-
eliminated n-complex property. Thus a Perfect Analogy on the 
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n-level is an Absolutely Perfect Analogy only if n happens to be 
the maximum degree of complexity. 

It follows, that in the case of Necessary Conditions, the 
weakest form of the Deterministic Postulate can effectively be 
used as a supplementary premiss of induction only for maxim-
ally complex conditioning properties. 

In order to remove this limitation a stronger form of the 
Deterministic Postulate is needed. Its weakest form would run: 

A given member of a certain Universe of Properties has at 
least one Necessary Condition of not higher degree of com-
plexity than n in the set of members of which it is logically 
totally independent. 

This form of the postulate would enable us to conclude from 
a state of Perfect Analogy on then-level to the truth of a particu-
lar Law ofNature. 

What has been said here of Necessary Conditions applies, 
mutatis mutandis, also to Sufficient Conditions. 

Necessary-and-Sufficient Conditions are, however, in a some-
what different position. As will be remembered, a Perfect 
Analogy on the n-level, as to initially possible Necessary-and-
Sufficient Conditions of a given conditioned property, may, 
for any n, be an Absolutely Perfect Analogy. 

It follows, that in the case of Necessary-and-Sufficient 
Conditions, the weakest form of the Deterministic Postulate 
may effectively be used as a supplementary premiss of induction. 

One and the same member of the Universe of Properties 
may have a different minimum degree of complexity for its 
various kinds of condition, i.e., for its Necessary, Sufficient, and 
Necessary-and-Sufficient Conditions. If this is the case, the 
required form of the Deterministic Postulate does not satisfy 
condition i above. 

Different members of the Universe of Properties may have a 
different minimum degree of complexity for conditions of the 
same kind. Some members may have simple or moderately 
complex conditions, others only highly complex ones. If this is 
the case, the required form of the Deterministic Postulate does 
not satisfy condition ii above. 

As regards 'intuitive plausibility' the stronger form of the 
Deterministic Postulate is thus in a similar position when we 
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consider complexity of conditions as when we consider their 
plurality. 

It should be added, that in normal scientific practice we have 
to reckon with plurality rather than singularity, and with com-
plexity rather than simplicity of conditions. This means that 
the weakest form of the Deterministic Postulate, or that form 
which may be viewed as a reasonable approximation to what is 
commonly known as the Law of Universal Causation, is 
practically useless as a supplementary premiss or 'presupposi-
tion' of induction. 

All forms of the Deterministic Postulate are relative to sets 
of properties within a Universe of Properties. Unless the number 
of members of these sets is known, all forms of the Deterministic 
Postulate are undecidable, i.e., neither verifiable nor falsifiable, 
on the basis of particular nomic connexions. 

3· The Selection Postulate 
As said in §1, the Selection Postulate is a combination of two 

conditions, vi;:.. 

1. that the set of initially possible conditioning properties 
includes the set of actual conditioning properties, and, 

ii. that the state of analogy among any given number of 
things in respect of the initially possible conditioning 
properties can be settled on the basis of an enumera-
tion of the data of elimination. 

It is not difficult to select the range of initially possible con-
ditioning properties so that it fulfils each of the two conditions 
separately. The difficulty is to find a range which satisfies them 
jointly. 

The first condition is fulfilled if the initially possible condition-
ing properties are those properties in the universe which are 
logically totally independent of the given conditioned property. 

The second condition is fulfilled if the number of initially 
possible conditioning properties is known. 

It follows that both conditions can be simultaneously fulfilled 
if either, 
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a. for any given conditioned property, the number of 

properties in the universe, of which it is logically 
totally independent, is known, or, 

{J. for any given conditioned property, a set with a known 
number of members can be known to include the set 
of actual conditioning properties. 

Under alternative a) we shall talk of an inclusive, and under 
alternative {J) of an exclusive, form of the Selection Postulate. 

For the inclusive form of the postulate Keynes introduced 
the name 'Postulate of Limited Variety.' 

What can be said in defence of an inclusive form of the postu· 
late? 

An important realm of inductive inquiry is the realm of 
sense-qualities and properties which are presence-functions of 
sense-qualities. It is sometimes thought that the existence of so-
called perception-thresholds makes the number of sense-
qualities finite. The eye, it is said, cannot distinguish more than 
a finite number of shades of colour, and the ear a finite number 
of pitches of sound. These facts, however, have no bearing on 
the Postulate of Limited Variety as a supplementary premiss of 
induction, if, as is at least highly plausible, we regard different 
shades of colour or pitches of sound as mutually exclusive, and 
thus not logically independent. For then any point of visual 
space-time will possess, for formal reasons, one and only one 
shade of colour, and any point of auditory space-time one and 
only one pitch of sound, quite irrespective of whether the 
number of shades or pitches, as such, is finite or not. This 
means that the variety with which the postulate is concerned 
is, so to speak, in a different 'dimension' from the variety to 
which the argument from thresholds sets a limit. What matters 
from the point of view of the postulate is, in the terminology 
of W. E. Johnson, not whether the number of different sense-
quality determinates-such as particular shades of colour, 
pitches of sound, kinds of feeling, volition, etc.-is finite or not, 
but whether the different determinables in the realm of sense-
perception-such as the three so-called dimensions of colour 
and of sound, the so-called dimensions of feeling, of volition, 
etc.-are limited or unlimited in number. I do not know of any 
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argument, analogous to that from the existence of thresholds, 
which would be in favour of the finitude of these determinables. 

We need not here continue the discussion of the finite or 
infinite character of the various realms of properties in which 
inductive inquiry is pursued. The reason for this is the following: 

The finitude of the ranges, i.e., the existence of a cardinal 
number for them, though necessary, is not sufficient for the 
effective use of an inclusive form of the Selection Postulate as a 
supplementary premiss of induction. If the state of analogy is to 
be settled on the basis of an enumeration of data of elimination, 
we must assume the cardinal number of the ranges not only to 
exist but also to be known. It is, however, difficult to imagine 
any serious argument which could be alleged in support of this 
stronger assumption of finitude for any Universe of Properties 
where induction is pursued. 

For the exclusive form of the postulate we may use the name 
'Postulate of Irrelevance.' 

It is an incontestable and important fact that in most cases of 
inductive inquiry we look for the conditions of a given property 
among a comparatively small number of properties, though we 
are perfectly conscious of the presence of a great number of 
properties which we neglect. The properties, in other words, 
fall initially into two groups, vi;;;., possibly relevant factors and 
irrelevant ones. The latter are excluded without further ado 
from the initial set of possible conditioning properties. 

One of the reasons for regarding certain properties as initially 
irrelevant to a scientific observation or experiment is simply 
the testimony of previous experience. The terms 'previous 
experience' should here be taken in a wide sense, comprising 
a large bulk of pre-scientific, more-or-less impersonal and 
unsystematic records of eliminative data registered during the 
history of the human race. To take only one example: There 
hardly exists any systematic refutation of astrological beliefs. 
But the scientific attitude is-in most cases at least--entitled to 
neglect them for the purpose of ascertaining causal connexions 
in the lives of human individuals, and to regard the neglect 
as founded, not on unwarranted prejudice, but on solid and 
long experience of the way in which factors of the world are 
connected as conditions of one another. 

137 



A TREATISE ON INDUCTION AND PROBABILITY 
Besides experiential or material reasons for irrelevance, there 

seem also to exist conceptual or formal reasons. One instance 
of the latter is connected with the distinguishing of Logical 
Types or Universes of Properties and Things. This means that 
the irrelevance of certain factors to certain other factors is 
explained by showing that the factors actually belong to dif-
ferent universes, and therefore cannot be nomically connected. 

We shall here mention one case only, in which an appeal to 
the distinction of Logical Types can be made: 

Maxwell appears to have been the first to state clearly the 
important principle that the validity of Laws of Nature is 
never restricted by space and time as such. Or to put it more 
precisely: that spatia-temporal co-ordinates of things are never 
Sufficient or Necessary or Necessary-and-Sufficient Conditions 
for the occurrence of a certain property in the things. We 
shall call this principle the Postulate of Spatio-Temporal 
Irrelevance. 

Is this postulate valid, and what are the reasons or evidence 
for its validity? Some authors take the view that the postulate 
is itself a generalization from experience and that it 'has no 
justification in pure logic' .1 This attitude, however, is hardly 
sound. It seems much more plausible to think that the Postulate 
of Spatio-Temporal Irrelevance is concerned with matters of 
logic than with matters of fact. The question of logic involved 
may, moreover, be one of distinguishing types. It could be 
suggested that positions in space and time are not 'properties' 
which we attribute to physical things-though we frequendy 
use a loose mode of expression which makes us believe that 
they are-but that the physical things themselves are space-
time-volumes. To say of a certain thing that it is phosphorus, 
or that it is red, is to say that certain properties are characteristic 
of a certain place in space and time. It could also be suggested 
that positions in space and time are not properties, but proper-
ties (relations) of properties of physical things. In either case, 
space and time on the one side, and properties of physical 
things on the other, belong to different universes and this 
would explain why they cannot be connected by law as mutually 
conditioning one another. 

1 Jeffreys, Theory of Probability (1939), p. 11. 
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We need not here continue the discussion concerning the 

reasons for regarding properties as initially irrelevant. It will 
suffice to make the following observations: 

The existence of reasons for regarding properties as initially 
irrelevant is, though necessary, not sufficient for the effective 
use of an exclusive form of the Selection Postulate as a supple-
mentary premiss of induction. If the state of analogy is to be 
determined on the basis of an enumeration of data of elimina-
tion, we must know, not only which properties are initially 
irrelevant, but also that those properties arc all but k of the 
members of the universe, of which the given conditioned pro-
perty is logically totally independent. It is, however, difficult 
to imagine any serious argument which could be alleged in 
support of this stronger assertion of irrelevance for any Universe 
of Properties where induction is pursued. 

* * * * * 
Taken together, the two supplementary premisses which 

bridge the gap between induction and deduction, i.e., which 
in combination with the data of elimination make inductive 
inference conclusive or demonstrative, run as follows: 

The conditioned property H has, among k initially possible condition-
ing properties, (at least) m (not-more-than-)n-complex conditions of a 
certain kind. Here the values of the three coefficients k and m 
and n would have to be determined for each case separately, 
and would depend partly upon which sub-method of the 
general Method of Elimination is used, and partly upon the 
choice of the conditioned property H. 

It should be observed that this joint form of the supple-
mentary premisses of induction is a falsifiable proposition in the 
sense that its refutation would follow from the elimination, 
among the k initially possible conditioning properties, of more 
than k-m properties (of any degree of complexity). This should 
suffice to show that the attempt to prove the presuppositions or 
supplementary premisses of induction independently of, or 
prior to, the several inductive conclusions which they are to 
support, is an idle undertaking. 
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Chapter Six 

INDUCTION AND DEFINITION 

I. Actual and Ideal Induction 

T HE use of induction will be called 'ideal,' if it is possible to 
come to know whether any given thing does or does not 

afford a confirmation of a given law. 
The actual use of induction is certainly not always ideal. It 

may indeed be questioned whether the ideal use of induction 
is not a limit to be approached, but never reached, in practice. 
It is important to recognize this for a complete account of 
inductive method, though it may be useful to ignore possible 
imperfections for the purpose of a first description of the in-
ferential mechanism of induction. 

Thus induction is not ideal, if there are difficulties over the 
verification and falsification of propositions to the effect that 
a certain thing affords a confirming instance of a certain law. 
Of such difficulties there are, moreover, various types. Here we 
mention some only: 

First, there are the difficulties constituting the general 
problem as to whether an 'ultimate' verification or falsification 
of material propositions is ever possible. (Cf. above p. 37.) 

Secondly, there are difficulties arising from the fact that the 
instances of a law may themselves be Universal or Existential 
Propositions. 

Thirdly, there are difficulties connected with the definition 
of the properties connected by law in an inductive conclusion. 
It is clear that difficulties over definition may cause difficulties 
in deciding whether a thing does or does not afford a confirma-
tion of a law. 

In this book we shall discuss only those imperfections in the 
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use of induction which arise from difficulties over definition. 
Of such difficulties there seem to be two principal types: 

Sometimes there is uncertainty as to whether the nomically 
related properties are or are not logically independent. Some-
times again there is uncertainty as to the way in which the 
nomically related properties are presence-functions of members 
of some set of properties c/>0 • 

The first imperfection is removed as the formation of well-
defined scientific notions advances. The removal of the second 
imperfection is attained through a rectification of defective 
formulations of the laws themselves. 

2. Induction and the Formation of Concepts 
Let us consider an example which has been frequently dis-

cussed in the literature of induction and scientific method: 1 

We know from chemistry that the melting-point of phos-
phorus is approximately 44° C. We arrive at this result in what 
may be termed an inductive way, i.e., we melt different pieces 
of a substance known to us under the name of phosphorus, and 
find that they all melt at the same temperature of 44 o C. if the 
experiment has been carefully performed. From these observa-
tions we conclude that all pieces ofphosphorus melt at 44° C., 
or, as we may also express it, that melting at 44° C. is a Neces-
sary Condition of a thing being phosphorus. This is a Universal 
Implication H C A, if H denotes the property 'phosphorus,' 
and A the property 'melting at 44 ° C.' 

We shall for the moment abstract from the obvious fact that 
the presence of H cannot in itself be sufficient for the presence 
of A, but that the Law of Nature in question, when formulated 
in full, is of the structure: Supposing such and such conditions 
(of pressure, etc.) to be fulfilled, then phosphorus melts at 
44 o C. The relevance of this point will be estimated later ( §3). 

Suppose then that we find a thing which is similar to the 
previous ones, but which does not melt at 44 ° C. Does this fact 
mean that our conclusion as to the melting-point of phosphorus 
is falsified? 

l Cf. The Logical Problem of Inductwn, pp. 48-52. 
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Obviously, what has happened could be regarded as a 
falsification of the law H C A. But there is also another way left 
open and in the practice of science under similar circumstances 
it is very often resorted to. We simply raise the question whether 
the melted thing was phosphorus or not. This leads us to con-
sider the definition of phosphorus. The consideration may take 
roughly the following course: 

In order to arrive at the generalization H C A it was necessary 
to have criteria enabling us to decide when it was a piece of 
phosphorus we were dealing with, and when it was not. It is 
quite conceivable that we are not able to enumerate exactly the 
criteria we used in our experiments, and a scientist in the first 
place would hardly bother about such an enumeration. But 
certainly we have relied upon some criteria, since we have 
chosen a definite kind of substance for the experiments. Let us 
assume these criteria to have been H 1, H 2, and H 3, e.g., macro-
scopic criteria such as a certain colour, smell, and taste. 

In enunciating the law about the melting-point we were in 
the first place enunciating a discovery, viz., that pieces of a 
substance with the properties in question have been found to 
exhibit a further property, the property of melting at a constant 
temperature. In so far as the generalization H C A is to mean 
that, whenever in the future we find a substance with the 
characteristics HI> H 2, and H3, it will exhibit the further dis-
covered property also, then this generalization has actually 
been refuted by experience. 

Although the word 'phosphorus' was used at the outset for 
things exhibiting the macroscopic properties mentioned, it is 
by no means certain that we wished, even at the beginning, to 
difine phosphorus in terms of H 1, H 2 and H 3• We need not have 
expressed any opinion at all as to what phosphorus 'really' is. 
We simply asserted that the substance was phosphorus, as 
though phosphorus were something fixed and given, about 
whose definition there was no reason to bother. A certain co-
existence of a number of easily observable properties had made 
us familiar with something called phosphorus, and which of 
these properties were defining and fundamental ones and which 
again connected with phosphorus by law, was a question which 
had never before occurred to us. The first time that we were 
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confronted with it was in the above situation, where the pro-
properties Hb H 2 and H 8, which we had been accustomed to 
regard as reliable signs for the presence of phosphorus, were 
present, but a further property which had hitherto always 
accompanied them was absent. 

Now the question occurs: what then is phosphorus? Is the 
thing under examination phosphorus or not? In such a situation 
it is quite conceivable that we explicitly renounce every pre-
tension of regarding the properties H 1, H 2 and H 8 as the de-
cisive criteria for what may be called phosphorus, and accept 
the experimentally discovered accompanying property as more 
fit for that purpose. 

This, however, does not necessarily mean that we explicitly 
announce the melting-point itself as a defining property 
(among others) of phosphorus. We mqy do so, but there is also 
another possibility to be considered. 

In making our decision as to whether a positive instance of 
H 1&H2&H3 not melting at 44° C. is, or is not, a falsification of 
the law of the melting-point, we have regard to a multitude of 
circumstances. It is reasonable to assume that among those 
circumstances are to be found assumptions which are them-
selves inductive conclusions. For example, we may assume that 
if a positive instance of H 1&H2&H3 does not melt at 44° C., 
then it differs from phosphorus also in other properties, e.g., its 
microphysical structure, and that this difference is the 'cause' 
of some positive instances of H 1&H2&H3 melting at the tem-
perature in question and others not doing so. 

Thus we can let the law H C A escape invalidation, not 
because the melting-point is itself one of the defining criteria of 
phosphorus, but because it indicates the presence of another 
property that explains why phosphorus melts at exactly this 
temperature. Here it is important to observe that even if we do 
not know of any such property, or even if every property within 
our present experience can be shown not to be responsible for 
the characteristic melting-point of phosphorus, it may never-
theless be reasonable, in view of what we know, e.g., of other 
substances and their melting-points, to postulate its existence. 

The above is important for the following reason. If we, as a 
matter of actual fact, saved the law of the melting-point of 
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phosphorus from falsification, by announcing that a thing 
which does not melt at the temperature in question is not 
phosphorus, then we would almost certainly not want to say 
anything decisive about the definition of phosphorus. We 
would rather say something like this: Perhaps the melting-
point can be used for the purpose of defining phosphorus, but 
perhaps also there will be found some 'deeper' quality of the 
substance, which will explain why phosphorus melts at just 44° C. 
But irrespective of which alternative will finally be chosen, we 
wish at present to adhere to the norm that phosphorus melts 
at 44 ° C. Whether it is because the temperature defines phos-
phorus, or whether it is because it only indicates some infallible 
criterion of that substance, is a question not as yet considered, 
and one that need not be settled in this connexion. 

In discussing the example we were concerned only with the 
criteria of phosphorus, and assumed all other properties which 
might enter the course of the experimental inquiry, to be 
actually well-defined. It is clear that this assumption is, on the 
whole, fictitious. The law of the melting-point was made to 
escape falsification by doubting the 'real' presence of phos-
phorus, but we might just as well have achieved the same end 
by doubting the 'real' absence of the assumed melting-tempera-
ture. It is hardly possible to tell in advance which way of 
escape is more likely to be used in practice; that the second way 
may also be a reasonable one is clear upon slight reflection as to 
the complications which may enter the measurement of tem-
perature, such as variations in atmospheric pressure, incom-
plete isolation of the measured body from its surroundings, 
defective thermometers, etc. 

The example discussed illustrates certain general principles. 
These may be summed up as follows: 

1. Ideal induction presupposes that we know whether the 
properties related in the conclusion are logically 
independent or not.-E.g., induction is not ideal if 
hesitation as regards the definition of phosphorus can 
arise from failure to observe a property which is 
originally thought to be connected with phosphorus 
by law. 
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n. Not even in scientific practice is this demand always 
satisfied.-E.g., hesitation as regards the definition 
of phosphorus will normally not arise until scientific 
experimentation with phosphorus has already begun. 

m. Actual induction contributes to the satisfaction of the 
ideal demand and thus to the gradual formation of 
well-defined concepts.-E.g., only after a tentative 
exclusion of unessentials do we get to know which 
features of phosphorus it is convenient to use for 
definition, and which for the establishment of natura] 
laws. 

IV. It is plausible, in normal cases, to think of the formation 
of well-defined concepts as a process which never 
comes to an encl.-E.g., we must be prepared to 
accept that discoveries concerning the microphysical 
structure of chemical substances will influence their 
definitions. This influence is illustrated by the dis-
covery of isotopes. 

Thus it is fictitious to take definition and induction as sharply 
separated activities. Separation certainly answers to an ideal 
demand, but if carried out in practice, it would lead to a dog-
matism which is irreconcilable with the truly scientific spirit. 

The fact that induction presupposes definition and definition 
induction does not, properly interpreted, lead to a vicious 
circle. There is circularity only if we think of definition and 
induction in their pure form of associating and dissociating 
characteristics, either by verbal convention, or on the basis of 
factual observation. In practice, however, we seldom or never 
have ideal definition and ideal induction, but rather definition 
which is tentative or anticipative with regard to what will be 
observed, and induction which is prepared to interpret the 
results of observation in the light of what will be verbally con-
venient. If we wish to use an image, the successive movement 
of definition and induction is not, therefore, to be described as 
a circle, but as a spiral, each branch of which is an inductive 
conclusion when viewed from below, and a definition when 
viewed from above. The progressive way of science also re-
sembles a spiral, in that the steps through ascending levels of 
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induction and formation of concepts are continuous and imper-
ceptible rather than abrupt and startling. 

Even if it is plausible to think that the formation of concepts 
never comes to an end, it does not follow that definition is a 
haphazard process in the course of which no general directions 
are discernible. It would be an important task for methodo-
logical study to investigate in detail such 'directional move-
ments' of scientific procedure, and to estimate their relevance 
to the general development of human thought. One important 
movement has already been sketchily indicated in our above 
example from chemistry. When different chemical substances 
were originally discovered and named, the criteria used for 
classifying them were, in the first place, macroscopic properties 
of a qualitative nature such as colour, smell, weight, softness, 
etc. These properties were later found to be connected by law 
with other macroscopic characteristics of a quantitative nature, 
such as fixed melting-point at constant pressure, specific 
gravity, etc. It was thought convenient, for several reasons, to 
regard the presence of those quantitative criteria as more 
reliable and therefore more 'real' than the qualitative, and so 
a shift in the formation of scientific notions of chemical sub-
stances took place, from the qualitative to the quantitative in the 
macroscopic sphere. At an even later stage, however, it became 
possible to account for the presence of the macroscopic features 
by reference to underlying hypothetical microphysical features. 
Since this introduced further simplification and unity in the 
scientific conception of the world, it became convenient to 
locate 'reality' in the microphysical and to refer, say, to the 
positions of elementary substances in the periodic system as 
their most 'essential' characteristics. This passing from the 
qualitative to the quantitative and from the macrophysical to 
the microphysical, and the general tendency to withdraw 
scientific reality from immediate touch with the sensible world, 
has been of great importance. Not only has it immensely stimu-
lated the advance of science and technique, but it has also 
exerted a strong and perhaps not equally happy fascination 
over philosophic thinking from the time of the Greeks up to the 
present day. 
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3· Induction and the Rectification of Laws 
We shall here discuss another example, which is also well-

known in the literature: 1 

We know, from physics as well as from everyday life, a 
number of laws associating impact and movement. These are, 
sometimes at least, inductive conclusions. We have, e.g., 
observed that the impact of one billiard-ball upon another is 
followed, so far as our experience goes, by the movement of 
the second ball. From this we conclude that whenever one 
billiard-ball strikes another, the latter will be moved, or, as 
we may also express it, that impact (of one billiard-ball upon 
another) is a Sufficient Condition of (the second ball's) move-
ment. This is a Universal Implication H C A, if H denotes 
'impact' and A 'movement.' 

What of the possibility of the law coming to be refuted by 
experience? 

In order to answer the question, let us consider how we 
should react, if it actually happened one day that a billiard-ball 
was struck by another but was left unmoved. 

It can hardly be imagined that in such a case we should 
instantly say that the previously enunciated law had been 
falsified. Instead of this we would investigate more closely the 
circumstances under which the impact had taken place, in 
order to find an 'explanation' of what had happened, i.e., to 
show, generally speaking, that what happened was in accor-
dance with some other law, operating against the one which 
we were considering in the first place. Suppose, for example, 
that we found that the second ball was fixed to the table and 
could not move at all. This would justify us in saying that the 
law was not false, but that the cause could not operate because 
of the presence of a counteracting cause, the ball being fixed 
to the table. 

All this may seem extremely trivial. Nevertheless we can 
learn a great deal from it. It shows that in order to 'save' a 
Law of Nature from refutation, it is not necessary to declare 
that the terms of the law are logically dependent on one another. 
We need not doubt, in the example under discussion, that the 

1 Cf. The Logical Problem if Induction, pp. 52-5 
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first ball 'really' struck the second and that the second 'really' 
did not move. (We may, of course, doubt it and thus adopt the 
course discussed in the previous section.) For the law, as 
originally enunciated, was still incomplete in its formulation. 
Instead of saying that whenever one ball strikes another the 
second one will move, we intended to say that whenever one 
ball strikes another the second ball will move, provided certain 
circumstances are present, certain conditions fulfilled. Thus if there is 
impact without movement, we need not deny the truth of the 
law, but only the presence of valid conditions for its application. 
And this, surely, is what we very often do in similar cases. 

The terms of the law, in other words, are more complex than 
was apparent from the first loose formulation of it. The com-
plexity here enters in the form of a conditional clause for the 
law's validity or applicability. 

We can conceive of the conditional clause as a conjunction 
of a number of pr-operties. (Some of the properties may them-
selves be disjunctive.) Since the logical product of the properties 
of the clause and the impact is supposed to be a Sufficient 
Condition of movement, any one of the properties themselves 
is a Contributory Condition (p. 73) of movement. If there is 
impact but no movement in a certain case, then some of the 
Contributory Conditions of the clause must be absent. Con-
sequently its negation must be present. This negation is a 
Counteracting Condition (p. 73) for the absence of movement 
in the presence of impact. 

The clause thus prescribes the presence of a number of 
Contributory Conditions of movement or, which is the same, 
the absence of certain Counteracting Conditions. Which 
mode of expression, the 'positive' or the 'negative,' is actually 
used in laying down the clause is largely a matter of verbal 
convenience. We may, e.g., say that impact is sufficient to pro-
duce movement, provided some Contributory Conditions are 
present, such as that the impact has a certain minimum force, 
and that the surface over which the balls move has a certain 
minimum smoothness, and provided some Counteracting 
Conditions are absent, such as that the ball to be moved is not 
fixed to the table, that it is not acted upon by forces of a certain 
kind, exceeding a maximum amount, and so on. 
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For practical purposes, however, reference to the clause is 
usually omitted in enunciating the law, or it is at most referred 
to in the form of a Ceteris-Paribus-Clause stating that impact 
will in future also be followed by movement, provided the new 
instances resemble the old ones in all relevant circumstances. 
Detailed formulation of the clause is thought unnecessary, 
either because the details are concerned with exceptional 
circumstances, wh~ch very seldom need be taken into account, 
or because the details are so trivial and self-evident that their 
fulfilment in 'normal' cases is taken for granted without special 
mention. Besides this, we have at the back of our minds the 
idea that although the law is 'in practice' left incomplete in its 
formulation, it is always 'theoretically' possible to formulate it 
in full, if need be. 

This idea needs to be more closely examined. Let us ask the 
following question: How would it be possible to know that all 
circumstances necessary for the full formulation of the law have 
been taken into account? Two principal answers are possible. 

The first answer consists in the enumeration of a finite 
number of circumstances, of which is asserted that they jointly 
cover the whole range of the Ceteris-Paribus-Clause. If, in spite 
of the presence of these circumstances of the clause, impact is 
not followed by movement, we have to admit that the induc-
tively established law which we are discussing, is falsified. 

It is not, however, certain that this answer would recommend 
itself as the one which is most in accordance with the actual 
practice of science. The enumeration of the circumstances con-
stituting the clause might well have an air of arbitrariness which 
the scientist wishes to avoid. 

The second answer runs as follows: Whether the enumeration 
of a finite number of circumstances covers the whole range of 
the clause will depend upon future experience concerning the 
production of movement by impact. If, in spite of the presence 
of the enumerated circumstances, impact is not followed by 
movement, we simply declare the enumeration of circumstances 
incomplete. In other words, as soon as the ball is struck but 
left unmoved, we say that there must still be some circumstance 
relevant to the applicability of the law, which has not yet been 
taken into account, and which is absent in this case. Thus the 
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truth of the inductively established law is made the standard 
determining the content of the clause, and not conversely. The 
truth of the inductive conclusion serves as the norm which 
guides us in the search for new qualifications to be added, for 
the purpose of getting a complete and exhaustive formulation 
of the law aimed at in making the generalization from ex-
penence. 

It would, to be sure, be an oversimplification to say that the 
second answer is in better accord with the actual practice of 
science than the first. The truth seems to be somewhere in the 
middle. Usually we are prepared at first to let ourselves be 
guided by the assumed truth of the law, for the purpose of 
adding new circumstances to the content of the Ceteris-Paribus-
Clause. We stick to this attitude, so long at least as it does not 
cause us much difficulty in detecting the circumstances in 
which cases where the law holds differ from those in which 
it apparently fails to do so. Even if the detection of circumstances 
encounters insurmountable difficulties, it is in our power to 
postulate their presence and thus allow the law to escape invali-
dation. But the more such postulates are needed, and the more 
remote their confirmation appears, the more do we become 
inclined to regard the enumeration of properties in the clause 
as definitive and exhaustive of its real content, and to let the 
law be invalidated if it fails to hold in the presence of those 
properties. 

The general relevance of the example discussed may be 
summed up as follows: 

1. Ideal induction presupposes that the complexity of 
conditions is well-defined in terms of the properties of 
a certain set.-E.g., induction is not ideal if hesitation 
as regards the formulation of a law connecting impact 
with movement can arise from failure to observe 
movement in spite of impact. 

u. Not even in scientific practice is this demand always 
satisfied.-E.g., hesitation as regards the full formu-
lation of a law connecting impact with movement will 
normally not arise until experimentation with moving 
bodies has already begun. 
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m. Actual induction contributes to the satisfaction of the 

ideal demand and thus to the gradual rectification of 
defectively formulated laws.-E.g., only after some 
failures to observe movement following upon impact 
do we get to know the circumstances which are 
relevant to the applicability of a law connecting 
impact with movement. 

xv. It is plausible, in many cases, to think of the gradual 
rectification of defectively formulated laws as a 
process which never comes to an end. In these cases 
there is no falsification of laws, but only correction of 
them so as to answer to demands for increasing 
exactitude. 

4· Remarks on the Historical Development of the Logic 
of Inductive Truth 

In this section we shall briefly summarize the relevance of 
some of the best-known treatments of induction to the problems 
which have been discussed in the last three chapters. 

The first attempt at a systematic treatment of induction was 
made by Aristotle. His use of the term is ambiguous; hraywy1i 
means, for Aristotle, partly a process of inference which, from 
the enumeration of instances of a theory or law (in our sense of 
the words), concludes to the theory or law itself, and partly a 
process of definition which, from the observation of single 
instances, 'abstracts' a general notion exemplified in them. The 
inferential process is further understood, sometimes as a demon-
strative argument following from a complete enumeration of 
instances, and sometimes as a non-demonstrative argument fol-
lowing from an incomplete enumeration. Aristotle's treatment 
of induction is intimately connected with the rest of his logic 
and his epistemology. This makes it difficult to relate it to modern 
discussion. It seems fair, however, to summarize Aristotle's 
contributions to the subject as follows: 

1. Aristotle was the first to point out the non-demonstra-
tive character of the type of inference which we treat 
under the name of induction, and to contrast it with 
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conclusive reasoning. The contrast, however, was 
obscured by his own terminology which has become 
established in traditional logic. 

u. Aristotle was aware of the double aspect of inductive 
method as a process of inference and as a process of 
definition (formation of concepts). 

A radical advance beyond the standpoint of Aristotle in the 
study of induction and scientific method was made by Francis 
Bacon. (There are interesting anticipations of Bacon's views on 
induction among the schoolmen.) He spoke of the enumerative 
induction of traditional logic as a res puerilis. The only useful 
way of making inductions is that which proceeds per rejectiones 
et exclusiones debitas, i.e., through the elimination of concurrent 
possibilities. An inductive conclusion from enumerated positive 
instances of a law 'is no conclusion, but a conjecture' and there-
fore 'utterly vicious and incompetent.' Only Induction by 
Elimination, as he says, necessario concludat. 

In other words: Laws of Nature are not verifiable, meaning 
that their truth never follows from the verification of a finite 
number of their instances, but they are falsifiable in the sense 
that their falsehood necessarily follows from the falsification of 
a single instance. It is the immortal merit of Bacon to have 
fully appreciated the importance of this asymmetry in the 
logical structure of laws. He stressed one of the distinguishing 
features of scientific method, and thereby became responsible 
for one of the greatest advances ever made in the history of 
methodology (logic of method). 

Macaulay, in his famous essay on Lord Bacon, was anxious 
to refute the claim that Bacon had invented the inductive 
method. Certainly, not only the enumerative but also the more 
advanced eliminative mode of induction had been used long 
before Bacon. The rules of Induction by Elimination are con-
stantly employed in ordinary life, whenever there is an attempt 
at methodical 'causal' reasoning from experience. Most of them 
are, in practice, familiar even to primitive man. 

What Bacon accomplished was a description of some of the 
main features of Eliminative Induction. He was an innovator, 
not in the realm of method, but in the realm of the logic of 
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method. Macaulay, therefore, was not justified in his attempt 
to refute Bacon's claims to novelty in logic. It is not a fair 
statement of historical facts to say, as Macaulay does with 
reference to Aristotle: 'Not only is it not true that Bacon in-
vented the inductive method; but it is not true that he was the 
first person who correctly analysed that method and explained 
its uses.' Neither Aristotle nor Bacon completed the task of 
correctly describing the inferential mechanism of induction, but 
Bacon's independent contributions to the subject suffice to 
justify his claim that he was in hac re plane protopirus, et vestigia 
nullius sequutus. 

I think we can assent to Macaulay's statement that the nature 
of Bacon's achievements in the study of induction 'is often 
mistaken, and was not fully understood even by himself.' 
Bacon's mind-in particular, it would seem, at the time when 
he first designed his Instauratio Magna-was strongly dominated 
by the idea that his philosophy of induction was to help man 
to discover new truths in science (p. zg), and further, to 
promote the application of scientific discoveries for technical 
purposes. Indeed, if there is anything more important in 
Bacon's work than his contributions to methodology, it is the 
stress he laid upon the close relation of science to technique and 
thereby to life and society. Bacon's work, however, as a creator 
of new values, and his work as an innovator in logic should be 
kept apart, and the fact that he was himself mistaken as to their 
mutual relationship should not lead us to false conclusions in 
estimating their separate importance. 

The task of induction, according to Bacon in the Novum 
Organum, is that of finding the forms of given natures. These 
terms he had inherited from medieval philosophy, though he 
proposed to make a new use of them. We cannot here follow in 
detail the development of Bacon's views as to the purpose of 
inductive method, and the various interpretations which he put 
upon the relation of nature to form. The relation especially in 
his earlier writings, has a causal aspect, the form being sufficient 
for the production of the nature. On the other hand, nature 
and form do not differ as to their occurrence in time, but are 
simultaneous. The type of laws which Bacon was seeking are 
thus what Mill called Uniformities of Co-Existence. Later on 
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in his writings, the relation of nature to form approaches more 
and more to that of secondary to primary qualities. Nature and 
form differ as apparens et existens, aut exterius et interius, aut in 
ordine ad hominem et in ordine ad universum. Ultimately Bacon's 
doctrine of natures and forms has little in common with scholas-
tic philosophy, but much resembles leading ideas in the thought 
of Galileo and Descartes. 

From the point of view of logic it is important to note that 
the form is a Necessary-and-Sufficient Condition of the nature. 
For Bacon says: Etenim Forma naturae alicujus talis est ut, ea posita, 
natura data injallibiliter sequatur. Jtaque adest perpetuo quando natura 
illa adest . ... Eadem Forma talis est ut, ea amota, natura data injalli-
biliter fugiat. Itaque abest perpetuo quando natura illa abest. The 
presence of the form universally implies the presence of the 
nature, and the absence of the form the absence of the nature. 
Consequently, form and nature are universally equivalent. The 
type of law which Bacon seeks is thus that of Universal 
Equivalence. 

Bacon's description of the mechanism of elimination is, in 
substance, identical with his description of the three 'tables.' 
The description of the tabula essentiae et praesentiae corresponds 
to our description of the Simple Case of the Direct Method of 
Agreement, and the description of the tabula declinationis sive 
absentiae in proximo to our description of the Simple Case of the 
Inverse Method of Agreement. The tabula graduum sive tabula 
comparativae is, broadly speaking, an application of the principles 
of the first two tables for the purpose of detecting nomic con-
nexions in the variations of measureable quantities (p. 83). 

Taken together, Bacon's tables answer to the Simple Case 
of the Double Method of Agreement which, as we know, is a 
method for investigating Necessary-and-Sufficient Conditions 
and for establishing Universal Equivalences. 

There are also incidental contributions to the logic of elimi-
nation in Bacon's description of the 'prerogative instances.' The 
first of these instances, the instantiae solitariae, answer approxi-
mately to a state of Perfect Analogy attained in a minimum 
number of steps by use of the Direct Method of Agreement in 
the Simple Case, and the second, the instantiae migrantes, to the 
same state in connexion with the Double Method of Agreement 
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in the Simple Case. The latter can also be interpreted as 
equivalent to the Method of Difference in Mill's sense. 

There is no distinct acknowledgement of Plurality or of 
Complexity of Conditions in Bacon's account of the mechanism 
of elimination. In two senses, however, forms may be said to 
be complex conditions. First, Bacon sometimes talks of the form 
as a specific difference of a proximate genus. This implies that 
the form, as Necessary-and-Sufficient Condition of the nature, 
is the logical product of two factors. Secondly, Bacon assumes 
the existence of a small number of simple forms, of which all 
the variety of the world is ultimately composed. It is not quite 
clear how this is to be understood; it appears that Bacon 
thought of forms as presence-functions of members of a finite 
set of (simple) forms. 

The idea that there is a small number of forms at the basis 
of all variety can be understood as a Selection Postulate, in the 
inclusive form of a Postulate of Limited Variety, and thus as a 
supplementary premiss of induction. It is further related to 
another favourite idea of Bacon, viz., that of a . complete 
catalogue of human knowledge. 

The other supplementary premiss of induction, the Deter-
ministic Postulate, is never explicitly referred to by Bacon. 
His philosophy of induction implicitly rests upon the axiom that 
any nature has one form and one only. 

Against the background of his implicit Deterministic Postu-
late, his explicit Selection Postulate, and his neglect of Plurality 
and Complexity of Conditions in the description of the mechan-
ism of elimination, it is not difficult to understand how Bacon 
came to entertain the idea that Induction by Elimination is 
capable of attaining absolute certainty. He contrasts the 
enumerative method, which periculo exponitur ab instantia contra-
dictoria, with the new method, quae ex aliquibus generaliter con-
cludat ita ut instantiam contradictoriam inveniri non posse demonstretur. 
The exclusion of falsehood will thus necessarily lead to true 
inductive conclusions. 

Bacon gradually became more and more aware of the diffi-
culties which the demand for well-defined notions imposes on 
an ideal use of induction. In the first part of the Novum Organum 
he condemns all commonly received scientific conceptions as 
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worthless. Until their status has been revised, use of the elimi-
native method will remain in some degree imperfect. For the 
method required for the formation of well-defined scientific 
notions, he also uses the name induction; it is, indeed, note-
worthy that the first time induction is mentioned in the Novum 
Organum it refers, not to the establishment of laws, but to the 
definition of concepts. 

It seems that it was Bacon's original intention to deal with 
the formation of concepts in the first part of the Novum Organum 
and with the logic of elimination, or the establishment oflaws, in 
the second, but that this plan was not systematically carried out 
because he became somehow confused over the way in which 
definition and induction are related. The two processes are so 
intertwined that they cannot be performed altogether separately, 
and yet ideal use of induction requires that the process of 
definition shall have come to an end. Bacon ultimately conceives 
of a successive use of them: laws must first be established on the 
basis of commonly received notions, and then the notions must 
be rectified so as to make the rectification of the laws possible. 
There is, however, no clear description of the fortiora auxilia in 
usum intellectus needed for the rectification of conceptions and laws. 

The difficulties over definition seem to imply that the idea of 
limited variety was to be given up, or at least modified. Thereby 
the original association of Eliminative Induction and absolute 
certainty also becomes debatable. On the whole, Bacon grew, 
in the progress of his work, increasingly sceptical and critical 
as to the power and perfection of his inductive method. At the 
same time his insight into the nature of induction was growing 
increasingly profound. 

The literature on Bacon is extensive and opinions on his 
work vary a great deal. Lalande1 says: 'Bacon est le plus discute 
des philosophes illustres.' It seems to me that the best account of 
Bacon's contributions to the Logic of Induction is found in 
Robert Leslie Ellis's General Preface to the Ellis-Spedding edition 
of Bacon's Philosophical Works. Here should be mentioned also 
the illuminating papers by Broad on The Philosophy of Francis 
Bacon (I 926) and Kotarbinski on The Jo.,Jethodology of Francis 
Bacon in Studia Philosophica 1 ( 1 935). 

1 Le ProbMme de l' Induction ( 1 928). 
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Wholly in the spirit of Bacon is Robert Hooke's posthumous 

work A General Scheme or Idea of the Present State of Natural 
Philosophy published in I 705. The influence of Bacon is also 
strongly present in the methodological ideas of Boyle and 
Newton. 

Bacon's idea of an 'alphabet' of simple forms and Hooke's 
conception of the eliminative method as a 'philosophic algebra' 
may be regarded as a counterpart, in the inductive philosophy 
of England, to the idea of a Mathesis Universal is in the deductive 
philosophy of continental Europe at the same period. 

In an unfinished article under the title Hypothese for the 
great Encyclopedie, the physicist Lesage gave a noteworthy 
description of the logic of elimination in the spirit of Bacon's 
tables. The article was written about I 750, but was not pub-
lished until I8I3. Lesage paid special attention to the question 
how the initial set of concurrent possibilities may be limited so 
as to make useful elimination practicable. Due acknowledge-
ment of the eliminative method is also found in the discussion 
of methodological topics in Dugald Stewart's Elements of the 
Philosophy of the Human Mind (I 792, I 8 I 3, I 82 7). 

Next in importance to the contributions of Bacon to the 
Logic of Inductive Truth, come the contributions of John 
Stuart Mill. Mill's Logic appeared in the year I843· A good 
many of Mill's ideas had, however, been already anticipated in 
J. F. W. Herschel's A Preliminary Discourse on the Study of Natural 
Philosophy of I8go. 

Mill defines induction as 'the operation of discovering and 
proving general propositions.' This is not very clear; it suggests 
to us that Mill, like Bacon, confused the two fundamental 
aspects of discovery and logical analysis. He explicitly talks of 
the inductive methods as 'methods of discovery' as well as 
'methods of proof.' Still it must be admitted that Mill, on the 
whole, kept the two aspects apart. For the logical study of 
induction he rightly set no other goal than that of systematizing 
the ideas 'conformed to by accurate thinkers in their scientific 
inquiries.' 

To Bacon in the Novum Organum, the methodical use of 
induction was intended to connect external features of bodies 
with structural properties by Universal Equivalence. Mill, 
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following Lesage and Dugald Stewart, regarded the foremost 
task of inductive inquiry as one of tracing the causal connexions 
in the succession of events. This task has a double aspect: to 
find the effects of given causes, and the causes of given effects. 

The logical relation of nature and form in the philosophy of 
Bacon is much clearer than the relation of cause and effect in 
that of Mill. Mill gives two definitions of the word 'cause' 
which are not logically identical. 'The cause,' he says, 'is the 
sum total of the conditions ... which being realized, the con-
sequent invariably follows.' This must imply that the cause is a 
Sufficient Condition of the effect. But he also says that 'the 
invariable antecedent is termed the cause.' This strongly sug-
gests that the cause is a Necessary Condition. On the other 
hand, he recognizes that a phenomenon may have several dis-
tinct causes, which clearly shows that, unlike Lesage, he cannot, 
in general, be thinking of the cause as a Necessary-and-Sufficient 
Condition. 

The matter becomes still more confused, when Mill later on 
refuses to let causal relationship mean invariable succession in 
time, and adds that the succession must be invariable and 
unconditional. Cause is now defined, both as that on which the 
.effect is invariably and unconditionally consequent, implying 
that the cause is a Sufficient Condition, and as the effect's 
invariable and unconditional antecedent, implying that the 
cause is a Necessary Condition. What Mill meant by 'uncon-
ditional' is difficult to discover. Actually, he employs the 
term for different purposes, but the use which he makes of it 
in connexion with his description of the four experimental 
methods, strongly indicates that the 'real' meaning which he 
attached to 'cause' implies it to be a Sufficient Condition, and 
that the resort which he makes to the word 'unconditional' is 
a somewhat confused way of finding an escape from difficulties 
arising from the fact that he also, at times, uses 'cause' to mean 
Necessary Condition. 

As is to be expected from the above, Mill's description of the 
mechanism of elimination is to some extent marred by his 
failure clearly to see and to state the logical relations of causally 
connected terms. 

Mill's Method of Agreement corresponds roughly to what 
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is called in this book the Simple Case of the Direct Method of 
Agreement. On the hypothesis that 'cause' with Mill implies 
Sufficient Condition, it would follow that his Method of 
Agreement can be properly used for ascertaining the effects of 
given causes, but not for the converse task of finding the causes 
of given effects. This, however, was not clear to Mill. After 
having given a not altogether correct description of the elimina-
tive mechanism of the method in application to the first task, he 
continues: 

'In a similar manner we may inquire into the cause of a 
given effect. Let a be the effect . . . . If we can observe a in two 
different combinations, abc and ade; and if we know, or can 
discover, that the antecedent circumstances in these cases 
respectively were ABC and ADE; we may conclude by a 
reasoning similar to that in the preceding example, 1 that A is the 
antecedent connected with the consequent a by a law of 
causation. B and C, we may say, cannot be causes of a, since in 
its second occurrence they were not present; nor are D and E, 
for they were not present on its first occurrence. A, alone of the 
five circumstances, was found among the antecedents of a in 
both instances.' 

Here Mill has obviously failed to see that the fact that the 
two instances agree in A but differ in B, C, D, and E has no 
bearing whatever upon the question of finding, by means of 
elimination, a cause in the sense of a Sufficient Condition of a. 
Actually, no characteristic has been eliminated as a possible 
Sufficient Condition of a; all we have done is to produce two 
confirming instances of the Universal Implication A C a and 
one confirming instance of each of the Universal Implications 
B C a, C C a, D C a, and E C a. Thus Mill's Method of Agree-
ment, when applied to the task of finding Sufficient Conditions, 
is no method of elimination at all, but merely Induction by 
Enumeration. 

This was not clearly grasped by Mill, though he felt there 
was something defective about his method. As already hinted 
at, he made an unsuccessful effort to account for this defect by 
declaring that the cause should be, not only an invariable, but 
also an 'unconditional' antecedent, and by bringing in the 

1 Italics mine. The passage is in bk. iii, ch. viii, § r 
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possible Plurality of Causes. All this is beside the point; it 
should- be observed that if 'unconditional invariable ante-
cedent' is interpreted, as is most natural, as a kind ofNecessary 
Condition, then Mill's Method of Agreement actually has the 
power of proving-in combination with due supplementary 
premisses-that one factor is such an antecedent in relation to 
a given factor. 

On the same hypothesis, that 'cause' with ·Mill implies 
Sufficient Condition, it further follows that his Method of 
Difference can be properly employed only for ascertaining the 
causes of given effects, but not the effects of given causes. On 
this point also there is much obscurity in Mill's description. 

It is a peculiarity of Mill's account of the Method of Dif-
ference that it is exclusively concerned with the limiting case-
corresponding to Bacon's instantiae migrantes-when one positive 
and one negative instance of the phenomenon in question are 
sufficient to establish a Perfect Analogy. He did not clearly 
realize that there is a form of the Method of Agreement-
corresponding to Bacon's instantiae solitariae-which is equally 
powerful, though in relation to a different purpose. This failure 
of his is connected with his confused recognition of the defec-
tiveness of the Method of Agreement when used for the purpose 
of finding causes, i.e., Sufficient Conditions~- In this way Mill 
came to believe that the Method of Difference was somehow eo 
ipso more efficient as a method of elimination than the Method 
of Agreement. His charge against the latter method, however, 
becomes unjustified once the logical mechanism of the two 
methods is made quite clear. 

In Mill's account of his Joint Method too there are several 
perplexities. Some of them are connected with ambiguities in 
the terms 'cause' and 'effect,' others with the failure to separate 
sharply the two principal forms of the Joint Method which we 
have called in this book the Double Method of Agreement and 
the Joint Method of Agreement and Difference respectively. 1 

Mill's Method of Residues is, strictly speaking, no method of 
elimination at all. Its use, certainly, answers to familiar pro-
cedures in science, but reasoning based upon it is extremely 
weak unless supported by powerful supplementary premisses. 

1 Cf. Jackson, Mill's Joint Metlwd I-II in Mind 46-7 ( 1937-8). 
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If, to use .Mill's own example, we have the antecedents ABC 
followed by the consequents abc, and from this, in combination 
with the assumed knowledge that A and a, and B and b are 
causally connected, infer that C is the cause of c, then the 
argument, to possess demonstrative value, must inter alia 
exclude the possibility that one and the same cause may have 
several effects, or that a factor may have several Necessary 
Conditions. 

Of Mill's Method of Concomitant Variation as a canon of 
elimination we can say the same as of Bacon's tabula graduum 
sive tabula comparativae. 1 

There is explicit acknowledgement both of Plurality and of 
Complexity of Conditions in Mill's philosophy of induction. 
The second phenomenon appears in his description of the elimi-
native mechanism only in connexion with the Method of 
Difference, when Mill says that the sole factor, besides the con-
ditioned factor, in which the two instances differ is the cause 
or 'an indispensable part of the cause.' The 'indispensable part 
of the cause' means, in our terminology, Contributory Condition 
(not necessarily Indispensable Contributory Condition). A 
complex cause is thus with Mill a product2 or conjunction of 
properties. 

There is an interesting passage in which he also mentions 
complex Necessary Conditions which, as we know, are sums or 
disjunctions of properties. Mill, however, mistakenly talks of 
this case as an instance of Plurality and not of Complexity of 
Causes. The passage in question runs: 

'The plurality may come to light in the course of collating 
a number of instances, when we attempt to find some circum- . 
stance in which they all agree, and fail in doing so. We find it 
impossible to trace, in all the cases in which the effect is met 
with, any common circumstance. We find that we can eliminate 
all the antecedents; that no one of them is present in all the 
instances, no one of them indispensable to the effect. On closer 
scrutiny, however, it appears that though no one is always 
present, one or other of several always is.' 

1 Cf. above p. 83 and p. 154. Cf. also Nicod, Le probleme logique de !'induction 
(1924), p. 24. 

2 Mill, incidentally, talks of 'sums' of antecedents meaning, in our terminology, 
logical products. 
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Here the antecedents which are eliminated ( cf. above p. 93) 
must be initially possible simple Necessary Conditions. The 
alternatively present antecedents are possible Substitutable 
Requirements and their sum a possible complex Necessary 
Condition. The use of the word 'cause' to mean Substitutable 
Requirement is not uncommon, both in ordinary discourse and 
in science. It is, by the way, a principal use of the word in 
connexion with traditional doctrines on so-called Probability 
of Causes. (Cf. Chap. X, §§2 and 5.) 

Following Archbishop Whateley, Mill regarded inductive 
inference as a sort of demonstrative reasoning from partly 
suppressed premisses. Therefore, he says, 'the business of 
Inductive Logic is to provide rules and models (such as the 
Syllogism and its rules are for ratiocination) to which if induc-
tive arguments conform, those arguments are conclusive, and 
not otherwise.' (Cf. above p. 129.) 

The supplementary premiss which Mill has in mind is a kind 
of Deterministic Postulate, called by him the Law of Universal 
Causation. As his standard formulation of it we may take the 
following: 'Every event, or the beginning of every phenomenon, 
must have some cause; some antecedent, on the existence of 
which it is invariably and unconditionally consequent.' It is 
obvious that 'cause' here must imply Sufficient Condition. 
Though Mill does not sharply distinguish between the causes 
of an event, as such, and the causes of an event which are 
present in an individual case of the event's occurrence, it is also 
fairly obvious from the above that Mill conceived of his Law 
of Universal Causation as implying that every event, in every 
instance of its occurrence, is accompanied by a cause, i.e., one 
of its Sufficient Conditions, and thus is, to use our terminology, 
determined. (Cf. above p. 72 and p. 75 f.) 

Mill's idea that the Law of Universal Causation was itself 
an inductive conclusion and yet capable of some sort of 'proof' 
is extremely obscure and has been frequently criticized. Much 
of the confusion, I think, arises from the fact that Mill believed 
the content of the supplementary premiss to be the same for all 
inductive inferences. As we have seen (p. 132), there is a weakest 
form of the Deterministic Postulate, corresponding to Mill's 
Law of Universal Causation, which satisfies this condition and 
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which, moreover, cannot be refuted by experience. Of it we can 
truly say with Mill: 'To the law of causation-we not only 
do not know of any exception, but the exceptions which limit 
or apparently invalidate the special laws, are so far from con-
tradicting the universal one, that they confirm it; since in all 
cases which are sufficiently open to our observation, we are 
able to trace the difference of result, either to the absence of a 
cause which had been present in ordinary cases, or to the 
presence of one which had been absent.' But we have also seen 
(p. 132 ff.), that this supplementary premiss, 'being thus certain,' 
is not the same as that much stronger premiss which would be 
'capable of imparting its certainty to all other inductive pro-
positions which can be deduced from it.' 

The necessity of adopting a Selection Postulate as a second 
supplementary premiss of induction was never explicitly 
avowed by Mill. But, just as the Deterministic Postulate may 
be said to be implicitly present in Bacon's writings, so in a 
similar manner the Selection Postulate, in the exclusive rather 
than the inclusive form, may be said to underlie Mill's mode of 
reasoning.1 

Mill was not puzzled to the same extent as Bacon by the fact 
that the use of induction contributes, not only to the establish-
ment ofLaws ofNature, but also to the formation of concepts. 
Under the names of Composition of Causes and Intermixture 
of Effects he collected a number of interesting though not very 
systematic observations on the way in which induction contri-
butes to the rectification of laws. 

Even if we are not prepared to assent to ]evans's well-known 
contention that 'Mill's mind was essentially illogical,' we have 
to admit that there is very much obscurity and an outstanding 
number of downright errors of thought in Mill's treatment of 
induction. I cannot avoid the impression that Mill, as a logician, 
was much inferior to Bacon, however fantastic and incoherent 
the views of the latter may appear to the modern reader. 

However, the obvious weaknesses of Mill's system should 
not lead us to underrate its importance. Not only is Mill's 
treatment of induction full of valuable suggestions and acute 
observations on many points of detail. Most of its main ideas 

1 Cf. Keynes, op. cit., p. 271. 



A TREATISE ON INDUCTION AND PROBABILITY 
are substantially sound. In the history of the subject here called 
the Logic of Inductive Truth, he is the last great innovator and 
constructive mind on a large scale. 

An exposition of Mill's methods, usually in combination 
with some criticism, has become traditional in textbooks on 
induction and methodology. A good systematic and critical 
monograph on Mill's Logic of Induction still remains to be 
written. 1 

A contemporary of Mill is William Whewell. His enterprise 
in the philosophy of induction was undertaken in the grand 
manner and bears some resemblance to the intentions of Francis 
Bacon, whose true successor he considered himself. He was, 
however, more interested in the problems of scientific discovery 
than in the logical analysis and reconstruction of arguments, a 
subject of which he had little understanding and to which he 
did not make any fresh contributions. He had a vivid sense of 
the importance of induction for the formation of concepts (and 
vice versa), but his opinions on this topic are rather obscure, 
owing, it seems, to the unhappy influence of Kant's philosophy. 
(On Whewell cf. above p. rg and 23f.) 

Very unsystematic, but rich in suggestive ideas in the realm 
of methodology, is Jevons's Principles qf Science (1874). Jevons 
began, but never completed, an examination of Mill's philo-
sophy, part of which was published in the Contemporary 
Review under the title ]ohn Stuart Mill's Philosophy Tested. 2 

J evans's chief merit in the field of induction consists, I think, in 
the very strong emphasis which he laid on the hypothetical, 
i.e. non-demonstrative character of genuine inductive reasoning. 
In Jevons's time insight into the non-demonstrative nature of 
induction was largely obscured, partly owing to the influence 
of Mill, 3 and partly owing to the trends then current in the 
philosophy of probability. 

1 No ultimate estimation of Mill's views on induction is possible unless attention 
is also paid to the, sometimes peculiar, opinions which Mill held as to the nature 
ofdeductiono There is a good monograph on Mill's Logic of Deduction by Jackson: 
An Examination of the Deductive Logic of ]o So Mill (I 94 I) o 

2 Reprinted posthumously together with a note on the Method of Difference in 
Pure Logic and other Minor Works (I8go)o 

3 Cfo the historically interesting polemic against Jevons's views which is to be 
found in the preface to the 3rd edition of Tho Fowler's The Elements of Inductive 
Logic (I 876) o 
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A clear insight into the nature of induction and its relation 
to hypothesis and demonstration is also found in the writings of 
Peirce. His are, in fact, some of the best accounts of the broader 
philosophic and methodological aspects of induction which 
exist. To the formal logic of inductive methods, however, 
Peirce did not directly contribute. 

Important contributions are to be found in the section on 
induction and analogy inJ. M. Keynes's A Treatise on Probabiliry 
( 1921) and in jean Nicod's thesis Le probteme logique de !'induction 
(I 92 3). Keynes appears to be the first to have distinctly 
recognized that inductive inference, in order to become con-
clusive, must be supplemented with two premisses, correspond-
ing to our Deterministic Postulate and Selection Postulate 
respectively. His attitude as regards the Deterministic Postu-
late is, however, unclear. He substitutes for it, in cases of 
Perfect Analogy, our Postulate ofSpatio-Temporal Irrelevance, 
which he calls the law of the Uniformity ofNature. The obscuri-
ties on this point seem to be connected with a peculiar view of 
identity. Nicod also is aware of the need for two supplementary 
premisses of induction. He makes the important observation 
that the Postulate of Limited Variety, in order to serve its 
purpose, must go further than merely to assert the finitude of 
the respective ranges of initially possible conditioning pro-
perties. (Cf. above p. 137.) 

The importance of the work of Keynes and Nicod, however, 
is not so much in the field of what is here called the Logic of 
Inductive Truth, as in the complementary branch called the 
Logic oflnductive Probability. We shall therefore have occasion 
to return to their opinions later. (Cf. Chap. X, §5.) 

Already in Nicod's book there is an approach to the problem 
in terms of the Logic of Conditions. It is, however, not very 
systematic. The first to deal systematically with the Logic of 
Inductive Truth on the basis of the Logic of Conditions was, so 
far as I know, C. D. Broad, in the first part of his important 
article The Principles of Demonstrative Induction in Mind 39 (I 930). 
(Cf. above p. 77.) There is in Broad's paper a substantially 
correct restatement of Mill's Method of Agreement, Method of 
Difference and Joint Method, in terms of conditions. 

Here also should be mentioned Karl Popper's book Die 
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Logik der Forschung (1935). Popper underlines the asymmetry of 
Laws of Nature in respect of decidability and the importance of 
falsification (i.e., elimination) to the study of scientific method. 
Popper, moreover, is one of the first authors on these topics, 
who has clearly apprehended the idleness of the attempt to 
'support' elimination by reference to some general presupposi-
tions or supplementary premisses of induction. 
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Chapter Seven 

THE LOGIC OF PROBABILITY 

1. The Concepts if Probability 
'PROBABILITY' is a word which is used in a multitude ofvery 

different contexts. It is not to be expected that in all these 
contexts it should have one and the same meaning or stand for 
one and the same concept. It is plausible to think that there are 
several concepts of probability, and accordingly several ways 
of abstracting, from the use of the word in discourse, an object 
for treatment with the instruments of logic and mathematics. 

Aristotle says in the Rhetoric that the probable is that which 
usually happens. This can be regarded as the first attempt at 
an analysis of the word. Aristotle might be called the initiator 
of the so-called frequency view which, roughly speaking, sees 
the meaning of an event's probability in the relative frequency 
of its occurrence. 

With the mathematical treatment of probability by Fermat 
and Pascal in the seventeenth century, to be followed by the 
Bernoullis and Laplace and others in the eighteenth, there 
originated another analysis of the word, which we shall call the 
possibility view. According to it, an event's probability is, 
roughly speaking, the ratio of a number of alternative possibi-
lities 'favourable' to the event and a number of alternative 
possibilities as such. E.g., in tossing with a coin there are 
two possibilities, one of which is favourable to the toss being 
'heads.' Hence the probability of getting 'heads' in tossing 
would be I : 2. 

The possibility view of probability was in origin more or less 
loosely connected with the additional demand that the possi-
bilities in question should all be 'equal.' It is rational to think 

I67 



A TREATISE ON INDUCTION AND PROBABILITY 

that the probability of 'heads' in the next toss with a certain coin 
is I : 2, only if in this particular situation, the two alternatives 
'heads' and 'tails' are equally possible. This we normally think 
them to be if the coin is homogeneous, but not if it is biased. 

The additional demand of equipossibility obviously raises a 
problem. It should, however, be observed that from the point 
of view of the mathematical treatment of probability, it is not 
necessary to include the demand of equality in the definition of 
the concept as a ratio of possibilities. A purified and generalized 
form of the possibility view was suggested by Bolzano in his 
Wissenschaftslehre of the year I837, and renewed by Wittgenstein 
in the Tractatus logico-philosophicus (I 92 I -2 2). The Bolzano-Witt-
genstein definition does not mention equal possibilities. Yet it can 
be shown that this definition is a sufficient basis for the deduc-
tive development of the branch of mathematics known as the 
('classical') Calculus of Probability. 

It was, in part, the difficulties over equal possibility which, 
in the nineteenth century, were responsible for a revival of the 
frequency view. In the early forties there was an attack on the 
possibility view by Leslie Ellis, in his important paper On the 
Foundations of the Theory of Probabilities in the Transactions of the 
Cambridge Philosophical Society, by John Stuart Mill in his 
Logic, and by Cournot in his Exposition de la thiorie des chances. 
Somewhat later (I866) Venn, in his Logic of Chance, made a 
systematic attempt to show how the calculus could be developed 
on the basis of a definition of probability as a relative frequency 
of an event within a sequence. 

The frequency view was given a decisive impetus by von 
Mises in his paper Grundlagen der Wahrscheinlichkeitsrechnung in 
the Mathematische Zeitschrift of the year I9I9, and in his 
book Wahrscheinlichkeit, Statistik und Wahrheit ( I928, 2nd Ed. 
Igg6). 

The work of von Mises, however, also raised a serious philo-
sophic problem which may be described roughly as follows: 
Just as, on the possibility view, we should not consider it rational 
to think that the probability of 'heads' in the next toss with a 
certain coin is I : 2, merely because there are two possibilities, 
one of which is favourable to 'heads,' but would demand that 
the two possibilities should be equal, so on the frequency view, we 
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should not consider it rational to think that the probability is 
1 : 2 merely because this is the relative frequency of 'heads,' 
but would demand that the distribution of 'heads' and 'tails' 
over the tosses should be random. For, e.g., if exactly every second 
toss in the past had been 'heads' and every second 'tails' and if 
the last toss with the coin were known to have been 'heads,' 
then we should not think that the probability of 'heads' in the 
next toss is 1 : 2, but rather that it is o. Von Mises tried to 
embody this demand for randomness in his frequency definition 
of probability, in the form of an Axiom of Irregularity. 

The idea of random distribution or irregularity we shall dis-
cuss later. All that need be said here is that just as the possibility 
view can be worked out independently of the additional demand 
for equipossibility, so the frequency definition can be shown to 
be a sufficient basis for the deductive development of the 
('classical') Calculus of Probability independently of the 
additional demand for randomness in the distribution of events. 

Besides the frequency view and the possibility view there is 
also a third traditional approach to probability. We shall call it 
the psychological view. According to it an event's probability 
is, roughly speaking, a measure of our degree of belief in the 
event's occurrence. 

This view is notoriously obscure. The interpretation of it 
which will be suggested, pretends neither to be historically 
adequate nor to be of practical importance. I think, however, 
that the interpretation is illuminating as a sort of Gedanken-
experiment showing what a psychological view of probability 
could be. 

How are degrees of belief to be measured? There seem to be 
two principal alternatives. 

The first would be to identify degree of belief with something 
which might be called intensity of belief feeling. The intensities 
might be estimated introspectively and perhaps also 'extro-
spectively' on the basis of some physiological (e.g. vasomotor) 
equivalent to them. This way of measuring belief does not, 
however, look very promising, if only for the reason that our 
belief in a great many things which we take for granted seems 
to be accompanied by practically no feeling at all. 1 

1 Cf. Ramsey, The Foundations qf lvlathematics and other Essays (I 930), p. I 6g. 
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The second possibility would be to view belief, not as a 

feeling, but as a disposition to act. There is a 'classical' way of 
testing the strength of such dispositions, viz., by proposing a 
bet and observing which are the lowest odds accepted.1 This 
way of measuring degrees of belief is obviously much more 
promising than the first. Whether it is altogether satisfactory 
need not concern us here. 

It will be sufficient for our purposes to pursue the following 
discussion as though there existed a satisfactory way of measuring 
partial belief. Of this way we shall assume only that it is inde-
pendent of the concept of probability, i.e., that measuring a 
degree of belief in an event does not presuppose that we have 
first measured the probability of the event. It is questionable 
whether such a condition of independence could be fulfilled, 
but this is also a point which need not concern us here. 

As far as I know, it has never been seriously suggested that 
the probability of an event is mere{y a degree of belief in the 
event's occurrence. Since different persons may believe in the 
same event to a different degree, the psychological interpre-
tation would make probability altogether 'subjective.' What, 
has, however, been seriously suggested is that the probability 
of an event is the rational degree of belief in it. Probability, 
loosely speaking, is not so much how we actually believe as how 
we ought to believe. 2 

Thus each of the three main traditional views of probability: 
the frequency view, the possibility view and the psychological 
view, present a dual aspect. On the first, probability is defined 
either as merely a frequency in a sequence or as a frequency in 
a random sequence. On the second, probability is defined either 
as merely a ratio of possibilities or as a ratio of equal possibilities. 
On the third, probability is defined either as merely a degree 
of belief or as a degree of belief which it is rational to entertain. 

1 Cf. Ramsey, op. cit., p. 1712. 
8 Cf. the following quotation from de Morgan, Formal Logic (1847), p. 1712: 

'By degree of probability we ••• ought to mean degree of belief ... I ... consider 
the word (sc. "probability") as meaning the state of the mind with respect to an 
assertion •.. on which absolute knowledge does not exist. "It is more probable 
than improbable" means ••• "I believe that it will happen more than I believe 
that it will not happen." Or rather "I ought to believe, etc."' This quotation is a 
good illustration of the confusion between a factual and a normative aspect which 
is traditionally characteristic of the psychological view of probability. 
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On the two first views, moreover, randomness of distribution 
and equality of possibilities respectively seem to serve as criteria 
of the rationality (adequacy) ofprobability estimations. 

In addition to the three traditional views of probability there 
is also a fourth approach to the analysis of the word. We shall 
call it the axiomatic view of probability. Roughly speaking, it 
takes the concept of probability as a basic notion of a deductive 
system which is not defined in the sense of being made explicit 
in terms of other concepts. All that is required is that it should 
obey certain axioms. The axioms are sometimes said to con-
stitute an 'implicit definition' of probability. 

Keynes' book A Treatise on Probabiliry of the year 192 I might 
be considered as a first large scale attempt at an axiomatic 
treatment of probability. It dates, however, from a time when 
general ideas on axiomatic systems and formalizations were 
much less developed than they are to-day. It is for that reason 
mainly of historical interest. It is, moreover, not purely axio-
matic in our sense, since it is biased in favour of some form of 
the psychological view of probability. Still, much inspiration 
can also be drawn from its study for modern research. 

A more rigorous and philosophically neutral exposition of 
the axiomatic view was given by Reichenbach in the paper 
Axiomatik der Wahrscheinlichkeitsrechnung in the Mathematische 
Zeitschrift of the year 1932; further developed in the larger 
work Wahrscheinlichkeitslehre (1935). Here also should be men-
tioned the axiomatic treatment by Kolmogorov, Grundbegriffe 
der Wahrscheinlichkeitsrechnung in Ergebnisse der Mathematik 
und ihrer Grenzgebiete II, 3 (1933). 1 

In this chapter we shall follow the axiomatic approach to 
probability. In a concluding paragraph, however, we shall dis-
cuss the relation of axiomatic probability to the probability 
concepts of the frequency, the possibility and the psychological 
views, respectively. We shall try to make precise a sense in which 
these three traditional views in their 'bare' forms, i.e., without 
use of the additional ideas of random distribution, equipos-
sibility, and rationality of belief, represent three different 

1 An axiomatic treatment of probability was attempted by me in the paper 
Ueber Wahrscheinlichkeit, eine logische und philosophische Untersuchung in Acta Societatis 
Scientiarum Fennicae, Nova Series A III II (1945), of which the treatment of 
probability in this book is a further elaboration. 
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interpretations of axiomatic probability. The significance of the 
ideas of random distribution, equipossibility, and rational belief 
will themselves be discussed in the next chapter. 

* * * * * 
Axiomatic probability can conveniently be described as an 

'abstraction.' The concept will be given shape in a number of 
declarative statements as regards its nature. 

We conceive of probability as a magnitude attributed to 
propositions. This, however, is only a provisional formulation 
subject to further clarification. 

On what, in the case of a given proposition, does this magni-
tude depend? 

We shall take the view that it depends on some other pro-
positions. We shall call these other propositions the evidence 
for the probability of the given proposition. 

One might suggest that for the purpose of developing a logic 
of probability, propositions could be treated as unanalysed 
wholes. This is the course followed by Keynes and Jeffreys. 

We shall here take a narrower view of probability. In dealing 
with the concept we shall presuppose a certain analysis of 
propositions. 

By the probability of something we shall understand the 
probability that a certain thing has a certain property. (Or 
that a certain ordered set of things has the property of being a 
positive order of a certain relation. Cf. above, p. 48.) 

By the evidence for the probability that a certain thing has 
a certain property we shall understand a proposition to the 
effect that the same thing has a certain (other) property. 

By the magnitude or value of a probability we shall under-
stand a real number. 

It has been a matter of dispute whether the magnitude of 
probability needs to be a numerical magnitude or not. It fre-
quently happens that we attribute a high, a moderate or a low 
probability to something, without being able to tell the numeri-
cal value of this magnitude. We frequently also compare pro-
babilities in respect of greater and less, without specifying their 
difference in numerical terms. Estimates of the above kind 
appear, moreover, to be the only ones possible when we judge 

172 



THE LOGIC OF PROBABILITY 

the probability of Laws of Nature. The question then arises 
whether the magnitudes thus spoken of are merely probabili-
ties, the numerical values of which exist but are unknown, or 
whether they are non-numerical probabilities in a 'real' sense. 

Keynes assumed the existence of non-numerical probabilities 
as distinguished from unknown numerical ones. 1 It is obviously 
possible to develop a logic of probability also for non-numerical 
magnitudes. 2 Usually, however, probabilities are unhesitatingly 
treated as numerical quantities. Here we shall follow this 
narrower course. 

Given a first and a second property from the same universe, 
and a real number, it is either true or false that the number is 
the probability that a random thing has the first property on the 
evidence that it has the second property. 

Thus any two properties from the same universe, and a real 
number, constitute either a positive or a negative order of a 
certain relation. This three-termed and non-homogeneous 
relation we call the probability-relation. As its symbol we use P. 

The first property we shall call the conjectured property. 
The second property we shall call the evidence (property) or, 
sometimes, the field of measurement. 

It is not implied that, given a first and a second property from 
the same universe, there will always exist a real number which 
indicates the probability that a thing has the first property on 
the evidence that the same thing has the second property. It is 
not necessary, in other words, that there should always be a 
probability that a thing has a certain property on the evidence 
that it has a certain other property. 

The relation denoted by P is our concept of axiomatic 
probability. 

2. The Calculus rif Probability 
We shall now outline an axiomatic and formalized deductive 

system for the relation P. This system will here be called the 
Calculus of Probability. 

1 Op. cit., Chap. III, especially p. 34· 
2 Cf. B.O. Koopman, The Axioms and Algebra of Intuitive Probability in Annals of 

Mathematics 41 ( 1940) and Intuitive Probabilities and Sequences in Annals of Mathema-
tics 42 (1941). 
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That the deductive system is axiomatic means, approxi-
mately speaking, that a finite number of sentences (propositions) 
are laid down from which all other sentences (propositions) of 
the system follow. The sentences (propositions) of the first group 
are called axioms, and the sentences (propositions) of the second 
group theorems. 

That the deductive system is also formalized means that a 
finite number of rules are laid down for the derivation of 
theorems from the axioms. 

The sentences expressing axioms and theorems are also called 
formulae of the calculus. 

The propositions expressed by the formulae are also called 
principles of the calculus. 

It will be convenient to use the terms 'axiom' and 'theorem,' 
sometimesforaformula(sentence) and sometimes for a principle 
(proposition) of the calculus. 

The formulae of the calculus are molecular complexes of 
four kinds of sentences, viz. 

1. Quantified Sentences belonging to the Logic of Pro-
perties. These sentences state that a property exists, 
that two properties are mutually exclusive, that one 
property is included in another, or that two pro-
perties are co-extensive. 

u. Sentences concerning sequences. These sentences, which 
occur mainly at a higher stage of the calculus, state 
that a sequence of properties or of numbers app-
roaches a limit, or that the relations Exc or Inc 
( cf. above p. 6o) subsist in sets of index-numbers of 
properties. 

m. Sentences stating that the relation P subsists in (appro-
priate) sets of things. Sentences of this kind will be 
called probability-expressions, and the propositions 
which they express will be called probability-pro-
positions. 

If, in a probability-expression, the name of the conjectured 
property is atomic, we speak of a simple probability. If it is a 
negation-name, we speak of a complementary, if it is a con-
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junction-name, of a conjunctive, and if it is a disjunction-
name, of a disjunctive, probability. 

IV. Sentences of arithmetic. These will throughout be 
equalities (identities) or inequalities between atomic 
or molecular numerals for real numbers. 

* * * * * 
The construction of the calculus is pursued in three stages. 

The deductive system reached in the two first stages we call the 
Elementary Calculus of Probability. It embraces what is 
commonly known as arithmetical or discrete probability. The 
deductive system of the third stage we call the Higher Calculus 
of Probability. It deals with so-called geometrical or continuous 
probability. 

It is characteristic of the first stage that the probability-
expression contains only atomic names of properties or mole-
cular names with a given finite number of constituents (here 
not more than two). Within this framework all the axioms can 
be stated, and some fundamental theorems, e.g. the Multiplica-
tion, Addition, and Inverse Principles, can be proved. 

It is characteristic of the second stage that the probability-
expression contains also names of properties which are presence-
functions of an undetermined number n of constituents. The 
theorems of the first stage are generalized so as to become valid 
for any value of n. The generalization takes place by means of 
reasoning from n to n+ 1. Within this new framework we can 
prove, e.g., some of the so-called Principles of Great Numbers, 
which state the convergence of a probability towards a limit. 

Finally, it is characteristic of the third stage that the pro-
bability-expression contains also names of properties which are 
presence-functions of a non-denumerable number of consti-
tuents. The theorems on arithmetical probability of the 
Elementary Calculus are now generalized so as to become 
theorems on geometrical probability of the Higher Calculus of 
Probability. To give an account of the exact nature of this 
generalizing step-which from the point of view of logic means 
the transition from presence-functions of a denumerable, to 
those of a non-denumerable number of properties, and from 
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the point of view of mathematics from sums to integrals-is 
beyond the aim and purpose of the present inquiry. 

Geometrical probability or the Higher Calculus will, there-
fore, not be treated here. 

3· The Axioms 
The axioms are the following six: 

Ar. (E H)-+(P(A, H,p)&P(A, H, q)-+P=q) 
A2. (E H)-+(P(A, H, P)-+p-;;;o) 
Aj. (E H)-+((H c A)-+P(A, H, I)) 
A4. (E H)-+(P(A, H, P)-+P(A, H, I-p)) 
As. (E H&A)-+(P(A, H, p)&P(B, H&A, q)-+P(A&B, H, pq)) 
A6. (E H)((n)P(Am H,pn) &P(A, H, p) &lim( Am H)-+lim(PmP)) 
As will be seen, it is a common feature of all the axioms that 

they assume the respective evidence properties to exist, i.e., not 
to be empty. . 

This feature is quite natural from the point of view of the 
'content' of probability. In some interpretations of the calculus, 
to be discussed later, any probability which is relative to empty 
evidence will have the value o : o, i.e., be numerically undeter-
mined. 

The qualification of existence is more restrictive than the 
qualification of not being contradictory, which was used by 
Keynes. Any contradictory property is empty, but not all empty 
properties are contradictory. 

Ar is called the Axiom of Uniqueness. According to it, if 
there is a probability in favour of the occurrence of a property 
in a thing on given evidence, then this probability, the evidence 
remaining unchanged, will be one real number and one only. 

A2 is called the Minimum Axiom. According to it, negative 
real numbers are excluded from being probabilities. 

A3 is called the Inclusion Axiom. It states that if one property 
is included in another, then the probability of the occurrence 
of the second property in a thing, relative to the occurrence of 
the first property as evidence, is I. 

A4 is called the Addition Axiom. According to it, the sum 
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of a probability and the corresponding complementary pro-
bability is I. 

A5 is called the Multiplication Axiom. It gives a rule for 
computing a conjunctive probability on the basis of two simple 
probabilities. 

A6 is called the Axiom of Continuity. It states that if a 
sequence of properties approaches a certain property as its 
limit (p. 54f.), then the probabilities of the occurrences of the 
former property approach the probability of the occurrence of 
the latter property as their limit. 

It should be observed that A4 in combination with the other 
axioms is sufficient for the proof of the stronger proposition Tg 
or the Special Addition Theorem, which is usually included 
among the axioms of the calculus. This simplification, as 
compared with the sys.tems of, e.g., Reichenbach and Kolmo-
gorov, is decidedly in the interest of the logical economy of the 
deductive system. 

A6 or the Axiom of Continuity seems to me to occupy a 
peculiar and, as it were, subordinate position among the 
axioms. We shall not need it until Chap. IX when we deal with 
Inductive Probability. 

4· The Process of Jriference 
In the proofs there occur deductive steps of the following 

three kinds: 

1. Sometimes the deductive step has the form of an asser-
tion that certain sentences entail a further sentence. 
This should always be understood as meaning that 
the conjunction of the former sentences entails the 
latter sentence. 

The sentences are either formulae of the calculus or sentences 
of the four types mentioned above (p. 174£), of which the 
formulae of the calculus are molecular complexes. 

Entailment is usually of the elementary type, where the 
implication-sentence of the conjunction of the entailing 
sentences, as antecedent, and the entailed sentence, as conse-
quent, expresses a tautology in the Logic of Propositions. 
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Sometimes, however, entailment is of the type belonging to 
the Quantified Logic of Properties, as e.g., when we say that 
E H&A entails H C A (p. I 83), or of the type belonging to the 
Logic of Numbers (arithmetic), as e.g., when we say thati-p~o 
entails p~ I (p. 181). 

One more type of entailment occurs occasionally, vi;:;., 
entailment in virtue of the following Principle of Identity or of 
Substitutability ofidentities: 

In a probability-expression which occurs in a formula we can 
substitute for the name of the first or the second property 
another name of the same property and for the name (numeral) 
of the real number another name of the same number. The 
substitution need not be performed in every place in the formula 
where the name occurs. It is in virtue of this Principle of 
Identity that we say, e.g., that P(A, H, p) and P=r: q entail 
P(A, H, r: q) (p. 182). 

u. Sometimes the deductive step takes the form of an 
assertion that from a certain formula of the calculus 
'we get' a new formula in virtue of two 'technical' 
principles of formalized proofs, vi;:;. 

a. The Rule of Substitution: In a probability-expression 
which occurs in a formula we can substitute for the name of the 
first or the second property, and for the numeral, any other 
atomic or molecular name of a property from the same universe, 
and any other atomic or molecular name of a real number. The 
substitution must be performed in every place in the formula 
where the name occurs. 

{J. The Rule of Quantification: If we have the formula 
.. ,_,.., .. and the antecedent but not the consequent contains 
the name x without being quantified in it, we also have the 
formula (Ex)( • • ,)_,.., •.. Conversely, if we have the formula 
••• -l> ••• and the consequent but not the antecedent contains x 
without being quantified in it, we also have the formula 
.• ,_,..(x)( .. . ). 

The Rule of Substitution is constantly used in the proofs. 
We shall not, however, make explicit reference to it. (The only 
exception is in the first proof.) The Rule of Quantification is 
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not often used, and explicit reference is nearly always made to 
it in the context. 

iii. In a few cases the deductive step is in virtue of the 
following Rule of Elimination: 

If a probability-expression which occurs in a formula of the 
calculus is quantified in the numeral, then it can be omitted 
from (the perfect disjunctive normal form of) the formula. 

The Rule of Elimination is always used in combination with 
the Rule of Quantification for the purpose of getting rid of 
'auxiliary data.' (Cf. p. 180 and examples in §§6, g, and 1 1.)1 

Whereas the Principle of Identity and the Rules of Substitu-
tion and of Quantification are universal principles offormalized 
proofs, the Rule of Elimination seems to be peculiar to the 
Calculus of Probability. The need of the rule was pointed out 
by Reichenbach, who gave it a slightly narrower formulation. 2 

I have not been able to do without it, nor to give it a more 
universal foundation in the logic of proo£ 3 

The Logic of Propositions, the Logic of Properties and 
Arithmetic may conveniently be described as the logical sub-
structure of our Calculus of Probability. The question of 
buil<,ling up this sub-structure as an axiomatic and formalized 
deductive system does not concern us here. 

* * * * * 
The theorems or formulae which we want to prove have the 

same general structure as the axioms, viz., they are implication-
sentences, the consequents of which are themselves implication-
sentences. The antecedent of a formula we shall call the first 
antecedent and the antecedent of the consequent the second 

1 That a probability-expression is quantified in the numeral presupposes that 
we have inserted, in virtue of the Rule of Quantification, either an existential 
operator in the antecedent or a universal operator in the consequent of a formula. 
The insertion of an operator again presupposes that the numeral in question 
occurs either only in the antecedent or only in the consequent. Thus, loosely 
speaking, the Rule of Elimination says that a probability-expression may be 
omitted from a formula, if the probability-value which its numeral names is not 
relevant to the numerical determination of other probability-values of the 
context. 

a Reichenbach, W ahrscheinlichkeitslehre, § 11. Reichenbach calls his rule the Rule 
of Existence. 

8 In my publication Ueber Wahrscheinlichkeit I used four 'extra-logical' rules of 
inference. Of these, however, the first three are included in the Rule of Elimination 
as stated here. The fourth can be formulated as an axiom, vi<;. the Axiom of 
Continuity. 
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antecedent. The consequent of a formula we shall call the first 
consequent and the consequent of the consequent we shall call 
the second consequent. 

A convenient mode of conducting the proofs is this: 
The sentences of which the first and second antecedents of 

the theorem we are going to prove, are molecular complexes, 
we call the 'data' of the problem. From the axioms and these 
data we want to deduce the second consequent of the theorem. 
The deduction is in steps of the three types mentioned above. 
It is easy to see that the deduction of the second consequent 
from the axioms and the data is equivalent to the deduction of 
the theorem from the axioms. (We need not show this in detail 
here.) 

Sometimes 'auxiliary data' are needed. These always con-
sist of a probability-expression. A theorem is proved in which 
the auxiliary datum occurs in the (second) antecedent. A com-
bined use of the Rule of Quantification and the Rule of Elimi-
nation allows us to drop the auxiliary datum from the proved 
formula. Thus we finally get a theorem in which the auxiliary 
datum does not occur at all. (Cf. examples in §§6, g, and I I.) 

Sometimes also 'subsidiary data' are needed. These are 
always formal truths embodied in the sub-structure of the 
calculus, i.e., formal truths of the Logic of Propositions, the 
Logic of Properties, or the Logic of Numbers (arithmetic). 
These additional data do not occur explicitly in the proved 
theorems. 

The following point should be observed: The 'higher' we 
ascend in the mathematical regions of probability, the more 
important do the above-mentioned subsidiary data of a mathe-
matical nature become to the deduction of theorems. Some of 
the greatest achievements in the history of the subject, as e.g., 
the proofs of the various Principles of Great Numbers, have 
consisted, not so much in the computation of a new probability 
on the basis of given data, as in showing that a certain probabi-
lity, thus computed, possesses such and such arithmetical 
properties, e.g., of attaining a maximum or converging towards 
a limit under certain conditions. In this inquiry, however, we 
are not interested in the arithmetical aspect, but only in the 
deductive connexions which trace the theorems back to the 
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axioms of probability. The 'invasion' of the calculus by its 
mathematical sub-structure, which has been of primary impor-
tance for the development of probability mathematics, has 
sometimes tended to obscure these connexions in a way which 
has been fatal to the understanding of the philosophic implica-
tions of probability. This is particularly true of the notoriously 
obscure topic known as Inverse Probability, the clarification of 
which is one of the chief aims of the present treatment. 

5· The Maximum Principle 
According to A2, no probability, on existing evidence, is 

smaller than o. This is the Minimum Principle (Axiom). With 
the aid of A4 it is easy to prove from A2 that no probability on 
existing evidence is greater than 1. This may be called the 
Maximum Principle (Theorem). 

The data are E Hand P( A, H, p). We want to deduce p~ I. 

In A2 we substitute A for A and 1-p for p. We get 
(E H)--';(P(A, H, r-p)--?1-p~o). 

The Addition Axiom A4 and the last formula entail, in the 
Logic of Propositions, (E H)-'?(P(A, H, p)---'?1-p~o). 

The data and the last formula entail, in the Logic of Pro-
positions, r-p~o. 

I-p~o entails, in the Logic of Numbers (arithmetic), p~ I. 
Thus we have proved 

TI (E H)-'?(P(A, H, p)-'?p~ I). 
This is the Maximum Theorem. 

6. The Multiplication Principle 
Given the additional data P>o and q>o respectively, the 

Multiplication Axiom A5 can be 'converted'. This means the 
following thing: 

Given the data E H&A and P(A, H, p) and P(A&B, H, r) and 
P>o we can deduce P(B, H&A, r: p), and given the data E H&A 
and P(B, H&A, q) and P(A&B, H, r) and q>o we can deduce 
P(A, H, r: q). 

As auxiliary datum for the first deduction we use 
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P(B, H&A, q) and as auxiliary datum for the second deduction 
we use P(A, H, p). 

As and E H&A and P(A, H, p) and P(B, H&A, q) entail, in 
the Logic of Propositions, P(A&B, H, pq). 

E H&A entails E H. 
AI and E Hand P(A&B, H, r) and P(A&B, H,pq) entail r=pq. 

P>o and r --}q entail, in the Logic of Numbers, q =r : p, and 
q>o and r=pq entail, in the Logic ofNumbers, P=r: q. 

In virtue of the Principle ofldentity, P(A, H, p) and p =r : q 
entail P(A, H, r: q), and P(B, H&A, q) and q=r :p entail 
P(B, H&A, r: p). 

Thus we have proved the formulae 
(E H&A)-+(P(A, H, p)&P(B, H&A, q)&P(A&B, H, r)&p>o-+ 
P(B, H&A, r: p)) and (E H&A)-+(P(A, H, p) &P(B, H&A, q) 
&P(A&B, H, r)&q>o-+P(A, H, r: q)) respectively. 

In virtue of the Rule of Quantification we get the new 
formulae 
(E H&A)-+(P(A, H, p) &(Eq)P(B, H&A, q) &P(A&B, H, r) & 
P>o--+P(B, H&A, r :p)) and (E H&A)-+((Ep)P(A, H, p)& 
P(B, H&A, q)&P(A&B, H, r)&q>o--+P(A, H, r: q)) respectively.1 

In virtue of the Rule of Elimination, we can now drop the 
auxiliary data. So we finally get 
T2 (E H&A)-+(P(A, H, p)&P(A&B, H, r)&p>o-

P(B, H&A, r :p)) 
and 
T3 (E H&A)-+(P(B, H&A, q)&P(A&B, H, r)&q>o--+ 

P(A, H, r: q)). 
By the Multiplication Principle we shall understand the joint 

content of As and T2 and T3. 

* * * * * 
Given the data E H and P(A, H, o) we can deduce 

P(A&B, H, o). 
Two cases should be distinguished: either H&A exists or 

H&A is empty. 
As and E H&A and P(A, H, o) and P(B, H&A, q) entail, in 

the Logic of Propositions, P(A&B, H, oq). 
1 It should be noted that a--..(b--..c) is identical with a&b--..c. 

182 



THE LOGIC OF PROBABILITY 
oq is jdentical with o. (This is an example of what we called 

above on p. I8o a 'subsidiary datum.') 
In virtue of the Principle of Identity, P(A&B, H, oq) and 

oq=o entail P(A&B, H, o). 
Thus we have proved the formula 

(E H&A)~(P(A, H, o)&P(B, H&A, q)~P(A&B, H, o)). 
In virtue of the Rule of Quantification, we get from this 

(E H&A)~(P(A, H, o)&(Eq)P(B, H&A, q)~P(A&B, H, o)). 
In virtue of the Rule of Elimination, we get from this 

(E H&A)~(P(A, H, o)~P(A&B, H, o)). 
E H&A entails, in the Logic of Properties, H C A. 

A3 and E H and H c A entail, in the Logic of Propositions, 
P(A, H, I). 

A4 and E H and P( A, H, I) entail, in the Logic of Proposi-
tions, P( A, H, o). 

Further E H&A also entails, in the Logic .of Properties, 
HcA&B. 

A3 and E Hand H C A&B entail, in the Logic of Propositions, 
P(A&B, H, I). 

A4 and E Hand P(A&B, H, I) entail, in the Logic of Proposi-
tions, P(A&B, H, o). 

Thus we have proved the formula 
(E H)&(E H&A)~(P(A, H, o)~P(A&B, H, o)). 

The two formulae (EH&A)~(P(A,H, o)~P(A&B, H, o)) and 
(E H)&(E H&A)~(P(A, H, o)~P(A&B, H, o)) entail, in the 
Logic of Propositions, 
T4 (E H)~(P(A, H, o)~P(A&B, H, o)). 

Given the data E H&A and P(B, H&A, o) we can deduce 
P(A&B, H, o). 

A5 and E H&A and P(B, H&A, o) and P(A, H, p) entail, in 
the Logic ofPropositions, P(A&B, H,po). 

po is identical with o. (Subsidiary datum.) 
In virtue of the Principle of Identity, P(A&B, H, po) and 

po=o entail P(A&B, H, o). 
Tht.Is we have proved the formula 

(E H&A)~(P(A, H, p)&P(B, H&A, o)~P(A&B, H, o)). 
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In virtue of the Rule of Quantification, we get from this 

(E H&A)~((Ep)P(A, H, p)&P(B, H&A, o)~P(A&B, H, o)). 
In virtue of the Rule of Elimination, we get from this 

T5 (E H&A)~(P(B, H&A, o)~P(A&B, H, o)). 
T4 and T5 state that the conjunctive probability in A5 is o, 

if either of the simple probabilities in A5 is o. It should be 
observed that this value of the conjunctive probability is 
independent not only of the value of the second of the simple 
probabilities, but also of its existence. 

7. The Principle cif Extensionality 
With the aid of the general principle of logic which we have 

called the Principle of Identity it is possible to prove that the 
probability-relation is extensional, meaning that not only 
identical but also co-extensive properties are substitutable for 
each other in the relation. We shall call this important principle 
of probability the Principle of Extensionality. It is the joint 
content of two theorems. 

First we shall show that given the data E H and A ==B and 
P(A, H, p) we can deduce P(B, H, p) and that given the data 
EHandA=BandP(B, H,p) wecandeduceP(A, H,p). 

Two cases should be distinguished: either H&A exists or 
H&A is empty. 

E H&A and A =B entail E H&B. Thus H&B also exists. 
A =B entails H&A c B and H&B c A. 
A3 and E H&A and H&A c B entail P(B, H&A, I). 
A3 and E H&B and H&B c A entail P(A, H&B, I). 
A5 and E H&A and P(A, H, p) and P(B, H&A, I) entail 

P(A&B, H, p). 
A&B is identical with B&A. (Subsidiary datum.) 
In virtue of the Principle of Identity, P(A&B, H, p) and 

A&B=B&A entailP(B&A, H,p). 
T3 and E H&B and P(A, H&B, I) and P(B&A, H, p) entail 

P(B, H,p). 
Thus we have proved the formula 

(E H&A)&(A=B)~(P(A, H, p)~P(B, H, p)). 
In an altogether similar manner we prove the formula 

(E H&A)&(A=B)~(P(B, H, p)~P(A, H, p)). 
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The two formulae entail the further formula 
(E H&A)&(A=B)-+(P(A, H, P)+-+P(B, H, p)). 

We have now to deal with the case when H&A is empty. 
E H&A and A =B entail E H&B. Thus H&B is also empty. 
E H&A entails H C A and E H&B entails H C B. 
A3 and A4 and E Hand H c A entail P(A, H, o). 
A3 and A4 and E H and H C B entail P(B, H, o). 
AI and E Hand P(A, H, p) and P(A, H, o) entail P=o. 
In virtue of the Principle of Identity, P(B, H, o) and p=o 

entail P(B, H, p). 
Thus we have proved the formula 

(E H)&(E H&A)-+(P(A, H, P)-+P(B, H, p)). 
In an altogether similar manner we prove the formula 

(E H)&(E H&A)-+(P(B, H, P)-+P(A, H, p)). 
The two formulae entail the further formula 

(E H)&(E H&A)-+(P(A, H, P)+-+P(B, H, p)). 
The formulae for the case when H&A exists and for the case 

when H&A is empty entail the general formula 
T6 (E H)&(A=B)-+(P(A, H, P)+-+P(B, H, p)). 

Secondly, we shall show that given the data E Hand H=G 
and P(A, H,p) we can deduce P(A, G,p) and that given the data 
E Hand H -G and P(A, G, p) we can deduce P(A, H, p). 

The same two cases should be distinguished as before: either 
H&A exists or H&A is empty. 

E H&A and H =G entail E G&A. Thus G&A also exists. 
H=G entails H&A c G and G&A c H. 
A3 and E H&A and H&A c G entail P(G, H&A, I). 

A3 and E G&A and G&A c H entail P(H, G&A, I). 
E H and H =G entail E G . 

. H=G entails H C G and G C H. 
A3 and E Hand H C G entail P(G, H, I). 
A3 and E G and G C H entail P(H, G, I). 
As and E H&A and P(A, H, p) and P(G, H&A, I) entail 

P(A&G, H, p). 
A&G is identical with G&A. (Subsidiary datum.) 
In virtue of the Principle of Identity, P(A&G, H, p) and 

A&G=G&AentailP(G&A, H,p). 
E Hand H=G entail E H&G. 
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T2 and E H&G and P(G, H, x) and P(G&A, H, p) entail 

P(A, H&G, p). 
H&G is identical with G&H. (Subsidiary datum.) 
In virtue of the Principle of Extensionality, P(A, H&G, p) and 

H&G=G&H entail P(A, G&H, p). 
A5 and E H&G and P(H, G, I) and P(A, G&H, p) entail 

P(H&A, G, p). 
H&A is identical with A&H. (Subsidiary datum.) 
In virtue of the Principle of Identity, P(H&A, G, p) and 

H&A=A&H entail P(A&H, G, p). 
T3 and E G&A and P(H, G&A, I) and P(A&H, G, p) entail 

P(A, G, p). 
Thus we have proved the formula 

(E H&A)&(H=G)-(P(A, H, p)-P(A, G, p)). 
In an altogether similar manner we prove the formula 

(E H&A)&(H=G)-(P(A, G, p)-P(A, H, p)). 
The two formulae entail the further formula 

(E H&A)&(H-=G)-(P(A, H, P)+-+P(A, G, p)). 
We have now to deal with the case when H&A is empty. 

E H&A and H=G entail E G&A. Thus G&A is also empty. 
E H&A entails H C A and E G&A entails G C A. 

A3 and A4 and E Hand H C A entail P(A, H, o). 
A3 and A4 and E G and G C A entail P(A, G, o). 
Ar and E Hand P(A, H,p) and P(A, H, o) entailp=o. 
In virtue of the Principle of Identity, P(A, G, o) and p =O 

entail P(A, G, p). 
Thus we have proved the formula 

(E H)&(E H&A)&(H-=G)-(P(A, H, p)-P(A, G, p)). 
In an altogether similar manner we prove the formula 

(E H)&(E H&A)&(H==G)-(P(A, G, p)-P(A, H, p)). 
The two formulae entail the further formula 

(E H)&(E H&A)&(H==G)-(P(A, H, P)+--+P(A, G, p)). 
The formula for the case when H&A exists and the formula 

for the case when H&A is empty entail the general formula 
T7 (E H)&(H=G)-(P(A, H, P)+--+P(A, G, p)). 

T6 and T7 or the Principle of Extensionality having thus 
been proved, we shall no longer make explicit reference in the 
proofs to the Principle of Identity. This means that the inter-
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substitutability of identical, as opposed to 'merely' co-extensive, 
properties in the relation P is hereafter taken for granted. 

Note.-In my publication Ueber Wahrscheinlichkeit (1945) I used the Principle of 
Identity only for numbers. In order to prove the Principle of Extensionality for 
the probability-relation I had to add to the system two more axiOins, vk. (E H)-+ 
(P(A&B, H, P)-+P(B&A, H, p)) and (E H&G) .... (P(A, H&G, p)-P(A, G&H,p)). 
In no case need T6 and T7 themsdves be taken as axioms. 

8. The Principle of Equivalence 
From the data E Hand P(A, H, p) we can deduce 

P(A&H, H, p), and from the data E Hand P(A&H, H, p) we 
can deduce P(A, H, p). 

H C His tautologous. (Subsidiary datum.) 
A3 and E Hand He H entail P(H, H, I). 
E H entails E H&H. 
A5 and E H&H and P(H, H, r) and P(A, H&H, p) entail 

P(H&A, H, p). 
T2 and E H&H and P(H, H, I) and P(H&A, H, p) entail 

P(A, H&H, p). 
Thus we have proved the formula 

TB (EH)-(P(A, H, P)+-+P(A&H, H, p)). 
A&H c H is tautologous. TB thus means that any probabi-

lity-expression can be replaced by another probability-ex-
pression in which the conjectured property is included in the 
field of measurement. The relation of probability between the 
conjectured and the evidential property is thus, in a certain 
sense, a relation between part and whole. 

9· The Addition Principle 
By the Addition Principle we shall understand the joint 

content of two theorems, called the Special and the General 
Addition Theorems respectively, together with their converses. 

We shall first prove the Special Addition Theorem. 
The data are E Hand E A&B andP(A, H,p) and P(B, H, q). 

We want to deduce P(AvB, H, P+q). 
Two cases should be distinguished: either H&(AvB) exists or 

H&(AvB) is empty. 
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We shall first deal with the case when H&(AvB) exists. 
As auxiliary datum we use P(AvB, H, r). 
Two sub-cases should be distinguished: either r is greater 

than o or r is o. 
(AvB)&A is identical with A and (AvB)&B is identical with B. 
T2 and E H&(AvB) and P((AvB)&A, H, p) and P(AvB, H, r) 

and r>o entail P(A, H&(AvB), p: r). 
T2 and E H&(AvB) and P((AvB)&B, H, q) and P(AvB, H, r) 

and r>o entail P(B, H&(AvB), q: r). 
TB and E H&(AvB) and P(B, H&(AvB), q: r) entail 

P(B&H&(AvB), H&(AvB), q: r). 
E A&B entails B&H&(AvB)=A&H&(AvB).: 
T6 and E H&(AvB) and B&H&(AvB)=A&H&(AvB) and 

P(B&H&(AvB), H&(AvB), q: r) entail 
P(A&H&(AvB), H&(AvB), q: r). 

TB and E H&(AvB) and P(A&H&(AvB), H&(AvB), q: r) 
entail P(A, H&(AvB), q: r). 

A4 and E H&(AvB) and P(A, H&(AvB), p: r) entail 
P(A, H&(AvB), I-p: r). 

AI and E H&(AvB) and P(A, H&(AvB), q: r) and 
P(A, H&(AvB), I-p: r) entail q: r=I-P: r. 

r>o and q: r=I-P: r entail r=P+q. 
P(AvB, H, r) and r=P+q entail P(AvB, H, P+q). 
We shall now deal with the sub-case r=o. 
T4 and E Hand P(AvB, H, o) entail P((AvB)&A, H, o) and 

P((AvB)&B, H, o). 
Thus we have P(A, H, o) and P(B, H, o). 
AI and E Hand P(A, H, p) and P(A, H, o) entail P=o. 
AI and E Hand P(B, H, q) and P(B, H, o) entail q=o. 
r=o and P=o and q=o entail r=P+q. 
Thus we have proved the formula 
(E H)&(E A&B)&(E H&(AvB))-+ 

(P(A, H, p)&P(B, H, q)&P(AvB, H, r)-+P(AvB, H, P+q)). 
In virtue of the Rule of Quantification, we can replace 

P(AvB, H, r) in the formula by (Er)P(AvB, H, r). 
In virtue of the Rule of Elimination, (Er)P(AvB, H, r) can be 

dropped from the formula. Thus we get the formula 
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(E H)&(E A&B)&(E H&(AvB))-+(P(A, H, p)&P(B, H, q)-+ 
P(AvB, H, P+q)). 

We shall now deal with the case when H&(AvB) is empty. 
No auxiliary datum is needed. 
E H&(AvB) entails He AvB and He A and He B. 
A3 and A4 and E Hand He AvB and He A and He B 

entail P(AvB, H, o) and P(A, H, o) and P(B, H, o). 
AI and E Hand P(A, H, o) and P(A, H, p) entailp=o. 
AI and E Hand P(B, H, o) and P(B, H, q) entail q=o. 
P=o and q=o entailp+q=o. 
P(AvB, H, o) andp+q=o entail P(AvB, H, P+q). 
Thus we have proved the formula 

(E H)&(E A&B)&(E H&(AvB))-+(P(A, H, p)&P(B, H, q)-+ 
P(AvB, H, P+q)). 

The formula for the case when H&(AvB) exists and the 
formula for the case when H&(AvB) is empty entail the general 
formula 
Tg (E H)&(E A&B)-+(P(A, H, p)&P(B, H, q)-+ 

P(AvB, H, P+q)). 
This is the Special Addition Theorem. There are two 

'converses' of it which we give here without proof, viz. 
T10 (E H)&(E A&B)-+(P(A, H, p)&P(AvB, H, q)-+ 

P(B, H, q-p)) 
and 
Tu (E H)&(E A&B)-+(P(B, H, p)&P(AvB, H, q)-+ 

P(A, H, q-p)). 
We shall next prove the General Addition Theorem. 
The data are E Hand P(A, H,p) and P(B, H, q) and 

P(A&B, H, r). We want to deduce P(AvB, H,p+q-r). 
Two cases should be distinguished: either H&B exists or 

H&B is empty. 
We shall first deal with the case when H&B exists. 
Two sub-cases should be distinguished: either q is greater 

than o or q is o. 
T2 and E H&B and P(B, H, q) and P(A&B, H, r) and q>o 

entails P(A, H&B, r: q). 
A4 and E H&B and P(A, H&B, r : q) entail 

P(if, H&B, I-r: q). 
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A5 and E H&B and P(B, H, q) and P(A: H&B, 1-r : q) and 

q>o entail P(B&A, H, q-r). 
E A&B&A is tautologous. 
Tg and E Hand E A&B&A and P(A, H, p) and 

P(B&A, H, q-r) entailP(AvB&A, H, P+q-r). 
AvB&A is identical with AvB. 
Thus we have P(AvB, H, P+q-r). 
We shall now deal with the sub-case q=o. 
T4 and E Hand P(B, H, o) entail P(A&B, H, o) and 

P(B&A, H, o). 
Ar and E Hand P(A&B, H, r) and P(A&B, H, o) entail r=o. 
q =O aE-d r =O entail q-r =O. _ 
P(B&A, H, o) and q-r=o entail P(B&A, H, q-r). 
As we already know, Tg and E Hand E A&B&A and 

P(A, H, p) and P(B&A, H, q-r) entail P(AvB, H, P+q-r). 
It remains for us to deal with the case when H&B is empty. 
E H&B entails He B. 
A3 and A4 and E Hand H C B entail P(B, H, o). 
P(AvB, H, P+q-r) can now be deduced in exactly the same 

way as under the alternative q =o. 
We have herewith completed the proof of the formula 

Tr2 (E H)->;(P(A, H, p)&P(B, H, q)&P(A&B, H, r) 
-';P(AvB, H, P+q-r)) 

This is the General Addition Theorem. There are three 
'converses' of it which we give here without proof, viz. 
Tr3 (E H)-';(P(B, H, p) &P(A&B, H, q) &P(AvB, H, r)->; 

P(A, H, q+r-p)) 
Tr4 (E H)->;(P(A, H, p) &P(A&B, H, q) &P(AvB, H, r)-'; 

P(B, H, q+r-p)) 
and 
Tr5 (E H)->;(P(A, H,p)&P(B, H, q)&P(AvB, H, r)-'; 

P(A&B, H, P+q-r)). 

ro. The Inverse Principle 
There are three data as to the existence of fields of measure-

ment, viz. E H&A and E H&B and E H&C. The properties 
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A and B are mutually exclusive, i.e., E A&B. The same pro-
perties are further jointly exhaustive of the field H&C, i.e. 
H&C CAvE. There are four data as to the existence of proba-
bilities, viz. P(A, H, p) and P(B, H, q) and P(C, H&A, r) and 
P(C, H&B, s). Finally there is the datum pr+qs>o. 

On these data we want to deduceP(A, H&C,pr: (Pr+qs)) and 
P(B, H&C, qs: (Pr+qs)). 

As and E H&A and P(A, H, p) and P(C, H&A, r) entail 
P(A&C, H, pr). 

As and E H&B and P(B, H, q) and P(C, H&B, s) entail 
P(B&C, H, qs). 

E A&B entails E A&B&C. 
E H&A entails E H. 
T9 and E Hand E A&B&C and P(A&C, H, pr) and 

P(B&C, H, qs) entail P(A&CvB&C, H, pr+qs). 
TB and E Hand P(A&CvB&C, H, pr+qs) entail 

P((A&Cv B&C)&H, H, pr+qs). . 
H&C c AvB entails (A&CvB&C)&H=C&H. 
T6 and E H and (A&CvB&C)&H=C&H and 

P((A&Cv B&C)&H, H, pr+qs) entail P(C&H, H, pr+qs). 
TB and E Hand P(C&H, H, pr+ qs) entail P(C, H, pr+ qs). 
T2 and E H&C and P(A&C, H,pr) and P(C, H,pr+qs) and 

pr+qs>o entail P(A, H&C, pr: (Pr+qs)). 
T2 and E H&C and P(B&C, H, qs) and P(C, H, pr+qs) and 

pr+qs>o entail P(B, H&C, qs: (Pr+qs)). 
Thus we have proved the formula _ 

TI6 (E H&A) &(E H&B) &(E H&C) &(E A&B) & 
(H&CcAvB)-'>-(P(A, H, p)&P(B, H, q)&P(C, H&A, r)& 
P(C, H&B, s)&pr+qs>o-'>-P(A, H&C, pr: (Pr+qs))) 

and the symmetrical formula 
T17 (E H&A)&(E H&B)&(E H&C)&(E A&B)& 

(H&C c AvB)-'>-(P(A, H, p)&P(B, H, q)&P(C, H&A, r)& 
P(C, H&B, s)&pr+qs>oP(B, H&C, qs: (pr+qs))). 
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I I. The Composition Principle 
The data are E Hand E G and E H&G and P(A, H, p) and 

P(A, G, q) and P(H, HvG, r). We want to deduce 
P(A, HvG,pr+q-qr). 

E H entails E HvG. 
HvG C HvG is tautologous. 
A3 and E HvG and HvG _C HvG entails P(HvG, HvG, I). 
T10 and E HvG and E H&G and P(HvG, HvG, I) and 

P(H, HvG, r) entail P(G, HvG, I-r). 
H is identical with H&(HvG) and G is identical with 

G&(HvG). 
A5 and E Hand P(H, HvG, r) and P{A, H&(HvG), p) entail 

P(A&H, HvG, pr). 
A5 and E G and P(G, HvG, I-r) and P(A, G&(HvG), q) entail 

P(A&G, HvG, q-qr). 
E H&G entails E A&H&G. 
T9 and E HvG and E A&H&G and P(A&H, HvG, pr) and 

P(A&G, HvG, q-qr) entail P(A&HvA&G, HvG, pr+q-qr). 
A&HvA&G is identical with A&(HvG). 
TB and E HvG and P(A&(HvG), HvG, pr+q-qr) entail 

P(A, HvG, pr+q-qr). 
Thus we have proved the formula 

T18 (E H)&(E G)&(E H&G)-+ 
(P(A, H,p) &P(A, G, q) &P(H, HvG, r)-+P(A, HvG,pr+q-qr)). 

This we shall call the General Composition Theorem. There 
are three 'converses' of it which we give without proof, vi;:. 
T19 (E H)&(E G)&(E H&G)-+ 

(P(A, G, p)&P(H, HvG, q)&P(A, HvG, r)&q>O-+ 
P(A, H, (r-p+pq) : q)) 

T2o (E H) &(E G) &(E H&G)-+ 
(P(A, H, p)&P(H, HvG, q)&P(A, HvG, r)&q<I-+ 
P(A, G, (r-pq) : (I -q))) 

T21 (E H)&(E G)&(E H&G)-+ 
(P(A, H, p)&P(A, G, q)&P(A, HvG, r)&p-q>O-+ 
P(H, HvG, (r-q): (p-q))). 

The datum p-q>o requires a comment. If p equals q, then 
the probability of H on evidence HvG cannot be computed from 
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the data. It does not follow that it does not exist. If p is smaller 
than q, then, since the data are 'symmetrical' in Hand G, we 
can compute the probability of G on evidence HvG. From this 
we get the probability of H on evidence HvG by subtracting the 
computed value from r. 

In the proof of T18, let the datum P(A, G, q) be replaced by 
P(A, G, p). 

Then we obtain the formula (E H)&(E G)&(E H&G)-+ 
(P(A, H, p)&P(A, G, p)&P(H, HvG, r)-+P(A, HvG, p)). 

In virtue of the Rule of Quantification, we get from this 
(E H) &(E G) &(E H&G)-+ 
(P(A, H, p)&P(A, G, p)&(Er)P(H, HvG, r)-+P(A, HvG, p)). 

In virtue of the Rule of Elimination, we finally get 
T22 (E H)&(E G)&(E H&G)-+(P(A, H, p)&P(A, G, P)-+ 

P(A, HvG,p)). 
This we shall call the Special Composition Theorem. 

I 2. Independence 
If H&B exists and if the probability of A on evidence H&B 

is the same as the probability of A on evidence H alone, then we 
call A independent (for probability) of Bin H. 

If A is independent of Bin H, then we say that B is irrelevant 
(for probability) to A in H. 

If A is independent of B in H and B is independent of A in 
H, then we call A and B mutually independent in H. 

The data E H&B and P(A, H, p) and P(A, H&B, p) thus make 
A independent of B in H. 

On the additional data E H&A and P>o and P(B, H, q) we 
easily deduce P(B, H&A, q). 

If we replace the additional datum P(B, H, q) by 
P(A&B, H, q), we easily deduce P(B,H, q :p) andP(B, H&A, q :p). 

If we replace the additional datum P(B, H, q) by 
P(B ,H&A, q), we easily deduce P(B, H, q). 

Thus on the above three alternatives as to additional data 
we can, from the independence of A of B in H, conclude the 
mutual independence of the two properties in H. 

It is of some importance to observe that the conclusion from 
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independence to mutual independence requires additional 
data. 

If A is independent of B and also of B in H, then we call A 
completely independent of B in H (or B completely irrelevant 
to A in H). 

As we know, the data E H&B and P(A, H, p) and 
P(A, H&B, p) constitute the independence of A of B in JJ. 

The additional data E H&B and P(B, H, q) and q<I make A 
completely independent of B in H. The proof is as follows: 

T2o and E H&B and E H&B and E H&B&B and 
P(A, H&B,p) and P(B, H!!-BvH&B, q) and P(A, H&BvH&ff,p) 
and q<I entail P(A, H&B,p). Thus A is completely independent 
ofBinH. 

It is of some importance to observe that the conclusion from 
independence to complete independence requires additional 
data. 

If A and B are mutually independent in H, then the proba~ 
bility of A&B on evidence His the probability of A on evidence 
H multiplied by the probability of B on evidence H. This is 
sometimes referred to as the Special Multiplication Theorem. 

13. The Generalized Elementary Principles 
We have now completed our contribution to the building up 

of the first stage of the Calculus of Probability. We proceed to 
the second stage. 

Our first task will be to generalize the Multiplication, 
Addition, Inverse and (Special) Composition Principles of the 
first stage so that they may become valid for any products and 
sums of any number of members of sequences of properties. 

The generalization is a trivial matter of reasoning from n to 
n+I. 

In order to reach full generality we have to express the theo-
rems in the rather complicated symbolism of index numbers 
which we introduced in Chap. II, §5. For some purposes, 
however, it will be sufficient to use simpler theorems which are 
valid, not for any products and sums of n members of a sequence 
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of properties, but for products and sums of the n first members 
of a sequence of properties. 

Formalized proofs of full generality are laborious to work out. 
Since they differ from the corresponding proofs of the first stage 
of the calculus merely in two 'trivial' features, viz. 

1. in introducing subsidiary data (p. 18o) concerning index 
numbers, and 

u. in contammg an inductive step from n to n+ I, we 
shall not burden our exposition with the proofs. 1 

We shall, for the sake of convenience, try to make as little use 
of the symbolism as possible. 

A. The Multiplication Principle. 
Let there be a property H and a sequence of properties 

A1, ••• , Am .... 
For a random (positive) product of m members of the A-

sequence we have the name nKm. (Cf. above p. 58.) 
The data are as follows: 
The product of Hand any product nKm is not empty. 
Any member A; of the A-sequence has a probability A on 

evidence H. 
Any member A; of the A-sequence also has a probability 

np7 on the product of Hand any product nKm as evidence. 
On these data we can compute a probability for any product 

nKm on evidence H. This probability is the probability of the 
first A-property in nKm on H alone as evidence, multiplied by 
the probability of the second A-property in nKm on Hand the 
first A-property inn Km as evidence, multiplied by ... , multiplied 
by the probability of the last A-property in nKm on Hand the 
product of all other A-properties in nKm as evidence. 

Given m and n, the indices of the A-properties in nKm are 
uniquely determined. So also are the indices of any product of 
some A-properties in nKm. Thus, given m and n, the indices of 
the probabilities, the product of which is the computed pro-
bability of nKm on evidence H, are uniquely determined. The 
computed probability can therefore be called npm. (By con-
vention np 1 should be interpreted as Pn·) 

1 There is ~ more form~lized exposition in my publication Ueber Wahrschein-
lichkeit. 
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Thus the generalized form of the Multiplication Axiom As 

can be expressed in symbols as follows: 
T23 (m) (n) (E H&nKm)~ 

((i)P(A;, H,A)&(i)(m)(n)P(A;, H&nKm, np7)~ 
(m)(n)P(nKm, H, npm))• 

We shall not write down in symbols the two 'converses' 
corresponding to T2 and Tj. 

For many purposes it will be sufficient to know, not the 
probability of any product of A-properties, but the probability of 
the product of the nfirst A-properties. For these purposes we can 
use the simpler theorem 
T23' (n)(E H&II~)-+(P(Al, H, fti)&(n)P(An+I• H&IIAn, Pn+ 1 ) 

-+(n)P(IIAm H, Ilpn)). 
B. The Addition Principle. 
Let there be a property H and a sequence of properties 

Al, ... 'Am ••• • 
For a random (positive) sum ofm members ofthe A-sequence 

we have the name nMm. (Cf. above p. 58.) 
The data are as follows: 
The property His not empty. 
Any two members of the A-sequence are mutually exclusive. 
Any member A; of the A-sequence has a probability A on 

evidence H. 
On these data we can compute a probability for any sum 

nMm on evidence H. This probability is the sum nam (cf. above 
p. 61) of the probabilities, on evidence H, of the m A-pro-
perties in the sum n Mm. 

Thus the generalized form of the Special Addition Theorem 
T9 can be expressed in symbols as follows: 
T24 (E H)&(m)(n)(m;;;n-+(E ~&An))-+((i)P(A;, H, P;)-+ 

(m)(n)P(nMm, H, «Tnm)). 
We shall not write down in symbols the two 'converses' 

corresponding to Tio and TI I. 
For the sum of the n first A-properties the theorem runs: 

T24' (E H)&(m)(n)(~-+(E ~&~))-+((i)P(A;, H, A)-+ 
(n)P(:EAn, H, "i:.Pn)). 

Replace the datum that any two members of the A-sequence 
are mutually exclusive by the datum that any product nKm has a 
probability npm on evidence H. This new datum entails as a 
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limiting . case the above datum, that any member A; of the 
A-sequence has a probability A on evidence H. 

On these more general data we can also compute a proba-
bility for any sum n Mm on evidence H. This probability equals 
the sum "(jm or ~em (cf. above p. 61) of the probabilities on 
evidence H of them A-properties in "Mm, minus the sum :em of 
the probabilities on evidence H of the products of any two A-
properties in "Mm, plus the sum ~em of the probabilities on 
evidence H of the products of any three A-properties in "Mm 
minus ... , "Pm or ;:.em, or the probability on evidence H of the 
product of all the A-properties in "Mm. 

Thus the generalized form of the General Addition Theorem 
TI2 can be expressed in symbols as follows: 
T25 (E H)-+((m)(n)P("Km, H, "Pm)-+ 

(m)(n)P("Mm, H, ~em-:em+~em .... ;:.em)). 
We shall not write down in symbols the three 'converses' 

corresponding to T13, T14, and T15. 
C. The Inverse Principle. 
Let there be two properties B and H and a sequence of 

properties Au ... , A"' .... 
The data are as follows: 
The product of Hand B is not empty. 
The product of H and any member Ai of the A-sequence is 

not empty. 
Any two members of the A-sequence are mutually exclusive. 
Any member Ai of the A-sequence has a probability A on 

evidence H. 
The property B has a probability q; on the product of H and 

any member A; of the A-sequence as evidence. 
The product H&B is included in the sum "Mm. 
A; is one of the A-properties in the sum "Mm. This we express 

Inc(n, m, i, 1). (Cf. above p. 6o.) 
On these data we can compute a probability for A; on 

evidence H&B. This probability equals the product of the 
probability of A; on evidence H and the probability of B on 
evidence H&A; divided by the sum nOm ( cf. above p. 62) of 
all such products, when A; is in order the first, the second, ... , 
the last A-property in the sum "Mm .. It is assumed that nOm is 
greater than o.) 
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Thus the generalized form of the Inverse Theorem Tr6 (and 
Tr7) can be expressed in symbols as follows: 
T26 (E H&B)&(i)(E H&A;)&(m)(n)l~-+(E Am&An))-+ 

((i)P(A;, H,P;)&(i)P(B, H&A;, q;)&H&B C n Mm&lnc(n, m, i, I) 
&nQm>o-+P(A;, H&B, P;q;: nQm)). 

Replace the datum above that A; is one of the A-properties 
in the sum nMm by the new datum that k Mg is a sum of g of the 
m A-properties in the sum nMm. This we express lnc(n, m, k, g). 

The probability, on evidence H&B, of each one of the A-
properties in the sum k Mg can be computed from T26. Since 
the A-properties are mutually exclusive, the probability on 
evidence H&B of the sum k Mg itself can be computed from 
T24. In this way we get a new theorem which we call the 
Extended Inverse Theorem. In symbols: 
T27 (E H&B)&(i)(E H&A;)&(m)(n)(~-+(E Am&An))-+ 

((i)P(A;, H,P;) &(i)P(B,H&A;, q;) &H&B c n Mm&Inc(n,m,k,g) 
&nQm>O-+P(kMg, H&B, kQg: nQm)). 

D. The Composition Principle. 
A generalization of the General Composition Principle is not 

needed. • 
Let there be a property A and a sequence of properties 

H 1, ••• , Hm ...• 
For a random (positive) sum of m members of the H-sequence 

we shall use the name n Mm. 
The data are as follows: 
Every one of the H-properties exists. 
Any two of the H-properties are mutually exclusive. 
The property A has a probability p on any H; as evidence. 
On these data it can be shown that the property A has the 

same probability p also on any sum n Mm as evidence. 
Thus the generalized form of the Special Composition 

Theorem T22 can be expressed in symbols as follows: 
T28 (i)(E H;)&(m)(n)(~(E Hm&Hn))-+((i)P(A, If;, P)-+ 

(m)(n)P(A, nMm, p)). 
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I 4· Independence-Realms 
Our next task will be to generalize the concept of indepen-

dence and to introduce the important notion of Independence-
Realms. 

The members of the sequence A1, ••• , Am ... , of properties 
are said to be totally independent for probability in H, if, and 
only if, the following three conditions are fulfilled: 

i. The product of Hand any (positive) product of members 
of the sequence is not empty. In symbols: 

(1) (m)(n)(E H&nKm). 
n. Every one of the members of the sequence has a 

probability on Has evidence and also on the product 
of Hand any (positive) product of other members of 
the sequence as evidence. In symbols: 

(2) (i)P(A;, H, A) &(i)(m)(n) (Exc(n, m, i, I)-+P(A;, H&nKm, "P"l)). 
m. The probability of any member of the sequence on H 

as evidence equals the probability of the same member 
on the product of H and any (positive) product of 
other members of the sequence as evidence. In sym-
bols: 

(3) (i)(m)(n)(Exc(n, m, i, I)-+P;=nP"/). 
The sequence A1, ••• , Am ... of properties is said to constitute 

an Independence-Realm in H, if, and only if, we retain con-
ditions ii and iii above and replace i by the stronger condition: 

IV. The product of H and any product or sum of some 
m(o::;; m:(. n) of some n(I:(. n) members ofthe sequence 
and the negation-properties of the remaining n-m 
members is not empty. In symbols (considering that 
the negation of a conjunction can be expressed as a 
disjunction in virtue of the Laws of de Morgan): 
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The sequence A 1, ••• , Am ..• of properties is said to con-

stitute a Normal Independence-Realm in H, if, and only if, we 
add to ii and iii and iv the following condition : 

v. The probability of any member of the sequence on 
evidence His not extreme. In symbols: 

(5) (i)(A>o&A< 1) 
If the sequence A1, ••• , A,., .•. of properties constitutes a 

Normal Independence-Realm in H, we can prove the following 
ten theorems: 1 

1. Any two positive products with no common constituent 
are mutually independent in H. 

Proof: From ii and iv in combination with the Multiplication 
Principle it follows that "Km has a probability "Pm on evidence 
H. From the condition of independence iii it follows that "Pm 
equals the product of the probabilities on evidence H of the 
m A-properties in "Km. For this product we have the name 
717Tm· (Cf. above p. 61.) 

If "Km and kKg have no common constituent, then from ii 
and iv in combination with the Multiplication Principle it 
follows that "Km has a probability "qm on evidence H&kKg. 
From the condition of independence iii it follows also that "qm 
equals "7Tm· 

Thus "Pm="qm and "Km is independent ofkKg in H. 
In a similar manner we prove that kKg is independent of 

"KminH. 
Thus "Km and kKg are mutually independent in H. 
2. The negations of the properties A 1, ••• , Am .•. are totally 

independent in H. 
Proof: Since there is a probability "Pm of "Km on evidence H, 

it follows from the General Addition Principle that there is a 
probability ~em-~em+;em ... . ::,em of "Mm (cf. above p. 61) on 
evidence H. But "Pm equals "7Tm. Consequently (cf. above p. 61) 
~em-~em+;em .... ::,em equals ~rrm-~rrm+;rrm- ... ::,rrm. It follows 
from the Addition Axiom that the probability of "Mm on evi-
dence His I -~lim+ ~rrm-~rrm + ... ;:pm. 

According to the Laws of de Morgan "Mm is identical with 
"Lm ( cf. above p. 58). By simple arithmetical considerations it 

1 A statement in symbols will not be given here. 
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can be shown that 1-~Il"'+~flm-~11"'+ ... ;:.nm is identical with 
"Pm (cf. above p. 61). Thus the probability of "L,. on evidence 
His "Pm· It follows from v that "Pm is greater than o. 

If A; is not a constituent of" Mm, it follows from I and the 
General Addition Principle and the Addition Axiom that the 
probability of"Lm on evidence H&A; is also "Pm• 

It follows from the Multiplication Axiom that the probability 
of A;&"Lm on evidence HisA·nPm· Sincenpm>o, it follows from 
the first converse ( T2) of the Multiplication Axiom that the 
probability of A; on evidence H&nLm is A· It follows from the 
Addition Axiom that the probability of A; on evidence H&nLm is 
1-A-

It follows from ii that the probability of A; on evidence H 
alone is also I-A· 

Thus according to our definition of total independence, the 
negations of the A-properties are totally independent in H. 

3· Any two negative products with no common constituent 
are mutually independent in H. 

Mter the proof of 2 we can prove 3 in a way which is closely 
similar to the proof of I. 

4· Any negative product is independent of any positive 
product in H supposing the two products do not contradict one 
another. 

Proof: As we have seen, the probability of"Lm on evidence H 
is nPm· But "Lm is identical with "Mm. Consequently, the pro-
bability of "Mm on evidence H is I-"Pm· If "Lm and kK8 do 
not contradict one another, it follows from I and the Special 
Addition Theorem that the probability of n Mm on evidence 
H&kK8 is also I-"Pm• Consequently, the probability of"L,. on 
evidence H&kK8 is the same as on evidence H alone. 

Thus n Lm is independent of k K8 in H. 
5· Any positive product is independent of any negative 

product in H, supposing the two products do not contradict one 
another. 

Proof: As we have seen, the probability ofnKm on evidence H 
is n1Tm• If k£8 and n Km do not contradict one another, it follows 
from 4 that the probability of kLz on evidence H&nKm is the 
same as on evidence H alone, vi;::. kPz· It follows from the 
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Multiplication Axiom that the probability of nKm&"L8 on 
evidence His n1Tm·"Pe· But "Pe is not o. It follows from the first 
converse (T2) of the Multiplication Axiom that the probability 
ofnKm on evidence H&"L8 is n1Tm• Consequently, the probability 
ofnKm on evidence H&"L8 is the same as on evidence H alone. 

Thus n Km is independent of" L8 in H. 
6. Any positive product is independent of any consistent 

mixed product in H, supposing that the products have no 
common constituent and do not contradict one another. 

Proof: If nKm and iK; have no common constituent, it 
follows from I that the probability oPKm on evidence H&iK; 
is the same as on evidence H alone, viz., n1Tm• nKm&i~ is a 
positive product ofm+i A-properties. If"£8 does not contradict 
nKm&iK;, it follows from 4 that the probability of "L8 on 
evidence H&nKm&i~ is the same as on evidence H alone, viz., 
"Pe· It follows from the Multiplication Axiom that the proba-
bility of nKm&"L6 on evidence H&iK; is n1Tm·"Pe· But "p6 is 
not o. It follows from the first converse of the Multiplication 
Axiom that the probability oPKm on evidence H&iK;&"L8 is 
n1Tm. Consequently, the probability oPKm on evidence H&i~& 
"L6 is the same as on evidence H alone. 

Thus nKm is independent ofi~&"L8 in H. 
7· Any consistent mixed product is independent of any 

positive product in H, supposing that the products have no 
common constituent and do not contradict one another. 

The proof of 7 with the aid of 6 is analogous to the proof 
of 5 with the aid of 4· 

8. Any negative product is independent of any consistent 
mixed product in H, supposing that the two products have no 
common constituent and do not contradict one another. 

Proof: IfnLm and iL; have no common constituent, it follows 
from 3 that the probability of nLm on evidence H&iL; is the 
same as on evidence H alone, viz., nPm· n4,.&iL; is a negative 
product of m + i A -properties. If" K8 does not contradict n Lm&iL;, 
it follows from 5 that the probability of "K8 on evidence 
H&nLm&iL; is the same as on evidence H alone, viz., "1r8 • It 
follows from the Multiplication Axiom that the probability 
of7'4,.&"K8 on evidence H&iL; is nPm·"1T8 • But it follows from v 
that "1r6 is greater than o. It follows from the first converse of 
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the Multiplication Axiom that the probability of nLm on evi-
dence H&iL;&kKg is nPm· Consequently, the probability oPLm 
on evidence H&iL;&kKg is the same as on evidence H alone. 

Thus "Lm is independ(mt ofiL;&kKg in H. 
9· Any consistent mixed product is independent of any 

negative product in H, supposing that the products have no 
common constituent and that they do not contradict one 
another. 

The proof of 9 with the aid of 8 is analogous to the proof of 
7 with the aid of 6. 

zo. Any two consistent mixed products are mutually indepen-
dent in H, supposing that the two products have no common 
constituent and that they do not contradict one another. 

Proof: It follows from 6 that the probability of "Km on 
evidence H&iK;&vLu is n7Tm and from 8 that the probability of 
kLg on evidence H&nKm&iK;&vLu is kPg· It follows from the 
Multiplication Axiom that the probability of nKm&kL8 on 
evidence H&iK;&vLu is n'TTm.kPg· On the other hand, the 
probability ofnKm on evidence His "7Tm· It follows from 4 that 
the probability of kLg on evidence H&"Km is kPg· It follows 
from the Multiplication Axiom that the probability of n Km&kLg 
on evidence H is n'1Tm.kp8 • Consequently, the probability of 
"Km&kLg on evidence H&iK;&vLu is the same as on evidence 
H alone. 

Thus "Km&kLg is independent ofiK;&vLu in H. 
In a similar manner we prove that i J(i&v Lu is independent 

ofnKm&kLg in H. 
Thus nKm&kLg and iK;&vLu are mutually independent in H. 
It is seen that if the sequence A 1 , ••• , Am ... constitutes a 

Normal Independence-Realm in H, then the probability on 
evidence H of any positive, negative, or consistent mixed 
product of A-properties equals the product of the probabilities 
on evidence H of the A-properties in question themselves. Thus 
in a Normal Independence Realm the probability of any 
product of properties can be computed according to the so-
called Special Multiplication Theorem. 
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15. The Direct Principles of Maximum Probability and 
of Great Numbers 

The sequence A1, ••• , Am ... of properties is said to constitute 
a Bernoullian Independence-Realm in H, if, and only if, in 
addition to conditions ii and iii and iv and v of the preceding 
paragraph the following condition is also fulfilled: 

vi. All members of the sequence have the same probability 
on evidence H. In symbols: 

(6) (i)(A=P) 
The Bernoullian Independence-Realms are thus Normal 

Independence-Realms of particularly simple structure. Normal 
Independence-Realms which are not Bernoullian might also be 
called Poissonian Independence-Realms. 

The treatment will henceforth be confined exclusively to 
Bernoulli an Independence-Realms. 

For the conjunction of the symbolic expressions ( 2)-(5) of 
the preceding paragraph we shall use the abbreviation /, and 
for the conjunction of (2)-(6) the abbreviation lb. 

In a Bernoullian Independence Realm n7Tm equals pm and 
nPm equals (r-p)m. 

On Ib as datum we can use the Multiplication Principle 
for computing the probability on evidence H of a consistent 
mixed product with m positive and n-m negative constituents. 
The probability is pm.(r-p)n-m. Thus we have the following 
theorem: 
T29 lb-'?-(Exc(k, m, g, n-m)-'?-P(kKm&cLn-m' H, pm.(r-p)n-m)). 

On Ib as datum we can further compute the probability on 
evidence H of the sum of all mixed products which can be 
formed of n given members of the A-sequence, when m of them 
are taken positively and the remaining n-m negatively. We 
first use the Multiplication Principle for computing the 
probability ofthe products ( T29). Thereafter we use the Special 
Addition Principle for computing the probability of their sum. 
For the sum in question we have the name ~Q:&n-miRn. (Cf. 
above p. 59·) The probability is (':,.).pm.(r-pt-m. Thus we have 
the following theorem: 
T30 /b-'?-P(~Q_n&n-miRn, H, (':,).pm.(r-p)n-m). 
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The value(:;.).pm.(r-p)n-m is the greater the less the ratio m: n 

differs from p 1• Considering the meaning of (:;.).pm.(r-p)n-m as a 
probability, we can express this arithmetical truth as follows: 

The probability, in a Bemoullian Independence Realm, that atry m 
of n given properties will be present and the rest absent in a thing is the 
greater, the less the ratio m : n differs from the probability p of the 
individual properties themselves. 

This we shall call the Direct Principle of Maximum Pro-
bability (for Bernoullian Independence-Realms). 

On Ib as datum we can, finally, compute the probability on 
evidence H of the sum of all mixed products which can be 
formed of n given members of the A-sequence, when first m1 of 
them are taken positively and the remaining n-m1 negatively, 
then m2 of them positively and the remaining n-m 2 negatively, 
... , and finally mk of them positively and the remaining 
n-mk negatively. We first use the Multiplication Principle for 
computing the probability of the products ( T29). Thereafter 
we use the Special Addition Principle for computing the 
probability of the sums of products (T3o). Lastly we use the 
Special Addition Theorem again for computing the probability 
of the sum of sums. For the sum of sums we have the name 

k 
it:-,n . (Cf. above p. 59.) The probability is 1: (:;. ).pm11-. 

m1 , ••• ,mk ~=I tL 

(r-p)n-miL. Thus we have the following theorem: 
k 

Tji Ib-+P( it:-,n 'H, 1; (n7 ).pm!J..(r-p)n-m!L). 
ml, .. . , mk (L=I tL 

If r, ... , k are those values of p. for which the ratio miL: n 
k 

falls in the intervale round p, then the value 1: (,:: ) .pm11-.( r-pt-miL 
!J.=I IL 

approaches I as a limit as n is indefinitely increased.1 Or, 
considering its meaning as a probability: 

If I, .. . ,k are those values of p.for which the ratio m!J.: n differs less 
than a given amount e from the probability p of the individual properties, 
then the probability, in a Bernoullian Independence-Realm, that any m1 

1 This statement has the character of what we have called (p. r8o) a 'subsidiary 
datum.' The proof will be found in any textbook on probability. Since the proof 
does not involve any applications of the principles of probability, it will be of no 
interest to reproduce it here. 
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or • • . or mk of n given properties will be present and the rest absent in a 
thing increases with n and approaches the maximum probability 1 as a 
limit. 

This we shall call the Direct Principle of Great Numbers 
(for Bernoullian Independence-Realms). 

The Direct Principles of Maximum Probability and Great 
Numbers for Normal Independence-Realms, in which the 
probabilities of the individual properties are equal, were first 
proved by James Bernoulli (I 7 I 3). 

A generalization of the Direct Principles of Maximum 
Probability and Great Numbers for all Normal Independence-
Realms was first proved by Poisson (I832). 

16. The Inverse Principles of Maximum Probability and 
of Great Numbers 

Let there be v1 fields of measurement 1H1, •• • , 1Hv1 • For their 
sum we introduce the name T 1• 

Let there be v2 fields of measurement 2H 1, ••• , 2Hv.· For 
their sum we introduce the name T 2• 

Similarly, let there be v3, ••• , vw fields of measurement. For 
their sums we introduce the names T 3, ••• , Tw. 

For the sum of all the v1 + ... + vw fields of measurement, 
i.e., for l::Tw, we introducethe name T. Tis thus the name of a 
property, vi<;., the property of being a member of some of the 
v1 + ... + Vw fields of measurement. 1 

Let there be a sequence of properties A 1, ••• , A,, .... 
Let this sequence of properties constitute a Bernoullian 

Independence-Realm in every one of the vi+ ... + vw fields 
of measurement. Thus we have vi data 1lb , ••• , lfb and ••. 

I v1 

and vw data wjb, •• • , wjb • For the conjunction of all those data 
I vw 

we shall use the abbreviation Jb· 
There are four more data of the problem to be treated, viz.: 

1 Instead of T we might also have used a symbol, say T , retaining the 
"1'· · ·•"w 

indices v1, ••• , lJw. This complication, however, is not essential. 
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1. Any two of the v1 + ... + vw fields of measurement are 

mutually exclusive. In symbols: 

( 1) (g)(k)(m)(n)(k::::; w & n::::;; W & g::::;; vk & m::::;; Vn-'J.((E k Hg&nHm)-'J. 
k=n&g=m)). 

11. Any one of the properties A1, ••• , Am ••• has the same 
probability Pt on any one of the v1 properties 1H 1, ••• , 

1Hv as evidence. Any one of the properties All ... , 
I 

Am .•• has the same probability p2 on any one of the 
v2 properties 2H 1, ••• , 2Hv as evidence. And so on up 

2 

to Pw and vw. In symbols: 

(2) (i)(m)(n)(n::::; w & m::;; Vn-'J.P(A;, nnm, Pn)). 

iii. The w probabilities Pt, . . ., Pw are all different. In 
symbols: 

(3) (m)(n)(m:;:;w&n::::;w-(pm=Pn-m=n)). 

1v. The sum T 1 of the v1 first fields of measurement has the 
probability q 1 on the sum T of all the v1 + ... + Vw 

fields of measurement as evidence. The sum T 2 of 
the v2 next fields of measurement has the probability 
q2 on the sum T of all the v1+ ... +vw fields of 
measurement as evidence. And so on up to vw and 
qw. In symbols: 

(4) (n)(n:;:;W-'J.P(Tn, T, qn)). 
For the conjunction of the four symbolic expressions (1)-(4) 

we shall use the abbreviation U. 
On Jb and U as data we can answer the following question: 
What is the probability that a thing will belong to some of V; 

mutually exclusive fields of measurement, in which the pro-
bability of any one of the properties All ... , Am ..• is ft;, on 
the evidence: 

a. that the thing belongs to some of v1 + ... + vw mutually 
exclusive fields of measurement (i::::; w), in which the probabilities 
of any one of the properties A1, ••• , Am ••• are Pt and .•. and 
Pw respectively, and 

fJ. that of given n ones of the properties All ... , Am ... 
m are present and the remaining n-m absent in the thing? 
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Or, to state the same question more briefly: what is the 
probability ofT; on evidence T&kKm&gLn-m? 

This question we shall call the Problem of Bayes. The 
q-values we shall call the probabilities a priori, and the computed 
values we shall call the probabilities a posteriori of the problem. 

According to T29, the probability of kKm&gLn-m on 1H 1 as 
evidence is p 1m.( I-P 1t·m. Similarly, the probability ofkKm&gLn-m 
on 1H2 as evidence is p 1m.(I-P1t·m. And so on up to 1Hv.-

Since the fields of measurement are mutually exclusive, it 
follows from T28, or the Special Composition Theorem, that the 
probability ofkKm&gLn-m on T1 as evidence is also p1m.(I-p1)n-m. 
Similarly, the probability of kKm&gLn-m on T 2 as evidence is 
p2m.(I-h)n-m. And so on up to Tw. 

The conjunction of a disjunction with one of its members 
is identical with that member. Thus T& T1 is identical with T1• 

Consequently, the probability of k Km &g Ln-m on T& T1 as 
evidence is also hm.(I-P1t-m. Similarly, the probability of 
kKm&gLn-m on T&T2 as evidence isp 2m.(I-P2t·m. And so on up 
to T&Tw. 

Thus for all values of i from I to w the probability of T; on 
evidence Tis q; and the probability of k Km&g Ln-m on evidence 
T&T; is pt.(I-A)n-m. From T26 or the Inverse Principle it 
then follows that the probability ofT; on evidence T&k Km&gLn-m 

w 
is pt.(I-P;)n-m.q;: ~ Am.(I-At·m.qw Thus we have proved the 
theorem: ~-t=r 

T32 Jb&U-+(Exc(k, m, g, n-m)&iLW-+ w 

P(T;, T&kKm&gLn-m> pt.(I-P;t·m.q;: ~ Am.(I-At·m.q!J.)). 
IJ.=I 

Traditionally particular importance has been attached to the 
case, where there is still one more datum, viz. 

v. All the probabilities a priori are equal. In symbols: 
(5) (n)(nLW-+qn=q). 

(It might be noted that q equals I : w. For, according to T24', 
or the Special Addition Theorem, the probability of ~ Tw on 
evidence T is ~qw. But ~ Tw is identical with T. Thus the 
probability of~ Tw on evidence Tis, according to the Inclusion 
Axiom, also I. From the Axiom of Uniqueness it follows that 
I =~qw. If all q-values equal the value q, we have I =qw or 
q=I :w.) 
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For the conjunction of the five symbolic expressions (1)-(5) 
we may use the abbreviation ub. 

On the data Jb and Ub the probabilities a priori do not 
influence the calculated probabilities a posteriori. We therefore 
get the simplified theorem: 
T33 ]b&Ub-+(Exc(k, m, g, n-m)&iLw-+ 

w 
P(T;, T&kKm&KLn-m> p[".(I-P;)n-m: ~ Am.(I-At·m)). 

J.t=I 

The numerator p[".( 1-P;)n-m is the greater, the less the ratiom: n 
w 

differs from P;. 1 Hence also the quotient p[".(I-P;)n-m: ~ p.,_m. 
{L=I 

( 1-p.,_)n-m. Or, considering its meaning as a probability: 
Ij, in the Problem of Bayes, the probabilities a priori are equal, 

then the probability a posteriori that a thing in which m of n given 
properties are present and the rest absent, will belong to a field of 
measurement, in which the probability of the individual properties is P;, 
is the greater, the less the ratio m : n differs from A· 

This we shall call the Inverse Principle of Maximum 
Probability (for Bernoullian Independence-Realms). 

On Jb and U as data we can also answer the following 
question: 

What is the probability that a thing will belong to some of 
v;, mutually exclusive fields of measurement, in which the 
probability of any one of the properties A1, ••• , Am ... is At, 
or ... or to some of v;. mutually exclusive fields of measurement, 

J 
in which the probability of any one of the properties A1, ••• , 

Am .•. is A., on the evidence: 
J 

a. that the thing belongs to some of v1 + ... + vw mutually 
exclusive fields of measurement (i1 and ... and ii not being 
greater than w), in which the probabilities of any one of the 
properties A1, ••• , Am •.• are P1 and ... and Pw respectively, 
and 

{1. that of given n ones of the properties A1, ••• , Am ... 
m are present and the remaining n-m ones absent in the thing? 

Or, to state the question more briefly: what is the probability 
of ~T.. on evidence T&kKm&KLn-m? 

'J 
Since the members of the sum ~ T;. are mutually exclusive, 

J 

1 Cf. footnote on p. 205. 
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an application of T27 or the Extended Inverse Theorem gives 
j w 

the value l: A m.(I-A )n-m.qi : l: ftv_m.(I-PtJ.)n-m.qtJ.. 
IJ.=I IJ. IJ. IJ. IJ.=I 

Thus we have the following theorem: 
T34 Jb&U-»(Exc(k, m, g, n-m)&(u)(u~j-'>iu~w)-» 

j w 
P(T;,, T&kKm&'Ln-m' l: A "'.(I-A )n-m.qi : '}:. ftv_m.(I·ftv_)n-m.qJ). 

1 IJ.=I 1J. 1J. 1J. IJ.=I 

If A,, ... , A are those p-values which fall in the interval e 
J 

round the ratio m : n, and if at least one of the corresponding 
j 

q-values q;,, ••• , qi. is greater than o, then the value '}:. A m. 
J IJ.=I IJ. 

w 
(I-A )n-m.qi : '}:. Am.( I-ftv_)n-m.q14 approaches I as a limit as n is 

1J. 1J. !J.=I 
indefinitely increased. 1 Or, considering probability: 

IJ, in the Problem of Bayes, P;., . . ., A are those probabilities 
J 

of the individual properties which fall in the interval e round the ratio 
m : n; and if not all the corresponding probabilities a priori are o; then 
the probability a posteriori that a thing, in which m of n given pro-
perties are present and the rest absent, will belong to a field of measure-
ment, in which the probability of the individual properties differs less 
than the given amount e from the ratio m : n increases with n and 
approaches the maximum probability I as a limit. 

This we shall call the Inverse Principle of Great Numbers 
(for Bernoullian Independence-Realms). 

* * * * * 
In text-books on probability, the Problem of Bayes is usually 

treated on the suppositions that w is non-denumerably great 
and that the p-values continuously cover the whole range from 
o to I. A treatment on these suppositions is, however, beyond 
the reach of the Elementary Calculus of Probability. 

17. Pseudo-Deductions of the Inverse Principles of Maxi-
mum Probability and of Great Numbers 

The so-called probability a posteriori of the Problem of Bayes 
is thus the probability of a certain field of measurement of 

1 cr. footnote on p. 205-
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another probability. This 'superimposition of probabilities' IS 

frequently misrepresented. 
It is, e.g., sometimes said that the probability a posteriori of 

the Problem of Bayes is the probability of a probability. This 
mode of expression suggests the idea that there is some sort of 
distinction of logical types involved in the problem. The 
probability a posteriori seems to refer to a property of higher 
type than the properties to which the p-values refer. 

It is reasonable to think that the idea of a type difference 
between the probability a posteriori and the p-values has its 
root in a false conception of the nature of the probabilities 
a priori. The crucial mistake would consist in the fact that the 
above T-fields of measurement are thought of as sets and not as 
sums (disjunctions) of the underlying H-fields of measurement. 
This fallacy is characteristic, e.g., of the deduction of the Inverse 
Principle of Great Numbers given by Reichenbach in his 
Wahrsc!zeinlichkeitslehre (§§56-6o). 

The difference between the two conceptions of the pro-
babilities a priori, the sum-conception leading to a correct 
deduction of the principles, and the set-conception providing a 
pseudo-deduction of them, will be illustrated by means of a 
concrete example. 

Let us imagine an urn containing a large number of small dice. 
The dice are not all homogeneous; some of them are 'correct' but 
others are biased. As a result, say, of experience from a long series 
of throws we believe ourselves to know the probabilities of getting 
a one with each one of the dice. Thus there are in the urn v1 dice 
with the probability PI for getting a one, v2 dice with the probability 
p2 of getting a one, and finally Vw dice with the probability Pw of 
getting a one. The properties A1 , •.. , Am ... mean: a one in the 
first throw, ... , a one in the n:th throw, .... The results in 
throwing are, as is known, regarded as independent of one another. 
Thus the conditions for the presence of a Bernoullian Independence-
Realm are taken to be satisfied. 

The Problem of Bayes is now this: 
A die is drawn from the urn. With this die n throws are made. Of 

them m are ones and the rest not. What is the probability that the 
drawn die was one with which the probability of getting a one is 
P;? 

If the probability of getting a one with the drawn die is p;, then 
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the probability of getting m ones inn tosses would be pr. (x-P;)n-m. 
In order to answer the above question, however, it is necessary also 
to know the probabilities a priori of, as we say, the different proba-
bilities of getting a one. 

Let cp denote the property of being a die from the urn. Let cfo 1 
denote the property of being a die with which the probability of 
getting a one is p1• Similarly, we introduce cp 2 , and so on up to cfow-
The probabilities a priori of the Problem of Bayes, one might suggest, 
are the probabilities of cp; on evidence cp, or else the probabilities 
that a die will have the probability P; for a one. (i runs through all 
values from I to w.) These probabilitie,s might, e.g., be interpreted 
as the quotients v1 : (v 1 + ... + vw) or the relative frequencies of 
dice in the urn with the probability P; for a one. 1 

However, this way of viewing the required probabilities a priori 
is wrong. The right way of proceeding is the following: 

Let T denote the property of being a throw with a die from the 
urn. (Cf. above p. 206.) Let T 1 denote the property of being a throw 
with some of the v1 dice, with which the probability of getting a one 
is p1• Similarly, we introduce T 2, and so on up to Tw- (Cf. above 
p. 206.) The required probabilities a priori of the Problem of Bayes 
are the probabilities of 7i on evidence T, or else the probabilities 
that a throw will be with a die, of which the probability P; for a 
one is characteristic. (i runs through all values from I to w.) These 
probabilities might, e.g., be interpreted as the relative frequencies 
of throws with dice in the urn with the probability P; for a one. 

It is evident that the two ways, the formally correct and the 
formally incorrect one, of forming the probabilities a priori may 
'materially' lead to concordant results, i.e., give the same values. 
But it is also evident that such a concordance would be purely. con-
tingent and not necessary. If the probabilities are interpreted as 
frequencies in the way suggested above, then concordance would 
mean that the distribution of the various probabilities of getting a 
one among the drawn dice gives a true picture of the distribution of 
those probabilities among the dice in the urn. It is reasonable to 
expect that this would be the case, if the urn were symmetrically 
built and did not contain parts where the dice can 'hide themselves,' 
if the dice are all of equal size and weight (though not equally 
balanced), and if, finally, the contents of the urn were carefully 
mixed before drawing. In imagining the urn, we tend to imagine 
it under these 'ideal' conditions, but it is plain that they are purely 
accidental to the problem as such. 

1 This interpretation corresponds to what Reichenbach (op. cit., §58) calls 
'vertikale Abzahlung im Wahrscheinlichkeitsgitter.' 
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18. The Principle of Succession 
On the same premisses as in the Problem of Bayes, i.e., on the 

data which we have called Jb and U respectively, we can finally 
answer the following question: 

What is the probability that a thing will have the property 
An+r on the evidence: 

a. that it belongs to some of v1 + ... + vw mutually exclusive 
fields of measurement, in which the probabilities of any one of 
the properties A 1, •• • , Am ... are P1 and ... and Pw respectively, 
md · 

{3. that it is a positive instance of the first nones of the proper-
ties At> ••• , Am •.. ? 

Or, using the same symbols as in the Problem of Bayes: what 
is the probability of An+r on evidence T&IIAn? 

The question can also be raised and answered for the more 
general case, when the thing is a positive instance of m of some 
n properties, and a negative instance of the remaining n-m ones. 
This case, however, will not concern us in this inquiry. 

Since the properties A 1, ••• , Am ... are totally independent 
in 1Ht. the probability of An+r on evidence 1H 1&IIAn is the 
same as on evidence 1H1 alone, viz. p1 • 

Similarly, the probability of An+r on evidence 1H 2&IIAn is 
p1, and ... , and the probability of An+r on evidence 1Hv,&IIAn 
is p1• 

Thus, according to T28 or the Special Composition Theorem, 
the probability of An+r on evidence 1H 1&IIAnv ... v 1Hv,&IIAn is 
also p1• 

1H 1 &IIAnv ... v 1Hv,&IIAn is identical with T 1 &IIAn. (Cf. 
above p. 192.) 

T 1&IIAn is identical with T& T 1&IIAn- (C£ above p. 208.) 
According to T32, the probability of T 1 on evidence T&IIAn 

w 
is Pt.ql : ~ PlLn.qlL. 

[L=I 

Thus, according to the Multiplication Axiom, the proba-
w 

bility of T 1 &An+r on evidence T&IIAn is Pt+t .q1 : ~ A n.q[L. 
[L=I 

Similarly, the probability of T 2&An+r on evidence T&IIAn is 
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w 

ft2n+r.q 1 : l: A.n·qv., and ... , and the probability of Tw&IIAn+r 
p.=I 

w 
on evidence T&IIAn is Pwn+r.qw: l: A.n.qiL. 

p.=r 
Since the products T 1&An+u .•. , Tw&An+r are mutually 

exclusive, it follows from T2{ or the Special Addition Theorem 
that the probability of T 1&An+rv ••• vTw&An+x on evidence 

w w 
T&IIAn is l: Pv.n+r.qiL: l: An·qw 

IL=I (L=I , 

The sum T 1&An+rV .•• vTw&An+r is identical with T&An+r• 
According to TB or the Theorem of Equivalence, the 

probability of T&An+x on evidence T &IIAn is the same as the 
probability of An+x alone on evidence T&IIAn. 

Thus the probability of An+x on evidence T&II~ is 
w w 
l: piLn+r.qiL: l: Pv.n.qiL. 

(L=I IL=l 

We have thus proved the theorem 
w w 

Tj5 ]b&U-+P(An+x• T&JIAn> l: An+x.qiL: l: A.n•qJ. 
IL=I IL=I 

If at least one of the q-values is greater than o, the ratio 
w w 
l: p"'n+r.qv.: l: An.q"' increases with n. Or, considering proba-

v.=x IL=I 

bility: 
If, in the Problem of Bayes, not all the probabilities a priori are o, 

then the probability that a thing which is a positive instance of the nfirst 
members of a sequence of properties, will also be a positive instance of 
the next member of the sequence, increases with n. 

(The increasing probability approaches I as its limit, if there 
is a field of measurement which is not a priori minimally pro-
bable, and in which the probability of any one of the properties 
A1, ••• , Am ••• is 1.) 

This we shall call the Principle of Succession. 

* * * * * 
Under the two simplifying assumptions that the p-values 

continuously cover the range from o to I, and that all the 
q-values are equal, we get for the probability in question the 

I n+x I n 
famous value JP dp: JP dp or (n+ 1): (n+2). The deduction 
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of this answer to our question, is, however, beyond the reach of 
the Elementary Calculus of Probability. 1 

* * * * * 
The Inverse Principles in general and those of Maximum 

Probability, Great Numbers, and Succession in particular, have 
sometimes been thought to be of the greatest importance to the 
problems of induction. This opinion will be examined in 
Chapter X. It will be shown to be largely an illusion. It is a 
plausible suggestion that the misconceptions concerning the 
applicability of the Inverse' Principles for purposes of induction 
have been due to an insufficient insight into the fairly compli-
cated logical mechanism of those principles. 

19. The Interpretation of the Calculus and the Ana{ysis of 
Probability 

The axiomatic and formalized deductive system which we 
have outlined in §§2-r8 of this chapter contains, besides 
familiar notions of logic and arithmetic, one other notion, viz. 
the relation P which we introduced in §r. 

It is characteristic of the system that it does not give us any 
means of constructing, for any given formula in which the 
name of this new concept occurs, another formula without it 
which is identical with the first. The system, in other words, 
does not include an explicit definition of the notion ofproba-
bility in terms of other notions. 

If, in the formulae of the calculus, we replace P by the name 
of another non-homogeneous relation, any order of which is 
also an order of P, then we get an interpretation of the calculus. 
(This description is somewhat inaccurate, but will suffice for 
our purposes.) 

If, on an interpretation of the calculus, the formulae express 
true propositions, we speak of a true or valid interpretation. If, 
on an interpretation, the formulae express formal propositions 

1 It might be mentioned that the value (n+ 1) : (n+2) can be obtained without 
integration as an answer to the following question: What is the limiting value which 
the calculated probability in our problem approaches, when w is indefinitely 
increased, on the two simplifying assumptions that the p-values are p1 =o, 
Po= I : (w- I), P3=2 : (w- I), ... , Pw= I and that all the q-values are equal? 
This was pointed out to me by Professor C. D. Broad.-There are also other 'special 
cases', in which the value can be got without integration. 
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we talk of a formal, and if they express material propositions we 
talk of a material, interpretation of the calculus. 

From the problem of interpreting the calculus we must dis-
tinguish the problem of analysing the relation P. 

The meaning of (logical) analysis is vague and complex. 
Analyses may answer to many different purposes and may 
differ in nature accordingly. One purpose of analysis has to do 
with verification or the process of coming to know the truth-
value of propositions. With that purpose in mind, we would call 
something an analysis of probability which facilitates the de-
ciding of the truth-value of probability-propositions. The 
meaning of 'facilitate' is vague and we shall not here attempt 
to make it clear. 

It should be observed that an interpretation of the calculus 
may make it possible for us to decide the truth-value of the 
propositions expressed by the formulae (axioms and theorems), 
without providing a means of deciding the truth-value of the 
propositions expressed by the probability-expressions them-
selves. Of this we shall soon give an example. Therefore, a valid 
interpretation of the calculus need not be an adequate analysis 
(in the above or some other sense) of probability. 

It should further be observed that an interpretation of the 
calculus may make the formulae (axioms and theorems) express 
formal propositions and the probability-expressions express 
material propositions. Of this also we shall soon give an example. 

20. Frequency, Possibility, Degree qf Belief, and Proba-
bility 

The symbol P(A, H, p) can be interpreted as meaning thatp 
is the proportion or relative frequency of things with the 
property H which also possess the property A. Generally 
speaking: the probability-value is the proportion of positive 
instances of the evidence-property which are also positive 
instances ofthe conjectured property. 

The notion of a proportion, we said (p. 78), makes sense 
only on condition that the property of which a proportion is 
contemplated, is either finite or replaced by a sequence. It 
should be observed that if a certain evidence-property is 
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replaced by a sequence, it must be replaced by the same sequence 
throughout the entire formula in which the probability-ex-
pression occurs. This is obvious since, by rearranging a sequence, 
we can alter a proportion. (Cf. above p. 8o f.) 

In either case we get a valid formal interpretation of our 
Calculus of Probability. 1 We call this the Frequency Inter-
pretation. 

On the Frequency Interpretation the axioms and theorems 
of axiomatic probability express formal propositions. This 
should be taken as the precise content of our .previous state-
ment (p. 16g), that the calculus can be deductively built up 
directly on the basis of the definition of probability as a fre-
quency. 

On the Frequency Interpretation the probability-propositions 
themselves are either formal or material propositions about 
proportions. E.g., it is a formal proposition that the proportion 
of primes among cardinal numbers is o, but it is a material 
proposition that the proportion of 'heads' among throws with 
a certain coin is I : 2. Material propositions about proportions 
in infinite (i.e., numerically unrestricted) populations are 
Statistical Laws. 

According to whether, on the Frequency Interpretation, 
probability-propositions are formal or material we may dis-
tinguish between formal or intensional, and material or 
extensional, probability.z 

Take a formula (axiom or theorem) of the calculus. Replace the 
names of evidence-properties which occur in the formula by their 
perfect disjunctive normal denotations in terms of all atomic names 
of properties which occur in the formula. Ifthe formula contains 
a sentence stating that a certain one of the properties denoted 
by a conjunction-name in some of the normal denotations is 
empty, then omit this conjunction-name from the normal de-
notation. The number of (remaining) conjunction-names in the 
respective normal denotations is the number of ways, as we say, 

1 The proof will not be given here. 
2 To say of a probability that it is, in our sense, 'extensional' is not an assertion 

about the way in which this probability is actual{y being interpreted. The 
probability I :2 of getting 'heads' in tossing with a coin e.g. is 'extensional' 
independently of whether we interpret it as a statistical frequency or as a ratio of 
possibilities. It is 'extensional' because, if interpreted statistically, it cannot be 
decided on formal grounds. 
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in which the respective evidence-properties can exist with 
regard to the conjectured properties. The number of(remaining) 
conjunction-names in the respective normal denotations which 
entail the name of the respective conjectured properties is, as 
we say, the number of 'favourable' ways or the number of ways 
in which the respective conjectured properties and evidence-
properties can co-exist. 

The symbol P(A, H, p) can be interpreted as meaning 
thatp is the ratio ofthe number of possible ways in which A and 
H can co-exist, to the number of possible ways in which H can 
exist with regard to A. Generally speaking, the probability-
value is the ratio of the number of ways in which the conjec-
tured property and the evidence-property can co-exist, to the 
number of ways in which the evidence-property can exist with 
regard to the conjectured property. 

An example will illustrate this. Take the formula 
(E H)_,.((Hc A)~P(A, H, r)). The only evidence property 
which occurs in the formula is the one denoted H. Its perfect 
disjunctive normal denotation in terms of all atomi_c names of 
properties which occur in the formula is H&AvH&A. The sen-
tence H C A which occurs in the formula is identical with 
EH&A. Thus the conjunction-nameH&A should be omitted from 
the normal denotation H&AvH&A. What remains is H&A. The 
number of ways in which the evidence-property can exist with 
regard to the conjectured property is thus 1. But H&A entails 
A. The number of ways in which the conjectured property and 
the evidence-property can co-exist is thus also r. Hence the 
probability or the ratio of 'favourable' to possible cases is I. 

The interpretation which uses the above device we call the 
Possibility Interpretation. It can be proved to be a valid formal 
interpretation of our Calculus ofProbability. 1 

On the Possibility Interpretation also, the axioms and theo-
rems of axiomatic probability express formal propositions. 
(E.g., that the probability is I if the evidence-property is 
included in the conjectured property means, on this interpre-
tation, that the evidence-property cannot exist without co-
existing with the conjectured property.) This should be taken 

1 The proof will not be given here. It should be observed that, on adding a 
further device, the interpretation is valid also for the Axiom of Continuity. 
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as the precise content of our previous statement (p. r68) that 
the calculus can be deductively built up directly on the basis 
of the definition of probability as a ratio of possibilities. 

It is a difference between the Frequency and the Possi-
bility Interpretation that on the second, the probability-expres-
sions themselves without exception express formal propositions. 
E.g., it is a formal proposition that, if a toss with a coin can be 
either 'heads,' or 'tails' but not both, then the ratio of the 
number of possibilities favourable to 'heads' to the total number 
of possibilities is I : 2, just as it is a formal proposition that, if 
something is a cardinal, then there is an 'infinitely small' 
possibility that it is a prime. 

Finally, one might suggest an interpretation of the symbol 
P(A, H, p) as meaning that pis the degree to which we believe 
in the presence of A in a thing on the evidence that His present 
in the same thing. Generally speaking, the probability-value 
would be the degree of belief in the presence of the conjectured 
property which we entertain on knowing the presence of the 
evidence-property. 

We call this the Psychological Interpretation. 
As already observed (p. r6gf.), it is uncertain whether any 

satisfactory method for measuring partial belief (independent 
of probability) could be provided. For the sake of argument, 
however, we shall assume that there is such a method. This 
assumption would carry with it the following observations: 

On the Psychological Interpretation the axioms and theorems 
of axiomatic probability would not express formal propositions 
but material propositions about the way in which people 
actually distribute their partial belief. They would be, so to 
speak, psychological laws of believing. The mere fact that the 
interpretation would make probability 'subjective' in the sense 
that different persons (or even the same person at different 
times) may entertain different degrees of belief in the same 
property on the same evidence, is, as such, no proof that 
probability is 'subjective' also in the further sense that not all 
people distribute their beliefs in accordance with the axioms 
and theorems of the calculus. Nevertheless, probability may 
be 'subjective' in this further sense also, i.e., the axioms and 
theorems as laws of believing mqy be false. There are, moreover, 
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certain well-known psychological phenomena, the so-called 
maturity-of-odds arguments, which seem to indicate that these 
laws are false, i.e., that people do not without exception believe 
in conformity with the rules of the calculus of Probability. 
Whether this really is so or not cannot, of course, be decided 
until there is a reliable method for measuring partial belie£ I 
mention the point, because it seems to me to be worth while to 
tackle the problem of finding out to what extent the rules of 
probability have a psychological significance. 

There is thus in any case a fundamental difference between 
the two first and the third interpretation of axiomatic pro-
bability. The Frequency and the Possibility Interpretations 
make the axioms and theorems of the Calculus deducible from 
a definition of probability in virtue of laws of logic and arith-
metic. The Psychological Interpretation, on the other hand, 
would not make these axioms and theorems deducible from a 
definition of probability, but would make them psychological 
laws of believing, to be confirmed or refuted by experience. 
In a sense, therefore, the Frequency and the Possibility 
Interpretations are analogous to the arithmetical interpretation 
of axiomatic Euclidean geometry, whereas the Psychological 
Interpretation would be analogous to the interpretation of 
axiomatic geometry as a theory of physical space. (Needless to 
say, there is no comparison whatsoever, as regards their impor-
tance, between geometry as a theory of space and the Calculus 
of Probability as a suggested psychological theory of belief.) 

* * * * * 
We have now shown in what sense there is or could be an 

interpretation of the calculus in terms of frequency, possibility, 
and partial belief. It remains to say something about the 
analysis of probability in terms of the three notions. 

Suppose that we can decide whether the evidence-property 
and the conjectured property are present in a thing or not. 

Suppose that the number of positive instances of the evidence-
property is known to be (not greater than) n. Then it is possible 
to decide whether the proposition that a proportion p of the 
positive instances of the evidence-property are also positive 
instances of the conjectured property is true or false. 
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Suppose that the number of positive instances of the evidence-
property is not known to be (not greater than) n. Suppose the 
proposition that the proportion p of the positive instances of 
the evidence-property are also positive instances of the con-
jectured property, to be a material proposition. Then it is not 
possible to decide whether this proposition is true or false on 
the basis of a decision for each positive instance of the evidence-
property that it is or is not a positive instance ofthe conjectured 
property also. 

We shall call a relative frequency in a population with an 
unknown (finite or infinite) number of members a long-run 
frequency. Limiting frequencies are thus a sub-species oflong-
run frequencies. It should be observed that the difficulties of 
verification and falsification of material propositions about 
probabilities arise as soon as we have to do with long-run 
frequencies. 

The above observations will justify the following conclusions 
as regards the analysis of probability in terms of frequency: 

In the case of extensional probability there is a frequency 
analysis, provided that it is possible to decide whether the 
conjectured and the evidence property are present in any given 
thing or not, and that the number of positive instances of the 
evidence-property is known to be (not greater than) n. 

Only in the case of intensional probability can there be an 
analysis in terms oflong-run or limiting frequency. 

These conclusions are based on the fact that the interpretation 
of extensional probability as a long-run frequency does not in 
any way help us to come to know the truth-value of probability-
propositions. We are just as ignorant after as we were before 
the interpretation, whether such propositions are true or false. 
To say that by the probability of getting 'heads' in tossing a 
coin we understand the limiting frequency of 'heads' is, from 
the point of view of verification, no more helpful or illuminating 
than it would be to say that by the limiting frequency of 'heads' 
we understand the probability of 'heads' in tossing. Those 
authors who insist upon a frequency analysis of probability 
throughout, seem to me to be victims of a tendency to assimilate 
all cases of probability to a pattern which provides an analysis 
in some cases. This assimilation is possible, since no findings of 
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experience can ever contradict a proposition about a limiting 
frequency. But the assimilation ceases to be useful or illuminat-
ing so soon as it tries to explain extensional probability in 
terms oflong-run frequency. 

From the point of view of the analysis of probability the 
possibility definition enjoys the advantage over the frequency 
definition that its verification problem is affected neither by 
the number of positive instances of the evidence-property, nor 
by difficulties over deciding whether the conjectured property 
and the evidence-property are present or absent in a thing. 

The limitations of the analysis in terms of possibility are 
clearly seen in cases in which we make an estimate of probability 
without being able to point to a corresponding ratio of possi-
bilities. We all agree that in the case of a heavily biased coin 
the probability of getting 'heads' in tossing is not 1 : 2. But where 
are the possibilities in terms of which the true value of the 
probability is now to be analysed? (Of. below p. 232 f.) 

Whether an interpretation of probability in terms of partial 
beliefwould be helpful or not from the point ofview of analysis 
depends in the first place upon whether a satisfactory method 
of measuring degrees of belief could be provided or not. The 
existence of such a method being debatable, we shall not discuss 
further the analytic value of a psychological definition of 
probability. 

* * * * * 
In this inquiry we shall not make any other claims on behalf 

of the different interpretations than that two of them, the 
Frequency Interpretation and the Possibility Interpretation, 
are valid formal interpretations of our Calculus of Probability. 
The question of the analysis of probability in the sense of the 
problem, how we may come to know the truth-value of 
probability-propositions, will not concern us further. 
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Chapter Eight 

PROBABILITY AND PREDICTION 

Induction and Probability 

I N this and the next two chapters some aspects of the relation 
of probability to inductive inference will be studied. 
Probability, at least when it is of the kind which we have 

(p. 217) called extensional, is used as a substitute for certainty, 
i.e., as an attribute of propositions the truth-value of which is 
not known to us from past or present experience but is con-
jectured or anticipated. One main type of anticipated proposi-
tions are inductive conclusions. (Cf. Chap. I, §r.) If probability 
as an attribute of inductive conclusions is called Inductive 
Probability, it would follow that most cases of extensional 
probability are cases of Inductive Probability. 

Such a comprehensive use of the term Inductive Probability 
is, however, not very convenient. We shall here reserve the 
term exclusively for probability as an attribute of inductive 
conclusions of the second order, i.e., of theories and of the par-
ticularly important kind of theories which we call laws (Laws 
of Nature). Thus probability as an attribute of inductive con-
clusions of the first order, i.e., of predictions, will not be called 
Inductive Probability. 

It is usually not difficult to discern whether, in a given case, 
probability is being used as an attribute of an inductive con-
clusion of the first or of the second order. There are, however, 
some interesting cases which are liable to cause confusion. We 
shall therefore distinguish between Real Inductive Probability 
which is probability as a genuine attribute of theories or laws, 
and Apparent Inductive Probability which is really an attribute 
of predictions but apparently of theories or laws. 
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The most important cases of Apparent Inductive Probability 
occur in connexion with certain classical problems grouped 
under the heading of Inverse Probability. Their treatment 
involves applications of the theorems of the calculus which we 
have called the Inverse Principle, the Inverse Principle of 
Maximum Probability, and the Inverse Principle of Great 
Numbers. In these problems it may easily seem that we are 
dealing with the probability of a law when we are, in fact, 
dealing with the probability of a prediction. Traditionally, the 
term Inductive Probability has been used as almost synonymous 
with Inverse Probability. This peculiar usage is no doubt 
largely due to the traditional confusion over the logical nature 
of Inverse Probability. We shall discuss this topic in some 
detail in Chap. X. 

Another type of cases of Apparent Inductive Probability has 
its root in a tendency to 'transfer' the probability of a prediction 
to the law of which the prediction in question is a test-condition. 
The probability p of the prediction that a random thing which is 
known to be H will also be A, is not infrequently confused with 
the probability of the law that all things which are Hare also A, 
or H C A. This confusion, it seems, is particularly close at hand 
when there exists a high probability in favour of the occurrence 
of the conjectured property relative to the occurrence of the 
evidence property. The tendency to confuse a high probability 
in favour of the occurrence of A on evidence H with a high 
probability in favour of the law H C A may perhaps be con-
nected somehow with the fact that, in practice, we frequently 
do not acknowledge isolated disconfirming instances of H C A 
as falsifications of the law. (Cf. Chap. VI, §§2 and 3.) 1 

* * * * * 
In this chapter we shall deal exclusively with probability 

as an attribute of predictions. 
1 A remarkable instance of the above confusion is found in Reichenbach's paper 

Ober Induktion und Wahrscheinlichkeit in Erkenntnis 5 (1935). The author here pro-
poses that the probability of a law or Universal Implication H C A could be 
measured by the proportion of true predictions of A from the presence of H. This 
proposal entails, e.g., that if every second positive instance of H turns out to be A 
and every second not, then the probability that all H's will be A is 1 : 2. Reichen-
bach (ibid., p. 274) seems prepared to accept this, though it is plainly repugnant to 
ordinary thinking and should rather be taken as a reductio ad absurdum of the pro-
posal itself. Cf. Popper, Logik der Forschung, p. 191. 
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The topic is a large one. It may be divided into sections, 

according to the logical nature of the predictions concerned. 
A most important part of the study has to deal with statistical 

predictions on the basis of samples. It belongs to that branch 
of the Logic of Induction which we have called the Logic of 
Statistical Inference. (Cf. Chap. III, §3.) 

Another important section deals with (numerical) predictions 
on the basis of Quantitative Laws of Nature. Along with them 
may also be counted the study of 'errors.' It belongs to that 
branch of the Logic of Induction which we have called the 
Logic of Quantitative Induction. (C£ Chap. III, §3.) 

In conformity with our general limitation of the subject-
matter of inquiry to the most general patterns of inductive 
inference (of the first and the second order), we shall not in this 
book deal with the logic of sampling or of errors, important as 
the topic is from the point ofview of methodological study. Our 
treatment will be restricted to one problem only of a very 
general nature. We might call it the problem of chance. 

2. The Idea of Chance 
As regards the use of extensional probability the following 

distinction seems to be of some importance: 
Suppose we conjecture about the occurrence of a property 

A in positive instances of a property H. Some instances may 
individually be more (or less) likely than other instances to 
have the feature A, e.g., because they possess in addition to H 
a feature G also, such that the probability of A on evidence 
H&G is different from the probability of A on evidence H alone. 
Sometimes this fact does not concern us; what matters is merely 
the probability of A on evidence H. Sometimes, however, this 
fact does interest us and what matters is the probability of pos-
sessing the feature A which the instances have individually, 
i.e., depending upon whether they do or do not exhibit certain 
other features in addition to H. 

Of cases, where we are interested in individual variations in 
the probability of a property A within a main field of measure-
ment H, one may further distinguish two principal types: 

Sometimes our interest is confined to a more or less strictly 
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defined set of (logically totally independent) properties cfo0• What 
matters is, which properties from t/>0 (or presence-functions of 
them) the instances possess in addition to H, such that the proba-
bility of A on Hand (the product of) those properties as evidence, 
is different from the probability of A on Has sole evidence. 

Sometimes, seemingly at least, our interest is not restricted 
to a limited range of properties only. What matters are all 
properties which the instances possess in addition to H, and 
which are such that the probability of A and (the product of) 
those properties as evidence, is different from the probability of 
A on evidence H. 

In cases of the second type, however, the phrase 'all proper-
ties' must be understood as subject to the restriction that the 
properties do not entail the presence or absence of the con-
jectured property A. For, if the evidence entails the presence 
of the conjectured property, its probability is I, and if the 
evidence entails the absence of the conjectured property, its 
probability is o, and these probabilities, moreover, are intensional, 
since the propositions that they are I and o respectively are 
formal propositions on the Frequency Interpretation. 

Similarly, when we use the phrase 'no property' without 
mentioning t/>0 we always mean 'no property which does not 
entail the presence or the absence of the conjectured property.' 

We can now define the concept of relative chance: 
The probability of A on evidence H is called the chance, 

relative to t/>0, that the positive instance x of H will be a positive 
instance of A, if x has no property G, which belongs to t/>0, or is 
a presence-function of members of t/>0, and which is such that 
the probability of A on evidence H&G is different from the 
probability of A on evidence H alone. 

The idea of chance is related to the ideas of independence 
(dependence) and irrelevance (relevance) which we dealt with 
in the preceding chapter. That the probability of A on evidence 
His the chance, relative to cfo0, that x which is H will also be A, 
means that A is independent for probability in H of any pro-
perty of x, which belongs to cfoo or is a presence-function of 
members of t/>0• Or, speaking in less rigorous terms: it means 
that t/>0 contains no information about x which is relevant to the 
probability of the occurrence of A in x. 
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If, in the above definition of relative chance, we suppress all 
reference· to rp0, we get the following definition of absolute 
chance: 

The probability of A on evidence His called the chance that 
the positive instance x of H will be a positive instance of A, if x 
has no property G such that the probability of A on evidence 
H&G is different from the probability of A on evidence H alone. 

Thus if the probability of A on evidence His the chance that 
x which is H will also be A, then there is no further information 
beside H about x which is relevant to the probability of the 
occurrence.of A in x. In other words: the chance is the proba-
bility that x will be A on all relevant information as evidence. 
(The name H, naturally, may denote a conjunction of several 
properties.) 

The notion of absolute chance seems to enter into contexts 
of the following type: 

Suppose we predict on the basis of H the occurrence of A in a 
given thing x. We ask: what is the probability ofthe prediction? 

It is clear that, when raised in this way, the question of 
probability cannot be satisfactorily answered merely by pointing 
to the probability of A on evidence H. For if x has in addition 
to H a property G also, such that the probability of A on 
evidence H&G is different from the probability of A on evidence 
H alone, we should not call the probability on evidence H 
the probability of the prediction. (A may, e.g., have a high 
probability on evidence H and yet it may be very improbable 
that our prediction about the occurrence of A in this instance 
of H will turn out true, considering that it is also in instance of 
G.) Further, if x has in addition to Hand G a property G' also, 
such that the probability of A on evidence H&G&G' is different 
from the probability of A on evidence H&G, then we should 
not call the probability on evidence H&G the probability of 
the prediction either. And so on. If, on the other hand, x has 
in addition to H (or to Hand G or to Hand G and G', etc.) no 
property G (or G', etc.), such that the probability of A on 
evidence H&G (H&G&G', etc.) is different from the probability 
of A on evidence H (or H&G or H&G&G', etc.), then it is 
plausible to call the probability on evidence H (or H&G or 
H&G&G', etc.) the probability of the prediction. 
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The probability of the prediction, in other words, is the 
probability of the conjectured property on all relevant information 
about the thing as evidence. It is the probability which uses as 
evidence a field of measurement in which the probability of the 
conjectured property is the chance of its occurrence in the 
thing. 

3· Random Distribution, Equal Possibility, Rational Degree 
if Belief, and Chance 

The distinction between a mere probability and a chance 
probability may be useful for the purpose of illuminating the 
distinctions between a mere relative frequency and a relative 
frequency in a random sequence, between a ratio of mere 
possibilities and a ratio of equal possibilities, and between a mere 
degree of belief and a rational degree of belief. 

Suppose we interpret the probability of A on evidence H as 
meaning the proportion or relative frequency of A's among 
positive instances of H or, if His ( denumerably) infinite, among 
members of a sequence H, R. 

The logical product of H with G may be said to constitute a 
sub-property of the main property H, and a sub-sequence of the 
main sequence H, R. We may also refer to G as a selection 
principle. 

That the probability of A on evidence H&G is different from 
the probability of A on evidence H alone, means, on the 
Frequency Interpretation, that the relative frequency of A's 
among positive instances of the sub-property H&G or members 
of the sub-sequence H&G, R, is different from the relative 
frequency of A's among positive instances of the main property 
H or members of the main sequence H, R. Or else it means that 
G can be used for selecting a sub-property or a sub-sequence 
in which the proportion of positive instances of the conjectured 
property differs from its proportion in the main property or the 
main sequence. 

We can now define irregular or random distribution as 
follows: 

The distribution of A in H (or H, R) is called random relative 
to cp0, if there is no property G, which belongs to cp0, or is a 
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presence-function of members of c/>0, and which is such that the 
relative frequency of A in H&G (or H&G, R) is different from 
the relative frequency of A in H (or H, R). 

If, in the above definition of relative randomness, we suppress 
all reference to c/>0, we get the following definition of absolute 
randomness: 

The distribution of A in H (or H, R) is called random, if there 
is no property1 G such that the relative frequency of A in H&G 
(or H&G, R) is different from the relative frequency of A in H 
(or H, R). 

Thus (relative and absolute) random distribution implies 
(relative and absolute) chance. If probability is interpreted as 
frequency, and if there is no property G such that the relative 
frequency of A in H&G (or H&G, R) is different from the relative 
frequency of A in H (or H, R), then there cannot exist any 
information about any single positive instance x of H which 
would be relevant to the probability of A in H. The probability 
of A on evidence His, in other words, for each positive instance 
of H the chance that it will be a positive instance of A also. 
It is plausible to call random distribution chance distribution. 

An assertion of random distribution is, however, somewhat 
stronger than an assertion of chance. 

Take two positive instances of H. Let us call them x andy. 
Let it be the case that x has no property such that the probabi-
lity of A on Hand this property as evidence is different from the 
probability of A on evidence H alone. Let it further be the case 
thaty has a property such that the probability of A on Hand this 
property as evidence is different from the probability of A on 
evidence H alone. Let us call this property ofy G. It follows that 
x must be a negative instance of G. Since the probability of A 
on evidence H&G is different from the probability of A on evi-
dence H alone, and since the probability of A on evidenceH&G 
is not different from the probability of A on evidence H alone, 
it follows that the probability of A on evidence H&G is different 
from the probability of A on evidence H&G. From the treatment 
of independence in Chap. VII, §12 we know that the probability 
of A on evidence H&G can be the same as on evidence H alone, 

1 For the meaning of 'no property' cf. above p. 1126. 
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but different from the probability on evidence H&G, only in 
the extreme case, when the probability of G on evidence His I. 

Thus 'normally,' i.e., this extreme case being excluded, 
(relative and absolute) chance implies (relative and absolute) 
random distribution. 

It was suggested above (Chap. VII, §1) that the additional 
demand for random distribution, which some authors associate 
with the frequency definition of probability, might be under· 
stood against the background of a demand or ideal of rationality 
in estimations of probability. In view of the relation between 
random distribution and chance, this ideal of rationality be. 
comes identical with a demand that estimations of probability, 
when applied for the purpose of predicting individual occur· 
rences of a conjectured property, should be based on all 
relevant information. 

Suppose next that we interpret the probability of A on 
evidence Has meaning the ratio of the number of possible ways 
in which A and H can co-exist, to the number of possible ways 
in which H can exist with regard to A. (For an explanation see 
abovep. 217f.) 

That the probability of A on evidence H&G is different from 
the probability of A on evidence H alone, means, on the 
Possibility Interpretation, the following: 

The perfect disjunctive normal denotations of the two evi· 
deuce-properties in terms of all atomic names in the context, 
contain different proportions of conjunction-names which 
entail the name of the conjectured property. Or, to put it 
otherwise: that G alters the probability, means that the original 
disjunction of alternative ways in which the evidence-
property can exist is replaced by a new disjunction with a 
different balance of ways which are 'favourable' to the occur-
rence ofthe conjectured property. (Cf. above p. 217£) 

The logical mechanism of 'disturbing the balance' needs 
some further elucidation. 

In the perfect disjunctive normal form H appears as a dis-
junction of n conjunction-names-let us call them Hl> ... , Hn. 
Some of them entail A, some do not. That the conjunction of 
G with the disjunction of HI> .•. , Hn alters the balance of 
favourable and unfavourable alternatives, means one of two 
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things. Either it means that some of the alternatives become 
'extinguished,' i.e., contradictory or empty. E.g., if G is identical 
with H1, then the alternative H 1&G does not occur in the 
perfect disjunctive normal form of H&G. Or it means that some 
of the alternatives become 'split up,' i.e., sub-divided into a 
number of new alternatives. E.g., if G is identical with 
H1vG1vG2, then the alternative H 1 becomes the alternative 
H 1&G1vH1&G2, and the alternative H 2 the alternative 
H 2&H1vH2&G1vH2&G2, in the perfect disjunctive normal form 
ofH&G. 

That G alters the probability, thus means that the original 
disjunction of alternative ways in which the evidence-property 
can exist, is replaced by a new disjunction, in which some of 
the original alternatives do not occur at all or are sub-divided 
into new alternatives. 

We can now give a meaning to possibilities being equal. 
The alternative ways in which the evidence-property can 

exist with regard to the conjectured property are called equally 
possible, relative to cp0 , if there is no property, which belongs 
to cp0 or is a presence-function of members of cp0, and which is 
such that its conjunction with the evidence-property alters 
the proportion of ways in which the evidence-property and 
the conjectured property can co-exist. 

If we suppress reference to cp0, we get: 
The alternative ways in which the evidence-property can 

exist with regard to the conjectured property are called equally 
possible, if there is no further property, 1 such that its con-
junction with the evidence-property alters the proportion of 
ways in which the evidence-property and the conjectured pro-
perty can co-exist. 

Speaking roughly, and considering what was said above, the 
equal possibility of the alternatives means that there is no way 
of extinguishing or splitting up some of them so as to effect an 
alteration in the balance offavourable and unfavourable cases. 

Thus (relative or absolute) equipossibility implies (relative 
or absolute) chance. It is easy to see that an assertion of equi-
possibility is stronger than an assertion of chance in the same 

1 For the meaning of 'no property 'cf. above. (p. 226.) 
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way as that in which an assertion of randomness is stronger 
than an assertion of chance, but that 'normally', i.e., extreme 
probabilities being excluded, the assertions are equally strong. 

It was suggested above (Chap. VII, §1) that the additional 
demand for equipossibility, which is traditionally associated 
with the possibility definition of probability, might be under-
stood against the background of a demand or ideal of rationality 
in estimations of probability. In view of the above relation 
between equal possibility and chance, this ideal of rationality 
becomes identical with the demand to base proba1,>ility on all 
relevant information. 

Let us consider what the definition of possibilities being 
equal, suggested above, would come to 'in practice.' Take a 
coin which is biased in favour of, say, 'heads.' If the probability 
of 'heads' in tossing with this coin is to be accounted for in 
terms of possibilities at all, then we must be able to replace the 
disjunction of the two possibilities 'heads' and 'tails' by a new 
disjunction of possibilities, a greater number of which are 
favourable to 'heads' than to 'tails.' How this is to be done, is 
not quite easy to see; it is sometimes suggested that the bias 
alters the proportion of possible ways, favourable to the respec-
tive results, for the action of mechanical forces upon the coin 
when twisting in the air. The plausibility of this suggestion 
need not concern us here. It will suffice to observe, that if the 
possibility definition is to have an application at all in this case, 
some such replacement of 'heads' and 'tails' by new possibilities 
must take place. This replacement would explain why bias 
creates an inequality in the two alternatives 'heads' and 'tails.' 

What, however, would be the criterion for deciding whether 
these new alternatives are themselves equal or unequal? To this 
question two answers appear possible. 

The first answer is that the possibilities are equal if they 
represent a set of 'ultimate' possibilities, none of which can be 
extinguished or split up so as to give a new set of possibilities 
with a different balance of favourable and unfavourable cases. 
This answer would use as its criterion our above definition of 
equal possibilities as possibilities which make a probability 
calculated on their basis a chance. 

The second answer is that the possibilities are equal if they 
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give a true account of the probability of 'heads' in tossing. 
This answer would mean that probability, or some definition 
of probability other than the possibility definition, is made the 
standard of equality in possibilities. We adjust our estimations 
of equal possibilities on the basis of estimations of probability, 
and not vice versa. 1 

In cases of the biased coin type, the second answer appears 
to be the more important in practice. The first is resorted to, if 
at all, merely as a hypothetical construction for the purpose of 
assimilating a case, in which the possibility definition of 
probability has no plausible application at all, to other analo-
gous cases, in which the application of the definition is obvious 
and plausible. 

Suppose finally that we suggested an interpretation of the 
probability of A on evidence Has meaning the degree of belief 
which we entertain in the occurrence of A on knowing that H 
is present. 

Let us, for the sake of argument, assume that partial belief 
can be measured and that we believe A to degree p on sole 
evidence H. Let us assume that there is a positive instance x of 
H which also has the feature G, and that we believe A to degree 
q on evidence H&G, p and q being different. We might then 
say to ourselves that it is not rational in this instance to believe A 
to degree p, since taking into the account that the instance also 
has the feature G would make us believe differently. Suppose, 
on the other hand, that there is an instance x of H which has no 
feature G such that we should believe A to degree q on evidence 
H&G, p and q being different. We might then say to ourselves 
that it is rational to believe A in this instance to degree p, since 
no further information about the instance would make us 
believe differently. 

I think that this is a use of the word 'rational' as an attribute 
of belief which we sometimes employ. The 'rational' belief is 
the belief based on all information which is relevant to its 

1 The charge against the definition of probability as a ratio of equal possibilities, 
that it is circular, has often been made. It has also been suggested that the fre-
quency definition of probability is the proper standard of equipossibility. Cf. 
Leslie Ellis, On the Foundations of the Theory of Probabilities : 'When we expect two 
events equally, we believe they will recur equally in the long run' and 'If the events 
are truly equally possible, they really tend to recur equally on a series of trials.' 
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formation. But it is not the only, and hardly even the most 
frequent, use of the word. Sometimes a rational belief is under-
stood to mean a true belief. In the case of partial belief this 
means that the rational degree ofbeliefis one which corresponds 
to the (true) probability of the conjectured event. Thus truth 
as a criterion of rationality would mean that probability, or 
some definition of probability other than the psychological 
definition, is made the standard of rationality in our partial 
beliefs. 1 

4· Chance and Determinism 
The idea of chance has an important relation to the idea of 

determinism (Determined Property, Principle of Determinism) 
which we introduced and discussed in §2 of Chap. III. 

A property is determined in rfoo if, in every positive instance 
of the property, there is present a Sufficient Condition of it 
which belongs to rp0, or is a presence-function of members of rfo0• 

(C£ above p. 72.) 
By a Sufficient Condition of A in rp0, we understood a Suffi-

cient Condition of A which belongs to rp0, or is a presence-
function of members of rp0• (Cf. above p. 71.) The sum of all 
Sufficient Conditions of A in rfoo we called the Total Sufficient 
Condition of A in rfo0• (Cf. above p. 71 .) That A is a Determined 
Property in rfoo thus also means that each positive instance of A 
is a positive instance of its Total Sufficient Condition in rfo0 • 

Since anything which is a positive instance of the Total Suffi-
cient Condition of A in rfoo is a positive instance of A, it follows 
that, if A is determined in rp0, then any negative instance of the 
Total Sufficient Condition of A in rfoo is a negative instance of A, 
and vice versa. 

If G is a Sufficient Condition of A, then the probability of A 
on evidence H&G is r, and if G is a Sufficient Condition of A, 
then the probability of A on evidence H&G is o. 

1 It is fairly obvious that the traditional forms of the psychological approach to 
probability were intended, not to define probability in terms of belief, but rational 
belief in terms of probability, though this is frequently obscured by unhappy modes 
of expression. (Cf. the quotation from de Morgan on p. 170.) It has also been 
suggested that the frequency definition of probability is the proper standard of 
rationality in belief. Cf. Ramsey, op. cit., p. rgg: 'Reasonable degree of belief= 
proportion of cases in which habit leads to truth.' 
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Let A be a Determined Property in cp 0• Every positive instance 
x of His either a positive or a negative instance of the Total 
Sufficient Condition of A in cp0 • Let us call the Total Sufficient 
Condition of A in cp 0 G. Then the probability of A on evidence 
H&G is I and the probability of A on evidence H&G is o. 

Thus if A is a Determined Property in cp 0, every positive 
instance x of H either has a property such that the probability 
of A on H and this property as evidence is I, or has a property 
such that the probability of A on Hand this property as evidence 
is o. It follows that the probability of A on evidence H can be 
the chance that an x which isH will also be A, only if either the 
probability of A on evidence His I and x is a positive instance 
of the Total Sufficient Condition of A in cp 0, or the probability 
of A on evidence His o and x is a negative instance of the Total 
Sufficient Condition of A in cp 0• 

This can also be expressed less rigorously by saying that if A 
is a Determined Property in cp0 , then, for any H, the chance 
that an x which is H will also be A is either I oro. 

Suppressing reference to cp 0, we got (p. 76) the following 
definition of absolute determinism: 

A property is a Determined Property if it is determined in 
the set of all properties of which it is logically totally independent. 

It immediately follows, that if A is a Determined Property, 
then, for any H, the chance that an x which is H will also be A 
is either I or o. 

By the Principle ofDeterminism we understood the idea that 
all members of a certain Universe of Properties are Determined 
Properties. 

It follows from this that, in a Universe of Properties for 
which the Principle of Determinism is valid, the chance that a 
thing will exhibit a certain property is either I oro. This might 
also be expressed by saying that in such a universe chance does 
not exist. 

Similarly for random distribution. If A is a Determined 
Property, then it cannot in an absolute sense be said to be 
distributed in a random or irregular way over the members of 
any field of measurement H. And in a universe for which the 
Principle of Determinism is valid, there is noroom for random 
distribution at all. 
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These facts, however, do not exclude a Determined Pro-

perty from possessing a (not-extreme) chance for its occurrence 
in a given positive instance of another property, or from being 
randomly distributed over the positive instances of another 
property, relative to some set of properties rp0• 

Thus absolute determinism does not exclude relative chance 
(or randomness or equipossibility). The existence of (relative) 
chance under the rule of (absolute) determinism has a peculiar 
epistemological significance in cases where the range rp0, relative 
to which there is a chance, answers to a certain state of actual 
knowledge. 

Note.-The importance of random distribution to the notion of probability was 
stressed by von Mises. His definition of probability as a (limiting) frequency in a 
random sequence could also be described as the frequency definition to which has 
been added the demand to base estimations of probability on all relevant information. 

The subsequent discussion of random distribution has mainly centred round 
the problem, how to give a consistent formulation to the intended content of von 
Mises' notion of a Kollektiv. This discussion, it seems to me, has suffered from two 
limitations. First, it has tackled the problem involved in the context exclusively 
from the point of view of the Frequency Interpretation of probability. Secondly, it 
has generally been concerned only with that kind of probability which we have 
called intensional, i.e., probability-propositions which on the Frequency Inter-
pretation are decidable on formal grounds. 

It appears, however, that the problem of random distribution is a special case 
of the more general problem of chance or probability based on all relevant infor-
mation, and that the classical problem of equipossibility is another special case of 
it. It also seems to me that the problem must be separately treated for what we 
have here called extensional probability, and that it then has an important con-
nexion with the idea of determinism. 

A treatment of the idea of random distribution on lines similar to those outlined 
here was attempted by me in the paper On Probability in Mind 49 (1940) and 
further developed in my publication Ueber Wahrscheinlichkeit (1945). 



Chapter Nine 

PROBABILITY AND LAWS OF NATURE 

I. The Concept of Real Inductive Probability 

I N the present chapter we shall deal with probability as a 
genuine attribute oflaws. For this type of probability we have 

reserved the name (Real) Inductive Probability. 
The idea of (Real) Inductive Probability has been the object 

of much controversy. Views as to its nature may be schemati-
cally divided into three groups: 

1. The nihilistic views deny altogether the possibility of 
attributing probability to inductive conclusions of 
the second order, at least in so far as they have the 
numerically unrestricted character of laws. Of such 
views one might distinguish two variants, according 
to the way in which the word 'possibility' is under-
stood, viz. 

a. views rejecting the concept of Inductive Probability for 
philosophical or logical reasons, e.g., because it is thought to 
involve contradictions, and 

fl. views regarding the concept as being useless in practice. 

n. The dualistic views take the idea of Inductive Proba-
bility to be philosophically and logically legitimate, 
though somehow different from what may vaguely 
be called 'ordinary' probability. One might dis-
tinguish between two main variants of this opinion 
also, according to what sort of difference between 
inductive and 'ordinary' probability is contemplated) 
vzz. 
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a. views assuming that the concept of Inductive Probability 
is not subject to the rules of our Calculus of Probability (though 
perhaps to those of some other logico-mathematical formal-
ism), and 

{3. views assuming that the concept of Inductive Probability 
has the logico-mathematical structure of the calculus in 
common with 'ordinary' probability and that the difference is in 
the interpretation of the calculus. It might, e.g., be suggested 
that 'ordinary' probability is a frequency, and Inductive 
Probability a ratio of possibilities. 

m. The monistic views assume not only that the idea of 
Inductive Probability is legitimate, but also that its 
difference, if any, from 'ordinary' probability is not 
a difference in the interpretation of a common 
axiomatic frame. 

We shall attempt to show that views of type ia, or nihilistic 
views of the stronger type, are not justified. This means that 
the concept of Inductive Probability need not be rejected as 
contrary to logic. 

In dealing with the concept of Inductive Probability we shall 
disregard views of type iia, or dualistic views of the stronger 
type. This means that the concept of Inductive Probability is 
here treated within the framework of our Calculus of Proba-
bility. It does not mean, however, that a different treatment 
might not be possible and for some purposes even useful. 

Further, we shall attempt to show that the difference be-
tween 'ordinary' and Inductive Probability can be accounted 
for without resort to different interpretations of the calculus. 
This means that we shall disregard also views of type ii{3, or 
dualistic views of the weaker type and accept a view of the 
monistic type. It does not mean, however, that another and 
more radical account of the difference might not be possible 
and for some purposes even necessary. 

There still remains to be considered the relation of iii to if3. 
As will be seen, there are strong reasons for combining our 
monistic view of 'ordinary' and Inductive Probability with a 
nihilistic attitude as regards the practical importance of 
Inductive Probability. These reasons, moreover, are closely 
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connected with the way in whiCh we here try to account for 
the difference between the two types of probability. 

The discussion of the nature of (Real) Inductive Probability 
will be continued in the next section. The remaining portion of 
this chapter will be devoted to what we propose to call a 
reconstructive examination of certain familiar arguments of 
(Real) Inductive Probability. 

2. The Concept of Real Inductive Probability (Continued) 
Probability, we said (p. I 72), is an attribute of propositions. 
In order to make clear that the views under ia can be 

rejected, and that those of iia can be evaded or disregarded, it 
will be our first duty to show in what way the probability-
relation P of our calculus is applicable to Universal Implications 
and Equivalences. 

In dealing with probability, we also said (p. I 72) that a 
certain analysis of propositions will be presupposed. By the 
probability of something we understand the probability that a 
thing has a certain property. 

Probability as an attribute of laws, therefore, presupposes 
here what we have called (p. 37) an Aristotelian analysis of 
Universal Implications and Equivalences. According to the 
view adopted in this inquiry (p. 37), every proposition is 
capable of this sort of analysis. In the case of Universal Im-
plications and Equivalences, their Aristotelian analysis is as 
follows: 

Let tPH denote the (second-order) property of being a Neces-
sary Condition of the property denoted by H. Let tPA denote 
the property of being a Sufficient Condition of the property 
denoted by A. The Universal Implication H C A can be regarded 
either as predicating the second-order property tPH of the first-
order property A or as attributing the second-order property 
tPA to the first-order property H. (These are two principal ways 
of effecting an Aristotelian analysis of the Universal Implication 
H C A; there are also other ways, but they need not be discussed 
here.) 

Let 1/JH denote the property of being a Necessary-and-
Sufficient Condition of the property denoted by H. Let 1/J A 
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denote the property of being a Necessary-and-Sufficient Con-
dition of the property denoted by A. The Universal Equivalence 
H =A can be regarded either as attributing the second-order 
property rf1H to the first-order property A or as attributing the 
second-order property rp A to the first-order property H. 
(These are two principal ways of effecting an Aristotelian 
analysis of the Universal Equivalence H =A; there are also 
other ways, but they need not be discussed here.) 

Probability, we said (p. 172), is relative to evidence. We took 
the view that the evidence is a property of the same thing as the 
property, the presence of which is being conjectured. 

Let t/>0 denote membership of a set of properties. t/>0 is thus a 
property of a property. We take t/>0 to belong to the same uni-
verse as the four properties tPH, tPA, rpH and rpA defined above. 
It will not be ussumed that the members of t/>0 are logically 
totally independent. 

Then, according to what was said in Chap. VII, §r, any one 
of the four properties tPH• t/> A• rf1H and rp A in combination with t/>0 
and any real number p will constitute either a positive or a 
negative order of the probability-relation P. 

The probability-expression P(tf>H, t/>0, p) means: pis the proba-
bility that a property will be a Necessary Condition of H on the 
evidence that it belongs to t/>0• For instance: p is the probability 
of the law H C A on the evidence that A belongs to t/>0• 

The probability-expression P(t/>A, t/>0,p) means: pis the proba-
bility that a property will be a Sufficient Condition of A on the 
evidence that it belongs to t/>0• For instance: pis the probability 
of the law H C A on the evidence that Hbelongs to t/>0• 

The probability-expressionP(rpH, t/>0, p) means: pis the proba-
bility that a property will be a Necessary-and-Sufficient Con-
dition of H on the evidence that it belongs to t/>0• For instance: p 
is the probability of the law H=A on the evidence that A 
belongs to tPo· 

The probability-expression P(r/IA, t/>0, p) means: p is the 
probability that a property will be a Necessary-and-Sufficient 
Condition of A on the evidence that it belongs to t/>0• For 
instance: pis the probability of the law H=A on the evidence 
that H belongs to t/>0• 

By saying that nihilistic views of Inductive Probability of the 
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stronger type can be rejected, and that the stronger type of 
dualistic views can be evaded, we shall here mean simply that 
there is an Aristotelian analysis of Universal Implications and 
Equivalences which makes it possible to define the four pro-
perties and arrive at the four probability-expressions above. 

It seems to be generally true of propositions that there are 
different ways of viewing them in terms of predicate and sub-
ject. Sometimes, however, there is one way which immediately 
presents itself as the 'natural' one. Sometimes again there are 
two or more ways which appear in themselves equally 'natural.' 
Probability as an attribute of propositions seems ordinarily to 
be an attribute of propositions of the first kind. Universal 
Implications and Equivalences, however, are decidedly of the 
second kind. The proposition, e.g., that the next throw with a 
certain die will be a one 'naturally' attributes the property of 
being a one to the next throw. But the proposition, e.g., that 
all ravens are black does nt>t 'naturally' attribute to the 
property of being a raven the second-order property of being a 
Sufficient Condition of blackness; nor does it 'naturally' 
attribute to the property of being black the second-order 
property of being a Necessary Condition of ravenness. 

The concept of Inductive Probability, as dealt with in this 
inquiry, is thus ambiguous in the sense that it must always be 
explicitly associated with one of an alternative number of 
analyses of the law to which it is being applied. This feature 
marks a first conspicuous difference between Inductive Proba-
bility and probability which, in a vague sense, may be called 
'ordinary.' 

The evidence or field of measurement of an Inductive 
Probability can be conveniently described as a set of possible 
conditioning properties of a given conditioned property. 

Ordinarily, in attributing probability to something, there is 
at least some vague indication as to the evidence or field of 
measurement, relative to which probability is contemplated. 
(Though it might happen that part of the contemplated evi-
dence is suppressed in loose modes of speech.) E.g., in speaking 
about the probability of getting a one in the next throw with 
a certain die it is understood that the probability is (at least) 
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relative to the property of being a throw with this die as 
evidence. 

In attributing probability to laws, however, there seems 
normally to be no indication whatsoever as to the evidence or 
field of measurement relative to which the probability is con-
templated. To say, e.g., that the probability of a law is relative 
to all relevant information or to 'our present state of know-
ledge' as evidence does not alter the situation unless we are told, 
vaguely at least, what this information or state of knowledge is. 

The normally unspecified character of the evidence or the 
fields of measurement is a second feature of Inductive Proba-
bility which distinguishes it from probability which may, in a 
vague sense, be called 'ordinary.' This feature, moreover, is 
at least partly responsible for the fact that in the realm of 
Inductive Probability precise numerical evaluations are not 
normally regarded as possible. 

Further problems concernitl.g the choice and possible 
specification of the fields of measurement of Inductive Pro-
bability will not be discussed in this inquiry. 

* * * * * 
In the Frequency Interpretation P(cfoH, cfo0 , p) means: pis the 

proportion of Necessary Conditions of H among members of 
cfo0• Similarly, we interpret P(cfoA, cfo0, p) and P(if!H, cfo0, p) and 
P(if!A, cfo0, p) as stating a proportion of actual conditions among 
initially possible conditions. 

On the Possibility Interpretation P( cPH, cfo0, p) means: p is the 
ratio of possible ways in which a property can be both a Neces-
sary Condition of H and a member of cfo0, to the number of 
possible ways in which it can be a member of cfo0• (Cf. above p. 
~u8.) We interpret P(cfoA, cfo0, P) and P(if!H, cP0, P) and P(if!A, cfo0, P) 
similarly. The interpretation is of no particular interest, unless 
cfoo is viewed as a presence-function of other properties. 

On the Psychological Interpretation P( cPH, cfo0, p) would mean: 
pis the degree to which we believe that a property is a Necessary 
Condition of H on the evidence that it is a member of cfo0• We 
interpret P(cfoA, cfo0, P) and P(if!H, cfo0, P) and P(if!A, cfo0, P) likewise. 

Against the Frequency Interpretation of Inductive Probabi-
lity the following objection has been made: 
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Universal Implications and Equivalences, in the numerically 
unrestricted sense of Laws of Nature, have no verifying in-
stances. Consequently, it is not possible to know for certain, of 
any property which belongs to a set of possible conditions of a 
given property, that it belongs to the set of actual conditions 
also. (Though we may know that it does not belong to it. ) Or as 
Popper1 has expressed it: 'Dieser V ersuch scheitert ... daran, 
dass wir von einer Wahrheitshaufigkeit innerhalb einer Hypo-
thesenfolge schon deshalb nicht sprechen konnen, weil wir ja 
Hypothesen zugestandenermassen nicht als "wahr" kennzeich-
nen konnen. Denn konnten wir das-wozu brauchen wir dann 
noch den Begriff der Hypothesenwahrscheinlichkeit?' 

The fact, however, that Universal Implications and Equiva-
lences are not verifiable on the basis of their instances is no 
objection against the legitimacy (logical consistency) of the 
idea that, of a set of such propositions, a certain proportion are 
true propositions. Or to put it in a different way: it is no objec-
tion against the legitimacy of the idea that of a set of possible 
conditions of a property a certain proportion are actual con-
ditions of the property. And that is all that is contained in a 
proposition of Inductive Probability on the Frequency Inter-
pretation. 

The objection, therefore, has no force against the 'possibility' 
of the Frequency Interpretation. This will justify us in dis-
regarding also the views under iifi of the preceding section or 
the weaker type of what we called dualistic views of Inductive 
Probability. 

The real effect of the objection is, it seems, not to invalidate 
the Frequency Interpretation of Inductive Probability, but to 
point out a very important difference-within the interpretation 
in question-between Inductive Probability and probability 
which, in a vague sense, may be called 'ordinary'. This dif-
ference is in the strength of the basis of statistical observations 
in support of a probability proposition. Ordinarily, e.g., in the 
case of games of chance or of insurance against risks, these 
observations will be verified propositions concerning relative 
frequencies among a finite number of things. In the case of 
Inductive Probability, however, we have to content ourselves 

1 Logik der Forschung (1935), p. 192. 
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with mere assumptions as to relative frequencies even in finite 
sections of the respective fields of measurement. (The only 
exception is the extreme case when we have succeeded in 
falsifying all of a finite number of possible laws.) 

Thus, even in fields of measurement with a known finite 
number of members, the Frequency Interpretation is not what 
we have previously called an analysis (as opposed to inter-
pretation) of the concept of Inductive Probability. This is a 
third difference between Inductive Probability and 'ordinary' 
probability. 

The fact that there is no analysis of Inductive Probability in 
terms of frequency might also be held to be in part responsible 
for the other fact, already mentioned (p. 172 f.), that in the 
realm of Inductive Probability exact numerical evaluations are 
not normally regarded as possible. Estimates of Inductive 
Probability are notorious for their vagueness and subjectivity. 
A certain consensus seems to exist as to what should be con-
sidered greater and less, considerable, mediocre, or minimal 
even in the realm of Inductive Probability. But no claims as to 
exact numerical evaluations appear to have much hope of be-
coming universally accepted. That such should be the case is 
very natural indeed, considering the peculiar weakness of the 
support which, for reasons of logic, statistical observation can 
provide for Inductive Probability. 

Rightly understood, therefore, the three peculiarities of 
Inductive Probability: the ambiguity in the analysis of the laws, 
the normally unspecified character of the evidence, and the 
impossibility of an analysis (as opposed to interpretation) in 
terms of frequency, might be taken as a strong indication in 
favour of combining the monistic view of Inductive Probability 
which we have decided to accept with a nihilistic view of the 
weaker type ifl. This nihilism, it should be observed, is justified, 
not so much by the lack as such of exact numerical estimates of 
probability in the case of laws, as by the fact that this lack of 
numerical precision is founded on the logical nature of the con-
cept of Inductive Probability itself, according to our account 
of it. When, as is sometimes done, the vague and unsafe nature 
of Inductive Probability is attributed to the present imperfect 
state ofhuman knowledge this is at most a partial explanation of 
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a striking fact, the deeper reasons for which it is for logical 
analysis to reveal. 

3· The Argument from Confirmation 
It is one of the traditional ideas of the Logic of Inductive 

Probability that confirmation of a law through its instances 
contributes to its probability. 

The probability of a law is assumed to 

1. increase with the number of confirming instances, 
n. increase the more, the less probable its confirmation is 

in a given instance, and 
m. approach maximum probability if confirmation goes on 

indefinitely. 

We call this the Argument from Confirmation. (Its third 
clause is sometimes disputed.) 

It will be the purpose of the present section to examine the 
argument within the framework of our Calculus of Probability. 

Let the law be H CA. 
As will be remembered from the preceding section, proba-

bility as an attribute of a law is relative to the choice of one of a 
number of alternative ways of conceiving the law as a proposi-
tion attributing a predicate to a subject. The predicate may be 
the property of being a Necessary Condition of H and the 
subject the property A. The predicate may also be the property 
of being a Sufficient Condition of A and the subject the property 
H. The first predicate we denoted cpH and the second cpA. It 
will be shown that on either alternative we get the same theorem 
of Inductive Probability. For this reason we shall here suppress 
the index of cp. 

Let cp, therefore, denote the set of (actual) Necessary (Suffi-
cient) Conditions of H (A). 

Supposing the instances of the conditioned property to be 
denumerable, we can order them into a sequence xl> •.. , x,, •••• 
Since instances may be either positive or negative, x1, •• • , Xm • •• 

is the sequence of all things in the universe in question. 
According to whether a thing is a positive or negative instance 
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of the implication property H~A, it affords a confirming or 
disconfirming instance respectively of the law H C A. 

Let cp0 denote a set of (initially) possible Necessary (Sufficient) 
Conditions of H (A). 

Let cp1 denote the set of properties of which it is true that they 
are not absent (present) in the thing x1 in the presence (absence) 
of H (A). cp1, in other words, denotes the set of remaining 
possible Necessary (Sufficient) Conditions of H (A) relative to 
x1• (Cf. Chap. IV, §2.) 

Let cp 2 denote the set of properties of which it is true that they 
are not absent (present) in the things x1 and x2 in the presence 
(absence) of H (A). cp 2, in other words, denotes the set of remain-
ing possible Necessary (Sufficient) Conditions of H (A) relative 
to x1 and x2• 

Similarly, we introduce cp 3, etc. 
In the sequence of properties cpl> ... , c/Jm ••• every property is 

included in its successor. The logical product of all these 
properties is cp. Thus we have lim( c/Jm cp). The set of actual con-
ditioning properties is the limiting extension of the sets of the 
remaining possible conditioning properties. This is already 
familiar to us. (Cf. Chap. IV, §2.) 

The following suppositions are introduced: 
SI. The property A (H) belongs to the set cp0• Thus E cp0• 

S2. There is a probability p that a random property, e.g., 
A (H), will be a Necessary (Sufficient) Condition of H (A) on 
the evidence that it belongs to cp0• In symbols: P(cp, cp0,p). 

We shall call p the probability a priori of the law. 
S3. The probability a priori of the law is not minimal. In 

symbols: P>o. 
S4. There is a probability p1 that a random property, e.g., 

A (H), will be a remaining possible Necessary (Sufficient) 
Condition of H (A) relative to x1 on the evidence that it belongs 
to cp0• In symbols: P(cp1, cp0, ftl). There is further a probability 
Pn+t that a random property, e.g., A (H), will be a remaining 
possible Necessary (Sufficient) Condition of H (A) relative to x1 

and .•. and xn+u on the evidence that it belongs to cp0 and is 
a remaining possible Necessary (Sufficient) Condition of H (A) 
relative to x1 and ... and xn. In symbols: 
.(n)P(cpn+u c/Jo&c/Jm Pn+x)• 
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That there is a probability Pn+x that A (H) will be a remain-
ing possible Necessary (Sufficient) Condition of H (A) relative to 
x1 and ... and xn+x on the evidence that A (H) belongs to c/>0 

and is a remaining possible Necessary (Sufficient) Condition of 
H (A) relative to x1 and ... and Xm means that there is a 
probability Pn+x that xn+x will afford a confirmation of the 
law H C A on the evidence that A (H) belongs to c/>0 and that 
x1 and ... and xn afford confirmations of H CA. We shall 
therefore call Pn+x the probability that the law will be con-
firmed also in its n+ I :th instance. 

On these four suppositions as data we can deduce a pro-
bability a posteriori of the law, i.e., a probability that A (H) is a 
Necessary (Sufficient) Condition of H (A) on the evidence that 
A (H) belongs to c/>0 and still is a possible Necessary (Sufficient) 
Condition of H (A) after n confirmations of the law H CA. 

E c/>&c/>0 entails c/> 0 C ~. 
The Axiom of Inclusion and the Addition Axiom and E c/> 0 

and c/>0 C ~ entail P( c/>, c/>0, o). 
The Axiom of Uniqueness and E c/>0 and P(c/>, c/>0, p) and 

P(c/>, c/>0, o) entailp=o. 
p =O contradicts SJ. 
Thus we have proved that E c/>&c/>0• 

E c/>&c/>0 entails (n)(E c/>&c/>n)· 
c/>n is identical with IIcf>n· 
Therefore, the Multiplication Principle and (n)(E cp0 &c/>n) 

andP( c/>1> c/>o,Pt) and (n)P( c/>n+x> cf>o&c/>mPn+r) entail (n) P( c/>n, c/>0, liPn)• 
We shall call IIpn the probability that the law will be con-

firmed n times in succession. 
c/>n is also identical with cf>v:f&cf>n· 
(n)(E cf>&-:fo&c/>n) is tautologous. 
The Addition Principle and E c/>0 and (n)(E cf>&~&c/>n) and 

(n)P( cpv~&c/>m c/>0, IIpn) and P( c/>, c/>o,P) entail (n)P(-:fo&cf>m c/>0, (IIPn)-p). 
We shall call (IIPn)-p the probability that the law is false 

but nevertheless confirmed n times in succession. 
cp is identical with c/>&cf>n· 
The Axiom of Minimum Probability and E c/>0 and 

(n)P( ~&c/>mc/>0,(IIpn)-p) entail (n)((IIPn)-p?;o). 
(n)((IIPn)-p?;o) and P>o entail (n)(IIPn>o). 

247 



A TREATISE ON INDUCTION AND PROBABILITY 

The Multiplication Principle and (n)(E t/>0 &t/>n) and 
(n)P(t/>&t/>mt/>o,P) and (n)P(tf>mt/>o,flPn) and (n)(flPn>o) entail 
(n)P(t/>, tf>o&tf>m P: npn). 

p: npn is the probability a posteriori of the law. 
Let us compare p: npn+I and p: flPn· If P>o and Pn+r<I, 

then p : npn+r>P : npn. 
Let us consider the difference p: flPn+x-P: flPn· It is inversely 

proportional to Pn+r· 
The Axiom of Continuity and E t/>0 and P( t/>, t/>0 , p) and 

(n)P( tPm t/>0 , llpn) and lim( tPm 4>) entaillim(IIPm p). 
P>o and lim(Ilpnl p) entaillim(p; npnl I). 
The probability a posteriori thus approaches I as a limit. 
lim(IlPm p) is identical with lim((IIPn)-p, o). 
That the probability a posteriori approaches 1 as a limit thus 

means the same as 
a. that the probability that the law will be confirmed n times 

in succession approaches as a limit the probability a priori of the 
law, and 

{3. that the probability that the law is false but nevertheless 
confirmed n times in succession approaches o as a limit. 

It should be observed that the convergence of the probability 
a posteriori towards maximum probability depends upon the 
convergence of the sets of remaining possible conditioning 
properties towards the set of actual conditioning properties. 
This latter convergence requires that the sequence of things 
x1, •• • , x,., .. . , on the basis of which the sequence of properties 
c/> 1, ••• , c/>n, ••• is defined, is the sequence of all things in the 
universe in question. In practice, however, the things affording 
confirmations of a law are likely to be restricted to some part of 
the universe only. In so far as this is the case, convergence to-
wards maximum probability cannot be proved. 

Our examination of the Argument from Confirmation has so 
far taken us to the following Theorem of Confirmatioh: 

Let there be a not empty set t/>0 of initially possible Necessary 
(Sufficient) Conditions of the property H (A). Suppose that 
there is a not minimal probability a priori of the law that A (H) 
is an actual Necessary (Sufficient) Condition of H (A) on the 
evidence that A (H) belongs to t/>0 • Suppose further that there 
is a probability that the law will be confirmed in the first 
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instance, in the second instance also, etc. Then the probability 
a posteriori of the law that A (H) is an actual Necessary (Suffi-
cient) Condition of H (A) on the evidence that A (H) belongs 
to ¢>0 and still is a possible Necessary (Sufficient) Condition of 
H (A) after n confirmations of the law, 

1. increases with each instance affording a confirmation, 
provided it is not maximally probable that the law 
will be confirmed in this instance also; 

n. increases the more with each instance affording a 
confirmation, the less probable it is that the law will 
be confirmed in this instance also, and 

m. approaches maximum probability, if confirmation goes 
on indefinitely. 

There is a corresponding theorem for the law H=A. 

4· The Argument from Confirmation (Continued) 
If the results of the preceding section are viewed in the 

light of the Frequency Interpretation of our Calculus of 
Probability, then the logical mechanism responsible for the 
increase in Inductive Probability through confirmation will be 
found to be identical with the logical mechanism of Induction 
by Elimination. 

As will be remembered, ¢>0 is a set of initially possible Neces-
sary (Sufficient) Conditions ofthe property H (A). ¢> 1, ••• , 1>m ••• 
are the sets of remaining possible Necessary (Sufficient) 
Conditions of the property H (A). ¢> is the set of actual Necessary 
(Sufficient) Conditions of the property H (A). 

The probability a priori of the law H C A means, on the 
Frequency Interpretation, the proportion of actual Necessary 
(Sufficient) Conditions of H (A) among the initially possible 
conditions. How ¢>0 should be chosen so that this proportion is 
not minimal is an interesting problem of methodology which, 
however, we shall not discuss here. 

The probability that the law H C A will be confirmed in the 
first instance means, the proportion of remaining possible 
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Necessary (Sufficient) Conditions of H (A) relative to x1, 

among the initially possible conditions. 
The probability that the law H C A will be confirmed also 

in the n+ I :th instance means, the proportion of remaining 
possible Necessary (Sufficient) Conditions of H (A) relative to 
the first n+ I things, among the remaining initially possible 
conditions relative to the first n things. 

The probability that the law H C A will be confirmed n times 
in succession means, the proportion of remaining possible 
Necessary (Sufficient) Conditions of H (A) relative to the first n 
things, among the initially possible conditions. 

This proportion is the product of the proportion of remaining 
possible Necessary (Sufficient) Conditions of H (A) relative to 
the first thing, among the initially possible conditions and ... 
and the proportion of remaining possible Necessary (Sufficient) 
Conditions of H (A) relative to the first n-I things, among the 
remaining initially possible conditions relative to the first n things. 

The probability a posteriori of the law H C A means the 
proportion of actual Necessary (Sufficient) Conditions of H (A) 
among the remaining initially possible conditions relative to the 
first n things. 

This last proportion is the ratio of the proportion of actual 
Necessary (Sufficient) Conditions of H (A) among the initially 
possible conditions, to the proportion of the remaining possible 
Necessary (Sufficient) Conditions of H (A) relative to the first n 
things among the initially possible conditions. 

The proportion of actual conditions among the initially 
possible conditions is a constant. The alterations in the proba-
bility a posteriori are thus a function of alterations in the propor-
tion of remaining possible conditions relative to the first n 
things among the initially possible conditions. 

The proportion of remaining possible conditions relative to 
the first n+ I things among the initially possible conditions is 
equal to, or smaller than, the proportion of remaining possible 
conditions relative to the first n things among the initially 
possible conditions. 

If the proportions are equal, then the proportion which 
answers to the a posteriori probability is not altered when we 
pass from the first n to the first n+ I things. 
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If the proportions are not equal, then the proportion which 

answers to the a posteriori probability is increased when we pass 
from the first n to the first n+ I things. 

That the proportions are not equal means the same as that 
the proportion of remaining possible conditions relative to the 
first n+ I things among the remaining initially possible con-
ditions relative to the first n things, is not I. 

Two cases must now be distinguished: either ¢0 is finite or 
¢0 is denumerably infinite. 

If ¢0 is finite, then to say that the last-mentioned proportion 
is not 1, means that there is at least one initially possible 
condition which is a remaining possible condition relative to 
the first n things but not relative to the first n+ I things. Thus 
to say that the proportion is not I means that the n+ cth 
thing excludes or eliminates at least one of the initially possible 
Necessary (Sufficient) Conditions of H (A) from being an actual 
Necessary (Sufficient) Condition of H (A). 

If ¢0 is denumerably infinite, then to say that the proportion 
is not I, means that a perceptible proportion (p. 8o) of the 
remaining possible conditions relative to the first n things are 
not remaining possible conditions relative to the first n+ I 
things. Thus to say that the proportion is not I entails, but is not 
identical with saying that the n+ I :th thing excludes or elimi-
nates at least one of the initially possible Necessary (Sufficient) 
Conditions of H (A) from being an actual Necessary (Sufficient) 
Condition of H (A). 

We shall henceforth always understand 'elimination' in the 
stronger sense of elimination of a perceptible proportion (and not 
merely at least one) of the remaining possible conditions. 

Thus, on the Frequency Interpretation, increase in the 
probability a posteriori of a law means elimination. 

The difference between the proportions which answer to the 
a posteriori probabilities for n+ I and n respectively is inversely 
proportional to the proportion of remaining possible conditions 
relative to the first n+ I things, among the remaining initially 
possible conditions relative to the first n things. 

If ¢0 is finite, then the last-mentioned proportion is the 
smaller, the greater the number of initially possible Necessary 
(Sufficient) Conditions of H (A) that then+ I :th thing excludes 
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or eliminates from being actual Necessary (Sufficient) Condi-
tions of H (A). 

If rfoo is denumerably infinite, then the proportion is the 
smaller, the greater is the proportion of remaining possible 
Necessary (Sufficient) Conditions of H (A) relative to the first n 
things, which are not remaining possible Necessary (Sufficient) 
Conditions of H (A) relative to the first n + I things. 

Thus, on the Frequency Interpretation, increase in the 
probability a posteriori of a law is proportionate to the eliminative 
efficiency of the confirming instances. 

It is a well-known fact that common sense is not prepared to 
regard all confirming instances of a law as equally effective in 
raising its probability. It is also the case that, as a rule, we 
regard the first few successful confrontations of a law with 
experience as more important from the point of view of pro-
bability than even a large number of later confirmations. 

It appears to me very plausible to hold that this unequal 
power of raising the probability of a law should be attributed 
to inequality in the eliminative efficiency of the confirming 
instances. It is also reasonable to ascribe the relative importance 
of the initial confirmations to the fact that, as a rule, the 
eliminative efficiency decreases as more and more confirmations 
are made. It becomes increasingly difficult 'to vary the 
circumstances.' 

It is hard to see what could be meant by the 'improbability' 
of the confirmation of a law in a new instance except that the 
new instance invalidates a great number of laws, and that 
therefore the law in question runs great 'risks' of becoming 
invalidated. 

That the probability a posteriori of the law H C A approaches 
maximum probability as a limit means, on the Frequency 
Interpretation, that the proportion of remaining possible 
Necessary (Sufficient) Conditions of H (A) relative to the first n 
things among the initially possible conditions approaches as a 
limit the proportion of actual Necessary (Sufficient) Conditions 
of H (A) among the initially possible conditions. It should again 
be noted that this is the case only if the sequence of things 
affording confirmations of the law successively exhausts the 
entire Universe of Things. 
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Thus, on the Frequency Interpretation, the Theorem of 
Confirmation runs: 

Let there be a not empty set cp0 of initially possible Necessary 
(Sufficient) Conditions of the property H (A). Suppose that a 
perceptible proportion of members of this set are actual 
Necessary (Sufficient) Conditions of H (A). (Suppose further 
that a proportion of members of this set remain possible 
Necessary (Sufficient) Conditions of H (A) relative to the first 
thing and, generally, that a proportion of remaining initially 
possible Necessary (Sufficient) Conditions of H (A) relative to 
the first n things remain possible Necessary (Sufficient) Condi-
tions of H (A) relative to the first n+ I things.) Then the pro-
portion of actual Necessary (Sufficient) Conditions of H (A) 
among the remaining initially possible conditions relative to 
the first n things, 

1. increases with each thing, provided the thing contributes 
to the elimination of initially possible Necessary 
(Sufficient) Conditions of H (A), 

n. increases the more with each thing, the more the thing 
contributes to the elimination of initially possible 
Necessary (Sufficient) Conditions of H (A), and 

m. approaches I as a limit. 

We shall speak of the considerations which have taken us to 
the Theorem of Confirmation and its Frequency Interpretation 
as a 'reconstructive examination' of the Argument from Con-
firmation. 

* * * * * 
The Argument from Confirmation is sometimes understood 

as a justification of the idea that Induction by Enumeration has 
an independent value apart from Induction by Elimination. On 
our reconstructive examination of the argument, this view 
becomes unwarranted. To speak of the increasing probability 
of a law turns out to be only a disguised manner of expressing 
facts about the elimination of 'concurrent' possibilities. To put 
it in the shortest way: the increasing probability of a law is 
merely another expression of the trivial fact that, as the 
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number of possible alternative laws decreases through elimina-
tion, the proportion of true laws increases. 

One might object to our reconstructive undertaking that it 
makes Inductive Probability utterly trivial and void of practical 
interest. This, I think, is true, but hardly constitutes an objec-
tion. Was it ever reasonable to expect that the Argument from 
Confirmation and other uses of Inductive Probability, once 
they had become properly clarified, would amount to anything 
very important and powerful from the point ofview of scientific 
practice? It does not seem so to me. The charge against a Logic 
of Induction of making the concept of Inductive Probability 
trivial, resembles the traditional charge against the logical 
undertakings of Bacon and Mill of not having given much help 
to the actual progress of science and t..'Ie discovery of new truths. 
The reconstructive examination has served its purpose if it has 
succeeded in making clearer what people actually do or might 
do when they employ arguments of Inductive Probability. If 
this clarification makes the arguments turn out less profound 
than they appeared previously, the service done by logic to the 
mental hygiene, so to speak, of the scientist is all the greater. 

The notion of the degree of probability, or of confirmation, 
of a law can be defined and treated in various ways. It is by no 
means claimed that the lines of treatment adopted here are 
applicable to all cases in which this notoriously obscure notion 
is used. Our treatment has an immediate application to the 
well-known type of situation in experimental science, where 
there is a question of finding 'causes,' i.e., conditions, of given 
phenomena. It has, however, no immediate application to 
other types of situation, e.g., to estimating the probability of the 
Theory of Relativity. It seems to me doubtful if any systematic 
clarification of our notion of (Real) Inductive Probability can be 
given, outside the study of Induction by Elimination. 

5· The Paradox of Confirmation 
As was observed already in Chap. III, §1, any thing which is 

known to be a negative instance of H or a positive instance of A 
is ipso facto known to afford a confirmation of the law H CA. 
We referred to this fact as the Paradox of Confirmation. 
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We have seen that if certain conditions are fulfilled, con-

firmation· of a law contributes to its probability. It might be 
asked whether this contributive effect also attaches to 'para-
doxical' confirmations of H C A via negative instances of Hand 
positive instances of A. An affirmative answer would imply, 
e.g., that the verification of a proposition to the effect that this 
is a swan might increase the probability of the law that all 
ravens are black. This is plainly an absurd consequence. If it 
were really warranted within the frame of the reconstructive 
examination of the Argument from Confirmation which we 
have pursued in the two preceding paragraphs, this would 
obviously be a serious blow against the success of the recon-
structive undertaking itself. 

It is, however, possible to show that the Paradox of Confirma-
tion is harmless. 

Let us assume that xn+• is either a negative instance of H or 
a positive instance of A. 

r/>n+r means the set of properties of which it is true that they 
are not absent (present) in the things x1 and •.• and xn+r in the 
presence (absence) of H (A). 

If xn+r is a negative instance of H, i.e., if H is absent in 
xn+u then every property which is not absent in x1 and •.• 
and Xn in the presence of H, is also not absent in x1 and • •• and 
xn+r in the presence of H. (For, if His absent in xn+r> then 
every property is not absent in the presence of H in this instance.) 

Similarly, if xn+r is a positive instance of A, i.e., if A is 
present in Xn+o then every property which is not present in 
x1 and ..• and xn in the absence of A, is also not present in 
x1 and • •• and xn+r in the absence of A. (For, if A is present in 
xn+u then every property is not present in the absence of A in 
this instance.) 

Thus, if xn+r is either a negative instance of H or a positive 
instance of A, then the properties r/>n+r and r/>n are co-extensive. 

r/>n+r =r/>n entails r/>n c r/>n+r• 
r/>n c r/>n+r entails cf>o&cf>n c r/>n+r• 
The Axiom of Inclusion and E cp0&r/>n and rp0&r/>n C r/>n+r 

entail P(cf>n+u cp0 &r/>m I). 
The Axiom of Uniqueness and E cp0 &r/>n and 

P( r/>n+r• cf>o&cf>m Pn+r) and P( r/>n+x> cf>o&cf>m I) entail Pn+r =I. 
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P>o and Pn+• =I entail P : IIPn+• =P : IlPn• 
Thus, if xn+• is either a negative instance of H or a positive 

instance of A, then the fact that the law H C A is automatically 
confirmed in its n+ I :th instance does not increase its probability 
a posteriori. Paradoxical confirmations of a law, in other words, 
are ineffective from the point of view of probability. 

A few words must be added concerning the Paradox of 
Confirmation in relation to the Frequency Interpretation of 
Inductive Probability. 

cPn+• means the set of remaining possible Necessary (Suffi-
cient) Conditions of H (A) relative to x1 and ... and xn+•· 

If xn+• is a negative instance of H, then xn+• cannot exclude 
or eliminate any property from being a Necessary Condition of 
H. 

Similarly, if xn+• is a positive instance of A, then xn+• 
cannot exclude or eliminate any property from being a Suffi-
cient Condition of A. 

Thus, if xn+• is either a negative instance of H or a positive 
instance of A, then the remaining possible Necessary (Sufficient) 
Conditions of H (A) relative to x1 and ... and xn+• are the 
same as the remaining possible Necessary (Sufficient) Conditions 
of H (A) relative to x1 and ... and xn. The thing xn+~> in other 
words, is wholly inefficient from the point of view of eliinination. 

As we already know, a thing which is inefficient from the 
point ofview of elimination cannot affect the proportion which, 
on the Frequency Interpretation, answers to the probability 
a posteriori of the law. 

The inefficiency of paradoxical confirmations of a law from 
the point of view of probability is thus but another expression for 
the inefficiency of paradoxical confirmations from the point of 
view of eliinination. 

The Paradox of Confirmation, therefore, is harmless. 

6. The Argument from Simplicity 
Another traditional idea of the Logic oflnductive Probability 

is that the probability (a priori) of a law is somehow proportion-
ate to the law's simplicity. We shall call this idea the Argument 
from Simplicity. 
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It is usually not very clear what is meant by 'simplicity' as an 

attribute of laws. The idea of simplicity covers a wide range of 
cases. 

There is, for instance, the case of the simplest curve connect-
ing a number ofpoints in a system of co-ordinates. The question 
of measuring degrees of simplicity in curves has been the object 
of much discussion. It will, however, not be treated in this book. 

There is also the case when the simplicity of a law has some-
thing to do with the complexity of the conditioning relation-
ship. This is the only case with which we shall deal here. 

There are two forms of the Argument from Simplicity which 
at first sight seem to run contrary to one another. We shall call 
them the direct and the inverse form of the argument respec-
tively. The first asserts that the less complex a property, the 
greater the probability that it will be a conditioning property of 
a given conditioned property. The second asserts that the more 
complex a property, the greater the probability that it will be 
a conditioning property of a given conditioned property. Thus 
the first form of the argument views Inductive Probability as 
directly, and the second as inversely, proportionate to simplicity 
in the laws under consideration. 

We shall examine both forms of the argument within the 
framework of our Calculus of Probability. The results will 
immediately be presented and, as it were, 'mirrored' in the 
Frequency Interpretation. 

A. The Direct Argument from Simplicity. 
Two principal cases will be distinguished, according to 

whether the law is a Universal Implication or a Universal 
Equivalence. 

Ai. Universal Implications. 
Two sub-cases must be distinguished, according to whether 

we consider complexity in the antecedent or the consequent of 
the implication property which the law asserts to be universal. 

Aia. Complexity in the antecedent. 
Complexity means that the antecedent is a sum of other 

properties. 
Let there be a sequence of properties A1, ••• , Am •••• 
Let ¢> 1 denote the property of being a Necessary Condition of 
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Let c/> 2 denote the property of being a Necessary Condition of 

A1vA 2 or LA 2• 

Similarly, we introduce c/> 3, etc. 
Let cfo denote the property of being a Necessary Condition of 

all A-properties. 
Every one of the members of the sequence c/> 1, ••• , cfom ••• is 

included in its predecessor. The logical product of all members 
is cfo. Thus we have lim( cfom cfo). 

Let cfoo denote a set of properties from the same universe as 
the A-properties. 

The following suppositions are introduced: 
SI. The property H belongs to the set cfo0• Thus E cfo0 • 

S2. There is a probability p that a random property, e.g., 
H, will be a Necessary Condition of all the A-properties on the 
evidence that it belongs to cfo0• In symbols: P(cfo, c/>0, p). 

S3. There is a probability p1 that a random property, e.g., H, 
will be a Necessary Condition of A 1 on the evidence that it 
belongs to cfo0 • In symbols: P(c/> 1, c/>0, p). There is further a proba-
bility Pn+r that a random property, e.g., H, is a Necessary 
Condition of LAn+r on the evidence that it belongs to cfoo and 
is a Necessary Condition of LAn. In symbols: 
( n)P( cfon+r' cfoo&cfom Pn+r) • 

S4. P>o. 
Given these four suppositions as data, we can deduce a 

probability that a random property, e.g., H, is a Necessary 
Condition of LAn on the evidence that it belongs to cfo0 • 

This deduction has, in fact, already been made. It is in all 
details exactly the same as the deduction which took us from 
the suppositions SI-S4 of §3 of this chapter to the probability-
expression (n)P(cfom c/>0, llpn)· (Cf. above p. 246 f.) 

Wealsodeduced(n)(llPn>o) andlim(llpmp). (C£ abovep.247f.) 
llpn is the probability of the law LAn C H on the evidence 

that H belongs to c/>0• 

If Pn+r<r, then llPn+r<llPn• 
Thus, provided it is not maximally probable that a random 

property His a Necessary Condition of LAn+r on the evidence 
that it belongs to cfoo and is a Necessary Condition of LAm then 
the simpler law LAn C H is more probable than the law 
1":An+r C H on the evidence that H belongs to cfo0 • 
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In the Frequency Interpretation this means: 
Provided that it is not the case that practically all members 

of cf>o which are Necessary Conditions of ~An are also Necessary 
Conditions of ~An+t> then it is more frequently the case that 
a random member of c/>0 is a Necessary Condition of ~A,. than 
of ~An+r· 

This is a 'pure triviality.' 
Ai{:J. Complexity in the consequent. 
Complexity means that the consequent is a product of other 

properties. 
The reasoning is strictly 'dual' to the reasoning in the 

preceding case. 
Let there be a sequence of properties AH ... , A,., ...• 
Let c/> 1 denote the property of being a Sufficient Condition 

of A 1 • 

Let c/> 2 denote the property of being a Sufficient Condition of 
A 1 and A2 or of IIA 2• (Cf. above p. 41.) 

Similarly, we introduce cp 3, etc. 
Let cf> denote the property of being a Sufficient Condition of 

all A-properties. 
Every one of the members of the sequence c/> 1, ••• , c{>,., ••• is 

included in its predecessor member. Thus we have lim(c/>,., cf>). 
Let c/>0 denote a set of properties from the same universe as 

the A-properties. 
The following suppositions are introduced: 
SI. The property H belongs to the set cf>0• Thus E cf>0• 

S2. There is a probability p that a random property, e.g., H, 
will be a Sufficient Condition of all the A-properties on the 
evidence that it belongs to c/>0• In symbols: P( cp, c/>0, p). 

S3. There is a probability p1 that a random property, e.g., H, 
will be a Sufficient Condition of A 1 on the evidence that it 
belongs to c/>0• In symbols: P(c/> 1, c/>0, p). There is further a proba-
bility Pn+r that a random property, e.g., H, will be a Sufficient 
Condition of IIAn+t on the evidence that it belongs to cf>o and 
is a Sufficient Condition of IIA11 • In symbols: 
(n)P(c/>n+o cf>o&c/>m Pn+r). 

s4. P>o. 
Given these four suppositions as data, we can deduce 

(n)P(cf>m c/>0, llpn) and (n)(IlPn>o) and lim(IIPm P) in exactly the 
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same way as those expressions were deduced from the supposi-
tions SI-S4 of §3. 

liPn is the probability of the law H C IIAn on the evidence that 
H belongs to cfoo· 

If Pn+r<I, then liPn+r<liPn• 
Thus, provided it is not maximally probable that a random 

property His a Sufficient Condition of IIAn+r on the evidence 
that it belongs to cfoo and is a Sufficient Condition of IIAn> then 
the simpler law H C IIAn is more probable than the law 
H C IIAn+r on the evidence that H belongs to c/>0 • 

In the Frequency Interpretation this means: 
Provided that it is not the case that practically all members 

of cfoo which are Sufficient Conditions of IIAn are also Sufficient 
Conditions of IIAn+r• then it is more frequently the case that 
a random member of cfoo is a Sufficient Condition of IIAn than 
of IIAn+r· 

This again is a 'pure triviality.' 
Aii. Universal Equivalences. 
No proof as to the direct proportionality of simplicity and 

Inductive Probability is possible. 
That such must be the case is immediately clear from the 

Frequency Interpretation. If His a Necessary-and-Sufficient 
Condition of the sum kAn+r or the product IIAn+r respec-
tively, it does not follow that H will also be a Necessary-and-
Sufficient Condition of the sum kAn or the product IIAn 
respectively. (Cf. above Chap. III, §2 and Chap. IV, §8.) 
Consequently, the number of members of a set of properties cfoo 
which are Necessary-and-Sufficient Conditions of kAn+r or 
IIAn+r need not be either smaller than, or equal to, the 
number of members which are Necessary-and-Sufficient 
Conditions of kAn or IIAn. It may be greater than that number. 

Similar considerations apply to Necessary-and-Sufficient 
Conditions which are sums of products or products of sums of 
A-properties. 

B. The Inverse Argument from Simplicity. 
Two principal cases will again be distinguished, according 

to whether the law is a Universal Implication or a Universal 
Equivalence. 

Bi. Universal Implications. 
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Two sub-cases must again be distinguished, according to 

whether we consider complexity in the antecedent or the con-
sequent of the implication property which the law asserts to be 
universal. 

Bia. Complexity in the antecedent. 
Complexity means that the antecedent is a product of several 

properties. 
Let there be a sequence of properties A1, ••• , A, ... . 
Let c/> 1 denote the property of being a Necessary Condition 

of A1 • 

Let c/> 2 denote the property of being a Necessary Condition of 
A1 &A 2 or IIA 2• 

Similarly, we introduce c/> 3, etc. 
Let 4> denote the property of being a Necessary Condition of 

the product of all the A-properties. 
Every one of the members of the sequence cPB ••• , c/>, ... is 

included in its successor. The logical sum of all members is cf>. 
Thus we have lim( c/>, cf>). 

Let c/>0 denote a set of properties from the same universe as the 
A-properties. 

The following suppositions are introduced: 
Sr. The property H belongs to the set c/>0• Thus E c/>0• 

S2. There is a probability p that a random property, e.g., H, 
will be a Necessary Condition of the product of all the A-pro-
perties on the evidence that it belongs to c/>0 • In symbols: 
P( c/>, c/>0, P). 

S3. There is a probability p 1 that a random property, e.g., H, 
will be a Necessary Condition of A1 on the evidence that it 
belongs to c/>0• In symbols: P( c/> 1, c/>0, p 1). There is further a pro-
bability Pn+r that a random property, e.g., H, will be a Neces-
sary Condition of IIAn+r but not of IIAn_on the evidence that 
it belongs to c/>0• In symbols: (n)P(c/>n+r&c/>, c/>o, Pn+z)· 

Given the suppositions Sr and S3 as data, we can deduce a 
probability that a random property, e.g., H, will be a Necessary 
Condition of IIAn on the evidence that it belongs to cf>0• Adding 
S2 to the data, we can deduce that this probability approaches 
pas a limit. _ 

Ifn>I, then cPn is identical with c/> 1v'i:.(c/>n&4>n-z)· 
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Any two members of the sequence of properties c/J1> c/J2&"¢b 

••• , c/Jn+x&if>m • • • are mutually exclusive. In symbols: 
(m)(n)(~~E cPm+x&~&rpn+x&~n)• 

The Special Addition Principle and E rp0 and 
(m)(n)(mn~E cPm+x&i.,.&q,n+x&fn) and P(cfob rp0, PJ and 
(n)P(rpn+x&'im r/Jo, Pn+x) entail (n)P(r/Jm r/Jo, 'i:.ftn). 

If Pn+x>o, then 'i:.Pn+x>'i:.ftn. 
The Axiom of Continuity and E rp0 and (n)P( r/Jm e/>0, 'i:.pn) and 

P( rp, rp0, P) and lim( r/Jn, rp) entaillim('i:.Pm p). 
Thus, provided it is not minimally probable that a random 

property, e.g., H, will be a Necessary Condition of IIAn+x but 
not of II An on the evidence that it belongs to rp0, then the simpler 
law IIAn C H is less probable than the law IIAn+x C H on the 
evidence that H belongs to c/J0 • 

In the Frequency Interpretation this means: 
Provided that it is not the case that practically no member of 

rp0 is a Necessary Condition of IIAn+x but not of IIAn, then it is 
less frequently the case that a random member of rp0 is a 
Necessary Condition of IIAn than of IIAn+x· 

This again is a 'pure triviality.' 
Bip. Complexity in the consequent. 
Complexity means that the consequent is a sum of other 

properties. 
The reasoning is strictly 'dual' to the reasoning in the 

preceding case. 
Let there be a sequence of properties A1, ••• , Am • • • • 
Let rp1 denote the property of being a Sufficient Condition 

of A1• 

Let rp2 denote the property of being a Sufficient Condition of 
A1vA 11 or 'i:.A 11• 

Similarly, we introduce rp3, etc. 
Let rp denote the property of being a Sufficient Condition of 

the sum of all the A-properties. 
Every one of the members of the sequence rp1, ••• , c/Jn, ••• is 

included in its successor. The logical sum of all members is c/J. 
Thus we have lim( rpm rp). 

Let rp0 denote a set of properties from the same universe as the 
A-properties. 
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The following propositions are introduced: 
S1. The property H belongs to the set t/J0 • Thus E tfo0• 

S2. There is a probability p that a random property, e.g., H, 
will be a Sufficient Condition of the sum of all the A-properties 
on the evidence that it belongs to tfo0 • In symbols: P( tfo, c/>0, p). 

Sj. There is a probability p1 that a random property, e.g., H, 
will be a Sufficient Condition of A1 on the evidence that it 
belongs to c/>0• In symbols: P( c/> 1, t/J0, PI). There is further a 
probability Pn+r that a random property, e.g., H, will be a 
Sufficient Condition of ~An+r but not of ~An on the evidence 
that it belongs to t/J0 • In symbols: (n)P(tfon+x&"f,m tfoo, Pn+x)· 

In exactly the same way as in the preceding case we deduce 
(n)P(cfon+n c/>0, ~Pn) andlim(~pm'p). 

If Pn+x>o, then ~Pn+x>~Pn· 
Thus, provided it is not minimally probable that a random 

property, e.g., H, will be a Sufficient Condition of ~An+x but 
not of ~An on the evidence that it belongs to tfo0, then the 
simpler law H C ~An is less probable than the law H C ~An+r 
on the evidence that H belongs to c/>0• 

In the Frequency Interpretation this means: 
Provided that it is not the case that practically no member 

of c/>0 is a Sufficient Condition of ~An+r but not of ~Am then 
it is less frequently the case that a random member of c/>0 is a 
Sufficient Condition of ~An than of ~An+x· 

This again is a 'pure triviality.' 
Bii. Universal Equivalences. 
No proof as to the inverse proportionality of simplicity and 

Inductive Probability is possible. 
That such must be the case is immediately clear from the 

Frequency Interpretation. (Cf. above p. 260.) 

* * * * * 
No doubt the reconstructive examination of this section has 

led us to extremely trivial results. It seems to me, however, 
hardly reasonable to expect that anything much more interest-
ing than this could emerge from a clarification of the vague 
ideas, entertained in science as well as in everyday life, con-
cerning the relation of Inductive Probability to simplicity and 
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complexity of logical conditions. The chief interest of the 
clarification is to show that we can assign even to these vague 
ideas a place within the framework of axiomatic probability. 

7· The Argument from Analogy 
Traditionally related to ideas on Inductive Probability is the 

Argument from Analogy: 
Two things, x andy, are known to haven properties, A1 and 

... and Am in common. The thing x is further known to possess 
the property H. It is thought that the probability that the thing 
y will also possess the property His, in general, the greater, the 
larger the number n of properties which the two things are 
known to have in common. 

Is this argument valid? If valid, what is its epistemological 
significance? The process of answering these questions we shall 
again refer to as a reconstructive examination of the argument. 

It does not seem to me likely that a satisfactory answer to 
the above questions can be provided unless we conceive of 
the probability which is thought to increase with the analogy 
as the probability of a certain nomic connexion between the 
property Hand the product of properties IIAw 

This attitude means that probability based on analogy is 
regarded as a kind of Inductive Probability. It means, more· 
over, that the Argument from Analogy is closely related to the 
Argument from Simplicity. 

Three cases should be distinguished, according to whether 
His viewed as Sufficient Condition or as Necessary Condition 
or as Necessary-and-Sufficient Condition of the product IIAw 
Of these three cases, however, the first is hardly relevant to what 
is ordinarily called reasoning from analogy. 

A. His a Sufficient Condition of !IAn. 
This case involves an application of variant Ai~ of the 

Argument from Simplicity. 
Let there be a sequence of properties A1, ••• , Am .•• 
The ,P-properties are defined as in Ai~. 
The four suppositions Sr-S4 of Ai~ are introduced. 
Given these four suppositions as data, we can deduce 

(n)(E ,P0 &,Pn) and (n)(IIPn>o) and (n)P( c/>m c/>0 , !Ipn) and lim(IIPmP) 
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in exactly the same way as those expressions were deduced 
from the suppositions Sr-S4 of §3. 

tfo is identical with tfo&tfon· 
Thus we have (n)P(tfo&tfom t/10, p). 
The Multiplication Principle and (n)(E tfo0&tfon) and 

(n)P(tfon, t/10, IIPn) and (n)P(tfo&tfom t/10, P) and- (n)(Ilp.;>o) entail 
(n)P( t/J, tfoo&t/Jn, P : Ilpn) • 

P>o and (n)(IIPn>o) entail (n)(P :liPn>o). 
If Pn+1<I, then p: Ilpn+I>P : IIPn• 
P>o and lim(IIPm p) entaillim(p: liPn, I). 
We can state what has been proved as follows: 
Suppose that it is not minimally probable that a random 

property H will be a Sufficient Condition of all the A-properties 
on the evidence that it belongs to t/10, and not maximally 
probable that a random property H will be a Sufficient Con-
dition also of the n+ I :th A-property, on the evidence that it 
belongs to tfoo and is a Sufficient Condition of the first n A-
properties. Then that a random property H will be a Sufficient 
Condition of all the A-properties is more probable on the 
evidence that it belongs to t/10 and is a Sufficient Condition of the 
first n+ I A-properties, than on the evidence that it belongs to 
t/10 and is a Sufficient Condition of the first n A-properties only. 
The increasing probability approaches I as its limit. 

In the Frequency Interpretation this means: 
Suppose that it is not the case that practically no property 

which is a member of t/10 is a Sufficient Condition of all the 
A-properties, nor that practically all properties, which are 
members of t/10 and Sufficient Conditions of the first n A-proper-
ties, are Sufficient Conditions of the n+ I :th A-property also. 
Then it is more frequently the case that a random property H, 
which is a member of tfoo and a Sufficient Condition of the first 
n+ I A-properties, is a Sufficient Condition of all the A-proper-
ties, than that a random property H, which is a member of tfoo 
and a Sufficient Condition of the first n A-properties, is a 
Sufficient Condition of all the A-properties. n being indefinitely 
increased it tends to be practically always the case that a 
random property H, which is a member of t/10 and a Sufficient 
Condition of the first n A-properties, is also a Sufficient Condi-
tion of all the A-properties. 
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B. His a Necessary Condition of llAw 
This case involves an application of variant Bia. of the 

Argument from Simplicity. 
Let there be a sequence of properties A1, ••• , An, .•. 
The cfo-properties are defined as in Bia.. 
The three suppositions Sr-S3 of Bia. are introduced. 
From these three suppositions as data we deduced 

( n) P( cfom cp0, 'LPn) and lim("i.Pm P). 
We introduce a fourth supposition: 
s4. Pt>o. 
cfo is identical with cfotvcfo&~t· 
E cp1 &cfo&"4>1 is tautologous. 
The Special Addition Principle and E cfoo and E cp1 &cfo&"¢,1 

and P(cfoi> cp0, Pt) and P(cfo1vcfo&~t• cp0, P) entail P(cfo&"it, cp0,P-Pt)· 
The Axiom of Minimum Probability and E cfoo and 

P( cfo&"J',1, cp0, P-P 1) entail P-P1'?:co which entails p';;::cftt. 
P'?:cPt and P1>o entail P>o. 
E cfo&cfoo entails cfoo C --:fi. 
The Inclusion Axiom and the Addition Axiom and E cfoo and 

cfoo C ~entail P(cfo, cp0, o). 
The Axiom of Uniqueness and E cfoo and P(cfo, cfo0, p) and 

P(cfo, cp0 , o) entailp=o. 
Thus, P1>o entails E cfo&cfoo· 
cfon is identical with cfo&cfon· 
The Multiplication Principle and E cp0 &cfo and P( cfo, cfo0, p) and 

(n)P(cfo&cfom cp0, 'LPn) andp>o entail (n)P(cfom cp0&cp, 'LPn :p). 
If Pn+r>o, then "'i.pn+r : P>"'i.pn: p. 
P>o and lim('LPm p) entaillim('LPn: p, I). 
We can state what has been proved as follows: 
Suppose that it is not minimally probable that a random 

property H will be aN ecessary Condition of the first A-property 
on the evidence that it is a member of cfo0, and not minimally 
probable that it will be a Necessary Condition of the product 
of the first n+ 1 A-properties without being a Necessary Con-
dition of the product of the first n A-properties on the evidence 
that it is a member of cp0 • Then it is more probable that a random 
property H will be a Necessary Condition of the product of the 
first n+ I A-properties than of the product of the first n 
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A-properties, on the evidence that it is a member of r/>0 and 
a Necessary Condition of the product of all A-properties. The 
increasing probability approaches I as its limit. 

In the Frequency Interpretation this means: 
Suppose that it is not the case that practically no property 

which is a member of r/>0 is a Necessary Condition of the first 
A-property, nor that practically no property which is a member 
of cp 0 is a Necessary Condition of the product of the first n+ I 
A-properties without being a Necessary Condition for the 
product of the first n A-properties. Then it is more frequently 
the case that a random property H, which is a member of r/>0 and 
a Necessary Condition of the product of all the A-properties, 
is a Necessary Condition of the product of the first n+ I A-pro-
perties than a Necessary Condition of the product of the first 
n A-properties. n being indefinitely increased it tends to be 
practically always the case that a random property H, which 
is a member of cp0 and a Necessary Condition of the product of 
all the A-properties, is a Necessary Condition of the product of 
the first n A-properties. 

This case is relevant to reasoning from analogy. It means that 
if His (known or assumed to be) necessary for the occurrence of 
all the A-properties in a thing, then, on suitable conditions, it 
becomes more and more probable, with increasing n, that H 
must be present on the occurrence of n A-properties in a thing. 

C. His a Necessary-and-Sufficient Condition of IIA.,. 
This case, like the first, involves an application of variant Aip 

of the Argument from Simplicity. 
Whatever is a Necessary-and Sufficient Condition of !IAn is 

also a Sufficient Condition of II A.,. 
r/>0 and the sequence r/> 1, ••• , rf>n, ••• mean the same as in Aip. 
4> denotes the property of being a Necessary-and-Sufficient 

Condition of !IAn. 
The suppositions Sr-S4 of Aip are introduced with the sole 

modification that in S2 we substitute 'Necessary-and-Sufficient 
Condition' for 'Sufficient Condition.' 

In exactly the same way as before we can deduce 
(n)P(r/>, c/Jo&rf>m P: !Ipn) and (n)(p: liPn>o). 

lfpn+x<I, thenp: liPn+x>P: liPn• 
We cannot, however, in this case deduce lim(rf>m 4>) which is 
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necessary for the deduction of lim( RPm p) and lim(p: npn, I) 
respectively. This is quite natural, considering that rf>n is a 
(decreasing) set of Sufficient Conditions and rfo a set ofN ecessary-
and-Sufficient Conditions. 

We can state what has been proved as follows: 
Suppose that it is not minimally probable that a random 

property Hwill be a Necessary-and-Sufficient Condition ofthe 
product of all the A-properties on the evidence that it is a 
member of r/>0, and not maximally probable that a random 
property H will be a Sufficient Condition of the n+ I :th 
A-property also, on the evidence that it is a member of r/>0 

and is a Sufficient Condition of the first n A-properties. Then, 
that a random property H will be a Necessary-and-Sufficient 
Condition of the product of all the A-properties is more probable 
on the evidence that it is a member of r/>0 and is a Sufficient 
Condition of the first n+ I A-properties, than on the evidence 
that it is a member of r/>0 and is a Sufficient Condition of the first 
nA-properties. The increasing probability cannot be proved to 
approach I as its limit. 

In the Frequency Interpretation this means: 
Suppose that it is not the case that practically no property 

which is a member of rfoo is a Necessary-and-Sufficient Condition 
of the product of all the A-properties, nor that practically all 
properties, which are members of r/>0 and Sufficient Conditions 
of the first n A-properties, are Sufficient Conditions of the 
n+ I :th A-property also. Then it is more frequently the case that 
a random property H, which is a member of r/>0 and a Sufficient 
Condition of the first n+ I A-properties, is a Necessary-and-
Sufficient Condition of the product of all the A-properties, than 
that a random property H, which is a member of rfoo and a 
Sufficient Condition of the first n A-properties, is a Necessary-
and-Sufficient Condition of the product of all the A-properties. 
It cannot, however, be proved that what is here more frequently 
the case ends, in the long run, to become practically always 
the case. 

This case is also relevant to reasoning from analogy. It means 
that if H is (known or assumed to be) sufficient for the occur-
rence of n A-properties in a thing, then, on suitable conditions, 
it becomes with increasing n more and more probable that H 
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is necessary as well as sufficient for the occurrence of all the 
A-properties in a thing. 

Let us examine a concrete instance of reasoning from analogy 
in the light of the above abstract trends of thought. 

Use of the Argument from Analogy is common in daily life, 
and well known, though not always well trusted, in science. In 
philosophy there is a famous use of the argument for proving, 
on probable grounds, the existence of other minds. We observe 
mental activity in ourselves introspectively, and extrospectively, 
the occurrence of bodily events, such as purposive behaviour or 
verbal and other symbolic acts. We observe in other persons 
similar bodily events. It is argued that the more similarity there 
is between those bodily events in myself and in other persons, 
the more probable it is that other persons' bodies also are 
associated with a mind. 

I shall not here be at all concerned with the philosophic 
value and significance of the argument, which seem to me 
highly debatable. I shall only inquire what the argument might 
amount to in terms of our above reconstruction of reasoning 
from analogy. 

Let mental activity be denoted by H and let the type of 
bodily changes under discussion be represented by the sequence 
A1, ••• , Am ..•. The Argument from Analogy, when applied 
to the problem of other minds, obviously assumes the existence 
of some sort of connexion by law between the observed bodily 
phenomena and mental activity. The bodily events in me, we 
say, are 'due' or 'attributed' to the activity of my mind. The 
precise nature of this law-connexion, however, is usually not 
clearly stated. Three possibilities are at hand. 

A. Mental activity is a Sufficient Condition of bodily be-
haviour. 

If we do not regard it as a priori minimally probable that 
mental activity is sufficient for the production of a total A 1, ••• , 

An, .•. of bodily changes, then a posteriori, i.e., supposing we 
know that mental activity is sufficient to produce n of these 
changes, it is the more probable that mental activity is suffi-
cient for the production of all the changes, the greater this 
number n is. The increasing probability here approaches the 
maximum value 1. 
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It is reasonable to think that mental activity cannot alone be 

sufficient for the production of macroscopic bodily changes. 
The mind has to work through a physical medium, the nervous 
system. Mental activity would thus be only a Contributory 
Condition. This point, however, is immaterial here, since we 
can conceive of the factor H of the argument as a complex 
factor, of which mind is a constituent only. Allowing for this, 
I think most people are willing to accept mental activity 
(volition) in them as a sufficient cause of part of their behaviour. 
(The philosophic or scientific significance, if any, of this popular 
idea will, as already observed above, not concern us here.) 

The Argument from Analogy here amounts to saying that 
the more similarity there is between physical events of a certain 
type associated with my body and the same type of physical 
events in association with other persons' bodies, the more 
probable does it become that mental activity is sufficient for 
the production of bodily changes of the type in question. 

It is clear that from this nothing at all can be concluded as 
to the probability that, since the observed bodily changes in 
my body are produced by mind in my case, they are also to be 
attributed to mental activity in the case of other persons. For 
the fact that H is a probable Sufficient Condition of something 
does not permit any probable conclusion from the occurrence 
of this 'something' to the occurrence of H, but only conversely. 
Thus from the fact that there is mental activity in me and the 
fact that mental activity is a probable Sufficient Condition of 
certain observed bodily changes in me and in other persons 
nothing can be concluded as to the probability that there is 
mental activity in those other persons too. (We only know that 
if there were mental activity in those persons it would probably 
be sufficient for the production of the observed changes in their 
bodies, but this is something entirely different from knowing 
that there probably is mental activity in them.) 

The above means, generally speaking, that variant A of the 
Argument from Analogy has no direct bearing at all upon what 
is ordinarily understood by reasoning from analogy. (Cf. above 
p. 264.) 

B. Mental activity is a Necessary Condition of bodily be-
haviour. 
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If we do not regard it as a priori minimally probable that 

mental activity is necessary for the production of a random 
(first) case of a variety At> .. ·., Am ... of bodily changes, then 
a posteriori, i.e., supposing we know that mental activity is 
necessary for the production of the whole variety of changes, it 
is the more probable that mental activity is necessary for the 
production of n of those changes, the greater n is. The increasing 
probability approaches the maximum value I. 

If the range of behaviour A1 , ••• , Am ••• is not very narrow, 
it is fairly reasonable to think that no body is capable of 
behaving in all the ways under consideration unless it is 
associated with a mind. This premiss being accepted, the 
Argument from Analogy here amounts to saying that the more 
similarity there is between physical events of a certain type 
associated with my body and the same type of physical events 
associated with other persons' bodies, the more probable does 
it become that mental activity is necessary for the production 
of the similarity. 

This is a genuine species of reasoning from analogy. It permits 
us to conclude with probability from the occurrence of mental 
activity in me and from the observation of similarities in the 
bodily life of myself and of other persons, to the occurrence of 
mental activity in those other persons too. 

C. Mental activity is a Necessary-and-Sufficient Condition 
of bodily behaviour. 

If we do not regard it as a priori minimally probable that 
mental activity is necessary as well as sufficient for the pro-
duction of a total A1, ••• , Am ... of bodily changes, then 
a posteriori, i.e., supposing we know that mental activity is 
sufficient for the production of n of these changes, it is the more 
probable that mental activity is necessary as well as sufficient 
for the production of all the changes, the greater this number 
n is. The increasing probability, however, cannot be proved to 
approach maximum probability. 

As already observed, the supposition that mental activity is a 
sufficient cause of part of our bodily behaviour has a certain 
popular plausibility. This supposition being taken for granted, 
the Argument from Analogy here amounts to saying that the 
more similarity there is between physical events of a certain 

271 



A TREATISE ON INDUCTION AND PROBABILITY 
type associated with my body and the same type of events 
associated with other persons' bodies, the more probable does 
it become that mental activity is not only sufficient but also 
necessary for the production of bodily changes of the type in 
question. 

This is also a relevant case of what is ordinarily understood 
by reasoning from analogy. The plausibility of the initial 
suppositions on which the argument is based appear to me 
stronger in case C. than in case B. The disadvantage of C. as 
compared with B. is that it cannot make the probability ap-
proach the maximum I, unless we assume that everything 
which is sufficient for the production of all the bodily pheno-
mena under discussion is also necessary for that purpose. 
Whether we are inclined to think such a supposition warranted 
in the case of the problem of other minds, I cannot say. 

8. Inductive Probability and Types cif Law 
It frequently happens that we pass a judgment on the com-

parative probabilities of laws which is based, not on their con-
firmation by experience nor on their relative simplicity of 
structure, but on considerations as to the 'material' character 
or content of them. It is, e.g., reasonable to assume that there 
are types of law in physics or the natural sciences which are 
commonly acknowledged to be more trustworthy than most 
types or any type oflaw in psychology or the social sciences. 

The above ideas are very vague, and it is hardly to be ex-
pected that there is a unique way of reconstructing them. A 
first approach to their treatment may be suggested along the 
following lines: 

Let H be a member of a set of properties cp,A of ,P, H 1 of cfo 1 , 

and A' of I/J 1 • The four properties cp, ,P, cfo 1 , I/J 1 can also be spoken 
of as the 'material types' of the four properties H, A, H', A'. 

Let the laws, on the comparative probabilities of which we 
pass a judgment, be H C A and H 1 C A'. 

The proposition that H C A is more probable than H 1 C A 1 

can be understood in a variety of different ways, of which we 
mention the following: 

1. It is more probable that a property of the type cfo has a 
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Necessary Condition of the type 1/J than that a 
property of the type cfo' has a Necessary Condition of 
the type if/. The property 'having a Necessary 
Condition of the type if/ we denote by x and the 
property 'having a Necessary Condition of the type 
!fo" we denote by x'. We have then two probability-
expressions P(x, cfo, p) and P(x', cfo', p'). It is asserted 
thatp>p'. 

n. It is more probable that a property of the type 1/J has 
a Sufficient Condition of the type c? than that a 
property of the type !ft' has a Sufficient Condition of 
the type cp'. The treatment is analogous to the case 
above. 

One of the terms of the respective laws may also be taken as 
a constant property and not as the representative of properties 
of a certain 'material type.' We get two new interpretations: 

m. It is more probable that the property A will be a 
Necessary Condition of a property of the type cfo than 
that A' will be a Necessary Condition of a property 
of the type cp'. We denote by x the property 'Sufficient 
Condition of A' and by x' the property 'Sufficient 
Condition of A'.' We have then two probability-
expressions P(x, cfo, p) and P.(x ', cp ', p '). It is asserted 
thatp>p'. 

IV. It is more probable that the property H will be a 
Sufficient Condition of a property of the type ifJ than 
that H' will be a Sufficient Condition of a property 
of the type 1/J'. The treatment is analogous to case iii. 

A' may also be identical with A or H' with H. We then get a 
sub-case of iii and iv respectively. On these two alternatives it is 
necessary that the four properties should belong to one and the 
same Universe of Properties, but otherwise there is no objection 
to supposing that H and A belong to one and H' and A' to 
another universe. 

Finally we can view H, A as a pair of properties from a set of 
pairs c? and H', A' as a pair from another set cp '. We then get a 
fifth interpretation: 

s 273 



A TREATISE ON INDUCTION AND PROBABILITY 

v. It is more probable that a property-pair of the type 
t/> will constitute a condition-pair than that a property-
pair ofthe type tf>' will constitute a condition-pair. 

If in i-v we replace 'more probable' with 'more frequently 
the case' we get the five ideas on the Frequency Interpretation. 
It must again be emphasized that the fact that laws cannot be 
verified through their instances and that consequently the 
frequencies of true laws cannot be determined even in finite 
sets, does not constitute any logical objection to the view that 
the comparative probabilities which we have been discussing 
are comparative truth-frequencies in sets of laws. The exemp-
tion from empirical control may make statements concerning 
such frequencies vague and useless in practice, but it does not 
render them logically absurd, nor does it alter the fact that 
people often believe them to be true. 

I shall not discuss here how belief in propositions concerning 
the comparative probabilities of laws of different types arises. 
It is perhaps reasonable to think that we have come to entertain 
such beliefs from what confirmation and falsification of laws 
of the respective types has taught us, but it may sometimes also 
be the case that the beliefs are founded on pure intuition or 
vague analogies from other domains of our experience. 
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Chapter Ten 

INDUCTION AND INVERSE 
PROBABILITY 

1. The Concept of Apparent Inductive Probability 

I N Chap. VIII, §r we distinguished betweenRealandApparent 
Inductive Probability. The first is probability as an attribute 

of theories or laws, i.e., of inductive conclusions of the second 
order. The second is probability as an attribute of predictions, 
i.e., of inductive conclusions of the first order, which is for some 
reason mistakenly believed to be an attribute of theories or laws. 
As the most important sub-species of Apparent Inductive 
Probability we mentioned a number of traditional ideas con-
cerning the relevance of probability to induction which may be 
grouped under the heading of Inverse Probability. 

In Chap. IX we examined Real Inductive Probability. Some 
familiar arguments concerning the probability of laws were 
presented and reconstructively examined in the light of axioma-
tic probability and its interpretation as a frequency concept. 

In the present chapter we shall deal with Apparent Inductive 
Probability. The treatment will be confined to Inverse Proba-
bility. The procedure is somewhat analogous to that of the 
foregoing chapter. Some main problems of Inductive Proba-
bility are presented and the 'traditional' arguments involving 
an application of Inverse Probability for their solution are 
outlined. Thereafter the problems are restated and examined 
in the light of axiomatic probability. The reconstructive exami-
nation serves two purposes. It shows that a certain pretended 
Inductive Probability is apparent only. And it provides the 
instrument for an estimation of the epistemological significance, 
if any, of the arguments examined. 
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There are three main cases in which Inverse Probability is 
traditionally thought relevant to induction. The first is known 
as the problem of the Probability of Causes. The second is the 
problem of evaluating, by means of the Inverse Principles of 
Maximum Probability and Great Numbers, the relevance of 
statistical samples to Statistical Laws. The third problem con-
cerns the probability of 'future events.' 

Each of the three problems exhibits a multitude of variants. 
Here we shall deal with the simplest cases only. This will be 
sufficient for the purpose of the philosophic criticism of Inverse 
Probability which we have in mind. 

Be it remarked that the third of these problems, though it 
belongs to Inverse Probability, is not, strictly speaking, a 
problem in which we have to detect and unmask an Apparent 
Inductive Probability. 

Be it also remarked that the use of these arguments in 
scientific reasoning belongs mainly to the past. They are to-day 
commonly regarded as logically 'unsound.' The philosophical 
criticism of them, however, has remained in part unaccom-
plished. 

2. The Probability of Causes 
These are problems and arguments which involve an 

application of the Inverse Principle of Probability. (Chap. VII, 
§xo and §rg.) 

As the prototype of such problems we may take the following: 
At> .•. , An are the names of n possible 'causes' of an event B. 

The probabilities a priori that the respective causes will come 
to operate are Pt> .•. , Pn· The probability or 'likelihood' that B 
will be produced, if A 1, ••• , An respectively operate, is q1, ••• , qn 
respectively. The event B has taken place. What is the proba-
bility a posteriori that B has been produced by a particular cause 
A;? And which is the most probable cause? 

The argument runs as follows: 
The Inverse Principle supplies the value 

P;q;: (p1q1+ ... +Pnqn) in answer to the first question. The most 
probable cause, consequently, is that A; for which P;q;, or the 
product of the probability a priori of the cause and the corres-
ponding likelihood of the event, is greatest. 
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We now proceed to examine the problem and its solution in 

the light of axiomatic probability. 
The proof of the Inverse Principle within the calculus rests 

on the assumption that what are here called the different 
'causes' come to operate at least once within a certain realm of 
observations H. 

The prooffurther assumes the different causes to be mutually 
exclusive. 

Finally the proof assumes the disjunction of the different 
causes to be a Necessary Condition of a certain event B within 
the realm of observations H. The occurrence of the event, in 
other words, implies that one of the causes has been operating. 

The above assumptions can be directly 'read off' from the 
proof of the Inverse Principle given in Chap. VII, §r3. Relative 
to them the argument mentioned on the Probability of Causes 
is formally valid. Whether, however, the argument is relevant 
to inductive inference, can only be determined after it has been 
made clear to what kind of nomic connexion the word 'cause' 
refers. 

It is evident that 'cause' cannot here imply Sufficient Con-
dition. For then it would be absurd to say that the various 
causes produce the effect in question with various probabilities. 

It is equally clear that 'cause' cannot imply Necessary Con-
dition. For then it would be absurd to say that the effect renders, 
in an individual case of its occurrence, its various causes 
variously probable. 

On the other hand, the reconstructive examination of the 
argument shows that the disjunction of the causes is a Necessary 
Condition of the observed event (in so far as it falls within the 
realm of observations H). From this it immediately follows that 
'cause' here is actually understood to imply Substitutable 
Requirement. (This is a by no means uncommon use of the 
word 'cause' in ordinary language.) 

The Substitutable Requirements are jointly exhaustive 
and mutually exclusive parts of a realm of observations H&B. 
The problem with which we are dealing can now be restated as 
follows: 

What is the probability that an observed occurrence x of a 
certain event B can be 'localized' in one of a number of 
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mutually exclusive and jointly exhaustive parts A1, ••• , An of 
a realm of observations H&B? To this question the Inverse 
Principle gives an answer, provided that we know the proba-
bilities p1, ••• , Pn that a random member of the realm belongs 
to the respective parts, and the probabilities qh ••• , qn that a 
random member of the respective parts is an occurrence of the 
event. 

From the above we can draw two conclusions: 

1. The argument from Probability of Causes is not an 
argument of Real Inductive Probability. The proba-
bility of the cause is not that of a nomic connexion 
between events, but of a feature of an individual 
occurrence of a certain event. This feature is the 
presence of a certain one of the event's Substitutable 
Requirements. 

n. The argument is significant only if the 'localization' of 
occurrences in different parts of a field of measure-
ment is connected with difficulties, or as we may also 
say, if the 'identification' of the sub-fields is problema-
tic. This is actually the case in certain games of 
chance which traditionally offer the best illustrations 
to problems of Probability of Causes and Inverse 
Probability in general. We can, for instance, think of 
Has the joint content of a number of urns of equal 
shape and size and colour, containing differently 
coloured balls; of A 1, ••• , An as the balls of the 
respective urns; and of B as the balls of a certain 
colour. Whether cases corresponding to this are found 
in nature is uncertain. 

* * * * * 
Of the many variants of the above problem one deserves 

special mention because of its historical importance. It is this: 
An event B has taken place once, twice, ... , n times in 

succession. Is its occurrence due to 'chance' or is it produced 
by a 'cause'? 

On the former alternative it is held to be as likely as not 
that the event will take place once, i.e., the probability of a 
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single occurrence of it is I : 2. The occurrences are further sup-
posed to be 'independent.' On the second alternative it is 
certain, or at least maximally probable, that the event will take 
place, provided the cause is operating. An easy application of 
the Multiplication Principle and the Inverse Principle yields 
the following answer to our question: 

After one, two, ... , n successive occurrences of the event it is 
more probable than not that the event is due to cause and not 
to chance, provided it is not a priori two or more than two, four 
or more than four, ... , 2n or more than 2n times as probable 
that the event is due to chance than that it is due to cause. Thus, 
given the probabilities a priori of chance and cause respectively, 
we can tell exactly how many successive occurrences of the 
event are needed in order to make it more probable a posteriori 
that the event is due to cause than that it is due to chance. 

We now proceed to the critical examination. In this we shall 
not question the condition of independence and the validity of 
the application of the Multiplication Principle involved. 

The application of the Inverse Principle here rests on the 
three assumptions, that not everything that occurs within a 
certain realm of observations is due to chance, that the alter-
natives cause and chance are mutually exclusive, and that their 
disjunction is a Necessary Condition of one, two, ... , n succes-
sive occurrences of a certain event within the realm H. 

In this problem 'cause' mqy imply Sufficient Condition, 
though it will suffice to let it be a factor, the occurrence of 
which renders the occurrence of the event in question maxim-
ally probable. 

For the same reason as in the first problem 'cause' cannot 
imply Necessary Condition. The disjunction, however, of cause 
and chance has to be a Necessary Condition of one, two, ... , n 
occurrences of the event; from which it follows that cause and 
chance separately must be two Substitutable Requirements of 
one, two, ... , n successive occurrences of the event within the 
realm H. 

The two Substitutable Requirements, in other words, are 
mutually exclusive and jointly exhaustive parts of H&B. It is 
assumed that the probability of the event in the one part is I and 
in the other part I : 2. If the event occurs in the first part it is 
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said to be due to cause, and if it occurs in the second part it is 
attributed to chance. The problem with which we are dealing 
can now be restated as follows: 

Is it more probable that one, two, ... , n successive occur-
rences of a certain event B can all be 'localized' within the 
first than within the second of two mutually exclusive and 
jointly exhaustive parts, A1 and A 2, of a realm H&B? The 
probability of a single occurrence of the event is I in A1 and 
I : 2 in A2• The occurrences of the event are independent. To 
this question the Multiplication Principle and the Inverse 
Principle give an answer, provided that we know the proba-
bilities p 1 and h that a random member of the realm H belongs 
to A1 and A2 respectively. 

From this similar conclusions to i and ii above can again be 
drawn.-It is difficult to see how it could be established, except 
perhaps for a few exceptional cases, that in a field of measure-
ment which includes a Sufficient Condition of a given property, 
the probability of the property in the remaining part of the 
field will be I : 2. Applications of the problem outside the realm 
of games of chance seem, therefore, to be practically out of the 
question. 

3. Inductions from Statistical Samples 
These are problems which involve an application of the 

Inverse Principles of Maximum Probability andjor Great 
Numbers. 

As the prototype of such problems we may take the following: 
We have examined n positive instances of a property H. Of 

them m have been found to be positive instances of the property 
A also. We have generalized that a proportionp of the property 
H is included in the property A. Can anything be concluded 
from the statistical sample to the probability of the Statistical 
Law? 

Traditionally, the discussion has been mainly concerned with 
estimating the relevance of samples of the above type to propo-
sitions about the probability that a random H will be A. If, 
however, we interpret probability as frequency, the traditional 
way of treatment becomes immediately relevant to the problem 
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oflnductive Probability raised above. The traditional argument 
can be outlined as follows: 

Suppose that the occurrences of A (and not-A) in positive 
instances of Hare independent events. 1 Then, if the probability 
that A is present in a random positive instance of H is P;, the 
probability that A is present in m of n positive instances of His 
(;;,).pt.( I-P;)n-m. 

Suppose further that the probability a priori that A is the 
probability that A is present in a random positive instance of H 
is q;. Letp1, •• • ,pw be the possible values oftheprobabilitythat 
A is present in a random positive instance of H. Then q1, ••• , 

qw are the corresponding probabilities a priori. 
On the basis of these suppositions the Inverse Principle is used 

for calculating the probability a posteriori, i.e., relative to a 
sample of n positive instances of H containing m positive in-
stances of A, that A is the probability that A is present in a 
random positive instance of H. For this probability we get the 

w 
value pt.( I-At-m.qi: 1; Am.( r-piL)n-m.qiL. 

IJ.=I 

If the possible p-values continuously cover the range from 
o to r, if the index p. is itself the value of piL, and if qiL is the 
probability a priori corresponding to A· then the calculated 
probability assumes the form 

I 

Pt.( I-A)n-m.qi: f P11-m.( I-A)n-m.qA.J,· 
0 

Let there bej p-values A,, ... , A in the interval m : n ±e. 
J 

On this additional supposition the Extended Inverse 
Principle is used for calculating the probability a posteriori, i.e., 
relative to a sample of n positive instances of H containing m 
positive instances of A, that one of these j p-values is the proba-
bility that A is present in a random positive instance of H. For 
this probability we get the value 

j w 
1; A m.(r-P; t-m.qi : 1; Am· (r-A)n-m.qiL and, on the supposition 

IJ.=I iL IL IL iJ.=I 

of a continuous distribution of p-values over the interval from 

1 In order to express the condition of independence in the language of our 
calculus, we have to replace A by a sequence At. ... , An, ..• which can be inter-
preted as meaning: the occurrence of A in the first thing, ... , the occurrence 
of A in the n:th thing, . . . . (Of. above p. 2 I 1.) 
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m:n+£ . r 

0 to I, the value f Am.(I-At-m.qiJ.dp,:fAm.(I-A)n·m.qiJ.dp,. 
nt :n-e o 

If all probabilities a priori are equal, then according to the 
Inverse Principle of Maximum Probability the most probable 
value of p is that which comes closest tom: n. On the Frequency 
Interpretation this means that a sample of n things of which m 
are positive instances of A is most frequently a sample from a 
field of which the Statistical Law is true that a proportion 
m: n of members of the field are positive instances of A. 

j m:n+€ 
If the sums ~ q; and f qiJ. dp, respectively of probabili-

;.t=t ;.t m:n-E 

ties a priori are not o, then, according to the Inverse Principle 
of Great Numbers, the probability that the value of p which 
comes closest to m: n is the probability that A is present in a 
random positive instance of H increases with nand approaches 
the maximum value I as n is indefinitely increased. On the 
Frequency Interpretation this means that an ever-increasing 
sample of n things of which m are positive instances of A, is 
more and more frequently and finally 'almost always' a sample 
from a field of which the Statistical Law is true that a proportion 
m:n of members of the field are positive instances of A. 

We now proceed to an examination of the problem and its 
solution in the light of axiomatic probability and its inter-
pretation as a frequency concept.-In this we shall disregard 
the assumption of independence and concentrate exclusively 
on a discussion of the probabilities a priori and a posteriori of the 
argument. 

From the treatment in Chap. VII, §I6 we know that the 
probabilities a priori are the probabilities that a random 
member of a field of measurement is also a member of one of a 
number of mutually exclusive parts of that field. Each of these 
parts of the field is characterized by a certain probability that 
a random member of the part is a positive instance of a given 
property. 

From this immediately follows an important conclusion 
which the traditional argument tends to obscure. It is not 
sufficient for a correct treatment of the problem to take into 
consideration statistical samples of one property H only. The 
property H of our problem is but one of a number of mutually 
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exclusive properties which jointly make up a large range of 
phenomena. Each of these properties is characterized by a 
certain probability that a random positive instance of it is also 
a positive instance of an other given property. On the Frequency 
Interpretation this means that each property is characterized 
by a certain statistical correlation with one and the same given 
property. 

The assumption that the probabilities a priori are all equal 
would mean, on the Frequency Interpretation, that a random 
member of a certain field of measurement (the large range of 
phenomena) is equally as often a member of one (e.g., H) of a 
number of mutually exclusive parts of that field as of any other 
part. 

It is important to observe that the assumption of equal 
probabilities a priori cannot, on the Frequency Interpretation, 
be supported by reference to the alleged fact (hardly true) that 
the proportions occurring in nature actually have one value 
as often as any other. 1 For, in the first place we are not con-
cerned with proportions occurring in nature as such, but with 
proportions within (mutually exclusive) parts of a main field of 
measurement, the nature of which has to be specified in each 
concrete case of application. And in the second place the proba-
bilities a priori do not indicate the statistical distribution of those 
proportions over the sub-fields, but the distribution of members 
of the main field over the sub-fields of which those proportions 
are characteristic. This attempt to support the assumption of 
equal probabilities a priori is thus guilty of two grave errors, 
of which the second is already known to us from the exposition 
in Chap. VII, §1 7 as a tendency to misinterpret the probabilities 
a priori of the problem as probabilities of a higher 'type' than 
the other probabilities involved. 

After this clarification of the nature of the probabilities 
a priori we can give a correct re-statement of the problem of the 
probabilities a posteriori as follows: 

What is the probability that a statistical sample of n things 
containing m positive instances of the property A can be 

1 Cf. Edgeworth, The Philosophy qf Chance in Mind 9 (I 884): 'The assumption that 
any probability-constant about which we know nothing in particular is as likely 
to have one value as another is grounded upon the rough but solid experience that 
such constants do, as a matter of fact, as often have one value as another.' 
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'localized' in one of a number of mutually exclusive sub-fields 
of a main field of observations? Each of the sub-fields is charac-
terized by a probability that a random member of it is a 
positive instance of A (the p-values), and also a probability that 
a random member of the main field is a positive instance of the 
sub-field (the q-values). 

To this question the Inverse Principle gives an answer. 
Provided the q-values are all equal, the Inverse Principle of 
Maximum Probability tells us that the sample can most pro-
bably be localized in a sub-field with a p-value as close as 
possible to m : n, or, on the Frequency Interpretation, in a 
sub-field of which the Statistical Law is true that a proportion as 
close as possible tom: n of its members are positive instances of 
A. Provided the sum of q-values in an interval round m : n is not 
o, the Inverse Principle of Great Numbers tells us that the 
localization of the sample in a sub-field with a p-value in this 
interval is the more probable, the greater n is, and becomes 
maximally probable as n approaches infinity. 

From this reconstructive examination of the problem and its 
solution two conclusions can be drawn: 

1. The argument examined cannot be one of Real In-
ductive Probability. For the calculated probability is, 
on the Frequency Interpretation, not the probability 
that a Statistical Law is true, but the probability that 
a statistical sample is from a field of observations, of 
which a certain Statistical Law is already -assumed 
to be true. 

n. The argument is significant only if the 'localization' of 
samples in different parts of a main field of observa-
tions is connected with difficulties or, as we may also 
say, if the 'identification' of the sub-fields is problema-
tic. 

An adequate illustration of the problem and the argument 
for the case when there· are a finite number of p-values, may 
be found in games ofchance.-We can, e.g., think ofthe main 
field as (throws with) the dice of an urn. The sub-fields are 
(throws with) those dice which are characterized by a certain 
probability of getting a one. The p-values are the probabilities 
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of a one with the respective dice. The q-values are the proba-
bilities that we are throwing with a die of a certain sub-field. 
On the Frequency Interpretation the p-values are the propor-
tions of ones among throws with the respective dice, and the 
q-values are the proportions of throws with a die of the respec-
tive sub-fields, among throws with a die of the main field. 

In n throws with a certain die we get a one m times. This 
information can now be used for estimating the probability 
that the die with which we have been throwing is characterized 
by a certain probability of getting a one. On the Frequency 
Interpretation: we can calculate the proportion, among all 
samples of m ones in n throws with any die, of samples obtained 
by throwing with a die of which a certain proportion of ones is 
characteristic. 

It is clear that this estimate is significant only if it is not 
possible to identify directly the various dice as members of the 
respective sub-fields. If, e.g., in determining the p-values, each 
die with the same p-value were painted the same colour or the 
p-value were just written on the die's surface, then we would use 
the colour or the written mark for the purpose of subsequently 
identifying a chosen die as a member of a certain sub-field. It 
would be of no use to produce a statistical sample and resort 
to Inverse Probability for the purpose of identification. 

An adequate illustration of the problem and the argument for 
the case when the p-values continuously cover the range from 
o to i, would have to make use of a non-denumerable set of 
things. No such picture is possible in 'empirical' realms, for 
which reason this case may be regarded as purely 'fictitious.' 

The use of the Inverse Principles of Maximum Probability 
and Great Numbers for purposes of statistics depends upon 
whether there occur in 'nature' cases which are in all relevant 
features analogous to the above illustration from games of 
chance. Whether there are such cases or not, I am not com-
petent to judge. That their range must be very limited as 
compared with the range of cases to which the principles of 
Inverse Probability were originally thought to be applicable, is 
quite clear. 

It may be finally remarked that, on the Frequency Inter-
pretation, any estimation of probabilities in virtue of the Inverse 
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Principles of Maximum Probability and Great Numbers 
depends, for its truth, on the truth of the Statistical Laws 
asserting the respective p- and q-values. The estimate of 
probability does not give us any additional reasons whatever 
for believing these laws to be true. This fact would in any case 
minimize the practical importance of Inverse Probability for 
statistical purposes. 

4· The Probability of Future Events 
These are problems which involve an application of the 

Principle of Succession (and similar rules). 
As the prototype of such problems we may take the following: 
We have examined n positive instances of a property H. All 

of them have been found to be positive instances of the property 
A also. Can anything be concluded from this as to the probabi-
lity that the next positive instance of H will be a positive 
instance of A? 

Suppose that the occurrences of the property A (and not-A) 
in positive instances of H are independent events. Then, if the 
probability that A is present in a random positive instance of H 
is P;, the probability that A is present inn positive instances of H 
is Pt and in n+ 1 instances is pr+r. 

Letp1, •• • ,pw be the possible values of the probability that A 
is present in a random positive instance of H. Let q1, ••• , qw be 
the corresponding probabilities a priori. 

On the basis of these suppositions we can make a combined 
use of the Inverse Principle, the Multiplication Principle, and 
the Addition Principle for computing the probability that the 
next positive instance of H will be a positive instance of A, if the 
n first instances have been so. This probability is 

w w 
~ Pv.n+r. qiJ.: ~ Pv.n·qv.• 

iJ.=I iJ.=I 
In virtue of the Principle of Succession the ~::alculated proba-

bility increases with n. The probability, in other words, that 
the next positive instance of H will be a positive instance of A is 
greater, the greater the number of positive instances of H which 
are already known to be positive instances of A. 
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On the additional assumptions that all the q-values are equal 
and that the p-values continuously cover the range from o to r, 

I I 

the calculated probability assumes the form f pn+I dp : f pn dp. 
0 0 

Mter integration we get from this the famous value 
(n+ r): (n+2). 

The reconstructive examination of the problem and· its 
solution is in all essentials similar to the examination of the 
argument of Inverse Probability in the preceding section. 

In particular, the crucial probabilities a priori mean the same 
in both the cases. After having clarified their nature we can 
restate the problem about the probability to be calculated as 
follows: 

We have a sample of n things from one of a number of 
mutually exclusive sub-fields of a main field of observations. 
Each of the sub-fields is characterized by a certain probability 
(the p-value) that a random member of it is a positive instance 
of a property A. We also know the probabilities (the q-values) 
that a random member of the main field belongs to a certain 
sub-field. All things in the sample are positive instances of A, 
but we do not know from which sub-field the sample i~;. What is 
the probability that, if the sample is enlarged by the incorpora-
tion in it of one new thing, this new thing is also a positive 
instance of A? 

From this restatement of the problem this important con-
clusion can be drawn: 

The whole argument is significant only if the 'localization' of 
samples in different parts of the main field is connected with 
difficulties, i.e., if the 'identification' of the sub-fields is prob-
lematic. For, with regard to each of the sub-fields the 
probability that a random member of it will have the property 
A is assumed to be known. Therefore, if it were known from 
which sub-field the sample is taken, we should use this informa-
tion for ascertaining the probability that the next thing will 
have the property A and the calculation in virtue of principles 
of Inverse Probability would become useless. 

Adequate illustrations of the legitimate use of the argument 
may again be found in games of chance. E.g., the illustration 
from the preceding section could be used. 
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Applications of the Principle of Succession outside the realm 

of games of chance depend upon whether there occur in 
'nature' cases which are in all relevant features analogous to 
the case mentioned in the preceding section of dice in an urn. 

* * * * * 
Traditional use of the Principle of Succession for inductive 

purposes has, at least in most cases, been definitely a misuse. 
Under this head comes, e.g., its use for computing the proba-
bility that the sun will rise to-morrow on the evidence that the 
sun has regularly risen every morning during so and so many 
years in the past, or that the next raven will be black on the 
evidence that all ravens observed in the past have had this 
colour. 

Let us show this in some detail by examining what it would 
come to that, n being the number of observed black ravens, 

w w 
(n+ I): (n+2) or ~ Pv.n+r.q!J. ~ p!J.n'q!J. is the probability that 

!J.=I !J.=I 
the next raven to be observed will also be black. 

First it is necessary that a certain number of assumptions as 
to the constitution of things should be made in order that a 
correct deduction of the two values may become possible. We 
shall here ignore the assumptions of independence which are 
needed and only mention the following three suppositions: 

1. There must be a set of fields of measurement for the 
probability that a thing is black. It would here be 
plausible to think of this set or this main field as the 
totality of species of birds. In order to obtain, without 
restrictions, the value (n+ I): (n+2) it must further be 
assumed that the number of members in the set, e.g., the 
number of species ofbirds, is non-denumerably great. 
This fictitious assumption can be dropped, if we content 

w w 
ourselves with the value ~ p!J.n+r .q!J.: ~ Pv.n.q!J. instead 

v.=r v.=r 
of(n+I) :(n+2). 

ii. We must be given the probabilities that random 
members of those fields, e.g., individual birds of the 
respective species, are black. Since the various species 
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of birds seem to be, on the whole, associated with 
·specific and constant combinations of colours, it is 
highly plausible to think that the probabilities in 
question will mainly be one of the extreme values 
o or I or some value close to them. In order to obtain 
the value (n+ I): (n+2) it must, however, be assumed 
that all intermediate probabilities will also be repre-
sented. This assumption can again be dropped if we 

w w 
content ourselves with the value ~ Pv.n+r.q11 : ~ Pv.n.q11• 

IJ.=I 14=1 
iii. Finally we must be given the probabilities a priori that 

random things, e.g., randomly chosen individual birds, 
are members of a field, e.g., belong to a species 
associated with a certain probability ofblack colour. 
In order to obtain the value (n+ I) : (n+2), but not 

w w 
if we content ourselves with ~ p11n+•.qfl.: ~ pfl.n.qfl., 

IJ.=I f}.=I 
we must assume all these probabilities to be equal. 
The practical absurdity of this assumption is quite 
obvious from what was said above about the colours 
of birds! 

On the above basis we can estimate the probability that the 
next individual bird of a random species, of which n black 
individuals have been successively observed, will also be black. 

Quite apart, however, from all considerations as to the 
practical plausibility or absurdity of conditions i-iii there is a 
deeper reason which renders futile not only the calculations, 
leading to the value (n+ I) : (n+2), but also those much more 

w w 
modest ones leading to ~ Pv.n+• .q11 : ~ p11n.qw This reason is 

!J.=I IJ.=I 

that we know the observed birds to be ravens, i.e., that we have 
already 'localized' the observed birds in a certain species or, as 
we may also say, that we have 'identified' the birds as ravens. 
Now the calculations presuppose that we have estimated the 
probabilities of black colour in random individuals of the 
respective species. (In the case of ravens it is plausible to think 
that this probability has been estimated as 1 .) Thus, if the 
species is known, the estimated probability of blackness asso-
ciated with it, and not the calculated probability of blackness 
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associated with a sample of n black birds of any species, would 
be relevant to the question of the colour of the next bird of the 
species. 

In a similar manner we can show the inapplicability of the 
Principle of Succession to any events which, like sunrises or 
being a raven, can be readily 'identified' as members of a 
certain one of a number of different fields of measurement of 
probabilities. 

5· Remarks on the Historical Development if the Logic if 
Inductive Probability 

From the general nature of probability as a substitute for 
certainty (p. 223) it follows that the history of probability is 
closely connected with the history of the philosophical and 
logical problems of induction. We shall, however, disregard 
this connexion here in so far as probability as a mere attribute 
of predictions is concerned. Our treatment will be confined to 
probability as a supposed or real attribute oflaws. 

In the history of this subject two trends can easily be dis-
tinguished. The first is mainly concerned with developing the 
philosophical implications of what is traditionally called 
a posteriori or Inverse Probability. It has been largely characteris-
tic of this trend that it has confused what is really the 
probability of a prediction with the probability of a law, of 
which the prediction is a test-condition. The first trend, there-
fore, is essentially the history of what we have called Apparent 
Inductive Probability. The second is the history of Real 
Inductive Probability. 

* * * * * 
It is a remarkable fact which, it seems to me, has not been 

sufficiently noted by historians, that James Bernoulli in proving 
his famous theorem was really intending to solve a problem of 
Inverse Probability. This is quite plain from the fourth chapter 
of the fourth book ofthe Ars Conjectandi, where the author makes 
a distinction between the determination of probabilities 
a priori, i.e., on the basis of an enumeration of possible and 
favourable alternatives, and a posteriori, i.e., on the basis of 
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statistical samples. He mentions a principle for the a posteriori 
determination of probabilities which comes very close to what 
we have called the Inverse Principle of Great Numbers. Of this 
principle he says that he has proved it after twenty years of 
effort and that the proof will be given in the work. Then follows 
the fifth chapter. Here Bernoulli proves what we have called 
the Direct Principle of Great Numbers and the book suddenly 
comes to an end. The Ars Conjectandi is unfinished, the author's 
work being interrupted by his death in I705. It was edited 
posthumously by Nicholas (I) Bernoulli in I7I3. 

De Moivre also, who in his Doctrine of Chances (I 7 I 6) contri-
buted to the mathematical refinement of Bernoulli's theorem, 
was interested in Inverse Probability. He did not, however, 
confuse the Direct and the Inverse Principles of Great Numbers 
as Bernoulli himself most probably had done. But he believed 
the inverted principle to follow from the direct by a simple 
conversion. He says1 : 'As, upon the Supposition of a certain 
determinate Law according to which any Event is to happen, 
we demonstrate that the Ratio of Happenings will continually 
approach to that Law, as the Experiments or Observations are 
multiplied: so, conversery, if from numberless Observations we 
find the Ratio of the Events to converge to a determinate 
quantity, as to the Ratio of P to Q.; then we conclude that this 
Ratio expresses the determinate Law according to which the 
Event is to happen. For let the Law be expressed not by the 
Ratio P: Q., but by some other, as R: S; then would the Ratio of 
the Events converge to this last, not to the former: which 
contradicts our Hypothesis.' From this interesting quotation it is 
seen that de Moivre confused maximum probability with 
certainty. His reasoning would have been correct if Bernoulli 
had proved that, supposing an event's probability to be p, the 
proportion of that event's happening on all occasions is (certainly) 
p. But what Bernoulli really proved was only that the probability 
of the event's happening in a certain proportion, close top, of 
all cases in a sample, increases with the size of the sample and 
approaches maximum probability 1 as the sample is indefinitely 
enlarged. 

Further early approaches to the inverse problems were made 
1 Op. cit., 3rd Ed. (1756), p. 251. 
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in several writings by Daniel Bernoulli in the period from I 734 
to I 777. Of most interest from the point of view of the history of 
ideas is probably his Essai d'une nouvelle analyse. de la mortalite 
causee par [a petite Verole of the year I 760. 

The first, however, to give a satisfactory foundation of Inverse 
Probability in the Calculus was Thomas Bayes in his Essay 
Towards Solving a Problem in the Doctrine of Chances, posthumously 
communicated by Richard Price for publication in the transac-
tions of the Royal Society in I 763. Bayes proved what is called 
by us the Inverse Principle of Maximum Probability. He did 
not, however, prove the Inverse Principle of Great Numbers 
which, as we have seen, had been aimed at by various 
authors ever since the days of James Bernoulli. Bayes's paper is 
a masterpiece of mathematical elegance and free from the 
obscure philosophical pretensions which were soon to become 
associated with his achievement. 

These pretensions are predominant already in the preface 
and long appendix which Price added to Bayes's original essay. 
Price talks eloquently of the importance of Bayes's discoveries 
for estimating the probability of causes and of inductive con-
clusions in general. He also tried to extend the purely mathema-
tical achievements of Bayes. He stated the Inverse Principle of 
Great Numbers and a Principle of Succession, but he does not 
give very satisfactory proofs. 

It appears that Laplace was not acquainted with the work of 
Bayes and Price when he developed the fundamentals of 
Inverse Probability in his M emoire sur la probabilite des causes par 
les evenements of the year I774· Here he proved not only the 
Inverse Principle and the Inverse Principle of Maximum 
Probability, but also the Inverse Principle of Great Numbers 
and the Principle of Succession-on the simplifying assumption 
of equal probabilities a priori. In later writings, however, 
Laplace pays due attention to the work of his predecessors. 

The mathematical treatment of Inverse· Probability in 
Laplace is intimately connected with philosophical claims and 
hopes as regards the importance of the Calculus of Probability. 
Laplace is the founder of a mighty tradition in the history of 
scientific ideas, the last traces of which have survived till recent 
times and in which Inverse Probability holds a dominant 
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position. We need not here follow its course in any detail. One 
of its foremost champions in England was de Morgan. The 
faith which he puts in Inverse Probability in general and in the 
formula (n+ r): (n+2) for the determination ofthe probability 
of future events in particular, cannot but amaze a modern 
reader by its complete lack of self-criticism. The same is largely 
true also of the use which J evons made of Inverse Probability .1 

First among the critics of Inverse Probability we should 
mention Leibniz, in his correspondence with James Bernoulli. 
Leibniz took a very sceptical attitude as regards that faith in 
Inverse Probability which Bernoulli thought he had already 
justified by the proof of his theorem. Leibniz acutely observed 
that any use of the calculus for attributing probability to 
inductive conclusions must rest upon initial assumptions which 
are themselves of an inductive character. 2 It is interesting to 
note that Laplace3 and adherents of his school ofthought4 were 
also incidentally aware of this, without, however, realizing its 
significance for the philosophic claims which they associated 
with their treatment ofinverse Probability. 

A guarded attitude as regards the traditional uncritical 
employment of Inverse Probability is noticeable in Leslie Ellis 
and Boole. The notorious Principle of Succession was most 
acutely criticized by Pierce. Under the influence of the renewal 
of the frequency view of probability and, in particular, thanks 

1 A characteristic use of the formula for determining with probability whether 
a phenomenon is due to a cause or to chance (cf. above p. 278 ff.) was made by 
Kirchhoff in the famous essay Untersuchungen iiber das Sonnenspektrum (1861). Kirch-
hoff, by this use of Inverse Probability, calculated the probability that the occur-
rence of sixty dark rays, observed by him at characteristic places in the spectrum of 
the sun, would coincide by chance with the rays in the spectrum of iron.- De-
plorable uncritical use of the formulae for Probability of Causes are to be found in 
Hartmann's Philosophic des Unbewussten (186g). Hartmann, inter alia, calculates 
the probability for a non-material cause operating in a given case to be o.ggggg8s! 

2 See Leibniz's Mathematische Schriften, ed. by Gerhardt (1849-63), Vol. III. 
pp. 7g-g8 for his correspondence with James Bernoulli. Leibniz (letter of 3rd Dec., 
1703), in opposition to the idea ofBernoulli that one could determine the probable 
value of human life with ever-increasing probability on the basis of statistical 
samples, makes the very acute observation that 'novi morbi inundant subinde humanum 
genus, quodsi ergo de mortibus quotcunque experimenta feceris, non ideo naturae rerum 
limites posuisti, ut pro futuro variare non possit.' Bernoulli (letter of 20th April, I 704) 
was wholly unable to grasp the significance of this profound remark. 

3 Essai philosophique sur les probabilites (reprinted in ffiuvres completes IBgi-8), 
pp. xiv, xlviii, and !iii, etc. 

• Cf. Condorcet, Essai sur l'application de !'analyse a Ia probabilite des decisions 
rendues a Ia pluralite des voix ( I78s), p.x. 
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to the rapid development of the science of statistics in the last 
fifty years, Inverse Probability has gradually been losing 
ground. Foremost among its critics in modern times ranks 
R. A. Fisher, who emphatically rejects 1 it altogether. 

In spite of the high merits of Fisher's work in theoretical 
statistics and in spite of the undeniable soundness of his 
practical attitude, his criticism of Inverse Probability remains 
to me very obscure and unsatisfactory from the point of view 
of logic. 

Fisher2 gives three main reasons for the rejection of Inverse 
Probability, viz. 

1. that the Axiom of Bayes leads to contradictions, 
n. that the Axiom of Bayes is not a necessary truth, and 

iii. that Inverse Probability cannot justify induction. 

By the 'Axiom of Bayes' Fisher does not mean any of the 
inverse principles or formulae of our calculus. Exactly what he 
means by it is not quite clear to me, but I think he has in mind 
the distribution of equal probabilities a priori in accordance 
with the rule commonly known as the Principle of Non-
Sufficient Reason or Principle of Indifference. This rule was 
actually used by Bayes for securing the equality of the proba-
bilities a priori which is essential to the Inverse Principle of 
Maximum Probability (though not to some other inverse 
theorems). 

We need not here discuss this famous principle. The charge 
that its use leads to contradictions is, I think, preposterous and 
must be withdrawn, if due attention is paid to the fact that 
probability must be taken relative to some field of measurement. 
This, however, is of minor importance. What matters is that 
Fisher's rejection of Inverse Probability does not, so far as I can 
see, involve any charge against the correctness, from the point 
ofview oflogic (mathematics), of the various Inverse Principles 
of the Calculus of Probability. 

The essential point of Fisher's criticism, as I understand it, 
is the contention that Inverse Probability must be rejected 

1 Statistical Methods for Research Workers (1925), p. 10: 'The theory of inverse 
probability is founded upon an error, and must be wholly rejected.' 

2 The Design of Experiments (3rd Ed. 1942), p. 6 f. 
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because of its uselessness for practical purposes. This contention, 
no doubt, is largely true, but why it is has not been satisfactorily 
shown by Fisher. 

As I have endeavoured to show in this book, the possible 
range and relevance of applications of Inverse Probability can 
be seen in a clearer light when the principles and formulae are 
given a solid foundation in axiomatic probability. The range is 
found to be narrowly restricted to cases which are analogous to 
some cases in games of chance. The overrated importance of 
Inverse Probability is due to a failure to note these conditions 
of analogy and to an overhasty assimilation to patterns from 
games of chance of cases which are essentially different from 
them. Fisher, therefore, is probably right in saying that most 
use of Inverse Probability (outside games of chance) has to be 
rejected. But he would be mistaken in claiming that Inverse 
Probability cannot retain its position as a logically creditable 
part of the Calculus of Probability. 

* * * * * 
The rationalistic era which saw the birth of modern natural 

science was much inclined to underrate (in spite of Bacon) 
the scientific importance of induction at the cost of deduction. 
Thus, e.g., Galileo was well aware of the impossibility of 
achieving certainty by means of induction, 1 but nevertheless 
considered the mathematical laws ofnature discovered through 
his 'resolutive' and 'com positive' methods to be absolute truths. 2 

It was not until the time of Huyghens and Newton that it 
began gradually to become clear that even mathematical laws 
of nature, in so far as they possess material content, are induc-
tive conclusions and as such only 'probably' true. 

'The arguing from experiments and observations by induc-
tion,' says Newton in his Opticks (I 704), is 'no demonstration of 
general conclusions.' And in the preface to his Traiti de la 
lumiere (16go) Huyghens writes: 

'On y verra de ces sortes de demonstrations, qui ne produisent 
pas une certitude aussi grande que celles de Geometric, et qui 
mesme en different beaucoup, puisque au lieu que les Geometres 

1 Against Vincenzo di Grazia in Opere Complete (ed. Alberi), Vol. XII, p. 513. 
2 Dialoghi delle nuove scienze in Opere Complete (ed. Alberi), Vol. XIII, p. 166, 171 

and passim. 
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prouvent leurs Propositions par des Principes certains et 
incontestables, icy les Principes se verifient par les conclusions 
qu'on en tire; la nature de ces chases ne souffrant pas que cela 
se fasse autrement. II est possible toutefois d'y arriver a un 
degre de vraisemblance, qui bien souvent ne cede guere a une 
evidence entiere. Ss:avoir lors que les chases, qu'on a demon-
trees par ces Principes suppozes, se raportent parfaitement 
aux phenomenes que !'experience a fait remarquer; sur tout 
quand il y en a grand nombre, et encore principalement quand 
on se forme et prevoit des phenomenes nouveaux, qui doivent 
suivre des hypotheses qu'on employe, et qu'on trouve qu'en 
cela l'effet repond a nostre attente.' 

As will be seen, this quotation contains an allusion to an 
argument bf Inductive Probability, viz., the Argument from 
Confirmation. At roughly the same time as Huyghens, Leibniz 
made use of another argument of Inductive Probability, viz., 
the Argument from Simplicity, in his famous comparison 
between discovering laws of nature and solving a cryptogram. 1 

It was, however, long before there were any attempts at a 
systematic treatment of (Real) Inductive Probability. 

In his System der Logik (I 8 I I) Fries distinguished between 
mathematical and philosophical probability. The distinction 
was further developed by Fries himself in his Kritik der Prinzipien 
der Wahrscheinlichkeitsrechnung (I842) and adopted by Cournot 
in his Exposition de la theorie des chances et des probabilites ( r 843). It 
occurs in a great number oflogicians and philosophers (Beneke, 
Drobisch, etc.) of the nineteenth century. 

By philosophical probability those . authors understood, 
broadly speaking, what we have called (Real) Inductive 
Probability. An essential difference between philosophical and 
mathematical probability, according to them, was that the 
first was incapable of numerical evaluation. 2 Cournot further 
thought that the philosophical probability of inductive con-
clusions was proportionate to their 'simplicity.' The idea of 

1 For this idea see Couturat, La Logique de Leibni<; d'aprils des Documents Inidits 
(1901), p. 254, etc., and the same author's Opuscules et Fragments Inedits de Leibni;; 
(1903), p. 174 and passim. 

2 Cf. Fries, Kritik der Prinzipien der Wahrscheinlichkeitsrechnung, p. 18. Cf. also 
Coumot, Essai sur lesfondements de nos connaissances (1851), Vol. II. p. 386, where the 
author says: 'La probabilite philosophique repunge tout a fait a une evaluation 
numerique.' 
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simplicity he conceived on the pattern of the simplest curve to 
be traced through a number of given points. 1 

Thus the first authors to deal with Inductive Probability 
tended-as far as their views are clear enough to permit any 
definite statement as to their nature-to take what we have 
called (Chap. IX, §r) a dualistic opinion of the subject. Their 
dualism, further, appears to have been of a radical type, re-
garding the nature of the two concepts of probability as toto 
coelo different. 

The first attempt at a reconstruction of arguments of Induc-
tive Probability within the frame of a calculus is due to Keynes. 
The appearance of his Treatise on Probability in I 92 I can truly be 
considered a milestone in the history of the Logic of Induction 
in general and as marking the inception of the Logic of (Real) 
Inductive Probability in particular. 

Keynes dealt chiefly with the Argument from Confirmation. 
His proof of the Theorem of Confirmation, however, is neither 
complete nor correct in every detail. Besides it is unnecessarily 
complicated. Keynes also made a rudimentary attempt to deal 
with the Argument from Simplicity. 

Keynes's work found a continuator in Nicod, who in his 
Probleme logique de !'induction ( 1923) simplified Keynes's proof of 
the Theorem of Confirmation. 

On two points, however, Keynes and Nicod were in dis-
agreement. 

The first was, whether continued confirmation of a law will 
tend to increase its probability towards the maximum value I 

as a limit or not. Keynes answered the question affirmatively 
and Nicod negatively. 

In order that the probability of a law may be increased 
through confirmation it is necessary that two conditions should 
be fulfilled ( cf. above p. 248), viz., that the probability a priori 
of the law is not minimal, and that the probability of a new 
confirmation of it relative to the previous confirmations is not 
maximal. 

As a criterion of increase towards maximum probability 
1 Cournot, Essai sur lesfondements de nos connaissances, Vol. I, p. 82: 'En general, 

une theorie scientifique quelconque, ... peut etre assimilee ala courbe que l'on 
trace d'apres une definition mathematique, en s'imposant la condition de la faire 
passer par un certain nombre de points donnes d'avance.' 
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Keynes and Nicod employ the following: The probability of 
continued confirmation of the law on the assumption that the 
law is false approaches minimum probability as its limit. (This 
criterion can easily be derived from the second of the two 
equivalent criteria mentioned above on p. 248.) In the sub-
sequent discussion, however, Keynes replaces this criterion by 
a new condition which, as Nicod acutely observes, is stronger. 
The new criterion is that, relative to the assumed falsehood of 
the law and its confirmation in n instances, the probability of a 
new confirmation is not maximal. 

In the opinion of Keynes, the increase towards maximum 
probability is to be secured in virtue of a postulate concerning 
the constitution of reality. This is the Postulate of Limited 
Variety. According to it, as I think we must understand it 
(cf. above p. 136), there is in the Universe of Properties 
concerned a finite number of logically totally independent 
('generating') properties, of which all other properties in the 
universe are presence-functions. There is thus also a finite 
number of possible nomic connexions between members of the 
universe. This finitude of the possibilities, in the opinion of 
Keynes, would secure not only that any law is not minimally 
probable a priori, but also that the probability of a law's con-
tinued confirmation relative to its assumed falsehood tends to zero. 

The criticism of the Postulate of Limited Variety is not 
relevant in this connexion. We have made some comments on 
it elsewhere. (Cf. Chap. V, §3.) 

Nicod seems to agree with Keynes that the Postulate of 
Limited Variety secures the non-minimal nature of the proba-
bilities a priori of the laws. He adds, however; the important 
observation (cf. above p. 165) that this, strictly speaking, is 
true only if the postulate is strengthened so as to assert, not 
simply that the number of 'generating' properties in a certain 
universe is finite, but that there is a non-minimal probability 
that it is not greater than a known finite number n. 

Nicod criticizes Keynes's view that the postulate would also 
make a new confirmation of a law non-maximally probable 
relative to the assumption that the law is false but has been 
confirmed n times. The nerve of Nicod's reasoning can be 
stated as follows: A law or Universal Implication H C A may 
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be false and yet a proportion I of H be included in A. But if this 
be the case, i.e., if 'practically all' though not all H's are A, then 
it is reasonable to think the probability to be I or maximal that 
a random thing x which is His also A. This again, in the opinion 
of Nicod, would contradict the criterion-both in its original 
and in its stronger form as used by Keynes-for the increase of 
the law's probability towards maximum probability through 
continued confirmation. Hence Keynes would not, by means 
ofhis Postulate of Limited Variety, have succeeded in securing 
the increase in probability towards the maximum value as a limit. 

If we accept the reconstruction of the Argument from Con-
firmation which has been suggested in this book, we must 
reject Nicod's objection as being beside the point. The proba-
bility which, according to Keynes, must not be maximal, is 
not the probability that (on the assumption that the law is false) 
a thing which isH is also A. It is the probability that a property 
which is not a Necessary Condition of H and yet is present in 
the presence of H in n things, is present in the presence of H in a 
new thing also. Concerning this probability Nicod's counter-
argument can prove nothing. On the other hand, Keynes's 
postulate cannot prove this probability not to be maximal. 
What the postulate can prove, however, is that the original 
form of the criterion of increase towards maximum probability 
is applicable, i.e., that the probability that a property which is 
not a Necessary Condition of His present inn things which are 
instances of H tends to zero as n increases. Keynes's reasoning 
from the Postulate of Limited Variety would thus have been 
correct, provided he had not replaced the original criterion for 
increase towards maximum probability by the stronger criterion. 

Actually, as has been shown in Chap. IX, §3, the probability 
of a law which is continuously confirmed can be proved to 
approach the maximum value I as a limit quite independently 
of whether the number of properties in the universe is finite or 
infinite. If the number is infinite, the proof presupposes the 
Axiom of Continuity which was not used by Keynes. This 
axiom, however, is not, like the Postulate of Limited Variety, 
an assumption as to the constitution of reality, but part of the 
'implicit definition' of probability embodied in the axioms of 
the calculus. 
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The second point on which Keynes and Nicod disagreed was 
whether confirmation can increase a law's probability without 
contributing to the elimination of concurrent laws. Keynes 
answered the question negatively and Nicod affirmatively. 

Keynes tried to prove his opinion from the condition that an 
instance, in order to increase a law's probability, must not itself 
be maximally probable. He seems to think that if a new instance 
is maximally probable in relation to the previous instances then, 
it must be identical with one of them. Conversely, if the instance 
is not maximally probable relative to the previous instances, 
then it must differ from any one of them (separately) in at least 
one property. And this means that the instance will eliminate 
at least one concurrent law, not eliminated by the previous 
instances. The proof is as follows: 

Take a property of x1 which is not a property of xn+x· Take 
a property of x2, a property of x3, ••• , and a property of xn 
which is not a property of xn+x· The sum of those properties is 
not a property of xn+x· But it is a property of x1 and of x 2 and 
. . . and of xn. Consequently, xn+x eliminates at least one 
property from the set of common properties of the first n 
instances. This means that at least one property has also been 
eliminated either from a set of initially possible Sufficient 
Conditions or from a set of initially possible Necessary Condi-
tions of a given conditioned property, according to what kind 
of nomic connexion we are looking for. 

Keynes's proof of the necessity of elimination is erroneous if 
it assumes that a maximally probable confirmation must be 
afforded by a thing which is identical with some of the previous 
things affording confirmations of the law. And unless we accept 
the highly questionable view known as identitas indiscernibilium, 
the proof is erroneous also in assuming that instances must 
differ in some property from the same universe as the con-
ditioned property and the possible conditioning properties, in 
order not to be identical. His argument is correct only in so far 
as it asserts that a (positive) instance (of the conditioned pro-
perty) differing from every one of the previous (positive) 
instances (of the conditioned property) in at least one property 
(of a certain range of properties) must contribute to the process 
of elimination. 
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Nicod tried to prove against Keynes that elimination is not 
necessary for the increase in probability and that even if two 
instances were identical they may each contribute to this 
increase. The nerve of his reasoning is to deny the contention 
that, if a new instance is identical with a previous one, we 
could infer and thus determine with maximum probability 
that it is a confirming instance of the law. By 'identity' he 
here means agreement in the conditioned property and all the 
possible conditioning properties, except the one which occurs 
in the law we are contemplating. On this definition it is clear 
that we cannot infer from the 'identity' that the new instance 
will possess the conditioning property which occurs in the 
law. This, obviously, is correct. But it only proves that, on 
Nicod's conception of the identity in question, the second 
instance cannot be inferred from the first, but not that its 
probability is not maximal. Nicod, moreover, does not mean 
by the 'identity' of the instances the same thing as was obviously 
contemplated by Keynes. 

If we accept the reconstruction of the Argument from Con-
firmation which has been suggested in this book, the dispute 
between Keynes and Nicod as to the necessity of elimination 
for increase in probability can only be settled on the basis of an 
interpretation of axiomatic probability. On the Frequency 
Interpretation, we should have to admit with Keynes that in-
crease in probability reflects an underlying process of elimination. 

Thus, against the background of our reconstructive examina-
tion of the Argument from Confirmation, we must arrive at the 
somewhat paradoxical conclusion that Keynes upheld the 
correct views with insufficient or erroneous reasons, whereas 
Nicod used substantially valid reasoning in support of incorrect 
views.1 

1 In my thesis The Logical Problem Q[ Induction (1941) I discussed at some length 
the Argument from Confirmation and Inductive Probability in general. The 
discussion, however, was from several points of view defective and contained some 
errors. I there supported, inter alia, Nicod against Keynes in the controversies over 
maximum probability and over elimination which we have discussed above. 

In my publication Ueber W ahrscheinlichkeit ( 1945) are found the essentials of the 
reconstructive examination of the Argument from Confirmation given in this book. 
I also dealt there with the Paradox of Confirmation. The completed form of the 
reconstruction of the Argument from Simplicity and the entire reconstruction of 
the Argument from Analogy have emerged during the course of my work on the 
present treatise. 
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Keynes and Nicod approached the problems of Inductive 

Probability on what we have here called monistic lines. After 
their work, the subject remained very little cultivated for about 
twenty years, but is. now receiving fresh attention from a 
number of logicians and philosophers. The current trend of 
approach seems on the whole to be of the dualistic type. 

The ·most noteworthy contributions to the study of Inductive 
Probability in recent years are perhaps those of Carnap. They 
are, however, so far known to me only from preliminary re-
ports1. Carnap distinguishes between two concepts which he 
calls probability1 and probability2 respectively. The second 
is a relative frequency. The first is a ratio of possibilities and, 
as such, related to but not identical with our concept P of 
axiomatic probability on the Possibility Interpretation ( cf. 
above p. 218). It is probability that is regarded as relevant to 
induction. We shall not here discuss the details of Carnap's 
approach. Only the following observation will be made: 

Carnap's concept of degree of confirmation (Inductive 
Probability) is not identical with what is called in this inquiry 
(Real) Inductive Probability. It is not probability merely as an 
attribute oflaws, i.e., Universal Implications and Equivalences. 
Carnap seems to take the view that the degree of confirmation 
of the law itself, as opposed to its next or n next instances, is 
bound always to be o. The law is then being treated as an 
infinitely long conjunction of its instances. This, no doubt, is a 
possible attitude. Only I am afraid that a view, on which one 
cannot discriminate between various degrees of Inductive 
Probability as a genuine attribute of laws, must fail recon-
structively to illuminate a major part of the reasoning which 
is actually conducted in the field. 

In his recent work Human Knowledge (1948), Bertrand Russell 
deals in some detail with problems of induction and probability. 
Russell also starts from ,a dichotomy. He distinguishes between 
what he calls mathematical probability and degree of credibi-
lity. The first 'is numerically measurable and satisfies the 
axioms of the probability-calculus.' It thus corresponds, roughly, 
to what we have called axiomatic probability. The second is 

1 On Inductive Logic in Philosophy of Science 12, 1945· The two Concepts of 
Probability in Philosophy and Phenomenological Researchs, 1945· 
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the probability of an individual case on 'all relevant evidence.' 
It thus corresponds, approximately, to what we have called 
chance. Credibility in Russell's sense is closely related to the 
idea of rational estimations of probability; Russell also relates it 
to equal possibility, but seems not to be aware of a kinship with 
random distribution. 

It is not quite clear to me in what way Russell's degree of 
credibility would be 'quite a different concept from that of 
mathematical probability.' Russell thinks that credibility can 
sometimes be numerically evaluated and thus turned into 
mathematical probability. He does not decide on the issue 
whether credibility, which is not numerically evaluated, is non-
numerical in any 'deeper' sense of the word than that it is a 
probability, on the numerical value of which we do not pass a 
judgment. (Cf. above p. 173.) There is, so far as I can see, 
nothing in Russell's view which explicitly contradicts the view 
which would correspond to that taken in this inquiry, that 
'mathematical probability' and 'credibility' have the axiomatic 
framework in common, and that their difference is not one 
between two sorts of probability but one between two types of 
evidence (for one and the same type of probability). 
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