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Preface

Overview

This book is an introductory textbook in probability. No prior knowledge
in probability is required; however, previous exposure to an elementary
precalculus course in probability would prove beneficial in that the student
would not see the basic concepts discussed here for the first time.

The mathematical prerequisite is a year of calculus. Familiarity with
the basic concepts of linear algebra would also be helpful in certain
instances. Often students are exposed to such basic concepts within
the calculus framework. Elementary differential and integral calculus
will suffice for the majority of the book. In some parts of Chapters 7
through 11, the concept of a multiple integral is used. In Chapter 11,
the student is expected to be at least vaguely familiar with the basic
techniques of changing variables in a single or a multiple integral.

Chapter Descriptions

The material discussed in this book is enough for a one-semester course
in introductory probability. This would include a rather detailed discus-
sion of Chapters 1 through 12, except, perhaps, for the derivations of the
probability density functions following Definitions 1 and 2 in Chapter 11.
It could also include a cursory discussion of Chapter 13.

Most of the material in Chapters 1 through 12—with a quick description
of the basic concepts in Chapter 13—can also be covered in a one-quarter
course in introductory probability. In such a case, the instructor would
omit the derivations of the probability density functions mentioned above,
as well as Sections 9.4, 10.3, 11.3, and 12.2.3.

A chapter-by-chapter description follows. Chapter 1 consists of 16
examples selected from a broad variety of applications. Their purpose is
to impress upon the student the breadth of applications of probability,
and draw attention to the wide range of situations in which probabil-
ity questions are pertinent. At this stage, one could not possibly provide

ix



x Preface

answers to the questions posed without the methodology developed in the
subsequent chapters. Answers to most of these questions are given in
the form of examples and exercises throughout the remaining chapters.
In Chapter 2, the concept of a random experiment is introduced, along
with related concepts and some fundamental results. The concept of a
random variable is also introduced here, along with the basics in counting.
Chapter 3 is devoted to the introduction of the concept of probability
and the discussion of some basic properties and results, including the
distribution of a random variable.

Conditional probability, related results, and independence are covered
in Chapter 4. The quantities of expectation, variance, moment-generating
function, median, and mode of a random variable are discussed in
Chapter 5, along with some basic probability inequalities.

The next chapter, Chapter 6, is devoted to the discussion of some of the
commonly used discrete and continuous distributions.

When two random variables are involved, one talks about their joint
distribution, as well as marginal and conditional probability density func-
tions and also conditional expectation and variance. The relevant material
is discussed in Chapter 7. The discussion is pursued in Chapter 8 with the
introduction of the concepts of covariance and correlation coefficient of
two random variables.

The generalization of concepts in Chapter 7, when more than two
random variables are involved, is taken up in Chapter 9, which concludes
with the discussion of two popular multivariate distributions and the cita-
tion of a third such distribution. Independence of events is suitably carried
over to random variables. This is done in Chapter 10, in which some con-
sequences of independence are also discussed. In addition, this chapter
includes a result, Theorem 6 in Section 10.3, of significant importance in
statistics.

The next chapter, Chapter 11, concerns itself with the problem of deter-
mining the distribution of a random variable into which a given random
variable is transformed. The same problem is considered when two or
more random variables are transformed into a set of new random vari-
ables. The relevant results are mostly simply stated, as their justification
is based on the change of variables in a single or a multiple integral, which
is a calculus problem. The last three sections of the chapter are concerned
with three classes of special but important transformations.

The book is essentially concluded with Chapter 12, in which two of
the most important results in probability are studied, namely, the weak
law of large numbers and the central limit theorem. Some applications
of these theorems are presented, and the chapter is concluded with fur-
ther results that are basically a combination of the weak law of large
numbers and the central limit theorem. Not only are these additional
results of probabilistic interest, they are also of substantial statistical
importance.



Preface xi

As previously mentioned, the last chapter of the book provides an
overview of statistical inference.

Features

This book has a number of features that may be summarized as follows.
It starts with a brief chapter consisting exclusively of examples that are
meant to provide motivation for studying probability.

It lays out a substantial amount of material—organized in twelve
chapters—in a logical and consistent manner.

Before entering into the discussion of the concept of probability, it gath-
ers together all needed fundamental concepts and results, including the
basics in counting.

The concept of a random variable and its distribution, along with the
usual numerical characteristics attached to it, are all introduced early on
so that fragmentation in definitions is avoided. Thus, when discussing
some special discrete and continuous random variables in Chapter 6, we
are also in a position to present their usual numerical characteristics, such
as expectation, variance, moment-generating function, etc.

Generalizations of certain concepts from one to more than one random
variable and various extensions are split into two parts in order to min-
imize confusion and enhance understanding. We do these things for two
random variables first, then for more than two random variables. Indepen-
dence of random variables is studied systematically within the framework
dictated by the level of the book. In particular, the reproductive property
of certain distributions is fully exploited.

All necessary results pertaining to transformation of random variables
are gathered together in one chapter, Chapter 11, rather than discussing
them in a fragmented manner. This also allows for the justification of the
distribution of order statistics as an application of a previously stated the-
orem. The study of linear transformations provides the tool of establishing
Theorem 7 in Section 11.3, a result of great importance in statistical
inference.

In Chapter 12, some important limit theorems are discussed, preemi-
nently the weak law of large numbers and the central limit theorem. The
strong law of large numbers is not touched upon, as not even an outline
of its proof is feasible at the level of an introductory probability textbook.

The book concludes with an overview of the basics in statistical infer-
ence. This feature was selected over others, such as elements of Markov
chains, of Poisson processes, and so on, in order to provide a window into
the popular subject matter of statistics. At any rate, no justice could be
done to the discussion of Markov chains, of Poisson processes, and so on,
in an introductory textbook.
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The book contains more than 150 examples discussed in great detail
and more than 450 exercises suitably placed at the end of sections.
Also, it contains at least 60 figures and diagrams that facilitate discus-
sion and understanding. In the appendix, one can find a table of selected
discrete and continuous distributions, along with some of their numerical
characteristics, a table of some formulas used often in the book, a list
of some notation and abbreviations, and often extensive answers to the
even-numbered exercises.

Concluding Comments

An Answers Manual, with extensive discussion of the solutions of all
exercises in the book, is available for the instructor.

A table of selected discrete and continuous distributions, along with
some of their numerical characteristics, can also be found on the inside
covers of the book. Finally, the appendix contains tables for the binomial,
Poisson, normal, and chi-square distributions.

The expression logx (logarithm of x), whenever it occurs, always stands
for the natural logarithm of x (the logarithm of x with base e).

The rule for the use of decimal numbers is that we retain three decimal
digits, the last of which is rounded up to the next higher number (if the
fourth decimal is greater or equal to 5). An exemption to this rule is made
when the division is exact, and when the numbers are read out of tables.

On several occasions, the reader is referred to proofs for more compre-
hensive treatment of some topics in the book A Course in Mathematical
Statistics, 2nd edition (1997), Academic Press, by G.G. Roussas.

Thanks are due to my project assistant, Carol Ramirez, for preparing
a beautiful set of typed chapters out of a collection of messy manuscripts.



1
Some Motivating Examples

This chapter consists of a single section that is devoted to presenting
a number of examples (16 to be precise), drawn from a broad spectrum of
human activities. Their purpose is to demonstrate the wide applicability
of probability (and statistics). In each case, several relevant questions are
posed, which, however, cannot be answered here. Most of these questions
are dealt with in subsequent chapters. In the formulation of these exam-
ples, certain terms, such as at random, average, data fit by a line, event,
probability (estimated probability, probability model), rate of success, sam-
ple, and sampling (sample size), are used. These terms are presently to be
understood in their everyday sense, and will be defined precisely later on.

EXAMPLE 1 In a certain state of the Union, n landfills are classified according to their
concentration of three hazardous chemicals: arsenic, barium, and mer-
cury. Suppose that the concentration of each one of the three chemicals
is characterized as either high or low. Then some of the questions that
can be posed are as follows: (i) If a landfill is chosen at random from
among the n, what is the probability it is of a specific configuration? In
particular, what is the probability that it has: (a) High concentration of
barium? (b) High concentration of mercury and low concentration of both
arsenic and barium? (c) High concentration of any two of the chemicals
and low concentration of the third? (d) High concentration of any one of
the chemicals and low concentration of the other two? (ii) How can one

1



2 Chapter 1 Some Motivating Examples

check whether the proportions of the landfills falling into each one of the
eight possible configurations (regarding the levels of concentration) agree
with a priori stipulated numbers?

EXAMPLE 2 Suppose a disease is present in 100p1% (0 < p1 < 1) of a population. A diag-
nostic test is available but is yet to be perfected. The test shows 100p2%
false positives (0 < p2 < 1) and 100p3% false negatives (0 < p3 < 1).
That is, for a patient not having the disease, the test shows positive
(+) with probability p2 and negative (−) with probability 1 − p2. For a
patient having the disease, the test shows “−” with probability p3 and
“+” with probability 1 − p3. A person is chosen at random from the
target population, and let D be the event that the person is diseased
and N be the event that the person is not diseased. Then, it is clear
that some important questions are as follows: In terms of p1, p2, and p3:
(i) Determine the probabilities of the following configurations: D and +,
D and −, N and +, N and −. (ii) Also, determine the probability that a
person will test + or the probability the person will test −. (iii) If the per-
son chosen tests +, what is the probability that he/she is diseased? What
is the probability that he/she is diseased, if the person tests −?

EXAMPLE 3 In the circuit drawn below, suppose that switch i = 1, . . . , 5 turns on with
probability pi and independently of the remaining switches. What is the
probability of having current transferred from point A to point B?

A B

1 2

5

4 3

EXAMPLE 4 A travel insurance policy pays $1,000 to a customer in case of a loss due
to theft or damage on a 5-day trip. If the risk of such a loss is assessed to
be 1 in 200, what is a fair premium for this policy?

EXAMPLE 5 Jones claims to have extrasensory perception (ESP). In order to test the
claim, a psychologist shows Jones five cards that carry different pictures.
Then Jones is blindfolded and the psychologist selects one card and asks
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Jones to identify the picture. This process is repeated n times. Suppose,
in reality, that Jones has no ESP but responds by sheer guesses.

(i) Decide on a suitable probability model describing the number of cor-
rect responses. (ii) What is the probability that at most n/5 responses are
correct? (iii) What is the probability that at least n/2 responses are correct?

EXAMPLE 6 A government agency wishes to assess the prevailing rate of unem-
ployment in a particular county. It is felt that this assessment can be
done quickly and effectively by sampling a small fraction n, say, of the
labor force in the county. The obvious questions to be considered here
are: (i) What is a suitable probability model describing the number of
unemployed? (ii) What is an estimate of the rate of unemployment?

EXAMPLE 7 Suppose that, for a particular cancer, chemotherapy provides a 5-year
survival rate of 75% if the disease could be detected at an early stage.
Suppose further that n patients, diagnosed to have this form of cancer at
an early stage, are just starting the chemotherapy. Finally, let X be the
number of patients among the n who survive 5 years.

Then the following are some of the relevant questions that can be asked:
(i) What are the possible values of X , and what are the probabilities that
each one of these values is taken on? (ii) What is the probability that X
takes values between two specified numbers a and b, say? (iii) What is the
average number of patients to survive 5 years, and what is the variation
around this average?

EXAMPLE 8 An advertisement manager for a radio station claims that over 100p%
(0 < p < 1) of all young adults in the city listen to a weekend music
program. To establish this conjecture, a random sample of size n is taken
from among the target population and those who listen to the weekend
music program are counted.

(i) Decide on a suitable probability model describing the number of young
adults who listen to the weekend music program. (ii) On the basis of the
collected data, check whether the claim made is supported or not. (iii) How
large a sample size n should be taken to ensure that the estimated average
and the true proportion do not differ in absolute value by more than a
specified number with prescribed (high) probability?

EXAMPLE 9 When the output of a production process is stable at an acceptable
standard, it is said to be “in control.” Suppose that a production process
has been in control for some time and that the proportion of defectives
has been p. As a means of monitoring the process, the production staff
will sample n items. Occurrence of k or more defectives will be considered
strong evidence for “out of control.”
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(i) Decide on a suitable probability model describing the number X of
defectives; what are the possible values of X , and what is the probability
that each of these values is taken on? (ii) On the basis of the data col-
lected, check whether or not the process is out of control. (iii) How large
a sample size n should be taken to ensure that the estimated proportion
of defectives will not differ in absolute value from the true proportion
of defectives by more than a specified quantity with prescribed (high)
probability?

EXAMPLE 10 At a given road intersection, suppose that X is the number of cars passing
by until an observer spots a particular make of a car (e.g., a Mercedes).

Then some of the questions one may ask are as follows: (i) What are the
possible values of X? (ii) What is the probability that each one of these
values is taken on? (iii) How many cars would the observer expect to
observe until the first Mercedes appears?

EXAMPLE 11 A city health department wishes to determine whether the mean bacteria
count per unit volume of water at a lake beach is within the safety level of
200. A researcher collected n water samples of unit volume and recorded
the bacteria counts.

Relevant questions here are: (i) What is the appropriate probability model
describing the number X of bacteria in a unit volume of water; what are
the possible values of X , and what is the probability that each one of these
values is taken on? (ii) Do the data collected indicate that there is no cause
for concern?

EXAMPLE 12 Measurements of the acidity (pH) of rain samples were recorded at n sites
in an industrial region.

(i) Decide on a suitable probability model describing the number X of the
acidity of rain measured. (ii) On the basis of the measurements taken,
provide an estimate of the average acidity of rain in that region.

EXAMPLE 13 To study the growth of pine trees at an early state, a nursery worker
records n measurements of the heights of 1-year-old red pine seedlings.

(i) Decide on a suitable probability model describing the heights X of the
pine seedlings. (ii) On the basis of the n measurements taken, determine
average height of the pine seedlings. (iii) Also, check whether these mea-
surements support the stipulation that the average height is a specified
number.
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EXAMPLE 14 It is claimed that a new treatment is more effective than the standard
treatment for prolonging the lives of terminal cancer patients. The stan-
dard treatment has been in use for a long time, and from records in
medical journals the mean survival period is known to have a certain
numerical value (in years). The new treatment is administered to n
patients, and their duration of survival is recorded.

(i) Decide on suitable probability models describing the survival times X
and Y under the old and the new treatments, respectively. (ii) On the basis
of the existing journal information and the data gathered, check whether
or not the claim made is supported.

EXAMPLE 15 The lifetime of a new equipment just put in service is an unknown
quantity X . Some important relevant questions are the following: (i) What
is a suitable model describing the lifetime of the equipment? (ii) What is
the probability that the lifetime will be at least t0, a prescribed amount of
time units? (iii) What is the expected lifetime of the equipment? (iv) What
is the expected cost for operating said equipment?

EXAMPLE 16 It is known that human blood is classified in four types denoted by A, B,
AB, and O. Suppose that the blood of n persons who have volunteered to
donate blood at a plasma center has been classified in these four categories.
Then a number of questions can be posed, some of which are:

(i) What is the appropriate probability model to describe the distribution
of the blood types of the n persons into the four types? (ii) What is the
estimated probability that a person, chosen at random from among the n,
has a specified blood type (e.g., O)? (iii) What are the proportions of the
n persons falling into each one of the four categories? (iv) How can one
check whether the observed proportions are in agreement with a priori
stipulated numbers?



2
Some Fundamental Concepts

This chapter consists of four sections. In the first section, the fundamental
concepts of a random experiment, sample point, sample space, and event
are introduced and illustrated by several examples. In the second section,
the usual set-theoretic type of operations on events are defined, and some
basic properties and results are recorded. In the third section, the very
important concept of a random variable is introduced and illustrated by
means of examples. The closing section is devoted to the discussion of
some basic concepts and results in counting, including permutations and
combinations.

2.1 Some Fundamental Concepts

One of the most basic concepts in probability (and statistics) is that of
a random experiment. Although a more precise definition is possible, we
will restrict ourselves here to understanding a random experiment as a
procedure that is carried out under a certain set of conditions; it can
be repeated any number of times under the same set of conditions, and
upon the completion of the procedure, certain results are observed. The
results obtained are denoted by s and are called sample points. The set
of all possible sample points is denoted by S and is called a sample space.
Subsets of S are called events and are denoted by capital letters A, B, C,
etc. An event consisting of one sample point only, {s}, is called a simple
event, and composite otherwise. An event A occurs (or happens) if the

6
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outcome of the random experiment (that is, the sample point s) belongs
in A, s ∈ A; A does not occur (or does not happen) if s /∈ A. The event S
always occurs and is called the sure or certain event. On the other hand,
the event ∅ never happens and is called the impossible event. Of course,
the relation A ⊆ B between two events A and B means that the event B
occurs whenever A does, but not necessarily the opposite. (See Figure 2.1
for the Venn diagram depicting the relation A ⊆ B.) The events A and B
are equal if both A ⊆ B and B ⊆ A.

Figure 2.1

A ⊆ B; in fact,
A ⊂ B, because
s2 ∈ B, but s2 �∈ A.

A

s1 •
B

• s2

S

Some random experiments are given in the following, along with
corresponding sample spaces and some events.

EXAMPLE 1 Tossing three distinct coins once.

Then, with H and T standing for “heads” and “tails,” respectively, a
sample space is:

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.
The event A = “no more than 1 H occurs” is given by:

A = {TTT, HTT, THT, TTH}.

EXAMPLE 2 Rolling once two distinct dice.

Then a sample space is:

S = {(1, 1), (1, 2), . . . , (1, 6), . . . , (6, 1), (6, 2), . . . , (6, 6)},
and the event B = “the sum of numbers on the upper faces is ≤ 5” is:

B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}.
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EXAMPLE 3 Drawing a card from a well-shuffled standard deck of 52 cards. Denoting
by C, D, H, and S clubs, diamonds, hearts, and spades, respectively,
by J, Q, K Jack, Queen, and King, and using 1 for aces, the sample space
is given by:

S = {1C, . . . , 1S, . . . , 10C, . . . , 10S, . . . , KC, . . . , KS}.
An event A may be described by: A = “red and face card,” so that

A = {JD, JH , QD, QH , KD, KH}.

EXAMPLE 4 Recording the gender of children of two-children families.

With b and g standing for boy and girl, and with the first letter on the left
denoting the older child, a sample space is: S = {bb, bg, gb, gg}. An event
B may be: B = “children of both genders.” Then B = {bg, gb}.

EXAMPLE 5 Ranking five horses in a horse race.

Then the suitable sample space S consists of 120 sample points, corre-
sponding to the 120 permutations of the numbers 1, 2, 3, 4, 5. (We exclude
ties.) The event A = “horse #3 comes second” consists of the 24 sample
points, where 3 always occurs in the second place. (See also the Corollary
to Theorem 1 in Section 2.4.)

EXAMPLE 6 Tossing a coin repeatedly until H appears for the first time.

The suitable sample space here is:

S = {H, TH, TTH, . . . , TT . . . TH, . . .}.
Then the event A = “the 1st H does not occur before the 10th tossing” is
given by:

A = {
T . . . T︸ ︷︷ ︸

9

H, T . . . T︸ ︷︷ ︸
10

H, . . .
}
.

EXAMPLE 7 Recording the number of traffic accidents that occurred in a specified
location within a certain period of time.

The appropriate sample space here is S = {0, 1, . . . , M} for a suitable
number M. If M is sufficiently large, then S is taken to be: S = {0, 1, . . .}.

EXAMPLE 8 Recording the number of particles emitted by a certain radioactive source
within a specified period of time.

As in the previous example, S is taken to be: S = {0, 1, . . . , M}, where M is
often a large number, and then as before S is modified to be: S = {0, 1, . . .}.
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EXAMPLE 9 Recording the lifetime of an electronic device, or of an electrical
appliance, etc.

Here S is the interval (0, T] for some reasonable value of T; that is,
S = (0, T]. Sometimes, for justifiable reasons, we take S = (0, ∞).

EXAMPLE 10 Recording the distance from the bull’s eye of the point where a dart,
aiming at the bull’s eye, actually hits the plane. Here it is clear that
S = (0, ∞).

EXAMPLE 11 Measuring the dosage of a certain medication, administered to a patient,
until a positive reaction is observed.

Here S = (0, D] for some suitable D (not rendering the medication lethal!).

EXAMPLE 12 Recording the yearly income of a target population.

If the incomes are measured in dollars and cents, the outcomes are
fractional numbers in an interval [0, M] for some reasonable M. Again,
for reasons similar to those cited in Example 9, S is often taken to be
S = [0, ∞).

EXAMPLE 13 Waiting until the time the Dow Jones Industrial Average index reaches or
surpasses a specified level.

Here, with reasonable qualifications, we may choose to take S = (0, ∞).

EXAMPLE 14 Waiting until the lifetime of a new piece of equipment just put in service
expires.

Here S = (0, T] for some suitable (presumably large) T, which for
mathematical convenience may be taken to be ∞; i.e., S = (0, ∞).

Examples 1–16 in Chapter 1, suitably interpreted, may also serve as
further illustrations of random experiments. Most examples described
previously will be revisited on various occasions.

For instance, in Example 1 in Chapter 1 and in self-explanatory
notation, a suitable sample space is:

S = {AhBhMh, AhBhM�, AhB�Mh, A�BhMh, AhB�M�,

A�BhM�, A�B�Mh, A�B�M�}.

Then the events A = “no chemical occurs at high level” and B =
“at least two chemicals occur at high levels” are given by:

A = {A�B�M�}, B = {AhBhM�, AhB�Mh, A�BhMh, AhBhMh}.
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In Example 2 in Chapter 1, a patient is classified according to the result
of the test, giving rise to the following sample space:

S = {D+, D−, N+, N−},

where D and N stand for the events “patient has the disease” and “patient
does not have the disease,” respectively. Then the event A = “false
diagnosis of test” is given by: A = {D−, N+}.

In Example 5 in Chapter 1, the suitable probability model is the
so-called binomial model. The sample space S is the set of 2n points, each
point consisting of a sequence of n S’s and F’s, S standing for success
(on behalf of Jones) and F standing for failure. Then the questions posed
can be answered easily. (See also Theorem 1 in Section 2.4.)

Examples 6 through 9 in Chapter 1 can be discussed in the same
framework as that of Example 5 with obvious modifications in notation.

In Example 10 in Chapter 1, a suitable sample space is:

S = {M, McM, McMcM, . . . , Mc · · · McM, . . .},

where M stands for the passing by of a Mercedes car. Then the events
A and B, where A = “Mercedes was the 5th car passed by” and B =
“Mercedes was spotted after the first 3 cars passed by” are given by:

A = {McMcMcMcM} and B = {McMcMcM, McMcMcMcM, . . .}.

In Example 11 in Chapter 1, a suitable sample space is: S = {0, 1, . . . , M}
for an appropriately large (integer) M; for mathematical convenience,
S is often taken to be: S = {0, 1, 2, . . .}.

In Examples 12 and 13 in Chapter 1, a suitable sample space is
S = (0, T] for some reasonable value of T.

In Example 15 in Chapter 1, a suitable sample space is either S = (0, T]
for a suitable T, or S = (0, ∞) for mathematical convenience.

In Example 16 in Chapter 1, a suitable sample space S is the set of
4n points, each point consisting of a sequence of n symbols A, B, AB,
and O. The underlying probability model is the so-called multinomial
model, and the questions posed can be discussed by available method-
ology. Actually, there is no need even to refer to the sample space S. All
one has to do is to consider the outcomes in the n trials and then classify
the n outcomes into four categories A, B, AB, and O.

In many cases, questions posed can be discussed without reference to
any explicit sample space. This is the case, for instance, in Example 14 in
Chapter 1.

In the examples discussed previously, we have seen sample spaces con-
sisting of finitely many sample points (Examples 1–5 here and 1, 2, 5, and
6–9 in Chapter 1), sample spaces consisting of countably infinite many
points (for example, as many as the positive integers) (Examples 6–8 here
and 10 and 11 in Chapter 1 if we replace M by ∞ for mathematical
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convenience in 7, 8, and 11), and sample spaces consisting of as many
sample points as there are in a nondegenerate finite or infinite interval
in the real line, which interval may also be the entire real line (Examples
9–14 here and 12, 13, and 15 in Chapter 1). Sample spaces with count-
ably many points (i.e., either finitely many or countably infinite many) are
referred to as discrete sample spaces. Sample spaces with sample points
as many as the numbers in a nondegenerate finite or infinite interval in
the real line � = (−∞, ∞) are referred to as continuous sample spaces.

2.2 Some Fundamental Results

Returning now to events, when one is dealing with them, one may per-
form the same operations as those with sets. Thus, the complement of the
event A, denoted by Ac, is the event defined by: Ac = {s ∈ S; s /∈ A}. The
event Ac is presented by the Venn diagram in Figure 2.2. So Ac occurs
whenever A does not, and vice versa.

Figure 2.2

Ac is the shaded
region.

S

A

Ac

The union of the events A1, . . . , An, denoted by A1∪. . .∪An or
⋃n

j=1 Aj, is
the event defined by

⋃n
j=1 Aj = {s ∈ S; s ∈ Aj, for at least one j = 1, . . . , n}.

So the event
⋃n

j=1 Aj occurs whenever at least one of Aj, j = 1, . . . , n occurs.
For n = 2, A1 ∪ A2 is presented in Figure 2.3. The definition extends to
an infinite number of events. Thus, for countably infinite many events Aj,
j = 1, 2, . . . , one has

⋃∞
j=1 Aj = {s ∈ S; s ∈ Aj, for at least one j = 1, 2, . . .}.

Figure 2.3

A1 ∪ A2 is the
shaded region.

A1 A2

S

The intersection of the events Aj, j = 1, . . . , n is the event denoted
by A1 ∩ · · · ∩ An or

⋂n
j=1 Aj and is defined by

⋂n
j=1 Aj = {s ∈ S; s ∈ Aj,
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for all j = 1, . . . , n}. Thus,
⋂n

j=1 Aj occurs whenever all Aj, j = 1, . . . , n
occur simultaneously. For n = 2, A1 ∩ A2 is presented in Figure 2.4. This
definition extends to an infinite number of events. Thus, for countably
infinite many events Aj, j = 1, 2, . . . , one has

⋂∞
j=1 Aj = {s ∈ S; s ∈ Aj, for

all j = 1, 2, . . .}.

Figure 2.4

A1 ∩ A2 is the
shaded region.

A1 A2

S

If A1 ∩ A2 = ∅, the events A1 and A2 are called disjoint (see Figure 2.5).
The events Aj, j = 1, 2, . . . , are said to be mutually or pairwise disjoint,
if Ai ∩ Aj = ∅ whenever i �= j.

Figure 2.5

A1 and A2 are
disjoint; that is,
Ai ∩ Aj = ∅.

A1 A2

S

The differences A1 −A2 and A2 −A1 are the events defined by A1 −A2 =
{s ∈ S; s ∈ A1, s /∈ A2}, A2 − A1 = {s ∈ S; s ∈ A2, s /∈ A1} (see Figure 2.6).

Figure 2.6

A1 − A2 is ����,
A2 − A1 is ����.

A1 A2

S

From the definition of the preceding operations, the following prop-
erties follow immediately, and they are listed here as a proposition for
reference.
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PROPOSITION 1
(i) Sc = ∅, ∅c = S, (Ac)c − A.

(ii) S ∪ A = S, ∅ ∪ A = A, A ∪ Ac = S, A ∪ A = A.
(iii) S ∩ A = A, ∅ ∩ A = ∅, A ∩ Ac = ∅, A ∩ A = A.

The previous statements are all obvious, as is the following: ∅ ⊆ A for
every event A in S. Also,

PROPOSITION 2

(i)
A1 ∪ (A2 ∪ A3) = (A1 ∪ A2) ∪ A3
A1 ∩ (A2 ∩ A3) = (A1 ∩ A2) ∩ A3

}
(associative laws)

(ii)
A1 ∪ A2 = A2 ∪ A1
A1 ∩ A2 = A2 ∩ A1

}
(commutative laws)

(iii)
A ∩ (∪jAj) = ∪j(A ∩ Aj)
A ∪ (∩jAj) = ∩j(A ∪ Aj)

}
(distributive laws)

REMARK: 1 In the last relations, as well as elsewhere, when the range
of the index j is not indicated explicitly, it is assumed to be a finite set,
such as {1, . . . , n}, or a countably infinite set, such as {1, 2, . . .}.

For the purpose of demonstrating some of the set-theoretic operations
just defined, let us consider some concrete examples.

EXAMPLE 15 Consider the sample space S = {s1, s2, s3, s4, s5, s6, s7, s8} and define the
events A1, A2, and A3 as follows: A1 = {s1, s2, s3}, A2 = {s2, s3, s4, s5},
A3 = {s3, s4, s5, s8}. Then observe that:

Ac
1 = {s4, s5, s6, s7, s8}, Ac

2 = {s1, s6, s7, s8}, Ac
3 = {s1, s2, s6, s7};

A1 ∪ A2 = {s1, s2, s3, s4, s5}, A1 ∪ A3 = {s1, s2, s3, s4, s5, s8},
A2 ∪ A3 = {s2, s3, s4, s5, s8}, A1 ∪ A2 ∪ A3 = {s1, s2, s3, s4, s5, s8};
A1 ∩ A2 = {s2, s3}, A1 ∩ A3 = {s3}, A1 ∩ A2 ∩ A3 = {s3};
A1 − A2 = {s1}, A2 − A1 = {s4, s5}, A1 − A3 = {s1, s2},
A3 − A1 = {s4, s5, s8}, A2 − A3 = {s2}, A3 − A2 = {s8};
(Ac

1)c = {s1, s2, s3}(=A1),
(
Ac

2

)c = {s2, s3, s4, s5}(=A2),
(
Ac

3

)c = {s3, s4, s5, s8}(=A3).

An identity and DeMorgan’s laws stated subsequently are of significant
importance. Their justifications are left as exercises (see Exercises 2.14
and 2.15).
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PROPOSITION 3 (An Identity) ∪j Aj = A1 ∪ (
Ac

1 ∩ A2
) ∪ (

Ac
1 ∩ Ac

2 ∩
A3

) ∪ . . . ∪ (Ac
1 ∩ Ac

2 ∩ . . . ∩ Ac
n−1 ∩ An) ∪ . . .

The significance of this identity is that the events on the right-hand
side are pairwise disjoint, whereas the original events Aj, j ≥ 1, need not
be so.

PROOF (partial) As an indication of how one argues in establishing
such an identity, suppose we wish to show that A1 ∪ A2 = A1 ∪ (Ac

1 ∩ A2).
Let s belong to the left-hand side. Then, if s ∈ A1, it clearly belongs to the
right-hand side, whereas if s /∈ A1, then s ∈ A2 and hence s ∈ (Ac

1 ∩ A2),
so that s belongs to the right-hand side again. Now, let s belong to the
right-hand side, and suppose that s ∈ A1. Then, clearly, s belongs to the
left-hand side. If s /∈ A1, then s ∈ (Ac

1 ∩ A2), so that s ∈ A2, and hence
belongs to the left-hand side again (see also Exercise 2.14). �

EXAMPLE 16 From Example 15, we have:

A1 = {s1, s2, s3}, Ac
1 ∩ A2 = {s4, s5}, Ac

1 ∩ Ac
2 ∩ A3 = {s8}.

Note that A1, Ac
1 ∩ A2, Ac

1 ∩ Ac
2 ∩ A3 are pairwise disjoint. Now A1 ∪ (Ac

1 ∩
A2) ∪ (Ac

1 ∩ Ac
2 ∩ A3) = {s1, s2, s3, s4, s5, s8}, which is equal to A1 ∪ A2 ∪ A3;

that is,

A1 ∪ A2 ∪ A3 = A1 ∪ (
Ac

1 ∩ A2
) ∪ (

Ac
1 ∩ Ac

2 ∩ A3
)
,

as the preceding identity states.

PROPOSITION 4 (DeMorgan’s Laws) (∪jAj)c =∩jAc
j , (∩jAj)c =∪jAc

j .

PROOF (partial) As an illustration, consider the case (A1 ∩ A2)c =
Ac

1 ∪ Ac
2. Let s ∈ (A1 ∩ A2)c. Then s /∈ (A1 ∩ A2) so that s /∈ A1 or s /∈

A2. If s /∈ A1, then s ∈ Ac
1 and hence s belongs to the right-hand side.

Similarly, if s /∈ A2. Next, let s belong to the right-hand side, so that
s ∈ Ac

1 or s ∈ Ac
2. If s ∈ Ac

1, then s /∈ A1, so that s /∈ (A1 ∩ A2) and hence
s ∈ (A1 ∩ A2)c. So, s belongs to the left-hand side, and similarly if s ∈ Ac

2
(see also Exercise 2.15). �

EXAMPLE 17 Again from Example 15, one has:

(A1 ∪ A2)c = {s6, s7, s8}, Ac
1 ∩ Ac

2 = {s6, s7, s8};
(A1 ∪ A2 ∪ A3)c = {s6, s7}, Ac

1 ∩ Ac
2 ∩ Ac

3 = {s6, s7};
(A1 ∩ A2)c = {s1, s4, s5, s6, s7, s8}, Ac

1 ∪ Ac
2 = {s1, s4, s5, s6, s7, s8};

(A1 ∩ A2 ∩ A3)c = {s1, s2, s4, s5, s6, s7, s8},
Ac

1 ∪ Ac
2 ∪ Ac

3 = {s1, s2, s4, s5, s6, s7, s8},
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so that

(A1 ∪ A2)c = Ac
1 ∩ Ac

2, (A1 ∪ A2 ∪ A3)c = Ac
1 ∩ Ac

2 ∩ Ac
3,

(A1 ∩ A2)c = Ac
1 ∪ Ac

2, (A1 ∩ A2 ∩ A3)c = Ac
1 ∪ Ac

2 ∪ Ac
3,

as DeMorgan’s laws state.

As a further demonstration of how complements, unions, and intersec-
tions of sets are used for the expression of new sets, consider the following
example.

EXAMPLE 18 In terms of the events A1, A2, and A3 (in some sample space S) and,
perhaps, their complements, unions, and intersections, express the
following events:

Di = “Ai does not occur,” i = 1, 2, 3, so that D1 = Ac
1, D2 = Ac

2, D3 = Ac
3;

E = “all A1, A2, A3 occur,” so that E = A1 ∩ A2 ∩ A3;

F = “none of A1, A2, A3 occurs,” so that F = Ac
1 ∩ Ac

2 ∩ Ac
3;

G = “at least one of A1, A2, A3 occurs,” so that G = A1 ∪ A2 ∪ A3;

H = “exactly two of A1, A2, A3 occur,” so that H = (
A1 ∩ A2 ∩ Ac

3
) ∪

(
A1 ∩ Ac

2 ∩ A3
) ∪ (

Ac
1 ∩ A2 ∩ A3

)
;

I = “exactly one of A1, A2, A3 occurs,” so that I = (
A1 ∩ Ac

2 ∩ Ac
3
) ∪

(
Ac

1 ∩ A2 ∩ Ac
3
) ∪ (

Ac
1 ∩ Ac

2 ∩ A3
)
.

It also follows that:

G = “exactly one of A1, A2, A3 occurs” ∪ “exactly two of A1, A2, A3
occur” ∪ “all A1, A2, A3 occur”

= I ∪ H ∪ E.

This section concludes with the concept of a monotone sequence of events.
Namely, the sequence of events {An}, n ≥ 1, is said to be monotone if either
A1 ⊆ A2 ⊆ . . . (increasing) or A1 ⊇ A2 ⊇ . . . (decreasing). In case of an
increasing sequence, the union

⋃∞
j=1 Aj is called the limit of the sequence,

and in case of a decreasing sequence, the intersection
⋂∞

j=1 Aj is called its
limit.

The concept of the limit is also defined, under certain conditions, for
nonmonotone sequences of events, but we are not going to enter into it
here. The interested reader is referred to Definition 1 in Chapter 1, of the
book A Course in Mathematical Statistics, 2nd edition (1997), Academic
Press, by G. G. Roussas.



16 Chapter 2 Some Fundamental Concepts

Exercises

2.1 An airport limousine departs from a certain airport with three
passengers to be delivered to any one of three hotels denoted by
H1, H2, H3. Let (x1, x2, x3) denote the number of passengers (not
which ones!) left at hotels H1, H2, and H3, respectively.
(i) Write out the sample space S of all possible deliveries.

(ii) Consider the events A, B, C, D, and E, defined as follows, and
express them in terms of sample points.
A = “one passenger in each hotel”
B = “all passengers in H1”
C = “all passengers in one hotel”
D = “at least two passengers in H1”
E = “fewer passengers in H1 than in each one of H2 and H3.”

2.2 A machine dispenses balls that are either red or black or green.
Suppose we operate the machine three successive times and record
the color of the balls dispensed, to be denoted by r, b, and g for the
respective colors.
(i) Write out an appropriate sample space S for this experiment.

(ii) Consider the events A, B, and C, defined as follows, and express
them by means of sample points.
A = “all three colors appear”
B = “only two colors appear”
C = “at least two colors appear.”

2.3 A university library has five copies of a textbook to be used in a cer-
tain class. Of these copies, numbers 1 through 3 are of the 1st edition,
and numbers 4 and 5 are of the 2nd edition. Two of these copies are
chosen at random to be placed on a 2-hour reserve.
(i) Write out an appropriate sample space S.

(ii) Consider the events A, B, C, and D, defined as follows, and
express them in terms of sample points.
A = “both books are of the 1st edition”
B = “both books are of the 2nd edition”
C = “one book of each edition”
D = “no book is of the 2nd edition.”

2.4 A large automobile dealership sells three brands of American cars,
denoted by a1, a2, a3; two brands of Asian cars, denoted by b1, b2;
and one brand of a European car, denoted by c. We observe the cars
sold in two consecutive sales. Then:
(i) Write out an appropriate sample space for this experiment.

(ii) Express the events defined as follows in terms of sample
points:
A = “American brands in both sales”
B = “American brand in the first sale and Asian brand in the

second sale”
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C = “American brand in one sale and Asian brand in the other
sale”

D = “European brand in one sale and Asian brand in the other
sale.”

Hint: For part (i), denote by (x1, x2) the typical sample point,
where x1 and x2 stand for one of a1, a2, a3; b1, b2; c.

2.5 Of two gas stations I and II located at a certain intersection, I has
five gas pumps and II has six gas pumps. On a given time of a day,
observe the numbers x and y of pumps (not which ones!) in use in
stations I and II, respectively.
(i) Write out the sample space S for this experiment.

(ii) Consider the events A, B, C, and D, defined as follows, and
express them in terms of sample points.
A = “only three pumps are in use in station I”
B = “the number of pumps in use in both stations is the same”
C = “the number of pumps in use in station II is larger than

that in station I”
D = “the total number of pumps in use in both stations is not

greater than 4.”

2.6 At a certain busy airport, denote by A, B, C, and D the events defined
as follows:
A = “at least 5 planes are waiting to land”
B = “at most 3 planes are waiting to land”
C = “at most 2 planes are waiting to land”
D = “exactly 2 planes are waiting to land.”

In terms of the events A, B, C, and D and, perhaps, their
complements, express the following events:
E = “at most 4 planes are waiting to land”
F = “at most 1 plane is waiting to land”
G = “exactly 3 planes are waiting to land”
H = “exactly 4 planes are waiting to land”
I = “at least 4 planes are waiting to land.”

2.7 Let S ={(x,y)∈�2 =�×�; −3≤x≤3, 0≤y≤4, x and y integers},
and define the events A,B,C, and D as follows:

A={(x,y)∈S; x=y}, B={(x,y)∈S; x=−y},
C ={(x,y)∈S; x2 =y2}, D={(x,y)∈S; x2+y2 ≤5}.

(i) List explicitly the members of S.
(ii) List the members of the events just defined.

2.8 In terms of the events A1,A2,A3 in a sample space S and, perhaps,
their complements, express the following events:

(i) B0 ={s∈S; s belongs to none of A1,A2,A3}.
(ii) B1 ={s∈S; s belongs to exactly one of A1,A2,A3}.
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(iii) B2 ={s∈S; s belongs to exactly two of A1,A2,A3}.
(iv) B3 ={s∈S; s belongs to all of A1,A2,A3}.
(v) C ={s∈S; s belongs to at most two of A1,A2,A3}.

(vi) D={s∈S; s belongs to at least one of A1,A2,A3}.
2.9 If for three events A,B, and C it happens that either A∪B∪C = A or

A∩B∩C =A, what conclusions can you draw? That is, how are the
events A, B, and C related?

2.10 Show that A is the impossible event (that is, A=∅), if and only if
(A∩Bc)∪(Ac∩B)=B for every event B.

2.11 Let A,B, and C be arbitrary events in S. Determine whether each of
the following statements is correct or incorrect.

(i) (A−B)∪B= (A∩Bc)∪B=B.
(ii) (A∪B)−A= (A∪B)∩Ac =B.

(iii) (A∩B)∩(A−B)= (A∩B)∩(A∩Bc)=∅.
(iv) (A∪B)∩(B∪C)∩(C∪A)= (A∩B)∪(B∩C)∪(C∩A).

Hint: For part (iv), you may wish to use Proposition 2.

2.12 For any three events A, B, and C in a sample space S, show the
transitive property (i.e., A⊆B and B⊆C) implies that A⊆C holds.

2.13 Establish the distributive laws; namely A∩(∪jAj)=∪j(A∩Aj) and A∪
(∩jAj)=∩j(A∪Aj).

Hint: Show that the event of either side is contained in the event
of the other side.

2.14 Establish the identity:

∪jAj =A1∪(
Ac

1∩A2
)∪(

Ac
1∩Ac

2∩A3
)∪···

Hint: As in Exercise 2.13.

2.15 Establish DeMorgan’s laws, namely:

(∪jAj)c =∩jAc
j and (∩jAj)c =∪jAc

j .

Hint: As in Exercise 2.13.

2.16 Let S =� and, for n=1,2, . . . , define the events An and Bn by:

An =
{

x∈�; −5+ 1
n

<x<20− 1
n

}
, Bn =

{
x∈�; 0<x<7+ 3

n

}
.

(i) Show that the sequence {An} is increasing and the sequence {Bn}
is decreasing.

(ii) Identify the limits, lim
n→∞An =⋃∞

n=1 An and lim
n→∞Bn =⋂∞

n=1 Bn.

Remark: See discussion following Example 18.
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2.3 Random Variables

For every random experiment, there is at least one sample space appro-
priate for the random experiment under consideration. In many cases,
however, much of the work can be done without reference to an explicit
sample space. Instead, what are used extensively are random variables
and their distributions. These quantities will be studied extensively in
subsequent chapters. What is presented in this section is the introduction
of the concept of a random variable.

Formally, a random variable (r.v.) is simply a function defined on a
sample space S and taking values in the real line � = (−∞, ∞). Random
variables are denoted by capital letters, such as X , Y , Z, with or without
subscripts. Thus, the value of the r.v. X at the sample point s is X(s),
and the set of all values of X , that is, the range of X , is usually denoted
by X(S). The only difference between an r.v. and a function in the usual
calculus sense is that the domain of an r.v. is a sample space S, which may
be an abstract set, unlike the usual concept of a function, whose domain
is a subset of � or of a Euclidean space of higher dimension. The usage of
the term “random variable” employed here rather than that of a function
may be explained by the fact that an r.v. is associated with the outcomes of
a random experiment. Thus, one may argue that X(s) is not known until
the random experiment is actually carried out and s becomes available.
Of course, on the same sample space, one may define many distinct r.v.’s
(see Figure 2.7).

Figure 2.7

The r.v. X maps (transfers)
the sample space S into the
real line �.

X

X(  )

In reference to Example 1, instead of the sample space S exhibited
there, one may be interested in the number of heads appearing each
time the experiment is carried out. This leads to the definition of the r.v.
X by: X(s) = # of H’s in s. Thus, X(HHH) = 3, X(HHT) = X(HTH) =
X(THH) = 2, X(HTT) = X(THT) = X(TTH) = 1, and X(TTT) = 0,
so that X(S) = {0, 1, 2, 3}. The notation (X ≤ 1) stands for the event
{s ∈ S; X(s) ≤ 1} = {TTT, HTT, THT, TTH}. In the general case and for
B ⊆ �, the notation (X ∈ B) stands for the event A in the sample space
S defined by: A = {s ∈ S; X(s) ∈ B}. It is also denoted by X−1(B) (see
Figure 2.8).
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Figure 2.8

For B = {0, 1}, we have:
(X ∈ B) = (X ≤ 1) =
X−1(B) = {TTT,
HTT, THT, TTH}.

0 1 2 3

X:

HHT
HHH

HTH
THH

TTH

THT

TTT

HTT

In reference to Example 2, an r.v. X of interest may be defined by
X(s) = sum of the numbers in the pair s. Thus, X((1, 1)) = 2, X((1, 2)) =
X((2, 1)) = 3, . . . , X((6, 6)) = 12, and X(S) = {2, 3, . . . , 12}. Also, X−1({7}) =
{s ∈ S; X(s) = 7} = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. Similarly for
Examples 3–5.

In reference to Example 6, a natural r.v. X is defined to denote the
number of tosses needed until the first head occurs. Thus, X(H) =
1, X(TH) = 2, . . . , X(T . . . T︸ ︷︷ ︸

n−1

H) = n, . . . , so that X(S) = {1, 2, . . .}. Also,

(X > 4) = (X ≥ 5) = {TTTTH, TTTTTH, . . .} (see Figure 2.9).
In reference to Examples 7 and 8, an obvious r.v. X is: X(s) = s,

s = 0, 1, . . .
In reference to Example 9, an r.v. X of interest is X(s) = s, s ∈ S, and

similarly for Examples 10, 12, and 13. In Example 11, X(s) = s, s ∈ (0, D].
In reference to Example 14 (with S = (0, ∞)), let X be the r.v. denoting

the cost of operating said equipment up to time s, and, to be specific,
suppose that X(s) = 2(1 − 0.5e−0.2s), s > 0. Then the range of X is
(1,2), and for B = [1.25, 1.75], we have: (X ∈ B) = (1.25 ≤ X ≤
1.75) = X−1([1.25, 1.75]) = [50 log(4/3), 50 log 4]. This is so because by
routine manipulation, 1.25 ≤ 2(1 − 0.5e−0.2s) ≤ 1.75 is equivalent to
50 log(4/3) ≤ s ≤ 50 log 4, where as always, log stands for the natural
logarithm (see Figure 2.10).

In reference to Example 10 in Chapter 1, an r.v. X may be defined thus:
X(s) = the position of M in s. Then, clearly, X(S) = {1, 2, . . .} (see also
page 10).
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Figure 2.9

For B = {5, 6, ...},
we have:
(X ∈ B) = (X ≥ 5) =
X−1(B) = {TTTTH ,
TTTTTH , …,
T …T
︸ ︷︷ ︸

n−1

H , …}.
H

TH

TTTH

TTH

TTTTH

1 2 3 4 5 n• • • • • •

T ··· ΤH
n

Figure 2.10

The interval
[50 log(4/3), 50 log 4] 

[14.38, 69.31] is the set
of all sample points s

mapped onto [1.25, 1.75]
under the r.v. X; it is
X−1([1.25, 1.75]).

X

4

3

50 log4 ≈ 69.31

0 1 1.25 1.75 2

50log      ≈ 14.38

In reference to Example 16 in Chapter 1, the r.v.’s of obvious interests
are: XA = # of those persons, out of n, having blood type A, and similarly
for XB, XAB, XO (See also page 10).

From the preceding examples, two kinds of r.v.’s emerge: random vari-
ables, which take on countably many values, such as those defined in
conjunction with Examples 1–5, 6–8 here, and 16 in Chapter 1, and
r.v.’s, which take on all values in a nondegenerate (finite or not) inter-
val in �. Such are r.v.’s defined in conjunction with Examples 9–14.
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Random variables of the former kind are called discrete r.v.’s (or r.v.’s
of the discrete type), and r.v.’s of the latter type are called continuous
r.v.’s (or r.v.’s of the continuous type).

More generally, an r.v. X is called discrete (or of the discrete type), if
X takes on countably many values; that is, either finitely many values
such as x1, . . . , xn or countably infinite many values such as x0, x1, . . . or
x1, x2, . . . . On the other hand, X is called continuous (or of the continuous
type) if X takes all values in a proper interval I ⊆ �. Although there are
other kinds of r.v.’s, in this book we will restrict ourselves to discrete and
continuous r.v.’s as just defined.

The study of r.v.’s is one of the main objectives of this book.

Exercises

3.1 In reference to Exercise 2.1, define the r.v.’s Xi, i = 1, 2, 3 as follows:
Xi = # of passengers delivered to hotel Hi.
Determine the values of each Xi, i = 1, 2, 3, and specify the values of
the sum X1 + X2 + X3.

3.2 In reference to Exercise 2.2, define the r.v.’s X and Y as follows: X = #
of red balls dispensed, Y = # of balls other than red dispensed.
Determine the values of X and Y , and specify the values of the sum
X + Y .

3.3 In reference to Exercise 2.5, define the r.v.’s X and Y as follows: X = #
of pumps in use in station I, Y = # of pumps in use in station II.
Determine the values of X and Y , and also of the sum X + Y .

3.4 In reference to Exercise 2.7, define the r.v. X by: X((x, y)) = x + y.
Determine the values of X , as well as the following events: (X ≤ 2),
(3 < X ≤ 5), (X > 6).

3.5 Consider a year with 365 days, which are numbered serially from
1 to 365. Ten of those numbers are chosen at random and without
replacement, and let X be the r.v. denoting the largest number drawn.
Determine the values of X .

3.6 A four-sided die has the numbers 1 through 4 written on its sides, one
on each side. If the die is rolled twice:

(i) Write out a suitable sample space S.
(ii) If X is the r.v. denoting the sum of numbers appearing, determine

the values of X .
(iii) Determine the events: (X ≤ 3), (2 ≤ X < 5), (X > 8).

Hint: For part (i), the typical sample point is a pair (x, y), where x
and y run through the values 1, 2, 3, 4.

3.7 From a certain target population, n individuals are chosen at random
and their blood types are determined. Let X1, X2, X3, and X4 be the
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r.v.’s denoting the number of individuals having blood types A, B, AB,
and O, respectively.
Determine the values of each one of these r.v.’s, as well as the values
of the sum X1 + X2 + X3 + X4.

3.8 A bus is expected to arrive at a specified bus stop any time between
8:00 and 8:15 a.m., and let X be the r.v. denoting the actual time of
arrival of the bus.

(i) Determine the suitable sample space S for the experiment of
observing the arrival of the bus.

(ii) What are the values of the r.v. X?
(iii) Determine the event: “The bus arrives within 5 minutes before

the expiration of the expected time of arrival.”

2.4 Basic Concepts and Results in Counting

In this brief section, some basic concepts and results are discussed regard-
ing the way of counting the total number of outcomes of an experiment, or
the total number of different ways we can carry out a task. Although many
readers will undoubtedly be familiar with parts of or the entire material
in this section, it would be advisable, nevertheless, to invest some time
here in introducing and adopting some notation, establishing some basic
results, and then using them in computing probabilities in the classical
probability framework in Chapter 3.

Problems of counting arise in a great number of different situations.
Here are some of them. In each one of these situations, we are asked to
compute the number of different ways that something or other can be
done. Here are a few illustrative cases.

EXAMPLE 19 (i) Attire yourself by selecting a T-shirt, a pair of trousers, a pair of
shoes, and a cap out of n1 T-shirts, n2 pairs of trousers, n3 pairs of
shoes, and n4 caps (e.g., n1 = 4, n2 = 3, n3 = n4 = 2).

(ii) Form all k-digit numbers by selecting the k digits out of n available
numbers (e.g., k = 2, n = 4 such as {1, 3, 5, 7}).

(iii) Form all California automobile license plates by using one number,
three letters and then three numbers in the prescribed order.

(iv) Form all possible codes by using a given set of symbols (e.g., form
all “words” of length 10 by using the digits 0 and 1).

(v) Place k books on the shelf of a bookcase in all possible ways.
(vi) Place the birthdays of k individuals in the 365 days of a year in all

possible ways.
(vii) Place k letters into k addressed envelopes (one letter to each

envelope).
(viii) Count all possible outcomes when tossing k distinct dice.
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(ix) Select k cards out of a standard deck of playing cards (e.g., for k = 5,
each selection is a poker hand).

(x) Form all possible k-member committees out of n available
individuals.

The calculation of the numbers asked for in situations (i) through
(x) just outlined is in actuality a simple application of the so-called
fundamental principle of counting, stated next in the form of a theorem.

THEOREM 1
(Fundamental Principle of Counting) Suppose a task is completed
in k stages by carrying out a number of subtasks in each one of
the k stages. If the numbers of these subtasks are n1, . . . , nk for the
k stages, respectively, then the total number of different ways the
overall task is completed is: n1 × · · · × nk.

Thus, in (i) above the number of different attires is: 4 × 3 × 2 × 2 = 48.
In (ii), the number of all 2-digit numbers formed by using 1, 3, 5, 7 is:

4 × 4 = 16 (11, 13, 15, 17; 31, 33, 35, 37; 51, 53, 55, 57; 71, 73, 75, 77).
In (iii), the number of all possible license plates (by using indiscrim-

inately all 10 digits from 0 through 9 and all 26 letters of the English
alphabet, although this is not the case in practice) is: 10× (26×26×26)×
(10 × 10 × 10) = 175,760,000.

In (iv), the number of all possible “words” is found by taking k = 10
and n1 = · · · = n10 = 2 to obtain: 210 = 1,024.

In (v), all possible arrangements are obtained by taking n1 = k, n2 =
k − 1, . . . , nk = k − (k − 1) = 1 to get: k(k − 1) . . . 1 = 1 . . . (k − 1)k. For
example, for k = 10, the number of arrangements is: 3,628,800.

In (vi), the required number is obtained by taking n1 = · · · = nk = 365
to get: 365k. For example, for k = 3, we have 3653 = 48,627,125.

In (vii), the required number is: k(k − 1) . . . 1 = 1 . . . (k − 1)k obtained
by taking n1 = k, n2 = k − 1, . . . , nk = k − (k − 1) = 1.

In (viii), the required number is: 6k obtained by taking n1 =···=nk =6.
For example, for k = 3, we have 63 = 216, and for k = 10, we have
610 = 60,466,176.

In (ix), the number of poker hands is: 52×51×50×49×48
120 = 2,598,960. The

numerator is obtained by taking n1 =52,n2 =51,n3 =50,n4 =49,n5 =48.
The division by 120 (= 1×2×3×4×5) accounts for elimination of hands
consisting of the same cards but drawn in different order.

Finally, in (x), the required number is: n (n−1)...(n−k+1)
1×2×···×k , by arguing as

in (ix). For example, for n = 10 and k = 3, we have: 10×9×8
1×2×3 = 120.

In all of the situations (i) through (x), the required numbers were calcu-
lated by the appropriate application of Theorem 1. Furthermore, in many
cases, as clearly exemplified by cases (ii), (iii), (v), (vii), (ix), and (x), the
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task performed consisted of selecting and arranging a number of objects
out of a set of available objects. In so doing, the order in which the objects
appear in the arrangement may be of significance, as is, indeed, the case
in situations (ii), (iii), (iv), (v), (vi), and (vii), or it may be just irrelevant,
as happens, for example, in cases (ix) and (x). This observation leads us to
the concepts of permutations and combinations. More precisely, we have

DEFINITION 1
An ordered arrangement of k objects taken from a set of n objects
(1 ≤ k ≤ n) is a permutation of the n objects taken k at a time.
An unordered arrangement of k objects taken from a set of n objects
is a combination of the n objects taken k at a time.

The question then arises of how many permutations and how many
combinations there are. The answer to this question is given next.

COROLLARY (to Theorem 1)

(i) The number of ordered arrangements of a set of n objects taken k
at a time (1 ≤ k ≤ n) is nk when repetitions are allowed. When no
repetitions are allowed, this number becomes the permutations of n
objects taken k at a time, is denoted by Pn,k, and is given by:

Pn,k = n(n − 1) . . . (n − k + 1). (2.1)

In particular, for k = n,

Pn,n = n(n − 1) . . . 1 = 1 . . . (n − 1)n = n!,
where the notation n! is read “n factorial.”

(ii) The number of combinations (i.e., the number of unordered and with-
out repetition arrangements) of n objects taken k at a time (1 ≤ k ≤ n)
is denoted by

(n
k

)
and is given by:

(
n
k

)
= Pn,k

k! = n!
k!(n − k)! . (2.2)

REMARK: 2 Whether permutations or combinations are appropriate in
a given problem follows from the nature of the problem. For instance,
in (ii), permutations rather than combinations are appropriate as, for
example, 13 and 31 are distinct entities. The same is true of cases (iii)–
(viii), whereas combinations are appropriate for cases (ix) and (x).

As an example, in part (ii), P4,2 = 4 × 3 = 12 (leave out the numbers
with identical digits 11, 22, 33, and 44), and in part (ix),

(52
5

) = 52!
5!47! =

2,598,960, after cancellations and by carrying out the arithmetic.
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REMARK: 3 In (2.2), set k = n. Then the left-hand side is clearly 1, and
the right-hand side is n!

n!0! = 1
0! . In order for this to be 1, we define 0! = 1.

From formula (2.2), it also follows that
(n

0

) = 1.

In computing the permutations (factorial) Pn,n = n!, the assumption
was made that the n objects were distinct. If this fails to be true, the
number n! will have to be adjusted suitably. More precisely, we have the
following result.

PROPOSITION 5 Consider n objects that are divided into k groups
(1 ≤ k ≤ n) with the property that the mi members of the ith group
are identical and distinct from the members of the remaining groups,
m1 + . . . + mk = n. Then the number of distinct arrangements of the n
objects is n!/m1! × . . . × mk!

PROOF One way of generating all distinct arrangements of the n objects
is to select mi positions out of n available in

( n
mi

)
possible ways and place

there the mi identical objects, i = 1, . . . , k. Then, by Theorem 1, the total
number of arrangements is:

( n
m1

) × (n−m1
m2

) × . . . × (n−m1−...−mk−1
mk

) =
n!

m1!(n−m1)! × (n−m1)!
m2!(n−m1−m2)! × . . . × (n−m1−...−mk−1)!

mk!(n−m1−...−mk−1−mk)! =
n!

m1!×m2!×...×mk! , since (n − m1 − . . . − mk−1 − mk)! = 0! = 1.

An alternative way to look at this problem would be to consider the n!
arrangements of the n objects, and then make the mi! arrangements
within the ith group, i = 1, . . . , k, which leave the overall arrangement
unchanged. Thus, the number of distinct arrangements of the n objects is
n!/m1! × m2! × . . . × mk! �

This section is concluded with the justification of Theorem 1 and its
corollary and some applications of these results.

PROOF OF THEOREM 1 It is done by induction. For k = 2, all one has
to do is to pair out each one of the n1 ways of carrying out the subtask
at stage 1 with each one of the n2 ways of carrying out the subtask at
stage 2 in order to obtain n1 × n2 for the number of ways of completing
the task. Next, make the induction hypothesis that the conclusion is true
for k = m and establish it for k = m+1. So, in the first m stages, the total
number of ways of doing the job is: n1 ×· · ·×nm, and there is still the final
(m+1)st stage for completing the task. Clearly, all we have to do here is to
combine each one of the n1 × · · · × nm ways of doing the job in the first m
stages with each one of the nm+1 ways of carrying out the subtask in the
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(m + 1)st stage to obtain the number n1 × · · · × nm × nm+1 of completing
the task. �
PROOF OF THE COROLLARY

(i) Here, we are forming an ordered arrangement of objects in k stages by
selecting one object at each stage from among the n available objects
(because repetitions are allowed). Thus, the theorem applies with n1 =
· · · = nk = n and gives the result nk. When repetitions are not allowed,
the only thing that changes from the case just considered is that:
n1 = n, n2 = n − 1, . . . , nk = n − (k − 1) = n − k + 1, and formula (2.1)
follows.

(ii) Let
(n

k

)
be the number of combinations (unordered without repetition

arrangements) of the n objects taken k at a time. From each one of
these unordered arrangements, we obtain k! ordered arrangements
by permutation of the k objects. Then k! × (n

k

)
is the total number of

ordered arrangements of the n objects taken k at a time, which is Pn,k,
by part (i). Solving for

(n
k

)
, we obtain the first expression in (2.2). The

second expression follows immediately by multiplying by (n − k) . . . 1
and dividing by 1 . . . (n − k) = (n − k)! �

There are many interesting variations and deeper results based on
Theorem 1 and its corollary. Some of them may be found in Sections 2.4
and 2.6 of Chapter 2 of the book A Course in Mathematical Statistics,
2nd edition (1997), Academic Press, by G. G. Roussas.

EXAMPLE 20 The faculty in an academic department at UC-Davis consists of 4 assistant
professors, 6 associate professors, and 5 full professors. Also, it has
30 graduate students. An ad hoc committee of 5 is to be formed to study
a certain curricular matter.

(i) What is the number of all possible committees consisting of faculty
alone?

(ii) How many committees can be formed if 2 graduate students are to be
included and all academic ranks are to be represented?

DISCUSSION It is clear that combinations are the appropriate tool
here. Then we have:

(i) This number is:
(15

5

) = 15!
5!10! = 11×12×13×14×15

1×2×3×4×5 = 3,003.

(ii) Here the number is:
(30

2

)(4
1

)(6
1

)(5
1

) = 30!
2!28! × 4 × 6 × 5 = 29×30

2 × 120 =
52,200.

EXAMPLE 21 In how many ways can one distribute 5 gifts to 15 persons if no person
receives more than one gift?
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DISCUSSION The answer is
(15

5

) = 15!
5!10! = 3003.

EXAMPLE 22 How many 5-letter words can be formed by using the 26 letters of the
English alphabet if: (i) No restrictions are imposed; (ii) All 5 letters are
to be distinct.

DISCUSSION

(i) The answer here is 265 = 11,881,376.
(ii) In this case, the answer is P26,5 = 26 × 25 × 24 × 23 × 22 = 7,893,600.

EXAMPLE 23 Each one of 10 workers is to be assigned to one of 10 different jobs.
How many assignments are possible?

DISCUSSION Clearly, the answer is 10! = 1 × 2 × . . . × 10 = 3,628,800.

EXAMPLE 24 By using 3 A’s, 2 E’s, 1 H, 2 L’s, 2 S’s , and 1 T, one can form the word
TALLAHASSEE, the name of the capital city of the state of Florida. How
many other distinct words can be formed?

DISCUSSION There are 11 letters altogether. Then, by Proposition 5,
the total number of words is:

11!
3! × 2! × 1! × 2! × 2! × 1! = 4 × 5 × 6 × 7 × 9 × 10 × 11 = 831,600.

Therefore there are another 831,599 distinct words in addition to
TALLAHASSEE.

EXAMPLE 25 Use Proposition 5 in order to show that the multinomial expansion of
(x1 + . . . + xk)n is given by:

∑ n!
m1! × . . . × mk!x

m1
1 × . . . × xmk

k ,

where the summation extends over all nonnegative integers m1, . . . , mk
with m1 + . . . + mk = n.

DISCUSSION The multinomial expansion of (x1 + . . .+xk)n is the sum-
mation of all possible terms of the form xm1

1 × . . . × xmk
k , where the mi’s

are as described. However, this amounts to computing the number of dis-
tinct arrangements of n objects divided into k groups with mi identical
objects (xi) in the ith group, i = 1, . . . , k. This number was seen to be
n!/m1! × . . . × mk!
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Exercises

4.1 Telephone numbers at UC-Davis consist of 7 digits, the first 3 of
which are 752. It is estimated that about 15,000 different telephone
numbers are needed to serve the university’s needs.
Are there enough telephone numbers available for this purpose?
Justify your answer.

4.2 An experimenter is studying the effects of temperature, pressure,
and a catalyst on the yield of a certain chemical reaction. Three
different temperatures, four different pressures, and five different
catalysts are under consideration.

(i) If any particular experimental run involves the use of a single
temperature, pressure, and catalyst, how many experimental
runs are possible?

(ii) How many experimental runs are there that involve use of the
lowest temperature and the two lowest pressures?

(iii) How many experimental runs are possible if a specified catalyst
is to be used?

4.3 (i) Given that a zip code consists of a 5-digit number, where the
digits are selected from among the numbers 0, 1, . . . , 9, calculate
the number of all different zip codes.

(ii) If X is the r.v. defined by: X(zip code) = # of nonzero digits in
the zip code, which are the possible values of X?

(iii) Give 3 zip codes and the respective values of X .

4.4 State how many 5-digit numbers can be formed by using the numbers
1, 2, 3, 4, and 5, so that odd positions are occupied by odd numbers
and even positions are occupied by even numbers, if:
(i) Repetitions are allowed.

(ii) Repetitions are not allowed.

4.5 Form all 3-digit numbers by using the numbers: 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9, and satisfying one of the following requirements:

(i) No restrictions are imposed.
(ii) All 3 digits are distinct.

(iii) All 3-digit numbers start with 1 and end with 0.

4.6 On a straight line, there are n spots to be filled in by either a dot
or a dash. What is the number of the distinct groups of resulting
symbols? What is this number if n = 5, 10, 15, 20, and 25?

4.7 For any integers m and n with 0 ≤ m ≤ n, show that
(n
m

) = ( n
n−m

)

either by writing out each side in terms of factorials or by using a
suitable argument without writing out anything.

4.8 Show that
(n+1
m+1

)
/
(n
m

) = n+1
m+1 .

Hint: Write out each expression in terms of factorials.
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4.9 If M, N, and m are positive integers with m ≤ M, show that:

(
M
m

)
=

(
M − 1

m

)
+

(
M − 1
m − 1

)
,

by recalling that
(k

x

) = 0 for x > k.

Hint: As in Exercise 4.8, starting with the right-hand side.

4.10 Without any calculations and by recalling that
(k

x

) = 0 for x > k,
show that:

r∑

x=0

(
m
x

)(
n

r − x

)
=

(
m + n

r

)
.

4.11 The binomial expansion formula states that for any x and y real
and n, a positive integer:

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k.

(i) Justify this formula by using relation (2.2).
(ii) Use this formula in order to show that:

n∑

k=0

(
n
k

)
= 2n and

n∑

k=0

(−1)k
(

n
k

)
= 0.

Hint: For part (i), see also Example 25.

4.12 In the plane, there are n points such that no three of them lie on
a straight line. How many triangles can be formed? What is this
number for n = 10?

4.13 Beethoven wrote 9 symphonies, Mozart wrote 27 piano concertos,
and Schubert wrote 15 string quartets.
(i) If a university radio station announcer wishes to play first

a Beethoven symphony, then a Mozart concerto, and then a
Schubert string quartet, in how many ways can this be done?

(ii) What is the number in part (i) if the three pieces are played in
all possible orderings?

4.14 If n countries exchange ambassadors, how many ambassadors are
involved? What is this number for n = 10, 50, 100?



3
The Concept of Probability and
Basic Results

This chapter consists of three sections. The first section is devoted to
the definition of the concept of probability. We start with the simplest
case, where complete symmetry occurs, proceed with the definition by
means of relative frequency, and conclude with the axiomatic definition of
probability. The defining properties of probability are illustrated by way
of examples. In the second section, a number of basic properties, resulting
from the definition, are stated and justified. Some of them are illustrated
by means of examples. The section is concluded with two theorems, which
are stated but not proved. In the third section, the distribution of an r.v.
(random variable) is introduced. Also, the distribution function and the
probability density function of an r.v. are defined, and we explain how they
determine the distribution of the r.v.

3.1 Definition of Probability

When a random experiment is entertained, one of the first questions that
arises is, what is the probability that a certain event occurs? For instance,
in reference to Example 1 in Chapter 2, one may ask: What is the proba-
bility that exactly one head occurs? In other words, what is the probability
of the event B = {HTT, THT, TTH}? The answer to this question is almost
automatic and is 3/8. The relevant reasoning goes like this: Assuming that

31
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the three coins are balanced, the probability of each one of the 8 outcomes,
considered as simple events, must be 1/8. Since the event B consists of 3
sample points, it can occur in 3 different ways, and hence its probability
must be 3/8.

This is exactly the intuitive reasoning employed in defining the concept
of probability when two requirements are met: First, the sample space S
has finitely many outcomes, S = {s1, . . . , sn}, say, and second, each one
of these outcomes is “equally likely” to occur or has the same chance
of appearing whenever the relevant random experiment is carried out.
This reasoning is based on the underlying symmetry. Thus, one is led
to stipulating that each one of the (simple) events {si}, i = 1, . . . , n has
probability 1/n. Then the next step, that of defining the probability of
a composite event A, is simple; if A consists of m sample points, A =
{si1 , . . . , si m}, say (1 ≤ m ≤ n) (or none at all, in which case m = 0), then
the probability of A must be m/n. The notation used is: P({s1}) = · · · =
P({sn}) = 1

n and P(A) = m
n . Actually, this is the so-called classical definition

of probability. That is,

CLASSICAL DEFINITION OF PROBABILITY Let S be a sample space,
associated with a certain random experiment and consisting of finitely
many sample points n, say, each of which is equally likely to occur
whenever the random experiment is carried out. Then the probability
of any event A, consisting of m sample points (0 ≤ m ≤ n), is given
by P(A) = m

n .
In reference to Example 1 in Chapter 2, P(A) = 4

8 = 1
2 = 0.5. In Example

2, Chapter 2 (when the two dice are unbiased), P(X = 7) = 6
36 = 1

6 � 0.167,
where the r.v. X and the event (X = 7) are defined in Section 2.3.

From the preceding (classical) definition of probability, the following
simple properties are immediate: For any event A, P(A) ≥ 0; P(S) = 1;
if two events A1 and A2 are disjoint (A1 ∩ A2 = ∅), then P(A1 ∪ A2) =
P(A1) + P(A2). This is so because if A1 = {si1 , . . . , sik}, A2 = {sj1 , . . . , sj�},
where all si1 , . . . , sik are distinct from all sj1 , . . . , sj� , then A1 ∪ A2 =
{si1 , . . . , siksj1 , . . . , sj�} and P(A1 ∪ A2) = k+�

n = k
n + �

n = P(A1) + P(A2).
In many cases, the stipulations made in defining the probability as

above are not met, either because S has not finitely many points (as is
the case in Examples 6, 7, and 8 (by replacing C and M by ∞), and
9–14, all in Chapter 2), or because the (finitely many outcomes) are
not equally likely. This happens, for instance, in Example 1, Chapter 2,
when the coins are not balanced and in Example 2, Chapter 2, when
the dice are biased. Strictly speaking, it also happens in Example 4
in the same chapter. In situations like this, the way out is provided
by the so-called relative frequency definition of probability. Specifically,
suppose a random experiment is carried out a large number of times
N, and let N(A) be the frequency of an event A, the number of times A
occurs (out of N ). Then the relative frequency of A is N(A)

N . Next, suppose
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that, as N → ∞, the relative frequencies N(A)
N oscillate around some

number (necessarily between 0 and 1). More precisely, suppose that
N(A)

N converges, as N → ∞, to some number. Then this number is
called the probability of A and is denoted by P(A). That is, P(A) =
limN→∞ N(A)

N .

RELATIVE FREQUENCY DEFINITION OF PROBABILITY Let N(A) be
the number of times an event A occurs in N repetitions of a random
experiment, and assume that the relative frequency of A, N(A)

N , converges
to a limit as N → ∞. This limit is denoted by P(A) and is called the
probability of A.

At this point, it is to be observed that empirical data show that the
relative frequency definition of probability and the classical definition
of probability agree in the framework in which the classical definition
applies.

From the relative frequency definition of probability and the usual
properties of limits, it is immediate that: P(A) ≥ 0 for every event A;
P(S) = 1; and for A1, A2 with A1 ∩ A2 = ∅,

P(A1 ∪ A2) = lim
N→∞

N(A1 ∪ A2)
N

= lim
N→∞

(
N(A1)

N
+ N(A2)

N

)

= lim
N→∞

N(A1)
N

+ lim
N→∞

N(A2)
N

= P(A1) + P(A2);

that is, P(A1 ∪ A2) = P(A1) + P(A2), provided A1 ∩ A2 = ∅. These three
properties were also seen to be true in the classical definition of probability.
Furthermore, it is immediate that under either definition of probability,
P(A1 ∪ . . . ∪ Ak) = P(A1) + · · · + P(Ak), provided the events are pairwise
disjoint; Ai ∩ Aj = ∅, i �= j.

The above two definitions of probability certainly give substance to the
concept of probability in a way consonant with our intuition about what
probability should be. However, for the purpose of cultivating the con-
cept and deriving deep probabilistic results, one must define the concept
of probability in terms of some basic properties, which would not contra-
dict what we have seen so far. This line of thought leads to the so-called
axiomatic definition of probability due to Kolmogorov.

AXIOMATIC DEFINITION OF PROBABILITY Probability is a function,
denoted by P, defined for each event of a sample space S, taking on values
in the real line 	, and satisfying the following three properties:
(P1) P(A) ≥ 0 for every event A (nonnegativity of P).
(P2) P(S) = 1 (P is normed).
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(P3) For countably infinite many pairwise disjoint events Ai, i = 1, 2, . . . ,
Ai ∩ Aj = ∅, i �= j, it holds:

P(A1 ∪ A2 ∪ . . .) = P(A1) + P(A2) + · · · ; or P
( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P(Ai)

(sigma-additivity (σ -additivity) of P).

COMMENTS ON THE AXIOMATIC DEFINITION

1. Properties (P1) and (P2) are the same as the ones we have seen ear-
lier, whereas property (P3) is new. What we have seen above was its
so-called finitely-additive version; that is, P(

⋃n
i=1 Ai) = ∑n

i=1 P(Ai),
provided Ai ∩ Aj = ∅, i �= j. It will be seen below that finite-additivity
is implied by σ -additivity (see Proposition 1(ii)) but not the other way
around. Thus, if we are to talk about the probability of the union of
countably infinite many pairwise disjoint events, property (P3) must
be stipulated. Furthermore, the need for such a union of events is illus-
trated as follows: In reference to Example 6 in Chapter 2, calculate the
probability that the first head does not occur before the nth tossing.
By setting Ai = {T . . . T︸ ︷︷ ︸

i

H}, i = n , n + 1, . . . , what we are actually after

here is P(An ∪ An+1 ∪ . . .) with Ai ∩ Aj = ∅, i �= j, i and j ≥ n.
2. Property (P3) is superfluous (reduced to finite-additivity) when the

sample space S is finite, which implies that the total number of events
is finite.

3. Finite-additivity is implied by additivity for two events, P(A1 ∪ A2) =
P(A1) + P(A2), A1 ∩ A2 = ∅, by way of induction.

Here are two examples in calculating probabilities.

EXAMPLE 1 In reference to Example 1 in Chapter 1, take n = 58, and suppose we have
the following configuration:

Barium
High Mercury Low Mercury

Arsenic High Low High Low

High 1 3 5 9
Low 4 8 10 18

Calculate the probabilities mentioned in (i) (a)–(d).

DISCUSSION For simplicity, denote by Bh the event that the site
selected has a high barium concentration, and likewise for other events
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below. Then:

(i)(a) Bh = (Ah ∩Bh ∩Mh)∪ (Ah ∩Bh ∩M�)∪ (A� ∩Bh ∩Mh)∪ (A� ∩Bh ∩M�)
and the events on the right-hand side are pairwise disjoint. Therefore
(by Proposition 1(ii) below):

P(Bh) = P(Ah ∩ Bh ∩ Mh) + P(Ah ∩ Bh ∩ M�)

+ P(A� ∩ Bh ∩ Mh) + P(A� ∩ Bh ∩ M�)

= 1
58

+ 3
58

+ 4
58

+ 8
58

= 16
58

= 8
29

� 0.276.

(i)(b) Here P(Mh ∩ A� ∩ B�) = P(A� ∩ B� ∩ Mh) = 10
58 = 5

29 � 0.172.
(i)(c) Here the required probability is as in (a):

P(Ah ∩ Bh ∩ M�) + P(Ah ∩ B� ∩ Mh) + P(A� ∩ Bh ∩ Mh)

= 12
58

= 6
29

� 0.207.

(i)(d) As above,

P(Ah ∩ B� ∩ M�) + P(A� ∩ Bh ∩ M�) + P(A� ∩ B� ∩ Mh) = 27
58

� 0.466.

EXAMPLE 2 In ranking five horses in a horse race (Example 5 in Chapter 2), calculate
the probability that horse #3 finishes at least second.

DISCUSSION Let Ai be the event that horse #3 finishes in the ith
position, i = 1, . . . , 5. Then the required event is A1 ∪A2, where A1, A2 are
disjoint. Thus,

P(A1 ∪ A2) = P(A1) + P(A2) = 24
120

+ 24
120

= 2
5

= 0.4.

EXAMPLE 3 In tossing a coin repeatedly until H appears for the first time (Example 6 in
Chapter 2), suppose that P{T . . . T︸ ︷︷ ︸

i−1

H} = P(Ai) = qi−1p for some 0 < p < 1

and q = 1−p (in anticipation of Definition 4 in Chapter 4). Then (see also
#4 in Table 6 in the Appendix):

P
( ∞⋃

i=n

Ai

)
=

∞∑

i=n

P(Ai) =
∞∑

i=n

qi−1p = p
∞∑

i=n

qi−1 = p
qn−1

1 − q
= p

qn−1

p
= qn−1.

For instance, for p = 1/2 and n = 3, this probability is 1
4 = 0.25. That

is, when tossing a fair coin, the probability that the first head does not
appear either the first or the second time (and therefore it appears either
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the third time or the fourth time etc.) is 0.25. For n = 10, this probability
is approximately 0.00195 � 0.002.

3.2 Some Basic Properties and Results

The defining properties (P1)–(P3) of a probability function cited in the pre-
vious section imply a number of almost anticipated basic results, which are
listed here in the form of two propositions. These propositions are proved
and also illustrated by means of examples. It is to be emphasized that the
justification of these propositions requires only properties (P1)–(P3) and
nothing else beyond them.

PROPOSITION 1 The defining properties (P1)–(P3) of a probability
function imply the following results:

(i) P(∅) = 0.
(ii) For any pairwise disjoint events A1, . . . , An, P(

⋃n
i=1 Ai) = ∑n

i=1 P(Ai).
(iii) For any event A, P(Ac) = 1 − P(A).
(iv) A1 ⊆ A2 implies P(A1) ≤ P(A2) and P(A2 − A1) = P(A2) − P(A1).
(v) 0 ≤ P(A) ≤ 1 for every event A.

PROOF

(i) From the obvious fact that S = S ∪ ∅ ∪ ∅ ∪ . . . and property (P3),

P(S) = P(S ∪ ∅ ∪ ∅ ∪ . . .) = P(S) + P(∅) + P(∅) + · · ·

or P(∅)+P(∅)+· · · = 0. By (P1), this can happen only when P(∅) = 0.
(Of course, that the impossible event has probability 0 does not
come as a surprise. Any reasonable definition of probability should
imply it.)

(ii) Take Ai = ∅ for i ≥ n + 1, consider the following obvious relation,
and use (P3) and part (i) to obtain:

P
( n⋃

i=1

Ai

)
= P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P(Ai) =
n∑

i=1

P(Ai).

(iii) From (P2) and part (ii), P(A ∪ Ac) = P(S) = 1 or P(A) + P(Ac) = 1,
so that P(Ac) = 1 − P(A).

(iv) The relation A1 ⊆ A2 clearly implies A2 = A1 ∪ (A2 − A1), so that,
by part (ii), P(A2) = P(A1) + P(A2 − A1). Solving for P(A2 − A1), we
obtain P(A2 − A1) = P(A2) − P(A1), so that, by (P1), P(A1) ≤ P(A2).
(At this point it must be pointed out that P(A2 − A1) need not be
P(A2) − P(A1), if A1 is not contained in A2.)
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(v) Clearly, ∅ ⊆ A ⊆ S for any event A. Then (P1), part (i) and part (iv)
give: 0 = P(∅) ≤ P(A) ≤ P(S) = 1. �

PROPOSITION 2 The defining properties (P1)–(P3) of a probability
function also imply the following results:

(i) For any two events A1 and A2:

P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2).

(ii) For any three events A1, A2, and A3:

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3) − [P(A1 ∩ A2)

+ P(A1 ∩ A3) + P(A2 ∩ A3)] + P(A1 ∩ A2 ∩ A3).

(For more than three events, see Theorem 1 below.)
(iii) For any events A1, A2, . . ., P(

⋃∞
i=1 Ai) ≤ ∑∞

i=1 P(Ai) (σ -subadditivity),
and P(

⋃n
i=1 Ai) ≤ ∑n

i=1 P(Ai) (finite-subadditivity).

PROOF

(i) It is clear (by means of a Venn diagram, for example) that

A1 ∪ A2 = A1 ∪ (
A2 ∩ Ac

1
) = A1 ∪ (A2 − A1 ∩ A2).

Then, by means of Proposition 1(ii),(iv):

P(A1 ∪ A2) = P(A1) + P(A2 − A1 ∩ A2) = P(A1) + P(A2) − P(A1 ∩ A2).

(ii) Apply part (i) to obtain:

P(A1 ∪ A2 ∪ A3) = P[(A1 ∪ A2) ∪ A3] = P(A1 ∪ A2) + P(A3)

− P[(A1 ∪ A2) ∩ A3]
= P(A1) + P(A2) − P(A1 ∩ A2) + P(A3)

− P[(A1 ∩ A3) ∪ (A2 ∩ A3)]
= P(A1) + P(A2) + P(A3) − P(A1 ∩ A2)

− [P(A1 ∩ A3) + P(A2 ∩ A3) − P(A1 ∩ A2 ∩ A3)]
= P(A1) + P(A2) + P(A3) − P(A1 ∩ A2) − P(A1 ∩ A3)

− P(A2 ∩ A3) + P(A1 ∩ A2 ∩ A3).
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(iii) By Proposition 3 in Chapter 2 and (P3):

P
( ∞⋃

i=1

Ai

)
= P

[
A1 ∪ (

Ac
1 ∩ A2

) ∪ . . . ∪ (
Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An

) ∪ . . .
]

= P(A1) + P
(
Ac

1 ∩ A2
) + · · · + P

(
Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An

) + · · ·
≤ P(A1) + P(A2) + · · · + P(An) + · · ·

(by Proposition 1(iv) in Chapter 3).

For the finite case:

P
( n⋃

i=1

Ai

)
= P

[
A1 ∪ (

Ac
1 ∩ A2

) ∪ . . . ∪ (
Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An

)]

= P(A1) + P
(
Ac

1 ∩ A2
) + · · · + P

(
Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An

)

≤ P(A1) + P(A2) + · · · + P(An). �
Next, some examples are presented to illustrate some of the properties

listed in Propositions 1 and 2.

EXAMPLE 4 (i) For two events A and B, suppose that P(A) = 0.3, P(B) = 0.5, and
P(A ∪ B) = 0.6. Calculate P(A ∩ B).

(ii) If P(A) = 0.6, P(B) = 0.3, P(A ∩ Bc) = 0.4, and B ⊂ C, calculate
P(A ∪ Bc ∪ Cc).

DISCUSSION

(i) From P(A ∪ B) = P(A) + P(B) − P(A ∩ B), we get P(A ∩ B) = P(A) +
P(B) − P(A ∪ B) = 0.3 + 0.5 − 0.6 = 0.2.

(ii) The relation B ⊂ C implies Cc ⊂ Bc and hence A ∪ Bc ∪ Cc = A ∪ Bc.
Then P(A ∪ Bc ∪ Cc) = P(A ∪ Bc) = P(A) + P(Bc) − P(A ∩ Bc) =
0.6 + (1 − 0.3) − 0.4 = 0.9.

EXAMPLE 5 Let A and B be the respective events that two contracts I and II, say, are
completed by certain deadlines, and suppose that: P(at least one contract
is completed by its deadline) = 0.9 and P(both contracts are completed by
their deadlines) = 0.5. Calculate the probability: P(exactly one contract is
completed by its deadline).

DISCUSSION The assumptions made are translated as follows:
P(A ∪ B) =0.9 and P(A ∩ B) = 0.5. What we wish to calculate is: P((A ∩
Bc)∪ (Ac ∩B)). However, it is easily seen (for example, by means of a Venn
diagram) that

(A ∩ Bc) ∪ (Ac ∩ B) = (A ∪ B) − (A ∩ B).
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Therefore, by Proposition 1(iv),

P((A ∩ Bc) ∪ (Ac ∩ B)) = P((A ∪ B) − (A ∩ B))

= P(A ∪ B) − P(A ∩ B)

= 0.9 − 0.5 = 0.4.

EXAMPLE 6 (i) For three events A, B, and C, suppose that P(A ∩ B) = P(A ∩ C) and
P(B ∩ C) = 0. Then show that P(A ∪ B ∪ C) = P(A) + P(B) + P(C) −
2P(A ∩ B).

(ii) For any two events A and B, show that P(Ac ∩Bc) = 1−P(A)−P(B)+
P(A ∩ B).

DISCUSSION

(i) We have P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) −
P(B ∩ C) + P(A ∩ B ∩ C). But A ∩ B ∩ C ⊂ B ∩ C, so that P(A ∩ B ∩ C) ≤
P(B ∩ C) = 0, and therefore P(A ∪ B ∪ C) = P(A) + P(B) + P(C) −
2P(A ∩ B).

(ii) Indeed, P(Ac ∩ Bc) = P((A ∪ B)c) = 1 − P(A ∪ B) = 1 − P(A) − P(B) +
P(A ∩ B).

EXAMPLE 7 In ranking five horses in a horse race (Example 5 in Chapter 2), what is
the probability that horse #3 will finish either first or second or third?

DISCUSSION Denote by B the required event and let Ai = “horse
#3 finishes in the ith place,” i = 1, 2, 3. Then the events A1, A2, A3 are
pairwise disjoint, and therefore:

P(B) = P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3).

But P(A1) = P(A2) = P(A3) = 24
120 = 0.2, so that P(B) = 0.6.

EXAMPLE 8 Consider a well-shuffled deck of 52 cards (Example 3 in Chapter 2), and
suppose we draw at random three cards. What is the probability that at
least one is an ace?

DISCUSSION Let A be the required event, and let Ai be defined by:
Ai = “exactly i cards are aces,” i = 0, 1, 2, 3. Then, clearly, P(A) = P(A1 ∪
A2 ∪ A3). Instead, we may choose to calculate P(A) through P(A) = 1 −
P(A0), where

P(A0) =
(48

3

)

(52
3

) = 48 × 47 × 46
52 × 51 × 50

= 4,324
5,525

, so that P(A) = 1,201
5,525

� 0.217.

EXAMPLE 9 It happens that 4 hotels in a certain large city have the same name, for
example, Grand Hotel. Four persons make an appointment to meet at the
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Grand Hotel. If each one of the 4 persons chooses the hotel at random,
calculate the following probabilities:
(i) All 4 choose the same hotel.

(ii) All 4 choose different hotels.

DISCUSSION

(i) If A = “all 4 choose the same hotel,” then P(A) = n (A)
n (S) , where

n(A) is the number of sample points in A. Here, n(S) = 4 × 4 ×
4 × 4 = 44, by Theorem 1 in Chapter 2 applied with k = 4 and
n1 = n2 = n3 = n4 = 4, and n(A) = 4 × 1 × 1 × 1 = 4, by Theorem 1
again applied with n1 = 4, n2 = n3 = n4 = 1. Thus, P(A) = 4

44 = 1
43 =

1
64 = 0.015625 � 0.016.

(ii) If B = “all 4 choose different hotels,” then, by the first part of the
corollary to Theorem 1 in Chapter 2, n(B) = P4,4 = 4!, so that P(B) =
4!
44 = 1×2×3

43 = 3
32 = 0.09375 � 0.094.

EXAMPLE 10 The faculty in an academic department at UC-Davis consists of 4 assistant
professors, 6 associate professors, and 5 full professors. Also, it has
30 graduate students. An ad hoc committee of 5 is to be formed to study
a certain curricular matter.

(i) What is the number of all possible committees consisting of faculty
alone?

(ii) How many committees can be formed if 2 graduate students are to
be included and all academic ranks are to be represented?

(iii) If the committee is to be formed at random, what is the probability
that the faculty will not be represented?

DISCUSSION By Example 20 in Chapter 2, we have for parts (i)
and (ii):

(i) This number is:
(15

5

) = 15!
5!10! = 11×12×13×14×15

1×2×3×4×5 = 3,003.

(ii) Here the number is:
(30

2

)(4
1

)(6
1

)(5
1

) = 30!
2!28! × 4 × 6 × 5 = 29×30

2 × 120 =
52,200.

(iii) The required probability is:

(30
5

)(15
0

)

(45
5

) =
(30

5

)

(45
5

) = 30!/5!25!
45!/5!40! = 26×27×28×29×30

41×42×43×44×45
= 2,262

19,393
�0.117.

EXAMPLE 11 What is the probability that a poker hand contains 4 pictures, including
at least 2 Jacks? It is recalled here that there are 12 pictures consisting
of 4 Jacks, 4 Queens, and 4 Kings.

DISCUSSION A poker hand can be selected in
(52

5

)
ways. The

event described, call it A, consists of the following number of sample
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points: n(A) = n(J2)+n(J3)+n(J4), where Ji = “the poker hand contains
exactly i Jacks,” i = 2, 3, 4. But

n(J2) =
(

4
2

)(
8
2

)(
40
1

)
, n(J3) =

(
4
3

)(
8
1

)(
40
1

)
, n(J3) =

(
4
4

)(
8
0

)(
40
1

)
,

so that

P(A) =
[(4

2

)(8
2

) + (4
3

)(8
1

) + (4
4

)(8
0

)](40
1

)

(52
5

) = 8,040
2,598,960

� 0.003.

(For the calculation of
(52

5

)
see Example 19(ix) and the discussion following

Remark 2 in Chapter 2.)

This section is concluded with two very useful results stated as theo-
rems. The first is a generalization of Proposition 2(ii) to more than three
events, and the second is akin to the concept of continuity of a function
as it applies to a probability function.

THEOREM 1
The probability of the union of any n events, A1, . . . , An, is given by:

P
( n⋃

j=1

Aj

)
=

n∑

j=1

P(Aj) −
∑

1≤j1<j 2≤n

P(Aj1 ∩ Aj 2)

+
∑

1≤j1<j 2<j 3≤n

P(Aj1 ∩ Aj 2 ∩ Aj 3) − · · ·

+ (−1)n+1P(A1 ∩ . . . ∩ An).

Although its proof (which is by induction) will not be presented, the pat-
tern of the right-hand side above follows that of part (ii) in Proposition 2
and it is clear. First, sum up the probabilities of the individual events, then
subtract the probabilities of the intersections of the events, taken two at
a time (in the ascending order of indices), then add the probabilities of the
intersections of the events, taken three at a time as before, and continue
like this until you add or subtract (depending on n) the probability of the
intersection of all n events.

Recall that if A1 ⊆ A2 ⊆ . . . , then limn→∞ An = ⋃∞
n=1 An, and if A1 ⊇

A2 ⊇ . . . , then limn→∞ An = ⋂∞
n=1 An.

THEOREM 2
For any monotone sequence of events {An}, n ≥ 1, it holds
P(limn→∞ An) = limn→∞ P(An).
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This theorem will be employed in many instances, and its use will be
then pointed out.

The interested reader may find proofs of Theorem 1 and 2 in Chapter 2
of the book A Course in Mathematical Statistics, 2nd edition (1997),
Academic Press, by G. G. Roussas.

Exercises

2.1 (i) If P(A) = 0.4, P(B) = 0.6, and P(A ∪ B) = 0.7, calculate P(A ∩ B).
(ii) By a simple example show that P(A − B) need not be equal to

P(A) − P(B) if B does not imply A.

2.2 If for two events A and B, it so happens that P(A) = 3
4 and P(B) = 3

8 ,
show that:

P(A ∪ B) ≥ 3
4

and
1
8

≤ P(A ∩ B) ≤ 3
8

.

2.3 If for the events A, B, and C, it so happens that P(A) = P(B) =
P(C) = 1, then show that:

P(A ∩ B) = P(A ∩ C) = P(B ∩ C) = P(A ∩ B ∩ C) = 1.

Hint: Use Proposition 1(iv) and Proposition 2(i), (ii).

2.4 If the events A, B, and C are related as follows: A ⊂ B ⊂ C and
P(A) = 1

4 , P(B) = 5
12 , and P(C) = 7

12 , compute the probabilities of the
following events:

Ac ∩ B, Ac ∩ C, Bc ∩ C, A ∩ Bc ∩ Cc, Ac ∩ Bc ∩ Cc.

Hint: Use Proposition 1(iii), (iv) here, and Proposition 4 in
Chapter 2.

2.5 Let S be the set of all outcomes when flipping a fair coin four
times, so that all 16 outcomes are equally likely. Define the events A
and B by:

A = {s ∈ S; s contains more T’s than H’s},
B = {s ∈ S; there are both H’s and T’s in s, and every T precedes

every H}.

Compute the probabilities P(A), P(B).
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2.6 Let S = {x integer; 1 ≤ x ≤ 200}, and define the events A, B, and C
as follows:

A = {x ∈ S; x is divisible by 7}
B = {x ∈ S; x = 3n + 10, for some positive integer n}
C = {x ∈ S; x2 + 1 ≤ 375}.

Calculate the probabilities P(A), P(B), and P(C).

2.7 If two fair dice are rolled once, what is the probability that the total
number of spots shown is:
(i) Equal to 5?

(ii) Divisible by 3?

2.8 Students at a certain college subscribe to three newsmagazines A, B,
and C according to the following proportions:

A : 20%, B : 15%, C : 10%,

both A and B : 5%, both A and C : 4%, both B and C : 3%, all three
A, B, and C : 2%.
If a student is chosen at random, what is the probability he/she
subscribes to none of the newsmagazines?

Hint: Use Proposition 4 in Chapter 2, and Proposition 2(ii) here.

2.9 A high school senior applies for admission to two colleges A and B,
and suppose that: P(admitted at A) = p1, P(rejected by B) = p2, and
P(rejected by at least one, A or B) = p3.
(i) Calculate the probability that the student is admitted by at least

one college.
(ii) Find the numerical value of the probability in part (i), if p1 = 0.6,

p2 = 0.2, and p3 = 0.3.

2.10 An airport limousine service has two vans, the smaller of which
can carry 6 passengers and the larger 9 passengers. Let x and y
be the respective numbers of passengers carried by the smaller and
the larger van in a given trip, so that a suitable sample space S is
given by:

S = {(x, y); x = 0, . . . , 6 and y = 0, 1, . . . , 9}.

Also, suppose that for all values of x and y, the probabilities P({(x, y)})
are equal. Finally, define the events A, B, and C as follows:

A = “the two vans together carry either 4 or 6 or 10 passengers”
B = “the larger van carries twice as many passengers as the

smaller van”
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C = “the two vans carry different numbers of passengers.”

Calculate the probabilities: P(A), P(B), and P(C).

2.11 A child’s set of blocks consists of 2 red, 4 blue, and 5 yellow blocks.
The blocks can be distinguished only by color. If the child lines up
the blocks in a row at random, calculate the following probabilities:

(i) Red blocks appear at both ends.
(ii) All yellow blocks are adjacent.

(iii) Blue blocks appear at both ends.

Hint: Use Proposition 5 in Chapter 2.

2.12 Suppose that the letters C, E, F, F, I, and O are written on six chips
and placed into a box. Then the six chips are mixed and drawn one
by one without replacement. What is the probability that the word
“OFFICE” is formed?

Hint: Use Proposition 5 in Chapter 2.

2.13 A course in English composition is taken by 10 freshmen, 15 sopho-
mores, 30 juniors, and 5 seniors. If 10 students are chosen at random,
calculate the probability that this group will consist of 2 freshmen,
3 sophomores, 4 juniors, and 1 senior.

2.14 From among n eligible draftees, m are to be drafted in such a way
that all possible combinations are equally likely to occur. What is the
probability that a specified man is not drafted (expressed in terms of
m and n)?

2.15 From 10 positive and 6 negative numbers, 3 numbers are chosen at
random and without repetitions. What is the probability that their
product is a negative number (Just write down the right formula)?

2.16 A shipment of 2,000 light bulbs contains 200 defective items and
1,800 good items. Five hundred bulbs are chosen at random and are
tested, and the entire shipment is rejected if more than 25 bulbs from
among those tested are found to be defective. What is the probabil-
ity that the shipment will be accepted? (Just write down the right
formula.)

2.17 Three cards are drawn at random and without replacement from
a standard deck of 52 playing cards. Compute the probabilities
P(Ai), i = 1, . . . , 4, where the events Ai, i = 1, . . . , 4 are defined as
follows:
A1 = “all 3 cards are black,” A2 = “exactly 1 card is an ace”
A3 = “1 card is a diamond, 1 card is a heart, and 1 card is a club”
A4 = “at least 2 cards are red.”

2.18 A student committee of 12 people is to be formed from among
100 freshmen (40 male + 60 female), 80 sophomores (30 male and
50 female), 70 juniors (24 male and 46 female), and 40 seniors
(12 male and 28 female).
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Calculate the following probabilities:
(i) Seven students are female and 5 are male.

(ii) The committee consists of the same number of students from
each class.

(iii) The committee consists of 2 female students and 1 male student
from each class.

(iv) The committee includes at least 1 senior (one of whom will serve
as the chairperson of the committee).

The following tabular form of the data facilitates the calculations:

Class\\Gender Male Female Totals

Freshman 40 60 100
Sophomore 30 50 80
Junior 24 46 70
Senior 12 28 40
Totals 106 184 290

2.19 From a class of 50 students, of whom 30 are computer science majors
and 20 other majors, 5 students are chosen at random to form an
advisory committee.

(i) How many such committees can be formed?
(ii) How many such committees include 3 computer science majors?

(iii) What is the probability that such a committee includes 3 com-
puter science majors?

2.20 Let S and L be the events that a patient’s visit to a primary care
physician’s office results in a referral to a specialist and for labora-
tory work, respectively. Suppose that P(S) = 0.25, P(L) = 0.35, and
that the probability that there is no referral to either a specialist or
for laboratory work is 0.45. Calculate the probability that there is a
referral:
(i) To both a specialist and for laboratory work.

(ii) To either a specialist or for laboratory work.

Hint: For part (i), use Proposition 1(iii), and for part (ii), use
Proposition 2(ii).

3.3 Distribution of a Random Variable

The paramount feature of an r.v. X that we are interested in is its proba-
bility distribution or just distribution. That is, the probability by which X
takes values in any set B, subset of the real line 	. Recalling that (X ∈ B)
stands for the event {s ∈ S; X(s) ∈ B}, the focus of our interest is:

P(X ∈ B) = P({s ∈ S; X(s) ∈ B}), B ⊆ 	. (3.1)
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Assessing probabilities as the ones in relation (3.1) is the best one can do
in absence of certainty. In this section, the concept of the probability dis-
tribution of an r.v. is defined, as well as those of the distribution function
and probability density function of an r.v. Also, some comments are made
on their relationships.

DEFINITION 1

(i) The probability distribution (or just distribution) of an r.v. X is a
set function PX which assigns values to subsets B of 	 according
to relation (3.1); the value assigned to B is denoted by PX (B).

(ii) By taking B to be an interval of the form (−∞, x]; i.e., B =
(−∞, x], relation (3.1) becomes

P(X ∈ (−∞, x]) = P({s ∈ S; X(s) ≤ x}) = P(X ≤ x),

and it defines a point function denoted by FX and called the
distribution function (d.f.) of X .

REMARK: 1

(i) The distribution of the r.v. X is a set function defined on subsets of
	. As such, it is seen that it is, actually, a probability function (on
subsets of 	). The details of the justification are left as an exercise
(see Exercise 3.23).

(ii) From Definition 1 it follows that if we know PX (B) for all B in 	, then
we certainly know FX (x) for all x ∈ 	. Somewhat surprisingly, the con-
verse is also true; its justification is well beyond the level of this book.
It does provide, however, a justification of why we occupy ourselves
at all with FX (x), x ∈ 	.

The d.f. FX of any r.v. has four basic properties summarized in the
following proposition.

PROPOSITION 3 The d.f. of an r.v. X , FX , has the following proper-
ties:

(i) 0 ≤ FX (x) ≤ 1, x ∈ 	.
(ii) FX is nondecreasing; i.e., for x1 < x2, FX (x1) ≤ FX (x2).

(iii) FX is continuous from the right; that is, as n → ∞, xn ↓ x implies
FX (xn) → FX (x).

(iv) FX (∞) = 1 and FX (−∞) = 0, where FX (∞) = limn→∞FX (xn), xn ↑ ∞,
and FX (−∞) = limn→∞FX (xn), xn ↓ −∞.

The justification of this proposition is left as an exercise (see
Exercise 3.24).
Figures 3.1 and 3.2 below present typical cases of d.f.’s.
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Figure 3.1
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In particular, Figure 3.3 presents the d.f. of the (discrete) r.v. X distributed
as follows:

x −14 −6 5 9 24

P(X = x) 0.17 0.28 0.22 0.22 0.11

The entity, however, which facilitates truly (at least in principle) the
actual calculation of probabilities associated with an r.v. X is the so-called
probability density function of X . At this point, the discrete and the
continuous case are treated separately.

DEFINITION 2
Let X be a (discrete) r.v. taking on the values xi, i ≥ 1 (finitely or
infinitely many) with respective probabilities P(X = xi), i ≥ 1. Define
the function fX as follows:

fX (x) =
{

P(X = xi) if x = xi, i ≥ 1
0 otherwise. (3.2)
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Figure 3.3

Example of d.f.
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The function fX is called the probability density function (p.d.f.) of
the r.v. X .

The following properties are immediate from the definition.

PROPOSITION 4 Let fX be as in relation (3.2). Then:

(i) fX (x) ≥ 0 for all x ∈ 	.
(ii) For any B ⊆ 	, P(X ∈ B) =

∑

xi∈B
fX (xi).

(iii) In particular,

FX (x) =
∑

xi≤x
fX (xi), x ∈ 	, and

∑

xi∈	 fX (xi) = 1.

(iv) Assuming that xi < xi+1, i ≥ 1, it follows that

fX (xi+1) = FX (xi+1) − FX (xi), i ≥ 1, fX (x1) = FX (x1).

Its simple justification is left as an exercise (see Exercise 3.25).

DEFINITION 3
Let X be an r.v. of the continuous type, and suppose there exists a
function fX such that:

fX (x) ≥ 0 for all x ∈ 	, and P(X ∈ B) =
∫

B
fX (x)dx, B ⊆ 	. (3.3)

The function fX is the (p.d.f.) of the r.v. X .

From Definition 3 and a result from calculus, the following properties
are immediate.
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PROPOSITION 5 Let fX be as in Definition 3. Then:

(i) FX (x) = ∫ x
−∞ fX (t)dt for all x ∈ 	 (by taking B = (−∞, x] in relation

(3.3)).
(ii)

∫
	fX (x)dx = ∫ ∞

−∞ fX (x)dx = 1 (by taking B = 	 in (3.3)).
(iii) d

dxFX (x) = fX (x) (for all x ∈ 	 for which fX (x) is continuous, as is well
known from calculus).

Thus, by Proposition 4(ii) and relation (3.3), the calculation of the prob-
ability P(X ∈ B), B ⊆ 	, is reduced to a summation over B (for the case
the r.v. X is discrete), or an integration over B (when the r.v. X is of
the continuous type). Although integration over B can be given meaning
for B ⊆ 	 other than intervals, at this level, B will consist either of a
finite or infinite interval, or at most of finitely many such intervals. Thus,∫

BfX (x)dx will be a familiar operation.

REMARK: 2

(i) It can be seen that if we are given a function F which satisfies
properties (i)–(iv) in Proposition 3, then we can always construct
an r.v. X such that FX (x) = F(x), x ∈ 	. A somewhat sophis-
ticated construction of such an r.v. is proved in Theorem 9 in
Chapter 11.

(ii) Part (i), along with Proposition 4(iii) and Proposition 5(ii) justify
the following question: When is a given function f a candidate
for a p.d.f. of an r.v.? The answer is this: First, there must be
f (x) ≥ 0 for all x ∈ 	; and second, either

∑
xi

f (xi) = 1 where
f (xi), i ≥ 1, are the values which are not 0, or

∫ ∞
−∞ fX (x)dx = 1

otherwise.
(iii) If the r.v. X is of the continuous type, relation (3.3) gives for B = {x} :

P(X ∈ {x}) = P(X = x) = ∫
{x}fX (t)dt. However,

∫
{x}fX (t)dt = 0. Thus,

for a continuous r.v. X , P(X = x) = 0 for all x ∈ 	. Yet,
∫

	fX (x)dx = 1
by Proposition 5(ii). Why are these two statements not contradictory?
(See Exercise 3.26.)

Let us conclude this section with the following concrete examples.

EXAMPLE 12 The number of light switch turn-ons at which the first failure occurs is
an r.v. X whose p.d.f. is given by: f (x) = c( 9

10 )x−1, x = 1, 2, . . . (and 0
otherwise).

(i) Determine the constant c.
(ii) Calculate the probability that the first failure will not occur until

after the 10th turn-on.
(iii) Determine the corresponding d.f. F.

Hint: Refer to #4 in Table 6 in the Appendix.
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DISCUSSION

(i) The constant c is determined through the relationship:
∑∞

x=1 f (x) = 1
or

∑∞
x=1 c( 9

10 )x−1 = 1. However,
∑∞

x=1 c( 9
10 )x−1 = c

∑∞
x=1( 9

10 )x−1 =
c[1 + ( 9

10 ) + ( 9
10 )2 + · · · ] = c 1

1− 9
10

= 10c, so that c = 1
10 .

(ii) Here P(X > 10) = P(X ≥ 11) = c
∑∞

x=11( 9
10 )x−1 = c[( 9

10 )10 + ( 9
10 )11 +

· · · ] = c
( 9

10 )10

1− 9
10

= c · 10( 9
10 )10 = 1

10 · 10( 9
10 )10 = (0.9)10 � 0.349.

(iii) First, for x < 1, F(x) = 0. Next, for x ≥ 1, F(x) = ∑x
t=1 c( 9

10 )t−1 =
1−∑∞

t=x+1 c · ( 9
10 )t−1 = 1− c

∑∞
t=x+1( 9

10 )t−1 = 1− 1
10 · ( 9

10 )x

1− 9
10

= 1− ( 9
10 )x.

Thus, F(x) = 0 for x < 1, and F(x) = 1 − ( 9
10 )x for x ≥ 1.

EXAMPLE 13 The recorded temperature in an engine is an r.v. X whose p.d.f. is given by:
f (x) = n(1 − x)n−1, 0 ≤ x ≤ 1 (and 0 otherwise), where n ≥ 1 is a known
integer.

(i) Show that f is, indeed, a p.d.f.
(ii) Determine the corresponding d.f. F.

DISCUSSION

(i) Because f (x) ≥ 0 for all x, we simply have to check that
∫ 1

0 f (x) dx = 1.
To this end,

∫ 1
0 f (x)dx=∫ 1

0 n(1−x)n−1 dx=−n (1−x)n

n |10 =−(1−x)n|10 =1.
(ii) First, F(x) = 0 for x < 0, whereas for 0 ≤ x ≤ 1, F(x) = ∫ x

0 n (1 −
t)n−1dt = −(1−t)n|x0 (from part (i)), and this is equal to: −(1−x)n+1 =
1 − (1 − x)n. Thus,

F(x) =





0, x < 0
1 − (1 − x)n, 0 ≤ x ≤ 1
1, x > 1.

Exercises

3.1 A sample space describing a three-children family is as follows:
S = {bbb, bbg, bgb, gbb, bgg, gbg, ggb, ggg}, and assume that all
eight outcomes are equally likely to occur. Next, let X be the r.v.
denoting the number of girls in such a family. Then:

(i) Determine the set of all possible values of X .
(ii) Determine the p.d.f. of X .

(iii) Calculate the probabilities: P(X ≥ 2), P(X ≤ 2).
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3.2 An r.v. X has d.f. F given by:

F(x) =






0, x ≤ 0
2c

(
x2 − 1

3x3), 0 < x ≤ 2
1, x > 2.

(i) Determine the corresponding p.d.f. f .
(ii) Determine the constant c.

Hint: For part (i), use Proposition 5(iii), and for part (ii), use
Remark 2(ii).

3.3 The r.v. X has d.f. F given by:

F(x) =






0, x ≤ 0
x3 − x2 + x, 0 < x ≤ 1
1, x > 1.

(i) Determine the corresponding p.d.f. f .
(ii) Calculate the probability P(X > 1

2 ).

Hint: As in Exercise 3.2.

3.4 The r.v. X has d.f. F given by:

F(x) =






0, x < 4
0.1, 4 ≤ x < 5
0.4, 5 ≤ x < 6
0.7, 6 ≤ x < 8
0.9, 8 ≤ x < 9
1, x ≥ 9.

(i) Draw the graph of F.
(ii) Calculate the probabilities:

P(X ≤ 6.5), P(X > 8.1), P(5 < x < 8).

3.5 Let X be an r.v. with p.d.f. f (x) = cx−(c+1), for x ≥ 1, where c is a
positive constant.
(i) Determine the constant c, so that f is, indeed, a p.d.f.

(ii) Determine the corresponding d.f. F.

Hint: For part (i), use Remark 2(ii), and for part (ii), use
Proposition 5(i).
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3.6 Let X be an r.v. with p.d.f. f (x) = cx + d, for 0 ≤ x ≤ 1, and suppose
that P(X > 1

2 ) = 1
3 . Then:

(i) Determine the constants c and d.
(ii) Find the d.f. F of X .

Hint: One of the two relations needed follows from the use of
Remark 2(ii), and the other from the given probability.

3.7 Show that the function f (x) = ( 1
2 )x, x = 1, 2, . . . is a p.d.f.

Hint: See #4 in Table 6 in the Appendix in conjunction with
Remark 2(ii).

3.8 For what value of c is the function f (x) = cαx, x = 0, 1, . . . a p.d.f.?
The quantity α is a number such that 0 < α < 1, and c is expressed
in terms of α.

Hint: As in Exercise 3.7.

3.9 For what value of the positive constant c is the function f (x) = cx, x =
1, 2, . . . a p.d.f.?

Hint: As in Exercise 3.7.

3.10 The p.d.f. of an r.v. X is f (x) = c( 1
3 )x, for x = 0, 1, . . . , where c is a

positive constant.
(i) Determine the value of c.

(ii) Calculate the probability P(X ≥ 3).

Hint: As in Exercise 3.7.

3.11 The r.v. X has p.d.f. f given by: f (x) = c(1 − x2), −1 ≤ x ≤ 1.
(i) Determine the constant c.

(ii) Calculate the probability P(−0.9 < X < 0.9).

3.12 Let X be an r.v. denoting the lifetime of a piece of electrical equip-
ment, and suppose that the p.d.f. of X is: f (x) = ce−cx, for x > 0 (for
some constant c > 0).

(i) Determine the constant c.
(ii) Calculate the probability (in terms of c) that X is at least equal

to 10 (time units).
(iii) If the probability in part (ii) is 0.5, what is the value of c?

3.13 The r.v. X has the so-called Pareto p.d.f. given by: f (x) = 1+α

x2+α , for
x > 1, where α is a positive constant.
(i) Verify that f is, indeed, a p.d.f.

(ii) Calculate the probability P(X > c) (in terms of c and α), for
some c > 1.

3.14 Suppose that the r.v. X takes on the values 0, 1, . . . with the respective
probabilities P(X = j) = f ( j) = c

3 j , j = 0, 1, . . . . Then:
(i) Determine the constant c.
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Compute the probabilities:
(ii) P(X ≥ 3).

(iii) P(X = 2k + 1, k = 0, 1, . . .).
(iv) P(X = 3k + 1, k = 0, 1, . . .).

Hint: As in Exercise 3.7.

3.15 Let X be an r.v. with p.d.f. f whose graph is given below.
Without calculating f and by using geometric arguments, compute
the following probabilities:

P(X ≤ 3), P(1 ≤ X ≤ 2), P(X > 2), P(X > 5).

1/2
A

B

f (x)

0 1 2 3 4 5 x

3.16 Let X be the r.v. denoting the number of a certain item sold by a
merchant in a given day, and suppose that its p.d.f. is given by:

f (x) =
(

1
2

)x+1

, x = 0, 1, . . .

Calculate the following probabilities:
(i) No items are sold.

(ii) More than three items are sold.
(iii) An odd number of items is sold.

Hint: As in Exercise 3.7.

3.17 Suppose an r.v. X has p.d.f. given by: f (x) = λe−λx, x > 0, (λ > 0), and
you are invited to bet whether the observed value x of X would be ≥c
or <c for some positive constant c. In terms of probabilities:
(i) For what c (expressed in terms of λ) would you bet in favor of

x ≥ c?
(ii) What is the answer in part (i) if λ = 4 log 2? (log, as always, is

the natural logarithm.)

3.18 The lifetime in hours of electric tubes is an r.v. X with p.d.f. f (x) =
c2xe−cx, for x ≥ 0, where c is a positive constant.

(i) Determine the constant c for which f is, indeed, a p.d.f.
(ii) Calculate the probability (in terms of c) that the lifetime will be

at least t hours.
(iii) Find the numerical value in part (ii) for c = 0.2 and t = 10.
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3.19 Let X be the r.v. denoting the number of forms required to be filled
out by a contractor for participation in contract bids, where the
values of X are 1, 2, 3, 4, and 5, and suppose that the respective
probabilities are proportional to x; that is, P(X = x) = f (x) = cx, x =
1, . . . , 5.
(i) Determine the constant c.

(ii) Calculate the probabilities:

P(X ≤ 3), P(2 ≤ X ≤ 4).

3.20 The recorded temperature in an engine is an r.v. X whose p.d.f. is
given by: f (x) = n(1 − x)n−1, 0 < x < 1, n ≥ 1, known integer.
(See also Example 13.) The engine is equipped with a thermostat
that is activated when the temperature exceeds a specified level
x0. If the probability of the thermostat being activated is 1/102n,
determine x0.

3.21 Let X be an r.v. defined on a sample space S into the real line 	.
Then show that if B1 and B2 are any two disjoint subsets of 	, so
are the events A1 = (X ∈ B1) and A2 = (X ∈ B2).

3.22 Let X be an r.v. defined on a sample space S into the real line 	,
and let Bi, i ≥ 1, be any subsets of 	. Then show that ∪i(X ∈ Bi) =
(X ∈ ∪i(Bi)).

Hint: Show that the event on either side is contained in the event
in the other side.

3.23 Consider the set function PX (the probability distribution function
of the r.v. X) defined in relation (3.1), and show that PX is, actu-
ally, a probability function defined on subsets of 	; that is, show
that PX satisfies properties (P1)–(P3) in the Axiomatic Definition of
Probability.

Hint: Use Exercises 3.21 and 3.22.

3.24 Provide the details of the justification of Proposition 3.

Hint: For parts (iii) and (iv), use Theorem 2.

3.25 Provide the details of the justification of Proposition 4.

3.26 Let X be an r.v. of the continuous type with p.d.f fX . Then by
Remark 2(iii), P(X = x) = 0 for all x ∈ 	, whereas by Proposition
5(ii),

∫
	fX (x)dx = 1. Reconcile these two seemingly contradictory

facts.

Hint: Focus on property (P3) of the Axiomatic Definition of
Probability.
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3.27 An r.v. X takes on the values 0, 1, . . . with respective probabilities
given by:

p0 = P(X = 0), pk = P(X = k) = cP(X = k − 1)

= cpk−1 (0 < c < 1), k ≥ 1.

(i) Show that pk = ckp0, and determine p0 in terms of c.
(ii) Compute the probability P(X > n) in terms of c, and find its

numertical value for n = 5 and c = 0.8.



4
Conditional Probability and
Independence

This chapter consists of two sections. In the first section, the concept of
the conditional probability of an event, given another event, is taken up.
Its definition is given and its significance is demonstrated through a num-
ber of examples. The section is concluded with three theorems, formulated
in terms of conditional probabilities. Through these theorems, conditional
probabilities greatly simplify calculation of otherwise complicated proba-
bilities. In the second section, the independence of two events is defined,
and we also indicate how it carries over to any finite number of events. A
result (Theorem 4) is stated which is often used by many authors without
its use even being acknowledged. The section is concluded with an indica-
tion of how independence extends to random experiments. The definition
of independence of r.v.’s is deferred to another chapter (Chapter 10).

4.1 Conditional Probability and Related Results

Conditional probability is a probability in its own right, as will be seen,
and it is an extremely useful tool in calculating probabilities. Essentially, it
amounts to suitably modifying a sample space S, associated with a random
experiment, on the evidence that a certain event has occurred. Consider
the following examples, by way of motivation, before a formal definition
is given.

56
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EXAMPLE 1 In tossing three distinct coins once (Example 1 in Chapter 2), consider the
events B = “exactly 2 heads occur” = {HHT, HTH, THH}, A = “2 specified
coins (e.g., coins #1 and #2) show heads” = {HHH, HHT}. Then P(B) = 3

8
and P(A) = 2

8 = 1
4 . Now, suppose we are told that event B has occurred and

we are asked to evaluate the probability of A on the basis of this evidence.
Clearly, what really matters here is the event B, and given that B has
occurred, the event A occurs only if the sample point HHT appeared; that
is, the event {HHT} = A ∩ B occurred. The required probability is then
1
3 = 1/8

3/8 = P(A∩B)
P(B) , and the notation employed is P(A | B) (probability of

A, given that B has occurred or, just, given B). Thus, P(A | B) = P(A∩B)
P(B) .

Observe that P(A | B) = 1
3 > 1

4 = P(A).

EXAMPLE 2 In rolling two distinct dice once (Example 2 in Chapter 2), consider the
event B defined by: B = “the sum of numbers on the upper face is ≤5”,
so that B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)},
and let A = “the sum of numbers on the upper faces is ≥ 4.” Then Ac =
“the sum of numbers on the upper faces is ≤3” = {(1, 1), (1, 2), (2, 1)},
so that P(B) = 10

36 = 5
18 and P(A) = 1 − P(Ac) = 1 − 3

36 =
33
36 = 11

12 . Next, if we are told that B has occurred, then the only
way that A occurs is if A ∩ B occurs, where A ∩ B = “the sum
of numbers on the upper faces is both ≥4 and ≤5 (i.e., either 4
or 5)” = {(1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}. Thus, P(A | B) = 7

10 =
7/36
10/36 = P(A∩B)

P(B) , and observe that P(A | B) = 7
10 < 11

12 = P(A).

EXAMPLE 3 In recording the gender of children in a two-children family (Example 4 in
Chapter 2), let B = “children of both genders” = {bg, gb} and let A = “older
child is a boy” = {bb, bg}, so that A∩B = {bg}. Then P(B) = 1

2 = P(A), and
P(A | B) = 1

2 = P(A).

These examples motivate the following definition of conditional proba-
bility.

DEFINITION 1
The conditional probability of an event A, given the event B with
P(B) > 0, is denoted by P(A | B) and is defined by: P(A | B) =
P(A ∩ B)/P(B).

Replacing B by the entire sample space S, we are led back to the (uncon-
ditional) probability of A, as P(A∩S)

P(S) = P(A)
1 = P(A). Thus, the conditional

probability is a generalization of the concept of probability where S is
restricted to an event B.

The conditional probability is a full-fledged probability function; that
is, as the following proposition states.



58 Chapter 4 Conditional Probability and Independence

PROPOSITION 1 The conditional probability satisfies properties
(P1)–(P3) in the Axiomatic Definition of Probability (in Chapter 3).

PROOF That the conditional probability is, indeed, a probability is seen
formally as follows: P(A | B) ≥ 0 for every A by definition;

P(S | B) = P(S ∩ B)
P(B)

= P(B)
P(B)

= 1;

and if A1, A2, . . . are pairwise disjoint, then:

P
( ∞⋃

j=1

Aj | B
)

= P
[( ⋃∞

j=1 Aj
) ∩ B

]

P(B)
= P

[ ⋃∞
j=1(Aj ∩ B)

]

P(B)

=
∑∞

j=1 P(Aj ∩ B)

P(B)
=

∞∑

j=1

P(Aj ∩ B)
P(B)

=
∞∑

j=1

P(Aj | B). �

It is to be noticed, furthermore, that the P(A | B) can be smaller or
larger than the P(A), or equal to the P(A). The case that P(A | B) = P(A)
is of special interest and will be discussed more extensively in the next
section. This point is made by Examples 1, 2, and 3.

Here are another three examples pertaining to conditional probabilities.

EXAMPLE 4 When we are recording the number of particles emitted by a certain
radioactive source within a specified period of time (Example 8 in Chap-
ter 2), we are going to see that if X is the number of particles emitted,
then X is an r.v. taking on the values 0,1,…and that a suitable p.d.f. for
it is fX (x) = e−λ λx

x! , x = 0, 1, . . . , for some constant λ > 0. Next, let B
and A be the events defined by: B = (X ≥ 10), A = (X ≤ 11), so that
A ∩ B = (10 ≤ X ≤ 11) = (X = 10 or X = 11). Then

P(B) =
∞∑

x=10

e−λ λx

x! = e−λ
∞∑

x=10

λx

x! ,

P(A) =
11∑

x=0

e−λ λx

x! = e−λ
11∑

x=0

λx

x! , and

P(A | B) =
(

e−λ λ10

10! + e−λ λ11

11!
)/

e−λ
∞∑

x=10

λx

x! .

For a numerical example, take λ = 10. Then we have (by means of the
Poisson tables):

P(B) � 0.5421, P(A) � 0.6968, and P(A | B) � 0.441.
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EXAMPLE 5 When recording the lifetime of an electronic device, an electrical appliance,
etc. (Example 9 in Chapter 2), if X is the lifetime under consideration,
then X is an r.v. taking values in (0, ∞), and a suitable p.d.f. for it is seen
to be the function fX (x) = λe−λx, x > 0, for some constant λ > 0. Let B
and A be the events: B = “at the end of 5 time units, the equipment was
still operating” = (X ≥ 5), A = “the equipment lasts for no more than 2
additional time units” = (X ≤ 7). Then A ∩ B = (5 ≤ X ≤ 7), and:

P(B) =
∫ ∞

5
λe−λx dx = e−5λ, P(A) =

∫ 7

0
λe−λx dx = 1 − e−7λ,

P(A ∩ B) =
∫ 7

5
λe−λx dx = e−5λ − e−7λ, so that

P(A | B) = P(A ∩ B)
P(B)

= e−5λ − e−7λ

e−5λ
= 1 − e−2λ.

Take, for instance, λ = 1
10 . Then, given that e−1 � 0.36788, the preceding

probabilities are:

P(B) � 0.607, P(A) � 0.503, and P(A | B) � 0.181.

EXAMPLE 6 If for the events A and B, P(A)P(B) > 0, then show that: P(A | B) > P(A)
if and only if P(B | A) > P(B). Likewise, P(A | B) < P(A) if and only if
P(B | A) < P(B).

DISCUSSION Indeed, P(A | B) > P(A) is equivalent to P(A∩B)
P(B) > P(A) or

P(A∩B)
P(A) > P(B) or P(B | A) > P(B). Likewise, P(A | B) < P(A) is equivalent

to P(A∩B)
P(B) < P(A) or P(A∩B)

P(A) < P(B) or P(B | A) < P(B).

This section is concluded with three simple but very useful results. They
are the so-called multiplicative theorem, the total probability theorem,
and the Bayes formula.

THEOREM 1
(Multiplicative Theorem) For any n events A1, . . . , An with
P(

⋂n−1
j=1 Aj) > 0, it holds:

P
( n⋂

j=1

Aj

)
= P(An | A1 ∩ . . . ∩ An−1)P(An−1 | A1 ∩ . . . ∩ An−2)

. . . P(A2 | A1)P(A1).

Its justification is simple, is done by induction, and is left as an exercise
(see Exercise 1.8). Its significance is that we can calculate the probability
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of the intersection of n events, step by step, by means of conditional prob-
abilities. The calculation of these conditional probabilities is far easier.
Here is a simple example which amply illustrates the point.

EXAMPLE 7 An urn contains 10 identical balls, of which 5 are black, 3 are red, and 2
are white. Four balls are drawn one at a time and without replacement.
Find the probability that the first ball is black, the second red, the third
white, and the fourth black.

DISCUSSION Denoting by B1 the event that the first ball is black, and
likewise for R2, W3, and B4, the required probability is:

P(B1∩R2∩W3∩B4)=P(B4 |B1∩R2∩W3)P(W3 |B1∩R2)P(R2 |B1)P(B1).

Assuming equally likely outcomes at each step, we have:

P(B1) = 5
10

, P(R2 | B1) = 3
9

, P(W3 | B1 ∩ R2) = 2
8

,

P(B4 | B1 ∩ R2 ∩ W3) = 4
7

.

Therefore,

P(B1 ∩ R2 ∩ W3 ∩ B4) = 4
7

× 2
8

× 3
9

× 5
10

= 1
42

� 0.024.

For the formulation of the next result, the concept of a partition of S
is required.

DEFINITION 2
The events {A1, A2, . . . , An} form a partition of S, if these events are
pairwise disjoint, Ai∩Aj = ∅, i �= j, and their union is S,

⋃n
j=1 Aj = S;

and similarly for countably infinite many events {A1, A2, . . .}.

Then it is obvious that any event B in S may be expressed as follows,
in terms of a partition of S; namely, B = ⋃n

j=1(Aj ∩ B). Furthermore,

P(B) =
n∑

j=1

P(Aj ∩ B) =
n∑

j=1

P(B | Aj)P(Aj), provided P(Aj) > 0 for all j;

and similarly for countably infinite many events. In the sequel, by writing
j = 1, 2, . . . and

∑
j we mean to include both cases, finitely many indices,

and countably infinite many indices.
Thus, we have the following result.



4.1 Conditional Probability and Related Results 61

THEOREM 2
(Total Probability Theorem) Let {A1, A2, . . .} be a partition of S, and
let P(Aj) > 0 for all j. Then, for any event B,

P(B) =
∑

j

P(B | Aj)P(Aj).

The significance of this result is that if it happens that we know the
probabilities of the partitioning events, P(Aj), as well as the conditional
probabilities of B, given Aj, then these quantities may be combined,
according to the preceding formula, to produce the probability P(B). The
probabilities P(Aj), j = 1, 2, . . . are referred to as a priori or prior probabil-
ities. The following examples illustrate the theorem and also demonstrate
its usefulness.

EXAMPLE 8 In reference to Example 2 in Chapter 1, calculate the probability P(+).

DISCUSSION Without having to refer specifically to a sample space, it
is clear that the events D and N form a partition. Then,

P(+) = P(+ and D) + P(+ and N ) = P(+ | D)P(D) + P(+ | N )P(N ).

Here the a priori probabilities are P(D) = p1, P(N ) = 1 − p1, and

P(+ | D) = 1 − P(− | D) = 1 − p3, P(+ | N ) = p2.

Therefore, P(+) = (1 − p3)p1 + p2(1 − p1).
For a numerical application, take p1 = 0.02 and p2 = p3 = 0.01. Then

P(+) = 0.0296. So, on the basis of this testing procedure, about 2.96% of
the population would test positive.

EXAMPLE 9 The proportions of motorists at a given gas station using regular unleaded
gasoline, extra unleaded, and premium unleaded over a specified period
of time are 40%, 35%, and 25%, respectively. The respective proportions
of filling their tanks are 30%, 50%, and 60%. What is the probability that
a motorist selected at random from among the patrons of the gas station
under consideration and for the specified period of time will fill his/her
tank?

DISCUSSION Denote by R, E, and P the events of a motorist using
unleaded gasoline which is regular, extra unleaded, and premium, respec-
tively, and by F the event of having the tank filled. Then the translation
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into terms of probabilities of the proportions given above is:

P(R) = 0.40, P(E) = 0.35, P(P) = 0.25,

P(F | R) = 0.30, P(F | E) = 0.50, P(F | P) = 0.60.

Then the required probability is:

P(F) = P((F ∩ R) ∪ (F ∩ E) ∪ (F ∩ P))

= P(F ∩ R) + P(F ∩ E) + P(F ∩ P)

= P(F | R)P(R) + P(F | E)P(E) + P(F | P)P(P)

= 0.30 × 0.40 + 0.50 × 0.35 + 0.60 × 0.25

= 0.445.

In reference to Theorem 2, stipulating the prior probabilities
P(B | Aj), j = 1, 2, . . . , is often a precarious thing and guesswork. This
being the case, the question then arises of whether experimentation may
lead to reevaluation of the prior probabilities on the basis of new evidence.
To put it more formally, is it possible to use P(Aj) and P(B | Aj), j = 1, 2, . . .
in order to calculate P(Aj | B)? The answer to this question is in the
affirmative, is quite simple, and is the content of the next result.

THEOREM 3
(Bayes’ Formula) Let {A1, A2, . . .} and B be as in the previous
theorem. Then, for any j = 1, 2, . . . :

P(Aj | B) = P(B | Aj)P(Aj)∑
i P(B | Ai)P(Ai)

.

PROOF Indeed, P(Aj | B) = P(Aj ∩ B)/P(B) = P(B | Aj)P(Aj)/P(B), and
then the previous theorem completes the proof. �

The probabilities P(Aj | B), j = 1, 2, . . . , are referred to as posterior prob-
abilities in that they are reevaluations of the respective prior P(Aj) after
the event B has occurred.

EXAMPLE 10 Referring to Example 8, a question of much importance is this: Given that
the test shows positive, what is the probability that the patient actually
has the disease? In terms of the notation adopted, this question becomes:
P(D | +) = ? Bayes’ formula gives:

P(D | +) = P(+ | D)P(D)
P(+ | D)P(D) + P(+ | N )P(N )

= p1(1 − p3)
p1(1 − p3) + p2(1 − p1)

.
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For the numerical values used above, we get:

P(D | +) = 0.02 × 0.99
0.0296

= 0.0198
0.0296

= 198
296

� 0.669.

So P(D | +) � 66.9%. This result is both reassuring and surprising—
reassuring in that only 66.9% of those testing positive actually have the
disease; surprising in that this proportion looks rather low, given that the
test is quite good: it identifies correctly 99% of those having the disease.
A reconciliation between these two seemingly contradictory aspects is as
follows: The fact that P(D) = 0.02 means that on the average, 2 out of
100 persons have the disease. So, in 100 persons, 2 will have the dis-
ease and 98 will not. When 100 such persons are tested, 2 × 0.99 = 1.98
will be correctly confirmed as positive (because 0.99 is the probability of
a correct positive), and 98 × 0.01 = 0.98 will be incorrectly diagnosed as
positive (because 0.01 is the probability of an incorrect positive). Thus,
the proportion of correct positives is equal to:

(correct positives)/(correct positives + incorrect positives)

= 1.98/(1.98 + 0.98) = 1.98/2.96 = 198/296 � 0.669.

REMARK: 1 The fact that the probability P(D | +) is less than 1 simply
reflects the fact that the test, no matter how good, is imperfect. Should
the test be perfect (P(+ | D) = P(− | Dc) = 1), then P(D | +) = 1, as follows
from the preceding calculations, no matter what P(D) is. The same, of
course, is true for P(Dc | −).

EXAMPLE 11 Refer to Example 9 and calculate the probabilities: P(R | F), P(E | F), and

P(P | F).

DISCUSSION By Bayes’ formula and Example 9,

P(R | F) = P(R ∩ F)
P(F)

= P(F | R)P(R)
P(F)

= 0.30 × 0.40
0.445

� 0.270,

and likewise,

P(E | F) = 0.50 × 0.35
0.445

� 0.393, P(P | F) = 0.60 × 0.25
0.445

� 0.337.

Exercises

1.1 If P(A) = 0.5, P(B) = 0.6, and P(A ∩ Bc) = 0.4, compute:
(i) P(A ∩ B); (ii) P(A | B); (iii) P(A ∪ Bc); (iv) P(B | A ∪ Bc).
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1.2 If A ∩ B = ∅ and P(A ∪ B) > 0, express the probabilities P(A | A ∪ B)
and P(B | A ∪ B) in terms of P(A) and P(B).

1.3 A girls’ club has in its membership rolls the names of 50 girls with
the following descriptions:
20 blondes, 15 with blue eyes and 5 with brown eyes;
25 brunettes, 5 with blue eyes and 20 with brown eyes;
5 redheads, 1 with blue eyes and 4 with green eyes.
If one arranges a blind date with a club member, what is the
probability that:
(i) The girl is blonde?

(ii) The girl is blonde, if it was revealed only that she has blue eyes?

1.4 Suppose that the probability that both of a pair of twins are boys is
0.30 and that the probability that they are both girls is 0.26. Given
that the probability of the first child being a boy is 0.52, what is the
probability that:

(i) The second twin is a boy, given that the first is a boy?
(ii) The second twin is a girl, given that the first is a girl?

(iii) The second twin is a boy?
(iv) The first is a boy and the second is a girl?

Hint: Denote by bi and gi the events that the ith child is a boy
or a girl, respectively, i = 1, 2.

1.5 A shipment of 20 TV tubes contains 16 good tubes and 4 defec-
tive tubes. Three tubes are chosen successively and at random
each time and are also tested successively. What is the probability
that:

(i) The third tube is good if the first two were found to be good?
(ii) The third tube is defective if the first was found to be good and

the second defective?
(iii) The third tube is defective if the first was found to be defective

and the second was found to be good?
(iv) The third tube is defective if one of the other two was found to

be good and the other was found to be defective?

Hint: Denote by Di and Gi the events that the ith tube is defective
or good, respectively, i = 1, 2, 3.

1.6 For any three events A, B, and C with P(A)P(B)P(C) > 0, show that:
(i) P(Ac | B) = 1 − P(A | B).

(ii) P(A ∪ B | C) = P(A | C) + P(B | C) − P(A ∩ B | C).
Also, by means of counterexamples, show that the following
equations need not be true:

(iii) P(A | Bc) = 1 − P(A | B).
(iv) P(C | A ∪ B) = P(C | A) + P(C | B), where A ∩ B = ∅.
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1.7 If A, B, and C are any events in the sample space S, show that {A,
Ac ∩ B, Ac ∩ Bc ∩ C, (A ∪ B ∪ C)c} is a partition of S.

Hint: Show that A ∪ (Ac ∩ B) ∪ (Ac ∩ Bc ∩ C) = A ∪ B ∪ C.

1.8 Use induction to prove Theorem 1.

1.9 Let {Aj, j = 1, . . . , 5} be a partition of the sample space S and suppose
that:

P(Aj) = j
15

and P(A | Aj) = 5 − j
15

, j = 1, . . . , 5.

Compute the probabilities P(Aj | A), j = 1, . . . , 5.

1.10 A box contains 15 identical balls except that 10 are red and 5 are
black. Four balls are drawn successively and without replacement.
Calculate the probability that the first and fourth balls are red.

Hint: Denote by Ri and Bi the events that the ith ball is red or
black, respectively, i = 1, . . . , 4, and use Theorem 1.

1.11 A box contains m + n identical balls except that m of them are red
and n are black. A ball is drawn at random, its color is noticed, and
then the ball is returned to the box along with r balls of the same
color. Finally, a ball is drawn also at random. (All probabilities in
parts (i)–(iii) are to be expressed as functions of m and n.)

(i) What is the probability that the first ball is red?
(ii) What is the probability that the second ball is red?

(iii) Compare the probabilities in parts (i) and (ii) and comment on
them.

(iv) What is the probability that the first ball is black if the second
is red?

(v) Find the numerical values in parts (i), (ii), and (iv) if m = 9, n =
6, and r = 5.

Hint: Denote by Ri and Bi the events that the ith ball is red or
black, respectively, i = 1, 2, and use Theorems 1 and 2.

1.12 A test correctly identifies a disease D with probability 0.95 and
wrongly diagnoses D with probability 0.01. From past experience,
it is known that disease D occurs in a targeted population with fre-
quency 0.2%. An individual is chosen at random from said population
and is given the test.
Calculate the probability that:
(i) The test is +, P(+).

(ii) The individual actually suffers from disease D if the test turns
out to be positive, P(D | +).

Hint: Use Theorems 2 and 3.
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1.13 Suppose that the probability of correct diagnosis (either positive or
negative) of cervical cancer in the Pap test is 0.95 and that the pro-
portion of women in a given population suffering from this disease
is 0.01%. A woman is chosen at random from the target population
and the test is administered.
What is the probability that:
(i) The test is positive?

(ii) The subject actually has the disease, given that the diagnosis is
positive?

Hint: Use Theorems 2 and 3.

1.14 A signal S is sent from point A to point B and is received at B if
both switches I and II are closed. It is assumed that the probabili-
ties of I and II being closed are 0.8 and 0.6, respectively, and that
P(II is closed | I is closed) = P(II is closed).

A B

I II

Calculate the following probabilities:
(i) The signal is received at B.

(ii) The (conditional) probability that switch I was open, given that
the signal was not received at B.

(iii) The (conditional) probability that switch II was open, given that
the signal was not received at B.

Hint: Use Theorems 2 and 3.

1.15 The student body at a certain college consists of 55% women and 45%
men. Women and men smoke cigarettes in the proportions of 20%
and 25%, respectively. If a student is chosen at random, calculate the
probability that:
(i) The student is a smoker.

(ii) The student is a man, given that he/she is a smoker.

Hint: Use Theorems 2 and 3.

1.16 From a population consisting of 52% females and 48% males, an
individual, drawn at random, is found to be color blind. If we assume
that the proportions of color-blind females and males are 25% and
5%, respectively, what is the probability that the individual drawn is
a male?

Hint: Use Theorems 2 and 3.
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1.17 Drawers I and II contain black and red pencils as follows:
Drawer I: b1 black pencils and r1 red pencils,
Drawer II: b2 black pencils and r2 red pencils.
A drawer is chosen at random and then a pencil is also chosen at
random from that drawer.

(i) What is the probability that the pencil is black?
(ii) If it is announced that the pencil is black, what is the probability

it was chosen from drawer I?
(iii) Give numerical values in parts (i) and (ii) for b1 = 36, r1 =

12, b2 = 60, r2 = 24.

Hint: For parts (i) and (ii), use Theorems 2 and 3.

1.18 Three machines I, II, and III manufacture 30%, 30%, and 40%,
respectively, of the total output of certain items. Of them, 4%, 3%,
and 2%, respectively, are defective. One item is drawn at random
from the total output and is tested.

(i) What is the probability that the item is defective?
(ii) If it is found to be defective, what is the probability the item

was produced by machine I?
(iii) Same question as in part (ii) for each one of the machines II

and III.

Hint: Use Theorems 2 and 3; probabilities are to be expressed as
functions of b1, b2, r1, and r2.

1.19 Suppose that a multiple-choice test lists n alternative answers, of
which only one is correct. If a student has done the homework,
he/she is certain to identify the correct answer; otherwise the stu-
dent chooses an answer at random. Denote by A the event that the
student does the homework, set p = P(A), and let B be the event
that he/she answers the question correctly.

(i) Express the probability P(A | B) in terms of p and n.
(ii) If 0 < p < 1 and fixed, show that the probability P(A | B), as a

function of n, is increasing.
(iii) Does the result in part (ii) seem reasonable?

Hint: Use Theorem 2 for the computation of the P(B).

1.20 If the p.d.f. of the r.v. X is: f (x) = λe−λx, for x > 0 (λ > 0), calculate:
(i) P(X > t) (for some t > 0).

(ii) P(X > s + t | X > s) (for some s, t > 0).
(iii) Compare the probabilities in parts (i) and (ii), and draw your

conclusion.

1.21 A person is allowed to take a driver’s exam up to 3 times. The prob-
ability that he/she passes the exam the first time is 0.7. If the first
attempt results in a failure, the probability of passing the exam in
the second attempt is 0.8. If both the first two attempts resulted in
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failures, the probability of passing the exam in the third (and final)
attempt is 0.9. Compute the probability of:

(i) Passing the exam the second time.
(ii) Passing the exam the third time.

(iii) Passing the exam.

1.22 Three cards are drawn at random, without replacement, from a stan-
dard deck of 52 playing cards. Compute the (conditional) probability
that the first card drawn is a spade, given that the second and the
third cards drawn are spades.

Hint: Denote by Si the event that the ith card is a spade, and
use Theorem 1.

1.23 Four identical balls, numbered from 1 through 4, are placed at
random into 4 urns, also numbered from 1 through 4, one ball in
each urn. If the ith ball is placed in the ith urn, we say that a match
occurred.

(i) Show that the probability that at least one match occurs is
equal to:

1 − 1
2! + 1

3! − 1
4!

(
= 5

8
� 0.625

)
.

(ii) Can you guess the probability of at least one match if the 4 balls
and urns are replaced by n balls and urns?

(iii) In part (ii), suppose that n is large, and show that the computed
probability is � 1 − e−1 � 0.630.

Hint: For i = 1, 2, 3, 4, set Ai for the event Ai = “a match
occurs with the ith ball/urn”. Then, clearly, the required probabil-
ity is: P(A1 ∪ A2 ∪ A3 ∪ A4). Observe that P(Ai) = 3!

4! , i = 1, . . . , 4;
P(Ai∩Aj) = 2!

4! , 1 ≤ i < j ≤ 4; P(Ai∩Aj∩Ak) = 1
4! , 1 ≤ i < j < k ≤ 4;

and P(A1∩A2∩A3∩A4) = 1
4! . Then the expression in part (i) follows.

For part (iii), use #6 in Table 6 in the Appendix.

REMARK: 2 For a more general treatment of the matching prob-
lem, see Theorem 10 in Chapter 2 in the book A Course in Mathemat-
ical Statistics, 2nd edition (1997), Academic Press, by G. G. Roussas.

1.24 It is known that 1% of a population suffers from a certain disease
(event D), that a test employed for screening purposes identifies the
disease correctly at the rate of 95%, and that it produces false pos-
itives at the rate of 0.5%. If a person is drawn at random from the
target population, calculate the probability that the person:
(i) Tests positive (event +).

(ii) Actually has the disease, given that the person tests positive.

Hint: Use Theorems 2 and 3.
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1.25 The totality of automobiles is divided into four groups A1, A2, A3,
and A0 according to their makes (ith make, i = 1, 2, 3, and other
makes), respectively. It is known that their respective proportions
are 25%, 20%, 15%, and 40%. Next, let A be the event that an auto-
mobile accident occurs, and suppose that the respective probabilities
of involvement in the accident when the automobile is from group
Ai, i = 0, 1, 2, 3, are 0.06, 0.05, 0.04, and 0.03.
(i) Calculate the probability of an accident occurring, P(A).

(ii) Also, calculate the (conditional) probabilities that the accident
is due to an automobile from group Ai, i = 0, 1, 2, 3.

Hint: Use Theorems 2 and 3.

4.2 Independent Events and Related Results

In Example 3, it was seen that P(A | B) = P(A). Thus, the fact that the
event B occurred provides no information in reevaluating the probability
of A. Under such a circumstance, it is only fitting to say that A is inde-
pendent of B. For any two events A and B with P(B) > 0, we say that A
is independent of B, if P(A | B) = P(A). If, in addition, P(A) > 0, then B is
also independent of A because

P(B | A) = P(B ∩ A)
P(A)

= P(A ∩ B)
P(A)

= P(A | B)P(B)
P(A)

= P(A)P(B)
P(A)

= P(B).

Because of this symmetry, we then say that A and B are independent.
From the definition of either P(A | B) or P(B | A), it follows then that P(A∩
B) = P(A)P(B). We further observe that this relation is true even if one
or both of P(A), P(B) are equal to 0. We take this relation as the defining
relation of independence.

DEFINITION 3
Two events A1 and A2 are said to be independent (statistically or
stochastically or in the probability sense) if P(A1 ∩ A2) = P(A1)P(A2).
When P(A1 ∩ A2) �= P(A1)P(A2) they are said to be dependent.

REMARK: 3 At this point, it should be emphasized that disjointness
and independence of two events are two distinct concepts; the former does
not even require the concept of probability. Nevertheless, they are related
in that if A1 ∩A2 = ∅, then they are independent if and only if at least one
of P(A1), P(A2) is equal to 0. Thus (subject to A1∩A2 = ∅), P(A1)P(A2) > 0
implies that A1 and A2 are definitely dependent.

The definition of independence extends to three events A1, A2, A3, as
well as to any number n of events A1, . . . , An. Thus, three events A1, A2, A3
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for which P(A1 ∩A2 ∩A3) > 0 are said to be independent, if all conditional
probabilities coincide with the respective (unconditional) probabilities:

P(A1 | A2) = P(A1 | A3) = P(A1 | A2 ∩ A3) = P(A1)

P(A2 | A1) = P(A2 | A3) = P(A2 | A1 ∩ A3) = P(A2)

P(A3 | A1) = P(A3 | A2) = P(A3 | A1 ∩ A2) = P(A3)

P(A1 ∩ A2 | A3) = P(A1 ∩ A2), P(A1 ∩ A3 | A2)

= P(A1 ∩ A3), P(A2 ∩ A3 | A1) = P(A2 ∩ A3).






(4.1)

From the definition of conditional probability, relations (4.1) are equiva-
lent to:

P(A1 ∩ A2) = P(A1)P(A2), P(A1 ∩ A3) = P(A1)P(A3),

P(A2 ∩ A3) = P(A2)P(A3), P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3).

}

(4.2)

Furthermore, it is to be observed that relations (4.2) hold even if any of
P(A1), P(A2), or P(A3) is equal to 0. These relations are taken as defining
relations of independence of three events A1, A2, A3.

As one would expect, all four relations (4.2) are needed for independence
(that is, in order for them to imply relations (4.1)). That this is, indeed,
the case is illustrated by the following examples.

EXAMPLE 12 Let S = {1, 2, 3, 4} and let P({1}) = P({2}) = P({3}) = P({4}) = 1/4. Define
the events A1, A2, A3 by: A1 = {1, 2}, A2 = {1, 3}, A3 = {1, 4}. Then it is eas-
ily verified that: P(A1 ∩A2) = P(A1)P(A2), P(A1 ∩A3) = P(A1)P(A3), P(A2 ∩
A3) = P(A2)P(A3). However, P(A1 ∩ A2 ∩ A3) �= P(A1)P(A2)P(A3).

EXAMPLE 13 Let S = {1, 2, 3, 4, 5} and let P({1}) = 2
16 , P({2}) = P({3}) = P({4}) =

3
16 , P({5}) = 5

16 . Define the events A1, A2, A3 by: A1 = {1, 2, 3}, A2 =
{1, 2, 4}, A3 = {1, 3, 4}. Then it is easily verified that P(A1 ∩ A2 ∩ A3) =
P(A1)P(A2)P(A3), but none of the other three relations in (4.2) is satisfied.

Relations (4.2) provide the pattern of the definition of independence of
n events. Thus:

DEFINITION 4
The events A1, . . . , An are said to be independent (statistically or
stochastically or in the probability sense) if, for all possible choices
of k out of n events (2 ≤ k ≤ n), the probability of their intersection
equals the product of their probabilities. More formally, for any k
with 2 ≤ k ≤ n and any integers j1, . . . , jk with 1 ≤ j1 < · · · < jk ≤ n,
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we have:

P
( k⋂

i=1

Aji

)
=

k∏

i=1

P
(
Aji

)
. (4.3)

If at least one of the relations in (4.3) is violated, the events are said
to be dependent. The number of relations of the form (4.3) required
to express independence of n events is (see also Exercise 4.11(ii) in
Chapter 2):

(
n
2

)
+

(
n
3

)
+ · · · +

(
n
n

)
= 2n −

(
n
1

)
−

(
n
0

)
= 2n − n − 1.

For example, for n = 2, 3, these relations are: 22 − 2 − 1 = 1 and
23 − 3 − 1 = 4, respectively.

Typical cases in which independent events occur are whenever we are
sampling with replacement from finite populations, such as selecting suc-
cessively and with replacement balls from an urn containing balls of
several colors, pulling successively and with replacement playing cards
out of a standard deck of such cards, and the like.

The following property of independence of events is often used without
even being acknowledged; it is stated here as a theorem.

THEOREM 4
(i) If the events A1, A2 are independent, then so are all three sets

of events: A1, Ac
2; Ac

1, A2; Ac
1, Ac

2.
(ii) More generally, if the events A1, . . . , An are independent, then

so are the events A′
1, . . . , A′

n, where A′
i stands either for Ai or

Ac
i , i = 1, . . . , n.

For illustrative purposes, we present the proof of part (i) only.

PROOF OF PART (i) Clearly, A1 ∩ Ac
2 = A1 − A1 ∩ A2. Thus,

P
(
A1 ∩ Ac

2
) = P(A1 − A1 ∩ A2) = P(A1) − P(A1 ∩ A2) (since A1 ∩ A2 ⊆ A1)

= P(A1) − P(A1)P(A2) (by independence of A1, A2)

= P(A1)[1 − P(A2)] = P(A1)P
(
Ac

2
)
.

The proof of P(Ac
1 ∩ A2) = P(Ac

1)P(A2) is entirely symmetric. Finally,

P
(
Ac

1 ∩ Ac
2
) = P((A1 ∪ A2)c) (by DeMorgan’s laws)

= 1 − P(A1 ∪ A2)
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= 1 − P(A1) − P(A2) + P(A1 ∩ A2)

= 1 − P(A1) − P(A2) + P(A1)P(A2) (by independence of A1, A2)

= [1 − P(A1)] − P(A2)[1 − P(A1)]
= P

(
Ac

1
)
P

(
Ac

2
)
. �

REMARK: 4 The interested reader may find the proof of part (ii) in
Theorem 6 of Chapter 2 of the book A Course in Mathematical Statistics,
2nd edition (1997), Academic Press, by G. G. Roussas.

The following examples will help illustrate concepts and results dis-
cussed in this section.

EXAMPLE 14 Suppose that P(B)P(Bc) > 0. Then the events A and B are independent if
and only if P(A | B) = P(A | Bc).

DISCUSSION First, if A and B are independent, then A and Bc are
also independent, by Theorem 4. Thus, P(A | Bc) = P(A∩B c)

P(B c) = P(A)P(B c)
P(B c) =

P(A). Since also P(A | B) = P(A), the equality P(A | B) = P(A | Bc)
holds. Next, P(A | B) = P(A | Bc) is equivalent to P(A∩B)

P(B) = P(A∩B c)
P(B c) or

P(A ∩ B)P(Bc) = P(A ∩ Bc)P(B) or P(A ∩ B)[1 − P(B)] = P(A ∩ Bc)P(B)
or P(A ∩ B) − P(A ∩ B)P(B) = P(A ∩ Bc)P(B) or P(A ∩ B) = [P(A ∩ B) +
P(A ∩ Bc)]P(B) = P(A)P(B), since (A ∩ B) ∪ (A ∩ Bc) = A. Thus, A and B
are independent.

REMARK: 5 It is to be pointed out that the condition P(A | B) =
P(A | Bc) for independence of the events A and B is quite natural, intu-
itively. It says that the (conditional) probability of A remains the same no
matter which one of B or Bc is given.

EXAMPLE 15 Let P(C)P(Cc) > 0. Then the inequalities P(A | C) > P(B | C) and
P(A | Cc) > P(B | Cc) imply P(A) > P(B).

DISCUSSION The inequalities P(A | C) > P(B | C) and P(A | Cc) >
P(B | Cc) are equivalent to P(A ∩ C) > P(B ∩ C) and P(A ∩ Cc) > P(B ∩ Cc).
Adding up these inequalities, we obtain P(A ∩ C) + P(A ∩ Cc) > P(B ∩ C) +
P(B ∩ Cc) or P(A) > P(B), since A = (A ∩ C) ∪ (A ∩ Cc) and B =
(B ∩ C) ∪ (B ∩ Cc).

REMARK: 6 Once again, that the inequalities of the two conditional
probabilities should imply the same inequality for the unconditional prob-
abilities is quite obvious on intuitive grounds. The justification given above
simply makes it rigorous.
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EXAMPLE 16 If the events A, B, and C are independent, then P(A ∪ B ∪ C) =
1 − [1− P(A)][1 − P(B)][1 − P(C)].

DISCUSSION Clearly,

P(A ∪ B ∪ C) = P[(Ac ∩ Bc ∩ Cc)c] (by DeMorgan’s laws,
Proposition 4 in Chapter 2)

= 1 − P(Ac ∩ Bc ∩ Cc) (by Proposition 1(iii)
in Chapter 3)

= 1 − P(Ac)P(Bc)P(Cc) (by Theorem 4(ii)
applied with n = 3)

= 1 − [1 − P(A)][1 − P(B)][1 − P(C)].

EXAMPLE 17 A mouse caught in a maze has to maneuver through three successive
escape hatches in order to escape. If the hatches operate independently
and the probabilities for the mouse to maneuver successfully through
them are 0.6, 0.4, and 0.2, respectively, calculate the probabilities that
the mouse: (i) will be able to escape, (ii) will not be able to escape.

DISCUSSION Denote by H1, H2, and H3 the events that the mouse
successfully maneuvers through the three hatches, and by E the event that
the mouse is able to escape. We have that H1, H2, and H3 are independent,
P(H1) = 0.6, P(H2) = 0.4, and P(H3) = 0.2, and E = H1 ∩ H2 ∩ H3. Then:
(i) P(E) = P(H1 ∩ H2 ∩ H3) = P(H1)P(H2)P(H3) = 0.6 × 0.4 × 0.2 = 0.048,
and (ii) P(Ec) = 1 − P(E) = 1 − 0.048 = 0.952.

EXAMPLE 18 Out of a set of 3 keys, only 1 opens a certain door. Someone tries the keys
successively and independently, and let Ak be the event that the right key
appears the kth time. Calculate the probabilities P(Ak):
(i) If the keys tried are not replaced, k = 1, 2, 3.

(ii) If the keys tried are replaced, k = 1, 2, . . . .

DISCUSSION
(i) By enumeration:

P(A1) = 1
3 ; P(A2) = 2×1

3×2 = 1
3 ; P(A3) = 2×1×1

3×2×1 = 1
3 . So, P(A1) = P(A2) =

P(A3) = 1
3 � 0.333.

To calculate the probabilities in terms of conditional probabilities, let
R and W stand for the events that the right and a wrong key are
selected, respectively. Then:

P(A1) = P(R) = 1
3

; P(A2) = P(W ∩ R) = P(R | W )P(W ) = 1
2

× 2
3

= 1
3

;
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P(A3) = P(W ∩ W ∩ R) = P(R | W ∩ W )P(W | W ) × P(W )

= 1
1

× 1
2

× 2
3

= 1
3

.

(ii) For k = 1, P(A1) = 1
3 , whereas for k ≥ 2, clearly,

P(Ak) = P(W ∩ W ∩ · · · ∩ W︸ ︷︷ ︸
k−1

∩ R)

= P(W )P(W ) . . . P(W )P(R) (by independence)

=
(

2
3

)k−1

× 1
3

.

EXAMPLE 19 Each of the 2n members of a committee flips a fair coin independently in
deciding whether or not to attend a meeting of the committee; a committee
member attends the meeting if an H appears. What is the probability that
a majority will show up for the meeting?

DISCUSSION There will be majority if there are at least n + 1 com-
mittee members present, which amounts to having at least n + 1 H’s in
2n independent throws of a fair coin. If X is the r.v. denoting the number
of H’s in the 2n throws, then the required probability is: P(X ≥ n + 1) =∑2n

x=n+1 P(X = x). However,

P(X = x) =
(

2n
x

)(
1
2

)x(1
2

)2n−x

= 1
22n

(
2n
x

)
,

since there are
(2n

x

)
ways of having x H’s in 2n throws. Therefore:

P(X ≥ n + 1) = 1
22n

2n∑

x=n+1

(
2n
x

)
= 1

22n

[ 2n∑

x=0

(
2n
x

)
−

n∑

x=0

(
2n
x

)]

= 1
22n

[
22n −

n∑

x=0

(
2n
x

)]
= 1 − 1

22n

n∑

x=0

(
2n
x

)
.

For example, for 2n = 10, P(X ≥ 6) = 1 − 0.6230 = 0.377 (from tables, the
binomial tables).

EXAMPLE 20 Refer to Example 3 in Chapter 1, and let Si, i = 1, . . . , 5 be events defined
as follows: Si = “switch i works,” i = 1, . . . , 5. Also, set C1 = S1∩S2, C2 =
S5, and C3 = S3 ∩ S4, and let C be the event defined by C = “current is
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transmitted from point A to point B.” Then:

P(C) = P(C1 ∪ C2 ∪ C3)(obviously)
= P(C1) + P(C2) + P(C3) − P(C1 ∩ C2) − P(C1 ∩ C3)

−P(C2 ∩ C3) + P(C1 ∩ C2 ∩ C3) (by Proposition 2(ii) in
Chapter 3).

However, C1 ∩ C2 = S1 ∩ S2 ∩ S5, C1 ∩ C3 = S1 ∩ S2 ∩ S3 ∩ S4, C2 ∩ C3 =
S3 ∩ S4 ∩ S5, and C1 ∩ C2 ∩ C3 = S1 ∩ S2 ∩ S3 ∩ S4 ∩ S5. Then, by assuming
that the switches work independently of each other, so that the events
Si, i = 1, . . . , 5 are independent, we have:

P(C) = P(S1)P(S2) + P(S5) + P(S3)P(S4)
−P(S1)P(S2)P(S5) − P(S1)P(S2)P(S3)P(S4)
−P(S3)P(S4)P(S5) + P(S1)P(S2)P(S3)P(S4)P(S5).

By setting pi = P(Si), i = 1, . . . , 5, we get:

P(C) = p5 + p1p2 + p3p4 − p1p2p5 − p3p4p5
−p1p2p3p4 + p1p2p3p4p5.

For p1 = · · · = p5 = p, P(C) = p + 2p2 − 2p3 − p4 + p5, and for p = 0.9, we
obtain

P(C) = 0.9 + 2(0.9)2 − 2(0.9)3 − (0.9)4 + (0.9)5 � 0.99639.

The concept of independence carries over to random experiments.
Although a technical definition of independence of random experiments is
available, we are not going to indulge in it. The concept of independence
of random experiments will be taken in its intuitive sense, and somewhat
more technically, in the sense that random experiments are independent
if they give rise to independent events associated with them.

Finally, independence is also defined for r.v.’s. This topic will be taken
up in Chapter 10 (see Definition 1 there). Actually, independence of r.v.’s
is one of the founding blocks of most discussions taking place in this
book.

Exercises

2.1 If P(A) = 0.4, P(B) = 0.2, and P(C) = 0.3, calculate the probability
P(A ∪ B ∪ C), if the events A, B, and C are:
(i) Pairwise disjoint.

(ii) Independent.

2.2 Show that the event A is independent of itself if and only if P(A) = 0
or P(A) = 1.
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2.3 (i) For any two events A and B, show that P(A∩B) ≥ P(A)+P(B)−1.
(ii) If A and B are disjoint, then show that they are independent if

and only if at least one of P(A) and P(B) is zero.
(iii) If the events A, B, and C are pairwise disjoint, under what

conditions are they independent?

2.4 Suppose that the events A1, A2, and B1 are independent, the events
A1, A2, and B2 are independent, and B1 ∩ B2 = ∅. Then show that
the events A1, A2, B1 ∪ B2 are independent.

Hint: Just check condition (4.2) or (4.3) (for k = 3) for the events:
A1, A2, B1 ∪ B2.

2.5 (i) If for the events A, B, and C, it so happens that P(A) = P(B) =
P(C) = 1

2 , P(A∩B) = P(A∩C) = P(B∩C) = 1
4 , and P(A∩B∩C) = 1

6 ,
determine whether or not these events are independent. Justify
your answer.

(ii) For the values given in part (i), calculate the probabilities: P(Ac),
P(A ∪ B), P(Ac ∩ Bc), P(A ∪ B ∪ C), and P(Ac ∩ Bc ∩ Cc).

2.6 For the events A, B, C and their complements, suppose that:

P(A ∩ B ∩ C) = 1
16 , P(Ac ∩ B ∩ C) = 2

16 , P(A ∩ Bc ∩ C) = 5
16 ,

P(A ∩ B ∩ Cc) = 3
16 , P(Ac ∩ Bc ∩ C) = 1

16 , P(Ac ∩ B ∩ Cc) = 1
16 ,

P(A ∩ Bc ∩ Cc) = 2
16 , P(Ac ∩ Bc ∩ Cc) = 1

16 .

(i) Calculate the probabilities: P(A), P(B), P(C).
(ii) Determine whether or not the events A, B, and C are indepen-

dent.
(iii) Calculate the (conditional) probability P(A | B).
(iv) Determine whether or not the events A and B are independent.

Hint: Use Theorem 2 for part (i) and for the calculation of the
P(A ∩ B) in part (iii).

2.7 If the events A1, . . . , An are independent, show that

P
( n⋃

j=1

Aj

)
= 1 −

n∏

j=1

P
(
Ac

j
)
.

Hint: Use Proposition 4 in Chapter 2, Proposition 1(iii) in
Chapter 3, and Theorem 4(ii) here.

2.8 (i) Three coins, with probability of falling heads being p, are tossed
once, and you win if all three coins show the same face (either
all H or all T). What is the probability of winning?

(ii) What are the numerical answers in part (i) for p = 0.5 and
p = 0.4?
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2.9 Suppose that men and women are distributed in the freshman and
sophomore classes of a college according to the proportions listed in
the following table.

Class\\Gender M W Totals

F 4 6 10
S 6 x 6 + x
Totals 10 6 + x 16 + x

A student is chosen at random and let M, W , F, and S be the events,
respectively, that the student is a man, a woman, a freshman, or a
sophomore. Then, being a man or a woman and being a freshman or
a sophomore are independent, if:

P(M ∩ F) = P(M)P(F), P(W ∩ F) = P(W )P(F),

P(M ∩ S) = P(M)P(S), P(W ∩ S) = P(W )P(S).

Determine the number x so that the preceding independence rela-
tions hold.

Hint: Determine x by using any one of the above four relations
(and check that this value of x also satisfies the remaining three
relations).

2.10 The r.v. X has p.d.f. given by:

f (x) =






cx, 0 ≤ x < 5
c(10 − x), 5 ≤ x < 10

0, elsewhere.

(i) Determine the constant c.
(ii) Draw the graph of f .

Define the events A and B by: A = (X > 5), B = (5 < X < 7.5).
(iii) Calculate the probabilities P(A) and P(B).
(iv) Calculate the conditional probability P(B | A).
(v) Are the events A and B independent or not? Justify your answer.

2.11 A student is given a test consisting of 30 questions. For each ques-
tion, 5 different answers (of which only one is correct) are supplied.
The student is required to answer correctly at least 25 questions in
order to pass the test. If he/she knows the right answers to the first
20 questions and chooses an answer to the remaining questions at
random and independently of each other, what is the probability that
the student will pass the test?

Hint: The student passes the test if he/she answers correctly at
least 5 of the last 10 questions.
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2.12 From an urn containing nR red balls, nB black balls, and nW white
balls (all identical except for color), 3 balls are drawn at random.
Calculate the following probabilities:

(i) All 3 balls are red.
(ii) At least one ball is red.

(iii) One ball is red, 1 is black, and 1 is white.
Do this when the balls are drawn:
(a) Successively and with replacement;
(b) Without replacement.

(All probabilities are to be expressed as functions of nR, nB, and nW .)
2.13 Two people toss independently n times each a coin whose probability

of falling heads is p. What is the probability (expressed in terms of n)
that they have the same number of heads? What does this probability
become for p = 1

2 and any n? Also, for p = 1
2 and n = 5?

Hint: If Am and Bm are the events that the two people toss m
heads each, then the required event is ∪n

m=0(Am ∩ Bm).

2.14 Consider two urns U1 and U2 such that urn U1 contains m1 white
balls and n1 black balls, and urn U2 contains m2 white balls and n2
black balls. All balls are identical except for color. One ball is drawn
at random from each of the urns U1 and U2 independently and is
placed into a third urn. Then a ball is drawn at random from the
third urn. Compute the probability that the ball is:

(i) Black;
(ii) White.

(iii) Give numerical answers to parts (i) and (ii) for: m1 = 10, n1 =
15;m2 = 35, n2 = 25.

(Probabilities in parts (i) and (ii) are to be expressed in terms of
m1, m2, and n1, n2.)

Hint: For parts (i) and (ii), denote by Bi and Wi the events that
the ball drawn from the ith urn, i = 1, 2, is black or white,
respectively, and by B and W the events that the ball drawn
from the third urn is black or white, respectively, and then use
Theorem 2.

2.15 The probability that a missile fired against a target is not intercepted
by an antimissile is 2

3 . If the missile is not intercepted, then the
probability of a successful hit is 3

4 .
(i) What is the probability that the missile hits the target?

If four missiles are fired independently, what is the probability
that:

(ii) All four will successfully hit the target?
(iii) At least one will do so?
(iv) What is the minimum number of missiles to be fired so that at

least one is not intercepted with probability at least 0.95?
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(v) What is the minimum number of missiles to be fired so that at
least one hits the target with probability at least 0.99?

2.16 Electric current is transmitted from point A to point B, provided
at least one of the circuits #1 through #n here is closed. It is
assumed that the n circuits close independently of each other and
with respective probabilities p1, . . . , pn.

1

2

n

A B

Determine the following probabilities:
(i) No circuit is closed.

(ii) At least one circuit is closed.
(iii) Exactly one circuit is closed.
(iv) How do the expressions in parts (i)–(iii) simplify if p1 = · · · =

pn = p?
(v) What are the numerical values in part (iv) for n = 5 and p = 0.6?

Hint: Use Theorem 4(ii). Probabilities in parts (i)–(iii) are to be
expressed in terms of p1, . . ., pn and p, respectively.

2.17 Jim takes the written and road driver’s license tests repeatedly until
he passes them. It is given that the probability that he passes the
written test is 0.9, that he passes the road test is 0.6, and that the
tests are independent of each other. Furthermore, it is assumed that
the road test cannot be taken unless he passes the written test, and
that once he passes the written test, he does not have to take it again
ever, no matter whether he passes or fails his road tests. Also, it is
assumed that the written and road tests are distinct attempts.
(i) What is the probability that he will pass the road test on his nth

attempt? (Just write down the correct formula.)
(ii) What is the numerical value in part (i) for n = 5?

Hint: Denote by Wi and Rj the events that Jim passes the written
test and the road test the ith and jth time, respectively. Then the
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required event is expressed as follows:

(
W1 ∩ Rc

1 ∩ . . . ∩ Rc
n−2 ∩ Rn−1

) ∪ (
Wc

1 ∩ W2 ∩ Rc
1 ∩ . . . ∩ Rc

n−3 ∩ Rn−2
)

∪ . . . ∪ (
Wc

1 ∩ . . . ∩ Wc
n−2 ∩ Wn−1 ∩ Rn

)
.

Also, use Theorem 4(ii).

2.18 Three players I, II, and III throw simultaneously three coins (one
coin each) with respective probabilities of falling heads (H) 0.5. A
sample space describing this experiment is:

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT }.

Define the events Ai, i = 1, 2, 3 and B by:

A1 = {HTT, THH } A2 = {THT, HTH }, A3 = {TTH, HHT }

(i.e., Ai is the event that the outcome for the ith player, i = 1, 2, 3, is
different from those for the other two players),

B = {HHH, TTT }.

If any one of the events Ai, i = 1, 2, 3 occurs, the ith player wins and
the game ends. If event B occurs, the game is repeated independently
as many times as needed until one of the events A1, A2, A3 occurs.
Calculate the probabilities: P(Ai), i = 1, 2, 3.

Hint: By symmetry, it suffices to calculate P(A1). Let A1j = “event
A1 occurs the jth time”, Bj = “event B occurs the jth time”. Then
(with slight abuse of notation)

A1 = A11 ∪ (B1 ∩ A12) ∪ (B1 ∩ B2 ∩ A13) ∪ . . .

At this point, also refer to #4 in Table 6 in the Appendix.

2.19 In the circuit diagram depicted below, assume that the three switches
turn on and off independent of each other with respective probabil-
ities P(Switch #i turns on ) = pi, i = 1, 2, 3.

(i) Compute the probability that current flows from A to B.
(ii) What is the probability in part (i) if p1 = p2 = p3 = p, say?

(iii) What is the numerical value of the probabilities in parts (i) and
(ii) if p1 = 0.90, p2 = 0.95, p3 = 0.99; p = 0.96?

Hint: For part (i), use Proposition 2(ii) in Chapter 3, and in parts
(i) and (ii), express probabilities in terms of p1, p2, p3, and p,
respectively.
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# 3 

# 2 

A B 

# 1 

2.20 If the events A, B, and C are independent, show that:
(i) The events A and B ∪ C are also independent.

(ii) The events Ac and B ∩ Cc are also independent.
(iii) Evaluate the probability P(B ∪ C | A) (assuming that P(A) > 0)

in terms of the probabilities P(B), P(C).

Hint: For part (ii), use Theorem 4.

2.21 An investor buys three stocks A, B, and C which perform indepen-
dently of each other. On the basis of market analysis, the stocks
are expected to rise with probabilities 0.4, 0.6, and 0.7, respectively.
Compute the probability that:

(i) All three stocks rise.
(ii) None of the stocks rise.

(iii) At least one stock rises.
(iv) Exactly one stock rises.

Hint: For parts (ii) and (iv), use Theorem 4.



5
Numerical Characteristics of a
Random Variable

In this chapter, we discuss the following material. In Section 5.1, the
concepts of expectation and variance of an r.v. are introduced and inter-
pretations are provided. Higher order moments are also defined and their
significance is pointed out. Also, the moment-generating function of an
r.v. is defined, and its usefulness as a mathematical tool is commented
upon. In Section 5.2, the Markov and Tchebichev inequalities are intro-
duced and their role in estimating probabilities is explained. The chapter
is concluded by Section 5.3 with a discussion of the concepts of median
and mode, which are illustrated by concrete examples.

5.1 Expectation, Variance, and Moment-Generating Function of a Random Variable

The ideal situation in life would be to know with certainty what is going
to happen next. This being almost never the case, the element of chance
enters in all aspects of our lives. An r.v. is a mathematical formulation
of a random environment. Given that we have to deal with an r.v. X ,
the best thing to expect is to know the values of X and the probabilities
with which these values are taken on, for the case that X is discrete, or
the probabilities with which X takes values in various subsets of the real
line � when X is of the continuous type. That is, we would like to know
the probability distribution of X . In real life, often, even this is not feasible.
Instead, we are forced to settle for some numerical characteristics of

82
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the distribution of X . This line of argument leads us to the concepts of the
mathematical expectation and variance of an r.v., as well as to moments of
higher order.

DEFINITION 1
Let X be a (discrete) r.v. taking on the values xi with corresponding
probabilities f (xi), i = 1, . . . , n. Then the mathematical expectation
of X (or just expectation or mean value of X or just mean of X ) is
denoted by EX and is defined by:

EX =
n∑

i=1

xif (xi). (5.1)

If the r.v. X takes on (countably) infinite many values xi with corre-
sponding probabilities f (xi), i = 1, 2, . . . , then the expectation of X is
defined by:

EX =
∞∑

i=1

xif (xi), provided
∞∑

i=1

|xi|f (xi) < ∞. (5.2)

Finally, if the r.v. X is continuous with p.d.f. f , its expectation is
defined by:

EX =
∫ ∞

−∞
xf (x)dx, provided this integral exists. (5.3)

The alternative notations µ(X ) or µX are also often used.

REMARK: 1

(i) The condition
∑∞

i=1 |xi|f (xi) < ∞ is needed because, if it is violated,
it is known that

∑∞
i=1 xif (xi) may take on different values, depending

on the order in which the terms involved are summed up. This, of
course, would render the definition of EX meaningless.

(ii) An example will be presented later on (see Exercise 1.16) where the
integral

∫ ∞
−∞xf (x)dx = ∞ − ∞, so that the integral does not exist.

The expectation has several interpretations, some of which are illus-
trated by the following Examples 1 and 2. One basic interpretation,
however, is that of center of gravity. Namely, if one considers the mate-
rial system where mass f (xi) is placed at the point xi, i = 1, . . . , n, then
EX is the center of gravity (point of equilibrium) of this system. In this
sense, EX is referred to as a measure of location of the distribution of X .
The same interpretation holds when X takes on (countably) infinite many
values or is of the continuous type.
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EXAMPLE 1 Suppose an insurance company pays the amount of $1,000 for lost luggage
on an airplane trip. From past experience, it is known that the company
pays this amount in 1 out of 200 policies it sells. What premium should
the company charge?

DISCUSSION Define the r.v. X as follows: X = 0 if no loss occurs,
which happens with probability 1 − (1/200) = 0.995, and X = −1,000
with probability 1

200 = 0.005. Then the expected loss to the company is:
EX = − 1,000 × 0.005 + 0 × 0.995 = −5. Thus, the company must charge
$5 to break even. To this, it will normally add a reasonable amount for
administrative expenses and a profit.

Even in this simple example, but most certainly so in more complicated
cases, it is convenient to present the values of a (discrete) r.v. and the
corresponding probabilities in a tabular form as follows.

x 0 −1,000 Total

f (x) 199
200

1
200 1

EXAMPLE 2 A roulette wheel consists of 18 black slots, 18 red slots, and 2 green slots.
If a gambler bets $10 on red, what is the gambler’s expected gain or loss?

DISCUSSION Define the r.v. X by: X = 10 with probability 18/38 and
X = −10 with probability 20/38, or in a tabular form

x 10 −10 Total

f (x) 18
38

20
38 1

Then EX = 10 × 18
38 − 10 × 20

38 = −10
19 � −0.526. Thus, the gambler’s

expected loss is about 53 cents.

From the definition of the expectation and familiar properties of
summations or integrals, it follows that:

PROPOSITION 1

(i) E(cX ) = cEX, E(cX + d) = cEX + d, where c and d are constants. (5.4)
(ii) X ≥ c constant, implies EX ≥ c, and, in particlar, X ≥ 0 implies

EX ≥ 0. (5.5)

The verification of relations (5.4) and (5.5) is left as an exercise (see
Exercise 1.18).

Now suppose the r.v. X represents the lifetime of a new piece of equip-
ment put in service, and let g(x) be the cost of operating this equipment
up to time x. Then Eg(X) is clearly the expected cost of operating said



5.1 Expectation, Variance, and Moment-Generating Function of a Random Variable 85

equipment over its lifetime. This example points to the need for defining
the expectation of a function of an r.v., Eg(X). In principle, one may be
able to determine the p.d.f. of Y = g(X) and proceed to defining its expec-
tation by the appropriate version of formulas (5.1), (5.2), and (5.3). It can
be shown, however, that this is not necessary. Instead, the expectation of
Y is defined by using the p.d.f. of X , namely:

DEFINITION 2
Consider an r.v. X with p.d.f. f (x) and let g : � → �. Then the
expectation of the r.v. Y = g(X), EY , is defined by

EY =
n∑

i=1

g(xi)f (xi) or EY =
∞∑

i=1

g(xi)f (xi) or EY

=
∫ ∞

−∞
g(x)f (x) dx, (5.6)

under provisions similar to the ones mentioned in connection with
(5.2) and (5.3). By taking g(x) = xk, where k is a positive integer, we
obtain the kth moment of X :

EXk =
n∑

i=1

xk
i f (xi) or EXk =

∞∑

i=1

xk
i f (xi) or EXk =

∫ ∞

−∞
xkf (x) dx.

(5.7)

For k = 1, we revert to the expectation of X , and for k = 2, we get
its second moment.

Moments are important, among other things, in that, in certain circum-
stances, a number of them completely determine the distribution of X .
See Theorem 2 and Exercise 1.17 here, and the special distributions
discussed in Chapter 6.

The following simple example illustrates that the expectation, as a mea-
sure of location of the distribution, may reveal very little about the entire
distribution.

EXAMPLE 3 Consider the r.v.’s X and Y defined below (Fig. 5.1), and compute their
expectations.

Figure 5.1

Spread of the r.v.’s
X and Y.

Y: | | | |
–10 0 10 20

| | | |
–1 0 1 2

X: – – – – –

X =
–1,  5/8
  1,  1/8 ,
  2,  2/8

{ Y = EX = EY = 0.
–10,  5/8
  10,  1/8 ;
  20,  2/8

{
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The distribution of X is over an interval of length 3, whereas the distri-
bution of Y is over an interval of length 10 times as large. Yet, they have
the same center of location. This simple example clearly indicates that
the expectation by itself is not an adequate measure of description of a
distribution, and an additional measure is needed to be associated with
the spread of a distribution. Such a measure exists and is the variance of
an r.v. or of its distribution. Its definition follows.

DEFINITION 3
The variance of an r.v. X is denoted by Var(X ) and is defined by:

Var(X ) = E(X − EX )2. (5.8)

The explicit expression of the right-hand side in (5.8) is taken from
(5.6) for g(x) = (x − EX )2. The alternative notations σ 2(X ) and σ 2

X
are also often used for the Var(X ).

The positive square root of the Var(X ) is called the standard devi-
ation (s.d.) of X denoted by σ (X). Unlike the variance, the s.d. is
measured in the same units as X (and EX) and serves as a yardstick
of measuring deviations of X from EX.

For the r.v.’s X and Y in Example 3, we have Var(X ) = 1.75 and
Var(Y ) = 175. Thus, the variance does convey adequately the differ-
ence in size of the range of the distributions of the r.v.’s X and Y . Also,
σ (X) = √

1.75 � 1.32 and σ (Y ) = √
175 � 13.23.

In reference to Examples 1 and 2, the variances and the s.d.’s of the r.v.’s
involved are: σ 2(X ) = 4,975, σ (X ) � 70.534, and σ 2(X ) = 36,000

361 � 99.723,
σ (X ) � 9.986, respectively.

More generally, for an r.v. X taking on finitely many values x1, . . . , xn
with respective probabilities f (x1), . . . , f (xn), the variance is: Var(X ) =∑n

i=1(xi − EX )2f (xi) and represents the sum of the weighted squared dis-
tances of the points xi, i = 1, . . . , n from the center of location of the
distribution, EX. Thus, the farther from EX the xi’s are located, the
larger the variance, and vice versa. The same interpretation holds for
the case that X takes on (countably) infinitely many values or is of the
continuous type. Because of this characteristic property of the variance,
the variance is referred to as a measure of dispersion of the underlying
distribution. In mechanics, the variance is referred to as the moment of
inertia.

From (5.8), (5.6), and familiar properties of summations and inte-
grals, one obtains formula (5.9) below, which often facilitates the actual
calculation of the variance. From (5.8), formula (5.10) below also follows
immediately.
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For an r.v. Y which is a function of X , Y = g(X ), the calculation of
the Var [g(X )] reduces to calculating expectations as in (5.6) because, by
means of (5.8) and (5.9), one has formula (5.11) below. Actually, formulas
(5.8) and (5.9) are special cases of (5.11). In summary, we have:

PROPOSITION 2 For an r.v. X :

(i) Var(X ) = EX2 − (EX )2. (5.9)
(ii) Var(cX ) = c2 Var(X ), Var(cX + d) = c2 Var(X ), (5.10)

where c and d are constants.
(iii) Var[g(X )] = Eg2(X ) − [Eg(X )]2. (5.11)

The justification of this proposition is left as an exercise (see
Exercises 1.6(i) and 1.19). Some of the last relations are illustrated by
the following example.

EXAMPLE 4 Let X be an r.v. with p.d.f. f (x) = 3x2, 0 < x < 1. Then:

(i) Calculate the quantities EX, EX2, and Var(X ).
(ii) If the r.v. Y is defined by Y = 3X − 2, calculate the EY and the

Var(Y ).

DISCUSSION

(i) By (5.3), EX = ∫ 1
0 x · 3x2 dx = 3

4 x4
∣∣1
0 = 3

4 = 0.75, whereas by (5.7),

applied with k = 2, EX2 = ∫ 1
0 x2 · 3x2 dx = 3

5 = 0.60, so that, by (5.9),
Var(X ) = 0.60 − (0.75)2 = 0.0375.

(ii) By (5.4) and (5.6), EY = E(3X − 2) = 3EX − 2 = 3 × 0.75 − 2 = 0.25,
whereas by (5.10), Var(Y ) = Var(3X − 2) = 9 Var(X ) = 9 × 0.0375 =
0.3375.

In (5.6), the EY was defined for Y = g(X ), some function of X . In
particular, we may take Y = etX for an arbitrary but fixed t ∈ �. Assuming
that there exist t’s in � for which EetX is finite, then this expectation
defines a function in t. This function is denoted by M(t) and is called the
moment-generating function of X . That is,

DEFINITION 4
The function M(t) = EetX , defined for all those t in � for which EetX

is finite, is called the moment-generating function (m.g.f.) of X .

Sometimes the notation MX (t) is also used to emphasize the fact that
the m.g.f. under discussion is that of the r.v. X . The m.g.f. of any r.v. always
exists for t = 0, since Ee0X = E1 = 1; it may exist only for t = 0, or for
t in a proper subset (interval) in �, or for every t in �. All these points
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will be demonstrated by concrete examples later on (see, for example, the
m.g.f.’s of the special distributions discussed in Chapter 6, relations (6.2),
(6.7), (6.9), (6.17), (6.19), (6.20), (6.23), (6.31), and (6.33)). The following
properties of M(t) follow immediately from its definition.

PROPOSITION 3 For an r.v. X :

(i) MX (0) = 1.
(ii) McX (t) = MX (ct), McX+d(t) = edtMX (ct), (5.12)

where c and d are constants.
(iii) Under certain conditions,

d
dt

MX (t)
∣∣∣∣
t=0

= EX, and
dn

dtn MX (t)
∣∣∣∣
t=0

= EXn, n = 2, 3, . . .

(5.13)

PROOF

(i) It has already been justified.
(ii) Indeed,

McX (t) = Eet(cX ) = Ee(ct)X = MX (ct),

and

McX+d(t) = Eet(cX+d) = E
[
edt · e(ct)X ] = edtEe(ct)X = edtMX (ct).

(iii) For example, for the first property, we have:

d
dt

MX (t)
∣∣∣∣
t=0

=
(

d
dt

EetX
)∣∣∣∣

t=0
= E

(
∂

∂t
etX

∣∣∣∣
t=0

)

= E(XetX |t=0) = EX.

What is required for this derivation to be legitimate is that the
order in which the operators d

dt and E operate on etX can be inter-
changed. The justification of the property in (5.13) for n ≥ 2 is quite
similar. �

On account of property (5.13), MX (t) generates the moments of X
through differentiation and evaluation of the derivatives at t = 0. It is
from this property that the m.g.f. derives its name.

For Examples 1 and 2, the m.g.f.’s of the r.v.’s involved are: MX (t) =
0.995+0.005e−1,000t, t ∈ �, and MX (t) = 1

19 (9e10t +10e−10t), t ∈ �. Then, by
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differentiation, we get: d
dt MX (t)|t=0 = −5 = EX, d2

dt2 MX (t)|t=0 = 5,000 =
EX2, so that σ 2(X ) = 4,975; and d

dt MX (t)|t=0 = −10
19 = EX, d2

dt2 MX (t)|t=0 =
100 = EX2, so that σ 2(X ) = 36,000

361 � 99.723.
Here is a further example which helps illustrate the last proposition.

EXAMPLE 5 Let X be an r.v. with p.d.f. f (x) = e−x, x > 0. Then:

(i) Find the m.g.f. MX (t) for the t’s for which it is finite.
(ii) Using MX , obtain the quantities EX, EX2, and Var(X ).

(iii) If the r.v. Y is defined by Y = 2 − 3X , determine MY (t) for the t’s for
which it is finite.

DISCUSSION

(i) By Definition 4,

MX (t) = EetX =
∫ ∞

0
etx · e−xdx =

∫ ∞

0
e−(1−t)x dx

= − 1
1 − t

e−(1−t)x∣∣∞
0 (provided t �= 1)

= − 1
1 − t

(0 − 1) = 1
1 − t

(provided 1 − t > 0 or t < 1).

Thus, MX (t) = 1
1−t , t < 1.

(ii) By (5.13), d
dt MX (t)|t=0 = d

dt (
1

1−t )|t=0 = 1
(1−t)2 |t=0 = 1 =

EX, d2

dt2 MX (t)|t=0 = d
dt (

1
(1−t)2 )|t=0 = 2

(1−t)3 |t=0 = 2 = EX2, so that,

by (5.9), Var(X ) = 2 − 12 = 1.
(iii) By (5.12), MY (t) = M2−3X (t) = M−3X+2(t) = e2tMX (−3t) =

e2t 1
1−(−3t) = e2t

1+3t , provided t > −1
3 .

It is to be emphasized that the m.g.f. does not have an intuitive inter-
pretation, as the expectation and the variance do. It is to be looked upon
as a valuable technical mathematical tool at our disposal. Relation (5.13)
provides an example of using profitably an m.g.f. It is used in many other
cases, some of which will be dealt with in subsequent chapters. Presently,
it suffices only to state one fundamental property of the m.g.f. in the form
of a theorem.

THEOREM 1
Under certain conditions, the m.g.f. MX of an r.v. X uniquely
determines the distribution of X .
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This theorem is, actually, a rather deep probability result, referred to
as the inversion formula.

Some forms of such a formula for characteristic functions which
are a version of an m.g.f. may be found, e.g., in Section 6.2 in the book
A Course in Mathematical Statistics, 2nd edition (1997), Academic Press,
by G. G. Roussas.

Still another important result associated with m.g.f.’s is stated (but not
proved) in the following theorem.

THEOREM 2
If for the r.v. X all moments EXn, n = 1, 2, . . . are finite, then, under
certain conditions, these moments uniquely determine the m.g.f.
MX of X , and hence (by Theorem 1) the distribution of X .

Exercise 1.17 provides an example of an application of the theorem just
stated.

Exercises

Remark: In several calculations required in solving some exer-
cises in this section, the formulas #4 and #5 in Table 6 in the
Appendix may prove useful.

1.1 Refer to Exercise 3.1 in Chapter 3 and calculate the quantities EX,
and Var(X ), and the s.d. of X .

1.2 For the r.v. X for which P(X = −c) = P(X = c) = 1/2 (for some c > 0):
(i) Calculate the EX, and the Var(X ) in terms of c.

(ii) Show that P(|X − EX | ≤ c) = Var(X )/c2.

1.3 A chemical company currently has in stock 100 pounds of a cer-
tain chemical, which it sells to customers in 5-pound packages. Let
X be the r.v. denoting the number of packages ordered by a ran-
domly chosen customer, and suppose that the p.d.f. of X is given by:
f (1) = 0.2, f (2) = 0.4, f (3) = 0.3, f (4) = 0.1.

x 1 2 3 4

f (x) 0.2 0.4 0.3 0.1

(i) Compute the following quantities: EX, EX2, and Var(X ).
(ii) Compute the expected number of pounds left after the order of

the customer in question has been shipped, as well as the s.d. of
the number of pounds around the expected value.
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Hint: For part (ii), observe that the leftover number of pounds is
the r.v. Y = 100 − 5X .

1.4 Let X be an r.v. denoting the damage incurred (in $) in a certain type
of accident during a given year, and suppose that the distribution of
X is given by the following table:

x 0 1,000 5,000 10,000

f (x) 0.8 0.1 0.08 0.02

A particular insurance company offers a $500 deductible policy. If the
company’s expected profit on a given policy is $100, what premium
amount should it charge?

Hint: If Y = X − 500 is the net loss to the insurance company,
then: premium−EY = 100.

1.5 Let X be the r.v. denoting the number in the uppermost side of a fair
die when rolled once.
(i) Determine the m.g.f. of X .

(ii) Use the m.g.f. to calculate EX, EX2, Var(X ), and the s.d. of X .

1.6 For any r.v. X , for which the EX and the EX2 are finite, show that:

(i) Var(X ) = EX2 − (EX )2; (ii) Var(X ) = E[X(X − 1)] + EX − (EX )2.

1.7 Suppose that for an r.v. X it is given that: EX = 5 and E[X(X −1)] =
27.5. Calculate:
(i) EX2.

(ii) Var(X ) and s.d. of X .

Hint: Refer to Exercise 1.6.

1.8 For the r.v. X with p.d.f. f (x) = (1/2)x, x = 1, 2, . . . :
(i) Calculate the EX and the E[X(X − 1)].

(ii) Use part (i) and Exercise 1.6(ii) to compute the Var(X ).

Hint: See #5 in Table 6 in the Appendix.

1.9 The p.d.f. f of an r.v. X is given by: f (x) = (2/3)(1/3)x, for x = 0, 1, . . .
(i) Calculate the EX.

(ii) Determine the m.g.f. MX of X and specify the range of its
argument.

(iii) Employ the m.g.f. in order to derive the EX.

Hint: For part (i), see #5 in Table 6 in the Appendix, and for
part (ii), use #4 in Table 6 in the Appendix.
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1.10 For the r.v. X with p.d.f. f (x) = 0.5x, for 0 ≤ x ≤ 2, calculate
EX, Var(X ), and the s.d. of X .

1.11 If the r.v. X has p.d.f. f (x) = 3x2 − 2x + 1, for 0 < x < 1, compute the
expectation and variance of X .

1.12 If the r.v. X has p.d.f. f given by:

f (x) =






c1x, −2 < x < 0
c2x, 0 ≤ x < 1
0, otherwise,

and if we suppose that EX = 1
3 , determine the constants c1 and c2.

Hint: Two relations are needed for the determination of c1 and c2.

1.13 The lifetime in hours of electric tubes is an r.v. X with p.d.f. f given
by: f (x) = λ2xe−λx, for x > 0 (λ > 0). Calculate the expected life of
such tubes in terms of λ.

1.14 Let X be an r.v. whose EX = µ ∈ �. Then:
(i) For any constant c, show that:

E(X − c)2 = E(X − µ)2 + (µ − c)2 = Var(X ) + (µ − c)2.

(ii) Use part (i) to show that E(X − c)2, as a function of c, is
minimized for c = µ.

Hint: In part (i), add and subtract µ.

1.15 Let X be an r.v. with p.d.f. f (x) = |x|
c2 , for −c < x < c, c > 0.

(i) Verify that f (x) is, indeed, a p.d.f.
(ii) For any n = 1, 2, . . . , calculate the EXn, and as a special case,

derive the EX and the Var (X ).

Hint: Split the integral from −c to 0 and from 0 to c.

1.16 Let X be an r.v. with p.d.f. given by: f (x) = 1
π

· 1
1+x 2 , x ∈ �. Show that:

(i) f is, indeed, a p.d.f. (called the Cauchy p.d.f.).
(ii)

∫ ∞
−∞xf (x) dx = ∞ − ∞, so that the EX does not exist.

Hint: For part (i), use the transformation x = tanu.

1.17 If X is an r.v. for which all moments EXn, n = 0, 1, . . . are finite,
show that:

MX (t) =
∞∑

n=0

(EXn)
tn

n! .
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Hint: Use the expansion ex = ∑∞
n=0

x n

n! (see #6 in Table 6 in the
Appendix).

Remark: The result in this exercise says that the moments of an
r.v. determine (under certain conditions) the m.g.f. of the r.v., and
hence its distribution, as Theorems 2 and 1 state.

1.18 Establish the inequalities stated in relations (5.4) and (5.5), for both
the discrete and the continuous case.

1.19 Establish relations (5.10) and (5.11) in Proposition 2.

1.20 The claim sizes of an auto insurance company are the values x of an
r.v. X with respective probabilities given below:

x f(x) x f(x)

10 0.13 60 0.09
20 0.12 70 0.11
30 0.10 80 0.08
40 0.13 90 0.08
50 0.10 100 0.06

(i) What is the probability P(40 ≤ X ≤ 60)?
(ii) Compute the EX = µ and the s.d. of X , σ = √

Var(X).
(iii) What is the proportion of claims lying within σ , 1.5σ , and 2σ

from µ?

1.21 The claims submitted to an insurance company over a specified
period of time t is an r.v. X with p.d.f. f (x) = c

(1+x)4 , x > 0 (c > 0).
(i) Determine the constant c.

(ii) Compute the probability P(1 ≤ X ≤ 4).
(iii) Compute the expected number of claims over the period of

time t.

5.2 Some Probability Inequalities

If the r.v. X has a known p.d.f. f , then, in principle, we can calculate
probabilities P(X ∈ B) for B ⊆ �. This, however, is easier said than done
in practice. What one would be willing to settle for would be some suitable
and computable bounds for such probabilities. This line of thought leads
us to the inequalities discussed here.

THEOREM 3
(i) For any nonnegative r.v. X and for any constant c > 0, it holds:

P(X ≥ c) ≤ EX/c.
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(ii) More generally, for any nonnegative function of any r.v. X , g(X ),
and for any constant c > 0, it holds:

P[g(X ) ≥ c] ≤ Eg(X )/c. (5.14)

(iii) By taking g(X ) = |X − EX| in part (ii), the inequality reduces
to the Markov inequality; namely,

P(|X − EX| ≥ c) = P(|X − EX|r ≥ cr) ≤ E|X − EX|r/cr, r > 0.
(5.15)

(iv) In particular, for r = 2 in (5.15), we get the Tchebichev
inequality; namely,

P(|X − EX| ≥ c) ≤ E(X − EX )2

c2 = σ 2

c2 or

P(|X − EX| < c) ≥ 1 − σ 2

c2 , (5.16)

where σ 2 stands for the Var(X ). Furthermore, if c = kσ , where
σ is the s.d. of X , then:

P(|X − EX| ≥ kσ ) ≤ 1
k2 or P(|X − EX| < kσ ) ≥ 1 − 1

k2 .

(5.17)

REMARK: 2 From the last expression, it follows that X lies within k
s.d.’s from its mean with probability at least 1 − 1

k2 , regardless of the
distribution of X . It is in this sense that the s.d. is used as a yardstick of
deviations of X from its mean, as already mentioned elsewhere.

Thus, for example, for k = 2, 3, we obtain, respectively:

P(|X − EX| < 2σ ) ≥ 0.75, P(|X − EX| < 3σ ) ≥ 8
9

� 0.889. (5.18)

PROOF OF THEOREM 3 Clearly, all one has to do is to justify (5.14)
and this only for the case that X is continuous with p.d.f. f , because the
discrete case is entirely analogous.

Indeed, let A = {x ∈ �; g(x) ≥ c}, so that Ac = {x ∈ �; g(x) < c}. Then,
clearly:

Eg(X ) =
∫ ∞

−∞
g(x) f (x) dx =

∫

A
g(x) f (x) dx +

∫

Ac
g(x) f (x) dx
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≥
∫

A
g(x) f (x) dx (since g(x) ≥ 0)

≥ c
∫

A
f (x) dx (since g(x) ≥ c on A)

= cP(A) = cP[g(X ) ≥ c].

Solving for P[g(X ) ≥ c], we obtain the desired result. �

EXAMPLE 6 Let the r.v. X take on the values −2, −1/2, 1/2, and 2 with respective
probabilities 0.05, 0.45, 0.45, and 0.05. Then EX = 0 and σ 2 = Var(X ) =
0.625, so that 2σ � 1.582. Then: P(|X | < 2σ ) = P(−1.582 < X < 1.582) =
P(X = −1

2 ) + P(X = 1
2 ) = 0.90, compared with the lower bound of 0.75.

The following example provides for another use of Tchebichev’s
inequality.

EXAMPLE 7 (i) If EX = µ and Var(X) = σ 2, determine the smallest value of the
(positive) constant c for which P(|X − µ| < c) ≥ p, where p is in the
interval (0, 1); express c in terms of σ and p.

(ii) Determine the numerical value of c if σ = 0.5 and p = 0.95.

DISCUSSION

(i) Since P(|X − µ| < c) ≥ 1 − σ 2

c2 , it suffices to determine c so that

1 − σ 2

c2 ≥ p, from where we obtain c ≥ σ√
1−p

, and hence c = σ√
1−p

.

(ii) Here c = 0.5√
0.05

� 0.5 × 4.47 = 2.235.

Exercises

2.1 Suppose the distribution of the r.v. X is given by the following table:

x −1 0 1

f (x) 1/18 8/9 1/18

(i) Calculate the EX (call it µ), the Var(X ), and the s.d. of X
(call it σ ).

(ii) Compute the probability: P(|X − µ| ≥ kσ ) for k = 2, 3.
(iii) By the Tchebichev inequality: P(|X − µ| ≥ kσ ) ≤ 1/k2. Compare

the exact probabilities computed in part (ii) with the respective
upper bounds.
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2.2 If X is an r.v. with expectation µ and s.d. σ , use the Tchebichev
inequality:
(i) To determine c in terms of σ and α, so that:

P(|X − µ| < c) ≥ α (0 < α < 1).

(ii) Give the numerical value of c for σ = 1 and α = 0.95.

2.3 Let X be an r.v. with p.d.f. f (x) = c(1 − x2), for −1 ≤ x ≤ 1. Then, by
Exercise 3.11(i) in Chapter 3, c = 3/4. Do the following:
(i) Calculate the EX and Var(X ).

(ii) Use the Tchebichev inequality to find a lower bound for the
probability P(−0.9 < X < 0.9), and compare it with the exact
probability calculated in Exercise 3.11(ii) in Chapter 3.

2.4 Let X be an r.v. with (finite) mean µ and variance 0. Then:
(i) Use the Tchebichev inequality to show that P(|X −µ| ≥ c) = 0 for

all c > 0.
(ii) Use part (i) and Theorem 2 in Chapter 3 in order to conclude that

P(X = µ) = 1.

5.3 Median and Mode of a Random Variable

Although the mean of an r.v. X does specify the center of location of the
distribution of X , sometimes this is not what we actually wish to know.
A case in point is the distribution of yearly income in a community (e.g.,
in a state or in a country). For the sake of illustration, consider the follow-
ing (rather) extreme example. A community consisting of 10 households
comprises 1 household with yearly income $500,000 and 9 households with
respective yearly incomes xi = $20,000 + $1,000(i−2), i = 2, . . . , 10. Defin-
ing the r.v. X to take the values x = $500,000 and xi, i = 2, . . . , 10 with
respective probabilities 0.10, we obtain: EX = $71,600. Thus, the average
yearly income in this community would be $71,600, significantly above
the national average yearly income, which would indicate a rather pros-
perous community. The reality, however, is that this community is highly
stratified, and the expectation does not reveal this characteristic. What
is more appropriate for cases like this are numerical characteristics of a
distribution known as median or, more generally, percentiles or quantiles.

The median of the distribution of an r.v. X is usually defined as a point,
denoted by x0.50, for which

P(X ≤ x0.50) ≥ 0.50 and P(X ≥ x0.50) ≥ 0.50, (5.19)

or, equivalently,

P(X < x0.50) ≤ 0.50 and P(X ≤ x0.50) ≥ 0.50. (5.20)
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If the underlying distribution is continuous, the median is (essentially)
unique and may be simply defined by:

P(X ≤ x0.50) = P(X ≥ x0.50) = 0.50. (5.21)

However, in the discrete case, relation (5.19) (or (5.20)) may not define
the median in a unique manner, as the following example shows.

EXAMPLE 8 Examine the median of the r.v. X distributed as follows.

x 1 2 3 4 5 6 7 8 9 10

f (x) 2/32 1/32 5/32 3/32 4/32 1/32 2/32 6/32 2/32 6/32

DISCUSSION We have P(X ≤ 6) = 16/32 = 0.50 ≥0.50 and P(X ≥ 6) =
17/32 > 0.05 ≥ 0.50, so that (5.19) is satisfied. Also,

P(X ≤ 7) = 18/32 > 0.50 ≥ 0.50 and P(X ≥ 7) = 16/32 = 0.50 ≥ 0.50,

so that (5.19) is satisfied again. However, if we define the median as the
point (6 + 7)/2 = 6.5, then P(X ≤ 6.5) = P(X ≥ 6.5) = 0.50, as (5.19)
requires, and the median is uniquely defined.

Relations (5.19)–(5.20) and Example 8 suggest the following definition
of the median.

DEFINITION 5
The median of the distribution of a continuous r.v. X is the (essen-
tially) unique point x0.50 defined by (5.21). For the discrete case,
consider two cases: Let xk be the value for which P(X ≤ xk) = 0.50,
if such a value exists. Then the unique median is defined to be the
midpoint between xk and xk+1; that is, x0.50 = (xk + xk+1)/2. If there
is no such value, the unique median is defined by the relations:
P(X < x0.50) < 0.50 and P(X ≤ x0.50) > 0.50 (or P(X ≤ x0.50) >
0.50 and P(X ≥ x0.50) > 0.50).

Thus, in Example 9 below, x0.50 = 6, because P(X < 6) = P(X ≤ 5) =
15/32 < 0.50 and P(X ≤ 6) = 17/32 > 0.50.

EXAMPLE 9 Determine the median of the r.v. X distributed as follows.

x 1 2 3 4 5 6 7 8 9 10

f (x) 2/32 1/32 2/32 6/32 4/32 2/32 1/32 7/32 1/32 6/32
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For the yearly incomes of the 10 households considered at the beginning
of this section, the median is $24,500 by the first part of Definition 5
regarding the discrete case.

More generally, the pth quantile is defined as follows.

DEFINITION 6
For any p with 0 < p < 1, the pth quantile of the distribution of a
r.v. X , denoted by xp, is defined as follows: If X is continuous, then
the (essentially) unique xp is defined by:

P(X ≤ xp) = p and P(X ≥ xp) = 1 − p.

For the discrete case, consider two cases: Let xk be the value for
which P(X ≤ xk) = p, if such a value exists. Then the unique pth
quantile is defined to be the midpoint between xk and xk+1; that
is, xp = (xk + xk+1)/2. If there is no such value, the unique pth
quantile is defined by the relation: P(X < xp) < p and P(X ≤ xp) > p
(or P(X ≤ xp) > p and P(X ≥ xp) > 1 − p).

For p = 0.25, x0.25 is called the first quartile, and for p = 0.75,
x0.75 is the third quartile. For p = 0.50, we revert to the median.

Thus, the pth quantile is a point xp, which divides the distribution of X
into two parts, and (−∞, xp] contains exactly 100p% (or at least 100p%)
of the distribution, and [xp, ∞) contains exactly 100(1 − p)% (or at least
100(1 − p)%) of the distribution of X .

Another numerical characteristic which helps shed some light on the
distribution of an r.v. X is the so-called mode.

DEFINITION 7
A mode of the distribution of an r.v. X is any point, if such points
exist, which maximizes the p.d.f. of X , f .

A mode, being defined as a maximizing point, is subject to all the short-
comings of maximization: It may not exist at all; it may exist but is not
obtainable in closed form; there may be more than one mode (the distribu-
tion is a multimodal one). It may also happen that there is a unique mode
(unimodal distribution). Clearly, if a mode exists, it will be of particular
importance for discrete distributions, as the modes provide the values of
the r.v. X that occur with the largest probability. In the continuous case,
the interpretation is that if a (small) interval I is centered at the mode
of a p.d.f., then the probability that X takes values in this I attains its
maximum value as it compares with any other location of the interval I.
See also Figures 5.2 to 5.4 below.
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Figure 5.2
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Figure 5.3

Graph of a bimodal
(discrete) p.d.f.
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Figure 5.4

Graph of a unimodal
(continuous) p.d.f.
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interval I centered at
the mode and another
two locations.
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Exercises

3.1 Let X be an r.v. with p.d.f. f (x) = 3x2, for 0 ≤ x ≤ 1.
(i) Calculate the EX and the median of X and compare them.

(ii) Determine the 0.125-quantile of X .

3.2 Let X be an r.v. with p.d.f. f (x) = xn, for 0 ≤ x ≤ c (n positive integer),
and let 0 < p < 1. Determine:
(i) The pth quantile xp of X in terms of n and p.

(ii) The median x0.50 for n = 3.

3.3 (i) If the r.v. X has p.d.f. f (x) = λe−λx, for x > 0 (λ > 0), determine
the pth quantile xp in terms of λ and p.

(ii) What is the numerical value of xp for λ = 1
10 and p = 0.25?

3.4 Let X be an r.v. with p.d.f. f given by:

f (x) =






c1x2, −1 ≤ x ≤ 0
c2(1 − x2), 0 < x ≤ 1
0, otherwise.

(i) If it is also given that EX = 0, determine the constants c1 and c2.
(ii) Determine the 1

3 -quantile of the distribution.

Hint: In part (i), two relations are needed for the determination
of c1, c2.

3.5 Let X be an r.v. with d.f. F given by:

F(x) =






0, x ≤ 0
3
4 (x2 − 1

3x3), 0 < x ≤ 2
1, x > 2.

(i) Find the corresponding p.d.f.
(ii) Determine the mode of the p.d.f.

(iii) Show that 1
2 is the 5

32 = 0.15625-quantile of the distribution.

Hint: For part (i), use Proposition 5(iii) in Chapter 3.

3.6 Two fair and distinct dice are rolled once, and let X be the r.v. denot-
ing the sum of the numbers shown on the uppermost sides, so that
the possible values of X are: 2, 3, . . . , 12.

(i) Derive the p.d.f. f of the r.v. X .
(ii) Compute the EX.

(iii) Find the median of f , as well as its mode.
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3.7 Determine the modes of the following p.d.f.’s:
(i) f (x) = ( 1

2 )x, x = 1, 2, . . .
(ii) f (x) = (1 − α)x, x = 1, 2, . . . (0 < α < 1). Also, what is the value

of α?
(iii) f (x) = 2

3x+1 , x = 0, 1, . . .

3.8 Let X be an r.v. of the continuous type with p.d.f. f symmetric about
a constant c (i.e., f (c − x) = f (c + x) for all x ; in particular, if c = 0,
then f (−x) = f (x) for all x). Then show that c is the median of X .

Hint: Start with P(X ≤ c) = ∫ c
−∞ f (x)dx and, by making a change

of the variable x, show that this last integral equals
∫ ∞

0 f (c − y)dy.
Likewise, P(X ≥ c) = ∫ ∞

c f (x)dx, and a change of the variable
x leads to the integral

∫ ∞
0 f (c + y)dy. Then the use of symmetry

completes the proof.

3.9 Let X be an r.v. of the continuous type with p.d.f. f , with finite
expectation, and median m, and let c be any constant. Then:
(i) Show that:

E|X − c| = E|X − m| + 2
∫ c

m
(c − x)f (x) dx.

(ii) Use part (i) to conclude that the constant c which minimizes the
E|X − c| is c = m .

Hint: For m < c, show that:

|x − c| − |x − m | =





c − m, x < m
c + m − 2x, m ≤ x ≤ c
m − c, x > c.

Then

E|X − c| − E|X − m | =
∫ m

−∞
(c − m)f (x) dx +

∫ c

m
(c + m − 2x)f (x) dx

+
∫ ∞

c
(m − c)f (x) dx

= c − m
2

+ (c + m)
∫ c

m
f (x) dx − 2

∫ c

m
xf (x) dx

+ (m − c)
∫ ∞

m
f (x) dx − (m − c)

∫ c

m
f (x) dx

= c − m
2

+ m − c
2

+ 2c
∫ c

m
f (x) dx − 2

∫ c

m
xf (x) dx

= 2
∫ c

m
(c − x)f (x) dx.
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For m ≥ c, show that:

|x − c| − |x − m | =





c − m, x < c
−c − m + 2x, c ≤ x ≤ m
m − c, x > m.

Then

E|X − c|−E|X − m | =
∫ c

−∞
(c − m)f (x) dx +

∫ m

c
(−c − m + 2x)f (x) dx

+
∫ ∞

m
(m − c)f (x) dx

= (c − m)
∫ m

−∞
f (x) dx − (c − m)

∫ m

c
f (x) dx

− (c + m)
∫ m

c
f (x) dx + 2

∫ m

c
xf (x) dx

+ (m − c)
∫ ∞

m
f (x) dx

= c − m
2

+ m − c
2

− 2c
∫ m

c
f (x)dx + 2

∫ m

c
xf (x)dx

= −2
∫ m

c
(c − x)f (x) dx = 2

∫ c

m
(c − x)f (x) dx.

Combining the two results, we get

E|X − c| = E|X − m| + 2
∫ c

m
(c − x)f (x)dx.

3.10 Let X be a continuous r.v. with pth quantile xp, and let Y = g(X ),
where g is a strictly increasing function, so that the inverse g−1

exists (and is also strictly increasing). Let yp be the pth quantile of
the r.v. Y .

(i) Show that the pth quantile of Y is given by g(xp); i.e., yp = g(xp).
(ii) If the p.d.f. of X is f (x) = e−x, x > 0, determine xp in terms of p.

(iii) Find the corresponding yp of part (i).
(iv) Find the numerical values of xp and yp if p = 0.5.
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Some Special Distributions

This chapter is devoted to discussing some of the most commonly occur-
ring distributions: They are the binomial, geometric, Poisson, hyper-
geometric, gamma (negative exponential and chi-square), normal, and
uniform distributions. In all cases, the mathematical expectation, vari-
ance, and moment-generating function (m.g.f.) involved are presented. In
the case of the binomial and the Poisson distributions, the mode(s) are
also established.

The chapter consists of two sections. In the first section, the four dis-
crete distributions are discussed, whereas the second section is devoted to
the continuous distributions.

6.1 Some Special Discrete Distributions

In this section, we discuss four discrete distributions, which occur often.
These are the binomial, the geometric, the Poisson, and the hypergeomet-
ric. At this point, it should be mentioned that a p.d.f. is 0 for all the values
of its argument not figuring in its definition.

6.1.1 Binomial Distribution

We first introduced the concept of a binomial experiment, which is meant
to result in two possible outcomes, one termed a success, denoted by S
and occurring with probability p, and the other termed a failure, denoted
by F and occurring with probability q = 1 − p. A binomial experiment is

103
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performed n independent times (with p remaining the same), and let X
be the r.v. denoting the number of successes. Then, clearly, X takes on the
values 0, 1, . . . , n, with the respective probabilities:

P(X = x) = f (x) =
(

n
x

)
pxqn−x, x = 0, 1, . . . , n, 0 < p < 1, q = 1 − p.

(6.1)

The r.v. X is said to be binomially distributed, its distribution is called
binomial with parameters n and p, and the fact that X is so distributed is
denoted by X ∼ B(n, p). That

∑n
x=0

(n
x

)
pxqn−x = 1 is immediate, since the

left-hand side is the expansion of (p + q)n = 1n = 1 (see #2 in Table 6 in
the Appendix).

REMARK: 1 Simple examples of a binomially distributed r.v. X is the
case where X represents the number of H’s of a coin tossed n independent
times; or X represents the number of times a 6 appears when a die is
rolled independently n times; or X represents the number of times an ace
appears when a card is drawn at random and with replacement from a
standard deck of 52 playing cards; or X represents the number of defective
items produced by a manufacturing process during a day’s work; or X
represents the number of those voters out of n interviewed who favor a
certain legislative proposal, etc.

It is to be observed that the outcomes of an experiment do not have to
be only two literally for the binomial model to apply. They can be as many
as they may, but we can group them into two disjoint groups. Then the
occurrence of a member in one of the groups is termed a success arbitrarily,
and the occurrence of a member in the other group is characterized as a
failure. Thus, in reference to Example 16 in Chapter 1, the selection of a
person of blood type A or B may be called a success, so that the selection
of a person of blood type AB or O will be a failure.

The graph of f depends on n and p; two typical cases, for n = 12, p = 1
4 ,

and n = 10, p = 1
2 are given in Figures 6.1 and 6.2.

Values of the p.d.f. f of the B(12, 1
4 ) distribution

f (0) = 0.0317 f (7) = 0.0115
f (1) = 0.1267 f (8) = 0.0024
f (2) = 0.2323 f (9) = 0.0004
f (3) = 0.2581 f (10) = 0.0000
f (4) = 0.1936 f (11) = 0.0000
f (5) = 0.1032 f (12) = 0.0000
f (6) = 0.0401
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Figure 6.1

Graph of the p.d.f. of
the binomial
distribution for
n = 12, p = 1
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4

f (x)

Values of the p.d.f. f of the B(10, 1
2 ) distribution

f (0) = 0.0010 f (6) = 0.2051
f (1) = 0.0097 f (7) = 0.1172
f (2) = 0.0440 f (8) = 0.0440
f (3) = 0.1172 f (9) = 0.0097
f (4) = 0.2051 f (10) = 0.0010
f (5) = 0.2460

Figure 6.2

Graph of the p.d.f. of
the binomial
distribution for
n = 10, p = 1
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For selected n and p, the d.f. F(k) = ∑k
j=0

(n
j

)
pjqn−j is given by the

binomial tables (see, however, Exercise 1.1). The individual probabilities(n
j

)
pjqn−j may be found by subtraction. Alternatively, such probabilities

can be calculated recursively (see Exercise 1.9).
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For n = 1, the corresponding r.v. is known as the Bernoulli r.v. It is then
clear that a B(n, p) r.v. X is the sum of n B(1, p) r.v.’s. More precisely, in n
independent binomial experiments, associate with the ith performance of
the experiment the r.v. Xi defined by: Xi = 1 if the outcome is S (a success)
and Xi = 0 otherwise, i = 1, . . . , n. Then, clearly,

∑n
i=1 Xi is the number

of 1’s in the n trials, or, equivalently, the number of S ’s, which is exactly
what the r.v. X stands for. Thus, X = ∑n

i=1 Xi. Finally, it is mentioned
here that if X ∼ B(n, p), then:

PROPOSITION 1

EX = np, Var(X ) = npq, and MX (t) = (pet + q)n, t ∈ �. (6.2)

The relevant derivations are left as exercises (see Exercises 1.10 and
1.11). A brief justification of formula (6.1) is as follows: Think of the
n outcomes of the n experiments as n points on a straight line seg-
ment, where an S or an F is to be placed. By independence, the
probability that there will be exactly x S ’s in x specified positions (and
therefore n − x F ’s in the remaining positions) is pxqn−x, and this prob-
ability is independent of the locations where the x S ’s occur. Because
there are

(n
x

)
ways of selected x points for the S ’s, the conclusion

follows.
Finally, for illustrative purposes, refer to Example 7 in Chapter 1.

In that example, clearly X ∼ B(n, 0.75), and for the sake of speci-
ficity take n = 25, so that X takes on the values 0, 1, . . . , 25. Next
(see Exercise 1.1),

(25
x

)
(0.75)x(0.25)25−x = (25

y

)
(0.25)y(0.75)25−y, where

y = 25 − x. Therefore, for a = 15 and b = 20, for example, P(15 ≤
X ≤ 20) = ∑10

y=5
(25

y

)
(0.25)y(0.75)25−y = 0.9703 − 0.2137 = 0.7566. Finally,

EX = 25 × 0.75 = 18.75,Var(X ) = 25 × 0.75 × 0.25 = 4.6875, so
that σ (X ) � 2.165. Examples 8 and 9 in Chapter 1 fit into the same
framework.

At this point, recall (Definition 7 in Chapter 5) that a mode of the distri-
bution of an r.v. X is any point, if such a point exists, that maximizes the
p.d.f. of X , f . Clearly, a mode, if it exists, will be of particular importance
for a discrete distribution such as the binomial, as the modes provide the
values of X that occur with the largest probability. With this in mind, let
us proceed in determining the modes of the binomial distribution. To this
effect, we have:

THEOREM 1
Let X be B(n, p); that is,

f (x) =
(

n
x

)
pxqn−x, 0 < p < 1, q = 1 − p, x = 0, 1, . . . , n.
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Consider the number (n + 1)p and set m = [(n + 1)p], where [y]
denotes the largest integer, which is ≤ y. Then, if (n + 1)p is not an
integer, f (x) has a unique mode at x = m . If (n + 1)p is an integer,
then f (x) has two modes obtained for x = m and x = m − 1.

PROOF For x ≥ 1, we have:

f (x)
f (x − 1)

=
(n

x

)
pxqn−x

( n
x−1

)
px−1qn−x+1

=
n!

x!(n−x)!p
xqn−x

n!
(x−1)!(n−x+1)!px−1qn−x+1

= n − x + 1
x

× p
q

.

That is,

f (x)
f (x − 1)

= n − x + 1
x

× p
q

.

Hence,

f (x) > f (x − 1) if and only if
f (x)

f (x − 1)
> 1 if and only if

n − x + 1
x

× p
q

> 1 if and only if x < (n + 1)p. (6.3)

Also,

f (x) < f (x − 1) if and only if
f (x)

f (x − 1)
< 1 if and only if

n − x + 1
x

× p
q

< 1 if and only if x > (n + 1)p. (6.4)

Finally,

f (x) = f (x − 1) if and only if
f (x)

f (x − 1)
= 1 if and only if

n − x + 1
x

× p
q

= 1 if and only if x = (n + 1)p. (6.5)

First, consider the case that (n + 1)p is not an integer. Then we have the
following diagram.
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  0                    1             2  m−1 m+1m n−1 n

(n+1)p

 • • •  • • •  • • •  • • •

From relations (6.3) and (6.4), it follows that:

f (x) < f (m), x = 0, 1, . . . , m − 1; f (x) < f (m), x = m + 1, . . . , n,

so that f (x) attains its unique maximum at x = m.
Now, consider the case that (n + 1)p is an integer and look at the

following diagram.

  0  1 2 m−1

(n+1)p

• • • • • • • • • • • • nm+1m n−1

From relations (6.5) we have f (m) = f (m − 1), whereas from relations
(6.3) and (6.4), we have that:

f (x) < f (m − 1), x = 0, 1, . . . , m − 2; f (x) < f (m), x = m + 1, . . . , n,

so that f (x) has two maxima at x = m and x = m − 1. �
As an illustration, consider the following simple example.

EXAMPLE 1 Let X ∼ B(n, p) with n = 20 and p = 1
4 . Then (n + 1)p = 21

4 is not
an integer and therefore there is a unique mode. Since 21

4 = 5.25, the
mode is [5.25] = 5. The maximum probability is

(20
5

)
(0.25)5(0.75)15 =

0.2024. If n = 15 and p = 1
4 , then (n + 1)p = 16

4 = 4 and therefore there
are two modes; they are 4 and 3. The respective maximum probability is(15

4

)
(0.25)4(0.75)11 = 0.2252.

The discussion of binomial distribution concludes with an example of
determination of the median and the quartiles of the distribution (see
Definitions 5 and 6 in Chapter 5).

EXAMPLE 2 Refer to Figure 6.1 (B(12, 1/4)) and determine x0.25, x0.50, and x0.75.

DISCUSSION Here x0.25 = 2, since P(X < 2) = P(X = 0) + P(X =
1) = 0.1584 ≤ 0.25 and P(X ≤ 2) = 0.1584 + P(X = 2) = 0.3907 ≥ 0.25.
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Likewise, x0.50 = 3, since P(X < 3) = 0.3907 ≤ 0.50 and P(X ≤ 3) =
0.6488 ≥ 0.50. Finally, x0.75 = 4, since P(X < 4) = 0.6488≤0.75 and
P(X ≤ 4) = 0.8424 > 0.75.

6.1.2 Geometric Distribution

This discrete distribution arises in a binomial-experiment situation when
trials are carried out independently (with constant probability p of an S)
until the first S occurs. The r.v. X denoting the number of required trials
is a geometrically distributed r.v. with parameter p and its distribution is
geometric with parameter p. It is clear that X takes on the values 1, 2, . . .
with the respective probabilities:

P(X = x) = f (x) = pqx−1, x = 1, 2, . . . , 0 < p < 1, q = 1 − p. (6.6)

The justification of this formula is immediate because, if the first S is
to appear in the xth position, the overall outcome is FF . . . FS︸ ︷︷ ︸

x−1

, whose
probability (by independence) is qx−1p.

The algebraic verification that
∑∞

x=1 pqx−1 = 1 is immediate, since∑∞
x=1 pqx−1 = p

∑∞
x=1 qx−1 = p × 1

1−q = p
p = 1 (see also #4 in Table 6

in the Appendix).
For some concrete examples, refer to Remark 1, and let X be the

number of (independent) trials until the first success occurs.
The graph of f depends on p; two typical cases for p = 1

4 and p = 1
2 are

given in Figure 6.3.

Values of f (x) = (0.25)(0.75)x−1, Values of f (x) = (0.5)x,
x = 1, 2, . . . x = 1, 2, . . .

f (1) = 0.2500 f (1) = 0.5000
f (2) = 0.1875 f (2) = 0.2500
f (3) = 0.1406 f (3) = 0.1250
f (4) = 0.1055 f (4) = 0.0625
f (5) = 0.0791 f (5) = 0.0313
f (6) = 0.0593 f (6) = 0.0156
f (7) = 0.0445 f (7) = 0.0078
f (8) = 0.0334
f (9) = 0.0250

f (10) = 0.0188

If the r.v. X is geometrically distributed with parameter p, then:

PROPOSITION 2

EX = 1
p

, Var(X ) = q
p2 , MX (t) = pet

1 − qet , t < −log q. (6.7)
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Figure 6.3

Graphs of the
p.d.f.’s of geometric
distribution with
p = 1

4 and p = 1
2 .
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The verification of (6.7) is left as an exercise (see Exercises 1.17 and
1.18).

REMARK: 2 Sometimes the p.d.f. of X is given in the form: f (x) =
pqx, x = 0, 1, . . . ; then EX = q

p , Var(X ) = p
q2 and MX (t) = p

1−qet , t < −log q.

In reference to Example 10 in Chapter 1, assume for mathematical con-
venience that the number of cars passing by may be infinite. Then the r.v.
X described there has geometric distribution with some p. Here proba-
bilities are easily calculated. For example, P(X ≥ 20) = ∑∞

x=20 pqx−1 =
pq19 ∑∞

x=0 qx = pq19 1
1−q = q19; that is, p(X ≥ 20) = q19. For instance, if

p = 0.01, then q = 0.99 and P(X ≥ 20) � 0.826. (See also #4 in Table 6 in
the Appendix.)

6.1.3 Poisson Distribution

An r.v. X taking on the values 0, 1, . . . with respective probabilities given in
(6.8) is said to have Poisson distribution with parameter λ; its distribution
is called Poisson with parameter λ. That X is Poisson distributed with
parameter λ is denoted by X ∼ P(λ).

P(X = x) = f (x) = e−λ λx

x! , x = 0, 1, . . . , λ > 0. (6.8)

Example 11 in Chapter 1 may serve as an illustration of the usage of
the Poisson distribution. Assuming, for mathematical convenience, that
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Values of the p.d.f. f of the P(5) distribution

f (0) = 0.0067 f (9) = 0.0363
f (1) = 0.0337 f (10) = 0.0181
f (2) = 0.0843 f (11) = 0.0082
f (3) = 0.1403 f (12) = 0.0035
f (4) = 0.1755 f (13) = 0.0013
f (5) = 0.1755 f (14) = 0.0005
f (6) = 0.1462 f (15) = 0.0001
f (7) = 0.1044
f (8) = 0.0653 f (n) is negligible for n ≥ 16.

the number of bacteria may be infinite, then the Poisson distribution may
be used to describe the actual distribution of bacteria (for a suitable value
of λ) quite accurately. There is a host of similar cases for the description of
which the Poisson distribution is appropriate. These include the number
of telephone calls served by a certain telephone exchange center within a
certain period of time, the number of particles emitted by a radioactive
source within a certain period of time, the number of typographical errors
in a book, etc.

The graph of f depends on λ; for example, for λ = 5, the graph looks
like Figure 6.4. That f is a p.d.f. follows from the formula

∑∞
x=0

λx

x! = eλ

(see #6 in Table 6 in the Appendix).

Figure 6.4

Graph of the p.d.f. of
Poisson
distribution with
λ = 5.
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For selected values of λ, the d.f. F(k) = ∑k
j=0 e−λ λj

j! is given by

the Poisson tables. The individual values e−λ λj

j! are found by subtrac-
tion. Alternatively, such probabilities can be calculated recursively (see
Exercise 1.21). It is not hard to see (see Exercises 1.22 and 1.23) that if
X ∼ P(λ), then:

PROPOSITION 3

EX = λ, Var(X ) = λ, and MX (t) = eλet−λ, t ∈ �. (6.9)



112 Chapter 6 Some Special Distributions

From these expressions, the parameter λ acquires a special meaning: it
is both the mean and the variance of the r.v. X .

Regarding the modes of a Poisson distribution, there is a clear-cut way
of determining them. This is the content of the theorem below.

THEOREM 2
Let X be P(λ); that is,

f (x) = e−λ λx

x! , x = 0, 1, 2, . . . , λ > 0.

Then, if λ is not an integer, f (x) has a unique mode at x = [λ]. If λ is
an integer, then f (x) has two modes obtained for x = λ and x = λ−1.

PROOF It goes along the same lines as that of Theorem 1 about
binomial distribution. Briefly, for x ≥ 1, we have:

f (x)
f (x − 1)

= e−λλx/x!
e−λλx−1/(x − 1)! = λ

x
.

Hence, f (x) > f (x−1) if and only if λ > x, and f (x) = f (x−1) if and only if
x = λ in case λ is an integer. Thus, if λ is not an integer, f (x) keeps increas-
ing for x ≤ [λ] and then decreases. Thus the maximum of f (x) occurs at
x = [λ]. If λ is an integer, then the maximum occurs at x = λ. But in this
case f (x) = f (x − 1), which implies that x = λ − 1 is a second point which
gives the maximum value to the p.d.f. �

The following simple example serves as an illustration of Theorem 2.

EXAMPLE 3 Let X ∼ P(λ) and let λ = 4.5. Then there is a unique mode that is
[4.5] = 4. The respective maximum probability is 0.1898. If, on the other
hand, λ = 7, then there are two modes 7 and 6. The respective maximum
probability is 0.149.

EXAMPLE 4 Refer to Figure 6.4 (P(5)) and determine x0.25, x0.50, and x0.75.

As in Example 2, x0.25 = 3, x0.50 = 5, and x0.75 = 6.

There is an intimate relationship between Poisson and binomial distri-
butions: the former may be obtained as the limit of the latter, as explained
in the following. Namely, it is seen (see Exercise 1.25) that in the binomial,
B(n, p), situation, if n is large and p is small, then the binomial probabil-
ities

(n
x

)
px(1 − p)n−x are close to the Poisson probabilities e−np (np)x

x! . More
precisely,

(n
x

)
px

n(1 − pn)n−x → e−λ λx

x! , provided n → ∞ and pn → 0 so that
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npn → λ ∈ (0, ∞). Here pn is the probability of a success in the nth trial.
Thus, for large values of n,

(n
x

)
px

n(1 − pn)n−x � e−λ λx

x! ; or, upon replacing λ

by npn, we obtain the approximation mentioned before.
A rough explanation of why Poisson probabilities are approximated

by binomial probabilities is given next. To this end, suppose an event
A occurs once in a small time interval of length h with approximate
probability proportional to h and coefficient of proportionally λ; that
is, A occurs once in an interval of length h with approximate proba-
bility λh. It occurs two or more times with probability approximately
0, so that it occurs zero times with probability approximately 1 − λh.
Finally, occurrences in nonoverlapping intervals of length h are indepen-
dent. Next, consider the unit interval (0, 1] and divide it into a large
number n of nonoverlapping subintervals of equal length h: (t i−1, t i], i =
1, . . . , n, t0 = 0, tn = 1, h = 1

n . With the ith interval (t i−1, t i], asso-
ciate the r.v. Xi defined by: Xi = 1 with approximate probability λh
and 0 with approximate probability 1 − λh. Then the r.v. X = ∑n

i=1 Xi
denotes the number of occurrences of A over the unit (0, 1] interval
with approximate probabilities

(n
x

)
(λh)x(1 − λh)n−x. The exact probabili-

ties are found by letting n → ∞ (which implies h → 0). Because here
pn = λh and npn = nλh = nλ 1

n = λ, we have that
(n

x

)
(λh)x(1 − λh)n−x →

e−λ λx

x! , as n → ∞ (by Exercise 1.25), so that the exact probabilities
are e−λ λx

x! . So, the exact probability that A occurs x times in (0, 1] is
the Poisson probability e−λ λx

x! , and the approximate probability that A
occurs the same number of times is the binomial probability

(n
x

)
(λh)x

(1 − λh)n−x; these two probabilities are close to each other for large n.
The following example sheds some light on the approximation just

discussed.

EXAMPLE 5 If X is an r.v. distributed as B(25, 1
16 ), we find from the binomial tables

that P(X = 2) = 0.2836. Next, considering an r.v. Y distributed as P(λ)
with λ = 25

16 = 1.5625, we have that P(Y = 2) = e−1.5625 (1.5625)2

2! � 0.2556.
Thus, the exact probability is underestimated by the amount 0.028. The
error committed is of the order of 9.87%. Given the small value of n = 25,
the approximate value is not bad at all.

6.1.4 Hypergeometric Distribution

This discrete distribution occurs quite often and is suitable in describing
situations of the following type: m identical objects (e.g., balls) are thor-
oughly mixed with n identical objects (e.g., balls) that are distinct from the
m objects. From these m+n objects, r are drawn without replacement, and
let X be the number among the r that come from the m objects. Then the
r.v. X takes on the values 0, 1, . . . , min(r, m) with respective probabilities
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given below. Actually, by defining
(m

x

) = 0 for x > m, we have:

P(X = x) = f (x) =
(m

x

)( n
r−x

)

(m + n
r

) , x = 0, . . . , r; (6.10)

m and n may be referred to as the parameters of the distribution. By
assuming that the selections of r objects out of the m + n are all equally
likely, there are

(m+n
r

)
ways of selecting these r objects, whereas there

are
(m

x

)
ways of selecting x out of the m objects, and

( n
r−x

)
ways of select-

ing the remaining r − x objects out of n objects. Thus, the probability
that X = x is as given in the preceding formula. The simple justification
that these probabilities actually sum to 1 follows from Exercise 4.10 in
Chapter 2. For large values of any one of m, n, and r, actual calculation
of the probabilities in (6.10) may be quite involved. A recursive formula
(see Exercise 1.28) facilitates significantly these calculations. The calcu-
lation of the expectation and of the variance of X is based on the same
ideas as those used in Exercise 1.10 in calculating the EX and Var(X )
when X ∼ B(n, p). We omit the details and give the relevant formulas;
namely,

EX = mr
m + n

, Var(X ) = mnr(m + n − r)
(m + n)2(m + n − 1)

. (6.11)

Finally, by utilizing ideas and arguments similar to those employed in
Exercise 1.25, it is shown that as m and n → ∞ so that m

m+n → p ∈ (0, 1),
then

(m
x

)( n
r−x

)
/
(m + n

r

)
tends to

(r
x

)
px(1 − p)r−x. Thus, for large values of m

and n, hypergeometric probabilities
(m

x

)( n
r−x

)
/
(m + n

r

)
may be approximated

by simpler binomial probabilities
(r
x

)
px

m, n(1−pm, n)r−x, where pm, n = m
m + n .

(See also Exercise 1.29.)

EXAMPLE 6 As an application of formula (6.10) and the approximation discussed, take
m = 70, n = 90, r = 25, and x = 10. Then:

f (10) =
(70
10

)( 90
25−10

)

(70 + 90
25

) =
(70
10

)(90
15

)

(160
25

) � 0.166,

after quite a few calculations. On the other hand, since m
m + n = 70

160 = 7
16 ,

the binomial tables give for the B(25, 7
16 ) distribution:

(25
10

)
( 7

16 )
10

( 9
16 )

15 =
0.15. Therefore, the approximation overestimates the exact probability by
the amount 0.016. The error committed is of the order of 10.7%.

REMARK: 3 By Theorem 2 in Chapter 5, the moments of an r.v. com-
pletely determine its distribution (under certain conditions). This is
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certainly true in all four distributions discussed here. In the binomial,
geometric, and Poisson cases, the expectation alone determines the dis-
tribution. In hypergeometric distribution, the first two moments do so
(through the determination of m and n).

Exercises

1.1 If X ∼ B(n, p) with p > 0.5, the binomial tables (in this book)
cannot be used, even if n is suitable. This problem is resolved by
the following result.
(i) If X ∼ B(n, p), show that P(X = x) = P(Y = n − x), where Y ∼

B(n, q) (q = 1 − p).
(ii) Apply part (i) for n = 20, p = 0.625, and x = 8.

1.2 Let X be an r.v. distributed as B(n, p), and recall that P(X = x) =
f (x) = (n

x

)
pxqn−x, x = 0, 1, . . . , n (q = 1 − p). Set B(n, p; x) = f (x).

(i) By using the relationship
(m + 1

y

) = (m
y

) + ( m
y−1

)
(see Exercise 4.9

in Chapter 2), show that:

B(n + 1, p; x) = pB(n, p; x − 1) + qB(n, p; x).

(ii) By using this recursive relation of B(n + 1, p;.), calculate the
probabilities B(n, p; x) for n = 26, p = 0.25, and x = 10.

1.3 Someone buys one ticket in each of 50 lotteries, and suppose that
each ticket has probability 1/100 of winning a prize. Compute the
probability that the person in question will win a prize:
(i) Exactly once.

(ii) At least once.

1.4 Suppose that 15 people, chosen at random from a (large) target pop-
ulation, are asked if they favor a certain proposal. If 43.75% of the
target population favor the proposal, calculate the probability that:

(i) At least 5 of the 15 polled favor the proposal.
(ii) A majority of those polled favor the proposal.

(iii) Compute the expected number of those favoring the proposal,
and the s.d. around this number.

1.5 A fair die is tossed independently 18 times, and the appearance of a
6 is called a success. Find the probability that:

(i) The number of successes is greater than the number of failures.
(ii) The number of successes is twice as large as the number of

failures.
(iii) The number of failures is 3 times the number of successes.
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1.6 Suppose you are throwing darts at a target and you hit the bull’s eye
with probability p. It is assumed that the trials are independent and
that p remains constant throughout.

(i) If you throw darts 100 times, what is the probability that you
hit the bull’s eye at least 40 times?

(ii) What does this expression become for p = 0.25?
(iii) What is the expected number of hits, and what is the s.d. around

this expected number?
(For parts (i) and (ii), just write down the correct formula.)

1.7 If X ∼ B(100, 1/4), use the Tchebichev inequality to determine a
lower bound for the probability P(|X − 25| < 10).

1.8 A manufacturing process produces defective items at the constant
(but unknown to us) proportion p. Suppose that n items are sampled
independently, and let X be the r.v. denoting the number of defective
items among the n, so that X ∼ B(n, p). Use the Tchebichev inequal-
ity in order to determine the smallest value of the sample size n, so
that: P(|X

n − p| < 0.05
√

pq) ≥ 0.95 (q = 1 − p).

1.9 If X ∼ B(n, p) show that f (x + 1) = p
q × n − x

x + 1 f (x), x = 0, 1, . . . , n − 1,
(q = 1 − p) (so that probabilities can be computed recursively).

Hint: Write the combinations in terms of factorials, and make
the appropriate grouping of terms.

1.10 If X ∼ B(n, p):
(i) Calculate the EX and the E[X(X − 1)].

(ii) Use part (i) and Exercise 1.6(ii) in Chapter 5 to calculate the
Var(X).

Hint: For part (i), observe that:

EX =
n∑

x=1

x
n(n − 1)!

x(x − 1)!(n − x)!p
xqn−x = np

n∑

x=1

(
n − 1
x − 1

)
px−1q(n−1)−x

= np
n−1∑

y=0

(
n − 1

y

)
pyq(n−1)−y = np,

and E[X(X − 1)] =
n∑

x=2

x(x − 1)
n(n − 1)(n − 2)!

x(x − 1)(x − 2)!(n − x)!p
xqn−x

= n(n − 1)p2
n∑

x=2

(
n − 2
x − 2

)
px−2q(n−2)−(x−2)

= n(n − 1)p2
n−2∑

y=0

(
n − 2

y

)
pyq(n−2)−y = n(n − 1)p2.

Also, use Exercise 1.6(ii) in Chapter 5.
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1.11 If X ∼ B(n, p):
(i) Show that MX (t) = (pet + q)n, t ∈ � (q = 1 − p).

(ii) Use part (i) to rederive the EX and the Var(X ).

1.12 Let X ∼ B(100, 1/4) and suppose you were to bet on the observed
value of X . On which value would you bet in terms of probabilities?

1.13 Let the r.v. X have the geometric p.d.f. f (x) = pqx−1, x = 1, 2, . . . (q =
1 − p).
(i) What is the probability that the first success will occur by the

10th trial? (See #4 in Table 6 in the Appendix.) (Express it in
terms of q = 1 − p.)

(ii) What is the numerical value of this probability for p = 0.2?

1.14 A manufacturing process produces defective items at the rate of
1%. Let X be the r.v. denoting the number of (independent) trials
required until the first defective item is produced. Then calculate
the probability that X is not larger than 10. (See #4 in Table 6 in
the Appendix.)

1.15 A fair die is tossed repeatedly (and independently) until a 6 appears
for the first time. Calculate the probability that:
(i) This happens on the 3rd toss.

(ii) At least 5 tosses will be needed. (See #4 in Table 6 in the
Appendix.)

1.16 A coin with probability p of falling heads is tossed repeatedly and
independently until the first head appears.
(i) Determine the smallest number of tosses, n, required to have the

first head appear by the nth time with prescribed probability α.
(See #4 in Table 6 in the Appendix.) (Determine n in terms of
α and q = 1 − p.)

(ii) Determine the value of n for α = 0.95 and p = 0.25 (q = 0.75)
and p = 0.50(=q).

1.17 If X has geometric distribution; that is, f (x) = pqx−1, for x = 1, 2, . . .
(q = 1 − p):
(i) Calculate the EX and the E[X(X − 1)].

(ii) Use part (i) and Exercise 1.6(ii) in Chapter 5 to calculate the
Var(X ).

Hint: For part (i), refer to #5 in Table 6 in the Appendix.

1.18 If X has geometric distribution, then:
(i) Derive the m.g.f. of X and specify the range of its argument.

(See #4 in Table 6 in the Appendix.)
(ii) Specify the m.g.f. for p = 0.01.

(iii) Employ the m.g.f. in order to derive: EX, EX2, and Var(X ), and
compute their values for p = 0.01.
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1.19 Suppose that r.v. X is distributed as P(λ); i.e., f (x) = e−λ λx

x! , for
x = 0, 1, . . . , and that f (2) = 2f (0). Determine the value of the
parameter λ.

1.20 Let X be a Poisson-distributed r.v. with parameter λ, and suppose
that P(X = 0) = 0.1. Calculate the probability P(X = 5).

1.21 If X ∼ P(λ), show that f (x + 1) = λ
x+1 f (x), x = 0, 1, . . . (so that

probabilities can be computed recursively).

1.22 If X ∼ P(λ):
(i) Calculate the EX and the E[X(X − 1)].

(ii) Use part (i) and Exercise 1.6(ii) in Chapter 5 to calculate the
Var(X ).

Hint: For part (i), observe that (by #6 in Table 6 in the
Appendix):

EX = e−λ
∞∑

x=1

x
λ · λx−1

x(x − 1)! = λe−λ
∞∑

y=0

λy

y! = λe−λeλ = λ, and

E[X(X − 1)] = λ2e−λ
∞∑

x=2

x(x − 1)
λx−2

x(x − 1)(x − 2)! = λ2e−λ
∞∑

y=0

λy

y! = λ2.

1.23 If X ∼ P(λ):
(i) Show that MX (t) = eλ(et−1), t ∈ �. (See #6 in Table 6 in the

Appendix.)
(ii) Use the m.g.f. to rederive the EX and the Var(X ).

1.24 Let X be the r.v. denoting the number or particles arriving indepen-
dently at a detector at the average rate of 3 per second.
(i) Specify a probability model for the r.v. X .

(ii) State which number(s) of particles arrive within 1 second
with the maximum probability, and specify the value of this
probability.

1.25 For n = 1, 2, . . . , let the r.v. Xn ∼ B(n, pn) where, as n → ∞, 0 <
pn → 0, and npn → λ ∈ (0, ∞). Then show that:

(
n
x

)
px

nqn−x
n

−−→n→∞ e−λ λx

x! (qn = 1 − pn).

Hint: Write
(n

x

)
as n(n − 1) . . . (n − x + 1)/x!, set npn = λn, so that

pn = λn
n −−→n→∞ 0 and qn = 1 − pn = 1 − λn

n −−→n→∞ 1. Group terms
suitably, take the limit as n → ∞, and use the calculus fact that
(1 + x n

n )n → ex when xn → x as n → ∞, as mentioned in #6 of
Table 6 in the Appendix.

1.26 In an undergraduate statistics class of 80, 10 of the students are
actually graduate students. If 5 students are chosen at random from
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the class, what is the probability that:
(i) No graduate students are included?

(ii) At least 3 undergraduate students are included?

1.27 Suppose a geologist has collected 15 specimens of a certain rock, call
it R1, and 10 specimens of another rock, call it R2. A laboratory
assistant selects randomly 15 specimens for analysis, and let X be
the r.v. denoting the number of specimens of rock R1 selected for
analysis.

(i) Specify the p.d.f. of the r.v. X .
(ii) What is the probability that at least 10 specimens of the rock

R1 are included in the analysis? (Just write down the correct
formula.)

(iii) What is the probability that all specimens come from the rock
R2?

Hint: For part (ii), just write down the right formula.

1.28 If the r.v. X has hypergeometric distribution; i.e., P(X = x) = f (x) =
(m

x )(
n

r−x)

(m+n
r )

, x = 0, 1, . . . , r, then show that:

f (x + 1) = (m − x)(r − x)
(n − r + x + 1)(x + 1)

f (x)

(so that probabilities can be computed recursively).

Hint: Start with f (x + 1) and write the numerator in terms of
factorials. Then modify suitably some terms, and regroup them to
arrive at the expression on the right-hand side.

The following exercise, Exercise 1.29, is recorded here mostly for
reference purposes; its solution goes along the same lines as that
of Exercise 1.25, but it is somewhat more involved. The interested
reader is referred for details to Theorem 2, Chapter 3, in the book
A Course in Mathematical Statistics, 2nd edition (1997), Academic
Press, by G. G. Roussas.

1.29 Let X be an r.v. having hypergeometric distribution with parame-
ters m and n, so that its p.d.f. is given by f (x) = (m

x

)( n
r−x

)
/
(m+n

r

)
,

x = 0, 1, . . . , r. Suppose that m and n → ∞, so that m
m+n → p ∈ (0, 1).

Then:
(m

x

)( n
r−x

)

( m+n
r

) →
(

r
x

)
px(1 − p)r−x, x = 0, 1, . . . , r.

Thus, for large m and n, the hypergeometric probabilities may be
approximated by the (simpler) binomial probabilities, as follows:

(m
x

)( n
r−x

)

( m+n
r

) �
(

r
x

)(
m

m + n

)x(
1 − m

m + n

)r−x

, x = 0, 1, . . . , r.
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1.30 If X ∼ B(n, 0.15) determine the smallest value of n for which P(X =
1) > P(X > 0).

1.31 Suppose that in a preelection campaign, propositions #1 and #2 are
favored by 100p1% and 100p2% of voters, respectively, whereas the
remaining 100(1 − p1 − p2)% of the voters are either undecided or
refuse to respond (0 < p1 < 1, 0 < p2 < 1, p1 + p2 ≤ 1). A random
sample of size 2n is taken. Then:

(i) What are the expected numbers of voters favoring each of the
two propositions?

(ii) What is the probability that the number of voters favoring
proposition #1 is at most n?

(iii) What is the probability that the number of voters favoring
proposition #2 is at most n?

(iv) Give the numerical values in parts (i)–(iii) for p1 = 31.25%,
p2 = 43.75%, and 2n = 24.

Hint: For parts (i)–(iii), just write down the right formulas.

1.32 A quality control engineer suggests that for each shipment of 1,000
integrated circuit components, a sample of 100 be selected from the
1,000 for testing. If either 0 or 1 defective is found in the sample,
the entire shipment is declared acceptable.

(i) Compute the probability of accepting the entire shipment if
there are 3 defectives among the 1,000 items.

(ii) What is the expected number of defective items?
(iii) What is the variance and the s.d. of the defective items?

1.33 Refer to Exercise 1.32, and use the binomial approximation to hyper-
geometric distribution (see Exercise 1.29 in this chapter) to find
an approximate value for the probability computed in part (i) or
Exercise 1.32.

1.34 Refer to Exercise 1.33, and use the Poisson approximation to bino-
mial distribution (see Exercise 1.25 here) to find an approximate
value for the probability computed in part (i) of Exercise 1.32.

1.35 Suppose that 125 out of 1,000 California homeowners have earth-
quake insurance. If 40 such homeowners are chosen at random:

(i) What is the expected number of earthquake insurance holders,
and what is the s.d. around this expected number?

(ii) What is the probability that the number of earthquake insur-
ance holders is within one s.d. of the mean, inclusive?

(iii) Use both the binomial and the Poisson approximation in
part (ii).

Hint: For part(ii), just write down the correct formula.



6.2 Some Special Continuous Distributions 121

1.36 If the number of claims filed by policyholders over a period of time
is an r.v. X which has Poisson distribution; i.e., X ∼ P(λ). If P(X =
2) = 3P(X = 4), determine:
(i) The EX and Var(X).

(ii) The probabilities P(2 ≤ X ≤ 4) and P(X ≥ 5).

6.2 Some Special Continuous Distributions

In this section, we discuss basically three continuous distributions, which
occur often. They are the gamma—and its special cases, the negative expo-
nential and the chi-square—the normal, and the uniform distributions. In
all cases, the p.d.f. is 0 for all values of its argument not figuring in the
definition.

6.2.1 Gamma Distribution

As an introduction, the so-called gamma function, will be defined first.
It is shown that the integral

∫ ∞
0 yα−1e−y dy is finite for α > 0 and thus

defines a function (in α), namely,

�(α) =
∫ ∞

0
yα−1e−y dy, α > 0. (6.12)

This is the gamma function. By means of the gamma function, the gamma
distribution is defined by its p.d.f. as follows:

f (x) = 1
�(α)βα

xα−1e−x/β , x > 0, α > 0, β > 0; (6.13)

α and β are the parameters of the distribution. That the function f inte-
grates to 1 is an immediate consequence of the definition of �(α). An r.v.
X taking on values in � and having p.d.f. f , given in (6.13), is said to be
gamma distributed with parameters α and β; one may choose the notation
X ∼ �(α, β) to express this fact.

The graph of f depends on α and β but is, of course, always concentrated
on (0, ∞). Typical cases for several values of the pair (α, β) are given in
Figures 6.5 and 6.6.

The gamma distribution derives its usefulness primarily from the fact
that it is widely used as a survival distribution, both for living organisms
(including humans) and for equipment. It is also successfully employed to
characterize the distribution of the size of claims submitted to an insur-
ance company by claimants, as well as waiting times between successive
occurrences of events following Poisson distribution. (See also Exercise 2.6
below.)
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Figure 6.5

Graphs of the p.d.f.
of gamma
distribution for
several values of
α, β.
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Figure 6.6

Graphs of the p.d.f.
of the gamma
distribution for
several values of
α, β.
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In all cases, gamma distribution provides great flexibility through its
two parameters α and β. For specific values of the pair (α, β), we obtain
negative exponential and chi-square distributions to be studied subse-
quently. By integration by parts, one may derive the following useful
recursive relation for the gamma function (see Exercise 2.1):

�(α) = (α − 1)�(α − 1). (6.14)

In particular, if α is an integer, repeated applications of recursive relation
(6.14) produce:

�(α) = (α − 1)(α − 2) . . . �(1).

But �(1) = ∫ ∞
0 e−y dy = 1, so that:

�(α) = (α − 1)(α − 2) . . . 1 = (α − 1)! (6.15)
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For later reference, we mention here (see also Exercise 2.22) that, by
integration, we obtain:

�

(
1
2

)
= √

π , (6.16)

and then, by means of this and the recursive formula (6.14), we can cal-
culate �( 3

2 ), �( 5
2 ), etc. Finally, by integration (see Exercises 2.2 and 2.3),

it is seen that:

PROPOSITION 4

EX = αβ, Var(X ) = αβ2 and MX (t) = 1
(1 − βt)α

, t <
1
β

. (6.17)

EXAMPLE 7 The lifetime of certain equipment is described by an r.v. X whose
distribution is gamma with parameters α = 2 and β = 1

3 , so that the
corresponding p.d.f. is f (x) = 9xe−3x, for x > 0. Determine the expected
lifetime, the variation around it, and the probability that the lifetime is
at least 1 unit of time.

DISCUSSION Since EX = αβ and Var(X ) = αβ2, we have here: EX = 2
3

and Var(X ) = 2
9 so that s.d. of X =

√
2

3 � 0.471. Also,

P(X > 1) =
∫ ∞

1
9xe−3x dx = 4

e3
� 0.199.

6.2.2 Negative Exponential Distribution

In (6.13), set α = 1 and β = 1
λ

(λ > 0) to obtain:

f (x) = λe−λx, x > 0, λ > 0. (6.18)

This is the so-called negative exponential distribution with parameter λ.
The graph of f depends on λ but, typically, looks as in Figure 6.7.

For an r.v. X having negative exponential distribution with parameter λ,
formula (6.17) gives:

EX = 1
λ

, Var(X ) = 1
λ2 , and MX (t) = 1

1 − t
λ

, t < λ. (6.19)

The expression EX = 1
λ

provides special significance for the parame-
ter λ: its inverse value is the mean of X . This fact also suggests the
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Figure 6.7

Graph of the
negative
exponential p.d.f.
with λ = 1.
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reparameterization of f ; namely, set 1
λ

= µ, in which case:

f (x) = 1
µ

e− x
µ , x > 0, EX = µ, Var(X ) = µ2, and

MX (t) = 1
1 − µt

, t <
1
µ

. (6.20)

From (6.18), one finds by a simple integration:

F(x) = 1 − e−λx, x > 0, so that P(X > x) = e−λx, x > 0. (6.21)

Negative exponential distribution is used routinely as a survival distri-
bution, describing the lifetime of a piece of equipment, etc., put in service
at what may be termed time zero. As such, it exhibits a lack of memory
property, which may not be desirable in this context. Namely, if one poses
the question, What is the probability that a piece of equipment will last
for t additional units of time, given that it has already survived s units
of time? the answer (by means of negative exponential distribution) is,
by (6.21):

P(X > s + t | X > s) = P(X > s + t, X > s)
P(X > s)

= P(X > s + t)
P(X > s)

= e−λ(s+t)

e−λs

= e−λt = P(X > t);

that is, P(X > s + t | X > s) = P(X > t) independent of s! Well, in real life,
used pieces of equipment do not exactly behave as brand-new ones! Finally,
it is to be mentioned that negative exponential distribution is the waiting
time distribution between the occurrence of any two successive events,
which occur according to Poisson distribution (see also Exercise 2.6 below).

By the fact that the negative exponential distribution involves one
parameter only is easier to handle than the gamma distribution, which
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involves two parameters. On the other hand, the latter provides more
flexibility and a better fit.

EXAMPLE 8 The lifetime of an automobile battery is described by an r.v. X having
negative exponential distribution with parameter λ = 1

3 . Then:

(i) Determine the expected lifetime of the battery and the variation
around this mean.

(ii) Calculate the probability that the lifetime will be between 2 and 4
time units.

(iii) If the battery has lasted for 3 time units, what is the (conditional)
probability that it will last for at least an additional time unit?

DISCUSSION
(i) Since EX = 1

λ
and Var(X ) = 1

λ2 , we have here: EX = 3, Var(X ) = 9,
and s.d. of X is equal to 3.

(ii) Since, by (6.21), F(x) = 1 − e− x
3 for x > 0, we have P(2 < X < 4) =

P(2 < X ≤ 4) = P(X ≤ 4) − P(X ≤ 2) = F(4) − F(2) = (1 − e− 4
3 ) − (1 −

e− 2
3 ) = e− 2

3 − e− 4
3 � 0.252.

(iii) The required probability is: P(X > 4 | X > 3) = P(X > 1), by the
memoryless property of this distribution, and P(X > 1) = 1 − P(X ≤
1) = 1 − F(1) = e− 1

3 � 0.716.

6.2.3 Chi-Square Distribution

In formula (6.13) , set α = r
2 for a positive integer r and β = 2 to obtain:

f (x) = 1
�

( r
2

)
2r/2

x(r/2)−1e−x/2, x > 0, r > 0 integer. (6.22)

The resulting distribution is known as chi-square distribution with r
degrees of freedom (d.f.). This distribution is used in certain statistical
inference problems involving point estimation of variances, confidence
intervals for variances, and testing hypotheses about variances. The nota-
tion used for an r.v. X having chi-square distribution with r d.f. is X ∼ χ2

r .
For such an r.v., formulas (6.17) then become:

EX = r, Var(X ) = 2r (both easy to remember) and

MX (t) = 1
(1 − 2t)r/2

, t <
1
2

. (6.23)

The shape of the graph of f depends on r and typically looks like Figure 6.8.
Later on (see Remark 5 in Chapter 10), it will be seen why r is referred

to as the number of d.f. of the distribution.
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Figure 6.8

Graph of the p.d.f. of
the chi-square
distribution for
several values of r .
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6.2.4 Normal Distribution

This is by far the most important distribution, in both probability and
statistics. The reason for this is twofold: First, many observations fol-
low to a very satisfactory degree a normal distribution (see, for instance,
Examples 12–14 in Chapter 1). The distribution of weights or heights of a
large human population, the distribution of yearly income of households
in a large (not stratified) community, the distribution of grades in a test
in a large class are some additional examples where normal distribution
is a good approximation.

Second, (almost) no matter what the underlying distribution of obser-
vations is, the sum of sufficiently many observations behaves pretty much
as if it were normally distributed, under very mild conditions. This second
property is referred to as normal approximation or as the Central Limit
Theorem and will be revisited later (see Section 12.2 in Chapter 12). The
p.d.f. of a normal distribution is given by:

f (x) = 1√
2πσ

e−(x−µ)2/2σ 2
, x ∈ �, µ ∈ �, σ > 0; (6.24)

µ and σ 2 (or σ ) are referred to as the parameters of the distribution. The
graph of f depends on µ and σ ; typical cases for µ = 1.5 and various
values of σ are given in Figure 6.9.

No matter what µ and σ are, the curve representing f attains its maxi-
mum at x = µ and this maximum is equal to 1/

√
2πσ ; is symmetric around

µ (i.e., f (µ − x) = f (µ + x)); and f (x) tends to 0 as x → ∞ or x → −∞.
All these observations follow immediately from formula (6.24). Also, they
lead to the general form of f depicted in Figure 6.9 for several values of
the pair (µ, σ ).

For µ = 0 and σ = 1, formula (6.24) is reduced to:

f (x) = 1√
2π

e−x 2/2, x ∈ �, (6.25)
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Figure 6.9

Graph of the p.d.f. of
normal distribution
with µ = 1.5 and
several Values of σ.
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and this is referred to as the standard normal distribution (see Figure 6.10
for its graph).

Figure 6.10

Graph of the p.d.f. of
standard normal
distribution.
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The fact that an r.v. X is normally distributed with parameters µ and σ 2

(or σ ) is conveniently denoted by: X ∼ N(µ, σ 2). In particular, X ∼ N(0, 1)
for µ = 0, σ = 1. We often use the notation Z for an N(0, 1)-distributed
r.v.

The d.f. of the N(0, 1) distribution is usually denoted by �; that is,
if Z ∼ N(0, 1), then:

P(Z ≤ x) = �(x) =
∫ x

−∞
1√
2π

e−t2/2 dt, x ∈ �. (6.26)

Calculations of probabilities of the form P(a < X < b) for −∞ ≤ a <
b ≤ ∞ are done through two steps: First, turn the r.v. X ∼ N(µ, σ 2) into
an N(0, 1)-distributed r.v., or, as we say, standardize it, as indicated in
Proposition 5 below, and then use available, normal tables. Finally, that



128 Chapter 6 Some Special Distributions

f (x) integrates to 1 is seen through a technique involving a double integral
and polar coordinates (see Exercise 2.21).

PROPOSITION 5 If X ∼ N(µ, σ 2), then Z = X−µ
σ

is ∼N(0, 1).

PROOF Indeed, for y ∈ �,

FZ(y) = P(Z ≤ y) = P
(

X − µ

σ
≤ y

)

= P(X ≤ µ + σy)

=
∫ µ+σy

−∞
1√
2πσ

e−(t−µ)2/2σ 2
dt.

Set t−µ
σ

= z, so that t = µ + σz with range from −∞ to y, and dt = σ dz,
to obtain:

FZ(y) =
∫ y

−∞
1√
2πσ

e−z 2/2σ dz

=
∫ y

−∞
1√
2π

e−z 2/2 dz, so that

fZ(y) = d
dy

FZ(y) = 1√
2π

e−y 2/2,

which is the p.d.f. of the N(0, 1) distribution. �
Thus, if X ∼ N(µ, σ 2) and a, b are as above, then:

P(a < X < b) = P
(

a − µ

σ
<

X − µ

σ
<

b − µ

σ

)
= P

(
a − µ

σ
< Z <

b − µ

σ

)

= �

(
b − µ

σ

)
− �

(
a − µ

σ

)
.

That is,

P(a < X < b) = �

(
b − µ

σ

)
− �

(
a − µ

σ

)
. (6.27)

Any other probabilities (involving intervals) can be found by way of
probability (6.26) by exploiting the symmetry (around 0) of the N(0, 1)
curve.
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Now, if Z ∼ N(0, 1), it is clear that EZ2n+1 = 0 for n = 0, 1, . . . ;
by integration by parts, the following recursive relation is also easily
established:

m2n = (2n − 1)m2n−2, where mk =
∫ ∞

−∞
xk 1√

2π
e−x 2/2 dx, (6.28)

from which it follows that EZ = 0 and EZ2 = 1, so that Var(Z ) = 1. (For
details, see Exercise 2.25.)

If X ∼ N(µ, σ 2), then Z = X−µ
σ

∼ N(0, 1), so that (by Propositions 1 and
2 in Chapter 5):

0 = EZ = EX
σ

− µ

σ
, 1 = Var(Z) = 1

σ 2 Var(X ), or EX = µ and

Var(X ) = σ 2.

In other words:

PROPOSITION 6

If X ∼ N(µ, σ 2), then EX = µ and Var(X ) = σ 2. (6.29)

In particular, EZ = 0 and Var(Z) = 1, where Z = X−µ
σ

∼ N(0, 1).

Thus, the parameters µ and σ 2 have specific interpretations: µ is the
mean of X , and σ 2 is its variance (so that σ is its s.d.).

If Z ∼ N(0, 1), it is seen from the normal tables that:

P(−1 < Z < 1) = 0.68269, P(−2 < Z < 2) = 0.95450, (6.30)

P(−3 < Z < 3) = 0.99730,

so that almost all of the probability mass lies within 3 standard deviations
from the mean. The same is true, by means of formula (6.27), applied with
a = µ − kσ and b = µ + kσ with k = 1, 2, 3 in case X ∼ N(µ, σ 2). That is:

P(µ − σ < X < µ + σ ) = 0.68269, P(µ − 2σ < X < µ + 2σ ) = 0.95450,

P(µ − 3σ < X < µ + 3σ ) = 0.99730.

(See also Figure 6.11 below.)
Finally, simple integration produces the m.g.f. of X (see also Exercise

2.23); namely,
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Figure 6.11

Probabilities within
one, two, and three
s.d.’s σ from the mean µ.

µ − 3σ µ − 2σ µ + σ µ + 2σ µ + 3σµ − σ µ

PROPOSITION 7

MX (t) = eµt+σ 2t2/2, t ∈ �, for X ∼ N(µ, σ 2);

MZ(t) = et2/2, t ∈ �, for Z ∼ N(0, 1).
(6.31)

Normal distribution is widely used in problems of statistical inference,
involving point estimation, interval estimation, and testing hypotheses.
Some instances where normal distribution is assumed as an appropriate
(approximate) underlying distribution are described in Examples 12–14 in
Chapter 1, as mentioned already.

EXAMPLE 9 Suppose that numerical grades in a statistics class are values of an r.v. X
which is (approximately) normally distributed with mean µ = 65 and s.d.
σ = 15. Furthermore, suppose that letter grades are assigned according to
the following rule: the student receives an A if X ≥ 85; B if 70 ≤ X < 85;
C if 55 ≤ X < 70; D if 45 ≤ X < 55; and F if X ≤ 45.
(i) If a student is chosen at random from that class, calculate the

probability that the student will earn a given letter grade.
(ii) Identify the expected proportions of letter grades to be assigned.
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DISCUSSION
(i) The student earns an A with probability P(X ≥ 85) = 1−P(X < 85) =

1−P(X ≤ 85) = 1−P(X − µ
σ

< 85 − 65
15 ) � 1−P(Z ≤ 1.34) � 1−�(1.34) =

1 − 0.909877 = 0.090123 � 0.09. Likewise, the student earns a B
with probability P(70 ≤ X < 85) = P( 70 − 65

15 ≤ X − µ
σ

< 85 − 65
15 ) �

P(0.34 ≤ Z < 1.34) � �(1.34) − �(0.34) = 0.909877 − 0.633072 =
0.276805 � 0.277. Similarly, the student earns a C with probability
P(55 ≤ X < 70) � �(0.34) + �(0.67) − 1 = 0.381643 � 0.382. The
student earns a D with probability P(45 ≤ X < 55) � �(1.34) −
�(0.67) = 0.161306 � 0.161, and the student is assigned an F with
probability P(X < 45) � �(−1.34) = 1 − �(1.34) = 0.09123 � 0.091.

(ii) The respective expected proportions for A, B, C, D, and F are about:
9%, 28%, 38%, 16%, and 9%.

Indeed, suppose there are n students, and let XA be the number of
those whose numerical grades are ≥85. By assuming that the n events that
the numerical grade of each one of the n students is ≥85 are independent,
we have that XA ∼ B(n, 0.09). Then, XA

n is the proportion of A grades, and
E( XA

n ) = 1
nn×0.09 = 0.09 = 9% is the expected proportion of A’s. Likewise

for the other grades.

Finally, here is an example of determination of the pth quantile of the
N(0, 1) distribution for some selected values of p.

EXAMPLE 10 If X ∼ N(0, 1), take p = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and
0.90 and determine the corresponding xp.

From the normal tables, we obtain: x0.10 = −x0.90 = −1.282, x0.20 =
−x0.80 = −0.842, x0.30 = −x0.70 = −0.524, x0.40 = −x0.60 = −0.253, and
x0.50 = 0.

This section concludes with a simple distribution, uniform (or rectan-
gular) distribution.

6.2.5 Uniform (or Rectangular) Distribution

Such a distribution is restricted to finite intervals between the parameters
α and β with −∞ < α < β < ∞, and its p.d.f. is given by:

f (x) = 1
β − α

, α ≤ x ≤ β (−∞ < α < β < ∞). (6.32)

Its graph is given in Figure 6.12, and it also justifies its name as
rectangular.

The term “uniform” is justified by the fact that intervals of equal length
in (α, β) are assigned the same probability regardless of their location.
The notation used for such a distribution is U(α, β) (or R(α, β)), and the
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fact that the r.v. X is distributed as such is denoted by X ∼ U(α, β) (or
X ∼ R(α, β)). Simple integrations give (see also Exercise 2.28 for the EX
and the Var(X)):

PROPOSITION 8

EX = α + β

2
, Var(X ) = (α − β)2

12
, and MX (t) = eβt − eαt

(β − α)t
, t ∈ �.

(6.33)

EXAMPLE 11 A bus is supposed to arrive at a given bus stop at 10:00 a.m., but the
actual time of arrival is an r.v. X which is uniformly distributed over the
16-minute interval from 9:52 to 10:08. If a passenger arrives at the bus
stop at exactly 9:50, what is the probability that the passenger will board
the bus no later than 10 minutes from the time of his or her arrival?

DISCUSSION The p.d.f. of X is f (x) = 1/16 for x ranging between 9:52
and 10:08, and 0 otherwise. The passenger will board the bus no later
than 10 minutes from the time of his or her arrival at the bus stop if
the bus arrives at the bus stop between 9:52 and 10:00 (as the passenger
will necessarily have to wait for 2 minutes, between 9:50 and 9:52). The
probability for the bus to arrive between 9:52 and 10:00 is 8/16 = 0.5.
This is the required probability.

For any 0 < p < 1, the pth quantile of the distribution is immediately
computed, as the following example indicates.

EXAMPLE 12 If X ∼ U(0, 1), take p = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and
0.90 and determine the corresponding xp.

Here F(x) = ∫ x
0 dt = x, 0 ≤ x ≤ 1. Therefore F(xp) = p gives xp = p.

REMARK: 4 As was the case in Remark 3, the same is true here;
namely, the first one or two moments of the distributions completely
determine the distribution itself.

Figure 6.12

Graph of the p.d.f. of
the U (α, β)
distribution.

x

b − a
1

f (x)

0 b  a
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Exercises

2.1 By using the definition of �(α) by (6.12) and integrating by parts,
show that: �(α) = (α − 1)�(α − 1), α > 1.

Hint: Use #13 in Table 6 in the Appendix, and formula (6.12).

2.2 Let the r.v. X have gamma distribution with parameters α and
β. Then:

(i) Show that EX = αβ, Var(X ) = αβ2.
(ii) As a special case of part (i), show that: If X has negative

exponential distribution with parameter λ, then EX = 1
λ
,

Var(X ) = 1
λ2 .

(iii) If X ∼ χ2
r , then EX = r, Var(X ) = 2r.

Hint: For part (i), use a suitable transformation first, and then
formula (6.12) and Exercise 2.1.

2.3 If the r.v. X is distributed as gamma with parameters α and β, then:
(i) Show that MX (t) = 1/(1 − βt)α, provided t < 1/β.

(ii) Use the m.g.f. to rederive the EX and the Var(X ).

Hint: For part (i), use formula (6.13).

2.4 Let X be an r.v. denoting the lifetime of a certain component of a
system, and suppose that X has negative exponential distribution
with parameter λ. Also, let g(x) be the cost of operating this piece of
equipment to time X = x.
(i) Compute the expected cost of operation over the lifetime of the

component under consideration, when:
(a) g(x) = cx, where c is a positive constant,
(b) g(x) = c(1 − 0.5e−αx), where α is a positive constant.

(ii) Specify the numerical values in part (i) when λ = 1/5, c = 2, and
α = 0.2.

Hint: For part (i), use Definition 2 in Chapter 5, and compute
the required expressions in terms of d, c, and λ.

2.5 If the r.v. X has negative exponential p.d.f. with parameter λ:
(i) Calculate the failure rate r(x) defined by r(x) = f (x)

1−F(x) , for x > 0,
where F is the d.f. of X .

(ii) Compute the (conditional) probability P(X > s + t|X > t) (s, t >
0), and comment on the result (see also the following rela-
tion (6.21)).

2.6 Suppose that certain events occur in time intervals of length t
according to Poisson distribution with parameter λt. Then show that
the waiting time between any two such successive occurrences of
events is an r.v. T which has negative exponential distribution with
parameter λ, by showing that P(T > t) = e−λt, t > 0.
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2.7 Let X be the r.v. denoting the number of particles arriving indepen-
dently at a detector at the average rate of 3 per second (so that,
by Exercise 2.6, we may assume that X ∼ P(λt) with λ = 3 and
t = 1), and let Y be the r.v. denoting the waiting time between two
successive arrivals.
Then compute:
(i) The probability that the first particle will arrive within 1 second.

(ii) Given that we have waited for 1 second since the arrival of the
last particle without a new arrival, what is the probability that
we have to wait for at least another second?

Hint: See Exercise 2.6.

2.8 Let X be an r.v. with p.d.f. f (x) = αβxβ−1e−αxβ
, for x > 0 (where the

parameters α and β are > 0). This is the so-called Weibull distri-
bution employed in describing the lifetime of living organisms or of
mechanical systems.

(i) Show that f is, indeed, a p.d.f.
(ii) For what values of the parameters does f become a negative

exponential p.d.f.?
(iii) Calculate the quantities EX, EX2, and Var(X ).

Hint: For part (i), observe that
∫ ∞

0 αβxβ−1e−αxβ
dx = ∫ ∞

0 e−αxβ ×
(αβxβ−1)dx = − ∫ ∞

0 de−αxβ = −e−αxβ |∞
0 = 1.

For part (iii), set αxβ = t, so that x = t1/β /α1/β , dx = (t
1
β
−1/βα1/β)dt

and 0 < t < ∞. Then:

EXn = 1
αn/β

∫ ∞

0
t( n

β
+1)−1e−tdt.

Then multiply and divide by the constant �( n
β

+ 1) and observe
that 1

�( n
β
+1) t

( n
β
+1)−1e−t (t > 0) is a gamma p.d.f. with parameters

n
β

+ 1 and 1.

2.9 In reference to Exercise 2.8, calculate:
(i) The failure rate r(x) = f (x)

1−F(x) , x > 0, where F is the d.f. of the
r.v. X .

(ii) The conditional probability P(X > s + t | X > s), s > 0, t > 0.
(iii) Compare the results in parts (i) and (ii) with the respective

results in Exercise 2.5.

2.10 (i) If X has negative exponential distribution with λ = 1, calculate
the pth quantile xp.

(ii) Use part (i) and Exercise 3.10 in Chapter 5 to determine yp

without calculations, where Y = eX .
(iii) What do parts (i) and (ii) become for p = 0.5?
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2.11 If � is the d.f. of the r.v. Z ∼ N(0, 1), use symmetry of the N(0, 1)
p.d.f. in order to show that:

(i) For 0 ≤ a < b, P(a < Z < b) = �(b) − �(a).
(ii) For a ≤ 0 < b, P(a < Z < b) = �(−a) + �(b) − 1.

(iii) For a ≤ b < 0, P(a < Z < b) = �(−a) − �(−b).
(iv) For c > 0, P(−c < Z < c) = 2�(c) − 1.

2.12 If the r.v. Z ∼ N(0, 1), use Exercise 2.11(iv) and the normal tables in
the appendix to verify that:

(i) P(−1 < Z < 1) = 0.68269.
(ii) P(−2 < Z < 2) = 0.9545.

(iii) P(−3 < Z < 3) = 0.9973.

2.13 (i) If the r.v. X is distributed as N(µ, σ 2), identify the constant c, in
terms of µ and σ , for which:

P(X < c) = 2 − 9P(X > c).

(ii) What is the numerical value of c for µ = 5 and σ = 2?

2.14 For any r.v. X with expectation µ and variance σ 2 (both finite), use
the Tchebichev inequality to determine a lower bound for the prob-
abilities P(|X − µ| < kσ ), for k = 1, 2, 3. Compare these bounds with
the respective probabilities when X ∼ N(µ, σ 2) (see Exercise 2.12
and comment following relation [6.30]).

2.15 The distribution of IQs of the people in a given group is approxi-
mated well by normal distribution with µ = 105 and σ = 20. What
proportion of the individuals in the group in question has an IQ:

(i) At least 50?
(ii) At most 80?

(iii) Between 95 and 125?

2.16 A certain manufacturing process produces light bulbs whose lifetime
(in hours) is an r.v. X distributed as normal with µ = 2,000 and
σ = 200. A light bulb is supposed to be defective if its lifetime is less
than 1,800. If 25 light bulbs are tested, what is the probability that
at most 15 of them are defective?

Hint: Use the required independence and the binomial distribu-
tion suitably. Just write down the correct formula.

2.17 A manufacturing process produces 1/2-inch ball bearings, which are
assumed to be satisfactory if their diameter lies in the interval 0.5 ±
0.0006 and defective otherwise. A day’s production is examined, and
it is found that the distribution of the actual diameters of the ball
bearings is approximately normal with µ = 0.5007 inch and σ =
0.0005 inch. What would you expect the proportion of defective ball
bearings to be equal to?
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Hint: Use the required independence and the binomial distribu-
tion suitably. Also, refer to the concluding part of the discussion
in Example 9.

2.18 Let f be the p.d.f. of the N(µ, σ 2) distribution. Then show that:
(i) f is symmetric about µ.

(ii) maxx∈�f (x) = 1/
√

2πσ .

2.19 (i) If X ∼ N(µ, σ 2) and 0 < p < 1, show that the pth quantile xp of
X is given by:
xp = µ + σ�−1(p).

(ii) Determine xp in terms of µ and σ for p = 0.25, 0.50, 0.75.

2.20 If f is the p.d.f. of the r.v. X ∼ N(µ, σ 2), show that the points x = µ±σ

are inflection points of f (x); i.e., f
′′
(µ ± σ ) = 0.

2.21 (i) Show that f (x) = 1√
2π

e− x 2
2 , x ∈ �, is a p.d.f.

(ii) Use part (i) in order to show that f (x) = 1√
2πσ

e− (x−µ)2

2σ2 , x ∈ � (µ ∈
�, σ > 0) is also a p.d.f.

Hint: Set I = 1√
2π

∫ ∞
−∞ e− x 2

2 dx and show that I2 = 1, by writing

I2 as a product of two integrals and then as a double integral; at
this point, use polar coordinates: x = r cos θ , y = r sin θ , 0 < r <
∞, 0 ≤ θ < 2π . Part (ii) is reduced to part (i) by letting x−µ

σ
= y.

2.22 Refer to the definition of �(α) by (6.12) and show that �( 1
2 ) = √

π .

Hint: Use the transformation y1/2 = t/
√

2, and observe that the
outcome is a multiple of the N(0, 1) p.d.f.

2.23 (i) If X ∼ N(0, 1), show that MX (t) = et2/2, t ∈ �.

(ii) If X ∼ N(µ, σ 2), use part (i) to show that MX (t) = eµt+ σ2t2
2 , t ∈ �.

(iii) Employ the m.g.f. in part (ii) in order to show that EX = µ and
Var(X ) = σ 2.

Hint: For part (i), complete the square in the exponent, and for
part (ii), set Z = (X −µ)/σ and apply property (5.12) in Chapter 5.

2.24 If the r.v. X has m.g.f. MX (t) = eαt+βt2
, where α ∈ � and β > 0,

identify the distribution of X .

Hint: Just go through the list of m.g.f.’s given in Table 5 in the
Appendix, and then use Theorem 1 in Chapter 5.

2.25 If X ∼ N(0, 1), show that:
(i) EX2n+1 = 0 and EX2n = (2n)!

2n(n!) , n = 0, 1, . . .
(ii) From part (i), derive that EX = 0 and Var(X ) = 1.
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(iii) Employ part (ii) in order to show that, if X ∼ N(µ, σ 2), then
EX = µ and Var(X ) = σ 2.

Hint: For part (i), that EX2n+1 = 0 follows by the fact that
the integrand is an odd function. For EX2n, establish a recursive
relation, integrating by parts, and then multiply out the result-
ing recursive relations to find an expression for EX2n. The final
form follows by simple manipulations. For part (iii), recall that
X ∼ N(µ, σ 2) implies X−µ

σ
∼ N(0, 1).

2.26 Let X be an r.v. with moments given by:

EX2n+1 = 0, EX2n = (2n)!
2n(n!) , n = 0, 1, . . .

(i) Use Exercise 1.17 in Chapter 5 in order to express the m.g.f. of
X in terms of the moments given.

(ii) From part (i) and Exercise 2.23(i) here, conclude that X∼
N(0, 1).

2.27 If the r.v. X is distributed as U(−α, α) (α > 0), determine the
parameter α, so that each of the following equalities holds:
(i) P(−1 < X < 2) = 0.75.

(ii) P(|X | < 1) = P(|X | > 2).

2.28 If X ∼ U(α, β), show that EX = α+β
2 , Var(X ) = (α−β)2

12 .

2.29 If the r.v. X is distributed as U(0, 1), compute the expectations:
(i) E(3X 2 − 7X + 2).

(ii) E(2eX ).

Hint: Use Definition 2 in Chapter 5.

2.30 The number of customers arriving at a service counter in a super-
market in a 5-minute period is an r.v. X which has Poisson
distribution with mean 0.2.
(i) What is the probability that the number of arrivals in a given

5-minute period will not exceed 1?
(ii) It is known that the waiting time between two successive arrivals

is a r.v. Y having negative exponential distribution with param-
eter λ = 0.2

5 = 0.4 (see Exercise 2.6 above). On the basis of
this, what is the probability that the waiting time between two
successive arrivals is more than 5 minutes?

Hint: For part (ii), see Exercise 2.6 in this chapter.

2.31 The amount paid by an insurance company to a policyholder is an
r.v. X uniformly distributed over the interval (0, α) (α > 0), so that
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EX = α/2. With the introduction of a deductible d (0 < d < α), the
amount paid is an r.v. Y defined by Y = 0 if 0 ≤ X ≤ d, and Y = X −d
if d < X ≤ α.

(i) Determine the EY in terms of α and d.
(ii) If we wish that EY = cEX for some 0 < c < 1, express d in

terms of c and α.
(iii) For c = 1/4, express d in terms of α.

Hint: It may be helpful to write Y as an indicator function of the
suitable interval of values of X . Also, for part (i), use Proposition
1(i) in Chapter 5.

2.32 The lifetime of a certain new piece of equipment is an r.v. X having
negative exponential distribution with mean µ (i.e., its p.d.f. is given
by: f (x) = µ−1e−x/µ, x > 0), and it costs $C. The accompanying
guarantee provides for a full refund, if the equipment fails within
the (0, µ/2] time interval, and one-half refund if it fails within the
(µ/2, µ] time interval.
(i) In terms of µ and C, compute the expected amount to be paid

as a refund by selling one piece of equipment.
(ii) What is the numerical value in part (i) for C = $2,400?

Hint: Introduce an r.v. Y expressing the refund provided, depend-
ing on the behavior of X , and then compute the EY .

2.33 The lifetime of a certain new equipment is an r.v. X with p.d.f. given
by: f (x) = c/x3, x > c (c > 0).

(i) Determine the constant c.
(ii) Determine the median m of X .

Suppose the company selling the equipment provides a reim-
bursement should the equipment fail, described by the r.v. Y
defined as follows: Y = m − X when c < X < m, and Y = 0
otherwise (i.e., when X ≤ c or X ≥ m), or Y = (m − X)I(c, m)(X).

(iii) Determine the p.d.f. of Y , fY .

Hint: Observe that P(Y = 0) = P(X < c, or X > m) =
P(X > m) = 1/2, and that c < X < m if and only if
0 < Y < m − c. Then, for 0 < y < m − c, determine the
d.f. FY , and by differentiation, the p.d.f. fY .

(iv) Check that
∫ m−c

0 fY (y)dy = 1/2.
(v) Determine the EY .

Hint: Observe that EY = (0 × 1
2 ) + ∫ m−c

0 yfY (y)dy =
∫ m−c

0 yfY (y)dy.
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2.34 The size of certain claims submitted to an insurance company is an
r.v. X having negative exponential distribution; that is, f (x) = λe−λx,
x > 0.

(i) Find the median m of the claim sizes in terms of λ, and its
numerical value for λ = 0.005.

(ii) If the maximum amount reimbursed by the insurance company
is M, determine the actual distribution of the claim sizes in
terms of λ and M.

(iii) Find the precise expression of the p.d.f. in part (ii) for λ = 0.005
and M = 200.

Hint: The actual claim is an r.v. Y , where Y = X if X < M, and
Y = M if X ≥ M.

2.35 Refer to Exercise 2.34, and consider the r.v. Y given in the Hint of
that exercise.
(i) By means of the result in part (ii) of Exercise 2.34, compute the

EY in terms of M.
(ii) Find the numerical value of EY for λ = 0.005 and M = 200.



7
Joint Probability Density
Function of Two Random
Variables and Related
Quantities

A brief description of the material discussed in this chapter is as follows.
In the first section, two r.v.’s are considered and the concepts of their
joint probability distribution, joint d.f., and joint p.d.f. are defined. The
basic properties of the joint d.f. are given, and a number of illustrative
examples are provided. On the basis of a joint d.f., marginal d.f.’s are
defined. Also, through a joint p.d.f., marginal and conditional p.d.f.’s are
defined, and illustrative examples are supplied. By means of conditional
p.d.f.’s, conditional expectations and conditional variances are defined and
are applied to some examples. These things are done in the second section
of the chapter.

7.1 Joint d.f. and Joint p.d.f. of Two Random Variables

In carrying out a random experiment, we are often interested simulta-
neously in two outcomes rather than one. Then with each one of these
outcomes an r.v. is associated, and thus we are furnished with two r.v.’s,

140
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or a 2-dimensional random vector. Let us denote by (X , Y ) the two rele-
vant r.v.’s or the 2-dimensional random vector. Here are some examples
in which two r.v.’s arise in a natural way. The pair of r.v.’s (X , Y ) denote,
respectively, the SAT and GPA scores of a student chosen at random from a
specified student population; the number of customers waiting for service
in two lines in your local favorite bank; the days of a given year that
the Dow Jones averages closed with a gain and the corresponding gains;
the number of hours a student spends daily for studying and for other
activities; the weight and the height of an individual chosen at random
from a targeted population; the amount of fertilizer used and the yield of
a certain agricultural commodity; the lifetimes of two components used
in an electronic system; the dosage of a drug used for treating a certain
allergy and the number of days a patient enjoys relief.

We are going to restrict ourselves to the case where both X and Y
are either discrete or of the continuous type. The concepts of probability
distribution, distribution function, and probability density function are
defined by a straightforward generalization of the definition of these con-
cepts in Section 3.3 of Chapter 3. Thus, the joint probability distribution
of (X , Y ), to be denoted by PX ,Y , is defined by PX ,Y (B) = P[(X , Y ) ∈ B],
B ⊆ �2 = � × �, the 2-dimensional Euclidean space, the plane. (See
Figure 7.1.)

Figure 7.1

Event A is mapped
onto B under (X, Y );
i.e., A = {s ∈ S;
(X(s), Y (s)) ∈ B}
and PX,Y (B) =
P (A).

B
A

x

y

(X,Y)

In particular, by taking B = (−∞, x]×(−∞, y], we obtain the joint d.f. of
X , Y , to be denoted by FX ,Y ; namely, FX ,Y (x, y) = P(X ≤ x, Y ≤ y), x, y ∈ �.
(See Figure 7.2.)
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Figure 7.2

Event A is mapped
onto [−∞,x]×
[−∞,y]; that is,
A = {s ∈ S; X(s)
≤ x,Y (s) ≤ y}, and
FX,Y (x,y) = P (A).

x

y

(X,Y )
(X,Y )

A

More formally, we have the following definition.

DEFINITION 1

(i) The joint probability distribution (or just joint distribution) of
the pair of r.v.’s (X , Y ) is a set function which assigns values to
subsets B of �2 = � × � according to the formula

P[(X , Y ) ∈ B] = P({s ∈ S; (X(s), Y (s)) ∈ B}), B ⊆ �2; (7.1)

the value assigned to B is denoted by PX ,Y (B).
(ii) By taking B to be a rectangle of the form (−∞, x]× (−∞, y]; that

is, B = (−∞, x] × (−∞, y], relation (7.1) becomes

P[(X , Y ) ∈ (−∞, x] × (−∞, y]] = P({s ∈ S; X(s) ≤ x, Y (s) ≤ y})
= P(X ≤ x, Y ≤ y),

and it defines a function on the plane �2 denoted by FX ,Y and
called the joint distribution function (d.f.) of X and Y .

REMARK: 1

(i) The joint distribution of the r.v.’s X , Y , PX ,Y , is a set function defined
on subsets of the plane �2, and it is seen to be a probability function
(see Exercise 3.23 in Chapter 3).

(ii) From Definition 1, it follows that if we know PX ,Y , then we can deter-
mine FX ,Y . The converse is also true, but its proof is beyond the
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scope of this book. However, it does provide a motivation for our being
occupied with it, since what we are really interested in is PX ,Y .

The d.f. FX ,Y has properties similar to the ones mentioned in the case
of a single r.v.; namely:

PROPOSITION 1 The joint d.f. of the r.v.’s X , Y , FX ,Y , has the
following properties:

(i) 0 ≤ FX ,Y (x, y) ≤ 1 for all x, y ∈ �.
Whereas it is clearly still true that x1 ≤ x2 and y1 ≤ y2 imply
FX ,Y (x1, y1) ≤ FX ,Y (x2, y2), property (ii) in the case of a single r.v.
may be restated as follows:

(ii) The variation of FX ,Y over rectangles with sides parallel to the axes,
given in Figure 7.3, is ≥ 0.

(iii) FX ,Y is continuous from the right (right-continuous); that is, if xn ↓ x
and yn ↓ y, then FX ,Y (xn, yn) → FX ,Y (x, y) as n → ∞.

(iv) FX ,Y (+∞, +∞) = 1 and FX ,Y (−∞, −∞) = FX ,Y (−∞, y) =
FX ,Y (x, −∞) = 0 for any x, y ∈ �, where, of course, FX ,Y (+∞, +∞)
is defined to be the limn→∞ FX ,Y (xn, yn) as xn ↑ ∞ and yn ↑ ∞, and
similarly for the remaining cases.

Property (i) is immediate, and property (ii) follows by the fact that the
variation of FX ,Y as described is simply the probability that the pair
(X , Y ) lies in the rectangle of Figure 7.3, or, more precisely, the probability
P(x1 < X ≤ x2, y1 < Y ≤ y2), which, of course, is ≥ 0; the justification of
properties (iii) and (iv) is based on Theorem 2 in Chapter 3.

Figure 7.3

The variation of
FX,Y over the
rectangle is
FX,Y (x1, y1) +
FX,Y (x2, y2) −
FX,Y (x1, y2) −
FX,Y (x2, y1).

x

y

y2

y1

x1 x20

(x1, y1)

(x1, y2)
(x2, y2)

(x2, y1)
+

− +

−

Now, suppose that the r.v.’s X and Y are discrete and take on the val-
ues xi and yj, i, j ≥ 1, respectively. Then the joint p.d.f. of X and Y ,
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to be denoted by fX ,Y , is defined by fX ,Y (xi, yj) = P(X = xi, Y = yj) and
fX ,Y (x, y) = 0 when (x, y) 
= (xi, yj) (i.e., at least one of x or y is not equal
to xi or yj, respectively). It is then immediate that for B⊆�2,P[(X ,Y )∈
B]=∑

(xi,yj)∈B fX ,Y (xi,yj), and, in particular,
∑

(xi,yj)∈�2 fX ,Y (xi, yj) = 1, and
FX ,Y (x, y) = ∑

xi≤x,yj≤y fX ,Y (xi, yj). More formally, we have the following
definition and result.

DEFINITION 2
Let X and Y be two (discrete) r.v.’s taking on the values xi
and yj (finite or infinitely many) with respective probabilities
P(X = xi, Y = yj), i, j ≥ 1. Define the function fX ,Y (x, y) as follows:

fX ,Y (x, y) =
{

P(X = xi, Y = yj) if x = xi and y = yj, i, j ≥ 1
0 otherwise.

(7.2)

The function fX ,Y is called the joint probability density function ( joint
p.d.f.) of the r.v.’s X and Y .

The following properties are immediate from the definition.

PROPOSITION 2 Let fX ,Y be as in Definition 2. Then:

(i) fX ,Y (x, y) ≥ 0 for all x, y ∈ �.
(ii) For any B ⊆ �2, P[(X , Y ) ∈ B] = ∑

(xi,yj)∈B fX ,Y (xi, yj).
(iii) In particular,

FX ,Y (x, y) =
∑

xi≤x

∑

yj≤y

fX ,Y (xi, yj), and
∑

xi∈�

∑

yj∈�
fX ,Y (xi, yj) = 1.

Consider the following illustrative example.

EXAMPLE 1 The number of customers lining up for service in front of two windows
in your local bank are r.v.’s X and Y , and suppose that the r.v.’s X and Y
take on four values only, 0, 1, 2, 3, with joint probabilities fX ,Y expressed
best in a matrix form as in Table 7.1.

There are many questions which can be posed. Some of them are:
(i) For x = 2 and y = 1, compute the FX ,Y (2, 1).

(ii) Compute the probability P(2 ≤ X ≤ 3, 0 ≤ Y ≤ 2).

DISCUSSION

(i) FX ,Y (x, y) = FX ,Y (2, 1) = ∑
u≤2,v≤1 fX ,Y (u, v) = fX ,Y (0, 0) + fX ,Y (0, 1) +

fX ,Y (1, 0) + fX ,Y (1, 1) + fX ,Y (2, 0) + fX ,Y (2, 1) = 0.05 + 0.20 + 0.21 +
0.26 + 0 + 0.08 = 0.80; also,
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Table 7.1

Joint distribution of the
r.v.’s X and Y.

y/x 0 1 2 3 Totals

0 0.05 0.21 0 0 0.26
1 0.20 0.26 0.08 0 0.54
2 0 0.06 0.07 0.02 0.15
3 0 0 0.03 0.02 0.05
Totals 0.25 0.53 0.18 0.04 1

(ii) P(2 ≤ X ≤ 3, 0 ≤ Y ≤ 2) = fX ,Y (2, 0) + fX ,Y (2, 1) + fX ,Y (2, 2) +
fX ,Y (3, 0)+ fX ,Y (3, 1)+ fX ,Y (3, 2) = 0+0.08+0.07+0+0+0.02 = 0.17.

Now, suppose that both X and Y are of the continuous type, and,
indeed, a little bit more; namely, there exists a nonnegative func-
tion fX ,Y defined on �2 such that, for all x and y in �: FX ,Y (x, y) =∫ y
−∞

∫ x
−∞ fX ,Y (s, t) ds dt. Then for B ⊆ �2 (interpret B as a familiar geomet-

ric figure in �2): P[(X , Y ) ∈ B] = ∫
B

∫
fX ,Y (x, y) dx dy, and, in particular,∫ ∞

−∞
∫ ∞
−∞ fX ,Y (x, y) dx dy = 1. The function fX ,Y is called the joint p.d.f.

of X and Y . Analogously to the case of a single r.v., the relationship
∂2

∂x ∂yFX ,Y (x, y) = fX ,Y (x, y) holds true (for continuity points (x, y) of fX ,Y ),
so that not only does the joint p.d.f. determine the joint d.f. through an
integration process, but the converse is also true; that is, the joint d.f.
determines the joint p.d.f. through differentiation. Again, as in the case
of a single r.v., P(X = x, Y = y) = 0 for all x, y ∈ �.

Summarizing these things in the form of a definition and a proposition,
we have

DEFINITION 3
Let X and Y be two r.v.’s of the continuous type, and suppose there
exists a function fX ,Y such that:

fX ,Y (x, y) ≥ 0 for all x, y ∈ �,
and

P[(X , Y ) ∈ B] = ∫
B

∫
fX ,Y (x, y)dxdy, B ⊆ �2.

(7.3)

The function fX ,Y is called the joint probability density function ( joint
p.d.f.) of the r.v.’s X and Y .

From the above definition and familiar results from calculus, we have:

PROPOSITION 3 Let fX ,Y be as in Definition 3. Then:

(i) FX ,Y (x, y) = ∫ y
−∞

∫ x
−∞ fX ,Y (u, v)dudv for all x, y ∈ � (by taking B =

(−∞, x] × (−∞, x] in (7.3)).
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(ii)
∫
�

∫
� fX ,Y (x, y)dxdy = ∫ ∞

−∞
∫ ∞
−∞ fX ,Y (x, y)dxdy = 1 (by taking B = � ×

� = �2 in (7.3)).
(iii) ∂2

∂x∂yFX ,Y (x, y) = fX ,Y (x, y) (for all x and y in � which are continuity
points of fX ,Y ).

Example 10 in Chapter 2 provides an example of two r.v.’s of the
continuous type, where X and Y are the coordinates of the point of impact.

REMARK: 2

(i) As was the case in a single r.v., it happens here also that calculation of
probabilities is reduced either to a summation (for the discrete case)
(see Proposition 2(ii)) or to an integration (for the continuous case)
(see relation (7.3)).

(ii) Also, given a function FX ,Y which satisfies properties (i)–(iv) in Propo-
sition 1, one can always construct a pair if r.v.’s X , Y whose joint d.f.
FX ,Y (x, y) = F(x, y) for all x, y ∈ �.

(iii) The above discussion raises the question:
When is a function fX ,Y the joint p.d.f. of two r.v.’s X and Y?
The answer is this: First, fX ,Y (x, y) must be ≥ 0 for all x, y ∈ �;
and second,

∑
xi

∑
yj

f (xi, yj) = 1 for the discrete case, and
∫ ∞
−∞

∫ ∞
−∞ f (x, y)dxdy = 1 for the continuous case.

This section concludes with three illustrative examples.

EXAMPLE 2 Let the r.v.’s X and Y have the joint p.d.f. fX ,Y (x, y) = λ1λ2e−λ1x−λ2y, x, y >
0, λ1, λ2 > 0. For example, X and Y may represent the lifetimes of two
components in an electronic system. Derive the joint d.f. FX ,Y .

DISCUSSION The corresponding joint d.f. is: FX ,Y (x, y) = ∫ y
0

∫ x
0 λ1λ2 ×

e−λ1s−λ2t ds dt = ∫ y
0 λ2e−λ2t(

∫ x
0 λ1e−λ1s ds)dt = ∫ y

0 λ2e−λ2t (1 − e−λ1x)dt =
(1 − e−λ1x)(1 − e−λ2y) for x > 0, y > 0, and 0 otherwise. That is,

FX ,Y (x, y) = (1 − e−λ1x)(1 − e−λ2y), x > 0, y > 0,

and FX ,Y (x, y) = 0 otherwise. (7.4)

EXAMPLE 3 If the function FX ,Y given by:

FX ,Y (x, y) = 1
16

xy(x + y), 0 ≤ x ≤ 2, 0 ≤ y ≤ 2,

is the joint d.f. of the r.v.’s X and Y , then:
(i) Determine the corresponding joint p.d.f. fX ,Y .

(ii) Verify that fX ,Y found in part (ii) is, indeed, a p.d.f.
(iii) Calculate the probability P(0 ≤ X ≤ 1, 1 ≤ Y ≤ 2).
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DISCUSSION

(i) For 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2, fX ,Y (x, y) = ∂2

∂x∂y ( 1
16xy (x + y)) =

1
16

∂2

∂x∂y (x2y + xy2) = 1
16

∂
∂y

∂
∂x (x2y+xy2) = 1

16
∂
∂y (2xy+y2) = 1

16 (2x+2y) =
1
8 (x + y); that is, fX ,Y (x, y) = 1

8 (x + y), 0 ≤ x ≤ 2, 0 ≤ y ≤ 2. For (x, y)
outside the rectangle [0, 2] × [0, 2], fX ,Y is 0, since FX ,Y is constantly
either 0 or 1.

(ii) Since fX ,Y is nonnegative, all we have to show is that it integrates
to 1. In fact,

∫ ∞

−∞

∫ ∞

−∞
fX ,Y (x, y) dx dy =

∫ 2

0

∫ 2

0

1
8

(x + y) dx dy

= 1
8

( ∫ 2

0

∫ 2

0
x dx dy +

∫ 2

0

∫ 2

0
y dx dy

)

= 1
8

(2 × 2 + 2 × 2)

= 1.

(iii) Here, P(0 ≤ X ≤ 1, 1 ≤ Y ≤ 2) = ∫ 2
1

∫ 1
0

1
8 (x + y)dx dy =

1
8

[∫ 2
1

(∫ 1
0 x dx

)
dy + ∫ 2

1

(
y
∫ 1

0 dx
)

dy
]

= 1
8 (1

2 × 1 + 1 × 3
2 ) = 1

4 .

EXAMPLE 4 It is known that tire pressure in an automobile improves (up to a certain
point) the mileage efficiency in terms of fuel. For an automobile chosen
at random, let the r.v.’s X and Y stand for tire pressure and mileage rate,
and suppose that their joint p.d.f. fX ,Y is given by fX ,Y (x, y) = cx2y for
0 < x2 ≤ y < 1, X > 0 (and 0 otherwise):
(i) Determine the constant c, so that fX ,Y is a p.d.f.

(ii) Calculate the probability P(0 < X < 3
4 , 1

4 ≤ Y < 1).

DISCUSSION

(i) Clearly, for the function to be nonnegative, c must be >0. The actual
value of c will be determined through the relationship below for x > 0:

∫ ∫

{(x,y);0<x2≤y<1}
cx2ydxdy = 1.

The region over which the p.d.f. is positive is the shaded region
in Figure 7.4, determined by a branch of the parabola y = x2, the
y-axis, and the line segment connecting the points (0, 1) and (1, 1).
Since for each fixed x with 0 < x < 1, y ranges from x2 to 1,
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Figure 7.4

Range of the pair
(x, y).

0 1

1 (1, 1)

y = x2

(x, y)

x
x

y

y

we have:
∫∫

{x2≤y<1} cx2y dx dy = c
∫ 1

0 (x2 ∫ 1
x2 y dy) dx = c

2

∫ 1
0 x2(1−x4)dx =

c
2 (1

3 − 1
7 ) = 2c

21 = 1 and c = 21
2 .

(ii) Since y = x2 = 1
4 for x = 1

2 , it follows that for each x with 0 < x ≤ 1
2 ,

the range of y is from 1
4 to 1; on the other hand, for each x with

1
2 < x ≤ 3

4 , the range of y is from x2 to 1 (see Figure 7.5).

Thus,

P
(

0<X ≤ 3
4

,
1
4

≤Y<1
)

=c
∫ 1

2

0

∫ 1

1
4

x2ydydx+c
∫ 3

4

1
2

∫ 1

x2
x2ydydx

=c
∫ 1

2

0

(
x2

∫ 1

1
4

ydy
)

dx+c
∫ 3

4

1
2

(
x2

∫ 1

x2
ydy

)
dx

Figure 7.5

Diagram facilitating
integration.

y

1

1/4

(1, 1)

0 1/2 3/4 1
x
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= c
2

∫ 1
2

0
x2

(
1− 1

16

)
dx+ c

2

∫ 3
4

1
2

x2(1−x4)dx

= 15c
3×28 + 38c

3×28 − 2,059c
7×215

=c× 41,311
21×215

= 21
2

× 41,311
21×215

= 41,311
216 = 41,311

65,536
�0.63.

Exercises

1.1 Let X and Y be r.v.’s denoting the number of cars and buses, respec-
tively, lined up at a stoplight at a given point in time, and suppose
their joint p.d.f. is given by the following table:

y \ x 0 1 2 3 4 5

0 0.025 0.050 0.125 0.150 0.100 0.050
1 0.015 0.030 0.075 0.090 0.060 0.030
2 0.010 0.020 0.050 0.060 0.040 0.020

Calculate the following probabilities:
(i) There are exactly 4 cars and no buses.

(ii) There are exactly 5 cars.
(iii) There is exactly 1 bus.
(iv) There are at most 3 cars and at least 1 bus.

1.2 In a sociological project, families with 0, 1, and 2 children are stud-
ied. Suppose that the numbers of children occur with the following
frequencies:

0 children: 30%; 1 child: 40%; 2 children: 30%.

A family is chosen at random from the target population, and let X
and Y be the r.v.’s denoting the number of children in the family
and the number of boys among those children, respectively. Finally,
suppose that P(observing a boy) = P(observing a girl) = 0.5.
Calculate the joint p.d.f. fX ,Y (x, y) = P(X = x, Y = y), 0 ≤ y ≤ x,
x = 0, 1, 2.

Hint: Tabulate the joint probabilities as indicated below by
utilizing the formula:

P(X = x, Y = y) = P(Y = y | X = x)P(X = x).
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y \ x 0 1 2

0
1
2

1.3 If the r.v.’s X and Y have the joint p.d.f. given by:

fX ,Y (x, y) = x + y, 0 < x < 1, 0 < y < 1,

calculate the probability P(X < Y ).

Hint: Can you guess the answer without doing any calculations?

1.4 The r.v.’s X and Y have the joint p.d.f. fX ,Y given by:

fX ,Y (x, y) = 6
7

(
x2 + xy

2

)
, 0 < x ≤ 1, 0 < y ≤ 2.

(i) Show that fX ,Y is, indeed, a p.d.f.
(ii) Calculate the probability P(X > Y ).

1.5 The r.v.’s X and Y have the joint p.d.f. fX ,Y (x, y) = e−x−y, x > 0, y > 0.
(i) Calculate the probability P(X ≤ Y ≤ c), in terms of c, for some

c > 0.
(ii) Find the numerical value in part (i) for c = log 2, where log is,

as always, the natural logarithm.

Hint: The integration may be facilitated in part (i) by drawing
the picture of the set for which x ≤ y.

1.6 If the r.v.’s X and Y have the joint p.d.f. fX ,Y (x, y) = e−x−y, for x > 0
and y > 0, compute the following probabilities:

(i) P(X ≤ x); (ii) P(Y ≤ y); (iii) P(X < Y ); (iv) P(X + Y ≤ 3).

Hint: For part (iii), draw the picture of the set for which 0 <
x < y, and for part (iv), draw the picture of the set for which
0 < x + y ≤ 3.

1.7 Let X and Y be r.v.’s jointly distributed with p.d.f. fX ,Y (x, y) = 2/c2,
for 0 < x ≤ y < c.
Determine the constant c.

Hint: Draw the picture of the set for which 0 < x ≤ y < c.

1.8 The r.v.’s X and Y have the joint p.d.f. fX ,Y given by:

fX ,Y (x, y) = cye−xy/2, 0 < y < x.

Determine the constant c.



Exercises 151

Hint: Draw the picture of the set for which x > y > 0.

1.9 The joint p.d.f. of the r.v.’s X and Y is given by:

fX ,Y (x, y) = xy2, 0 < x ≤ c1, 0 < y ≤ c2.

Determine the condition that c1 and c2 must satisfy so that fX ,Y is,
indeed, a p.d.f.

Hint: All that can be done here is to find a relation that c1 and
c2 satisfy; c1 and c2 cannot be determined separately.

1.10 The joint p.d.f. of the r.v.’s X and Y is given by:

fX ,Y (x, y) = cx, x > 0, y > 0, 1 ≤ x + y < 2 (c > 0).

Determine the constant c.

Hint: The following diagram, Figure 7.6, should facilitate the
calculations. The range of the pair (x, y) is the shadowed area.

Figure 7.6

The shaded area is
the set of pairs (x,y)
for which x > 0,
y > 0 and
1 < x + y < 2.

2

1

0 1 2x x

y = 2 − x

y = 1 − x

y = 2 − x

x + y = 1

x + y = 2

1.11 The r.v.’s X and Y have joint p.d.f. fX ,Y given by:

fX ,Y (x, y) = c(y2 − x2)e−y, −y < x < y, 0 < y < ∞.

Determine the constant c.

Hint: We have that
∫ ∞

0 y e−ydy = 1, and the remaining integrals
are computed recursively.
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1.12 Let X and Y be r.v.’s jointly uniformly distributed over the triangle
OAC (see Figure 7.7), and let U = X2 + Y 2 be the square distance
of the point (X , Y ) in said triangle.
(i) Compute the EU in terms of C (without finding the p.d.f. of U).

(ii) Find the numerical value of EU for C = 1.

Figure 7.7

The triangle OAC is
the area over which
the pair of r.v.’s
(X,Y ) is distributed
uniformly.

0 C

C A

7.2 Marginal and Conditional p.d.f.’s, Conditional Expectation, and Variance

In the case of two r.v.’s with joint d.f. FX ,Y and joint p.d.f. fX ,Y , we may
define quantities that were not available in the case of a single r.v. These
quantities are marginal d.f.’s and p.d.f.’s, conditional p.d.f.’s, and con-
ditional expectations and variances. To this end, consider the joint d.f.
FX ,Y (x, y) = P(X ≤ x, Y ≤ y), and let y → ∞. Then we obtain FX ,Y (x, ∞) =
P(X ≤ x, Y < ∞) = P(X ≤ x) = FX (x); thus, FX (x) = FX ,Y (x, ∞), and
likewise, FY (y) = FX ,Y (∞, y). That is, the d.f.’s of the r.v.’s X and Y
are obtained from their joint d.f. by eliminating one of the variables x
or y through a limiting process. The d.f.’s FX and FY are referred to as
marginal d.f.’s. If the r.v.’s X and Y are discrete with joint p.d.f. fX ,Y ,
then P(X = xi) = P(X = xi, −∞ < Y < ∞) = ∑

yj∈� fX ,Y (xi, yj); that
is, fX (xi) = ∑

yj∈� fX ,Y (xi, yj), and likewise, fY (yj) = ∑
xi∈� fX ,Y (xi, yj).

Because of this marginalization process, the p.d.f.’s of the r.v.’s. X and Y ,
fX and fY , are referred to as marginal p.d.f.’s. In the continuous case,
fX and fY are obtained by integrating out the “superfluous” variables;
i.e., fX (x) = ∫ ∞

−∞ fX ,Y (x, y)dy and fY (y) = ∫ ∞
−∞ fX ,Y (x, y)dx. The marginal

fX is, indeed, the p.d.f. of X because P(X ≤ x) = P(X ≤ x, −∞ < Y <
∞) = ∫ x

−∞
∫ ∞
−∞ fX ,Y (s, t)dt ds = ∫ x

−∞[∫ ∞
−∞ fX ,Y (s, t)dt] ds = ∫ x

−∞ fX (s)ds; that
is, FX (x) = P(X ≤ x) = ∫ x

−∞ fX (s)ds, so that d
dxFX (x) = fX (x), and likewise,

d
dyFY (y) = fY (y) (for continuity points x and y of fX and fY , respectively).
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Summarizing these things in the form of a definition, we have then:

DEFINITION 4

(i) Let FX ,Y be the joint d.f. of the r.v.’s X and Y . Then:

FX (x) = FX ,Y (x, ∞) = lim
y→∞ FX ,Y (x, y),

FY (y) = FX ,Y (∞, y) = lim
x→∞ FX ,Y (x, y)

(7.5)

are called marginal d.f.’s of FX ,Y , and they are the d.f.’s of the
r.v.’s X and Y , respectively.

(ii) Let fX ,Y be the joint p.d.f. of the r.v.’s X and Y . For the discrete
and the continuous case, set, respectively,

fX (xi) = ∑
yj∈� fX ,Y (xi, yj), fY (yj) = ∑

xi∈� fX ,Y (xi, yj),

fX (x) = ∫ ∞
−∞ fX ,Y (x, y)dy, fY (y) = ∫ ∞

−∞ fX ,Y (x, y)dx.
(7.6)

The functions fX , fY , are called marginal p.d.f.’s of fX ,Y and they
are the p.d.f.’s of the r.v.’s X and Y , respectively.

In terms of the joint and the marginal p.d.f.’s, one may define formally
the functions:

fX |Y (x | y) = fX ,Y (x, y)/fY (y) for fixed y with fY (y) > 0, (7.7)

and

fY |X (y | x) = fX ,Y (x, y)/fX (x) for fixed x with fX (x) > 0. (7.8)

These nonnegative functions are, actually, p.d.f.’s. For example, for the
continuous case:

∫ ∞

−∞
fX |Y (x | y) dx = 1

fY (y)

∫ ∞

−∞
fX ,Y (x, y) dx = fY (y)

fY (y)
= 1,

and similarly for fY |X (· | x); in the discrete case, integrals are replaced
by summation signs. The p.d.f. fX |Y (· | y) is called the conditional p.d.f.
of X , given Y = y, and fY |X (· | x) is the conditional p.d.f. of Y , given X = x.
The motivation for this terminology is as follows: For the discrete case,
fX |Y (x | y) = fX ,Y (x,y)

fY (y) = P(X = x,Y = y)
P(Y = y) = P(X = x | Y = y); i.e., fX |Y (x | y) does,

indeed, stand for the conditional probability that X = x, given that Y = y.
Likewise for fY |X (· | x). In the continuous case, the points x and y are to be
replaced by “small” intervals around them.
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DEFINITION 5
The quantities defined in relations (7.7) and (7.8) are p.d.f.’s and they
are called the conditional p.d.f. of X , given Y = y, and the conditional
p.d.f. of Y , given X = x, respectively.

The concepts introduced so far are now illustrated by means of
examples.

EXAMPLE 5 Refer to Example 1 and derive the marginal and conditional p.d.f.’s
involved.

DISCUSSION From Table 7.1, we have: fX (0) = 0.25, fX (1) = 0.53,
fX (2) = 0.18, and fX (3) = 0.04; also, fY (0) = 0.26, fY (1) = 0.54, fY (2) = 0.15,
and fY (3) = 0.05. Thus, the probability that there are 2 people in the
x-line, for instance, regardless of how many people are in the y-line line,
is: P(X = 2) = fX (2) = 0.18.

Next, all values of conditional p.d.f.’s are tabulated below for easy
reading and later reference.

x 0 1 2 3

fX |Y (x | 0) 0.05
0.26 = 5

26 � 0.192 0.21
0.26 = 21

26 �0.808 0 0

fX |Y (x | 1) 0.20
0.54 = 20

54 � 0.37 0.26
0.54 = 26

54 �0.482 0.08
0.54 = 8

54 �0.148 0

fX |Y (x | 2) 0 0.06
0.15 = 6

15 = 0.40 0.07
0.15 = 7

15 �0.467 0.02
0.15 = 2

15 �0.133

fX |Y (x | 3) 0 0 0.03
0.05 = 3

5 = 0.60 0.02
0.05 = 2

5 = 0.40

Likewise,

y 0 1 2 3

fY |X (y | 0) 0.05
0.25 = 5

25 = 0.2 0.20
0.25 = 20

25 = 0.8 0 0

fY |X (y | 1) 0.21
0.53 = 21

53 � 0.396 0.26
0.53 = 26

53 �0.491 0.06
0.53 = 6

53 �0.113 0

fY |X (y | 2) 0 0.08
0.18 = 8

18 �0.444 0.07
0.18 = 7

18 �0.389 0.03
0.18 = 3

18 �0.167

fY |X (y | 3) 0 0 0.02
0.04 = 2

4 = 0.50 0.02
0.04 = 2

4 = 0.50

Thus, for example, the (conditional) probability that there will be 2
customers in the x-line, given that there is 1 customer in the y-line, is
approximately 0.148; and the (conditional) probability that there will be
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1 customer in the y-line, given that there is 1 customer in the x-line, is
approximately 0.491.

EXAMPLE 6 Refer to Example 2 and derive the marginal d.f.’s and p.d.f.’s, as well as
the conditional p.d.f.’s, involved.

DISCUSSION In (7.1), let y → ∞ to obtain FX (x) = 1 − e−λ1x, x > 0,
and likewise FY (y) = 1− e−λ2y, y > 0, by letting x → ∞. Next, by differen-
tiation, fX (x) = λ1e−λ1x, x > 0, and fY (y) = λ2e−λ2y, y > 0, so that the r.v.’s
X and Y have negative exponential distribution with parameters λ1 and
λ2, respectively. Finally, for x > 0 and y > 0:

fX |Y (x | y) = λ1λ2e−λ1x−λ2y

λ2e−λ2y = λ1e−λ1x = fX (x), and likewise

fY |X (y | x) = fY (y).

EXAMPLE 7 Refer to Example 4 and determine the marginal and conditional p.d.f.’s
fX , fY , fX |Y , and fY |X . Also, compute the P(a < Y < b|X = x), x2 < a <
b < 1, and its numerical value for a = 3

8 , b = 3
4 , x = 1

2 .

DISCUSSION We have:

fX (x) =
∫ 1

x2
cx2y dy = cx2

∫ 1

x2
y dy = 21

4
x2(1 − x4), 0 < x < 1,

fY (y) =
∫ √

y

0
cx2y dx = cy

∫ √
y

0
x2 dx = 7

2
y2√y, 0 < y < 1,

and therefore

fX |Y (x | y) =
21
2 x2y

21
6 y2√y

= 3x2

y
√

y
, 0 < x ≤ √

y, 0 < y < 1,

fY |X (y | x) =
21
2 x2y

21
4 x2(1 − x4)

= 2y
1 − x4 , x2 ≤ y < 1, 0 < x < 1.

Finally,

P(a < Y < b|X = x) =
∫ b

a

2y
1 − x4 dy = b2 − a2

1 − x4 ,

and its numerical value is 0.45.
Thus, when the tire pressure is equal to 1/2 units, then the probability
that the mileage rate will be between 3/8 and 3/4 units is equal to 0.45.
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EXAMPLE 8 Refer to Examples 5 and 7 and for later reference, also compute: EX , EY ,
Var(X ), and Var(Y ).

DISCUSSION For Example 5, we have:
EX = 1.01, EX2 = 1.61, so that Var(X ) = 0.5899;
EY = 0.99, EY 2 = 1.59, so that Var(Y ) = 0.6099.

For Example 7, we have:
EX = 21

4

∫ 1
0 x3(1 − x4)dx = 21

4

(
x4

4

∣∣1
0 − x8

8

∣∣1
0

)
= 21

32 ,

EX2 = 21
4

∫ 1
0 x4(1 − x4)dx = 21

4

(
x5

5

∣∣1
0− x9

9

∣∣1
0

)
= 7

15 ,

so that Var(X ) = 7
15 −

(
21
32

)2 = 553
15,360 � 0.036;

EY = 7
2

∫ 1
0 y3√ydy = 7

2 × 2
9y9/2

∣∣1
0 = 7

9 ,
EY 2 = 7

2

∫ 1
0 y4√ydy = 7

2 × 2
11y11/2

∣∣1
0 = 7

11 ,

so that Var(Y ) = 7
11 −

(
7
9

)2 = 28
891 � 0.031.

Once a conditional p.d.f. is at hand, an expectation can be defined as
previously done in relations (5.1), (5.2), and (5.3) of Chapter 5. However,
a modified notation will be needed to reveal the fact that the expectation
is calculated with respect to a conditional p.d.f. The resulting expectation
is the conditional expectation of one r.v., given the other r.v., as specified
below.

DEFINITION 6
For two r.v.’s X and Y , of either the discrete or the continuous type,
the conditional expectation of one of these r.v.’s, given the other, is
defined by:

E(X |Y =yj)=
∑

xi∈�
xifX |Y (xi |yj) or E(X |Y =y)=

∫ ∞

−∞
xfX |Y (x |y)dx,

(7.9)

for the discrete and continuous case, respectively; similarly:

E(Y |X =xi)=
∑

yj∈�
yjfY |X (yj |xi) or E(Y |X =x)=

∫ ∞

−∞
yfY |X (y |x)dy.

(7.10)

Of course, it is understood that the preceding expectations exist as
explained right after relations (5.2) and (5.3) were defined.

REMARK: 3 It is to be emphasized that unlike the results in (5.1)–
(5.3), which are numbers, in relations (7.9) and (7.10) above the outcomes
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depend on yj or y, and xi or x, respectively, which reflect the values that
the “conditioning” r.v.’s assume.

For illustrative purposes, let us calculate some conditional expectations.

EXAMPLE 9 In reference to Example 1 (see also Example 5), calculate: E(X | Y = 0) and
E(Y | X = 2).

DISCUSSION In Example 5, we have calculated the conditional p.d.f.’s
fX |Y (· | 0) and fY |X (· | 2). Therefore:

E(X | Y = 0) = 0 × 5
26

+ 1 × 21
26

+ 2 × 0 + 3 × 0 = 21
26

� 0.808, and

E(Y | X = 2) = 0 × 0 + 1 × 8
18

+ 2 × 7
18

+ 3 × 3
18

= 31
18

� 1.722.

So, if in the y-line there are no customers waiting, the expected number
of those waiting in the x-line will be about 0.81; likewise, if there are
2 customers waiting in the x-line, the expected number of those waiting
in the y-line will be about 1.72.

EXAMPLE 10 In reference to Example 2 (see also Example 6), calculate: E(X | Y = y)
and E(Y | X = x).

DISCUSSION In Example 6, we have found that fX |Y (x | y) = fX (x) =
λ1e−λ1x (x > 0), and fY |X (y | x) = fY (y) = λ2e−λ2y (y > 0), so that: E(X | Y =
y) = ∫ ∞

0 x λ1e−λ1xdx = 1/λ1, and E(Y | X = x) = ∫ ∞
0 y λ2e−λ2y dy = 1/λ2, by

integration by parts, or simply by utilizing known results.

EXAMPLE 11 In reference to Example 4 (see also Example 7), calculate: E(X | Y = y) and
E(Y | X = x).

DISCUSSION In Example 7, we have found that fX |Y (x | y) = 3x2

y
√

y , 0 <
x ≤ √

y < 1, so that:

E(X | Y = y) =
∫ √

y

0
x · 3x2

y
√

y
dx = 3

y
√

y

∫ √
y

0
x3 dx = 3

√
y

4
, 0 < y < 1.

Also, fY |X (y | x) = 2y
1−x4 , x2 ≤ y < 1, 0 < x < 1, so that

E(Y | X = x) =
∫ 1

x2
y · 2y

1 − x4 dy = 2
1 − x4

∫ 1

x2
y2 dy = 2(1 − x6)

3(1 − x4)
, 0 < x < 1.
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Following up the interpretation of the r.v.’s X and Y (given in
Example 4), by taking x = 0.5, we have then that E(Y |X = 1

2 ) = 0.7.
That is, the expected mileage rate is 0.7 when the tire pressure is 0.5.

Now, for the discrete case, set g(yj) = E(X | Y = yj) and proceed to
replace yj by the r.v. Y . We obtain the r.v. g(Y ) = E(X | Y ), and then it
makes sense to talk about its expectation Eg(Y ) = E[E(X | Y )]. Although
the E(X | Y = yj) depends on the particular values of Y , it turns out that
its average does not, and, indeed, is the same as the EX . More precisely,
it holds:

PROPOSITION 4

E[E(X | Y )] = EX and E[E(Y | X)] = EY . (7.11)

That is, the expectation of the conditional expectation of X is equal to
its expectation, and likewise for Y . Relation (7.11) is true for both the
discrete and the continuous case.

PROOF The justification of (7.11) for the continuous case, for instance,
is as follows:

We have g(Y ) = E(X | Y ) and therefore

Eg(Y ) =
∫ ∞

−∞
g(y)fY (y)dy =

∫ ∞

−∞
E(X | y)fY (y)dy

=
∫ ∞

−∞

[ ∫ ∞

−∞
xfX |Y (x | y)dx

]
fY (y)dy

=
∫ ∞

−∞

∫ ∞

−∞
[xfX |Y (x | y)fY (y)dx]dy =

∫ ∞

−∞

∫ ∞

−∞
xfX ,Y (x, y)dx dy

=
∫ ∞

−∞
x
[ ∫ ∞

−∞
fX ,Y (x, y)dy

]
dx =

∫ ∞

−∞
xfX (x)dx = EX ; that is,

Eg(Y ) = E[E(X | Y )] = EX .

REMARK: 4 However, Var [E(X | Y )] ≤ Var(X) with equality holding, if
and only if Y is a function of X (with probability 1). A proof of this fact
may be found in Section 5.3.1 in A Course in Mathematical Statistics,
2nd edition (1997), Academic Press, by G. G. Roussas.

EXAMPLE 12 Verify the first relation E[E(X | Y )] = EX , in (7.11) for Example 4 (see also
Examples 7 and 11).
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DISCUSSION By Example 7, fX (x) = 21
4 x2(1 − x4), 0 < x < 1, so that:

EX =
∫ 1

0
x · 21

4
x2(1 − x4)dx = 21

4

( ∫ 1

0
x3dx −

∫ 1

0
x7dx

)
= 21

32
.

From Example 11, E(X | Y ) = 3
√

Y
4 , 0 < Y < 1, whereas from Example 7,

fY (y) = 21
6 y2√y, 0 < y < 1, so that:

E[E(X | Y )] =
∫ 1

0

3
√

y
4

· 21
6

y2√y dy = 21
8

∫ 1

0
y3 dy = 21

32
= EX .

REMARK: 5 The point made in Remark 4 is ascertained below by way
of Example 12. Indeed, in Example 12, Var[E(X | Y )] = Var( 3

√
Y

4 ) =
9
16Var(

√
Y ) = 9

16 [EY − (E
√

Y )2] = 9
16 (4

5 − 49
64 ) = 99

5,120 < 2
75 = Var(Y ).

In addition to the conditional expectation of X , given Y , one may define
the conditional variance of X , given Y , by utilizing the conditional p.d.f.
and formula (5.8) (in Chapter 5); the notation to be used is Var(X | Y = yj)
or Var(X | Y = y) for the discrete and continuous case, respectively. Thus:

DEFINITION 7
For two r.v.’s X and Y , either of the discrete or of the continuous
type, the conditional variance of one of these r.v.’s, given the other,
is defined by:

Var(X | Y = yj) =
∑

xi∈�
[xi − E(X | Y = yj)]2fX |Y (xi | yj), (7.12)

and

Var(X | Y = y) =
∫ ∞

−∞
[x − E(X | Y = y)]2fX |Y (x | y)dx, (7.13)

for the discrete and the continuous case, respectively.

REMARK: 6 The conditional variances depend on the values of the con-
ditioning r.v., as was the case for the conditional expectations.

From formulas (7.12) and (7.13) (see also Exercise 2.20), it is not hard
to see that:

PROPOSITION 5

Var(X | Y = yj) = E(X2 | Y = yj) − [E(X | Y = yj)]2 or

Var(X | Y = y) = E(X2 | Y = y) − [E(X | Y = y)]2,
(7.14)
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for the discrete and the continuous case, respectively.

Here is an illustration of (7.14).

EXAMPLE 13 In reference to Example 11 and also relation (7.14), we find:

E(Y 2|X = x) = 1−x8

2(1−x4)
, which for x = 1

2 becomes E(Y 2|X = 1
2 ) = 17

32 .

Therefore Var(Y |X = 1
2 ) = 17

32 −
(

7
10

)2 = 33
880 , and the conditional s.d. of

Y, given X = 1
2 is

(
33
880

)1/2 � 0.203. So, in the tire pressure/mileage rate
interpretation of the r.v.’s X and Y (see Example 4), the conditional s.d.
around the expected mean, given X = 0.5, is about 0.203.

Exercises

2.1 Refer to Exercise 1.1 and calculate the marginal p.d.f.’s fX and fY .

2.2 Refer to Exercise 1.2 and calculate the marginal p.d.f.’s fX and fY .

2.3 If the joint p.d.f. of the r.v.’s X and Y is given by the following table,
determine the marginal p.d.f.’s fX and fY .

y\x −4 −2 2 4

−2 0 0.25 0 0
−1 0 0 0 0.25

1 0.25 0 0 0
2 0 0 0.25 0

2.4 The r.v.’s X and Y take on the values 1, 2, and 3, as indicated in the
following table:

y\x 1 2 3

1 2/36 2/36 3/36
2 1/36 10/36 3/36
3 4/36 5/36 6/36

(i) Determine the marginal p.d.f.’s fX and fY .
(ii) Determine the conditional p.d.f.’s fX |Y (· | y) and fY |X (· | x).

2.5 The r.v.’s X and Y have joint p.d.f. fX ,Y given by the entries of the
following table:

(i) Determine the marginal p.d.f.’s fX and fY , and the conditional
p.d.f. fX |Y (· | y), y = 1, 2.

(ii) Calculate: EX , EY , E(X | Y = y), y = 1, 2, and E[E(X | Y )].
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y\x 0 1 2 3

1 1/8 1/16 3/16 1/8
2 1/16 1/16 1/8 1/4

(iii) Compare EX and E[E(X | Y )].
(iv) Calculate: Var(X) and Var(Y ).

2.6 Let the r.v.’s X and Y have the joint p.d.f.:

fX ,Y (x, y) = 2
n(n + 1)

, y = 1, . . . , x; x = 1, . . . , n.

Then compute:
(i) The marginal p.d.f.’s fX and fY .

(ii) The conditional p.d.f.’s fX |Y (· | y) and fY |X (· | x).
(iii) The conditional expectations E(X | Y = y) and E(Y | X = x).

Hint: For part (iii), use the appropriate part of #1 in Table 6 in
the Appendix.

2.7 In reference to Exercise 1.3, calculate the marginal p.d.f.’s fX
and fY .

2.8 Show that the marginal p.d.f.’s of the r.v.’s X and Y whose joint p.d.f.
is given by:

fX ,Y (x, y) = 6
5

(x + y2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

are as follows:

fX (x) = 2
5

(3x + 1), 0 ≤ x ≤ 1; fY (y) = 3
5

(2y2 + 1), 0 ≤ y ≤ 1.

2.9 Let X and Y be two r.v.’s with joint p.d.f. given by:

fX ,Y (x, y) = ye−x, 0 < y ≤ x < ∞.

(i) Determine the marginal p.d.f.’s fX and fY , and specify the range
of the arguments involved.

(ii) Determine the conditional p.d.f.’s fX |Y (· | y) and fY |X (· | x), and
specify the range of the arguments involved.

(iii) Calculate the (conditional) probability P(X > 2 log 2 | Y = log 2),
where, as always, log stands for the natural logarithm.



162 Chapter 7 Joint Probability Density Function

2.10 The joint p.d.f. of the r.v.’s X and Y is given by:

fX ,Y (x, y) = xe−(x+y), x > 0, y > 0.

(i) Determine the marginal p.d.f.’s fX and fY .
(ii) Determine the conditional p.d.f. fY |X (· | x).

(iii) Calculate the probability P(X > log 4), where, as always, log
stands for the natural logarithm.

2.11 The joint p.d.f. of the r.v.’s X and Y is given by:

fX ,Y (x, y) = 1
2

ye−xy, 0 < x < ∞, 0 < y < 2.

(i) Determine the marginal p.d.f. fY .
(ii) Find the conditional p.d.f. fX |Y (· | y), and evaluate it at y = 1/2.

(iii) Compute the conditional expectation E(X | Y = y), and evaluate
it at y = 1/2.

2.12 In reference to Exercise 1.4, calculate:
(i) The marginal p.d.f.’s fX , fY , and the conditional p.d.f. fY |X (· | x);

in all cases, specify the range of the variables involved.
(ii) EY and E(Y | X = x).

(iii) E[E(Y | X)] and observe that it is equal to EY .
(iv) The probability P(Y > 1

2 | X < 1
2 ).

2.13 In reference to Exercise 1.7, calculate in terms of c:
(i) The marginal p.d.f.’s fX and fY .

(ii) The conditional p.d.f.’s fX |Y (· | y) and fY |X (· | x).
(iii) The probability P(X ≤ 1).

2.14 In reference to Exercise 1.8, determine the marginal p.d.f. fY and
the conditional p.d.f. fX |Y (· | y).

2.15 Refer to Exercise 1.9, and in terms of c1, c2:
(i) Determine the marginal p.d.f.’s fX and fY .

(ii) Determine the conditional p.d.f. fX |Y (· | y).
(iii) Calculate the EX and E(X | Y = y).
(iv) Show that E[E(X | Y )] = EX .

2.16 In reference to Exercise 1.10, determine:
(i) The marginal p.d.f. fX .

(ii) The conditional p.d.f. fY |X (· | x).

Hint: Consider separately the cases: 0 < x ≤ 1, 1 < x ≤ 2, x
whatever else.

2.17 In reference to Exercise 1.11, determine:
(i) The marginal p.d.f. fY .

(ii) The conditional p.d.f. fX |Y (· | y).
(iii) The marginal p.d.f. fX .
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Hint: For part (iii), consider separately the case that x < 0 (so
that −x < y) and x ≥ 0 (so that x < y).

2.18 (i) For a fixed y > 0, consider the function f (x, y) = e−y yx

x! , x =
0, 1, . . . and show that it is the conditional p.d.f. of a r.v. X ,
given that another r.v. Y = y.

(ii) Now, suppose that the marginal p.d.f. of Y is negative exponen-
tial with parameter λ = 1. Determine the joint p.d.f. of the r.v.’s
X and Y .

(iii) Show that the marginal p.d.f. fX is given by:

fX (x) =
(

1
2

)x+1

, x = 0, 1, . . . .

Hint: For part (iii), observe that the integrand is essentially the
p.d.f. of a gamma distribution (except for constants). Also, use the
fact that �(x + 1) = x! (for x ≥ 0 integer).

2.19 Suppose the r.v. Y is distributed as P(λ) and that the conditional
p.d.f. of an r.v. X , given Y = y, is B(y, p). Then show that:
(i) The marginal p.d.f. fX is Poisson with parameter λp.

(ii) The conditional p.d.f. fY |X (· | x) is Poisson with parameter λq
(with q = 1 − p) over the set: x, x + 1, . . . .

Hint: For part (i), form first the joint p.d.f. of X and Y . Also, use
the appropriate part of #6 in Table 6 in the Appendix.

2.20 (i) Let X and Y be two discrete r.v.’s with joint p.d.f. fX ,Y . Then
show that the conditional variance of X , given Y , satisfies the
following relation:

Var(X | Y = yj) = E(X2 | Y = yj) − [E(X | Y = yj)]2.

(ii) Establish the same relation, if the r.v.’s X and Y are of the
continuous type.

2.21 Consider the function fX ,Y defined by:

fX ,Y (x, y) = 8xy, 0 < x ≤ y < 1.

(i) Verify that fX ,Y is, indeed, a p.d.f.
(ii) Show that the marginal p.d.f.’s are given by:

fX (x) = 4x(1 − x2), 0 < x < 1; fY (y) = 4y3, 0 < y < 1.

(iii) Show that EX = 8
15 , EX2 = 1

3 , so that Var(X) = 11
225 .

(iv) Also, show that EY = 4
5 , EY 2 = 2

3 , so that Var(Y ) = 6
225 .
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2.22 In reference to Exercise 2.21, show that:
(i) fX |Y (x|y) = 2x

y2 , 0 < x ≤ y < 1; fY |X (y|x), 0 < x ≤ y < 1.

(ii) E(X |Y = y) = 2y
3 , 0 < y < 1; E(Y |X = x) = 2(1−x3)

3(1−x2)
, 0 < x < 1.

2.23 From Exercise 2.22(ii), we have that E(X |Y ) = 2Y
3 , 0 < Y < 1.

(i) Use this expression and the p.d.f. of Y found in Exercise 2.21(ii)
in order to show that E[E(X |Y )] = EX (= 8/15).

(ii) Observe, however, that:

Var[E(X |Y )] = Var
(

2Y
3

)
= 4

9
Var(Y ) < Var(Y )

(
= 6

225

)
.

2.24 By using the following expression (see relation (7.14)),

Var(X |Y = y) = E(X2|Y = y) − [E(X |Y = y)]2,

and the conditional p.d.f. fX |Y (·|y) found in Exercise 2.22(i), compute
the Var(X |Y = y), 0 < y < 1.

2.25 The joint p.d.f. of the r.v.’s X and Y is given by the formula
fX ,Y (x, y) = 2, 0 < y < x < 1 (and 0 elsewhere).

(i) Show that fX ,Y is, indeed, a p.d.f.
(ii) In the region represented by 0 < y < x < 1, draw the diagram

represented by y > x2.
(iii) Use part (ii) to compute the probability P(Y > X2).
(iv) Determine the marginal p.d.f.’s fX and fY , including the range

of the variables involved, and compute the EY .
(v) Determine fY |X (·|x) and compute the E(Y |X = x).

(vi) Verify that E[E(Y |X)] = EY .

2.26 The number of domestically made and imported automobiles sold
by a dealership daily are r.v.’s X and Y , respectively, whose joint
distribution is given below.

y\x 0 1 2 3

0 0.05 0.15 0.12 0.08
1 0.07 0.11 0.10 0.07
2 0.01 0.08 0.07 0.05
3 0.01 0.02 0.01 0

(i) Compute the probabilities P(X ≥ 2), P(Y ≤ 2), P(X ≥ 2, Y ≤ 2).
(ii) Compute the expected numbers EX and EY of automobiles sold.

(iii) Also, compute the s.d.’s of X and Y .

2.27 Let the r.v.’s X and Y represent the proportions of customers of a
computer store who buy computers only and who buy computers
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and printers, respectively. Suppose that the joint p.d.f. of X and Y is
given by fX ,Y (x, y) = c(x + y), 0 < y < x < 1, (c > 0).

(i) Determine the value of the constant c.
(ii) Find the marginal and the conditional p.d.f.’s fX and fY |X (·|x).

(iii) Compute the conditional probability P(Y ≤ y0|X = x0).
(iv) Evaluate the probability in part (iii) for x0 = 0.15, y0 = 0.10.

Hint: For part (i), you may wish to draw the picture of the set
for which (0 <) y < x (< 1).

2.28 The loss covered by an insurance policy is an r.v. X with p.d.f. given
by fX (x) = cx2, 0 < x < 1/

√
c (c > 0).

(i) Determine the constant c, so that fX is, indeed, a p.d.f.
Given that X = x, the time of processing the claim is an r.v. T
with (conditional) p.d.f. uniform over the interval (0.5x, 2.5x);
that is, fT|X (t|x) = 1

2x , 0.5x < t < 2.5x.
(ii) Determine the joint p.d.f. fX ,T of the r.v.’s X and T.

(iii) Determine the marginal p.d.f. fT of the r.v. T.
(iv) Use fT found in part (iii) in order to compute the probability

P(2 < T < 4).

Hint: From the inequalities 0.5x < t < 2.5x and 0 < x < 3, we
have that (x, y) lies in the part of the plane defined by: 2.5x = t,
0.5x = t, x = 3; or x = 0.4t, x = 2t, x = 3 (see the lined area in
the figure below). It follows that for 0 < t < 1.5, x varies from 0.4t
to 2 t; and for 1.5 ≤ t < 7.5, x varies from 0.4t to 3.

Figure 7.8

The shaded area is
the region over which
the joint p.d.f. of the
r.v.’s X and T is
positive.
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2.29 The annual numbers of snowfalls in two adjacent counties A and B
are r.v.’s X and Y , respectively, with joint p.d.f. given below:

Annual number of snowfalls in county B

x\ y 0 1 2 3

Annual number 0 0.15 0.07 0.05 0.02
of snowfalls 1 0.13 0.11 0.09 0.05
in county A 2 0.04 0.12 0.10 0.06

Find:
(i) The marginal p.d.f.’s fX , fY , and the conditional p.d.f. fY |X (·|x).

(ii) The expectations EX , EY , and the conditional expectation
E(Y |X = x).

(iii) The variances Var(X), Var(Y ), and the conditional variance
Var(Y |X = x).



8
Joint Moment-Generating
Function, Covariance, and
Correlation Coefficient of Two
Random Variables

In this chapter, we pursue the study of two r.v.’s X and Y with joint p.d.f.
fX ,Y . To this end, consider an r.v. which is a function of the r.v.’s X and
Y , g(X , Y ), and define its expectation. A special choice of g(X , Y ) gives
the joint m.g.f. of the r.v.’s X and Y , which is studied to some extent in
the first section. Another choice of g(X , Y ) produces what is known as the
covariance of the r.v.’s X and Y , as well as their correlation coefficient.
Some properties of these quantities are investigated in the second section
of this chapter. Proofs of some results and some further properties of the
correlation coefficient are discussed in Section 3.

8.1 The Joint m.g.f. of Two Random Variables

In this section, a function of the r.v.’s X and Y is considered and its expec-
tation and variance are defined. As a special case, one obtains the joint
m.g.f. of X and Y . To this end, let g be a real-valued function defined
on �2, so that g(X , Y ) is an r.v. Then the expectation of g(X , Y ) is defined

167
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as in (5.6) in Chapter 5 except that the joint p.d.f. of X and Y is to be
used. Thus:

DEFINITION 1

(i) Eg(X , Y ) =
∑

xi∈�,yj∈�g(xi, yj)fX ,Y (xi, yj) (8.1)

or =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX ,Y (x, y)dxdy,

for the discrete and the continuous case,

respectively, provided, of course, the quantities

defined exist.

(ii) Var[g(X , Y )] = E[g(X , Y )]2 − [Eg(X , Y )]2. (8.2)

Properties analogous to those in Proposition 1 and Proposition 2(ii) in
Chapter 5 apply here, too. Namely, assuming all the expectations figuring
below are finite, we have:

PROPOSITION 1 For c and d constants:

(i) E[cg(X , Y )] = cEg(X , Y ), E[cg(X , Y ) + d] = cEg(X , Y ) + d. (8.3)

(ii) E[g1(X , Y ) + g2(X , Y )] = Eg1(X , Y ) + Eg2(X , Y ), (8.4)

and, in particular,

(ii′) E(cX + dY ) = cEX + dEY . (8.5)

Also, if h is another real-valued function, then

(iii) g(X , Y ) ≤ h(X , Y ) implies Eg(X , Y ) ≤ Eh(X , Y ), (8.6)

and, in particular,

(iii′) g(X) ≤ h(X) implies Eg(X) ≤ Eh(X). (8.7)

Furthermore,

(iv) Var[cg(X , Y )] = c2Var[g(X , Y )], (8.8)

Var[cg(X , Y ) + d] = c2Var[g(X , Y )].

The justification of the above assertions is left as an exercise (see
Exercise 1.2).

As an illustration of relation (8.1), consider the following examples.
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EXAMPLE 1 Consider the r.v.’s X and Y jointly distributed as in Example 1 of
Chapter 7. Then set g(X , Y ) = XY and compute the E(XY ).

DISCUSSION From Table 7.1 (in Chapter 7), it follows that the r.v. XY
takes on values from 0 to 9 with respective probabilities as shown below.

xy 0 1 2 3 4 6 9

fXY(x,y) 0.46 0.26 0.14 0 0.07 0.05 0.02

Therefore:

E(XY ) =(0 × 0.46) + (1 × 0.26) + (2 × 0.14) + (3 × 0) + (4 × 0.07)

+ (6 × 0.05) + (9 × 0.02) = 1.3.

EXAMPLE 2 In reference to Example 4 in Chapter 7, set g(X , Y ) = XY and compute
the E(XY ).

DISCUSSION We have:

E(XY ) =
∫ 1

0

∫ 1

x2
xy

21
2

x2ydydx = 21
2

∫ 1

0
x3

(∫ 1

x2
y2dy

)

= 21
2 × 3

∫ 1

0
x3

(
y3

∣∣∣
1

x2

)
= 7

2

∫ 1

0
x3(1 − x6)dx = 21

40
.

For the special choice of the function g(x, y) = et1x+t2y, t1, t2 reals, the
expectation E exp(t1X + t2Y ) defines a function in t1, t2 for those t1, t2 for
which this expectation is finite. That is:

DEFINITION 2
For two r.v.’s X and Y , define MX ,Y (t1, t2) as:

MX ,Y (t1, t2) = Eet1X+t2Y , (t1, t2) ∈ C ⊆ �2. (8.9)

Thus, for the discrete and the continuous case, we have, respectively,

MX ,Y (t1, t2) =
∑

xi∈�,yj∈�
et1xi+t2yj fX ,Y (xi, yj), (8.10)

and

MX ,Y (t1, t2) =
∫ ∞

−∞

∫ ∞

−∞
et1x+t2yfX ,Y (x, y)dx dy. (8.11)

The function MX ,Y (t, t) so defined is called the joint m.g.f. of the r.v.’s
X and Y .

Here are two examples of joint m.g.f.’s.
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EXAMPLE 3 Refer to Example 1 in Chapter 7 and calculate the joint m.g.f. of the r.v.’s
involved.

DISCUSSION For any t1, t2 ∈ �, we have, by means of (8.10):

MX ,Y (t1, t2) =
3∑

x=0

3∑

y=0

et1x+t2yfX ,Y (x, y)

= 0.05 + 0.20et2 + 0.21et1 + 0.26et1+t2 + 0.06et1+2t2

+ 0.08e2t1+t2 + 0.07e2t1+2t2 + 0.03e2t1+3t2

+ 0.02e3t1+2t2 + 0.02e3t1+3t2 . (8.12)

EXAMPLE 4 Refer to Example 2 in Chapter 7 and calculate the joint m.g.f. of the r.v.’s
involved.

DISCUSSION By means of (8.11), we have here:

MX ,Y (t1, t2) =
∫ ∞

0

∫ ∞

0
et1x+t2yλ1λ2e−λ1x−λ2y dx dy

=
∫ ∞

0
λ1e−(λ1−t1)x dx ·

∫ ∞

0
λ2e−(λ2−t2)y dy.

But
∫ ∞

0 λ1e−(λ1−t1)x dx = − λ1
λ1−t1

e−(λ1−t1)x|∞0 = λ1
λ1−t1

, provided t1 < λ1, and

likewise
∫ ∞

0 λ2e−(λ2−t2)y dy = λ2
λ2−t2

for t2 < λ2. (We arrive at the same
results without integration by recalling [Example 6 in Chapter 7] that the
r.v.’s X and Y have negative exponential distributions with parameters λ1
and λ2, respectively.) Thus,

MX ,Y (t1, t2) = λ1

λ1 − t1
× λ2

λ2 − t2
, t1 < λ1, t2 < λ2. (8.13)

From relation (8.9), we have the following properties of the joint m.g.f.
of the r.v.’s X and Y .

PROPOSITION 2

(i) Clearly, MX ,Y (0, 0) = 1 for any X and Y , and it may happen that
C = {(0, 0)}.

(ii) In (8.9), by setting successively t2 = 0 and t1 = 0, we obtain:

MX ,Y (t1, 0) = Eet1X = MX (t1), MX ,Y (0, t2) = Eet2Y = MY (t2).
(8.14)
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Thus, the m.g.f.’s of the individual r.v.’s X and Y are taken as
marginals from the joint m.g.f. of X and Y , and they are referred
to as marginal m.g.f.’s.

(iii) For c1, c2 and d1, d2 constants:

Mc1X+d1,c2Y+d2(t1, t2) = ed1t1+d2t2MX ,Y (c1t1, c2t2). (8.15)

(iv) ∂

∂t1
MX ,Y (t1, t2)|t1=t2=0 = EX ,

∂

∂t2
MX ,Y (t1, t2)|t1=t2=0 = EY ,

(8.16)

and
∂2

∂t1∂t2
MX ,Y (t1, t2)|t1=t2=0 = E(XY ) (8.17)

(provided one may interchange the order of differentiating and taking
expectations).

The justification of parts (iii) and (iv) is left as exercises (see
Exercises 1.3 and 1.4).

For example, in reference to (8.12) and (8.13), we obtain:

MX (t1) = 0.25 + 0.53 et1 + 0.18 e2t1 + 0.04e3t1 , t1 ∈ �,

MY (t2) = 0.26 + 0.54 et2 + 0.15 e2t2 + 0.05e3t2 , t2 ∈ �,

and

MX (t1) = λ1

λ1 − t1
, t1 < λ1, MY (t2) = λ2

λ2 − t2
, t2 < λ2.

REMARK: 1 Although properties (8.16) and (8.17) allow us to obtain
moments by means of the m.g.f.’s of the r.v.’s X and Y , the most significant
property of the m.g.f. is that it allows (under certain conditions) retrieval
of the distribution of the r.v.’s X and Y . This is done through the so-called
inversion formula. (See also Theorem 1 in Chapter 5.)

Exercises

1.1 Let X and Y be the r.v.’s denoting the number of sixes when two fair
dice are rolled independently 15 times each. Determine the E(X + Y ).

1.2 (i) Justify the properties stated in relations (8.3), (8.4), and (8.6).
(ii) Justify the properties stated in relations (8.8).
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1.3 Show that the joint m.g.f. of two r.v.’s X and Y satisfies the following
property, where c1, c2, d1, and d2 are constants.

Mc1X+d1,c2Y+d2(t1, t2) = ed1t1+d2t2MX ,Y (c1t1, c2t2).

1.4 Justify the properties stated in relations (8.16) and (8.17). (Assume
that you can differentiate under the expectation sign.)

8.2 Covariance and Correlation Coefficient of Two Random Variables

In this section, we define the concepts of covariance and correlation coeffi-
cient of two r.v.’s for a specific selection of the function g(X , Y ) in relation
(8.1). First, a basic result is established (Theorem 1 and its corollary), and
then it is explained how the covariance and the correlation coefficient may
be used as measures of degree of linear dependence between the r.v.’s X
and Y involved.

DEFINITION 3
Consider the r.v.’s X and Y with finite expectations EX and EY and
finite second moments, and in relation (8.1) take g(X , Y ) = (X −
EX)(Y − EY ). Then the expectation E[(X − EX)(Y − EY )] is denoted
by Cov(X , Y ) and is called the covariance of the r.v.’s X and Y ; that is,

Cov(X , Y ) = E[(X − EX)(Y − EY )]. (8.18)

Next, by setting Var(X) = σ 2
X and Var(Y ) = σ 2

Y , we can formulate the
following fundamental result regarding the covariance.

THEOREM 1
Consider the r.v.’s X and Y with finite expectations EX and EY ,
finite and positive variances σ 2

X and σ 2
Y , and s.d.’s σX and σY . Then:

−σXσY ≤ Cov(X , Y ) ≤ σXσY , (8.19)

and

Cov(X , Y ) = σXσY if and only if P
[
Y = EY + σY

σX
(X − EX)

]
= 1,

(8.20)

Cov(X , Y ) = −σXσY if and only if P
[
Y = EY − σY

σX
(X − EX)

]
= 1.

(8.21)
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DEFINITION 4
The quantity Cov(X , Y )/σXσY is denoted by ρ(X , Y ) and is called the
correlation coefficient of the r.v.’s X and Y ; that is,

ρ(X , Y ) = Cov(X , Y )
σXσY

. (8.22)

Then from relations (8.19)–(8.22), we have the following result.

COROLLARY (to Theorem 1) For two r.v.’s X and Y ,

−1 ≤ ρ(X , Y ) ≤ 1, (8.23)

and

ρ(X , Y ) = 1 if and only if P
[
Y = EY + σY

σX
(X − EX)

]
= 1, (8.24)

ρ(X , Y ) = −1 if and only if P
[
Y = EY − σY

σX
(X − EX)

]
= 1. (8.25)

The proof of the theorem and of the corollary is deferred to Section 3.
The figure below, Figure 8.1, depicts the straight lines y = EY + σY

σX
(x −

EX) and y = EY − σY
σX

(x − EX) appearing within the brackets in relations
(8.20) and (8.21).

Figure 8.1

Lines of perfect
linear relation
of x and y.

EY − EX
σY
σX

EY + EX
σY
σX

x

y

0 EX

EY

y = EY +
(x − EX )

σY
σX

y = EY −
(x − EX )

σ
Yσ

X

Relations (8.19)–(8.21) state that the Cov(X , Y ) is always between
−σXσY and σXσY and that it takes on the boundary values σXσY and
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−σXσY if and only if the pair (X , Y ) lies (with probability 1) on the
(straight) line y = EY + σY

σX
(x−EX) and y = EY − σY

σX
(x−EX), respectively.

Relations (8.23)–(8.25) state likewise that the ρ(X , Y ) is always between
−1 and 1 and that it takes the boundary values 1 and −1 if and only if the
pair (X , Y ) lies (with probability 1) on the straight line y = EY + σY

σX
(x−EX)

and y = EY − σY
σX

(x − EX), respectively.

REMARK: 2 From relations (8.18) and (8.19), it follows that the
Cov(X , Y ) is measured in the same unit as the r.v.’s X and Y and that
the range of its value depends on the magnitude of the product σXσY .
On the other hand, the ρ(X , Y ) is a pure number (dimensionless quantity),
as it follows from relation (8.22), and it always lies in [−1, 1]. These are
the reasons that we often focus on the correlation coefficient, rather than
the covariance of two r.v.’s.

The following simple example, taken together with other arguments,
reinforces the assertion that the correlation coefficient (or the covariance)
may be used as a measure of linear dependence between two r.v.’s.

EXAMPLE 5 Consider the events A and B with P(A)P(B) > 0 and set X = IA and
Y = IB for the indicator functions, where IA(s) = 1 if s ∈ A and IA(s) = 0
if s ∈ Ac. Then, clearly, EX = P(A), EY = P(B), and XY = IA∩B, so
that E(XY ) = P(A ∩ B). It follows that Cov(X , Y ) = P(A ∩ B) − P(A)P(B).
Next,

P(A)[P(Y = 1 | X = 1) − P(Y = 1)] = P(A ∩ B) − P(A)P(B)

= Cov(X , Y ), (8.26)
P(Ac)[P(Y = 0 | X = 0) − P(Y = 0)] = P(Ac ∩ Bc) − P(Ac)P(Bc)

= P(A ∩ B) − P(A)P(B) = Cov(X , Y ), (8.27)

P(Ac)[P(Y = 1 | X = 0) − P(Y = 1)] = P(Ac ∩ B) − P(Ac)P(B)

= −[P(A ∩ B) − P(A)P(B)] = −Cov(X , Y ), (8.28)

P(A)[P(Y = 0 | X = 1) − P(Y = 0)] = P(A ∩ Bc) − P(A)P(Bc)

= −[P(A ∩ B) − P(A)P(B)] = −Cov(X , Y ), (8.29)

(see also Exercise 2.1).

From (8.26) and (8.27), it follows that Cov(X , Y ) > 0 if and only if
P(Y = 1 | X = 1) > P(Y = 1), or P(Y = 0 | X = 0) > P(Y = 0). That
is, Cov(X , Y ) > 0 if and only if, given that X has taken a “large” value
(namely, 1), it is more likely that Y does so as well than it otherwise
would; also, given that X has taken a “small” value (namely, 0), it is more
likely that Y does so too than it otherwise would. On the other hand,
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from relations (8.28) and (8.29), we see that Cov(X , Y ) < 0 if and only if
P(Y = 1 | X = 0) > P(Y = 1), or P(Y = 0 | X = 1) > P(Y = 0). That is,
Cov(X , Y ) < 0 if and only if, given that X has taken a “small” value, it
is more likely for Y to take a “large” value than it otherwise would, and
given that X has taken a “large” value, it is more likely for Y to take a
“small” value than it otherwise would.

The above argument is consistent with the general interpretation of
the expectation of an r.v. Thus, if EU is positive, then values of U tend to
be positive, and values of U tend to be negative if EU < 0. Applying this
rough argument to the Cov(X , Y ) = E[(X − EX)(Y − EY )], one concludes
that values of X and Y tend to be simultaneously either both “large” or
both “small” for Cov(X , Y ) > 0, and they tend to go to opposite direc-
tions for Cov(X , Y ) < 0. The same arguments apply to the correlation
coefficient, since the Cov(X , Y ) and ρ(X , Y ) have the same sign.

Putting together arguments we have worked out above, we arrive at
the following conclusions.

From relation (8.24), we have that ρ(X , Y ) = 1 if and only if (X , Y ) are
linearly related (with probability 1). On the other hand, from Example 5
and the ensuing comments, we have that Cov(X , Y ) > 0 if and only if
X and Y tend to take simultaneously either “large” values or “small”
values. Since Cov(X , Y ) and ρ(X , Y ) have the same sign, the same state-
ment can be made about ρ(X , Y ), being positive if and only if X and
Y tend to take simultaneously either “large” values or “small” values.
The same arguments apply for the case that Cov(X , Y ) < 0 (equivalently,
ρ(X , Y ) < 0). This reasoning indicates that ρ(X , Y ) may be looked upon
as a measure of linear dependence between X and Y . The pair (X , Y )
lies on the line y = EY + σY

σX
(x − EX) if ρ(X , Y ) = 1; pairs identical

to (X , Y ) tend to be arranged along this line, if (0 <)ρ(X , Y ) < 1, and
they tend to move farther and farther away from this line as ρ(X , Y )
gets closer to 0; the pairs bear no sign of linear tendency whatever, if
ρ(X , Y ) = 0. Rough arguments also hold for the reverse assertions. For
0 < ρ(X , Y ) ≤ 1, the r.v.’s X and Y are said to be positively correlated,
and uncorrelated if ρ(X , Y ) = 0. Likewise, the pair (X , Y ) lies on the line
y = EY − σY

σX
(x − EX) if ρ(X , Y ) = −1 from relation (8.25); pairs identi-

cal to (X , Y ) tend to be arranged along this line if −1 < ρ(X , Y ) < 0.
Again, rough arguments can also be made for the reverse assertions.
For −1 ≤ ρ(X , Y ) < 0, the r.v.’s X and Y are said to be negatively
correlated.

The behavior of the pair (X , Y ), as interpreted by means of the
correlation coefficient ρ(X , Y ), is depicted in Figure 8.2 below. In (a),
ρ(X , Y ) = 1, the r.v.’s X and Y are perfectly positively linearly related.
In (b), ρ(X , Y ) = −1, the r.v.’s X and Y are perfectly negatively linearly
related. In (c), 0 < ρ(X , Y ) < 1, the r.v.’s X and Y are positively correlated.
In (d), −1 < ρ(X , Y ) < 0, the r.v.’s X and Y are negatively correlated. In
(e), ρ(X , Y ) = 0, the r.v.’s X and Y are uncorrelated.
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Figure 8.2

(a) Perfect linear
relation (positive slope);
(b) perfect linear
relation (negative
slope); (c) positive
correlation; (d) negative
correlation;
(e) uncorrelated r.v.’s.

(a)
x

y

(b)
x

y

(c)
x

y

(d)
x

y

(e)
x

y

The following simple results facilitated the actual computation of a
covariance.

PROPOSITION 3 For the covariance of two r.v.’s X and Y , defined by
relation (8.18), we have:

Cov(X , Y ) = E[(X − EX)(Y − EY )] = E(XY ) − (EX)(EY ). (8.30)

PROOF Indeed,

E[(X − EX)(Y − EY )] = E[XY − X(EY ) − (EX)Y + (EX)(EY )]

= E(XY ) − (EX)(EY ) − (EX)(EY ) + (EX)(EY )

= E(XY ) − (EX)(EY ). �
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As an illustration of actual calculation of a covariance and a correlation
coefficient, let us do it for Examples 1 and 4 in Chapter 7.

EXAMPLE 6 (i) In reference to Example 1 (see also Example 8), in Chapter 7, compute
the Cov(X , Y ) and the ρ(X , Y ).

(ii) In reference to Example 4 (see also Example 8), in Chapter 7, compute
the Cov(X , Y ) and the ρ(X , Y ).

DISCUSSION

(i) From Example 8 (in Chapter 7):
EX = 1.01, EY = 0.99, σ 2

X = 0.5899, σ 2
Y = 0.6099, whereas

from Example 1 here, E(XY ) = 1.3. Therefore, by relation (8.30),
Cov(X , Y ) = E(XY ) − (EX)(EY ) = 1.3 − (1.01)(0.99) = 0.3001, and
ρ(X , Y ) = 0.3001√

0.5899×0.6099
	 0.3001

0.5998 	 0.5.
This result is consistent with what one would expect. Namely,
although the X and Y are not linearly related, there is a tendency
to have large Y ’s corresponding to large X ’s: If a customer walks in
and finds a long x-line, he or she will move to the y-line, increasing
its size.

(ii) From Example 8 (in Chapter 7):
EX = 21

32 , EY = 7
9 , σ 2

X = 553
15,360 , σ 2

Y = 28
891 , whereas from Example 2

here, E(XY ) = 21
40 . Therefore, Cov(X , Y ) = 21

40 − 21
32 × 7

9 = 7
480 , and:

ρ(X , Y ) =
7

480√
553

15,360 × 28
891

= 7
480

√
891 × 15, 360

28 × 553

	 7
480

× 29.73 	 0.434.

Again, the correlation coefficient says what one would expect to see.
Namely, to larger values of tire pressure there is a tendency for larger
values of the corresponding mileage rates.

Exercises

2.1 Provide a justification of relations (8.27)–(8.29). That is:
(i) P(Ac ∩ Bc) − P(Ac)P(Bc) = P(A ∩ B) − P(A)P(B).

(ii) P(Ac ∩ B) − P(Ac)P(B) = −P(A ∩ B) + P(A)P(B).
(iii) P(A ∩ Bc) − P(A)P(Bc) = −P(A ∩ B) + P(A)P(B).

Hint: For part (i), use Proposition 4 in Chapter 2 along with
Proposition 1(iii) in Chapter 3. For Parts (ii) and (iii), use Propo-
sition 1(iv) in Chapter 3 after rewriting suitably Ac ∩B and A∩Bc.
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2.2 Let X and Y be two r.v.’s with EX = EY = 0. Then, if Var(X−Y ) = 0,
it follows that P(X = Y ) = 1, and if Var(X + Y ) = 0, then P(X =
−Y ) = 1.

Hint: Use Exercise 2.4 (ii) in Chapter 5.

2.3 In Exercise 1.1 in Chapter 7, two discrete r.v.’s X and Y are
given with tabulated joint probabilities. In Exercise 2.1 of the same
chapter, the marginal p.d.f.’s fX and fY were calculated.
Use these results in order to:

(i) Calculate EX , EY , Var(X), and Var(Y ).
(ii) Calculate Cov(X , Y ) and ρ(X , Y ).

(iii) Decide on the kind of correlation of the r.v.’s X and Y .

2.4 In Exercise 1.2 in Chapter 7, one is asked to compute the joint p.d.f.
of two discrete r.v.’s X and Y ; and in Exercise 2.2 of the same chapter,
the marginal p.d.f.’s fX and fY were derived.
Use these results in order to calculate:

(i) EX , EY , Var(X), Var(Y ).
(ii) E(XY ), Cov(X , Y ).

(iii) ρ(X , Y ).
(iv) Decide on the kind of correlation, if any, the r.v.’s X and Y

exhibit.

2.5 In Exercise 2.3 in Chapter 7, the joint p.d.f. of two discrete r.v.’s X
and Y is given in tabular form, and then the marginal p.d.f.’s fX and
fY were derived.
Use these results in order to:

(i) Calculate EX , EY , Var(X), and Var(Y ).
(ii) Calculate Cov(X , Y ) and ρ(X , Y ).

(iii) Plot the points (−4, 1), (−2, −2), (2, 2), and (4, −1), and reconcile
this graph with the value of ρ(X , Y ) found in part (ii).

2.6 In Exercise 2.4 in Chapter 7, the joint p.d.f. of two discrete r.v.’s X
and Y is given in tabular form, and then the marginal p.d.f.’s fX and
fY were derived.
Use these results in order to compute:
(i) EX , EY , Var(X), and Var(Y ).

(ii) Cov(X , Y ) and ρ(X , Y ).

2.7 In Exercise 2.5 in Chapter 7, the joint p.d.f. of two discrete r.v.’s X
and Y is given in tabular form, and then the EX , EY , Var(X), and
Var(Y ) were computed.
Use these results in order to calculate the Cov(X , Y ) and ρ(X , Y ).

2.8 Let X be an r.v. taking on the values −2, −1, 1, 2, each with prob-
ability 1/4, and define the r.v. Y by: Y = X2. Then calculate the
quantities: EX , Var(X), EY , Var(Y ), E(XY ), Cov(X , Y ), and ρ(X , Y ).
Are you surprised by the value of ρ(X , Y )? Explain.
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2.9 In Exercise 1.3 in Chapter 7, the joint p.d.f. fX ,Y of two discrete r.v.’s
(of the continuous type) is given, and then the marginal p.d.f.’s fX
and fY were derived in Exercise 2.7 of the same chapter.
Use these results in order to compute:
(i) The expectations EX and EY .

(ii) The variances Var(X) and Var(Y ).
(iii) The covariance Cov(X , Y ) and the correlation coefficient ρ(X , Y ).
(iv) On the basis of part (iii), decide on the kind of correlation of the

r.v.’s X and Y .

2.10 In Exercise 2.8 in Chapter 7, the joint p.d.f. fX ,Y of two r.v.’s (of the
continuous type) is given, and then the marginal p.d.f.’s fX and fY
were derived.
Use these results in order to calculate:

(i) The expectations EX and EY .
(ii) The variances Var(X) and Var(Y ).

(iii) The covariance Cov(X , Y ) and the correlation coefficient
ρ(X , Y ).

(iv) On the basis of part (iii), decide on the kind of correlation of
the r.v.’s X and Y .

2.11 Refer to Exercise 2.21 in Chapter 7 and compute the E(XY ) and
C∞(X , Y ).

2.12 From relation (7.11) in Chapter 7, we have that, for two r.v.’s X
and Y :

EX = E[E(X |Y )] and EY = E[E(Y |X)].
In a similar fashion, show that:
(i) EY 2 = E[E(Y 2|X)].

(ii) E(XY ) = E[E(XY |X)] = E[X E(Y |X)].
Hint: Restrict the proof to the continuous case only. In part (ii),
show that E[XE(Y |X)] = E(XY ), and E[E(XY |X)] = E(XY ).

2.13 Let X be an r.v. distributed as U(0, α) (α > 0), and let Y be an
r.v. distributed as U(0, x), given that X = x. From the fact that
X ∼ U(0, α), it follows that EX = α

2 and Var(X) = α2

12 .
(i) Since Y |X = x is distributed as U(0, x), use the relation EY =

E[E(Y |X)] to compute the EY .
(ii) Use the relation EY 2 = E[E(Y 2|X)] to compute the EY 2 and

then the Var(Y ).
(iii) Use the relation E(XY ) = E[E(XY |X)] = E[X E(Y |X)] to com-

pute the E(XY ) and then the Cov(X , Y ).
(iv) Show that the ρ(X , Y ) is independent of α, and compute its

value.

Hint: For parts (ii) and (iii), refer also to Exercise 2.12, parts (i)
and (ii), respectively.
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8.3 Proof of Theorem 1, Some Further Results

In this section, we present the proof of Theorem 1 and its corollary.
Also, we point out a desirable property of the correlation coefficient
(Theorem 2), and illustrate it by means of an example. Finally, the covari-
ance and the correlation coefficient are used in expressing the variance of
the sum of two r.v.’s (Theorem 3).

PROOF (of Theorem 1) The proof of the theorem is split into two
parts as follows:

(i) Assume first that EX = EY = 0 and σ 2
X = σ 2

Y = 1. Then, by means of
(8.30), relation (8.19) becomes: −1 ≤ E(X , Y ) ≤ 1, whereas relations
(8.20) and (8.21) take the form: E(XY ) = 1 if and only if P(Y = X) = 1,
and E(XY ) = −1 if and only if P(Y = −X) = 1.
Clearly, 0 ≤ E(X − Y )2 = EX 2 + EY 2 − 2E(XY ) = 2 − 2E(XY ), so
that E(XY ) ≤ 1; also, 0 ≤ E(X + Y )2 = EX 2 + EY 2 + 2E(XY ) =
2 + 2E(XY ), so that −1 ≤ E(XY ). Combining these results, we obtain
−1 ≤ E(XY ) ≤ 1. As for equalities, observe that if P(X = Y ) = 1, then
E(XY ) = EX 2 = 1, and if P(X = −Y ) = 1, then E(XY ) = −EX 2 = −1.
Next, E(XY ) = 1 implies E(X − Y )2 = 0 or Var(X − Y ) = 0. But then
P(X − Y = 0) = 1 or P(X = Y ) = 1 (see Exercise 2.4(ii) in Chapter 5).
Also, E(XY ) = −1 implies E(X + Y )2 = 0 or Var(X + Y ) = 0, so that
P(X = −Y ) = 1 (by the exercise just cited).

(ii) Remove the assumptions made in part (i), and replace the r.v.’s X and
Y by the r.v.’s X∗ = X−EX

σX
and Y ∗ = Y−EY

σY
, for which EX∗ = EY ∗ = 0

and Var(X∗) = Var(Y ∗) = 1. Then the inequalities −1 ≤ E(X∗Y ∗) ≤ 1
become

−1 ≤ E
[(

X − EX
σX

) (
Y − EY

σY

)]
≤ 1

from which (8.19) follows. Also, E(X∗Y ∗) = 1 if and only if
P(X∗ = Y ∗) = 1 becomes E[(X − EX)(Y − EY )] = σXσY if and only if
P[Y = EY + σY

σX
(X −EX)] = 1, and E(X∗Y ∗) = −1 if and only if P(X∗ =

−Y ∗) = 1 becomes E[(X − EX)(Y − EY )] = −σXσY if and only if
P[Y = EY− σY

σX
(X−EX)] = 1. A restatement of the last two conclusions

is: Cov(X , Y ) = σXσY if and only if P[Y = EY + σY
σX

(X − EX)] = 1, and
Cov(X , Y ) = −σXσY if and only if P[Y = EY − σY

σX
(X − EX)] = 1. �

PROOF (of the corollary to Theorem 1) In relation (8.19), divide all
three sides by σXσY to obtain:

−1 ≤ Cov(X , Y )
σXσY

= ρ(X , Y ) ≤ 1.
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Then assertions (8.23)–(8.25) follow immediately from (8.19)–(8.21). �
The following result presents an interesting property of the correlation

coefficient.

THEOREM 2
Let X and Y be r.v.’s with finite first and second moments and pos-
itive variances, and let c1, c2, d1, d2 be constants with c1c2 �= 0.
Then:

ρ(c1X +d1,c2Y +d2)= ±ρ(X ,Y ), with+ if c1c2 >0 and−if c1c2 <0.
(8.31)

PROOF Indeed, Var(c1X + d1) = c2
1Var(X), Var(c2Y + d2) = c2

2Var(Y ),
and Cov(c1X + d1, c2Y + d2) = E{[(c1X + d1) − E(c1X + d1)][(c2Y + d2) −
E(c2Y + d2)]} = E[c1(X − EX) · c2(Y − EY )] = c1c2E[(X − EX)(Y − EY )] =
c1c2Cov(X , Y ). Therefore ρ(c1X + d1, c2Y + d2) = c1c2 Cov(X ,Y )

|c1c2|√Var(X)Var(Y )
, and

the conclusion follows. �
Here is an illustrative example of this theorem.

EXAMPLE 7 Let X and Y be temperatures in two localities measured on the Celsius
scale, and let U and V be the same temperatures measured on the
Fahrenheit scale. Then ρ(X , Y ) = ρ(U, V ), as it should be. This is so
because U = 9

5X + 32 and V = 9
5Y + 32, so that (8.31) applies with the

+ sign.

This section concludes with the following result and two examples.

THEOREM 3
For two r.v.’s X and Y with finite first and second moments and
(positive) standard deviations σX and σY , it holds:

Var(X + Y ) = σ 2
X + σ 2

Y + 2Cov(X , Y ) = σ 2
X + σ 2

Y + 2σXσY ρ(X , Y ),
(8.32)

and

Var(X + Y ) = σ 2
X + σ 2

Y if X and Y are uncorrelated. (8.33)
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PROOF Since (8.33) follows immediately from (8.32), and Cov(X , Y ) =
σXσY , ρ(X , Y ), it suffices to establish only the first equality in (8.32).
Indeed,

Var(X + Y ) = E[(X + Y ) − E(X + Y )]2 = E[(X − EX) + E(Y − EY )]2

= E(X − EX)2 + E(Y − EY )2 + 2E[(X − EX)(Y − EY )]

= σ 2
X + σ 2

Y + 2Cov(X , Y ). �

EXAMPLE 8 In reference to Examples 1 and 4 in Chapter 7, compute the Var(X + Y ).

DISCUSSION By (8.32),
Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X , Y ). For Example 1, we have:
Var(X) = 0.5899 and Var(Y ) = 0.6099 from Example 8 in Chapter 7,

and Cov(X , Y ) = 0.3001 from Example 6(i) here. Therefore:

Var(X + Y ) = 0.5899 + 0.6099 + 2 × 0.3001 = 1.8.

For Example 4, we have:
Var(X) = 553

15,360 and Var(Y ) = 28
891 from Example 8 in Chapter 7, and

Cov(X , Y ) = 7
480 from Example 6(ii) here. Therefore Var(X +Y ) = 553

15,360 +
28

891 + 2 × 7
480 	 0.097.

EXAMPLE 9 Let X and Y be two r.v.’s with finite expectations and equal (finite) vari-
ances, and set U = X + Y and V = X − Y . Then the r.v.’s U and V are
uncorrelated, and Var(U + V ) = 4Var(X).

DISCUSSION Indeed,

E(UV ) = E[(X + Y )(X − Y )] = E(X2 − Y 2) = EX 2 − EY 2,

(EU)(EV ) = [E(X + Y )][E(X − Y )]
= (EX + EY )(EX − EY ) = (EX )2 − (EY )2,

so that

Cov(U, V ) = E(UV ) − (EU)(EV ) = [EX 2 − (EX)2] − [EY 2 − (EY )2]
= Var(X ) − Var(Y ) = 0.
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Furthermore,

Var(U + V ) = Var(U) + Var(V ) = Var(X + Y ) + Var(X − Y )

= Var(X) + Var(Y ) + 2Cov(X , Y ) + Var(X)

+ Var(Y ) − 2Cov(X , Y )

= 2Var(X) + 2Var(Y ) = 4Var(X).

Alternatively, since U + V = 2X , we have again Var(U + V ) = Var(2X) =
4Var(X).

Exercises

3.1 Refer to Exercises 2.21 in Chapter 7 and 2.11 in this chapter and
compute:
(i) The covariance Cov(X , Y ) and the correlation coefficient ρ(X , Y ).

Decide on the kind of correlation of the r.v.’s X and Y .
(ii) The Var(X + Y ).

Hint: For part (ii), refer to Theorem 3.

3.2 Let X be an r.v. with finite expectation and finite and positive variance,
and set Y = aX + b, where a and b are constants and a �= 0. Then
compute EY , Var(Y ), E(XY ), Cov(X , Y ). Also, show that |ρ(X , Y )| = 1
and, indeed ρ(X , Y ) = 1 if and only if a > 0, and ρ(X , Y ) = −1 if and
only if a < 0.

3.3 For any two r.v.’s X and Y , set U = X + Y and V = X − Y . Then show
that:

(i) P(UV < 0) = P(|X | < |Y |).
(ii) If EX 2 = EY 2 < ∞, then E(UV ) = 0.

(iii) If EX 2 < ∞, EY 2 < ∞ and Var(X) = Var(Y ), then the r.v.’s
U and V are uncorrelated.

3.4 Let X and Y be r.v.’s with finite second moments EX 2, EY 2, and
Var(X) > 0. Suppose we know X and we wish to predict Y in terms
of X through the linear relationship αX + β, where α and β are
(unknown) constants. Further, suppose there exist values α̂ and β̂

of α and β, respectively, for which the expectation of the square dif-
ference [Y −(α̂X +β̂)]2 is minimum. Then Ŷ = α̂X +β̂ is called the best
linear predictor of Y in terms of X (when the criterion of optimality
is that of minimizing E[Y − (αX + β)]2 over all α and β). Then show
that α̂ and β̂ are given as follows:

α̂ = σY

σX
ρ(X , Y ), β̂ = EY − α̂EX ,
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where σX and σY are the s.d.’s of the r.v.’s X and Y , respectively.

Hint: Set g(α, β) = E[Y − (αX + β)]2, carry out the operations on
the right-hand side in order to get: g(α, β) = EY 2 + α2EX2 + β2 +
2αβEX−2αE(XY )−2βEY , minimize g(α, β) by equating to 0 the two
partial derivatives in order to find the values α̂ and β̂ given above.
Finally, show that these values α̂ and β̂ do, indeed, minimize g(α, β)
by showing that the 2×2 matrix of the second order derivatives has
its 1 × 1 and 2 × 2 determinants positive. Or that the matrix of the
second order derivatives is positive definite.



9
Some Generalizations to k
Random Variables, and Three
Multivariate Distributions

In this chapter, some of the concepts and results discussed in previous
chapters are carried over to the case, in which we are faced with k(≥2)
r.v.’s, rather than one or two r.v.’s. It consists of four sections. In the first
section, the joint probability distribution of the r.v.’s involved is defined,
as well as their joint d.f. and joint p.d.f. From the joint p.d.f., marginal
(joint) p.d.f.’s are derived, and then conditional p.d.f.’s are defined. Next,
the expectation of a function of the r.v.’s involved is defined, and for a spe-
cific choice of such a function, one obtains the joint m.g.f. of the underlying
r.v.’s. The section concludes with a formula providing the variance of the
sum of r.v.’s. In the second section, multinomial distribution is introduced,
and its p.d.f. is derived. It is shown that all marginal and all conditional
p.d.f.’s are also multinomial. Finally, the joint m.g.f. is derived. In the
next section, bivariate normal distribution is introduced, and it is then
shown that what is proposed as a joint p.d.f. is indeed a p.d.f. As a con-
sequence of this proof, it follows that the marginal p.d.f.’s, as well as the
conditional ones, are all normal. The section closes with the derivation
of the covariance and the correlation coefficient. In the final section of
the chapter, multivariate normal distribution is introduced without any
further discussion, except for the citation of a relevant reference.

185
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9.1 Joint Distribution of k Random Variables and Related Quantities

If instead of two r.v.’s X and Y we have k r.v.’s X1, . . . , Xk, most of the
concepts defined and results obtained in the previous two chapters are
carried over to the k-dimensional case in a straightforward way. Thus,
the joint probability distribution or just joint distribution of the r.v.’s
X1, . . . , Xk is a set function PX1,..., Xk that assigns values to subsets B of
�k = � × · · · × � (k factors) according to the formula

P[(X1, . . . , Xk) ∈ B] = P({s ∈ S; (X1(s), . . . , Xk(s)) ∈ B}), B ⊆ �k; (9.1)

the value assigned is denoted by PX1,..., Xk(B).
By taking B to be a rectangle of the form B = (−∞, x1]× · · ·× (−∞, xk],

relation (9.1) becomes

P[(X1, . . . , Xk) ∈ (−∞, x1] × · · · × (−∞, xk]
= P({s ∈ S; X1(s) ≤ x1, . . . , Xk(s) ≤ xk})
= P(X1 ≤ x1, . . . , Xk ≤ xk),

and it defines a function on �k denoted by FX1,..., Xk and called the joint
distribution function (joint d.f.) of X1, . . . , Xk.

REMARK: 1 Comments similar to those made in Remark 1 in Chapter 7
hold here also, as well as a proposition analogous to Proposition 1 in
Chapter 7.

Now, let X1, . . . , Xk be discrete r.v.’s and let us denote by x1,i1 the values
the r.v. X1 takes on, etc., and by xk,ik the values the r.v. Xk takes on. There
may be either finitely or (countably) infinitely many such values. The
respective probabilities are

P(X1 = x1,i1 , . . . , Xk = xk,ik),

and define the function fX1,..., Xk as follows:

fX1,..., Xk(x1, . . . , xk)

=
{

P(X1 = x1,i1 , . . . , Xk = xk,ik), if x1 = x1,i1 , . . . , xk = xk,ik
0 , otherwise. (9.2)

The function fX1,..., Xk is called the joint probability density function
( joint p.d.f.) of the r.v.’s X1, . . . , Xk. Results analogous to those in
Proposition 2 in Chapter 7 hold here also.
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Next, let X1, . . . , Xk be r.v.’s of the continuous type, and suppose there
exists a function fX1,..., Xk such that:

fX1,..., Xk(x1, . . . , xk) ≥ 0 for all x1, . . . , xk ∈ �, and

P[(X1, . . . , Xk) ∈ B] =
∫

. . .
∫

︸ ︷︷ ︸
B

fX1,..., Xk(x1, . . . , xk)dx1 . . . dxk, B ⊆ �k.

(9.3)
The function fX1,..., Xk is called the joint probability density function

( joint p.d.f.) of the r.v.’s X1, . . . , Xk. Results analogous to those in Propo-
sition 3 in Chapter 7 hold here also. Furthermore, the comments made in
Remark 2 in Chapter 7 hold here as well, properly interpreted.

Marginal d.f.’s and marginal p.d.f.’s can be defined here as well, except
that there are many marginal d.f.’s and p.d.f.’s. Thus, if s is a number with
1 ≤ s < k, and if in FX1,..., Xk(x1, . . . , xk) the last t x’s are replaced by ∞
(in the sense they are let to tend to ∞ ), then what is left is the marginal
joint d.f. of the r.v.’s X1, . . . , Xs, FX1,..., Xs , with s + t = k. Likewise, if in
fX1,..., Xk(x1, . . . , xk), the last t variables are eliminated through summation
(for the discrete case) or integration (for the continuous case), what is
left is the marginal joint p.d.f of the r.v.’s X1, . . . , Xs, fX1,..., Xs . Combining
joint and marginal joint p.d.f.’s, as in the 2-dimensional case, we obtain a
variety of conditional p.d.f.’s. Thus, for example,

fXs+1,..., Xk|X1,..., Xs(xs+1, . . . , xk|x1, . . . , xs) = fX1,...,Xk(x1, . . . , xk)
fX1,...,Xs(x1, . . . , xs)

.

Instead of splitting the r.v.’s X1, . . . , Xk into two groups consisting of
the first s r.v.’s and the last t r.v.’s (s + t = k), we may select any s r.v.’s,
call them Xi1 , . . . , Xis , for one group; then the other group consists of the
r.v.’s Xj1 , . . . , Xjt , and the quantities we just defined may also be defined in
the present context. Thus, if in FX1,..., Xk(x1, . . . , xk), t of the x’s, xj1 , . . . , xjt
are replaced by ∞ (in the sense they are let to tend to ∞), then what is left
is the marginal joint d.f. of the r.v.’s Xi1 , . . . , Xis , FXi1 ,..., Xis

, where s + t =
k. Likewise, if in fX1,..., Xk(x1, . . . , xk), xj1 , . . . , xjt are eliminated through
summation (for the discrete case) or integration (for the continuous case),
what is left is the marginal joint p.d.f. of the r.v.’s Xi1 , . . . , Xis , fXi1 ,..., Xis

.
Combining joint and marginal joint p.d.f.’s, as in the 2-dimensional case,
we obtain a variety of conditional p.d.f.’s. Thus, for example,

fXj1 ,..., Xjt |Xi1 ,..., Xis
(xj1 , . . . , xjt |xi1 , . . . , xis) = fX1,..., Xk(x1, . . . , xk)

fXi1 ,..., Xis
(xi1 , . . . , xis)

. (9.4)

Utilizing conditional p.d.f.’s, we can define conditional expectations and
conditional variances, as in the 2-dimensional case (see relations (7.9),
(7.10), (7.12), and (7.13) in Chapter 7).
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For a (real-valued) function g defined on �k, the expectation of the r.v.
g(X1, . . . , Xk) is defined in a way analogous to that in relation (8.1) in
Chapter 8, and the validity of properties (8.3) and (8.6) in Chapter 8 is
immediate.

In particular, provided the expectations involved exist:

E(c1X1 + · · · + ckXk + d) = c1EX1 + · · · + ckEXk + d, (9.5)

c1, . . . , ck, d constants.
By choosing g(X1, . . . , Xk) = exp(t1X1 + · · · + tkXk), t1, . . . , tk ∈ �,

the resulting expectation (assuming it is fininte) is the joint m.g.f. of
X1, . . . , Xk; that is,

MX1,..., Xk(t1, . . . , tk) = Eet1X1+···+tkXk , (t1, . . . , tk) ∈ C ⊆ �k. (9.6)

The appropriate versions of properties (8.15) and (8.17) in Chapter 8
become here:

Mc1X1+d1,...,ckXk+dk(t1, . . . , tk) = ed1t1+···+dktkMX1,..., Xk(c1t1, . . . , cktk), (9.7)

where c1, . . . , ck and d1, . . . , dk are constants, and:

∂n1+···+nk

∂n1 t1 . . . ∂nktk
MX1,..., Xk(t1, . . . , tk)|t1=···=tk=0 = E(Xn1

1 . . . Xnk
k ), (9.8)

for ≥ 0 integers n1, . . . , nk.
The variance of g(X1, . . . , Xk) is defined as in Definition 1(ii) in

Chapter 8. Finally, the appropriate version of Theorem 3 in Chapter 8
becomes here as follows.

THEOREM 1
For k r.v.’s X1, . . . , Xk with finite first and second moments, and
(positive) standard deviations σXi , i = 1, . . . , k:

Var(X1 + · · · + Xk) = ∑k
i=1 σ 2

Xi
+ 2

∑
1≤i<j≤k Cov(Xi, Xj)

= ∑k
i=1 σ 2

Xi
+ 2

∑
1≤i<j≤k σXiσXjρ(Xi, Xj),

(9.9)

and

Var(X1 + · · · + Xk) =
k∑

i=1

σ 2
Xi

(9.10)

if the Xi’s are pairwise uncorrelated; that is, ρ(Xi, Xj) = 0 for i �= j.
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Exercises

1.1 If the r.v.’s X1, X2, X3 have the joint p.d.f. fX1, X2, X3(x1, x2, x3) =
c3e−c(x1+x2+x3), x1 > 0, x2 > 0, x3 > 0 (c > 0), determine:
(i) The constant c.

(ii) The marginal p.d.f.’s fX1 , fX2 , and fX3 .
(iii) The conditional joint p.d.f. of X1 and X2, given X3.
(iv) The conditional p.d.f. of X1, given X2 and X3.

1.2 Determine the joint m.g.f. of the r.v.’s X1, X2, X3 with p.d.f.
fX1, X2, X3(x1, x2, x3) = c3e−c(x1+x2+x3), x1 > 0, x2 > 0, x3 > 0 (c any
positive constant, see also Exercise 1.1).

1.3 (Cramér-Wold devise) Show that if we know the joint distribution
of the r.v.’s X1, . . . , Xn, then we can determine the distribution of any
linear combination c1X1+· · ·+cnXn of X1, . . . , Xn, where c1, . . . , cn are
constants. Conversely, if we know the distribution of all linear com-
binations just described, then we can determine the joint distribution
of X1, . . . , Xn.

Hint: Use the m.g.f. approach.

1.4 If the r.v.’s X1, . . . , Xm and Y1, . . . , Yn have finite second moments,
then show that:

Cov(
m∑

i=1

Xi,
n∑

j=1

Yj) =
m∑

i=1

n∑

j=1

Cov(Xi, Yj).

Hint: Use the definition of the covariance and the linearity prop-
erty of the expectation.

1.5 Refer to Exercise 2.32 in Chapter 6, and compute:
(i) The expected amount to be paid as a refund by selling n pieces of

equipment, in terms of C.
(ii) The numerical value in parts (i) for C = $2,400 and n = 100.

9.2 Multinomial Distribution

Multinomial distribution is a straightforward generalization of bino-
mial distribution and is based on a multinomial experiment, which
itself is a straightforward generalization of a binomial experiment.
Here, instead of 2, there are k (mutually exclusive) possible outcomes,
O1, . . . , Ok, say, occurring with respective probabilities p1, . . . , pk.

Simple examples of multinomial experiments are those of rolling a die
(with 6 possible outcomes); selecting (with replacement) r balls from a
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collection of n1 + · · ·+ nk balls, so that ni balls have the number i written
on them, i = 1, . . . , k; selecting (with replacement) r objects out of a collec-
tion of objects of which n1 are in good condition, n2 have minor defects,
and n3 have serious defects; classifying n individuals according to their
blood type, etc.

Suppose a multinomial experiment is carried out independently n times
and the probabilities p1, . . . , pk remain the same throughout. Denote by
Xi the r.v. of the number of times outcome Oi occurs, i = 1, . . . , k. Then
the joint p.d.f. of X1, . . . , Xk is given by:

fX1,..., Xk(x1, . . . , xk) = n!
x1! . . . xk!p

x1
1 . . . pxk

k , (9.11)

where x1, . . . , xk are ≥ 0 integers with x1 + · · · + xk = n, and, of course,
0 < pi < 1, i = 1, . . . , k, p1 + · · · + pk = 1. The distribution given by
(9.11) is multinomial with parameters n and p1, . . . , pk, and the r.v.’s
X1, . . . , Xk are said to have (jointly) the multinomial distribution with
these parameters.

That the right-hand side of (9.11) is the right formula for the joint
probabilities P(X1 = x1, . . . , Xk = xk) ensues as follows: By indepen-
dence, the probability that Oi occurs ni times, i = 1, . . . , k, in specified
positions, is given by: px1

1 . . . pxk
k regardless of the positions of occur-

rence of Oi’s. The different ways of choosing the ni positions for the
occurrence of Oi, i = 1, . . . , k, is equal to:

( n
n1

)(n−n1
n2

) · · · (n−n1−···−nk−1
nk

)
(by

Theorem 1 in Chapter 2). Writing out each term in factorial form and
making the obvious cancellations, we arrive at: n!/(x1! . . . xk!) (see also
Exercise 2.1).

For illustrative purposes, let us consider the following example.

EXAMPLE 1 A fair die is rolled independently 10 times. Find the probability that faces
#1 through #6 occur the following respective number of times: 2, 1, 3, 1,
2, and 1.

DISCUSSION By letting Xi be the r.v. denoting the number of occur-
rences of face i, i = 1, . . . , 6, we have:

fX1,..., X6(2, 1, 3, 1, 2, 1) = 10!
2!1!3!1!2!1! (1/6)10 = 4,725

1,889,568
� 0.003.

In a multinomial distribution, all marginal p.d.f.’s and all condi-
tional p.d.f.’s are also multinomial. More precisely, we have the following
result.
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THEOREM 2
Let X1, . . . , Xk be multinomially distributed with parameters n and
p1, . . . , pk, and for s with 1 ≤ s < k, let Y = n − (X1 + · · · + Xs) and
q = 1 − ( p1 + · · · + ps). Then,
(i) The r.v.’s X1, . . . , Xs, Y are distributed multinomially with

parameters n and p1, . . . , pk, q.
(ii) The conditional distribution of Xs+1, . . . , Xk, given X1 =

x1, . . . , Xs = xs, is multinomial with parameters n − r and
ps+1

q , . . . , pk
q , where r = x1 + · · · + xs.

PROOF

(i) For nonnegative integers x1, . . . , xs with x1 +· · ·+xs = r ≤ n, we have:

fX1,..., Xs(x1, . . . , xs) = P(X1 = x1, . . . , Xs = xs)

= P(X1 = x1, . . . , Xs = xs, Y = n − r)

= n!
x1! . . . xs!(n − r)!p

x1
1 . . . pxs

s qn−r.

(ii) For nonnegative integers xs+1, . . . , xk with xs+1 + . . . + xk = n − r, we
have:
fXs+1,..., Xk|X1,..., Xs(xs+1, . . . , xk|x1, . . . , xs)

= P(Xs+1 = xs+1, . . . , Xk = xk|X1 = x1, . . . , Xs = xs)

= P(Xs+1 = xs+1, . . . , Xk = xk, X1 = x1, . . . , Xs = xs)
P(X1 = x1, . . . , Xs = xs)

= P(X1 = x1, . . . , Xs = xs, Xs+1 = xs+1, . . . , Xk = xk)
P(X1 = x1, . . . , Xs = xs)

=
n!

x1! . . . xs!xs+1! . . . xk!p
x1
1 . . . pxs

s pxs+1
s+1 . . . pxk

k

n!
x1! . . . xs!(n − r)!p

x1
1 . . . pxs

s qn−r
, (by part (i))

= (n − r)!
xs+1! . . . xk! (

ps+1

q
)xs+1 . . . (

pk

q
)xk ,

(since xs+1 + · · · + xk = n − r). �
In the theorem above, the s r.v.’s need not be the first s, but any s r.v.’s

such as Xi1 , . . . , Xis , say, where 1 ≤ i1 < i2 < · · · < is ≤ k. Then Y =
n − (Xi1 + · · · + Xis) and q = 1 − ( pi1 + · · · + pik). Consequently, Theorem 2
becomes as follows, and its proof runs along the same lines as that of
Theorem 2.
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THEOREM 2′
Let X1, . . . , Xk be multinomially distributed with parameters n and
p1, . . . , pk, and for 1 ≤ s < k, let Y = n − (Xi1 + · · · + Xis) and
q = 1 − (pi1 + · · · + pis). Then:

(i) The r.v.’s Xi1 , . . . , Xis , Y are distributed multinomially with
parameters n and pi1 , . . . , pik , q.

(ii) The conditional distribution of Xj1 , . . . , Xjt , given Xi1 =
xi1 , . . . , Xis = xis , is multinomial with parameters n − r and
pj1
q , . . . ,

pjt
q , where r = xi1 + · · · + xis and t = k − s.

The following examples provide an illustration of Theorem 2′.

EXAMPLE 2 In reference to Example 1, calculate: P(X2 = X4 = X6 = 2) and P(X1 =
X3 = 1, X5 = 2 | X2 = X4 = X6 = 2).

DISCUSSION Here n = 10, r = 6, p2 = p4 = p6 = 1
6 and q = 1− 3

6 = 1
2 .

Thus:

P(X2 = X4 = X6 = 2) = 10!
2!2!2!4!

(
1
6

)6 (
1
2

)4

= 4,725
186,624

� 0.025,

and:

P(X1 = X3 = 1, X5 = 2 | X2 = X4 = X6 = 2) = 4!
1!1!2!

(
1/6
1/2

)4

= 4
27

� 0.148.

EXAMPLE 3 In a genetic experiment, two different varieties of a certain species are
crossed and a specific characteristic of the offspring can occur only at three
levels, A, B, and C, say. According to a proposed model, the probabilities for
A, B, and C are 1

12 , 3
12 , and 8

12 , respectively. Out of 60 offspring, calculate:

(i) The probability that 6, 18, and 36 fall into levels A, B, and C,
respectively.

(ii) The (conditional) probability that 6 and 18 fall into levels A and B,
respectively, given that 36 have fallen into level C.

DISCUSSION

(i) Formula (9.11) applies with n = 60, k = 3, p1 = 1
12 , p2 = 3

12 , p3 = 8
12 ,

x1 = 6, x2 = 18, x3 = 36 and yields:

P(X1 =6,X2 =18,X3 =36)= 60!
6!18!36!

(
1
12

)6( 3
12

)18( 8
12

)36

�0.011.
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(ii) Here Theorem 2′(ii) applies with s=1, t=2, xi1 =x3 =36, xj1 =x1 =
6, xj2 =x2 =18, r=36, so that n−r=60−36=24, q=1−p3 =1− 8

12 =
4
12 , and yields:

P(X1 =6,X2 =18|X3 =36)= (n−r)!
x1!x2!

(
p1

q

)x1
(

p2

q

)x2

= (24)!
6!18!

( 1
12
4
12

)6
(

3
12
4
12

)18

=
(

24
6

)(
1
4

)6(3
4

)18

=0.1852 (from the binomial tables).

An application of formula (9.6) gives the joint m.g.f. of X1, . . . , Xk as
follows, where the summation is over all nonnegative integers x1, . . . , xk
with x1 + · · · + xk = n (see also #3 in Table 6 in the Appendix):

MX1,..., Xk(t1, . . . , tk) =
∑

et1x1+···+tkxk
n!

x1! · · · xk!p
x1
1 . . . pxk

k

=
∑ n!

x1! . . . xk! (p1et1)x1 . . . ( pketk)xk

= ( p1et1 + · · · + pketk)n ; i.e.,

MX1,..., Xk(t1, . . . , tk) = ( p1et1 + · · · + pketk)n, t1, . . . , tk ∈ �. (9.12)

By means of (9.8) and (9.12), we can find the Cov(Xi, Xj) and the
ρ(Xi, Xj) for any 1 ≤ i < j ≤ k. Indeed, EXi = npi, EXj = npj, Var(Xi) =
npi(1 − pi), Var(Xj) = npj(1 − pj) and E(XiXj) = n(n − 1) pipj. Therefore:

Cov(Xi, Xj) = −npipj and ρ(Xi, Xj) = −[ pipj/((1 − pi)(1 − pj))]1/2

(9.13)

(see Exercise 2.4 for details).

Exercises

2.1 For any nonnegative integers n1, . . . , nk with n1 + · · · + nk = n, show
that

(
n
n1

)(
n − n1

n2

)
· · ·

(
n − n1 − · · · − nk−1

nk

)
= n!

n1!n2! . . . nk! .
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Hint: Write out the terms on the left-hand side as factorials, and
recall that 0! = 1.

2.2 In a store selling TV sets, it is known that 25% of the customers
will purchase a TV set of brand A, 40% will purchase a TV set of
brand B, and 35% will just be browsing. For a lot of 10 customers:
(i) What is the probability that 2 will purchase a TV set of brand A,

3 will purchase a TV set of brand B, and 5 will purchase neither?
(ii) If it is known that 6 customers did not purchase a TV set, what

is the (conditional) probability that 1 of the rest will purchase a
TV set of brand A and 3 will purchase a TV set of brand B?

Hint: Part (i) is an application of formula (9.11), and part (ii) is
an application of Theorem 2(ii).

2.3 Human blood occurs in 4 types termed A, B, AB, and O with respec-
tive frequencies pA = 0.40, pB = 0.10, pAB = 0.05, and pO = 0.45.
If n donors participate in a blood drive, denote by XA, XB, XAB,
and XO the numbers of donors with respective blood types A, B, AB,
and O. Then XA, XB, XAB, and XO are r.v.’s having multinomial
distribution with parameters n and pA, pB, pAB, pO. Write out the
appropriate formulas for the following probabilities:

(i) P(XA = xA, XB = xB, XAB = xAB, XO = xO) for xA, xB, xAB, and
xO nonnegative integers with xA + xB + xAB + xO = n.

(ii) P(XA = xA, XB = xB, XAB = xAB).
(iii) P(XA = xA, XB = xB).
(iv) P(XA = xA).
(v) P(XA = xA, XB = xB, XAB = xAB | XO = xO).

(vi) P(XA = xA, XB = xB | XAB = xAB, XO = xO).
(vii) P(XA = xA | XB = xB, XAB = xAB, XO = xO).

(viii) Give numerical answers to parts (i)–(vii), if n = 20, and xA = 8,
xB = 2, xAB = 1, xO = 9.

Hint: Part (i) is an application of formula (9.11), and parts
(ii)–(viii) are applications of Theorem 2.

2.4 In conjunction with multinomial distribution, show that:

EXi = npi, EXj = npj, Var(Xi) = npi(1 − pi), Var(Xj) = npj(1 − pj),

Cov(Xi, Xj) = −npipj and ρ(Xi, Xj) = − pipj

[pi(1 − pi)pj(1 − pj)]1/2
.

Hint: Use the m.g.f. given in formula (9.12).
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2.5 Refer to Exercises 2.3 and 2.4, and for n = 20, calculate the
quantities:

EXA, EXB, EXAB, EXO; Var(XA), Var(XB), Var(XAB),

Var(XO); Cov(XA, XB), Cov(XA, XAB), Cov(XA, XO);

ρ(XA, XB), ρ(XA, XAB), ρ(XA, XO).

2.6 In a shipment of 32 TV sets, it is known that 20 are brand new, 8 are
used but in working condition, and 2 are defective. Six TV sets are
selected at random, and let X1, X2, X3 be the r.v.’s denoting, respec-
tively, the numbers, among the 6, of the new, used and defective
sets.

(i) Compute the probability P(X1 = 4, X2 = 1, X3 = 1).
(ii) Compute the same probability as in part (i) by pretending that

the r.v.’s X1, X2, X3 have multinomial distribution.
(iii) What portion of the correct probability in part (i) is the

probability in part (ii)?

Hint: For part (i), use Theorem 1 and part (ii) of its corollary in
Chapter 2.

2.7 In a certain high school, the distribution of students among the four
grades is as follows: 20.00% are freshmen, 23.75% are sophomore,
31.25% are junior, and 25.00% are senior. If 20 students are chosen at
random from this high school, compute the following probabilities:
(i) 4 students are freshmen, 5 are sophomores, 6 are junior, and

5 are senior.
(ii) 5 students are senior.

(iii) 11 students are either junior or senior.
(iv) At least 11 students are either junior or senior.

Hint: Assume the multinomial model, and use formula (9.11) and
Theorem 2.

2.8 In a mouse, a gene occurs in two states, dominant (A) and reces-
sive (a), and such genes occur in pairs, so that there are the following
possibilities: AA, Aa, aA (the same as Aa), and aa. If p is the
frequency with which state A occurs, then the frequencies of the
configurations AA, Aa, and aa are, respectively, p2, 2p(1 − p), and
(1 − p)2. If n such pairs of genes are observed independently, and if
X1, X2, X3 are the numbers of the observed configurations AA, Aa
(= aA), aa, respectively, then:

(i) What is the joint distribution of the Xi’s?
If n = 15 and p = 0.75, compute the following quantities:

(ii) P(X1 = 8, X2 = 6, X3 = 1).
(iii) P(X2 = 6).
(iv) P(X1 = 8, X3 = 1|X2 = 6).
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2.9 A manufactured item is classified as good, defective but usable, and
outright defective in the following respective proportions: 62.5%,
31.25%, and 6.25%. Twenty-five such items are selected at random
from the production line, and let X1, X2, and X3 be the r.v.’s denoting
the numbers of the good, defective but usable, and outright defective
items, respectively. Compute the following quantities:

(i) P(X1 = 16, X2 = 7, X3 = 2).
(ii) P(X1 = 15, X2 = 8)

(iii) P(X3 = 2)
(iv) EXi, σ (Xi), i = 1, 2, 3.

Hint: For part (i), use formula (9.11). For parts (ii) and (iii),
use Theorem 2. For part (iv), use either Theorem 2(i) suitably,
or formula (9.12).

2.10 From statistical surveys taken in the past, it is known that a cer-
tain TV audience watches the 8:00 o’clock news, or a documentary
program, or other programs in the following respective proportions:
31.25%, 25%, and 43.75%. A random sample of size 15 is taken from
this audience at 8:00 o’clock. Compute the following probabilities:

(i) The numbers observed, among the 15 selected, are, respectively,
5, 4 and 6.

(ii) The number of those watching a documentary program is at
least 3.

(iii) The number of those not watching the news is no more than 5.

Hint: For part (i), use formula (9.11), and for parts (ii) and (iii),
use Theorem 2(i) suitably.

2.11 Let X be an r.v. of the continuous type with p.d.f. f , and consider the
partition of the real line � by k intervals as indicated below.

Partition of the real line
� into a countable
number of intervals.

(

I1 I2  I3 • • • • • • Ik-1 Ik

]( ] ](](

Set pi = ∫
Ii

f (x)dx, i = 1, . . . , k. Next, take n independent observa-
tions on the r.v. X , and let Xi be the number of outcomes lying in
the Ii interval, i = 1, . . . , k.
(i) Specify the joint distribution of the r.v.’s Xi, i = 1, . . . , k.

(ii) Let X ∼ N(0, 1), and consider the following intervals:

I1 = (−∞, −3], I2 = (−3, −2] I3 = (−2, −1], I4 = (−1, 0],
I5 = (0, 1], I6 = (1, 2] I7 = (2, 3], I8 = (3, ∞].

Calculate the probabilities pi = P(X ∈ Ii), i = 1, . . . , 8.
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9.3 Bivariate Normal Distribution

This distribution could have been discussed in Chapter 7, but we chose
not to do so in order not to overload that chapter.

The joint distribution of the r.v.’s X and Y is said to be bivariate normal
with parameters µ1, µ2 in �, σ1, σ2 positive and ρ ∈ [−1, 1], if their joint
p.d.f. is given by the formula:

fX ,Y (x, y) = 1

2πσ1σ2
√

1 − ρ2
e−q/2, x, y ∈ �, (9.14)

where

q = 1
1 − ρ2

[(
x − µ1

σ1

)2

− 2ρ

(
x − µ1

σ1

) (
y − µ2

σ2

)
+

(
y − µ2

σ2

)2 ]
. (9.15)

This distribution is also referred to as 2-dimensional normal. The shape
of fX ,Y looks like a bell facing the xy-plane, whose highest point is located
at the point (µ1, µ2, 1/(2πσ1σ2

√
1 − ρ2)) (see Figure 9.1).

Figure 9.1

Graphs of the p.d.f.
of bivariate normal
distribution:
(a) centered at the
origin; (b) centered
elsewhere in the
(x,y)-plane.

fX,Y (x, y)

(a) (b)

y

y

x
x

fX,Y (x, y)

Many bivariate measurements may be looked upon as having a distri-
bution approximated by a suitable bivariate normal distribution. Heights
of fathers, heights of sons; SAT, GPA scores; heights, weights of individ-
uals; voltage, resistance; tire pressure, mileage rate in cars; amount of
fertilizer, amount of harvested agricultural commodity; and cholesterol,
blood pressure may be such examples.
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That fX ,Y integrates to 1 and therefore is a p.d.f. is seen by rewriting
it in a convenient way. Specifically,

(
x−µ1

σ1

)2

−2ρ

(
x−µ1

σ1

)(
y−µ2

σ2

)
+

(
y−µ2

σ2

)2

=
(

y−µ2

σ2

)2

−2
(

ρ
x−µ1

σ1

)(
y−µ2

σ2

)
+

(
ρ

x−µ1

σ1

)2

+(1−ρ2)
(

x−µ1

σ1

)2

=
[(

y−µ2

σ2

)
−

(
ρ

x−µ1

σ1

)]2

+ (1−ρ2)
(

x−µ1

σ1

)2

.

(9.16)

Furthermore,

y−µ2

σ2
−ρ

x−µ1

σ1
= y−µ2

σ2
− 1

σ2
×ρσ2

x−µ1

σ1

= 1
σ2

{
y−

[
µ2+ ρσ2

σ1
(x−µ1)

]}

= y−bx

σ2
, where bx =µ2+ ρσ2

σ1
(x−µ1)

(see also Exercise 3.1).
Therefore, the right-hand side of (9.16) is equal to:

(
y−bx

σ2

)2

+(1−ρ2)
(

x−µ1

σ1

)2

,

and hence the exponent becomes:

− (x−µ1)2

2σ 2
1

− (y−bx)2

2(σ2
√

1−ρ2)2
.

Then the joint p.d.f. may be rewritten as follows:

fX ,Y (x,y)= 1√
2πσ1

e
− (x−µ1)2

2σ2
1 × 1√

2π(σ2
√

1−ρ2)
e
− (y−bx)2

2(σ2

√
1−ρ2)2 . (9.17)

The first factor on the right-hand side of (9.17) is the p.d.f. of N(µ1,σ 2
1 ),

and the second factor is the p.d.f. of N(bx, (σ2
√

1−ρ2)2). Therefore, inte-
gration with respect to y produces the marginal N(µ1,σ 2

1 ) distribution,
which, of course, integrates to 1. So, we have established the following
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two facts:

∫ ∞
−∞

∫ ∞
−∞ fX ,Y (x,y)dxdy=1, and

X ∼N
(
µ1,σ 2

1
)
, and by symmetry, Y ∼N

(
µ2,σ 2

2
)
. (9.18)

The results recorded in (9.18) also reveal the special significance of
the parameters µ1,σ 2

1 and µ2,σ 2
2 . Namely, they are the means and the

variances of the (normally distributed) r.v.’s X and Y , respectively. Rela-
tions (9.17) and (9.18) also provide immediately the conditional p.d.f. fY |X ;
namely,

fY |X (y/x)= 1√
2π(σ2

√
1−ρ2)

exp
[
− (y−bx)2

2(σ2
√

1−ρ2)

]
.

Thus, in obvious notation:

Y |X =x∼N(bx, (σ2

√
1−ρ2)2), bx =µ2+ ρσ2

σ1
(x−µ1), (9.19)

and by symmetry:

X |Y =y∼N(by, (σ1

√
1−ρ2)2), by =µ1+ ρσ1

σ2
(y−µ2). (9.20)

Gathering together the results obtained above in the form of a theorem,
we have then:

THEOREM 3
(i) The function given in (9.14) is, indeed, a p.d.f. as stated.

(ii) The marginal p.d.f.’s are themselves normal; or the r.v.’s
X and Y are normally distributed as specified in (9.18).

(iii) The conditional p.d.f.’s are also normal as specified in (9.19) and
(9.20).

In Figure 9.2, the conditional p.d.f. fY |X (· |x) is depicted for three values
of x :x=5,10, and 15.

Formulas (9.17), (9.18), and (9.20) also allow us to calculate easily the
covariance and the correlation coefficient of X and Y . Indeed, by (9.17):

E(XY )=
∫ ∞

−∞

∫ ∞

−∞
xyfX ,Y (x,y)dxdy=

∫ ∞

−∞
xfX (x)

[∫ ∞

−∞
yfY |X (y |x)dy

]
dx

=
∫ ∞

−∞
xfX (x)bx dx=

∫ ∞

−∞
xfX (x)

[
µ2+ ρσ2

σ1
(x−µ1)

]
dx

=µ1µ2+ρσ1σ2
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Figure 9.2

Conditional
probability density
functions of the
bivariate normal
distribution.
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(see also Exercise 3.2). Since we already know that EX =µ1,EY =µ2,
and Var(X)=σ 2

1 ,Var(Y )=σ 2
2 , we obtain:

Cov(X ,Y )=E(XY )−(EX)(EY )=µ1µ2+ρσ1σ2−µ1µ2 =ρσ1σ2,

and therefore ρ(X ,Y )= ρσ1σ2
σ1σ2

=ρ. Thus, we have:

Cov(X ,Y )=ρσ1σ2 and ρ(X ,Y )=ρ. (9.21)

Relation (9.21) reveals that the parameter ρ in (9.14) is actually the
correlation coefficient of the r.v.’s X and Y .

Thus, we have the following result.

THEOREM 4
In bivariate normal distribution with parameters µ1,µ2,σ1,σ2 and ρ,
we have:

Cov(X ,Y )=ρσ1σ2 and ρ(X ,Y )=ρ.

The following examples provide an illustration for some of the quanti-
ties associated with a bivariate normal distribution.

EXAMPLE 4 If the r.v.’s X1 and X2 have bivariate normal distribution with parameters
µ1,µ2,σ 2

1 ,σ 2
2 , and ρ:

(i) Calculate the quantities: E(c1X1 +c2X2),Var(c1X1 +c2X2), where c1,c2
are constants.

(ii) What the expressions in part (i) become for: µ1 =−1,µ2 =3,σ 2
1 =4,

σ 2
2 =9, and ρ = 1

2?
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DISCUSSION

(i) E(c1X1+c2X2)=c1EX1+c2EX2 =c1µ1+c2µ2, e.g., since Xi ∼N (µi,σ 2
i ),

so that EXi =µi, i=1,2. Also,

Var(c1X1+c2X2)=c2
1σ

2
X1

+c2
2σ

2
X2

+2c1c2σX1σX2ρ(X1,X2)

(by (9.9) applied for k=2)

=c2
1σ

2
1 +c2

2σ
2
2 +2c1c2σ1σ2ρ,

since Xi ∼N(µi,σ 2
i ), so that Var(Xi)=σ 2

i ,i=1,2, and ρ(X1,X2)=ρ, by
(9.21).

(ii) Here E(c1X1+c2X2)=−c1+3c2, and Var(c1X1+c2X2)=4c1+9c2+
2c1c2×2×3× 1

2 =4c1+9c2+6c1c2.

EXAMPLE 5 Suppose that the heights of fathers and sons are r.v.’s X and Y, respectively,
having (approximately) bivariate normal distribution with parameters
(expressed in inches) µ1 =70,σ1 =2,µ2 =71,σ2 =2 and ρ =0.90. If for a
given pair (father, son) it is observed that X =x=69, determine:

(i) The conditional distribution of the height of the son.
(ii) The expected height of the son.

(iii) The probability of the height of the son to be more than 72 inches.

DISCUSSION

(i) According to (9.19), Y |X =x∼N(bx, (σ2
√

1−ρ2)2), where:

bx =µ2+ ρσ2

σ1
(x−µ1)=71+0.90(69−70)=70.1, and

σ2

√
1−ρ2 =2×

√
1−0.902 =2×√

0.19�0.87.

That is, Y |X =69 is distributed as N(70.1,(0.87)2).
(ii) The (conditional) expectation of Y , given X =69, is equal to b69 =70.1.

(iii) The required (conditional) probability is:

P(Y>72 |X =69)=P
( Y −b69

σ2
√

1−ρ2
>

72−70.1
0.87

)
�P(Z>2.18)

=1−�(2.18)=1−0.985371=0.014629.
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Finally, it can be seen by integration that the joint m.g.f. of X and Y is
given by the formula:

MX ,Y (t1,t2)=exp
[
µ1t1+µ2t2+ 1

2

(
σ 2

1 t2
1 +2ρσ1σ2t1t2+σ 2

2 t2
2
)]

, t1,t2 ∈�;

(9.22)

we choose not to pursue its justification (which can be found, e.g., in
Section 6.5.3 in the book A Course in Mathematical Statistics, 2nd edition
(1997), Academic Press, by G. G. Roussas). We see, however, easily that

∂

∂t1
MX ,Y (t1,t2)= (

µ1+σ 2
1 t1+ρσ1σ2t2

)
MX ,Y (t1,t2),

and hence:

∂2

∂t1∂t2
MX ,Y (t1,t2)=ρσ1σ2MX ,Y (t1,t2)+(

µ1+σ 2
1 t1+ρσ1σ2t2

)

× (
µ2+σ 2

2 t2+ρσ1σ2t1
)
MX ,Y (t1,t2),

which, evaluated at t1 = t2 =0, yields: ρσ1σ2+µ1µ2 =E(XY ), as we have
already seen.

Exercises

3.1 Elaborate on the expressions in (9.16), as well as the expressions
following (9.16).

3.2 If the r.v.’s X and Y have bivariate normal distribution with
parameters µ1,µ2,σ 2

1 ,σ 2
2 , and ρ, show that E(XY )=µ1µ2+ρσ1σ2.

Hint: Write the joint p.d.f. fX ,Y as fY |X (y |x)fX (x) and use the fact
(see relation (9.19)) that E(Y |X =x)=bx =µ2+ ρσ2

σ1
(x−µ1).

3.3 If the r.v.’s X and Y have bivariate normal distribution, then, by
using Exercise 3.2, show that the parameter ρ is, indeed, the
correlation coefficient of the r.v.’s X and Y ,ρ =ρ(X ,Y ).

3.4 If the r.v.’s X and Y have joint p.d.f. fX ,Y , expectations µ1 =EX ,
µ−EY finite, variances σ 2

1 =Var(X), σ 2
2 =Var(Y )2 finite, and corre-

lation coefficient ρ =ρ(X ,Y ), and if c1, c2 are constants:
(i) Show that Cov(c1X ,c2Y )=c1c2Cov(X ,Y ).

(ii) Express the expectation E(c1X +c2Y ) and the variance
Var(c1X +c2Y ) in terms of c1, c2, µ1, µ2, σ 2

1 , σ 2
2 , and ρ.

(iii) How part (ii) differs from Example 4(i)?

Hint: For the variance part, use Theorem 3 in Chapter 8.
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3.5 If the r.v.’s X and Y have bivariate normal distribution, then it is
known (see, e.g., relation (11), Section 6.5.3, in the book A Course
in Mathematical Statistics, 2nd edition (1997), Academic Press, by
G. G. Roussas) that the joint m.g.f. of X and Y is given by:

MX ,Y (t1,t2)=exp
[
µ1t1+µ2t2 + 1

2

(
σ 2

1 t2
1 +2ρσ1σ2t1t2 +σ 2

2 t2
2
)]

, t1,t2 ∈�.

Use this m.g.f. to show that:

EX =µ1, EY =µ2, Var(X)=σ 2
1 , Var(Y )=σ 2

2 ,

Cov(X ,Y )=ρσ1σ2, and ρ(X ,Y )=ρ.

3.6 Use the joint m.g.f. of the r.v.’s X and Y having a bivariate normal
distribution (see Exercise 3.5) to show that:
(i) If X and Y have bivariate normal distribution with parameters

µ1,µ2,σ 2
1 ,σ 2

2 , and ρ, then, for any constants c1 and c2, the r.v.
c1X +c2Y has normal distribution with parameters c1µ1 +c2µ2,
and c2

1σ
2
1 +2c1c2ρσ1σ2 +c2

2σ
2
2 .

(ii) If the r.v. c1X +c2Y is normally distributed for any constants c1
and c2, then the r.v.’s. X and Y have bivariate normal distribu-
tion with parameters µ1 =EX , µ2 =EY ,σ 2

1 =Var(X),σ 2
2 =Var(Y ),

and ρ =ρ(X ,Y ).

Hint: For part (i), use the m.g.f. given in Exercise 3.5 and regroup
the terms appropriately. For part (ii), evaluate the m.g.f. of t1X +
t2Y for any t1, t2 real at 1, and plug in the E(t1X +t2Y ) and the
Var(t1X +t2Y ).

3.7 Consider the function f defined by:

f (x,y)=





1
2π

e− x2+y 2
2 , for (x,y) outside the square [−1,1]×[−1,1]

1
2π

e− x2+y 2
2 + 1

2πex3y3, for (x,y) in the square [−1,1]×[−1,1].
(i) Show that f is a non–bivariate normal p.d.f.

(ii) Also, show that both marginals, call them f1 and f2, are N(0,1)
p.d.f.’s.

Remark: We know that if X ,Y have bivariate normal distribution,
then the distributions of the r.v.’s X and Y themselves are normal.
This exercise shows that the inverse need not be true.

3.8 Let the r.v.’s X and Y have bivariate normal distribution with
parameters µ1,µ2,σ 2

1 ,σ 2
2 , and ρ, and set U =X +Y ,V =X −Y . Then

show that:
(i) The r.v.’s U and V also have bivariate normal distribution

with parameters µ1+µ2,µ1−µ2,τ2
1 =σ 2

1 +2ρσ1σ2+σ 2
2 ,τ2

2 =σ 2
1 −

2ρσ1σ2+σ 2
2 , and ρ0 = (σ 2

1 −σ 2
2 )/τ1τ2.
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(ii) U ∼N(µ1+µ2,τ2
1 ), V ∼N(µ1−µ2,τ2

2 ).
(iii) The r.v.’s U and V are uncorrelated if and only if σ 2

1 =σ 2
2 .

Hint: For part (i), start out with the joint m.g.f. of U and V , and
express it in terms of the m.g.f. of X and Y . Then use the formula
given in Exercise 3.5, and regroup the terms in the exponent suit-
ably to arrive at the desired conclusion. Parts (ii) and (iii) follow
from part (i) and known facts about bivariate normal distribution.

3.9 Let the r.v.’s X and Y denote the scores in two tests T1 and T2, and
suppose that they have bivariate normal distribution with the follow-
ing parameters: µ1 =82, σ1 =10, µ2 =90, σ2 =9, ρ =0.75. Compute
the following quantities: P(Y>92|X =84), P(X>Y ), P(X +Y>180).

Hint: The first probability is calculated by the fact that we know
the conditional distribution of Y , given X =x. The last two prob-
abilities are calculated by the fact that the distributions of X −Y
and X +Y are given in Exercise 3.8(ii).

3.10 If X and Y have bivariate normal distribution with parameters µ1 =
3.2, µ2 =12, σ 2

1 =1.44, σ 2
2 =16, and ρ =0.7, determine the following

quantities:
(i) EX , EY , σ 2(X), σ 2(Y ), ρ(X ,Y ), and Cov(X ,Y ).

(ii) E(X |Y =10), E(Y |X =3.8), σ 2(X |Y =10), σ 2(Y |X =3.8).
(iii) The distribution of X and the distribution of Y .
(iv) The probabilities P(0.8<X<4.2), P(Y>14).
(v) The conditional distribution of Y , given X =3.8.

(vi) The probabilities P(X>3.2|Y =10), P(Y<12|X =3.8).

3.11 Let the r.v.’s X and Y denote the heights of pairs (father/son) in
a certain age bracket, and suppose that they have bivariate nor-
mal distribution with the following parameters (measured in inches
as appropriate): µ1 =67, σ1 =2, µ2 =68, σ2 =1, ρ =0.8. If it is
observed that X =69, compute the following quantities: E(Y |X =69),
conditional s.d. of Y |X =69, P(X>70|X =69), P(Y>X).

3.12 Suppose the r.v.’s X and Y have bivariate normal distribution with
parameters µ1, µ2, σ 2

1 , σ 2
2 , ρ, and set U =X +cY .

(i) Compute the σ 2(U) in terms of the parameters involved and c.
(ii) Determine the value of c that minimizes the variance in

part (i).
(iii) What is the minimum variance in part (i)?
(iv) What do the variance and the minimum variances in parts (ii)

and (iii) become when X and Y are independent?

Hint: For part (i), use Theorem 3 in Chapter 8.
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3.13 Show that bivariate normal p.d.f. f (x,y) given by relation (9.14)
is maximized for x=µ1, y=µ2, and the maximum is equal to
1/2πσ1σ2

√
1−ρ2.

Hint: Set x−µ1
σ1

=u, y−µ2
σ2

=v, so that the exponent in the p.d.f.
becomes, in terms of u and v: g(u,v)=u2−2ρuv+v2 (apart from
the factor (1−ρ2)−1). Then show that g(u,v) is minimized for u=
v=0, which would imply that f (x,y) is maximized for x=µ1, y=µ2.

3.14 Let the r.v.’s X and Y have bivariate normal distribution with param-
eters µ1, µ2, σ 2

1 , σ 2
2 , ρ, and suppose that all parameters are known

and the r.v. X is observable. Then we wish to predict Y in terms of
a linear expression in X ; namely, Ŷ =a+b(X −µ1), by determining a
and b, so that the (average) E(Y −Ŷ )2 becomes minimum.
(i) Show that the values of a and b that minimize the expression

E(Y −Ŷ )2 are given by: â=µ2 and b̂= ρσ2
σ1

.

(ii) The predictor Ŷ of Y is given by: Ŷ =µ2+ ρσ2
σ1

(x−µ1). Thus, by

setting X =x, we have that Ŷ at X =x is: µ2 + ρσ2
σ1

(x−µ1), which
is the E(Y |X =x). Hence the E(Y |X =x) is the best predictor of Y
(among all predictors of the form a+b(x−µ1)) in the sense that
when x is replaced by X , E(Y |X) minimizes the mean square
error E(Y −Ŷ )2.

Hint: The required determination of a and b can be made
through the usual procedure of differentiations. Alternatively,
we can write:

E(Y −Ŷ )2 =E[Y −a−b(X −µ1)]2

=E[(Y −µ2)+(µ2−a)−b(X −µ1)]2

and proceed in order to find:

E(Y −Ŷ )2 =σ 2
2 +(µ2−a)2+b2σ 2

1 −2bCov(X ,Y )

=σ 2
2 +(µ2−a)2+σ 2

1 [b− 1

σ 2
1

Cov(X ,Y )]2

− Cov2(X ,Y )

σ 2
1

= (µ2−a)2+σ 2
1 [b− 1

σ 2
1

Cov(X ,Y )]2

+ σ 2
1 σ 2

2 −Cov2(X ,Y )

σ 2
1 σ 2

2

.
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Since Cov2(X ,Y )≤σ 2
1 σ 2

2 , it follows that E(Y −Ŷ )2 is minimized
for a=µ2 and b= 1

σ 2
1

Cov(X ,Y )= ρσ1σ2
σ 2

1
= ρσ2

σ1
.

3.15 Show that the intersection of the surface represented by the bivariate
normal p.d.f. by any plane perpendicular to the z-axis is an ellipse;
and it is a circle if and only if ρ =0.

9.4 Multivariate Normal Distribution

This chapter concludes with a brief reference to multivariate normal dis-
tribution without entering into any details. A relevant reference is given
for the interested reader.

Multivariate normal distribution is the generalization of bivariate nor-
mal distribution and can be defined in a number of ways; we choose the
one given here. To this end, for k≥2, let µ= (µ1, . . . ,µk) be a vector of con-
stants, and let � be a k×k nonsingular matrix, so that the inverse �−1

exists and the determinant |�| �=0. Finally, set X for the vector of r.v.’s
X1, . . . ,Xk; i.e., X = (X1, . . . ,Xk) and x= (x1, . . . ,xk) for any point in �k.
Then, the joint p.d.f. of the Xi’s, or the p.d.f. of the random vector X,
is said to be multivariate normal, or k-variate normal, if it is given by the
formula:

fX(x)= 1
(2π)k/2|�|1/2

exp
[
−1

2
(x−µ)�−1(x−µ)′

]
, x∈�k,

where, it is to be recalled that “ ′ " stands for transpose.
It can be seen that EXi =µi,Var(Xi)=σ 2

i is the (i,i)th element of �, and
Cov(Xi,Xj) is the (i,j)th element of �, so that µ= (EX1, . . . ,EXk) and �=
(Cov(Xi,Xj)),i, j=1, . . . ,k. The quantities µ and � are called the parameters
of the distribution. It can also be seen that the joint m.g.f. of the Xi’s, or
the m.g.f. of the random vector X, is given by:

MX(t)=exp
(

µt′+ 1
2

t�t′
)

, t∈�k.

k-variate normal distribution has properties similar to those of
2-dimensional normal distribution, and the latter is obtained from the

former by taking µ= (µ1,µ2) and �= ( σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where ρ =ρ(X1,X2).

More relevant information can be found, for example, in Chapter 18 of
the reference cited in Exercise 3.4.



10
Independence of Random
Variables and Some
Applications

This chapter consists of three sections. In the first, we introduce the
concept of independence of r.v.’s and establish criteria for proving or
disproving independence. Also, its relationship to uncorrelatedness is dis-
cussed. In the second section, a random sample of size n is defined, as well
as the sample mean and the sample variance; some of their moments are
also produced. The main thrust of this section, however, is the discussion
of the reproductive property of certain distributions. As a by-product, we
also obtain the distribution of the sample mean and of a certain multi-
ple of the sample variance for independent and normally distributed r.v.’s.
In the final short section, the distribution of a modified version of the
sample variance is derived under normality.

10.1 Independence of Random Variables and Criteria of Independence

In Section 4.2 of Chapter 4, the concept of independence of two events
was introduced, and it was suitably motivated and illustrated by means
of examples. This concept was then generalized to more than two events.
What is done in this section is, essentially, to carry over the concept of
independence from events to r.v.’s. To this end, consider first two r.v.’s

207
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X1 and X2 and the events induced in the sample space S by each of them
separately, as well as by both of them jointly. That is, for subsets B1, B2
of �, let:

A1 = (X1 ∈ B1) = X−1
1 (B1) = {s ∈ S; X1(s) ∈ B1}, (10.1)

A2 = (X2 ∈ B2) = X−1
2 (B2) = {s ∈ S; X2(s) ∈ B2}, (10.2)

A12 = ((X1, X2) ∈ B1 × B2) = (X1 ∈ B1 & X2 ∈ B2) = (X1, X2)−1(B1 × B2)

= {s ∈ S; X1(s) ∈ B1 & X2(s) ∈ B2} = A1 ∩ A2. (10.3)

Then the r.v.’s X1, X2 are said to be independent if, for any B1 and
B2 as before, the corresponding events A1 and A2 are independent; that
is, P(A1 ∩ A2) = P(A1)P(A2). By (10.1)–(10.3), clearly, this relation is
equivalent to:

P(X1 ∈ B1, X2 ∈ B2) = P(X1 ∈ B1)P(X2 ∈ B2). (10.4)

This relation states, in effect, that information regarding one r.v. has
no effect on the probability distribution of the other r.v. For example,

P(X1 ∈ B1|X2 ∈ B2) = P(X1 ∈ B1, X2 ∈ B2)
P(X2 ∈ B2)

= P(X1 ∈ B1)P(X2 ∈ B2)
P(X2 ∈ B2)

= P(X1 ∈ B1).

Relation (10.4) is taken as the definition of independence of these two
r.v.’s, which is then generalized in a straightforward way to k r.v.’s.

DEFINITION 1
Two r.v.’s X1 and X2 are said to be independent (statistically or
stochastically or in the probability sense) if, for any subsets B1 and
B2 of �,

P(X1 ∈ B1, X2 ∈ B2) = P(X1 ∈ B1)P(X2 ∈ B2).

The r.v.’s X1, . . . , Xk are said to be independent (in the same sense as
above) if, for any subsets B1, . . . , Bk of �,

P(Xi ∈ Bi, i = 1, . . . , k) =
k∏

i=1

P(Xi ∈ Bi). (10.5)

Nonindependent r.v.’s are said to be dependent.
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The practical question that now arises is how one checks independence
of k given r.v.’s, or lack thereof. This is done by means of the following
criterion, referred to as the factorization theorem, because of the form of
the expressions involved.

THEOREM 1
(Criterion of independence, factorization theorem) For k ≥ 2,
the r.v.’s X1, . . . , Xk are independent if and only if any one of the
following three relations holds:

(i) FX1,..., Xk(x1, . . . , xk) = FX1(x1) · · · FXk(xk) (10.6)
for all x1, . . . , xk in �.

(ii) fX1,..., Xk(x1, . . . , xk) = fX1(x1) · · · fXk(xk) (10.7)
for all x1, . . . , xk in �.

(iii) MX1,..., Xk(t1, . . . , tk) = MX1(t1) · · · MXk(tk) (10.8)
for all t1, . . . , tk in a nondegenerate interval containing 0.

Before we proceed with the (partial) justification of this theorem, let us
refer to Example 1 in Chapter 7 and notice that fX (3) = 0.04, fY (2) = 0.15,
and fX ,Y (3, 2) = 0.02, so that fX ,Y (3, 2) = 0.02 �= 0.04 × 0.15 = 0.006 =
fX (3)fY (2). Accordingly, the r.v.’s X and Y are not independent.

On the other hand, in reference to Example 2 in Chapter 7 (see also
Example 6 in the same chapter), we have, for all x, y > 0:

fX ,Y (x, y) = λ1λ2e−λ1x−λ2y = (λ1e−λ1x)(λ2e−λ2y) = fX (x)fY (y),

so that fX ,Y (x, y) = fX (x)fY (y) for all x and y, and consequently, the r.v.’s X
and Y are independent. Three additional examples are discussed below.

EXAMPLE 1 Examine the r.v.’s X and Y from an independence viewpoint, if their joint
p.d.f. is given by fX ,Y (x, y) = 4xy, 0 < x < 1, 0 < y < 1 (and 0 otherwise).

DISCUSSION We will use part (ii) of Theorem 1, for which the
marginal p.d.f.’s are needed. To this end, we have:

fX (x) = 4x
∫ 1

0
y dy = 2x, 0 < x < 1;

fY (y) = 4y
∫ 1

0
x dx = 2y, 0 < y < 1.

Hence, for all 0 < x < 1 and 0 < y < 1, it holds that 2x × 2y = 4xy,
or fX (x)fY (y) = fX ,Y (x, y). This relation is also trivially true (both sides
are equal to 0) for x and y not satisfying the inequalities 0 < x < 1 and
0 < y < 1. It follows that X and Y are independent.
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Here are two examples where the r.v.’s involved are not independent.

EXAMPLE 2 If the r.v.’s X and Y have joint p.d.f. given by: fX ,Y (x, y) = 2, 0 < x < y < 1
(and 0 otherwise), check whether these r.v.’s are independent or not.

DISCUSSION Reasoning as in the previous example, we find:

fX (x) = 2
∫ 1

x
dy = 2(1 − x), 0 < x < 1;

fY (y) = 2
∫ y

0
dx = 2y, 0 < y < 1.

Then independence of X and Y would require that 4(1 − x)y = 2 for all
0 < x < y < 1, which, clearly, need not hold. For example, for x = 1

4 , y = 1
2 ,

4(1 − x)y = 4 × 3
4 × 1

2 = 3
2 �= 2. Thus, the X and Y are not independent.

EXAMPLE 3 In reference to Exercise 2.21 in Chapter 7, the r.v.’s X and Y have joint
p.d.f. fX ,Y (x, y) = 8xy, 0 < x ≤ y < 1 (and 0 otherwise), and:

fX (x) = 4x(1 − x2), 0 < x < 1; fY (y) = 4y3, 0 < y < 1.

Independence of X and Y would require that 4x(1 − x2) × 4y3 = 8xy or
(1 − x2)y2 = 1

2 , 0 < x ≤ y ≤ 1. However, this relation need not be
true because, for example, for x = 1

4 and y = 1
2 , we have: left-hand side

= 15
64 �= 1

2 = right-hand side. So, the r.v.’s X and Y are dependent.

REMARK: 1 On the basis of Examples 2 and 3, one may surmise the
following rule of thumb: If the arguments x and y (for the case of two
r.v.’s) do not vary independently of each other, the r.v.’s involved are likely
to be dependent.

The following result, formulated as a proposition, provides still another
interesting application of Theorem 1(i) for k = 2.

PROPOSITION 1 Refer to Exercise 2.6 in Chapter 6. That is, consider
certain events occurring in time intervals of length t according to Poisson
distribution with parameter λt.

(i) Then the waiting time between the occurrences of any two such suc-
cessive events is an r.v. X which has negative exponential distribution
with parameter λ; i.e., fX (x) = λe−λx, x > 0.

(ii) Let x0 be the time of occurrence of an event as described above, let
X1 be the waiting time until the occurrence of the next such event,
and let X2 be the waiting time until the occurrence of the next event
after it. Then the r.v.’s X1 and X2 are independent.
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PROOF

(i) It is Exercise 2.6 in Chapter 6.
(ii) For x1 > 0 and x2 > 0, we have:

FX1,X2(x1, x2) = P(X1 ≤ x1, X2 ≤ x2)
= P(of an event occuring in the time interval (x0, x0 + x1] and of the
next event occurring in the time interval (x0 + x1, x0 + x1 + x2]).
The intervals (x0, x0 +x1] and (x0 +x1, x0 +x1 +x2] are nonoverlapping.
Therefore the events occurring in these time intervals are indepen-
dent. Thus, the above probability is:
= P(of an event occuring in the time interval (x0, x0 + x1]) × P(of the
next event occuring in the time interval (x0 + x1, x0 + x1 + x2])
= P(of waiting at most x1 time units (beyond x0) for the occurrence
of an event) × P(of waiting at most x2 time units (beyond x0 + x1) for
the occurrence of the next event)
= FX1(x1)FX2(x2), which establishes the assertion made. �

PARTIAL PROOF OF THEOREM 1 The proof can be only partial,
but sufficient for the purposes of this book.

(i) Independence of the r.v.’s X1, . . . , Xk means that relation (10.5) is sat-
isfied. In particular, this is true if Bi = (−∞, xi], i = 1, . . . , k which is
(10.6). That (10.6) implies (10.5) is a deep probabilistic result dealt
with at a much higher level.

(ii) Suppose the r.v.’s are independent, and first assume they are discrete.
Then, by taking Bi = {xi}, i = 1, . . . , k in (10.5), we obtain (10.7).
If the r.v.’s are continuous, then consider (10.6) and differentiate both
sides with respect to x1, . . . , xk, which, once again, leads to (10.7) (for
continuity points x1, . . . , xk). For the converse, suppose that (10.7) is
true; that is, for all t1, . . . , tk in �,

fX1,..., Xk(t1, . . . , tk) = fX1(t1) · · · fXk(tk).

Then, if the r.v.’s are discrete, sum over the ti’s from −∞ to xi, i =
1, . . . , k to obtain (10.6); if the r.v.’s are continuous, replace the sum-
mation operations by integrations in order to obtain (10.6) again.
In either case, independence follows.

(iii) Suppose the r.v.’s are independent, and let them be continuous (in
the discrete case, integrals are replaced by summation signs). Then
MX1,..., Xk(t1, . . . , tk) = Eet1X1+···+tkXk

=
∫ ∞

−∞
. . .

∫ ∞

−∞
et1x1+···+tkxk fX1,..., Xk(x1, . . . , xk)dx1 . . . dxk

=
∫ ∞

−∞
. . .

∫ ∞

−∞
et1x1+···+tkxk fX1(x1) . . . fXk(xk)dx1 . . . dxk (by part (ii))
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=
∫ ∞

−∞

[
et1x1 fX1(x1)dx1

]
. . .

∫ ∞

−∞

[
etkxkfXk(xk)dxk

]

= (Eet1X1) . . . (EetkXk)

= MX1(t1) . . . MXk(tk).

The converse is also true, but its proof will not be pursued here (it
requires the use of the so-called inversion formula as indicated in the dis-
cussion immediately following Theorem 1 of Chapter 5 and Remark 1 of
Chapter 8). �

The following result provides sill another way of checking independence
of k r.v.’s X1, . . . , Xk. Its significance lies in that in order to check for
independence of the r.v.’s X1, . . . , Xk all one has to do is to establish a fac-
torization of fX1,...,Xk as stated in the result. One does not have to ascertain
what the factors are. (From the proof of the result, it follows that these
factors are multiples of the marginal p.d.f.’s.)

THEOREM 1′
The r.v.’s X1, . . . , Xk are independent if and only if
fX1,...,Xk(x1, . . . , xk) = h1(x1) · · · hk(xk) for all x1, . . . , xk in �, where hi
is a nonnegative function of xi alone, i = 1, . . . , k.

PROOF Suppose the r.v.’s X1, . . . , Xk are independent. Then, by (10.7),
fX1,..., Xk(x1, . . . , xk) = fX1(x1) · · · fXk(x1) for all x1, . . . , xk in �, so that the
above factorization holds with hi = fXi , i = 1, . . . , k. Next, assume that the
factorization holds, and suppose that the r.v.’s are continuous. For each
fixed i = 1, . . . , k, set

ci =
∫ ∞

−∞
hi(xi) dxi,

so that c1 . . . ck =
∫ ∞

−∞
h1(x1) dx1 . . .

∫ ∞

−∞
hk(xk) dxk

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
h1(x1) . . . hk(xk) dx1 · · · dxk

=
∫ ∞

−∞
. . .

∫ ∞

−∞
fX1,..., Xk(x1, . . . , xk) dx1 · · · dxk

= 1.

Then, integrating fX1,...,Xk(x1, . . . , xk) = h1(x1) . . . hk(xk) with respect to all
xj’s with j �= i, we get

fXi(xi) = c1 . . . ci−1 ci+1 . . . ckhi(xi)

= 1
ci

hi(xi).
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Hence

fX1(x1) . . . fXk(xk) = 1
c1 . . . ck

h1(x1) . . . hk(xk)

= h1(x1) . . . hk(xk) = fX1,...,Xk(x1, . . . , xk),

or fX1,... , Xk(x1, . . . , xk) = fX1(x1) . . . fXk(xk), for all x1, . . . , xk in �, so that the
r.v.’s X1, . . . , Xk are independent. The same conclusion holds in case the
r.v.’s are discrete by using summations rather than integrations. �

The following result is a consequence of independence, and it is useful
in many situations.

PROPOSITION 2 Consider the r.v.’s X1, . . . , Xk, the functions gi : � →
�, i = 1, . . . , k, and suppose all expectations appearing below are finite.
Then independence of the r.v.’s X1, . . . , Xk implies:

E
[ k∏

i=1

gi(Xi)
]

=
k∏

i=1

Egi(Xi). (10.9)

PROOF Suppose the r.v.’s are of the continuous type (so that we use
integrals; replace them by summations if the r.v.’s are discrete). Then:

E
[ k∏

i=1

gi(Xi)
]

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
g1(x1) · · · gk(xk)fX1,..., Xk(x1, . . . , xk) dx1 · · · dxk

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
g1(x1) · · · gk(xk)fX1(x1) · · · fXk(xk) dx1 · · · dxk

(by part (ii) of Theorem 1)

=
[∫ ∞

−∞
g1(x1)fX1(x1) dx1

]
· · ·

[∫ ∞

−∞
gk(xk)fXk(xk) dxk

]

= Eg1(X1) · · · Egk(Xk) =
k∏

i=1

Egi(Xi). �

COROLLARY If the r.v.’s X and Y are independent, then they are
uncorrelated. The converse is also true, if the r.v.’s have bivariate normal
distribution.

PROOF In (10.9), take k = 2, identify X1 and X2 with X and Y , respec-
tively, and let g1(x) = g2(x) = x, x ∈ �. Then E(XY ) = (EX )(EY ),
which implies Cov(X , Y ) = 0 and ρ(X , Y ) = 0. The converse for bivari-
ate normal distribution follows by means of (9.14), (9.17), and (9.18) in
Chapter 9. �
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REMARK: 2 That uncorrelated r.v.’s are not, in general, independent
may be illustrated by means of examples (see, e.g., Exercise 1.20).

COROLLARY If the r.v.’s X1, . . . , Xk are independent, then:

MX1+···+Xk(t) = MX1(t) . . . MXk(t); (10.10)

and, in particular, if they are also identically distributed, then:

MX1+···+Xk(t) = [MX1(t)]k. (10.11)

PROOF Indeed,

MX1+···+Xk(t) = Eet(X1+···+Xk)

= E(etX1 . . . etXk)

= (EetX1) . . . (EetX1) (by the proposition)

= MX1(t) . . . MXk(t).

The second assertion follows immediately from the first. �
REMARK: 3 If X1, . . . , Xk are independent r.v.’s, then it is intuitively
clear that independence should be preserved for suitable functions of the
Xi’s. For example, if Yi = gi(Xi), i = 1, . . . , k, then the r.v.’s Y1, . . . , Yk
are also independent. Independence is also preserved if we take different
functions of the Xi’s, provided these functions do not include the same
Xi’s. For instance, if Y = g(Xi1 , . . . , Xim) and Z = h(Xj1 , . . . , Xjn), where
1 ≤ i1 < · · · < im ≤ k, 1 ≤ j1 < · · · < jn ≤ k and all i1, . . . , im are distinct
from all j1, . . . , jn, then the r.v.’s Y and Z are independent.

One of the stated cases of independence is established below, and other
cases are treated likewise (see also Exercise 1.26).

PROPOSITION 3 If the r.v.’s X1, . . . , Xk are independent, then so are
the r.v.’s Yi = gi(Xi), where gi : � → � i = 1, . . . , k.

PROOF By Theorem 1 (iii), it suffices to show that

MY1,...,Yk(t1, . . . , tk) = MY1(t1) . . . MYk(tk)

for all t1, . . . , tk in a nondegenerate interval containing 0. We have

MY1,...,Yk(t1 . . . tk) = Eet1Y1+···+tkYk

= E(et1Y1 . . . etkYk)



Exercises 215

= (Eet1Y1) . . . (EetkYk)

(by Proposition 2, where gi(Xi)

is replaced by exp[tigi(Xi)], i = 1, . . . , k)

= MY1(t1) . . . MYk(tk),

as was to be seen. �

Exercises

1.1 In reference to Exercise 2.3 in Chapter 7, determine whether or not
the r.v.’s X and Y are independent. Justify your answer.

1.2 In reference to Exercises 1.1 and 2.1 in Chapter 7, determine whether
or not the r.v.’s X and Y are independent.

1.3 The r.v.’s X , Y , and Z have the joint p.d.f. given by: fX ,Y , Z(x, y, z) = 1
4

if x = 1, y = z = 0; x = 0, y = 1, z = 0; x = y = 0, z = 1; x = y = z = 1.
(i) Derive the marginal joint p.d.f.’s fX ,Y , fX ,Z, fY , Z.

(ii) Derive the marginal p.d.f.’s fX , fY , and fZ.
(iii) Show that any two of the r.v.’s X , Y , and Z are independent.
(iv) Show that the r.v.’s X , Y , and Z are dependent.

1.4 In reference to Exercise 2.8 in Chapter 7, decide whether or not the
r.v.’s X and Y are independent. Justify your answer.

1.5 In reference to Examples 4 and 7 in Chapter 7, investigate whether
or not the r.v.’s X and Y are independent and justify your answer.

1.6 Let X and Y be r.v.’s with joint p.d.f. given by:

fX ,Y (x, y) = 6
5

(x2 + y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(i) Determine the marginal p.d.f.’s fX and fY .
(ii) Investigate whether or not the r.v.’s X and Y are independent.

Justify your answer.

1.7 The r.v.’s X , and Y have joint p.d.f. given by:

fX ,Y (x, y) = 1, 0 < x < 1, 0 < y < 1.

Then:
(i) Derive the marginal p.d.f.’s fX , and fY .

(ii) Show that X and Y are independent.
(iii) Calculate the probability P(X + Y < c) (c > 0).
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(iv) Give the numerical value of the probability in part (iii) for
c = 1/4.

Hint: For part (iii), you may wish to draw the picture of the set
for which x + y < c, and compute the probability in terms of c.

1.8 The r.v.’s X , Y , and Z have joint p.d.f. given by:

fX ,Y , Z(x, y, z) = 8xyz, 0 < x < 1, 0 < y < 1, 0 < z < 1.

(i) Derive the marginal p.d.f.’s fX , fY , and fZ.
(ii) Show that the r.v.’s X , Y , and Z are independent.

(iii) Calculate the probability P(X < Y < Z).

Hint: In part (iii), can you guess the answer without doing any
calculations?

1.9 The r.v.’s X and Y have joint p.d.f. given by:

fX ,Y (x, y) = c, for x2 + y2 ≤ 9.

(i) Determine the constant c.
(ii) Derive the marginal p.d.f.’s fX and fY .

(iii) Show that the r.v.’s X and Y are dependent.

1.10 The r.v.’s X , Y , and Z have joint p.d.f. given by:

fX ,Y, Z(x, y, z) = c3e−c(x+y+z), x > 0, y > 0, z > 0.

(i) Determine the constant c.
(ii) Derive the marginal joint p.d.f.’s fX ,Y , fX , Z, and fY , Z.

(iii) Derive the marginal p.d.f.’s fX , fY , and fZ.
(iv) Show that any two of the r.v.’s X , Y , and Z, as well as all three

r.v.’s are independent.

1.11 The r.v.’s X and Y have joint p.d.f. given by the following product:
fX ,Y (x, y) = g(x)h(y), where g and h are nonnegative functions.
(i) Derive the marginal p.d.f.’s fX and fY as functions of g and h,

respectively.
(ii) Show that the r.v.’s X and Y are independent.

(iii) If h = g, then the r.v.’s are identically distributed.
(iv) From part (iii), conclude that P(X > Y ) = 1/2, provided the

distribution is of the continuous type.

Hint: For part (i), we have fX (x) = cg(x), fY (y) = 1
c h(y), where

c = ∫ ∞
−∞ h(y)dy. Parts (ii) and (iii) follow from part (i). Part (iv)

follows either by symmetry or by calculations.
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1.12 The life of a certain part in a new automobile is an r.v. X whose p.d.f.
is negative exponential with parameter λ = 0.005 days.

(i) What is the expected life of the part in question?
(ii) If the automobile comes with a spare part whose life is an r.v.

Y distributed as X and independent of it, find the p.d.f. of the
combined life of the part and its spare.

(iii) What is the probability that X + Y ≥ 500 days?

1.13 Let the r.v. X be distributed as U(0, 1) and set Y = −logX .
(i) Determine the d.f. of Y and then its p.d.f.

(ii) If the r.v.’s Y1, . . . , Yn are independently distributed as Y , and
Z = Y1 + · · · + Yn, determine the distribution of the r.v. Z.

Hint: For part (ii), use the m.g.f. approach.

1.14 Let the independent r.v.’s X and Y be distributed as N(µ1, σ 2
1 ) and

N(µ2, σ 2
2 ), respectively, and define the r.v.’s U and V by: U = aX +b,

V = cY + d, where a, b, c, and d are constants.
(i) Use the m.g.f. approach in order to show that:

U ∼ N(aµ1 + b, (aσ1)2), V ∼ N(cµ2 + d, (cσ2)2).

(ii) Determine the joint m.g.f. of U and V .
(iii) From parts (i) and (ii), conclude that U and V are independent.

1.15 Let X and Y be independent r.v.’s denoting the lifetimes of two
batteries and having negative exponential distribution with param-
eter λ. Set T = X + Y and:

(i) Determine the d.f. of T by integration, and then the correspond-
ing p.d.f.

(ii) Determine the p.d.f. of T by using the m.g.f. approach.
(iii) For λ = 1/3, calculate the probability P(T ≤ 6).

Hint: For part (i), you may wish to draw the picture of the set
for which x + y < t (t > 0).

1.16 Let X1, . . . , Xn be i.i.d. r.v.’s with m.g.f. M, and let X̄ = 1
n (X1 + · · · +

Xn). Express the m.g.f. MX̄ in terms of M.

1.17 Let X and Y be the r.v.’s denoting the number of sixes when two fair
dice are rolled independently 15 times. Then:
(i) Calculate the E(X + Y ), Var (X + Y ), and the s.d. of X + Y .

(ii) Use the Tchebichev inequality to determine a lower bound for
the probability: P(X + Y ≤ 10).

Hint: For part (ii), use first part (i) to bring it into the form
required for the application of the Tchebichev inequality.

1.18 Let p be the proportion of defective computer chips in a very large lot
of chips produced over a period of time by a certain manufacturing
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process. For i = 1, . . . , n, associate with the ith chip the r.v. Xi,
where Xi = 1 if the ith chip is defective, and Xi = 0 otherwise.
Then X1, . . . , Xn are independent r.v.’s distributed as B(1, p), and let
X̄ = 1

n (X1 + · · · + Xn).
(i) Calculate the EX̄ and the Var (X̄ ) in terms of p and q = 1 − p.

(ii) Use the Tchebichev inequality to determine the smallest value
of n for which P(|X̄ − p| < 0.1

√
pq) ≥ 0.99.

1.19 Let the independent r.v.’s X1, . . . , Xn be distributed as P(λ), and set
X̄ = 1

n (X1 + · · · + Xn).
(i) Calculate the EX̄ and the Var (X̄ ) in terms of λ and n.

(ii) Use the Tchebichev inequality to determine the smallest value
of n, in terms of λ and c, for which P(|X̄ −λ|<c)≥0.95, for some
c>0.

(iii) Give the numerical value of n for c=√
λ and c=0.1

√
λ.

1.20 The joint distribution of the r.v.’s X and Y is given by:

y\x −1 0 1

−1 α β α
0 β 0 β
1 α β α

where α, β > 0 with α + β = 1/4.
(i) Derive the marginal p.d.f.’s fX and fY .

(ii) Calculate the EX , EY , and E(XY ).
(iii) Show that Cov (X , Y ) = 0.
(iv) Show that the r.v.’s X and Y are dependent.

Remark: Whereas independent r.v.’s are always uncorrelated,
this exercise shows that the converse need not be true.

1.21 Refer to Exercise 1.10 here and calculate the following quantities, in
terms of c, without any integrations: E(XY ), E(XYZ), Var (X + Y ),
Var (X + Y + Z).

1.22 The i.i.d. r.v.’s X1, . . . , Xn have expectation µ ∈ � and variance
σ 2 < ∞, and set X̄ = 1

n (X1 + · · · + Xn).
(i) Determine the EX̄ and the Var (X̄ ) in terms of µ and σ .

(ii) Use the Tchebichev inequality to determine the smallest value
of n for which P(|X̄ − µ| < kσ) is at least 0.99; take k = 1, 2, 3.

1.23 A piece of equipment works on a battery whose lifetime is an r.v. X
with expectation µ and s.d. σ . If n such batteries are used succes-
sively and independently of each other, denote by X1, . . . , Xn their
respective lifetimes, so that X̄ = 1

n (X1 + · · · + Xn) is the average life-
time of the batteries. Use the Tchebichev inequality to determine
the smallest value of n for which P(|X̄ − µ| < 0.5σ ) ≥ 0.99.
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1.24 Let X1, . . . , Xn be i.i.d. r.v.’s with EX1 = µ ∈ � and Var (X1) =
σ 2 < ∞, and set X̄ = 1

n (X1 + · · · + Xn).
(i) Calculate the EX̄ and the Var (X̄ ) in terms of µ and σ .

(ii) Use the Tchebichev inequality to determine the smallest value
of n, in terms of the positive constant c and α, so that:

P(|X̄ − µ| < cσ ) ≥ α (0 < α < 1).

(iii) What is the numerical value of n in part (ii) if c = 0.1 and
α = 0.90, α = 0.95, α = 0.99?

Remark: See also Exercise 1.22.

1.25 In reference to Exercise 3.8(iii) in Chapter 9, show that the r.v.’s U
and V are independent if and only if σ 2

1 = σ 2
2 .

Hint: Use Corollary 1 to Proposition 2.

1.26 Refer to Remark 3 and follow the steps used in the proof of Proposi-
tion 3 in order to show that the r.v.’s Y and Z, as defined in Remark 3,
are independent.

1.27 The independent r.v.’s X1, . . . , Xn have negative exponential distribu-
tion with parameter λ (i.e., their common p.d.f. is given by f (x) =
λe−λx, x > 0), and let U = X1 + · · · + Xn.
(i) Use the m.g.f. approach to determine the distribution of U.

(ii) Determine the EU and σ 2(U) in any way you wish.
(iii) If λ = 1/2, show that U ∼ χ2

2n.
(iv) For λ = 1/2 and n = 15, compute the probability P(U > 20).

1.28 Let X and Y be independent r.v.’s distributed as N(0, 1), and set
U = X + Y .
(i) What is the distribution of U?

(ii) Determine the Var(U), the Cov(X , U), and the ρ(X , U).
(iii) Determine the MX ,U .
(iv) Use part (iii) to rederive the Cov(X , U).

Hint: For part (iv), use formula (8.17) in Chapter 8.

1.29 Let the r.v.’s X and Y be the lifetimes of two pieces of equipment A
and B having negative exponential distribution with respective
parameters λ1 and λ2; that is, fX (x) = λ1e−λ1x, x > 0, fY (y) =
λ2e−λ2y, y > 0; and suppose that X and Y are independent.
(i) Express the probability that piece of equipment B will outlive

piece of equipment A, in terms of λ1 and λ2.
(ii) Compute the probability in part (i) for λ1 = λ and λ2 = 4λ (for

some λ > 0).

Hint: For part (i), you may wish to draw the picture of the set
for which x < y.
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1.30 The r.v.’s X and Y have joint p.d.f. given by: fX ,Y (x,y)=c, −1≤x≤1,
−1≤y≤1.
(i) Determine the constant c.

(ii) Determine the marginal p.d.f.’s fX and fY .
(iii) Examine whether the r.v.’s X and Y are independent or not.
(iv) Compute the probability P(X2+Y 2 ≤1), both geometrically and

by actual calculations.

10.2 The Reproductive Property of Certain Distributions

Independence plays a decisive role in the reproductive property of certain
r.v.’s. Specifically, if X1, . . . , Xk are r.v.’s having certain distributions, then,
if they are also independent, it follows that the r.v. X1 + · · · + Xk is of the
same kind. This is, basically, the content of this section. The tool used
to establish this assertion is the m.g.f., and the basic result employed is
relation (10.10) resulting from independence of the r.v.’s involved.

First, we derive some general results regarding the sample mean and
the sample variance of k r.v.’s, which will be used, in particular, in the
normal distribution case discussed below. To this end, n independent and
identically distributed (i.i.d) r.v.’s are referred to as forming a random
sample of size n. Some of their properties are discussed in this section.
For any k r.v.’s X1, . . . , Xk, their sample mean, denoted by X̄ k or just X̄ ,
is defined by:

X̄ = 1
k

k∑

i=1

Xi. (10.12)

The sample variance of the Xi’s, denoted by S2
k or just S2, is defined by:

S2 = 1
k

k∑

i=1

(Xi − EXi)2,

provided the EXi’s are finite. In particular, if EX1 = · · · = EXk = µ, say,
then S2 becomes:

S2 = 1
k

k∑

i=1

(Xi − µ)2. (10.13)

The r.v.’s defined by (10.12) and (10.13) are most useful when the under-
lying r.v.’s come from a random sample; that is, they are i.i.d. Below is
such a result.
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PROPOSITION 4 Let X1, . . . , Xk be i.i.d. r.v.’s with (finite) mean µ.
Then EX̄ = µ. Furthermore, if the Xi’s also have (finite) variance σ 2,
then Var (X̄ ) = σ 2

k and ES2 = σ 2.

PROOF The first result follows from relation (9.5) in Chapter 9 by
taking c1 = · · · = ck = 1/k, and d = 0. The second result follows from
(9.10) in the same chapter, by way of Corollary 1 to Proposition 2 here,
because independence of Xi and Xj, for i �= j, implies ρ(Xi, Xj) = 0. For the
third result, observe that E(Xi − µ)2 = σ 2, i = 1, . . . , k, so that

E
k∑

i=1

(Xi − µ)2 =
k∑

i=1

E(Xi − µ)2 = nσ 2, and ES2 = σ 2. �

The general thrust of the following four results is to the effect that if
X1, . . . , Xk are independent and have certain distributions, then their sum
X1 + · · · + Xk has a distribution of the same respective kind. The proof of
this statement relies on relation (10.10), as already mentioned.

In the form of motivation for the first result to follow, suppose that one
day’s productions of three factories, producing the same items (e.g., com-
puter chips) with the same proportion of defectives, are pooled together,
and let X be the r.v. denoting the number of defectives. What is the distri-
bution of X? The answer to this question is given by the following result.
The theoretical basis of the arguments involved in this result and the
subsequent ones is provided by Theorem 1 in Chapter 5.

THEOREM 2
Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼ B(ni, p) (the
same p), i = 1, . . . , k. Then

∑k
i=1 Xi ∼ B(

∑k
i=1 ni, p).

PROOF By relation (10.10) here, relation (6.2) in Chapter 6, and t ∈ �:

M∑k
i=1 Xi

(t) =
k∏

i=1

MXi(t) =
k∏

i=1

( pet + q)ni = ( pet + q)
∑k

i=1 ni ,

which is the m.g.f. of B(
∑k

i=1 ni, p). Then
∑k

i=1 Xi ∼ B(
∑k

i=1 ni, p). �
Here is an illustrative example.

EXAMPLE 4 The defective items in two lots of sizes n1 = 10 and n2 = 15 occur inde-
pendently at the rate of 6.25%. Calculate the probabilities that the total
number of defective items: (i) Does not exceed 2; (ii) Is > 5.

DISCUSSION If X1 and X2 are the r.v.’s denoting the numbers of defec-
tive items in the two lots, then X1 ∼ B(10, 0.0625), X2 ∼ B(15, 0.0625) and
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they are independent. Then X = X1 + X2 ∼ B(25, 0.0625) and therefore:
(i) P(X ≤ 2) = 0.7968 and (ii) P(X > 5) = 1 − P(X ≤ 5) = 0.0038 (from the
binomial tables).

If Xi is the r.v. denoting the number of traffic accidents over a long
weekend in the ith county of the state of California, i = 1, . . . , k then
X = X1 + · · · + Xk is the total number of traffic accidents in the state of
California. But just what is the distribution of X? Here is the answer.

THEOREM 3
Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼ P(λi), i =
1, . . . , k. Then

∑k
i=1 Xi ∼ P(

∑k
i=1 λi).

PROOF As above, employ (10.10), and relation (6.9) in Chapter 6 in
order to obtain:

M∑k
i=1 Xi

(t) =
k∏

i=1

MXi(t) =
k∏

i=1

exp(λiet − λi) = exp
[( k∑

i=1

λi

)
et −

( k∑

i=1

λi

)]
,

which is the m.g.f. of P(
∑k

i=1 λi), so that
∑k

i=1 Xi ∼ P
( ∑k

i=1 λi
)
. �

The theorem is illustrated by the following example.

EXAMPLE 5 Five radioactive sources independently emit particles at the rate of 0.08
per certain time unit. What is the probability that the total number of
particles does not exceed 3 in the time unit considered?

DISCUSSION In obvious notation, we have here the independent r.v.’s
Xi distributed as P(0.08), i = 1, . . . , 5. Then X = ∑5

i=1 Xi ∼ P(0.4), and the
required probability is: P(X ≤ 3) = 0.999224 (from the Poisson tables).

A theorem analogous to Theorems 2 and 3 holds for normal distribution
as well.

THEOREM 4
Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼ N(µi, σ 2

i ), i =
1, . . . , k. Then

∑k
i=1 Xi ∼ N(

∑k
i=1 µi,

∑k
i=1 σ 2

i ). In particular, if µ1 =
· · · = µk = µ and σ1 = · · · = σk = σ , then

∑k
i=1 Xi ∼ N(kµ, kσ 2).

PROOF Use relation (10.10), and formula (6.31) in Chapter 6, for t ∈ �,
in order to obtain:

M∑k
i=1 Xi

(t) =
k∏

i=1

MXi(t) =
k∏

i=1

exp
(

µit + σ 2
i
2

t
)
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= exp
[( k∑

i=1

µi

)
t +

∑k
i=1 σ 2

i
2

t
]
,

which is the m.g.f. of N(
∑k

i=1 µi,
∑k

i=1 σ 2
i ), so that

∑k
i=1 Xi ∼ N(

∑k
i=1 µi,∑k

i=1 σ 2
i ). The special case is immediate. �

As an illustration of this result, consider the following example.

EXAMPLE 6 The rainfall in two locations is measured (in inches over a certain time
unit) by two independent and normally distributed r.v.’s X1 and X2 as
follows: X1 ∼ N(10, 9) and X2 ∼ N(15, 25). What is the probability that
the total rainfall: (i) Will exceed 30 inches (which may result in flooding)?
(ii) Will be less than 8 inches (which will mean a drought)?

DISCUSSION If X = X1 + X2, then X ∼ N(25, 34), so that:

(i) P(X > 30) = 1 − P(X ≤ 30)

= 1 − P(0 ≤ X ≤ 30) = 1 − P(− 25√
34

≤ X ≤ 30−25√
34

)

= 1 − P(Z ≤ 30−25√
34

) � 1 − �(0.86)

= 1 − 0.805105 = 0.194895,

and

(ii) P(X < 8) = P(0 ≤ X < 8)

= P(− 25√
34

≤ X ≤ 8−25√
34

) = P(Z < 8−25√
34

)

� �(−2.92) = 1 − �(2.92) = 1 − 0.99825 = 0.00175.

In Proposition 5 of Chapter 6, it is shown that if X ∼ N(µ, σ 2), then
Z = (X − µ)/σ ∼ N(0, 1). A slightly more general result is stated here as
a proposition, and its proof is given in the corollary to Proposition 1 in
Chapter 11.

PROPOSITION 5 If X ∼ N(µ, σ 2) and Y = aX +b, (a �= 0), then Y ∼
N(aµ+b, (aσ )2). In particular (as already stated), Z = (X −µ)/σ ∼ N(0, 1).

On the basis of Proposition 5, Theorem 4 generalizes as follows:

THEOREM 4′
Let the r.v.’s X1, . . . , Xk be independent, let Xi ∼ N(µi, σ 2

i ), i =
1, . . . , k, and let ci, i = 1, . . . , k be constants. Then

∑k
i=1 ciXi ∼

N(
∑k

i=1 ciµi,
∑k

i=1 c2
i σ

2
i ).
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PROOF By Proposition 5, ciXi ∼ N(ciµi, c2
i σ

2
i ), and the r.v.’s ciXi,

i = 1, . . . , k are independent (by Proposition 3). Then the conclusion
follows from Theorem 4. �

This theorem has the following corollary.

COROLLARY If the r.v.’s X1, . . . , Xk are independent and distributed as
N(µ, σ 2), then their sample mean X̄ ∼ N(µ, σ 2

k ), and
√

k(X̄−µ)
σ

∼ N(0, 1).

PROOF Apply Proposition 5 with a = 1/k and b = 0 to get that Xi/k is
distributed as N(µ/k, σ 2/k2). Since the r.v.’s Xi/k, i = 1, . . . , k are indepen-
dent (by Proposition 3), Theorem 4′ shows that

∑k
i=1

Xi
k = 1

k
∑k

i=1 Xi = X̄
is distributed as N(µ, σ 2/k). Then by Proposition 5 in Chapter 6 as already
mentioned (see also Proposition 5 here),

X̄ − µ

σ /
√

k
=

√
k(X̄ − µ)

σ
∼ N(0, 1). �

Here is an illustrative example of Theorem 4′ and its corollary.

EXAMPLE 7 Suppose an academic department in a university offers k undergraduate
courses, and assume that the grade in the ith course is an r.v. Xi dis-
tributed (approximately) as N(µi, σ 2

i ). Furthermore, assume that the
r.v.’s X1, . . . , Xk are independent. What is the distribution of the average
X̄ = (X1 + · · · + Xk)/k?

DISCUSSION Since X̄ = ∑k
i=1

Xi
k , Theorem 4′ applies with ci = 1/k,

i = 1, . . . , k and gives that:

X̄ ∼ N
(µ1 + · · · + µk

k
,
σ 2

1 + · · · + σ 2
k

k2

)
.

This is the required distribution of X̄ . If it so happens that µ1 = · · · =
µk = µ, say, and σ 2

1 = · · · = σ 2
k = σ 2, say, then X̄ ∼ N(µ, σ 2/k).

The reproducing property we have seen in connection with binomial,
Poisson, and normal distributions also holds for chi-square distribution.
More precisely, we have:

THEOREM 5
Let the r.v.’s X1, . . . , Xk be independent, and let Xi ∼ χ2

ri
, i = 1, . . . , k.

Then
∑k

i=1 Xi ∼ χ2
r1+···+rk

.
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PROOF Use relation (10.10) here, and formula (6.23) (in Chapter 6),
for t < 1

2 , to obtain:

M∑k
i=1 Xi

(t) =
k∏

i=1

MXi(t) =
k∏

i=1

1
(1 − 2t)ri/2

= 1
(1 − 2t)(r1+···+rk)/2

,

which is the m.g.f. of χ2
r1+···+rk

. �
This theorem has a corollary that is stated below. For its justification,

as well as for the discussion of an illustrative example, an auxiliary result
is needed; it is presented below as a proposition. For an alternative proof
of it, see Example 2 in Chapter 11.

PROPOSITION 6 If Z ∼ N(0, 1), then Y = Z2 ∼ χ2
1 .

PROOF For y > 0, we have:

FY ( y) = P(Y ≤ y) = P(Z2 ≤ y) = P(−√
y ≤ Z ≤ √

y)

= �(
√

y) − �(−√
y) = 2�(

√
y) − 1,

and hence

fY ( y) = d
dy

FY (y) = 2
d
dy

�(
√

y) = 2fZ(
√

y) × d
dy

√
y

= 2 × 1
2
√

y
× 1√

2π
e−y/2 = 1√

π21/2
y1/2−1e−y/2

= 1

	( 1
2 )21/2

y1/2−1e−y/2, since
√

π = 	(
1
2

)

(see relation (6.16) in Chapter 6). However, the last expression on the
right-hand side above is the p.d.f. of the χ2

1 distribution, as was to be
seen. �
COROLLARY Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼
N(µi, σ 2

i ), i = 1, . . . , k. Then
∑k

i=1(Xi−µi
σi

)2 ∼ χ2
k , and, in particular, if

µ1 = · · · = µk = µ and σ 2
1 = · · · = σ 2

k = σ 2, then kS2

σ 2 ∼ χ2
k , where S2 is

given in (10.13).

PROOF The assumption Xi ∼ N(µi, σ 2
i ) implies that Xi−µi

σi
∼ N(0, 1)

by Proposition 5 in Chapter 6 (see also Proposition 5 here). Since inde-
pendence of Xi, i = 1, . . . , k implies that of (Xi−µi

σi
)2, i = 1, . . . , k (by

Proposition 3), the theorem applies, on account of Proposition 6 here,
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and yields the first assertion. The second assertion follows from the first
by here taking µ1 = · · · = µk = µ and σ1 = · · · = σk = σ , and using (10.13)
to obtain kS2

σ 2 = ∑k
i=1(Xi−µ

σ
)2. �

REMARK: 4 From the fact that kS2

σ 2 ∼ χ2
k and formula (6.23) (in

Chapter 6), we have E(kS2

σ 2 ) = k, Var (kS2

σ 2 ) = 2k, or ES2 = σ 2 and
Var (S2) = 2σ 4/k.

As an illustration of Theorem 5, consider the following example.

EXAMPLE 8 Let the r.v. Yi denote the lifetime of the ith battery in a lot of k identi-
cal batteries, and suppose that Y1, . . . , Yk are independently distributed
as N(µ, σ 2). Set Zi = Yi−µ

σ
. Then the r.v.’s Z1, . . . , Zk are independently

distributed as N(0, 1), and therefore the r.v.’s X1, . . . , Xk are independenly
distributed as χ2

1 , where Xi = Z2
i , i = 1, . . . , k. This is so, by Proposition 6.

Then the theorem applies and gives that X = ∑k
i=1 Xi ∼ χ2

k . Now, given
that Xi represents the (normed) squared deviation of the lifetime of the
ith battery from its mean, the sum

∑k
i=1 Xi represents the totality of such

deviations for the k batteries. Expectation, variance, s.d., and probabilities
for X can be readily computed by the fact that X ∼ χ2

k .

REMARK: 5 The last corollary above also provides an explanation of the
term “k degrees of freedom” used in conjunction with a chi-square distri-
bution. Namely, k is the number of independent N(0, 1) r.v.’s required,
whose sum of squares is distributed as χ2

k .

REMARK: 6 This section is concluded with the following comment.
Theorems 2–5 may be misleading in the sense that the sum of independent
r.v.’s always has a distribution of the same kind as the summands. That
this is definitely not so is illustrated by examples. For instance, if the inde-
pendent r.v.’s X and Y are U(0, 1), then their sum X + Y is not uniform;
rather, it is triangular (see Example 3 (continued) in Chapter 11).

Exercises

2.1 In reference to Exercise 1.17 in this chapter, specify the distribu-
tion of the sum X + Y , and write out the expression for the exact
probability P(X + Y ≤ 10).

2.2 If the independent r.v.’s X and Y are distributed as B(m , p) and
B(n , p), respectively:
(i) What is the distribution of the r.v. X + Y?
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(ii) If m = 8, n = 12, and p = 0.25, what is the numerical value of
the probability P(5 ≤ X + Y ≤ 15)?

2.3 The independent r.v.’s X1, . . . , Xn are distributed as B(1, p), and let
Sn = X1 + · · · + Xn.

(i) Determine the distribution of the r.v. Sn.
(ii) What is the EXi and the Var(Xi), i = 1, . . . , n?

(iii) From part (ii) and the definition of Sn, compute the ESn and
Var(Sn).

2.4 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f , and let I be an interval in �.
Let p = P(X1 ∈ I).
(i) Express p in terms of the p.d.f. f .

(ii) For k with 1 ≤ k ≤ n, express the probability that at least k of
X1, . . . , Xn take values in the interval I in terms of p and n.

(iii) Simplify the expression in part (ii), if f is the negative-
exponential p.d.f. with parameter λ and I = ( 1

λ
, ∞).

(iv) Find the numerical value of the probability in part (iii) for n = 4
and k = 2.

2.5 The breakdown voltage of a randomly chosen diode of a certain
type is known to be normally distributed with mean value 40V and
s.d. 1.5V.
(i) What is the probability that the breakdown voltage of a single

diode is between 39 and 42?
(ii) If 5 diodes are independently chosen, what is the probability that

at least one has a breakdown voltage exceeding 42?

2.6 Refer to Exercise 1.18 here and set X = X1 + · · · + Xn.
(i) Justify the statement that X ∼ B(n, p).

(ii) Suppose that n is large and p is small (both assumptions quite
appropriate in the framework of Exercise 1.18), so that:

f (x) =
(

n
x

)
pxqn−x � e−np (np)x

x! , x = 0, 1, . . .

If np = 2, calculate the approximate values of the probabilities
f (x) for x = 0, 1, 2, 3, and 4.

Hint: See Exercise 1.25 in Chapter 6.

2.7 The r.v.’s X1, . . . , Xn are independent and Xi ∼ P(λi):
(i) What is the distribution of the r.v. X = X1 + · · · + Xn?

(ii) If X̄ = 1
n (X1 + · · · + Xn), calculate the EX̄ and the Var(X̄) in

terms of λ1, . . . , λn, and n.
(iii) What do the EX̄ and the Var(X̄) become when the Xi’s in part

(i) are distributed as P(λ)?

2.8 Suppose that the number of no-shows for a scheduled airplane flight
is an r.v. X distributed as P(λ), and it is known from past experience
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that on the average, there are 2 no-shows. If there are 5 flights
scheduled, compute the probabilities that the total number of no-
shows X = X1 + · · · + X5 is:

(i) 0. (v) At most 10. (ix) 15.
(ii) At most 5. (vi) 10. (x) At least 15.

(iii) 5. (vii) At least 10.
(iv) At least 5. (viii) At most 15.

2.9 The r.v.’s X1, . . . , Xn are independent and Xi ∼ P(λi), i = 1, . . . , n. Set
T = ∑n

i=1 Xi and λ = ∑n
i=1 λi, and show that:

(i) The conditional p.d.f. of X1, given T = t, is B(t, λ1/λ).
(ii) From part (i), conclude that the conditional p.d.f. of Xi, given

T = t, is B(t, λi/λ), i = 2, . . . , n (and, of course, i = 1).
(iii) What does the distribution in part (ii) become for λ1 = · · · =

λn = c, say?

2.10 If the independent r.v.’s X and Y are distributed as N(µ1, σ 2
1 ) and

N(µ2, σ 2
2 ), respectively:

(i) Specify the distribution of X − Y .
(ii) Calculate the probability P(X > Y ) in terms of µ1, µ2, σ1,

and σ2.
(iii) If µ1 = µ2, conclude that P(X > Y ) = 0.5.

2.11 The m + n r.v.’s X1, . . . , Xm and Y1, . . . , Yn are independent and
Xi ∼ N(µ1, σ 2

1 ), i = 1, . . . , m , Yj ∼ N(µ2, σ 2
2 ), j = 1, . . . , n. Set

X̄ = 1
m

∑m
i=1 Xi, Ȳ = 1

n
∑n

j=1 Yj and:
(i) Calculate the probability P(X̄ > Ȳ ) in terms of m, n, µ1, µ2, σ1,

and σ2.
(ii) Give the numerical value of the probability in part (i) when µ1 =

µ2 unspecified.

2.12 Let the independent r.v.’s X1, . . . , Xn be distributed as N(µ, σ 2) and
set X = ∑n

i=1 αiXi, Y = ∑n
j=1 βjXj, where the αi’s and the βj’s are

constants. Then:
(i) Determine the p.d.f.’s of the r.v.’s X and Y .

(ii) Show that the joint m.g.f. of X and Y is given by:

MX ,Y (t1, t2) = exp
[
µ1t1 + µ2t2 + 1

2

(
σ 2

1 t2
1 + 2ρσ1σ2t1t2 + σ 2

2 t2
2
)]

,

where µ1 = µ
∑n

i=1 αi, µ2 = µ
∑n

j=1 βj, σ 2
1 = σ 2 ∑n

i=1 α2
i , σ 2

2 =
σ 2 ∑n

j=1 β2
j , ρ =

∑n
i=1 αiβi

(
∑n

i=1 α2
i )

1
2 (

∑n
i=1 β2

i )
1
2

.

(iii) From part (ii), conclude that X and Y have bivariate normal
distribution with correlation coefficient:

ρ(X , Y ) = ρ =
∑n

i=1 αiβi

(
∑n

i=1 α2
i )

1
2 (

∑n
i=1 β2

i )
1
2

.
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(iv) From part (iii), conclude that X and Y are independent if and
only if

∑n
i=1 αiβi = 0.

Hint: For part (iii), refer to relation (9.22) in Chapter 9.

2.13 Let X and Y be independent r.v.’s distributed as N(0, σ 2).
(i) Set R =

√
X 2 + Y 2 and determine the probability: P(R ≤ r), for

r > 0.
(ii) What is the numerical value of P(R ≤ r) for σ = 1 and r =

1.665, r = 2.146, r = 2.448, r = 2.716, r = 3.035, and r = 3.255?

Hint: For part (ii), use the chi-square tables.

2.14 Let X1, . . . , Xn be i.i.d. r.v.’s with mean µ ∈ � and variance
0 < σ 2 < ∞. Use the Tchebichev inequality:
(i) In determining the smallest value of n, as a function of c(> 0)

and p, for which P(|X̄n − µ| ≤ cσ ) ≥ p.
(ii) What is the numerical value of n for p = 0.95 and c = 1,

0.5, 0.25?

2.15 Computer chips are manufactured independently by three factories,
and let Xi, i = 1, 2, 3 be the r.v.’s denoting the total numbers of defec-
tive items in a day’s production by the three factories, respectively.
Suppose that the m.g.f of Xi is given by Mi(t) = 1/(1 − βt)αi , t < 1

β
,

i = 1, 2, 3, and let X be the combined number of defective chips in a
day’s production.
(i) Express the EX and the σ 2(X) in terms of the αi’s and β.

(ii) Compute the numerical values of EX and σ (X) for β = 2 and
αi = 10i, i = 1, 2, 3.

2.16 The blood pressure of an individual taken by an instrument used
at home is an r.v. X distributed as N(µ, 2σ 2), whereas the blood
pressure of the same individual taken in a doctor’s office by a more
sophisticated device is an r.v. Y distributed as N(µ, σ 2). If the r.v.’s
X and Y are independent, compute the probability that the average
X+Y

2 lies within 1.5σ from the mean µ.

10.3 Distribution of the Sample Variance under Normality

In the definition of S2 by (10.13), we often replace µ by the sample mean
X̄ ; this is done habitually in statistics, as µ is not really known. Let us
denote by S̄2 the resulting quantity; that is,

S̄2 = 1
k

k∑

i=1

(Xi − X̄ )2. (10.14)
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Then it is easy to establish the following identity:

k∑

i=1

(Xi − µ)2 =
k∑

i=1

(Xi − X̄ )2 + k(X̄ − µ)2, (10.15)

or

kS2 = kS̄2 + [√k(X̄ − µ)]2. (10.16)

Indeed,

k∑

i=1

(Xi − µ)2 =
k∑

i=1

[(Xi − X̄) + (X̄ − µ)]2 =
k∑

i=1

(Xi − X̄)2 + k(X̄ − µ)2,

since
∑k

i=1(Xi − X̄ )(X̄ − µ) = (X̄ − µ)(kX̄ − kX̄ ) = 0.
From (10.16), we have, dividing through by σ 2:

kS2

σ 2 = kS̄2

σ 2 +
[√

k(X̄ − µ)
σ

]2

. (10.17)

Now kS2

σ 2 ∼ χ2
k and [

√
k(X̄−µ)

σ
]2 ∼ χ2

1 (by Proposition 6 here) when the
r.v.’s X1, . . . , Xk are independently distributed as N(µ, σ 2). Therefore, from

(10.17), it appears quite feasible that kS̄2

σ 2 ∼ χ2
k−1. This is, indeed, the case

and is the content of the following theorem. This theorem is presently
established under an assumption to be justified later on (see Theorem 7 in
Chapter 11). The assumption is this: If the r.v.’s X1, . . . , Xk are independent
and distributed as N(µ, σ 2), then the r.v.’s X̄ and S̄2 are independent.
(The independence of X̄ and S̄2 implies then that of [

√
k(X̄−µ)

σ
]2 and kS̄2

σ 2 ,
by Proposition 3.)

THEOREM 6
Let the r.v.’s X1, . . . , Xk be independent and distributed as N(µ, σ 2),
and let S̄2 be defined by (10.14). Then kS̄ 2

σ 2 ∼ χ2
k−1. Consequently,

ES̄2 = k−1
k σ 2 and Var (S̄2) = 2(k−1)σ 4

k2 .

PROOF Consider relation (10.17), take the m.g.f.’s of both sides, use
relation (10.10) for two r.v.’s, and the assumption of independence made
previously in order to obtain:

MkS2/σ 2(t) = MkS̄2/σ 2(t)M[√k(X̄−µ)/σ ]2(t),
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so that

MkS̄2/σ 2(t) = MkS2/σ 2(t)/M[√k(X̄−µ)/σ ]2(t),

or

MkS̄2/σ 2(t) = 1/(1 − 2t)k/2

1/(1 − 2t)1/2
= 1

(1 − 2t)(k−1)/2
,

which is the m.g.f. of the χ2
k−1 distribution. The second assertion follows

immediately from the first and formula (6.23) (in Chapter 6). �

Exercises

3.1 For any r.v.’s X1, . . . , Xn, set

X̄ = 1
n

n∑

i=1

Xi and S̄2 = 1
n

n∑

i=1

(Xi − X̄ )2,

and show that:

(i) nS̄2 = ∑n
i=1(Xi − X̄ )2 = ∑n

i=1 X2
i − nX̄2.

(ii) If the r.v.’s have common (finite) expectation µ, then:

n∑

i=1

(Xi − µ)2 =
n∑

i=1

(Xi − X̄ )2 + n(X̄ − µ)2 = nS̄2 + n(X̄ − µ)2.

(iii) Use part (ii) and refer to Proposition 4 in order to show that:

E[1
n

n∑

i=1

(Xi − µ)2] = E[ 1
n − 1

n∑

i=1

(Xi − X̄)2] = σ 2.



11
Transformation of Random
Variables

This chapter is devoted to transforming a given set of r.v.’s to another set
of r.v.’s. The practical need for such transformations will become apparent
by means of concrete examples to be cited and/or discussed. The chapter
consists of five sections. In the first section, a single r.v. is transformed
into another single r.v. In the following section, the number of available
r.v.’s is at least two, and they are to be transformed into another set of
r.v.’s of the same or smaller number. Two specific applications produce
two new distributions, the t-distribution and the F-distribution, which
are of great applicability in statistics. A brief account of specific kinds of
transformations is given in the subsequent two sections, and the chapter
concludes with a section on order statistics. All r.v.’s we are dealing with
in this chapter are of the continuous type, unless otherwise specifically
mentioned.

11.1 Transforming a Single Random Variable

Perhaps the best way of introducing the underlying problem here is by
means of an example.

EXAMPLE 1 Suppose that the r.v.’s X and Y represent the temperature in a certain
locality measured in degrees Celsius and Fahrenheit, respectively. Then it
is known that X and Y are related as follows: Y = 9

5X + 32.
232
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This simple example illustrates the need for transforming an r.v. X
into another r.v. Y , if Celsius degrees are to be transformed into
Fahrenheit degrees. In order to complete the discussion:

(i) Let X have d.f. FX and p.d.f. fX . Determine the d.f. FY and the p.d.f.
fY of the r.v. Y in terms of FX and fX .

(ii) Apply part (i) in the case that X ∼ N(µ, σ 2).

DISCUSSION

(i) We have

FY (y) = P(Y ≤ y) = P
(

9
5

X + 32 ≤ y
)

= P
(

X ≤ 5
9

(
y − 32

)) = FX

(
5
9

(
y − 32

))
,

so that

fY (y) = d
dy

FY (y) = d
dy

FX

(
5
9

(
y − 32

)) = 5
9

fX

(
5
9

(
y − 32

))
.

(ii) If X ∼ N(µ, σ 2), then

FX (x) =
∫ x

−∞
1√
2πσ

e− (t−µ)2

2σ2 dt, fX (x) = 1√
2πσ

e− (x−µ)2

2σ2 ,

so that

FY (y) =
∫ 5

9 (y−32)

−∞
1√
2πσ

e− (t−µ)2

2σ2 dt, and

fY (y) = 5
9

× 1√
2πσ

e−
[

5
9 (y−32)−µ

]2

2σ2

= 1√
2π(9σ /5)

e
−
[
y−( 9

5 µ+32)
]2

2(9σ /5)2 .

It follows that Y ∼ N( 9
5µ + 32, ( 9σ

5 )2).

This example is a special case of the following result.

PROPOSITION 1 Let the r.v. X have d.f. FX and p.d.f. fX , and let Y =
aX + b, (a �= 0). Then:

FY (y) =





FX
( y−b

a

)
, if a > 0

1 − FX
( y−b

a

)
, if a < 0,
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and

fY (y) = fX

(
y − b

a

) ∣∣∣∣
1
a

∣∣∣∣ .

PROOF Indeed,

FY (y) = P(Y ≤ y) = P(aX + b ≤ y) =





P
(
X ≤ y−b

a

)
, if a > 0

P
(
X ≥ y−b

a

)
, if a < 0

=





FX
( y−b

a

)
, if a > 0

1 − FX
( y−b

a

)
, if a < 0,

and

fY (y) = d
dyFY (y) =






d
dyFX

( y−b
a

)
, if a > 0

d
dy

[
1 − FX

( y−b
a

)]
, if a < 0

=





fX
( y−b

a

)1
a , if a > 0

fX
( y−b

a

) (−1
a

)
, if a < 0

= fX
( y−b

a

) ∣∣∣1a

∣∣∣ , as was to be seen. �

COROLLARY If X ∼ N(µ, σ 2), then Y = aX + b ∼ N(aµ + b, (aσ )2).

PROOF With x = y−b
a , we get:

fY (y) = 1√
2πσ

exp
{

− [(y − b)/a − µ]2
2σ 2

}
1
|a|

= 1√
2π |aσ |exp

{

−[y − (aµ + b)]2
2(aσ )2

}

. �

The transformation y = aX + b used in Proposition 1 has the prop-
erty that it is strictly monotone (strictly increasing if a > 0, and strictly
decreasing if a < 0). This observation leads to the following general
problem.
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THEOREM 1
Let X be a r.v. with d.f. FX and p.d.f. fX , and let h : � → � be a
strictly monotone function. Set Y = h(X). Then the d.f. FY is given
by:

FY (y) =





FX [h−1(y)], if h is strictly increasing (11.1)

1 − FX [h−1(y)], if h is strictly decreasing. (11.2)

Furthermore, if the function x = h−1(y) is differentiable, then:

fY (y) = fX [h−1(y)]
∣∣∣∣

d
dy

h−1(y)
∣∣∣∣ . (11.3)

PROOF The function y = h(x) is invertible, and its inverse x = h−1(y) is
strictly increasing if h is so, and strictly decreasing if h is so. Therefore,

FY (y) = P(Y ≤ y) = P[h(X) ≤ y]

=
{

P[X ≤ h−1(y)], if h is strictly increasing

P[X ≥ h−1(y)], if h is strictly decreasing

=
{

FX [h−1(y)], if h is strictly increasing (11.4)

1 − FX [h−1(y)], if h is strictly decreasing, (11.5)

as stated in relations (11.1) and (11.2).
At this point, recall that dx

dy = d
dyh−1(y) is > 0 if h is strictly increasing,

and it is < 0 if h is strictly decreasing. On the basis of this, and by
differentiating relations (11.4) and (11.5), we get:

fY (y) = d
dy

FY (y) = d
dy

FX [h−1(y)] = fX [h−1(y)] d
dy

h−1(y),

if h is strictly increasing, and

fY (y) = − d
dy

FX [h−1(y)] = −fX [h−1(y)] d
dy

h−1(y) = fX [h−1(y)]
[

− d
dy

h−1(y)
]
,

if h is strictly decreasing.
Since d

dyh−1(y) and − d
dyh−1(y) are both included in the

∣∣∣ d
dyh−1(y)

∣∣∣, we

get fY (y) = fX [h−1(y)]
∣∣∣ d

dyh−1(y)
∣∣∣, as was to be seen according to relation

(11.3). �
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Instead of going through the d.f. (which process requires monotonic-
ity of the transformation y = h(x)), under certain conditions, fY may be
obtained directly from fX . Such conditions are described in the following
theorem.

THEOREM 2
Let X be an r.v. with positive and continuous p.d.f. on the set S ⊆ �,
and let h : S → T (the image of S under h) be a one-to-one transfor-
mation, so that the inverse x = h−1(y), y ∈ T, exists. Suppose that,
for y ∈ T, the derivative d

dyh−1(y) exists, is continuous, and �= 0.
Then the p.d.f. of the r.v. Y = h(X ) is given by:

fY (y) = fX [h−1(y)]
∣∣∣∣

d
dy

h−1(y)
∣∣∣∣, y ∈ T (and = 0 for y /∈ T). (11.6)

PROOF (rough outline) Let B = [c, d] be an interval in T and suppose B
is transformed into the interval A = [a, b] by the inverse transformation
x = h−1(y). Then:

P(Y ∈ B) = P[h(X ) ∈ B] = P(X ∈ A) =
∫

A
fX (x) dx.

When transforming x into y through the transformation x = h−1(y),∫
A fX (x)dx = ∫B fX [h−1(y)]| d

dyh−1(y)|dy, according to the theory of changing
variables in integrals. Thus,

P(Y ∈ B) =
∫

B
fX [h−1(y)]

∣∣∣∣
d
dy

h−1(y)
∣∣∣∣dy,

which implies that the integrand is the p.d.f. of Y . �
This theorem has already been illustrated by means of Example 1 and

Proposition 1.

REMARK: 1 In the formulation of Theorem 2, it is to be observed that
the assumption that d

dyh−1(y) �= 0 on T implies that this derivative will be
either always > 0 or always < 0 (because of the assumed continuity of the
derivative). But then, x = h−1(y) (and hence y = h(x)) is strictly monotone,
and hence one-to-one. Thus, the one-to-one assumption is superfluous.
Although this is true, it will nevertheless be retained for the sake of
uniformity in the formulation of Theorems 2, 3, and 4. In the multi-
dimensional case (Theorems 3 and 4) monotonicity becomes meaningless,
and the one-to-one assumption is essential.
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One of the basic assumptions of Theorem 2 is that the transformation
h : S → T is one-to-one. It may happen, however, that this assumption
is violated, but there is a partition of S into two or more sets over which
the one-to-one assumption holds. Then Theorem 2 basically still holds,
provided it is properly modified. This is done in the following theorem,
which is stated without a proof. Its justification follows the same lines of
that of Theorem 2, and it is—by and large—a calculus matter.

THEOREM 2′
Let X be an r.v. with positive and continuous p.d.f. on the set S ⊆ �,
and suppose that the transformation h : S → T is not one-to-one.
Suppose further that when S is partitioned into the pairwise dis-
joint subsets S1, . . . , Sr and h is restricted to Sj and takes values in
Tj (the image of Sj under h), then h is one-to-one. Denoting by hj
this restriction, we have then: hj : Sj → Tj is one-to-one, so that
the inverse x = h−1

j (y), y ∈ Tj, exists, j = 1, . . . , r. Finally, we sup-
pose that for any y ∈ Tj, j = 1, . . . , r, the derivatives d

dyh−1
j (y) exist,

are continuous, and �= 0. Then the p.d.f. of the r.v. Y = h(X ) is
determined as follows: Set

fYj = fX
[
h−1

j (y)
]
∣∣∣∣

d
dy

h−1
j (y)

∣∣∣∣, y ∈ Tj, j = 1, . . . , r, (11.7)

and for y ∈ T, suppose that y belongs to k of the r Tj’s, 1 ≤ k ≤ r.
Then fY (y) is the sum of the corresponding k fYj(y)’s. Alternatively,

fY (y) =
r∑

j=1

δj(y)fYj(y), y ∈ T (and = 0 for y /∈ T), (11.8)

where δj(y) = 1, if y ∈ Tj and δj(y) = 0, if y /∈ Tj, j = 1, . . . , r.

REMARK: 2 It is to be noticed that whereas the subsets S1, . . . , Sr are
pairwise disjoint, their images T1, . . . , Tr need not be so. For instance, in
Example 2 below, S1 = (−∞, 0), S2 = (0, ∞) but T1 = T2 = (0, ∞).

The theorem is illustrated by the following example.

EXAMPLE 2 If Z ∼ N(0, 1) and Y = Z2, then Y ∼ χ2
1 .

DISCUSSION Here y = z2, S = �, T = [0, ∞), and the transformation
is not one-to-one. However, if we write S = S1 ∪ S2 with S1 = (−∞, 0]
and S2 = (0, ∞), then the corresponding images are T1 = [0, ∞) and
T2 = (0, ∞), and y1 : S1 → T1, y2 : S2 → T2 are one-to-one. Specifically,
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z1 = −√
y1, y1 ≥ 0; z2 = √

y2, y2 > 0. By omitting 0 (which can be done,
since P(Y = 0) = P(Z2 = 0) = P(Z = 0) = 0), we have that both y1 and y2
are in (0, ∞); denote them by y. Then, essentially, T1 = T2 = (0, ∞). Next,
dz1
dy = − 1

2
√

y , dz2
dy = 1

2
√

y , so that |dz1
dy | = |dz2

dy | = 1
2
√

y , y > 0. An application
of relation (11.7) with r = 2 yields:

fY1(y) = 1√
2π

e− (−√
y)2

2 ×
∣∣∣

1
−2

√
y

∣∣∣ = 1

2
√

2π
√

y
e− y

2 ,

fY2(y) = 1√
2π

e− (
√

y)2

2 × 1
2
√

y
= 1

2
√

2π
√

y
e− y

2 .

Then relation (11.8), for y > 0, gives:

fY (y)= fY1(y) + fY2(y)= 1√
2π

√
y

e− y
2 = 1√

π21/2
y

1
2 −1e− y

2 = 1

�( 1
2 )21/2

y
1
2 −1e− y

2 ,

since
√

π = �( 1
2 ) (by (6.16) (in Chapter 6)). However, the last expression

above is the p.d.f. of the χ2
1 distribution, as was to be seen. �

For another illustration of Theorem 2′, the reader is referred to
Exercise 1.8.

REMARK: 3 The result obtained in Example 2 and the one to be derived
in Exercise 1.8 below can also be arrived at by means of d.f.’s. For this,
see Exercises 1.9 and 1.10 below.

Exercises

1.1 The (discrete) r.v. X has p.d.f. fX (x) = (1 − α)αx, x = 0, 1, . . .
(0 < α < 1), and set Y = X3. Determine the p.d.f. fY in terms of α.

1.2 Let the r.v.’s X and Y represent the temperature of a certain object
in degrees Celsius and Fahrenheit, respectively. Then, it is known
that Y = 9

5X + 32 and X = 5
9Y − 160

9 .
(i) If Y ∼ N(µ, σ 2), determine the distribution of X .

(ii) If P(90 ≤ Y ≤ 95) = 0.95, then also P(a ≤ X ≤ b) = 0.95, for
some a < b. Determine the numbers a and b.

(iii) We know that: P(µ − σ ≤ Y ≤ µ + σ ) 
 0.6827 = p1, P(µ − 2σ ≤
Y ≤ µ + 2σ ) 
 0.9545 = p 2, and P(µ−3σ ≤ Y ≤ µ + 3σ ) 

0.9973 = p 3. Calculate the intervals [ak, bk], k = 1, 2, 3, in terms
of µ and σ , for which P(ak ≤ X ≤ bk) is, respectively, equal to
pk, k = 1, 2, 3.



Exercises 239

1.3 Let the r.v. X have p.d.f. fX positive and continuous on the set S ⊆ �,
and set U = aX + b, where a and b are constants and a > 0.

(i) Use Theorem 2 in order to derive the p.d.f. fU .
(ii) If X has negative exponential distribution with parameter λ,

show that U has the same kind of distribution with parame-
ter λ/a.

(iii) If X ∼ U(c, d), then show that U ∼ U(ac + b, ad + b).

1.4 If the r.v. X has negative exponential distribution with parameter λ,
set Y = eX and Z = log X , and determine the p.d.f.’s fY and fZ.

1.5 Let X ∼ U(α, β) and set Y = eX . Then determine the p.d.f. fY . If
α > 0, set Z = log X and determine the p.d.f. fZ.

1.6 (i) If the r.v. X is distributed as U(0, 1) and Y = −2 log X , show that
Y is distributed as χ2

2 .
(ii) If X1, . . . , Xn is a random sample from the U(0, 1) distribution

and Yi = −2 log Xi, use part (i) and Theorem 5 in Chapter 10 in
order to show that

∑n
i=1 Yi is distributed as χ2

2n.

1.7 If the r.v. X has the p.d.f. fX (x) = 1√
2π

x−2e−1/2x2
, x ∈ �, show that the

r.v. Y = 1
X ∼ N(0, 1).

1.8 Suppose that the velocity of a molecule of mass m is an r.v. X with

p.d.f. fX (x) =
√

2
π

x2e−x2/2, x > 0 (the so-called Maxwell distribution).

By means of Theorem 2′, show that the p.d.f. of the r.v. Y = 1
2mX 2,

which is the kinetic energy of the molecule, is the gamma p.d.f. with
α = 3

2 and β = m.

Hint: Use relations (6.14) and (6.16) in Chapter 6.

1.9 If the r.v. X ∼ N(0, 1), use the d.f. approach in order to show that
the r.v. Y = X 2 ∼ χ2

1 . That is, derive first the d.f. of the r.v. Y , and
then differentiate it in order to obtain the p.d.f.

Hint: Use relation (6.16) in Chapter 6.

1.10 Let the r.v.’s X and Y be as in Exercise 1.8. Then use the d.f. approach
in order to determine the p.d.f. of Y . That is, derive first the d.f. of
Y , and then differentiate it in order to obtain the p.d.f.

Hint: Use relations (6.14) and (6.16) in Chapter 6.

1.11 Let X be the r.v. denoting the time (in minutes) for an airline reserva-
tion desk to respond to a customer’s telephone inquiry, and suppose
that X ∼ U(t1, t2) (0 < t1 < t2). Then the r.v. Y = 1/X represents the
rate at which an inquiry is responded to.
(i) Determine the p.d.f. of Y by means of its d.f.

(ii) Specify the d.f. and the p.d.f. in part (i) for t1 = 10, t2 = 15.
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11.2 Transforming Two or More Random Variables

Often the need arises to transform two or more given r.v.’s to another set
of r.v.’s. The following examples illustrate the point.

EXAMPLE 3 The times of arrival of a bus at two successive bus stops are r.v.’s X1
and X2 distributed as U(α, β), for two time points α < β. Calculate the
probabilities P(X1 + X2 > x) for 2α < x < 2β.

Clearly, this question calls for the determination of the distribution of the
r.v. X1 + X2. (This is done below in Example 3 (continued).)

Or more generally (and more realistically), suppose that a bus makes k
stops between its depot and its terminal and that the arrival time at the
ith stop is an r.v. Xi ∼ U(αi, βi), αi < βi, i = 1, . . . , k + 1 (where Xk+1
is the time of arrival at the terminal). Determine the distribution of the
duration of the trip X1 + · · · + Xk+1.

EXAMPLE 4 Consider certain events occurring in every time interval [t1, t 2] (0 <
t1 < t 2) according to Poisson distribution P(λ(t 2 − t1)). Then the waiting
times between successive occurrences are independent r.v.’s distributed
according to negative exponential distribution with parameter λ. (The
fact that the distribution of the waiting times is as described is proved
in Exercise 2.6 of Chapter 6; independence of the waiting times is shown
in Proposition 1 in Chapter 10). Let X1 and X2 be two such times. What
is the probability that one would have to wait at least twice as long for
the second occurrence than the first? That is, what is the probability
P(X2 > 2X1)?

Here one would have to compute the distribution of the r.v. X2−2X1. (This
is done below in Example 4 (continued).)

Below, a brief outline of the theory underpinning the questions posed
in the examples is presented. First, consider the case of two r.v.’s X1 and
X2 having the joint p.d.f. fX1,X2 . Often the question posed is that of deter-
mining the distribution of a function of X1 and X2, h1(X1, X2). The general
approach is to set Y1 = h1(X1, X2), and also consider another (convenient)
transformation Y2 = h 2(X1, X2). Next, determine the joint p.d.f. of Y1 and
Y2, fY1,Y2 , and, finally, compute the (marginal) p.d.f. fY1 . Conditions under
which fY1,Y2 is determined by way of fX1,X2 are given below.

THEOREM 3
Consider the r.v.’s X1 and X2 with joint p.d.f. fX1,X2 positive and
continuous on the set S ⊆ �2, and let h1, h2 be two real-valued
transformations defined on S; that is, h1, h2 : S → �, and let T be
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the image of S under the transformation (h1, h2). Suppose that
(h1, h2) is one-to-one from S onto T. Thus, if we set y1 =
h1(x1, x2) and y2 = h2(x1, x2), we can solve uniquely for x1, x2 : x1 =
g1(y1, y2), x2 = g2(y1, y2). Suppose further that the partial deriva-
tives g1i(y1, y2) = ∂

∂yi
g1(y1, y2) and g2i(y1, y2) = ∂

∂yi
g2(y1, y2), i = 1, 2

exist and are continuous for (y1, y2) ∈ T. Finally, suppose that the
Jacobian:

J =
∣∣∣∣
g11(y1, y2) g12(y1, y2)

g21(y1, y2) g22(y1, y2)

∣∣∣∣ is �= 0 on T.

Then the joint p.d.f. of the r.v.’s Y1 = h1(X1, X2) and Y2 = h2(X1, X2),
fY1,Y 2 , is given by:

fY1,Y2(y1, y2) = fX1,X2 [g1(y1, y2), g2(y1, y2)]|J|, (y1, y2) ∈ T (11.9)

(and = 0 for (y1, y2) /∈ T).

The justification of this theorem is entirely analogous to that of Theo-
rem 2 and will be omitted. In any case, its proof is a matter of changing
variables in a double integral, which is purely a calculus matter.

In applying Theorem 3, one must be careful in checking that the under-
lying assumptions hold, and in determining correctly the set T. As an
illustration, let us discuss the first part of Example 3.

EXAMPLE 3 (continued)

DISCUSSION We have y1 = x1 + x2 and let y2 = x2. Then x1 = y1 − y2

and x2 = y2, so that ∂x1
∂y1

= 1, ∂x1
∂y2

= −1, ∂x2
∂y1

= 0, ∂x2
∂y2

= 1, and J =∣∣1 −1
0 1

∣∣ = 1. For the determination of S and T, see Figures 11.1 and 11.2.

Since fX1,X2(x1, x2) = 1
(β − α)2 for (x1, x2) ∈ S, we have fY1,Y 2(y1, y2) =

1
(β − α)2 for (y1, y2) ∈ T; that is, for 2α < y1 < 2β, α < y2 < β, α < y1 − y2 <
β (and = 0 for (y1, y2) /∈ T).

Thus, we get:

fY1,Y2(y1, y2) =
{ 1

(β−α)2 , 2α < y1 < 2β, α < y2 < β, α < y1 − y2 < β

0, otherwise.
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Figure 11.1

S = {(x1, x2) ∈ �2;
fX1,X2(x1, x2) > 0}.

x2

x1

b

ba

a

S

0

Figure 11.2

T = Image of S

under the
transformation
used.

y2 y1 − y2 = c

y1 − y2 = a

y1 − y2 = b

y1
2a a

b

ba  + b0

a

2b

T

Therefore:

fY1(y1) =






1
(β−α)2

∫ y1−α

α
dy2 = y1−2α

(β−α)2 , for 2α < y1 ≤ α + β

1
(β−α)2

∫ β

y1−β
dy2 = 2β−y1

(β−α)2 , for α + β < y1 ≤ 2β

0, otherwise.

The graph of fY1 is given in Figure 11.3.

EXAMPLE 4 (continued)

DISCUSSION Here y1 = x2 − 2x1 = −2x1 + x2 and let y2 = x2. Then

x1 = −1
2y 1 + 1

2y2 and x2 = y2, so that J = ∣∣− 1
2

1
2

0 1

∣∣ = −1
2 and |J| = 1

2 .

Clearly, S is the first quadrant. As for T, we have y2 = x2, so that y2 > 0.
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Figure 11.3

This density is
known as a
triangular p.d.f.

0

1
   b − a

a + b2a 2b
y1

fY1
(y1)

Also, −1
2y1 + 1

2y2 = x1, so that −1
2y1 + 1

2y2 > 0 or −y1 + y2 > 0 or y2 > y1.
The conditions y2 > 0 and y2 > y1 determine T (see Figure 11.4).

Figure 11.4

T is the part of the
plane above the
y1-axis and also
above the main
diagonal y1 = y2.

0

y1 = y2

y2

y1

Since fX1,X2(x1, x2) = λ2e−λ(x1+x 2) (x1, x2 > 0), we have fY1,Y2(y1, y2) =
λ2

2 e
λ
2 y1− 3λ

2 y2 , (y1, y2) ∈ T (and = 0 otherwise). Therefore fY1(y1) is taken
by integrating out y2. More precisely, for y1 < 0:

fY1(y1) = λ2

2
e

λ
2 y1

∫ ∞

0
e− 3λ

2 y2dy2 = −λ2

2
× 2

3λ
e

λ
2 y1 × e− 3λ

2 y2

∣∣∣∣

∞

0

= −λ

3
e

λ
2 y1(0 − 1) = λ

3
e

λ
2 y1 ,

whereas for y1 ≥ 0:

fY1(y1) = λ2

2
e

λ
2 y1

∫ ∞

y1

e− 3λ
2 y2dy2 = −λ

3
e

λ
2 y1 × e− 3λ

2 y2

∣∣∣∣

∞

y1

= −λ

3
e

λ
2 y1(0 − e− 3λ

2 y1) = λ

3
e−λy1 .
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To summarize:

fY1(y1) =





λ
3 e

λ
2 y1 , y1 < 0

λ
3 e−λy1 , y1 ≥ 0.

Therefore P(X2 > 2X1) = P(X2 − 2X1 > 0) = P(Y1 > 0) =
λ
3

∫∞
0 e−λy1dy1 = 1

3 
 0.333.

REMARK: 4 To be sure, the preceding probability is also calculated as
follows:

P(X2 > 2X1) =
∫ ∫

(x2>2x1)

λ2e−λx1−λx2dx1 dx2

=
∫ ∞

0
λe−λx2

(∫ x2/2

0
λe−λx1dx1

)
dx2

=
∫ ∞

0
λe−λx2(1 − e− λ

2 x2)dx2

=
∫ ∞

0
λe−λx2dx2 − 2

3

∫ ∞

0

3λ

2
e− 3λ

2 x2dx2 = 1 − 2
3

= 1
3

.

Applications of Theorem 3 lead to two new distributions, which are
of great importance in statistics. They are the t-distribution and the
F-distribution. The purely probability oriented reader may choose to omit
the derivations of their p.d.f.’s.

DEFINITION 1
Let X and Y be two independent r.v.’s distributed as follows: X ∼
N(0, 1) and Y ∼ χ2

r , and define the r.v. T by: T = X /
√

Y /r. The r.v. T
is said to have the (Student’s) t-distribution with r degrees of freedom
(d.f.). The notation used is: T ∼ tr. (The term “r degrees of freedom”
used is inherited from the χ2

r distribution employed.)

The p.d.f. of T, fT , is given by the formula:

fT(t) = �
[1

2 (r + 1)
]

√
πr�(r/2)

× 1
[1 + (t2/r)](1/2)(r+1)

, t ∈ �, (11.10)

and its graph (for r = 5) is presented in Figure 11.5.
From formula (11.10), it is immediate that fT is symmetric about 0 and

tends to 0 as t → ±∞. It can also be seen (see Exercise 2.9) that fT(t)
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tends to the p.d.f. of the N(0, 1) distribution as the number r of d.f. tends
to ∞. This is depicted in Figure 11.5 by means of the curve denoted by t∞.
Also, it is seen (see Exercise 2.10) that ET = 0 for r ≥ 2, and Var(T) = r

r−2
for r ≥ 3. Finally, the probabilities P(T ≤ t), for selected values of t and r,
are given by tables (the t-tables). For r ≥ 91, one may use the tables for
standard normal distribution.

Figure 11.5

Two curves of the t

probablity density
function.

t 

fT(t)

t5 

0

t∞(N(0, 1))

DERIVATION OF THE P.D.F. OF T, fT Regarding the derivation of
fT , we have:

fX (x) = 1√
2π

e−(1/2)x2
, x ∈ �,

fY (y) =
{ 1

�( 1
2 r)2(1/2)r y(r/2)−1e−y/2, y > 0

0, y ≤ 0.

Set U = Y and consider the transformation

(h1, h2) :
{

t = x√
y/r

u = y
; then

{
x = 1√

r t
√

u

y = u,

and

J =
∣∣∣∣∣

√
u√
r

t
2
√

u
√

r

0 1

∣∣∣∣∣
=

√
u√
r

= |J|.
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Therefore, for t ∈ �, u > 0, we get:

fT,U (t, u) = 1√
2π

e−t2u/2r × 1
�(r/2)2r/2

u(r/2)−1e−u/2 ×
√

u√
r

= 1√
2πr�(r/2)2r/2

u(1/2)(r+1)−1 exp
[
−u

2

(

1 + t2

r

)]
.

Hence

fT(t) =
∫ ∞

0

1√
2πr�(r/2)2r/2

u(1/2)(r+1)−1 exp
[
−u

2

(
1 + t2

r

)]
du.

Set

u
2

(
1 + u2

r

)
= z, so that u = 2z

(
1 + t2

r

)−1

, du = 2
(

1 + t2

r

)−1

dz,

and z ∈ [0, ∞). Therefore we continue as follows:

fT(t) =
∫ ∞

0

1√
2πr�(r/2)2r/2

[
2z

1 + (t2/r)

](1/2)(r+1)−1

e−z 2
1 + (t2/r)

dz

= 1√
2πr�(r/2)2r/2

2(1/2)(r+1)

[1 + (t2/r)](1/2)(r+1)

∫ ∞

0
z(1/2)(r+1)−1e−zdz

= 1√
πr�(r/2)

1
[1 + (t2/r)](1/2)(r+1)

�

[
1
2

(r + 1)
]
,

since 1
�[ 1

2 (r+1)]z
(1/2)(r+1)−1e−z (z > 0) is the p.d.f. of gamma distribution

with parameters α = r+1
2 and β = 1; that is,

fT(t) = �[1
2 (r + 1)]√
πr�(r/2)

× 1
[1 + (t2/r)](1/2)(r+1)

, t ∈ �.

Now, we proceed with the definition of the F-distribution.

DEFINITION 2
Let X and Y be two independent r.v.’s distributed as follows: X ∼ χ2

r1

and Y ∼ χ2
r2

, and define the r.v. F by: F = X /r1
Y /r2

. The r.v. F is said
to have the F-distribution with r1 and r2 degrees of freedom (d.f.).
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The notation often used is: F ∼ Fr1,r2 . (The term “r1 and r2 degrees
of freedom” used is inherited from the χ2

r1
and χ2

r2
distributions

employed.)

The p.d.f. of F, fF , is given by the formula:

fF(f ) =





�[ 1
2 (r1+r2)](r1/r2)r1/2

�( 1
2 r1)�( 1

2 r2)
× f (r1/2)−1

[1+(r1/r2)f ](1/2)(r1+r2) , for f > 0

0, for f ≤ 0,
(11.11)

and its graphs (for r1 = 10, r2 = 4 and r1 = r2 = 10) are given in
Figure 11.6. The probabilities P(F ≤ f ), for selected values of f and r1, r2,
are given by tables (the F-tables).

Figure 11.6

Two curves of the F

probablity density
function.

0 20 30
f

F10,10

F10,4

fF( f )

10

DERIVATION OF THE P.D.F. OF F, fF The derivation of fF is based
on Theorem 3 and is as follows. For x and y > 0, we have:

fX (x) = 1

�
(1

2r1
)
2r1/2

x (r1/2)−1e−x/2, x > 0,

fY (y) = 1

�
(1

2r2
)
2r2/2

y (r2/2)−1e−y/2, y > 0.

We set Z = Y , and consider the transformation

(h1, h2) :
{

f = x/r1
y/r2

z = y
; then

{
x = r1

r2
fz

y = z,
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and

J =
∣∣∣∣∣

r1
r2

z r1
r2

f

0 1

∣∣∣∣∣
= r1

r2
z = |J|.

For f , z > 0, we get:

fF, Z(f , z) = 1

�
(1

2r1
)
�
(1

2r2
)
2(1/2)(r1+r2)

(
r1

r2

)(r1/2)−1

f (r1/2)−1z (r1/2)−1z (r2/2)−1

× exp
(

− r1

2r2

)
fze−z/2 r1

r2
z

= (r1/r2)r1/2f (r1/2)−1

�
(1

2r1
)
�
(1

2r2
)
2(1/2)(r1+r2)

z (1/2)(r1+r2)−1 exp
[
− z

2

(
r1

r2
f + 1

)]
.

Therefore:

fF(f ) =
∫ ∞

0
fF, Z(f , z)dz

= (r1/r2)r1/2f (r1/2)−1

�
(1

2r1
)
�
(1

2r2
)
2(1/2)(r1+r2)

∫ ∞

0
z (1/2)(r1+r2)−1 exp

[
− z

2

(
r1

r2
f + 1

)]
dz.

Set:

z
2

(
r1

r2
f + 1

)
= t, so that z = 2t

(
r1

r2
f + 1

)−1

,

dz = 2
(

r1

r2
f + 1

)−1

dt, t ∈ [0, ∞).

Thus continuing, we have

fF(f ) = (r1/r2)r1/2f (r1/2)−1

�
(1

2r1
)
�
(1

2r2
)
2(1/2)(r1+r2)

2(1/2)(r1+r2)−1
(

r1

r2
f + 1

)−(1/2)(r1+r2)+1

× 2
(

r1

r2
f + 1

)−1 ∫ ∞

0
t(1/2)(r1+r2)−1e−tdt

= �[1
2 (r1 + r2)](r1/r2)r1/2

�
(1

2r1
)
�
(1

2r2
) × f (r1/2)−1

[1 + (r1/r2)f ](1/2)(r1+r2)
,
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since 1
�[ 1

2 (r1+r2)] t
(1/2)(r1+r2)−1e−t (t > 0) is the p.d.f. of gamma distribution

with parameters α = r1+r2
2 and β = 1. Therefore:

fF(f ) =





�[ 1
2 (r1+r2)](r1/r2)r1/2

�( 1
2 r1)�( 1

2 r2)
× f (r1/2)−1

[1+(r1/r2)f ](1/2)(r1+r2) , for f > 0

0, for f ≤ 0.
(11.12)

REMARK: 5

(i) From the definition of F-distribution, it follows that, if F ∼ Fr1,r2 ,
then 1

F ∼ Fr2,r1 .
(ii) If T ∼ tr, then T2 ∼ F1.r. Indeed, T = X /

√
Y /r, where X and Y are

independent, and X ∼ N(0, 1), Y ∼ χ2
r . But then T2 = X 2

Y /r = X 2/1
Y /r ∼

F1,r, since X 2 ∼ χ2
1 and X 2 and Y are independent.

(iii) If F ∼ Fr1,r2 , then it can be shown (see Exercise 2.11) that

EF = r2

r2 − 2
, for r2 ≥ 3,

and Var(F) = 2r2
2(r1 + r2 − 2)

r1(r2 − 2)2(r2 − 4)
, for r2 ≥ 5.

Returning to Theorem 3, it is to be observed that one of the basic
assumptions for its validity is that the transformations used are one-
to-one. If this assumption is violated, then, under suitable conditions,
a version of the theorem still holds true. This was exactly the case in con-
nection with Theorems 2 and 2′. For the sake of completeness, here is a
suitable version of Theorem 3.

THEOREM 3′
Consider the r.v.’s X1 and X2 with joint p.d.f. fX1, X2 positive and
continuous on the set S ⊆ �2, let h1, h2 be two real-valued trans-
formations defined on S, and let T be the image of S under the
transformation (h1, h2). Suppose that (h1, h2) is not one-to-one
from S onto T, but there is a partition of S into (pairwise disjoint)
subsets S1, . . . , Sr such that when (h1, h2) is restricted to Sj and
takes values on Tj (the image of Sj under (h1, h2)), j = 1, . . . , r, then
(h1, h2) is one-to-one. Denoting by (h1j, h2j) this restriction, we have
then: (h1j, h2j) : Sj → Tj is one-to-one, j = 1, . . . , r. For (x1, x2) ∈ Sj,
set y1 = h1j(x1, x2), y2 = h2j(x1, x2), so that (y1, y2) ∈ Tj, j = 1, . . . , r.
Then we can solve uniquely for x1, x2: x1 = gj1(y1, y2), x2 =
gj2(y1, y2), j = 1, . . . , r. Suppose further that the partial derivatives
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gj11(y1, y2) = ∂
∂y1

gj1(y1, y2), gj12(y1, y2) = ∂
∂y2

gj1(y1, y2), gj21(y1, y2) =
∂

∂y1
gj2(y1, y2), gj22(y1, y2) = ∂

∂y2
gj2(y1, y2) exist, are continuous for

(y1, y2) ∈ Tj, j = 1, . . . , r, and the Jacobian

Jj =
∣∣∣∣

gj11(y1, y2) gj12(y1, y2)
gj21(y1, y2) gj22(y1, y2)

∣∣∣∣

is �= 0 on Tj for j = 1, . . . , r.
Set:

fYj(y1,y2)= fX1,X2 [gj1(y1,y2),gj2(y1,y2)]|Jj|, (y1,y2)∈Tj, j=1, . . . ,r.

Then the joint p.d.f. of the r.v.’s Y1 = h1(X1, X2), Y2 = h2(X1, X2),
fY1,Y2 , is given by:

fY1,Y2(y1, y2) =
r∑

j=1

δj(y1, y2)fYj(y1, y2), (y1, y2) ∈ T

(and = 0 for (y1, y2) /∈ T), where δj(y1, y2) = 1, if (y1, y2) ∈ Tj and
δj(y1, y2) = 0, if (y1, y2) /∈ Tj, j = 1, . . . , r.

One can formulate versions of Theorems 3, 3′ for k(>2) r.v.’s X1, . . . , Xk.
In the following, such versions are formulated for reference purposes.

THEOREM 4
Consider the r.v.’s X1, . . . , Xk with joint p.d.f. fX1,..., Xk positive and
continuous on the set S ⊆ �k, and let h1, . . . , hk be real-valued
transformations defined on S; that is, h1, . . . , hk : S → �, and let
T be the image of S under the transformation (h1, . . . , hk). Sup-
pose that (h1, . . . , hk) is one-to-one from S onto T. Thus, if we set
y i = hi(x1, . . . , xk), i = 1, . . . , k, then we can solve uniquely for
xi, i = 1, . . . , k : xi = gi(y1, . . . , y k), i = 1, . . . , k. Suppose further that
the partial derivatives gij(y1, . . . , y k) = ∂

∂yj
gi(y1, . . . , y k), i, j = 1, . . . , k

exist and are continuous for (y1, . . . , y k) ∈ T. Finally, suppose that
the Jacobian

J =
∣∣∣∣∣∣

g11(y1, . . . , y k) · · · g1k(y1, . . . , y k)
. . . . . . . . . · · · . . . . . . . . .

gk1(y1, . . . , y k) · · · gkk(y1, . . . , y k)

∣∣∣∣∣∣
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is �= 0 on T. Then the joint p.d.f. of the r.v.’s Yi = hi(X1, . . . , Xk), i =
1, . . . , k, fY1,...,Yk , is given by:

fY1,...,Yk(y1, . . . , yk) = fX1,...,Xk [g1(y1, . . . , yk), . . . , gk(y1, . . . , yk)] |J|,
(11.13)

(y1, . . . , yk) ∈ T (and = 0 for (y1, . . . , yk) /∈ T).

This theorem is employed in justifying Theorem 5 in the next section.
A suitable version of the previous result when the transformations

h1, . . . , hk are not one-to-one is stated below; it will be employed in
Theorem 10 in Section 5.

THEOREM 4′
Let X1, . . . , Xk be r.v.’s with joint p.d.f. fX1,..., Xk positive and con-
tinuous on the set S ⊆ �k, and let h1, . . . , hk be real-valued
transformations defined on S; that is, h1, . . . , hk : S → �, and let
T be the image of S under the transformation (h1, . . . , hk). Sup-
pose that (h1, . . . , hk) is not one-to-one from S onto T but there
is a partition of S into (pairwise disjoint) subsets S1, . . . , Sr such
that when (h1, . . . , hk) is restricted to Sj and takes values in Tj
(the image of Sj under (h1, . . . , hk)), j = 1, . . . , r, then (h1, . . . , hk)
is one-to-one. Denoting by (h1j, . . . , hkj) this restriction, we have
then: (h1j, . . . , hkj) : Sj → Tj is one-to-one, j = 1, . . . , r. For
(x1, . . . , xk) ∈ Sj, set y1 = h1j(x1, . . . , xk), . . . , yk = hkj(x1, . . . , xk), so
that (y1, . . . , yk) ∈ Tj, j = 1, . . . , r. Then we can solve uniquely
for xi, i = 1, . . . , k : xi = gji(y1, . . . , y k), i = 1, . . . , k, for each j =
1, . . . , r. Suppose further that the partial derivatives gjil(y1, . . . , yk) =
∂

∂yl
gji(y1, . . . , yk), i, l = 1, . . . , k, j = 1, . . . , r exist, are continuous for

(y1, . . . , yk) ∈ Tj, j = 1, . . . , r, and the Jacobian

Jj =
∣∣∣∣∣∣

gj11(y1, . . . , yk) · · · gj1k(y1, . . . , yk)
. . . · · · . . .

gjk1(y1, . . . , yk) · · · gjkk(y1, . . . , yk)

∣∣∣∣∣∣

is �= 0 on Tj for j = 1, . . . , r.
Set:

fYj(y1, . . . , yk) = fX1,..., Xk [gj1(y1, . . . , yk), . . . , gjk(y1, . . . , yk)]|Jj|,
(y1, . . . , yk) ∈ Tj, j = 1, . . . , r.
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Then the joint p.d.f. of the r.v.’s Yi = hi(X1, . . . , Xk), i = 1, . . . , k,
fY1,...,Y k , is given by:

fY1,...,Y k(y1, . . . , yk) =
r∑

j=1

δj(y1, . . . , yk)fYj(y1, . . . , yk), (y1, . . . , yk) ∈ T

(and = 0 for (y1, . . . , yk) /∈ T), (11.14)

where δj(y1, . . . , yk) = 1, if (y1, . . . , yk) ∈ Tj and δj(y1, . . . , yk) = 0, if
(y1, . . . , yk) /∈ Tj, j = 1, . . . , r.

This theorem is employed in justifying Theorem 10 in Section 11.5
below.

Exercises

2.1 The r.v.’s X and Y denote the outcomes of one independent throw of
two fair dice, and let Z = X + Y . Determine the distribution of Z.

2.2 Let the independent r.v.’s X and Y have negative exponential
distribution with λ = 1, and set U = X + Y , V = X /Y .

(i) Derive the joint p.d.f. fU,V .
(ii) Then derive the marginal p.d.f.’s fU and fV .

(iii) Show that the r.v.’s U and V are independent.

2.3 Let the independent r.v.’s X and Y have negative exponential
distribution with λ = 1, and set U = 1

2 (X + Y ), V = 1
2 (X − Y ).

(i) Show that the joint p.d.f. of the r.v.’s U and V is given by:

fU,V (u, v) = 2e−2u, −u < v < u, u > 0.

(ii) Also, show that the marginal p.d.f.’s fU and fV are given by:

fU (u) = 4ue−2u, u > 0,

fV (v) =
{

e−2v, for v > 0,
e2v, for v < 0.

2.4 Let the independent r.v.’s X and Y have the joint p.d.f. fX ,Y posi-
tive and continuous on a set S, subset of �2, and set U = aX + b,
V = cY + d, where a, b, c, and d are constants with ac �= 0.
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(i) Use Theorem 3 in order to show that the joint p.d.f. of U and V
is given by:

fU,V (u, v) = 1
|ac| fX ,Y

(
u − b

a
,

v − c
d

)

= 1
|ac| fX

(
u − b

c

)
fY

(
v − c

d

)
, (u, v) ∈ T,

the image of S under the transformations u = ax + b, v = cy + d.
(ii) If X ∼ N(µ1, σ 2

1 ) and Y ∼ N(µ2, σ 2
2 ), show that U ∼ N(aµ1 +

b, (aσ1)2), V ∼ N(cµ2 + d, (cσ2)2), and that U and V are inde-
pendent.

2.5 If the independent r.v.’s X and Y are distributed as N(0, 1), set U =
X + Y , V = X − Y , and:

(i) Determine the p.d.f.’s of U and V .
(ii) Show that U and V are independent.

(iii) Compute the probability P(U < 0, V > 0).

2.6 Let X and Y be independent r.v.’s distributed as N(0, 1), and set:

U = 1√
2

(X + Y ), V = 1√
2

(X − Y ).

(i) Determine the joint p.d.f. of U and V .
(ii) From the joint p.d.f. fU,V , infer fU and fV without integration.

(iii) Conclude that U and V are also independent.
(iv) How else could you arrive at the p.d.f.’s fU and fV ?

2.7 Let X and Y be independent r.v.’s distributed as N(0, σ 2). Then show
that the r.v. U = X 2 + Y 2 has negative exponential distribution with
parameter λ = 1/2σ 2.

Hint: Use Proposition 6 and Theorem 5 in Chapter 10.

2.8 The independent r.v.’s X and Y have p.d.f. given by: fX ,Y (x, y) = 1
π

,
for x, y ∈ � with x2 + y2 ≤ 1, and let Z2 = X 2 + Y 2. Use polar
coordinates to determine the p.d.f. fZ2 .

Hint: Let Z = +√
Z2 and set X = Z cos 
, Y = Z sin 
, where

Z ≥ 0 and 0 < 
 ≤ 2π . First, determine the joint p.d.f. fZ,

and then the marginal p.d.f. fZ. Finally, by means of fZ and the
transformation U = Z2, determine the p.d.f. fU = fZ2 .

2.9 If the r.v. Xr ∼ tr, then the t-tables (at least the ones in this book)
do not give probabilities for r > 90. For such values, we can use
instead the normal tables. The reason for this is that the p.d.f. of Xr
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converges to the p.d.f. of the N(0, 1) distribution as r → ∞. More
precisely,

fXr (t) =
�
(

r+1
2

)

√
πr �

( r
2

) × 1
(
1 + t2

r

)(r+1)/2
−→

r→∞
1√
2π

e−t2/2 (t > 0).

Hint: In proving this convergence, first observe that

(
1 + t2

r

)(r+1)/2

=
[(

1 + t2

r

)r]1/2

×
(

1 + t2

r

)1/2
−→

r→∞et2/2,

and then show that

�
(

r+1
2

)

�
( r

2

) −→
r→∞

1√
2

,

by utilizing the Stirling formula. This formula states that:

�(n)√
2πn(2n−1)/2e−n

→ 1 as n → ∞.

2.10 Let Xr be an r.v. distributed as t with r degrees of freedom: Xr ∼ t r
(r = 1, 2, . . .) whose p.d.f. is given in relation (11.10). Then show
that:

(i) EXr does not exist for r = 1.
(ii) EXr = 0 for r ≥ 2.

(iii) Var(Xr) = r
r−2 for r ≥ 3.

Hint: That EXr does not exist for r = 1 is actually reduced to
Exercise 1.16 in Chapter 5. That EXr = 0 for r ≥ 2 follows by
a simple integration. So, all that remains to calculate is EX2

r .
For this purpose, first reduce the original integral to an integral
over the interval (0, ∞), by symmetry of the region of integration
and the fact that the integrand is an even function. Then, use
the transformation t2

r = x, and next the transformation 1
1 + x = y.

Except for constants, the integral is then reduced to the form:

∫ 1

0
yα−1(1 − y)β−1dy (α > 0, β > 0).

At this point, use the following fact:

∫ 1

0
yα−1(1 − y)β−1dy = �(α)�(β)

�(α + β)
.
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(A proof of this fact may be found, e.g., in Subsection 3.3.6 (in
Chapter 3), of the book A Course in Mathematical Statistics, 2nd
edition (1997), Academic Press, by G. G. Roussas.) The proof
concludes by using the recursive relation of the gamma function
(�(γ ) = (γ − 1)�(γ − 1)), and the fact that �( 1

2 ) = √
π .

2.11 Let Xr1,r2 be an r.v. having F-distribution with parameters r1 and r2;
that is, Xr1,r2 ∼ Fr1,r2 with p.d.f. given by (11.12). Then show that:

EXr1,r2 = r2

r2 − 2
, r2 ≥ 3; Var(Xr1,r2) = 2r2

2(r1 + r2 − 2)
r1(r2 − 2)2(r2 − 4)

, r2 ≥ 5.

Hint: Start out with the kth moment EXk
r1,r2

, use first the trans-
formation r1

r2
f = x and second the transformation 1

1 + x = y. Then
observe that the integral is expressed in terms of the gamma func-
tion, as indicated in the Hint in Exercise 2.10. Thus, the EXk

r1,r2
is expressed in terms of the gamma function without carrying out
any integrations. Specifically, we find:

EXk
r1,r2

=
(

r2

r1

)k �
(

r1+2k
2

)
�
(

r2−2k
2

)

�
( r1

2

)
�
( r2

2

) , r2 > 2k.

Applying this formula for k = 1 (which requires that r2 ≥ 3)
and k = 2 (which requires that r2 ≥ 5), and using the recur-
sive property of the gamma function, we determine the required
expressions.

11.3 Linear Transformations

In this section, a brief discussion is presented for a specific kind of trans-
formations, linear transformations. The basic concepts and results used
here can be found in any textbook on linear algebra.

DEFINITION 3
Suppose the variables x1, . . . , xk are transformed into the variables
y1, . . . , y k in the following manner:

yi =
k∑

j=1

cijxj, i = 1, . . . , k, (11.15)

where the cij’s are real constants. Such a transformation is called a
linear transformation (all the xi’s enter into the transformation in a
linear way, in the first power).
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Some terminology and elementary facts from matrix algebra will
be used here. Denote by C the k × k matrix of the cij, i, j = 1, . . . , k
constants; that is, C = (cij), and by |C| or � its determinant. Then it
is well known that if � �= 0, one can uniquely solve for xi in (11.15):

xi =
k∑

j=1

dijyj, i = 1, . . . , k, (11.16)

for suitable constants dij. Denote by D the k × k matrix of the dij’s
and by �∗ its determinant: D = (dij), �∗ = |D|. Then it is known
that �∗ = 1/�. Among the linear transformations, a specific class is
of special importance; it is the class of orthogonal transformations.

A linear transformation is said to be orthogonal, if

k∑

j=1

c2
ij = 1 and

k∑

j=1

cijci′j = 0, i, i′ = 1, . . . , k, i �= i′,

or, equivalently,

k∑

i=1

c2
ij = 1 and

k∑

i=1

cijcij′ = 0, j, j′ = 1, . . . , k, j �= j′. (11.17)

Relations (11.17) simply state that the row (column) vectors of the
matrix C have norm (length) 1, and any two of them are perpendic-
ular. The matrix C itself is also called orthogonal. For an orthogonal
matrix C, it is known that |C| = ±1. Also, in the case of an orthog-
onal matrix C, it happens that dij = cji, i, j = 1, . . . , k; or in matrix
notation: D = C′, where C′ is the transpose of C (the rows of C′ are
the same as the columns of C). Thus, in this case:

xi =
k∑

j=1

cjiyj, i = 1, . . . , k. (11.18)

Also, under orthogonality, the vectors of the xi’s and of the yj’s
have the same norm. To put it differently:

k∑

i=1

x2
i =

k∑

j=1

y2
j . (11.19)
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EXAMPLE 5 Here are two non-orthogonal matrices:

C1 =



−1 3 11

1 5 −5
2 −1 8



 , C2 =
( 1

2
1
2

1
2 −1

2

)
.

Also, |C2| = −1
2 . The transformations: u = 1

2x + 1
2y, v = 1

2x − 1
2y,

are invertible and give: x = u + v, y = u − v. The relevant matrix is(1 1
1 −1

)
with determinant

∣∣1 1
1 −1

∣∣ = −2 = 1/|C2|, as it should be. However,
u2 + v2 = 1

2 (x2 + y2) �= x2 + y2.

EXAMPLE 6 The following matrices are both orthogonal.

C1 =






−
√

3
3

√
3

3

√
3

3√
6

6 −
√

6
6

2
√

6
6√

2
2

√
2

2 0




 , C2 =





√
2

2

√
2

2√
2

2 −
√

2
2



.

Also,

C′
1 =






−
√

3
3

√
6

6

√
2

2√
3

3 −
√

6
6

√
2

2√
3

3
2
√

6
6 0




 , C′

2 =




√
2

2

√
2

2√
2

2 −
√

2
2



,

and |C1| = |C′
1| = 1, |C2| = |C′

2| = −1. The transformations: u = −
√

3
3 x +√

3
3 y +

√
3

3 z, v =
√

6
6 x −

√
6

6 y + 2
√

6
6 z, w =

√
2

2 x +
√

2
2 y are invertible and give:

x = −
√

3
3 u+

√
6

6 v+
√

2
2 w, y =

√
3

3 u−
√

6
6 v+

√
2

2 w, z =
√

3
3 u+2

√
6

6 v. Furthermore,
x2 + y2 + z2 = u2 + v2 + w2, as it should be. Also, the transformations:
u =

√
2

2 x +
√

2
2 y, v =

√
2

2 x −
√

2
2 y are invertible and give: x =

√
2

2 u +
√

2
2 v,

y =
√

2
2 u −

√
2

2 v, and u2 + v2 = x2 + y2, as expected.

Applying linear transformations in transforming a set of k r.v.’s into
another set of k r.v.’s, we have the following theorem.

THEOREM 5
Suppose the r.v.’s X1, . . . , Xk are transformed into the r.v.’s Y1, . . . , Yk
through a linear transformation with the matrix C = (cij) and |C| =
� �= 0. Let S ⊆ �k be the set over which the joint p.d.f. of X1, . . . , Xk,
fX1,..., Xk , is positive and continuous, and let T be the image of S under
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the linear transformation. Then:
(i) The joint p.d.f. of Y1, . . . , Y k, fY1,...,Yk , is given by:

fY1,...,Y k(y1, . . . , y k) = fX1,..., Xk

( k∑

j=1

d1jyj, . . . ,
k∑

j=1

dkjyj

)
1

|�| ,

(11.20)

for (y1, . . . , y k) ∈ T (and = 0 otherwise), where the dij’s are as
in (11.16).

(ii) In particular, if C is orthogonal, then:

fY1,...,Y k(y1, . . . , y k) = fX1,..., Xk

( k∑

j=1

cj1yj, . . . ,
k∑

j=1

cjkyj

)
, (11.21)

for (y1, . . . , y k) ∈ T (and = 0 otherwise); also,

k∑

j=1

Y 2
j =

k∑

i=1

X2
i ; (11.22)

PROOF

(i) Relation (11.20) follows from Theorem 4.
(ii) Relation (11.21) follows from (11.20) and orthogonality of the trans-

formation; and (11.22) is a restatement of (11.19). �
Next, we specialize this result to the case that the r.v.’s X1, . . . , Xk are

normally distributed and independent.

THEOREM 6
Let the independent r.v.’s X1, . . . , Xk be distributed as follows:
Xi ∼ N(µi, σ 2), i = 1, . . . , k, and suppose they are transformed
into the r.v.’s Y1, . . . , Y k by means of an orthogonal transforma-
tion C. Then the r.v.’s Y1, . . . , Y k are also independent and normally
distributed as follows:

Yi ∼ N
( k∑

j=1

cijµj, σ 2
)

, i = 1, . . . , k; (11.23)
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also,

k∑

j=1

Y 2
j =

k∑

i=1

X2
i . (11.24)

PROOF From the transformations Yi =∑k
j=1 cijXj, it is immediate that

each Yi is normally distributed with mean EYi = ∑k
j=1 cijµj and variance

Var(Yi) = ∑k
j=1 c2

ijσ
2 = σ 2∑k

j=1 c2
ij = σ 2. So the only thing to be justified

is the assertion of independence. From the normality assumption on the
Xi’s, we have:

fX1,..., Xk(x1, . . . , xk) =
(

1√
2πσ

)k

exp
[
− 1

2σ 2

k∑

i=1

(xi − µi)2
]
. (11.25)

Then, since C is orthogonal, (11.21) applies and gives, by means of
(11.25):

fY1,...,Y k(y1, . . . , y k) =
(

1√
2πσ

)k

exp
[
− 1

2σ 2

k∑

i=1

( k∑

j=1

cjiyj − µi

)2]
.

(11.26)

Thus, the proof is completed by establishing the following algebraic
relation:

k∑

i=1

( k∑

j=1

cjiyj − µi

)2

=
k∑

i=1

(
yi −

k∑

j=1

cijµj

)2

(11.27)

(see Exercise 3.1). �

EXAMPLE 7 As an application of Theorem 6, refer to Example 6, and first transform
the independent and N(0, 1) distributed r.v.’s X , Y , Z into the r.v.’s U, V , W
by means of the (orthogonal) transformation C1.

DISCUSSION From

fX ,Y ,Z(x, y, z) =
(

1√
2π

)3

exp(x2 + y2 + z2),
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and the fact that x2 + y2 + z2 = u2 + v2 + w2, we get:

fU,V ,W (u, v, w) =
(

1√
2π

)3

exp(u2 + v2 + w2).

It follows that U, V , W are independent, distributed as N(0, 1), and, of
course, U2 + V2 + W2 = X2 + Y 2 + Z2.

Next, let the independent r.v.’s X and Y be distributed as follows:
X ∼ N(µ1, σ 2), Y ∼ N(µ2, σ 2), so that:

fX ,Y (x, y) =
(

1√
2πσ

)2

exp
{

− 1
2σ 2

[
(x − µ1)2 + (y − µ2)2

]}
.

Transform X , Y into the r.v.’s U, V by means of the (orthogonal)
transformation C2 in Example 6, so that:

fU,V (u, v) =
(

1√
2πσ

)2

exp
{

− 1
2σ 2

[(√
2

2
u +

√
2

2
v − µ1

)2

+
(√

2
2

u −
√

2
2

v − µ2

)2]}
.

However,

(√
2

2
u +

√
2

2
v − µ1

)2

+
(√

2
2

u −
√

2
2

v − µ2

)2

= u2 + v2 − √
2(u + v)µ1

− √
2(u − v)µ2 + µ2

1 + µ2
2

=
{

u2 − 2 ×
√

2
2

u(µ1 + µ2) +
[√

2
2

(µ1 + µ2)
]2}

+
{

v2 − 2 ×
√

2
2

v(µ1 − µ2) +
[√

2
2

(µ1 − µ2)
]2}

=
[
u −

(√
2

2
µ1 +

√
2

2
µ2

)]2

+
[
v −

(√
2

2
µ1 −

√
2

2
µ2

)]2

,

since,
[√2

2 (µ1 + µ2)
]2 + [

√
2

2 (µ1 − µ2)
]2 = µ2

1 + µ2
2.

It follows that U ∼ N(
√

2
2 µ1 +

√
2

2 µ2, σ 2), V ∼ N(
√

2
2 µ1 −

√
2

2 µ2, σ 2), and
they are independent, as Theorem 6 dictates.
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Finally, suppose the orthogonal matrix C in Theorem 6 is chosen to be
as follows:

C =






1/
√

k 1/
√

k . . . . . . . . . . . . . . . 1/
√

k
1/

√
2 × 1 −1/

√
2 × 1 0 . . . . . . . . . 0

1/
√

3 × 2 1/
√

3 × 2 −2/
√

3 × 2 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
1/

√
k(k − 1) 1/

√
k(k − 1) . . . . . . . . . 1/

√
k(k − 1) −(k − 1)/

√
k(k − 1)






.

That is, the elements of C are given by the expressions:

c1j = 1/
√

k, j = 1, . . . , k,

cij = 1/
√

i(i − 1), for i = 2, . . . , k and j = 1, . . . , i − 1,

and 0 for j = i + 1, . . . , k,

cii = −(i − 1)/
√

i(i − 1), i = 2, . . . , k.

From these expressions, it readily follows that
∑k

j=1 c2
ij = 1 for all i =

1, . . . , k, and
∑k

j=1 cijci′j = 0 for all i, i′ = 1, . . . , k, with i �= i′, so that C is,
indeed, orthogonal (see also Exercise 3.2). By means of C and Theorem 6,
we may now establish the following result.

LEMMA 1 If Z1, . . . , Zk are independent r.v.’s distributed as N(0, 1),

then Z̄ and
k∑

i=1
(Zi − Z̄)2 are independent, where z̄ = k−1

k∑

i=1
Zi.

PROOF Transform Z1, . . . , Zk into the r.v.’s Y1, . . . , Y k by means of C;
that is,

Y1 = 1√
k

Z1 + 1√
k

Z2 + · · · + 1√
k

Zk

Y2 = 1√
2 × 1

Z1 − 1√
2 × 1

Z2

Y3 = 1√
3 × 2

Z1 + 1√
3 × 2

Z2 − 2√
3 × 2

Z3

...

Y k = 1√
k(k − 1)

Z1 + 1√
k(k − 1)

Z2 + · · · + 1√
k(k − 1)

Zk−1 − k − 1√
k(k − 1)

Zk.

Then, by Theorem 6, the r.v.’s Y1, . . . , Y k are independently distributed
as N(0, 1), whereas by (11.24):

k∑

j=1

Y 2
j =

k∑

i=1

Z2
i .
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However, Y1 = √
kZ̄, so that:

k∑

j=2

Y 2
j =

k∑

j=1

Y 2
j − Y 2

1 =
k∑

i=1

Z2
i − (

√
kZ̄)2 =

k∑

i=1

Z2
i − kZ̄2 =

k∑

i=1

(Zi − Z̄)2.

On the other hand,
∑k

j=2 Y 2
j and Y1 are independent; equivalently,

∑k
i=1 (Zi − Z̄)2 and kZ̄ are independent, or:

Z̄ and
k∑

i=1

(Zi − Z̄)2 are independent. � (11.28)

This last conclusion is now applied as follows.

THEOREM 7
Let X1, . . . , Xk be independent r.v.’s distributed as N(µ, σ 2). Then
the sample mean X̄ = 1

k
∑k

i=1 Xi and the sample variance S2 =
1
k
∑k

i=1(Xi − X̄)2 are independent.

PROOF The assumption that Xi ∼ N(µ, σ 2) implies that Xi−µ
σ

∼ N(0, 1).
By setting Zi = (Xi − µ)/σ , i = 1, . . . , k, the Zi’s are as in Lemma 1 and
therefore (11.28) applies. Since

Z̄ = 1
k

k∑

i=1

(
Xi − µ

σ

)
= 1

σ
(X̄ − µ), and

k∑

i=1

(Zi − Z̄)2 =
k∑

i=1

(
Xi − µ

σ
− X̄ − µ

σ

)2

= 1
σ 2

k∑

i=1

(Xi − X̄)2,

it follows that 1
σ

(X̄ − µ) and 1
σ 2

∑k
i=1(Xi − X̄)2 are independent or that X̄

and 1
k
∑k

i=1(Xi − X̄)2 are independent. �

Exercises

3.1 Establish relation (11.27) in the proof of Theorem 6.
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Hint: Expand the left-hand side and the right-hand side in (11.27),
use orthogonality, and show that the common value of both sides is:

k∑

j=1

y2
j +

k∑

j=1

µ2
j − 2

k∑

j=1

k∑

i=1

cjiµiµj.

3.2 Show that the matrix with row elements given by:

c1j = 1/
√

k, j = 1, . . . , k,

cij = 1/
√

i(i − 1), i = 2, . . . , k and j = 1, . . . , i − 1,

and 0 for j = i + 1, . . . , k,

cii = −(i − 1)/
√

i(i + 1), i = 2, . . . , k

is orthogonal.

3.3 Let X1, X2, X3 be independent r.v.’s such that Xi ∼ N(µi, σ 2), i =
1, 2, 3, and set:

Y1 = − 1√
2

X1 + 1√
2

X2,

Y2 = − 1√
3

X1 − 1√
3

X2 + 1√
3

X3,

Y3 = 1√
6

X1 + 1√
6

X2 + 2√
6

X3.

Then:
(i) Show that the r.v.’s Y1, Y2, Y3 are independent normally dis-

tributed with variance σ 2 and respective means:

EY1 = 1√
2

(−µ1 + µ2), EY2 = 1√
3

(−µ1 − µ2 + µ3),

EY3 = 1√
6

(µ1 + µ2 + 2µ3).

(ii) If µ1 = µ2 = µ3 = 0, then show that 1
σ 2 (Y 2

1 + Y 2
2 + Y 2

3 ) ∼ χ2
3 .

Hint: For part (i), prove that the transformation employed is
orthogonal, and then use Theorem 6 to conclude independence
of Y1, Y2, Y3. That the means and the variance are as described
follows either from Theorem 6 or directly. Part (ii) follows from
part (i) and the assumption that µ1 = µ2 = µ3 = 0.
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3.4 If the r.v.’s X and Y have bivariate normal distribution with param-
eters µ1, µ2, σ 2

1 , σ 2
2 , and ρ, then the r.v.’s U = X−µ1

σ1
, V = Y−µ2

σ2
have

bivariate normal distribution with parameters 0, 0, 1, 1, and ρ; and
vice versa.

Hint: For the converse part, you just reverse the process.

3.5 If the r.v.’s X and Y have bivariate normal distribution with parame-
ters 0, 0, 1, 1, and ρ, then the r.v.’s cX and dY have bivariate normal
distribution with parameters 0, 0, c2, d2, and ρ0, where ρ0 = ρ if
cd > 0, and ρ0 = −ρ if cd < 0; c and d are constants with cd �= 0.

3.6 Let the r.v.’s X and Y have bivariate normal distribution with param-
eters 0, 0, 1, 1, and ρ, and set: U = X + Y , V = X − Y . Then show
that:

(i) The r.v.’s U and V also have bivariate normal distribution with
parameters 0, 0, 2(1 + ρ), 2(1 − ρ), and 0.

(ii) From part (i), conclude that the r.v.’s U and V are independent.
(iii) From part (i), also conclude that: U ∼ N(0, 2(1 + ρ)), V ∼ N(0,

2(1 − ρ)).

3.7 Let the r.v.’s X and Y have bivariate normal distribution with
parameters µ1, µ2, σ 2

1 , σ 2
2 , and ρ, and set:

U = X − µ1

σ1
, V = Y − µ2

σ2
.

Then:
(i) Determine the joint distribution of the r.v.’s U and V . (See also

Exercise 3.4.)
(ii) Show that U + V and U − V have bivariate normal distribu-

tion with parameters 0, 0, 2(1 + ρ), 2(1 − ρ), and 0, and are
independent. Also, U +V ∼ N(0, 2(1+ρ)), U −V ∼ N(0, 2(1−ρ)).

(iii) For σ 2
1 = σ 2

2 = σ 2, say, conclude that the r.v.’s X + Y and X − Y
are independent.

Remark: Actually the converse of part (iii) is also true; namely, if X
and Y have bivariate normal distribution N(µ1, µ2, σ 2

1 , σ 2
2 , ρ), then

independence of X +Y and X −Y implies σ 2
1 = σ 2

2 . The justification
of this statement is easier by means of m.g.f.’s, and it was actually
discussed in Exercise 1.25 of Chapter 10.

3.8 Let the independent r.v.’s X1, . . . , Xn be distributed as N(µ, σ 2), and
suppose that µ = kσ (k > 0). Set:

X̄ = 1
n

n∑

i=1

Xi, S2 = 1
n − 1

n∑

i=1

(Xi − X̄)2.
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Then:
(i) Determine an expression for the probability:

P(aµ < X̄ < bµ, 0 < S2 < cσ 2),

where a, b, and c are constants, a < b and c > 0.
(ii) Give the numerical value of the probability in part (i) if a = 1

2 , b =
3
2 , c = 1.487, k = 1.5, and n = 16.

Hint: Use independence of X̄ and S2 provided by Theorem 7. Also,
use the fact that (n−1)S2

σ 2 ∼ χ2
n−1 by Theorem 6 in Chapter 10 (where

S2 is denoted by S̄2).

11.4 The Probability Integral Transform

In this short section, a very special type of transformation is considered,
the so-called probability integral transform. By means of this transforma-
tion, two results are derived. Roughly speaking, these results state that
if X ∼ F and Y = F(X ), then, somewhat surprisingly, Y is always dis-
tributed as U(0, 1). Furthermore, for a given d.f. F, there is always an r.v.
X ∼ F; this r.v. is given by X = F−1(Y ), where Y ∼ U(0, 1) and F−1 is the
inverse function of F. To facilitate the derivations, F will be assumed to
be (strictly) increasing.

THEOREM 8
For a continuous and increasing d.f. F, let X ∼ F and set Y = F(X).
Then Y ∼ U(0, 1).

PROOF Since 0 ≤ F(X) ≤ 1, it suffices to consider y ∈ [0, 1]. Then

P(Y ≤ y) = P[F(X) ≤ y] = P{F−1[F(X)] ≤ F−1(y)}
= P[X ≤ F−1(y)] = F[F−1(y)] = y,

so that Y ∼ U(0, 1). �

THEOREM 9
Let F be a given continuous and increasing d.f., and let the r.v.
Y ∼ U(0, 1). Define the r.v. X by: X = F−1(Y ). Then X ∼ F.
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PROOF For x ∈ �,

P(X ≤ x) = P[F−1(Y ) ≤ x] = P{F[F−1(Y )] ≤ F(x)}
= P[Y ≤ F(x)] = F(x),

as was to be seen. �
In the form of a verification of Theorems 8 and 9, consider the following

simple examples.

EXAMPLE 8 Let the r.v. X have negative exponential distribution with parameter λ.
Then, for x > 0, F(x) = 1 − e−λx. Let Y be defined by: Y = 1 − e−λX . Then
Y should be ∼ U(0, 1).

DISCUSSION Indeed, for 0 < y < 1,

P(Y ≤ y) = P(1 − e−λX ≤ y) = P(e−λX ≥ 1 − y) = P[−λX ≥ log(1 − y)]
(where, as always, log stands for the natural logarithm)

= P
[
X ≤ −1

λ
log(1 − y)

]

= 1 − exp
{

(−λ)
[
−1

λ
log(1 − y)

]}

= 1 − exp[log(1 − y)] = 1 − (1 − y) = y,

as was to be seen.

EXAMPLE 9 Let F be the d.f. of negative exponential distribution with parameter λ,
so that F(x) = 1 − e−λx, x > 0. Let y = 1 − e−λx and solve for x to obtain
x = −1

λ
log(1 − y), 0 < y < 1. Let Y ∼ U(0, 1) and define the r.v. X by:

X = −1
λ

log(1 − Y ). Then X should be ∼ F.

DISCUSSION Indeed,

P(X ≤ x) = P
[
−1

λ
log(1 − Y ) ≤ x

]
= P[log(1 − Y ) ≥ −λx]

= P(1 − Y ≥ e−λx) = P(Y ≤ 1 − e−λx) = 1 − e−λx,

as was to be seen.
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Exercises

4.1 (i) Let X be an r.v. with continuous and (strictly) increasing d.f. F,
and define the r.v. Y by Y = F(X ). Then use Theorem 2 in order
to show that Z = −2 log(1 − Y ) ∼ χ2

2 .
(ii) If X1, . . . , Xn is a random sample with d.f. F as described in part

(i), and if Yi = F(Xi), i = 1, . . . , n, then show that the r.v. U =∑n
i=1 Zi ∼ χ2

2n, where Zi = −2 log(1 − Yi), i = 1, . . . , n.

Hint: For part (i), use Theorem 8, according to which Y ∼ U(0, 1).
For part (ii), use part (i) and Theorem 5 in Chapter 10.

11.5 Order Statistics

In this section, an unconventional kind of transformation is consid-
ered, which, when applied to r.v.’s, leads to the so-called order statistics.
For the definition of the transformation, consider n distinct numbers
x1, . . . , xn and order them in ascending order. Denote by x(1) the small-
est number: x(1) = smallest of x1, . . . , xn; by x(2) the second smallest,
and so on until x(n) is the nth smallest or, equivalently, the largest
of the xi’s. In a summary form, we write: x(j) = the jth smallest
of the numbers x1, . . . , xn, where j = 1, . . . , n. Then, clearly, x(1) <
x(2) < · · · < x(n). For simplicity, set yj = x(j), j = 1, . . . , n, so that
again y1 < y2 < · · · < yn. The transformation under considera-
tion is the one that transforms the xi’s into the yj’s in the way just
described.

This transformation now applies to n r.v.’s as follows.
Let X1, X2, . . . , Xn be i.i.d. r.v.’s with d.f. F. The jth order statistic of

X1, X2, . . . , Xn is denoted by X(j), or Yj for easier writing, and is defined as
follows:

Yj = jth smallest of the X1, X2, . . . , Xn, j = 1, . . . , n;

(i.e., for each s ∈ S, look at X1(s), X2(s), . . . , Xn(s), and then Yj(s) is defined
to be the jth smallest among the numbers X1(s), X2(s), . . . , Xn(s), j =
1, 2, . . . , n). It follows that Y1 ≤ Y2 ≤ · · · ≤ Yn, and, in general, the Yj’s
are not independent.

We assume now that the Xi’s are of the continuous type with p.d.f.
f such that f (x) > 0, (−∞≤)a < x < b(≤∞) and zero otherwise. One of
the problems we are concerned with is that of finding the joint p.d.f. of
the Yj’s. By means of Theorem 4′, it will be established that:

THEOREM 10
If X1, . . . , Xn are i.i.d. r.v.’s with p.d.f. f , which is positive and contin-
uous for a < x < b and 0 otherwise, then the joint p.d.f. of
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the order statistics Y1, . . . , Yn is given by:

g(y1, . . . , yn) =
{

n!f (y1) · · · f (yn), a < y1 < y2 < · · · < yn < b

0, otherwise.
(11.29)

PROOF The proof is carried out explicitly for n = 2 and n = 3, but it is
easily seen, with the proper change in notation, to be valid in the general
case as well. First, consider the case n = 2. Since

P(X1 = X2) =
∫ ∫

(x1=x2)
f (x1)f (x2)dx1dx2 =

∫ b

a

∫ x2

x2

f (x1)f (x2)dx1dx2 = 0,

we may assume that the joint p.d.f., f (·, ·), of X1, X2 is 0 for x1 = x2. Thus,
f (·, ·) is positive on the rectangle ABCD except for its diagonal DB, call
this set S.

G
a

T

FEb

C

B

D

Ab

a

0 a

S1

S2

b 0 a b

Figure 11.7

The set ABCD of positivity of the joint
p.d.f. of X1, X2 is partitioned into the
disjoined sets S1 and S2.

Figure 11.8

Both sets S1 ans S2 are mapped onto T
under the transformation of ordering
X1 and X2.

Write S = S1 ∪ S2 as in the Figure 11.7. Points x1, x2 in S1 are mapped
into the region T consisting of the triangle EFG (except for the side GF)
depicted in Figure 11.8. This is so, because x1 < x2, so that y1 = x1, y2 =
x2. For points (x1, x2) in S2, we have x1 > x2, so that y1 = x2, y2 = x1,
and the point (x1, x2) is also mapped into T as indicated in the figures.

On S1 : y1 = x1, y2 = x2, so that x1 = y1, x2 = y2, and J =
∣∣∣∣

1 0
0 1

∣∣∣∣ = 1.
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Since f (x1, x2) = f (x1)f (x2), it follows that fY1,Y2(y1, y2) = f (y1)f (y2). On

S2 : y1 = x2, y2 = x1, so that x1 = y2, x2 = y1, and J =
∣∣∣∣

0 1
1 0

∣∣∣∣ =
−1. It follows that fY1,Y2(y1, y2) = f (y2)f (y1). Therefore, by Theorem 4′,
fY1,Y2(y1, y2) = 2f (y1)f (y2) = 2!f (y1)f (y2), or g(y1, y2) = 2!f (y1)f (y2), a <
y1 < y2 < b.

For n = 3, again since for i �= j,

P(Xi = Xj) =
∫ ∫

(xi=xj)
f (xi)f (xj) dxi dxj =

∫ b

a

∫ xj

xj

f (xi)f (xj) dxi dxj = 0,

and therefore P(Xi = Xj = Xk) = 0 for i �= j �= k, we may assume that the
joint p.d.f., f (·, ·, ·), of X1, X2, X3 is zero, if at least two of the arguments
x1, x2, x3 are equal. Thus, we have:

f (x1, x2, x3) =
{

f (x1)f (x2)f (x3), a < x1 �= x2 �= x3 < b

0, otherwise.

Therefore f (x1, x2, x3) is positive on the set S, where:

S = {(x1, x2, x3) ∈ �3; a < xi < b, i = 1, 2, 3, x1, x2, x3 all different
}
.

Let Sijk ⊂ S be defined by:

Sijk = {(x1, x2, x3); a < xi < xj < xk < b}, i, j, k = 1, 2, 3, i �= j �= k.

Then we have that these six sets are pairwise disjoint and (essentially):

S = S123 ∪ S132 ∪ S213 ∪ S231 ∪ S312 ∪ S321.

Now on each one of the Sijk’s there exists a one-to-one transformation
from the xi’s to the yi’s defined as follows:

S123 : y1 = x1, y2 = x2, y3 = x3

S132 : y1 = x1, y2 = x3, y3 = x2

S213 : y1 = x2, y2 = x1, y3 = x3

S231 : y1 = x2, y2 = x3, y3 = x1

S312 : y1 = x3, y2 = x1, y3 = x2

S321 : y1 = x3, y2 = x2, y3 = x1.
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Solving for the xi’s, we have then:

S123 : x1 = y1, x2 = y2, x3 = y3

S132 : x1 = y1, x2 = y3, x3 = y2

S213 : x1 = y2, x2 = y1, x3 = y3

S231 : x1 = y3, x2 = y1, x3 = y2

S312 : x1 = y2, x2 = y3, x3 = y1

S321 : x1 = y3, x2 = y2, x3 = y1.

The Jacobians are thus given by:

S123 : J123 =
∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
= 1, S231 : J231 =

∣∣∣∣∣∣

0 0 1
1 0 0
0 1 0

∣∣∣∣∣∣
= 1,

S132 : J132 =
∣∣∣∣∣∣

1 0 0
0 0 1
0 1 0

∣∣∣∣∣∣
= −1, S312 : J312 =

∣∣∣∣∣∣

0 1 0
0 0 1
1 0 0

∣∣∣∣∣∣
= 1,

S213 : J213 =
∣∣∣∣∣∣

0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣
= −1, S321 : J321 =

∣∣∣∣∣∣

0 0 1
0 1 0
1 0 0

∣∣∣∣∣∣
= −1.

Hence |J123| = · · · = |J321| = 1, and Theorem 4′ gives

g(y 1, y 2, y 3) =






f (y1)f (y2)f (y3) + f (y1)f (y3)f (y2) + f (y2)f (y1)f (y3)
+f (y3)f (y1)f (y2) + f (y2)f (y3)f (y1) + f (y3)f (y2)f (y1),

a < y1 < y2 < y3 < b

0, otherwise.

That is,

g(y1, y2, y3) =
{

3!f (y1)f (y2)f (y3), a < y1 < y2 < y3 < b
0, otherwise. �

Note that the proof in the general case is exactly the same. One has
n! regions forming S, one for each permutation of the integers 1 through
n. From the definition of a determinant and the fact that each row and
column contains exactly one 1 and the rest all 0, it follows that the n!
Jacobians are either 1 or −1 and the remaining part of the proof is iden-
tical to the one just given except that one adds up n! like terms instead
of 3!.

The theorem is illustrated by the following two examples.
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EXAMPLE 10 Let X1, . . . , Xn be i.i.d. r.v.’s distributed as N(µ, σ 2). Then the joint p.d.f.
of the order statistics Y1, . . . , Yn is given by

g(y1, . . . , yn) = n!
(

1√
2πσ

)n

exp



− 1
2σ 2

n∑

j=1

(yj − µ)2



 ,

if −∞ < y1 < · · · < yn < ∞, and zero otherwise.

EXAMPLE 11 Let X1, . . . , Xn be i.i.d. r.v.’s distributed as U(α, β). Then the joint p.d.f.
of the order statistics Y1, . . . , Yn is given by

g(y1, . . . , yn) = n!
(β − α)n ,

if α < y1 < · · · < yn < β, and zero otherwise.

From the joint p.d.f. in (11.29), it is relatively easy to derive the p.d.f.
of Yj for any j, as well as the joint p.d.f. of Yi and Yj for any 1 ≤ i < j ≤ n.
We restrict ourselves to the derivation of the distributions of Y1 and Yn
alone.

THEOREM 11
Let X1, . . . , Xn be i.i.d. r.v.’s with d.f. F and p.d.f. f , which is positive
and continuous for (−∞≤)a < x < b(≤∞) and zero otherwise, and
let Y1, . . . , Yn be the order statistics. Then the p.d.f.’s g1 and gn of
Y1 and Yn, respectively, are given by:

g1(y1) =
{

n[1 − F(y1)]n−1f (y1), a < y1 < b
0, otherwise,

(11.30)

and

gn(yn) =
{

n[F(yn)]n−1f (yn), a < yn < b
0, otherwise.

(11.31)

PROOF First, derive the d.f.’s involved and then differentiate them to
obtain the respective p.d.f.’s. To this end,

Gn(yn) = P(Yn ≤ yn) = P[max(X1, . . . , Xn) ≤ yn]
= P(all X1, . . . , Xn ≤ yn) = P(X1 ≤ yn, . . . , Xn ≤ yn)

= P(X1 ≤ yn) · · · P(Xn ≤ yn) (by the independence of the X i’s)

= [F(yn)]n.
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That is, Gn(yn) = [F(yn)]n, so that:

gn(yn) = d
dyn

Gn(yn) = n[F(yn)]n−1 d
dyn

F(yn) = n[F(yn)]n−1f (yn).

Likewise,

1 − G1(y1) = P(Y1 > y1) = P[min(X1, . . . , Xn) > y1]
= P(all X1, . . . , Xn > y1) = P(X1 > y1, . . . , Xn > y1)

= P(X1 > y1) · · · P(Xn > y1) (by the independence of the Xi’s)

= [1 − P(X1 ≤ y1)] · · · [1 − P(X1 ≤ y1)] = [1 − F(y1)]n.

That is, 1 − G1(y1) = [1 − F(y1)]n, so that

−g1(y1) = d
dy1

[1 − G1(y1)] = n[1 − F(y1)]n−1 d
dy1

[1 − F(y1)]

= n[1 − F(y1)]n−1[−f (y1)] = −n[1 − F(y1)]n−1f (y1),

and hence

g1(y1) = n[1 − F(y1)]n−1f (y1). �

As an illustration of the theorem, consider the following example.

EXAMPLE 12 Let the independent r.v.’s X1, . . . , Xn be distributed as U(0, 1). Then, for
0 < y1, yn < 1:

g1(y1) = n(1 − y1)n−1 and gn(yn) = nyn−1
n .

DISCUSSION Here, for 0 < x < 1, f (x) = 1 and F(x) = x. Therefore
relations (11.30) and (11.31) give, for 0 < y1, yn < 1:

g1(y1) = n(1 − y1)n−1 × 1 = n(1 − y1)n−1 and gn(yn) = nyn−1
n ,

as asserted.

As a further illustration of the theorem, consider the following example,
which is of interest in its own right.

EXAMPLE 13 If X1, . . . , Xn are independent r.v.’s having negative exponential distribu-
tion with parameter λ, then Y1 has also negative exponential distribution
with parameter nλ.
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DISCUSSION Here f (x) = λe−λx and F(x) = 1 − e−λx for x > 0. Then,
for y1 > 0, formula (11.30) yields:

g1(y1) = n(e−λy1)n−1 × λe−λy1 = (nλ)e−(n−1)y1e−λy1 = (nλ)e−(nλ)y1 ,

as was to be seen.

EXAMPLE 14 (i) In a complex system, n identical components are connected serially,
so that the system works if and only if all n components function.
If the lifetime of said components is described by an r.v. X with d.f.
F and p.d.f. f , write out the expression for the probability that the
system functions for at least t time units.

(ii) Do the same as in part (i), if the components are connected in par-
allel, so that the system functions if and only if at least one of the
components works.

(iii) Simplify the expressions in parts (i) and (ii), if f is negative exponen-
tial with parameter λ.

DISCUSSION

(i) Clearly, P(system works for at least t time units)

= P(X1 ≥ t, . . . , Xn ≥ t) (where Xi is the lifetime of the
ith component)

= P(Y1 ≥ t) (where Y1 is the smallest-order statistic)

= ∫∞
t g1(y) dy (where g1 is the p.d.f. of Y1)

= ∫∞
t n[1 − F(y)]n−1f (y) dy (by (11.30)). (11.32)

(ii) Here
P(system works for at least t time units)

= P(at least one of X1, . . . , Xn ≥ t)

= P(Yn ≥ t) (where Yn is the largest-order statistic)

=
∫ ∞

t
gn(y) dy (where gn is the p.d.f. of Yn)

=
∫ ∞

t
n[F(y)]n−1f (y) dy (by (11.31)). (11.33)

(iii) Here F(y) = 1 − e−λy and f (y) = λe−λy (y > 0) from Example 13.
Also, from the same example, the p.d.f. of Y1 is g1(y) = (nλ)e−(nλ)y,
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so that (11.30) gives:

P(Y1 ≥ t) =
∫ ∞

t
(nλ)e−(nλ)y dy

= −
∫ ∞

t
de−(nλ)ydy

= −e−(nλ)y∣∣∞
t = e−nλt,

and, by (11.31),

P(Yn ≥ t) =
∫ ∞

t
n(1 − e−λy)n−1λe−λy dy.

For example, for n = 2, this last probability is equal to:
∫ ∞

t
2(1 − e−λy)λe−λy dy = 2

∫ ∞

t
λe−λy dy −

∫ ∞

t
2λe−2λy dy

= −2
∫ ∞

t
de−λy +

∫ ∞

t
de−2λy

= −2e−λy∣∣∞
t + e−2λy∣∣∞

t

= 2e−λt − e−2λt.

Exercises

5.1 Let X1, . . . , Xn be independent r.v.’s with p.d.f. f (x) = cx−(c+1), x > 1
(c > 0), and set U = Y1 = min (X1, . . . , Xn), V = Yn = max
(X1, . . . , Xn).
(i) Determine the d.f. F corresponding to the p.d.f. f .

(ii) Use Theorem 11 to determine the p.d.f.’s fU and fV in terms of c.

5.2 Refer to Example 12 and calculate the expectations EY1 and EYn,
and also determine the lim EY 1 and lim EYn as n → ∞.

5.3 Let Y1 and Yn be the smallest- and the largest-order statistics
based on a random sample X1, . . . , Xn from the U(α, β) (α < β)
distribution.
(i) For n = 3 and n = 4, show that the joint p.d.f. of Y1 and Yn is

given, respectively, by:

g13(y1, y3) = 3 × 2
(β − α)2 (y3 − y1), α < y1 < y3 < β,

g14(y1, y4) = 4 × 3
(β − α)3

(y4 − y1)2, α < y1 < y4 < β.
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(ii) Generalize the preceding results and show that:

g1n(y1, yn) = n(n − 1)
(β − α)n (yn − y1)n−2, α < y1 < yn < β.

Hint: For part (ii), all one has to do is to calculate the integrals:

∫ yn

y1

∫ yn−1

y1

· · ·
∫ y4

y1

∫ y3

y1

dy2dy3 · · · dyn−2dyn−1,

which is done one at a time; also, observe the pattern emerging.

5.4 Let Y1 and Yn be the smallest- and the largest-order statistics based
on a random sample X1, . . . , Xn from the U(0, 1) distribution. Then
show that:

Cov(Y1, Yn) = 1
(n + 1)2(n + 2)

.

Hint: Use the joint p.d.f. taken from Exercise 5.3(ii) for α = 0
and β = 1.

5.5 If Y1 and Yn are the smallest- and the largest-order statistics based
on a random sample X1, . . . , Xn from the U(0, 1) distribution:
(i) Show that the p.d.f. of the sample range R = Yn − Y1 is given

by:

fR(r) = n(n − 1)rn−2(1 − r), 0 < r < 1.

(ii) Also, calculate the expectation ER.

Hint: Use Exercise 5.3(ii) with α = 0, β = 1.

5.6 Refer to Example 13 and set Z = nY1. Then show that Z is
distributed as the Xi’s.

5.7 The lifetimes of two batteries are independent r.v.’s X and Y with
negative exponential distribution with parameter λ. Suppose that
the two batteries are connected serially, so that the system works if
and only if both work.

(i) Use Example 14 (with n = 2) to calculate the probability that
the system works beyond time t > 0.

(ii) What is the expected lifetime of the system?
(iii) What do parts (i) and (ii) become for λ = 1/3?

5.8 Let Y1 and Yn be the smallest- and the largest-order statistics
based on a random sample X1, . . . , Xn from negative exponential
distribution with parameter λ. Then, by Example 13, g1(y1) =
(nλ)e−(nλ)y1 , y1 > 0.
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(i) Use relation (11.31) (with a = 0 and b = ∞) to determine the
p.d.f. gn of the r.v. Yn.

(ii) Calculate the EYn for n = 2 and n = 3.

5.9 (i) Refer to Exercise 5.8(i) and show that:

EYn = n
λ

n−1∑

r=0

(−1)n−r−1

(n−1
r

)

(n − r)2 .

(ii) Apply part (i) for n = 2 and n = 3 to recover the values
found in Exercise 5.8 (ii).

Hint: Consider the binomial expansion: (a+b)k =∑k
r=0
(k

r

)
arbk−r

and apply it to: (1 − e−λy)n−1 for a = 1, b = −e−λy, and k = n − 1.
Then carry out the multiplications indicated and integrate term
by term.

5.10 Let X1, . . . , Xn be a random sample of size n of the continuous
type with d.f. F and p.d.f. f , positive and continuous in −∞ ≤ a <
x < b ≤ ∞, and let Y1 and Yn be the smallest- and the largest-order
statistics of the Xi’s. Use relation (11.29) to show that the joint p.d.f.
g1n of the r.v.’s Y1 and Yn is given by the expression:

g1n(y1, yn) = n(n − 1)[F(yn) − F(y1)]n−2f (y1)f (yn), a < y1 < yn < b.

Hint: The p.d.f. g1n is obtained by integrating g(y1, . . . , yn) in
(11.29) with respect to yn−1, yn−2, . . . , y2 as indicated below:

g1n(y1, yn) = n!f (y1)f (yn)
∫ yn

y1

· · ·
∫ yn

yn−3

∫ yn

yn−2

f (yn−1)f (yn−2)

× · · · f (y2)dyn−1dyn−2 · · · dy2.

However,

∫ yn

yn−2

f (yn−1)dyn−1 = F(yn) − F(yn−2) = [F(yn) − F(yn−2)]1
1! ,

∫ yn

yn−3

[F(yn) − F(yn−2)]1
1! f (yn−2) dyn−2

= −
∫ yn

yn−3

[F(yn) − F(yn−2)]1
1! d[F(yn)

−F(yn−2)] = −[F(yn) − F(yn−2)]2
2!

∣∣∣∣

yn

yn−3

= [F(yn) − F(yn−3)]2
2! ,
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and continuing on like this, we finally get:

∫ yn

y1

[F(yn) − F(y2)]n−3

(n − 3)! f (y2) dy2

= −
∫ yn

y1

[F(yn) − F(y2)]n−3

(n − 3)! d[F(yn) − F(y2)]

= −[F(yn) − F(y2)]n−2

(n − 2)!
∣∣∣∣

yn

y1

= [F(yn) − F(y1)]n−2

(n − 2)! .

Since n!
(n−2)! = n(n − 1), the result follows.



12
Two Modes of Convergence,
the Weak Law of Large
Numbers, the Central Limit
Theorem, and Further Results

This chapter introduces two modes of convergence for sequences of r.v.’s—
convergence in distribution and convergence in probability—and then
investigates their relationship.

A suitable application of these convergences leads to the most impor-
tant results in this chapter, which are the Weak Law of Large Numbers
and the Central Limit Theorem. These results are illustrated by concrete
examples, including numerical examples in the case of the Central Limit
Theorem.

In the final section of the chapter, it is shown that convergence in proba-
bility is preserved under continuity. This is also the case, for convergence
in distribution, in certain frameworks, but there will be no elaboration
here. These statements are illustrated by two general results and a specific
application.

The proofs of some of the theorems stated are given in considerable
detail; in some cases, only a rough outline is presented, whereas in other
cases, we restrict ourselves to the statements of the theorems alone.

278
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12.1 Convergence in Distribution and in Probability

In all that follows, X1, . . . , Xn are i.i.d. r.v.’s, which may be either discrete
or continuous. In applications, these r.v.’s represent n independent obser-
vations on an r.v. X , associated with an underlying phenomenon that is of
importance to us. In a probabilistic/statistical environment, our interest
lies in knowing the distribution of X , whether it is represented by the
probabilities P(X ∈ B), B ⊆ �, or the d.f. F of the Xi’s, or their p.d.f. f .
In practice, this distribution is unknown to us. Something then that would
be desirable would be to approximate the unknown distribution, in some
sense, by a known distribution. In this section, the foundation is set for
such an approximation.

DEFINITION 1
Let Y1, . . . , Yn be r.v.’s with respective d.f.’s. F1, . . . , Fn. The r.v.’s may
be either discrete or continuous and need be neither independent nor
identically distributed. Also, let Y be an r.v. with d.f. G. We say that
the sequence of r.v.’s {Yn}, n ≥ 1, converges in distribution to the r.v.

Y as n → ∞ and write Yn
d−→n→∞ Y , if Fn(x) −→n→∞G(x) for all continuity

points x of G. (See also Figure 12.1.)

Figure 12.1

The d.f. represented
by the solid curve is
approximated by the
d.f.’s represented by
the · · · · · · ·,
· − · − · − ·, and
− − − − − curves.
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The following example illustrates the definition.

EXAMPLE 1 For n ≥ 1, let the d.f.’s Fn and the d.f. G be given by:

Fn(x) =






0, if x < 1 − 1
n

1
2 , if 1 − 1

n ≤ x < 1 + 1
n

1, if x ≥ 1 + 1
n

, G(x) =
{

0, if x < 1

1, if x ≥ 1,

and discuss whether or not Fn(x) converges to G(x) as n → ∞. (See also
Figure 12.2.)

DISCUSSION The d.f. G is continuous everywhere except for the point
x = 1. For x < 1, let n0 > 1/(1 − x). Then x < 1 − 1

n0
and also x < 1 − 1

n
for all n ≥ n0. Thus, Fn(x) = 0, n ≥ n0. For x > 1, let n0 ≥ 1/(x − 1). Then
x ≥ 1 + 1

n0
and also x ≥ 1 + 1

n for all n ≥ n0, so that Fn(x) = 1, n ≥ n0.
Thus, for x �= 1, Fn(x) → G(x), so, if Yn and Y are r.v.’s such that Yn ∼ Fn

and Y ∼ G, then Yn
d−→n→∞ Y .

Figure 12.2

The d.f. G is
approximated by
the d.f.’s Fn at all
points x �= 1.

Fn(x)
Fn

1

0 0 1

1

x

G(x)

x
1

1
2

11− n 1+ 1
n

REMARK: 1 The example also illustrates the point that if x is a discon-
tinuity point of G, then Fn(x) need not converge to G(x). In Example 1,
Fn(1) = 1

2 for all n, and G(1) = 1.
The idea, of course, behind Definition 1 is the approximation of the

(presumably unknown) probability P(Y ≤ x) = G(x) by the (presumably
known) probabilities P(Yn ≤ x) = Fn(x), for large enough n. Convergence
in distribution also allows the approximation of probabilities of the form
P(x < Y ≤ y) by the probabilities P(x < Yn ≤ y), for x and y continuity
points of G. This is so because:

P(x < Yn ≤ y) = P(Yn ≤ y) − P(Yn ≤ x) = Fn(y) − Fn(x)

−→n→∞G(y) − G(x) = P(x < Y ≤ y).

Whereas convergence in distribution allows the comparison of certain
probabilities, calculated in terms of the individual r.v.’s Yn and Y , it does
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not provide evaluation of probabilities calculated on the joint behavior of
Yn and Y . This is taken care of to a satisfactory extent by the following
mode of convergence.

DEFINITION 2
The sequence of r.v.’s {Yn}, n ≥ 1, converges in probability to the r.v.
Y as n → ∞, if, for every ε > 0, P(|Yn − Y | > ε) −→n→∞0; equivalently,

P(|Yn − Y | ≤ ε) −→n→∞1. The notation used is: Yn
P−→n→∞ Y .

Thus, if the event An(ε) is defined by: An(ε) = {s ∈ S;Yn(s) − ε ≤
Y (s) ≤ Yn(s) + ε} (i.e., the event for which the r.v. Y is within ε from
the r.v. Yn), then P(An(ε)) −→n→∞1 for every ε > 0. Equivalently, P(Ac

n(ε)) =
P({s ∈ S; Y (s) < Yn(s) − ε or Y (s) > Yn(s) + ε}) −→n→∞0.

Yn

Y

Yn − e Yn + e

The probability that Y lies within a small neighborhood around Yn,
such as (Yn − ε, Yn + ε), is as close to 1 as one pleases, provided n is
sufficiently large.

It is rather clear that convergence in probability is stronger than con-
vergence in distribution. That this is, indeed, the case is illustrated by the
following example, where we have convergence in distribution but not in
probability.

EXAMPLE 2 Let S = {1, 2, 3, 4}, and on the subsets of S, let P be the discrete uniform
probability function. Define the following r.v.’s:

Xn(1) = Xn(2) = 1, Xn(3) = Xn(4) = 0, n = 1, 2, . . . ,

and

X(1) = X(2) = 0, X(3) = X(4) = 1.

DISCUSSION Then:

|Xn(s) − X(s)| = 1 for all s ∈ S.
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Hence Xn does not converge in probability to X , as n → ∞. Now,

Fn(x) =






0, x < 0
1
2 , 0 ≤ x < 1, G(x) =






0, x < 0
1
2 , 0 ≤ x < 1

1, x ≥ 1,1, x ≥ 1

so that Fn(x) = G(x) for all x ∈ �. Thus, trivially, Fn(x) −→n→∞G(x) for all
continuity points of G; that is, Xn

d−→n→∞ X , but Xn does not converge in
probability to X .

The precise relationship between convergence in distribution and
convergence in probability is stated in the following theorem.

THEOREM 1
Let {Yn}, n ≥ 1, be a sequence of r.v.’s and let Y be an r.v. Then

Yn
P−→n→∞ Y always implies Yn

d−→n→∞ Y . The converse is not true in
general (as illustrated by Example 2). However, it is true if

P(Y = c) = 1, where c is a constant. That is, Yn
d−→n→∞ c implies

Yn
P−→n→∞ c, so that Yn

P−→n→∞ c if and only if Yn
d−→n→∞ c.

PROOF (outline) That Yn
P−→n→∞ Y implies Yn

d−→n→∞ Y is established by
employing the concepts of lim inf (limit inferior) and lim sup (limit supe-
rior) of a sequence of numbers, and we choose not to pursue it. For the

proof of the fact that Yn
d−→n→∞ c implies Yn

P−→n→∞ c, observe that F(x) = 0, for
x < c and F(x) = 1 for x ≥ c, where F is the d.f. of c so that c−ε and c+ε are
continuity points of F for all ε>0. But P(|Yn − c| ≤ ε) = P(c − ε ≤ Yn ≤
c+ε) = P(Yn ≤ c+ε)−P(Yn < c−ε) = Fn(c + ε)−P(Yn < c−ε). However,
Fn(c + ε) −→n→∞1 and P(Yn < c − ε) ≤ P(Yn ≤ c − ε) = Fn(c − ε) −→n→∞0, so
that P(Yn < c − ε) −→n→∞0. Thus, P(|Yn − c| ≤ ε) −→n→∞1 or Yn

P−→n→∞ c. �

According to Definition 1, in order to establish that Yn
d−→n→∞ Y , all one

has to do is to prove the (pointwise) convergence Fn(x) −→n→∞F(x) for every
continuity point x of F. As is often the case, however, definitions do not
lend themselves to checking the concepts defined. This also holds here.
Accordingly, convergence in distribution is delegated to convergence of
m.g.f.’s, which, in general, is a much easier task to perform. That this can
be done is based on the following deep probabilistic result. Its justification
is omitted entirely.
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THEOREM 2
(Continuity Theorem) For n = 1, 2, . . . , let Yn and Y be r.v.’s with
respective d.f.’s Fn and F, and respective m.g.f.’s Mn and M (which
are assumed to be finite at least in an interval (−c, c), some c > 0).
Then:
(i) If Fn(x) −→n→∞F(x) for all continuity points x of F, it follows that

Mn(t) −→n→∞M(t) for all t ∈ (−c, c).
(ii) Let Mn(t) −→n→∞g(t), t ∈ (−c, c), some function g, which is con-

tinuous at t = 0. Then g is, actually, an m.g.f. and let F
be the corresponding d.f. It follows that Fn(x) −→n→∞F(x) for all
continuity points x of F.

A more lax formulation of part (ii) states that if Mn(t) −→n→∞M(t), t ∈
(−c, c) (some c > 0), then Fn(x) −→n→∞F(x) for all continuity points x of F.

Thus, according to this result, Yn
d−→n→∞ Y or, equivalently, Fn(x) −→n→∞

F(x) for all continuity points x of F, if and only if Mn(t) −→n→∞M(t),
t ∈ (−c, c), some c > 0. The fact that convergence of m.g.f.’s implies
convergence of the respective d.f.’s is the most useful part from a practical
viewpoint.

Exercises

1.1 For n = 1, 2, . . . , let Xn be an r.v. with d.f. Fn defined by: Fn(x) = 0 for
x < n, and Fn(x) = 1 for x ≥ n. Then show that Fn(x) −→n→∞ F(x), which
is identically 0 in � and hence it is not a d.f. of an r.v.

1.2 Let {Xn}, n ≥ 1, be r.v.’s with Xn taking the values 1 and 0 with
respective probabilities pn and 1 − pn; that is, P(Xn = 1) = pn and

P(Xn = 0) = 1−pn. Then show that Xn
P−→n→∞ 0, if and only if pn −→n→∞ 0.

Hint: Just elaborate on Definition 2.

1.3 For n = 1, 2, . . . , let Xn be an r.v. distributed as B(n, pn) and suppose

that npn −→n→∞ λ ∈ (0, ∞). Then show that Xn
d−→n→∞ X , where X is an

r.v. distributed as P(λ), by showing that MXn(t) −→n→∞ MX (t), t ∈ �.

Remark: This is an application of Theorem 2(ii).

1.4 Let Y1,n and Yn,n be the smallest- and the largest-order statistics based
on the random sample X1, . . . , Xn from the U(0, 1) distribution. Then
show that:
(i) Y1,n

P−→n→∞ 0; (ii) Yn,n
P−→n→∞ 1.

Hint: For ε > 0, calculate the probabilities: P(|Y1,n| > ε) and
P(|Yn,n − 1| ≤ ε) and show that they tend to 0 and 1, respectively,
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as n → ∞. Use the p.d.f.’s of Y1,n and Yn,n determined in Example 12
of Chapter 11.

1.5 Refer to Exercise 1.4. Set: Un = nY1,n, Vn = n(1 − Yn,n) and let U and
V be r.v.’s having negative exponential distribution with parameter
λ = 1. Then:
(i) Derive the p.d.f.’s of the r.v.’s Un and Vn.

(ii) Derive the d.f.’s of the r.v.’s Un and Vn, and show that Un
d−→n→∞ U

by showing that:

FUn(u) −→n→∞FU (u), u ∈ �.

Likewise for Vn.

Hint: For part (ii), refer to #6 in Table 6 in the Appendix.

1.6 We say that a sequence {Xn}, n ≥ 1, of r.v.’s converges to an r.v. X in
quadratic mean and write:

Xn
q.m.−→n→∞ X or Xn

(2)−→n→∞ X , if E(Xn − X )2 −→n→∞0.

Now, if X1, . . . , Xn are i.i.d. r.v.’s with (finite) expectation µ and (finite)
variance σ 2, show that the sample mean X̄n

q.m.−→n→∞ µ.

Hint: Use the Tchebichev inequality.

1.7 In the first part of the proof of Theorem 1 of Chapter 8 (see also its
proof, part (i)), the following version of the Cauchy–Schwarz inequal-
ity was established: For any two r.v.’s X and Y with EX = EY = 0 and
Var(X ) = Var(Y ) = 1, it holds: |E(XY )| ≤ 1. (This is actually only part
of said inequality.) Another more general version of this inequality is
the following: For any two r.v.’s X and Y with finite expectations and
variances, it holds: |E(XY )| ≤ E|XY | ≤ E1/2|X |2 × E1/2|Y |2.
(i) Prove the inequality in this setting.

(ii) For any r.v. X , show that |EX| ≤ E|X | ≤ E1/2|X |2.

Hint: For part (i), use the obvious result (x±y)2 = x 2+y 2±2xy ≥ 0
in order to conclude that −1

2 (x2 + y2) ≤ xy ≤ 1
2 (x2 + y2) and hence

|xy| ≤ 1
2 (x2 + y2). Next, replace x by X /E1/2|X |2, and y by Y /E1/2|Y |2

(assuming, of course, that E|X |2 > 0, E|Y |2 > 0, because otherwise
the inequality is, trivially, true), and take the expectations of both
sides to arrive at the desirable result.

1.8 Let {Xn} and {Yn}, n ≥ 1, be two sequences of r.v.’s such that:
Xn

q.m.−→n→∞ X , some r.v., and Xn − Yn
q.m.−→n→∞ 0. Then show that Yn

q.m.−→n→∞ X .

Hint: Start out with the E(Yn − X)2, add Xn in Yn − X and also
subtract it off, square out the expression, apply the assumptions
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made, and then use appropriately the Cauchy–Schwarz inequality
discussed in Exercise 1.7.

12.2 The Weak Law of Large Numbers and the Central Limit Theorem

As a first application of the concept of convergence in probability
(distribution), we have the so-called Weak Law of Large Numbers (WLLN).
This result is stated and proved, an interpretation is provided, and then
a number of specific applications are presented.

THEOREM 3
(Weak Law of Large Numbers, WLLN) Let X1, X2, . . . be i.i.d.
r.v.’s with (common) finite expectation µ, and let X̄n be the sample

mean of X1, . . . , Xn. Then X̄n
d−→n→∞ µ, or (on account of Theorem 1)

X̄n
P−→n→∞ µ.

Thus, the probability that µ lies within a small neighborhood around
X̄n, such as (X̄n − ε, X̄n + ε), is as close to 1 as one pleases, provided n is
sufficiently large. (See also the following figure.)

Parameter µ lies in
the interval
(X̄n − ε, X̄n + ε) with
high probability for all
sufficiently large n. xn−

µ

ε xn+ ε

PROOF The proof is a one-line proof, if it happens that the Xi’s also
have a (common) finite variance σ 2 (which they are not required to have
for the validity of the theorem). Since EX̄n = µ and Var(X̄n) = σ 2

n , the
Tchebichev inequality gives, for every ε > 0, P(|X̄n − µ| > ε) ≤ 1

ε2 ×
σ 2

n −→n→∞ 0, so that X̄n
P−→n→∞ µ.

Without reference to the variance, one would have to show
that MX̄n

(t) −→n→∞Mµ(t) (for t ∈ (−c, c), some c > 0). Let M stand for the
(common) m.g.f. of the Xi’s. Then use familiar properties of the m.g.f. and
independence of the Xi’s in order to obtain:

MX̄n
(t) = M∑n

i=1 Xi

(
t
n

)
=

n∏

i=1

MXi

(
t
n

)
=

[
M

(
t
n

)]n

.
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Consider the function M(z), and expand it around z = 0 according to
Taylor’s formula up to terms of first order to get:

M(z) = M(0) + z
1!

d
dz

M(z)|z=0 + R(z)
(

1
z

R(z) → 0 as z → 0
)

= 1 + zµ + R(z),

since M(0) = 1 and d
dz M(z)|z=0 = EX1 = µ. Replacing z by t/n, for fixed t,

the last formula becomes:

M
(

t
n

)
= 1 + t

n
µ + R

(
t
n

)
, where nR

(
t
n

)
→ 0 as n → ∞.

Therefore

MX̄n
(t) =

[
1 + µt + nR

( t
n

)

n

]n

,

and this converges to eµt, as n → ∞, by Remark 2 below. Since eµt is the
m.g.f. of (the degenerate r.v.) µ, we have shown that MX̄n

(t) −→n→∞Mµ(t), as
was to be seen. �
REMARK: 2 For every z ∈ �, one way of defining the exponential func-
tion ez is: ez = limn→∞(1 + z

n )n. It is a consequence of this result that, as
n → ∞, also (1 + zn

n )n → ez whenever zn → z. See also #6 in Table 6 in
the Appendix.

The interpretation and most common use of the WLLN is that if µ is
an unknown entity, which is typically the case in statistics, then µ may be
approximated (in the sense of distribution or probability) by the known
entity X̄n, for sufficiently large n.

12.2.1 Applications of the WLLN

1. If the independent Xi’s are distributed as B(1, p), then EXi = p and

therefore X̄n
P−→n→∞ p.

2. If the independent Xi’s are distributed as P(λ), then EXi = λ and

therefore X̄n
P−→n→∞ λ.

3. If the independent Xi’s are distributed as N(µ, σ 2), then EXi = µ and

therefore X̄n
P−→n→∞ µ.

4. If the independent Xi’s are distributed as negative exponential
with parameter λ, f (x) = λe−λx, x > 0, then EXi = 1/λ and therefore

X̄n
P−→n→∞ 1/λ.
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A somewhat more involved application is that of the approximation of
an entire d.f. by the so-called empirical d.f. To this effect:

5. Let X1, X2, . . . , Xn be i.i.d. r.v.’s with d.f. F, and define the empirical
d.f. Fn as follows. For each x ∈ � and each s ∈ S,

Fn(x, s) = 1
n

[number of X1(s), . . . ,Xn(s) ≤ x].

From this definition, it follows immediately that for each fixed
x ∈ �, Fn(x, s) is an r.v. as a function of s, and for each fixed s ∈ S,
Fn(x, s) is a d.f. as a function of x. Actually, if we set Yi(x, s) = 1 when
Xi(s) ≤ x, and Yi(x, s) = 0 when Xi(s) > x, then Yi(x, ·), . . . , Yi(x, ·) are r.v.’s
that are independent and distributed as B(1, F(x)), since P[Yi(x, ·) = 1] =
P(Xi ≤ x) = F(x). Also, EYi(x, ·) = F(x). Then Fn(x, s) may be rewritten as:

Fn(x, s) = 1
n

n∑

i=1

Yi(x, s), the sample mean of Y1(x, s), . . . ,Yn(x, s).

By omitting the sample point s, as is usually the case, we write Fn(x) and
Yi(x), i = 1, . . . , n rather than Fn(x, s) and Yi(x, s), i = 1, . . . , n, respectively.

Then Fn(x)
P−→n→∞ F(x) for each x ∈ �. Thus, for every x ∈ �, the value of

F(x) of the (potentially unknown) d.f. F is approximated by the (known)
values Fn(x) of the r.v.’s Fn(x).

REMARK: 3 Actually, it can be shown that the convergence Fn(x)
P−→n→∞

F(x) is uniform in x ∈ �. This implies that for every ε > 0, there is a
positive integer N(ε) independent of x ∈ �, such that Fn(x) − ε < F(x) <
Fn(x) + ε with probability as close to 1 as one pleases simultaneously for
all x ∈ �, provided n > N(ε).

As another application of the concept of convergence in distribution,
we obtain, perhaps, the most celebrated theorem of probability theory;
it is the so-called Central Limit Theorem (CLT), which is stated and
proved below. Comments on the significance of the CLT follow, and the
section concludes with applications and numerical examples. Some pre-
liminary work will facilitate the formulation of the theorem. To this end,
let X1, X2, . . . be i.i.d. r.v.’s with finite expectation µ and finite and positive
variance σ 2, let X̄n be the sample mean of X1, . . . , Xn, and denote by Sn
the partial sum

∑n
i=1 Xi; that is,

Sn =
n∑

i=1

Xi . (12.1)
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Then:

EX̄n = µ, Var(X̄n) = σ 2/n, ESn = nµ, and Var(Sn) = nσ 2. (12.2)

(Although the notation Sn has been used before (relation (10.13) (in
Chapter 10)) to denote the sample standard deviation of X1, . . . , Xn, there
should be no confusion; from the context, it should be clear what Sn
stands for.)

From (12.1) and (12.2), it follows immediately that:

Sn − ESn√
Var(Sn)

= Sn − nµ

σ
√

n
= X̄n − µ

σ /
√

n

=
(

X̄n − EX̄n√
Var(X̄n)

)
=

√
n(X̄n − µ)

σ
.

(12.3)

Then the CLT is stated as follows.

THEOREM 4
(Central Limit Theorem, CLT) Let X1, X2, . . . be i.i.d. r.v.’s with
finite expectation µ and finite and positive variance σ 2, let X̄n be the
sample mean of X1, . . . , Xn, and let Sn = ∑n

i=1 Xi. Then:

Sn − nµ

σ
√

n
=

√
n(X̄n − µ)

σ

d−→
n→∞ Z ∼ N(0, 1), (12.4)

or

P
(

Sn − nµ

σ
√

n
≤ z

)
= P

[√
n(X̄n − µ)

σ
≤ z

]
−→n→∞�(z)

= ∫ z
−∞

1√
2π

e− x 2
2 dx, z ∈ �. (12.5)

(Also, see Remark 4(ii).)

REMARK: 4

(i) An interpretation of (12.4) and (12.5) is that, for sufficiently large n:

P
[√

n(X̄n − µ)
σ

≤ z
]

= P
(

Sn − nµ

σ
√

n
≤ z

)
� �(z), z ∈ �. (12.6)

Often this approximation is also denoted (rather loosely) as follows:
√

n(X̄n − µ)
σ

� N(0, 1), or X̄n � N
(

µ,
σ 2

n

)
, or Sn � N(nµ, nσ 2).

(12.7)
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(ii) Actually, it can be shown that the convergence in (12.5) is uniform
in z ∈ �. That is to say, if we set

Fn(z) = P
[√

n(X̄n − µ)
σ

≤ z
]

= P
(

Sn − nµ

σ
√

n
≤ z

)
, (12.8)

then

Fn(z) −→n→∞�(z) uniformly in z ∈ �. (12.9)

To be more precise, for every ε > 0, there exists a positive integer
N(ε) independent of z ∈ �, such that

|Fn(z) − �(z)| < ε for n ≥ N(ε) and all z ∈ �. (12.10)

Its justification is provided by Lemma 1, Chapter 8, in the book
A Course in Mathematical Statistics, 2nd edition (1997), Academic
Press, by G. G. Roussas.

(iii) The approximation of the probability Fn(z) by �(z), provided by the
CLT, is also referred to as normal approximation for obvious reasons.

(iv) On account of (12.6), the CLT also allows for the approximation of
probabilities of the form P(a < Sn ≤ b) for any a < b. Indeed,

P(a < Sn ≤ b) = P(Sn ≤ b) − P(Sn ≤ a)

= P
(

Sn − nµ

σ
√

n
≤ b − nµ

σ
√

n

)
− P

(
Sn − nµ

σ
√

n
≤ a − nµ

σ
√

n

)

= P
(

Sn − nµ

σ
√

n
≤ b∗

n

)
− P

(
Sn − nµ

σ
√

n
≤ a∗

n

)
,

where

a∗
n = a − nµ

σ
√

n
and b∗

n = b − nµ

σ
√

n
. (12.11)

By (12.6), and Remark 4(ii),

P
(

Sn − nµ

σ
√

n
≤ b∗

n

)
� �(b∗

n) and P
(

Sn − nµ

σ
√

n
≤ a∗

n

)
� �(a∗

n),

so that

P(a < Sn ≤ b) � �(b∗
n) − �(a∗

n). (12.12)

Formulas (12.12) and (12.11) are always to be used whenever a
discrete distribution is approximated by normal distribution (CLT)
without using continuity correction (see Subsection 12.2.3).
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The uniformity referred to in Remark 4(ii) is what actually validates
many of the applications of the CLT. This is the case, for instance, in
Remark 4(iv).

(v) So, the convergence in (12.5) is a special case of the convergence
depicted in Figure 12.1. In (12.5), the limiting d.f. is � and Fn is the
d.f. of Sn−nµ

σ
√

n or
√

n(X̄n−µ)
σ

. This convergence holds for all x ∈ � since
� is a continuous function in �.

Here are some illustrative examples of the CLT.

EXAMPLE 3 From a large collection of bolts which is known to contain 3% defectives,
1,000 are chosen at random. If X is the number of the defective bolts
among those chosen, what is the (approximate) probability that X does
not exceed 5% of 1,000?

DISCUSSION With the selection of the ith bolt, associate the r.v. Xi to
take the value 1, if the bolt is defective, and 0 otherwise. Then it may be
assumed that the r.v.’s Xi, i = 1, . . . , 1,000 are independently distributed
as B(1, 0.03). Furthermore, it is clear that X = ∑1,000

i=1 Xi. Since 5% of
1,000 is 50, the required probability is: P(X ≤ 50). Since EXi = 0.03,
Var(Xi) = 0.03 × 0.97 = 0.0291, the CLT gives, by means of (12.11) and
(12.12) (with X = S1,000):

P(X ≤ 50) = P(0 ≤ X ≤ 50) = P(−0.5 < X ≤ 50)

= P(X ≤ 50) − P(X ≤ −0.5) � �(b∗
n) − �(a∗

n),

where a∗
n = −0.5 − 1,000 × 0.03

√
1,000 × 0.03 × 0.97

= − 30.5√
29.1

� − 30.5
5.394

� −5.65,

b∗
n = 50 − 1,000 × 0.03

√
1,000 × 0.03 × 0.97

= 20√
29.1

� 20
5.394

� 3.71,

so that

P(X ≤ 50) � �(3.71) − �(−5.65) = �(3.71) = 0.999896.

EXAMPLE 4 A certain manufacturing process produces vacuum tubes whose lifetimes
in hours are independent r.v.’s with negative exponential distribution
with mean 1,500 hours. What is the probability that the total lifetime
of 50 tubes will exceed 80,000 hours?

DISCUSSION If Xi is the r.v. denoting the lifetime of the ith vacuum
tube, then Xi, i = 1, . . . , 50 are independently negative exponentially dis-
tributed with EXi = 1

λ
= 1,500 and Var(Xi) = 1

λ2 = 1,5002. Since
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nEXi = 50 × 1,500 = 75,000, σ
√

n = 1,500
√

50, if we set S50 = ∑50
i=1 Xi,

then the required probability is:

P(S50 > 80,000) = 1 − P(S50 ≤ 80,000)

= 1 − P(0 ≤ S50 ≤ 80,000) = 1 − P(−0.5 < S50 ≤ 80,000)

= 1 − P(S50 ≤ 80,000) + P(S50 ≤ −0.5)

� 1 − �

(
80,000 − 75,000

1,500
√

50

)
+ �(−7.07)

� 1 − �

(
80,000 − 75,000

1,500
√

50

)

= 1 − �

(√
50

15

)
� 1 − �(0.47)

= 1 − 0.680822 = 0.319178 � 0.319.

EXAMPLE 5 Someone is organizing a get-together party and sends out invitations to
60 people. The invitation states that the invitee may bring along another
person if he/she so wishes. For the purpose of efficient planning, the party
organizer would wish to know:

(i) What is the expected number of guests and the s.d. around this
number?

(ii) What is the probability that the number of guests is between 75 and
85, inclusively?

DISCUSSION

(i) With the ith invitation, associate an r.v. Xi, denoting the number of
guests to come in response to that invitation, defined as follows:

Xi =






0, 3/15
1, 4/15, i = 1, . . . , 60.
2, 8/15

Then the number of guests is S60 = ∑60
i=1 Xi. Here

µ = EXi = (1 × 4) + (2 × 8)
15

= 20
15

,

EX2
i = (1 × 4) + (4 × 8)

15
= 36

15
,

so that

σ 2 = Var(Xi) = 36
15

−
(20

15

)2 = 140
225

and σ = 2
√

35
15

.
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Therefore

ES60 = 60 × 20
15

= 80.

If we also assume that the r.v.’s X1, . . . , X60 are independent, then:

Var(S60) = 60 × 140
225

and
√

Var(S60) = 4
√

21
3

� 6.11.

So, the expected number of guests is 80, and the variation around it
is about 6 individuals.

(ii) By means of (12.11) and (12.12), we have:

P(75 ≤ S60 ≤ 85) = P(74 < S60 ≤ 85) � �(b∗
60) − �(a∗

60),

where

a∗
60 = 74 − 80

4
√

21
3

= −3
√

21
14

� −0.98,

b∗
60 = 85 − 80

4
√

21
3

= 5
√

21
28

� 0.82.

Therefore

P(75 ≤ S60 ≤ 85) � �(0.82) − �(−0.98) = �(0.82) + �(0.98) − 1
= 0.793892 + 0.836457 − 1 = 0.630349.

The proof of the CLT is based on the same ideas as those used in the
proof of the WLLN and goes as follows.

PROOF OF THEOREM 4 Set Zi = Xi−µ
σ

, so that Z1, . . . , Zn are i.i.d.
r.v.’s with EZi = 0 and Var(Zi) = 1. Also,

1√
n

n∑

i=1

Zi = 1
σ
√

n
(Sn − nµ) =

√
n(X̄n − µ)

σ
. (12.13)

With Fn defined by (12.8), we wish to show that (12.9) holds (except for
the uniformity assertion, with which we will not concern ourselves). By
Theorem 2, it suffices to show that, for all t,

M√
n(X̄n−µ)/σ (t) −→n→∞MZ(t) = et2/2. (12.14)
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By means of (12.13), and with M standing for the (common) m.g.f. of the
Zi’s, we have:

M√
n(X̄n−µ)/σ (t) = M 1√

n

∑n
i=1 Zi

(t) = M∑n
i=1 Zi

(
t√
n

)

=
n∏

i=1

MZi

(
t√
n

)
=

[
M

(
t√
n

)]n

.

(12.15)

Expand the function M(z) around z = 0 according to Taylor’s formula up
to terms of second order to get:

M(z) = M(0) + z
1!

d
dz

M(z)|z=0 + z2

2!
d2

dz2 M(z)|z=0 + R(z)

= 1 + zEZ1 + z2

2
EZ2

1 + R(z)

= 1 + z2

2
+ R(z), where

1
z2 R(z) → 0 as z → 0.

In this last formula, replace z by t/
√

n, for fixed t, in order to obtain:

M
(

t√
n

)
= 1 + t2

2n
+ R

(
t√
n

)
, nR

(
t√
n

)
→ 0 as n → ∞.

Therefore (12.15) becomes:

M√
n(X̄n−µ)/σ (t) =

[
1 + t2

2n
+ R

(
t√
n

)]n

=




1 +

t2

2

[
1 + 2n

t2 R
(

t√
n

)]

n






n

,

and this converges to et2/2, as n → ∞, by Remark 2. This completes the
proof of the theorem. �

12.2.2 Applications of the CLT

In all of the following applications, it will be assumed that n is sufficiently
large, so that the CLT will apply.

Let the independent Xi’s be distributed as B(1, p), set Sn = ∑n
i=1 Xi, and

let a, b be integers such that 0 ≤ a < b ≤ n. By an application of the CLT,
we wish to find an approximate value to the probability P(a < Sn ≤ b).

If p denotes the proportion of defective items in a large lot of certain
items, then Sn is the number of actually defective items among the n
sampled. Therefore approximation of the probability P(a < S ≤ b) is
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meaningful when the binomial tables are not usable (either because of p
or because of n or, perhaps, because of both).

Here EXi = p, Var(Xi) = pq (q = 1 − p), and therefore by (12.12) and
(12.11):

P(a < Sn ≤ b) � �(b∗
n) − �(a∗

n), where a∗
n = a − np√

npq
, b∗

n = b − np√
npq

.

(12.16)

REMARK: 5 If the required probability is of any one of the forms
P(a ≤ Sn ≤ b) or P(a ≤ Sn < b) or P(a < Sn < b), then formula (12.16)
applies again, provided the necessary adjustments are first made; namely,
P(a ≤ Sn ≤ b) = P(a−1 < Sn ≤ b), P(a ≤ Sn < b) = P(a−1 < Sn ≤ b−1),
P(a < Sn < b) = P(a < Sn ≤ b − 1). However, if the underlying distribu-
tion is continuous, then P(a < Sn ≤ b) = P(a ≤ Sn ≤ b) = P(a ≤ Sn <
b) = P(a < Sn < b), and no adjustments are required for the approxima-
tion in (12.16) to hold. As a rule of thumb, for the approximation to be
valid, both np and n(1 − p) must be ≥ 5.

EXAMPLE 6 (Numerical) For n = 100 and p = 1
2 or p = 5

16 , find the probability
P(45 ≤ Sn ≤ 55).

DISCUSSION

(i) For p = 1
2 , it is seen (from tables) that the exact value is equal to:

0.7288. For the normal approximation, we have: P(45 ≤ Sn ≤ 55) =
P(44 < Sn ≤ 55) and, by (12.16):

a∗ = 44 − 100 × 1
2√

100 × 1
2 × 1

2

= −6
5

= −1.2, b∗ = 55 − 100 × 1
2√

100 × 1
2 × 1

2

= 5
5

= 1.

Therefore �(b∗) − �(a∗) = �(1) − �(−1.2) = �(1) + �(1.2) − 1 =
0.841345 + 0.884930 − 1 = 0.7263. So:

Exact value: 0.7288, Approximate value: 0.7263,

and the exact probability is underestimated by 0.0025, or the approx-
imating probability is about 99.66% of the exact probability.

(ii) For p = 5
16 , the exact probability is almost 0; 0.0000. For the

approximate probability, we find a∗ = 2.75 and b∗ = 4.15, so that
�(b∗) − �(a∗) = 0.0030. Thus:

Exact value: 0.0000, Approximate value: 0.0030,

and the exact probability is overestimated by 0.0030.
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If the underlying distribution is P(λ), then ESn = Var(Sn) = nλ and
formulas (12.11) and (12.12) become:

P(a < Sn ≤ b) � �(b∗
n) − �(a∗

n), a∗
n = a − nλ√

nλ
, b∗

n = b − nλ√
nλ

.

The comments made in Remark 5 apply here also.

EXAMPLE 7 (Numerical) In the Poisson distribution P(λ), let n and λ be so that
nλ = 16 and find the probability P(12 ≤ Sn ≤ 21)(= P(11 < Sn ≤ 21)).

DISCUSSION The exact value (found from tables) is: 0.7838. For the
normal approximation, we have:

a∗ = 11 − 16√
16

= −5
4

= −1.25, b∗ = 21 − 16√
16

= 5
4

= 1.25,

so that �(b∗) − �(a∗) = �(1.25) − �(−1.25) = 2�(1.25) − 1 = 2 × 0.894350 −
1 = 0.7887. So:

Exact value: 0.7838, Approximate value: 0.7887,

and the exact probability is overestimated by 0.0049, or the approximating
probability is about 100.63% of the exact probability.

12.2.3 The Continuity Correction

When a discrete distribution is approximated by normal distribution, the
error committed is easy to see in a geometric picture. This is done, for
instance in Figure 12.3, where the p.d.f. of the B(10, 0.2) distribution is
approximated by the p.d.f. of the N(10 × 0.2, 10 × 0.2 × 0.8) = N(2, 1.6)
distribution (see relation (12.7)). From the same figure, it is also clear
how the approximation may be improved.

Figure 12.3

Exact and
approximate values
for the probability
P (a ≤ Sn ≤ b) =
P (a − 1 <

Sn ≤ b) =
P (1 < Sn ≤ 3).

0.3

0.2

0.1

0 1 2 3 4 5

N(2, 1.6)
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Now

P(1 < Sn ≤ 3) = P(2 ≤ Sn ≤ 3) = fn(2) + fn(3)

= shaded area,

while the approximation without correction is the area bounded by the
normal curve, the horizontal axis, and the abscissas 1 and 3. Clearly, the
correction, given by the area bounded by the normal curve, the horizontal
axis, and the abscissas 1.5 and 3.5, is closer to the exact area.

Thus, under the conditions of the CLT, and for discrete r.v.’s, P(a <
Sn ≤ b) � �(b∗) − �(a∗), where a∗ = a − nµ

σ
√

n and b∗ = b − nµ

σ
√

n with-
out continuity correction, and P(a < Sn ≤ b) � �(b′) − �(a′), where
a′ = a + 0.5 − nµ

σ
√

n and b′ = b + 0.5 − nµ

σ
√

n with continuity correction.
Summarizing the procedure of using the CLT (or normal approxima-

tion) in computing (approximate) probabilities, we have:
For integer-valued r.v.’s and probabilities of the form P(a ≤ Sn ≤ b), we

first rewrite the expression as follows:

P(a ≤ Sn ≤ b) = P(a − 1 < Sn ≤ b),

and then apply the preceding approximations in order to obtain:

P(a ≤ Sn ≤ b) � �(b∗) − �(a∗), where

a∗ = a−1−nµ

σ
√

n and b∗ = b−nµ

σ
√

n without continuity correction, and P(a ≤ Sn ≤
b) � �(b′) − �(a′), where a′ = a−0.5−nµ

σ
√

n and b′ = b+0.5−nµ

σ
√

n with continuity
correction.

We work in a similar way for the intervals [a, b) and (a, b).
The improvement brought about by the continuity correction is demon-

strated by the following numerical examples.

EXAMPLE 6 (continued)

DISCUSSION

(i) For p = 1
2 , we get:

a′ = 44 + 0.5 − 100 × 1
2√

100 × 1
2 × 1

2

= −5.5
5

= −1.1,

b′ = 55 + 0.5 − 100 × 1
2√

100 × 1
2 × 1

2

= 5.5
5

= 1.1,
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so that:

�(b′) − �(a′) = �(1.1) − �(−1.1) = 2�(1.1) − 1

= 2 × 0.864334 − 1 = 0.7286.

Thus, we have:

Exact value: 0.7288,

Approximate value with continuity correction: 0.7286,

and the approximation underestimates the probability by only 0.0002,
or the approximating probability (with continuity correction) is about
99.97% of the exact probability.

(ii) For p = 5
16 , we have a′ = 2.86, b′ = 5.23 and �(b′) − �(a′) = 0.0021.

Then:

Exact value: 0.0000,

Approximate value with continuity correction: 0.0021,

and the probability is overestimated by only 0.0021.

EXAMPLE 7 (continued)

DISCUSSION Here:

a′ = 11 + 0.5 − 16√
16

= −4.5
4

= −1.125, b′ = 21 + 0.5 − 16√
16

= 5.5
4

= 1.375,

so that:

�(b′) − �(a′) = �(1.375) − �(−1.125)

= �(1.375) + �(1.125) − 1 = 0.7851.

Thus:

Exact value: 0.7838,

Approximate value with continuity correction: 0.7851,

and the approximation overestimates the probability by only 0.0013, or the
approximating probability (with continuity correction) is about 100.17%
of the exact probability.
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Exercises

2.1 Let X1, . . . , Xn be i.i.d. r.v.’s, and for a positive integer k, suppose that
EXk

1 is finite. Form the kth sample mean X̄ (k)
n defined by:

X̄ (k)
n = 1

n

n∑

i=1

Xk
i .

Then show that:

X̄ (k)
n

P−→n→∞ EXk
1 .

2.2 Let X be an r.v. with p.d.f. fX (x) = cα x, x = 0, 1, . . . (0 < α < 1). Then
c = 1 − α by Exercise 3.8 in Chapter 3.

(i) Show that the m.g.f. of X is: MX (t) = 1−α
1−αet , t < − log α, where

as always, log is the natural logarithm.
(ii) Use the m.g.f. to show that EX = α

1−α
.

(iii) If X1, . . . , Xn is a random sample from fX , show that the WLLN
holds by showing that:

MX̄n
(t) −→n→∞ eαt/(1−α) = MEX (t), t < − log α.

Hint: Expand et around 0 up to second term, according to
Taylor’s formula, et = 1 + t + R(t), where 1

t R(t)−→
t→0

0, replace t

by t
n , and use the fact that (1 + xn

n )n → ex, if xn → x as n → ∞.
See also #6 in Table 6 in the Appendix.

2.3 Let the r.v. X be distributed as B(150, 0.6). Then:
(i) Write down the formula for the exact probability P(X ≤ 80).

(ii) Use the CLT in order to find an approximate value for the above
probability.

Hint: Write P(X ≤ 80) = P(−0.5 < X ≤ 80), and do not employ
the continuity correction.

2.4 A binomial experiment with probability p of a success is repeated
independently 1,000 times, and let X be the r.v. denoting the number
of successes. For p = 1

2 and p = 1
4 , find:

(i) The exact probability P(1,000p − 50 ≤ X ≤ 1,000p + 50). (Just
write down the correct formula.)

(ii) Use the CLT to find an approximate value for this probability.

Hint: For part (i), just write down the right formula. For part (ii),
first bring it under the form P(a < X ≤ b), and compute the
approximate probability, without continuity correction.
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2.5 Let X1, . . . , X100 be independent r.v.’s distributed as B(1, p). Then:
(i) Write out the expression for the exact probability

P(
∑100

i=1 Xi = 50).
(ii) Use of CLT in order to find an approximate value for this

probability.
(iii) What is the numerical value of the probability in part (ii) for

p = 0.5?

Hint: For part (ii), first observe that P(X = 50) = P(49 < X ≤
50), and then apply the CLT, both without and with continuity
correction.

2.6 Fifty balanced dice are tossed once, and let X be the r.v. denoting
the sum of the upturned spots. Use the CLT to find an approximate
value of the probability P(150 ≤ X ≤ 200).

Hint: With the ith die, associate the r.v. Xi, which takes on the
values 1 through 6, each with probability 1/6. These r.v.’s may be
assumed to be independent and X = ∑50

i=1 Xi. Next, write P(150 ≤
X ≤ 200) = P(149 < X ≤ 200) and use approximation without and
with continuity correction.

2.7 One thousand cards are drawn (with replacement) from a standard
deck of 52 playing cards, and let X be the r.v. denoting the total
number of aces drawn. Use the CLT to find an approximate value of
the probability P(65 ≤ X ≤ 90).

Hint: Write P(65 ≤ X ≤ 90) = P(64 < X ≤ 90) and use
approximation, both without and with continuity correction.

2.8 From a large collection of bolts that is known to contain 3% defec-
tives, 1,000 are chosen at random, and let X be the r.v. denoting the
number of defective bolts among those chosen. Use the CLT to find
an approximate value of the probability that X does not exceed 5%
of 1,000.

Hint: With the ith bolt drawn, associate the r.v. Xi, which takes
on the value 1 if the bolt drawn is defective, and 0 otherwise.
Since the collection of bolts is large, we may assume that after
each drawing, the proportion of the remaining defective bolts
remains (approximately) the same. This implies that the inde-
pendent r.v.’s X1, . . . , X1,000 are distributed as B(1, 0.03) and that
X = ∑1,000

i=1 Xi ∼ B(1,000, 0.3). Next, write P(X ≤ 50) = P(−0.5 <
X ≤ 50) and use approximation, both without and with continuity
correction.

2.9 A manufacturing process produces defective items at the constant
(but unknown to us) proportion p. Suppose that n items are sampled
independently, and let X be the r.v. denoting the number of defective
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items among the n, so that X ∼ B(n, p). Determine the smallest value
of the sample size n, so that

P
(∣∣∣∣

X
n

− p
∣∣∣∣ < 0.05

√
pq

)
≤ 0.95 (q = 1 − p):

(i) By utilizing the CLT (without continuity correction).
(ii) By using the Tchebichev inequality.

(iii) Compare the answers in parts (i) and (ii).

2.10 Suppose that 53% of the voters favor a certain legislative proposal.
How many voters must be sampled so that the observed relative
frequency of those favoring the proposal will not differ from the
assumed frequency by more than 2% with probability 0.99?

Hint: With the ith voter sampled, associate the r.v. Xi, which
takes on the value 1 if the voter favors the proposal, and 0 other-
wise. Then it may be assumed that the r.v.’s X1, . . . , Xn are
independent and their common distribution is B(1, 0.53). Further-
more, the number of voters favoring the proposal is X = ∑n

i=1 Xi.
Use the CLT (without continuity correction) in order to find the
required probability.

2.11 In playing a game, you win or lose $1 with probability 0.5, and you
play the game independently 1,000 times. Use the CLT to find an
approximate value of the probability that your fortune (i.e., the total
amount you won or lost) is at least $10.

Hint: With the ith game, associate the r.v. Xi, which takes on
the value 1 if $1 is won, and −1 if $1 is lost. Then the r.v.’s
X1, . . . , X1,000 are independent, and the fortune X is given by
∑1,000

i=1 Xi. Write P(X ≥ 10) = P(10 ≤ X ≤ 1, 000) and do not
use continuity correction.

2.12 It is known that the number of misprints in a page of a certain
publication is an r.v. X having Poisson distribution with parameter λ.
If X1, . . . , Xn are the misprints counted in n pages, use the CLT to
determine the (approximate) probability that the total number of
misprints is:
(i) Not more than nλ.

(ii) Not less than nλ.
(iii) Not less than nλ/2, but not more than 3nλ/4.
(iv) Give the numerical values in parts (i)–(iii) for nλ = 100 (which

may be interpreted, for example, as one misprint per 4 pages
(λ = 0.25) in a book of 400 pages).

Hint: In all cases, first bring it under the form P(a < Sn ≤ b),
and then use approximation, without continuity correction.
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2.13 Let the r.v. X be distributed as P(100). Then:
(i) Write down the formula for the exact probability P(X ≤ 116).

(ii) Use the CLT appropriately to find an approximate value for the
above probability. (Do not use the continuity correction.)

Hint: Select n large and λ small, so that nλ = 100 and look at X
as the sum

∑n
i=1 Xi of n independent r.v.’s X1, . . . , Xn distributed

as P(λ).

2.14 A certain manufacturing process produces vacuum tubes whose
lifetimes in hours are independently distributed r.v.’s with nega-
tive exponential distribution with mean 1,500 hours. Use the CLT
to find an approximate value for the probability that the total life of
50 tubes will exceed 80,000 hours.

2.15 The lifespan of an electronic component in a (complicated) system is
an r.v. X having negative exponential distribution with parameter λ.
(i) What is the probability that said lifespan will be at least t time

units?
(ii) If the independent r.v.’s X1, . . . , Xn represent the lifespans of n

spare items such as the one described above, then Y = ∑n
i=1 Xi

is the combined lifespan of these n items. Use the CLT to find
an approximate value of the probability P(t1 ≤ Y ≤ t2), where
0 < t1 < t2 are given time units.

(iii) Compute the answer (in terms of λ) in part (i), if t = −log(0.9)/λ.
(iv) Do the same for part (ii), if λ = 1/10, n = 36, t1 = 300, and

t2 = 420.

2.16 Let the independent r.v.’s X1, . . . , Xn be distributed as U(0, 1).
(i) Use the CLT to find an approximate value for the probability

P(a ≤ X̄ ≤ b) in terms of a and b (a < b).
(ii) What is the numerical value of this probability for n = 12,

a = 7/16, and b = 9/16?

2.17 If the independent r.v.’s X1, . . . , X12 are distributed as U(0, θ) (θ > 0),
use the CLT to show that the probability P( θ

4 < X̄ < 3θ
4 ) is approxi-

mately equal to 0.9973.

2.18 A manufacturing process produces 1/2-inch ball bearings, which are
assumed to be satisfactory if their diameter lies in the interval 0.5 ±
0.0006 and defective otherwise. Let Xi, i = 1, . . . , n be the diameters
of n ball bearings. If EXi = µ = 0.5 inch and σ (Xi) = σ = 0.0005
inch, use the CLT to determine the smallest value of n for which
P(|X̄ − µ| ≤ 0.0001) = 0.99, where X̄ is the sample mean of the Xi’s.

2.19 The i.i.d. r.v.’s X1, . . . , X100 have (finite) mean µ and variance σ 2 = 4.
Use the CLT (without continuity correction) to determine the value
of the constant c for which P(|X̄ −µ| ≤ c) = 0.90, where X̄ represents
the sample mean of the Xi’s.
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2.20 Let X1, . . . , Xn be i.i.d. r.v.’s with (finite) expectation µ and (finite
and positive) variance σ 2, and let X̄n be the sample mean of the Xi’s.
Determine the smallest value of the sample size n, in terms of k
and p, for which P(|X̄n − µ| < kσ ) ≥ p, where p ∈ (0, 1), k > 0. Do so
by using:

(i) the CLT (without continuity correction) and
(ii) the Tchebichev inequality, then

(iii) find the numerical values of n in parts (i) and (ii) for p =
0.90, 0.95, 0.99 and k = 0.50, 0.25, 0.10 for each value of p.

2.21 A certain manufacturing process produces light bulbs whose life-
span (in hours) is an r.v. X that has EX = 2,000 and σ (X ) = 200,
but is not necessarily normally distributed. Also, consider another
manufacturing process producing light bulbs whose mean lifespan
is claimed to be 10% higher than the mean lifespan of the bulbs
produced by the existing process; it is assumed that the s.d. remains
the same for the new process. How many bulbs manufactured by
the new process must be examined to establish the claim of their
superiority (should that be the case) with probability 0.95?

Hint: Let Y be the r.v. denoting the lifespan of a light bulb
manufactured by the new process. We do not necessarily assume
that Y is normally distributed. If the claim made is correct,
then EY = 2,000 + 10% × 2,000 = 2,200, whereas σ (Y ) = 200.
A random sample from Y produces the sample mean Ȳ n for which
EȲ n = 2,200 (under the claim) and Var(Ȳ n) = 2002/n, and we
must determine n, so that P(Ȳ n > 2,000) = 0.95. If the new
process were the same as the old one, then, for all sufficiently
large n, P(Ȳ n > 2,000) � 0.50. So, if P(Ȳ n > 2,000) = 0.95, the
claim made would draw support. Use the CLT without continuity
correction.

2.22 (i) Consider the i.i.d. r.v.’s X1, . . . , Xn and Y1, . . . , Yn with expecta-
tion µ and variance σ 2, both finite, and let X̄n and Ȳ n be the
respective sample means. Use the CLT (without continuity cor-
rection) to determine the sample size n, so that P(|X̄n − Ȳ n| ≤
0.25σ ) = 0.95.

(ii) Let the random samples X1, . . . , Xn and Y1, . . . , Yn be as in part (i),
but we do not assume that they are coming from the same distri-
bution. We do assume, however, that they have the same mean
and the same variance σ 2, both finite. Then determine n as
required above by using the Tchebichev inequality.

Hint: Set Zi = Xi − Yi and then work as in Exercise 2.20(ii) with
the i.i.d. r.v.’s Z1, . . . , Zn. Finally, revert to the Xi’s and the Yi’s.

2.23 Let Xi, i = 1, . . . , n, Yi, i = 1, . . . , n be independent r.v.’s such that the
Xi’s are identically distributed with EXi = µ1, Var(Xi) = σ 2, both
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finite, and the Yi’s are identically distributed with EYi = µ2 and
Var(Yi) = σ 2, both finite. If X̄n and Ȳ n are the respective sample
means of the Xi’s and the Yi’s, then:

(i) Show that E(X̄n − Ȳ n) = µ1 − µ2, Var(X̄n − Ȳ n) = 2σ 2

n .

(ii) Use the CLT to show that
√

n[(X̄n−Ȳ n)−(µ1−µ2)]
σ
√

2
is asymptotically

distributed as N(0, 1).

Hint: Set Zi = Xi − Yi and work with the i.i.d. r.v.’s Z1, . . . , Zn;
then revert to the Xi’s and the Yi’s.

2.24 Within a certain period of time, let n be the number of health claims
of an insurance company, and suppose that the sizes of the claims
are independent r.v.’s X1, . . . , Xn having negative exponential distri-
bution with parameter λ; that is, f (x) = λe−λx, x > 0. Let P be the
premium charged for each policy, and set Sn = X1 + . . . + Xn. If the
total amount of claims is not to exceed the total premium for the n
policies sold with probability p:
(i) Express the premium P in terms of n, λ, and p.

(ii) What is the value of P in part (i) for n = 10,000, λ = 1/1,000
and p = 0.99?

Hint: Employ the CLT.

2.25 The lifetime of a light bulb is an r.v. X having negative exponential
distribution with parameter λ = 0.2 hours (i.e., the p.d.f. of X is given
by f (x) = λe−λx, x > 0 (λ = 0.2)). If X1, . . . , Xn are the independent
lifetimes of n such light bulbs:
(i) Determine the smallest value of n (in terms of the constant c > 0

and p), so that P(|X̄n − EX1| ≤ c) ≥ p.
(ii) What is the numerical value of n for c = 1 and p = 0.950?

Hint: Use the CLT.

2.26 Certain measurements are rounded up to the nearest integer, and let
X be the r.v. denoting the difference between an actual measurement
and its rounded-up value. It is assumed that X ∼ U(−0.5, 0.5). For
a random sample of size n = 100, compute the probability that the
sample mean and the true mean do not differ in absolute value by
more than 0.1.

Hint: Use the CLT.

12.3 Further Limit Theorems

Convergence in probability enjoys some of the familiar properties of the
usual pointwise convergence. One such property is stated below in the
form of a theorem whose proof is omitted.
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THEOREM 5
(i) For n ≥ 1, let Xn and X be r.v.’s such that Xn

P−→n →∞ X , and let g be
a continuous real-valued function; that is, g : � → � continuous.
Then the r.v.’s g(Xn), n ≥ 1, also converge in probability to g(X );

that is, g(Xn)
P−→n →∞ g(X ).

More generally:
(ii) For n ≥ 1, let Xn, Yn, X , and Y be r.v.’s such that

Xn
P−→n →∞ X , Yn

P−→n →∞ Y , and let g be a continuous real-valued

function; that is, g : �2 → � continuous. Then the r.v.’s.
g(Xn, Yn), n ≥ 1, also converge in probability to g(X , Y ); that

is, g(Xn, Yn)
P−→n →∞ g(X , Y ).

(This part also generalizes in an obvious manner to k sequences
{X (i)

n }, n ≥ 1, i = 1, . . . , k.)

To this theorem, there is the following important corollary.

COROLLARY If Xn
P−→n →∞ X and Yn

P−→n →∞ Y , then:

(i) aXn + bYn
P−→n →∞ aX + bY , where a and b are constants; and, in

particular, Xn + Yn
P−→n →∞ X + Y .

(ii) XnYn
P−→n →∞ XY .

(iii) Xn
Yn

P−→n →∞
X
Y , provided P(Yn �= 0) = P(Y �= 0) = 1.

PROOF Although the proof of the theorem was omitted, the corol-
lary can be proved. Indeed, all one has to do is to take: g : �2 → �
as follows, respectively, for parts (i)–(iii), and observe that it is contin-
uous: g(x, y) = ax + by (and, in particular, g(x, y) = x + y); g(x, y) = xy ;
g(x, y) = x/y, y �= 0. �

Actually, a special case of the preceding corollary also holds for
convergence in distribution. Specifically, we have

THEOREM 6
(Slutsky) Let Xn

d−→n →∞ X and let Yn
d−→n →∞ c, a constant c rather

than a (proper) r.v. Y . Then:

(i) Xn + Yn
d−→n →∞ X + c;

(ii) XnYn
d−→n →∞ cX ;

(iii) Xn
Yn

d−→n →∞
X
c , provided P(Yn �= 0) = 1 and c �= 0.
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In terms of d.f.’s, these convergences are written as follows, always as
n →∞ and for all z ∈ � for which: z− c is a continuity point of FX for part
(i); z/c is a continuity point of FX for part (ii); cz is a continuity point of
FX for part (iii):

P(Xn + Yn ≤ z) → P(X + c ≤ z) = P(X ≤ z − c), or

FXn+Yn(z) → FX (z − c);

P(XnYn ≤ z) → P(cX ≤ z) =
{

P
(
X ≤ z

c

)
, c > 0

P
(
X ≥ z

c

)
, c < 0

, or

FXnYn(z) →
{

FX
( z

c

)
, c > 0

1 − P
(
X < z

c

) =1 − FX
( z

c

)
, c < 0;

P
(

Xn

Yn
≤ z

)
→ P

(
X
c

≤ z
)

=
{

P(X ≤ cz), c > 0

P(X ≥ cz), c < 0
, or

F Xn
Yn

(z) →
{

FX (cz), c > 0

1 − P(X < cz) =1 − FX (cz), c < 0.

The proof of this theorem, although conceptually not complicated, is

nevertheless long and is omitted. Recall, however, that Yn
d−→n →∞ c if and

only if Yn
P−→n →∞ c, and this is the way the convergence of Yn is often stated

in the theorem.
As a simple concrete application of Theorem 6, consider the following

example.

EXAMPLE 8 For n → ∞, suppose that Xn
d−→ X ∼ N(µ, σ 2), and let cn, c, dn, and

d be constants such that cn → c and dn → d. Then cnXn + dn
d−→ Y ∼

N(cµ + d, c2σ 2).

DISCUSSION As n → ∞, trivially, cn
d−→ c and dn

d−→ d, so that, by

Theorem 6(ii), cnXn
d−→ cX , and by Theorem 6(i), cnXn + dn

d−→ cX + d.
However, X ∼ N(µ, σ 2) implies that cX + d ∼ N(cµ + d, c2σ 2). Thus,

cnXn + dn
d−→ cX + d = Y ∼ N(cµ + d, c2σ 2).

The following result is an application of Theorems 5 and 6 and is of
much use in statistical inference. For its formulation, let X1, . . . , Xn be i.i.d.
r.v.’s with finite mean µ and finite and positive variance σ 2, and let X̄n and
S 2

n be the sample mean and the “adjusted” (in the sense that µ is replaced
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by X̄n) sample variance (which we have denoted by S̄ 2
n in relation (10.14)

of Chapter 10); that is, X̄n = 1
n

∑n
i=1 Xi, S 2

n = 1
n

∑n
i=1(Xi − X̄n)2. Then:

THEOREM 7
Under the assumptions just made and the notation introduced, it

holds: (i) S2
n

P−→n →∞ σ 2; (ii)
√

n(X̄n−µ)
Sn

d−→n →∞ Z ∼ N(0, 1).

PROOF

(i) Recall that
∑n

i=1(Xi − X̄n)2 = ∑n
i=1 X 2

i − nX̄ 2
n, so that S 2

n =
1
n

∑n
i=1 X 2

i − X̄ 2
n. Since EX 2

i = Var(Xi) + (EXi)2 = σ 2 + µ2, the WLLN

applies to the i.i.d. r.v.’s X 2
1, . . . , X 2

n and gives: 1
n

∑n
i=1 X 2

i
P−→n →∞

σ 2 + µ2. Also, X̄n
P−→n →∞ µ, by the WLLN again, and then X̄ 2

n
P−→n →∞ µ2

by Theorem 5(i). Then, by Theorem 5(ii),

1
n

n∑

i=1

X 2
i − X̄ 2

n
P−→n →∞ (σ 2 + µ2) − µ2 = σ 2,

which is what part (i) asserts.

(ii) Part (i) and Theorem 5(i) imply that Sn
P−→n →∞ σ , or Sn

σ

P−→n →∞ 1. By
Theorem 4,

√
n(X̄n−µ)

σ

d−→n →∞ Z ∼ N(0, 1). Then Theorem 6(iii) applies
and gives:

√
n(X̄n − µ)/σ

Sn/σ
=

√
n(X̄n − µ)

Sn

d−→n →∞ Z ∼ N(0, 1). �

REMARK: 6 Part (ii) of the theorem states, in effect, that for suffi-
ciently large n, σ may be replaced in the CLT by the adjusted sample
standard deviation Sn and the resulting expression still has a distribution
that is close to the N(0, 1) distribution.

The WLLN states that X̄n
d−→n →∞ µ, which, for a real-valued continuous

function g, implies that:

g(X̄n)
P−→n →∞ g(µ).

On the other hand, the CLT states that:

√
n(X̄n − µ)

σ

d−→n →∞ N(0, 1) or
√

n(X̄n − µ)
d−→n →∞ N(0, σ 2). (12.17)
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Then the question is what happens to the distribution of g(X̄n). In other
words, is there a result analogous to (12.17) when the distribution of g(X̄n)
is involved? The question is answered by the following result.

THEOREM 8
Let X1, . . . , Xn be i.i.d. r.v.’s with finite mean µ and variance σ 2 ∈
(0, ∞), and let g : � → � be differentiable with derivative g′
continuous at µ. Then:

√
n[g(X̄n) − g(µ)] d−→n →∞ N(0, [σg′(µ)]2). (12.18)

The proof of this result involves the employment of some of the theo-
rems established in this chapter, including the CLT, along with a Taylor
expansion. The proof itself will not be presented, and this section will
conclude with an application to Theorem 8. The method of establishing
asymptotic normality for g(X̄n) is often referred to as the delta method,
and it also applies in cases more general than the one described here.

APPLICATION Let the independent r.v.’s X1, . . . , Xn be distributed as
B(1, p). Then:

√
n[X̄n(1 − X̄n) − pq] d−→n →∞ N(0, pq(1 − 2p)2) (q = 1 − p). (12.19)

PROOF Here µ = p, σ 2 = pq, and g(x) = x(1 − x), so that g′(x) = 1 − 2x.
Since g(X̄n) = X̄n(1 − X̄n), g(µ) = p(1 − p) = pq, and g′(µ) = 1 − 2p, the
convergence in (12.18) becomes as stated in (12.19). �

Exercises

3.1 Let X1, . . . , Xn be i.i.d. r.v.’s with finite EXi = µ, and Var(Xi) = σ 2 ∈
(0, ∞) so that the CLT holds; that is,

√
n(X̄n − µ)

σ

d−→n →∞ Z ∼ N(0, 1), where X̄n = 1
n

n∑

i=1

Xi.

Then use Theorem 6 in order to show that the WLLN also holds.



308 Chapter 12 Two Modes of Convergence

3.2 Let X1, . . . , Xn be i.i.d. r.v.’s with finite EXi = µ, and finite Var(Xi) =
σ 2. Then use the identity (see also Exercise 3.1(i) in Chapter 10)

n∑

i=1

(Xi − X̄n)2 =
n∑

i=1

X2
i − nX̄2

n ,

the WLLN, and Theorem 5 in order to show that:

1
n − 1

n∑

i=1

(Xi − X̄n)2 P−→n →∞ σ 2.



13
An Overview of Statistical
Inference

A review of the previous chapters reveals that the main objectives through-
out have been those of calculating probabilities or certain summary
characteristics of a distribution, such as mean, variance, median, and
mode. However, for these calculations to result in numerical answers,
it is a prerequisite that the underlying distribution be completely known.
Typically, this is rarely, if ever, the case. The reason for this is that
the parameters that appear, for example, in the functional form of the
p.d.f. of a distribution are simply unknown to us. The only thing known
about them is that they lie in specified sets of possible values for these
parameters, the parameter space.

It is at this point where statistical inference enters the picture. Roughly
speaking, the aim of statistical inference is to make certain determinations
with regard to the unknown constants (parameters) figuring in the under-
lying distribution. This is to be done on the basis of data, represented by
the observed values of a random sample drawn from said distribution.
Actually, this is the so-called parametric statistical inference, as opposed
to the nonparametric statistical inference. The former is applicable to dis-
tributions, which are completely determined by the knowledge of a finite
number of parameters. The latter applies to distributions not determined
by any finite number of parameters.

The remaining part of this chapter is concerned with a brief overview
of statistical inference, and mostly with parametric statistical inference.

309



310 Chapter 13 An Overview of Statistical Inference

Within the framework of parametric statistical inference, there are three
main objectives, depending on what kind of determinations we wish to
make with regard to the parameters. If the objective is to arrive at a
number, by means of the available data, as the value of an unknown
parameter, then we are talking about point estimation. If, on the other
hand, we are satisfied with the statement that an unknown parameter
lies within a known random interval (i.e., an interval with r.v.’s as its end-
points) with high prescribed probability, then we are dealing with interval
estimation or confidence intervals. Finally, if the objective is to decide that
an unknown parameter lies in a specified subset of the parameter space,
then we are in the area of testing hypotheses.

These three subjects—point estimation, interval estimation, and test-
ing hypotheses—are briefly discussed in the following three sections.
In the subsequent three sections, it is pointed out what the statistical
inference issues are in specific models—a regression model and two anal-
ysis of variance models. The final section touches upon some aspects of
nonparametric statistical inference.

13.1 The Basics of Point Estimation

The problem here, briefly stated, is as follows. Let X be an r.v. with a p.d.f.
f of known functional form, which, however, involves a parameter. This is
the case, for instance, in binomial distribution B(1, p), Poisson distribution
P(λ), negative exponential f (x) = λe−λx, x > 0 distribution, uniform distri-
bution U(0, α), and normal distribution N(µ, σ 2) with one of the quantities
µ and σ 2 known. The parameter is usually denoted by θ , and the set of its
possible values is denoted by � and is called the parameter space. In order
to emphasize the fact that the p.d.f. depends on θ , we write f (·; θ). Thus,
in the distributions mentioned above, we have for the respective p.d.f.’s
and the parameter spaces:

f (x ; θ) = θx(1 − θ)1−x, x = 0, 1, θ ∈ � = (0, 1).

The situations described in Examples 5, 6, 8, and 9 of Chapter 1 may be
described by a binomial distribution.

f (x ; θ) = e−θ θx

x! , x = 0, 1, . . . , θ ∈ � = (0, ∞).

Poisson distribution can be used appropriately in the case described in
Example 11 of Chapter 1.

f (x ; θ) = θe−θx, x > 0, θ ∈ � = (0, ∞).
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For an application of negative exponential distribution, see Example 15
in Chapter 1.

f (x ; θ) =
{

1
θ
, 0 < x < θ

0, otherwise,
θ ∈ � = (0, ∞).

f (x ; θ) = 1√
2πσ

e− (x−θ)2

2σ2 , x ∈ �, θ ∈ � = �, σ 2 known,

and

f (x ; θ) = 1√
2πθ

e− (x−µ)2
2θ , x ∈ �, θ ∈ � = (0, ∞), µ known.

Normal distributions are suitable for modeling the situations described in
Example 14 of Chapter 1.

Our objective is to draw a random sample of size n, X1, . . . , Xn, from
the underlying distribution, and on the basis of it to construct a point
estimate (or estimator) for θ , that is, a statistic θ̂ = θ̂(X1, . . . , Xn), which
is used for estimating θ , where a statistic is a known function of the ran-
dom sample X1, . . . , Xn. If x1, . . . , xn are the actually observed values of
the r.v.’s X1, . . . , Xn, respectively, then the observed value of our estimate
has the numerical value θ̂(x1, . . . , xn). The observed values x1, . . . , xn are
also referred to as data. Then, on the basis of the available data, it is
declared that the value of θ is θ̂(x1, . . . , xn) from among all possible points
in �. A point estimate is often referred to just as an estimate, and the
notation θ̂ is used indiscriminately, both for the estimate θ̂(X1, . . . , Xn)
(which is an r.v.) and for its observed value θ̂(x1, . . . , xn) (which is just a
number).

The only obvious restriction on θ̂(x1, . . . , xn) is that it lies in � for all
possible values of X1, . . . , Xn. Apart from it, there are any number of
estimates one may construct—thus, the need to assume certain princi-
ples and/or invent methods for constructing θ̂ . Perhaps the most widely
accepted principle is the so-called maximum likelihood (ML). This prin-
ciple dictates that we form the joint p.d.f. of the xi’s, for the observed
values of the Xi’s, look at this joint p.d.f. as a function of θ (the likeli-
hood function), and maximize the likelihood function with respect to θ .
The maximizing point (assuming it exists and is unique) is a function of
x1, . . . , xn, and is what we call the Maximum Likelihood Estimate (MLE) of
θ . The notation used for the likelihood function is L(θ | x1, . . . , xn). Then,
we have that:

L(θ | x1, . . . , xn) = f (x1; θ) · · · f (xn; θ), θ ∈ �.

Another principle often used in constructing an estimate for θ is
that of unbiasedness. In this context, an estimate is usually denoted by
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U = U(X1, . . . , Xn). Then the principle of unbiasedness dictates that
U should be constructed so as to be unbiased; that is, its expectation
(mean value) should always be θ , no matter what the value of θ in �.
More formally, EθU = θ for all θ ∈ �. (In the expectation sign E, the
parameter θ was inserted to indicate that this expectation does depend
on θ , since it is calculated by using the p.d.f. f (·; θ).) Now, it is intu-
itively clear that in comparing two unbiased estimates, one would pick
the one with the smaller variance, since it would be more closely con-
centrated around its mean θ . Envision the case that within the class of
all unbiased estimates, there exists one that has the smallest variance
(and that is true for all θ ∈ �). Such an estimate is called a Uniformly
Minimum Variance Unbiased (UMVU) estimate and is, clearly, a desirable
estimate.

The principle (or rather the method) based on sample moments is
another way of constructing estimates. The method of moments, in the
simplest case, dictates to form the sample mean X and equate it with the
(theoretical) mean EθX . Then solve for θ (assuming it can be done, and,
indeed, uniquely) in order to arrive at a moment estimate of θ .

A much more sophisticated method of constructing estimates of θ is the
so-called decision-theoretic method. This method calls for the introduction
of a host of concepts, terminology, and notation, and it will not be pursued
any further here.

Finally, another relatively popular method (in particular, in the con-
text of certain models) is Least Squares (LS), based on the Least Squares
Principle. The LS method leads to the construction of an estimate for
θ , the Least Squares Estimate (LSE) of θ , through a minimization (with
respect to θ) of the sum of certain squares. This sum of squares represents
squared deviations between what we actually observe after experimenta-
tion is completed and what we would expect to have on the basis of an
assumed model.

In all of the preceding discussion, it was assumed that the underlying
p.d.f. depended on a single parameter, which was denoted by θ . It may very
well be the case that there are two or more parameters involved. This may
happen, for instance, in uniform distribution U(α, β), −∞ < α < β < ∞,
where both α and β are unknown; normal distribution, N(µ, σ 2), where
both µ and σ 2 are unknown; and it also happens in multinomial distribu-
tion, where the number of parameters is k, p1, . . . , pk (or more precisely,
k − 1, since the kth parameter, e.g., pk = 1 − p1 − · · ·− pk−1). For instance,
Example 16 in Chapter 1 and Examples 1 and 3 in Chapter 9 refer
to situations where a multinomial distribution is appropriate. In such
multiparameter cases, one simply applies to each parameter separately
what was said above for a single parameter. The alternative option,
to use the vector notation for the parameters involved, does simplify
things in a certain way, but also introduces some complications in other
ways.
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13.2 The Basics of Interval Estimation

Suppose we are interested in constructing a point estimate of the mean µ

in normal distribution N(µ, σ 2) with known variance; this is to be done
on the basis of a random sample of size n, X1, . . . , Xn, drawn from the
underlying distribution. This amounts to constructing a suitable statistic
of the Xi’s, call it V = V (X1, . . . , Xn), which for the observed values xi of Xi,
i = 1, . . . , n is a numerical entity, and declare it to be the (unknown) value
of µ. This looks somewhat presumptuous, since from the set of possible
values for µ, −∞ < µ < ∞, just one is selected as its value. Thinking
along these lines, it might be more reasonable to aim instead at a random
interval that will contain the (unknown) value of µ with high (prescribed)
probability. This is exactly what a confidence interval does.

To be more precise, casting the problem in a general setting, let
X1, . . . , Xn be a random sample from the p.d.f. f (·; θ), θ ∈ � ⊆ �, and
let L = L(X1, . . . , Xn) and U = U(X1, . . . , Xn) be two statistics of the Xi’s
such that L < U. Then the interval with endpoints L and U, [L, U], is
called a random interval. Let α be a small number in (0, 1), such as 0.005,
0.01, 0.05, and suppose that the random interval [L, U] contains θ with
probability equal to 1 − α (such as 0.995, 0.99, 0.95) no matter what the
true value of θ in � is. In other words, suppose that:

Pθ (L ≤ θ ≤ U) = 1 − α for all θ ∈ �. (13.1)

If relation (13.1) holds, then we say that the random interval [L, U] is a
confidence interval for θ with confidence coefficient 1 − α.

The significance of a confidence interval is based on the relative fre-
quency interpretation of the concept of probability, and it goes like this:
Suppose n independent r.v.’s are drawn from the p.d.f. f (·; θ), and let
x1, . . . , xn be their observed values. Also, let [L1, U1] be the interval result-
ing from the observed values of L = L(X1, . . . , Xn) and U = U(X1, . . . , Xn);
that is, L1 = L(x1, . . . , xn) and U1 = U(x1, . . . , xn). Proceed to draw inde-
pendently a second set of n r.v.’s as above, and let [L2, U2] be the resulting
interval. Repeat this process independently a large number of times, N,
say, with the corresponding interval being [LN , UN]. Then the interpre-
tation of (13.1) is that on the average, about 100(1 − α)% of the above
N intervals will actually contain the true value of θ . For example, for
α = 0.05 and N = 1,000, the proportion of such intervals will be 95%;
that is, one would expect 950 out of the 1,000 intervals constructed as
above to contain the true value of θ . Empirical evidence shows that such
an expectation is valid.

We may also define an upper confidence limit for θ , U = U(X1, . . . , Xn),
and a lower confidence limit for θ , L = L(X1, . . . , Xn), both with confidence
coefficient 1 − α, if, respectively, the intervals (−∞, U] and [L, ∞) are
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confidence intervals for θ with confidence coefficient 1 − α. That is to say:

Pθ (−∞ < θ ≤ U) = 1 − α, Pθ (L ≤ θ < ∞) = 1 − α for all θ ∈ �.
(13.2)

Confidence intervals and upper and/or lower confidence limits can be
sought, for instance, in Examples 5, 6, 8, and 9 (binomial distribution),
11 (Poisson distribution), and 14 (normal distribution) in Chapter 1.

There are some variations of (13.1) and (13.2). For example, when
the underlying p.d.f. is discrete, then equalities in (13.1) and (13.2)
rarely obtain for given α and have to be replaced by inequalities ≥.
Also, except for special cases, equalities in (13.1) and (13.2) are valid
only approximately for large values of the sample size n (even in cases
where the underlying r.v.’s are continuous). In such cases, we say that
the respective confidence intervals (confidence limits) have confidence
coefficient approximately 1 − α.

Finally, the parameters of interest may be two (or more) rather than
one, as we have assumed so far. In such cases, the concept of a confidence
interval is replaced by that of a confidence region (in the multidimensional
parameter space �).

13.3 The Basics of Testing Hypotheses

Often, we are not interested in a point estimate of a parameter θ or even
a confidence interval for it, but rather whether said parameter lies or does
not lie in a specified subset ω of the parameter space �. To clarify this
point, we refer to some of the examples described in Chapter 1. Thus, in
Example 5, all we might be interested in is whether Jones has ESP at
all and not to what degree he does. In statistical terms, this amounts to
taking n independent observations from a B(1, θ) distribution and, on the
basis of these observations, deciding whether θ ∈ ω = (0, 0.5] (as opposed
to θ ∈ ωc = (0.5, 1)); here θ is the probability that Jones correctly identifies
the picture. The situation in Example 6 is similar, and the objective might
be to decide whether or not θ ∈ ω = (θ0, 1); here θ is the true proportion
of unemployed workers and θ0 is a certain desirable or guessed value of θ .
Examples 8 and 9 in Chapter 1 fall into the same category.

In Example 11, the stipulated model is a Poisson distribution P(θ)
and, on the basis of n independent observations, we might wish to decide
whether or not θ ∈ (θ0, ∞), where θ0 is a known value of θ .

In Example 14, the stipulated underlying models may be normal distri-
butions N(µ1, σ 2) and N(µ2, σ 2) for the survival times X and Y , respec-
tively, and then the question of interest may be to decide whether or not
µ2 ≤ µ1; σ 2 may be assumed to be either known or unknown. Of course,
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we are going to arrive at the desirable decision on the basis of two
independent random samples drawn from the underlying distributions.

In Example 16 in Chapter 1, a testing hypothesis problem may be that
of testing that the underlying parameters have specified values. Similarly,
for Example 3 in Chapter 9.

On the basis of the preceding discussion and examples, we may now
proceed with the formulation of the general problem. To this effect,
let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f (·; θ), θ ∈ � ⊆ �r, r ≥ 1, and
by means of this random sample, suppose we are interested in check-
ing whether θ ∈ ω, a proper subset of �, or θ ∈ ωc, the complement of ω

with respect to �. The statements that θ ∈ ω and θ ∈ ωc are called (statis-
tical) hypotheses (about θ), and are denoted thus: H0 : θ ∈ ω, HA : θ ∈ ωc.
The hypothesis H0 is called a null hypothesis and the hypothesis HA is
called alternative (to H0) hypothesis. The hypotheses H0 and HA are called
simple if they contain a single point, and composite otherwise. The proce-
dure of checking whether H0 is true or not, on the basis of the observed
values x1, . . . , xn of X1, . . . , Xn, is called testing the hypothesis H0 against
the alternative HA.

In the special case that � ⊆ �, some null hypotheses and the respective
alternatives are as follows:

H0 : θ = θ0 against HA : θ > θ0; H0 : θ = θ0 against HA : θ < θ0;

H0 : θ ≤ θ0 against HA : θ > θ0; H0 : θ ≥ θ0 against HA : θ < θ0;

H0 : θ = θ0 against HA : θ �= θ0.

The testing is carried out by means of a function ϕ : �n → [0, 1],
which is called a test function or just a test. The number ϕ(x1, . . . , xn)
represents the probability of rejecting H0, given that Xi = xi, i = 1, . . . , n.
In its simplest form, ϕ is the indicator of a set B in �n, which is called
the critical or rejection region; its complement Bc is called the acceptance
region. Thus, ϕ(x1, . . . , xn) = 1 if x1, . . . , xn are in B, and ϕ(x1, . . . , xn) = 0,
otherwise. Actually, such a test is called a nonrandomized test, as opposed
to tests that also take values strictly between 0 and 1, called randomized
tests. In the case of continuous distributions, nonrandomized tests suffice,
but in discrete distributions, a test will typically be required to take on
one or two values strictly between 0 and 1.

By using a test ϕ, suppose that our data x1, . . . , xn lead us to the rejec-
tion of H0. This will happen, for instance, if the test ϕ is nonrandomized
with rejection region B, and the xi’s lie in B. By rejecting the hypothesis
H0, we may be doing the correct thing, because H0 is false (that is, θ /∈ ω).
On the other hand, we may be taking the wrong action, because it may
happen that H0 is indeed true (i.e., θ ∈ ω), only the test and the data do
not reveal it. Clearly, in so doing, we commit an error, which is referred
to as type I error. Of course, we would like to find ways of minimizing the
frequency of committing this error. To put it more mathematically, this
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means searching for a rejection region B, which will minimize the above
frequency. In our framework, frequencies are measured by probabilities,
and this leads to a determination of B so that

P(of type I error) = P(of rejecting H0 whereas H0 is true)

= Pθ (X1, . . . , Xn lie in B whereas θ ∈ ω)

= Pθ (X1, . . . , Xn lie in B| θ ∈ ω)

def= α(θ) is minimum. (13.3)

Clearly, the probabilities α(θ) in (13.3) must be minimized for
each θ ∈ ω, since we don’t know which value in ω is the true θ. This

will happen if we minimize the maxθ∈ω α(θ) def= α. This maximum proba-
bility of type I error is called the level of significance of the test employed.
Thus, we are led to selecting the rejection region B so that its level of
significance α will be minimum. Since α ≥ 0, its minimum could be 0, and
this would happen if (essentially) B = ∅. But then (essentially) the xi’s
would always be in Bc = �n, and this would happen with probability

Pθ(X1, . . . , Xn in �n) = 1 for all θ. (13.4)

This, however, creates a problem for the following reason. If the rejec-
tion region B is ∅, then the acceptance region is �n; that is, we always
accept H0. As long as H0 is true (i.e., θ ∈ ω), this is exactly what we wish
to do, but what about the case that H0 is false (i.e., θ ∈ ωc)? When we
accept a false hypothesis H0, we commit an error, which is called the type
II error. As in (13.3), this error is also measured in terms of probabilities;
namely,

P(of type II error) = P(of accepting H0 whereas H0 is false)

= Pθ (X1, . . . , Xn lie in Bc whereas θ ∈ ωc)

= Pθ (X1, . . . , Xn lie in Bc| θ ∈ ωc)

def= β(θ). (13.5)

According to (13.5), these probabilities would be 1 for all θ ∈ ωc

(actually, for all θ ∈ �), if B = ∅. Clearly, this is highly undesirable.
The preceding discussion then leads to the conclusion that the rejection
region B must be different from ∅ and then α will be > 0. The objective
then becomes that of choosing B so that α will have a preassigned accept-
able value (such as 0.005, 0.01, 0.05) and, subject to this restriction, the
probabilities of type II error are minimized. That is,

β(θ) = Pθ(X1, . . . , Xn lie in Bc) is minimum for each θ ∈ ωc. (13.6)
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Since Pθ(X1, . . . , Xn lie in Bc) = 1 − Pθ(X1, . . . , Xn lie in B), the minimiza-
tion in (13.6) is equivalent to the maximization of

Pθ(X1, . . . , Xn lie in B) = 1 − Pθ(X1, . . . , Xn lie in Bc) for all θ ∈ ωc.

The function π(θ), θ ∈ ωc, defined by:

π(θ) = Pθ(X1, . . . , Xn lie in B), θ ∈ ωc, (13.7)

is called the power of the test employed. So, power of a test = 1− proba-
bility of a type II error, and we may summarize our objective as follows:
Choose a test with a preassigned level of significance α, which has
maximum power among all tests with level of significance ≤ α. In other
words, if ϕ is the desirable test, then it should satisfy the requirements.

The level of significance of ϕ is α, and its power, to be denoted by πϕ(θ),
θ ∈ ωc, satisfies the inequality πϕ(θ) ≥ πϕ∗(θ) for all θ ∈ ωc and any test ϕ∗
with level of significance ≤ α.

Such a test ϕ, should it exist, is called Uniformly Most Powerful (UMP)
for obvious reasons. (The term “most powerful” is explained by the
inequality πϕ(θ) ≥ πϕ∗(θ), and the term “uniformly” is due to the fact
that this inequality must hold for all θ ∈ ωc.) If ωc consists of a single
point, then the concept of uniformity is void, and we talk simply of a
Most Powerful (MP) test.

The concepts introduced so far hold for a parameter of any (finite)
dimensionality. However, UMP tests can be constructed only when θ is
a real-valued parameter, and then only for certain forms of H0 and HA
and specific p.d.f.’s f (·; θ). If the parameter is multidimensional, desir-
able tests can still be constructed; they are not going to be, in general,
UMP tests, but they are derived, nevertheless, on the basis of princi-
ples that are intuitively satisfactory. Preeminent among such tests are
the so-called Likelihood Ratio (LR) tests. Another class of tests are the
so-called goodness-of-fit tests, and still others are constructed on the basis
of decision-theoretic concepts.

On the basis of the random sample X1, . . . , Xn with p.d.f. f (·;θ),
θ ∈ � ⊆ �r, r ≥ 1, suppose we wish to test the hypothesis H0 : θ ∈ ω

(a proper) subset of �. It is understood that the alternative is HA : θ ∈ ωc,
but in the present framework it is not explicitly stated. Let x1, . . . , xn
be the observed values of X1, . . . , Xn and form the likelihood function
L(θ) = L(θ | x1, . . . , xn) = ∏n

i=1 f (xi;θ). Maximize L(θ) and denote the result-
ing maximum by L(�̂). This maximization happens when θ is equal to the
MLE θ̂ = θ̂(x1, . . . , xn), so that L(�̂) = L(θ̂). Next, maximize the likelihood
L(θ) under the restriction that θ ∈ ω, and denote the resulting maximum
by L(ω̂). Denote by θ̂ω the MLE of θ subject to the restriction that θ ∈ ω.
Then L(ω̂) = L(θ̂ω). Assume now that L(θ) is continuous (in θ), and sup-
pose that the true value of θ, call it θ0, is in ω. It is a property of an MLE
that it gets closer and closer to the true parameter as the sample size n
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increases. Under the assumption that θ0 ∈ ω, it follows that both θ̂ and θ̂ω

will be close to θ0 and therefore close to each other. Then, by the assumed
continuity of L(θ), the quantities L(θ̂) and L(θ̂ω) are close together, so that
the ratio

λ(x1, . . . , xn) = λ = L(θ̂ω)/L(θ̂) (13.8)

(which is always ≤1) is close to 1. On the other hand, if θ0 ∈ ωc,
then θ̂ and θ̂ω are not close together, and therefore L(θ̂) and L(θ̂ω) need
not be close either. Thus, the ratio L(θ̂ω)/L(θ̂) need not be close to 1.
These considerations lead to the following test:

Reject H0 when λ < λ0, where λ0 is a constant to be determined.
(13.9)

By the monotonicity of the function y = log x, the inequality λ < λ0 is
equivalent to −2 log λ(x1, . . . , xn) > C( = −2 log λ0). It is seen that an
approximate determination of C is made by the fact that under certain
conditions, the distribution of −2 log λ(X1, . . . , Xn) is χ2

f , where f =
dimension of � − dimension of ω. Namely:

Reject H0 when −2 log λ > C, where C � χ2
f ; α. (13.10)

In closing this section, it is to be mentioned that the concept of P-value
is another way of looking at a test in an effort to assess how strong (or
weak) the rejection of a hypothesis is. The P-value (probability value) of
a test is defined to be the smallest probability at which the hypothesis
tested would be rejected for the data at hand. Roughly put, the P-value
of a test is the probability, calculated under the null hypothesis, when the
observed value of the test statistic is used as if it were the cut-off point of
the test. The P-value of a test often accompanies a null hypothesis that
is rejected, as an indication of the strength or weakness of rejection. The
smaller the P-value, the stronger the rejection of the null hypothesis and
vice versa.

13.4 The Basics of Regression Analysis

In the last three sections, we discussed the general principles of point
estimation, interval estimation, and testing hypotheses in a general setup.
These principles apply, in particular, in specific models. Two such models
are regression models and analysis of variance models.

A regression model in its simplest form is as follows: At fixed points
x1, . . . , xn, respective measurements y1, . . . , yn are taken, which may be
subject to an assortment of random errors e1, . . . , en. Thus, the yi’s are
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values of r.v.’s Yi’s, which may often be assumed to have the structure:
Yi = β1 + β2xi + ei, i = 1, . . . , n; here β1 and β2 are parameters (unknown
constants) of the model. For the random errors ei, it is not unreasonable
to assume that Eei = 0; we also assume that they have the same vari-
ance, Var (ei) = σ 2 ∈ (0, ∞). Furthermore, it is reasonable to assume that
the ei’s are i.i.d. r.v.’s, which implies independence of the r.v.’s Y1, . . . , Yn.
It should be noted, however, that the Yi’s are not identically distributed,
since, for instance, they have different expectations: EYi = β1 + β2xi,
i = 1, . . . , n . Putting these assumptions together, we arrive at the following
simple linear regression model:

Yi = β1 + β2xi + ei, the ei’s are i.i.d. r.v.’s with Eei = 0 and

Var (ei) = σ 2, i = 1, . . . , n. (13.11)

The quantities β1, β2, and σ 2 are the parameters of the model; the Yi’s
are independent but not identically distributed; also, EYi = β1 + β2xi and
Var (Yi) = σ 2, i = 1, . . . , n.

The term “regression” derives from the way the Yi’s are produced from
the xi’s, and the term “linear” indicates that the parameters β1 and β2
enter into the model raised to the first power.

The main problems in connection with model (13.11) are to estimate
the parameters β1, β2, and σ 2; construct confidence intervals for β1 and
β2; test hypotheses about β1 and β2; and predict the expected value EYi 0
(or the value itself Yi 0) corresponding to an xi 0 , distinct, in general, from
x1, . . . , xn. Estimates of β1 and β2, the LSE’s, can be constructed without
any further assumptions; the same for an estimate of σ 2. For the remain-
ing parts, however, there is a need to stipulate a distribution for the ei’s.
Since the ei’s are random errors, it is reasonable to assume that they are
normally distributed; this then implies normal distribution for the Yi’s.
Thus, model (13.11) now becomes:

Yi = β1 + β2xi + ei, the ei’s are independently distributed as

N(0, σ 2), i = 1, . . . , n. (13.12)

Under model (13.12), the MLE’s of β1, β2, and σ 2 are derived, and their
distributions are determined. This allows us to pursue the resolution of
the parts of constructing confidence intervals, testing hypotheses, and
prediction.

13.5 The Basics of Analysis of Variance

Analysis of Variance (ANOVA) is a powerful technique, which provides the
means of assessing and/or comparing several entities. ANOVA can be used
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effectively in many situations; in particular, it can be used in assessing
and/or comparing crop yields corresponding to different soil treatments,
or crop yields corresponding to different soils and fertilizers; the com-
parison of a certain brand of gasoline with or without an additive by
using it in several cars; the comparison of different brands of gasoline
by using them in several cars; the comparison of the wearing of differ-
ent materials; the comparison of the effect of different types of oil on the
wear of several piston rings, etc.; the comparison of the yields of a chemi-
cal substance by using different catalytic methods; the comparison of the
strengths of certain objects made of different batches of some material;
the comparison of test scores from different schools and different teachers,
etc.; and identification of the melting point of a metal by using different
thermometers.

Assessment and comparisons are done by way of point estimation, inter-
val estimation, and testing hypotheses, as these techniques apply to the
specific ANOVA models to be considered. The more factors involved in pro-
ducing an outcome, the more complicated the model becomes. However,
the basic ideas remain the same throughout.

For the sake of illustrating the issues involved, consider the so-called
one-way layout or one-way classification model. Consider, for example,
unleaded regular gasoline, and suppose we supply ourselves with amounts
of it purchased from I different companies. The objective is to compare
these I brands of gasoline from yield viewpoint. To this end, a car (or sev-
eral but similar cars) operates under each one of the I brands of gasoline
for J runs in each case. Let Yij be the number of miles per hour for the
jth run when the ith brand of gasoline is used. Then the Yij’s are r.v.’s for
which the following structure is assumed: For a given i, the actual number
of miles per hour for the jth run varies around a mean value µi, and these
variations are due to an assortment of random errors eij. In other words, it
makes sense to assume that Yij = µi + eij. It is also reasonable to assume
that the random errors eij are independent r.v.’s distributed as N(0, σ 2),
some unknown variance σ 2. Thus, we have stipulated the following model:

Yij = µi + eij, where the eij’s are independently

∼N(0, σ 2), i = 1, . . . , I(≥2), j = 1, . . . , J(≥2). (13.13)

The quantities µi, i = 1, . . . , I, and σ 2 are the parameters of the model.
It follows that the r.v.’s Yij are independent and Yij ∼ N(µi, σ 2), j =

1, . . . , J, i = 1, . . . , I.
The issues of interest here are those of estimating the µi’s (mean num-

ber of miles per hour for the ith brand of gasoline) and σ 2. Also, we wish
to test the hypothesis that there is really no difference between these
I different brands of gasoline; in other words, test H0 : µ1 = · · · =
µI(= µ, say, unknown). Should this hypothesis be rejected, we would
wish to identify the brands of gasoline that cause the rejection. This can
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be done by constructing a confidence interval for certain linear combina-
tions of the µi’s called contrasts. That is,

∑I
i=1 ciµi, where c1, . . . , cI are

constants with
∑I

i=1 ci = 0.
Instead of having one factor (gasoline brand) affecting the outcome

(number of miles per hour), there may be two (or more) such factors. For
example, there might be some chemical additives meant to enhance the
mileage. In this framework, suppose there are J such chemical additives,
and let us combine each one of the I brands of gasoline with each one of
the J chemical additives. For simplicity, suppose we take just one obser-
vation, Yij, on each one of the IJ pairs. Then it makes sense to assume
that the r.v. Yij is the result of the following additive components: A basic
quantity (grand mean) µ, the same for all i and j; an effect αi due to the ith
brand of gasoline (the ith row effect); an effect βj due to the jth chemical
additive (the ith column effect); and, of course, the random error eij due
to a host of causes. So, the assumed model is then: Yij = µ + αi + βj + eij.
As usually, we assume that the eij’s are independent ∼ N(0, σ 2) with some
(unknown) variance σ 2, which implies that the Yij’s are independent r.v.’s
and Yij ∼ N( µ + αi + βj, σ 2). We further assume that some of αi effects
are ≥ 0, some are < 0, and on the whole

∑I
i=1 αi = 0; and likewise for the

βj effects:
∑J

j=1 βj = 0. Summarizing these assumptions, we have then:

Yij = µ + αi + βj + eij, where the eij’s are independently

∼ N(0, σ 2), i = 1, . . . , I(≥2), j = 1, . . . , J(≥2),

I∑

i=1

αi = 0,
J∑

j=1

βj = 0. (13.14)

The quantities µ, αi, i = 1, . . . , I, βj, j = 1, . . . , J and σ 2 are the parameters
of the model.

As already mentioned, the implication is that the r.v.’s Yij are indepen-
dent and Yij ∼ N(µ + αi + βj, σ 2), i = 1, . . . , I, j = 1, . . . , J.

The model described by (13.14) is called two-way layout or two-way
classification, as the observations are affected by two factors.

The main statistical issues are those of estimating the parameters
involved and testing irrelevance of either one of the factors involved —
that is, testing H0A : α1 = · · · = αI = 0, H0B : β1 = · · · = βJ = 0.

13.6 The Basics of Nonparametric Inference

All of the problems discussed in the previous sections may be summarized
as follows: On the basis of a random sample of size n, X1, . . . , Xn, drawn
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from the p.d.f. f (·;θ), θ ∈ � ⊆ �, construct a point estimate and a confi-
dence interval for θ , and test hypotheses about θ . In other words, the prob-
lems discussed were those of making (statistical) inference about θ . These
problems are suitably modified for a multidimensional parameter. The
fundamental assumption in this framework is that the functional form
of the p.d.f. f (·; θ) is known; the only thing that does not render f (·; θ)
completely known is the presence of the (unknown constant) parameter θ .

In many situations, stipulating a functional form for f (·;θ) either is
dictated by circumstances or is the product of accumulated experience.
In the absence of these, we must still proceed with the problems of esti-
mating important quantities, either by points or by intervals, and testing
hypotheses about them. However, the framework now is nonparametric,
and the relevant inference is referred to as nonparametric inference.

Actually, there have been at least three cases so far where nonpara-
metric estimation was made without referring to it as such. Indeed,
if X1, . . . , Xn are i.i.d. r.v.’s with unknown mean µ, then the sample mean
X̄n may be taken as an estimate of µ, regardless of what the underlying
distribution of the Xi’s is. This estimate is recommended on the basis of at
least three considerations. First, it is unbiased, EX̄n = µ no matter what
the underlying distribution is; second, X̄n is the moment estimate of µ;

and third, by the WLLN, X̄n
P−→n →∞ µ, so that X̄n is close to µ, in the sense

of probability, for all sufficiently large n. Now suppose that the Xi’s also
have (an unknown) variance σ 2 ∈ (0, ∞). Define the sample variance S2

n by
S2

n = ∑n
i=1(Xi−µ)2/n when µ is known, and by S2

n = ∑n
i=1(Xi−X̄n)2/(n−1)

otherwise. Then S2
n can be used as an estimate of σ 2, because it is unbiased

(Exercise 3.1(iii) in Chapter 10), and S2
n

P−→n →∞ σ 2 (Theorem 7(i) and Exer-
cise 3.2, both in Chapter 12). Furthermore, by combining X̄n and S2

n and
using Theorem 7(ii) in Chapter 12 we have that

√
n(X̄n − µ)/Sn � N(0, 1)

for large n. Then, for such n, [X̄n − zα/2
S n√

n , X̄n + zα/2
S n√

n ] is a confidence
interval for µ with confidence coefficient approximately 1 − α.

Also, the (unknown) d.f. F of the Xi’s has been estimated at every point
x ∈ � by the empirical d.f. Fn (see Application 12.2.1(5) in Chapter 12).
The estimate Fn has at least two desirable properties. For all x ∈ � and

regardless of the form of the d.f. F: EFn(x) = F(x) and Fn(x)
P−→n →∞ F(x).

What has not been done so far is to estimate the p.d.f. f (x) at each
x ∈ �, under certain regularity conditions, which do not include postula-
tion of a functional form for f . There are several ways of doing this, the
so-called kernel method of estimating f being perhaps the most popular.
The resulting estimate enjoys several desirable properties.

Regarding testing hypotheses, a hypothesis testing problem could be
that of testing the hypothesis that the (unknown) d.f. F is actually equal
to a known one, F0; that is H0 : F = F0, the alternative HA being that
F(x) �= F0(x) for at least one x ∈ �. Actually, from a practical view-
point, it is more important to compare two (unknown) d.f.’s F and G,
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by stipulating H0 : F = G. The alternative can be any one of the fol-
lowing: HA : F �= G, H′

A : F > G, H′′
A : F < G, in the sense that

F(x) ≥ G(x) or F(x) ≤ G(x), respectively, for all x ∈ �, and strict inequal-
ity for at least one x. In carrying out the appropriate tests, one has
to use some pretty sophisticated asymptotic results regarding empirical
d.f.’s. An alternative approach to using empirical d.f.’s is to employ the
concept of a rank test or the concept of a sign test. In such a context,
F �= G means that either F > G or F < G as defined previously; thus,
it cannot be F(x) > G(x) for some x’s, and F(x) < G(x) for some other
x’s. This section concludes with the concept of regression estimation,
but in a nonparametric framework. In such a situation, what is estimated
is an entire function rather than a few parameters.

All topics touched upon in this chapter are discussed in considerable
detail in Chapters 9 through 15 of the book An Introduction to Probability
Theory and Statistical Inference, 2nd printing (2005), Academic Press, by
G. G. Roussas.



Appendix

Tables
Table 1

Cumulative Binomial
Distribution

The tabulated quantity is
k∑

j=0

(n
j
)
p j(1 − p)n−j.

p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

2 0 0.8789 0.7656 0.6602 0.5625 0.4727 0.3906 0.3164 0.2500
1 0.9961 0.9844 0.9648 0.9375 0.9023 0.8594 0.8086 0.7500
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.8240 0.6699 0.5364 0.4219 0.3250 0.2441 0.1780 0.1250
1 0.9888 0.9570 0.9077 0.8437 0.7681 0.6836 0.5933 0.5000
2 0.9998 0.9980 0.9934 0.9844 0.9695 0.9473 0.9163 0.8750
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.7725 0.5862 0.4358 0.3164 0.2234 0.1526 0.1001 0.0625
1 0.9785 0.9211 0.8381 0.7383 0.6296 0.5188 0.4116 0.3125
2 0.9991 0.9929 0.9773 0.9492 0.9065 0.8484 0.7749 0.6875
3 1.0000 0.9998 0.9988 0.9961 0.9905 0.9802 0.9634 0.9375
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.7242 0.5129 0.3541 0.2373 0.1536 0.0954 0.0563 0.0312
1 0.9656 0.8793 0.7627 0.6328 0.5027 0.3815 0.2753 0.1875
2 0.9978 0.9839 0.9512 0.8965 0.8200 0.7248 0.6160 0.5000
3 0.9999 0.9989 0.9947 0.9844 0.9642 0.9308 0.8809 0.8125
4 1.0000 1.0000 0.9998 0.9990 0.9970 0.9926 0.9840 0.9687
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

324
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Table 1 (continued) p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

6 0 0.6789 0.4488 0.2877 0.1780 0.1056 0.0596 0.0317 0.0156
1 0.9505 0.8335 0.6861 0.5339 0.3936 0.2742 0.1795 0.1094
2 0.9958 0.9709 0.9159 0.8306 0.7208 0.5960 0.4669 0.3437
3 0.9998 0.9970 0.9866 0.9624 0.9192 0.8535 0.7650 0.6562
4 1.0000 0.9998 0.9988 0.9954 0.9868 0.9694 0.9389 0.8906
5 1.0000 1.0000 1.0000 0.9998 0.9991 0.9972 0.9930 0.9844
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 0.6365 0.3927 0.2338 0.1335 0.0726 0.0373 0.0178 0.0078
1 0.9335 0.7854 0.6114 0.4449 0.3036 0.1937 0.1148 0.0625
2 0.9929 0.9537 0.8728 0.7564 0.6186 0.4753 0.3412 0.2266
3 0.9995 0.9938 0.9733 0.9294 0.8572 0.7570 0.6346 0.5000
4 1.0000 0.9995 0.9965 0.9871 0.9656 0.9260 0.8628 0.7734
5 1.0000 1.0000 0.9997 0.9987 0.9952 0.9868 0.9693 0.9375
6 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990 0.9969 0.9922
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 0 0.5967 0.3436 0.1899 0.1001 0.0499 0.0233 0.0100 0.0039
1 0.9150 0.7363 0.5406 0.3671 0.2314 0.1350 0.0724 0.0352
2 0.9892 0.9327 0.8238 0.6785 0.5201 0.3697 0.2422 0.1445
3 0.9991 0.9888 0.9545 0.8862 0.7826 0.6514 0.5062 0.3633
4 1.0000 0.9988 0.9922 0.9727 0.9318 0.8626 0.7630 0.6367
5 1.0000 0.9999 0.9991 0.9958 0.9860 0.9640 0.9227 0.8555
6 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9849 0.9648
7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9961
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.5594 0.3007 0.1543 0.0751 0.0343 0.0146 0.0056 0.0020
1 0.8951 0.6872 0.4748 0.3003 0.1747 0.0931 0.0451 0.0195
2 0.9846 0.9081 0.7707 0.6007 0.4299 0.2817 0.1679 0.0898
3 0.9985 0.9817 0.9300 0.8343 0.7006 0.5458 0.3907 0.2539
4 0.9999 0.9975 0.9851 0.9511 0.8851 0.7834 0.6506 0.5000
5 1.0000 0.9998 0.9978 0.9900 0.9690 0.9260 0.8528 0.7461
6 1.0000 1.0000 0.9998 0.9987 0.9945 0.9830 0.9577 0.9102
7 1.0000 1.0000 1.0000 0.9999 0.9994 0.9977 0.9926 0.9805
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.5245 0.2631 0.1254 0.0563 0.0236 0.0091 0.0032 0.0010
1 0.8741 0.6389 0.4147 0.2440 0.1308 0.0637 0.0278 0.0107
2 0.9790 0.8805 0.7152 0.5256 0.3501 0.2110 0.1142 0.0547
3 0.9976 0.9725 0.9001 0.7759 0.6160 0.4467 0.2932 0.1719
4 0.9998 0.9955 0.9748 0.9219 0.8275 0.6943 0.5369 0.3770
5 1.0000 0.9995 0.9955 0.9803 0.9428 0.8725 0.7644 0.6230
6 1.0000 1.0000 0.9994 0.9965 0.9865 0.9616 0.9118 0.8281
7 1.0000 1.0000 1.0000 0.9996 0.9979 0.9922 0.9773 0.9453
8 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9964 0.9893
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
11 0 0.4917 0.2302 0.1019 0.0422 0.0162 0.0057 0.0018 0.0005

1 0.8522 0.5919 0.3605 0.1971 0.0973 0.0432 0.0170 0.0059
2 0.9724 0.8503 0.6589 0.4552 0.2816 0.1558 0.0764 0.0327
3 0.9965 0.9610 0.8654 0.7133 0.5329 0.3583 0.2149 0.1133

(Continued)
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Table 1 (continued) p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

11 4 0.9997 0.9927 0.9608 0.8854 0.7614 0.6014 0.4303 0.2744
5 1.0000 0.9990 0.9916 0.9657 0.9068 0.8057 0.6649 0.5000
6 1.0000 0.9999 0.9987 0.9924 0.9729 0.9282 0.8473 0.7256
7 1.0000 1.0000 0.9999 0.9988 0.9943 0.9807 0.9487 0.8867
8 1.0000 1.0000 1.0000 0.9999 0.9992 0.9965 0.9881 0.9673
9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 0 0.4610 0.2014 0.0828 0.0317 0.0111 0.0036 0.0010 0.0002
1 0.8297 0.5467 0.3120 0.1584 0.0720 0.0291 0.0104 0.0032
2 0.9649 0.8180 0.6029 0.3907 0.2240 0.1135 0.0504 0.0193
3 0.9950 0.9472 0.8267 0.6488 0.4544 0.2824 0.1543 0.0730
4 0.9995 0.9887 0.9429 0.8424 0.6900 0.5103 0.3361 0.1938
5 1.0000 0.9982 0.9858 0.9456 0.8613 0.7291 0.5622 0.3872
6 1.0000 0.9998 0.9973 0.9857 0.9522 0.8822 0.7675 0.6128
7 1.0000 1.0000 0.9996 0.9972 0.9876 0.9610 0.9043 0.8062
8 1.0000 1.0000 1.0000 0.9996 0.9977 0.9905 0.9708 0.9270
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9968
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.4321 0.1762 0.0673 0.0238 0.0077 0.0022 0.0006 0.0001
1 0.8067 0.5035 0.2690 0.1267 0.0530 0.0195 0.0063 0.0017
2 0.9565 0.7841 0.5484 0.3326 0.1765 0.0819 0.0329 0.0112
3 0.9931 0.9310 0.7847 0.5843 0.3824 0.2191 0.1089 0.0461
4 0.9992 0.9835 0.9211 0.7940 0.6164 0.4248 0.2565 0.1334
5 0.9999 0.9970 0.9778 0.9198 0.8078 0.6470 0.4633 0.2905
6 1.0000 0.9996 0.9952 0.9757 0.9238 0.8248 0.6777 0.5000
7 1.0000 1.0000 0.9992 0.9944 0.9765 0.9315 0.8445 0.7095
8 1.0000 1.0000 0.9999 0.9990 0.9945 0.9795 0.9417 0.8666
9 1.0000 1.0000 1.0000 0.9999 0.9991 0.9955 0.9838 0.9539

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9968 0.9888
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 0.4051 0.1542 0.0546 0.0178 0.0053 0.0014 0.0003 0.0001
1 0.7833 0.4626 0.2312 0.1010 0.0388 0.0130 0.0038 0.0009
2 0.9471 0.7490 0.4960 0.2811 0.1379 0.0585 0.0213 0.0065
3 0.9908 0.9127 0.7404 0.5213 0.3181 0.1676 0.0756 0.0287
4 0.9988 0.9970 0.8955 0.7415 0.5432 0.3477 0.1919 0.0898
5 0.9999 0.9953 0.9671 0.8883 0.7480 0.5637 0.3728 0.2120
6 1.0000 0.9993 0.9919 0.9167 0.8876 0.7581 0.5839 0.3953
7 1.0000 0.9999 0.9985 0.9897 0.9601 0.8915 0.7715 0.6047
8 1.0000 1.0000 0.9998 0.9978 0.9889 0.9615 0.8992 0.7880
9 1.0000 1.0000 1.0000 0.9997 0.9976 0.9895 0.9654 0.9102

10 1.0000 1.0000 1.0000 1.0000 0.9996 0.9979 0.9911 0.9713
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9935
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 1 (continued) p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

15 0 0.3798 0.1349 0.0444 0.0134 0.0036 0.0009 0.0002 0.0000
1 0.7596 0.4241 0.1981 0.0802 0.0283 0.0087 0.0023 0.0005
2 0.9369 0.7132 0.4463 0.2361 0.1069 0.0415 0.0136 0.0037
3 0.9881 0.8922 0.6946 0.4613 0.2618 0.1267 0.0518 0.0176
4 0.9983 0.9689 0.8665 0.6865 0.4729 0.2801 0.1410 0.0592
5 0.9998 0.9930 0.9537 0.8516 0.6840 0.4827 0.2937 0.1509
6 1.0000 0.9988 0.9873 0.9434 0.8435 0.6852 0.4916 0.3036
7 1.0000 0.9998 0.9972 0.9827 0.9374 0.8415 0.6894 0.5000
8 1.0000 1.0000 0.9995 0.9958 0.9799 0.9352 0.8433 0.6964
9 1.0000 1.0000 0.9999 0.9992 0.9949 0.9790 0.9364 0.8491

10 1.0000 1.0000 1.0000 0.9999 0.9990 0.9947 0.9799 0.9408
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9990 0.9952 0.9824
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 0.3561 0.1181 0.0361 0.0100 0.0025 0.0005 0.0001 0.0000
1 0.7359 0.3879 0.1693 0.0635 0.0206 0.0057 0.0014 0.0003
2 0.9258 0.6771 0.3998 0.1971 0.0824 0.0292 0.0086 0.0021
3 0.9849 0.8698 0.6480 0.4050 0.2134 0.0947 0.0351 0.0106
4 0.9977 0.9593 0.8342 0.6302 0.4069 0.2226 0.1020 0.0384
5 0.9997 0.9900 0.9373 0.8103 0.6180 0.4067 0.2269 0.1051
6 1.0000 0.9981 0.9810 0.9204 0.7940 0.6093 0.4050 0.2272
7 1.0000 0.9997 0.9954 0.9729 0.9082 0.7829 0.6029 0.4018
8 1.0000 1.0000 0.9991 0.9925 0.9666 0.9001 0.7760 0.5982
9 1.0000 1.0000 0.9999 0.9984 0.9902 0.9626 0.8957 0.7728

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9888 0.9609 0.8949
11 1.0000 1.0000 1.0000 1.0000 0.9996 0.9974 0.9885 0.9616
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9975 0.9894
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9979
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 0 0.3338 0.1033 0.0293 0.0075 0.0017 0.0003 0.0001 0.0000
1 0.7121 0.3542 0.1443 0.0501 0.0149 0.0038 0.0008 0.0001
2 0.9139 0.6409 0.3566 0.1637 0.0631 0.0204 0.0055 0.0012
3 0.9812 0.8457 0.6015 0.3530 0.1724 0.0701 0.0235 0.0064
4 0.9969 0.9482 0.7993 0.5739 0.3464 0.1747 0.0727 0.0245
5 0.9996 0.9862 0.9180 0.7653 0.5520 0.3377 0.1723 0.0717
6 1.0000 0.9971 0.9728 0.8929 0.7390 0.5333 0.3271 0.1662
7 1.0000 0.9995 0.9927 0.9598 0.8725 0.7178 0.5163 0.3145
8 1.0000 0.9999 0.9984 0.9876 0.9484 0.8561 0.7002 0.5000
9 1.0000 1.0000 0.9997 0.9969 0.9828 0.9391 0.8433 0.6855

10 1.0000 1.0000 1.0000 0.9994 0.9954 0.9790 0.9323 0.8338
11 1.0000 1.0000 1.0000 0.9999 0.9990 0.9942 0.9764 0.9283
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9935 0.9755
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9936
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9988
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(Continued)
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Table 1 (continued) p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

18 0 0.3130 0.0904 0.0238 0.0056 0.0012 0.0002 0.0000 0.0000
1 0.6885 0.3228 0.1227 0.0395 0.0108 0.0025 0.0005 0.0001
2 0.9013 0.6051 0.3168 0.1353 0.0480 0.0142 0.0034 0.0007
3 0.9770 0.8201 0.5556 0.3057 0.1383 0.0515 0.0156 0.0038
4 0.9959 0.9354 0.7622 0.5187 0.2920 0.1355 0.0512 0.0154
5 0.9994 0.9814 0.8958 0.7175 0.4878 0.2765 0.1287 0.0481
6 0.9999 0.9957 0.9625 0.8610 0.6806 0.4600 0.2593 0.1189
7 1.0000 0.9992 0.9889 0.9431 0.8308 0.6486 0.4335 0.2403
8 1.0000 0.9999 0.9973 0.9807 0.9247 0.8042 0.6198 0.4073
9 1.0000 1.0000 0.9995 0.9946 0.9721 0.9080 0.7807 0.5927

10 1.0000 1.0000 0.9999 0.9988 0.9915 0.9640 0.8934 0.7597
11 1.0000 1.0000 1.0000 0.9998 0.9979 0.9885 0.9571 0.8811
12 1.0000 1.0000 1.0000 1.0000 0.9996 0.9970 0.9860 0.9519
13 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9964 0.9846
14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9962
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

19 0 0.2934 0.0791 0.0193 0.0042 0.0008 0.0001 0.0000 0.0000
1 0.6650 0.2938 0.1042 0.0310 0.0078 0.0016 0.0003 0.0000
2 0.8880 0.5698 0.2804 0.1113 0.0364 0.0098 0.0021 0.0004
3 0.9722 0.7933 0.5108 0.2631 0.1101 0.0375 0.0103 0.0022
4 0.9947 0.9209 0.7235 0.4654 0.2440 0.1040 0.0356 0.0096
5 0.9992 0.9757 0.8707 0.6678 0.4266 0.2236 0.0948 0.0318
6 0.9999 0.9939 0.9500 0.8251 0.6203 0.3912 0.2022 0.0835
7 1.0000 0.9988 0.9840 0.9225 0.7838 0.5779 0.3573 0.1796
8 1.0000 0.9998 0.9957 0.9713 0.8953 0.7459 0.5383 0.3238
9 1.0000 1.0000 0.9991 0.9911 0.9573 0.8691 0.7103 0.5000

10 1.0000 1.0000 0.9998 0.9977 0.9854 0.9430 0.8441 0.0672
11 1.0000 1.0000 1.0000 0.9995 0.9959 0.9793 0.9292 0.8204
12 1.0000 1.0000 1.0000 0.9999 0.9990 0.9938 0.9734 0.9165
13 1.0000 1.0000 1.0000 1.0000 0.9998 0.9985 0.9919 0.9682
14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9980 0.9904
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9978
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 0.2751 0.0692 0.0157 0.0032 0.0006 0.0001 0.0000 0.0000
1 0.6148 0.2669 0.0883 0.0243 0.0056 0.0011 0.0002 0.0000
2 0.8741 0.5353 0.2473 0.0913 0.0275 0.0067 0.0013 0.0002
3 0.9670 0.7653 0.4676 0.2252 0.0870 0.0271 0.0067 0.0013
4 0.9933 0.9050 0.6836 0.4148 0.2021 0.0790 0.0245 0.0059
5 0.9989 0.9688 0.8431 0.6172 0.3695 0.1788 0.0689 0.0207
6 0.9999 0.9916 0.9351 0.7858 0.5598 0.3284 0.1552 0.0577
7 1.0000 0.9981 0.9776 0.8982 0.7327 0.5079 0.2894 0.1316
8 1.0000 0.9997 0.9935 0.9591 0.8605 0.6829 0.4591 0.2517
9 1.0000 0.9999 0.9984 0.9861 0.9379 0.8229 0.6350 0.4119

10 1.0000 1.0000 0.9997 0.9961 0.9766 0.9153 0.7856 0.5881
11 1.0000 1.0000 0.9999 0.9991 0.9926 0.9657 0.8920 0.7483
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Table 1 (continued) p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

20 12 1.0000 1.0000 1.0000 0.9998 0.9981 0.9884 0.9541 0.8684
13 1.0000 1.0000 1.0000 1.0000 0.9996 0.9968 0.9838 0.9423
14 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9953 0.9793
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9941
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

21 0 0.2579 0.0606 0.0128 0.0024 0.0004 0.0001 0.0000 0.0000
1 0.6189 0.2422 0.0747 0.0190 0.0040 0.0007 0.0001 0.0000
2 0.8596 0.5018 0.2175 0.0745 0.0206 0.0046 0.0008 0.0001
3 0.9612 0.7366 0.4263 0.1917 0.0684 0.0195 0.0044 0.0007
4 0.9917 0.8875 0.6431 0.3674 0.1662 0.0596 0.0167 0.0036
5 0.9986 0.9609 0.8132 0.5666 0.3172 0.1414 0.0495 0.0133
6 0.9998 0.9888 0.9179 0.7436 0.5003 0.2723 0.1175 0.0392
7 1.0000 0.9973 0.9696 0.8701 0.6787 0.4405 0.2307 0.0946
8 1.0000 0.9995 0.9906 0.9439 0.8206 0.6172 0.3849 0.1917
9 1.0000 0.9999 0.9975 0.9794 0.9137 0.7704 0.5581 0.3318

10 1.0000 1.0000 0.9995 0.9936 0.9645 0.8806 0.7197 0.5000
11 1.0000 1.0000 0.9999 0.9983 0.9876 0.9468 0.8454 0.6682
12 1.0000 1.0000 1.0000 0.9996 0.9964 0.9799 0.9269 0.8083
13 1.0000 1.0000 1.0000 0.9999 0.9991 0.9936 0.9708 0.9054
14 1.0000 1.0000 1.0000 1.0000 0.9998 0.9983 0.9903 0.9605
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9974 0.9867
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9964
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

22 0 0.2418 0.0530 0.0104 0.0018 0.0003 0.0000 0.0000 0.0000
1 0.5963 0.2195 0.0631 0.0149 0.0029 0.0005 0.0001 0.0000
2 0.8445 0.4693 0.1907 0.0606 0.0154 0.0031 0.0005 0.0001
3 0.9548 0.7072 0.3871 0.1624 0.0535 0.0139 0.0028 0.0004
4 0.9898 0.8687 0.6024 0.3235 0.1356 0.0445 0.0133 0.0022
5 0.9981 0.9517 0.7813 0.5168 0.2700 0.1107 0.0352 0.0085
6 0.9997 0.9853 0.8983 0.6994 0.4431 0.2232 0.0877 0.0267
7 1.0000 0.9963 0.9599 0.8385 0.6230 0.3774 0.1812 0.0669
8 1.0000 0.9992 0.9866 0.9254 0.7762 0.5510 0.3174 0.1431
9 1.0000 0.9999 0.9962 0.9705 0.8846 0.7130 0.4823 0.2617

10 1.0000 1.0000 0.9991 0.9900 0.9486 0.8393 0.6490 0.4159
11 1.0000 1.0000 0.9998 0.9971 0.9804 0.9220 0.7904 0.5841
12 1.0000 1.0000 1.0000 0.9993 0.9936 0.9675 0.8913 0.7383
13 1.0000 1.0000 1.0000 0.9999 0.9982 0.9885 0.9516 0.8569
14 1.0000 1.0000 1.0000 1.0000 0.9996 0.9966 0.9818 0.9331
15 1.0000 1.0000 1.0000 1.0000 0.9999 0.9991 0.9943 0.9739
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9985 0.9915
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9978
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(Continued)
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Table 1 (continued) p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

23 0 0.2266 0.0464 0.0084 0.0013 0.0002 0.0000 0.0000 0.0000
1 0.5742 0.1987 0.0532 0.0116 0.0021 0.0003 0.0000 0.0000
2 0.8290 0.4381 0.1668 0.0492 0.0115 0.0021 0.0003 0.0000
3 0.9479 0.6775 0.3503 0.1370 0.0416 0.0099 0.0018 0.0002
4 0.9876 0.8485 0.5621 0.2832 0.1100 0.0330 0.0076 0.0013
5 0.9976 0.9413 0.7478 0.4685 0.2280 0.0859 0.0247 0.0053
6 0.9996 0.9811 0.8763 0.6537 0.3890 0.1810 0.0647 0.0173
7 1.0000 0.9949 0.9484 0.8037 0.5668 0.3196 0.1403 0.0466
8 1.0000 0.9988 0.9816 0.9037 0.7283 0.4859 0.2578 0.1050
9 1.0000 0.9998 0.9944 0.9592 0.8507 0.6522 0.4102 0.2024

10 1.0000 1.0000 0.9986 0.9851 0.9286 0.7919 0.5761 0.3388
11 1.0000 1.0000 0.9997 0.9954 0.9705 0.8910 0.7285 0.5000
12 1.0000 1.0000 0.9999 0.9988 0.9895 0.9504 0.8471 0.6612
13 1.0000 1.0000 1.0000 0.9997 0.9968 0.9806 0.9252 0.7976
14 1.0000 1.0000 1.0000 0.9999 0.9992 0.9935 0.9686 0.8950
15 1.0000 1.0000 1.0000 1.0000 0.9998 0.9982 0.9888 0.9534
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9967 0.9827
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9947
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

24 0 0.2125 0.0406 0.0069 0.0010 0.0001 0.0000 0.0000 0.0000
1 0.5524 0.1797 0.0448 0.0090 0.0015 0.0002 0.0000 0.0000
2 0.8131 0.4082 0.1455 0.0398 0.0086 0.0014 0.0002 0.0000
3 0.9405 0.6476 0.3159 0.1150 0.0322 0.0070 0.0011 0.0001
4 0.9851 0.8271 0.5224 0.2466 0.0886 0.0243 0.0051 0.0008
5 0.9970 0.9297 0.7130 0.4222 0.1911 0.0661 0.0172 0.0033
6 0.9995 0.9761 0.8522 0.6074 0.3387 0.1453 0.0472 0.0113
7 0.9999 0.9932 0.9349 0.7662 0.5112 0.2676 0.1072 0.0320
8 1.0000 0.9983 0.9754 0.8787 0.6778 0.4235 0.2064 0.0758
9 1.0000 0.9997 0.9920 0.9453 0.8125 0.5898 0.3435 0.1537

10 1.0000 0.9999 0.9978 0.9787 0.9043 0.7395 0.5035 0.2706
11 1.0000 1.0000 0.9995 0.9928 0.9574 0.8538 0.6618 0.4194
12 1.0000 1.0000 0.9999 0.9979 0.9835 0.9281 0.7953 0.5806
13 1.0000 1.0000 1.0000 0.9995 0.9945 0.9693 0.8911 0.7294
14 1.0000 1.0000 1.0000 0.9999 0.9984 0.9887 0.9496 0.8463
15 1.0000 1.0000 1.0000 1.0000 0.9996 0.9964 0.9799 0.9242
16 1.0000 1.0000 1.0000 1.0000 0.9999 0.9990 0.9932 0.9680
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9981 0.9887
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9967
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 0 0.1992 0.0355 0.0056 0.0008 0.0001 0.0000 0.0000 0.0000
1 0.5132 0.1623 0.0377 0.0070 0.0011 0.0001 0.0000 0.0000
2 0.7968 0.3796 0.1266 0.0321 0.0064 0.0010 0.0001 0.0000
3 0.9325 0.6176 0.2840 0.0962 0.0248 0.0049 0.0007 0.0001
4 0.9823 0.8047 0.4837 0.2137 0.0710 0.0178 0.0033 0.0005
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Table 1 (continued) p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

25 5 0.9962 0.9169 0.6772 0.3783 0.1591 0.0504 0.0119 0.0028
6 0.9993 0.9703 0.8261 0.5611 0.2926 0.1156 0.0341 0.0073
7 0.9999 0.9910 0.9194 0.7265 0.4573 0.2218 0.0810 0.0216
8 1.0000 0.9977 0.9678 0.8506 0.6258 0.3651 0.1630 0.0539
9 1.0000 0.9995 0.9889 0.9287 0.7704 0.5275 0.2835 0.1148

10 1.0000 0.9999 0.9967 0.9703 0.8756 0.6834 0.4335 0.2122
11 1.0000 1.0000 0.9992 0.9893 0.9408 0.8110 0.5926 0.3450
12 1.0000 1.0000 0.9998 0.9966 0.9754 0.9003 0.7369 0.5000
13 1.0000 1.0000 1.0000 0.9991 0.9911 0.9538 0.8491 0.6550
14 1.0000 1.0000 1.0000 0.9998 0.9972 0.9814 0.9240 0.7878
15 1.0000 1.0000 1.0000 1.0000 0.9992 0.9935 0.9667 0.8852
16 1.0000 1.0000 1.0000 1.0000 0.9998 0.9981 0.9874 0.9462
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9960 0.9784
18 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9927
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9980
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2

Cumulative Poisson
Distribution

The tabulated quantity is
∑k

j=0
e−λ λj

j! .

λ
k 0.001 0.005 0.010 0.015 0.020 0.025

0 0.9990 0050 0.9950 1248 0.9900 4983 0.9851 1194 0.9801 9867 0.9753 099
1 0.9999 9950 0.9999 8754 0.9999 5033 0.9998 8862 0.9998 0264 0.9996 927
2 1.0000 0000 0.9999 9998 0.9999 9983 0.9999 9945 0.9999 9868 0.9999 974
3 1.0000 0000 1.0000 0000 1.0000 0000 0.9999 9999 1.0000 000
4 1.0000 0000 1.0000 000

λ
k 0.030 0.035 0.040 0.045 0.050 0.055

0 0.970 446 0.965 605 0.960 789 0.955 997 0.951 229 0.946 485
1 0.999 559 0.999 402 0.999 221 0.999 017 0.998 791 0.998 542
2 0.999 996 0.999 993 0.999 990 0.999 985 0.999 980 0.999 973
3 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000

λ
k 0.060 0.065 0.070 0.075 0.080 0.085

0 0.941 765 0.937 067 0.932 394 0.927 743 0.923 116 0.918 512
1 0.998 270 0.997 977 0.997 661 0.997 324 0.996 966 0.996 586
2 0.999 966 0.999 956 0.999 946 0.999 934 0.999 920 0.999 904
3 0.999 999 0.999 999 0.999 999 0.999 999 0.999 998 0.999 998
4 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000

λ
k 0.090 0.095 0.100 0.200 0.300 0.400

0 0.913 931 0.909 373 0.904 837 0.818 731 0.740 818 0.670 320
1 0.996 185 0.995 763 0.995 321 0.982 477 0.963 064 0.938 448
2 0.999 886 0.999 867 0.999 845 0.998 852 0.996 401 0.992 074
3 0.999 997 0.999 997 0.999 996 0.999 943 0.999 734 0.999 224
4 1.000 000 1.000 000 1.000 000 0.999 998 0.999 984 0.999 939
5 1.000 000 0.999 999 0.999 996
6 1.000 000 1.000 000

λ
k 0.500 0.600 0.700 0.800 0.900 1.000

0 0.606 531 0.548 812 0.496 585 0.449 329 0.406 329 0.367 879
1 0.909 796 0.878 099 0.844 195 0.808 792 0.772 482 0.735 759
2 0.985 612 0.976 885 0.965 858 0.952 577 0.937 143 0.919 699
3 0.998 248 0.996 642 0.994 247 0.990 920 0.986 541 0.981 012
4 0.999 828 0.999 606 0.999 214 0.998 589 0.997 656 0.996 340
5 0.999 986 0.999 961 0.999 910 0.999 816 0.999 657 0.999 406
6 0.999 999 0.999 997 0.999 991 0.999 979 0.999 957 0.999 917
7 1.000 000 1.000 000 0.999 999 0.999 998 0.999 995 0.999 990
8 1.000 000 1.000 000 1.000 000 0.999 999
9 1.000 000
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Table 2 (continued)
λ

k 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50

0 0.3012 0.2466 0.2019 0.1653 0.1353 0.0821 0.0498 0.0302
1 0.6626 0.5918 0.5249 0.4628 0.4060 0.2873 0.1991 0.1359
2 0.8795 0.8335 0.7834 0.7306 0.6767 0.5438 0.4232 0.3208
3 0.9662 0.9463 0.9212 0.8913 0.8571 0.7576 0.6472 0.5366
4 0.9923 0.9857 0.9763 0.9636 0.9473 0.8912 0.8153 0.7254
5 0.9985 0.9968 0.9940 0.9896 0.9834 0.9580 0.9161 0.8576
6 0.9997 0.9994 0.9987 0.9974 0.9955 0.9858 0.9665 0.9347
7 1.0000 0.9999 0.9997 0.9994 0.9989 0.9958 0.9881 0.9733
8 1.0000 1.0000 0.9999 0.9998 0.9989 0.9962 0.9901
9 1.0000 1.0000 0.9997 0.9989 0.9967

10 0.9999 0.9997 0.9990
11 1.0000 0.9999 0.9997
12 1.0000 0.9999
13 1.0000

λ

k 4.00 4.50 5.00 6.00 7.00 8.00 9.00 10.00

0 0.0183 0.0111 0.0067 0.0025 0.0009 0.0003 0.0001 0.0000
1 0.0916 0.0611 0.0404 0.0174 0.0073 0.0030 0.0012 0.0005
2 0.2381 0.1736 0.1247 0.0620 0.0296 0.0138 0.0062 0.0028
3 0.4335 0.3423 0.2650 0.1512 0.0818 0.0424 0.0212 0.0103
4 0.6288 0.5321 0.4405 0.2851 0.1730 0.0996 0.0550 0.0293
5 0.7851 0.7029 0.6160 0.4457 0.3007 0.1912 0.1157 0.0671
6 0.8893 0.8311 0.7622 0.6063 0.4497 0.3134 0.2068 0.1301
7 0.9489 0.9134 0.8666 0.7440 0.5987 0.4530 0.3239 0.2202
8 0.9786 0.9597 0.9319 0.8472 0.7291 0.5925 0.4577 0.3328
9 0.9919 0.9829 0.9682 0.9161 0.8305 0.7166 0.5874 0.4579

10 0.9972 0.9933 0.9863 0.9574 0.9015 0.8159 0.7060 0.5830
11 0.9991 0.9976 0.9945 0.9799 0.9467 0.8881 0.8030 0.6968
12 0.9997 0.9992 0.9980 0.9912 0.9730 0.9362 0.8758 0.7916
13 0.9999 0.9997 0.9993 0.9964 0.9872 0.9658 0.9261 0.8645
14 1.0000 0.9999 0.9998 0.9986 0.9943 0.9827 0.9585 0.9165
15 1.0000 0.9999 0.9995 0.9976 0.9918 0.9780 0.9513
16 1.0000 0.9998 0.9990 0.9963 0.9889 0.9730
17 0.9999 0.9996 0.9984 0.9947 0.9857
18 1.0000 0.9999 0.9993 0.9976 0.9928
19 0.9997 0.9989 0.9965
20 1.0000 0.9999 0.9996 0.9984
21 1.0000 0.9998 0.9993
22 0.9999 0.9997
23 1.0000 0.9999
24 1.0000
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Table 3

Normal Distribution

The tabulated quantity is

�(x) = 1√
2π

∫ x

−∞
e−t2/2dt.

[�(−x) = 1 − �(x)].

x Φ(x) x Φ(x) x Φ(x) x Φ(x)

0.00 0.500000 0.45 0.673645 0.90 0.815940 1.35 0.911492
0.01 0.503989 0.46 0.677242 0.91 0.818589 1.36 0.913085
0.02 0.507978 0.47 0.680822 0.92 0.821214 1.37 0.914657
0.03 0.511966 0.48 0.684386 0.93 0.823814 1.38 0.916207
0.04 0.515953 0.49 0.687933 0.94 0.826391 1.39 0.917736
0.05 0.519939 0.50 0.691462 0.95 0.828944 1.40 0.919243
0.06 0.523922 0.51 0.694974 0.96 0.831472 1.41 0.920730
0.07 0.527903 0.52 0.698468 0.97 0.833977 1.42 0.922196
0.08 0.531881 0.53 0.701944 0.98 0.836457 1.43 0.923641
0.09 0.535856 0.54 0.705401 0.99 0.838913 1.44 0.925066
0.10 0.539828 0.55 0.708840 1.00 0.841345 1.45 0.926471
0.11 0.543795 0.56 0.712260 1.01 0.843752 1.46 0.927855
0.12 0.547758 0.57 0.715661 1.02 0.846136 1.47 0.929219
0.13 0.551717 0.58 0.719043 1.03 0.848495 1.48 0.930563
0.14 0.555670 0.59 0.722405 1.04 0.850830 1.49 0.931888
0.15 0.559618 0.60 0.725747 1.05 0.853141 1.50 0.933193
0.16 0.563559 0.61 0.279069 1.06 0.855428 1.51 0.934478
0.17 0.567495 0.62 0.732371 1.07 0.857690 1.52 0.935745
0.18 0.571424 0.63 0.735653 1.08 0.859929 1.53 0.936992
0.19 0.575345 0.64 0.738914 1.09 0.862143 1.54 0.938220
0.20 0.579260 0.65 0.742154 1.10 0.864334 1.55 0.939429
0.21 0.583166 0.66 0.745373 1.11 0.866500 1.56 0.940620
0.22 0.587064 0.67 0.748571 1.12 0.868643 1.57 0.941792
0.23 0.590954 0.68 0.751748 1.13 0.870762 1.58 0.942947
0.24 0.594835 0.69 0.754903 1.14 0.872857 1.59 0.944083
0.25 0.598706 0.70 0.758036 1.15 0.874928 1.60 0.945201
0.26 0.602568 0.71 0.761148 1.16 0.876976 1.61 0.946301
0.27 0.606420 0.72 0.764238 1.17 0.879000 1.62 0.947384
0.28 0.610261 0.73 0.767305 1.18 0.881000 1.63 0.948449
0.29 0.614092 0.74 0.770350 1.19 0.882977 1.64 0.949497
0.30 0.617911 0.75 0.773373 1.20 0.884930 1.65 0.950529
0.31 0.621720 0.76 0.776373 1.21 0.886861 1.66 0.951543
0.32 0.625516 0.77 0.779350 1.22 0.888768 1.67 0.952540
0.33 0.629300 0.78 0.782305 1.23 0.890651 1.68 0.953521
0.34 0.633072 0.79 0.785236 1.24 0.892512 1.69 0.954486
0.35 0.636831 0.80 0.788145 1.25 0.894350 1.70 0.955435
0.36 0.640576 0.81 0.791030 1.26 0.896165 1.71 0.956367
0.37 0.644309 0.82 0.793892 1.27 0.897958 1.72 0.957284
0.38 0.648027 0.83 0.796731 1.28 0.899727 1.73 0.958185
0.39 0.651732 0.84 0.799546 1.29 0.901475 1.74 0.959070
0.40 0.655422 0.85 0.802337 1.30 0.903200 1.75 0.959941
0.41 0.659097 0.86 0.805105 1.31 0.904902 1.76 0.960796
0.42 0.662757 0.87 0.807850 1.32 0.906582 1.77 0.961636
0.43 0.666402 0.88 0.810570 1.33 0.908241 1.78 0.962462
0.44 0.670031 0.89 0.813267 1.34 0.909877 1.79 0.963273
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Table 3 (continued)
x Φ(x) x Φ(x) x Φ(x) x Φ(x)

1.80 0.964070 2.30 0.989276 2.80 0.997445 3.30 0.999517
1.81 0.964852 2.31 0.989556 2.81 0.997523 3.31 0.999534
1.82 0.965620 2.32 0.989830 2.82 0.997599 3.32 0.999550
1.83 0.966375 2.33 0.990097 2.83 0.997673 3.33 0.999566
1.84 0.967116 2.34 0.990358 2.84 0.997744 3.34 0.999581
1.85 0.967843 2.35 0.990613 2.85 0.997814 3.35 0.999596
1.86 0.968557 2.36 0.990863 2.86 0.997882 3.36 0.999610
1.87 0.969258 2.37 0.991106 2.87 0.997948 3.37 0.999624
1.88 0.969946 2.38 0.991344 2.88 0.998012 3.38 0.999638
1.89 0.970621 2.39 0.991576 2.89 0.998074 3.39 0.999651
1.90 0.971283 2.40 0.991802 2.90 0.998134 3.40 0.999663
1.91 0.971933 2.41 0.992024 2.91 0.998193 3.41 0.999675
1.92 0.972571 2.42 0.992240 2.92 0.998250 3.42 0.999687
1.93 0.973197 2.43 0.992451 2.93 0.998305 3.43 0.999698
1.94 0.973810 2.44 0.992656 2.94 0.998359 3.44 0.999709
1.95 0.974412 2.45 0.992857 2.95 0.998411 3.45 0.999720
1.96 0.975002 2.46 0.993053 2.96 0.998462 3.46 0.999730
1.97 0.975581 2.47 0.993244 2.97 0.998511 3.47 0.999740
1.98 0.976148 2.48 0.993431 2.98 0.998559 3.48 0.999749
1.99 0.976705 2.49 0.993613 2.99 0.998605 3.49 0.999758
2.00 0.977250 2.50 0.993790 3.00 0.998650 3.50 0.999767
2.01 0.977784 2.51 0.993963 3.01 0.998694 3.51 0.999776
2.02 0.978308 2.52 0.994132 3.02 0.998736 3.52 0.999784
2.03 0.978822 2.53 0.994297 3.03 0.998777 3.53 0.999792
2.04 0.979325 2.54 0.994457 3.04 0.998817 3.54 0.999800
2.05 0.979818 2.55 0.994614 3.05 0.998856 3.55 0.999807
2.06 0.980301 2.56 0.994766 3.06 0.998893 3.56 0.999815
2.07 0.980774 2.57 0.994915 3.07 0.998930 3.57 0.999822
2.08 0.981237 2.58 0.995060 3.08 0.998965 3.58 0.999828
2.09 0.981691 2.59 0.995201 3.09 0.998999 3.59 0.999835
2.10 0.982136 2.60 0.995339 3.10 0.999032 3.60 0.999841
2.11 0.982571 2.61 0.995473 3.11 0.999065 3.61 0.999847
2.12 0.982997 2.62 0.995604 3.12 0.999096 3.62 0.999853
2.13 0.983414 2.63 0.995731 3.13 0.999126 3.63 0.999858
2.14 0.983823 2.64 0.995855 3.14 0.999155 3.64 0.999864
2.15 0.984222 2.65 0.995975 3.15 0.999184 3.65 0.999869
2.16 0.984614 2.66 0.996093 3.16 0.999211 3.66 0.999874
2.17 0.984997 2.67 0.996207 3.17 0.999238 3.67 0.999879
2.18 0.985371 2.68 0.996319 3.18 0.999264 3.68 0.999883
2.19 0.985738 2.69 0.996427 3.19 0.999289 3.69 0.999888
2.20 0.986097 2.70 0.996533 3.20 0.999313 3.70 0.999892
2.21 0.986447 2.71 0.996636 3.21 0.999336 3.71 0.999896
2.22 0.986791 2.72 0.996736 3.22 0.999359 3.72 0.999900
2.23 0.987126 2.73 0.996833 3.23 0.999381 3.73 0.999904
2.24 0.987455 2.74 0.996928 3.24 0.999402 3.74 0.999908
2.25 0.987776 2.75 0.997020 3.25 0.999423 3.75 0.999912
2.26 0.988089 2.76 0.997110 3.26 0.999443 3.76 0.999915
2.27 0.988396 2.77 0.997197 3.27 0.999462 3.77 0.999918
2.28 0.988696 2.78 0.997282 3.28 0.999481 3.78 0.999922
2.29 0.988989 2.79 0.997365 3.29 0.999499 3.79 0.999925

(Continued)
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Table 3 (continued) x Φ(x) x Φ(x) x Φ(x) x Φ(x)

3.80 0.999928 3.85 0.999941 3.90 0.999952 3.95 0.999961
3.81 0.999931 3.86 0.999943 3.91 0.999954 3.96 0.999963
3.82 0.999933 3.87 0.999946 3.92 0.999956 3.97 0.999964
3.83 0.999936 3.88 0.999948 3.93 0.999958 3.98 0.999966
3.84 0.999938 3.89 0.999950 3.94 0.999959 3.99 0.999967
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Table 4

Critical Values for
Chi-Square
Distribution

Let χ2
r be a random variable having chi-square

distribution with r degrees of freedom. Then the tabulated
quantities are the numbers x for which:

P(χ2
r ≤ x) = γ .

γ

r 0.005 0.01 0.025 0.05 0.10 0.25

1 — — 0.001 0.004 0.016 0.102
2 0.010 0.020 0.051 0.103 0.211 0.575
3 0.072 0.115 0.216 0.352 0.584 1.213
4 0.207 0.297 0.484 0.711 1.064 1.923
5 0.412 0.554 0.831 1.145 1.610 2.675
6 0.676 0.872 1.237 1.635 2.204 3.455
7 0.989 1.239 1.690 2.167 2.833 4.255
8 1.344 1.646 2.180 2.733 3.490 5.071
9 1.735 2.088 2.700 2.325 4.168 5.899

10 2.156 2.558 3.247 3.940 4.865 6.737
11 2.603 3.053 3.816 4.575 5.578 7.584
12 3.074 3.571 4.404 5.226 6.304 9.438
13 3.565 4.107 5.009 5.892 7.042 9.299
14 4.075 4.660 5.629 6.571 7.790 10.165
15 4.601 5.229 6.262 7.261 8.547 11.037
16 5.142 5.812 6.908 7.962 9.312 11.912
17 5.697 6.408 7.564 8.672 10.085 12.792
18 6.265 7.015 8.231 8.390 10.865 13.675
19 6.844 7.633 8.907 10.117 11.651 14.562
20 7.434 8.260 9.591 10.851 12.443 15.452
21 8.034 8.897 10.283 11.591 13.240 16.344
22 8.643 9.542 10.982 12.338 14.042 17.240
23 9.260 10.196 11.689 13.091 14.848 18.137
24 9.886 10.856 12.401 13.848 15.659 19.037
25 10.520 11.524 13.120 14.611 16.473 19.939
26 11.160 12.198 13.844 13.379 17.292 20.843
27 11.808 12.879 14.573 16.151 18.114 21.749
28 12.461 13.565 15.308 16.928 18.939 22.657
29 13.121 14.257 16.047 17.708 19.768 23.567
30 13.787 14.954 16.791 18.493 20.599 24.478
31 14.458 15.655 17.539 19.281 21.434 25.390
32 15.134 16.362 18.291 20.072 22.271 26.304
33 15.815 17.074 19.047 20.867 23.110 27.219
34 16.501 17.789 19.806 21.664 23.952 28.136
35 17.192 18.509 20.569 22.465 24.797 29.054
36 17.887 19.233 21.336 23.269 25.643 29.973
37 18.586 19.960 22.106 24.075 26.492 30.893
38 19.289 20.691 22.878 24.884 27.343 31.815
39 19.996 21.426 23.654 25.695 28.196 32.737
40 20.707 22.164 24.433 26.509 29.051 33.660
41 21.421 22.906 25.215 27.326 29.907 34.585
42 22.138 23.650 25.999 28.144 30.765 35.510
43 22.859 24.398 26.785 28.965 31.625 36.436
44 23.584 25.148 27.575 29.787 32.487 37.363
45 24.311 25.901 28.366 30.612 33.350 38.291

(Continued)
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Table 4 (continued)
γ

r 0.75 0.90 0.95 0.975 0.99 0.995

1 1.323 2.706 3.841 5.024 6.635 7.879
2 2.773 4.605 5.991 7.378 9.210 10.597
3 4.108 6.251 7.815 9.348 11.345 12.838
4 5.385 7.779 9.488 11.143 13.277 14.860
5 6.626 9.236 11.071 12.833 15.086 16.750
6 7.841 10.645 12.592 14.449 16.812 18.548
7 9.037 12.017 14.067 16.013 18.475 20.278
8 10.219 13.362 15.507 17.535 20.090 21.955
9 11.389 14.684 16.919 19.023 21.666 23.589

10 12.549 15.987 18.307 20.483 23.209 25.188
11 13.701 17.275 19.675 21.920 24.725 26.757
12 14.845 18.549 21.026 23.337 26.217 28.299
13 15.984 19.812 23.362 24.736 27.688 29.819
14 17.117 21.064 23.685 26.119 29.141 31.319
15 18.245 22.307 24.996 27.488 30.578 32.801
16 19.369 23.542 26.296 28.845 32.000 34.267
17 20.489 24.769 27.587 30.191 33.409 35.718
18 21.605 25.989 28.869 31.526 34.805 37.156
19 22.718 27.204 30.144 32.852 36.191 38.582
20 23.828 28.412 31.410 34.170 37.566 39.997
21 24.935 29.615 32.671 35.479 38.932 41.401
22 26.039 30.813 33.924 36.781 40.289 42.796
23 27.141 32.007 35.172 38.076 41.638 44.181
24 28.241 33.196 36.415 39.364 42.980 45.559
25 29.339 34.382 37.652 40.646 44.314 46.928
26 30.435 35.563 38.885 41.923 45.642 48.290
27 31.528 36.741 40.113 43.194 46.963 49.645
28 32.620 37.916 41.337 44.641 48.278 50.993
29 33.711 39.087 42.557 45.722 49.588 52.336
30 34.800 40.256 43.773 46.979 50.892 53.672
31 35.887 41.422 44.985 48.232 51.191 55.003
32 36.973 42.585 46.194 49.480 53.486 56.328
33 38.058 43.745 47.400 50.725 54.776 57.648
34 39.141 44.903 48.602 51.966 56.061 58.964
35 40.223 46.059 49.802 53.203 57.342 60.275
36 41.304 47.212 50.998 54.437 58.619 61.581
37 42.383 48.363 52.192 55.668 59.892 62.883
38 43.462 49.513 53.384 56.896 61.162 64.181
39 44.539 50.660 54.572 58.120 62.428 65.476
40 45.616 51.805 55.758 59.342 63.691 66.766
41 46.692 52.949 56.942 60.561 64.950 68.053
42 47.766 54.090 58.124 61.777 66.206 69.336
43 48.840 55.230 59.304 62.990 67.459 70.616
44 49.913 56.369 60.481 64.201 68.710 71.893
45 50.985 57.505 61.656 65.410 69.957 73.166



Appendix 339

Table 5 Table of Selected Discrete and Continuous Distributions and Some of Their Characteristics

PROBABILITY DENSITY FUNCTIONS IN ONE VARIABLE
Distribution Probability Density Function Mean Variance

Binomial, B(n, p) f (x) =
(

n
x

)
pxqn−x, x = 0, 1, . . . , n; np npq

0 < p < 1, q = 1 − p

Bernoulli, B(1, p) f (x) = pxq1−x, x = 0, 1 p pq

Geometric f (x) = pqx−1, x = 1, 2, . . . ;
1
p

q
p2

0 < p < 1, q = 1 − p

Poisson, P(λ) f (x) = e−λ λx

x! , x = 0, 1, . . . ; λ > 0 λ λ

Hypergeometric f (x) =

(
m
x

)(
n

r − x

)

(
m + n

r

) , where
m r

m + n
m n r(m + n − r)

(m + n)2(m + n − 1)

x = 0, 1, . . . , r
((

m
r

)
= 0, r > m

)

Gamma f (x) = 1
�(α)βα

x α−1 exp
(− x

β

)
, x > 0; αβ αβ2

α, β > 0

Negative exponential f (x) = λ exp(−λx), x > 0; λ > 0; or
1
λ

1
λ2

f (x) = 1
µ

e−x/µ, x > 0; µ > 0 µ µ2

Chi-square f (x) = 1

�
( r

2

)
2r/2

x
r
2 −1 exp

(
− x

2

)
, x > 0; r 2r

r > 0 integer

Normal, N(µ, σ2) f (x) = 1√
2πσ

exp
[
− (x − µ)2

2σ2

]
, µ σ2

x ∈ �; µ ∈ �, σ > 0

Standard normal, N(0, 1) f (x) = 1√
2π

exp
(

−x2

2

)
, x ∈ � 0 1

Uniform, U(α, β) f (x) = 1
β − α

, α ≤ x ≤ β;
α + β

2
(α − β)2

12

−∞ < α < β < ∞
(Continued)
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Table 5 (continued)

PROBABILITY DENSITY FUNCTIONS IN MANY VARIABLES
Distribution Probability Density Function Means Variances

Multinomial f (x1, . . . , x k) = n!
x1!x 2! · · · x k!× np1, . . . , npk np1q1, . . . , npkqk.

px1
1 px 2

2 · · · px k
k , x i ≥ 0 integers, qi = 1 − pi, j = 1, . . . , k

x1 + x2 + · · · + x k = n; pj > 0, j = 1,

2, . . . , k, p1 + p2 + · · · + pk = 1

Bivariate Normal f (x1, x 2) = 1

2πσ1σ2
√

1 − ρ2
exp

(
− q

2

)
, µ1, µ2 σ2

1 , σ2
2

q = 1
1 − ρ2

[(
x1 − µ1

σ1

)2
− 2ρ

(
x1 − µ1

σ1

)

×
(

x 2 − µ2
σ2

)
+

(
x 2 − µ2

σ2

)2]
,

x1, x 2, ∈ �; µ1, µ2 ∈ �, σ1, σ2 > 0, −1 ≤ ρ ≤ 1, ρ = correlation coefficient

k-Variate Normal, N(µ,�) f (x) = (2π)−k/2|�|−1/2× µ1, . . . , µk Covariance matrix: �

exp
[

− 1
2

(x − µ)′�−1(x − µ)
]
,

x ∈ �k; µ ∈ �k,� : k × k

nonsingular symmetric matrix
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Table 5 (continued) Distribution Moment Generating Function

Binomial, B(n, p) M(t) = (pet + q)n, t ∈ �
Bernoulli, B(1, p) M(t) = pet + q, t ∈ �
Geometric M(t) = pet

1 − qet , t < − log q

Poisson, P(λ) M(t) = exp(λet − λ), t ∈ �
Hypergeometric —

Gamma M(t) = 1
(1 − βt)α

, t <
1
β

Negative Exponential M(t) = 1
1 − t/λ

, t < λ; or M(t) = 1
1 − µt

, t <
1
µ

Chi-Square M(t) = 1

(1 − 2t)r/2
, t <

1
2

Normal, N(µ, σ2) M(t) = exp
(

µt + σ2t2

2

)
, t ∈ �

Standard Normal, N(0, 1) M(t) = exp
(

t2

2

)
, t ∈ �

Uniform, U(α, β) M(t) = etβ − etα

t(β − α)
, t ∈ �

Multinomial M(t1, . . . , t k) = (p1et1 + · · · + pketk )n,
t1, . . . , tk ∈ �

Bivariate Normal M(t1, t 2) = exp
[
µ1t1 + µ2t 2

+1
2

(
σ2

1 t21 + 2ρσ1σ2t1t2 + σ2
2 t22

)]
,

t1, t2 ∈ �
k-Variate Normal, N(µ, �) M(t) = exp

(
t′µ + 1

2
t′�t

)
,

t ∈ �k
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Table 6 Handy Reference to Some Formulas Used in the Text

1.
∑n

k=1 k = n(n+1)
2 ,

∑n
k=1 k2 = n(n+1)(2n+1)

6 ,
∑n

k=1 k3 = (n(n+1)
2

)2.

2. (a + b)n = ∑n
x=0

(n
x
)
axbn−x.

3. (a1 + · · · + ak)n = ∑ n!
x1!...xk!a

x1
1 . . . axk

k where the summation is over all ≥ 0
integers x1, . . . , xk with x1 + · · · + xk = n.

4.
∑∞

n=k rn = rk

1−r , k = 0, 1, . . . , |r| < 1.

5.
∑∞

n=1 nrn = r
(1−r)2 ,

∑∞
n=2 n(n − 1)rn = 2r2

(1−r)3 , |r| < 1.

6. ex = limn→∞
(
1 + x

n
)n, ex = limn→∞

(
1 + xn

n
)n, xn −→n→∞x, ex = ∑∞

n=0
xn

n! , x ∈ �.

7. (a u(x) + b v(x))′ = a u′(x) + b v′(x), (u(x)v(x))′ = u′(x)v(x) + u(x)v′(x),
(u(x)

v(x)
)′ = u′(x)v(x)−u(x)v′(x)

v2(x)
, d

dx u(v(x)) = ( d
v(x) u((x))

)( d
dx v(x)

)
.

8. ∂2

∂x∂y w(x, y) = ∂2

∂y∂x w(x, y) (under certain conditions).

9. d
dt

∑∞
n=1 w(n, t) = ∑∞

n=1
∂
∂t w(n, t) (under certain conditions).

10. d
dt

∫ b
a w(x, t)dx = ∫ b

a ( ∂
∂t w(x, t))dx (−∞ ≤ a < b ≤ ∞) (under certain conditions).

11.
∑∞

n=1(c xn + d yn) = c
∑∞

n=1 xn + d
∑∞

n=1 yn.

12.
∫ b
a (c u(x) + d v(x))dx = c

∫ b
a u(x)dx + d

∫ b
a v(x)dx (−∞ ≤ a < b ≤ ∞).

13.
∫ b
a u(x)dv(x) = u(x)v(x) |ba − ∫ b

a v(x)du(x) (−∞ ≤ a < b ≤ ∞).

In particular:
∫ b
a xndx = xn+1

n+1 |ba= bn+1−an+1

n+1 , (n 	= −1),
∫ b
a

dx
x = log x |ba= log b − log a (0 < a < b, log x is the natural logarithm of x),

∫ b
a exdx = ex |ba= eb − ea.

14. If u′(x0) = 0, then x0 maximizes u(x) if u′′(x0) < 0, and x0 minimizes
u(x) if u′′(x0) > 0.
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Table 6 (continued)

15. Let ∂
∂x w(x, y) | x=x0y=y0

= 0, ∂
∂y w(x, y) | x=x0y=y0

= 0, and set

c11 = ∂2

∂x2 w(x, y) | x=x0y=y0
, c12 = ∂2

∂x∂y w(x, y) | x=x0y=y0
= c21 = ∂2

∂y∂x w(x, y) | x=x0y=y0
,

c22 = ∂2

∂y2 w(x, y) | x=x0y=y0
= 0, C =

(
c11 c12
c21 c22

)
.

Then (x0, y0) maximizes w(x, y) if the matrix C is negative definite; i.e.,
for all real λ1, λ2 not both 0, it holds:

(λ1, λ2)
(

c11 c12
c21 c22

) (
λ1
λ2

)
= λ2

1c11 + 2λ1λ2c12 + λ2
2c22 < 0;

(x0, y0) minimizes w(x, y) if the matrix C is positive definite; i.e.,

λ2
1c11 + 2λ1λ2c12 + λ2

2c22 < 0 with λ1, λ2 as above.

16. Criteria analogous to those in #15 hold for a function in k variables w(x1, . . . , xk).



Some Notations
and Abbreviations

� real line
�k, k ≥ 1 k-dimensional Euclidean space
↑, ↓ increasing (nondecreasing) and decreasing (nonincreasing),

respectively
S sample space; also, sure (or certain) event
∅ empty set; also, impossible event
A ⊆ B event A is contained in event B (event A implies event B)
Ac complement of event A
A ∪ B union of events A and B
A ∩ B intersection of events A and B
A − B difference of events A and B (in this order)
r.v. random variable
IA indicator of the set A: IA(x) = 1 if x ∈ A, IA(x) = 0 if x /∈ A
(X ∈ B) = X−1(B) inverse image of the set B under X : X−1(B) = {s ∈ S; X(s) ∈ B}
X(S) range of X
P probability function (measure)
P(A) probability of the event A
PX probability distribution of X (or just distribution of X )
FX distribution function (d.f.) of X
fX probability density function ( p.d.f.) of X
P(A|B) conditional probability of A, given B(n
k
)

combinations of n objects taken k at a time
Pn,k permutations of n objects taken k at a time
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n! n factorial
EX or µ(X ) or µX or just µ expectation (mean value, mean) of X
Var(X) or σ2(X) or σ2

X or just σ2 variance of X√
Var(X) or σ (X) or σX or just σ standard deviation (s.d.) of X

MX or just M moment generating function (m.g.f.) of X
B(n, p) binomial distribution with parameters n and p
P(λ) Poisson distribution with parameter λ

χ2
r chi-square distribution with r degrees of freedom (d.f.)

N(µ, σ2) Normal distribution with parameters µ and σ2

� distribution function (d.f.) of the standard N(0, 1) distribution
U(α, β) or R(α, β) Uniform (or rectangular) distribution with parameters α and β

X ∼ B(n, p) etc. the r.v. X has the distribution indicated
χ2

r;α the point for which P(X > χ2
r;α) = α, X ∼ χ2

r
zα the point for which P(Z > zα) = α, where Z ∼ N(0, 1)
PX1,..., Xn or PX joint probability distribution of the r.v.’s X1, . . . , Xn or probability

distribution of the random vector X
FX1,..., Xn or FX joint d.f. of the r.v.’s X1, . . . , Xn or d.f. of the random vector X
fX1,..., Xn or fX joint p.d.f. of the r.v.’s X1, . . . , Xn or p.d.f. of the random vector X
MX1,..., Xn or MX joint m.g.f. of the r.v.’s X1, . . . , Xn or m.g.f. of the random vector X
i.i.d. (r.v.’s) independent identically distributed (r.v.’s)
fX |Y (·|Y = y) or fX |Y (·|y) conditional p.d.f. of X , given Y = y
E(X |Y = y) conditional expectation of X , given Y = y
Var(X |Y = y) or σ2(X |Y = y) conditional variance of X , given Y = y
Cov(X , Y ) covariance of X and Y
ρ(X , Y ) or ρX ,Y correlation coefficient of X and Y
t r (Student’s) t distribution with r degrees of freedom (d.f.)
t r;α the point for which P(X > t r;α) = α, X ∼ t r
Fr1,r2 F distribution with r1 and r2 degrees of freedom (d.f.)
Fr1,r2;α the point for which P(X > Fr1,r2;α) = α, X ∼ Fr1,r2
X( j) or Yj jth order statistic of X1, . . . , Xn

P−→,
d−→,

q.m.−→ convergence in probability, distribution, quadratic mean,
respectively

WLLN Weak Law of Large Numbers
CLT Central Limit Theorem
θ letter used for a one-dimensional parameter
θ symbol used for a multidimensional parameter
	 letter used for a parameter space
ML maximum likelihood
MLE maximum likelihood estimate
UMV uniformly minimum variance
UMVU uniformly minimum variance unbiased
LS least squares
LSE least squares estimate
H0 null hypothesis
HA alternative hypothesis
ϕ letter used for a test function
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α letter used for level of significance
β(θ) or β(θ) probability of type II error at θ(θ)
π(θ) or π(θ) power of a test at θ(θ)
MP most powerful (test)
UMP uniformly most powerful (test)
LR likelihood ratio
λ = λ(x1, . . . , x n) likelihood ratio test function
log x the logarithm of x(>0) with base always e whether it is so explicitly

stated or not



Answers to Even-Numbered
Exercises

Chapter 2

Section 2.2

2.2 (i) S = {(r, r, r), (r, r, b), (r, r, g), (r, b, r), (r, b, b), (r, b, g), (r, g, r),
(r, g, b), (r, g, g), (b, r, r), (b, r, b), (b, r, g), (b, b, r), (b, b, b),
(b, b, g), (b, g, r), (b, g, b), (b, g, g), (g, r, r), (g, r, b), (g, r, g),
(g, b, r), (g, b, b), (g, b, g), (g, g, r), (g, g, b), (g, g, g)}.

(ii) A = {(r, b, g), (r, g, b), (b, r, g), (b, g, r), (g, r, b), (g, b, r)},
B = {(r, r, b), (r, r, g), (r, b, r), (r, b, b), (r, g, r), (r, g, g), (b, r, r),

(b, r, b), (b, b, r), (b, b, g), (b, g, b), (b, g, g), (g, r, r),
(g, r, g), (g, b, b), (g, b, g), (g, g, r), (g, g, b)},

C = A ∪ B = S − {(r, r, r), (b, b, b), (g, g, g)}.
2.4 (i) Denoting by (x1, x2) the cars sold in the first and the second sale,

we have:

S = {(a1, a1), (a1, a2), (a1, a3), (a2, a1), (a2, a2), (a2, a3), (a3, a1),
(a3, a2), (a3, a3), (a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1),
(a3, b2), (a1, c), (a2, c), (a3, c), (b1, a1), (b1, a2), (b1, a3),

347
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(b2, a1), (b2, a2), (b2, a3), (b1, b1), (b1, b2), (b2, b1), (b2, b2),
(b1, c), (b2, c), (c, a1), (c, a2), (c, a3), (c, b1), (c, b2), (c, c)}.

(ii) A = {(a1, a1), (a1, a2), (a1, a3), (a2, a1), (a2, a2), (a2, a3), (a3, a1),
(a3, a2), (a3, a3)},

B = {(a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1), (a3, b2)},
C = B ∪ {(b1, a1), (b1, a2), (b1, a3), (b2, a1), (b2, a2), (b2, a3)},
D = {(c, b1), (c, b2), (b1, c), (b2, c)}.

2.6 E = Ac, F = C − D = C ∩ Dc, G = B − C = B ∩ Cc,
H = Ac − B = Ac ∩ Bc = (A ∪ B)c, I = Bc.

2.8 (i) B0 = Ac
1 ∩ Ac

2 ∩ Ac
3.

(ii) B1 = (A1 ∩ Ac
2 ∩ Ac

3) ∪ (Ac
1 ∩ A2 ∩ Ac

3) ∪ (Ac
1 ∩ Ac

2 ∩ A3).

(iii) B2 = (A1 ∩ A2 ∩ Ac
3) ∪ (A1 ∩ Ac

2 ∩ A3) ∪ (Ac
1 ∩ A2 ∩ A3).

(iv) B3 = A1 ∩ A2 ∩ A3.

(v) C = B0 ∪ B1 ∪ B2.

(vi) D = B1 ∪ B2 ∪ B3 = A1 ∪ A2 ∪ A3.

2.10 If A = ∅, then A ∩ Bc = ∅, Ac∩B = S ∩ B = B, so that (A ∩ Bc) ∪
(Ac ∩ B) = B for every B. Next, let (A ∩ Bc) ∪ (Ac ∩ B) = B and take
B = ∅ to obtain A ∩ Bc = A, Ac ∩ B = ∅, so that A = ∅.

2.12 A ⊆ B implies that, for every s ∈ A, we have s ∈ B, whereas B ⊆ C
implies that, for every s ∈ B, we have s ∈ C. Thus, for every s ∈ A,
we have s ∈ C, so that A ⊆ C.

2.14 For s ∈ ∪j Aj, let j0 ≥ 1 be the first j for which s ∈ Aj0 . Then, if
j0 = 1, it follows that s ∈ A1 and therefore s belongs in the right-
hand side of the relation. If j0 > 1, then s /∈ Aj, j = 1, . . . , j0 − 1, but
s ∈ Aj0 , so that s ∈ Ac

1 ∩ · · · ∩ Ac
j0−1 ∩ Aj0 and hence s belongs to the

right-hand side of the relation. Next, let s belong to the right-hand
side event. Then, if s ∈ A1, it follows that s ∈ ∪jAj. If s /∈ Aj for
j = 1, . . . , j0 − 1 but s ∈ Aj0 , it follows that s ∈ ∪jAj. The identity is
established.

2.16 (i) Since −5 + 1
n + 1 < −5 + 1

n and 20 − 1
n < 20 − 1

n + 1 , it follows

that (−5 + 1
n , 20 − 1

n ) ⊂ (−5 + 1
n + 1 , 20 − 1

n + 1 ), or An ⊂ An + 1,

so that {An} is increasing. Likewise, 7 + 3
n + 1 < 7 + 3

n , so

that (0, 7 + 3
n + 1 ) ⊂ (0, 7 + 3

n ), or Bn+1 ⊂ Bn; thus, {Bn} is
decreasing.
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(ii) ∪∞
n=1An = ∪∞

n=1(−5 + 1
n , 20 − 1

n ) = (−5, 20), and ∩∞
n=1Bn =

∩∞
n=1(0, 7 + 3

n ) = (0, 7].

Section 2.3

3.2 Each one of the r.v.’s Xi, i = 1, 2, 3 takes on the values: 0, 1, 2, 3 and
X1 + X2 + X3 = 3.

3.4 X takes on the values: −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7,

(X ≤ 2) = {(−3, 0), (−3, 1), (−3, 2), (−3, 3), (−3, 4), (−2, 0), (−2, 1),
(−2, 2), (−2, 3), (−2, 4), (−1, 0), (−1, 1), (−1, 2), (−1, 3),
(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)},

(3 < X ≤ 5) = (4 ≤ X ≤ 5) = (X = 4 or X = 5)
= {(0, 4), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2)},

(X > 6) = (X ≥ 7) = {(3, 4)}.
3.6 (i) S = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2),

(3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}.
(ii) The values of X are: 2, 3, 4, 5, 6, 7, 8.

(iii) (X ≤ 3) = (X = 2 or X = 3) = {(1, 1), (1, 2), (2, 1)},
(2 ≤ X < 5) = (2 ≤ X ≤ 4) = (X = 2 or X = 3 or X = 4) =
{(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1)}, (X > 8) = ∅.

3.8 (i) S = [8:00, 8:15].
(ii) The values of X consist of the interval [8:00, 8:15].

(iii) The event described is the interval [8:10, 8:15].
Section 2.4

4.2 (i) 3 × 4 × 5 = 60; (ii) 1 × 2 × 5 = 10; (iii) 3 × 4 × 1 = 12.

4.4 (i) 3 × 2 × 3 × 2 × 3 = 108; (ii) 3 × 2 × 2 × 1 × 1 = 12.

4.6 2n; 25 = 32, 210 = 1,024, 215 = 32,768, 220 = 1,048,576,
225 = 33,554,432.

4.8 The required probability is: 1
360 	 0.003.

4.10 Start with
(n + 1
m + 1

)/( n
m

)
, expand in terms of factorial, do the cancella-

tions, and you end up with (n + 1)/(m + 1).

4.12 Selecting r out of m+n in
(m + n

r

)
ways is equivalent to selecting x out

of m in
(m

x

)
ways and r−x out of n in

( n
r−x

)
ways where x = 0, 1, . . . , r.

Then
(m + n

r

) =∑r
x=0
(m

x

)( n
r−x

)
.

4.14 The required number is
(n

3

)
, which for n = 10 becomes

(10
3

) = 120.

4.14 The required number is found by pairing out the n countries in(n
2

)
ways and then multiplying this by 2 to account for the 2
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ambassadors involved. Thus,
(n

2

) × 2 = n (n − 1)
2! × 2 = n (n − 1)

2 × 2 =
n (n − 1). For the given values of n, we have, respectively, 9 × 10 =
90, 49 × 50 = 2,450, 99 × 100 = 9,900.

Chapter 3

Section 3.2

2.2 Since A∪B ⊇ A, we have P(A∪B) ≥ P(A) = 3
4 . Also, A∩B ⊆ B implies

P(A ∩ B) ≤ P(B) = 3
8 . Finally, P(A ∩ B) = P(A) + P(B) − P(A ∪ B) =

3
4 + 3

8 − P(A ∪ B) = 9
8 − P(A ∪ B) ≥ 9

8 − 1 = 1
8 .

2.4 We have: Ac ∩ B = B ∩ Ac = B − A and A ⊂ B. Therefore P(Ac ∩ B) =
P(B − A) = P(B) − P(A) = 5

12 − 1
4 = 1

6 	 0.167. Likewise,
Ac ∩ C = C − A with A ⊂ C, so that P(Ac ∩ C) = P(C − A) =
P(C) − P(A) = 7

12 − 1
4 = 1

3 	 0.333, Bc ∩ C = C − B with B ⊂ C,
so that P(Bc ∩ C) = P(C − B) = P(C) − P(B) = 7

12 − 5
12 = 1

6 	 0.167.
Next, A∩Bc ∩Cc = A∩ (Bc ∩Cc) = A∩ (B∪C)c = A∩Cc = A−C = ∅,
so that P(A ∩ Bc ∩ Cc) = 0, and Ac ∩ Bc ∩ Cc = (A ∪ B ∪ C)c = Cc, so
that P(Ac ∩ Bc ∩ Cc) = P(Cc) = 1 − P(C) = 1 − 7

12 = 5
12 	 0.417.

2.6 The event A is defined as follows: A = “x = 7n, n = 1, . . . , 28,” so that
P(A) = 28

200 = 7
50 = 0.14. Likewise, B = “x = 3n + 10, n = 1, . . . , 63,”

so that P(B) = 63
200 = 0.315, and C = “x2 + 1 ≤ 375” = “x2 ≤

374” = “x ≤ √
374” = “x ≤ 19,” and then P(C) = 19

200 = 0.095.

2.8 Denote by A, B, and C the events that a student reads news mag-
azines A, B, and C, respectively. Then the required probability is
P(Ac ∩ Bc ∩ Cc). However,
P(Ac∩Bc∩Cc) = P((A∪B∪C)c)=1−P(A∪B∪C)

= 1−[P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)

−P(B∩C)+P(A∩B∩C)]
= 1−(0.20+0.15+0.10−0.05−0.04−0.03+0.02)

= 1−0.35=0.65.

2.10 From the definition of A,B, and C, we have:

A={(0,4),(0,6),(1,3),(1,5),(1,9),(2,2),(2,4),(2,8),(3,1),(3,3),
(3,7),(4,0),(4,2),(4,6),(5,1),(5,5),(6,0),(6,4)},

B={(0,0),(1,2),(2,4),(3,6),(4,8)},
C ={(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,0),

(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,0),(2,1),
(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,0),(3,1),(3,2),
(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,0),(4,1),(4,2),(4,3),
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(4,5),(4,6),(4,7),(4,8),(4,9),(5,0),(5,1),(5,2),(5,3),(5,4),
(5,6),(5,7),(5,8),(5,9),(6,0),(6,1),(6,2),(6,3),(6,4),(6,5),
(6,7),(6,8),(6,9)},

or

Cc ={(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}.
Therefore, since the number of points in S is 7×10=70, we have:

P(A) = 18
70

= 9
35

	0.257, P(B)= 5
70

= 1
14

	0.071,

P(C) = 63
70

= 9
10

=0.9, or P(C)=1−P(Cc)=1− 7
70

= 63
70

=0.9.

2.12 The required probability is: 1
360 	0.003.

2.14 The required probability is:
(n−1

m )

(n
m)

=1− m
n .

2.16 The 500 bulbs can be chosen in
(2,000

500

)
ways, and x defective can be

chosen in
(200

x

)
ways, whereas the 500−x good bulbs can be chosen

in
( 1,800
500−x

)
ways. Since the probability of having exactly x defective

bulbs among the 500 chosen is:
(200

x

)( 1,800
500−x

)/(2,000
500

)
, the required

probability is given by: 1
(2,000

500 )

∑25
x=0
(200

x

)( 1,800
500−x

)
.

2.18
GENDER

Class Male Female Totals

Freshmen 40 60 100
Sophomore 30 50 80
Junior 24 46 70
Senior 12 28 40

Totals 106 184 290

The number of ways of selecting 12 students is:
(290

12

)
. Next, the

number of ways of selecting the committee members under each one
of the requirements in parts (i)–(iv), and the respective probabilities
are:

(i) (184
7 )(106

5 )

(290
12 )

	0.218.

(ii) (100
3 )(80

3 )(70
3 )(40

3 )

(290
12 )

	0.012.

(iii) (60
2 )(40

1 )(50
2 )(30

1 )(46
2 )(24

1 )(28
2 )(12

1 )

(290
12 )

	0.0005.

(iv) 1−P(no seniors)=1− (250
12 )

(290
12 )

	1−0.162=0.838.
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2.20 We have:

(i) P(S∩L) = 1−P[(S∩L)c]=1−P(Sc∪Lc)
= 1−[P(Sc)+P(Lc)−P(Sc∩Lc)]
= 1−[1−P(S)+1−P(L)−P(Sc∩Lc)]
= P(S)+P(L)+P(Sc∩Lc)−1
= 0.25+0.35+0.45−1=0.05.

(ii) P(S∪L) = P(S)+P(L)−P(S∩L)
= 0.25+0.35−0.05=0.55.

Section 3.3

3.2 (i) For 0 < x ≤ 2, f (x) = d
dx (2c(x2 − 1

3x3)) = 2c(2x − x2). Thus,
f (x) = 2c(2x − x2), 0 < x ≤ 2 (and 0 elsewhere).

(ii) From
∫ 2

0 2c(2x − x2) dx = 1, we get 8c
3 = 1, so that c = 3/8.

3.4 (i)

F(x)

1

0.8

0.6

0.4

0.2

0
4 5 6 7 8 9

x

(ii) P(X ≤ 6.5) = 0.7, P(X > 8.1) = 1 − P(X ≤ 8.1) = 1 − 0.9 = 0.1,
P(5 < X < 8) = P(X < 8) − P(X ≤ 5) = 0.7 − 0.4 = 0.3.

3.6 (i) We need two relations which are provided by:
∫ 1

0 (cx+d) dx = 1 and
∫ 1

1/2(cx + d) dx = 1/3, or: c + 2d = 2 and 9c + 12d = 8, and hence
c = −4

3 , d = 5
3 .

(ii) For 0 ≤ x ≤ 1, F(x) = ∫ x
0 (−4

3 t + 5
3 ) dt = −2x2

3 + 5x
3 . Thus,

F(x) =






0, x < 0

−2x 2

3 + 5x
3 , 0 ≤ x ≤ 1

1, x > 1.

3.8 From
∑∞

x=0 cαx = c
∑∞

x=0 αx = c × 1
1−α

= 1, we get c = 1 − α.

3.10 (i)
∑∞

x=0 c( 1
3 )x = c[1 + 1

3 + ( 1
3 )2 + · · · ] = c

1− 1
3

= 3c
2 = 1 and c = 2

3 .

(ii) P(X ≥ 3) = 2
3
∑∞

x=3(1
3 )x = 2

3 × 1/33

2/3 = 1
27 	 0.037.
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3.12 (i)
∫∞

0 ce−cxdx = − ∫∞
0 de−cx = − e−cx|∞0 = − (0−1) = 1 for every c > 0.

(ii) P(X ≥ 10) =∫∞
10 ce−cxdx = −e−cx|∞10 = −(0 − e−10c) = e−10c.

(iii) P(X ≥ 10) = 0.5 implies e−10c = 1
2 , so that −10c = −log 2 and

c = 1
10 log 2 	 0.693

10 	 0.069.

3.14 (i) From
∑∞

j=0
c

3 j = c
∑∞

j=0
1
3 j = c × 1

1− 1
3

= 3c
2 = 1, we get c = 2

3 .

(ii) P(X ≥ 3) = c
∑∞

j≥3
1
3 j = c× 1/33

1− 1
3

= c× 1
2×32 = 2

3× 1
2×32 = 1

33 = 1
27 	 0.037.

(iii) P(X = 2k + 1, k = 0, 1, . . .) = c
∑∞

k=0
1

32k+1 = c( 1
3 + 1

33 + 1
35 + · · · ) =

c × 1/3
1− 1

9
= c × 3

8 = 2
3 × 3

8 = 0.25.

(iv) P(X = 3k + 1, k = 0, 1, . . .) = c
∑∞

k=0
1

33k+1 = c( 1
3 + 1

34 + 1
37 + · · · ) =

c × 1/3
1− 1

27
= c × 9

26 = 2
3 × 9

26 = 3
13 	 0.231.

3.16 (i) P(no items are sold) = f (0) = 1
2 = 0.5.

(ii) P(more than 3 items are sold) =∑∞
x=4(1

2 )x+1 = ( 1
2 )5 × 1

1− 1
2

= 1
16 =

0.0625.
(iii) P(an odd number of items are sold) = ( 1

2 )2 + ( 1
2 )4 + ( 1

2 )6 + · · · =
( 1

2 )2 × 1
1− 1

4
= 1

3 	 0.333.

3.18 (i) Since
∫∞

0 c2 xe−cxdx = −cxe−cx|∞0 − e−cx|∞0 = 1 for all c > 0, the
given function is a p.d.f. for all c > 0.

(ii) From part (i),

P(X ≥ t) = −c x e−cx|∞t −e−cx|∞t = c(te−ct + e−ct) = c(t + 1)
ect .

(iii) Here c(t + 1) = 0.2 × 11 = 2.2, ct = 0.2 × 10 = 2, so that c(t+1)
ect =

2.2
e2 	 0.297.

3.20 We have:
P(X > x0) = ∫ 1

x0
n(1 − x)n−1dx = − ∫ 1

x0
d(1 − x)n

= −(1−x)n|1x0
= (1−x0)n, and it is given that this probability

is 1/102n. Thus,
(1 − x0)n = 1

102n , or 1 − x0 = 1
100 and x0 = 0.99.

3.22 If s ∈ ∪i(X ∈ Bi), then s ∈ (X ∈ Bi) for at least one i, so that X(s) ∈ Bi.
Then X(s) ∈ (∪iBi) and s ∈ (X ∈ (∪iBi)). Thus, the left-hand side
is contained in the right-hand side. Next, let s ∈ (X ∈ (∪iBi)). Then
X(s) ∈ ∪iBi, so that X(s) ∈ Bi for at least one i. Hence s ∈ (X ∈ Bi),
and then s ∈ ∪i(X ∈ Bi). Thus, the right-hand side is contained in the
left-hand side. The proof is completed.

3.24 For x ∈ �, FX (x) = PX ((−∞, x]) and hence 0 ≤ FX (x) ≤ 1; for x1 < x2,
we have (−∞, x1] ⊂ (−∞, x2], so that PX ((−∞, x1]) ≤ PX ((−∞, x2]),
or FX (x1) ≤ FX (x2); as n → ∞, xn ↓ x implies (−∞, xn] ↓ (−∞, x],
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so that PX ((−∞, xn]) ↓ PX ((−∞, x]) (by Theorem 2), or FX (xn) ↓ FX (x),
which shows that FX is right-continuous; next, as n → ∞ and xn ↑ ∞,
it follows that (−∞, xn] ↑ �, so that PX ((−∞, xn]) ↑ PX (�) = 1 (by
Theorem 2, again), or FX (xn) ↑ 1, or FX (∞) = 1; finally, as xn ↓ −∞,
we have (−∞, xn] ↓ ∅, hence PX ((−∞, xn]) ↓ PX (∅) = 0, or FX (xn) ↓ 0,
or FX (−∞) = 0.

3.26 There is no contradiction between fX (x) = P(X = x) = 0 for all x ∈ �,
and

∫
� fX (x)dx = 1, as � = ∪x∈�{x} and this union consists of uncount-

ably many terms. Recall that property (P3) of the Axiomatic Definition
of Probability stipulates additivity of probabilities for countably many
terms only.

Chapter 4

Section 4.1

1.2 We have: P(A|A ∪ B) = P(A ∩ (A ∪ B))
P(A ∪ B) = P(A)

P(A ∪ B) = P(A)
P(A) + P(B) (since

A ∩ B = ∅), and likewise, P(B|A ∪ B) = P(B ∩ (A ∪ B))
P(A ∪ B) = P(B)

P(A) + P(B) .

1.4 (i) P(b2|b1) = 15/26 	 0.577; (ii) P(g2|g1) = 13/24 	 0.542;
(iii) P(b2) = 0.52; (iv) P(b1 ∩ g2) = 0.22.

1.6 Parts (i) and (ii) follow without any calculations by using the fact that
P(·|B) and P(·|C) are probability functions, or directly as follows:

(i) P(Ac|B) = P(Ac ∩ B)
P(B) = P(B − A ∩ B)

P(B) = P(B) − P(A ∩ B)
P(B) = 1 − P(A ∩ B)

P(B)
= 1 − P(A|B).

(ii) P(A ∪ B|C) = P((A ∪ B) ∩ C)
P(C) = P((A ∩ C) ∪ (B ∩ C))

P(C)

= P(A ∩ C) + P(B ∩ C) − P(A ∩ B ∩ C)
P(C) = P(A ∩ C)

P(C) + P(B ∩ C)
P(C) − P((A ∩ B) ∩ C)

P(C)
= P(A|C) + P(B|C) − P(A ∩ B|C).

(iii) In the sample space S = {HHH, HHT, HTH, THH, HTT, THT,
TTH,TTT } with all outcomes being equally likely, define the
events:
A = “the # of H’s is ≤2” = {TTT, TTH, THT, HTT, THH,

HTH, HHT},
B = “the # of H’s is >1” = {HHT, HTH, THH, HHH}.
Then Bc = {HTT,THT,TTH,TTT }, A∩Bc = Bc, A∩B = {HHT,
HTH,THH }, so that:

P(A|Bc) = P(A ∩ Bc)
P(Bc) = P(Bc)

P(Bc) = 1 and 1 − P(A|B) = 1 − P(A ∩ B)
P(B) =

1 − 3/8
4/8 = 1 − 3

4 = 1
4 . Thus, P(A|Bc) �= 1 − P(A|B).

(iv) In the sample space S = {1, 2, 3, 4, 5} with all outcomes being
equally likely, consider the events A = {1, 2}, B = {3, 4}, and
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C = {2, 3}, so that A ∩ B = ∅ and A ∪ B = {1, 2, 3, 4}, Then:

P(C|A ∪ B) = P(C ∩ (A ∪ B))
P(A ∪ B) = 2/5

4/5 = 2
4 = 1

2 , whereas

P(C|A) = P(A ∩ C)
P(A) = 1/5

2/5 = 1
2 , P(C|B) = P(B ∩ C)

P(B) = 1/5
2/5 = 1

2 , so that
P(C|A ∪ B) �= P(C|A) + P(C|B).

1.8 For n = 2, the theorem is true since P(A2|A1) = P(A1 ∩ A2)
P(A1) yields

P(A1∩A2) = P(A2|A1)P(A1). Next, assume P(A1∩· · ·∩Ak) = P(Ak|A1∩
· · · ∩ Ak−1) · · · P(A2|A1)P(A1) and show that P(A1∩ · · · ∩Ak+1) =
P(Ak+1|A1 ∩ · · · ∩ Ak)P(Ak|A1 ∩ · · · ∩ Ak−1) · · · P(A2|A1)P(A1). Indeed,
P(A1 ∩ · · · ∩ Ak+1) = P((A1 ∩ · · · ∩ Ak) ∩ Ak+1) = P(Ak+1|A1 ∩ · · · ∩
Ak)P(A1∩· · ·∩Ak) (by applying the theorem for two events A1∩· · ·∩Ak
and Ak+1) = P(Ak+1|A1∩· · ·∩Ak)P(Ak|A1∩· · ·∩Ak−1) · · · P(A2|A1)P(A1)
(by the induction hypothesis).

1.10 With obvious notation, we have: P(1st red and 4th red) =
P(R1∩R2∩R3∩R4)+P(R1∩R2∩B3∩R4)+P(R1∩B2∩R3∩R4)+P(R1∩
B1∩B2∩R4) = P(R4|R1∩R2∩R3)P(R3|R1∩R2)P(R2|R1)P(R1) + P(R4|
R1 ∩ R2 ∩ B3)P(B3|R1 ∩ R2)P(R2|R1)P(R1)+P(R4|R1 ∩B2 ∩R3)P(R3|
R1 ∩B2)P(B2|R1)P(R1)+P(R4|R1 ∩B1 ∩B2)P(B2|R1 ∩B1)P(B1|R1)×
P(R1) = 7

12 × 8
13 × 9

14 × 10
15 + 8

12 × 5
13 × 9

14 × 10
15 + 8

12 × 9
13 ×

5
14 × 10

15 + 9
12 × 4

13 × 5
14 × 10

15 = 1
12×13×14×15 (7 × 8 × 9 × 10 +

5 × 8 × 9 × 10 × 2 + 4 × 5 × 9 × 10)
= 9×10×156

12×13×14×15 = 3
7 	 0.429.

1.12 (i) P(+) = 0.01188; (ii) P(D|+) = 190
1188 	 0.16.

1.14 Let I = “switch I is open,” II = “switch II is open,” S = “signal
goes through.” Then: (i) P(S ) = 0.48; (ii) P( I|S c) = 5

13 	 0.385;
(iii) P( II|S c) = 10

13 	 0.769.

1.16 With F = “an individual is female,” M = “an individual is male,”
C = “an individual is color-blind,” we have:
P(F) = 0.52, P(M) = 0.48, P(C|F) = 0.25, P(C|M) = 0.05, and therefore
P(C) = 0.154, P(M|C) = 12

77 	 0.156.

1.18 With obvious notation, we have:
(i) P(D) = 0.029; (ii) P( I|D) = 12

29 	 0.414; (iii) P( II|D) = 9
29 	 0.310,

and P( III|D) = 8
29 	 0.276.

1.20 (i) P(X > t) = ∫∞
t λe−λxdx = − ∫∞

t de−λx = −e−λx|∞t = e−λt.

(ii) P(X > s + t|X > s) = P(X > s + t, X > s)
P(X > s)

= P(X > s + t)
P(X > s)

= e−λ(s + t)

e−st (by part (i))

= e−λt.
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(iii) The conditional probability that X is greater than t units beyond
s, given that it has been greater than s, does not depend on s and
is the same as the (unconditional) probability that X is greater
than t. That is, this distribution has some sort of “memoryless”
property.

1.22 For i = 1, 2, 3, let Si =“the card drawn the ith time is a spade.”
Then the required probability is: P(S1 | S2 ∩ S3) = P(S1∩S2∩S3)

P(S2∩S3) =
11
50 	 0.22.

1.24 It is given that: P(D) = 0.01, P(+|D) = 0.95, P(+|Dc) = 0.005. Then:
(i) P(+) = 0.01445; (ii) P(D|+) = 190

289 	 0.657.

Section 4.2

2.2 Here P(A) = P(A ∩ A) = P(A)P(A) = [P(A)]2, and this happens if
P(A) = 0, whereas, if P(A) �= 0, it happens only if P(A) = 1.

2.4 Since P(A1 ∩ A2) = P(A1)P(A2), we have to show that:

P(A1 ∩ (B1 ∪ B2)) = P(A1)P(B1 ∪ B2), P(A2 ∩ (B1 ∪ B2))

= P(A2)P(B1 ∪ B2), P(A1 ∩ A2 ∩ (B1 ∪ B2))

= P(A1)P(A2)P(B1 ∪ B2).
Indeed, P(A1 ∩ (B1 ∪ B2)) = P((A1 ∩ B1) ∪ (A1 ∩ B2))

= P(A1 ∩ B1) + P(A1 ∩ B2) = P(A1)P(B1) + P(A1)P(B2)

= P(A1)P(B1 ∪ B2), and similarly for P(A2 ∩ (B1 ∪ B2)).
Finally,

P(A1 ∩ A2 ∩ (B1 ∪ B2)) = P((A1 ∩ A2 ∩ B1) ∪ (A1 ∩ A2 ∩ B2))

= P(A1 ∩ A2 ∩ B1) + P(A1 ∩ A2 ∩ B2)

= P(A1)P(A2)P(B1) + P(A1)P(A2)P(B2)

= P(A1)P(A2)P(B1 ∪ B2).

2.6 (i) Clearly, A = (A∩B∩C)∪(A∩Bc∩C)∪(A∩B∩Cc)∪(A∩Bc∩Cc) and
hence P(A) = 0.6875. Likewise, P(B) = 0.4375, P(C) = 0.5625.

(ii) A, B, and C are not independent.
(iii) P(A ∩ B) = 4

16 , and then P(A|B) = 4
7 	 0.571.

(iv) A and B are not independent.

2.8 (i) S={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}, A={HHH,
TTT} with P(A) = p3 + q3 (q = 1 − p).

(ii) P(A) = 0.28.

2.10 (i) c = 1/25.
(ii) See figure.
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0 5 10

0.2

x

f(x)

(iii) P(A) = P(X > 5) = 0.50, P(B) = P(5 < X < 7.5) = 0.375.
(iv) P(B|A) = 0.75; (v) A and B are not independent.

2.12 (a) (i) (nR
n )3; (ii) 1 − ( nB+nW

n )3; (iii) 6nRnBnW
n3 .

(b) (i) (
nR
3 )

(n
3)

; (ii) 1 − (
nB+nW

3 )

(n
3)

; (iii)
(

nR
1 )(

nB
1 )(

nW
1 )

(n
3)

.

2.14 With obvious notations, we have:

(i) P(B) = (m1n2 + n1m2 + 2n1n2)/2(m1 + n1)(m2 + n2).
(ii) P(W ) = (m1n2 + n1m2 + 2m1m2)/2(m1 + n1)(m2 + n2).

For the given values of m1, m2, n1, and n2, we have:

P(B) = 61
120

	 0.508, P(W ) = 59
120

	 0.492.

2.16 (i) P(no circuit is closed) = (1 − p1) · · · (1 − pn).
(ii) P(at least 1 circuit is closed) = 1 − (1 − p1) · · · (1 − pn).

(iii) P(exactly 1 circuit is closed) = p1(1−p2) · · · (1−pn)+(1−p1)p2×
(1 − p3) · · · (1 − pn) + · · · + (1 − p1) · · · (1 − pn−1)pn.

(iv) The answers above are: (1 − p)n, 1 − (1 − p)n, np(1 − p)n−1.
(v) The numerical values are: 0.01024, 0.98976, 0.0768.

2.18 For i ≥ 1, we have P(A1i) = 2
8 = 1

4 and P(Bi) = 2
8 = 1

4 . Then:

P(A1) = 1
4

+
(

1
4

)2

+
(

1
4

)3

+ · · · = 1/4

1 − 1
4

= 1
3

	 0.333.

2.20 (i) It is shown that: P(A ∩ (B ∪ C)) = P(A)P(B ∪ C), so that A and
B ∪ C are independent.

(ii) Independence of A, B, C implies independence of Ac, B, Cc; then
P(Ac ∩ (B ∩ Cc)) = P(Ac)P(B ∩ Cc), so that Ac and B ∩ Cc are
independent.

(iii) By (i), B ∪ C and A are independent. Then P(B ∪ C|A) =
P(B ∪ C) = P(B) + P(C) − P(B)P(C).
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Chapter 5

Section 5.1

1.2 (i) EX = 0, EX 2 = c2, and Var(X ) = c2.

(ii) P(|X − EX | ≤ c) = P(−c ≤ X ≤ c) = P(X = −c, X = c) = 1 = c2

c2 =
Var(X )

c2 .

1.4 If Y is the net loss to the company, then EY = $600, and if P is the
premium to be charged, then P = $700.

1.6 Var(X ) = EX 2 − (EX )2, by expanding and taking expectations. Also,
E[X(X − 1)] = Var(X ) + (EX )2 − EX by expanding, taking expecta-
tions, and using the first result. That Var(X ) = E[X(X − 1)] + EX −
(EX )2 follows from the first two results.

1.8 (i) EX = 2, E[X(X − 1)] = 4; (ii) Var(X ) = 2.

1.10 EX = 4
3 , EX 2 = 2, so that Var(X ) = 2

9 and s.d. of X =
√

2
3 	 0.471.

1.12 c1 = −1/12, c2 = 5/3.

1.14 (i) By adding and subtracting µ, we get: E(X − c)2 = Var(X ) +
(µ − c)2.

(ii) Immediate from part (i).

1.16 (i) Setting x = tanu = sinu
cosu , −π

2 < u < π
2 , and observing that

dtanu
du = 1

cos2u , we get
∫∞
−∞

dx
1+x2 = π , so that 1

π

∫∞
−∞

dx
1+x2 = 1.

(ii) 1
π

∫∞
−∞ x × dx

1 + x2 = 1
2π

∫∞
−∞

d(1 + x2)
1 + x2 = 1

2π
log(1 + x2)

∣∣∞−∞ =
1

2π
(∞ − ∞).

1.18 For the discrete case, X ≥ c means xi ≥ c for all values xi of X .
Then xifX (xi) ≥ cfX (xi) and hence

∑
xi

xifX (xi) ≥ ∑
xi

cfX (xi). But
∑

xi
xifX (xi) = EX and

∑
xi

cfX (xi) = c
∑

xi
fX (xi) = c. Thus, EX ≥ c.

The particular case follows, of course, by taking c = 0. In the
continuous case, summation signs are replaced by integrals.

Section 5.2
2.2 (i) c = σ /

√
1 − α; (ii) c = 1√

0.05
	 4.464.

2.4 (i) By the Tchebichev inequality, P(|X − µ| ≥ c) = 0 for all c > 0.
(ii) Consider a sequence 0 < cn ↓ 0 as n → ∞. Then

P(|X − µ| ≥ cn) = 0 for all n, or equivalently, P(|X − µ| < cn) = 1
for all n, whereas, clearly, {(|X − µ| < cn)} is a nonincreas-
ing sequence of events and its limits is ∩∞

n=1(|X − µ| < cn).
Then, by Theorem 2 in Chapter 2, 1 = limn→∞ P(|X −
µ|<cn) = P(∩∞

n=1(|X − µ|<cn)). However, it is clear that
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∩∞
n=1(|X − µ| < cn) = (|X − µ| ≤ 0) = (X = µ). Thus, P(X = µ) = 1,

as was to be seen.

Section 5.3

3.2 (i) xp = [(n + 1)p]1/(n+1); (ii) For p = 0.5 and n = 3, we have x0.5 =
21/4 	 1.189.

3.4 (i) c1 = c2 = 1; (ii) x1/3 = 0.

3.6 (i)

x 2 3 4 5 6 7 8 9 10 11 12
f (x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

(ii) EX = 7; (iii) median = mode = mean = 7.

3.8 By the Hint, P(X ≤ c) = ∫ c
−∞ f (x) dx = ∫∞

0 f (c−y) dy, and P(X ≥ c) =∫∞
c f (x) dx = ∫∞

0 f (c + y) dy. Since f (c − y) = f (c + y), it follows that
P(X ≤ c) = P(X ≥ c), and hence c is the median.

3.10 (i) p = P(Y ≤ yp) = P[g(X ) ≤ yp] = P[X ≤ g−1(yp)], so that
g−1(yp) = xp and yp = g(xp).

(ii) xp = − log(1 − p).
(iii) yp = 1/(1 − p).
(iv) x0.5 = − log(0.5) 	 0.693, and y0.5 = 2.

Chapter 6

Section 6.1

1.2 (i) It follows by using the identity
(n + 1

x

) = (nx
)+ ( n

x − 1

)
.

(ii) B(26, 0.25; 10) = 0.050725.

1.4 If X is the number of those favoring the proposal, then
X ∼ B(15, 0.4375). Therefore: (i) P(X ≥ 5) = 0.859; (ii) P(X ≥ 8) =
0.3106.

1.6 If X is the number of times the bull’s eye is hit, then X ∼ B(100, p).
Therefore:

(i) P(X ≥ 40) =∑100
x=40

(100
x

)
pxq100−x (q = 1 − p).

(ii) P(X ≥ 40) =∑100
x=40

(100
x

)
(0.25)x(0.75)100−x.

(iii) EX = np = 100p, Var(X ) = npq = 100pq, and for p = 0.25,
EX = 25, Var(X ) = 18.75, s.d. of X = √

18.75 	 4.33.
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1.8 From the Tchebichev inequality, n = 8,000.

1.10 (i) Writing
(n

x

)
in terms of factorials, and after cancellations, we get:

EX = np
∑n−1

y=0
(n − 1

y

)
pyq(n−1)−y = np × 1 = np. Likewise,

E[X(X − 1)] = n(n − 1)p2∑n−2
y=0

(n−2
y

)
pyq(n−2)−y = n(n − 1)p2 × 1

= n(n − 1)p2.
(ii) From Exercise 1.6, Var(X ) = n(n − 1)p2 + np − (np)2 = npq.

1.12 Mode = 25 and f (25) = (100
25

)
( 1

4 )25( 3
4 )75; one would bet on X = 25.

1.14 Here X has the geometric distribution with p = 0.01, so that
f (x) = (0.01)(0.99)x−1, x = 1, 2, . . . Then:
P(X ≤10) = 1−P(X ≥11)=1−(0.01)(0.99)10[1+0.99+(0.99)2 + ···]

= 1−(0.01)(0.99)10× 1
1−0.99 =1−(0.99)10 	0.096.

1.16 The r.v. X has the geometric distribution with parameter p. Then:
(i) n ≥ log(1 − α)/logq.

(ii) For α = 0.95 and p = 0.25, we have n = 11, and for α = 0.95
and p = 0.50, we have n = 5.

1.18 (i) With q = 1 − p, MX (t) = pet

1−qet , t < −logq, and for the given p,

MX (t) = 0.01et

1−0.99et , t < −log(0.99) (	 0.01).

(ii) d
dt

(
pet

1−qet

)
|t=0= 1

p = EX , d2

dt2

(
pet

1−qet

)
|t=0= 1+q

p2 = EX2, so that

Var(X) = q
p2 .

1.20 λ = 2.

1.22 (i) EX =∑∞
x=0 x×e−λ λx

x! = λ, E[X(X −1)] =∑∞
x=2 x(x−1)e−λ λx

x! = λ2,
so that:

(ii) Var(X) = E[X(X − 1)] + EX − (EX)2 = λ.

1.24 (i) An appropriate probability model is the Poisson distribution
with parameter 3, P(3).

(ii) Here we wish to find the mode(s) of the distribution. There are
two of them, and they are 2 and 3. The respective probability
is 0.2241.

1.26 (i) (70
5 )(10

0 )

(80
5 )

= (70
5 )

(80
5 )

= 78,591
156,104 	 0.503.

(ii) 1
(80

5 )

[(70
3

)(10
2

)+ (70
4

)(10
1

)+ (70
5

)(10
0

)] 	 0.987.

1.28 Starting out with f (x + 1) = ( m
x+1)(

n
r−x−1)

(m+n
x+1 )

, writing our the right-hand

side in terms of factorials, and effecting the obvious cancellations,
we arrive at (m−x)(r−x)

(m−r+x+1)(x+1) f (x).

1.30 From P(X = x) = (n
x

)
(0.15)x(0.85)n−x, we get: P(X = 0) =

(0.85)n < n(0.15)(0.85)n−1 if and only if n > 85
15 	 5.667, so that

n = 6.
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1.32 The number of defective items has the hypergeometric distribution
with m = 3, n = 997 and r = 100. Therefore:

(i) P(X ≤ 1) = 538,501
553,890 	 0.97,

(ii) EX = 0.3; (iii) Var(X) = 2,991
100×111 	 0.269, and σ (X) 	 0.519.

1.34 Here r = 100, m
m+n = 0.003, so that r × m

m+n = 0.3. Therefore the
required probability is (from Poisson tables) 0.963064.

1.36 (i) The relation P(X = 2) = 3P(X = 4) yields λ = 2 = EX =
Var(X).

(ii) P(2 ≤ X ≤ 4) = 0.0527 (from Poisson tables).

Section 6.2

2.2 (i) By integration, using the definition of �(α) and the recursive
relation for �(α + 1), we get EX = β

�(α)�(α + 1) = αβ. Likewise,

EX 2 = β2

�(α)�(α + 2) = α(α + 1)β2, so that Var(X ) = αβ2.

(ii) EX = 1/λ, Var(X ) = 1/λ2 from part (i).
(iii) EX = r, Var(X ) = 2r from part (i).

2.4 (i) (a) With g(X ) = cX , we have Eg(X ) = c/λ.
(b) With g(X ) = c(1 − 0.5e−αX ), we have Eg(X ) = (α + 0.5λ)c

α + λ
.

(ii) (a) 10; (b) 1.5.

2.6 Indeed, P(T>t) = P(0 events occurred in the time interval (0, t)) =
e−λt(λt)0

0! = e−λt. So, 1 − FT(t) = e−λt, t > 0, and hence fT(t) =
λe−λt, t > 0, and T is as described.

2.8 (i)
∫∞

0 αβxβ−1e−αxβ
dx = − ∫∞

0 de−αxβ = −e−αxβ |∞0 = 1.
(ii) β = 1 and any α > 0.

2.10 (i)
∫ xp

0 e−xdx = p yields xp = −log(1 − p).
(ii) yp = exp , since the function y = ex (x > 0) is strictly increasing.

(iii) For p = 0.5, we get x0.5 = log2 (	 0.69), and y0.5 = 2.

2.12 By part (iv) of Exercise 2.11:
(i) P(−1 < Z < 1) = 2�(1) − 1 = 2 × 0.841345 − 1 = 0.68269.

(ii) P(−2 < Z < 2) = 2�(2) − 1 = 2 × 0.977250 − 1 = 0.9545.
(iii) P(−3 < Z < 3) = 2�(3) − 1 = 2 × 0.998650 − 1 = 0.9973.

2.14 We have:

P(|X − µ| < kσ ) ≥ 1 − σ 2

(kσ )2 = 1 − 1
k2 .

Therefore, for k = 1, 2, 3, the respective bounds are: 0 (meaningless);
3
4 = 0.75, which is about 78.6% of the exact probability (0.9545) in
the normal case; 8

9 	 0.8889, which is about 89.1% of the exact
probability (0.9973) in the normal case.
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2.16 Assuming independence in testing, the number of defective items is
Y ∼ B(25, p) with p = P(X < 1, 800) = 0.158655. Then:

P(Y ≤ 15) =
15∑

y=0

(
25
y

)
(0.158655)y(0.841345)25−y.

2.18 (i) From f (x) = 1√
2πσ

exp
[
− (x−µ)2

2σ 2

]
, we get

f (µ + y) = 1√
2πσ

exp

(

−y2

2

)

= f (µ − y).

(ii) d
dx f (x) = 0 yields x = µ, and d2

dx2 f (x) |x=µ= − 1√
2πσ 3 < 0, so that

x = µ maximizes f (x).

2.20 From f (x) = 1√
2πσ

exp[− (x−µ)2

2σ 2 ], we get

f ′′(x) = − 1√
2πσ 3 exp[− (x−µ)2

2σ 2 ] [1 − ( x−µ
σ

)2]. Then, for x = µ ± σ ,
f ′′(µ ± σ ) = 0.

2.22 �( 1
2 ) = ∫∞

0 y− 1
2 e−ydy, and by setting y1/2 = t/

√
2, we get �( 1

2 ) =√
2

2

∫∞
−∞ e−t2/2dt = √

π × 1√
2π

∫∞
−∞ e−t2/2dt = √

π .

2.24 Observe that MX (t) = eµt+ σ2t2
2 with µ = α and σ 2 = 2β, which is the

m.g.f. of the N(µ, σ 2) distribution. Thus, X ∼ N(α, 2β).

2.26 (i) By Exercise 1.17 in Chapter 5, and with t ∈ �, MX (t) =∑∞
n=0(EXn) tn

n! , which here becomes by replacing EXn,
∑∞

n=0
(t2/2)k

k! = et2/2, which is the m.g.f. of N(0, 1).
(ii) Thus, X ∼ N(0, 1).

2.28 We have:

EX = α + β

2
, EX2 = β2 + αβ + α2

3
, so that

Var(X) = EX2 − (EX)2 = (α − β)2

12
.

2.30 (i) P(X ≤ 1) = 0.982477 (from Poisson tables).
(ii) P(Y > 5) = e−0.2 	 0.818.

2.32 Let Y be defined by:

Y =





C, 0 < X ≤ µ/2 = 1 − e−1/2

C/2, µ/2 < X ≤ µ = e−1/2 − e−1

0, X > µ = e−1.
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Then EY = C
2 (2 − e−1/2 − e−1).

2.34 (i) From
∫m

0 λe−λxdx = 0.5, we get m = 0.693
λ

, and for λ = 0.005,
m = 138.6.

(ii) The actual claim size Y is: Y = X if X < M, and Y = M if
X ≥ M. Then, for 0 < y < M, FY (y) = (1 − e−λy)/(1 − e−λM), and
fY (y) = λe−λy/(1 − e−λM).

(iii) For the given values:
fY (y) = 0.005e−0.005y/(1 − e−1), 0 < y < 200.

Chapter 7

Section 7.1

1.2 P(X = 0, Y = 1) = P(X = 0, Y = 2) = P(X = 1, Y = 2) = 0,
P(X = 0, Y = 0) = 0.3, P(X = 1, Y = 0) = 0.2, P(X = 1, Y = 1) = 0.2,
P(X = 2, Y = 0) = 0.075, P(X = 2, Y = 1) = 0.15, P(X = 2, Y = 2) =
0.075.

1.4 (i)
∫ 2

0

∫ 1
0 (x2 + xy

2 ) dx dy = 6
7 × 7

6 = 1; (ii) P(X > Y ) = 15
56 	 0.268.

1.6 (i) P(X ≤ x) = 1 − e−x, x > 0; (ii) P(Y ≤ y) = 1 − e−y, y > 0;
(iii) P(X < Y ) = 0.5; (iv) P(X + Y < 3) = 1 − 4e−3 	 0.801.

1.8 c = 1/
√

2π .

1.10 c = 6/7.

1.12 Here f (x, y) = 2
C2 , for (x, y) in the triangle OAC; i.e., 0 ≤ x ≤ y ≤ C.

Then: (i) EU = 2C2

3 ; (ii) EU = 2
3 .

Section 7.2

2.2 fX (0) = 0.3, fX (1) = 0.4, fX (2) = 0.3;

fY (0) = 0.575, fY (1) = 0.35, fY (2) = 0.075.

2.4 (i) fX (1) = 7/36, fX (2) = 17/36, fX (3) = 12/36;

fY (1) = 7/36, fY (2) = 14/36, fY (3) = 15/36.
(ii) fX |Y (1|1) = 2/7, fX |Y (2|1) = 2/7, fX |Y (3|1) = 3/7;

fX |Y (1|2) = 1/14, fX |Y (2|2) = 10/14, fX |Y (3|2) = 3/14;
fX |Y (1|3) = 4/15, fX |Y (2|3) = 5/15, fX |Y (3|3) = 6/15;
fY |X (1|1) = 2/7, fY |X (2|1) = 2/7, fY |X (3|1) = 3/7;
fY |X (1|2) = 2/17, fY |X (2|2) = 10/17, fY |X (3|2) = 5/17;
fY |X (1|3) = 3/12, fY |X (2|3) = 3/12, fY |X (3|3) = 6/12.

2.6 (i) fX (x) = 2x
n (n + 1) , x = 1, . . . , n; fY (y) = 2(n − y + 1)

n (n + 1) , y = 1, . . . , n.

(ii) fX |Y (x|y) = 1
n − y + 1 , x = 1, . . . , n; fY |X (y|x) = 1

x , y = 1, . . . , x;
y = 1, . . . , x x = 1, . . . , n.
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(iii) E(X |Y = y) = n(n + 1) − (y − 1)y
2(n − y + 1) , y = 1, . . . , n;

E(Y |X = x) = x + 1
2 , x = 1, . . . , n.

2.8 fX (x) = 2
5 (3x + 1), 0 ≤ x ≤ 1; fY (y) = 3

5 (2y 2 + 1), 0 ≤ y ≤ 1.

2.10 (i) fX (x) = xe−x, x > 0; fY (y) = e−y, y > 0.
(ii) fY |X (y|x) = e−y, x > 0, y > 0.

(iii) P(X > log 4) = 1 + log 4
4 	 0.597.

2.12 (i) fX (x) = 6x
7 (2x + 1), 0 < x ≤ 1; fY (y) = 3y

14 + 2
7 , 0 ≤ y ≤ 2;

fY |X (y|x) = 2x + y
4x + 2 , 0 < x ≤ 1, 0 ≤ y ≤ 2.

(ii) EY = 8
7 ; E(Y |X = x) = 2

3 × 3x + 2
2x + 1 , 0 < x ≤ 1.

(iii) It follows by a direct integration.
(iv) P(Y > 1

2 |X < 1
2 ) = 207

280 	 0.739.

2.14 From Exercise 1.8, fX ,Y (x, y) = 1√
2π

ye− xy
2 , 0 < y < x, and it has

been found in the discussion of Exercise 1.8 that fY (y) = 2ce−y 2/2 =
2√
2π

e−y 2/2, y > 0. Hence

fX |Y (x|y) = 1
2

ye
y 2
2 e− y

2 x, 0 < y < x.

2.16 (i)

fX (x) =






6x/7, 0 < x ≤ 1
6x(2 − x)/7, 1 < x < 2

0, elsewhere.

(ii) fY (y|x) is 1 for 0 < x ≤ 1, and is 1/(2 − x) for 1 < x < 2 (and 0
otherwise), whereas 1 ≤ x + y < 2.

2.18 (i) fX |Y (·|y) is the Poisson p.d.f. with parameter y.

(ii) fX ,Y (x, y) = e−2y yx

x! , x = 0, 1, . . . .

(iii) fX (x) = 1
2x + 1 , x = 0, 1, . . . .

2.20 (i), (ii) follow by applying the definitions.

2.22 (i) fX |Y (x|y) = 2x
y2 , 0 < x ≤ y < 1; fY |X (y|x) = 2y

1−x2 , 0 < x ≤ y < 1.

(ii) E(X |Y = y) = 2y
3 , 0 < y < 1; E(Y |X = x) = 2(1−x3)

3(1−x2)
, 0 < x < 1.

2.24 Var(X |Y = y) = E(X2|Y = y) − [E(X |Y = y)]2 = y2

18 , 0 < y < 1.

2.26 Here:

fX (0) = 0.14, fX (1) = 0.36, fX (2) = 0.30, fX (3) = 0.20;
fY (0) = 0.40, fY (1) = 0.35, fY (2) = 0.21, fY (3) = 0.04.
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Then:

(i) P(X ≥ 2) = 0.96, P(X ≥ 2, Y ≤ 2) = 0.49.
(ii) EX = 1.56, EY = 0.89, EX2 = 3.36, EY 2 = 1.55, so that:

Var(X) = 0.9264, Var(Y ) = 0.7579, and σ (X) 	 0.962,
σ (Y ) 	 0.871.

2.28 (i) From
∫ 1/

√
c

0 cx2dx = 1, we get c = 1/9, so that fX (x) = x2/9,
0 < x < 3.

(ii) fX ,T(x, t) = x
18 , 0 < x < 3, 0.5x < t < 2.5x, and fT(t) = 3.84

36 t2,
0 < t < 1.5, and fT(t) = 0.25 − 0.16

36 t2, 1.5 ≤ t < 7.5.
(iii) From (ii), P(2 < T < 4) = 11.26

27 	 0.417.

Chapter 8

Section 8.1

1.2 (i) Consider the continuous case, as in the discrete case integrals
are simply replaced by summation signs. So, for relation (8.3),
we have:

E[cg(X ,Y )] =∫∞
−∞
∫∞
−∞ cg(x,y)fX ,Y (x,y)dxdy

=c
∫∞
−∞
∫∞
−∞ g(x,y)fX ,Y (x,y)dxdy=cEg(X ,Y );

E[cg(X ,Y )+d] =∫∞
−∞
∫∞
−∞[cg(X ,Y )+d]fX ,Y (x,ydxdy

=c
∫∞
−∞
∫∞
−∞ g(X ,Y )fX ,Y (x,y)dxdy+

d
∫∞
−∞
∫∞
−∞ fX ,Y (x,y)dxdy

=cEg(X ,Y )+d.

For relation (8.4) we have:

E[g1(X ,Y )+g2(X ,Y )] =∫∞
−∞
∫∞
−∞[g1(x,y)

+g2(x,y)]fX ,Y (x,y)dxdy

=∫∞
−∞
∫∞
−∞ g1(x,y)fX ,Y (x,y)dxdy

+∫∞
−∞
∫∞
−∞ g2(x,y)fX ,Y (x,y)dxdy

=Eg1(X ,Y )+Eg2(X ,Y ).

As for relation (8.6), we have:
For the discrete case, let x i and yj be the values of the r.v.’s X ,
and Y , respectively, and let fX ,Y be their joint p.d.f. Then, for all
x i and yj, we have g(x i, yj) ≤ h(x i, yj), hence g(x i, yj)fX ,Y (x i, yj) ≤
h(x i, yj)fX ,Y (x i, yj), and by summing over x i and yj, we get:
Eg(X , Y ) ≤ Eh(X , Y ). In particular, g(X ) ≤ h(Y ) means
that, if X(s) = x i and Y (s) = yj, then g(x i) ≤ h(yj), hence



366 Answers to Even-Numbered Exercises

g(x i)fX ,Y (x i, yj) ≤ h(yj)fX ,Y (x i, yj), and by summing over x i and
yj, we get:

∑
x i

∑
yj

g(x i)fX ,Y (x i, yj) =∑x i
g(x i)

∑
yj

fX ,Y (x iyj)

=∑x i
g(x i)fX (x i) = EX ,

∑
x i

∑
yj

h(yj)fX ,Y (x i, yj) =∑yj

∑
x i

h(yj) ×fX ,Y (x i, y i)

=∑yj
h(yj)

∑
x i

fX ,Y (x i, yj)

=∑yj
h(yj)fY (yj) = EY .

The result follows. For the continuous case summations are
replaced by integrations.

(ii) For relation (8.8), it sufficies to justify the second part only.
Indeed,

Var[cg(X ,Y )+d] =E{[cg(X ,Y )+d]−E[cg(X ,Y )+d]}2

=E[cg(X ,Y )+d−cEg(X ,Y )−d]2
=E{c[g(X ,Y )−Eg(X ,Y )]}2

=E{c2[g(X ,Y )−Eg(X ,Y )]2}
=c2E[g(X ,Y )−Eg(X ,Y )]2 =c2Var[g(X ,Y )].

1.4 For relation (8.16), we have:

∂
∂t1

MX ,Y (t1, t2) |t1=t2=0 = ∂
∂t1

Eet1X+t2Y |t1=t2=0

= E( ∂
∂t1

et1X+t2Y ) |t1=t2=0

= E(Xt1X+t2Y ) |t1=t2=0= EX ,

and similarly for the second relation. As for relation (8.17), we have:

∂2

∂t1∂t2
MX ,Y (t1, t2) |t1=t2=0 = ∂2

∂t1∂t2
Eet1X+t2Y |t1=t2=0

= E( ∂2

∂t1∂t2
et1X+t2Y ) |t1=t2=0

= E(XYet1X+t2Y ) |t1=t2=0= E(XY ).

Section 8.2

2.2 Apply the exercise cited in the Hint with Z = X − Y and Z = X + Y .

2.4 (i) EX = 1, EY = 0.5, EX 2 = 1.6, EY 2 = 0.65, so that Var(X ) = 0.6
and Var(Y ) = 0.4.

(ii) E(XY ) = 0.8, so that Cov(X , Y ) = 0.3 and ρ(X , Y ) = 1.25
√

0.24 	
0.613.

(iii) The r.v.’s X and Y are positively correlated.

2.6 (i) EX = 77
36 , EY = 20

9 , EX 2 = 183
36 , EY 2 = 99

18 , so that Var(X ) =
659/362 and Var(Y ) = 728/362.
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(ii) E(XY ) = 171
36 , so that Cov(X , Y ) = − 4

362 , and ρ(X , Y ) = − 2√
182×659	 −0.006.

2.8 EX =0, Var (X )=10/4, EY =5/2, EY 2 =34/4, Var(Y )=9/4, E(XY )=0,
so that Cov(X , Y ) = 0 and ρ(X , Y ) = 0. The r.v.’s X and Y are not
anywhere close to being linearly related.

2.10 By employing the marginal p.d.f.’s found in Exercise 2.8 of Chapter 7,
we obtain:

(i) EX = 3
5 , EY = 3

5 .
(ii) EX2 = 13

30 , EY 2 = 11
15 , so that:

Var(X) = 11
150 Var(Y ) = 56

150 .
(iii) E(XY ) = 7

20 , so that Cov(X , Y ) = − 1
100 ,

ρ(X , Y ) = −3
√

154
616 	 −0.06.

(iv) The r.v.’s X and Y are negatively correlated.

2.12 (i)

E[E(Y 2|X)] = ∫∞
−∞[∫∞

−∞ y2fY |X (y|x)dy] fX (x)dx
= ∫∞

−∞
∫∞
−∞ y2fX ,Y (x, y)dydx

= ∫∞
−∞ y2fY (y)dy = EY 2.

(ii) Likewise

E[XE(Y |X)] = E[X ∫∞
−∞ yfY |X (y|X)dy]

= ∫∞
−∞[x ∫∞

−∞ yfY |X (y|x)dy]fX (x)dx
= ∫∞

−∞
∫∞
−∞ xyfY |X (y|x)fX (x)dydx

= ∫∞
−∞
∫∞
−∞ xyfX ,Y (x, y)dxdy = E(XY ),

E[E(XY |X)] = E[∫∞
−∞ XyfY |X (y|X)dy]

= ∫∞
−∞[∫∞

−∞ xyfY |X (y|x)dy]fX (x)dx
= ∫∞

−∞
∫∞
−∞ xyfY |X (y|x)fX (x)dydx

= ∫∞
−∞
∫∞
−∞ xyfX ,Y (x, y)dxdy = E(XY ).

So, E(XY ) = E[E(XY | X)] = E[XE(Y |X)].
Section 8.3

3.2 With Var(X ) = σ 2, we get Cov(X , Y ) = aσ 2 and ρ(X , Y ) = a
|a| .

Thus, |ρ(X , Y )| = 1, and ρ(X , Y ) = 1 if and only if a>0, and
ρ(X , Y ) = − 1 if and only if a < 0.

3.4 By differentiation, with respect to α and β, of the function
g(α, β) = E[Y − (αX + β)]2, and by equating the derivatives to 0, we
find: α̂ = σY

σX
ρ(X , Y ), β̂ = EY − α̂EX . The 2 × 2 matrix M of the

second-order derivatives is given by: M = 4
(

EX 2 EX
EX 1

)
, which is

positive definite. Then α̂ and β̂ are minimizing values.
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Chapter 9

Section 9.1

1.2 MX1,X2,X3(t1, t2, t3) = c3/(c − t1)(c − t2)(c − t2), provided t1, t2, t3
are <c.

1.4 Follows by applying properties of expectations.

Section 9.2

2.2 If X1, X2, and X3 are the numbers of customers buying brand A,
brand B, or just browsing, then X1, X2, X3 have the Multinomial
distribution with parameters n = 10, p1 = 0.25, p2 = 0.40, and
p3 = 0.35. Therefore:

(i) P(X1 = 2, X2 = 3, X3 = 5) = 10!
2!3!5! (0.25)2 × (0.40)3 × (0.35)5 	

0.053.

(ii) P(X1 = 1, X2 = 3|X3 = 6) = 4!
1!3! (

5
13 )1( 8

13 )3 	 0.358.

2.4 They follow by taking the appropriate derivatives of the m.g.f. in
(9.12) and evaluating them at 0.

2.6 (i) P(X1 = 4, X2 = 1, X3 = 1) = (20
4 )(10

1 )(2
1)

(32
6 )

= 8,075
75,516 	 0.10693.

(ii) P(X1 = 4, X2 = 1, X3 = 1) = 6!
4!1!1! (

10
16 )4( 5

16 )( 1
6 ) 	 0.08941.

(iii) The probability 0.08941 is about 83.6% of the probability
0.10693.

2.8 (i) The r.v.’s X1, X2, X3 have the multinomial distribution with
parameters n and p1 = p2, p2 = 2p(1 − p), p3 = (1 − p)2.

(ii) P(X1 = 8, X2 = 6, X3 = 1) = 15!
8!6!1! [(0.75)2]8(2 × 0.75 × 0.25)6 ×

[(0.25)2]1 = 45, 045 × (0.5625)8 × (0.375)6 × (0.0625) 	 0.07847.
(iii) Since X2 ∼ B(15, 0.375) = B(15, 6/16), we have:

P(X2 = 6) = (15
6

)( 6
16

)6(10
16

)9 = 0.2025 (from the binomial tables).
(iv) P(X1 = 8, X3 = 1 | X2 = 6) = P(X1=8,X2=6,X3=1)

P(X2=6) 	 0.07847
0.2025 	

0.38751.

2.10 Let X1, X2 and X3 be the r.v.’s denoting the numbers, among the
15 selected, watching news, a documentary program, and other
programs, respectively. Then these r.v.’s have the multinomial distri-
bution with n = 15, k = 3, p1 = 0.3125 (= 5/16), p2 = 0.25 (= 4/16),
p3 = 0.4375 (= 7/16). Therefore:

(i) P(X1 = 5, X2 = 4, X3 = 6) = 15!
5!4!6! (0.3125)5(0.25)4(0.4375)6 	

0.05148.
(ii) Here X3 ∼ B(15, 0.25) = B(15, 4/16), so that P(X3 ≥ 3) = 1 −

P(X3 ≤ 2) = 1 − 0.2361 = 0.7639 (from the binomial tables).
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(iii) Let X be the r.v. denoting the number of those among the 15
selected, who do not watch the news. Then X = 15−X1, so that

P(X ≤ 5) = P(15 − X1 ≤ 5) = P(X1 ≥ 10)
= 1 − P(X1 ≤ 9) = 1 − 0.9949 = 0.0051

(from the binomial tables), since X1 ∼ B(15, 0.3125) =
B(15, 5/16).

Section 9.3

3.2 Indeed,
E(XY ) = ∫∞

−∞
∫∞
−∞ xyfX ,Y (x,y)dxdy

= ∫∞
−∞
∫∞
−∞ xyfY |X (y|x)fX (x)dxdy

= ∫∞
−∞
∫∞
−∞ xyfY |X (y|x)fX (x)dydx

= ∫∞
−∞ xfX (x)

[∫∞
−∞ yfY |X (y|x)dy

]
dx

= ∫∞
−∞ xfX (x)

[
µ2+ ρσ2

σ1
(x−µ1)

]
dx

(because, by (54), Y |X =x∼N(bx, (σ2
√

1−ρ2)2),

so that E(Y |X =x)=bx =µ2+ ρσ2
σ1

(x−µ1))

= µ2
∫∞
−∞ xfX (x)dx+ ρσ2

σ1

[∫∞
−∞ x2fX (x)dx−µ1

∫∞
−∞ xfX (x)dx

]

= µ2µ1+ ρσ2
σ1

(
EX 2−µ2

1

)

= µ1µ2+ ρσ2
σ1

×σ 2
1 =µ1µ2+ρσ1σ2.

3.4 (i) Follows by applying the definition.
(ii) Straightforward by the properties cited.

(iii) In (ii) here, the quantities µ1, µ2, σ1, σ2, and ρ will have to be
computed by using the p.d.f. fX ,Y (and its marginals), whereas
in Example 4(i), they are read out of the formula for fX ,Y given
there.

3.6 (i) For t∈�, we have:
Mc1X+c2Y (t)=Eet(c1X+c2Y ) =Ee(c1t)X+(c2t)Y

=exp
{
µ1(c1t)+µ2(c2t)+

1
2

[
σ 2

1 (c1t)2+2ρσ1σ2(c1t)(c2t)+σ 2
2 (c2t)2]

}
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=exp
[
(c1µ1+c2µ2)t

+1
2

(
c2

1σ
2
1 +2c1c2ρσ1σ2+c2

2σ
2
2
)
t2
]
,

which is the m.g.f. of a r.v. distributed as normal with param-
eters c1µ1+c2µ2 and c2

1σ
2
1 +2c1c2ρσ1σ2+c2

2σ
2
2 . Thus, c1X +c2Y

has this distribution.
(ii) For t1, t2 ∈�, we have:

MX ,Y (t1,t2)=Eet1X+t2Y =Ee(t1X+t2Y )×1 =Mt1X+t2Y (1).

On the other hand, if Z∼N(µ,σ 2), then MZ(t)=eµt+ σ2t2
2

and MZ(1)=eµ+ σ2
2 . Since it is assumed that t1X +t2Y is normally

distributed, we have then:

MX ,Y (t1,t2)=Mt1X+t2Y (1)

=exp
{

E(t1X +t2Y )+ [Var(t1X +t2Y )]2
2

}
.

But

E(t1X +t2Y )=µ1t1+µ2t2,

Var(t1X +t2Y )=σ 2
1 t2

1 +σ 2
2 t2

2+2ρσ1σ2t1t2,

where µ1 =EX , µ2 =EY , σ 2
1 =Var(X ), σ 2

2 =Var(Y ) and
ρ =ρ(X ,Y ).
Therefore

MX ,Y (t1,t2)=exp
(

µ1t1+µ2t2+ σ 2
1 t2

1 +2ρσ1σ2t1t2+σ 2
2 t2

2
2

)
,

which is the m.g.f. of the bivariate normal distribution with
parameters µ1,µ2,σ 2

1 ,σ 2
2 and ρ.

Therefore the joint distribution of X and Y is the bivariate
normal with parameters just described.

3.8 (i) The joint m.g.f. of X and Y is given by:

MX ,Y (t1,t2)=exp
[
µ1t1+µ2t2+ 1

2

(
σ 2

1 t2
1 +2ρσ1σ2t1t2+σ 2

2 t2
2
)]

,

t1,t2 ∈�.

Therefore,
MU,V (t1,t2)=Eet1U+t2V =Eet1(X+Y )+t2(X−Y )

=Ee(t1+t2)X+(t1−t2)Y =MX ,Y (t1+t2,t1−t2)
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=exp
{
µ1(t1+t2)+µ2(t1−t2)+ 1

2

[
σ 2

1 (t1+t2)2

+2ρσ1σ2(t1+t2)(t1−t2)]+σ 2
2 (t1−t2)2]

}

=exp
[
(µ1+µ2)t1+(µ1−µ2)t2

+1
2

(
τ2

1 t2
1 +2ρ0τ1τ2t1t2+τ2

2 t2
2
)]

,

since
σ 2

1 (t1+t2)2+2ρσ1σ2(t1+t2)(t1−t2)+σ 2
2 (t1−t2)2

=σ 2
1 t2

1 +2σ 2
1 t1t2+σ 2

1 t2
2+2ρσ1σ2t2

1 −2ρσ1σ2t2
2

+σ 2
2 t2

1 −2σ 2
2 t1t2+σ 2

2 t2
2

= (σ 2
1 +2ρσ1σ2+σ 2

2
)
t2
1 +(σ 2

1 −2ρσ1σ2+σ 2
2
)
t2
2+2

(
σ 2

1 −σ 2
2
)
t1t2

=τ2
1 t2

1 +2
σ 2

1 −σ 2
2

τ1τ2
τ1τ2t1t2+τ2

2 t2
2

=τ2
1 t2

1 +2ρ0τ1τ2t1t2+τ2
2 t2

2.
However, the last expression above; namely,

exp
[
(µ1+µ2)t1+(µ1−µ2)t2+ 1

2

(
τ2

1 t2
1 +2ρ0τ1τ2t1t2+τ2

2 t2
2
)]

is the m.g.f. of the bivariate normal distribution with parame-
ters µ1+µ2, µ1−µ2, τ2

1 , τ2
2 , and ρ0. Therefore this is the joint

distribution of the r.v.’s U and V .
(ii) That U ∼N(µ1+µ2,τ2

1 ) and V ∼N(µ1−µ2,τ2
2 ) follows by the

fact that the distributions of U and V are the marginal dis-
tributions of the bivariate normal distribution as given above.

(iii) The r.v.’s U and V are uncorrelated if and only if ρ(U,V )=0.
However, ρ(U,V )=ρ0 = (σ 2

1 −σ 2
2 )/τ1τ2. Therefore ρ(U,V )=0 if

and only if σ 2
1 =σ 2

2 .

3.10 (i) EX =3.2, EY =12, σ 2(X)=1.44, σ 2(Y )=16, ρ(X ,Y )=0.7, and
Cov(X ,Y )=3.36.

(ii) E(X |Y =10)=2.78, E(Y |X =3.8)=13.4,
σ 2(X |Y =10)=0.7344, σ 2(Y |X =3.8)=8.16.

(iii) X ∼N(3.2,1.44), Y ∼N(12,16).
(iv) P(0.8<X<4.2)=0.818595, P(Y>14)=0.308538.
(v) By part (ii), X |Y =10∼N(2.78,0.7344), Y |X =3.8∼N(13.4,8.16).

(vi) P(X>3.2|Y =10)=0.312067, P(Y<12|X =3.8)=0.312067.

3.12 (i) σ 2(U)=σ 2
1 +c2σ 2

2 +2cρσ1σ2.
(ii) c=−ρσ1/σ2.

(iii) mincσ
2(U)= (1−ρ2)σ 2

1 .
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(iv) X and Y are independent if and only if ρ =0. Then c=0, so that
σ 2(U)=σ 2

1 =mincσ
2(U).

3.14 (Proof by differentiation)

(i) Set h(a,b)=E(Ŷ −Y )2 =a2−2µ2a+σ 2
1 b2−2ρσ1σ2b+(µ2

2+σ 2
2 ).

Then ∂h
∂a =0, ∂h

∂b =0 yield a=µ2, b=ρσ2/σ1.

Furthermore, ∂2h
∂a2 =2, ∂2h

∂a∂b = ∂2h
∂b∂a =0, ∂2h

∂b2 =2σ 2
1 , and

(λ1 λ2)
(

1 0
0 σ 2

1

)(
λ1
λ2

)
=λ2

1+σ 2
1 λ2

2 >0 (λ2
1+λ2

2 �=0),

so that a=µ2, b=ρσ2/σ1 minimize h(a,b).
(ii) Ŷ =µ2+ ρσ2

σ1
(X −µ1), and this is equal to E(Y |X =x).

Chapter 10

Section 10.1

1.2 The relation fX ,Y (x, y) = fX (x)fY (y) holds true for all values of x and
y, and therefore X and Y are independent.

1.4 The r.v.’s X and Y are not independent, since, e.g., fX ,Y (0.1, 0.1) =
0.132 �= 0.31824 = 0.52 × 0.612 = fX (0.1)fY (0.1).

1.6 (i) fX (x) = 6
5 (x2 + 1

2 ), 0 ≤ x ≤ 1; fY (y) = 6
5 (y + 1

3 ), 0 ≤ y ≤ 1.

(ii) The r.v.’s are not independent, since, e.g., fX ,Y ( 1
2 , 1

4 ) = 3
5 �= 9

10 ×
7
10 = fX ( 1

2 )fY ( 1
4 ).

1.8 (i) fX (x) = 2x, 0 < x < 1; fY (y) = 2y, 0 < y < 1; fZ(z) = 2z, 0 < z < 1.
(ii) The r.v.’s are independent because clearly,

fX ,Y ,Z(x, y, z) = fX (x)fY (y)fZ(z).

(iii) P(X < Y < Z) = 1/6.

1.10 (i) c can be any positive constant.
(ii) fX ,Y (x, y) = c2e−cx−cy, x > 0, y > 0, and likewise for fX ,Z and

fY ,Z.
(iii) fX (x) = ce−cx, x > 0, and likewise for fY and fZ.
(iv) The r.v.’s X and Y are independent, and likewise for the r.v.’s

X , Z and Y , Z. Finally, from part (iii), it follows that the r.v.’s
X , Y , and Z are also independent.

1.12 (i) EX = 200 days; (ii) MX+Y (t) = 1/(1 − 200t)2, t < 0.005, and
fX+Y (t) = (0.005)2te−0.005t, t > 0.

(iii) P(X + Y > 500) = 2.5e−2.5 + e−2.5 	 0.287.
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1.14 (i) MU (t) = exp[(aµ1 + b)t + (aσ1)2t2

2 ] which is the m.g.f. of the
N(aµ1 + b, (aσ1)2) distribution. Likewise for V .

(ii) MU,V (t1, t2) = exp[(aµ1 + b)t1 + (aσ1)2t2
1

2 + (cµ2 + d)t2 + (cσ2)2t2
2 ].

(iii) Follows from parts (i) and (ii), since MU (t1)MV (t2)=
MU,V (t1, t2) for all t1, t2.

1.16 MX̄ (t) = [M( t
n )]n.

1.18 (i) EX̄ = p and Var(X̄) = pq/n; (ii) n = 10,000.

1.20 (i) fX (−1) = 2α + β, fX (0) = 2β, fX (1) = 2α + β;
fY (−1) = 2α + β, fY (0) = 2β, fY (1) = 2α + β.

(ii) EX = EY = 0, and E(XY ) = 0; (iii) Cov(X , Y ) = 0.
(iv) The r.v.’s are not independent, since, e.g., f (0, 0) = 0 �= (2β) ×

(2β) = fX (0)fY (0).

1.22 (i) EX̄ = µ and Var(X̄ ) = σ 2/n.
(ii) For k = 1, n = 100; for k = 2, n = 25; and for k = 3, n = 12.

1.24 (i) EX̄ = µ and Var(X̄ ) = σ 2/n.
(ii) The smallest n which is ≥ 1/(1 − α)c2.

(iii) For c = 0.1, the required n is its smallest value ≥ 100/(1 − α).
For α = 0.90, n = 1,000; for α = 0.95, n = 2,000; for α = 0.99,
n = 10,000.

1.26 By Theorem 1(iii), it suffices to show that: MY, Z(t1, t2)=MY (t1)MZ(t2)
for all t1, t2 belonging in a non-degenerate interval containing 0.
Indeed,

MY ,Z(t1,t2)=Eet1Y+t2Z

=Eet1 g(Xi1 ,...,Xim )+t2 h(Xj1 ,...,Xjn )

=E[et1 g(Xi1 ,...,Xim )×et2 h(Xj1 ,...,Xjn )]
=∫∞

−∞ ···∫∞
−∞ et1 g(xi1 ,...,xim )×et2 h(xj1 ,...,xjn )fX1,...,Xk(x1, . . . ,xk)dx1 . . . dxk

(for the continuous case)

=∫∞
−∞ ···∫∞

−∞ et1 g(xi1 ,...,xim )×et2 h(xj1 ,...,xjn )fX1(x1) · · ·fXk(xk)dx1 . . . dxk

(by independence of the Xi’s)

=∫∞
−∞ ···∫∞

−∞[et1 g(xi1 ,...,xim )fXi1
(xi1) . . . fXim

(xim)×et2 h(xj1 ,...,xjn )×
fXj1

(xj1) . . . fXjn
(xjn)dxi1 . . .dximdxj1 . . .dxjn ]

=
[∫ ∞

−∞
···
∫ ∞

−∞︸ ︷︷ ︸
m integrals

et1 gh(xi1 ,...,xim )fXi1
(xi1) . . . fXim

(xim)dxi1 . . .dxim

]
×

[∫ ∞

−∞
···
∫ ∞

−∞︸ ︷︷ ︸
n integrals

et2 h(xj1 ,...,xjn )fXj1
(xj1) . . . fXjn

(xjn)dxj1 . . .dxjn

]
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=Eet1 g(Xi1 ,...,Xim )×Eet2 h(Xj1 ,...,Xjn )

=Eet1Y ×Eet2Z =MY (t1)MZ(t2),
as was to be seen. The integrals are replaced by summation signs in
the discrete case.

1.28 (i) U ∼ N(0, 2).
(ii) Var(U) = 2, Cov(X , U) = 1, ρ(X , Y ) = √

2/2.

(iii) MX ,U (t1, t2) = exp( t2
1+2t2+2t1t2

2 ), t1, t2 ∈ �.

(iv) ∂2

∂t1∂t2
MX ,U (t1, t2) |t1=t2=0= 1 = E(XU), so that Cov(X , U) = 1.

1.30 (i) c = 1
4 .

(ii) fX (x) = 1
2 , −1 ≤ x ≤ 1, fY (y) = 1

2 , −1 ≤ y ≤ 1.
(iii) They are independent, because fX ,Y (x, y) = fX (x)fY (y) for all x

and y.
(iv) P(X2 + Y 2 ≤ 1) = π

4 .

Section 10.2

2.2 (i) By independence, X + Y ∼ B(m + n, p).
(ii) Here X + Y ∼ B (20, 0.25), and hence:

P(5 ≤ X + Y ≤ 15) = ∑15
t=5
(20

t

)
(0.25)t(0.75)20−t

= 1.0000 − 0.4148 = 0.5852.

2.4 (i) Clearly, p = P(X1 ∈ I) = ∫I f (x)dx, for the continuous case, and
p =∑x∈I f (x), for the discrete case.

(ii) Define the r.v.’s Y1, . . . , Yn as follows: Yi = 1 if Xi ∈ I, and Yi = 0
otherwise. Then the r.v.’s Y1, . . . , Yn are also independent and
their common distribution is B(1, p). Thus, if Y = Y1 + · · · +
Yn, then Y ∼ B(n, p), and the question is rephrazed as follows:
P(at least k of X1, . . . , Xk take values in I) = P(Y ≥ k) = 1 −
P(Y ≤ k − 1) = 1 −∑k−1

y=0
(n

y

)
pyqn−y (q = 1 − p).

(iii) Here p = ∫∞
1/λ λe−λxdx = −e−λx|∞1/λ = e−1 = 1/e, and hence the

probability in part (ii) is equal to: 1−∑k−1
y=0
(n

y

) (1
e

)y (
1 − 1

e

)n−y
.

(iv) The required probability is:

1 −
(

1 − 1
e

)4

− 4
(

1
e

)(
1 − 1

e

)3

	 0.469.

2.6 (i) Since Xi ∼ B(1, p), i = 1, . . . , n, and these r.v.’s are independent,
it follows that X = X1 + · · · + Xn ∼ B(n, p).

(ii) From f (x) = (nx
)
pxqn−x 	 e−np (np)x

x! = e−2 2x

x! , x = 0, 1, …,
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we get from the Poisson tables:
f (0) 	 0.1353 = 0.1353
f (1) 	 0.4060 − 0.1353 = 0.2707
f (2) 	 0.6767 − 0.4060 = 0.2707
f (3) 	 0.8571 − 0.6767 = 0.1804
f (4) 	 0.9473 − 0.8571 = 0.0902.

2.8 Let Xi be the r.v. denoting the number of no-shows in the ith flight,
and assume (reasonably enough) that the r.v.’s X1, . . . , X5 are inde-
pendent. Then the r.v. X = X1 + · · · + X5 ∼ P(5λ), and since λ = 2,
we have that X ∼ P(10). Therefore, we obtain from the Poisson
tables:

(i) P(X = 0) = e−10 	 0.
(ii) P(X ≤ 5) = 0.0671.

(iii) P(X = 5) = 0.0671 − 0.0293 = 0.0378.
(iv) P(X ≥ 5) = 1 − P(X ≤ 4) = 1 − 0.0293 = 0.9707.
(v) P(X ≤ 10) = 0.538.

(vi) P(X = 10) = 0.5838 − 0.4579 = 0.1259.
(vii) P(X ≥ 10) = 1 − P(X ≤ 9) = 1 − 0.4579 = 0.5421.

(viii) P(X ≤ 15) = 0.9513.
(ix) P(X = 15) = 0.9513 − 0.9165 = 0.0348.
(x) P(X ≥ 15) = 1 − P(X ≤ 14) = 1 − 0.9165 = 0.0835.

2.10 By Exercise 1.14(i) here, −Y ∼ N(−µ2, σ 2
2 ). Then:

(i) By independence of X and −Y , we have that X −Y ∼ N(µ1−µ2,
σ 2

1 + σ 2
2 ).

Therefore:

(ii) P(X > Y ) = P(X − Y > 0) = P
[

(X − Y ) − (µ1 − µ2)√
σ 2

1 + σ 2
2

> − µ1 − µ2√
σ 2

1 + σ 2
2

]

= P
(

Z > − µ1 − µ2√
σ 2

1 + σ 2
2

)
= 1 − �

(
− µ1 − µ2√

σ 2
1 + σ 2

2

)
.

(iii) When µ1 = µ2, then �(− µ1 − µ2√
σ 2

1 + σ 2
2

) = �(0) = 0.5, and hence

P(X > Y ) = 0.5 (regardless of σ1 and σ2).
2.12 (i) X ∼ N(µ

∑n
i=1 αi, σ 2∑n

i=1 α2
i ), Y ∼ N(µ

∑n
j=1 βj, σ 2∑n

j=1 β2
j ).

(ii) Starting with MX ,Y (t1, t2), using independence of the Xi’s,
inserting the m.g.f. of the Xi’s, and using the notation indicated,
we obtain the desired result.

(iii) It is immediate by the fact that MX ,Y (t1, t2), given in (ii), is
the m.g.f. of the bivariate normal distribution with parameters
µ1, µ2, σ1, σ2, and ρ = ρ(X , Y ).

(iv) Immediate from part (iii).
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2.14 (i) n is the smallest integer such that n ≥ 1/c2(1 − p).
(ii) Let p = 0.95. Then, for c = 1, c = 0.5, and c = 0.25, we get,

respectively: n = 20, n = 80, and n = 320.

2.16 Here X+Y
2 ∼ N(µ, 3σ 2

4 ), so that

P(| X+Y
2 − µ |≤ 1.5σ ) = 2�(

√
3) − 1 = 0.91637.

Chapter 11

Section 11.1

1.2 (i) X ∼ N(µ−160
9 , 25σ 2

81 ); (ii) a 	 32.222, b = 35.

(iii) ak = 5µ−160
9 − k 5σ

9 , bk = 5µ−160
9 + k 5σ

9 .

1.4 fY (y) = λy−(λ+1), y > 1; fZ(z) = λez−λez
, z ∈ �.

1.6 (i) fY (y) = 1
2e−y/2, y > 0, which is the p.d.f. of a χ2

2 .

(ii)
∑n

i=1 Yi ∼ χ2
2n, since Yi ∼ χ2

2 , i = 1, . . . , n independent.

1.8 fY (y) = 1
�( 3

2 )m3/2 y
3
2 −1e−y/m, y > 0.

1.10 Restrict ourselves to y>0. Then FY (y)=FX

(√
2y
m

)
, so that

fY (y) = d
dyFX

(√
2y
m

)
= 1

�( 3
2 )m3/2 y

3
2 −1e− y

m , since �( 3
2 ) = 1

2�( 1
2 ) = 1

2
√

π .

The last expression is the p.d.f. of Gamma with α = 3
2 , β = m.

Section 11.2

2.2 (i) fU,V (u, v) = u
(1+v)2 e−u, u > 0, v > 0.

(ii) fU (u) = u e−u, u > 0; fV (v) = 1/(1 + v)2, v > 0.
(iii) U and V are independent.

2.4 (i) fU,V (u, v) = 1
|ac| fX (u − b

a )fY ( v − d
c ), (u, v) ∈ T.

(ii) fU,V (u,v) =
1√

2π |a|σ1
exp{−[u−(aµ1 +b)]2

2(aσ1)2 }× 1√
2π |c|σ2

exp{−[v−(cµ2 +d)]2
2(cσ2)2 },

and therefore U and V are independently distributed as
N(aµ1+b, (aσ1)2) and N(cµ2+d, (cσ2)2), respectively.

2.6 (i) fU,V (u, v) = 1√
2π

e−u2/2 × 1√
2π

e−v2/2, u, v ∈ �.

(ii) U ∼ N(0, 1), V ∼ N(0, 1).
(iii) U and V are independent.
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(iv) By parts (ii) and (iii), X + Y ∼ N(0, 2) and X − Y ∼ N(0, 2).

2.8 fU (u) = 1, 0 ≤ u ≤ 1.

2.10 (i) For r = 1, fX1(t) = 1
π

× 1
1+t2 , since �( 1

2 ) = √
π . Then, by Exercise

1.16 in Chapter 5, the
∫∞
−∞ fX1(t)dt = ∞ − ∞, so that EX1 does

not exist.
(ii) For r ≥ 2, EXr = 0 by a simple integration.

(iii) Next,
∫∞
−∞ t2 × (1 + t2

r )−
r+1

2 dt = r
√

r
∫ 1

0 y
r−2

2 −1(1 − y)
3
2 −1dy, by

setting first t2

2 = x, and 1
1+x = y next. In the last expression

above, implement the relation given in the Hint to get:

r
√

r
�( r−2

2 )�( 3
2 )

�( r+1
2 )

(for r ≥ 3).

By means of this, the recursive relation of the Gamma func-
tion, and the fact that �( 1

2 ) = √
π , we get: EX2

r = r
r−2 , so that

Var(Xr) = r
r−2 (r ≥ 3).

Section 11.3

3.2 It follows by forming the inner products of the row vectors.

3.4 It follows from the joint p.d.f. fX ,Y , the transformations u = x−µ1
σ1

,

v = y−µ2
σ2

, and the fact that the Jacobian J = σ1σ2.

3.6 (i) It follows from the joint p.d.f. fX ,Y , the transformations u = x+y,
v = x − y, and the fact that the Jacobian J = −1/2.

(ii) U and V are independent by the fact that they have the bivariate
normal distribution and their correlation coefficient is 0.

(iii) It follows from part (i) as marginals of the bivariate normal.

3.8 (i) P(aµ < X̄ < bµ, 0 < S2 < cσ 2) = [�(k(b − 1)
√

n) − �(k(a −
1)

√
n)] × P(χ2

n−1 < c(n − 1)); (ii) The probability is 0.89757.

Section 11.5

5.2 EY1 = 1
n + 1 , EYn = n

n + 1 , and EY1 → 0, EYn → 1, as n → ∞.

5.4 E(Y1Yn) = 1
n + 2 . Therefore, by Exercise 5.2, Cov(Y1, Yn) = 1

(n + 1)2(n + 2)
.

5.6 fZ(z) = λe−λz, z > 0.

5.8 (i) gn(yn) = nλe−λyn (1 − e−λyn)n−1, yn > 0.
(ii) For n = 2, EY2 = 3/2λ, and for n = 3, EY3 = 11/6λ.

5.10 g1n(y1, yn) = n(n − 1)[F(yn) − F(y1)]n−2f (y1)f (yn), a < y1 < yn < b.
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Chapter 12

Section 12.1

1.2 For every ε > 0, P(|Xn| > ε) = P(Xn = 1) = pn, and therefore Xn
P→0

if and only if pn → 0 as n → ∞.

1.4 (i) P(|Y1,n| > ε) = (1 − ε)n → 0, as n → ∞.
(ii) P(|Yn,n − 1| > ε) = 1 − P(|Yn,n − 1| ≤ ε) and P(|Yn,n − 1| ≤ ε) =

1 − (1 − ε)n → 1, so that P(|Yn,n − 1| > ε) → 0, as n → ∞.

1.6 EX̄n = µ and E(X̄n − µ)2 = Var(X̄n) = σ 2

n → 0, as n → ∞.

1.8 E(Yn − X )2 = E(Yn − Xn)2 + E(Xn − X )2 + 2E[(Yn − Xn)(Xn −
X )] → 0, as n → ∞, by the assumptions made, and the fact that
|E[(Yn − Xn)(Xn − X )]| ≤ E1/2|Xn − Yn|2 × E1/2|Xn − X |2.

Section 12.2

2.2 (i) MX (t) = (1 − α)/(1 − αet), t < −logα.
(ii) EX = α/(1 − α).

(iii) MX̄n
(t) = ( 1−α

1−αet/n

)n = {1 − αt/(1−α) + [α/(1−α)]nR( t
n )

n }−n −→n→∞ eαt/(1−α),

since n
t R( t

n ) −→n→∞ 0 for fixed t, and eαt/(1−α) is the m.g.f. of α
1−α

.

2.4 Since X ∼ B(1,000, p), we have:
(i) P(1,000p − 50≤X≤1,000p+50) = ∑1,000p+50

x=1,000p−50

(1,000
x

)
pxq1,000−x,

q = 1 − p. For p = 1
2 and p = 1

4 :

P(450 ≤ X ≤ 550) =
550∑

x=450

(
1,000

x

)
(0.5)1,000,

P(200 ≤ X ≤ 300) =
300∑

x=200

(
1,000

x

)
(0.25)x × (0.75)1,000−x.

(ii) For p = 1
2 and p = 1

4 , the approximate probabilities are, respec-
tively: �(3.16) + �(3.22) − 1 = 0.99857, �(3.65) + �(3.72) − 1 =
0.999769.

2.6 EXi = 7
2 , EX 2

i = 91
6 , so that Var(Xi) = 35

12 . Therefore P(150 ≤ X ≤
200) = P(149 < X ≤ 200) 	 �(2.07) − �(2.15) = 0.964996 with-
out continuity correction. With continuity correction, P(149 < X ≤
200) = P(149.5 < X ≤ 200.5) 	 2�(2.11) − 1 = 0.965142.

2.8 Since X ∼ B(1,000, 0.03), the required approximate probability is:
P(X ≤ 50) = P(−0.5 < X ≤ 50) 	 �(3.71) − �(5.65) − 1 = �(3.71) =
0.999896 without continuity correction. With continuity correction,
P(−0.5 < X ≤ 50) = P(0 < X ≤ 50.5) 	 �(3.80) = 0.999928.
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2.10 P(|X
n − 0.53| ≤ 0.02) 	 2�( 0.02

√
n√

0.2491
) − 1 = 0.99, so that n = 4,146.

2.12 Since EXi = Var(Xi) = λ, setting Sn =∑n
i=1 Xi, we have:

(i) P(Sn ≤ nλ) = P(−0.5 < Sn ≤ nλ) 	 �( 0.5+nλ√
nλ

) − 0.5.
(ii) For the cases that nλ is not an integer, and it is an integer, we

have, respectively:

P(Sn ≥ nλ) 	 1 + �
(

nλ−[nλ]√
nλ

)
− �

(
0.5−[nλ]√

nλ

)

(where [nλ] is the integer part of nλ),

P(Sn ≥ nλ) 	 1 + �
(

1√
nλ

)
− �

(
0.5+nλ√

nλ

)
.

(iii) Also, for the cases that nλ
2 is not an integer, and it is an iteger,

we have, respectively:

P( nλ
2 ≤ Sn ≤ 3nλ

4 ) 	 �

(
nλ−[ nλ

2 ]√
nλ

)
− �

(√
nλ
4

)
,

P(nλ
2 ≤ Sn ≤ 3nλ

4 ) 	 �
(

nλ+2
2
√

nλ

)
− �

(√
nλ
4

)
.

(iv) For nλ = 100, parts (i)–(iii) become: P(Sn ≤ 100) 	 0.5;
P(Sn ≥ 100) 	 0.539828; P(50 ≤ Sn ≤ 75) 	 0.00621.

2.14 The total life time is X = ∑50
i=1 Xi, where Xi’s are indepen-

dently distributed as negative exponential with λ = 1/1,500. Then
P(X ≥ 80,000) 	 1 − �(0.47) = 0.319178.

2.16 (i) P(a ≤ X̄ ≤ b) 	 �((2b − 1)
√

3n) − �((2a − 1)
√

3n).
(ii) Here (2b − 1)

√
3n = 0.75, (2a − 1)

√
3n = −0.75, and the above

probability is: 2�(0.75) − 1 = 0.546746.

2.18 P(|X̄ − µ| ≤ 0.0001) 	 2�(0.2
√

n) − 1 = 0.99, and then n = 167.

2.20 (i) P(|X̄n − µ| < kσ ) 	 2�(k
√

n) − 1 = p, so that n is the smallest
integer ≥ [1

k�−1(1 + p
2 )]2.

(ii) Here n is the smallest integer ≥1/(1 − p)k2.
(iii) For p = 0.90, p = 0.95, and p = 0.99, and the respective values

of k, we determine the values of n by means of the CLT and the
Tchebichev inequality.

Then, for the various values of k, the respective values of n are given
in the following table for part (i).

k\ p 0.90 0.95 0.99

0.50 11 16 27
0.25 44 62 107
0.10 271 385 664
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For the Tchebichev inequality, the values of n are given by the entries
of the table below.

k\ p 0.90 0.95 0.99

0.50 40 80 400
0.25 160 320 1,600
0.10 1,000 2,000 10,000

2.22 (i) P(|X̄ − Ȳ | ≤ 0.25σ ) = P(|Z̄| ≤ 0.25σ ) 	 2�( 0.25
√

n√
2

) − 1 = 0.95,
and then n = 123.

(ii) From 1 − 2
0.0625n ≥ 0.95, we find n = 640.

2.24 We have EXi = 1
λ
, Var(Xi) = 1

λ2 , so that ESn = n
λ

, Var(Sn) = n
λ2 ,

σ (Sn) =
√

n
λ

. Then:

(i) P(Sn ≤ nP) = P(0 ≤ Sn ≤ nP) 	 �[√n(λP − 1)] (since n is
expected to be large), and P = 1

λ
[1 + 1√

n�−1(p)].
(ii) For the given values, P = 1, 000(1 + 1

100 × 2.33) = 1, 023.3.

2.26 Since EX = 0 and Var(X) = 1/12, we have:
P(|X̄100| ≤ 0.1) 	 2�(

√
12) − 1 = 0.99946.

Section 12.3

3.2 From
∑n

i=1(Xi − X̄n)2 =∑n
i=1 X2

i − nX̄2
n , we get

1
n − 1

n∑

i=1

(Xi − X̄n)2 = n
n − 1

× 1
n

n∑

i=1

X2
i −

n
n − 1

X̄2
n

P−→n →∞ 1 × (σ 2 + µ2) − 1 × µ2 = σ 2

(by Theorems 1 and 5(ii), (iii)).



INDEX

A
Alternative hypothesis, 314
Analysis of variance (ANOVA), 319–321

models, 310, 318
Approximation

normal, 126, 289
Poisson, 120

Assumption, one-to-one, 236

B
Bayes’ formula, 62
Binomial distribution, 103–109, 313

Poisson approximation to, 120
Binomial expansion, 276

formula, 30
Binomial experiment, 103
Bivariate normal distribution, 197–206,

213, 228, 264
exercises, 202–206

Bivariate normal with parameters, 197

C
Cauchy-Schwarz inequality, 284
Central Limit Theorem (CLT), 126, 278,

285, 293–295
exercises, 298–303

Chi-square distribution, 125–126
Classification, two-way, 321
Classification model, one-way, 320
CLT. See Central Limit Theorem
Coefficient, confidence, 313, 314

Coefficient of two r.v.’s, covariance and
correlation, 172–180

Combinations, permutations or, 25
Complement of event, 11
Complements, 15
Complex system, components connected

serially in, 273
Composite defined, 6
Composite hypotheses, 314
Concepts

decision-theoretic, 317
fundamental, 6–11

Conditional expectation, 152–166
exercises, 160–166

Conditional expectation of one r.v., 156
Conditional expectations, 187
Conditional p.d.f.’s, 156, 187

marginal and, 152–166
Conditional probabilities, 72
Conditional probability and independence,

56–81
conditional probability and related

results, 56–69
independent events and related results,

69–81
Conditional probability and related results,

56–69
exercises, 63–69

Conditional variances, 159, 187
Confidence coefficient, 313, 314
Confidence intervals, 310, 313

381
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Confidence limit
lower, 313
upper, 313

Confidence region, 314
Constants, unknown, 309
Continuity correction, 295–297
Continuity theorem, 283
Continuous distributions, 121–139

chi-square distribution, 125–126
exercises, 133–139
gamma distribution, 121–123
negative exponential distribution,

123–125
normal distribution, 126–131
rectangular distribution, 131–132
uniform distribution, 131–132

Continuous sample spaces defined, 11
Contracts, two, 38–39
Contrasts defined, 320
Convergence, two modes of, 278–308
Convergence in distribution and in

probability, 279–285
Correction, continuity, 295–297
Correlation coefficient of random variables

(r.v.’s), 173
Correlation coefficient of two random

variables (r.v.’s), 167–184
Correlation coefficient of two random

variables (r.v.’s), covariance and,
172–180

Counting, concepts and results in, 23–30
exercises, 29–30

Counting, fundamental principle of, 24
Covariance and correlation coefficient of

two random variables (r.v.’s)
exercises, 177–180

Covariance and correlation coefficient of
two r.v.’s, 172–180

Covariance of two random variables (r.v.’s),
167–184

Cramér-Wold devise, 189
Critical region, 315

D
Data defined, 311
Decision-theoretic concepts, 317
Decision-theoretic method, 312
Degrees of freedom (d.f.), 125, 244
Delta method, 307
DeMorgan’s Laws, 13, 14, 15, 18
Dependence, linear, 172
Dependent events, 71
d.f.. See Distribution function
Diagnosis, probability of correct, 66
Diagram, Venn, 7, 37

Discrete distributions, 103–121
binomial distribution, 103–109
exercises, 115–121
geometric distribution, 109–110
hypergeometric distribution, 113–115
Poisson distribution, 110–113

Disjoint, mutually or pairwise, 12
Distribution

binomial, 103–109, 120, 313
bivariate normal, 197–206, 213, 228, 264
chi-square, 125–126
gamma, 121–123
geometric, 109–110
of grade averages, 224–225
hypergeometric, 113–115, 119–120
joint, 142, 186, 264
joint probability, 141–142, 186
Maxwell, 239
multimodal, 98
multinomial, 189–196
multivariate normal, 206
negative exponential, 123–125, 219, 252,

253, 266, 272, 275
normal, 126–131, 313
Poisson, 110–113, 121, 124, 133, 137, 210,

240, 295, 300, 313
probability, 46
rectangular, 131–132
standard normal, 127
uniform, 131–132
unimodal, 98
Weibull, 134

Distribution and probability, convergence
in, 279–285

exercises, 283–285
Distribution defined, 46
Distribution function (d.f.), 46

marginal joint, 187
Distribution of random variable (r.v.), 45–55

exercises, 50–55
Distribution of sample variance under

normality, 229–231
exercises, 231

Distributions, continuous, 121–139
chi-square distribution, 125–126
exercises, 133–139
gamma distribution, 121–123
negative exponential distribution,

123–125
normal distribution, 126–131
rectangular distribution, 131–132
uniform distribution, 131–132

Distributions, discrete, 103–121
binomial distribution, 103–109
exercises, 115–121
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geometric distribution, 109–110
hypergeometric distribution, 113–115
Poisson distribution, 110–113

Distributions, reproductive property of
certain, 219–229

exercises, 226–229
Distributions, special, 103–139

continuous distributions, 121–139
discrete distributions, 103–121

Distributions, three multivariate, 185
Distributive laws, 18

E
Equilibrium, point of, 83. See also center of

gravity
Estimates

point, 311
Uniformly Minimum Variance Unbiased

(UMVU), 312
Estimating, kernel method of, 322
Estimations

interval, 310, 312–314
nonparametric, 322
point, 309, 310–312

Estimator, point, 311
Events, 17–18, 22, 42, 43, 59–60, 65, 76, 81

complement of, 11
defined, 6
dependent, 71
impossible, 6
independent, 69, 70, 71, 72
occurring in time intervals, 240
simple, 6
three, 39, 64
two, 38
union of, 11

Expansion
binomial, 276
multinomial, 28
Taylor, 307

Expansion formula, binomial, 30
Expectations

conditional, 152–166, 187
variance, and moment-generating

function of r.v.’s, 82–93
Experiments

binomial, 103
multinomial, 189
random, 6

Exponential distribution, negative, 123–125

F
Factorials, 29
F-distribution, 232, 244, 246, 249, 255

Formula
Bayes’, 62
binomial expansion, 30
inversion, 90, 171, 212
Stirling, 254
Taylor’s, 293

Functions
gamma, 121
indicator, 174
likelihood, 311
test, 315

Fundamental concepts, some, 6–30
concepts and results in counting, 23–30
exercises, 16–18
random variables (r.v.’s), 19–23

Fundamental results, 11–15

G
Gamma distribution, 121–123
Gamma function, 121
Geometric distribution, 109–110. See also

Hypergeometric distribution
Goodness-of-fit test, 317
Grade averages, distribution of, 224–225

H
Hypergeometric distribution, 113–115,

119–120
Hypotheses

alternative, 314
composite, 314
null, 314
simple, 314
statistical, 314
testing, 310, 314–318

I
Identity, 14

and DeMorgan’s Laws, 13
Impossible event defined, 6
Independence, conditional probability and,

56–81
Independence, criteria of, 207–219

exercises, 215–219
Independent events, 70, 71, 72
Independent events and related results,

69–81
exercises, 75–81

Indicator functions, 174
Inequalities

Cauchy-Schwarz, 284
probability, 72, 93–96
Tchebichev, 116, 135, 217, 284, 285, 300,

302
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Inference
nonparametric, 321–323
nonparametric statistical, 309, 310
parametric statistical, 309

Inference, statistical, 309–323
analysis of variance (ANOVA), 319–321
interval estimation, 312–314
nonparametric inference, 321–323
point estimation, 310–312
regression analysis, 318–319
testing hypotheses, 314–318

Integers, 29
nonnegative, 28, 193–194
positive, 30

Integral transform, probability, 265–267
Interval estimation, 310, 312–314
Intervals

confidence, 310, 313
events occurring in time, 240
random, 313

Inversion formula, 90, 171, 212

J
Joint d.f. See Joint distribution function
Joint distribution, 142, 186, 264
Joint distribution function (joint d.f.), 186

defined, 142
Joint distribution function (joint d.f.) and

joint p.d.f. of two r.v.’s, 140–152
exercises, 149–152

Joint distribution of k random variables,
186–189

exercises, 189
Joint m.g.f., 193
Joint moment-generating function (m.g.f.)

of two r.v.’s, 167–184
exercises, 171–172

Joint p.d.f. of two random variables (r.v.’s),
joint d.f. and, 140–152

Joint probability density function (joint
p.d.f.), 186, 187

Joint probability density function (p.d.f.) of
two random variables (r.v.’s), 140–166

Joint probability distribution, 141–142, 186

K
K random variables, 185
K random variables, joint distribution of,

186–189
Kernel method of estimating, 322
K-variate normal, 206

L
Largest-order statistics, smallest- and, 274,

275, 276

Laws
DeMorgan’s, 13, 14, 15, 18
distributive, 18

Layout, two-way, 321
Layout model, one-way, 320
Least Squares Estimate (LSE), 312
Least Squares (LS), 312
Likelihood function, 311
Likelihood Ratio (LR) test, 317
Limit theorems, 303–308

exercises, 307–308
Line, straight, 29
Linear algebra, 255
Linear dependence

degree of, 172
between two r.v.’s, 174

Linear transformations, 255–265
exercises, 262–265

Lower confidence limit, 313

M
Marginal and conditional p.d.f.’s, 152–166
Marginal joint d.f., 187
Marginal joint p.d.f., 187
Marginal m.g.f.’s, 171
Match defined, 68
Matrices, 257
Matrix algebra, 256
Maximum Likelihood Estimate (MLE), 311
Maximum Likelihood (ML), 311
Maxwell distribution, 239
Mean

sample, 220
Measure of location, 83
Median

defined, 97
and mode of random variable (r.v.),

96–102
Method

decision-theoretic, 312
delta, 307
of moments, 312

m.g.f.. See Moment-generating function
Mode of random variable (r.v.), median and,

96–102
Models

analysis of variance, 318
one-way classification, 320
one-way layout, 320
regression, 310, 318
variance, 310

Moment-generating function (m.g.f.), 87
joint, 193
marginal, 171
of random variables (r.v.’s), 82–93
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Moment-generating function (m.g.f.) of two
random variables (r.v.’s), joint,
167–184

Moment-generating function (m.g.f.) of two
r.v.’s, joint, 167–172

Moments, method of, 312
Most Powerful (MP) test, 317
Multimodal distribution, 98
Multinomial distribution, 189–196

exercises, 193–196
Multinomial expansion, 28
Multinomial experiment, 189
Multiple-choice test, 67
Multivariate distributions, three, 185

Multivariate normal distribution, 206
Mutually or pairwise disjoint, 12

N
Negative exponential distribution, 123–125
Negative numbers, 44
Negative-exponential distribution, 219, 252,

253, 266, 272, 275
Nonnegative integers, 28, 193–194
Non-orthogonal matrices, 257
Nonparametric estimation, 322
Nonparametric inference, 321–323

defined, 322
Nonparametric statistical inference, 309,

310
Nonrandomized test defined, 315
Normal

2-dimensional, 197
approximation defined, 126, 289
k-variate, 206
multivariate, 206

Normal distribution, 126–131, 313
bivariate, 197–206, 213, 228, 264
multivariate, 206
standard, 127

Null hypothesis, 314

O
One-to-one assumption, 236
One-way classification model, 320
One-way layout model, 320
Order statistics, 267–277

exercises, 274–277
Orthogonal defined, 256
Orthogonal matrices, 257
Orthogonal transformations, 256, 259, 260

P
Pairwise disjoint, mutually or, 12
Parameter space, 309, 310

Parameters, 310
bivariate normal with, 197
unknown, 309

Parametric statistical inference, 309
Partition of sample space, 65
p.d.f.’s. See Probability density functions
Permutations or combinations, 25
Point estimate, 311
Point estimation, 309, 310–312
Point estimator, 311
Point of equilibrium, 83
Points, sample, 6
Poisson approximation to binomial

distribution, 120
Poisson distribution, 110–113, 121, 124,

133, 137, 210, 240, 295, 300, 313
Poisson tables, 222
Positive integers, 30
Power of test employed, 316
Prior probabilities defined, 61
Priori defined, 61
Probabilities

axiomatic definition of, 33–34
and basic results, 31–55
classical definition of, 32–33
concept of, 31–55
conditional, 72
definition of, 31–36
inequalities of, 72
prior, 61
relative frequency definition of, 33
unconditional, 57

Probabilities, conditional, 56–81
conditional probability and related

results, 56–69
independent events and related results,

69–81
Probabilities, convergence in distribution

and in, 279–285
exercises, 283–285

Probability density function (p.d.f.) of two
r.v.’s, joint, 140–166

Probability density functions (p.d.f.’s)
conditional, 156, 187
marginal joint, 187
of r.v.’s, 48

Probability density functions (p.d.f.’s),
marginal and conditional,
152–166

exercises, 160–166
Probability distribution

defined, 46
joint, 141–142, 186

Probability inequalities, 93–96
exercises, 95–96
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Probability integral transform, 265–267
exercises, 267

Probability value (P-value), 318
Proof of Theorem 1, 180–184

exercises, 183–184
Properties and results, 36–45

exercises, 42–45
Property, reproductive, 219–229
P-value (probability value), 318

Q
Quantile, 98

R
Random experiment defined, 6
Random interval defined, 313
Random sample, 220
Random variables (r.v.’s), 19–23, 207–231

conditional expectation of one of, 156
correlation coefficient of, 173
covariance and correlation coefficient of

two, 172–180
covariance of two, 167–184
distribution of sample variance under

normality, 229–231
exercises, 22–23
joint d.f. and joint p.d.f. of two, 140–152
joint m.g.f. of two, 167–172
joint probability density function (p.d.f.)

of two, 140–166
k, 185
linear dependence between two, 174
reproductive property of certain

distributions, 219–229
Random variables (r.v.’s), distribution of,

45–55
exercises, 50–55

Random variables (r.v.’s), expectation,
variance, and m.g.f. of, 82–93

exercises, 90–93
Random variables (r.v.’s), independence of,

207–219
exercises, 215–219

Random variables (r.v.’s), median and mode
of, 96–102

exercises, 100–102
Random variable’s (r.v.’s), numerical

characteristics of, 82–102
expectation, variance, and

moment-generating function of r.v.’s,
82–93

median and mode of random variable
(r.v.), 96–102

probability inequalities, 93–96

Random variables (r.v.’s), single, 232–239
exercises, 238–239

Random variables (r.v.’s), transformation of,
232–277

linear transformations, 255–265
order statistics, 267–277
probability integral transform,

265–267
transforming single random variable

(r.v.), 232–239
transforming two or more random

variables (r.v.’s), 240–255
Random variables (r.v.’s), transforming two

or more, 240–255
exercises, 252–255

Random vectors, 2-dimensional, 140
Randomized test defined, 315
Rank test, 322
Rectangular distribution, 131–132
Region

confidence, 314
critical, 315
rejection, 315

Regression analysis, 318–319
Regression models, 310, 318
Rejection region, 315
Repetitions, 25
Reproductive property of certain

distributions, 219–229
exercises, 226–229

Results
fundamental, 11–15
properties and, 36–45

r.v.’s. See Random variables

S
Sample, random, 220
Sample mean, 220
Sample points defined, 6
Sample spaces

continuous, 11
defined, 6
partition of, 65

Sample variance under normality,
distribution of, 229–231

exercises, 231
Sign test, 322
Simple event defined, 6
Simple hypotheses, 314
Single random variable (r.v.), transforming,

232–239
exercises, 238–239

Smallest- and largest-order statistics, 274,
275, 276
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Spaces
continuous sample, 11
parameter, 309, 310
partition of sample, 65
sample, 6

Special distributions, 103–139
continuous distributions, 121–139
discrete distributions, 103–121

Standard normal distribution defined, 127
Statistic defined, 311
Statistical hypotheses, 314
Statistical inference, 321

nonparametric, 309
parametric, 309, 310

Statistical inference, overview of, 309–323
analysis of variance (ANOVA),

319–321
interval estimation, 312–314
nonparametric inference, 321–323
point estimation, 310–312
regression analysis, 318–319
testing hypotheses, 314–318

Statistics, order, 267–277
exercises, 274–277

Statistics, smallest- and largest-order, 274,
275, 276

Stirling formula, 254

T
Taylor expansion, 307
Taylor’s formula, 293
Tchebichev inequality, 116, 135, 217, 284,

285, 300, 302
T-distribution, 232, 244
Test function defined, 315
Testing hypotheses, 310, 314–318
Tests

defined, 315
goodness-of-fit, 317
Likelihood Ratio (LR), 317
Most Powerful (MP), 317
nonrandomized, 315
randomized, 315
rank, 322
sign, 322
Uniformly Most Powerful (UMP), 317

Theorem, continuity, 283
Theorem 1, proof of, 180–184

exercises, 183–184
Theorems, limit, 303–308

exercises, 307–308
Three events, 39, 64
Three multivariate distributions, 185
Transform, probability integral,

265–267

Transformations
orthogonal, 256, 259, 260
of random variables (r.v.’s), 232–277

Transformations, linear, 255–265
exercises, 262–265

Transforming two or more random
variables (r.v.’s), 240–255

2-dimensional normal defined, 197
2-dimensional random vectors, 140
Two random variables (r.v.’s)

correlation coefficient of, 167–184
covariance and correlation coefficient of,

172–180
covariance of, 167–184
joint d.f. and joint p.d.f. of, 140–152
joint m.g.f. of, 167–172
joint probability density function (p.d.f.)

of, 140–166
linear dependence between, 174

Two-way classification, 321
Two-way layout, 321

U
Unconditional probability, 57
Uniform distribution, 131–132
Uniformly Minimum Variance Unbiased

(UMVU) estimate, 312
Uniformly Most Powerful (UMP) test, 317
Unimodal distribution, 98
Union of events, 11
Unions, 11
Unknown constants (parameters), 309
Upper confidence limit, 313

V
Value, probability, 318
Variables. See Random variables; Two

random variables
Variance models, analysis of, 318
Variances, 152–166

conditional, 159, 187
exercises, 160–166
and moment-generating function of

random variables (r.v.’s), 82–93
sample, 229–231

Vectors, 2-dimensional random, 140
Venn diagram, 7, 37

W
Weak Law of Large Numbers (WLLN),

278, 285
applications of, 286–293
exercises, 298–303

Weibull distribution, 134
WLLN. See Weak Law of Large Numbers
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