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Avant-propos 

En 1965, J. Bjorken et S. Drell concluaient leur ouvrage classique (*), 
qui ‘fut la bible d’une génération de physiciens des particules, par ces 
considérations pessimistes : << Par conséquent toutes les conclusions 
reposant sur le groupe de renormalisation.. . sont hasardeuses et 
doivent être prises avec la plus grande prudence. Ainsi en est-il de tous 
les résultats des théories des champs relativistes. N La même année, 
F. Dyson, l’un des pères fondateurs de l’électrodynamique quantique, 
écrivait (**) : << On imagine aisément que d’ici quelques années les 
concepts de la théorie des champs auront totalement disparu du 
vocabulaire quotidien des physiciens des hautes énergies. H On sait que 
le développement de la physique n’a pas confirmé ces prévisions : la 
physique moderne des particules élémentaires est devenue indissociable 
des théories de jauge non abéliennes, généralisation de I’électrodynami- 
que quantique élaborée au lendemain de la Deuxième Guerre mondiale 
par Schwinger, Feynman, Dyson et Tomonaga. 

Après tout, la théorie quantique des champs avait été inventée pour 
décrire la création et l’annihilation de particules, et son retour en force 
dans ce domaine, après une période de disgrâce d’une dizaine d’années, 
n’était pas une surprise totale. Plus étonnant fut l’impact de la théorie 
des champs sur la compréhension des phénomènes critiques, au début 
des années soixante-dix. Certes les méthodes de la théorie des champs 
(fonctions de Green, diagrammes de Feynman ...) avaient déjà été 
empruntées par les physiciens du solide et les physiciens nucléaires, 
dans le cadre du << problème à N-corps », mais il s’agissait avant tout 
d’outils de travail, qui n’introduisaient pas d’idées fondamentalement 
nouvelles (sauf en supraconductivité et superfluidité, mais c’étaient là 
les prémisses d’une approche très générale et très féconde, celle des 
symétries brisées). Au contraire l’irruption du concept de renormalisa- 
tion en physique statistique était révolutionnaire, car rien ne laissait 
prévoir que l’élimination des infinis, qui furent la plaie initiale de la 
théorie des champs, pouvait jouer un rôle dans un domaine où ils 
étaient a priori absents. Le mérite de Wilson fut de réaliser que les 

(*) Bjorkcn-Drcll, chapitrc 19. 
(**) Physics Today (juin 1965). 
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fonctions de corrélation d’un système au voisinage d’un point critique 
étaient, à longue distance, décrites par une théorie renormalisée. Cette 
observation fondamentale devait d’ailleurs donner un éclairage nouveau 
sur la renormalisation. 

II m’a semblé utile d’écrire un ouvrage d’introduction, qui mette les 
développements de ces vingt dernières années à la portée d’étudiants de 
troisième cycle , ainsi que de physiciens non spécialistes qui souhaitent 
s’initier aux méthodes de la théorie des champs. J’ai suivi un plan 
d’ensemble assez différent des exposés traditionnels, qui sont, en règle 
générale, orientés uniquement soit vers la physique statistique, soit vers 
la physique des hautes énergies. La démarche choisie permet d’arriver 
rapidement au cœur de la théorie des champs, à savoir la renormalisa- 
tion et le groupe de renormalisation, dans le cadre du modèle le plus 
simple possible : le modèle en q~ 4, ou modèle de Ginzburg-Landau, tout 
en conduisant à des applications fondamentales à la physique des 
phénomènes critiques. 

Le livre est divisé en quatre parties. La première est une introduction 
aux phénomènes critiques et au groupe de renormalisation, dans la 
version de Wilson. Des applications comme le << développement F B et 
le modèle XY sont traitées en détail. La deuxième partie traite du 
développement perturbatif, toujours dans le cadre de la physique 
statistique. Le chapitre V introduit les techniques de base (fonctionnel- 
les génératrices, diagrammes de Feynman). C’est un chapitre un peu 
technique et quelque peu fastidieux, mais nécessaire pour l’étude des 
deux chapitres suivants qui abordent les concepts fondamentaux de la 
théorie : renormalisation et groupe de renormalisation, cette fois dans 
la version des équations de Callan-Symanzik. 

Avec la troisième partie, on quitte l’espace euclidien de la physique 
statistique pour l’espace de Minkowski de la théorie quantique relati- 
viste. L‘essentiel du formalisme est déjà en place, car les fonctions de 
Green de la théorie quantique ne sont qu’un prolongement analytique 
des fonctions de corréhtion de la théorie euclidienne. Ceci est expliqué 
au chapitre VIII, dans le cas de la mécanique quantique ordinaire. 
Alors que les intégrales fonctionnelles avaient été jusqu’à ce point 
utilisées de façon systématique, le chapitre IX ouvre une brève 
parenthèse pour exposer la quantification canonique , tandis que dans le 
chapitre suivant est rassemblé l’essentiel des résultats indispensables 
pour les applications à la physique des particules.. . s’il n’existait que des 
particules de spin zéro ! Enfin la quatrième partie introduit les théories 
de jauge : on y décrit 1,1 quantification du champ de Dirac et du champ 
électromagnétique (chapitre XI). L’électrodynamique quantique est 
étudiée de façon assez détaillée au chapitre XII, tandis que le chapi- 
tre XII1 contient une introduction aux champs de jauge non abéliens. 
Le livre se conclut par un bref aperçu des théories de jauge sur réseau, 
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ce qui permet de faire une synthèse de l’essentiel des concepts 
introduits dans l’ensemble de l’exposé. Le lecteur intéressé uniquement 
par l’aspect << théorie quantique des champs >> pourra commencer au 
chapitre V et sauter dans le chapitre VI1 le paragraphe A et les 
passages plus spécifiquement consacrés aux phénomènes critiques. 

Comme j’ai voulu écrire un livre d’introduction, et non de référence, 
j’ai été amené dans certains cas à renoncer à des démonstrations 
générales trop complexes pour les remplacer par des exemples illustra- 
tifs. J’ai également choisi d’exposer la plupart des calculs de façon très 
détaillée ; j’espère que cela ne masquera pas la physique sous-jacente. 
Enfin un certain nombre de sujets importants ont été omis, afin de 
garder une dimension raisonnable à ce livre ; c’est le cas par exemple de 
la solution exacte du modèle d’king à deux dimensions, des lois 
d’échelle pour l’équation d’état, des invariances (Lorentz, symétries 
discrètes), des développements en produits d’opérateurs, des anoma- 
lies, de l’approche géométrique aux théories de jauge, etc. Le lecteur 
trouvera ces sujets exposés de façon excellente dans les livres ou articles 
cités en référence. De façon générale, j’ai plutôt insisté sur les 
méthodes, et donné assez peu de détails sur les systèmes physiques 
utilisés pour illustrer ces méthodes. 

Quelques notions de mécanique statistique suffisent pour aborder la 
première partie. En dehors de certains passages où le volume des 
calculs devient assez important, l’essentiel des trois premiers chapitres 
peut d’ailleurs être enseigné en fin de maîtrise, comme complément à 
un cours de mécanique statistique. La seconde partie ne fait appel à 
aucune notion avancée ; cependant les calculs sont parfois un peu longs. 
Enfin des connaissances de mécanique quantique, au niveau d’un cours 
de maîtrise, sont indispensables pour les deux dernières parties. 
Quelques notions élémentaires sur les fonctions de variables 
complexes, sur la théorie des groupes et sur la physique des particules 
élémentaires faciliteront également la compréhension de ces deux 
parties. 

L’exposé est accompagné de 120 exercices de difficulté très variée. 
Certains sont de simples applications du cours, d’autres peuvent être 
de petits problèmes ouvrant la voie à des développements nouveaux. 
J’ai essayé (sans toujours y parvenir), d’éviter le style << Démontrer 
l’équation (36) >> en donnant des énoncés détaillés, des indications de 
solutions ou des réponses partielles ; dans certains cas le renvoi à une 
référence permettra au lecteur de vérifier ou de compléter sa solution. 

Un certain nombre de livres et d’articles de revue ont été rassemblés 
dans les références générales. Ce sont ceux qui m’ont été les plus utiles 
dans la préparation de cet ouvrage, et aussi ceux qui, à mon avis, seront 
les plus facilement accessibles au lecteur. II était évidemment hors de 
question de donner une bibliographie complète et, selon la formule 
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consacrée, j’adresse mes excuses anticipées à ceux de mes collègues 
dont le travail n’a pas été convenablement cité. 

Ce livre est issu de cours de troisième cycle, enseignés sous des 
formes diverses dans le DEA de Physique Théorique (Marseille-Nice), 
dans le DEA de Physique de la Matière Condensée (Nice) et dans le 
Magistère de Constantine. Je suis très reconnaissant aux étudiants dont 
les remarques ont été précieuses dans la mise au point de ce livre. 
Victor Alessandrini a lu l’intégralité du manuscrit et m’a fait bénéficier 
de remarques très pertinentes, en particulier sur l’organisation générale 
de l’ouvrage. J’ai également bénéficié des critiques et suggestions de 
E. Brezin, J. P. Provost, J. L. Meunier et F. Guérin. P. de Giovanni 
m’a fait part de remarques très utiles sur le texte et les exercices. Je suis 
très reconnaissant à Michèle Leduc, qui a beaucoup fait pour que ce 
livre paraisse. J’ai mis à rude épreuve la patience de Chantal Djankoff, 
qui a dactylographié de multiples versions du manuscrit avec sa 
compétence et son efficacité habituelles, et je l’en remercie très 
vivement. Enfin, Joanna a partagé avec moi doutes et incertitudes 
pendant la rédaction ; sans son soutien de tous les jours, ce livre 
n’aurait pas pu être ticrit. 

Nice, décembre 1986 
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Notations et conventions 

En règle générale, j’ai choisi de respecter les notations consacrées par 
l’usage, ce qui a conduit inévitablement à quelques collisions : ainsi S 
désigne l’action et la matrice S ,  /3 l’inverse de la température, un 
exposant critique et la fonction de Callan-Symanzik.. . J’espère que le 
contexte permettra d’éviter toute confusion. Les passages en petits 
caractères sont soit des digressions, soit des développements un peu 
techniques, qui peuvent être sautés en première lecture. 

En ce qui concerne la terminologie, j’ai utilisé la traduction littérale 
de l’anglais << momentum >> et utilisé << moment >> au lieu de la correcte 
(mais longue) << quantité de mouvement >> (<< impulsion >> ayant une 
autre signification). Je me suis permis quelques anglicismes (volontai- 
res.. . on en trouvera sûrement d’involontaires) quand la version 
française n’avait absolument pas cours : n’ayant jamais entendu pronon- 
cer ({paramètre de coupure >> ou C.D.Q., j’ai utilisé << cut-off >> et 
<< QCD ». La traduction de << relevant >> et (( irrelevant D par (f essentiel >> 
et << inessentiel >> a été empruntée à C1. Itzykson. 

La sommation sur les indices répétés est de règle dans l’ensemble du 
livre : 

ai bi = ai bi 
i 

Les notations des deux dernières parties sont en règle générale celles 
du livre d’Itzykson et Zuber. En particulier la métrique de Minkowski 
est : 

ou g P y  = diag (1, - 1, - 1, - 1 ) .  x 2 = x & x 2  

(Etant donné les passages fréquents entre espaces euclidien et de 
Minkowski, le choix x2  = x2 - x i  eût sans doute été préférable, mais on 
ne change pas aussi facilement des habitudes de vingt ans !) Les 
matrices de. Dirac sont définies par : 

{ y P , y ” }  = y P y Y + y ” y P = 2 g P ” .  
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Les quelques différences par rapport aux notations d’Itzykson-Zuber 

- les propagateurs (AF,  S F ,  ...) diffèrent par un facteur i, 
- la normalisation des spineurs de Dirac est au = 2 rn, 
- les générateurs des algèbres de Lie sont choisis hermitiques. 
Les nombres décimaux ont été représentés dans cet ouvrage avec un 

sont les suivantes : 

point décimal et non avec une virgule décimale. 



PREMIÈRE PARTIE 

Phénomènes critiques 





CHAPITRE I 

Introduction aux phénomènes critiques 

Ce premier chapitre est une introduction élémentaire aux modèles et 
méthodes qui seront utilisés par la suite. La transition ferromagnétique, 
décrite sommairement au paragraphe A, servira de prototype à toutes 
les transitions de phase du second ordre et permettra d’introduire les 
notions de symétrie brisée et de paramètre d’ordre. Le modèle 
fondamental du ferromagnétisme, ou modèle d’Ising, est exposé au 
paragraphe B et résolu dans un cas élémentaire. L’importance de ce 
modèle est due à l’existence d’une solution exacte à deux dimensions, 
présentant une aimantation spontanée. Le paragraphe C est consacré à 
une première approche aux méthodes du champ moyen, qui reste 
encore à l’heure actuelle une des méthodes d’approximation les plus 
utilisées. Cette approximation nous conduira à définir une première 
série d’exposants critiques ; la liste sera complétée au paragraphe D 
lorsque auront été définies les fonctions de corrélation. Enfin une 
description qualitative des phénomènes critiques au paragraphe E 
permettra de définir, en première apprOximation, la notion d’invariance 
d’échelle et son rapport avec le comportement de la théorie dans une 
dilatation. 

A. TRANSITION FERROMAGNÉTIQUE 

L’objet de la première partie de ce livre est l’étude des transitions de 
phase du deuxième ordre (ou de deuxième espèce) qui sont aussi 
appelées phénomènes critiques pour des raisons expliquées au paragra- 
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phe E. Pour fixer les idées, je me limiterai au cas de la transition 
ferromagnétique-paramagnétique, qui est l’exemple le plus familier de 
transition de phase du deuxième ordre. Les traits généraux de cette 
transition peuvent en effet se transposer à toutes celles du deuxième 
ordre. Le ferromagnétisme est un phénomène très complexe, et je me 
contenterai d’une description schématique, en renvoyant par exemple 
au livre de Kittel pour l’aspect << physique du solide >> de ce phénomène. 
Certains corps (fer, nickel, cobalt ...) peuvent être aimantés à la 
température ordinaire. D’un point de vue microscopique, cela veut dire 
que des électrons d’une couche interne incomplète ont leurs spins 
quasiment alignés dans la même direction. Comme à chaque spin est 
associé un moment magnétique, cet ‘alignement implique que tous ces 
moments magnétiques s’ajoutent et construisent un aimant macroscopi- 
que. 

Lorsque l’on chauffe un ferromagnétique au-dessus d’une tempéra- 
ture T, de l’ordre de lo3 K, appelée << température de Curie », 
l’aimantation disparaît , et le corps devient paramagnétique. I1 est facile 
d’imaginer intuitivement que la tendance à l’alignement est due à une 
interaction entre spins qui le favorise. Cependant, à haute température, 
l’agitation thermique tend à le détruire, provoquant ainsi la disparition 
de l’aimantation. Cette explication, qui contient une partie de la vérité, 
est cependant très loin d’épuiser le sujet, et l’un des problèmes 
fondamentaux de la physique statistique a été précisément de montrer 
qu’une transition de phase se produit effectivement. 

En toute rigueur, la discussion qui va suivre s’applique non pas à un 
échantillon ferromagnétique, mais à un << domaine >> (de taille 
- l op2  mm) dans un tel échantillon (je renvoie à nouveau au livre de 
Kittel pour l’explication de ce qu’est un domaine). A une température 
supérieure à T,, le domaine n’est pas aimanté (de même que l’échantil- 
lon) ; si l’on redescend au-dessous de TC, le domaine est aimanté (tandis 
que l’échantillon, qui est formé de nombreux domaines, peut très bien 
avoir une aimantation totale nulle). L‘aimantation d du domaine croît 
quand la température décroît, et est donc maximale à T = O. Dans ce 
cas tous les spins sont alignés dans la même direction. Lorsque 
O -= T < T,, il y a une tendance des spins à s’orienter dans la même 
direction, mais l’agitation thermique n’autorise qu’un alignement 
partiel (figure 1) : 

T = O  t t t t t t t t t  

Figure 1. 
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permet a priori de la choisir : en fait la 
plus petite inhomogénéité ou le plus petit 
champ magnétique résiduel permettent de 
définir une direction (pensez à un bâton 
cylindrique vertical sur lequel on appuie 
avec une force F verticale dirigée suivant 
l’axe (figure 3) : lorsqu’on appuie assez \ L  

I‘ 

Id  
I I  

‘ I  
‘ I  
\ I  \ ‘  
\ \  

Transition ferromagnétique 

- 
,/* 

\ \  

”t 
27 

Figure 2. Comportement qualitatif 
de l’aimantation. 
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B. MODÈLE D’ISING 

B.l .  Description du modèle 

Suivant une stratégie familière aux physiciens, nous allons essayer 
d’établir un modèle pour le ferromagnétisme, en simplifiant la situation 
réelle, tout en essayant de conservër les traits qui paraissent fondamen- 
taux dans le ferromagnétisme. Etablir un modèle revient à chercher le 
meilleur compromis entre deux exigences contradictoires : 

O obtenir des équations suffisamment simples pour pouvoir être 
résolues si possible analytiquement, ou à défaut numériquement sur un 
ordinateur ; 

O ne perdre en cours de route (c’est-à-dire dans le processus de 
simplification) aucune des propriétés essentielles de la physique du 
phénomène que l’on veut étudier. 

Ce qui paraît essentiel dans le ferromagnétisme est l’interaction entre 
spins qui tend à les aligner. On peut raisonnablement espérer qu’il est 
légitime de remplacer chaque atome de ferromagnétique par un 
électron responsable du ferromagnétisme. La première étape de la 
modélisation consiste donc à décrire un ferromagnétique par des 
électrons placés aux nceuds d’un réseau, le réseau cristallin initial. Pour 
simplifier la discussion (mais ce n’est pas essentiel), je prendrai en 
général le cas d’un réseau cubique. 

L‘interaction entre spins est à courte portée : deux spins séparés de 
dix fois le pas du réseau ont une interaction négligeable. La deuxième 
approximation va consister à écrire pour les spins une interaction entre 
plus proches voisins : sur un réseau à deux dimensions (plan, 
D = 2) un spin a quatre plus proches voisins, et six sur un réseau à trois 
dimensions ( D  = 3) (figure 4 ; dans toute la suite du livre D désignera 

D = 2  
D = 3  

Figure 4. O = plus proches voisins du s p i n 0  
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la dimension de l’espace. Un plan a pour dimension D = 2, l’espace 
ordinaire D = 3 ) .  A nouveau on peut espérer ne rien perdre d’essentiel 
dans cette approximation. 

Le hamiltonien d’interaction le plus simple qui tend à aligner les spins 
est : 

H = - J  ai - uj 
<i.i> 

où J ,  la constante de couplage, est une constante positive et les 
ui sont des matrices de Pauli ; la notation indique la sommation 

sur les plus proches voisins. Le hamiltonien (1) est celui du modèle de 
Heisenberg quantique. Cependant on peut montrer que les effets 
quantiques sont sans importance au voisinage immédiat de T,, sauf si 
T, = O. On pourra donc remplacer les matrices de Pauli ui par des 
vecteurs classiques S, de longueur 1 ; ceci donne le modèle de Heisen- 
berg classique. 

Ce modèle est encore trop complexe : on n’en connaît pas de solution 
analytique (il sera étudié au chapitre IV par la méthode du groupe de 
renormalisation dans le cas D = 2) et son étude sur ordinateur est 
délicate. C’est pourquoi on effectue une approximation supplémentaire 
(la dernière !) : on remplace les vecteurs Si par des nombres Si pouvant 
prendre deux valeurs : 

< i , I >  

si=+1 ou s i=-1.  

Les spins sont donc toujours parallèles à un axe fixe, et deux 
orientations (spin en haut : Si = + 1, spin en bas : Si = - 1) sont 
possibles le long de cet axe. 

A l’époque (1920) où Lenz a proposé ce modèle comme sujet de 
thèse à son étudiant Ising, il n’existait strictement aucun moyen de 
contrôler cette approximation. On sait aujourd’hui que le modèle 
d’Ising est qualitativement un bon modèle du ferromagnétisme, mais 
que certaines prédictions sont quantitativement inexactes. En effet, dans 
le modèle de Heisenberg, l’aimantation est un vecteur, et il faut trois 
nombres (par exemple son module et deux angles) pour la définir : on 
dira que la dimension du paramètre d’ordre n vaut 3 : n = 3. Dans le cas 
du modèle d’Ising, la direction de l’aimantation est fixée, et il suffit d’un 
nombre (algébrique) pour la définir : la dimension du paramètre 
d’ordre est n = 1 (*). Or les exposants critiques (définis au paragra- 

(*) Par souci de simplicité, je me limite aux paramètres d’ordre de type vectoriel. Pour 
une définition plus générale on pourra consulter N. Mermin, << The Topological Theory of 
Defects in Ordered Media», Rev. Mod. Phys. 51, 591 (1979). 
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phe C) dépendent de II, ce qui introduit une différence quantitative 
entre les deux modèles. A deux dimensions (D = 2), la différence est 
même qualitative : le modèle d’Ising exhibe une aimantation spontanée, 
mais non celui de Heisenberg (chapitre IV). 

La discussion qui précède permet d’écrire le hamiltonien H du 
modèle d’Ising : 

et donc la fonction de partition Z (T  = température absolue, k = cons- 
tante de Boltzmann) 

(3) L 
[Si 1 

où la première somme porte sur toutes les configurations, c’est-à-dire : 

s’il y a N sites sur le réseau. Le nombre de termes de la fonction de 
partition est P. 

B.2. Modèle d’king à une dimension 

Pour se familiariser avec le 
modèle, il est intéressant d’exami- 
ner un cas très simple, celui d’un 4 1  
réseau linéaire : N spins sur une I I t  

D = 1 (figure 5) .  Calculons la fonc- 
tion de partition à partir du hamil- 
tonien 

4 4 1  ...... 

droite. On est donc dans le cas S l  s2 S N  

Figure 5. 

N - 1  

H = - J  S I S , + ,  
1 = 1  

où l’on a posé K = J / k T  
L‘identité : 
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permet de récrire Z :  

N - 1  

2 = (ch - 2 ’n- (1 + SI SI + th K )  . 
[S,] I = 1 

Une méthode fréquemment utilisée en mécanique statistique est celle 
du développement haute température : lorsque T -t CO, on cherche à 
développer la fonction de partition sous forme d’une série de puissances 
d’un paramètre K ( T ) ,  où K ( T )  + O si T -+ CO. Dans le cas présent, th K 
est un tel paramètre : th K = th ( J / k T )  --f O quand T -+ CO. Essayons 
donc un développement en puissances de th K : 

n (1 + SI SI + 1 th K )  = 1 + th K C ( S S )  + (th K ) 2  C (SSSS) + * * . 
I 

On peut associer à chaque terme du développement un graphe ; par 
exemple au tcrme : 

(th K I6 (s2 s3 (s4 s5 (s5 s6) 
1 1 1 * ’ l t l  

s, s, s, s 4  s, s, s, s, 
correspondra le graphe de la 
figurc 6, où un trait épais (liaison) 
joint les spins plus prochcs voisins 
apparaissant dans le développement. Dans la somme sur les configura- 
tions, isolons par exemple celle sur S , :  

Figure 6. 

Lorsque S, change de signe, le terme entre crochets change également 
de signe, et tous les termes de la somme sur les configurations 
s’annulent deux à deux. Pour que cette somme donne un résultat non 
nul, il est nécessaire que de chaque spin parte un nombre pair (O ou 2) 
de liaisons. Seul le premier terme de (6) donne un résultat non nul (le 
développement haute température se réduit à un seul terme) et : 

Z = 2N(ch K ) N - l  . (7) 

La fonction de partition donne accès à toutes les fonctions thermody- 
namiques, et permet en particulier de décider de l’existence éventuelle 
d’une transition de phase. I1 faut cependant faire la remarque suivante : 
pour un système fini, la fonction de partition est une somme finie de 
fonctions analytiques de la température (pour T # O) ; l’énergie libre 
F = - kT In Z est aussi une fonction analytique de T, Z étant une 
somme de termes positifs. Une transition de phase correspond à une 
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singularité des fonctions thermodynamiques, et avant de se prononcer 
sur l’existence d’une transition, il faut passer à la limite thermodynarni- 
que N -t 00 ; en effet, d’après l’argument précédent, il est impossible 
de voir mathématiquement une transition dans un système fini. 

On calculera par exemple l’énergie libre par spin F à la limite 
thermodynamique : 

F =  lim - F  1 = iim ( - g i n z )  
N + W  N - t m  

E = - k T l n  2ch- . ( k7.1 
E est une fonction analytique de T (sauf pour T = O) et le modèle 
d’lsing ne présente pas de transition de phase en dimension 1. Ce résultat 
a été généralisé par Peierls : en I‘absence d’interactions ù longue portée, 
un système unidimemionnel ne peut pas présenter de transition de 
phase. 

B.3. Fonction de corrélation du modèle d’Ising à une dimension 

Passons maintenant au calcul de la fonction de corrélation de deux 
spins Si et Si ,  qui est par définition la valeur moyenne du produit 
(Si Si) (*). La fonction de corrélation permet de mesurer l’influence de 
l’orientation fixée d’ün spin particulier, disons Si.  Comme l’interaction 
tend à aligner les spiris, un spin Si voisin de Si aura tendance à prendre 
la même orientation que S, ; cependant cette tendance est combattue 
par l’agitation thermique, qui a pour effet de décorréler les spins. 
Qualitativement, on s’attend à trouver une corrélation qui décroît avec 
la distance entre Si et Si ; à distance fixée, elle sera d’autant plus 
importante que la température est basse (l’argument n’est correct à 
toute température qu’en l’absence de transition de phase. Pourquoi ?). 

La valeur moyenne (Si S i )  se calcule à l’aide d’une moyenne 
statistique standard : 

N - 1  1 
Z = - (ch -’ C Si Sj n (1 + Si Si + 1 th K )  . 

IS1 1 1 = 1  

(*) Dans le cas général, il faut retrancher (Si) ( S i )  : cf. paragraphe D. 
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Aux facteurs Si et Sj à 
l’extérieur du produit on 

mentaire, et à nouveau le 
seul terme non nul sera tel 
que de chaque spin parte 
un nombre pair de liaisons (figure 7). Le résultat pour (Si Si) est : 

associe une liaison supplé- s, s, s, s, S N  

Figure 7. 

(Sis j )  =z 1 (chK)N-12N(thK)l i - j l  = ( thK)l i - j I  

(si si> = e- I i - j i  ( I n t h K i  - e- I f - i l  I n t h ( J / k T ) .  (9) 
- 

La fonction de corrélation décroît exponentiellement avec la distance 
( i  - j 1 (figure 8) : 

I I I h 

- 5  -4 - 3  - 2  - 3  1 2 3  4 5 i - j  
O 

Figure 8. (S, S,) en fonction de ( i  - j ) .  

Si a est le pas du réseau, la distance en cm entre les spins 
Si et Si est a I i - j I = r i j  ; la longueur de corrélation 5 sera définie par 

(s i  si> e-rlj/c (10) 

et dans le cas du modèle d’king à une dimension, l’équation (9) donne : 

L’expression (1 1) montre que la longueur de corrélation décroît 
quand T augmente ; elle tend vers zéro quand T -, CO, et vers l’infini 
quand T -, O, ce qui confirme l’argument intuitif précédent. On note 
aussi que l’expression (9) confirme l’absence d’aimantation spontanée : 

lim (Si Si)  = ( S i )  ( S j )  = (S)2 = 0 
l i - j l  +CO 
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B.4. Modèle d’king à deux dimensions 

La fonction de partition et sa limite thermodynamique ont été 
calculées exactement $1 deux dimensions ( D  = 2)  par Onsager en 1944. 
Cette << résolution du modèle d’Ising >> constitue un véritable tour de 
force mathématique, et même après des simplifications obtenues 
ultérieurement, le calcul est trop long pour pouvoir être exposé ici. I1 
n’existe pas à l’heure actuelle de solution exacte pour le modèle d’Ising 
à deux dimensions en présence d’un champ magnétique extérieur, et 
pas de solution non plus à trois dimensions, même sans champ 
magnétique extérieur. 

La solution d’Onsager prouve l’existence d’une transition ferroma- 
gnétique à deux dimensions. La température de transition T, est donnée 
par : 

:;h 2 K,  = sh (2  J /kT, )  = 1 

ou : 

= 2.27 J . 2 J  
ln (1 + JS)  

h-T, = 

La chaleur spécifique diverge comme In I T - T,  I au voisinage de la 
température de transition et la valeur moyenne Mo = ( S )  d’un spin 
définie par : 

Mo = lim lim 
8 4 0 +  N -+ Co 

a pour expression : 

M o  = [1 - sh ( 2 J / k T ) - 4 ] ” 8  . 

Le point important est qu’au voisinage de T,, Mo (et donc A’) se 
comporte comme (T ,  - T)1’8 : 

Mo - (T,  - T)”* . (13) 

C. CHAMP MOYEN 

C.l .  Equation du champ moyen 

La solution du modèle d’Ising étant complexe ou inaccessible, il est 
utile de trouver des méthodes d’approximation. La méthode de base, 
proposée par Weiss en 1907, est celle du champ moyen (ou champ 
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moléculaire). Cette méthode n’est pas du tout réservée au modèle 
d’Ising, et elle continue à être appliquée dans des travaux récents : dans 
l’étude d’un modèle de transition de phase, la première réaction est 
bien souvent d’essayer l’approximation du champ moyen. 

L’approximation repose sur l’idée suivante : considérons un spin 
particulier Si et admettons que pour calculer son énergie Ei on puisse 
remplacer tous les autres spins par leur valeur moyenne (Si) : on est 
alors ramené à un problème classique de paramagnétisme. I1 sera 
commode de placer le système de spins dans un champ magnétique 
extérieur. Un spin classique est un vecteur S, auquel est associé un 
moment magnétique p = pS. L’énergie d’un tel spin dans un champ 
magnétique B vaut - p. B = - pS B. Dans le cas du modèle d’Ising, 
le champ B a une direction fixe (celle des spins), et l’énergie s’écrit 
simplement - pSB.  Le hamiltonien dans un champ magnétique 
devient : 

et l’énergie du spin Si à l’approximation du champ moyen est donnée 
par : 

Selon que le spin est dirigé vers le haut (+) ou vers le bas (-) nous 
aurons des niveaux d’énergie Ei+ et Ei -  : 

Ei ,  = - J C ( S , ) - ~ B = - ~ J M - / L B  
i 

Ei - = J C ( S i )  + p B  = qJM + p B  
i 

où M est la valeur moyenne de Sj  : M = (Si) et q le nombre de plus 
proches voisins. Le calcul classique du paramagnétisme donne pour la 
valeur moyenne de Si : 

( S i )  = th ( qJM + ” ) kT 

Tous les spins étant équivalents, ( S i )  doit aussi être égal à 
M : c’est la condition d’autocohérence de l’approximation ; on obtient 
donc l’équation : 
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qu’il est commode de récrire : 

F F I .  th- M = -1n- 2 î - M  kT kT (14) 

Cette équation est l’équation fondamentale de l’approximation du 
champ moyen, et la suite du paragraphe consiste à en déduire les 
conséquences. 

C.2. Transition ferromagnétique en champ moyen 

L‘équation (14) est une équation transcendante et doit être résolue 
numériquement. Une idée qualitative des solutions peut être obtenue 
par une résolution graphique ; la, ou les solutions, sont données par 
l’intersection de la droite - M + - avec la courbe th-’ M (figure 9). 

I1 est utile de rappeler que la courbe th-’ M a deux asymptotes 
verticales à M = I 1 et que la tangente à l’origine a une pente égale à 1. 

Le graphique de la figure 9 montre que pour B > O, il peut y avoir 
trois solutions, mais les solutions telles que M -= O sont métastables ou 
instables (exercice 11.2). La solution physiquement acceptable corres- 
pond à une aimantation ayant même orientation que le champ. 

Lorsque B -+ O + ,  comme la pente de la tangente à l’origine de 
th-I M est égale à 1, la solution tend vers une valeur finie positive 
Mo # O lorsque - qJ est supérieur à 1, et vers M,, = O lorsque kT 
- 9J est inférieur à 1. (En partant d’un champ magnétique B -=‘O, on 
kT 
aurait obtenu - M o  pour - 9J > 1.) L’approximation du champ moyen 

9J P B  
kT kT 

kT 
prédit donc une aimantation spontanée +r M o  ; on remarque en passant 
le phénomène de brisure de symétrie : les deux orientations des spins 
sont équivalentes mais à basse température l’aimantation spontanée 
privilégie l’une de ces orientations. I1 suffit d’une modification infinitési- 
male du champ magnétique pour obtenir - M o  plutôt que + Mo. La 

J 
kT 

solution Mo = O est instable si 4 ,  1. 

En résumé, l’approximation du champ moyen prédit en champ 
magnétique nul 

e une aimantation spontanée + O si T -= T,  = 4J . k ’  
e une aimantation spontanée = O si T =. T,. 
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La température de transition est donc : 

9J T = -  
' k  

th-' M 
I 

I 
I 
I 
l 
I 
l 
I 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
I 
I 

+ M  

0 soi. physique 
0 sol. non physiques, 
instables ou 
métastables 

M 
t 
- 1  

Figure 9. Solution graphique de (14). 
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C.3. Comportement au voisinage de la transition 

Dans la suite du paragraphe, nous résoudrons approximativement 
l’équation (14) au voisinage de TC pour B petit. Dans ces conditions 
l’aimantation est petite ( M  -e 1 ) et on peut utiliser le développement en 
série de th-’ M : 

Aimantation en champ nul 

Définissons la << température réduite D t : 

L‘équation du champ moyen devient : 

M = = ( l + - t )  

soit : 

Au voisinage de T,, l’aimantation spontanée se comporte donc en 
(T,  - T)’” : 

M ,  - (TC - T ) l D  . (17) 

La courbe donnant Mo pour toute valeur de T peut être obtenue par 
résolution numérique de l’équation (14) (figure 10). 

A C  

Figure 10. Aimantation en fonction de T.  
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Susceptibilité magnétique en champ nui 

(a) T >  T, 
Pour T voisin de T,, mais T # T,, et B + O le terme en M 3  dans (16) 

peut être négligé : 

soit : 
P B  

k ( T  - T,) ‘ 
M =  

L’aimantation totale A vaut N p M  = p N B /  ( T  - T,) et la susceptibi- 
lité magnétique en champ nul : 

La susceptibilité se comporte donc en ( T  - T,)-  

x - ( T -  T J 1  (1S.a) 

(b) T-= T,  

Mo,  avec MO = - 3 t .  On écrit : 
Dans ce cas il faut tenir compte de l’aimantation spontanée 

M = M O + F .  

Négligeant des termes d’ordre supérieur l’équation (14) devient : 

1 
3 Mo + E = (1 + t ) ( M o  + E )  + - (Mo + 4 3  - 

E étant d’ordre B ( B  --t O ) ,  les termes en 
trouve : 

et c3 sont négligeables et on 

- P B  . 
E =  

2 k ( T  - T , )  ’ 
N P 2  

2 k ( T ,  - T )  X =  

et à nouveau : 

x - ( T ,  - T)-’ (lS.b) 

La loi de puissance est la même dans (1S.a) et (lS.b), mais le coefficient 
numérique diffère d’un facteur 2. 
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Isotherme critique 

On se place à T = T,  et on calcule B en fonction de A : 

1 kTC 
3 3P 

M = M -t - M 3 -  p B / k T , *  B = - M 3  

d’où : 
kT,: 
3P 

B = -- ( & / N P ) ~  

On obtient cette fois la loi de puissance : 

Chaleur spécifique en champ nul 

A l’approximation du champ moyen, l’énergie interne E (valeur 
moyenne du hamiltonien) se calcule immédiatement en champ magnéti- 
que nul: 

1 E = - - qJNA4; 2 
E = O  T z  T, .  

T -= TC 

En effet chaque spin est remplacé par sa valeur moyenne M o  et il y a 
1 - q N  paires de spins. Pour T.c TC,  mais proche de T,, on utilise 2 
l’expression déterminée précédemment pour Mo : 

La chaleur spécifique C en champ nul est donnée par la dérivée de 
E par rapport à T : 

Comme C est évidemment nulle pour T =- T,, la chaleur spécifique est 
3 
2 

A nouveau on peut calculer C pour toute valeur de T par résolution 

discontinue, avec une discontinuité - kN à T = T,. 

numérique de l’équation (14) (figure 11) : 



I.C.4 Champ moyen 41 

Figure 11. Chaleur spécifique en fonction de T.  

C.4. Exposants critiques a, p, ‘y, S 

On constate expérimentalement que l’aimantation spontanée, la 
susceptibilité, l’isotherme critique et la chaleur spécifique obéissent à 
des lois de puissance au voisinage de T = T ,  et on définit des exposants 
critiques (*) (Y, p, y, 6 (également appelés indices critiques) 

C - I T - T J “  (21.a) 

Mo - (T,  - T)’ ( T <  Tc) (21.b) 

B - A s  ( T  = T , ) .  (21.d) 
x - IT-T,I-Y (21 .c) 

Les valeurs prédites par l’approximation du champ moyen sont : 
(Y = O (discontinuité de C )  ; p = 1/2 ; y = 1 ; 6 = 3. 

Examinons maintenant d’un peu plus près l’approximation du champ 
moyen. A cette approximation on néglige toute fluctuation des spins, 
puisque l’on remplace chaque spin par sa valeur moyenne. Avec la 
formulation qui vient d’être exposée, cette approximation est pour le 
moment incontrôlable, et on peut simplement évaluer sa validité en 
comparant aux résultats exacts ( D  = 1 et D = 2), ou numériques 
(D = 3 ) .  

(*) On définit parfois des exposants a’, y ‘ ,  pour T <  T,  ; par exemple : 

x - ( T - T , ) - Y :  T > T c ;  x - ( T , - T ) - Y ’ :  T < T , .  

I1 semble (et la théorie le confirme) que l’on ait toujours a = a’, y = y ’  et ces exposants 
primés ont été abandonnés. 
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Pour D = 1, l’approximation du champ moyen est tout simplement 
catastrophique : elle prédit une transition là où nous venons de prouver 
qu’il n’en existe pas ! (I1 vaut la peine de remarquer que les exposants 
critiques sont indépendants de D à l’approximation du champ moyen.) 

La situation est un peu meilleure pour D = 2 où nous savons qu’il 
existe une transition. Toutefois à l’approximation du champ moyen la 
température de transition T ,  est : 

k T C = 4 J  ( q = 4 )  

tandis que la solution d’Onsager donne : 

kT, = 2.27 J .  

De façon générale l’approximation du champ moyen tend à favoriser 
l’apparition d’une transition de phase : à D = 1, elle prédit une 
transition là où il n’y en a pas ; à D = 2 elle la prédit à une température 
plus élevée que la température réelle. En effet les fluctuations, 
négligées à l’approximation du champ moyen, s’opposent à l’apparition 
d’une transition. 

I1 est intéressant de comparer les exposants critiques ; pour 
D = 2 on compare aux résultats exacts (Onsager) et pour D = 3 aux 
résultats numériques. 

Exposant Champ moyen D = 2 D = 3  
a discont. In I T - T,I 0.01 I 0.01 
P 0.5 0.125 0.312 2 0.003 
Y 1 1.75 1.250 5 0.002 
6 3 15 (*) 5.0 r 0.05 

On constate sur ce tableau que les résultats du champ moyen sont 
d’autant meilleurs qui: la dimension de l’espace est grande. Intuitive- 
ment on peut comprendre que négliger les fluctuations est une 
meilleure approximation quand le nombre de plus proches voisins est 
grand ( q  = 6 pour B = 3 et q = 2 pour D = 1). Cependant, ce 
raisonnement n’est pas entièrement correct, car c’est la dimension 
d’espace qui compte : augmenter le nombre d’interactions ne change 
pas les exposants critiques, ainsi qu’on le verra par la suite. 

En fait l’approximation du champ moyen devient exacte lorsque 
D -t CO (les exposants critiques sont corrects dès D =. 4 ; cf. chapi- 
tre III), ou dans le cas d’interactions à très longue portée : par exemple 
si chaque spin interagit avec tous les autres spins du réseau, avec une 

(*) En fait le résultat ô ?= 15 est très plausible (loi d’échelle) mais n’a pas été prouvé 
analytiquement. Les calculs numériques donnent ô = 15.04 +. 0.07. 
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constante de couplage J / N  (cf. exercice 3), on montre que la solution 
exacte est identique à celle du champ moyen. Le nombre de spins qui 
interagissent avec un spin donné est si grand qu’il est légitime de 
remplacer Si par sa valeur moyenne M .  

D. FONCTIONS DE CORRÉLATION 

D.l.  Définition, fonction génératrice 

Nous avons déjà introduit la fonction de corrélation de deux spins au 
paragraphe B. Comme cet objet va jouer un rôle crucial dans toute la 
suite, nous allons maintenant énoncer un certain nombre de définitions 
et de propriétés utiles. Ce paragraphe est une introduction, sur un 
exemple élémentaire, à des techniques qui seront développées de façon 
plus systématique au chapitre V. 

Au paragraphe B, la fonction de corrélation Gij de deux spins a été 
définie comme étant la valeur moyenne (Si Si). Cette définition est 
satisfaisante lorsque (Si) = O ,  c’est-à-dire pour T r  T, et B = O. 
Lorsque (Si) # O ,  dire que deux spins sont décorrélés implique que 
(Si S,) = (Si) ( S i )  = M2. I1 est donc logique de définir Gij de façon 
générale par : 

Si l’on suppose que G i j  décroît exponentiellement ( G i j  - 
exp(- r i j / t ) ) ,  on trouve qualitativement le comportement de la 
figure 12 pour T >  T, et T c  T,  ((Sf) = (1) = 1). 

‘I j 

Figure 12. 

‘ i j  
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I1 est utile de relier Gii à une dérivée seconde de la fonction de 
partition Z [ B i ] ,  calculée en présence d’un champ magnétique non 
uniforme Bi : 

où B = l / k T ( * )  et Ho est le hamiltonien (2). La valeur moyenne 
(Si) est donnée par : 

1 
(Si) = - 1 Si exp (- P ( H o  - P Bk S . )  ) 

Is,] k 

soit : 
1 aZ 1 a h 2  ( S . )  = --- = --. 

P p Z a B i  p p  al?, 

Continuons le processus en dérivant une seconde fois par rapport à 
Bj : 

soit : 

d’où l’on déduit : 

soit : 

La valeur moyenne (Si) et la corrélation Gi j  s’obtiennent par 
dérivation de la fonction de partition ; on pourrait généraliser le 
processus à des fonctions de corrélation de plusieurs spins (ce qui sera 
fait au chapitre V). Pour cette raison Z [ B i ]  est appelée fonction 
génératrice des fonctions de corrélation. On remarquera aussi que 
dériver Z donne (Si S i ) ,  alors que dériver In Z donne directement 
Gij ,  qui est appelée fonction de corrélation connexe. De façon générale 

(*) Ne pas confondre avcc l’exposant critique p.  Il est impossible de respecter les 
notations traditionnelles sans introduire un (petit) risque de confusion. J’ai jugé 
préfkrablc de prendre ce risque, plutôt que d’introduire de nouvelles notations. 
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(cf. chapitre V), le logarithme de 2, In 2, est la fonction génératrice des 
fonctions de corrélation connexes. On notera également que même si le 
champ magnétique physique est nul, il peut être utile d’introduire un 
champ magnétique fictif pour calculer les fonctions de corrélation à 
l’aide de (25) ; il suffit de poser B = O dans le résultat final : 

La fonction de corrélation possède une propriété très importante : 
c’est aussi (à un facteur P I .  près) la réponse du spin Si à tine variation 
du champ magnétique au site j .  Pour le montrer, il suffit de calculer 
a ( S i } / a B j  à partir de (24) : 

On remarquera que c’est bien la fonction de corrélation connexe 
G i j  qui intervient dans (26). 

D.2. Théorème fluctuation-dissipation 

Soit dl l’aimantation (ou moment magnétique total) 

a& où iP = Si est le spin total. La dérivée - est donnée par : 
I a Bi 

Pour un système macroscopique ( N  -f 00 ), ou bien avec des conditions 
aux limites périodiques, G,, est invariant par translation dans un champ 
magnétique uniforme (figure 13). Tous les Bi étant égaux à B ,  
!& est donné par : aB 

aA a&aBj 
aBj aB 

-- aB - E - - =  P p 2 C G i j .  
i ,  i i 

On obtient un << théorème fluctuation-dissipation D reliant la susceptibi- 
lité ,y à la fonction de corrélation : 
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Gii = G,, 

Figure 13. 

la deuxième égalité montrant que x est toujours positive pour un 
système de spins (*). Lorsque la longueur de corrélation est petite par 
ragport à la taille du système, l’invariance par. translation permet 
d’écrire : 

la somme sur j étant en fait indépendante de i .  

D.3. Mesure de la fonction de corrélation 

La fonction de corrélation est un outil théorique intéressant, mais son 
importance principale vient de ce que l’on peut la mesurer expérimenta- 
lement. L‘expérience consiste à diffuser des neutrons lents sur un 
ferromagnétique. Le moment magnétique des neutrons interagit avec 
celui des électrons, et l’amplitude de diffusion d’un neutron par un 
électron au site i est proportionnelle au spin S i .  Soit A l’amplitude de 
diffusion par un spin situé à l’origine des coordonnées ; d’après les 
règles de la mécanique quantique (’), l’amplitude de diffusion 
Ai par un spin de même orientation situé en ri au site i vaut : 

Ai = A  i(k e 

où k est le vecteur d’onde incident et k’ le vecteur d’onde diffusé. 

(*) Naturellement il existe des corps à susceptibilité négative (corps diamagnétiques), 
mais le mécanisme d’aimantation est totalement différent. 
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Comme de plus l’amplitude de diffusion est proportionnelle au spin 

- si elq’ri 

on trouve, après avoir effectué une moyenne statistique, que la section 
efficace est proportionnelle à : 

En remarquant que le terme (Si) (Si) de Gii ne contribue que pour 
q = O, et en utilisant l’invariance par translation, on trouve que la 
section efficace est proportionnelle à la transformée de Fourier 
G(q) de la fonction de corrélation (q # O )  : 

iq.  (ri - r . )  a - N  C G i i e  ’ = N G ( q )  
i 

(la somme sur j dans (28) est indépendante du site 
théorème fluctuation-dissipation peut aussi s’écrire : 

x - N G ( q  = O ) .  

(28) 

i ) .  Notez que le 

D.4. Exposants critiques q et Y 

Au voisinage de T = T,, l’expérience montre que pour q 4 l / a  
(a  = pas du réseau) la fonction de corrélation est bien représentée par 
une expression du type : 

(30) 
1 

= q Z f ( 4 5 )  (4  =e 1/01 

la longueur de corrélation 5 tendant vers l’infini suivant une loi de 
puissance si T + TC : 

5 -  I T -  

La forme (30) de la fonction de corrélation sera rendue plausible au 
paragraphe E, et justifiée au chapitre III. 

Les équations (30) et (31) définissent les exposants critiques 
7 et v . La fonction f ( x )  possède une limite finie pour x + CO, de sorte 
que pour T = T,  : 

G(q) -  qp2+‘ (T = T,). (32) 
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On peut maintenant repasser dans l’espace ordinaire par transformation 
de Fourier inverse (cf. appendice A) : 

Effectuons le changement de variables q = u/( : 

Comme la forme de G(q) est supposée valable pour q Q l / a ,  celle 
obtenue pour G(r) le sera si r %- a : 

Lorsque r .+ CO, la fonction g ( r / ( )  se comporte exponentiellement : 
g ( r / ( )  - exp(- r / t ) .  Pour T = T,, la fonction de corrélation décroît 
comme une puissance de r.  Pour q -= 2 (ce qui est le cas en pratique car 
on trouve toujours q voisin de zéro), l’intégrale sur r de G(r) (ou bien 
sa transformée de Fourier pour q = O) diverge a T = T,. D’après (27), 
ceci implique aussi la divergence de la susceptibilité à T = T,. Le 
comportement qualitatif des fonctions G ( r )  et G ( q )  est donné sur la 
figure 14. 

Figure 14. Comportement qualitatif de la fonction de corrélation dans 
l’espace ordinaire (b) et dans l’espace de Fourier (a). 
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Loi d’échelle 

Lorsque T # T,, G(0) est fini. 11 est donc nécessaire que 
(q()‘-” pour compenser le facteur divergent q-””. Ceci f ( q 5 )  - 

q - 0  

implique que G(o) -  t 2 - “ -  I T -  T , I -  y ( ’ -  7 )  

Mais G(0) - x (équation (29)), et l’exposant y est défini par (cf. 
équation (21 .c)) : 

x - I T -  TC,.-’. 

Par identification on obtient la relation entre exposants critiques, aussi 
appelée loi d’échelle : 

y = v ( 2  - 7)). (34) 

Résumé des exposants critiques 

/3, y, 6, r )  et u qu’il est utile de résumer : 
Les équations (21), (30) et (31) définissent six exposants critiques a, 

Chaleur spécifique : 
Paramètre d’ordre : 

Susceptibilité : 
Isotherme critique : 

Fonction de corrélation T = T , 
Longueur de corrélation : 

C - I T -  T,J-“ 
M - (T,  - T ) p  

x - IT-  T,I-’ 
( T <  T,) 

B - A S  ( T =  Tc) 

G(q) - q-’+“ 

e - I T -  T C [ - ” .  
( T  = T,) 

D.5. Transformation de Legendre 

Introduisons un dernier outil, qui sera utilisé au chapitre suivant pour 
l’étude des fonctions de corrélation, en généralisant une notion 
familière en thermodynamique, celle de transformation de Legendre. 
En thermodynamique classique, la différentielle d F  de l’énergie libre 
est donnée par : 

On définit le potentiel thermodynamique (ou potentiel de Gibbs) ï, 
transformé de Legendre de F ,  par : 

~ = F + A B  
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d’où : 

Introduction aux phénomènes critiques I.D.5 

Nous allons généraliser cette transformation au cas d’un champ 
magnétique non uniforme Bi ; pour simplifier les notations, posons 
p = p = 1 et ignorons la dépendance par rapport a T qui ne joue 
aucun rôle dans l’argument qui va suivre ; la relation (25) devient alors : 

tandis que le potentiel r sera défini par : 

r = Mi Bi - w avec M~ = (si> = $$ I T  
I 

Dans ces conditions 

ce qui implique : 

Examinons maintenant 

Cette quantité n’est autre que l’inverse (au sens des matrices) de 
Gii ; en effet : 

d’où le résultat : 
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E. DESCRIPTION QUALITATIVE DES PHÉNOMÈNES CRITIQUES 

Considérons un ferromagnétique à une température T =- T,. On 
observe des amas de spins en haut et des amas de spins en bas, la taille 
de ces amas étant de l’ordre de la longueur de corrélation 6 (en 
moyenne : le système de spins fluctue, on trouve évidemment des amas 
de spins de taille > 6 et d’autres de taille -= 6 ; par ailleurs à l’intérieur 
d’amas de spins en haut on peut trouver des îlots de spins en bas, etc.). 
(On trouvera des simulations numériques très instructives dans l’article 
de Wilson dans Pour la Science.) 

Diminuons la température en nous approchant de T,. La taille 
moyenne des amas augmente (la longueur de corrélation augmente). 
Lorsque T = T,, on trouve des amas de toutes les tailles possibles. A 
l’intérieur de mers de spin en haut, on trouve des îles de spin en bas, à 
l’intérieur desquelles on peut observer des lacs de spin en haut, etc. A la 
température de transition, les fluctuations ont toutes les tailles possibles : 
il n’y a plus d’échelle de longueur, ce que l’on exprime aussi en disant 
que la physique est invariante d’échelle au point critique. 

La transition de phase présente un aspect remarquable : nous 
sommes partis d’une interaction à courte portée (entre plus proches 
voisins), et nous découvrons des corrélations à longue portée (- 6 )  et 
même de portée infinie à T = T,. Ces corrélations rendent inopérants 
tous les développements perturbatifs classiques, qui s’appliquent uni- 
quement lorsque les corrélations ont une courte portée (quelques A). 11 
peut par exemple arriver que la théorie des perturbations se traduise 
par l’apparition d’intégrales du type (cf. chapitre V) : 

Dans cette intégrale, A est la longueur d’onde d’une fluctuation, limitée 
évidemment par le pas a du réseau (condition de Brillouin). Ce résultat 
montre que dans l’étude des phénomènes critiques toutes les longueurs 
d’onde comprises entre a et 5 ont une égale importance : les fluctuations 
de longueur d’onde comprise entre A = a et A = 2 a donnent une 
contribution In 2 à l’intégrale, celles dont la longueur d’onde est 
comprise entre A = lo3 a et A = 2.103 a donnent aussi une contribution 
In 2 à l’intégrale. Comme c / a  -+ 00 quand T -+ T,, la théorie des 
perturbations est inapplicable, car l’intégrale (36) diverge logarithmi- 
quement pour les grandes ,longueurs d’onde. 

Cette complexité possè’de en revanche un côté positif: comme la 
transition de phase est un phénomène coopératif à grande échelle, on 
peut imaginer que certaines caractéristiques de la transition ne dépen- 
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dent que de propriétés très générales (dimension D de l’espace, 
dimension n du paramètre d’ordre, symé- 
tries du couplage des variables locales) et 
non du détail des interactions. Cette pro- 
priété est appelée universalité (*). Par 
exemple les modèles d’Ising sur réseau 
carré et sur réseau triangulaire possèdent 
les mêmes exposants critiques, qui sont 
des quantités universelles. Au contraire 
une quantité comme la température de 
transition dépend des détails de l’interac- 
tion : elle n’est pas universelle. 

Une autre propriété du point de transition vaut d’être mentionnée : 
le modèle d’Ising en dimension 2 et sur un réseau carré n’est évidem- 
ment pas invariant par rotation autour d’un axe perpendiculaire au plan 
du réseau. De fait si on mesure la longueur de corrélation suivant une 
direction f i ,  repérée. par un angle a (figure 15), la longueur de 
corrélation dépend de a ; par exemple : 

Figure 15. 

Eft  
où u = th ( J / k T ) .  A haute température ce rapport est très différent de 
1. Mais quand on se rapproche de T,, ce rapport tend vers 1 : la 
longueur de corrélation est la même dans toutes les directions et le 
système devient invariant par rotation. 

U ( ( a  = O ) / ( ( a  = ~ / 4 )  clelongdesaxes 
(en unité de a)  

0.05 1.12 0.35 
o. 1 1 .O8 0.48 
0.2 1.03 0.83 
0.3 1.01 1.71 

42 - 1 = 0.414 1.00 Co 

Dès que la longueur de corrélation atteint 2 a, la violation de 
l’invariance par rotation est inférieure à 1 %. Ceci suggère que le réseau 
ne joue pas de rôle fondamental au voisinage de T,, ce qui permettra 
d’utiliser un modèle continu par la suite. 

(*) Une exception est IC <( rnodClc à 8 vertcx x de Baxter, où les exposants critiques 
varient continûment. 
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Les remarques qui précèdent permettent d’essayer de deviner la 
forme de la fonction de corrélation. L’isotropie au voisinage du point 
critique permet d’écrire : 

G(r) = h ( r ,  a )  

où a représente l’ensemble des paramètres microscopiques de l’interac- 
tion (pas du réseau, constantes de couplages), écrits sous une forme 
telle qu’ils aient la dimension d’une longueur (*). Ecrivons le rapport 
de deux fonctions de corrélation aux points rl et r, ( r l ,  r2 + a )  : 

où l’on a utilisé le fait que cp est une quantité sans dimension. 
L‘invariance d’échelle au point critique implique que <p ne peut pas 
dépendre de a à T = T ,  (les chapitres suivants s’attacheront d’ailleurs à 
définir la limite a -t O du rapport (37)) : 

Cette équation exprime l’invariance d’échelle au point critique et peut 
s’écrire : 

G ( r / s )  = <p (s) G ( r )  . (38) 

Elle donne le comportement de la fonction de corrélation dans une 
dilatation ; s est le facteur de dilatation. D’autre part on a la loi de 
groupe : 

ce qui implique que <p (s) est une puissance : <p (s) = sA, d’où 
G ( r )  = cr-’. Ecrivant h = D - 2 + 7, on justifie le comportement en 
loi de puissance au point critique : 

1 
G ( r )  - ___ 

r D - 2 +  q 

Lorsque T est voisin mais différent de T,, on suppose qu’il existe une 
longueur caractéristique, et une seule, la longueur de corrélation 5. 

(*) Si un paramètre b a pour dimension L a ,  il  suffit de prendre pour paramètre 
b ‘/a. 
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Dans ce cas, la forme de G ( r )  est fixée à (cf. équation (33)) : 

et g (x) -+ c quand x + O (6  -+ CO ). Ainsi, lorsque a 4 r 4 6,  on retrouve 
le comportement critique, ce qui est souhaitable car dans cette région 
tout se passe comme si la longueur de corrélation était infinie. 

Quelques explications, pour terminer, sur la dénomination << phéno- 
mènes critiques ». Le diagramme de phase d’un corps standard (par 
exemple l’argon) a la forme classique de la figure 16. Au point critique 
( C ) ,  la distinction entre gaz et liquide disparaît (la différence entre un 
liquide et un gaz est seulement quantitative ; celle entre un solide et un 
liquide (ou un gaz) est qualitative ; un solide possède un ordre à longue 
distance ; aussi n’existe-t-il pas de point critique sur la courbe séparant 
le solide du liquide). 

,P 

solide 

- 
Figure 16. Diagramme de phase. 

A l’approche du point critique, les fluctuations de densité sont de 
plus en plus grandes. La longueur de corrélation de ces fluctuations 
tend vers l’infini. La diffusion de la lumière par les fluctuations de 
densité devient très importante lorsque la taille de ces fluctuations 
atteint la longueur d’onde utilisée. Le fluide prend alors un aspect 
laiteux (opalescence critique). Le phénomène est très analogue à celui 
de la transition ferromagnétique avec les correspondances : 

fluctuation d’aimantation -+ fluctuation de densité 
paramètre d’ordre M -+ P L  - P G ( P L ( P G )  = 

diffusion de neutrons -+ diffusion de la lumière 
densité du liquide (gaz) ) 
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A cause de cette analogie (profonde), on donne souvent aux 
transitions de phase d e  deuxième espèce le nom de phénomènes 
critiques ; la température de transition T, est souvent appelée tempéru- 
ture critique. 

I1 existe même une approximation d e  champ moyen pour les 
propriétés du  point critique : celle-ci n'est autre que l'équation de Van 
der Waals ('). 

EXERCICES 

1) Symétrie brisée en mécanique 

On considère un cerceau vertical de rayon a sur lequel peut coulisser sans 
frottement un anneau de masse m. L'anneau est 
relié au sommet A du cerceau par un ressort de 
longueur au repos I ,  = a et de raideur C 
(figure 17). 

(a)  Montrer que la position d'équilibre stable 
est û = O quand la raideur du ressort C est telle 
que Ca -= 2 mg (g = accélération de la pesan- 
teur). 

(b) Montrer que si Ca > 2 m g  il y a deux 
positions d'équilibre stable. 

Figure 17. 

(c) Tracer l'énergie potentielle U ( û )  de la masse m pour Ca = mg et 
C a  = 4 mg, et discuter la forme des deux courbes. 

2) Autre méthode pour le modèle d'Ising D =  1 

Pour cette méthode, il est plus simple d'utiliser des conditions aux limites 

(a) Montrer que la fonction de partition peut s'écrire : 
cycliques : le spin N + 1 est identique au spin 1. 

où V est la matrice : 
S = l  s=- I  

En déduire que si N + CO, lim Z Y N  = A = 2 ch K où A est la plus grande 
valeur propre de W. 
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(b) Montrer qu’en présence d’un champ magnétique uniforme : 

lim ZyN = eK ch L + [e2K(sh L)2  + ; L = - P B  
N + m  kT 

(c) Calculer l’énergie. interne et la chaleur spécifique en champ nui. 
(d) Toujours en champ nul, calculer la fonction de corrélation (S, Si) en 

utilisant la méthode de: la question (a). On supposera que N + 03. 

3) Théorie du champ moyen et interactions à longue portée 

On se propose de montrer que la théorie du champ moyen devient exacte 
pour le modèle d’Ising, lorsque tous les spins interagissent deux à deux de 
manière identique. Soit N le nombre de spins ( N  + 1). I1 y a donc 
N 2 / 2  paires de spins, et l’interaction doit être proportionnelle à 1 / N  de telle 
sorte que l’énergie soit proportionnelle à N .  

(a) Le hamiltonien du modèle est donné par : 

où la somme porte sur toutes les paires ( i ,  j )  (et non pas sur les plus proches 
voisins), et J est une constante. Montrer que l’on peut aussi écrire 

(b) Soit M = (S) l’aimantation par spin : - 1 G M s + 1. Montrer que la 
dégénérescence d’un état d’aimantation M est : 

N !  W ( M )  = ( N (1 + M ) )  ! ( N (1 - M ) )  ! ’ 

(c) Montrer que la fonction de partition Z peut s’écrire 

où H ( M )  est la valeur du hamiltonien quand l’aimantation est M. Evaluer 
Z en utilisant la formule de Stirling : n! = n“ e-” et en montrant que la somme 
sur M peut être approchée par le plus grand terme de la somme dans (1). 
Montrer que ce terme est donné par le maximum de la fonction 

- 2 F = J M 2 - k T [ ( 1  + M ) l n ( l + M ) + ( I - M ) l n ( l - M ) ] .  (2 )  

Quelle est l’interprétation physique de F ? 

(d) En cherchant le inaximum de - F ,  montrer l’existence d‘une transition 
de phase et calculer la température critique T,. On pourra remarquer que 
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1 th-’x = -In ( E ) pour retrouver l’équation caractéristique de la théorie 

du champ moyen. Quel est le signe de F ” ( M o ) ,  où Mo est l’aimantation ? 
(e) Montrer que pour M -+ O, F a la forme prévue par la théorie de Landau 

(cf. chapitre II) : 

1 1 
2 4 

F ( T )  = F ,  + - B ( T )  M 2  + - C ( T )  M4 

avec B(T, )  = O. Evaluer B ( T )  et C ( T ) .  

4) Chaleur spécifique à l’approximation du champ moyen 

On se propose de déterminer non seulement la discontinuité de la chaleur 

(a) En allant jusqu’à l’ordre M 5  dans le développement de th-’ M ,  montrer 
spécifique, mais aussi la pente de la courbe à T = T,. 

que l’aimantation M o  en champ nul vaut : 

Mo = J- 3 t ( l  + a t )  

et déterminer a .  

(b) En déduire la pente de la chaleur spécifique à T, (figure 18) : 

dC 
d T  

B = lim - .  
T + T C  

Figure 18, 

(c) Quel est le comportement de la chaleur spécifique quand T + O ? 
(d) Déduire de (b) et (c) une représentation graphique qualitative de 

C ( T )  à l’approximation du champ moyen. 
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5) Lois d’échelle 

On suppose (ceci sera démontré au chapitre III) que la fonction de 
corrélation obéit à la << loi d’échelle >> : 

T -  T,  
( t  = - et s est un nombre réel positif). 

Tc 

(a) Montrer que cetti: loi d’échelle peut être récrite : 

(+ 1 : t > O ; - 1 : t -== O ; A = VY B ) .  

(b) En utilisant le théorème fluctuation-dissipation, montrer que la suscepti- 
bilité x obéit à la loi : 

Retrouver la loi d’échelle : y = v (2  - 7) ). 
(c) Obtenir le comportement de l’énergie libre F en remarquant que 

(d) En éliminant A,  en déduire 

(Y + 2 p  + y  = 2 ;  Y = P (6 -1) 

(e) Montrer que l’équation d’état peut s’écrire sous la forme : 

1 
2 (0 On verra au chapitre III que yB = - ( D  + 2 - 7 ). En déduire la loi 

d’échelle : 2 - a! = v D  
(g) Les quatre lois : (1) Y = v ( 2  - 7) ) ; (2)  2 - (Y = v D  ; (3) a! + 2 P + 

y = 2 ; (4) y = p (ô - 1 ) sont-elles satisfaites dans le cas du modèle d’king 
D = 2 ?  
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Pour une introduction générale à la physique du ferromagnétisme, on pourra consulter 
Kittel, chapitre 15. La solution du modèle d’king en dimension 2 est exposée par exemple 
dans Landau-Lifschitz, chapitre 14. Un exposé très clair de la théorie du champ moyen se 
trouve dans le livre de F. Reif Fundamentals of Statistical and Thermal Physics, McGraw- 
Hill (1965), chapitre 10, et une introduction aux corrélations dans Ma, chapitre 1. La 
lecture de l’article de Wilson dans Pour la Science (octobre 1979) est particulièrement 
recommandée, ainsi que celle de l’article de S. Brusch << History of the Lenz-king 
Model », Reviews of Modern Physics, 39, 883 (1967). 

( I )  Cf. par exemple Messiah, chapitre XIX. 
(’) Cf. Rcif, chapitre 10. 





CHAPITRE II 

Théorie de Landau 

L’approximation du champ moyen étudiée au chapitre précédent 
n’est pas toujours très fiable, et on aimerait pouvoir évaluer l’effet des 
fluctuations qui ont été négligées à cette approximation. La formulation 
exposée au chapitre I a le mérite de la simplicité, mais l’inconvénient de 
mal se prêter au calcul des fluctuations. L’objectif de ce chapitre sera 
d’établir une nchvelle formulation, qui rende possible un tel calcul, ce 
qui nous conduira à la théorie de Ginzburg-Landau. Dans cette théorie, 
on se donne un << hamiltonien >> HGL[cpi] dépendant de variables 
aléatoires <p[ définies sur les sites i d’un réseau, la probabilité d’une 
configuration [ cp , ] étant proportionnelle à exp (- H,, [ cp , ] ). La variable 
aléatoire cp[, appelée variable de champ, ou simplement champ, varie 
de façon continue dans l’intervalle 1- CO, + CO [ ; elle joue le rôle du 
spin d’king du chapitre I qui, lui, ne pouvait prendre que deux valeurs : 
S, = ? 1. Le paramètre d’ordre reste de dimension 1 ; la généralisation 
à un paramètre d’ordre de dimension n sera étudiée ultérieurement 

11 n’est pas évident a priori que la théorie de Ginzburg-Landau ait 
une relation quelconque avec le modèle d’Ising ; contentons-nous 
d’affirmer pour le moment que les deux théories appartiennent à la 
même classe d’universalité, en renvoyant la justification de cette 
affirmation au chapitre suivant. En réalité, la probabilité 
exp(- HGL[cpi])  ne décrit un système de spins qu’au voisinage d’une 
transition de phase. On peut d’ailleurs s’interroger sur la relation entre 
les paramètres du hamiltonien H,, et les paramètres (microscopiques) 
du modèle de spins initial. Cette relation est assez obscure, bien qu’un 
élément de réponse soit apporté à l’exercice (1). Cependant la 
<< démonstration >> dans cet exercice présente un point faible, et c’est 

(III-E. 3). 
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pourquoi nous éviterons de l’utiliser dans l’exposé. Nous parviendrons 
à l’expression de HG,, en procédant de façon heuristique, en essayant de 
deviner les propriétés nécessaires et en exigeant qu’à une certaine 
approximation, l’approximation de Landau, on retrouve les équations 
du champ moyen. Les corrections à cette approximation permettront 
d’évaluer l’effet des fluctuations et de décider de sa validité (critère de 
Ginzburg). 

Le paragraphe A est consacré à la déduction heuristique du 
hamiltonien de Ginzburg-Landau, et la théorie du champ moyen est 
retrouvée au paragraphe B. On obtiendra en outre une comparaison 
instructive entre transitions du premier et du second ordre. La fonction 
de corrélation sera calculée au paragraphe C ,  ce qui permettra de 
déterminer les exposants critiques TJ et v. Enfin le critère de Ginzburg, 
énoncé au paragraphe D, permettra d’évaluer la validité de l’approxi- 
mation de Landau, et donc du champ moyen. 

A. HAMILTONIEN DE GINZBURG-LANDAU. 
APPROXIMATION DE LANDAU 

A. l .  Cas d’un seul site 

L’approximation du champ moyen consiste à admettre qu’un spin 
Si au site i est sensible uniquement à une influence moyenne exercée 
par les autres spins, et l’on peut, dans un premier temps, considérer ce 
spin isolément. La valeur moyenne M de Si est donnée par l’équation 
(1.14) ; pour le calcul des exposants critiques, il suffit de développer 
th-’ M à l’ordre M’, et si l’on se souvient que la température critique 
T, est donnée par T, = q J / k ,  l’équation (1.14) peut s’écrire : 

- = M ( T )  P B  T - T c  + - M 3 .  1 
kT 3 

Le résultat pour les exposants critiques dépend uniquement de deux 
propriétés de l’équation (1) : 

(i) le coefficient de M s’annule linéairement à T = T ,  ; il est 

(ii) le coefficient de M 3  est positif. 
Essayons de reproduire l’équation (1) à l’aide d’un hamiltonien 

H (  <p ) dépendant d’une variable aléatoire continue cp 
(- 03 -= <p -= + 03 ) telle que (‘p) = M .  A la propriété d’invariance du 
modèle d’Ising en l’absence de champ extérieur dans la transformation 

=- O pour T =- T, et -= O pour T -= T,  ; 
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Si -+ - Si correspondra la propriété de parité de H(cp)  : H(cp) = 

H ( -  c p )  : nous cherchons évidemment à conserver les symétries du 
modèle d’Ising. D’autre part le membre de droite de (1) est un 
polynôme en M dépendant de deux coefficients, et on peut essayer pour 
H un polynôme dépendant aussi de deux coefficients : 

Les notations r,, et uo sont conventionnelles en physique statistique, et 
l’utilité des facteurs 1/2! et 1/4! apparaîtra au chapitre V. La forme de H 
dans (2) n’est pas choisie au hasard. En effet pour r,, -= O, H possède 
deux minima, suggérant la possibilité d’une brisure de symétrie 
(figure 1). 

Figure 1. 

Par analogie avec le modèle d’king, on rajoute un couplage - Bcp à un 
champ magnétique extérieur (en posant p = 1 afin d’alléger les 
notations) et on écrit la fonction de partition : 

(3) Z = dcp e-ff(V)+BV. c 
On remarquera l’absence du facteur l / kT  dans la définition de 2 :  
rappelons que nous cherchons à décrire un système physique au 
voisinage d’un point critique, et que le facteur l/kT, lentement 
variable, peut être absorbé dans la définition de H (de même que l’on 
peut remplacer les facteurs 1/T dans (1) par l/Tc). Le coefficient 
u,, dans (2) doit être positif si l’on veut que l’intégrale dans (3) 
converge : lim H(cp)  = + CO ; le signe de r,, est arbitraire. 

V - r I r n  

La quantité H,(cp )  = H(cp)  - Bcp présente un minimum absolu en 
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un point cp = cp, vérifiant la condition 

H’(cp0) = B (4) 

et l’exponentielle dans ( 3 )  possède un maximum à cp = cpo (cf. figure 2). 

Figure 2. (Y,, -= O ) .  

L’approximation de Landau consiste à remplacer l’intégrale ( 3 )  par la 
valeur de I’intégrand à <p = cpo : 

( 5 )  ~ Hl(<p,) - e- ff(P0) + BP, Z = e  - 

Cette approximation peut paraître grossière (et l’est effectivement dans 
le cas d’un seul site) : en particulier si B est petit et r, -= O, la 
contribution du deuxième minimum à cp = ‘pi, est presque aussi 
importante. Cette objection sera levée un peu plus loin ; continuons le 
calcul sans trop de scrupules (ce calcul sert aussi d’introduction 
pédagogique à celui que nous allons effectuer un peu plus loin). Nous 
obtenons à partir de ( 5 )  l’énergie libre (à un facteur près) W : 

IV = In 2 = - H(cpo) + Bcp, . (6) 

Comme cp, est déterminé par la condition de stationnarité (4), 
l’aimantation M = (cp ) est égale à cp, : 

Les équations (6) et (7) permettent d’obtenir le potentiel de Gibbs : 

r = M B  - W .= 9 0  B + H ( 9 o )  - B<po = H(<po) = H ( M )  (8) 
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soit en se reportant à ( 2 )  : 

Si nous calculons 

nous constatons 

r ( M ) = - r o M 2 + - U o M 4 .  1 1 
2 4! 

maintenant le champ magnétique : 

B = - ar = ï o  M + - 1 U O  M 3 

aM 3! 
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(9) 

que (10) a exactement les propriétés voulues si 
ro s'annule linéairement à une température To 

L'équation (10) est alors une équation de champ moyen décrivant 
une transition de phase du second ordre dont la température de 
transition est T, = To. On notera l'analogie entre l'approximation ( 5 )  et 
celle du champ moyen : dans (5 )  les fluctuations de 'p autour de sa 
valeur moyenne 'po = ('p) ont été négligées : la variable aléatoire 'p a 
été remplacée purement et simplement par sa valeur moyenne. Notons 
toutefois que (p) et <po ne coïncident qu'à l'approximation de 
Landau : cf. paragraphe D. 

A.2. Généralisation à N sites 

I1 faut tout de même se rappeler que l'on souhaite traiter un a 

problème à N sites, et non à un seul site. La généralisation à N sites sera 
non triviale, car elle permettra d'introduire une interaction (ou 
couplage) entre sites. Une variable aléatoire <p (xi) (ou simplement 
' p i )  est attachée à chaque site xi (ou i ) .  Son domaine de variation est : 

I1 est commode d'imposer des conditions aux limites périodiques ; par 
exemple à une dimension on aura : 

' p ( x j + a N ) =  ' p ( X , ) .  

Par analogie avec le modèle d'king, on introduit une interaction 
entre plus proches voisins, par exemple entre 'p (xi) et 'p (xi + p), où p 
est un vecteur reliant le site xi à l'un de ses plus proches voisins. Plus 
précisément, à partir d'un site xi on construit un système de D vecteurs 
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Figure 3. 

reliant xi  à la moitié de ses plus proches voisins (cf. figure 3), et on 
définit le << gradient discret D de <p ( x i ) ,  de composantes : 

(12) 
1 

a p ~ ( ~ i ) = à  [ < p ( x i + ~ ) - < p ( x i ) I  

où a est le pas du réseau. L'interaction entre plus proches voisins peut 
s'exprimer à l'aide de ce gradient : 

1 
(13) 2 ['P (xi + P I  - <p = C (v<p ( x i ) > z  

i, P I 

et je postulerai la forme suivante du hamiltonien de Ginzburg-Landau : 

L'interaction (13) paraît différente d'une interaction entre plus 
proches voisins C <p (x i  + p) <p ( x i ) ,  mais les termes en (9 ( x i ) ) 2  

conduisent simplement à une redéfinition de yo( T )  dans (14) (exer- 
cice 5 (a)). Le facteur aD servira ultérieurement à passer à la limite 
continue. Insistons SUI le fait que HGL n'est supposé décrire un système 
physique qu'au voisinage d'un point critique. L'expression de la 
fonction de partition : 

c ,  i i 
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montre bien que la relation entre H G L  et 2 n’est pas la relation 
classique : HGL dépend de la température par l’intermédiaire de 
ro( T ) ,  qui est le seul facteur variant rapidement avec T au voisinage de 
la transition. En toute rigueur la dénomination << hamiltonien >> est 
abusive, et on peut simplement affirmer que exp(- HGL[ < p i ] )  est 
proportionnel à la probabilité d’observer une configuration [ < p i ] .  

I1 est immédiat de généraliser le calcul du paragraphe A. 1 au cas de N 
variables ; on ajoute à H G L  l’effet d’un champ magnétique extérieur (en 
écrivant H au lieu de H G L  afin d’alléger les notations) : 

et on cherche le maximum de l’intégrand : 

ce qui définit un ensemble de valeurs {<pia} = { <pIo, ...) < p N o }  des 
variables aléatoires <pi. L’approximation de Landau permet d’obtenir 
l’énergie libre W sous la forme : 

W = In Z = - H [viol + Bi <pia 
I 

ainsi que l’aimantation Mi : 

et l’on trouve comme précédemment le résultat très simple : 

m i  )I 
Cette relation n’est évidemment valable qu’à l’approximation de 

Landau (cf. paragraphe D), et il ne faut pas confondre l’aimantation 
M i  qui est une valeur moyenne, avec < p i ,  qui est une variable aléatoire. 

Le passage à N sites permet de résoudre le problème du minimum 
secondaire soulevé précédemment : en champ magnétique uniforme 
( B i  = B ) ,  'pia = <po, où <po est la valeur trouvée dans le problème à 
un site, et par conséquent : 

w = - N [H(<po) - Bqol * 

Lorsque N + CO, la contribution éventuelle à W d’un maximum 
secondaire de exp(- H )  est supprimée par un facteur exp(- c N ) ,  et 
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quel que soit B # O la valeur de <po, et donc de M ,  est non ambiguë. 
Evidemment si l’on change le signe de B ,  le signe de <po change 
également. On voit Clairement à l’œuvre le mécanisme de brisure de 
symétrie, oii l’aimantation Mo ( M o  > O )  en champ nul doit être définie 
par : 

Mo = lim lim ( < p i >  
B-+O+ N - + m  

l’ordre des deux limites étant essentiel. 

A.3. Formulation continue 

En général on ne conserve pas la forme (14) du hamiltonien de 
Ginzburg-Landau sur réseau, qui conduit parfois à des calculs un peu 
pénibles, et on préfère passer à une formulation continue ; xi varie alors 
dans tout l’espace occupé par le système physique au lieu d’être 
restreint aux sites d’un réseau : 

xj -+ x 

et la variable de champ <p (xi) devient une fonction du point x : 

<p (xi) + <p (XI. 
Comme on s’intéresse à la région critique, où les fluctuations 

importantes ont une longueur d’onde s- a, la formulation continue 
devrait être équivalente à celle sur réseau. Dans ces conditions, le 
<< gradient discret D (12) peut être remplacé par le gradient ordinaire, 
qui en est une bonne approximation pour les fluctuations de longueur 
d’onde s a .  Le hamiltonien de Ginzburg-Landau (14) devient à la 
limite continue : 

le facteur uD dans (14) permettant de passer immédiatement d’une 
somme de Riemann à une intégrale. Toutefois on garde un souvenir de 
la définition initiale sur réseau, où le vecteur d’onde k était limité par la 
condition de Brillouin, avec par exemple : 
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I1 faut donc ajouter à (19) la précision suivante : si @(k)  est la 
transformée de Fourier de cp (x), le vecteur d'onde k est limité en norme 
par un cut-off (paramètre de coupure) A : 

Dans un problème de théorie quantique des champs, où l'espace est 
continu, il n'y a pas de limitation sur Ilk11 : A -+ 00 (cf. 3" partie). 

Le hamiltonien (19) est une fonctionnelle du champ cp (x), et il nous 
faut généraliser les notions de dérivation et d'intégration ordinaires aux 
dérivations et intégrations fonctionnelles, afin de le manipuler commo- 
dément. Examinons d'abord la dérivation : soit une fonctionnelle 
Z ( q )  du champ cp, obtenue par passage à la limite continue d'une 
fonction de N variables pi .  Afin de simplifier les notations, on 
supposera que l'espace a une seule dimension (D = 1). La dérivée 
fonctionnelle S Z / S c p  (x) sera définie par : 

Exemples 

(d) w= S ( x - y )  
Scp(Y) 

a 1  a s k  - 1 --. (25) a i  car - - 
a$i k a < P k a $ i  
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La généralisation à une dimension D quelconque est triviale ; par 
exemple (c) devient : 

Afin d’écrire la fonction de partition, il faut intégrer sur toutes les 
configurations du champ <p (x), c’est-à-dire effectuer une intégrale 
fonctionnelle. La mesure d’intégration c%<p (x) sera définie par : 

N 

c%<p (x) = lim M ( a )  n d<pi (27) 
@ - + O  i = l  

où M ( a )  est un facteur choisi de telle sorte que la limite N -+ CO existe 
(cf. VIII-B. 1). En fait les constantes multiplicatives (indépendantes de 
B )  ne jouent aucun role dans le calcul des fonctions de corrélation, car 
elles s’éliminent entre le numérateur et le dénominateur d’équations 
comme (1.23) ou (1.25) : la constante &-(a) est sans importance et il 
n’est pas indispensable de la préciser. I1 est clair cependant que 
l’équation (27) est à ce stade purement formelle et que l’existence d’une 
telle mesure d’intégration mériterait d’être étayée par une étude 
mathématique approfondie. Comme la théorie des intégrales fonction- 
nelles est complexe, nous nous contenterons de cette définition 
intuitive, en revenant au besoin à la formulation sur réseau en cas de 
difficulté. Dans ces conditions nous pouvons écrire la forme finale de la 
fonction de partition en présence d’un champ magnétique B ( x )  : 

(28) 
Afin de se familiariser avec la formulation continue, le lecteur est invité 
à retrouver l’approximation de Landau à partir de (28), et à montrer 
qu’à cette approximation le potentiel de Gibbs est une fonctionnelle 
T ( M )  de l’aimantation M(x) donnée par : 

I 1 

Naturellement l’équation (29) s’obtient immédiatement en prenant la 
limite continue de l’équation r ( M i )  = H ( M i ) .  L‘approximation de 
Landau (29) sera exploitée dans les deux paragraphes suivants pour 
discuter le caractère des transitions de phase et les fonctions de 
corrélation. 
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B. THÉORIE DE LANDAU DES TRANSITIONS DE PHASE 

B.l .  Transition du deuxième ordre 

Supposons le champ B uniforme. Dans ce cas l’aimantation M est 
également uniforme (dans la formulation continue, l’aimantation par 
site Mi devient l’aimantation par unité de volume) et î ( M )  s’écrit : 

r ( M )  = V 

Le champ magnétique est donné par : 

équation qui redonne tous les résultats du champ moyen. 

discontinue à T = To, avec une discontinuité 
I1 est facile de démontrer (cf. exercice 7) que la chaleur spécifique est 

AC = 3Yi T ~ / u , .  

Nous avons atteint l’objectif exposé en début de chapitre : construire 
une fonction de partition qui, évaluée à une certaine approximation 
équivalente à celle du champ moyen, redonne les équations de cette 
approximation. L‘équation (28) permettra d’aller au-delà, c’est-à-dire 
d’évaluer l’effet des fluctuations qui ont été négligées pour obtenir (29). 

B.2. Transition du premier ordre 

Une modification simple permet de décrire les transitions du premier 
ordre. Supposons que î ( M )  soit donné par : 

1 1 1 1 
- V T ( M )  = - 2 ~ , , ( T ) M ~ +  - u O M ~ +  4! - v 0  6! M~ 

avec cette fois uO<O et uo>O. Lorsque T = To, la concavité de 
T ( M )  à M = O est dirigée vers le bas, ce qui entraîne que ï ( M )  
possède deux minima négatifs. I1 est facile de se convaincre, en partant 
d’une température s- To, que pour une certaine température T, z To, 
r ( M )  doit présenter trois minima tels que r ( M )  = O ; un de ces 
minima est à M = O, et les deux autres à -ç AM. Ceci veut dire qu’à 
T = T,, deux phases, l’une ayant M = O et l’autre ayant M = AM (ou 
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- AM) se trouvent en équilibre (figure 4.a). La phase M = O est stable 
pour 

= T ,  \ 

- A M  I AM I 
(a) Transition du premier ordre. (b) Transition du deuxième ordre. 

Figure 4. 

T > T,, et métastable pour To -= T -= T,  : en effet la dérivée seconde du 
potentiel de Gibbs est positive dans ce domaine de température pour 
M = O. La phase M # O est stable pour T -= T,  et métastable pour 
T > T,, jusqu’à disparition du minimum secondaire du potentiel de 
Gibbs. L’aimantation spontanée, ou le paramètre d’ordre, sont disconti- 
nus ù la transition : il s’agit donc d’une transition du premier ordre, où 
la transition se passe avec coexistence entre deux phases, l’une 
d’aimantation nulle et l’autre d’aimantation # O. II est possible d’obser- 
ver des phénomènes tie métastabilité: par exemple pour T < T,, le 
système peut rester un certain temps dans la phase M = O. Des 
exemples de transition de ce type sont discutés dans le livre de Kittel. 
Remarquons qu’il existe des transitions du premier ordre pour lesquel- 
les on ne peut pas définir de paramètre d’ordre, par exemple la 
transition solide-liquide. 

Dans le cas d’une transition du deuxième ordre, le paramètre d’ordre 
s’annule de façon continue à T = T,  ( = To à l’approximation de 
Landau). I1 n’y a jamais ni coexistence de deux phases, ni phénomènes 
de métastabilité ; en effet la phase M = O est instable : r“(0) -= O pour 
T -= T,, et non métastable (figure 4.b). 
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c. FONCTIONS DE CORRÉLATION 

Dans un champ magnétique B (x), la relation entre ï et B est donnée 
par : 

6r UO 

6M(x) 6 B(x) = ~ = - V2M(X) + r , ( T )  M(x) + - M3(x) (33) 

si l’on utilise la formulation continue. Dérivant cette équation par 
rapport à B ( y ) ,  on obtient : 

(34) 
1 

[ - V i  + ro(T)  + 3 uo M2(x)]G(x, y )  = 6 (x - y )  

6M(x) puisque la fonction de corrélation G(x, y )  = ~ 

SB (Y) 
Dans le cas d’un champ B uniforme, G(x, y )  = G(x - y )  (invariance 

par translation) ; comme M est indépendant de x, la transformée de 
Fourier de l’équation (34) a une forme très simple : 

1 
2 ( q2 + r , ( T )  + - U o  M 2 )  G(q) = 3 

soit : 

1 
1 
2 

= 
q2 + r , (T)  + - c10 M 2  

(35) 

ce qui donne dans l’espace des x : 

e- iq . x 

G(x) = 1 (36) 
(2 P ) D q Z + r o ( T ) + - u o M 2 ’  2 

I1 est instructif de retrouver ces résultats en utilisant la formulation 
discrète (exercice 5). 

Plaçons-nous en champ nul ( B  = O ) .  I1 faut distinguer deux cas : 
(a) T z To : dans ce cas M = O et 

1 . (37.a) 1 
- - 

q2 + F&r- To) 
= 
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Si l’on se reporte aux définitions (1.30, 31), de r ) ,  v et 5, on voit que : 

1; s;;z(. - 
(b) T -= To : dans ce cas, M 2  = - 6 ro/uo, et : 

1 
q2 + 2 ro(To - T )  . a s )  = (37.b) 

Cette fois 5 = [2 To(To - T)]-1’2,  mais les exposants critiques sont 
inchangés : r )  = O et v = 1/2. 

Comme dans le cas des exposants (Y ... 6 ,  il est intéressant de 
comparer aux résultats exacts ( D  = 2) ou numériques ( D  = 3 ) :  

Exposant Landau D = 2 D = 3  

7) O 0.25 0.04 -+ 0.01 
U 112 1 0.638 2 0.002 . 

A nouveau on constate que l’approximation de Landau est d’autant 
meilleure que la dimension d’espace est élevée. 

Les valeurs : (Y = O, p = 1/2, y = 1, 6 = 3,  r )  = O, v = 1/2 sont 
appelées valeurs classiques des exposants critiques ; ce sont les valeurs 
obtenues à l’approximation du champ moyen, ou de sa généralisation : 
l’approximation de Landau. 

Calculons pour terminer la fonction de corrélation (à I’approximation 
de Landau) dans l’espace des x, pour D = 3 (pour le cas général, cf. 
exercice 6) .  On supposera que l’intégration sur q va de zéro à l’infini, et 
non de zéro à A ; le résultat sera correct pour r = IIxII z l / A .  

d(cos O )  

- 1 4 dq eiqr - - Im J- 4 v ” r  w 4 2 +  c2 
La dernière intégrale se calcule facilement par la méthode des résidus 
en utilisant le contour de la figure 5. I1 y a un pôle à q = i t - ’  à 
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l’intérieur du contour et donc : p q  

La forme (38) de la fonction de I 

corrélation correspond bien a (1.33) Figure 5. Contour pour le 
avec 77 = O et g ( r / & )  = exp(- r / & ) .  calcul de G(x). 

D. CRITIQUE DE L’APPROXIMATION DE LANDAU 
ET CRITÈRE DE GINZBURG 

L’approximation de Landau (comme celle du champ moyen) néglige 
les fluctuations de ‘p. Elle ne sera donc pas valable si les fluctuations de 
<p sont grandes par rapport à (‘p) . Donnons une première façon 
d’arriver à un critère de validité de la théorie de Landau, ou critère de 
Ginzburg. 

D.l .  Critère de Ginzburg : première démonstration 

Considérons l’aimantation moyenne A? sur un volume V dont les dimensions 
sont de l’ordre de 5. Pour T -= To, on aura : 

6 F, 

UO 
A’ = - (To - T )  V 2 .  

Comparons à la fluctuation (A& )2 sur le même volume : 

Comme les dimensions de V sont - 6, V - t D  et 

par simple analyse dimensionnelle. Le rapport (A&)2/&2 est donné par : 

Lorsque D =- 4, (To - T ) D / 2 - 2  s’annule pour T -+ T i  et ( A d ’ d ) 2 / A 2  + 1. 
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Dans ces conditions, la validité de la théorie de Landau paraît plausible ; du 
moins ne présente-t-elle pas d’incohérence interne. 

I1 n’en est pas de même pour D < 4 : dans ce cas (To  - T)O/’-’ diverge 
lorsque T +  T i  et la théorie de Landau n’est certainement pas valable. 
Cependant il est possible qu’il existe autour de To une région de température 
AT telle que pour T < To  - A T ,  ( A d l ) ’ / d l ’  < 1 : la théorie de Landau reste 
applicable, même si D -= 4. I1 peut même arriver (cas de la supraconductivité) 
que l’intervalle AT soit si petit que la région de non-validité de l’approximation 
de Landau ne soit pas visible en pratique. Au contraire, dans le cas de la 
transition superfluide de l’hélium 4 (qui est pourtant sous bien des aspects très 
analogue à la transition supraconductrice), l’intervalle AT est S- To et la région 
de validité de la théorie de Landau est inobservable. L‘argument donné ci- 
dessus ne permet pas de conclure pour T =. To. Toutefois un argument reposant 
sur l’étude de la chaleur spécifique (exercice 7) donne un résultat analogue à 
(39). 

Nous allons maintenant donner une version plus élaborée du critère 
de Ginzburg, en calculant au préalable la première correction à la 
théorie de Landau. 

D.2. Correction à la théorie de Landau 

Comme dans le cas de l’approximation de Landau, nous commence- 
rons par une  seule variable. Remarquons que  l’approximation d e  
Landau sera d’autant meilleure que le maximum de l’exponentielle sera 
aigu. Introduisons un paramètre A (*), telle que l’approximation soit 
d’autant meilleure que A est petit : 

Nous allons montrer que l’on peut écrire 2 sous forme d’un 
développement en puissances de A (naturellement à la fin du calcul, on 
posera h = 1). Comme au paragraphe A, cpo sera défini par : 

B = H‘(cp0).  

Développons H ( p )  - Bcp au voisinage de cp = c p o  en posant 
ic, = cp - cpo. Comme la dérivée est nulle par construction à cp = c p o ,  il 

(*) Bien entendu, dans ce problème fi  n’a rien à voir avec la constante de Planck. 
Cependant la notation n’est pas introduite par hasard, car cette constante intervient dans 
un problème analogue de théorie quantique des champs (cf. chapitre VIII). L’approxima- 
tion de Landau en physique statistique est l’analogue de l’approximation classique en 
théorie quantique des champs. 
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n’y a pas de termes linéaires en + dans ce développement : 

où D(cp,) est défini par 

Reportant dans l’expression de Z on obtient : 

et on effectue le changement de variables + = J h  +‘. Le jacobien est 
une constante qui peut être omise (cf. la remarque suivant l’équation 
(27)) et l’expression de Z devient : 

” “) ) .  (41) 
<Po + I 3  + 4! + 

Lorsque h -t O, la deuxième exponentielle dans (41) peut être 
développée en série de puissances de fi, chaque terme du développe- 
ment donnant une intégrale gaussienne. Le résultat pour W = h In 2 
(W est défini avec un facteur multiplicatif f i ,  de sorte que M = aW/ûB) 
est : 

fi 
= - ff ( cpo) + Bcp, - - In D ( c p 0 )  + O (h2) . 2 w = f i  ln (42) 

Calculons l’aimantation : 

et le potentiel de Gibbs ï: 

~ = M B - W = M B + H  M + - -  - ( 2;:) 
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Mais : 
h D’ h D’ 

H ( M )  + -- H ’ ( p o )  = H ( M )  + - -B  
2 D2  2 D2 

et on trouve à l’ordre A :  

(43) 
h r ( M )  = H ( M )  +Z’nD(M)  + û ( h 2 ) .  

Passons maintenant au cas général, en utilisant la formulation 
continue ; l’équation déterminant cpo(x) est ; 

et le développement de Taylor autour de cpo(x): 

L‘intégration sur + (x) est une intégration gaussienne (cf. appen- 
dice A) : 

1 
2 - [det DI-’” = exp (- - Tr In D )  

en négligeant les constantes multiplicatives. Reste à interpréter ce 
résultat, qui est évidemment un peu formel pour le moment. Calculons 
d’abord D (x, y )  : 

D ( x , y ) =  ( - V l + r o ( T ) + Z u o  q0 ’> S ( D ) ( x - y )  

et à l’approximation considérée cpo = M .  
D (x, y )  est la limite d’une matrice Dij diagonalisable par transforma- 

tion de Fourier, si cpo est indépendant de x (champ uniforme), ce que 
nous allons supposer à partir de maintenant. D’après l’équation (A.7) : 

Tr D(x,  y )  = N a D  
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et donc : 

L’expression (43) est généralisée par : 

2 

Le premier terme de l’équation (44) n’est autre que l’approximation 
de Landau (29). L’équation (44) donne les deux premiers termes du 
développement en nombre de boucles, qui sera examiné plus à fond au 
chapitre V, paragraphe D. 

Remarque importante : le modèle gaussien 

Lorsque uo = O dans le hamiltonien (19) de Ginzburg-Landau, 
l’intégrale sur cp est une intégrale gaussienne et le résultat (44) est exact 
si l’on s’arrête à l’ordre fi, puisque le hamiltonien est alors quadratique 
en <p. Le cas u,, = O est appelé cas du modèle gaussien ; ce modèle n’est 
d’ailleurs défini que pour ro (T)  =- O. Le potentiel de Gibbs du modèle 
gaussien vaut exactement (dans (44) M est uniforme, mais dans le cas du 
modèle gaussien, cette hypothèse n’est pas nécessaire, car D ( x ,  y )  est 
indépendant de M )  : 

T(M) = j dDx[ (VM)2  + - r o ( T )  1 M 2 +  I j *in (ro + q2)] 
2 2 (2 T ) D  

62r est 
6M(x) SM(Y 1 et la fonction de corrélation, qui est l’inverse de 

donnée par la transformée de Fourier inverse de (q2 + r0 (T) ) - ’  : 

1 Modèle gaussien : G(q) = 
q2 + ro(T) 

(45) 
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D.3. Critère de Ginzburg : deuxième démonstration 

En tenant compte de la correction obtenue dans l’équation (44) et en 
posant h = 1, on obtient le champ magnétique (supposé uniforme) : 

et la susceptibilité à la limite B + O 

Les termes que je n’ai pas écrits sont nuls pour T >  T,  parce que 
M = O dans ce domaine de température. Afin de simplifier la discussion, 
je me limiterai au cas T > T,. La notation standard pour x-‘ est r : 
x-’ = r (à ne pas confondre avec Ilxll) et à l’approximation de 
Landau : 

L’équation (46) devient ( M  = O )  : 

1 r = ;  ro+--uo --. 
2 s (2 dDq 7r ) D  q 2  + ro (47) 

L’équation (47) montre que la température critique T, n’est pas 
To, mais qu’en.fait T, .= To. En effet la température critique est définie 
par r (T, )  = O (susceptibilité infinie) alors que pour T = To, on a 
Y > O. I1 faudrait donc passer dans la région ro .C O, ce qui pose un 
problème car l’intégrale dans (47) n’est plus définie. Pour tourner la 
difficulté, remarquons que l’équation (47) est en fait le début d’un 
développement de r en puissances de u o :  

2 r = ro + a, uo + u2 uo + . a . .  

Pour le montrer, donnons une dimension à It (par exemple celle d’une 
action) ; comme H / h  doit être sans dimensions, <p a pour dimensions 

1 ’ -  où I est une longueur : en effet dDx a dimension 
I et V dimension I - ’. On montre immédiatement que ro a dimension 
I - et uo dimension k I - ‘. L’analyse dimensionnelle de l’équation 
donnant Y implique que le terme en hL est proportionnel à uk. Ce 
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résultat entraîne qu’il est légitime de remplacer ro par r dans l’intégrale 
de (47) : l’erreur commise est d’ordre ui, et de toute façon on a déjà 
négligé des termes de cet ordre : 

La température critique est donnée par : 

dDq 1 

soit : 

(49) 

où S, est la surface de la sphère à D-dimensions (appendice A). I1 faut 
donc que D > 2 pour que la théorie ait un sens quelconque. 

Retranchons maintenant l’équation (49) de (48) : 

II convient de distinguer les deux cas D > 4 et D -= 4 : 
D > 4 :  L’intégrale dans (50) converge pour q2 = O même si 

r = O. On obtient donc : 

T o u -  Tc) 
l + C  

r = r o ( T -  T,) - C r  ; r = 

où C est une constante finie. On voit que la correction d’ordre fi  à la 
théorie de Landau ne change pas l’exposant critique y :  y = 1 pour 
D > 4. Ceci reste vrai pour les corrections d’ordre hN (cf. III-E.l). 
L’approximation de Landau (ou du champ moyen) donne correctement 
les exposants critiques pour D z 4 ; par contre température critique, 
coefficient de ( T -  TC)- ’ ,  etc., sont modifiés, mais il s’agit là de 
quantités qui ne sont pas uni\ c*t-\elles. 

D -= 4 : L’intégrale dans ( 5 0 )  présente une divergence lorsque 
q -+ O, c’est-à-dire une divergence infrarouge si l’on pose r = O. Elle se 

comporte en effet comme dq/q5-,. Ce sont les grandes longueurs 

d’onde qui sont importantes pour le comportement critique, car ce so$ 
elles qui provoquent la divergence des intégrales. Posons q = k Jr ; 
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l’intégrale s’écrit : 

dDk (Ji)” dk 
( 2  T ) ~  r2k2(k2  + 1 )  

Comme l’intégrale est convergente à l’infini, on a pris la limite 
A -+ CO. On peut donc récrire (50) : 

r = Y,(T - T,) - u,, Cr(r-”’)  (52) 

en posant : 

et 
S D  O0 kD-’dk 

2(2 T ) ~  S o  k2(k2 + 1) * 
C =  

L‘équation (52) est incompatible avec r - (T  - T,) et les exposants 
critiques ne sont pas donnés correctement par la théorie de Landau pour 

A nouveau, on peut retrouver l’existence d’un intervalle de tempéra- 
ture où la théorie de Landau est valable, même si D -= 4 ; il faut pour 
cela que : 

uo C r -  E / 2  e 1 

D -= 4. 

ou : 
D 

ug c [Y,(T - T,)]  - 2  e 1 

en accord avec l’équation (39). La deuxième démonstration est 
cependant un peu plus précise, dans la mesure où elle permet de 
déterminer le coefficient C. 

EXERCICES 

1) u Déduction ~ du hamiltonien de Ginzburg-Landau (I) 

On se propose de déduire le hamiltonien (19) du modèle d‘king. On part de 
l’expression suivante pour Z ( B )  : 

i 

dSi 6 (Si” - 1 ) exp C Si V i j  Si + C Bi Si 
i , i  

V i j  = . I / 2  kT , i et j plus proches voisins 
= O  dans le cas contraire . 
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Généralisation : 6 (Sz - 1) + p (Si) où p 3 O et V i j  dépendant de xi - xi, 
décroissant avec II xi - xj II . Notez que le facteur p / k T  a été pris égal à 1. 

(a) En utilisant l’intégration gaussienne (appendice A) montrer que : 

Z ( B ) =  n d q i d S i p ( S i ) e x p  - B ) T V - l ( q - B ) + q T S  
J i  

Les notations sont celles de l’appendice A. On pose : 

dS p (S) eo‘ = eA(+’). J 
Montrer que A ” ( q  ) 9 O et que : 

Z ( B )  = n d q i e x p  
J i  

B ) T V - l ( q  - 

(b) Approximation de Landau : calculer le maximum de l’exposant dans (1) 
et en déduire le potentiel de Gibbs : 

T ( M )  = - C Mi Vij Mj + C (Mi) 
i ,  i I 

où C ( M )  est la transformée de Legendre de A ( q ) :  

(c) Montrer que dans le cas du modèle d’king A (q ) = In ch <p et retrouver 

Montrer que dans le cas général C ” ( M )  > O et que l’on peut obtenir selon le 
en champ uniforme l’équation du champ moyen (1.14). 

signe du terme en M 4  une transition du premier ou du deuxième ordre. 

(d) Quelle est la relation entre la fonction de corrélation originale 
(Si S i )  et la fonction de corrélation ( v i  q i )  en champ magnétique nul ? 
Comparer les transformées de Fourier et montrer qu’elles sont proportionnelles 
quand q + O. On pourra introduire la transformée de Fourier de V : 

Y ( q )  = vij e iq(xi - xj) 

i 

(e) On introduit la transformée de Fourier de <pi  : 

Pour q -+ O, montrer que : 
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(on pourra se limiter au cas du modèle d’king). En déduire : 

et montrer que dans l’espace des x le deuxième terme se transforme en : 

-!?- J dDx(V<p)2. 
VO 

Un changement d’échelle de <p : <p -+ h<p permet alors de se ramener à (19). 
(Cette << déduction >> due à Berlin-Kac, Hubbard et Stratonovitch possède un 

point faible : la matrice V i ’  (qui sert seulement d’intermédiaire dans les 
calculs) n’est pas définie positive. I1 est facile de le montrer dans le cas du 
modèle d’king.) 

2) Phénomènes de métastabilité pour T-=  T, 

t” 

Figure 6. 

(a) Montrer que pour T < T,  et 
dans un certain domaine de B (à 
déterminer) 

- B o  =S B s Bo 

trois valeurs de M sont solution de 
l’équation 

B = ro M + (u,3/6) M 3  ( ~ g  > O ) .  

En déduire l’allure de la courbe don- 
nant M en fonction de B (cf. 
figure 6 ) .  

(b) Montrer que les solutions se 
trouvant sur les parties ( A B )  et 
( A ‘  B ’ )  sont métastables tandis que 
celles se trouvant sur ( B B ‘ )  sont 
instables. 

(c) Montrer qu’à T fixé -= T,, on 
observe une transition de phase de 
première espèce quand on fait varier 
B d’une valeur négative à une valeur 
positive. 

(d) Trouver une analogie mécani- 
que (cf. par exemple l’exercice 1.1). 
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3) Transition du premier ordre 

On suppose qu’en champ nui 

1 1 
2 4 6 

T ( M )  = 1 Fo(T - To)  M 2  - - M4 + - M 6 .  

Quelle est la température ï‘, de la transition de phase (du premier ordre) ? 
Quelle est la discontinuité de l’aimantation ? 

Déterminer le comportement de la susceptibilité ,y en champ nul pour 
T > T,. Quelle est la discontinuité de x à T = T, ? 

(Dans une transition du premier ordre, les fluctuations ne se développent pas 
complètement : le régime de fluctuations avorte avant d’avoir fait diverger la 
susceptibilité.) 

4) Bosons de Goldstone 

On suppose que la dimension du paramètre d’ordre est n = 2 (la généralisa- 

A l’approximation de Landau le potentiel de Gibbs s’écrit : 
tion à n quelconque étant triviale). 

(a) On suppose que pour T-= To et en champ nul l’aimantation d a pour 

(b) Soit Gij(x, y )  la fonction de corrélation à l’approximation de Landau : 
composantes Ml = M, M ,  = O. Quelle est la valeur de M ?  

Calculer les transformées de Fourier cil (q), G12(q) et G2,(q) dans la situation 
de la question (a). Montrer que Gzz(q) diverge pour q + O. Quelles sont les 
conséquences physiques de cette propriété ? 

5 )  Hamiltonien et fonction de corrélation sur réseau 

(a) Considérons d’abord un hamiltonien gaussien écrit sous la forme 
(a  = 1) :  

1 1 
H = 2 [‘p (x + Ir- 1 - <P (XII ,  + 2 r, 

H = -  c < P ( X + I r - ) < p ( X ) + Z ( > o + 2 D ) C < p ( X ) 2 .  

<p (.Y 
x. c 1. 

ou bien : 
1 

x. c I 

Effectuer un changement d’échelle q ’  = (ro + 2 D)In q sur les champs et 
calculer la fonction de corrélation par un développement en puissances de 
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K = (2 D + r0)-l quand K -t O. Montrer que dans cette limite 6 - - l / ln  K .  

Ce calcul est un exemple de développement haute température, car r, + 1. 
(b) On reprend maintenant le hamiltonien de Ginzburg-Landau (14) et on 

définit les transformées de Fourier (cf. appendice A) par : 

Montrer qu'à l'approximation de Landau, la fonction de corrélation 
G(q) en champ uniforme est donnée par : 

1 
D 1 G(s) = 

( 2 / u z )  c (i - cos (as , ) )  + r, + uo M' 

avec q, = (q . p ) / a .  Suggestion : on pourra d'abord faire le calcul dans le cas 

Quelle est la fonction de corrélation du modèle gaussien sur réseau ? Montrer 
que si qu 1, cette fonction de corrélation est approximativement invariante 
par rotation. Montrer que le terme en q4 brise cette invariance. 

(c) Déterminer la matrice Di j ,  équivalente sur réseau de D(x, y), dans le 
calcul du paragraphe D.2. Montrer qu'à la limite u - O on retrouve bien le 
résultat (43). 

1 

D = 1. 

6) Fonctions de correlation en dimension D ( T >  To) 

(a) Pour T =- To la fonction de corrélation à l'approximation de Landau (ou 
celle du modèle gaussien) vérifie : 

(- V2 + ro) G(x) = 6 (x) . 

Comme G(x) ne dépend que de r = IIx 1 1 ,  montrer que G( r )  vérifie : 

(b) Montrer que pour D = 2 et r, = O (c'est-à-dire juste au point critique) la 
solution de l'équation - V2G(x) = 6 (x) est - ~. (Suggestion : pensez au 

potentiel électrique d'un fil rectiligne infini chargé.) 
(c) Montrer que dans un espace de dimension D : 

In r 
2 % -  

où J ,  est la fonction de Bessel d'ordre v. La mesure d'intégration dans un 
espace de dimension D est : 

dDx = rD-'drsinD-'  6,-1 dû,-, dû,-, ... dû, 

O s û k s m  k # 1 ;  O s û l ~ 2 % - .  
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(d) En déduire pour D = 4 et ro = O : 

7) Chaleur spécifique et critère de Ginzburg 

(a) Montrer que la chaleur spécifique en champ nul par unité de volume 
vaut : 

1 d2(TT) 
v dT2 

C = - - T - .  

Dans les questions (b) et (c) on se servira du fait (à démontrer) que la 
contribution singulière à la chaleur spécifique est : 

1 2 d 2 r  C = - - T  -. v dT2 

(b) Montrer qu’à l’approximation de Landau : 

c = O  T > T o  
3 rg 

C = T 2 -  T < T , .  
UO 

La chaleur spécifique est donc discontinue avec une discontinuité 

C = 3 7: TO/uo . 

(c) Montrer que si l’on tient compte de la première correction à la théorie de 
Landau, la chaleur spécifique n’est pas nulle pour T =- To. Quelle est l’expres- 
sion de C ? On se limite par la suite au cas T > To. 

(d) Montrer que pour D > 4 la correction ajoute simplement un terme 
lentement variable (en T) à la chaleur spécifique. Montrer au contraire que 
pour D c 4 la chaleur spécifique se comporte en : 

( T  - To)-” . 

Quelle est la valeur de a ?  

(e) Pour D -= 4, on peut définir le domaine de validité de l’approximation de 
Landau en exigeant que la chaleur spécifique calculée en (c) soit plus petite que 
la discontinuité AC calculée en (b) : 

C s A C .  

Retrouver par cet argument le critère de Ginzburg. 
(f) Montrer que l’énergie moyenne ( E )  par unité de volume est proportion- 

nelle à la fonction de corrélation G(x) prise à x = O :  ( E )  - G(x = O).  En 
utilisant la forme trouvée en (37(a)), retrouver le résultat de la question (c). 
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NOTES ET RÉFÉRENCES 

II. 

Le hamiltonien de Ginzburg-Landau et l’approximation de Landau sont traités par 
Toulouse-Pfeuty, chapitre 2 et Ma, chapitre III. On pourra également consulter Shenker, 
section 2. La théorie de Landau des transitions de phase est exposée dans Landau- 
Lifschitz, paragraphe 138, et dans Kittel, chapitre XII1 ; les fonctions de corrélation sont 
discutées par Ma, chapitre III. Toulouse-Pfeuty (chapitre 2) donnent une discussion très 
complète du critère de Ginzburg. A un niveau plus avancé, on pourra également 
consulter Amit, chapitres 2 et 6 ainsi que Brézin et al., section IV. 

( I )  Brézin et al., section IV ; Amit, chapitre 2. 



CHAPITRE III 

Groupe de renormalisation 

Considérons un système physique au voisinage d’un point critique : le 
nombre de degrés de liberté interagissant effectivement entre eux est 
- tD7 où (est la longueur de corrélation, et ce nombre tend vers l’infini 
au point critique puisque 5 -+ 00. Les méthodes perturbatives tradition- 
nelles échouent complètement dans ce genre de problème, car elles sont 
adaptées au cas de l’interaction d’un petit nombre de degrés de liberté. 
La méthode du groupe de renormalisation, inventée par Wilson, 
consiste à réduire systématiquement le nombre de degrés de liberté en 
intégrant sur les fluctuations de courte longueur d’onde. Supposons que 
nous partions d’un système de spins sur un réseau de pas a : la longueur 
d’onde minimale des fluctuations est alors - a .  Intégrons sur les 
fluctuations de longueur d’onde a 5 h 5 sa, où s =- 1 est appelé facteur 
de dilatation. Ceci ne change pas le comportement des fonctions de 
corrélation pour r 5 sa : l’intégration sur les fluctuations de courte 
longueur d’onde a fait correspondre au système physique initial un autre 
système physique (*) qui possède le même comportement à longue 
distance. On peut itérer cette transformation, appelée transformation 
du groupe de renormalisation (TGR), en intégrant sur les fluctuations 
de longueur d’onde sa 5 h 5 s 2  a ,  etc. et établir ainsi une suite de 
correspondances entre systèmes physiques possédant le même compor- 
tement à longue distance. 

Cependant il s’agit de bien s’entendre sur la notion de << même 
comportement à longue distance >> ; si nous utilisons la même unité de 
longueur pour décrire les deux systèmes physiques, l’expression est 

(*) Par système physique, j’entends <* modèle pour une transition de phase ». II n’est 
pas nécessaire que le modèle soit une description approchée d’un système physique réel. 
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évidemment correcte. Mais il existe une unté de longueur naturelle 
pour chaque système, qui est le pas de son réseau. Après une première 
TGR, le pas effectif du réseau du système transformé est sa, et si nous 
mesurons les longueurs de corrélation en unités naturelles, celle du 
système transformé est t / s .  I1 est donc logique d’associer à chaque 
TGR une dilatation de i’unité de longueur d’un facteur s, qui permet de 
comparer les deux systèmes sur un même réseau. Au bout d’un nombre 
suffisant d’itérations, on pourra faire correspondre au système initial un 
système dont la longueur de corrélation est de l’ordre du pas du réseau, 
et dont on peut espérer déterminer le comportement par des méthodes 
perturbatives. 

La dilatation de l’unité de longueur d’un facteur s, qui transforme 
une longueur r en r / s ,  fait évidemment penser à une transformation 
d’échelle. Une TGR relie effectivement deux fonctions de corrélation 
mesurées à des distances r et r / s  ; cependant l’opération ne se réduit 
pas à une simple analyse dimensionnelle, car elle transforme aussi les 
paramètres du système physique. Une itération de TGR ne donnera pas 
d’information utilisable sans ingrédient supplémentaire. Cet ingrédient 
sera l’existence d’un point f ixe:  en effet autour de ce point fixe, on 
pourra se limiter à un nombre fini de paramètres (paramètres essen- 
tiels). Dans ce cas on pourra aboutir à un comportement simple des 
fonctions de corrélation dans une transformation d’échelle r -+ r / s ,  et 
en déduire les exposants critiques. 

On peut visualiser intuitivement une TGR en imaginant que l’on 
observe le système physique avec deux microscopes de résolution 
différente : le premier, qui utilise une longueur d’onde A, permet de 
voir des détails de dimension - h ; le second utilise une longueur 
d’onde sh, et sa résolution est donc moins bonne (s =- 1 ). En passant du 
premier microscope au second, on intègre sur tous les détails ayant une 
dimension comprise entre A et sh. Pour réaliser la dilatation de l’unité 
de longueur, il suffit d’admettre que le grandissement du second 
microscope est inférieur à celui du premier par un facteurs. 

Dans le champ du second microscope, les îlots d’aimantation positive 
(par exemple) seront vus avec une taille s fois plus petite que dans le 
champ du premier, tant que la longueur de corrélation est finie 
(rappelons que la taille de ces îlots est - 8 (figure 1). 

Au point critique ( T  = T C ) ,  les fluctuations ont toutes les tailles 
possibles et on observe des images analogues dans les deux microscopes 
(si l’on fait une moyenne dans le temps : à un instant donné, un îlot 
d’aimantation d’une certaine taille occupe évidemment une place s fois 
plus petite dans le champ du second microscope que dans celui du 
premier). 

Avant de commencer l’étude du groupe de renormalisation, il 
importe de faire une remarque préliminaire : le groupe de renormalisa- 
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Microscope 1 Microscope 2 

Vue intuitive d’une TGR. Figure 1. 

tion est d’invention récente, et, sauf dans certains cas particuliers, il 
n’est pas actuellement étayé par des théorèmes rigoureux. I1 sera donc 
nécessaire d’introduire des hypothèses dont les conditions de validité ne 
sont pas bien précises, et qui, en fin de compte, seront justifiées par 
leurs succès pratiques. 

Le paragraphe A introduit les notions fondamentales : formation de 
blocs de spin, surface critique, points fixes. Le paragrapheB montre 
cQmment obtenir les exposants critiques en étudiant le voisinage d’un 
point fixe. Ces deux premiers paragraphes donnent les résultats 
généraux, et les suivants sont consacrés à une illustration de ces 
résultats sur des exemples particuliers. Le paragraphe C donne un 
exemple de TGR sur réseau, avec résolution approchée des équations 
du groupe de renormalisation (GR). Le paragraphe D introduit le 
groupe de renormalisation dans l’espace de Fourier avec comme 
application le modèle gaussien. Les exposants critiques sont calculés à 
l’ordre E = 4 - D au paragraphe E ; le paragraphe F traite des variables 
marginales, et permet de faire le lien avec les méthodes classiques de 
renormalisation en théorie des champs, qui seront exposées aux 
chapitres VI et VII. 

A. NOTIONS FONDAMENTALES : BLOCS DE SPIN, 
SURFACE CRITIQUE, POINTS FIXES 

Une stratégie possible pour intégrer sur les fluctuations de courte 
longueur d’onde consiste à former des blocs de spin. Ce n’est pas la 
seule : nous en verrons une autre au paragraphe D. De plus il existe 
deux types de stratégies pour former les blocs : une linéaire, une autre 
non linéaire. Au départ la stratégie non linéaire paraît plus simple et je 
vais commencer par elle. Les difficultés ne tarderont pas à se manifester 
et la stratégie linéaire se révélera en fin de compte plus performante, du 
moins dans le cadre de calculs analytiques. 
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A . l .  Blocs de spin et transformations non linéaires 

Pour fixer les idées, je prendrai comme exemple le modèle d’Ising en 
dimension D = 2, sur un réseau carré de pas a. Je vais grouper les spins 
par quatre (= blocs de spins) et attribuer à chaque bloc un spin 
déterminé par les règles suivantes : 

O le spin du bloc vaut + 1 (- 1 ) si la somme des spins du bloc est 
positive (négative) ; 

O si la somme des spins du bloc est nulle, on tire à pile ou face pour 
attribuer la valeur + 1 ou - 1 au spin du bloc, ou bien on attribue par 
convention un spin -t 1 à trois configurations de spin total nul, et un 
spin - 1 aux trois autres configurations. Naturellement des blocs de 
neuf spins élimineraient ce problème, mais les figures seraient plus 
longues à dessiner. 

La formation des blocs est la première étape de la transformation du 
groupe de renormalisation. La seconde étape consiste à revenir au 
réseau initial en multipliant par deux l’unité de longueur : le facteur de 
dilatation est égal il 2. Cette procédure permet de comparer deux 
systèmes physiques (celui des spins initiaux et celui des blocs) sur un 
même réseau (figure 2). 

Figure 2. Formation de blocs de spins. 

Appelons Si les spins initiaux et Su ceux des blocs, Su étant donné 
par : 

Su = f ( S i )  i E bloc (Y . (1) 

Un exemple de fonction f(&) a été donné ci-dessus ; en général on 
pourra prendre une fonction f(Si) qui reflète la tendance à l’orientation 
de l’ensemble des spins du bloc. 
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La probabilité d’observer une certaine configuration [Sa ] des blocs 
est parfaitement déterminée si l’on connaît le hamiltonien d’interaction 
des spins. I1 doit donc exister un hamiltonien H’[Sk]  tel que la 
probabilité d’observer la configuration [Sa ] soit proportionnelle à 
exp(- H‘ [Sa]). I1 n’est pas difficile d’écrire une expression formelle 
pour H’ ( H ’ [ S a ]  comprend une partie G, indépendante de Sa, que je 
n’ai pas séparée explicitement pour le moment : cf. paragraphe B, 
équation (25)) : 

Si la configuration [ S i ]  est fixée, il existe une seule configuration 
[Sh] pour laquelle le delta de Kronecker est non nul, et donc : 

ce qui entraîne immédiatement : 

La fonction de partition du système transformé est égale à celle du 
système initial. Cependant le hamiltonien H’ [Sa] n’a aucune raison 
d’être du type d’king (1.2). On est conduit à généraliser le hamiltonien 
(1.2) en écrivant (cf. exercice 1) : 

où la première somme porte sur les plus proches voisins, la seconde sur 
les seconds plus proches voisins, la troisième sur les << plaquettes », etc. 
(cf. la figure-3). Notez que le facteur l / k T  a été 
inclus dans la définition des coefficients K i .  La 
seule restriction est la propriété de symétrie 

Les coefficients KI, K,, ..., K ,  ..., également 
appelés constantes de couplage et notés collecti- 
vement p définissent un espace de paramètres. 
Un système physique à une température donnée 
correspond à un point dans l’espace des paramè- 
tres. La TGR, notée R,, qui établit une corres- 
pondance entre le système de spins et le système 
de blocs, est donc une transformation agissant 
dans l’espace des paramètres: elle envoie un 

H ( S ; )  = H ( -  S;) .  

I k 
( i j k l )  

Figure 3. 
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point p de cet espace en un autre point p‘.  On pourra écrire : 

P = {KI, K2, ..., K,, a..} 

p‘ = {Ki, Ki ,  ..., KA, ...} 

et : 

p‘ = R2 /L . (6) 

I1 faut maintenant faire deux hypothèses nécessaires pour les 
développements ultérieurs : 

H1 : Les coefficients (KI, K2, ...) sont des fonctions analytiques de 
la température même à T = T,, et les KL sont des fonctions analytiques 
des Ka. 
H2: Les TGR n’introduisent pas de couplages à longue distance, 

c’est-à-dire de coefficients couplant fortement des spins éloignés : le 
couplage entre deux spins éloignés doit décroître plus vite que toute 
puissance inverse de la distance entre ces spins. 

Ces deux hypothèses sont raisonnables, car la transformation ( 6 )  est 
locale dans l’espace (elle fait intervenir pour chaque bloc un nombre 
fini de spins), mais on ne connaît pas les conditions générales de leur 
validité. Certaines transformations (cf. paragraphe D) introduisent des 
interactions à longue distance, qui sont en réalité des artefacts de la 
méthode particulière utilisée. Ces interactions ne doivent pas avoir de 
conséquences physiques, mais elles peuvent poser des problèmes 
techniques si l’on n’y fait pas attention. 

On peut faire deux généralisations immédiates de ce qui précède : 
0 utiliser un espace à D dimensions : chaque bloc contient alors 

0 former des blocs comprenant sD spins, au lieu de 2’’ et multiplier 
2’ spins, 

par s l’unité de longueur. La TGR correspondante est notée R, : 

p ’ = R , p .  (7) 

Pour un système de spins, s = &, 2, &, etc. ; au paragraphe D 
nous verrons une technique permettant à s de prendre des valeurs 
continues. 

Ainsi que je l’ai expliqué en début de chapitre, la stratégie du groupe 
de renormalisation consiste à itérer un grand nombre de fois la TGR 
R, : Rsn sera défini par n itérations de R, : R,n = R, . . . R, ( *). I1 convient 

(*) Remarquez que R,z n’est pus équivalent à La formation de blocs de s z D  spins, en  
raison des effets bien connus des élections au second degré : la majorité de 4 blocs n’est 
pas toujours celle de 16 spins ! 
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à ce point de répondre à la question suivante : pourquoi doit-on itérer 
R,, et non procéder en une seule fois pour obtenir RSn ? En fait on ne 
peut pas faire l’intégration pour s P 1, sauf dans le cas de modèles 
trivialement solubles (auquel cas le GR est inutile), alors que pour 
s - 1 le calcul est possible, au moins de façon approximative, car seules 
interviennent les fluctuations de longueur d’onde - sa ( P a  après n 
itérations), correspondant à un nombre limité de degrés de liberté. 
Lorsque apparaîtra dans un raisonnement un facteur de dilatation 
s a 1, ce facteur devra toujours être interprété comme provenant de 
l’itération d’un grand nombre de TGR. 

A.2. Transformations linéaires 

Dans la formation des blocs telle qu’elle a été décrite plus haut, la 
fonction f(Si) n’est pas linéaire, d’où la dénomination << TGR non 
linéaire ». Une façon de définir le spin d’un bloc, qui possède la 
propriété de linéarité, consiste à construire SL à partir de la moyenne 
des spins du bloc et à écrire : 

Dans l’équation (€9, A (s) est une fonction de s dont le rôle sera précisé 
ultérieurement. Naturellement les spins des blocs ne restent plus égaux 
à rr 1, et après quelques itérations de la TGR, la variable de spin prend 
des valeurs pratiquement continues : elle devient analogue à la variable 
c p i  (ou cp(x)) utilisée dans la théorie de Ginzburg-Landau. 

La forme ( 5 )  du hamiltonien n’est plus adaptée pour définir l’espace 
des paramètres. Le hamiltonien auquel on arrive après quelques 
itérations est analogue à celui de Ginzburg-Landau, auquel on a rajouté 
une infinité de termes, du type : c p 6 ,  cps, < ~ ~ ( V c p ) ~ ,  etc., en plus des 
termes standard : (Vcp )’, cp et cp ‘. L’espace des paramètres sera l’espace 
des coeficients de ces différents termes, c’est-à-dire à nouveau l’espace 
des constantes de couplages. 

Bien que cette stratégie linéaire semble au premier abord plus 
complexe que la stratégie non linéaire, elle possède une propriété très 
remarquable : la longueur de corrélation 6’ du système transformé est 
celle du système initial divisée par s : 

Considérons en effet deux blocs suffisamment éloignés et calculons 
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(on a utilisé les équations (2) et (8) et échangé l'ordre des sommations 
sur [SI et [S']) 

-~ - h 2 ( s )  C 2 Gij h 2 ( s )  Gij 
s2' i c a  j c p  

Pour obtenir la dernière égalité, on a supposé 6 a sa de telle sorte que 
Gij varie peu quand i ( j )  parcourt le bloc a ( p ) .  Si Gij - exp(- r i j / & )  
pour i et j suffisamment éloignés, et comme rap  = r i j / s  (il faut bien 
réaliser qu'en fait rap  = r i j ,  mais que ces deux distances sont mesurées 
avec des unités de longueur différentes) : 

Gap - e V -  s r a p / & )  

ce qui démontre (9). On peut écrire de façon générale la relation 
valable pour r a a : 

La dilatation de l'unité de longueur (Y -+ r / s )  ainsi que la dilatation 
des spins ( h ( s ) )  ne doivent pas masquer le fait que les systèmes 
paramétrés par p et p ' ,  examinés avec les mêmes unités, ont 
fondamentalement le même comportement à longue distance. On 
notera aussi que l'équation (10) peut être interprétée comme la loi de 
transformation de la fonction de corrélation dans une transformation 
d'échelle (cf. I-F). Cependant cette loi est complexe, car les paramètres 
du hamiltonien sont modifiés : p -+ p' .  I1 nous reste encore quelques 
progrès à faire avant de pouvoir exploiter cette relation. 

En toute rigueur les relations (9) et (10) ne sont démontrées que pour 
des TGR linéaires. .4fin de simplifier les discussions, je supposerai 
qu'elles sont vraies, au moins approximativement, dans le cas non 
linéaire. 

Dans le cas des TGR linéaires, la transformation obtenue en formant 
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des blocs de (sl s ~ ) ~  spins est identique à celle obtenue en faisant le 
produit de deux TGR correspondant à des blocs de sf et sf spins, 
pourvu que A (s) obéisse à : 

A 0 1  SZ) = A (SI) A (sz) * 

Si cette équation est vérifiée, A (s) est de la forme : 

A (s) = S d ,  (11) 

où d ,  est une constante, appelée dimension anormale du champ. Cette 
dénomination sera expliquée ultérieurement (paragraphe D) . En fait le 
raisonnement précédent n’est pas tout à fait correct car A (s) peut être 
aussi une fonction des paramètres de H ;  l’équation (11) est valable 
localement dans l’espace des paramètres, et en toute rigueur on devrait 
écrire d ,  ( p  ) (cf. exercice 4.c). 

A.3. Surface critique et points fixes 

Pour fixer les idées (mais le raisonnement est général), reprenons 
l’exemple du modèle d’Ising à deux dimensions et de la TGR non 
linéaire. Dans l’espace des paramètres, et à une certaine température, 
le modèle est représenté par un point : 

KI # O ;  K ,  = K3 = K4 = = O .  

La dépendance par rapport à T est contenue dans K I ,  et quand la 
température varie, le point représentatif du modèle d’king décrit dans 
l’espace des paramètres une ligne appelée ligne physique du modèle 
d’lsing. 

Pour une certaine valeur : 

KI = K i ,  -- 0.44 

correspondant à T, = 2.27 J (cf. I-B.4), le modèle d‘king présente une 
transition de phase du second ordre, et sa longueur de corrélation test  
infinie. 

Partons du point ( K I  c ,  O, O ,  ... ) dans l’espace des paramètres et 
appliquons une TGR. La longueur de corrélation 5‘ est encore infinie 
(6’ = ( /s) ,  et le système transformé est encore critique. Le lieu des 
points qui, dans l’espace des paramètres, correspondent à des systèmes 
physiques au point critique ( 6  = CO) est appelé surface (ou variété) 
critique S,. Si l’on applique une TGR à un point E S, ,  le point 
transformé est encore sur S,. Comme la longueur de corrélation est 
infinie à la transition, nous nous restreignons à des transitions du 
second ordre (ou éventuellement d’ordre plus élevé). 
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, ligne physique 

Figure 4. Evolution dans une TGR. 

(i) P E S,: P', transformé de P ,  appartient aussi à S, 
(ii) Q 4 S, : Q', Q" ... s'éloignent de S,. 

Si l'on part d'un point Q 4 S, ,  les TGR Q + Q' + Q" ... vont 
progressivement éloigner le point représentatif de la surface critique, 
puisqu'à chaque opération la longueur de corrélation est divisée par s, 
ce qui correspond à des systèmes de plus en plus éloignés de la région 
critique. Le système de trajectoires décrites par les points représentatifs 
au cours d'itérations de TGR forme le flot de renormalisation. Si l'on 
fait abstraction de la dilatation de l'unité de longueur et du spin, fous les 
points d'une trajectoire correspondent à un même comportement à 
longue distance (figure 4). 

A priori le comportement des points P ' , P ", . . . , P ( n )  . . . , transformés 
de P E S ,  par itérations successives de la TGR, pourrait être complète- 
ment arbitraire : il pourrait y avoir des points doubles, des cycles 
limites, etc. Le cas physiquement intéressant est celui où la suite 
P -+ P'  + - - -+ P(" )+  - converge vers un point fixe P * : 

lim p ( n )  = p * 
n - r c o  

le point fixe étant caractérisé par un ensemble p* de paramètres tels 
que : 
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Plus précisément, il existe sur la surface critique un domaine 
d’attraction 9 ( P * )  du point fixe tel que si P E 9 ( P * ) ,  
lim P @ ) =  P*.  Je laisserai de côté le cas où la dimension de 

9 ( P  * )  est inférieure à celle de la surface critique. Ce cas conduit au 
comportement dit de cross-over >> (cf. Toulouse-Pfeuty (chapitre 8) et 
exercice 9). 

I1 peut y avoir plusieurs points fixes, avec chacun leur domaine 
d’attraction. Un point fixe peut aussi être rejeté à l’infini. On ne connaît 
pas à l’heure actuelle de conditions générales pour l’existence de points 
fixes et de leur domaine d’attraction. I1 est nécessaire de procéder à des 
vérifications explicites dans chaque cas particulier. Nous ferons donc 
l’hypothèse suivante : 

n-rm 

H3 : Si P E S, et que l’on effectue un grand nombre d’itérations de 
la TGR, P ( ” )  converge vers un point fixe P *  E S, qui vérifie 
R, p * = p *. Il peut éventuellement exister plusieurs points fixes, et à 
chacun d’entre eux correspond un domaine d’attraction. 

Concluons ce paragraphe par quatre remarques : 

(i) La position du point fixe dépend en général de la forme 
particulière choisie pour les TGR. Les résultats physiques (exposants 
critiques) ne doivent pas dépendre de la forme particulière des TGR : 
cf. exercice 8. 

(ii) Rôle de A (s) = sdV. 
D’après (10) on trouve au point fixe : 

(En toute rigueur, on devrait préciser que d ,  est évalué pour les 
paramètres du point fixe : d ,  = d ,  ( p  *).) 

Le choix s = r / a  dans l’équation précédente montre qu’au point fixe 
le comportement de la fonction de corrélation est : 

G ( r ,  p * )  = ( 5 )”’ G ( a ,  p * ) .  

Comme P * E S,, on sait, d’après la définition de l’exposant critique 
77, que G ( r )  doit se comporter en ( T - ) - ~ + ’ - ? .  On peut donc faire 
l’identification : 

1 d , 7 ( D - 2 + 7 7 )  1 1 .  
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Le résultat (13) montre la nécessité d’introduire un facteur de 
dilatation A (s) = s rp dans la définition des TGR : en effet si ce facteur 
de dilatation n’est pas convenablement choisi, en particulier s’il n’est 
pas relié à 77 par (13), il n’est pas possible d’aboutir à un point fixe. 
L‘étude du modèle gaussien (paragraphe D.2) permettra d’illustrer la 
nécessité du facteur A (s). 

(iii) Un point fixe isolé donne des exposants critiques uniques. On 
peut aussi avoir des lignes (ou des surfaces ...) de points fixes : cf. 
chapitre IV. Dans ce cas les exposants critiques dépendent continûment 
de paramètres comme la température. 

d 

(iv) Pourquoi << groupe de renormalisation >> ? 
La notion de << groupe de renormalisation D a été introduite en 1953 

par Stueckelberg et Petermann (l) et indépendamment par Gell-Mann 
et Low (2) dans le cadre des divergences de la théorie quantique des 
champs (cf. chapitre VI). La procédure pour éliminer ces divergences 
n’est pas unique et le << groupe de renormalisation >> exprimait, au 
départ, l’invariance de la physique par rapport aux diverses procédures 
de renormalisation (renormalisation = procédure utilisée pour rendre 
la théorie quantique des champs finie). Cette version du groupe de 
renormalisation peut être considérée comme un cas particulier de celle 
introduite par Wilson en 1971, et que je viens de décrire. Le lien entre 
ces deux versions sera examiné au chapitre VII. Notons dès à présent 
que la dilatation du spin par un facteur A (s) dans (8) est souvent 
appelée << renormalisation du spin », par analogie avec une opération 
similaire en théorie quantique des champs. 

B. COMPORTEMENT AU VOISINAGE D’UN POINT FIXE. 
EXPOSANTS CRITIQUES 

Le comportement des TGR au voisinage d’un point fixe va permettre 
le calcul des exposants critiques, grâce à la linéarisation des équations 
du GR au voisinage de ce point. Afin de donner une explication 
élémentaire, commençons par prétendre que l’espace des paramètres 
est à une seule dimension : il suffit d‘un paramètre K pour décrire la 
suite des TGR. Cette hypothèse est évidemment trop simpliste et nous 
montrerons un peu plus loin comment on peut s’en passer. 
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B.l. Discussion élémentaire 

Grâce à l’hypothèse d’analyticité (Hl), l’équation : 

K’ = R, K 

peut être linéarisée au voisinage du point fixe ; si K est voisin de 
K* on obtient : 

en écrivant un développement de Taylor au voisinage de K*,  où l’on 
néglige les termes en ( K  - K * ) 2  ; comme RS1 R, = R,, s2, on peut écrire 
dR,/dK I K* = sY : 

K ’ - K * = s Y ( K - K * ) .  

D’après l’hypothèse (Hl), K est une fonction analytique de T ,  et sauf 
accident, K - K” doit s’annuler linéairement à T, en changeant de 
signe (rappelons que K* appartient à la surface critique qui est ici 
réduite à un point) : 

K - K * - T - T ,  

au voisinage de T,. 
On choisit I K - K* I + O, et I K‘ - K* I fini, mais tout de même 

suffisamment petit pour que l’approximation linéaire soit valable : le 
point K’ dans l’espace des paramètres représente un système loin du 
point critique. Par la suite on notera symboliquement une telle 
condition : I K’ - K* I - 1. La longueur de corrélation [(K’ ) est alors 
finie, - a  : mesurant la longueur de corrélation en unités de a ,  
[ ( K ’ )  - 1 (*). On peut maintenant évaluer [ ( K )  grâce à : 

[ ( K )  = s [ ( K ‘ )  = (%I:: )’” ,$(K’)-  I T -  

c’est-à-dire : 

(*) 11 est possible d’être un peu plus précis en prenant I K’ - K *  I - k,, t ( K ’ )  = to, 
où k, et 5; peuvent être petits (lo-* ?)  mais finis, afin de justifier le développement de 
Taylor. On montrera aisément que cela ne change rien au résultat. 
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L’exposant critique v est donc lié à la dérivée de la TGR au point fixe. 
On remarquera que le résultat est valable pour T >  T,  comme pour 
T -= T,  : en d’autres termes v = v ’  (cf. note page 41). Ce résultat va 
être étendu au cas d’un espace de paramètres quelconque. 

B.2. Linéarisation au voisinage d’un point fixe 

Soit p = { K a }  un point dans l’espace des paramètres proche de 
p”  = { K Z }  : 

K ,  = K,* + 6 K ,  

et p ’ = { KL} son transformé par une TGR : p ‘ = R,  p. 

p * sont suffisamment proches : 
La relation entre SK; et SK, est approximativement linéaire si et 

avec 

La relation T(s ,  s 2 )  = T(s,) T(s2 )  écrite pour s1 = 1 + 8 ,  s2 = s, S 
infinitésimal permet de montrer que : 

T ( s )  = exp (9- In s )  

Soit e(i) un vecteur propre de Y,, correspon- où Y = dT/d In s I s  = 

dant à la valeur propre yi : 

Y,, e!) = yi e:). 
B 

Ce vecteur vérifie donc : 

T,, (s) e$) = syi  e:) . 
B 

La matrice Fa, n’est en général pas symétrique, et il n’y a aucune 
garantie pour que ses valeurs propres soient réelles et que ses vecteurs 
propres forment un ensemble complet. On va néanmoins faire 
l’hypothèse que tout se passe bien de ce côté (il est possible de faire une 
hypothèse un peu moins optimiste). On peut alors projeter tout point 
de l’espace des paramètres sur la base {e(‘)} : 

S K p  = ti e$) 
i 
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et à l’approximation linéaire : 

Le coefficient ti est appelé champ (ou variable) d’échelle (scaling field). 
Dans une TGR, le champ d’échelle est multiplié par syi. L’équation (18) 
montre que l’on doit distinguer trois cas : 

(i) y i  =- O :  le champ d’échelle croît quand on itère les TGR : 
ti est appelé champ essentiel (relevant). 

(ii) y i  = O : le champ d‘échelle reste constant à l’approximation 
linéaire. Pour décider de son comportement, il faut aller au-delà de 
cette approximation. Un tel champ est appelé marginal. 

(iii) yi -= O : le champ d’échelle décroît avec les itérations des TGR. 
Le champ ti est alors inessentiel (irrelevant). I1 faut bien remarquer que 
les champs essentiels, inessentiels ou marginaux sont définis par rapport 
à un point fixe particulier. 

Au voisinage du point fixe, le hamiltonien peut s’écrire : 

où les coefficients Oi des champs d’échelle sont les opérateurs d’échelle 
conjugués de ces champs. Si ti est un champ essentiel (resp. inessentiel, 
marginal), l’opérateur Oi sera aussi qualifié d’essentiel (resp. inessen- 
tiel, marginal). 

Nous supposerons pour le moment qu’il n’y a pas de champs 
marginaux : leur cas sera étudié au paragrapheF. Les vecteurs 
e(i) sous-tendent un espace vectoriel dont l’origine est le point fixe 
(t i  = O V i  ). S’il y a N champs essentiels, il faut fixer N paramètres 
t ,  = t ,  = . = tN = O pour se trouver, à l’approximation linéaire, sur la 
surface critique. En effet si t ,  par exemple est # O, les itérations de la 
TGR vont éloigner le point représentatif du point fixe, et le point de 
départ ne peut donc pas appartenir à la surface critique. (On suppose 
implicitement qu’il n’y a pas de comportement du type << cross-over B.) 
Inversement si t ,  = t ,  = . t N  = O ,  le point représentatif converge à 
l’approximation linéaire vers le point fixe, et le point de départ se 
trouve sur la surface critique. L’hyperplan t ,  = t ,  = . - = tN  = O est 
donc le plan tangent à la surface critique au point f i e .  

Le cas le plus important est celui où la variation d’un seul paramètre 
(la température) permet de se placer sur la surface critique. Ce cas 
correspond aux transitions du deuxième ordre, et ces transitions seront 
décrites par une situation où il existe un  seul champ essentiel au point fixe 
considéré. 



104 Groupe de renormalisation III.B.2 

Les points tricritiques sont obtenus en fixant deux paramètres (par 
exemple température et pression) : ce cas correspondra à l’existence de 
deux champs essentiels. La généralisation aux points polycritiques 
d’ordre N est évidente : il faut N champs essentiels. Je me limiterai dans 
toute la suite aux transitions du second ordre, et donc au cas d’un seul 
champ essentiel t , .  

Figure 5. Evolution dans une TGR. 
Flot de renormalisation au voisinage d’un point fixe. 

La figure 5 montre le schéma de l’espace vectoriel au voisinage du point 
fixe dans le cas de trois paramètres. Les doubles-flèches indiquent le 
sens de déplacement du point représentatif dans une TGR. On 
remarquera l’axe divergent (e(’)) et les deux axes convergents 
(e(,) et e ( 3 ) )  : le point fixe présente une instabilité d’ordre 1.  

Si l’on part d’un point proche de la surface critique (ti petit, 
t ,  et t3 finis), l’itération des TGR va d’abord rapprocher le point 
représentatif du point fixe ; cependant le coefficient de e(’)va finir par 
l’emporter, et le point s’éloignera de P ” .  Ceci permet de tracer 
qualitativement le flot de renormalisation au voisinage de P * (figure 5) .  

L’approximation linéaire n’est plus valable si les paramètres 
ti sont grands ; cependant le schéma général du flot de renormalisation 
reste valable au-delà de cette approximation, même si la description 
devient techniquement plus complexe. 
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B.3. Fonction de corrélation en champ nui 

Avant de passer aux équations, il est utile de donner une justification 
heuristique du rôle du point fixe dans la détermination des exposants 
critiques. Nous supposons donc un point fixe auquel correspondent des 
champs d’échelle t,, t,, t3,  ..., ti, ... avec : 

y,  > O  ; * * <y1 < - * <y3  < y2 < o .  
Partons d’un système physique où t ,  est très petit tandis que 
t,, t g ,  ... sont petits mais finis ( l o - , )  (ces chiffres sont évidemment 
totalement arbitraires). Dans l’itération des TGR, le point représentatif 
convergera rapidement vers le point fixe et restera longtemps au 
voisinage de ce point, avant de diverger finalement le long de l’axe 
e( ’ )  (cf. figure 5 ) .  Un grand intervalle en s sera dominé par le voisinage 
du point fixe, et c’est cet intervalle qui construira le comportement 
critique. 

Passons maintenant à la discussion quantitative : comme dans le cas 
de la discussion simplifiée, les exposants critiques seront reliés aux 
valeurs propres syi de la matrice T a P ( s ) .  La fonction de corrélation 
G ( r )  est une fonction des champs d’échelle t,, t,, t g ,  ... ; le champ 
t ,  doit, sauf accident, s’annuler linéairement sur la surface critique : 

t ,  - t = -. T -  T, 

Tc 

Utilisons la relation (10) et la loi de transformation des champs 
d’échelle en convenant de mesurer toutes les longueurs (5, r )  avec pour 
unité le pas a du réseau : 

(18) 

Plaçons-nous d’abord sur la surface critique : t ,  = O. Dans ce cas 
l’équation (18) devient : 

2 d  G ( r  ; O ,  t 2 ,  ...) = s- (p G ( 
S 

Faisons maintenant le choix s = r : ce choix correspond à l’intégration 
de toutes les fluctuations de longueur d’onde comprises entre a et r ; on 
obtient : 

2 d  G ( r ; 0 , t 2  ,... ) = r -  ( p G ( 1 ; 0 , r Y Z t 2  ,... ) .  

Si ryz t2 Q 1 ,  l’équation précédente démontre que la fonction de 
corrélation obéit bien à une loi de puissance au point critique, 
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l’exposant critique 77 étant donné en fonction de d ,  par l’équation (13). 
On démontre ainsi pour r / a  s 1, la propriété d’invariance d’échelle au 
point critique, examinée au chapitre I,  paragraphe F. La largeur de la 
région critique c’est-à-dire la région où l’on observe cette propriété 
d’invariance d’échelle est donnée par : 

(cte t ,  (./a Q i . 

La constante dépend des détails microscopiques du modèle ; l’inva- 
riance d’échelle sera observée pour des valeurs de r d’autant plus petites 
que y ,  sera plus négatif. On note que toute référence à l’échelle de 
longueur a a disparu, mais seulement pour r / a  + 1. Ceci distingue 
l’invariance d’échelle au point critique de Z’invariance d’échelle naïve, 
d’origine purement dimensionnelle (cf. D.2) : celle-ci serait valable 
pour toute valeur de r .  

Plaçons-nous maintenant en dehors de la surface critique ( t i  # O ) ,  et 
supposons que nous ayons suffisamment itéré les TGR de telle sorte 
que la fonction de corrélation dans le membre de droite de (18) soit 
calculée loin de la région critique : 

s Y1 t l - + l .  

Désignons par 5 la quantité I t l  I - l’” - I t 1 
identifié avec la longueur de corrélation) ; l’équation (18) devient : 

(5 sera évidemment 

où le signe (+) correspond à t =- O ( T >  T,) et le signe (-) à 
t -= O ( T <  T,). Par construction, s - 5 et on obtient le résultat 
cherché : 

Y 2  G ( r )  = 5 - 2 d q G  ; ’-+ 1, 6 tZ, ... 

Le choix s = 5 correspond physiquement à l’intégration de toutes les 
fluctuations de longueur d’onde a 5 h 5 5 ; après itération des TGR la 
longueur de corrélation est - 1, et le comportement de la fonction de 
corrélation est régulier par rapport à ( T  - T,). 

L’équation précédente donne un comportement simple pour G ( r )  si 
5’’ t, Q 1 : à nouveau on définira la région critique comme la région où 
cette condition est réalisée, ce qui sera le cas si IT - T,I est 
suffisamment petit. A l’intérieur de cette région critique, on démontre 
donc la forme (1.30) de la fonction de corrélation, ce qui permet 
d’identifier 5 avec la longueur de corrélation : 

G ( r )  = r - 2 d q  f, ( ) , 
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les fonctions f, ( T  =. T,) et f- ( T  -= T,) étant a priori différentes. 
L‘équation (19) conduit à l’identification des exposants critiques 7 et Y 

(remarquons au passage l’égalité des exposants vet V I  : cf. note p. 41) : 

La démonstration précédente suppose que le point de départ est 
voisin du point fixe, de telle sorte que l’approximation linéaire soit 
valable. Si le point de départ est éloigné de P *, mais appartient au 
domaine d’attraction de P * ,  on peut se placer tout près de la surface 
critique. Par continuité la trajectoire du point représentatif parviendra 
près du point fixe. Soit so le paramètre de la TGR (ou des TGR 
successives) qui ont amené le point représentatif dans la région 
linéaire : 

G ( r , p ) = s i 2 d + ’ G (  : , P . )  . 

I1 suffit d’appliquer le raisonnement précédent à 

Cette équation montre que G(r, p )  a la forme (19) avec les 
exposants critiques (20). Quel que soit le point de départ dans le 
domaine d’attraction du point fixe, on obtient les mêmes exposants. 
Comme des points différents correspondent à des hamiltoniens diffé- 
rents, on arrive à la propriété d’universalité des exposants critiques : 
ceux-ci ne dépendent pas des détails du hamiltonien, mais seulement de 
propriétés très générales. 

La largeur de la région critique est définie par la condition : 

t y Z t 2 -  IT-  T , I - v y 2 t 2 ~ 1 .  

Elle dépend des détails microscopiques par l’intermédiaire de t2,  et du 
point fixe par l’intermédiaire de y2 .  Si t2 est grand, ou y 2  petit (en valeur 
absolue), il peut être difficile d’observer le comportement critique. De 
plus lorsque y ,  est petit, l’évolution se fait lentement le long de l’axe 

ce qui peut masquer le rôle du point fixe. L‘exemple extrême où 
y 2  = O (champ marginal) sera étudié au paragraphe F. 

B.4. Fonction de corrélation B # O 

Le terme rajouté au hamiltonien est : 
Introduisons maintenant un champ magnétique extérieur uniforme. 
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La loi de transformation du champ magnétique est donc 
D - d  1 

2 B - + B ’ = s  ‘ B = s Y B B ;  Y B = - ( D + Z - v ) .  (21) 

Si l’on suppose que 7 est petit (ce qui est le cas en pratique : 
7 = O - O . l ) ,  y B  est positif et B croît dans une TGR. 

En reprenant la méthode précédente, on obtient (on identifie 
tl et t ,  et on n’écrit plus les champs inessentiels t2,  tg...) : 

G ( ~ , ~ , B ) = s - ~ ~ ’ G  r , s Y i t , s y B B  . 

Cette équation avait été écrite sans démonstration dans l’exercice (1.5). 
Elle permet d’obtenir les exposants p, y, 6 en fonction de 7 et v, mais il 
est possible de procéder plus directement en examinant l’aimantation 
par spin M .  L‘aimantation M = (S) se transforme suivant la loi : 

( s  ) 

- d  M ( t ,  B )  = s ‘ M ( s ” ~ ,  sYB B )  
= s  - d  ‘ M ( I  ( : ) l / ” , s y B B )  . 

- l / Y B  . Pour T = T,, B # O, on prend s = B . 

M ( O ,  B )  = B ~ Q / ~ B M  (0 ,1)  

(en effet 5 -+ 00). Cette équation donne l’exposant ô 

Pour T-= T,  et B = O, on pose s = 6 :  

M ( t ,  O )  = ‘ g - d Q M ( -  1, O )  - I t [ -  v d , .  

Cette équation donne l’exposant p : 

Reste à obtenir l’exposant critique a ; pour ce faire, on a recours à 
l’énergie libre en champ nul. 

B.5. Energie libre 

L’équation (2)  reliant le hamiltonien H‘[SL] à H [ S i ]  doit d’abord 
être précisée. En effet dans l’intégration sur les courtes longueurs 
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d’onde, il apparaît un terme constant G,  indépendant des spins 
S;. L‘équation (2) doit être corrigée en : 

La discussion qui suit s’applique aussi bien aux transforrnations non 
linéaires que linéaires, car nous n’allons pas utiliser l’équation (10). Le 
terme exp(- G),  qui provient de l’intégration sur les courtes longueurs 
d’onde, n’intervient pas dans le calcul des fonctions de cori.élation, car 
il s’élimine entre le numérateur et le dénominateur dans des expressions 
du type (1.25). Par contre, l’énergie libre dépend de ce terme, ce qui 
rend la discussion plus complexe. En posant : 

on obtient la relation 

F = F ’ + G .  

Définissons l’énergie libre par unité de volume : f = F / L D ,  
f f  = F ’ / ( L / ~ ) ~  = f(&) : 

f ( P )  = 9 + s - D f ( P ’ ) .  (26) 

Dans l’équation (26), la fonction fest la même dans les deux membres. 
En faisant appel aux champs d’échelle, l’équation (26) devient : 

f(ti,t2, ...) = g(t1,t2, ...) + S - D f ( S Y 9 1 , S Y z t 2 ,  ...). 

Si l’on admet (et ceci est carrément frauduleux : cf. Ma, chapitre VI 
pour une discussion correcte - mais longue - qui tient compte de ce 
terme) que l ’ o n F t  ignorer le terme << régulier B g, on obtient en 
posant s = It1 -1 Y l :  

f ( t )  = I t p  f(I 1, I t )  - y2’y1 t2, . . . ) . (27) 

f ( t )  est l’énergie libre des fluctuations de longueur d’onde A 5: 5 ; le 
terme négligé, qui est l’énergie libre des fluctuations de longueur 
d’onde A 5 5, est aussi singulier que f. 

Comme la chaleur spécifique est donnée par - d2f/dt2, on voit que 
2 - <y = D / y ,  = D u  d’où la relation : 

< y = 2 - ~ D .  (28)  
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B.6. Lois d’échelle et remarques 

L’analyse au voisinage du point fixe a permis de démontrer les lois 
d’échelle (= relation entre exposants critiques) suivantes : 

(Y = ~ - v D  

2 
p = - ~ ( D - 2 + 7 )  1 

D + 2 - 7 7  6 =  
D - 2 + 7 7  

y = v(2 - 77). 

(29.a) 

(29.b) 

(29.c) 

(29.d) 

Les six exposants critiques fondamentaux ne sont pas indépendants : 
il suffit de connaître 77 et vpour les calculer tous. Les lois d’échelle sont 
parfaitement vérifiées par le modèle d’king D = 2 (en prenant 
(Y = O pour une divergence logarithmique), et semblent aussi vérifiées 
dans toutes les études numériques qui ont été faites sur des modèles. 

Les lois d’échelle représentent donc un beau succès du groupe de 
renormalisation. Cependant, il ne faut pas accepter aveuglément tous 
ses résultats : le groupe de renormalisation ne permet pas de calculer 
explicitement un modèle : il ne permet pas d’affirmer que la fonction 
f r ,  par exemple, dans l’équation (19) est différente de zéro. Si cette 
fonction était nulle, le comportement de la fonction de corrélation 
serait évidemment totalement différent. Un bon exemple où I’applica- 
tion aveugle des résultats du groupe de renormalisation conduit à des 
résultats incorrects est donné dans Ma, chapitre VII. 

C. MODÈLE D’ISING SUR RÉSEAU TRIANGULAIRE 
ET APPROXIMATION DES CUMULANTS 

Dans ce premier exemple d’application du groupe de renormalisation, 
j’utiliserai une TGR non linéaire. Ce type de transformation a été 
utilisé principalement dans des études sur ordinateur. Le principal 
problème est la nécessité de tronquer le hamiltonien ( 5 )  en conservant 
seulement un nombre fini de termes. Cette troncature introduit des 
approximations difficiles à contrôler, et dans l’ensemble les résultats 
ont été décevants. Une méthode prometteuse est celle du << Groupe de 
Renormalisation Monte Carlo >> (’). 

J’exposerai une méthode d’approximation (méthode des cumulants) 
qui a le mérite d‘une relative simplicité de calculs, et qui illustre de 
façon concrète les notions essentielles du groupe de renormalisation : 
transformation du hamiltonien, point fixe, et calcul des exposants 
critiques. Le cas le plus simple est celui du réseau triangulaire : les blocs 
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de spins sont formés en groupant 3 spins Si: au sommet d'un triangle 
(figure 6). Le facteur de dilatation est s = J3 et le spin S ;  du bloc est : 

S ;  = Signe (SC') + si2) + si3)) = f(s<t") . 
Le hamiltonien transformé sera donc donné par : 

Figure 6. Réseau triangulaire et formation 
de blocs. 

On peut toujours écrire : 

H = H o + V  

où Ho contient les interactions entre spins à l'intérieur d'un même bloc 
et V les interactions entre spins de blocs différents (figure 6). Récrivons 
(30) sous la forme : 

e-Ho n S(S'  - f(s)) c n - f(S)) 
(31) e- G - H [Y] - [SI [SI - 

2 eëH0 n 6(s' - f(s)> 
[SI 

et définissons la valeur moyenne (A)o d'une quantité A par : 

e-HoAIS] fl S(S'  - f(S)) 

I1 faut bien remarquer que (A)o est définie pour une configuration de 
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blocs [Y] donnée ; une notation plus explicite serait ( A  [Sf 1) ,. 
L‘équation (31) devient : 

L‘équation (32) est exacte mais ne nous avance pas beaucoup pour le 
moment. Nous allons maintenant avoir recours à une approximation 
reposant sur l’identité suivante (développement en cumulants, cf. 
V.B.l)  : 

In (eX) = In [e<X> (eX- <’> ) ] 

+ , ( x -  1 { x ) ) 3 + - )  

1 1 
= ( x )  +z ( ( x -  (x))z) + 6  ( ( x -  (x>)3) + e . * .  

Nous allons nous contenter de garder le premier terme du développe- 
ment ; les calculs ont été menés jusqu’au troisième terme, mais ils 
deviennent rapidement très complexes ; nous ferons donc l’approxima- 
tion : 

(e-’), -+ e - <v>o 

Calculons 

interactions internes à chaque bloc, ce terme vaut [ZO(K)IN’  où 
N ’  = N / 3  est le nombre de blocs et 

e-Ho n S ( S f  - f(S)) : comme Ho ne contient que des 
IS1 

z,(K) = e3K + 3 e - K .  (33) 
En effet pour S’ fixé, une configuration a énergie - 3 K et trois ont une 

énergie K .  

Evaluons ensuite le terme ( V ) ,  en considérant 
l’interaction entre deux blocs CY et p : 

- vmP = ~sp[s:~) + si3)] . 
2 

‘\ 

Comme Ho ne connecte pas deux blocs différents 
(figure 7) : 

2 

Figure 7. 
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Par exemple si SO, = 1 : 

(SL2))o = zo 1 C Si2)exp(K(Si1)Si2) + S(1)S(3)+ Si2)S(3))) 

[ s p ]  

Les configurations possibles avec SL = 1 sont : 

1 2 3  1 2 3  1 2 3  1 2 3  
t t t  t t . l  t i t  i t 1  

e3 +e-K -e-K +e-K =e3K+e-K 

et celles avec SU = - 1 

1 2 3  1 2 3  1 2 3  1 2 3  
J . 1 . l  i . l t  $ t i  ? J i  
- e - 3 K  - e - K  + e-K - e-‘ = - (e3K + e ë K ) .  

On trouve donc : 

d’où : 

(V,,), = 2 K ( efKK++:i-KK ) SO, S i  = K’ SO, Sa . 

La relation entre K’ et K est très simple : 

Combinant les équations (33) et (34) on trouve la loi de transformation : 

exp( -G-H’ [S‘ ] )=exp  N’In ( e 3 K + 3 e - K ) + K ’ .  SYS;] , 
<.s> 

(35) 
[ 

ce qui permet l’identification immédiate de G et HI. 

fixe K* vérifie : 
I1 n’y a donc qu’un seul paramètre ù cette approximation. Le point 

K * = 2 K * (  e4K*+3)  + 1 

soit : 
- 

e 4 K * = ~ = 1 + 2 J 2 ;  K ” e 0 . 3 3 6 .  
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Reste à déterminer S Y  en calculant (dK‘/dK),* : 

x + l -  1 
x + 3  & avec - - - dK’ 

ce qui donne : 

SY = 1.634 
et donc : 

1 ln (1.634) == 0.894 ; v = - 2 1.118 . 
ln J3 Y Y =  

Ces valeurs ( K *  = 0.336, v = 1.118 ) sont à comparer aux valeurs 
exactes : 

K* = 0.275 ; v = 1.000. 

Si l’on calcule les termes d’ordre supérieur de l’approximation des 
cumulants, les résultats se rapprochent des valeurs exactes, mais la 
convergence est lente. Dès le deuxième ordre il est nécessaire d’intro- 
duire trois paramètres au lieu d’un seul. L‘amélioration par rapport au 
champ moyen est très sensible puisqu’à cette approximation (q  = 6 )  : 

1 1 K - - = 0 . 1 6 7 ;  v =  - 2 ‘  ‘ - 6  

D. MODÈLE GAUSSIEN 

Au lieu de définir une TGR en formant des blocs de spins, ce qui 
correspond à intégrer sur les fluctuations de longueur d‘onde comprises 
entre a et sa, on peut intégrer directement dans l’espace de Fourier sur 
ces longueurs d’onde, c’est-à-dire sur les vecteurs d’onde compris entre 
A = - et A’ = - = - . Les deux opérations ne sont pas strictement 

équivalentes d’un point de vue mathématique, mais si les idées 
physiques sous-jacentes au GR sont correctes, elles devraient donner 
des résultats. identiques car elles sont a priori physiquement équivalen- 
tes. Ceci nous amène à effectuer les opérations du groupe de 
renormalisation dans l’espace de Fourier. 

1 A l  
a s sa 
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D.l. Transformation dans l’espace de Fourier 

Nous allons traiter uniquement le cas de TGR linéaires, et prendre 
comme hamiltonien de départ un hamiltonien du type de Ginzburg- 
Landau généralisé. On peut considérer que ce hamiltonien a été obtenu 
à partir d’un modèle de spins, en itérant un certain nombre de TGR 
linéaires du type (8). Au cours de ces itérations la variable de spin est 
devenue une variable continue cp(x), par intégration sur toutes les 
fluctuations de vecteur d’onde a A ;  après ces intégrations, Ilk11 sera 
donc limité par : 

IlklI =s A *  (37) 

En d’autres termes, on a pris des moyennes sur un domaine 
a 5 h s A -  e 6 ; on peut aussi considérer (38) comme un développe- 
ment limité destiné à étudier les fluctuations autour du champ moyen 
(chapitre II). La localité de la théorie se traduit par l’existence d’un 
nombre limité de dérivées de cp. Le hamiltonien s’écrira : 

On reconnaît le hamiltonien (11.19) de Ginzburg-Landau, avec un 
facteur c/2 au lieu de 112 et des termes supplémentaires. L’espace des 
paramètres est celui des divers coefficients, ou constantes de couplage 
de (38) : 

E*. = {c’ r O ,  u0, u69 u8, u O ,  a..} . (39) 

I1 est commode d’introduire la transformée de Fourier @(k) de 
cp (XI par : 

où L est la taille du système. 
Remarquez que la normalisation de la transformée de Fourier dans 

(40) n’est pas la même que celle de l’appendice A (équation (A.8)), qui 
est valable pour les fonctions de corrélation. La normalisation (40) est 
choisie de telle façon que (cf. exercice 2) : 

W)= @ ( - k ) )  * (41) 

Les deux premiers termes du hamiltonien (38) correspondant à 
l’approximation gaussienne de ce hamiltonien prennent une forme très 
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simple dans l'espace des k. En utilisant l'identité de Parseval, on trouve 
immédiatement : 

H = i  (yo + ck2) 4 (k) 4 (- k )  + . I . 
k s A  

Les termes écrits explicitement dans (42) donnent le hamiltonien du 
modèle gaussien dans l'espace de Fourier. 

Au lieu d'écrire la mesure d'intégration de la fonction de partition 
dans l'espace des <p(x), on peut aussi bien l'écrire dans l'espace des 
4 (k), puisque la transformation <p (x) -f @ (k) est unitaire a un facteur 
multiplicatif près, sans importance pour les fonctions de corrélation (cf. 
exercice 2) : 

Les deux premières opérations de la TGR sont, comme précédem- 
A ment, une intégration sur les vecteurs d'onde - s k zs A, suivie d'une 

dilatation de l'unité de longueur d'un facteurs : 
S 

(44) 
X 

S 
x -+ X'  = - ; k -+ k' = sk 

tandis que la troisième opération consiste à << renormaliser B la variable 
de champ 'p(x): 

(45.a) d <p(x)+ cp'(x')= A ( s )  <p(x)=s  'cP(x) 

ou dans l'espace des k : 

L'équation (45.b) se déduit aisément de (45.a) (L'  = L / s )  : 

= A (s) s-'/' @ (k) . 
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En résumé, la TGR Rs se décompose en trois étapes : 

1) Intégration sur k : 

A - = s k s A .  
S 

2) Dilatation de l’unité de longueur : 

X + X I  = x/s 
k + k ’  = s k .  

3) Renormalisation du champ : 

d 

d ,  - D / 2  
cP(X1-t 5 o f ( x ’ )  = s  ‘cP(X) 

+ ( k ) +  +’(k’)  = s 

On peut écrire immédiatement une relation formelle pour le hamilto- 
nien transformé H’ = R, H (en omettant la constante G : cf. (25)) : 

Etablissons maintenant l’analogue de (10) pour la fonction de 
corrélation dans l’espace des k : cette relation est en fait triviale. En 
effet si k .C A/s, la densité de probabilité eëH’ donne les mêmes 
fonctions de corrélation que la densité. de probabilité e- H ,  puisque ces 
vecteurs d’onde ne sont pas affectés par l’intégration. Les seuls facteurs 
à prendre en compte sont le changement d’échelle k + s k  et la 
renormalisation du champ ; compte tenu de l’équation (41), on obtient 
pour k .C A / s  (cf. aussi exercice 4.c) : 

(47.a) 

La relation (47.a) est exacte ; par transformation de Fourier, on 
obtient dans l’espace des x une relation approchée, valable pour 
IIxII 9 l / A :  

I 

I I 

(47.b) 

qui est évidemment identique à (10). 
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D.2. Modèle gaussien 

Pour se familiariser avec la TGR (46), il est utile de traiter le cas du 
modèle gaussien (42) qui est extrêmement simple, mais un peu trop 
trivial pour représenter une situation physique réelle. L’espace des 
paramètres est à deux dimensions : p = {c, r , } .  L‘intégration sur 
d Q  (k) donne une constante, étant donné que l’on a affaire à un produit 
d’intégrales gaussiennes découplées. Le nouveau hamiltonien est donc 
(‘p (- k )  = ‘p * (k) ; j’écris désormais ‘p (k) au lieu de Q (k) quand il n’y 
a pas de confusion possible) : 

1 
- 2 (r,  +ck2)I ‘p(k)I2 H‘ = 

ks A / s  

p(ro + cs-2k’2)1 ‘p’(k’)I2. 
k’ s A 

Le hamiltonien H‘ a la même forme que H avec une loi de 
transformation des paramètres donnée par : 

Ces équations donnent deux possibilités de points fixes : 

(9  D - 2 d,  = O ; r, quelconque ; c = O 
(ii) D - 2 - 2 d ,  = O ; c quelconque ; ro = O ,  

Dans le cas (i), c est un champ inessentiel et le point fixe correspond à 
un ensemble de sites découplés, ce qui n’est pas très passionnant. En 
fait ce cas correspond à la limite T-+ CO (cf. exercice 11.5) et 
6 = O correspond aussi à un point fixe des TGR. 

Le cas (ii) est plus intéressant ; le point fixe est défini par : 

p* = {c, r, = O} 

où c est arbitraire. L‘équation (13) implique que q = O. D’autre part : 

rh = s r, 2 

ce qui montre que r0 est un champ essentiel avec y = 2, d’où 
v = 1/2. Le parametre r, s’annule à la transition qui a lieu à 
T = To : ro = ro( T - To) ; cependant la phase basse température 
(ro .C O )  n’est pas définie pour le modèle gaussien : lorsque r, -= O, 
certaines intégrales gaussiennes sur ‘p (k) ne sont pas convergentes. Les 
résultats v = 112, q = O avaient déjà été obtenus au chapitre II, 
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paragraphe D, par un calcul direct de la fonction de corrélation qui 
vaut, rappelons-le, (yo + ck2)-l  dans ce cas. 

I1 est instructif de rajouter un terme en 

Dans la TGR, le champ wo se transforme 

w‘ - s - 2  
O - wo 

en : 

et wo est donc un champ inessentiel. Le flot de renormalisation est tracé 
sur la figure 8, en supposant que wo n’est pas trop négatif, sinon on 
risque des divergences. Le résultat est intéressant, car il explique la 
<< restauration de l’invariance par rotation >> au point critique. En effet, 
en développant le hamiltonien du modèle correspondant sur réseau (cf. 
exercice 11.5) on voit apparaître un terme violant l’invariance par 
rotation : 

r D  

Figure 8. Flot de renormalisation en présence d’un terme en k4. 

Ce terme étant inessentiel n’affecte pas le comportement à longue 
distance des fonctions de corrélation, qui sont donc invariantes par 
rotation. 

On remarque aussi que le paramètre c ne joue aucun rôle : on peut 
fixer sa valeur à c = 1, et c’est ce que je ferai par la suite. J’irai même 
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plus loin en exigeant que dans le cas du hamiltonien général (38), le 
coeficient de ( V V ) ~  reste toujours fié 6 112 dans toutes les itérations des 
TGR. Cette condition est certainement compatible avec l’existence 
d’un point fixe : un des paramètres de H reste fixé et égal à 1/2. Dans le 
cadre des théories perturbatives du paragraphe E, elle conduit effective- 
ment à un point fixe. D’autres choix pourraient conduire à d’autres 
points fixes, mais on ne sait rien à l’heure actuelle, ni de leur existence 
éventuelle, ni de leur utilité possible en physique. 

Les résultats du modèle gaussien sont en réalité d’origine purement 
dimensionnelle. En effet, exiger 77 = O (ou d ,  = - - 1 est équivalent 

à demander que le coefficient du terme en k21 <p (k)I2, ou celui de 
(Vcp)’, reste inchangé et égal à 1/2 dans une TGR. Pour que ceci soit 
réalisé, il faut que le changement d’échelle de longueur soit compensé 
par le changement de normalisation du champ : 

” >  2 

= 1 dDx(Vcp)2 

d D 
2 

(cp’(x’)=s +‘<~(x)etV’=sV),  soit d , = - - 1 .  

Ceci revient à dire que si l’on attribue la dimension - 1 à une 
longueur (x’ = s - l x ) ,  on doit attribuer une dimension d ,  = - - î a u  

champ cp. 

Mais l’invariance de H peut être retrouvée par simple analyse 
dimensionnelle : en effet H ayant dimension zéro, est indépendant de 
l‘unité de longueur. Si l’on veut que H ait dimension zéro, il est 
nécessaire d’attribuer au champ une dimension - - 1. 

2 

D 
2 

La dimension d: = p - 1 est appelée dimension normale (ou canoni- 

que) du champ : c’est celle que l’on obtient par analyse dimensionnelle. 
En général, pour un hamiltonien non gaussien, d,  ne sera pas égal à 
d i  (de façon équivalente q sera # O) ; d ,  est alors appelée dimension 
anormale du champ. Cette dimension anormale a une origine dynami- 
que, et elle dépend du point fixe considéré. 

L‘invariance d’échelle naïve correspond à un comportement déter- 
miné uniquement par l’analyse dimensionnelle : par exemple G (k) 
ayant dimension - 2 doit être proportionnel à k P 2  ; c’est effectivement 
le résultat du modèle gaussien lorsque T = TC(=  To). 

I1 sera intéressant pour la suite de déterminer les dimensions 
normales des constantes de couplage ro, uo, u6, uo, etc. dans (38), notées 
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[ro],  [u,], etc. Ces dimensions normales sont obtenues très simplement 
en remarquant que [ H I  = O et [ rp]  = dO, = - - 1. On trouve : D 

2 

Crol = 2 [uo] = 4 - D 

[ u ~ I  = 6 - 2 D [vol = 2 - D . 

D.3. Point fixe gausssien 

Examinons maintenant le hamiltonien général (38). Ce hamiltonien 
comprend des termes en rp2, rp4, etc. qui se réfèrent à un seul site. Ces 
termes sont simples dans l’espace des x. Inversement le terme en 
( V C ~ ) ~  couple des sites différents : ce terme au contraire est simple dans 
l’espace de Fourier : il est diagonalisé par une transformation de 
Fourier. Dans le cas du hamiltonien gaussien, les modes normaux sont 
découplés. 

Au contraire le terme en (p4 est compliqué dans l’espace de Fourier, 
car il couple les modes normaux entre eux : 

ki,  k2, k3 

I1 n’est pas possible de trouver un espace où tous les termes sont 
simples, et c’est pourquoi on doit avoir recours à des méthodes 
approchées pour traiter le hamiltonien de Ginzburg-Landau. Je me 
limiterai dans un premier temps au hamiltonien 11.19 ; la méthode 
standard est le développement perturbatif en puissances de uo. Le 
hamiltonienH est décomposé en un terme gaussien Ho et un terme 
<< d’interaction >> V : 

H = H , + V ;  V = - dDn: rp4(x). 
4! uo s (49) 

De même pour appliquer l’équation (46), on devra avoir recours à 

Ecrivons : 
cette séparation pour faire l’intégration sur les d rp (k). 

où rp , (x) a des composantes de Fourier dans le domaine O s k s A / s  et 
Cp(x) dans - =s k s A. La mesure d’intégration dans (46) est donc 

L%<p ; il convient également de remarquer que rpl et Cp sont découplés 

A 
S 
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dans Ho. Négligeant la constante multiplicative (exp - G )  et omettant 
pour le moment les dilatations, on obtient : 

Si i'on se limite au premier ordre en uo, le nouveau hamiltonien 
Hi sera : 

Le hamiltonien H o ( @ )  est gaussien, et V (cpl ,  @ )  est un polynôme en 
p .  I1 s'agit donc dans (49) d'évaluer la valeur moyenne d'un polynôme 
avec une distribution de probabilité gaussienne. En fait, nous aurons 
seulement besoin de ( p  (x) @ (y))o, où l'indice O indique que la 
moyenne est prise en utilisant le hamiltonien gaussien Ho. Pour évaluer 
cette valeur moyenne, on remarque que l'on connaît déjà le résultat 
lorsque l'intégration sur k va de O à A ; dans ce cas ((p (x) cp (y)) est la 
fonction de corrélation du modèle gaussien (équation (11.45)) : 

Dans le cas présent, l'intégration sur k est limitée par A / s  s 
k zs A et le résultat est simplement : 

Revenons au calcul de (V (pl, F )) : 

Le dernier terme est une constante et peut être négligé. Le second vaut 
6 cps(x) Go(0). On trouve donc pour Hi : 
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Reste à faire les dilatations pour trouver H’ : 

A cet ordre le coefficient du terme en gradient n’est pas modifié par 
l’intégration sur q .  Si l’on veut maintenir ce coefficient égal à 1/2, il faut 
donc prendre, comme dans le cas du modèle gaussien, d ,  = - - l e t  

7 = O. Les lois de transformation de ro et uo sont : 
2 

rh = s2(  ro + uo c,(o)) - 

(54) 
u8 = s 4 - D  uo = S E U O  ( E  = 4 - D). 

Evaluons maintenant Go(0) ; comme ro -, O, on peut prendre 
(il est un peu plus simple de prendre pour hamiltonien 

: cf. Ma, chapitre VII) : 

Les équations (54) ont un point fixe à ro = uo = O. Si l’on linéarise au 
voisinage de ce point fixe, les termes négligés dans (55) ,  qui donnent 
des contributions en (uoro)  etc. ne modifient pas la linéarisation. La 
matrice T ( s )  (cf. (16)) est dans ce cas : 

T ( s )  = (U 
Ses valeurs propres et 

2 
P i  = s  

p2 = S E  

KO 

2 ( D  - 2) ‘ 
; B =  

B (s2 - s ‘) 
S E  

vecteurs propres sont : 

Pour E -= O, c’est-à-dire pour D =- 4, on trouve une valeur yi = 2 et une 
valeur y 2  = E < O. Ceci montre que le point fixe est du type étudié au 
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paragraphe B, avec un champ essentiel et un champ inessentiel. Les 
exposants critiques sont identiques à ceux du modèle gaussien : 
v = 112, 77 = o. 

Examinons l’espace des paramètres ; un point p de cet espace 
s’écrit : 

où to et ûo sont les vecteurs unitaires des axes ro et uo respectivement ; 
comme e( ’ )  = îo et e(2) = - Bî,  + ûo : 

p = (ro + uo B ) e ( ’ ) +  u o e ( 2 ) .  

Les champs d’échelle sont t l  = ro + uo B et t ,  = uo, la surface critique 
étant donnée par t l  = ro + uo B = O. 

A i’approximation linéaire on obtient la température critique : 

uo KO AD-’ 
roc = Fo(Tc - T o )  = - uo B = - 

2 ( 0  - 2)  

en accord avec (11.49). Le flot de renormalisation au voisinage du point 
fixe est tracé sur la figure 9. 

Figure 9. Diagramme de flot pour D =- 4. 

Si l’on se limite ii l’espace des paramètres (ro, uo), c’est-à-dire au 
hamiltonien de Ginzburg-Landau proprement dit, on vient donc de 



III.E.l Calcul des exposants critiques à l’ordre E 125 

montrer que pour D z 4 les exposants critiques sont ceux du modèle 
gaussien, ou de la théorie de Landau. I1 est facile de généraliser ce 
résultat à un hamiltonien arbitraire de la forme (38). En effet dans une 
TGR, un terme tel que u6 se transforme, d’après (48) suivant 
(exercice 3) : 

u~ 6 -  - s 6 - 2 D  u6+’” 

et le champ u6, tout comme uo, est inessentiel (toujours si D =- 4), 
l’exposant de s étant négatif. Une suite de TGR amène tout hamiltonien 
du type (38) au point fixe gaussien r, = uo = 246 = - .  = O, si l’on part 
d’un point situé sur la surface critique. Cette propriété permet de 
démontrer le résultat annoncé au chapitre II : les exposants critiques de 
la théorie de Landau sont corrects pour D > 4. I1 faut cependant faire 
attention pour les exposants a, p, 6 :  cf. Ma, p. 185. 

E. CALCUL DES EXPOSANTS CRITIQUES A L’ORDRE E 

E.l. Point fixe non gaussien 

Pour D -= 4, le point fixe trouvé précédemment ne décrit plus une 
transition de phase du deuxième ordre, car y z  = E -= O. I1 apparaît un 
deuxième point fixe, qui aura lui les caractéristiques convenables : 
yi > O, y2 < O, et c’est ce point fixe qui va déterminer les exposants 
critiques pour D -= 4. Ce point fixe apparaît comme le prolongement 

t r o  I 

(a) D =-4 (b) D < 4  

Figure 10. Diagrammes de flot D > 4 et D < 4. 
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d’un point fixe de type incorrect pour D =- 4 : en effet il lui correspond 
deux axes divergents. De plus ce point fixe est non physique car il 
correspond à uo -= O, cas où les intégrales sur cp (x) ne sont pas définies. 
Les deux points fixes échangent leur stabilité pour D = 4 (figure 10). 

La raison de l’apparition de ce point fixe << non gaussien B pour 
D -= 4 réside dans l’existence d’un terme non linéaire pour l’évolution 
de uo. En effet on montre que cette évolution dans une TGR a la 
forme : 

u; = s E ( ~ O  - C U :  in s )  

où C est une constante. La condition pour l’existence d’un point fixe 
peut s’écrire dub/d In s I s  = = O, soit : 

E Le point fixe est alors situé à u$ = - , c’est-à-dire que u$ est d’ordre E : C 
en fait les calculs dont le principe est exposé dans ce qui suit sont 
valables ordre par ordre dans un développement en puissances de E, car 
ils reposent sur un développement perturbatif. Les résultats ne seront 
valables que pour E <<petit B (cette notion de E << petit >> restant à 
préciser). 

Reste évidemment à écrire explicitement les lois de transformation 
de ro et uo. Le calcul est plus compliqué que précédemment car il faut 
aller jusqu’à l’ordre u: dans le développement perturbatif. Je me 
contente de donner le résultat des calculs sans démonstration, car 
j’exposerai plus loin une méthode plus rapide. On trouve (cf. Ma, 
chapitre VII) : 

rh = s2[ ro + 162 UO ( $ A2(1 - s - ~ )  - ro Ins)  ] (56.a) 

3 uo“ 
U b = S E  u o - -  ln s] [ 1 6 ~ ’  

(56.b) 

Les équations (56) sont obtenues en faisant un certain nombre 
d’approximations dont la cohérence peut être vérifiée a postériori, 
lorsque l’on a montré que u$ et r$ sont tous deux d‘ordre E. 

E.2. Equations différentielles de renormalisation 

I1 vaut la peine de s’arrêter un moment sur l’interprétation des 
équations (56). Imaginons que l’on soit parti d’un hamiltonien initial, 
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avec des valeurs ro = ro ( l )  et uo = uo(l). Après un certain nombre 
d’itérations, on arrive à un hamiltonien dépendant de paramètres 
ro(s)  et uo(s), ainsi que d’autres couplages u6(s) ... Ces couplages 
rendent l’étude du voisinage du point fixe très complexe, sauf si on se 
limite à l’ordre E ,  auquel cas ils peuvent être négligés. Une indication 
en faveur de cette propriété est donnée à l’exercice (7.h). Nous 
admettrons par la suite que nous pouvons nous contenter de la forme 
tronquée (56) des équations du GR. Comme le facteur de dilatation est 
continu, on peut effectuer une TGR de facteur de dilatation 1 + 6,  
6 -, O. Les relations entre [ro(s(l + 6 ) ) ,  uo(s(l  + S ) ) ]  et [ro(s) ,  uO(s)] 
sont données par (56), en prenant ln s = 6 (in (1 + 6 )  21 6 ! ). Par 
conséquent on peut transformer les équations (56) en équations 
différentielles : 

(57.b) 

En fait les équations (56) ne sont correctes (modulo les remarques ci- 
dessus) que si s est suffisamment petit (ce point sera discuté en détail au 
paragraphe F) : rappelons que l’on ne doit jamais faire en une seule 
étape une TGR correspondant à un facteur de dilatation s %- 1, mais 
toujours décomposer en un produit de TGR. L’avantage des équations 
différentielles (57) est que In s est même infinitésimal. En général on 
pourra écrire pour des paramètres K ,  (s ) des équations différentielles 
de renormalisation : 

L‘itération des TGR est donnée par la solution de ces équations 
différentielles : un facteur de dilatation s s’obtient dans ce formalisme 
par une suite d’itérations de TGR infinitésimales. 

Les équations (57) permettent de calculer aisément la position du 
point fixe : 

et les exposants y ,  et y 2  ont pour valeur (exercice 4) : 

y i = 2 - 2 ;  y z = - & < O .  
3 
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Le fait que y2 .C O montre que le point fixe possède 
souhaitées. L’exposant critique v vaut : 

I I 

et l’équation (61) donne la correction d’ordre E à la 
La démonstration des équations (59) et (60) à 

III.E.3 

bien les propriétés 

théorie de Landau. 
partir de (58) est 
les deux premiers renvoyée à l’exercice (4). L‘équation (61) donne 

termes du << développement E >> d’un exposant critique. On écrira ce 
développement de façon générale pour un exposant critique 5 ; 

5 = 5 0  + 51 & +  5 2  E 2 + * . * +  5 ,  E n + * * *  (62) 

où lo est donné par la théorie de Landau. 

E.3. Méthode de ii raccordement >) 

La méthode précédente a l’avantage de prouver explicitement l’existence 
d’un point fixe non trivial pour D -= 4. Cependant les calculs sont assez pénibles 
et, ce qui est plus ennuyeux, deviennent carrément inextricables si on veut les 
pousser à l’ordre : en effet l’espace des paramètres { r,, uo}  ne suffit plus 
pour localiser le point fixe et les équations tronquées (56) ne rendent plus 
compte des TGR. 

Une méthode plus performante de calcul des exposants critiques consiste à 
admettre que les fonctions de corrélation ont le comportement prévu par le 
groupe de renormalisation quand il existe un point fixe. 

Nous allons utiliser la fonction de corrélation ï (4) (x1 ,  x2, x3, x4) : 

où r est le potentiel de Gibbs. Cette fonction est reliée à la << fonction de 
corrélation à quatre points >> 

G(4)(X,2 x27 X3, x4) = (cP(X1) ‘p(x2) ‘p(x3) cP(x4)) 

et aux fonctions de corrélation G(x,, x2) (cf. V-C.3) mais nous ne nous 
servirons pas de cette relation. En fait nous aurons seulement besoin de la 
transformée de Fourier f(4)(ki = O) ,  c’est-à-dire pour des valeurs nulles des 
vecteurs d’onde ; pour être tout à fait précis, il faut ajouter que f(4) est obtenu 

en extrayant une fonction ki )  : cf. V-B.4. Cette quantité s’obtient en 
i = 1  
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dérivant quatre fois le potentiel de Gibbs T(M) de l'équation (11.44) pour une 
aimantation uniforme M : en effet une aimantation uniforme possède seulement 
une composante de Fourier k = O, et dériver par rapport à M donne bien 

Le résultat des dérivations (*), quand on pose à la fin du calcul 
M = O ( T  > T,) est de donner les deux premiers termes d'un développement de 
T("(O) en fonction de uo (cf. l'argument du chapitre II, paragraphe D.3) : 

f ( 4 ) ( k ,  = O ) .  

+ O(UU). 
3 1 f(">(o) = uo - - u; - 
2 (tT)D ( k 2  + r0)' 

Nous aurons besoin de déterminer la loi de transformation de f") dans une 
TGR. Il faut remarquer que f @ ) ( O )  = l /G(k  = O )  (cf. 1.35) s'obtient en 
dérivant deux fois T(M) par rapport à M et que sa loi de transformation est 
donnée par (47.a) : 

p ( 0  ; y ' )  = S D - Z d v  p )  ( 0 ; P ) .  

Pour passer de f(') à f(4) il faut encore dériver deux fois par rapport à M et la 
loi de transformation de p(4) est : 

( 0 ; P ) .  D - 4 d ,  p(4) f (4yo  ; = 

Comme vérification, on note que d'après (62) la dimension normale de 
r(4) est celle de uo, c'est-à-dire 4-0,  et que si d = do = - - 1, D 

'p ' p 2  
D - 4 d, = 4 - D. 

La loi de tranformation de peut s'écrire (cf. (18) et (20)) : 
1 - 

) 

) 

~ ( 4 ) ( 0  ; t ,  t,, ...) = ~ 4 + 2 7  ~ 4 )  O ; t ,  s Y 2 t 2 ,  ... . ( 

( 

Au lieu du champ d'échelle t ,  il est commode d'utiliser la susceptibilité inverse 
r = x - l =  t Y :  

L L  
Y 2  F 4 ) ( 0 ; r , t 2  ,... ) = S - " ~ ~ F ~ )  O ; s y r ~ , s  t ,  ,... . 

- 1  - 
On choisit maintenant s = r -  " / y  = r '- 
pour la mise en œuvre de la << méthode de raccordement >> : 

et on obtient la relation de départ 

(*) On utilise 

uo M Z  
k Z  + ro + Fz ) = In (kZ + r,,) + - 2 ( k Z  + rO)-l  + . . . ( M  --t O). 
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A l’ordre E ,  nous avons vu que 7) = O ; en utilisant r a  = 1 + a In r ,  pour cy 

petit on obtient : 

In r + cy, t2 In r ,  + (64) 

En effet y ,  = E ,  mais y 3  = - 2 + O ( E)  et n’intervient donc pas dans (64). 
Comparons maintenant avec le développement perturbatif : 

1 
f(4yo) uo - U; -- JO* (2Tr (k’ + r)’ 

3 uo” A2 x &  
=uo- -  ___ 

16 T‘ JO ( x  + r)’ 

+- 32 3 uo T’ i n l ) .  A’ (65) 

On va maintenant choisir uo = u O ( & )  de telle façon que le terme en 
t ,  soit absent dans (64), c’est-à-dire de telle façon que t ,  = O. Ce choix est 
purement mathématique et n’a pas de signification physique particulière : il 
veut simplement dire que pour les besoins de la démonstration, on choisit un 
hamiltonien de Ginzburg-Landau particulier. Ce choix est destiné à éliminer les 
facteurs E venant de y’, de façon à conserver uniquement les facteurs provenant 
dii développement de r(E-2”)’(’”’) dans (63). Comparant (64) et (65), on 
trouve que la condition tz  = O implique que u ~ ( E )  est donné par : 

(66) 
16 rr2 E 

U O ( E )  = ~ 3 .  

A l’ordre E,  uo( E)  coïncide avec la valeur (59) de uo au point fixe. En effet à 
cet ordre, il suffit de prendre un espace des paramètres à deux dimensions 
(ro,  uo), et t2 = O correspond à u ~ ( E )  = uz  (cf. figure 10.b). A des ordres 
supérieurs en E, l’espace des paramètres a plus de deux dimensions, et 
u ~ ( E )  est déterminé par la condition t ,  = O. Par exemple à l’ordre E’, et en 
utilisant la valeur 7) = c2/54 (cf. V-E.1), on obtient le développement suivant 
de f(4) si t2 = O : 

E’ E’ 

2 8 54 r(4) = i + 2 in r + - in2 r - - in r + O ( E 3 )  . 

La comparaison avec le développement perturbatif à l’ordre u: permet de 
déterminer u ~ ( E )  à l’ordre E’. 

Pour déterminer 7, on se sert de l’équation (11.50) donnant r : 

( (2”,’ k2(k2 + r )  
F ~ ( T -  T , ) = r  1 + -  - 
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et en utilisant (66) : 

t = r  1 -  ( E i n r )  6 . 

D’autre part, on utilise t = ri/u = r ( r 1 / Y - ’  1 

La comparaison entre (68) et (69) donne le premier terme du développement 
e d e  y :  

soit : 

y = 1 + - + O ( 2) r? 
Grâce à la loi d’échelle y = v (2 - v), cette équation est identique à l’équation 
(61) pour v. 

Nous venons de terminer le calcul complet d’un exposant critique à 
l’ordre E .  Ajoutons les remarques suivantes : 

(i) Les calculs ont été conduits avec un paramètre d’ordre de 
dimension n = 1. I1 ne serait pas difficile de les généraliser au cas d’un 
paramètre d’ordre de dimension n ; le hamiltonien de Ginzburg- 
Landau décrivant une telle situation s’écrit : 

On trouve par exemple pour y (exercice 6) : 

+ O ( E 2 )  
y = l + (  n + 2 ) ~  

2(n + 8)  

ce qui montre la dépendance explicite des exposants critiques par 
rapport à la dimension du paramètre d’ordre. 

on obtient : (ii) L‘exposant critique 7 est nul à l’ordre E. A l’ordre 
(cf. V-E.4) 

(n  + 2)  c2 

2(n + s ) ~  7 =  

(iii) Les calculs exposés ci-dessus reposent sur un développement 
perturbatif remanié par le groupe de renormalisation. Le paramètre du 
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développement est E et les résultats sont fiables pour E < 1 (espace à 
3.99 dimensions !). L‘extrapolation au cas réaliste D = 3 donne des 
résultats asez satisfaisants, avec toutefois des mauvaises surprises : les 
résultats à l’ordre sont plutôt moins bons (i.e. moins proches de 
l’expérience) que ceux à l’ordre E ~ .  Les développements du type (62) ne 
sont pas convergents, mais ce sont des séries asymptotiques (du type de 
l’approximation de Stirling pour n!) .  

(iv) Au début des années 70, l’accent a été mis sur le développement 
E (exemple l’article de Kogut et Wilson : << The renormalization group 
and the &-expansion D). Ce développement E a effectivement joué un 
très grand rôle historique, en permettant pour la première fois d’aller 
au-delà de la théorie de Landau, avec des résultats qualitativement 
bons. Aujourd’hui il semble très important de pouvoir prouver 
l’existence de points fixes par des méthodes non perturbatives, ce qui 
permettrait un calcul totalement fiable (très vraisemblablement numéri- 
que) des exposants critiques. 

F. CHAMPS MARGINAUX ET FONCTION p(g) 

F.l .  Equation différentielle pour un champ marginal 

J’ai laissé de côté jusqu’à présent le cas des champs marginaux. Ce 
cas est particulièrement important, car il fait le lien avec la version 
<< ancienne >> du groupe de renormalisation (Stueckelberg-Petermann et 
Gell-Mann-Low) qui est présentée aujourd’hui sous la forme des 
équations de Callan-Symanzik (chapitre VII). 

Dans le cas d’un champ (ou variable) marginal(e), les techniques 
employées au paragraphe B.3 ne peuvent pas être appliquées directe- 
ment pour déterminer le comportement de la fonction de corrélation. 
Afin d’interpréter intuitivement la discussion un peu technique qui va 
suivre, essayons de comprendre qualitativement la différence de 
comportement des TGR lorsque l’on est en présence d’une variable 
marginale (notée g )  et lorsqu’il n’y a pas de telle variable. 

Examinons le flot de renormalisation au voisinage immédiat de la 
surface critique (cf. figure 11) : dans le cas (a), la trajectoire converge 
rapidement vers le point fixe, les champs inessentiels décroissant 
comme une loi de puissance. Dans le cas (b), le champ marginal reste 
constant à l’approximation linéaire ; nous montrerons un peu plus loin 
qu’il varie de façon logarithmique, c’est-à-dire très lentement. La 
trajectoire va s’approcher de l’axe e(2), correspondant au champ 
marginal, et le suivre pendant un certain temps, c’est-à-dire sur un 



III.F.l Champs marginaux et fonction f i  ( 9 )  133 

Figure 11. Flot de renormalisation au voisinage de la surface critique. 
(a) pas de variable marginde : y ,  -= O ; 

(b) une variable marginale : y ,  = O. 

intervalle important en s. Ceci explique que, au moins en partie, les 
TGR seront contrôlées par l’évolution du champ marginal ; en fin de 
compte le point fixe retrouvera son influence, mais l’évolution du 
champ marginal aura eu le temps de modifier le comportement critique 
par des facteurs logarithmiques. 

L’évolution du champ marginal est décrite par une équation différen- 
tielle (83), faisant intervenir uniquement le champ marginal lui-même 
(dans le cas de plusieurs champs marginaux : un système d’équations 
différentielles). Le champ marginal est souvent identifiable à une 
constante de couplage g : l’équation différentielle décrira l’évolution 
d’une constante de couplage g(s). 

Le point le plus important est que cette équation différentielle peut 
être déterminée perturbativement ; cette propriété permet, au moins de 
façon approchée, un calcul analytique des TGR. C‘est pourquoi nous 
exigerons, dans le raisonnement qui va suivre, de rester dans la région 
perturbative, c’est-à-dire dans la région où les divers paramètres du 
problème sont petits. 

Je donne ci-dessous une version schématique d’un argument de 
Wilson, en renvoyant à son article pour certains détails des démonstra- 
tions. Considérons une suite de hamiltoniens Ho -+ 
Hl -+ H ,  -+ - . -+ Hl  déduits l’un de l’autre par une TGR. Pour fixer les 
idées, nous supposerons que le facteur de dilatation vaut s = 2, qu’il 
existe un champ essentiel correspondant à une valeur propre yl = 2 
(cette valeur est tout à fait arbitraire), un champ marginal noté g ainsi 
qu’un champ inessentiel w correspondant à une valeur propre 
y3 = - 2. 
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La linéarisation au voisinage du point fixe conduit donc à : 

t l + l  = 4 t ,  
Y i + i  = Y i  

1 
4 W ' + 1  =-IV'. 

(73. a) 
(73.b) 

(73. c) 

Si l'on tient compte des termes non linéaires, les équations (73) 
deviennent (*) : 

ti + I  = 4 t l  + f ( t l ,  91, wi) (74.a) 
g l + l  = 9' + h( t l ,  91, wr> (74.b) 

(74.c) 

où f, h et k ne contiennent pas de termes linéaires, par exemple : 

f ( t ,  g,  w )  = d t g  + d ' Y 2  +.. . (75.a) 
h( t ,  g,  w )  = cg2 + c ' t g  + * * e .  (75.b) 

La règle du jeu dans ce qui va suivre consiste à ne pas quitter le voisinage 
du point @ e :  t l ,  gl et wl doivent rester petits. En effet on souhaite 
utiliser des calculs perturbatifs, et ceux-ci ne seront valables que si les 
champs t i ,  g l  et wl restent petits : en d'autres termes, on exige de ne pas 
quitter la région perturbative. (I1 n'y a aucune objection de principe à 
quitter la région perturbative ; le seul problème (mais il est de taille) est 
la nécessité d'avoir recours à des calculs numériques, et non analyti- 
ques). La solution des équations (74) peut s'écrire : 

I - 1  

t' = 4' to + 4'- (,+I) f ( tm Y n ,  Wn) (76.a) 

Y' = Yo + h(tn,  Y n ,  wn) (76.b) 

W' = 4-' wg + 4n+I-' k ( t n, g n ,  * (76.c) 

n=O 

I L 1  

n = O  

I - 1  

n = O  

L'équation (76.c) est une <c bonne >> équation, dans la mesure où les 
facteurs 4-' et 4'-' assurent que wl reste petit si les t,, gn, 

(*) On peut également traiter le cas d'une variable << quasi marginale B : 

gr + I = (1 - E >  gI + h( t , ,  B i ,  W i )  E Q 1. 

Ce cas sera traité au chapitre VI1 par une autre méthode et je le laisse de côté pour le 
moment. 
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w, sont petits. Au contraire les équations (76.a) et (76.b) sont un 
désastre si I -.+ CO, car les facteurs 4’ et les sommes sur n conduisent à 
des valeurs de tl et g l  incontrôlables. 

Pour transformer (76.a) en une équation contrôlable, on prend pour 
valeur de départ, non pas to, mais t L  Q 1, où L est très grand 
(naturellement à la fin du calcul, on devra être capable de revenir en 
arrière et de calculer to en fonction de tL).  La signification physique de 
ce choix est la suivante : on se place dans le voisinage immédiat de la 
surface critique, afin qu’après L itérations on reste encore très proche 
de celle-ci. On obtient alors : 

où le facteur 4- assure une convergence rapide de la somme ; les seules 
valeurs importantes de n correspondent à n = I. 

Le comportement de la variable marginale est plus complexe ; pour 
une première orientation, imaginons que les variables tl et wl sont 
absentes ; on obtient alors une version simplifiée de (76.b) : 

/ - I  

avec 

n = O  

h ( g )  = c g 2 +  cg3  +.  . . . 

(77) 

I1 est facile de vérifier par récurrence que le coefficient de 
go dans g est proportionnel à I ,  celui de go proportionnel à 
Z 2  etc. et l’équation n’est pas directement exploitable. Il en est de même 
si l’on prend pour valeur de départ g L ,  et non g o  car : 

2 g1 = gL - c ( L  - I )  gL + * *  

et cette fois c’est ( L  - I ) qui est grand. Cependant l’équation (78) peut 
se transformer en équation différentielle pour g l  : 

g 1 + 1 -  

En effet l’erreur commise est d’ordre g l  puisque : 

Si c -= O ,  g l  est une fonction décroissante de I (pour go suffisamment 
petit), et l’équation donnant g 1  est contrôlable. Avant de commenter 
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cette propriété cruciale, il nous faut montrer que la présence des 
variables t l  et wl préserve l'existence d'une équation différentielle pour 
g1. 

Partons d'une valeur I ,  telle que 1 6 1, 6 L.  Dans ces conditions on peut 
négliger les termes 4' ~ t ,  de (77.a) et 4-' w, de (76.c) ; cependant cette 
approximation nous ôte la possibilité de calculer t ,  en fonction de to,  ce qui est 
faisable avec une version plus sophistiquée du présent argument (cf. Wilson). 
En  résumé les équations à résoudre sont : 

L 

t' = - c 4'-("+') f ( L  9", W n )  (78.a) 
n = l  

(78.b) 

I - I  

WI = c 4"+1-' k ( t n ,  g m  W n ) .  (78.c) 

Afin d'alléger les notations, je ne tiendrai plus compte de la variable 
WI . 

On résout maintenant les équations (78) par itération, en vérifiant à chaque 
étape que la correction due à une itération supplémentaire est petite par 
rapport au résultat de l'itération précédente, ce qui montre la convergence de la 
procédure d'itération. La première itération est : 

gro 

n = O  

t p  == 0 ; g p  = 

la seconde : 
m 

t p =  - 4'-("+1) f (0, 91,) (79.a) 

si'" = BIo + c h(O, gr,) (79.b) 

etc. Un point important pour la suite est que tl(i) est (au moins) d'ordre 
g:,. Il n'est pas difficile de se convaincre que la procédure d'itération converge 
pour (1 - I , )  I 10. 

La solution de l'équation (79.b) est de la forme H(')(l - lo ,  g r o )  : c'est une 
fonction de ( I  - Z,), et non de 1 et I ,  séparément. En effet, une fois 
gro fixé, gi ne dépend que du nombre de termes de la somme, c'est-à-dire de 
( I  - I,)(*). La seconde itération pour tr  donne : 

n = l  

/ - I  

n = 10 

m 

dg 
dl - (*) Si Yon écrit gr + - gr  = h ( g , )  sous forme d'une équation différentielle - - h ( g ) ,  

F(g,,)  = i - io ; soit gr = ~ - ' ( i  - 
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qui est encore une fonction de ( I  - l o )  et de gro .  En résumé les solutions de (79) 
sont de la forme : 

(80.a) 

(80.b) 
tl = F ( i  - l o ,  9ro)  

9r = f f ( l  - l o ,  gr,)  . 

L'équation (80.b) permet d'écrire une loi de récurrence : 

gr+1  = f f ( L g l ) .  (81) 

La fonction H(1, g )  s'obtient en résolvant (78) par itération : 

H ( 0 ) ( 1 ,  g )  = g 
~ ( ~ ) ( i , ~ ) = ~ + h ( o , ~ ) = g + ~ g 2 + 0 ( ~ 3 ) .  

A l'ordre suivant il faudra tenir compte de la correction due à t ( ' ) ;  mais 
t ( ' )  étant d'ordre g 2 ,  le terme en t g  de h donnera au mieux un terme en 
g 3 .  On obtient donc : 

H(1,g)  = g + c g 2  + c3 g 3  

où le terme en g 2  dépend uniquement de la fonction h dans (76.b). Nous 
pourrons à nouveau transformer (81) en équation différentielle, mais en ayant 
inclus cette fois toutes les variables dans le raisonnement : 

- dg1 = cg; + O(& . 
dl 

Introduisant le facteur de dilatation usuel s = 2' on pourra écrire de 
façon générale : 

(83) -- dg(s) - - p (g(s)) = - po g(s)2 - p i  g(s)3 - e a a 

d Ins 

avec P o  = c/ln2. La fonction p ( g )  dans (83) est la célèbre fonction 
p (9) de Callan-Symanzik ( C - S ) .  Elle est reliée à la fonction 
p (9) qui sera introduite au chapitre VI1 dans le cadre de 1'« ancienne >> 
version du groupe de renormalisation. 

La fonction p (9) permet de calculer g(s) en fonction de go ; en effet, 
d'après (83) : 

et en intégrant : 
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Si F ( g )  est une primitive de l /p(g) ,  g(s) est obtenu en résolvant : 

F ( g ( s ) )  = - I n s  + F ( g 0 ) .  

Si I’on s’en tient au premier terme de P (g), cette résolution est 
immédiate : 

Si P o  =- O, ce qui est le cas de la théorie de Ginzburg-Landau, 
g (s) -, O comme l/ln s quand s -, 00. La théorie de Ginzburg-Landau 
est dite << infrarouge libre B : quand s -t 00, la constante couplage tend 
vers zéro. A fortiori, g (s) reste toujours dans la région perturbative, ce 
qui était précisément le but recherché. Nous verrons au chapitre VI1 
que le comportement de g (s) pour s -t 00 dépend seulement de 
Bo et non de .go, pourvu que B ( 9 )  ne s’annule pas entre O et 
90. 

L’équation (85) montre bien ce que l’on a gagné dans la discussion 
précédente ; le développement de (85) en puissances de go donne : 

2 
9 6) = 90(1 - Po 9 0  ln s + (BO go ln s )  - - 

Ce développement n’est valable que si 

p o g o h l s  = cgol Q 1. 

Le groupe de renormalisation permet de sommer les puissances de In s 
(ou de 1) sans jamais quitter la région perturbative, même lorsque 
(go 1 )  est grand. 

Lorsque P o  < O (cas d’une interaction en g(p3 en dimension 
D = 6 ) :  

et la constante de couplage devient d’ordre 1 si I Po I go In s 2 1 : on 
quitte alors la région perturbative, et le raisonnement précédent n’est 
plus cohérent : pour connaître g(s), il ne suffit pas de connaître 
Po, ni même Po et Pl ,  il faut connaître la fonction P ( g )  exacte. 
L‘expression (85) ne peut certainement pas être utilisée lorsque 
g o l n s =  1. 
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Lorsque l’on tient compte des termes non linéaires, on voit qu’en fin 
de compte un champ marginal devient soit essentiel si Po -= O, soit 
inessentiel si P o  z O, bien que dans les deux cas l’évolution soit plus 
lente que dans le cas usuel : l’évolution se fait suivant une loi 
logarithmique, et non une loi de puissance. 

Lorsqu’il n’y a pas de champ marginal, les champs essentiels et 
inessentiels évoluent rapidement suivant une loi de puissance, et les 
corrections non linéaires apportent au départ peu de changement au 
comportement obtenu par linéarisation au voisinage du point fixe. Dès 
que l’on atteint des valeurs de 1 pour lesquelles l’approximation linéaire 
n’est plus valable, on doit recourir à des méthodes non perturbatives. 
Le succès de la méthode perturbative dans le cas du point fixe non 
gaussien (paragraphe E) provient de ce que le champ uo est << quasi 
marginal >> (cf. note page 134). 

F.2. Fonction de corrélation 

Appliquons les considérations qui précèdent au cas du hamiltonien 
de Ginzburg-Landau en dimension D = 4(& = O ) .  Le champ uo est 
alors un champ marginal, l’équation (56.b) étant de la forme : 

u; = uo - C u i I n s .  

On posera par convention go = uo lorsque D = 4 ;  d’après les 
résultats du paragraphe D.3, le champ d’échelle essentiel to est relié à 
r, et go par : 

fi2 90 t ,  = ro + - 
32 n2. 

Lorsque l’on utilise les champs d’échelle go et to les équations du GR 
(56) deviennent : 

90 to 
th = s2 to - -ins + O(g0) ( 1 6 n 2  

3 di 
go = go - -2ins + O ( g : ) .  

16 n 

(86.a) 

(86.b) 

Pour déterminer le comportement de la fonction de corrélaiion, nous 
allons partir de l’équation (47.a) ; il sera commode de poser : 

l ( s )  = s D - 2  A - 2 ( s )  

G(k, to ,  9 0 ,  A )  == s2 S(s) G(sk, t ( s ) ,  g(s), A ) .  

ce qui permet d’écrire (47.a) sous la forme : 

(87) 
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Etudions par exemple le comportement de la susceptibilité en posant 
k = O :  

X ( l 0 ,  907 ‘1 = s 2  x ( t ( s ) ,  g(’), ‘1 . (88) 

A l’ordre de la théorie des perturbations où nous travaillons, il est 
possible de prendre < (s) = I. En effet la dimension anormale est égale 
à la dimension canonique à l’ordre go. Ce point sera établi un peu plus 
loin. L’équation d’évolution pour t est déduite de (86.a) : 

ou bien : 

(89) d In t (s) = 2 - -  g(s) = 2 -  y o g ( s ) ;  y o = -  1 
d In s 16 r 2  16 r r 2 ’  

Compte tenu de (83), cette équation s’intègre en (*) : 

lorsque s -+ 00, soit 

Comme on cherche la susceptibilité dans la région critique, to + O. 
Lorsque t ( s )  - 1 ( t ( s )  étant de dimension 2, il serait plus correct de 
définir la variable sans dimension t ( s ) /A2) ,  le comportement du 
membre de droite de (88) est donné par la théorie des perturbations, 
d’autant mieux que g ( s )  -+ O. On choisit donc : 

(*) Plus généralement si d In t/d In s = 2 - y(g )  on trouve : 
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Le comportement de la théorie de Landau (- to I )  est donc modifié par 
un logarithme. Notez que l’exposant du logarithme <:st facile à 

déterminer : en effet d’après (86) Po = - et y o / p o  =: 1/3. 

correction perturbative est d’ordre go : 

16 r r2  

Revenons maintenant à 5 (s) ; 5 (s) = 1 à l’ordre go, et la première 

5(s) = 1 - Yogohs 

soit : 

ce qui donne ( J O  = 1 ) 

l ( s )  est indépendant de s, à des termes O ( ) près. Ceci montre 

qu’en dimension 4 l’exposant critique 77 reste égal a zéro. CIE résultat est 
une particularité de l’interaction en q4. En effet avec une théorie en 
q 3  (en dimension 6) ou une théorie de jauge non abélienne (en fait pour 
ces deux théories il faut considérer la limite ultraviolette ( k  + 0 0 )  : cf. 
chapitre VII) : 

et 

La fonction de corrélation est alors modifiée par des puissances de 
(ink). 

Examinons enfin le comportement de la fonction de corrélation au 
point critique (pour simplifier la discussion). D’après ce qui précède : 

G(k,  go, A )  = s2 G(sk, s(s), A )  (92) 

Lorsque k Q A, le développement perturbatif de G contient des termes 
en go(ln (k/A)), gi(1n (k/A)), etc. (cf. V-E.4) ; ce sont ces termes qui 
invalident le développement perturbatif lorsque k /  A 6 1, c’est-à-dire 
dans la région infrarouge. Lorsque sk/A 1, le développement 
perturbatif de G en fonction de g(s) dans le membre de droite de (92) 
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ne contient pas de grands logarithmes, et le développement perturbatif 
est valable. Ceci veut dire que pour des vecteurs d'onde k - A/s, la 
constante de couplage que l'on doit utiliser pour éviter les divergences est 
g(s), et non go : à une certaine échelle de vecteurs d'onde correspond 
donc une valeur de la <<constante >> de couplage (qui n'est plus 
constante). Ainsi qu'on le verra plus en détail au chapitre VII, la notion 
de constante de couplage adaptée à une échelle de vecteurs (ou 
longueurs) d'onde est fondamentale en théorie de la renormalisation. 

EXERCICES 

1) Méthode de décimation 

Au lieu de former des blocs de spin, on peut définir une TGR en sommant sur 
certains spins du réseau. Par exemple on somme sur les spins marqués d'un O 

dans le réseau à deux dimensions de la figure 12, 
gardant pour spins S' ceux marqués de x (remar- 
quez que le réseau transformé a subi une rotation de 
7r/4 par rapport au réseau initial). Montrer que si 
l'on part d'un hamiltonien d'lsing, l'interaction X X 

entre spins S' est de la forme (notations de (5)) : 

e X e 

X e X e 

et calculer A, B, C et D. 

est de montrer que H n'a pas la même forme que H dans une TGR.) 

(th K)*.  

(La méthode de décimation donne de mauvais résultats ; le but de l'exercice 

Suggestion : examiner d'abord le cas D = 1 et montrer que th K' = 

2) Transformées de Fourier 

On définit la transformée de Fourier du champ q ( x )  par : 

(a) Calculer le hamiltonien gaussien Ho en fonction de ~ ( k ) .  
(b) Montrer que de façon générale : 
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(c) Le changement de variable cp(x)+ cp(k) a pour inconvénient que 
cp(k) n'est pas réel. I1 est nécessaire d'introduire deux variables réelles 
a ( k )  et p ( k ) :  

1 
cp(? k )  = - ( a ( k ) ?  i/3 (k) ) .  

J2 
Calculer le jacobien de la transformation : 

$89 (x) -+ n d a  (k) d S  (k) . 
W x = - O )  

(a) Déduire de (a) et (c) la fonction de corrélation G,(k) du modèle 
gaussien, par intégration directe sur d a  (k) d/3 (k). 

3) Soit le hamiltonien de Ginzburg-Landau généralisé (38). Calculer 
ri, us, u;, ui, et v i  dans une TGR au 1"' ordre en V et vérifier que pour 
D =- 4, tous les champs sauf r, sont inessentiels. Calculer également la 
modification du coefficient du terme en (Vcp)'. 

4) (a) Utiliser les équations différentielles (57) pour déterminer les coordon- 

O>) On linéarise au voisinage du point fixe : 

nées (r:, u:) du point fixe. 

r, = r; + Sr, ; uo = u: + ôuo . 

Montrer que : 

dSr0 \ 

d In s 

où R est une matrice 2 x 2, et montrer que yi et yz sont les valeurs propres de la 
matrice R .  Calculer yi et yz .  

(c) En partant des équations différentielles de renormalisation (58) ,  montrer 
que le facteur A (s) de (11) vérifie une équation différentielle du type : 

In * = y ( K , ( s ) )  
d In s 

et en déduire l'expression suivante pour A (s) : 

Retrouver (11) au voisinage du point fixe. Comment doit-on corriger l'équation 
(47.a) ? 
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5 )  Calcul de yB à l’approximation des cumulants 

(a) On définit : 

e 3 K + e - K  . e3K - e-K e3K - 3 e-K 
a, = e3K + 3 e - K  ’ ‘2 = e3K + 3 e - K  ’ ‘3 = e3K + 3 e - K .  

Montrer que : 

(S(i’), = al SU ; (S(“S~’), = a 2 ;  (S<i’S<j’Sp ),=%So 

les indices i, j, k étant tous différents (les notations sont celles du paragraphe C). 
(b) On introduit un champ magnétique infinitésimal : 

H -  H - B Si. 
i 

Si l’on fait L’approximation V = O, montrer que si la valeur moyenne 
(S) est prise à [S’] fixé : 

c (Su”) = 3 a ,  CS: 
i 

et en déduire yB à cette approximation. 
(c) L‘approximation suivante consiste à écrire : 

, - W o + V )  - - e-ffO(l - V )  

s (St)) = ( V ) , ( S ( i ~ ) , -  (vs:”)o. 

c (S( i ’ )  = ~3a,[l+4K(l-a:+2(a,-US))]S~ 

Montrer que dans ces conditions S (S:)) = (S:)) - (St))o est donné par : 

Calculer (S:’)) et en déduire 

i 

(Suggestion : examiner à quelle condition (S) (V)  # (VS) o .  N’oubliez pas 
que V ne connecte que des blocs différents : figure 13). 

Figure 13. 
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(d) Calculer numériquement y B  ainsi que les exposants critiques a, p, y, 6, r )  

à cette approximation et comparer avec les valeurs expérimentales. On utilisera 
pour v la valeur déterminée dans le texte. 

6) Calcul des exposants critiques avec un paramètre d’ordre de dimension n 

On se propose de calculer l’exposant y en partant d’un hamiltonien de la 
forme (71). 

(a) Calculer le potentiel thermodynamique r ( M )  en utilisant la méthode du 
chapitre II, paragraphe C. On remarquera que la matrice D(x, y )  a maintenant 
des indices internes i et j : 

UO D~~ (x, y )  = [ (- VX + ro)  6 i j  + - ( a i j  G2 + 2 <pi  v i ) ]  6 (x - y )  6 

avec 

Calculer In det ( D i j ( q ) )  à q fixé ; on pourra remarquer que le calcul se 

Montrer que T ( M )  peut s’écrire : 
simplifie si l’on choisit Mi = ( M ,  O, O, ..., O )  où M = (M’)In. 

+dm n - 1  dDq in ( q 2 + r o + - M 2  “ )  
(b) Montrer que les équations (68) et (62) deviennent respectivement : 

2 ( n + 8 )  dDk 1 
f i ( 4 )  (O) = uo - uo- -- 

6 s (2 z - ) ~  ( k 2 +  r)’ 

(c) En déduire l’expression (72) de l’exposant critique y. 

7) Groupe de renormalisation à la limite n -P CO (4) 

On se propose d’étudier le groupe de renormalisation quand la dimension 
n du paramètre d’ordre tend vers I’infini. Le hamiltonien est donné par : 
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(a) On décompose <p (x) en : 

où q~~(x ) (@(x ) )  a des composantes de Fourier dans l'intervalle 

O s  k s f ( $ s k s A , Lorsque n + CO, un terme tel que : 

est d'ordre n, tandis que : 

qui est une somme de termes de signe aléatoire, est d'ordre 1. En utilisant ce 
résultat, montrer que l'intégrale sur @(x) peut s'écrire, à la limite n -+ CO : 

où : 

(b) Pour évaluer l'intégrale, on cherche le maximum de l'intégrand et on 
remplace la valeur de l'intégrale par celle du maximum de l'intégrand. Justifier 
cette approximation et montrer que l'on doit choisir ( q ~  + <p ) 

(c) On effectue maintenant la dilatation de l'unité de longueur et la 
= O et que la transformation <p + s - ~ + '  <p (x/s). Montrer que l'on doit choisir 

loi de transformation t ,  = R, t est : 

&(a2) = s 2 t ( p  + s 2 - D  G2) 

A kD-1 d k  
A / ~  k2 + ts( a2)/s2 ' J p = nK, 
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(d) Montrer que sur la surface critique on doit avoir t ( N , )  = O, où 

dk (on suppose D =- 2) .  

(e) Au voisinage de N = N ,  on définit 5 et uc par : 

p + ~ ~ - ~ $ ~ = N ~ ( l + . $ )  ; u , = N , -  

(on peut montrer que u, > O ) .  Démontrer l'équation : 

et donner son interprétation lorsque t E S,. 

(f) Montrer que pour 2 -= D -= 4 le point fixe est donné par : 

et expliquer exactement ce qu'est le point fixe. Quel est le point fixe pour 
D > 4 ?  

Faites un calcul numérique pour tracer la fonction t * ( x ) ,  x = $ / N c ,  dans le 
cas D = 3. 

(g) Calculer t ,  - t *  en fonction de t ,  = t ( N , )  au voisinage du point fixe et 
montrer que si 2 < D -= 4 ,  l'exposant v = l / y ,  vaut 1 / ( D  - 2 )  ; montrer 
également que y ,  = D - 4.  Que se passe-t-il si D z 4 ? 

(h) Montrer que si D est voisin de 4, on peut obtenir un développement E de 
t *  ; calculer u:, U: et us* et montrer en particulier que us* est d'ordre 

.iB 

E 3. 

8) L'exemple de Bell et Wilson 

On part du hamiltonien : 

et on définit la TGR Ra,b par (a > O )  : 

R a , b e - H =  n d<P(q)x 
y4 

où le paramètre b joue le rôle de A dans (8). La transformation Ra,b dépend 
donc de deux paramètres a et b ; notez que <p ' (4) = O si II q II > A. 

(a) Montrer que l'équation précédente pour Ra,b définit bien une TGR 
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possédant les propriétés requises. Quelle limite obtient-on quand a -+ m ? 
Quelles sont les dimensions canoniques de cp (q) (la dimension de c est zéro) et 
de w ?  

(b) Calculer p‘(q) en fonction de p (q) ; on trouve : 

4 P (q/2) 
2’ t 2  b2 + 4 p (q/2)/a P ‘ ( 4 )  = 

(c) On écrit la Vème itération de la TGR sous la forme 

Etablir des relations de récurrence pour ak, bk et Lk et les résoudre. On 
montrera que : 

(d) Montrer que si la transformation doit avoir un point fixe non trivial il est 
nécessaire que b2 = 2-(D+2).  Quels sont les points fixes (triviaux) obtenus si 

Avec le choix b2 = 2- (O+’), déterminer l’exposant critique r )  et le point fixe 
p * (9). Que trouve-t-on à la limite a -+ 03 et pourquoi ? 

(e) Le point fixe dépend de c et de a ; c peut être choisi arbitrairement : on a 
en fait une <c ligne de points fixes ». Le point fixe dépend du choix de a dans la 
TGR : deux TGR physiquement équivalentes peuvent conduire à des points 
fixes différents. Examiner le comportement de r, et de w dans une suite de 
TGR. L‘exposant critique v dépend-il de a ? 

b2< 2- ( D + 2 )  et b2, 2- ( D + 2 )  ? 

9) Anisotropie cubique ( 5 )  

On rajoute au hamiltonien de Ginzburg-Landau (71) un terme d’« anisotropie 
cubique D : 

(a) Montrer que le hamiltonien n’est défini positif que si les deux conditions 
suivantes sont satisfaites simultanément : 

Montrer que pour n = 2 le système de paramètres (uo, u o )  est équivalent au 
système de paramètres ( u0 + uo,  - va)  . 3 

UO 00 

87r 87r 
(b) On peut démontrer pour u = -* et u = -2 les équations différentiel- 
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les de renormalisation suivantes (qui généralisent l’équation 57.b) : 

du 3 
-= €V-2UV--V2. 
d In s 2 

Montrer que ces équations impliquent l’existence de quatre points fixes appelés 
(on justifiera la terminologie) : 

(1) Ising ( 2 )  Heisenberg 
(3) Gaussien (4) Cubique. 

Etudier pour E =- O la stabilité de ces points fixes dans le plan (u, v) et dessiner 
le flot de renormalisation dans ce plan. Montrer que l’on doit distinguer les cas 
n < 4  et n > 4 .  
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CHAPITRE IV 

Modèles bidimensionnels (*) 

Le cas où la dimension d’espace D est égale à deux présente des 
particularités intéressantes, car D = 2 est un cas limite où le comporte- 
ment d’un système de spins dépend qualitativement de la dimension n 
du paramètre d’ordre. Lorsque n = 1 (modèle d’lsing), on observe une 
transition de phase avec aimantation spontanée. Au contraire, pour 
n z 2, il est possible de prouver l’absence d’aimantation spontanée, 
mais le cas n = 2 (modèle XY) est à nouveau spécial : il existe une 
transition de phase sans aimantation spontanée, et tout à fait remarqua- 
ble. Pour n z= 3 (modèle-<+ non linéaire), il n’y a plus du tout de 
transition de phase. Cependant l’étude de ce modèle est intéressante 
car elle permet d’illustrer de façon non triviale le fonctionnement du 
groupe de renormalisation dans le cas d’une variable marginale. Le 
groupe de renormalisation sera également utilisé pour analyser le 
comportement original du modèle XY. 

Nous allons donc étudier un système de spins Sa,i, a = 1, 2, ..., n 
disposés aux nœuds i d’un réseau carré à deux dimensions et vérifiant : 

n sa,i 2 = 1 . 
a = l  

Donnons d’abord un argument heuristique pour justifier l’absence 
d’aimantation spontanée en dimension D = 2, pour n 3 2 (il existe une 
preuve rigoureuse due à Mermin et Wagner ( l ) ) .  Supposons qu’au 
voisinage de T = O ,  il existe une aimantation spontanée telle que tous 

(*) La suite du livre est indépendante de ce chapitre, qui peut être sauté en première 
lecture. 
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les spins soient parallèles par exemple à la direction n : 

et étudions les petites fluctuations autour de cet état. Pour que cet état 
soit stable, il ne faut pas qu’il soit détruit par des fluctuations trop 
importantes. En particulier pour T -+ O ,  les fluctuations doivent tendre 
vers zéro. Supposons donc les fluctuations petites, ce qui permet de les 
limiter à un hyperplan perpendiculaire à la direction n,  et de négliger la 
contrainte sur S:,  i. Ecrivons le hamiltonien décrivant ces fluctuations 

( 2 désigne une somme sur les plus proches voisins) : 
< L i >  

A basse température on s’attend à ce que les fluctuations dominantes 
soient de grande longueur d’onde, et il est raisonnable de passer à la 
limite continue : 

n - 1  

H - + r J S d ’ x  (Vcp,)2. 
a = l  2 

La fonction de corrélation correspondant à ce hamiltonien est 
T/Jk2 dans l’espace de Fourier, et la fluctuation A recherchée est 
donnée par : 

où a est le pas du réseau et L sa taille. Les limites d’intégration dans (1) 
sont fixées par le cut-off ultraviolet n / a ,  et par un cut-off infrarouge 
T/L. En effet la longueur d’onde maximale d’une fluctuation dans un 
réseau de taille L est - L ; le mode k = O ne décrit pas une fluctuation, 
mais une translation d’ensemble de la variable cp : cp (x) -, cp (x) + Cte. 
En dimension D =- 2> l’intégrale (1) est infrarouge convergente et 
l’hypothèse de petites fluctuations autour de l’état aimanté quand 
T -+ O est cohérente. Mais en dimension D = 2 

(n  - 1) T L A -  In - 
2 TJ a 

et A -+ 03 quand L -t 03 ; ceci reflète la divergence infrarouge de 
l’intégrale dans (l), et c’est un phénomène caractéristique de la 
dimension D = 2. L‘hypothèse de petites fluctuations n’est pas cohé- 
rente : les fluctuations de grande longueur d’onde déstabilisent l’ordre à 
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longue distance en dimension D = 2. On peut également arriver à cette 
conclusion en étudiant ( (9 (x) - (O))2) quand IIx II -+ CO à l’aide de 
(9.b). 

Le paragraphe A est consacré à l’étude qualitative du modèle 
XY et à l’introduction de la notion de vortex (tourbillons). L’analyse 
par le groupe de renormalisation est effectuée au paragraphe B, tandis 
qu’au paragraphe C on étudie le cas n = 3 (ou plus généralement 
n 3 3), c’est-à-dire le cas des G modèles-a non linéaires ». 

A. MODÈLE X Y :  ÉTUDE QUALITATIVE 

Les études numériques et analytiques suggèrent que le cas n = 2 est 
spécial, et que même s’il n’y a pas d’aimantation spontanée, il semble 
que l’on observe une transition de phase. Je vais d’abord donner un 
argument heuristique en faveur d’une telle transition avant de passer, 
au paragraphe suivant, à une description plus quantitative utilisant le 
groupe de renormalisation. Le spin du modèle XY au site i est un 
vecteur S à deux composantes, que l’on peut prendre dans le plan du 
réseau ; le hamiltonien est invariant par rotation dans ce plan : en 
d’autres termes il présente la symétrie O (2) : 

H = - J  S i . S j = - J  C C O S ( O , - ~ ~ )  
< i . i >  < i . i >  

où e i  est l’angle repérant l’orientation du spin au site i par rapport à une 
direction fixée (par exemple l’axe des x ) .  La fonction de partition est 
donc : 

= f ‘ n do, exp ( 
1 

A. 1. Développement haute température 

Le principe du développement haute température a déjà été exposé 
au chapitre I, paragraphe B.2 : lorsque T + CO, on développe I’expo- 
nentielle dans (3) en puissances de ( J I T )  et on cherche à identifier le 
(ou les) terme(s) qui donne(nt) la puissance minimale. 
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Essayons d'estimer par cette méthode la fonction de corrélation de 
deux spins, l'un au site O et l'autre au site p : 

(so. s,> = (cos (e, - O,>> = (ei('0-'p)) 

où la dernière égalité provient de l'invariance de H lorsque 
e, -+ - ei. On remarque que : 

de  eis = O .  (4) l* 
Si l'on veut que l'intégrale sur 8 
donne un résultat non nul, il faut 
associer à tout facteur eie un 
facteur eëie, à cause de (4). On 
voit donc qu'à chaque terme non Figure 1. Chemin de O à p .  

nul sera associé un chemin sur le réseau allant du site O au site p 
(figure 1) : 

ioo eiOa) e- io, ioh - ioh eiBP) e- iop ... e (e 

où chaque terme entre parenthèses provient d'un cos ( ûi  - 6 j )  associé 
à un lien. Un tel terme donnera une contribution en ( f ) "  au 

développement à haute température, où N est le nombre de liens sur le 
chemin joignant les sites O et p .  Le terme dominant sera obtenu en 
choisissant le plus court chemin entre O et p ; N est donc approximative- 
ment égal à r / a ,  où r est la distance entre les sites O et p : 

ce qui correspond à un comportement exponentiel classique avec une 
longueur de corrélation : 

Cet argument suggère qu'à température suffisamment élevée (dans le 
domaine où le développement haute température converge- et on 
peut prouver que le rayon de convergence est non nul), le système est 
dans une phase désordonnée classique. 
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A.2. Développement basse température 

A basse température, il est raisonnable de penser que les fluctuations 
dominantes sont de grande longueur d’onde, c’est-à-dire que l’on peut 
remplacer H par : 

1 H - , H , + - J  c ( e i - e j ) 2 .  
<i , i>  

En effet, à l’approximation des fluctuations de grande longueur 
d’onde, 8 varie peu d’un site à l’autre et on peut remplacer 
cos (ei - û j )  par i - -  (ei - ûj) ’ .  11 est 

commode d’introduire la notation (cf. 11.12) : 

1 
2 

i + P 2  

i +PI 

(6) 

L a e .  = e i + +  - ei I L 1  

où p peut prendre deux valeurs p1 et p2, et 
8i.y est un plus proche voisin de û i .  Le 
hamiltonien approché peut s’écrire avec cette 
notation : 

i 

1 H = 3 J C C ( a + O j ) 2  . 

I1 sera souvent commode de passer à la limite continue, avec le 
changement de notations : 

l e  

i -+x; o i + e ( x ) ;  C ( ~ ~ B ~ ) ’ - +  [vo(x)]’ 
c 

ce qui conduit à l’expression suivante de H :  

(7) 

L’intégrale donnant ( ei(eo - ‘P)) est une intégrale gaussienne : 

J 

I ,  c 

(ei(eo-ep)) = 1 ”  i(8, - O p )  - 2T C ( a + O i ) 2 )  . (8) fl de, exp 
-a, I 

Notez que les limites d’intégration sur 8 ont été prises de - 00 à 
+ 00 ; ce point sera rediscuté plus loin. La fonction de corrélation 
Gij  correspondant au hamiltonien gaussien - (apei)’ est donnée par :E 1, c 
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(exercice 11.5) : 
- ik . (x i  - xi) 

. (9.a) e 
(2 T ) ~  4 - 2 cos ( k ,  a )  - 2 cos (k2 a )  

On ne sera pas étonné de rencontrer à nouveau une divergence 
infrarouge. Pour la régulariser, on retranche 1 à l’exponentielle, 
définissant la fonction G (x) : 

(e-ik’x - 1) 
G(X) = a2 - . (9.b) j (fi)2 (4 - 2 cos ( k ,  a )  - 2 cos (k2 a ) )  

L’intégration gaussienne dans (8) donne le résultat : 

où x est le vecteur joignant le site O au site p .  A la limite continue, 
G(x) (ou ~ ( x ) )  vérifie : 

- V2G(X) = F (x) (10) 

qui est l’équation de Poisson à deux dimensions. Pour trouver la 
solution de cette équation, remarquons que le potentiel d’un fil chargé 
rectiligne infini vérifie, dans un plan perpendiculaire au fil, l’équation : 

- V2G(X) = A 6 (x) 

où A est la densité de charge linéaire du fil. Un exercice élémentaire 
d’électrostatique utilisant le théorème de Gauss montre que le champ 
électrique correspondant est : 

A 
2 r r  

d’où l’on déduit le potentiel - - In r + 
donc (*) : 

1 r  G(x) = --In- 
2TT a 

- 

Cte. La solution de (10) est 

+ Cte (11) 

ce qui donne le comportement de la fonction de corrélation à grande 
distance : 

T/2 ?d 
) = e  

(*) On peut montrer que cette constante vaut, à grande distance : 
3 

- (2 T)-’ (y + In 2 )  - - 1/4, où y (= 0.577 ...) est la constante d’Euler. 
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La fonction de corrélation décroît comme une loi de puissance avec un 
exposant dépendant de la température : on a donc une ligne de points 
critiques, avec un exposant 77 dépendant de la température : 

L'équation (12) montre aussi que le modèle XY ne donne pas 
d'aimantation spontanée : dans le cas contraire on aurait en effet : 

) = (So. S p )  - (So) (S,) = M2 # O .  
r +  m 

(ei@" - 

Si ces arguments heuristiques sont corrects, il doit exister un point de 
transition où le comportement en loi de puissance de la fonction de 
corrélation se transforme en comportement exponentiel. Cependant on 
peut se demander pour quelle raison l'argument basse température 
devient incorrect au-dessus d'un point de transition éventuel. Remar- 
quons que dans l'équation (8), les limites d'intégration vont de - 00 à 
+ 00, et on peut imaginer que si les fluctuations deviennent grandes, la 
périodicité de 8 peut jouer un rôle. C'est ce qui se produit effective- 
ment : des excitations de caractère topologique, faisant intervenir la 
périodicité de 8, arrivent à détruire le quasi-ordre à basse température. 
Ces excitations sont les vortex, ou tourbillons, dont le rôle a été élucidé 
pour la première fois par Kosterlitz et Thouless. 

A.3. Rôle des vortex 

Considérons une configuration de spins telle que ûi soit égal à 
r r / 2  + l'angle polaire <p par rapport à une certaine origine O (figure 2). 
(Le choix de rr/2 est arbitraire ; toute 
constante ferait aussi bien l'affaire). En 
coordonnées polaires, le gradient de û 
vaut : 

v e =  0 , -  = - .  ( 3 : 
Si C est un contour fermé entourant le 
point O : 

f c V û . d 1 = 2 r r .  
Figure 2.  U n  vortex. 

Une telle configuration de spins est un exemple de vortex. Plus 
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généralement, comme û est une variable périodique, on aura : 

f c V B . d l = 2 r r q  q = O , - + 1 , , 2  ,... 

où q est la vorticité (ou intensité du vortex). 
Calculons l’énergie associée au vortex de la figure 2 : 

Naturellement les approximations faites pour obtenir (14) ne sont 
valables que suffisamment loin du centre O du vortex et il faudrait 
rajouter à (14) une constante à calculer numériquement. 

Comme le centre du vortex peut être choisi n’importe où sur le 
réseau, l’entropie associée à la création d’un vortex est : 

s = in (L/a)’ 

puisqu’il y a (L/a)’ sites. L’énergie libre associée à la création d’un 
vortex est : 

L F = E - TS = (TJ- 2 T )  ln- 
a 

et on voit que les vortex vont déstabiliser le quasi-ordre pour 
T z T,  = mJ/2. En réalité les vortex sont créés par paires, et il serait 
plus correct de raisonner sur la création de paires (cf. exercice 1). 

I1 est maintenant possible de résumer la description des phases du 
système telle qu’elle a été proposée par Kosterlitz et Thouless : à basse 
température, les fluctuations de grande longueur d’onde , aussi appelées 
ondes de spin, sont les seules configurations importantes, et les 
corrélations décroissent en loi de puissance : on obtient un système 
quasi ordonné, avec des îlots d’aimantation de toutes les tailles. I1 
n’existe pas de vortex << libres », mais on peut trouver des paires de 
vortex de vorticité opposée, qui affectent le système uniquement sur de 
petites distances. Quand la température croît, la taille des paires vortex- 
antivortex augmente, et diverge à T = T, où apparaissent des vortex 
libres. Ces vortex déstabilisent le quasi-ordre des ondes de spin et la 
fonction de corrélation décroît exponentiellement. 
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B. ANALYSE PAR LE GROUPE DE RENORMALISATION 

Dans le modèle X Y ,  les ondes de spin restent couplées aux vortex, ce 
qui rend un calcul complet impossible. C’est pourquoi nous allons 
introduire un modèle très voisin du modèle X Y ,  le modèle de Villain, 
où les ondes de spin sont découplées des vortex. Le modèle de Villain 
possède les mêmes caractéristiques topologiques que le modèle 
XY et il est raisonnable de penser (quoique cela n’ait pas été prouvé 
rigoureusement) que ses phases sont identiques à celles du modèle 
XY. 

B.l. Modèle de Villain (’) 

Ecrivons pour un lien une décomposition de Fourier : 
m 

où p = J / T  et I n ( @  ) est une fonction de Bessel d’argument imaginaire : 

Lorsque p -+ CU (T-+ O ) ,  e-p I n @ )  peut être approché par 
1 -exp(- n 2 / 2  p )  e t :  

J2 ..P 

Ce résultat aurait pu être obtenu directement en remarquant que pour 
p -+ CU, la contribution principale à l’intégrale (16) vient de la région 
8 - 0  e t :  

-p2  1 
e- p (1 - COS e )  - - e  

Le point important dans (17) est que l’approximation faite, même si 
elle n’est valable que pour T -+ O, préserve le caractère périodique de la 
variable 8. Négligeant la constante multiplicative ( 2  n-p )- ’” on obtien- 
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dra le modèle de Villain en écrivant : 

où n ,  (x) est un vecteur de composantes entières nl (x) et n2(x) associé à 
chaque site x. La fonction de partition du modèle de Villain est donc (il 
n’y a pas de sommation sur les indices répétés dans (18)) : 

2 = f ’  fl dû(x) fl f exp(in, a,û(x))exp(- ni(x)/2 p ) .  
X x , p  n , ( x ) = - m  

(18) 

Examinons l’intégrale sur û(x):  on trouve les termes suivants dans 
l’exponentielle : 

L’intégrale sur û (x) donne un résultat non nul seulement si : 

[n1(x) - n1 (x - Pl)] + [nz(x> - n2(x - P2)l = 0 

c’est-à-dire si : 

8,n,(x) = o .  

Autrement dit n(x) est un vecteur à << divergence discrète >> nulle. I1 
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pourra donc s'écrire comme un rotationnel ( E ~ ~  = - = 1, = 

E22 = 0) 

où p ( x )  est un champ scalaire à valeurs entières. 
partition (18) devient (à une constante multiplicative 

La fonction de 
près) : 

Utilisons maintenant la formule de sommation de Poisson (*) : 

W m Pm 

pour transformer 2 en : 

(*) Formule de sommation de Poisson : soit f ( z )  une fonction holomorphe dans la 
bande - p -Z Im z < p et 

F ( z ) =  f f(v + z )  
v = - m  

supposée également holomorphe. F ( z )  étant holomorphe et de période 1 possède un 
développement de Fourier uniformément convergent : 

W 

F ( z )  = c A,eZi'"' 
" = - W  

Mais F ( 0 )  est également donné par : 
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où m(x) est un champ scalaire à valeurs entières. I1 est maintenant 
possible d’intégrer sur Q :  

1 m 

Z = Z s w  C e x p ( - 2 ~ ’ p  C m ( x ) G ( x - x ’ ) m ( x ‘ )  (20) 

où Zsw, qui est le déterminant provenant de l’intégration sur Q, est la 
fonction de partition des ondes de spin (spin waves) : en effet si 
m = O, on trouve exactement la fonction de partition des ondes de spin 
(remarquez que les limites d’intégration sur Q sont maintenant 
- 00 < Q < + 00) .  Dans le modèle de Villain, les ondes de spins et les 
vortex sont découplés : 

m(x) = - m x, XI  

ou : 
H = Hsw + H ,  

z = z,, z, 
alors qu’un tel découplage n’est pas réalisé dans le modèle XY (reste à 
identifier m(x) avec la vorticité, ce qui sera fait un peu plus loin). Dans 
l’expression (20) il est commode de revenir à la fonction de corrélation 
régularisée G(x) de (9.b) en écrivant : 

G(x - x ‘ )  = [G(x - x ’ ) -  G(O)] + G(0) 
= G(x - x’) + G(0) 

Z = Zsw 1 exp ( - 2 n /3 G (O) (E m(x)) - 
m(x) 

- 2 7 2 p  m(x) G ( X  - x’)m(xl )  . 
x, x’ 1 

1 
2 T  

Comme G(0) - -In (Lia), on constate qu’à la limite L + 00, 

seul le terme de vorticité nulle : 

C m(x) = O 

donnera une contribution. Ceci permet d’écrire la forme finale de la 
fonction de partition : 

X 

où C ’ indique que l’on doit sommer seulement sur les configurations de 
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vorticité totale nulle. A grande distance, on peut montrer qu’une bonne 
approximation de G(x) est (cf. note page 156) : 

- 1 r 1  G(x)= - -In- - - . 
2rr a 4 

Tenant compte de (22) et de la relation : 

2 m(x)m(xl) + p 2 ( x )  = O 
X#X‘ X 

on peut récrire la fonction de partition : 

m2(x) peut être interprété comme prove- ) 
nant d’un potentiel chimique rr2 j3 /2 ; on l’écrit conventionnellement : 

) 
et dans le modèle de Villain : y = yo  = exp (- $ ) . Ce terme 

permet de contrôler la densité de vortex. En effet si y + O, le potentiel 
chimique défavorise la création de vortex. Quand y croît, le nombre de 
vortex augmente. 

Pour identifier m(x) avec la vorticité, il faut étudier la loi de force 
entre vortex. On peut montrer facilement (exercice 1) que deux vortex 
tels que ceux dessinés sur la figure 2 s’attirent ou se repoussent (selon le 
signe relatif de la vorticité) suivant une loi de force déterminée par le 
potentiel (22). Cette remarque permet l’identification souhaitée. 

I1 est utile de noter l’analogie avec un gaz de Coulomb à deux 
dimensions : la foncticn de partition (23) est celle d’un gaz bidimension- 
nel de charges 2 rr J J  m(x) disposées aux nœuds d’un réseau, avec un 
terme de potentiel chimique contrôlant la densité de ces charges. 
Lorsque y + O, il existe quelques paires de charges proches l’une de 
l’autre, et le système est un diélectrique. Lorsque y croît, il apparaît de 
plus en plus de charges, la taille moyenne des paires croît et on finit par 
obtenir des charges libres, c’est-à-dire un plasma. 
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8.2. Groupe de renormalisation pour le modèle XY 

Ecrivons la fonction de partition des vortex en présence d'un 
potentiel chimique y (avec le changement de notations x' -+ z) : 

Lorsque y - +  O, les configurations dominantes sont celles à zéro 
vortex et à deux vortex de vorticité opposée & 1. On aura par exemple 
un vortex (+ 1) au point x et un vortex (- 1) au point z. La somme sur 
les configurations devient donc une somme sur x et z, et l'on trouve : 

X Z Z  

soit en passant à une formulation continue 

La notation implique que l'on doit avoir )I x - z (1 =- a dans (24) : 

la signification physique du cut-off en II x - z I I  est que les centres de 
deux vortex ne doivent pas être à une distance inférieure à a. 
Effectuons maintenant une dilatation du cut-off : a -+ sa : 

On revient au cut-off initial en posant : x = sx', z = sz' : 

Comparant les équations (24) et (25) on constate que dans cette 
transformation du groupe de renormalisation, le paramètre y se 
transforme en y' : 

Pour 4 - 2 .rrP -= O, c'est-à-dire si 

J nJ 
c 2  

T < T  =-  
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y décroît dans une TGR: on atteint donc la zone où le nombre de 
vortex -, O. Au contraire si T > T,, le nombre de vortex croît dans une 
TGR. Lorsque T -= T,, le comportement à longue distance est décrit 
par la situation où y = O, c’est-à-dire par des ondes de spin pures : la 
fonction de corrélation décroît comme une puissance. Au contraire 
pour T >  T,, le comportement à longue distance est décrit par une 
situation où le nombre de vortex est grand : la fonction de corrélation 
décroît exponentiellement (figure 3). 

Figure 3. Diagramme de flot pour y -+ O. 

On peut donner une interprétation de l’équation (26) dans le langage 
du gaz de Coulomb ; à basse température, les vortex sont liés en paires, 
et l’augmentation de a élimine les paires de vortex dont les centres sont 
très proches : la densité effective de vortex diminue. A haute tempéra- 
ture, les vortex ne sont pas liés en paires, et l’augmentation de a accroît 
leur densité effective. 

L’analogie avec le gaz de Coulomb suggère que l’équation (26) ne 
décrit qu’une partie du groupe de renormalisation : les paires très liées 
diminuent les forces entre les vortex éloignés par effet d’écran. Cet effet 
peut être calculé et conduit à l’équation : 

dT 2 -- - Y .  d Ins 

Les équations complètes du groupe de renormalisation sont finalement : 

dT 

Le point remarquable est évidemment à 

(28.a) 

(28.b) 
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Au voisinage de ce point, on vérifie aisément que : 

-[ d ( 2 - T ) 2 - ; r J y 2 ]  T J  4 = O  
d Ins 

et les trajectoires décrites dans une suite de TGR sont donc de la 
forme : 

I1 est immédiat de tracer la forme des trajectoires au voisinage du point 
(29) (figure 4), en posant par exemple T = T, + x. 

T, = r J / 2  

Figure 4. Diagramme de flot du modèle X Y ;  
- - - .  . ligne physique du modèle de Villain. 

Considérons par exemple une trajectoire de la région I : comme deux 
points sur une même trajectoire donnent une physique à longue 
distance identique, tous les points de la région I définissent des théories 
dont le comportement à longue distance est le même que celui des 
théories ayant y = O ,  qui correspondent à des ondes de spin pures. On 
retrouve donc la ligne de points fixes. 

Une analyse plus poussée montre que pour T > T,, la longueur de 
corrélation [ ( T )  (pour T >  T,) se comporte comme : 

T -  T,  T - l  T: 
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et que l’énergie libre est en : 

e x p i - 2 b (  A)”). 
Toutes les dérivées par rapport à T de l’énergie libre sont donc 

continues à T = T,. On peut appeler une telle transition de phase 
<< transition d’ordre infini ». 

Enfin à T = T,  la fonction de corrélation décroît en r-  1’4, conformé- 
ment à la prédiction heuristique du paragraphe A. 

c.  MODÈLES-u NON LINÉAIRES 

Lorsque n 3 3 (toujours dans le cas bidimensionnel) on a affaire aux 
modèles appelés << modèles-a non linéaires ». L’analyse de ces modèles 
par le groupe de renormalisation est instructive, car la température est 
dans ce cas une variable marginale, et on peut illustrer de façon non 
triviale les développements du paragraphe III-F. Pour fixer les idées je 
me placerai dans le cas n = 3 (modèle de Heisenberg) ; il sera facile de 
généraliser à n quelconque. 

Le spin S étant un spin à trois composantes, la fonction de partition 
s’écrit (on remarque la symétrie O (3)  du hamiltonien) : 

Z =  fl dS(x)exp s, 
la << constante de couplage D g étant directement proportionnelle à la 
température : 

g = T/J  . 

Comme dans le modèle d’Ising à 1 dimension, il n’y a pas de 
transition de phase à température finie. Cependant la longueur de 
corrélation tend vers l’infini quand T (ou g )  tend vers zéro, et on peut 
considérer T = O comme la température critique. 

Comme d’habitude il est commode de passer à une formulation 
continue ; toutefois on souhaite conserver la condition S2 = 1 et la 
symétrie 0(3)  du hamiltonien de départ. On obtient donc une 
formulation continue très différente de celle de Ginzburg-Landau : 

] = 
d2x A?(.) (31) 
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avec la notation : 

3 

(V.S)2= a = I  ( v . s , ) 2 =  a = l  [ ( 2)2+ ( $ ) 2 ] ,  

En raison de la contrainte S2 = 1, seules des puissances de 
(0. S)2, ou de dérivées d‘ordre plus élevé, peuvent apparaître dans 

Lorsque g -+ O, on observe de grands domaines où l’orientation des 
spins est quasiment uniforme, car le système a tendance à s’aimanter 
spontanément au voisinage du point critique. I1 y a évidemment des 
fluctuations autour de cette orientation. Nous sommes conduits à 
distinguer des fluctuations de grande longueur d’onde, correspondant à 
une rotation lente de l’aimantation, et des fluctuations de courte 
longueur d’onde autour de cette évolution lente. Décomposons S en 
une composante S I  variant lentement, et telle que SI  soit d’ordre 1, et 
une composante S, fluctuant sur de courtes distances. D’après le 
raisonnement fait dans l’introduction, on s’attend à ce que les fluctua- 
tions de S, soient d’ordre g (cf. (1)). I1 sera commode de paramétrer S 
de la façon suivante : 

(31). 

SI = J1 - Stcos 6 

SZ = j î  - s3sin 0 

(32.a) 

(32.b) 

en prenant S I  dans le plan (1, 2). La paramétrisation (32) respecte la 
condition S2 = 1 ; S3 fluctue sur des courtes distances, 6 sur des courtes 
et longues distances (6, et 6,). 

La densité de hamiltonien devient : 

en négligeant les termes d’ordre supérieur dans (31). Comme on 
s’attend à ce que S3 - Ji, on peut écrire pour g + O : 

1 3!Y = - [(V * S3)2 + (1 - S,”) (V6)2 + S,2(VS3)2 + * * - ] . 
2 9  

Finalement on fait un changement d’échelle sur S3 de façon à .éliminer 
le facteur multiplicatif llg : 

S 3 ( X ) +  J a w  
(Vû)2 + gh2(Vh)’ +.  - - 1. (34) 
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La forme (34) de 3? présente l’intérêt suivant : les fluctuations de h 
affectent celles de û (par l’intermédiaire du coefficient de (Vû)’ dans 
(34)), mais celles de û ne réagissent pas sur h. Pour g + O, le dernier 
terme de (34) peut être négligé. 

Effectuons maintenant l’intégration sur les fluctuations de vecteur 
d’onde compris entre A/s et A ; organisons le calcul de Z de la façon 
suivante : 

x exp (- ; d2x[(Vh)’ - h2(Vû)2] ) . (35) 

Evaluons la dernière intégrale de (39 ,  en remarquant que (Vû)’ est 
petit (- 9 )  : 

9 h ( k )  exp (- i s d2x(Vh)2) x 
= f A / s s k s A  

x exp ( i S d2x(Vû)’ h 2 )  = J A I S  9 h ( k )  x 
s k s A  

x e x p ( - $ ~ d 2 x ( V h ) 2 )  ( 1 + ~ ~ d 2 x h 2 ( V û ) 2 + . . .  . 

A une constante près, Z est donnée par 

I = 1 + - d2x Gs(0) (Vû)’= exp 2 ‘ S  
où : 

1 =- Ins ,  d2k s n l s  (2 T)’ k2 2 lT 
GJO) = (37) 

tandis que l’intégration sur 8 donne une constante multiplicative. 
Après cette intégration sur les courtes longueurs d’onde, le terme en 
(V6 )2 du hamiltonien est affecté d’un coefficient : 

1 Ins = - 1 1  
2 9  41T 2 9  

et la nouvelle constante de couplage g’  vaut : 
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Cette équation se transforme immédiatement en équation différentielle 
pour la constante de couplage : 

Si l’on se souvient de la définition (111.83) de la fonction P (g),  
l’interprétation de (39) est immédiate : on vient juste de calculer le 
premier terme du développement perturbatif de P (g)  : 

Les équations (38) ou (39) montrent que l’intégration sur les 
fluctuations de courte longueur d’onde conduit à une augmentation de 
la température ; cette intégration fait donc correspondre au système 
initial un système à plus haute température possédant le même 
comportement à longue distance. Si les intégrations successives condui- 
sent à une température tendant vers l’infini, les propriétés à longue 
distance seront celles d’une théorie à haute température, et la fonction 
de corrélation se comportera exponentiellement à toute température. 
Pour que cette conclusion soit correcte, il faut que la fonction 
P (g) ne possède pas de zéro sur l’axe g =- O (cf. chapitre VII), mais il 
est évidemment impossible de décider de cette éventualité par un calcul 
perturbatif. 

De façon quantitative, la longueur de corrélation 5 (9‘) à la tempéra- 
ture TI(= g’ J )  est donnée en fonction de la longueur de corrélation 
5(g) à la température T ( =  gJ) par : 

D’après la définition de la fonction P (g) : 

B’ dg” 
s = exp (- S, -) 

P (9“) 

et donc : 

En utilisant l’expression (39) de P (g), en prenant g‘ - 1, $(g‘) - 1 et 
g + O, on trouve : 

6 (9) e2 T / g  . (41) 

Le groupe de renormalisation montre que le comportement de 
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6 (9) pour g + O est non perturbatif: à cause de la non-analyticité à 
g = O, jamais la théorie des perturbations ne pourrait donner le résultat 
correct. On remarquera également que le comportement de 6 pour 
T -+ O est analogue à celui du modèle d’king à 1 dimension (cf. 1.11). 

Le terme d’ordre g3 de la fonction p (9) a été calculé : 

P (9) = - P0g2 - Pi g3 + O b 4 >  

ce qui permet de donner pour 6 (g ) une expression plus précise que (41) 
(exercice 2). 

Pour conclure, notons une interprétation géométrique du résultat 
(39) : l’intégration sur les fluctuations de courte longueur d’onde 
conduit à une variable de spin S’ telle que II S’ )I < 1. Pour ramener le 
hamiltonien à sa forme initiale, il faut faire un changement d’échelle sur 
le spin : S’ -+ S’/ )I S’ 1) , qui peut être absorbé dans une modification de 
la constante de couplage : g -+ g/ I I  S’ I (  ’. On retrouve bien le fait que la 
température a augmenté dans l’opération. 

Lorsque n 3 3, on remarque que les seules composantes du spin qui 
contribuent à la renormalisation sont celles qui sont perpendiculaires au 
plan du mouvement d’ensemble lent ; il y a donc (n  - 2)  composantes 
qui contribuent effectivement à la renormalisation de la constante de 
couplage et l’équation (39) devient : 

Les modèles-a non linéaires possèdent la propriété de liberté 
asymptotique (cf. VII-C.2) : g est une fonction décroissante du cut-off. 
Cette propriété permet des analogies intéressantes avec les théones de 
jauge non abéliennes (chapitre XIII). 

EXERCICES 

1) On se propose d’examiner une paire vortex-antivortex créée dans une 

(a) En examinant la configuration de la figure 5 (où 8 ,  = T) montrer que 
configuration teiie que û -t ûm dans toutes les directions du plan. 

i’énergie de la paire de vortex est qualitativement : 

E = 2 ~ J l n r  

où r est la distance entre les deux centres. 



172 Exercices IV.1 

- I I I I -  I I I 1 - 1  I I 
i I $  

Figure 5. Une configuration vortex-antivortex. 

(b) On procède de façon plus quantitative en se donnant û par la relation 
( z  = x + iy ) (3) : 

iem{ ( Z - Z O )  IZ +.O/ ] = e  - - .  
Iz - ZOI (z + .O> 

Tracer qualitativement l’allure de û, et montrer que l’expression précédente 
correspond bien à un vortex q = + 1 en zo et un vortex q = - 1 en 
- zo. (On pourra choisir zo sur l’axe réel.) 

(c) Afin d’évaluer le hamiltonien, il est commode de définir la fonction 
analytique : 

~ ( z )  = eium(z - zo>/(z + zo> = eiem p eie 

Pour calculer d2x(Vû )’, il faut évidemment exclure les points singuliers que 

l’on entoure par deux cercles Ci de rayon a, définissant ainsi un domaine D. 
Montrer que les conditions de Cauchy-Riemann pour in F dans D impliquent : 

V2inp  = v 2 û  = O ;  (ve) ’=  ( V i n p ) 2 = V ( i n p V i n p )  

I 
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et en déduire : 

H = - J  2 d2X(VO)2 = - - J  ; ~ J c z $ l l n P ( n . V l n P : ~  ' S  
= - 2 r r J l n  1 2 . ~ ~ 1  - 2 n p l n a .  

(d) Utiliser cette expression pour calculer l'énergie libre d'une paire et 
retrouver l'argument qualitatif du paragraphe A.3. 

2) Montrer que si la fonction P (9) du modèle-cr non linéaire est donnée par 
le développement perturbatif : 

P (9) = - Po 9* - Br CT3 -+ 0 (CI4) 

on obtient pour t ( g )  : 

La seule origine de la non-analyticité provient des deux premiers termes de 
P (9). 
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DEUXIÈME PARTIE 

Théorie des perturbations 
et renormalisation : 

champ scalaire euclidien 





CHAPITRE V 

Développement perturbatif 
Diagrammes de Feynman 

Ce chapitre se propose de développer de façon systématique des 
concepts et des techniques qui ont été introduits dans les trois premiers 
chapitres : fonction de corrélation et fonction génératrice (I-D. l), 
transformation de Legendre (I-D.5) , développement perturbatif et 
développement en nombre de boucles (II-D.2, III-D.3 et III-E.3). Les 
outils utilisés seront la fonctionnelle génératrice et l’intégration gaus- 
sienne. Dans plusieurs cas il sera possible d’expliquer la méthode 
utilisée sur un exemple à une seule variable, dont l’étude préalable 
permettra de mieux suivre la démonstration générale. 

Dans le paragraphe A, nous établissons le théorème de Wick, qui 
sera à la base du développement perturbatif, comme conséquence de 
l’intégration gaussienne. Le paragraphe B est consacré au développe- 
ment perturbatif des fonctions de corrélation G(2) et G(4), et introduit 
les diagrammes de Feynman: à chaque terme (ou plus exactement à 
chaque groupement de termes) du développement perturbatif , on fait 
correspondre un diagramme , et à chaque diagramme correspondent des 
règles de calcul. Au paragraphe C on étudie la classification des 
fonctions de corrélation : connexes, une particule irréductibles et vertex 
propres. La transformation de Legendre est utilisée pour obtenir la 
fonctionnelle génératrice des vertex propres. Cette fonctionnelle géné- 
ratrice, qui généralise le potentiel de Gibbs, permettra de préciser au 
paragraphe D les notions de symétrie brisée et de développement en 
nombre de boucles. L‘évaluation pratique des graphes de Feynman est 
expliquée au paragraphe E, tandis que des arguments simples, mais 
riches de conséquences, sont donnés au paragraphe F pour déterminer 
le comportement des graphes lorsque certains moments tendent vers 
l’infini (comportement ultraviolet) ou vers zéro (comportement infra- 
rouge). 
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J'utiliserai dans ce chapitre le vocabulaire et les notations de la 
théorie quantique des champs. Ainsi le hamiltonien de Ginzburg- 
Landau (11.19) sera écrit avec le changement de notations : r,, + m2 et 
uo -+ g,  où m est une masse et g une constante de couplage. Les 
vecteurs d'onde seront appelés moments (p = h k avec h = 1). Enfin les 
notations vectorielles seront supprimées pour k et x (k -+ k ,  x -+ x), sauf 
s'il peut y avoir ambiguïté. 

A. THÉORÈME DE WICK ET FONCTIONNELLE GÉNÉRATRICE 

Dans ce paragraphe, nous reprendrons en les généralisant des 
résultats du chapitre I (paragraphe D) et de l'appendice A. Le point 
essentiel est d'obtenir une expression compacte pour les fonctions de 
corrélation à N-points (cp (xi) cp (x2) ... cp (xN)) et des règles de calcul 
pour un hamiltonien gaussien. La méthode peut être expliquée dans le 
cas d'une seule variable. 

A.l .  Fonction génératrice pour une seule variable 

Soit P (cp ) la distribution de probabilité d'une variable aléatoire : 
P (9 ) z= O ; toutefois on ne suppose pas que P ( c p  ) est normalisée : 

P (cp ) dcp n'est pas nécessairement égal à 1. 

La fonction génératrice 20') est définie par : 
s 

Z ( j )  = dcp P ( q ) e J q  ; s 
on suppose implicitement que P (cp ) décroît suffisamment rapidement à 
l'infini pour que l'intégrale dans (1) soit convergente. L'intérêt de 
2 ( j )  est qu'elle permet d'obtenir par dérivation les moments ( cp ") de 
la distribution de probabilité P (cp ) : 

r 

Inversement Z ( j ) / Z ( O )  est donné en fonction des (cp") par : 
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Dans le cas d'une distribution de probabilité gaussienne : 

P(cp)=exp ( : A )  - - c p - c p  (4) 

on trouve, en utilisant l'équation (A.9) : 

Z ( j )  = Z ( 0 )  exp ( j A j )  ( 5 )  

(remarquez que les rôles de A et A-' ont été échangés) et (l'indice O 
indique une valeur moyenne pour une distribution de probabilité 
gaussienne) : 

a2n 1 1 j A j )  1 ,  = --; ( jAj) .  
(6) 

, = O  a J 2 n n !  2 
( 2  n ) !  
2" 12! 

- -- A n =  ( 2 n - 1 ) ! ! A n .  

Pour obtenir la deuxième égalité, on a développé l'exponentielle et 
remarqué qu'un seul des termes du développement peut contribuer, à 
cause des 2 n dérivations et de la condition j = O ; (2 n - l)!! = 
(2 n - 1). ( 2  n - 3). ... 3.1. Naturellement, tous les moments impairs 
sont nuls : (cp + ') = O. L'équation (6) peut être récrite en fonction 
du moment d'ordre 2 : (cp 2, = A 

((p*")o = ( 2 n  - l)!! ((p2) ;  . (7) 

Si P (cp ) n'est plus gaussien, mais a par exemple la forme : 

P ( c p ) = e x p ( - m c p 2 + f ( c p ) )  1 

alors : 

1 z(j)  = j d<p e x p ( - s  c p 2 +  f ( c p )  + j c p )  

La fonction génératrice peut être écrite : 

z(i> = exp ( f ( + ) j dcp exp ( - cp2 + icp . (8) 

Cette égalité s'obtient à partir de : 

f ( $ ) ejp = f ( c p )  ejp 
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que l'on démontre en écrivant un développement de Taylor au 
voisinage de O pour f 

A.2. Théorème de Wick 

La généralisation à N variables des considérations précédentes 
permet de démontrer un théorème fondamental pour les intégrations 
gaussiennes, le théorème de Wick. Partons d'une distribution de 
probabilité gaussienne à N variables : 

où : 

p T A - ' p  = piAG1 pj 
i ,  i 

et définissons la fonction génégtrice Z ( j )  : 

N 

Z ( j  17...,j,,,)= n d p i e x p ( - S p T A - l p + j T p ) .  (9) 
i = l  

D'après l'équation (A.lO) cette fonction est égale à : 

et l'équation (10) donne les moments de P (p) par dérivation : 

L'équation (11) permet de démontrer la généralisation de (6) : pour 
une distribution gaussienne, tous Les moments s'expriment en fonction 
des moments d'ordre 2. En théorie quantique des champs, ce résultat est 
connu sous le nom de Théorème de Wick. La démonstration n'est pas 
difficile ; commençons par le moment d'ordre 2 : 

La quantité pTpiz est appelée contraction de <pi, et 'pi,. La dérivation 
dans (11) donne (2 n ) !  termes ; cependant il faut diviser par 2" n! et le 
nombre total de termes dans le membre de droite de (11) est donc 
(2 n - l)!!. Mais ce nombre n'est pas autre chose que le nombre de 
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I < p i Z n  : en effet il y a façons de former les paires <pT<pi, <p-i, ... <pi,,_, 
(2  n - 1 ) façons de former la première paire <p-ik, ( 2  
de former la seconde, etc. On trouve donc : 

- 3 façons 

Exemple : 

I1 est important de noter que le nombre total de termes ne change pas 
même si certains indices sont identiques : - -  n -  

(<pl 9 2  (P2  %JO = <pi 'pz cp2 <p4 + v-2 < p 2 4  + <pi <p4 <p2 (P2 

- r - l  
= 2 <pT<p2 < p m 4  + <pi <p4 <p2 <p2 

D'ailleurs si tous les indices sont identiques on retrouve le résultat (7) : 

( < p 2 n > o  = (2  n - il!! (<p2>i. 

A.3. Fonctionnelle génératrice 

Les résultats précédents peuvent être appliqués à une théorie 
continue, considérée comme la limite d'une théorie sur réseau : cf. II- 
A.3. Si l'on suppose que la densité de probabilité est donnée par un 
hamiltonien du type Ginzburg-Landau (II. 19) : 

P[<p]  = exp(- H G L )  = exp ( - j d D x (  

la << fonctionnelle génératrice D (des fonctions de corrélation) Z ( j )  sera 
définie par : 

La fonction j ( x ) ,  appelée source du champ cp, joue le rôle du champ 
magnétique B ( x ) .  I1 est utile de définir la densité de hamiltonien 
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Z ( x )  par : 

H =  d D x Z ( x ) ;  Z ( x ) = - ( V c p )  1 2 1  + - m 2 c p 2 + 9 c p 4 .  s 2 2 4! 

Les moments d'ordre (2n) ,  qui ne sont pas autre chose que les 
fonctions de corrélation à (2 n)-points, sont obtenus par dérivation 

La fonction de corrélation à deux points : 

avait été appelée simplement << fonction de corrélation >> dans la 
première partie, car c'était la seule à intervenir et il n'était pas 
nécessaire de préciser le nombre de variables. 

I1 est commode de séparer dans le hamiltonien H une partie 
gaussienne (i.e. quadratique en cp) H o :  

et un terme V dit d'interaction : 

V = dDx cp4(x). (18) 

g 4  
4! 

4! s 
Plus généralement on pourrait prendre au lieu de - cp un polynôme en 

cp, Y" ( c p  ), pair si l'on veut respecter la symétrie cp -, - cp ; on pourrait 
aussi introduire des interactions du type cp 2(Vcp )2, dites interactions 
dérivatives ; afin de simplifier la discussion, je les laisserai provisoire- 
ment de côté. L'expression (8) se généralise alors à :  

pour une interaction : 
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L‘intégrale sur cp (x) dans (19) est une intégrale gaussienne ; en utilisant 
(10) on obtient : 

où Go(x - y )  est la fonction de corrélation à 2 points du modèle 
gaussien (Go(x,  y)  joue le rôle de Aij )  : 

La fonctionnelle génératrice Z ( j )  peut donc être mise, à une constante 
multiplicative près, sous la forme : 

Z ( j ) = X e x p ( - S d B * Y (  - ) )  6 x 

6.i 

Dans toute la suite, X désignera une constante de normalisation des 
fonctionnelles génératrices. Cette constante ne joue en général aucun 
rôle, et il ne sera pas nécessaire de la préciser. Aussi compacte que soit 
la forme (22) de Z ( j ) ,  celle-ci n’est pas directement calculable. I1 faudra 
développer en série perturbative. 

Avant de passer à ce développement, rappelons que pour décrire un 
système physique dont le paramètre d’ordre est de dimension n,  nous 
avons dû généraliser le hamiltonien de Ginzburg-Landau en introdui- 
sant un champ à n composantes cpi (x)  (i = 1,2,  ..., n ) :  

Ce hamiltonien est invariant par rotation dans l’espace à n dimensions 
des << indices internes D i : en effet il ne dépend que de la 
(<< longueur »)‘ du champ dans cet espace : 

ou de termes contenant des dérivées, également invariants par rotation. 
Comme le groupe des rotations dans un espace à n dimensions est en 
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général noté O ( n )  ( O ( n )  contient aussi les opérations de symétrie 
pi -+ - cp i ,  qui elles aussi laissent le hamiltonien invariant), on appelle 
ce hamiltonien : << hamiltonien de Ginzburg-Landau avec symétrie 
O ( n )  ». 

B. DÉVELOPPEMENT PERTURBATIF DE G‘” ET G‘4) 
DIAGRAMMES DE FEYNMAN 

L’objectif de ce paragraphe est d’établir des règles générales pour le 
calcul perturbatif des €onctions de corrélation, qui donneront le résultat 
sous forme d’un développement en puissances de g : 

G = Go + gG, + g2 G2 + * e .  + 9” G, + e - -  

où Go est la fonction de corrélation du modèle gaussien. Ces règles 
s’expriment très simplement sous forme diagrammatique : ce sont les 
fameux << diagrammes de Feynman ». Comme précédemment je 
commencerai par le cas d’une seule variable afin d’exposer le principe 
de ce développement. Je prendrai comme exemple l’interaction en 
cp4, mais les résultats se généralisent aisément à une interaction 
polynomiale Y (cp ) quelconque. 

B. 1. Développement perturbatif pour une variable 

Considérons une distribution de probabilité 

et essayons de calculer les moments de cette distribution. I1 n’est pas 
possible d’obtenir une formule exacte pour Z ( O ) ,  mais si g est petit on 
peut développer exp (.- $ cp4)  : 

= J G X  ( 1  - - 1 gA2 + - 35 g2A4 + - 
8 384 

Calculons maintenant (p ‘) , analogue pour une variable de la fonction 
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de corrélation à deux points : 

( q 2 )  s'obtient en faisant le rapport de (24) et (25) : 

(26) 2 2  4 A + * . e  

L'équation (26) est un exemple élémentaire de développement pertur- 
batif. Remarquez que si g = 0, on retrouve simplement 
( 2, = A = valeur gaussienne ; remarquez aussi que la constante ,1"2 T A  disparaît dans le rapport : on vérifie sur ce cas particulier que la 
constante due à l'intégration gaussienne est sans effet sur la fonction de 
corrélation. 

B.2. Calcul de G(*) à l'ordre g 

Revenons maintenant au cas d'une théorie de Ginzburg-Landau et 
calculons le terme d'ordre g de la fonction de corrélation G@)(x  - y )  : 
I1 faut évaluer à l'ordre g l'intégrale : 

Le premier terme du crochet donne simplement 

J - ( c p ( X )  cp (Y ) )o  = J-Go@-Y) 

où la constante M vaut : 

L'intégrale correspondant au second terme : 

J gcpcp (XI cp ( Y )  e-H' J dDz cp4(Z) 
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est évaluée à l’aide du théorème de Wick (13). Le nombre de 
contractions dans (27) est égal au nombre de contractions de 
cp ( x ) ,  cp ( y )  et cp4(z). I1 est commode de représenter ces contractions 
sur une figure en dessinant deux points << externes D (c’est-à-dire se 
référant aux arguments de la fonction de corrélation) x et y ,  marqués 
d‘une croix, et un point <<interne D ou << vertex D z ,  provenant du 
développement de e-’, et sur lequel on intégrera. Comme q ( z )  
intervient par sa quatrième puissance, ce point apparaîtra dans un 
premier temps en quatre exemplaires. Chaque contraction sera repré- 
sentée par une ligne joignant les arguments de cp: par exemple : 

Deux types de termes sont possibles (figure 1) : 

4 x 3 = 12 termes 

3 termes 

Figure 1. 

On vérifie que 12 + 3 = 15 = (6 - 1 )!!. Afin de simplifier les figures, 
on groupe les quatre points z en un seul, obtenant les figures suivantes 
(figure 2) : 

x z y x  Y 

Figure 2. Les deux diagrammes 
d’ordre g .  

Ces figures sont appelées diagrammes (ou graphes) de  Feynman ; à 
tout terme, ou plus exactement à tout groupement de termes, du 
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développement perturbatif correspondra un tel diagramme. L’intégrale 
Z vaut : 

- I g  S dDzGo(x-z)Go(0)Go(z-y) 2 

Pour obtenir la fonction de corrélation, il faut diviser par Z(O), 
comme dans l’exemple à une variable : 

) Z(0) = 9 r p  e-Ho (1 - $ dDz rp4(z) + . e  - 

d D z + - . .  . S I  
Le deuxième terme du crochet de (29) est représenté par le graphe de la 
figure 3 : 

Figure 3. Diagramme de 
fluctuation du vide. 

Pour obtenir la fonction de corrélation à l’ordre g,  il faut faire le 
rapport de (28) par (29) : 

- g S dDz Go(x - z )  Go(0) Go(z - y )  + O ( g 2 )  . 

Le graphe (2) de la figure 2 n’apparaît pas dans le développement 
perturbatif de G. Un diagramme de ce type contient une partie dite de 
<< fluctuation du vide D ou diagramme << vide-vide n (terminologie 
empruntée à la théorie quantique des champs), c’est-à-dire un sous- 
graphe complètement disconnecté des points (( externes >> x et y (cf. 
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figure 2). D’autres exemples de diagrammes de ce type sont dessinés 
sur la figure 4 : 

X t U Y X  z Y 

Figure 4. Diagrammes ne contribuant pas à G ‘ 2 ) ( ~  - y ) ,  

Ces graphes n’apparaissent jamais dans le développement perturbatif 
des fonctions de corrélation. La somme des diagrammes de fluctuation 

du vide est égale à Z ( 0 )  = 9cp eëH, et c’est l’analogue de (24) dans 

le cas d’une variable. La division par Z ( 0 )  fait disparaître tous les 
graphes contenant une partie << fluctuation du vide B disconnectée du 
reste du graphe. La démonstration de ce résultat dans le cas général 
n’est pas très compliquée. 

Considérons un diagramme faisant intervenir le hamiltonien d’inte- 
raction à l’ordre (p + q ) ,  et comprenant une partie de fluctuation du 
vide d’ordre q ; un exemple est donné dans la figure 5 dans le cas où 

s 

-Y- = gcp4/4! : 

q = 2  

p = l  
X Y 

9 4  
4! V = - q  

Figure 5. 

Si n = p + q ,  il y a C$ façons de choisir q facteurs V pour former des 
diagrammes de fluctuation du vide. D’autre part le développement de 
l’exponentielle e-‘ fait apparaître un facteur 1 / n ! .  Un graphe de 
topologie donnée apparaîtra donc avec un facteur - C i  = - . 
Comme : 

1 1 
n! q! p !  

c c = c ,  
n p + 4 = n  P.4 
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dans le calcul de la fonction de corrélation, le numérateur pourra 
s’écrire : 

[Fluct. vide ( q ) ]  [Connecté (p)] 
p v  

P >  q 

1 [Connecté (p)] [Fluct. vide ( q ) ]  

Mais le second facteur est exactement égal à Z ( 0 )  et la fonction de 
corrélation est donnée par : 

1 CI [Connecté @ ) I .  
P p .  

Le calcul qui précède permet de commencer à deviner les << règles de 
Feynman >> , c’est-à-dire les règles associant au développement perturba- 
tif des diagrammes, ainsi que les prescriptions pour évaluer ces 
diagrammes (une démonstration complète sera donnée en B.5). A 
l’ordre g nous avons déterminé l’expression de G(2)(x - y )  : 

que l’on représente graphiquement par (figure 6) 

Figure 6.  Développement diagrammatique de G (*)(x - y ). 

L‘expression analytique correspondant à un graphe est évaluée grâce 
aux règles suivantes (<< règles de Feynman dans l’espace des x >>) : 

1) A chaque point interne, ou vertex, correspond un facteur 
- 9. 

2) A chaque ligne joignant deux points xi  et xi correspond un facteur 
G,(xi - xi) souvent appelé << propagateur >> (terminologie empruntée à 
la théorie quantique des champs). 
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3) On intègre sur tous les points internes zi : dDz,. I 
4) Chaque graphe est affecté d’un facteur numérique multiplicatif 

appelé << facteur de symétrie ». Dans le cas discuté plus haut, ce facteur 
vaut 1/2. 

En prenant une transformée de Fourier, l’équation (31) devient dans 
l’espace des k :  

G ( 2 ) ( k )  = G o ( k )  - g G o ( k )  [ I 3 Go(q)]  G , ( k )  . (32) 
2 (2 .r>D 

Cette expression suggère les << règles de Feynman dans l’espace des k >> 

(démonstration complète en B.5) : 

1) A chaque vertex correspond un facteur - g. 

2) A chaque ligne correspond un facteur Go(k) .  

3) A chaque boucle indépendante (cette notion sera précisée ulté- 

rieurement) correspond une intégration dDq/ (2 .r )D. I 
4) Enfin chaque graphe est multiplié par un facteur de symétrie. 
Le développement diagrammatique et les règles de Feynman sont des 

conséquences immédiates du théorème de Wick (13) : tout terme du 
développement perturbatif est un produit de Go@, - x i ) .  Le seul 
facteur qui n’est pas complètement évident est le facteur de symétrie. 
Par ailleurs on doit encore préciser la notion de << boucle indépen- 
dante ». Afin de se familiariser avec le développement perturbatif et les 
règles de Feynman, il vaut la peine de pousser le calcul de G t2) à l’ordre 
g2. 

B.3. Calcul de G(2) à l’ordre g2 

I1 faut appliquer le théorème de Wick à l’expression : 

Eliminant les termes contenant une partie de fluctuation du vide, on 
trouve trois types de graphes dessinés sur la figure7 avec entre 
parenthèses leur facteur de symétrie (exercice 1) : 



V.B.3 Développement perturbatif de G(’) et G(4) 191 

X Y 
c--. 
z U 

(2) c Z 3 U 
00 < a >  

Z U 

Figure 7. Diagrammes à l’ordre g2. 

I1 faut remarquer que les vertex z et u peuvent être permutés, ce qui 
donne un facteur multiplicatif 2! ; cependant le développement de 
l’exponentielle donne un facteur 1/2! qui le compense exactement. En 
règle générale, si l’on considère un terme en g n ,  le facteur n! venant de 
la possibilité de permuter les vertex sera compensé par le l / n !  venant 
du développement de l’exponentielle. 

Nous nous contenterons d’examiner la contribution G (x - y )  du 
graphe (1) de la figure 7 à la fonction de corrélation, en laissant au 
lecteur le soin d’établir l’expression analytique des deux autres graphes : 

dDz dDu Go(x - Z )  [ G ~ ( z  - u)I3 Go(u - y )  

Ecrivons G(x  - y )  sous forme d’une transformée de Fourier, en 
remplaçant chacun des facteurs Go par sa représentation de Fourier : 
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Les intégrations sur z et u donnent un produit de deux fonctions 6 :  

(2 T ) ~  S @ ) ( k  - ql - q2 - q 3 )  x ( 2  T ) ~  6 ( D ) ( k ’  - q i  - q2 - q 3 )  

d’où : 

Cette dernière expression montre que G ( x  - y )  est la transformée de 
Fourier d’une fonction G ( k )  : 

G ( k )  = kg2 G o ( k )  x 

et la représentation diagrammatique de (33) est donnée sur la figure 8. 
Le graphe dessiné sur cette figure comporte deux propagateurs externes 
G o ( k )  et trois propagateurs internes ; à cause des deux fonctions 
6 ( D ) ( .  . . ), seules deux des trois lignes internes sont indépendantes. Le 
diagramme de la figure 8 permet d’introduire la notion de boucles 
indépendantes : on peut tracer trois boucles fermées suivant les propa- 
gateurs internes, mais à cause des fonctions S ( D ) ,  seules deux de ces 
boucles sont indépendantes : il y a seulement deux variables d’intégra- 
tion dans (33). 

Pour terminer cette discussion du développement perturbatif de 
G@), examinons le facteur de symétrie, d’abord dans le cas du 
hamiltonien de Ginzburg-Landau simple. A l’ordre (p) de la théorie 
des perturbations, on trace tous les diagrammes de Feynman topologi- 
quement inéquivalents et chaque diagramme est évalué avec les règles 
énoncées précédemment. En principe les 4! permutations des qua- 

Figure 8. Représentation diagrammatique de (33). 
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tre points de chaque vertex compensent le 1/4! qui multiplie g.  
Cependant certaines de ces permutations peuvent correspondre au 
même terme du théorème de Wick (13), et il ne faut pas faire de double 
comptage. On peut essayer de donner des règles générales pour le 
calcul de ce facteur (cf. Itzykson-Zuber, p. 265-268). Je me contenterai 
de le calculer explicitement dans chaque cas particulier. 

Généralisons maintenant à un hamiltonien de Ginzburg-Landau avec 
symétrie O ( n )  (cf. équation (23)). Pour un hamiltonien de ce type, la 
fonction de corrélation gaussienne vaut : 

( vi (XI <P j (Y )) 0 = GO ; ij (X - Y 1 = 6 ij GO ( x  - Y 1 (34) 

Pour calculer la correction d’ordre g ,  il faut appliquer le théorème de 
Wick à :  

Remarquons que 

et que le point N quadruple >> z peut être décomposé en deux points 
d’indice k et deux points d’indice 1. I1 y a donc deux types de graphes (le 
pointillé relie le groupe d’indices ( k )  au groupe d’indices ( I )  : 
figures 9 et 10) : 

Figure 9. 

1 n 
4! 6 

Comme 1 6 i k  6 j k  6,, = n s i j ,  le facteur de symétrie est - (4 n )  = - . 
k ,  I 

1 1  
Le facteur de symétrie du graphe de la figure 10 vaut : q8’3-  
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La somme des deux graphes (figure 11) : 

Figure 11. 

1 
6 

aura un facteur de symétrie : - (n  + 2 )  

A l’ordre g2, les trois graphes de la figure 12 

Figure 12. G ( 2 )  à l’ordre g2. 

ont un facteur de symétrie 

(exercice 4). 
(n  -k 2)2 et (n  -k 2)2 respectivement 

18 ’ 36 36 

B.4. Fonction de correlation à quatre points G(4) 

Continuons à utiliser le hamiltonien (23) ; la fonction de corrélation à 
quatre points G& (xl, x2, x3, x4) est donnée par : 

Gfi1(x1,x2,X3’X4) = (<Pi(xl) <Pj(x2) (PL(x3) <PI(x4)) 
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Par invariance par translation, cette fonction ne dépend que de 
trois différences de coordonnées : par exemple (x l  - xz) ,  (x2 - x 3 ) ,  

A l’ordre go, G0(4ijkl est la somme de trois graphes disconnectés 
(x3 - x 4 ) .  

(figure 13) : 

G0(4!jkl x2, x3, x 4 )  = GO ; i j  - GO ; kl ( x 3  - x 4 )  -k 

+ Go ; i k ( x 1  - x 3 )  Go ; j l  (x2 - x 4 )  + GO ; il - x 4 )  GO ; jk(% - x 3 )  a 

Figure 13. G(4) à l’ordre go. 

A l’ordre g on aura trois types de graphes (figure 14) : 

Fluct. du vide Non connexe Connexe 
(1) (2) (3) 

Figure 14. G(4) à l’ordre 8.  

Les graphes de type (1) contiennent des parties de fluctuation du vide et 
sont éliminés quand on divise par Z ( 0 ) .  Les graphes de type (2) 
peuvent être écrits comme le produit de deux termes indépendants : ce 
sont des graphes non connexes. Leur expression est connue car ils font 
intervenir des fonctions de corrélation à deux points, déjà calculées. 
Les graphes de type ( 3 )  sont les plus intéressants. Ecrivons l’expression 
analytique du graphe ( 3 )  de la figure 14 : 

G . .  ilk1 = - r i j k l  
- - 

dDz Go(x1 - Z) GO(x2 - z )  x 

x GO(x3 - Z )  Go(~4  - Z )  . (35) 
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(Remarquez le signe - dans (35)). Il est immédiat de calculer 
r i j k l  : 

Si n = 1, on a simplement f = g car 
assure que F est égal à + g ,  et non - g (cf. C.3). 

Fourier : 

= 3. Le signe (- ) dans (35) 

Remplaçons maintenant les Go dans (35) par leur représentation de 

x (2  T ) ~  6 ( D ) (  k i )  
i = l  

(37) 

On remarque dans (37) le facteur (2 T ) ~  ô @)( $) : ce facteur 

provient de l'invariance par translation de G (4)(xi ) ; établissons-le dans 
le cas général, c'est-à-dire sans invoquer le développement perturbatif, 
en effectuant le changement de variables : 

Yi = x1 - x4 ; y2 = x2 - x4 ; y3 = x3 - x4 ; y4 = x4 

dans l'intégrale : 

Par invariance par translation, G ( 4 ) ( ~ i )  peut s'écrire en fonction de 
y i ,  y z ,  y ,  uniquement ; l'intégrale sur y ,  = x4 donne bien 

(2 T ) ~  6 (D)( ki) . De façon générale on extraira un facteur 
i = l  

(2 r )D  ô ( D ) (  ki) 
i = l  

G (4)( ki ) : 
/ A  

dans la définition de la transformée de Fourier 

dDxi eikixi G(4)(xi) . (38) I 
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Dans le cas d’une fonction de corrélation d’ordre N, on extraira un 
N 

facteur (2 T ) ~  6 ki) . Le lecteur vérifiera sans difficulté que 
i = l  

cette convention avait été adoptée implicitement pour G(2). Lorsque 
l’on utilise des variables ki discrètes, on extrait un facteur L D  6&4, en 

utilisant cette fois un 6 de Kronecker (L est la taille de l’échantillon 
considéré). 

Les exemples précédents ont permis de deviner la forme des règles de 
Feynman ; il reste à les établir de façon générale. Je me contenterai de 
le faire dans l’espace des k, qui est le plus utile en pratique. 

B.5. Règles de Feynman dans l’espace des k 

Définissons la transformée de Fourier de j ( x )  par 

D’après la relation de Parseval on peut écrire : 

s d D x j ( x ) q ( x ) =  dDk<p(k ) j ( -k ) .  s 
La fonctionnelle génératrice gaussienne s’écrit dans l’espace des k : 

Zo( j )  = s 9340 (k) exp (- s dDk (m2 + k 2 )  40 ( k )  40 (- k )  + 

tandis que l’interaction V devient : 

Relions maintenant la transformée de Fourier de la fonction de 
corrélation d’ordre 

G(N)(X1, ..., X N )  = 
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Mais d'après l'équation (38), écrite dans le cas général, G( , ) (x i )  vaut 
également : 

dDk .-ikj.xi) (2 T ) ~  6 (D) (.$ ki ) G(,)(k1 ... k, )  

ce qui donne : 

(2 T ) ~  6(')( .$ k i )  G(,)(kl, ..., k, )  = 

On note le cas particulier : 

(2 T I D  6 (D)(kl  + k2) G(2 ) (k , )  = (2 T ) D  (9 (k ,  CP (k2))  

G(2) (k )  = ('p ( k )  'p (- k ) )  * 

soit : 

En combinant (39), (40) et (41) on trouve pour G(, ) (k , ,  ..., k , )  : 

On remarque que : 

= 2 6 (D)(k l  + k2) G , (k , )  . 

A chaque ligne, interne ou externe, est associé le facteur 
6 (D)(kl  + k, )  Go(k , )  ; d'autre part, à cause du facteur 
(2 T ) ~  6 ( D ) (  ki) dans (40), la somme de tous les moments entrant 

dans un vertex doit être nulle. On peut choisir sur chaque ligne (interne 
ou externe) du diagramme une direction pour le flot de moment ; à un 
vertex donné arrivent quatre lignes de moments ki ,  comptées positive- 
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ment si le moment entre dans le vertex et négativement dans le cas 
contraire. La fonction 6 dans (40) conduit à la loi de conservation pour 
chaque vertex : 

4 C ( k k i ) = O .  
i = l  

I1 sera souvent commode d’adopter la convention suivante : les 
moments externes k l ,  . . . , kN sont orientés de façon a entrer dans le 
diagramme. Ainsi, à cause du facteur 6 (D)(kl  + k, ) ,  une ligne arrivant 
dans un vertex avec un moment k ,  ou bien arrive dans le diagramme 
avec un moment k ,  ou bien entre dans un autre vertex avec un moment 
- k.  Un exemple est donné sur la figure 15 où : 

Figure 15. Une contribution à G(4). 

La conservation du moment à chaque vertex assure la conservation 
totale du moment : k,  + k, + k, + k4 = O. 

Etablissons pour terminer les facteurs (2 T). La fonction de corréla- 
tion possède N lignes externes et V vertex à l’ordre V de la théorie des 
perturbations. A cet ordre on a donc un facteur (cf. (40) et (42)) : 

Mais dans un diagramme connexe on a la relation : 

4 V = 2 Z + N  

où I est le nombre de lignes internes du diagramme : en effet si l’on 
coupe chaque ligne interne, quatre lignes arrivent à chaque vertex et le 
nombre total de lignes est 2 I + N .  Un exemple est donné sur la 
figure 16 : 
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V = 2  N = 4  I = 2  4 + 2  x i  = 4 x 2 

Figure 16. 

Le facteur multiplicatif est donc : 

(2 T)VD (2 ,)(N-4V)D/2 = (2 T)”D (2 T ) - I D ,  

On peut résumer les règles de Feynman pour G(N)(k, ... k N )  dans 
l’espace des k sous deux formes équivalentes (dans le cas de diagrammes 
disconnectés il peut y avoir des modifications triviales : à titre d’exercice 
on pourra écrire la contribution à G(4)des diagrammes de la figure 13) : 

(1) Tracer tous les diagrammes topologiquement inéquivalents à un 
ordre donné de la théorie des perturbations. 

(2) Associer à chaque ligne du diagramme un facteur G,(k). 

(3) Associer à chaque vertex un facteur : - g (2 T ) ~  S (D)(, $ 4 , )  et 

extraire le facteur de conservation du moment (2 T ) ~  6 (D )( k,) . 
1 

(4) Intégrer sur chaque ligne interne avec une mesure d’intégration 
dDa 

(2 T )D . 

(4) Multiplier par le facteur de symétrie. 

La deuxième forme s’obtient en utilisant la notion de boucles : dans 
un diagramme, il y a 

L = Z - v + 1  

variables d’intégration indépendantes, ou bien L boucles indépendan- 
tes: en effet chaque vertex introduit une fonction 8, mais une de ces 
fonctions 6 est déjà incluse dans la conservation du moment. Le facteur 
(2 T ) ( - I  + v ) D  peut s’écrire : 

(2 7 r ) y  (2 T)VD = (2 (2 T)D . 
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Le facteur (2 rr )D est à associer au 6 (. . . ) de conservation du moment 
dans le diagramme. On pourra donc rem- 
placer (3) et (4) par: 

(3a) Associer à chaque vertex un fac- 
teur - 9 .  

assurant la conservation du moment à ~i~~~~ 17. une contribution 
chaque vertex, et intégrer sur toutes les 
boucles indépendantes avec une mesure 
dDq/ (2 n- )D. Donnons un exemple d’application de ces règles 
(figure 17). La contribution du graphe de la figure 17 à G(2) s’écrit : 

5 /& -,kl 

(4a) Ecrire les moments internes en kl - 91 - 92 

à G(2! 

Le résultat est bien en accord avec (33). 

C. FONCTIONS DE CORRÉLATION CONNEXES 
VERTEX PROPRES 

Nous avons vu que certaines contributions aux fonctions de corréla- 
tion pouvaient se mettre sous la forme de deux ou plusieurs facteurs 
indépendants : par exemple la contribu- 
tion du diagramme de la figure 18 à 
G(4) s’écrit comme le produit de deux 
facteurs. Afin de limiter le nombre de 
diagrammes il est utile de définir les 
diagrammes connexes : ce sont les dia- 
grammes qui ne peuvent pas être 
décomposés en deux ou plusieurs par- 

.O 
X Y 

ties indépendantes sans couper au 
moins une ligne du diagramme. La 
décomposition en diagrammes 

Figure 18. Une contribution 
non connexe à G(4! 

connexes généralise l’écriture des moments d’une distribution de 
probabilité en termes de cumulants. 
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C. l .  Cumulants d'une distribution de probabilité 

Soit Z ( j  ) la fonction génératrice d'une distribution de probabilité 
P ( ( O ) :  

On pose Z ( j )  = Z ( 0 )  exp[W(j)] ou W ( j )  = In (Z ( j ) /Z (O) )  (W est 
l'analogue d'une énergie libre) et on définit les cumulants d'ordre n,  
((O"), par:  

in W ( j )  = 2 (P")c 
n = l  

((O"), = =$ I 
j = O  

On obtient par identification : 

((O>,= ( C P )  

( ( P 2 > ,  = (d> - 
( ( P 3 > ,  = ( Y 3 >  -3((P> ( (P2)  + 2 ( c p ) 3  = ((9 - ((P>I3) 

= (((P - ( c p ) P )  

(V4), = (v4) -4(c0) (q3>  - ~ ( I O ~ ) ~ + ~ ~ ( ( P ) ~ ( < P ~ )  6 ( ( ~ ) ~  

= (((P - (cP)l4) -3(((O - ( c p ) ) 2 ) 2 .  

Les cumulants d'une distribution gaussienne sont nuls pour n 3 3. En 
effet, d'après ( 5 ) ,  Z ( j )  - exp ( ; A i z )  et W ( j )  = -Ai2 .  Si la distribu- 

tion gaussienne n'est pas centrée à l'origine, le seul effet est d'ajouter 
un terme linéaire en j à ~ ( j )  : et ( (p2) ,  sont + O, mais 
(<p ") , = O si n z= 3. Nous allons généraliser ce qui précède au cas des 
fonctions de corrélation avec la correspondance : fonction de corréla- 
tion -+ moment et fonction de corrélation connexe -+ cumulant. 

1 
2 

((O) 

C.2. Fonctionnelle génératrice des diagrammes connexes 

Commençons par un exemple en examinant la fonction de corrélation 
G (4) ; G (4)  se décompose en un diagramme connexe et trois diagrammes 
non connexes : 

~ ( 4 ) ( 1 , 2 , 3 , 4 )  = ~:4) (1 ,2 ,3 ,4)  + 
+ {G$2)(l, 2 )  Gj2)(3, 4 )  + Permutations} 
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où G, désigne une fonction de corrélation connexe ; remarquez que 
Gi2) = G@). Graphiquement on obtient l'équation de la figure 19 : 

1 2  3 4  

1 + Permu- 
tations + t  

Figure 19. 

Le nombre de termes non connexes est 3 = 4! / [ (2! )2 x (2!)] : 4! est 
le nombre de permutations des points externes (1, 2, 3, 4) ; mais 
permuter (1, 2), ou (3, 4), ou les deux boules ( A )  et ( B )  ne change pas 
le résultat, d'où le facteur (2!)2 x 2!. 

Le cas d'une théorie en (p4 est un peu particulier car toutes les 
fonctions de corrélation telles que N est impair sont nulles : 
G ( 2 k + 1 )  = O . ( * )  Pour être tout à fait général, on supposera que 
l'interaction comprend des termes en ( p 2 P + ' ,  par exemple (p3, de telle 
sorte que G(2 + ') f O .  Considérons un diagramme non connexe de 
G (N) correspondant à la décomposition de la figure 20 en diagrammes 
connexes : 

.... ' ...... 8 
41 q P  

Figure 20. 

(*) On peut avoir G ( ' ) =  ( c p )  # O  dans le cas d'une symétrie brisée, ou bien si 
Y ( q )  contient des termes impairs en c p ,  par exemple cp3.  

I 
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I1 y a ql boules connectées à n1 points externes.. . qp boules connectées à 
np points externes avec : 

q l n l  + - . - + q p n p  = N .  

Le nombre de termes indépendants est : 

La fonction génératrice Z ( j )  s'écrit : 

Pour passer de la première à la deuxième égalité, on a utilisé 
(43) et la symétrie de G, par rapport à ses variables. On trouve donc que 
la fonctionnelle génératrice W (j ) des fonctions de corrélation connexes 
est In [ Z ( j ) / Z ( O ) J  : 
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Notez que G ( N )  peut s'écrire : 

G ( N )  = G ( N ) ( ~ l ,  ..., x N )  + C JJ Gc(Za) 
U I , = I  <I 

où Z = {xl, ..., x N }  et I, est une partition de Z : U ( I , )  = : I .  Chaque 
terme apparaît une fois et une seule dans Ie membre de droite. 
Remarquez aussi que dans le cas d'un hamiltonien gmssien, les 
fonctions de corrélation connexes sont nulles pour N 3 3. 

C.3. Vertex propres et fonctionnelle génératrice 

On peut encore trouver une simplification supplémentaire. En effet 
dans l'espace des k un dia- 
gramme tel que celui de la ,------ - - - -  
figure 21 s'écrit G, ~ , ( k )  G2. 

ler GI et Gz indépendamment 

diagramme. Un tel diagramme 

I1 suffit donc de savoir cala-  

pour obtenir l'expression de ce 

est appelé 1-partiCUk réductible Figure 21. Un diagramme I-pafiicule 
(1-PR). On appellera fonction réductible. 
de corrélation 1-particule irré- 
ductible ( 1 - P I )  toute fonction de corrélation connexe qui ne peut pas être 
séparée en deux parties indépendantes en coupant une seule ligne interne 
(figure 22). 

'.& 
. . .I 

1-PZ 1-PR. 

Figure 22. Diagrammes 1-PZ et 1-PR. 

Enfin on appellera vertex propre une fonction de corrélation 1-PI que 
ton  a amputée de ses lignes externes. 
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Par exemple l’expression du vertex propre de la figure 23 est donnée 
par : 

1 

1 
X- 

( ( k  - q ) 2  + m2) k 2  k - q  

k ,  + k? = - (k3 + k 4 )  = k 4 

Figure 23. 
I1 n’y a pas de facteur n G,(ki)  

i = l  

associé aux lignes externes. Un ver- 
tex propre sera en général noté ï. On démontre le résultat 
remarquable suivant : 

Théorème : La fonctionnelle génératrice des vertex propres est la 
transformée de Legendre de W ( j ) .  

Afin d’alléger les notations dans la démonstration qui va suivre, il 
sera commode d’utiliser : 

Soit F i  = - 6w la valeur moyenne du champ et r la transformée de 

Legendre de W ;  en théorie des champs, le potentiel de Gibbs 
r est appelé action effective (remarquez que j ( x )  joue le rôle du champ 
magnétique et p ( x )  celui de l’aimantation ; les équations qui vont 
suivre généralisent celles du chapitre I, paragraphe D.5) : 

sii 

Nous avons déjà vu (I-D.5) l’identité : 

montrant que rg) = s 2 r / s q k  S < P ,  est l’inverse de la fonction de 
corrélation G,f). Avec des variables continues, l’équation (46) s’écrit : 

dDz G ‘ 2 ) ( ~  - Z )  r ( ’ ) ( ~  - y )  = S ( D ) ( ~  - y )  s 
et dans l’espace de Fourier : 



v.c.3 Fonctions de corrélation connexes 207 

; P ) ( k )  = k 2  + m2 + Z ( k )  1 G ( 2 ) ( k )  = 
k2 + m2 + Z ( k )  

I1 est utile de définir I'énergiepropre (*) Z ( k )  ; - Z ( k )  est la somme de 
tous les diagrammes à deux points 1-PI et amputés de leurs lignes 
externes (c'est-à-dire la somme de tous les vertex propres à deux 
points) : 

. (47) 

- X ( k )  = ç8+ ,+ ..., 
La fonction de corrélation G ( 2 ) ( k )  s'exprime en fonction de Z ( k )  : 

G'2'(k) = Go(k)  - Go(k)  Z ( k )  Go(k)  + - * 

On en déduit les expressions de G ( 2 ) ( k )  et r ( 2 ) ( k )  : 

Passons maintenant aux fonctions de corrélation d'ordre plus élevé, 
en dérivant l'identité (46) par rapport à j ,  : 

= O .  (48a) 6 3w s 2r s 2W s 3r 
sii sir sim 8 Y i  6 ak +p- l i  8.11 6 j ,  6 ar a& 

Comme ï est une fonction des ai, il faut transformer la deuxième 
dérivation dans (48.a) ; faisons-le dans le cas général (r/:)iN = 

6(N)r / sSDi l  ... sSDiN)  : 

(*) Terminologie empruntée à la théorie quantique des champs. I1 faut prendre garde 
au fait que le signe de L(k) varie selon les auteurs. 
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Les équations (48) peuvent s'écrire sous forme graphique en repré- 
sentant les ï(") par des boules hachurées (figure 24) (on a utilisé (48.b) 
pour transformer (48.a)) : 

m d 

Figure 24. Représentation graphique de (48). 

Multipliant à droite les deux membres de (48.a) par Gkp et sommant sur 
k on obtient la relation entre Gi3) et 

- Gc3)(i, m , p )  = 
I ,  k.n n 

(49) 

avec le vertex s(3)r L'équation (49) permet d'identifier = 
&<Pk s<Pl 

propre @A : en effet ï& est bien la fonction de corrélation connexe 
amputée de ses propagateurs externes complets, et c'est bien une 
fonction de corrélation 1-PI .  

Continuons le processus en dérivant une nouvelle fois l'équation (49) 
par rapport à j,. En utilisant (48.a) et (48.b) nous obtenons la relation 
entre G(4) et ï(4) (figure 25) : 
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6 (3) ‘ - - G c  6 il ( z , m , p ) =  - G : ) ( i , m , p , l ) =  

i 

Figure 25. 
I 

Les trois premiers termes peuvent être récrits en utilisant l’équation de 
la figure 26 : 

Figure 26. 

Dans une théorie en cp 4, en l’absence de brisure de symétrie, le résultat 
final est très simple car un seul terme est non nul (figure 27) : 

Figure 27. 
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Comme précédemment, la figure 25 (ou dans le cas le plus simple la 
figure 27) permet d’identifier 6 (4)r/ (6 ço )4 avec le vertex propre 

Les cas particuliers N = 3 et N = 4 que nous venons d’étudier 
démontent le mécanisme de démonstration du théorème annoncé 
précédemment. I1 suffit de procéder par récurrence, en admettant que 
nous ayons pu écrire à l’ordre N une équation analogue à celle de la 
figure 25, et que nous ayons pu identifier le vertex propre F ( N )  avec la 
dérivée d’ordre N du potentiel de Gibbs r. Dérivant cette équation par 
rapport à j ,  nous obtenons : 

f ( 4 ) .  

(Reste) 

où le <<reste >> ne contient pas T ( ~ ) ,  mais seulement r(N-l), 
r (N-2)  etc. (cf. figure 25). Nous en déduisons : 

i ,  i, +- si, 
*< (Reste ) 

ik 

1 

En amputant les deux membres de l’équation précédente des propaga- 
teurs externes complets, nous pouvons identifier f c N  +’) dans le 
membre de gauche avec T ( N  dans le membre de droite : en effet, 
après amputation, il ne reste qu’un seul graphe I-PI dans chacun des 
deux membres de l’équation. 
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D. POTENTIEL EFFECTIF 
DÉVELOPPEMENT EN NOMBRE DE BOUCLES 

Compte tenu de ce que nous venons d’établir dans les deux 
paragraphes précédents, il est utile de revenir sur les résultats démon- 
trés en II-D et de les réinterpréter à la lumière des propriétés du 
développement perturbatif. Rappelons que le champ extérieur (ou 
source) est j ( x )  qui joue le rôle du champ magnétique B ( x )  du 
chapitre II, et que l’aimantation est notée @ (x). 

D.l.  Symétrie brisée et potentiel effectif 

Lorsque T -= T,, la valeur moyenne de <p (x) est non nulle, même en 
l’absence de champ extérieur : 

lim iim rp(x)  = u z O 
i-O L ~ - . * ~  

Je me limiterai au cas d’un hamiltonien de Landau-Ginzburg simple : 
n = 1, bien que le cas n > 1 introduise une nouveauté intéressante : les 
bosons de Goldstone (exercice 11.4 et XIII-C.l). 

En champ extérieur nul ( j  = O )  nous avons : 

r ( L ! q  = O  
8 @  j = û  

et l’on peut écrire r ( r p  ( x ) )  sous la forme : 

où le vertex propre r ( N ) ( x l ,  ..., x N  ; v )  est calculé en présence d’une 
brisure de symétrie. On remarque que le développement de Taylor 
d’une fonction f ( r p )  peut être écrit, soit au voisinage de rp = u : 

ou au voisinage de r p  = O : 
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L’expression (50) peut donc être transformée en : 

dDxl ... dDxN r(N)(~l ,  ..., x N )  @(XI) ... Y; ( x N )  (51) 
N !  N = 2  

où : 

Dans l’expression (51) de r (Y; ), les vertex propres sont donc calculés en 
l’absence de brisure de symétrie (valeur moyenne du champ nulle). 

Si q ( x )  est indépendant de x : Y;(x) = Y; l’expression (51) devient : 

Si l’on se souvient que l’on extrait un facteur (2 T )D  6 ( D ) ( ~ k i  1, ou 
LD 6 zki,  dans la définition de la transformée de Fourier d’une fonction 
de corrélation, on trouve pour le potentiel de Gibbs par unité de 
volume : 

La quantité L - ~  r ( ~ ; )  est souvent appelée potentiel effectif U(Y; ). 
L‘équation d’état (en champ extérieur uniforme) est : 

En champ extérieur nul, la valeur moyenne u est obtenue en cherchant 
le minimum du potentiel effectif U(Y;) .  Ceci a été vu en détail (II-B) 
dans le cadre de l’approximation de Landau pour r(Y;). 

I1 est maintenant instructif de faire le lien entre l’expression exacte 
(52) et les expressions approchées (approximation de Landau : II-B ; 
première correction à ‘Landau : II-D) que nous avions obtenues 
précédemment. Ce lien sera établi grâce au développement en nombre 
de boucles. 
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D.2. Développement en nombre de boucles 

1 
h 

de A de la fonctionnelle génératrice Z ( j )  : 

Remplaçons H par - H et cherchons un développement en puissances 

On obtient le même développement perturbatif que précédemment à 
ceci près que : 

0 chaque interaction est multipliée par l / h ,  
0 chaque ligne est multipliée par h. 
Un vertex propre à un certain ordre de la théorie des perturbations 

sera donc 

où I est le 
externes), 

multiplié par : 

nombre de lignes internes (un vertex propre n’a pas de lignes 
V le nombre d’interactions et L le nombre de boucles. 

Nous avons effectué au chapitre II un calcul direct de ï(p) sous 
forme d’un développement en puissances de h ; d’après ce qui précède 
ce développement est donc un développement en nombre de boucles ; en 
particulier : 

L = O correspond à l’approximation de Landau 
L = 1 correspond à la première correction calcuiée au II-D . 
Dans le cas d’une interaction monomiale (Y((p) = c q ” ) ,  il y a, à N 
f i é ,  correspondance biunivoque entre l’ordre de la théorie des 
perturbations et le nombre de boucles : en effet, par exemple si 
Y = cq4, L = p + 1 - N / 2 ,  où p est l’ordre de la théorie des 
perturbations. Cette remarque confirme le raisonnement utilisé au II- 
D.2. 

Nous avons donc à notre disposition deux méthodes pour calculer le 
potentiel effectif U ( e )  : 

0 soit effectuer comme au II-D un calcul direct à chaque ordre en 
h,  
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O soit utiliser l’équation (52) en calculant perturbativement tous les 
T ( N )  et en obtenant r (N)  à l’ordre L = O, L = 1, etc. On montre 
explicitement dans l’exercice 6 que les deux méthodes donnent le même 
résultat pour L = O et L = 1. Notons que l’approximation de Landau 
L = O est souvent appelée approximation en arbres (figure 28), ou 
approximation classique (fi + O, cf. note p. 76). 

Figure 28. Un diagramme en arbres. 

E. ÉVALUATION DES INTÉGRALES DE FEYNMAN 

Sauf dans le cas à une boucle ( L  = l), l’évaluation des diagrammes 
de Feynman est complexe, et en règle générale un calcul analytique 
exact est impossible. Cependant il arrive souvent que l’on n’ait pas 
besoin de l’expression complète du graphe, mais seulement de son 
comportement dans certaines limites. I1 n’existe pas de recette générale 
pour ce type de calcul, et la technique doit être adaptée à chaque cas 
particulier. I1 n’est évidemment pas question de faire dans ce livre une 
revue de tous les procédés d‘évaluation mis au point depuis quatre 
décennies par les physiciens. Je me contenterai de décrire les calculs à 
une boucle de façon assez détaillée, et de donner une représentation 
paramétrique qui peut, ou peut ne pas être une technique pratique 
d’évaluation, mais qui permet en tout cas la démonstration de 
nombreuses propriétés générales. 

E.l. Un cas élémentaire 

Examinons d’abord un cas très simple, celui de la correction d’ordre 
g à G(*) (k )  ; le graphe de la figure 29 est appelé 
<< tadpole D (dans la théorie en <p3, ces graphes ont, avec 
un peu d’imagination, la forme d’un têtard) : technique- 
ment un tadpole est un graphe dont l’expression est 
indépendante des moments externes. L’expression ana- 

O 
Figure 29. 
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lytique du vertex propre de la figure 29 est 

L‘intégrale est convergente si le cut-off A est fini. Lorsque A / m  s 1, et 
pour D =- 2, l’intégrale se comporte comme AD-’.  En théorie quantique 
des champs on souhaitera prendre la limite A -+ 00, et il faudra 
interpréter les divergences des intégrales de Feynman : les divergences 
qui proviennent de la région q -+ 00, sont appelées divergences ultravio- 
lettes. Lorsque m2 = O, l’intégrale diverge à cause de la région 
q -+ O si D s 2 : cette fois il s’agit d‘une divergence infrarouge. 

Supposons D < 2 et faisons tendre A vers l’infini ; il est alors possible 
d’obtenir une expression analytique pour z’ : 

(53) 
Le pôle de la fonction r(l - D / 2 )  à D = 2 reflète la divergence 
ultraviolette pour D a 2. Cependant cette expression peut être utilisée 
pour définir 2 par prolongement analytique pour des valeurs de D 
différentes de 2,4,  6 ... 

A la limite m2 = O, et pour des valeurs de D > 2, D # 4,6,  ..., 3 
s’annule. Ceci suggère (mais ne prouve pas !) que si l’on définit les 
intégrales de Feynman pour A -+ CO par prolongement analytique, ce 
que nous appellerons au chapitre suivant << régularisation dimension- 
nelle », on peut purement et simplement ignorer les tadpoles, bien que 
pour m = O, l’intégrale, à strictement parler, ne soit définie pour 
aucune valeur de D! Une justification de ce résultat est donnée par 
exemple dans le livre de Collins, chapitre 4. Nous nous contenterons de 
l’argument heuristique exposé ci-dessus. 

E.2. Méthode de l’identité de Feynman 

l’identité de Feynman (exercice 8) : 
Dans le cas des diagrammes à une boucle, on utilise en général 

dx 
[UX + b(1  - x)I2 

(54) 

Appliquons cette identité pour calculer la contribution de la figure 30 à 
rai : 
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Figure 30. 

(pour le facteur entre crochets, cf. exercice 3) ; l’intégrale Z ( k )  vaut : 

Z ( k )  = J * 1 
(2 7T)D (q2 + m2) ( ( k  - q)2  + m2) . 

En utilisant l’identité (54) on obtient : 

1 
(27Ty [ ( 1 - x )  ( q 2 + m 2 ) + x [ ( k - q ) 2 + m  2 I ]  2 ‘  

Le changement de variables q -+ q’ + xk met Z ( k )  sous la forme : 

1 
( 2 7 ~ ) ~  ( q 2 + x ( 1  - - ~ ) k ~ + m ~ ) ~  

Cette forme montre que Z est en fait une fonction de k2 uniquement. 
L’intégrale sur q s’effectue en coordonnées polaires : 

On pose u = q2  et on utilise : 

ce qui donne : 
D 

Z(k2) = r(2 - JO1 dx[m2+ x ( 1  - x )  k 2 ] 2 - 2 .  (55)  (4 ?r)D/2 

Dans l’intégration sur q,  on a supposé A -, CO. Ceci n’est possible que si 
D -= 4, car dans le cas contraire l’intégrale présente une divergence 
ultraviolette, c’est-à-dire une divergence provenant de la région 
q -+ CO. La divergence à D = 4 est reflétée par le pôle de la fonction 
r 2 - - à D = 4. L‘expression (55) de Z(k2)  peut être utilisée pour 

définir Z(k2)  pour des valeurs arbitraires de D (sauf D = 4, 6, 8, ...). 
( 3 
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Lorsque m2 # O, le résultat de l’intégration sur x s’exprime sous 
forme de fonctions hypergéométriques, ce qui n’est pas particulièrement 
illuminant. Lorsque m2 = O, les choses se simplifient en remarquant 
que (*) : 

On trouve : 

D 
Le facteur ( k 2 ) T T - 2  a une origine purement dimensionnelle : en effet la 
dimension de Z est D - 4 et k est la seule quantité dimensionnée à notre 
disposition. 

D’autre part une nouvelle divergence apparaît pour D = 2 à cause du 
facteur [ r ( D / 2  - 1 ) I 2 / r ( D  - 2 ) .  Cette divergence provient de la 
région q 3 O : c’est un nouvel exemple de divergence infrarouge. 

E.3. Représentation paramétrique générale 

Etablissons maintenant une représentation paramétrique générale 
des intégrales de Feynman en suivant Itzykson-Zuber ; considérons un 
vertex propre r ( E )  comprenant (**) : 

0 E lignes externes k, : 1 s s s E ,  
0 Z lignes internes pi : 1 s i  s I ,  correspondant à des masses 

0 L variables d’intégration indépendantes q1 : 1 s r zs L. 
Tous les moments externes sont supposés entrer dans le diagramme ; 

les lignes internes sont orientées arbitrairement. Considérons un vertex 
u et une ligne interne i ,  et choisissons un facteur F , ~  de la façon 
suivante : 

.zVi = + 1 
= - 1 

E , ~  = O 

mi 7 

si la ligne i part du vertex u 
si la ligne i arrive au vertex u 
si la ligne i n’est pas connectée directement au vertex u . 

(*) De façon générale, l’évaluation des intégrales de Feynman est plus simple quand 

(**) Jusqu’à la fin du chapitre, je désignerai par E (et non N) le nombre de lignes 
les masses sont nulles. 

externes. 
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Exemples : 

P3 

L‘expression de l’intégrale sera : 

où k,  = somme de tous les moments externes arrivant au vertex u 
(k ,  = O si le vertex n’est pas connecté directement aux lignes externes). 

Nous allons utiliser la << régularisation de Schwinger D du propagateur : 

Cette représentation a un double avantage : 
0 elle permet de ramener le calcul de (57) au calcul d’intégrales gaussiennes, 
0 elle se prête bien à l’introduction d’un cut-off : 

- (p2+rn2)/A2 
m - , b 2 + m 2 )  - e - 1 d a  e 

p 2 + m 2  ’ 
(59) 

Cette façon d’introduire un cut-off est beaucoup plus élégante que celle qui 
consiste à couper brutalement les intégrales sur q à q = A ; dès que 
L > 1, le cut-off brutal devient impraticable. En utilisant (58) et la représenta- 
tion exponentielle de la fonction 6 l’expression de J‘ devient : 
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L'intégrale sur p est une transformée de Fourier d'une gaussienne 

Effectuons maintenant les intégrations sur les variables y u ,  en numérotant les 
vertex de 1 à V et en faisant le changement de variables de jacobien 1 : 

y1 = 21 + 2, ; y2 = 2 2  + z y  ; ... ; y ,  = z y  . 

Remarquons que 

+ 1 et l'autre à - 1. 

eut = O car à i fixé seuls deux eVi sont # O, l'un est égal à 
Y 

V V - l  V v - l  

( i k u )  : L'intégrale sur z, donne donc un facteur (2 7r )" 6 ("1 

J' = (2 7 r ) D  6(")( k,) J 
s =  1 

et par convention ce facteur (2 7r )" 6 (. . . ) est à extraire de r(') ; J devient : 

Introduisons maintenant la matrice symétrique (V - 1) x (V - 1 )  A s f ( a )  : 

On peut montrer que cette matrice est non singulière et positive. L'intégrale sur 
les variables z, est à nouveau gaussienne : 
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Notez que Z - V + 1 = L est le nombre de boucles indépendantes. On trouve 
donc finalement : 

I I 

Ecrivons explicitement les intégrales correspondant aux exemples E l  et E2 : 

-k2- a1 a2 "3 

J =  ( 4 ~ ) - ~ j  fi {daie-"im'} [ P ( c ~ ) ] - ~ / ' e  
i = l  

P ( a )  = (YI a3 + ( Y I   CY^ + a3 + ( ~ q  + a3 a h .  

I1 est possible de donner des règles générales pour écrire P (a ) et A- l ( a  ) dans 
le cas d'un graphe arbitraire : cf. Itzykson-Zuber, p. 297. 

La dernière étape consiste à introduire les variables d'homogénéité : 
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Si mi = m, C m2xi = m2 ; d‘autre part si l’intégrale sur A converge à 

A = O :  

LD I 
(m2 + kTA- l (x )  k ) 2 -  . r (I - L D  / 2 )  n Ch ’ ( - xi ) J =  

(4 7 T  [ P  (xi ) I D / 2  
(62) 

On retrouve bien l’équation (55) dans le cas I = 2, L = 1 ; il est facile 
de vérifier que P ( x )  = 1 et A - ’ ( X )  = x(1 - x ) .  L’exposant 

( - I ) se retrouve par un argument dimensionnel : la dimension 

de J est en effet L D  - 2 I .  
Il faut se méfier de la simplicité apparente de l’équation (62) : des 

divergences sont cachées dans les intégrales sur les variables xi  ; cela ne 
se produit pas dans le cas d’une boucle, mais les ennuis arrivent dès que 
L > 1. Je donne maintenant deux exemples d’évaluation explicite. 

E.4. Calcul de à l’ordre E *  

Les divergences des intégrales de Feynman au voisinage de 
D = 4 vont jouer un rôle crucial dans les deux chapitres suivants. 
Commençons par étudier un cas simple, celui de r(4), en reprenant 
l’expression (55) de I ( k 2 )  et en l’évaluant au voisinage de 
E ( =  4 - D )  = O. 

En utilisant : 
1 X - “ - l - & l n X ;  r ( ~ ) = -  
E 

on trouve à l’ordre ( E ) ’  : 

( 4 7 ~ ) ~ Z ( k ~ )  = - -  d x l n [ m 2 + x ( l - x ) k 2 ] + C t e .  (63) : 5,’ 
Le pôle à E = O reflète la divergence ultraviolette à D = 4. 

L’étude de l’exemple (El) va permettre le calcul de 1) à l’ordre E *  ; le graphe 
de l’exemple (El) donne une contribution à l’énergie propre 2 ( k 2 )  et cette fois, 
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on calculera directement en dimension D = 4 avec un cut-off A 
? 

- exp(- A (m2 + k2 !(xi))) 
A 2  

Z(k2) = (4 T ) - ~  

p (xi) = XI x2 f XI x3 + x2 x3 ; f(xi) (xi x2 x3)/p ( x i )  

et c est une constante. 
L‘intégrale est une intégrale à deux boucles et présente des divergences de 

recouvrement, qui se traduisent par la divergence de l’intégrale sur les 
Xi.  

Ces divergences se produisent quand certains des xi tendent vers zéro ; en 
réalité, à cause du cut-off, les xi ne peuvent jamais être nuls, mais tenir compte 
du cut-off est compliqué. Heureusement nous aurons uniquement besoin de la 
dérivée : 

d I  1 n hi 6 (1 - xi) f(xi) 
X _ -  

[ p  (xi )I2 
- exp(- A (m2 + k2 f (xi)))  . 

L’intégrale sur les xi est maintenant convergente. En effet comme : 

P (xi) = X I  XZ + X I  ~3 + XZ ~3 

on voit que la région dangereuse est celle où (xl, x,), (xl, x3) ou (x,, x3) tendent 
vers zéro simultanément ; par exemple si x3 -+ 1, i‘ (xi) = (xi + x2) et 

h l  h z  s (Xi + X Z Y  

S (xi +x2>3 

diverge. Par contre : 

xi x2 hl h 2  

est parfaitement convergent. L‘intégrale sur A donne un facteur In A2 + termes 
non divergents ; on trouve : 

Pour calculer l’intégrale, on effectue le changement de variables : 

XI = px ; x2 = x ( i  - p )  ; x3 = 1 - x .  

Un calcul ennuyeux, mais sans aucune difficulté, montre que l’intégrale vaut 
112 : 

_ -  d I  
dk2 
_ -  In A2 + termes non divergents . 

2(4 T ) ~  
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Comme application, calculons l’exposant critique r )  à l’ordre E’. Le graphe que 
nous venons d’étudier est le seul à donner une contribution dépendant de k à 
l’ordre g2. En effet, l’autre graphe 1-PI (figure 31) 
donne une contribution indépendante de k. Lors- 
que m2 = O ,  le terme logarithmique de L(k2) est 
en In (A2/k2), car l’argument du logarithme doit 
être sans dimensions. Rétablissant tous les fac- 

d teurs, la contribution à - 2 (k2) que nous venons 

de calculer est : 
3- dk2 k +  

k2 Figure 31. 
-~ g2 in- 

12(4 7 ~ ) ~  A2 

ce qui donne pour la dérivée de la fonction de corrélation inverse 

k2 
dk2 12(4 7 ~ ) ~  A2 

g2 in - + o(g2 x 1, g3)  . d - r ( k 2 )  = 1 - - 

D’autre part à T = T, on sait que 

On sait également que l’on doit choisir pour g la valeur au point fixe (cf. 
111.67) : 

Par identification des termes en In kZ, on obtient r )  : 

* 2  2 

6(4 7 ~ ) ~  54 
q=- (9 1 =5.  

F. COMPTAGE DE PUISSANCES 
DIVERGENCES ULTRAVIOLETTES ET INFRAROUGES 

Dans des facteurs tels que A-1+1-LD/2 dans (61) ou 
(m2 + k T A -  k ) L D / 2 - z  dans (62), les exposants ont une origine 
purement dimensionnelle : l’intégrand est, schématiquement, 

(dDq)L (p2)-’ et a pour dimension LD - 21. On définit une 

quantité w (G), appelée degré (ou indice) superficiel de divergence du 
s 
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diagramme, qui permet de déterminer le degré de divergence ultraviolet 
(4  -+ Co 1, par : 

w ( G )  = L D  - 2 1 .  

L'intégrale sur q se comporte schématiquement comme 

q"(')-' dq : si w (G) z O, l'intégrale divergera comme A"(') (plus 

exactement comme .4'"(')(ln A)p où p est entier), et si (O (G) = O ,  
comme (in A)p. Si w (G) -= O, le graphe est superficiellement conver- 
gent (superficiellement car une sous-intégration peut conduire à une 
divergence). Nous allons obtenir une expression intéressante de 
w (G) ,  faisant intervenir le nombre de lignes externes du diagramme, 
en utilisant d'abord un argument topologique , puis un argument 
dimensionnel. 

J* 

F. 1. Argument topologique 

Supposons une interaction de type tout à fait général, avec des termes 
en rp 3, rp 4, etc., et même des couplages dérivatifs : rp ' ( V q  )' etc. Dans le 
cas d'une interaction dérivative, chaque V donne un facteur ik au 
vertex ; en effet dans l'application du théorème de Wick : 

(p(x>o<p ( z )  + V,Go(x  - z )  = T.F. ( ikGo(k))  . 

Si l'on a un vertex de type ( i )  avec une interaction contenant 
S i  dérivées, il faudra multiplier l'intégrand du diagramme par un 
facteur (k)". On aura donc dans le cas de couplages dérivatifs : 

Utilisons d'abord L = Z - V + 1 : 

w ( G )  - D = Z ( D  - 2 )  + 2 (Si - D). 
L 

Au vertex (i) arrivent ni lignes si le vertex correspond à une interaction 
en (q )ni, avec éventuellement des dérivées ; ni = ni(int) + n p )  et : 

Définissons un index w i  dont l'interprétation sera donnée un peu plus 
loin : 

w i = n i (  2- D 1 + s i .  ) 
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L'expression de w (G) devient : 

(Si - D) 
i 

= (51) ? n i -  ($1) C n / e x t ) + C ( S i - L > )  
i 1 

= (w i  - D ) - E  
i 

soit : 

Exemple : Théorie en g cp : w = 4 ( T - 1 )  = 2 0 - 4  

E = 2 
E = 4  w ( G ) = V ( D - 4 ) + 4 - 0  
E = 6 

o(G)  = V ( D  - 4 )  + 2  

w ( G )  = V ( D  - 4 )  + 6  - 2  D .  

De façon générale, l'équation (66) montre que pour D > 2 (mais 
sinon la théorie n'est pas définie), w (G) décroît avec le nombre de 
lignes externes. Pour une théorie en gcp4, et pour D = 4, seuls les 
diagrammes E = 2(w (G) = 2) et E = 4 ( w  (G) = O )  sont superficielle- 
ment divergents. 

F.2. Argument dimensionnel 

Nous avons vu (III-D.2) que la dimension du champ cp est 
D 
2 [cp ]  = - - 1. Un terme d'interaction général s'écrira : 

gi dDx(V)" ( v ) ~ ~ .  

Cette quantité doit être sans dimensions, ce qui impose : 

[ g i ] - D + ô i + n i  --1 = O  1 
ou 
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La dimension [si] de la constante de couplage est donc reliée très 
directement à l’index w i  défini en (66). 

Pour retrouver l’équation (67) , déterminons d’abord la dimension de 
r(E) dans l’espace des k ; r ( E ) ( k i  = O )  s’obtient en dérivant E fois le 
potentiel de Gibbs (sans dimension) par rapport à une aimantation 
uniforme M ,  de dimension ( g - 1 )  , et en divisant par un volume 

(dimension - D) : 

[ T ( E ) ]  = D - E (g-1).  

La quantité : 

doit avoir pour dimension D - E ( g - 1) , et compte tenu de (68) on 

retrouve bien le résultat (67). 

F.3. Divergences infrarouges (interaction en 4p 3 

Lorsque m2 = O, on peut avoir dans certains cas des divergences 
infrarouges. Contrairement au cas des divergences ultraviolettes, ces 
divergences ne se produisent que pour des configurations particulières 
des moments externes, du moins lorsque D = 4. Par exemple la 
contribution de la figure 32 à r@) 

Figure 32. 

sera donnée, à un facteur près, par l’intégrale ( D  = 4, m2 = O )  : 

s q>2 



V.F.3 Comptage de puissances 227 

qui est infrarouge divergente. Cette divergence provient de ce qu’au 
vertex encerclé entre un moment externe nul. De façon générale, on 
appellera configuration non exceptionnelle une configuration des 
moments externes telle qu’aucune somme partielle des ki n’est nulle : 

ki # O  V l  
i s I  

où Z est un sous-ensemble quelconque des indices (1, ..., E )  des E 
moments externes ki. Lorsqu’une configuration est non exceptionnelle, 
il est possible de relier tous les moments externes par des lignes internes 
dont les moments sont # O, appelées lignes de << moments durs ». En 
effet si cela n’était pas possible, on pourrait séparer le diagramme en 
deux parties en coupant uniquement des lignes internes de moment 

O (appelées lignes de << moments mous P). Cependant dans une des 

parties du diagramme entre un moment ki # O, alors que les lignes 

internes emportent un moment nul. 

Itzykson-Zuber : 

Ei 

i = l  

Considérons par exemple le graphe de la figure33, emprunté à 

ligne de moment dur 

ligne de moment mou 

Figure 33. 

avec un schéma possible pour le << flot des moments durs ». Imaginons 
de contracter toutes les lignes internes de moment dur en un vertex 
unique (figure 34) et soient I ,  L et V le nombre de boucles, de lignes 
internes et de vertex du diagramme contracté; soit n le nombre de 
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lignes internes de moment mou accrochées au vertex contracté. Nous 
avons les relations : 

L = Z -  ( V + l ) + l = Z - v  
2 1  = 4 V + n .  

Le degré superficiel de divergence du 
diagramme contracté est : 

w = DL - 2 1  = L ( D  - 4 )  + 4 L  - 2 1  
Figure 34. w = n + L ( D - 4 ) .  (70) 

Le degré d’homogénéité du diagramme contracté lorsque toutes les 
boucles internes ont des moments = O  est w : si D = 4 ,  cet argument 
semi-heuristique montre que le diagramme est infrarouge convergent 
duns une configuration non exceptionnelle: en effet comme le dia- 
gramme est l -PZ,  n == 2 .  

Au contraire pour D < 4 ,  on peut facilement trouver des diagrammes 
infrarouges-divergents même dans une configuration non exception- 
nelle. Par exemple le diagramme de la figure 35 : 

Figure 35. 

a un degré superficiel de divergence : 

w = 4 + 3 ( D  - 4 )  = 3 D - 8  I 

I1 sera donc infrarouge-divergent, même dans une configuration non 
exceptionnelle lorsque D s - . 

Le raisonnement précédent montre que l’interaction en (p est la plus 
singulière dans la région infrarouge (celle en (p3 étant exclue par la 
symétrie (p - (p). Ceci justifie, au moins de façon heuristique, 
l’utilisation du hamiltonien de Ginzburg-Landau (II. 19) pour i’étude du 
comportement critique. 

8 
3 
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Le théorème de Weinberg ( I )  permet de déterminer le comportement 
asymptotique d'un graphe lorsque tous les moments externes tendent 
vers l'infini au même rythme : ki -+ Aki,  A + 00. Plaçons-nous en 
dimension 4 dans le cadre d'une interaction en q4, et supposons que 
l'intégrale dans (62) converge dans le domaine ultraviolet ; si la limite 
m = O de cette intégrale existe, ce qui sera le cas si la configuration 
[ k i ]  est non exceptionnelle, alors : 

Lorsque J ( k )  doit être renormalisée à cause des divergences ultraviolet- 
tes (chapitre VI) 

où p est un entier dépendant du graphe considéré. 

EXERCICES 

1) Dans le cas n = 1, quels sont les facteurs de symétrie des graphes de la 
figure 36 : 

Figure 36. 
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2) Quels sont les facteurs de symétrie des diagrammes de fluctuation du vide 
de la figure 37 (cas II = l ) ?  

Figure 37. 

Vérifiez votre résultat en utilisant (24). 
3) Dans le cas où n est quelconque, déterminer le facteur de symétrie du 

graphe de la figure 38 : 

Figure 38. 

4) Dans le cas où II est quelconque, quels sont les facteurs de symétrie des 
graphes de la figure 39? 

Figure 39. 
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5) (a) Dans le cas d'une interaction en 

0 les diagrammes de fluctuation du vide à l'ordre. g2 et g4 
0 G(') à l'ordre g et g3 
0 G(') à l'ordre g2 et g4 
0 G(3) à l'ordre g et g3 
0 G(4) à l'ordre g2 et g4. 

<p3, dessiner : 
3! 

(b) Quels sont à ces ordres les graphes 1-PI de G(2), G ( 3 )  et G")? 

6 )  (a) Quel est le facteur de symétrie du graphe de la figure 40 contribuant à 
r (2N)  (ki = O )  ? (On se limitera au cas n = 1.) 

Figure 40. 

(b) En sommant sur tous les graphes à zéro et à une boucle, retrouver à 
l'ordre h l'expression (11.44) du potentiel effectif. 

7) Obtenir dans le cas n = 1 l'expression du type (60) pour le graphe de la 
figure 41, les lignes internes étant numérotées comme l'indique la figure. 
Vérifier votre résultat en utilisant les règles données dans Itzykson et Zuber, 
p. 297. 

Figure 41. 
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8) Identité de Feynman 

Démontrer l'identité : 

Suggestion : 

Généraliser à (a,"' ... ain)- '  (cf. équation B . l ) .  

9)  Calculer l'intégrale : 

10) Montrer par un calcul direct à (4 - E )  dimensions que : 

d 
dk2 12(4 7 ~ ) ~  E 

11) Calcul de p(k2)  dans l'espace des x(D = 4 )  (') 

(a) Montrer que 

2 ( k Z )  = (Cte) d4x e ik .x [Go(~) ]3  . s - 

(b) En utilisant l'expression de G,(x )  avec un cut-off A (cf. exercice 11.6) 

déterminer le coefficient de k 2  In ( k 2 / A 2 ) .  

12) Intégration successive sur les boucles 

Une méthode d'évaluation des intégrales de Feynman consiste à intégrer 
successivement sur les boucles. Cette méthode est bien adaptke au cas 
rn = O et à la régularisation dimensionnelle. 

(a) On écrit l'intégrale Z(k2)  du graphe : 
9 
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Donner l’expression de Z ( k 2 )  obtenue en utilisant l’expression (56) pour 
n@’) et l’identité de l’exercice 8, sans faire l’intégration sur x .  

(b) Montrer que le calcul se simplifie si l’on souhaite seulement déterminer la 
partie divergente (en l/&) de Z(k’), et retrouver le résultat de l’exercice 10. 

13) Développement en l / n  (*) 

On se propose de calculer les corrections en 1/12 aux résultats de l’exercice 
(111.7), en utilisant une méthode diagrammatique reposant sur la représentation 
des figures 9 à 11. On supposera que la constante de couplage uo du hamiltonien 
de Ginzburg-Landau avec symétrie O ( n )  est d’ordre l / n  : uo + u0/n. 

(a) Montrer que les graphes dominants de Z ( k 2 ,  ro)  sont donnés à la limite 
n -+ 00 par la figure 42 : 

I + + 

Figure 42. 

et en déduire pour Z(0, ro)  la relation : 

1 Z(0, ro) = - - s ( 2 d ? Y p 2  + r, + S(0, ro)  

Retrouver à partir de cette équation les résultats de l’exercice (111.7) : 

r ) = o ;  y = -  ’ p o u r 2 < ~ < 4 .  
0 - 2  

(b) La contribution dominante dépendant de k2 à Z(k2)  est d’ordre 
l / n .  Montrer qu’elle est donnée par les graphes de la figure 43 : 

Figure 43. 
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En déduire 

Développement perturbatif. Diagrammes de Feynman V. 

l'expression de S(k2 ,  O )  à l'ordre l / n  : 

où 

(e) On utilise la méthode de raccordement pour déterminer 7): 

en identifiant le coefficient de In k2  (il faut remarquer que y2 = D - 4 : cf. 
exercice 111.7(g)). Montrer que la singularité en in k 2  de Z ( k 2 )  provient de la 
région d'intégration p -+ O, et calculer le coefficient de In k2 en se servant de 
l'expression (56) de II@'). Suggestion : calculer a22 /  (ak2)2 et identifier le 
coefficient de l / k 2 .  Résultat : 

2(4  - O) T ( D  - 2 )  
n =  

' n r (  ; + l )  r ( 2 - f )  ( r (  

14) Reprendre le raisonnement du paragraphe F.3 lorsqu'une ligne externe 
est de moment mou. Montrer que l'on doit remplacer dans (70) n par 
(n - 1). 

NOTES ET RÉFÉRENCES 

Le théorème de Wick et les diagrammes de Feynman sont exposés dans Amit 
(chapitres 2 et 4). Pour la fonctionnelle génératrice des vertex propres et  le développe- 
ment en nombre de boucles, on pourra consulter Amit (chapitre s), Itzykson-Zuber 
(chapitres 6 et 9) ou Abers-Lee (section 16). La représentation paramétrique des 
intégrales de Feynman est détaillée dans Itzykson-Zuber (chapitre 6), tandis que le 
problème des divergence's est traité dans la même référence (chapitre 8) ou dans Amit 
(chapitre 7). 

( I )  S. Weinberg, Phys. Rev., 118, 838 (1960). Y. Hahn et  W. Zimmermann, Cornm. 

(2) Ma, chapitre 9. 
Math. Phys., 10, 330 (1968). 



CHAPITRE VI 

Renormalisa tion 

Nous avons vu au chapitre précédent que pour des dimensions 
d'espace suffisamment grandes , les fonctions de corrélation présentent 
souvent des << divergences ultraviolettes », lorsque le moment q des 
boucles tend vers l'infini. I1 est donc nécessaire, au moins dans une 
étape intermédiaire, de limiter ces moments par un cut-off A. En 
théorie quantique des champs, on souhaite faire tendre A vers l'infini 
(rappelons que A est - l / a ,  où a est le pas du réseau, et l'espace 
ordinaire est continu), en maintenant fixés les masses physiques 
mi et les moments externes ki : m i / A - +  O, k i / A + O .  Ceci ne sera 
possible que si l'on arrive d'une manière ou d'une autre à se débarrasser 
des infinis, ce qui est l'objectif de la renormalisation : nous verrons que, 
dans le cas des théories renormalisables, on obtient des résultats finis à 
condition d'absorber les infinis dans une redéjinition de la masse, de la 
constante de couplage, et de la normalisation des champs. En physique 
statistique, on ne devrait pas avoir à se préoccuper de renormalisation, 
puisque le cut-off est fini. Cependant, en physique des phénomènes 
critiques, on étudie la limite m / A  + O ( m  = t- ' ) ,  k i / A  + O, et on est 
naturellement ramené au problème précédent. 

L'avantage de la théorie de la renormalisation, par rapport à la 
présentation donnée au chapitre III, est de reposer sur des théorèmes 
rigoureux, qui justifient entièrement toutes les manipulations permet- 
tant de rendre la théorie finie. Cependant les preuves de ces théorèmes 
sont complexes et je me contenterai de les énoncer sans démonstration ; 
mon objectif est avant tout de démonter le mécanisme de la renormali- 
sation, en m'appuyant sur des exemples simples. 

Les résultats exposés dans ce chapitre sont suffisants pour les 
applications à la mécanique statistique. Ils demandent à être complétés 
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en théorie quantique des champs, où l’on rencontre des complications 
supplémentaires dues au spin des particules. De plus il est indispensable 
de montrer que la renormalisation préserve des propriétés comme la 
causalité et l’unitarité de la matrice S .  Enfin les théories des champs 
avec symétrie de jauge locale posent des problèmes particuliers : on le 
verra au chapitre XII dans le cas de l’électrodynamique quantique, et 
au chapitre XII1 dans celui des théories de jauge non abéliennes. 

Le paragraphe A introduit des notions générales : classification des 
théories des champs en théories renormalisables et non renormalisables, 
et régularisation. Avant de passer au paragraphe B, à des exemples de 
renormalisation à l’ordre d’une boucle, il est nécessaire de faire la 
remarque suivante : le hamiltonien de Ginzburg-Landau (V. 17-18) 
dépend de trois paramètres : une masse m ,  une constante de couplage 
g ,  et un cut-off A. Cependant nous verrons qu’avec cette définition, 
m et g ne peuvent être que des intermédiaires de calcul que l’on 
appellera masse et constante de couplage <<nues », et que i‘on notera 
dans toute la suite mo et go (*). La première version de la renormalisation 
consistera à calculer les fonctions de corrélation en fonction de 
mo, go et A et à éliminer ces paramètres au profit de paramètres 
physiques (ou renormalisés) m et g ,  qui seront définis comme valeurs 
de fonctions de corrélation en des points particuliers. La procédure est 
illustrée sur des exemples simples aux paragraphes B et C. Une 
deuxième façon de procéder consiste à éviter l’introduction de paramè- 
tres nus, en ajoutant au hamiltonien des contre-termes dépendant d’un 
cut-off, exprimés en fonction des paramètres physiques m et g.  Les 
deux approches sont également utiles, et il est indispensable de savoir 
passer de l’une à l’autre : le lien nécessaire est explicité au paragra- 
phe D. 

Dans certains problèmes, on est amené à introduire des fonctions de 
corrélation dépendant de produits de champs (ou de dérivées des 
champs) au même point x, par exemple cp2(x), cp2(x)(Vcp (x) ) ’  etc. De 
tels produits sont appelés opérateurs composés et il est nécessaire 
d’étudier leur renormalisation. Le cas le plus simple, celui de I’opéra- 
teur composé (p2 (x ) ,  est étudié au paragraphe E ; on montre en 
particulier que cet opérateur exige une renormalisation indépendante 
de celle du champ cp ( x ) .  Enfin le << schéma de soustraction minimal », 
très utile pour les calculs, est illustré au paragraphe F à l’ordre de deux 
boucles. 

(*) En mécanique statistique, m, et go sont des paramètres du hamiltonien de G-L ; en 
théorie quantique des champs, ils n’ont pas de signification physique. 
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A.l. Classification des théories 

Nous avons vu au chapitre précédent (équation V (67)) que pour une 
interaction monomiale le degré superficiel de divergence w (G) d’un 
graphe G contribuant à un vertex propre I’@) à E lignes externes était 
donné par : 

w ( G )  - D = V ( W  - D )  - E (1) 

où D - w = [ g ]  est la dimension de la constante de couplage. A 
E fixé nous constatons que : 

(i) Si w > D, le degré de divergence croît avec l’ordre V de la théorie 
des perturbations. 

(ii) Si w = D, le degré de divergence est indépendant de l’ordre de la 
théorie des perturbations. 

(iii) Si w -= D, le degré de divergence décroît avec l’ordre de la 
théorie des perturbations. I1 y a seulement un nombre fini de graphes 
divergents. 

Le cas (i) correspond à celui des théories non renormalisables. On ne 
sait pas leur donner un sens en théorie des perturbations, car il faudrait 
se fixer un nombre infini de paramètres pour les rendre finies. 
Rappelons que la constante de couplage est, dans ce cas, de dimension 
-= O : les puissances de g doivent être compensées par des puissances de 
A. Dans certains cas très particuliers (électrodynamique massive, cf. 
chapitre XII), il peut arriver que les termes proportionnels à une 
constante de couplage de dimension < O  ne contribuent pas aux 
quantités physiques : la théorie est alors équivalente en pratique à une 
théorie renormalisable. Mais, en règle générale, on ne sait pas donner 
une signification physique aux théories non renormalisables, ce qui ne 
veut pas dire qu’elles soient sans intérêt (*) ! Un bon exemple de 
théorie non renormalisable est la Relativité Générale, que l’on sait 
traiter au niveau classique, mais non au niveau quantique. Peut-être la 
solution sera-t-elle donnée par une méthode non perturbative ; peut- 
être la Relativité Générale est-elle une limite de basse énergie d’une 
théorie plus complexe.. . ou peut-être existe-t-il une solution entière- 
ment nouvelle. 

(*) On commence à savoir donner un sens à des théories non renormalisables, 
considérées comme limites de théories à cut-off, grâce à des méthodes non pertubatives : 
cf. A. Kupiainen, op. cit., chapitre VIL 
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Le cas (iii) est celui des théories super-renormalisables. Malgré leur 
caractère a priori sympathique (seulement un nombre fini de graphes 
divergents) il semble que les théories de ce type soient pathologiques en 
dimension 4 et elles n’ont pas trouvé pour le moment d’applications 
intéressantes en physique. 

Le cas (ii) est le plus intéressant : c’est celui des théories renormalisa- 
bles : on remarque que w = D correspond à [ g ]  = O : la dimension de 
la constante de couplage d’une théorie renormalisable est nulle. Les 
divergences d’une théorie renormalisable peuvent être absorbées en se 
fixant un nombre fini de paramètres et en calculant les fonctions de 
corrélation en fonction de ces paramètres. 

A.2. Diagrammes divergents d’une théorie renormalisable 

Pour fixer les idées, nous prenons le cas de l’interaction en 
(p4, où O = 2 D - 4 :  

w - D = D - 4 ; [go] = 4 - D .  

On obtient donc les résultats suivants : 
(i) D =- 4 : théorie non renormalisable. 
(ii) D = 4 : théorie renormalisable. 
(iii) O < 4 : théorie super-renormalisable. 
Lorsque D = 4, la dimension de go est nulle, ainsi que nous l’avons 

déjà vu, et w ( G )  est donné par : 

ce qui donne pour les graphes G contribuant à ï@): 

E = 2(r(2)) : w (G) = 2 
E = 4(r(4)) : w ( G )  = O 
E 6(r(E)) : w (G) < O .  

Seules les fonctions de corrélation à deux et quatrepoints sont 
divergentes. Pour E 3 6, les fonctions de corrélation sont superficielle- 
ment convergentes. On peut néanmoins rencontrer des divergences 
dues à des sous-intégrations (figure 1) : 
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Convergent Divergent (à cause des sous- 
diagrammes encadrés) 

Figure 1. Deux contributions a r(‘). 

Soit y un sous-diagramme de G, c’est-à-dire un ensemble de vertex 
appartenant à G et de lignes joignant ces vertex. Lorsque w (G) < O ,  on 
démontre le théorème suivant : 

Premier théorème de convergence 

Si tous les sous-diagrammes connexes 1-PI y d’un diagramme 
G (y compris G lui-même) sont tels que w ( y )  -= O ,  alors l’intégrale de 
Feynman du graphe G est absolument convergente. 

On démontre ce théorème en utilisant la représentation paramétrique 
(V.60) et en découpant le domaine d’intégration en a! en sous-domaines 
O s a! “1 s <Y “2 6 . - s a T,, où { rl, ..., rrI} est une permutation de 
(1, ..., Z} : cf. Itzykson-Zuber, chapitre 8. 

A.3. Régularisation 

Afin de manipuler des intégrales a priori divergentes, il est utile de 
les régulariser, c’est-à-dire de les rendre finies dans une étape intermé- 
diaire. La régularisation ne doit pas être confondue avec la renormalisa- 
tion : la théorie renormalisée doit être indépendante de la procédure de 
régularisation, qui disparaît totalement du résultat final. Les principales 
méthodes de régularisation sont les suivantes : 

(a) Cut-off brutal : les intégrales sur q sont coupées à I( q I( -= A. Ce 
type de cut-off ne sert que dans des arguments heuristiques et il est 
impraticable au-delà d’une boucle. 

(b) Régularisation de Schwinger : 



240 Renormalisation V1.B. 

(c) Régularisation << à la Pauli-Villars B : 

1 1 
-)--- 

1 
q 2 + m 2  q 2 + m 2  q 2 + A 2 ’  

(d) Régularisation dimensionnelle : on calcule les intégrales pour 
une valeur de D suffisamment petite. Les divergences se manifestent 
sous forme de pôles en (2 - D), (4 - D) ... et on peut définir les 
intégrales, en dehors de ces pôles, par un prolongement analytique en 
D. 

(e) Régularisation sur réseau : on << met la théorie sur réseau D en 
discrétisant l’espace. La variable de champ <p ( x )  est remplacée par une 
variable sur réseau < p i  : 

<p i  - 1 cp (x) dDx 
a D  

où l’intégrale porte sur un volume a D  centré au site i .  Le cut-off est 
A -  rr/a.  

Les méthodes de régularisation à la mode en 1986 étaient (d) et (e). 
Cependant nous utiliserons dans un premier temps une régularisation 
avec cut-off car elle semble plus intuitive ; de plus, en mécanique 
statistique, il est indispensable de conserver le cut-off (ou le réseau) 
pour certains raisonnements. 

Certaines méthodes de régularisation peuvent être incompatibles 
avec des symétries que l’on souhaite conserver ; par exemple la 
régularisation sur réseau brise l’invariance par rotation et par transla- 
tion. Cela peut-être un ennui sérieux, mais non une tare définitive : il 
sera nécessaire de montrer à la fin des calculs que la théorie 
renormalisée possède bien les symétries souhaitées, même si celles-ci 
ont disparu dans une étape intermédiaire. I1 peut aussi arriver que la 
renormalisation ne puisse pas préserver une symétrie de la théorie 
classique, c’est-à-dire de l’approximation en arbres : dans ce cas on a 
affaire à une anomalie. 

B. RENORMALISATION DE LA MASSE ET DE LA 
CONSTANTE DE COUPLAGE 

Nous nous plaçons dans le cadre de la théorie en (p4, en dimension 
D = 4, avec un paramètre d’ordre de dimension n = 1. Le hamiltonien 
dépend de la masse nue mo et de la constante de couplage nue 
go, ainsi que d’un cut-off A. Nous allons étudier les vertex propres 
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ï (2) et ï (4)  d’abord à l’ordre d’une boucle, en réservant l’ordre de deux 
boucles au paragraphe C .  I1 est utile de définir les intégrales suivantes, 
qui permettent d’écrire les contributions à une et deux boucles à 
r(’), ainsi que la contribution à une boucle à r(4): 

k = kl  + k2 d4q d4q’ 1 KA(k2, mi) = -- s ( 2  l4 (2 T l4 (q2 + m;)(qi2 + mi)[(k - q - q‘)2 + mi] 

&-a+ 
k - q - q ‘  

(4) 

Les intégrales sont régularisées par un cut-off A dont il n’est pas 
nécessaire de préciser la forme pour le moment. Le comptage de 
puissances montre que I, - A2, J A  - In A,  K A  - A2 ; KA contient 
également des termes en (in In A ,  et (nous l’avons vu au 
chapitre V) des termes en k2 ln A. Notez que les intégrales sont définies 
sans le facteur de symétrie des graphes correspondants. 

B.l .  r(’) à l’ordre d’une boucle : renormalisation de la masse 

A l’ordre d’une boucle r(‘) est donné par : 

1 ï ( 2 ) ( k 2 )  = k 2  + mi + go Zn(rni) . ( 5 )  

On souhaite que ï (2)soi t  fini quand A -+ CO ; en particulier on souhaite 
que I‘(2)(k2 = O )  soit fini : 

r ( 2 ) ( k 2  = O )  = m 2 ,  (6) 
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où m est un paramètre fini ayant les dimensions d’une masse, appelé 
masse renormalisée : 

2 1  m2 = mo + - go ~A(mi). 2 (7) 

Réexprimons maintenant dans ( 5 )  mi en fonction de m2: 

r(2)(k2) = k 2  + m2 (8) 

et î(’) est finie pour tout k2. Les divergences ont été absorbées dans 
une redéfinition (mi -+ m2) de la masse. La masse nue mo est une 
fonction de go, A et m (cf. équation (7)). 

B.2. r(4) à l’ordre d’une boucle : renormalisation de la constante de 
couplage 

D’après les résultats du chapitre V, ï(4) à l’ordre d’une boucle vaut : 

(9) 
1 r ( 4 ) ( k i )  = go - g$[Jn(k i ,  mi)  + Perm.] . 

A nouveau on exige que 1‘(4) soit fini en un certain point, par 
exemple k, = O, ce qui définit un deuxième paramètre fini, g, appelé 
constante de couplage renormalisée : 

I-(4)(ki = O )  = g . (10) 

L’équation (10) permet de calculer g en fonction de go : 

3 
= 9 0  - 2 go ],(O7 mi> 

et inversement : 

(11) 
3 

9 0  = -k Zg2J,4(07 m 2 )  * 

En écrivant l’équation (il), on a négligé tous les termes d’ordre 
g3 : en effet, comme nous n’avons calculé que les diagrammes à une 
boucle, nous ignorons les termes d’ordre go. Il est donc parfaitement 
cohérent de remplacer go par g2 et J,(O, mi) par J A ( O ,  m2) : l’erreur 
commise est d’ordre g3. De façon générale, il est très important de 
remarquer que l’on peut se permettre toutes les manipulations valides à 
un ordre fixé en go, même si les termes d’ordre supérieur que l’on 
néglige ont des coefficients infinis si A -+ CO. Ces remarques étant 
faites, on reporte dans (9) la valeur (11) de go : 

1 
2 r(4) (ki )  = g - -g2[(~,(ki,rn2) - J ~ ( O , ~ ~ ) )  +perm. ] .  (12) 
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I1 est immédiat de vérifier que la quantité : 

JA(ki, m2) - J A ( O ,  m2)  

est finie quand A -+ 00 (exercice 1). L‘expression (12) pour r ( 4 ) ( k i )  
possède pour tout ki une limite finie quand A -, CO et s’écrit en fonction 
des paramètres finis g et m2. 

En résumé, à l’ordre d’une boucle, le choix de deux paramètres finis 
m2 et g a permis de rendre finies les fonctions de corrélation 
ï ( 2 )  et r (4) : les divergences ont été absorbées dans une redéfinition de 
la masse (mi+ m2) et de la constante de couplage (go -+ g). 

Le calcul à une boucle permet d’envisager une stratégie générale : à 
un ordre fixé de la théorie des perturbations, les conditions (6)  et (10) 
permettent d’exprimer mi et go en fonction de m2 et g .  Reportant ces 
expressions dans celles des vertex propres, on peut espérer obtenir, à la 
limite A -+ CO, une expression finie dépendant de m2 et de g .  
Cependant on doit encore procéder à une opération supplémentaire : 
celle de la renormalisation du champ, que nous allons illustrer sur le cas 
du vertex propre r(2) à l’ordre de deux boucles. 

C. RENORMALISATION DU CHAMP. CONTRE-TERMES 

C.l .  r(2) à l’ordre de deux boucles : renormalisation du champ 

A l’ordre de deux boucles , le développement diagrammatique de 
r (2) est (figure 2) : 

Figure 2. 

soit sous forme analytique : 

1 r ( 2 ) ( k 2 )  = k 2  + mi + 3 go ZA(mi) - 
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Posons comme au paragraphe précédent (nous verrons plus loin que 
m: n’est pas encore le paramètre définitif m2) : 

r(’)(k2 = O )  = m : .  (14) 

Dans les termes en g;, on peut remplacer mi par m: ; mais dans le terme 
en go, il faut tenir compte de la relation (7) pour procéder de façon 
cohérente à l’ordre gi  : 

1 
= IA(m?) f 5 90 IA(mf) J A ( o 7  m?) f o ( d )  * 

Reportant dans (13) et posant k2 = O, on obtient mi  en fonction de 
ml : 2 

(15) 
1 1 1.0” = m: - 5 go I A ( ~ S )  + 6 g; K A ( o ,  m?) . 

On reporte cette expression dans (13) : 

1 
6 r(2)(k2) = k2 + m; - - g2[KA(k2, I.,”) - KA((), m:)]  (16) 

en remarquant que l’on peut remplacer go par g , l’erreur commise étant 
d’ordre g3. Malheureusement, l’expression (16) est encore divergente 
quand A + 00. En effet nous avons vu que KA(k2,  m2) contient un 
terme en k21n A qui n’est pas éliminé par la soustraction de 
K,(O, m;). La dernière opération nécessaire est celle d’un changement 
de normalisation du champ, aussi appelé renormalisation du champ. 

Cette renormalisation nous amène à faire la différence entre les 
fonctions de corrélation nues et les fonctions de corrélation 
renormalisées (finies) rh“) ; la constante de renormalisation 2, (la 
notation Z,  est conventionnelle) permet de relier les deux types de 
fonctions de corrélation : par exemple dans le cas de TA2) on écrira : 

rA2)(k2, m2, g )  = Z3 r ( ’ ) (k2 ,  mi, go, A )  . (17) 

Il faut souligner que rA2) dépend des paramètres renormalisés (finis) 
m2 et g, tandis que r (’)dépend des paramètres nus mi et go ainsi que de 
A ,  et que par analyse dimensionnelle Z3 ne peut être qu’une fonction de 
g et de A/m : Z,  = Z,(g, A/m). Pour que rh2) soit finie, il suffit à 
nouveau d’imposer une seule condition : 

- d rA2)(k2)/ (= T$‘)(k2 = O ) )  = 1 
dk2 k 2 = 0  
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Le choix du point k2 = O dans (18) est tout à fait arbitraire, mais 
commode. D’après l’équation (17) : 

(19) 
1 
6 

Z;’ = Y ‘ ( 2 ) ( k 2  = O )  = 1 - - g 2  KA(0, mf )  

et en reportant dans (16) on obtient la fonction de corrélation 
renormalisée : 

rA2)(k2)  = k 2  + Z ,  m: - - g2[KA(k2,  m:) - 1 
6 

- KA(O, m:) - k2 K>(O, m:)] . (20) 

Le terme entre crochets dans (20) est fini (exercice 1) ; pour que 
TA2) soit finie il suffit de fixer le paramètre m; par : 

2 m2 = Z,  ml 

et le résultat final s’écrit : 

rA2)(k2) = k 2  + m2 - - g2[KA(k2,  m2) - K,(O, m2) - k 2  KL(0, m2)]  1 
6 

(21) 

le remplacement de m: par m2 dans le crochet étant justifié à cet ordre 
de la théorie des perturbations. En résumé les divergences de 
r(’) ont été absorbées en fixant les conditions suivantes, ou conditions 
de normalisation des fonctions de corrélation renormalisées : 

1 (3) rA4)(ki = O )  = g I 

(22.a) 

(22.b) 

(22.c) 

I1 convient à ce point de faire plusieurs remarques : 

(a) L’équation (17) fixe la relation entre rA2) et r(’) ; r(’), fonction 
de corrélation nue, s’exprime en fonction des paramètres nus mi, 
g o  et du cut-off A. Ces paramètres doivent être réexprimés en fonction 
des paramètres physiques (ou renormalisés) rn2 et g. A condition 
d’ajouter à cette opération un changement de normalisation du champ 
(facteur Z , ) ,  ri’)’, qui s’exprime en fonction de m2 et g ,  est finie et 
indépendante de A à la limite A + CO. Les divergences ont été 
absorbées dans une redéfinition de la masse, de la constante de 
couplage, et un changement de normalisation du champ. Remarquez 
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que ï h 2 )  ne dépend que d’un seul paramètre dimensionné, m, alors que 
ï(’) dépend de mo et A : cf. le point (c) ci-dessous. 

(b) I1 n’est pas nécessaire que les paramètres m2 et g soient 
accessibles directement à l’expérience. Par contre toutes les fonctions de 
corrélation s’expriment en fonction de m2 et g,  et de ces deux 
paramètres seulement. En ce sens, la théorie est prédictive : il suffit de 
deux expériences indépendantes pour déterminer m2 et g . 

(c) Dans le cas des phénomènes critiques, le paramètre m est relié à 
la longueur de corrélation : m = 5-l. En effet pour k -t O : 

et GA2) possède un pôle à k = r+ im. Si l’on calcule la transformée de 
Fourier, celle-ci se comportera à grande distance comme : 

e- mr - - e- r / S  

(cf. le calcul de la fonction de corrélation de l’approximation de 
Landau, II-C). La région critique correspond à m -e A (5 9 a )  ; avec 
un choix générique des paramètres mo, go et A, m serait a priori d’ordre 
A .  I1 faut donc une relation entre mo, go et A pour que l’on se trouve 
dans la région critique. En d’autres termes, lu construction d’une théorie 
renormalisée implique ïexistence d’un point critique. 

(d) La condition (22.c) est rL4)(O) = g, alors qu’au paragraphe 
précédent on a écrit ï (4 ) (0 )  = g .  Néanmoins ceci est correct, car 
rh4) = Z: ï (4) (ce point sera établi ultérieurement), et à cet ordre de la 
théorie des perturbations on peut prendre Z3 = 1, étant donné que 
Z3 = 1 + O (g2) .  Ceci est une particularité de la théorie en q ; dans le 
cas de la théorie en <p à six dimensions par exemple, il importe de tenir 
compte du facteur Z3 pour définir g (exercice 2). 

(e) I1 est utile de définir la constante de renormalisation 2, par : 

z;’ go = T ( ~ ) ( o ,  go, mi, A >  . (23) 

La relation entre go et g est alors : 

(f) Les conditions de normalisation (22) sont dans une large mesure 
arbitraires. I1 suffit qu’elles soient vérifiées à l’ordre de zéro boucle. 
Des commentaires supplémentaires sur ce point seront faits à la fin du 
paragraphe D . 
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C.2. Contre-termes 

Comme on cherche en définitive à calculer les fonctions de corrélation 
renormalisées en fonction des paramètres m2 et g, on peut essayer 
d'éviter d'introduire les quantités nues mi et go. La stratégie de la 
renormalisation consiste alors à rajouter des << contre-termes B, c'est-à- 
dire un hamiltonien supplémentaire 6 H ,  qui sera traité comme un 
hamiltonien d'interaction, et dont les coefficients seront déterminés 
ordre par ordre en théorie des perturbations, ou plus exactement ordre 
par ordre en nombre de boucles, par les conditions de normalisation 
(22). Comme ces conditions de normalisation fixent les fonctions de 
corrélation de façon unique à la limite A + CO, cette procédure sera 
équivalente à la précédente, avec l'avantage que tous les calculs sont 
effectués avec les paramètres renormalisés m2 et g. On écrira donc la 
densité de hamiltonien (l'indice A indique que l'on calcule avec un cut- 
off A et que 6m2, 2, et Z3 dépendent de A) : 

(25.a) x O ( x )  = x A ( x )  + 6 Z A ( x )  

(25.b) 

On remarque que les contre-termes ont la même forme ((vcp)', 
cp et cp ') que les termes du hamiltonien initial. Ceci est parfois utilisé 
comme critère de renormalisabilité. Cependant, il peut arriver (cas de 
l'électrodynamique scalaire) que l'on doive introduire des contre- 
termes qui n'ont pas la même forme que les termes du hamiltonien 
initial. Si le nombre de contre-termes est fini, la théorie sera en pratique 
renormalisable. 

Comme 6 û f  A est traité perturbativement, on pourra représenter 
graphiquement les contre-termes : 

2 + : - ( Z ,  - 1) q = - q 2 [ 2 3 ( 2 )  + * * + 23') + . . . ] 

où am2('), Ztr)  et 2 f )  sont calculés à l'ordre de 1 boucles. 
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Les contre-termes sont calculés de façon récursive : lorsqu'ils ont été 
déterminés à l'ordre de 1 boucles, on les réinjecte dans le calcul à 
( 1  + 1) boucles. L'application des conditions de normalisation (22) 
permet de déterminer les contre-termes à i'ordre (I + 1) et ainsi de 
suite. Le développement de Sm2, Z3, Z1 en nombre de boucles est aussi 
un développement en puissances de g : Z~( ' )OC 9'. Retrouvons rapide- 
ment les résultats établis précédemment. 

Ordre d'une boucle (figure 3) : 

Figure 3. 

1 ri2) = k 2  + m2 + - gZA(m2) + 6m2(') 2 
et d'après (22.a) : 

où 2, = 1 + Z,(') + Z1(2) + - . D'après (22.c) : 

L'expression de rg") coïncide bien avec (12). 

Ordre de deux boucles : cas de Ti2) (figure 4) : 

Figure 4. 



VI.D.l Cas général 249 

tandis que (22.b) devient : 

zp = ; g2 K i ( 0 ,  m2) 

en accord avec (19). L'expression finale pour rh2) coïncide bien avec 
(21) * 

D. CAS GÉNÉRAL 

D.l .  r(4) à l'ordre de deux boucles 

L'examen de r(4) à l'ordre de deux boucles permet d'illustrer le 
mécanisme de fonctionnement des contre-termes et de comprendre 
intuitivement comment ce mécanisme peut se généraliser à tous les 
ordres de la théorie des perturbations. Les graphes à deux boucles 
donnant une contribution à r(4) sont dessinés sur la figure 5.a-c, ainsi 
que les graphes construits avec des contre-termes (d-f) : 

a 
(a) (b) (cl 

gzy 

X 
(f) (e) 

Figure 5. 
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La relation (26) donnant 6m2(1)montre que la somme des graphes (a) 
et (d) est nulle. Le graphe (b) est facile à calculer : c’est le produit de 
deux boucles simples ; le graphe (c) est plus complexe, mais aussi plus 
intéressant, et nous allons l’examiner en détail. Utilisant la représenta- 
tion paramétrique (V.60) ainsi que les résultats de l’exercice (V.7), on 
obtient l’expression analytique de ce graphe sous la forme d’une 
intégrale sur quatre paramètres ai (je n’écris pas le facteur multiplicatif 
g3/ [2(4 T )4] qui ne joue aucun rôle dans l’argument qui va suivre) : 

4 

avec : 

Figure 6.  Le graphe (5c) et son contre-terme. 

L’intégrale (28) diverge en premier lieu à cause d’une sous-intégra- 
tion correspondant à la boucle L ,  encadrée sur la figure 6. La diver- 
gence provient de la région où a3 et a4 tendent vers zéro simultané- 
ment, a, et a 2  restant finis. Le contre-terme est défini par le 
graphe 6.b, où le vertex encerclé correspond à une boucle L ,  calculée 
avec des valeurs nulles des moments externes. I1 faut remarquer que le 
contre-terme est celui d’un graphe particulier, et non la totalité du 
graphe (e) de la figure 5. 
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Une deuxième divergence provient de la région où tous les 
ai -+ O simultanément, ou en d'autres termes, de la région h -+ O, où 
A est le paramètre d'homogénéité de l'équation (V.61) : cette diver- 
gence est donc liée au degré superficiel de divergence du graphe: 
w ( G )  = O .  

La divergence provenant de la sous-intégration est compensée par le 
contre-terme, la contribution totale de la figure 6 s'écrivant : 

En effet dans la région où a l  et a 2  sont finis et où a3,  
a4 -+ O, on peut remplacer P (ai) et Q ( ai, k i )  par (une preuve 
complète est donnée dans l'exercice (4)) : 

ce qui montre que la singularité est bien compensée dans (29). 
L'intégrale r ( k i  ) est superficiellement divergente, mais cette divergence 
est indépendante de k2, alors que I ( k i )  contient un terme en 
In A In k 2  : pour le montrer, il suffit de dériver (29) par rapport à 
k2 : ûF/ak2 est donné par une intégrale convergente, avec w (G) = - 2. 
Si l'on ajoute les graphes des figures 6.a et 6.b et que l'on retranche la 
valeur du total prise à ki = O, on obtient un résultat convergent ; le 
terme soustrait donne une contribution à 21(') contenant des termes en 
(in A)' et (in A) .  

L'exemple précédent permet de comprendre comment fonctionne la 
renormalisation dans le schéma appelé BPHZ (Bogoliubov-Parasiuk- 
Hepp-Zimmermann). Dans ce schéma chaque graphe est traité indivi- 
duellement, alors que les conditions de normalisation (22) font interve- 
nir l'ensemble des graphes d'un ordre donné de la théorie des 
perturbations contribuant à rA2) et à TA'). A l'ordre d'une boucle, on 
retranche à rh4)(rf)) le premier (les deux premiers) terme(s) de leur 
développement de Taylor à ki = O (cf. (12) et (21)) ; ceci donne des 
intégrales de Feynman convergentes, ce qui fait que l'on peut se passer 
entièrement de régularisation, puisque l'on peut soustraire directement 
les intégrands. De même à i'ordre de deux boucles la somme des 
graphes 6.a et 6.b sera rendue convergente en soustrayant l'intégrand à 
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ki = O. On remarque que le graphe avec contre-terme 6.b a été défini 
de façon récursive, puisque l’on a retranché à l’intégrand de la boucle L 
son intégrand pris pour des valeurs nulles des moments externes. 

Considérons maintenant le cas général d’un graphe contenant 
(1 + 1 ) boucles ; les divergences provenant de sous-intégrations seront 
compensées par des contre-termes d’ordre s 1 ; la prescription générale 
pour écrire ces contre-termes est la formule de récurrence de Bogoliu- 
bov, ou bien sa solution : la formule des forêts de Zimmermann (cf. 
Itzykson-Zuber, chapitre 8, ou Collins, chapitre 5) .  Deux cas sont alors 
possibles : 

(i) Le graphe considéré est superficiellement convergent 
( O  (G) -= O )  : la somme graphe plus contre-termes d’ordre s I est alors 
donnée par une intégrale absolument convergente. 

(ii) Le graphe est superficiellement divergent ( w  (G) 3 O )  : la 
somme graphe + contre-termes est divergente, mais il suffit alors d’une 
soustraction de l’intégrand (TA4): w (G) = O )  ou de deux soustractions 
(rA2): w (G) = 2)  pour obtenir un résultat convergent. La divergence 
globale est donc proportionnelle à un polynôme de degré w ( G )  
construit avec les moments externes, correspondant à une interaction 
locale dans l’espace des x (c’est-à-dire qui peut s’écrire en fonction de 
q ( x )  et d’un nombre fini de ses dérivées). 

Un argument combinatoire complexe permet de montrer que cette 
procédure est bien équivalente à celle qui consiste à construire les 
contre-termes à l’aide des conditions de normalisation (22). Par exem- 
ple l’expression complète de Z,(‘) est donnée par l’équation de la 
figure (7) : 

I k . - ”  

Figure 7. 

I1 est clair que cette discussion est purement descriptive, mais les 
preuves complètes de toutes les affirmations qui précèdent sortent du 
cadre de cet exposé. Avant de quitter le schéma BPHZ, remarquons à 
nouveau que la procédure systématique de soustraction des intégrands 
évite de recourir à une régularisation intermédiaire. Comme on peut 
toujours appliquer ce schéma avec une telle régularisation, ceci montre 
que les rgN) sont bien indépendants de la régularisation, puisque toutes 
les intégrales sont absolument convergentes ; les fonctions de corréla- 
tions renormalisées ne dépendent en fait que des conditions de 
normalisation. 
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Cependant malgré son grand intérêt théorique, le schéma BPHZ 
n’est pas en général le plus commode pour les calculs pratiques, et il 
conduit à des complications dans le cas de la masse nulle. C’est 
pourquoi je reviens maintenant au point de vue initial, en établissant le 
lien entre fonctions de corrélation nues et renormalisées. 

D.2. Relation entre fonctions de corrélation nues et renormalisées 

Effectuons la somme de if,, et S i f ,  dans (25) 

1 1 1 
= - 2 Z ~ ( V V  I2 + Z ,  mt < p 2  + - 4! g ~ ,  Cp4 

et effectuons le changement de normalisation du champ : 

Cpo(x> = G2Cp ( x ) .  

X 0 ( x )  devient, en utilisant (24) : 

1 1 2 2  1 i f o ( x )  = - (v(Po)2 + 2 mo <Po + q go Cp;. 2 

Examinons maintenant la fonctionnelle génératrice : 

On en déduit immédiatement par dérivation fonctionnelle : 

2 GhE)(xl, ...,, x E  ; g, m ) = 2; E / 2  G ( E ) ( ~ l ,  ..., x E  ; go, mi, A )  . 

On écrit en général cette relation pour les vertex propres, en passant 
dans l’espace des k ; compte tenu de la définition (chapitre V, 
paragraphe C.3) des vertex propres, on obtient : 

I ThE)(k1,  ..., k ,  ; g, m2)  = 2 [ / 2 T ( E ) ( k l ,  ..., k ,  ; go, m:, A )  I . (32) 

On notera le facteur Zf /2  (au lieu de Z F E l 2 )  dû à la division par les 
propagateurs externes complets. 

On peut maintenant énoncer le deuxième théorème de convergence : 
rh2)(0), rh(2)(0) et rh4)(0) étant fixés par les conditions de normalisa- 
tion (22), on peut définir les contre-termes Sm2, 2, et Z,. Les intégrales 
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donnant r 4") sont alors absolument convergentes et : 

rAE)(kl ,  ..., kE ; g ,  m 2 )  = lim Z f / 2  r @ ) ( k 1 ,  ..., kE ; go, mi, A )  
A - m  

existe et est indépendant de la procédure de régularisation. 
I1 faut bien comprendre la signification de l'équation (32) : dans le 

membre de droite, go, mo/m et Z3 sont des fonctions de g et 

déterminées par les conditions de normalisation (22) .  Les fonctions de 
corrélation nues r(") étant calculées avec un cut-off A, la limite 
A -+ 00 de Z f / 2  ï(") définit les fonctions de corrélations renormalisées 
rAE! Lorsque A est grand, mais fini, rAE) conserve une faible 
dépendance par rapport à A (  - ( k / A ) 2  et ( m / ~ l ) ~ ) .  

A / m  : go = go(9, A/m>, mo/m = f(s7 2 3  = Z,(g, W m ) ,  

D.3. Cas de la masse nulle 

Le cas de la masse nulle pose un problème particulier, car on ne peut 
pas utiliser les conditions de normalisation (22) ; en effet si la condition 
rA2)(k2 = O )  = O fixe la masse (renormalisée) à zéro, r $ 2 ) ( k 2 )  et , 

r f ) ( k i )  sont infrarouge-divergents pour k2 = O et ki = O (cf. V-F.3). 
On doit se donner une masse auxiliaire p , arbitraire mais indispensable 
pour écrire les conditions de normalisation. Cette masse brise l'inva- 
riance d'échelle de l'approximation classique, qui ne dépend d'aucun 
paramètre dimensionné. On peut alors choisir les conditions de 
normalisation de la façon suivante : 

(33.a) 

(33.b) 

(33.c) 

où kio, appelé point de soustraction, est défini de la façon la plus 
symétrique possible par : 

(34) 
1 kio. kjo = 7 p2(4 ûij - 1 ) .  

Le choix (34) se comprend en remarquant que si dans r(4), kl + k2 = 

- (k3 + k4) ,  on obtient les relations suivantes lorsque kf = k 2  : 

s = (k1 + k2)2 = 2 k 2  + 2 kl . k2 
t = (k ,  + k3)2 = 2 k 2 +  2 kl . k3 
u = (k ,  + kq)2 = 2 k 2 +  2 k1 . k4 
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et : 

s + t + u = 4 k 2 .  

Le choix le plus symétrique correspond à : 

c’est-à-dire (34). 
Précisons à nouveau que les conditions (33) sont dans une large 

mesure arbitraires (sauf ri2)(0) = O qui est précisément la condition de 
masse nulle). On pourrait par exemple prendre r$2)(2 p 2 )  = 1, ou 

bien kio . k .  - - (4 a i j  - 1) etc. Un point important est que la 

théorie renormalisée dépend de deux paramètres finis : g et p2. 
Cependant ces deux paramètres ne sont pas indépendants, ainsi que 
nous le verrons au chapitre suivant. 

De façon générale, les conditions de normalisation ne fixent de façon 
non ambiguë que la partie divergente des contre-termes. Une modifica- 
tion des conditions de normalisation change les contre-termes par une 
quantité finie, et est absorbée dans une redéfinition de la masse, de la 
constante de couplage et de la normalisation du champ : la théorie est 
inchangée, mais elle est paramétrée de façon différente. Cette inva- 
riance de la théorie par reparamétrisation est à la base du groupe de 
renormalisation (première version), qui sera exposé au chapitre sui- 
vant ; un exemple simple de reparamétrisation est donné à l’exercice 7. 

P 2  

lo - & 

E. OPÉRATEURS COMPOSÉS ET LEUR RENORMALISATION 

On appelle opérateur composé tout opérateur O ( x )  fonction du 
champ q ( x )  et de ses dérivées. Je me limiterai au seul cas de 
l’opérateur composé : 

O ( x )  = cp2(x> 

dont j’aurai à me servir par la suite. Ce paragraphe sera consacré à 
l’étude des fonctions de corrélation formées avec cp ( x )  et cp2(x) : 

A priori on peut s’étonner que l’on doive étudier de tels objets car après 
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tout cp2(y) = cp ( y )  cp ( y ) .  Le problème est que la limite 

lim cp(Y + e )  cp (Y)  
Il E II -t 0 

est singulière à l'intérieur d'une fonction de corrélation lorsque 
A + 00. Par exemple à l'approximation gaussienne : 

diverge quand A -+ 00. A cause du processus de renormalisation, il est 
indispensable de définir <p 2(x) comme entité indépendant de <p ( x ) .  

E. 1. Fonctionnelle génératrice 

11 est immédiat d'écrire une fonctionnelle génératrice des fonctions 
de corrélation (35) : 

Z ( j ,  t ; mi)  = 

le terme de source en cp2(x) peut être combiné avec le terme de masse 
1 mi c p 2  de H et on obtient une relation entre les fonctionnelles 

génératrices z et Z : 

Cette relation permet de démontrer l'équation suivante (exercice 5 )  

x d4yl ... d4yL G ( N , L ) ( x l ,  ..., xN ; y , ,  ..., Y L  ; d)  , (39) 
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où les G ( N 7  L)sont connexes pour les cp (cf. exercice 5). En passant à la 
limite p 2  -, O, on calcule la dérivée de G ( N )  par rapport à mi : 

2 d4y G ( N ,  ‘)(xl, . . . , xN ; y ; mt)  . (40) a 
-2 G ( N ) ( ~ ,  , . . . , X N  ; mo) = - 
am0 

Définissons comme dans le cas des fonctions de corrélation ordinaires la 
transformée de Fourier : 

(2  ~ r ) ~  8(‘)( ki + q )  G ( N ’ l ) ( k l ,  ..., kN ; q ; mo)  2 = 

où le moment q est associé à c p 2 .  L‘équation (40) devient 

a 2 ..., kN ; mo)  = - G ( N ’ l ) ( k l ,  ..., kN ; q = O ; 

(41) 

On appelle souvent l’opération de dérivation par rapport à mi une 
N insertion de masse ». 

Le théorème de Wick permet d’établir les règles de Feynman pour les 
G ( N ’ L )  exactement comme pour les G ( N ) .  Examinons par exemple les 
premiers termes de G(’> ‘)(x, y ; z )  (figure 8) : 

Z 

v Y 3 x x-x Y = G,(x - y )  G,(O) 

Figure 8. Contributions à G(2,1) .  

L‘insertion de cp au point z a été représentée par une ligne ondulée. Le 
deuxième terme (Go(x - y )  Go(0))  n’est pas connexe en c p 2  et ne doit 
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pas être décompté dans l'équation (39). Dans l'espace des k on trouve 
pour le premier terme, dans le cas où kl + k2 = q = O, kl = - k2 = k : 

en accord avec (41). 
Comme dans le cas des fonctions de corrélation ordinaires G ( N ) ,  on 

définit des fonctions de corrélation connexes GCN* L ,  et des vertex 
propres r(N,L) en effectuant une transformation de Legendre par 
rapport à j .  

Examinons par exemple le vertex propre I'('*'), qui est obtenu à 
partir de G ( 2 ' 1 )  en divisant par deux propagateurs : 

Lorsque q = O, il est facile de relier 1'(231) à la dérivée de G ( 2 )  par 
rapport à rnt ; en effet : 

soit : 

E.2. Exemple : I'('* '' à l'ordre d'une boucle 

Pour montrer que les renormalisations décrites aux paragraphes 
précédents ne suffisent pas à rendre fini r(N,L), il suffit de calculer 
1'(2,1) à l'ordre d'une boucle (figure 9) : 

k ,  ki 

Figure 9. Graphes contribuant à î(z91). 
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I1 est instructif de vérifier (42) en utilisant 

L‘intégrale dans l’équation (43) diverge logarithmiquement, et aucune 
des renormalisations discutées précédemment, ou de façon équivalente, 
aucun des contre-termes de (25.c) ne peut rendre (43) fini. I1 est 
nécessaire d’introduire une constante de renormalisation supplémen- 
taire Z par la relation : 

où est déterminé par la condition de normalisation : 

rh2,l)(ki  = O ; = O )  = 1 (45) 

en supposant la masse # O. Dans le cas de la masse nulle, l’intégrale 
dans (43) est infrarouge divergente lorsque q = O, et il est nécessaire de 
choisir un point de soustraction différent. A l’ordre d’une boucle, et 
compte tenu du fait que Z3 = 1 + O(g2) on calcule immédiatement 
Z :  

Pour comprendre le cas général, on procède comme dans le cas des 
fonctions de corrélation ordinaires, par comptage de puissances. 

E.3. Comptage de puissances et contre-termes 

Examinons le degré superficiel de divergence d’un diagramme à 
N lignes externes cp , L lignes externes <p et d’ordre V en théorie des 
perturbations. Le facteur w correspondant à l’insertion d’un <p2  est 
d’après (V.66) : 

(47) 

ce que l’on aurait également pu trouver directement en remarquant que 
la constante de couplage d’une intëraction en cp est de dimension 2. On 
obtient le degré superficiel de divergence w ( N ,  L )  du vertex propre 
ï (N,L)  d’après (V.67) : 

N 
2 w ( N ,  L )  = D - 2 L  + V ( D  -4) -- ( D  - 1) 
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soit si D = 4 : 
w(N, L )  = 4 - 2  L - N 

Pour obtenir (48), on pourrait également remarquer que chaque 
insertion de 'p2 est équivalente à une dérivation par rapport à 
mi et diminue la dimension de l'intégrand de 2. Les deux seuls vertex 
propres superficiellement divergents ont donc : 

N = 0 ,  L = 2  : w(O72)=O 
N = 2 ,  L = l  : ~ ( 2 , 1 ) = 0 .  

Le premier cas n'intervient que si l'on veut étudier l'énergie libre, et je 
le laisserai de côté. Comme r(',l) est le seul graphe superficiellement 
divergent, il suffira d'une renormalisation de 'p2 pour rendre tous les 
r(N, L ,  finis. On utilisera par exemple les conditions de normalisation 
suivantes : 
Masse non nulle : 

ïJ2,')(ki = k2 = q = O )  = 1 . (22.d) 

Masse nulle : 

ïA2,')(kio ; qo) = 1 

où : 

(33.d) 

Comme dans le cas de ri2) et ri4)', il y a une grande part d'arbitraire 
dans ce choix de normalisation. 

Après renormalisation, l'insertion de 'p n'est pas équivalente à 
l'insertion d'un produit de deux 'p ; pour bien souligner la distinction, 
on désignera (provisoirement) l'insertion de ' p 2  par ['p '1. Les fonctions 
de corrélation se calculent à l'aide du hamiltonien HA, du contre-terme 
6H,, et du terme de source : 

La constante de renormalisation 2 relie [ 'p2 (x ) ]  à 'p&) ; par 
définition : 

['p2(x)1 = zz, 'pyx) = %(p&). (49) 

Après changement de normalisation du champ, le terme de source 
devient : 

[Z~"~j(x) cpo(x) -: %(x) 'p&x)] d4x 
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et on en déduit la relation entre fonctions de corrélation nues et 
renormalisées : 

ou 

(il faut se souvenir que la transformation de Legendre est prise 
seulement par rapport à j ) .  L‘équation (44) est bien un cas particulier 
de (50). 

Remarquons également que : 

1 1 1 - 2 t ( x ) [ ( p 2 ( ~ ) ]  = 3 t ( x )  ( p 2 ( x )  + 2f(~)(Z3 Z - 1) p2(x). (51) 

Le premier terme de (51) peut être inclus dans N A ,  et le second dans 
SN,, car il joue le rôle d’un contre-terme, et peut être traité suivant les 
mêmes règles que les contre-termes usuels : il est déterminé de façon 
récursive en utilisant la condition de normalisation (22.d) (ou 33.d dans 
le cas de la masse nulle). 

Figure 10. Contre-terme associé à l’insertion d’un <p2. 

Remarquons enfin que le cas de la renormalisation de (p2(x)  dans la 
théorie en g q  est particulièrement simple. En règle générale, l’inser- 
tion d‘un opérateur composé sera couplée par renormalisation avec 
l’insertion de tous les opérateurs de dimension inférieure ou égale à sa 
propre dimension, sauf si des conditions de symétrie s’y opposent (cf. 
exercice 9). 

F. SCHÉMA DE SOUSTRACTION MINIMAL (MS) 

Concluons ce chapitre par un exposé du schéma de renormalisation 
minimal, qui se révèle souvent très commode dans les calculs effectifs. 
Ce schéma ne fonctionne que si l’on utilise la régularisation dimension- 
nelle : en effet, au lieu d’utiliser des conditions de normalisation du 
type (22) ou (33), on construit les contre-termes en soustrayant les 
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pôles en E des fonctions de corrélation superficiellement divergentes, 
après avoir effectué une régularisation dimensionnelle. Soulignons que 
l’on peut parfaitement utiliser une régularisation dimensionnelle avec 
les conditions de normalisation (22) ou (33). Les fonctions de corréla- 
tion renormalisées seront strictement identiques à celles obtenues par 
régularisation à l’aide d’un cut-off : les fonctions de corrélation 
renormalisées ne dépendent que des conditions de normalisation, et 
non de la procédure de régularisation. Au contraire les fonctions de 
corrélation renormalisées du schéma minimal seront difléérentes de 
celles obtenues à partir de (22) ou (33). Toutefois les prédictions 
physiques seront identiques, du moins si l’on somme tous les termes de 
la série de perturbations : en effet les différences sont absorbées dans 
une redéfinition de la masse et de la constante de couplage ; si 
g est la constante de couplage (renormalisée) obtenue à partir de (22) 
ou (33) ,  et g’  celle du schéma minimal, g ’  s’exprimera par un 
développement perturbatif en puissances de g : 

(52) 2 g ’ = g + c 1 g  +c,g3+.... 

(Le calcul de c1 est proposé à l’exercice 7.) Ces propriétés ne 
constituent bien sûr qu’un cas particulier de l’invariance par reparamé- 
trisation de la théorie renormalisée, déjà évoquée précédemment. 
Cependant on ne connaît qu’un nombre fini de termes (en général deux 
ou trois) de la série perturbative et les prédictions des deux schémas 
seront en pratique différents. Supposons par exemple que l’on ait 
calculé une fonction de corrélation dans les deux schémas à l’ordre 
g3. Les deux schémas différeront par des termes d’ordre g4. 

Le choix du << meilleur schéma de renormalisation D est important, 
par exemple en chromodynamique quantique. Plusieurs prescriptions 
ont été proposées, mais les arguments avancés pour << optimiser le 
schéma de renormalisation B ne peuvent être qu’heuristiques. 

Afin d‘illustrer le mécanisme du schéma minimal, je me propose 
d’effectuer la renormalisation à l’ordre de deux boucles dans le cas de la 
masse nulle, ce qui correspond au hamiltonien : 

q 4 )  + (contre-termes . (53) 

Comme on utilise la régularisation dimensionnelle, le hamiltonien est 
écrit pour un espace à D dimensions, avec comme d’habitude 
E = 4 - D .  La constante de couplage étant dimensionnée, il est 
commode de définir une constante de couplage sans dimension 
g et une masse w : la combinaison I*. E g a la dimension correcte pour 
une constante de couplage. Nous aurons besoin du résultat du calcul des 
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graphes suivants : 

(54.a) 

(54.b) 

k1 a = -$ (1 + 2 E U 1  + O(E2)) (54.c) 
k2 

) = - (1 + 2  EU1 + -  + O ( E 2 )  
2 E 

k1 k2 a E 2  2 

1 1 (kl + k2I2 

2 2  P 2  
- 1 - - y - - 1 n  1 -  

(54.d) 

(54.e) 

L'écriture des équations (54) est quelque peu schématique. On a 
omis un facteur multiplicatif g p  E pour ï(4) ; de plus chaque graphe doit 
être multiplié par un facteur de symétrie et par a L, où a = g /  (4 T)O/ '  

et L le nombre de boucles. Par exemple (54.a) devrait être multiplié par 
a '/6 ; y représente la constante d'Euler (y  = 0.577 ...). L'équation 
(54.a) est à démontrer dans les exercices V.10 ou V.12. La démonstra- 
tion de (54.b)-(54.d) est renvoyée à l'exercice 6. Calculons d'abord 
Z,, en exigeant la compensation du pôle à E = O de (54.a) (*) : 

- (2, - l ) k 2  a [ + = ] n'a pas de pôle à E = O 
ak2 

d'où : 

(55.a) a 2  
12 E 

z, = 1 - - + O . 

(*) Le coefficient du pôle est de la forme f(D>/&. Le schéma minimal strict 
consisterait à soustraire f ( 4 ) / ~ ,  c'est-à-dire à développer (4 m ) - D / 2  en puissances de 
E. J'utilise en fait une variante du schéma minimal, qui consiste à choisir au lieu de 
p la masse p'  = p (4 r)ln. Une autre variante est le schéma m, très utilisé en 
chromodynamique quantique, qui consiste à choisir p = p [e- y(4 T ) ] ' ~ .  
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L'avantage du schéma minimal est que 2, est indépendant de la 
constante dans (54.b) : il n'est donc pas nécessaire de la calculer. Avec 
la condition de normalisation (33.b), il aurait été nécessaire de calculer 
cette constante pour obtenir 2,. 

Déterminons maintenant 2, à l'ordre d'une boucle à partir (54.b) : 
z1 = 1 + z!') avec : 

zp = LE. E (56) 

Pour calculer Z,  à l'ordre de deux boucles, il ne faut pas oublier le 
graphe à une boucle construit avec le contre-terme : 

(54.f) 1 2 
2 E 

= - q z p -  (1 + .al) 

Tenant compte des facteurs de symétrie et des permutations on 
trouve : 

(57) 

où les trois termes correspondent respectivement aux graphes (54.c), 
(54.d) et (54.f) ; cette équation donne pour Z j 2 ) :  

et donc à l'ordre de deux boucles : 

3 a  9 a 2  3 a 2  z -I+-+----. 
E E 2  E 

1 -  (55.b) 

Les équations (55) donnent les deux constantes de renormalisation 
2, et 2, à l'ordre de deux boucles. La relation entre go et 
g définit la constante de renormalisation Z (cf. (24)) : 

go = z* zy2g = zg (59) 
avec : 

(55.c) 

1 
E 2  

Quelques remarques pour conclure : le coefficient de - dans (55.c) 

est le carré du coefficient de 1 / ~  dans (55.b) ; ceci n'est pas le fait du 
hasard, mais provient de la renormalisabilité de la théorie (cf. 
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chapitre VII). D’autre part dans l’équation (57), les termes en 

se compensent, et heureusement, car dans le cas contraire In 

les contre-termes ne seraient pas locaux en x et tout le schéma de 
renormalisation s’écroulerait. Cette compensation est évidemment 
reliée à celle du terme en In A In k 2  entre le graphe de la figure (6.a), et 
son contre-terme de la figure (6.b). Dans le schéma minimal, les contre- 
termes apparaîtront donc comme des polynômes de degré s w (G) 
construits avec les moments externes, c’est-à-dire locaux en x ; les 
coefficients contiendront à l’ordre de 1 boucles des pôles en 

Enfin nous avons conduit les calculs dans le cas de la masse nulle. 
Cependant les constantes de renormalisation sont , duns le schéma 
minimal, indépendantes de la masse renormalisée m, qui est reliée à la 
masse nue mi par mi = 2, m2. En effet, par analyse dimensionnelle, 
Z,, Z3 et 2, sont fonctions de g ,  E et p / m .  Cependant la masse 
p apparaît uniquement à travers p‘ qui est développé en 
(1 + c In p + . . ). Les constantes de renormalisation ne peuvent donc 
être que fonction de In ( p / m ) ,  mais comme elles sont régulières 
lorsque m = O, une telle dépendance est exclue ; Z,, Z3 et Z,  
dépendent donc uniquement de g et E dans le schéma minimal. Ceci ne 
serait pas vrai avec des conditions de renormalisation du type (33). 

(k ,  + k2)2 
P 2  

- 1  
E - 1 ,  ..., & . 

EXERCICES 

1) (a) Montrer que J d  = [JA(ki ,  m’) - J,(O, m’)] (cf. (12)) est fini à la limite 
A - CO. Montrer également que Jn diffère de Jt par des termes en 
k 2 / A 2 .  

(b) Montrer que [KA(k2,  m2) - KA(O, m2)  - k2  Ki(O, m2)]  (cf. (21)) est fini 
à la limite A -+ CO (on pourra utiliser la représentation paramétrique de V-E3). 

2) Renormalisation de la théorie en (p3 

Soit H le hamiltonien de la << théorie en < p 3  >> : 

H =  dDx - (V<p)2+-m2<pz+-gpi /2<p3]  1 1 +C.T. s [2 2 3! 

avec E = 6 - D. Le facteur p 6 / ’  assure que la constante de couplage 
g est sans dimension. 

(a) Montrer que la théorie en < p 3  est renormalisable lorsque D = 6. Quelles 
sont les fonctions de corrélation superficiellement divergentes ? 
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(b) On se débarrasse des << tadpoles >> (cf. V-El) à l’aide d’un contre-terme 
proportionnel à <p. Expliquer pourquoi cette opération - qui consiste à exiger 
que (9) = O - est possible. I1 ne reste alors comme fonctions de corrélation 
superficiellement divergentes que r(*) et r(3) (pour D = 6). 

(c) Calculer r(’) à l’ordre d’une boucle en utilisant : 
(c.1) la régularisation de Schwinger, 
(c.2) la régularisation dimensionnelle. 

Calculer ri’) en utilisant les conditions de normalisation (22) et vérifier que le 
résultat est indépendant de la régularisation (sans effectuer l’intégrale sur le 
paramètre de Feynman). Dans le cas (c.1) on pourra utiliser des identités du 
type : 

Réponse : 

avec 

a = g2/(4 9 ~ ) ~  et f ( x ,  k’) = m2 + n(1 - x )  k’ .  

Déterminer également les parties divergentes de 6m2 et de Z,. 

(d) Déterminer la partie divergente de r(3) et en déduire la partie divergente 
de Z1 à l’ordre d’une boucle. Montrer que dans le schéma minimal 
Z = Z, Z33” est donné par : 

3 a  z = 1 - -  
4 F ‘  

3) Constantes de renormalisation dans une régularisation avec cut-off 

(a) En utilisant une régularisation à la Schwinger, calculer r(4)(0) à l’ordre 
d’une boucle en tenant compte des termes constants (finis à la limite 

A + CO). En déduire Zj’) = -- ( - y + i n 2 + i )  , où y est ia 

constante d’Euler. I1 faut faire attention aux limites d’intégration sur les 
paramètres a i  et utiliser la relation : 

1 

(b) On se propose de calculer l’intégrale correspondant au graphe (e) de la 
figure (6), pour ki = O .  On pourra utiliser la représentation paramétrique (V- 
61), en intégrant d’abord sur les variables xi  (attention aux limites d’intégra- 
tion). On se contentera de calculer les termes divergents en (in A)’ et 



VI.5 Exercices 267 

(in A ) .  Montrer que l'on obtient : 

I1 faut multiplier ce résultat par ga, où a = g/(4 T)', et par le facteur de 
symétrie. 

(c) Montrer qu'à l'ordre de deux boucles la constante de renormalisation 
Z,  est donnée par : 

En déduire la constante de renormalisation Z à partir de Z = Zl 2;' et (cf. (V- 
64)) 

a 2  A' Z3 = 1 - -in - . 
12 m2 

4) Afin de déterminer rigoureusement le comportement de l'intégrale (28) 
quand ai -+ O, on divise le domaine d'intégration en secteurs du type : 

a i l s  f f 2 s  cY3s a4 

et on utilise (dans ce secteur) le changement de variables (O s P i  s 1, 
i s 3 ;  O s P 4 < c o ) :  

a l  P l  P 2  P3 P4 a 2  = PZ P3 P4 

a3 = P3P4 a 4 =  P4 

Justifier les affirmations du paragraphe D.l sur le comportement de 
Z(ki) ,  aZ/ak2, y ( k i ) ,  aÏ /ak2  ; on pourra se contenter d'examiner les secteurs 

l~ a2 l~ a3 l~ a4 et a3 s a4 s al s a2 à titre d'exemple. 
La division en secteurs est indispensable pour éviter des incidents dus à des 

intégrales du type (exemple emprunté à Itzykson-Zuber) : 

Cette intégrale 
a2 fini) ( a z  + O, 
divergente. 

a l'air convergente si l'on examine les régions (a1  -+ O, 
a l  fini), ( a l ,  a z  --t O au même rythme), et pourtant elle est 

5) En prenant le logarithme de l'équation (38), montrer la relation (39) pour 
les fonctions de corrélation connexes G(*, En déduire (39) pour les fonctions 
de corrélation u connexes en <p%, où les insertions de <p2 sont reliées à des 
points externes en <p (un diagramme qui n'est pas << connexe en (p2. est dessiné 
sur la figure (8)). 
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6) Graphe à deux boucles en régularisation dimensionnelle 

(a) Calculer le graphe à une boucle contribuant à r ( 4 ) d a n ~  le cas de la masse 
nulle en utilisant la régularisation dimensionnelle. On évaluera non seulement 
la partie divergente, mais également la partie constante à la limite E -t O 
(Réponse : cf. (54.b)). 

(b) Calculer le graphe à deux boucles de la figure (5.c), toujours dans le cas 
de la masse nuile et en utilisant une régularisation dimensionnelle. On se 
limitera aux termes en î / ~ ~  et i / ~ .  

On pourra utiliser l'une des deux techniques suivantes : 
(i) partir de la représentation paramétrique (V.61) , 
(ii) intégrer successivement sur les deux boucles (cf. exercice V.12). 
La deuxième méthode est probablement la plus rapide. Je donne quelques 

intermédiaires de calcul : l'intégration sur d"q conduit à (k = k ,  + k 2 )  : 

Les trois dénominateurs sont combinés à l'aide de i'identit6 de Feynman (B.l) 
et on intègre sur 1 : 

J [x2 (1 - x2) k2 + x3 (1 - xj) kl + 2 xz x3 k . k3IE ' 

Pour obtenir les termes en 1 / ~ ~  et 1 / ~  on remarque que : 

j 1 & 3 r ; / 2 - 1 f ( X 3 )  = f (0)  j 1 & 3 X ; / 2 - 1 + 0 ( & ) .  

Le résultat est donné en (54.d). 

7) Trouver, à i'ordre g2, la relation entre la constante de couplage renormali- 
Sée du schéma minimal (défini au paragraphe F), gMs,  et celle g ( F )  obtenue à 
partir des conditions de normalisation (33). On calculera la constante de 
renormalisation Z ,  dans les deux schémas pour une même valeur de la 
constante de couplage nue. 
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Réponse : 
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8) Renormalisation de l’action effective 

On part de l’expression (11.44) du potentiel effectif à l’ordre d’me boucle en 
dimension D = 4 (expliquer la différence entre cette équation et l’équation ci- 
dessous pour V (@)) : 

L’intégrale sur q est divergente. Pour renormaliser le potentiel effectif on se 
sert des conditions (22), en se souvenant que : 

(a) Montrer que les conditions (22) sont bien satisfaites si le potentiel effectif 
renormalisé V,(@) est donné par : 

Vérifier la convergence de l’intégrale. 
(b) Calculer explicitement V ,  (‘p) et obtenir : 

(c) Si m = O, la méthode précédente conduit à une intégrale infrarouge 
divergente. On définit une nouvelle constante de couplage : 

Calculer V ( @ )  en utilisant un cut-off A et montrer que la définition de 
g ( p  ), ainsi que la condition d’V (p)/dp’ I = = O conduisent à l’expression 
suivante de V,(p), due à Coleman et Weinberg (I) : 

Tracer qualitativement V,(@). 
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9) Renormalisation de l’opérateur (O dans la théorie en (O (2) 

On se place dans le cadre de la théorie en (p3 à six dimensions (cf. exercice 2), 
et on se propose d’étudier la renormalisation de la fonction de corrélation 
Gj2,1)(x, y ; z )  = (<p (x) <p ( y )  q2((z)) ou du vertex propre r(2s1) qui lui est 

associé. 
(a) Montrer qu’à l’ordre d’une boucle les diagrammes divergents de 

1 
C 

r (2, l )  sont : 

En déduire les contre-termes correspondants. 
(Y 

F 
(i) - - 

(b) Montrer que la renormalisation de <p2 se fait de la manière suivante : 

où, à l’ordre d’une boucle : 
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CHAPITRE VI1 

Equations de Callan-Symanzik 

Au chapitre III, nous avons vu apparaître le terme e renormalisa- 
tion >> dans l’expression << groupe de renormalisation >> ; rappelons que 
la stratégie utilisée consistait à suivre l’évolution des paramètres 
définissant le hamiltonien dans des contractions successives du cut-off 
A,  l’objectif étant d’atteindre le comportement à longue distance 
( r  + l / A )  de la théorie. Au chapitre précédent, la renormalisation 
semble apparaître dans un contexte tout à fait différent : il s’agit 
d’éliminer une théorie nue qui est soit non physique, soit non 
directement exploitable, au profit d’une théorie renormalisée dépen- 
dant d’un petit nombre de paramètres. Cependant on peut déjà 
remarquer que la théorie renormalisée, étant finie quand A -+ CO, est 
aussi approximativement indépendante de A lorsque A est grand, mais 
fini, du moins dans la région à longue distance r + l / A .  I1 doit donc 
exister, au moins à un niveau qualitatif, un lien entre la théorie obtenue 
par intégration sur les fluctuations de courte longueur d’onde et la 
théorie renormalisée, qui ont pour caractéristique commune d’être 
toutes deux des théories à longue distance. 

On a d’ailleurs assisté à un changement progressif de point.de vue sur 
la signification d’une théorie renormalisée en théorie quantique des 
champs ; jusqu’au début des années 70, la théorie nue était considérée 
comme un artifice de calcul sans signification physique. Aujourd’hui on 
aurait plutôt tendance à penser qu’une théorie renormalisée apparaît 
comme une approximation à longue distance d’une théorie plus 
complexe et qui nous est encore inconnue. Cependant à longue distance 
(c’est-à-dire dans ce cas pour r - lo-’’ m!), les détails de cette théorie à 
courte distance sont sans importance, car il suffit de connaître les 
quelques paramètres définissant la théorie renormalisée. I1 est clair que 

http://point.de
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l’étude des phénomènes critiques a joué un rôle important dans ce 
changement de point de vue. 

Les résultats obtenus au chapitre III, paragraphes E et F, vont être 
retrouvés en exploitant une propriété de la théorie renormalisée que 
nous avons déjà signalée : l’invariance par reparamétrisation de la 
masse et de la constante de couplage, qui provient de l’arbitraire dans le 
choix de la partie finie des contre-termes. En fait nous allons nous servir 
uniquement d’une classe restreinte de reparamétrisations, celle qui 
consiste à faire varier la masse de renormalisation p (cf. VI.33). Cette 
invariance s’exprime mathématiquement sous la forme des équations de 
Callan-Symanzik (C-S) (*) ; sous certaines conditions, à savoir i’exis- 
tence d’un zéro de la fonction /3 (9) possédant des propriétés convena- 
bles, on pourra déduire de ces équations le comportement à longue 
distance (cas des phénomènes critiques) ou à courte distance (cas de la 
théorie quantique des champs : m, p 4 k + A) de la théorie. On 
retrouvera ainsi la propriété d’invariance d’échelle, avec des exposants 
dépendant de dimensions anormales, ou bien des corrections loga- 
rithmiques. 

Une partie de la physique contenue dans les équations de C-S a déjà 
été exposée au chapitre III, paragraphes E et F. Cependant il est 
nécessaire d’examiner ces équations avec attention pour les raisons 
suivantes : 

(i) ce sont des équations exactes, qui sont une conséquence directe 
de l’existence d’une théorie renormalisée, alors que la méthode exposée 
au chapitre III est au mieux semi quantitative (cf. cependant (l)) ; 

(ii) elles constituent le langage moderne de la << première version >> 
du groupe de renormalisation, celle de Stueckelberg et Petermann et de 
Gell-Mann et Low. C’est le langage généralement utilisé par les 
théoriciens des champs ; 

(iii) elles fournissent une mécanique quasi automatique pour déduire 
les conséquences du groupe de renormalisation et permettent des 
calculs sans ambiguïté à des ordres élevés de la théorie des perturba- 
tions ; 

(iv) en revanche la méthode de Wilson s’applique à une classe 
beaucoup plus large de systèmes physiques car elle n’est pas liée à la 
théorie des perturbations. 

Au paragraphe A je discuterai de façon qualitative la relation entre 
l’exposé du chapitre III, paragraphe F et la renormalisation telle qu’elle 

(*) En réalité l’équation de Callan-Symanzik proprement dite est celle de l’exercice 
(2.a). Par abus de langage, j’appellerai << équation de Callan-Symanzik * toute équation 
ayant une forme analogue. Naturellement il conviendra de bien faire la distinction entre 
les différents types d’équations de C-S. 
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a été décrite au chapitre précédent. En particulier, je clarifierai la 
relation entre constantes de couplage nue et renormalisée, ainsi que la 
notion de constante de renormalisation du champ. 

Le paragraphe B présente une version des équations de C-S qui est la 
plus proche dans son esprit de la méthode de Wilson. La démonstration 
repose sur l’observation déjà faite précédemment : la théorie renormali- 
sée est, à longue distance ( r  9 A- ’ ) ,  approximativement indépendante 
du cut-off A. On obtient ainsi des équations pour les fonctions de 
corrélation nues ; cependant ces équations ne sont pas exactes, car on 
néglige des termes d’ordre A- ’. L’approximation ainsi faite correspond, 
dans la méthode de Wilson, à celle qui consiste à négliger l’influence 
des champs inessentiels. 

Pour obtenir des équations exactes, on passera au paragraphe C à la 
théorie renormalisée. On examinera d‘abord le cas T = T,, qui 
correspond, rappelons-le, à celui d’une masse renormalisée nulle. 
L’équation de C-S sera obtenue en exploitant l’invariance par rapport 
au paramètre p (cf. VI.33), arbitraire mais nécessaire pour définir la 
théorie de masse nulle. Ce paramètre brise l’invariance d’échelle naïve ; 
l’invariance d’échelle sera finalement récupérée, mais dépendra de 
dimensions anormales. La théorie à T # T,  sera construite à partir de 
celle à T = T,  et une équation de C-S permettra d’établir le comporte- 
ment (1.30) de la fonction de corrélation à deux points. 

Les deux derniers paragraphes contiennent des détails plus techniques 
sur le calcul des fonctions p (g) ,  y (9) ... ainsi qu’un calcul des 
exposants critiques à l’ordre ,s2. 

Les paragraphes B à E sont (relativement) indépendants de la 
première partie du livre. Le lecteur intéressé uniquement par les 
problèmes de théorie quantique des champs pourra donc sauter le 
paragraphe A, ainsi que tous les passages consacrés spécifiquement aux 
phénomènes critiques. 

A. RENORMALISATION ET GROUPE DE RENORMALISATION 

A. 1. Analyse dimensionnelle 

Ce paragraphe contient une discussion qualitative du lien entre le 
groupe de renormalisation (chapitre III) et la théorie de la renormalisa- 
tion (chapitre VI). I1 repose sur les résultats établis au paragraphe III- 
F.l ; sa lecture n’est pas nécessaire pour aborder les paragraphes B à E. 
Nous nous placerons en dimension D = 4 et, par souci de simplification, 
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dans le cas de la masse renormalisée nulle (rn = O ou T = T,). Les 
équations du GR peuvent être résumées par la donnée d’équations 
différentielles dont le membre de droite ne dépend que de la constante 
de couplage go(s) de l’interaction en (p4. Rappelons la loi de transforma- 
tion (111.87) d’un vertex propre r(N) choisi en configuration non 
exceptionnelle : 

On notera le changement de notations : g(s) -, go(s). 

Dans l’équation (l), l’exposant d = D - N ( - 1) de s est simple- 

ment la dimension normale du vertex propre I‘(N) (cf. V.69), et le 
facteur ( 3  (s))- N / 2  provient de la différence entre dimension canonique 
et dimension anormale. Rappelons que pour établir l’équation (l), 
nous avions fait au chapitre III une dilatation de l’unité de longueur 
d’un facteur s, de façon à maintenir A (ou le pas du réseau a)  constant. 
Cette opération était commode mais non indispensable. On peut aussi 
bien ne pas faire cette dilatation, et comparer deux systèmes physiques 
de même longueur de corrélation t sur des réseaux de pas différents 
(figure 1). 

A’ = A 

(a’, = a )  

5 ’  = 5/2 

Figure 1. Deux- façons d’envisager une transformation 
du groupe de renormalisation. 

L’analyse dimensionnelle ordinaire permet en effet d’écrire : 
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étant donné que go est sans dimension (D = 4 )  et l'équation (1) est 
transformée en : 

r ( ~ ) (  ki, go($), - S "1 = [ t ; ( S ) 1 - ~ / 2  r (N)(k i ,  go, A )  . (3) 

Rappelons que la constante de couplage go(s) vérifie : 

et que si l'on tient compte uniquement du premier terme (en 
P o  g;) de P (9) on peut résoudre (4) : 

Les conséquences physiques de ( 3 )  sont les suivantes : partons d'une 
situation où k i / A  + 1, go étant fixé. Le développement perturbatif de 
r (N)  dans le membre de droite de ( 3 )  contient des facteurs go In ( k i / A ) ,  
qui invalident la série perturbative. Après transformation du GR, on 
peut choisir s de telle sorte que s k i / A  - 1 (ceci correspond à intégrer 
sur les fluctuations de moment ki 5 k 5 A) : le membre de gauche de 
( 3 )  possède un développement perturbatif en puissances de go(s), et 
mieux go (s) + O si s + CO. Le comportement critique se trouve contenu 
dans le facteur [ < ( S ) ] - ~ / * .  

A.2. Identification de la constante de couplage renormalisée 

Afin de simplifier l'exposé, il est commode de se débarrasser 
provisoirement des facteurs t; (s) en définissant des << charges invarian- 
tes >> f qui se transforment sans ce facteur, et dont la dimension 
canonique est nulle. Pour fixer les idées, étudions la charge invariante 
f :  

A l'ordre de zéro boucle (approximation de Landau), f se réduit à la 
constante de couplage go; dans une TGR, la loi de transformation de 
f est : 

f+(ki ,  go(S), A / $ )  = f ( k i ,  90, A )  (7) 
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Faisons maintenant le lien avec la théorie renormalisée, en introdui- 
sant un point de soustraction kio dépendant d’un paramètre de masse 

A 
P 

p 9 k i ,  et en choisissant s = - ; d’après (7) 

Fixons maintenant la constante de couplage renormalisée g par : 

A l’ordre de zéro boucle, g = g o ( A / p )  et d’après ce qui précède g 
possède un développement régulier (c’est-à-dire ne contenant pas de 
grands logarithmes) en puissances de g o ( A / p  ), et réciproquement : 

A A 
g = g o (  ,) +ce;( ,) + . * e .  

Autrement dit g et go ( ) ne diffèrent que par une renormalisation 

finie et les corrections perturbatives dans (10) peuvent toujours être 
absorbées dans un changement des conditions de normalisation 
(VI.33). On peut donc identifier g o ( A / p )  avec la constante de couplage 
renormalisée g et f (k i ,  g, p ) avec la charge invariante renormalisée. 

Dans ce raisonnement, la théorie renormalisée apparaît manifeste- 
ment comme une théorie à longue distance, valable pour une échelle de 
moments k, s p -e A. Cette théorie dépend d’un paramètre, la 
constante de couplage renormalisée g, qui est elle aussi dét.erminée à 
une échelle - p .  Ainsi qu’on le verra plusieurs fois dans ce chapitre, 
une théorie renormalisée ne dépend pas d’une constante de couplage 
fixe ; en réalité, à chaque échelle de moments correspond une constante 
de couplage adaptée 2 cette échelle, et qui autorise un développement 
perturbatif. 

La discussion qui précède n’est pas complète, car nous n’avons pas 
explicité les couplages (ou variables) inessentiel(1e)s. Pour fixer les 
idées, restreignons-nous à un seul couplage inessentiel, par exemple la 
constante de couplage nue de l’interaction (non renormalisable) en 
<p6 ,  u:. Cette constante de couplage a pour dimension - 2, et il est 
commode de définir la constante de couplage sans dimension gs = 

A’ us, g;(s) = ( A / s ) ~  us(s). On notera qu’il revient au même, dans les 
équations du GR, d’utiliser des constantes de couplage sans dimension 
ou de faire un changement d‘échelle comme au chapitre III. Considé- 
rons dans le pian (9, 96)  deux trajectoires (1) et (2) du flot de 
renormalisation, correspondant à deux choix initiaux différents pour 
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go6 : gs = O et gs # O avec des valeurs de go identiques ; mi est ajusté de 
telle sorte que la théorie soit critique (figure 2) .  

Les trajectoires issues des points A et B aboutissent, après un nombre 
identique de TGR, aux points A’ et B’. Cependant, il existe sur la 
trajectoire ( 2 )  un point B”, correspondant à une valeur de g identique à 
celle de (l), et décrivant évidemment la même physique à longue 
distance que B’. Le couplage gs vérifie une équation analogue à (111-80) 
et les points A’ et B” diffèrent par un terme d’ordre ( E . / A ) ~  : cf. le 
facteur 4- dans l’équation (III-76c). 11 existe un argument heuristique 
plus direct, dû à Polchinski (’), qui donne également une preuve 
complète (mais longue). Ainsi, avec une précision - ( p / A ) ’ ,  il est 
toujours possible, en jouant sur A, de se restreindre dans la théorie nue 
aux interactions renormalisables, c’est-à-dire partir de points situés sur 
l’axe des g ,  dans le cas de la figure 2. Cependant il est nécessaire que 
u: soit proportionnel à A-2, et non à une échelle de (masse)-’ 
inférieure, par exemple p - ’. 

De façon générale, avec une précision - ( P / A ) ~ ,  toutes les trajectoi- 
res du flot de renormalisation convergent vers une variété de dimension 
n,  où n est le nombre de couplages essentiels et marginaux (une courbe 
dans le cas de la figure 2) .  La théorie renormalisée est définie par la 
donnée de n couplages renormalisés (g  dans le cas de la figure 2)  ; les 
couplages inessentiels ne sont pas nuls, mais ils sont entièrement 
déterminés par la donnée des couplages essentiels et marginaux (et 
9 6  est - au moins - d’ordre g2) .  En ce sens la notation 
f ( N ) ( k i ,  go@), A / s )  peut être source de confusion : f ( N )  dépend aussi 
de gs(s ) ,  etc., mais ces couplages sont calculables (avec une précision 
1/s2) en fonction de go(s) .  I1 faut également se rendre compte que le 
véritable cut-off n’est pas p = A / s ,  mais A : à A fini, les corrections à 
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sont en ( I c ~ / A ) ~ ,  et non en ( I c ~ / Ç L ) ~ .  Le rôle des variables 
inessentielles est évidemment crucial pour assurer cette propriété. 

Afin d’achever l’identification avec la théorie usuelle de la renormali- 
sation il faudrait faire tendre A vers l’infini et montrer l’existence d’une 
variété limite. Cependant cette limite pose problème dans le cadre de la 
théorie en (p4, car go diverge à g fixé pour une valeur finie de 
A .  C’est seulement dans le cas de théories asymptotiquement libres 
(cf. A.3) que l’on peut s’attendre à trouver une telle variété limite. 
Néanmoins, dans le cadre de la théorie perturbative, go existe toujours 
comme série formelle en g, ce qui permet - dans ce cadre - de 
compléter l’argument (l) .  Remarquons enfin que l’identification expli- 
cite entre des calculs menés dans la version usuelle de la renormalisation 
et dans celle de Wilson n’est possible qu’à l’ordre d’une boucle. En 
effet, dans la version de Wilson, les calculs analytiques deviennent 
rapidement inextricables en raison de la complexité de l’intégration sur 
les fluctuations de courte longueur d’onde. 

A.3. Classification des théories 

On souhaite disposer d’une théorie renormalisée finie, qui permette 
de développer les fonctions de corrélation renormalisées en fonction 
d’une constante de couplage g petite (disons g - - - - ) , et faire 

tendre le cut-off A vers l’infini, de façon à éliminer toute dépendance 
par rapport à A. L’expression (5)  peut être inversée afin d’obtenir 
go en fonction de g : 

10 100 

La discussion précédente a été conduite dans le cadre de la théorie en 
(p4. Dans le cas général, il faudra distinguer deux cas : 

(a) Si po -= O, go décroît et tend vers zéro quand A .-+ CO à g fixé. Il 
est donc possible de définir une théorie nue perturbative à la limite 
A-CO. 

(b) Si P o  z O, go croît et devient éventuellement infini (naturellement 
dès que go - 1 on sort de la région perturbative et l’expression (11) 
n’est plus utilisable). Bien que le raisonnement soit incomplet, car nous 
n’avons utilisé que le premier terme de p (g), on constate qu’il sera 
vraisemblablement difficile de définir une théorie renormalisée non 
triviale. Une autre façon de montrer la difficulté est de remarquer que 
pour A / p  très grand et go petit, g -P O : la théorie renormalisée tend 
vers une théorie libre. Ce cas est celui de la théorie en Q : à cause de 
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cet argument (et d’autres beaucoup plus sophistiqués mais dont la base 
physique est identique), de nombreux théoriciens pensent qu’à la limite 
A -+ CO, la théorie en <p4  est une théorie libre si D = 4 ; lorsque 
D =- 4, le résultat a été prouvé rigoureusement (cf. également l’exercice 

Le cas P o  -= O est celui de théorie des champs dites << asyrnptotique- 
ment libres >> (sous-entendu : dans le domaine ultraviolet (cf. paragra- 

(6 ) ) .  

phe C)) : c’est celui 
de la théorie en (p3 

cas la relation (11) 

mais qu’une série 

des théories de jauge non abéliennes (XIII-D.1) et 
à six dimensions (exercice 4). On note que dans ce 
entre go et g est parfaitement bien définie : 

de termes tendant vers l’infini apparaît si l’on 
développe le dénominateur : 

A un ordre fixé en g, la relation entre go et g fait apparaître des 
quantités infinies, qui en fait disparaissent par resommation. Ceci 
montre que la renormalisation ne devrait pas être faite ordre par ordre 
en théorie des perturbations, mais que l’on devrait d’abord sommer les 
logarithmes dominants (g In A / @  )”, puis sous-dominants : 
g“ In”-’ A/@ etc. Malheureusement, bien que cette façon de voir soit 
physiquement la plus satisfaisante, elle ne semble pas commode à 
réaliser techniquement. 

A.4. Identification de Z, 

I1 reste à rétablir les facteurs r(s) qui n’intervenaient pas dans les 
charges invariantes. Comme 6 (s) provient de la renormalisation du 
champ dans une TGR, on ne sera pas surpris que ce facteur soit relié 
très directement à Z3. La fonction 6 (s ) vérifie l’équation différentielle 
(cf. III-Fl2) : 

qui a pour solution : 
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En reportant dans l’équation (3) on trouve la loi de transformation de r ( N )  : 

x r @ ‘ ) ( k i ,  go, A ) .  (14) 

En reprenant les arguments développés ci-dessus, 
r ( N ) ( k i ,  g o ( A / p ) > ,  p ) peut être identifié avec la fonction de corrélation 
renormalisée rhN) (k i ,  g, p ), et, comparant avec (V1.32), on obtient : 

A S .  Schémas de renormalisation et définition de p(g0) 

Le hamiltonien de Ginzburg-Landau avec cut-off A n’est evidemment 
pas défini de façon unique ; on peut utiliser un cut-off brutal, ou bien un 
cut-off << doux », utiliser une régularisation sur réseau, etc. Tous ces 
hamiltoniens diffèrent par des termes inessentiels, et donnent, à un 
changement d‘échelle près, la même physique à longue distance, ou, de 
façon équivalente, des couplages go(s) différents : cf. les points A’ et B’ 
de la figure 2. Soit deux hamiltoniens de départ donnant des couplages 
go(s) et gO(s) ; nous aurons : 

gO(s) = go(s) + c1 gO(s) + c2 gO(s) + * * . (16) 

où les coefficients cI, c2, . . . sont indépendants de s avec une précision - l/s2. En effet go(s) et go(s) ne peuvent différer que par une 
renormalisation finie, c’est-à-dire par une différence de schéma de 
renormalisation ; les fonctions p décrivant l’évolution de go(s) et 
gO(s) seront a priori différentes. Cependant il est possible de prouver la 
propriété suivante : 

Les coejjicients P o  et p des deux premiers termes du développement 
perturbatif de P (go) et p ’ (98) sont identiques. 
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Démonstration : Soit : 
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(17) 

Calculons P ’ (go@)) : 

I1 suffit maintenant de substituer dans la dernière équation : 

%(SI = gO(s) - c1 s W 2  

P’(gi(S))= P ~ s o ~ ( s ) + P ~ ~ o ~ ( ~ ) + . . . .  

pour obtenir : 

En dehors des deux premiers termes de son développement perturbatif, 
la fonction P (go) n’est pas définie de façon unique. Pour lever 
l’ambiguïté dans la définition de p (go), on peut se donner une quantité 
physique (par exemple une charge invariante) H ( p ,  go(s), A / s )  mesu- 
rée à une échelle de masse p et exiger que cette quantité soit 
strictement indépendante de s : 

ou : 

Cette expression permet de déterminer P (go) analytiquement ou 
numériquement de façon parfaitement bien définie y compris même en 
dehors de la région perturbative ; cependant le résultat dépend de la 
quantité physique choisie H. De plus si A est fini, P (go) comprend des 
corrections - ( p  / A ) 2 ,  dues aux opérateurs inessentiels. 

Enfin la constante de couplage renormalisée vérifie une équation 
analogue à (4) : la constante de couplage renormalisée dépend du point 
de soustraction p : g = g ( p )  et on définit la fonction p (9) (notation 
provisoire, cf. paragraphe C) par : 

Les quantités physiques doivent être indépendantes du point de 
soustraction, et ceci nous amènera au paragraphe C aux équations de 
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C-S pour la théorie renormalisée. Comme g ( p )  = go(s), on s’attend à 
ce que les deux premiers termes du développement perturbatif de 
p ( g )  soient aussi déterminés par P o  et P l  : 

P (9) = p 0  g2 + P g3 + - e . . (20) 

Donnons une démonstration directe de (20), en remarquant que 
p (go) décrit la variation de go en fonction du cut-off quand la théorie 
renormalisée est fixée (cf. aussi le paragraphe B.2) : 

et que par analyse dimensionnelle g ( p )  est fonction de go et 
x = In ( p / A ) :  

g(E*.)=g(go,x).  (21) 

De même go(A) = go(g, x). Ceci permet d’écrire 

P ( g ) =  ($ )  ; P ( g o ) = -  (an) ago ’ 
go 9 

où la dépendance de /3 et p par rapport a x, qui est - ( p / A ) ’  n’a pas 
été explicitée. La relation : 

donne alors : 

et à la limite A / p  -, 00, p et P sont indépendants de x ; g possède un 
développement perturbatif (contenant des grands logarithmes) en 
puissances de go: 

g = g o + c (  $> s i + * * .  

ou : 

g o = g - c (  t )  g 2 + ” ’ .  

I1 suffit de remplacer go par g dans l’expression de P (go) pour trouver 
l’expression (20). 
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B. ÉQUATIONS DE CALLAN-SYMANZIK POUR LA THÉORIE 
NUE ( T  = T,) 

Nous allons maintenant établir les équations de C-S pour les 
fonctions de corrélation nues, toujours pour T = T,  (dans un souci de 
simplification), mais en étendant cette fois la discussion à D -= 4, avec 
E = 4 - D =- O. Le hamiltonien de Ginzburg-Landau s’écrira : 

Le coefficient mi, de rp2 est ajusté ordre par ordre en théorie des 
perturbations de façon à assurer que T = T,, ou de façon équivalente m 
(renormalisée) = O ; la constante de couplage uo étant dimensionnée, il 
est commode de définir la constante de couplage sans dimension 
go : 

UO = n‘go. (24) 

La série perturbative fondée sur (23)  possède a priori des divergences 
infrarouges sévères qu’il est nécessaire de discuter. 

B. 1. Divergences infrarouges 

Nous avions examiné au chapitre V, paragraphe F.3 les divergences 
infrarouges, et montré qu’elles se manifestaient pour D < 4 même dans 
des configurations non exceptionnelles. Donnons sur la figure 3 un 
exemple supplémentaire d’un graphe de r(4), 

Figure 3. Diagrammes infrarouges divergents. 

en représentant, sur le diagramme du centre, une configuration possible 
pour le flot des moments durs, ainsi que le diagramme contracté. A 
l’ordre ( n  + 2)  de la théorie des perturbations, le diagramme contracté 
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possède ( n  + 1) boucles et quatre lignes internes sont accrochées au 
vertex contracté. Le degré superficiel de divergence est (cf. V.70) 

w = 4 +  ( n + l > ( D - 4 ) = D - n ~ .  

A E fixé, le diagramme sera infrarouge-divergent même en configura- 
tion non exceptionnelle pour n > ( D / E ) (  *). I1 est donc impossible de 
définir une théorie des perturbations à E fixé. Cependant il est possible 
de définir une série perturbative par un double développement en 
puissances de E et g : 

CP. 4 EP g4 
P. 4 

en développant tous les résultats en puissances de E .  

B.2. Démonstration de l’équation de Callan-Symanzik 

A la limite A -P 00, les fonctions de corrélation renormalisées 
riN) tendent vers une limite finie, et elles deviennent donc indépendan- 
tes de A pour A grand. Ceci correspond à l’existence d’une physique à 
longue distance (ki Q A )  indépendante de A,  les fonctions de corréla- 
tion renormalisées décrivant la physique à longue distance. Les 
variations du cut-off dans ce paragraphe sont l’équivalent de l’intégra- 
tion sur les courtes longueurs d’onde du chapitre III. 

Rappelons que dans le cas de la masse nulle on doit utiliser les 
conditions de normalisation (VI.33) : 

r p ( k 2  = O )  = O (25.a) 

(25.b) 

(25.c) 

rh2J ) (k io ,  q o )  = 1 . (25. d) 

On notera le facteur p E dans (25.c) : ce facteur est présent afin que g 
soit sans dimension. 

Lorsque g et p sont fixés, les fonctions de corrélation riN) sont 
parfaitement définies ; pour qu’elles soient invariantes dans une 
dilatation du cut-off, il est nécessaire que go soit une fonction de A (en 
fait A / p  pour des raisons dimensionnelles) : 

(*) On peut aussi trouver ce résultat en remarquant que la boucle simple 
k e k se comporte comme k-‘ (par simple analyse dimensionnelle). 
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L'indépendance des rh") par rapport à A n'est pas complète : à A 
grand, mais fini : 

- rp)le, = O d 
d In A 

où p dépend de l'ordre de la théorie des perturbations (cf. exercice 
VI.l). Toutefois la borne dans (26) est uniforme pour D s 4 (y compris 
D = 4). En admettant que les puissances de In A ne se resomment pas 
pour compenser le facteur A-2 on pourra écrire : 

-!- d In A [ . ) / ' ( g , : )  T ( N ) ( k i , g o , A ) ]  Y. P = O .  (27) 

On transforme (27) en une équation aux dérivées partielles en 
définissant les fonctions P ( g o ,  E )  et Y ( g o ,  E )  (*) : 

La différence de signe entre (28) et (4) s'explique par le fait que dans 
la transformation A -+ A / s ,  le cut-off diminue. On obtient à partir de 
(27)-(29) l'équation de Callan-Symanzik 

Remarquez que les dérivées sont des dérivées partielles dans (30) et 
totales dans (27). 

Les notations dans (28) et (29) anticipent sur un point crucial : les 
fonctions /.3 et ysont indépendantes de A. Pour le montrer, écrivons (30) 
dans le cas d'une charge invariante (cf. (6)) : 

Le membre de droite de (31) est indépendant de p, car f est une 
fonction de go et A ; il en est de même pour - f. p est indépendant de a 

ago 

(*) Bien que nous conservions la même notation, les fonctions p e t  ydéfinies en (28) et 
(29) ne sont pas identiques à celle du paragraphe A pour E = O : cf. A.5. 
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p, et, par analyse dimensionnelle, de A / p .  Ayant prouvé la propriété 
pour p,  il est immédiat de l’étendre à y. 

Avant d’étudier la solution de (30),  il est instructif de calculer 
p (go, E )  à l’ordre d’une boucle afin de se familiariser avec cette 
fonction. 

B.3. Calcul de p (go, E )  à l’ordre d’une boucle 

La fonction p (go, E )  à l’ordre d’une boucle peut être déduite de 
l’équation (111.56.b), mais celle-ci n’avait pas été démontrée ; nous 
allons donc procéder à un calcul explicite. A cet ordre du calcul 
Z3 = 1 et pour relier go et g ,  il suffit de calculer r(4) au point de 
soustraction : 

où k,, est une somme de ki o. Si l’on calcule à l’ordre go, en négligeant les 
termes en go E (car go sera d’ordre E ) ,  on peut poser D =: 4 dans le 
calcul de l’intégrale et l’on trouve : 

Comme nous allons dériver par rapport à A, il suffit de garder le 
terme en In A / p  ; en utilisant (25.b) on obtient : 

soit : 

et d’après la définition (28) : 

3 so g2 - - &go + - 
16 r r 2  

P (go, E )  = - E 9  + - - 
16 r2  

les termes négligés étant d’ordre g;, E s ; ,  ~ ~ g 0 .  La fonction p (go, E )  

possède un zéro à : 

g$=-.  16 r r 2  E 
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s i  90-=9$> dgo < O  et go+g$  quand A décroît. De même si 

go ’ g$, dgo > O et à nouveau go -+ go. Lepoint g$ est donc un point 

f i e  stable pour les contractions du cut-off (figure 4). 

Figure 4. La fonction p (90, E ) .  

I1 n’est pas étonnant qu’il coïncide avec le point fixe déterminé en 
(111.59), quoique cette identification ne soit pas possible aux ordres 
supérieurs en E. 

Nous avons vu au paragrapheA que la constante de couplage 
renormalisée n’était pas autre chose (avec les notations de ce paragra- 
phe) que go(p ). Comme A / p  -+ CO, go(p ) + go et lu colzstunte de 
couplage renormalisée décrivant le comportement critique est égale à 
9;. 

B.4. Solution de l’équation de Caiian-Symanzik 

La solution de (30) a déjà été écrite au début de ce chapitre (équation 
(14)). Pour bien faire ressortir l’équivalence entre la formulation du 
chapitre III et celle des équations de C-S, et afin de rendre la lecture de 
ce chapitre indépendante de la première partie, je vais détailler cette 
solution ; une méthode plus directe est proposée à l’exercice 1. 
Examinons d’abord le cas d’une charge invariante : 
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On utilise le fait que les solutions de l’équation aux dérivées partielles : 

- + -  @(x,y)=O ( an :y ) (34) 

sont de la forme F (x - y). I1 suffit d’un changement de variables pour 
se ramener à (34) : 

et la solution de (33) est de la forme 

dg‘ 

Définissons maintenant go(s) à l’aide de (4) qui peut s’écrire 

Comme : 

on obtient la relation : 

(36) 
A 

f(ki ,  90, A )  = f (ki, go(S), ) 
que nous avions déjà vue (équation (7)). I1 est immédiat de vérifier que 
la solution de (30) est : 

où F ( k , ,  go, A )  obéit à la propriété (36). On déduit de (37) : 

A 
x r (ki, 9o(s), - ) > (38) 

S 

équation qui coïncide bien avec (14) pourvu que la fonction y ( g )  
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définie dans (12) soit analogue (en fait identique à l’ordre d’une boucle) 
à celle définie dans (29). Ceci est bien le cas car de la relation : 

on déduit 

et la fonction [(s) n’est autre que : 

Elle vérifie donc d’après (29) : 

ln = y (go@)) . 
d In s 

En posant dans (38) s = A / p  et en identifiant go(A/p) avec la 
constante de couplage renormalisée g,  on retrouve l’expression (15) de 
2 3  : 

B.5. Application aux phénomènes critiques 

L‘analyse dimensionnelle ordinaire permet de transformer (38) en 
(cf. équation (1)) : 

et en remplaçant ki par k i / s  : 

La région critique correspond à s -+ 03 ; dans ces conditions 
go(s) tend vers la constante de couplage au point fixe go* ; l ( s )  est 
dominé par la région go($)  = g$ : en effet : 

= jr‘ y ( g ( s ’ ) )  d Ins’ 2 y ( g o ,  E )  Ins,  go(s) y ( g ’ )  dg’ 
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l’intégrale étant dominée par la région In s’ + 00, si l’on admet que 
y (gg, E )  # O ; le comportement critique est donné par : 

ce qui permet d’identifier l’exposant critique 7, en choisissant par 
exemple N = 2 : 

et par conséquent : 

7)= Y(9l7 ,  e ) .  

Le facteur d ,  mis en évidence dans (42) : 

d ,  = - D - 1 + - 1 ~ ( 9 2 ,  E )  = -- D 1 + -  7) 2 2 2 2 

(43) 

(44) 

est bien sûr la dimension anormale du champ <p ( x ) ,  qui, en dimension 
D # 4, est différente de la dimension canonique d: = 0 - 1. L‘équa- 

tion de C-S permet donc de retrouver la propriété d’invariance 
d’échelle au point critique : 

2 

G ( 2 ) ( k )  - k - 2 + q .  

On notera qu’au point fixe cette invariance d‘échelle se déduit 
immédiatement de (30), qui se réduit alors, après un peu d’analyse 
dimensionnelle, à : 

[a- ( $ N T  - d ) ]  r(N)( - , g g , A )  ki = O  a Ins S 

avec d = D - N ( D / 2  - 1). 

C. ÉQUATIONS DE CALLAN-SYMANZIK POUR LA THÉORIE 
RENORM ALISÉE 

Les équations du GR écrites précédemment ne sont pas des 
équations exactes : au chapitre III comme au paragraphe B, nous avons 
négligé des termes en 1/A2 provenant des champs inessentiels. En 
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prenant la limite A + 00, nous allons obtenir des équations exactes, 
mais le prix à payer est que nous pourrons utiliser uniquement des 
fonctions de corrélation renormalisées, qui sont les seules à être 
définies dans cette limite. Dans le cas de l’application aux phénomènes 
critiques, les fonctions de corrélation renormalisées diffèrent des 
fonctions de corrélation nues (physiques) par une constante multiplica- 
tive Z f / 2 .  Dans le cas de l’application à la théorie quantique des 
champs, ce sont les fonctions de corrélation renormalisées qui ont une 
interprétation physique directe. Commençons par le cas 
T = T,(m = O ) .  

C.l.  Equation de Callan-Symanzik pour T = T, 

Les conditions de normalisation ont été rappelées en (25) ; écrivons 
la fonction de corrélation nue : 

et remarquons que ï ( N )  est indépendant de p à uo et A fixés 

car la fonction de corrélation nue ne connaît pas le point de renormalisa- 
tion. Définissons les fonctions p (notée p au paragraphe A.5) et 
y de la théorie renormalisée (ces fonctions ne sont pas identiques à 
celles définies en (28) et (29), bien que nous conservions la même 
notation. De façon générale, il faut prendre garde au fait que les 
fonctions p et y dépendent du type d’équation de C-S, du schéma de 
renormalisation etc.) : 

où cette fois les fonctions p et y sont exprimées en fonction de la 
constante de couplage renormalisée. Un argument analogue à celui du 
paragraphe précédent montre qu’elles ne peuvent pas dépendre de 
A / p .  L‘équation (45) est transformée en une équation aux dérivées 
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partielles , i'équation de Callan-Symanzik pour les fonctions de corréla- 
tion renormalisées : 

Rappelons l'interprétation de l'équation (48) : la physique doit être 
indépendante du point de renormalisation, c'est-à-dire du choix de p 
qui est un paramètre nécessaire, mais arbitraire. Une variation de 
p doit être compensée par une redéfinition de la constante de couplage 
( p  ( 9 ) )  et une redéfinition de la normalisation du champ ( y  (9 ) ) .  

C.2. Points fixes 

Nous allons adopter les conventions usuelles en théorie quantique 
des champs et définir la variable s par une dilatation de p d'un facteur 
s : p -+ sp (remarquez que le couple ( A / s ,  p ) équivaut à ( A ,  ps),  le 
rapport cut-off/masse de renormalisation étant inchangé) : 

ou : 

(49.a) 

(49.b) 

(attention au changement de signe par rapport à (4)). Dans ces 
conditions la solution de l'équation (48) peut se mettre sous la forme : 

On obtiendra un comportement simple pour s -+ O ou s + 00, si 
lim g (s) ou lim g (s) = g *, c'est-à-dire si g (s) est conduit vers un point 

fixe. Dans le cas des phénomènes critiques on s'intéressera à la région 
s -+ O, tandis qu'en physique des particules élémentaires c'est la région 
s -+ CO qui sera intéressante: 

s-O S + Q >  

Un point fixe correspond à un zéro de la fonction 0 ( 9 )  : 
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étant donné que dans ce cas dg (s)/d In s = O. Le point fixe est de type 
attractif, ou stable, si partant du voisinage de g *  on est ramen% à 
g *  ; il sera de type répulsif, ou instable, si on s'écarte de g *. 

Examinons les divers cas possibles. 

Point fKe infrarouge (IR) stable (s + O : figure 5 )  : 

Figure 5. Stabilité IR. 

Lorsque s -+ O, un point fixe sera stable si la dérivée de p (9) au point 
fixe est positive : 

En effet la dérivée est positive si g > g *, négative si g -= g *, et on est 
conduit dans les deux cas au point fixe pour In s -+ - 00. 
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Point fure ultraviolet (UV) stable (s -+ 00 : figure 6) : 

VII.C.2 

Figure 6. Stabilité UV. 

La dérivée de p ( g )  au point fixe est négative P ’ ( g * )  -= O ) .  
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Un point fixe infrarouge stable est ultraviolet instable et réciproque- 
ment (figure 7) : 

9 

UV instable 
IR stable 

Figure 7. Une configuration hypothétique de points fixes. 

Liberté asymptotique dans le cas D = 4 (figure 8) 

’ Chromodynamique quantique, D = 4 

Points fixes en dimension 4. Figure 8. 
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Si l’origine est un point fixe stable (IR ou UV), lim g ( s )  dans le 

membre de droite de (50) est égal à zéro : les fonctions de corrélation 
du membre de droite de (50) sont celles de la théorie libre. 

L‘origine est un point fixe IR stable dans le cas de la théorie en 
(p4 ; c’est un point fixe UV stable dans le cas de la chromodynamique 
quantique (XIII-D) ou de la théorie en (p3 à 6 dimensions (exercice 3). 

Dans les deux cas on dira que la théorie est asymptotiquement (IR ou 
UV) libre. Ceci ne veut pas dire que le comportement des fonctions de 
corrélation obéit à l’invariance d’échelle naïve. Le préfacteur dans (50) 
contient en général des corrections logarithmiques au comportement 
canonique (exercice 3). Cependant ces corrections sont calculables. De 
même si l’on se trouve à s grand, mais non infini, il est possible de faire 
un développement perturbatif de rhN)(ki ,  g (s), p ) en puissances de 
g (s), qui est petit. Le fait que la chromodynamique quantique (théorie 
présumée des interactions fortes) soit asymptotiquement libre a permis 
pour la première fois un calcul fiable de certains processus : diffusion 
profondément inélastique des électrons, production de paires de 
leptons, etc., à haute énergie. 

Lorsque l’origine est un point fixe UV stable, la théorie des 
perturbations peut être appliquée sans problème pour k -+ 00, la 
constante de couplage renormalisée ayant été fixée à une échelle /.L 

finie. Au contraire, lorsque l’origine est un point fixe UV instable, on 
quitte nécessairement la région perturbative lorsque k -+ 00. Ce pro- 
blème est évidemment une autre façon de présenter la difficulté déjà 
mentionnée au paragraphe A lorsque le coefficient P o  de la fonction 
p (9) est positif. Cependant l’argument présenté ici est un peu plus 
général, car il justifie le fait que le comportement asymptotique ne 
dépend que du signe de P o  (et de l’existence éventuelle d’autres points 
fixes, non perturbatifs). 

l n s - t k o o  

C.3. Equation de Callan-Symanzik pour T >  T ,  

Lorsque T est supérieur à T,, ou, de façon équivalente, lorsque la 
masse (renormalisée) m est # O ,  on peut utiliser les conditions de 
normalisation (VI.22), et démontrer une équation de C-S (cf. exer- 
cice 2). La méthode est parfaitement viable et permet d’obtenir les 
exposants critiques (exercice 2). Cependant il est plus commode de 
construire la théorie à T # T, à partir de celle à T = T,  : en effet les 
conditions de normalisation étant régulières à T = T,, contrairement 
aux conditions (VI.22) qui sont singulières dans cette limite, on peut 
passer de façon continue à la limite T = T,. 

La densité de hamiltonien utilisée dans le calcul sera (cf. (VI.49) ; si 
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l'on utilise une régularisation dimensionnelle, mtc = O) : 

1 A B  1 
X o ( x )  = ( 0 ~ ~ ) ~  + - g o  1.04 + mic 1.0 + t Z q 0 .  (51) 

Le coefficient de - 1.02, qui est par définition la masse nue 

4! 

1 
2 

mi vaut : 

mi = mic + t Z  

soit : 

(52) Zt = mo - moc . 
On peut interpréter t comme une différence de température ( T  - T,) 
renormalisée : rappelons que mi - mic ( = ro - roc avec les notations 
de physique statistique) est proportionnel à T - T,  : cf. équation 
(II. 11). 

Grâce à l'identité (VI.39) on peut écrire pour les fonctions de 
corrélation nues (en réalité, je passe sous silence quelques difficultés 
dues aux divergences infrarouges : il faudrait, en toute rigueur, 
commencer par choisir une fonction t (x ) s'annulant à l'infini) : 

- 2 2  

T ( N ) ( m i c  + Z t )  = E--- zL t L  r@IL)(... ; mi,) dyl ... dyL . (53) 
L!  L 

Multiplions les deux membres de (53) par Z f / 2  et utilisons l'équation 
(VISO) définissant les TAN, L ,  : 

Le membre de droite contient des quantités finies ï h N , L ) ;  à moins 
que la somme sur L ne soit divergente, rJ")(k,  ; t ,  g )  est donc bien une 
quantité finie, alors que les constantes de renormalisation Z ,  et 
2 ont été calculées pour la théorie de masse nulle. 

La fonction de corrélation rgN,L) obéit à une équation de C-S : 

avec : 

Comme 
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on obtient l’équation de C-S pour rhN) à T # T, : 

(56) 
La solution de (56) peut s’écrire (exercice 1) : 

avec (remarquez que t ( s )  dans (58) diffère par un facteur s2 de 
t(s) défini en (111.89)) : 

i ( s ) = t e x p ( -  j r ‘ ~ ( g ( s ’ ) ) d l n s ’  . 1 
Choisissons maintenant s de telle sorte que 

Ce choix implique physiquement que dans le membre de droite de (57) 
on se trouve très loin de la région critique. En utilisant (58),  l’équation 
(59) peut s’écrire : 

2 = e x p (  t {:‘(2+ y(g(s’))dIns‘)  
I*. 

Dans la région critique t/F2 -+ O et s -+ O, ce qui implique que 
g(s) -+ 9”. L‘intégrale dans (60) est dominée par les valeurs de 
Ins’-+ - CO, e t :  

t ( Z + 3 ( 6 * , E ) ) I n s  - - s 2 + Y ( g * , E ) .  

P 2  
- = e  

Posons 

(61) 
1 u =  

2 + 7(9*, E )  

(l’identification de u avec l’exposant critique habituel sera faite très 
bientôt), ce qui donne : 
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On peut transformer (57) en 

En particulier pour N = 2 on trouve le comportement suivant de 
rk2) : 

où 7) = y (g *, E )  et F est une fonction sans dimension. On constate 
que : 

0 la quantité de dimension 1, p ( t /p2) ” ,  doit être identifiée avec la 
masse renormalisée m = 6 - : en effet la fonction F ne dépend que de 
la combinaison k / m  = k6.  La masse m définie de cette façon diffère 
par une renormalisation finie de la masse utilisée dans les conditions de 
normalisation (VI.22) et dans l’exercice 2 ; 

0 l’équation (62.b) peut évidemment s’écrire sous la forme : 

ri2)% p “ k 2 - q  G ( k 6 )  

La comparaison avec l’équation (1.30) achève l’identification des 
exposants critiques 7) et v :  

7) = y ( g * ,  E ) ;  v = [ 2+  r (g* ,  4 1 - l  . 

Les autres exposants critiques se déduisent de 7) et v à l’aide des lois 
d’échelle (111.29). Ces lois d’échelle pourraient être redémontrées, dans 
le formalisme de ce chapitre, en étudiant l’énergie libre et l’équation 
d’état pour T -= T,. Je renvoie sur ce point à l’article de Brézin et al. ou 
au livre d’Amit. 

Les résultats qui précèdent méritent quelques commentaires : 

(i) Dans la théorie renormalisée, c’est le paramètre p qui apparaît 
comme l’échelle naturelle : dans la région critique ki <c p ,  t << p 2  ; p 
joue le rôle qui était dévolu à A dans la théorie nue. L‘avantage de la 
théorie renormalisée est que les équations de C-S (49) et (56) sont 
exactes. Ceci donne la base de départ pour le calcul des corrections aux 
lois d‘échelle (exercice 8). 

(ii) Les fonctions de corrélation dans (62) ont par construction une 
limite finie lorsque t -t O. Afin de simplifier les notations, je me limite à 
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(62.b), mais le raisonnement qui suit est évidemment valable quel que 
soit N .  Si l’on se place à k fixé et t -f O, l’argument de la fonction F tend 
vers l’infini. Le facteur t ”(’ - q ,  doit être compensé de façon à obtenir 
une limite finie, ce qui implique : 

iim F ( X )  = x 2 - 7  
x - ,  00 

et 

On retrouve l’invariance d’échelle dans la région ultraviolette k / m  + 1 
(ou r 4 6 )  : on remarquera que le comportement ultraviolet de la 
théorie massive (m # O )  est donné par un exposant identique à celui du 
comportement infrurouge de la théorie de masse nulle ( k / p  4 1). Ceci 
peut paraître paradoxal car on s’attendrait plutôt à ce que le comporte- 
ment pour k / m s  1 soit contrôlé par le point fixe UV (trivial) 
g = O. En réalité la théorie critique correspond à g = g *  (cf. (B.3) et 
point (iv)), et elle est contrôlée par le point fixe IR. 

(iii) La masse renormalisée m peut être définie de façon plus précise 
par : 

tandis que la solution de l’équation de C-S (56) peut s’écrire (cf. 
exercice 1. b) 

r i N ) ( k i ,  t ,  9, p = zr/2 ( 2 9 (s)) fkN)(ki7 g(s), m )  
P 

avec 

La fonction de corrélation fi”) diffère par une renormalisation finie 
de la fonction de corrélation définie par les conditions de normalisation 
(V1.22) ; on retrouve le fait que la limite m -+ O de cette fonction de 
corrélation est singulière, contrairement à la limite t -+ O de rf’? A une 
température fixée Fi2) est de la forme m 2 f ( k / m )  = m 2 f ( k . $ )  et ne 
dépend donc que d‘un seul paramètre dimensionné, alors que la théorie 
nue dépendait de deux paramètres dimensionnés mo et A :  la consé- 
quence de la renormalisation est qu’il n’y a plus qu’une seule longueur 
(ou masse) pertinente à une température fixée. 
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(iv) La constante de couplage nue go est une fonction sans dimension 
de g et de A / p  : 

qui vérifie l’équation différentielle : 

dont la solution est : 

Si l’on veut dilater le cut-off ù go fié, il faut donc faire varier g, et 
pour A -+ CO, g(s) -+ g* : nous retrouvons la propriété, déjà signalée, 
que la région critique est décrite par la théorie renornialisée avec 
g = g *. La constante de couplage uo = go A‘ tend, dans ces conditions, 
vers l’infini. En fait quand g décrit I’intervalle [O, g*[, la constante de 
couplage nue uo décrit l’intervalle [O, CO [ (exercice 6). 

Terminons ce paragraphe par une discussion heuristique (’) du rôle 
des opérateurs inessentiels, qui reprend sous un autre angle celle du 
paragraphe A.2. 

Un terme tel que u i  (p6 a été écarté de la discussion sur la base 
d’arguments purement dimensionnels : en dimension 4 la constante de 
couplage u6 a pour dimension - 2, et s’écrit sous la forme A-2 g6, où 
gi est sans dimensions et finie. Cependant l’introduction de ces 
opérateurs conduit à des divergences supplémentaires dans les fonctions 
de corrélation, et l’effet global n’est pas évident. Par exemple l’opéra- 
teur ( p 6  donne des contributions à ï(’)et  r(4) qui sont dessinées sur la 
figure 9 : 

(b) (b ‘1 
Figure 9. Insertion de cp dans r (*) et 
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Le graphe (9.a) diverge comme A 4 x  (Cte), tandis que le graphe 
(9.a') contient une partie divergente en A 4 x  (Cte) et une autre en 
A2 In ( A / k )  ; multipliant par u! - A P 2  on constate que ces graphes vont 
contribuer à déplacer la température critique et à changer la normalisa- 
tion du champ. Le graphe (9.b) contient une partie divergente en 
A2 x (Cte), tandis que le graphe (9.b') contient une partie divergente 
en A2 x (Cte) et une autre en In ( A l k ) .  Multipliant par us, on constate 
que la contribution de ces diagrammes peut être absorbée dans une 
redéfinition de la constante de couplage renormalisée. Ces redéfinitions 
conduisent à des corrections à l'invariance d'échelle en ( k / A ) "  (cf. 
exercice 8), correspondant très précisément à l'existence d'une valeur 
propre y 2  = - E (cf. 111.60) dans le formalisme du chapitre III (cf. en 
particulier le début du paragraphe III.B.3). 

L'analyse rigoureuse consiste à étudier la renormalisation d'insertions 
d'opérateurs composés tels que <p 6, cp 2(V<p )2 etc., dans les fonctions de 
corrélation. Cette analyse est plutôt pénible, en raison du couplage par 
renormalisation de ces opérateurs. Elle confirme entièrement l'analyse 
heuristique qui précède : les corrections dues aux opérateurs inessen- 
tiels, une fois que l'on a tenu compte de la redéfinition de la constante 
de couplage, de la normalisation du champ et de la température 
critique, sont proportionnelles à un facteur A- +O(&).  Leur influence sur 
le comportement critique est donc négligeable et ceci justifie a poste- 
riori l'utilisation d'un hamiltonien de Ginzburg-Landau avec un seul 
couplage en cp4. 

D. LE GROUPE DE RENORMALISATION 
EN DIMENSION D = 4 

Le cas D = 4 est le cas important en théorie quantique des champs et 
nous allons établir dans ce paragraphe quelques résultats utiles. 

D.l. Calcul de p(g) 

Si l'on calcule en dimension 4, il est nécessaire d'utiliser un cut-off ; 
on peut bien sûr obtenir aussi /3 (9) par une régularisation dimension- 
nelle : cf. le paragraphe E, mais on suppose pour le moment que les 
constantes de renormalisation 2, et 2, ont été calculées en utilisant des 
contre-termes, fonctions de g et de A. Rappelons que la relation entre 
constantes de couplage nue et renormalisée est : 

go = 2, z,-2g = zg  . 
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Z est une fonction de g et de A / p  ou de g et de X = In A / p .  D’après 
l’équation (46) définissant P (9) : 

Exprimons maintenant la 
partielles : 

dérivée totale en fonction de dérivées 

ce qui donne pour P (9) : 

Le point intéressant de l’expression (65) est que tous les calculs se 
font avec g et X : il n’est pas nécessaire de repasser par go. Supposons 
que nous ayons calculé Z à l’ordre d’une boucle : 

Z ( g , X ) =  1 + g ( a , X + a o ) + 0 ( g 2 ) .  

L’expression (65) donne immédiatement : 

et le coefficient P o  est donc égal à al : P o  = al. Nous allons maintenant 
montrer que la structure de Z(g)  est contrainte par l’équation (65) et le 
développement perturbatif de P (9) : 

P (9) = P O  g2 + P I  g3 + . (67) 

Ecrivons le terme d’ordre g2 de Z ( g )  sous la forme g2 f(X) : 

Z ( g ,  X )  = 1 + 9 (01 x + ao) + g2 f ( X )  + 0 ( g 3 )  

La comparaison des termes en g3 donne pour f (X)  l’équation 
différentielle : 

f ’ (X)  = 2 a:x + p 1 + 2 a1 a0 

f (X) = a: x2 + ( P  1 + 2 al a0 ) x + b2 . 
soit : 
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Ainsi le coefficient de g2 contient un terme en ln2 A / p ,  qui est 
entièrement déterminé par le calcul à l’ordre g, ou plus exactement à 
l’ordre d’une boucle ; un calcul à deux boucles est nécessaire pour 
déterminer le coefficient p De façon générale on pourrait montrer par 
récurrence que : 

m n  

(68) 
n = l p = O  

La puissance maximale du logarithme dans le terme en g” est 
(in A / p  )” : ce terme s’appelle terme de logarithme dominant (leading 
logarithm) ; le terme en (in A / p  )” - * est sous-dominant (next-to- 
leading logarithm). Le terme de logarithme dominant est entièrement 
déterminé par le calcul à une boucle, le sous-dominant par le calcul à 
deux boucles, etc. Nous avions déjà vu un exemple concret de ce 
phénomène au chapitre précédent. 

La structure de l‘équation (68) se généralise aux autres constantes de 
renormalisation et aux fonctions de corrélation. Bien entendu cette 
structure n’a rien de miraculeux : c’est une conséquence du groupe de 
renormalisation. On pourrait par exemple l’obtenir en développant en 
série de perturbations des expressions telles que (40) pour Z, ou telles 
que (50) pour la solution des équations de Callan-Symanzik. 

D.2. Théorie des perturbations améliorée par le groupe de renormalisa- 
tion 

Supposons que nous voulions calculer une fonction de corrélation 
r&”) pour des valeurs des moments pi - p  % p .  Un calcul direct de 
rh”) en série de perturbations donnerait, en supposant m = O, ou 
p s m :  

et si In (p /p  ) est grand, la série perturbative converge mal, ou pas du 
tout. Le cas d’une théorie IR libre est de toute façon désespéré ; au 
contraire dans le cas d’une théorie asymptotiquement libre dans le 
domaine UV, il est possible d’obtenir un résultat sensé. On définit un 
facteur de dilatation s par s = p / p  % 1 et ki = pi/s. L‘équation (50) 
donne alors : 
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Comme k i / p  - 1, la série perturbative du membre de droite est de la 
forme : 

où f ( k j  . k j / p  2 ,  - 1. Comme la dimension de A (ki) est la dimension 
canonique de riN) on obtient finalement : 

Pour une théorie asymptotiquement libre dans le domaine UV, 
g(s) -+ O et la série perturbative dans le membre de droite de (70) 
converge rapidement ; l’application du GR a permis de << sommer les 
grands logarithmes >> de l’équation (69). 

Une façon équivalente de procéder consiste à choisir le point de 
soustraction à sp au lieu de p pour définir la constante de couplage 
renormalisée ; supposons que nous ayons choisi la charge invariante de 
l’équation (6) pour définir g .  Nous aurions alors : 

I=R(Piü, 9, p = f R ( k i û ,  g(s), (71) 

où kio est le point de soustraction (VI.34) et pio = skio. Par définition le 
membre de droite de (71) est égal à g(s) et : 

f R ( P i û ,  9, p = g(s) . 

Afin d’éviter les grands logarithmes dans la série perturbative, il est 
donc recommandé de choisir le point de soustraction à p - p ,  lorsque 
les moments pi sont tous - p .  Le cas ennuyeux est celui où 
p i / p j  z=- 1 : en effet le groupe de renormalisation ne contrôle pas les 
In ( p i / p j )  qui apparaissent dans la série perturbative. 

E. LE GROUPE DE RENORMALISATION 
EN DIMENSION D <  4 

Pour l’application aux phénomènes critiques et au schéma de 
renormalisation minimal, il est intéressant de calculer les fonctions p et 
y à D -= 4. L‘expression obtenue dépend de E = 4 - D ,  mais il suffira 
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de faire tendre E vers zéro pour avoir immédiatement les expressions de 
P et y en dimension 4. 

E.l. Une équation pour P ( g ,  E )  

Quand D -= 4, on peut faire tendre A vers l’infini dans les intégrales, 
et il sera commode de relier go et uo par : 

uo = P B g o  

au lieu d’utiliser (24). Grâce à la relation : 

on peut écrire : 

A la limite A +  oc), uo = p E g O ( g )  et : 

d’où : 

ce que l’on peut aussi écrire : 

On trouve de même pour y (9 ,  E ) : 

a In Z,  a In Z,  

A la limite A +  oc), Z ,  = Z , ( g ,  E )  et : 

Notez que les expressions (74) et (75) ne s’appliquent que pour D 
strictement inférieur à 4, lorsque l’on a fait tendre le cut-off vers l’infini. 
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Les divergences logarithmiques sont évidemment reflétées par la 
présence de pôles quand E + O. 

La relation (74) peut encore être transformée en utilisant go = Zg : 

(76.a) - "9 (99 = 1 + g a in z/ag 
d'où : 

(76.b) 

E.2. Calcul de p(g, E )  et y(g, E )  dans le schéma minimal 

Par définition du schéma minimal, les constantes de renormalisation 
ne contiennent que des pôles en E (dans ce paragraphe, i désigne l'ordre 
du pôle en E et non le nombre de boucles) : 

Examinons d'abord l'équation (76.a) ; dans le schéma minimal : 

Pour que P (9, E )  ait une limite finie quand E + O, il est nécessaire que 
seul z( ' )  soit + O et : 

P (97 8 )  = - E S  + P4(g)  (79) 
où P4(g )  = p ( 8 )  est la fonction P en dimension4. 

obtient aussi : 
Notez que la relation (79) est spécifique du schéma minimal. On 

P ( 9 )  = - z ( l ) (g )  

mais en général on a calculé Z, et non 1nZ. Exprimons donc 
P ( 9 )  en fonction des Z( ' )  en récrivant (76) : 

(80) a 2 a  

ag 
P ( d a g  (gZ(g ,  E ) )  - Eg - Z(g, E )  = 0 

En reportant (77) dans (80) on obtient : 

z )(g ) 2' ) (g ) + S P  (9 1 - = 0 . 
1 i E  
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I1 suffit maintenant d'identifier les puissances de 1 / e  pour écrire 
l'expression de p ( g )  : 

(81) 2 azc1w 
P ( 9 ) = 9  ag 

ainsi que la relation de récurrence : 

(82) 
a 

as as 
g 2 a  Z ( " l ) ( g )  = p ( 9 )  - ( g Z ( ' ) ( g ) )  . 

Cette dernière relation permet par exemple de calculer les pôles en 
E - ~  en fonction de ceux en E -  : nous avons déjà rencontré un exemple 
d'une telle relation au chapitre précédent (paragraphe F). 

Le calcul de y (9 ,  E )  s'effectue à partir de (75) : 

[ P ( &  "'as- a 

Utilisons maintenant l'équation (78) 

Grâce à la forme (79) de P (9 ,  E )  on obtient 

Dans le schéma minimal, y (9 ,  E )  est indépendant de E ! Soulignons 
que les formes (79) et (83) de p (9 ,  E )  et y ( g ,  E )  ne sont valables que 
dans le schéma minimal. L'utilisation des conditions de normalisation 
(25) conduirait par exemple à une forme de y ( g ,  E )  dépendant 
explicitement de E.  Notons aussi que l'on obtient des relations de 
récurrence en i pour les ~ f )  (exercice 5). 

Les arguments développés ci-dessus pour le calcul de y ( g ,  E )  se 
transposent évidemment à celui de y ( g ,  E )  : 

y ( g ,  E )  = y ( g )  = - g L z ( ' ) ( g ) .  
ag 

(84) 

E.3. Calcul de p, y et 7 à l'ordre de deux boucles 

Au chapitre précédent, nous avions obtenu Z3 et Z à l'ordre de deux 
boucles : 

( Y 2  Z,(g,  E )  = 1 - - 
12 E 

3 a  9cu2 1 7 a 2  Z ( g , E ) = l + - + - - -  
E E 2  6 E 
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avec a = g / ( 4  7r)’/’ (*). D’après (81) : 

39’ 17 g3 p ( 9 )  = - - -- 
(4 Ir)’ 3 (4 m)4 

Comme les coefficients P o  et P l  sont indépendants du schéma de 
renormalisation, on aurait également trouvé le résultat (87) par 
exemple en utilisant les conditions de normalisation (25) en calculant 
directement en dimension 4 avec un cut-off : exercice (3) ; y ( 9 )  
s’obtient à partir de (83) et (85) : 

Pour calculer 7, il faut déterminer 2 ; toutes les intégrales nécessaires 
ont été calculées au chapitre précédent, car elles sont identiques à celles 
du calcul de r(4). Seuls les facteurs de symétrie sont différents. 
Evaluons la partie divergente de à l’ordre de deux boucles : 

4 

+ 4- 
+ 

+ 

La partie divergente du deuxième graphe de (89) vaut 

(*) Au lieu d’utiliser g, on peut utiliser une fonction de g : (I = c g f ( D )  où 
f ( 4 )  = 1. I1 suffira d’écrire toutes les équations ((77), (78), (79) ...) en fonction de LI et 
non de g. 
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soit : 

Equations de Callan-Symanzik VII.E.4 

a 
E 

z = 1 + - + O (a 2) 

tandis que la partie divergente des quatre derniers graphes vaut : 

(1 + &al) 
1 3  a22 (1 + 2 EUl ) - - - - 

4 E 2  2 E E  
-- CI 

1 a22 a 2  2 
2 E F  2 E 2  

avec al = 1 - - 1 1  y - -In ( q 2 / w 2 )  (cf. VI.54.e). 
2 2  

On constate à nouveau l’élimination des termes indésirables propor- 
tionnels à in (q2/p2) et on trouve pour Zz3 : 

- a 2 a 2  a 2  ZZ3 = 1 +-+---  
E &2 2 E  

soit : 
- a 2 a 2  5 a 2  Z = l + - + - - -  

E E 2  12 E 

Cette expression donne immédiatement y : 

5 a 2  y ( g )  = - a + 6. 

E.4. Calcul des exposants critiques à l’ordre E’ 

Le point fixe est donné par /3 (a *, E )  = O soit : 

c’est-à-dire 
E 17 
3 81 a* = - + - & 2 +  o ( 4 .  

A l’ordre e2, q est donné par : 

E‘ 

54 q = y ( ( . * )  = - (93) 

résultat que nous avions déjà obtenu au chapitre V (équation (V.65)). 
Pour obtenir v, il faut calculer y (a *) : 

E 19 
3 162 

y ( a  * )  = - - - - E 2  
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1 E 7 E 2  
= - + - + - + O ( E 3 )  

1 
I I =  

2 +  ~ ( a * )  2 12 162 (94) 

Les autres exposants critiques s’obtiennent grâce aux lois d’échelle 
(III .29). 

EXERCICES 

1) Solutions de l’équation de C-S 

(a) soit l’équation de C-S (56). On examine d’abord le cas d’une charge 
invariante f R ,  correspondant à N = O. En remarquant que (56) est équivalente 
à dfR/d Ins = O, montrer que : 

f R ( k i , t , g , ~ ) =  f , ( k i , t ( s ) , g ( s ) ,  P ( ~ ) = s P ) .  

(b) Obtenir la solution de (56) sous la forme : 

r R ( k i , t , g , P )  = e x P ( - a N  /:sy(g(s’))dlns’) r R ( k i > t ( s ) ? g ( s ) , s f i )  

et utiliser l’analyse dimensionnelle pour en déduire (57). 

2) Autre type d’équation de C-S 

(a) On se propose d’abord de démontrer l’équation établie à l’origine par 
Callan et Symanzik. On suppose que la théorie renormalisée est définie par les 
conditions de normalisation (VI.22) avec la modification suivante pour 
D < 4 :  

r$‘)(ki = O, m ,  g )  = m ‘ g  

En appliquant l’opérateur m (k ) , , , A  à 

montrer que l’on obtient l’équation : 
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où riNv1) correspond à l'insertion d'un opérateur p 2  (cf. chapitre VI-E) et : 

Suggestion : utiliser les conditions de normalisation VI.22.b et VI.22.d. 
(b) On peut montrer, à l'aide du théorème de Weinberg, que le second 

membre de l'équation de C-S est négligeable si k i /m  + 1 : 

En déduire, pour k i / m  + 1 (régime ultraviolet) et g = g * (pourquoi ?) que 

(c) En utilisant une identité analogue à celle de l'exercice (6.a), montrer que 

m -  I g - g * ( ' / "  

où w = P' (g*)  et en déduire : 

Identifier les exposants critiques v et y. 
3) En utilisant les résultats de l'exercice;VI.3 ainsi que ceux du paragra- 

phe D.l, calculer la fonction P (9) à l'ordre h e  deui boucles. On vérifiera que 
p (g), calculé avec une normalisation du type (VI.22) est bien identique au 
résultat obtenu à l'équation (87) : les coefficients P o  et P i  sont universels. 

4) Groupe de renormalisation pour la théorie en q 3  

(a) En utilisant les résultats de l'exercice (VI.2), calculer les fonctions 
p (g), y (9) et ym(g)  de la théorie en p3 en dimension 6 à l'ordre d'une boucle. 
La fonction ym(g) est définie par : 

On utilisera une régularisation dimensionnelle, où m; = Z ,  m2, et le schéma 
minimal ; m est alors un paramètre de masse, dépendant de la masse de 
renormalisation p, analogue au paramètre t de la théorie en (p4 (cf. (52)). 

Réponse : 

avec (Y = g2/(4 T ) ~ .  Attention au remplacement de E par ~ / 2  ! 

(b) Montrer que la théorie en p est asymptotiquement libre dans le domaine 
ultraviolet. En supposant d'abord la masse égale à zéro, montrer que le 
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comportement quand s + CO des fonctions de corrélation est donné par : 

d - ! N [ r s y ( g ( s ’ ) ) d l n s ’  

r p ( s k i ,  g, /.& ) = s X 

x rAN)(k i ,  g (s), p,) 2 sd(ln s)- ThN)(ki, g (s), II. ) . 

Pour obtenir la dernière équation, on a utilisé les approximations à une boucle 
pour P (9) et -y(g), obtenues à la question précédente. 

(c) On suppose maintenant la masse non nulle. Montrer que les fonctions de 
corrélation obéissent à une équation de C-S : 

Discuter l’influence de la masse sur le comportement asymptotique déterminé à 
la question précédente. 

5) Relations de récurrence 

(a) En utilisant la relation de récurrence (82), montrer que le terme 

(b) En écrivant la constante de renormalisation Z, dans le schéma minimal 
c ’ ( ~ ~ / E ~ )  est calculable en fonction du terme C ( C U / E >  de Z(g, E ) :  c’ = c2. 

sous la forme : 

démontrer la relation de récurrence : 

6) Relation entre go et g 

On se propose de déterminer la relation entre les constantes de couplage nue 
go = p - ‘uO et renormalisée pour D -= 4. Pour fixer les idées, on pourra utiliser 
le schéma minimal bien que les résultats soient plus généraux. 

(a) Montrer que Z(g, E )  est donné par : 

(b) En déduire que pour g --t g * (g < g * )  

Z(g, E ) =  Ig-g*I-E/W 

d où O = - P (g, E ) I ~ = ~ . .  Ceci montre que lorsque g parcourt l’intervalle 
dg 
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[O, g*[, go (et donc uo) parcourt l’intervalle [O, CO [. Comme g* -+ O quand 
D -+ 4, la région g =- O, D = 4 ne peut être atteinte sans un prolongement 
analytique où go devient complexe. Cette remarque fournit une autre indication 
sur l’impossibilité d’une théorie renormalisée non triviale en dimension 4. 

(c) On prend maintenant le cas d‘une théorie asymptotiquement libre dans le 
domaine UV, par exemple la théorie en Q 3  de l’exercice 4. Montrer que dans ce 
cas Z(g, E )  -+ O à g fixé (suffisamment petit - précisez ce point ! -) lorsque 
E -+ O : la constante de couplage nue -+ O. Montrer égaiement que : 

dans les mêmes conditions. 

7) Les fonctions p (g), y (g) ... dépendent du schéma de renormalisation, 
mais certaines propriétés sont universelles, comme les coefficients P o  et 
P l .  Montrer que les propriétés suivantes sont indépendantes du schéma de 
renormaiisation (3) : 

(i) Existence d’un zéro de (9) : P (9”)  = O. 
(ii) Valeur de P ’ (g * ) quand /3 (g * ) = O 
(iii) Valeur y(g*) de y(g)  en un point fixe 
(iv) Premier coefficient yo de y (g) : y (9) = yo g + . . OU 

Y b ) =  YOg2+“. .  

8) Corrections à l’invariance d’échelle (4) 

(a) On se propose de calculer les corrections au comportement invariant 
d’échelle. Pour simplifier les notations, on se place à T = T,, mais la méthode 
se généralise sans difficulté à T # T,. La fonction de corrélation au point fixe 
est invariante d’échelle pour s -+ O : 

On définit la fonction C (N)(k i ,  g, p ) par 

avec C ( N ) ( k i ,  g*, p ) = 1. Montrer que C ( N )  vérifie l’équation : 

(b) En utilisant ( w  = dP (9, €)/dglg,,.): 
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montrer que C ( N )  est de la forme : 

C ( N ) ( k i , g , p ) = l  + ( g - g * ) P - * D ( k i ) .  

En déduire que rh") se comporte comme : 

(c) Montrer que O = E + Cl  E' et calculer explicitement Cl.  Ces corrections 
à l'invariance d'échelle sont précisément celles déjà examinées au chapitre III, 
paragraphe B.3 : l'exposant yz vaut - E + O ( & * )  dans le modèle en 'p4 (cf. 
exercice 111.4(b)). 

9) Montrer que le potentiel effectif de Coleman-Weinberg (exercice VI.9(c)) 
est invariant (à l'ordre g z ( p  )) par un changement du point de renormalisation 
F, à condition que g ( p )  obéisse à l'équation d'évolution (46) en dimension 

Démontrer, de façon générale, que le potentiel effectif vérifie l'équation : 
D = 4. 

2 r 2  l p 4  et que V - - -  , lorsque ' p / p  + 1 et D = 4. 
9 lnI*/'p 
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des opérateurs inessentiels est discuté par Brézin et al. (section V1II.C) et par Amit 
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CHAPITRE VI11 

Intégrales de chemin en mécanique 
quantique et mécanique statistique (*) 

Ce chapitre fait la transition entre les deux premières parties, 
consacrées à la mécanique statistique et la troisième, qui traitera de 
théorie quantique des champs. Nous allons retrouver dans cette 
troisième partie les outils mis au point dans l’étude des phénomènes 
critiques : intégrales fonctionnelles (souvent appelées intégrales de 
chemin dans ce nouveau contexte), diagrammes de Feynman, renorma- 
lisation et groupe de renormalisation. I1 suffira de quelques modifica- 
tions pour adapter ces outils au nouveau contexte, et nous verrons sur 
des exemples élémentaires le lien entre un problème de mécanique 
statistique et un problème de mécanique quantique. 

Toutefois, et bien que les résultats de ce chapitre permettent de 
mieux comprendre une partie des développements qui vont suivre, je 
ne les utiliserai pas directement par la suite. Ce chapitre peut donc être 
sauté en première lecture. 

Dans son cours de mécanique quantique (I), Feynman utilise une 
expérience d’interférences, du type trous d’Young réalisée avec des 
électrons, afin d’introduire le concept fondamental en mécanique 
quantique, celui d’amplitude de probabilité. Dans cette expérience, des 
électrons émis par une source A arrivent en un point d’impact B 
(variable) sur un écran E’, après avoir franchi un écran E percé de deux 
trous (1) et (2). Aux deux trajets possibles correspondent deux 
amplitudes de probabilité a, et u2, qui sont données par les règles 
suivantes (avec des notations évidentes : cf. figure 1) : 

(*) Ce chapitre peut être sauté en première lecture. 
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Figure 1. L‘expérience des trous d’Young. 

L’amplitude de probabilité a pour observer un électron en B est la 
somme de a, et a 2 :  

2 

a = al  + a2 = aBi ai* 
j = i  

\ 
Figure 2. Une version compliquée de l’expérience des trous d’Young. 
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Compliquons un peu l’expérience en plaçant plusieurs écrans intermé- 
diaires 1, K ,  L percés chacun de plusieurs trous numérotés j ,  k et 1. 
L‘amplitude de probabilité a est alors : 

a = aBI alk a k j  a j A  
j ,  k. 1 

L‘amplitude de probabilité a est une somme sur tous les chemins 
allant de A à B ; par exemple on a dessiné sur la figure 2 le chemin 
A + J ( 1 )  + K ( 2 )  + L ( 1 )  -f B. 

On peut maintenant remplacer les écrans par un potentiel où se 
déplacent les électrons, et imaginer qu’à chaque chemin [cl allant de A 
à B on associe une amplitude de probabilité a [ C I ,  l’amplitude totale a 
étant la somme (figure 3) : 

a = p [ C ]  * 

ICI 

Figure 3. Chemins de A à B. 

Reste évidemment à donner une prescription pour a [ c ]  et pour la 
somme sur les chemins. Ceci sera fait au paragraphe B où, partant des 
propriétés de l’opérateur d’évolution exp (- iHt ), nous montrerons que 
le poids statistique de chaque chemin, c’est-à-dire a [cl, est donné par 
(- : proportionnel à) : 

où S ( B ,  A )  est l’action classique calculée le long du chemin allant de A 
à B en un temps déterminé. Inversement on peut prendre (1) et (2) 
comme postulats fondamentaux et en déduire tous les résultats de la 
mécanique quantique : en d’autres termes on peut choisir ( 2 )  comme 
postulat de quantification au lieu de la relation de commutation 
canonique (RCC) [ Q ,  P l  = iA .  

Les amplitudes de probabilité dans (1) sont des éléments de matrice 
de l’opérateur d’évolution dans la représentation où l’opérateur position 
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Q est diagonal. On peut prolonger cet élément de matrice pour des 
valeurs complexes du temps t = - i7 : l’amplitude de probabilité 
devient alors un élément de matrice densité (non normalisé), toujours 
dans la représentation où Q est diagonal ; la fonction de partition du 
système quantique est la trace de cette matrice densité lorsque l’on 
choisit T = l / k T .  Mais on peut interpréter cette matrice densité d’une 
autre manière : à chaque chemin [cl on fait correspondre une configura- 
tion [y]  d’un système classique, le poids statistique de chaque configura- 
tion étant : 

où H n’est autre que le hamiltonien du système classique et peut être 
déduit de S (N est aussi noté S E :  << action euclidienne >> - cf. 
paragraphe C). La fonction de partition du système classique est : 

où la somme sur les configurations est l’analogue de la somme sur les 
chemins dans (1). 

Ainsi, partant d’un système quantique et des amplitudes de probabi- 
lité (2), on a abouti à un système classique décrit par les probabilités (3). 

En mécanique quantique, un rôle important est souvent joué par le 
chemin classique allant de A à B ,  c’est-à-dire par le chemin qui rend 
l’action stationnaire. Dans le problème correspondant de physique 
statistique classique, la configuration correspondant au chemin classique 
est la configuration de Landau >> : en effet la configuration de Landau 
est celle qui rend le hamiltonien stationnaire (cf. 1I.B). Aux fluctuations 
quantiques autour du chemin classique correspondent les fluctuations 
statistiques autour de la configuration de Landau. Ces fluctuations sont 
étudiées par la théorie des perturbations, et il n’est pas étonnant de 
rencontrer les mêmes techniques dans les deux types de problèmes. 

Le paragraphe A traite d’un exemple élémentaire : la correspondance 
entre la dynamique d’un spin 1/2 quantique et celle du modèle d’Ising à 
1 dimension. Cette exemple illustre de façon très simple le passage d’un 
problème quantique à un problème statistique, et permet de préciser un 
certain nombre de correspondances. 

Au paragraphe B, on établit la traduction de l’équation de Schrodin- 
ger en termes d’intégrale de chemin, en donnant un sens précis à la 
somme dans (1). Un point important de ce paragraphe est l’étude des 
conditions aux limites de l’intégrale de chemin dans le cas de l’oscilla- 
teur harmonique : en effet un champ quantifié n’est jamais qu’une 
superposition d’oscillateurs harmoniques (indépendants dans le cas du 
champ libre, couplés en général), et ces conditions aux limites seront 
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cruciales par la suite, car elles assureront l’unitarité et la causalité de la 
théorie. 

Enfin nous préciserons au paragraphe C le lien entre mécanique 
statistique et mécanique quantique, en introduisant le << prolongement 
euclidien B de l’intégrale de chemin du paragraphe précédent. 

A. SPIN QUANTIQUE ET MODÈLE D’ISING 

A.l. Intégrale de chemin pour un spin 1/2 

Considérons en mécanique quantique un hamiltonien décrivant un 
spin 1/2 (dans un système d’unités où h = 1) : 

H = - K u 1  ( 5 )  

où u l ,  u2, u3 sont les matrices de Pauli habituelles (cf. l’équation C.5). 
Dans la représentation où u3 est diagonal, les vecteurs propres de H 
sont : 

correspondant aux valeurs propres E, = - K (état fondamental) et 
E,  = K.  Ce système, comme tout système quantique, présente des 
fluctuations ; par exemple : 

(OI@:10) Z I(01@310> 1 2 .  
Considérons maintenant un élément de matrice de l’opérateur d’évolu- 
tion exp(- iHt) entre deux états propres de u3, IS,) et 18,) 
(sa, Sb = 5 1) : 

F est l’amplitude de probabilité pour observer la valeur propre 
S, au temps t, sachant que le spin est au temps t = O dans l’état 
IS,) . Les valeurs de S, et de S b  constituent les conditions aux limites au 
temps t = O et t respectivement. Pour simplifier les notations, on 
suppose t = N = entier % 1 et on divise l’intervalle [O, t ]  en N interval- 
les de longueur unité : 

I 

O 1 N - 1  N = t  
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On insère maintenant un ensemble complet I S i ) ,  Si = f 1, d’états 
propres d,e v3 à chaque division de l’intervalle [O, t ]  : 

et on introduit la fonction (complexe) V ( S ,  S f )  par 

(SI e- iH I S’) = e- ivv .  s‘) 

L‘équation (6) devient : 

(Sble-’HIS,) = 

(7)  

où la somme porte sur toutes les configurations intermédiaires 
s, : 

= c ... . 
[s,] = 2 1 S N - 1  = 2 1  

Ii n’y a plus d’opérateur dans le membre de droite de (8), qui constitue 
un exemple élémentaire d’intégrale de chemin: remarquez que ( 8 )  a 
bien la même forme que (1). 

Effectuons maintenant un prolongement analytique de (6) pour des 
valeurs imaginaires de t : c = - i7. L‘élément de matrice : 

F ( - ~ T , s ~  ; o , s , )  = (Sble-HT(S,) 

est donné par une expression analogue à (8) et il est facile de calculer la 
matrice V,(S ,  S ’ )  correspondante car : 

dans une base où u3 est diagonal. En écrivant exp(- V,(S, S’)) sous la 
f o m e  : 

exp(- V, (S ,  S’)) = exp(A + S S S f )  

on peut faire l’identification : 

(9) = ch K ;  = sh K .  

Cette identification permet de faire le lien avec un problème de 
mécanique statistique classique. Supposons en effet qu’aux points O, 
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1, ..., N nous ayons disposé des spins d'king Si pouvant prendre 
seulement deux valeurs : Si = + 1 et Si = - 1, et dont le hamiltonien 
d'interaction est : 

N - 1  

H [ S i ] = -  C ( A + B S i S i + l )  (1O.a) 
i = O  

la probabilité de la configuration [Si] étant donnée par : 

P [Si1 = ~ X P  (- H [ S i l )  * (lO.b) 

Le hamiltonien (1O.a) est celui du modèle d'Ising à une dimension (cf. 
I-B.2). L'expression (8) pour t = - i r  est la fonction de partition du 
modèle d'Ising lorsque les spins des extrémités S,, et S, ont une valeur 
fixée (la température est incluse dans les coefficients A et B ; ou mieux, 
on pourrait identifier la température et h). Si l'on somme sur 
Su et S,, on obtient la fonction de partition du modèle d'king avec des 
conditions aux limites périodiques (cycliques) 

Su(= So)= S,(= S,) 

qui est égale à :  

La fonction de partition du système de N spins classiques est égale à 
la fonction de partition d'un spin quantique à la température 
kT = 1 / N .  Le programme exposé dans l'introduction a été réalisé sur 
cet exemple élémentaire : partant d'une amplitude de probabilité sous 
la forme (8) (cf. (l)), nous avons construit un système classique, la 
probabilité d'une configuration étant donnée par (10) (cf. (3)). Cepen- 
dant le spin quantique n'a pas de limite classique, et nous n'avons pas 
vu l'analogue de (2). C'est pourquoi l'intégrale de chemin (8) n'a 
aucune utilité pratique. D'autre part, seule la limite N + CO donne des 
résultats intéressants, ainsi que nous allons le voir ci-dessous. 

A.2. Correspondances 

1) Energie libre, énergie de I'état fondamental 

A la limite N -> CO, l'énergie libre par spin p est donnée par : 

1 
= lim (--lnTre-"' 

N + m  r - t m  
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Mais lorsque T -f CO, e- HT est dominé par la valeur propre de l’état 
fondamental : 

e- H T  = 10)e-EoT(O\ 

F = E , .  

et : 

L’énergie libre par spin du système statistique est donc l’analogue de 
l’énergie de l’état fondamental du système quantique. 

2) Fonction de corrélation. Produit ordonné dans le temps 

d’king : 
Examinons maintenant la fonction de corrélation de deux spins 

I I I 

O ‘1 m N 

qui peut être transformée en : 

grâce à la relation: 

- V&/,  s, - 1 )  

i = S , e  

A la limite où N -+ CO, (rn - I )  fixé on peut mettre (S, S,) sous la 
forme : 

Avant de commenter l’équation (16), remarquons que dans le cas 
m < I nous aurions obtenu : 
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Si l’on définit l’opérateur u 3 ( t )  de la représentation de Heisenberg : 

a 3 ( t )  = ea‘ a3 eëiH‘ (17) 

et par prolongement à des valeurs complexes de t : 

u3(7) = eHT u3 eëHT 

on note que les résultats (15.a) et (15.b) peuvent s’écrire sous la forme 
unique : 

(Sm S,) = (01 T ( ‘ 7 3 ( T r n )  a 3 ( T [ ) ) I O )  (18) 

où j’ai introduit le produit ordonné duns le temps (ou produit-T) : 

(19) 
T(u3(trn) ~ 3 ( t i ) )  = a 3 ( t m )  u3(tr) 

= u3(ti) ~ 3 ( t m )  
t m  >tl  

tm < t[  

et T ,  > 7, si t ,  =- t,. 
Ainsi nous voyons que la fonction de corrélation de deux spins est le 

prolongement, pour des valeurs complexes de t ,  de la valeur moyenne 
sur l’état fondamental d‘un produit- T. Aux fluctuations quantiques de 
l’opérateur a3 correspondent les fluctuations statistiques de la variable 
classique S. 

3) Longueur de corrélation, saut d’énergie 

Revenons maintenant à l’équation (16) ; avec le hamiltonien choisi, 
(O I u3 10) = O ; si cette condition n’est pas réalisée (cf. par exemple 
l’exercice l) ,  il faut définir la fonction de corrélation en retranchant le 
produit (S,) (S,) (cf. I-D.l) : 

(SmS,) + (SmS,) - ( S m )  (S,) * 

En nous limitant pour le moment au hamiltonien (1) nous obtenons : 

où A E  = E, - E, est la différence d’énergie entre le niveau fondamental 
et le niveau excité. L‘équation (20) permet d’identifier la longueur de 
corrélation : 

(s, s,) - e- Imp’ I /( (20) 

et nous obtenons 6 = l / A E  : la longueur de corrélation est l’inverse de 
la différence d’énergie entre le niveau fondamental et le niveau excité. 
Lorsqu’il y a plusieurs niveaux excités, le comportement de la fonction 
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de corrélation est également déterminé par AE = E ,  - E,, où E ,  est le 
premier niveau excité ; cependant il faut choisir Im - I I suffisamment 
grand pour que la contribution des autres niveaux devienne négligeable. 

Au lieu de diviser l’intervalle [O,  T ]  en intervalles de longueur unité, 
j’aurais pu le diviser en T / E  intervalles de longueur E. A condition que 
T / E  % 1 (plus précisément T AE/sh  9 l), rien n’aurait été changé aux 
résultats précédents, le problème de mécanique quantique restant le 
même. On peut vérifier sans difficulté cette affirmation à partir de 
l’expression explicite de la fonction de partition (exercice 1). Toutefois 
le résultat (13) doit être interprété de la façon suivante : comme il y a 
maintenant T / E  spins dans l’intervalle [O, T ] ,  -in 2 n’est plus 

l’énergie libre par spin, mais la densité (linéaire) d’énergie libre. 
Remarquons qu’au problème de mécanique quantique sur un site a été 
associé un problème de mécanique statistique sur une droite, c’est-à- 
dire un espace à 1 dimension. Dans une théorie quantique des champs, 
à chaque point d’espace est associé un système quantique (et la 
difficulté vient de ce que ces systèmes interagissent entre eux). A une 
théorie quantique des champs dans un espace à D - 1 dimensions (c’est- 
à-dire un espace-temps de dimension O) correspondra un système 
statistique dans un espace à D dimensions. Cette remarque étant faite, je 
donne le tableau de correspondance général : 

-1  
T 

Densité d’énergie libre - Densité d’énergie de l’état 

Fonction de corrélation - Produit ordonné dans le temps 
Inverse de la longueur 
de corrélation 

fondamental 

- Saut d’énergie AE 

Enfin, on fait souvent tendre E + O ,  ce qui permet de définir la 
matrice de transfert T 

E K )  = 1 + E T .  - 1 
- ( E K  1 

B. PARTICULE DANS UN POTENTIEL 

Envisageons maintenant un système quantique un peu plus compliqué 
qu’un spin 1/2 : une particule (non relativiste) de masse m se déplaçant 
sur une droite dans un potentiel V ( q ) .  Nous appellerons Q et P les 
opérateurs de position et d’impulsion, (4) et Ip) leurs états propres 
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dans la représentation de Schrodinger ; la normalisation choisie e: 
(PIP‘) = 6(P - P I ) ,  (414‘)  = ~ ( q  - 4 ‘ )  et (qlp)  = eiq*p/J2 n. 
& ( t )  et 19, t )  désignent l’opérateur position et ses vecteurs propres 
dans la représentation de Heisenberg : 

(21) 
= eat Q e-iHt 

14, t )  = eiH‘Iq) . 

B. l .  Représentation d’une amplitude de Probabilité par une intégrale de 
chemin 

Soit F (q ’ ,  t ‘  ; q ,  t ) l’amplitude de probabilité pour que la particule 
initialement en q au temps t se trouve en q’ au temps t’ (les conditions 
aux limites sont donc q ( t )  = q,  q ( t ’ )  = 4’) : 

14) * (22) F ( q  , I  t ; q t )  = ( q ’ , t ‘ I q , t )  = (q’le-iH(f’-t) 

Divisons l’intervalle [ t ,  t ’ ]  en (n + 1) intervalles de longueur 
t ’  - t 

E = -  n + l ’  & - + O :  

I I I I 
I + 

t ,  = t t ,  t ,  t ,  t n + l  = t’ 

Insérons aux temps tl . . . t ,  un ensemble complet de vecteurs propres de 
Q :  

- iH(t‘ - I .)  F ( q ‘ ,  t ’  ; q ,  t )  = dql ... dq,(q‘le 14,) ( q n I * * *  

14) 
- iH(r, - t )  ... 141) (41Ie 

et examinons l’élément de matrice (q‘ I e- ieH I q )  : 

P 2  
= (q’11-is--isV(Q)lq) . 

2 m  

Calculons les éléments de matrice de P 2  et V (Q) : 
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Tenant compte du fait que E - , O ,  on obtient : 

(q' le-'"Iqs> 

= j g c x p ( i ( q ' - q ) p - i r  

On remarque que dans l'équation (23) les quantités p et q sont des 
variables classiques (de même que dans le paragraphe précédent le spin 
S était une variable classique). On obtient une représentation de 
l'amplitude de probabilité sous forme d'une intégrale de chemin : 

Si V est uniquement fonction de Q, il est possible de faire l'intégration 
sur p l  (exercice 2) : 

J" Z e x p  (ipq - i s  2m p z  ) = ( -)'"exp( m zz) (25) 2 i n a  

et l'équation (24) devient : 

En introduisant la notation abrégée Bq pour l'intégrale sur les 
41 et en remarquant que : 

E v( "+"+ ' )  2 -, ~ff 'V("f ' ' ))dtff  
r = o  
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= 1 Bq exp ( S) 

on trouve la forme finale de l'intégrale de chemin : 

(27) 

avec les conditions 
Dans l'équation 

dq/dt et 

aux limites : q ( t )  = q ; q ( t ' )  = 9'. 
(27) j'ai rétabli la constante de Planck h ; q = 

est le lagrangien de la particule ; S est l'action correspondante : 

S = jt'' L(q ,  4 )  dt" . (29) 

Naturellement la << démonstration >> précédente mériterait d'être 
étayée par une analyse mathématique rigoureuse afin de donner un sens 
précis à la mesure d'intégration 9 q .  Avec les mêmes notations, on peut 
transformer (24) et obtenir la forme hamiltonienne de l'intégrale de 
chemin : 

F ( q ' ,  t' ; q ,  t )  = 9 p  9 q  exp (i Jtr' [p4 - H @ ,  q ) ]  df.) . (30) 

Interprétation de l'équation (27) 

Considérons un chemin allant deA : (4, t )  à B : (q ' ,  t ' )  ; à ce chemin 
correspond une certaine action S. L'équation (27) peut être interprétée 
en admettant que chaque chemin est affecté d'un poids statistique 
exp ( S) , et que l'amplitude de probabilité est obtenue en faisant la 

somme sur tous ces chemins. Dans la procédure que nous avons suivie, 
la somme sur les chemins a été définie de la façon suivante : les chemins 
sont des lignes brisées joignant les positions q ,  qi, ..., q' aux temps t ,  
t l ,  ... , t' (figure 4). La somme sur les chemins consiste à intégrer à q et 
q' fixés sur tous les ql correspondant aux temps intermédiaires 
tl avec une mesure d'intégration : 
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Figure 4. Trajets utilisés pour l'évaluation de (26). 

L'action correspondant à un élément de chemin qr -+ qi + est : 

A S = - m  
2 & 

Si I qi - qr + I % (h&/rn)ln,  le facteur exp i A S / h  oscille rapidement et 
la contribution du trajet sera faible : on voit que seuls les trajets 
<c suffisamment réguliers >> donneront une contribution importante. I1 
existe d'autres manières de définir des sommes sur les chemins, qui sont 
décrites dans les livres cités en référence. 

Examinons maintenant le rôle du chemin classique qci( trr ) .  Ce chemin 
correspond à une action stationnaire : 

Considérons un chemin q ( t  "), et soit S l'action correspondante 
(figure 5) .  Si IS - S,, I s- h, cela veut dire que le facteur exp iS/h oscille 
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f ‘  

I 

Figure 5. 

un grand nombre de fois lorsque i’on déforme qci en q. Ceci implique 
que les chemins voisins de q donnent une contribution négligeable à 
l’amplitude de probabilité. Celle-ci sera dominée par les trajets voisins 
de qcl, dont l’action est telle que IS - S,,I 5 h. Dans certains cas on 
peut espérer tenir compte des fluctuations quantiques autour de la 
trajectoire classique par un développement en puissances de h, ou 
développement en nombre de boucles (cf. II-D.2 et V-D.2). 

B.2. Fonctionnelle génératrice des produits- T. Expression du produit- T 

En théorie quantique des champs, les valeurs moyennes sur l’état 
fondamental 10) (souvent appelé << état du vide .) de produits-T 
d‘opérateurs jouent un rôle très important. En suivant la même 
technique qu’au paragraphe précédent, il est facile d’écrire l’élément de 
matrice du produit-T d’opérateurs-position entre les états lq’ t’)  et 
14’ t )  : 

(4’’  t’ I T(Q(t1) Q(t2))14, t>  = 5 9 4  4 (ti) 4 ( b )  eiS . (31) 
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Cependant on cherche plutôt à obtenir : 

et il va falloir << projeter B l'équation (31) sur l'état fondamental. 

Amplitude vide-vide et fonctionnelle génératrice 

I1 sera commode de coupler le système quantique à une << source B 
j ( t )  ; j ( t )  est une fonction dont la valeur est fixée à l'avance : elle ne 
dépend pas de la dynamique de la particule. Le lagrangien se 
transforme en : 

L = 2 I r n 4 2 -  V ( q ) + j ( t ) q ( t )  (32) 

et d'après les équations du mouvement, on voit que la particule est 
soumise à une force supplémentaire j ( t ) .  La source j ( t )  sera prise égale 
à zéro en dehors d'un intervalle [ t ,  t ') (figure 6 )  : 

Figure 6. La source j ( t ) .  

Dans cet intervalle l'opérateur d'évolution Ui(t  ) vérifie l'équation 
différentielle : 

où H est le hamiltonien correspondant aux deux premiers termes de 

Soient deux temps T et T' qui vérifient T .e t et T' > t ; l'amplitude 
(32). 
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de probabilité (Q' ,  T' I Q, T ) ]  en présence de la source peut s'écrire : 

(e', T' I Q 7  T ) ,  = dq dq' (Q', T' Iq', t ' )  (q ' ,  t' 19, t )  I ( 9 ,  t I Q ,  T )  . s 
Nous allons maintenant sélectionner l'état fondamental en prenant 

des limites appropriées en T et T'. Remarquons que : 

- iE& - T )  
( 4 ,  tie, T )  = (qJe-IH('p7) le) = C cp,,(q) cp,i(Q>e 

I 

ou cp,,(y) I I { )  c ~ t  la tonction d'ondc dc I'ctat 1 1 ,  cl'Cnciçic 
E,. En prcnani Ici limite T-+ ico on sélectionne l'état fondamental (il 
faut imposer que les trajectoires Q ( T )  et Q ' ( T ' )  ne partent pas a 
l'infini, par exemple que Q ( T )  et Q ' ( T ' )  tendent vers une constante 
lorsque T et T' -+ 00, afin que les cp,(Q) tendent vers une limite finie) : 

( 4 ,  t l Q ,  T )  = <Po(q, t )  (PO*(Q> lim e-lEoT 

T+iw 

avec : 
- iEot 

%(4> t )  = ( 4 ,  tl0) = e cpo(4). 

De même on obtient : 

On définit la fonctionnelle génératrice (des produits-T) Z ( j )  par : 

L'équation (35) donne la << projection sur l'état fondamental n que nous 
recherchions. L'interprétation physique de Z ( j )  est la suivante : si le 
système est dans son état fondamental au temps t ,  Z ( j )  est l'amplitude 
de probabilité pour le trouver dans i'état fondamental au temps 
t' (à un facteur de phase près) : c'est << l'amplitude vide-vide ». 

L'équation (35) montre que Z ( j )  s'écrit aussi sous forme d'un 
élément de matrice : 



336 Intégrales de chemin en mécanique VIII.B.3 

ce qui entraîne immédiatement que Z ( 0 )  = 1. Ceci n’est pas surprenant 
car en l’absence de source le système doit rester dans son état 
fondamental. La démonstration qui a conduit à l’équation (27) reste 
valable en présence d’un potentiel dépendant explicitement du temps 
V ( q ,  t )  : il suffit de remplacer exp(- iH(t’ - t ) )  par l’opérateur 
d’évolution U,(t‘, t )  et d’utiliser la loi de groupe : 

u,(t‘, 4 = U,(C  i n )  U,(t,, t n - d  ... U l h ,  4 .  
On peut donc écrire (q’, t ’ lq ,  t ) ,  sous forme d’une intégrale de 

chemin et à une constante J1’ près: 

avec les conditions aux limites : lim q ( t )  = Cte, lim q( t ’ )  = 

Cte. En général la constante multiplicative N ne joue aucun rôle et 
l’expression (37) suffira toujours en pratique. 

Les valeurs moyennes sur le vide de produits-T s’obtiennent par 
dérivation fonctionnelle par rapport à j ; par exemple : 

T + i m  T‘+- im 

Cette équation se déduit immédiatement de (37) ; il est nécessaire de 
diviser par Z ( 0 )  lorsque Z ( 0 )  # 1. 

B.3. Oscillateur harmonique et conditions aux limites de Feynman 

Nous allons maintenant appliquer les résultats établis précédemment 
au cas de I’oscillateur harmonique ; les propriétés de l’oscillateur 
harmonique sont bien connues en mécanique quantique, et ce n’est pas 
a priori un exercice passionnant que de les retrouver par les méthodes 
fonctionnelles. Le point est bien sûr que la formulation que nous allons 
mettre au point se généralise à la théorie quantique des champs. 

Ecrivons la fonctionnelle génératrice d’un oscillateur harmonique de 
masse m = 1 et de fréquence w ,  couplé à une force extérieure (ou 
source) j ( t ) ,  dont le lagrangien et les équations du mouvement sont : 

(39) 

1 1 L ( t ) =  - 4 2 - - w 2 q Z + j ( t ) q ( t )  
I 2 2  
[ q  + w 2 q  = j ( t ) .  
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La fonctionnelle génératrice Z ( j )  s’écrit : 

Z ( j )  = 9 q  exp ( i  di ( 4’ - i W’ q’ + j ( t )  q(r )) ) (40) 

où les limites T -+ i CO, T‘ -+ - i 00 ainsi que la constante multiplicative 
sont sous-entendues. Rappelons que Z ( j  ) est l’amplitude de probabilité 
vide -+ vide en présence de la source j ,  et elle peut être calculée par des 
techniques de mécanique quantique usuelles: le calcul est fait au 
chapitre IX, paragraphe C .  (Le début de ce paragraphe jusqu’à l’équa- 
tion (IX.73) peut être lu indépendamment du reste du chapitre ; 
l’équation (IX.73) donne I’expression de üj(t‘, t ) . )  Si l’on traite de 
façon cavalière les conditions aux limites, on peut intégrer par parties 
dans (40) : 

L’intégrale sur q dans (41) est une intégrale gaussienne qui s’écrit, à 
un facteur indépendant de j près, sous la forme : 

Z ( j >  = exp (- 2 1J d t d t ’ j ( t ) D F ( t  - t ’ ) j ( t ‘ )  ) (42) 

où DF est une fonction de Green (*) de l’oscillateur harmonique : 

En effet le terme en q2 dans (41) s’écrit : 

et formellement D ,  est l’inverse de l’opérateur entre crochets : 

On s’aperçoit immédiatement qu’il faut traiter soigneusement les 
conditions aux limites, car (43) ne définit pas la fonction D, de façon 
unique : on peut en effet ajouter une combinaison linéaire arbitraire 

(*) En principe on ne devrait pas avoir de facteur (- i )  dans le membre de droite de 
(43) si l’on voulait définir une fonction de Green au sens exact du terme ; D, est une 
fonction de Green à un facteur i près. 
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des solutions exp( t  i o t )  de l'équation homogène. On aboutit à la 
même conclusion dans l'espace de Fourier : prenant la transformée de 
Fourier de (43), et appelant ko la variable conjuguée de t ,  on obtient : 

D,(k,)  a des pôles à ko = +- w ,  et nous avons besoin d'une prescription 
pour traiter ces pôles. Cette prescription, qui correspond à traiter 
correctement les conditions aux limites, sera déduite du calcul explicite 
de Z( j ) .  On pourrait utiliser le résultat (IX.73), mais il est intéressant 
de montrer que l'on peut tout faire avec l'intégrale de chemin, et qu'il 
n'est pas nécessaire de passer par le €ormalisme opératoriel. 

Le calcul de Z ( j )  est proposé à l'exercice (3), où suffisamment 
d'indications sont données pour que ce calcul ne présente pas de 
difficulté. Avec le changement de notations t 4 ti, t -+ t T = t - t i ,  
on obtient d'abord F ( q f ,  tf ; qi, ti) = ( q f  t f l q i  t i ) ,  : 

I 

X 
iq f +- sin [ w  ( t r  - t ) ]  j ( t )  dt + ___ 

sin wT 

X 
i 

w sin wT x Jt:f sin [O ( t  - ti)] j ( t )  dt - 

x /J d t d t ' j ( t ) O ( t - t ' ) s i n  [w(tf- t ) ]s in  [ w ( t ' - l i ) ] j ( t r ) .  (45) 

Pour obtenir Z ( j )  il faut utiliser (35) avec : 

Les intégrales sur qi et q f  sont des intégrales gaussiennes et l'on trouve 
pour Z ( j )  (cf. exercice 3) : 
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- ~ + i s  

X 

On vérifie immédiatement que DF( t  - t ' )  obéit bien à l'équation 
(43). Le calcul complet a permis de fixer la fonction de Green 
D ,  de façon non ambiguë. Etablissons maintenant un résultat fonda- 
mental pour la suite : D ,  ( t  ) s'obtient à partir de (44) par la prescription 
de Feynman w -, w - i& ( E  -+ O+ ), la convention pour les transfor- 
mées de Fourier étant fixée par (49) : 

@ 

CF - 

- ik, t 

Cette prescription place les pôles à ko = - w + i& et ko = w - is. 
Calculons D F ( t )  par la méthode des résidus: pour t > O  on peut 
refermer le contour par un grand demi-cercle dans le demi-plan 
inférieur et pour t < O  par un grand demi-cercle dans le demi-plan 
supérieur (figure 7) : on retrouve bien l'expression (48). 

Dans le cas de l'oscillateur harmonique, on pourra remplacer 
avantageusement l'équation (40) pour Z ( j )  par : 

z ( j ) = . N f D q e x p ( i f w  - 0 0  ( ; q 2 - ( w 2 - i & ) q 2 + j q )  d f ) .  (50) 

Re k ,  

Figure 7. Le contour de Feynman. 



340 Intégrales de chemin en mécanique VIII.C.1 

Remarquons aussi que d’après (38) et (42) on démontre : 

(01 T ( Q ( t )  &( t ’ ) ) Io )  = D F ( ~  - t ’ )  

relation que l’on peut aussi établir par un calcul direct (cf. exercice 4) : 
ceci nous conduira à identifier fonctions de Green et valeurs moyennes 
sur le vide de produits-T d’opérateurs position. 

Le lecteur qui aura mené jusqu’au bout les calculs de l’exercice (3) 
aura constaté que ceux-ci, sans présenter de difficulté, sont néanmoins 
assez longs. Ceci suggère que les conditions aux limites ( 4 ,  t )  et 
( q ‘ ,  t ’ )  de l’intégrale de chemin (27) ne sont pas les mieux adaptées au 
problème de l’oscillateur harmonique. La forme la mieux adaptée est 
de type hamiltonien, avec des conditions aux limites sur les variables 
a ( t )  et a * ( t ) ,  analogues classiques des opérateurs de création et 
d’annihilation. Cependant, même avec ces variables, il est nécessaire de 
disposer d’une préparation technique importante (espace de Barg- 
mann), et je renvoie à l’article de Fadeev ou au livre d’Itzykson-Zuber 
pour cet aspect des intégrales de chemin ( 2). 

C. PROLONGEMENT EUCLIDIEN ET COMMENTAIRES 

C.l .  Fonction de partition quantique 

Les limites T -+ im,  T’ -+ - ico peuvent paraître a priori assez peu 
naturelles. On obtient des limites beaucoup plus naturelles en travaillant 
avec des temps imaginaires t = - i7 et l’opérateur d’évolution 
exp(- HT ). L‘élément de matrice : 

(4’ Ie-ff(r’-T)  1s) = F ( g ’ ,  - i7’ ; q, - i7) 

est le prolongement analytique pour des valeurs t = - ir, t‘ = 
- i7’ de l’élément de matrice (22). Le raisonnement conduisant à 
l’équation (27) peut être suivi pas à pas et permet d’écrire l’élément de 
matrice sous forme d‘une intégrale de chemin: 

( q ’ l c - f f ( T ‘ - T )  14) = S g q e x p ( -  S: ( SrnQ2+V(q))  d7”)  . (51) 

Les signes dans l’exponentielle s’expliquent ainsi : le prolongement 
analytique fait passer de E à - i&‘ : 

- i ~ V ( q ) - + -  & ’ V ( g )  
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L‘expression (51) fait apparaître le << lagrangien euclidien H (la motiva- 
tion pour cette terminologie apparaîtra au chapitre X, paragra- 
phe C.3) : 

(remarquez le signe + devant V ( q ) ) ,  dont l’intégrale 
<< l’action euclidienne >) SE. 

L’élément de matrice (51) est un élément de matrice 

(52) 

sur 7’‘ est 

densité non 
normalisée p (q’, q ; T ’  - T ). Cette matrice densité obéit à une équation 
de diffusion, qui est l’équation de Schrodinger pour des valeurs 
imaginaires du temps (exercice 2) .  L‘intégration sur q et q f  avec 
q = q’ donne la fonction de partition de la particule quantique à la 
température T(P = l / k T )  

Z ( p )  = Tr = J d4(41e-P”14> = 

= J 4 ( 0 ) = 4 ( P )  
9 q e x p ( -  loP ( $mQ2+V(q) )  dr”) . (53) 

Dans la forme fonctionnelle, on doit intégrer sur toutes les trajectoi- 
res vérifiant les conditions aux limites périodiques : 

4(0 )  = 4 ( B )  * 

Les moyennes thermiques de << produits-Tn (avec ordre en T )  sont 
définies par : 

Ces produits-T obéissent à la condition de périodicité (évidente sur la 
forme fonctionnelle) : 

( T ( Q ( P ) Q ( ~ Z ) ) ) ~  = ( T ( Q ( O ) Q ( T ~ ) ) ) ~  (55)  

qu’il est aussi facile de démontrer en utilisant la cyclicité de la trace. Ce 
sont les prolongements analytiques de produits-T à température finie 
(exercice (4)). 

Pour définir une fonctionnelle génératrice Z, ( j  ) de valeurs moyennes 
sur le vide de produits-T, il faut à nouveau projeter sur l’état 
fondamental. Les limites T’ -+ CO, T -+ - CO sélectionnent cet état et on 
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obtient pour Z , ( j )  : 

les conditions aux limites étant 

lim q ( r )  = Cte, lim q ( 7 ' )  = Cte . 
7 4 - O D  T I - t O D  

Z E ( j )  est appelée fonctionnelle génératrice euclidienne ; remarquez 
que l'expression (56) est logique : pour projeter sur l'état fondamental, 
il faut faire tendre la température vers zéro, c'est-à-dire p vers l'infini. 
En dérivant par rapport à j ,  on obtient les prolongements analytiques 
de valeurs moyennes sur le vide de produits-T ordinaires (cf. (38)) : 

La figure 8 permet de mieux visualiser les conditions aux limites dans 
(37) et (56). 

Irn t 

Q 

+ 
Re t 

Figure 8. 
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C.2. Analogue classique 

Suivant le schéma exposé dans l’introduction, nous allons maintenant 
trouver un problème de mécanique statistique classique qui soit 
l’analogue du problème quantique. Effectuons le changement de 
notations : 

L L t + x ;  r + - - ;  r ’ + -  
2 2 

et considérons une quantité q (x ) (un << champ D) aléatoire 
L L  L 

l’intervalle [ - - 1, avec des conditions aux limites q (- 3 2 ’ 2  

Figure 9. Deux configurations du champ q ( x ) .  

On suppose que chaque configuration q(x) du champ est affectée du 
poids statistique : 

La fonction de partition (= somme sur toutes les configurations du 
champ q ( x ) )  sera donnée par une formule analogue à (53) : 

où la mesure d’intégration 9 q  est définie par une limite analogue à 
celle que nous venons de voir. Le changement de notations q ( x )  + 
<p (x) permet bien évidemment de reconnaître dans (58) la fonction de 
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partition du modèle de Ginzburg-Landau à 1 dimension, avec une 
interaction V (9 ). Les corrélations (q(x,)  q(x,)) en i'absence de 
source j seront données par dérivation fonctionnelle de (41) : 

et seront reliées aux valeurs moyennes sur le vide de produits-T du 
problème quantique correspondant si l'on fait tendre L vers l'infini. On 
pourra faire à nouveau la correspondance entre énergie libre par unité 
de longueur et énergie de l'état fondamental, inverse de la longueur de 
corrélation et saut d'énergie AE. 

C.3. Oscillateur harmonique euclidien 

Le prolongement euclidien de la fonctionnelle génératrice (50) de 
I'oscillateur harmonique est : 

Z,(j) = JY x 

L'intégrale sur q dans (60) est une intégrale gaussienne ; pour la 
calculer, nous avons besoin de l'inverse  DE(^) de l'opérateur : 

+ Co2 
d2 

dT2 
-- 

c'est-à-dire de la fonction de Green : 

Naturellement D E ( 7 )  n'est pas autre chose que la fonction de corréla- 
tion à deux points du modèle gaussien à 1 dimension. La solution de 
(61) est de la forme : 

et le résultat de l'intégrale gaussienne (60) est : 

z( j )  = N ' e x p  ( 
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Cependant si nous voulons que 

solutions de l'équation homogène dans (62), et il reste : 

lim q ( 7 )  = Cte, il faut éliminer les 
T - t f a J  

Dans l'espace de Fourier, DE( u ) ,  où u est la variable conjuguée de T ,  

vérifie : 

( v 2 +  J ) D E ( U )  = 1 (65) 

et la transformée de Fourier inverse donne bien (64) ; lu fonction 
DE(7) est le prolongement euclidien de D F ( t )  ; en effet d'après (48) on 
vérifie : 

Notons enfin que d'après (53) et (63) : 

ce que l'on peut vérifier par un calcul direct (exercice4). 
Tous les résultats obtenus pour l'oscillateur harmonique vont se 

généraliser à la théorie quantique des champs (chapitres IX et X). La 
seule complication est qu'au lieu d'avoir une seule fréquence O, on 
devra intégrer sur des fréquences w ( k )  dépendant d'un moment k. 

EXERCICES 

1) (a) La fonction de partition du modèle d'Ising à une dimension est donnée 
(cf. I-B.2) par:  

Z ,  = eNA 2N[(ch B ) N  + (sh B ) N ]  

pour un hamiltonicn : 

N - 1  

I f = -  ( A + B S i S i + l )  
i = O  

et des conditions aux limites cycliques. La fonction de corrélation vaut (pour 

(S,S,) = ( t h B ) l r - m I  . 

N - r w ) :  
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En utilisant ces résultats, vérifiez la correspondance entre l’énergie libre par 
spin et l’énergie de l’état fondamental. Que se passe-t-il si l’on divise l’intervalle 
(O, T )  en 2 N intervalles au lieu de N? 

(b) Examiner le cas où l’on divise [O, T ]  en T / E  intervalles, E -0. 

(c) Au lieu du hamiltonien (1) on prend : 

H = - K [ v l  cos û + u j s in  e ] .  

Comment les résultats du paragraphe A sont-ils modifiés ? 

2) (a) Examiner la convergence de l’intégrale : 

et montrer que le choix de la racine carrée dans (25) est bien correct 
(Suggestion : remplacer E par e - iq et examiner la limite 77 .+ O). 

(b) Montrer que la fonction d’onde +(q’,  t ’ )  au temps t‘ peut s’écrire en 
fonction de celle au temps t à l’aide de : 

Calculer F ( q ’ ,  t’ ; q ,  t )  lorsque le potentiel V ( q )  = O .  

(c) Montrer que F ( q ’ ,  t ‘  ; 4, t )  vérifie l’équation de Schrodinger : 

[i $ - ~ ( 4 ’ )  ~ ( q ‘ ,  t ‘ ,  4 ,  t ) = O 3 
avec la condition aux limites : 

F ( q ’ ,  t ; 4 > t ) = 6 (q’ - 4 1 . 

(d) Montrer que l’élément de matrice densité (51) vérifie l’équation de 
diffusion : 

avec les conditions aux limites : 

P ( 4 ‘ ,  ; 4 ,  7 )  = 6 (4’ - 4 ) .  

(3) On se propose de démontrer les équations (45) et (48). 

(a) Soit p ( t )  une solution de l’équation du mouvement de l’oscillateur forcé : 

4 + W ’ Q  = j ( t )  (1) 
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et qo(t) une solution de l'oscillateur libre. I1 sera commode d'écrire pour 
f i  s t < tf ( T  = tf - t i )  : 

q(t)  = qo(t) + jf: G(t ,  t ' ) j ( t ' ) d t '  (2) 

où G ( t ,  t ' )  est une fonction de Green de l'oscillateur harmonique vérifiant : 

Montrer que l'on peut écrire : 

~ ( t ,  t ' )  = e ( t  - t f )  ~ ( t )  ~ ( t ' )  + e ( t r  - t )  ~ ( t ' )  ~ ( t )  

où u et u sont solutions de l'équation homogène : 

avec : 

u ( t )  = A sin w ( t ,  - t )  
~ ( t )  = A'sin w ( t  - t i )  

A A '  = - [ W  sin (UT)]-'. 

Pourquoi les points U T  = 5 T, -+ 2 n, etc. sont-ils singuliers ? 

(b) Soient les conditions aux limites : 

q ( t i )  = 4 ,  ; q ( t f )  = q j  

et q(t)  une solution de i'équation du mouvement (1). On écrit: q ( t )  = 
4( t )  + h ( t )  avec h ( t f )  = h ( t i )  = O. Montrer que l'action S ( q ,  j )  s'écrit : 

S ( q ,  j ) = S(q,  j )  + jty dt i (h2 - w h2)  

le deuxième terme étant indépendant de j .  

(c) Calcul de S(q,  j )  : on remarque que qoi = q,, qof = q f  et que : 

En déduire S ( q , ,  qi ; j ) ,  c'est-à-dire l'exposant dans (45) (à un facteur i près). 

(d) Effectuer l'intégrale sur qi et q, pour obtenir Z ( j )  (a un facteur constant 
près), en utilisant la fonction d'onde (46) de l'état fondamental (l'intégrale est 
une intégrale gaussienne double, dont la matrice A est : 

- i o  eimT 
A = -  sin w T  ( -  i 

et obtenir l'exposant dans (48). 
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(e) Reste à établir le coefficient devant l'exponentielle, c'est-à-dire en 
particulier le facteur ( w / 2  i7r sin w T)'" dans (45). Pour cela on discrétise 
l'intégrale : 

et on remarque que si D ,  est une matrice n x n de la forme : 

" Y  

1 a O O ..- 
a 1 a O a.- 

O a 1 a 0 -  

son déterminant A, vérifie : 

2 A, = An-'  - a  An-2 

(f) En réalité le calcul n'est valable que si 1 oTI < T. Pour calculer le 
préfacteur dans le cas général, on remarque que : 

dq" F ( q '  t' ; q",  t " )  F ( q " ,  t" ; 4, t )  = F ( q ' ,  t' ; q ,  t )  s 
7r 7r et on prend t = O, t" = - , t '  = - , j = O. En  déduire le préfacteur : 

2 w  w 

où Int (x) est la partie entière de x .  

-, 
4) (a) Montrer par un calcul direct dans le cas de l'oscillateur harmonique 

que : 

On utilisera l'expression 
d'annihilation : 

et on montrera que : 

a ( t i  

de Q en fonction des opérateurs de création et 

Le calcul de la valeur moyenne sur l'état fondamental est alors trivial. 

(b) Même question pour DE(7 - T'). 
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(c) Calculer ( T  = it) : 

D,(t - t ' )  = (Tr Tr (e-@" T ( Q ( t )  Q ( t ' ) ) )  

DB(7 - 7') = (Tr Tr (e-," T ( Q ( T )  Q ( T ' ) ) ) .  

Montrer la périodicité de D ,  : 

Ces résultats sont faciles à généraliser à une théorie quantique des champs à 
température finie (3). 
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CHAPITRE IX 

Quantification du champ de 
Klein-Gordon 

La théorie quantique des champs est née de la nécessité de décrire 
des processus où des particules sont créées ou détruites (annihilées). Un 
exemple élémentaire est la transition radiative d’un atome dans un état 
excité A *, qui revient à son état fondamental A en émettant un photon 
( Y ) :  

A * - + A + y .  

Le photon est créé au moment de la transition. 

(p), un électron ( e - )  et un antineutrino ( v )  est un autre exemple : 
La désintégration p du neutron, où un neutron (n) donne un proton 

n + p + e - + ü .  

Dans ce cas également les particules finales sont créées au moment de 
la désintégration : un argument simple, fondé sur le principe d’incerti- 
tude, permet par exemple de montrer que l’électron émis dans la 
désintégration /3 du neutron ne peut pas préexister dans celui-ci. Les 
réactions où des particules sont créées ou détruites sont la règle en 
physique des particules élémentaires : par exemple un méson n-’ peut 
être créé dans la collision de deux protons : 

p + p + p  + p  + T O .  

Les réactions où des particules sont créées ou détruites sont 
fondamentalement différentes des réactions chimiques, qui correspon- 
dent à des réarrangements d’atomes dans les molécules, et des réactions 
nucléaires, où des nucléons se réarrangent en donnant des noyaux 
différents : dans les deux cas il y a réarrangement, et non création ou 
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destruction. Toutefois la ligne de partage n’est pas aussi évidente, le 
processus de réarrangement pouvant être complexe, avec destruction 
ou création de particules - virtuelles - dans une étape intermédiaire. 
L’équation de Schrodinger, qui suppose le nombre de particules fixé, 
est incapable de décrire des processus de création et de destruction, 
mais dès les années 30, les fondateurs de la mécanique quantique ont 
compris comment la quantification d’un champ classique (appelée 
improprement pour des raisons historiques << seconde quantification >>) 
pouvait décrire de tels processus. Considérons par exemple un champ 
électromagnétique dans une cavité ; ce champ peut être décomposé en 
modes normaux (propres), chaque mode étant en fait un oscillateur 
harmonique de fréquence wk. La quantification du champ, qui consiste 
à imposer des relations de commutation entre le champ et son moment 
conjugué (cf. équation 15), permet de montrer que chacun de ces 
oscillateurs harmoniques devient un oscillateur quantifié, dont les 
niveaux d’énergie sont - h W k ,  hwk, ..., ( n  + ) h W k ,  ... ; l’état 

d’énergie ( n  + S ) hwk peut être interprété comme un état à n photons 

d’énergie hw k.  Ainsi la quantification d’un champ classique permet-elle 
de décrire création et destruction des particules, les opérateurs de 
création et d’annihilation étant simplement les opérateurs bien connus 
a t  et a de l’oscillateur harmonique quantique. 

La quantification canonique consiste à postuler des relations de 
commutation à temps égaux entre le champ et son moment conjugué. 
En dehors des travaux initiaux de Feynman, cette méthode a été 
pratiquement la seule sur le marché jusqu’au début des années 70. 
Cependant cette méthode n’est pas sans problèmes (même si l’on omet 
les questions de renormalisation) : 

(i) elle privilégie un référentiel particulier et l’invariance de Lorentz 
demande à être vérifiée. Dans certains cas (cf. (ii) ci-dessous) elle 
conduit à des termes explicitement non covariants dans une étape 
intermédiaire ; 

(ii) elle devient très compliquée quand l’interaction dépend des 
dérivées du champ : la définition du moment conjugué dépend alors de 
l’interaction ; 

1 3 1 
2 

(iii) elle est mal adaptée au cas des théories de jauge abéliennes 
(électromagnétisme) : il faut introduire une métrique indéfinie etc., et 
elle devient complètement inextricable dans le cas des théories de jauge 
non abéliennes. 

A cause de ces difficultés (et de l’intérêt croissant pour les théories de 
jauge), une autre méthode de quantification, qui utilise les intégrales de 
chemin, est devenue très populaire. Cette méthode consiste à représen- 
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ter une amplitude de probabilité a pour passer d‘une configuration 
initiale du champ à une configuration finale par une intégrale de 
chemin, en généralisant ce qui a été expliqué au chapitre VIII, 
paragraphe B ; symboliquement : 

où 9 est le champ et S l’action. Cette méthode a l’avantage d’être 
explicitement covariante et ne pose aucun problème particulier dans le 
cas d’interactions dérivatives. Elle est incomparablement plus simple 
que la quantification canonique dans le cas des théories de jauge, et elle 
sera utilisée au chapitre XI pour l’électrodynamique et au chapitre XII1 
pour les théories de jauge non abéliennes. 

Cependant cette méthode n’échappe évidemment pas au problème 
des divergences ultraviolettes, et l’expression de a doit être régularisée 
en dimension4. De plus il n’est pas évident que la théorie quantique 
définie par l’intégrale de chemin soit unitaire, ou, en d’autres termes, 
conserve la probabilité. Cette propriété doit être vérifiée explicitement. 

Quoi qu’il en soit, la quantification canonique et la quantification par 
les intégrales de chemin sont, autant que nous le sachions à l’heure 
actuelle, équivalentes. I1 sera donc possible de choisir la méthode la 
mieux adaptée à chaque cas particulier. 

L‘expérience déjà acquise dans le cas des phénomènes critiques 
permettrait d’éviter complètement le passage par la quantification 
canonique. Le lecteur déjà familier avec ce formalisme peut d’ailleurs 
sauter directement au chapitre suivant, paragraphe B. Cependant il m’a 
paru difficile de passer entièrement sous silence la quantification 
canonique pour les raisons suivantes : 
- le concept de particule est très peu intuitif dans le formalisme des 

intégrales de chemin, alors qu’un opérateur de création est facile à 
visualiser, 
- une bonne partie de la littérature, et en tout cas pratiquement 

toute la littérature d‘avant 1970 utilise ce formalisme, 
- le cas des fermions me semble plus facile à comprendre si on 

l’aborde d’abord par la quantification canonique. 
Le plan du chapitre est le suivant : la quantification d’un champ sera 

introduite au paragraphe A sur l’exemple du champ des vibrations dans 
un solide, et on montrera comment une particule (dans ce cas le 
phonon) est associée à un champ quantifié. Le paragraphe B est 
consacré à la quantification du champ de Klein-Gordon, qui décrit des 
particules de spin zéro. Le couplage du champ de Klein-Gordon avec 
une source classique (paragraphe C ) ,  permettra de démontrer le 
théorème de Wick. Grâce à ce théorème, on pourra établir au chapitre 
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suivant l’équivalence des développements perturbatifs obtenus en 
quantification canonique et à l’aide des intégrales fonctionnelles. 

Un mot enfin sur le système d’unités : j’utiliserai systématiquement 
(sauf avis contraire) un système d’unités tel que A (constante de 
Planck/2 T) = c (vitesse de la lumière) = 1. Dans ce système masses, 
moments et énergies ont même dimension ; longueurs et temps ont 
pour dimension l’inverse d’une masse. 

A. QUANTIFICATION DES VIBRATIONS ÉLASTIQUES 

A.1. Système à Ndegrés de liberté : lagrangien, hamiltonien, quantifca- 
tion 

Commençons par l’étude d’un système mécanique à N degrés de 
liberté. En mécanique classique, un tel système est décrit par N 
coordonnées généralisées (ou variables dynamiques) <pi 
(i = O, 1, ..., N - 1 ), N vitesses généralisées + i  = d<pi/dt, et un 
lagrangien L dépendant de <pi,  Cpi et éventuellement du temps t. Les 
équations du mouvement sont obtenues en minimisant l’action S 

avec les conditions aux limites : 

S < p ; ( t 1 )  = S < p i ( t Z )  = o .  (2) 

La condition 6s = O ainsi que les conditions aux limites (2) donnent les 
équations du mouvement, ou équations d’Euler-Lagrange : 

Rappelons que les équations du mouvement (3) sont inchangées si 
l’on ajoute au lagrangien une dérivée totale - f (  v i ,  t ) des coordonnées 

et du temps. 
Appliquons immédiatement ce formalisme à un modèle unidimen- 

sionnel des vibrations élastiques dans un solide : les atomes sont 
représentés par des masses ponctuelles rn, disposées sur une ligne, et 
leur interaction par des ressorts identiques reliant ces atomes ; 

d 
dt 
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< p i  est le déplacement de l’atome no i par rapport à sa position 
d’équilibre (figure 1) : 

I ‘ P i - l  

7 
I ‘Pi ‘ P i + l ,  I 

wi I .c-t 
I 

I = position d’équilibre 

I 
I I - _  I 

i - 1  a ‘ i  a i l+  1 

Figure 1. Une chaîne de ressorts. 

Comme le lagrangien est égal à l’énergie cinétique moins l’énergie 
potentielle, on obtient : 

où K est la raideur des ressorts ; comme d’habitude, il sera commode 
d‘utiliser des conditions aux limites périodiques : 

L‘équation du mouvement (3) devient 

il est instructif de retrouver (5) par un raisonnement direct, en écrivant 
la force sur l’atome numéro i. 

Le hamiltonien H s’obtient à partir du lagrangien par une transforma- 
tion de Legendre ; on définit les moments conjugués p i  par : 

et : 

Dans le cas du lagrangien (4) l’équation (7) devient : 

Les règles de quantification d’un système mécanique à N degrés de 
liberté sont classiques : les coordonnées < p i  et les moments p i  deviennent 
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des opérateurs hennitiques agissant dans un espace de Hilbert, l’espace 
des états, et obéissant aux relations de commutation canoniques 
(RCC) : 

(9) [<pz(t), c ~ j ( t ) l  = I P i ( t ) , ~ j ( t ) l  = O  i [ < p i ( t ) ,  ~ j ( t ) l  isi, * 

Les opérateurs <pz et p i  ont été écrits dans la représentation de 
Heisenbefg (l), et les RCC (9) sont écrites à temps égaux. Remarquez 
aussi l’utilisation d’un système d’unités où h = 1. 

I1 n’est pas difficile de diagonaliser le hamiltonien (8) après quantifi- 
cation ; cependant je préfère passer directement à la formulation 
continue, en renvoyant cette diagonalisation à l’exercice 1. 

A.2. Quantification de la ligne continue 

Passons à la limite continue pour le système mécanique décrit par le 
lagrangien (4), en suivant une stratégie déjà utilisée dans la première 
partie. Soit a la distance entre atomes à l’équilibre ; on se propose de 
faire tendre a vers zéro, en maintenant fixe la longueur = N a  du 
système : le nombre N de degrés de liberté devient donc infini. Dans 
cette limite : 

m 
- -+ p = masse par unité de longueur 
a 

Ka + Y = module d’Young . 
En effet l’allongement relatif d’un ressort est donné par : 

‘f’i+i-Pi F F - _ -  - -- 
a Ka Y 

d’après les définitions de la raideur d’un ressort et du module d’Young. 
Récrivons (4) sous la forme : 

qui fait apparaître une somme de Riemann, immédiatement transfor- 
mée en intégrale : 
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L‘intégrand 2’ dans (10) est lu densité de lugrungien. Le lagrangien (10) 
décrit les vibrations longitudinales dans un milieu continu ou le long 
d’une corde vibrante. I1 est important de remarquer que x n’est pas une 
variable dynamique (coordonnée généralisée) mais l’indice d’une 
coordonnée généralisée 

<pi(t) + <p ( t 7  X )  

i + x  dans la formulation continue ; q ( t ,  x )  est appelé chump des 
déplacements (longitudinaux) dans le milieu (ou la corde), et c’est un 
exemple de champ classique. C’est le déplacement par rapport à sa 
position d’équilibre du point étiqueté x sur la corde. 

La densité de lagrangien 2’ dans (10) ne dépend ni de <p, ni de 
t ,  mais en général 23’ sera aussi fonction de ces deux quantités. Les 
équations du mouvement s’obtiennent à l’aide du principe de moindre 
action 6s = O avec les conditions aux limites : 

6<p (ti, x )  = 6v ( t 2 ,  x >  = 0 

6 < p ( t , 0 )  = 6 p ( t , E )  = o .  
On admettra en général que x varie dans l’intervalle 1- CO, + CO [, et 
que le champ s’annule à l’infini, de telle sorte que la deuxième 
condition est automatique. On peut également utiliser des conditions 
aux limites périodiques. 

Dans le cas général (toujours à 1 dimension d’espace) le principe de 
moindre action permet d’obtenir les équations du mouvement sous la 
forme : 

ce qui donne, dans le cas particulier du lagrangien (lo), l’équation 
d‘onde classique 

où c, = JG est la vitesse du son. On vérifie que (12) est bien la 
limite continue de (5 ) .  

Pour déterminer le hamiltonien, on remarque que : 

aL aLi a 2  p .  = - = a ---,a - 
’ a + i  a(oi a(o 

et que par conséquent : 
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Dans l'équation (13), a S / a < p  est le moment conjugué du champ 
9 :  

Nous sommes maintenant en mesure d'écrire les RCC en formulation 
continue en suivant l'équation (9) et en remarquant que : 

1 
,+O' 
lim - S i j  = 6 (x - x r  ) 

(15) [Cp(t,x); v(t ,x ' ) I  = [ r ( t , x ) ,  r ( t , x ' ) ]  = 0 

I1 faut bien noter que les RCC sont écrites à temps égaux pour les 
opérateurs intervenant dans les commutateurs. Les RCC à temps égaux 
sont indépendantes de la dynamique, mais par exemple le commuta- 
teur : 

CCp ( t 7  x), q ( t r ,  x r ) l  : t # t' 

en dépend explicitement ; il ne peut d'ailleurs être calculé que dans des 
cas simples. 

A.3. Modes normaux 

Le terme en (ap/ax)2 du lagrangien (lo), qui est une limite 
d'interactions entre plus proches voisins , s'écrit simplement en fonction 
des modes normaux. Ecrivons donc une décomposition de Fourier du 
champ (pour le moment classique) : 

où k prend des valeurs discrètes : k = 2 r p / E ,  p = O, k 1, k 2, ... . 
L'équation d'onde (12) permet d'obtenir pour le coefficient de Fourier 
< P k ( t )  l'équation différentielle : 

Comme prévu, les modes normaux obéissent à des équations différen- 
tielles découplées. La solution de (17) est une combinaison linéaire 
d'exponentielles eiokf et eëiwkf, avec wk = c , ~  kl : 

(18) 
- iok t 

p k ( t )  = Ak e + ATk eiok' . 
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La réalité de cp ( t ,  x )  : 

c p ( t 7 - x )  = c p * ( t , x )  

impose en effet la condition : 

cpk(t) = 'P'k(t) 

d'où la forme (18) de Pk(t). Les décompositions de Fourier du champ 
et de son moment conjugué se mettent finalement sous la forme : 

) .  (19.b) iok f - ikx + iwkA; e 

I1 est immédiat d'inverser ces décompositions de Fourier pour obtenir 
Ak et A$ : 

Les décompositions (19) et (20) sont pour le moment celles d'un 
champ classique : cp ( t ,  x) est un nombre réel, le champ des déplace- 
ments au point x. 

La quantification des vibrations se fait à l'aide des RCC (15) : 
cp et ' 7 ~  deviennent des opérateurs, et il en est de même pour 
A, et A$ ; plus précisément, l'opérateur dans (20.b) est hermitique 
conjugué de celui dans (20.a) : A; -+ A l .  Les RCC (15) permettent de 
calculer facilement les relations de commutation des A, ; comme ces 
opérateurs sont indépendants du temps, le calcul se simplifie si l'on 
pose t = O dans (20). On trouve (exercice 2) : 

[Ak, Akl] = 0 ; [A,, All] = (2 wk)-' û k k f  . 
I1 est commode de faire un changement d'échelle sur A,: 
ak = JZk Ak, ce qui donne : 
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tandis que la décomposition de Fourier du champ devient 

A.4. Phonons, espace de Fock 

L'expression du hamiltonien va permettre de donner une interpréta- 
tion physique fondamentale des opérateurs ak et a l .  L'expression 
classique de H est (avec p = 1) : 

On obtient l'opérateur H en remplaçant cp et n par les opérateurs 
correspondants, et son expression en fonction des modes normaux en 
remplaçant cp et n = @ par leur décomposition de Fourier. Le résultat 
étant indépendant du temps, on peut faire le calcul à t = O ; il est 
commode d'utiliser l'identité de Parseval : 

et on obtient (exercice 3 - on rétablit h jusqu'à la fin du paragraphe) : 

La décomposition en modes normaux montre que H est une somme 
de hamiltoniens d'oscillateurs harmoniques indépendants de Péquence 

Soit O k  la fréquence d'un mode normal (ou fréquence propre). 
Chaque mode de vibration est quantifié comme un oscillateur harmoni- 
que indépendant. Rappelons que les vecteurs propres du hamiltonien 
de l'oscillateur harmonique simple sont de la forme (2) : 

* k. 

où 10) est le vecteur propre normalisé obéissant à a l 0 )  = O. Les 
opérateurs a et at sont appelés respectivement opérateurs d'annihilation 
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et de création (ils font passer de In) à In - 1) et de In) à 
( n  + 1) respectivement), et 10) est appelé l‘état du vide. Pour 
construire les états propres de H dans (24), il suffit de prendre le 
produit tensoriel des états propres des hamiltoniens correspondant à 
chacun des modes normaux ; par exemple l’état du vide sera : 

10) = lek, o k ,  ... Ok, ...) 

et il sera annihilé par tous les ak, : 

ak , (o )  = 0 vki . (25) 

Un état propre de H sera caractérisé par les nombres d’occupation 
nk, a . .  nk, . a .  : 

avec : 

L’opérateur al appliqué sur un état propre de H d’énergie E donne 
un état d’énergie E + h o  k : on peut interpréter ce résultat en déclarant 
que l’opérateur a l  crée une particule d’énergie h o , ,  appelée phonon, 
ou quantum de vibration sonore. L‘état I nk, . . . nki . . . ) contient 
nk, phonons d’énergie h o k l ,  ..., nk, phonons d’énergie hwk, ... . 

Nous voyons que la quantification d’un champ classique, le champ 
des vibrations longitudinales le long d’une corde, nous a conduits 
naturellement à la possibilité de décrire la création ou l’annihilation de 
particules. Cette interprétation est possible parce que l’énergie d’une 
onde quantifiée de fréquence wk ne peut pas prendre toutes les valeurs 
possibles, contrairement au cas classique, mais seulement les valeurs 

z h w k ,  1 5hmk, 3 a . .  ( n + - ; ) h o k a  a . .  

Ce que nous venons de faire dans le cas des vibrations sonores 
pourrait être répété (avec quelques complications) dans le cas du champ 
électromagnétique. Par exemple la quantification des modes normaux 
de vibration du champ électromagnétique dans une cavité conduit au 
concept de photon : l’énergie du champ électromagnétique associée à 
une vibration de fréquence wk ne peut prendre que les valeurs 
1 3 

hok, ..., correspondant à un état à O, 1, ..., 
n,  ... photons. 

h o k ,  h o k ,  ..., 
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Le lecteur attentif aura remarqué que j’ai passé allègrement sur un 
problème sérieux : l’énergie de tous les états définis en (27) est infinie. 
Par exemple dans le cas du vide : 

puisque w = ‘ 2  rr k / L ,  k = 1, 2, . . . . Cependant, à moins de détruire le 
cristal ou la corde vibrante, il est impossible d’observer autre chose que 
des différences d’énergie par rapport à l’état fondamental I O ) .  On 
pourra prendre par convention l’énergie du vide égale à O, ce qui 
revient à redéfinir H : 

Afin que l’énergie du vide soit automatiquement nulle, on conviendra 
d’écrire tous les produits d’opérateurs sous forme normale, en mettant à 
gauche les opérateurs de création et à droite les opérateurs d’annihila- 
tion et en négligeant leur commutateur. Le produit normal de AB est 
noté : A B  : et on aura par exemple : 

La construction précédente des états propres de H nous a permis de 
trouver un espace de Hilbert et une forme explicite des opérateurs 
ak et a l  : en termes mathématiques, nous avons trouvé une représenta- 
tion des RCC (21). En mécanique quantique ordinaire, la représenta- 
tion usuelle des RCC [ Q ,  P l  = i est la suivante : l’espace de Hilbert est 
l’espace L2 des fonctions de carré sommable dans l’intervalle 
1- CO, + CO [ et : 

. a  
ax Q + x ;  P 4 - 1  - .  

Un théorème de von Neumann affirme que cette représentation est 
unique à une équivalence unitaire près. Le même théorème est valable 
pour un système à un nombre fini de degrés de liberté. Cependant 
lorsque le nombre de degrés de liberté est infini, il existe d’autres 
représentations des RCC que celle que nous venons de construire. 
Celle-ci est appelée représentation des RCC dans l’espace de Fock et elle 
est caractérisée par l’existence d’un vide aklO) = O ,  avec une condition 
supplémentaire : le vide doit être un vecteur cyclique (cf. Streater- 
Wightman). Les autres représentations, non unitairement équivalentes 
à celle de Fock, semblent avoir peu d’utilité en physique. 



IX.B.1 Quantification du champ de Klein-Gordon 363 

B. QUANTIFICATION DU CHAMP DE KLEIN-GORDON 

B. 1. Equation d’onde, lagrangien 

Considérons un champ (classique) qui soit un scalaire de Lorentz : 
cp‘(x’) = cp (x), où x’ = Ax, A étant une transformation de Lorentz (cf. 
appendice C). Ce champ doit obéir à une équation aux dérivées 
partielles analogue à (12). Le seul opérateur du second ordre invariant 
de Lorentz que l’on puisse former avec les dérivées a p  = a/ax” est le 
d’Alembertien (rappelons que c = 1 dans notre système d’unités) : 

v2 .  

La plus simple des équations du second ordre invariante de Lorentz que 
l’on puisse écrire est : 

I (O + m2) q ( x )  = O . (30) 

L‘équation (30) est appelée équation du chump de Klein-Gordon 
libre. Soulignons que cp (x) doit être interprété pour le moment comme 
un champ classique, analogue au champ électromagnétique classique, 
et non comme la fonction d’onde d’une généralisation relativiste de 
l’équation de Schrodinger. Le paramètre m a les dimensions de 
l’inverse d’une longueur (ou d’un temps puisque c = 1). 

Si j ( x )  est une fonction scalaire, dont le comportement est prescrit à 
l’avance, c’est-à-dire une source classique, l’équation de Klein-Gordon 
couplée à une source classique est : 

(O + m2) cp(x)  = j ( x )  . 
Elle sera étudiée au paragraphe C. Enfin le membre de droite de (30) 
peut aussi être une fonction de cp (et même de ses dérivées) 

(O + m 2 )  cp(x) = - V‘(cp)  I 

On a alors affaire au champ de Klein-Gordon en interaction, qui sera 
traité au chapitre suivant. 

L‘équation (30) peut être obtenue par minimisation de l’action : 

= ~ d 4 x ( - $ c p ( O + m 2 ) c p  ) . (31.a) 
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La troisième forme pour S a été obtenue grâce à une intégration par 
parties. Cette intégration est justifiée dans les directions d'espace car on 
suppose toujours que les champs s'annulent suffisamment rapidement à 
l'infini. Dans la direction temporelle, elle a un caractère formel et sert à 
mettre en évidence le propagateur : cf. VIII-B.3. (I1 ne faudrait pas 
conclure que (31.a) que 2 = O si cp obéit à (30).) Les équations du 
mouvement généralisent (11) : 

(31.b) 

B.2. Décomposition de Fourier 

Comme dans le cas du champ des vibrations dans un solide, il est 
naturel de chercher les modes normaux. On définit les transformées de 
Fourier par intégration dans tout l'espace, de façon à préserver 
l'invariance de Lorentz formelle, ou la covariance des équations : 

~p (k) = d4x eikx cp ( x )  

(32.a) 

(32.b) 

où kx = koxo - k . x. La réalité de cp impose cp ( k )  = cp * (- k ) .  D'autre 
part l'équation d'onde (30) appliquée sur (32.a) conduit à la relation : 

( k 2 -  m2) q ( k )  = O .  

Le coefficient de Fourier cp ( k )  n'est f O que sur Z'hyperboloïde de 
musse k2 - m2 = O ,  et cp ( k )  doit donc être proportionnel à 6 (k2  - m2). 
D'autre part l'hyperboloïde de masse k2 - m2 = O se sépare en deux 
nappes, l'une ayant ko>  O et l'autre ko< O ; ces deux nappes ne 
peuvent pas être reliées par une transformation du groupe de Lorentz 
propre. La relation : 

permet d'écrire <p ( k )  sous la forme : 

p ( k )  = 2 ~ ô ( k ~ - m ~ ) [ O ( k O )  cp(+)(k)+ O ( - k o )  cp(-)(k)] (34) 
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où 8 (ko) est la fonction de Heaviside : 8 (ko)  = 1 si ko =- O, 8 (ko) = Q si 
ko -= O, et le facteur (2 m )  est conventionnel. En reportant (34) dans 
(32.a) on obtient : 

avec 

La notation k . x est en fait ambiguë. Dans le cas d'une transformée 
de Fourier à quatre dimensions (par exemple (32) ou (48)) kx = 
koxo- k -x, où ko est de signe quelconque. Dans le cas d'une 
transformée de Fourier à trois dimensions (par exemple (40) ou (50)), 
kx = wk xo - k - x, avec wk = Jk2 + m2 =- O. L'expression (35) est très 
semblable à (19.a) ; il y a trois différences : 

0 l'espace a trois dimensions et non une seule, 
0 wk = (k2 + m2)" au lieu de W k  = lkl : dans (19.a) m = O, 
0 le vecteur d'onde k prend des valeurs continues au lieu de valeurs 

discrètes : on a intégré dans tout l'espace au lieu d'intégrer sur un 
intervalle fini. L'équation (35) s'écrit avec des notations évidentes : 

cp ( x )  = cp (+ ' ( x )  + cp (- ' ( x )  

où cp (+ '(cp (-- )) est la partie à fréquences positives (négatives) : en 
mécanique quantique, l'évolution dans le temps d'un système d'énergie 
E est (par convention) exp(- iEt/h) = exp(- i w t ) .  

La mesure d'intégration dans (35) 

est invariante de Lorentz car elle peut aussi s'écrire sous forme 
manifestement invariante : 

dk = - d4k 2 r r8 (k2 - m2) 8 (ko )  . 
(2 l4 

I1 est également possible de le vérifier directement (exercice 4). 

positive (ou négative) ; par exemple : 
On peut former des paquets d'ondes avec des solutions d'énergie 



366 Quantification du champ de Klein-Gordon IX.B.3 

I”(x) = 5 d3k ( a ( k )  e-ikx + ut  (k) eib) 
(2 ,43  2 W k  

Le produit scalaire de deux paquets d‘ondes est donné par : 

(40) 

où la notation est définie par : 

Ce produit scalaire est défini positif pour les solutions d’énergie 
z O et conservé au cours du temps : a,(g, f )  = O (exercice 5).  Un 
paquet d’ondes d’énergie négative et un paquet d’ondes d’énergie 
positive sont orthogonaux (pour le produit scalaire (38)). 

B.3. Quantification canonique 

[ a ( k ) ,  a ’ ( k ’ ) ]  = (2 T ) ~  2 wk ô(3)(k - k’)  1 . (4.1) 

. I1 est immédiat de vérifier (exercice 6 )  que (40) et (41) conduisent bien 
aux relations de commutation canoniques : 

(42) [(P(t,x), (P(t,x’)I= [T@,X), *(t ,x’ )I=O 
[q ( t ,  x), ,r ( t ,  x’)] = iô (3)(x - XI) . 

I1 est parfois commode de quantifier dans une boîte de volume fini V ,  
en général un cube de côté : V = E3, de façon à travailler avec des 
exponentielles normalisables. La généralisation immédiate de (22) est : 

-ikx + 1 
(43) 
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On notera la différence de normalisation dans (40)-(41) et (43)-(44). 
L’expression du hamiltonien obtenue par exemple à l’aide de (43)-(44) : 

montre que l’opérateur al (ak) crée (détruit) une particule de vecteur 
d’onde k (donc de moment k) et d’énergie wk = (k2 + m2)1’2. %es 
particules n’ont pas d’autre degré de liberté, et ce sont donc des 
particules scalaires, de spin zéro. Le champ de Klein-Gordon sera 
utilisé pour décrire des particules commes les mésons T. Ces particules 
obéissent par construction à la statistique de Bose : en effet la 
construction de l’espace de Fock assure la symétrie de la fonction 
d’onde dans l’échange de deux particules. 

Comme j’utilise un système d’unités où h = 1, k est un vecteur 
d’onde, mais aussi un moment (p = hk), wk est une fréquence, mais 
aussi une énergie (Ek = h k ) .  Le paramètre m a les dimensions d’une 
masse dans le système d’unités où h = c = 1 (h/mc est une longueur) : 
m est la masse des particules décrites par le champ de Klein-Gordon 
quantifié : 

E, = Jk2 + m2(= J h 2  k2 c2 + m2c4) . 

La quantification a été faite en choisissant un référentiel particulier, 
puisque les RCC sont écrites à temps égaux. Il serait nécessaire de 
vérifier qu’une théorie équivalente serait obtenue par quantification 
dans un autre référentiel. A cette fin, il faudrait construire les 
générateurs infinitésimaux des translations et des transformations de 
Lorentz, c’est-à-dire les opérateurs énergie-moment et moment angu- 
laire. Cette construction est un peu ennuyeuse (nombreux indices) et se 
trouve dans tous les traités classiques. Comme nous utiliserons ultérieu- 
rement une méthode manifestement covariante, il n’est pas nécessaire 
de s’attarder sur ce point. 

B.4. Commutateur à t # t’ 

Dans le cas du champ de Klein-Gordon libre (c’est-à-dire obéissant à 
(30)), il est possible de calculer les commutateurs des champs à 
t # t ‘ .  On a déjà souligné que ce calcul était en général impossible, car 
il dépend de la dynamique, alors que les RCC Ù temps égaux (42) en 
sont indépendantes. 
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Calculons donc [cp ( x ) ,  cp (x’)] en utilisant la représentation de 

1 dk dk’{ [u(k) ,  ut  (k’)] e-ikx+ik‘x’ + 

[ut (k), u ( k ’ ) ]  eikx-ik‘x’ 1 
)= i A ( x  - x ’ )  ik(x - x ’ )  - eik(x - x ’ )  

def. 

I1 est possible d’écrire une expression explicitement covariante pour 
A ( x  - x ’ )  : 

x2..E(kO)6(k2-m2) (45) 

où &(k0) = 13 (ko )  - 8 (- ko).  On déduit de l’expression (45) un certain 
nombre de propriétés de la fonction A : 

(i) (CI + m2) A ( x )  = O 
(ii) A ( x )  = A (x2 ,  E (xo)) 
(ii’) A ( h )  = A ( x )  si A E au groupe orthochrone 
(iii) A ( x )  = - A ( - x )  

(iv) - A ( x - x ’ ) =  - 6 ( 3 ) ( ~ - ~ ’ )  

(v) A ( X )  = O  si x 2 < 0 .  

La propriété (v) reflète ce que l’on appelle la localité de la théorie : 
les observables doivent commuter si elles sont calculées en des points 
d’espace-temps séparés par un intervalle de genre espace. En effet deux 
tels points ne peuvent pas être reliés par un signal quelconque, et les 
observations en ces deux points doivent être indépendantes. Le champ 
de Klein-Gordon étant hermitique est une observable, et le commuta- 
teur [cp (x), cp ( x ’ ) ]  doit être nul pour ( x  - x ‘ ) ~  < O. 

a 
axo 

B.5. Propagateur 

Etudions maintenant les fonctions de Green de l’équation de Klein- 
Gordon, c’est-à-dire les solutions de l’équation : 

(CI + m2) G ( x )  = 6 ‘‘’(~) (46) 
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ou, en passant dans l'espace de Fourier : 

(- k2 + m2) G ( k )  = 1 (47) 
soit : 

e- ikx 
G ( x )  = - I d4k 

(2 T ) ~  (ko)2 - (k2 + m2) * 

L'intégrale sur ko présente des pôles à ko = 2 wk, ce qui permet de 
définir plusieurs fonctions de Green selon le contour utilisé pour éviter 

Figure 2. Le contour de Feynman. 

ces pôles. Je me contenterai d'étudier la fonction de Green GF, obtenue 
en utilisant le contour de Feynman C F  de la figure2 en renvoyant 
l'étude d'autres fonctions de Green à l'exercice 7. Remarquons que l'on 
peut aussi écrire : 

G F = -  (49) 

où le remplacement m2+ m2-  is, E + O + ,  assure le déplacement du 
pôle à ko = ok(- w k )  dans le 1/2 pian Im ko -= O(Im kO> O). Calculons 
maintenant GF par la méthode des résidus. Pour xo>O, on peut 
refermer le contour d'intégration par un demi-cercle dans le demi-plan 
Im ko < O, et seul le pôle à ko = w k  - ie donne une contribution : 

d3k e-ikx = i (O I cp (x) cp (O)  I O) . (50.a) s GF I xo, 0 = 

Pour xo -= O, on referme le contour d'intégration par un demi-cercle 
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dans le demi-plan Im ko  > O, et seul le pôle à ko = - wk + i s  donne une 
contribution : 

A F ( x - x ’ )  (01 T ( c p ( x )  ‘P(x ’ ) ) Io)  

Les équations (50) peuvent être résumées par : 

G F ( X - X ’ )  = i ( o l  T ( < p ( x )  <p(x‘))lo) 

où le produit-T de deux champs est défini par : 

(53.a) 

. (53.b) 1 (21, ,-ik(x-x’) 1 A F ( x - x ’ )  = ~ 

k2 - m 2  + ie 

La convention (53) n’est pas habituelle. La plupart des auteurs 
utilisent la définition AF = - i (O I T(  cp cp ) I O )  . Le propagateur AF est 
égal à - iGF, et vérifie donc l’équation : 

(CI + m ) A ,  = - i 6 ( 4 ) ( x )  . 
I1 est instructif de vérifier directement cette équation à partir de la 
définition (53.a) de AF (exercice 8). 

(54) 
2 

B.6. Singularités sur le cône de lumière 

Les << fonctions D A ( x ) ,  AF(x)  etc. ne sont pas à proprement parler 
des fonctions, mais des distributions, qui sont singulières sur le cône de 
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lumière x2 = O. Afin de les évaluer dans un cas simple, je me limiterai à 
m = O ; les singularités obtenues dans ce cas sont d'ailleurs les plus 
fortes. La notation standard lorsque m = O est : 

Di = Ai(m = O ) .  

Commençons par calculer D, ( x )  : 

avec : 

k =  Ilkll(= wk); k . x =  krcos O .  

L'intégration sur cos O donne : 

L'intégrale sur k doit être interprétée au sens des distributions : c'est 
une transformée de Fourier de û(k) ; pour rendre l'intégrale conver- 
gente, on remplace (xo  - r )  par (xo - r - iE ) : 

=-if'- ' + Ta(x0- r )  dk e- ik (xO - r - i e )  - - i  
O 

- 
xo - r - IE x - r  

où P désigne une partie principale. Cette égalité permet de terminer le, 
calcul de D, ( x ) ( x2  = (x0)' - r 2 )  : 

4 %-2 4 % -  (55) 

on obtient immédiatement les fonctions D ( x )  et D F ( x )  : 

(57) 
- 1  1 i 2 

47i-2 x2 477 
D F ( x ) = - P - - - ~ ( x ) .  
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Lorsque rn # O, on peut obtenir l’expression suivante pour A F ( x )  
(3) 

i irn 6 ( x 2 )  + - 8 ( x 2 )  + 
16 T 

2 
t- rn2 In rn JIx21+ O ( J 3 l n  1x21). (58) 

8 T~ 

L‘existence de singularités sur le cône de lumière montre qu’il n’est 
pas possible de multiplier sans précautions deux champs au même 
point. En réalité, les opérateurs de champ doivent être considérés 
comme des << distributions à valeur opérateur B ; les valeurs moyennes 
sur le vide de produits de champs sont des distributions ordinaires. Un 
programme reposant sur cette observation a été développé principale- 
ment par Wightman et ses collaborateurs : c’est la théorie axiomatique 
des champs. Cette théorie axiomatique a permis de démontrer rigoureu- 
sement les théorèmes PCT et spin-statistique et d’établir des bornes 
asymptotiques sur les amplitudes de diffusion (avec des hypothèses 
supplémentaires). Mais ce programme n’a pu être poursuivi, en raison 
de son inadaptation aux théories de jauge. 

C. COUPLAGE A UNE SOURCE CLASSIQUE 
THÉORÈME DE WICK 

C.l. Opérateur d’évolution. Equation de Dyson 

En mécanique quantique, l’opérateur d’évolution U ( t  , t o )  relie le 
vecteur d’état de la représentation de Schrodinger au temps t au vecteur 
d’état au temps to : 

I M)) = U ( t ,  t o ) l  + & O ) )  . (59) 

I1 vérifie l’équation différentielle, équivalente à l’équation de Schrodin- 
ger : 

d 
dt 

i -  U ( t ,  t o )  = H ( t )  U ( t ,  t o )  
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et la condition d’unitarité : 

U t  ( t ,  t o )  = u- y t ,  to) = U(t0, t )  . (62) 

En règle générale on ne sait pas calculer exactement l’opérateur 
d’évolution, mais il arrive souvent que l’on puisse trouver une 
décomposition de H : 

H = Ho + H ,  (63) 

telle que l’on sache calculer l’opérateur d’évolution Uo ( t  , t o )  correspon- 
dant à Ho ; en pratique cela veut dire que l’on sait diagonaliser 
Ho. On traitera alors H1 comme une perturbation : Ho est en général 
appelé << hamiltonien libre >> et Hl << hamiltonien d’interaction ». Pour le 
traitement perturbatif, il est commode d’écrire : 

U ( t ,  t o )  = Uo(t,  t o )  Ur( t ,  to) (64) 

et on montre facilement que U, vérifie l’équation différentielle : 

(65.a) 

= U i l ( t ,  to) Hl(t) Uo(t, t o )  . (65.b) 

HI est le hamiltonien Hl écrit dans la << représentation interaction ». 
L‘équation différentielle (65) peut aussi s’écrire sous forme d’une 
équation intégrale qui incorpore automatiquement la condition initiale 
UI(t0, t o )  = 1 : 

Ur( t ,  t o )  = 1 - i H,(t’) U r ( t ; ,  t o )  dt’ . (66) s:, 
Remarquez que l’on ne peut pas écrire en général 

- i j , l H I ( i ’ ) d i ’  

Ur@, t o )  = e (67) 

car le commutateur [H,( t ’ ) ,  H,( t”)]  est en général non nul, et que 
exp(A + B )  # exp A exp B lorsque [A, BI # O (sauf cas particulier). 
Cependant l’équation (65) peut être résolue par itération : 

L‘équation (68), ou équation de Dyson, s’écrit formellement 
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où le produit-T indique que l'on doit utiliser (68) dans le développement 
de l'exponentielle. L'équation (68) est bien un développement perturba- 
tif en puissances de Hl : si Hi contient en facteur une constante de 
couplage g,  le terme d'ordre n de (68) est proportionnel à 9". Le 
produit-T dans (69) corrige l'expression incorrecte (67) et assure que 
U l ( t ,  t o )  obéit à la loi de groupe (61) et vérifie la relation d'unita- 
rité (62). 

C.2. Oscillateur harmonique couplé à une source classique 

Avant d'aborder le couplage du champ de Klein-Gordon à une 
source classique, étudions le couplage d'un oscillateur harmonique 
simple à une source classique, ce qui permettra d'introduire sur un 
exemple élémentaire les notions d'états entrants, ou états << in », d'états 
sortants, ou états <<out », et de matrice S. Le hamiltonien choisi est 
(dans la représentation de Schrodinger) : 

(70) 
H = ~ u  t u - u ~ * ( ~ ) - u  t j ( t ) = H o + H 1  

où Ho = w u t  a est le hamiltonien de l'oscillateur harmonique simple. Si 
la source j ( t )  est réelle, H~ = - J 2 j x ,  et J 2 j ( t )  représente 
simplement une force extérieure appliquée à l'oscillateur harmonique : 
le problème est donc celui d'un oscillateur forcé quantique. Lorsque j 
est complexe, il y a également un terme de couplage à la vitesse. Afin 
de simplifier les équations, on choisira pour temps de référence 
to = O et on posera U ( t ,  O )  = U ( t ) .  Pour calculer a r ( t )  (cf. (65.b)) : 

iHor -iHot a r ( t )  = e a e  

on utilise : 

- i[Ho, a r ( t ) ]  = - iwaz(t) da, _ -  
dt 

soit : 

(71) t t a r ( t )  = e-'"'a ; a ,  ( t )  = eiof a 

et le hamiltonien H,(t)  est : 

~ , ( t )  = - [a e j * ( t )  + ut e'"'j(t)l . (72) 

La solution de l'équation d'évolution (65.a) est << presque D donnée par 
(67)' car si H,(t)  et H l ( t ' )  ne commutent pas, leur commutateur est 
néanmoins un nombre : 

[ ~ , ( t ) ,  ~ , ( t ' ) ]  = e-im(f-t')j*(t) j ( t ' )  - e - i w ( f ' - f )  l ( t ) j * ( t ' )  . * 
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Cette propriété permet de deviner la solution de l'équation d'évolu- 
tion (cf. exercice 10) 

On vérifie par un calcul direct que (73) obéit bien à f'équation 
d'évolution (65.a). I1 est possible d'écrire cette solution sous d'autres 
formes (cf. exercice 10) ; on remarquera que dans (73) U r ( t )  est écrit 
sous forme normale : tous les at sont à gauche de tous les a. 

Supposons que la source j ( t )  est nulle en dehors d'un intervalle 
[TI, T,], avec TI z O (figure 3) pour simplifier le raisonnement suivant, 
et étudions l'opérateur d'annihilation dans la représentation de Heisen- 
berg : 

aH(t) = ~ - ' ( t )  a ~ ( t )  = eëiW' ü;'(t) aur(t). 

Figure 3. La source j ( r ) .  

En utilisant (73) et l'identité : 

e- iaa' a eiaat = a + i < u  

on obtient : 

U * ( t )  = eëi"'[u + i J , j ( t ' )  e'"" dt'] . 

t 

(74) 
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S=U,(CO,-CO);  S t =s-1 

Pour t < T I ,  a H ( t )  coïncide avec a ( t )  = a eëiW' que nous appellerons 

ain(t) : 

lim a H ( t )  = ain(t) 
t + - m  

(77) . 

tandis que pour t -+ + CO 

soit : 

lim a H ( t )  = e-'"'(a + i j ( w ) )  = a o u t ( t ) .  
t + + m  

Les opérateurs ain(t) et aout( t )  ont en facteur e-'@', et on peut définir 
des opérateurs indépendants du temps ai, et aout : 

ai, = a ; aout = a + i j ( w )  . (75) 

La relation entre ai, et aout s'écrit également : 

aout = s- ai, s 

On remarquera qu'à la limite t -+ CO, seule intervient la composante de 
Fourier j ( w )  de la source j ( t )  : la limite t -+ CO << projette sur la couche 
d'énergie ». Examinons brièvement les probabilités de transition ; partant d'un 
état Inin) à t = t ,  (ti -= T I )  

on se propose de calculer la probabilité d'observer au temps t = t ,  ( 1 ,  > T2)  un 
état I min).  L'amplitude de probabilité est : 

(min1 u(t,, t i ) ( a i n )  = (min( uû(tz, t i )  ui(t2, tî)(nin) 
- iEm(i2 - I I )  

- iE,,,(tZ - f l )  

= e  (min1 Slnin) 

= e  (mou, I nin) . (78) 

Le facteur de phase dans (78) n'affecte évidemment pas la probabilité de 
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transition. I1 est facile de calculer (meut Ini,) lorsque n = O ; en effet 
(supprimant l'indice << in B pour alléger les notations) on peut évaluer : 

(pour obtenir la dernière équation, il suffit d'utiliser la représentation intégrale 
de la fonction û), ce qui donne pour l'amplitude de probabilité : 

et pour la probabilité de transition P ,  : 

La loi de probabilité du nombre d'occupation m est une loi de Poisson de valeur 
moyenne 1 j(w ) 1' = f i .  Ceci est une propriété générale du rayonnement d'une 
source classique, lorsque l'on part de l'état fondamental à t = - 00. L'état final 
est un état cohérent (exercice 11) égal à une phase près à : 

et on vérifie que cet état est de norme 1 : la probabilité est 

conservée, ce qui est évidemment une conséquence immédiate de l'unitarité de 
la matrice S .  

C.3. Champ de Klein-Gordon couplé à une source classique 

Passons maintenant au problème d'un champ de Klein-Gordon 
couplé à une source classique j ( x )  ; la densité de lagrangien est : 

1 L f = - ( ( a  p <p)(a@ < p ) - ; m V + i < p  

conduisant à l'équation du mouvement : 

+ m 2 )  <p ( X I  = i ( x )  
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et au hamiltonien d'interaction : 

Hl = - j d3x i ( x >  cp (x> 

où le champ cp(x) est écrit dans la représentation de Heisenberg. La 
source j ( x )  est supposée nulle pour t -= T,, et pour t 6 T ,  le champ 
cp ( t ,  x) est un champ libre que nous noterons cpi,(x) : 

(O ( t ,  X) = <pin(t, x) t . 

Partons d'un temps t l  < T1 et examinons l'évolution au cours du temps 
de cp(t,x): 

<p ( t ,  x) = U-V, t i )  (O (ti, x) U ( t ,  t i>  

= ~ ; ' ( t ,  t i )  url(t, t i )  <Pin(ti ,  X) Uû(t, t i )  UZ(~, t i )  

soit : 

<p (t, X) = U; ' ( t ,  ti) <Pin(t, X) U,(t ,  t i )  (82) 

étant donné que l'opérateur d'évolution du champ libre cpin est 
Uo(t,  t i ) .  Dans la représentation interaction, le hamiltonien H1 devient : 

H I ( t )  = - d3xj(x) c p i , ( ~ ) .  (83) s 
Comme vin ( x )  est un champ libre, on peut utiliser la décomposition de 
Fourier (40). Définissant la transformée de Fourier à 3 dimensions de 
j ( t ,  x) par: 

j ( t ,  k )  = j * ( t ,  - k )  = d3x e-ik.Xj(t ,  x) 

on récrit (83) sous forme d'une somme de composantes de Fourier : 

(ai, (k) j * (t , k )  e- s ( 2  nd)'2 W k  
H,(t)  = - 

+ a i  ( k ) j ( t ,  k ) e i m k * ) .  (84) 

Le hamiltonien (84) est une somme de hamiltoniens du type (72). On 
peut donc écrire l'expression de l'opérateur d'évolution U, (t ) par 
analogie avec (73). Nous aurons seulement besoin de l'expression de la 
matrice S = U,(oc,, - oc,), mais nous pourrions aussi bien écrire 
l'expression de Uz(tz ,  ti). Remarquons que : 

dk"ain(k) j * ( t ,  k)"'"'' = d3x <pk ' ( x )  j ( x )  
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et que le terme d’intégrale double dans (73) devient : 

dt dt‘dg O ( t  - t ’ )  j * ( t ,  k)e-iwt(t-t’)  j ( t ’ ,  k )  = 

- iw,(t - f’) + i k .  (x - x’) d4xd4x‘j(x)j(x‘) dk“ û ( t - t ’ ) e  = s  s 
= 1 s d 4 x d 4 x ’ J ( x ) j ( x r ) S d X x  2 

1 - iwk(t  - 1 ’ )  + i k .  (x - x ’ )  - io,([’ - t )  + i k .  (x‘ - x)  x [O( t - t ’ ) e  + û ( t ’ - t ) e  

= 1 s d4x d4x’ j ( x )  A,(x - x’) j ( d )  . 
2 

Rassemblant ces résultats, on peut mettre la matrice S sous la forme : 

Cette expression est importante, car elle donne l’expression de la 
matrice S dans le cas du couplage à une source classique, ce qui est déjà 
en soi un résultat intéressant. Mais l’intérêt principal de la formule (85) 
est de conduire à une démonstration très simple du théorème de Wick. 

C.4. Théorème de Wick 

Le théorème de Wick s’obtient tout simplement en développant les 
exponentielles dans les deux membres de (85) et en identifiant les 
puissances de j ( x ) .  Toutefois il faut faire un peu attention : les termes 
du développement de 

par exemple 
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sont symétriques dans l’échange des arguments de qin et de j .  I1 faudra 
donc symétriser aussi le développement du membre de droite de (85) : 
en effet si l’on a : 

avec T(x, ,  x2) = T(x2,  xl), on peut simplement conclure que : 

T ( x l  7 = F ,  7 x2) 

où Fs(xi, x 2 )  est la partie symétrique de F dans l’échange de 
(xl, x2) ; en effet l’intégrale de la partie antisymétrique FA(xl, x2) est 
automatiquement nulle. 

Examinons un terme du développement du membre de droite de (85) 
en ( j ( x ) ) p  ( j ( ~ ) ) ’ ~  ; il est affecté d‘un coefficient : 

l m l  
i p ( - z )  -. 

p !  rn! 

I1 faut symétriser le coefficient de ( j  ( x ) ) p  ( j  ( x ) ) ~  
ses indices ; le nombre de termes indépendants est : 

par rapport à tous 

( 2  rn + p ) !  
p !  rn! 2m 

et le coefficient d’un terme en ( j ( ~ ) ) ~ ~ + p  dans le membre de droite de 
(85) sera affecté d’un coefficient : 

Ce coefficient est exactement celui trouvé dans le développement du 
produit-T. Dans le cas où (2 rn + p )  = 2 n est pair, on obtient par 
identification (en omettant l’indice << in P) : 

T(P (xi) ... CP (x2n)) = : CP (xi) * - e  CP ( x 2 n )  : + 

+ { . . . }  + . . . +  {. . .)  



IX.C.4 Couplage à une source classique 381 

n n n n  + : 'pl ' p 2  ' p 3  v4: + : cpl cp2 cp3 9 4 :  ) + ( 'p lcp2 cp3 cp4 

nl ITTI 
+ ' p i  cpr 'p3 cp4 + cpl ' p 2  ' p 3  v4) . (87) 

Remarquez que 'pTcp2 par exemple peut être extrait du produit normal 
car c'est un nombre. 

Lorsque certains produits sont déjà sous forme normale, on peut 
également appliquer le théorème de Wick, à condition d'omettre toutes 
les contractions de termes qui se trouvaient initialement à l'intérieur 
d'un produit normal. Donnons un exemple simple : 

n 
T ( :  <pl c p 2 :  : 9 3  494: ) = : 'pi 9 2  cp3 9 4 :  + {: Pi 9 2  473 9 4 :  + - n n +: cp1 cp2 9 3  ' p 4 :  + :  cpl ' p 2  c p 3  cp4: + :  <Pl cp2 cp3 q 4 :  1 

+ {'pi ' p 2  'p3  cp4 + <Pl ' p 2  ' p 3  v4) * 
m m  

Enfin prenons la valeur moyenne sur le vide des deux membres de 
l'équation (86). A cause du produit normal, seul le dernier terme est 
différent de zéro et : 

On note une similitude frappante entre cette équation et l'équation 
(V.13) que nous avions obtenue pour les intégrales gaussiennes. Cette 
similitude sera exploitée au chapitre suivant pour montrer l'équivalence 
de la formulation canonique et de celle qui utilise les intégrales de 
chemin. 
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EXERCICES 

1) Quantification de la u ligne discrète w 

On se propose de quantifier le système mécanique décrit par le lagrangien L 

(a) Montrer que les modes normaux sont donnés par : 
de l'équation (4) (avec des conditions aux limites périodiques). 

avec k = 2 n p / N ,  p = O, 1, 2,  ..., N - 1, et que < P k ( t )  vérifie i'équation 
différentielle : 

(b) En écrivant la décomposition de Fourier 

vérifier les RCC et montrer que : 

2) En utilisant les relations (20) à I = O et les RCC (15), montrer que 
[Ak,ALt] = ( 2  W k ) - '  t j k y  . 

3) Démontrer l'expression (24) du hamiltonien. Suggestion : déterminer les 
coefficients de Fourier rk et (a<P/ax)k  de T et - et utiliser la relation de 

Parseval. 

acp 
ax 

4) Soit une transformation de Lorentz parallèle à l'axe Oz : 

k{ = ko ch <P - k ,  sh <p 

k i  = - ko sh <p + k ,  ch <p ; ki  = k, ; k; = k, . 

Vérifier l'invariance de la mesure d'intégration dk (36) dans une telle 
transformation. 

5) Démontrer l'équation (38), vérifier I'orthogonalité des solutions d'énergie 
=- O et -= O, et montrer que le produit scalaire (9, f) est indépendant du temps : 

(Utiliser l'équation de Klein-Gordon et le théorème de Green.) 
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6) Vérifier les RCC de <p et T = @ à partir de (40) et (41). 

7) Fonctions de Green de l'équation de Klein-Gordon 

Pour le calcul de (48) on se donne les contours C, et C A  de la figure4. 
Montrer que G , ( x )  = - O ( x o )  A ( x )  et que G A ( x )  = û ( - x o )  A @ ) .  En 
déduire : 

G R  ( x  - Y = ( O  I e ( x o  - Y o )  [ Cp (x  Cp ( y  ) 1 1 O) 

G A ( x - y ) = - '  i ( 0 l  O(-X0  +YO)[cp(X), ' p ( Y ) l / O )  

t o  

Figure 4. Contours C A  et C,. 

8) Vérifier en calculant explicitement les dérivées que 

(O, + W Z ' ) ( O  I T ( V  ( x )  <p (O))  I O) = - i6 ("(XI . 

Suggestion : utiliser l'équation de Klein-Gordon et remarquer que 
apxo O (2) = 6 (x". 

9) Identités opératorielles utiles 

(a) A et B étant deux opérateurs quelconques, démontrer : 

1 eA B eëA = B + [ A ,  BI + 2? [ A ,  [ A ,  B I ]  + . . 

Suggestion : examiner le développement de Taylor à t = O de F ( t )  = 
eiA B e- fA 

(b) Soient deux opérateurs A et B tels que A et B commutent avec 
[ A ,  BI .  Montrer que 

e A + B  A fl = e  e e 
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(b) En utilisant la décomposition de Fourier de j ( x )  : 

montrer que les opérateurs ai, et aout sont reliés par : 

aout(k) = ai,&) + ij(mk, k )  . 
(c) Définissant la matrice S par : 

S- ai, ( k )  S = aout ( k )  

montrer qu'à un facteur de phase près : 

Montrer que cette expression diffère de U1(m,  - 03) (équation (85)) par un 
facteur de phase que l'on déterminera. 

12) Etats cohérents (4) 

Soit I z )  1'« état cohérent D I z )  = ea'  I O )  , où z est un nombre complexe. 
(a) Montrer que I z )  est vecteur propre de a : a  I z )  = z I z )  et que 

( z l z )  = exp(lzI2).  

(b) Montrer que *e- ) ' I2 I z )  (z I = II avec z = x + iy (relation de s -  
fermeture). 

(c) Soit D (z) = exp (zut - z * a).  Montrer que D (z) I O )  est un état cohérent 
normalisé à l'unité. Calculer ( x  I D ( z )  I O )  , où I x )  est un vecteur propre de 
l'opérateur position. 

(d) Montrer que yat a I z )  = lyz) et en déduire : 

X a +  a - - . e(x-l )o+ a .  

NOTES ET RÉFÉRENCES 

Le système mécanique du paragraphe A est décrit en détail dans H. Goldstein, 
Mécanique Classique, Dunod (1964), chapitre 11. On trouvera une introduction à la 
quantification des vibrations élastiques et du champ électromagnétique dans C. Cohen- 
Tannoudji, B. Diu et F. Laloë, Mécanique quantique, Hermann (1973), chapitre 5 .  La 
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quantification du champ de Klein-Gordon est discutée dans tous les traités classiques, par 
exemple Bjorken-Drell, chapitre 12 ou Itzykson-Zuber, chapitre 3. Pour le formalisme 
lagrangien des champs classiques, la construction des opérateurs énergie-moment et 
moment angulaire, on  pourra consulter Bjorken-Drell, chapitre 11. Le programme de 
Wightman (théorie axiomatique des champs) est exposé dans Streater-Wightman. Pour 
les différentes représentations et les opérateurs d'évolution, voir par exemple Messiah, 
chapitre 8. Le couplage d'un champ quantifié (le champ électromagnétique) à une source 
classique est traité dans Bjorken-Drell, chapitre 17 ou Itzykson-Zuber, chapitre 4. 

(') Messiah, chapitre 8. 
(') Messiah, chapitre 12 ; Cohen-Tannoudji et al., chapitre 5 .  
(') Bogolioubov-Chirkov, appendice I. 
(4) Cohen-Tannoudji er al., chapitre 5. 



CHAPITRE X 

Fonctions de Green et matrice S 

Dans ce chapitre nous allons étudier le champ de Klein-Gordon en 
interaction avec lui-même. Ce modèle n’est pas susceptible de décrire 
une situation physique réelle, mais il nous permettra d’introduire un 
certain nombre de notions importantes sans qu’il soit nécessaire 
d’utiliser le formalisme plus complexe des particules de spin non nul. La 
densité de lagrangien L? (souvent appelée par abus de langage 
lagrangien : la notation 9 au lieu de L suffira à lever l’ambiguïté) sera : 

où V (<p ) est un polynôme dépendant de <p et de ses dérivées. Lorsque V 
dépend des dérivées a p 9 ,  on a affaire à des coupluges dérivatifs. Ceux- 
ci conduisent à des complications dans le formalisme canonique, car le 
moment conjugué T = aL?/a+ dépend alors de V. Je supposerai dans 
un premier temps que V ne contient pas de couplages dérivatifs : ceux- 
ci seront examinés au paragraphe E. Les deux premiers termes de ( l ) ,  
notés .Lpo, forment le lugrungien libre, et - V ( v ) ,  également noté 
YI, est le lugrungien d’interaction. Une décomposition analogue vaut 
pour le hamiltonien : H = Ho + H I .  Les équations du mouvement 
déduites de (IX.31.a) sont : 

(O t m 2 )  q ( x )  = - V ’ ( p ( x ) ) .  (2) 

Mon exemple favori sera la << théorie en <p », correspondant à : 
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ce qui rappelle évidemment beaucoup la théorie de Ginzburg-Landau ; 
le lien entre les deux théories sera examiné au paragraphe B. Remar- 
quez que g doit être positif si l’on veut un hamiltonien défini positif. On 
utilise parfois au lieu de (3.a) une interaction écrite avec un produit 
normal : 

L ? ; = - - : c p  9 4  ( x ) :  
4! 

L’utilisation de (3.b) au lieu de (3.a) est une question de goût et 
d’opportunité, les différences étant absorbées dans la renormalisation 
de masse. En général on n’utilisera pas le produit normal si l’on 
souhaite faire des transformations inhomogènes (translations par exem- 
ple) sur cp, tout en conservant certaines symétries. Au lieu de la 
<< théorie en q4», il m’arrivera aussi de choisir comme exemple la 
<< théorie en cp », où : 

Dans cette théorie la renormalisation du champ (liée à Z,) est non 
triviale dès l’ordre d’une boucle, dans la dimension où cette théorie est 
renormalisable, c’est-à-dire D = 6 (cf. exercice V1.2), alors que dans la 
théorie en q 4  il faut attendre l’ordre de deux boucles pour que 
Z3 diffère de 1. Naturellement cette théorie est encore moins réaliste 
que celle en q4, et elle est de plus pathologique car son hamiltonien 
n’est pas défini positif. Cependant elle est parfaitement définie en 
théorie des perturbations. 

Notre premier objectif (paragraphes A et B) sera de déterminer le 
développement perturbatif des fonctions de Green, définies comme 
valeurs moyennes sur le vide (= état fondamental) de produits-T de 
champs : 

Les règles de Feynman de ce développement perturbatif, obtenues à 
partir du théorème de Wick, permettront de faire le lien entre ces 
fonctions de Green et les fonctions de corrélation de la deuxième 
partie, et d’établir le formalisme des intégrales de chemin pour la 
quantification. 

Le deuxième objectif sera de relier les fonctions de Green aux 
quantités observables. La description des collisions se fait au moyen de 
la matrice S, et il faudra établir une relation entre les fonctions de 
Green et les éléments de matrice S (paragraphe C). La propriété 
importante d’unitarité de la matrice S sera étudiée au paragraphe D, et 
des généralisations (champ scalaire complexe, champ vectoriel et 
couplages dérivatifs) seront traitées au paragraphe E. 
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A. DÉVELOPPEMENT PERTURBATIF 
DES FONCTIONS DE GREEN 

A.1. Représentation interaction et matrice S 

Nous avions utilisé au chapitre précédent une formule (IX.82) reliant 
le champ Q ( t ,  x) interagissant avec une source classique au champ 
G entrant >> qiin(t, x). Cette formule était facile à établir dans la mesure 
où la source était nulle en dehors d’un intervalle de temps fini. De 
même l’expression de la matrice S entre un état initial et un état fina1 à 
nombre fixé de particules s’obtenait sans difficulté. 

Le cas d’un champ en interaction avec lui-même est beaucoup plus 
complexe, car Pinteraction V (p  ) ne s’annule jamais. Notre objectif est 
de décrire une expérience de collision, qui se présente de la façon 
suivante : au temps t = - 00, l’expérimentateur a préparé deux paquets 
d’ondes très éloignés, et donc sans interactions. Ces deux paquets 
d’ondes entrent en collision à un temps t = O ,  et la collision produit N 
particules finales qui se séparent et qui au temps t = + co sont à 
nouveau représentées par des paquets d’ondes sans interactions (on 
suppose qu’il y a un seul type de particules, celles décrites par le champ 
de Klein-Gordon de ce chapitre). Cependant, dans une théorie des 
champs en interaction, la notion de particule est dépourvue de 
signification pendant le temps (- lodz3 s )  de la collision ; la notion de 
particule ne peut être qu’asymptotique. Nous serons conduits à décrire 
les particules initiales et finales au moyen d’opérateurs de champs libres 
q i , ( x )  et qout(x), qui seront en un certain sens les limites t -+ i co du 
champ Q (x). Ceci nous permettra d’établir le formalisme nécessaire au 
calcul des amplitudes de probabilité décrivant la transition 2 particules 
initiales --+ N particules finales, ce qui est après tout le problème 
physique intéressant. La matrice S est alors définie par les produits 
scalaires entre états << in >> et états << out B : 

Il faut bien comprendre que les états << in >> et << out >> sont obtenus en 
mesurant des observables <( in >> et (< out >> différentes, car dans la 
représentation de Heisenberg les vecteurs d’état sont fixes et les 
observables varient avec le temps. Par exemple, pour l’opérateur 
nombre de particules d’un type donné a, N a ,  on distinguera 
NF de N;‘. Si 1 Q,, in) et 1 c p p ,  out) décrivent des états de deux 
particules libres de type (Y et de type p, le produit scalaire 
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( c p , ,  out) v a ,  in) n’a aucune raison d’être nul. Les états <<in D et 
<< out B forment donc deux bases de l’espace de Hilbert Z des états, et 
si ces deux bases sont complètes, la relation d’unitarité St = 5-’ 
exprime simplement le fait que i’opérateur S effectue un changement de 
base orthonormée : 

et on peut récrire (5.a) sous la forme 

Au chapitre précédent, la matrice S avait été écrite dans la 
représentation interaction, où le vecteur d’état ) cp ( t ) )  varie avec le 
temps : 

I 

Partant au temps t = - 00 d’un état I c p , )  , on obtient l’amplitude de 
probabilité pour mesurer au temps t = - 03 un état I 9,) à l’aide de : 

( c p p l  U,(wo, - 0 O ) l c p a )  = (Pal I V a ) ,  

équation qui coïncide formellement avec (5 .b), le point important étant 
que les états I < p a )  et I pop) se réfèrent à la même base de l’espace de 
Hilbert. 

Pour construire les états asymptotiques << in >> et << out », nous devons obtenir 
les champs asymptotiques vin et pout. Cette construction peut se faire 
indépendamment de la théorie des perturbations (construction de Haag-Ruelle) 
à partir des axiomes suivants : 

1) Existence d’un vide unique et cyclique : l’application réitérée de 
cp ( x  ) sur I O )  engendre X .  

2) Existence d’un opérateur énergie-moment P ,  : 

3) Condition sur le spectre de P * = P , P CL : le spectre comprend deux points 
isolés: P ~ = O  et p 2 =  m2, et un continuum p 2 >  ( m  + p)’avec O <  p -=m. 

4) Condition de causalité (ou de localité) : 

[ v (x ) ,  v ( y ) ]  = O  si ( x  - y ) ’ < o .  

5) Si 1 k)  est un état à une particule, alors : 

(01 v(x)lk) + o .  
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On peut alors construire la théorie asymptotique de la façon suivante : soit 
cp (f, t )  l'opérateur défini par : 

où q ( k )  est la transformée de Fourier de p(x) et f ( k )  celle d'une fonction 
f ( t ,  x), telle que f ( k )  soit non nul uniquement pour ko>O et 
( m - p )  s k 2  s ( m  + p )'. Construisons i'état : 

1 c p , ( f , >  .-.> f,; t > >  = cp(fi> t )  ... c p ( f m  t > l O )  

Pour comprendre la signification physique de cet état, il faut remarquer que 
dans le cas du champ libre il est indépendant du temps : 

On peut alors démontrer la condition asymptotique : 

où les f i  sont les restrictions à la couche de masse k2 = m2 des f i  : 

f i (k )  = f i ( w k ,  k) ,  et la convergence dans (6) est une convergence forte. Pour 
terminer la construction il faut rajouter i'axiome de complétion : 

.3? = & i n  = XOUl. 

La condition asymptotique (6) peut s'écrire de façon schématique : 

lim cp(x )  = cp;;l(x) 
i - + T m  

La condition asymptotique précédente fixe la normalisation de 
cp (x). Cette normalisation est en général incompatible avec les RCC 
(IX.42) (exiger des RCC fait d'ailleurs sortir du cadre axiomatique). 
Par la suite nous allons normaliser cp(x )  par les RCC, et dans ces 
conditions la condition asymptotique doit s'écrire : 

où la constante 2, (il est facile de montrer qu'elle doit être identique 
pour t -+ T CO : cf. paragraphe C.5) sera reliée à la renormalisation du 
champ. La condition (7) est évidemment incompatible avec une limite 
forte pour les opérateurs dans (7) (sauf si Z ,  = 1, mais alors 
cp (x) est un champ libre), et doit être comprise au sens des éléments de 
matrice (convergence faible). 
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Les résultats qui précèdent seront suffisants pour démontrer au 
paragraphe C.4 les << formules de réduction », c’est-à-dire les relations 
entre fonctions de Green et éléments de matrice S. Cependant, pour 
établir une théorie des perturbations fondée sur la séparation de H en 
partie <<libre >> Ho et partie d’« interaction >> HI, nous allons avoir 
besoin d’hypothèses beaucoup plus fortes. Dans la suite du paragraphe, 
vin@) désigne un champ libre de masse m, dont l’évolution est régie 
par Ho. 

Comme les champs <p (x) et cpin(x) obéissent tous deux aux RCC 
(IX.42), si nous avions affaire à un système possédant un nombre fini de 
degrés de liberté, nous pourrions conclure que ces deux champs sont 
reliés par une transformation unitaire (théorème de von Neumann). 
Dans le cas d’une théorie des champs, nous admettrons l’existence 
d‘une telle transformation : 

< ~ ( t ,  X) = u-l(t) Vin( t ,  X) u(t) * (8) 

Malheureusement un théorème dû à Haag ( l )  affirme que l’existence de 
la transformation unitaire (8) entraîne que q ( x )  doit être un champ 
libre. Nous passerons sur cette difficulté et admettrons que nous 
pouvons travailler, au moins formellement, avec l’équation (8), tout en 
gardant à l’esprit que les déductions qui vont suivre n’ont qu’un 
caractère heuristique. 

Dans le problème de l’interaction avec une source classique, 
ü(t) n’était pas autre chose que l’opérateur d’évolution U [ ( t ,  - .O) de 
la représentation interaction. Essayons d’établir une équation d’évolu- 
tion de U ( t ) ,  qui soit l’analogue de (IX.65.a). Les équations du 
mouvement de cp et vin sont : 

+ =i [H ,  471 (9.a) 
+ i n  = i[H,, v i n 1  (9.b) 

et nous nous servirons également de la relation suivante, obtenue en 
dérivant UU-’ = ’Li : 

U ( t )  ù-‘(t) + Ù( t )  u-yt> = o .  
Afin d’être tout à fait général, nous introduirons également un couplage 
à une source classique, et d’après (8) nous pourrons écrire pour le 
hamiltonien : 

u(t) ~ ( < p ( t ) ,  ~ ( t ) ,  j(t))U-’(t) = H(<pin(t), r i n ( t ) ,  j ( t > ) .  

Calculons maintenant G i n  en fonction de Cp : 

+. - - d [ U p  U-’1 = ÙU-’ vin + i U [ H ,  471 U-’+ vin UU- . I  
I n  - dt 

< p i n  = [(OU-’ + iH(<pin, v i n ,  j ) ) ,  9 i n I  * (10) 
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Comparant (10) et (9.b), on constate que l'opérateur antihermitique : 

commute avec < p i n  ; le même raisonnement montre que cet opérateur 
commute aussi avec ri*, et c'est donc un nombre imaginaire 
ic(t ) (en mécanique quantique ordinaire, un opérateur qui commute 
avec Q et P est un nombre). Si c ( t )  = O, U ( t )  est solution de l'équation 
différentielle : 

et si c ( t )  # O, il suffira de définir : 

- i 5' ~ ( t ' )  d t '  

U ' ( t )  = U ( t ) e  

où U ' ( t )  vérifie (12). Nous montrerons un peu plus loin que 

exp ( - i c ( t ' )  dt' ) disparaît du résultat final, et nous allons simple- 

ment utiliser (12) comme équation différentielle définissant U ( t  ). Cette 
équation est évidemment à identifier avec (IX.65.a), d'où la notation 
Hl ( t  >* 

La solution de (12) est déjà connue (cf. IX.69) : 

(13) 

et la matrice S = U ( +  .O) est donnée par : 

Si l'interaction Sl(<p) ne contient pas de dérivées de cp (par exemple 
dans le cas des lagrangiens (3) ou (4)), on a simplement LI = - H l  et : 

I 

d4xS1(<pin(x) ,  j ( x ) )  (15) 

Cette expression généralise l'équation (IX.85) que nous avions obtenue 
dans le cas du couplage à une source classique. I1 faut bien remarquer 
que les champs intervenant dans l'expression (15) sont les champs 
q in (x ) ,  et donc des champs libres. 
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Lorsque l’interaction 9, ( c p  ) dépend des dérivées, le moment 
conjugué de cp n’est pas simplement <p, et Hl  n’est pas égal à 
- L,. Un exemple d’une telle situation est l’électrodynamique des 
particules scalaires t2). Après un certain nombre d’intermédiaires 
compliqués, qui démontrent l’inadéquation de la quantification canoni- 
que à ce type de problème, on retombe sur l’équation (15). Ainsi que 
nous allons le voir au paragraphe E, la méthode des intégrales de 
chemin permet d’obtenir ce résultat sans difficulté. 

I1 est utile d’ajouter quelques commentaires à la formule (15) ; plaçons-nous 
par exemple dans le cas de la théorie en < p 4  (3.b), où l’équation (15) devient : 

I) S =  T(exp[ 2 j d 4 x : < p i ( x ) :  

Cette équation semble correcte à tous les points de vue : S est bien un 
opérateur unitaire, et l’expression (16) est manifestement invariante de Lorentz 
grâce à la covariance du produit-T. Cependant la démonstration qui précède est 
suspecte à cause du théorème de Haag, et de plus l’expression (16) n’est pas 
définie en raison des divergences de la série perturbative, qui sont une 
conséquence directe de l’impossibilité de multiplier deux champs au même 
point d’espace-temps. Afin d’examiner ce problème, développons (16) en 
puissances de g : 

m l  S = 1 + C - d4xl, ..., d4x, S,,(X,, ..., x,) 
“ = i n !  

Le terme d’ordre 2 de ce développement, S2(x1, x2), s’écrit par exemple : 

Cette expression sera a priori mal définie au point x1 = x2 (le produit normal 
définissant <p ‘(x) sans ambiguïté). I1 existe une méthode plus satisfaisante 
d’arriver à la relation (16), qui met bien le doigt sur l’ambiguïté de cette 
formule : c’est la construction de Bogolioubov. Cette construction utilise une 
constante de couplage dépendant du point x,  et prend pour point de départ les 
propriétés (i) d’invariance de Lorentz (ii) d’unitarité (iii) de causalité (c’est-à- 
dire l’impossibilité pour un événement se passant en un point d’espace-temps x 
d’influencer des événements qui se passent en dehors du cône futur de x). 
Partant de S , ( x )  = 3 : <p4(x) : , Bogolioubov montre que les S, peuvent être 

construits par récurrence, mis à part un terme antihermitique qui ne peut être 
+ O que lorsque les points xl, . . . , x, coïncident. Par exemple l’équation (17) est 
modifiée en : 

4! 
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où P est un polynôme du champ et de ses dérivées. La construction de 
Bogolioubov présente un grand intérêt mais comme elle n'entre pas dans la 
logique du présent exposé, je renvoie le lecteur au livre de Bogolioubov- 
Chirkov (chapitre III). 

A.2. Formule de Gell-Mann et Low 

La formule de Gell-Mann et Low que nous allons démontrer ci- 
dessous permet le calcul perturbatif des fonctions de Green 
G ( N  ) ( x i ,  . . . , x N )  définies par : 

G ( N ) ( X l ,  * * * , x N )  = (01 T ( V ( x l ) * * *  ' P ( x N ) ) I o )  (19) 

où les <p sont les champs en interaction et ( O )  l'état fondamental à zéro 
particule. Pour démontrer cette formule à partir de la définition (19), 
examinons d'abord le cas où les temps sont ordonnés de la façon 
suivante ( t i  = x o ) :  

où l'on a utilisé la loi de groupe (IX.61) pour U(t, ,  t2 ) .  Soit t u n  temps 
tel que t 9 t l  et - t -e t N  ; écrivons : 

u ( t N )  = u ( t N ,  - t )  u(- t )  ; u 

et insérons ces relations dans (20) : 

(O 1 T(  <P ( x  1 ) * * - <P ( x  N ) ) 1 0 )  = (O 1 ) 

Pour obtenir cette relation, on a utilisé I'expression (IX.69) de 
U I ( t 2 ,  ti) ainsi que l'égalité : 

i 
- i H l ( i ' )  di' - i  ~ l l Z f f l ( i ' ) d i '  - i H I  ( I I )  di' ) = T ( e  
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valable lorsque t ,  -= t -= t,, d’après la définition du produit-T : on notera 
que si A ( t )  = Il , l’égalité précédente est simplement la loi de groupe 
(IX.61). Grâce au produit-T, l’égalité (21) qui avait été démontrée pour 
un ordre particulier des temps devient valable pour tout ordre de 

Nous allons supposer que l’interaction 2’1 est <<branchée >> et 
<< débranchée >> adiabatiquement : Zl --+ e- ‘ 1  I Y17 E -+ O + .  Dans ces 
conditions lim U(-  t )  ( O )  = IOin),  où IOin) est le << vide perturbatif B 

annihilé par les ai,(k). Grâce à l’hypothèse adiabatique, 
lim U(t)lOin) = A IOin) ,  où A est un facteur de phase : 1 A I = 1 (*). 

On obtient donc : 

( t i ,  * a ’ >  tN). 

f + + m  

t + m  

et l’équation (21) devient (en supposant que 2Y1(cp) ne contient pas de 
dérivées) : 

Le facteur exp (- i jm c ( t r )  d t r )  s’élimine entre le numérateur et le 

dénominateur de (22) et peut donc être ignoré. Le dénominateur de 
(22) est l’élément de matrice vide-vide de la matrice S : (Oin I SI Oin) , et 
c’est, comme nous l’avons vu, un facteur de phase. 

La formule (22) est appelée formule de Gell-Mann et Low. Compte 
tenu des remarques sur la représentation interaction, des infinités 
possibles dans Z,  etc. la << démonstration >> qui précède n’a qu’une 
valeur purement heuristique. 

- m  

(*) I1 faut bien souligner la différence avec le cas de l’interaction avec une source 
classique, où des particules sont créées à partir du vide par interaction entre le champ et la 
source. 
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Il est facile de construire à partir de (22) une fonctionnelle génératrice 
des fonctions des Green. Définissons la fonctionnelle Z ( j )  par : 

z(i>= (oinlT(exp(iJ d4X(~<Pin (X) )+ j (X)  Pin(x>) l o i n >  * 

(23) 
1 )  

I1 est clair que G ( N )  s'obtient par différentiation fonctionnelle : 

et que Z ( j ) / Z ( O )  peut aussi s'écrire : 

z(i)/z(o) = (01 (exp(i j d 4 x j ( 4  m ) )  10). (25) 

On remarquera que le champ libre pi, intervient dans (23) et le champ 
cp dans (25). 

A.3. Développement perturbatif 

L'importance des formules (22) et (23) vient de ce qu'elles permettent 
d'obtenir le développement perturbatif des fonctions de Green. En 
effet, développant l'exponentielle dans le numérateur de (22), nous 
avons : 

x zi(qin(Yi)) ... ~~(qin(Yp)))lOin) * (26) 

Les valeurs moyennes sur le vide dans (22) peuvent être calculées à 
l'aide du théorème de Wick : comme on prend la valeur moyenne sur le 
vide, seul le dernier terme de l'équation (IX.86) donne une contribution 
non nulle. Mais ce terme a exactement la structure (V.13) d'une valeur 
moyenne calculée avec un poids gaussien. On pourra donc transposer 
les règles de Feynman établies au chapitre V à condition de faire deux 
modifications : 

(i) la contraction dans (V.13) doit être remplacée par celle de 
(IX.86), c'est-à-dire A,(yi - yj) ; 
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(ii) dans le cas du modèle en <p4  du chapitre V, le développement 
perturbatif provenait du développement de l'exponentielle : 

où p est l'ordre de la théorie des perturbations. A chaque vertex 
correspondait un facteur - g. Dans le cas présent, si le lagrangien est 
donné par (3.a), le terme d'ordre p du développement perturbatif fait 
intervenir un facteur (- i gy ,  et à chaque vertex correspondra un 
facteur - ig. 

Le développement perturbatif du dénominateur de (22) donne les 
diagrammes vide-vide, où les vertex ne sont reliés à aucun point 
externe. Ils jouent le même rôle que ceux du développement de 
Z ( 0 )  dans (V.16) (d'où la terminologie introduite au chapitre V). Pour 
tenir compte du dénominateur, il suffira donc, comme au chapitre V, 
d'éliminer tous les diagrammes contenant une partie vide-vide. On peut 
énoncer les règles de Feynman pour G (N) dans l'espace des x , à l'ordre p 
de la théorie des perturbations : 

(i) Tracer tous les diagrammes topologiquement inéquivalents avec 
N points externes xl, ... , x N ,  et p vertex yl, ... , y p  ne contenant pas de 
partie vide-vide. Si l'interaction est écrite sous forme d'un produit 
normal, certains diagrammes sont absents (cf. (IX.88)). Par exemple la 
contribution à G(2) du diagramme de la figure 1 ne doit pas être 
décomptée dans le cas du lagrangien (3.b) : 

YI 

Figure 1. Graphe (tadpole) éliminé par le produit normal. 

(ii) Associer à chaque ligne du diagramme un facteur AF(x - y )  

(iii) Associer à chaque vertex un facteur - ig. 
(iv) Intégrer sur tous les points internes yi. 
(v) Multiplier par le facteur de symétrie du diagramme. 
La discussion du chapitre V sur les fonctions de corrélation connexes 

et sur les vertex propres se transpose immédiatement aux fonctions de 
Green. Les fonctions de Green connexes G!N) seront définies à partir 

(= M Y  - x > > .  
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du logarithme de Z ( j )  : Z ( j )  = exp(W(j)) et les vertex propres à partir 
de la fonctionnelle génératrice r(ÿi) : 

i T ( g )  = W ( j )  - i d4x j (x)  q (x )  s 
g(x)  = - i ôW(j) /ôj(x) .  

Le vertex propre r(') sera donné, à un facteur i près, par l'inverse du 
propagateur : 

r ( 2 ) ( k )  = i[C(')(k)]-' = k 2 -  m2- 2 ( k )  (27.a) 

où ~ ( k )  est l'énergie propre. Les vertex propres W),  N > 2 seront 
reliés aux fonctions de Green connexes, 1-particule irréductibles, 
amputées de leurs propagateurs externes complets, ci") I l-pI (remarquez 

que les fonctions de Green G:") ne sont pas nécessairement 1-PI, et 
diffèrent en général des vertex propres) : 

les transformées de Fourier étant définies par (cf. V.23) : 

(2 7 ~ ) ~  ô (')( ki) GCN)(kl, ..., k , )  = 
, = I  

Avec cette définition, tous les moments k, entrent dans le diagramme 
(paragraphe C.3). Les règles de Feynman, par exemple pour les vertex 
propres ï ( , ) ( k i ) ,  seront données par : 

(i) Tracer tous les diagrammes 1-particule irréductibles d'ordre p 
avec N 4-moments externes k, ,  ..., k N  entrant dans le diagramme. 

(ii) Associer à chaque ligne interne du diagramme un facteur 
i/(k2 - m2 + i E ) .  

(iii) Associer à chaque vertex un facteur (- ig). 
(iv) Ecrire les moments internes en assurant la conservation du 4- 

moment à chaque vertex, et intégrer sur toutes les variables indépen- 
dantes q,  c'est-à-dire sur toutes les boucles, avec une mesure 

(v) Multiplier par le facteur de symétrie du graphe et par un facteur 
d4q/ ( 2  )4. 

global (- i )  (cf. 27.c). 
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rh2)(k2  = m2) = O 

A.4. Renormalisation et conditions de normalisation 

(29.a) 

Les fonctions de Green définies par les règles de Feynman précédcn- 
tes sont en général divergentes en dimension 4. Comme dans la seconde 
partie, il sera nécessaire de renormaliser la théorie. I1 faudra donc se 
fixer des conditions de normalisation, analogues à (VI.22) ou (VI.33). 
En théorie quantique des champs on utilise souvent (mais ce n'est 
évidemment pas une obligation) la renormalisation sur couche de masse, 
en exigeant que le propagateur renormalisé ait un pôle à k 2  = m2, où 
m2 est la masse physique de la particule (*), et que ce pôle ait un 
résidu i : ainsi ce propagateur est-il le plus voisin possible du propaga- 
teur libre i / ( k 2  - m2 + i E )  près du pôle k 2  = m2. Les conditions de 
normalisation sur couche de masse seront : 

I rf ' (ki  = O )  = - 9 I 
(29.b) 

(29.c) 

Dans le cas de la masse nulle, l'existence de singularités pour 
k: 3 O conduit à choisir un point de soustraction du genre espace (cf. 
équation (VI.34)) : 

(30) k i . k i  s p = - - ~ ' 2 ( 4 8 ~ ~ - 1 ) ;  1 ki 2 3  = - -  
1 4  4 p  

et les conditions (VI.33) deviennent : 

(31.a) 

(31.b) 

(31.c) 

(*) En général la masse renormalisée mi n'est pas égale à la masse physique 
m', mais en diffère par une renormalisation finie (par exemple si l'on utilise la condition 
de normalisation r f f ' (k2  = O )  = mi).  Naturellement on doit avoir dans tous les cas 
r f ) ( k 2  = m2) = O. Dans la renormalisation sur couche de masse, m2 = mi. 
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B. INTÉGRALE DE CHEMIN ET THÉORIE EUCLIDIENNE 

B.l.  Intégrale de chemin pour 20’) 

Grâcc au théorème de Wick, nous avons pu identifier dans le 
développement pcrturbatif des fonctions de Green le résultat d’une 
intégrale gaussienne. I1 doit donc être possible d’écrire la fonctionnelle 
génératrice (23) des fonctions de Green sous forme d’une intégrale de 
chemin. Remarquons d’abord que Z ( j )  peut s’écrire, dans la mesure où 
l’on n’utilise pas le produit normal (cf. V.22) : 

6 ~ ( j )  = ~ t ’  exp ( i  1 d4x y1 (- i - ) ) x Fi (x ) 
x exp (-; 1 d4x d4xf j ( x )  A,(x - x r ) j ( x f ) )  (32) 

où JV est une constante multiplicative qui ne joue aucun rôle dans le 
calcul des fonctions de Green ; il est instructif de vérifier les facteurs (i) 
par exemple dans le cas du lagrangien (3.a). Mais la deuxième 
exponentielle de (32) peut être obtenue par une intégration gaussienne : 

exp (-; 1 d4x d4xf j ( x )  A,(x - x’) j ( x f )  = JVf  
s g w x  

x exp( - j d4x( 1 2 cp[i(O + m 2 - i e ) ]  cp - ij(x) p.,>) = 

(33) 

Une intégration par parties (cf. les remarques suivant l’équa- 
tion (IX.3la)) permet d’identifier 2 Y o ( x )  dans (33) et dans (1). L’inté- 
grale sur cp dans (33) est une intégrale gaussienne, qui fait intervenir 
i’inverse de l’opérateur : 

i ( 0  + m 2 -  ic)  

que l’on peut noter symboliquement [i(O + m2 - i&)]-l. Mais cet 
inverse n’est autre que A, étant donné que (cf. (IX.54)) : 

[i(n, + m2 - ic )I A,(X - x ) = 6 ( 4 ) ( ~  - x . 
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On peut aussi raisonner dans l’espace de Fourier : 

~ , ( k )  = i/(k2 + m2- i s )  ; i ( u  + m2 - iE) + - i(k2 - m2 - iE) . 
On remarquera que le facteur ( - i s )  assure la convergence de 
l’intégrale gaussienne (33) : en l’absence de ce facteur, le comportement 
de l’intégrand serait oscillant à la limite cp + 2 00. On peut finalement 
mettre (32) sous la forme : 

= N” 9cp exp (i(Action/h)) s (34) 

où la partie gaussienne Y0(q) s’identifie au lagrangien libre. I1 faut 
remarquer un abus manifeste dans les notations: dans (33) et (34) 
cp (x) désigne une configuration de champ classique et non un opérateur. 
I1 faudrait utiliser dans (33) et (34) une notation différente, par exemple 
A (x ). Cependant cet abus de notations est de règle dans la littérature, 
et nous nous conformerons à l’usage. Les formes (23), (32) et (34) pour 
Z( j  ) diffèrent par des constantes multiplicatives qui peuvent être 
ignorées car elles disparaissent dans le calcul des fonctions de Green 
(cf. équation (24)). 

Le fait que l’on puisse obtenir Z ( j )  dans (23) comme une intégrale de 
chemin n’est évidemment pas un hasard. En effet nous avions montré 
au chapitre VIII, paragraphe B qu’une amplitude de probabilité en 
mécanique quantique pouvait s’écrire comme une intégrale de chemin, 
c’est-à-dire comme une somme sur toutes les configurations q ( t )  
vérifiant certaines conditions initiales et finales, et nous en avions 
déduit une fonctionnelle génératrice des valeurs moyennes sur le vide 
des produits-T (équations (V111.37)). Dans le cas présent la variable 
dynamique n’est pas la position q ,  mais le champ cp, et il n’est pas 
surprenant que la fonctionnelle génératrice des valeurs moyennes sur le 
vide des produits- T puisse s’écrire comme une somme sur les configura- 
tions de champs. La seule ambiguïté dans la formulation fonctionnelle 
provient du choix de l’inverse de l’opérateur (O + m2). Comme au 
chapitre VIII, il est possible de justifier la prescription m2 .+ m2 - ie. 
Dans l’exposé que j’ai suivi, cette prescription est bien évidemment 
conséquence de la formulation canonique. 

Cela dit, étant donné un lagrangien classique Y ( x ) ,  on peut décider 
de le quantifier en écrivant la fonctionnelle génératrice (34), au lieu de 
passer par le formalisme canonique. Compte tenu des incertitudes du 
formalisme canonique (représentation interaction), cette façon de 
procéder est a priori tout aussi valable. I1 conviendra toutefois de 
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remarquer que (34) suppose que l’on utilise une régularisation dans une 
étape intermédiaire, et que l’on vérifie les propriétés de localité et 
d’unitarité de la matrice S de la théorie quantique obtenue par cette 
méthode. En dernière analyse, la meilleure façon de procéder serait 
peut-être de se donner les règles de Feynman, puisqu’après tout la 
renormalisation procède ordre par ordre en théorie des perturbations, 
et qu’il faut bien avoir à sa disposition un développement perturbatif. 

Les formulations fonctionnelles (32) ou (34) suggèrent qu’il doit 
exister une relation très précise entre les fonctions de Green du présent 
chapitre et les fonctions de corrélation du chapitre V, qui sont aussi 
appelées - pour des raisons qui deviendront évidentes dans un 
moment - fonctions de Green de la théorie euclidienne. Cette relation 
est indépendante du développement perturbatif. Cependant nous allons 
dans un premier temps utiliser ce développement, ce qui permettra au 
passage d’examiner le calcul pratique des fonctions de Green. Commen- 
çons par un exemple simple, celui de r(4) dans le cadre du modèle 
< p 4  (3.b) au premier ordre non trivial de la théorie des perturbations. 

B.2. r(4) au deuxième ordre en g. Rotation de Wick 

Calculons la contribution fi(4) du graphe de la figure 2 à r(4): 

Figure 2. Contribution d’ordre g’ à r(”. 

avec k = kl + k2. Comme l’intégrale est divergente en dimension 4, j’ai 
utilisé une régularisation dimensionnelle (D est toujours la dimension 
de l’espace-temps, l’espace ordinaire a dimension D - 1). Pour calculer 
(35), nous allons suivre à nouveau la méthode des paramètres de 
Feynman, en indiquant les différences entre le présent calcul et celui du 
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chapitre V. Nous obtenons d’abord 

- (36) (i >2 
(2 T )D [q2 + x (1 - x ) k 2  - m2 + i~ ] ’  

Supposons k2 -= O : k2 = - k i .  C’est ce qui se passerait par exemple 
pour ko = O 

k 2 = - k 2 = - k 2  1 - * - . - k , - 1  2 =-k$. 

L‘intégrale sur qo présente alors des pôles à 

q o = f  (m2+q2+X(1-X)ki )1’2  

et la prescrition pour contourner ces pôles est parfaitement définie car 
m2 est en réalité m2 - ie. On peut déformer le contour en évitant les 
pôles et intégrer sur l’axe imaginaire - CO -C Im qo -= + 00 en posant 
qo = iq, (figure 3) : 

où dDq, = dq, dq, ... dq,-,. Au facteur (- i )  près, cette expression 
coïncide avec celle que nous avions obtenue au chapitre V. La 
déformation du contour d’intégration, qui est une rotation de 

Figure 3. La rotation de Wick 
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A2 est appelée rotation de Wick. Enfin l'indice E dans 9~ est une abrévia- 
tion pour << euclidien B : en effet, pour D = 4, la métrique dans 

q E = 4 : + 4 2 2 + d + d  

est une métrique euclidienne, alors que la métrique originale était celle 
de Minkowski : 

q2 = q;- 4; -  4;- q;. 

Lorsque k2 = - k i  -= O, on dit que la fonction de Green est calculée 
dans la région euclidienne. Rassemblant tous les facteurs (i), on 
constate que : 

r ( 4 ) ( k 2  = - kg < O )  = - rf)(kg)  (38) 

où @(k;) est le vertex propre calculé au chapitre V, que nous 
appellerons désormais vertex propre de la théorie euclidienne. 

Terminons le calcul de r(4) : 

Ainsi que nous le savions déjà, cette expression diverge pour 
D = 4, c'est-à-dire pour E = 4 - D = O. En utilisant 
x -  E / 2  = 1 - ~ / 2  In x l'expression (39) devient 

f ( c t e )  f o(E2)] (40) 

et le terme divergent en l / ~  est éliminé par la renormalisation. En 
choisissant par exemple la condition de renormalisation (29.c) on 
obtient pour la fonction de Green renormalisée : 

Le logarithme est bien défini pour k2 < 4 m2, et en particulier il est 
bien défini dans la région euclidienne. Mais FA4) présente une coupure 
pour k2  3 4 m 2, dont l'origine physique sera examinée au paragraphe D. 

B.3. Relation avec la théorie euclidienne 

Pour traiter le cas général d'un vertex propre à N lignes externes 
r(N),  à l'ordre V de la théorie des perturbations, on procèdera en suivant la 
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méthode exposée au chapitre V ; on partira de la représentation de Schwinger 
du propagateur : 

(42) 
i da e i a @ Z - m Z + i c )  

où le facteur ie assure la convergence de l'intégrale. I1 est inutile de répéter le 
calcul du chapitre V, paragraphe E.3 et on peut se contenter de suivre à la trace 
des facteurs (i). Ces facteurs (i) proviennent des deux intégrales suivantes 
(exercice 1) : 

et 

En suivant le calcul du chapitre V on note : 

- un facteur (i e-inD/4)1 provenant des Z intégrations sur les p i  ; 
- un facteur (i e-i"D/4)v-' provenant de l'intégrale sur les (V - 1) 

variables z ; 
in - 1 ( I  - L D / 2 )  

- un facteur e provenant de l'intégrale sur la variable d'homogé- 
néité A (passage de (V.61) à (V.62)) ; 
soit un facteur global (- i)'-', On obtient donc pour l'intégrale J : 

où la matrice A est identique à celle de (V.60). Définissons maintenant la région 
euclidienne : les moments ki appartiennent à cette région si pour tout choix de 
A i  réels l'inégalité : 

est vérifiée. Dans cette région, toutes les combinaisons linéaires de ki sont 
orthogonales à un vecteur de genre temps, qui, dans un référentiel convenable, 
a pour composantes (1, O, O, O). Dans un tel référentiel, les composantes de 
temps des ki sont nulles (ki, = O )  et : 

k . k ' =  - k . k ' =  - ( k  1 k + k2 kS + k, kj) 

On peut associer à chaque ki un vecteur ki, d'un espace euclidien à 
4 dimensions tel que ki, = O dans un référentiel particulier, avec : 

kE* kÉ =z k -  k' . 
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Le terme k r A - ’ k  dans (45) devient - k: A-’k ,  (rappelons que 
k: A-’  k, 3 O car A est une matrice positive). Tenant compte du facteur (i) 
provenant de la substitution - g -+ - ig, du facteur (- i )  dans la définition de 
r (N)  (cf. 27.c) et du (- 1) dans la définition de rhN), on obtient, dans la région 
euclidienne, l’identification (remarquez que notre définition des r (N) coïncide 
avec celle d’Itzykson-Zuber, mais les riN) diffèrent d’un facteur (- 1)) : 

r ( N ) ( k i )  1 E = - riN)(kiE) . (46) 

Le passage des r(N) aux fonctions de Green connexes GCN) fait 

intervenir un produit de propagateurs externes : n G(2)(k,) dans le cas 

de Minskowski, JJ GL2)(kjE) dans le cas euclidien ; comme 

G(2)(k) I E = - iGf)(kE), tenant compte du facteur (- i ) de (27.c) ainsi 
que du (- 1) dans la définition de rhN), on trouve pour les fonctions de 
Green connexes : 

N 

j = l  
N 

j = l  

GCN)(ki)IE = i(- i)N GC,y(ki,E). (47) 

Comme les fonctions de corrélation G;,y(kE) sont calculables à partir 
de l’intégrale fonctionnelle : 

ainsi que nous l’avons vu en détail dans les deux premières parties, nous 
aurions pu établir (46) et (47) directement en comparant les expressions 
(34) et (48), sans passer par le développement perturbatif. En effet 
H ( x )  n’est autre que le prolongement pour t + - iT de 9 ( x )  : 

Ceci généralise ce que nous avions vu au chapitre VI11 dans le cas 
d’un degré de liberté : le prolongement euclidien t + - iT permettait de 
passer d’un problème de mécanique quantique à un problème de 
mécanique statistique à 1 dimension. Ici nous voyons qu’un problème 
de théorie quantique des champs dans un espace-temps à D dimensions 
se prolonge analytiquement en un problème de mécanique statistique 
dans un espace à D dimensions. Le << hamiltonien n Yt? (x) des deux 
premières parties du livre doit donc être considéré comme le prolonge- 
ment euclidien 9 E ( x )  du Zugrungien 9 (x) d’une théorie quantique des 
champs. C’est pourquoi on rencontre fréquemment la notation 



408 Fonctions de Green et matrice S X.B.4 

LYE(x) au lieu de X ( x ) .  Des relations telles que (46) ou (47) peuvent 
être déduites de formules généralisant (VIII.57). I1 suffit d'ailleurs de 
considérer la composante de temps, puisque c'est la seule à être affectée 
par le prolongement euclidien. 

Notons enfin que la prescription in2 -+ rn2 - ie peut être obtenue par 
le << postulat d'euclidicité B : par définition les fonctions de Green de la 
théorie quantique sont obtenues par prolongement analytique 7 -+ it à 
partir des fonctions de corrélation de la théorie euclidienne. 

B.4. Equations du mouvement 

Comme application de la formulation fonctionnelle, nous allons 
démontrer des équations du mouvement pour les fonctions de Green. 
Effectuons dans la fonctionnelle génératrice (34) le changement de 
variables : 

cp(x> -+ <P 6) + Ef(X) 

où E 4 O et f (x )  est une fonction arbitraire. Comme 9 q  est invariant 
dans cette translation, la valeur de Z ( j )  est inchangée, et développant a 
l'ordre E, on obtient : 

Comme la fonction f est arbitraire, nous en déduisons : 

Les équations du mouvement recherchées se démontrent en dérivant 
par rapport à j et en posant j = O ; dérivant une fois, l'on trouve : 

Prenant comme exemple le lagrangien (l), cette équation devient (si 
V (cp ) ne dépend pas des dérivées de q) : 

[ .W)l-l  j 9 P  eiS"P'(cp(x)[(q +m2> ' p ( Y )  + V ' ( d Y ) ) l }  + 

+ is (4)(x - y )  = O . 
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Le résultat s’exprime aussi sous forme d’un produit- T ,  en remarquant 
que l’on peut sortir les dérivations par rapport à y de l’intégration 
fonctionnelle : 

Bien que S S / S < p ( y )  = O au niveau classique, on notera que 

qui est équivalent au membre de gauche de ( S O ) ,  n’est pas nul. La 
fonction 6 (4)(x - y )  vient évidemment de ce que l’opérateur de Klein- 
Gordon (Oy +m2)  ne «commute pas» avec le produit-T (cf. exer- 
cice IX.8). Cette remarque permettrait bien sûr de donner une démons- 
tration directe de l’équation (50). Retenons de cette discussion le point 
important suivant : supposons que l’on ait obtenu une certaine identité 
à l’aide du formalisme fonctionnel ; lorsque l’on écrit cette identité en 
termes de valeur moyenne sur le vide de produits-T, il faut faire passer 
les opérations de dérivation à l‘extérieur du produit-T. 

En dérivant N fois l’équation (49) on obtient l’équation du mouve- 
ment générale : 

( D y  + m 2 )  G(N+l’(y,X1, . . . > x N )  + 
+ (01 T ( V ‘ ( V ( Y ) )  V ( X l ) . * .  ‘ P ( X N ) ) I O )  = 

N 
= - i 6(4)(y  - x , )  G ( N  ..., x ,  - 1, x ,  + 1 ,  ..., x N )  , (51) 

J = 1  

C. SECTIONS EFFICACES ET MATRICE S 

La dynamique des particules élémentaires est accessible par l’observa- 
tion de désintégrations de particules, et surtout par l’observation des 
collisions de particules dans les accélérateurs. Dans ce dernier cas, les 
quantités mesurables sont les sections efficaces, et il nous faut d’abord 
relier ces sections efficaces aux éléments de matrice S .  II faudra ensuite 
relier les éléments de matrice S aux fonctions de Green, que nous avons 
appris à calculer, au moins en théorie des perturbations. Cette relation 
est établie grâce aux << formules de réduction », mais le formalisme 
nécessaire à la démonstration de ces formules est assez lourd, particuliè- 
rement dans le cas de particules de spin # O ,  et je commencerai par 
utiliser une méthode moins rigoureuse, mais plus intuitive. On définit 
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en général la matrice T,  qui contient la partie non triviale de la matrice 
S ,  par la relation suivante pour les éléments de matrice i + f : 

où Ki (Kf)  est le quadri-moment de l’état initial (final). 

C.l .  Sections efficaces 

Dans ce calcul il est important de noter la normalisation des états : si 
1 k)  = a t  (k)10), la relation d’orthonormalisation est, d’après (IX.41) : 

(k’lk) = (2 7 ~ ) ~  2 wk ô(3)(k - k‘ )  

et la relation de fermeture, dans le sous-espace à une particule de 
l’espace de Fock s’écrit : 

Partons d’un état initial formé de deux paquets d’ondes : 

l i ,  in) = dk, dk2 f l (k l )  f2(k2)lk1, kz, in) s 
où : 

A chaque paquet d’ondes correspond une solution d’énergie positive 
de l’équation de Klein-Gordon : 

f ( x )  = j dke-’kxf(k)  (53)  

le produit scalaire étant défini par (cf. IX.38) : 
c 

La probabilité de transition 

wji  = I (f ,  out J i ,  in) l 2  
est donnée en fonction de l’élément de matrice T : (f I TI kl, k,) par 
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Si le moment du paquet d’ondes est bien défini, f ( k i )  est piqué au 
voisinage de ki = ici. Nous supposerons que l’élément de matrice varie 
peu au voisinage de (kl, k2) : 

Transformons une des fonctions 6 dans (54) : 

et effectuons l’intégration sur les ki ,  ki en faisant l’approximation (55) : 

wfi est une probabilité de transition intégrée sur l’espace et le temps : 
c’est l’intégrale d’une probabilité de transition par unité de volume et 
de temps : 

Mais si le moment du paquet d’ondes est bien défini on doit avoir : 

f ( x )  = e -  i s . x  F ( x )  

où F ( x )  est une fonction lentement variable, car le paquet d’ondes est 
étendu. Dans ce cas: 

Supposons que la particule 1 soit la particule incidente, et la particule 2 
la particule cible, immobile dans le référentiel du laboratoire. Le 
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nombre de particules cibles par unité de volume est : 

(58) dn2 2 
= 2 wzlfz(x)l 

(en utilisant la notation abrégée : w 2  = wkz), et comme la particule 
cible est au repos, w 2  = m2. Le flux de particules incidentes est : 

(59) 

Reste à utiliser la définition de la section efficace : 

d u  = fi dw d@ 
dV dt (Flux) (densité de cible ) 

où d@ est l’espace de phase, pour obtenir, à partir de (57), ( 9 )  : 

Le << facteur de flux >> m2 Ilk, 1) = F peut s’écrire sous forme invariante 
de Lorentz: 

Si l’on veut calculer la section efficace d’observation des N particules 
finales de moments (ki, ... , kk)  dans une certaine région de l’espace de 
phase, il faudra intégrer avec la mesure d’intégration : 

Nous écrirons donc le résultat final pour d u  sous la forme : 

N 

où Kf = 

dans l’état final mi particules identiques de type (i). 

k; et Y est un facteur statistique égal à fl ( l /mi  !), s’il y a 

Un calcul analogue (exercice 3) montre que le taux de désintégration 

1 = l  1 
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d'une particule d'énergie w, qui donne N particules finales k;, ..., kN 
est : 

C.2. Application: 2 particules --+ 2 particules 

Afin d'illustrer le résultat (62),  appliquons-le au cas d'une réaction 
2 particules -+ 2 particules : 

kl + k2 -+ ki + kS 
en calculant la section efficace dv/df2 dans le référentiel du centre de 
masse. A cause de l'invariance par rotation autour de kl,  la section 
efficace ne dépend évidemment pas de l'angle azimuthal q, mais 
seulement de l'angle polaire 8 (figure 4). 

/ 
/ 

4 

ki 

Figure 4. Cinématique à deux particules. 

Plaçons-nous dans le référentiel du centre dc masse avec : 

kl = ( ~ 1 ,  k )  ; kz = ( 0 2 ,  - k ) ;  s = E2 = ( k i t  k2)2. 

Un calcul cinématique simple (exercice 2) donne : 

F = Jsllkll . 
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Evaluons maintenant l'espace de phase d@ (') à 2 particules : 

L'intégration sur d3k; est immédiate ; après cette intégration il reste une 
fonction 6 et : 

d3k' 6 ( E  - w i  - m i )  = kf2  d k ' d o  6 ( E  - w ;  - m i )  s s 
où 0 est l'angle solide et où l'on a utilisé : 

L'espace de phase d@ (2) vaut donc : 

Reportant (64) et (65) dans (62) on obtient l'expression de d u / d o  : 

C.3. Calcul d'un element de matrice S 

Avant de démontrer la relation générale entre les éléments de 
matrice S (ou T )  et les fonctions de Green, nous allons expliquer sur un 
exemple simple comment on peut calculer perturbativement ces élé- 
ments de matrice. Nous aurons besoin du théorème de Wick pour les 
produits d'opérateurs ( c p  (xl) ... cp (xN)) ; le résultat est très simple : il 
suffit de reprendre l'équation (1x36) et de remplacer dans le membre 
de droite les contractions b ( X 4 ( x 2 )  par : 

Cp(x1)<p(x2) = (0lcp(xl)cp(x2)p) 
U 

où l'indice << in >> a été omis ; cpi,(x) + cp (x). On obtient par exemple 
dans le cas du produit de deux champs : 

cph) 'p(x2) = : 'p(X1)  cp(x2): + < P ( x , )  'p(x2) - 
U 
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La démonstration de ce théorème est élémentaire et est proposée à 
l’exercice 4. Essayons de calculer au deuxième ordre des perturbations 
l’élément de matrice S pour le processus : 

dans le cadre de la théorie décrite par le lagrangien (3.b). 
Le développement au deuxième ordre de (16) est : 

- i g  2 
S , ( X l , X )  = ( 7 ) T ( :  (P4(x‘>: : cp4(x) : ) .  

La première réaction pour évaluer S f i  est d’écrire l’élément de 
matrice : 

Cette expression est correcte à cet ordre de la théorie des perturba- 
tions, mais on doit en général tenir compte d’un facteur multiplicatif 
que nous déterminerons plus loin, et que nous ignorons pour le 
moment. Pour évaluer S,  on développe (67) à l’aide du théorème de 
Wick : 

1 - T ( :  cp4(x): : ‘p4(x‘)) = 
(4! )2 

où les facteurs tels que 1/8 sont évidemment reliés aux facteurs de 
symétrie. On peut maintenant appliquer le théorème de Wick pour les 
produits d’opérateurs afin d’évaluer la valeur moyenne sur le vide dans 
(68). Les seuls termes non nuls sont ceux qui contiennent uniquement 
des contractions. De plus une contraction comme a(k;) a t  (k,) donne 
un facteur 6 (3)(k1 - ki), c’est-à-dire une particule sc propageant sans 
interactions (figure 5 ) .  

Un tel terme correspond à un diagramme non connexe pour la 
matrice S.  Nous cherchons à calculer les termes connexes et dans ce cas 
nous voyons que tous les opérateurs << extérieurs >> a et u t  doivent être 
contractés avec des opérateurs << intérieurs D cp ( x ’ ) ,  cp (x  ). Seul le 
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Figure 5. Diagramme non connexe pour la diffusion 2 + 2. 

troisième terme de (69) contribue aux éléments de matrice S connexes, 
grâce aux contractions du type : 

n ? ( k a  v(x')$ki) y'")( 'p(x') p ( q + ( k l )  p W ' ( k 2 )  

que l'on pourra représenter par le graphe de la figure 6 : 

Figure 6. Une contribution à la diffusion 2 + 2. 

I1 y a quatre possibilités pour construire ce graphe, d'où le facteur de 
symétrie usuel 4 x 1/8 = 1/2, et de plus on peut obtenir trois autres 
graphes par permutation des lignes externes ; la permutation de x et 
x' compense le 1/2 ! du développement de l'exponentielle. 

Le calcul des contractions a(k)  <p (x) est immédiat à partir de la 
représentation de Fourier (IX.40) de q ( x )  et de la relation de 
commutation (IX.41) qui implique : 

(Ola(k)at(k')lO) = (2 ? T ) ~  2 wk 6(3)(k - k ' )  

et l'on trouve : 

a ( k ) q ( x ) = e i k x ;  U q ( x ) a i ( k ) = e - i k x .  U (70) 

L'élément de matrice S au deuxième ordre de la théorie des 
perturbations sera : 

(kL k i J S J k ,  kz) = 
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Si nous comparons ce résultat à celui du calcul d’une fonction de Green 
connexe à 4 points G C ( ~ ) ( X ~ ,  x2, x3, x4) ,  nous constatons que les propaga- 
teurs externes comme A,(xl - x ) ont été remplacés par des exponentiel- 
les : exp (- ikx) pour une particule entrante, exp (ikx) pour une particule 
sortante (*) : les éléments de matrice S sont donc des transformées de 
Fourier de fonctions de Green G ,  amputées de leurs propagateurs 
externes AF(xl -y i ) ,  ou dans l’espace de Fourier, des fonctions de 
Green amputées des facteurs i/(k2 - m2) ; de plus les lignes externes 
sont << sur couche de masse B : k? = ki2 = m ’, kio, kio z O. I1 faut 
prendre garde au fait qu’une telle fonction de Green n’est pas un vertex 
propre, car elle n’est pas en général 1-particule irréductible : elle peut 
comprendre en particulier des insertions d’énergie propre sur les lignes 
externes (cf. figure 7). Donnons maintenant une démonstration plus 
complète , en établissant les formules de réduction. 

Figure 7. 

C.4. Formules de reduction 

Pour démontrer les formules de réduction, nous pourrions partir de 
la relation (6) (cf. cours de Bros), mais il est plus simple, quoique moins 
rigoureux, de suivre le formalisme original de Lehmann, Symanzik et 
Zimmermann (LSZ) en utilisant la condition asymptotique (7) : 

lim cp (x) = 2:” cpi,(x) ; lim cp (x) = 2;” cpout(x) . (72) 
1 + - m  f - + O 3  

Afin d’alléger les notations, contentons-nous d’étudier une diffusion 2 parti- 
cules + 2 particules. L e  calcul est fait en utilisant la représentation de 

(*) Dans (70) et (71), exp(ikn) = exp(io, t - ik . x )  : les exponentielles contiennent 
implicitement un facteur e ( k o )  et k2  = mz. 
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Heisenberg, où les états sont indépendants du temps, et l'élément de matrice S 
est donné par (cf. 5.a) : 

S f i  = (ki, ki out lkl, k2in) = (k; kS, out la,',(ki)lk2) (73) 

(l'état à une particule étant stable, Ik, out) = Ik, in) = Ik)).  Utilisons 
l'expression de aitn(kl) : 

qui s'obtient aisément par comparaison avec (IX.20.b), ainsi que (72) 

S j j  = iim - iZyin j l  d3x e-ik1x 20 (k; k;, out I (P ( x  ) 1 k2) . 
r - - m  

Comme : 

1 - m  l - i - c c  

Le premier terme de (75) est un terme disconnecté, contenant par exemple 
une fonction 6 (3)(k1 - ki), et nous allons l'ignorer. Effectuons dans le second 
terme des intégrations par parties (en toute rigueur il faudrait travailler avec des 
paquets d'ondes, et non des ondes planes, ce qui justifie les intégrations par 
parties dans l'espace) : 

d4x[ (V2 - m') e-ik1X] (... 1 (O ( x ) l  ...) = s 
et (75) devient : 

S,, = Disc. + iZ, (0,+m2)(k;,k;outI<p(X)[k2) . (76) d4x e- ikl s 
On continue l'opération en transformant I'élément de matrice dans (76) : 
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Comme t ’  = x0 + 00, on peut remplacer cp(x‘ )  q(x) par un produit-T: 
T(<p (x’) <P (x)). I1 suffit de répéter les manipulations précédentes pour 
obtenir : 

(kij ki out I <P (x) I k2) = (k; I CP (x) ai”@;) Ik2) + 

(Qf+m2)(k;IT(cp(X’) <P(x))lkz) (77) + iz; 112 d4x, eikix’ s 
où le premier terme est un terme non connexe. I1 est clair que l’on peut 
continuer l’opération pour les particules k, et k; et obtenir pour l’élément de 
matrice S connexe (parce qu’il y a seulement deux particules initiales) une 
valeur moyenne sur le vide : 

Sf, I conncxe - - (i)4(Z;’”)4 j d4x1 d4x,d4x; d4x; x 

- i ( k l x l + k 2 x 2 )  e i ( k i x i + k i x i )  x e  (Qi + m2)(Ox5 + m2> 

x (~, ,+m2)(~X2+m2)(OIS(<P(Xi)<P(XZ)<P(X;)  ‘p(x;))Io) . (78) 

I1 est clair également que cette formule se généralise à un élément de 
matrice S quelconque avec les règles suivantes : 
- un facteur iZy ln eëikx(Ox + m2) est associé à chaque particule 

entrante, 
- un facteur iZT 112 eik’x’(Oxt + m2) est associé à chaque particule 

sortante. 
La valeur moyenne sur le vide dans (78) est une fonction de Green, et 

le facteur i(0, + rn 2, correspond à l’amputation d’un propagateur 
externe AF ; dans l’espace de Fourier ce facteur vaut - i(k2 - m2). La 
règle générale pour l’élément de matrice S connexe (k; ... k;, 
out Jk ,  ... kN, in ) c  sera finalement (pour éviter toute ambiguïté, j’écris 
explicitement les facteurs 8 ( k o )  implicites dans les équations qui 
précèdent) : 

(k; ... khoutlk,  ... k, in)c = 

(79) 

Le signe (- ) pour les particules finales tient compte du fait qu’avec nos 
conventions (cf. équation (28)), tous les moments sont supposés entrer 
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dans le diagramme, alors que pour les particules sortantes k‘ est un 
moment sortant du diagramme. 

C.5. Matrice S et fonctions de Green renormaïies 

I1 reste à faire le lien entre le facteur Z 3  apparaissant dans la formule 
de réduction (79) et la constante de renormalisation Z3 introduite au 
chapitre VI. Examinons d’abord l’élément de matrice du champ 
Q (x) entre le vide et l’état à une particule I k) (rappelons que par un 
choix de phases convenable, 1 kin) = I k,,,) = 1 k) ), en utilisant l’opéra- 
teur d’énergie-moment P p ,  qui est aussi le générateur des translations 
d’espace-temps : 

(01 Q ( X ) \ k )  = (01 eiPx ~ ( 0 )  eëiPx (k)  = (Cte)e-’” (80) 
tandis que : 

(01 qin(x)lk) = e-ikx. 

En prenant la limite t + - 00, et grâce à la condition asymptotique 
(72), on constate que la constante dans (80) doit être égale à 
2:” ; prenant la limite t + + 00, on montre que iim (x) = 

Z:‘2 qout(x), ce qui avait été admis sans démonstration précédemment. 
Supposons maintenant que nous essayons de calculer une expression du 
propagateur complet G(2)(x - y )  en isolant la contribution de l’état à 
1 particule : 

t e 0 3  

où C désigne une somme sur un système complet d’états, à l’exclusion 

des états à une particule (et du vide). 
Dans le premier crochet, nous pouvons utiliser l’expression (80) avec 

(Cte) = 2:” pour évaluer l’élément de matrice ; le premier crochet 

n 
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n’est autre que Z3 AF(x  - y ; m2) : si nous avions utilisé un champ 
libre, seul l’état à une particule pourrait donner une contribution. On 
obtient donc : 

ou dans l’espace de Fourier (cf. exercice 5) : 

iZ3 00 

G ‘”(k) = dmI2 p (m”) AF(k ; m f 2 )  (81) 
k 2 - m 2 + i s  + .f4mz 

où la a fonction spectrale >> p (m2) est positive ; l’expression (81) est la 
représentation de Kallen-Lehmann du propagateur. Nous n’avons 
effectué pour le moment aucune renormalisation (sauf celle de masse : 
m dans (81) est la masse physique), et cp ( x )  doit être considéré pour le 
moment comme le champ nu : <p ( x )  + <po(x) ,  dont la normalisation est 
fixée par les RCC. Après renormalisation 

P&> = .ecpOR(x) 

où <p OR (x ) est le champ renormalisé et Z3 la constante de renormalisation 
du champ (cf. VI.30) (*) ; examinons d’abord le comportement du 
propagateur au voisinage de k2 = m2 : 

i z 3  Gh2)(k) iz3 Z y  - - 
k 2 - t m 2  k2  - m2 + is  k2 - m2 + is 

ce qui définit la constante 23 : iz3 est le résidu du pôle du propagateur 
renormalisé à k2 = m2. Nous allons exprimer la section efficace en 
fonction des fonctions de Green connexes amputées de leurs propaga- 
teurs complets G6N)(ki )  (cf. 27.b) ; l’indice O désigne une fonction de 
corrélation nue. Nous observons que : 

lim ( k 2  - m2) Gi2)(k) = iZ3 
k Z  -t m z  

(*) Compte tenu des infinités dans Srn’et Z,, le raisonnement menant à i‘équation (83) 
n’a qu’une valeur heuristique. On se contentera de noter les deux propriétés cruciales : 
(I) les éléments de matrice4 sont des invariants du groupe de renormalisation, (2) la 
matrice4 obéit à la propriétés d’unitarité, au moins ordre par ordre en théorie des 
perturbations (paragraphe D.2). 
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et par conséquent (afin d’alléger l’écriture, nous ne faisons pas la 
distinction entre particules entrantes et sortantes) : 

étant donné que les se transforment comme les r (N)  par 
renormalisation. L’expression de la matrice S en fonction des quantités 
renormalisées sera finalement : 

(ki, ..., khoutlk,, ..., kNin)c  = lim lim 

23 ( N  + M)/2  GcN c, R + M ) ( k l ,  . .. , k N  ; - k ; ,  ... , - k h )  

k ! - + m 2  k F + m 2  

* (83) 

Dans la renormalisation sur couche de masse, le facteur 23 est égal à 1 
par définition (c’est un avantage de ce schéma) mais dans tout autre 
schéma (MS, ...) il importe de ne pas l’oublier. La méthode suivie pour 
obtenir (83) montre que l’élément de matrice S est indépendant du 
schéma de renormalisation : en d’autres termes c’est, comme il se doit, 
un invariant du groupe de renormalisation. 

En pratique, pour calculer les éléments de matrice S, on pourra 
utiliser la technique du paragraphe C.3 qui est plus simple que les 
formules de réduction dans le cas de particules à spin. I1 suffira de 
multiplier le résultat par la puissance de 23 convenable. 

C.6. Unitarité et renormalisation 

II est loin d’être évident que l’unitarité de la matrice S ,  ainsi que les 
propriétés de localité de la théorie survivent au processus de renormali- 
sation. Que tout se passe bien est le résultat des travaux (techniquement 
complexes) rassemblés sous le sigle BPHZ et de ceux de Epstein et 
Glaser (3). 

Un argument convaincant et (relativement) simple est donné par la construc- 
tion de Bogolioubov, esquissée au paragraphe A. Cet argument consiste à 
montrer que les contre-termes ont précisément la forme requise dans cette 
construction : le contre-terme d’ordre p peut s’écrire comme une contribution à 
Sp(xl, ..., x,) ; cette contribution est un opérateur antihermitique, et c’est un 
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polynôme construit avec le champ et ses dérivées, différent de zéro seulement 
au point x1 = x2 = . . = xp. II préserve les propriétés d’unitarité et de causalité 
de la matrice S. 

Donnons un exemple en partant du lagrangien (4) ; à l’ordre g2 de la théorie 
des perturbations, le contre-terme 6 2  comprend un contre-terme de masse et 
un contre-terme de renormalisation du champ : 

Tenant compte de ce contre-terme, la matrice S à l’ordre 2 devient : 

avec 

Les expressions (84) et (85) ont bien toutes les propriétés requises : 
iA2(x1, x2) est antihermitique et s’annule pour x1 # x2. 

D. UNITARITÉ DE LA MATRICE s 

L‘unitarité de la matrice S (St = S-’) est une propriété cruciale, car 
elle assure la conservation de la probabilité. Si celle-ci n’est pas assurée, 
la théorie perd toute signification. Ce paragraphe est consacré à l’étude 
de deux problèmes: 
- admettant St = S-’, nous allons en déduire dans un cas simple 

une propriété importante des éléments de matrice T ,  
- nous allons établir de façon générale les << règles de coupure >> des 

diagrammes, qui permettent de vérifier l’unitarité de la matrice S ; ceci 
peut être très utile quand on construit la théorie à partir d’une intégrale 
de chemin, auquel cas la propriété d’unitarité n’est pas évidente. 

D.l.  Unitarite et relation de dispersion 

Reprenons l’exemple favori de ce chapitre : une contribution d’ordre 
deux à la diffusion kl + k,  + k; + ki dans la théorie en (p4, correspon- 
dant au graphe de la figure 6 : ce graphe a été calculé au paragraphe B, 
équation (41) ; le facteur (- i )  provenant de la définition (52) de la 
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matrice T est identique à celui de r(N) (cf. 27.c). D’autre part, au lieu 
d‘effectuer la normalisation à ki = O, on peut la faire en un point 
so 4 4 m’, où s = ( k ,  + k2)’. Dans ces conditions l’expression de 
T(’) devient : 

m2-sx(1 - x )  
m 2 - s o x ( i  - x )  

T(’)(s, so) = ___ -9’  jol àx in [ 
2(4 T ) ~  

I1 est commode de faire le changement de variables : 

1 1 1  x = - + - y -  
2 2 ’  4 x ( 1  - x )  = - (1 - y 2 )  

4 m2 - s(1 -y’) 
4m2-so ( l  - y 2 )  

T q s ,  so) = - g 2  I l 1 d y i n  [ 
16(2 T ) ~  

Le logarithme est bien défini pour (1 -y2) -= (4 m2/s),  et présente 
un point de branchement à s = 4 m2/( l  - y’). Comme les points de 
branchement se trouvent sur l’axe réel quand y varie, nous allons 
définir T(2)(s,  so) dans un plan coupé de 4 m2  à l’infini (figure 8), la 

Figure 8. Le plan coupé de la variable s. 

détermination du logarithme étant réelle pour s réel -= 4 m’, tandis que 
pour s(1 - y2) z= 4 m2  : 

In (4m’-s(1 - y ’ ) )  = In 1 4 m 2 - s ( l  -y’)I + i ( 8  - m ) .  (88) 

T(’)(s) est alors une fonction analytique de s dans le plan coupé, 
l’intégrale sur y étant uniformément convergente. La prescription 
m’ -, m’ - ie implique que T(’)(s,  so) doit être défini, pour s 3 4 m2, 
par : 

lim ~ ( ’ ) ( s  + i&, so). (89) 
& * O +  
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Autrement dit on doit approcher la coupure dans le demi-plan 
Im s > O .  On en déduit Im T(2)(s ,  so) : 

(90) 

Considérons de façon générale une fonction f ( s )  de la variable 
complexe s, analytique dans le plan coupé de 4 m2 à l'infini, et qui de 
plus vérifie la propriété d'analyticité réelle 

t i m s  

Re J 

Figure 9. Contour pour le théorème de Cauchy. 

En appliquant le théorème de Cauchy au contour C de la figure 9, et 
en supposant que l'intégrale sur le grand cercle tend vers zéro, on 
obtient : 

[f(sf + i s )  - f (sf  - i ~ ) ]  

soit : 
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où, pour passer de la première ligne à la seconde, on a utilisé la 
propriété (91) : 

f ( s ’  + ie)  - f ( s ‘  - ie)  = 2 i Im f ( s ’  + i s )  = 2 i Im f ( s ’ )  

(par convention on écrira f ( s )  au lieu de f ( s  i- i s )  quand il n’y a pas de 
confusion possible). Si l’intégrale le long du grand cercle ne tend pas 
vers zéro, on fait une (ou plusieurs) soustraction (s) : 

Les équations (92) et (93) sont appelées relations de dispersion. La 
connaissance de Im f ( s )  dans le cas d’une soustraction fixe f ( s )  à une 
constante arbitraire f ( s o )  près. Si l’on doit faire N soustractions, on 
introduit N constantes arbitraires. Dans le cas de T ( 2 )  il suffit d’une 
seule soustraction et d’après (90) : 

* (94) 
1 

(s’ - (s + ie))(s’ -so)  
X 

La partie imaginaire (90) peut être obtenue à partir de la relation 
d’unitarité. En effet les deux autres graphes du deuxième ordre sont 
réels pour s a 4 m2 ; ils pourraient avoir des coupures dans les variables 
t = ( k ,  - k 3 )  et u = ( k ,  - k4)2 ,  mais t et u sont < O  si s a 4 m2. En 
utilisant la matrice T définie par (52), la relation SS’ = 1 devient : 

2 

Tf i  - Tf i  + = i (2 . r ) 4  6 (4)(Kf - K i )  Tfn Tii . (95) 
II 

L‘invariance par renversement du sens du temps entraîne que : 

(k; k;ITlk, k2) = (- k1 - kzIT(- k; - k;) = (k1 k2)TJk; k;) 

et l’équation (95) devient au deuxième ordre de la théorie des 
perturbations 

x ( 2  7 ~ ) ~  ô(4) ( k  + k‘ - k l  - k 2 ) (  T(’)I2.  (96) 
On reconnaît dans (96) l’espace de phase d@ (2) (65),  qui, intégré sur 

d a ,  vaut : 

4 4 s  87-r 
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Dans l’équation (96)’ on a également tenu compte d’un facteur 1/2 dû 
à l’identité des particules ; l’élément de matrice T(l)est on ne peut plus 
simple : 

T(’) = - g 

et : 

ce qui coïncide exactement avec (90). On vérifie sur cet exemple que la 
prescription m2 -f m2 - is  est cruciale pour assurer l’unitarité de la 
matrice S. D’autre part l’existence de relations de dispersion est 
étroitement liée à la propriété de causalité. A nouveau la prescription 
m2 -+ m2 - i& est cruciale pour cette propriété. 

Cet exemple illustre de façon élémentaire un certain nombre de 
propriétés que l’on peut attendre des éléments de matrice T ,  et qui ont 
fait l’objet d’un nombre considérable de travaux : 

(i) les éléments de matrice T peuvent être prolongés analytiquement 
dans le(s) plan(s) complexe(s) de leurs variables cinématiques ; 

(ii) la possibilité d’états intermédiaires physiques donne lieu à des 
coupures dans ce(s) plan(s) complexe(s). Un état lié ou une particule 
élémentaire stable correspondent à des pôles: par exemple dans la 
théorie en (p3(4), l’amplitude de diffusion 2 --+ 2 a un pôle à 
s = m2 et une coupure pour s a 4 m 2  (figure io) : 

pôle s = m’ + Coupure s 3 4 m’ 

Figure 10. Diagrammes donnant des pôles et des coupures en  s. 
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(iii) la somme sur les états intermédiaires permet de calculer la partie 
imaginaire de l'amplitude, en fonction des ordres inférieurs de la 
théorie des perturbations. Cette observation fournit une méthode 
possible pour le calcul de certains diagrammes ; 

(iv) la partie réelle est calculée par une relation de dispersion, qui 
peut nécessiter des soustractions. Ceci introduit des constantes incon- 
nues, et reflète la nécessité de la renormalisation. 

D.2. Règles de coupure 

Nous allons maintenant établir, en suivant "Hooft et Veltman, les 
règles générales de coupure des diagrammes, ou règles de Cutkusky. 
Nous nous servirons des fonctions suivantes : 

I1 sera commode d'utiliser les notations suivantes : 

AF(x,  - x,) = A,, ; A' ( x ,  - x,) = A$ (1W 
et de remarquer que la conjugaison complexe échange les fréquences 
positives et négatives : 

A,: = 8 (x: - x;) Al/ + 8 (x; - x:) AG . 
Une fonction de Green amputée de ses propagateurs externes 

complets sera notée F ( x l ,  ..., x n ) ,  et elle sera composée de vertex et de 
propagateurs, par exemple : 
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Pour fixer les idées, la discussion sera illustrée par la théorie en 
cp 3(4) ; d’autre part nous ignorerons les problèmes de renormalisation, 
en nous plaçant, par exemple, dans une dimension d’espace-temps 
convenable. 

Définissons à partir de F ( x , ,  ..., x i ,  ..., x i ,  ... , x,) une fonction 
F ( x , ,  ...,xi, ... xi, ..., x,) où certains des x i  sont soulignes, avec les 
conventions suivantes : 

(i) A,, -+ A,, si x k  et x f  ne sont pas soulignés, 
(ii) A,, + A; si xk est souligné et non x I ,  

(iii) A,, -t A i  si x I  est souligné et non x k ,  

(iv) A,, -t A; si x k  et x I  sont soulignés, 
(v) - ig -f ig où (+ is) correspond à un vertex souligné . 

En résumé 

A, = A,& ; Aki = A i  ; ASL = A $ .  

Remarquez que ces règles sont cohérentes ; en effet dkl = A,, ; 
Akl = A,& et, Ali = AG, mais d’après (98), A; = AG. Si xi est souligné, 
le vertex correspondant sera encerclé sur le graphe. Donnons un 
exemple : 

D’autre part si x: =- xp, Aii = Ali et A . .  = Ail grâce à (99) ; souligner 
xi ne modifie pas le propagateur. Nous en déduisons le théorème : 

Théorème 1 :  Supposons que x: soit supérieur à x,! pour tout 
j zi. Alors: 

F ( x , ,  ..., xi, ..., & j ,  ..., x , )  = - F ( X l ,  ..., xi, ..., x i ,  ..., x , )  (101) 

où la seule différence entre les deux membres de l’équation (101) vient 
de ce que x i  est souligné (non souligné) dans le membre de gauche 
(droite), le signe (- ) provenant de - ig + ig au vertex x i .  Faisons 
maintenant la remarque suivante : lorsque l’on calcule Aij  ou A$ à l’aide 
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de (97) et (lo), le facteur e - i k ( x i - x J )  correspond à un moment k entrant 
dans le vertex (i). Ceci montre que si deux vertex sont reliés par un 
A +  ou un A - ,  le flot d’énergie se fait toujours vers le vertex encercle : 

k 
-t 

e ALj  = Al; : facteur 8 ( k o )  d’après (97) 
i 1 

Aji =A; : facteur 8 (- k o )  d’après (97) 

i I 

Le flot d’énergie se fait dans les deux directions si la ligne interne 
correspond à un Aij  OU à un A$. 

Calculons maintenant un élément de matrice S ; par convention les 
particules entrantes sont dessinées à gauche du diagramme, les particu- 
les sortantes à droite. Un exemple d’élément de matrice S est donné par 
le graphe de la figure 11 : 

Figure 11. 

La fonction F ( x , ,  ..., x 6 )  doit être multipliée par un produit d’exponen- 
tielles donné par les règles établies au paragraphe C : 

Particule entrante : e - i k x  Particule sortante : e ”” 

et intégrée sur tous les x i .  Un corollaire du théorème 1 est : 

c F ( x , ,  ...) X j ,  ...) x j ,  ... , x,) = O (102) 

où indique que l’on a sommé sur toutes les façons possibles de 

souligner. En effet soit x i  le point ayant la plus grande composante de 
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temps ; on peut grouper par paires tous les termes de (102), où chaque 
paire est formée de deux termes identiques sauf sur un point : dans un 
des termes x i  est souligné, et dans I’autre x i  ne l’est pas. D’après le 
théorème 1, la somme de ces deux termes est nulle. 

On remarque maintenant qu’un grand nombre de diagrammes seront 
nuls à cause de situations conflictuelles. Par exemple le diagramme de 
la figure 12 est nul car au vertex i : k,, + k,, + kO3 = O (conservation du 
moment), mais koi,  koz, et ko3 doivent être tous trois positifs, car le flot 
d’énergie se fait vers le vertex encerclé. 

Figure 12. 

Figure 13. 
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la conservation de l’énergie. De même le diagramme de la figure 14 est 
égal à zéro car uniquement des énergies positives sortent du sous- 
diagramme délimité par la ligne de démarcation. Cette remarque 

Figure 14. 

permet de séparer les diagrammes non nuls en deux régions : l’une au 
soleil, contenant les vertex non encerclés, l’autre à l’ombre contenant 
les vertex encerclés (figure 15) : 

Ir 

/ 
I 

Figure 15. Coupure d’un diagramme en deux régions. 

La coupure des lignes externes par la ligne de démarcation n’a pas de 
signification particulière. Les lignes internes seront données par les 
règles suivantes (on utilise la première forme des règles de Feynman 
données en V.B.5) : 

i.c 
1 

( 103. a) Propagateur au soleil : - - 
( 2 L ) 4 k 2 - m 2 + i &  

- i  1 
(103. b) Propagateur à l’ombre : - ~ 

(2 9 ~ ) ~  k2-  m2- i& 



X.D.2 Uniîarité de la matrïce S 433 

F(k1, ..., k , )  + B(k1, ..., k , )  = - C F, (k l ,  ..., k , )  
coupures 

Propagateur coupé : T S ( k 2 -  m2) û ( k o )  (103.~) 

k 

. (104) 

et les vertex par : 

Vertex au soleil : 

Vertex à l’ombre : 

(- ig )(2 w >4 6 (4) ( /ci ) 
(ig)(2 7 ~ ) ~  6 (4)( 1 k i )  

(103. d) 

On déduit de (102) 

L‘équation (103) donne les règles de coupure, ou règles de Cutkosky. 
Dans le membre de gauche de (104), F est calculé avec les règles au 
soleil, F avec les règles à l’ombre, et F ,  en suivant (103). La somme 
porte sur toutes les coupures possibles, l’énergie s’écoulant du soleil 
vers l’ombre. Certaines coupures peuvent donner zéro à cause de la 
cinématique. 

Reste à faire le lien avec la relation d’unitarité. Définisons le 
lagrangien 2* obtenu à partir de 2 par conjugaison complexe, et 
s la matrice S obtenue à partir de 2 *, en utilisant comme propagateur 
- i /(k2 - m2 - i s )  et en remplaçant (- ig) par (ig), c’est-à-dire en 
utilisant les règles de la région à l’ombre. 

Il est facile de se convaincre que : 

( f i s + ( a i i )  = ( f 1 3 ( 2 * ) 1 i )  . 
Si 2 = dp * la relation d’unitarité peut s’écrire : 

où d@ @) est l’espace de phase de p particules intermédiaires. Mais ceci 
n’est autre que la relation (104) ( T  = - iF) car TfP est calculé avec les 
règles de la région à l’ombre et : 
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Examinons enfin les facteurs Z,, car les éléments de matrice T sont 
reliés aux fonctions de Green par un facteur 23 ( N  + M ) / 2 ,  où N est le 
nombre de particules entrantes et M celui de particules sortantes (cf. 
(79)). Si nous considérons un état intermédiaire à p particules, ceci 
conduit à un facteur ZTP. Mais chaque propagateur coupé sur couche 
de masse donne un facteur Z3 6 ( k 2 -  m2) et les facteurs 2, se 
compensent exactement (cf. exercice 6). 

On peut donc conclure que si 2 est réel, chaque diagramme obéit a la 
relation d'unitarité : on a la propriété d'unitarité perturbative. Cette 
propriété entraîne l'unitarité de la somme des diagrammes, c'est-à-dire 
l'unitarité de la matrice S. Une méthode analogue (cf. "Hooft et 
Veltman) permet également de traiter la question de la causalité. 

E. GÉNÉRALISATIONS 

Nous avons jusqu'à présent traité uniquement le cas d'un champ 
scalaire neutre. Nous allons maintenant généraliser les considérations 
précédentes au cas d'un champ scalaire chargé, d'un champ massif de 
spin 1, et nous examinerons également les couplages dérivatifs, qui ont 
été laissés de côté jusqu'à présent. 

E.l. Champ scalaire chargé 

On souhaite décrire un couple de particules chargées, de charges 
5 1 (*) (dans un système d'unités convenables) et de spin O,  par 
exemple le couple des mésons T +  et T-. I1 serait possible d'utiliser 
deux champs hermitiques cp l  et c p 2 ,  mais pour construire des états 
propres de la charge, il est plus commode de se servir de deux champs 
cp(x) et c p t W  

Les décompositions de Fourier des champs libres cp(x)  et c p t  ( x )  
s'écrivent : 

cp ( x )  = dk"[a(k) e-ikx + b t  (k) eikx] (1 07. a) 

cpt(x) = 1 dk[,t(k)eikx+b(k)e-ikX] (107 .b) 

(*) I1 ne s'agit pas nécessairement de la charge électrique. 
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où a ( b )  détruit des particules de charge + 1(- 1)  (cf. (111)). Les 
relations de commutation sont : 

[a(k), at (k')] = (2  5 ~ ) ~  2 wk 6(3)(k - k ' )  (108. a) 

[b(k), b t  (k')] = (2 T ) ~  2 w k  ô(3)(k - k ' )  (108.b) 

tous les autres commutateurs étant nuls. Le lagrangien du champ libre 
s'écrit : 

.=.Y = (a ,pt)(apcp)+m2<pt  cp (109) 

et il est invariant dans la transformation de phase : 

iA t ~ e iA t cp-+e- < p ;  cp c p .  

Le théorème de Noether (cf. XI-C.3) permet de conclure à l'existence 
d'un courant conservé : 

(110) j ,  = i :  cp t "  8,cp : ;  a P j r  = O  

qui conduit à la conservation de la charge : 

Q = d3xjo(x) = dk[a'(k)a(k)-bf  (k)b(k)] .  (111) s s 
Cette équation confirme que a ( b )  détruit des particules de charge 

+ i (- 1). On peut généraliser le couplage en <p4 en écrivant par 
exemple un lagrangien d'interaction : 

9 " i x )  = - - : ,pt(X)2 cp(x)2:. 
(2!  )2 

Pour établir les règles de Feynman, il sera commode d'orienter le 
propagateur dans le sens du flot de la charge positive; dans 
(01 T(cpi,(y) cpA(x))iO), cpA(n) crée un T +  (ou détruit un T - )  en x, 
tandis que p in(y)  détruit un 5~ + (ou crée un T - )  en y ; dans tous les cas 
une charge + 1 est créée en x et annihilée eny. On remarquera que 

(01 T ( < p i n ( Y )  q i n ( X ) ) I O )  = (01  vit,(^) cpit,(x)>~o) = 0 * 

Si l'on décide de suivre (par convention) la charge positive, le 
propagateur sera orienté de x vers y : 

k - k  n 
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I1 ne faut surtout pas confondre l'orientation du propagateur avec celle 
des moments. Afin de déterminer aisément les facteurs de symétrie, 
notons (provisoirement) le point de départ du propagateur par une 
croix ( x ) et le point d'arrivée par un cercle (O) (*) : dans le 
développement perturbatif, tout propagateur devra joindre une croix à 
un cercle. 

Calculons comme exercice les contributions d'ordre g2 à la fonction 
de corrélation d'ordre 4 : 

en utilisant le lagrangien d'interaction (112). Chaque vertex sera 
décomposé en deux croix ( x ) et deux cercles (O). On obtient deux 
types de graphes (figure 16) - auxquels il faut naturellement ajouter 
les permutations : 

Figure 16. Contributions à G'"'. 

Le facteur de symétrie du graphe (a) est 

(*) Le vertex encerclé n'a évidemment rien à voir avec celui du paragraphe D.2. 
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Ce graphe correspond à la diffusion de particules identiques 
( T + - T + ) et on retrouve le facteur de symétrie usuel. Au contraire le 
graphe de la figure (16.b) correspond à la diffusion r+ - T-, et son 
facteur de symétrie est 1. 

Le formalisme fonctionnel se généralise sans difficulté si l’on définit 
Z ( j )  par : 

Z(i) = 9(cp’ c p * )  x s 
iS(<p, < p * ) + i  s d4x(j(x)cp*(x)+j*(x)<p(x))) (114) 

et si l’on utilise l’identité (A.12)’ qui donne : 

+ j * (x) cp (x))) = Jlr exp ( - 1 d4x d4x’ j * (x) A, ( x  - x ‘  ) j (x’ ) . 1 
(115) 

On notera que l’exposant dans (115) diffère par un facteur 2 de celui de 
(33). Les résultats obtenus par application de (114) et (115) sont 
naturellement identiques à ceux que l’on obtient par application du 
théorème de Wick. 

Pour le calcul des éléments de matrice S ,  on se servira des contrac- 
tions suivantes, avec leur représentation diagrammatique (cf. 70) 

cp (x) at (k)  = e ë i k x :  méson T +  entrant : -@ (116.a) 
U 

a(k)  cp t ( x )  = eikx : méson 7~ + sortant : @- (116.b) 
U 

t cp (x) bt (k) = eëik* : méson 7 ~ -  entrant : 
U 

b ( k )  cp (x) = eikx: méson vTT- sortant : @- (116.d) u 

E.2. Champ vectoriel massif 

Pour être tout à fait général (mais en se restreignant à des champs de 
bosons) on peut se donner des champs réels cp i  dépendant d’indices de 
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spin et/ou d’indices de symétries internes (i) et des champs complexes 
qb i .  Afin de simplifier les notations, convenons que (i) indice non 
seulement le spin et les symétries internes, mais également le point 
d’espace-temps. Dans ces conditions on pourra écrire un lagrangien très 
général : 

r ,  (p i  + + i W j j  qbj  + interactions 1 y = - (p. w.. 
2 ’  

où W est une matrice symétrique. Les propagateurs seront les inverses 
de Wij  et W i j  (à un facteur i près) : 

Le propagateur A: n’est pas orienté, la matrice Wij étant symétrique, 
mais ii; le sera en règle générale. 

Donnons comme exemple le lagrangien d’une particule de spin 1 et 
de masse m # O couplée à un courant conservé j, (Vi, = O) : 

04p = A ”[(O + m2) g P v  - 3, a,] A ” - j rA  fi  . 

(O + m2)A’ - W(aJ”) = j ”  

(118) 

Les équations du mouvement sont : 

(119) 

mais la conservation de j p  impose : 

m2(V A , )  = O j a*A, = O (m # O ) .  (120) 

On obtient finalement une équation de Klein-Gordon pour chaque 
composante : 

(O +m2)AP = O .  

Toutefois les quatre composantes ne sont pas indépendantes à cause 
de (120) : seules trois composantes sont indépendantes, ce qui corres- 
pond bien au nombre de degrés de liberté d’un spin 1. L‘identification 
complète d’un spin 1 nécessiterait la construction du tenseur moment 
angulaire et une démonstration du fait que ses composantes se 
transforment comme un vecteur dans une rotation. 

Le propagateur se lit directement sur l’équation (118) : 

- gpv + k P  kvlm2 
k2  - m2 + is  

AF”(k)  = i . 
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La partie longitudinale du propagateur n’a pas de pôle à k2 = O : 

k ,  AF”(k) = m - 2  k”  (122) 

ce qui confirme (120) : cette partie longitudinale n’est pas un degré de 
liberté dynamique. Le propagateur coupé s’écrit : 

D’autre part, on peut décrire l’état de spin d’une particule de spin 1 
par trois directions de polarisation. Dans un référentiel où la particule 
est au repos, on peut par exemple choisir les trois axes de coordonnées 
(x, y ,  z ) .  Si la particule possède un moment k parallèle à Oz, ces trois 
directions se transforment en : 

&&y) = (O, 1, O, O )  
&p’ = (O, O,  1, O )  
&Lo) = ( k / m ,  O, O, k o / m )  ; 

(124. a) 
(124.b) 
(124.c) 

&i(”) et e,’” sont des polarisations transverses ; les combinaisons 
& ? ) =  - 1 + - ( & f ) &  i&p)) correspondent à une projection du spin égale 

JZ 
à rt 1 le long de Oz ; J Z ~ O )  correspond à une projection du spin égaie à 
zéro, aussi appelée polarisation longitudinale (4). 

On obtient facilement l’identité : 

L‘identité (125) intervient dans la relation d’unitarité, car la somme 
sur les états intermédiaires contient une somme sur les polarisations. 
Mais la somme (125) est bien identique au résultat obtenu en coupant le 
propagateur, et la théorie sera unitaire. Le point crucial est que seuls les 
degrés de liberté physiques apparaissent dans le propagateur coupé ; le 
degré de polarisation parallèle à k ,  donne une contribution nulle à 
cause de (122). Au contraire la renormalisabilité est a priori en danger, 
car le facteur m - 2  dans le propagateur agit comme une constante de 
couplage de dimension négative. On verra cependant, au chapitre XII, 
que l’on peut préserver la renormalisabilité pour les quantités physi- 
ques. 
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E.3. Couplages dérivatifs 

Jusqu’à présent, nous avons soigneusement évité les couplages 
dérivatifs. Ceux-ci sont particulièrement délicats à traiter dans le 
formalisme canonique, car des quantités non covariantes se glissent 
dans les étapes intermédiaires. Au contraire ces couplages ne posent 
aucun problème dans le formalisme fonctionnel. Considérons par 
exemple un champ vectoriel A ,  couplé à un champ scalaire chargé par 
un lagrangien d’interaction : 

où le facteur i assure l’hermiticité de 9,. Cette interaction fera 
apparaître des termes du type : 

k - k  - -  
a n t  - - ‘ p ( x ) c p  ( Y > =  

X ax fi  Y 

a d4k i e- ik(x - Y )  

i e- ik(x - y )  = -ik, - .f (::)4 k2 - m2 + ie 

Le terme en dans <;pl conduit donc à un facteur - ik, où 
k,  est le moment entrant dans le vertex x. La simplicité du formalisme 
fonctionnel vient de ce qu’il n’est pas nécessaire de commuter les 
dérivées avec des produits-T (cf. la discussion suivant l’équation (50)). 
Au contraire, dans le formalisme canonique, cette commutation 
conduit à des termes non covariants ; ceux-ci seront finalement éliminés 
par d’autres termes non covariants, dus au fait que le moment conjugué 
de cp n’est pas 9 ,  mais la compensation résulte d’un calcul complexe. A 
nouveau il n’y aura pas de problème avec l’unitarité et la causalité ; 
cependant la dérivation tend à introduire des constantes de couplages 
de dimension négative, et la renormalisabilité pourra être en danger. 
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EXERCICES 

1) (a) Montrer que pour a =- O on obtient l'identité : 

m 
ei<ik2 dk = ei"/4 J.rr/a e- ib2/4a . !- a 

s 
(Suggestion : considérer la limite E -t O+ de eiak2- ekZ  dk). En déduire (43). 

Sum 

(b) Démontrer l'équation (44) à partir de l'identité : 

dA A"-'e-* = T(A). 

2) Montrer que le facteur de flux (60) se réduit à &Ilkl( pour deux 
particules incidentes dans le référentiel du centre de masse. 

3) En adaptant le raisonnement du paragraphe C. 1, démontrer l'équation 
(63) donnant le taux de désintégration d'une particule. 

4) Théorème de Wick pour les produits ordinaires 

(a) Démontrer l'identité : 

eXP(iJd4xj(x)<pin<x>) = 

= : exp ( i  j d4xj(x) qin(x)) : exp (- j d4xd4xfj(x)  q(x) U cp(x')  j ( x ' )  

où 

I"&(x')= (OI<Pin(x) qin(x')IO) . 

(Suggestion : <pin(x) : q; (x) + < p i  ( x )  et exercice IX.9.) 
(b) En déduire le théorème de Wick pour : 

<pin(xi) <pinGz) ... < P i n ( x z n ) .  

5) Représentation de Kallen-Lehman (5) 

(a) Soit F ( x  - y )  la valeur moyenne sur le vide du commutateur 
[ ' p ( x ) ,  cP(Y)l : 

F ( x - Y ) =  (oI[<P(x),(P(Y)llo) . 
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En introduisant un système complet d'états intermédiaires I n )  ainsi que 
l'identité : 

montrer que : 

où 

On utilisera l'invariance de Lorentz et la positivité de l'énergie pour montrer 
que p (9) = p (4')  e (4') avec q2  > O. 

(b) En isolant la contribution à 1 particule et en utilisant les RCC, démontrer 
la relation : 

1 = Z,  + j:m2 dm" p (m" )  . 

En déduire l'inégalité : O 6 Z ,  s 1 (Z ,  = 1 correspond à un champ libre. La 
condition Z, < 1 ne peut être satisfaite que pour une théorie asymptotiquement 
libre (cf. exercice V11.6).) 

(c) Montrer que l'on obtient une représentation analogue à celle de (a) pour 
le propagateur complet G(*)(x - y )  avec la même fonction spectrale p (cf. (81)). 

6 )  Ecrire I'unitarité perturbative pour le graphe d'ordre g6 de la théorie en 
< p 3  dessiné sur la figure 17. Examiner en particulier les facteurs 2,. 

Figure 17. 

7) Le méson p ' est une particule de masse M = 765 MeV, se désintégrant en 
une paire T + - T -  (m = 140 MeV) avec une largeur ï = 125 MeV. On décrit 
la désintégration à l'aide du lagrangien phénoménologique (126). Quelle est la 
valeur d e g ?  
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IC cours de J. Bros, Ecole de Gif-sur-Yvette (1971). Pour une autre démonstration de la 
formule de Gell-Mann et Low, on consultera Gasiorowicz (chapitre 8). Les formules de 
réduction sont établies par exemple dans Itzykson-Zuber (chapitre 5), Bjorken-Drell 
(chapitre 16) ou Gasiorowicz (chapitre 6). La démonstration de l'équation (62) donnant 
l'expression des sections efficaces suit celle d'Itzykson-Zuber (chapitre 5 ) .  Les propriétés 
analytiques des amplitudes de diffusion sont étudiées dans Itzykson-Zuber (chapitre 6), 
Bjorken-Drell (chapitre 18) et dans le livre de R. Eden, P. Landshoff, D. Olive et J. 
Polkinghorne The Analytic S-matrix, Cambridge University Press (1966). La quantifica- 
tion du champ scalaire chargé est examinée en détail dans tous les livres classiques 
(Itzykson-Zuber, Bjorken-Drell, Gasiorowicz, etc.). Enfin les sections 1 a 9 de 
"Hooft et Veltman donnent une vue générale de tous les problèmes abordés dans ce 
chapitre. 

(I)  Cf. Streater-Wightman, chapitre 4. 
(*) Itzykson-Zuber, chapitre 6. 
(3) H. Epstein et V. Glaser, Annales IHP, XIX, 211 (1973). 
(4) Messiah, Chapitre XIII. 
( 5 )  Itzykson-Zuber (chapitre 5 )  ou Bjorken-Drell (chapitre 16). 





QUATRIÈME PARTIE 

Théories de jauge 





CHAPITRE XI 

Quantification du champ de Dirac 
et du champ électromagnétique 

La physique moderne des particules élémentaires est dominée par les 
théories de jauge, dont le prototype est l’électrodynamique quantique. 
Dans les théories de jauge, les particules fondamentales sont : 

(i) des particules de spin 1/2, décrites par des champs appelés 
<< champs de matière )> ; 

(ii) des particules de spin 1, décrites par des champs appelés 
<< champs de jauge D (la terminologie n’est sans doute pas très heureuse : 
une particule de jauge comme le photon est aussi << matérielle D qu’une 
particule de spin 1/2 comme le neutrino). 

Ces particules sont supposées élémentaires, dans le sens où leurs 
interactions sont ponctuelles : ces interactions sont décrites par le produit 
de champs au même point d’espace-temps. Dans le cas de l’électrodyna- 
mique quantique, les particules de spin 1/2 sont les électrons (et leurs 
antiparticules, les positrons), et les particules de jauge sont les photons. 
Les interactions entre particules de spin 112 
sont transmises dans ce cas par les photons : 
on a représenté sur la figure 1 un graphe 
de Feynman contribuant à la diffusion 
électron-électron. 

Les interactions électromagnétiques et 
faibles ont été unifiées en interactions élec- 
tro-faibles, dont les particules de jauge sont 
le photon et les bosons W’ et 2’ (prédits 
théoriquement en 1967 et découverts expéri- 
mentalement en 1983). On a représenté sur 
la figure2 un graphe de Feynman contri- 
buant à la diffusion électron-neutrino. Dans 

Figure 1. Graphe de 
Feynman pour la diffusion 

électron-électron. 
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le cas des interactions électro-faibles, il faut en plus introduire des 
particules de spin zéro, les parti- 
cules de Higgs, qui ont jusqu’à 
présent (1986) échappé à toute 
détection (cf. XIII-C.3). 

Les particules à interactions 
fortes : proton, neutron, mésons, 
etc. ne sont pas des particules 
ponctuelles, et en ce sens elles ne 
sont pas élémentaires : elles sont 

Figure 2. Un graphe contribuant 
à la diffusion Te - e - .  

composées de quarks et d‘antiquarks. La théorie de jauge des interac- 
tions fortes est la chromodynamique quantique, où les particules de 
spin 1/2 sont les quarks et les particules de jauge sont appelées gluons 
(cf. XIII-D). Les quarks et antiquarks ont également des interactions 
électro-faibles. 

La théorie que nous avons élaborée aux deux chapitres précédents ne 
nous permet encore que de traiter des particules de spin zéro ... c’est-à- 
dire le cas très limité et quelque peu académique des interactions des 
bosons de Higgs. Nous devons encore apprendre à quantifier les 
champs décrivant des particules de spin 1/2, ou champs de Dirac, ainsi 
que les champs de jauge. 

La quantification canonique du champ de Dirac est traitée au 
paragraphe A. Afin de ne pas allonger l’exposé, j’ai traité l’équation de 
Dirac de façon très succincte ; le lecteur qui n’est pas familier avec cette 
équation devra sans doute se reporter à d’autres exposés, en particulier 
pour les propriétés de transformation par le groupe de Poincaré et les 
symétries discrètes. Cependant toutes les notions indispensables aux 
applications traitées dans ce livre ont été introduites explicitement. Le 
paragraphe B est consacré au théorème de Wick pour les fermions et à 
la formulation fonctionnelle. 

Le cas le plus simple de théorie de jauge est celui du champ 
électromagnétique : en effet le groupe de jauge est abélien, alors que 
dans le cas des interactions électro-faibles, comme dans celui de la 
chromodynamique quantique, le groupe de jauge est non abélien. 
Cependant, même dans le cas abélien, la quantification canonique est 
complexe, et il sera plus commode, après avoir rappelé quelques 
données de base au paragraphe C, de passer directement au paragra- 
phe D à la quantification à l’aide des intégrales de chemin. Ceci 
constitue d’ailleurs une bonne préparation au cas plus complexe des 
théories de jauge non abéliennes. 
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A. QUANTIFICATION DU CHAMP DE DIRAC 

Le champ de Klein-Gordon étudié au chapitre IX décrit des particules 
de spin O. Nous avons également vu au chapitre X comment décrire des 
particules de spin 1 massives ; les particules de spin O et de spin 1 ont en 
commun d’être des bosons, c’est-à-dire des particules obéissant à la 
statistique de Bose-Einstein. Au contraire il est bien connu que des 
particules de spin 1/2 comme les électrons ou les protons obéissent à la 
statistique de Fermi-Dirac : ce sont des fermions. Le formalisme des 
chapitres précédents est manifestement inadapté au cas des fermions, 
car un vecteur d’état tel que 

est symétrique dans l’échange des deux particules en raison des 
relations de commutation des u t  (k). I1 nous faut donc trouver une 
modification de l’espace de Fock qui assure automatiquement l’antisy- 
métrie, au lieu de la symétrie. Le deuxième ingrédient dont nous avons 
besoin est une équation de champ ayant les propriétés de transformation 
d’un spin 1/2 : c’est l’équation-de Dirac. La quantification du champ de 
Dirac se fera par analogie avec celle du champ de Klein-Gordon, mais 
en utilisant un espace de Fock adapté aux fermions. 

A.l.  Espace de Fock pour les fermions 

Commençons par un problème simple de mécanique quantique non relati- 
viste : un système de N fermions sans interactions dans un potentiel 
V(x) ; afin de ne pas introduire de complications de notations, nous suppose- 
rons même que ces fermions ont spin0 (cette hypothèse, comme nous le 
verrons un peu plus loin, n’est pas cohérente dans le cadre d’une théorie 
quantique des champs relativiste, mais elle n’introduit aucune contradiction en 
mécanique quantique non relativiste). Soit uai (x) les fonctions propres du 
hamiltonien à une particule : 

P2 H =  = + V ( x ) .  

Etiquetons les différents niveaux d’énergie Emi par des indices ai  rangés dans un 
ordre déterminé : (Y . . . (si les niveaux d’énergie sont dégénérés, il 
faut évidemment les étiqueter par des nombres quantiques supplémentaires) : 

(Y 2, . . . , a 

La fonction d’onde d’un ensemble de N fermions occupant les niveaux 
ail  ... < y i N ,  correctement antisymétrisée et normalisée, est donnée par le 
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déterminant de Slater : 

(1) 
1 P ( X I ,  ...) X N )  = (x,, ..., X N I  F) = - Jz det (uai ( x i ) )  . 

Par exemple dans le cas de deux particules occupant les niveaux 3 et 5 la 
fonction d’onde est donnée par : 

(2) JT! us(x1) U S ( X 2 )  u3(xz) I . - 

- 1 I u3(x1) 

Une information équivalente à la fonction d’onde (1) est contenue dans les 
nombres d’occupation n,, des niveaux ai ; par exemple, dans le cas de la 
fonction d’onde (2)  ces nombres d’occupation sont : 

n 3 = 1 ;  n 5 = 1 ;  n ,=O i # 3 , 5 .  

Dans le cas des bosons, n, pouvait prendre les valeurs O, 1, 2,  ... ; dans celui 
des fermions, n,  = O ou 1, car on ne peut pas mettre plus d’un fermion dans un 
niveau d’énergie (non dégénéré). Examinons d’abord le cas d‘un seul niveau 
(a ), et essayons de construire des opérateurs de création et d’annihilation par 
analogie avec le cas des bosons. L‘espace des états est à deux dimensions, et 
nous pouvons choisir comme vecteurs de base les vecteurs 1 O) , et Il) , 
correspondant respectivement à n, = O et n, = 1 : 

Les opérateurs a, et u: doivent obéir aux conditions suivantes : 
(il a, appliqué au vide donne zéro : a, 1 O) , = O 
(ii) a’ appliqué au vide crée un état occupé, avec n, = 1 : ~ ‘ ( 0 )  , = Il) , 
(iii) on ne doit pas pouvoir mettre un deuxième fermion dans l’état 

Ces trois conditions déterminent immédiatement la forme matricielle de 
a : a , I l ) , = O .  

a, et a; : 

qui conduit à la relation d’anticommutation : 

t t t  (3) {u,, a,} = a, û, + a r r  a, = 1 , . 

Comme dans le cas des bosons, l’opérateur nombre de particules dans l’état 
(a) est N ,  = a’. a, : 

N ,  = a, a, = (O O) 
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Pour construire l’espace des états, il suffit de prendre le produit tensoriel des 
espaces à deux dimensions correspondant à chacun des niveaux individuels ; par 
exemple le vide sera construit par produit tensoriel des vecteurs 1 O )  : 

Cependant l’antisymétrie dans l’échange de deux fermions n’est pas encore 
assurée car les opérateurs ami et ua j ,  qui agissent dans des espaces différents, 
commutent. Pour construire des opérateurs qui anticommutent, on introduit 
i’opérateur qa ,  : 

et on définit l’opérateur b t ,  par : 

On remarque que si ai -= ai : 

uai t -  q a j  - - 77.j%i t .  7 uai t 7 7 O i  = qa,aa,  t 

et on en déduit : 

{bBi, bLj} = O .  

Cette relation d’anticommutation assure l’antisymétrie du vecteur d’état : 

1 !P) = bLi bnjlO) = - b i j  b’, 10) . 

Les autres relations d’anticommutation sont faciles à établir : 

{bai ,  bai} = {bgi, bIi} = O ; {bui,  bgi} = 6ij (6) 

et on peut construire un opérateur de champ $ ( t ,  x )  qui, dans la représentation 
de Heisenberg, est donné par : 

$0, X )  = b,  ~ , ( t ,  X )  (7) 

et vérifie les relations d’anticommutation à temps égaux : 

{ $ ( t ,  X I ,  $ ( t ,  x‘)} = 0 
{ $ ( t , X ) ,  $ ‘ ( t , x ‘ ) }  = 6(3 ) (x -x ‘ ) .  (8) 

c U , ( t ,  x )  u,*(t, x‘)  = 6 (3)(x - x’)  . 

La deuxième équation dans (8) est obtenue grâce à la relation de fermeture : 
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On peut montrer (exercice 1) que la fonction d’onde iy (xl, . . . , xN)  dans (1) est 
donnée par (+ (x) = + (t  = O ,  x)) : 

1 
(9) iy(x,, ...> X N )  = - JF ( o t + ( x i ) . . .  + ( x N ) l q )  . 

Le formalisme exposé ci-dessus est très utile pour étudier la dynamique d’un 
système de N fermions identiques (ou bien de N bosons identiques : dans ce cas 
il convient naturellement d’utiliser des relations de commutation) en mécanique 
quantique non relativiste. C‘est ce que l’on appelle souvent le << problème à N- 
corps », qui a des applications importantes en physique du solide et en physique 
nucléaire. Cependant le contenu physique des équations reposant sur ce 
formalisme, dit de << seconde quantification )) est strictement identique à celui 
de l’équation de Schrodinger : ce formalisme est simplement une technique 
commode. 

A.2. Equation de Dirac 

L’équation de Dirac a été introduite initialement comme généralisa- 
tion relativiste de l’équation de Schrodinger, afin de surmonter les 
difficultés d’interprétation de l’équation de Klein-Gordon comme 
équation quantique relativiste. Précisons bien qu’il s’agissait dans les 
deux cas d’équations à une particule, supposées décrire par exemple le 
comportement d’une particule relativiste dans un potentiel. En réalité 
l’équation de Dirac n’est pas plus susceptible que celle de Klein-Gordon 
d’être interprétée de façon complètement cohérente comme équation à 
une particule. Malgré tout, l’interprétation à une particule est physique- 
ment acceptable, et pratiquement très utile, lorsque le potentiel varie 
peu sur une distance de l’ordre de la longueur d’onde Compton 
(hlmc) de la particule considérée. Elle permet par exemple de calculer 
en première approximation les corrections relativistes au spectre de 
l’atome d’hydrogène. Je laisserai entièrement de côté cet aspect de 
l’équation de Dirac, qui est traité de façon très détaillée dans de 
nombreux livres, et, comme dans le cas du champ de Klein-Gordon, je 
considérerai dans un premier temps l’équation de Dirac comme 
l’équation d’un chump classique, qu’il s’agira ensuite de transformer en 
champ quantifié. 

Ecrivons immédiatement l’équation de Dirac, en renvoyant à d’autres 
exposés pour la motivation et la << démonstration D de cette équation : 

1 I 

Dans l’équation (lO.a), q p ( t ,  x) est un objet (spineur) à quatre 
composantes : p = 1 , 2 , 3 , 4  et y &  un ensemble de matrices 4 x 4, les 
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matrices de Dirac, vérifiant les relations d’anticommutation ((Y et p ne 
sont pus des indices de Lorentz, contrairement à p) : 

{ y ” ,  y ” }  = y ”  y y  + y ”  y ”  = 2 g p y  1 . (11) 

L’indice p est un indice de Lorentz : p = O, 1, 2, 3 et m la masse de la 
particule. On utilise souvent la notation : 

d = y ” a ,  (12) 

ou plus généralement p = y ” up pour un quadrivecteur a, ,  et on peut 
récrire (1O.a) sous la forme matricielle : 

(id - m )  $ = O .  (lO.b) 

Les représentations irréductibles des relations d’anticommutation (1 1) 
sont uniques à une transformation de similarité près. La représentation 
standard des matrices y ”  est : 

où 1 est la matrice 2 x 2 unité et ul, u2, c3 sont les matrices de Pauli. 
La relation de conjugaison hermitique : 

(14) 
t 

y ”  = y O y ” y 0  

est souvent utile. On définit à partir des matrices y” les matrices 
W ” ”  : 

(15) 
i 

U P W  = - [Y”,  Y ” ]  

et la matrice y s :  

(16) 

(17) 

0 1 2 3  t Ys=iY Y Y Y = Y s  

qui vérifie : 
2 t { Y S , y ” }  = O ;  Y S = 1 ;  YS = - Y O Y S Y O .  

L’équation (lO.b) implique que $ ( t ,  x )  obéit à l’équation de Klein- 
Gordon ; en effet si l’on multiplie cette équation à gauche par (id + m )  
on trouve, en utilisant (11) : 

(O + m 2 )  ~ ( t ,  x) = O 

ce qui confirme l’interprétation de m comme masse de la particule. 
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L‘équation de Dirac est covariante de Lorentz : si A est une 
transformation de Lorentz ( x r  = A x ) ,  il existe une matrice S(A)  
transformant (x) suivant : 

*’(x’) = s ( A )  *(XI (18) 

et qui vérifie (l’ambiguïté de signe provient du caractère 1/2 entier du 
spin) : 

(19) 
S-’(A) y ” S ( A )  = A r  y u ;  S(Al A,) = .+S(A,)S(A,)  

S ’ ( A )  = y o S t  (A)  y o .  

* ’ ( x r )  obéit alors à l’équation de Dirac dans le référentiel transformé : 

(iy” a; - rn) +‘(xr)  = O .  

La loi de transformation (18) est plus complexe que celle d’un champ 
scalaire, qui est simplement cp‘  (xr) = cp (x). Je renvoie aux exposés 
classiques pour la démonstration de (19) et pour la forme explicite de 
S(A) ,  ainsi que pour la justification du fait que l’équation de Dirac 
décrit bien un champ de spin 1/2. 

L‘équation de Dirac peut se déduire de la densité de lagrangien : 

où le spineur conjugué q ( x )  est défini par : 

$,(XI = +P*w Y S a  (21) 

et les différentes formes dans (20) sont reliées par intégration par 
parties ; dans l’application du principe variationnel, I,/J et $ doivent être 
considérés comme des variables indépendantes. Remarquez que 
$ ( x )  obéit à l’équation : 

$(x)(i j  + rn) = O (22) 

que l’on peut déduire de (20), ou de (lO.b) par conjugaison hermitique. 
Le moment conjugué rra de +a vaut : 

ce qui donne pour la densité de hamiltonien : 
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Dans les calculs ultérieurs, on pourra remarquer que 2 = O si + obéit à 
l’équation de Dirac. Le couplage à un champ électromagnétique 
A , ( x )  se fait à l’aide de la substitution (couplage minimal) : 

3, -+ 3, + ieA, 

où e est la charge de la particule considérée (pour plus de détails, cf. 
paragraphe C ) ,  et le lagrangien d’interaction vaut : 

=Y1= - e $ ( x ) A + ( x ) = - j p ( x ) A , ( x ) .  (25) 

Le courant électromagnétique j ” ( x )  est donc donné par : 

j , ( 4  = er2;(x) r ,+ (x ) .  (26) 

I1 est facile de s’assurer que ce courant est bien un courant conservé 
(exercice 2) 

a,j,(x> = O (27) 

ce qui conduit à la conservation de la charge Q : 

dQ d3xj0(x);  - dt = 0 .  

En effet, en utilisant (27) et le théorème de la divergence, on trouve 

$ s t d 3 x j o ( x ) =  - d 3 x ( V . j ) = -  j . d S = O  s s 
en supposant, comme d’habitude, que les champs s’annulent suffisam- 
ment rapidement à l’infini. 

A.3. Solutions de l’équation de Dirac 

Comme le champ de Dirac obéit à l’équation de Klein-Gordon, les 
solutions seront des superpositions linéaires d’ondes planes de la 
forme : 

(29) 
- i E n @ .  x )  

+,,(XI = wn@)e 

avec : 

p . x = E , t - p . x ;  E , = J p 2 + m Z  - 0  

et E ,  = -I 1 ; E,, = + 1 correspond aux solutions d‘énergie positive, 
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E ,  = - 1 aux solutions d'énergie négative. En reportant (29) dans 
(lO.b) on trouve pour w,(p) les équations : 

( p - r n ) w " @ ) = O :  F n = + l  (30.a) 

( p + r n ) w , ( p ) = O :  & , = - l .  (30.b) 

Lorsque p = O, p = m y o  et on obtient quatre solutions linéairement 
indépendantes qui peuvent être choisies de la façon suivante : 

Les spineurs u ( ~ ) ( u ( ~ ) )  correspondent à e, = + 1 (- 1) : ce sont des 
spineurs d'énergie positive (négative). Pour p quelconque, on remarque 
que : 

( p -  rn) ( p +  rn) = ( p 2 -  r n 2 )  = o .  
Ceci permet d'écrire la solution générale de (30) : 

U q p )  = C ( p  + m) U ( ' ) ( O )  

u(')(p) = - C ' ( p -  rn) u'"(0) 

(32.a) 

(32.b) 

où C et C '  sont des constantes de normalisation. Afin d'exhiber 
explicitement ces solutions, on peut recourir à la représentation (13) 
des matrices de Dirac qui donne : 

Les spineurs u(')@) et u ( ' ) @ )  s'écrivent en fonction des spineurs à deux 
composantes x ( r )  : 

SOUS la forme : 
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En. < O : u ( ' ) ( p )  = ( ( '*p)x(r)  ) .  (34.b) 
JEp + m (EP + m )  x(r) 

Les constantes de normalisation C = C'  = (Ep + m)- ln dans (32) ont 
été choisies de telle sorte que (*) : 

a(')@) u(')@) = 2 m8, 

u"'@) u(S)(p) = - 2 ms ,  
a(')(p) u'"@) = O . 

(35) 
- 

On remarquera le signe (-) dans la relation d'orthogonalité des 
spineurs d'énergie négative. Les relations de fermeture sont également 
très utiles, par exemple dans les calculs de sections efficaces. Evaluons 
par exemple la matrice A, (p) :  

Un calcul analogue montre que : 

2 

(A- (P)),p = - c U("(P) Ob"(P) = - (1 - m),p 3 

r = l  

On peut donc définir deux << projecteurs D A, @) et A- @), projetant 
respectivement sur les états de moment p et d'énergie positive et 
négative : 

A, (p) = u("(p) = B  + m (36.a) 

A- (p) = - c u(r)(p)ü(r)(p) = - @- m )  (36.b) 

(*) La plupart des auteurs utilisent la normalisation : 

rs . u ( s )  = 6 . o < r >  "(s) = - 6 
,s > 

La normalisation (35), qui est peu élégante dans certains cas (cf. (37)), permet d'utilise1 
les mêmes formules de section efficace pour les bosons et les fermions. 
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qui vérifient : 

A, + A- = 2 m ; A, A_ = A_ A, = O ; A s  = 2 mA, . (37) 

A cause de la normalisation (35), A, et A- ne sont pas exactement 
des projecteurs. Mais même si les spineurs sont normalisés à l'unité, 
A,  et A- ne sont pas hermitiques, sauf si p = O :  4 = yon, yo.  
L'indice (r)  est un indice de spin et on peut facilement définir des 
opérateurs de projection sur les différents états de spin. Les quatre 
degrés de liberté du champ de Dirac correspondent à deux degrés de 
liberté de spin pour chaque signe de l'énergie. 

A.4. Quantification du champ de Dirac 

Comme dans le cas du champ de Klein-Gordon, nous allons partir de 
la décomposition de Fourier du champ de Dirac classique. Pour chaque 
valeur de p les spineurs u(')(p) et u(')(p) forment une base de l'espace à 
quatre dimensions des spineurs de Dirac, et l'on peut écrire : 

+ d r ( p )  u(')(p) ebx]  (38.a) 

+ d,(p) V(')(p) e-'P*"]. (38.b) 

Comme (cr est un champ complexe, il est nécessaire d'introduire deux 
coefficients indépendants br (p )  et d: (p), la conjugaison complexe étant 
associée aux énergies négatives. 

Suivant l'étude que nous avons faite au début du paragraphe, il est 
logique de postuler que les coefficients de Fourier b,(p), dr(p) et leur 
complexes conjugués doivent être remplacés par des opérateurs obéis- 
sant à des relations d'anticommutation : 

{br(P)>bT,(~')} = ( 2 m 1 3 2 ~ p  6rrl  a ( 3 ) ~ - ~ ' )  

{d , (p) ,  d2.(p')} = (2 n)3 2 E,  6 ( 3 y p  - p')  
(39) 

tous les autres anticommutateurs étant nuls. Ainsi que nous allons le 
montrer très bientôt, ce postulat de quantification ne conduit à aucune 
incohérence, alors que l'hypothèse de relations de commutation n'est 
pas acceptable. 
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Les champs quantifiés $ (x) et 7 (x) s’obtiennent à partir de (38) en 
remplaçant les coefficients de Fourier b, (p), d,(p) par des opérateurs 
WP), d,(p): 

+ d! @) u ( ‘ ) ( p )  e@’] (40.a) 

+ dr(p) V(‘)(p) eëipx]. (40.b) 

Comme dans le cas du champ de Klein-Gordon, les opérateurs 
d’annihilation (création) sont associés aux énergies positives (négati- 
ves). I1 est instructif de comparer les équations (40) à celles (X.107) 
obtenues dans le cas du champ scalaire chargé. 

On vérifie (exercice 6) que les relations (39) impliquent les relations 
d’anticommutation suivantes pour les champs : 

{$&,x), $ j ( l , X ’ > }  = 6,p 6(3)(x-x‘). (41) 

Mais d’après (23) le moment conjugué de $@ n’est autre que 
i$B, ce qui permet de récrire (41) sous la forme : 

{$a (t, x), r p  ( t ,  x’)} = is  6 (3)(x - x’ ) . (42) 

L‘hypothèse (39) revient en fait à postuler des relations d’anticommuta- 
tion entre le champ et son moment conjugué, ce qui est après tout 
l’hypothèse la plus naturelle, après que l’on ait constaté la faillite des 
relations de commutation. 

Examinons maintenant le hamiltonien et la charge. D’après (24) le 
hamiltonien H est donné par : 

Pour calculer H on utilise la relation de Parseval : si 

alors : 
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Dans le cas considéré, d'après la décomposition de Fourier (40) on 
obtient les coefficients : 

$(p) = - 1 
r 2 4  

[dr(p) Ü(')(p) e-iEpt + br (- p)  &)(- p )  eiEpt] 

I1 faut maintenant tenir compte des relations d'orthogonalité (exer- 
cice 5) : 

pour obtenir le hamiltonien en fonction des coefficients de Fourier : 

Grâce aux relations d'anticommutation (39) on peut transformer le 
terme précédé d'un signe (-) dans (44) ; pour plus de clarté, on peut 
utiliser une normalisation discrète comme dans (IX.44) : 

-dr ,pdr ,p=-1  t +d, lpdr ,p* 

En redéfinissant le zéro d'énergie, le hamiltonien se met sous la 
forme (*) : 

Une autre façon d'obtenir (45) à partir de (44) est d'utiliser le produit 
normal, avec une différence importante par rapport au cas des bosons : 
quand on fait passer à gauche les opérateurs de création, tous les anti 
commutateurs doivent être omis : 

: b b t :  = - b t  b 

(*) On peut facilement généraliser (45) à une composante quelconque de l'énergie- 
moment : 
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Le point important dans ce calcul du hamiltonien est que les relations 
d’anticommutation sont indispensables pour obtenir un hamiltonien 
défini positif. Avec des relations de commutation, le deuxième terme 
de (44) ne pourrait pas être rendu positif, même si l’on recléfinissait le 
zéro d’énergie. Ce résultat est un cas particulier du théorème spin- 
statistique : les champs de spin demi-entier (1/2, 3/2, ...) doivent être 
quantifiés avec des relations d’anticommutation. Inversement les 
champs de spin entier (O, 1, ...) doivent être quantifiés avec des 
relations de Commutation : dans le cas contraire, on peut malntrer que la 
localité ne serait pas satisfaite. Cette relation spin-statistique est une 
conséquence profonde - et fascinante - du mariage de la mécanique 
quantique avec la relativité. I1 n’existe pas - à ma connaissance - 
d’argument intuitif simple pour justifier ce résultat. 

Pour terminer l’interprétation physique de notre quantification, reste 
à calculer la charge : 

Q = e ~ d 3 x : t J ( x ) y 0 I , b ( x ) : .  

Le calcul est en tout point analogue au précédent et le résultat en est : 

On remarquera l’analogie avec l’équation (X. l l l )  obtenue dans le cas 
du champ scalaire chargé. 

Si l’on se souvient que b! (p) b,(p) et d! (p) d , ( p )  sont les opérateurs 
nombre de particules de moment p et de spin r ,  l’examen de (45) et (46) 
montre que bt (p) crée une particule de charge e et de moment p, tandis 
que d! @) crée une particule de charge - e et de moment p. Le champ 
I,b (x) crée une charge - e (d t  (p)) ou détruit une charge e(&@)) ; 
inversement $(x) fait varier la charge de + e. Une formulation plus 
générale de cette propriété est donnée à l’exercice (9). 

Si par convention on appelle la particule de charge e la << particule », 
alors celle de charge - e est l’« antiparticule >> : l’exemple classique est 
celui de l’électron (particule) et du positron (antiparticule). Remar- 
quons que l’on peut aussi définir des charges qui ne sont pas 
nécessairement la charge électrique : par exemple la charge baryonique 
distingue le neutron de l’antineutron. 

En résumé les quatre degrés de liberté d’un champ de Dirac 
permettent de décrire une particule possédant deux degrés de liberté de 
spin, et une antiparticule possédant également deux degrés de liberté de 
spin. 

En choisissant une représentation particulière des matrices de Dirac, 
la représentation de Majorana, il est possible de décrire commodément 
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des particules de spin 1/2 qui soient leur propre antiparticule : de telles 
particules sont appelées << particules de Majorana ». Dans ce cas le 
champ de Dirac possède seulement deux degrés de liberté (cf. exercice 
XII. 13). 

A S .  Propagateur du champ de Dirac 

Nous avons constaté dans les deux chapitres précédents le rôle crucial 
joué par la valeur moyenne sur le vide du produit-T de deux champs. I1 
est donc naturel d’étudier le produit-T de deux champs de Dirac. 
Toutefois, en raison des relations d’anticommutation, il est nécessaire 
de modifier un signe dans la définition du produit-T de deux champs de 
Dirac ; on définira : 

T(+,  ( X I  4 p  ( x f > >  = e ( X O  - X I 0 )  + a  ( X I  4 p  ( X I )  - 

- 8 (XIO - P) 17;,+’) + a ( X )  . (47) 

La permutation de deux champs de Dirac induit toujours un signe -. 
Evaluons la valeur moyenne sur le vide de ce produit-T en utilisant la 
représentation de Fourier (40) du champ de Dirac libre : 

x [ e ( t - t f ) ( b + m ) , p e - i p ( X - X ‘ ) -  e ( t f  - t ) ( p - m ) , p e ~ ( x - X ’ )  1 .  (48) 
Pour obtenir cette équation, on a utilisé les relations de fermeture 

(36). Comme dans le cas du champ de Klein-Gordon, on peut écrire le 
résultat en utilisant le contour de Feynman (exercice 7) : 

Le propagateur de Feynman S F @ )  pour le champ de Dirac sera 
donné dans l’espace de Fourier par : 

I1 est facile de vérifier directement que ce propagateur est bien une 
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fonction de Green de l’équation de Dirac : 

(id - rn ) sF ( X I  = i s  ( 4 ) ( x )  . (51) 

On peut également exprimer SF(x - x ’ )  en fonction de A F ( x  - x ’ )  ; en 
effet d’après (49) : 

S F ( x  - x’) = (id, + rn) A F ( x  - x‘) . (52) 

B. THÉORÈME DE WICK POUR LES FERMIONS 

B.l .  u Oscillateur fermionique >> couplé à une source externe 

Plutôt que de traiter le cas général, j’expliquerai la méthode à suivre 
sur un exemple élémentaire. Cet exemple n’est autre que la transposi- 
tion au cas des fermions du problème de l’oscillateur harmonique 
couplé à une source classique (cf. IX-C.2). Considérons deux opérateurs 
$ et IJ tels que : 

* 2 =  $ - 2 = O ;  {*, $} = 1 (53) 

ainsi que le << hamiltonien >> d’un << oscillateur fermionique >> : 

Pour coupler CC, et $ à une source externe, on introduit des éléments 
77 ( t ) ,  ?j ( t )  d’une algèbre de Grassmann (*), c’est-à-dire des << nombres 
anticommutants B : q ( t )  et q ( t )  anticommutent entre eux ainsi qu’avec 
les + et les 6 : 

{ 7 7 ( t ) 7 7 7 ( t f ) }  = ( 7 7 ( t ) , T ( t ’ ) }  = { 7 7 ( t ) , * }  = - . - = o .  (54) 
Le << hamiltonien D complet est : 

H =  E$$ - q ( t )  (I - $7 ( t )  . (55) 

(*) Algèbre de Grassmann d : soit N variables (générateurs) vi  ... T~ telles que 
( 9  { T , ,  r ) ) }  = 0 
( i i ) s i q , e d : A T l e d  ( A E C )  
(iii) T , ,  7, E d : A q l  + pql E d 
(IV) T ‘ ,  T ,  E d : T ,  r ) ,  E 

Alors les 7, engendrent une algèbre de Grassmann. 
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Soulignons qu'il s'agit d'un problème purement mathématique ; il n'est 
pas nécessaire que H soit hermitique, ni que (I, et 4 soient hermitiques 
conjugués. Les seules relations importantes sont (53) et (54). Suivons la 
méthode du chapitre IX, paragraphe C.2 en introduisant les opérateurs 
$tZ ( t )  et ( t  ) de la représentation interaction 

Comme [Ho, (I,] = - E $  et [Ho, $1 = E $  : 

( ~ , , ( t )  = eëiEi 1 ~ ,  ; $,( t )  = e iEt (I, - 

et le hamiltonien de la représentation interaction devient : 

H,( t )  = - [ ~ ( t )  e-iEt (I, + tJ eiEt q ( t ) ]  . (56) 

et comme (q q ) commute avec (I, et q, on vérifie immédiatement que : 

[[HI([), ff,(t')], H i ( t " ) ]  = 0 .  

Ceci permet d'utiliser l'identité de l'exercice (IX. 1O.b) pour écrire 
UI ( t  ) sous la forme : 

U I ( t )  = exp (- i 1 H z ( t ' )  dt ' )  x 

x exp (- Ss 'dt '  dt" 8 (t '  - t")[H,(t'), H , ( t " ) ]  . (58)  

La forme normale de U r ( t )  s'obtient en utilisant à nouveau l'identité : 

le résultat final s'écrivant : 

U,(t)  = : exp (- i s ' H , ( t ' )  d i r )  : x 
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On remarquera la similitude entre cette équation et (IX.73). Si + et 
$ sont maintenant identifiés à des opérateurs de création et d’annihila- 
tion a et at (cf. 3) : 

( 0 1  ~ ( + , ( t ‘ )  $ , ( t ‘ r ) )  1 0 )  = ~ ( t ’  - t ” )  eëiE(f’-f‘’) 

le terme d’intégrale double dans (59) vaut également : 

Compte tenu de l’expérience acquise avec les champs de bosons, il n’est 
pas difficile de deviner la forme du théorème de Wick pour les 
fermions : 

La démonstration suit exactement le canevas qui précède ; elle se 
trouve à l’exercice 8. Dans l’équation (60), les champs + (x), $(x), tout 
comme <p (x) dans (1x35) sont des champs libres. On remarquera que 
le coefficient de l’intégrale double dans (60) est (- 1), alors qu’il valait 
(- 1/2) dans (IX.85) : ceci est simplement dû à la présence de deux 
charges, ou de deux types de particules. Dans le cas de bosons chargés, 
on a constaté exactement le même phénomène (cf. X.115). 

En développant les exponentielles dans (60) et en identifiant les 
coefficients de 77 et 7, on obtient des identités du type : 

Les relations d’anticommutation des sources externes 77 (x) et 7 (x) 
donnent automatiquement le signe correct. En pratique il conviendra 
de faire attention à l’ordre des facteurs : dans l’expression équivalente à 
(IX.86) pour les fermions, chaque terme devra être ultiplié par la 
signature de la permutation faisant passer de l’ordr F initial à l’ordre 
final des + et des $. 
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B.2. Formulation fonctionnelle : intégration sur des variables de Grass- 
mann 

I1 est possible d’écrire une fonctionnelle génératrice des fonctions de 
Green pour les fermions. Cependant, au lieu d’intégrer sur des nombres 
comme dans le cas des bosons, il faudra intégrer sur les éléments d‘une 
algèbre de Grassmann. Commençons par le cas d’un seul degré de 
liberté, en introduisant deux variables de Grassmann J/ et (cr : 

J / z =  $2 = O ;  { J / ,  q }  = O  (61) 

(remarquez bien la différence entre (53) et (61) : dans le premier cas on 
a affaire à un opérateur (de champ), dans le second à un champ 
classique, ou plus exactement à la généralisation fermionique d’un 
champ classique). Compte tenu de (61), le polynôme le plus général 
que l’on peut construire avec J, et $ est (*) : 

P ( J / )  = a, + a ,  J/ + a1 6 + a12 q* . (62) 

Nous définirons l’intégrale sur les variables grassmanniennes par : 

d + J /  = 1  

d$rT; = 1  

s 
s 

dJ/ = O ;  

d$ = O ;  

s 
s 

ce qui donne : s drT;dJ/ P ( 9 )  = J d$@, -a12 $1 = -u12.  (63) 

(En effet s dJ/ qJ/ = - dJ/ J /$  = - q.) Comme application immé- 

diate de (63) on peut calculer l’intégrale (( gaussienne >> : 

d$ dJ/ e-‘@* = a .  s 
Essayons de généraliser l’intégrale gaussienne à plusieurs variables en 
examinant le cas de deux degrés de liberté : 

(*) Si a0 et aI2 sont des nombres, a , ( d , )  est une constante de Grassmann par rapport à 
$(G). On notera également la propriété: d ( A + )  = A-’d$. 
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Si l’on développe l’exponentielle, le seul terme donnant une contribu- 
tion non nulle est celui qui contient en facteur J I ,  q2 +2 ; tenant 
compte des relations d’anticommutation, le résultat de l’intégrale (64) 
est : 

A,, Azz - A12 Azi = det A . 
I1 n’est pas difficile de se convaincre du résultat général : 

Ce résultat est à comparer avec celui de l’équation (A.12) (pour 
j = O ;  & d y =  (d ïdz*) /2 i ) :  

(66) 
N dzi d z i  

i = l  

On note que l’utilisation de variables grassmanniennes a remonté le- 
déterminant de A du dénominateur au numérateur. Cette propriété se 
révèle très utile, par exemple dans le cas des théories de jauge non 
abéliennes, pour écrire des jacobiens sous forme de développements 
diagrammatiques. Un exemple de ce type d’utilisation est donné à 
l’exercice 14. Comme dans le cas des variables ordinaires, on peut 
rajouter des termes linéaires dans l’exponentielle de (65) et définir une 
intégrale Z (q , 7 )  dépendant de sources (grassmanniennes) q et 
7 :  

z (7 ,  7 )  = n dqi  d+i exp(- GiAi j  G j  + q i  +hi + qi a i ) .  s” i = l  

Le changement de variables : 

+ j  = +,! + As1 77 k ; 17;. = (cl; + q k  AG 1 I 

donne la transposition de l’équation (A.12) au cas des variables, de 
Grassmann : 

Z(7, q )  = (det A )  exp(q, Aiil qj) . (67). 

Cette expression permet d’écrire une fonctionnelle génératrice 
Z ( q ,  q ) des fonctions de Green : 

Z ( 7 ,  77) = 5 9(& +) x 

x exp ( i  5 d4x[$(i$ - m )  + + V ( G ,  J I )  + qJI + $ 7 7 1  
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où la prescription m + m - is  assure que le propagateur est S,(p). 
Retrouvons par exemple l’équivalent du théorème de Wick à partir de 
ZO(f7, 77) 

= JV exp (- d4x d4x’ q ( x )  i(id - m)-’ ~ ( x ’ )  . (69) 1 
D’après l’équation (51), (i) (i$ - m)-’ est bien égal au propagateur 

S, (x). Suivant les indications données au chapitre précédent, on 
montre que les fonctions de Green calculées par différentiation 
fonctionnelle à partir de Z (  f j  , 77 ) coïncident avec celles que l’on obtient 
à partir du théorème de Wick. 

C. FORMALISME LAGRANGIEN POUR LE CHAMP 
ÉLECTROMAGNÉTIQUE CLASSIQUE 

C. 1. Equations de Maxwell et potentiel électromagnétique 

Dans la formulation élémentaire des équations de Maxwell, on 
introduit un champ électrique E et un champ magnétique B couplés à 
une densité de charge p et à une densité de courant j, aussi appelées 
sources du champ électromagnétique : 

V - E  = p 
aE (70.a) ; V x B - - = j (70.b) 
at 

(71.b) ûB V x E = - -  (71.a); V . B = O  
at 

(où c = 1 ; la loi de Coulomb avec les conventions (70) est IIFIJ = 
1 qi q2 I /4 r r 2 ) .  Les équations (70) impliquent l’équation de continuité 
pour (p  , j ) ,  qui exprime la conservation locale de la charge : 

- + V . j = O .  aP 
at 

Les équations (71), indépendantes de ( p  , j), impliquent -l’existence 
d’un potentiel scalaire <p et d‘un potentiel vecteur A tels que : 

(73.a) ; B = V x A .  (73.b) E = - V < p - -  ôA 
at 
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Les champs E et B ne sont pas modifiés par une transformation de 
jauge : 

cp -+ c p ’ =  cp +at’ A - + A ’ = A - V A  (74) 

où A(t ,  x) est une fonction arbitraire du temps et de l’espace. 

C.2. Formulation covariante 

Les potentiels (cp, A )  sont rassemblés en un quadrivecteur (à 
l’ambiguïté près des transformations de jauge) A ”(x) : 

A0(x)  = cp ( t ,  X )  ; A ’ ( x )  = (A)i(t, X )  

et de même pour ( p  , j ) : 

j o ( x )  = p ( t ,  X) ; i i ( x )  = Q ) i ( t ,  x) 

j ( x  ) est le quadrivecteur-courant électromagnétique, qui vérifie la 
version covariante de l’équation de continuité (72), aussi appelée 
équation de conservation du courant j ,  

ô p j w ( x )  = O .  (75) 

Avec ces notations la transformation de jauge (74) devient 

où A ( x )  est une fonction arbitraire de x. 
Le tenseur champ électromagnétique F est défini par 

et s’écrit sous forme matricielle : 
V - t  

O - E l  -E2 -E3 
E,  O - B,  B2 

- B2 

Le tenseur dual Fp”  se déduit de F p ”  par (cf. équation C.l )  : 
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et correspond à la substitution E -+ B, B -+ - E qui laisse invariante les 
équations de Maxwell en l’absence de source (p, j). Dans cette 
formulation covariante, les équations de Maxwell deviennent : 

W F , ,  = j ,  
- 

a’F,, = O .  

L‘équation (78) est une équation dynamique, faisant intervenir la 
source j p ,  tandis que l’équation (79) est une équation de contraintes. 

Les équations de Maxwell se déduisent de la densité de lagrangien : 

qui en termes de E et B s’écrit : 

(81) 
1 Y = - ( E 2 - B Z ) - p c p + j . A .  2 

On peut arriver à la forme (80) du lagrangien en écrivant l’expression 
la plus générale, invariante de Lorentz, invariante de jauge et quadrati- 
que en A, et a,A,. Une forme équivalente à (80) est (cf. les remarques 
suivant l’équation (IX.31.a)) : 

(82) 
1 
2 

9 = -Ap(Og,,  - a, a , )A”  - j p A ,  . 

L’équation (78) s’écrit en fonction du potentiel : 

La jauge de Lorentz est définie par a,Ap = O, et dans ce cas (83) se 
simplifie en : 

= j ” .  (84) 

I1 est intéressant de calculer les moments conjugués : 

T 0 =- a 3  = O  
a ( aoA0) 

Le point important est que A. n’a pas de moment conjugué ! 
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C.3. Invariance de jauge et conservation du courant 

La conservation du courant (75) est une propriété remarquable qu’il 
convient d’étudier attentivement. 

I1 existe une technique générale pour obtenir des courants conservés : 
c’est celle du théorème de Noether, qui relie invariance du lagrangien et 
conservation d’un courant. Supposons par exemple qu’une densité de 
lagrangien Y dépende de N champs q r ( x )  et soit invariante dans des 
transformations dépendant d’un paramètre A : 

où T est une matrice hermitique ; prenons A infinitésimal et dévelop- 
pons au premier ordre en A : 

C P : ( ~ )  = qr(X) - iATrs C P , ~ ( X )  . (86) 

La variation du lagrangien est : 

Les deux derniers termes de la seconde équation se compensent à cause 
des équations du mouvement, et comme ô 2  = O on en déduit : 

L’expression (87) constitue le théorème de Noether. En reportant (86) 
dans (87) on obtient le courant conservé : 

Appliquons ce résultat au lagrangien de Dirac (20) : 

2 = tJ(xI(i2 - m )  + . 
Ce lagrangien est invariant dans la transformation de jauge globale 

(pour éviter toute confusion entre e = 2,71 . . . et la charge de l’électron, 
nous désignerons celle-ci par q jusqu’à la fin du chapitre) : 
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Comme û U / û ( û , i c , )  = i$y,, on retrouve l’expression du courant 
conservé : 

i , (x)  = 4 $ ( x )  Y ,  i c , ( X ) .  

Invariance de jauge locale 

de x ; la transformation : 
Supposons maintenant que A, au lieu d’être une constante, dépende 

ic, (x) ; $ + $(x) eiqA(x) (90) ic, -t e - i q A ( x )  

est appelée transformation de jauge locale. Cette transformation de 
jauge est dite abélienne, car le produit de deux transformations est 
commutatif. Le lagrangien (20) n’est pas invariant dans cette transfor- 
mation, car: 

a, ic , ‘ (x)  = a,(e-iqn(x) $(x)) = - iq(a,A) i c , ’ (x)  + 
+ eëiq”(x)(û,ic,(x)) + e-’q”(”)(a,ic,(x)) . 

Pour obtenir un lagrangien invariant par (90), écrivons le lagrangien 
complet du champ électromagnétique couplé au champ de Dirac, qui 
n’est autre que le lagrangien de l’électrodynamique quantique (QED) 
(bien que pour le moment nous en soyons toujours aux champs 
classiques) 

I I 

Les deux premiers termes de (91) correspondent respectivement aux 
lagrangiens libres du champ électromagnétique et du champ de Dirac, 
tandis que le dernier terme est un terme d’interaction, qui couple ces 
deux champs entre eux. Nous voyons que le premier terme de 
a,$‘ est éliminé si nous effectuons, simultanément à (90), une 
transformation de jauge : 

A ,  -+AL = A , ( x )  + 3, A ( x )  (92) 

sur le champ électromagnétique. Le lagrangien complet (91) est alors 
invariant par transformation de jauge locale. Inversement, on peut 
chercher une dérivée D, , appelée dérivée covariante, telle que : 
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I1 est clair que cette dérivée covariante est : 

D, = a, + iqA,(x) . (93) 

En effet : 

(a, + iqA, + iq(d,A)) 

Autrement dit D, (I, (x) se comporte comme (I, (x) dans une transfor- 
mation de jauge, d’où le nom de dérivée covariante. Lorsqu’un 
lagrangien est invariant par une transformation de jauge globale (89) , 
on pourra le rendre invariant par transformation de jauge locale (90), à 
condition d’introduire un champ vectoriel A ,  (x) (parfois appelé 
<< champ compensateur D) se transformant suivant (92) et couplé aux 
champs initiaux par la prescription du couplage minimal : 

(I,(x)\= eëiqA(’)(a, + iqA,) ( I , ( x )  . 

a, + a, + iqA, . (94) 

Ceci revient à remplacer dans le lagrangien initial les dérivées 
a, par les dérivées covariantes D, (93). La même méthode - un peu 
plus sophistiquée - permettra aussi de transformer une invariance de 
jauge globale non abélienne en invariance locale (cf. XIII-A.2). 

D. QUANTIFICATION DU CHAMP ÉLECTROMAGNÉTIQUE 

D. 1. Problèmes dans la quantification du champ électromagnétique 

Dans les exemples étudiés jusqu’à présent, le nombre de degrés de 
liberté des champs en un point x était égal au nombre de degrés de 
liberté physiques : un pour le champ de Klein-Gordon neutre, deux 
pour le champ chargé, quatre pour le champ de Dirac (dans le cas du 
champ vectoriel, la composante supplémentaire est facilement éliminée 
(cf. X-E.2)). Le problème dans la quantification du champ électroma- 
gnétique vient de ce que le nombre de degrés de liberté que l’on doit 
utiliser est plus grand que le nombre de degrés de liberté physiques : ce 
dernier est égal à deux, car un photon possède seulement deux états de 
polarisation, par exemple circulaire droite et circulaire gauche (le 
photon a spin 1, mais l’analyse générale des représentations du groupe 
de Poincaré permet de montrer qu’une particule de masse nulle et de 
spin j ne peut avoir que deux états de spin lorsque ses interactions 
conservent la parité : la projection du spin sur la direction de 
propagation, ou hélicité, vaut k j ; dans le cas du photon, les états de 
polarisation circulaire droite (gauche) correspondent à l’hélicité 
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+ 1 (- 1)). La polarisation d’un photon de moment k ,  = (k, ,  O, O, k, )  
et d’hélicité + 1 (- 1) peut être décrite par un quadrivecteur 
El(+  ) ( E $ -  1) : 

Les conventions de phase dans (95) sont choisies de façon à respecter 
les conventions de phase habituelles du moment angulaire (l). On note 
que k” EP ) = k - E(’ ) = O : la polarisation du photon est transverse. 

Le champ électromagnétique FILY(= (E, B)) possède six composan- 
tes ; cependant deux d’entre elles seulement sont indépendantes à cause 
des équations de contraintes (71) ou (79). On pourrait penser à 
quantifier les champs E et B en tenant compte de ces contraintes. 
Cependant on se heurterait immédiatement à une difficulté de taille : 
l’interaction électromagnétique écrite en termes de (E, B )  est non 
locale en mécanique quantique. Un exemple très explicite est donné par 
l’effet Bohm-Aharonov. Cet effet est obtenu dans une expérience 
d’interférences d’électrons, du type trous d’Young, en plaçant derrière 
l’écran El et entre les deux fentes, un solénoïde long et fin, de telle 
sorte que le champ magnétique à l’extérieur du solénoïde soit nul à une 
excellente approximation (figure 3 ) .  

Source 

d’électrons S 
< 

Figure 3. L’expérience de Bohm-Aharonov. 
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En l’absence du solénoïde, on observe une certaine figure d’interfé- 
rences sur l’écran Ez : en effet soit a l ( u z )  l’amplitude de probabilité 
pour qu’un électron émis par la source S arrive au point d’impact Z en 
choisissant le trajet 1 ( 2 ) .  Ces deux amplitudes de probabilité ont des 
phases 6, et 6, différentes, et la différence de phase A = 6, - 6, 
contrôle le phénomène d’interférences (en admettant que I al I - 1 u2 I ). 
En présence d’un champ magnétique B = V x A, le lagrangien des 
électrons est modifié (cf. (81)) : 

L -+ L’ = L + q ü  * A = L + 6L 

ainsi que les phases associées aux deux trajets ; par exemple pour le 
trajet 1 : 

fl I 

t d 1 )  
6 ,  + 6; = 6,  + SS = 6 ,  + i j v . Adt = 6 ,  + js(l) A .  dl (96) 

(en effet l’amplitude de probabilité d’un 

Le déphasage entre les deux trajets en 
(VIII-2)): 

= A + i B .  dS 
r 

trajet est - exp(iS/fi) : cf. 

présence du solénoïde est : 

dl - A - dl] 

(97) 

où I‘ est le contour délimité par les deux trajets. Le résultat (97) est 
invariant de jauge, mais on voit que le champ magnétique influence la 
propagation des électrons, alors qu’il est nul dans la région où la 
probabilité de présence de ceux-ci est différente de zéro. I1 faudrait 
donc écrire une interaction non locale entre le champ B et les électrons, 
alors que l’interaction entre ceux-ci et le potentiel A est parfaitement 

locale : A .  dl est calculé le long du trajet (*). 5 
Nous ne pouvons pas échapper à la quantification du potentiel (on 

continuera malgré tout à parler de la quantification du chump électro- 
magnétique), ce qui implique une confrontation à l’invariance de 
jauge : comme les potentiels ne sont pas uniques, il n’est pas étonnant 
que le nombre de degrés de liberté soit plus élevé que le nombre de 
degrés de libertés physiques. Les difficultés apparaissent aussi bien dans 

(*) L’importance du rôle des potentiels en mécanique quantique ne devrait pas 
surprendre : la formulation élémcntaire de la mécanique classique (lois de Newton) fait 
intervenir la force, mais la formulation élémentaire de la mécanique quantique (équation 
de Schrodinger) fait intervenir l’énergie potentielle. 
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la quantification canonique que dans la méthode des intégrales de 
chemin : 
- quantification canonique : le moment conjugué de A. n’existe 

pas : rro = O, 
- intégrales de chemin : essayons d’écrire pour le champ électroma- 

gnétique une généralisation naïve de la fonctionnelle génératrice du 
champ scalaire ; l’action dépend du lagrangien libre 9o et d’un courant 
conservé classique j ,  (x) 

(98) 
1 Z ( j )  = 9 A ,  exp i d4x(20(A,) - j p A p )  s is 

= 9 A ,  exp(iS[A]) 

avec (cf. (82)) : 

(99) 
1 
2 Yo = - A ” [ O g , ,  - ô, ô , ]A” .  

On notera le signe dans (99) : dans le cas de la composante de temps, le 
signe du d’alembertien est opposé à celui du champ de Klein-Gordon, 
alors que les signes sont identiques dans le cas des composantes 
d’espace : une règle mnémotechnique consiste à remarquer que les 
composantes d’espace de A ,  sont les composantes physiques, et que 
pour ces composantes on doit avoir le même signe que pour le champ 
scalaire. D’après l’expérience acquise au chapitre X, on serait tenté 
d’écrire pour le propagateur du photon : 

Malheureusement l’opérateur [Ug,, - a, a,] n’a pas d’inverse : il 
donne zéro si on l’applique à a ”  A ; de façon équivalente, dans l’espace 
de Fourier, (g,, - k ,  k , / k 2 )  projette sur le sous-espace orthogonal à 
k ,  (au sens de la métrique de Minkowski). Dans le cas du champ 
vectoriel (X-E.2), (g,, - k ,  k V / m 2 )  est inversible sauf si k2 = m2. 

Pour quantifier A,, il faut fixer une jauge. Les choix standard sont : 

(i) WA, (x) = O jauge de Lorentz (100) 
(ii) V A(x)  = O jauge de Coulomb (101) 
(iii) npA,(x) = O jauge axiale (n2<  O )  (102) 

La jauge de Lorentz ne fixe pas complètement le potentiel : on peut 
encore faire des transformations de jauge : 

A ,  +A, + a,O (x) 
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à condition que û (x) obéisse à l’équation 

O û ( x )  = o .  
Au contraire les choix (101) et (102) fixent le potentiel de façon unique, 
si l’on exige que celui-ci tende vers zéro à l’infini. Cependant la 
quantification dans la jauge de Coulomb (101) ou dans la jauge axiale 
(102) brise la covariance formelle de la théorie, et nous nous limiterons 
à des équations fixant la jauge qui soient explicitement covariantes, 
bien que la méthode exposée ci-dessous soit générale. Les jauges 
covariantes conduisent en effet à des calculs beaucoup plus simples que 
les jauges (101) ou (102) ; elles ont l’inconvénient d’introduire des 
degrés de liberté non physiques. Lorsqu’il est essentiel de garder 
uniquement les degrés de liberté physiques, le choix d’une jauge axiale 
par exemple peut être indispensable. 

D.2. Quantification dans la jauge de Lorentz : fonctionnelle génératrice 

Le problème de l’intégrale fonctionnelle (98) vient de ce que l’on 
intègre sur un nombre de configurations beaucoup trop grand, puisque 
deux configurations A ,  (x) et A ,  + û,A(x)  sont physiquement équiva- 
lentes. Au lieu d’intégrer sur toutes les configurations, il faudrait 
arriver à intégrer seulement sur les classes d’équivalence de configura- 
tions, deux configurations étant équivalentes quand elles se déduisent 
l’une de l’autre par une transformation de jauge. 

La méthode exposée ci-dessous est tout à fait heuristique ; il faudra 
vérifier qu’elle conduit à des règles de Feynman donnant une théorie 
unitaire, locale et renormalisable : cette vérification sera l’objet du 
chapitre suivant. Remarquons simplement que, par rapport à la 
quantification canonique, cette méthode est incomparablement plus 
rapide, et a l’avantage de préparer à la quantification des théories de 
jauge non abéliennes. 

L‘intégration sur les classes d’équivalence peut être réalisée en fixant 
la jauge par une condition du type : 

a condition que (103) fixe de façon unique le représentant dans la classe 
d’équivalence. Introduisons la notation suivante pour les transforma- 
tions de jauge : 

A;(x)  = A , ( x )  + ~ , A ( x ) .  (104) 

Comme (104) est un simple changement d’origine de A, ,  la mesure 
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d'intégration 9 A ,  est invariante dans la transformation de jauge 
(104) : 

9 A i  = BA, (=  n % ( x ) )  . 
x ,  IL 

Définissons ensuite la quantité invariante de jauge Af(A) par : 

Cette quantité est bien invariante de jauge car si &(x) est une fonction 
fixée : 

J x  J x  

d'où Af(A) = Af(A'). On peut maintenant introduire (105) dans 
l'intégrale de chemin (98), en utilisant la conservation du courant pour 
montrer que S[A] = S[A"] : 

Z ( j )  = n dA,(x) eiSFAI Af(A) n 6 (f(A"(x))) dA(x) J X , P  X 

= dA(x) J n dA;"(x) eiSLA-"] Af(A-") n 6 ( f ( A ( x ) ) )  
x ,  P X 

= s r j  dA(X) J n w . A x )  eiSLA1 A f W  n S(f(A(x)))  * (106) 
x ,  IL X 

Dans la dernière ligne de l'équation (106)' on a pu mettre en facteur un 
<< volume D fl dA(x), indépendant des champs, et que l'on peut donc 

ignorer : c'est une simple constante multiplicative. Nous arrivons donc 
au résultat suivant pour Z(j)  : 

X 

z( j )  = BA, eiSIA1 Af(A) n 6 ( f (A))  s X 

Le calcul de Af(A), donné par : 

dA(x) n 6 ( P A ; )  
X 

n'est en principe possible que si la condition f (A)  = O fixe A, de façon 
unique, ce qui n'est pas le cas de la jauge de Lorentz dans l'espace de 
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Minkowski. Cependant on peut procéder dans l’espace euclidien - en 
faisant appel au postulat d’euclidicité - auquel cas ce problème ne se 
pose pas. Evaluons donc Af(A) avec comme condition de jauge la 
condition de Lorentz (100). Grâce à la fonction 6, il suffit de considérer 
des configurations A$ (104) voisines d’une configuration VA, = O : 

apA: = a p  (8,A) = UA . 
Ceci montre que A j(A) est en fait indépendant de A. Cette propriété ne 
serait pas vraie avec un choix de jauge plus complexe (cf. exercice 14), 
ou dans le cas d’une théorie non abélienne, mais dans le cas présent 
Aj(A) est une simple constante multiplicative que l’on peut ignorer et 
Z ( j )  est donnée par : 

Z ( j )  = 9 A p  eiSLA] n 6 (PA,)  . (108) s X 

Cette forme de Z ( j )  donnerait le propagateur du photon sous forme 
transverse ; il est commode de généraliser légèrement l’équation (108), 
en prenant pour condition de jauge : 

a’A, - C ( X )  = O .  

Ceci modifie trivialement l’expression (108) pour Z ( j  ). On peut ensuite 
faire une moyenne sur c ( x )  avec un poids gaussien dépendant d’un 
paramètre arbitraire a : 

( ia s d4x c2(x) + iS[A] x Z ( j )  = 9 A 9 c ( x )  exp - - 1 
x n S(ac”A, - c ( x ) )  

s 
X 

soit : 

Z ( j )  = 9 A e x p  iS[A] -- (û,AP)’d4x . (109) 

L’expression (109) montre que l’on peut remplacer le lagrangien 

s ( 2 a  i s  1 
initial To (99) par le Zugrungien de StüeckeZberg : 

Le terme non invariant de jauge (1/2 a)(ar”A,)2 dans (110) est appelé 
<<terme fixant la jauge ». 11 est maintenant possible d’obtenir le 
propagateur par inspection, car 2s s’écrit aussi : 
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- g p v +  (l-a)-) k p  k ”  
k 2  + i e  k + i e  

L‘opérateur K,, est inversible, et il est facile de trouver l’inverse dans 
l’espace de Fourier (exercice 12) : 

(111) . 

Pour obtenir ( k 2 +  ie)-l dans ( i l l ) ,  on a rajouté à 2’ un terme en 
- isA A, ,  pour lequel on peut donner la justification heuristique 
suivante : dans le cas d’un méson vecteur massif, le terme de masse du 
lagrangien vaut m2A I* A,, et la prescription m2 -+ m2 - ie rajoute 
- ieA A, .  On peut également faire appel au postulat d’euclidicité (X- 
B .2), 

Les cas particuliers a = O et a = 1 donnent le propagateur dans la 
<< jauge de Feynman D et la << jauge de Landau B respectivement : 

- igp” 
a = 1 (Feynman) : DË” = ___ (112) k2 + is  

a = O (Landau) : OF”=- ( - g p v  +E) . (113) 
k2 + ie k2 + ie 

Dans la jauge de Landau, le propagateur est transverse : k ,  LIP” = O. 
Le lagrangien de l’électrodynamique que nous avons obtenu grâce aux 
manipulations qui précèdent est renormalisable (nous le verrons au 
chapitre suivant), mais cela n’est pas suffisant pour en faire une théorie 
physiquement satisfaisante. I1 faudra encore vérifier l’unitarité de la 
matrice S et l’indépendance des quantités physiques par rapport à la 
condition de jauge, et en particulier par rapport au paramètre 
a ; en d’autres termes il faudra vérifier Z‘indépendunce de jauge des 
quantités physiques. Ceci n’est pas évident car les fonctions de Green 
dépendent de a, et plus généralement de la condition de jauge. 

Revenons brièvement sur les équations du mouvement du lagrangien 
de Stueckelberg (110) couplé à un courant conservé j p  ; ces équations 
s’écrivent : 

La conservation du courant implique que ( a p A p )  est un chump libre : 

O(a ,Ap)  = O .  

Classiquement on pourrait imposer a,AP = O comme condition aux 
limites à t = - CO, et a,A” resterait partout égal à zéro : le terme en 
(- 1/2 a ) (a,A ”)2 n’a pas de conséquences physiques. En théorie 
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quantique, on ne peut pas prendre û,A = O comme condition opérato- 
rielle ; en effet le moment conjugué de A’, no vaut : 

1 
a 

T O =  - - (û,A”) 

On peut simplement exiger que la partie à fréquences positives 
) donne zéro si on l’applique à un état physique I $) : 

WAF )I $) 

ce qui assure que ($ I û , A p (  $) = O. Comme A’ possède maintenant 
un moment conjugué, la quantification canonique peut s’écrire sans 
problème, à condition d’introduire une métrique indéfinie. 

EXERCICES 

1) Démontrer l’identité : 

(Suggestion : examiner le cas où I ‘v) = Inm1 ... nmi ...)). 

2) Montrer que W j , ( x )  = O avec j , ( x )  = $ ( x )  y, I,+@). 

(a) A ,  = O  (b) A ,  # O .  

3) Vérifier les relations d’orthonormalisation (35). 

4) Montrer, à l’aide de (19) que $(x) y”  + ( x )  et $ ( x )  n P y  Q ( x )  se 
transforment respectivement comme un quadrivecteur et un tenseur antisymé- 
trique dans une transformation de Lorentz. 

Calculer égaiement ü (p‘ ) y u @) et E (p’) y p u(p). 
En déduire les relations d’orthonormalisation (43). 
Vérifier le résultat en utilisant l’expression explicite (34) de u et u .  

6) Vérifier la relation d’anticommutation (41). (On pourra utiliser les 
relations de fermeture (36)). 
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7) Vérifier en détail le passage de (47) à (48) et de (48) à (49). Utiliser la 
relation d'anticommutation (41) pour montrer que S,(x)  est une fonction de 
Green de l'équation de Dirac : (id - m )  S, (x)  = i 6 ("(x) .  

8) Terminer la démonstration du théorème de Wick pour les fermions. On 
pourra, soit procéder directement (cf. Itzykson-Zuber), soit utiliser la méthode 
du chapitre IX en sommant sur p et l'indice de spin r : 

q(t, p)  = j d3xeiP.' 7) - ( t ,  x)  ; 7) ( t ,  p )  = j d3x 7) ( t ,  x)  

On notera que ~ ( t ,  - p) est couplé à dr (p) et 7) ( t ,  - p )  à d,(p), d'où une 
interversion des rôles de 77 et ï j  dans ce cas. 

9) Démontrer les relations de commutation 

[Q, iF,(x)l = - e+ (XI ; 
Quelle est l'interprétation physique de ces relations ? 

[ Q ,  $(x>I = e $ ( x >  

10) Retrouver les équations de Maxwell à partir du lagrangien (80). 

11) Montrer que l'équation de Schrodinger d'une particule de charge q dans 
un champ électromagnétique ( c p ,  A )  est invariante par transformation de jauge 
dans le sens suivant : si cp -+ cp + a,A, A -+ A - VA,  J l ' ( t ,  x)  = exp(- iqA) x 
x + ( t ,  x) obéit à l'équation de Schrodinger dans le potentiel ('p', A'). En 
déduire l'invariance des probabilités de transition ('). 

12) En écrivant Di, ,  = a g P y  + p k ,  k , ,  déterminer a et p e t  obtenir la forme 
(111) du propagateur. 

13) (a) Partant du lagrangien d'un méson vecteur de masse A couplé à un 
courant j "  : 

1 
2 9 = - A " [ ( U + A 2 ) g , p  - a , a , ] A P - j , A "  

on rajoute un terme - (1/2 a)(LiuA")2. Quelles sont les équations du mouve- 
ment ? Montrer que si j p  est un courant conservé, û,A" est un champ libre. 

(b) Obtenir l'expression du propagateur (régulier si A -+ O) : 

i 
q2-  A2+iE 

D/' = 

(c) Montrer que le lagrangien transformé est invariant par la transformation : 

A ,  - + A ,  + 3,û 

pourvu que (O + ah ') û ( x )  = O. Montrer que l'on peut rendre A ,  transverse 
( P A ,  = O )  par une transformation de jauge de ce type, et que l'adjonction du 
terme en (- 1/2 a)(a,Ar")2 ne modifie pas le contenu physique de 9. 
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14) Quantifier le champ électromagnétique en prenant comme condition de 
jauge f ( A )  = a,Ap + gA, A CL = O (cette jauge est sans intérêt en électrody- 

namique, mais l‘exercice constitue une bonne préparation à la quantification 
des théories de jauge non abéliennes) (3). 

1 

(a) Calcul de 

A T W  = j fl dA(x) fl S ( f ( A % ) ) ) .  
x x 

A cause de la forme (107) de Z ( j ) ,  il suffit de calculer Af au voisinage d’une 
configuration [ A , ]  telle que f ( A )  = O 

f ( A t )  5 f (A , )  + a f  6A” = - V A .  af 
ôA ôA 

En déduire : 

Af = det [(CI, + gA,(x)  a:) 6(4)(x - y ) ]  . 

(Suggestion : fl dAi 6 ( M i j  Ai> = (det M i j ) - ’ ) .  
l i  

(b) Faire une moyenne sur une fonction c ( x ) ,  comme dans le passage de 
(108) à (109) et obtenir la fonctionnelle génératrice Z ( j )  sous la forme : 

z ( j ) =  9 A , 9 ( $ ,  +)exp  s 
(Suggestion : utiliser (65)). 

(c) Le lagrangien effectif contient des particules fictives (fantômes de 
Fadeev-Popov) décrites par les champs + et 6. Déduire de Z ( j )  les règles de 
Feynman pour l’électrodynamique dans cette jauge (cf. X-E.3). 

(d) Montrer que la diffusion photon-photon reste triviale (en l’absence 
d’électrons) malgré la présence de vertex à 3 et 4 photons : 
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Montrer également que les corrections au propagateur du photon restent nulles 
à l'ordre d'une boucle : 

+ = O  

VW.AA = photon e>. = fantôme 

(il est nécessaire d'utiliser une régularisation invariante de jauge, comme la 
régularisation dimensionnelle). 
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CHAPITRE XII 

Electrodynamique quantique 

L‘électrodynamique quantique, théorie quantique et relativiste de 
l’interaction des électrons et des photons, est la théorie physique dont 
les vérifications expérimentales sont - et de très loin - les plus 
précises. Je me contenterai de détailler un exemple, celui du moment 
magnétique anormal de l’électron. Toute particule chargée de charge e 
et de masse m possède un moment magnétique p,  dont la valeur est 
donnée en fonction de son spin S par : 

e 
2 m  

p = g - s  

où g est le facteur gyromagnétique. Classiquement g = 1 : il suffit de 
calculer le moment magnétique d’une distribution de charges en 
rotation pour établir ce résultat. L‘équation de Dirac prédit g = 2 pour 
l’électron, en excellent accord avec l’expérience (en fait on sait que 
cette prédiction n’est pas typique de l’équation de Dirac : les équations 
d’onde galiléennes pour un spin 1/2 conduisent aussi à g = 2 (l)). Les 
corrections rudiutives, c’est-à-dire les termes de la théorie des perturba- 
tions faisant intervenir des diagrammes avec boucles prédisent une 
modification de la valeur de Dirac, qui, au premier ordre en a (défini à 
l’équation (2) )  est donnée par : 

g = 2  1 + -  . ( 2012 
Ce résultat sera établi au paragraphe C. On est allé beaucoup plus loin 
dans le développement perturbatif : le troisième ordre en a (72 graphes) 
a été complètement évalué et l’on dispose d’une évaluation partielle du 
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quatrième ordre (’) (891 graphes !). Ecrivant : 

g = 2(1 +a,) 

la valeur théorique de a, est 

0.328478445 ( 9 ) ’ + 1.1765 (13) ( 9 ) + O ( 9 ) l a  
2%- 

aéh = - - - 

où le (13) reflète l’incertitude sur les deux derniers chiffres du 
coefficient de ( a / ~ ) ~  ; ceci donne : 

.éh = 1159652478 (144). lo-’’ 

alors que la valeur expérimentale est (*) : 

uZ’P = 1159652209 (31). 10- ’’ , 
un accord spectaculaire ! D’autres vérifications très précises sont aussi 
obtenues pour : le moment magnétique anormal du muon, le déplace- 
ment Lamb, la structure fine du positronium etc. Ces vérifications 
démontrent que les corrections radiatives, et le programme de renorma- 
lisation correspondant, ne sont pas une spéculation de théoriciens. Ce 
chapitre ne donne évidemment qu’une vue très limitée des développe- 
ments de l’électrodynamique quantique ; néanmoins il permettra, pour 
la première fois dans ce cours, le calcul d’effets observables dans une 
théorie quantique des champs. 

Le paragraphe A est consacré aux règles de Feynman pour l’électro- 
dynamique ; en pratique la seule difficulté est liée à un problème de 
signe, dû à la présence de fermions. Le paragraphe B donne deux 
applications simples de ces règles, faisant intervenir seulement des 
diagrammes en arbres. Les diagrammes à une boucle sont abordés au 
paragraphe C avec le calcul des corrections radiatives aux propagateurs 
du photon et de l’électron et au vertex électron-photon. Enfin 
l’importante question des identités de Ward est examinée au paragra- 
phe D, qui décrit aussi très schématiquement le programme de renor- 
malisation. On trouvera en D.4 une discussion qualitative de la 
renormalisation et du groupe de renormalisation de l’électrodynamique, 
qui peut être lue indépendamment du reste du chapitre. 
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A. RÈGLES DE FEYNMAN 
POUR L’ÉLECTRODYNAMIQUE QUANTIQUE 

Le lagrangien de départ a été déterminé au chapitre précédent 1 
+ [ & (  k 8 - m )  $1 + [ - e&r ,  + A p ]  . (1) 

Le premier crochet correspond au lagrangien Ys du champ électroma- 
gnétique libre, après la modification de Stüeckelberg. Dans certains 
calculs intermédiaires, il peut être nécessaire d’attribuer une masse 
non-nulle X au photon. Les résultats physiques, lorsque le problème est 
bien posé, doivent être finis à la limite A --+ O. L’exercice (XI.13) 
montre que l’introduction de cette masse peut se faire sans problème. 
Le deuxième crochet correspond au lagrangien Z D  du champ de Dirac 
libre (XI.20), et le troisième crochet au terme d’interaction SI du 
champ de Dirac avec le champ électromagnétique, obtenu grâce à la 
prescription du couplage minimal (XI.94). 

La charge e dans (1) est la charge de l’électron (e -= O )  ; les résultats 
physiques sont en général exprimés en fonction de la constante de 
structure fine CY, qui est un nombre sans dimensions : 

A.1. Fonctions de Green dans l’espace de configuration 

L’expérience acquise dans le cas du champ scalaire et les résultats 
établis au chapitre précédent nous permettent d‘écrire rapidement les 
règles de Feynman pour les fonctions de Green, obtenues par différen- 
tiation fonctionnelle à partir de la fonctionnelle génératrice : 

Z ( J ,  7,771 = W A p ,  i ,  +) x 

I C  

s 
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Les fonctions de Green G (2 n, m ,  sont données par : 

I . (4) 
8(2”+rn)Z(J,  4, a )  

X 
8 4 ( y l )  ... 6 ~ ( Y n ) 6 ~ ( X 1 )  ... 6 v ( X n ) 6 J ” ’ ( Z l )  ... 6 J ” m ( Z m )  J = l i = 7 = 0  

La source J ,  (tout comme 7) et .li) est une source auxiliaire 
mathématique qui sert à obtenir les fonctions de Green ; elle n’a aucune 
raison d’obéir à üpJp = O. Le nombre de dérivations par rapport à et 
fj est le même, car dans le cas contraire l’intégration sur les variables 
anticommutantes donne zéro, le lagrangien contenant uniquement la 
combinaison $+. Pour des raisons de commodité d’écriture, on 
utilisera parfois la notation opératorielle : 

G p 1 , , , p L m ( ~ 1 ,  (2 n ,  m )  . * . , y ,  . . . ,x,  ; z1 ,  . . . y z m )  = 

= (01 T ( + ( Y ~ )  ... +((Y,) &(xi) 3.. &(xn)Apl(zi) ...Ap,,,(zm)) I O >  . 
( 5 )  

Sous cette forme on retrouve le résultat précédent : la conservation de 
la charge implique que le nombre de + est égal à celui de $. 

Le propagateur de l’électron S, est représenté par un trait plein 
orienté dans le sens de propagation de la charge de l’électron (dans 
l’écriture de (6), on rencontre la difficulté habituelle : les réactions sont 
écrites de gauche à droite (l’électron entre dans le diagramme à gauche) 
tandis que la multiplication des opérateurs va de droite à gauche) : 

m 
P - - : s ; a ( Y  -XI = S p ( Y )  13;m (6) 

x ,  a Y. B 

L’opérateur $, ( x )  crée un électron (ou détruit un positron) en x ; cet 
électron se propage de x en y et est détruit en y par t ,bP(y) : le flot de 
charge va de x vers y .  Le propagateur représente aussi la création d’un 
positron en y suivi de sa destruction en x : l’ordre des temps n’intervient 
pas dans les règles de Feynman. 

Rappelons les définitions des transformées de Fourier : 

i ) = 1 d4(y - x) eiP(Y-’) S s a ( y  - x )  . (7.b) 
$ - -+ i s  pa  

On note que les conventions (7) pour les transformées de Fourier sont 
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bien compatibles avec les conventions utilisées pour définir les fonctions 
de Green : dans (7.b) e-@’ correspond à un moment p entrant dans le 
diagramme à gauche, e“ à un moment ( - p )  entrant dans le 
diagramme à droite. Si nous définissons le propagateur complet 
S ( y  - x )  par : 

P P’ 

d’après nos conventions pour la transformée de Fourier d’une fonction 
de Green: , 
(2 4 4  ô(4)@ + p ’ ) ~ , , ( p ’ , p )  = 

= 1 d 4 ~  d4y e-i@x+P‘Y) S p a ( Y - X ) .  (9) 

Afin d’éviter toute confusion, il convient de bien distinguer la flèche 
sur le propagateur, qui indique la direction du flot de charge, de la 
flèche indiquant le flot de moment. 

Le propagateur du photon pose moins de problèmes car il n’est pas 
orienté : il sera représenté par un trait ondulé (sans orientation) : 

9 

x ,  P Y ?  v 

F - 
~----.yvvr D , , ( Y - x )  = D L , ( x - Y )  = h u ( Y ) A p ( X )  (10) 

Le propagateur complet du photon, D v p ( y  - x )  sera : 

Dv,(Y - X I  = (01 T(AV(Y)A,(X))  10) * (12) 

Le vertex électron-photon-électron se lit directement sur le lagrangien 
(1) : à chaque vertex doit être associé un facteur - iey : 

(13) 

Le seul point délicat concerne les signes, auxquels il faut faire très 
attention chaque fois qu’on a affaire à des fermions. A cause de la 
conservation de la charge, une ligne d’électrons a seulement deux 
possibilités : 

(i) se refermer sur elle-même : c’est le cas des boucles d’électrons, 
(ii) traverser tout le diagramme, c’est-à-dire entrer en un certain 

point xi  et en ressortir en un point y j .  
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Examinons d’abord le cas d’une boucle, par exemple celle de la 
fi ure 1 : le développement de l’exponentielle 

2 e’ où SI est l’action correspondant au cou- 
plage électron-photon dans (1), conduit à : 

.$ 

&(l) $ 0 )  442) $(2) &(3)  $13) 6 ( 4 )  $(4) 
(14.a) 

où tous les facteurs sans intérêt pour le signe 
( y w L , A I L ,  ...) ont été omis. Notez que l’ordre 

des &$ est sans importance car deux (&$) cornmutent entre eux. 
Cependant pour mettre (14.a) sous forme d’un produit de propagateurs, 
il faut par exemple faire passer $ (4) à gauche dans (14.a) ce qui donne, 
après application du théorème de Wick, la contribution suivante : 

4 

Figure 1. Une boucle 
fermionique. 

r----- -I -- -I 
- +CI41 $(1) $0) sr(2) $12) $(3) $13) $(4) (14.b) 

où le signe (- ) provient de ce que $(4) a anticommuté avec un 
nombre impair de champs. Le résultat est évidemment le même pour un 
nombre quelconque de facteurs &$, et nous aboutissons à la conclu- 
sion : à chaque boucle de fermions doit être associé un facteur 

En ce qui concerne les lignes traversant le diagramme, examinons par 
(- 1). 

exemple le graphe de la figure 2 : il lui correspondra un facteur : 

Figure 2. 

alors que i’on avait au départ : 

I1 faudra tenir compte pour ce diagramme de deux facteurs de signe : 
- un facteur (- 1 )  associé à la boucle électronique, 
- un facteur égal au signe de la permutation faisant passer de l’ordre 

(15.b) à (15.a) ; ce signe est + 1 dans le cas particulier considéré. 
Déterminons enfin le facteur de symétrie ; pour les besoins de la 

démonstration, on décompose chaque vertex en un cercle correspon- 
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dant à un facteur $ et une croix correspondant à un facteur 6, de telle 
sorte que toute ligne de fermion parte d’une croix et arrive à un cercle : 

Toute contraction joint obligatoirement une croix à un cercle. Ainsi 
dans le diagramme de la figure 3, il y a une seule façon de faire les 
contractions : 

e - -- -- 
Figure 3. 

et l’application du théorème de Wick donne un seul terme. Comme ii 
n’y a pas de l/(factorielle) dans le lagrangien LZ1, tous les diagrammes 
topologiquement inéquivalents auront un facteur de symétrie égal à 1.  

Remarquez que les diagrammes de la figure 4, contribuant à la 
diffusion photon-photon sont topologiquement inéquivalents : 

Figure 4. Diagrammes de  la diffusion photon-photon 

On peut résumer les règles de Feynman dans l’espace de configura- 
tion : 

1) Propagateur de l’électron : x-+ : SBa ( y  - x) 
x ,  Y , P  

2) Propagateur du photon : x,N.)‘rm 

x ,  I-L Y , V  

: D :,(y - x )  



492 Electrodynamique quantique XII.A.2 

4) Facteur (- 1) pour toute boucle de fermions. 
5) Signe global associé à la configuration des lignes externes. 
6) Facteur de symétrie égal à 1 pour tous les diagrammes topologi- 

7) Intégration sur tous les points internes du diagramme. 
quement inéquivalents. 

A.2. Eléments de matrice S 

Passons maintenant aux règles de Feynman pour les éléments de 
matrice S .  Si nous transposons la méthode exposée au chapitre X, 
paragraphe C.3, nous constatons que nous avons besoin des contrac- 
tions suivantes : 

P 
t 

&(-Y)  d, (p) = O(')(p) eëipX 
d 

P 

d,(p) @ ( x )  = u ("(p) eipx 
U 

-L 

P 
t 

-@ A, ( x )  a, (k) = Et)(k)e-ikX 
-F 

k 

a,(k) A ,  ( x )  = .zf)*(k) eikx 
U 

-L 

k 

Electron entrant 

Electron sortant 

Positron entrant 

Positron sortant 

Photon entrant 

Photon sortant 

Dans les deux dernières équations, Ef)(k) est un quadrivecteur 
polarisation (cf. XI.95) et s un indice de polarisation (circulaire, linéaire 
ou autre). Comme les photons entrants et sortants sont physiques, on 
peut, pour calculer les contractions, utiliser une décomposition de 
Fourier du champ électromagnétique possédant seulement deux degrés 
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de liberté transverses (physiques) : 

x [Et)(k)a,(k)e-'kn + ~ p ) * ( k ) a J  (k)etkX] (16) 

avec : k p  E = k - E = O.  

matrice S de l'effet Compton : 

P 

Appliquons par exemple ces règles au calcul de l'élément de 

y ( k , s )  + .(P? r )  --* Y(k'?S') + e(P'? r') 

au premier ordre en e .  I1 s'agit de calculer : 

SE) = [ d4x d4y (k', S '  ; p', r' 1 T ( $ ( x )  y' + ( x ) A , ( x )  x 2! 

x IGOi>)yYJI(Y)AvO>)) I k , s ; p , r )  (17) 

où le 1/2 ! provient du développement de exp(iS1). Cependant I'associa- 
tion (x c., électron p ; y C* électron p') donne la même contribution que 
l'association inverse : on pourra comme d'habitude omettre le 1/2 ! à 
condition de ne pas tenir compte de la permutation des vertexx et y. 
Nous aurons deux diagrammes, donnés a un facteur près par (figure 5). 

E(S')'(k') E:)(k)ü(r ' ) (p ' )  y" S,(y - x )  x 
Y ~ U ( r ) ( P ) e - i p . r  e - ~ k y  e e  i p ' y  ik'x 

Figure 5. Diagrammes de l'effet Compton à l'ordre e'. 

Compte tenu de l'expression (7.a) de S,(y - x )  en fonction de sa 
transformée de Fourier, on peut effectuer l'intégration sur x et y et 
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obtenir SF) sous la forme : 

Sj;) = E(”’)*(k’) EI(S)(k) d‘)(p’){ (2 T ) ~  S(4)(p + k - q )  x 

4 -tm (- iey”) i 
x ( 2 ~ ) ~ ô ( ~ ) ( p ’ + k ’ - q )  (-icy")- 

(2 n-)‘q*-- m2+ i~ 
+ ( 2  T ) ~  S(4)(p - k’ - q )  (2 T ) ~  - k - q ) ( -  ieyp) 

(- iey ”) u (“(p) . I i 4 + m  
( 2 ~ ) ~ q ~ - m ~ + i ~  

X- 

Les règles de Feynman associent un facteur (2 T )4 S (4)(.  . . ) à chaque 
vertex, et un facteur 1/(2 T T ) ~  à chaque propagateur. Pour calculer 
l’élément de matrice T ,  on doit extraire un facteur (2 T ) ~  

S(4)(p’ + k‘ - p  - k )  étant donné que : 

sfi = 6 f i  + i(2 T ) ~  s ( ~ ) ( P ~  - pi) T, . (19) 

Suivant la remarque faite au chapitre V, paragraphe B.5, il est plus 
commode de tenir compte des facteurs (2 T T ) ~  en les associant aux 

intégrales sur les boucles .: d4q/ (2 T )4. Résumons les règles de 

Feynman pour les éléments de matrice T dans l’espace de Fourier. 

1) Tracer tous les diagrammes connexes topologiquement inéquiva- 
lents ne contenant pas d’insertion d’énergie propre sur les lignes 
externes. 

I 

2) Associer à chaque ligne électronique interne un facteur 

3) Associer à chaque ligne photonique interne un facteur 

i ( -  g p L y  + (1 - a) k ,  k,/(k2 + i E ) ) / ( k 2  + iE) . 

Si nécessaire on rétablira la masse A dans des calculs intermédiaires (cf. 
(11)). 

4) Associer à chaque vertex un facteur - ie; p. 

5) Mettre les lignes externes sur couche de masse (p2 = m2, 
k 2  = O )  et associer à ces lignes les facteurs suivants : 

électron entrant : u (“QI) ; 
positron entrant : u ( ‘ ) @ )  ; 
photon entrant : EI(S)(k) ; photon sortant : E!)*(k). 

électron sortant : u(‘)(p) 

positron sortant : u( ‘ ) (P)  
- 
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6) Multiplier chaque ligne électronique externe par un facteur 
2:” et chaque ligne photonique externe par 2:” ; z2 et z3 sont reliés aux 
constantes de renormalisation du champ électronique et du champ 
photonique (cf. paragraphe C et X.83). 

7) Associer un facteur (- 1) à toute boucle d’électrons, et déterminer 
le signe global du diagramme dépendant de la configuration des lignes 
externes. 

8) Multiplier par un facteur - i (cf. (19)). 
9) Intégrer sur toutes les boucles avec un facteur d4q/(2 T ) ~ .  

Comme les opérateurs de création et d’annihilation des fermions ont 
la même normalisation que ceux des bosons, les sections efficaces 
seront données par (X.62). Ces sections efficaces dépendent des indices 
de polarisation (s) du photon, et des indices de spin ( r )  des électrons. 
Dans de nombreux cas on n’observe pas les spins finaux et les particules 
initiales ne sont pas polarisées : il faut alors sommer sur les indices de 
spin finaux et moyenner sur les indices de spin initiaux. 

B. APPLICATIONS 

Nous donnerons deux applications simples de ces règles de Feynman 

- la diffusion d’un électron par un champ coulombien statique, 
- la section efficace e+  e- -t p + p - .  

Dans ces deux exemples, nous aurons affaire uniquement à des 
diagrammes en arbres, et la question des divergences et de la 
renormalisation ne se pose pas. 

en calculant à l’ordre le plus bas de la théorie des perturbations : 

B.l .  Diffusion d’un électron par un champ coulombien 

Le lagrangien décrivant la diffusion d’un électron par un champ 
extérieur A t ) @ )  est : 

zl = - ei2;(x) y k  + ( x ) A ~ ( ~ ) ( x ) .  (20) 

Au premier ordre de la théorie des perturbations, l’élément de 
matrice S vaut : 
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où p@‘)  et r ( r ‘ )  sont les moments et les indices de spin de l’électron 
initial (final). Le graphe de Feynman 
correspondant à (21) est dessiné sur la 
figure 6. Nous nous contenterons de calcu- 
ler la diffusion par un 

P‘, rl 

’ bien : 

- Z e  . A ~ ) ( x )  = ___ 
4 7T I lXI I  ’ 

potentiel coulom- 

A ( e ) ( ~ )  = O .  (22) 

F,igure 6. Diffusion par un Les équations (20) et (22) décrivent à 
champ extérieur. une bonne approximation la diffusion 

d’un électron par un noyau lourd de 
charge 2, lorsque l’énergie de I’électron est faible par rapport à l a ’  
masse du noyau : ce dernier peut être considéré comme la source 
statique du champ A;! Le noyau absorbe le moment (p’ - p )  transféré 
à l’électron : le moment de l’électron ne sera pas conservé, tandis que 
son énergie sera, elle, conservée. Tout ceci est évidemment très 
analogue à la diffusion par un potentiel. Lorsque Za e 1, I’.approxima- 
tion du premier ordre (21) sera a priori une bonne approximation ; 
lorsque Z a  n’obéit pas à cette condition, le résultat (26) est néanmoins 
correct grâce aux propriétés particulières du potentiel de Coulomb. Le 
calcul de Sfi dans (21) est immédiat : 

Pour trouver la section efficace, il faut adapter légèrement la méthode 
utilisée au chapitre X, paragraphe C. 1. Comme seule l’énergie est 
conservée, on définira, comme en théorie du potentiel : 

S f i  = s f i + i ( 2 . r r ) 6 ( E f - E i ) ~ f ~ ,  (24) 

La section efficace est donnée en fonction de Tf i  par : 

* (25) 
d3p ‘ 

(2 n )3 2 E’ 
dm = - (c ITfi12) 2 7 r 8 ( E ’ - E )  

2 II p II  
Les détails de la démonstration de (25) sont renvoyés à l’exercice 1. La 

1 notation = - indique une sommation sur le spin final et une 
2 

moyenne sur le spin initial : on suppose l’électron initial non polarisé et 
on n’observe pas la polarisation de l’électron final. Effectuons cette 

- 
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sommation : 
1 - 

ldr) (pr)  ~ ~ u ( ~ ) ( p ) l ~  = Z T r  [ r o ( p + m )  -yo($’ + m)] = 

= 2(EE’ + p .  p‘ + m2) .  

D’autre part l’espace de phase dans (25) s’écrit : 

2 .rrô ( E  - E ‘ )  d3p‘ - p d a  -- 
( 2  4 3  2 E’ 2(2 7r)2 

où R = (O, q ) est l’angle de diffusion de l’électron final. Rassemblant 
tous les facteurs on obtient la section efficace d u / d a  : 

Cette expression constitue la généralisation relativiste de la formule de 
Rutherford, ou formule de Mott ; elle aurait d’ailleurs pu être obtenue 
à partir de l’équation de Dirac à 1 particule. A la limite non relativiste 
(p2/m2 -+ O )  l’équation (26) devient : 

-- d u  - (Za l2 
d a  4 m2 v4 sin4 812 

où u = p / E  est la vitesse de l’électron. C’est naturellement la formule 
classique de Rutherford. 

B.2. Calcul de e+ e- + p +  y -  

Le lepton p, ou muon, a exactement les mêmes propriétés que 
l’électron, mis à part sa masse : m, = 200 me ; la réaction 

e+ e- -+pi p -  

qui se produit à un nombre considérable d’exemplaires dans les 
anneaux de collision e+ e- (Orsay, DESY ... et bientôt LEP), est plus 
simple à calculer que e+ e- + e +  e- (ou e- e -  + e -  e-) car un seul 
graphe donne une contribution à l’ordre le plus bas de la théorie des 
perturbations. Ce graphe est le << graphe d’annihilation », dessiné sur la 
figure 7, qui définit 

Figure 7. Réaction e +  e -  + p + p avec un photon intermédiaire. 
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aussi la cinématique : l’électron et le positron <( s’annihilent >> pour 
donner un photon (virtuel) y, qui se désintègre et donne la paire 
p +  p -  finale. Afin de simplifier la cinématique, il est commode de 
supposer que les énergies en jeu (ko ,  p o ,  k& ph) sont très grandes par 
rapport aux masses me de l’électron et m, du muon (dans le référentiel 
où l’on mène le calcul). L’élément de matrice T correspondant au 
graphe est : 

(on remarque que le terme en q, q ,  du propagateur du photon donne 
- heureusement - une contribution nulle). Comme l’on n’observe pas 
les polarisations, il faut calculer les sommes sur les indices de spin : 

On trouve de même dans le cas de l’électron : 
2 IO(k‘) 7, U ( k ) l  = f,, = 4 ( k ,  k:  + kj,  k , )  - 4 ( k .  k ’ ) g , ,  

Comme q p  L,, = q’ L,, = O, on peut remplacer dans le calcul de 
L,, f p y  le facteur e,. par : 

e;, = - 8 k ,  k ,  - 2 q g p L y  

ce qui donne (le facteur 1/4 correspond à la moyenne sur les spins 
initiaux) : 

1 4 f,, L’”” = 16@.  k ) 2  - 16@. k ) ( q .  k )  - 4 q 2 ( p .  4) + 4 q 4 .  

2 

Plaçons-nous dans le référentiel du centre de masse, qui est aussi 
celui du laboratoire dans le cas d’un anneau de collision e+ e- : 

k’  = ( J7, O, O, - 1 -  Jq2)  ; 

) p = ( ; J p , S J 7 s i n  e,o,-Jq2cos 1 -  e , 2 

où 8 est l’angle entre la direction finale du F -  et celle du faisceau. Dans 
ce référentiel, on obtient : 

(29) 
1 f?,, L”” = q 4 ( i  + cos2 e ) .  



XII.B.3 Applications 

Pour obtenir la section efficace on se reporte à (X.66) : 

d u  a 2  
- = - (1 + cos2 O )  

4q2  

ce qui donne pour la section efficace totale : 

4 T a 2  
utot  = - * 

3 q2 
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(30) 

B.3. Application : calcul du rapport R 

La section efficace e +  e -  -+ hadrons peut être calculée en chromody- 
namique quantique : dans cette théorie (cf. XIII-D), les hadrons sont 
composés de quarks ponctuels qi et cette section efficace est simplement 
donnée par : 

w ( e +  e -  
i 

où la somme porte sur toutes les espèces de quarks qui peuvent être 
<< produites >> à l’énergie considérée (en réalité la prédiction théorique 
vaut pour q2 .+ - CO, c’est-à-dire dans la région non physique. On peut 
montrer que dans la région q2  > O, la prédiction doit être valable en 
moyenne (cf. XIII-D.4)). Les quarks connus à l’heure actuelle avec leur 
charge ei, mesurées en unités de la charge du proton, sont : 

Quarku (up) : e = 2/3 Quark d (down) : e = - 1/3 
Quarks (strange) : e = - 1/3 Quark c (charmed) : e = 2/3 
Quark b (beauty) : 

De plus chaque quark existe en trois exemplaires, en raison de la 
propriété de << couleur >> (rien à voir bien sûr avec la couleur ordi- 
naire !) . 

Les trois premiers quarks sont légers (rn K masse du proton). Le 
quark c a une masse = 1.5 GeV et le quark b une masse = 5 GeV : il 
faut donc une énergie minimale de 3 GeV et 10 GeV respectivement 
pour les << produire >> dans un anneau de collision. Les quarks sont 
couplés au photon par leur charge, et on pourra écrire sous forme 
diagrammatique (figure 8) : 

e = - 1/3 . 

Figure 8. Ecriture diagrammatique du rapport R .  
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Pour q + 10 GeV le rapport R devrait être égal à 

Les résultats expérimentaux sont en bon accord avec cette prédiction 
(figure 9). En réalité la chromodynamique quantique prédit que R doit 
être un peu plus grand que 11/3, à cause des corrections radiatives (cf. 
XIII-D .4). 

8 
a 

2 6  
\ 
2 

II 
û: 

b 4  

2 

n 

l ' . . ' I ~ ' ' ' I ~  8 ~ ' I " ' ' l " ' ' ~ ~ ~ ' ~ l " ' ' l ' ~ ' ~  
* LENA ORSAY ., CELLO 
'DASPII FRASCATI H JADE 
*CLEO 0 NOVOSIBIRSK t MARKJ 

0 DASP A TASSO 
ADHHM * SLAC-LBL PLUTO 

11/3 

O 5 10 15 20 25 30 35 40 45 

4 (GeV) 
Figure 9. Compilation récente du rapport R(3) .  

On a des raisons théoriques très sérieuses de prévoir l'existence d'un 
sixième quark, le quark t (top) de charge 2/3. Au seuil de production de 
ce quark, le rapport R devrait sauter de 11/3 à 1Y3. 

Par ailleurs, les hadrons, produits de désintégration de quarks 
(inobservables), sont très fortement collimés autour de la direction des 
quarks et antiquarks formés initialement : on a affaire à des << jets D 
(figure 10) : 

&? jet 
/ 

/ 
/ - 

e / 8 e+ .- - - -  -I--- - // 7 k / 

Figure 10. Production d'un jet. 
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A partir de ces jets, on peut reconstituer (approximativement) la 
direction du quark et de l’antiquark : on trouve que cette direction suit 
une loi en (1 + cos2 û), ce qui est en parfait accord avec (30). Ceci 
confirme que les quarks ont, en accord avec d’autres arguments, un spin 
1/2. En effet des quarks de spin zéro, par exemple, auraient une 
distribution angulaire en sin2 û (cf. exercice 8). 

C. DIAGRAMMES A UNE BOUCLE EN ÉLECTRODYNAMIQUE 

Dans ce paragraphe nous abordons l’étude de la renormalisation de 
l’électrodynamique quantique avec le calcul des diagrammes à 1 boucle. 
Mais il vaut la peine d’étudier au préalable le comptage de puissances, 
afin de déterminer les diagrammes divergents. Le comptage de 
puissances est plus compliqué que dans le cas scalaire du chapitre V, à 
cause du spin des particules. D’autre part certaines propriétés de 
symétrie, comme la symétrie de jauge, ont pour conséquence de 
diminuer le degré de divergence de certains diagrammes : le comptage 
de puissances se révèle trop pessimiste. Uri exemple spectaculaire de 
réduction des divergences est le lagrangien << supersymétrique >> de 
l’exercice 13. 

C . 1. Comptage de puissances pour l’électrodynamique 

Comme l’action de Dirac : 

est sans dimension, la dimension [ J , ]  du champ de Dirac est : 

~ 

D 
2 Le champ électromagnétique ayant la dimension usuelle [ A ]  = - - 1, 

la dimension de e est : 

(33) 
D 
2 

[e] = 2 - - .  

La constante de couplage est sans dimension pour D = 4, ce que nous 
savions déjà (cf. ( 2 ) ) ,  et ceci suggère que l’électrodynamique est 
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renormalisable pour la dimension physique D = 4 de l’espace- 
temps (*). 

Le propagateur d’un électron a dimension (- l),  celui d’un photon 
dimension (- 2)  et le degré superficiel de divergence d’un vertex 
propre G, w (G) est donné par (cf. V-F.l) : 

O(G) = 4 L - I ,  - 21 ,  (34) 

où L est le nombre de boucles, I ,  le nombre de lignes internes 
d’électrons (fermions) et ZB le nombre de lignes internes de photons 
(bosons). Si V est le nombre de vertex on a également (EF(EB) = 
nombre de lignes externes de fermions (bosons)) : 

2 v = 2 1 ,  + E ,  ; v = 2 1 ,  + EB ; L = J!, + 1,- v + 1 (35) 
soit : 

I I 

Cette formule est l’analogue de (V.67) dans le cas de l’électrodynami- 
que. Les fonctions de Green superficiellement divergentes seront 
a priori : 

(1) le propagateur du photon : w4m2i-V w ( G ) = 2  

(2) le propagateur de l’électron : -+azD+- w ( G ) = l  

(3) le vertex photon-électron : 4 w ( G ) = O  

(4) le vertex à 3 photons : w ( G )  = 1 

(5) la fonction de Green à 4 photons : ‘x w ( G ) = O  

Mais ce comptage de puissances est trop pessimiste. En effet 
examinons chaque cas plus à fond : 

1) L‘identité de Ward (cf. D.1) pour le propagateur du photon 
permet de montrer que les corrections au propagateur libre sont 
proportionnelles à : 

- g p v  k 2 +  k ,  k ,  

(*) Les idées théoriques récentes suggèrent que la dimension physique de l’espace- 
temps est supérieure à 4: 10,26 ou autre. Les dimensions supplémentaires sont 
heureusement inobservables, à moins d’atteindre des énergies -. 1019 GeV. 
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où k est le moment du photon. On peut donc extraire deux puissances 
de k et w ( G )  = O au lieu de 2. Naturellement, comme cette propriété 
est liée à l’invariance de jauge, il sera nécessaire d’utiliser une 
régularisation qui préserve cette invariance, sous peine de retomber sur 
w ( G )  = 2. 

2) Ecrivons le propagateur complet inverse S-’(p) de l’électron sous 
la forme : 

L‘énergie propre Z(p) est une matrice dans l’espace de Dirac qui doit 
s’exprimer en fonction de la matrice unité Q et de p’; le calcul à une 
boucle (cf. C.3) montre que l’énergie propre Z(p) est de la forme : 

2(p) = mA(p2) 1 + @ -  m )  B(p2)  (38) 

où A et B ont un degré superficiel de divergence w (G) = O. Dans le cas 
général, le coefficient A (p2) de la matrice unité 1 est également de la 
forme mA(p2) ; ceci est dû à l’invariance du lagrangien dans la 
transformation : 

+ -f eiuy5 + 
lorsque la masse de l’électron est nulle : le contre-terme de masse 6m 
est toujours proportionnel à rn et w (G) = O. 

3) Le résultat brut w (G) = O reste valable. 
4) Ce vertex est exclu par la conjugaison de charge : dans cette 

transformation A ,  ( x )  -+ - A , ( x ) .  Une vérification explicite est fournie 
par le théorème de Furry (exercice 2) : si un nombre impair de photons 
est accroché à une boucle électronique, la contribution du diagramme 
est nulle. 

5 )  Le vertex propre r(4)dépend de quatre indices de Lorentz (p ,  v, 
p, a) correspondant aux quatre moments k l ,  k2,  k3,  k4 ; mais une 
identité de Ward implique (cf. exercice 10) : 

Ceci permet d’extraire quatre puissances de k ,  et le degré superficiel 
de divergence est - 4 et non O. 

En résumé, dans l’étude des divergences, on pourra se limiter aux 
fonctions de Green suivantes : 

0 propagateur du photon, 
0 propagateur de l’électron, 
O vertex électron-photon. 
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C.2. Propagateur du photon et polarisation du vide 

La première correction au propagateur D,, du photon est donnée 
par le graphe à une boucle (figure 11) : 

P - 
V 

f- 

P - 9  

Figure 11. Correction à une boucle au 
propagateur du photon. 

dont l’expression analytique est : 

D$”(q)  @&I) DFp”(s> 
avec 

. (39) Tr ( r , ( P + m )  ? p ( P - q  +m)> 

Dans l’application des règles de Feynman, il ne faut pas oublier le 
(- 1) dû à la boucle électronique. J’ai adopté une régularisation 
dimensionnelle avec, comme d’habitude : 

(ne pas confondre avec E dans les propagateurs) et un facteur 
p‘ compense la dimension non-nulle de la constante de couplage 
lorsque D # 4. Les dénominateurs dans (39) sont combinés grâce à 
l’identité de Feynman : 

dx 
[ a x + b ( l - x ) ] 2  

et après un changement de variables p -+ p + xq destiné à éliminer les 
termes linéaires en p au dénominateur, on écrit (39) sous la forme : 

Le numérateur N , ,  est donné par le calcul de la trace dans (39) ; on 
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peut omettre les termes linéaires en p qui disparaissent dans l’intkgra- 
tion, et remarquer que (cf. équation (B.7)) : 

pour obtenir l’expression suivante de N a p  : 

N a ,  = - 8 x 0  - x ) [ q a  4 p  - q2gap1  + 
+ 4 g a p [  ( $ - 1 )  p 2 - x ( l - x ) q 2 + n i 2 ] .  (41) 

L’expression (41) contient une partie transverse, proportionnelle à : 

et un terme proportionnel à g a p .  Pour faire l’intégration sur p dans 
(40), nous aurons besoin des deux intégrales (cf. équations (B.4) et 
(B.5)) : 

où les facteurs r+ i proviennent de la rotation de Wick. 

après intégration sur p ; mettant en facteur 
Montrons que le terme en gap dans (41) donne une contribution nulle 

on trouve pour le coefficient de gap : 

($4) (2) D q - ; )  + r ( 2 - 3  = o .  

La correction II$? est purement transverse : ceci est en accord avec 
l’identité de Ward : 

q a  Ilap = O 

que nous montrerons au paragraphe suivant. Cependant cette propriété 
de I I a p  n’est vraie que si l’on utilise une régularisation invariante de 
jauge, comme la régularisation dimensionnelle : l’invariance de jauge 
ne dépend pas de la dimension d’espace, parce que l’on peut généraliser 
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l’algèbre des matrices de Dirac à une dimension D quelconque ... sauf si 
l’on a besoin de -y5 : heureusement y 5  n’intervient pas en électrodyna- 
mique. Une autre régularisation invariante de jauge est celle de Pauli- 
Villars. Au contraire la régularisation de Schwinger (V.58) ne respecte 
pas l’invariance de jauge : on trouve des termes quadratiquement 
divergents proportionnels à g a p ,  qui donnent une correction à la masse 
du photon (4). 

Rassemblant tous les facteurs on obtient pour 17(’1)(q) à l’ordre d’une 
boucle ! 

Avant d’exploiter cette équation, répétons la manœuvre qui nous a 
conduit au chapitre V à l’expression du vertex propre r(2) : 

D”” = DF” + Dga H a p  D,” + DFa Iimp DFpa Kisp DF” + . . . . (45) 

Cette équation est écrite sous forme diagrammatique sur la figure 12 : 

= -+-O-+-..+-.. 
Figure 12. Sommation pour le propagateur. 

où les boules non hachurées représentent des graphes l-particule 
irréductibles. Ecrivant : 

et effectuant la sommation de la série géométrique dans (45) on 
obtient : 

Le vertex propre r(2) peut être défini par le dénominateur de (47) 
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Ce vertex propre obéit à r(2) (q2  = O )  = O : si la masse du photon est 
initialement nulle, elle le reste. Mais le terme O (4’) va conduire à une 
renormalisation du champ électromagnétique A,, qui sera effectuée en 
introduisant un contre-terme dépendant de la constante de renormalisa- 
tion 2,. 

Examinons l’expression de O (4’) à l’ordre d’une boucle : 

Comme il fallait s’y attendre, cette expression est divergente en 
dimension 4. Utilisant : 

on obtient à l’ordre E ’ :  

= ) (50) 
m2-  ia - x ( i  - x )  q 

P 2  
x i n  ( 

avec C = 4 n- e- y. 

type Pauli-Villars, utilisant un cut-off A, on aurait : 
Le terme divergent est (2  a / 3  T )  ( l / ~ ) .  Avec une régularisation de 

1 In - d4k 1 

tandis que : 

dDk 1 i 2  s ( 2 ~ ) ~ k ~ - 1 6 7 ~ ~ &  
-_--- 

Pour comparer les parties divergentes dans les deux régularisations, il 
suffit de remplacer 2/.5 par In (A2 /m2)  ; naturellement les parties finies 
sont différentes ; de même cette substitution ne donnerait pas le 
résultat correct dans un calcul à deux boucles : on pourrait seulement 
comparer les parties les plus divergentes, en 1 / ~ ’  et en ln2 ( A 2 / m 2 ) .  
Pour renormaliser l’expression divergente (49), on ajoute au lagrangien 
(1) un contre-terme : 
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A l’ordre d’une boucle Z3 - 1 = Zjl), où Z f )  est la contribution à 
l’ordre de I boucles : 

z, = 1 + z p  + zp  + . . . + zp + . . . . 

Le contre-terme (51), traité perturbativement, conduit à un vertex : 

(52) 2 - = i Z 3 w  4 g p v  + q/.L q ” )  

(comparez (46) et (52)). On a maintenant plusieurs choix possibles pour 
la renormalisation ; à l’ordre d’une boucle on obtient par exemple dans 
le schéma minimal (MS) : 

tandis que dans le schéma (m) : 
(54.a) 

(54.b) 

Toutefois, des schémas tels que ( M S )  ou (m), bien que parfaite- 
ment cohérents, ne sont pas habituels en électrodynamique, car dans 
cette théorie il existe une limite classique à fréquence nulle. En effet 
considérons deux sources j f )  et j f )  du champ électromagnétique ; ces 
sources vont interagir par échange de photons, soit un terme d’interac- 
tion : 

où l’on a utilisé la conservation du courant q p  j W ( q )  = O. A la limite 
statique qo = O, l’interaction (55) devient : 

l /q2 étant 1/(4 T r )  (cf. 23). L‘examen de (56) pour q2 - + O  montre 
que, si nous voulons retrouver la loi de Coulomb à longue distance avec 
la définition usuelle de la charge électrique, il est nécessaire de 
renormaliser 6 (q2 )  avec la condition O R ( q 2 )  = O, qui n’est pas vérifiée 
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dans les schémas MS ou MS. I1 est habituel d'utiliser le schéma sur 
couche de masse où : 

s p ( q 2 )  = w(1)(q2)  - s(')(O) = 

Avec ce choix le résidu du pôle à q2 = O dans le propagateur complet 
du photon est égal à id,, ; en d'autres termes la constante z3 (cf. X.83) 
est égale à 1. Dans le schéma de renormalisation sur couche de masse, 
le propagateur complet renormaiisé DE) s'écrit finalement : 

iaq, q v  
(q2+ ie)2.  

- id, V 
(q2+ ie)( i  + 0 ( l ) ( q 2 )  - o(')(o)) 

DE) = 

L'intégrale sur le paramètre de Feynman x dans (57) est élémentaire 
(exercice 4). Limitons-nous à deux remarques : 

1) L'intégrale dans (57) est définie sans problème pour q2 -= 4 m2, 
l'argument du logarithme étant positif. Comme dans l'exemple étudié 
au chapitre X, paragraphe D.1, W & ' ) ( q 2 )  présente une coupure pour 
q2 3 4 m2 qui est le seuil de production de la paire e+ e- ; la valeur 
physique est la limite du résultat de l'intégrale pour q2  = q2 + ie ,  en 
raison 

I 

O 4 m2 

Figure 13. Définition de Og'(q2) dans un 
pian coupé en 4'. 

de la prescription m2 -+ m2 - is. La partie imaginaire de 6k1)(q2) est 
reliée, grâce aux règles de coupure, au taux de désintégration d'un 
photon virtuel de masse a 4 m2 en deux électrons (exercice 4) : 

Oh1)(q2) obéit à une relation de dispersion qui nécessite une soustrac- 
tion, reflétant la divergence du calcul perturbatif et la nécessité de la 
renormalisation. 

2) A la limite statique q2 = - q2 et pour q2 B m2, on peut développer 
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(57) en puissances de qz : 

a q2 d x [ x ( l  -x) ]2 = 1 - -- 1 + w p -  q 2 )  = 1 - -- 
r m2 q2 c 15 7~ m2’ 

La loi de Coulomb dans l’espace de Fourier est modifiée de la façon 
suivante : 

1 1 1 ff 
a -2+- 15 7rm2 

c’est-à-dire dans l’espace ordinaire : 

Cette modification de la loi de Coulomb affecte les états s de l’atome 
d’hydrogène : elle induit par exemple un déplacement de - 27 MHz du 
niveau 2s112, et sépare les niveaux 2sli2 et 2pln qui sont dégénérés à 
l’approximation de l’équation de Dirac. Le calcul précédent ne donne 
qu’une (petite) partie de la séparation 2p112-2s112, qui est de + 1 O00 MHz 
environ. Mais ce calcul montre déjà la réalité des corrections rudiutives, 
c’est-à-dire des corrections perturbatives obtenues par des calculs de 
diagrammes comprenant des boucles. 

Les corrections radiatives au propagateur du photon sont souvent 
appelées corrections de polarisation du vide : en effet la production de 
paires (virtuelles) e+-e- entraîne un effet d’écran, et la correction à la 
loi de Coulomb peut être interprétée par l’existence d’une constante 
diélectrique du vide. L’effet d’écran entraîne physiquement que la 
charge à longue distance est plus faible que la charge à courte distance. 
Ceci est confirmé par un calcul plus complet des corrections à la loi de 
Coulomb (exercice 5) : 

e e - -+V(r)=-Q(r)  
4 r r  4 r r  

a 1 : m r d  (60.a) 

: mr + 1 . (60.b) 

dans (60.b) : l’effet étant 
dû à la production d’une paire e+ e-  de masse 2 2 rn, sa décroissance à 
longue distance doit être exponentielle avec une longueur caractéristi- 
que (2 m )- ; il suffit de reproduire l’argument classique de Yukawa : à 

a e- 2 mr Q ( r )  - 1 + 
J 4 ( m r ) 3 / 2  

Pour mr + 1, on remarque le facteur 
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la limite statique, l’équation de Klein-Gordon couplée à une source 
ponctuelle 6 (r) s’écrit : 

(v2 - m2) q (r) = 6 (r) 

et a pour solution 

Le champ décroît exponentiellement avec une longueur caractéristique 
m-l. 

Dans le cas r -P O, ou plus précisément lorsque mr 6 1, on pourrait 
penser que la masse de l’électron peut être négligée et que l’électrodyna- 
mique devient invariante d’échelle : comme le potentiel a pour dimen- 
sion 1, il devrait être, d’après l’invariance d’échelle naïve, proportionnel 
à l / r  à courte distance. Pour des raisons qui ont été discutées au 
chapitre VII, nous savons qu’il n’en est rien : l’invariance d’échelle est 
brisée par la nécessité d’introduire une échelle de masse pour la 
renormalisation. Cependant la présence de la masse de l’électron dans 
(60.a) provient de la renormalisation sur couche de masse et en général 
c’est une masse de soustraction p qui remplacera m : tout ceci sera 
discuté un peu plus loin, lorsque nous examinerons le groupe de 
renormalisation de l’électrodynamique. 

C.3. Propagateur de l’électron 

Les corrections radiatives au propagateur de l’électron dépendent 
explicitement de la jauge, et en particulier du paramètre a fixant la 
jauge dans la forme covariante du propagateur. Nous allons conserver 
cette forme complète du propagateur, en calculant dans un premier 
temps dans la jauge de Feynman, et en rajoutant ensuite la contribution 
qW qv. D’autre part il sera nécessaire d’attribuer une masse non-nulle au 
photon en raison des divergences infrarouges. Suivant la technique 
exposée plus haut pour le propagateur du photon, on écrira le 
propagateur complet S(p) en fonction de l’énergie propre 2(p) : 
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Dans la jauge de Feynman a = 1 l’expression de Z(p) est 

Le calcul utilise exactement les mêmes techniques que celui du 
propagateur du photon ; on utilise les identités (C.8) et (C.9) avec pour 
résultat : 

On développe à l’ordre E ’ :  

CY Z(P) = ( 3 m - ( p - m ) )  

(63) 
fol 

CY + - { - m +  ( p - m ) -  d x [ 2 m ( l + x ) -  
4 % -  

- 2(1 -XI@,- m ) l  ln [ f ( X d 2 ) / P 2 1 }  
avec : 

f ( x , p 2 ) = x m 2 +  ( 1 - x ) h 2 - x ( 1 - x ) p 2 - i E .  

L’énergie propre ZCp) est de la forme : 

X @ ) = m 2 ) +  ( P - m ) W 2 )  (64) 

avec des coefficients divergents A (p2) et B ( p 2 ) .  La renormalisation se 
fait en introduisant un contre-terme de masse et un contre-terme de 
renormalisation du champ, exprimé en fonction de la constante 
2, de renormalisation du champ électronique : 

Ces contre-termes introduisent deux vertex supplémentaires traités 
perturbativement : 

et donnent l’énergie propre renormalisée : 

(66) Z R @ )  = A @ 2 ) -  6 m ( ’ ) +  @ -  m ) [ B ( p 2 ) -  ZJ’)] . 
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A nouveau il est facile de déterminer am(') et 24') par simple 
inspection de (64) dans les schémas ( M S )  ou (E), par exemple dans le 
schéma M S  : 

En général on préfère renormaliser sur couche de masse, en exigeant 
que le propagateur renormalisé se comporte comme i(p-  m)-' au 
voisinage du pôle p =  m. I1 faut donc choisir : 

Z,(') = 2 mA' (m2) + B(m2) = - . :; I L  (67.b) 

L'intégrale donnant A (m2) est infrarouge-convergente, mais Zi')  pose 
un problème : en effet nous cherchons à renormaliser juste au seuil d'un 
état électron-photon, et il n'est pas étonnant que l'on rencontre une 
divergence infrarouge. I1 est nécessaire de garder une masse au photon, 
ce qui place le seuil p 2  = (m + A )2 de production de l'état électron- 
photon au-dessus du point de renormalisation. L'expression (64) 
permet de calculer 21') : 

On a posé h = O dans les intégrales qui sont infrarouge-convergen- 
tes. L'intégrale infrarouge-divergente est : 

x ( l  - x 2 )  

x2m2+ (1 - x )  h 2  
z = JO1 dx 

car si A = O, elle diverge en d x / x  à x = O. Comme le point dangereux 
est x = O, on peut remplacer Z, avec une erreur de l'ordre de 

m2 -In - par : 
m2 h 2  

1 m2 1 &-=-  In--- 
m2 2m2 A~ 2m2' 

X 

x 2 m 2 + A 2  
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L'expression finale pour ZJ')  est : 

+- 2 1 n - - 4 + l n 2 ) .  m2 m2 (69) 
) t n  ( h 2  P 

Calculons maintenant la contribution Xa due au terme en q p  q y  du 
propagateur : 

- q2(1 -  m )  
(p - q)2  - m 2 +  i.z 

= ie2(î - a)(zl  - Z2 - 

L'intégrale Z3 est nulle par symétrie. L'intégrale Il est ultraviolette- 
convergente par comptage de puissances, tandis que I ,  est ultraviolette- 
divergente. Dans le calcul de ûZa/3pl#=m, le contraire sera vrai de la 
convergence infrarouge : on voit que I ,  a une puissance de q supplémen- 
taire si q + O. A cause des facteurs (p2 - m2) dans Il et @ - m )  dans 
I,, .Ea ne contribue pas à la renormalisation de masse. Ce résultat est 
d'ailleurs vrai à tous les ordres de la théorie des perturbations : 6m est 
indépendant de la jauge (cette propriété est une conséquence de 
l'invariance de jauge de &(x) $ ( x )  : cf. exercice 12.a). 

Pour calculer Z:, il faut combiner trois dénominateurs ; en adaptant 
l'équation (B.3) au calcul de I l  on obtient : 

x1 dxl d x 2  8 (1 - x1 - x2) 

x lm2  - a h 2 x l  + a h 2  + h2(1 - a )  x2 (71) 
- 2 im2 

qui est effectivement infrarouge divergent. Evaluons (71) : 

L'intégrale Z2 se transforme en : 

x: m2 
x j dx, dx, 8 (1 - XI - XZ) 

1 + E  
[x:m2+ ah2(1 - x i )  + h2(1 - a ) x 2 ]  2 
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La partie dépendante de jauge i32Ji3pI $ =  m est finalement : 

Rassemblant les résultats de (69) et (73) on obtient pour ZZ(’): 

1 m2 am2 
A 2  P 2  

( 3 - a ) l n - + a l n - - 3 - a  . (74) 

Les termes ultraviolets-divergents ou infrarouges-divergents dépen- 
dent tous deux de la jauge ; ù cet ordre de la théorie des perturbations, 
les divergences ultraviolettes disparaissent dans la jauge de Landau 
(a = O ) ,  et les divergences infrarouges dans la jauge de Yennie-Fried : 
a = 3. 

C.4. Vertex électron-photon 

La normalisation est telle qu’à l’ordre zéro de la théorie des 
perturbations le vertex propre T F  est égal à y’. Nous n’allons pas 
calculer le vertex complet, mais nous limiter au cas où les deux 
électrons externes sont sur couche de masse ce qui permettra d’utiliser : 

9 = m ;  p ’ = m  + + 

ainsi que l’identité de Gordon (exercice XI.5) : 

(75) 
1 1 

2 m  2 m  
y’ = - (p’ + p ) ’  + - <T’”(p‘ - p ) y .  

P ‘ = P + 4  

Figure 14. Le vertex électron-photon. 
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Calculons d’abord dans la jauge de Feynman la contribution à une 
boucle A(’)’ à r p  (la figure 14 définit la cinématique) : 

. (76) 
# + E + m  y a  1 

@ + k )  - m 2 + i s  k 2 - h 2 + i &  
x Y’ 

Le numérateur N , @ ,  p ’ )  se simplifie en utilisant l’équation de Dirac et 
quelques identités de l’appendice C.2 : 

N ’ ( p ’ , p , k )  = y p [ 4 k .  @ + p ’ ) + 4 p . p ‘ -  ( 2 - D ) k 2 ] +  
+ [2(2 - D )  kl” - 4(p + p ‘ ) ’ ]  E +  4 rnk’ .  

On adapte l’identité (B.3) au présent calcul, et on remarque que l’on a 
effectué le changement de variables : 

k + k - x ’ p ’  - XP . 

Après ce changement de variables, les termes linéaires en k au 
numérateur peuvent être omis ; d’autre part le dénominateur 
D ( x ,  x ’  ; 42) : 

~ ( x , x ’ , q ~ ) =  m 2 ( x + x ’ ) 2 + ~ 2 ( i  - x - x r ) - x x r q 2 - i ~  (77) 

est symétrique en x et x ’  et on peut omettre dans le numérateur tous les 
termes antisymétriques dans l’échange x t-) x ’ .  Ces simplifications étant 
faites, le numérateur N ,  devient : 

N ’ =  y’ { (2 - k 2  - &2(i - x ) ( i  - X I )  - (4 - D )  x x ’ ]  + 
D 

+rn2[4(1 - x - X I ) +  ( ~ - D ) ( x + x ‘ ) ~ ]  - 

- irna’” q,(x + x’)(2 + (2 - D ) ( x  + x ’ ) )  . 
I 

(78) 

Après ces calculs quelque peu fastidieux, le vertex A:) devient : 

(’)- - 2 i e 2 p E  cixcix’ e ( 1 - x - x ‘ ) x  A, - 

(79) 
dDk Np@‘,  P ,  k )  

5 
xs<271)( k2 - D(x, x ’ ,  q 2 )) 3 ’  

Seul le terme en k2  dans (78) donne une contribution ultraviolette- 
divergente. Dans les autres termes, on peut poser D = 4 .  D’autre part, 
il sera commode d’écrire A, en fonction de deux facteurs de forme 
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F1(q2)  et F2(q2)  : 

(80) 
i 

A,  = Y , F i ( 4 2 ) + Z m a , , q ’ F 2 ( 4 2 ) .  

On obtient par identification, après avoir effectué l’intégrale sur k et le 
développement à l’ordre E’ : 

(81.a) 

(81.b) 

Avant de commenter les expressions (81), calculons la partie 
dépendante de jauge du vertex ; après application de l’équation de 
Dirac, celle-ci se réduit (cf. exercice 6 )  à : 

A : ( p ’ , p )  = i e 2 k L ( l  - a )  y ’L  x 

. (82) 
1 

(2 7 ~ ) ~  (k2- A 2 + i & ) ( k 2 - a A 2 + i e )  

L’intégrale dans (82) est à la fois infrarouge et ultraviolette divergente : 

en effet elle vaut dDk/[(2 7 ~ ) ~  k4] si A = O, et elle est donc 

proportionnelle à dk/k, qui diverge logarithmiquement aussi bien 

pour k + O que pour k -+ 00. Le résultat final s’écrit : 
s 

AC = - a ( l - a )  [ ( E + Z l n C )  1 1 + 27T 

In a + 1) ] . (83) 

Ce résultat est indépendant de q et contribue uniquement au facteur 
de forme F I ,  ce qui était déjà évident sur l’expression initiale (82). 

Le facteur de forme F I  présente à la fois des divergences infrarouges 
et ultraviolettes, alors que F ,  est convergent dans les deux cas : on 
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remarque que les divergences infrarouges proviennent de la région x, 
x r  -, O, et que le facteur ( x  + x’) au numérateur de (81.b) suffit à les 
éliminer. Pour éliminer les divergences ultraviolettes, on renormalise 
en ajoutant au lagrangien un contre-terme : 

6 2  = - eZ,( ’ )$y,  + A ,  (84) 

qui conduit au vertex supplémentaire 

Calculons Zf’) dans le schéma MS par exemple ; l’élimination du pôle 
à 8 = O donne, compte tenu de (81.a) et (83) : 

a a u  
2 r r &  2 ? T E  

zp = - __. (1- ( 1 - a ) ) = - - .  

Comparant avec (74), on constate l’égalité des termes en l /& de 
Z,(’) et Zf’);  ceci n’est évidemment pas un hasard, mais une consé- 
quence de l’identité de Ward pour le vertex (cf. D.l). Lorsque l’on 
renormalise sur couche de masse, Z1 va contenir des divergences 
infrarouges, tout comme Z2 : la renormalisation sur couche de masse 
consiste à imposer pour le vertex renormalisé ~ , , ( q ~ )  : 

F1R(q2 = O )  = 0 . (86) 

Imposer cette condition revient à définir la charge e de l’électron de la 
façon suivante : l’amplitude de probabilité pour l’absorption (ou 
l’émission) d’un photon de fréquence nulle est égale à ey,. Cette 
condition donne pour Zf’) : 

Z,(’) = - F 1(q2 = 0 )  (87) 

où Fl(q2 = O )  est donné dans la jauge de Feynman a = 1 par (cf. 
(81.a)) : 

F1(q2 = O )  = - a ( î + ; i n C )  - 
2 T E  

11 rn2[2(1 - x - x‘) - (x + x72] 
m2(x + x!)2 + h2(1 - x - x’) 

+ 
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Les intégrales sur x et x ’  se calculent en posant : 

u = x + X I  ; u = x - X I  ; dx dx’ e (1 - X  - x i )  f ( u )  = 

= jol u f ( u )  du (88) 

s 
et l’on trouve : 

-5 [ ln-+-ln--2 m2 1 m2 
2 T  A 2  2 p2 

Rajoutant le terme dépendant de jauge (83) on obtient pour 
zp : 

1 m2 am2 
A P 

( 3 - a ) l n - 2 + a 1 n 2 - - 3 - a  . (90) 

On remarque l’égalité Zfl) = Zz(’), lorsque ,Ti1) est calculé dans le 
cadre de la renormalisation sur couche de masse (cf. (74)). Cette égalité 
est une conséquence de l’identité de Ward (114). En réalité cette 
identité impose que F f ( 0 )  = O si l’on choisit üZC,/ô$ I p  = = O (exer- 
cice 11). 

On peut être légitimement inquiet de l’apparition des divergences 
infrarouges. En fait elles disparaissent dans tout problème qui est 
physiquement bien posé : si l’on dispose d’une résolution expérimentale 
en énergie AE, il est impossible de séparer un électron isolé d’un 
électron accompagné de photons de faible énergie, et dont l’énergie 
totale est -= AE. Si l’on tient compte de cette résolution expérimentale, 
les In A vont se traduire dans le calcul de la section efficace par des 
In AE : la masse du photon introduite dans les calculs intermédiaires 
disparaît du résultat physiquement observable. Un autre exemple 
d’élimination des divergences infrarouges est donné au chapitre XIII, 
paragraphe D. 

C.5. Moment magnétique anormal de l’électron 

Tous ces problèmes sont absents dans le cas du facteur de forme 
~ , ( q ~ ) .  Calculons-le pour q2  = O : 

& ~ c d x ’ e ( i  - x - x ‘ ) ( x + x ’ ) ( ~  - x - x ’ )  FS’)(O) = - 
am2 7T s m2(x + x ‘ ) ~  
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Le changement de variables (88) donne immédiatement le résultat : 

F p ( 0 )  = - 
277 

Ce terme peut être interprété comme une correction radiative au 
facteur gyromagnétique de l‘électron ; on l’appelle souvent << moment 
magnétique anormal ». 

Examinons en effet la diffusion d u n  électron par un champ extérieur, 
en tenant compte des corrections à une boucle calculées précédemment. 
Les diagrammes que l’on doit considérer au le‘ ordre en Za sont 
(figure 15 - il faut évidemment y rajouter les contre-termes) : 

Figure 15. Corrections radiatives à la diffusion 
par un champ extérieur. 

mais si la renormalisation est faite sur couche de masse, les diagrammes 
( d )  et ( e )  ne contribuent pas : la constante z2 (cf. X.83) est égale à 1. La 
contribution des diagrammes ( a )  + ( b )  + ( c )  est : 

Limitons-nous au cas où le transfert de moment q = p‘ - p  est faible : 
q2e m2. On pourra remplacer F@(q2)  par q2F; (R) (q2  = O )  ce qui 
donne pour l’expression précédente : 

où le facteur - a / ( 1 5  am2) vient du diagramme ( c )  (cf. (59)). Passant 
dans l’espace de configuration et utilisant l’identité de Gordon, on 
obtient l’expression du hamiltonien d’un électron dans un champ 
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extérieur lentement variable : 

1 -  x A p ( e ) ( x )  + (1 + F ~ l ) ( 0 ) )  - t+b ( x )  v P u  t+b ( x )  F p u ( e ) )  (92) 4 m  

avec (cf. XI.76) 

et compte tenu de la représentation de Dirac des matrices up,, 
(appendice C), le deuxième terme de (92) se met sous la forme : 

(93) 

En l’absence de corrections radiatives, on reconnaît le facteur 
gyromagnétique 2(e/2 rn) de l’équation de Dirac. La correction 
relative à ce facteur est bien a / 2  r - 

En résumé, on peut dégager les deux points importants de ce 
paragraphe : 

(i) L‘addition au lagrangien (1) des contre-termes (51), (65) et (84) a 
permis de rendre finis les calculs à une boucle. 

(ii) Les corrections radiatives ont des conséquences physiques obser- 
vables, et sont en accord avec les résultats expérimentaux. 

D. IDENTITÉS DE WARD, UNITARITÉ, RENORMALISATION 

D.l .  Identités de Ward 

Les identités de Ward sont une conséquence de la conservation du 
courant : apj,(x) = O. Nous les démontrerons en utilisant la méthode 
qui semble la plus rapide, sinon la plus naturelle, en rajoutant au 
lagrangien YQED (1) celui d’un champ scalaire cp de (masse)2 = 

ah 2, découplé des photons et des électrons : 

1 ~ = S Q E D + ~ ~ ;  2’ = - - c p ( O + a h 2 ) c p .  (94) ‘ p 2  

L’équation (94) paraîtra sans doute quelque peu << parachutée D ; une 
démonstration plus naturelle, mais un peu plus longue, fondée sur les 
équations du mouvement, est proposée à l’exercice (9), et cette 
démonstration montre pour quelles raisons on est amené à (94). Le 
champ cp est utilisé pour faire des transformations de jauge locales, 
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dépendant d’un paramètre infinitésimal w : 

A , ( x ) - - + A j , ( x )  = A , ( x ) +  w a,cp(~)  (95.a) 
(95 .b) * (x) -+ Q ’ (x) = Q (x) - ieo Q (x) cp ( x )  

$(x) --f $’(x) = $ ( x )  + iewp ( x )  $ ( x )  . (95.c) 

Soit S[A, +, $1 l’action correspondant au lagrangien (1) et w AS sa 
variation au premier ordre en w dans (95) : 

et soit X(A,  Q, 6) un produit de champs pris en des points 
(yl, . . . , y,,) notés collectivement y : 

X ’ ( y )  = X ( A ’ ,  +’, 6‘) = X ( A ,  $, i )  + w AX(y)  . (97) 

Comme la mesure d’intégration est invariante dans la transformation 
(95) ;  et que cp est un champ libre, nous obtenons l’identité : 

Seule la partie non invariante de jauge de 9 : 
1 1 

2 a  2 - - ( ~ , A P ) ~  + - A ~ A ,  A” 
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est affectée par la transformation (95), ce qui permet d’écrire immédia- 
tement A Y  (après une intégration par parties) : 

AS?(x) - [a,AP(x)] [ ( i n  + h 2 )  4 4  * (100) 

Cette équation montre bien que la forme des identités de Ward 
dépend du choix du terme fixant la jauge dans le lagrangien. Les 
identités de Ward obtenues à partir de la jauge de l’exercice (XI.14) 
seraient différentes de celles que nous allons écrire dans la jauge de 
Lorentz, et elles seraient beaucoup plus compliquée (cf. XIII, exer- 

Dans les identités qui vont suivre, on doit considérer que toutes les 
dérivations sont à l’extérieur du produit-T, même si je les écris à 
l’intérieur afin d’améliorer la lisibilité des équations (cf. la discussion 
suivant X.50). En reportant l’équation (100) dans (99), on obtient 
l’identité : 

cice 5) .  7 

J ( O I T ( ~ , A W X W ( O ,  + a o  c p ( x )  ‘ P ( Z ) ) ~ ~ ) d 4 x  = 

= -ia(OIT(AX(y) cp(z))IO) . (101) 

Si l’on tient compte du fait que q ( x )  est un champ libre de masse 
a h 2 :  

(0, + ah ’) (01 ~ ( < p  (x) cp ( z ) ) ) ~ )  = - i 6 (4)(x - z )  

on déduit de (101) la forme générale des identités de Ward : 

Nous allons maintenant illustrer ce résultat sur deux cas particuliers, 
celui du propagateur du photon (cf. (12)) : 

D , ” G  - Y )  = (OIT(A,(x)A.01))10) 

V , ( X , Y , Z )  = (OIW,(x) + ( Y )  m ) l o )  

et celui du vertex électron-photon : 

Dans le premier cas on choisit : 

a 
aY 

X ( Y )  = A v ( Y )  ; A X ( Y )  = - v ( y )  



524 Electrodynamique quantique XII.D.l 

et l’équation (102) donne : 

soit : 
a a - D , , ( x - y ) = - a v A , ( x - y )  

ax, ax 

On peut également écrire l’identité de Ward en appliquant l’opérateur 
de Klein-Gordon (O, + a h  2, aux deux membres de l’équation (104) : 

a a (O, + ah2)- ( O l T ( A P ( x ) A ” ( y ) ) l O )  = ia - 6(4)(x - y ) .  
ax , ax Y 

(105) 

Dans le cas du vertex (103) on choisit : 

où S ( y  - z )  est le propagateur électronique complet (8). Appliquons à 
nouveau l’opérateur de Klein-Gordon aux deux membres de l’équation 
(106) : 

a 
ax, 

(O, + ah 2, - V ,  (x, y ,  Z )  = 

= - e a [ 6 ( x  - y )  - 6(x - z ) ]  S ( y  - z ) .  (107) 

Les équations (105) et (107) sont des équations du mouvement pour 
l’opérateur V A , ( x ) ,  et elles expriment que ce champ est un champ 
libre de (masse)2 = ah : 

(U, + ah  ’) a w A @ ( x )  = O 

identité qui se déduit des équations du mouvement classiques : cf. exer- 
cice X1.13. On remarquera en effet que les membres de droite de (105) 
et (107) ont la forme des membres de droite des équations (X.50) et 
(XSl),  lorsque l’interaction est nulle. Cette propriété apparaît de façon 
beaucoup plus transparente dans la démonstration de I’exercice (9). 

Pour écrire la forme explicite des identités de Ward, il est commode 
de passer à l’espace de Fourier. Considérons une fonction de Green 
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G(2n,m)  (cf. (14)) ; dans l'espace de Fourier, a / a x p  donne un facteur 
iq, où q est Ia variable conjuguée de x : le moment q quitte le vertex x .  
Si nous effectuons une variation sur un opérateur Avb) dans le 
membre de droite de (102), nous obtenons dans I'espace de Fourier un 
facteur : 

(2 T ) ~  6 (')(q + k) aq v 
q - a h 2  2 

où k est la variable conjuguée de y. 
Soit maintenant une ligne électronique entrant avec un moment p 

dans le diagramme, correspondant à un opérateur de champ $(z). Le 
membre de droite de (102) donne alors un facteur : 

iea A ~ ( X  - z ) ( û l T ( & ( z )  ...)I O} 

correspondant dans I'espace de Fourier (cf. figure 16) à : 

(.-. ; p  + q,  .I. ) -ea  G ( 2 f l , m - l )  
2 q - a h 2  

r x  
I 

I 

x" 
\ 
\ 

2 Y 

Figure 16. Représentation graphique du membre de droite de (102) 
pour des lignes électroniques entrantes et sortantes. 

Enfin pour un électron sortant du diagramme avec un moment 
p', il suffira de changer le signe du résultat précédent : 

(rappelons que par convention tous les moments entrent dans le 
diagramme). On obtient donc la forme générale des identités de Ward, 
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pour une fonction de Green arbitraire (il est commode d’inclure le 
facteur (2 T ) ~  (cf. X.28) dans la définition de G(2n,m$ : 

q’l ( 3 ( 2 n 9 m + 1 )  
p ,  v ,,..., u , ( q ,  k l ,  km ;P I ,  -..>Pa ; - P A )  = 

- - ia { (2 7.44 6 (4) (q  + k , )  x 2 - 
q - a h 2  

q v ,  G ( 2 n , m - 1 )  
y 2 ,  ..., y m  (k2,  ... ; ... ; ... ) + Perm. 

- eGv,,,, , ,vm(...  ( 2  n, m )  ;p i  + q ,  ... ; ... ) + Perm. 

+ eG(S,y:,:)( ... ; ... ; - p i  + q ,  ...) + Perm.] . (108) 

Appliquons maintenant cette équation dans deux cas particuliers : 

(a) Propagateur du photon : n = O, rn = 1 : 

Cette équation est évidemment la transformée de Fourier de (104) : 
(notez que G;;’) diffère de D,, par un facteur (2 T ) ~  6 (4)). Mais le 
propagateur libre D r y  (11) vérifie : 

La comparaison de (109) et (110) montre que les corrections 
radiatives au propagateur du photon sont purement transverses : 

4 ’ ~ , , ( 4 )  = 0 (111) 

résultat que nous avions vérifié à l’ordre d’une boucle par un calcul 
explicite. 

(b) Vertex électron-photon : IZ = 1, rn = O. 
L‘équation (108) donne dans ce cas la transformée de Fourier de 

(106) : 

où les notations sont celles du paragraphe C.4 (figure 14). I1 et 
commode de transformer cette relation en utilisant le vertex propre 
r, : 

v, = ~ , v ( q )  S@’) (- i e r ” )  S@) 
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et l'identité (109) met le résultat final sous la forme (*) : 

I1 est instructif de vérifier que les signes sont corrects à l'ordre de zéro 
boucle, où : 

r u = y  . is;'@) = ( p -  m ) .  

La limite q -+ O de (113) donne aussi une identité utile : 

as- az 
aP aP 

r,(p,p) = i- = Y p - - .  

D.2. Unitarité 

Le rôle fondamental des identités de Ward est de préserver l'unitarité 
de l'électrodynamique (**). En effet l'unitarité dépend de la validité 
des règles de coupure : les états intermédiaires dans les règles de 
coupure doivent donner une contribution identique à celle des états 
physiques. Examinons par exemple une diffusion photon-électron avec 
un état intermédiaire à un électron et deux photons, cas qui contient 
tous les ingrédients de la démonstration générale (figure 17) : 

Figure 17. Etat  intermédiaire à un électron e t  deux photons.  

(*) Le facteur (i) dans le membre de droite de (113) provient de la définition du 
propagatcur (comme les facteurs (4 T )  en électrostatique, les facteurs i éjectés de 
certaines formules finissent toujours par refaire surface). 

(**) Dans les théories de jauge non abéliennes, il peut arriver qu'un courant 
correspondant à une invariance de jauge locale, conservé au niveau classique, ne puisse 
plus l'être après renormalisation : c'est le problème des << anomalies », qui, pour les 
mêmes raisons qu'en électrodynamique, peut constituer une menace mortelle pour 
I'unitarité. 
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Pour fixer les idées et simplifier les notations, on se place dans le cas de 
la masse nulle et de la jauge de Feynman. Le propagateur coupé du 
photon de moment k dans l’état intermédiaire est : 

- S P Y  ___ 0 (ko)  6 ( k 2 )  
(2 TI4 

alors que la somme sur les polarisations d’un photon physique ne donne 
pas - g p v ,  mais : 

k,  f l u  + k ,  I lp 
E f ) ( k )  Ep)*(k)  = - g p y  + 

S k . n  

où n, est le vecteur (ko, - k )  si k ,  = (ko, k )  : le membre de droite de 
(116) est le projecteur sur le sous-espace orthogonal à k ,  et à 
np. L‘unitarité perturbative ne sera vérifiée que si la contribution de 
(115) est identique à celle de (116). Ce résultat est une conséquence 
d’une identité de Ward, que nous écrirons sous forme diagrammatique 
pour la fonction de Green correspondant à l’amplitude de diffusion A ,  
en calculant k” G($:), (figure 18) : 

fv‘t - -- 0’ 

(4 (e) 

Figure 18. Identité de  Ward pour G‘’.’! 

La contribution ( b )  est nulle car le photon initial est un photon 
physique : q p  .zf)(q) = O. I1 est nécessaire de montrer que la contribu- 
tion ( c )  est nulle, même si la polarisation du photon k‘ n’est pas 
physique : la condition k + k’ = O étant incompatible avec les fonctions 
8 ( k o )  et 8 (k” )  du propagateur coupé, on obtient le résultat souhaité. 

Le cas des électrons est un peu plus compliqué : rappelons que 
l’élément de matrice S se calcule en multipliant la fonction de Green par 
les propagateurs complets inverses afin d’obtenir la fonction de Green 
amputée de ses propagateurs complets : 
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Dans cette opération, le terme (e) de la figure 18 devient : 

G(’*;2,’(k‘,p’ ; q , p  - k )  S(p - k )  S-l(p). 

Lorsque l’on prend la limite sur couche de masse # = m, S-’@) 
s’annule et il en est de même de (e) ; un raisonnement analogue montre 
que si l’électron (p’) est sur couche de masse, le terme (d) donne zéro. 
En résumé, pour des électrons externes sur couche de masse, on obtient 
l’identité de Ward pour la fonction de Green connexe, amputée de ses 
propagateurs complets : 

Ceci est évidemment un résultat général, valable pour toute fonction de 
Green Gh2,n:,m). 

L’identité (117) montre que le projecteur (116) sur les états physiques 
peut être remplacé par - g,,, : grâce à l’identité de Ward, seuls les états 
physiques contribuent aux règles de coupure. 

D.3. Renormalisation 

Notre discussion était pour le moment quelque peu formelle car elle 
ignorait les divergences, et il nous faut attaquer les problèmes de 
renormalisation. Comme au chapitre VI, il ne s’agit pas de donner ici 
une preuve complète, mais de mettre la renormalisabilité de l’électrody- 
namique au même niveau de plausibilité que celle de la théorie en 
(p4. Pour fixer les idées, nous utiliserons le schéma minimal en 
définissant la constante de renormalisation 2, par : m,, = Z,  m. A 
l’ordre d’une boucle, et rassemblant les contre-termes (51), (65) et (84) 
nous avons obtenu : 

(a,A ”)2 + 1 1 1 9 = - - F,, FWu + - h2A,AP - - 
4 2 2 a  

$ - e $ ? ,  $ A p - - ( Z 3 - 1 ) F , , F p ”  1 
4 

- ( 2 2 ~ ~ - i ) m i i ; $ +  ( Z 2 - i ) t , 6 i 2 $  2 

- e(Z ,  - 1 )  $7,  $ A ” .  (118) 

Si nous voulons que les fonctions de Green renormalisées obéissent aux 
identités de Ward, il est nécessaire que les versions renormalisées de 
(109) et de (114) soient correctes. En ce qui concerne (109), ceci 
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implique qu’il n’y a pas de contre-terme en A ,  A, et en (apAp)’. 
Examinons maintenant (1 14) : dans la renormalisation : 

r p ( p , P ‘ )  + r p , R ( P , P ’ >  = r p , r c g @ , P ’ )  + z,(l) yp 

is-  ‘(p) -t isa ‘@) = is;&) + zj’)(p - m )  

où ï , ,reg@,p‘)  et Sr,,@) ont été calculés avec une régularisation 
dimensionnelle. Comme cette régularisation préserve l’invariance de 
jauge (d’où son intérêt) 

et si nous voulons la 
est nécessaire que : 

même identité pour les fonctions renormalisées, il 

(1 19. a) zp = zp. 
Cette identité est automatique dans le schéma minimal, étant donné 
que les parties divergentes du vertex et du propagateur sont nécessaire- 
ment identiques. En jouant sur les parties finies des contre-termes, on 
pourrait prendre Z1 # Z,, mais un tel choix serait fatal à l’unitarité. 

Introduisons maintenant champs et constantes nues en écrivant : 

Ag = Zi’2Ap (120.a) ; = Z:” + (120.d) 
eo =z ~-1z- l”  e = 2 3 ’ “ e  (120.b) ; mo = Z,m (120.e) 
h i  = Z y 1 A 2  (120.c) ; a. = Z3 a . (120.f) 

Le lagrangien (118) s’écrit en fonction de ces quantités nues : 

ce qui montre que la structure du lagrangien est préservée par la 
renormalisation. Le rôle de l’identité Z1 = Z, est crucial pour préserver 
cette structure ; en effet : 

8, + ieA I.1 -+ a, + iZ; Zz eo Ag = a p  + ieo Ag (122) 

et le couplage minimal est bien préservé. Dans le cas général, on 
procédera par récurrence. Supposons que l’on ait calculé les fonctions 
de Green renormalisées et les contre-termes à l’ordre de I-boucles. On 
calcule les fonctions de Green régularisées à l’aide du lagrangien (121), 
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où eo, mo, ... sont des fonctions de e présentant des pôles en 
E - ’ ,  ... , e-’. En raison de la structure du lagrangien (121), les fonctions 
de Green régularisées obéiront aux identités de Ward. La procédure 
examinée ci-dessus à l’ordre d’une boucle pourra être reprise pour 
définir les contre-termes à l’ordre de (I + 1)-boucles, tout en préservant 
l’identité (114) pour les fonctions de Green renormalisées, si l’on choisit 
Zf‘ + ’) = 24‘ + ’1. On aura donc de façon générale la relation : 

E l  2, = 2 2  . (119.b) 

Les fonctions de Green nues à l’ordre de (1 + 1) boucles, obéiront à 
l’identité de Ward générale (108), étant donné qu’elles ont été calculées 
avec le lagrangien (121), où les paramètres sont évalués à l’ordre de 1 
boucles (rappelons que mis à part G(’,’), G(2,0) et G(’>l) qui ont été 
examinées ci-dessus, les fonctions de Green sont superficiellement 
convergentes). Les identités de Ward pour les fonctions de Green 
renormalisées se déduisent de la structure multiplicative de la renorma- 
lisation : 

et des identités (cf. 120) : 

où a, h et e sont les quantités renormalisées. 
En résumé, l’électrodynamique renormalisée est bien unitaire et 

locale (cette dernière propriété étant conséquence de la construction de 
Bogolioubov). I1 resterait à montrer que les quantités physiques, 
comme les éléments de matrice S,  sont indépendantes de jauge. I1 est 
possible, par exemple, de s’assurer que les éléments de matrice S sont 
indépendants de a, ce qui n’est pas évident a priori, car cette 
indépendance résulte d’une compensation entre le facteur z L ( a )  (cf. 
X.83) et la dépendance en a des fonctions de Green. Le fait que les 
quantités physiques soient indépendantes de a montre que l’on peut 
prendre la limite a + CO dans le propagateur (11) ; on retombe alors sur 
la forme naïve du propagateur d’un champ vectoriel massif (X.121) qui 
donne une théorie manifestement unitaire. Malgré les divergences 
sévères dues au facteur m-’ dans les fonctions de Green, le lagrangien 
d’un champ vectoriel massif (couplé à un courant conservé) est 
renormalisable, si l’on calcule seulement les quantités physiques ; ce 
lagrangien est équivalent physiquement à celui modifié par Stuëckel- 
berg. 
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D.4. Groupe de renormalisation pour l’électrodynamique 

Avant de passer aux résultats formels, il vaut la peine de donner une 
description intuitive de la variation de la charge électrique, ou de a, en 
fonction de la distance, qui permet une description élémentaire de la 

renormalisation et du groupe de renormalisa- 
tion. Considérons deux charges statiques (infini- 
ment lourdes) + e et - e placées à une distance 
r 6 m- ; l’énergie potentielle de ces deux char- 
ges est, à l’ordre de zéro boucle, - ao/r.  Cette 
énergie potentielle est corrigée par l’effet 

d’écran des paires virtuelles e+ e -  (figure 19) ou, en d‘autres termes, 
par la polarisation du vide ; nous obtiendrons l’effet de cette polarisa- 
tion en intégrant sur les fluctuations de longueur d’onde A du champ 
électromagnétique créé par la paire e+-e-  : 

n k 
r 

Figure 19. 

où la forme dA / A  est imposée par l’analyse dimensionnelle ; d est une 
constante positive (car l’effet d’écran réduit l’énergie potentielle), A un 
cut-off ultraviolet et r le cut-off infrarouge : en effet si A 5 r ,  la 
fluctuation ne distingue pas entre les deux charges. Le résultat de 
l’intégration dans (123) est : 

a ( r ) =  a o - d a ~ l n ( A r ) .  

Soit maintenant R une distance de référence, qui définit la charge 
a ( R )  à distance R ; exprimons a,, en fonction de a ( R )  : 

a,, = a ( R )  + da2(R)  In ( A R )  

et reportons dans (124) : 

R 

Cette opération a fait disparaître la charge nue a. au profit de la charge 
de référence à distance R,  en éliminant du même coup le cut-off A :  
nous venons de renormaliser la charge. Cette renormalisation a 
introduit une échelle de longueur R qui brise l’invariance d’échelle 
naïve de l’électrodynamique : celle-ci prédit que pour mr 6 1, 
a ( r )  -+ Cte, ce qui n’est manifestement pas le cas. Par analyse 
dimensionnelle, a ( r )  est de la forme : 
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et en dérivant par rapport à r : 

= - d a  ’ ( r )  + O ( a 3 ( 1 ) )  . (126) 

L‘équation (126) définit la variation de la charge en fonction de la 
distance, ou, ce qui revient au même, en fonction d’une masse 
p - l / r .  On reconnaît dans (126) la définition de la fonction P de 
Callan-Symanzik. L‘équation (126) montre que, pour a suffisamment 
petit, la charge augmente quand la distance diminue : quand I .+ O ,  on 
se rapproche de la valeur e vraie D (infinie) de la charge. 

Revenons maintenant aux calculs plus formels en utilisant les 
résultats du chapitre VII. Comme la constante de structure fine a les 
mêmes dimensions que la constante de couplage g de la théorie scalaire, 
on pourra utiliser les formules du chapitre VI1 en remplaçant g par a (si 
l’on travaillait avec e au lieu de a, il faudrait remplacer E par 
~ / 2 ) .  La relation entre a. et a est : 

a0 = z+Y . (127) 

La constante de renormalisation Z, a été calculée au paragraphe C.2 ; 
sa partie divergente est à l’ordre d’une boucle (cf. 54) : 

Grâce à l’équation (VII-81) (et en se souvenant que la relation entre 
go et g est go = Z g )  on obtient immédiatement la fonction P ( a  ) au 
premier ordre en a :  

+ 0 ( ~ 3 )  
d a ( p )  2 a 2  

d p  3 7 ~  
P ( a )  = El. ___ -- - 

La constante d dans (126) vaut 2/3 T. 
Toujours à l’ordre d’une boucle on peut calculer a (4’) en fonction de 

a ( P 2 )  : 

La constante de couplage croît avec q2, ou, ce qui revient au même, 
décroît avec la distance, ce qui confirme la discussion heuristique 
précédente. 
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Le signe du terme en a 2  montre que l’électrodynamique n’est pas 
asymptotiquement libre. Comme la théorie en 9 4, l’électrodynamique 
n’est vraisemblablement pas définie de façon non triviale en dimen- 
sion 4 comme limite d’une théorie à cut-off. Cependant la valeur de 
q2 pour laquelle a (4’) devient = 1 est astronomique. Comme on pense 
aujourd’hui que l’électrodynamique doit être incluse dans une théorie 
de jauge non abélienne plus vaste, ce problème de << non-liberté 
asymptotique >> n’a probablement aucune importance et ne remet pas 
en cause les succès du programme de renormalisation. 

Un mot enfin sur la définition de la charge électrique : en électrody- 
namique l’existence d’une limite classique à fréquence nulle donne une 
définition naturelle de la charge électrique. Lorsque la renormalisation 
est faite sur couche de masse, la limite de basse énergie de la diffusion 
Compton est donnée à tous les ordres de la théorie des perturbations 
par le résultat classique de la diffusion d’une onde électromagnétique 
par une charge ponctuelle (formule de Thomson) 

871. 2 

3 

Ce résultat est établi grâce à l’identité de Ward pour l’effet Compton 
(exercice 10). Si a désigne la valeur de la constante de structure fine 
dans le schéma sur couche de masse et a Ms sa valeur dans le schéma MS 
(par exemple), il est facile de trouver le lien entre les deux définitions 
de a :  

Z3”” CY2 cp2 a ~ s = - a  = < Y  +-In ( 7) + O ( a 3 ) .  (124) 2 3  3 r r  

La relation dépend bien évidemment de l’échelle de masse p utilisée 
dans le schéma minimal. L’avantage d’un schéma tel que MS est qu’il 
permet de prendre sans problème la limite m + O de l’électrodynami- 
que. Dans le schéma sur couche de masse, ceci n’est pas possible en 
raison des divergences infrarouges. Un bon exemple est fourni par la 
formule (60.a) donnant le potentiel V ( r )  à courte distance : même si 
mr -+ O, il n’est pas possible de prendre la limite m = O, alors que dans 
ce domaine la masse de l’électron n’est plus pertinente. Cette difficulté 
est uniquement conséquence du schéma de renormalisation, et ne se 
produit pas par exemple dans le schéma MS. 
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EXERCICES 

1) En adaptant le calcul du paragraphe (X-C.1) au cas de la diffusion d’une 
particule (relativiste) par un potentiel, démontrer la relation (25). 

2) Théorème de Furry 

(a) Utiliser l’unicité des représentations irréductibles des relations d’anticom- 
mutation (XI.ll) des matrices y p  pour montrer l’existence d’une matrice C 
(appelée matrice de conjugaison de charge) telle que : 

cy,c- ’=-  y w .  ’ 
(b) En déduire : CS,(x - y )  C-’ = [ S , ( y  - x ) ] ’ .  

(c) Soit une boucle électronique à laquelle s’attache un nombre impair de 
photons. Montrer que l’expression analytique du graphe correspondant est 
nulle. 

3) Photoproduction de mésons-.sro 

On se propose de calculer la section efficace de production de mésons 
r r0  dans la réaction de photoproduction : 

y ( k )  + proton @) -+ méson ~ ‘ ( 4 )  + proton @‘)  

à partir du lagrangien d’interaction phénoménologique : 

LYLP1(x) = - + A ” -  iG$y, J,cp . 

(Ce lagrangien ne doit pas être pris au sérieux ; il donne de très mauvais 
résultats, sauf au seuil de production. L‘objectif de l’exercice est avant tout de 
donner un exemple de calcul de section efficace qui ne présente pas trop 
d’algèbre fastidieuse.) 

Dans U , ( x ) ,  J, est le champ du proton, cp celui du méson T O ,  e la charge du 
proton et G une constante de couplage telle que G2/4 T - 15. 

(a) Dessiner les graphes de Feynman contribuant à la réaction à l’ordre eG et 
donner leur expression analytique. Vérifier que la somme Ap de ces deux 
graphes obéit bien à la condition k p  Ap = O quand les protons p et 
p ‘  sont sur couche de masse (p2 = p’’ = m’). 

(b) Calculer la section efficace d u / d R  de la photoproduction pour des 
photons et des protons non polarisés, à l’ordre (eG)’. Calculer numériquement 
et dessiner d v / d R  en fonction de 8 dans le référentiel du centre de masse, pour 
une énergie E, = 300 MeV dans le référentiel du laboratoire. Comparer avec 
les résultats expérimentaux et commenter. 

Suggestion : utiliser k p  AP = O pour remplacer la somme sur les polarisations 
du photon par - g w v .  
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Réponse : 

4 1 I E I ( s ) A f i ) 2 =  

spins 

où p est la masse du méson T O ,  m celle du proton, s = (p + k ) 2 ,  u = (p' - k ) 2  
et t = ( q  - k)2.  

4) Etude du propagateur du photon ( 5 )  

(a) Effectuer l'intégration sur x dans l'expression (57) de 6 f ) ( q 2 )  et obtenir 
le résultat final sous ia forme (q2  -= 4 m 2 )  : 

avec X =  (1 - 4 m2/q2)'". On pourra utiliser le changement de variables 

(b) Lorsque q2* 4 m2, E $ )  acquiert une partie imaginaire. En intégrant par 
parties et en utilisant le changement de variables s = 4 m2/ (1  - y 2 ) ,  mettre 
G $ )  sous la forme : 

y = 1 - 2 x .  

et en déduire que G#)(qz )  obéit à une relation de 
soustraction, tandis que sa partie imaginaire est donnée 

dispersion avec une 
par : 

37r  
1 -im E$)(q2)  = 
7r 

(c) Relier Im G$)(q2)  au <<taux de désintégration D T(q2)  d'un photon 
virtuel de masse q2 en une paire électron-positron (cf. X-63) : 

Jp Im 0 f ) ( q 2 )  = r(q2) . 

5) Corrections de polarisation du vide au potentiel de Coulomb ( 6 )  

(a) On se propose de calculer le potentiel V ( r )  en tenant compte de la 
correction de polarisation du vide à l'ordre d'une boucle, dans les limites 
mr 4 1 et mr s 1. On doit donc calculer la transformée de Fourier de 
G $ ) ( q 2 )  à la limite statique q 2  = - q2. En déformant le contour d'intégration le 
long de l'axe imaginaire positif, montrer que la correction SV ( r )  au potentiel 
de Coulomb peut s'écrire : 
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(b) Démontrer les expressions (60.a) et (60.b) dans les cas limites 
rnr 1 et mr a 1. Dans le premier cas, on introduira un paramètre 

x1 tel que (mr)-’ a x1 %- 1 et on décomposera l’intégrale en 

6) (a) Démontrer l’identité (souvent utile) 

(b) En utilisant cette identité sous la forme : 

ainsi que l’équation de Dirac, démontrer l’équation (82) donnant la partie 
dépendante de jauge du vertex électron-proton. 

7) Comportement a grand q2 du facteur de forme FI($) 

On se propose de déterminer le comportement pour q2 + I CO du facteur de 
forme F,R(q2).  Afin de simplifier les calculs, on se piacera dans le cas 
rn = O (pour le cas rn # O, cf. Itzykson-Zuber, chapitre 7). On étudie d’abord la 
limite q2 -f - CO, avec q 2  = - Q 2  et on renormalise sur couche de masse : 
F,R(q2 = O )  = 0. 

(a) Montrer que l’on peut prendre la limite rn = O dans (81.a), ce qui 
simplifie la formule donnant F l R ( q 2 )  : 

xx‘ Q 2 +  A 2 ( 1  - x - x’) - 
A 2 ( 1  - x - x ’ )  

Q2(i - x)(1 - x ‘ )  
x x ’ Q 2 + A 2 ( 1 - x - x ’ )  

- 

(b) En déduire : 

Comment doit-on modifier ce résultat pour q2+ + CO ? 

8) Electrodynamique des particules scalaires 

(a) Partant du lagrangien libre du champ scalaire chargé : 

z ( x > =  (ap<p t ) tap<p)-m2<pt  <p 

obtenir le lagrangien d’un champ scalaire chargé couplé au champ électroma- 
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gnétique ainsi que les règles de Feynman : 

- ie @ +pl),, 2 ie * gPP,  

(b) Calculer dans le laboratoire la section efficace différentielle de l’effet 
Compton sur un méson T + à l’ordre e4, en supposant les photons initiaux non 
polarisés : 

r ( k ) + r r + ( p ) - * y ( k ’ ) + r r + ( p ‘ ) .  

On admettra (ce qui n’est pas le cas) que les mésons-.rr sont couplés de façon 
ponctuelle au photon. 

(Suggestion : choisir E:)  &CS) de telle sorte que. E . p  = E ’  . p  = O.) 

(c) Calculer la section efficace de la réaction : 

e+ e -  + n+ T- 

à l’ordre e4, en supposant que les électrons initiaux ne sont pas polarisés ; 
montrer que: 

d u  a 2  
df2 -3 sin2 û . _ -  

Quel serait la valeur du rapport R (cf. B.3) si les quarks avaient un spin zéro ? 
(d) Calculer la correction à une boucle au propagateur du photon. Vérifier 

que le résultat est bien transverse. 
(e) Examiner la renormalisabilité de l’électrodynamique des particules 

scalaires. Montrer en particulier que l’on doit introduire un contre-terme en 
(9’ 9)’. Evaluer la partie divergente de ce contre-terme à l’ordre d’une 
boucle: 

9) Identités de Ward et équations du mouvement (7) 

(a) Montrer que les équations du mouvement (X.51) peuvent s’écrire : 

où B désigne un des champs ( A P ,  i+k, $) et X un produit de champs : 
B(y,) .. . B (y,). I1 faudra toutefois faire attention aux relations d’anticommuta- 
tion des variables de Grassmann. 

(b) En utilisant l’équation donnant S S / S A P  ainsi que : 
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établir la relation : 
- 6s 

a +  
ss ss 

a -= 6 A ,  ( ~ O + h Z ) ( a , A ” ) - i e - ~ + i e ~ - .  s* 

(c) En écrivant les équations du mouvement pour (O I T (  (û,A ”) X )  I O )  puis 

1 O) , démontrer la forme générale des identités de 

Ward : 

( :O ,+h’ )  (OIT(a,A”(x)X)IO) = 

(d) Montrer que cette relation est bien identique à (102). 

10) Identités de Ward pour le vertex à 4 photons et l’effet Compton (*) 

(a) En appliquant l’identité (108) au cas n = O, m = 3, et en utilisant (109), 
démontrer l’identité de Ward pour le vertex propre à quatre photons : 

krl rFiC)21i3P4(ki, kz, k,, k4) = 0 

(Ne pas oublier les termes disconnectés de G(OS4) .) 

dant à l’effet Compton (ou à la production d‘une 
paire e+ e -  par deux photons). Soit G:,’;L?> = Cp,. la 
fonction de Green connexe amputée de ses propaga- 
teurs externes (figure 20). Démontrer la relation : 

(b) On applique maintenant l’identité (108) au cas n = 1, m = 2 ,  correspon- 

y&, 
k’@, , , (k ,  - k’ ; p ,  - p ’ )  = p f  

= ie’r,,@ + k , p ’ )  S@ + k )  S-’@) - 

- ie2S-’(p’) S @ ‘  - k )  ï , , @ , p ’  - k )  
Figure 20. 

L‘iiniplitude Coniptoii. 

où T, est le vertex propre électron-photon (cf. 113). Vérifier cette identité à 
l‘approximation en arbres. 

(c) Montrer que pour k + O,  l’amplitude Compton vers l’avant ( k  = k ‘ )  
s’exprime uniquement en fonction de l’énergie propre Z@). 

11) On écrit le propagateur inverse et le vertex propre à transfert nul et sur 
couche de masse ($ = m )  sous la forme : 

is-‘@) = $ -  rn - A  (p’) - ( p -  m )  B@’) 
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Utiliser l’identité (114) pour relier F,(O) et F,(O) à A’(rn2) et B(m2). En 
déduire que la renormalisation sur couche de masse et la condition Z,  = 
Z ,  imposent F I R ( O )  = O. 

12) Dépendance de jauge de Z, (9) 
(a) Résultats préliminaires : 
(i) Montrer que la fonction de Green (O I T ( F E , ( x )  F g ” ( y ) )  I O )  est indépen- 

dante du paramètre de jauge a, (on pourra revenir à l’argument du chapitre XI, 
paragraphe D.2). En déduire qu’il en est de même pour la partie transverse du 
propagateur DE,,, et utiliser ce résultat pour montrer que Z3 est indépendant de 
a. 

(ii) Supposons que le lagrangien dépende d‘un paramètre a. Montrer que la 
dépendance en a des fonctions de Green est donnée par : 

x (01 % as I O ) ]  = i ( O l T ( : % : X )  as 10) 

où le symbole : : indique que l’on soustrait la valeur moyenne sur le vide. 

d4x : <p ( x )  - “ : compte le nombre de (iii) Montrer que l’insertion s 6<P (x) 
lignes externes des fonctions de Green. Plus précisément : 

d x  ~ c ~ : < P ( x ) -  : < p ( x , )  ... ‘p(xN)eis= 
S c P ( x )  

[z(O>l-’ j j 

aa 2 i s  
= -*( OIT(<p(x,)... <P(XN))IO) . 

(b) On se place pour simplifier dans le cas où la masse de l’électron est égale 
à zéro (rn = O )  et on utilise le schéma de soustraction minimal. Démontrer 
l’identité : 

a In Z,  a (O(T(X)(O) = -  d4x(O(T(:<p2(x):A2X)(0) -N,(OIT(X)(O) 7 

où AX est la variation de X dans une transformation de jauge (cf. (102)) et 
N ,  le nombre de champs J, dans X .  

(c) En prenant X = J, ( y )  $(z) démontrer l’identité, écrite sous forme 
graphique (figure 21) : 

i 
,.*. i \ 

a In z2 
Figure 21. Equation pour - 

aa 
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Remarquant que i'intégrale donnant le premier graphe est convergente, en 
déduire dans le schéma MS : 

Z,(a) = Z,(a = O )  exp - [;::I. 
Vérifier ce résultat à l'ordre d'une boucle (cf.(74)). 

13) Fermions de Majorana et lagrangien supersymétrique (lo) 

(a) La matrice de conjugaison de charge C définie à l'exercice 2 permet de 
relier les solutions d'énergie positive et négative de l'équation de Dirac : 

u(p, s )  = CüT(p, s )  ; u (p, s )  = CZT(p, s )  . 

Vérifiez-le dans ie cas de la représentation de Dirac où C = (- yu2 - r') . 
Noter les conventions de phase pour les spineurs lorsque p = O .  

(b) On écrit la décomposition de Fourier d'un champ de Majorana 
A ( x )  sous la forme : 

A ( x ) =  ~ ~ d ~ [ b , ( p ) u ( p , ~ ) e - ~ ~ ' + b ! ( p ) u ( p , s ) e ' ~ ~ ] .  S 

Vérifier que A (x) est égal à son conjugué de charge A C ( x )  : 

A (x) = hC(x)  = C A T ( x )  . 
Le champ A ( x )  a seulement deux degrés de liberté, et non quatre : les fermions 
de Majorana sont identiques aux antifermions. 

(c) On se propose d'établir les règles de Feynman pour un champ de 
Majorana couplé à un champ scalaire : 

y = i X ( . +  i i , - m ) ~ - ~ ' ~ ( ~ + m ~ ) < p + g ( h r ~ ) < p  1 

où r = 1 ou iy,. Etablir les règles suivantes pour les contractions : 

i 
x - A ( X ) h ( Y ) = S , ( x - Y )  
Y X 

n 
m - - 

A ( x )  A ( y )  - S,(X - y )  C 
Y X 

--- 
r >  - A ( x ) A ( y )  = C - ' S , ( x - y )  
Y X 

Calculer l'amplitude de probabilité pour la désintégration d'un méson virtuel en 
deux fermions : 

----( Pi,Si 

= - 2 igii (P,, si )  ru(p2, s2) = - 2 igu (pl, si)  T c ~ ( P , )  
P?>SZ 

(à une ambiguïté de signe près). 
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Montrer que dans le calcul de la boucle de la figure 22, on peut associer au 
vertex un facteur (- 2 ig ), à condition de tenir compte d‘un facteur de symétrie 
égal à 1/2. 

---O--- 
Figure 22. Correction d’énergie propre au propagateur du méson. 

(d) Soit le lagrangien supersymétrique (I1) : 

1 1 1 1 - .  
2 2 2 2 Y = - (a,A)2 + - (a,B)2 - - m’(A2 + B 2 )  + - A ( i  8 - m ) A - 

- gmA (A2+  B 2 )  - - 1 g2(A2 + B2)2 - gh (A - iy, B )  A 
2 

où A ( B )  est un champ scalaire (pseudoscalaire). Etablir les règles de Feynman 
suivantes : 

A A  A A  

A A  B B  

--- = - 2 g y ,  

> B  

Montrer que la correction 6m au propagateur d’un méson présente seulement 
une divergence logarithmique. (On utilisera une régularisation avec cut-off : 
pourquoi ?) Montrer qu’il suffit d’une renormalisation du champ pour rendre la 
théorie finie à l’ordre d’une boucle. Ces résultats se généralisent à un nombre 
de boucles quelconque (”). 
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Un exemple de traitement des divergences infrarouges est donné par L. Landau et 
E. Lifchitz, Théorie quantique relativiste, Editions Mir (1973), paragraphe 118. L‘article 
classique sur les divergences infrarouges en électrodynamique est de D. Yennie, 



XII. Notes et références 543 

S. Frautschi et H. Suura, Ann. Phys., 13, 379 (1961). La renormalisabilité de l'électrody- 
namique est examinée par Itzykson-Zuber (chapitres 7 et 8) et Collins (chapitre 12). La 
discussion des identités de Ward est adaptée de "Hooft et Veltman, section 11. Une 
référence utile est également E. de Rafael, Lectures on Quantum Electrodynamics, 
Université de Barcelone (1976). 

( I )  J. M. Lévy-Leblond, Comm. Math. Phys., 6, 286 (1967). 
(*) P. Schwinberg et al.,  Phys. Rev. Lett., 47, 1679 (1981) ; T. Kinoshita, Phys. Rev., 

(3) D. Duke et R. Roberts, Phys. Reports, 120, 276 (1985). 
(4) Bogolioubov-Chirkov, chapitre 4. 
(') de Rafael, chapitre 7. 
(6) Landau-Lifschitz, paragraphe 112. 
(7) Collins, chapitre 12. 
(*) de Rafael, chapitre 6. 
( 9 )  Collins, chapitre 12. B. Lautrup, Nuclear Physics, B105, 23 (1976). 
('O) Cf. par exemple H. Haber et G. Kane, Physics Reports, 117, 75 (1985) 

(appendice D). 
(") Ce lagrangien est connu sous le nom de lagrangien de Wess-Zumino : J. Wess et  

B. Zumino, Phys. Lett., 131B, 52 (1974). Cf. également Haber et Kane, appendice E et 
J. Iliopoulos et B. Zumino, Nucl. Phys., B76, 310 (1974). 

D27, 867 (1983). 





CHAPITRE XII1 

Théories de jauge 
non abéliennes 

Les théories de jauge non abéliennes étaient, en 1986, à la base du 
<< modèle standard >> de la physique des particules élémentaires ; ce 
<< modèle standard >> comporte deux volets : 

(i) le modèle de Glashow-Salam-Weinberg (GSW) qui unifie les 
interactions électromagnétiques et faibles en interactions électro-fai- 
bles ; 

(ii) la chromodynamique quantique (QCD) qui, selon l’expression 
consacrée, est la << théorie présumée des interactions fortes ». 

On a tenté de rassembler le modèle GSW et la chromodynamique 
quantique dans des théories unifiées des interactions faibles, électroma- 
gnétiques et fortes ; ces théories dites de << grande unification >> ont 
aussi comme ingrédient de base des théories de jauge non abéliennes. 
Cependant il n’existe pas à l’heure actuelle de consensus sur une telle 
grande unification, car le modèle le plus simple ( S U ( 5 ) )  est en 
désaccord avec les données expérimentales sur la stabilité du proton. 

La complexité des théories de jauge non abéliennes est supérieure 
par un ordre de grandeur au moins à celle de l’électrodynamique 
quantique : il a fallu une bonne vingtaine d’années après leur décou- 
verte initiale par Yang et Mills (I) en 1954 pour que l’on arrive à bien les 
contrôler en théorie des perturbations, et il reste encore nombre de 
problèmes ouverts dans le domaine non perturbatif. De plus le champ 
d’application de ces théories est très vaste. I1 n’est donc pas question de 
donner en un seul chapitre autre chose qu’une introduction très 
succincte ; un exposé un peu approfondi exigerait sans doute un volume 
équivalent à ce livre. L’objectif poursuivi dans ce chapitre est double : 

(i) donner une première approche élémentaire qui permette au 
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lecteur d’aborder plus facilement les exposés spécialisés cités en 
référence ; 

(ii) détailler un certain nombre de calculs fondamentaux (phénomène 
de Higgs, fonction p ( g  ), équation d’altarelli-Parisi), ce qui pourra 
servir d’introduction aux articles consacrés plus spécifiquement à la 
physique des particules. 

Ce chapitre débute par un exposé de la théorie classique (paragra- 
phe A), suivi d’une discussion de la quantification (paragraphe B). 
Cependant l’invariance de jauge et la renormalisation sont traitées de 
façon très schématique. Le paragraphe C traite du modèle GSW, 
restreint au cas des leptons : l’objectif est avant tout de montrer 
comment une symétrie brisée permet, à travers le phénomène de Higgs, 
la construction d’une théorie renormalisable de bosons vectoriels 
massifs. Le paragraphe D est consacré à la chromodynamique quanti- 
que : on détaille le calcul de la fonction p (9) à l’ordre d’une boucle, ce 
qui permet de montrer la propriété cruciale de liberté asymptotique. 
L‘exemple de l’annihilation e+-e- à l’ordre a ,  est également étudié en 
détail. Enfin le paragraphe E donne un bref aperçu des tentatives 
actuelles pour passer dans le domaine non perturbatif à l’aide de calculs 
sur réseau. Les paragraphes C et E sont largement indépendants du 
paragraphe B, et peuvent être abordés immédiatement après la lecture 
du paragraphe A. 

A. CHAMPS DE JAUGE NON ABÉLIENS : 
THÉORIE CLASSIQUE 

Les théories de jauge non abéliennes utilisent comme ingrédient 
fondamental les groupes de Lie compacts ; afin de donner une 
introduction élémentaire , nous résumerons brièvement les propriétés 
du groupe de Lie non trivial le plus simple, le groupe S U ( 2 ) .  Cet 
exemple permettra d’introduire les notions (générateurs infinitési- 
maux ...) dont nous aurons besoin par la suite. Le lecteur familier de la 
théorie des groupes de Lie peut sauter directement au paragraphe A.2 
après un coup d’œil sur les notations. 

A.l .  Le groupe SU(2)  

Considérons le groupe formé des matrices 2 x 2, unitaires et de 
déterminant 1 ,  que nous pouvons écrire en fonction de quatre nombres 
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complexes a ,  b ,  c ,  d (en tout huit paramètres) : 

u =  (c  d ) .  
Ces nombres a ,  b ,  c, d vérifient les relations 

ad - bc = 1 

ainsi que : 

a = d * ;  b * = - c .  

I1 reste finalement trois paramètres indépendants ; le nombre de 
paramètres indépendants est appelé dimension du groupe de Lie : la 
dimension de S U ( 2 )  est égale à 3. Combinant (2) et (3) on obtient aussi 
l’identité : 

qui implique que le domaine de variation de a et b est fini et fermé : les 
paramètres a et b prennent leurs valeurs dans un domaine compact, 
d’où la dénomination : groupe de Lie compact. 

Examinons maintenant la matrice U au voisinage de l’identité en 
écrivant : 

U = ’ Q - i t ;  U t = Q + i t t .  (4) 

Les conditions UUt = 1 et det U = 1 montrent que la matrice 5 est 
hermitique et de trace nulle : 

t = t t ;  T r ( = O .  ( 5 )  

Toute matrice obéissant à ( 5 )  peut s’écrire en fonction des matrices de 
Pauli T,, a = 1, 2,  3 : 

en introduisant trois paramètres réels A, (infinitésimaux pour le 
moment, mais qui pourront ultérieurement prendre des valeurs finies) : 

t = Aa(Tu/2) ; A, = Tr ( 6 T a )  (7) 

(rappelons l’identité vérifiée par les matrices de Pauli : 
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L'ensemble des paramètres A, permet de définir un vecteur unitaire 
n par:  

A, = &ha ; c = (A, A,)'" 

où E < 1. Un élément du groupe SU(2)  peut s'écrire comme produit de 
N éléments infinitésimaux à la limite N -+ CO : 

et inversement il est facile de montrer que tout élément du groupe peut 
se mettre sous la forme (9). La matrice - 7 .  h est appelée générateur 

infinitésimal des transformations suivant la direction h ; il y a évidem- 
ment autant de générateurs infinitésimaux indépendants que de paramè- 
tres, soit trois générateurs infinitésimaux T ,  dans le cas de SU(2) .  Les 
relations de commutation de ces générateurs infinitésimaux : 

1 
2 

constituent i'algèbre de Lie du groupe. I1 convient à ce point d'être un 
peu plus précis sur la terminologie. Le groupe S U ( 2 )  existe indépen- 
damment de sa réalisation (ou représentation) par des matrices ; il est 
défini par une certaine loi de composition donnant la multiplication de 
deux éléments ainsi que l'inverse d'un élément. On peut faire corres- 
pondre à tout élément g de SU(2)  une matrice D ( g )  agissant dans un 
espace à n dimensions telle que : 

L'ensemble de ces matrices forme une représentation de dimension n du 
groupe de Lie ; si la correspondance est biunivoque, on a une 
représentation fidèle, et si les matrices D sont unitaires, une représenta- 
tion unitaire. En fait ce que l'on vient de décrire ci-dessus n'est autre 
que la représentation fondamentale. I1 existe évidemment une représen- 
tation triviale de dimension 1, qui à tout élément g fait correspondre le 
nombre 1. Une autre représentation bien connue (non fidèle) est 
obtenue à l'aide des matrices de rotation dans un espace à trois 
dimensions, qui forment le groupe SO(3) .  Les groupes SU(2)  et 
SO ( 3 )  sont homomorphes : à chaque élément de SO (3) correspondent 
deux éléments de S U ( 2 ) .  
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Montrons rapidement ces propriétés classiques : soit x, de composan- 
tes x,, un vecteur de l'espace à trois dimensions et construisons la 
matrice 2 x 2 hermitique et de trace nulle : 

(12) 
1 X = - x ,  r u  . 
2 

Définissons la matrice Xf i (0 )  et le vecteur X f i ( û )  par les équations : 

En utilisant (10) on montre que X f i ( 0 )  vérifie la relation : 

qui implique que x,(û ) se déduit de x par une rotation d'angle 8 autour 
de l'axe n. Ceci établit la correspondance entre les éléments de 
S U ( 2 )  et les rotations à trois dimensions, et de plus l'équation (14) 
donne les générateurs infinitésimaux de la représentation de dimen- 
sion 3 : 

Les matrices Ta ont la même loi de commutation que les matrices 
1 

D'autre part les éléments de matrice ( 
par : 

sont donnés explicitement 

(Ta)bc = - i"abc . (17) 

Enfin, prenant û = 2 rr on constate qu'à la rotation identité correspon- 
dent deux matrices distinctes de S U ( 2 ) ,  les matrices + Il et - II. 

Nous venons de construire explicitement trois représentations de 
SU(2), de dimension 1, 2 et 3 ; la théorie usuelle du moment angulaire 
nous apprend qu'il en existe une infinité, de dimension 1, 2, 3, 4, ..., 
(2 j + 1) ,  ... correspondant à la description d'un moment angulaire O, 
1/2, 1, 3/2, ..., j ,  ... Dans un espace de dimension (2 j + 1) ,  les 
générateurs de l'algèbre de Lie seront représentés par des matrices 
(2 j + 1) x (2 j + 1 )  vérifiant les relations de commutation (16). Par 
abus de langage, on appelle souvent << élément de la représentation de 
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dimension (2  j + 1 )  >> un vecteur de base de l’espace vectoriel, alors 
qu’en toute rigueur les éléments de la représentation sont des matrices. 

Dans le cas d’un groupe de Lie G de dimension Y, on aura r 
générateurs infinitésimaux ta vérifiant une algèbre : 

[ ta> t b l  = i f a b c  tc (18.a) 

où les fabe, qui généralisent les &,be de SU(2) ,  sont appelées constantes 
de structure du groupe (ou de l’algèbre) de Lie. Ces constantes de 
structure sont réelles et antisymétriques pour toute permutation 
impaire de deux indices : 

f a b c  = - f b a c  = - f a c b  = - f c b a  = f b c a  = f c a b  * (19) 

On utilisera uniquement les représentations unitaires U ( g  ) du groupe 
G (d’ailleurs pour un groupe de Lie compact toute représentation est 
équivalente à une représentation unitaire) ; sauf mention explicite du 
contraire, on supposera toujours qu’il s’agit de représentations irréduc- 
tibles (cf. références pour la définition). Dans une telle représentation, 
les générateurs infinitésimaux seront représentés par des matrices 
hermitiques Ta vérifiant les relations de commutation : 

(18.b) 

Dans la représentation adjointe du groupe de Lie, les générateurs 
infinitésimaux sont représentés par des matrices r x r données par (cf. 
(17)) : 

(Ta)bc = - i f a b c  . (20) 

Dans la représentation adjointe, les générateurs infinitésimaux sont 
donc représentés par des matrices imaginaires pures, et les matrices 
U ( g )  sont réelles et orthogonales. Dans le cas de S U ( 2 ) ,  les matrices de 
la représentation adjointe de dimension 3 ne sont autres que les 
matrices de rotation, qui sont bien réelles et orthogonales. 

En physique des particules élémentaires, les groupes les plus utilisés 
sont du type S U ( N )  : ce sont les groupes de matrices N x N unitaires 
et de déterminant 1. Ce sont des groupes à ( N 2 -  1) paramètres ; en 
dehors du cas N = 2 ,  il existe deux représentations fondamentales de 
dimensionN, notées N et N .  Les générateurs infinitésimaux des 
représentations fondamentales sont en général normalisés par la 
relation : 

1 
2 Tr (Ta Tb) = - ûab . 
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A.2. Transport parallèle et dérivation covariante 

Revenons sur le cas de l’électromagnétisme traité au chapitre XI en 
prenant pour exemple la mécanique quantique élémentaire. Soit 
<p (x) la fonction d’onde d’une particule chargée, par exemple un 
électron ; il est possible de modifier de façon globale, c’est-à-dire de 
façon identique en tout point d’espace, la fonction d’onde de la 
particule sans modifier les résultats physiques. I1 n’est pas possible de le 
faire localement : modifier de 180” la phase de la fonction d’onde au 
voisinage d’un des deux trous dans une expérience de trous d’Young 
bouleverse la figure d’interférences. Cependant, ainsi que nous l’avons 
déjà vu, une telle modification locale est possible si les particules sont 
couplées à un champ électromagnétique. En effet, le propagateur de 
l’équation de Schrodinger (cf. VIII-B.l) F0(2,  1 )  en l’absence de , 

champ : 

est modifié en présence du champ : si l’on calcule ce propagateur à 
l’aide d’une intégrale de chemin, le poids statistique de chaque trajet C 
entre les points (1) et (2) doit être multiplié par le facteur : 

i j,’ A .  dx 

R(C ; A )  = e (22) 

(la charge a été prise égale à l’unité afin d’alléger les notations). Une 
transformation de jauge : 

A-+ A’ = A - VA 

transforme R(C ; A )  en R ( C  ; A ’ ) :  

R(C ; A ‘ )  = R(C ; A )  ,‘“(’I) 

ce qui absorbe un changement local de la phase : 

<p (x) -+ <p (x) = cp (x) 

et laisse invariantes les amplitudes de probabilité : 

J h 2  $*(x2) F ( 2 , 1 )  <p (Xi) . 

Dans le langage de la géométrie différentielle (*), le facteur 

(*) Le lecteur habitué à la géométrie différentielle reconnaîtra aussi en A une 
connexion et en F,, (paragraphe A.3) un tenseur de courbure. 
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R (C ; A) effectue un c transport parallèle B de la fonction d'onde entre 
les points x1 et x2 : il permet une comparaison des phases entre ces deux 
points. Limitons-nous maintenant à un déplacement infinitésimal : 

x ~ = x ;  x , = x + d x  

R ( C ; A ) =  l + i A . d x .  (25) 

Le transport parallèle de la fonction d'onde cp (x) en x + dx a pour 
résultat cp'(x) : 

cp'(x)= (1 +iA-dx)cp(x) .  (26) 

La dérivée covariante Dcp sera définie, non pas à l'aide de 
[cp (x + dx) - cp (x)], mais à l'aide de [cp (x + dx) - cp '(x)] : 

~p (X + dx) - ~p '(x) = dx Dq . (27) 

Par construction cp '(x) se transforme comme cp (x + dx) dans une 
transformation de jauge, ce qui assure que Dq,  contrairement à 
Vcp, se transforme comme <p : 

D' q ' (x)  = (V - iA') cp'(x) = eë'"(')Dcp (x). (28) 

Les transformations de jauge (24) sont appelées abéliennes, car le 
produit de deux transformations commute. Le groupe de jauge est le 
groupe de Lie U(l) ,  paramétré par les nombres réels A dans l'intervalle 

Nous allons maintenant généraliser ce qui précède au cas non 
abélien. Soit un groupe de Lie G compact, semi-simple et dont l'algèbre 
de Lie est définie par des constantes de structure f a b c  : ce groupe sera 
appelé groupe de jauge de la théorie non abélienne. Nous utiliserons 
uniquement des représentations unitaires du groupe G, où les généra- 
teurs infinitésimaux sont représentés par des matrices hermitiques 
Ta vérifiant : 

[ O ,  2rr I. 

(18.b) 

Un élément quelconque de la représentation s'écrira en fonction de 
paramètres réels A,, sous la forme : 

(29) 
- in, Ta 

U ( g )  = e 

Considérons un ensemble de champs classiques { cp (x )} , i = 1, . . . , n 
(on se place à nouveau dans l'espace de Minkowski) se transformant à 
l'aide d'une représentation de dimension n du groupe G : 

[u(g) (P l i  ( x )  = [e-i4Ta~ij cpj(x). (30) 
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L'indice i est un indice de symétrie interne, dont il n'est pas 
nécessaire de préciser la signification physique pour le moment. 
L'équation (30) définit une transformation de jauge globale non 
abélienne pour les champs < p i ,  qui généralise la transformation de phase 
(XI.89) du cas abélien. I1 est facile d'écrire des interactions invariantes 
par une telle transformation. Par exemple si G = S U ( 2 ) ,  si <pi 

appartient à la représentation de dimension 2 et A r  à celle de 
dimension 3 (le champ < p i  est supposé scalaire de Lorentz ; on pourrait 
aussi bien prendre des exemples construits avec un champ spinoriel), les 
interactions : 

sont manifestement invariantes par (30). I1 n'en est plus de même si 
nous permettons à la transformation de jauge (30) de devenir locale, 
avec des paramètres A dépendant de x : 

Afin de pouvoir écrire des interactions invariantes, il faudra, comme 
dans le cas abélien, introduire un champ de jauge A g ( x ) ,  dépendant de 
l'indice de symétrie interne a ; dans une représentation donnée on 
définira d p ( x )  par : 

Le champ & p ( x ) ,  qui prend ses valeurs dans l'algèbre de Lie du 
groupe, permet d'effectuer le transport parallèle ; dans le cas d'un 
trajet infinitésimal nous généralise- 
rons (25) par : 

R ( x  + d x , x  ; A )  = 1 - i dxp d p ( x )  &"(I) 

(33) x2 

mais pour un trajet fini il faut prendre 
garde au fait que les d p ( x )  ne 
commutent pas entre eux. Le pro- 
blème est exactement le même que 
celui de l'opérateur d'évolution (cf. 
chapitre IX) : au lieu de découper 
l'intervalle [O, TI en N intervalles T I N ,  N -+ m ,  on découpe le trajet C 
en N trajets infinitésimaux d x p ( l )  (figure l), et on définit R ( C  ; A )  par 

Figure 1. 
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N 
R(C ; A )  = lim n (1 - i d x p ( l ) d p ( Z ) )  

N - m  / = I  

N e - i d x ' ( l ) d s ( l )  
= lim 

N + m  1 - 1  

Le résultat peut s'écrire formellement : 

où le symbole P joue exactement le rôle du symbole T dans l'équation 
(IX.69). Comme dans le cas abélien, la connexion dp aura pour rôle 
de compenser les changements de phase locaux : 

R ( C  ; A ' )  = U(g(xd)R(C ; A )  U-l(g(x1)). (35) 

Afin de déduire de (35) la loi de transformation de dp, il suffit de 
prendre pour C un trajet infinitésimal : 

î - i dx,  ai"^ = U ( g ( x  + dx)) (1 - i dx, d") U-'(g(x)) = 

soit : 

= 1 - i d x p [ i ( a ~ ~ )  U-' + U d p  u-'] 

La loi de transformation (36) généralise la transformation de jauge 
(XI.92) du champ électromagnétique ; par la suite on écrira souvent 
dt au lieu de d;. 

La loi de transformation (36) fait intervenir les matrices U ( g )  d'une 
représentation déterminée, et il semble a priori que cette loi dépende 
de la représentation considérée, ce qui serait fort ennuyeux : il faudrait 
introduire un champ A: pour chaque représentation. Heureusement il 
n'en est rien, car la loi de transformation ne dépend que de l'algèbre de 
Lie du groupe ; on le voit aisément en prenant la forme infinitésimale 
de (36) : 

U ( g )  = ?I - in, Tu 

Tu 6A: = - iA,[Tu, Tb]  A r  + (awnu) T u .  
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Comme les générateurs Tu sont linéairement indépendants, on obtient : 

Lorsque A est indépendant de x (transformation de jauge globale) cette 
équation montre que A,” se transforme suivant la représentation adjointe 
du groupe G puisque dans cette représentation (Ta)bc = - ifabc. 
Contrairement au cas abélien, le champ A,” n’est pas neutre pour la 
symétrie interne considérée : le champ électromagnétique ne transporte 
pas de charge, mais le champ A,” transporte les nombres quantiques 
associés à la symétrie considérée. C’est cette propriété qui rend les 
théories de jauge non abéliennes non linéaires dès le niveau classique : 
le principe de superposition n’y est plus valable. 

La discussion qui précède peut paraître un peu longue, mais elle a 
l’avantage de donner directement le transport parallèle et la dérivation 
covariante ; dans un transport parallèle : 

P ( X )  -+ P Y X )  = R ( x  + h, x ; A )  P ( X )  

= q ( x ) - i ( d x , d p ) q ( x ) .  

Par construction (cf. (35)) ,  <p ‘(x) se transforme comme p (x + dx) dans 
(31), et on peut comparer valablement ( x  + dr) et cp‘(x) ; en 
particulier on peut calculer immédiatement la dérivée covariante : 

soit 

ou en rétablissant les indices : 

(39.a) 

La dérivée covariante vérifie par construction la propriété fondamen- 
tale : 

0; P’ (X)  = U ( g ( x ) )  D, P(X)  (40) 

ce qui permet d’écrire immédiatement des interactions invariantes de 
jauge. On notera également que dans la représentation adjointe la 
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dérivée covariante s’écrit : 

D$ = a ” 6 , b  + f a b c A C .  

XIIi.A.3 

(39.b) 

A.3. Tenseur F’” et lagrangien 

Afin d’établir la forme du tenseur FQ”, généralisation non abélienne 
du tenseur champ électromagnétique F ’, nous allons écrire I’équiva- 
lent de la formule de Stokes en électromagnétisme : 

jc A - dx = [j B dS 

où c est une courbe fermée. Considérons un contour infinitésimal 
rectangulaire c, centré en un point x ,  et dont les côtés sont 

Sa, et 6b, .  Les points 1, 2, 3 et 4 sont 
choisis au milieu des quatre côtés du 
rectangle (figure 2). Nous allons calculer 
R (c ; A ) pour ce contour : 

3 

i Sb, dP(4) i Sa, S”’(3) R ( e  ; A )  = e e X 

- i 6 6 ,  ~ ‘ ” ( 2 )  - i Sa, S”(i) 4 El 6 b ,  x e  e 

Les valeurs de d ” ( i )  sont obtenues par 
un développement limité autour de x ,  par 
exemple : 

8% 

Figure 2. 
1 
2 

&,(I) = &+) - - S b ,  a ’ d y t ) .  

Si les d p  étaient des nombres, comme en électromagnétisme, on 
obtiendrait simplement : 

- i Sa, Sb,(afiAY - a”A@) 
- i  lcAfici.x, 

R ( e  ; A )  = e  = e  

- i du,,,, F’” 
= e  

où d u  IL’ = 6a’ A Sb ’ est l’élément d’aire orienté. Lorsque d p  est une 
matrice, on doit rajouter un terme provenant de la non-commutativité, 
qui est donné par : 

(42) 
i 6 6 ,  d ” ( x )  i S a ,  d , ( x )  - i Sb, .el”(*) - i  Sa,  d ’ ( x )  e e e e 
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L‘identité classique en théorie des groupes de Lie : 

e eiEh eiE’ e- iEh - le’ û ~ 1 - E s ’  [h,  g ] e- EE’[h ,  8; 

permet d’évaluer (42) : 

Sa, Sb,[JppP, d”] e 

Combinant ce dernier résultat avec (41), on constate que .R (C ; A )  se 
met sous la forme : 

R(C ; A )  = exp (- i 5 d u p v { a p d ” -  3 ’ d p  -+ i [ d p ,  dL]}) . (43) 

Contrairement au cas abélien, qui conduit au théorème de Stokes, on 
ne peut pas généraliser cette équation au cas d’un contour fini. 
L‘équation (43) nous conduit à définir le tenseur 9”“ par : 

ou, en rétablissant les indices : 

Revenons à l’interprétation du calcul que nous venons d’effectuer : la 
quantité R( ; A ) a une signification précise, elle donne Ea K rotation H 

de la phase du champ pour un trajet fermé, et cette rotation a des efiets 
observables, par exemple dans une expérience du type Aharonov- 
Bohm: cette rotation est liée au flux de F M Y .  Cependant, dans une 
transformation de jauge, R(C ; A ) se transforme suivant : 

R(C ; A ’ )  = U ( g ( x ) ) R ( C  ; A )  U - ’ ( g ( x ) ) ,  

et n’est donc pas invariant de jauge, contrairement au cas abélien. 
sont tous deux antisymétriques dans l’échange 

p +, v ,  F ’ p ’  doit être donné par une loi de transformation identique : 
Comme d u  p ” et 9 

ce qui donne pour une transformation infinitésimale : 
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Cette équation montre d’une part que FF” se transforme suivant la 
représentation adjointe, et d’autre part que la loi de transformation ne 
fait pas intervenir a,A, ; cependant, contrairement au cas de l’électro- 
magnétisme, cela ne suffit pas pour rendre F p v  invariant de jauge. 
Néanmoins l’équation (46) suggère une généralisation de l’action du 
champ électromagnétique, qui soit invariante de Lorentz, invariante de 
jauge et se réduise à (XI.80) dans le cas d’un groupe abélien (on utilise 
(21) pour passer de la première à la seconde forme de S) : 

S = - -  d4xTr ( F ~ ’ F , y ) = -  - 5 d4x FE” F P v a  . (48) 
2 ‘s j 2  4 j 2  

Dans l’équation (48), S est une constante de couplage ; ultérieurement 
on fera un changement d’échelle A ,  -, gA, sur les champs, ce qui 
éliminera le 1/g2 en facteur dans l’action. L’expression (48) conduit à 
des couplages à trois et à quatre particules de jauge, puisque 
F PLY est quadratique en A ,. C’est cette propriété qui rend les champs de 
jauge non abéliens hautement non triviaux, même en l’absence d’autres 
particules, alors que le champ électromagnétique en l’absence d’élec- 
trons est un champ libre. 

Pour déterminer les équations du mouvement, on couple A @  à un 
courant j,” appartenant à la représentation adjointe du groupe de 
jauge : 

Avant de passer à la généralisation des équations de Maxwell, on 
notera l’identité : 

qui donne en particulier : 

Le principe variationnel appliqué à l’action S (49) donne les équations 
du mouvement (exercice 1) : 

- 
D, F p V  = g j ”  (52) 

et, à cause de (51), l’équation de continuité pour j ”  s’écrit 

D , j ” = O .  (53) 
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On notera que cette équation fait intervenir la dérivée covariante, c’est- 
à-dire le champ A,.  En fait il fallait s’y attendre car le champ 
A ,  transporte les nombres quantiques de la symétrie interne, et il est 
aussi sa propre source. On montre égaiement l’analogue des identités 
de Bianchi en géométrie différentielle (exercice 2) : 

Du F,, i- D, F, ,  i- D, Fu, = O .  (54) 

Enfin (exercice 3), on notera que la condition F p v  = O au voisinage 
d’un point implique que d, est, dans ce voisinage, de la forme : 

que l’on appelle aussi << champ de pure jauge ». 
Pour conclure ce paragraphe, résumons les différences essentielles, 

au niveau classique, entre champs de jauge abéliens et non abéliens. 
Dans le cas non abélien : 

(i) le tenseur FP”” n’est pas invariant de jauge ; 
(ii) même au niveau classique, il est impossible de formuler la 

théorie sans faire appel aux potentiels (cf. (52)-(54)) ; 
(iii) enfin les champs de jauge non abéliens possèdent des propriétés 

topologiques non triviales. Dans le cas abélien, F p v  = O est équivalent à 
A ,  = WA,  et on peut passer continûment de cette valeur à A ,  = O. 
Ceci n’est pas possible dans le cas non abélien. Par exemple si l’on 
choisit la jauge A’ = O, le champ de pure jauge : 

A = i ( V U ( g ) )  U - l ( g )  , lim U(g(x)) = .II 
II x II -t 00 

est caractérisé par un nombre topologique qui prend des valeurs 
entières. Les solutions classiques des équations de Yang-Mills possèdent 
des propriétés fascinantes, mais leur étude sort du cadre de cet exposé. 

B. QUANTIFICATION DES THÉORIES DE JAUGE 
NON ABÉLIENNES 

B. 1. Fonctionnelle génératrice 

Nous allons adapter à une situation plus complexe la méthode 
exposée au chapitre XI paragraphe D, en suivant la même approche 
heuristique. I1 s’agit d’arriver à intégrer uniquement sur les classes 
d’équivalence de configurations [ A , ] ,  au lieu d’intégrer sur toutes les 
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configurations : deux configurations appartiennent à la même classe 
d‘équivalence si elles se déduisent l’une de l’autre par une transforma- 
tion de jauge (36). I1 est nécessaire de fixer la jauge par une condition 
du type : 

f * ( A / )  = 0 .  

La transformation de jauge (36) est, en un point x fixé, une transforma- 
tion unitaire suivie d’un changement d’origine : elle laisse invariante la 
mesure d’intégration : 

L‘action S est également invariante par transformation de jauge. 
Définissons la quantité Af ( A  ) par (afin d’éviter une prolifération 
d’indices, j’omettrai en général l’indice de Lorentz et parfois l’indice de 
groupe) : 

(56) 
X x ,  a 

I1 est facile de vérifier que Aj(A)  est invariant de jauge en utilisant 
l’invariance de la mesure de Haar (la mesure de Haar est la mesure 
invariante pour l’intégration sur les paramètres du groupe ; on peut 
montrer que cette mesure est unique, à un facteur multiplicatif près) : 

dg = d(g0g) 

où go est un élément fixe du groupe. Ecrivons maintenant la a fonction 
de partition H 2 sous la forme : 

z = J fl dA,(x) A f W  n 8 ( f a ( A B @ ) ) )  n dg(x) 
x ,  a x ,  a X 

x .  a x ,  a 

La deuxième intégrale est indépendante de g ,  ce qui permet de 
factoriser le produit des intégrales sur le volume du groupe en chaque 
point. Divisant par ce facteur (infini, mais constant) nous arrivons à 
l’expression suivante de 2 : 

z = J 9 A  A f ( ~ )  n 6 ( f a ( A ( x ) ) ) .  (57) 
x ,  a 

I1 s’agit maintenant d’évaluer Af(A)  dans l’équation (56) ; grâce à la 
fonction 6, il suffit d’intégrer sur les configurations [ A ]  voisines de 
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celles qui vérifient la condition de jauge. Partant d’une configuration 
[A] telle que fu(A) = O, on effectue une transformation de jauge 
infinitésimale (37) ; afin de simplifier la discussion je me limite à la 
jauge de Lorentz a,AF = O, mais l’argument est général (cf. également 
l’exercice XI.14) : 

apApg = a,Ap + d,[a’A, + fubc AbAr] 

= Au 4- fabcAr . 

Ecrivons ce résultat sous la forme 

avec 

[Mf(x,y)lub = (0 ôab + f u b c A C  a,) S(4)(x - Y >  (58) 

Avec ces notations Af(A) devient (cf. exercice (XI.14.a) 

Af(A) = det M ,  
car 

Pour que ce déterminant soit praticable, il faut le transformer en série 
perturbative en l’écrivant sous forme d’une intégrale sur des variables 
de Grassmann 7) ( x )  et q (x) grâce à (XI.65) : 

(les variables 77 et 7 ne doivent pas être confondues avec les sources 77 
et f j  de XI-B.2, malgré l’identité des notations). Ceci permet d’écrire, 
en ignorant des constantes multiplicatives, la fonctionnelle génératrice 
sous la forme : 

avec 

Le lagrangien (59. b) fait intervenir des champs fermioniques fictifs 
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q,(x) et q a ( x ) ,  appelés << fantômes de Fadeev-Popov >> ; ces champs 
n’apparaissent évidemment jamais comme particules externes dans les 
éléments de matrice S,  mais seulement sous forme de lignes internes. 
Notez que ces {{fermions >> sont des particules de spin zéro ; s’ils 
apparaissaient comme particules externes, ils violeraient le théorème 
spin-statistique. Comme ce sont des champs de fermions, il ne faut pas 
oublier un facteur - 1 chaque fois qu’ils forment une boucle dans un 
graphe. I1 reste maintenant à répéter sans modifications les étapes 
menant de l’équation (XI. 108) à l’équation (XI. 109). Le lagrangien 
Zeff(x) à utiliser dans (59.a) comprendra finalement : un lagrangien du 
champ de jauge ZG, un terme fixant la jauge ZGF et un terme 
ZFp correspondant aux fantômes de Fadeev-Popov. On peut également 
rajouter un terme de couplage à des fermions que l’on prendra dans la 
représentation de générateurs infinitésimaux T, : sauf mention explicite 
du contraire, on se limitera au cas où les générateurs Ta sont ceux des 
représentations fondamentales. Enfin il sera commode de faire le 
changement d’échelle suivant sur les champs de jauge et de noter 
g (au lieu de 5) la constante de couplage : 

A: -+ gA:. 

Reste à résumer les résultats (en effectuant une intégration par parties 
sur 2 F p )  : 

(60.c) 

(60.d) 

2~ = $i[iY,(api3ij + igAa(T,)ij) - m 6ij ]  G j .  (60.e) 

B.2. Règles de Feynman 

Les règles de Feynman se lisent directement sur les équations (60), en 
se souvenant qu’à un terme a, <p (x) dans le lagrangien correspond dans 
l’espace de Fourier un facteur - iq,, où q ,  est le moment entrant dans 
le vertex. Donnons d‘abord l’expression des propagateurs : 
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(i) Champ de jauge : 

(ii) F-P 
k - 

‘ a b  
x .... .+. . . x  

b 0 k 2 +  i E  
(61. b) 

(iii) Fermion : 

i t j j ,  i 6 j r ( p  + m )  
P d - - - (61.c) 

Nous admettrons sans démonstration la prescription k2 -+ k2 + iE 
pour le propagateur (61.b) ; on peut montrer que cette prescription est 
la seule compatible avec l’unitarité et la causalité. Les fantômes de 
Fadeev-Popov sont d‘ailleurs essentiels pour assurer I’unitarité via les 
règles de coupure. 

Etudions ensuite le vertex à trois particules de jauge : un terme du 
lagrangien (60.b) contribuant à ce vertex sera par exemple : 

I J @ - m + i ~  p2 -m2+iF  

$ f a b c  a u A F A u b  g p p  A c ! .  

Par application du théorème de Wick, ce terme donnera une contribu- 
tion du type : 

I1 y a en fait 3! = 6 contributions au théorème de Wick et quatre termes 
dans le lagrangien (60.b). Le vertex complet s’écrira : 

- g f  abc [ g p u  (P - 4 ) p  -k v p  (4 - r ) p  -k g p p  ( r  - P l u  1 * (62.a) 

On trouve de même l’expression du vertex à quatre particules de jauge : 

P ,  a 
- ig2[feob f e c d ( g p p  g v u  - g p u  s u p )  

$- f e a c  f e d b ( g p u  g p u  - g p v  g p u )  (62.b) 

u. xb d P ,  c -I- f e a d  f e b c ( g p u  g v p  - g p p  ~ U Y ) ]  
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Le couplage entre les gluons et les fantômes est donné par le 
lagrangien (60.d). Calculons le vertex : 

Le terme de (60.d) contribuant a ce vertex peut s'écrire : 

et donne la contribution : 

g f a b c p '  

Enfin le vertex gluon-fermion se déduit de (60.d) 

(62.c) 

Ces règles sont évidemment plus compliquées que celles de l'électro- 
dynamique quantique. Dans le calcul d'un graphe de Feynman, il sera 
en général conseillé de commencer par le calcul du «facteur de 
groupe D provenant des f a b c  et des (Ta) i j .  Les règles générales pour le 
calcul de ce facteur de groupe ont été données par Cvitanovic 
('). Contentons-nous de donner ci-dessous les facteurs de groupe 
intervenant dans les calculs de diagrammes à une boucle les plus 
simples. On utilisera les identités suivantes, valables pour une représen- 
tation R (exercice 4) : 

(63.b) 

Soit r la dimension du groupe et n la dimension de la représentation des 
fermions (en général N pour S U ( N ) )  ; on déduit de (63) la relation : 

n C ( R )  = r T ( R )  . (64) 
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On note en général C F  la valeur de C ( R )  pour la représentation des 
fermions ; dans le cas de S U ( N )  nous obtenons pour la représentation 
fondamentale : 

Dans le cas de la représentation adjointe, II = r et C ( R )  = 
T ( R )  = C A ( C A  = N pour S U ( N ) ) .  Examinons quelques cas importants 
de diagrammes à une boucle : 

(i) Energie propre de particules de jauge : 

(ii) Energie propre d'un fermion appartenant à la représentation 
fondamentale de S U ( N )  : 

(iii) Boucle de fermions contribuant à l'énergie propre des particules 
de jauge: 

i 

Le lecteur vérifiera sans difficulté ces résultats dans le cas du groupe 
S U ( 2 ) .  D'autres exemples sont donnés à l'exercice 4. 

On procède ensuite comme dans une théorie des champs usuelle, en 
intégrant sur les boucles etc. I1 faut prendre garde à ne pas oublier les 
facteurs de symétrie : 

: Facteur de symétrie 112 

ainsi que le facteur (- 1) associé aux boucles de F-P : 
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B.3. Renormalisation et identités de Ward 

Les règles de Feynman énoncées précédemment vont naturellement 
conduire à des intégrales divergentes, et il est nécessaire de renormali- 
ser. Un bon exercice (mais qui demande une certaine persévérance) 
consiste à calculer tous les diagrammes divergents à l’ordre d’une 
boucle et à en déduire les constantes de renormalisation. Afin de 
maintenir l’invariance de jauge tout au long du calcul, il est conseillé 
d’utiliser une régularisation dimensionnelle, et de déterminer les 
constantes de renormalisation à l’aide du schéma minimal. Le lecteur 
courageux qui veut se lancer dans ce calcul trouvera quelques indica- 
tions supplémentaires au paragraphe D. 

Le comptage de puissances détermine les diagrammes primitivement 
divergents ; comme il s’agit de fonctions de Green, les fantômes 
peuvent parfaitement apparaître comme particules externes dans les 
diagrammes, puisqu’il sera par exemple nécessaire de renormaliser leur 
propagateur. D’autre part, en raison de la transversité du propagateur 
du champ de jauge et de la factorisation de p p  dans l’énergie propre des 
fantômes, il n’apparaît ni contre-termes de masse, ni contre-terme en 
(dpAp)2. Compte-tenu de ces remarques, il est facile de faire le 
décompte des diagrammes à évaluer (entre parenthèses la constante de 
renormalisation) : 

(a) Energie propre des particules de jauge : -- (’3) 

(b) Energie propre des fantômes : .. 

(c) Energie propre des fermions 

(d) Vertex à 3 particules de jauge 

(e) Vertex particule de jauge-fantôme 

(f) Vertex fermion-particule de jauge 
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Procédant comme au chapitre VI, on rajoute les contre-termes au 
lagrangien (60), obtenant pour résultat (les indices et facteurs de 
groupe ne sont pas écrits explicitement et la masse des fermions a été 
prise égale à zéro) : 

1 
4 

2 + SLY = - - Z,(apA” - avAp)(a,A, - aJ,) + 

1 
2 4 + Z l  (@’“A - ô”A ”) A,A,  - - g 2  Z4 A ,  A , A A 

Les champs et paramètres nus sont définis par : 

Le lagrangien 9 + 8 2  peut être considéré comme le lagrangien 
initial Z ( A , ,  q,, q0, a,, g o ,  g O F  = g o )  à condition que les identités 
suivantes soient satisfaites : 

Ces identités, qui généralisent la relation Z ,  = Z ,  de l’électrodynamique 
quantique, sont vérifiées explicitement dans le calcul à l’ordre d’une 
boucle. Dans le cas général, elles peuvent être démontrées, comme en 
électrodynamique, à l’aide de la généralisation des identités de Ward 
aux théories non abéliennes, qui sont appelées identités de Slavnov- 
Taylor. Cependant les identités de Slavnov-Taylor sont beaucoup plus 
complexes que celles de la théorie abélienne. La façon la plus élégante 
et la plus compacte de démontrer ces identités utilise la transformation 
de Becchi, Rouet et Stora (BRS) qui est exposée par exemple dans 
Itzykson-Zuber (cf. également l’exercice 5). Nous nous bornerons à 
indiquer brièvement où réside la difficulté. 

Rappelons que pour quantifier le champ de jauge, nous avons dû 
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<< fixer la jauge >> par une condition f ( A )  = O. Ceci a introduit dans le 
lagrangien effectif deux termes : 

qui ne sont pas invariants de jauge. Si l’on essaie de répéter l’argument 
de XII-D.l, en rajoutant un champ pa  appartenant à la représentation 
adjointe du groupe de jauge, qui sert à effectuer la transformation de 
jauge infinitésimale ( w  1 )  : 

6AU = w f a b c  ‘Pb Ac! + (apL(pa> (70) 

généralisant (XII.98), les termes <;PGF et <;PFp vont engendrer des 
interactions du type qAA, V A T ,  p g A q ,  en plus du terme (XII.100). 
Ceci rend l’écriture d’une identité du type (XII.102) beaucoup plus 
complexe. En électrodynamique, la simplicité de la jauge de Lorentz 
V A ,  = O vient de ce que les fantômes de F-P sont en principe présents, 
mais ils sont découplés et on peut les ignorer. I1 n’en est pas de même 
dans la jauge a,A , + g / 2  A,A = O de l’exercice XI. 14 : dans cette 
jauge on doit écrire des identités du type Slavnov-Taylor (exercice 5) .  
On retiendra de cette discussion schématique les relations de dépen- 
dance entre la condition de jauge, le lagrangien des fantômes de F-P et 
les identités de Ward-Slavnov-Taylor. 

C . MODÈLE DES INTERACTIONS ÉLECTRO-FAIBLES 

Dans le cas d’une théorie de jauge abélienne avec couplage à un 
courant conservé, on peut introduire un terme de masse pour le boson 
de jauge sans détruire la renormalisabilité de la théorie : en effet le 
terme dangereux du propagateur massif : 

’ qui introduit une << constante de couplage >> m-2 de dimension - 2, est 
contrôlé par la conservation du courant, du moins pour les quantités 
physiques. I1 n’en est pas de même dans les théories non abéliennes, où 
l’introduction brutale d’un terme de masse détruit la renormalisabilité. 
Si l’on souhaite donner une masse aux particules de jauge, ce qui est 
indispensable pour décrire des forces à courte portée comme les 
interactions faibles, il est nécessaire de passer par une construction 
utilisant une brisure (spontanée) de symétrie. 
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C.l .  Bosons de Goldstone et phénomène de Higgs 
. Lorsqu’une symétrie continue est spontanément brisée, il apparaît 

des particules de masse nulle appelées bosons de Goldstone. Un modèle 
très simple pour expliquer ce phénomène est fourni par la théorie de 
Ginzburg-Landau avec un paramètre d’ordre de dimension n = 2. 
L‘action effective ï(q) sera écrite pour une théorie euclidienne : 

F = 1, 2, 3 ,  4 ; ( 3 , ~ ) ~  = (3,cp)2. La disposition des indices 

( A ,  A ,  au lieu de A ,  A W) permettra de distinguer la théorie euclidienne 
de celle de l’espace de Minkowski. A l’approximation en arbres, cette 
action effective est donnée par : 

4 

p = l  

Le coefficient de (9,” + <pi) est négatif, ce qui correspond à une 
température inférieure à la température critique : T < T,. La constante 
de couplage A doit être positive. 
Le potentiel effectif V (cp 1, c p 2 )  
que l’on peut écrire : 

V ( v , ,  9 2 )  = 

+ Cte (72) - 
présente un minimum pour 

c p i + c p 2 = h .  2 2 P 2  

Dans le plan (vi ,  q2) ,  ce mini- 
mum se trouve donc situé sur un 
cercle (figure 3 ) .  La forme du potentiel est dessinée sur la figure 4. 
Suivant le mécanisme habituel de brisure de symétrie, on choisit un état 
fondamental particulier (un vide en théorie des champs) ; dans le 
langage du magnétisme, on choisit une direction d’aimantation particu- 
lière. Un choix possible est : 

Figure 3. 

u est la << valeur moyenne sur le vide D du champ v i .  
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Figure 4. 

Les fluctuations de ( < p l ,  q 2 )  autour de l’état fondamental (73) seront 
décrites par < p 2  et un champ q :  

q = < p i - v .  (74) 

Reportant cette expression dans le potentiel effectif (72) on obtient : 

Cette forme du potentiel effectif montre que l’on est en présence d’une 
particule (7)  massive, de masse 42 p ,  et d’une particule (p2) de 
masse nulle, qui est le boson de Goldstone. Ces particules sont couplées 
entre elles, avec des couplages cubique et quartique. L’existence du 
boson de Goldstone est facile à interpréter : les fluctuations autour de 
l’état fondamental dans une direction perpendiculaire à l’axe < p l  ne 
coûtent aucune énergie, alors que les fluctuations le long de cet axe se 
font dans un potentiel harmonique. 

On peut démontrer sans difficulté le résultat suivant (exercice 6 )  : 
soit H le sous-groupe du groupe de symétrie G de l’action effective qui 
laisse invariant l’état fondamental. Si G a N générateurs indépendants 
et H en a M ,  il existe ( N  - M )  bosons de Goldstone. Dans l’exemple 
précédent N = 1 (G = U(1)) et M = O. 

L‘introduction d’un champ de jauge couplé au champ <p a pour effet 
de faire disparaître le boson de Goldstone, qui se retrouve comme 
composante longitudinale d’un champ de jauge massif: c’est le 
phénomène de Higgs. Reprenons l’action effective (71) en rajoutant un 
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champ de jauge (abélien) A,. I1 est commode d’introduire les champs 
chargés cp et cp * : 

et la dérivée covariante : 

D ,  cp = a, - iqA, 

L’action effective devient : 

(77) 
On choisit à nouveau l’état fondamental : 

Au lieu des champs (v i ,  cpz), utilisons les champs réels ( e ,  q ) en 
écrivant : 

En l’absence du champ A,, et en se limitant aux termes quadratiques en 
q , 5, l’action effective (77) s’écrirait : 

)I 1 
+ 2 (2 P 2 )  T 2  + O(V (a,‘$)2, q3 ,  ... . 

On voit que le champ ‘$ est de masse nulle : c’est le boson de Goldstone. 
Cependant nous sommes dans le cadre d’une théorie de jauge, ce qui 
nous permet de faire des transformations de jauge ; choisissons la 
transformation particulière : 

cp (x) -+ cp ’ (x) = cp (x) (78.a) 

(78.b) 

L‘action effective (77) est invariante dans cette transformation ; 
comme : 

1 A, (x) -P AJ, (x) = A, - - a,‘$ (x) . 
qv 
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on peut reporter cette valeur dans (77) en écrivant (A,, c p )  au lieu de 
(AL, cp’)  : 

1 
2 F,, F,, + - ( 3 , ~  + iqA,(v + 7)) x 

1 
= d4x[ F,, F,, + ?  ( 3 , ~ ) ~  

1 
2 + - q2 v2 A , A , + q TJ V A  , A , 

Le contenu physique se lit directement sur l’équation (79) ; on obtient : 
O un champ vectoriel massif de masse carrée m2 = q2 u2 = q2 p 2 / h  ; 
O un champ scalaire 71 de masse carrée 2 p2. 

Ces deux champs sont couplés entre eux par des interactions cubiques 
et quartiques. La transformation de jauge a fait disparaître le champ de 
masse nulle 6, qui se retrouve en fait comme composante longitudinale 
d’un champ vectoriel massif A, : le nombre de degrés de liberté est bien 
conservé. Au départ on disposait de deux degrés de liberté pour le 
champ de jauge et de deux pour les champs scalaires ; à l’arrivée on 
trouve trois degrés de liberté pour un champ vectoriel massif et un pour 
le champ scalaire. 

Nous venons donc de donner un exemple du phénomène de Higgs : 
un champ de jauge de masse nulle acquiert une masse en se propageant 
dans le vide des champs scalaires, appelés pour cette raison << champs de 
Higgs». Le même phénomène se produit dans le cas de théories de 
jauge non abéliennes. Le phénomène de Higgs permet aux bosons de 
jauge d’acquérir une masse, tout en préservant la renormalisabilité : en 
effet le lagrangien initial est renormalisable (le couplage des champs de 
Higgs ne contient que des termes renormalisables), et on peut montrer 
que la brisure de symétrie préserve la renormalisabilité. Après la 
transformation de jauge (78), on tombe sur une théorie manifestement 
unitaire, puisque dans le cas d’un boson vectoriel massif le propagateur 
coupé ne fait intervenir que des états physiques. 

Ceci permet de conclure - et une analyse complète du problème 
confirme cette conclusion - que l’on peut construire de cette façon une 
théorie unitaire et renormalisable de bosons massifs dans le cadre d’une 
théorie de jauge non abélienne (et c’est la seule façon de le faire !). 
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C.2. Théorie de Fermi des interactions faibles 

La théorie des interactions faibles, connue sous le nom de << théorie 
de Fermi », a en réalité été mise au point a la fin des années 50, en 
modifiant la théorie proposée par Fermi une vingtaine d’années 
auparavant. Cette théorie peut être caractérisée de la façon suivante : 

(i) c’est une théorie courant-courant, 
(ii) elle conduit à une interaction effective non renormalisable a 

(iii) elle viole la parité de façon maximale. 
Examinons rapidement ces trois points, en renvoyant par exemple au 

livre de Gasiorowicz pour des détails complémentaires. Nous nous 
limiterons aux interactions faibles des leptons e’, v,, Ve (neutrino et 
antineutrino électroniques), p *, v p ,  V~ (neutrino et antineutrino 
muoniques). Rappelons que les neutrinos sont électriquement neutres 
(d’où leur nom), ont un spin 1/2 et une masse compatible avec zéro. Le 
lagrangien de Fermi s’écrit en fonction du courant faible JA (x) et d’une 
constante de couplage GF (constante de Fermi) sous la forme : 

quatre fermions, 

(80) GF A t  
z ( X )  = - - J A ( x ) J  (X) JZ 

où JA comprend une partie électronique .lie) et une partie muonique 
J i p )  (ainsi qu’une partie associée au lepton T et une partie hadronique 
que nous n’étudierons pas ici) : 

J A  (x) = J ~ ) ( x )  + J,$‘“)(x) (81) 
avec : 

JP)(x) = i e < x >  Y A ( ~  - 75) + u e ( x )  

J ip ’ (x )  = $ p ( x )  Y A ( 1  - 7 5 )  + v , , ( X ) .  

(82.a) 
et 

(82.b) 

Dans l’équation (82), les champs +be, + v , ,  + p  et +,,, sont les champs de 
Dirac associés aux quatre types de particules. Le lagrangien (80) décrit 
par exemple la désintégration du muon (exercice 7) : 

ou les diffusions élastiques v,- e - ,  ve- e -  (exercice 8). 

fermions ont une dimension 3/2). Elle vaut : 
La constante de Fermi GF a pour dimension - 2 (les champs de 

GF 1.16 x (GeV)-’ 
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Comme il n’y a pas de symétrie particulière susceptible de réduire le 
degré de divergence, la théorie de Fermi est non renormalisable. 

Enfin le facteur (1 - y 5 )  dans (82) conduit à une violation maximale 
de la parité : si les neutrinos ont une masse nulle, ils ont toujours une 
hélicité - 1 (= polarisation circulaire gauche), tandis que les antineutri- 
nos ont toujours une hélicité + 1 (= polarisation circulaire droite). I1 
est commode d’introduire les projecteurs sur les états d’hélicité & 1 
(dans le cas de la masse nulle, la chiralité = valeur propre de 
y 5 ,  coïncide avec l’hélicité) : 

(83) 
1 1 

2 P L  = 2 (1 - 75) ; PR = - (1 + y 5 ) .  

Enfin on peut (pour le moment de façon purement formelle) mettre le 
neutrino et l’électron gauches dans un doublet (représentation de 
dimension2) d’un groupe SU(2), appelé SU(2),., et procéder de la 
même façon pour le muon et son neutrino : 

Le courant J P )  par exemple s’écrira 

avec 

Cette écriture suggère une symétrie interne décrite par un groupe 
SU(2), et appelée isospin faible (à ne pas confondre avec l’isospin des 
interactions fortes). Cependant il n’y a pas encore véritablement de 
symétrie, car le courant neutre faible ne correspond pas à la matrice 
T~ : il ne suffit pas de remplacer T- dans (85) par T~ pour avoir 
l’expression de ce courant neutre. 

D’autre part on cherche à remplacer la théorie de Fermi, qui possède 
le défaut majeur de ne pas être renormalisable, par une théorie où 
l’interaction faible est transportée par un boson vectoriel massif chargé 
noté W (figure 5) : 

Figure 5. La diffusion v, - e -  (a) dans la théorie de Fermi, 
(b) dans une théorie avec échange de boson vectoriel massif W .  
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Si l’on souhaite disposer d’une théorie renormalisable, il est néces- 
saire que ces bosons soient les particules de jauge d’une théorie de 
jauge non abélienne, rendues massives grâce au phénomène de Higgs. 
On ne peut pas prendre comme groupe de jauge SU(2) , ,  pour les 
raisons expliquées ci-dessus. I1 est donc naturel d’introduire dans le 
problème un autre courant neutre, celui de l’électromagnétisme, ce qui 
mène à l’unification des interactions électromagnétiques et faibles. A 
l’époque où le modèle a été élaboré, on ne connaissait pas grand chose 
des courants neutres et deux possibilités étaient ouvertes : 

(i) identifier le courant neutre avec le courant électomagnétique et se 
contenter de trois bosons de jauge : deux bosons massifs W+ et 
W -  transportant l’interaction faible et un photon ( y ) .  Ceci est possible 
au prix de leptons supplémentaires. Dans ce modèle, dû à Georgi et 
Glashow, il n’y a pas de courant neutre faible. 

(ii) Introduire deux courants neutres, l’un électromagnétique, l’autre 
faible. Il faut donc quatre bosons de jauge, W’, Zo et y et quatre 
générateurs infinitésimaux pour le groupe ~ de jauge : c’est le modèle 
GSW. 

Le modèle de Georgi-Glashow est mathématiquement plus élégant 
que celui de GSW, car il repose sur un groupe de Lie simple 
(SO (3 ) ) ,  ce qui a l’avantage d’expliquer la quantification de la charge 
électrique. Cependant ce n’est pas lui qui a été choisi par la nature. 

C.3. Modèle de Glashow-Salam-Weinberg (GSW) 

Donnons maintenant quelques détails techniques sur le modèle 
GSW, qui est à l’heure actuelle très largement confirmé par les données 
expérimentales. Le groupe de jauge G est le produit d’un groupe 
S ü ( 2 )  par un groupe U(1), ce qui donne bien quatre générateurs : 

G = SU(2)L  x U(1 ) y .  

L’indice L désigne l’isospin faible des leptons gauches, et l’indice Y 
l’hypercharge faible, définie ci-dessous. I1 est nécessaire de se donner 
deux constantes de couplage, g pour S U ( 2 ) L  et g’ pour U ( l ) y .  

Les représentations de S U ( 2 ) ,  sont étiquetées par l’isospin faible I, 
qui peut prendre les valeurs O,  1/2, 1, 3/2, ... (en pratique seules les 
3 premières valeurs interviennent). Les éléments d’une représentation 
sont étiquetés par la composante 3 de l’isospin : I, = - I, - Z + 1, . . . , 
I. Le couplage d’une particule au boson de jauge de U ( l ) ,  est 
g’ Y / 2 ,  où le facteur 1/2 est conventionnel. Comme le groupe est 
abélien, la valeur de Y est arbitraire, et doit être déterminée a poste- 
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riori. Les leptons gauches sont rangés dans des doublets (représenta- 
tions d’isospin Z = 1/2) de SU(2)L  : 

(86) 

et leur hypercharge vaut YL ; le neutrino correspond à Z3 = 1i2, 
l’électron (ou le muon) à Z, = - 1/2. Les leptons droits qui ne 
participent pas aux interactions faibles décrites par des courants chargés 
sont rangés dans des singlets ( I  = O )  de S U ( 2 ) L  et on leur attribue une 
hypercharge YR. On notera X R ( e )  = e E ,  x R ( p )  = pa. 

Les champs de jauge de SU(2), seront notés W: (a  = 1, 2, 
3) et celui de U(l)y, B p .  Au départ tous ces champs ont une masse 
nulle. 11 en est de même pour les leptons, puisque l’électron et le 
neutrino doivent avoir la même masse en l’absence de brisure de 
symétrie. Nous allons commencer par ce cas, en renvoyant à une étape 
ultérieure l’étude de cette brisure. 

Ecrivons le lagrangien Lfl des fermions, obtenu à partir du lagrangien 
de Dirac à l’aide du couplage minimal (38) ; dans le cas du groupe 
S U ( 2 ) ,  il est commode d’utiliser une notation vectorielle : W[ peut être 
considéré comme la composante a d’un vecteur d’un espace à trois 
dimensions, car il se transforme suivant la représentation de dimen- 
sion 3 de SU(2) : 

<;pl = XRiy p ( a p + i g f y R B p )  X R S  

i 
2 2 + X L  iy ( a, + 1 g f  Y ,  B ,  + - g? . I?’) x L  . (87) 

Ecrivons le couplage des fermions aux champs de jauge neutres 
B p  et W f ,  en omettant les facteurs multiplicatifs sans importance pour 
l’argument qui va suivre : 

9’ Y R  j,” B” + 9‘ Y ,  j b  B p  + g j t  7, W f  

où j,” et j b  sont proportionnels à (1 - y s )  et (1 + y s )  respectivement. 
Ceci donne pour les neutrinos ( Y ,  = O, Z3 = + 112) et pour les 
électrons ( I 3  = - 3/2) : 

v : g’  Y ,  jfL B p  + gj,” Wf 
e : g ’ [ Y R j :  + Y L I p . 1  ‘ L  B p - g j b  WjL. 

(88.a) 
(88.b) 

Nous allons maintenant effectuer une transformation canonique sur 
les champs B p  et WjL, en introduisant deux champs A et Zp, tels que 
A p  ne soit pas couplé au neutrino et soit couplé aux électrons avec 
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conservation de la parité : autrement dit A” a toutes les propriétés du 
champ électromagnétique. Soit donc : 

B” = - sin 8 Z p  + cos @A” 
Wc =cos@Zp+ss inûAp .  

(89.a) 
(89.b) 

L‘angle 8 est appelé angle de Weinberg ; il est souvent noté 
ûw. Reportant (89) dans (88) on obtient pour le couplage du champ 
A” : 

v : [g’ Y,  j,” cos 8 + gj,” sin @ ] A p  
e : [g‘ YR j,” cos e + (9’ Y ,  cos 8 - g sin 8 ) j , ” ]  A” . 

Afin que A” ait les propriétés du champ électromagnétique nous 
devons exiger que la charge du neutrino soit nulle : 

g‘ Y ,  cos 8 + g sin û = O 

et que le couplage du photon soit proportionnel à y” ,  c’est-à-dire à 
j,” + j,” : 

g’  Y,  cos 8 = g’  Y ,  cos 8 - g sin û . 

Ces deux équations donnent pour YL et YR : 

Y L  = - 7 9 tge ; Y R  = 2 Y,.  
9 

On peut toujours choisir la normalisation de g ’  de telle sorte que 
Y ,  = - 1 (et donc Y,  = - 2) ; g et g‘ sont alors reliés par : 

g ’ = g t g û  . 

Pour relier g à la charge électrique e, écrivons le couplage des électrons 
en rétablissant les facteurs multiplicatifs : 

1 -  e,  Y p  eL = 5 $(e) Y p ( 1 -  Y s )  + ( e )  

+ < e > { - i g ’  y , ( 1 + Y s ) c o s 8 - - ( g ’ c o s 8 + g s i n e )  1 y p x  
4 

x ( 1 - Y s ) } + ( e ) = - g s i n 8 ~ ( e ) y p + ( e ) A I ”  

d’où l’identification : 
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I1 est facile de terminer le calcul pour déterminer le couplage des 
électrons et des neutrinos au boson 2’” (exercice 9). On trouve par 
exemple dans le cas des électrons : 

avec : 
1 1 

Cv = - - 4 + sin2 0 ; c A  = - 4 .  

(92.a) 

(92.b) 

Notre théorie des interactions faibles présente pour le moment un 
défaut majeur : on sait que ces interactions sont à très courte portée et 
doivent donc être transmises par des bosons vectoriels massifs. I1 est 
nécessaire de trouver un mécanisme qui donne une masse aux bosons 
W’ et Zo, tout en préservant la masse nulle du photon. Le lecteur ne 
sera pas surpris que l’on fasse maintenant appel au mécanisme de Higgs 
pour fabriquer ces masses. Compte-tenu du théorème de l’exercice 
(6.b), il est nécessaire qu’aucun générateur de SU(2)L ne laisse le vide 
invariant si l’on veut que les bosons W” et 2, deviennent massifs. Au 
contraire la combinaison linéaire : 

A @  = sin 8 Wf + cos OB@ 

doit conserver une masse nulle ; comme cette combinaison linéaire est 
couplée à la charge électrique Q, il est nécessaire que Q laisse le vide 
invariant. Remarquons que les valeurs trouvées précédemment pour 
Y L  et YR permettent d’écrire : 

(93) 
1 
2 

Q = Z , + - Y  

et la solution la plus économique consiste à introduire deux doublets 
( h + ,  ho)  et (ho, h - )  de particules de Higgs, décrits par des champs 
complexes rp, : (h+,  h - )  et q o :  (ho, f f )  (en tout quatre degrés de 
liberté) : 

L‘opérateur Q est représenté par une matrice 

1 0  
Q = e ( o  O )  

pour le doublet (h+ , ho). Si l’on choisit de briser la symétrie en donnant 
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à cpo une valeur moyenne sur le vide non nulle, en écrivant : 

1 0  
= (;O) ; ( c p )  =J2 (J (94) 

on obtient un état fondamental qui n’est invariant, ni par SU(2) , ,  ni par 
U(l)y, mais qui est bien invariant dans une transformation de jauge 
correspondant à la charge électrique : Q est une combinaison linéaire 
convenable de générateurs infinitésimaux de SU(2) ,  et de 17(1)~. 
Ecrivons explicitement le couplage des bosons de Higgs aux champs de 
jauge, en utilisant la prescription du couplage minimal : 

2’$= [ ( a , c 2 g ’ B , + i g ? .  i k,) c p ]  t x 2 

Suivant la méthode exposée au paragraphe C. l ,  on introduit, au lieu 
des champs cp et cp ’, trois champs ti, e2,  c3 et un champ q : 

/ O \  

et on effectue la transformation de jauge de S U ( 2 ) L  : 

B L = B .  IL , w; = U ( 5 )  w, U - l ( t )  + (a ,u) (U- l ) .  
gu 

Cette transformation a pour effet de transformer les champs 
t2, e3, qui seraient des bosons de Goldstone en l’absence de particules 
de jauge, en composantes longitudinales de bosons vectoriels. I1 reste 
un champ scalaire : le boson de Higgs. Dans cette opération, qui suit 
exactement le même schéma que celui décrit dans le cas abélien au 
paragraphe C.1, le lagrangien des scalaires devient : 

où x- est l’élément (O, 1) du doublet de Calculons le terme 
quadratique en W et B ,  qui va donner l’information sur les masses, en 
exprimant g’  à l’aide de (90) : 

LfS 4 u2[g2(Ws + W,”) + g2(W,’ + tg2 ûB2 - 2 tg ûW, B ) ]  . (97) 
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Cette expression montre que les bosons Wl et W2, ou les combinai- 
sons chargées : 

1 
2 

ont une masse mw = - gu. Pour obtenir la masse des bosons neutres, il 

faut diagonaliser la deuxième parenthèse de (97) grâce à la transforma- 
tion (89), ce qui donne en fin de compte pour la partie quadratique de 
LYS : 

Comme promis le champ A” reste de masse nulle. On identifie la 
masse du boson Z, : 

En résumé le mécanisme de Higgs a transféré trois degrés de liberté 
des champs de Higgs à des composantes longitudinales de trois bosons 
de jauge massifs ; les masses sont données en fonction de la valeur 
moyenne sur le vide u du champ de Higgs et de l’angle de Weinberg 0 : 

1 mw 1 I m w = 2 g u ;  mz=- -  - - u ( g 2  + g’2)1’2 1 . (99) 
COS e 2 

Le lagrangien total comprend encore un terme d’interaction des 
champs de Higgs entre eux et des champs de Higgs avec les fermions : 

p i n t  = P <p <p - (CP <p >2 - gi IXR(<p+ x L )  + h*c* I . (100) 

Les deux premiers termes de LYint donnent une masse Js p à la 
particule de Higgs neutre qui survit à la brisure de symétrie. Le 
troisième donne une masse aux électrons et aux muons (1 = e ou 
P )  : 

En résumé, le lagrangien complet du modèle GSW s’écrit (cf. (87)), 
(95) et (100) : 

1 -  - 1  
4 9 = - - F,, . FF” - - 4 f p v  f ” ”  + 2 1  + 9 s  + 2 i n t  (102) 
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2 m& 
; m z = -  cos2 0 

2 e2  m, = 
4 J2 G~ sin2 0 

-i 

où F , ,  est le tenseur associé au champ de jauge fi+ et f,, celui associé 
au champ de jauge (abélien) B,. 
A la limite où les énergies en jeu sont faibles par rapport à la masse du 
W ,  on retrouve la théorie de Fermi, par exemple pour la désintégration 
du muon (figure 6) : 

(104) . 

e 

Figure 6 .  Désintégration du muon dans GSW (a) 
et dans la théorie de Fermi (b). 

Ceci permet de faire l'identification : 

Cette relation permet de calculer la valeur moyenne sur le vide 
V :  

v = 246 GeV 

tandis que (99) donne la masse des bosons W et 2 en fonction de l'angle 
de Weinberg, GF et e : 

Expérimentalement mw = 82 +I 2 GeV et mZ = 93 -+ 2 GeV 
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Le test principal du modèle GSW consiste à vérifier l’identité des 
valeurs de sin 8 mesurées dans différentes expériences. Pour résumer la 
situation, on peut dire que sin 8 apparaît dans trois types de données : 

n-a - - e’ sin2 8 = 

sin2 6 = 1 - m$/mi 
4 GF Wl$ & GF m$ 

(il 

(ii) 

(iii) sin2 8 est déterminé par le couplage des courants neutres dans 
les diffusions vN, eD,  etc ... Ces quantités sont en général différentes 
dans tout modèle non minimal (c’est-à-dire comprenant plus de bosons 
de jauge, ou de bosons de Higgs, etc.). Cependant, avant de tester 
l’identité de ces trois types de détermination, on doit tenir compte des 
corrections radiatives (3) .  I1 est nécessaire de se fixer un schéma de 
renormalisation, et le plus populaire consiste à utiliser (ii) comme 
définition de sin2 8. Dans ce cas les corrections radiatives seront 
présentes pour les déterminations (i) et (iii). La valeur acceptée en 1986 
pour les déterminations du type (iii) (corrections radiatives incluses) 
est : 

sin2 8 0.23 I 0.01 

ce qui est en bon accord avec la valeur déduite de la définition (ii) : 

sin2 û = 0.21 2 0.02 . 

En ce qui concerne (i), on peut écrire les corrections radiatives sous la 
forme : 

où E ne contient pas de grands logarithmes, du type In (mw/m,). La 
correction la plus importante vient du passage de a (a-’  137) à 
a (mw)(a  -‘(mw) = 128)’ car ce passage fait précisément intervenir 
des grands logarithmes ; cette discussion montre que les constantes de 
couplage variables avec l’échelle de masse ne sont pas une vue de 
l’esprit. La détermination (i) de sin2 8 donne 0.22 k 0.02. En résumé 
l’accord est très bon entre le modèle GSW et l’expérience. Des tests 
plus décisifs pourront être effectués quand on disposera de mesures très 
précises de la masse des bosons W et Z .  

Le modèle GSW a donc permis de prédire avec succès deux 
phénomènes qui n’avaient a priori rien d’évident : 

(i) l’existence de courants neutres, 
(ii) l’existence de deux bosons massifs dont la masse était supérieure 

par deux ordres de grandeur à celles des particules connues en 1970. 
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I1 faut y rajouter la prédiction du quark charmé, dont je n’ai pas pu 

Malgré ces succès, il faut reconnaître les points faibles de ce modèle : 

0 le << secteur de Higgs >> est très peu contraint ; en particulier la 
masse du boson de Higgs qui survit à la brisure de symétrie et les masses 
des leptons sont tout à fait arbitraires (gi dans (101) est arbitraire) ; 

O le modèle n’est pas asymptotiquement libre, en raison du groupe 
de jauge U(i) ,  et du couplage en <p4 des bosons de Higgs ; 

0 le groupe de jauge est un produit direct, ce qui introduit deux 
constantes de couplage ; d’autre part le groupe U(1), est abélien, et la 
quantification de la charge électrique n’est pas expliquée. 

parler, ayant laissé de côté le cas des hadrons. 

D. CHROMODYNAMIQUE QUANTIQUE 

La << théorie présumée des interactions fortes >> est la chromodynami- 
que quantique (QCD) .  Cette théorie repose sur une symmétrie interne 
appelée - de façon tout à fait arbitraire - symétrie de couleur. Le 
groupe de symmétrie est S U ( 3 )  et les constituants élémentaires des 
hadrons, à savoir les quarks et antiquarks, sont rangés respectivement 
dans les représentations fondamentales 3 et 3 de S U ( 3 ) .  Rappelons 
qu’un groupe S U ( N  ) a deux représentations inéquivalentes de dimen- 
sion N ,  les représentations fondamentales N et N .  Cependant dans le 
cas N = 2, ces deux représentations sont équivalentes. Les vecteurs de 
base de ces représentations sont, dans le cas de S U ( 3 ) ,  étiquetés par la 
couleur, par exemple : 

En plus de la couleur, les quarks se différencient par leur saveur 
(flavour) : comme on l’a vu au chapitre précédent, on connaît cinq 
types de quarks : up (u ) ,  down (d ) ,  strange (s), charmed ( c ) ,  beauty 
( b ) ,  et il en existe vraisemblablement un sixième, le quark top 
( t ) .  I1 ne faut pas confondre la symétrie S U ( 3 )  de couleur avec la 
symétrie S U ( 3 )  de saveur découverte par Gell-Mann et Neeman : celle- 
ci est une symétrie des saveurs (u ,  d,  s), et commute avec la symétrie de 
couleur : chaque saveur existe en trois couleurs. La symétrie de saveur 
est approchée (par exemple les quarks u,  d ,  s ont des masses 
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différentes) alors que la symétrie de couleur est exacte. De plus, et c’est 
là le plus important, la symétrie de couleur est aussi une symétrie locale, 
et elle est à la base d’une théorie de jauge non abélienne qui est 
précisément la chromodynamique quantique. Comme SU(3 ) a 
8 (= 32 - 1) générateurs, il y aura huit bosons de jauge appelés gluons. 

En résumé, les interactions fortes sont décrites par une théorie de 
jauge non abélienne dont le groupe de jauge est S U ( 3 )  ; les particules 
de matière (spin 1/2) sont les quarks et antiquarks, appartenant aux 
représentations 3 et 3 de S U ( 3 ) .  Les particules de jauge (spin 1) sont les 
gluons, appartenant à la représentation de dimension 8 de S U ( 3 ) .  Les 
hadrons observés dans la nature sont de deux types : les fermions, aussi 
appelés baryons (proton, neutron, . . .) et les bosons, qui sont les mésons 
(méson-.rr, méson-K, ...). Les baryons sont formés de trois quarks dont 
la fonction d’onde est un singlet de S U ( 3 ) ,  et les mésons sont formés 
d’une paire quark-antiquark dont la fonction d’onde appartient égale- 
ment à la représentation de dimension 1 de S U ( 3 )  : les hadrons sont des 
singlets de couleur. L‘hypothèse selon laquelle on ne peut observer que 
des singlets de couleur est appelée hypothèse de confinement. 

Si l’hypothèse de confinement est correcte, on remarque que la 
condition asymptotique (X.7) ne peut pas être valable pour les champs 
de quarks rC, et 6, puisqu’il n’existe pas de quarks libres. On suppose 
que l’origine de cette propriété réside dans les divergences infrarouges 
très sévères de la chromodynamique. Seules des combinaisons qui sont 
des singlets de couleur comme tji t,bi ou &i;k r ~ , ~  t,b; r ~ , ~  peuvent correspon- 
dre à des états asymptotiques. 

D.l. Liberté asymptotique 

La propriété la plus importante de Q C D  est la liberté asymptotique 
(qui est une propriété des théories de jauge non abéliennes). C’est cette 
propriété qui permet de calculer perturbativement certaines réactions à 
haute énergie, comme l’annihilation e+ e -  que nous verrons au 
paragraphe D .2. Pour démontrer la propriété de liberté asymptotique, 
nous devons obtenir la relation entre la constante de couplage nue 
go et la constante de couplage renormalisée g : 

Compte tenu des identités de Ward (69), il y a plusieurs façons de 
mener ce calcul ; la plus simple est probablement d’utiliser le couplage 
gluon-quark (cf. equation (68)) : 
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Afin d’éviter les rotations de Wick et d’autres sources de facteurs i, 
j’utiliserai la théorie euclidienne, ce qui sera également une préparation au 
paragraphe E. Le lagrangien 5fE de la théorie euclidienne s’obtient à l’aide des 
substitutions (A désigne un vecteur de l’espace euclidien à D dimensions, 
p = 1, ... > D )  : 

A,B’ + - A .  B = - A ,  B ,  ; a,A’ + V * A = apAp 
~ , A * + - Y . A  = - Y , A , ;  y , a , + ~ . v  =~,a , ,  

et en changeant le signe du résultat. Par exemple pour un champ scalaire 

1 1 3 = -  (û ,cp)(a’<p)--rn2<p2 2 2 

Les matrices y ,  obéissent aux relations d’anticommutation : 

et il faut se rappeler que V + ip (au lieu de 3’’ + - ip”) pour un moment 
entrant dans un vertex. Les règles de Feynman se déduisent des remarques ci- 
dessus (en omettant la notation vectorielle : k -+ k )  : 

(1  07.a) 

(107.b) 

Les vertex (62.a, c, d) doivent être multipliés par (i) et (62.b) par (- i) ,  sans 
oublier la substitution g,,” + - ô,,”. 

Nous allons évaluer les constantes de renormalisation à l’ordre d’une boucle 
en commençant par Z ,  ; les contributions à l’énergie propre d’un gluon 
proviennent d’une boucle de gluons, d’une boucle de F-P et d’une boucle de 
quarks. Le calcul sera fait dans la jauge de Feynman (a = 1) et en utilisant la 
régularisation dimensionnelle, où l’on peut ignorer les tadpoles (cf. V-E.l) ; on 
omettra un facteur multiplicatif p ‘, qui ne joue aucun rôle dans le calcul qui va 
suivre. Les facteurs de groupe dépendront de C, et C A  (cf. 66). Pour le groupe 
S U ( 3 )  il suffira de faire la substitution : 

C,  = 413 ; C A  = 3 ,  
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Commençons par la boucle de gluons (figure7) 

r = -  ( q + k )  
c- 

v , b  

Figure 7. Contribution des gluons à l’énergie propre du gluon. 

L‘expression du graphe de la figure7 est : 

où 112 est le facteur de symétrie, C A  le facteur de groupe (cf. equation (66.a)) et 
NA, est donné par:  

NA, = k 2 +  2 q  - k + 2 q 2 )  + 2q,4 q, (2  D - 3 )  + 
+ k~ k p ( D - 6 )  + (qn k ,  + k~ q p ) ( 2 D  - 3 ) .  

Après avoir utilisé l’identité de Feynman pour combiner les dénominateurs, on 
effectue le changement de variables q = q’ - xk en conservant seulement les 
termes pairs en q,  et on intègre sur q à l’aide des identités de l’appendice B ,  
avec pour résultat : 

x [ ( 6 D - 5 ) k 2 Ô A p  - ( 7 D - 6 ) k A k W ] .  (109) 

Le calcul de la boucle de F-P est plus simple (figure 8) : 

C 

Figure 8. Contribution de la boucle de F-P 
à l’énergie propre du gluon. 
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La somme des deux contributions (109) et (110) est transverse (on vérifie ainsi 
une identité de Ward : cf. exercice 5.c) : 

X 
g2 C A  6 , d  r(2- 0 1 2 )  ( ’ 4- ’) 

(4 , ) D / 2 ( k 2 ) 2 - D / 2  2 ( 0  - 1) nA, ;ad = 

X (3 D - 2)[kz 6,, - k ,  k , ]  (111) 

et on en déduit le terme divergent : 

où, par analogie avec l’électrodynamique, on a introduit la constante de 
couplage forte (Y = g2/4 $,r. I1 n’est pas nécessaire de faire le calcul de la boucle 
de quarks, qui est identique à celui de la polarisation du vide en électrodynami- 
que, mis à part un facteur de groupe (66.c). Si nf est le nombre de saveurs, on 
obtient à partir de (X11.54) le résultat suivant pour Z3 dans le schéma 
MS : 

I1 faut ensuite calculer les graphes contribuant à Z ,  et à 2, (figure 9) : 

4 \ 
Figure 9. Graphes contribuant à 2, et Z I F .  

Les graphes (a) et (b) de la figure 9 sont, à part un facteur de groupe, 
identiques à ceux de l’électrodynamique. Ces facteurs sont respectivement : 

1 
2 (a) : C ,  (cf. 66.c) ; (b) : C , - - C A  (exercice 4.a) . 
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Les facteurs C ,  de (a) et (b) se compensent dans le calcul de Z et il reste une 
contribution effective : 

Reste le graphe (c), dont le calcul exact est assez long ; heureusement nous 
pouvons nous contenter de sa partie divergente. La contribution du graphe (c) 
contient en facteur (figure 10) : 

ig3 f a b c  ( i A c )  ( $ A b )  li 

1 
2 où - A a est un générateur infinitésimal de la représentation fondamentale. 

D’après l’exercice (4.b), ce facteur multiplicatif vaut : 

(115) 
5 8 ’ C A (  1 k A a )  . 

ji 

Ecrivons maintenant le numérateur dans le calcul 
‘0 

de la boucle (figure 10) : 

N, = [8,v(k - P  + 4 >p + 8 Y P @  +P’ - 2 4 1, + 
+ ôp,(q -P’ - k ) Y 1  Y p ( -  4) Y ” .  

Comme nous cherchons uniquement le terme diver- 
gent, il suffit de conserver le terme quadratique en q : Figure lo* 

du graphe c. 
N , + 2 q 2 Y r + 4 4 / * d  + 3 q 2 y p  

et après une intégration triviale sur q on obtient la partie divergente du 
graphe : 

ce qui donne une contribution Zl(a à Z I F  : 

Z , < % = l - k  a ( $ C A )  - .  2 

Rassemblant les résultats (113), (114) et (116) on déduit l’expression 
de Z en les reportant dans (105) (les quantités Z,, 2, et 2, dépendent 
de la jauge, c’est-à-dire de a ; cependant 2, du moins dans le schéma 
MS, est indépendant du paramètre de jauge : exercice 12) : 
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2 
a s  11 2 d a  

d p  271 P ( a s )  = p s= - - ( 7 N - ~ n f )  + O(ap) 

La fonction p (as) se lit immédiatement sur (117) ( C A  = N ,  TF = 1/2), 
en utilisant (VII-81) et a,” = 2’ a, : 

I 1 

. (118) 

Le terme en a: dans (118) est négatif si nf -= E, et dans ce cas la 

chromodynamique est asymptotiquement libre. 
Dans la littérature on se sert souvent de la constante tie couptage 

as(q2) ,  dépendant d’une masse q caractéristique du processus étudié : 
le choix de as(q2)  permet de faire de la théorie des perturbations 
améliorée par le groupe de renormalisation. Intégrons l’équation 
différentielle : 

2 . _  

2 -- - - 4 7Ipo a, 
das 

d In q 2  

avec 

- N - - n  16 3 f) 

(le choix de la normalisation de Bo est expliqué à l’équation (121)), sous 
la forme : 

où A est une constante d’intégration. Le résultat est : 

La constante de couplage décroît comme (Inq2)-’. I1 faut bien 
comprendre la signification physique de (120) : au lieu de se donner un 
point de renormalisation p 2  et une constante de couplage as(p2) ,  on 
fixe l’intensité du couplage par un paramètre dimensionné A, qui est 
une constante d’intégration de l’équation différentielle de renormalisa- 
tion : cette procédure a été appelée a transmutation dimensionnelle ». 
Elle ne se limite évidemment pas au premier ordre en a, ; écrivant : 

P ( 9 )  = - P o  g3 - P I  g5 + O b 7 )  (121) 
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où les coefficients P o  et /3 sont universels (cf. VII-A.5), et P l  est donné 
par (4) : 

on obtient, avec un choix convenable de la constante d’intégration 
(exercice 11) : 

1 

q2 4 1n 
%k2) = 

In ln2 q2 /A2  
x [I- 

P i l n  q 2 / A 2  ln2 q2 /A2  

Le paramètre A dépend du schéma de renormalisation. La valeur 
acceptée pour Am (cf. note page 263) était en 1986: 

50 MeV 5 Am s: 200 MeV. 

L‘importance du paramètre A est qu’il fixe l’échelle de masse de la 
théorie, indépendamment de la masse des quarks, c’est-à-dire même si 
la masse des quarks est nulle ou même si les quarks sont absents. Ceci 
sera revu sous un autre angle au paragraphe E.3. 

D.2. Annihilation e+ e- : cinématique 

Nous nous proposons maintenant de préciser le calcul du rapport R 
fait au chapitre XII, paragraphe B.3, en évaluant la correction d’ordre 
as à ce rapport et en discutant la validité de l’approche théorique. Au 
passage nous aurons l’occasion de découvrir des phénomènes intéres- 
sants comme les singularités infrarouges et colinéaires, et d’écrire une 
équation très importante, l’équation d’Altarelli-Parisi, dans un cas 
particulier. 

Supposons que nous observions dans l’annihilation e+ -e- en hadrons, 
un hadron de type particulier H (par exemple un méson T+), de 
moment p H  dans le référentiel du centre de masse e+-e-  ; l’énergie 
po de ce hadron sera comprise entre mH et q / 2 .  Négligeant la masse du 
hadron (mH < 4 / 2 ,  où q est la masse du photon virtuel), il est naturel 
d’introduire la variable zH comprise entre O et 1 : 
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On peut mesurer la section efficace du/dzH de production d’un 
hadron de moment zHq/2, et définir la fonction de JTagrnentution 
DH(ZH) par ’ 

où uT est la section efficace totale e+-e- + hadrons. 

réaction : 
Donnons d’abord une description cinématique du processus. La 

e+-e- + H(pH) + X 

est représentée sur la figure 11 ; X représente l’ensemble des particules 
non observées. 

Figure 11. La réaction e t  - e-  + H ( p H )  + X .  

Définissons le tenseur W;, à l’aide des éléments de matrice du 
courant électromagnétique j, (ie facteur (4 .r )- est conventionnel) : 

x (PH, XI i,(O)lO) (OIjv(0)lPH> X )  (126) 

où d@(X) est l’espace de phase. La section efficace d u  s’écrit en 
fonction de W;, et du tenseur leptonique I,,  : 

‘I W,, H = d@(X)(2 5 ~ ) ~  6(4)(q -PH -px) x 

I , ,  = 4 ( k ,  k:  + k ,  k k )  - 2 q2 g,,  

sous la forme : 

La conservation du courant j, permet d’écrire le tenseur Wp, en 
fonction de deux invariants de Lorentz Wf et W f ,  également appelés 
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fonctions de structure, qui dépendent uniquement de zH et de 
q2 : 

w p v = -  H ( 9 pv-QI)wli 4 p  4 v  

et l’on trouve : 

(129) 

où O H  est l’angle entre k et pH. Si l’on ne s’intéresse pas à la distribution 
angulaire, on peut intégrer sur cos 8, avec pour résultat : 

où l’on a défini W H  par : 

D.3. Equation d’ AltareIli-Parisi 

L’équation (131) termine l’étude cinématique, et nous passons 
maintenant à la dynamique. La chromodynamique quantique nous 
apprend que le processus fondamental est la production de quarks, 
d’antiquarks et de gluons, et que les hadrons ne se forment qu’ultérieu- 
rement, par le mécanisme - pour le moment imparfaitement connu - 
du confinement. Ignorant pour le moment le confinement, nous allons 
étudier la production d’un quark, en définissant pour ce quark les 
quantités z,  IVpv et W ,  analogues de zH, W z v  et WH. Le processus le 
plus simple (ordre (a,)’ en QCD) est la réaction e+-e- -+ q - q, 
étudiée au chapitre XII. Dans ce cas la fonction de fragmentation vaut 
6 (1 - z )  et la section efficace do/dz (cf. XII.31 ; e4 est la charge du 
quark en unités de la charge du proton) : 

soit (cf. (130) et (131)) : 

W =  S ( 1 - 2 ) .  (133) 
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La correction d’ordre QI, est donnée par le processus : 

e + + e - + q + q + - g  

où g représente un gluon. Les deux graphes contribuant à cette réaction 
sont dessinés sur la figure 12 qui définit aussi la cinématique : 

Figure 12. La réaction e’ - e-  + qqg à l’ordre a J .  

Comme nous supposons q s 1 GeV, nous pouvons négliger la masse 
des quarks. Dans ces conditions l’élément de matrice de la réaction 
y * ( q )  + q @ )  + q@’)  + g ( k )  s’écrit : 

= (- is)(- ie,) a@) 

où est la polarisation du gluon. Prenant le carré de l’élément de 
matrice, sommant sur les spins finaux et saturant avec g p ” ,  nous 
obtenons, après un calcul de traces de matrices y sans aucune difficulté 
(exercice 13) : 

où nous avons introduit les variables de Mandelstam s, t et u : 

S =  @ ‘ + l ~ ) ~ ;  t =  @ + P ’ ) ~ ;  U =  (136) 

tandis que C F  = 4/3 ( = ( N 2  - 1 )/2 N avec N = 3). Les variables z et 
z’ s’expriment en fonction de s, u et q 2 :  

(137) z=-- 2 P * q - l - - .  S z ‘ = - . - . . - -  2P‘  * 4 - 1 - -  U 

q2 q 2 ,  q2 4 

et permettent de récrire I A’ l 2  : 
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Arrêtons-nous un instant sur l’expression (138) ; supposons d’abord 
z # 1 : la quantité X ( z ,  z ‘ )  est singulière lorsque z’ -+ 1. Dans ce cas le 
gluon et le quark ont leurs moments parallèles et de même sens : on dit 
aussi qu’ils sont colinéaires (*). Pour traiter la singularité correspon- 
dante il est nécessaire, dans une étape intermédiaire, de se donner une 
régularisation. La méthode la plus correcte consiste à travailler dans un 
espace à 4 + E dimensions (exercice 14). Cependant, à l’ordre de la 
théorie des perturbations où nous travaillons, il est aussi possible de 
donner une masse A # O  au gluon sans violer la conservation du 
courant. Comme l’interprétation physique est plus claire, j’utiliserai 
cette << régularisation infrarouge ». Nous verrons dans un instant que les 
configurations colinéaires z # 1, z’ -+ 1 et z’  # 1, z -+ 1 donnent des 
contributions en In q 2 / A  2, singulières à la limite A -+ O : ce sont les 
singularités colinéaires, également appelées singularités de masse. La 
région z -+ 1, z’ -+ 1 correspond à l’émission d’un gluon de moment très 
faible, appelé pour cette raison gluon infiarouge ou gluon mou. Cette 
région donne une singularité infrarouge en ln2 ( q 2 / A  2 ) ,  caractéristique 
d’une théorie de jauge. En effet une théorie renormalisable ordinaire, 
comme la théorie en <p à six dimensions, ne donne que des singularités 
de masse. 

Evaluons maintenant de façon précise la quantité W = - 112 g a u  W’”’ ; 
d’après (126) nous devons intégrer sur les moments p ’  et k de l’antiquark et du 

gluon. Cette intégration se fait commodément 
dans le référentiel du centre de masse de ces 
deux particules : p’ + k = O (figure 13) : 

/I- 

6 4 ~ ’  ds J-i 

Un petit exercice de cinématique relativiste 
donne : 

q 2 - s .  Po = IIPII = - 2 4 s  ’ 
Figure 13. Cinématique dans s + q 2 .  

2JS ’ 40 = - 
le référentiel p’ + k = O. 

Au lieu d’intégrer sur cos 8 dans (139), nous allons intégrer sur la variable 

(*) On serait tenté d’attribuer la singularité au graphe (a) de la figure 12. Cependant la 
contribution de chaque graphe n’est pas invariante de jauge. II est facile de trouver des 
jauges (exercice 15) où le graphe (a) donne une contribution nulle. 



XIII.D.3 Chromodynamique quantique 595 

z’ reliée à COS 6 par:  

dz’ z I I  P’ II 

et : 

L‘équation (141) donne également les limites d’intégration en z’ : 

D’autre part nous devons corriger l’élément de matrice carré I A I dans (138) 
pour tenir compte de la masse A du gluon : 

A 2  1 1 X(z, z‘)  -+ X(z, z’) - 2 ___ 
q ( ( l - z ) 2 + 7 ï 7 )  (144) 

Enfin il est commode d’utiliser pour (1 - 2)-’ une définition du type valeur 

principale ; comme O =s z s 1 - A 2  

9 
nous écrivons : 

ou en termes de la distribution (1 - z);’ : 

1 - + ~ ( î - z ) i n ~ .  4’ 
1 - z  (1 -z )+  A 

On définit de même la distribution [in (1 - z ) / ( l  - z)], : 

1 2 4’ - - 6 (1 - z )  In -z. (147) 
in (1 - z )  

A 

Nous voyons émerger les termes singuliers In ( q 2 / A  ’) et In2 ( q 2 / A  ’) annoncés. 
Après cette préparation, nous sommes enfin en mesure d’intégrer sur 
z’ ; les termes qui tendent vers zéro à la limite A’+ O, par exemple 
(A ’ / q 2 )  In ( q 2 / A  ’) seront omis. 

1 rk (2” - 1) dz‘ 
= Z,(Z) + Z,(Z) . dz‘ X(Z, z’)  = - 1 + z 2  - dz’ +- 

1 - z  s, 1 - z ’  1 - Z S ,  1 - 2 ‘  
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Le résultat de l'intégration est : 

2 
Zl(Z) = - + z2 in 9 + (1 + z2) 

( l - Z ) +  A 

+ S ( i  - z )  in2 (q2/'h2) 

3 1  + - - - z - S ( l - z )  3 Z,(Z) = - 2(1-z),  2 2 

Le deuxième terme de (144) donne les contributions suivantes : 

- 1 - z .  1 A 2  + - S ( 1 -  z )  ; 
q2(1 - z )2  2 q y 1  - z')2 

h 2  

Rassemblant tous ces résultats on obtient pour W : 

1 + - ( l + z ) + S ( l - z )  
3 - 

2(1 - z ) +  2 

Cette expression exhibe, comme prévu, des singularités infrarouges et colinéai- 
res. Cependant notre calcul de W n'est pas complet. En  effet, nous devons 

ajouter. le graphe correspondant à une 
correction radiative au vertex photon- 
quark (figure 14) qui est du même ordre 
en as ; cette contribution est appelée 
<< virtuelle N (le gluon dans la figure 14 

La contribution à W du graphe de la 

étant Virtuel), par OppOSitiOn à la contribu- 
tion (148) qui est appelée << réelle ». 

figure 14 s'obtient simplement en multipliant celle du graphe d'ordre (a,)' (cf. 
(133)) par 2 Re F l ( q 2 ) ,  où F l ( q 2 )  est le facteur de forme évalué au chapitre XII 
(équation (81.a)). Cette expression permet de montrer que la contribution du 
graphe de la figure 14 à West donnée par (exercice XII.7 ; il ne faut pas oublier 
le prolongement analytique q2 -= O + q 2  > O) : 

4 Y _ _ _ _ - -  

Figure 14. Echange d'un gluon 
virtuel dans y * ~ qq, 

La renormalisation étant faite sur couche de masse, il n'y a pas de corrections 
dues aux lignes externes. 
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Additionnant (133), (148) et (149), nous obtenons da/dz sous la 
forme : 

où P,,(z) est la fonction d’Altarelli-Parisi : 

1 + z 2  3 
P,&) = (1 - z ) +  + - 2 S ( 1 -  z )  = ( K2)+ 

L‘addition des graphes réels et virtuels a fait disparaître les singulari- 
tés infrarouges. Le mécanisme de cette compensation est connu sous le 
nom de << mécanisme de Bloch-Nordsieck ». I1 reste dans (150) unique- 
ment les singularités de masse, qui sont proportionnelles à la fonction 
P,, ( z  ). Essayons maintenant d’interpréter cette équation ; évidemment 
une interprétation directe comme section efficace n’est pas possible, car 
le résultat dépend de la masse A du gluon, qui est seulement un 
intermédiaire de calcul. De plus le résultat dépend de la régularisation 
infrarouge utilisée. Cependant, nous pouvons tirer de (150) l’équation 
suivante pour la fonction de fragmentation D ( z ,  q2), valable à l’ordre 
a,, et qui ne dépend plus de h : 

(dans le membre de droite de (152), D(x ,  q 2 )  = 6 (1  - x )  est calculé à 
l’ordre (a,)’). Cette équation suggère l’équation d’évolution suivante 
pour la fonction D,(zH, q2) ,  ou équation d’AZturelli-Purisi : 

où 

Il est effectivement possible de prouver une telle équation d’évolution, 
mais sa démonstration sort du cadre de ce livre. 
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D.4. Correction d’ordre (Y, au rapport R 

Après ce long détour, qui nous a cependant fait voir nombre de 
propriétés intéressantes, revenons à notre objectif initial qui était le 
calcul du rapport R. Notons que l’intégrale sur z de da/dz est 
simplement la section efficace totale uT, car un seul quark est produit 
dans l’état final. En utilisant les identités 

r r 2  5 In z = - - + - 
JO1 dz g2 3 4  

on obtient à partir de (150) : 

soit pour le rapport R : 

Comme la seule échelle de masse dans le problème est q ,  nous avons 
utilisé la constante de couplage a,(q2). I1 y a trois remarques 
importantes à faire : 

(i) aux énergies les plus élevées accessibles aujourd’hui, 
a,(q2)/r  s 0.1 : le ‘calcul perturbatif est donc justifié, quoique sa 
précision reste très inférieure à celle de l’électrodynamique, où 

(ii) l’intégration sur tous les états finaux dans (155) a fait disparaître 
toutes les singularités, infrarouges et colinéaires. Nous venons de 
vérifier sur cet exemple un théorème dû à Kinoshita, Lee et Nauenberg 
(théorème KLN) ( 5 ) .  

(iii) On peut montrer que le confinement ne modifie pas le résultat 
(156) quand q2+ 00. En effet le temps de formation de l’état final 
quark-gluon est de l’ordre de l/q, alors que le temps de confinement 
doit être de l’ordre de 1 (GeV)-l, compte tenu des échelles d’énergie 
caractéristiques des deux processus. On peut imaginer une expérience 
théorique effectuée à un temps t tel que 4-l  Q t -4 1 (GeV)-l. Cette 

- 10-3. 
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expérience mesurerait la section efficace (156). Une fois cette section 
efficace construite, le confinement ne peut plus la modifier. 

Ce paragraphe D ne donne qu’un aperçu très limité du vaste champ 
d’applications de la chromodynamique perturbative : annihilation 
e+ -e- , mais aussi diffusion profondément inélastique d’électrons, 
production de paires de leptons, production de bosons W et 2, de jets, 
diffusion à grand moment transverse, etc. Le lecteur intéressé est 
renvoyé à la littérature citée dans les références. 

E. THÉORIES DE JAUGE SUR RÉSEAU 

La chromodynamique quantique perturbative ignore le problème du 
confinement ; les prédictions ne sont possibles que pour certains 
processus de haute énergie : plus exactement il est nécessaire d’avoir 
dans la réaction considérée un transfert de moment q tel que 
q2 s A2, où A est le paramètre caractérisant la constante de couplage de 
QCD, a, (q2)  (cf. équation (120)). Ce paramètre A est de l’ordre de 
O. 1 GeV et sa valeur correspond bien à une échelle d’énergie caractéris- 
tique du confinement. La chromodynamique perturbative ne permet 
pas de calculer les quantités physiques reliées au confinement : fonction 
de fragmentation D, (z,, 40) (condition initiale dans l’équation d’évolu- 
tion (153)), masses des hadrons, sections efficaces totales hadroniques, 
etc. Toutes ces quantités doivent être calculées avec des techniques non 
perturbatives, c’est-à-dire à l’heure actuelle avec des techniques numéri- 
ques. 

L‘idée la plus fructueuse consiste à c< mettre la théorie sur réseau », 
c’est-à-dire à écrire une action (appelée hamiltonien dans la première 
partie : cf. X-B.3) qui, à la limite où le pas du réseau a + O, redonne 
l’action (48) de la théorie continue. Afin de nous ramener à un 
problème de mécanique, statistique classique, nous partirons de l’action 
euclidienne à quatre dimensions, et nous calculerons des énergies 
libres, des fonctions de corrélation, etc. Ainsi, avec ce dernier 
paragraphe, nous avons << bouclé la boucle >> : partis de la mécanique 
statistique classique , nous l’avons abandonnée pour une longue excur- 
sion en théorie quantique des champs, et nous y revenons avec les 
théories de jauge sur réseau. 

Avant de passer à des exemples, une remarque préliminaire 
s’impose : dans la théorie sur réseau, le seul paramètre dimensionné est 
a ; si nous souhaitons calculer par exemple une masse m, celle-ci sera 
proportionnelle à a- : m = ( (a ) -  ’, où ( est la longueur de corrélation 
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en unités du pas du réseau. Comme m doit rester finie à la limite 
a + O, il est nécessaire que 6 -+ 03, c’est-à-dire que l’on se trouve à un 
point critique de la théorie considérée. Ainsi que nous l’avons déjà vu 
(chapitres VI et VII), la construction d’une théorie renormalisée 
implique l’existence d’un point critique. Dans le cas de la chromodyna- 
mique, un point critique (on espère que c’est le seul) se trouve à 
go = O, étant donné que go = O est un point fixe : la limite continue sera 
telle que go(a)  -+ O. Notez que la constante de couplage est ici la 
constante de couplage nue : en effet le réseau sert à régulariser la 
théorie, et go est la constante de couplage de la théorie régularisée. 

E.l. Modèle de Wegner 

Afin d’introduire les théories de jauge sur réseau dans un cas 
élémentaire, nous décrirons d’abord le modèle de Wegner à deux 
dimensions. Considérons un réseau carré à deux dimensions comportant 
N sites ( N  9 l), où des spins d’king Si = rr 1 sont placées sur les Ziens 
(et non aux nœuds) du réseau (figure 15) : 

Figure 15. Le modèle de Wegner ii deux dimensions. 

Le hamiltonien (ou action) est donné par la somme de produits de 
quatre spins le long d’un carré, ou 
plaquette ( P )  (figure 16), 

8 S d P  ) 

la sommation portant sur les N pla- 
quettes. La fonction de partition 2 

SI ( P  ) vaut : 

Figure 16. Une plaquette Z = e - P H .  (158) 
[Si1 
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Soit G ( x )  la transformation qui renverse tous les spins situés sur les 
liens partant du point x (qui est un nœud du réseau (figure 17)) et 

Figure 17. La transformation de jauge locale C(x).  

laisse inchangés les autres spins. Cette transformation laisse invariant le 
hamiltonien (157), et elle peut être interprétée comme une transforma- 
tion de jauge locale : à chaque point x est associé un référentiel 
permettant de définir l’orientation des quatre spins sur les liens partant 
de x. L’invariance de H montre que l’orientation relative de deux 
référentiels (x) et (x‘) est arbitraire. Le groupe de jauge, qui est le 
groupe dont les éléments permettent de relier deux référentiels au 
même point x entre eux est ici le groupe à deux éléments { + 1, - 1 } , 
appelé groupe Z,. 

Le modèle de Wegner se généralise à une dimension D quelconque, 
et il possède une transition de phase pour D a 3. On peut se poser la 
question du paramètre d’ordre : est-il possible que dans une phase 
basse température ( S i )  soit différent de zéro ? Il est facile de voir qu’il 
n’en est rien : en effet, plaçant le système de spins dans un champ 
magnétique infinitésimal B ,  on constate que les hamiltoniens de deux 
configurations de spins reliées par une transformation de jauge locale 
G (x ) diffèrent d’une quantité infinitésimale (exercice 16). Au contraire 
dans le cas du modèle d’Ising ordinaire, renverser tous les spins coûte 
une énergie NB. L’argument peut être généralisé et rendu rigoureux 
pour tout système de spins présentant une symétrie de jauge locale 
(théorème d’Elitzur). I1 nous faut donc trouver un autre type de 
paramètre d’ordre, qui sera en fait non local. 

La fonction de partition 2 est facile à évaluer lorsque D = 2 : en effet 
il suffit de développer l’exponentielle dans (158) en utilisant l’identité : 

e pJs1(p)’.’s4(p) = ch (pJ) + SI(&‘) ... S , ( P )  sh (pJ) 

Pour que la somme sur les configurations soit non nulle, il faut (par un 
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argument analogue à celui de I-B.2) que l’on ait zéro plaquette, ou bien 
que les plaquettes recouvrent l’ensem- 
ble du réseau (avec des conditions aux 
limites périodiques). Le résultat final 
est ( N  P 1) : 

Z = [4 ch ( p J ) I N  . 
R 

Figure 18. La boucle de Wilson. Considérons maintenant sur le réseau 
un rectangle W de côtés T et R 

(figure 18), et la << boucle de Wilson >> W ( W )  : 

où n SI représente le produit de tous les spins situés sur les liens 

définissant le contour du rectangle. I1 est facile de montrer les deux 
propriétés suivantes : 

(i) W ( W )  est invariant dans une transformation de jauge locale ; 
(ii) In W ( W )  = (in th p J )  TR : In W ( W )  est proportionnel à l’aire 

du rectangle W (il suffit de remarquer que les plaquettes doivent 
recouvrir intégralement le rectangle W). 

Le modèle de Wegner à deux dimensions rappelle manifestement le 
modèle d’king à 1 dimension, et il n’est pas difficile de montrer 
l’équivalence des deux modèles (exercice 17). 

La quantité W ( W )  est le paramètre d’ordre (non local) recherché ; 
elle est invariante de jauge, et lorsque D 3 3, la transition de phase se 
signale de la façon suivante : In W cesse d’être proportionnel à l’aire du 
rectangle, et devient proportionnel à son périmètre. La << loi d’aire >> 

In W - TR est obtenue par un développement haute température, 
valable lorsque /3 -+ O, et la << loi de périmètre D In W - (T  + R )  par un 
développement basse température, valable lorsque p -t 00. 

1 

E.2. Action de Wilson et couplage fort 

Venons-en maintenant à des théories plus réalistes ; soit G un groupe 
de Lie compact, S U ( N )  pour fixer les idées, et soient sur un réseau 
cubique deux sites voisins i et j .  Nous désignons par le vecteur 
joignant i et j selon un sens déterminé 
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Définissons maintenant un élément de l’algèbre de Lie de G, 
dp,  fonction du point y milieu du lien (i, j ) ,  par : 

1 
d & = Z A b A p . b  

1 
2 

où les matrices - A b  sont les générateurs infinitésimaux de G dans la 

représentation fondamentale, et soit Uij  la matrice (a désigne le pas du 
réseau) : 

Dans cette équation, go est la constante de couplage nue, correspondant 
à l’utilisation d’une régularisation sur réseau. 

La matrice U; ’ = U j i ,  et on utilise souvent la notation Ux, au lieu de 
uij : 

Une transformation de jauge locale gi agit de la façon suivante : 

uij -i gi uii gT ’ (161) 

où gi et gi sont des matrices associées aux sites i et j .  I1 est clair (cf. (35)) 
que la matrice Ui, est l’analogue sur réseau de la quantité R (C ; A ) du 
paragraphe A.2. La méthode utilisée 
au paragraphe A.3 suggère une forme 
de l’action invariante de jauge : 1 

s = p p  P (162) ; i : v )  

avec 

s , = p x  i i 
1 
N x (1 - - Re Tr (uij u j k  u k i  uii)) Figure 19. Contour pour (163). 

(163) 

où le produit des matrices U est pris le long du contour limitant une 
plaquette (figure 19). On peut répéter le calcul menant à l’expression 
(43) lorsque a -+ O : 

1 S p  = P (1 - Re Tr (exp(- ig, u 2 F p v  + O@‘)))) . 
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Développant l’exponentielle, utilisant Tr A ,  = O et sommant sur les 
plaquettes on obtient à la limite a -+ O : 

S = -- d4x[Tr (9,” 9,”) + O(a2)]  2 N 2  s 
et comparant avec (48) après le changement d’échelle A, + gA, on 
peut faire l’identification : 

p = -  2 N  
si? 

L‘action définie par (162) et (163) est appelée action de Wilson. Ce 
n’est pas la seule à donner (48) à la limite continue. On peut la modifier 
par des termes en u2, a4, etc., qui s’annulent à la limite continue (du 
moins à l’approximation en arbres). Ces termes sont, du point de vue 
du point fixe à go = O, des champs inessentiels. Cependant ils peuvent 
être utilisés en pratique pour améliorer la convergence vers la limite 
continue. A ce stade, il conviendrait de rajouter des fermions. 
Cependant, les fermions sur réseau posent un certain nombre de 
problèmes, aussi bien théoriques que numériques, et je m’en tiendrai 
dans cet exposé aux champs de jauge purs. 

Comme dans le cas du modèle de Wegner, on introduira un 
paramètre d’ordre non local, la boucle de Wilson pour un contour C : 

Dans (165), le produit des matrices uk, est pris le long d’un contour 
fermé C formé de liens sur le réseau : W ( C )  est manifestement 
invariant de jauge. La mesure d’intégration B g  est un produit de 
mesures de Haar pour chacun des liens. Compte tenu du caractère 
compact du volume d’intégration, il n’est pas nécessaire de factoriser un 
volume infini en fixant une jauge. 

Etudions maintenant l’interprétation physique de la boucle de 
Wilson ; à la limite continue le produit des matrices uk[ dans (165) 
devient (cf. 34) : 

et représente l’interaction du champ A, avec une source ponctuelle. 
Prenons pour C un contour rectangulaire dont un côté ( T )  est parallèle 
à l’axe du temps (euclidien), et l’autre ( R )  parallèle à un axe de 
coordonnées ; nous supposerons T + R. La source ponctuelle est alors 
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une paire quark-antiquark statiques créés à une distance R à 
T = O, et s’annihilant au temps T. La quantité W ( C )  peut être 
interprétée comme le rapport de deux fonctions de partition, l’une en 
présence d’une source J ,  et l’autre avec J = O : 

Pour T %  R ,  [ F ( J )  - F ( O ) ]  est proportionnel à T,  l’énergie libre F 
étant extensive ; d’autre part nous avons vu au chapitre VI11 que la 
densité d’énergie libre pouvait être identifiée avec l’énergie de l’état 
fondamental ; comme la paire quark-antiquark est statique, cette 
énergie est purement potentielle et égale à V ( R )  T. Par conséquent : 

(166) 

Supposons (nous allons le montrer dans un instant lorsque go est 
grand) que l’on trouve, comme dans le modèle de Wegner, une << loi 
d’aire D : 

V ( R )  T = <T (TRa2) (167) 

où cr est une constante ; le potentiel quark-antiquark serait alors 
linéaire, et nous aurions confinement : il faudrait fournir une énergie 
infinie pour éloigner le quark et l’antiquark à l’infini. La constante uest 
appelée << tension de la corde ». 

Pour montrer (167) à la limite haute température (cf. 164) 
go -+ CO, on utilise un développement haute température. On peut 
montrer que le terme dominant s’obtient en pavant la boucle avec des 
plaquettes (figure 20). En effet les inté- 
grales sur un lien vérifient les proprié- 
tés : 

j dg = 1 dg Uij  U;‘ = - 1 s i ,  6 j k  N 

t t  = dg U U = O .  (168) R 

Figure 20. 

Le principe de la démonstration est identique à celui de la preuve 
utilisée par exemple au chapitre IV dans le développement haute 
température du modèle X - Y .  Pour N = 3, qui est le cas physiquement 
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intéressant on obtient : 

ce qui donne pour la tension de la corde : 

-1. 

XIII.E.3 

I1 est possible de montrer que le développement haute température a un 
rayon de convergence fini, et par conséquent la théorie vérifie bien la 
propriété de confinement pour gi assez grand. Malheureusement cette 
théorie à grand go2 a très peu de rapport avec une théorie continue (par 
exemple l’invariance de Lorentz est grossièrement violée) et il nous faut 
faire le lien avec les petites valeurs de go, qui, ainsi que nous l’avons vu, 
correspondent à la limite continue. 

E.3. Couplage faible et invariance d’échelle asymptotique 

Supposons que nous voulions calculer une quantité ayant les dimen- 
sions d’une masse, par exemple la racine carrée de la tension de la 
corde, <T ”’ ; par analyse dimensionnelle u ln doit s’écrire : 

1 
(ilQ = - f(go) . 

U 

Lorsque u + 0 ,  ce qui correspond à un cut-off en k tendant vers 
l’infini, vl/’ doit devenir indépendant de a : 

ce qui donne une équation différentielle pour f(go) : 

L’équation différentielle (171) s’intègre sans difficulté si l’on utilise le 
développement (121) de (go) (on a montré au chapitre VII, paragra- 
phe AS,  que les coefficients P o  et P l  étaient identiques pour 
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Le choix d’une constante d’intégration particulière dans la solution de 
(171) définit un paramètre dimensionné AL ( L  pour lattice = réseau) : 

(173. a) 112 - - cL7 AL 

On remarquera le comportement non analytique en go quand 
go -+ O, analogue à celui trouvé en IV-C. Cette propriété montre qu’un 
calcul perturbatif de w est a priori impossible. A L  est indépendant du 
cut-off a- ’ ,  et fixe l’échelle de masse de la théorie : on retrouve le 
phénomène de << transmutation dimensionnelle B. Toutes les quantités 
ayant dimension d’une masse s’expriment en fonction de AL : 

mi = ci AL (174) 

et les rapports rni/mj, mi/w 1’2 etc. sont universels : ils ne dépendent 
que du groupe de jauge G. Naturellement l’équation (174) ne sera 
valable que si a est suffisamment petit, de sorte que l’on se trouve dans 
le régime continu : dans ce régime, la propriété d’invariance d’échelle 
est satisfaite. L‘invariance d’échelle asymptotique est une exigence plus 
forte : on demande que la dépendance par rapport à go soit donnée par 
(173.b), c’est-à-dire contrôlée par les termes P o  et P l  de la fonction 

Comme le réseau est une régularisation, on peut relier go à la 
constante de couplage renormalisée g par go = Z1 Z; 312 g , en calculant 
les constantes de renormalisation Zl et Z,. D’autre part, on peut aussi 
utiliser un schéma de régularisation dimensionnel, et relier go et 
g dans le schéma Ms, par exemple. La comparaison de go (réseau) et 
g O ( m )  pour une même valeur de g permet de relier A (défini 
perturbativement) et AL ; on trouve pour S U ( 3 )  : 

s (90 1. 

AMS == 29 A L  I 

Si Am était bien connu expérimentalement (ce qui n’est pas le cas), on 
pourrait fixer AL sans ambiguïté, et par conséquent l’échelle de masse 
sur le réseau. 

De nombreux calculs numériques utilisant la méthode de Monte- 
Carlo ont été effectués au cours des cinq dernières années. Je renvoie 
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aux articles spécialisés cités en référence pour une revue détaillée ; 
comme ces résultats numériques sont susceptibles d’évoluer rapidement 
(avec le développement des ordinateurs spécialisés) je me borne à 
donner un exemple de résultats pour la tension de la corde (figure 21) 
(9 

f ‘T4 
*. Invariance 

d’échelle 
asymptotique 

0 ‘  
\A 

Figure 21. Une compilation récente pour la tension de la corde u”’. Les 
résultats numériques suggèrent que l’invariance d’échelle asymptotique est 
satisfaite pour p z 5.8. 

Une tension de la corde différente de zéro depuis la région de 
couplage fort jusqu’à la région où l’invariance d’échelle asymptotique 
est valable, sans indication pour une transition de phase dans une 
région intermédiaire, serait un argument très fort en faveur d’une 
théorie unique des interactions fortes, confinant les quarks à grande 
distance et asymptotiquement libre à courte distance : dans ce cas - et 
il n’y a pour le moment aucune indication pour penser le contraire - la 
chromodynamique quantique serait vraiment lu théorie des interactions 
fortes. 

Cette brève revue des théories de jauge sur réseau n’a décrit qu’une 
partie infime des travaux consacrés à ce problème. J’espère simplement 
avoir montré que ces théories reposent sur une synthèse remarquable 
de l’ensemble des idées exposées dans ce livre. 
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EXERCICES 

1) (a) Démontrer les identités (50) et (51). 

(b) Démontrer les équations du mouvement (52) ainsi que l'équation de 
continuité (53). 

2) (a) Démontrer l'identité : 

[D', Y"'] = (02 FBP) T, . 

(b) En utilisant cette identité ainsi que (50), montrer l'identité de Bianchi 

3) Montrer que si F P v  = O dans le voisinage d'un point x, alors : 
(54). 

d , ( x )  = i[a,u(s(x>>l U-'(g(x>) 

dans ce voisinage et réciproquement. 

4) (a) Démontrer les équations (63). 

(b) Déterminer les facteurs de groupe pour les graphes de la figure 22. 

Figure 22. 

Répons e 

5) La transformation de Becchi-Rouet-Stora (BRS) 

(a) Examinons d'abord l'électrodynamique, lorsque la jauge a été fixée de 
façon générale par la condition f (A)  = O. (Pour fixer les idées, on pourra se 

référer à la << jauge pédagogique B V A ,  + A ,  A = 0 de l'exercice XI.14). 2 
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On doit ajouter au lagrangien un terme de fantômes (désignés par q et 
q au lieu de I) et $ dans l’exercice XI.14) : 

~ F P = -  d4y V ( X ) M ~ ( X , Y ) V ( Y )  s 
O ù  

On définit la transformation BRS par : 

S A , ( x ) =  ( a , , ~ ( x ) > s l ;  sJr(x) =- ieJ r (X>q(X)65 
1 sa(x) = a  f ( A )  84‘ ; 

61) (x) = O 

S$(X)  = ie$(x) q ( x )  a l  

où S{ est une variable de Grassmann anticommutant avec g et V ; 
S X / S &  sera défini en faisant passer S g  à droite et en divisant SX par 
S[ : S A , / S l  = a,?. On remarquera que la loi de transformation de 
A ,  est une transformation de jauge où A ( x )  = q (x) S g .  Montrer que le 
lagrangien : 

est invariant dans la transformation BRS : S z / S [  = O. Montrer également 
l’invariance de la mesure 9 3  ( A ,  g , q). En examinant la variation de la fonction 
de Green : 

où X ( y )  est un produit de champs A,,  Jr et $ (mais ne comportant pas de 
g et v) démontrer l’identité de Ward-Slavnov-Taylor : 

Retrouver (XII.102) dans le cas de la jauge de Lorentz PA,,  = O. 

(b) Revenons aux théories non abéliennes, où la transformation BRS est 
définie par : 

s A f ( x )  = g b ( x )  st 
Sva(x> = fa(A> SC 

s q b ( x )  = - 7 f a b c  r ) b ( x )  g c ( x )  * 

1 

9 

Montrer que YG + YFP + YGF est invariant BRS (l’introduction des fermions 
ne présente aucune difficulté). Montrer l’invariance de la mesure d’intégration 
3 ( A ,  7, 5 j ) .  
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(c) Résultat préliminaire : établir l'équation du mouvement donnant : 

(On se restreindra au cas de la jauge de Lorentz apA: = O.) En écrivant 

montrer que le propagateur du champ de jauge vérifie l'équation (XII.104) : 
comme en électrodynamique, les corrections radiatives au propagateur sont 
transverses. 

6) Théorème de Goldstone et phénomène de Higgs dans le cas général 

(a) Soient n champs réels cpi se transformant suivant une représentation 
réelle de générateurs Ta (a  = 1, ... , N ) d'un groupe G de dimension N ; 
l'action effective est donnée par : 

( 7 )  

r J d4~(ap<pi a p q i  + V ( c p i ) ) .  

Soit u ,  la valeur de cpi  minimisant V :  

1 
2 Montrer que V = - M $ ( q  - ~ ) ~ ( c p  - v ) ,  au voisinage de ce point, et que 

Soit H le sous-groupe de G, de dimension M ,  qui laisse le vide invariant : 
Ta v = O si Ta est un générateur de H .  En déduire que la matrice M 2  a(N - M )  
valeurs propres nulles. 

(b) Si l'on se place dans le cadre d'une théorie de jauge, montrer que 
( N  - M )  bosons de jauge deviennent massifs grâce au phénomène de Higgs. 

Mi:. T7k ~k = O. 

7) Vie moyenne du muon 

Montrer que dans la théorie de Fermi, la vie moyenne T du muon est donnée 
par : 

192 7r3 

GF m i  
$-=- 

Montrer que la forme de ce résultat peut être prévue par des considérations 
dimensionnelles. 

8) Diffusion v, e et V e  e dans la théorie de Fermi 
Calculer la section efficace différentielle de la diffusion élastique v, e et 

Fee dans le référentiel du centre de masse, en utilisant la théorie de Fermi. 
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Montrer que les sections efficaces totales sont données par : 

4 GF 
a ( v ,  e )  = - E :  

?r 

où E, et E, sont les énergies de l‘électron et du neutrino dans le référentiel du 
centre de masse. 

9) Couplage aux courants neutres 

(a) Montrer que le couplage du boson Zo aux leptons peut s’écrire : 

où Z3 est la composante 3 de l’isospin et Q la charge du lepton considéré. 
(b) Recalculer les sections efficaces neutrino-électron et anti-neutrino élec- 

tron de l’exercice (8) en tenant compte des courants neutres. On pourra se 
limiter au cas où E, %- me et utiliser l’identité de Fierz : 

Montrer que les sections efficaces sont maintenant : 

avec s = (E, + E,)* e rn;. 

10) Production de bosons W et Z 

Dans les anneaux de collision du CERN, la production de bosons W et Z 
s’effectue par << fusion >> d’une paire quark-antiquark (figure 23).  

Figure 23. 
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On écrit les couplages des bosons aux leptons et aux quarks sous la forme : 

et on définit : 

Montrer que la section efficace pour observer un lepton faisant un angle Q 

avec la direction du boson, dans le référentiel au repos de ce dernier, est 
proportionnelle à : 

(1 + cos2 <p ) + 2 a CY ' cos Q . 

Pour les couplages au W ,  C A  = C v  et la distribution angulaire est en 
(1 + cos Q )2. 

11) Définition de A 

La constante de couplage as  vérifie l'équation d'évolution : 

= - Bo a;(Q')(l + pl as(Q2) + ) . 
En intégrant cette équation sous la forme : 

montrer que l'on peut écrire : 

avec y = In @'/A2). Déterminer c, d ,  ainsi que l'ordre de grandeur de E, et en 
déduire que l'on peut poser c = O par un choix convenable de la constante 
d'intégration. Retrouver ainsi l'équation (123). 

12) Indépendance de jauge de 2 (') 

On se propose de montrer que la constante de renormalisation Z (définie par 
go = p E / 2 Z g )  est indépendante du paramètre de jauge a dans le schéma 
minimal. 

une charge invariante (cf. VII-A.2) formée avec des fonctions de (a) Soit 
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Green d'opérateurs invariants de jauge. Montrer que : 

(b) Utiliser le fait que p (9 ,  a ) est indépendant de E ainsi que le développe- 
ment (VII.77) de Z dans le schéma minimal pour montrer que Z est 
indépendant de a. Pourquoi ce résultat n'est-il pas valable en générai ? 

13) Démontrer l'équation (135). 

14) Régularisation dimensionnelle des singularités infrarouges 

On se place dans le cas m = O. 

(a) Calcul du vertex 
Calculer l'expression du vertex de la figure 14 (à l'ordre d'une boucle) en 

partant de (XII.78) et en intégrant sur la variable de boucle : 

0 - 2  
( X ~ X ~ Q ~ ) ~  - Q 2 r  [ ( 2 - ~ ) ~ r ( 2 - ~ / 2 )  

2 

où E = 4 - D et Q2 = - q 2  =- O. Le premier terme est U-V divergent et sera 
renormalisé dans le schéma (cf. le facteur (p2eY/ (4  rr)>"/'). Après 
soustraction du pôle U-V en 1 / ~ ,  le résultat est prolongé analytiquement à des 
valeurs de E -= O, E = - 2 o. Montrer que AR, s'écrit (ia formule B.9 est très 
utile) : 

Montrer également que la correction d'énergie propre aux lignes de quarks 
externes vérifie, après soustraction du pôle U-V et prolongement analytique 
pour p 2  -= O à des valeurs de E négatives : 

(b) Calcul de l'émission de gluons : montrer que (135) doit être remplacé 
par : 
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et que (139) devient (en incluant un facteur zZ0 dû à (130)) : 

W =  II P‘ I I  j’ d ( c o s û ) ( s i n û ) 2 W I A ~ z .  
8(4 m ) D / 2 r ( l  + O )  - 1  

En déduire l’expression de W pour des gluons réels : 

(c) En rajoutant le graphe virtuel (a) ainsi que les corrections dues aux lignes 
externes, obtenir l’équivalent de (150) dans le cadre de la régularisation 
dimensionnelle. Vérifier l’élimination des divergences IR en 1/ O‘ entre le 
terme (( réel )> et le terme << virtuel », et identifier les singularités colinéaires. 
Intégrer sur z et retrouver la valeur (156) du rapport R. 

15) Approximation infrarouge et jauge planaire 

(a) On suppose que l’on utilise un référentiel où k,, II k II + O dans le calcul 
de l’élément de matrice (134). Montrer que dans ces conditions : 

(b) On utilise une jauge axiale telle que n’A,  = O, où n, est un vecteur fixé. 
Montrer que la somme sur les polarisations du gluon s’effectue en saturant avec 
le tenseur d,, : 

k ,  n ,  + k ,  np  n2 k ,  k ,  
k . n  ( k .  n)’ 

-~ d,“ = - 9,” + 

Calculer Ik(’ en utilisant n, = up, + bph, où a et b sont des constantes. 
Montrer que le terme d’interférence des deux graphes de la figure 12 s’annule, 
et que l’on peut trouver des choix de jauge où l’un des deux graphes de la 
figure 12 s’annule. 

16) Théorème d’Elitzur (9) 

Considérons le modèle de Wegner dans une dimension D arbitraire, et soit 
S ( n ,  p ) un spin S situé sur le lien p partant du site n. On place le système dans 
un champ magnétique extérieur B et on calcule la valeur moyenne de 
S(n ,  I*. : 
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Soit ( I , }  l’ensemble des liens partant du site n et S ‘ ( 1 )  le transformé de jauge 
de S ( I )  dans la transformation de jauge qui renverse les spins sur les liens 
I n  : 

S S ( l ) = S ’ ( I ) - S ( l ) = - 2 S ( I )  si Z E  {I,} 
S S ( I )  = O  si I $  {I,} . 

En effectuant le changement de variables S + S‘, démontrer la relation 

et en déduire 

2 1 ( S ( n , p ) ) ) ~ I e 4 D B - 1 ) ’ 0  si B - O .  

17) Equivalence du modèle de Wegner D = 2 et du modèle d’king D = 1, 

Dans le réseau à deux dimensions de la figure 15, on choisit deux axes T et x 
parallèles aux deux directions des liens. Montrer que par une suite de 
transformations de jauge locales on peut, en négligeant les effets de bord, se 
ramener au cas où tous les spins situés sur les liens parallèles à l’axe T sont égaux 
à 4 1 : S ( n ,  T )  = 1. En déduire que la fonction de partition est un produit de 
fonctions de partition de modèles d’king à une dimension. En utilisant le 
résultat (1.9) donnant la fonction de corrélation du modèle d’king D = 1, 
retrouver la << loi d’aire >> pour W ( B )  (cf. (159)). 

(9) 
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APPENDICE A 

Transformées de Fourier 
Intégration gaussienne 

A.l .  TRANSFORMÉES DE FOURIER 

Toutes les démonstrations seront faites uniquement à une dimension 
(D = 1 ), la généralisation à un nombre arbitraire de dimensions étant triviale. 

Diagonalisation d’une matrice invariante par translation 
Considérons une matrice (réelle) A, ,  O s s, t 6 N - 1 telle que A,, ne 

dépende que de la différence (s - t). On suppose également des conditions aux 
limites cycliques : p + N 3 p pour tout entier p. 

Théorème : La matrice A, est diagonalisée par une transformation de Fourier 
avec : 1 e” sur réseau, correspondant à la transformation unitaire Uq = - 

J N  
2 TP x , = s a ;  q = -  
Na 

où s et p sont des entiers compris entre O et N - 1 et a est le pas du réseau. 

Ce résultat est bien connu, par exemple de la théorie des modes de vibration 
normaux. Redémontrons-le rapidement : 

La sommp sur t est indépendante de s, grâce à la condition q = 2 mp/Na et 
aux conditions aux limites cycliques ; appelons-la A (4) : 

En général A (s - t ) ne dépend que de 1s - t I , et A (4) est réel. Par invariance 
de la trace dans une transformation de similarité : 

TrA, = C A ( q ) .  
4 
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Passage à la limite continue 

Pour passer à la limite continue, il est commode de définir A(q)  par : 

par passage d'une somme de Riemann à une intégrale. De même, la somme sur 
q peut être replacée par une intégrale en utilisant : 

277 

N a  l'intervalle entre deux valeurs successives de q étant - . D'autre part, au lieu 

des limites O s q =s 5, il est en général plus commode de choisir : 
a 

?r 77 _ -  s q s - .  
a a 

Dans ces conditions, la transformation de Fourier inverse est donnée par 

et la relation sur la trace devient 

TrA,, = N *A(q)  
2 T  

A D-dimensions les relations précédentes se généralisent en : 

A ( q ) =  dDxeiq'"A(x) s 
(7) 

Produit de deux matrices 

matrices. Cherchons la transformée de Fourier de 
Une relation utile peut être obtenue en examinant le produit de deux 

A,, B,, = A,, a,, Bu, : 
1 I ,  u 

La transformée de Fourier du produit matriciel est le produit des transfor- 
mées de Fourier. Ceci n'est pas étonnant, le produit matriciel n'étant pas autre 
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chose qu'une convolution grâce à la propriété d'invariance par b anslation des 
matrices A et B .  I1 est également intéressant de remarquer que 1;u transformée 
de Fourier de A; est 1/A (9 ) .  

A.2. INTEGRALES GAUSSLENNES 

Cas d'une variable 
Considkrons la quantité Z ( j )  : 

- ;,d+ j x  
Z ( j ) =  & e  J 

1 2  

Z ( 0 )  = = Jm s 
Pour calculer Z ( j )  on effectue le changement de variables : x = x'  + j / A  

1 1 1 . 1  
- zxAx + j x  = - - X I  Ax' + - 1  - j 2 2 A  

z(j) = e"" ~ ( 0 ) .  
1 . 1 ,  

Cas de N variables 

(9) 

où A ,  est une mairice symétrique (*) et strictement positive. Pour alléger les 
notations on pose (T = transposé) : 

N N 

C x i A i i x i = x T A x ;  C j i x i = ]  .T x 
i , j = i  i s 1  

où x et j sont les vecteurs colonnes (xl . . . x N )  et (jl . . . j N ) ,  xr et j des vecteurs 
lignes. Effectuons le changement de variables : 

x = x '  + A - ' j ,  

(la matrice A-' existe car A est supposée positive) : 

(*) Si Aii comportait une partie antisymétrique, celle-ci donnerait un résultat nul dans 
xi Aij  xi. 

i , i  
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d'où : 

Appendice A A.2 

Z ( j )  = e 

Dans de nombreux cas, l'équation (10) est suffisante (par exemple pour le 
calcul d'une fonction de corrélation où Z ( 0 )  s'élimine). 11 n'est pas très 
compliqué de calculer Z ( 0 )  : 

-$TAX 

i = l  

Soit R une transformation orthogonale (RRT = II ) diagonalisant A : 

dl 

A = R T D R ;  D =  d2 ... O ) ;  d i w O  V i .  

dN 

Effectuons le changement de variables de jacobien unité : 

X I = & .  , (det R = 1) 

La dernière intégrale est un produit de N intégrales gaussiennes indépendantes 
et vaut : 

N ( 2  T ) ~ / *  n (di)-" = ( 2  T r ) N / 2  

i = l  (det A ) ln 

( 2  r r ) N / 2  Z ( 0 )  = 
(det A )" 

Démontrons enfin un corollaire des équations (10) et (11) ; considérons 
d'abord une seule variable complexe z = x + iy et l'intégrale : 

où j = ji + ij2 et A = a ,  + ia2, avec a, =- O. Le calcul de I est immédiat : 

I = E e j * A - ' j  
A 
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Passons au cas de N variables complexes zi : 

fi dZzi e- z' Az + z t  j + jt z 

i = l  

où la conjugaison hermitique remplace la transposition. On suppose que A peut 
être diagonalisée par une transformation unitaire U : 

A = U ' D U  

où D est une matrice diagonale dont les éléments di ont une partie réelle 
positive. Ecrivons : 

U = R + i S  

où R et S sont des matrices réelles ; la relation Ut U = II donne : 

RR + ssT = II ; RS - SR = O . 
La transformation z' = Uz équivaut à : 

et la matrice faisant passer de ( x ,  y )  à (x', y ' )  est orthogonale, et donc de 
déterminant 1. Le jacobien de la transformation est 1, ce qui permet d'obtenir 
le résultat : 

A.3. INTÉGRALES EN DIMENSION D 

En coordonnées polaires l'élément de volume en dimension D est : 

dDx = ID-' dr sinD-' 0,- dû,- OD-* dû,-, ... dû, 

O s û ' s 2 T  o < û k s T  k # 1 .  

Très souvent, l'intégrand est indépendant des angles et il suffit de connaître la 
surface S ,  de la sphère à D dimensions : 

dDx -+ S, rD-'  dr 

Celle-ci s'obtient aisément en calculant de deux manières l'intégrale 
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d’où : 

Appendice A A.3 

Exemples : D = 1, S, = 2 r ; D = 3, S, = 4 r ; 
En général la mesure d’intégration est dDx/ (2 et il est utile de définir : 

avec en particulier : 

1 
8 r  

K4 = -, . 

Les expressions (13) et (14) peuvent être prolongées analytiquement à des 
valeurs non entières de D .  
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Intégrales de Feynman 
en régularisation dimensionnelle 

(cas euclidien) 

Combinaison des dénominateurs : 

Boucle à deux lignes internes : q' = q - xk 

x [ q f 2 + x ( 1  - x ) k 2 + x r n 2 +  ( 1  - x ) m ; ]  ' .  (B.2) 

Boucle à trois lignes internes : q' = q - x ,  p 3  + x3 p l  

D = x1 rn: + xî  rn; + x3 rn; + x2  x3ps  + x1 x3p;  + x1 x,p;  
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Développement de la fonction T: 

2 r (  ;) = ; - ? + O ( & ) .  (B.lO) 

Développement de la fonction B : 



APPENDICE C 

Formulaire 

C.l .  GROUPE DE LORENTZ 

Quadrivecteur : 

V’ = (VO, V i )  = (VO,  9 )  = (V,, v,, v,, V , )  

Tenseur métrique : 

g c ”  = diag (1, - 1, - 1, - 1 ) 

Transformation de Lorentz : 

X” = A ~ x ” ;  A T g A  = 9 .  

Groupe propre : 

A n s  1 ,  det A = 1 .  

Groupe orthochrone : 

A ; a 1 ,  d e t A = i , l .  

Gradient : 

Produit scalaire : 
x ’ y , = x  O 0  y - x * y  

arv, = aovo + v . v 

Tenseur complètement antisymétrique : 

1 si la permutation 0123 + /L v p  (T est paire 
& ” ’ P u  - 1 si la permutation 0123 + p v p  (T est impaire (C.1) I O dans les autres cas . 
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Opérateur 4-moment : 

p ”  = i a” = (i ao, - iV) . 

D’Alembertien : 

C.2. MATRICES DE DIRAC 

Définitions : 

{Y,> Y”} = Y, Y, + Y ”  Y, = 2g,, 1 
< T P ” = s [ y P > y y ] ;  1 y - i  0 1 2 3 - 1  

5 -  Y Y Y Y = ~ ~ ” p u Y ~ Y u Y p Y u .  

Equation de Dirac : 
+ 

(iy” a, - rn) JI = ( ia  - rn) JI = O .  

Spineur conjugué : 

i F =  JI” y o ;  P ( i B + r n ) = û .  

Conjugaison hermitique : 

t t Yo Y5 Yo = - Ys = - Ys, 

Si JIl et JI2 sont deux spineurs de Dirac et r u n e  matrice 4 x 4 : 

Y p  = Yo Y p  Yo ; 

(FI Ti(12)* = iF2(Y0 rt Y o )  JI, . 

C y , C - ’ = -  y ; ;  cy5c-’= y:. 

C - ’ = C T = C + = - C .  

Matrice de conjugaison de charge : 

Dans les représentations usuelles : 

Matrices de Pauli : 

(; 0); < J 2 =  ( i  O - i  . u 3 =  (0 
Représentation de Dirac : 
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Représentation chirale : 

" i )  ; y 5  = (Q O ) .  (C.7) O - Q  
O - Q  

y o =  (-Q 0 ) ;  

Identités utiles en dimension D (41 = y ~ a ") : 

Identités sur les traces : 

T r Q = 4  
Tr@b = 4 a .  b 

Tr (@&O = 4[(a .  b ) ( c .  d )  - ( a .  c ) ( b  . d )  + ( a .  d)(b  . c ) ]  (C.12) 
Tr ( y ,  dibqqf) = - 4 iEPvpoalL b, cp d ,  (C.13) 
Tr (çi ... 2 n - 1 )  = O ;Tr  (rel ... P ~ , )  = Tr ( r a z ,  ... P i )  (C.14) 

Tr ~5 ~p = 0 

Tr ... @>,) = (a l .a2)Tr  (k ... &,)- (al .a,)Tr (ç2& ... 
+ ( a , .  a,,)Tr (e2 h . ' . & ? " - I ) .  (C.15) 

Solutions de l'équation de Dirac : 

Energiepositive : ( p - m ) u ( p ) = O ; u @ ) ( p - m )  = O  
Energie négative : (9 + m )  u (p) = O ; Ü (p)($ + m )  = O . 

Normalisation 

u @ ) u ( p ) =  - ü ( p ) u @ ) = 2 m  

U @ ) U @ )  = ü(p)u(p)  = o .  

Normalisation des densités : 

Projecteurs : 
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Spineurs d’hélicité A déterminée (représentation de Dirac) : 

avec 

C.3. SECTIONS EFFICACES 

Normalisation des états (up = Jp2 + m2)  : 

S, = a f i + i ( 2 r r ) 4 6 ( 4 ) ( P f - P i ) T f i .  

Section efficace 1 + 2 -+ 1’ + 2’ +.  + N ’  : 

F = [ (Pi . p2)’ - m: ~ 7 ~ 2 1 ’ ~  ; 

9’ = facteur dû à i’identité des particules. 
Taux de désintégration : 1 .+ 1’ + 2’ + - .  + N ’  : 
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Section efficace 1 + 2 -+ 1' + 2' dans le référentiel du centre de masse : 

(C.21) 1 1) k II = - [ (s - (m, + m2)') (s - (m, - m2)2)]"2 . 
2 Js 

Théorème optique : 

(C.22) 

C.4. RÈGLES DE FEYNMAN 

Règles de Feynman pour une fonction de Green connexe sans lignes externes 
GjN)(p1,  ..., p N )  où les moments pi entrent dans le diagramme et : 

(i) Tracer tous les diagrammes topologiquement inéquivalents. 
(ii) Associer à chaque ligne interne un propagateur : 

k 
spin O : 

spin 112 : 

spin 1 : - 9," + 2 
m 

k 
+ 1 

y --p, : 
k 2 -  m2 + ie 

k 

Y 

' a b  
-t 

particule de jauge : b a : 

f l  

Fantôme de k 
--F- ' a b  Fadeev-Popov : b . .. e e he e e e e a 

kZ  + ie 

(iii) Associer à chaque vertex un facteur déterminé par le lagrangien 
d'interaction, conserver le moment à chaque vertex. Un facteur - ik, est 
associé à a,, où k,  est le moment entrant dans le vertex. 
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(iv) Intégrer sur toutes les boucles avec un facteur d4q/ (2 T ) ~ .  Associer un 

(v) Multiplier par un facteur de symétrie et un signe global associé à la 

Relation fonction de Green-matrice S :  soit Tf i  l'élément de matrice T 

facteur - 1 à toute boucle fermionique. 

configuration des lignes de fermions externes. 

connexe de la réaction 

Si l'on suppose toutes les particules de spin zéro et de masse m : 

N M 
T~~ = - i(zJ)(N+M)/2 lim lim n e(P,o> n O@,) x 

p S + m 2  pi2 ~ m? i = 1 j = i  

x G(NRtM)(-P;, ...> -Ph ..., p,W) 

où G!rR+") est une fonction de Green connexe renormalisée amputée de ses 
propagateurs externes complets et iz, le résidu du propagateur renormalisé au 
pôle k2 = m2. 

Facteurs associés aux particules externes (spin 1/2 et spin 1). 
Fermion entrant : zinu(')(p) ; 
Antifermion entrant : z;" Ü(')(p) ; 
Particule de spin 1 : facteur z:" E(~)(Z:'' E(' )*  u )  

Fermion sortant : zi" U(')(p). 
Antifermion sortant : z i" o(')(p) . 

pour une particule entrante 

hélicité + 

hélicité O 

hélicité 

Règles pour les vertex : 

(a) Théorie en <p : 

(sortaite) ; si k ~ o z  : 

0-  
. 0  
. % 

: - ig . 
,<., -. 0 

0 

(b) Electrodynamique : 
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(e) Modèle Glashow-Salam-Weinberg : 

e = g s i n 8 ;  t g 8 = g ‘ / g  
B’ = COS BA ’ - sin OZ’ 
W ’ =  sin BAp + cos 8 . 2 ’ .  

Couplage du 2’ aux fermions : 

c.4 

I ,  = composante 3 de I’isospin, Q = charge du fermion f. 
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Gaussienne (intégration ou inté- 

Gell-Mann et Low (formule de) : 396. 
Générateur infinitésimal : 548. 
Ginzburg (critère de) : 75. 
Ginzburg-Landau (hamiltonien de) : 

Gluon: 448, 584. 
Gluon mou (ou infrarouge) : 594. 
Goldstone (boson de) : 85, 569. 
Gordon (identité de) : 481, 630. 
Grassmann (algèbre de) : 463. 
Grassman (variable de) : 466. 
Green (fonction de) : 337, 340, 368. 
Groupe de renormalisation : 89, 100, 

grale) : 78, 621. 

66, 68, 115, 131, 181, 183. 

302, 305, 532. 

H 
Hamiltonien : 355, 357. 
Hamiltonien (densité de) : 181, 247. 
Heisenberg (modèle de) : 29, 167. 
Hélicité : 473, 574, 630, 632. 
Higgs (boson de) : 448, 579. 

Higgs (phénomène de) : 572. 
Hyperboloïde de masse : 364. 
Hypercharge faible : 575. 

I 
Inessentiel (champ ou opérateur) : 

Infrarouge (divergence) : 81, 215, 

Insertion de masse : 257. 
Intégrale de chemin: 319, 324, 331, 

Interaction : 182, 387. 
Invariance d’échelle naïve : 106, 120, 

Ising (modèle d’) : 28, 325. 
Isospin faible : 574, 575. 

103, 276, 301. 

226, 283, 519. 

353, 401. 

532. 

J 
Jauge : 
- axiale : 476, 615, 
- (champ de) : 447, 553, 
- de Coulomb : 476, 
- de Feynman: 480, 
- (groupe de) : 552, 
- (invariance globale de) : 471, 
- (invariance locale de) : 472, 
- de Landau : 480, 
- de Lorentz: 470, 
- (transformation de) : 469, 472, 

551, 554, 557, 
- (transformation globale de) : 

471, 553, 
- (transformation locale de) : 472, 

553. 

K 

théorème de) : 598. 
Kinoshita-Lee-Nauenberg (KLN ; 

Klein-Gordon (équation de) : 363. 
Klein-Gordon (champ de) : 366. 

L 
Lagrangien : 331, 355, 
- (densité de) : 357, 387,470,472, 

- euclidien : 341, 407, 
- d’interaction : 387, 
- libre : 387. 

487, 561, 
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Landau (approximation de) : 62, 67. 
Landau (théorie de) : 71. 
Largeur de la région critique : 106, 

Legendre (transformation de) : 49, 

Liberté asymptotique : 295, 584. 
Lie (groupe de) : 546. 
Lie (algèbre de) : 548. 
Ligne physique : 97. 
Localité : 368, 390. 
Logarithmes dominants : 279, 304. 
Longueur de corrélation : 33, 47, 246, 

107. 

206. 

327, 599. 

M 
Marginal (champ, opérateur ou varia- 

Masse nue : 236, 240. 
Masse renormalisée : 242. 
Matrice S :  376, 389, 393, 409, 414, 

Matrice T :  410. 
Matrice de transfert : 328. 
Méson: 584. 
Métastabilité : 72. 
Minimal ( M S ;  schéma de soustrac- 

Modèle : 

ble) : 103, 132. 

419. 

tion) : 261, 307, 508, 587. 

- gaussien: 79, 118, 
- de Heisenberg: 29, 167, 
- d’king: 28, 325, 
- u-non linéaire : 167, 
- de Villain : 159, 
- de Wegner: 600, 
- X Y :  153. 

Modes normaux : 121, 352, 358. 
Moment : 21, 178, 367. 
Moment conjugué : 355, 358. 
Moment magnétique anormal : 485, 

Muon : 497. 
520. 

N 
Nœther (théorème de) : 471. 
Nombre d’occupation : 361, 450. 
Normalisation (conditions de) : 245, 

254, 260, 400. 

O 
Opérateur composé : 236, 255. 
Opérateur d’évolution : 323, 372. 
Onde de spin: 158, 162. 

P 
Paquet d’ondes : 365. 
Paramètre d’ordre : 27. 
Pauli (matrices de) : 547, 628. 
Perturbatif (développement) : 121 

184, 397. 
Phonon: 361. 
Plaquette : 93, 600. 
Point fixe : 98, 287, 292. 
- gaussien : 125, 
- infrarouge stable : 293, 
- non gaussien : 126, 
- ultraviolet stable : 294. 

161. 
Poisson (formule de sommation de) : 

Polarisation : 439, 473. 
Polarisation du vide : 510, 532. 
Potentiel effectif: 212. 
Potentiel thermodynamique (ou de 

Produit normal : 362. 
Produit-T: 327, 333, 370, 462. 
Propagateur : 189, 370, 462,479, 488, 

Gibbs) : 49. 

489. 

Q 
Quantification : 
- d’un champ classique : 352, 
- du champ de Dirac: 458, 
- du champ électromagnétique : 

473, 
- du champ de Klein-Gordon: 

- des théories de jauge non abé- 

- des vibrations élastiques : 359. 

366, 

liennes : 559, 

Quark : 448, 499, 583. 

R 
Réduction (formules de) : 417. 
Relations de dispersion : 426. 
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Régularisation : 239, 
- dimensionnelle : 215, 240, 403, 

504, 585, 
- de Schwinger : 218, 239, 
- sur réseau : 240, 603. 

Renormalisables, non renormalisa- 
bles, super-renormalisables (théo- 
ries) : 238. 

Renormalisation : 
du champ : 243, 
(constante de) : 244, 
de la constante de couplage : 

sur couche de masse : 400, 
de l’électrodynamique : 529, 
(équations différentielles de) : 
126, 
(groupe de) cf. groupe, 
de la masse : 241, 
des opérateurs composés : 258, 
des théories de jauge non abé- 
liennes : 566. 

242, 

Représentation : 
- adjointe : 550, 
- fondamentale : 548, 550, 
- d’un groupe : 548. 

Représentation interaction : 373, 392. 

S 
Saveur: 583. 
Schwinger (régularisation de) : 218, 

Section efficace : 412, 630. 
Singularité infrarouge : 594. 
Singularité de masse (ou colinéaire) : 

Source (du champ): 181, 334, 363, 

Soustraction (point de) : 254, 400. 
Spin-statistique (théorème) : 461. 
Structure (constante de) : 550. 
Structure (fonctions de) : 592. 

239. 

594. 

377, 467, 488. 

Stuëckelberg (lagrangien de) : 479. 
Susceptibilité magnétique : 39. 
Surface critique : 97. 
Symétrie brisée : cf. brisure de symé- 

Symétrie O ( n )  : 184. 
trie. 

T 
Tadpole : 214, 398. 
Taux de désintégration : 412, 630. 
Tension de la corde : 605. 
Transformation du groupe de renor- 

malisation (TGR) : 90, 92, 117. 
Transmutation dimensionnelle : 589. 
Transport parallèle : 552, 555. 
Tricritique (point) : 103. 

U 
Ultraviolette (divergence) : 215, 223. 
Unitarité : 377, 390, 423, 527. 
Universalité : 52, 107. 

V 
Valeur moyenne sur le vide : 569. 
Variable essentielle, marginale, ines- 

sentielle : cf. champ -. 
Vertex: 186, 189, 399, 489. 
Vertex propre : 205, 399. 
Vide : 333, 361, 388, 569. 
Villain (modèle de) : 159. 
Vortex: 157. 

W 
Ward (identité de) : 523, 566, 610. 
Wegner (modèle de) : 600. 
Weinberg (angle de) : 577, 580. 
Weinberg (théorème de) : 229. 
Wick (rotation de) : 405. 
Wick (théorème de) : 180, 379, 465. 
Wilson (action de) : 604. 
Wilson (boucle de) : 602, 604. 

XYZ 
XY (modèle): 153. 
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