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Avant-propos

En 1965, J. Bjorken et S. Drell concluaient leur ouvrage classique (*),
qui fut la bible d’une génération de physiciens des particules, par ces
considérations pessimistes : « Par conséquent toutes les conclusions
reposant sur le groupe de renmormalisation... sont hasardeuses et
doivent étre prises avec la plus grande prudence. Ainsi en est-il de tous
les résultats des théories des champs relativistes. » La méme année,
F. Dyson, 'un des péres fondateurs de I’électrodynamique quantique,
écrivait (**) : « On imagine aisément que d’ici quelques années les
concepts de la théorie des champs auront totalement disparu du
vocabulaire quotidien des physiciens des hautes énergies. » On sait que
le développement de la physique n’a pas confirmé ces prévisions : la
physique moderne des particules élémentaires est devenue indissociable
des théories de jauge non abéliennes, généralisation de I’électrodynami-
que quantique élaborée au lendemain de la Deuxiéme Guerre mondiale
par Schwinger, Feynman, Dyson et Tomonaga.

Apres tout, la théorie quantique des champs avait été inventée pour
décrire la création et annihilation de particules, et son retour en force
dans ce domaine, aprés une période de disgrace d’une dizaine d’années,
n’était pas une surprise totale. Plus étonnant fut 'impact de la théorie
des champs sur la compréhension des phénomenes critiques, au début
des années soixante-dix. Certes les méthodes de la théorie des champs
(fonctions de Green, diagrammes de Feynman...) avaient déja été
empruntées par les physiciens du solide et les physiciens nucléaires,
dans le cadre du « probléme & N-corps », mais il s’agissait avant tout
d’outils de travail, qui n’introduisaient pas d’idées fondamentalement
nouvelles (sauf en supraconductivité et superfluidité, mais c’étaient la
les prémisses d’une approche trés générale et treés féconde, celle des
symétries brisées). Au contraire lirruption du concept de renormalisa-
tion en physique statistique était révolutionnaire, car rien ne laissait
prévoir que Pélimination des infinis, qui furent la plaie initiale de la
théorie des champs, pouvait jouer un role dans un domaine ou ils
étaient a priori absents. Le mérite de Wilson fut de réaliser que les

(*) Bjorken-Drell, chapitre 19.
(**) Physics Today (juin 1965).
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fonctions de corrélation d’un systéme au voisinage d’un point critique
étaient, A longue distance, décrites par une théorie renormalisée. Cette
observation fondamentale devait d’ailleurs donner un éclairage nouveau
sur la renormalisation.

Il m’a semblé utile d’écrire un ouvrage d’introduction, qui mette les
développements de ces vingt dernieres années a la port€e d’étudiants de
troisiéme cycle, ainsi que de physiciens non spécialistes qui souhaitent
s’initier aux méthodes de la théorie des champs. J’ai suivi un plan
d’ensemble assez différent des exposés traditionnels, qui sont, en régle
générale, orientés uniquement soit vers la physique statistique, soit vers
la physique des hautes énergies. La démarche choisie permet d’arriver
rapidement au cceur de la théorie des champs, a savoir la renormalisa-
tion et le groupe de renormalisation, dans le cadre du modele le plus
simple possible : le modéle en ¢*, ou modele de Ginzburg-Landau, tout
en conduisant a des applications fondamentales a4 la physique des
phénomenes critiques.

Le livre est divisé en quatre parties. La premiére est une introduction
aux phénoménes critiques et au groupe de renormalisation, dans la
version de Wilson. Des applications comme le « développement & » et
le modele XY sont traitées en détail. La deuxieme partie traite du
développement perturbatif, toujours dans le cadre de la physique
statistique. Le chapitre V introduit les techniques de base (fonctionnel-
les génératrices, diagrammes de Feynman). Clest un chapitre un peu
technique et quelque peu fastidieux, mais nécessaire pour ’étude des
deux chapitres suivants qui abordent les concepts fondamentaux de la
théorie : renormalisation et groupe de renormalisation, cette fois dans
la version des équations de Callan-Symanzik.

Avec la troisiéme partie, on quitte ’'espace euclidien de la physique
statistique pour I’espace de Minkowski de la théorie quantique relati-
viste. L’essentiel du formalisme est déja en place, car les fonctions de
Green de la théorie quantique ne sont qu’un prolongement analytique
des fonctions de corrélation de la théorie euclidienne. Ceci est expliqué
au chapitre VIII, dans le cas de la mécanique quantique ordinaire.
Alors que les intégrales fonctionnelles avaient été jusqu’a ce point
utilisées de fagon systématique, le chapitre IX ouvre une bréve
parenthése pour exposer la quantification canonique, tandis que dans le
chapitre suivant est rassemblé I'essentiel des résultats indispensables
pour les applications a la physique des particules... s’il n’existait que des
particules de spin zéro ! Enfin la quatrieme partie introduit les théories
de jauge : on y décrit Ia quantification du champ de Dirac et du champ
électromagnétique (chapitre XI). L’électrodynamique quantique est
étudiée de facon assez détaillée au chapitre XII, tandis que le chapi-
tre XIII contient une introduction aux champs de jauge non abéliens.
Le livre se conclut par un bref aper¢u des théories de jauge sur réseau,
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ce qui permet de faire une synthese de Dessentiel des concepts
introduits dans I’ensemble de I’exposé. Le lecteur intéress€ uniquement
par P'aspect « théorie quantique des champs » pourra commencer au
chapitre V et sauter dans le chapitre VII le paragraphe A et les
passages plus spécifiquement consacrés aux phénoménes critiques.

Comme j’ai voulu écrire un livre d’introduction, et non de référence,
j’ai été amené dans certains cas a renoncer a des démonstrations
générales trop complexes pour les remplacer par des exemples illustra-
tifs. J’ai également choisi d’exposer la plupart des calculs de fagon trés
détaillée ; jespere que cela ne masquera pas la physique sous-jacente.
Enfin un certain nombre de sujets importants ont été omis, afin de
garder une dimension raisonnable a ce livre ; c’est le cas par exemple de
la solution exacte du modéle d’Ising a deux dimensions, des lois
d’échelle pour I'équation d’état, des invariances (Lorentz, symétries
discretes), des développements en produits d’opérateurs, des anoma-
lies, de I'approche géométrique aux théories de jauge, etc. Le lecteur
trouvera ces sujets exposés de facon excellente dans les livres ou articles
cités en référence. De facon générale, j’ai plutdt insisté sur les
méthodes, et donné assez peu de détails sur les systemes physiques
utilisés pour illustrer ces méthodes.

Quelques notions de mécanique statistique suffisent pour aborder la
premiére partie. En dehors de certains passages ou le volume des
calculs devient assez important, I’essentiel des trois premiers chapitres
peut d’ailleurs étre enseigné en fin de maitrise, comme complément a
un cours de mécanique statistique. La seconde partie ne fait appel a
aucune notion avancée ; cependant les calculs sont parfois un peu longs.
Enfin des connaissances de mécanique quantique, au niveau d’un cours
de maitrise, sont indispensables pour les deux derni¢res parties.
Quelques notions élémentaires sur les fonctions de variables
complexes, sur la théorie des groupes et sur la physique des particules
élémentaires faciliteront également la compréhension de ces deux
parties.

L’exposé est accompagné de 120 exercices de difficulté trés variée.
Certains sont de simples applications du cours, d’autres peuvent étre
de petits problemes ouvrant la voie a des développements nouveaux.
Yai essayé (sans toujours y parvenir), d’éviter le style « Démontrer
I’équation (36) » en donnant des énoncés détaillés, des indications de
solutions ou des réponses partielles ; dans certains cas le renvoi a une
référence permettra au lecteur de vérifier ou de compléter sa solution.

Un certain nombre de livres et d’articles de revue ont été rassemblés
dans les références générales. Ce sont ceux qui m’ont été les plus utiles
dans la préparation de cet ouvrage, et aussi ceux qui, & mon avis, seront
les plus facilement accessibles au lecteur. Il était évidemment hors de
question de donner une bibliographie complete et, selon la formule
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consacrée, j'adresse mes excuses anticipées a4 ceux de mes collégues
dont le travail n’a pas été convenablement cité.

Ce livre est issu de cours de troisieme cycle, enseignés sous des
formes diverses dans le DEA de Physique Théorique (Marseille-Nice),
dans le DEA de Physique de la Matiere Condensée (Nice) et dans le
Magistere de Constantine. Je suis trés reconnaissant aux étudiants dont
les remarques ont été précieuses dans la mise au point de ce livre.
Victor Alessandrini a lu P'intégralité du manuscrit et m’a fait bénéficier
de remarques trés pertinentes, en particulier sur Porganisation générale
de Pouvrage. J'ai également bénéficié des critiques et suggestions de
E. Brezin, J. P. Provost, J. L. Meunier et F. Guérin. P. de Giovanni
m’a fait part de remarques tres utiles sur le texte et les exercices. Je suis
trés reconnaissant & Michele Leduc, qui a beaucoup fait pour que ce
livre paraisse. J’ai mis a rude épreuve la patience de Chantal Djankoff,
qui a dactylographié de multiples versions du manuscrit avec sa
compétence et son efficacité habituelles, et je I'en remercie trés
vivement. Enfin, Joanna a partagé avec moi doutes et incertitudes
pendant la rédaction ; sans son soutien de tous les jours, ce livre
n’aurait pas pu étre écrit.

Nice, décembre 1986
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Notations et conventions

En régle générale, j’ai choisi de respecter les notations consacrées par
I'usage, ce qui a conduit inévitablement & quelques collisions : ainsi §
désigne l'action et la matrice S, B l'inverse de la température, un
exposant critique et la fonction de Callan-Symanzik... J’espére que le
contexte permettra d’éviter toute confusion. Les passages en petits
caractéres sont soit des digressions, soit des développements un peu
techniques, qui peuvent étre sautés en premicre lecture.

En ce qui concerne la terminologie, j’ai utilisé la traduction littérale
de I'anglais « momentum » et utilisé « moment » au lieu de la correcte
(mais longue) « quantit¢ de mouvement » (« impulsion » ayant une
autre signification). Je me suis permis quelques anglicismes (volontai-
res... on en trouvera slrement d’involontaires) quand la version
frangaise n’avait absolument pas cours : n’ayant jamais entendu pronon-
cer « paramétre de coupure » ou C.D.Q., jai utilisé « cut-off » et
« QCD ». La traduction de « relevant » et « irrelevant » par « essentiel »
et « inessentiel » a été empruntée a Cl. Itzykson.

La sommation sur les indices répétés est de régle dans I'ensemble du
livre :

a; bi = Z a; bi .
i
Les notations des deux derniéres parties sont en regle générale celles

du livre d’Itzykson et Zuber. En particulier la métrique de Minkowski
est :

x?=x}-x> ou g*’ =diag (1,-1,-1,-1).
(Etant donné les passages fréquents entre espaces euclidien et de
Minkowski, le choix x> = x* — x et sans doute été préférable, mais on

ne change pas aussi facilement des habitudes de vingtans!) Les
matrices de Dirac sont définies par :

{y*, y"y =y vy +y ¥yt =2g"".
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Les quelques différences par rapport aux notations d’Itzykson-Zuber
sont les suivantes :

— les propagateurs (Ag, S, ...) difféerent par un facteur i,

— la normalisation des spineurs de Dirac est au = 2 m,

— les générateurs des algébres de Lie sont choisis hermitiques.

Les nombres décimaux ont été représentés dans cet ouvrage avec un
point décimal et non avec une virgule décimale.



PREMIERE PARTIE

Phénomenes critiques






CHAPITRE 1

Introduction aux phénomenes critiques

Ce premier chapitre est une introduction élémentaire aux modeles et
méthodes qui seront utilisés par la suite. La transition ferromagnétique,
décrite sommairement au paragraphe A, servira de prototype a toutes
les transitions de phase du second ordre et permettra d’introduire les
notions de symétrie brisée et de paramétre d’ordre. Le modéle
fondamental du ferromagnétisme, ou modéle d’Ising, est exposé au
paragraphe B et résolu dans un cas élémentaire. L’importance de ce
modele est due & I'existence d’une solution exacte a deux dimensions,
présentant une aimantation spontanée. Le paragraphe C est consacré a
une premic¢re approche aux méthodes du champ moyen, qui reste
encore a I’heure actuelle une des méthodes d’approximation les plus
utilisées. Cette approximation nous conduira a définir une premiére
série d’exposants critiques ; la liste sera complétée au paragraphe D
lorsque auront été définies les fonctions de corrélation. Enfin une
description qualitative des phénoménes critiques au paragraphe E
permettra de définir, en premiére approximation, la notion d’invariance
d’échelle et son rapport avec le comportement de la théorie dans une
dilatation.

A. TRANSITION FERROMAGNETIQUE

L’objet de la premiere partie de ce livre est 1’étude des transitions de
phase du deuxiéme ordre (ou de deuxieéme espece) qui sont aussi
appelées phénomenes critiques pour des raisons expliquéés au paragra-
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phe E. Pour fixer les idées, je me limiterai au cas de la transition
ferromagnétique-paramagnétique, qui est exemple le plus familier de
transition de phase du deuxiéme ordre. Les traits généraux de cette
transition peuvent en effet se transposer a toutes celles du deuxiéme
ordre. Le ferromagnétisme est un phénomene trés complexe, et je me
contenterai d’une description schématique, en renvoyant par exemple
au livre de Kittel pour aspect « physique du solide » de ce phénomene.
Certains corps (fer, nickel, cobalt...) peuvent étre aimantés a la
température ordinaire. D’un point de vue microscopique, cela veut dire
que des électrons d’une couche interne incompléte ont leurs spins
quasiment alignés dans la méme direction. Comme a chaque spin est
associé un moment magnétique, cet ‘alignement implique que tous ces
moments magnétiques s’ajoutent et construisent un aimant macroscopi-
que.

Lorsque I'on chauffe un ferromagnétique au-dessus d’une tempéra-
ture 7, de lordre de 10°K, appelée « température de Curie »,
I'aimantation disparait, et le corps devient paramagnétique. II est facile
d’imaginer intuitivement que la tendance a 'alignement est due a une
interaction entre spins qui le favorise. Cependant, a haute température,
'agitation thermique tend & le détruire, provoquant ainsi la disparition
de 'aimantation. Cette explication, qui contient une partie de la vérité,
est cependant trés loin d’épuiser le sujet, et I'un des problémes
fondamentaux de la physique statistique a été précisément de montrer
qu'une transition de phase se produit effectivement.

En toute rigueur, la discussion qui va suivre s’applique non pas a un
échantillon ferromagnétique, mais & un «domaine» (de taille
~ 1072 mm) dans un tel échantillon (je renvoie a nouveau au livre de
Kittel pour P'explication de ce qu’est un domaine). A une température
supérieure a T, le domaine n’est pas aimanté (de méme que I’échantil-
lon) ; si ’'on redescend au-dessous de T, le domaine est aimanté (tandis
que I’échantillon, qui est formé de nombreux domaines, peut trés bien
avoir une aimantation totale nulle). L’aimantation .# du domaine crofit
quand la température décroit, et est donc maximale & T'= 0. Dans ce
cas tous les spins sont alignés dans la méme direction. Lorsque
0<T<T, il yaune tendance des spins a s’orienter dans la méme
direction, mais l'agitation thermique n’autorise qu’un alignement
partiel (figure 1) :

=0 BRREREEE
o<7<7. X/t AN HNA
r-1.. /S\/XNPL/ N

Figure 1.
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o l T
Figure 2. Comportement qualitatif
de 'aimantation.

La courbe de la figure 2 donne lallure de .# en fonction de la
température, en l’absence de champ magnétique extérieur: .# est
appelée aimantation spontanée, puisqu’elle n’est induite par aucun
champ magnétique extérieur. On notera la tangente verticale a
T=T.

L’existence d’une aimantation spontanée est a priori un phénomene
remarquable : en effet le hamiltonien d’interaction des spins est
invariant par rotation : aucune direction d’espace n’est privilégiée. Pour
T = T,, aucune direction d’espace ne peut étre distinguée dans I’échan-
tillon ferromagnétique. Au contraire, pour T < 7, une direction
d’espace, celle de l'aimantation, se trouve privilégiée. L’état du
domaine n’est plus invariant par toute rotation, mais seulement par des
rotations d’axe paralléle a la direction de I'aimantation. Autrement dit
le groupe de symétrie de la phase basse température est un sous-groupe
de celui de la phase haute température. On appelle ce phénoméne
brisure (spontanée) de symétrie. L’aimantation .#, qui est nulle dans la
phase haute température et différente de zéro dans la phase basse
température, est appelée paramétre d'ordre de la transition. Le
phénomene de brisure de symétrie et la notion de parametre d’ordre se
retrouvent dans toutes les transitions du deuxi¢me ordre.

On peut s’étonner de I'existence d’une F
direction privilégiée alors que rien ne L
permet a priori de la choisir : en fait la ]
plus petite inhomogénéité ou le plus petit A7
champ magnétique résiduel permettent de // I/

définir une direction (pensez a un baton
cylindrique vertical sur lequel on appuie
avec une force F verticale dirigée suivant VY
l'axe (figure 3): lorsqu’on appuie assez .k
fort, le baton finit par fléchir, ce qui - SL 7
privilégie une certaine direction, alors que (g
la situation est a priori parfaitement inva-
riante par rotation autour de ’axe : on a affaire 4 une symétrie brisée).

Figure 3. Symétrie brisée.
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B. MODELE D’ISING

B.1. Description du modéele

Suivant une stratégie familiere aux physiciens, nous allons essayer
d’établir un modeéle pour le ferromagnétisme, en simplifiant la situation
réelle, tout en essayant de conserver les traits qui paraissent fondamen-
taux dans le ferromagnétisme. Etablir un modéle revient a chercher le
meilleur compromis entre deux exigences contradictoires :

e obtenir des équations suffisamment simples pour pouvoir étre
résolues si possible analytiquement, ou a défaut numériquement sur un
ordinateur ;

e ne perdre en cours de route (c’est-a-dire dans le processus de
simplification) aucune des propriétés essentielles de la physique du
phénomene que l'on veut étudier.

Ce qui parait essentiel dans le ferromagnétisme est I'interaction entre
spins qui tend a les aligner. On peut raisonnablement espérer qu’il est
légitime de remplacer chaque atome de ferromagnétique par un
électron responsable du ferromagnétisme. La premiére étape de la
modélisation consiste donc a décrire un ferromagnétique par des
électrons placés aux nceuds d’un réseau, le réseau cristallin initial. Pour
simplifier la discussion (mais ce n’est pas essentiel), je prendrai en
général le cas d’un réseau cubique.

L’interaction entre spins est a courte portée : deux spins séparés de
dix fois le pas du réseau ont une interaction négligeable. La deuxi¢me
approximation va consister a écrire pour les spins une interaction entre
plus proches voisins: sur un réseau a deux dimensions (plan,
D = 2) un spin a quatre plus proches voisins, et six sur un réseau a trois
dimensions (D = 3) (figure 4 ; dans toute la suite du livre D désignera

i 1
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D@D - 1 " B
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Pany ! )2 7N S [ S A
\J/ ! Pid [
[P (__ .
/,, /’@
. -

D=3
Figure 4. O = plus proches voisins du spin @
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la dimension de Pespace. Un plan a pour dimension D = 2, Pespace
ordinaire D = 3). A nouveau on peut espérer ne rien perdre d’essentiel
dans cette approximation.

Le hamiltonien d’interaction le plus simple qui tend a aligner les spins
est :

H=-J Y o0 1)
<>

ol J, la constante de couplage, est une constante positive et les
o; sont des matrices de Pauli ; la notation )"  indique la sommation
<i >
sur les plus proches voisins. Le hamiltonien (1) est celui du modéle de
Heisenberg quantique. Cependant on peut montrer que les effets
quantiques sont sans importance au voisinage immédiat de 7., sauf si
T, = 0. On pourra donc remplacer les matrices de Pauli o; par des
vecteurs classiques S; de longueur 1 ; ceci donne le modéle de Heisen-
berg classique.

Ce modgle est encore trop complexe : on n’en connait pas de solution
analytique (il sera étudié au chapitre IV par la méthode du groupe de
renormalisation dans le cas D = 2) et son étude sur ordinateur est
délicate. C’est pourquoi on effectue une approximation supplémentaire
(1a derniére !) : on remplace les vecteurs S; par des nombres S; pouvant
prendre deux valeurs :

Sl:+1 ou Sl=_1

Les spins sont donc toujours paralleles a un axe fixe, et deux
orientations (spin en haut: §; = + 1, spin en bas: §; = —1) sont
possibles le long de cet axe.

A TI'époque (1920) ot Lenz a proposé ce modéle comme sujet de
thése a son étudiant Ising, il n’existait strictement aucun moyen de
controler cette approximation. On sait aujourd’hui que le modele
d’Ising est qualitativernent un bon modele du ferromagnétisme, mais
que certaines prédictions sont quantitativement inexactes. En effet, dans
le modele de Heisenberg, I’aimantation est un vecteur, et il faut trois
nombres (par exemple son module et deux angles) pour la définir : on
dira que la dimension du parameétre d’ordre n vaut 3 : n = 3. Dans le cas
du modele d’Ising, la direction de ’aimantation est fixée, et il suffit d’un
nombre (algé€brique) pour la définir: la dimension du paramétre
d’ordre est n = 1 (*). Or les exposants critiques (définis au paragra-

(*) Par souci de simplicité, je me limite aux paramétres d’ordre de type vectoriel. Pour
une définition plus générale on pourra consulter N. Mermin, « The Topological Theory of
Defects in Ordered Media », Rev. Mod. Phys. 51, 591 (1979).
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phe C) dépendent de n, ce qui introduit une différence quantitative
entre les deux modeéles. A deux dimensions (D = 2), la différence est
méme qualitative : le modele d’Ising exhibe une aimantation spontanée,
mais non celui de Heisenberg (chapitre IV).
La discussion qui précéde permet d’écrire le hamiltonien H du
modeéle d’Ising :

<Li>

et donc la fonction de partition Z (T = température absolue, k = cons-
tante de Boltzmann)

Z:Ze <l»zl> . (3)

ou la premiere somme porte sur toutes les configurations, c’est-a-dire :

r-3 33 “

8] Si=x18==x1 Sy==x1

g’il y a N sites sur le réseau. Le nombre de termes de la fonction de
partition est 2V,

B.2. Mode¢le d’Ising 4 une dimension

Pour se familiariser avec le
modele, il est intéressant d’exami-
ner un cas trés simple, celui d’un

¢ as 11 . A A e 4 A |
réseau linéaire : N spins sur une 1T 1T ¥ Ty
droite. On est donc dans le cas s, S, Sy
D =1 (figure 5). Calculons la fone-
tion de partition a partir du hamil- Figure 5.
tonien

N-1

=1

J N-1

7 - ze—ll/szzeﬁlglslsl“: _leKS,S,H

[
o

151 18] [s1) ¢

ou Fon a posé K =.J/kT.
L’identité :
eKSI Si

=ChK+S,S,+IShK
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permet de récrire Z :

Z=(chl<)"'—lzNﬁ1 (1+S88,,thK). %)

(5 I=1

Une méthode fréquemment utilisée en mécanique statistique est celle
du développement haute température : lorsque T — oo, on cherche a
développer la fonction de partition sous forme d’une série de puissances
d’un paramétre « (T), ot « (T) - 0si T — oco. Dans le cas présent, th K
est un tel parametre : th K = th (J/kT) —» 0 quand T — co. Essayons
donc un développement en puissances de th K :

[TA+S S, 1thK)=1+thKY (S5)+ (thK)* Y (S588) +---.
(6)

On peut associer a chaque terme du développement un graphe ; par
cxemple au terme :

\ I N N . 1

(th K)° (S, S3)(S4 S5)(Ss5 Se) '

: S, 8, Sy S S5 S5 S, S
correspondra le graphe de la
figurc 6, ot un trait épais (liaison)
joint les spins plus proches voisins
apparaissant dans le développement. Dans la somme sur les configura-
tions, isolons par exemple celle sur Sy :

S= ¥ [T @Y

5] Sa==1

Figure 6.

Lorsque S, change de signe, le terme entre crochets change également
de signe, et tous les termes de la somme sur les configurations
s’annulent deux & deux. Pour que cette somme donne un résultat non
nul, il est nécessaire que de chaque spin parte un nombre pair (0 ou 2)
de liaisons. Seul le premier terme de (6) donne un résultat non nul (le
développement haute température se réduit a2 un seul terme) et :

Z=2N(ch K1, 7

La fonction de partition donne accés a toutes les fonctions thermody-
namiques, et permet en particulier de décider de I’existence éventuelle
d’une transition de phase. 1l faut cependant faire la remarque suivante :
pour un systeme fini, la fonction de partition est une somme finie de
fonctions analytiques de la température (pour 7 # 0); I’énergie libre
F = —kTInZ est aussi une fonction analytique de 7, Z étant une
somme de termes positifs. Une transition de phase correspond a une
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singularité des fonctions thermodynamiques, et avant de se prononcer
sur I’existence d’une transition, il faut passer a la limite thermodynami-
que N — o0 ; en effet, d’aprés argument précédent, il est impossible
de voir mathématiquement une transition dans un systéme fini.

On calculera par exemple I'énergie libre par spin F a la limite
thermodynamique :

.1 . kT
F= lim LF= lim <———an)
N—MIJN N N
. ; ®
— — kTl <2chﬁ).

F est une fonction analytique de T (sauf pour T = 0) et le modéle
d’Ising ne présente pas de transition de phase en dimension 1. Ce résultat
a été généralisé par Peierls : en absence d’interactions a longue portée,
un systéme unidimensionnel ne peut pas présenter de transition de
phase.

B.3. Fonction de corrélation du modéle d’Ising a4 une dimension

Passons maintenant au calcul de la fonction de corrélation de deux
spins S; et S;, qui est par définition la valeur moyenne du produit
(8; §;) (*). La fonction de corrélation permet de mesurer I'influence de
lorientation fixée d’un spin particulier, disons ;. Comme I’interaction
tend 2 aligner les spins, un spin S; voisin de S; aura tendance a prendre
la méme orientation que S; ; cependant cette tendance est combattue
par l'agitation thermique, qui a pour effet de décorréler les spins.
Qualitativement, on s’attend a trouver une corrélation qui décroit avec
la distance entre S; et §;; a distance fixée, elle sera d’autant plus
importante que la température est basse (I’argument n’est correct a
toute température qu’en I’absence de transition de phase. Pourquoi ?).

La valeur moyenne (S;S;) se calcule a l'aide d’'une moyenne
statistique standard :

(5,5, =%Zs,. S; e H/KT

1511
_1 N-1 N
=~ h K'Y S ] (1+S8,1thK).

(511 I=1

(*) Dans le cas général, il faut retrancher (S;» {S;) :cf. paragraphe D.
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Aux facteurs S; et S; a
I'extérieur du produit on
associe une liaison supplé-
mentaire, et 4 nouveau le
seul terme non nul sera tel
que de chaque spin parte

Modele d’Ising

1

A

S 5

S.

1

Figure 7.

S,

7

Sy
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un nombre pair de liaisons (figure 7). Le résultat pour (S;S;) est:

(S Sj) :%(ChK)N_12N(thK)|i—f| = (thK)li-il

<Si S].> —e- li-illmthK] _ o~ [i~j{inth J/kT)

©)

La fonction de corrélation décroit exponentiellement avec la distance

i —j| (figure 8) :

]
LALS: S
). i 1 L I i i 4 i
-5 -4 -3 -2 -1 1 3 4 5
0
Figure 8. (S;5;) en fonction de (V —j).

Si a est le pas du réseau, la distance en cm entre les spins

SietS;estali —j| =r;;

(S8 = o™/

la longueur de corrélation & sera définie par

(10)

et dans le cas du modele d’Ising a une dimension, I'équation (9) donne :

£

a

" [inth J/KT|

(11)

L’expression (11) montre que la longueur de corrélation décroit
quand T augmente ; elle tend vers zéro quand T — o0, et vers I'infini
quand T — 0, ce qui confirme I’argument intuitif précédent. On note
aussi que I'expression (9) confirme I'absence d’aimantation spontanée :

lim
[i-jf -

(Si 8y = (Siy(S;y = ($H?=0.
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B.4. Mode¢le d’Ising a deux dimensions

La fonction de partition et sa limite thermodynamique ont été
calculées exactement & deux dimensions (D = 2) par Onsager en 1944.
Cette « résolution du modéle d’Ising » constitue un véritable tour de
force mathématique, et méme aprés des simplifications obtenues
ultérieurement, le calcul est trop long pour pouvoir étre exposé ici. Il
n’existe pas a I’heure actuelle de solution exacte pour le modéle d’Ising
4 deux dimensions en présence d’un champ magnétique extérieur, et
pas de solution non plus & trois dimensions, méme sans champ
magnétique extérieur.

La solution d’Onsager prouve lexistence d’une transition ferroma-
gnétique a deux dimensions. La température de transition 7, est donnée
par :

sh2K,=sh 2J/kT,)=1
ou: '
kT, = — 29
C In(1++2)
La chaleur spécifique diverge comme In |T — T,| au voisinage de la

température de transition et la valeur moyenne My = (S) d’un spin
définie par :

~2.277. (12)

My= lim fim [%zﬁxsg]

Bo0*Noow
a pour expression :

My = [1 —sh (QJ/kT) “]'8.

Le point important est qu’au voisinage de T,, M, (et donc .#) se
comporte comme (T, — T)"®:

My~ (T, TY® (13)

C. CHAMP MOYEN

C.1. Equation du champ moyen

La solution du modéle d’Ising étant complexe ou inaccessible, il est
utile de trouver des méthodes d’approximation. La méthode de base,
proposée par Weiss en 1907, est celle du champ moyen (ou champ
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moléculaire). Cette méthode n’est pas du tout réservée au modéle
d’Ising, et elle continue a étre appliquée dans des travaux récents : dans
I’étude d’'un modele de transition de phase, la premiére réaction est
bien souvent d’essayer ’approximation du champ moyen.

L’approximation repose sur l'idée suivante : considérons un spin
particulier S; et admettons que pour calculer son énergie E; on puisse
remplacer tous les autres spins par leur valeur moyenne (S;) : on est
alors ramené 4 un probléme classique de paramagnétisme. Il sera
commode de placer le systtme de spins dans un champ magnétique
extérieur. Un spin classique est un vecteur S, auquel est associé un
moment magnétique p = uS. L’énergie d’un tel spin dans un champ
magnétique B vaut — u - B = — uS - B. Dans le cas du modéle d’Ising,
le champ B a une direction fixe (celle des spins), et I'énergie s’écrit
simplement — wSB. Le hamiltonien dans un champ magnétique
devient :

<Hi> i

et énergie du spin §; & I'approximation du champ moyen est donnée
par :

j

Selon que le spin est dirigé vers le haut (4) ou vers le bas (—) nous
aurons des niveaux d’énergie E;, et E; _ :

E,=-JY(S)-uB=—-qgJM—nB
i
Ei_ =7 (S) +mnB=qg/M+ pB
i

ou M est la valeur moyenne de S;: M = (S;) et g le nombre de plus
proches voisins. Le calcul classique du paramagnétisme donne pour la
valeur moyenne de S, :

4 (@M+ uB
() = th (——_—_kT ) .

Tous les spins étant équivalents, (S;) doit aussi étre égal a
M : c’est la condition d’autocohérence de 'approximation ; on obtient
donc I’équation :

Mzth<M)

kT
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qu’il est commode de récrire :

_9 nB
_kTM+kT . (14)

th‘lM(z—%lnl“LM)

1-M

Cette équation est 'équation fondamentale de I'approximation du
champ moyen, et la suite du paragraphe consiste a en déduire les
conséquences.

C.2, Transition ferromagnétique en champ moyen

L’équation (14) est une équation transcendante et doit étre résolue
numériquement. Une idée qualitative des solutions peut étre obtenue
par une résolution graphique ; la, ou les solutions, sont données par
I'intersection de la droite % M + _]p;? avec la courbe th™! M (figure 9).
Il est utile de rappeler que la courbe th™! M a deux asymptotes
verticales 8 M = =+ 1 et que la tangente & 'origine a une pente égale a 1.

Le graphique de la figure 9 montre que pour B = 0, il peut y avoir
trois solutions, mais les solutions telles que M < 0 sont métastables ou
instables (exercice I1.2). La solution physiquement acceptable corres-
pond a une aimantation ayant méme orientation que le champ.

Lorsque B - 0*, comme la pente de la tangente a lorigine de
th~! M est égale a 1, la solution tend vers une valeur finie positive

My # 0 lorsque

T est inférieur a

aurait obtenu — M, pour %> 1.) L’approximation du champ moyen

prédit donc une aimantation spontanée + M, ; on remarque en passant
le phénomene de brisure de symétrie : les deux orientations des spins
sont équivalentes mais & basse température I’aimantation spontanée
privilégie I'une de ces orientations. Il suffit d’une modification infinitési-
male du champ magnétique pour obtenir — M, plutét que + M,. La

solution M, = 0 est instable si % -1,

‘Q o

»
N~

est supérieur a 1, et vers My =0 lorsque

. (En partant d’un champ magnétique B <0, on

En résumé, Papproximation du champ moyen prédit en champ
magnétique nul

e une aimantation spontanée # 0 si T < T, = q—k] ;
e une aimantation spontanée =0 si T'> T,.
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La température de transition est donc :

TC=‘1_kJ. (15)

I
th™! M4 !

| 4

Y oy, BB
kM kT ,
I
(T>T,) :
|
{
1
|
qJ) |
kTM :
|
|
]
|
I
th" ' M :
|
[}
- M, : A,M
-1 + My+ 1

O sol. physique

O sol. non physiques,
1 instables ou

" métastables

Figure 9. Solution graphique de (14).
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C.3. Comportement au voisinage de la transition

Dans la suite du paragraphe, nous résoudrons approximativement
I’équation (14) au voisinage de T, pour B petit. Dans ces conditions
P’aimantation est petite (M < 1) et on peut utiliser le développement en
série de th™! M :

th‘1M=M+%M3+O(M5). (16)

Aimantation en champ nul

Définissons la « température réduite » ¢ :

T-T, T T
=L Lo o141,
T g Tt

L’équation du champ moyen devient :

M= (1+t)<M+%M3>

soit :

Au voisinage de T,, 'aimantation spontanée se comporte donc en
(Tc - T)I/Z :

My~ (T, - T)"”. (7
La courbe donnant M, pour toute valeur de 7" peut étre obtenue par

résolution numérique de 1’équation (14) (figure 10).

M,

12
T,

(4

Figure 10. Aimantation en fonction de T.
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Susceptibilité magnétique en champ nul

(@ T=T,

Pour T voisin de T,, mais T # T, et B — 0 le terme en M? dans (16)
peut étre négligé :

B
M=(0Q+0)M-¥
(1 +1) kT,
soit :
uB
M=—
kK(T-T,)

L’aimantation totale .# vaut NuM = u > NB/(T — T,) et la susceptibi-
lité magnétique x en champ nul :

_aM ) wIN
3B [B-0 k(T-T.)

La susceptibilité se comporte donc en (T — T,)!:

x ~ (T—-T)! (18.a)

() T<T,

Dans ce cas il faut tenir compte de I'aimantation spontanée
M,, avec M= —3¢. On écrit:

M=M0+8.

Négligeant des termes d’ordre supéricur ’équation (14) devient :

1 B
My+e=(1+0)(Mo+e)+3 Mo+ e =

e étant d’ordre B (B — 0), les termes en ¢ et &> sont négligeables et on
trouve :

f__—MB . _ __Np?
2K(T—T,) X = 2k(T.—T)

et a nouveau :
x ~ (T, — T)‘1 . (18.b)

La loi de puissance est la méme dans (18.a) et (18.b), mais le coefficient
numérique difféere d’un facteur 2.
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Isotherme critique

On se place & T = T, et on calcule B en fonction de .4 :

M=M+1M3—MB/kT =B = chM3
3 ¢ 3
d’ou :

B kT"//N 3
_ﬁ_( /Nw) .

On obtient cette fois la loi de puissance :

B~ 3. (19)

Chaleur spécifique en champ nul

A Papproximation du champ moyen, I'énergie interne E (valeur
moyenne du hamiltonien) se calcule immédiatement en champ magnéti-
que nul :

E:—%qJNMg T<T,

E=0 T>T,.

En effet chaque spin est remplacé par sa valeur moyenne M, et il y a
%qN paires de spins. Pour T < T,, mais proche de T,, on utilise

I'expression déterminée précédemment pour M, :

1 3(T,-T) 3
E_—quNTzikN(T—TC).

La chaleur spécifique C en champ nul est donnée par la dérivée de
E par rapport & T:

o

3
C == == .
a7 s 0=2 kN (20)
Comme C est évidemment nulle pour T > T, la chaleur spécifique est
discontinue, avec une discontinuité %kN alT=T,.

A nouveau on peut calculer C pour toute valeur de T par résolution
numérique de I'équation (14) (figure 11) :
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> T

Figure 11. Chaleur spécifique en fonction de T.

C.4. Exposants critiques «, B, vy, &

On constate expérimentalement que l’aimantation spontanée, la
susceptibilité, I'isotherme critique et la chaleur spécifique obéissent a
des lois de puissance au voisinage de T = T, et on définit des exposants
critiqgues (*) o, B, v, 8 (également appelés indices critiques)

C ~|T-T, " (21.a)
My~ (T, - T) (T<T,) (21.b)
x ~|T—=TJ" (21.¢)
B ~.° (T=T,). (21.d)

Les valeurs prédites par l'approximation du champ moyen sont:
a =0 (discontinuité de C) ; B =1/2; y=1; 8 =3.

Examinons maintenant d’un peu plus prés 'approximation du champ
moyen. A cette approximation on néglige toute fluctuation des spins,
puisque 'on remplace chaque spin par sa valeur moyenne. Avec la
formulation qui vient d’étre exposée, cette approximation est pour le
moment incontrdlable, et on peut simplement évaluer sa validité en
comparant aux résultats exacts (D =1 et D =2), ou numériques
(D =3).

(*) On définit parfois des exposants ', v', pour T < T ; par exemple :

x~(T-T)y": T=T,; x~(T,-Ty": T<T

c*

Il semble (et la théorie le confirme) que 'on ait toujours @ = a’, ¥ = ¥’ et ces exposants
primés ont été abandonnés.
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Pour D = 1, 'approximation du champ moyen est tout simplement
catastrophique : elle prédit une transition la ol nous venons de prouver
qu’il n’en existe pas ! (Il vaut la peine de remarquer que les exposants
critiques sont indépendants de D a I'approximation du champ moyen.)

La situation est un peu meilleure pour D = 2 ol nous savons qu’il
existe une transition. Toutefois a 'approximation du champ moyen la
température de transition T, est:

kT,=4J (g=4)
tandis que la solution d’Onsager donne :
kT, =2.27J.

De fagon générale I’approximation du champ moyen tend a favoriser
Papparition d’une transition de phase: & D =1, elle prédit une
transition 1a ot il n’y en a pas ; & D = 2 elle la prédit & une température
plus élevée que la température réelle. En effet les fluctuations,
négligées a I’approximation du champ moyen, s’opposent & I’apparition
d’une transition.

Il est intéressant de comparer les exposants critiques; pour
D =2 on compare aux résultats exacts (Onsager) et pour D = 3 aux
résultats numériques.

Exposant Champ moyen D=2 D=3
o discont. In |T-T, 0.01 =0.01
B 0.5 0.125 0.312 + 0.003
01 1 1.75 1.250 = 0.002
& 3 15 (*) 5.0 +0.05

On constate sur ce tableau que les résultats du champ moyen sont
d’autant meilleurs que la dimension de ’espace est grande. Intuitive-
ment on peut comprendre que négliger les fluctuations est une
meilleure approximation quand le nombre de plus proches voisins est
grand (q=6 pour D=3 et gq=2 pour D =1). Cependant, ce
raisonnement n’est pas entiérement correct, car c’est la dimension
d’espace qui compte : augmenter le nombre d’interactions ne change
pas les exposants critiques, ainsi qu'on le verra par la suite.

En fait Papproximation du champ moyen devient exacte lorsque
D — oo (les exposants critiques sont corrects dés D = 4 ; cf. chapi-
tre III), ou dans le cas d’interactions a trés longue portée : par exemple
si chaque spin interagit avec tous les autres spins du réseau, avec une

(*) En fait le résultat 8 == 15 est trés plausible (loi d’échelle) mais n’a pas été prouvé
analytiquement. Les calculs numériques donnent 8§ = 15.04 + 0.07.
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constante de couplage J/N (cf. exercice 3), on montre que la solution
exacte est identique a celle du champ moyen. Le nombre de spins qui
interagissent avec un spin donné est si grand qu’il est légitime de
remplacer S; par sa valeur moyenne M.

D. FONCTIONS DE CORRELATION

D.1. Définition, fonction génératrice

Nous avons déja introduit la fonction de corrélation de deux spins au
paragraphe B. Comme cet objet va jouer un role crucial dans toute la
suite, nous alions maintenant énoncer un certain nombre de définitions
et de propriétés utiles. Ce paragraphe est une introduction, sur un
exemple élémentaire, & des techniques qui seront développées de fagon
plus systématique au chapitre V.

Au paragraphe B, la fonction de corrélation Gj; de deux spins a €té
définie comme étant la valeur moyenne (S, §;). Cette définition est
satisfaisante lorsque (S;) =0, c’est-a-dire pour T=T, et B=0.
Lorsque (S;) # 0, dire que deux spins sont décorrélés implique que
(8 8y = (8) (S = M?. 11 est donc logique de définir G;; de fagon
générale par :

Gy = (S5 = (S8 | - @2

Si Ton suppose que G;; décroit exponentiellement (G;;~
exp(—r;;/§¢)), on trouve qualitativement le comportement de la
figure 12 pour T> T, et T< T, ((S7) = (1) =1).

G/

! G..

tj

T-T 1-M?

- —t

Ti; T

Figure 12.
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Il est utile de relier G;; & une dérivée seconde de la fonction de
partition Z[B;], calculée en présence d’un champ magnétique non
uniforme B, :

z151 - L eoxp (- (- w T5.5) ) 23)

[8%]

ol B = 1/kT(*) et Hy est le hamiltonien (2). La valeur moyenne
{S;) est donnée par :

1
(S =‘Z‘Zsiexp(—B<Ho—MZBksk>)
[Sk) k
soit :
1 oZ 1 alnZ
S0 = BuzsB, " Br 0B,

(24)

Continuons le processus en dérivant une seconde fois par rapport a

B;:

1

S5y =535, Sjexp(—B[HO— n ZBkSk]>
(Sk] k

soit :

1 1 8z
S. SN = =
S50 = Gy 258,95,

d’out I'on déduit :

G oL ®Z (1 ez\( 1 oz
YT (B ) Z 9B; 9B, BurZ 3B, BrZ 9B,
soit :
1 #mnZz
Gj=——soe——. (25)
' (B ) 9B; 3B;

La valeur moyenne (S;) et la corrélation G;; s’obtiennent par
dérivation de la fonction de partition ; on pourrait généraliser le
processus a des fonctions de corrélation de plusieurs spins (ce qui sera
fait au chapitre V). Pour cette raison Z[B;] est appelée jfonction
génératrice des fonctions de corrélation. On remarquera aussi que
dériver Z donne (S; S;), alors que dériver In Z donne directement
G;;, qui est appelée fonction de corrélation connexe. De fagon générale

(*) Ne pas confondre avec Pexposant critique 8. Il est impossible de respecter les
notations traditionnelles sans introduire un (petit) risque de confusion. Jai jugé
préférable de prendre ce risque, plutdt que d’introduire de nouvelles notations.
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(cf. chapitre V), le logarithme de Z, In Z, est la fonction génératrice des
fonctions de corrélation connexes. On notera également quz méme si le
champ magnétique physique est nul, il peut étre utile d’introduire un
champ magnétique fictif pour calculer les fonctions de corrélation a
laide de (25) ; il suffit de poser B = 0 dans le résultat final :

G 1 ¥InZz
ilp=0"— (BM)ZaBi aBj Boo

La fonction de corrélation posséde une propriété trés importante :
c’est aussi (a un facteur B pres) la réponse du spin S; a une variation
du champ magnétique au site j. Pour le montrer, il suffit de calculer
8(S;)/9B; a partir de (24) :

8¢Sy 1 #lmz
aB;  Bun dB; 3B,

BurG;. (26)

On remarquera que c’est bien la fonction de corrélation connexe
G;; qui intervient dans (26).

D.2. Théoréme fluctuation-dissipation
Soit .# 1’aimantation (ou moment magnétique total) :

M= TSy = ()

ou & = Z S; est le spin total. La dérivée %B'/z est donnée par :
i i

oM 3(S:)
28, ~ " L35
Pour un systéme macroscopique (N — o0 ), ou bien avec des conditions

aux limites périodiques, G;; est invariant par translation dans un champ
magnétique uniforme (figure 13). Tous les B; étant égaux a B,

= 3#22 Gij -

——— est donné par :
3B P

ol aﬂaBj 2
%5 ~ L3858 P* L%

On obtient un « théoréme fluctuation-dissipation » reliant la susceptibi-
lit¢ x a la fonction de corrélation :

X =Br’Y Gj=Br*({FH - (F)?)

i
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Gij = le

Figure 13.

la deuxiéme égalité montrant que x est toujours positive pour un
syst¢tme de spins (*). Lorsque la longueur de corrélation est petite par

rapport a la taille du systéme, I'invariance par translation permet
d’écrire :

X=NB,U~ZZGij (27)

la somme sur j étant en fait indépendante de i.

D.3. Mesure de la fonction de corrélation

La fonction de corrélation est un outil théorique intéressant, mais son
importance principale vient de ce que I'on peut la mesurer expérimenta-
lement. L’expérience consiste a diffuser des neutrons lents sur un
ferromagnétique. Le moment magnétique des neutrons interagit avec
celui des électrons, et 'amplitude de diffusion d’un neutron par un
€lectron au site i est proportionnelle au spin S;. Soit A 'amplitude de
diffusion par un spin situé & P'origine des coordonnées ; d’apres les
régles de la mécanique quantique (1), Pamplitude de diffusion
A; par un spin de méme orientation situé en r; au site i vaut :

ik-k')-r; A eiq-r,-

Ai = A 5]
ou k est le vecteur d’onde incident et k' le vecteur d’onde diffusé.

(*) Naturellement il existe des corps a susceptibilité négative (corps diamagnétiques),
mais le mécanisme d’aimantation est totalement différent.
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Comme de plus 'amplitude de diffusion est proportionnelle au spin

on trouve, aprés avoir effectué une moyenne statistique, que la section
efficace est proportionnelle a :

o= (|zsen

En remarquant que le terme (S;) (S;) de G;; ne contribue que pour
g =0, et en utilisant 'invariance par translation, on trouve que la

N

section efficace est proportionnelle a la transformée de Fourier
G(q) de la fonction de corrélation (q #0):

2 .

i

¢ ~N Y Ge" " = NG() (28)
j

(la somme sur j dans (28) est indépendante du site i). Notez que le
théoréme fluctuation-dissipation peut aussi s’écrire :

x~NG(q=0). (29)

D.4. Exposants critiques n et v

Au voisinage de T = T,, lexpérience montre que pour g <1/a
(a = pas du réscau) la fonction de corrélation est bien représentée par
une expression du type :

1

q "

G(q) = f@q¢) (g<t/a), (30)

la longueur de corrélation ¢ tendant vers linfini suivant une loi de
puissance si T —» T, :

E~|T-T| " (1)

La forme (30) de la fonction de corrélation sera rendue plausible au
paragraphe E, et justifiée au chapitre III.

Les équations (30) et (31) définissent les exposants critiques
m et v. La fonction f(x) posséde une limite finie pour x — oo, de sorte
que pour T =T,:

G@)~q **" (T=T,). (32)
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On peut maintenant repasser dans I’espace ordinaire par transformation
de Fourier inverse (cf. appendice A):

— qu —i-rf(qg)
G(r)= (Zw)De a e

Effectuons le changement de variables q = u/¢ :
dPu e ™ /9 f(u)
@m)° (gey " g7
_hG/E) h(r/§) _90/%)

‘§D+1-—2 rD+n—2(§/r)D+n’2—rD+n—2'

Gr)= 7 f

Comme la forme de G(q) est supposée valable pour g <1 /a, celle
obtenue pour G(r) le sera si r>aq:

G(r):M (r>a). (33)

rD+11~2

Lorsque r — o0, la fonction g(r/¢) se comporte exponentiellement :
g(r/€)~exp(—r/€). Pour T = T, la fonction de corrélation décroit
comme une puissance de r. Pour n < 2 (ce qui est le cas en pratique car
on trouve toujours 7 voisin de zéro), I'intégrale sur r de G (r) (ou bien
sa transformée de Fourier pour g = 0) diverge 4 T = T,. D’apres (27),
ceci implique aussi la divergence de la susceptibilité a3 T =7, Le
comportement qualitatif des fonctions G (r) et G(g) est donné sur la
figure 14.

(®)

Figure 14. Comportement qualitatif de la fonction de corrélation dans
Pespace ordinaire (b) et dans Fespace de Fourier (a).
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Loi d’échelle

Lorsque T T., G(0) est fini. Il est donc nécessaire que

f(g€) ~ (q&€) " pour compenser le facteur divergent g~ 2*". Ceci
q— 0

implique que G(0) ~ ¢~ "~ [T - T,|” v(2-m)
Mais G(0) ~ x (équation (29)), et I'exposant y est défini par (cf.
équation (21.c)) :
x~|T-T.] 7.

Par identification on obtient la relation entre exposants critiques, aussi
appelée loi d’échelle :

y=v2-m). (34)

Résumé des exposants critiques

Les équations (21), (30) et (31) définissent six exposants critiques a,
B, v, 8, met v qu’il est utile de résumer :

Chaleur spécifique : C~|T-T)

Paramétre d’ordre : M~ (T,-T) (T<T,)
Susceptibilité : x~|T-T.]"

Isotherme critique : B~ .° (T=T,)
Fonction de corrélation T = T,: G(q)~q 2*" (T=T,)
Longueur de corrélation : E~|T-T,| .

D.5. Transformation de Legendre

Introduisons un dernier outil, qui sera utilisé au chapitre suivant pour
I'étude des fonctions de corrélation, en généralisant une notion
familiere en thermodynamique, celle de transformation de Legendre.
En thermodynamique classique, la différentielle dF de I’énergie libre
est donnée par :

oF

dF = -SdT - .4 dB ; %:—@T.

On définit le potentiel thermodynamique (ou potentiel de Gibbs) I,
transformé de Legendre de F, par:

I'=F+ #B
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dr = —SdT+BdA# ; B =2oI /o],

Nous allons généraliser cette transformation au cas d'un champ
magnétique non uniforme B;; pour simplifier les notations, posons
B = u =1 et ignorons la dépendance par rapport a T qui ne joue
aucun r6le dans Pargument qui va suivre ; la relation (25) devient alors :

#?lnz W

G;; = =
Y~ 3B, 8B; 0B, 3B,

tandis que le potentiel I' sera défini par:

F— S M B~ W avec M= (8) =71
i iT

Dans ces conditions :

dr = Z Bi dMl
ce qui implique :
oI
B; = Fo
ilT
Examinons maintenant :
8B, ’r
aM;  aM; aM; "

Cette quantité n’est autre que linverse (au sens des matrices) de

G;; ; en effet :
]Z'aM,. oM, i = ;an 3B, ik

d’ol le résultat :

1 *r
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E. DESCRIPTION QUALITATIVE DES PHENOMENES CRITIQUES

Considérons un ferromagnétique & une température 7= T, On
observe des amas de spins en haut et des amas de spins en bas, la taille
de ces amas ¢étant de l'ordre de la longueur de corrélation & (en
moyenne : le systéme de spins fluctue, on trouve évidemment des amas
de spins de taille > £ et d’autres de taille < £ ; par ailleurs a I'intérieur
d’amas de spins en haut on peut trouver des ilots de spins en bas, etc.).
(On trouvera des simulations numériques trés instructives dans Particle
de Wilson dans Pour la Science.)

Diminuons la température en nous approchant de 7, La taille
moyenne des amas augmente (la longueur de corrélation augmente).
Lorsque T = T,, on trouve des amas de toutes les tailles possibles. A
I'intérieur de mers de spin en haut, on trouve des iles de spin en bas, a
I'intérieur desquelles on peut observer des lacs de spin en haut, etc. A la
température de transition, les fluctuations ont toutes les tailles possibles :
il W'y a plus d’échelle de longueur, ce que 'on exprime aussi en disant
que la physique est invariante d’échelle au point critique.

La transition de phase présente un aspect remarquable : nous
sommes partis d’une interaction a courte portée (entre plus proches
voisins), et nous découvrons des corrélations a longue portée (~ ¢) et
méme de portée infinie & T = T,. Ces corrélations rendent inopérants
tous les développements perturbatifs classiques, qui s’appliquent uni-
quement lorsque les corrélations ont une courte portée (quelques A). Ii
peut par exemple arriver que la théorie des perturbations se traduise
par l'apparition d’intégrales du type (cf. chapitre V) :

far

2 (36)

a

Dans cette intégrale, A est la longueur d’onde d’une fluctuation, limitée
évidemment par le pas a du réseau (condition de Brillouin). Ce résultat
montre que dans I’étude des phénomeénes critiques toutes les longueurs
d’onde comprises entre g et ¢ ont une égale importance : les fluctuations
de longueur d’onde comprise entre A =a et A =2a donnent une
contribution In2 a lintégrale, celles dont la longueur d’onde est
comprise entre A = 10° g et A = 2.10° a donnent aussi une contribution
In2 a Pintégrale. Comme £/a - o quand T — T, la théorie des
perturbations est inapplicable, car 'intégrale (36) diverge logarithmi-
quement pour les grandes longueurs d’onde.

Cette complexité posséde en revanche un coté positif : comme la
transition de phase est un phénomeéne coopératif & grande échelle, on
peut imaginer que certaines caractéristiques de la transition ne dépen-
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dent que de propriétés trés générales (dimension D de Pespace,
dimension n du paramétre d’ordre, symé-
tries du couplage des variables locales) et
non du détail des interactions. Cette pro-
priété est appelée universalité (*). Par

WV exemple les modeles d’Ising sur réseau
carré et sur réseau triangulaire possédent
les mémes exposants critiques, qui sont
des quantités universelles. Au contraire
une quantité comme la température de
Figure 15. transition dépend des détails de 'interac-

tion : elle n’est pas universelle.

Une autre propriété du point de transition vaut d’étre mentionnée :
le modele d’Ising en dimension 2 et sur un réseau carré n’est évidem-
ment pas invariant par rotation autour d’un axe perpendiculaire au plan
du réseau. De fait si on mesure la longueur de corrélation suivant une
direction #A, repérée par un angle « (figure 15), la longueur de
corrélation dépend de « ; par exemple :

>

fa=0) _ (%)
§la=m/4) In (ulﬂ>

1-v

ou v = th (J/kT). A haute température ce rapport est tres différent de
1. Mais quand on se rapproche de T,, ce rapport tend vers 1: la
longueur de corrélation est la méme dans toutes les directions et le
syst¢tme devient invariant par rotation.

v E(a =0)/&(a = w/4) £ lelong des axes
(en unité de a)
0.05 1.12 0.35
0.1 1.08 0.48
0.2 1.03 0.83
0.3 1.01 1.71
V2 -1=0414 1.00 0

De¢s que la longueur de corrélation atteint 2a, la violation de
I'invariance par rotation est inférieure a 1 %. Ceci suggere que le réseau
ne joue pas de role fondamental au voisinage de T, ce qui permettra
d’utiliser un modele continu par la suite.

(*) Une exception est le « modele a 8 vertex » de Baxter, ol les exposants critiques
varient continiiment.
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Les remarques qui précedent permettent d’essayer de deviner la
forme de la fonction de corrélation. L’isotropie au voisinage du point
critique permet d’écrire :

G(@)="h(r,a)

ol a représente 'ensemble des paramétres microscopiques de l'interac-
tion (pas du réseau, constantes de couplages), écrits sous une forme
telle qu’ils aient la dimension d’une longueur (*). Ecrivons le rapport
de deux fonctions de corrélation aux points r; et r, (r;, > a):

G(ry) rnon
Gm):¢<6’3> G7

o l'on a utilisé le fait que ¢ est une quantité sans dimension.
L’invariance d’échelle au point critique implique que ¢ ne peut pas
dépendre de g a T = T, (les chapitres suivants s’attacheront d’ailleurs a
définir la limite a — 0 du rapport (37)) :

G(”z)_ (E)
G(’l)_@ rn)

Cette équation exprime I'invariance d’échelle au point critique et peut
s’écrire :

G(r/s) = ¢ () G(r). (38)

Elle donne le comportement de la fonction de corrélation dans une
dilatation ; s est le facteur de dilatation. D’autre part on a la loi de
groupe :

G( Ers_z) =@ (5:5) G(r) = ¢ (51) ¢(s5) G(r)

ce qui implique que ¢(s) est une puissance: ¢(s)=s", dou
G(r) = cr™*. Ecrivant A = D — 2 + 7, on justifie le comportement en
loi de puissance au point critique :

1

G(r)~ ————rD_'“n .

Lorsque T est voisin mais différent de 7, on suppose qu’il existe une
longueur caractéristique, et une seule, la longueur de corrélation &

(*) Si un paramétre & a pour dimension L€ il suffit de prendre pour paramétre
pi/e,
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Dans ce cas, la forme de G(r) est fixée a (cf. équation (33)) :

r
G = 41LE) (9)
etg(x) » cquandx —» 0(¢ — o0 ). Ainsi, lorsque a < r < £, on retrouve
le comportement critique, ce qui est souhaitable car dans cette région
tout se passe comme si la longueur de corrélation était infinie.
Quelques explications, pour terminer, sur la dénomination « phéno-
meénes critiques ». Le diagramme de phase d’un corps standard (par
exemple 'argon) a la forme classique de la figure 16. Au point critique
(C), la distinction entre gaz et liquide disparait (la différence entre un
liquide et un gaz est seulement quantitative ; celle entre un solide et un
liquide (ou un gaz) est qualitative ; un solide posséde un ordre a longue
distance ; aussi n’existe-t-il pas de point critique sur la courbe séparant
le solide du liguide).

liquide

solide

Figure 16. Diagramme de phase.

A Tapproche du point critique, les fluctuations de densité sont de
plus en plus grandes. La longueur de corrélation de ces fluctuations
tend vers l'infini. La diffusion de la lumi¢re par les fluctuations de
densité devient trés importante lorsque la taille de ces fluctuations
atteint la longueur d’onde utilisée. Le fluide prend alors un aspect
laiteux (opalescence critique). Le phénomene est tres analogue a celui
de la transition ferromagnétique avec les correspondances :

fluctuation d’aimantation — fluctuation de densité
parametre d’ordre M - pr—rslprlpg) =

densité du liquide (gaz) )
diffusion de neutrons — diffusion de la lumiére
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A cause de cette analogie (profonde), on donne souvent aux
transitions de phase de deuxiéme espece le nom de phénomenes
critiques ; la température de transition 7, est souvent appelée fempéra-
ture critique.

Il existe méme une approximation de champ moyen pour les
propriétés du point critique : celle-ci n’est autre que I’équation de Van
der Waals (%).

EXERCICES

1) Symétrie brisée en mécanique

On considére un cerceau vertical de rayon a sur lequel peut coulisser sans
frottement un anneau de masse m. L’anneau est
relié au sommet A4 du cerceau par un ressort de
longueur au repos [, =a et de raideur C
(figure 17).

(a) Montrer que la position d’équilibre stable
est 6 = 0 quand la raideur du ressort C est telle
que Ca <2mg (g = accélération de la pesan-
teur).

(b) Montrer que si Ca=2mg il y a deux
positions d’équilibre stable.

Figure 17.

(¢) Tracer Pénergie potentielle U(6) de la masse m pour Ca = mg et
Ca = 4 mg, et discuter la forme des deux courbes.

2) Autre méthode pour le modele d’Ising D=1

Pour cette méthode, il est plus simple d’utiliser des conditions aux limites
cycliques : le spin N + 1 est identique au spin 1.

(a) Montrer que la fonction de partition peut s’écrire :

Zy = Z \/5152\/5253"'\/5,,51 = Tr (\/)N

18;1

ou V est la matrice :

En déduire que si N — o0, im Z}/Y = A, = 2¢ch K ou A est la plus grande
valeur propre de V.
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(b) Montrer qu’en présence d’un champ magnétique uniforme :

tim ZY/Y = eXch L+ [*X(sh LY + e~ 25]2; L = BB
N kT

(c) Calculer I'énergic interne et la chaleur spécifique en champ nul.

(d) Toujours en champ nul, calculer la fonction de corrélation (S; S;) en
utilisant la méthode de la question (a). On supposera que N — co.

3) Théorie du champ moyen et interactions a longue portée

On se propose de montrer que la théorie du champ moyen devient exacte
pour le modele d’Ising, lorsque fous les spins interagissent deux a deux de
maniére identique. Soit N le nombre de spins (N>1). I y a donc
N?%/2 paires de spins, et Iinteraction doit étre proportionnelle 2 1/N de telle
sorte que I'énergie soit proportionnelle a2 N.

(a) Le hamiltonien du modéele est donné par :

J
;:_NZSiSi; S, =+1; Sf=1
&

ol la somme porte sur toutes les paires (i, j) (et non pas sur les plus proches
voisins), et J est une constante. Montrer que P'on peut aussi écrire

[ (£) ]

(b) Soit M = (S§) laimantation par spin: — 1= M =< + 1. Montrer que la
dégénérescence d’un état d’aimantation M est :

N '
(%(1+M)>!<%(1—M))!

(¢) Montrer que la fonction de partition Z peut s’écrire

W(M) =

Z =Y W(M)e HOD/H ey

ol H(M) est la valeur du hamiltonien quand I'aimantation est M. Evaluer
Z en utilisant la formule de Stirling : n! =~ n"e™ " et en montrant que la somme
sur M peut étre approchée par le plus grand terme de la somme dans (1).
Montrer que ce terme est donné par le maximum de la fonction

—2F=JM?> kT (1 +M)In (1 + M)+ (1 =M)In(l - M)]. 2)

Quelle est 'interprétation physique de F ?

(@ En cherchant le maximum de — F, montrer I'existence d’une transition
de phase et calculer la température critique 7,. On pourra remarquer que
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th™!x =

%ln ( 1 tx ) pour retrouver I’équation caractéristique de la théorie
—-x

du champ moyen. Quel est le signe de F"(M,), ou M, est 'aimantation ?

(e) Montrer que pour M — 0, F a la forme prévue par la théorie de Landau
(cf. chapitre II) :

F(T) =F0+%B(T)M2+%C(T)M4

avec B(T,) = 0. Evaluer B(T) et C(T).

4) Chaleur spécifique a I’approximation du champ moyen

On se propose de déterminer non seulement la discontinuité de la chaleur
spécifique, mais aussi la pente de la courbe & T=T..

(a) En allant jusqu’a I'ordre M° dans le développement de th~! M, montrer
que Yaimantation M, en champ nul vaut :

My~~/—3t(1 + at)

et déterminer «.

(b) En déduire la pente de la chaleur spécifique a T, (figure 18) :

. dC
B = hm7 ﬁ .
T T;
b C(T) /
7
7
4
s
Ve
L/ -
7 T, T
Figure 18.

(¢) Quel est le comportement de la chaleur spécifique quand 7 — 0 ?

(d) Déduire de (b) et (c) une représentation graphique qualitative de
C(T) a I'approximation du champ moyen.
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5) Lois d’échelle

On suppose (ceci sera démontré au chapitre III) que la fonction de
corrélation obéit a la « loi d’échelle » :

G, B, r)=s"@*1-DG (sl/"t,syBB, r )
5

- T
(r= T ° et s est un nombre réel positif).
[

(a) Montrer que cette loi d’échelle peut étre récrite :

G(t,B,r) = r_(D’“"‘z)f(i1,———-|tBIA,——-|t|r~V )

(+1:t>0;-1:t<0;4=ryp).

(b) En utilisant le théoréme fluctuation-dissipation, montrer que la suscepti-
bilité x obéit a la loi:

(- B
x =170 (=1, |t|A> '

Retrouver la loi d’échelle: v = v (2 — 7).

(¢c) Obtenir le comportement de Pénergie libre F en remarquant que

e (25
aB* [ 1’

o]

F~ |t|24'7h<i 1,

It!“)'

(d) En éliminant A, en déduire :
a+2B+y=2; y=B(B-1).

(e) Montrer que 'équation d’état peut s’écrire sous la forme :
M t
B/ =f Bl/B8 :

(f) On verra au chapitre III que yz; = % (D +2—m). En déduire la loi
d’échelle: 2 —a = vD

(g) Les quatre lois: (1) y=v(2-7); 2} 2~a=vD; 3) a+28 +
vy =2; (4) v =B(3 -1) sont-elles satisfaites dans le cas du modele d’Ising
D =27
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NOTES ET REFERENCES

Pour une introduction générale a la physique du ferromagnétisme, on pourra consulter
Kittel, chapitre 15. La solution du modele d’Ising en dimension 2 est exposée par exemple
dans Landau-Lifschitz, chapitre 14. Un exposé trés clair de la théorie du champ moyen se
trouve dans le livre de F. Reif Fundamentals of Statistical and Thermal Physics, McGraw-
Hill (1965), chapitre 10, et une introduction aux corrélations dans Ma, chapitre 1. La
lecture de l'article de Wilson dans Pour la Science (octobre 1979) est particuli¢rement
recommandée, ainsi que celle de larticle de S. Brusch « History of the Lenz-Ising
Model », Reviews of Modern Physics, 39, 883 (1967).

() Cf. par exemple Messiah, chapitre XIX.
(3 Cf. Reif, chapitre 10.






CHAPITRE I1

Théorie de Landau

L’approximation du champ moyen étudiée au chapitre précédent
n’est pas toujours trés fiable, et on aimerait pouvoir évaluer I'effet des
fluctuations qui ont été négligées a cette approximation. La formulation
exposée au chapitre I a le mérite de la simplicité, mais I'inconvénient de
mal se préter au calcul des fluctuations. L’objectif de ce chapitre sera
d’établir une nouvelle formulation, qui rende possible un tel calcul, ce
qui nous conduira a la théorie de Ginzburg-Landau. Dans cette théorie,
on se donne un «hamiltonien» Hg [¢;] dépendant de variables
aléatoires ¢; définies sur les sites i d’'un réseau, la probabilité d’une
configuration [¢;] étant proportionnelle & exp (— Hgp[¢;]). La variable
aléatoire ¢;, appelée variable de champ, ou simplement champ, varie
de facon continue dans Pintervalle }— oo, + oo [; elle joue le role du
spin d’Ising du chapitre I qui, lui, ne pouvait prendre que deux valeurs :

; = = 1. Le parametre d’ordre reste de dimension 1 ; la généralisation
a un parametre d’ordre de dimension n sera étudiée ultérieurement
(11I-E.3).

Il n’est pas évident a priori que la théorie de Ginzburg-Landau ait
une relation quelconque avec le modele d’lsing; contentons-nous
d’affirmer pour le moment que les deux théories appartiennent a la
méme classe d’universalité, en renvoyant la justification de cette
affirmation au chapitre suivant. En réalit¢, la probabilité
exp(— Hgr[¢;]) ne décrit un systtme de spins qu’au voisinage d’une
transition de phase. On peut d’ailleurs s’interroger sur la relation entre
les parametres du hamiltonien Hg, et les parameétres (microscopiques)
du modele de spins initial. Cette relation est assez obscure, bien qu’un
élément de réponse soit apporté a l'exercice (1). Cependant la
« démonstration » dans cet exercice présente un point faible, et c’est
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pourquoi nous éviterons de I'utiliser dans 'exposé. Nous parviendrons
a Pexpression de Hg, en procédant de fagon heuristique, en essayant de
deviner les propriétés nécessaires et en exigeant qu’a une certaine
approximation, Papproximation de Landau, on retrouve les €équations
du champ moyen. Les corrections a cette approximation permettront
d’évaluer Ieffet des fluctuations et de décider de sa validité (critére de
Ginzburg).

Le paragraphe A est consacré a la déduction heuristique du
hamiltonien de Ginzburg-Landau, et la théorie du champ moyen est
retrouvée au paragraphe B. On obtiendra en outre une comparaison
instructive entre transitions du premier et du second ordre. La fonction
de corrélation sera calculée au paragraphe C, ce qui permettra de
déterminer les exposants critiques 1 et v. Enfin le critére de Ginzburg,
énoncé au paragraphe D, permettra d’évaluer la validité de I'approxi-
mation de Landau, et donc du champ moyen.

A. HAMILTONIEN DE GINZBURG-LANDAU.
APPROXIMATION DE LANDAU

A.1. Cas d’un seul site

L’approximation du champ moyen consiste & admettre qu’un spin
S; au site i est sensible uniquement & une influence moyenne exercée
par les autres spins, et I’on peut, dans un premier temps, considérer ce
spin isolément. La valeur moyenne M de S; est donnée par 1’équation
(1.14) ; pour le calcul des exposants critiques, il suffit de développer
th~! M a I'ordre M°, et si 'on se souvient que la température critique
T, est donnée par T, = qJ/k, I’équation (I.14) peut s’écrire :

B T-T 1
’;_T=M< TC)+§M3. (1)

Le résultat pour les exposants critiques dépend uniquement de deux
propriétés de ’équation (1) :
(i) le coefficient de M s’annule linéairement & T =T,; il est
=0 pour T>T, et <0 pour T<T,;
(i) le coefficient de M? est positif.

Essayons de reproduire 1’équation (1) a l'aide d’un hamiltonien
H(¢) dépendant d’une variable aléatoire  continue ¢
(— 0 <@ <+o00)telle que {(¢) = M. A la propriété d’invariance du
modele d’Ising en I’absence de champ extérieur dans la transformation
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S; - — §; correspondra la propriété de parité de H(e): H(¢) =
H(— ¢): nous cherchons évidemment a conserver les symétries du
modele d’Ising. D’autre part le membre de droite de (1) est un
polynéme en M dépendant de deux coefficients, et on peut essayer pour
H un polynéme dépendant aussi de deux coefficients :

1 1
H(e) =570 9"+ g @' ug=0. @)

Les notations 7, et u, sont conventionnelles en physique statistique, et
I'utilité des facteurs 1/2! et 1/4! apparaitra au chapitre V. La forme de H
dans (2) n’est pas choisie au hasard. En effet pour ry < 0, H posséde
deux minima, suggérant la possibilité d’une brisure de symétrie
(figure 1).

r0<0

=0 C \/\/ v

Figure 1.

Par analogie avec le modéle d’Ising, on rajoute un couplage — By a un
champ magnétique extérieur (en posant u =1 afin d’alléger les
notations) et on écrit la fonction de partition :

Z= jdtp g Hlo)+Be 3)

On remarquera 'absence du facteur 1/kT dans la définition de Z:
rappelons que nous cherchons a décrire un systéme physique au
voisinage d'un point critique, et que le facteur 1/kT, lentement
variable, peut étre absorbé dans la définition de H (de méme que I'on
peut remplacer les facteurs 1/7 dans (1) par 1/7). Le coefficient
uy dans (2) doit étre positif si I'on veut que lintégrale dans (3)
converge : lim H(¢) = + o0 ; le signe de r, est arbitraire.

@ =+ *+00

La quantit¢ H,(¢) = H(¢) — B présente un minimum absolu en
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un point ¢ = ¢, vérifiant la condition :
H'(¢) = B )

et Pexponentielle dans (3) posséde un maximum a ¢ = ¢, (cf. figure 2).

Hi(e) exp(— H,(¢))
3

/
13
‘G‘

Figure 2. (ry<0).

L’approximation de Landau consiste a remplacer U'intégrale (3) par la
valeur de l'intégrand a ¢ = ¢4

7 e e*H1(‘P0) —e H(py) + Bog ) (5)

Cette approximation peut paraitre grossi¢re (et I'est effectivement dans
le cas d'un seul site): en particulier si B est petit et ry <0, la
contribution du deuxiéme minimum & ¢ = ¢, est presque aussi
importante. Cette objection sera levée un peu plus loin ; continuons le
calcul sans trop de scrupules (ce calcul sert aussi d’introduction
pédagogique a celui que nous allons effectuer un peu plus loin). Nous
obtenons a partir de (5) ’énergie libre (& un facteur prés) W:

W=InZ=-H(¢y)+Beg. (6)

Comme ¢, est déterminé par la condition de stationnarité (4),
l'aimantation M = (¢ ) est égale & ¢ :
oW
M = e— T
0B

, Gt 9y
—H(<P0)B'§+<Po+Bﬁ'—‘<Po- (7

Les équations (6) et (7) permettent d’obtenir le potentiel de Gibbs :

I'=MB-W =¢,B+H(ey)—Bog=H(gy) = H(M) (8)
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soit en se reportant a (2):
F(M) =2 ro M? 1 g M*. ©)

Si nous calculons maintenant le champ magnétique :

ol 1 3

B:W=r0M+§u0M (10)

nous constatons que (10) a exactement les propriétés voulues si
ry s'annule linéairement & une température T :

ro=ro(T—T,). (11)

L’équation (10) est alors une équation de champ moyen décrivant
une transition de phase du second ordre dont la température de
transition est 7, = T;,. On notera ’analogie entre ’approximation (5) et
celle du champ moyen : dans (5) les fluctuations de ¢ autour de sa
valeur moyenne ¢, = (@) ont été négligées : la variable aléatoire ¢ a
été remplacée purement et simplement par sa valeur moyenne. Notons
toutefois que (¢) et ¢, ne coincident qu’a I'approximation de
Landau : cf. paragraphe D.

A.2. Généralisation a N sites

Il faut tout de méme se rappeler que I'on souhaite traiter un
probléme a N sites, et non a un seul site. La généralisation a N sites sera
non triviale, car elle permettra d’introduire une interaction (ou
couplage) entre sites. Une variable aléatoire ¢ (x;) (ou simplement
®;) est attachée & chaque site x; (ou /). Son domaine de variation est :

— 00 < @; <+ 0.

Il est commode d’imposer des conditions aux limites périodiques ; par

exemple & une dimension on aura:
e +aN) = ¢(x).

Par analogie avec le modéle d’Ising, on introduit une interaction
entre plus proches voisins, par exemple entre ¢ (x;) et ¢ (x; + p), ol pu
est un vecteur reliant le site x; & 'un de ses plus proches voisins. Plus
précisément, a partir d'un site x; on construit un systéme de D vecteurs

{n) = {en e . ep)
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Figure 3.

reliant x; a4 la moitié de ses plus proches voisins (cf. figure 3), et on
définit le « gradient discret » de ¢ (x;), de composantes :

B0 (%) = 7 o (% + 1) ~ o (x)] (12)

ol a est le pas du réseau. L’interaction entre plus proches voisins peut
s’exprimer a I'aide de ce gradient :

T letitm) - e @) = T (Vo)) (13)

[

et je postulerai la forme suivante du hamiltonien de Ginzburg-Landau :

[l 1 1
Hg [¢;] = a” Y [i (V‘Pi)2+§r0(T) <Pi2+quo ‘P?] . (149

i=1

L’interaction (13) parait différente d’une interaction entre plus

proches voisins 3 ¢ (x; + 1) @ (x;), mais les termes en ) (e (x;))?
wo i i

conduisent simplement & une redéfinition de ry(T") dans (14) (exer-
cice 5 (a)). Le facteur a® servira ultérieurement & passer a la limite
continue. Insistons sur le fait que H;; n’est supposé décrire un systéme
physique qu’'au voisinage d’'un point critique. 1’expression de la
fonction de partition :

N N
1 1 1
Z= JUI d‘Pi‘:XP(—aDZ1 [§ (Ve ) +§r0(T) ‘Pi2+auo ‘P?])

(15)
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montre bien que la relation entre Hj;; et Z n’est pas la relation
classique : Hg; dépend de la température par l'intermédiaire de
ro(T), qui est le seul facteur variant rapidement avec T au voisinage de
la transition. En toute rigueur la dénomination « hamiltonien » est
abusive, et on peut simplement affirmer que exp(— Hgle;]) est
proportionnel a la probabilité d’observer une configuration [¢;].

11 est immédiat de généraliser le calcul du paragraphe A.1 au cas de N
variables ; on ajoute & H; 'effet d’un champ magnétique extérieur (en
écrivant H au lieu de H; afin d’alléger les notations) :

N
z=[nd¢iexp(—H[¢iJ+zBi o) (16)
i=1 i
et on cherche le maximum de I'intégrand :
oH
B, = — 17)
! a(Pi ;=@
ce qui définit un ensemble de valeurs {¢;;} = {@1g, ..., @po} des

variables aléatoires ¢;. L’approximation de Landau permet d’obtenir
Iénergie libre W sous la forme :

W=InZ=—-Hlgy]+ B¢y

ainsi que l’aimantation M, :

3¢ 3¢
o 3B, + @0+ ZBj_aBi = @i
o j

1% oH
M~ - —— = — e

' i

et 'on trouve comme précédemment le résultat tres simple :

lF(Mi) _ H(M,-)_]. (18)

Cette relation n’est évidemment valable qu’a l'approximation de
Landau (cf. paragraphe D), et il ne faut pas confondre 'aimantation
M;, qui est une valeur moyenne, avec ¢;, qui est une variable aléatoire.

Le passage a N sites permet de résoudre le probleme du minimum
secondaire soulevé précédemment : en champ magnétique uniforme
(B; = B), ¢, = ¢y, O ¢ est la valeur trouvée dans le probleéme a
un site, et par conséquent :

W= — N[H(¢g) -~ Bey] .

N

Lorsque N — oo, la contribution éventuelle a W d’un maximum
secondaire de exp(— H) est supprimée par un facteur exp(— c¢N ), et
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quel que soit B # 0 la valeur de ¢, et donc de M, est non ambigué.
Evidemment si 'on change le signe de B, le signe de ¢, change
également. On voit clairement a 'ceuvre le mécanisme de brisure de
symétrie, ot ’aimantation M, (M, > 0) en champ nul doit étre définie
par :

Bo0* N

Pordre des deux limites étant essentiel.

A.3. Formulation continue

En général on ne conserve pas la forme (14) du hamiltonien de
Ginzburg-Landau sur réseau, qui conduit parfois & des calculs un peu
pénibles, et on préfére passer & une formulation continue ; x; varie alors
dans tout I'espace occupé par le systtme physique au lieu d’étre
restreint aux sites d’un réseau :

X

i — X

et la variable de champ ¢ (x;) devient une fonction du point x :
@ (x) — @ (x).

Comme on s’intéresse a la région critique, ou les fluctuations
importantes ont une longueur d’onde > a4, la formulation continue
devrait étre équivalente a celle sur réseau. Dans ces conditions, le
« gradient discret » (12) peut étre remplacé par le gradient ordinaire,
qui en est une bonne approximation pour les fluctuations de longueur
d’onde » a. Le hamiltonien de Ginzburg-Landau (14) devient a la

limite continue :

1 1 1
Hgp = Jde[Z(V<p)2+§rO(T) ‘P2+$uo ‘P4] (19)

le facteur a” dans (14) permettant de passer immédiatement d’une
somme de Riemann & une intégrale. Toutefois on garde un souvenir de
la définition initiale sur réseau, ou le vecteur d’onde k était limité par la
condition de Brillouin, avec par exemple :

<k, =<

(20)

a3
Sk
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Il faut donc ajouter a (19) la précision suivante : si @(k) est la
transformée de Fourier de ¢ (x), le vecteur d’onde K est limité en norme
par un cut-off (paramétre de coupure) A:

K| sA~% ) (21)

Dans un probléme de théorie quantique des champs, ou I’espace est
continu, il n’y a pas de limitation sur ||k|| : A — oo (cf. 3° partie).

Le hamiltonien (19) est une fonctionnelle du champ ¢ (x), et il nous
faut généraliser les notions de dérivation et d’intégration ordinaires aux
dérivations et intégrations fonctionnelles, afin de le manipuler commo-
dément. Examinons d’abord la dérivation: soit une fonctionnelle
I(¢) du champ ¢, obtenue par passage a la limite continue d’une
fonction de N variables ¢;. Afin de simplifier les notations, on
supposera que lespace a une seule dimension (D = 1). La dérivée
fonctionnelle 81/8¢ (x) sera définie par :

74 1 af
Fo) S ade; @)
Exemples :
(@) I = fdy F0)970) = lim a S fi of
L_wpfief s o= f@ e
e,
0 1= [oVeons s2s-viee) @)

(c)1=de(";—‘;) —hmaz (a1 — Pk)

a0 k
al 2 81 3’
_— =22 . — i —@;_ j m—— _2_.
a(Pi a( P; Pit+1 ¢ l) 6<P(X) ax
S¢(x) d¢;
d =0(x— car — = §; 24

81 81 8¢(y) ol 9%y
() 5¢(x)—fdy5¢(y)5¢(x) 50 = Lag a0, &
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5

La généralisation & une dimension D quelconque est triviale ; par
exemple (c) devient :

O 1= [Eeos G- -2Ve0. @0

Afin d’écrire la fonction de partition, il faut intégrer sur toutes les
configurations du champ ¢ (x), c’est-a-dire effectuer une intégrale
fonctionnelle. La mesure d’intégration & ¢ (x) sera définie par :

Do (x)=lim A (a) ﬁ do; 27

a-0 i=1

ol A (a) est un facteur choisi de telle sorte que la limite N — oo existe
(cf. VIII-B.1). En fait les constantes multiplicatives (indépendantes de
B) ne jouent aucun rdle dans le calcul des fonctions de corrélation, car
elles s’éliminent entre le numérateur et le dénominateur d’équations
comme (I.23) ou (I.25) : la constante 4" (a) est sans importance et il
n’est pas indispensable de la préciser. Il est clair cependant que
I’équation (27) est a ce stade purement formelle et que P'existence d’une
telle mesure d’intégration mériterait d’étre étayée par une étude
mathématique approfondie. Comme la théorie des intégrales fonction-
nelles est complexe, nous nous contenterons de cette définition
intuitive, en revenant au besoin a la formulation sur réseau en cas de
difficulté. Dans ces conditions nous pouvons écrire la forme finale de la
fonction de partition en présence d’un champ magnétique B(x):

Z = J@cp(x)exp(—Jde[%(V<p)2+%r0 <p2+%u0 ¢4—B¢]>

(28)

Afin de se familiariser avec la formulation continue, le lecteur est invité
& retrouver 'approximation de Landau a partir de (28), et 4 montrer
qu’a cette approximation le potentiel de Gibbs est une fonctionnelle
I'(M) de raimantation M(x) donnée par :

r(M)=Jde(%(VM)%%rOM%%uOM‘*) O ©9)

Naturellement I'équation (29) s’obtient immédiatement en prenant la
limite continue de I'équation I'(M;) = H(M;). L’approximation de
Landau (29) sera exploitée dans les deux paragraphes suivants pour
discuter le caractere des transitions de phase et les fonctions de
corrélation.
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B. THEORIE DE LANDAU DES TRANSITIONS DE PHASE

B.1. Transition du deuxiéme ordre

Supposons le champ B uniforme. Dans ce cas I'aimantation M est
également uniforme (dans la formulation continue, I’aimantation par
site M; devient l’aimantation par unité de volume) et I"(M) s’écrit :

r(M)=v ( 20T M+ g M“). (30)
Le champ magnétique est donné par :
oI" 1 oI 1 3
= == = Z 3
B 57 =V oM ro(T)M+6u0M (31

équation qui redonne tous les résultats du champ moyen.
11 est facile de démontrer (cf. exercice 7) que la chaleur spécifique est
discontinue a T = T, avec une discontinuité

AC =373 T/ u, .

Nous avons atteint 'objectif exposé en début de chapitre : construire
une fonction de partition qui, évaluée & une certaine approximation
équivalente a celle du champ moyen, redonne les équations de cette
approximation. 1’équation (28) permettra d’aller au-dela, c’est-a-dire

d’évaluer I'effet des fluctuations qui ont été négligées pour obtenir (29).

B.2. Transition du premier ordre

Une modification simple permet de décrire les transitions du premier
ordre. Supposons que I' (M) soit donné par :

1
=

1 1 1
F(M):er(T)M2+Z—!uOM4+avoM6 (32)

avec cette fois uy <0 et vy=0. Lorsque T = T,, la concavité de
I'(M) a M =0 est dirigée vers le bas, ce qui entraine que I'(M)
posséde deux minima négatifs. Il est facile de se convaincre, en partant
d’une température > T,, que pour une certaine température 7T, > T,
I'(M) doit présenter trois minima tels que I'(M) =0; un de ces
minima est a M = 0, et les deux autres & + AM. Ceci veut dire qu’a
T = T,, deux phases, I'une ayant M = 0 et l'autre ayant M = AM (ou
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— AM) se trouvent en équilibre (figure 4.a). La phase M = 0 est stable
pour

- AM

(a) Transition du premier ordre. (b) Transition du deuxieme ordre.

Figure 4.

T > T,, et métastable pour Ty < T < T, : en effet la dérivée seconde du
potentie]l de Gibbs est positive dans ce domaine de température pour
M =0. La phase M # 0 est stable pour T < T, et métastable pour
T=T,, jusqua disparition du minimum secondaire du potentiel de
Gibbs. L’aimantation spontanée, ou le parameétre d’ordre, sont disconti-
nus a la transition : il s’agit donc d’une transition du premier ordre, oll
la transition se passe avec coexistence entre deux phases, I'une
d’aimantation nulle et "autre d’aimantation # 0. Il est possible d’obser-
ver des phénoménes de métastabilité : par exemple pour T < T,, le
systéme peut rester un certain temps dans la phase M = 0. Des
exemples de transition de ce type sont discutés dans le livre de Kittel.
Remarquons qu’il existe des transitions du premier ordre pour lesquel-
les on ne peut pas définir de parametre d’ordre, par exemple la
transition solide-liquide.

Dans le cas d’une transition du deuxiéme ordre, le paramétre d’ordre
s’annule de facon continue a T=T, (=T, a lapproximation de
Landau). Il n’y a jamais ni coexistence de deux phases, ni phénoménes
de métastabilité ; en effet la phase M = 0 est instable : I'"(0) < 0 pour
T < T,, et non métastable (figure 4.b).
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C. FONCTIONS DE CORRELATION

Dans un champ magnétique B (x), la relation entre I'et B est donnée
par:

ér

B =m0 -

U
~ VM) +ro(T) M) + 2 M*(x) - (33)
si I'on utilise la formulation continue. Dérivant cette équation par
rapport & B(y), on obtient :

[~ V24T + 3w ]Gy = s6-y) ()

SM(x)
5B(y)’

Dans le cas d’'un champ B uniforme, G(x,y) = G (x — y) (invariance
par translation) ; comme M est indépendant de x, la transformée de
Fourier de I'équation (34) a une forme trés simple :

puisque la fonction de corrélation G (x,y) =

(q2 +ro(T) + % ” M2) G@)=1

soit :
~ 1
G(q)= T ; (35)
q2 + ro(T) + z Uy M2
ce qui donne dans ’espace des x :
D —iq-x
d“q e (36)

G(x)= .
j 2 m)° @ +ro(T) +%qu2

11 est instructif de retrouver ces résultats en utilisant la formulation
discrete (exercice 5).
Plagons-nous en champ nul (B = 0). Il faut distinguer deux cas :

(a) T>T,: dans ce cas M =0 et

1 1
q° + Fo(T = Ty) 2( fo(T—T0)>
Tl =
q

Gq) = . (37.2)
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Si I’on se reporte aux définitions (1.30, 31), de 7, v et £, on voit que :

n=0
£ = [Fo(T - Ty ?
v =1/2.

(b) T<T,: dans ce cas, M*= — 6 ry/u,, et :

me 1
G(q)*q2+2r0(T0~T)’ (37.b)

Cette fois £ = [27,(T, — T)]~ %, mais les exposants critiques sont
inchangés: n =0 et v = 1/2.

Comme dans le cas des exposants « ... 8, il est intéressant de
comparer aux résultats exacts (D = 2) ou numériques (D = 3):

Exposant Landau D=2 D=3
n 0 0.25 0.04 £0.01
v 172 1 0.638 = 0.002 .

A nouveau on constate que 'approximation de Landau est d’autant
meilleure que la dimension d’espace est élevée.

Les valeurs: a« =0, B =12, y=1, 6§ =3, n =0, v =1/2 sont
appelées valeurs classiques des exposants critiques ; ce sont les valeurs
obtenues a approximation du champ moyen, ou de sa généralisation :
Papproximation de Landau.

Calculons pour terminer la fonction de corrélation (a I'approximation
de Landau) dans I’espace des x, pour D = 3 (pour le cas général, cf.
exercice 6). On supposera que l'intégration sur g va de zéro a I'infini, et
non de zéro & A ; le résultat sera correct pour r = ||x|| =1/A.

d3q e~iq~x
G = [ S —
® J(Zfrr)?’qz—k g2

@ 1 .
1 J‘ q dq f e~1qrcoso d(COS 0)

T @aylo gee?
_ 1 J“’qdqsinqr
(2W2r) q*+§7?
qdqe
Y e

La derniére intégrale se calcule facilement par la méthode des résidus
en utilisant le contour de la figure5. Il y a un pdle a g =i&"! a
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Iintérieur du contour et donc : AImgqg
Gx)= —L_e76.  (38)
4 1rr -
ig Re g

La forme (38) de la fonction de
corrélation correspond bien a (I1.33) Figure 5. Contour pour le
avec 1 =0 et g(r/£&) = exp(-r/§). calcul de G(x).

D. CRITIQUE DE L’APPROXIMATION DE LANDAU
ET CRITERE DE GINZBURG

L’approximation de Landau (comme celle du champ moyen) néglige
les fluctuations de ¢. Elle ne sera donc pas valable si les fluctuations de
¢ sont grandes par rapport 4 (¢). Donnons une premicre fagon
d’arriver a un critere de validité de la théorie de Landau, ou critére de
Ginzburg.

D.1. Critére de Ginzburg : premiére démonstration

Considérons Paimantation moyenne .# sur un volume V dont les dimensions
sont de l'ordre de & Pour T < Ty, on aura:

67
M= (T, = TY V2.
Uo
Comparons .#> a la fluctuation (A.# )’ sur le méme volume :
Ay = fdpx dPy[Ke®) 0 ¥)) — (&) (e OGN} =V Jd”x Gkx).

Comme les dimensions de V sont ~ &, V ~ £ et

J dPx G (x) ~ er_ldre"/f~ ot
v ro? Fo(To—T)

par simple analyse dimensionnelle. Le rapport (A.# )’/ #* est donné par :

@Qay w6 fuw Z-2\ o 22
> MF%V(TO—»T)2_< 7 )(T0 Ty . (39)

Lorsque D =4, (T,— T)*/*~2 sannule pour T — Ty et (A Y/ M*<1.
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Dans ces conditions, la validité de la théorie de Landau parait plausible ; du
moins ne présente-t-elle pas d’incohérence interne.

Il n’en est pas de méme pour D <4: dans ce cas (T, — T)?/%~? diverge
lorsque T — T; et la théorie de Landau n’est certainement pas valable.
Cependant il est possible qu’il existe autour de 7 une région de température
AT telle que pour T < Ty — AT, (A )’/ M*<1: la théorie de Landau reste
applicable, méme si D < 4. Il peut méme arriver (cas de la supraconductivité)
que l'intervalle AT soit si petit que la région de non-validité de I'approximation
de Landau ne soit pas visible en pratique. Au contraire, dans le cas de la
transition superfluide de I’hélium 4 (qui est pourtant sous bien des aspects trés
analogue a la transition supraconductrice), lintervalle AT est > T et la région
de validité de la théorie de Landau est inobservable. L’argument donné ci-
dessus ne permet pas de conclure pour T = T,. Toutefois un argument reposant
sur I’étude de la chaleur spécifique (exercice 7) donne un résultat analogue a
(39).

Nous allons maintenant donner une version plus élaborée du critére
de Ginzburg, en calculant au préalable la premiére correction a la
théorie de Landau.

D.2. Correction a la théorie de Landau

Comme dans le cas de ’approximation de Landau, nous commence-
rons par une seule variable. Remarquons que lapproximation de
Landau sera d’autant meilleure que le maximum de I’exponentielle sera
aigu. Introduisons un parameétre 7 (*), telle que Papproximation soit
d’autant meilleure que 7 est petit :

7 Jd e—%[H(so)—Btp]
= (P .

Nous allons montrer que l'on peut écrire Z sous forme d’un
développement en puissances de # (naturellement a la fin du calcul, on
posera i = 1). Comme au paragraphe A, ¢, sera défini par :

B = H'(e) .

Développons H(¢) — Be au voisinage de ¢ = ¢, en posant
¥ = ¢ — ¢(. Comme la dérivée est nulle par construction & ¢ = ¢, il

(*) Bien entendu, dans ce probléme # n’a rien 2 voir avec la constante de Planck.
Cependant la notation n’est pas introduite par hasard, car cette constante intervient dans
un probléme analogue de théorie quantique des champs (cf. chapitre VIII). L’approxima-
tion de Landau en physique statistique est analogue de Papproximation classique en
théorie quantique des champs.
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n’y a pas de termes linéaires en ¢ dans ce développement :

H(¢) - Be = H(¢g) - Beg+ 5 D(‘Po)‘/’ 37 = T Uo Po ¥ +41 Uy ¢*
ot D(¢g) est défini par :
D(¢0) = H'(¢0) = 3= = 1o+ 3t 03 (40)
Reportant dans ’expression de Z on obtient :
i (o) - Be)
Jd«pexp(—— (o) W’ - 3,h 0@0‘#3“5?111 )

et on effectue le changement de variables ¢ = NE ¢'. Le jacobien est
une constante qui peut étre omise (cf. la remarque suivant ’équation
(27)) et Pexpression de Z devient :

2 —%(H(«oo)—wj
=€

dy’ exp (= 3 D(00) ¥7) x
h1/2 Oh .
xexp(— ( 3 @o " ar "y )) 41)

Lorsque #— 0, la deuxiéme exponentielle dans (41) peut étre
développée en série de puissances de #, chaque terme du développe-
ment donnant une intégrale gaussienne. Le résultat pour W = iln Z
(W est défini avec un facteur multiplicatif %, de sorte que M = 3W /3B)
est:

W=hinZ =~ H(ep) +B<p0—glnD(<p0) L0y, (@2

Calculons 'aimantation :

W 1 D' (¢9) 390 qD__le'(%)
98 "° 2D(eg) 3B " 2D¥g)

et le potentiel de Gibbs I':

'=MB-W-= MB+H< = )

fl h h D’
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Mais :
1D’ RD 7D’
H(M+§32) = H(M) + 5 2 H (00) = HOM) + 5 23 B
et on trouve a 'ordre #:
I (M) = H(M) +§1nD(M) LO@). 43)

Passons maintenant au cas général, en utilisant la formulation
continue ; ’équation déterminant ¢q(x) est;

8H

50 = 5o

@ (x)= ¢o(x)

et le développement de Taylor autour de ¢g(x):
1
Hy = Hooo) - [ @3B o)+ [ Px Py v D& ) 4 )

avec ¢ (x) = ¢ (x) — @g(x) et :
8°H

B FIORIT )

¢ =0

L’intégration sur ¢ (x) est une intégration gaussienne (cf. appen-
dice A) :

J@wexp[—éjd’?x &y w(x)D<x,y)«p(y>] -

~ [det D]~ 12 :exp(—%TrlnD)

N

en négligeant les constantes multiplicatives. Reste & interpréter ce
résultat, qui est évidemment un peu formel pour le moment. Calculons
d’abord D(x,y):

1
D(x,y) = (-Vi +r(T) + 5 4o @3) 8P)(x —y)

et a4 Papproximation considérée ¢, = M.

D (x, y) est la limite d’une matrice D;; diagonalisable par transforma-
tion de Fourier, si ¢, est indépendant de x (champ uniforme), ce que
nous allons supposer a partir de maintenant. D’aprés 'équation {(A.7) :

qu
Q2 m)P

TrD(x,y):NaDJ <q2+r0(T)+%u0M2>
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et donc :

qu
@m)P°

TrlnD:VJ In (q2+r0(T)+%u0M2>.

L’expression (43) est généralisée par :

p |1 d°q
[ 4]

x In (q2+r0(T)+%9M2) +0(h2)] - (44)

Le premier terme de I’équation (44) n’est autre que 1'approximation
de Landau (29). L’équation (44) donne les deux premiers termes du
développement en nombre de boucles, qui sera examiné plus a fond au
chapitre V, paragraphe D.

Remarque importante : le modéle gaussien

Lorsque uy =0 dans le hamiltonien (19) de Ginzburg-Landau,
I'intégrale sur ¢ est une intégrale gaussienne et le résultat (44) est exact
si I'on s’arréte a I'ordre #, puisque le hamiltonien est alors quadratique
en ¢. Le cas uy, = 0 est appelé cas du modéle gaussien ; ce modéle n’est
d’ailleurs défini que pour 7y(T) = 0. Le potentiel de Gibbs du modéle
gaussien vaut exactement (dans (44) M est uniforme, mais dans le cas du
mode¢le gaussien, cette hypothése n’est pas nécessaire, car D(x, y) est
indépendant de M) :

rM) = fd’-’x[% (VM)2+%r0(T)MZ+%j(—2d:_—q)51n (r0+q2)}
8r

SM(x) 6M(y)
donnée par la transformée de Fourier inverse de (q* + ro(T))™*:

et la fonction de corrélation, qui est I'inverse de t

1

Modele gaussien: G(q) = ———
q + ro(T)

(45)
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D.3. Critere de Ginzburg : deuxiéme démeonstration

En tenant compte de la correction obtenue dans I’équation (44) et en
posant #i = 1, on obtient le champ magnétique (supposé uniforme) :

MJ 1
Cm @ 4 rg(T) + 2 %MZ

B_rOM+€M3+ Uy

et la susceptibilité a la limite B — 0:
i _ 9B
T M [B-o
u D
_m+7M2 W.;q ! 4oL (46)
(")q+mn+ M>

Les termes que je n’ai pas écrits sont nuls pour 7 = T, parce que
M = 0 dans ce domaine de température. Afin de simplifier la discussion,
je me limiterai au cas T = T,.. La notation standard pour x testr:

x '=r (a ne pas confondre avec |x]) et a P'approximation de
Landau :

xq ' =ro=7o(T-Tp).
L’équation (46) devient (M =0):

1 dPq 1
r=ry+=Uu _— 47
0 2 0 »(2’”)qu+’_0 ( )

L’équation (47) montre que la température critique 7, n’est pas
Ty, mais qu’en fait T, < T;,. En effet la température critique est définie
par r(T,) =0 (susceptibilité infinie) alors que pour T =T, on a
r=0. Il faudrait donc passer dans la région 7, <0, ce qui pose un
probléme car l'intégrale dans (47) n’est plus définie. Pour tourner la
difficulté, remarquons que I'équation (47) est en fait le début d’un
développement de r en puissances de u,:

r=r0+a1u0+a2ug+~--.

Pour le montrer, donnons une dimension a # (par exemple celle d’une
action) ; comme H/# doit étre sans dimensions, ¢ a pour dimensions
#211-D/2 oi1 I est une longueur: en effet d’x a dimension
[P et V dimension /!, On montre immédiatement que r, a dimension
-2 et u, dimension #~ ' /P-4 L’analyse dimensionnelle de I'équation
donnant  implique que le terme en #% est proportionnel a ul. Ce
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résultat entraine qu’il est légitime de remplacer r, par r dans I'intégrale
de (47) : Perreur commise est d’ordre uf, et de toute fagon on a déja
négligé des termes de cet ordre :

1 d’q 1
=¥+ = U —t - 48
r 0 2 OJ(ZW)DqZ—i-r ( )

La température critique est donnée par :

1 dPq 1
O0=7(T, - Ty)+zuy | —*—=—= 49
of 0) 5 Mo CnpPq (49)
soit :
B Uy A —uySp AP2
rO(Tc_TO)=__‘——DSDJ q°’dq = QDD
22 7) 0 2Q 7)Y (D ~2)

ou Sj est la surface de la sphére a D-dimensions (appendice A). 11 faut
donc que D = 2 pour que la théorie ait un sens quelconque.
Retranchons maintenant I’équation (49) de (48) :
dPq 1
QTP @ +r)

11 convient de distinguer les deux cas D=4 et D <4:

r=ro(T— To) 3 g (50)

D >4: Lintégrale dans (50) converge pour g?>=0 méme si
r = 0. On obtient donc:
FO(T - Tc)

=F(T-T,)—Cr; = ——— 51
r=r(T=T)-Cr; r==d (5
ol C est une constante finie. On voit que la correction d’ordre % a la
théorie de Landau ne change pas lexposant critique vy: vy =1 pour
D > 4. Ceci reste vrai pour les corrections d’ordre #" (cf. III-E.1).
L’approximation de Landau (ou du champ moyen) donne correctement
les exposants critiques pour D >4 ; par contre température critique,
coefficient de (T — T,)!, etc., sont modifiés, mais il s’agit 1a de

quantités qui ne sont pas unicrselles.
D <4: Lintégrale dans (50) présente une divergence lorsque

q — 0, c’est-a-dire une divergence infrarouge si 'on pose r = 0. Elle se

comporte en effet comme | dg/q° ~°. Ce sont les grandes longueurs

d’onde qui sont importantes pour le comportement critique, car ce sont
elles qui provoquent la divergence des intégrales. Posons q = k \/r;
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Iintégrale s’écrit :

I =

@k P ~p_. Sp [® kP-ldk
(27T)Dr2k2(k2+1)_(\/r) (2w)DJ kX(k*+1)

Comme [lintégrale est convergente a linfini, on a pris la limite
A - 0. On peut donc récrire (50) :

r=F(T—~T,)—u, Cr(r~ ¢/2) (52)

en posant :

e=4—-D (53)

et

Sp Jw kP-1dk
C = )
2 7)Y Jo KAK®+1)

L’équation (52) est incompatible avec r ~ (T — T,) et les exposants

critiques ne sont pas donnés correctement par la théorie de Landau pour
D <4.

A nouveau, on peut retrouver I'existence d’un intervalle de tempéra-
ture ou la théorie de Landau est valable, méme si D < 4 ; il faut pour
cela que :

u, Cr-*<1
ou:

-2

b
2«1

uy C [Fo(T - T.)]

en accord avec P'équation (39). La deuxiéme démonstration est
cependant un peu plus précise, dans la mesure ou elle permet de
déterminer le coefficient C.

EXERCICES

1) « Déduction » du hamiltonien de Ginzburg-Landau (%)

On se propose de déduire le hamiltonien (19) du modele d’Ising. On part de
Pexpression suivante pour Z(B):

Z(B) = J 145, a(s,?_1)exp(zs,. ViS+ Y B, si>

Vii=J/2kT, ietj plus proches voisins
=0 dans le cas contraire .
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Généralisation : 8(S7—1) —» p(S;) ot p=0 et V, dépendant de x; —x,,
décroissant avec ||x; — x;||. Notez que le facteur u/kT a été pris égal a 1.

(a) En utilisant 'intégration gaussienne (appendice A) montrer que :
1
2(8) = [ []deidsip(S)exp (-5 (0~ BY V(e ~B)+ &75).
Les notations sont celles de I'appendice A. On pose :

J dS p (S)e?S = et

Montrer que A"(¢ ) =0 et que :

2(8) - | [Jaeiop (-1 (- BY V- (e~ B)+ T A(e)). ()

(b) Approximation de Landau : calculer le maximum de I’exposant dans (1)
et en déduire le potentiel de Gibbs :

F(M)=-YMV,;M+Y CM,)

ol C’.(‘M ) est la transformée de Legendre de A(¢):

C(M) = ZM,- Pio — ZA(‘PiO)'

(¢) Montrer que dans le cas du modéle d’Ising A(¢ ) = Inch ¢ et retrouver
en champ uniforme I’équation du champ moyen (1.14).

Montrer que dans le cas général C”(M) = 0 et que ’on peut obtenir selon le
signe du terme en M* une transition du premier ou du deuxiéme ordre.

(d) Quelle est la relation entre la fonction de corrélation originale
(S; ;) et la fonction de corrélation {¢; ¢;> en champ magnétique nul ?
Comparer les transformées de Fourier et montrer qu’elles sont proportionnelles
quand g — 0. On pourra introduire la transformée de Fourier de V :

V@)=Y Ve .
j
(¢) On introduit la transformée de Fourier de ¢;:
~ 1 iq-x
%] (q) = W Z € P; -

Pour g — 0, montrer que :

V@ =V,1-pq®) p=0
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(on pourra se limiter au cas du modeéle d’Ising). En déduire :
- 1 ~ ~ ~ ~
z%vw¢pﬁrz¢mnwan+%zf¢@»w—m
ii 0q 7
et montrer que dans I'espace des x le deuxi¢éme terme se transforme en:

P D 2
-— \% .
wjdx(“

Un changement d’échelle de ¢ : ¢ — A ¢ permet alors de se ramener a (19).

(Cette « déduction » due a Berlin-Kac, Hubbard et Stratonovitch possede un
point faible : la matrice VJI (qui sert seulement d’intermédiaire dans les
calculs) n’est pas définie positive. Il est facile de le montrer dans le cas du
modele d’Ising.)

2) Phénomeénes de métastabilité pour T< T,

1}M (a) Montrer que pour T <7, et
dans un certain domaine de B (a

déterminer)
A
. | —By<B=<B,

trois valeurs de M sont solution de
I’équation

B=rgM+ (u/6) M>  (uy=0).

En déduire l'allure de la courbe don-
B  nant M en fonction de B (cf.
figure 6).

(b) Montrer que les solutions se

B trouvant sur les parties (AB) et

(A’ B") sont métastables tandis que

’ celles se trouvant sur (BB') sont
’ instables.

| (¢) Montrer qu’a T fixé <7, on
/ observe une transition de phase de

premiére espéce quand on fait varier
B d’une valeur négative a une valeur
positive.

(d) Trouver une analogie mécani-
Figure 6. que (cf. par exemple l'exercice 1.1).
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3) Transition du premier ordre
On suppose qu’en champ nul :

I‘(M):%FO(T—TO)MZ—%M4+%M6.

Quelle est la température 7, de la transition de phase (du premier ordre) ?
Quelle est la discontinuité de I’aimantation ?

Déterminer le comportement de la susceptibilité x en champ nul pour
T =T, Quelle est la discontinuité de y a T =T,?

(Dans une transition du premier ordre, les fluctuations ne se développent pas
complétement : le régime de fluctuations avorte avant d’avoir fait diverger la
susceptibilité.)

4) Bosons de Goldstone

On suppose que la dimension du parameétre d’ordre est # = 2 (la généralisa-
tion a n quelconque étant triviale).
A TPapproximation de Landau le potentiel de Gibbs s’écrit :

12 1 a1 -
(M) = Jde[i y (VMi)2+ir0(T) M2+4—,uO(M2)Z]
i=1 :
M= (M, M,); M =M+ M:.

(a) On suppose que pour T < T, et en champ nul Paimantation Ma pour
composantes M; = M, M, = 0. Quelle est la valeur de M ?

(b) Soit G;;(x, y) la fonction de corrélation a 'approximation de Landau :
8r

G ¥) = S5y 5M)

Calculer les transformées de Fourier Gy, (q), G1,(q) et G (q) dans la situation

de la question (a). Montrer que G,,(q) diverge pour g — 0. Quelles sont les
conséquences physiques de cette propriété ?
5) Hamiltonien et fonction de corrélation sur réseau

(a) Considérons d’abord un hamiltonien gaussien écrit sous la forme

(a=1):
H =

NS

S leG+m)—e@P 437 Y o k)
ou bien : "

H:-z(p(x+p)(p(x)+%(r0+2D)Z<p(x)2.

Effectuer un changement d’échelle ¢’ = (r, +2 D) ¢ sur les champs et
calculer la fonction de corrélation par un développement en puissances de
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k = (2D +ry) ! quand x — 0. Montrer que dans cette limite & ~ —1/In «.
Ce calcul est un exemple de développement haute température, car ry > 1.

(b) On reprend maintenant le hamiltonien de Ginzburg-Landau (14) et on
définit les transformées de Fourier (cf. appendice A) par :

Gq) = aDZ Gx—y)ed &,
y

Montrer qu’a lapproximation de Landau, la fonction de corrélation
G(q) en champ uniforme est donnée par :

1

(2/a%) i (1 —cos (aqg,)) +ry+ % u, M?

Gq) =

avec g, = (q - )/a. Suggestion : on pourra d’abord faire le calcul dans le cas
D=1.

Quelle est la fonction de corrélation du modele gaussien sur réseau ? Montrer
que si ga < 1, cette fonction de corrélation est approximativement invariante
par rotation. Montrer que le terme en g* brise cette invariance.

(c) Déterminer la matrice D;;, équivalente sur réseau de D(x,y), dans le
calcul du paragraphe D.2. Montrer qu’a la limite @ — 0 on retrouve bien le
résultat (43).

6) Fonctions de corrélation en dimension D(T > T;)

(a) Pour T = T, la fonction de corrélation a 'approximation de Landau (ou
celle du modéle gaussien) vérifie :

(~V24+r)GEx)=8(x).

Comme G (x) ne dépend que de r = ||x]||, montrer que G(r) vérifie :
&G D -1dG
—‘F——;—E;'-FI‘OG— 5(X)

(b) Montrer que pour D =2 et ry = 0 (c’est-a-dire juste au point critique) la
solution de I’équation — V2G(x) = 8 (x) est — lzn—; (Suggestion : pensez au
potentiel électrique d’un fil rectiligne infini chargé.)

(c) Montrer que dans un espace de dimension D :

G(r)= 1 J‘AqD/quJ
R L l_;»

(gr)
1
ou J, est la fonction de Bessel d’ordre ». La mesure d’intégration dans un
espace de dimension D est:
dPx = rP-ldrsin®-% 0, ,do, ;sin® 36, ,do,_,.. dé,

O<b,=<m k#1; 0<6,<2w.
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(d) En déduire pour D=4 et ry;=0:
1
G(r) = R (1 = Jy(4r)).
7) Chaleur spécifique et critére de Ginzburg

(a) Montrer que la chaleur spécifique en champ nul par unité de volume
vaut :

2
1, d2(I'T)

C=-=
|4 dr?

Dans les questions (b) et (c¢) on se servira du fait (4 démontrer) que la
contribution singuliere a la chaleur spécifique est :

1 o dT
Ci=—-=T"—.
Y Vooar?
(b) Montrer qu’a 'approximation de Landau :

C = T>T,

C=T"— T<T,.

La chaleur spécifique est donc discontinue avec une discontinuité
C=37T3/u,.

(¢) Montrer que si 'on tient compte de la premiére correction a la théorie de
Landau, la chaleur spécifique n’est pas nulle pour T = T;. Quelle est expres-
sion de C'? On se limite par la suite au cas T > 7.

(d) Montrer que pour D =4 la correction ajoute simplement un terme
lentement variable (en 7T) a la chaleur spécifique. Montrer au contraire que
pour D <4 la chaleur spécifique se comporte en :

(T-T,)“.
Quelle est la valeur de a?

(e) Pour D < 4, on peut définir le domaine de validité de I'approximation de
Landau en exigeant que la chaleur spécifique calculée en (c) soit plus petite que
la discontinuité AC calculée en (b) :

C=AC.

Retrouver par cet argument le critere de Ginzburg.

(f) Montrer que I'énergie moyenne (E) par unité de volume est proportion-
‘nelle a la fonction de corrélation G(x) prise 4 x =0: (E) ~G(x=0). En
utilisant la forme trouvée en (37(a)), retrouver le résultat de la question (c).
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NOTES ET REFERENCES

Le hamiltonien de Ginzburg-Landau et I'approximation de Landau sont traités par
Toulouse-Pfeuty, chapitre 2 et Ma, chapitre III. On pourra également consulter Shenker,
section 2. La théorie de Landau des transitions de phase est exposée dans Landau-
Lifschitz, paragraphe 138, et dans Kittel, chapitre XIII ; les fonctions de corrélation sont
discutées par Ma, chapitre III. Toulouse-Pfeuty (chapitre 2) donnent une discussion trés
compleéte du critére de Ginzburg. A un niveau plus avancé, on pourra également
consulter Amit, chapitres 2 et 6 ainsi que Brézin et al., section IV.

(") Brézin et al., section IV ; Amit, chapitre 2.



CHAPITRE 111

Groupe de renormalisation

Considérons un syst¢eme physique au voisinage d’un point critique : le
nombre de degrés de liberté interagissant effectivement entre eux est
~ £D, o £est la longueur de corrélation, et ce nombre tend vers I'infini
au point critique puisque & — oco. Les méthodes perturbatives tradition-
nelles échouent complétement dans ce genre de probleéme, car elles sont
adaptées au cas de l'interaction d’un petit nombre de degrés de liberté.
La méthode du groupe de renormalisation, inventée par Wilson,
consiste a réduire systématiquement le nombre de degrés de liberté en
intégrant sur les fluctuations de courte longueur d’onde. Supposons que
nous partions d’un systéme de spins sur un réseau de pas a : la longueur
d’onde minimale des fluctuations est alors ~ a. Intégrons sur les
fluctuations de longueur d’onde a = A = sa, ou s > 1 est appelé facteur
de dilatation. Ceci ne change pas le comportement des fonctions de
corrélation pour r S sa: lintégration sur les fluctuations de courte
longueur d’onde a fait correspondre au systéme physique initial un autre
systéeme physique (*) qui posséde le méme comportement a longue
distance. On peut itérer cette transformation, appelée transformation
du groupe de renormalisation (TGR), en intégrant sur les fluctuations
de longueur d’onde sa =< A = s2a, etc., et établir ainsi une suite de
correspondances entre syst€mes physiques possédant le méme compor-
tement a longue distance.

Cependant il s’agit de bien s’entendre sur la notion de « méme
comportement a longue distance » ; si nous utilisons la méme unité de
longueur pour décrire les deux systemes physiques, I’expression est

(*) Par systéme physique, jentends « modéle pour une transition de phase ». Il n’est
pas nécessaire que le modéle soit une description approchée d’un systéme physique réel.
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évidemment correcte. Mais il existe une unit¢ de longueur naturelle
pour chaque systeme, qui est le pas de son réseau. Aprés une premiére
TGR, le pas effectif du réseau du systéme transformé est sa, et si nous
mesurons les longueurs de corrélation en unités naturelles, celle du
syst¢tme transformé est £/s. Il est donc logique d’associer a chaque
TGR une dilatation de l'unité de longueur d’un facteur s, qui permet de
comparer les deux syst€mes sur un méme réseau. Au bout d’'un nombre
suffisant d’itérations, on pourra faire correspondre au systéme initial un
systeme dont la longueur de corrélation est de I’ordre du pas du réseau,
et dont on peut espérer déterminer le comportement par des méthodes
perturbatives.

La dilatation de I'unité de longueur d’un facteur s, qui transforme
une longueur r en r/s, fait évidlemment penser a4 une transformation
d’échelle. Une TGR relie effectivement deux fonctions de corrélation
mesurées a des distances r et r/s ; cependant I'opération ne se réduit
pas a une simple analyse dimensionnelle, car elle transforme aussi les
parametres du systéme physique. Une itération de TGR ne donnera pas
d’information utilisable sans ingrédient supplémentaire. Cet ingrédient
sera 'existence d'un point fixe : en effet autour de ce point fixe, on
pourra se limiter & un nombre fini de parametres (parametres essen-
tiels). Dans ce cas on pourra aboutir & un comportement simple des
fonctions de corrélation dans une transformation d’échelle r — r/s, et
en déduire les exposants critiques.

On peut visualiser intuitivement une TGR en imaginant que l'on
observe le systeme physique avec deux microscopes de résolution
différente : le premier, qui utilise une longueur d’onde A, permet de
voir des détails de dimension ~ A ; le second utilise une longueur
d’onde sA, et sa résolution est donc moins bonne (s = 1). En passant du
premier microscope au second, on intégre sur tous les détails ayant une
dimension comprise entre A et sA. Pour réaliser la dilatation de 'unité
de longueur, il suffit d’admettre que le grandissement du second
microscope est inférieur a celui du premier par un facteur s.

Dans le champ du second microscope, les ilots d’aimantation positive
(par exemple) seront vus avec une taille s fois plus petite que dans le
champ du premier, tant que la longueur de corrélation est finie
(rappelons que la taille de ces ilots est ~ & (figure 1).

Au point critique (7 = T,), les fluctuations ont toutes les tailles
possibles et on observe des images analogues dans les deux microscopes
(si I'on fait une moyenne dans le temps : 4 un instant donné, un ilot
d’aimantation d’une certaine taille occupe évidemment une place s fois
plus petite dans le champ du second microscope que dans celui du
premier).

Avant de commencer I'’étude du groupe de renormalisation, il
importe de faire une remarque préliminaire : le groupe de renormalisa-
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Microscope 1 Microscope 2

Figure 1. Vue intuitive d’une TGR.

tion est d’invention récente, et, sauf dans certains cas particuliers, il
n’est pas actuellement étayé par des théorémes rigoureux. Il sera donc
nécessaire d’introduire des hypothéses dont les conditions de validité ne
sont pas bien précises, et qui, en fin de compte, seront justifi¢es par
leurs succeés pratiques.

Le paragraphe A introduit les notions fondamentales : formation de
blocs de spin, surface critique, points fixes. Le paragraphe B montre
comment obtenir les exposants critiques en étudiant le voisinage d’un
point fixe. Ces deux premiers paragraphes donnent les résultats
généraux, et les suivants sont consacrés a une illustration de ces
résultats sur des exemples particuliers. Le paragraphe C donne un
exemple de TGR sur réseau, avec résolution approchée des équations
du groupe de renormalisation (GR). Le paragraphe D introduit le
groupe de renormalisation dans V'espace de Fourier avec comme
application le modele gaussien. Les exposants critiques sont calculés a
l'ordre ¢ = 4 — D au paragraphe E ; Ie paragraphe F traite des variables
marginales, et permet de faire le lien avec les méthodes classiques de
renormalisation en théorie des champs, qui seront exposées aux
chapitres VI et VII.

A. NOTIONS FONDAMENTALES : BLOCS DE SPIN,
SURFACE CRITIQUE, POINTS FIXES

Une stratégie possible pour intégrer sur les fluctuations de courte
longueur d’onde consiste a former des blocs de spin. Ce n’est pas la
seule : nous en verrons une autre au paragraphe D. De plus il existe
deux types de stratégies pour former les blocs : une linéaire, une autre
non linéaire. Au départ la stratégie non linéaire parait plus simple et je
vais commencer par elle. Les difficultés ne tarderont pas a se manifester
et la stratégie linéaire se révélera en fin de compte plus performante, du
moins dans le cadre de calculs analytiques.
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A.1. Blocs de spin et transformations non linéaires

Pour fixer les idées, je prendrai comme exemple le modele d’Ising en
dimension D = 2, sur un réseau carré de pas a. Je vais grouper les spins

par quatre (= blocs de spins) et attribuer & chaque bloc un spin
déterminé par les régles suivantes :

e le spin du bloc vaut + 1 (— 1) si la somme des spins du bloc est
positive (négative) ;

e si la somme des spins du bloc est nulle, on tire & pile ou face pour
attribuer la valeur + 1 ou — 1 au spin du bloc, ou bien on attribue par
convention un spin -+ 1 a trois configurations de spin total nul, et un
spin — 1 aux trois autres configurations. Naturellement des blocs de
neuf spins élimineraient ce probléme, mais les figures seraient plus
longues a dessiner.

La formation des blocs est la premiére étape de la transformation du
groupe de renormalisation. La seconde étape consiste a revenir au
réseau initial en multipliant par deux 'unité de longueur : le facteur de
dilatation est égal & 2. Cette procédure permet de comparer deux
systemes physiques (celui des spins initiaux et celui des blocs) sur un
méme réseau (figure 2).

|
b

=
7]

Figure 2. Formation de blocs de spins.

Appelons §; les spins initiaux et S, ceux des blocs, S/, étant donné
par :

S, = f(S) i € bloc a . 1)
Un exemple de fonction f(S;) a été donné ci-dessus ; en général on

pourra prendre une fonction f(S;) qui refléte la tendance a I'orientation
de I'’ensemble des spins du bloc.
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La probabilit¢ d’observer une certaine configuration [S! ] des blocs
est parfaitement déterminée si 'on connait le hamiltonien d’interaction
des spins. Il doit donc exister un hamiltonien H'[S,] tel que la
probabilité d’observer la configuration [S)] soit proportionnelle a
exp(— H'[S,]). 1l n’est pas difficile d’écrire une expression formelle
pour H' (H'[S,] comprend une partie G, indépendante de S, que je
n’ai pas séparée explicitement pour le moment: cf. paragraphe B,
équation (25)) :

e Moy 808, - £(S))

[Si] @

ye " @)

i€a

Si la configuration [S;] est fixée, il existe une seule configuration
IS, ] pour laquelle le delta de Kronecker est non nul, et donc :

S I18Ge~f(S)], . )=1 (3)

[Sal =
ce qui entraine immédiatement :

Zoye Moy g (4)

Is:1 [Sa]

La fonction de partition du systéme transformé est égale a celle du
systéme initial. Cependant le hamiltonien H’[S,] n’a aucune raison
d’étre du type d’Ising (1.2). On est conduit a généraliser le hamiltonien
(1.2) en écrivant (cf. exercice 1) :

—H=K1 Z SIS]+K2 Z S1S1+K3 Z SiSjSkS[+"' (5)
iy <ijy <ijkl >

ol la premi¢re somme porte sur les plus proches voisins, la seconde sur
les seconds plus proches voisins, la troisi¢eme sur les « plaquettes », etc.
(cf. la figure 3). Notez que le facteur 1/kT a été
inclus dans la définition des coefficients K;. La
seule restriction est la propriété de symétrie
H(S)) = H(~ 5,).

Les coefficients K, K,, ..., K, ..., également
appelés constantes de couplage et notés collecti-
vement u définissent un espace de paramétres.  x x
Un systéme physique a une température donnée
correspond a un point dans 'espace des parame-
tres. La TGR, notée R,, qui établit une corres- i k
pondance entre le systétme de spins et le systéme Cijkly
de blocs, est donc une transformation agissant
dans [lespace des paramétres : elle envoie un Figure 3.

J i

Giy  J=ij>

X X
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point w de cet espace en un autre point u’. On pourra écrire :

M= {K17K2""’Kn7 ...}
W' = (K Kb o KD )

et:
p'=Ryp. (6)

Il faut maintenant faire deux hypothéses nécessaires pour les
développements ultérieurs :

H1: Les coefficients (K, K, ...) sont des fonctions analytiques de
la température méme & T = T, et les K/, sont des fonctions analytiques
des K.

H2: Les TGR n’introduisent pas de couplages & longue distance,
c’est-a-dire de coefficients couplant fortement des spins éloignés : le
couplage entre deux spins éloignés doit décroitre plus vite que toute
puissance inverse de la distance entre ces spins.

Ces deux hypothéses sont raisonnables, car la transformation (6) est
locale dans I'espace (elle fait intervenir pour chaque bloc un nombre
fini de spins), mais on ne connait pas les conditions générales de leur
validité. Certaines transformations (cf. paragraphe D) introduisent des
interactions a longue distance, qui sont en réalité des artefacts de la
méthode particuliére utilisée. Ces interactions ne doivent pas avoir de
conséquences physiques, mais elles peuvent poser des problémes
techniques si 'on n’y fait pas attention.

On peut faire deux généralisations immédiates de ce qui précede :

e utiliser un espace a4 D dimensions : chaque bloc contient alors
2P spins,

e former des blocs comprenant s spins, au lieu de 22, et multiplier
par s l'unité de longueur. La TGR correspondante est notée R, :

p'=Rsp. Q)

Pour un systéme de spins, § = \/ 5, 2, \/ 3, etc. ; au paragraphe D
nous verrons une technique permettant 4 s de prendre des valeurs
continues.

Ainsi que je I’ai expliqué en début de chapitre, la stratégie du groupe

de renormalisation consiste a itérer un grand nombre de fois la TGR
R, : R;» sera défini par n itérations de R, : Ri» = R, ... R, (*). Il convient

(*) Remarquez que R2 m'est pas équivalent  la formation de blocs de s?” spins, en
raison des effets bicn connus des élections au second degré : la majorité de 4 blocs n’est
pas toujours celle de 16 spins !
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a ce point de répondre a la question suivante : pourquoi doit-on itérer
R,, et non procéder en une seule fois pour obtenir R, ? En fait on ne
peut pas faire l'intégration pour s> 1, sauf dans le cas de modeles
trivialement solubles (auquel cas le GR est inutile), alors que pour
§ ~ 1 le calcul est possible, au moins de fagon approximative, car seules
interviennent les fluctuations de longueur d’onde ~ sa (s"a aprés n
itérations), correspondant & un nombre limité de degrés de liberté.
Lorsque apparaitra dans un raisonnement un facteur de dilatation
s> 1, ce facteur devra toujours étre interprété comme provenant de
litération d’un grand nombre de TGR.

A.2. Transformations linéaires

Dans la formation des blocs telle qu’elle a été décrite plus haut, la
fonction f(S;) n’est pas linéaire, d’otl la dénomination « TGR non
linéaire ». Une fagon de définir le spin d’un bloc, qui possede la

propriété de linéarité, consiste & construire S;, a partir de la moyenne
des spins du bloc et a écrire :

s, =208 v ®)

Dans I'équation (8), A (s) est une fonction de s dont le role sera précisé
ultérieurement. Naturellement les spins des blocs ne restent plus égaux
a = 1, et aprés quelques itérations de la TGR, la variable de spin prend
des valeurs pratiquement continues : elle devient analogue a la variable
¢; (ou ¢ (x)) utilisée dans la théorie de Ginzburg-Landau.

La forme (5) du hamiltonien n’est plus adaptée pour définir ’espace
des paramétres. Le hamiltonien auquel on arrive aprés quelques
itérations est analogue a celui de Ginzburg-Landau, auquel on a rajouté
une infinité de termes, du type: ¢° ¢%, ©%(Ve)?, etc., en plus des
termes standard : (Ve ), ¢ 2et ¢*. L’espace des paramétres sera I'espace
des coefficients de ces différents termes, c’est-a-dire & nouveau ’espace
des constantes de couplages.

Bien que cette stratégie linéaire semble au premier abord plus
complexe que la stratégie non linéaire, elle posseéde une propriété trés
remarquable : la longueur de corrélation £’ du systéme transformé est
celle du systéme initial divisée pars :

£ =E/s. C)

Considérons en effet deux blocs suffisamment éloignés et calculons



96 Groupe de renormalisation 1I1.A.2

(Sa Sp) -
' ' S’ Ste” '[8']
(S, Sp) = —Z—SZ W Spe M
1 . ,A(s) —H[S
) ss,,na(s 5 zs,.)e (s
157 I8} iey
_A (s 12(2 Si>(Z Sj> o HIS)
s? 5] Vica jep

(on a utilisé les équations (2) et (8) et échangé 'ordre des sommations
sur [S] et [S'])

2(5) Y Y Gy=AXs) Gy

icea jep

Pour obtenir la derniére égalité, on a supposé £ > sa de telle sorte que
G,; varie peu quand i (j) parcourt le bloc a (B). Si G;; ~ e).(p(— r,.j/.g)
pour i et j suffisamment éloignés, et comme r,g = r;;/s (il faut bien
réaliser qu’en fait r,5 = r;;, mais que ces deux distances sont mesurces
avec des unités de longueur différentes) :

Gap ~€xp(— sraﬂ/g)

ce qui démontre (9). On peut écrire de fagon générale la relation
valable pour r>»a:

G(%.n') =AM Grm) (10)

La dilatation de I'unité de longueur (r — r/s) ainsi que la dilatation
des spins (A (s)) ne doivent pas masquer le fait que les systémes
paramétrés par u et w’, examinés avec les mémes unités, ont
fondamentalement le méme comportement a longue distance. On
notera aussi que I’équation (10) peut étre interprétée comme la loi de
transformation de la fonction de corrélation dans une transformation
d’échelle (cf. I-F). Cependant cette loi est complexe, car les parametres
du hamiltonien sont modifiés : p — u’. Il nous reste encore quelques
progres a faire avant de pouvoir exploiter cette relation.

En toute rigueur les relations (9) et (10) ne sont démontrées que pour
des TGR linéaires. Afin de simplifier les discussions, je supposerai
qu’elles sont vraies, au moins approximativement, dans le cas non
linéaire.

Dans le cas des TGR linéaires, la transformation obtenue en formant
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des blocs de (sq5,)P spins est identique a celle obtenue en faisant le
produit de deux TGR correspondant a des blocs de sP et sf spins,
pourvu que A (s) obéisse a:

A(s18) = A(s1) A(sy) -
Si cette équation est vérifiée, A (s) est de la forme :
A(s) = s% (11)

ou d, est une constante, appelée dimension anormale du champ. Cette
dénomination sera expliquée ultérieurement (paragraphe D). En fait le
raisonnement précédent n’est pas tout a fait correct car A (s) peut étre
aussi une fonction des parameétres de H ; I’équation (11) est valable
localement dans I'espace des paramétres, et en toute rigueur on devrait
écrire d,(pn ) (cf. exercice 4.c).

A.3. Surface critique et points fixes

Pour fixer les idées (mais le raisonnement est général), reprenons
Iexemple du modeéle d’Ising & deux dimensions et de la TGR non
linéaire. Dans I’espace des parameétres, et 4 une certaine température,
le modele est représenté par un point :

K1¢0, K2=K3:K4:...=O.

La dépendance par rapport a T est contenue dans K, et quand la
température varie, le point représentatif du modele d’Ising décrit dans
I’espace des paramétres une ligne appelée ligne physique du modéle
d’Ising.

Pour une certaine valeur :

K, =K, ~0.44

correspondant a T, = 2.27 J (cf. I-B.4), le modéle d’Ising présente une
transition de phase du second ordre, et sa longueur de corrélation £est
infinie.

Partons du point (K;,,0,0,...) dans l’espace des paramétres et
appliquons une TGR. La longueur de corrélation £’ est encore infinie
(¢' = &/s), et le systetme transformé est encore critique. Le lieu des
points qui, dans 'espace des parametres, correspondent a des systémes
physiques au point critique (& = 00 ) est appelé surface (ou variété)
critique S,. Si on applique une TGR & un point € S, le point
transformé est encore sur S,,. Comme la longueur de corrélation est
infinie 4 la transition, nous nous restreignons a des transitions du
second ordre (ou éventuellement d’ordre plus élevé).
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ligne physique

Figure 4. Evolution dans une TGR.

(i) Pe S,: P’, transformé de P, appartient aussi a S,
(G) Q¢ S,: Q, Q"... s’éloignent de S,.

Si 'on part d’'un point Q¢ S, les TGR @ - Q' —» Q"... vont
progressivement éloigner le point représentatif de la surface critique,
puisqu’a chaque opération la longueur de corrélation est divisée par s,
ce qui correspond a des systemes de plus en plus éloignés de la région
critique. Le systéme de trajectoires décrites par les points représentatifs
au cours d’itérations de TGR forme le flot de renormalisation. Si I'on
fait abstraction de la dilatation de I'unité de longueur et du spin, tous les
points d’une trajectoire correspondent @ un méme comportement Q
longue distance (figure 4).

A priori le comportement des points P', P", ..., P ) ..., transformés
de P € §, par itérations successives de la TGR, pourrait étre compléte-
ment arbitraire : il pourrait y avoir des points doubles, des cycles
limites, etc. Le cas physiquement intéressant est celui ol la suite

PP ... P™_, ... converge vers un point fixe P*:
lim p™ = p*
n— o

le point fixe étant caractérisé par un ensemble p* de parameétres tels
que :

Ropw*=p*. (12)
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Plus précisément, il existe sur la surface critique un domaine
d’attraction Z(P*) du point fixe tel que si PeZ(P*),
lim P™ = P* Je laisserai de coté le cas ou la dimension de
n— o
2 (P*) est inférieure a celle de la surface critique. Ce cas conduit au
comportement dit de « cross-over » (cf. Toulouse-Pfeuty (chapitre 8) et
exercice 9).

Il peut y avoir plusieurs points fixes, avec chacun leur domaine
d’attraction. Un point fixe peut aussi étre rejeté a I'infini. On ne connait
pas a I’heure actuelle de conditions générales pour l’existence de points
fixes et de leur domaine d’attraction. Il est nécessaire de procéder a des
vérifications explicites dans chaque cas particulier. Nous ferons donc
I’hypothése suivante :

H3: Si P € S, et que I'on effectue un grand nombre d’itérations de
la. TGR, P™ converge vers un point fixe P*e S, qui vérifie
R, n* = p*. 1l peut éventuellement exister plusieurs points fixes, et a
chacun d’entre eux correspond un domaine d’attraction.

Concluons ce paragraphe par quatre remarques :

(i) La position du point fixe dépend en général de la forme
particuliere choisie pour les TGR. Les résultats physiques {(exposants
critiques) ne doivent pas dépendre de la forme particuliére des TGR :
cf. exercice 8.

(ii) Role de A(s) = s*.
D’apres (10) on trouve au point fixe :

G(r, M*):f“"’G(?, u.*) .

(En toute rigueur, on devrait préciser que d, est évalué pour les
paramétres du point fixe : d, = d (n*).)

Le choix s = r/a dans I'équation précédente montre qu’au point fixe
le comportement de la fonction de corrélation est :

2\ 24
G(@r, p*) = <;> G(a, u*).
Comme P* € §,, on sait, d’apres la définition de I’exposant critique

n, que G(r) doit se comporter en (r)"2*2~". On peut donc faire
I'identification :

dwz%(D~2+n) : (13)
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Le résultat (13) montre la nécessité d’introduire un facteur de
dilatation A (s) = s% dans la définition des TGR : en effet si ce facteur
de dilatation n’est pas convenablement choisi, en particulier §’il n’est
pas relié a m par (13), il n’est pas possible d’aboutir & un point fixe.
L’étude du modele gaussien (paragraphe D.2) permettra d’illustrer la
nécessité du facteur A (s).

(iti) Un point fixe isolé donne des exposants critiques uniques. On
peut aussi avoir des lignes (ou des surfaces...) de points fixes : cf.
chapitre IV. Dans ce cas les exposants critiques dépendent continiment
de parameétres comme la température.

(iv) Pourquoi « groupe de renormalisation » ?

La notion de « groupe de renormalisation » a été introduite en 1953
par Stueckelberg et Petermann (') et indépendamment par Gell-Mann
et Low (%) dans le cadre des divergences de la théorie quantique des
champs (cf. chapitre VI). La procédure pour éliminer ces divergences
n’est pas unique et le « groupe de renormalisation » exprimait, au
départ, I'invariance de la physique par rapport aux diverses procédures
de renormalisation (renormalisation = procédure utilisée pour rendre
la théorie quantique des champs finie). Cette version du groupe de
renormalisation peut étre considérée comme un cas particulier de celle
introduite par Wilson en 1971, et que je viens de décrire. Le lien entre
ces deux versions scra examiné au chapitre VII. Notons dés a présent
que la dilatation du spin par un facteur A (s) dans (8) est souvent
appelée « renormalisation du spin », par analogie avec une opération
similaire en théorie quantique des champs.

B. COMPORTEMENT AU VOISINAGE D’UN POINT FIXE.
EXPOSANTS CRITIQUES

Le comportement des TGR au voisinage d’un point fixe va permettre
le calcul des exposants critiques, griace a la linéarisation des équations
du GR au voisinage de ce point. Afin de donner une explication
élémentaire, commencons par prétendre que I'espace des parameétres
est a4 une secule dimension : il suffit d’un paramétre K pour décrire la
suite des TGR. Cette hypothe¢se est évidemment trop simpliste et nous
montrerons un peu plus loin comment on peut s’en passer.
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B.1. Discussion élémentaire

Grice a I’hypotheése d’analyticité (H1), Péquation :
K'=R, K

peut étre linéarisée au voisinage du point fixe ; si K est voisin de
K* on obtient :

dR;
K' = K* + (K — K*)

K~ K*),
ir K*+O( K*)

en écrivant un développement de Taylor au voisinage de K*, out I’on
néglige les termes en (K — K*)? ; comme R, R, = R, ;,, on peut écrire
dR,/dK| ., = s”:

51527

K — K* = s¥(K - K*).

Draprés 'hypothése (H1), K est une fonction analytique de T, et sauf
accident, K — K* doit s’annuler linéairement a 7, en changeant de
signe (rappelons que K* appartient a la surface critique qui est ici

N

réduite a un point) :
K-K*~T-T,

au voisinage de T..

On choisit |[K— K*| -0, et |K'— K*| fini, mais tout de méme
suffisamment petit pour que I'approximation linéaire soit valable : le
point K' dans P'espace des paramétres représente un systéme loin du
point critique. Par la suite on notera symboliquement une telle
condition : |K’ — K*| ~ 1. La longueur de corrélation £(K') est alors
finie, ~a: mesurant la longueur de corrélation en unités de a,
£(K') ~1 (*). On peut maintenant évaluer ¢(K) grice a:

K' - K*

§(K) = 56K = (—gx

)l”g(K')~ \T—T,|"'/

c’est-a-dire :

(14)

~ ] -

(*) 1 est possible d’étre un peu plus précis en prenant |K' — K* | ~ kg, £€(K') = &,
oll k, et &5 ! peuvent étre petits (10~2 7) mais finis, afin de justifier le développement de
Taylor. On montrera aisément que cela ne change rien au résultat.
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L’exposant critique » est donc li€ a la dérivée de la TGR au point fixe.
On remarquera que le résultat est valable pour T > T, comme pour
T < T,: en d’autres termes v = v’ (cf. note page 41). Ce résultat va
étre étendu au cas d’un espace de paramétres quelconque.

B.2. Linéarisation au voisinage d’un point fixe

Soit u = {K,} un point dans I’espace des paramétres proche de
p* = {K3}:
K, =K+ 8K,
et u' = {K,} son transformé par une TGR: p' = R, u.

La relation entre 8K, et 8K, est approximativement linéaire si u et
p* sont suffisamment proches :

8K =Y T,p(s) 6K, (15)
B
avec
T oKe 16
O =550 | - (16)

La relation T(s;s,) = T(s;) T(s,) écrite pour s; =1+ 8, s, =5, 8§
infinitésimal permet de montrer que :

T(s)=exp(J Ins)

ot J =dT/dIns|,_,. Soit e® un vecteur propre de 7, g correspon-
dant a la valeur propre y; :

YT aped =yield.
B
Ce vecteur vérifie donc :

Y Top(s) e =s"ed.
B

La matrice J ,5 n’est en général pas symétrique, et il n’y a aucune
garantie pour que ses valeurs propres soient réelles et que ses vecteurs
propres forment un ensemble complet. On va néanmoins faire
I’hypothése que tout se passe bien de ce c6té (il est possible de faire une
hypothése un peu moins optimiste). On peut alors projeter tout point
de I’espace des paramétres sur la base {e®} :
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et a lapproximation linéaire :

8K, =Y t;5"el. 17)

Le coefficient ¢; est appelé champ (ou variable) d’échelle (scaling field).
Dans une TGR, le champ d’échelle est multiplié par s”. L’équation (18)
monire que 'on doit distinguer trois cas :

(i) y;=0: le champ d’échelle croit quand on itére les TGR:
t; est appelé champ essentiel (relevant).

~

(if) y; =0: le champ d’échelle reste constant a I’approximation
linéaire. Pour décider de son comportement, il faut aller au-dela de
cette approximation. Un tel champ est appelé marginal.

(iif) y; < 0: le champ d’échelle décroit avec les itérations des TGR.
Le champ ¢; est alors inessentiel (itrrelevant). 11 faut bien remarquer que
les champs essentiels, inessentiels ou marginaux sont définis par rapport
a un point fixe particulier.

Au voisinage du point fixe, le hamiltonien peut s’écrire :

H=H*+Zt,~0,~

ou les coefficients O; des champs d’échelle sont les opérateurs d’échelle
conjugués de ces champs. Si ¢; est un champ essentiel (resp. inessentiel,
marginal), 'opérateur O, sera aussi qualifié d’essentiel (resp. inessen-
tiel, marginal).

Nous supposerons pour le moment qu’il n’y a pas de champs
marginaux : leur cas sera étudié au paragraphe F. Les vecteurs
e sous-tendent un espace vectoriel dont I'origine est le point fixe
(t; =0Vi). §’il y a N champs essentiels, il faut fixer N paramétres
t; =ty = ... =ty = 0 pour se trouver, a ’approximation linéaire, sur la
surface critique. En effet si ¢; par exemple est # 0, les itérations de la
TGR vont éloigner le point représentatif du point fixe, et le point de
départ ne peut donc pas appartenir a la surface critique. (On suppose
implicitement qu’il n’y a pas de comportement du type « cross-over ».)

Inversement si t; =t, =-.-ty =0, le point représentatif converge a
Papproximation linéaire vers le point fixe, et le point de départ se
trouve sur la surface critique. L’hyperplan t; =t,=--- =1ty =0 est

donc le plan tangent a la surface critique au point fixe.

Le cas le plus important est celui ou la variation d’un seul parameétre
(la température) permet de se placer sur la surface critique. Ce cas
correspond aux transitions du deuxieme ordre, et ces transitions seront
décrites par une situation ot il existe un seul champ essentiel au point fixe
considéré.
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Les points tricritiques sont obtenus en fixant deux paramétres (par
exemple température et pression) : ce cas correspondra a I’existence de
deux champs essentiels. La généralisation aux points polycritiques
d’ordre N est évidente : il faut N champs essentiels. Je me limiterai dans
toute la suite aux transitions du second ordre, et donc au cas d’un seul
champ essentiel ;.

Figure 5. Evolution dans une TGR.
Flot de renormalisation au voisinage d’un point fixe.

La figure 5 montre le schéma de I'espace vectoriel au voisinage du point
fixe dans le cas de trois parameétres. Les doubles-fleches indiquent le
sens de déplacement du point représentatif dans une TGR. On
remarquera l'axe divergent (e)) et les deux axes convergents
(e® et e®): le point fixe présente une instabilité d’ordre 1.

Si 'on part d’un point proche de la surface critique (¢; petit,
t, et ty finis), I'itération des TGR va d’abord rapprocher le point
représentatif du point fixe ; cependant le coefficient de e‘!) va finir par
I’emporter, et le point s’éloignera de P*. Ceci permet de tracer
qualitativement le flot de renormalisation au voisinage de P * (figure 5).

L’approximation linéaire n’est plus valable si les parameétres
t; sont grands ; cependant le schéma général du flot de renormalisation
reste valable au-dela de cette approximation, méme si la description
devient techniquement plus complexe.
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B.3. Fonction de corrélation en champ nul

Avant de passer aux équations, il est utile de donner une justification
heuristique du rdle du point fixe dans la détermination des exposants
critiques. Nous supposons donc un point fixe auquel correspondent des
champs d’échelle ¢, t5, t3, ..., ¢;, ... avec:

y1>0; ---<yi<---<y3<y2<0.

Partons d’un systéme physique oil ¢, est trés petit (10~°) tandis que
ty, 3, ... sont petits mais finis (10~!) (ces chiffres sont évidemment
totalement arbitraires). Dans Pitération des TGR, le point représentatif
convergera rapidement vers le point fixe et restera longtemps au
voisinage de ce point, avant de diverger finalement le long de I'axe
e (cf. figure 5). Un grand intervalle en s sera dominé par le voisinage
du point fixe, et c’est cet intervalle qui construira le comportement
critique.

Passons maintenant a la discussion quantitative : comme dans le cas
de la discussion simplifiée, les exposants critiques seront reliés aux
valeurs propres s” de la matrice T,5(s). La fonction de corrélation
G (r) est une fonction des champs d’échelle ¢, ¢, 3, ... ; le champ
t; doit, sauf accident, s’annuler linéairement sur la surface critique :

T-T,

h~t= .
1 Tc

Utilisons la relation (10) et la loi de transformation des champs
d’échelle en convenant de mesurer toutes les longueurs (£, r) avec pour
unité le pas a du réseau :

G@rity, by, ...) =s'2d“’G<§;t{,t2’, ) . (18)

Plagons-nous d’abord sur la surface critique : ¢, = 0. Dans ce cas
I’équation (18) devient :

G(r;0,t5,...)= s"“"G( g ; 0, 8721,, ) .

Faisons maintenant le choix s = r: ce choix correspond a l'intégration
de toutes les fluctuations de longueur d’onde comprises entre a et r ; on
obtient :

G(r;0,t,...)= r_Zd"’G(l 50,122, ...).

Si 71, <1, I'équation précédente démontre que la fonction de

A

corrélation obéit bien a une loi de puissance au point critique,
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'exposant critique n étant donné en fonction de d, par I'équation (13).
On démontre ainsi pour r/a > 1, la propriété d’invariance d’échelle au
point critique, examinée au chapitre I, paragraphe F. La largeur de la
région critique c’est-a-dire la région ou l'on observe cette propriété
d’invariance d’échelle est donnée par :

(Cte) t,(r/a)? <1.

La constante dépend des détails microscopiques du modele ; I'inva-
riance d’échelle sera observée pour des valeurs de r d’autant plus petites
que y, sera plus négatif. On note que toute référence a I'échelle de
longueur a a disparu, mais seulement pour r/a> 1. Ceci distingue
I'invariance d’échelle au point critique de linvariance d’échelle naive,
d’origine purement dimensionnelle (cf. D.2): celle-ci serait valable
pour toute valeur de r.

Plagons-nous maintenant en dehors de la surface critique (¢; # 0), et
supposons que nous ayons suffisamment itéré les TGR de telle sorte
que la fonction de corrélation dans le membre de droite de (18) soit
calculée loin de la région critique :

YJt

s ~=x1.

I“l/y}

Désignons par ¢ la quantité |z, ~ |t|_1/ (& sera évidemment

identifié¢ avec la longueur de corrélation) ; 'équation (18) devient :
-2d r s\

ou le signe (+) correspond a 1=0 (T=T,) et le signe (-) a
t<0 (T <T,). Par construction, s ~ £ et on obtient le résultat
cherché :

G(r) = §_2d°’G< —;—;i 1, "1, ) .

Le choix s = ¢ correspond physiquement a P'intégration de toutes les
fluctuations de longueur d’onde a =< A = £ ; aprés itération des TGR la
longueur de corrélation est ~ 1, et le comportement de la fonction de
corrélation est régulier par rapport & (T — T,).

L’équation précédente donne un comportement simple pour G (r) si
¢”t, < 1: a nouveau on définira Ia région critique comme la région ou

cette condition est réalisée, ce qui sera le cas si |T - T,| est
suffisamment petit. A I'intérieur de cette région critique, on démontre
donc la forme (I1.30) de la fonction de corrélation, ce qui permet
d’identifier £ avec la longueur de corrélation :

Gy =rf (7). (19)



111.B.4 Comportement au voisinage d’un point fixe 107

les fonctions f, (T=T,) et f. (T <T,) étant a priori différentes.
L’équation (19) conduit a I'identification des exposants critiques net »
(remarquons au passage 1'égalité des exposants vet v’ : cf. note p. 41) :

1 1
= — —2 . = — . 20
d, 2(D +7M); v i (20)

La démonstration précédente suppose que le point de départ est
voisin du point fixe, de telle sorte que l'approximation linéaire soit
valable. Si le point de départ est éloigné de P*, mais appartient au
domaine d’attraction de P *, on peut se placer tout prés de la surface
critique. Par continuité la trajectoire du point représentatif parviendra
preés du point fixe. Soit s, le parametre de la TGR (ou des TGR
successives) qui ont amené le point représentatif dans la région
linéaire :

G(r, ,u.):s{“"G(SL, u’) .
0

Il suffit d’appliquer le raisonnement précédent a G(r/sy, n'):

o(Z.w) = (£) ()

Cette équation montre que G(r, u) a la forme (19) avec les
exposants critiques (20). Quel que soit le point de départ dans le
domaine d’attraction du point fixe, on obtient les mémes exposants.
Comme des points différents correspondent a des hamiltoniens diffé-
rents, on arrive a la propriété d’universalité des exposants critiques :
ceux-ci ne dépendent pas des détails du hamiltonien, mais seulement de
propriétés treés générales.

La largeur de la région critique est définie par la condition :

2t~ |T-T,| t,<1.

Elle dépend des détails microscopiques par 'intermédiaire de ¢,, et du
point fixe par 'intermédiaire de y,. Si ¢, est grand, ou y, petit (en valeur
absolue), il peut étre difficile d’observer le comportement critique. De
plus lorsque y, est petit, I’évolution se fait lentement le long de 'axe
e®, ce qui peut masquer le réle du point fixe. L’exemple extréme ou
vy, = 0 (champ marginal) sera étudié au paragraphe F.

B.4. Fonction de corrélation B = 0

Introduisons maintenant un champ magnétique extérieur uniforme.
Le terme rajouté au hamiltonien est :

sP , D—dy o
BIZSiZBmgSa:BS ;Sa'
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La loi de transformation du champ magnétique est donc:
BB —s" % B_s"B; y3=%(D+2— n). @)

Si Pon suppose que 7m est petit (ce qui est le cas en pratique:
n =0 —0.1), yp est positif et B croit dans une TGR.

En reprenant la méthode précédente, on obtient (on identifie
t; et t, et on n'écrit plus les champs inessentiels ¢,, #;...) :

G(r,t,B) = s_Zd"G< ! ,sy‘t,syBB> ‘

Cette équation avait été écrite sans démonstration dans I’exercice (1.5).
Elle permet d’obtenir les exposants B, v, en fonction de net », mais il
est possible de procéder plus directement en examinant I’aimantation
par spin M. L’aimantation M = (§) se transforme suivant la loi:

M(t, B) =s % M(s"¢,5s"" B)
1/v
=s_d"M(t (%) / ,sy”B) . 22)

Pour T=T,, B#0, on prend s = B~/

M0, B) = B%/"" M(0,1)
(en effet ¢ - c0). Cette équation donne I'exposant &:

Yb D+2-1n

) :Z—m' (23)
Pour T< T, et B=0, on pose s = £
M(t,0) = £ ““M(—1,0) ~ [¢]” ™.
Cette équation donne l’exposant §:
B:vd¢,=%v(0_2+n). (24)

Reste a obtenir 'exposant critique «; pour ce faire, on a recours a
I'énergie libre en champ nul.

B.5. Energie libre

L’équation (2) reliant le hamiltonien H'[S,] a H[S;] doit d’abord
étre précisée. En effet dans Plintégration sur les courtes longueurs
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d’onde, il apparait un terme constant G, indépendant des spins
S.. L’équation (2) doit étre corrigée en:

e—G—H'[S; - H[S;] )

N IO CA TR T

8] «

(25)

La discussion qui suit s’applique aussi bien aux transforrnations non
linéaires que linéaires, car nous n’allons pas utiliser ’équation (10). Le
terme exp (— G), qui provient de 'intégration sur les courtes longueurs
d’onde, n’intervient pas dans le calcul des fonctions de corrélation, car
il s’élimine entre le numérateur et le dénominateur dans des expressions
du type (1.25). Par contre, I’énergie libre dépend de ce terme, ce qui
rend la discussion plus complexe. En posant :

Z=ye Pl F=_mz
81
on obtient la relation :
F=F'+G.

Définissons I'énergie libre par unité de volume: f=F/L”,

fr=F/L/))P=fn):
flu)y=g+sPf(n"). (26)

Dans I’équation (26), la fonction f est la méme dans les deux membres.
En faisant appel aux champs d’échelle, I’équation (26) devient :

- y
f(tl’ t,, ...) = g(tl’ t,, ...) + § Df(s ltl,syztz, ...) .

Si on admet (et ceci est carrément frauduleux : cf. Ma, chapitre VI
pour une discussion correcte — mais longue — qui tient compte de ce
terme) que 'on peut ignorer le terme « régulier » g, on obtient en
posant s = [¢]” '/

F@&) = 11" f=1, 117y, 00 27)

f(2) est I'énergie libre des fluctuations de longueur d’onde A = ¢ ; le
terme négligé, qui est I’énergie libre des fluctuations de longueur
d’onde A = £, est aussi singulier que f.

Comme la chaleur spécifique est donnée par ~ df/dt2, on voit que
2—a=D/y =Dv dou la relation :

a=2-vD. (28)
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B.6. Lois d’échelle et remarques

L’analyse au voisinage du point fixe a permis de démontrer les lois
d’échelle (= relation entre exposants critiques) suivantes :

a =2—-vD (29.a)

B =%V(D_2+n) (29.b)
_D+2-7q

) =D 2+ (29.¢)

y =v(2-m). (29.d)

Les six exposants critiques fondamentaux ne sont pas indépendants :
il suffit de connaitre 7 et vpour les calculer tous. Les lois d’échelle sont
parfaitement vérifiées par le modeéle d’Ising D =2 (en prenant
a =0 pour une divergence logarithmique), et semblent aussi vérifiées
dans toutes les études numériques qui ont été faites sur des modeles.

Les lois d’échelle représentent donc un beau succeés du groupe de
renormalisation. Cependant, il ne faut pas accepter aveuglément tous
ses résultats : le groupe de renormalisation ne permet pas de calculer
explicitement un modele : il ne permet pas d’affirmer que la fonction
f., par exemple, dans I’équation (19) est différente de zéro. Si cette
fonction était nulle, le comportement de la fonction de corrélation
serait évidemment totalement différent. Un bon exemple o 'applica-
tion aveugle des résultats du groupe de renormalisation conduit & des
résultats incorrects est donné dans Ma, chapitre VII.

C. MODELE D’ISING SUR RESEAU TRIANGULAIRE
ET APPROXIMATION DES CUMULANTS

Dans ce premier exemple d’application du groupe de renormalisation,
jutiliserai une TGR non linéaire. Ce type de transformation a été
utilisé principalement dans des études sur ordinateur. Le principal
probléme est la nécessité de tronquer le hamiltonien (5) en conservant
seulement un nombre fini de termes. Cette troncature introduit des
approximations difficiles a contrdler, et dans I’ensemble les résultats
ont été¢ décevants. Une méthode prometteuse est celle du « Groupe de
Renormalisation Monte Carlo » (%).

Jexposerai une méthode d’approximation (méthode des cumulants)
qui a le mérite d’une relative simplicité de calculs, et qui illustre de
fagon concréte les notions essentielles du groupe de renormalisation :
transformation du hamiltonien, point fixe, et calcul des exposants
critiques. Le cas le plus simple est celui du réseau triangulaire : les blocs
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de spins sont formés en groupant 3 spins S ,S,_’_) au sommet d’un triangle
(figure 6). Le facteur de dilatation est s = JV3etle spin S, du bloc est :

S’ = Signe (SP+SP+8P) = (Y.
Le hamiltonien transformé sera donc donné par :

e-G-H'IST _ Z l'-[ 5(S, — f(Sg)))e—H[S] . (30)

5] «

Figure 6. Réseau triangulaire et formation
de blocs.

On peut toujours écrire :
H=Hy+V

ol H, contient les interactions entre spins a I'intérieur d’'un méme bloc
et V les interactions entre spins de blocs différents (figure 6). Récrivons
(30) sous la forme :

Ye P a(s - f()Ye ™18~ F(5))
e~ G-Hs] _ 1 (5]

ye ] 8(s - £(5))

5]

G

et définissons la valeur moyenne (A), d’'une quantité A par:

Y e AISIT] 8(S'— £(5)
<A>0 =4

Ye P[] 8(S - F(S))

[s]

11 faut bien remarquer que (A}, est définie pour une configuration de
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blocs [§'] donnée; une notation plus explicite serait (A[S']),.
L’équation (31) devient :

e~ G-HIS) _ <e—V>OZe‘H"n 8(S" - f(S)). (32)

[s]

I’équation (32) est exacte mais ne nous avance pas beaucoup pour le
moment. Nous allons maintenant avoir recours & une approximation
reposant sur lidentité suivante (développement en cumulants, cf.
V.B.1):

In {e*) =1In [e<® ("~ <)Y
= (x) +In ("~ )

(x) +In <1+(x— (x))+%(x— &)Y +
TR RCERCOV RN

= (x) 3 (= P g (= Py e

Nous allons nous contenter de garder le premier terme du développe-
ment ; les calculs ont ét¢ menés jusqu’au troisiéme terme, mais ils
deviennent rapidement trés complexes ; nous ferons donc "approxima-
tion :

€y e <,

Calculons } e I] 8(S"— F(S)): comme H, ne contient que des
[5]

interactions internes a chaque bloc, ce terme vaut [Zy(K)]V' ou

N'"= N /3 est le nombre de blocs et

Zy(K)=e*X 1 3e X, (33)
En effet pour S’ fixé, une configuration a énergie — 3 K et trois ont une
énergic K.

1
Evaluons ensuite le terme (V), en considérant
Iinteraction entre deux blocs e et 8:

N ~Vap = KSPISP 4+ 59

Comme H,, ne connecte pas deux blocs différents
(figure 7) :

Figure 7. <SI§1)S¢(22)>0 = <slgl)>o <S§2)>0 .
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Par exemple si S, =

(SP, = Z SPexp(K(SOSP + S5OSO+ 585Dy
20 53,

Les configurations possibles avec S, =1 sont :

123 123 123 123
(N A N R A A |

e’ X +e K ek e X =e&KipeX
et celles avec S, = —1
123 123 123 123
2 I 2 N 2 N O
—e 3K _e K yek ek —@F+e®).
On trouve donc:
<S§2)>0 = ZO}K) S +e 85,
d’ou
3K oK \2
<V"ﬁ>°:2K(W) S, S =K'S,Sp.
La relation entre K’ et K est trés simple :
3K - K
K'=2K(_—§K++3ee_K)2. (34)

Combinant les équations (33) et (34) on trouve la loi de transformation :

exp(—G—H’[S’]):exp[N’ln @F+3eK)+K'- ¥ s;s‘g],
~<aB>
(35)

ce qui permet Videntification immédiate de G et H'.
Il n’y a donc qu’un seul paramétre g cette approximation. Le point
fixe K* vérifie :
4K* 2
K*=2K*<°4Tﬂ> (36)
e’ +3
soit :

e4K*=x=1+2\/5; K*~0.336.
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Reste a déterminer s” en calculant (dK'/dK)g:

dK’
dK

K*—

<x+1>2+32K*x(x+1> ave x+1 1
x+3 (x+32 \x+3

ce qui donne :

s7=1.634
et donc :
In (1.634
y = ( > )

=1.118 .
In \/3

= 0.894 s Vv =

<=

Ces valeurs (K* = 0.336, v = 1.118 ) sont & comparer aux valeurs
exactes :

- K*=0.275; v = 1.000.

Si 'on calcule les termes d’ordre supérieur de Papproximation des

cumulants, les résultats se rapprochent des valeurs exactes, mais la

convergence est lente. Des le deuxiéme ordre il est nécessaire d’intro-

duire trois parametres au lieu d’un seul. L’amélioration par rapport au

champ moyen est trés sensible puisqu’a cette approximation (g = 6):
1 1

Kc=6=0.167; V=§.

D. MODELE GAUSSIEN

Au lieu de définir une TGR en formant des blocs de spins, ce qui
correspond a intégrer sur les fluctuations de longueur d’onde comprises
entre g et sa, on peut intégrer directement dans I’espace de Fourier sur
ces longueurs d’onde, c’est-a-dire sur les vecteurs d’onde compris entre
A= 1 et A' = 4 = l

a s sa
équivalentes d’un point de vue mathématique, mais si les idées
physiques sous-jacentes au GR sont correctes, elles devraient donner
des résultats, identiques car elles sont a priori physiquement équivalen-
tes. Ceci nous ameéne a effectuer les opérations du groupe de
renormalisation dans 'espace de Fourier.

. Les deux opérations ne sont pas strictement
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D.1. Transformation dans ’espace de Fourier

Nous allons traiter uniquement le cas de TGR linéaires, et prendre
comme hamiltonien de départ un hamiltonien du type de Ginzburg-
Landau généralisé. On peut considérer que ce hamiltonien a été obtenu
& partir d’'un modele de spins, en itérant un certain nombre de TGR
linéaires du type (8). Au cours de ces itérations la variable de spin est
devenue une variable continue ¢ (x), par intégration sur toutes les
fluctuations de vecteur d’onde = A ; aprés ces intégrations, ||k| sera
donc limité par :

Ikj < A. 37

En d’autres termes, on a pris des moyennes sur un domaine
a= X =A"'< ¢; on peut aussi considérer (38) comme un développe-
ment limité destiné a étudier les fluctuations autour du champ moyen
(chapitre IT). La localité de la théorie se traduit par I'existence d’un
nombre limité de dérivées de ¢. L.e hamiltonien s’écrira :

_ p [1 ; 1 2, 1 4
H—J’d x[ic(qu) +§r0<p +Z—!u0<p +

1 1 1
o ¢6+§u8¢8+avo¢2(v¢)2+---] . (38)

On reconnait le hamiltonien (I1.19) de Ginzburg-Landau, avec un
facteur ¢/2 au lieu de 1/2 et des termes supplémentaires. L’espace des

parametres est celui des divers coefficients, ou constantes de couplage
de (38) :

o= {C7 Yo, Uy, Ug, uS’ an ~"} . (39)

Il est commode d’introduire la transformée de Fourier &(k) de
@ (x) par:

7 (k) =

a® ik x dPx .y
SRS e [ SEeew @)
ol L est la taille du systéme.

Remarquez que la normalisation de la transformée de Fourier dans
(40) n’est pas la méme que celle de 'appendice A (équation (A.8)), qui
est valable pour les fonctions de corrélation. La normalisation (40) est
choisie de telle fagon que (cf. exercice 2) :

Gk)= (k) (- k) . (41)

Les deux premiers termes du hamiltonien (38) correspondant a
Papproximation gaussienne de ce hamiltonien prennent une forme trés
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simple dans I’espace des k. En utilisant I'identité de Parseval, on trouve
immédiatement :

H=2% (o +c)§0) & k)+- . 42)
k=<A
Les termes écrits explicitement dans (42) donnent le hamiltonien du
modéle gaussien dans I'espace de Fourier.
Au lieu d’écrire la mesure d’intégration de la fonction de partition
dans l’espace des ¢ (x), on peut aussi bien I’écrire dans I'espace des
@ (k), puisque la transformation ¢ (x) —» ¢ (k) est unitaire a un facteur

multiplicatif prés, sans importance pour les fonctions de corrélation (cf.
exercice 2) :

[1de () [T 46 ®&)

k<A k

z- [ d¢(k)exp<_%z(r0+ck2)¢(k)¢(_k)+...). “3)

Les deux premiéres opérations de la TGR sont, comme précédem-
. A ..
ment, une intégration sur les vecteurs d’onde — =< k < A, suivie d’une
s

dilatation de l'unité de longueur d’un facteurs :
’ X ’
x-»x:;; k- k' =sk (44)

tandis que la troisi¢me opération consiste a « renormaliser » la variable
de champ ¢ (x):

ex)— ¢ (') = A(s) ¢ (x) = 5™ ¢ (x) (45.2)

ou dans I'espace des k:

_D i -2
FR)-> @' K)=a(s)s > pk)=s" > pk). (45b)

L’équation (45.b) se déduit aisément de (45.a) (L' = L/s):

D
d“x’ ik'-x

o) = [ Lo x o)
i} dPx k.
= D/ZJLT’;Zek A(s) @ (x)
=A(s)s P23 (k).
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En résumé, la TGR R, se décompose en trois étapes :

1) Intégration sur k :

ilsksA.
s

2) Dilatation de l'unité de longueur :

XX =X/s
k->k' =sk.

3) Renormalisation du champ :

e(X)> ¢ (x') = 5% ¢ (x)

k) > &' &) =s" """ 5 (k).

On peut écrire immédiatement une relation formelle pour le hamilto-
nien transformé H' = R; H (en omettant la constante G : cf. (25)):

(46)

e H' (o) _ f d(‘ﬁ(k)e'H(w b,
A_rea PR >s2 L '(sk)

Etablissons maintenant I'analogue de (10) pour la fonction de
corrélation dans Pespace des k : cette relation est en fait triviale. En
effet si k< A/s, la densité de probabilité e ' donne les mémes
fonctions de corrélation que la densité de probabilité e H, puisque ces
vecteurs d’onde ne sont pas affectés par I'intégration. Les seuls facteurs
a prendre en compte sont le changement d’échelle k —» sk et la
renormalisation du champ ; compte tenu de I’équation (41), on obtient

pour k < A/s (cf. aussi exercice 4.c) :

Gk, u)=s%PG@, pn) |. (47.a)

La relation (47.a) est exacte ; par transformation de Fourier, on
obtient dans lespace des x une relation approchée, valable pour

x| >1/4:
d

qui est évidemment identique a (10).

@ | M

,w) ~"%G(x, 1) (47.b)
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D.2. Modéle gaussien

Pour se familiariser avec la TGR (46), il est utile de traiter le cas du
modele gaussien (42) qui est extrémement simple, mais un peu trop
trivial pour représenter une situation physique réelle. L’espace des
parametres est a deux dimensions: g = {c,r}. L’intégration sur
d@ (k) donne une constante, étant donné que l'on a affaire & un produit
d’intégrales gaussiennes découplées. Le nouveau hamiltonien est donc
(p(— k)= ¢*(k); j’écris désormais ¢ (k) au lieu de & (k) quand il n’y
a pas de confusion possible) :

HI

1
T 5 (o+ck)| o)
k<A/s

5 %s"‘”v(ro+cs—2k'2)|_<p'(k')|2.

k'=A

Le hamiltonien H' a la méme forme que H avec une loi de
transformation des paramétres donnée par :

D-2-2d D-2d
! . 4 ¢
c'=s ‘“c, rg=s ry -

Ces équations donnent deux possibilités de points fixes :

() D-2d,=0; ro quelconque ; c =0
(i) D-2-2d, =0; ¢ quelconque ; rg =0.

Dans le cas (i), ¢ est un champ inessentiel et le point fixe correspond a
un ensemble de sites découplés, ce qui n’est pas trés passionnant. En
fait ce cas correspond & la limite 7T — oo (cf. exercice I.5) et
€ = 0 correspond aussi 4 un point fixe des TGR.

Le cas (ii) est plus intéressant ; le point fixe est défini par :
n* = {c,ry=0}

ol ¢ est arbitraire. L'équation (13) implique que n = 0. D’autre part :

ro=s%r,

ce qui montre que ry est un champ essentiel avec y =2, d’on
v =1/2. Le parameétre r, s’annule a la transition qui a lieu a
T=Ty:ry=7o(T—Ty); cependant la phase basse température
(ro<0) n’est pas définie pour le modeéle gaussien: lorsque ry <0,
certaines intégrales gaussiennes sur ¢ (k) ne sont pas convergentes. Les
résultats v = 1/2, 1 =0 avaient déja été obtenus au chapitre II,
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paragraphe D, par un calcul direct de la fonction de corrélation qui
vaut, rappelons-le, (7o + ck?)~! dans ce cas.
Il est instructif de rajouter un terme en k* a (42) :

H=y <%ro+—c2-k2+%k4) o (k) @ (k).

k<A
Dans la TGR, le champ w, se transforme en:
w=5"2w,

et w, est donc un champ inessentiel. Le flot de renormalisation est tracé
sur la figure 8, en supposant que w, n’est pas trop négatif, sinon on
risque des divergences. Le résultat est intéressant, car il explique la
« restauration de I'invariance par rotation » au point critique. En effet,
en développant le hamiltonien du modele correspondant sur réseau (cf.
exercice I1.5) on voit apparaitre un terme violant I'invariance par
rotation :

1
iVl

ki

™o

1

Ty

Figure 8. Flot de renormalisation en présence d’un terme en k.

Ce terme étant inessentiel n’affecte pas le comportement a longue
distance des fonctions de corrélation, qui sont donc invariantes par
rotation.

On remarque aussi que le paramétre ¢ ne joue aucun role : on peut
fixer sa valeur 4 ¢ = 1, et c’est ce que je ferai par la suite. J’irai méme
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plus loin en exigeant que dans le cas du hamiltonien général (38), le
coefficient de (Vo )* reste toujours fixé a 1/2 dans toutes les itérations des
TGR. Cette condition est certainement compatible avec I’existence
d’un point fixe : un des paramétres de H reste fixé et égal a 1/2. Dans le
cadre des théories perturbatives du paragraphe E, elle conduit effective-
ment 4 un point fixe. D’autres choix pourraient conduire a d’autres
points fixes, mais on ne sait rien & I’heure actuelle, ni de leur existence
éventuelle, ni de leur utilité possible en physique.

Les résultats du modele gaussien sont en réalité d’origine purement

dimensionnelle. En effet, exiger n = 0 (ou d, = % - 1) est équivalent
a demander que le coefficient du terme en k*| ¢ (k)|?, ou celui de
(Ve )?, reste inchangé et égal a 1/2 dans une TGR. Pour que ceci soit

réalisé, il faut que le changement d’échelle de longueur soit compensé
par le changement de normalisation du champ :

I dPx'(V'e' ) = J dPx s_DJrZJrM“’(qu)2

= Jde(V¢)2
(o' (x') = sl p(x)et V' =5V), soit d, = -122— 1.

Ceci revient a dire que si I'on attribue la dimension —1 & une

longueur (x' = s~'x), on doit attribuer une dimension d, = % —1au

champ ¢.

Mais Tlinvariance de H peut étre retrouvée par simple analyse
dimensionnelle : en effet H ayant dimension zéro, est indépendant de
I'unité de longueur. Si Pon veut que H ait dimension zéro, il est

. . . . . D
nécessaire d’attribuer au champ une dimension 5 1.

. . D P . .
La dimension dg =5 - 1 est appelée dimension normale (ou canoni-

que) du champ : c’est celle que I’on obtient par analyse dimensionnelle.
En général, pour un hamiltonien non gaussien, d, ne sera pas égal a
dg (de fagon équivalente 7 sera s 0) ; d,, est alors appelée dimension
anormale du champ. Cette dimension anormale a une origine dynami-
que, ct elle dépend du point fixe considéré.

L’invariance d’échelle naive correspond a un comportement déter-
miné uniquement par l'analyse dimensionnelle : par exemple G (k)
ayant dimension — 2 doit étre proportionnel 4 k=2 ; c’est effectivement
le résultat du modele gaussien lorsque T = T (= T}).

Il sera intéressant pour la suite de déterminer les dimensions
normales des constantes de couplage 7, ug, iy, Uy, etc. dans (38), notées
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[ro], [#o], etc. Ces dimensions normales sont obtenues trés simplement
en remarquant que [H] =0 et [¢]=d} = —?—— 1. On trouve :
ol =2 0] = 4 = D
(48)
[u6]=6—2D [U0]=2—D.

D.3. Point fixe gausssien

Examinons maintenant le hamiltonien général (38). Ce hamiltonien
comprend des termes en @2, ¢4, etc. qui se référent a un seul site. Ces
termes sont simples dans l'espace des x. Inversement le terme en
(Ve ) couple des sites différents : ce terme au contraire est simple dans
I'espace de Fourier: il est diagonalisé par une transformation de
Fourier. Dans le cas du hamiltonien gaussien, les modes normaux sont
découplés.

Au contraire le terme en ¢* est compliqué dans I’espace de Fourier,
car il couple les modes normaux entre eux :

j Px o' ) =L T olk) o) o (k) @ (— ki~ Ky~ ky)

ki, ky, k3

Il n’est pas possible de trouver un espace ou tous les termes sont
simples, et c’est pourquoi on doit avoir recours a4 des méthodes
approchées pour traiter le hamiltonien de Ginzburg-Landau. Je me
limiterai dans un premier temps au hamiltonien 1I.19 ; la méthode
standard est le développement perturbatif en puissances de u,. Le
hamiltonien H est décomposé en un terme gaussien H, et un terme
« d’interaction » V :

U,
H=Hy+V; V=I?Jde¢4(x). (49)

De méme pour appliquer I’équation (46), on devra avoir recours a
cette séparation pour faire P'intégration sur les de (k).
Ecrivons :

P(x)=¢:1(x)+ &(x) (50)

ol ¢, (x) a des composantes de Fourier dans le domaine 0 < k=< A/s et
@ (x) dans i k< A. La mesure d’intégration dans (46) est donc

9 & ; il convient également de remarquer que ¢; et & sont découplés
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dans H,. Négligeant la constante multiplicative (exp — G ) et omettant
pour le moment les dilatations, on obtient :

J Do exp(— Hy(3) -V (e, )

— Hj — Hy(e
1_e ole1)

J%exp(— Ho (7))

Si lon se limite au premier ordre en uy, le nouveau hamiltonjen
Hj| sera:

Do exp(— Hy(8)) V(e1, &)

Hi = Hy(¢1) + +0(ug). (51)

j 9 exp(- Ho(3))

Le hamiltonien Hy(& ) est gaussien, et V (¢4, § ) est un polynéme en
@. 1l s’agit donc dans (49) d’évaluer la valeur moyenne d’un polynéme
avec une distribution de probabilité gaussienne. En fait, nous aurons
seulement besoin de (& (x) @ (y)),, o lindice 0 indique que la

moyenne est prise en utilisant le hamiltonien gaussien H,. Pour évaluer
cette valeur moyenne, on remarque que 'on connait déja le résultat
lorsque I'intégration sur k va de 0 4 A ; dans ce cas (& (x) #(y)) estla

fonction de corrélation du modele gaussien (équation (I1.45)):
de e—ik'(X—Y)
<A mP K4

(7 (x) ‘»_D(Y»O = Jk

Dans le cas présent, l'intégration sur k est limitée par A/s<
k= A et le résultat est simplement :

aPk ek &-Y)

(px)#(¥))=Golx—y)= JA (52)

S=k<a 2 7T)D K+ Ty
Revenons au caleul de (V (¢4, 8)):

((e1x)+ X)), = ¢1(x) + 6 p7(x) (FX) FX)), + (F'Xx)), -

Le dernier terme est une constante et peut étre négligé. Le second vaut
6 ¢(x) Gy(0). On trouve donc pour Hj :

, 1 1 U, U, _
Hi= [ @3 § Yo+ 3n o+ 57 o + 7 610) Gu0)] .
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Reste a faire les dilatations pour trouver H':
Uy ~
H = | a2 v oy Lo £ 226,0)) x
2 2 2
24 U
X ¢2(x) + 5° 2"«’4—‘,’<p'<x)4]. (53)

A cet ordre le coefficient du terme en gradient n’est pas modifié par
I'intégration sur &. Si'on veut maintenir ce coefficient égal a 1/2, il faut

donc prendre, comme dans le cas du modéle gaussien, d, = 5 1 et

n = 0. Les lois de transformation de ry et u, sont :

ré = s2<r0 + %9 GO(O))
(54)

uy=s*"Puy=suy (e=4-D).

Evaluons maintenant Gy(0); comme ry,— 0, on peut prendre
ro<A/s (il est un peu plus simple de prendre pour hamiltonien

Hy = J dPx(Ve ) : cf. Ma, chapitre VII) :

A pD-1
~ k dk
G(0) = Kp J ———+ 0(r)
A/s k
K AD—Z
=55 (1=5""?)+ 0() =2B(1 —5*"2) + O () - (59)
Les équations (54) ont un point fixe & 7y = uy = 0. Si I'on linéarise au
voisinage de ce point fixe, les termes négligés dans (55), qui donnent
des contributions en (i, ry) etc. ne modifient pas la linéarisation. La

matrice T(s) (cf. (16)) est dans ce cas :

’ ~2(D-2)"

€

£ -2
T(s) = (502 B(s*—s )) Kp AP

N

Ses valeurs propres et vecteurs propres sont :
1
py =s* 01=2); e = <O>
pr=s° (0r=¢€); e® = <—f> .

Pour £ < 0, c’est-a-dire pour D = 4, on trouve une valeur y; = 2 et une
valeur y, = & < 0. Ceci montre que le point fixe est du type étudié au
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paragraphe B, avec un champ essentiel et un champ inessentiel. Les
exposants critiques sont identiques a ceux du modeéle gaussien :
v=12, n=0.
Examinons l’espace des parameétres; un point u de cet espace
s’écrit :
o=y Py + Uy ty

ou 7, et 4, sont les vecteurs unitaires des axes r; et y, respectivement ;
comme e =7y et e® = — Biy+1,:

p=(rg+uyB)e® +uye®.

Les champs d’échelle sont t; = rq + uy B et t, = uy, la surface critique
étant donnée par t; = ry+ug B = 0.
A Tlapproximation lin€aire on obtient la température critique :

Uy KD AD_2

”0c=70(Tc—T0)=—uoB=—m

en accord avec (I1.49). Le flot de renormalisation au voisinage du point
fixe est tracé sur la figure 9.

o

- Uy
P* \\

e® S

e

Figure 9. Diagramme de flot pour D = 4.

Si I'on se limite 4 I'espace des paramétres (7, uy), c’est-a-dire au
hamiltonien de Ginzburg-Landau proprement dit, on vient donc de
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montrer que pour D = 4 les exposants critiques sont ceux du modéle
gaussien, ou de la théorie de Landau. Il est facile de généraliser ce
résultat 2 un hamiltonien arbitraire de la forme (38). En effet dans une
TGR, un terme tel que wuz se transforme, d’aprés (48) suivant
(exercice 3) :

et le champ u,, tout comme u,, est inessentiel (toujours si D = 4),
I'exposant de s étant négatif. Une suite de TGR amene tout hamiltonien
du type (38) au point fixe gaussien 7q = Uy = Uy = --- = 0, si 'on part
d’'un point situé sur la surface critique. Cette propriété permet de
démontrer le résultat annoncé au chapitre I1 : les exposants critiques de
la théorie de Landau sont corrects pour D = 4. 11 faut cependant faire
attention pour les exposants «, 3, §: cf. Ma, p. 185.

E. CALCUL DES EXPOSANTS CRITIQUES A L’ORDRE ¢

E.1. Point fixe non gaussien

Pour D <4, le point fixe trouvé précédemment ne décrit plus une
transition de phase du deuxi¢éme ordre, car y, = £ < 0. Il apparait un
deuxieme point fixe, qui aura lui les caractéristiques convenables :
y1=0, y,<0, et c’est ce point fixe qui va déterminer les exposants
critiques pour D < 4. Ce point fixe apparait comme le prolongement

4‘r0 \

k e'D

\ e'@ b\

1. ‘k
pP* el }6(1)
Uy u(]‘

P* e(z) P* Le’“)

e® P*
: '@

(a)D>4 (b)D<4

Figure 10. Diagrammes de flot D=4 et D < 4.
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d’un point fixe de type incorrect pour D = 4 : en effet il lui correspond
deux axes divergents. De plus ce point fixe est non physique car il
correspond & u, < 0, cas ou les intégrales sur ¢ (x) ne sont pas définies.
Les deux points fixes échangent leur stabilité pour D = 4 (figure 10).

La raison de l'apparition de ce point fixe « non gaussien» pour
D < 4 réside dans I’existence d’un terme non linéaire pour I'évolution
de u;. En effet on montre que cette évolution dans une TGR a la
forme :

w) = 5y — Cuglns)

ot C est une constante. La condition pour I'existence d’un point fixe
peut s’écrire duy/dIns|;_, =0, soit:

'
duO

2
— = - =0.
dlIlS o €Uy Cuo

. . . P £ 5 N . )
Le point fixe est alors situé a ug = c°¢ est-a-dire que u§ est d’ordre ¢ :

en fait les calculs dont le principe est exposé dans ce qui suit sont
valables ordre par ordre dans un développement en puissances de &, car
ils reposent sur un développement perturbatif. Les résultats ne seront
valables que pour & « petit» (cette notion de & « petit» restant a
préciser).

Reste évidemment a écrire explicitement les lois de transformation
de ry et uy. Le calcul est plus compliqué que précédemment car il faut
aller jusqu’a lordre u? dans le développement perturbatif. Je me
contente de donner le résultat des calculs sans démonstration, car
j'exposerai plus loin une méthode plus rapide. On trouve (cf. Ma,
chapitre VII) :

, w (1 _
ry = sz[ro +T(;2 ( S A1 =5 -1y lns)] (56.2)

.. 3ud
uy=s [uo - E——Zln s] . (56.b)

m

Les équations (56) sont obtenues en faisant un certain nombre
d’approximations dont la cohérence peut étre vérifiée a postériori,
lorsque P'on a montré que ug et rf sont tous deux d’ordre .

E.2. Equations différentielles de renormalisation

Il vaut la peine de s’arréter un moment sur 'interprétation des
équations (56). Imaginons que I'on soit parti d’'un hamiltonien initial,
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avec des valeurs ry = ry(1) et uy = ug(1l). Aprés un certain nombre
d’itérations, on arrive a2 un hamiltonien dépendant de paramétres
ro(s) et uy(s), ainsi que d’autres couplages ug(s)... Ces couplages
rendent I’étude du voisinage du point fixe trés complexe, sauf si on se
limite & I'ordre &, auquel cas ils peuvent étre négligés. Une indication
en faveur de cette propriété est donnée a l'exercice (7.h). Nous
admettrons par la suite que nous pouvons nous contenter de la forme
tronquée (56) des équations du GR. Comme le facteur de dilatation est
continu, on peut effectuer une TGR de facteur de dilatation 1 + 8§,
8 — 0. Les relations entre [ry(s(1 + 8)), up(s(1 + 8))] et [ro(s), up(s)]
sont données par (56), en prenant Ins =8 (In (1 + 8)=481!). Par
conséquent on peut transformer les équations (56) en équations
différentielles :

d A2
——dr‘l’r(lss) = 2ry(s) — = (1s6) ::z(s) + u‘i(glz (57.a)
2
%3%1(33 _ euy(s) - 108) (57.b)

16 w2~

En fait les équations (56) ne sont correctes (modulo les remarques ci-
dessus) que si s est suffisamment petit (ce point sera discuté en détail au
paragraphe F) : rappelons que 'on ne doit jamais faire en une seule
étape une TGR correspondant 2 un facteur de dilatation s > 1, mais
toujours décomposer en un produit de TGR. L’avantage des équations
différentielles (57) est que Ins est méme infinitésimal. En général on
pourra écrire pour des paramétres K, (s) des équations différentielles
de renormalisation :

dK,
) B ke (58)

L’itération des TGR est donnée par la solution de ces équations
différentielles : un facteur de dilatation s s’obtient dans ce formalisme
par une suite d’itérations de TGR infinitésimales.

Les équations (57) permettent de calculer aisément la position du
point fixe :

16 72
3

£

u = £ re = - 3 A? (59)

et les exposants y; et y, ont pour valeur (exercice 4) :

nW=2~-=; yo=—e<0. (60)
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Le fait que y, < 0 montre que le point fixe posseéde bien les propriétés
souhaitées. L’exposant critique » vaut :

1 1 €
V= —=2+4—

yl = E 12 + 0(82) (61)

et I’équation (61) donne la correction d’ordre ¢ a la théorie de Landau.
La démonstration des équations (59) et (60) a partir de (58) est
renvoyée a lexercice (4). L’équation (61) donne les deux premiers
termes du « développement & » d’un exposant critique. On écrira ce
développement de fagon générale pour un exposant critique {;

(=lo+biet et L, e (62)

ol ¢, est donné par la théorie de Landau.

E.3. Méthode de « raccordement »

La méthode précédente a I'avantage de prouver explicitement I’existence
d’un point fixe non trivial pour D < 4. Cependant les calculs sont assez pénibles
et, ce qui est plus ennuyeux, deviennent carrément inextricables si on veut les
pousser & I'ordre £%: en effet I'espace des paramétres {70, Up} ne suffit plus
pour localiser le point fixe et les équations tronquées (56) ne rendent plus
compte des TGR.

Une méthode plus performante de calcul des exposants critiques consiste a
admettre que les fonctions de corrélation ont le comportement prévu par le
groupe de renormalisation quand il existe un point fixe.

Nous allons utiliser 1a fonction de corrélation I'“(x,, x,, X3, X,) :

3W I (M)

r =
(o1 30 X, Xe) = S oM () oM (%) SM (%)

ol I' est le potentiel de Gibbs. Cette fonction est reliée a la « fonction de
corrélation a quatre points »

G(4)(x1’ Xy, X3, Xy) = <‘P(X1) (%) ¢(x3) ‘P(X4)>

et aux fonctions de corrélation G(x,, x;) (cf. V-C.3) mais nous ne nous
servirons pas de cette relation. En fait nous aurons seulement besoin de la

transformée de Fourier I'®(k; = 0), c’est-a-dire pour des valeurs nulles des
vecteurs d’onde ; pour étre tout a fait précis, il faut ajouter que I'® est obtenu

P=

4
en extrayant une fonction S(D)( y k,-) : cf. V-B.4. Cette quantité s’obtient en
1
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dérivant quatre fois le potentiel de Gibbs I (M) de I’équation (11.44) pour une
aimantation uniforme M : en effet une aimantation uniforme posséde seulement
une composante de Fourier k = 0, et dériver par rapport a M donne bien
'k, =0).

Le résultat des dérivations (*), quand on pose a la fin du calcul
M = 0(T > T,) est de donner les deux premiers termes d’un développement de
F™(0) en fonction de u, (cf. ’argument du chapitre 11, paragraphe D.3) :

3 5 d’k 1

MY =uy—2u} | —————
0) = uo—5 s Q7)Y (K2 +r, P

+O0W). (62)

Nous aurons besoin de déterminer la loi de transformation de I"*® dans une
TGR. 1l faut remarquer que ['®(0)=1/G(k =0) (cf. 1.35) s’obtient en
dérivant deux fois I'(M) par rapport 2 M et que sa loi de transformation est
donnée par (47.a):

FOO; ') =s"F®0; p).

Pour passer de I'® a '™ il faut encore dériver deux fois par rapport a M et la
loi de transformation de I'® est :

FOO; )y =s"""TO0; p).
Comme vérification, on note que d’aprés (62) la dimension normale de
I est celle de u,, cCest-a-dire 4-D, et que si d,=d) = 5-L
D-4d,=4-D.
La loi de tranformation de I'® peut s’écrire (cf. (18) et (20)):

1
F'0;5t,t,,..)=sP"4%27 f(4)(0 cs vt 8%, ) .

Au lieu du champ d’échelle ¢, il est commode d’utiliser la susceptibilité inverse
-1 Y.
r=x "=1t":

11
D057, ...) =s‘“2"1~‘(4)<0;s *r7, 5%, ) .

-1

On choisit maintenant s = r~*/7 =r2-" et on obtient la relation de départ
pour la mise en ceuvre de la « méthode de raccordement » :

£=27 r2?

OO ;rty . )=r 27 1"<4><o;1,r“7t2,...) . (63)

(*) On utilise

2

1 2 Uy M 2 u0M2 2 -1
nlk“+ry+ =In (k +r0)+T(k +rg) - (M0)
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A Tordre €, nous avons vu que n = 0 ; en utilisant r*~1 + a Inr, pour «
petit on obtient :

1"<4>:A(1+§1nr+cy2t21nr,+...). (64)

En effet y,= e, mais y; = —2 +0(e) et n’intervient donc pas dans (64).
Comparons maintenant avec le développement perturbatif :

~ 3 A d%k 1
PO =034 |

3 ug J'AZ x dx
= Uy —
"6 mt )y (x+r)
2 3u
0 r 0 r
=Uy+——In—=uy| 1+ In— |} . 65
T gl A °< 32 w? Az) 63)

On va maintenant choisir uy = uy(e) de telle facon que le terme en
t, soit absent dans (64), c’est-a-dire de telie fagon que t, = 0. Ce choix est
purement mathématique et n’a pas de signification physique particuliére : il
veut simplement dire que pour les besoins de la démonstration, on choisit un
hamiltonien de Ginzburg-Landau particulier. Ce choix est destiné a éliminer les
facteurs € venant de y,, de fagon a conserver uniquement les facteurs provenant
du développement de r*~277@-") daps (63). Comparant (64) et (65), on
trouve que la condition ¢, = 0 implique que uy(e) est donné par :

2
uo(e) =0T (66)

A Tordre &, uy(e) coincide avec la valeur (59) de u, au point fixe. En effet a
cet ordre, il suffit de prendre un espace des parameétres & deux dimensions
(rg, ug), et t, =0 correspond a uy(e) = ug (cf. figure 10.b). A des ordres
supérieurs en ¢, l’espace des parameétres a plus de deux dimensions, et
uy(s) est déterminé par la condition t, = 0. Par exemple & lordre &7 et en
utilisant la valeur n = £*/54 (cf. V-E.1), on obtient le développement suivant
de M sit, =0:

82

2
e - £ £.2, & 3
1+21nr+81nr 54lnr+0(s). 67)

La comparaison avec le développement perturbatif a l'ordre u} permet de
déterminer uy(¢) a Pordre £2

Pour déterminer vy, on se sert de 'équation (11.50) donnant r:

D
r‘o(T—Tc)=r<1+uO dk __1 )

2 ) QuY Rk + )

U A dx
=~ F 1+ 0 J‘ —_—
32 at)y x+r1

Uy r
=r{l- In —
( 32 ol Az)
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et en utilisant (66) :

t=r<1—glnr>. (68)

D’autre part, on utilise t = 7}/7 = r(r}/7° 1) :
t=r(r1/7‘1)=r<1+(%—l)lnr+---) (69).

La comparaison entre (68) et (69) donne le premier terme du développement
e de vy:

1 €
7 1=7%
soit :
v=1+§+0(62) . (70)

Gréce a la loi d’échelle y = v (2 — m), cette équation est identique a I’équation
(61) pour ».

Nous venons de terminer le calcul complet d’un exposant critique a
l'ordre . Ajoutons les remarques suivantes :

(i) Les calculs ont été conduits avec un parameétre d’ordre de
dimension n = 1. Il ne serait pas difficile de les généraliser au cas d’un
parametre d’ordre de dimension 7 ; le hamiltonien de Ginzburg-
Landau décrivant une telle situation s’écrit :

H= Jde[%Z": (V(pi)2+%r0(i (p,2> +;T? (Zn: <p,~2>2:| . (7))

i=1
On trouve par exemple pour vy (exercice 6) :

y=1+%+0(52) (72)

ce qui montre la dépendance explicite des exposants critiques par
rapport & la dimension du parametre d’ordre.
(i) L’exposant critique 1 est nul 4 I'ordre &. A Pordre &2 on obtient :
(cf. V-E.4):
_(n+2) e
2(n + 8)*

(iii) Les calculs exposés ci-dessus reposent sur un développement
perturbatif remanié€ par le groupe de renormalisation. Le paramétre du
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développement est £ et les résultats sont fiables pour £ < 1 (espace a
3.99 dimensions !). L’extrapolation au cas réaliste D =3 donne des
résultats assez satisfaisants, avec toutefois des mauvaises surprises : les
résultats 4 I'ordre e° sont plutét moins bons (i.e. moins proches de
I'expérience) que ceux i 'ordre £% Les développements du type (62) ne
sont pas convergents, mais ce sont des séries asymptotiques (du type de
I'approximation de Stirling pour n!).

(iv) Au début des années 70, I'accent a été mis sur le développement
¢ (exemple Iarticle de Kogut et Wilson : « The renormalization group
and the e-expansion »). Ce développement ¢ a effectivement joué un
trés grand role historique, en permettant pour la premiere fois d’aller
au-dela de la théorie de Landau, avec des résultats qualitativement
bons. Aujourd’hui il semble trés important de pouvoir prouver
I’existence de points fixes par des méthodes non perturbatives, ce qui
permettrait un calcul totalement fiable (trés vraisemblablement numéri-
que) des exposants critiques.

F. CHAMPS MARGINAUX ET FONCTION B(g)

F.1. Equation différenticle pour un champ marginal

Jai laissé de cOté jusqu’a présent le cas des champs marginaux. Ce
cas est particulierement important, car il fait le lien avec la version
« ancienne » du groupe de renormalisation (Stueckelberg-Petermann et
Gell-Mann-Low) qui est présentée aujourd’hui sous la forme des
équations de Callan-Symanzik (chapitre VII).

Dans le cas d’un champ (ou variable) marginal(e), les techniques
employées au paragraphe B.3 ne peuvent pas étre appliquées directe-
ment pour déterminer le comportement de la fonction de corrélation.
Afin d’interpréter intuitivement la discussion un peu technique qui va
suivre, essayons de comprendre qualitativement la différence de
comportement des TGR lorsque 'on est en présence d’une variable
marginale (notée g) et lorsqu’il n’y a pas de telle variable.

Examinons le flot de renormalisation au voisinage immédiat de la
surface critique (cf. figure 11) : dans le cas (a), la trajectoire converge
rapidement vers le point fixe, les champs inessentiels décroissant
comme une loi de puissance. Dans le cas (b), le champ marginal reste
constant a 'approximation lin€aire ; nous montrerons un peu plus loin
quil varie de fagon logarithmique, c’est-a-dire trés lentement. La
trajectoire va s’approcher de I'axe e¢®, correspondant au champ
marginal, et le suivre pendant un certain temps, c’est-a-dire sur un
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o be®
4

(a) (b)

Figure 11. Flot de renormalisation au voisinage de la surface critique.
(a) pas de variable marginale : y, <0 ;
(b) une variable marginale : y, = 0.

intervalle important en s. Ceci explique que, au moins en partie, les
TGR seront controlées par I’évolution du champ marginal ; en fin de
compte le point fixe retrouvera son influence, mais I'évolution du
champ marginal aura eu le temps de modifier le comportement critique
par des facteurs logarithmiques.

L’évolution du champ marginal est décrite par une équation différen-
tielle (83), faisant intervenir uniquement le champ marginal lui-méme
(dans le cas de plusieurs champs marginaux : un systéme d’équations
différentielles). Le champ marginal est souvent identifiable a une
constante de couplage g : I'équation différentielle décrira I’évolution
d’une constante de couplage g (s).

Le point le plus important est que cette équation différentielle peut
étre déterminée perturbativement ; cette propriété permet, au moins de
facon approchée, un calcul analytique des TGR. C'est pourquoi nous
exigerons, dans le raisonnement qui va suivre, de rester dans la région
perturbative, c’est-a-dire dans la région ou les divers paramétres du
probléme sont petits.

Je donne ci-dessous une version schématique d’un argument de
Wilson, en renvoyant a son article pour certains détails des démonstra-
tions. Considérons  une  suite de  hamiltoniens Hy -
H, - H, » -+ - — H,; déduits I'un de I'autre par une TGR. Pour fixer les
idées, nous supposerons que le facteur de dilatation vaut s = 2, qu’il
existe un champ essentiel correspondant & une valeur propre y; = 2
(cette valeur est tout a fait arbitraire), un champ marginal noté g ainsi
qu'un champ inessentiel w correspondant a une valeur propre

y3=-2.
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La linéarisation au voisinage du point fixe conduit donc a:

tl+1 = 4 tl (73.3)

g1 =4 (73.b)
1

Wi = 7 w; . (73.¢)

Si P'on tient compte des termes non linéaires, les équations (73)
deviennent (*) :

tror =44+ f(t, 91, w1) (74.a)

gre1 =91 +h(t, 91, W) (74.)
1

Wiy = Wt k(1,90 wp) (74.c)

ou f, h et k ne contiennent pas de termes linéaires, par exemple :

fi,g,w)=dig+d g>+--- (75.a)
h(t,g,w) =cg®+c'tg+---. (75.b)

La régle du jeu dans ce qui va suivre consiste & ne pas quitter le voisinage
du point fixe: t;, g; et w, doivent rester petits. En effet on souhaite
utiliser des calculs perturbatifs, et ceux-ci ne seront valables que si les
champs 1;, g; et w; restent petits : en d’autres termes, on exige de ne pas
quitter la région perturbative. (Il n’y a aucune objection de principe a
quitter la région perturbative ; le seul probléme (mais il est de taille) est
la nécessité d’avoir recours a des calculs numériques, et non analyti-
ques). La solution des équations (74) peut s’écrire :

-1
= 4! L + Z 4= F (s 9ns W,,) (76.8)
n=0
-1
9 =go+ Y, h(tws gn, Wa) (76.b)
n=0
-1
w, = 4-1 Wy + Z 4n+l—l k(tn’ 9n wn) : (760)
n=0

L’équation (76.c) est une « bonne » équation, dans la mesure ou les
facteurs 47! et 47! assurent que w, reste petit si les tyy Gus

(*) On peut également traiter le cas d’une variable « quasi marginale » :

9= —e)g +h(y, g,,w) e<<1.

Ce cas sera traité au chapitre VII par une autre méthode et je Ie laisse de coté pour le
moment.
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w, sont petits. Au contraire les équations (76.a) et (76.b) sont un
désastre si [ — oo, car les facteurs 4/ et les sommes sur n conduisent a
des valeurs de ¢; et g, incontrélables.

Pour transformer (76.a) en une équation contrélable, on prend pour
valeur de départ, non pas f; mais f; <1, ol L est trés grand
(naturellement a la fin du calcul, on devra étre capable de revenir en
arriere et de calculer ¢y en fonction de ¢;). La signification physique de
ce choix est la suivante : on se place dans le voisinage immédiat de la
surface critique, afin qu’aprés L itérations on reste encore trés proche
de celle-ci. On obtient alors :

L
t = 4I—LtL_ Z 4l -(¢+1) f(tm g, wn)
n=

ol le facteur 4™ " assure une convergence rapide de la somme ; les seules
valeurs importantes de n correspondent & n =1/,

Le comportement de la variable marginale est plus complexe ; pour
une premiére orientation, imaginons que les variables ¢, et w; sont
absentes ; on obtient alors une version simplifiée de (76.b) :

-1

gi=9go+ ) h(gr) (77)

n=0
avece

h(g) =cg’>+cg’+---.

Il est facile de vérifier par récurrence que le coefficient de
gs dans g est proportionnel a [, celui de g3 proportionnel a
[? etc. et I’équation n’est pas directement exploitable. Il en est de méme

si 'on prend pour valeur de départ g;, et non g, car:
gi=gL—c(L-1)gi+--

et cette fois c’est (L — /) qui est grand. Cependant 1’équation (78) peut

se transformer en équation différentielle pour g, :

dg,
g1 — 91 =cgi + 0(g]) = o = cgi + 0 (g1) .

En effet I'erreur commise est d’ordre g7 puisque :

ngl 3
—5=01,1+g1.1—29:=0(g7) .

dl

Si ¢ <0, g, est une fonction décroissante de [ (pour g, suffisamment
petit), et 'équation donnant g, est contrdlable. Avant de commenter
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cette propriété cruciale, il nous faut montrer que la présence des
variables ¢#; et w; préserve P'existence d’une équation différentielle pour

g

Partons d’une valeur [, telle que 1</, < L. Dans ces conditions on peut
négliger les termes 4'~L¢, de (77.2) et 4w, de (76.c); cependant cette
approximation nous Ote la possibilité de calculer ¢, en fonction de ¢, ce qui est
faisable avec une version plus sophistiquée du présent argument (cf. Wilson).

En résumé les équations & résoudre sont :

L
= Z 4 D f(tn’ Gns wn) (783)
=1
-1
gl = 910 + Z h(tn’ gm W") (78b)
r=lg
-1
W = Z 4n+]—l k(tm In> wn),' (780)

Afin d’alléger les notations, je ne tiendrai plus compte de la variable
w;.
On résout maintenant les équations (78) par itération, en vérifiant a chaque

étape que la correction due & une itération supplémentaire est petite par
rapport au résultat de I'itération précédente, ce qui montre la convergence de la
procédure d’itération. La premiére itération est :

W=0; gP=g,
la seconde :
(V= — 5 4-@*D5(0,g,) (79.2)
n=1

I-1

g =g, + Y 10, 9,) (79.b)
n=lgy
etc. Un point important pour la suite est que z{!? est (au moins) d’ordre
g,zo. Il n’est pas difficile de se convaincre que la procédure d’itération converge
pour (I —1{,)=10.
La solution de Iéquation (79.b) est de la forme HV(l — I, gi,) : Cest une

fonction de (I —1y), et non de [ et [, séparément. En effet, une fois
g;, fixé, g, ne dépend que du nombre de termes de la somme, c’est-a-dire de

(! = 1,)". La seconde itération pour ¢; donne :

t1(2) == Z 4i-@+D) f(tl(l)a H(l)(n =1y, glo))

n=1

(*) SiYon écrit g, ,, — g, = h(g,) sous forme d’une équation dlffcrentlelle =h(g),

0
-L, ON =F(g) - F(g) =1 —1ly; soit g, = F~ (I — Iy + F(gy))-
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qui est encore une fonction de (! ~ /) et de g;. En résumé les solutions de (79)
sont de la forme :

t=F( —1y gy) (80.a)
gr=H( ~1y,44). (80.b)

L’équation (80.b) permet d’écrire une loi de récurrence :
gl+1=H(17gl)~ (81)
La fonction H(1, g) s’obtient en résolvant (78) par itération :

HO(1,g9)=¢
HY(1,9)=g+h(0,9)=¢ +cg>+0(g").
A Tordre suivant il faudra tenir compte de la correction due a t: mais

t® étant d’ordre g¢°, le terme en fg de h donnera au mieux un terme en
g°. On obtient donc : :

H(,g)=g+cg’+¢3¢°

ol le terme en g* dépend uniquement de la fonction h dans (76.b). Nous
pourrons a nouveau transformer (81) en équation différentielle, mais en ayant
inclus cette fois toutes les variables dans le raisonnement :

dg,
G- cgi + O(g7) - (82)

Introduisant le facteur de dilatation usuel s = 2/ on pourra écrire de
fagon générale :

gglx(lszz“ﬁ(g(s))=~Bog(S)2—Blg(s)3—--- (83)

avec By = c¢/In2. La fonction B(g) dans (83) est la célebre fonction
B(g) de Callan-Symanzik (C-S). Elle est reliée a la fonction
B (g) qui sera introduite au chapitre VII dans le cadre de I'« ancienne »
version du groupe de renormalisation.

La fonction B (g) permet de calculer g (s) en fonction de g, ; en effet,
d’aprés (83):

dg’
—F— = —dlns’
Blg')
et en intégrant :
g(s) dg’
—2 —=—-1Ins. 84
LO B(g") ( _)
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Si F(g) est une primitive de 1/B8(g), g(s) est obtenu en résolvant :

F(g(s)) = —1Ins+ F(go) -

Si 'on s’en tient au premier terme de B(g), cette résolution est
immédiate :

——<=— Bolns

1 1
go 9g(s)

9o

1+ Bygolns (85)

g(s)=

Si By=0, ce qui est le cas de la théorie de Ginzburg-Landau,
g(s) - 0 comme 1/Ins quand s — co. La théorie de Ginzburg-Landau
est dite « infrarouge libre » : quand s — 00, la constante couplage tend
vers zéro. A fortiori, g(s) reste toujours dans la région perturbative, ce
qui €tait précisément le but recherché. Nous verrons au chapitre VII
que le comportement de g(s) pour s — oo dépend seulement de
By et non de g,, pourvu que B(g) ne s’annule pas entre 0 et
9o-

L’équation (85) montre bien ce que 'on a gagné dans la discussion
précédente ; le développement de (85) en puissances de g, donne :

g(s) =go(l — Bogolns + (Bygolns) —--- ).
Ce développement n’est valable que si
Bogglns = Cgol <1.

Le groupe de renormalisation permet de sommer les puissances de In s
(ou de ) sans jamais quitter la région perturbative, méme lorsque
(go!) est grand.

Lorsque B,<O (cas d’une interaction en g¢> en dimension
D=06):
9o

s = ————— e
90) = T 1B, qoTms
et la constante de couplage devient d’ordre 1 si |By| goIns=~1: on
quitte alors la région perturbative, et le raisonnement précédent n’est
plus cohérent : pour connaitre g(s), il ne suffit pas de connaitre
By, ni méme B, et B, il faut connaitre la fonction B(g) exacte.
L’expression (85) ne peut certainement pas étre utilisée lorsque
golns =~ 1.
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Lorsque I'on tient compte des termes non linéaires, on voit qu’en fin
de compte un champ marginal devient soit essentiel si B; < 0, soit
inessentiel si By= 0, bien que dans les deux cas 1’évolution soit plus
lente que dans le cas usuel: I'évolution se fait suivant une loi
logarithmique, et non une loi de puissance.

Lorsqu’il n’y a pas de champ marginal, les champs essentiels et
inessentiels évoluent rapidement suivant une loi de puissance, et les
corrections non linéaires apportent au départ peu de changement au
comportement obtenu par linéarisation au voisinage du point fixe. Dés
que I'on atteint des valeurs de [ pour lesquelles I'approximation linéaire
n’est plus valable, on doit recourir & des méthodes non perturbatives.
Le succes de la méthode perturbative dans le cas du point fixe non
gaussien (paragraphe E) provient de ce que le champ u, est « quasi
marginal » (cf. note page 134).

F.2. Fonction de corrélation

Appliquons les considérations qui précédent au cas du hamiltonien
de Ginzburg-Landau en dimension D = 4(e=0). Le champ u, est
alors un champ marginal, ’équation (56.b) étant de la forme :

uj = uy— Cuilns.

On posera par convention g, = u, lorsque D =4; d’apres les
résultats du paragraphe D.3, le champ d’échelle essentiel £, est reli¢ a
ro et g, par:

Agq

32 72’

t0=r0+

Lorsque 'on utilise les champs d’échelle g, et ¢, les équations du GR
(56) deviennent :

[1
=5 to— 9o o Ins+ O(g%)> (86.a)
16 w2
’ 3 g% 3
go=go— ——Ins + 0 (g3) - (86.b)
16 =

Pour déterminer le comportement de la fonction de corrélation, nous
allons partir de I’équation (47.a) ; il sera commode de poser :

{(s)=s""227%s)
ce qui permet d’écrire (47.a) sous la forme :

Gk, ty, gy, A) = s2 £ (s) G(sk, t(s), g (s), A). (87)
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Etudions par exemple le comportement de la susceptibilité en posant
k=0:

x (to, o, A) =57 £(s) x (t(s), 9 (5), A) . (88)
A Vordre de la théorie des perturbations oli nous travaillons, il est
possible de prendre ¢ (s) = 1. En effet la dimension anormale est égale

a la dimension canonique a I’ordre g,. Ce point sera établi un peu plus
loin. L’équation d’évolution pour ¢ est déduite de (86.a) :

dt—(s):2t(s)—g(1s6)t(;)

dins
ou bien :
dine(s) ., g(s) ~ . o
Ths =2 15 3=2" Y005 W= ()
Compte tenu de (83), cette équation s’intégre en (*) :
| Yo [96) v
In 48) :21ns+EJ' 99 sy N e®)
fo Boldg, 9 B g
=2lns—191n1ns
0
lorsque s — oo, soit :
I(S) == t() sz(ln S)_ Yo/ Po . (90)

Comme on cherche la susceptibilité dans la région critique, t; — 0.
Lorsque t(s)=1 (¢(s) étant de dimension 2, il serait plus correct de
définir la variable sans dimension #(s)/A%, le comportement du
membre de droite de (88) est donné par la théorie des perturbations,
d’autant mieux que g(s) — 0. On choisit donc :

Yo/ Bo
szz_l__ (ln_l_)
et 'on obtient :
_ Yo/ B
X (to, gor A) = 6] |In |15] |77 x (1,0, A)

soit :

_ Yo/ B
X (o, go, A) ~ |to] ™" |In [1] |77 (91)

(*) Plus généralement si din¢/dIns =2 — 7(g) on trouve :

t(s) " 3(g)
In——<=2Ins+ 2L dg
t w B@
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Le comportement de la théorie de Landau (~ #; ') est donc modifié par
un logarithme. Notez que I’exposant du logarithme est facile a

déterminer : en effet d’aprés (86) By = %—5 et ¥o/Bg = 1/3.
mw

Revenons maintenant & {(s); {(s) =1 a Pordre gy, et la premiére
correction perturbative est d’ordre g3 :

{(s)=1-vog5Ins
soit :
dln {(s) 2
dlns __‘YOg(s)

ce qui donne () =1):

)
lng(s):gjg dg=—yog0+0<i>.

0 Jgg BO

£ (s) est indépendant de s, a des termes O ( %E ) prés. Ceci montre

qu’en dimension 4 I'exposant critique 7 reste égal a zéro. Ce résultat est
une particularité de Iinteraction en ¢* En effet avec une théorie en
¢ (en dimension 6) ou une théorie de jauge non abélienne (en fait pour
ces deux théories il faut considérer la limite ultraviolette (k — o0 ) : cf.
chapitre VII) :

'Y(g):‘YogZ+"'
B(g)=Bog’ +---

et

g(s)
ﬁj El-g—~ﬁlnlns.
Bo

o 9 Po

La fonction de corrélation est alors modifiée par des puissances de
(In k).

Examinons enfin le comportement de la fonction de corrélation au
point critique (pour simplifier la discussion). D’apres ce qui précede :

G(k, gy, A) =5>G(sk, g(s), A). (92)

Lorsque k£ < A, le développement perturbatif de G contient des termes
en go(In (k/A)), g3(In (k/ A)), etc. (cf. V-E.4) ; ce sont ces termes qui
invalident le développement perturbatif lorsque k/A <1, c’est-a-dire
dans la région infrarouge. Lorsque sk/A=1, le développement
perturbatif de G en fonction de g (s) dans le membre de droite de (92)
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ne contient pas de grands logarithmes, et le développement perturbatif
est valable. Ceci veut dire que pour des vecteurs d’onde k ~ A/s, la
constante de couplage que I'on doit utiliser pour éviter les divergences est
g(s), et non g, : a une certaine échelle de vecteurs d’onde correspond
donc une valeur de la «constante » de couplage (qui n’est plus
constante). Ainsi qu’on le verra plus en détail au chapitre V11, la notion

de constante de couplage adaptée a une échelle de vecteurs (ou
longueurs) d’onde est fondamentale en théorie de la renormalisation.

EXERCICES

1) Méthode de décimation

Au lieu de former des blocs de spin, on peut définir une TGR en sommant sur
certains spins du réseau. Par exemple on somme sur les spins marqués d’un e
dans le réseau a deux dimensions de la figure 12,
gardant pour spins S’ ceux marqués de x (remar-
quez que le réseau transformé a subi une rotation de
7 /4 par rapport au réseau initial). Montrer que si
Pon part d’'un hamiltonien d’Ising, Pinteraction ° x ° x
entre spins S’ est de la forme (notations de (5)) :

H=A+B Yy §8+C Y S5+ x . x .
<ii> <ii>
D Z st Si’ Sy S; Figure 12.
<ijk>

et calculer A, B, C et D.

(La méthode de décimation donne de mauvais résultats ; le but de P'exercice
est de montrer que H' n’a pas la méme forme que H dans une TGR.)

Suggestion : examiner d’abord le cas D =1 et montrer que thK' =
(th KY.

2) Transformées de Fourier

On définit la transformée de Fourier du champ ¢(x) par :

_ aD ik.x
(p(k)—L,,/zze P (x)

‘P(X) — Z_I]);/_Zze—ik.x ‘P(k)

(a) Calculer le hamiltonien gaussien H, en fonction de ¢ (k).
(b) Montrer que de fagon générale :

G = (o) o(-K)) .
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(¢) Le changement de variable ¢(x)— ¢ (k) a pour inconvénient que
¢ (k) n'est pas réel. Il est nécessaire d’introduire deux variables réelles

ak)et Bk):

<p(ik)=\/i§(a(k)til3(k))-

Calculer le jacobien de la transformation :

Do) [] de®)dsE).

K(ky >0)

(d) Déduire de (a) et (c) la fonction de corrélation Gy(k) du modele
gaussien, par intégration directe sur dea (k)dp (k).

3) Soit le hamiltonien de Ginzburg-Landau généralisé (38). Calculer
ry, up, ué, ug, et vy dans une TGR au 1° ordre en V et vérifier que pour
D =4, tous les champs sauf r, sont inessentiels. Calculer également la
modification du coefficient du terme en (Vo).

4) (a) Utiliser les équations différentielles (57) pour déterminer les coordon-
nées (r§, ugt) du point fixe.

(b) On linéarise au voisinage du point fixe :

ro=rg + 8rg; Ug = ug" + duy .
Montrer que :
dér,
dlns 6"0
d8u0 =R (8u0)
dins

ol R est une matrice 2 x 2, et montrer que y, et y, sont les valeurs propres de la
matrice R. Calculer y; et y,.

(¢) En partant des équations différentielles de renormalisation (58), montrer
que le facteur A (s) de (11) vérifie une équation différenticlle du type :

dinA(s)
M)y (K ()
et en déduire Pexpression suivante pour A(s):

2 =] [renS ]

Retrouver (11) au voisinage du point fixe. Comment doit-on corriger I'équation
(47.2) ?
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5) Calcul de yg a I’approximation des cumulants

(a) On définit :

. SK e K . K _ e K . K _ 30K
\ = 2 D E e T & 3= % -
K 3K’ K 3K’ K 3¢ X

Montrer que :
(SO =aSus (SVSP) =ars (SPSPSE) =8,

les indices i, j, k étant tous différents (les notations sont celles du paragraphe C).

(b) On introduit un champ magnétique infinitésimal :

HoH-BYS,.

Si l'on fait V'approximation V =0, montrer que si la valeur moyenne
{S) est prise a [§'] fixé :

Y (SE) =34, ¥ S,

et en déduire yp a cette approximation.
(¢) L’approximation suivante consiste a écrire :

e W) et vy,
Montrer que dans ces conditions § (S{%) = (S — (S{) est donné par:
8 (89 = (V) (88, - (VS .
Calculer (S{") et en déduire

Y ASY =Y 34l +4K(1 —ai+2(a,—a))] S,

:

(Suggestion : examiner a quelle condition {S) (V) ,# (VS) . N'oubliez pas
que V ne connecte que des blocs différents : figure 13).

Figure 13.
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(d) Calculer numériquement yp ainsi que les exposants critiques «, 8, v, 8, 1
a cette approximation et comparer avec les valeurs expérimentales. On utilisera
pour v la valeur déterminée dans le texte.

6) Calcul des exposants critiques avec un paramétre d’ordre de dimension n

On se propose de calculer 'exposant y en partant d’'un hamiltonien de la
forme (71).

(a) Calculer le potentiel thermodynamique I' (M) en utilisant la méthode du
chapitre II, paragraphe C. On remarquera que la matrice D (x, y ) a maintenant
des indices internes i et j:

u
Dij(X,)’)= [(— V12c+r0) 8 +§0 (5.',' @ +2 ¢ ‘Pj)] S(x—y)

avec

[~

Calculer In det (D;;(q))
simplifie si I'on choisit M;

q fixé ; on pourra remarquer que le calcul se
(M, 0,0,...,0) od M = (M*)"".
Montrer que I' (M) peut s’écrire :

Il

2

n—1 dPq 2 Uy —'2>
+ In +rg+—=M
2 @)y (q 76

Uy D _,
LPr)=tnmr s M2)2+%f (zdwq)Dln <q2+r0+@M2> +

(b) Montrer que les équations (68) et (62) deviennent respectivement :
uy(n +2) J d’k 1
F(T-T)=r{1+
0( c) ( 6 (2 ’lT)D k2(k2+ r)

@) __ _ 2(n+8) dPk 1
r 0) = up—us r3 f @ m)Y (K +ry

(¢) En déduire 'expression (72) de I'’exposant critique .

7) Groupe de renormalisation a la limite n — oo (%)

On se propose d’étudier le groupe de renormalisation quand la dimension
n du paramétre d’ordre tend vers I'infini. Le hamiltonien est donné par :

o= f de{ 3% (e U(¢'2>]
e(g)

=

i

n
=Y ol UG
i=1
o

- dU
t(¢2)=2£2.-_— 5 u2m<
m=1

(\)I'S.I.
™~
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(a) On décompose ¢ (x) en:
e(X)=¢:(x)+ &x)

ol ¢,(x)(#(x)) a des composantes de Fourier dans [intervalle

T 150

i=1

est d’ordre n, tandis que :

Z Z e* ¥ x5 (k) (k')

i kK

qui est une somme de termes de signe aléatoire, est d’ordre 1. En utilisant ce
résultat, montrer que Pintégrale sur &(x) peut s’écrire, a la limite n — 00 :

[ ([ orke) )

“=k=sA
s

W= Y (—%nlnNk+%k2Nk)+JdeU(p+$f)
AsksA

p=L"" ¥ N Ne=Y |&®)|.
i=1

A
—=k=<A
s

(b) Pour évaluer lintégrale, on cherche le maximum de Pintégrand et on
remplace la valeur de I'intégrale par celle du maximum de I'intégrand. Justifier
cette approximation et montrer que 'on doit choisir (¢, — @)

n

K i( + )

A kD—ldk
—="KDJ TR
AsskE+ (P + 6%)

N, =

(¢) On effectue maintenant la dilatation de Punité de longueur et la

. -d . .
transformation ¢ — s~ ¢ ¢ (x/s). Montrer que I’on doit choisir n = 0 et que la
loi de transformation ¢, = Rt est:

(7Y = 21(5 + 5270 &)

A kD—ldk

p =nKp _—
ass k4 1 (82) /57
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) Montrﬁr que sur la surface critique on doit avoir t(N,) =0, ou
N, =nkK, J k”~*dk (on suppose D = 2).
0

(e) Au voisinage de N = N, on définit { et u, par:

dt(N)
dN

ﬁ+sz_D$2=NC<l+%); uc=Nc
s N =N,

(on peut montrer que u, > 0). Démontrer ’équation :

(;;2 As 1 1
__=1+{sD“‘—(D—2)A2‘DJ dppD_l( - _—5)
Nc A 14 +ts P

et donner son interprétation lorsque ¢ € S,,.
(f) Montrer que pour 2 < D < 4 le point fixe est donné par :

=2 ©
i 2-D D-1 1 1 )
 _1-D-2)4 d 1
N, ( ) L pp (p2+t* Pt

et expliquer exactement ce qu’est le point fixe. Quel est le point fixe pour
D=4?

Faites un calcul numérique pour tracer la fonction t*(x), x = #*/N,, dans le

cas D = 3.
-

(g) Calculer ¢, —t* en fonction de ¢; = t(N_) au voisinage du point fixe et
montrer que si 2<D <4, P'exposant v = 1/y; vaut 1/(D —2); montrer
également que y, = D — 4. Que se passe-t-il si D>4?

(h) Montrer que si D est voisin de 4, on peut obtenir un développement ¢ de

t*; calculer w), ul et uX* et montrer en particulier que u¥* est d’ordre
2 4 6 6

&

8) L’exemple de Bell et Wilson

On part du hamiltonien :

H=1j PG @) @I o) =ro+ca+wa -
2 gsA (27")D
et on définit la TGR R, , par (a=0):

Rue = [ ] do@x

dall _,
xexp(~%af |o'@-ve (2)[ (;?)D—H«p))

2
ol le parametre b joue le rble de A dans (8). La transformation R, , dépend
donc de deux paramétres a et b ; notez que ¢'(q) =0 si ||q| > A.

(a) Montrer que I'équation précédente pour R,, définit bien une TGR
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possédant les propriétés requises. Quelle limite obtient-on quand a —» o0 ?
Quelles sont les dimensions canoniques de ¢ (q) (la dimension de ¢ est zéro) et
de w?

(b) Calculer p'(q) en fonction de p(q); on trouve :

4p(q/2)
2°42p2 4 4p(q/2)/a

p'@)=

(c) On écrit la k*®™ itération de la TGR sous la forme :

Li¢p(a/Ly)

®
pM@)= .
TP 767+ LEp(a/ L) ay

Etablir des relations de récurrence pour 4, b, et L, et les résoudre. On
montrera que :

_a(l—ZDbz)_

oy s ®h L=

ax

(d) Montrer que si la transformation doit avoir un point fixe non trivial il est
nécessaire que b2 =2+, Quels sont les points fixes (triviaux) obtenus si
b?< 2 P*D et p25 2 P*D 7

Avec le choix b? =2~ ®P+2) déterminer 'exposant critique 7 et le point fixe
p *(q). Que trouve-t-on a la limite ¢ — 00 et pourquoi ?

(e) Le point fixe dépend de c et de a ; ¢ peut étre choisi arbitrairement : on a
en fait une « ligne de points fixes ». Le point fixe dépend du choix de @ dans la
TGR : deux TGR physiquement €équivalentes peuvent conduire a des points
fixes différents. Examiner le comportement de r;, et de w dans une suite de
TGR. L’exposant critique v dépend-il de a ?

9) Anisotropie cubique ()

On rajoute au hamiltonien de Ginzburg-Landau (71) un terme d’« anisotropie
cubique » :

12 1 n 1 n 2 1 n
H= J‘dbx[z‘zl (V‘Pi)z+§r0(<§1 ‘sz> +ﬂuo<§:1 ‘P;z) +EUO<Z ‘P?:‘ .

i=1

(a) Montrer que le hamiltonien n’est défini positif que si les deux conditions
suivantes sont satisfaites simultanément :

Vo
Uy + 0y=>03 Uy +—=0.
n

Montrer que pour n = 2 le systtme de parametres (i, vy) est équivalent au
N N 3
syst¢éme de parametres <u0 +5 %, =Y ).
u vy

(b) On peut démontrer pour u = 8—2—2 etv = 7 les équations différentiel-
™ ™
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les de renormalisation suivantes {(qui généralisent Iéquation 57.b) :
du PN 8
dlns 6

dv
dlns

u -

3
v—2uv — 0%,
£ u 2U

Montrer que ces équations impliquent I'existence de quatre points fixes appelés
(on justifiera la terminologie) :

(1) Ising (2) Heisenberg
(3) Gaussien (4) Cubique .

Etudier pour & > 0 la stabilité de ces points fixes dans le plan (u, v) et dessiner
le flot de renormalisation dans ce plan. Montrer que I'on doit distinguer les cas
n<4etn=4.

NOTES ET REFERENCES

Pour une introduction aux concepts fondamentaux du groupc de renormalisation on
pourra consulter : Toulouse-Pfeuty (chapitre 1), Ma (chapitre I), Shenker (section 3). On
pourra lire en complément les discussions instructives quoique un peu techniques de J.
Kogut et K. Wilson, Phys. Reports, 12C (1973) et de T. Bell et K. Wilson, Phys. Rev.,
B10, 3935 et B11, 3431 (1975). Le calcul des exposants critiques est décrit par exemple
dans Ma (chapitre VI) et Toulouse-Pfeuty (chapitre 4). L’exemple du calcul sur réseau du
paragraphe C est emprunté & T. Niemeijer et J. Van Leuveen, in Phase Transitions and
Critical Phenomena, volume VI, chapitre VII (Academic Press, 1975). Pour le groupe de
renormalisation dans I'espace de Fourier et les points fixes D=4 et D <4, on se
reportera & Ma (chapitre VII) et Toulouse-Pfeuty (chapitres 4 et 5). L’exposé de Wilson
(sections T, II et ITI) est remarquable, mais d’un abord un peu plus difficile. Enfin la
discussion du champ marginal suit celle de Wilson, section V.

(') E. Stueckciberg et A. Petermann, Helv. Phys. Acta, 26, 499 (1953).
(» M. Gell-Mann et F. Low, Phys. Rev., 95, 1300 (1954).

() R. Swendsen in Cargese Lectures in Theoretical Physics (1980).

(Y S. K. Ma, Reviews of Modern Physics, 45, 589 (1973).

(®) Toulouse-Pfeuty (chapitre 8) ; Amit (chapitre 11.5).






CHAPITRE 1V

Modeles bidimensionnels (*)

Le cas ol la dimension d’espace D est égale & deux présente des
particularités intéressantes, car D = 2 est un cas limite ol le comporte-
ment d’un systéme de spins dépend qualitativement de la dimension n
du paramétre d’ordre. Lorsque n = 1 (modele d’Ising), on observe une
transition de phase avec aimantation spontanée. Au contraire, pour
n =2, il est possible de prouver I'absence d’aimantation spontanée,
mais le cas n = 2 (modele XY) est & nouveau spécial : il existe une
transition de phase sans aimantation spontanée, et tout a fait remarqua-
ble. Pour n=3 (modéle-o non linéaire), il n’y a plus du tout de
transition de phase. Cependant I’étude de ce modele est intéressante
car elle permet d’illustrer de fagon non triviale le fonctionnement du
groupe de renormalisation dans le cas d’une variable marginale. Le
groupe de renormalisation sera également utilisé pour analyser le
comportement original du modele XY.

Nous allons donc étudier un syst¢tme de spins S, ;, « =1, 2, ..., n
disposés aux nceuds i d’un réseau carré a4 deux dimensions et vérifiant :

Zstzl,izl'

a=1

Donnons d’abord un argument heuristique pour justifier I'absence
d’aimantation spontanée en dimension D = 2, pour n = 2 (il existe une
preuve rigourcuse due a Mermin et Wagner (")). Supposons qu’au
voisinage de 7" = 0, il existe une aimantation spontanée telle que tous

(*) La suite du livre est indépendante de ce chapitre, qui peut étre sauté en premiére
lecture.
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les spins soient paralléles par exemple a la direction 7 :
Spi=8i=-=8,1;=0; §,;=1

et étudions les petites fluctuations autour de cet état. Pour que cet état
soit stable, il ne faut pas qu’il soit détruit par des fluctuations trop
importantes. En particulier pour 7 — 0, les fluctuations doivent tendre
vers zéro. Supposons donc les fluctuations petites, ce qui permet de les
limiter 4 un hyperplan perpendiculaire a la direction n, et de négliger la
contrainte sur Z S f, ;- Ecrivons le hamiltonien décrivant ces fluctuations

( Z désigne une somme sur les plus proches voisins) :
<BLI>
n-1
J Z (Sa,i—sa,j)z‘
ihjy a=1

H =

D[

A basse température on s’attend a ce que les fluctuations dominantes
soient de grande longueur d’onde, et il est raisonnable de passer a la
limite continue :

1 2, "o 2
H—»EJJ‘dxagl Ve, Y.
La fonction de corrélation correspondant & ce hamiltonien est

T/Jk* dans Pespace de Fourier, et la fluctuation A recherchée est
donnée par :

n—l)TJ"’“ d*k )

A=Y (920) = (0~ ) {odr)) = = BT

ol a est le pas du réseau et L sa taille. Les limites d’intégration dans (1)
sont fixées par le cut-off ultraviolet 7 /a, et par un cut-off infrarouge
o /L. En effet la longueur d’onde maximale d’une fluctuation dans un
réseau de taille L est ~ L ; le mode k = 0 ne décrit pas une fluctuation,
mais une translation d’ensemble de la variable ¢ : ¢ (x) —» ¢ (x) + Cte.
En dimension D =2, l'intégrale (1) est infrarouge convergente et
Ihypoth¢se de petites fluctuations autour de I'état aimanté quand
T — 0 est cohérente. Mais en dimension D = 2

(n—l)Tln£

A~
2mwJ a

et A— oo quand L — oo ; ceci reflete la divergence infrarouge de
lintégrale dans (1), et c’est un phénoméne caractéristique de la
dimension D = 2. L’hypothé¢se de petites fluctuations n’est pas cohé-
rente : les fluctuations de grande longueur d’onde déstabilisent 'ordre &
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longue distance en dimension D = 2. On peut également arriver a cette
conclusion en étudiant {(¢ (x) — ¢ (0))*) quand ||x|| — oo a P'aide de
9.b).

Le paragraphe A est consacré a I'étude qualitative du modcle
XY et a lintroduction de la notion de vortex (tourbillons). L’analyse
par le groupe de renormalisation est effectuée au paragraphe B, tandis
qu’au paragraphe C on étudie le cas n =3 (ou plus généralement
n = 3), c’est-a-dire le cas des « modeles-o non linéaires ».

A. MODELE XY : ETUDE QUALITATIVE

Les études numériques et analytiques suggérent que le cas n = 2 est
spécial, et que méme s’il n’y a pas d’aimantation spontanée, il semble
que I'on observe une transition de phase. Je vais d’abord donner un
argument heuristique en faveur d’une telle transition avant de passer,
au paragraphe suivant, & une description plus quantitative utilisant le
groupe de renormalisation. Le spin du modéle XY au site i est un
vecteur S & deux composantes, que I'on peut prendre dans le plan du
réseau ; le hamiltonien est invariant par rotation dans ce plan: en
d’autres termes il présente la symétrie O (2):

H=-J % S;-8;=-J % cos (8, —96;) 2
<L <LiY

ou 6, est I’angle repérant I'orientation du spin au site i par rapport a une
direction fixée (par exemple I'axe des x). La fonction de partition est
donc :

Z = Zexp(% Y, cos (Bi—f),-)) =
[6:] <Ly
27
=j nd(),exp(
!

0

Y, cos (0,-—0].)>. 3)

<b I

N~

A.1. Développement haute température

Le principe du développement haute température a déja été exposé
au chapitre I, paragraphe B.2 : lorsque 7 — o0, on développe I'expo-
nentielle dans (3) en puissances de (J/T') et on cherche a identifier le
(ou les) terme(s) qui donne(nt) la puissance minimale.
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Essayons d’estimer par cette méthode la fonction de corrélation de
deux spins, I’'un au site O et lautre au site p :

(So-Sp) = {(cos (6o — 6,)) = (e

ou la derniere égalité provient de linvariance de H lorsque
9; -» — 8,. On remarque que :

p
27
f j dé =2 7,
g h VO
2m .
€ J doe?=0. (4
0
b
c d Si 'on veut que l'intégrale sur 6
donne un résultat non nul, il faut
5 p associer a tout facteur e un

facteur e~', a cause de (4). On
voit donc qu’a chaque terme non
nul sera associé un chemin sur le réseau allant du site O au site p
(figure 1) :

Figure 1. Chemin de O a p.

ew”(e_ i9, eio“) o i ew"(e_ ig,, ew’) o i

ol chaque terme entre parenthéses provient d’un cos (6; — 6;) associé
N

a4 un lien. Un tel terme donnera une contribution en <T> au

développement & haute température, oi N est le nombre de liens sur le
chemin joignant les sites O et p. Le terme dominant sera obtenu en
choisissant le plus court chemin entre O et p ; N est donc approximative-
ment égal & r/a, ol r est la distance entre les sites O et p:

(0 r/a “Lma@/n
<e(o° 0")>—_~—<§,>/=e“n (6]

ce qui correspond a un comportement exponentiel classique avec une
longueur de corrélation :

a

¢ =q T/

Cet argument suggere qu’a température suffisamment élevée (dans le
domaine ou le développement haute température converge — et on
peut prouver que le rayon de convergence est non nul), le systéme est
dans une phase désordonnée classique.
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A.2. Développement basse température

A basse température, il est raisonnable de penser que les fluctuations
dominantes sont de grande longueur d’onde, c’est-a-dire que I'on peut
remplacer H par :

11y (e-e).

H- HO + 5
<>

En effet, & Papproximation des fluctuations de grande longueur
d’onde, @ varie peu d’un site a lautre et on peut remplacer

cos (6; — 6;) par 1—%(6,-—0])2. Il est

commode d’introduire la notation (cf. 11.12) : i+,

9,0,=6;,,—6;

14

ol p peut prendre deux valeurs w, et u,, et

6;,, est un plus proche voisin de 6;. Le

hamiltonien approché peut s’écrire avec cette [+
notation :

H=3I3 Y 0.0 ©)

Il sera souvent commode de passer & la limite continue, avec le
changement de notations :

i >X; 6, > 0(x); Z(a - [Vox)F

ce qui conduit a I'expression suivante de H :

H:%dezx(vo)z. )

i(8g -

L’intégrale donnant (e 0")> est une intégrale gaussienne :

<ei(00—0p)> Z%Jw ] d6; exp <i(00— BP)_TJTZ (aﬂei)Z) . (8

Notez que les limites d’intégration sur 6 ont été prises de — o0 a
+ 00 ; ce point sera rediscuté plus loin. La fonction de corrélation

G;; correspondant au hamiltonien gaussien Z (0,0 ;) est donnée par
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(exercice I1.5) :

S SLLL
N (2m)4—2cos (kya) —2cos (kya)

(9.a)

On ne sera pas étonné de rencontrer a nouveau une divergence

x

infrarouge. Pour la régulariser, on retranche 1 a Il’exponentielle,
définissant la fonction G (x):

_ ) &’k (e_ik.x_l)
Glx)=a j(Zw)z (4—2cos (kya)—2cos (kpa))

(9.b)

L’intégration gaussienne dans (8) donne le résultat :

T T
i(8g— 6 =57 [Goo + Gpp — 2 Gop] 7
<e(° p)>:ezj —e’

G(x)

ol X est le vecteur joignant le site O au site p. A la limite continue,
G(x) (ou G(x)) vérifie :

~ VG (x) = 8 (x) (10)

qui est I'équation de Poisson a deux dimensions. Pour trouver la
solution de cette équation, remarquons que le potentiel d’un fil chargé
rectiligne infini vérifie, dans un plan perpendiculaire au fil, I'équation :

~V2G(x) = A 8 (x)

ol A est la densité de charge linéaire du fil. Un exercice élémentaire
d’électrostatique utilisant le théoreme de Gauss montre que le champ
électrique correspondant est :
A A

Ex)=cr——=

®) 2w x| 2w

d’ol I'on déduit le potentiel — ZL— Inr + Cte. La solution de (10) est
I
donc (¥) :
= 1 r

ce qui donne le comportement de la fonction de corrélation a grande
distance :

T

J

1 r
. —=——h- T/2 wl
(0 o TTT N (%) 7 (12)

(*) On  peut montrer ue cette constante vaut, a rande distance :
q g
—Qw)y! <y +3 ln2> =~ 1/4, ol y (=0.577...) est la constante d’Euler.
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La fonction de corrélation décroit comme une loi de puissance avec un
exposant dépendant de la température : on a donc une ligne de points
critiques, avec un exposant n dépendant de la température :

T

5T (13)

n(T) =
L’équation (12) montre aussi que le modele XY ne donne pas
d’aimantation spontanée : dans le cas contraire on aurait en effet :

<ei(00— 9,,)> - <SO . Sp> —~ <SO> (Sp> = M2 #0.

r— 00

Si ces arguments heuristiques sont corrects, il doit exister un point de
transition ol le comportement en loi de puissance de la fonction de
corrélation se transforme en comportement exponentiel. Cependant on
peut se demander pour quelle raison Pargument basse température
devient incorrect au-dessus d’un point de transition éventuel. Remar-
quons que dans P’équation (8), les limites d’intégration vont de — oo 2
+ 00, et on peut imaginer que si les fluctuations deviennent grandes, la
périodicité de 6 peut jouer un réle. C’est ce qui se produit effective-
ment : des excitations de caractére topologique, faisant intervenir la
périodicité de 6, arrivent & détruire le quasi-ordre a basse température.
Ces excitations sont les vortex, ou tourbillons, dont le réle a été élucidé
pour la premiére fois par Kosterlitz et Thouless.

A.3. Role des vortex

Considérons une configuration de spins telle que 6; soit égal a
w /2 + Vangle polaire ¢ par rapport a une certaine origine O (figure 2).
(Le choix de = /2 est arbitraire ; toute

constante ferait aussi bien I’affaire). En -
coordonnées polaires, le gradient de 6
vaut :
1 5 @ A
- (0, - ) = %.
0
y
Si C est un contour fermé entourant le >
point O :
> P

fﬁ Vo.dl=27.
C

Figure 2. Un vortex.

Une telle configuration de spins est un exemple de vortex. Plus
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généralement, comme 0 est une variable périodique, on aura :

§V0.dl=27rq g=0,x1,+2,..
c

ou g est la vorticité (ou intensité du vortex).
Calculons Pénergie associée au vortex de la figure 2 :

-1 NS Bl W C I L 4
E_EJJ(VO)dx_z.IJA 2 dx—erlna. (14)

Naturellement les approximations faites pour obtenir (14) ne sont
valables que suffisamment loin du centre O du vortex et il faudrait
rajouter 4 (14) une constante a calculer numériquement.

Comme le centre du vortex peut étre choisi n'importe ou sur le
réseau, I’entropie associée a la création d’un vortex est:

S=1In (L/a)

puisqu’il y a (L/a)? sites. L’énergie libre associée a la création d’un
vortex est:

F-E—TS= ('n-J—2T)ln..fl1

et on voit que les vortex vont déstabiliser le quasi-ordre pour
T > T,= wJ/2. En réalité les vortex sont créés par paires, et il serait
plus correct de raisonner sur la création de paires (cf. exercice 1).

11 est maintenant possible de résumer la description des phases du
systeme telle qu’elle a été proposée par Kosterlitz et Thouless : & basse
température, les fluctuations de grande longueur d’onde, aussi appelées
ondes de spin, sont les seules configurations importantes, et les
corrélations décroissent en loi de puissance : on obtient un systéme
quasi ordonné, avec des ilots d’aimantation de toutes les tailles. Il
n’existe pas de vortex « libres », mais on peut trouver des paires de
vortex de vorticité opposée, qui affectent le systeme uniquement sur de
petites distances. Quand la température croit, la taille des paires vortex-
antivortex augmente, et diverge & T = T, ol apparaissent des vortex
libres. Ces vortex déstabilisent le quasi-ordre des ondes de spin et la
fonction de corrélation décroit exponentiellement.
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B. ANALYSE PAR LE GROUPE DE RENORMALISATION

Dans le modéle XY, les ondes de spin restent couplées aux vortex, ce
qui rend un calcul complet impossible. C’est pourquoi nous allons
introduire un modele trés voisin du modele XY, le modele de Villain,
ou les ondes de spin sont découplées des vortex. Le modele de Villain
possede les mémes caractéristiques topologiques que le modele
XY et il est raisonnable de penser (quoique cela n’ait pas été prouvé

rigoureusement) que ses phases sont identiques & celles du modele
XY.

B.1. Mode¢le de Villain (%)

Ecrivons pour un lien une décomposition de Fourier :

e~ﬂ(1—coso): Z eineln(ﬂ)e—ﬂ (15)

n=-00

ou B =J/Tetl,(B)estune fonction de Bessel d’argument imaginaire :

In(B) = jzweﬁCOSB ein()ﬁ‘i

. 16
0 - (16)

Lorsque B o0 (T—-0), e PI,(B) peut étre approché par

\/21 R exp(—n?/2B) et:
o

o B(1—cos0) _ 1 < oind o-n2/28

\/2 TB it

Ce résultat aurait pu étre obtenu directement en remarquant que pour
B — o0, la contribution principale a I'intégrale (16) vient de la région
0 >0et:

1.2
e-—B(l—cosG)ze—Zﬁo

Le point important dans (17) est que I’approximation faite, méme si
elle n’est valable que pour T —» 0, préserve le caractére périodique de la
variable 6. Négligeant la constante multiplicative (2 78 )~ 2 on obtien-
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dra le modeéle de Villain en écrivant :

exp(— B (1 —cos (8,0(x)))) ~

By (x)=+o

— Z exp(in#a#O(X))exp(—ni/ZB)

ny(x)=—®

ol n, (x) est un vecteur de composantes entiéres n; (x) et n,(x) associé a
chaque site x. La fonction de partition du modele de Villain est donc (il
n’y a pas de sommation sur les indices répétés dans (18)) :

Z = J:” [Tde &) [] i exp(in, 8,0 (x))exp(—n3(x)/2B).
x "’f‘"u(x)=—co
(18)

Examinons l'intégrale sur 6 (x): on trouve les termes suivants dans
Pexponentielle :

bo(x+my)
(% —py) = .G(X) =0 (X + 1)
Vo(x—mpy)

n(x)[0 (x + py) — 0 (x)] + n,(X)[0 (x + py) — 6 (x)] +
+ X = pr)[0E) - 0 (x—py)]+np(x— ) [0(x)— 0(x— py)].

L’intégrale sur 0 (x) donne un résultat non nul seulement si :
[71(x) — 7y (x — py)] + [n,(x) — ny(x — )] = 0
c’est-a-dire si:

Z d,n,(x)=0.

Autrement dit n(x) est un vecteur a « divergence discréte » nulle. 11
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pourra donc s’écrire comme un rotationnel (g, = — ey =1, £ =
£ =0)

n’u(x) = Z Euv a,,P(X)

N

ol p(x) est un champ scalaire & valeurs enti¢res. La fonction de
partition (18) devient (2 une constante multiplicative pres) :

- 1
Z= Yy exp (_23 Y (a#p(x))z) . (19)
PE)=— % b
Utilisons maintenant la formule de sommation de Poisson (*) :
© © © Yy
Y gm)= ¥ de g(¢) i
n=-~a m=—o —

pour transformer Z en:

Z=J°° [[de®) ¥ exp(—z—l—B—Z(aM<p)2+2iﬂ-Zm(x)<p(x)>

m(x)=—o X, i X

(*) Formule de sommation de Poisson : soit f(z) une fonction holomorphe dans la
bande —p <Imz<p et

F(z)= i f(v +z)

y=—m

supposée également holomorphe. F(z) étant holomorphe et de période 1 posséde un
développement de Fourier uniformément convergent :

0
F(Z) - Z Aneli-rmz

n=-o

A,,=J‘1dxF(x)e‘2i""": i Jldxf(v+x)e‘21"”
0

v=—aw v0

- § [TMarwerm o [T e

v=wo VPV

F(0) = i A, = % J.w dx f(x) e ™™,

#=-o0 n=-c v-—00

Mais F(0) est également donné par ;

FO) = 1.

P=—o0
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ol m(x) est un champ scalaire 4 valeurs entieéres. Il est maintenant
possible d’intégrer sur ¢:

Z=Zgy i exp<—27r2[3 Z’m(x)G(x—x’)m(x’)) (20)

mEx)= -

ou Zgw, qui est le déterminant provenant de U'intégration sur ¢, est la
fonction de partition des ondes de spin (spin waves) : en effet si
m = 0, on trouve exactement la fonction de partition des ondes de spin
(remarquez que les limites d’intégration sur ¢ sont maintenant
— 0 < ¢ < + 00). Dans le modele de Villain, les ondes de spins et les
vortex sont découplés :

H=st+HV
ou:
Z=ZsgyZy

alors qu’un tel découplage n’est pas réalis¢ dans le modéle XY (reste a
identifier m(x) avec la vorticité, ce qui sera fait un peu plus loin). Dans
Iexpression (20) il est commode de revenir a la fonction de corrélation

régularisée G(x) de (9.b) en écrivant :
Gx-—x")=[Gx-x")-—GO)]+ G(0)
=Gx-x')+G(0)

Z=Zy Y exp(_z 77236(0)@,"(}.{))2~

mix)

_2mlp Y m(x)G(x—x')m(x’)) .

Comme G(0)~§l7;ln (L/a), on constate qu’a la limite L — oo,

seul le terme de vorticité nulle :
Y mx)=0

donnera une contribution. Ceci permet d’écrire la forme finale de la
fonction de partition :

Z=stz’x

m(x)

xexp(——Z'n-zﬁ Zm(x)(—}(x—x’)m(x’)) =ZswZy (21)

ou ¥ ' indique que I'on doit sommer seulement sur les configurations de
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vorticité totale nulle. A grande distance, on peut montrer qu’une bonne
approximation de G(x) est (cf. note page 156) :

~ 1 1
G(x)z—z—ﬂ_lng—z. (22)

Tenant compte de (22) et de la relation :

Y mx)mx')+ Y m*(x)=0

x#x

on peut récrire la fonction de partition :

) w2 B 2
Z=Zgy Y 'exp —TZm(x)+
mi{x) x
X —x'
a

+7B Y m(x)ln“

X#£EX

H m(x’)) . (23)

2
Le terme exp (~ EZ—B Y mz(x)) peut étre interprété comme prove-
X

nant d’un potentiel chimique a2 B /2 ; on I'écrit conventionnellement :
q
exp <ln yy mz(x))

w? B
2
permet de contrdler la densité de vortex. En effet si y — 0, le potentiel
chimique défavorise la création de vortex. Quand y croit, le nombre de

vortex augmente.

Pour identifier m(x) avec la vorticité, il faut étudier la loi de force
entre vortex. On peut montrer facilement (exercice 1) que deux vortex
tels que ceux dessinés sur la figure 2 s’attirent ou se repoussent (selon le
signe relatif de la vorticité) suivant une loi de force déterminée par le
potentiel (22). Cette remarque permet l'identification souhaitée.

I1 est utile de noter I'analogie avec un gaz de Coulomb a deux
dimensions : la fonction de partition (23) est celle d’un gaz bidimension-
nel de charges 2 = A m(x) disposées aux nceuds d’un réseau, avec un
terme de potentiel chimique contrélant la densité de ces charges.
Lorsque y — 0, il existe quelques paires de charges proches 'une de
Pautre, et le systeme est un diélectrique. Lorsque y croit, il apparait de
plus en plus de charges, la taille moyenne des paires croit et on finit par
obtenir des charges libres, c’est-a-dire un plasma.

et dans le modele de Villain: y =y, = exp (— ) Ce terme
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B.2. Groupe de renormalisation pour le modéle XY

Ecrivons la fonction de partition des vortex en présence d’un
potentiel chimique y (avec le changement de notations x’ — z) :

Zy= 5 ’exp(wB 5 m(x)ln”x_z Hm(z)+lnyzx:m2(x)> .

mi{x) X#Z a

Lorsque y — 0, les configurations dominantes sont celles a zéro
vortex et a deux vortex de vorticité opposée =+ 1. On aura par exemple
un vortex (+ 1) au point x et un vortex (— 1) au point z. La somme sur
les configurations devient donc une somme sur x et z, et I’on trouve :

Py X—2
—2a#BIn ”
ZV = 1 + 62 lny € a
Z
soit en passant & une formulation continue :
y? 2, 32 a 27B
Zy=1+=— dx d’z || —— (24)
a’J @ x—z

La notation ﬂ implique que T'on doit avoir ||x — z|| = a dans (24) :
(@)

la signification physique du cut-off en ||x —z| est que les centres de
deux vortex ne doivent pas étre a une distance inférieure a a.
Effectuons maintenant une dilatation du cut-off: a — sa :

y2
Z{,=1+—4ﬂ d*x d’z
a” JJ (sa)

On revient au cut-off initial en posant: x = sx’, z = sz :

2B

a
X—Z

a
— Z

o (25)

2
Zy =14 L s-27F H &' &z’
a @

'2 B

Comparant les équations (24) et (25) on constate que dans cette
transformation du groupe de renormalisation, le paramétre y se
transforme en y’:

y2_>y12=s4—27r,8y2. (26)
Pour 4 — 2 w8 <0, c’est-a-dire si
7T, =™ 7

2
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y décroit dans une TGR : on atteint donc la zone ou le nombre de
vortex — 0. Au contraire si T > T, le nombre de vortex croit dans une
TGR. Lorsque T < T,, le comportement a longue distance est décrit
par la situation ou y = 0, c’est-a-dire par des ondes de spin pures : la
fonction de corrélation décroit comme une puissance. Au contraire
pour T= T,, le comportement a longue distance est décrit par une
situation ol le nombre de vortex est grand : la fonction de corrélation
décroit exponentiellement (figure 3).

I T O I

T, = wl/2

Figure 3. Diagramme de flot pour y — 0.

On peut donner une interprétation de 1’équation (26) dans le langage
du gaz de Coulomb ; a basse température, les vortex sont li€s en paires,
et Paugmentation de a élimine les paires de vortex dont les centres sont
trés proches : la densité effective de vortex diminue. A haute tempéra-
ture, les vortex ne sont pas li€s en paires, et 'augmentation de a accroit
leur densité effective.

L’analogie avec le gaz de Coulomb suggére que I’équation (26) ne
décrit qu’une partie du groupe de renormalisation : les paires tres liées
diminuent les forces entre les vortex éloignés par effet d’écran. Cet effet
peut étre calculé et conduit a 1’équation :

ar - _
dins 7 -

Les équations complétes du groupe de renormalisation sont finalement :

dy2 _ wJ 2
dlns_z(z__i,_)y (28.2)
ar

s = (28.b)

Le point remarquable est évidemment 2 :

wJ

y=0; T=T.=2. (29)
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Au voisinage de ce point, on vérifie aisément que :

d wJ\? 4 ,
—_— —_—— e = 0
dins [(2 T ) py 24 ]
et les trajectoires décrites dans une suite de TGR sont donc de la
forme :

Il est immédiat de tracer la forme des trajectoires au voisinage du point
(29) (figure 4), en posant par exemple T' = T, + x.

§y

N\ L

T, =wJ/2

c

Figure 4. Diagramme de flot du modele XY ;
— ~ = ligne physique du modele de Villain.

Considérons par exemple une trajectoire de la région I : comme deux
points sur une méme trajectoire donnent une physique a longue
distance identique, tous les points de la région I définissent des théories
dont le comportement a longue distance est le méme que celui des
théories ayant y = 0, qui correspondent a des ondes de spin pures. On
retrouve donc la ligne de points fixes.

Une analyse plus poussée montre que pour 7 > T, la longueur de
corrélation £(T') (pour T > T,) se comporte comme :

) b T, 12
()]
ToT! r-T.
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et que I'énergie libre est en:

T, 1n
exp(—Zb( T ) ) .

Toutes les dérivées par rapport & T de I'énergie libre sont donc
continues & T = T,. On peut appeler une telle transition de phase
« transition d’ordre infini ».

Enfin & T = T, la fonction de corrélation décroit en r
ment a la prédiction heuristique du paragraphe A.

~ 14 conformé-

C. MODELES-o NON LINEAIRES

Lorsque n = 3 (toujours dans le cas bidimensionnel) on a affaire aux
modeles appelés « modeles-o non linéaires ». L’analyse de ces modeles
par le groupe de renormalisation est instructive, car la température est
dans ce cas une variable marginale, et on peut illustrer de fagon non
triviale les développements du paragraphe III-F. Pour fixer les idées je
me placerai dans le cas n = 3 (modele de Heisenberg) ; il sera facile de
généraliser a n quelconque.

Le spin S étant un spin & trois composantes, la fonction de partition
s’écrit (on remarque la symétrie O(3) du hamiltonien) :

1
Z= j l:l dS(x)exp (-—ﬁg (3.8(x)). (8MS(x))) (30)

la « constante de couplage » g étant directement proportionnelle a la
température :

g=T/J.

Comme dans le modeéle d’Ising & 1 dimension, il n’y a pas de
transition de phase a température finie. Cependant la longueur de
corrélation tend vers l'infini quand T (ou g) tend vers zéro, et on peut
considérer T = 0 comme la température critique.

Comme d’habitude il est commode de passer 4 une formulation
continue ; toutefois on souhaite conserver la condition S?=1etla
symétrie O(3) du hamiltonien de départ. On obtient donc une

formulation continue trés différente de celle de Ginzburg-Landau :

H= szx[%(V-S)2+§1—];((V-S)2)2+---] - Jdlxx(x) (1)
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avec la notation :

w3 [(3)(2))

a=1 a=1

En raison de la contrainte S =1, seules des puissances de
(V-SY, ou de dérivées d’ordre plus élevé, peuvent apparaitre dans
(31).

Lorsque g — 0, on observe de grands domaines ou I'orientation des
spins est quasiment uniforme, car le systtme a tendance a s’aimanter
. spontanément au voisinage du point critique. Il y a évidemment des
fluctuations autour de cette orientation. Nous sommes conduits a
distinguer des fluctuations de grande longueur d’onde, correspondant a
une rotation lente de l’aimantation, et des fluctuations de courte
longueur d’onde autour de cette évolution lente. Décomposons S en
une composante S, variant lentement, et telle que S; soit d’ordre 1, et
une composante S, fluctuant sur de courtes distances. D’aprés le
raisonnement fait dans I'introduction, on s’attend a ce que les fluctua-
tions de S, soient d’ordre g (cf. (1)). Il sera commode de paramétrer S
de la fagon suivante :

Si = /1~ Sicos 6 (32.2)
S, = /1 SZsin 0 (32.b)

en prenant S; dans le plan (1, 2). La paramétrisation (32) respecte la
condition S> =1 ; S5 fluctue sur des courtes distances, € sur des courtes
et longues distances (9, et 8)).

La densité de hamiltonien devient :

1 (V53)2
”:z—g‘ (1_s>‘32)(ve)2+1~532 (33)

en négligeant les termes d’ordre supérieur dans (31). Comme on
s’attend & ce que S; ~ v g, on peut écrire pour g —» 0

”22_15 (V.83 + (1 — S2) (VO + SHVS; Y 4 -+ ].

Finalement on fait un changement d’échelle sur $; de fagon a éliminer
le facteur multiplicatif 1/g :

S3(x) - \/g B (x)

# =5 [ony (5-#) (V07 + gh¥(Tn) + . |



Iv.C. Modeéles-o non linéaires 169

La forme (34) de # présente I'intérét suivant : les fluctuations de £
affectent celles de 6 (par I'intermédiaire du coefficient de (V8 )’ dans
(34)), mais celles de 6 ne réagissent pas sur k. Pour g — 0, le dernier
terme de (34) peut étre négligé.

Effectuons maintenant ’intégration sur les fluctuations de vecteur
d’onde compris entre A/s et A ; organisons le calcul de Z de la fagon
suivante :

zzL k A@O(k)exp(—zqu- ~dzx(ve)z) L " Dh(k) x
xexp<_l ndzx(Vh)2> J Dh (k)
2v AfssksA
xexp(——% szx[(Vh)Z—hz(VB)Z]). (35)

Evaluons la derni¢re intégrale de (35), en remarquant que (V0 )* est
petit (~¢g):

_ 1y . 2
1= JA/sSkSA@h(k)exp( 5 f d“x(Vh) ) x

X eXp ( % J d*(ve ) h2> = J Dh(k) x
Afssk<A
1
2

A une constante pres, I est donnée par :

I=1+ % J &x G,(0) (VO = exp ( % J &x G,(0) (vo)z) (36)
ou:

A
o= | 1 @7

———==—Inys,
A/s (277)2](2 2

tandis que lintégration sur 6, donne une constante multiplicative.
Apres cette intégration sur les courtes longueurs d’onde, le terme en
(V6)? du hamiltonien est affecté d’un coefficient :

Lo L= L
2g 47 T 2g’

et la nouvelle constante de couplage g' vaut :
1 1 1
?_E—ﬁlns' (38)
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Cette équation se transforme immédiatement en équation différentielle
pour la constante de couplage :

dg(s) _ g°(s)
dlns 2m (39)

Si Pon se souvient de la définition (II1.83) de la fonction B(g),
Pinterprétation de (39) est immédiate : on vient juste de calculer le
premier terme du développement perturbatif de 8(g):

g’ 3
B@)=-5—-+0().

Les équations (38) ou (39) montrent que lintégration sur les
fluctuations de courte longueur d’onde conduit & une augmentation de
la température ; cette intégration fait donc correspondre au systéme
initial un systtme a plus haute température possédant le méme
comportement a longue distance. Si les intégrations successives condui-
sent a une température tendant vers l'infini, les propriétés a longue
distance seront celles d’une théorie & haute température, et la fonction
de corrélation se comportera exponentiellement a toute température.
Pour que cette conclusion soit correcte, il faut que la fonction
B (g) ne possede pas de zéro sur 'axe g = 0 (cf. chapitre VII), mais il
est évidemment impossible de décider de cette éventualité par un calcul
perturbatif.

De fagon quantitative, la longueur de corrélation £(g’) a la tempéra-
ture 7"(= g'J) est donnée en fonction de la longueur de corrélation
£(g) a la température T(= gJ) par:

£6) =1 £@).

D’aprés la définition de la fonction B (g):

g’ ”

g B(g")
et donc :
¢ dg"
£(g') = £(g)e’ PO (40)

En utilisant Pexpression (39) de B(g), en prenant g' ~ 1, £(g’') ~ 1 et
g — 0, on trouve :

E(g)=e*"/9. (41)

Le groupe de renormalisation montre que le comportement de
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N

£(g) pour g — 0 est non perturbatif : & cause de la non-analyticité a

g = 0, jamais la théorie des perturbations ne pourrait donner le résultat

correct. On remarquera également que le comportement de £ pour

T — 0 est analogue a celui du modele d’Ising & 1 dimension (cf. 1.11).
Le terme d’ordre g° de la fonction B (g) a été calculé :

B(g)=—-Bog*—B:1g’+0(g*)

ce qui permet de donner pour £ (g ) une expression plus précise que (41)
(exercice 2).

Pour conclure, notons une interprétation géométrique du résultat
(39) : Tlintégration sur les fluctuations de courte longueur d’onde
conduit a une variable de spin 8’ telle que ||S’|| < 1. Pour ramener le
hamiltonien a sa forme initiale, il faut faire un changement d’échelle sur
le spin: 8' —» 8'/||S'||, qui peut étre absorbé dans une modification de
la constante de couplage : g — g/||S’||%. On retrouve bien le fait que la
température a augmenté dans 'opération.

Lorsque n = 3, on remarque que les seules composantes du spin qui
contribuent & la renormalisation sont celles qui sont perpendiculaires au
plan du mouvement d’ensemble lent ; il y a donc (n — 2) composantes
qui contribuent effectivement a la renormalisation de la constante de
couplage et I’équation (39) devient :

2
R

Les modeles-o non linéaires possédent la propriété de liberté
asymptotique (cf. VII-C.2) : g est une fonction décroissante du cut-off.
Cette propriété permet des analogies intéressantes avec les théories de
jauge non abéliennes (chapitre XIII).

EXERCICES

1) On se propose d’examiner une paire vortex-antivortex créée dans une
configuration telle que 8 — 8, dans toutes les directions du plan.

(a) En examinant la configuration de la figure 5 (o0& 6, = ) montrer que
I'énergie de la paire de vortex est qualitativement :

E=2aJlnr

ol r est la distance entre les deux centres.
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Fan
A%
D
1/
A
1

Figure 5. Une configuration vortex-antivortex.

(b) On procede de fagon plus quantitative en se donnant 6 par la relation
(z=x+1y)():

i iow{ (z—z) |Z+Zol}
el =¢e — 1

[z — 2| (z+2)

Tracer qualitativement P'allure de 6, et montrer que ’expression précédente
correspond bien a un vortex g=+1 en 2z, et un vortex g =-—1 en
— 2. {On pourra choisir z, sur 'axe réel.)

(¢) Afin d’évaluer le hamiltonien, il est commode de définir la fonction
analytique :

F(z)=e"(z - 20)/ (z +z9) = e’ p e

Pour calculer J d% (V6 )%, il faut évidemment exclure les points singuliers que

I'on entoure par deux cercles C; de rayon a, définissant ainsi un domaine D.
Montrer que les conditions de Cauchy-Riemann pour In F dans D impliquent :

Viinp =V =0; (VoY = (Vlnp)Y =V(lnp Vinp)
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et en déduire :

_1 2 2__1 . Y
_21de(V9) = ZlgLidllnp(n Vinp)

=-27fln |2z ~27B Ina.

(d) Utiliser cette expression pour calculer Fénergie libre d'une paire et
retrouver 'argument qualitatif du paragraphe A.3.

2) Montrer que si la fonction B (g ) du modele-o non lin€aire est donnée par
le développement perturbatif :

B(@)=-Bod-B:.4 +0(g")

on obtient pour £(g):

£(9) = (Cte) g "/ /P91 4 O(g)).

La seule origine de la non-analyticité provient des deux premiers termes de

B(g).

NOTES ET REFERENCES

Les articles de Kogut (sections VII et VIII.C) et Shenker (sections5 et 6) sont
particuli¢rement clairs et ont largement inspiré le présent exposé. On pourra aussi
consulter Particle original de J. Kosterlitz et D. Thouless, J. Phys., C6, 118 (1973).
L’analogie avec le gaz de Coulomb permet également une analyse par le groupe de
renormalisation : J. Kosterlitz, J. Phys., C7, 1046 (1974) et A. Young, Phys. Rev., B19,
1855 (1979).

() N. Mermin et H. Wagner, Phys. Rev. Lett., 17, 1133 (1966).
(3 1. Villain, J. Phys., C36, 581 (1975).
(®) C. Itzykson : livre en préparation.
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Théorie des perturbations
et renormalisation :
champ scalaire euclidien






CHAPITRE V

Développement perturbatif
Diagrammes de Feynman

Ce chapitre se propose de développer de fagon systématique des
concepts et des techniques qui ont été introduits dans les trois premiers
chapitres : fonction de corrélation et fonction génératrice (I-D.1),
transformation de Legendre (I-D.5), développement perturbatif et
développement en nombre de boucles (II-D.2, II1-D.3 et III-E.3). Les
outils utilisés seront la fonctionnelle génératrice et I'intégration gaus-
sienne. Dans plusieurs cas il sera possible d’expliquer la méthode
utilis€ée sur un exemple & une seule variable, dont I’étude préalable
permettra de mieux suivre la démonstration générale.

Dans le paragraphe A, nous établissons le théoréme de Wick, qui
sera a la base du développement perturbatif, comme conséquence de
I'intégration gaussienne. Le paragraphe B est consacré au développe-
ment perturbatif des fonctions de corrélation G et G®, et introduit
les diagrammes de Feynman : a chaque terme (ou plus exactement a
chaque groupement de termes) du développement perturbatif, on fait
correspondre un diagramme, et & chaque diagramme correspondent des
reégles de calcul. Au paragraphe C on étudie la classification des
fonctions de corrélation : connexes, une particule irréductibles et vertex
propres. La transformation de Legendre est utilisée pour obtenir la
fonctionnelle génératrice des vertex propres. Cette fonctionnelle géné-
ratrice, qui généralise e potentiel de Gibbs, permettra de préciser au
paragraphe D les notions de symétrie brisée et de développement en
nombre de boucles. L’évaluation pratique des graphes de Feynman est
expliquée au paragraphe E, tandis que des arguments simples, mais
riches de conséquences, sont donnés au paragraphe F pour déterminer
le comportement des graphes lorsque certains moments tendent vers
Pinfini (comportement ultraviolet) ou vers zéro (comportement infra-
rouge).
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Jutiliserai dans ce chapitre le vocabulaire et les notations de la
théorie quantique des champs. Ainsi le hamiltonien de Ginzburg-
Landau (I1.19) sera écrit avec le changement de notations : ry — m? et
uy— ¢, ou m est une masse et g une constante de couplage. Les
vecteurs d’onde seront appelés moments (p = #ik avec # = 1). Enfin les
notations vectorielles seront supprimées pour k et x (k - &k, x — x), sauf

s’il peut y avoir ambiguité.

A. THEOREME DE WICK ET FONCTIONNELLE GENERATRICE

Dans ce paragraphe, nous reprendrons en les généralisant des
résultats du chapitre I (paragraphe D) et de l'appendice A. Le point
essentiel est d’obtenir une expression compacte pour les fonctions de
corrélation & N-points (¢ (x1) ¢ (x;) ... ¢ (xy)) et des régles de calcul
pour un hamiltonien gaussien. La méthode peut étre expliquée dans le
cas d’'une seule variable.

A.1. Fonction génératrice pour une seule variable

Soit P(¢) la distribution de probabilité d’une variable aléatoire :
P(¢)=0; toutefois on ne suppose pas que P (¢) est normalisée :

P(¢)de n’est pas nécessairement égal a 1.

La fonction génératrice Z(j) est définie par :
Z(i)=Jd¢> P(¢)e*; (1)

on suppose implicitement que P (¢ ) décroit suffisamment rapidement a
Pinfini pour que I'intégrale dans (1) soit convergente. L’intérét de
Z(j) est qu'elle permet d’obtenir par dérivation les moments (™ de

la distribution de probabilité P (¢): '

de ¢"P(¢)
1 9z

<‘Pn> = =Z(O)¥". ]'=0. (2)

J‘ de P(¢)
Inversement Z(j)/Z(0) est donné en fonction des (¢") par:

2G)/2©) = ¥ Loy ®)

n=0
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Dans le cas d’une distribution de probabilité gaussienne :
P(¢):exp<—%¢%¢) 4)
on trouve, en utilisant 'équation (A.9) :
2() = 2©)exp ( 5147 ) )

(remarquez que les roles de A et A~ ont été échangés) et (indice 0
indique une valeur moyenne pour une distribution de probabilité
gaussienne) :

@t
j=0  @jinnlon

3" 1.,. e
<¢2">0=Wexp<51fv>l GA)

2 1
G an an— 1)1 An
2" n!

(6)

Pour obtenir la deuxiéme égalité, on a développé I'exponentielle et
remarqué qu’un seul des termes du développement peut contribuer, a
cause des 2 n dérivations et de la condition j=0; 2n-1)!! =
(2n—-1). (2n—3). ... 3.1. Naturellement, tous les moments impairs
sont nuls : {¢2"*')y = 0. L’équation (6) peut étre récrite en fonction

du moment d’ordre 2: (¢?2) =4

(@M= @n—1)1 (eDf | (7)

Si P () n’est plus gaussien, mais a par exemple la forme :

P(¢) =exp(—-2—1A-<P2+ f(¢))

alors :

Z(j)= Jd¢ eXp(—Elch” f(<P)+i<p> :

La fonction génératrice peut étre écrite :

N 9 1 5 .
Z(])—‘”‘P(f(a—j))Jd¢exp(—2A¢ +J<p)- ®
Cette égalité s’obtient a partir de :
b

f(g) e =1@rer
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que l'on démontre en écrivant un développement de Taylor au
voisinage de 0 pour f ( a—a] )

A.2. Théoréme de Wick

La généralisation & N variables des considérations précédentes
permet de démontrer un théoréme fondamental pour les intégrations
gaussiennes, le théoréme de Wick. Partons d’une distribution de
probabilité gaussienne & N variables :

1 _
P(®1s - on) =CXP(—'2"<PTA 14’)

eTAT o = Zﬁf’iAi;l‘Pj
L

et définissons la fonction généfatrice Z(j):

. . a 1 _ .
Z(j1s - jN) = Hd¢iexp<—§¢’TA 1<P+]T‘P) . )

i=1

D’aprés I’équation (A.10) cette fonction est égale a:

2() =z exp 377 4)) (10)

et I'équation (10) donne les moments de P (¢ ) par dérivation :

¥ 11 p i
(@i, .- ‘Piz,.>0 = GTAj)". (11)

Jiy - 9Ji,, 0 2"

L’équation (11) permet de démontrer la généralisation de (6) : pour
une distribution gaussienne, tous les moments s’expriment en fonction
des moments d’ordre 2. En théorie quantique des champs, ce résultat est
connu sous le nom de Théoréme de Wick. La démonstration n’est pas
difficile ; commengons par le moment d’ordre 2 :

32 1 . . 3
<<Pi1 <Pi2>0 = m ( QI;JkAu]z) =Aii, = ¢, 05, (12)

La quantité ¢; ¢, est appelée contraction de ¢;, et ¢;,. La dérivation
dans (11) donne (2 n)! termes ; cependant il faut diviser par 2" n! et le
nombre total de termes dans le membre de droite de (11) est donc
(2n —1)!. Mais ce nombre n’est pas autre chose que le nombre de
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fagons de former les paires ¢; ¢;, ®;, ®;, ... ¢;,  ®;, :eneffetilya

2
(2 n — 1) fagons de former la premiére paire (moik, (2 n - 3) fagons

de former la seconde, etc. On trouve donc :

— | — | —
<‘Pi1 ‘Piz,,>0 = @i P, Piy Piyor Piy,_y Piay,
+ Permutations . (13)
avec: ¢y, @i, = <(Pi1 ‘pi2>0 =Aii,

Exemple :

-~ 1 ]

1 1 1
<<P1<P2<P3‘P4>0=‘P1¢2€D3<P4+<P1‘P3‘P2‘P4+‘P1‘P4‘P P3 -

Il est important de noter que le nombre total de termes ne change pas
méme si certains indices sont identiques :

(PLPrP2Pa) = P1P2P2 P+ Q1P P2 Ps+ 1048202
2

— 1 ! |

@
PPy P2 Pyt P Py Py P

Drailleurs si tous les indices sont identiques on retrouve le résultat (7) :

(0>Myy= @n-1 (%7

A.3. Fonctionnelle génératrice

Les résultats précédents peuvent étre appliqués a une théorie
continue, considérée comme la limite d’une théorie sur réseau : cf. 1I-
A.3. Si 'on suppose que la densité de probabilité est donnée par un

hamiltonien du type Ginzburg-Landau (I1.19) :
1 1
Ple] =exp(— HgL) = exp (— J dDX< 3 (V<P)2+§m2¢2+;f—, <p4> )

la « fonctionnelle génératrice » (des fonctions de corrélation) Z(j) sera
définie par :

() = f..%(x)exp(—mdixf(x)«p(x)) )

La fonction j(x), appelée source du champ ¢, joue le role du champ
magnétique B(x). Il est utile de définir la densité de hamiltonien
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H (x) par:

=Jde#(x); %(x)——(V¢)2+ m’ ¢ +m"’

Les moments d’ordre (2n), qui ne sont pas autre chose que les
fonctions de corrélation a (2 n)-points, sont obtenus par dérivation
fonctionnelle de Z(j):

G(Z")(xl, vy X)) = (‘P(xl) <P(x2n)> =
_ 1 82M Z(j)
Z(0) 8j(x1) ... 8j(x2,) |i=0

La fonction de corrélation a deux points :

GO(x;, x,) = (e (x1) ¢ (x))

avait été appelée simplement « fonction de corrélation» dans la
premi€re partie, car c’était la seule a intervenir et il n’était pas
nécessaire de préciser le nombre de variables.

Il est commode de séparer dans le hamiltonien H une partie
gaussienne (i.e. quadratique en ¢) Hj:

(16)

Hy = Jde<%(V<p)2+%m2<p2) 17)
et un terme V dit d’interaction :

V= f, dPx o4(x) . (18)

Plus généralement on pourrait prendre au lieu de % ¢ *un polynéme en

@, ¥ (@), pair si 'on veut respecter la symétrie ¢ - — ¢ ; on pourrait
aussi introduire des interactions du type ¢*(Ve ), dites interactions
dérivatives ; afin de simplifier la discussion, je les laisserai provisoire-
ment de coté. L’expression (8) se généralise alors a

Z(j):exp(—f "V(S T ))) J@(p(x)x
xexp(—H0+dexj(x)¢(x)> (19)

pour une interaction :

V=J'de“V(go)=dex<g'<p +%(p +- )



V.A.3 Théoréeme de Wick et fonctionnelle génératrice 183

L’intégrale sur ¢ (x) dans (19) est une intégrale gaussienne ; en utilisant
(10) on obtient :

f%p(x)exp(—fd”x[%(V<p)2+%m2cp2—f(x)¢(x)]) -

- 7 =0 ewp (3 [ xa%y 1) Goe =) 1)) )

x

ol Gy(x —y) est la fonction de corrélation & 2 points du modele
gaussien (Go(x, y) joue le role de A;)):

Go(x)=f ke B o x) 0 0)),. @1)

@mYPk+m?

La fonctionnelle génératrice Z(j) peut donc étre mise, & une constante
multiplicative prés, sous la forme :

Z(j):JVexp(——Jde"//(gjs(—x)>) X
<o (5 [ @raty i) Gie - j0)). @)

Dans toute la suite, .#" désignera une constante de normalisation des
fonctionnelles génératrices. Cette constante ne joue en général aucun
rOle, et il ne sera pas nécessaire de la préciser. Aussi compacte que soit
la forme (22) de Z(j), celle-ci n’est pas directement calculable. 1l faudra
développer en série perturbative.

Avant de passer a ce développement, rappelons que pour décrire un
systtme physique dont le paramétre d’ordre est de dimension »n, nous
avons dii généraliser le hamiltonien de Ginzburg-Landau en introdui-
sant un champ & n composantes ¢;(x) (i = 1,2, ...,n):

H= Jde[%i (V¢i)2+%m22": ‘Pi2+% <i <p,~2)2]. (23)

i=1

Ce hamiltonien est invariant par rotation dans 1’espace & » dimensions
des «indices internes» i: en effet il ne dépend que de la
(« longueur »)? du champ dans cet espace :

ou de termes contenant des dérivées, également invariants par rotation.
Comme le groupe des rotations dans un espace a n dimensions est en
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général noté O(n) (O(n) contient aussi les opérations de symétrie
¢; - — @;, qui elles aussi laissent le hamiltonien invariant), on appelle
ce hamiltonien : « hamiltonien de Ginzburg-Landau avec symétrie
O(n)».

B. DEVELOPPEMENT PERTURBATIF DE G® ET GY¥
DIAGRAMMES DE FEYNMAN

L’objectif de ce paragraphe est d’établir des regles générales pour le
calcul perturbatif des fonctions de corrélation, qui donneront le résultat
sous forme d’un développement en puissances de g :

G=Gy+9gG,+¢°Gy+---+g"G, +---

ot G, est la fonction de corrélation du modele gaussien. Ces regles
s’expriment trés simplement sous forme diagrammatique : ce sont les
fameux « diagrammes de Feynman». Comme précédemment je
commencerai par le cas d’'une seule variable afin d’exposer le principe
de ce développement. Je prendrai comme exemple linteraction en

¢* mais les résultats se généralisent aisément a une interaction
polynomiale ¥ (¢ ) quelconque.

B.1. Développement perturbatif pour une variable

Considérons une distribution de probabilité

o2 L ot

P(g)=e 24" ¥

et essayons de calculer les moments de cette distribution. Il n’est pas
possible d’obtenir une formule exacte pour Z(0), mais si g est petit on

peut développer exp (-— % cp4) :

1

2
_ s> L PR VU R B
Z(O)—Jd“ (1 a8 et T )

- a(1-Loa2s 35 pas, ...
_\/27TA(1 g9A g A% ) (24)

2

Calculons maintenant <(p2> , analogue pour une variable de la fonction
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de corrélation a deux points :

1

- 2 2
Jd¢¢2P(¢)=Jd¢¢ze 24 % (1_£(P4+ 9 (P8+"'>

4! 21(41)
=\/2WA<A_.§-gA3+-11~g%gZA5+---). (25)

{¢?% s'obtient en faisant le rapport de (24) et (25):

1 2
<¢2>:A(1—§gA2+§g2A4+---). (26)

L’équation (26) est un exemple élémentaire de développement pertur-
batif. Remarquez que si g =0, on retrouve simplement
{2 = A = valeur gaussienne ; remarquez aussi que la constante

2 w A disparait dans le rapport : on vérifie sur ce cas particulier que la
constante due a Pintégration gaussienne est sans effet sur la fonction de
corrélation.

B.2. Calcul de G® a ’ordre ¢

Revenons maintenant au cas d’une théorie de Ginzburg-Landau et
calculons le terme d’ordre g de la fonction de corrélation G (x — y):
Il faut évaluer a I'ordre g l'intégrale :

163 = [ 2ee@ o)
- J@¢¢(x)¢(Y)e_H°[1—%JdDZ<p4(z)+--- |

Le premier terme du crochet donne simplement
A e@x) e (r))y=NGolx —y)

ol la constante .4~ vaut ;
N = J@we_H°=Zo(j=O).
L’intégrale correspondant au second terme :

j%ﬂx)ﬂy)e*”“fd”z&(z) @7)
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est évaluée a l'aide du théoréme de Wick (13). Le nombre de
contractions dans (27) est égal au nombre de contractions de
@ (x), ¢(y) et ©*(z). 1l est commode de représenter ces contractions
sur une figure en dessinant deux points « externes » (c’est-a-dire se
référant aux arguments de la fonction de corrélation) x et y, marqués
d’une croix, et un point «interne » ou « vertex » z, provenant du
développement de eV, et sur lequel on intégrera. Comme ¢ (z)
intervient par sa quatri¢me puissance, ce point apparaitra dans un
premier temps en quatre exemplaires. Chaque contraction sera repré-
sentée par une ligne joignant les arguments de ¢: par exemple :

¢ X)) ¢ (y)—» x——x
x Y

Deux types de termes sont possibles (figure 1) :

(1) ZD 4 x 3 =12 termes
;\.

2 C 3 termes

Figure 1.

On vérifie que 12 + 3 = 15 = (6 — 1)!!. Afin de simplifier les figures,
on groupe les quatre points z en un seul, obtenant les figures suivantes
(figure 2) :

1 (2)
Q. O
»—_———r——(
X z y x y

Figure 2. Les deux diagrammes
d’ordre g.

Ces figures sont appelées diagrammes (ou graphes) de Feynman ; a
tout terme, ou plus exactement a tout groupement de termes, du
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développement perturbatif correspondra un tel diagramme. L’intégrale
I vaut :

I(x,y) = N[Go(x —y) —

_%g J dPz Gy(x — 2) G4(0) Go(z ~ y)
—-ég Go(x —y) (GO(O))2 J dDz} . (28)

Pour obtenir la fonction de corrélation, il faut diviser par Z(0),
comme dans I’exemple a une variable :

Z(0)=J@we—HO(l—%JdDz¢4(z)+...)
= W[l‘% (Go(o))zjd”z+»-- ] (29)

Le deuxi¢me terme du crochet de (29) est représenté par le graphe de la
figure 3 :

CO
Figure 3. Diagramme de
fluctuation du vide.

Pour obtenir la fonction de corrélation a I'ordre g, il faut faire le
rapport de (28) par (29):

GO —y) =130 — Gyx - ) -

-39 [ @ Gutx - 2) Gy0) Goe ) + 0@

Le graphe (2) de la figure 2 n’apparait pas dans le développement
perturbatif de G. Un diagramme de ce type contient une partie dite de
« fluctuation du vide » ou diagramme « vide-vide » (terminologie
empruntée a la théorie quantique des champs), c’est-a-dire un sous-
graphe complétement disconnecté des points « externes » x et y (cf.
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figure 2). D’autres exemples de diagrammes de ce type sont dessinés

CONNCe e
S0 Q Q.

z y

=X

Figure 4. Diagrammes ne contribuant pas 2 G@(x — y).

Ces graphes n’apparaissent jamais dans le développement perturbatif
des fonctions de corrélation. La somme des diagrammes de fluctuation

du vide est égale a Z(0) = J D¢ e H, et c’est 'analogue de (24) dans

le cas d’une variable. La division par Z(0) fait disparaitre tous les
graphes contenant une partie « fluctuation du vide » disconnectée du
reste du graphe. La démonstration de ce résultat dans le cas général
n’est pas trés compliquée.

Considérons un diagramme faisant intervenir le hamiltonien d’inte-
raction a Pordre (p + ¢q), et comprenant une partie de fluctuation du
vide d’ordre g ; un exemple est donné dans la figure 5 dans le cas ou
v =get/al:

Figure 5.

Sin=p+gq,ilya C]facons de choisir ¢ facteurs V pour former des
diagrammes de fluctuation du vide. D’autre part le développement de
'exponentielle e~V fait apparaitre un facteur 1 /n!. Un graphe de

topologie donnée apparaitra donc avec un facteur =Cl= —
n! q!p!
Comme :

; =Y,

ptq=n p.q
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dans le calcul de la fonction de corrélation, le numérateur pourra
s’écrire :

Z % [Fluct. vide (¢)] [Connecté (p)]

(52 tcomec 1) (5.2 e e @)

4 q

Mais le second facteur est exactement égal & Z(0) et la fonction de
corrélation est donnée par :

Z% [Connecté (p)] .

p

Le calcul qui précéde permet de commencer a deviner les « régles de
Feynman », c’est-a-dire les régles associant au développement perturba-
tif des diagrammes, ainsi que les prescriptions pour évaluer ces
diagrammes (une démonstration compléte sera donnée en B.5). A
Pordre g nous avons déterminé Iexpression de G®(x — y):

Gx =) = ol —) - 0 | 2 Gox = 2) Go(0) Gol ~)
&)

que l'on représente graphiquement par (figure 6) :

»—@—x~x—————x+h—ga+---
X y X

y x y

Figure 6. Développement diagrammatique de G®(x — y).

L’expression analytique correspondant a un graphe est évaluée grice
aux regles suivantes (« régles de Feynman dans I'espace des x ») :

1) A chaque point interne, ou vertex, correspond un facteur
—g.

2) A chaque ligne joignant deux points x; et x; correspond un facteur
Gy(x; — x;) souvent appelé « propagateur » (terminologie empruntée a
la théorie quantique des champs).
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3) On integre sur tous les points internes z; : J dPz;.

4) Chaque graphe est affecté d’un facteur numérique multiplicatif
appelé « facteur de symétrie ». Dans le cas discuté plus haut, ce facteur
vaut 1/2.

En prenant une transformée de Fourier, I’équation (31) devient dans
Iespace des k:

GO) = Gok) = 39 Goth)| [ Z-55600(@)| Go) . 32

Cette expression suggere les « régles de Feynman dans 1’espace des & »
(démonstration compléte en B.5) :

1) A chaque vertex correspond un facteur —g.
2) A chaque ligne correspond un facteur G,(k).
3) A chaque boucle indépendante (cette notion sera précisée ulté-

rieurement) correspond une intégration J dPq/ (2 m)P.

4) Enfin chaque graphe est multiplié par un facteur de symétrie.

Le développement diagrammatique et les régles de Feynman sont des
conséquences immédiates du théoréme de Wick (13) : tout terme du
développement perturbatif est un produit de Gy(x; —x;). Le seul
facteur qui n’est pas complétement évident est le facteur de symétrie.
Par ailleurs on doit encore préciser la notion de «boucle indépen-
dante ». Afin de se familiariser avec le développement perturbatif et les
régles de Feynman, il vaut la peine de pousser le calcul de G a I'ordre

g2

B.3. Calcul de G® a Pordre g*

Il faut appliquer le théoréme de Wick a P’expression :
0 () 00) [ 4% dPu o*) o).

Eliminant les termes contenant une partie de fluctuation du vide, on
trouve trois types de graphes dessinés sur la figure 7 avec entre
parenthéses leur facteur de symétrie (exercice 1) :
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o .___.\ N
* . . Y N

V4 u

N
(2)XC; uDY_, QQ(

‘”;—*Z;* 8 (

Figure 7. Diagrammes & l'ordre g°.

——~
=
~——

Bl =

)
)

TP

11 faut remarquer que les vertex z et u peuvent étre permutés, ce qui
donne un facteur multiplicatif 2!; cependant le développement de
I’exponentielle donne un facteur 1/2! qui le compense exactement. En
régle générale, si 'on considére un terme en g”, le facteur n! venant de
la possibilité de permuter les vertex sera compensé par le 1/n! venant
du développement de 'exponentielle.

Nous nous contenterons d’examiner la contribution G(x —y) du
graphe (1) de la figure 7 a4 la fonction de corrélation, en laissant au
lecteur le soin d’établir expression analytique des deux autres graphes :

Glr=y) = 16 [ 2 4% Gotx — 2) [Gole ~ )T Gulw—)

Ecrivons G(x —y) sous forme d’une transformée de Fourier, en
remplagant chacun des facteurs G, par sa représentation de Fourier :

3

_ D Dyr 3 dP iy g (z-u)

G(x_y):%ngdDdeu de de que %
CEm)y Qm) /| Q7)

3
x e—]k. (x-2) e-—lk'u (u—-y) GO(k) Go(k’) l_[ GO(ql) .

=1
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Les intégrations sur z et u donnent un produit de deux fonctions &:

QuYsPk-q,—g,—q3)x @ m)P 8PUk' —q, — g, — q3)

d’oti :

D .
(_;(x —-y)= %g2 J a%’f;ﬁe_lk-(x—}')[Go(k)]z <
d? dP
j 2 :;D(z—:;ﬁ Go(q1) Go(q2) Golk — g1 — 42) -

Cette derniére expression montre que G (x — y) est la transformée de
Fourier d’une fonction G (k):

G (k) = § ¢ Gok) x

dD dD
y [ f (2-;‘1—;3(77%60(%) Go(42) Golk — 41 — 1) | Golk)  (33)

et la représentation diagrammatique de (33) est donnée sur la figure 8.
Le graphe dessiné sur cette figure comporte deux propagateurs externes
Gy(k) et trois propagateurs internes; a cause des deux fonctions
5P)(...), seules deux des trois lignes internes sont indépendantes. Le
diagramme de la figure 8 permet d’introduire la notion de boucles
indépendantes : on peut tracer trois boucles fermées suivant les propa-
gateurs internes, mais & cause des fonctions 5@ ), seules deux de ces
boucles sont indépendantes : il y a seulement deux variables d’intégra-
tion dans (33).

Pour terminer cette discussion du développement perturbatif de
G®) examinons le facteur de symétrie, d’abord dans le cas du
hamiltonien de Ginzburg-Landau simple. A l'ordre (p) de la théorie
des perturbations, on trace tous les diagrammes de Feynman topologi-
quement inéquivalents et chaque diagramme est évalué avec les régles
énoncées précédemment. En principe les 4! permutations des qua-

Go(q1)

G0£k) Go(q,) (Eo(k)

Golk —q,—q,)

Figure 8. Représentation diagrammatique de (33).
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tre points de chaque vertex compensent le 1/4! qui multiplie g.
Cependant certaines de ces permutations peuvent correspondre au
méme terme du théoreme de Wick (13), et il ne faut pas faire de double
comptage. On peut essayer de donner des régles générales pour le
calcul de ce facteur (cf. Itzykson-Zuber, p. 265-268). Je me contenterai
de le calculer explicitement dans chaque cas particulier.

Généralisons maintenant 4 un hamiltonien de Ginzburg-Landau avec
symétrie O(n) (cf. équation (23)). Pour un hamiltonien de ce type, la
fonction de corrélation gaussienne vaut :

(0:(x) ¢;(¥))y = Go,ij(x —y) = 8;; Golx —y) . (34)
Pour calculer la correction d’ordre g, il faut appliquer le théoréme de

Wick a:

n 2
<J dDZ( Y <P1%(Z)) ®;(x) <Pj(}’)>0-

Remarquons que :
- 2 2 2 2
( 5 m(z)) - 3 0} 9}2)
k=1 k1

et que le point « quadruple » z peut étre décomposé en deux points
d’indice k et deux points d’indice /. Il y a donc deux types de graphes (le
pointillé relie le groupe d’indices (k) au groupe d’indices (/):
figures 9 et 10) :

A L O

(i) 1) O.)) 1@&D

€

@ i) @k 0

Figure 9.
Comme Y 8 8 8;; = nd;;, le facteur de symétrie est % (4n)= g- .
k1 :

Le facteur de symétrie du graphe de la figure 10 vaut : %8 = %
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/k
—_— ’,——“\\
(x’i) H jve ‘l/ \\ —)

! o) (x,i)(z, k) @ G, )
()

Figure 10.

La somme des deux graphes (figure 11) ;

Figure 11.

aura un facteur de symétrie : -é- (n+2) (: sin=1 )

A Tordre g°, les trois graphes de la figure 12

(1) @ €

Figure 12. G a lordre g°

n+2 (n+2) ot (n+2)

ont un facteur de symétrie 13~ 36 36

respectivement

(exercice 4).

B.4. Fonction de corrélation 4 quatre points G

Continuons & utiliser le hamiltonien (23) ; la fonction de corrélation a
quatre points G,-(]f}‘} (x1, X, X3, x4 ) est donnée par :

Gi(j‘}c} (%15 X2, X3, X4) = <‘Pi(xl) ‘Pj(xz) ®r(x3) <P1(x4)> .



V.B.4 Développement perturbatif de GYet G® 195

Par invariance par translation, cette fonction ne dépend que de
trois différences de coordonnées : par exemple (x; —x,), (x; — x3),

(%3 — x4).
A Tordre ¢°, G§%)y est la somme de trois graphes disconnectés
(figure 13) :
G (%1, %2, %3, X4) = Go ;4 (%1 — X3) G, g (X3 — X4) +
+ Go ;i (%1 — x3) GO;jl(xz —x4) + Go iy (%1 — x4) Go;,’k(xz —X3).
(eyy 1) (35 7)
X

+ +

Wi
(X3, k) (x4’ l)

Figure 13. G“ a l'ordre ¢°.

A T'ordre g on aura trois types de graphes (figure 14) :

.0 ><
OO

Fluct. du vide Non connexe Connexe

6)) 2 (3)
Figure 14. G™ a I'ordre g.

Les graphes de type (1) contiennent des parties de fluctuation du vide et
sont éliminés quand on divise par Z(0). Les graphes de type (2)
peuvent étre écrits comme le produit de deux termes indépendants : ce
sont des graphes non connexes. Leur expression est connue car ils font
intervenir des fonctions de corrélation & deux points, déja calculées.
Les graphes de type (3) sont les plus intéressants. Ecrivons 'expression
analytique du graphe (3) de la figure 14 :

Gijkl = - fijkl J dPz Go(x1 —2) Go(x, — z) x

X Gy(x3 —z) Go(xg —2z) . (35)
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(Remarquez le signe — dans (35)). 11 est immédiat de calculer
r ijkt ¢
= 1
Fijp = 3 9Siin
(36)
Sijt =8ij 8y + 88+ 8, 8.
Sin =1, on a simplement I" = g car Siju = 3. Le signe (- ) dans (35)

assure que I" est égal & + g, et non — g (cf. C.3).
Remplagons maintenant les G, dans (35) par leur représentation de
Fourier :

G” _ -—I:‘- JdDZ ﬁ de,’ e—iki(xi—Z)G (k)
ijkl ijki ,-=1(27T)D 0\R
— 4 de,- ik x;
- _T.. —— ¢ T Gy(k)} x
ijki J ,-1:[1 { (2 fn-)D 0( t)}
4
x(zvr)Des(D)(zk,.) (37
i=1

On remarque dans (37) le facteur (2 7)P 5@ )(Zki) : ce facteur

provient de P'invariance par translation de G ®)(x;) ; établissons-le dans

le cas général, c’est-a-dire sans invoquer le développement perturbatif,
en effectuant le changement de variables :

VMI=X1—Xg45 Ya=Xpg—Xg4; Y3 =X3—X4;5; Y4=2X4

4 3 4
kix; =3y kiyi+ (Z ki) Ya
i=1 i=1 i=1

dans 'intégrale :
¢ ik; x;
J [1'[ dPx; ™ ] G™(x,) .
i=1

Par invariance par translation, G*)(x;) peut s’écrire en fonction de
Y1» ¥, Y3 uniquement; [lintégrale sur y,=x, donne bien

4
Q=) s® Y ki). De facon générale on extraira un facteur
i=1

@2m)’s <D>(
G™M(k):

Q@m)P 3<D>( i‘ ki) G®(k;) = J [f[ dPx; ei"f"f] G®(x;). (38)

i=

4
ki) dans la définition de la transformée de Fourier
i=1
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Dans le cas d’une fonction de corrélation d’ordre N, on extraira un

N
facteur (2 7 )P S(D)< Y, k,~>. Le lecteur vérifiera sans difficulté que
i=1

cette convention avait été adoptée implicitement pour G®. Lorsque
Ton utilise des variables k; discrétes, on extrait un facteur LP 6% k> €1
utilisant cette fois un 8 de Kronecker (L est la taille de I’échantillon
considéré).

Les exemples précédents ont permis de deviner la forme des régles de
Feynman ; il reste a les établir de fagon générale. Je me contenterai de
le faire dans I’espace des k, qui est le plus utile en pratique.

B.5. Régles de Feynman dans ’espace des k

Définissons la transformée de Fourier de j(x) par:

D .
0= | G5,

D’apres la relation de Parseval on peut écrire :
| exierew = [aewico.
La fonctionnelle génératrice gaussienne s’écrit dans I’espace des k :
Z,(j) = j Do (k) exp (— : j dPk (m?+ k) @ (k) @ (— k) +
+ [ @k n)
-z 5 [ @60 Gt - 1)) (39)

tandis que l'interaction V devient :

v=1f 1% @) @mPs®(Ta).  (40)
a1 i]:[} L gi q;)-

Relions maintenant la transformée de Fourier de la fonction de
corrélation d’ordre N a (@ (k;) ... ¢ (ky)) :

G(N)(xh vy Xy) = <<P(x1) <P(xN)> =

N de .
J [l—l 2,”)0/2 k; . :] <(p(k1)... (p(kN)> .
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Mais d’aprés I'équation (38), écrite dans le cas général, G™)(x;) vaut
également :

J‘ {ﬁ (;Dk)D e—ik,-.x,-} @ ’n')D S(D)(%ki) G(N)(k1 o ky)

ce qui donne :

Qw)Ps <D><§ k,.) GM(ky, ...y ky) =
= @7 (o (k) .o 0 (ky)) . (41)
On note le cas particulier :
@Qm )D 8 (D)(kl +k3) G(Z)(kl) = (2 7T)D <‘P (k) ¢ (k2)>
soit :

GAk) = (e (k) ¢ (= k)) .
En combinant (39), (40) et (41) on trouve pour G™M(ky, ..., ky):

Qm)Ps U”(% k,.> GMky, ..., ky) =

~ m(zw)ND”eXP<—V( 8j(8—q) )) 8j(— kl)-8~~N$i(— k)

xexp (3 [ 40 Gok) 1= b))

(42)
On remarque que :

d%k j (k) Go(k) j(~ k) =

A chaque ligne, interne ou externe, est associé le facteur
8 Dk, + k) Gy(k;) ; d’autre  part, a cause du facteur

Qm)ys® )(Z k,-) dans (40), la somme de tous les moments entrant
dans un vertex doit étre nulle. On peut choisir sur chaque ligne (interne

ou externe) du diagramme une direction pour le flot de moment ; a un
vertex donné arrivent quatre lignes de moments k;, comptées positive-
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ment si le moment entre dans le vertex et négativement dans le cas
contraire. La fonction 8 dans (40) conduit a la loi de conservation pour
chaque vertex :

(zk)=0.

-

i=1

)

Il sera souvent commode d’adopter la convention suivante : les
moments externes ki, ..., Ky sont orientés de fagon & entrer dans le
diagramme. Ainsi, 4 cause du facteur & P)(k, + k,), une ligne arrivant
dans un vertex avec un moment k, ou bien arrive dans le diagramme
avec un moment k, ou bien entre dans un autre vertex avec un moment
— k. Un exemple est donné sur la figure 15 ol :

ki+ky—q1—q,=0; g +q,+ks+ky=0

k 91 ks

k, 4> k,

Figure 15. Une contribution a G,

La conservation du moment a chaque vertex assure la conservation
totale du moment : k; + k; + k3 + k, = 0.

Etablissons pour terminer les facteurs (2 7). La fonction de corréla-
tion posséde N lignes externes et V vertex a 'ordre V de la théorie des
perturbations. A cet ordre on a donc un facteur (cf. (40) et (42)):

(2 ,n,)ND/Z (2 7’_)—4VD/2 (2 7T)VD .
Mais dans un diagramme connexe on a la relation :
4V =21+N

ol [ est le nombre de lignes internes du diagramme : en effet si 'on
coupe chaque ligne interne, quatre lignes arrivent a chaque vertex et le
nombre total de lignes est 27 + N. Un exemple est donné sur la
figure 16 :
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V=2 N=4 [I=2 4+2x2=4x2

Figure 16.

Le facteur multiplicatif est donc :
(2 7,_)VD (2 ,n_)(N—4V)D/2 - (2 7T)VD (2 7_’_)—-ID .

On peut résumer les régles de Feynman pour G™)(k, ... ky) dans
Tespace des & sous deux formes équivalentes (dans le cas de diagrammes
disconnectés il peut y avoir des modifications triviales : a titre d’exercice
on pourra écrire la contribution 2 G® des diagrammes de la figure 13) :

(1) Tracer tous les diagrammes topologiquement inéquivalents & un
ordre donné de la théorie des perturbations.

(2) Associer a chaque ligne du diagramme un facteur Gy (k).
(4

(3) Associer a chaque vertex un facteur : — g (2 7)? 6@ )( y q,-) et
L1

N
extraire le facteur de conservation du moment (2 7)” & (© )(Z ki>.
1

(4) Intégrer sur chaque ligne interne avec une mesure d’intégration
dPq
@)’

(4) Multiplier par le facteur de symétrie.

La deuxieme forme s’obtient en utilisant la notion de boucles : dans
un diagramme, il y a

L=1I-V+1

variables d’intégration indépendantes, ou bien L boucles indépendan-
fes : en effet chaque vertex introduit une fonction 8, mais une de ces
fonctions 8 est déja incluse dans la conservation du moment. Le facteur
2 7)1 +VID peut s’écrire :

CQayPea)yVP=Quy? en).
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Le facteur (2 )P est a associer au 8 (...) de conservation du moment
dans le diagramme. On pourra donc rem-
placer (3) et (4) par:

. k —k
(3a) Associer a chaque vertex un fac- -t e 1
teur —g.

. . k,—q —
(4a) Ecrire les moments internes en 1—h 4
assurant la conservation du moment & Fjgure 17. Une contribution
chaque vertex, et intégrer sur toutes les A G

boucles indépendantes avec une mesure
dPq/(2 #)°. Donnons un exemple d’application de ces regles
(figure 17). La contribution du graphe de la figure 17 & G @ gécrit
d%q; dPq,
—_— X
Qm)P @2a)
x Go(q1) Go(q2) Golky — g1 — 42)] Go(k1) -

ég2 GO(kl)[

Le résultat est bien en accord avec (33).

C. FONCTIONS DE CORRELATION CONNEXES
VERTEX PROPRES

Nous avons vu que certaines contributions aux fonctions de corréla-
tion pouvaient se mettre sous la forme de deux ou plusieurs facteurs
indépendants : par exemple la contribu-

tion du diagramme de la figure 18 a
G® gécrit comme le produit de deux
facteurs. Afin de limiter le nombre de jonn ;

diagrammes il est utile de définir les
diagrammes connexes : ce sont les dia-

grammes qui ne peuvent pas é&tre . /\

décomposés en deux ou plusieurs par- z \_/
ties indépendantes sans couper au

moins une ligne du diagramme. La
décomposition en diagrammes
connexes généralise I’écriture des moments d’une distribution de
probabilité en termes de cumulants.

t

Figure 18. Une contribution
non connexe 4 G,
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C.1. Cumulants d’une distribution de probabilité

Soit Z(j) la fonction génératrice d’'une distribution de probabilité
P(e):

Z()=20) 3, 2 "(e™ .

On pose Z(j) = Z(0) exp[W(j)] ou W(j) =1n (Z(j)/Z(0)) (W est
I'analogue d’une énergie libre) et on définit les cumulants d’ordre n,
(¢"), par:

w(i) =Y Lcen,

n=1""
n _ W()

™. o -0

On obtient par identification :

(e).= (¥

(D, =(eD — ()= (e = ()

(2%, = (2% =3(e) (e +2(e)* = ((¢ = (&)

(o, = (2% —4{e) (27 —3(eD?+12{e)*(eD 6(p)*
e = (X)) =3((e = () ).

Les cumulants d’une distribution gaussienne sont nuls pour n = 3. En
effet, d’apres (5), Z(j) ~ exp ( %Ajz) et W({j) = %Ajz. Si la distribu-

tion gaussienne n’est pas centrée a l'origine, le seul effet est d’ajouter

un terme lin€aire en j a F(j): (¢)_ et <<p2>c sont = (0, mais
{¢"),=0sin=3. Nous allons généraliser ce qui précede au cas des

fonctions de corrélation avec la correspondance : fonction de corréla-
tion - moment et fonction de corrélation connexe — cumulant.

C.2. Fonctionnelle génératrice des diagrammes connexes

Commengons par un exemple en examinant la fonction de corrélation
G®; G®se décompose en un diagramme connexe et trois diagrammes
non connexes :

G¥(1,2,3,4) = G(1,2,3,4) +
+ {Gc(z)(l, 2)GP(3,4) + Permutations }
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ou G, désigne une fonction de corrélation connexe ; remarquez que
G® = G®. Graphiquement on obtient I’équation de la figure 19 :

1 2 3 4

1 2 3 4
+ Permu-.
GW= + @ @ tations
(A) (B)

Figure 19,

Le nombre de termes non connexes est 3 = 4! /[(2!)* x (2!)] : 4! est
le nombre de permutations des points externes (1, 2, 3, 4); mais
permuter (1, 2), ou (3, 4), ou les deux boules (4) et (B) ne change pas
le résultat, d’or le facteur (2!)% x 2!.

Le cas d’une théorie en ¢* est un peu particulier car toutes les
fonctions de corrélation telles que N est impair sont nulles:
G@k+1) = 0.(*) Pour étre tout a fait général, on supposera que
Pinteraction comprend des termes en ¢2?*1, par exemple ¢°, de telle
sorte que G@¥+1) 0. Considérons un diagramme non connexe de
G®™ correspondant a la décomposition de la figure 20 en diagrammes
connexes :

n, ny ny

Rl R

Wy Wy

TN . ————
4 9

Figure 20.

(*) On peut avoir GV = (¢) %0 dans le cas d’une symétrie brisée, ou bien si
¥ (o) contient des termes impairs en ¢, par exemple >

.
.‘ !
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'y a g, boules connectées a n, points externes... g, boules connectées a
n, points externes avec :

Qi+t g, pzN'
Le nombre de termes indépendants est :

N : @3)
[(nl!)q1 q!] ... [("p!)qp qp!]

La fonction génératrice Z(j) s’écrit :

N’

-;——%= i N%jdxl...dej(xl)...j(xN)X

x y Gy o 2y o G xy)
q1n1+~-~+qpnp=N

© p 1

R Lk

N=0gqini+--gpny=Ni

del e dy, () e 00) Gy o x,)

n;!

X

jdxl Ay J061) o 1 (i) G 3y T

n;!

-y
g

i

- 1 . ,
= eXp z TV_| J- dxl vee de](xl) ces ](XN) GC(N)(XI, ...,xN) .
N=1 :

Pour passer de la premiére a la deuxieéme égalité, on a utilisé
(43) et la symétrie de G, par rapport a ses variables. On trouve donc que
la fonctionnelle génératrice W (j) des fonctions de corrélation connexes
est In [Z(j)/Z(0)]:

W() = In gé{); -y % f dxy ... dxy () oo j (En) X

x G (xy, oo xn)

(44)
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Notez que GV peut s’écrire :

G = G;N)(xl, L XN)+ Z I_I G.(1.)

Ul,=1 «a

ou I = {x,...,xy} et I, est une partition de I: U(I,) == I. Chaque
terme apparait une fois et une seule dans le membre de droite.
Remarquez aussi que dans le cas d’un hamiltonien gaussien, les
fonctions de corrélation connexes sont nulles pour N = 3.

C.3. Vertex propres et fonctionnelle génératrice

On peut encore trouver une simplification supplémentaire. En effet
dans lespace des k un dia-
gramme tel que celii de la
figure 21 s’écrit G, Go(k) G,.

1l suffit donc de savoir calcu-
ler G, et G, indépendamment

pour obtenir 'expression de ce
diagramme. Un tel diagramme
est appelé 1-particule réductible  Figure 21. Un diagramme 1-particule
(1-PR). On appellera fonction réductible.

de corrélation 1-particule irré-

ductible (1-PY) toute fonction de corrélation connexe qui ne peut pas étre
séparée en deux parties indépendantes en coupant une seule ligne interne
(figure 22).

> S
TN

1-PR.

Figure 22. Diagrammes 1-PI et 1-PR.

Enfin on appellera vertex propre une fonction de corrélation 1-P1 que
Fon a amputée de ses lignes externes.
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Par exemple Pexpression du vertex propre de la figure 23 est donnée

par :
Ky 2 Ao J d’q 1
X, >©< 2J@m)P (g +m?)
1
k2 k — q k4 X T

((k-q) +m?)’

ki bky =~ (ks + k) = k ‘

Il n’y a pas de facteur [] Go(k;)
i=1

associé aux lignes externes. Un ver-

tex propre sera en général noté I'. On démontre le résultat

remarquable suivant :

Figure 23.

Théoréme : La fonctionnelle génératrice des vertex propres est la
transformée de Legendre de W(j).

Afin d’alléger les notations dans la démonstration qui va suivre, il
sera commode d’utiliser :

5 5 . D
Sj(x)—-»—ﬁz, de—)lz

Soit @; = %}W—, la valeur moyenne du champ et I' la transformée de
i .

Legendre de W ; en théorie des champs, le potentiel de Gibbs
I' est appelé action effective (remarquez que j{x) joue le role du champ
magnétique et &(x) celui de 'aimantation ; les équations qui vont
suivre généralisent celles du chapitre I, paragraphe D.5) :

. . oI .
r=%&j-WwW3iy); —=j- (45)
i 8fx
Nous avons déja vu (I-D.5) l’identité :
W 8T 2
Y5575 55~ LT TH = ou (46)

montrant que I'{P = 8’I'/85, 8, est Iinverse de la fonction de
corrélation G. Avec des variables continues, I’équation (46) s’écrit :

j d2GPx-2) TPz -y)=6D(x - y)

et dans I'espace de Fourier :

GAk) =1/ (k).
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Il est utile de définir I’énergie propre (*) 2 (k) ; — 2 (k) est la somme de
tous les diagrammes 2 deux points 1-PI et amputés de leurs lignes
externes (c’est-a-dire la somme de tous les vertex propres a deux
points) :

Sk = Q+ ; O +0(g)

La fonction de corrélation G®)(k) s’exprime en fonction de (k) :

GO(k) = Gy(k) — Goy(k) 2 (k) Go(k) + -+

=)

- Go(k><1 £ -2 Go(k)]"> — (G k) + S

On en déduit les expressions de G (k) et I'P(k):

GOk) = Fr'PU)y=k*+m*+ (k) |. @7

K2+ m?+ E(k);

Passons maintenant aux fonctions de corrélation d’ordre plus élevé,
en dérivant l'identité (46) par rapport & j,, :
8°w 3 5w 8°r

— =0. (48a)
28118115]m6<p15(pk ~ 8j; 81 8],, 65, 8B

Comme I' est une fonction des &;, il faut transformer la deuxiéme
dérivation dans (48.a); faisons-le dans le cas général (I’ ,(IN) iy =
N .
8¢ )I’/8<p,~1 8

5, 3TN,
51',,. et 8jm

n

=Y GRTNY, . (48b)

niy.

5¢

(*) Terminologic empruntée a la théorie quantique des champs. 1l faut prendre garde
au fait que le signe de 3(k) varie selon les auteurs.
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Les équations (48) peuvent s’écrire sous forme graphique en repré-

sentant les I'™) par des boules hachurées (figure 24) (on a utilisé (48.b)
pour transformer (48.a)) :

(b)

Figure 24. Représentation graphique de (48).

Muitipliant a droite les deux membres de (48.a) par G, et sommant sur
k on obtient la relation entre G et I'®):

-G, m,p)= Y (49)
tkon
m
. e 3 84 r
L’équation (49) permet d’identifier I') = ——————— avec le vertex
80,085,069,

propre I'$3): en effet I'{;) est bien la fonction de corrélation connexe

amputée de ses propagateurs externes complets, et c’est bien une
fonction de corrélation 1-P1.

Continuons le processus en dérivant une nouvelle fois '’équation (49)
par rapport a j;. En utilisant (48.a) et (48.b) nous obtenons la relation
entre G et I'® (figure 25) :
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_%Ggﬂ(i,m,p) -~ GYi,m,p,l)=
!

]

~

Figure 25.

Les trois premiers termes peuvent étre récrits en utilisant Péquation de
la figure 26 :

jop 59 A

Figure 26.

Dans une théorie en ¢*, en I’absence de brisure de symétrie, le résultat
final est trés simple car un seul terme est non nul (figure 27) :

Figure 27.
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Comme précédemment, la figure 25 (ou dans le cas le plus simple la
figure 27) permet d’identifier 6§ “I'/(8¢)* avec le vertex propre
r®,

Les cas particuliers N =3 et N =4 que nous venons d’étudier
démontent le mécanisme de démonstration du théoréme annoncé
précédemment. Il suffit de procéder par récurrence, en admettant que
nous ayons pu écrire a 'ordre N une équation analogue a celle de la
figure 25, et que nous ayons pu identifier le vertex propre I'V ) avec la
dérivée d’ordre N du potentiel de Gibbs I Dérivant cette équation par
rapport a j; nous obtenons :

ol le «reste» ne contient pas I’ W ), mais seulement I'V -b
'V =2) etc. (cf. figure 25). Nous en déduisons :

iy

En amputant les deux membres de I'équation précédente des propaga-
teurs externes complets, nous pouvons identifier I'™+1) dans le
membre de gauche avec I'” *1) dans le membre de droite : en effet,

apres amputation, il ne reste qu’un seul graphe 1-PI dans chacun des
deux membres de I'équation.
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D. POTENTIEL EFFECTIF
DEVELOPPEMENT EN NOMBRE DE BOUCLES

Compte tenu de ce que nous venons d’établir dans les deux
paragraphes précédents, il est utile de revenir sur les résultats démon-
trés en II-D et de les réinterpréter a la lumiere des propriétés du
développement perturbatif. Rappelons que le champ extérieur (ou
source) est j(x) qui joue le role du champ magnétique B(x) du

chapitre II, et que P'aimantation est notée & (x).

D.1. Symétrie brisée et potentiel effectif

Lorsque T < T, la valeur moyenne de ¢ (x) est non nulle, méme en
Pabsence de champ extérieur :

lim lim e(x)=v£0.

i=01P

Je me limiterai au cas d’un hamiltonien de Landau-Ginzburg simple :
n =1, bien que le cas n > 1 introduise une nouveauté intéressante : les
bosons de Goldstone (exercice I1.4 et XIII-C.1).

En champ extérieur nul (j = 0) nous avons :

s8I
8@ lji=0

ra_- =0

et I'on peut écrire I' (& (x)) sous la forme :
~ o 1
F[(p]:NZ mJ‘del...deN F(N)(xl,...,xN;U)X

X(@x)—v)... (gxy)—0) (50)

ol le vertex propre I''™(x;, ..., xy ; v) est calculé en présence d’une
brisure de symétrie. On remarque que le développement de Taylor
d’une fonction f(&) peut étre écrit, soit au voisinage de ¢ = v :

_ o 1 s _
F@) = ¥ 7 fO0) (7 -v)
N=0
ou au voisinage de @ =0

(@)= i %7 F™0) &Y.
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L’expression (50) peut donc étre transformée en :
_ - 1 _ -
rigl= Y mfd’)xl e dPxy T™M(xy, . xn) (%) ... B(xy) (51)
=, N!

ou:
'™y, .., xy) =T ™ (xy, ..., xy ;0 =0).

Dans I'expression (51) de I' (&), les vertex propres sont donc calculés en
labsence de brisure de symétrie (valeur moyenne du champ nulle).
Si & (x) est indépendant de x : & (x) = @ I'expression (51) devient :

o =N
r@ey=y % J dPx; ... dPxy T®)(xy, ..., xy) .
N=2 )

Si on se souvient que Pon extrait un facteur (2 7 )P &P)(3k;), ou
LPs sx,» dans la définition de la transformée de Fourier d’une fonction

de corrélation, on trouve pour le potenticl de Gibbs par unité de
volume :

LPT(5) = i%rm(ki:m . (52)

La quantit¢ L= T (&) est souvent appelée potentiel effectif U(®).
L’équation d’état (en champ extérieur uniforme) est :

dU/de = .

En champ extérieur nul, la valeur moyenne v est obtenue en cherchant
le minimum du potentiel effectif U(F ). Ceci a été vu en détail (II-B)
dans le cadre de l'approximation de Landau pour I'(&).

Il est maintenant instructif de faire le lien entre I’expression exacte
(52) et les expressions approchées (approximation de Landau: II-B ;
premiére correction a Landau: II-D) que nous avions obtenues
précédemment. Ce lien sera établi grace au développement en nombre
de boucles.
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D.2. Développement en nombre de boucles

Remplagons H par % H et cherchons un développement en puissances

de # de la fonctionnelle génératrice Z(j):
Z(j)= N exp |- 1v<-§-) Do x
no\3j
1P ol ;
Xexp( 2J¢hG ¢+J]<P)
_ 11yl il ico;
_JVCXP( JhV<6j>>exp(2hJ]G ]).

On obtient le méme développement perturbatif que précédemment a
ceci prés que :

e chaque interaction est multipliée par 1/4,
e chaque ligne est multipliée par #.

Un vertex propre a un certain ordre de la théorie des perturbations
sera donc multiplié par :

1ﬁI—V+]

flI_V hL

| =

ou I est le nombre de lignes internes (un vertex propre n’a pas de lignes
externes), V' le nombre d’interactions et L le nombre de boucles.

Nous avons effectué au chapitre II un calcul direct de I'($) sous
forme d’un développement en puissances de # ; d’aprés ce qui précéde
ce développement est donc un développement en nombre de boucles ; en
particulier :

L = 0 correspond a I'approximation de Landau
L =1 correspond a la premiére correction calculée au II-D .

Dans le cas d’une interaction monomiale (¥ (¢) =ce"),ilya, & N
fixé, correspondance biunivoque entre l'ordre de la théorie des
perturbations et le nombre de boucles: en effet, par exemple si
¥ =cp®, L=p+1-N/2, ot p est lordre de la théorie des
perturbations. Cette remarque confirme le raisonnement utilisé au II-
D.2.

Nous avons donc a notre disposition deux méthodes pour calculer le
potentiel effectif U(g):

e soit effectuer comme au II-D un calcul direct & chaque ordre en
f,
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e soit utiliser 'équation (52) en calculant perturbativement tous les
'™ et en obtenant '™ a 'ordre L =0, L =1, etc. On montre
explicitement dans I'exercice 6 que les deux méthodes donnent le méme
résultat pour L = 0 et L = 1. Notons que I'approximation de Landau
L =0 est souvent appelée approximation en arbres (figure 28), ou
approximation classique (h - 0, cf. note p. 76).

Figure 28. Un diagramme en arbres.

E. EVALUATION DES INTEGRALES DE FEYNMAN

Sauf dans le cas a une boucle (L = 1), I’évaluation des diagrammes
de Feynman est complexe, et en régle générale un calcul analytique
exact est impossible. Cependant il arrive souvent que l'on n’ait pas
besoin de l’expression compléte du graphe, mais seulement de son
comportement dans certaines limites. Il n’existe pas de recette générale
pour ce type de calcul, et la technique doit étre adaptée a chaque cas
particulier. Il n’est évidemment pas question de faire dans ce livre une
revue de tous les procédés d’évaluation mis au point depuis quatre
décennies par les physiciens. Je me contenterai de décrire les calculs a
une boucle de fagon assez détaillée, et de donner une représentation
paramétrique qui peut, ou peut ne pas €tre une technique pratique
d’évaluation, mais qui permet en tout cas la démonstration de
nombreuses propriétés générales.

E.1. Un cas élémentaire

Examinons d’abord un cas trés simple, celui de la correction d’ordre

g 2 G@(k); le graphe de la figure 29 est appelé

? ) « tadpole » (dans la théorie en ¢>, ces graphes ont, avec
un peu d’imagination, la forme d’un tétard) : technique-

ment un tadpole est un graphe dont l’expression est

Figure 29, indépendante des moments externes. L’expression ana-
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lytique du vertex propre de la figure 29 est :

D A, D-1
2) em)YqP+m* 2 0o q°+m?
L’intégrale est convergente si le cut-off A est fini. Lorsque A/m > 1, et
pour D > 2, I'intégrale se comporte comme A” ~2. En théorie quantique
des champs on souhaitera prendre la limite A —» oo, et il faudra
interpréter les divergences des intégrales de Feynman : les divergences
qui proviennent de la région g — oo, sont appelées divergences ultravio-
lettes. Lorsque m? =0, lintégrale diverge a cause de la région
q—0si D=<2: cette fois il s’agit d’une divergence infrarouge.
Supposons D < 2 et faisons tendre A vers I'infini ; il est alors possible

d’obtenir une expression analytique pour 3 :

_1 D_2 OoxD/Z—ldx_l D2 2) ( _—D—)

(53)

Le pole de la fonction I'(1 —D/2) a D =2 reflete la divergence
ultraviolette pour D = 2. Cependant cette expression peut étre utilisée

pour définir 3 par prolongement analytique pour des valeurs de D
différentes de 2,4,6 ...

A la limite m?= 0, et pour des valeurs de D=2, D #4,6,..., 3
s’annule. Ceci suggere (mais ne prouve pas!) que si 'on définit les
intégrales de Feynman pour A — oo par prolongement analytique, ce
que nous appellerons au chapitre suivant « régularisation dimension-
nelle », on peut purement et simplement ignorer les tadpoles, bien que
pour m = (0, lintégrale, a strictement parler, ne soit définie pour
aucune valeur de D! Une justification de ce résultat est donnée par
exemple dans le livre de Collins, chapitre 4. Nous nous contenterons de
Pargument heuristique exposé ci-dessus.

E.2. Méthode de l’identité de Feynman

Dans le cas des diagrammes a une boucle, on utilise en général
I'identité de Feynman (exercice 8) :

,
/

1 ! dx
ab JO [ax +b(1 - %) G

Appliquons cette identité pour calculer la contribution de la figure 30 a

r i(j(}c% :

B 2
ri) = %8 [6,j8u(n+4)+28,,8;+28;8;]I(k)
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i,k 9 k, ks
N

k=k +k,=k;+k,
i ks k—q [k,
Figure 30.

(pour le facteur entre crochets, cf. exercice 3) ; I'intégrale I (k) vaut :

3 dPq 1
I(k)‘f@w)l’ (g2 +m?) ((k—q)Y +m?)’

En utilisant I'identité (54) on obtient :

1
’(k)‘f J(ZW)D[(l 5 @ m) 42k —qF + AP

Le changement de variables g — q' + xk met I (k) sous la forme :

2 1
I(k)‘J j(2w)D(q 24 x(1 —x) K2+ m?)?

Cette forme montre que [ est en fait une fonction de k? uniquement.
L’intégrale sur g s’effectue en coordonnées polaires :

N D ldq
TS = KDJ f (¢* +x(1 x)k2+m2)2'

On pose u = g et on utilise :

J“’ﬂ_ wr1pT@+1)T(B—a—1)
(w+r) T(8)

ce qui donne :
re-Dnp/2) 2-2

I(kz) = (4 ,n.)D/Z

J dx[m?+x(1 — x) k% (55)

Dans I'intégration sur g, on a supposé A — co. Ceci n’est possible que si
D <4, car dans le cas contraire I'intégrale présente une divergence
ultraviolette, c’est-a-dire une divergence provenant de la région
q — 0. La divergence & D = 4 est reflétée par le pole de la fonction

(2 -3 ) & D = 4. L’expression (55) de I (k?) peut étre utilisée pour
définir I (k?) pour des valeurs arbitraires de D (sauf D = 4,6, 8, ...).
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Lorsque m?#0, le résultat de I'intégration sur x s’exprime sous
forme de fonctions hypergéométriques, ce qui n’est pas particulierement
illuminant. Lorsque m?= 0, les choses se simplifient en remarquant

que (*):

1
a-11 _ V-1 = B(a :F(a)F(B)
Lduu 1 -u) =B(a, B) Tt )

On trouve :
1) =12=D/2) Ml g‘lﬂzacz)%—

@4m)prr  I'(D-2) )

D
Le facteur (k%)? ’ a une origine purement dimensionnelle : en effet la
dimension de I est D — 4 et k est la seule quantité dimensionnée & notre
disposition.
D’autre part une nouvelle divergence apparait pour D = 2 a cause du
facteur [I'(D/2 —1)F/I'(D —2). Cette divergence provient de la
région g — 0: c’est un nouvel exemple de divergence infrarouge.

E.3. Représentation paramétrique générale

Etablissons maintenant une représentation paramétrique générale
des intégrales de Feynman en suivant Itzykson-Zuber ; considérons un
vertex propre I'(E) comprenant (**) :

e E lignes externes k;: 1l <s< E,

e I lignes internes p;:1=<i =<1, correspondant & des masses
mi,

e L variables d’intégration indépendantes q,:1<r=< L.

Tous les moments externes sont supposés entrer dans le diagramme ;
les lignes internes sont orientées arbitrairement. Considérons un vertex
v et une ligne interne i, et choisissons un facteur ¢, de la fagon
suivante :

€, = +1 silalignei part duvertexv
e,; = — 1 silaligne i arrive au vertex v
gy =0 si la ligne i n’est pas connectée directement au vertex v .

(*) De fagon générale, I'évaluation des intégrales de Feynman est plus simple quand
les masses sont nulles.

(**) Jusqu’a la fin du chapitre, je désignerai par E (et non N) le nombre de lignes
externes.
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Exemples :

L’expression de l'intégrale sera :

dei 1 ]

I
J = ]—[

i=1

[ CnP (k-3 eun) 67

Q@ @) pi+m}

ol k, = somme de tous les moments externes arrivant au vertex v
(k, = 0 si le vertex n’est pas connecté directement aux lignes externes).

Nous allons utiliser la « régularisation de Schwinger » du propagateur :

oo 2, 2
- ZZJ da e~ @+ (58)
p +m 0

Cette représentation a un double avantage :

e elle permet de ramener le calcul de (57) au calcul d’intégrales gaussiennes,
e clle se préte bien a I'introduction d’un cut-off ;

- dae = 59
pr+m* 42 pi+m? (59)

1 J.m - oz(p2+m2) e_ (p2+MZ)/A2
-

Cette fagon d’introduire un cut-off est beaucoup plus élégante que celle qui
consiste a4 couper brutalement les intégrales sur ¢ 2 g = A; d& que
L =1, le cut-off brutal devient impraticable. En utilisant (58) et la représenta-
tion exponenticlle de la fonction 8 I'expression de J' devient :

1 dPp,

e
x Vl {d%,,exp(—iy,,- (k,,—\;e,,,-p,-) )}

v=
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L’intégrale sur p est une transformée de Fourier d’une gaussienne :

dei 2
——~eXP<~a,~p,~+ip~- 51‘)’)
)P ’ Z nor

1
B “4 7ra,-)D/2X

1 2

xexp<—4—(; (;Sviyv) )
- m? 2
daie_alm‘ CXp(—% <Z€uiyv> )

H

! v
‘= D ~iky .« yp
J'= _[,11 (4 ma,)P”? 011 {d Vp € }

Effectuons maintenant les intégrations sur les variables y,, en numérotant les
vertex de 1 2 V et en faisant le changement de variables de jacobien 1 :

NhW=zZi+zy; Y2=2Z+2Zy ;... Yy =2y .
Remarquons que Z g, = 0 car a i fixé seuls deux ¢, sont s 0, I'un est égal a
v

+1 et autre a — 1.
14

V-1 \4 V-1
Z Eoi Yo = z Epi Zy + Z Eyi 2y = Z Eyi Zy -
v=1 p=1 v=1

p=1

v
L’intégrale sur z, donne donc un facteur (2 w)° & (D)< ¥ k,,) :
1

J = *n')Dﬁ(D)(i ks) J

s=

et par convention ce facteur (2 7w ) 8(...) est & extraire de I"®; J devient :

d aim? 1 V-1 2
a;e 25 Bl Z £y Zy
’ v=1

y-1 dD —iky . zy
i=1 4 "ai)D/Z vl:[1 { e }

J
=11
Introduisons maintenant la matrice symétrique (V ~1) x (V —1) A, (a):
A _ 1
st(a) = Z Esiz_i €4 -

On peut montrer que cette matrice est non singuliere et positive. L’intégrale sur
les variables z, est & nouveau gaussienne :

voi ik z 1
J‘ (n d?z, e " ”) exp(—ZZzsAs,(a)z,) =
LN

v=1
-1) v

@ " =

w

= exp | — kAN (a) Kk, ).
[det A (a)]P72 p( L et )
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Notez que I —V +1 = L est le nombre de boucles indépendantes. On trouve
donc finalement :

! wm? 1 10/ 1,1
J=(47T)—LD/2J’ da, e %™ [__] o kTa 1k
i Hrw

Zes, g;; P(a)=a;...a;detA(a)

. (60)

Ecrivons explicitement les intégrales correspondant aux exemples E1 et E2 :

(ED) Ay =

t—+—==

1 1 1 O 0y + 0y Q3 + A Ay
a; ap a3 @y ay O3

Pla)=a;ar+aja;+ a o,

3 a k u1a2n3
J= (4 w)"”f l‘[ {da e ""’} [P(a:)]—D/2 Pla)
1 1 -1 1 1 1
E2) Ajj=—+—; Ap=A;=—; A —+—+——
( ) 1= o, @, 12 21 a, 2 = a, a; a,

Pla)y=a a3+ a0, +a,a5+a,0,+ asza,.

11 est possible de donner des régles générales pour écrire P (a) et A~(« ) dans
le cas d’un graphe arbitraire : cf. Itzykson-Zuber, p. 297.

La derniére étape consiste a introduire les variables d’homogénéité :

A=ay+--4ag; a-=/\x,~; O=x;=1

[ mae = [rmenSeo(1-gx) .
D’autre part :
A(a):—)‘l—A(x)

Pla)=a;..a;detA(a)=AT"V="D(x .. x det A(x))
= ALP/2P (x)

d’ol le résultat :

[Tdx6{1-3 x
J= @y f [P()E,-)]D/2 ) JA“%“’”X

(61)
X exp(— A <Zx,- mi2+kTA—1(x)k) >
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Sim;=m,y m?x; = m?; d’autre part si P'intégrale sur A converge a

A=0:

=r(1_LD/2)Jde"5<1‘Zx") -1

J @) TN (m*+kTA Y x)k) 2

(62)

On retrouve bien I’équation (55) dansle cas I = 2, L = 1 ; il est facile
de vérifier que P(x)=1 et A '(x)=x(1-x). Lexposant
< % ~1I ) se retrouve par un argument dimensionnel : la dimension
de J est en effet LD -2 1.

Il faut se méfier de la simplicité apparente de I’équation (62) : des
divergences sont cachées dans les intégrales sur les variables x; ; cela ne
se produit pas dans le cas d’une boucle, mais les ennuis arrivent dés que

L =1. Je donne maintenant deux exemples d’évaluation explicite.

E.4. Calcul de n a Pordre &?

Les divergences des intégrales de Feynman au voisinage de
D =4 vont jouer un réle crucial dans les deux chapitres suivants.
Commengons par étudier un cas simple, celui de I'®, en reprenant
I'expression (55) de I(k®) et en [Iévaluant au voisinage de
e(=4~D)=0.

F 4 2 1 — &
I(k2):(4_(7r;"_/)2f0 defm?+ x(1 — x) K */2.

En utilisant :

X ‘=1-clX; F(s)z%
on trouve a Pordre (&)°:

@7 PI(?) =

o | b

1

—J dexlnfm?*+x(1 —x)k’]+Cte.  (63)
0

Le pdle a € = 0 refléte la divergence ultraviolette a D = 4.

L’étude de I'exemple (E1) va permettre le calcul de n a 'ordre £*; ie graphe
de I'exemple (E1) donne une contribution 2 I'énergie propre 3 (k?) et cette fois,
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on calculera directement en dimension D = 4 avec un cut-off A :

ﬁdx,»ﬁ(l——Zx,-)
54wyt | * dr _ 1, 3200
100 - @y [ | Shep(a (i )
P(x;) =X X + X, X3 + X3 X3 f&) = (o2 x3)/P (x;)

et ¢ est une constante.

L’intégrale est une intégrale a deux boucles et présente des divergences de
recouvrement, qui se traduisent par la divergence de lintégrale sur les
X;.

Ces divergences se produisent quand certains des x; tendent vers zéro ; en
réalité, a cause du cut-off, les x; ne peuvent jamais étre nuls, mais tenir compte
du cut-off est compliqué. Heureusement nous aurons uniquement besoin de la
dérivée :

.d_I_ 1 JAndxis(l—in)f(xi)x
[Px)F

k> (@)
x Jw Z%exp(—/\(m2+k2f(xi))).

cA™

L’intégrale sur les x; est maintenant convergente. En effet comme :

P(x,))=x1X+X1 X3 + X, X3

on voit que la région dangereuse est celle o (xy, x,), (x;, x3) ou (x,, x5) tendent
vers zéro simultanément ; par exemple si x; — 1, P(x;) = (x; + x;) et

dxl de
j (¥ + %)
diverge. Par contre :
X1 X, dxy dx,
(1 + x2)

est parfaitement convergent. L’intégrale sur A donne un facteur In A% + termes
non divergents ; on trouve :

di In A? ndxia(l*zxi)f(xi)
de?” (47r)4j [P )] '

Pour calculer I'intégrale, on effectue le changement de variables :

Xy =px; x,=x(1-p); X3=1-x.

Un calcul ennuyeux, mais sans aucune difficulté, montre que l'intégrale vaut
172

dr _ 1 10 A%+ termes non divergents . (64)

k2~ 204wy
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Comme application, calculons I’exposant critique 7 a4 'ordre &% Le graphe que
nous venons d’étudier est le seul & donner une contribution dépendant de k a
'ordre g°. En effet, 'autre graphe 1-PI (figure 31)
donne une contribution indépendante de k. Lors-
que m? =0, le terme logarithmique de 3(k?) est
en In (A%/k?), car Pargument du logarithme doit
étre sans dimensions. Rétablissant tous les fac-

teurs, la contribution a dikz 3 (k%) que nous venons

de calculer est :
g In k? Figure 31.
1204 w)t A?

ce qui donne pour la dérivée de la fonction de corrélation inverse :

d

2
K’ A

2
r)—1-—9 _mk

2 3
Daay ol xha).

D’autre part & T = T, on sait que

F() =k>"= k2(1 -2kt ) rE)=1-2me.
On sait également que 'on doit choisir pour g la valeur au point fixe (cf.
111.67) :

*2(477)28.

g=49 3

Par identification des termes en In k% on obtient 7:

no 0 _ &
6(4 m)t 54

(65)

F. COMPTAGE DE PUISSANCES
DIVERGENCES ULTRAVIOLETITES ET INFRAROUGES

Dans des facteurs tels que A~'*/-IP/2 dapns (61) ou
(m?+ kTA-1Kk)P72-1 dans (62), les exposants ont une origine
purement dimensionnelle : l'intégrand est, schématiquement,

J(qu)L (P> ! et a pour dimension LD —2I. On définit une

quantité o (G), appelée degré (ou indice) superficiel de divergence du
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diagramme, qui permet de déterminer le degré de divergence ultraviolet
(g » ), par:
w(G)=LD-21I.

L’intégrale sur g se comporte schématiquement comme
A
J g°@-1dg: si w(G)=> 0, I'intégrale divergera comme A“(%) (plus

exactement comme A“C)(In AY ou p est entier), et si w(G) =0,
comme (In AY. Si w(G) <0, le graphe est superficiellement conver-
gent (superficiellement car une sous-intégration peut conduire a une
divergence). Nous allons obtenir une expression intéressante de
w (G), faisant intervenir le nombre de lignes externes du diagramme,
en utilisant d’abord un argument topologique, puis un argument
dimensionnel.

F.1. Argument topologique

Supposons une interaction de type tout a fait général, avec des termes
en @°, ¢4 etc., et méme des couplages dérivatifs : ¢ (Ve )* etc. Dans le
cas d’une interaction dérivative, chaque V donne un facteur ik au
vertex ; en effet dans I'application du théoréme de Wick :

$ () Ve (2) — V,Gy(x — z) = T.F. (iIkGo(k)) .

Si 'on a un vertex de type (i) avec une interaction contenant
8; dérivées, il faudra multiplier l'intégrand du diagramme par un
facteur (k)s". On aura donc dans le cas de couplages dérivatifs :

w(G)=LD-21+Y 5.

Utilisons d’abord L =71 -V +1:

w(G)-D=1(D-2)+Y (5,-D).

Au vertex (i ) arrivent n; lignes si le vertex correspond a une interaction
n; < £z i
en (¢)", avec éventuellement des dérivées ; n; = n™ + n& et :

1 e
I = i Z ni(mt); E = ,Zni(ext) .

13
Définissons un index w; dont I'interprétation sera donnée un peu plus
loin :

w,.=n,.(§_1)+ai. (66)
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L’expression de w (G) devient :

@(@)-D = (Z-1) zni‘i"'>+;(8i—D)

(__1) - (2-1) 3+ 3 (0= D)
=Y (o= D)~ E (%—1)

soit :

w(G)—D:Z(wi—D)—E(%)——1> . (67)

Exemple : Théorie en go*: o _4<7—1) =2D-4

w(G)=V(D-4)+2
w(G)=V(D-4)+4-D
E=6 @(G)=V(D-4)+6-2D.

De fagon générale, ’équation (66) montre que pour D =2 (mais
sinon la théorie n’est pas définie), w (G) décroit avec le nombre de
lignes externes. Pour une théorie en go¢*, et pour D =4, seuls les
diagrammes E = 2(w (G) = 2) et E = 4 (w (G) = 0) sont superficielle-
ment divergents.

F.2. Argument dimensionnel
Nous avons vu (III-D.2) que la dimension du champ ¢ est

[¢]= % — 1. Un terme d’interaction général s’écrira :

8; i
o [ 422" (o).
Cette quantité doit étre sans dimensions, ce qui impose :
[gi]_D+6i+ni[§_1:| =0

ou

g:il=D—w; |. (68)
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La dimension [g;] de la constante de couplage est donc reli€e trés
directement a I'index w; défini en (66).

Pour retrouver I’équation (67), déterminons d’abord la dimension de
I'®) dans I'espace des k ; I'E)(k; = 0) s’obtient en dérivant E fois le
potentiel de Gibbs (sans dimension) par rapport & une aimantation

uniforme M, de dimension ( 5~ 1) , et en divisant par un volume

(dimension — D) :

WwH=D—E(§—1» (69)

14
(H gi) Jk”“”-ldk
i=1

doit avoir pour dimension D — E ( 5~ 1 > , et compte tenu de (68) on

La quantité :

>

retrouve bien le résultat (67).

F.3. Divergences infrarouges (interaction en ¢*

Lorsque m?=0, on peut avoir dans certains cas des divergences
infrarouges. Contrairement au cas des divergences ultraviolettes, ces
divergences ne se produisent que pour des configurations particuliéres
des moments externes, du moins lorsque D = 4. Par exemple la
contribution de la figure 32 a I'©®

K-gq

Figure 32.

sera donnée, & un facteur preés, par lintégrale (D = 4, m?=0):

[P
9" (K -q)



V.F.3 Comptage de puissances 227

qui est infrarouge divergente. Cette divergence provient de ce qu’au
vertex encerclé entre un moment externe nul. De fagon générale, on
appellera configuration non exceptionnelle une configuration des
moments externes telle qu’aucune somme partielle des k; n’est nulle :

Y k#0 VI

iel

ol [ est un sous-ensemble quelconque des indices (1, ..., E) des E
moments externes k;. Lorsqu’une configuration est non exceptionnelle,
il est possible de relier tous les moments externes par des lignes internes
dont les moments sont # 0, appelées lignes de « moments durs ». En
effet si cela n’était pas possible, on pourrait séparer le diagramme en
deux parties en coupant uniquement des lignes internes de moment
~ 0 (appelées lignes de « moments mousE»). Cependant dans une des

T

arties du diagramme entre un moment k; # 0, alors que les lignes
p i q g
i=1

internes emportent un moment nul.
Considérons par exemple le graphe de la figure 33, emprunté a
Itzykson-Zuber :

v ligne de moment dur
ligne de moment mou

Figure 33.

avec un schéma possible pour le « flot des moments durs ». Imaginons
de contracter toutes les lignes internes de moment dur en un vertex
unique (figure 34) et soient I, L et V le nombre de boucles, de lignes
internes et de vertex du diagramme contracté ; soit n le nombre de
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lignes internes de moment mou accrochées au vertex contracté¢. Nous
avons les relations :

L=1I-(V+1)+1=1-V
21 =4V +n.

Le degré superficiel de divergence du
diagramme contracté est :

w=DL-2I=L(D-4)+4L-21
=n+L(D-4). (70)

g
|

Figure 34.

Le degré d’homogénéité du diagramme contracté lorsque toutes les
boucles internes ont des moments =0 est w : si D = 4, cet argument
semi-heuristique montre que le diagramme est infrarouge convergent
dans une configuration non exceptionnelle : en effet comme le dia-
gramme est 1-PI, n= 2.

Au contraire pour D < 4, on peut facilement trouver des diagrammes
infrarouges-divergents méme dans une configuration non exception-
nelle. Par exemple le diagramme de la figure 35 :

Figure 35.

a un degré superficiel de divergence :
w=4+3(D~-4)=3D-8.

Il sera donc infrarouge-divergent, méme dans une configuration non
exceptionnelle lorsque D s—g .

Le raisonnement précédent montre que Pinteraction en ¢ * est la plus
singuliére dans la région infrarouge (celle en ¢’ étant exclue par la
symétric ¢ — — ¢). Ceci justifie, au moins de fagon heuristique,
l'utilisation du hamiltonien de Ginzburg-Landau (I1.19) pour I’étude du
comportement critique.
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Le théoréme de Weinberg (1) permet de déterminer le comportement
asymptotique d’un graphe lorsque tous les moments externes tendent
vers linfini au méme rythme: k; - Ak;, A - co. Plagons-nous en
dimension 4 dans le cadre d’une interaction en ¢*, et supposons que
I'intégrale dans (62) converge dans le domaine ultraviolet ; si la limite
m = 0 de cette intégrale existe, ce qui sera le cas si la configuration
[k;] est non exceptionnelle, alors :

J(Ak) ~ A¢©, (71)

A >

Lorsque J (k) doit étre renormalisée a cause des divergences ultraviolet-
tes (chapitre VI)

JAk) ~ A°©@@naAry (72)

Ao

ol p est un entier dépendant du graphe considéré.

EXERCICES

1) Dans le cas n = 1, quels sont les facteurs de symétrie des graphes de la
figure 36 :

- S oc -y

(a) (b) (©) C)
k, ky, k; k, k, k,
ky
k, ky k, ks
ke
(e) (f) (&)

Figure 36.
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2) Quels sont les facteurs de symétrie des diagrammes de fluctuation du vide
de la figure 37 (cas n = 1)?

0O 55000 O

(a) (b) (©) (d)

Figure 37.

Vérifiez votre résultat en utilisant (24).

3) Dans le cas ou n est quelconque, déterminer le facteur de symétric du
graphe de la figure 38 :

Figure 38.

4) Dans le cas ou n est quelconque, quels sont les facteurs de symétrie des
graphes de la figure 39 ?

(a) (b) (¢
S S
0 0 ’

Figure 39.
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5) (a) Dans le cas d’une interaction en g @3, dessiner :

3!
les diagrammes de fluctuation du vide a I'ordre g° et g*
GWY a rordre g et g°
G® a lordre ¢* et g*
G® a rordre g et g°
G® a rordre g* et g*.

{(b) Quels sont & ces ordres les graphes 1-PI de G®, G® et GW?

6) (a) Quel est le facteur de symétrie du graphe de la figure 40 contribuant &
I'®M (k,=0)? (On se limitera au cas n = 1.)

Figure 40.

(b) En sommant sur tous les graphes & zéro et a une boucle, retrouver a
l'ordre # 'expression (I1.44) du potentiel effectif.

7) Obtenir dans le cas n = 1 Pexpression du type (60) pour le graphe de la
figure 41, les lignes internes étant numérotées comme lindique la figure.
Vérifier votre résultat en utilisant les régles données dans Itzykson et Zuber,
p. 297.

Figure 41.
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8) Identité de Feynman
Démontrer I'identité :
1 I'(a; + a,) 1dx1dx2x1“‘ X;Z 16(1—)‘1—)‘2)

a”a® T(a))TI(a;) (%, ay +x,a,) 7%

Suggestion :
jdxx ne-w _ L(n+1)

n+1
Généraliser a (a;'... a,")" ! (cf. équation B.1).
9) Calculer I'intégrale :

3
H dxi’s(l—zxi)xlxzx_s
i=1

J (xl Xy + X1 X3 +xZX3)3

10) Montrer par un calcul direct &8 (4 — ) dimensions que :

2 2 l 0
T - ge € -y o

11) Calcul de 3(k?) dans Vespace des x(D =4) (9

(a) Montrer que

S (k) = (Cte) f d'x e *[Gy(x) ] .

(b) En utilisant I'expression de Gy(x) avec un cut-off A (cf. exercice I1.6)
1
2 m) |ix|?

déterminer le coefficient de k*In (k*/A?).

Go(x) = A ~Jo(Alx| D

12) Intégration successive sur les boucles

Une méthode d’évaluation des intégrales de Feynman consiste a intégrer
successivement sur les boucles. Cette méthode est bien adaptée au cas
m =0 et a la régularisation dimensionnelle.

(a) On écrit l'intégrale I(k?) du graphe :

q
k p-q :J &® 1 J dPq 1
ea)Y -k en)ep-q)
k—-p d®p
= = [(k
J(zw)(p kY T =10
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Donner Pexpression de I (k?) obtenue en utilisant Pexpression (56) pour
II(p?) et Iidentité de Pexercice 8, sans faire Iintégration sur x.

(b) Montrer que le calcul se simplifie si I’on souhaite seulement déterminer la
partie divergente (en 1/¢) de I(k?), et retrouver le résultat de I'exercice 10.

13) Développement en 1/n (%)

On se propose de calculer les corrections en 1/n aux résultats de I'exercice
(II1.7), en utilisant une méthode diagrammatique reposant sur la représentation
des figures 9 4 11. On supposera que la constante de couplage 1, du hamiltonien
de Ginzburg-Landau avec symétrie O(n) est d’ordre 1/n: uy— uy/n.

(a) Montrer que les graphes dominants de (k% r,) sont donnés a la limite
n -» 0o par la figure 42 :

QOO0

Figure 42.

et en déduire pour 3(0, ry) la relation :

d’p 1
RuYp’try+ 30,15

ﬂmm=%f

Retrouver & partir de cette équation les résultats de I'exercice (II1.7) :

n=0; V= —— pour2 <D <4.

(b) La contribution dominante dépendant de k* a 3I(k?) est d’ordre
1/n. Montrer qu’elle est donnée par les graphes de la figure 43 :

- ~ ’,O\ p—"§ rﬁ
7 Y + ! A + 4o =

ANAANAAANN = e e o e s == RO IR

Figure 43.
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En déduire 'expression de (k% 0) a lordre 1/n:

S0 0) = 0 [ & !
3"j@“f(1+%n@%)@+kf

dPq 1
Q@7 q*g+p)

e - |
(¢) On utilise la méthode de raccordement pour déterminer 7

F(Z):k2(1—%lnk2+--- )

en identifiant le coefficient de In k? (il faut remarquer que y,~ D —4: cf.
exercice II1.7(g)). Montrer que la singularité en In k? de 3(k?) provient de la
région d’intégration p — 0, et calculer le coefficient de In k% en se servant de
Pexpression (56) de II(p®). Suggestion : calculer 923/ (3k?) et identifier le
coefficient de 1/k2 Résultat :

2(4-D)I(D -2) .
nF<§+1) F<2—§) (r(%-l))z

14) Reprendre le raisonnement du paragraphe F.3 lorsqu’une ligne externe
est de moment mou. Montrer que l'on doit remplacer dans (70) n par

(n-1).

‘n:

NOTES ET REFERENCES

Le théoréme de Wick et les diagrammes de Feynman sont exposés dans Amit
(chapitres 2 et 4). Pour la fonctionnelle génératrice des vertex propres et le développe-
ment en nombre de boucles, on pourra consulter Amit (chapitre 5), Itzykson-Zuber
(chapitres 6 et 9) ou Abers-Lee (section 16). La représentation paramétrique des
intégrales de Feynman est détaillée dans Itzykson-Zuber (chapitre 6), tandis que le
probléme des divergences est traité dans la méme référence (chapitre 8) ou dans Amit
(chapitre 7).

® s. Weinberg, Phys. Rev., 118, 838 (1960). Y. Hahn et W. Zimmermann, Comm.
Math. Phys., 10, 330 (1968).
(% Ma, chapitre 9.



CHAPITRE VI

Renormalisation

Nous avons vu au chapitre précédent que pour des dimensions
d’espace suffisamment grandes, les fonctions de corrélation présentent
souvent des « divergences ultraviolettes », lorsque le moment g des
boucles tend vers l'infini. Il est donc nécessaire, au moins dans une
étape intermédiaire, de limiter ces moments par un cut-off A. En
théorie quantique des champs, on souhaite faire tendre A vers Pinfini
(rappelons que A est ~1/a, ou a est le pas du réseau, et ’espace
ordinaire est continu), en maintenant fixés les masses physiques
m; et les moments externes k; : m;/A—0, k;/A - 0. Ceci ne sera
possible que si ’on arrive d’une maniére ou d’une autre a se débarrasser
des infinis, ce qui est I’objectif de la renormalisation : nous verrons que,
dans le cas des théories renormalisables, on obtient des résultats finis a
condition d’absorber les infinis dans une redéfinition de la masse, de la
constante de couplage, et de la normalisation des champs. En physique
statistique, on ne devrait pas avoir a se préoccuper de renormalisation,
puisque le cut-off est fini. Cependant, en physique des phénomeénes
critiques, on étudie la limite m/A -0 (m = £, k;/A— 0, et on est
naturellement ramené au probleme précédent.

L’avantage de la théorie de la renormalisation, par rapport a la
présentation donnée au chapitre III, est de reposer sur des théorémes
rigoureux, qui justifient entiérement toutes les manipulations permet-
tant de rendre la théorie finie. Cependant les preuves de ces théoremes
sont complexes et je me contenterai de les énoncer sans démonstration ;
mon objectif est avant tout de démonter le mécanisme de la renormali-
sation, en m’appuyant sur des exemples simples.

Les résultats exposés dans ce chapitre sont suffisants pour les
applications a la mécanique statistique. Ils demandent a étre complétés
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en théorie quantique des champs, ol I'on rencontre des complications
supplémentaires dues au spin des particules. De plus il est indispensable
de montrer que la renormalisation préserve des propri€tés comme la
causalité et l'unitarité¢ de la matrice S. Enfin les théories des champs
avec symétrie de jauge locale posent des problémes particuliers : on le
verra au chapitre XII dans le cas de I’électrodynamique quantique, et
au chapitre XIII dans celui des théories de jauge non abéliennes.

Le paragraphe A introduit des notions générales : classification des
théories des champs en théories renormalisables et non renormalisables,
et régularisation. Avant de passer au paragraphe B, a des exemples de
renormalisation a l'ordre d’une boucle, il est nécessaire de faire la
remarque suivante : le hamiltonien de Ginzburg-Landau (V.17-18)
dépend de trois paramétres : une masse m, une constante de couplage
g, et un cut-off A. Cependant nous verrons qu’avec cette définition,
m et g ne peuvent étre que des intermédiaires de calcul que I'on
appellera masse et constante de couplage « nues », et que I'on notera
dans toute la suite my et gy (*). La premiére version de la renormalisation
consistera & calculer les fonctions de corrélation en fonction de
my, go et A et a éliminer ces paramétres au profit de paramétres
physiques (ou renormalisés) m et g, qui seront définis comme valeurs
de fonctions de corrélation en des points particuliers. La procédure est
illustrée sur des exemples simples aux paragraphes B et C. Une
deuxiéme fagon de procéder consiste a éviter I'introduction de parameé-
tres nus, en ajoutant au hamiltonien des contre-termes dépendant d’un
cut-off, exprimés en fonction des parameétres physiques m et g. Les
deux approches sont également utiles, et il est indispensable de savoir
passer de 'une a lautre : le lien nécessaire est explicité au paragra-
phe D.

Dans certains problémes, on est amené a introduire des fonctions de
corrélation dépendant de produits de champs (ou de dérivées des
champs) au méme point x, par exemple ¢2(x), ¢2(x)(Ve (x))? etc. De
tels produits sont appelés opérateurs composés et il est nécessaire
d’étudier leur renormalisation. Le cas le plus simple, celui de T'opéra-
teur composé @2(x), est étudié au paragraphe E; on montre en
particulier que cet opérateur exige une renormalisation indépendante
de celle du champ ¢ (x). Enfin le « schéma de soustraction minimal »,
trés utile pour les calculs, est illustré au paragraphe F & I'ordre de deux
boucles.

(*) En mécanique statistique, m, et g, sont des paramétres du hamiltonien de G-L ; en
théorie quantique des champs, ils n’ont pas de signification physique.
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A. INTRODUCTION

A.l. Classification des théories

Nous avons vu au chapitre précédent (équation V (67)) que pour une
interaction monomiale le degré superficiel de divergence w (G) d’un
graphe G contribuant & un vertex propre I’ () 3 E lignes externes était
donné par :

w(G)—D:V(w—D)—E(—g—l) )
ol D — w = |[g] est la dimension de la constante de couplage. A
E fix¢ nous constatons que :

(i) Si w > D, le degré de divergence croit avec ’ordre V de la théorie
des perturbations.

(ii) Si w = D, le degré de divergence est indépendant de I'ordre de la
théorie des perturbations.

(iii) Si @ < D, le degré de divergence décroit avec l'ordre de la
théorie des perturbations. Il y a seulement un nombre fini de graphes
divergents.

Le cas (i) correspond a celui des théories non renormalisables. On ne
sait pas leur donner un sens en théorie des perturbations, car il faudrait
se fixer un nombre infini de parameétres pour les rendre finies.
Rappelons que la constante de couplage est, dans ce cas, de dimension
< 0 : les puissances de g doivent étre compensées par des puissances de
A. Dans certains cas trés particuliers (€lectrodynamique massive, cf.
chapitre XII), il peut arriver que les termes proportionnels 2 une
constante de couplage de dimension <O ne contribuent pas aux
quantités physiques : la théorie est alors équivalente en pratique a une
théorie renormalisable. Mais, en régle générale, on ne sait pas donner
une signification physique aux théories non renormalisables, ce qui ne
veut pas dire qu’elles soient sans intérét (*) ! Un bon exemple de
théorie non renormalisable est la Relativité Générale, que l'on sait
traiter au niveau classique, mais non au niveau quantique. Peut-€tre la
solution sera-t-elle donnée par une méthode non perturbative ; peut-
étre la Relativité Générale est-elle une limite de basse énergie d’une
théorie plus complexe... ou peut-étre existe-t-il une solution entiere-
ment nouvelle.

(*) On commence a savoir donner un sens & des théories non renormalisables,
considérées comme limites de théories a cut-off, grice & des méthodes non pertubatives :
cf. A. Kupiainen, op. cit., chapitre VII.
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Le cas (iii) est celui des théories super-renormalisables. Malgré leur
caractére a priori sympathique (seulement un nombre fini de graphes
divergents) il semble que les théories de ce type soient pathologiques en
dimension 4 et elles n'ont pas trouvé pour le moment d’applications
intéressantes en physique.

Le cas (i) est le plus intéressant : ¢’est celui des théories renormalisa-
bles : on remarque que w = D correspond & [g] = 0 : la dimension de
la constante de couplage d’une théorie renormalisable est nulle. Les
divergences d’une théorie renormalisable peuvent étre absorbées en se
fixant un nombre fini de parametres et en calculant les fonctions de
corrélation en fonction de ces paramétres.

A.2. Diagrammes divergents d’une théorie renormalisable

Pour fixer les idées, nous prenons le cas de linteraction en
o ol w=2D—4:

w—-D=D-4,; [g0]=4-D.

On obtient donc les résultats suivants :

(i) D =4 : théorie non renormalisable.

(il) D = 4 : théorie renormalisable.

(iii) D <4 : théorie super-renormalisable.

Lorsque D = 4, la dimension de g, est nulle, ainsi que nous I'avons
déja vu, et w (G) est donné par :

w(G)=D_E(§_1) —4-E,

ce qui donne pour les graphes G contribuant a I'®):

E=2(T'): w(G)=2
E=4(F'®): w(G)=0
E=6('®Y: ©(G)<0.

Seules les fonctions de corrélation a deux et quatre points sont
divergentes. Pour E = 6, les fonctions de corrélation sont superficielle-
ment convergentes. On peut néanmoins rencontrer des divergences
dues a des sous-intégrations (figure 1) :
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Convergent Divergent (a cause des sous-
diagrammes encadrés)

Figure 1. Deux contributions a I"®®),

Soit v un sous-diagramme de G, c’est-a-dire un ensemble de vertex
appartenant 2 G et de lignes joignant ces vertex. Lorsque @ (G) <0, on
démontre le théoréme suivant :

Premier théoréme de convergence

Si tous les sous-diagrammes connexes 1-PIy d’un diagramme
G (y compris G lui-méme) sont tels que » () < 0, alors 'intégrale de
Feynman du graphe G est absolument convergente.

On démontre ce théoréme en utilisant la représentation paramétrique
(V.60) et en découpant le domaine d’intégration en a en sous-domaines
O<a, <a, =<---<a,,ou {m,.., 7} est une permutation de
{1, ..., I} : cf. Itzykson-Zuber, chapitre 8.

A.3. Régularisation

Afin de manipuler des intégrales a priori divergentes, il est utile de
les régulariser, c’est-a-dire de les rendre finies dans une étape intermé-
diaire. La régularisation ne doit pas étre confondue avec la renormalisa-
tion : la théorie renormalisée doit étre indépendante de la procédure de
régularisation, qui disparait totalement du résultat final. Les principales
méthodes de régularisation sont les suivantes :

(a) Cut-off brutal : les intégrales sur g sont coupées a ||q|| < A. Ce
type de cut-off ne sert que dans des arguments heuristiques et il est
impraticable au-dela d’une boucle.

(b) Régularisation de Schwinger :

[+ 0]
3 1 5 dae” wlg’+m? .
q-+m A2
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(c) Régularisation « a la Pauli-Villars » :

1 1 1

—

q2+m2 q2+m2—q2+A2'

(d) Régularisation dimensionnelle : on calcule les intégrales pour
une valeur de D suffisamment petite. Les divergences se manifestent
sous forme de pdles en (2— D), (4 D)... et on peut définir les
intégrales, en dehors de ces pdles, par un prolongement analytique en
D.

(e) Régularisation sur réseau : on « met la théorie sur réseau » en
discrétisant Pespace. La variable de champ ¢ (x) est remplacée par une
variable sur réseau ¢, :

1 D
¢i=— | o(x)dPx
aDJ¢()

ou lintégrale porte sur un volume a” centré au site i. Le cut-off est
A~ /a.

Les méthodes de régularisation a la mode en 1986 étaient (d) et (e).
Cependant nous utiliserons dans un premier temps une régularisation
avec cut-off car elle semble plus intuitive ; de plus, en mécanique
statistique, il est indispensable de conserver le cut-off (ou le réseau)
pour certains raisonnements.

Certaines méthodes de régularisation peuvent étre incompatibles
avec des symétries que l'on souhaite conserver ; par exemple la
régularisation sur réseau brise I'invariance par rotation et par transla-
tion. Cela peut-étre un ennui sérieux, mais non une tare définitive : il
sera nécessaire de montrer & la fin des calculs que la théorie
renormalisée posséde bien les symétries souhaitées, méme si celles-ci
ont disparu dans une étape intermédiaire. 1l peut aussi arriver que la
renormalisation ne puisse pas préserver une symétrie de la théorie
classique, c’est-a-dire de 'approximation en arbres : dans ce cas on a

affaire 4 une anomalie.

B. RENORMALISATION DE LA MASSE ET DE LA
CONSTANTE DE COUPLAGE

Nous nous placons dans le cadre de la théorie en ¢* en dimension
D = 4, avec un parametre d’ordre de dimension n = 1. Le hamiltonien
dépend de la masse nue m, et de la constante de couplage nue
go, ainsi que d’un cut-off A. Nous allons étudier les vertex propres



VL.B.1 Renormalisation de la masse 241

I' @ et '™ d’abord a ordre d’une boucle, en réservant I'ordre de deux
boucles au paragraphe C. Il est utile de définir les intégrales suivantes,

qui permettent d’écrire les contributions & une et deux boucles a
I'®, ainsi que la contribution 4 une boucle a I'®):

q
dq 1
N R )
@ P mi @
kK 4k
d4q 1 1 3
Iy = | - X Ao
D@ @) v m) f @
2 k—gq ks
k =
d4q d4q’ 1 ki + k,

2 2y
Ka(k?, mg) = J Crny @)y (@ +m)?+m)lk—q-q ) +mi

k /:\ _Ak (4)

Les intégrales sont régularisées par un cut-off A dont il n’est pas
nécessaire de préciser la forme pour le moment. Le comptage de
puissances montre que I,~ A% J,~In A, K,~ A?; K, contient
également des termes en (In A)?, In A, et (nous l'avons vu au
chapitre V) des termes en k*In A. Notez que les intégrales sont définies
sans le facteur de symétrie des graphes correspondants.

B.1. I'® a P’ordre d’une boucle : renormalisation de la masse
A Yordre d’une boucle I'® est donné par :

1
F(z)(k2)=k2+m§+§g0 IA(mg)- (5)

On souhaite que I"® soit fini quand A — o ; en particulier on souhaite
que I (k% = 0) soit fini :

ro*=0)=m?, (6)
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ol m est un paramétre fini ayant les dimensions d’une masse, appelé

masse renormalisée :
1
m? = m§+§g0 IA(mg) . )

Réexprimons maintenant dans (5) mé en fonction de m?:
IO = k2 + m? (8)

et I'® est finie pour tout k% Les divergences ont été absorbées dans
une redéfinition (m#— m?) de la masse. La masse nue my, est une
fonction de g,, A et m (cf. équation (7)).

B.2. I'® a Pordre d’une boucle : renormalisation de la constante de
couplage

D’aprés les résultats du chapitre V, I'® a I'ordre d’une boucle vaut :
1
r®,) =g0—§g%[JA(ki,m§) +Perm. ]. )

A nouveau on exige que I'® soit fini en un certain point, par
exemple k; = 0, ce qui définit un deuxiéme parameétre fini, g, appelé
constante de couplage renormalisée :

'k, =0)=g. (10

L’équation (10) permet de calculer g en fonction de go:

3
g =49 —ig%JA(O, m(%)

et inversement :
3
Go=9+59"740,m?%). (11)

En écrivant 1'équation (11), on a négligé tous les termes d’ordre
g’ : en effet, comme nous n’avons calculé que les diagrammes a une
boucle, nous ignorons les termes d’ordre gj. Il est donc parfaitement
cohérent de remplacer g3 par g° et J,(0, m3) par J,(0, m?) : Ierreur
commise est d’ordre g°. De fagon générale, il est trés important de
remarquer que ’on peut se permettre toutes les manipulations valides a
un ordre fixé en g,;, méme si les termes d’ordre supérieur que Pon
néglige ont des coefficients infinis si A — co. Ces remarques étant
faites, on reporte dans (9) la valeur (11) de g, :

F®0) = g 201 4(ki, m?) ~ 140, m?) + Perm.] . (12)
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11 est immédiat de vérifier que la quantité :
JaCki, m?) = J 4(0, m?)

est finie quand A — oo (exercice 1). L’expression (12) pour I’ ®)(k;)
posseéde pour tout k; une limite finie quand A — oo et s’écrit en fonction
des paramétres finis g et m>

En résumé, a I'ordre d’une boucle, le choix de deux paramétres finis
m? et g a permis de rendre finies les fonctions de corrélation
I'®et ©'™®: les divergences ont été absorbées dans une redéfinition de
la masse (m&— m?) et de la constante de couplage (gy — g).

Le calcul a une boucle permet d’envisager une stratégic générale : a
un ordre fixé de la théorie des perturbations, les conditions (6) et (10)
permettent d’exprimer mZ et g, en fonction de m? et g. Reportant ces
expressions dans celles des vertex propres, on peut espérer obtenir, a la
limite A — o0, une expression finie dépendant de m?* et de g.
Cependant on doit encore procéder a une opération supplémentaire :
celle de la renormalisation du champ, que nous allons illustrer sur le cas
du vertex propre I'®) a I'ordre de deux boucles.

C. RENORMALISATION DU CHAMP. CONTRE-TERMES

C.1. I'? a Pordre de deux boucles : renormalisation du champ

A lordre de deux boucles, le développement diagrammatique de
I'® est (figure 2) :

re - _0_8_[—\
—/

Figure 2.

soit sous forme analytique :
PO = K2+ mi + 2 o L(md) -

1 1
3 9(2) IA(’"(%) JA(0, m%) % 9% KA(k27 m%) (13)
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Posons comme au paragraphe précédent (nous verrons plus loin que

m? n’est pas encore le paramétre définitif m?) :

1"(2)(](2 =0)= ml2 . (14)

Dans les termes en g3, on peut remplacer mg par m? ; mais dans le terme

en g, il faut tenir compte de la relation (7) pour procéder de fagon
cohérente & I'ordre g3 :

Ly [ $a L[ g
A\o) = 7 2 2 ) 1
@m) g +m @) qz+m12—§90111(m12)

1
= 14(m}) + 5 go La(mi) J4(0, m}) + O(g}) .
2

Reportant dans (13) et posant k? = 0, on obtient m en fonction de
2
my:

1 1
mg:mlz_igolA(mlz)*'gg%KA(Oa m12)- (15)

On reporte cette expression dans (13) :
FOGR) = K2+ m} — 2 g2 [KA (6% m) — K0, mD] (16)

en remarquant que 1’on peut remplacer gq par ¢, Uerreur commise étant
d’ordre g°>. Malheureusement, I'expression (16) est encore divergente
quand A — 0. En effet nous avons vu que K,(k% m?) contient un
terme en k?In A qui n’est pas éliminé par la soustraction de
K,(0, m?). La derniére opération nécessaire est celle d’un changement
de normalisation du champ, aussi appelé renormalisation du champ.

Cette renormalisation nous amene a faire la différence entre les
fonctions de corrélation nues I'‘E) et les fonctions de corrélation
renormalisées (finies) T'$E); la constante de renormalisation Z, (la
notation Z; est conventionnelle) permet de relier les deux types de
fonctions de corrélation : par exemple dans le cas de I'$®) on écrira :

rk* m? g) = 2, T D(k? mé, go, A) . (17)

Il faut souligner que I 2 dépend des parametres renormalisés (finis)
m? et g, tandis que I ®) dépend des paramétres nus m? et g ainsi que de
A, et que par analyse dimensionnelle Z, ne peut étre qu’une fonction de
g et de A/m: Zy = Z3(g, A/m). Pour que I'{¥) soit finie, il suffit a
nouveau d’imposer une seule condition :

4 rog: = IO = 0)) =
TR (=T =0) =1. (1)
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Le choix du point k2 = 0 dans (18) est tout a fait arbitraire, mais
commode. D’apres I'équation (17) :

_ , 1 '
Zi' =IO =0) = 1 - £ 8 K40, md) (19)

et en reportant dans (16) on obtient la fonction de corrélation
renormalisée :

1
F;?’(kz) =k*+ Z, m12 % QZ[KA(kZ, m%) -
— K40, mi) — kK> K40, m})] . (20)

Le terme entre crochets dans (20) est fini (exercice 1) ; pour que
r'§? soit finie il suffit de fixer le parametre m? par :

m2 = Z3 m12
et le résultat final s’écrit :
TR = K2+ m? = 2 2K A0, m?) — K40, m?) — K2 K (0, m?)]
(21)

le remplacement de m? par m? dans le crochet étant justifié a cet ordre
de la théorie des perturbations. En résumé les divergences de
'@ ont été absorbées en fixant les conditions suivantes, ou conditions
de normalisation des fonctions de corrélation renormalisées :

1) I'@E>=0)=m? (22.2)
@ S5 TR, =1 (22.b)
() T'{(k;=0)=g (22.¢)

1l convient & ce point de faire plusieurs remarques :

(a) L’équation (17) fixe la relation entre I') et I'®; I'®), fonction
de corrélation nue, s’exprime en fonction des paramétres nus mg,
gy et du cut-off A. Ces paramétres doivent étre réexprimés en fonction
des paramétres physiques (ou renormalisés) m> et g. A condition
d’ajouter a cette opération un changement de normalisation du champ
(facteur Z;), I'{?), qui s’exprime en fonction de m? et g, est finie et
indépendante de A a la limite A - oo. Les divergences ont été
absorbées dans une redéfinition de la masse, de la constante de
couplage, et un changement de normalisation du champ. Remarquez
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que I'{$Y) ne dépend que d’un seul paramétre dimensionné, m, alors que
I'® dépend de my et A: cf. le point (c) ci-dessous.

(b) I n’est pas nécessaire que les paramétres m? et g soient
accessibles directement a I'expérience. Par contre toutes les fonctions de
corrélation s’expriment en fonction de m? et g, et de ces deux
parameétres seulement. En ce sens, la théorie est prédictive : il suffit de
deux expériences indépendantes pour déterminer m? et g.

(c) Dans le cas des phénomenes critiques, le parameétre m est relié a
la longueur de corrélation : m = ¢~ 1. En effet pour k —» 0 :

rY=k*+m?

et G posséde un pole a k = =+ im. Si I'on calcule la transformée de
Fourier, celle-ci se comportera a4 grande distance comme :

e~ m — e—r/g

(cf. le calcul de la fonction de corrélation de lapproximation de
Landau, II-C). La région critique correspond a m< A (¢ > a) ; avec
un choix générique des paramétres my, g, et A, m serait a priori d’ordre
A. 11 faut donc une relation entre my, g, et A pour que I'on se trouve
dans la région critique. En d’autres termes, la construction d’une théorie
renormalisée implique I'existence d’un point critique.

(d) La condition (22.c) est I'§)(0) =g, alors qu'au paragraphe
précédent on a écrit I'®)(0) = g. Néanmoins ceci est correct, car
r=2z2 r® (ce point sera établi ultérieurement), et a cet ordre de la
théorie des perturbations on peut prendre Z; = 1, étant donné que
Zy =1+ O(g?). Ceci est une particularité de la théorie en ¢*; dans le
cas de la théorie en ¢  six dimensions par exemple, il importe de tenir
compte du facteur Z; pour définir g (exercice 2).

(e) 1l est utile de définir la constante de renormalisation Z; par :
Zi'gy=T'¥N0, gy, mj, A). (23)
La relation entre g, et g est alors :
g=23Zi"g,. (24)

(f) Les conditions de normalisation (22) sont dans une large mesure
arbitraires. Il suffit qu’elles soient vérifiées a I'ordre de zéro boucle.
Des commentaires supplémentaires sur ce point seront faits a la fin du
paragraphe D.
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C.2. Contre-termes

Comme on cherche en définitive a calculer les fonctions de corrélation
renormalisées en fonction des paramétres m” et g, on peut essayer
d’éviter d’introduire les quantités nues m3 et g,. La stratégie de la
renormalisation consiste alors & rajouter des « contre-termes », c’est-a-
dire un hamiltonien supplémentaire 8H, qui sera traité comme un
hamiltonien d’interaction, et dont les coefficients seront déterminés
ordre par ordre en théorie des perturbations, ou plus exactement ordre
par ordre en nombre de boucles, par les conditions de normalisation
(22). Comme ces conditions de normalisation fixent les fonctions de
corrélation de fagon unique & la limite A —» oo, cette procédure sera
équivalente a la précédente, avec ’avantage que tous les calculs sont
effectués avec les paramétres renormalisés m? et g. On écrira donc la
densité de hamiltonien (I'indice A indique que ’on calcule avec un cut-
off A et que 8m? Z, et Z, dépendent de A):

Ho(x) = HA(x) + 6K 4(x) (25.2)
Ha(x) =1 (Yol +3m> 9+ gt (25.b)

BIH A(x) = 3 (23— 1) (Vo 4 5 (Zymi—m?) o7+
1
+47g(Zl_1)(P4 (25.C)

On remarque que les contre-termes ont la méme forme ((Ve ),
¢%et ¢*) que les termes du hamiltonien initial. Ceci est parfois utilisé
comme critére de renormalisabilité. Cependant, il peut arriver (cas de
I’électrodynamique scalaire) que 'on doive introduire des contre-
termes qui n'ont pas la méme forme que les termes du hamiltonien
initial. Si le nombre de contre-termes est fini, la théorie sera en pratique
renormalisable.

Comme 84 , est traité perturbativement, on pourra représenter
graphiquement les contre-termes :

N (Zymi—m?) = —dm?=— [6m* V4. 4y 5m> D4 ...

—o— —(Z -1 =-ZP 4+ Z{ ]

x =92y -1)=—g[Z{"+ -+ Z(V 4. ]

ot m?®), Zl(’) et Z3(’) sont calculés a 'ordre de !/ boucles.
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Les contre-termes sont calculés de facon récursive : lorsqu’ils ont €té
déterminés a l'ordre de ! boucles, on les réinjecte dans le calcul a
(I +1) boucles. L’application des conditions de normalisation (22)
permet de déterminer les contre-termes a Vordre (/ + 1) et ainsi de

suite. Le développement de 8m?, Z;, Z, en nombre de boucles est aussi
un développement en puissances de g : Z{) o g'. Retrouvons rapide-
ment les résultats établis précédemment.

Ordre d’une boucle (figure 3) :

S O

Figure 3.

r{P=k>+m’+ % gl A(m?) + 6m>W)
et d’aprés (22.a) :

1
sm*M = _ 5 gl 4(m?) (26)

- X +{>O<+Perm}+ X

I = g2 ¢°Valks, m?) + Perm] + gZ{0

ot Z, =1+2ZV+2Z2P+.... Dapres (22.c) :

zZM = % g7 ,(0, m?) . @27
L’expression de I'§" coincide bien avec (12).

Ordre de deux boucles : cas de I'® (figure 4) :

o8
. 0Q

Figure 4.
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r{P=k>+m?+ % g1 y(m?) — zlt g* I ,(m?) J 40, m?)

_%gz K (K% m?) + 8m>D 4 sm>® 4 ZP k2

1 1
-39 am>M 1 (0, m?) + 5 gZ 1 ,(m?) .

La condition (22.a) donne :
B = - 22 1,(m) T, (0, m?) + 2 6° Ka(0, m?)

tandis que (22.b) devient :

1 )
Z3(2) =5 92 K4 (0, mz)

en accord avec (19). L’expression finale pour I’ 2 coincide bien avec
1.

D. CAS GENERAL

D.1. I'P a P’ordre de deux boucles

L'examen de I'® a l'ordre de deux boucles permet d’illustrer le
mécanisme de fonctionnement des contre-termes et de comprendre
intuitivement comment ce mécanisme peut se généraliser a tous les
ordres de la théorie des perturbations. Les graphes a deux boucles
donnant une contribution & I' ) sont dessinés sur la figure 5.a-c, ainsi
que les graphes construits avec des contre-termes (d-f) :

SO

(a) (b) ()
sm* ng(l) ngm
X - x
(d) (e) ()

Figure 5.
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La relation (26) donnant 67" montre que la somme des graphes (a)
et (d) est nulle. Le graphe (b) est facile a calculer : c’est le produit de
deux boucles simples ; le graphe (c) est plus complexe, mais aussi plus
intéressant, et nous allons examiner en détail. Utilisant la représenta-
tion paramétrique (V.60) ainsi que les résultats de I’exercice (V.7), on
obtient lexpression analytique de ce graphe sous la forme d’une
intégrale sur quatre parametres «; (je n’écris pas le facteur multiplicatif
g°/[2(4 m)*] qui ne joue aucun rdle dans I'argument qui va suivre) :

I(ki)—j[; — p<— [mz(i ai)+Q(ai,ki)]> (28)

P(a;)= (a;+ay)(a; + ay) + a3 ay
O(a;, ki) = [P(a)] oy as(as + ag) K+ a3 ag(a kI + ay k2)]

:!p

avec :

et k¥ = (ky + k;)%. L’étiquetage des lignes internes est précisé sur la
figure 6 :

x

2 az

(®)

Figure 6. Le graphe (5c) et son contre-terme.

L’intégrale (28) diverge en premier licu a cause d’une sous-intégra-
tion correspondant a la boucle L, encadrée sur la figure 6. La diver-
gence provient de la région ol a; et a4 tendent vers zéro simultané-
ment, a; et a, restant finis. Le contre-terme est défini par le
graphe 6.b, ou le vertex encerclé correspond a une boucle L, calculée
avec des valeurs nulles des moments externes. Il faut remarquer que le
contre-terme est celui d’un graphe particulier, et non la totalité du
graphe (e) de la figure 5.
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Une deuxi®me divergence provient de la région ol tous les
a; — 0 simultanément, ou en d’autres termes, de la région A — 0, ou
A est le parametre d’homogénéité de I'équation (V.61) : cette diver-
gence est donc lie au degré superficiel de divergence du graphe :
w(G)=0.

La divergence provenant de la sous-intégration est compensée par le
contre-terme, la contribution totale de la figure 6 s’écrivant :

f})—(i—iﬁiexp<— [mz( ai> +Q(a,-,k,-)}> -
2 .

igl
1 i @y %
T (@t ) (ant w)zexp(’ ["’ (Z “‘) tarve” H) '

(29)

I(k;) = J f[ da;

i=1

En effet dans la région ou a; et a, sont finis et ol aj,
a,— 0, on peut remplacer P(e;) et Q(a;, k;) par (une preuve
compléte est donnée dans I'exercice (4)) :

P(a;)— (a; + az)(as + ay)
Q) oy

Q(ay, k) » 2 g2

a4+ g

ce qui montre que la singularité est bien compensée dans (29).
Lintégrale I (k;) est superficiellement divergente, mais cette divergence
est indépendante de k° alors que I(k;) contient un terme en
In Aln k?: pour le montrer, il suffit de dériver (29) par rapport a
k*: oI /ak? est donné par une intégrale convergente, avec » (G) = — 2.
Si on ajoute les graphes des figures 6.a et 6.b et que P'on retranche la
valeur du total prise a k; = 0, on obtient un résultat convergent ; le
terme soustrait donne une contribution & Z{% contenant des termes en
(In AY et (In A).

L’exemple précédent permet de comprendre comment fonctionne la
renormalisation dans le schéma appelé BPHZ (Bogoliubov-Parasiuk-
Hepp-Zimmermann). Dans ce schéma chaque graphe est traité indivi-
duellement, alors que les conditions de normalisation (22) font interve-
nir I'ensemble des graphes d’'un ordre donné de la théorie des
perturbations contribuant a I'® et a I'$Y. A I'ordre d’une boucle, on
retranche a T'§(I'$Y) le premier (les deux premiers) terme(s) de leur
développement de Taylor & k; = 0 (cf. (12) et (21)) ; ceci donne des
intégrales de Feynman convergentes, ce qui fait que ’on peut se passer
entierement de régularisation, puisque ’on peut soustraire directement
les intégrands. De méme a P'ordre de deux boucles la somme des
graphes 6.a et 6.b sera rendue convergente en soustrayant I'intégrand a
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k; = 0. On remarque que le graphe avec contre-terme 6.b a été défini
de facon récursive, puisque 'on a retranché a I'intégrand de la boucle L
son intégrand pris pour des valeurs nulles des moments externes.

Considérons maintenant le cas général d’un graphe contenant
(I + 1) boucles ; les divergences provenant de sous-intégrations seront
compensées par des contre-termes d’ordre =< / ; la prescription générale
pour écrire ces contre-termes est la formule de récurrence de Bogoliu-
bov, ou bien sa solution : la formule des foréts de Zimmermann (cf.
Itzykson-Zuber, chapitre 8, ou Collins, chapitre 5). Deux cas sont alors
possibles :

(i) Le graphe considéré est superficiellement convergent
(0 (G) < 0) : la somme graphe plus contre-termes d’ordre < / est alors
donnée par une intégrale absolument convergente.

(ii) Le graphe est superficiellement divergent (w(G)=0): la
somme graphe + contre-termes est divergente, mais il suffit alors d’'une
soustraction de Pintégrand (I'$V: w (G) = 0) ou de deux soustractions
(r®: o (G) = 2) pour obtenir un résultat convergent. La divergence
globale est donc proportionnelle & un polyndme de degré o (G)
construit avec les moments externes, correspondant a une interaction
locale dans 1'espace des x (c’est-a-dire qui peut s’écrire en fonction de
¢ (x) et d’un nombre fini de ses dérivées).

Un argument combinatoire complexe permet de montrer que cette
procédure est bien équivalente a celle qui consiste 4 construire les
contre-termes a I'aide des conditions de normalisation (22). Par exem-
ple Iexpression compléte de Z{® est donnée par I'équation de la
figure (7) :

0z
9z - [5@ + IO + XA +Perm]

k=0
Figure 7.

Il est clair que cette discussion est purement descriptive, mais les
preuves completes de toutes les affirmations qui précedent sortent du
cadre de cet exposé. Avant de quitter le schéma BPHZ, remarquons a
nouveau que la procédure systématique de soustraction des intégrands
évite de recourir a une régularisation intermédiaire. Comme on peut
toujours appliquer ce schéma avec une telle régularisation, ceci montre
que les I' Y )sont bien indépendants de la régularisation, puisque toutes
les intégrales sont absolument convergentes ; les fonctions de corréla-
tions renormalisées ne dépendent en fait que des conditions de
normalisation.
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Cependant malgré son grand intérét théorique, le schéma BPHZ
n’est pas en général le plus commode pour les calculs pratiques, et il

~

conduit 4 des complications dans le cas de la masse nulle. Cest
pourquoi je reviens maintenant au point de vue initial, en établissant le
lien entre fonctions de corrélation nues et renormalisées.

D.2. Relation entre fonctions de corrélation nues et renormalisées
Effectuons la somme de 4, et 8 4 dans (25):
1 5 1 2 2.1 7 o
Ho(x) = §Z3(V<P) +§Z3m0 ¢ +EQ 19
et effectuons le changement de normalisation du champ :
po(x) = Zi% (x) . (30)
S (x) devient, en utilisant (24) :
1 1 1
”O(X)ZE(V(P0)2+§m3(Pg+ZTQO (Pg. (31)

Examinons maintenant la fonctionnelle génératrice :
2() o (- [ (ot s 0140 0 )
= exp (— J dx[Hy+ Z7 % j(x) q:o(x)]) .
On en déduit immédiatement par dérivation fonctionnelle :
G¥ENxyy oo xp 3 9, mY) = Z7E2G B xy, ..., xg 5 o, m, A) .
On écrit en général cette relation pour les vertex propres, en passant

dans l'espace des k; compte tenu de la définition (chapitre V,
paragraphe C.3) des vertex propres, on obtient :

Tk, . kg g, m?Y) =ZE2 T Bky, . kg 5 g, md, A) | (32)

On notera le facteur Z£/? (au lieu de Z; £/%) di 4 1a division par les
propagateurs externes complets.

On peut maintenant énoncer le deuxiéme théoréme de convergence :
), TE2(0) et I'§(0) étant fixés par les conditions de normalisa-
tion (22), on peut définir les contre-termes 6m?, Z, et Z,. Les intégrales
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donnant I'${E) sont alors absolument convergentes et :

ngE)(kl’ ree kE 39, mZ) = lim ZCSE/ZF(E)(kl) reey kE 5 9o» mg, A)

A

existe et est indépendant de la procédure de régularisation.

Il faut bien comprendre la signification de I'équation (32) : dans le
membre de droite, gy, my/m et Z; sont des fonctions de g et
Afm: g =go(g, A/m)’ mo/m = f(g. A/m), Zy= Z(g, A/m),
déterminées par les conditions de normalisation (22). Les fonctions de
corrélation nues I'E) étant calculées avec un cut-off A, la limite
A - o de Z£/? B définit les fonctions de corrélations renormalisées
P, Lorsque A est grand, mais fini, I'{ conserve une faible
dépendance par rapport & A( ~ (k/A) et (m/A)).

D.3. Cas de la masse nulle

Le cas de la masse nulle pose un probléme particulier, car on ne peut
pas utiliser les conditions de normalisation (22) ; en effet si la condition
I'@(k*=0)=0 fixe la masse (renormalisée) a zéro, I'f®(k?) et
I'$)(k;) sont infrarouge-divergents pour k2= 0 et k; = 0 (cf. V-F.3).
On doit se donner une masse auxiliaire u, arbitraire mais indispensable
pour écrire les conditions de normalisation. Cette masse brise I'inva-
riance d’échelle de I’approximation classique, qui ne dépend d’aucun
paramétre dimensionné. On peut alors choisir les conditions de
normalisation de la fagon suivante :

rPk?=0)=0 (33.a)

A royge ~
dkzr,s (k%) oo 1 (33.b)
(ko) = ¢ (33.)

ou k;, appelé point de soustraction, est défini de la fagon la plus
symétrique possible par :
1
klO'kJO:ZM2(4 8”—-1) (34)
Le choix (34) se comprend en remarquant que si dans I'®), k; + k, =
— (k3 + k4), on obtient les relations suivantes lorsque k? = k2:

s= (ki + k) =2k>+2k, .k,
t= (ki + k) =2k>+2k; . ky
U = (k1+k4)2=2k2+2k1.k4
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et:

s+t+u=4k2.

Le choix le plus symétrique correspond a :

c’est-a-dire (34).

Précisons a4 nouveau que les conditions (33) sont dans une large
mesure arbitraires (sauf I'§$)(0) = 0 qui est précisément la condition de
masse nulle). On pourrait par exemple prendre I' D2 =1, ou

2
:’;—5 (438;;—1) etc. Un point important est que la
théorie renormalisée dépend de deux parameétres finis: g et u?
Cependant ces deux paramétres ne sont pas indépendants, ainsi que
nous le verrons au chapitre suivant.

De fagon générale, les conditions de normalisation ne fixent de fagon
non ambigué que la partie divergente des contre-termes. Une modifica-
tion des conditions de normalisation change les contre-termes par une
quantité finie, et est absorbée dans une redéfinition de la masse, de la
constante de couplage et de la normalisation du champ : la théorie est
inchangée, mais elle est paramétrée de facon différente. Cette inva-
riance de la théorie par reparamétrisation est & la base du groupe de
renormalisation (premiére version), qui sera exposé au chapitre sui-
vant ; un exemple simple de reparamétrisation est donné a 'exercice 7.

bien kiO . k]() =

E. OPERATEURS COMPOSES ET LEUR RENORMALISATION

On appelle opérateur composé tout opérateur O (x) fonction du
champ ¢ (x) et de ses dérivées. Je me limiterai au seul cas de
Popérateur composé :

O(x) = @*(x)

dont jaurai 2 me servir par la suite. Ce paragraphe sera consacré a
Iétude des fonctions de corrélation formées avec ¢ (x) et ¢%(x):

GWN-B) = < % >L<‘P(X1)‘..<P(x1v) ‘PZ()’1)---‘P2(YL)> : (35)

A priori on peut s’étonner que 1’on doive étudier de tels objets car aprés
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tout ¢(y) = ¢ (¥) ¢ (y). Le probléme est que la limite

im o(y+¢)e(y)
liell -0

est singuliere & lintérieur d’une fonction de corrélation lorsque
A — oo. Par exemple a 'approximation gaussienne :

<q><0)¢(0>>=f _dq 1

g=i Q) @+ m}

diverge quand A - co. A cause du processus de renormalisation, il est
indispensable de définir ¢2(x) comme entité indépendant de ¢ (x).

E.1. Fonctionnelle génératrice

11 est immédiat d’écrire une fonctionnelle génératrice des fonctions
de corrélation (35) :

Z(]’t,mg) =

_ J.@cp(x)exp(—HJrJ[i(ﬂ(P(x)—%t(x)‘Pz(x)] d“x) (36)

et :
GMN LN xy, oy XN 5 V1n oeer YL 3 E) =
_ (1) 8N Z(j, 15 md) 37
Z(O;mé) 8j(x1)...87 (xy)8t(y))...81 (yr) j=t=0

Si dans I'équation (36) #(x) est indépendant de x :
tx) = p?

le terme de source en ¢ *(x) peut étre combiné avec le terme de masse
% m3 ¢ de H et on obtient une relation entre les fonctionnelles

génératrices Z et Z:
Z(j,w2imgy=Z(jsmd+n’). (38)
Cette relation permet de démontrer I’équation suivante (exercice 5)

© L 2L
G™M(xy, ..., xy;mi+ p?) = y (___iz'_’“‘___ X
L=0 :

x J d*yy .. dYy, G™ D (xy, Xy v ey md), (39)
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ot les G- L) sont connexes pour les ¢ 2 (cf. exercice 5). En passant a la

limite 12— 0, on calcule la dérivée de G™) par rapport a m¢:

0
WG(N)(xla "'7xN;m5) = - J‘d4yG(N’1)(xl7 s XN Y ’m(%) . (40)
0

Définissons comme dans le cas des fonctions de corrélation ordinaires la
transformée de Fourier :

N
(2 77)4 8(4)(21(1' +q) G(Nyl)(kl’ "'?kN;q 7m(%) =
1

N . .
_ f <n d4x,~ elki-xi) d4y eld-y G(N,l)(x17 o XN Y ,mg)

i=1

ol le moment g est associé & @2 L’équation (40) devient :

aizG(N)(kl, kysmd) = =GN D(ky, . ky 5 q =05 mf)
my

(41)

On appelle souvent lopération de dérivation par rapport a m} une

« insertion de masse ».

Le théoréme de Wick permet d’établir les régles de Feynman pour les
GW-1) exactement comme pour les G®). Examinons par exemple les
premiers termes de G®(x,y ; z) (figure 8) :

XV/X\XY-—> xx__g_;Y=Go(X—Z)Go(Z—Y)
z

=0 )

x % —Xy —> X%—X Y =Gylx-y)G,y(0)

Figure 8. Contributions 2 G*".

L’insertion de ¢ 2 au point z a été représentée par une ligne ondulée. Le
deuxieme terme (Go(x — y) Go(0)) n’est pas connexe en ¢~ et ne doit
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pas étre décompté dans I'équation (39). Dans I’espace des k on trouve

pour le premier terme, dans le cas ot ky + ky; =g =0, ky = —k, =k :
1 b 1
G®Vk,~k;q=0)=—"=— "~
( 1=0) = Ty L

en accord avec (41).

Comme dans le cas des fonctions de corrélation ordinaires GV, on
définit des fonctions de corrélation connexes GM'1) et des vertex
propres I''™V'L) en effectuant une transformation de Legendre par
rapport a j.

Examinons par exemple le vertex propre I’ @1 qui est obtenu a
partir de G 1) en divisant par deux propagateurs :

1
G®(ky)

1

F®Oky, ky 59 = - (ki +ky)) = GOky)
2

G(Z’l)(kly k,;q)

Lorsque g = 0, il est facile de relier I'®*V a la dérivée de G® par
rapport a m¢ ; en effet :

9 1 1 1
KN _ GOk, —k;0) =
soit :
—8—21’(2)(k) =I@Y%k,—k;q=0). 42)
omy

E.2. Exemple : I'®? a Pordre d’une boucle
Pour montrer que les renormalisations décrites aux paragraphes

précédents ne suffisent pas a rendre fini 'V »L) il suffit de calculer
r'®Y 3 rordre d’une boucle (figure 9) :

q
q y4 q
ren- b —
P

- P
. Tk
Figure 9. Graphes contribuant a I"®* Y,
1 d
F@0, ky5q) =12 g0 | 22 - “3)

@m)Y (P +md)((g-py +md)
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11 est instructif de vérifier (42) en utilisant

r'd%) = k2+m§+1g0 —fijg———l————

27 @u)ptemg
L’intégrale dans I’équation (43) diverge logarithmiquement, et aucune
des renormalisations discutées précédemment, ou de fagon équivalente,
aucun des contre-termes de (25.c) ne peut rendre (43) fini. Il est
nécessaire d’introduire une constante de renormalisation supplémen-

taire Z par la relation :
Tk, ky3 939, m?) =ZZy T@D(ky, ky 5 q 5 g9 Mg, A) (44)
ol Z est déterminé par la condition de normalisation :
P =059=0)=1 (45)

en supposant la masse = 0. Dans le cas de la masse nulle, I'intégrale
dans (43) est infrarouge divergente lorsque g = 0, et il est nécessaire de
choisir un point de soustraction différent. A 'ordre d’une boucle, et
compte tenu du fait que Z; =1 + O(g?) on calcule immédiatement

Z:

s .. 1 d*p 1
Z_1+2gj(27r)4(p2+m2)2. (46)

Pour comprendre le cas général, on procéde comme dans le cas des
fonctions de corrélation ordinaires, par comptage de puissances.

E.3. Comptage de puissances et contre-termes

Examinons le degré superficiel de divergence d’un diagramme a
N lignes externes ¢, L lignes externes o2 et d’ordre V en théorie des
perturbations. Le facteur @ correspondant & I'insertion d'un @2 est
d’apres (V.66) :

w—D=2<§_1)_D=—2 (47)

ce que Pon aurait également pu trouver directement en remarquant que
la constante de couplage d’une interaction en ¢ 2 est de dimension 2. On
obtient le degré superficiel de divergence w (N, L) du vertex propre
r'™-L) drapres (V.67) :

w(N,L)=D—2L+V(D—4)_%’(D_1)
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soitsiD =4:
wo(N,L)y=4-2L—-N. (48)

Pour obtenir (48), on pourrait également remarquer que chaque
insertion de ¢? est équivalente a une dérivation par rapport 2
m? et diminue la dimension de l'intégrand de 2. Les deux seuls vertex

propres superficiellement divergents ont donc :

N=0, L=2: ®(0,2)=0
N=2 L=1:w0(2,1)=0.

Le premier cas n’intervient que si I'on veut étudier I'énergie libre, et je
le laisserai de c6té. Comme I'® 1) est le seul graphe superficiellement
divergent, il suffira d’une renormalisation de ¢2 pour rendre tous les
™1 finis. On utilisera par exemple les conditions de normalisation
suivantes :

Masse non nulle :

r@Vk, =k,=q=0)=1. (22.4)
Masse nulle :
T Dk 5 g0) = 1 (33.9)
ou:
3 1
k120=k§0=zllv2; kl-k2=*zl‘"2-

Comme dans le cas de I'P et 'Y, il y a une grande part d’arbitraire
dans ce choix de normalisation.

Aprés renormalisation, linsertion de (p2 n’est pas équivalente a
Iinsertion d’un produit de deux ¢ ; pour bien souligner la distinction,
on désignera (provisoirement) I'insertion de ¢ par [¢?]. Les fonctions
de corrélation se calculent a Paide du hamiltonien H,, du contre-terme
8H, et du terme de source :

. 1
[ [ 0= Jewron] ate.
La constante de renormalisation Z relie [¢2(x)] & ¢Z(x); par
définition :
[¢%(0)] = ZZ; %(x) = Zo§(x) - 49)

Aprés changement de normalisation du champ, le terme de source
devient :

[ [25716) 00 - § 200) wi@)] s
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et on en déduit la relation entre fonctions de corrélation nues et
renormalisées :

Gk q; 59, m*) = Zy N2 ZE GNB)(ky, q; 5 9o, mGs A)
ou

Lk, q;5 9, m?) = 2872 Z8 TPk, q; 5 g0, mg, A) (50)

(il faut se souvenir que la transformation de Legendre est prise
seulement par rapport a j). L’équation (44) est bien un cas particulier
de (50).

Remarquons également que :

LI@IPH0)] = 31(0) ¢2(0) 421 0NZ Z 1) 92x) . (1)

Le premier terme de (51) peut étre inclus dans 5 4, et le second dans
8 4, car il joue le role d’un contre-terme, et peut étre traité suivant les
mémes régles que les contre-termes usuels : il est déterminé de fagon
récursive en utilisant la condition de normalisation (22.d) (ou 33.d dans

le cas de la masse nulle).

Figure 10. Contre-terme associé 4 I'insertion d’un ¢2

Remarquons enfin que le cas de la renormalisation de ¢2(x) dans la
théorie en go* est particulierement simple. En régle générale, I'inser-
tion d’un opérateur composé sera couplée par renormalisation avec
Pinsertion de tous les opérateurs de dimension inférieure ou égale a sa
propre dimension, sauf si des conditions de symétrie s’y opposent (cf.
exercice 9).

F. SCHEMA DE SOUSTRACTION MINIMAL (MS)

Concluons ce chapitre par un exposé du schéma de renormalisation
minimal, qui se révéle souvent trés commode dans les calculs effectifs.
Ce schéma ne fonctionne que si ’on utilise la régularisation dimension-
nelle : en effet, au lieu d’utiliser des conditions de normalisation du
type (22) ou (33), on construit les contre-termes en soustrayant les
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poles en & des fonctions de corrélation superficiellement divergentes,
apres avoir effectué une régularisation dimensionnelle. Soulignons que
'on peut parfaitement utiliser une régularisation dimensionnelle avec
les conditions de normalisation (22) ou (33). Les fonctions de corréla-
tion renormalisées seront strictement identiques a celles obtenues par
régularisation a l'aide d’un cut-off: les fonctions de corrélation
renormalisées ne dépendent que des conditions de normalisation, et
non de la procédure de régularisation. Au contraire les fonctions de
corrélation renormalisées du schéma minimal seront différentes de
celles obtenues a partir de (22) ou (33). Toutefois les prédictions
physiques seront identiques, du moins si 'on somme tous les termes de
la série de perturbations : en effet les différences sont absorbées dans
une redéfinition de la masse et de la constante de couplage ; si
g est la constante de couplage (renormalisée) obtenue a partir de (22)
ou (33), et g' celle du schéma minimal, g' s’exprimera par un
développement perturbatif en puissances de g :

g =g+cigt+c g+, (52)

(Le calcul de c¢; est proposé a lexercice 7.) Ces propri€tés ne
constituent bien siir qu'un cas particulier de I'invariance par reparamé-
trisation de la théorie renormalisée, déja évoquée précédemment.
Cependant on ne connait qu’un nombre fini de termes (en général deux
ou trois) de la série perturbative et les prédictions des deux schémas
seront en pratique différents. Supposons par exemple que lon ait
calculé une fonction de corrélation dans les deux schémas a l'ordre
g°. Les deux schémas différeront par des termes d’ordre g*.

Le choix du « meilleur schéma de renormalisation » est important,
par exemple en chromodynamique quantique. Plusieurs prescriptions
ont été proposées, mais les arguments avancés pour «optimiser le
schéma de renormalisation » ne peuvent étre qu’heuristiques.

Afin d’illustrer le mécanisme du schéma minimal, je me propose
d’effectuer la renormalisation a I'ordre de deux boucles dans le cas de la
masse nulle, ce qui correspond au hamiltonien :

H= J de< % (Ve )* + %‘_g_ <p4> + (contre-termes ).  (53)

Comme on utilise la régularisation dimensionnelle, le hamiltonien est
écrit pour un espace & D dimensions, avec comme d’habitude
e=4—-D. La constante de couplage étant dimensionnée, il est
commode de définir une constante de couplage sans dimension
g et une masse u : la combinaison u ®g a la dimension correcte pour
une constante de couplage. Nous aurons besoin du résultat du calcul des
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graphes suivants :

5‘2_2[_@_] =*§-1; (1—5111 (1’?2) +e><Cte+0(ez))

(54.a)

K, ) - = % (1 + 2a, + O(£?)) (54.b)

ki

o )OO( - Eiz (1 +2 ea, + O(£2)) (54.¢)

ky

2 £ 2
kz}@ =:2(1 +2ea,+ 5+ 0(e )) (54.d)

1 1, (kb+k)
al:l—iy—iln»——lu2 (54.¢)

L’écriture des équations (54) est quelque peu schématique. On a
omis un facteur multiplicatif gu ¢ pour I'“); de plus chaque graphe doit
étre multiplié par un facteur de symétrie et par a L, ol & = g/ (4 7 )P/?
et L le nombre de boucles. Par exemple (54.a) devrait étre multiplié par
a?/6; vy représente la constante d’Euler (y = 0.577...). L’équation
(54.a) est a démontrer dans les exercices V.10 ou V.12. La démonstra-
tion de (54.b)-(54.d) est renvoyée a lexercice 6. Calculons d’abord
Z;, en exigeant la compensation du pdle 2 £ = 0 de (54.a) (¥) :

o [~ —(Z;- 1)K
—_ ® n’a pas de pole 4 £ =0
aw | T T
d’ou :
z —1_“_2+0(a3) (55.a)
S VP ' ’

(*) Le coefficient du pole est de la forme f(D)/e. Le schéma minimal strict
consisterait & soustraire f(4)/e, c’est-a-dire & développer (4 7) P72 en puissances de
e. Jutilise en fait une variante du schéma minimal, qui consiste & choisir au lieu de
p la masse p’ = u (4 7). Une autre variante est le schéma MS, trés utilisé en
chromodynamique quantique, qui consiste & choisir @ = u{e” (4 7 )]*2
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L’avantage du schéma minimal est que Z, est indépendant de la
constante dans (54.b) : il n’est donc pas nécessaire de la calculer. Avec
la condition de normalisation (33.b), il aurait été nécessaire de calculer
cette constante pour obtenir Z,.

Déterminons maintenant Z; a Uordre d’une boucle a partir (54.b) :
Z,=1+Z" avec:

3a

£

zZWV = (56)

Pour calculer Z; & I'ordre de deux boucles, il ne faut pas oublier le
graphe a une boucle construit avec le contre-terme :

¢ =% zm2 = (1+ cay) (54.9)

Tenant compte des facteurs de symétrie et des permutations on
trouve :

3a

2
z® - ——-(1+28a1)—6—~(1+26a1+2)+18a
E €

(1 + 801)
(57)

ol les trois termes correspondent respectivement aux graphes (54.c),
(54.d) et (54.) ; cette équation donne pour Z{:

9a? 3a?

2) _
Z = 2 = (58)
et donc a l'ordre de deux boucles :
2
Zl_1+3_“+2£;_._3“ , (55.b)
£ £ £

Les équations (55) donnent les deux constantes de renormalisation
Z, et Z; a Yordre de deux boucles. La relation entre g, et
g définit la constante de renormalisation Z (cf. (24)) :

9o=212y%g = Zg (59)
avec |
2
z_1+3—"i+-9i2 17 o +0(a?). (55.¢)
£ £ 6

Quelques remarques pour conclure : le coefficient de lz dans (55.¢)
&

est le carré du coefficient de 1/¢ dans (55.b) ; ceci n’est pas le fait du
hasard, mais provient de la renormalisabilit¢ de la théorie (cf.
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chapitre VII). D’autre part dans P’équation (57), les termes en
1 (ky + k)
n—o-AA—

> se compensent, et heureusement, car dans le cas contraire

n
les contre-termes ne seraient pas locaux en x et tout le schéma de
renormalisation s’écroulerait. Cette compensation est évidemment
reliée a celle du terme en In A In k2 entre le graphe de la figure (6.a), et
son contre-terme de la figure (6.b). Dans le schéma minimal, les contre-
termes apparaitront donc comme des polyndmes de degré = w (G)
construits avec les moments externes, c’est-a-dire locaux en x ; les

N

coefficients contiendront a l'ordre de ! boucles des podles en
s’l, . s"l.

Enfin nous avons conduit les calculs dans le cas de la masse nulle.
Cependant les constantes de renormalisation sont, dans le schéma
minimal, indépendantes de la masse renormalisée m, qui est reliée a la
masse nue m¢ par m§ = Z,, m*>. En effet, par analyse dimensionnelle,
Z,, Zy et Z,, sont fonctions de g, ¢ et u/m. Cependant la masse
M apparait uniquement & travers w° qui est développé en
(1+ elnp +--- ). Les constantes de renormalisation ne peuvent donc
étre que fonction de In (u/m), mais comme elles sont régulieres
lorsque m =0, une telle dépendance est exclue; Z;,, Z; et Z,
dépendent donc uniquement de g et ¢ dans le schéma minimal. Ceci ne

serait pas vrai avec des conditions de renormalisation du type (33).

EXERCICES

1) (a) Montrer que J§ = [J,(k;, m?) — J,(0, m?)] (cf. (12)) est fini a la limite
A— co. Montrer également que J% differe de JX par des termes en
K2/ A%

(b) Montrer que [K (k% m?) — K,(0, m?) — k2 K,(0, m?)] (cf. (21)) est fini
a la limite A — oo (on pourra utiliser la représentation paramétrique de V-E3).

2) Renormalisation de la théorie en ¢°
Soit H le hamiltonien de la « théoric en ¢>» :

H= Jdpx[%(V(p)2+%m2<p2+31—'gue/2<p3:| +C.T.

avec e =6—D. Le facteur p®/? assure que la constante de couplage
g est sans dimension.

(a) Montrer que la théorie en ¢? est renormalisable lorsque D = 6. Quelles
sont les fonctions de corrélation superficiellement divergentes ?
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(b) On se débarrasse des « tadpoles » (cf. V-E1) a I'aide d’'un contre-terme
proportionnel & ¢. Expliquer pourquoi cette opération — qui consiste a exiger
que {¢) =0 — est possible. Il ne reste alors comme fonctions de corrélation
superficiellement divergentes que I'® et I'® (pour D = 6).

(c) Calculer I'® a Pordre d’une boucle en utilisant :

(c.1) la régularisation de Schwinger,

(c.2) la régularisation dimensionnelle.

Calculer '’ en utilisant les conditions de normalisation (22) et vérifier que le
résultat est indépendant de la régularisation (sans effectuer I'intégrale sur le
paramétre de Feynman). Dans le cas (c.1) on pourra utiliser des identités du
type :
@
f c_i)\i (€™ —e ™) = —In (x/x).
0

Réponse :

1
rg = k2+m2+11—2ak2-—%a J dx f(x, k¥ In [f(x, k?)/m?]
0

avece
a=g*/4n) et f(x, k) =m2+x(1—x)K>.

Déterminer également les parties divergentes de dm’ et de Zi.

(d) Déterminer la partie divergente de I'®) et en déduire la partie divergente
de Z; a lordre dune boucle. Montrer que dans le schéma minimal
Z = Z, Z7% est donné par :

w

Z=1-2%,

£

3) Constantes de renormalisation dans une régularisation avec cut-off

(a) En utilisant une régularisation 4 la Schwinger, calculer I"'(0) a I'ordre
d’'une boucle en tenant compte des temzles constants (finis a la limite
A - o). mlwmmeZW:Q-JL~[mﬁL—(y+m2+14,oa7em1a

2@wmyl m?
‘constante d’Euler. Il faut faire attention aux limites d’intégration sur les
parametres «; et utiliser la relation :

y=—[ﬁ%?@ﬂ—1p:f%;eq.'

(b) On se propose de calculer lintégrale correspondant au graphe (¢) de la
figure (6), pour k; = 0. On pourra utiliser la représentation paramétrique (V-
61), en intégrant d’abord sur les variables x; (attention aux limites d’intégra-
tion). On se contentera de calculer les termes divergents en (In A) et
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(In A). Montrer que I'on obtient :

1, A A?
1 _Eln i (v +ln2)lnm2.
1l faut multiplier ce résultat par ge, ot & =g/ (4 w), et par le facteur de
symétrie.
(c) Montrer qu’'a l'ordre de deux boucles la constante de renormalisation
Z, est donnée par :

2
zl=1+§a[1ni2—(y+1n2+1)]+
m

2
2[ 9247 T2 n?2 15 n __“2
+a{ In* — [2(y+1 )+ ]1 St

En déduire la constante de renormalisation Z a partir de Z = Z; Z5 > et (cf. (V-
64))
al A2
Z3 =1- 1—2 In -rn—2 .

4) Afin de déterminer rigoureusement le comportement de I'intégrale (28)
quand «; - 0, on divise le domaine d’intégration en secteurs du type :

sy o3y

et on utilise (dans ce secteur) le changement de variables (0=<B;=<1,
i=3;0=sB,<w):

ay = B1B,B3B, a,=B,B; B,

a3 = B3 By a, = By -

Justifier les affirmations du paragraphe D.1 sur le comportement de
I(k;), 8l /ak> I (k;), oI /8k?; on pourra se contenter d’examiner les secteurs
s o< ays oy et ay; < oy < a; < a, a titre d’exemple.

La division en secteurs est indispensable pour éviter des incidents dus & des
intégrales du type (exemple emprunté a Itzykson-Zuber) :

[ o
a; o, ———,
0 0 2[0‘12+0‘z]2

Cette intégrale a l'air convergente si P'on examine les régions (a; -0,
a, fini) (a, - 0, a, fini), (a;, @, - 0 au méme rythme), et pourtant elle est
divergente.

5) En prenant le logarithme de I’équation (38), montrer la relation (39) pour
les fonctions de corrélation connexes GV'4). En déduire (39) pour les fonctions
de corrélation « connexes en ¢ %, ol les insertions de ¢? sont reliées a des
points externes en ¢ (un diagramme qui n’est pas « connexe en ¢ est dessiné
sur la figure (8)).



268 Exercices VL6

6) Graphe a deux boucles en régularisation dimensionnelle

(a) Calculer le graphe 4 une boucle contribuant 2 I'® dans le cas de la masse
nulle en utilisant la régularisation dimensionnelle. On évaluera non seulement
la partie divergente, mais également la partie constante a la limite ¢ —» 0
(Réponse : cf. (54.b)).

(b) Calculer le graphe a deux boucles de la figure (5.c), toujours dans le cas
de la masse nulle et en utilisant une régularisation dimensionnelle. On se
limitera aux termes en 1/z% et 1/¢.

On pourra utiliser 'une des deux techmiques suivantes :

(i) partir de la représentation paramétrique (V.61),

(ii) intégrer successivement sur les deux boucles (cf. exercice V.12).

La deuxiéme méthode est probablement la plus rapide. Je donne quelques
intermédiaires de calcul : Pintégration sur d°g conduit a4 (k =k, + k,) :

ks

I=r(e/2)B(1_e/2;1—s/2)J d?l 1 .
(4 m)P7? QY Pk — 1) [(ks +1)']7?

Les trois dénominateurs sont combinés a 'aide de I'identit¢ de Feynman (B.1)
et on inteégre sur [ :

I=F(8)B(1—e/2;1~s/2)x
¢4 7P

) -52) -

X .
j (1 —x) KP4+ %31 —x3) K2+ 2 x5 k . ks )°

Pour obtenir les termes en 1/&® et 1/¢ on remarque que :
*2 X2
[Faxs 1) = 10 [T arn 14000,
0 0

Le résultat est donné en (54.d).

7) Trouver, a 'ordre g, la relation entre la constante de couplage renormali-
sée du schéma minimal (défini au paragraphe F), g, et celle g () obtenue a
partir des conditions de normalisation (33). On calculera la constante de
renormalisation Z, dans les deux schémas pour une méme valeur de la
constante de couplage nue.
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Réponse :

_ 3 Gius 1
g(K) =gus — Gy (1——2‘ 7) .

8) Renormalisation de I’action effective

On part de I'expression (I1.44) du potentiel effectif 4 I'ordre d’une boucle en
dimension D = 4 (expliquer la différence entre cette équation et 'équation ci-
dessous pour V(&)):

o1 5 5, 1 _ 1 d* 22

L’intégrale sur g est divergente. Pour renormaliser le potentiel effectif on se
sert des conditions (22), en se souvenant que :

V

@
0) = P

;o T90) =
=0

d—2

(a) Montrer que les conditions (22) sont bien satisfaites si le potentiel effectif
renormalis€ V(&) est donné par :

1, 5.1 1 d
Vr(§) =5m & + ;48" +5 (2:)4

9 {m( L 9%/2 ) 2/2 1 (g3*/2)y } .

Fimt) T gim 2(g +m?y

Vérifier la convergence de P'intégrale.
(b) Calculer explicitement V z(&) et obtenir :

_ 1 "
Ve(#) =5m? ¢ 4,g¢> +

92" \* o'\ 42 (347
x[<m+2)ln<1+2 2) > 5 5 tm .
(c) Si m =0, la méthode précédente conduit a2 une intégrale infrarouge
divergente. On définit une nouvelle constante de couplage :
d'v ()
det

glp)=

F=n

Calculer V(&) en utilisant un cut-off A et montrer que la définition de
g(u ), ainsi que la condition d*V (¢)/d&’| 5o0 = 0 conduisent & P’expression

suivante de V(& ), due a Coleman et Weinberg () :

VR(¢)=%9(M)¢“+Q————(21(:1)T‘;4 (n5-2).

Tracer qualitativement V().
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9) Renormalisation de opérateur ¢ dans la théorie en ¢° (%)

On se place dans le cadre de la théorie en ¢ a six dimensions (cf. exercice 2),
et on se propose d’étudier la renormalisation de la fonction de corrélation
G&Vx,y;z) = <(p x) e () % (pz(z)> ou du vertex propre I'*V qui lui est

4
associé.

(a) Montrer qu’a l'ordre d’une boucle les diagrammes divergents de
r®Ysont:

o 3

(a) (b)

En déduire les contre-termes correspondants.

M -

(ii) —(4—:—)—3—5- (m2+%q2>.

(b) Montrer que la renormalisation de @2 se fait de la maniére suivante :

Z, o+ u= P Zymr o + =2 Z, Vi

NOTES ET REFERENCES

Un exposé élémentaire de la renormalisation est donné par S. Coleman, « Renormali-
zation and Symmetry : a Review for Non-Specialists », dans les Comptes Rendus de
I'Ecole d’Erice (1970). Les exposés de Brézin et al. (section III) et de Amit (chapitres 6 et
7) sont d’un niveau comparable  celui de ce chapitre. A un niveau plus avancé, on pourra
consulter Itzykson-Zuber (chapitre 8) et Collins (chapitres 3 et 5). La régularisation
dimensionnelle est exposée en détail dans Collins (chapitre 4). Pour la renormalisation
des opérateurs composés, on pourra consulter Itzykson-Zuber, chapitre 8.

(*) S. Coleman et E. Weinberg, Phys. Rev., D7, 1888 (1973).
(®) Collins, chapitre 6.



CHAPITRE VII

Equations de Callan-Symanzik

Au chapitre III, nous avons vu apparaitre le terme « renormalisa-
tion » dans I’expression « groupe de renormalisation » ; rappelons que
la stratégie utilisée consistait a suivre 1’évolution des paramétres
définissant le hamiltonien dans des contractions successives du cut-off
A, Tobjectif étant d’atteindre le comportement & longue distance
(r»1/A) de la théorie. Au chapitre précédent, la renormalisation
semble apparaitre dans un contexte tout a fait différent: il s’agit
d’éliminer une théorie nue qui est soit non physique, soit non
directement exploitable, au profit d’une théorie renormalisée dépen-
dant d’un petit nombre de parameétres. Cependant on peut déja
remarquer que la théorie renormalisée, étant finie quand A - oo, est
aussi approximativement indépendante de A lorsque A est grand, mais
fini, du moins dans la région & longue distance r > 1/A. 11 doit donc
exister, au moins 4 un niveau qualitatif, un lien entre la théorie obtenue
par intégration sur les fluctuations de courte longueur d’onde et la
théorie renormalis€e, qui ont pour caractéristique commune d’étre
toutes deux des théories & longue distance.

On a d’ailleurs assisté a un changement progressif de point-de vue sur
la signification d’une théorie renormalisée en théorie quantique des
champs ; jusqu’au début des années 70, la théorie nue était considérée
comme un artifice de calcul sans signification physique. Aujourd’hui on
aurait plutot tendance a penser qu'une théorie renormalisée apparait
comme une approximation a longue distance d’'une théorie plus
complexe et qui nous est encore inconnue. Cependant a longue distance
(c’est-a-dire dans ce cas pour 7 ~ 10~ '8 m!), les détails de cette théorie a
courte distance sont sans importance, car il suffit de connaitre les
quelques paramétres définissant la théorie renormalisée. Il est clair que
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I'étude des phénomenes: critiques a joué un rdle important dans ce
changement de point de vue. '

Les résultats obtenus au chapitre III, paragraphes E et F, vont étre
retrouvés en exploitant une propriété de la théorie renormalisée que
nous avons déja signalée : l'invariance par reparamétrisation de la
masse et de la constante de couplage, qui provient de 1'arbitraire dans le
choix de la partie finie des contre-termes. En fait nous allons nous servir
uniquement d’une classe restreinte de reparamétrisations, celle qui
consiste A faire varier la masse de renormalisation u (cf. VI.33). Cette
invariance s’exprime mathématiquement sous la forme des équations de
Callan-Symanzik (C-S) (*) ; sous certaines conditions, & savoir 'exis-
tence d’un zéro de la fonction B (g) possédant des propriétés convena-
bles, on pourra déduire de ces équations le comportement a longue
distance (cas des phénomenes critiques) ou a courte distance (cas de la
théorie quantique des champs: m, u <k < A) de la théorie. On
retrouvera ainsi la propriété d’invariance d’échelle, avec des exposants
dépendant de dimensions anormales, ou bien des corrections loga-
rithmiques.

Une partie de la physique contenue dans les équations de C-S a déja
été exposée au chapitre I1I, paragraphes E et F. Cependant il est
nécessaire d’examiner ces équations avec attention pour les raisons
suivantes :

(i) ce sont des équations exactes, qui sont une conséquence directe
de 'existence d’une théorie renormalisée, alors que la méthode exposée
au chapitre III est au mieux semi quantitative (cf. cependant (1)) ;

(ii) elles constituent le langage moderne de la « premiére version »
du groupe de renormalisation, celle de Stueckelberg et Petermann et de
Gell-Mann et Low. C’est le langage généralement utilis€é par les
théoriciens des champs ;

(iii) elles fournissent une mécanique quasi automatique pour déduire
les conséquences du groupe de renormalisation et permettent des
calculs sans ambiguité a des ordres €levés de la théorie des perturba-
tions ;

(iv) en revanche la méthode de Wilson s’applique & une classe
beaucoup plus large de systémes physiques car elle n’est pas liée a la
théorie des perturbations.

Au paragraphe A je discuterai de facon qualitative la relation entre
P’exposé du chapitre III, paragraphe F et la renormalisation telle qu’elle

(*) En réalité¢ I'équation de Callan-Symanzik proprement dite est celle de 'exercice
(2.a). Par abus de langage, j’appellerai « équation de Callan-Symanzik » toute équation
ayant une forme analogue. Naturellement il conviendra de bien faire la distinction entre
les différents types d’équations de C-S.
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a été décrite au chapitre précédent. En particulier, je clarifierai la
relation entre constantes de couplage nue et renormalisée, ainsi que la
notion de constante de renormalisation du champ.

Le paragraphe B présente une version des équations de C-S qui est la
plus proche dans son esprit de la méthode de Wilson. La démonstration
repose sur I'observation déja faite précédemment : la théorie renormali-
sée est, 4 longue distance (r > A~ !), approximativement indépendante
du cut-off A. On obtient ainsi des équations pour les fonctions de
corrélation nues ; cependant ces équations ne sont pas exactes, car on
néglige des termes d’ordre A2 L’approximation ainsi faite correspond,
dans la méthode de Wilson, a celle qui consiste a négliger I'influence
des champs inessentiels.

Pour obtenir des équations exactes, on passera au paragraphe C a la
théorie renormalisée. On examinera d’abord le cas T =T, qui
correspond, rappelons-le, a celui d’une masse renormalisée nulle.
L’équation de C-S sera obtenue en exploitant 'invariance par rapport
au parameétre u (cf. VI.33), arbitraire mais nécessaire pour définir la
théorie de masse nulle. Ce paramétre brise I'invariance d’échelle naive ;
I'invariance d’échelle sera finalement récupérée, mais dépendra de
dimensions anormales. La théorie a T # T, sera construite a partir de
celle & T = T, et une équation de C-S permettra d’établir le comporte-
ment (1.30) de la fonction de corrélation a deux points.

Les deux derniers paragraphes contiennent des détails plus techniques
sur le calcul des fonctions B(g), y(g)... ainsi quun calcul des
exposants critiques 4 'ordre &2

Les paragraphes B a E sont (relativement) indépendants de la
premiere partie du livre. Le lecteur intéressé uniquement par les
problémes de théorie quantique des champs pourra donc sauter le
paragraphe A, ainsi que tous les passages consacrés spécifiquement aux
phénomenes critiques.

A. RENORMALISATION ET GROUPE DE RENORMALISATION

A.1. Analyse dimensionnelle

Ce paragraphe contient une discussion qualitative du lien entre le
groupe de renormalisation (chapitre I1I) et la théorie de la renormalisa-
tion (chapitre VI). 1l repose sur les résultats établis au paragraphe I11-
F.1 ; sa lecture n’est pas nécessaire pour aborder les paragraphes B 4 E.
Nous nous placerons en dimension D = 4 et, par souci de simplification,
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dans le cas de la masse renormalisée nulle (m =0 ou T = T,). Les
équations du GR peuvent étre résumées par la donnée d’équations
différentielles dont le membre de droite ne dépend que de la constante
de couplage g,(s) de I'interaction en ¢ *. Rappelons la loi de transforma-
tion (I11.87) d’un vertex propre I'™) choisi en configuration non
exceptionnelle :

D
r®™(sk;, gos), Ay =5 (3-1) [£()] N2 T Mk, g, A). (1)

On notera le changement de notations : g(s) — gy(s).
Dans I'équation (1), I'exposantd = D — N < 5 1) de s est simple-

ment la dimension normale du vertex propre I'™ (cf. V.69), et le
facteur (¢ (s))~V/? provient de la différence entre dimension canonique
et dimension anormale. Rappelons que pour établir 1’équation (1),
nous avions fait au chapitre III une dilatation de I'unité de longueur
d’un facteur s, de facon a maintenir A (ou le pas du réseau a) constant.
Cette opération était commode mais non indispensable. On peut aussi
bien ne pas faire cette dilatation, et comparer deux systémes physiques
de méme longueur de corrélation £ sur des réseaux de pas différents
(figure 1).

N '
gy Y[ e\ =4
— J ™~ (a’lza)
NL | LA - £ =£/2
-
1 I
A~1/a \ \
¢ N
\
N=Z@=2a)8 ¢ j
I \/

Figure 1. Deux facons d’envisager une transformation
du groupe de renormalisation.

L’analyse dimensionnelle ordinaire permet en effet d’écrire :

Ok, g0, 4) = %1 5 ) @
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étant donné que g, est sans dimension (D =4) et I'équation (1) est
transformée en :

F(N)(ki’ go(s),-? ) = [LO]T N2 Tk, go, A) . (3)

Rappelons que la constante de couplage g,(s) vérifie :

d
O B ga) = 4o @

et que si l'on tient compte uniquement du premier terme (en
By gs) de B(g) on peut résoudre (4) :

90

—_—, 5
1+ Bygplns )

go(s) =

Les conséquences physiques de (3) sont les suivantes : partons d’une
situation ol k;/A < 1, g, étant fixé. Le développement perturbatif de
I'™) dans le membre de droite de (3) contient des facteurs g, In (k; /A),
qui invalident la série perturbative. Aprés transformation du GR, on
peut choisir s de telle sorte que sk;/A ~ 1 (ceci correspond & intégrer
sur les fluctuations de moment k; = k = A): le membre de gauche de
(3) posséde un développement perturbatif en puissances de gy(s), et
mieux gy(s) — 0 sis » 00. Le comportement critique se trouve contenu
dans le facteur [£(s)]"N/2

A.2. Identification de la constante de couplage renormalisée

Afin de simplifier I'exposé, il est commode de se débarrasser
provisoirement des facteurs ¢ (s) en définissant des « charges invarian-
tes» I qui se transforment sans ce facteur, et dont la dimension
canonique est nulle. Pour fixer les idées, étudions la charge invariante
I:

4 12
rmmwmm<nﬁ)

4 = 1n (©)
(nFmWJmM>

i=1

P(ki’ go, A) =

A Tordre de zéro boucle (approximation de Landau), I se réduit a la
constante de couplage g,; dans une TGR, la loi de transformation de

I est:
f.(ki’ go(s), A/s) = f(kb go, A) - @)
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Faisons maintenant le lien avec la théorie renormalisée, en introdui-
sant un point de soustraction k;, dépendant d’un paramétre de masse

n S k;, et en choisissant s = — ; d’apres (7) :
"

. A "
I (kigo( 5 ), #) = Flkigo 4). ®)
Fixons maintenant la constante de couplage renormalisée g par :
- A
F(kio,go(;>,l~’«>=g- &)

A Tordre de zéro boucle, g = go(A/pm ) et d’aprés ce qui précede ¢
posseéde un développement régulier (c’est-a-dire ne contenant pas de
grands logarithmes) en puissances de go(A/u ), et réciproquement :

g=go<§)+cg%(§)+-~« (10)

Autrement dit g et g0< A ) ne différent que par une renormalisation
1

finie et les corrections perturbatives dans (10) peuvent toujours étre
absorbées dans un changement des conditions de normalisation
(VL.33). On peut donc identifier go(A/ p ) avec la constante de couplage
renormalisée g et I'(k;, g, u) avec la charge invariante renormalisée.

Dans ce raisonnement, la théorie renormalisée apparait manifeste-
ment comme une théorie & longue distance, valable pour une échelle de
moments k; = u < A. Cette théorie dépend d’'un paramétre, la
constante de couplage renormalisée g, qui est elle aussi déterminée a
une échelle ~ . Ainsi qu’on le verra plusieurs fois dans ce chapitre,
une théorie renormalisée ne dépend pas d’une constante de couplage
fixe ; en réalité, a chaque échelle de moments correspond une constante
de couplage adaptée a cette échelle, et qui autorise un développement
perturbatif.

La discussion qui précede n’est pas compléte, car nous n’avons pas
explicité les couplages (ou variables) inessentiel(le)s. Pour fixer les
idées, restreignons-nous a un seul couplage inessentiel, par exemple la
constante de couplage nue de l'interaction (non renormalisable) en
®°® ul. Cette constante de couplage a pour dimension — 2, et il est
commode de définir la constante de couplage sans dimension g? =
A%, g2(s) = (A/s) ud(s). On notera qu’il revient au méme, dans les
équations du GR, d’utiliser des constantes de couplage sans dimension
ou de faire un changement d’échelle comme au chapitre I11. Considé-
rons dans le plan (g, gs) deux trajectoires (1) et (2) du flot de
renormalisation, correspondant & deux choix initiaux différents pour
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g2: g2 = 0 et g2 # 0 avec des valeurs de g, identiques ; mZ est ajusté de
telle sorte que la théorie soit critique (figure 2).

9o A

2

Figure 2.

Les trajectoires issues des points A et B aboutissent, aprés un nombre
identique de TGR, aux points A’ et B’. Cependant, il existe sur la
trajectoire (2) un point B”, correspondant a une valeur de g identique a
celle de (1), et décrivant évidemment la méme physique a longue
distance que B'. Le couplage g2 vérifie une équation analogue 2 (I11-80)
et les points A’ et B” différent par un terme d’ordre (u/A)*: cf. le
facteur 4-! dans Péquation (III-76¢). 11 existe un argument heuristique
plus direct, di a Polchinski (!), qui donne également une preuve
compléte (mais longue). Ainsi, avec une précision ~ (u/A), il est
toujours possible, en jouant sur A, de se restreindre dans la théorie nue
aux interactions renormalisables, c’est-a-dire partir de points situés sur
I’axe des g, dans le cas de la figure 2. Cependant il est nécessaire que

ul soit proportionnel 4 A2 et non a une échelle de (masse) 2

inférieure, par exemple p =2

De fagon générale, avec une précision ~ (u /A)?, toutes les trajectoi-
res du flot de renormalisation convergent vers une variété de dimension
n, ol n est le nombre de couplages essentiels et marginaux (une courbe
dans le cas de la figure 2). La théorie renormalisée est définie par la
donnée de n couplages renormalisés (g dans le cas de la figure 2) ; les
couplages inessentiels ne sont pas nuls, mais ils sont entiérement
déterminés par la donnée des couplages essentiels et marginaux (et
ge est — au moins — d’ordre g¢?). En ce sens la notation

IF™(k;, go(s), A/s) peut étre source de confusion : I'™) dépend aussi
de g2(s), etc., mais ces couplages sont calculables (avec une précision
1/5% en fonction de gy(s). Il faut également se rendre compte que le
véritable cut-off n’est pas u = A/s, mais A : & A fini, les corrections a
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I'™ sont en (k;/A), et non en (k;/pn)*. Le role des variables
inessentielles est évidemment crucial pour assurer cette propriété.

Afin d’achever I'identification avec la théorie usuelle de la renormali-
sation il faudrait faire tendre A vers U'infini et montrer I'existence d’une
variété limite. Cependant cette limite pose probléme dans le cadre de la
théorie en ¢*, car g, diverge a g fixé pour une valeur finie de
A. Cest seulement dans le cas de théories asymptotiquement libres
(cf. A.3) que 'on peut s’attendre a trouver une telle variété limite.
Néanmoins, dans le cadre de la théorie perturbative, g, existe toujours
comme série formelle en g, ce qui permet — dans ce cadre — de
compléter 'argument (‘). Remarquons enfin que I'identification expli-
cite entre des calculs menés dans la version usuelle de la renormalisation
et dans celle de Wilson n’est possible qu’a I'ordre d’une boucle. En
effet, dans la version de Wilson, les calculs analytiques deviennent
rapidement inextricables en raison de la complexité de I'intégration sur
les fluctuations de courte longueur d’onde.

A.3. Classification des théories

On souhaite disposer d’une théorie renormalisée finie, qui permette
de développer les founctions de corrélation renormalisées en fonction

d’une constante de couplage g petite (disons g ~ 1 et faire

1
10 100 ) ’
tendre le cut-off A vers I'infini, de fagon a éliminer toute dépendance
par rapport & A. L’expression (5) peut étre inversée afin d’obtenir

go en fonction de g :

A g
, =) = . 11

wlow) =T Frgwazm a
La discussion précédente a été conduite dans le cadre de la théorie en
@* Dans le cas général, il faudra distinguer deux cas :

(a) Si By <0, gy décroit et tend vers zéro quand A — o0 a g fixé. Il
est donc possible de définir une théorie nue perturbative a la limite
A > .

(b) Si By > 0, g, croit et devient éventuellement infini (naturellement
des que gy~ 1 on sort de la région perturbative et ’expression (11)
n’est plus utilisable). Bien que le raisonnement soit incomplet, car nous
n’avons utilis€ que le premier terme de B8 (g), on constate qu’il sera
vraisemblablement difficile de définir une théorie renormalisée non
triviale. Une autre facon de montrer la difficulté est de remarquer que
pour A/u trés grand et g, petit, g — 0: la théorie renormalisée tend
vers une théorie libre. Ce cas est celui de la théorie en ¢*: a cause de
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cet argument (et d’autres beaucoup plus sophistiqués mais dont la base
physique est identique), de nombreux théoriciens pensent qu’a la limite
A = o0, la théorie en ¢* est une théorie libre si D =4 ; lorsque
D = 4, le résultat a été prouvé rigoureusement {cf. également I’exercice

(6)).

Le cas By <0 est celui de théorie des champs dites « asymptotique-
ment libres » (sous-entendu : dans le domaine ultraviolet (cf. paragra-
phe C)) : c’est celui des théories de jauge non abéliennes (XIII-D.1) et
de la théorie en ¢° a six dimensions (exercice 4). On note que dans ce
cas la relation (11) entre g, et g est parfaitement bien définie :

_ g
T 1+ |Bol gln (A/p)

90

mais qu’'une série de termes tendant vers linfini. apparait si 'on
développe le dénominateur :

A 2 2 2A
= 1 - In — + 1n—+-~).
99 g( |Bol 9 " |Bol" 9 ,u

A un ordre fixé en g, la relation entre g, et g fait apparaitre des
quantités infinies, qui en fait disparaissent par resommation. Ceci
montre que la renormalisation ne devrait pas étre faite ordre par ordre
en théorie des perturbations, mais que 'on devrait d’abord sommer les
logarithmes  dominants (gln A/w)", puis sous-dominants :
g"ln"~ 1 A /. etc. Malheureusement, bien que cette fagon de voir soit
physiquement la plus satisfaisante, elle ne semble pas commode &
réaliser techniquement.

A4, Identification de Z;

Il reste a rétablir les facteurs ¢ (s) qui n’intervenaient pas dans les
charges invariantes. Comme ¢ (s) provient de la renormalisation du
champ dans une TGR, on ne sera pas surpris que ce facteur soit relié
trés directement & Z;. La fonction ¢ (s) vérifie 'équation différentielle
(cf. TII-F.2) :

(SO T{ORS (12)

qui a pour solution :

Ins
{(s) = exp (L v(go(s'))dIn s’)
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ou:
go(s) ! !
v{g') dg
S)=¢€X _ 7 . (13)
£e) p( LO 8 )
En reportant dans I'équation (3) on trouve la loi de transformation de
rm:.
A (%) y{g')dg’
F(N)<k,, (—-) ) = ex J
G\ ) * b 2 . B

X F(N)(ki’ do, A) . (14)

En reprenant les arguments développés ci-dessus,
I'™(k;, go(A/ 1), p) peut étre identifié avec la fonction de corrélation
renormalisée I'{)(k;, g, n ), et, comparant avec (V1.32), on obtient :

ZB:,;( - _exp< w(%) y(g')dg' ) s)

T Blg)

ot go(A/ ) =g

A.5. Schémas de renormalisation et définition de B(g,)

Le hamiltonien de Ginzburg-Landau avec cut-off A n’est évidemment
pas défini de fagon unique ; on peut utiliser un cut-off brutal, ou bien un
cut-off « doux », utiliser une régularisation sur réseau, etc. Tous ces
hamiltoniens différent par des termes inessentiels, et donnent, & un
changement d’échelle prés, la méme physique a longue distance, ou, de
fagcon équivalente, des couplages g,(s) différents : cf. les points A’ et B’
de la figure 2. Soit deux hamiltoniens de départ donnant des couplages
do(s) et gg(s) ; nous aurons :

gi(s) = go(s) + ¢, g5(s) + C, g3 () + -+ - (16)

ou les coefficients ¢y, ¢,, ... sont indépendants de s avec une précision
~1/s% En effet go(s) et gj(s) ne peuvent différer que par une
renormalisation finie, c’est-a-dire par une différence de schéma de
renormalisation ; les fonctions f décrivant I'évolution de gy(s) et
g4 (s) seront a priori différentes. Cependant il est possible de prouver la
propriété suivante :

Les coefficients By et B, des deux premiers termes du développement
perturbatif de B (gy) et B'(gy) sont identiques.
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Démonstration : Soit :
B(go(s)) = Bogd(s) + B1ga(s) +---. (17)
Calculons B'(g4(s)):

L dgq(s)
B'(90(s)) = — g5 = B (Go(s)) +2c1go(s) B(gol(s)) + -

= Bog§(s) + B1go(s) +2¢1 Bogo(s) +---.
Il suffit maintenant de substituer dans la derniére équation :

go(s) = go(s) — 4 96(5)2

pour obtenir :
B'(96(s)) = Bogi®(s) + B1gP(s) +---.

En dehors des deux premiers termes de son développement perturbatif,
la fonction B(gy) n’est pas définie de fagon unique. Pour lever
I’ambiguité dans la définition de B (g,), on peut se donner une quantité
physique (par exemple une charge invariante) H(u, go(s), A/s) mesu-
rée a une échelle de masse u et exiger que cette quantité soit
strictement indépendante de s :

d A
dlnsH<”"gO(s)?;> =0

ou:
0 A D A
2 2 YH( e, ,— ] =0. 1
(860 5+ 555 ) H(m 0065 ) (18)
Cette expression permet de déterminer B(g,) analytiquement ou
numériquement de fagon parfaitement bien définie y compris méme en
dehors de la région perturbative ; cependant le résultat dépend de la
quantité physique choisiec H. De plus si A est fini, 8 (g,) comprend des
corrections ~ (u /A)?, dues aux opérateurs inessentiels.
Enfin la constante de couplage renormalisée vérifie une équation
analogue a (4) : la constante de couplage renormalisée dépend du point

de soustraction u: g = g(p) et on définit la fonction B (g) (notation
provisoire, cf. paragraphe C) par :

dg

i |, =B, (19)

Les quantités physiques doivent étre indépendantes du point de
soustraction, et ceci nous amenera au paragraphe C aux équations de
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C-S pour la théorie renormalisée. Comme g(u ) = go(s), on s’attend a
ce que les deux premiers termes du développement perturbatif de

B (g) soient aussi déterminés par B, et B:
B(g)=Bog"+B1g" +--. (20)

Donnons une démonstration directe de (20), en remarquant gue
B (go) décrit la variation de g, en fonction du cut-off quand la théorie
renormalisée est fixée (cf. aussi le paragraphe B.2):

A 9(4) qq’ dg
ln—=J == B(gy) =

M g(n) B(gl) dln A g n

et que par analyse dimensionnelle g(u) est fonction de g, et
x=Imn (u/A):

g(rn)=9(go x). (21)

De méme gy(A) = gy(g, x). Ceci permet d’écrire :

Fo= (%)« pan--(3).

ox ox

ou la dépendance de S et 3 par rapport a x, qui est ~ (u/A)* n’a pas
été explicitée. La relation :

1.3, (3,
g /x 0x /g, \ 999 g

B@)=(§%)Jn%) @)

donne alors :

et & la limite A/up — o0, B et B sont indépendants de x ; g posséde un
développement perturbatif (contenant des grands logarithmes) en
puissances de gg:

A) 2
= +cl — + ..
g = do (ﬂ g5

ou:
A
go=g-c( )+
s

11 suffit de remplacer g, par g dans I'expression de B (gy) pour trouver
I'expression (20).
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B. EQUATIONS DE CALLAN-SYMANZIK POUR LA THEORIE
NUE (T=T,)

Nous allons maintenant établir les équations de C-S pour les
fonctions de corrélation nues, toujours pour T = T, (dans un souci de
simplification), mais en étendant cette fois la discussion a D < 4, avec
£ =4 — D =>0. Le hamiltonien de Ginzburg-Landau s’écrira :

€

AgO 4
. <p). 23)

H-= Jde<%(V¢)2+%m§C¢2+

Le coefficient mZ, de ¢? est ajusté ordre par ordre en théorie des
perturbations de fagon a assurer que T = T, ou de fagon équivalente m
{renormalisée) = 0 ; la constante de couplage u, étant dimensionnée, il
est commode de définir la constante de couplage sans dimension
9o -

u() = AEgO . (24)

La série perturbative fondée sur (23) possede a priori des divergences
infrarouges sévéres qu’il est nécessaire de discuter.

B.1. Divergences infrarouges

Nous avions examiné au chapitre V, paragraphe F.3 les divergences
infrarouges, et montré qu’elles se manifestaient pour D < 4 méme dans
des configurations non exceptionnelles. Donnons sur la figure 3 un
exemple supplémentaire d’un graphe de I’ @,

Figure 3. Diagrammes infrarouges divergents.

en représentant, sur le diagramme du centre, une configuration possible
pour le flot des moments durs, ainsi que le diagramme contracté. A
I'ordre (n + 2) de la théorie des perturbations, le diagramme contracté
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possede (n + 1) boucles et quatre lignes internes sont accrochées au
vertex contracté. Le degré superficiel de divergence est (cf. V.70)

w=4+(n+1)D-4)=D —ne.

A ¢ fixé, le diagramme sera infrarouge-divergent méme en configura-
tion non exceptionnelle pour n > (D/&)(*). Il est donc impossible de
définir une théorie des perturbations & ¢ fixé. Cependant il est possible
de définir une série perturbative par un double développement en
puissances de £ et g :

P44
2 a9
Pq

en développant tous les résultats en puissances de «.

B.2. Démonstration de ’équation de Callan-Symanzik

A Ja limite A — o0, les fonctions de corrélation renormalisées
r{Y) tendent vers une limite finie, et elles deviennent donc indépendan-
tes de A pour A grand. Ceci correspond a I'existence d’une physique a
longue distance (k; < A) indépendante de A, les fonctions de corréla-
tion renormalisées décrivant la physique a longue distance. Les
variations du cut-off dans ce paragraphe sont I’équivalent de I'intégra-
tion sur les courtes longueurs d’onde du chapitre I11.

Rappelons que dans le cas de la masse nulle on doit utiliser les
conditions de normalisation (VI1.33):

rPk*=0)=0 (25.2)

5%2 r (k= p? =1 (25.b)
I{(kio)=pncyg (25.c)
F;Sz’”(k,-o, qo)=1. (25.d)

On notera le facteur u ° dans (25.c) : ce facteur est présent afin que g
soit sans dimension.

Lorsque g et 1 sont fixés, les fonctions de corrélation I’ §N ) sont
parfaitement définies ; pour qu’elles soient invariantes dans une
dilatation du cut-off, il est nécessaire que g, soit une fonction de A (en
fait A/u pour des raisons dimensionnelles) :

go=4¢ <9‘4>
0 0 ’“‘ .

(*) On peut aussi trouver ce résultat en remarquant que la boucle simple
k <> k se comporte comme &~ (par simple analyse dimensionnelle).
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L’indépendance des I'§") par rapport a A n’est pas compléte : 2 A
grand, mais fini :

d N (In AY
dlnAFI$ )|g,n=0< nA2 ) (26)

ol p dépend de Pordre de la théorie des perturbations (cf. exercice
VI.1). Toutefois la borne dans (26) est uniforme pour D = 4 (y compris
D = 4). En admettant que les puissances de In A ne se resomment pas
pour compenser le facteur A~ on pourra écrire :

d vof, A ™) -
dlnA[Z3 (g,;)]‘ (k,-,gO,A)]g’u_O. 7)

On transforme (27) en une équation aux dérivées particlles en
définissant les fonctions B (gq, €) et y(gg, €) (*):

dg,
B0 ) =Tmal,, (28)
Y (g €)= — o 28 (29)
0 din A |, .

La différence de signe entre (28) et (4) s’explique par le fait que dans
la transformation A —» A/s, le cut-off diminue. On obtient a partir de
(27)-(29) Iéquation de Callan-Symanzik

0 0 1
2 _ 2 T W)k, =
[+ B G 2 gr =3 N7 @0 )| Tk g0, ) =0 | GO)

Remarquez que les dérivées sont des dérivées partielles dans (30) et
totales dans (27).

Les notations dans (28) et (29) anticipent sur un point crucial : les
fonctions B et y sont indépendantes de A. Pour le montrer, écrivons (30)
dans le cas d’une charge invariante (cf. (6)) :

3 A
— I'=—-—-_1T. 31
Bagor dln A 1)

Le membre de droite de (31) est indépendant de w, car I" est une

fonction de gy et A ; il en est de méme pour e I". B est indépendant de
0

(*) Bien que nous conservions la méme notation, les fonctions B et ydéfinies en (28) et
(29) ne sont pas identiques & celle du paragraphe A pour € = 0: cf. A.5.
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M, et, par analyse dimensionnelle, de A/u. Ayant prouvé la propriété
pour B, il est immédiat de I'étendre a .

Avant d’étudier la solution de (30), il est instructif de calculer
B (g, €) a lordre d’une boucle afin de se familiariser avec cette
fonction.

B.3. Calcul de B (g9, £) a l’ordre d’une boucle

La fonction B (gy, ¢) & l'ordre d’une boucle peut étre déduite de
I'équation (II1.56.b), mais celle-ci n’avait pas été démontrée ; nous
allons donc procéder a un calcul explicite. A cet ordre du calcul
Zy=1 et pour relier g, et g, il suffit de calculer ' au point de

soustraction :

u? D
TF'D(k; o) = ug — [ 70 j d’q + Perm.
q

<2 Q@)Y q*ky—q)

ot k, est une somme de k; . Si I’on calcule 4 Pordre g3, en négligeant les
termes en g3 ¢ (car g, sera d’ordre ¢), on peut poser D = 4 dans le
calcul de l'intégrale et I'on trouve :

AYp) (A
FO%k, ) = go A°— 3 g2 { ( A )
(kig) =¢go A 2g0 ) In m + Cte

Comme nous allons dériver par rapport a A, il suffit de garder le
terme en In A/u ; en utilisant (25.b) on obtient :

395 ([ A2\, A
gu =gy A° . (—)1

ITEEAW" m

soit :

A ;L)[ 3g° A]
= s — B —_ + ln_
9o go(g ,U«) (A g Y

et d’apres la définition (28) :

3 g% 3 g5
,E)=—¢8f + ———=—edg+ —— 32
B (9o, €) g 16 72 Jo 16 72 (32)

les termes négligés étant d’ordre g3, eg3, e%g,. La fonction B (go, €)
possede un zéro a:

. l67%e
0 .

9o = 3
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d
Si go<g¢, ﬁ% <0 et gy— g quand A décroit. De méme si
dg
do = 9¢> Hn“OX > 0 et & nouveau g, — g5*. Le point g est donc un point

fixe stable pour les contractions du cut-off (figure 4).

B e)

> —— o
O gO*

Figure 4. La fonction B (g, £).

1l n’est pas étonnant qu’il coincide avec le point fixe déterminé en
(I11.59), quoique cette identification ne soit pas possible aux ordres
supérieurs en e.

Nous avons vu au paragraphe A que la constante de couplage
renormalisée n’était pas autre chose (avec les notations de ce paragra-
phe) que go(p). Comme A/u — ©, go(p) — gg et la constante de
couplage renormalisée décrivant le comportement critique est égale a

g¢.

B.4. Solution de I’équation de Callan-Symanzik

La solution de (30) a déja été écrite au début de ce chapitre (équation
(14)). Pour bien faire ressortir I’équivalence entre la formulation du
chapitre 111 et celle des équations de C-S, et afin de rendre la lecture de
ce chapitre indépendante de la premitre partie, je vais détailler cette
solution ; une méthode plus directe est proposée a l'exercice 1.
Examinons d’abord le cas d’une charge invariante :

0 b} ~
(Fma+Pas ) Moo M =0. (33)
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On utilise le fait que les solutions de I’'équation aux dérivées partielles :

(i+ay)<p(x y) =0 (34)

sont de la forme F (x — y). Il suffit d’un changement de variables pour
se ramener a (34):

_ go dg' . i=i
[ty e

et la solution de (33) est de la forme :

do dg'
Fik ;InA—- — 1.
(’ 8 f B(g’))

Définissons maintenant gy(s) a 'aide de (4) qui peut s’écrire :

gols) d 4
Ins = — J _g,_ . (35)
w B
Comme
InA- Jg"_ _ j""“) dg’ _J"" dg'
B( B@') JueBW)
A go($) dg
?
on obtient la relation :
. o A
F (k- 6, 4) = I (Kir 60(5). 5 ) (36)

que nous avions déja vue (équation (7)). Il est immédiat de vérifier que
la solution de (30) est:

™k, go, A) = F(k;, go, A) exp (% fg" %),_‘;9_' ) (37)

out F(k;, gy, A) obéit a la propriété (36). On déduit de (37):

0(s)
r ki, g, A) = ___N Jg y(g')dg’
( do ) exp( B(g ) X

Xr(ki,go(s)"?) , (38)

€quation qui coincide bien avec (14) pourvu que la fonction y(g)
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définie dans (12) soit analogue (en fait identique 4 'ordre d’une boucle)
a celle définie dans (29). Ceci est bien le cas car de la relation :

r{ =2zy82r®™m

on déduit
Zy /g, A/ s
r™Mk;, go, A) = %/L) F(N)<ki7 go(s), 4 )
Z3 / (g’ A//“‘) s
et la fonction ¢ (s) n’est autre que :
ZS (g7 A//.LS)
L) = S (39)
3(g’ A/f“)
Elle vérifie donc d’apres (29) :
dln(s)
A L6)y oo (12)

En posant dans (38) s = A/u et en identifiant go(A/p) avec la
constante de couplage renormalisée ¢, on retrouve I'expression (15) de

Z3:
_ g y(g')dg’
) _exp<LO(g’£) B(g") ) ) (40)

B.5. Application aux phénomeénes critiques

|

ZS (g’

L’analyse dimensionnelle ordinaire permet de transformer (38) en
(cf. équation (1)) :

~-D+N 2-—1
F(N)(kia 9o, A) =S ' ( 2 ) g(s)N/Z F(N)(Skiv gO(s)7 A)

et en remplagant k; par k;/s :

b_
F(N)( ]—Z‘l— » Joo A) = S’D+N ( 2 1) g(S)N/Z F(N)(kia gO(s)’ A) . (41)

La région critique correspond & s— o0 ; dans ces conditions
go(s) tend vers la constante de couplage au point fixe gg*; ¢ (s) est
dominé par la région gy(s) =g : en effet :

go(s) "Ydg' Ins
_LO yf‘(?f)g ZL v(g(s)) dlns' =y (g, &) Ins,
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I'intégrale étant dominée par la région Ins’ — oo, si I'on admet que
v(g§, €) # 0 ; le comportement critique est donné par :

k. 0+ ¥ D-2)+ Yy o)
F(N)<'—l 907A> = S T2 )+2700 F(N)(ki’g(;kaA) (42)

H
s §— 00

ce qui permet d’identifier I'exposant critique 7, en choisissant par
exemple N =2:

F(Z)( E) _g2rred e 2w
N

et par conséquent :

n =g €). 43)
Le facteur d, mis en évidence dans (42) :
D 1 " _D n
d¢_2—1+27(g0,e)_—2— 1+2 44)
est bien sOr la dimension anormale du champ ¢ (x), qui, en dimension
D # 4, est différente de la dimension canonique dj = 5 1. L’équa-

tion de C-S permet donc de retrouver la propriété d’invariance
d’échelle au point critique :

GO(k)~k=2+m.

On notera qu’au point fixe cette invariance d’échelle se déduit
immédiatement de (30), qui se réduit alors, aprés un peu d’analyse
dimensionnelle, a :

0 (Ina wm( k. _
[alns (ZNn d)]F (s’gO’A =0

avecd=D - N(D/2-1).

C. EQUATIONS DE CALLAN-SYMANZIK POUR LA THEORIE
RENORMALISEE

Les équations du GR écrites précédemment ne sont pas des
équations exactes : au chapitre III comme au paragraphe B, nous avons
négligé des termes en 1/A? provenant des champs inessentiels. En
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prenant la limite A — oo, nous allons obtenir des équations exactes,
mais le prix A payer est que nous pourrons utiliser uniquement des
fonctions de corrélation renormalisées, qui sont les seules a étre
définies dans cette limite. Dans le cas de I'application aux phénoménes
critiques, les fonctions de corrélation renormalisées different des
fonctions de corrélation nues (physiques) par une constante multiplica-
tive Z)/% Dans le cas de I'application a la théorie quantique des
champs, ce sont les fonctions de corrélation renormalisées qui ont une
interprétation  physique  directe. Commengons par le cas

T=T/(m=0).

C.1. Equation de Callan-Symanzik pour T= T,

Les conditions de normalisation ont été rappelées en (25) ; écrivons
la fonction de corrélation nue :

_ A
r™(k;, ug, A) = Z3 ”/Z(g, 2 ) r{ k. g, 1)

et remarquons que I"™) est indépendant de p a uy et A fixés :

_9 rg _
v (ki» g, D], , =0, (45)

car la fonction de corrélation nue ne connait pas le point de renormalisa-
tion. Définissons les fonctions B (notée B au paragraphe A.5) et
v de la théorie renormalisée (ces fonctions ne sont pas identiques a
celles définies en (28) et (29), bien que nous conservions la méme
notation. De fagon générale, il faut prendre garde au fait que les
fonctions B et y dépendent du type d’équation de C-S, du schéma de
renormalisation etc.) :

-9
dln Z, 47
‘Y(g’ 8)_dlnp. uoyA ( )

ou cette fois les fonctions B et vy sont exprimées en fonction de la
constante de couplage renormalisée. Un argument analogue a celui du
paragraphe précédent montre qu’elles ne peuvent pas dépendre de
A/wm. L’équation (45) est transformée en une équation aux dérivées



292 Equations de Callan-Symanzik VIL.C.2

partielles, I’équation de Callan-Symanzik pour les fonctions de corréla-
tion renormalisées :

[algu +B8(, 8)%—%N7(g, e)] rgki, g, n)=0 | (48)

Rappelons l'interprétation de I'équation (48) : la physique doit étre
indépendante du point de renormalisation, c’est-a-dire du choix de u
qui est un parameétre nécessaire, mais arbitraire. Une variation de
w doit étre compensée par une redéfinition de la constante de couplage
(B (g)) et une redéfinition de la normalisation du champ (v (g)).

C.2. Points fixes

Nous allons adopter les conventions usuelles en théorie quantique
des champs et définir la variable s par une dilatation de u d’un facteur
s:p —sp (remarquez que le couple (A/s, u) équivaut a (A, us), le
rapport cut-off/masse de renormalisation étant inchangé) :

YO _pen: e =g (49.2)
ou !

g(s) dg’
s B(g")

Ins =

(49.b)

(attention au changement de signe par rapport a (4)). Dans ces
conditions la solution de I’équation (48) peut se mettre sous la forme :

-N(2- )
FéN)(Ski’ga“')st N(z l)exp( N‘[g /yggg()d)g )X

X F(N)(ki’ g(s)7 l“) . (50)

On obtiendra un comportement simple pour s —0 ou s — oo. si
lim g(s)ou lim g(s) = g*, ¢’est-a-dire si g (s) est conduit vers un point
50 5> ©
fixe. Dans le cas des phénomeénes critiques on s’intéressera a la région
s — 0, tandis qu’en physique des particules élémentaires c’est la région
s — o0 qui sera intéressante:

Un point fixe correspond & un zéro de la fonction B(g):

B(g*)=0
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étant donné que dans ce cas dg(s)/d Ins = 0. Le point fixe est de type

attractif, ou stable, si partant du voisinage de g* on est ramené a

g*; il sera de type répulsif, ou instable, si on s’écarte de g*.
Examinons les divers cas possibles.

Point fixe infrarouge (IR) stable (s — 0 : figure 5) :

B(9)

->-Ins

Figure 5. Stabilité IR.

Lorsque s — 0, un point fixe sera stable si la dérivée de B (g) au point
fixe est positive :

B(g*)>0.

En effet la dérivée est positive si g > g *, négative si g < g*, et on est
conduit dans les deux cas au point fixe pour Ins — — 0.
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Point fixe ultraviolet (UV) stable (s — oo : figure 6) :

B(g)4
i =
[ 9(s)
g>g*k
g*L _ _ _ T = -

Figure 6. Stabilit¢ UV.

La dérivée de B (g) au point fixe est négative B'(g*) <0).



VIL.C.2 Equations de Callan-Symanzik 295

Un point fixe infrarouge stable est ultraviolet instable et réciproque-
ment (figure 7) :

W B(9)

{ UV stable
IR instable

IR stable }
UV instable p

g

A 74

{ UV instable
IR stable

Figure 7. Une configuration hypothétique de points fixes.

Liberté asymptotique dans le cas D = 4 (figure 8)
B (g )ﬁ

B(g)ﬁ

Chromodynamique quantique, D =4

Figure 8. Points fixes en dimension 4.
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Si lorigine est un point fixe stable (IR ou UV), lim g(s) dansle
Ins>=xw
membre de droite de (50) est égal a zéro : les fonctions de corrélation
du membre de droite de (50) sont celles de la théorie libre.
L’origine est un point fixe IR stable dans le cas de la théorie en
¢*; c’est un point fixe UV stable dans le cas de la chromodynamique
quantique (XIII-D) ou de la théorie en ¢ a 6 dimensions (exercice 3).

Dans les deux cas on dira que la théorie est asymptotiquement (IR ou
UV) libre. Ceci ne veut pas dire que le comportement des fonctions de
corrélation obéit a 'invariance d’échelle naive. Le préfacteur dans (50)
contient en général des corrections logarithmiques au comportement
canonique (exercice 3). Cependant ces corrections sont calculables. De
méme si 'on se trouve a s grand, mais non infini, il est possible de faire
un développement perturbatif de I'{")(k;, g(s), n) en puissances de
g (s), qui est petit. Le fait que la chromodynamique quantique (théorie
présumée des interactions fortes) soit asymptotiquement libre a permis
pour la premiere fois un calcul fiable de certains processus : diffusion
profondément inélastique des électrons, production de paires de
leptons, etc., a haute énergie.

Lorsque lorigine est un point fixe UV stable, la théorie des
perturbations peut étre appliquée sans probléme pour k- oo, la
constante de couplage renormalisée ayant été fixée a une échelle w
finie. Au contraire, lorsque I'origine est un point fixe UV instable, on
quitte nécessairement la région perturbative lorsque k —» 0. Ce pro-
bléeme est évidemment une autre fagon de présenter la difficulté déja
mentionnée au paragraphe A lorsque le coefficient 8, de la fonction
B (g) est positif. Cependant 'argument présenté ici est un peu plus
général, car il justifie le fait que le comportement asymptotique ne
dépend que du signe de B, (et de 'existence éventuelle d’autres points
fixes, non perturbatifs).

C.3. Equation de Callan-Symanzik pour T=> T,

Lorsque T est supérieur a 7T,, ou, de fagon équivalente, lorsque la
masse (renormalisée) m est # 0, on peut utiliser les conditions de
normalisation (VI.22), et démontrer une équation de C-S (cf. exer-
cice 2). La méthode est parfaitement viable et permet d’obtenir les
exposants critiques (exercice 2). Cependant il est plus commode de
construire ia théorie a T # T, & partir de celle & T = T, : en effet les
conditions de normalisation étant régulieres & T = T,, contrairement
aux conditions (VI.22) qui sont singuli¢res dans cette limite, on peut
passer de fagon continue a la limite 7 = T.

La densité de hamiltonien utilisée dans le calcul sera (cf. (V1.49) ; si
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lon utilise une régularisation dimensionnelle, mg, = 0) :

1 A° 1 1 5
XO(X)ZE(V‘P0)2+HQO ¢3+§mgc <p§+§tZ<p§. (51)

Le coefficient de %cpg, qui est par définition la masse nue

mé vaut :

mi=mi +tZ

soit :
Zt =m}-mi, . (52)

On peut interpréter t comme une différence de température (7 — T)
renormalisée : rappelons que mg — mg. ( = ry — ry. avec les notations
de physique statistique) est proportionnel & T — T,: cf. équation
(11.11). ’

Grace a lidentité (VI.39) on peut écrire pour les fonctions de
corrélation nues (en réalité, je passe sous silence quelques difficultés
dues aux divergences infrarouges: il faudrait, en toute rigueur,
commencer par choisir une fonction 7(x) s’annulant a Pinfini) :

ZL L

r®(ms, + Zt) = ¥ 5

L

J F(N’L)(--' ;mgc) dyl dyL . (53)

Multiplions les deux membres de (53) par Z)/? et utilisons 'équation
(V1.50) définissant les I'{¥-1):

tL
ng)(ki’tyg)zZEI_}NyL)(kiaqj:Ovtzoag)' (54)
L

Le membre de droite contient des quantités finies I'{"" ) ; & moins
que la somme sur L ne soit divergente, I WM(k; 5 t, g) est donc bien une
quantité finie, alors que les constantes de renormalisation Z; et

Z ont été calculées pour la théorie de masse nulle.
La fonction de corrélation I'§¥> 1) obéit 4 une équation de C-S:

- 2 1 Ly N.L)_
[aln,ﬁﬁ(g’s)ag 5NY (9, ¢) Ly(g,s)]r,g _0
avee .
= din Z
79 = T [, 4 (55)
Comme
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on obtient I’équation de C-S pour I'§f¥)a T T, :

a i) 1 _ 0
[amwﬁ(g,e)@—zwv(g, &)~ 7(g, —~alnt] x
XrﬁN)(kiat,ga ,u)=0

(56)

La solution de (56) peut s’écrire (exercice 1) :
D
D-N(Z-1
I-‘IgN)(ki»t)g’:u')zs (2 )X

ns k;
xexp(—%NJl y(g(s’))dlnsf) F&N)(?’,%z,g(s),u) 7

0

avec (remarquez que ¢(s) dans (58) différe par un facteur s* de
t(s) défini en (111.89)) :

Ins
t(s):texp(—J 7(g(s’))d1ns’) . (58)
0
Choisissons maintenant s de telle sorte que
t(s)
e 1. (59)

Ce choix implique physiquement que dans le membre de droite de (57)
on se trouve trés loin de la région critique. En utilisant (58), ’équation
(59) peut s’écrire :

L-an ([ @4 v ans). (60)

M 0

Dans la région critique t/u? -0 et s -0, ce qui implique que
g(s) » g* L'intégrale dans (60) est dominée par les valeurs de
Ins' > — o0, et:

Lf“ Q@FF@h ) _ (24 7(g% )
I
Posons
1
V= —
2+7(g% ¢)
(Pidentification de v avec I'exposant critique habituel sera faite trés
bientdt), ce qui donne :
= ()
P

(61)
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On peut transformer (57) en:
V[D—N ( g—l) —%Ny(g*, s)]
N) ki 2
x Tl ———, u?g* ). (62.2)
(t/u*)

En particulier pour N =2 on trouve le comportement suivant de

ry:
- () (5)7) @

FéN)(kht,g’“‘):t X

ol 7 = v(g*, ¢€) et F est une fonction sans dimension. On constate
que :

e la quantité de dimension 1, u (¢/p?)”, doit étre identifiée avec la
masse renormalisée m = £~ !: en effet la fonction F ne dépend que de
la combinaison k/m = k¢. La masse m définie de cette fagon différe
par une renormalisation finie de la masse utilisée dans les conditions de
normalisation (VI.22) et dans I'exercice 2 ;

e ’équation (62.b) peut évidemment s’écrire sous la forme :

TP =pu"k?-"G(k¢).

La comparaison avec l’équation (1.30) ach¢ve Iidentification des
exposants critiques n et v:

n=v(g%¢e); v=R+¥@* I |. (63)

Les autres exposants critiques se déduisent de 7 et » a I'aide des lois
d’échelle (111.29). Ces lois d’échelle pourraient étre redémontrées, dans
le formalisme de ce chapitre, en étudiant I’énergie libre et I’équation
d’état pour T < T,. Je renvoie sur ce point a I'article de Brézin et al. ou
au livre d’Amit.

Les résultats qui préceédent méritent quelques commentaires :

(i) Dans la théorie renormalisée, c’est le parameétre w qui apparait
comme [’échelle naturelle : dans la région critique k; < u, t < wl;p
joue le role qui était dévolu a A dans la théorie nue. L’avantage de la
théorie renormalisée est que les équations de C-S (49) et (56) sont
exactes. Ceci donne la base de départ pour le calcul des corrections aux
lois d’échelle (exercice 8).

(ii) Les fonctions de corrélation dans (62) ont par construction une
limite finie lorsque ¢ — 0. Afin de simplifier les notations, je me limite a
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(62.b), mais le raisonnement qui suit est évidemment valable quel que
soit N. Si 'on se place a k& fixé et t — 0, 'argument de la fonction Ftend
vers l'infini. Le facteur 1*?~") doit étre compensé de fagon a obtenir
une limite finie, ce qui implique :

lim F(x) =x2""
X = 0

et

rik,t,g,m) = k>, (64)

k»m

On retrouve linvariance d’échelle dans la région ultraviolette k/m > 1
(ou r< §): on remarquera que le comportement ultraviolet de la
théorie massive (m # 0) est donné par un exposant identique a celui du
comportement infrarouge de la théorie de masse nulle (k/u < 1). Ceci
peut paraitre paradoxal car on s’attendrait plutdt a ce que le comporte-
ment pour k/m3>» 1 soit contr6lé par le point fixe UV (trivial)
g = 0. En réalité la théorie critique correspond a g = g* (cf. (B.3) et
point (iv)), et elle est contrdlée par le point fixe IR.

(iii) La masse renormalisée m peut étre définie de fagon plus précise
par :

g(s) dg’ ] P
= — - o~ (t
m=Su = Mexp[jg ﬁ( ) jis /[.L )

tandis que la solution de I'équation de C-S (56) peut s’écrire (cf.
exercice 1.b)

Tk, t, g, w) = z”ém( =, g(s)) P (k;, g (s), m)

avec

B(300) oo [ 5] - ()

La fonction de corrélation I'§") differe par une renormalisation finie

de la fonction de corrélation définie par les conditions de normalisation
(V1.22) ; on retrouve le fait que la limite m — 0 de cette fonction de
corrélation est singuliére, contrairement a la limite ¢ — 0 de I'§$¥). A une

température fixée I'§ est de la forme m? f(k/m) = m® f(k&) et ne
dépend donc que d’un seul! paramétre dimensionné, alors que la théorie
nue dépendait de deux paramétres dimensionnés mg et A: la consé-

quence de la renormalisation est qu’il n’y a plus qu’une seule longueur
(ou masse) pertinente a4 une température fixée.
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(iv) La constante de couplage nue g, est une fonction sans dimension
de g et de A/p :

- A )
9o f (g: w
qui vérifie I’équation différentielle :
dg, 3 d A
T TmE PO 5] flen) =0

dont la solution est :

90(%%) =yo(9(S),% )

Si P'on veut dilater le cut-off & g, fixé, il faut donc faire varier g, et
pour A - oo, g(s) — g*: nous retrouvons la propriété, déja signalée,
que la région critique est décrite par la théorie renormalisée avec
g = g*. La constante de couplage u; = g, A tend, dans ces conditions,
vers Pinfini. En fait quand g décrit I'intervalle [0, g *[, la constante de
couplage nue u, décrit 'intervalle [0, oo (exercice 6).

Terminons ce paragraphe par une discussion heuristique (%) du rdle
des opérateurs inessentiels, qui reprend sous un autre angle celle du
paragraphe A.2.

Un terme tel que ul ¢® a été écarté de la discussion sur la base
d’arguments purement dimensionnels : en dimension 4 la constante de
couplage u{ a pour dimension — 2, et s’écrit sous la forme A~2gY ou
g2 est sans dimensions et finie. Cependant Pintroduction de ces
opérateurs conduit a des divergences supplémentaires dans les fonctions
de corrélation, et I'effet global n’est pas évident. Par exemple I'opéra-
teur ¢° donne des contributions & I'® et I'® qui sont dessinées sur la

figure 9 :
re. .%,
k
(@)

re. — NS

(b) (®7)

Figure 9. Insertion de ¢® dans '@ et I'®.
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Le graphe (9.a) diverge comme A*x (Cte), tandis que le graphe
(9.2') contient une partie divergente en A*x (Cte) et une autre en
A?In (A/k) ; multipliant par u? ~ A~2on constate que ces graphes vont
contribuer & déplacer la température critique et & changer la normalisa-
tion du champ. Le graphe (9.b) contient une partie divergente en
A% x (Cte), tandis que le graphe (9.b) contient une partie divergente
en A% x (Cte) et une autre en In (A/k). Multipliant par u{, on constate
que la contribution de ces diagrammes peut étre absorbée dans une
redéfinition de la constante de couplage renormalisée. Ces redéfinitions
conduisent & des corrections a {'invariance d’échelle en ~ (k/A)® (cf.
exercice 8), correspondant trés précisément a I'existence d’une valeur
propre y, = — ¢ (cf. 1I1.60) dans le formalisme du chapitre III (cf. en
particulier le début du paragraphe III.B.3).

L’analyse rigoureuse consiste a étudier la renormalisation d’insertions
d’opérateurs composés tels que ¢°, (Ve )? etc., dans les fonctions de
corrélation. Cette analyse est plutdt pénible, en raison du couplage par
renormalisation de ces opérateurs. Elle confirme entiérement I’analyse
heuristique qui précede : les corrections dues aux opérateurs inessen-
tiels, une fois que 'on a tenu compte de la redéfinition de la constante
de couplage, de la normalisation du champ et de la température
critique, sont proportionnelles a un facteur A~2*%(), Leur influence sur
le comportement critique est donc négligeable et ceci justifie a poste-
riori Putilisation d’un hamiltonien de Ginzburg-Landau avec un seul
couplage en ¢*

D. LE GROUPE DE RENORMALISATION
EN DIMENSION D=4

Le cas D = 4 est le cas important en théorie quantique des champs et
nous allons établir dans ce paragraphe quelques résultats utiles.

D.1. Calcul de B(g)

Si l'on calcule en dimension 4, il est nécessaire d’utiliser un cut-off ;
on peut bien slir obtenir aussi B (g) par une régularisation dimension-
nelle : cf. le paragraphe E, mais on suppose pour le moment que les
constantes de renormalisation Z; et Z; ont été calculées en utilisant des
contre-termes, fonctions de g et de A. Rappelons que la relation entre
constantes de couplage nue et renormalisée est :

go=2125%g=12g.
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Z est une fonction de g et de A/p oudegetde X =In A/u. D’apres
I’équation (46) définissant B (g):

dg
din

az™' _ 4z az-' _

d
et Ml v o ax
do

B(g)= >

dlnZ
dX g

Exprimons maintenant la dérivée totale en fonction de dérivées
partielles :
dinZ| _9lnZdg alnZ dlnZ oalnZ

X |~ ag ax |, T Tx =-£Blg) 3 X

ce qui donne pour B(g):

golnZ/oX

ﬁ(g):1+galn2/ag'

(65)

Le point intéressant de expression (65) est que tous les calculs se
font avec g et X : il n’est pas nécessaire de repasser par go. Supposons
que nous ayons calculé Z a I’ordre d’une boucle :

Z(g,X)=1+g(a; X +ap) + O(g") .
L’expression (65) donne immédiatement :
B(g)=a1g’+0(g) (66)

et le coefficient 8, est donc égal & a, : By = a;. Nous allons maintenant
montrer que la structure de Z(g) est contrainte par I'équation (65) et le
développement perturbatif de B(g):

B(G)=Bog*+B1g" +---. (67)
Ecrivons le terme d’ordre g*> de Z(g) sous la forme g2 f(X):
Z(g,X) =1+g(a X +ao) +¢* f(X) + O(4)
In Z(g, X) =g(a1X+a0)+gz[f(X)—% (a1X+a0)2] +oeen

La comparaison des termes en g° donne pour f(X) Péquation
différentielle :

f'(X)=2a}X+B,+2a,a9
soit ;

fFX)=a?X’+ (By+2a1a)) X +b,.
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Ainsi le coefficient de g* contient un terme en In? A/p, qui est
entierement déterminé par le calcul a 'ordre g, ou plus exactement &
lordre d’'une boucle ; un calcul a deux boucles est nécessaire pour
déterminer le coefficient 8. De fagcon générale on pourrait montrer par
récurrence que :

Z@)=1+3 ¥ ¢"c,(nA/uy. (68)

n=1p=0

La puissance maximale du logarithme dans le terme en g" est
(In A/ )*: ce terme s’appelle terme de logarithme dominant (leading
logarithm) ; le terme en (In A/u )"~ ! est sous-dominant (next-to-
leading logarithm). Le terme de logarithme dominant est enticrement
déterminé par le calcul a une boucle, le sous-dominant par le calcul &
deux boucles, etc. Nous avions déja vu un exemple concret de ce
phénoméne au chapitre précédent.

La structure de ’équation (68) se généralise aux autres constantes de
renormalisation et aux fonctions de corrélation. Bien entendu cette
structure n’a rien de miraculeux : c’est une conséquence du groupe de
renormalisation. On pourrait par exemple 'obtenir en développant en
série de perturbations des expressions telles que (40) pour Z; ou telles
que (50) pour la solution des équations de Callan-Symanzik.

D.2. Théorie des perturbations améliorée par le groupe de renormalisa-
tion

Supposons que nous voulions calculer une fonction de corrélation
') pour des valeurs des moments p; ~p > w. Un calcul direct de
') en série de perturbations donnerait, en supposant m = 0, ou
po>m:

FéN):g%_lA(p,-)<l+g(ln%+c>+---) (69)

et si In (p/u ) est grand, la série perturbative converge mal, ou pas du
tout. Le cas d’une théorie IR libre est de toute fagon désespéré ; au
contraire dans le cas d’une théorie asymptotiquement libre dans le
domaine UV, il est possible d’obtenir un résultat sensé. On définit un
facteur de dilatation s par s = p/u > 1 et k; = p;/s. L’équation (50)
donne alors :

N, _ 2 (F) (_Jl "(s’v(g')dg’>
Fé (png’ /J,)—S €Xp 2 J‘g B(g,) X
X FéN)(kia g(S), /-") .
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Comme k;/pu ~ 1, la série perturbative du membre de droite est de la
forme :

y
2

rky, g(s), m) = [9(s)]

IA(ki)(1+g(S)f<kiﬁ;2]€j) o)

ou f(k; . k;/u*) ~ 1. Comme la dimension de A (k;) est la dimension
canonique de I'{Y) on obtient finalement :

#IA(Pi)exp<—%N J‘“”____yég(’g?%g’) x
g

x (1+g(s)f(ki’;2kj) T ) (70)

N
2

rf)=lg(s)]

Pour une théorie asymptotiquement libre dans le domaine UV,
g(s) - 0 et la série perturbative dans le membre de droite de (70)
converge rapidement ; application du GR a permis de « sommer les
grands logarithmes » de I’équation (69).

Une fagon équivalente de procéder consiste a choisir le point de
soustraction & sp au lieu de w pour définir la constante de couplage
renormalisée ; supposons que nous ayons choisi la charge invariante de
I’équation (6) pour définir g. Nous aurions alors :

fR(piO’g7M): fR(kio,g(S),P«) (71)

ol k; est le point de soustraction (V1.34) et p;y = sk;y. Par définition le
membre de droite de (71) est égal & g(s) et:

fR(Pio,%M):g(s)-

Afin d’éviter les grands logarithmes dans la série perturbative, il est
donc recommandé de choisir le point de soustraction a 4 ~ p, lorsque
les moments p; sont tous ~p. Le cas ennuyeux est celui ol
pi/p;>1: en effet le groupe de renormalisation ne contrdle pas les
In (p;/p;) qui apparaissent dans la série perturbative.

E. LE GROUPE DE RENORMALISATION
EN DIMENSION D <4

Pour [Papplication aux phénoménes critiques et au schéma de
renormalisation minimal, il est intéressant de calculer les fonctions 8 et
v & D < 4. L’expression obtenue dépend de ¢ = 4 — D, mais il suffira
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de faire tendre ¢ vers zéro pour avoir immédiatement les expressions de
B et y en dimension 4.

E.1. Une équation pour B(g, &)

Quand D < 4, on peut faire tendre A vers Pinfini dans les intégrales,
et il sera commode de relier gy et uy par:

Uy = 1" go (72)

au lieu d’utiliser (24). Gréace a la relation :

(3).(5),(3),
au, Uy auo g ag "

on peut écrire :

<ég> _ — #(Bup/dp ), 73)
o/ uy (9uy/09 ),
A la limite A —» o0, Uy = pgy(g) et:
( auo e
-— =€
M e )g Mg
d’out:
dg ep “go €do
B(g,g):p,(——) = - = -
O Juw (3ug/3g)u (390/39)u
ce que l'on peut aussi écrire :
9 In -1
B@. )= =) (74)
On trouve de méme pour y(g, &) :
doln Z3 ag din Z3
v(g,e)=n = ( — ) ( ) .
(g)(au)uﬂ aw Ju \ 09 )
A la limite A 5 00, Z; = Z3(g, ) et
31n Z,(g, ¢)
(@, &) =BG, 5) ————. (75)

ag

Notez que les expressions (74) et (75) ne s’appliquent que pour D
strictement inférieur & 4, lorsque 1’on a fait tendre le cut-off vers I'infini.
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Les divergences logarithmiques sont évidemment reflétées par la
présence de poles quand £ — 0.
La relation (74) peut encore étre transformée en utilisant g, = Zg :

- — &9
B(g,e)—1+galnz/ag (76.a)

d’olr :

[B(Q,S)+Sg+gﬁ(g,8)%]Z(9,8)=0- (76.b)

E.2. Calcul de B(g, €) et y(g, £) dans le schéma minimal

Par définition du schéma minimal, les constantes de renormalisation
ne contiennent que des poles en ¢ (dans ce paragraphe, i désigne 'ordre
du plle en ¢ et non le nombre de boucles) : »

Z(g,e) =1+ i —Z—(@ (77)
© Z(’)
Zyig. ) =1+ 3 = (“’). (78)

Examinons d’abord I’équation (76.a) ; dans le schéma minimal :

-1 o ()
(1+gaan> =1+ZZ (ig).

g e

Pour que B (g, ¢) ait une limite finie quand ¢ — 0, il est nécessaire que
seul z(M soit # 0 et :

B(g,e)=—¢eg+ Bsg) (79)

ol B,(g) = B(g) est la fonction B en dimension 4.
Notez que la relation (79) est spécifique du schéma minimal. On
obtient aussi :

B(g)=-2"9)

mais en général on a .calculé Z, et non InZ. Exprimons donc
B (g) en fonction des Z® en récrivant (76) :

B(g)%(gz(g,8))—892%2(9,8)=0- (80)

En reportant (77) dans (80) on obtient :

p@ (143200 ) -5 200 g5 ) 3 2200
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Il suffit maintenant d’identifier les puissances de 1/e pour écrire
Yexpression de B(g):

(
Blg) =220 81

ainsi que la relation de récurrence :
g -2+ g) = B(9)5- (9Z299)) - (82)
g g
Cette derniére relation permet par exemple de calculer les poles en

£~ 2 en fonction de ceux en ¢~ ': nous avons déja rencontré un exemple

d’une telle relation au chapitre précédent (paragraphe F).

~

Le calcul de v (g, ¢) s’effectue a partir de (75):

d
(8. e) 55— 7@ )] Zelg, ©) 0.
Utilisons maintenant ’équation (78) :

yAQ
860y L0y, e)<1 £y

Z{(g) >

8i
Gréce a la forme (79) de B (g, €) on obtient :

v(g.0) = v(9) =~ 5 Z(0) (83)
Dans le schéma minimal, y (g, ¢) est indépendant de ¢! Soulignons
que les formes (79) et (83) de B (g, £) et ¥(g, €) ne sont valables que
dans le schéma minimal. L’utilisation des conditions de normalisation
(25) conduirait par exemple a une forme de y(g, £) dépendant
explicitement de e. Notons aussi que 'on obtient des relations de
récurrence en i pour les Z{) (exercice 5).
Les arguments développés ci-dessus pour le calcul de v(g, £) se
transposent évidemment a celui de (g, £):

7(g, ¢) = v(g)=—ga—ag-z<“(g>. (84)

E.3. Calcul de B, v et ¥ a ’ordre de deux boucles

Au chapitre précédent, nous avions obtenu Z; et Z a 'ordre de deux
boucles :
2

a
Zs(ga‘f):l“‘l—z—g (85)

2 2
Z(g’8)=1+_38_a+9a 17 @

32 6¢

(86)
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avec a = g /(4 w)P/% (*). D’apres (81) :

B(g)=a%ad; (3a-Ta?) = g[3a-Ta]

3g2 _lz g3 N
@4uy 3 @n)

B(g) = o(@g") |. (87)

Comme les coefficients B, et B, sont indépendants du schéma de
renormalisation, on aurait également trouvé le résultat (87) par
exemple en utilisant les conditions de normalisation (25) en calculant
directement en dimension4 avec un cut-off : exercice (3); v¥(g)
s’obtient a partir de (83) et (85):

_ g d a?\ 1 g°  a?
'Y(g)——zma;(—ﬁ)““—'————- (88)

Pour calculer 7, il faut déterminer Z ; toutes les intégrales nécessaires -
ont été calculées au chapitre précédent, car elles sont identiques a celles
du calcul de I'®). Seuls les facteurs de symétrie sont différents.
Evaluons la partie divergente de I'®! a Yordre de deux boucles :

q

q
: 5
rey= —i + + +
q q
q
+ + +
La partie divergente du deuxi¢me graphe de (89) vaut :

et = (3)(2) -3

(89)

(*) Au lieu d'utiliser g, on peut utiliser une fonction de g: a =cgf(D) ou
f(4) = 1. Il suffira d’écrire toutes les équations ((77), (78), (79) ...) en fonction de « et
non de g.
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soit :

Z=1+=+0(’)

tandis que la partie divergente des quatre derniers graphes vaut :

a’4 13a22
T§(1+2541)‘§T; (1 + eay)

E €

1a?2 _61_22<

(1+ea))+ > 2 1+2£a1+f)

2

avec a; = 1 — % v - %ln (q¥/ 1?) (cf. VL.54.e).

On constate a nouveau I’élimination des termes indésirables propor-
tionnels a In (g°/p?) et on trouve pour ZZ;:

= 2a? a?
7z, =1+2 _x
Z, 1+£+ > .
soit -
- a 2a? 5a?
Z=1+—:€—+ = T2 (90)

Cette expression donne immédiatement ¥ :
- 5a?
(@) = —a + 2. o1

E.4. Calcul des exposants critiques a Vordre &2

Le point fixe est donné par B(a™*, £) = 0 soit:

17 .

3a*— 3 a* =g
c’est-a-dire :
«_ &, 17 » 3
a¥=z+age + O (¢”). 92)
A Pordre €2 m est donné par :
* &’
n=y(a*) =g (93)

résultat que nous avions déja obtenu au chapitre V (équation (V.65)).
Pour obtenir », il faut calculer ¥(a*):

€ 19 2

ey €19
V(@) =-3-1g"°
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et:

1 1 € 78 3
== +—+Os . 94
e 2ttt o) (94)

Les autres exposants critiques s’obtiennent grice aux lois d’échelle
(111.29).

EXERCICES

1) Solutions de I’équation de C-S

(a) Soit I'équation de C-S (56). On examine d’abord le cas d’une charge
invariante I’ r, correspondant & N = 0. En remarquant que (56) est équivalente

a dl'z/dIns =0, montrer que :
Fr(kist, g, ) = Trki, 1(5), g (s), m(s) =s5p) .

(b) Obtenir la solution de (56) sous la forme :
1 Ins , ,
Fathotogom) = o0 (=38 [ 7@ dins') Feth, 1), 9, 50)
0

et utiliser ’analyse dimensionnelle pour en déduire (57).

2) Autre type d’équation de C-S

(a) On se propose d’abord de démontrer I’équation établie a I'origine par
Callan et Symanzik. On suppose que la théorie renormalisée est définie par les
conditions de normalisation (VI.22) avec la modification suivante pour
D<4:

rtk;=0,m,g)=mg.

IS

d
En appliquant 'opérateur
ppiq P m( dm )go,A

I, i gor 4) = 25V 2.9 ) TRl m g)
montrer que 'on obtient ’équation :

[+ B @ ) g =3 NY (@, )| Tl m, ) -
= m2(2 - 7(9, 8)) FﬁN’l)(ki’ q = O’m’ g)
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ou 'Y correspond a linsertion d’un opérateur o2 (cf. chapitre VI-E) et :

dln Z
B s €)= 5 ’ = 2
(9, ¢) dm ot v(g,e)=m -

g0, A

Suggestion : utiliser les conditions de normalisation VI.22.b et VI.22.d.

(b) On peut montrer, a I'aide du théoréme de Weinberg, que le second
membre de P'équation de C-S est négligeable si k;/m > 1:

|7+ B )55 =5 NV (@, )| TV (K g, m) 0.
En déduire, pour k;/m > 1 (régime ultraviolet) et g = g* (pourquoi ?) que
P DR )
(¢) En utilisant une identité analogue a celle de I'exercice (6.a), montrer que
m~ |g-g*|V/®
ol w = B'(g*) et en déduire :
Z~m", Z~m7.

Identifier les exposants critiques v et 7.

3) En utilisant les résultats de I'exercice; V1.3 ainsi que ceux du paragra-
phe D.1, calculer la fonction B(g) a 'ordre He deux boucles. On vérifiera que
B (g), calculé avec une normalisation du type (VI.22) est bien identique au
résultat obtenu a I’équation (87) : les coefficients B, et B, sont universels.

4) Groupe de renormalisation pour la théorie en @3

(a) En utilisant les résultats de P'exercice (VI.2), calculer les fonctions
B(g), v(g) et v,,(g) de la théorie en ¢ en dimension 6 a 'ordre d’une boucle.

La fonction vy, (g) est définie par:

Ym(g@)=—dlnm’/dIn pi, ,.

On utilisera une régularisation dimensionnelle, ot m¢ = Z,, m? et le schéma

minimal ; m est alors un paramétre de masse, dépendant de la masse de

renormalisation p, analogue au paramétre ¢ de la théorie en ¢* (cf. (52)).
Réponse :

O\IUI

B(g)=—%ag;v(g)= a5 vu(g) =

avec a = g/ (4 w)’. Attention au remplacement de £ par /2!

b) Montrer que la théorie en ¢ est asymptotiquement libre dans le domaine
q ymptotiq

ultraviolet. En supposant d’abord la masse égale a zéro, montrer que le
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comportement quand s — co des fonctions de corrélation est donné par :
Ins
d—%NI yg(s)dIn s
™) sk;, g, m)=s 0 x
x T{(ki, (), ) = s%(ns)" """ Tk, g(s), 1) -

Pour obtenir la derniére équation, on a utilisé les approximations a une boucle
pour B(g) et y(g), obtenues a la question précédente.

(¢) On suppose maintenant la masse non nulle. Montrer que les fonctions de
corrélation obéissent & une équation de C-S:

0
d1lnm?

[ s+ B @) 55— 3N 7@ = 7a®)

N)(1. —
ah’lM ]Fls (k,,g,m,u,) 0.

Discuter I'influence de la masse sur le comportement asymptotique déterminé a
la question précédente.

5) Relations de récurrence

(a) En utilisant la relation de récurrence (82), montrer que le terme
c¢'(a?/&?% est calculable en fonction du terme c(a/z) de Z(g, £): ¢’ = c%

(b) En écrivant la constante de renormalisation Z, dans le schéma minimal
sous la forme :

© Z(i)
Z@ =1+ y 29

€

i=1
démontrer la relation de récurrence :

dzZ{ Y YA .
g—’—ag@ = ﬁ(g)—gg@— y(g) Z§Ag) .

6) Relation entre g, et ¢

On se propose de déterminer la relation entre les constantes de couplage nue
go = p~ “ugy et renormalisée pour D < 4. Pour fixer les idées, on pourra utiliser
le schéma minimal bien que les résultats soient plus généraux.

(a) Montrer que Z(g, ¢) est donné par :

T asw
£@. <) = """UO *(ex— B (x))] :

(b) En déduire que pour g - g* (g<g*)
Z(g, 8)& Ig_g*|-s/m

ol w = % By, s)|g=g,. Ceci montre que lorsque g parcourt lintervalle
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[0, g*(, g, (et donc uy) parcourt I'intervalle [0, co[. Comme g* — 0 quand
D - 4, la région g >0, D =4 ne peut étre atteinte sans un prolongement
analytique ol g, devient complexe. Cette remarque fournit une autre indication
sur Iimpossibilité d’une théorie renormalisée non triviale en dimension 4.

(¢) On prend maintenant le cas d’une théorie asymptotiquement libre dans le
domaine UV, par exemple la théorie en ¢ de 'exercice 4. Montrer que dans ce
cas Z(g, ¢) » 0 a g fixé (suffisamment petit — précisez ce point ! —) lorsque
e —» 0: la constante de couplage nue —» 0. Montrer également que :

Zy(g, £)=eXP[‘ j:?;z_y—%)(}’)} ~?

dans les mémes conditions.

7) Les fonctions B(g), v(g) ... dépendent du schéma de renormalisation,
mais certaines propriétés sont universelles, comme les coefficients B, et
B,. Montrer que les propriétés suivantes sont indépendantes du schéma de
renormalisation (*) :

(i) Existence d’un zéro de B(g): B(g*) = 0.

(ii) Valeur de B'(g*) quand B(¢g*) =0

(iii) Valeur y(g*) de v(g) en un point fixe

(iv) Premier  coefficient vy, de v(@):v(g)=v,9 +--- ou
Y(g)=vog +---.

8) Corrections a 'invariance d’échelle ¢

(a) On se propose de calculer les corrections au comportement invariant
d’échelle. Pour simplifier les notations, on se place & T = T, mais la méthode
se généralise sans difficulté & T s T,. La fonction de corrélation au point fixe
est invariante d’échelle pour s — 0 :

1 .
-5Nv@*)

d
FI(?N)(skhg*’ }L)=S F§N)(ki’g*, “‘)

On définit la fonction C ¥)(k;, g, u) par:

ré”(k,-,g,u):ex;,(_%zvf”'z&%@y_)(gi)dg,) y
g

X C(N)(kb g, K ) ng)(kiy g*: l")

avec C M(k;, g*, w) = 1. Montrer que C ™ vérifie ’équation :

8 B\ oo, -
(smatB@ o)) CPVkig n)=0.

(b) En utilisant (@ =dB (g, €)/dg],_,.):

B(g,e)=w(g—g*)+0(g—-g*)
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montrer que C ¥ est de la forme :
C™(k;, g, w)=1+ (g -g*)n " D(k;).
En déduire que I'§") se comporte comme :

d-1nye")
Tk, g, n)=s * I'k,g* n)(1+s°(g—-g*)p"*D(k)).

(¢) Montrer que = ¢ + C, £*et calculer explicitement C;. Ces corrections
a Pinvariance d’échelle sont précisément celles déja examinées au chapitre 111,
paragraphe B.3: I'exposant y, vaut — ¢ + O (&?) dans le modele en ¢* (cf.
exercice I11.4(b)).

9) Montrer que le potentiel effectif de Coleman-Weinberg (exercice V1.9(c))
est invariant (& I'ordre g*(u )) par un changement du point de renormalisation
&, a4 condition que g(un) obéisse a I'équation d’évolution (46) en dimension
D=4

Démontrer, de facon générale, que le potentiel effectif vérifie 'équation :

[ 727 B @ —37@ 55 | V(er0.8) =0

dln u oln ¢
277_2 (P4
et que V~Tm’ lorsque ¢/ <1 et D =4.

NOTES ET REFERENCES

On trouvera des exposés détaillés de Papplication du groupe de renormalisation aux
phénoménes critiques dans Brézin ef al. (sections V et VI) et dans Amit (chapitres 8 et 9).
On pourra également consulter deux articles trés clairs (plus particuliérement orientés
vers la théorie quantique des champs): S. Coleman in « Properties of Fundamental
Interactions », Comptes Rendus de I’Ecole d’Erice (1973) et D. Gross in « Methods in
Field Theory » (section 4), Ecole des Houches (1975) ainsi que Collins, chapitre 7. Le role
des opérateurs inessenticls est discuté par Brézin et al. (section VIII.C) et par Amit
(chapitre I1.2).

(" J. Polchinski: Nucl. Phys. B 231, 269 (1984). Voir également : A. Kupiainen in
Proceedings of the VIII" International Congress on Mathematical Physics, World
Scientific (1986) et les références citées.

(¥ E. Brezin: « Critical Behaviour from Field Theoretical Renormalization Group
Techniques », Ecole de Cargése (1980).

() Gross, paragraphe 4.

(*) Amit, chapitre 11.2.
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CHAPITRE VIII

Intégrales de chemin en mécanique
quantique et mécanique statistique (*)

Ce chapitre fait la transition entre les deux premiéres parties,
consacrées a la mécanique statistique et la troisi€me, qui traitera de
théorie quantique des champs. Nous allons retrouver dans cette
troisiéme partic les outils mis au point dans 'étude des phénomenes
critiques : intégrales fonctionnelles (souvent appelées intégrales de
chemin dans ce nouveau contexte), diagrammes de Feynman, renorma-
lisation et groupe de renormalisation. 11 suffira de quelques modifica-
tions pour adapter ces outils au nouveau contexte, et nous verrons sur
des exemples élémentaires le lien entre un probléme de mécanique
statistique et un probléme de mécanique quantique.

Toutefois, et bien que les résultats de ce chapitre permettent de
mieux comprendre une partie des développements qui vont suivre, je
ne les utiliserai pas directement par la suite. Ce chapitre peut donc étre
sauté en premicre lecture,

Dans son cours de mécanique quantique ('), Feynman utilise une
expérience d’interférences, du type trous d’Young réalisée avec des
électrons, afin d’introduire le concept fondamental en mécanique
quantique, celui d’amplitude de probabilité. Dans cette expérience, des
€lectrons émis par une source A arrivent en un point d’impact B
(variable) sur un écran E’, apres avoir franchi un écran E percé de deux
trous (1) et (2). Aux deux trajets possibles correspondent deux
amplitudes de probabilité a, et a,, qui sont données par les regles
suivantes (avec des notations évidentes : cf. figure 1):

a; =dag a4 5 a; =4apg Ay .

(*) Ce chapitre peut étre sauté en premiére lecture.
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@

E . B

Figure 1. L’expérience des trous d’Young.

L’amplitude de probabilité a pour observer un électron en B est la
somme de a; et g, :

2

a=4a+a,= Z aBja]-A.
j=1

7

= (3)
6) %
@) 7
! =(2) %

A )]
BV
-(1)

M (1)

J K L 7,

Figure 2. Une version compliquée de I’expérience des trous d’Young.
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Compliquons un peu Pexpérience en plagant plusieurs écrans intermé-
diaires J, K, L percés chacun de plusieurs trous numérotés j, k et /.
L’amplitude de probabilité a est alors :

a= ) agaydya,.
NN

L’amplitude de probabilité a est une somme sur tous les chemins
allant de A & B ; par exemple on a dessiné sur la figure 2 le chemin
A-J(1)-K(2)-L(1)- B.

On peut maintenant remplacer les écrans par un potentiel o se
déplacent les ¢lectrons, et imaginer qu’a chaque chemin {c] allant de A
a B on associe une amplitude de probabilité a[c], 'amplitude totale a
étant la somme (figure 3) :

a=Y%alc]. 1)

[e]

Figure 3. Chemins de A 3 B.

Reste évidemment & donner une prescription pour a[c] et pour la
somme sur les chemins. Ceci sera fait au paragraphe B ou, partant des
propriétés de I'opérateur d’évolution exp (- iHt ), nous montrerons que
le poids statistique de chaque chemin, c’est-a-dire a[c], est donné par
(~ : proportionnel &) :

ale] ~exp< %S(B,A)) )

ol S(B, A) est Paction classique calculée le long du chemin allant de 4
a B en un temps déterminé. Inversement on peut prendre (1) et (2)
comme postulats fondamentaux et en déduire tous les résultats de la
mécanique quantique : en d’autres termes on peut choisir (2) comme
postulat de quantification au lieu de la relation de commutation
canonique (RCC) [Q, P] = ih.

Les amplitudes de probabilité dans (1) sont des éléments de matrice
de 'opérateur d’évolution dans la représentation ol 'opérateur position
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Q est diagonal. On peut prolonger cet élément de matrice pour des
valeurs complexes du temps ¢ = —ir: Pamplitude de probabilité
devient alors un élément de matrice densité (non normalisé¢), toujours
dans la représentation ou Q est diagonal ; la fonction de partition du
systéme quantique est la trace de cette matrice densité lorsque I'on
choisit = 1/kT. Mais on peut interpréter cette matrice densit¢ d’une
autre maniére : & chaque chemin [c] on fait correspondre une configura-
tion [y] d’un systéme classique, le poids statistique de chaque configura-
tion étant :

p(y)~exp(- H{v]) 3)

ou H n’est autre que le hamiltonien du systéme classique et peut étre
déduit de § (H est aussi noté Sg: «action euclidienne» — cf.
paragraphe C). La fonction de partition du syst¢me classique est :

Z =3 exp(- H[y]) @

[r]

ol la somme sur les configurations est 'analogue de la somme sur les
chemins dans (1).

Ainsi, partant d’un systéme quantique et des amplitudes de probabi-
lité (2), on a abouti a un systéme classique décrit par les probabilités (3).

En mécanique quantique, un rdle important est souvent joué par le
chemin classique allant de A a B, c’est-a-dire par le chemin qui rend
I'action stationnaire. Dans le probléme correspondant de physique
statistique classique, la configuration correspondant au chemin classique
est la « configuration de Landau » : en effet la configuration de Landau
est celle qui rend le hamiltonien stationnaire (cf. I1.B). Aux fluctuations
quantiques autour du chemin classique correspondent les fluctuations
statistiques autour de la configuration de Landau. Ces fluctuations sont
étudiées par la théoric des perturbations, et il n’est pas étonnant de
rencontrer les mémes techniques dans les deux types de problémes.

Le paragraphe A traite d’'un exemple élémentaire : la correspondance
entre la dynamique d’un spin 1/2 quantique et celle du modéle d’Ising a
1 dimension. Cette exemple illustre de fagon trés simple le passage d’un
probléme quantique & un probleme statistique, et permet de préciser un
certain nombre de correspondances.

Au paragraphe B, on établit la traduction de 'équation de Schrddin-
ger en termes d’intégrale de chemin, en donnant un sens précis a la
somme dans (1). Un point important de ce paragraphe est I’étude des
conditions aux limites de T'intégrale de chemin dans le cas de I'oscilia-
teur harmonique : en effet un champ quantifi¢ n’est jamais qu’une
superposition d’oscillateurs harmoniques (indépendants dans le cas du
champ libre, couplés en général), et ces conditions aux limites seront
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cruciales par la suite, car elles assurcront 'unitarité et la causalité de la
théorie.

Enfin nous préciserons au paragraphe C le lien entre mécanique
statistique et mécanique quantique, en introduisant le « prolongement
euclidien » de l'intégrale de chemin du paragraphe précédent.

A. SPIN QUANTIQUE ET MODELE D’ISING

A.1. Intégrale de chemin pour un spin 1/2

Considérons en mécanique quantique un hamiltonien décrivant un
spin 1/2 (dans un systéme d’unités ot # =1):

H=- Ko, (5)

ou o4, 0,, 0, sont les matrices de Pauli habituelles (cf. 'équation C.5).
Dans la représentation ol o est diagonal, les vecteurs propres de H
sont :

1

1) 2% (1) e m 2% (-1)

correspondant aux valeurs propres E, = — K (état fondamental) et
E, = K. Ce systétme, comme tout systtme quantique, présente des
fluctuations ; par exemple :

(0] 3]0y # [<0]o;]0) |*.

Considérons maintenant un élément de matrice de 'opérateur d’évolu-
tion exp(—iHt) entre deux états propres de oj;, |S,) et |S,)
Sy, Sy ==1):

F(1,5,]0,8,) = (S,|exp(~ iHt)|S,) .

F est l'amplitude de probabilité pour observer la valeur propre
S, au temps ¢, sachant que le spin est au temps ¢ =0 dans I’état
|S,). Les valeurs de S, et de S, constituent les conditions aux limites au
temps t =0 et t respectivement. Pour simplifier les notations, on
suppose t = N = entier > 1 et on divise l'intervalle [0, ¢] en N interval-
les de longueur unité :

[l 1 1 1
T T T

0 1 N-1N-=t
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On insére maintenant un ensemble complet |S;), S; =+ 1, d’états
propres de o5 a chaque division de P'intervalle [0, ¢]:

(Sple™™ ISy = ¥ -+ ¥ (Sple” Sy y) x

S ==x1 Sy-_1==1

X {Sw_1l -+ |81) (Sife™ ]S,y (6)
et on introduit la fonction (complexe) V (S, S') par :
(S|e" |8y = e V5, %)
L’équation (6) devient :
(Sple 18,y =

= Y exp(—i[V{S,, Sy 1) +V(Sy_1:8n_2) +- -+ V (51, 5)]) (8)
(8] .

ou la somme porte sur toutes les configurations intermédiaires
S;:

y- %%

[5:) Sp==+1 Sy.1==x1

Il n’y a plus d’opérateur dans le membre de droite de (8), qui constitue
un exemple €élémentaire d’intégrale de chemin : remarquez que (8) a
bien la méme forme que (1).

Effectuons maintenant un prolongement analytique de (6) pour des
valeurs imaginaires de 7:¢ = —ir. L’élément de matrice :

F(~ir,8,;0,8,) = (Syle”""|S,)
est donné par une expression analogue a (8) et il est facile de calculer la

matrice V (S, §') correspondante car :

C‘H _eKal _ ch X sh K
- - (shK chK)

dans une base ou o ; est diagonal. En écrivant exp(— V (S, §')) sous la
forme :

exp(— Vi(S,§")) =exp(A + BSS')
on peut faire I'identification :
et*B —chK; et B -shK. )

Cette identification permet de faire le lien avec un probléme de
mécanique statistique classique. Supposons en effet qu'aux points 0,
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1,..., N nous ayons disposé des spins d’Ising §; pouvant prendre
seulement deux valeurs: §; = + 1 et §; = — 1, et dont le hamiltonien
d’interaction est :
N -1
H[S]=~- % (A+BS;Si1) (10.a)

i=0

la probabilité de la configuration [S;] étant donnée par :
plS:] =exp(- H[S;]). (10.b)

Le hamiltonien (10.a) est celui du modéle d’Ising a une dimension (cf.
I-B.2). L’expression (8) pour ¢ = — ir est la fonction de partition du
mod¢le d’Ising lorsque les spins des extrémités S, et S, ont une valeur
fixée (la température est incluse dans les coefficients A et B ; ou micux,
on pourrait identifier la température et #). Si Pon somme sur
S, et §,, on obtient la fonction de partition du mod¢le d’Ising avec des
conditions aux limites périodiques (cycliques)

Se(=So) = Sp(= Sy)
Y (A+BS; S 1) e
Zy=Ye =y e (11)
[5i) [5i]
qui est égale a:
Zy =Tre fm, (12)

La fonction de partition du systéme de N spins classiques est égale a
la fonction de partition d’'un spin quantique a la température
kT =1/N. Le programme exposé dans I'introduction a été réalisé sur
cet exemple élémentaire : partant d’'une amplitude de probabilité sous
la forme (8) (cf. (1)), nous avons construit un syst¢me classique, la
probabilité d’une configuration étant donnée par (10) (cf. (3)). Cepen-
dant le spin quantique n’a pas de limite classique, et nous n’avons pas
vu l'analogue de (2). Cest pourquoi l'intégrale de chemin (8) n’a
aucune utilité pratique. D’autre part, seule la limite N — oo donne des
résultats intéressants, ainsi que nous allons le voir ci-dessous.

A.2. Correspondances

1) Energie libre, énergie de I’état fondamental

A la limite N - oo, P’énergie libre par spin F est donnée par :

. 1 . 1 e
F = lim (—]-V—anN> = lim (—;lnTre H ) (13)

N oo T - 0
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H

Mais lorsque 7 — 00, €~ " est dominé par la valeur propre de I’état

fondamental :

e Hr — |0> e“ Eypr

0]
et:
F=E,.

L’énergie libre par spin du systéme statistique est donc I'analogue de
I’énergie de I’état fondamental du systéme quantique.

2) Fonction de corrélation. Produit ordonné dans le temps
Examinons maintenant la fonction de corrélation de deux spins
d’Ising :

- H[S$;]

(SnS) = 7= X SuSie (m=1) (14)
[5:]

qui peut ¢tre transformée en :

(Sm Sy = T ;_HT Tr [e W -mH g e m-DH o o= IH]

grice a la relation :

(Si|ose |8,y =8¢ VESS-0

/
A la limite ou N - 0, (m —1) fix€ on peut mettre (S, ;) sous la
forme :

(Sn Sy =" 0loy e ™=DH 5 )0) (15.2)
ou .
(Sn 81y = 1030 |> + | (0] as|1) |7e” @~ DEE) - (16)

Avant de commenter P’équation (16), remarquons que dans le cas
m <[ nous aurions obtenu :

(S, 8) =™y e” (=M g0y . (15.b)
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Si Pon définit 'opérateur o;(¢) de la représentation de Heisenberg :
0'3(t) = Cth T3 e iHt (17)

et par prolongement a des valeurs complexes de ¢:

oy(r)=el" g e H"

on note que les résultats (15.a) et (15.b) peuvent s’écrire sous la forme
unique :

(S Sy = 0| T(o3(ry) 05(11))[0) (18)
ou j’ai introduit le produit ordonné dans le temps (ou produit-T) :

T(o3(ty) 03(t)) = 03(ty) o3(t1)  tw=>1
= o3(;) o3(ty) Im<1y

(19)
et 7, =T, Si t, =1

Ainsi nous voyons que la fonction de corrélation de deux spins est le
prolongement, pour des valeurs complexes de ¢, de la valeur moyenne
sur I'état fondamental d’un produit-7. Aux fluctuations quantiques de
l'opérateur o correspondent les fluctuations statistiques de la variable
classique S.

3) Longueur de corrélation, saut d’énergie

Revenons maintenant a Péquation (16) ; avec le hamiltonien choisi,
(0] o3]0) =0 si cette condition n’est pas réalisée (cf. par exemple
Pexercice 1), il faut définir la fonction de corrélation en retranchant le
produit (S, (S;) (cf. I-D.1):

(S8 = (S S1) — (Sm) (S .
En nous limitant pour le moment au hamiltonien (1) nous obtenons :
(S Sy = [ (0] o3| 1y P e Im 118

ol AE = E;| — E, est la différence d’énergie entre le niveau fondamental
et le niveau excité. L’équation (20) permet d’identifier la longueur de
corr€lation :

(SpS)) ~e  Im-11/¢ (20)

et nous obtenons £ = 1/AE : la longueur de corrélation est 'inverse de
la différence d’énergie entre le niveau fondamental et le niveau excité.
Lorsqu’il y a plusieurs niveaux excités, le comportement de la fonction
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de corrélation est également déterminé par AE = E, — E;, ou E, est le
premier niveau excité ; cependant il faut choisir |m — | suffisamment
grand pour que la contribution des autres niveaux devienne négligeable.

Au lieu de diviser Pintervalle [0, 7] en intervalles de longueur unité,
jaurais pu le diviser en 7 /¢ intervalles de longueur . A condition que
7/e > 1 (plus précisément = AE/eh > 1), rien n’aurait été changé aux
résultats précédents, le probléme de mécanique quantique restant le
méme. On peut vérifier sans difficulté cette affirmation & partir de
I'expression explicite de la fonction de partition (exercice 1). Toutefois
le résultat (13) doit étre interprété de la fagon suivante : comme il y a

maintenant 7/& spins dans lintervalle [0, 7], _—lan n’est plus
T

I'énergie libre par spin, mais la densit¢ (linéaire) d’énergie libre.
Remarquons qu’au probléme de mécanique quantique sur un site a été
associé un probléme de mécanique statistique sur une droite, c’est-a-
dire un espace a 1 dimension. Dans une théorie quantique des champs,
a chaque point d’espace est associé un systtme quantique (et la
difficulté vient de ce que ces systemes interagissent entre eux). A une
théorie quantique des champs dans un espace @ D — 1 dimensions (¢’est-
a-dire un espace-temps de dimension D) correspondra un systéme
statistique dans un espace a D dimensions. Cette remarque étant faite, je
donne le tableau de correspondance général :

Densité d’énergie libre ~ Densité d’énergie de 1’état

fondamental
Fonction de corrélation ~ Produit ordonné dans le temps
Inverse de la longueur ~ Saut d’énergic AE

de corrélation

Enfin, on fait souvent tendre ¢ —» 0, ce qui permet de définir la
matrice de transfert T

eeK(rl . 1 eK
o <EK 1

)=1+8T.

B. PARTICULE DANS UN POTENTIEL

Envisageons maintenant un syst¢me quantique un peu plus compliqué
qu’un spin 1/2 : une particule (non relativiste) de masse m se déplagant
sur une droite dans un potentiel V (g). Nous appellerons Q et P les
opérateurs de position et d’impulsion, |g) et |p) leurs états propres
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dans la représentation de Schrodinger ; la normalisation choisie est :

Py =8(@—p"), (gla’y =8(@—q') et {qlp) =c*?/2m.
Q(t) et |g,t) désignent 'opérateur position et ses vecteurs propres
dans la représentation de Heisenberg :

Q([) — eth Q e—th 2
lg, 1y =¢|q) . @

B.1. Représentation d’une amplitude de probabilité par une intégrale de
chemin

Soit F(q',t';q,t) lamplitude de probabilité pour que la particule
initialement en g au temps ¢ se trouve en g’ au temps ¢’ (les conditions
aux limites sont donc q(¢t) =g, q(t') =q"):

F(q't';5qt)=4q',1'|q, 1y = (q'|e” ™" Dgy . (22)
Divisons Vintervalle [t,¢t'] en (n + 1) intervalles de longueur
t'—t
= 0:
n+l’ "7
- t } t 5 —
t():t tl t2 tn tn+1 :t’

Insérons aux temps f; ... ¢, un ensemble complet de vecteurs propres de

Q:

Fq'st';5q,1) = qul e dg,(q' 1”1 g,y (o
CiH @ —
) (ale ™ 1g)
et examinons I'élément de matrice (q'|e " |q) :

M a— i€ ' : })2
(@'le g = (@'exp (= ie ( S+ V(@) ) 1)
, . P2
== <q |1—13m—18V(Q)|q> .
Calculons les éléments de matrice de P2et V(Q):
' . d _
@1Pay = [ ap(a'|P1p) olay = [ $2pre -0

@'|1-1eV(Q)g) = 8(q9 —q")(Q -1ieV (9))

- —i 9+q' a i@ -
(1 1eV( 5 >>J2We .
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Tenant compte du fait que € — 0, on obtient :

~isH'q> ~

:J%exp(i(q’—q)p—is(ip-r%qLV(%ﬁ—,))) . (23)

(On peut négliger les termes en &2 par analogie avec :

lim (1-¢)/¢=e"T= (e 5)7/%.

£->0

q'le

On remarque que dans I'équation (23) les quantités p et g sont des
variables classiques (de méme que dans le paragraphe précédent le spin
S était une variable classique). On obtient une représentation de
Pamplitude de probabilité sous forme d’une intégrale de chemin :

: dp,
F(q'st';q,t) = lim J H dq: {—CXP(WI(CI1+1 = 4q1)) X

-0

xexp(-ie(—zgr%+V<ﬂ—+2q$l>>>}. (24)

Si V est uniquement fonction de Q, il est possible de faire I'intégration
sur p, (exercice 2) :

dp . PP m_\12 imq*
jz‘?e"p(‘pq ¥oam )~ <2i7rs> P\ 7% (25)
et Péquation (24) devient :

_F m_\1"2 | = m
F(q’t’q’t)_hm<2i7re) fll;ll[<217re

12
) dq,] X
E—»O

xexp[i m(q, - 411+1) i ( CI1+1)}. (26)

En introduisant la notation abrégée Pq pour lintégrale sur les
q; et en remarquant que :

(2522 - [T vaenar

"LV
2": (CII Qt+1) _)J"m(d_q >2df”
= t

dt I
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on trouve la forme finale de lintégrale de chemin:

. I
F(q’,t';q,t)=J9lep(%J

t

( %mq‘z— V(q)) dt”> =

=j@qexp(%5) 27

avec les conditions aux limites: g(t}=q; q(t')=q’.
Dans I'équation (27) j’ai rétabli la constante de Planck #; ¢ =
dg/dt et

. 1
L(g,4) = 5m¢" - V(q) (28)
est le lagrangien de la particule ; S est laction correspondante :

S = jt L(g, ¢)dt" . (29)

Naturellement la « démonstration » précédente mériterait d’étre
étayée par une analyse mathématique rigoureuse afin de donner un sens
précis & la mesure d’intégration Zq. Avec les mémes notations, on peut
transformer (24) et obtenir la forme hamiltonienne de l'intégrale de
chemin :

Fq' 05 q,t) = j.@p Pq exp (i j lpd — H(p, 9)] dt") )

Interprétation de P’équation (27)

Considérons un chemin allantde A : (g, t)a B: (g', t') ; a ce chemin
correspond une certaine action S. L’équation (27) peut étre interprétée
en admettant que chaque chemin est affecté d’un poids statistique

exp ( %S ) , et que 'amplitude de probabilité est obtenue en faisant la

somme sur tous ces chemins. Dans la procédure que nous avons suivie,
la somme sur les chemins a été définie de la fagon suivante : les chemins
sont des lignes brisées joignant les positions g, ¢y, ..., ¢' aux temps ¢,
t1, ..., ' (figure 4). La somme sur les chemins consiste a intégrer a g et
q' fixés sur tous les g; correspondant aux temps intermédiaires
t; avec une mesurc d’intégration :

n 172
( m )1’21‘[( m ) dg, - 9q .
[=1

2ime 2ime
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Figure 4. Trajets utilisés pour I'évaluation de (26).

L’action correspondant a un élément de chemin g, —» g, est:

as L, @-a) o ( Q@+ i ) _
2 € 2

Si |g; —q;.1| > (he/m)", le facteur exp i AS /# oscille rapidement et
la contribution du trajet sera faible : on voit que seuls les trajets
« suffisamment réguliers » donneront une contribution importante. Il
existe d’autres maniéres de définir des sommes sur les chemins, qui sont
décrites dans les livres cités en référence.

Examinons maintenant le role du chemin classique g4(z"). Ce chemin
correspond & une action stationnaire :

8S

8q(t") lg=qa6"

Considérons un chemin ¢(z"), et soit § laction correspondante
(figure 5). Si | S — S| > #, cela veut dire que le facteur exp iS /A oscille



VIILB.2 Particule dans un potentiel 333
L !

S

Figure 5.

un grand nombre de fois lorsque I'on déforme g en g. Ceci implique
que les chemins voisins de g donnent une contribution négligeable a
I'amplitude de probabilité. Celle-ci sera dominée par les trajets voisins
de q,, dont 'action est telle que |S — S| = #. Dans certains cas on
peut espérer tenir compte des fluctuations quantiques autour de la
trajectoire classique par un développement en puissances de #, ou
développement en nombre de boucles (cf. II-D.2 et V-D.2).

B.2. Fonctionnelle génératrice des produits-T. Expression du produit-T

En théorie quantique des champs, les valeurs moyennes sur I'état
fondamental |0) (souvent appelé¢ «état du vide ») de produits-7
d’opérateurs jouent un r6le trés important. En suivant la méme
technique qu’au paragraphe précédent, il est facile d’écrire Pélément de
matrice du produit-7 d’opérateurs-position entre les états |g'¢') et
lq, ) :

(@', ¢'|T(Q(t) Q(t2)) g, t) = J 29 9(t)q(n)e’. (1)
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Cependant on cherche plutét a obtenir :

(O T(Q(1) O(t:))[0)

et il va falloir « projeter » I’équation (31) sur I’état fondamental.

Amplitude vide-vide et fonctionnelle génératrice

1l sera commode de coupler le systéme quantique a une « source »
j(t); j(t) est une fonction dont la valeur est fixée a I’avance : elle ne
dépend pas de la dynamique de la particule. Le lagrangien se
transforme en :

1 .
L=5mg—-V(g)+jt)q@) (32)
et d’aprés les équations du mouvement, on voit que la particule est

soumise a une force supplémentaire j(t). La source j(¢) sera prise égale
a zéro en dehors d'un intervalle [z, '] (figure 6) :

tio
T T M r

Figure 6. La source j(t).

Dans cet intervalle 'opérateur d’évolution U;(t) vérifie I'équation
différentielle :

_dU; . |
i = [H-j()Q1U;(0) (33)

ou H est le hamiltonien correspondant aux deux premiers termes de
(32).

Soient deux temps T et T' qui vérifient T < ¢ et 7" = ¢ ; Pamplitude
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de probabilité¢ (Q', T'|Q, T, en présence de la source peut s’écrire :
Q. T2, T); = jdq dg’'<Q", T'|q", ') (q", 114, 1) <4, 1|2, T) .

Nous allons maintenant sélectionner I'état fondamental en prenant
des limites appropriées en T et T’. Remarquons que :

@112 T) = (g1 D|Q) = T o.(@) e (@) 7

ou ¢,(q) = q|n) cst la fonction donde de¢ I'état n, d'éncrgic
E,. En prcnant la limite T — ico on sélectionne I'état fondamental (il
faut imposer que les trajectoires Q(T) et Q'(T’) ne partent pas a
Iinfini, par exemple que Q(T) et Q'(T") tendent vers une constante
lorsque Tet T' — o, afin que les ¢,(Q) tendent vers une limite finie) :

(@, t]Q, TY = @o(q, 1) 93 (Q)

lim ¢
Toioo
avec :
_iE
eo(q, 1) = (q,t|0) =e Y 90(q) -

De méme on obtient :

tim e®7(Q, T'|q',t') = ¢ (q'st') 0o(Q).

T —iw

On définit la fonctionnelle génératrice (des produits-T) Z(j) par:

. Q,T|Q,T),
Z(j)= lm —p (i,_n — (34)
e e ?g(Q) eo(Q")
ou :
2)= | 40 dq’ o' ()10, 0000 69

L’équation (35) donne la « projection sur I’état fondamental » que nous
recherchions. L’interprétation physique de Z(j) est la suivante : si le
systéme est dans son état fondamental au temps ¢, Z(j) est 'amplitude
de probabilité pour le trouver dans I'état fondamental au temps
t' (a un facteur de phase prés): c’est « I'amplitude vide-vide ».

L’équation (35) montre que Z(j) s’écrit aussi sous forme d’un
élément de matrice :

Z(j) = 0| U(t', ) e~ |0) (36)
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ce qui entraine immédiatement que Z(0) = 1. Ceci n’est pas surprenant
car en labsence de source le systéme doit rester dans son état
fondamental. La démonstration qui a conduit & I'équation (27) reste
valable en présence d’un potentiel dépendant explicitement du temps
V(g,t): il suffit de remplacer exp(—iH(¢' —t)) par l'opérateur
d’évolution U;(¢', t) et d’utiliser la loi de groupe :

Uit 1)y =U;(t's t,) Uity 1y 1) - Uy, 8)

On peut donc écrire (g',t'|q,t); sous forme d’une intégrale de
chemin et a une constante A~ preés:

i
z()= 4 Jim [ 2qex (iL (L(q,q>+f<t>q(r>>dt) 37)
T - —i0

avec les conditions aux limites: lim g(r) =Cte, lim g(t')=
T ic0 T > ~io®
Cte. En général la constante multiplicative .4" ne joue aucun rdle et
I'expression (37) suffira toujours en pratique.
Les valeurs moyennes sur le vide de produits-7T s’obtiennent par
dérivation fonctionnelle par rapport & j; par exemple :

-iy _ 8%Z())
0|T(Q(t,) Q¢ 0y = & : ) 38
O]T(Q(1n) 2(2))|0) Z00) 35 (1) 85 (1) |; -0 (38)
Cette équation se déduit immédiatement de (37) ; il est nécessaire de
diviser par Z(0) lorsque Z(0) # 1.

B.3. Oscillateur harmonique et conditions aux limites de Feynman

Nous allons maintenant appliquer les résultats établis précédemment
au cas de [loscillateur harmonique ; les propriétés de l'oscillateur
harmonique sont bien connues en mécanique quantique, et ce n’est pas
a priori un exercice passionnant que de les retrouver par les méthodes
fonctionnelles. Le point est bien siir que la formulation que nous allons
mettre au point se généralise a la théorie quantique des champs.

Ecrivons la fonctionnelle génératrice d’un oscillateur harmonique de
masse m =1 et de fréquence o, couplé a une force extérieure (ou
source) j(¢), dont le lagrangien et les équations du mouvement sont :

L) =3¢ ~502q i)
(39)
g+aw’q=jt).
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La fonctionnelle génératrice Z(j) s’écrit :
; . 1., 1 .
z(j) = J 2q exp (1 J dt( 54— 5 w2q2+/(t)q(t)> ) (40)

ou les limites T — ico, 7' — — ico ainsi que la constante multiplicative
sont sous-entendues. Rappelons que Z(j ) est 'amplitude de probabilité
vide — vide en présence de la source j, et elle peut Etre calculée par des
techniques de mécanique quantique usuelles: le calcul est fait au
chapitre IX, paragraphe C. (Le début de ce paragraphe jusqu’a I'équa-
tion (IX.73) peut étre lu indépendamment du reste du chapitre ;
Iéquation (IX.73) donne Pexpression de U,(t', ¢).) Si Pon traite de
facon cavalicre les conditions aux limites, on peut intégrer par parties
dans (40) :

2y~ [ gqew (i [ ar(-1a80-F 0204 j0aw) ) . @D

L’intégrale sur g dans (41) est une intégrale gaussienne qui s’écrit, a
un facteur indépendant de j pres, sous la forme :

. 1 ' ] ] 2
z()-ex (-3 [| wasODa- i) @)
ou Dy est une fonction de Green (*) de l'oscillateur harmonique :
d2 2 ' : '
d—t2+w Dyt —t')=-18@—-1"). (43)
En effet le terme en ¢? dans (41) s’écrit :
_1 i d—2 + w?
54 ar q
et formellement D est I'inverse de 'opérateur entre crochets :
L d? 2 -1
D, = [l(d_tzw )] .
On s’apercoit immédiatement qu’il faut traiter soigneusement les

conditions aux limites, car (43) ne définit pas la fonction Dy de fagon
unique : on peut en effet ajouter une combinaison linéaire arbitraire

(*) En principe on ne devrait pas avoir de facteur (— i) dans le membre de droite de
(43) si Pon voulait définir une fonction de Green au sens exact du terme ; Dy est une
fonction de Green & un facteur i prés.
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des solutions exp(xiwt) de I'équation homogéne. On aboutit a la
méme conclusion dans I'espace de Fourier : prenant la transformée de
Fourier de (43), et appelant k; la variable conjuguée de ¢, on obtient :

(k(% - “’2) Dp(ky) =i (44)

Dr(ky) a des pOles & ky = = w, et nous avons besoin d’une prescription
pour traiter ces péles. Cette prescription, qui correspond & traiter
correctement les conditions aux limites, sera déduite du calcul explicite
de Z(j). On pourrait utiliser le résultat (IX.73), mais il est intéressant
de montrer que I'on peut tout faire avec I'intégrale de chemin, et qu’il
n’est pas nécessaire de passer par le formalisme opératoriel.

Le calcul de Z(j) est proposé¢ a Pexercice (3), ou suffisamment
d’indications sont données pour que ce calcul ne présente pas de
difficulté. Avec le changement de notations ¢t - #;, t' > 1y, T =1t;—1t;,
on obtient d’abord F(qy, t7;q;. 1) = (q;tf|4 z,-)j :

® 1”2
stilan i) = | 5o
45 t5lqi t>, (217-rsmwT) *

iw 2 2 _ )
xeXp{zsian[(q‘+qf)cosz 2q;q5] +
ig;

J[fsin (0 (e = 0)] (1) dt + —L

+ — -
sinwT sinwT

o , i
xﬁ sin [w(t—ti)]j(t)dt—mx

X ﬂ drde’ j(r) 0(t —t')sin [w(t;— )] sin [ (' — ;)] j('). (45)

Pour obtenir Z(j) il faut utiliser (35) avec:

w -Lag? —la

eolg:1) = (2) e T 2" (46)

v

Les intégrales sur g; et g sont des intégrales gaussiennes et I'on trouve
pour Z(j) (cf. exercice 3) :

Z(j) = exp {—%ﬂw dr dt’j(t)DF(t—t')j(t’)} 47

avee

DF(t—t')=2Lw[O(t—t')e_iw(t_t’)—!—O(I'—l)e—im(t'_t)] (48)
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On vérifie immédiatement que Dy(r —t') obéit bien a I'équation
(43). Le calcul complet a permis de fixer la fonction de Green
Dg de fagon non ambigué. Etablissons maintenant un résultat fonda-
mental pour la suite : Dy (t) s’obtient a partir de (44) par la prescription
de Feynman w?— w®—ie (¢ - 0*), la convention pour les transfor-
mées de Fourier étant fixée par (49) :

© dko e—ikot
Dp(t) =1 _— 49
F() J—wzwkg—w2+i8 ( )
Cette prescription place les poles & ky= — o +ic et ky = 0 —ie.

Calculons Dy(t) par la méthode des résidus: pour t=0 on peut
refermer le contour par un grand demi-cercle dans le demi-plan
inférieur et pour ¢t <O par un grand demi-cercle dans le demi-plan
supérieur (figure 7) : on retrouve bien I'expression (48).

Dans le cas de Voscillateur harmonique, on pourra remplacer
avantageusement I’équation (40) pour Z(j) par:

. B 1 . ;

Z(jy=N f 9q exp (1 J ( zq-2_ (w2_1s)q2+1q> dt) . (50)

— 00

) Im k)

— w +ie

> Rek,

Figure 7. Le contour de Feynman.
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Remarquons aussi que d’apres (38) et (42) on démontre :

O|T(Q) Q' NI0) = Dp(t—1")

relation que I’on peut aussi établir par un calcul direct (cf. exercice 4) :
ceci nous conduira a identifier fonctions de Green et valeurs moyennes
sur le vide de produits-T d’opérateurs position.

Le lecteur qui aura mené jusqu’au bout les calculs de Pexercice (3)
aura constaté que ceux-ci, sans présenter de difficulté, sont néanmoins
assez longs. Ceci suggére que les conditions aux limites (g,t) et
(q', t') de l'intégrale de chemin (27) ne sont pas les mieux adaptées au
probleme de Voscillateur harmonique. La forme la mieux adaptée est
de type hamiltonien, avec des conditions aux limites sur les variables
a(t) et a*(¢), analogues classiques des opérateurs de création et
d’annihilation. Cependant, méme avec ces variables, il est nécessaire de
disposer d’une préparation technique importante (espace de Barg-
mann), et je renvoie a Iarticle de Fadeev ou au livre d’Itzykson-Zuber
pour cet aspect des intégrales de chemin (?).

C. PROLONGEMENT EUCLIDIEN ET COMMENTAIRES

C.1. Fonction de partition quantique

Les limites T — ico, T' — —ico peuvent paraitre a priori assez peu
naturelles. On obtient des limites beaucoup plus naturelles en travaillant
avec des temps imaginaires t = —ir et lopérateur d’évolution
exp(— Hr). L’élément de matrice :

<q/!e—H(r’_1—)|q> _ F(q’, —-i’T’;q, —IT)

est le prolongement analytique pour des valeurs ¢ = —ir, ' =
—ir’ de I'élément de matrice (22). Le raisonnement conduisant a
I’équation (27) peut étre suivi pas & pas et permet d’écrire I'élément de
matrice sous forme d’une intégrale de chemin :

(q'le" =gy = J@q_eXP(— J (%mq'2+V(q)) dT”) . (51)

Les signes dans I'exponenticlle s’expliquent ainsi: le prolongement
analytique fait passer de ¢ & —ig':

—ieV(g) > - €'V (q)

. (dg \2 ,{.dg \?2 ,{ dg \?2
() (1) ()
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L’expression (51) fait apparaitre le « lagrangien euclidien » (la motiva-
tion pour cette terminologic apparaitra au chapitre X, paragra-
phe C.3) :

Li(g,d) = 3md +V (@) (52

T

(remarquez le signe + devant V (g)), dont Plintégrale sur 7" est
« laction euclidienne » Sg. .

L’¢lément de matrice (51) est un élément de matrice densité non
normalisée p (q', ¢ ; 7' — 7). Cette matrice densité obéit a une équation
de diffusion, qui est I'’équation de Schrédinger pour des valeurs
imaginaires du temps (exercice 2). L’intégration sur g et g’ avec
g = q' donne la fonction de partition de la particule quantique a la

température T(8 = 1/kT)

Z(B) = Tre " _ jdq<q1e-"”|q> -

B L(O)=q(ﬁ)gq exp(— foﬁ (%mq'2+ V(q)) dTH) O

Dans la forme fonctionnelle, on doit intégrer sur toutes les trajectoi-
res vérifiant les conditions aux limites périodiques :

q(0)=4q(B).

Les moyennes thermiques de « produits-T » (avec ordre en T) sont
définies par :

(T(Q(r) Q1)) = 3 Tr (T(Q(1) Q(ry) e~ #1)) =

_1 J @qq(n)q(mexp(— jBLE«;,q')dr"). (54)
Z )40 =q(8) 0

Ces produits-T obéissent a la condition de périodicité (évidente sur la
forme fonctionnelle) ;

(T(Q(B) Q(72))) , = (T(Q(0) 2(72))) (55)

qu’il est aussi facile de démontrer en utilisant la cyclicité de la trace. Ce
sont les prolongements analytiques de produits-T & température finie
(exercice (4)).

Pour définir une fonctionnelle génératrice Z;(j) de valeurs moyennes
sur le vide de produits-7, il faut & nouveau projeter sur ['état
fondamental. Les limites 7’ —» 00, 7 — — 00 sélectionnent cet état et on
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obtient pour Zg(j):
2:) = # [ 24

<o (= [ (3 +v@-ienaan) ar) 6o

- Q0
les conditions aux limites étant

lim g(7)=Cte, lim g(r’)=Cte.
T — 00 7' 50
Zg(j) est appelée fonctionnelle génératrice euclidienne ; remarquez
que I'expression (56) est logique : pour projeter sur I’état fondamental,
il faut faire tendre la température vers zéro, c’est-a-dire g8 vers Iinfini,
En dérivant par rapport a j, on obtient les prolongements analytiques
de valeurs moyennes sur le vide de produits-T ordinaires (cf. (38)):

-y 8"Z(j) __1 8"Z(i)
20) 8j(n) .. 3j(e,) "=~ Z6(0) 8j(m1) ... 8j(7,) |0

. (57)

La figure 8 permet de mieux visualiser les conditions aux limites dans
(37) et (56).

Imz¢
T-oio
T — — 0O @
t t'
Ll g L d L f o ln t gy po
[ drdrararard 777777777 »
Ret
TS5 0
7
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C.2. Analogue classique

Suivant le schéma exposé dans l'introduction, nous allons maintenant
trouver un probléme de mécanique statistique classique qui soit
lanalogue du probléme quantique. Effectuons le changement de
notations :

to>x; To—=; ’T'—»%

2 2

et considérons une quantité g(x) (un «champ ») aléatoire dans

lintervalle [— Ii‘ , -121], avec des conditions aux limites g (— 5 ) =
L
1(3 )

ﬂ q(x)

}'//"-N\\k('-.\ <,/’/”--~\\\4
P \\ X

'L/zt/,’/, \‘K L~ JL/zﬁ
7 ~

\
~

Seo

Figure 9. Deux configurations du champ g(x).

On suppose que chaque configuration g (x) du champ est affectée du
poids statistique :

exp{— j// (%) V@ -iwae)] dx].

La fonction de partition (= somme sur toutes les configurations du
champ ¢(x)) sera donnée par une formule analogue a (53):

. L7z 11 /dg\>2 .
zs) = [aew (- [ [3m( L) +v@r-ie)aw)] )
-L/2
(58)
ou la mesure d’intégration Z¢ est définie par une limite analogue a

celle que nous venons de voir. Le changement de notations g(x) —
¢ (x) permet bien évidemment de reconnaitre dans (58) la fonction de
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partition du modele de Ginzburg-Landau a 1 dimension, avec une
interaction V(¢ ). Les corrélations (g(x;)g(x;)) en Vabsence de
source j seront données par dérivation fonctionnelle de (41):

_ 1 8%Ze(j)
Zg(0) 8j(x1) 8j(xy) }j-0

(q(x1) q(x2)) (59)

et seront reliées aux valeurs moyenncs sur le vide de produits-7 du
probléme quantique correspondant si 'on fait tendre L vers Uinfini. On
pourra faire & nouveau la correspondance entre €nergie libre par unité
de longueur et énergie de I’état fondamental, inverse de la longueur de
corrélation et saut d’énergic AL,

C.3. Oscillateur harmonique euclidien

Le prolongement euclidien de la fonctionnelle génératrice (50) de
Poscillateur harmonique est :

Zej) = H x
<Jaaon(- [7 (Joedere-ienaen) o). @

L’intégrale sur g dans (60) est une intégrale gaussienne ; pour la
calculer, nous avons besoin de l'inverse Dg(7) de Popérateur :
d2
-t w

dr?

2

c’est-a-dire de la fonction de Green :
d2 2 D ’ I
—a—T—2+w fr—7)=8(r-17"). (61)

Naturellement Dz(7) n’est pas autre chose que la fonction de corréla-
tion a deux points du modéele gaussien a 1 dimension. La solution de
(61) est de la forme :
DE(T)zz_l._e—“\*'+Ae‘"*+Be-“ (62)
w

et le résultat de I'intégrale gaussienne (60) est :

Z(j) = M'cxp(%ﬂ dr dr’ j(r) Dp(r — T');(T')> . (63)
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Cependant si nous voulons que lim g(r) = Cte, il faut éliminer les

T4+ 00

solutions de 1’équation homogéne dans (62), et il reste :
De(r)= e w7l | (64)
2w

Dans I'espace de Fourier, Dg(v), ou v est la variable conjuguée de 7,
vérifie :

(»’+ 0 Dg(v) =1 (65)

et la transformée de Fourier inverse donne bien (64); la fonction
Dg(7) est le prolongement euclidien de Dy(t) ; en effet d’apres (48) on
vérifie :
DF(— iT):DE(T). (66)
Notons enfin que d’aprés (53) et (63) :
Dp(r —7') = O] T(Q(7) 2(7'))|0) (67)

ce que l'on peut vérifier par un calcul direct (exercice 4).

Tous les résultats obtenus pour l'oscillateur harmonique vont se
généraliser a la théorie quantique des champs (chapitres IX et X). La
scule complication est qu’au lieu d’avoir une seule fréquence w, on
devra intégrer sur des fréquences w (k) dépendant d’'un moment k.

EXERCICES

1) (a) La fonction de partition du modele d’Ising & une dimension est donnée
(cf. I-B.2) par:

Zy =¥ 2¥[(ch BYY + (sh B)"]

pour un hamiltonicn :
N1
H=- % (A+BS;S 1)

=0

et des conditions aux limites cycliques. La fonction de corrélation vaut (pour
N - 00):

(5,S,) = (th B)I!=m1
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En utilisant ces résultats, vérifiez la correspondance entre 'énergie libre par
spin et I’énergie de I’état fondamental. Que se passe-t-il si 'on divise I'intervalle
(0, 7) en 2 N intervalles au lieu de N ?

(b) Examiner le cas ou l'on divise [0, 7] en 7/¢ intervalles, € — 0.

(¢) Au lieu du hamiltonien (1) on prend :
H=—-K[o,c0os8 +co,sinb].

Comment les résultats du paragraphe A sont-ils modifi€s ?

2) (a) Examiner la convergence de l'intégrale :

P o lipg—ic 2
Jzﬂ_exp<1pq~132m)

et montrer que le choix de la racine carrée dans (25) est bien correct
(Suggestion : remplacer € par ¢ —in et examiner la limite n — 0).

(b) Montrer que la fonction d’onde ¥ (q’,t') au temps ¢’ peut s’écrire en
fonction de celle au temps ¢ a laide de:

b )= [daP@. v a0 b
Calculer F(g', 1" ; q,1) lorsque le potentiel V (g) = 0.
(c) Montrer que F(g',t'; g, t) vérifie 'équation de Schrodinger :
[isp-H@)] F@'.r.q.0=0
avec la condition aux limites :
F(q',1;9,1)=8(q" —q).

(d) Montrer que Pélément de matrice densité (51) vérifie 'équation de
diffusion :

a I ! !
[ o +H@)]p@. 750, 7)=0
avec les conditions aux limites :
p(q's7;9,7)=38(q —q).

(3) On se propose de démontrer les équations (45) et (48).

(a) Soit 7(¢) une solution de I'équation du mouvement de 'oscillateur forcé :

G+ o’qg=j@) )
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et gy(t) une solution de loscillateur libre. Il sera commode d’écrire pour
tiStStf (T—“—tf—t,)

gt) = qo(t) + jth(t,t’)j(t’)dt’ @)

t

olt G(z,t') est une fonction de Green de loscillateur harmonique vérifiant :

d? 5
(d_z‘z+w>G(t’t,)=8([-t’); G(t,-,t)=G(tf,t)=O,

Montrer que 'on peut écrire :
G, t)Y=00—-tHu@)v@)+ 0@ —t)u(t')v()
ol u et v sont solutions de I'équation homogene :

u(t) =Asinew(t;~1t)
v(#) =A'sinw (t —1¢;)
avec : AA = — [wsin (oT)]".

Pourquoi les points w1 = + 7, =2 m, etc. sont-ils singuliers ?
(b) Soient les conditions aux limites :
q(t;)=4q;; qt;) =q;

et g(z) une solution de Uéquation du mouvement (1). On écrit: q(t) =
g(t) + h(t) avec h(¢;) = h(;) = 0. Montrer que laction S(q, j) s’écrit :

S =5@ i+ [ k6 -0

ll
le deuxieme terme étant indépendant de ;.
(c) Calcul de S(g,j): on remarque que Fo = g;, Jor = gy €t que:

o1,
3 [Nimao.
.

i

]

i 1
["cara-1a

4
En déduire S(q;, q; ; j), c’est-a-dire P'exposant dans (45) (2 un facteur i pres).
(d) Effectuer I'intégrale sur g; et g, pour obtenir Z(j) (a un facteur constant

prés), en utilisant la fonction d’onde (46) de I’état fondamental (Uintégrale est
une intégrale gaussienne double, dont la matrice A est:

—iw ew? -1
A=FaT (—1 ei“‘7>>

et obtenir 'exposant dans (48).
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(e) Reste a établir le coefficient devant 1’exponentielle, c’est-a-dire en
particulier le facteur (/2 iw sin @T )" dans (45). Pour cela on discrétise
I'intégrale :

t
. j Dhexp (1 det% - w2h2)>
t

et on remarque que si D, est une matrice n x n de la forme :

son déterminant A, vérifie :

A=A, —a’A,_,.

(f) En réalité le calcul n’est valable que si |@T| < . Pour calculer le
préfacteur dans le cas général, on remarque que :

qu”F(q’ t';q",t"YF(q",t";q,t)=F(q',t ;q,t)

et on prend ¢t =0, t" = 2—77— , U= T , j = 0. En déduire le préfacteur :
w w

e-'z"(a““‘(”?))( W ._)”2

27 (sinwT|
ol Int (x) est la partic entiere de x.

4) (a) Montrer par un calcul direct dans le cas de oscillateur harmonique
que :

Dp(t = 1"y = (O T(Q(r) Q(£'))[0) .

On utilisera I'expression de Q en fonction des opérateurs de création et
d’annihilation :

1
Q- (@+a')
V2o
¢t on montrera que :
- —iwt . T Y et
a(ty=ae™ ", a (t)=a' e,
Le calcul de la valeur moyenne sur I'état fondamental est alors trivial.

(b) Méme question pour Dg(7 — 7').
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(¢) Calculer (r =1it):

Dg(t—t') = (Tre Py 1Tr (e #1 T(Q(1) Q(t')))
Dg(r — ') = (Tre Py 1 Tr (e #1 T(Q(7) Q(7'))) .

Montrer la périodicité de Dy :
Dﬁ(T =0,7")= Dﬁ('r =B,7").

Ces résultats sont faciles a généraliser a une théorie quantique des champs a
température finie (°).
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CHAPITRE IX

Quantification du champ de
Klein-Gordon

La théorie quantique des champs est née de la nécessité de décrire
des processus ou des particules sont créées ou détruites (annihilées). Un
exemple élémentaire est la transition radiative d’un atome dans un état
excité A*, qui revient & son état fondamental A en émettant un photon

(v):
A*—>A+‘Y.

Le photon est créé au moment de la transition.
La désintégration 8 du neutron, ol un neutron (n) donne un proton
(p), un électron (e~ ) et un antineutrino (7) est un autre exemple :

no-p+e + 7.

Dans ce cas également les particules finales sont créées au moment de
la désintégration : un argument simple, fondé sur le principe d’incerti-
tude, permet par exemple de montrer que [’électron émis dans la
désintégration B du neutron ne peut pas préexister dans celui-ci. Les
réactions ou des particules sont créées ou détruites sont la regle en
physique des particules élémentaires : par exemple un méson #° peut
étre créé dans la collision de deux protons :

p+p-op+p+ml.

Les réactions ol des particules sont créées ou détruites sont
fondamentalement différentes des réactions chimiques, qui correspon-
dent a des réarrangements d’atomes dans les molécules, et des réactions
nucléaires, ol des nucléons se réarrangent en donnant des noyaux
différents : dans les deux cas il y a réarrangement, et non création ou
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destruction. Toutefois la ligne de partage n’est pas aussi évidente, le
processus de réarrangement pouvant &tre complexe, avec destruction
ou création de particules — virtuelles — dans une étape intermédiaire.
L’équation de Schrddinger, qui suppose le nombre de particules fixé,
est incapable de décrire des processus de création et de destruction,
mais dés les années 30, les fondateurs de la mécanique quantique ont
compris comment la quantification d’un champ classique (appelée
improprement pour des raisons historiques « seconde quantification »)
pouvait décrire de tels processus. Considérons par exemple un champ
électromagnétique dans une cavité ; ce champ peut étre décomposé en
modes normaux (propres), chaque mode étant en fait un oscillateur
harmonique de fréquence w,. La quantification du champ, qui consiste
a imposer des relations de commutation entre le champ et son moment
conjugué (cf. équation 15), permet de montrer que chacun de ces
oscillateurs harmoniques devient un oscillateur quantifié, dont les

niveaux d’énergie sont %hwk, %hwk, ooy <n +% )hwk, ...; Iétat

d’énergie <n + % ) fiw, peut etre interprété comme un état a n photons

d’énergie hw,. Ainsi la quantification d’un champ classique permet-elle
de décrire création et destruction des particules, les opérateurs de
création et d’annihilation étant simplement les opérateurs bien connus
a' et a de Voscillateur harmonique quantique.

La quantification canonique consiste a postuler des relations de
commutation a temps égaux entre le champ et son moment conjugué.
En dehors des travaux initiaux de Feynman, cette méthode a été
pratiquement la seule sur le marché jusqu’au début des années 70.
Cependant cette méthode n’est pas sans problémes (méme si ’'on omet
les questions de renormalisation) :

(i) elle privilégie un référentiel particulier et I'invariance de Lorentz
demande a étre vérifiée. Dans certains cas (cf. (ii) ci-dessous) elle
conduit & des termes explicitement non covariants dans une étape
intermédiaire ;

(ii) elle devient trés compliquée quand linteraction dépend des
dérivées du champ : la définition du moment conjugué dépend alors de
Pinteraction ;

(iii) elle est mal adaptée au cas des théories de jauge abéliennes
(électromagnétisme) : il faut introduire une métrique indéfinie etc., et
elle devient complétement inextricable dans le cas des théories de jauge
non abéliennes.

A cause de ces difficultés (et de 'intérét croissant pour les théories de
jauge), une autre méthode de quantification, qui utilise les intégrales de
chemin, est devenue trés populaire. Cette méthode consiste a représen-
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ter une amplitude de probabilité a pour passer d’une configuration
initiale du champ & une configuration finale par une intégrale de
chemin, en généralisant ce qui a été expliqué au chapitre VIII,
paragraphe B ; symboliquement :

ig
a=J£Z¢e"

ol ¢ est le champ et § I'action. Cette méthode a l’avantage d’étre
explicitement covariante et ne pose aucun probléme particulier dans le
cas d’interactions dérivatives. Elle est incomparablement plus simple
que la quantification canonique dans le cas des théories de jauge, et elle
sera utilisée au chapitre XI pour I'électrodynamique et au chapitre X111
pour les théories de jauge non abéliennes.

Cependant cette méthode n’échappe évidemment pas au probleme
des divergences ultraviolettes, et ’expression de a doit étre régularisée
en dimension 4. De plus il n’est pas évident que la théorie quantique
définie par l'intégrale de chemin soit unitaire, ou, en d’autres termes,
conserve la probabilité. Cette propriété doit étre vérifiée explicitement.

Quoi qu’il en soit, la quantification canonique et la quantification par
les intégrales de chemin sont, autant que nous le sachions a ’heure
actuelle, équivalentes. Il sera donc possible de choisir la méthode la
mieux adaptée a chaque cas particulier.

L’expérience déja acquise dans le cas des phénomenes critiques
permettrait d’éviter compleétement le passage par la quantification
canonique. Le lecteur déja familier avec ce formalisme peut d’ailleurs
sauter directement au chapitre suivant, paragraphe B. Cependant il m’a
paru difficile de passer entierement sous silence la quantification
canonique pour les raisons suivantes :

le concept de particule est trés peu intuitif dans le formalisme des
intégrales de chemin, alors qu'un opérateur de création est facile a
visualiser,

— une bonne partie de la littérature, et en tout cas pratiquement
toute la littérature d’avant 1970 utilise ce formalisme,

— le cas des fermions me semble plus facile & comprendre si on
I’aborde d’abord par la quantification canonique.

Le plan du chapitre est le suivant : la quantification d’'un champ sera
introduite au paragraphe A sur I'exemple du champ des vibrations dans
un solide, et on montrera comment une particule (dans ce cas le
phonon) est associée a un champ quantifié. Le paragraphe B est
consacré a la quantification du champ de Klein-Gordon, qui décrit des
particules de spin zéro. Le couplage du champ de Klein-Gordon avec
une source classique (paragraphe C), permettra de démontrer le

théoréeme de Wick. Grice a ce théoréme, on pourra établir au chapitre
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suivant I’équivalence des développements perturbatifs obtenus en
quantification canonique et a I'aide des intégrales fonctionnelles.

Un mot enfin sur le systéme d’unités : j’utiliserai systématiquement
(sauf avis contraire) un systtme d’unités tel que # (constante de
Planck/2 7) = ¢ (vitesse de la lumiere) = 1. Dans ce systéme masses,
moments et énergies ont méme dimension ; longueurs et temps ont
pour dimension l'inverse d’une masse.

A. QUANTIFICATION DES VIBRATIONS ELASTIQUES

A.1. Systeme a N degrés de liberté : lagrangien, hamiltonien, quantifica-
tion

Commengons par I'étude d’un systéme mécanique & N degrés de
liberté. En mécanique classique, un tel systtme est décrit par N
coordonnées  généralisées (ou  variables  dynamiques) o,
i=0,1,...,N-1), N vitesses généralisées ¢; =de;/dt, et un
lagrangien [ dépendant de ¢;, ¢; et éventuellement du temps ¢. Les
équations du mouvement sont obtenues en minimisant I’action S

14
5= sz(«a,-, Gis 1) i 1)
t

1

avec les conditions aux limites :
Sei(ty)=8¢;(t;)=0. (2

La condition 85 = 0 ainsi que les conditions aux limites (2) donnent les
équations du mouvement, ou équations d’Euler-Lagrange :

d aL oL
e B 3
dr 3¢, d¢; 3

Rappelons que les équations du mouvement (3) sont inchangées si
Uon ajoute au lagrangien une dérivée totale @ f(e;, 1) des coordonnées

et du temps.

Appliquons immédiatement ce formalisme & un modéle unidimen-
sionnel des vibrations é€lastiques dans un solide : les atomes sont
représentés par des masses ponctuelles m, disposées sur une ligne, et
leur interaction par des ressorts identiques reliant ces atomes ;
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¢; est le déplacement de latome n’i par rapport a sa position
d’équilibre (figure 1) :

1 Pi-1 @i ®is1 |
2 Lo 4
| | :
200,0-00000000008.000000,800998 | — position déaquilibre
| i I |
i 1 1 a 5 a ?-J— 1 .

Figure 1. Une chaine de ressorts.

Comme le lagrangien est égal & I’énergie cinétique moins I'énergie
potentielle, on obtient :

Nabrroo, 1 '
L= i;) {’2‘m‘Pi2“§K(¢i+l" <Pi)2} 4)

ol K est la raideur des ressorts ; comme d’habitude, il sera commode
d’utiliser des conditions aux limites périodiques :

PirN=Pi-
L’équation du mouvement (3) devient :
mé; = K[(¢; 11~ ¢:) = (¢ — @;_1)]; (5)

il est instructif de retrouver (5) par un raisonnement direct, en écrivant
la force sur 'atome numéro i.

Le hamiltonien H s’obtient & partir du lagrangien par une transforma-
tion de Legendre ; on définit les moments conjugués p; par :

aL
pi=_— (6)
0¢;
et:
H=Yp ¢i—L. )

Dans le cas du lagrangien (4) I'équation (7) devient :

2
H:Z{%+%K(‘Pi+l_¢i)2}' ®)

Les regles de quantification d’un systtme mécanique a N degrés de
liberté sont classiques : les coordonnées ¢; et les moments p; deviennent
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des opérateurs hermitiques agissant dans un espace de Hilbert, I'espace
des états, et obéissant aux relations de commutation canoniques
(RCO):

[ei (@), ¢;()] = [pi (1), p;(£)] = O

: ©9)
[ei(2), pj(1)] =18y

Les opérateurs ¢; et p; ont été écrits dans la représentation de
Heisenberg (1), et les RCC (9) sont écrites a temps égaux. Remarquez
aussi I'utilisation d’un systeme d’unités ot h = 1.

Il n’est pas difficile de diagonaliser le hamiltonien (8) apres quantifi-
cation ; cependant je préfére passer directement a la formulation
continue, en renvoyant cette diagonalisation & I’exercice 1.

A.2. Quantification de la ligne continue

Passons a la limite continue pour le systéme mécanique décrit par le
lagrangien (4), en suivant une stratégie déja utilisée dans la premiére
partie. Soit a la distance entre atomes a I’équilibre ; on se propose de
faire tendre a vers zéro, en maintenant fixe la longueur L = Na du

syst¢me : le nombre N de degrés de liberté devient donc infini. Dans
cette limite :

m .
o & = masse par unité de longueur

Ka —» Y = module d’Young .
En effet Yallongement relatif d’un ressort est donné par :

‘Pi+1_¢’i_£__z
a " Ka Y

d’apres les définitions de la raideur d’un ressort et du module d’Young.
Récrivons (4) sous la forme :

1m ., 1 Civ1— P \2
L=“Z{§;‘Pi‘§Ka(*a—)}=“ZLf

qui fait apparaitre une somme de Riemann, immédiatement transfor-
mée en intégrale :

e=[ae3n (%) 30 (%))

- (10)
= L dx L (¢, 99 /0x).



I1X.A.2 Quantification des vibrations. élastiques 357

L’intégrand % dans (10) est la densité de lagrangien. Le lagrangien (10)
décrit les vibrations longitudinales dans un milieu continu ou le long
d’une corde vibrante. Il est important de remarquer que x n’est pas une
variable dynamique (coordonnée généralisée) mais [indice d’une
coordonnée généralisée

ei(t) > @t x) :

i »x dans la formulation continue; ¢(f,x) est appelé champ des
déplacements (longitudinaux) dans le milieu (ou la corde), et c’est un
exemple de champ classique. C’est le déplacement par rapport a sa
position d’équilibre du point étiqueté x sur la corde.

La densité de lagrangien . dans (10) ne dépend ni de ¢, ni de
t, mais en général .# sera aussi fonction de ces deux quantités. Les
équations du mouvement s’obtiennent & I'aide du principe de moindre
action 85 = 0 avec les conditions aux limites :

e (t,x)=38¢(tr, x)=0
8¢ (t,0) =8¢, L)=0.

On admettra en général que x varie dans l'intervalle |- oo, + oo [, et
que le champ s’annule a Vinfini, de telle sorte que la deuxiéme
condition est automatique. On peut également utiliser des conditions
aux limites périodiques.

Dans le cas général (toujours a 1 dimension d’espace) le principe de
moindre action permet d’obtenir les équations du mouvement sous la
forme :

9 0% a9 A oL

St T N ety 11

o 3¢ + ax d(dp/dx) do an
ce qui donne, dans le cas particulier du lagrangien (10), I'équation
d’onde classique

P e
———=0 12)
art " ax? (
ol ¢, = N Y/u est la vitesse du son. On vérifie que (12) est bien la
limite continue de (5).
Pour déterminer le hamiltonien, on remarque que :
oL oL a [

3¢; 0¢; 3¢

pi
et que par conséquent :

H-ay <¢,-3L—"—L,-) »Lde(ﬁ%— ).

i
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Dans l'équation (13), 3.¥ /3¢ est le moment conjugué du champ
@

3.7
8¢ (t, x)
Nous sommes maintenant en mesure d’écrire les RCC en formulation
continue en suivant I'équation (9) et en remarquant que :

w(t,x) = (14)

limlsij =8(x—x")
a—»Oa

{[<P(t,x); e(t,x")]=[m(t,x), w(t,x")] =0 (15)
le(t,x), w(@,x")]=i6(x-x").

Il faut bien noter que les RCC sont écrites a temps égaux pour les
opérateurs intervenant dans les commutateurs. Les RCC a temps égaux
sont indépendantes de la dynamique, mais par exemple le commuta-
teur :

e, x), (', x")}:  t#t

. en dépend explicitement ; il ne peut d’ailleurs étre calculé que dans des
cas simples.

A.3. Modes normaux

Le terme en (d¢/dx)* du lagrangien (10), qui est une limite
d’interactions entre plus proches voisins, s’écrit simplement en fonction
des modes normaux. Ecrivons donc une décomposition de Fourier du
champ (pour le moment classique) :

1 .
ot x) = —=3 ¢i(t) (16)
VIt

ol k prend des valeurs discretes: k =2 wp/L, p =0, 1, 2, ... .
L’équation d’onde (12) permet d’obtenir pour le coefficient de Fourier
¢ (t) I'équation différentielle :

dz(Pk
dr?

+2k o =0. 17)

Comme prévu, les modes normaux obéissent a des équations différen-
tielles découplées. La solution de (17) est une combinaison linéaire

. t —iwyt ’
d’exponentielles €'“** et e '“*', avec w; = ¢|k| :

—iwgt

or(t) = Age K 4 A%, k" (18)
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La réalité de ¢ (¢, x):
e(t,x) = @*(t,x)
impose en effet la condition :
Pr(t) = 0 %(2)

d’ou la forme (18) de ¢, (). Les décompositions de Fourier du champ
et de son moment conjugué se mettent finalement sous la forme :

1
—— Y
N

m(t,x) = ¢ (6,%) = —= Y (~iwg Age
Lk

e—iwkt+ikx A* iwgt — 1kx) (19.3)

(P(l,X) =

iwy ¢ +ikx

+iw, AF €T Y 19.b)

Il est immédiat d’inverser ces décompositions de Fourier pour obtenir
Ap et Af:

K T, x) —iwg @ (L, %)) (20.2)

A= 2wk\/Lfdx
JLde

Les décompositions (19) et (20) sont pour le moment celles d’un
champ classique : ¢ (¢, x) est un nombre réel, le champ des déplace-
ments au point x.

La quantification des vibrations se fait & I'aide des RCC (15):
¢ et w deviennent des opérateurs, et il en est de méme pour
Ap et Af; plus précisément, l’operateur dans (20.b) est hermitique
conjugué de celui dans (20.a) : AF — A} x- Les RCC (15) permettent de
calculer facilement les relations de commutation des A; ; comme ces
opérateurs sont indépendants du temps, le calcul se simplifie si ’on
pose ¢t = 0 dans (20). On trouve (exercice 2) :

'w"t+ikx(fn-(t,x)+iwk(P(t’x))' (20.b)

”4

[Ap Ap] =03 [Ap All= Qo) ! by .

II est commode de faire un changement d’échelle sur A:
a; = V2 w, A, ce qui donne :

[a, al] = 8y 21
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tandis que la décomposition de Fourier du champ devient :

[ace” “* ™ 4 al L (22)

1 1
‘P(tvx)—7§\/‘2—wk

™~

A.4, Phonons, espace de Fock

L’expression du hamiltonien va permettre de donner une interpréta-
tion physique fondamentale des opérateurs q; et a,I. L’expression
classique de H est (avec u = 1):

H:ljzdx<w2(t,x)+c3(3‘ﬁ£ﬂ>2>. (23)
0

2 ax

On obtient 'opérateur H en remplacant ¢ et 7 par les opérateurs
correspondants, et son expression en fonction des modes normaux en
remplagant ¢ et m = ¢ par leur décomposition de Fourier. Le résultat
étant indépendant du temps, on peut faire le calcul & ¢+ =0 il est
commode d’utiliser 'identité de Parseval :

L
J <P2dx=Z<Pk‘P_k
0 k

et on obtient (exercice 3 — on rétablit # jusqu’a la fin du paragraphe) :

1 1
Hzizk:hwk(a}:ak+aka,1)=;hwk<a,’;ak+§). (24)

La décomposition en modes normaux montre que H est une somme
de hamiltoniens d’oscillateurs harmoniques indépendants de fréquence
@ .

Soit w, la fréquence d’'un mode normal (ou fréquence propre).
Chaque mode de vibration est quantifié comme un oscillateur harmoni-
que indépendant. Rappelons que les vecteurs propres du hamiltonien
de l'oscillateur harmonique simple sont de la forme (%) :

Iny = —— @' y0y ; H|n) = ho <n+% ) |7

Vn!

ou |0) est le vecteur propre normalis€é obéissant a a|0) = 0. Les
opérateurs a et a' sont appelés respectivement opérateurs d’annihilation
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et de création (ils font passer de |n) a |n—1) et de |n) a
|n+1) respectivement), et |0) est appelé [’état du vide. Pour
construire les états propres de H dans (24), il suffit de prendre le
produit tensoriel des états propres des hamiltoniens correspondant a
chacun des modes normaux ; par exemple I'état du vide sera :

|0> - 'Okl 0k2 cee Oki >

et il sera annihilé par tous les a; :

a {0y =0 Vk; . (25)
Un état propre de H sera caractérisé par les nombres d’occupation
nkl es nki v s
1
Him ...y ...) = [Z hwy, <”k,» +3 ) ] | ey oo g, o) (26)
avec :

Y
\/nkl!...nki!

L’opérateur a,:r appliqué sur un état propre de H d’énergie E donne
un état d’énergie E + fiw : on peut interpréter ce résultat en déclarant
que 'opérateur al crée une particule d’énergie fiw, appelée phonon,
ou quantum de vibration sonore. L’état | ...m ...) contient

T @)™ ..@)* oy . @

ny, phonons d’énergie fiw, ..., ny phonons d’énergie fiwy, ... .

Nous voyons que la quantification d’un champ classique, le champ
des vibrations longitudinales le long d’une corde, nous a conduits
naturellement a la possibilité de décrire la création ou I’annihilation de
particules. Cette interprétation est possible parce que ’énergie d’une
onde quantifiée de fréquence w; ne peut pas prendre toutes les valeurs

possibles, contrairement au cas classique, mais seulement les valeurs
1ha) éflw (n+1)hw
3 ks 2 ks oo ) kooee o

- Ce que nous venons de faire dans le cas des vibrations sonores
pourrait étre répété (avec quelques complications) dans le cas du champ
€lectromagnétique. Par exemple la quantification des modes normaux
de vibration du champ électromagnétique dans une cavité conduit au
concept de photon : I'énergie du champ électromagnétique associée a

une vibration de fréquence w, ne peut prendre que les valeurs

%hwk, %hwk, cets (n + 3 ) fwy, ..., correspondant & un étata 0, 1, ...,

n, ... photons.
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Le lecteur attentif aura remarqué que j’ai passé allégrement sur un
probléme sérieux : I’énergie de tous les états définis en (27) est infinie.
Par exemple dans le cas du vide :

=2

puisque w, =2 wk/L,k = 1,2, ... . Cependant, 2 moins de détruire le
cristal ou la corde vibrante, il est impossible d’observer autre chose que
des différences d’énergie par rapport a I’état fondamental |0). On
pourra prendre par convention I'énergie du vide égale a 0, ce qui
revient & redéfinir H :

H=Y wiafa; H|0)=0. (28)
k

Afin que I'énergie du vide soit automatiquement nulle, on conviendra
d’écrire tous les produits d’opérateurs sous forme normale, en mettant a
gauche les opérateurs de création et & droite les opérateurs d’annihila-
tion et en négligeant leur commutateur. Le produit normal de AB est
noté : AB: et on aura par exemple :

1
§:a,‘: ak+aka}:::a,1ak.

La construction précédente des états propres de H nous a permis de
trouver un espace de Hilbert et une forme explicite des opérateurs
a; et a,I : en termes mathématiques, nous avons trouvé une représenta-
tion des RCC (21). En mécanique quantique ordinaire, la représenta-
tion usuelle des RCC [Q, P ] =i est la suivante : I'espace de Hilbert est
I'espace L? des fonctions de carré sommable dans Iintervalle
J-o,+ofet:

. 0
Q-x; P —i 5

Un théoréme de von Neumann affirme que cette représentation est
unique & une équivalence unitaire preés. Le méme théoréme est valable
pour un systtme a un nombre fini de degrés de liberté. Cependant
lorsque le nombre de degrés de liberté est infini, il existe d’autres
représentations des RCC que celle que nous venons de construire.
Celle-ci est appelée représentation des RCC dans Uespace de Fock et elle
est caractérisée par I'existence d’un vide a;|0) = 0, avec une condition
supplémentaire : le vide doit étre un vecteur cyclique (cf. Streater-
Wightman). Les autres représentations, non unitairement équivalentes
a celle de Fock, semblent avoir peu d’utilité en physique.
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B. QUANTIFICATION DU CHAMP DE KLEIN-GORDON

B.1. Equation d’onde, lagrangien

Considérons un champ (classique) qui soit un scalaire de Lorentz :
¢'(x") = ¢ (x), ol x’ = Ax, A étant une transformation de Lorentz (cf.
appendice C). Ce champ doit obéir a une équation aux dérivées
partielles analogue a (12). Le seul opérateur du second ordre invariant
de Lorentz que I'on puisse former avec les dérivées 8, = 3/3x* est le
d’Alembertien (rappelons que ¢ = 1 dans notre systéme d’unités) :

O=29 a'L—az % (29)
L '
La plus simple des équations du second ordre invariante de Lorentz que
I’on puisse écrire est :

@+m?)e(x)=0 |. (30)

L’équation (30) est appelée équation du champ de Klein-Gordon
libre. Soulignons que ¢ (x) doit étre interprété pour le moment comme
un champ classique, analogue au champ électromagnétique classique,
et non comme la fonction d’onde d’une généralisation relativiste de
I’équation de Schrodinger. Le paramétre m a les dimensions de
'inverse d’une longueur (ou d’un temps puisque ¢ = 1).

Si j(x) est une fonction scalaire, dont le comportement est prescrit a
I'avance, c’est-a-dire une source classique, 1’équation de Klein-Gordon

N

couplée a une source classique est :
@+m?) o(x)=jx).

Elle sera étudiée au paragraphe C. Enfin le membre de droite de (30)
peut aussi étre une fonction de ¢ (et méme de ses dérivées)

@C+mY)ex)=-V'(e).

On a alors affaire au champ de Klein-Gordon en interaction, qui sera
traité au chapitre suivant.
L’équation (30) peut étre obtenue par minimisation de I’action :

[ 4 (1 " 1 45 2
S=|dx(5@,e)3p)—sm ¢

J 2 2

[ 4 /1 [0 \2 1 2 1 o 2)
= (Y 2 (Ve) -2
u“(z(at) 5 (Vo) —5m°e

~

= d4x(—%<p([:1+m2)<p> . (31.2)
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La troisiéme forme pour § a été obtenue grice & une intégration par
parties. Cette intégration est justifiée dans les directions d’espace car on
suppose toujours que les champs s’annulent suffisamment rapidement a
Vinfini. Dans la direction temporelle, elle a un caractére formel et sert a
mettre en évidence le propagateur : cf. VIII-B.3. (Il ne faudrait pas
conclure que (31.a) que & =0 si ¢ obéit a (30).) Les équations du
mouvement généralisent (11) :

0L ¥ _ |, (31.b)

“3(0,0) 0@

B.2. Décomposition de Fourier

Comme dans le cas du champ des vibrations dans un solide, il est
naturel de chercher les modes normaux. On définit les transformées de
Fourier par intégration dans tout l'espace, de facon a préserver
I'invariance de Lorentz formelle, ou la covariance des équations :

¢k i
¢ (x) = Zar° o (k) (32.2)
e (k) = jd“x e o (x) (32.b)

ol kx = k%x° — k - x. La réalité de ¢ impose ¢ (k) = ¢ *(— k). D’autre
part P'équation d’onde (30) appliquée sur (32.a) conduit a la relation :

(k*—m?) ¢ (k) =0.

Le coefficient de Fourier ¢ (k) n’est # 0 que sur hyperboloide de
masse k* — m* = 0, et ¢ (k) doit donc étre proportionnel & & (k? — m?).
Drautre part hyperboloide de masse k%> — m? =0 se sépare en deux
nappes, l'une ayant k%> 0 et lautre k<0 ; ces deux nappes ne
peuvent pas étre reliées par une transformation du groupe de Lorentz
propre. La relation :

3K = m?) = e (K~ wi) + 8 (K" + @)
LI (33)
Wy = \/k2 + m2(> 0)

permet d’écrire ¢ (k) sous la forme :

o (k) =28 (k- m?)[0(k%) ¢ “ k) + 0 (- &%) ¢ )] (34)
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ot 0 (k°) est 1a fonction de Heaviside : 0 (k%) = 1si k°> 0, 6 (k%) = 0si
k%<0, et le facteur (2 7) est conventionnel. En reportant (34) dans
(32.a) on obtient :

d3k + — ikx - i
o (x) = fm(w 0 5 Ok )

avec

kx =wt—-k-x. (35)

La notation k . x est en fait ambigué. Dans le cas d’une transformée
de Fourier 4 quatre dimensions (par exemple (32) ou (48)) &x =
K°x°—k.x, ot k% est de signe quelconque. Dans le cas d’une
transformée de Fourier & trois dimensions (par exemple (40) ou (50)),
kx = w, x°— k- x, avec @, = \/ k* + m? > 0. L’expression (35) est trés

semblable a (19.a); il y a trois différences :

e I'espace a trois dimensions et non une seule,

o w, = (K +m?" au lieu de w; = |k| : dans (19.a) m = 0,

e le vecteur d’onde k prend des valeurs continues au lieu de valeurs
discrétes : on a intégré dans tout P'espace au lieu d’intégrer sur un
intervalle fini. L’équation (35) s’écrit avec des notations évidentes :

e(x)=¢x)+ ¢ x)

olt @)@ ()) est la partie 2 fréquences positives (négatives) : en
mécanique quantique, I’évolution dans le temps d’un systéme d’énergie
E est (par convention) exp(— iEt/#) = exp(— iwt).

La mesure d’intégration dans (35)

&k

dk = ———

(36)

est invariante de Lorentz car elle peut aussi s’écrire sous forme
manifestement invariante :

d*k
@)

Il est également possible de le vérifier directement (exercice 4).
On peut former des paquets d’ondes avec des solutions d’énergie
positive (ou négative) ; par exemple :

dk =

2 w8 (k>—m?) (kY.

&’k

T = | Gryze

e % f(Kk). (37)



366 Quantification du champ de Klein-Gordon IX.B.3

Le produit scalaire de deux paquets d’ondes est donné par :
. 3 % d3k %
(g, f)=1i|dxg*df=| —5=——9g*k)fk) (38)
27)Y2ow,

ol la notation 50 est définie par :

7 3 _3f
8yg=f—--—"9g. 39
fog = f %~ Lg (39)
Ce produit scalaire est défini positif pour les solutions d’énergié
=0 et conservé au cours du temps: 9;(g, f) = 0 (exercice 5). Un
paquet d’ondes d’énergie négative et un paquet d’ondes d’énergie
positive sont orthogonaux (pour le produit scalaire (38)).

B.3. Quantification canonique

Par analogie avec le paragraphe A, nous allons obtenir le champ de
Klein-Gordon quantifié en remplagant les coefficients de Fourier dans
(35) par des opérateurs ; il faudra simplement prendre garde a la
normalisation. L’équation (35) devient : '

~ &k ik L Ay ik
w(x)—J—-—(hwak (@®)e ™ +a @)™y | (40)

avec

[ak),a' (k)] = QR 7P2w, 8Pk -k') | . (41)

" 1l est immédiat de vérifier (exercice 6) que (40) et (41) conduisent bien
aux relations de commutation canoniques :

e, x), (@, x")] = [7(t,x), m(t,x")] =0 42)
le@ x), 7@, x')]=i8Dx —x").

Il est parfois commode de quantifier dans une boite de volume fini V,
en général un cube de coté L:V = L3, de facon a travailler avec des
exponentielles normalisables. La généralisation immédiate de (22) est :

1 ikx

1 -
‘P(X)—W;m(ake

+ a,I eikx ) (43)

[, af ) = 8y o - (4
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On notera la différence de normalisation dans (40)-(41) et (43)-(44).
L’expression du hamiltonien obtenue par exemple a I'aide de (43)-(44) :

H:Zwkalak
k

montre que 'opérateur a (a,) crée (détruit) une particule de vecteur
d'onde k (donc de moment k) et d’énergic wy = (k% +m>)'. Ces
particules n’ont pas d’autre degré de liberté, et ce sont donc des
particules scalaires, de spin zéro. Le champ de Klein-Gordon sera
utilisé pour décrire des particules commes les mésons . Ces particules
obéissent par construction a la statistique de Bose: en effet la
construction de lespace de Fock assure la symétrie de la fonction
d’onde dans I’échange de deux particules.

Comme j’utilise un systéme d’unités ou # =1, k est un vecteur
d’onde, mais aussi un moment (p = #k), o, est une fréquence, mais
aussi une énergie (E, = fiw,). Le paramétre m a les dimensions d’une
masse dans le systéme d’unités ot #i = ¢ = 1 (fi/mc est une longueur) :
m est la masse des particules décrites par le champ de Klein-Gordon
quantifié :

Ey = VIE +mi(= VK 2+ mict).
k

La quantification a été faite en choisissant un référentiel particulier,
puisque les RCC sont écrites a temps égaux. Il serait nécessaire de
vérifier qu’une théorie équivalente serait obtenue par quantification
dans un autre référentiel. A cette fin, il faudrait construire les
générateurs infinitésimaux des translations et des transformations de
Lorentz, c’est-a-dire les opérateurs énergie-moment et moment angu-
laire. Cette construction est un peu ennuyeuse (nombreux indices) et se
trouve dans tous les traités classiques. Comme nous utiliserons ultérieu-
rement une méthode manifestement covariante, il n’est pas nécessaire
de s’attarder sur ce point.

B.4. Commutateur & ¢ 5« ¢’

Dans le cas du champ de Klein-Gordon /libre (c’est-a-dire obéissant a
(30)), il est possible de calculer les commutateurs des champs a
t #t'. On a déja souligné que ce calcul était en général impossible, car
il dépend de la dynamique, alors que les RCC 4 temps égaux (42) en
sont indépendantes.
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Calculons donc [¢(x), ¢ (x')] en utilisant la représentation de
Fourier (40) :

[¢ (x)7 (P(x’)] = Jd% dl:i'{[a(k), aT (k')] e—ikx+ik’x’ +

+ [a" k), a()] 77

- J dk”(e— ik(x—x') _ eik(x—x’))= iA(x __x/)
def.

Il est possible d’écrire une expression explicitement covariante pour
A(x —x'):

A= - ile () o ()] = i | __(;‘4:)4 e i)

x 2 me (k) 8 (k*— m?) (45)
oit £(k% = 6 (k°) — 8 (— k). On déduit de ’expression (45) un certain
nombre de propriétés de la fonction A :

() @+mHAR)=0
(i) Ax) =A@ e(x%)
(i) A(Ax) = A(x)si A € au groupe orthochrone
(iii)) A(x) = - A(—x)
(iv) —a—OA(x —x)==-8%Px-x")
ox

(v) A(x) =0 si x*<0.

La propriété (v) refléte ce que 'on appelle la localité de la théorie :
les observables doivent commuter si elles sont calculées en des points
d’espace-temps séparés par un intervalle de genre espace. En effet deux
tels points ne peuvent pas étre reliés par un signal quelcongue, et les
observations en ces deux points doivent étre indépendantes. Le champ
de Klein-Gordon étant hermitique est une observable, et le commuta-
teur [¢ (x), ¢ (x')] doit étre nul pour (x —x')* <O0.

B.5. Propagateur

Etudions maintenant les fonctions de Green de 1’équation de Klein-
Gordon, c’est-a-dire les solutions de V'équation :

(O +m?)Gx) =8%W(x) (46)
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ou, en passant dans I’espace de Fourier :
(—k*+m*)Gk) =1 (47)
soit :
d4k e ikx
@) (& — (1 + m?)

G(x) = — (48)

L’intégrale sur k° présente des poles a k= + w,, ce qui permet de
définir plusieurs fonctions de Green selon le contour utilisé pour éviter

— wy

Figure 2. Le contour de Feynman.

ces poles. Je me contenterai d’étudier la fonction de Green Gp, obtenue
en utilisant le contour de Feynman Cj de la figure 2 en renvoyant
I’étude d’autres fonctions de Green a ’exercice 7. Remarquons que 'on
peut aussi écrire :

d4k — ikx d4k —ikx
GF=_J 42 j 4'262 ; (49)
c, QmY k"~ Qu)Yki—m+ie

ol le remplacement m? - m? —ie, ¢ - 0%, assure le déplacement du

pole 4 k= w (— w,)dans le 1/2 plan Im k° < 0(Im k° = 0). Calculons
maintenant G par la méthode des résidus. Pour x°>0, on peut
refermer le contour d’1ntegrat10n par un demi-cercle dans le demi-plan
Im k%< 0, et seul le pole 4 k= w, — ie donne une contribution :

d*k

me"”"‘=i<ol ¢ (x) (0)]0) . (50.a)

Gr(*)|0_o = iJ

Pour x° <0, on referme le contour d’intégration par un demi-cercle
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dans le demi-plan Im k° > 0, et seul le pole 2 K = — w + ie donne une
contribution :
. &k hx
Gr(¥)| o g =i | — o e* — (0] @(0) ¢(x)]|0) . (50.b)
7)Y 2wy

Les équations (50) peuvent étre résumées par :

Gr(x —x') = (0] T(p(x) ¢ (x'))]0) (51)

ot le produit-T de deux champs est défini par :

T(e®) ¢ () =¢(x) o (x') x'>x" (52)
Te@ () =e(@) o) x"<x’ |.

On pourrait étre légitimement inquiet de la covariance d’une telle
définition : en effet 'ordre des temps n’est pas invariant dans une
transformation de Lorentz. Cependant 'ordre des temps ne peut étre
modifié que si x et x' sont séparés par un intervalle du genre espace :
(x — x')* <0, et dans ce cas les champs commutent, grace A la propriété
de localité.

Afin d’éviter des facteurs i dans les formules, je définirai le
propagateur de Feynman Ap(x — x') par :

Ar(x~x') = (0] T(o (x) ¢ (r'))[0) (53.2)
oy ¢k ike-x) i
Ap(x —x') = f—(Zw)4e ot | (53.b)

La convention (53) n’est pas habituelle. La plupart des auteurs
utilisent la définition Ap = —i (0| T(¢¢){0). Le propagateur A, est
égal & —iGp, et vérifie donc I’équation :

@O+ m?) Ap = —18WD(x). (54)
11 est instructif de vérifier directement cette équation a partir de la
définition (53.a) de Ay (exercice 8).
B.6. Singularités sur le cone de lumiére

Les « fonctions » A(x), Ap(x) etc. ne sont pas & proprement parler
des fonctions, mais des distributions, qui sont singuli¢res sur le cone de
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Jlumiére x> = 0. Afin de les évaluer dans un cas simple, je me limiterai a
m = 0; les singularités obtenues dans ce cas sont d’ailleurs les plus
fortes. La notation standard lorsque m = 0 est :

Di=A,~(m=0).
Commengons par calculer D, (x):
&’k ~i(k®— k- x)
D, (x)= {0} ¢(x 0)|0 =J‘—e
@)= 0@ 010 = | o5
avec :

k= |k|l(= wy); K-x=krcos@.
L’intégration sur cos # donne :

—1 ® Sk(O—r)  —ikGPr)
D, (x)= —— dk(e —e .
L) z(zﬂ)zrjo ( )

L’intégrale sur & doit étre interprétée au sens des distributions : c’est
une transformée de Fourier de 6 (k) ; pour rendre I'intégrale conver-
gente, on remplace (x°—r) par (x°—r—ie):

© o0 . —1i
J‘ dke—lk(x —r—lE):_._l_._ = —iP 01 + 77'5("70_")
o Xo—TF — 1€ X —r

ol P désigne une partie principale. Cette égalité permet de terminer le,
calcul de D, (x)(x%> = (x°? —r?):

D, (x) = ‘4‘7:213( xlz ) - 4_1; 8 (x2) &(xY) . (55)

Définissant D_ (x) par:
D_(x) = (0] $(0) (¥)[0) = (O] @ (~x) ¢(0)]0) =D, (~x)

on obtient immédiatement les fonctions D (x) et Dp(x):

D(x) = —i(D, (1)~ D_(x) = 5 e 8D (56)
Dr(x) = 6(x") D, (x) + 6 (- x") D_(x)
soit :
Dox)=—Lpl_ 1L 542, (57)

472 x* 4w
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Lorsque m % 0, on peut obtenir I’expression suivante pour Ag(x)

OF

_ ol p( LY _ sy Mg
Ap(x)—47r2P<;§) 4778(x)+16770(x)+
2 2 —_—
+ lnm\/lxl+0(\/]x2| I [x%). (58)
8 m? 2

L’existence de singularités sur le cone de lumiére montre qu’il n’est
pas possible de multiplier sans précautions deux champs au méme
point. En réalité, les opérateurs de champ doivent étre considérés
comme des « distributions & valeur opérateur » ; les valeurs moyennes
sur le vide de produits de champs sont des distributions ordinaires. Un
programme reposant sur cette observation a été développé principale-
ment par Wightman et ses collaborateurs : c’est la théorie axiomatique
des champs. Cette théorie axiomatique a permis de démontrer rigoureu-
sement les théorémes PCT et spin-statistique et d’établir des bornes
asymptotiques sur les amplitudes de diffusion (avec des hypothéses
supplémentaires). Mais ce programme n’a pu étre poursuivi, en raison
de son inadaptation aux théories de jauge.

C. COUPLAGE A UNE SOURCE CLASSIQUE
THEOREME DE WICK

C.1. Opérateur d’évolution. Equation de Dyson
En mécanique quantique, Popérateur d’évolution U(t, t;) relie le
vecteur d’état de la représentation de Schrodinger au temps ¢ au vecteur

d’état au temps £, :

|#:(1)) = UG, o) ¢,(t)) - (59)

11 vérifie I’équation différentielle, équivalente a I’équation de Schrodin-
ger:

i% Ult, 10) = H(t) UG, 2,) (60)

ainsi que la propriété de groupe :

U(t’ tl) U(tlv tO) = U(t’ t()) (61)
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et la condition d’unitarité :
U (1, 10) = U1, 1) = Ulty, 1) . (62)

En régle générale on ne sait pas calculer exactement l'opérateur
d’évolution, mais il arrive souvent que l'on puisse trouver une
décomposition de H :

H=H,+ H; (63)
telle que I’on sache calculer 'opérateur d’évolution Uy(t, ty) correspon-
dant & H,; en pratique cela veut dire que l'on sait diagonaliser
H,. On traitera alors H; comme une perturbation : Hy est en général

appelé « hamiltonien libre » et H; « hamiltonien d’interaction ». Pour le
traitement perturbatif, il est commode d’écrire :

U(t, tg) = Uy(t, tg) Uy (t, 1) (64)

et on montre facilement que U, vérifie Péquation différentielle :

. dU;
i = Hy(0) U(t, ) (65.2)
H (1) = Uy (t, tg) Hy(£) Ug(2, o) - (65.b)

H; est le hamiltonien H; écrit dans la « représentation interaction ».
L’équation différentielle (65) peut aussi s’écrire sous forme d’une
équation intégrale qui incorpore automatiquement la condition initiale
Up(ty, tg) = 1:

! 4
Uttty = 11 [ H6) Uity ' (66)
L]
Remarquez que l'on ne peut pas écrire en général
i J" Hy(r")dt'
Ui(t, ) =e " (67)

car le commutateur [H;(¢'), H;(¢+")] est en général non nul, et que
exp(A + B) # exp A exp B lorsque [A, B] # 0 (sauf cas particulier).
Cependant P'équation (65) peut étre résolue par itération :

Ut 1) =1+ 3 (‘nf)" J‘ dty ... dt, TCH () .. Hy(t,)) . (68)

L’équation (68), ou équation de Dyson, s’écrit formellement :

(69)

—~i J‘O Hy(t") de' >

Ui(t, ty) = T(e
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ol le produit-T indique que I’on doit utiliser (68) dans le développement
de 'exponentielle. L’équation (68) est bien un développement perturba-
tif en puissances de H;: si H; contient en facteur une constante de
couplage ¢, le terme d’ordre n de (68) est proportionnel a g". Le
produit-T dans (69) corrige I’expression incorrecte (67) et assure que
U;(¢, ty) obéit a la loi de groupe (61) et vérifie la relation d’unita-
rité (62).

C.2. Oscillateur harmonique couplé a une source classique

Avant d’aborder le couplage du champ de Klein-Gordon & une
source classique, étudions le couplage d’un oscillateur harmonique
simple a une source classique, ce qui permettra d’introduire sur un
exemple élémentaire les notions d’états entrants, ou états « in », d’états
sortants, ou états « out », et de matrice . Le hamiltonien choisi est

(dans la représentation de Schrodinger) :

H=wa"a—aj*@)-a' j(t) = Hy + H, (70)
ol Hy = wa' a est le hamiltonien de Ioscillateur harmonique simple. Si
la source j(t) est réelle, H; = — V2o jx, et V2 o j(t) représente
simplement une force extérieure appliquée & 'oscillateur harmonique :
le probléme est donc celui d’un oscillateur forcé quantique. Lorsque j
est complexe, il y a également un terme de couplage a la vitesse. Afin
de simplifier les équations, on choisira pour temps de référence
to = 0 et on posera U(z, 0) = U(t). Pour calculer 4;(¢) (cf. (65.b)):

a,(t) - engt a e—iHot
on utilise :
da; )
rrl i[Ho, ar(t)] = — iwa,(¢)
soit :
at)=e“a; al(t)=ed (71)

et le hamiltonien H;(t) est:
Hi(t) = — [ae " j*@) +a' e j(1)]. (72)

La solution de I’équation d’évolution (65.a) est « presque » donnée par
(67), car si H;(¢t) et H;(t') ne commutent pas, leur commutateur est
néanmoins un nombre :

[H; (1), Hi(¢)] = e = jx @) jt') —e =D @) j*(').
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Cette propriété permet de deviner la solution de ’équation d’évolu-
tion (cf. exercice 10)

t _ i L
Ui(t) = exp(iaT J je) e dt’) exp(iaJ jEE e dt') x
0

0

t i , Y
xexp<— ﬂ dt’dt”G(t’—t")j*(t’)e““’(’")j(t")). (73)
0

On vérifie par un calcul direct que (73) obéit bien & P’équation
d’évolution (65.a). 1l est possible d’écrire cette solution sous d’autres
formes (cf. exercice 10) ; on remarquera que dans (73) U;(¢) est écrit
sous forme normale : tous les a' sont a gauche de tous les a.

Supposons que la source j(¢) est nulle en dehors d’un intervalle
IT,, T}, avec T} = 0 (figure 3) pour simplifier le raisonnement suivant,
et étudions 'opérateur d’annihilation dans la représentation de Heisen-
berg :

ay(t) =U"Yt)aU(@) = e “ Uty alU,(z).

4 @)

Figure 3. La source j(1).

En utilisant (73) et identité :

R .
e ' ge'* =g +ia

on obtient :

ag(t) = e"ie* [a +i J' (e et dt'} . (74)
0
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Pour t < Ty, ay(t) coincide avec a(t) = ae™ '’ que nous appellerons
Ain (t) :

lim ay(t) = an(t)

t > -

tandis que pour f — + 00 :
. ® oy
lim ay(t) =e ' (a +1i J j(t')e dt’)
{— 4+ 0 — 0

soit :

im ay(t) = € (@ + 1 (0)) = 6o (1) -

t—+ 0

Les opérateurs a;, (t) et a,,(¢) ont en facteur e™'*’, et on peut définir
des opérateurs indépendants du temps a;; et a,, :

g =4a; Aoy =a +ij(e). (75)
La relation entre g;, et d,, s écrit également :
-1
Aoy = M Qin N (76)

ol lopérateur unitaire S (en général appelé matrice S, a ne pas
confondre avec Paction) vaut :

§=Uj(0,—0); S =5"1]. (77)

On remarquera qu’a la limite 7 —» co, seule intervient la composante de
Fourier j(w) de la source j(t): la limite t - 00 « projette sur la couche
d’énergie ». Examinons briévement les probabilités de transition ; partant d’un
état |ngy at =1 (4, <Ty)

|} = \/—f_ﬂ (@)1 0

on se propose de calculer la probabilité d’observer au temps ¢ = 1, (1, > T») un
état |m;,). L’amplitude de probabilité est :

(m | Uty t) () = {mi| Uglty, 84) Up(ty, 1) |1y )
— e“£m(’2“’l)<min‘ Slnin>

—iEp(t; —
= e B ) (78)

Le facteur de phase dans (78) n’affecte évidemment pas la probabilité de
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transition. Il est facile de calculer (m,|n,) lorsque n=0; en effet
(supprimant P'indice «in » pour alléger les notations) on peut évaluer :

i"a™

N

.
(m] e 10) =

fdtr dr” 9([’ _ tu)j*(tr)e—im(t'—x")j(tu) —
_ 1 dE ., . oo v 1
- P [+ B+ B+ 1) =0 + 3 1)

(pour obtenir la derniére équation, il suffit d’utiliser la représentation intégrale
de la fonction 6), ce qui donne pour 'amplitude de probabilité :

. Comy: m_l-,,,)Z
(m| Uy, 1,)]0) = e~ En2=1 goip 10 (@)™ =3 1!

m!
et pour la probabilité de transition P, :
(w)|2)m e 1ite)?
Py = | ¢m] Uty 1))0y |2 = UHIT) )
m!

La loi de probabilité du nombre d’occupation m est une loi de Poisson de valeur
moyenne |j(w)|? = . Ceci est une propriété générale du rayonnement d’une
source classique, lorsque 'on part de ’état fondamental a t = — co. L’état final
est un état cohérent (exercice 11) égal & une phase pres a:

Ly 2
e 2 I]( ) ei”Tj("’)l()) (80)
et on vérifie que cet état est de norme 1 (ZP,,, = 1) : la probabilité est

m

conservée, ce qui est évidemment une conséquence immédiate de Punitarité de
la matrice S.

C.3. Champ de Klein-Gordon couplé & une source classique

Passons maintenant au probléme d’un champ de Klein-Gordon
couplé a une source classique j(x); la densité de lagrangien est :

1 1 5 .
L =50,9)@ ¢)-zm ¢+ e
conduisant a P'équation du mouvement :

@+m?) e(x)=jx) (81)
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et au hamiltonien d’interaction :
H=— [ i) 0@

ou le champ ¢ (x) est écrit dans la représentation de Heisenberg. La
source j(x) est supposée nulle pour ¢ < T,, et pour ¢t < 7T le champ
¢ (t, x) est un champ libre que nous noterons ¢;,(x):

e, x)= ¢, X) t<T,.

Partons d’un temps ¢, < T et examinons I’évolution au cours du temps
de ¢ (t,x):

e@t,x)=U"'(t 1) @@, x) U, 1)
= Ur'(t, 1) Ug (e, 11) @in(t1, X) Ug(t, 1) Ui (8, 1)
soit :
‘P(ta X) = Ul_l(tv tl) ‘Pin(t’ X) Ul(ta tl) (82)

étant donné que [l'opérateur d’évolution du champ libre ¢;, est
Uy(t, t,). Dans la représentation interaction, le hamiltonien H; devient :

H (1) = - j @ j () @i (¥) - (83)

Comme ¢, (x) est un champ libre, on peut utiliser la décomposition de
Fourier (40). Définissant la transformée de Fourier 4 3 dimensions de

j(t,x) par:
k) =j*@, - k) = J Exe ® ), x)

on récrit (83) sous forme d’une somme de composantes de Fourier :

&’k
Ho= - | 5

+val, &) j(, k)e“r"). (84)

(@) j*(t, k) e '™

Le hamiltonien (84) est une somme de hamiltoniens du type (72). On
peut donc écrire I'expression de I'opérateur d’évolution U,(t) par
analogie avec (73). Nous aurons seulement besoin de I'expression de la
matrice § = U;(c0, —00), mais nous pourrions aussi bien écrire
Pexpression de U;(¢,, t;). Remarquons que :

fdlsam(k>f*<r,k>e“°’*’= jd%c o£() j(x)
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et que le terme d’intégrale double dans (73) devient :
Jdt dr'dk o —t)j*@t, k)e e, k) =

B Jd4x d'’ j (@) (x") J AR 0(1 — 1) e o=+l o)
=%J’d4Xd4x'f(x)f(_x')JdEx

X [9 (t——l")e_iwk(t_tl)+ik‘(x_x')+ O(t' _t)e—iwk(t'—t)+ik-(x'—x)]
1

=5 j dx d*x' j(x) Ap(x —x") j(x') .

Rassemblant ces résultats, on peut mettre la matrice S sous la forme :

S = T(exp(in“xj(x)%(X)))

= :exp (i J d*% j(x) <pin(x)) X (85)

X exp (—% f d*x d*’ j(x) Ap(x —x’)j(x’))

Cette expression est importante, car elle donne expression de la
matrice S dans le cas du couplage a une source classique, ce qui est déja
en soi un résultat intéressant. Mais 1'intérét principal de la formule (85)
est de conduire a une démonstration trés simple du théoreme de Wick.

C.4. Théoréme de Wick
Le théoréme de Wick s’obtient tout simplement en développant les
exponentielles dans les deux membres de (85) et en identifiant les

puissances de j(x). Toutefois il faut faire un peu attention : les termes
du développement de

i [ a5 o)
)
par exemple :

\2
%!)_ J d*x; d'xp j(%1) j(02) T(@in (1) @i (x2))
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sont symétriques dans 'échange des arguments de ¢;, et de j. Il faudra
donc symétriser aussi le développement du membre de droite de (85) :
en effet si 'on a:

J dxy dx, j(x1) j(x2) T(xys x2) = J dxy dxy j (%) J(x2) F (31, x3)

avec T(xy, x,) = T(x,, x,), on peut simplement conclure que :

T(xy, x) = Fg(xy, x3)

ol Fg(x;,x,) est la partie symétrique de F dans Péchange de
(x1, x5) ; en effet Uintégrale de la partie antisymétrique F 4(x;, x,) est
automatiquement nulle.

Examinons un terme du développement du membre de droite de (85)
en (j(x)P (j(x))*™; il est affecté d’un coefficient :

ip<_l>m_1_
2/ p'm!’

11 faut symétriser le coefficient de (j (x)) (j(x))*™ par rapport & tous
ses indices ; le nombre de termes indépendants est :

Cm+p)
plmt2m

et le coefficient d’un terme en (j(x))*™ *# dans le membre de droite de
(85) sera affecté d’un coefficient :

ip< 1>m 1 2"p!'m! (i)2m+Pp

2) miptl@Qm+p) QCm+p)’

Ce coefficient est exactement celui trouvé dans le développement du
produit-T. Dans le cas ol (Z2m + p) =2n est pair, on obtient par
identification (en omettant l'indice «in »):

T(e(x1) .. ¢ (x20)) =:0(x1) .. @(024): +

+{ie(x) e(x) @(x3) ... @(x30): +Perm.}

+ {29 (0) 9 () @ (3) @ (%) ¢ (x5) . @ (x3,) 1 + Perm. )

+ {} doee + {}

+ {e (1) ¢ (x2) ... @ (x3,-1) ¢ (x2,) + Perm. } (86)
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ou la « contraction » ‘WP (x,) désigne :

¢ (01) & (62) = (0] T(@in(3) @in(:2))]0) = Ap(rr = 32)
Par exemple pour 2 n = 4, I’équation (86) devient :
T(p102@304) = 010203045+ {: 5"1'_“P2 P3 Pai+

. . - » r—-l -
FTIPI PPy Pal I PP P3Pyl PPy P3Py

— 1 )
FIO 0 P3PPI Q03041 + {P1 0203,

TP PIP3Pat P13 Py) - (87)

Remarquez que <pr_1—<\p2 par exemple peut étre extrait du produit normal
car c’est un nombre.

Lorsque certains produits sont déja sous forme normale, on peut
également appliquer le théoréme de Wick, a condition d’omettre toutes
les contractions de termes qui se trouvaient initialement & l'intérieur
d’un produit normal. Donnons un exemple simple :

—
TGP @2 03041 ) =101 02P304:+ {101 9203 @4+

- - ’
FIPI PP Py I PRI P P3Py P P P3Pyl )

[

+{P1 020304+ 1 P2 3P4} (88)

Enfin prenons la valeur moyenne sur le vide des deux membres de
I’équation (86). A cause du produit normal, seul le dernier terme est
différent de zéro et :

O T(@(x1) .- @ (x2,))]0) =
= Ap(x; —X3) ... Ap(xy,_1 — X3,) + Perm. (89)

On note une similitude frappante entre cette équation et 1'équation
(V.13) que nous avions obtenue pour les intégrales gaussiennes. Cette
similitude sera exploitée au chapitre suivant pour montrer I’équivalence
de la formulation canonique et de celle qui utilise les intégrales de
chemin.



382 Exercices IX.4

EXERCICES

1) Quantification de la « ligne discréte »

On se propose de quantifier le systéme mécanique décrit par le lagrangien L
de I’équation (4) (avec des conditions aux limites périodiques).

(a) Montrer que les modes normaux sont donnés par :

¢ = ﬁz e (t)e ™

avec k=2mp/N, p=0,1,2,...,N -1, et que ¢,(t) vérifie I'équation

différentielle :
. /4 K
(Pk+(l),%(Pk:0, W, = 7

(b) En écrivant la décomposition de Fourier :

sin I_c
2

1 ~iwgt+iks fwg t - iks
lwg +aT elwk 1 )

Ps = — Y ——— (% k
\/N k \/2 maow;
vérifier les RCC et montrer que :

1
H = ;E wk(a,z ak+aka£).

2) En utilisant les relations (20) 2 7 =0 et les RCC (15), montrer que
[Ap Al 1= Q2 w) " Sy -

3) Démontrer 'expression (24) du hamiltonien. Suggestion : déterminer les

_ . 0 . .
coefficients de Fourier m et (d¢/dx); de = et a—f— et utiliser la relation de

Parseval.

4) Soit une transformation de Lorentz paralléle a 'axe Oz :
ki =kocho —k,sho

ki=—koshe +k,cho; k,=k,; k, =k

y -

Vérifier l'invariance de la mesure d’intégration dk (36) dans une telle
transformation.

5) Démontrer I'équation (38), vérifier 'orthogonalité des solutions d’énergie
> 0 et < 0, et montrer que le produit scalaire (g, f) est indépendant du temps :

9

(Utiliser I'équation de Klein-Gordon et le théoréme de Green.)
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6) Vérifier les RCC de ¢ et m = ¢ a partir de (40) et (41).

7) Fonctions de Green de I’équation de Klein-Gordon

Pour le calcul de (48) on se donne les contours C, et C, de la figure 4.
Montrer que Gg(x) = — 0(x°) A(x) et que G,(x)= 0(—x°) A(x). En
déduire :

Gr(x —y) =1€0] 8(x°~y")[¢ (x), ¢ (»)]]0)
Gale—y) = 10| 0(=2"+))[o (x), ¢ (1)]]0) .

A
£\ I\ Cr
— Wy W
— w
\”/k ij Ca

Figure 4. Contours C, et Cp.

8) Vérifier en calculant explicitement les dérivées que
(@, + mH) 0| T(e(x) ¢(0))]0y = —i8U(x).

Suggestion : utiliser I'équation de Klein-Gordon et remarquer que
3/8x" 0 (x°) = 5 (x°.
9) Identités opératorielles utiles

(a) A et B étant deux opérateurs quelconques, démontrer :

eABe‘A=B+[A,B]+§1—'[A, [4,B]]+---.

Suggestion : examiner le développement de Taylor & ¢t =0 de F(t) =
e Be "4

(b) Soient deux opérateurs A et B tels que A et B commutent avec
[A, B]. Montrer que

1
-5 4, B8]
eA+B _eAeBe 2 .
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Suggestion : Obtenir une équation différentielle pour F(z) =e*e®. En
déduire ;: et el = ePet el B,

(Attention ! Les deux identités ci-dessus ne sont pas valables en général,
c’est-a-dire pour A et B quelconques.)

Lo i ¥ -
(¢) Applications : e*® ef?e= 2 — e *f ehs,

10) Autres formes de Péquation (73)
L’équation (73) peut s’écrire :

1

U . -
Ul(t) = glad gia*a e—X; o = J j(t,) el dy’
0

et X est une intégrale double.

(a) Soient n opérateurs A,, ..., A, tels que le commutateur [A;, A ;1 soit un
nombre. Montrer que :

1
5 [4;, A7)
An _An_ Aj . Ay+.-+A 7.0 14
nen-1 el oe™ g ti5

(b) En décomposant Uintervalle (0, t] en » intervalles de longueur At, avec
At petit, montrer que :

Uy (1) =exp (—i i H(1) Af) exp <—% (Af)‘vzl’lz’{Hl(tj)a Hl(ti)]>

jei:
et en déduire :
i(aaT+u*a) _x
Uity =e e

X = % J] de’ de” E(tl . tn)j*(t/) e—iw(t'—t”)j(tn) .

(c) Montrer que cette expression de U,(t) coincide bien avec (73).

11) Champ couplé a une source classique

Soit un champ scalaire hermitique couplé 2 une source classique :
@+m”) e (x) =jx).

(@) Montrer que les champs « in » et « out » sont reliés par (cf. exercice 7) :
Pon®) = o)~ [ A=) j@) %

(On supposera que j(x) est nulle en dehors d’un intervalle [T}, T}].)
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(b) En utilisant la décomposition de Fourier de j(x):

d'k

jx) = 2 )

e (k)

montrer que les opérateurs a;, et a,, sont reliés par :
Qo (k) = @, (k) + ij (@, K) .
(c) Définissant la matrice S par :
571 ap (k) S = aou (k)
montrer qu’a un facteur de phase prés :

§ = exp {i f 6_d>k_ (am(kn*(wk,k)+a;<k)f(wk,k>>} .
™ Kk

2w

Montrer que cette expression différe de U; (o0, — o0 ) (équation (85)) par un
facteur de phase que P'on déterminera.

12) Etats cohérents (%)

t
Soit |z) I'« état cohérent » |z) =e® * |0), ol z est un nombre complexe.
(a) Montrer que |z) est vecteur propre de a:a|z) =z|z) et que

(zlzy = exp(|z]%).
(b) Montrer que fgx%e‘ fe)? [z) {z| =1 avec z = x + iy (relation de

fermeture).

(¢) Soit D(z) = exp (za' — z* a). Montrer que D(z)|0) est un état cohérent
normalisé 2 I'unité. Calculer (x| D(z)[0), ol |x} est un vecteur propre de
Popérateur position.

¥ .

(d) Montrer que y* *|z) = |yz) et en déduire :

xaT a_ . e()c—l)tzT a.

NOTES ET REFERENCES

Le systtme mécanique du paragraphe A est décrit en détail dans H. Goldstein,
Meécanique Classique, Dunod (1964), chapitre 11. On trouvera une introduction a la
quantification des vibrations élastiques et du champ électromagnétique dans C. Cohen-
Tannoudji, B. Diu et F. Lalog, Mécanique quantique, Hermann (1973), chapitre 5. La



386 Quantification du champ de Klein-Gordon IX.

quantification du champ de Klein-Gordon est discutée dans tous les traités classiques, par
exemple Bjorken-Drell, chapitre 12 ou Itzykson-Zuber, chapitre 3. Pour le formalisme
lagrangien des champs classiques, la construction des opérateurs énergie-moment et
moment angulaire, on pourra consulter Bjorken-Drell, chapitre 11. Le programme de
Wightman (théorie axiomatique des champs) est exposé dans Streater-Wightman. Pour
les différentes représentations et les opérateurs d’évolution, voir par exemple Messiah,
chapitre 8. Le couplage d’un champ quantifié¢ (le champ électromagnétique) & une source
classique est traité dans Bjorken-Drell, chapitre 17 ou Itzykson-Zuber, chapitre 4.

(") Messiah, chapitre 8.

() Messiah, chapitre 12 ; Cohen-Tannoudji et al., chapitre 3.
(®) Bogolioubov-Chirkov, appendice I.

(*) Cohen-Tannoudji et al., chapitre 5.



CHAPITRE X

Fonctions de Green et matrice S

Dans ce chapitre nous allons étudier le champ de Klein-Gordon en
interaction avec lui-méme. Ce modele n’est pas susceptible de décrire
une situation physique réelle, mais il nous permettra d’introduire un
certain nombre de notions importantes sans qu’il soit nécessaire
d’utiliser le formalisme plus complexe des particules de spin non nul. La
densité de lagrangien . (souvent appelée par abus de langage
lagrangien : la notation .% au licu de L suffira & lever ’ambiguité) sera :

£ =3 (0,0)(@0) —3m’ 9>~V () (1)

oll V (¢ ) est un polynéme dépendant de ¢ et de ses dérivées. Lorsque V
dépend des dérivées 9, ¢, on a affaire a des couplages dérivatifs. Ceux-
ci conduisent & des complications dans Ie formalisme canonique, car le
moment conjugué 7 = 8. /8¢ dépend alors de V. Je supposerai dans
un premier temps que V ne contient pas de couplages dérivatifs : ceux-
ci seront examinés au paragraphe E. Les deux premiers termes de (1),
notés £y, forment le lagrangien libre, et — V (¢), également noté
£, est le lagrangien d’interaction. Une décomposition analogue vaut
pour le hamiltonien: H = Hy+ H,. Les équations du mouvement
déduites de (IX.31.a) sont :

@+m)e(x)=-V'(e)) )
Mon exemple favori sera la « théorie en ¢*», correspondant a :

Z1=- 2 e'x) (3.2)
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ce qui rappelie évidemment beaucoup la théorie de Ginzburg-Landau ;
le lien entre les deux théories sera examiné au paragraphe B. Remar-
quez que g doit étre positif si 'on veut un hamiltonien défini positif. On
utilise parfois au lieu de (3.a) une interaction écrite avec un produit
normal :

Ll =—%:¢4(x):. (3.b)

L’utilisation de (3.b) au lieu de (3.a) est une question de gout et
d’opportunité, les différences étant absorbées dans la renormalisation
de masse. En général on n’utilisera pas le produit normal si l'on
souhaite faire des transformations inhomogénes (translations par ¢xem-
ple) sur ¢, tout en conservant certaines symétries. Au lieu de la
« théorie en ¢*», il m’arrivera aussi de choisir comme exemple la
« théorie en ¢>», ol :

i=-F o). @

Dans cette théorie la renormalisation du champ (liée & Z;) est non
triviale dés 'ordre d’une boucle, dans la dimension ou cette théorie est
renormalisable, c’est-a-dire D = 6 (cf. exercice V1.2), alors que dans la
théorie en ¢* il faut attendre lordre de deux boucles pour que
Z, différe de 1. Naturellement cette théorie est encore moins réaliste
que celle en ¢* et elle est de plus pathologique car son hamiltonien
nest pas défini positif. Cependant elle est parfaitement définie en
théorie des perturbations.

Notre premier objectif (paragraphes A et B) sera de déterminer le
développement perturbatif des fonctions de Green, définies comme
valeurs moyennes sur le vide (= état fondamental) de produits-T de
champs :

O[T (1) - 0 a0 -

Les régles de Feynman de ce développement perturbatif, obtenues a
partir du théoréme de Wick, permettront de faire le lien entre ces
fonctions de Green et les fonctions de corrélation de la deuxiéme
partie, et d’établir le formalisme des intégrales de chemin pour la
quantification.

Le deuxi¢éme objectif sera de relier les fonctions de Green aux
quantités observables. La description des collisions se fait au moyen de
la matrice S, et il faudra établir une relation entre les fonctions de
Green et les éléments de matrice S (paragraphe C). La propriété
importante d’unitarité¢ de la matrice S sera étudiée au paragraphe D, et
des généralisations (champ scalaire complexe, champ vectoriel et
couplages dérivatifs) seront traitées au paragraphe E.
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A. DEVELOPPEMENT PERTURBATIF
DES FONCTIONS DE GREEN

A.1. Représentation interaction et matrice S

Nous avions utilisé au chapitre précédent une formule (1X.82) reliant
le champ ¢ (¢, x) interagissant avec une source classique au champ
« entrant » ¢, (t, x). Cette formule était facile a établir dans la mesure
ou la source était nulle en dehors d’un intervalle de temps fini. De
méme I'expression de la matrice S entre un état initial et un état final a
nombre fixé de particules s’obtenait sans difficulté.

Le cas d’un champ en interaction avec lui-méme est beaucoup plus
complexe, car Pinteraction V (¢ ) ne s’annule jamais. Notre objectif est
de décrire une expérience de collision, qui se présente de la facon
suivante : au temps ¢ = — o0, Pexpérimentateur a préparé deux paquets
d’ondes trés éloignés, et donc sans interactions. Ces deux paquets
d’ondes entrent en collision a un temps ¢ =0, et la collision produit N
particules finales qui se séparent et qui au temps ¢ = + oo sont a
nouveau représentées par des paquets d’ondes sans interactions (on
suppose qu’il y a un seul type de particules, celles décrites par le champ
de Klein-Gordon de ce chapitre). Cependant, dans une théorie des
champs en interaction, la notion de particule est dépourvue de
signification pendant le temps (~ 10"% s) de la collision ; la notion de
particule ne peut étre qu’asymptotique. Nous serons conduits a décrire
les particules initiales et finales au moyen d’opérateurs de champs /ibres
ein(x) et @, (x), qui seront en un certain sens les limites ¢ —» ¥ oo du
champ ¢ (x). Ceci nous permettra d’établir le formalisme nécessaire au
calcul des amplitudes de probabilité décrivant la transition 2 particuies
initiales — N particules finales, ce qui est aprés tout le probleme
physique intéressant. La matrice S est alors définie par les produits
scalaires entre états « in» et états « out » :

Spe = {Pg,out|p,,in) . (5.a)

Il faut bien comprendre que les états « in » et « out » sont obtenus en
mesurant des observables «in» et «out» différentes, car dans la
représentation de Heisenberg les vecteurs d’état sont fixes et les
observables varient avec le temps. Par exemple, pour Popérateur
nombre de particules d’'un type donné «, N,, on distinguera
N de N Si | ¢4, in) €t |@g, out) décrivent des états de deux
particules libres de type a et de type B, le produit scalaire
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(¥g,out |@a>1n) n’a aucune raison d’étre nul. Les états «in» et
« out » forment donc deux bases de 'espace de Hilbert s des états, et
si ces deux bases sont complétes, la relation d’unitarité § =gt
exprime simplement le fait que 'opérateur § effectue un changement de
base orthonormée :

|B,out)y =S |B,in)
et on peut récrire (5.a) sous la forme :
Sge = {B,in| S|a,in) . (5.b)

Au chapitre précédent, la matrice § avait €té écrite dans la
représentation interaction, ol le vecteur d’état |¢(r)) varie avec le
temps : ’

o)) =U (0, 0)]e(2)) .

Partant au temps ¢ = — oo d’un état |¢,), on obtient 'amplitude de
probabilité¢ pour mesurer au temps ¢ = — 0o un état |¢g) a l'aide de:

(el U0, —0)|e,) = (@g| S |ea),

équation qui coincide formellement avec (5.b), le point important étant
que les états |@,) et |@g) se référent a la méme base de 'espace de
Hilbert.

Pour construire les états asymptotiques « in » et « out », nous devons obtenir
les champs asymptotiques ¢;, et ¢, Cette construction peut se faire
indépendamment de la théorie des perturbations (construction de Haag-Ruelie)
a partir des axiomes suivants :

1) Existence d’'un vide unique et cyclique: IPapplication réitérée de
@ (x) sur |0) engendre 3.

2) Existence d’un opérateur énergie-moment P, :
iay P* —iay P#
e e(x)e =e(x+a).
3) Condition sur le spectre de P2 = P » P*: le spectre comprend deux points

isolés: P*=0 et P?=m? et un continuum P*> (m + p )’ avec 0 < p < m.
4) Condition de causalité (ou de localité) :

[(P(X), ‘P(}’)] =0 si (x —J’)2<0.

5) Si |k) est un état 4 une particule, alors:

O ¢ @)|k> #£0.
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On peut alors construire la théorie asymptotique de la facon suivante : soit
¢ (f, t) Popérateur défini par :

d'k
@)

e(f,t)= (P(_k)f(k)ei(kgfmk)t

ou ¢ (k) est la transformée de Fourier de ¢ (x) et f (k) celle d’une fonction
f(t,x), telle que f(k) soit non nul uniquement pour £°>0 et
(m— ) <k®< (m+ p)’. Construisons I'état :

lﬁpn(fl’ vers fn;t)> = ‘P(fl’t)'” (P(fn’t)l()) .

Pour comprendre la signification physique de cet état, il faut remarquer que
dans le cas du champ libre il est indépendant du temps :

e (f,010) = | —TE — f(u, K)ahk 10)]0) = |02 () .

CnY2e
On peut alors démontrer la condition asymptotique :

m [e,(fi, s fu30)) = lomin(fi ooy £0) ©6)

t>F

oit les f, sont les restrictions a4 la couche de masse k*>=m? des f,:
fi(k) = fi(wy, k), et la convergence dans (6) est une convergence forte. Pour
terminer la construction il faut rajouter I'axiome de complétion :

H =H in = =#oul .
La condition asymptotique (6) peut s’écrire de fagon schématique :

im e(x)=¢in(x).
PR out
La condition asymptotique précédente fixe la normalisation de
¢ (x). Cette normalisation est en général incompatible avec les RCC
(IX.42) (exiger des RCC fait d’ailleurs sortir du cadre axiomatique).
Par la suite nous allons normaliser ¢ (x) par les RCC, et dans ces
conditions la condition asymptotique doit s’écrire :

lim ¢ (x) =737 ¢, (x). (7)

> F© out

ou la constante Z; (il est facile de montrer quelle doit étre identique
pour ¢t — ¥ co: cf. paragraphe C.5) sera reliée a Ia renormalisation du
champ. La condition (7) est évidemment incompatible avec une limite
forte pour les opérateurs dans (7) (sauf si Z; =1, mais alors
¢ (x) est un champ libre), et doit étre comprise au sens des éléments de
matrice (convergence faible).
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Les résultats qui précédent seront suffisants pour démontrer au
paragraphe C.4 les « formules de réduction », c’est-a-dire les relations
entre fonctions de Green et éléments de matrice S. Cependant, pour
établir une théorie des perturbations fondée sur la séparation de H en
partic «libre » H, et partie d’«interaction» H,, nous allons avoir
besoin d’hypothéses beaucoup plus fortes. Dans la suite du paragraphe,
@i, (x) désigne un champ libre de masse m, dont I’évolution est régie
par H,.

Comme les champs ¢ (x) et ¢;,(x) obéissent tous deux aux RCC
(IX.42), si nous avions affaire a un systeme possédant un nombre fini de
degrés de liberté, nous pourrions conclure que ces deux champs sont
reliés par une transformation unitaire (théoréme de von Neumann).
Dans le cas d’'une théorie des champs, nous admettrons I'existence
d’une telle transformation :

e(t,x)=U"'(t) u(t, x) U(1). ®)

Malheureusement un théoréme dii a4 Haag (1) affirme que I’existence de
la transformation unitaire (8) entraine que ¢ (x) doit étre un champ
libre. Nous passerons sur cette difficulté et admettrons que nous
pouvons travailler, au moins formellement, avec I’équation (8), tout en
gardant a lesprit que les déductions qui vont suivre n’ont qu’un
caractére heuristique.

Dans le probléme de [linteraction avec une source classique,
U(¢) nétait pas autre chose que 'opérateur d’évolution U, (¢, — o0 ) de
la représentation interaction. Essayons d’établir une équation d’évolu-
tion de U(r), qui soit 'analogue de (IX.65.a). Les équations du
mouvement de ¢ et ¢;, sont :

¢ —ilH. el 9.2)
‘f’in i[1—107 ‘Pin] (9b)

et nous nous servirons également de la relation suivante, obtenue en
dérivant UU~ ' = 1:
U)o ')+ 0@)U-@)=0.

Afin d’étre tout a fait général, nous introduirons également un couplage
a une source classique, et d’aprés (8) nous pourrons écrire pour le
hamiltonien :

U H(o (1), w(t), j) U (1) = Blou(r), m, (1), j (1)) -

Calculons maintenant ¢;, en fonction de ¢ :

I

. d - _— . _ o
q:m:a;[uq»U N=U0U "¢, +iU[H, ¢ U '+ ¢, UU!

Pin = [(UU_I +iH (®ins Tins J))> Pia] - (10)
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Comparant (10) et (9.b), on constate que 'opérateur antihermitique :
UU*I + i[H(‘Pim Tin> ]) - HO] = UU_l + iHl(‘Pin’ Tins ]) (11)

commute avec ¢;, ; le méme raisonnement montre que cet opérateur
commute aussi avec m;,, et c’est donc un nombre imaginaire
ic(z) (en mécanique quantique ordinaire, un opérateur qui commute
avec Q ct P est un nombre). Sic(t) = 0, U(¢) est solution de I’équation
différentielle :

iU(t) = Hy(@in, Tin, J)UQW) = H(1) U) (12)
et si c(t)#0, il suffira de définir :
U'(r) = U(:)e_iJ o
ou U'(t) tvérifie (12). Nous montrerons un peu plus loin que

exp (— il c(t) dt') disparait du résultat final, et nous allons simple-

ment utiliser (12) comme équation différentielle définissant U (z). Cette
équation est évidemment & identifier avec (IX.65.a), d’ou la notation
H, ().

La solution de (12) est déja connue (cf. IX.69) :

-1 JI de’ H,(1")

U(t) = T(e - ) (13)

et la matrice § = U(+ o) est donnée par :

-ir de Hy(t')
S = T(e -® ) . (14)
Si Uinteraction & (@) ne contient pas de dérivées de ¢ (par exemple
dans le cas des lagrangiens (3) ou (4)), on a simplement L; = — H; et :
5= T(exp[i [ zlwm(x),f(x))]) )

Cette expression généralise 'équation (IX.85) que nous avions obtenue
dans le cas du couplage a une source classique. Il faut bien remarquer
que les champs intervenant dans Pexpression (15) sont les champs
©in(x), et donc des champs libres.
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Lorsque linteraction % (¢) dépend des dérivées, le moment
conjugué de ¢ n'est pas simplement ¢, et H; n'est pas égal a
— Ly. Un exemple d’une telle situation est I'électrodynamique des
particules scalaires (*). Aprés un certain nombre d’intermédiaires
compliqués, qui démontrent I'inadéquation de la quantification canoni-
que a ce type de probléme, on retombe sur 'équation (15). Ainsi que
nous allons le voir au paragraphe E, la méthode des intégrales de
chemin permet d’obtenir ce résultat sans difficulté.

11 est utile d’ajouter quelques commentaires a la formule (15) ; plagons-nous
par exemple dans le cas de la théorie en ¢* (3.b), olt 'équation (15) devient :

S=T(exp[‘7§ﬂfd4x:w;;(x>:]) (16)

Cette équation semble correcte & tous les points de vue: § est bien un
opérateur unitaire, et lexpression (16) est manifestement invariante de Lorentz
grace a la covariance du produit-7. Cependant la démonstration qui préceéde est
suspecte a cause du théoréme de Haag, et de plus 'expression (16) n’est pas
définie en raison des divergences de la série perturbative, qui sont une
conséquence directe de I'impossibilité de multiplier deux champs au méme
point d’espace-temps. Afin d’examiner ce probléme, développons (16) en
puissances de g :

0
S=1+% ’—1—' d*y, ..., d%, S, (xq, ..ny X,)

n=1"""

Le terme d’ordre 2 de ce développement, S,(x,, x,), s’écrit par exemple :
—i 2
Sienx) = (L) TCeh ehtn) ) (7

Cette expression sera a priori mal définie au point x; = x, (le produit normal
définissant ¢ *(x) sans ambiguité). Il existe une méthode plus satisfaisante
d’arriver a la relation (16), qui met bien le doigt sur ambiguité de cette
formule : c’est la construction de Bogolioubov. Cette construction utilise une
constante de couplage dépendant du point x, et prend pour point de départ les
propriétés (i) d’invariance de Lorentz (ii) d’unitarité (iii) de causalité (c’est-a-
dire I'impossibilité pour un événement se passant en un point d’espace-temps x
d’influencer des €événements qui se passent en dehors du cbne futur de x).

Partant de S,(x) = _—4_1'g: *(x):, Bogolioubov montre que les S, pcuvent étre

construits par récurrence, mis a part un terme antihermitique qui ne peut étre
# 0 que lorsque les points x,, ..., x,, coincident. Par exemple I'équation (17) est
modifiée en :

_ig \?
S0 x) = () TG eht): ehn)) +

30,
+iP (<pm(x,),$:",...) 8(x—x) (18)
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ol P est un polynéme du champ et de ses dérivées. La construction de
Bogolioubov présente un grand intérét mais comme elle n’entre pas dans la
logique du présent exposé, je renvoie le lecteur au livie de Bogolioubov-
Chirkov (chapitre IIT).

A.2. Formule de Gell-Mann et Low

La formule de Gell-Mann et Low que nous allons démontrer ci-
dessous permet le calcul perturbatif des fonctions de Green
G™)(x, ..., xy) définies par :

G™M(xy, oo xy) = O] T (#(x1) ... 9 (¥n))[0) (19)

ou les ¢ sont les champs en interaction et |0) I’état fondamental & zéro
particule. Pour démontrer cette formule & partir de la définition (19),
examinons d’abord le cas ou les temps sont ordonnés de la fagon
suivante (5; =x7):

t1>t2>"'>tN
et exprimons les ¢ (x;) en fonction des ¢, (x;) (équation (8)):
O] T(¢ (1) ..  (cx)I0) = (O U™ (1) @1nx1) Uty 1) ...
Uy s ty) ein(xy) U(ty)|0)  (20)

ol 'on a utilisé 1a loi de groupe (IX.61) pour U(t, t,). Soit ¢ un temps
tel que t > 1, et —t <ty ; écrivons:

UGy) =U(ty, =) U(=2); U Ny) =U ) U(t, 1)
et insérons ces relations dans (20) :
O]T(¢ (x1) ... ¢ @uD0) = OUH{UE t)einlxy) X
X U(ty, 1) @in(x2) ... @in(xy) U(ty, =)} U(—1)|0)

iJ' de' Hy(2')
= (0|U (1) - ) U(-1)]0y. (1)

T(‘Pin(xl) - @ mlxy)e

Pour obtenir cette relation, on a utilisé I'expression (IX.69) de
U,(1,, t;) ainsi que I'égalité :

L[ [7) [
“J Hy(y de! _1J‘ Hyyde —IJ. Hy(ar
T(A(t)e 1 ) = T(e ' ) A(r) T(e 1 )
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valable lorsque ¢, <t < t,, d’aprés la définition du produit-7 : on notera
que si A(t) =1, I'égalité précédente est simplement la loi de groupe
(IX.61). Grace au produit-T', I'égalité (21) qui avait ét¢ démontrée pour
un ordre particulier des temps devient valable pour tout ordre de
(ty, s ty)-

Nous allons supposer que linteraction ¥, est «branchée » et
« débranchée » adiabatiquement : &, —» e~ */'l &, £ 0*. Dans ces
conditions lim U(-1¢)|0) = |0;), ou |0y) est le « vide perturbatif »

{—+ @

annihilé par les a,(k). Grice a IP'hypothése adiabatique,
lim U(#)|0;,) = A]0;,), ol A est un facteur de phase: |A] =1 (*).

t >

On obtient donc :

lim ¢0|U~1(t) = (0| A* = lim (0, |U~1()] 04 (O]

{ - 00O o>

et I'équation (21) devient (en supposant que (¢ ) ne contient pas de
dérivées) :

G(N)(xl, ceny xN) =

i J‘ d*%x Z1{ein(x))
) Ioin>

<om|T(%(x1) o em(in)e

ijd“x Z1(0:u())
<0in‘T(e ) 'Oin>

. (22)

[o o)
Le facteur exp (—i J c(t) dt’) s’élimine entre le numérateur et le
- Q0
dénominateur de (22) et peut donc étre ignoré. Le dénominateur de
(22) est I'élément de matrice vide-vide de la matrice S: (0;,|5|0y), et
c’est, comme nous I'avons vu, un facteur de phase.

La formule (22) est appelée formule de Gell-Mann et Low. Compte
tenu des remarques sur la représentation interaction, des infinités
possibles dans Z; etc. la « démonstration » qui précéde n’a qu’'une
valeur purement heuristique.

(*) 11 faut bien souligner la différence avec le cas de linteraction avec une source
classique, ol des particules sont créées & partir du vide par interaction entre le champ et la
source.
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Il est facile de construire & partir de (22) une fonctionnelle génératrice
des fonctions des Green. Définissons la fonctionnelle Z(j) par :

Z() = <0i,.|T(exp (i J dx (L1 (@) + () %(x))) ) 10w

(23)
Il est clair que G™) s’obtient par différentiation fonctionnelle :
—iy 8™ z())
G™(xy, enyx ) - : (24)
(x) v) Z(0) 8j(xy)... 8j(xy) |i=0

et que Z(j)/Z(0) peut aussi s’écrire :
2G)/20 = 01 7(exe(i [ i o) )10 @9

On remarquera que le champ libre g, intervient dans (23) et le champ
¢ dans (25).

A.3. Développement perturbatif

L’importance des formules (22) et (23) vient de ce qu’elles permettent
d’obtenir le développement perturbatif des fonctions de Green. En

effet, développant 'exponentielle dans le numérateur de (22), nous
avons :

in

ij d'y £, (en ()
Ol T( Pn(x1) . @nlin) € )

=3 ] j‘ dy, ... d4yp (O] T(@in(x1) ... @in(xy) X
p=05"

x L1(@in(y1)) - L1 ein ()]0 - (26)

Les valeurs moyennes sur le vide dans (22) peuvent étre calculées a
I'aide du théoréme de Wick : comme on prend la valeur moyenne sur le
vide, seul le dernier terme de I’équation (IX.86) donne une contribution
non nulle. Mais ce terme a exactement la structure (V.13) d’une valeur
moyenne calculée avec un poids gaussien. On pourra donc transposer
les régles de Feynman établies au chapitre V a condition de faire deux
modifications :

(i) la contraction dans (V.13) doit étre remplacée par celle de
(IX.86), c’est-a-dire Ap(y; — ¥;);
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(ii) dans le cas du modéle en ¢* du chapitre V, le développement
perturbatif provenait du développement de I'exponentielle :

&ty el | ‘
41 — r1
€ '[ ZZ (4_‘g> ‘D_!J.d4yl"‘d4yp ‘P4(Y1)-~ ‘P4(yp)
?

ol p est l'ordre de la théorie des perturbations. A chaque vertex
correspondait un facteur — g. Dans le cas présent, si le lagrangien est
donné par (3.a), le terme d’ordre p du développement perturbatif fait
intervenir un facteur (—ig)’, ¢t a chaque vertex correspondra un
facteur — ig.

Le développement perturbatif du dénominateur de (22) donne les
diagrammes vide-vide, ou les vertex ne sont reli€s a aucun point
externe. Ils jouent le méme rdle que ceux du développement de
Z(0) dans (V.16) (d’ou la terminologie introduite au chapitre V). Pour
tenir compte du dénominateur, il suffira donc, comme au chapitre V,
d’éliminer tous les diagrammes contenant une partie vide-vide. On peut
énoncer les régles de Feynman pour G V) dans I’espace des x, 4 P'ordre p
de la théorie des perturbations :

(i) Tracer tous les diagrammes topologiquement inéquivalents avec
N points externes x,, ..., Xy, €t p vertex yy, ..., ¥, ne contenant pas de
partie vide-vide. Si linteraction est écrite sous forme d’un produit
normal, certains diagrammes sont absents (cf. (IX.88)). Par exemple la
contribution 4 G® du diagramme de la figure 1 ne doit pas étre
décomptée dans le cas du lagrangien (3.b) :

X| e : X5

fa —X 2

Bg!

Figure 1. Graphe (tadpole) éliminé par le produit normal.

(ii) Associer a chaque ligne du diagramme un facteur Ap(x —y)
(= Ap(y —x)). _

(iii) Associer a chaque vertex un facteur — ig.

(iv) Intégrer sur tous les points internes y;.

(v) Multiplier par le facteur de symétric du diagramme.

La discussion du chapitre V sur les fonctions de corrélation connexes
et sur les vertex propres se transpose immédiatement aux fonctions de
Green. Les fonctions de Green connexes G™) seront définies a partir
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du logarithme de Z(j): Z(j) = exp(W(j)) et les vertex propres a partir
de la fonctionnelle génératrice I'(&):

iF(¢)=W(1')—in4XI'(X)¢‘(X)

F(x)=—i8W(j)/8j(x).

Le vertex propre I'® sera donné, a un facteur i prés, par linverse du
propagateur :

I'®k)y=i[GP(k)] ! = k*—m*— 3(k) (27.a)

ot (k) est I'énergie propre. Les vertex propres I'Y), N =2 seront
reliés aux fonctions de Green connexes, 1-particule irréductibles,

amputées de leurs propagateurs externes complets, GV )| Lp; (TEmarquez

que les fonctions de Green G{V) ne sont pas nécessairement 1-PI, et
différent en général des vertex propres) :

N
GC(N)(kl, ceey kN) = n [G(z)(k,)]_l GC(N)(kla sees kN) (27’b)

i=1

Tk, ooy k) = — iGNy, ooy k) s (27.¢)

les transformées de Fourier étant définies par (cf. V.23):

N
i=1

N

4 o AT
= dxl...dee GC (xl, -..,XN). (28)

Avec cette définition, tous les moments k; entrent dans le diagramme
(paragraphe C.3). Les régles de Feynman, par exemple pour les vertex
propres I'™)(k,), seront données par :

(i) Tracer tous les diagrammes 1-particule irréductibles d’ordre p
avec N 4-moments externes Ky, ..., ky entrant dans le diagramme.

(ii) Associer a chaque ligne interne du diagramme un facteur
i/(k*—m?+ie).

(iii) Associer a chaque vertex un facteur (— ig).

(iv) Ecrire les moments internes en assurant la conservation du 4-
moment a chaque vertex, et intégrer sur toutes les variables indépen-
dantes g, c’est-d-dire sur toutes les boucles, avec une mesure
d'q/ Q2w

(v) Multiplier par le facteur de symétric du graphe et par un facteur
global (- i) (cf. 27.c).
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A.4. Renormalisation et conditions de normalisation

Les fonctions de Green définies par les régles de Feynman précéden-
tes sont en général divergentes en dimension 4. Comme dans la scconde
partie, il sera nécessaire de renormaliser la théorie. Il faudra donc se
fixer des conditions de normalisation, analogues & (V1.22) ou (V1.33).
En théorie quantique des champs on utilise souvent (mais ce n’est
évidemment pas une obligation) la renormalisation sur couche de masse,
en exigeant que le propagateur renormalisé ait un pdle a k% = m?, ol
m? est la masse physique de la particule (*), et que ce péle ait un
résidu i: ainsi ce propagateur est-il le plus voisin possible du propaga-
teur libre i/(k?>— m?+ie) prés du pole k* = m> Les conditions de
normalisation sur couche de masse seront :

rkr=m* =0 (29.2)
4 r@e2 2y

e rPk?*=m? =1 ) (29.b)

FRik; =0)=—¢g (29.0)

Dans le cas de la masse nulle, l'existence de singularités pour
k?=0 conduit A choisir un point de soustraction du genre espace (cf.
équation (VI1.34)):

1
ki'kjSP:_Z#2(48ij_1); ki2=~—11v2 (30)

et les conditions (V1.33) deviennent :

rk*=0)=0 (31.a)

d
ak_zr,gﬂ(k2 =—ud)=1 ) (31.b)
r§4)(ki|SP) =-9 (l.c)

(*) En général la masse renormalisée mj m'est pas égale a la masse physique

m?, mais en différe par une renormalisation finie (par exemple si Pon utilise la condition
de normalisation I'@(k*=0) = m2). Naturellement on doit avoir dans tous les cas

I'P(k* = m?) = 0. Dans la renormalisation sur couche de masse, m® = m2.
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B. INTEGRALE DE CHEMIN ET THEORIE EUCLIDIENNE

B.1. Intégrale de chemin pour Z(j)

Grice au théoréme de Wick, nous avons pu identifier dans le
développement perturbatif des fonctions de Green le résultat d’une
intégrale gaussienne. Il doit donc étre possible d’écrire la fonctionnelle
génératrice (23) des fonctions de Green sous forme d’une intégrale de
chemin. Remarquons d’abord que Z(j) peut s’écrire, dans la mesure ou
I'on n’utilise pas le produit normal (cf. V.22):

Z(,'):./Vexp<ijd4x$1<_i§(—x—))) x

X EXp (_ % J d' d%' j (1) A(x —x’)j(x’)) (32)

oll A" est une constante multiplicative qui ne joue aucun rdle dans le
calcul des fonctions de Green ; il est instructif de vérifier les facteurs (i)
par exemple dans le cas du lagrangien (3.a). Mais la deuxiéme
exponentielle de (32) peut étre obtenue par une intégration gaussienne :

exp<_%Jd“xd“x'j(x)AF(x_x'),'(x')) s J@(p x
xexp(— Jd“x<%w[i(D+m2—i6)]<p—ii(x)w(x)>) -
=N J‘ D¢ exp (i J d*x (Lo(x) +j(x) (p(x))) .

(33)

Une intégration par parties (cf. les remarques suivant 1’équa-
tion (IX.31a)) permet d’identifier £ ((x) dans (33) et dans (1). L’inté-
grale sur ¢ dans (33) est une intégrale gaussienne, qui fait intervenir
Pinverse de l'opérateur :

i+ m?—is)

que Pon peut noter symboliquement [i(0 +m?—ie)]~!. Mais cet
inverse n'est autre que Ay étant donné que (cf. (IX.54)):

[(O, + m*>—ie)] Ap(x —x') = 8 D(x —x").
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On peut aussi raisonner dans ’espace de Fourier :
Ap(k) =i/ (K +m?—ie); (@ +m?—ie) > —i(k*—m?—ie).

On remarquera que le facteur (—ie) assure la convergence de
I'intégrale gaussienne (33) : en 'absence de ce facteur, le comportement
de lintégrand serait oscillant & la limite ¢ — = co. On peut finalement
mettre (32) sous la forme :

Z(j)= N f G oxp (i f dx(Lole) + L1(9) +j(x) <p(x>>)

=AN" J 2 ¢ exp (i(Action/fh)) (34)

ou la partie gaussienne #,(¢ ) s’identifie au lagrangien libre. 1l faut
remarquer un abus manifeste dans les notations: dans (33) et (34)
@ (x) désigne une configuration de champ classique et non un opérateur.
Il faudrait utiliser dans (33) et (34) une notation différente, par exemple
A(x). Cependant cet abus de notations est de régle dans la littérature,
et nous nous conformerons a l'usage. Les formes (23), (32) et (34) pour
Z(j) different par des constantes multiplicatives qui peuvent étre
ignorées car elles disparaissent dans le calcul des fonctions de Green
(cf. équation (24)).

Le fait que I'on puisse obtenir Z (j) dans (23) comme une intégrale de
chemin n’est évidemment pas un hasard. En effet nous avions montré
au chapitre VIII, paragraphe B qu'une amplitude de probabilit¢ en
mécanique quantique pouvait s’écrire comme une intégrale de chemin,
c’est-a-dire comme une somme sur toutes les configurations g(z)
vérifiant certaines conditions initiales et finales, et nous en avions
déduit une fonctionnelle génératrice des valeurs moyennes sur le vide
des produits-T (équations (VIIL.37)). Dans le cas présent la variable
dynamique n’est pas la position g, mais le champ ¢, et il n’est pas
surprenant que la fonctionnelle génératrice des valeurs moyennes sur le
vide des produits-T puisse s’écrire comme une somme sur les configura-
tions de champs. La seule ambiguité dans la formulation fonctionnelle
provient du choix de Pinverse de lopérateur (00 +m?). Comme au
chapitre VIII, il est possible de justifier la prescription m? - m? ~ ie.
Dans I’exposé que j’ai suivi, cette prescription est bien évidemment
conséquence de la formulation canonique.

Cela dit, étant donné un lagrangien classique . (x ), on peut décider
de le quantifier en écrivant la fonctionnelle génératrice (34), au licu de
passer par le formalisme canonique. Compte tenu des incertitudes du
formalisme canonique (représentation interaction), cette fagon de
procéder est a priori tout aussi valable. Il conviendra toutefois de
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remarquer que (34) suppose que P'on utilise une régularisation dans une
¢tape intermédiaire, et que l'on vérifie les propriétés de localité et
d’unitarité de la matrice S de la théorie quantique obtenue par cette
méthode. En derni¢re analyse, la meilleure fagon de procéder serait
peut-€tre de se donner les régles de Feynman, puisqu’aprés tout la
renormalisation procéde ordre par ordre en théorie des perturbations,
et qu’il faut bien avoir a sa disposition un développement perturbatif.

Les formulations fonctionnelles (32) ou (34) suggerent qu’il doit
exister une relation trés précise entre les fonctions de Green du présent
chapitre et les fonctions de corrélation du chapitre V, qui sont aussi
appelées — pour des raisons qui deviendront évidentes dans un
moment — fonctions de Green de la théorie euclidienne. Cette relation
est indépendante du développement perturbatif. Cependant nous allons
dans un premier temps utiliser ce développement, ce qui permettra au
passage d’examiner le calcul pratique des fonctions de Green. Commen-
cons par un exemple simple, celui de I'® dans le cadre du modéle
#* (3.b) au premier ordre non trivial de la théorie des perturbations.

B.2. I'® au deuxiéme ordre en g. Rotation de Wick

Calculons la contribution I'® du graphe de la figure 2 & I'®:

.2
Fo - i E9 g,

N | _d%q iy
fk) Qm)Y (g —m?+ie)((k—q) —m?+ie) (33)

Figure 2. Contribution d’ordre g° a I'"),

avec k = ky + k,. Comme P'intégrale est divergente en dimension 4, j’ai
utilisé une régularisation dimensionnelle (D est toujours la dimension
de lespace-temps, Vespace ordinaire a dimension D — 1). Pour calculer
(35), nous allons suivre & nouveau la méthode des paramétres de
Feynman, en indiquant les différences entre le présent calcul et celui du
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chapitre V. Nous obtenons d’abord :

1 D \2
d’q @)
I1(k? =j dx . 36
) 0 CaY[g?+x(A —x)k?—m?+is] (36)
Supposons k*<0: k2= —k%. Clest ce qui se passerait par exemple
pour ky =0
K= K= ki -k} = -k},

L’intégrale sur g, présente alors des péles a :
qo=* (m’+q* +x(1 —x) ;)"

et la prescrition pour contourner ces pdles est parfaitement définie car
m? est en réalité m?—ie. On peut déformer le contour en évitant les
pOles et intégrer sur 'axe imaginaire — 00 <Im gy < + o0 en posant

o = iq, (figure 3):

2y s 1 dDQE 1
1(k?) = 1dej( (37)

27)° o} +x(1 —x) ki + m?]

ot d’qy =dg,dq; ... dgp_;. Au facteur (—i) prés, cette expression
coincide avec celle que nous avions obtenue au chapitre V. La
déformation du contour d’intégration, qui est une rotation de

Im g,

N
Y caun

— NN m 3 Re 9o

Figure 3. La rotation de Wick.
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72 est appelée rotation de Wick. Enfin 'indice E dans g est une abrévia-
tion pour « euclidien » : en effet, pour D = 4, la métrique dans

9% =ql+q5+q9i+4;

est une métrique euclidienne, alors que la métrique originale était celie
de Minkowski : :

q*=q—qt-93-4;.

Lorsque k% = — k% <0, on dit que la fonction de Green est calculée
dans la région euclidienne. Rassemblant tous les facteurs (i), on
constate que :

FO®K =~k <0) = - I'(E) (8)

ou FP(K%) est le vertex propre calculé au chapitre V, que nous
appellerons désormais vertex propre de la théorie euclidienne.
Terminons le calcul de I'®:

gy 0012 -D/2) [ -2
r<4>(k2)_W ) de[m?>—x(1 —x)k4 % . (39)

Ainsi que nous le savions déja, cette expression diverge pour
D=4, c’est-a-dire pour e=4—-D=0. En utilisant
x~¢/2~1—¢/21nx Pexpression (39) devient
(k2 = _& [i_= fldx In (m?—x(1 —x) k%) +
(4 ) e 2 Jo
+ (Cte) + O (D] (40)
et le terme divergent en 1/ est éliminé par la renormalisation. En

choisissant par exemple la condition de renormalisation (29.c) on
obtient pour la fonction de Green renormalisée :

Y x(1—x)k?
r§ ___—2(47r)2j0dx1n (1 = ) (41)

Le logarithme est bien défini pour k2 <4 m? et en particulier il est
bien défini dans la région euclidienne. Mais I'{{ présente une coupure
pour k%= 4 m? dont I'origine physique sera examinée au paragraphe D.

B.3. Relation avec la théorie euclidienne

Pour traiter le cas général d’un vertex propre a N lignes externes
'™ 3 Yordre V de la théorie des perturbations, on procédera en suivant la
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méthode exposée au chapitre V ; on partira de la représentation de Schwinger
du propagateur :

_ j da @@ M rid) (42)
P2 -myie 0

ou le facteur ie assure la convergence de l'intégrale. Il est inutile de répéter le
calcul du chapitre V, paragraphe E.3 et on peut se contenter de suivre & la trace
des facteurs (i). Ces facteurs (i) proviennent des deux intégrales suivantes
(exercice 1) :

A%k e ie-imP/
— e a=0 43
J(277)De (4 ma)P7? (a=0) (“43)
et
© oo )
J dA )\a—le—lk(m —15):e~11ra/2(m2)—a F(a) (44)
0

En suivant le calcul du chapitre V on note :

~inD /4yl

— un facteur (ie provenant des I intégrations sur les p; ;

— un facteur (ie "P/4)V-!

variables z ;

provenant de lintégrale sur les (V —1)

—‘7”(1_LD/2)

un facteur e provenant de I'intégrale sur la variable d’homogé-
néité A (passage de (V.61) a (V.62));
soit un facteur global (—i)" ~!. On obtient donc pour Iintégrale J :

S«

iy -t _ dxis(l"zxi) LD _
WL/ | I e KA

ou la matrice A est identique a celle de (V.60). Définissons maintenant la région
euclidienne : les moments k; appartiennent a cette région si pour tout choix de
A; réels I'inégalité :

(Z)\,-k,->2<0

est vérifiée. Dans cette région, toutes les combinaisons linéaires de k; sont
orthogonales 4 un vecteur de genre temps, qui, dans un référentiel convenable,
a pour composantes (1,0, 0, 0). Dans un tel référentiel, les composantes de
temps des k; sont nulles (k;, =0) et:

kok'=—K-K' =— (ki k] + by b} + ks K2) .

A

On peut associer & chaque k; un vecteur k;z; d’un espace euclidien a
4 dimensions tel que k;, = 0 dans un référentiel particulier, avec :

kg ki =k-k'.
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Le terme kTA-'k dans (45) devient — kL A-'k; (rappelons que
kI A“'k; =0 car A est une matrice positive). Tenant compte du facteur (i)
provenant de la substitution — g — — ig, du facteur (- i) dans la définition de
'™ (cf, 27.¢) et du (— 1) dans la définition de I'{"), on obtient, dans la région
euclidienne, Iidentification (remarquez que notre définition des I' ™) coincide
avec celle d’Itzykson-Zuber, mais les I'§Y) different d’un facteur (—1)):

F®k;) e = - IV (kie) - (46)

Le passage des I'™) aux fonctions de Green connexes GV fait

N
intervenir un produit de propagateurs externes : | G(Z)(kj) dans le cas
j=1
N
de Minskowski, [] G éz)(kjE) dans le cas euclidien; comme
j=1
GAk)|p = — iG ?)(kp), tenant compte du facteur (— i ) de (27.c) ainsi
que du (— 1) dans la définition de I'{), on trouve pour les fonctions de
Green connexes :

GM(k) g = i(- DY GIR(ki 5) - (47)

Comme les fonctions de corrélation G®P(k;) sont calculables a partir
de l'intégrale fonctionnelle :

2(j) = J Te exp(* jd”x (Jf(so)—j(xw(x))) (48)

ainsi que nous I’avons vu en détail dans les deux premiéres parties, nous
aurions pu établir (46) et (47) directement en comparant les expressions
(34) et (48), sans passer par le développement perturbatif. En effet
H (x) n’est autre que le prolongement pour t —» — it de £ (x):

Ceci généralise ce que nous avions vu au chapitre VIII dans le cas
d’un degré de liberté : le prolongement euclidien ¢ — — it permettait de
passer d’'un probléme de mécanique quantique a un probleme de
mécanique statistique a 1 dimension. Ici nous voyons qu’un probiéme
de théorie quantique des champs dans un espace-temps a D dimensions
se prolonge analytiquement en un probléme de mécanique statistique
dans un espace 4 D dimensions. Le « hamiltonien » # (x) des deux
premiéres parties du livre doit donc étre considéré comme le prolonge-
ment euclidien . (x) du lagrangien ¥ (x) d’une théorie quantique des
champs. C’est pourquoi on rencontre fréquemment la notation
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ZLr(x) au lieu de H# (x). Des relations telles que (46) ou (47) peuvent
étre déduites de formules généralisant (VIIL.57). Il suffit d’ailleurs de
considérer la composante de temps, puisque c’est la seule a étre affectée
par le prolongement euclidien.

Notons enfin que la prescription m* — m?* — ie peut étre obtenue par
le « postulat d’euclidicité » : par définition les fonctions de Green de la
théorie quantique sont obtenues par prolongement analytique 7 — it &
partir des fonctions de corrélation de la théorie euclidienne.

2

B.4. Equations du mouvement

Comme application de la formulation fonctionnelle, nous allons
démontrer des équations du mouvement pour les fonctions de Green.
Effectuons dans la fonctionnelle génératrice (34) le changement de
variables :

Px) = @ (x)+ef(x)

ol ¢ - 0 et f(x) cst une fonction arbitraire. Comme Z ¢ est invariant
dans cette translation, la valeur de Z(j) est inchangée, et développant a
Pordre &, on obtient :

IBIOIEL exp(iS[<p] +ifd4xf(x>¢(x>) <

X [%‘(gy—)ﬂ(y)] =0

Comme la fonction f est arbitraire, nous en déduisons :

j@np exp(iswuij 1(x)<p(x)) [ 25+ =0. @)

Les équations du mouvement recherchées se démontrent en dérivant
par rapport a j et en posant j = 0 ; dérivant une¢ fois, 'on trouve :

[Z©O)"! j 0 51ie () 5255

Prenant comme exemple le lagrangien (1), cette équation devient (si
V(¢) ne dépend pas des dérivées de ¢) :

+6(4)(x—y)] =0.

[Z(©0)]! J Do 5 o ()@, +m?) o (1) + V' (e (YN} +

+id®x -y)=0.
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Le résultat s’exprime aussi sous forme d’un produit-7, en remarquant
que Pon peut sortir les dérivations par rapport a y de lintégration
fonctionnelle :

@, +m?) 0] T(e(x) ¢ (¥))|0) +
+ (0] T(e (1) V' (e ()N]0) = —i8 Dx —y). (50)

Bien que 85/8¢(y) = 0 au niveau classique, on notera que :

58S
017 (w525 )

qui est équivalent au membre de gauche de (50), n’est pas nul. La
fonction & “)(x — y) vient évidemment de ce que Popérateur de Klein-
Gordon (O, +m?) ne «commute pas» avec le produit-T (cf. exer-
cice IX.8). Cette remarque permettrait bien stir de donner une démons-
tration directe de I’équation (50). Retenons de cette discussion le point
important suivant : supposons que I'on ait obtenu une certaine identité
a Paide du formalisme fonctionnel ; lorsque 'on écrit cette identité en
termes de valeur moyenne sur le vide de produits-T, il faut faire passer
les opérations de dérivation a Textérieur du produit-T.

En dérivant N fois ’équation (49) on obtient I’équation du mouve-
ment générale :

@, +mH GV Dy, xy, ., xn) +
+ 0] T(V' (e () @ (x1) ... @ (x4))|0) =

N
=—1i z 6(4)()/ —x]‘)G(Nil)(xl, ...,x]-,l,xj+1, ...,XN) ) (51)

j=1

C. SECTIONS EFFICACES ET MATRICE §

La dynamique des particules élémentaires est accessible par I'observa-
tion de désintégrations de particules, et surtout par I'observation des
collisions de particules dans les accélérateurs. Dans ce dernier cas, les
quantités mesurables sont les sections efficaces, et il nous faut d’abord
relier ces sections efficaces aux éléments de matrice S. Il faudra ensuite
relier les éléments de matrice S aux fonctions de Green, que nous avons
appris a calculer, au moins en théorie des perturbations. Cette relation
cst établie grice aux « formules de réduction », mais le formalisme
nécessaire a la démonstration de ces formules est asscz lourd, particuli¢-
rement dans le cas de particules de spin 5 0, et je commencerai par
utiliser une méthode moins rigourcuse, mais plus intuitive. On définit
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en général la matrice T, qui contient la partie non triviale de la matrice
S, par la relation suivante pour les ¢léments de matrice i — f:

Sp=8p+i(2m) 8 (4)(Kf ~K) Ty (52)

ol K;(K;) est le quadri-moment de I'état initial (final).

C.1. Sections efficaces

Dans ce calcul il est important de noter la normalisation des états : si
|k) = a'(k)|0), la relation d’orthonormalisation est, d’aprés (IX.41) :

KNk = Q7)Y 20, 80k k')

et la relation de fermeture, dans le sous-espace & une particule de
I'espace de Fock s’écrit ;

3’k
— |k) (k| =1,.
| e -1,
Partons d’un état initial formé de deux paquets d’ondes :

[i,in) = J dk; dk; f1(k;) f2(ky)| K, ko, in)
ou:
dk = &k /[(2 7)Y 2 0] .

A chaque paquet d’ondes correspond une solution d’énergie positive
de I'équation de Kiein-Gordon :

fx) = j dk e f (k) (53)
le produit scalaire étant défini par (cf. 1X.38):
(fo0)=i [ & 7+ tg = [ aF 100900,

La probabilité de transition
Wi = | (f, out]i, in) |2

est donnée en fonction de I'€élément de matrice T: (f|T |k, k,) par
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(cf. (52) ; lindice «in » est omis afin d’alléger les notations) :
wi = | ki 0k, 0F; 0F; £r(0) £17Ge) Fulk) £206) x

x @ m) 8OK, —ky — k)2 ) 8D ky + key — ki — k5)

x (fIT\ki k) * (f|T|k{, kg . (54)

Si le moment du paquet d’ondes est bien défini, f(k;) est piqué au
voisinage de k; = k;. Nous supposerons que 'élément de matrice varie
peu au voisinage de (k;, k;):

(fIT|k ky) = (f|Tky, k) . (55)
Transformons une des fonctions & dans (54) :

QaY sW(ky+ky— ki —k}) = J dty R K- kD)

et effectuons l'intégration sur les k;, k! en faisant Papproximation (55) :

Wi = | RO L0 @) 89K, - k- )

X | (FIT ks, ko) |2 (56)

Wy est une probabilit€ de transition intégrée sur 'espace et le tcmps :
c’est Uintégrale d’une probabilité de transition par unité de volume et
de temps :

dw ; 2 2 4 s (4) 2
ava- [ F1ON [ f20)]7 2 ) %Ky — ki — k)| (| Tk, ko) |
(57)
Mais si le moment du paquet d’ondes est bien défini on doit avoir :
f(x)=e “FF(x)

ou F(x) est une fonction lentement variable, car le paquet d’ondes est
étendu. Dans ce cas:

F*() 8, f(x)=2k,|F(x)|?.

Supposons que la particule 1 soit la particule incidente, et la particule 2
la particule cible, immobile dans le référenticl du laboratoire. Le
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nombre de particules cibles par unité de volume est :
dnz )
avzz @, f2(x)) (58)

(en utilisant la notation abrégée: w; = wy,), et comme la particule
cible est au repos, w, = m,. Le flux de particules incidentes est :

R3]

31

2 01| F10))7 = 2|k || | 1)} (59)

Reste a utiliser la définition de la section efficace :

dw; do

4o = 39 a7 (Fiux) (donsité de cibie)

ou d@ est 'espace de phase, pour obtenir, & partir de (57), (58) et (59) :
Q@AY (K -k~ k

) 2
do 2 FI Tk, ko) [P d® .
4m2”k1” l< I I 1 2>|
Le « facteur de flux » m, ||k, || = F peut s’écrire sous forme invariante
de Lorentz:
F = [(k - ko) — mim31? . (60)

Si I'on veut calculer la section efficace d’observation des N particules
finales de moments (ky, ..., ky) dans une certaine région de I’espace de
phase, il faudra intégrer avec la mesure d’intégration :
-~ - &’k] d’ &,
do ™) = dk; ... dky = L N (61)
QC#n)Y2w] CrY2e)

Nous écrirons donc le résultat final pour do sous la forme :

1
do = 7= Q) 8K, — ky — k)| (f1 Ty, ko) |

« d*ky &k
QrY22de, @Yoy

(62)

N
o Ky = % ki et & est un facteur statistique égal & [T /m; 1), silya
i=1 i
dans I'état final m; particules identiques de type (i).
Un calcul analogue (exercice 3) montre que le taux de désintégration
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d’une particule d’énergie o, qui donne N particules finales &j, ...

est:

dr =2Lw(2w)45<4><k—z'::k;)|<f|T|k>|2><

L P d’ky
Q7)2w] QaY2ey

C.2. Application : 2 particules —» 2 particules

(63)

Afin d’illustrer le résultat (62), appliquons-le au cas d’une réaction

2 particules — 2 particules :

ki +ky - ki+k;

en calculant la section efficace do /d£2 dans le référentiel du centre de
masse. A cause de l'invariance par rotation autour de k;, la section
efficace ne dépend évidemment pas de l'angle azimuthal ¢, mais

seulement de I'angle polaire 0 (figure 4).

k/
7/
7
/
— — 0 —
._(1____”__/_/”\0 (0.¢) &
/
7
K

Figure 4. Cinématique a deux particules.

Plagons-nous dans le référentiel du centre dc masse avec :
ki= (o, k); k= (03, —-K); s=E’=(ki+k).
Un calcul cinématique simple (exercice 2) donne :

F = /s||k] -

(64)
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Evaluons maintenant I'espace de phase d® @ a 2 particules :

d3k, d3k1
do @ = ! @) (K ki —k3).
QaY2e{2mY2w)

L’intégration sur d*k; est immédiate ; aprés cette intégration il reste une
fonction 8 et :

Jd3k’8(E—w1’—wé)= jk’zdk’dﬂ 8(E — 0] — ©})

w; wy k'
E

ol {2 est 'angle solide et ou I'on a utilisé :

dk’ (‘1’1+w2)— k = k,E, car w,-’=\/k'2+m,-'2

wq 0’2 wy W)

d

L’espace de phase d® @) vaut donc :

1 & k' d0
(277)221_5(1” T 16 w25 (63)

do® -

Reportant (64) et (65) dans (62) on obtient 'expression de do /d2 :

do 1 |k 2
k{,k}| Tik, k . 66
da ~ 64 m2s S ||k|| I< i k2| 7Ky 2>| (66)

C.3. Calcul d’un élément de matrice S

Avant de démontrer la relation générale entre les éléments de
matrice S (ou T) et les fonctions de Green, nous allons expliquer sur un
exemple simple comment on peut calculer perturbativement ces élé-
ments de matrice. Nous aurons besoin du théoréme de Wick pour les
produits d’opérateurs (¢ (¥1) ... ¢ (xy)) ; le résultat est tres simple : il
suffit de reprendre équation (IX.86) et de remplacer dans lc membre
de droite les contractions & (x;) ¢ (x,) par :

¢ (x) ¢ (x) = <O|‘P(x1) ‘P(x2)|0>
1

ou I'indice «in» a été omis ; ¢ (x) —» ¢ (x). On obtient par exemple
dans le cas du produit de deux champs :

Px) o) =:0(x1) @(x) i+ @lx)) x3).
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La démonstration de ce théoréme est élémentaire et est proposée a
Pexercice 4. Essayons de calculer au deuxiéme ordre des perturbations
I'élément de matrice S pour le processus :

ki +ky— ki + K}

dans le cadre de la théorie décrite par le lagrangien (3.b).
Le développement au deuxi¢me ordre de (16) est:

S0 = () Tee et (67)
La premiére réaction pour évaluer Sy est d’écrire I'élément de
matrice :
<k{,k2’|52(xl,x)|k1, k2> = o
= (Ola(ki) a(ks) S;(x', x)a’ (k) a' (k) [0) . (68)

Cette expression est correcte & cet ordre de la théoric des perturba-
tions, mais on doit en général tenir compte d’un facteur multiplicatif
que nous déterminerons plus loin, et que nous ignorons pour le
moment. Pour évaluer S, on développe (67) a I'aide du théoréme de
Wick :

(4,)2 T(:e*(x)::0%(x)) =

$) ) x

tet(x) etx): +

(4')2 (3')2
X'y @) + 3 (‘P(x) @)@ x’) eHx) i+

+$«¢u»¢a»%¢uo¢a%+54567}a»4(@)

ou les facteurs tels que 1/8 sont évidemment reliés aux facteurs de
symétrie. On peut maintenant appliquer le théoréme de Wick pour les
produits d’opérateurs afin d’évaluer la valeur moyenne sur le vide dans
(68). Les seuls termes non nuls sont ceux qui contiennent umquement
des contractions. De plus une contraction comme a(k;)a (kl) donne

un facteur & ®)(k; — k{), c’est-a-dire une particule sc propageant sans
interactions (figure 5).

Un tel terme correspond & un diagramme non connexe pour la
matrice S. Nous cherchons & calculer les termes connexes et dans ce cas
nous voyons que tous les opérateurs « extérieurs » a et a' doivent &tre
contractés avec des opérateurs « intérieurs» ¢@(x'), ¢(x). Seul lc
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i
=

Figure 5. Diagramme non connexe pour la diffusion 2 — 2.

troisieme terme de (69) contribue aux éléments de matrice S connexes,
griace aux contractions du type :

a(k]) e (x')a(ks) e (x") () @) e (x)a’ (k) e (¥)a’ (k)

que l'on pourra représenter par le graphe de la figure 6 :

K, ki

k, k;

Figure 6. Une contribution a la diffusion 2 — 2.

1l y a quatre possibilités pour construire ce graphe, d’ou le facteur de
symétrie usuel 4 x 1/8 = 1/2, et de plus on peut obtenir trois autres
graphes par permutation des lignes externes ; la permutation de x et
x' compense le 1/2! du développement de I'exponenticlle.

Le calcul des contractions g(k) ¢ (x) est immédiat a partir de la
représentation de Fourier (IX.40) de ¢(x) et de la relation de
commutation (IX.41) qui implique :

Olak)a’®)H|0) = 7)Y 2 w8k —k')
et 'on trouve :

ak)p ) =e*; . p(x)a' (k)= (70)

L’élément de matrice S au deuxiéme ordre de la théorie des
perturbations sera :

(ki, k3| S|k k) =

(—igy

J déx diy /KR iR A r 32 4 Perm. (71)
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Si nous comparons ce résultat a celui du calcul d’une fonction de Green
connexe a 4 points G{*)(x;, x,, x3, X4), nous constatons que les propaga-
teurs externes comme Ag(x; — x ) ont été remplacés par des exponentiel-
les : exp(— ikx) pour une particule entrante, exp (ikx) pour une particule
sortante (*): les éléments de matrice S sont donc des transformées de
Fourier de fonctions de Green G, amputées de leurs propagateurs
externes Ap(x, —y,), ou dans P'espace de Fouricr, des fonctions de
Green amputées des facteurs i/ (k?> — m?) ; de plus les lignes externes
sont «sur couche de masse »: k? = kj> = m? ky, kip=>0. Il faut
prendre garde au fait qu’une telle fonction de Green n’est pas un vertex
propre, car elle n’est pas en général 1-particule irréductible : elle peut
comprendre en particulier des insertions d’énergie propre sur les lignes
externes (cf. figure 7). Donnons maintenant une démonstration plus
compléte, en établissant les formules de réduction.

S e

cs“/[ﬁ AF[k,-J] re

j=1

Figure 7.

C.4. Formules de réduction

Pour démontrer les formules de réduction, nous pourrions partir de
la relation (6) (cf. cours de Bros), mais il est plus simple, quoique moins
rigoureux, de suivre le formalisme original de Lehmann, Symanzik et
Zimmermann (LSZ) cn utilisant la condition asymptotique (7):

lim ¢ (x) = Z?}/Z QDin(x) ;  lim ¢ (x) = Z,%/Z ‘Pout(x) . (72)

to - I —

Afin d’alléger les notations, contentons-nous d’étudier une diffusion 2 parti-
cules - 2 particules. Le calcul est fait en utilisant la représentation de

(*) Dans (70) et (71), exp(ikx) = exp(iw, ¢t — ik - x): les exponenticlles contiennent
implicitement un facteur 8 (k°) et k* = m?>
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Heisenberg, ou les états sont indépendants du temps, et I’élément de matrice S
est donné par (cf. 5.a):

S; = (ki, kjout |k, k,in) = (ki kj, out|af,(k;) | X;) (73)

(létat a une particule étant stable, |k,out) = |k,in) = |k)). Utilisons
Uexpression de ah (k) :

ay (k) = — i j d% ™" By i (x) (74)
qui s’obtient aisément par comparaison avec (IX.20.b), ainsi que (72):

Sy = lim _izgmf&x e M7 8y (ki k3, out | ¢ (x) |k,
t

- -0
Comme :
i ; 3 ° d 3
lim — lim ) Fx g, x)= dta &x ¢ (1, x)
1> 0 [ N o) t — o
on obtient :

S = (ki ki, out|al, (k)| k) +
. ~ikyx &
+izy 12 j d 8pfe” """ 8o (ki kjout| o (x)[k,)]. (75)
Le premier terme de (75) est un terme disconnecté, contenant par exemple
une fonction & ®)(k; — k), et nous allons I'ignorer. Effectuons dans le second
terme des intégrations par parties (en toute rigueur il faudrait travailler avec des
paquets d’ondes, et non des ondes planes, ce qui justifie les intégrations par

parties dans I’espace) :
8% e—iklx - wlze—iklx - (k% 4 mz) e—iklx N (V2 _ mz) e—iklx
f dx[(V—mDe (. fo(x)]..) =
= fd“x e MV m) (o))
et (75) devient :
S5 = Disc. +iZ§"2jd4x ¢ @, + mY) (K, Kjout | @ (x)|K,) . (76)
On continue P'opération en transformant I’élément de matrice dans (76) :

ki, kjout| @ (0K = (K3 |an (ki) ¢ (x)|k;) =

— tim 2% [ @ M B (06 0 ) )

[N )
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Comme !' =x5— 00, on peut remplacer ¢ (x') ¢{(x) par un produit-7:
T(e(x')@(x)). Il suffit de répéter les manipulations précédentes pour
obtenir :

(ki kjout | @ ()| = (K| @ (x) an(lg) | ko) +

#1257 [t M@+ ) (] T () 9 Dk ()
ol le premier terme est un terme non connexe. Il est clair que 'on peut
continuer 'opération pour les particules k, et k; et obtenir pour I'élément de

matrice § connexe (parce qu’il y a seulement deux particules initiales) une
valeur moyenne sur le vide :

S comee = HZ7 Y J d*%, d*, d%; d%x; x

we i(kyx1 +kyx2) ei(ki i+ kélé)(D

X (@ + m?) (@, + mH O T(0 (x1) @ (12) @ (x]) ¢ (x3))]0) . (78)

ki + mz)(DxQ + mz)

Il est clair également que cette formule se généralise & un élément de

matrice S quelconque avec les regles suivantes :

2 e-x(0, + m?) est associé a chaque particule

— un facteur iZ3y
entrante,
— un facteur iZy

sortante.

12 el *'(O,. + m?) est associé a chaque particule

La valeur moyenne sur le vide dans (78) est une fonction de Green, et
le facteur i(0J, +m?) correspond a I'amputation d’un propagateur
externe Ay ; dans Pespace de Fourier ce facteur vaut —i(k>— m?). La
regle générale pour I'élément de matrice S connexe (kj... k;,
out|k; ... ky, in ) sera finalement (pour éviter toute ambiguité, j'écris
explicitement les facteurs 6 (k) implicites dans les équations qui
précedent) :

(ki...kyout]k; ... ky in) =

N M
= lim [J [-iz7 Y2(k} - m?») 0 (k)] lim ] [-iZ5 " x

K oam?i=1 k2 s m?i=1

X (kit —m?) 0 (k")) GV M ks, ooy iy 5 = Kis ey = Kiy)

(79)

Le signe (— ) pour les particules finales tient compte du fait qu’avec nos
conventions (cf. équation (28)), tous les moments sont supposés entrer
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dans le diagramme, alors que pour les particules sortantes k' est un
. moment sortant du diagramme.

C.5. Matrice S et fonctions de Green renormalisées

1l reste a faire le lien entre le facteur Z, apparaissant dans la formule
de réduction (79) et la constante de renormalisation Z; introduite au
chapitre VI. Examinons d’abord lélément de matrice du champ
¢ (x) entre le vide et I’état & une particule |Kk) (rappelons que par un
choix de phases convenable, |k;,) = k) = |k)), en utilisant 'opéra-
teur d’énergie-moment P, qui est aussi le générateur des translations
d’espace-temps :

(0] ¢ (x)|k) = (0] ¢ (0)e~* |Kk) = (Cte)e~®  (80)
tandis que :
O] einx)|ky =e =,

En prenant la limite # — — o0, et grace a la condition asymptotique
(72), on constate que la constante dans (80) doit étre égale a
Z}?; prenant la limite ¢— + 00, on montre que lime(x) =

t— o
Z3? ¢ o (x), ce qui avait été admis sans démonstration précédemment.
Supposons maintenant que nous essayons de calculer une expression du
propagateur complet G®(x — y) en isolant la contribution de I'état a
1 particule :

O T(e (x) ¢ )]0 = 8(x°~y*)(0] ¢ (x) ¢ (»)]0) +

£000=x0(0] ¢ () ¢ (x)[0) = {e(x"—y"); O] @()[kyx
X K0 0)I0) + 00X T (O] ¢ ()[K) k] 0()[0) | +
+ {e(x°—y°>; O] ¢ @)|n) (n] ¢ (¢)]0) +

0GP O ¢ Iy ¢nl #(1)10)}

ol )’ désigne une somme sur un systéme complet d’états, a 'exclusion

des états & une particule (et du vide).
Dans le premier crochet, nous pouvons utiliser ’expression (80) avec
(Cte) = Z}? pour évaluer I’élément de matrice ; le premier crochet
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n'est autre que Zy Ap(x —y ;m?): si nous avions utilisé un champ
libre, seul I’état a une particule pourrait donner une contribution. On
obtient donc:

GO —y)=Zs Bp(x —ysm™) 4+

ou dans Pespace de Fourier (cf. exercice 5) :
iZ,

GOU)= ————
() k*—m?+ie

[s 0]
+J dm”? p(m™?) Ap(k;m™)  (81)
am?

ol la « fonction spectrale » p (m?) est positive ; I'expression (81) est la
représentation de Killen-Lehmann du propagateur. Nous n’avons
effectué pour le moment aucune renormalisation (sauf celle de masse :
m dans (81) est la masse physique), et ¢ (x ) doit étre considéré pour le
moment comme le champ mu : ¢ (x) - ¢y(x), dont Ia normalisation est
fixée par les RCC. Aprés renormalisation

eolx) = 25 op(x)

ol @ z(x ) est le champ renormalisé et Z; la constante de renormalisation

du champ (cf. VI.30) (*); examinons d’abord le¢ comportement du
propagateur au voisinage de k* = m?:

iz, 73! izy

= 82
k- m?yie k*—m*4ie (82)

GR(k) =
%2

—>m2

ce qui définit la constante z; : iz; est le résidu du podle du propagateur
renormalisé 3 k*= m?% Nous allons exprimer la section efficace en
fonction des fonctions de Green connexes amputées de leurs propaga-
teurs complets GV (k;) (cf. 27.b) ; I'indice 0 désigne une fonction de

corrélation nue. Nous observons que :

lim (k- m?) G{(k) = iZ,

k2o m?

(*) Compte tenu des infinités dans 8m?et Z,, le raisonnement menant & 'équation (83)
wa qu’une valeur heuristique. On se contentera de noter les deux propriétés cruciales :
(1) les éléments de matrice-S sont des invariants du groupe de renormalisation, (2) la
matrice-§ obéit a la propriétés d’unitarité, au moins ordre par ordre en théorie des
perturbations (paragraphe D.2).
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et par conséquent (afin d’alléger I'écriture, nous ne faisons pas la
distinction entre particules entrantes et sortantes) :

N+M
lim { ] —i(k,-z—mz)} Zy WM2G N+ MYk y = ZN+M/2

k,-2—>m2 i=1

>, G“£({\6+M)(ki) - (23 Zé'l)(N +M)/2 C‘;c(fVR+M)(ki)
- Z3(N +M)/2 Gc(,NRJrM)(ki)
étant donné que les GV) se transforment comme les I'‘Y) par

renormalisation. L’expression de la matrice $ en fonction des quantités
renormalisées sera finalement :

(ki, ..., kyout]ky, ..., kyiny = lim lim

2 2

k,-z —-m k,’-z —m
(83)

2N+ MI2GINFM fy ks =Ky ey — Kig)

Dans la renormalisation sur couche de masse, le facteur z; est égal a 1
par définition (c’est un avantage de cc schéma) mais dans tout autre
schéma (MS, ...) il importe de ne pas P'oublier. La méthode suivie pour
obtenir (83) montre que I'élément de matrice § est indépendant du
schéma de renormalisation : en d’autres termes c¢’est, comme il se doit,
un invariant du groupe de renormalisation.

En pratique, pour calculer les éléments de matrice S, on pourra
utiliser la technique du paragraphe C.3 qui est plus simple que les
formules de réduction dans le cas de particules & spin. Il suffira de
multiplier le résultat par la puissance de z; convenable.

C.6. Unitarité et renormalisation

Il est loin d’étre évident que Punitarité de la matrice S, ainsi que les
propriétés de localité de la théorie survivent au processus de renormali-
sation. Que tout se passe bien est le résultat des travaux (techniquement
complexes) rassemblés sous le sigle BPHZ et de ceux de Epstein et
Glaser ().

Un argument convaincant et (relativement) simple est donné par la construc-
tion de Bogolioubov, esquissée au paragraphe A. Cet argument consiste a
montrer que les contre-termes ont précisément la forme requise dans cette
construction : le contre-terme d’ordre p peut s’écrire comme une contribution a
§,(x1, ..., x,) ; cette contribution est un opérateur antihermitique, et c’est un
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polyndme construit avec le champ et ses dérivées, différent de zéro seulement
au point x; = x; =+ -+ =x,. Il préserve les propriétés d’unitarité et de causalité
de la matrice S.

Domnnons un exemple en partant du lagrangien (4) ; a Pordre g* de la théorie
des perturbations, le contre-terme 8.% comprend un contre-terme de masse et
un contre-terme de renormalisation du champ :

8L =3 om2x): —2(Z-1): ()T, +mY) o (x):
Tenant compte de ce contre-terme, la matrice S & P'ordre 2 devient :

S = ()0 0w i+ ikt ) (84)
avec :
Ao x2) = 5 8m: 0 (51) (61 —x,) 0 (53) =
— 3 (2 1) e )@+ ) (1) e (x): (89)

Les expressions (84) et (85) ont bien toutes les propriétés requises :
iAy(x1, x,) est antihermitique et s’annule pour x; # x,.

D. UNITARITE DE LA MATRICE §

L’unitarité de la matrice S (S F =5 1) est une propriété cruciale, car
elle assure la conservation de la probabilité. Si celle-ci n’est pas assurée,
la théorie perd toute signification. Ce paragraphe est consacré a I’étude
de deux problemes :

— admettant ST = $~!, nous allons en déduire dans un cas simple
une propriété importante des éléments de matrice T,

— nous allons établir de fagon générale les « régles de coupure » des
diagrammes, qui permettent de vérifier 'unitarité de la matrice S ; ceci
peut étre trés utile quand on construit la théorie a partir d'une intégrale
de chemin, auquel cas la propriété d’unitarité n’est pas évidente.

D.1. Unitarité et relation de dispersion

Reprenons 'exemple favori de ce chapitre : une contribution d’ordre
deux a la diffusion k, + k, — k{ + k} dans la théorie en ¢*, correspon-
dant au graphe de la figure 6 : ce graphe a été calculé au paragraphe B,
équation (41) ; le facteur (— i) provenant de la définition (52) de la
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matrice T est identique a celui de '™ (cf. 27.c). D’autre part, au lieu
d’effectuer la normalisation & k; = 0, on peut la faire en un point
sg<4m? ot s= (k;+k,)’. Dans ces conditions l'expression de
T® devient :

@) B —g° ! m?—sx(1—x)

Il est commode de faire le changement de variables :
1.1 21 2
x—:2-+§y, x (1 x)—4(1—y)

- [ 4m’—s(1-y*
162 7 ) J-ldy o [4m2—s0(1 —y2>] @

T(z)(s’ So) =

Le logarithme est bien défini pour (1 — y%) < (4 m?/s), et présente
un point de branchement a s =4 m?/(1 — y?). Comme les points de
branchement se trouvent sur I'axe réel quand y varie, nous allons
définir T®)(s, s) dans un plan coupé de 4 m? a Pinfini (figure 8), la

®©

S+ ie

Figure 8. Le plan coupé de la variable s.

détermination du logarithme étant réelle pour s réel <4 m? tandis que
pour s(1 —yH)=4m?:

In(@m?*~s(1-y»))=In [4m?~s(1 - y?)| +i(6 —7w). (88)

T®)(s) est alors une fonction analytique de s dans le plan coupé,
I'intégrale sur y étant uniformément convergente. La prescription
m? - m?—ie implique que T®)s, s,) doit étre défini, pour s =4 m?,
par:

lim T®(s + ie, 5,) . (89)

g0
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Autrement dit on doit approcher la coupure dans le demi-plan
Ims=0. On en déduit Im T®(s, 50) :

2 (1 -4m?/s)y” 2 _ 2
ImT<2>(s,sO>:—“"—J gy = T8 [rmdm
162 7)Y J_ (1 —4m? s 8(2 m) S

(90)

Considérons de fagon générale une fonction f(s) de la variable
complexe s, analytique dans le plan coupé de 4 m? & Pinfini, et qui de
plus vérifie la propriété d’analyticité réelle

frs)y=f(s*). oD

Ims

o RE S

Figure 9. Contour pour le théoréme de Cauchy.

En appliquant le théoréme de Cauchy au contour C de la figure 9, et
en supposant que lintégrale sur le grand cercle tend vers zéro, on
obtient :

1
2 im

f(s) =

Lw ' (s +ie) - f(s' —ie)]

7
mzs )

soit :

Fis) = Jw Im /(") ds' 92)

T J4p2 S =58
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o, pour passer de la premicre ligne a4 la seconde, on a utilisé la
propriété (91) :
f(s'+ie)~ f(s'—ie)=21iIm f(s' +ie)=21ilm f(s')

(par convention on écrira f(s)aulieude f(s + ie)quand il n’y a pas de
confusion possible). Si P'intégrale le long du grand cercle ne tend pas
vers zéro, on fait une (ou plusieurs) soustraction (s) :

£(5) = Flso) = - ;SO J‘” Im f(s') ds’

am2 (8" =)’ —So).

(93)

Les équations (92) et (93) sont appelées relations de dispersion. La
connaissance de Im f(s) dans le cas d’une soustraction fixe f(s) a une
constante arbitraire f(sy) prés. Si I'on doit faire N soustractions, on
introduit N constantes arbitraires. Dans le cas de T® il suffit d’une
seule soustraction et d’aprés (90) : ’

g> (s —sp) [ o 8 —4m?
8(2 7T)2 4m? s'
1
X .
(s' = (s +1ig))(s’ —s¢)

La partic imaginaire (90) peut étre obtenue a partir de la relation
d’unitarité. En effet les deux autres graphes du deuxiéme ordre sont
réels pour s = 4 m*; ils pourraient avoir des coupures dans les variables
t = (ki — k)’ et u = (k; — k,)?, mais ¢ et u sont <O si s =4 m?% En
utilisant la matrice T définic par (52), la relation ss' =1 devient :

Tp—Th =iy Qm) 6K, ~ K)) Ty, T} . (95)

T(z)(s’ 50) = T(2)(So, So) +

(94)

L’invariance par renversement du sens du temps entraine que :
ki k| T|ki k) = (—k; — k| T|— ki —k;) = (k, k| T|Kk{ k3)

ct Iéquation (95) devient au deuxi€me ordre de la théorie des
perturbations
Im7® =1 J &k Ok’ X
4) QrY20@27)2w’
x 2m) 8@ (k+k'—ky—k)|TDP?. (96)

On reconnait dans (96) I'espace de phase d® ) (65), qui, intégré sur

dQ, vaut:
I ) _ 1 /s—4m2
4amJs 87 s
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Dans I'équation (96), on a également tenu compte d’un facteur 1/2 da
a Pidentité des particules ; I'élément de matrice T™) est on ne peut plus
simple :

T(1)= __g

Im T(2)= 7Tg?' s»4m2
8(2 m)? N s

ce qui coincide exactement avec (90). On vérifie sur cet exemple que la
prescription m?— m?—ie est cruciale pour assurer l'unitarité de la
matrice S. D’autre part l'existence de relations de dispersion est
étroitement liée a la propriété de causalité. A nouveau la prescription
m?— m?— ie est cruciale pour cette propriété.

Cet cxemple illustre de facon élémentaire un cerftain nombre de
propriétés que Ion peut attendre des éléments de matrice 7, et qui ont

fait objet d’'un nombre considérable de travaux :

et:

(i) les éléments de matrice T peuvent &tre prolongés analytiquement
dans le(s) plan(s) complexe(s) de leurs variables cinématiques ;

(ii) la possibilité d’états intermédiaires physiques donne lieu a des
coupures dans ce(s) plan(s) complexe(s). Un état lié ou une particule
élémentaire stable correspondent a des pbles: par exemple dans la
théorie en ¢°(4), lamplitude de diffusion 22 a un pole a
s = m? et une coupure pour s =4 m? (figure 10) :

A 2
Pole s = m”+ Coupure s = 4 m

Figure 10. Diagrammes donnant des pdles et des coupures en s.



428 Fonctions de Green et matrice S X.D.2

(iii) la somme sur les états intermédiaires permet de calculer la partie
imaginaire de l'amplitude, en fonction des ordres inférieurs de la
théoric des perturbations. Cette observation fournit une méthode
possible pour le calcul de certains diagrammes ;

(iv) la partie réelle est calculée par une relation de dispersion, qui
peut nécessiter des soustractions. Ceci introduit des constantes incon-
nues, et refléte la nécessité de la renormalisation.

D2 Régles de coﬁpure

Nous allons maintenant établir, en suivant "*Hooft et Veltman, les
régles générales de coupure des diagrammes, ou régles de Cutkosky.
Nous nous servirons des fonctions suivantes :

A (x) = f%z 7 8 (k*—m?) (= k¥) e~ (97)

qui vériﬁent :
A*(x) = (47 (x))*; A%(-x)=4%() (98)
AT(x) = Ofe(x) ¢(0)[0) 5 A7(x) = (0] ¢ (0) ¢(x)|0) .
Rappelons que :
Ap(x)=06(x) AT (x)+0(~x") A" (x). (99)
1l sera commode d’utiliser les notations suivantes :
Ap(x; —x;) = A5 A* (x; -x;) = A{;f (100)

et de remarquer que la conjugaison complexe échange les frequences
positives et négatives :
0_ 50y A= 0_ .0
A;}g = O(Xi —x]) A’/ + 9()6/ ——x,-) Aﬁ]— .
Une fonction de Green amputée de ses propagateurs externes ‘
complets sera notée F (x, ..., x,,), et elle sera composée de vertex et de

propagateurs, par exemple :
- xl

Fxy, X5, %3) = (- i9)3 Ap A3 by

X, *3
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Pour fixer les idées, la discussion sera illustrée par la théorie en
©>(4) ; d’autre part nous ignorerons les problémes de renormalisation,
en nous plagant, par excmple, dans une dimension d’espace-temps
convenable.

Définissons a partir de F(xy, ..., X;, ..., X}, ..., X,) une fonction
F(xy, ..., %, ..Xj, ..., X,) OU certains des x; sont soulignés, avec les

=

conventions suivantes :
(i) 4, — Ay sixgetx; ne sont pas soulignés,
(i) Ay - A} six, est souligné et non x ,
(iii) Ay — A six; est souligné et non x ¢,
(iv) Ay —» AF  six,etx,; sont soulignés,
(v) —ig —»ig ou (+ ig)correspond a un vertex souligné .

En résumé :
A+ . A= . A%
Ay =455 Ay = Ay Ay = 45 .

Remarquez que ces regies sont cohérentes; en effet 4, = 4 ;
Ay = Af et, Ay = Aj;, mais d’aprés (98), Af; = Aj. Six; est souligné,
le vertex correspondant sera encerclé sur le graphe. Donnons un
exemple :

F(x), x5, %3) = (—ig)(ig) Afy Al 4.

D’autre part six)=>x], 4;; = A;; et A4;; = A;; grice a (99) ; souligner
x; ne modifie pas le propagateur. Nous en déduisons Ie théoréme :

Sore . 0 oo 4 5 .0
Théoréme 1: Supposons que x; soit supérieur a x; pour tout

j#i. Alors:

F(xp i, Xpy oos X

s Xp) = —F(xy, oy, one, Xjs . X,) (101)

ot la seule différence entre les deux membres de I’équation (101) vient
de ce que x; est souligné (non souligné) dans le membre de gauche
(droite), le signe (-~ ) provenant de — ig — ig au vertex x,. Faisons
maintenant la remarque suivante : lorsque P'on calcule 4;; ou Af; a I'aide
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de (97) et (100), le facteur ¢ k=) correspond a un moment k entrant
dans le vertex (i). Ceci montre que si deux vertex sont reliés par un
A* ouun A7, le flot d’énergie se fait toujours vers le vertex encercl€ :

k,

{ ) A;; =4 : facteur 6 (k%) d’apres (97)
j i

;z—

@ A =45 @ facteur 6 (— k%) d’apres (97)
: j
13

Le flot d’énergic se fait dans les deux directions si la ligne interne
correspond a un 4;; ou a un A

Calculons maintenant un ¢lément de matrice S ; par convention les
particules entrantes sont dessinées a gauche du diagramme, les particu-
les sortantes a droite. Un exemple d’élément de matrice S est donné par
le graphe de la figure 11 :

ki

x X, X5

ki
—ikyx; —ikyxg ikjxy ikjx,
Xe‘lle 26613624

4

X6 X5 X4 <

k,
Figure 11.

La fonction F(xy, ..., X4) doit étre multipliée par un produit d’exponen-
tielles donné par les régles établies au paragraphe C:

Particule entrante : e~ Particule sortante : e *'*

et intégrée sur tous les x;. Un corollaire du théoréme 1 est:

ZF(xl,...,)g,-,...,xj,...,)g,,)=0 (102)

ou Y indique que l'on a sommé sur toutes les fagons possibles de

souligner. En effet soit x; le point ayant la plus grande composante de
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temps ; on peut grouper par paires tous les termes de (102), ou chaque
paire est formée de deux termes identiques sauf sur un point : dans un
des termes x; est souligné, et dans lautre x; ne l'est pas. D’aprés le
théoréme 1, la somme de ces deux termes est nulle.

On remarque maintenant qu’un grand nombre de diagrammes seront
nuls & cause de situations conflictuelles. Par exemple le diagramme de
la figure 12 est nul car au vertex i : ko + kg + ko3 = O (conservation du
moment), mais ky,, kg, et ky; doivent étre tous trois positifs, car le flot
d’énergie se fait vers le vertex encerclé.

1 i 2

\ —’/'l\«
\J

t3

Figure 12.

/<—

Al PR

—

Figure 13.
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la conservation de I’énergie. De méme le diagramme de la figure 14 est
€gal a zéro car uniquement des énergics positives sortent du sous-
diagramme d¢limit¢ par la ligne de démarcation. Cette remarque

Fan)
[
/
/
/
a .
A\ A | =
]
Figure 14.

permet de séparer les diagrammes non nuls en deux régions : 'une au
soleil, contenant les vertex non encerclés, Pautre a ombre contenant
les vertex encerclés (figure 15) :

c ]

o Y ﬁ} Y“@

\\\ —_—
\
\

Figure 15. Coupure d’un diagramme en deux régions.

La coupure des lignes externes par la ligne de démarcation n’a pas de
signification particuliére. Les lignes internes seront données par les
regles suivantes (on utilise la premiére forme des régles de Feynman

données en V.B.5):
184 [

QCa)yk?-m?+i

Propagateur au soleil : : (103.a)
. £

~i 1
Qa)Y k= m?

Propagateur a 'ombre : é -~ (103.b)
—ie
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Propagateur coupé : % 1 ;278 (k2 — m?) 0 (k% (103.c)

g @m
k
et les vertex par:

Vertex au soleil :  (—ig)(2 m)* 6@ ( Y ki>

(103.d)
Vertex a Pombre :  (ig)(2 7)* & (4)<Z k,»)
On déduit de (102) :
Fkyy oo k) 4 Fkyy o k) = = 3 Folky, s ky) | (104)

coupures

L’équation (103) donne les reégles de coupure, ou regles de Cutkosky.
Dans le membre de gauche de (104), F est calculé avec les régles au
soleil, F avec les régles a 'ombre, ¢t F, en suivant (103). La somme

porte sur toutes les coupures possibles, 'énergie s’écoulant du soleil
vers ombre. Certaines coupures peuvent donner zéro a cause de la
cinématique.

Reste a faire le lien avec la relation d’unitarité. Définisons le

~

lagrangien % * obtenu a partir de ¥ par conjugaison complexe, et

S 1a matrice S obtenue & partir de & *, en utilisant comme propagateur
—i/(k?— m?*—ie) et en remplagant (—ig) par (ig), c’est-a-dire en
utilisant les régles de la région a 'ombre.

11 est facile de se convaincre que :

(FIST@)NY = (FIS(L*)]i)

Si ¥ = % * la relation d’unitarité peut s’écrire :

Tp+Tg=~iy J d® O Ty, T, (105)
P

ol d® @ est I'espace de phase de p particules intermédiaires. Mais ceci
n’est autre que la relation (104) (T = — iF ) car T}, est calculé avec les
régles de la région a 'ombre et :

do® = (2 m) 8(K; > K,) ﬁ 27) 5 (k2 m?) 0(KD) .
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Examinons enfin les facteurs Z;, car les éléments de matrice T sont
reliés aux fonctions de Green par un facteur Z; (V+M/2 ol N est le
nombre de particules entrantes et M celui de particules sortantes (cf.
(79)). Si nous considérons un état intermédiaire a p particules, ceci
conduit & un facteur Z5 % Mais chaque propagateur coupé sur couche
de masse donne un facteur Z; 8(kZ—m?) et les facteurs Z; se
compensent exactement (cf. exercice 6).

On peut donc conclure que si & est réel, chaque diagramme obéit a la
relation d’unitarité : on a la propriété d’unitarité perturbative. Cette
propriété entraine lunitarité de la somme des diagrammes, ¢’est-a-dire
l'unitarité de la matrice S. Une méthode analogue (cf. "‘Hooft et
Veltman) permet également de traiter la question de la causalité.

E. GENERALISATIONS

Nous avons jusqu’a présent traité uniquement le cas d’un champ
scalaire neutre. Nous allons maintenant généraliser les considérations
précédentes au cas d’un champ scalaire chargé, d’un champ massif de
spin 1, et nous examinerons également les couplages dérivatifs, qui ont
€€ laiss€s de cOté jusqu’a présent.

E.1. Champ scalaire chargé

On souhaite décrire un couple de particules chargées, de charges
+1(*) (dans un systtme d’unités convenables) et de spin0, par
exemple le couple des mésons 7 * et 7. Il serait possible d’utiliser
deux champs hermitiques ¢; et ¢,, mais pour construire des états
propres de la charge, il est plus commode de se servir de deux champs

o(x)et ' (x):
¢ = % (pr+ie); o' = % (¢1—i07). (106)

Les décompositions de Fourier des champs libres ¢ (x) et ¢! (x)
s’écrivent :

e(x) = J dkla(k) e * 4 bT (k) ei**] (107.a)

ol (x) = jdE[aT(k)eik‘er(k)e‘ik"] (107.b)

(*) 11 ne s’agit pas nécessairement de la charge électrique.
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o a(b) détruit des particules de charge + 1(—1) (cf. (111)). Les
relations de commutation sont :

[ak), a' &)= C7)P2w0,¥EK-K) (108.a)
B&), b k)] = C7)2w, 8Pk -—Kk') (108.b)

tous les autres commutateurs étant nuls. Le lagrarigien du champ libre
s’écrit :

Z = (0,0 )" 0)+mie" o (109)
et il est invariant dans la transformation de phase :

¢ se o, ol Setol,

Le théoré¢me de Noether (cf. XI-C.3) permet de conclure a I'existence
d’un courant conservé :

ju=izelde:; 8%, =0 (110)

qui conduit a la conservation de la charge :
Q= j &x o) = f dkfa'x)ak)-bT@)bK)].  (111)

Cette équation confirme que a(b) détruit des particules de charge
+1(—1). On peut généraliser le couplage en ¢* en écrivant par
exemple un lagrangien d’interaction :

ZLi(x) = co (kP e (x):. (112)

(2' y

Pour établir les régles de Feynman, il sera commode d’orienter le
propagateur dans le sens du flot de la charge positive: dans
O T (i (y) <pm(x))|0> (pm(x) crée un 7+ (ou détruit un 7~) en x,
tandis que ¢;,(y) détruit un =* (ou crée un 7 ) en y ; dans tous les cas
une charge + 1 est créée en x et annihilée en y. On remarquera que

O T(@n() en))[0) = (O T(¢in(¥) ¢, (x))|0) =0.
Si Pon décide de suivre (par convention) la charge positive, le
propagateur sera orienté de x vers y :
k —k —
= - T O M- =) e ()=
x y

eiktx=y)

J(ZW) k*—m?+ie
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11 ne faut surtout pas confondre 1’orientation du propagateur avec celle
des moments. Afin de déterminer aisément les facteurs de symétrie,
notons (provisoirement) le point de départ du propagateur par une
croix (x ) et le point d’arrivée par un cercle (O) (*): dans le
développement perturbatif, tout propagateur devra joindre une croix a
un ceicle.

Calculons comme exercice les contributions d’ordre g* a la fonction
de corrélation d’ordre 4 :

G = (0] T(¢ (x3) @ (xa) @' (x1) @' (x2))]0)

en utilisant le lagrangien d’interaction (112). Chaque vertex sera
décomposé en deux croix ( x ) et deux cercles (O). On obtient deux
types de graphes (figure 16) — auxquels il faut naturellement ajouter
les permutations :

X, /D X3
o T  — =

Figure 16. Contributions a GW.

Le facteur de symétrie du graphe (a) est :
1 72 1
—_— 1Y ==
[(2!)2] x (21) 5 -

(*) Le vertex encerclé n’a évidemment rien & voir avec celui du paragraphe D.2.
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Ce graphe correspond a la diffusion de particules identiques
(m* — ") et on retrouve le facteur de symétrie usuel. Au contraire le
graphe de la figure (16.b) correspond a la diffusion #* — 7 ~, et son
facteur de symétrie est 1.

Le formalisme fonctionnel se généralise sans difficulté si 'on définit

2() par
2G)= [ 90, 0%) %
xexp(i5(<p, <p*>+ijd4x<f<x)<p*(x)+f*(x)<p(x))) (114)
et si 'on utilise I'identité (A.12), qui donne :
B o*)em (isiCe. o*)+i [ @) o* ) +

@) ¢(X))>= A exp (— [ axate o Ap(x—?")f(x’)) .
(115)

On notera que I'exposant dans (115) differe par un facteur 2 de celui de
(33). Les résultats obtenus par application de (114) et (115) sont
naturellement identiques & ceux que l'on obtient par application du
théoréme de Wick.

Pour le calcul des éléments de matrice S, on se servira des contrac-
tions suivantes, avec leur représentation diagrammatique {(cf. 70)

e(x)a' (k)=¢ ™ méson 7" entrant: _,__@ (116.a)
R
ak) (pT (x) = e*: méson 7 * sortant : @-———— (116.b)
_
ol (x) bT(k) = ¢ ®* . méson 7~ entrant : _<_@ (116.c)
—
b(k) ¢ (x) =e*: méson =~ sortant: @__1__ (116.d)
| I——

E.2. Champ vectoriel massif

Pour étre tout a fait général (mais en se restreignant a des champs de
bosons) on peut se donner des champs réels ¢; dépendant d’indices de
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spin et/ou d’indices de symétries internes (i) et des champs complexes
¢,;. Afin de simplifier les notations, convenons que (i) indice non
seulement le spin et les symétries internes, mais également le point
d’espace-temps. Dans ces conditions on pourra écrire un lagrangien trés
général :

&L = % @; Wi ¢; + ¢*W,; ¥, + interactions

oll W est une matrice symétrique. Les propagateurs seront les inverses
de W;; et W;; (a un facteur i pres) :

F . _1 “F RS T |
L= e kL (117)
J l J

Le propagateur AiFj n’est pas orienté, la matrice W;; étant symétrique,
mais Af; le sera en régle générale.

Donnons comme exemple le lagrangien d’une particule de spin 1 et
de masse m % 0 couplée a un courant conservé j,(8*j, =0):

F =A*[(O+m)g,, —3,8,]A"—j,A"*. (118)

Les équations du mouvement sont :
@+mHA* -3+ (8,4 =j* (119)

mais la conservation de j* impose :
m?(3* A,) =0=93*A, =0 (m=+#0). (120)

On obtient finalement une équation de Klein-Gordon pour chaque
composante :

(O+mH)A*=0.

Toutefois les quatre composantes ne sont pas indépendantes a cause
de (120) : seules trois composantes sont indépendantes, ce qui corres-
pond bien au nombre de degrés de liberté d’un spin 1. L’identification
compléte d’un spin 1 nécessiterait la construction du tenseur moment
angulaire et une démonstration du fait que ses composantes se
transforment comme un vecteur dans une rotation.

Le propagateur se lit directement sur ’équation (118) :

. —g*" +k*k¥/m®

APy =i =St (121)
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La partie longitudinale du propagateur n’a pas de pole a k* =0
k, Ag7(k) =m k¥ (122)

ce qui confirme (120) : cette partie longitudinale n’est pas un degré de
liberté dynamique. Le propagateur coupé s’écrit :

v ,U«’ _ (—g}w+k#ky) (227T40(k0)5(k2~m2)- (123)

2 77)

D’autre part, on peut décrire ’état de spin d’une particule de spin 1
par trois directions de polarisation. Dans un référentiel ou la particule
est au repos, on peut par exemple choisir les trois axes de coordonnées
(x,y,z). Sila particule poss¢de un moment k parallele a Oz, ces trois
directions se transforment en :

e =(0,1,0,0) (124.a)
¥ =(0,0,1,0) (124.b)
eV = (k/m,0,0,k%m) ; (124.¢)

e et s(y ) sont des polarisations transverses; les combinaisons
eft) = \/ (e,
a =1 le long de Oz ; £ correspond 2 une projection du spin égale a
zéro, aussi appelée polarisation longitudinale (*).

On obtient facilement I'identité :

)+ ie 07) correspondent a une projection du spin égale

YooM= g, + L. (125)
A==x,0 m

L’identité (125) intervient dans la relation d’unitarité, car la somme
sur les états intermédiaires contient une somme sur les polarisations.
Mais la somme (125) est bien identique au résultat obtenu en coupant le
propagateur, et la théorie sera unitaire. Le point crucial est que seuls les
degrés de liberté physiques apparaissent dans le propagateur coupé ; le
degré de polarisation paralléle & k, donne une contribution nulle a
cause de (122). Au contraire la renormalisabilité est a priori en danger,
car le facteur m~2 dans le propagateur agit comme une constante de
couplage de dimension négative. On verra cependant, au chapitre XII,
que l'on peut préserver la renormalisabilité pour les quantités physi-
ques.
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E.3. Couplages dérivatifs

Jusqu’a présent, nous avons soigneusement évité les couplages
dérivatifs. Ceux-ci sont particulitrement délicats a traiter dans le
formalisme canonique, car des quantités non covariantes se glissent
dans les étapes intermédiaires. Au contraire ces couplages ne posent
aucun probléme dans le formalisme fonctionnel. Considérons par
exemple un champ vectoriel A, couplé a un champ scalaire chargé par

un lagrangien d’interaction :
2y =igA*(x)e' ()3, ¢ (x)] (126)

ou le facteur i assure lhermiticité de &,. Cette interaction fera
apparaitre des termes du type :

k —k
B Y —“—qo(x)wf(y):
y x ox
9 d*k i —ik(x—)
=— e
axt ) Qm)Yki-mitie
. d*k i e —
= — ik e ikGx-y)
"J(Zvr)4k2—m2+is

Le terme en 8,¢ dans &, conduit donc a un facteur —ik, oi
k, est le moment entrant dans le vertex x. La simplicité du formalisme
fonctionnel vient de ce qu’il n’est pas nécessaire de commuter les
dérivées avec des produits-T (cf. la discussion suivant I’équation (50)).
Au contraire, dans le formalisme canonique, cette commutation
conduit 4 des termes non covariants ; ceux-ci seront finalement éliminés
par d’autres termes non covariants, dus au fait que le moment conjugué
de ¢ n’est pas ¢, mais la compensation résulte d'un calcul complexe. A
nouveau il n’y aura pas de probléme avec I'unitarité et la causalité ;
cependant la dérivation tend & introduire des constantes de couplages
de dimension négative, et la renormalisabilité pourra étre en danger.
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EXERCICES

1) (a) Montrer que pour a = 0 on obtient P'identité :

J‘oo eiak2 dk = eim/* \/'rr/a e‘i”z/“ .

-

el
(Suggestion : considérer la limite ¢ — 0% de J ¢~ 4k). En déduire (43).

-

- (b) Démontrer ’équation (44) a partir de 'identité :

sz\ A let =T (A).

2) Montrer que le facteur de flux (60) se réduit a \/ §|]k|| pour deux
particules incidentes dans le référentiel du centre de masse.

3) En adaptant le raisonnement du paragraphe C.1, démontrer I'équation
(63) donnant le taux de désintégration d’une particule.

4) Théoreme de Wick pour les produits ordinaires

(a) Démontrer 'identité :
exp(i J dx j (x) «pm(x)) -

—roxp (i [ @) eue)) rewp (3 [ @ a0 90 p ) )

ol
)= (0}, n(x)]0
P(x) e (x') = (0] @in(x) in(x')[0)
(Suggestion : ¢;,(x): ¢ (x) + ¢ (x) et exercice 1X.9.)
(b) En déduire le théoréme de Wick pour :

Cu(x1) Pin(x) o @ip(x2,) -

5) Représentation de Killen-Lehman (°)

(a) Soit F(x —y) la valeur moyenne sur le vide du commutateur

[¢(x), #(¥)]:
Fx—y)={0]le(x), #(»)]]|0) .
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En introduisant un systéme complet d’états intermédiaires {n) ainsi que
I'identité :

1= J d*q 8 g — p,)

montrer que :

oo
F(x—y)= iJ dm?p(mH) A(x—y;m?)
0

P(@) =27y Y 80P, —q)| (Ve ©®)|n) .
On utilisera I'invariance de Lorentz et la positivité de I’énergie pour montrer
que p(q) = p(q”) 8(q°) avec ¢*=>0.
(b) En isolant la contribution a 1 particule et en utilisant les RCC, démontrer
la relation :

o«

1=2Z,+ J de’zp(m'z).
4m

En déduire I'inégalité : 0 < Z; <1 (Z; = 1 correspond a un champ libre. La

condition Z; < 1 ne peut étre satisfaite que pour une théorie asymptotiquement

libre (cf. exercice VIL.6).)

(¢) Montrer que on obtient une représentation analogue a celle de (a) pour
le propagateur complet G ®(x — y) avec la méme fonction spectrale p (cf. (81)).

6) Ecrire I'unitarité perturbative pour le graphe d’ordre g° de la théorie en
¢ ? dessiné sur la figure 17. Examiner en particulier les facteurs Z;.

\ —

Figure 17.

7) Le méson p est une particule de masse M = 765 MeV, se désintégrant en
une paire w* — 7~ (m = 140 MeV) avec une largeur I" = 125 MeV. On décrit
la désintégration a 'aide du lagrangien phénoménologique (126). Quelle est la
valeur de g ?
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NOTES ET REFERENCES

La construction de Haag-Ruelle est décrite dans le livre de R. Jost The General Theory
of Quantized Fields, AMS, Providence (1965). On trouvera un exposé pédagogique dans
le cours de J. Bros, Ecole de Gif-sur-Yvette (1971). Pour une autre démonstration de la
formule de Gell-Mann et Low, on consultera Gasiorowicz (chapitre 8). Les formules de
réduction sont établies par exemple dans Itzykson-Zuber (chapitre 5), Bjorken-Drell
(chapitre 16) ou Gasiorowicz (chapitre 6). La démonstration de ’équation (62) donnant
'expression des sections efficaces suit celle d’Itzykson-Zuber (chapitre 5). Les propriétés
analytiques des amplitudes de diffusion sont étudiées dans Itzykson-Zuber (chapitre 6),
Bjorken-Drell (chapitre 18) et dans le livre de R. Eden, P. Landshoff, D. Olive et J.
Polkinghorne The Analytic S-matrix, Cambridge University Press (1966). La quantifica-
tion du champ scalaire chargé est examinée en détail dans tous les livres classiques
(Itzykson-Zuber, Bjorken-Drell, Gasiorowicz, etc.). Enfin les sectionsl a 9 de
"Hooft et Veltman donnent une vue générale de tous les problémes abordés dans ce

chapitre.

(!) Cf. Streater-Wightman, chapitre 4.

(3 Ttzykson-Zuber, chapitre 6.

() H. Epstein et V. Glaser, Annales [HP, XIX, 211 (1973).
(*) Messiah, Chapitre XIIL

(%) Ttzykson-Zuber (chapitre 5) ou Bjorken-Dreli (chapitre 16).
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Théories de jauge






CHAPITRE XI

Quantification du champ de Dirac
et du champ électromagnétique

La physique moderne des particules élémentaires est dominée par les
théories de jauge, dont le prototype est I’électrodynamique quantique.
Dans les théories de jauge, les particules fondamentales sont :

(i) des particules de spin 1/2, décrites par des champs appelés
« champs de matiére » ; '

(ii) des particules de spin 1, décrites par des champs appelés
« champs de jauge » (la terminologie n’est sans doute pas trés heureuse :
une particule de jauge comme le photon est aussi « matérielle » qu’une
particule de spin 1/2 comme le neutrino).

Ces particules sont supposées élémentaires, dans le sens oi leurs
interactions sont ponctuelles : ces interactions sont décrites par le produit
de champs au méme point d’espace-temps. Dans le cas de 1’électrodyna-
mique quantique, les particules de spin 1/2 sont les électrons (et leurs
antiparticules, les positrons), et les particules de jauge sont les photons.
Les interactions entre particules de spin 1/2
sont transmises dans ce cas par les photons :
on a représenté sur la figure 1 un graphe
de Feynman contribuant 4 la diffusion
électron-électron.

Les interactions électromagnétiques et
faibles ont été unifi€es en interactions élec-
tro-faibles, dont les particules de jauge sont
le photon et les bosons W* et Z° (prédits
théoriquement en 1967 et découverts expéri-
mentalement en 1983). On a représenté sur  Figure 1. Graphe de
la figure 2 un graphe de Feynman contri- Feynman pour la diffusion
buant a la diffusion électron-neutrino. Dans électron-électron.
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le cas des interactions électro-faibles, il faut en plus introduire des
particules de spin zéro, les parti-
cules de Higgs, qui ont jusqu’a
présent (1986) échappé a toute
détection (cf. XIII-C.3).

Les particules a interactions
fortes : proton, neutron, mésons,
etc. ne sont pas des particules
ponctuelles, et en ce sens elles ne
sont pas élémentaires : elles sont
composées de quarks et d’antiquarks. La théorie de jauge des interac-
tions fortes est la chromodynamique quantique, ol les particules de
spin 1/2 sont les quarks et les particules de jauge sont appelées gluons
(cf. XIII-D). Les quarks et antiquarks ont également des interactions
électro-faibles. »

La théorie que nous avons élaborée aux deux chapitres précédents ne
nous permet encore que de traiter des particules de spin zéro... c’est-a-
dire le cas trés limité et quelque peu académique des interactions des
bosons de Higgs. Nous devons encore apprendre a quantifier les
champs décrivant des particules de spin 1/2, ou champs de Dirac, ainsi
que les champs de jauge.

La quantification canonique du champ de Dirac est traitée au
paragraphe A. Afin de ne pas allonger I'exposé, j’ai traité I’équation de
Dirac de fagon tres succincte ; le lecteur qui n’est pas familier avec cette
équation devra sans doute se reporter a d’autres exposés, en particulier
pour les propriétés de transformation par le groupe de Poincaré et les
symétries discreétes. Cependant toutes les notions indispensables aux
applications traitées dans ce livre ont été introduites explicitement. Le
paragraphe B est consacré au théoréme de chk pour les fermions et &
la formulation fonctionnelle.

Le cas le plus simple de théorie de jauge est celui du champ
électromagnétique : en effet le groupe de jauge est abélien, alors que
dans le cas des interactions électro-faibles, comme dans celui de la
chromodynamique quantique, le groupe de jauge est non abélien.
Cependant, méme dans le cas abélien, la quantification canonique est
complexe, et il sera plus commode, aprés avoir rappelé quelques
données de base au paragraphe C, de passer directement au paragra-
phe D a la quantification & l'aide des intégrales de chemin. Ceci
constitue d’ailleurs une bonne préparation au cas plus complexe des
théories de jauge non abéliennes.

Figure 2. Un graphe contribuant
a la diffusion ¥, —e”.
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A. QUANTIFICATION DU CHAMP DE DIRAC

Le champ de Klein-Gordon étudié au chapitre IX décrit des particules
de spin 0. Nous avons également vu au chapitre X comment décrire des
particules de spin 1 massives ; les particules de spin 0 et de spin 1 ont en
commun d’étre des bosons, c’est-a-dire des particules obéissant a la
statistique de Bose-Einstein. Au contraire il est bien connu que des
particules de spin 1/2 comme les électrons ou les protons ob€issent a la
statistique de Fermi-Dirac: ce sont des fermions. Le formalisme des
chapitres précédents est manifestement inadapté au cas des fermions,
car un vecteur d’état tel que

a' (k) a’ (ky)|0)

est symétrique dans P'échange des deux particules en raison des
relations de commutation des a' (k). Il nous faut donc trouver une
modification de lespace de Fock qui assure automatiquement I'antisy-
métrie, au lieu de la symétrie. Le deuxieéme ingrédient dont nous avons
besoin est une équation de champ ayant les propriétés de transformation
d’un spin 1/2 : ¢’est ’équation de Dirac. La quantification du champ de
Dirac se fera par analogie avec celle du champ de Klein-Gordon, mais
en utilisant un espace de Fock adapté aux fermions.

A.1, Espace de Fock pour les fermions

Commengons par un probléme simple de mécanique quantique non relati-
viste : un systtme de N fermions sans interactions dans un potentiel
V (x); afin de ne pas introduire de complications de notations, nous suppose-
rons méme que ces fermions ont spin 0 (cette hypothése, comme nous le
verrons un peu plus loin, n’est pas cohérente dans le cadre d’une théorie
quantique des champs relativiste, mais elle n’introduit aucune contradiction en
mécanique quantique non relativiste). Soit u,,(x) les fonctions propres du
hamiltonien a une particule :

P

H=—+V({).
Etiquetons les différents niveaux d’énergie E,, par des indices a; rangés dans un
ordre déterminé : a;, a,, ..., ay ... (si les niveaux d’énergie sont dégénérés, il
faut évidemment les étiqueter par des nombres quantiques supplémentaires) :

Hit oy (%) = Eo 11, (%)

La fonction d’onde d’un ensemble de N fermions occupant les niveaux

@; ..., correctement antisymétrisée et normalisée, est donnée par le
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déterminant de Slater :

T (%, o Xy) = (Kpr oo Xy | ¥ = —— det (i, (X)) - )
VNI

Par exemple dans le cas de deux particules occupant les niveaux 3 et 5 la
fonction d’onde est donnée par :

¥ (x,, %,) = % (5 (%) hs (%) — 3 (%) 5 (x;))
1 u3(xl) us(x,)

2-:/? us{(x) us(x,) '

Une information équivalente a la fonction d’onde (1) est contenue dans les
nombres d’occupation n,, des niveaux oa;; par exemple, dans le cas de la

fonction d’onde (2) ces nombres d’occupation sont :

@

ny=1; nsg=1; n;=0 }i¢3,5.

Dans le cas des bosons, n, pouvait prendre les valeurs 0, 1, 2, ... ; dans celui
des fermions, n, = 0 ou 1, car on ne peut pas mettre plus d’un fermion dans un
niveau d’énergie (non dégénéré). Examinons d’abord le cas d’un seul niveau
(a), et essayons de construire des opérateurs de création et d’annihilation par
analogie avec le cas des bosons. L’espace des états est a deux dimensions, et
nous pouvons choisir comme vecteurs de base les vecteurs |0) et |1}
correspondant respectivement a n, =0 et n, = 1:

p < < p 1
état non occupé {0) = (2) ; état occupé |1) = <0) .
(g =0) “ (ta=1) «
Les opérateurs a, et al doivent obéir aux conditions suivantes :
(i) a, appliqué au vide donne zéro: a,|0) =0
.. t . . . £ < Lot
(ii) a. appliqué au vide crée un état occupé, avec n, = 1:a,|0) = |1}
(iii? on ne doit pas pouvoir mettre un deuxiéme fermion dans Iétat
a:a,lly =0

Ces trois conditions déterminent immédiatement la forme matricielle de
1
a, eta,: -

(0 0y . t (0 1
““‘(1 0)’ "“‘(0 0)

qui conduit & la relation d’anticommutation :
{a,,,al} =aaal+alad=1]a. )
Comme dans le cas des bosons, I'opérateur nombre de particules dans 1’état
(a)estN,X:af,aa: '
N, = al a, = (3) g)

N 0, =0; N 1) =115,
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Pour construire Pespace des états, il suffit de prendre le produit tensoriel des
espaces a4 deux dimensions correspondant a chacun des niveaux individuels ; par
exemple le vide sera construit par produit tensoriel des vecteurs |0} _ :

0 =119, =11 (1),

a @

Cependant 'antisymétrie dans I’échange de deux fermions n’est pas encore
assurée car les opérateurs g, et q qui agissent dans des espaces différents,
commutent. Pour construire des opérateurs qui anticommutent, on introduit
lopérateur m,; :

a; —1 a; -1

-1 0
ne=T1 -280=T] (T ) 0)
a1 a1 “
et on définit 'opérateur bl,- par :
ba, = Mo, @u, =85 M, - )
On remarque que si a; < @;:
t
alinaj=—najaa,-; alj na,-: 'ﬂa,-alj

et on en déduit :
{bli’ blj} =0.
Cette relation d’anticommutation assure l'antisymétrie du vecteur d’état :
| W) = bl bl |0y =—bl b]|0).
Les autres relations d’anticommutation sont faciles a établir :
{bap b} = {bL, b1} =05 {ba, b} =8y 6)

et on peut construire un opérateur de champ ¢ (¢, x) qui, dans la représentation
de Heisenberg, est donné par :

l[l(t,X)=Zba ua(t,x) (7)

et vérifie les relations d’anticommutation & temps égaux :

{y@x), ¥ x)} =0
{y ¢ x), e, x)) =89x-x"). (8)

La deuxiéme équation dans (8) est obtenue grace a la relation de fermeture :

Y Ut x)ukt,x') = 8®x —x).
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On peut montrer (exercice 1) que la fonction d’onde ¥ (x, ..., xy) dans (1) est
donnée par (y(x) = ¢ (t = 0,x)):

‘P(xl,...,xN):—J%V_—‘ O g () oo ¥ )| ¥ )

Le formalisme exposé ci-dessus est trés utile pour étudier la dynamique d’un
systtme de N fermions identiques (ou bien de N bosons identiques : dans ce cas
il convient naturellement d’utiliser des relations de commutation) en mécanique
quantique non relativiste. C’est ce que I'on appelle souvent le « probléme a N-
corps », qui a des applications importantes en physique du solide et en physique
nucléaire. Cependant le contenu physique des équations reposant sur ce
formalisme, dit de « seconde quantification » est strictement identique a celui
de I’équation de Schrédinger : ce formalisme est simplement une technique
commode.

A.2. Equation de Dirac

L’équation de Dirac a été introduite initialement comme généralisa-
tion relativiste de I’équation de Schrédinger, afin de surmonter les
difficultés d’interprétation de I’équation de Klein-Gordon comme
équation quantique relativiste. Précisons bien qu’il s’agissait dans les
deux cas d’équations a une particule, supposées décrire par exemple le
comportement d’une particule relativiste dans un potentiel. En réalité
I’équation de Dirac n’est pas plus susceptible que celle de Klein-Gordon
d’étre interprétée de facon complétement cohérente comme équation a
une particule. Malgré tout, I'interprétation a une particule est physique-
ment acceptable, et pratiquement trés utile, lorsque le potentiel varie
peu sur une distance de l'ordre de la longueur d’onde Compton
(Wmc) de la particule considérée. Elle permet par exemple de calculer
en premi€re approximation les corrections relativistes au spectre de
Patome d’hydrogeéne. Je laisserai entierement de coté cet aspect de
Péquation de Dirac, qui est traité de fagon trés détaillée dans de
nombreux livres, et, comme dans le cas du champ de Klein-Gordon, je
considérerai dans un premier temps l'’équation de Dirac comme
Péquation d’un champ classique, qu’il s’agira ensuite de transformer en
champ quantifié.

Ecrivons immédiatement I’équation de Dirac, en renvoyant a d’autres
exposés pour la motivation et la « démonstration » de cette équation :

- (iysp 8, —md ,5) Yp(t,x)=0 |. (10.a)

Dans P'équation (10.a), ¥4(t,x) est un objet (spineur) a quatre
composantes : B = 1,2, 3,4 et y5g un ensemble de matrices 4 x 4, les
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matrices de Dirac, vérifiant les relations d’anticommitation (a et 8 ne
sont pas des indices de Lorentz, contrairement a u) :

{(y*, ¥y =y* vy +y ytr=2¢g9""1 | . (11)

L’indice u est un indice de Lorentz: u = 0,1, 2, 3 et m la masse de la
particule. On utilise souvent la notation :

d=vy*a, (12)

ou plus généralement ¢ = y* 4, pour un quadrivecteur a,, et on peut
récrire (10.a) sous la forme matricielle :

(i8—m)y =0. | (10.b)

Les représentations irréductibles des relations d’anticommutation (11)
sont uniques a une transformation de similarité prés. La représentation
standard des matrices y* est:

o_ . _ (1 0), VI L T
770(0_1],7 Vi (_Ui 0)()

ol 1 est la matrice 2 x 2 unité et o, o,, o5 sont les matrices de Pauli.
La relation de conjugaison hermitique :

yr = yOyr O (14)

est souvent utile. On définit & partir des matrices vy, les matrices

Tuyt

Tpy = % [v* v*] (15)
et la matrice y5:
ys =iy’ v y2y3=v{ (16)
qui vérifie :
{(vss¥*} =05 vi=1;  vi=—vvs57- 17)

L’équation (10.b) implique que ¢ (¢, x) obéit a I’équation de Klein-
Gordon ; en effet si 'on muitiplie cette équation & gauche par (i8 + m)
on trouve, en utilisant (11) :

@O+m?) @, x)=0

ce qui confirme l'interprétation de m comme masse de la particule.
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L’équation de Dirac est covariante de Lorentz: si A est une
transformation de Lorentz (x' = Ax), il existe une matrice S(A)
transformant ¢ (x) suivant :

¥'(x") = S(A) ¢ (x) (18)
et qui vérifie (Pambiguité de signe provient du caractere 1/2 entier du
spin) :

STHAYYES(A) = ALY S(A A == S(4)S(A) (4
S7H(A) = y°8T(A) ¥°.
¢’ (x") obéit alors & 'équation de Dirac dans le référentiel transformé :

(") —m) ' (') = 0.

La loi de transformation (18) est plus complexe que celle d’un champ
scalaire, qui est simplement ¢'(x’') = ¢ (x). Je renvoie aux exposés
classiques pour la démonstration de (19) et pour la forme explicite de
S(A), ainsi que pour la justification du fait que I’équation de Dirac
décrit bien un champ de spin 1/2.

L’équation de Dirac peut se déduire de la densité de lagrangien :

L =g (x)id —m) Yy (x) = — §(x)({T+m) ()
- J(x)(%g—m> ¥ (x) (20)

ol le spineur conjugué ¢ (x) est défini par :

Pa(x) = ¥F(x) Yga 1)

et les différentes formes dans (20) sont reliées par intégration par

parties ; dans Iapplication du principe variationnel, et ¢ doivent étre
considérés comme des variables indépendantes. Remarquez que

¥ (x) obéit a I'équation :
F(x)(id +m)=0 (22)

que 'on peut déduire de (20), ou de (10.b) par conjugaison hermitigue.
Le moment conjugué =, de i, vaut:

0.
My = —————
(3¢, )

ce qui donne pour la densité de hamiltonien :

=Y y3, = iw! (23)

%:’na ll}a—g:ll!}T(aO‘p)—g (24)
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Dans les calculs ultérieurs, on pourra remarquer que . = 0 si ¢ obéit a

Iéquation de Dirac. Le couplage & un champ électromagnétique
A, (x) se fait a 'aide de la substitution (couplage minimal) :

aM—+a#<+ia4#

ol e est la charge de la particule considérée (pour plus de détails, cf.
paragraphe C), et le lagrangien d’interaction %, vaut:

Ly=—eb(x) AP () = — [H(x) A (x). (25)
Le courant électromagnétique j#(x) est donc donné par :
Jux) =ed(x) v, (x). (26)

I est facile de s’assurer que ce courant est bien un courant conservé
(exercice 2)

j,(x)=0 (27)

ce qui conduit & la conservation de la charge Q :
0= jd%cfo(x); 0. (28)
t

En effet, en utilisant (27) et le théoréme de la divergence, on trouve :

d% d3xj°(x)=—Jd3x(V-j)=—Jj-dS=O
11

en supposant, comme d’habitude, que les champs s’annulent suffisam-
ment rapidement a Pinfini.

A.3. Solutions de Péquation de Dirac

Comme le champ de Dirac obéit a ’équation de Klein-Gordon, les
solutions seront des superpositions linéaires d’ondes planes de la
forme :

Un(x) = wo(p)e (29)

avec :

p.x=Et—p-x; Ep=\/p7‘+m2 =0

et ¢,=+1; e,=+1 correspond aux solutions d’énergie positive,
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g, = —1 aux solutions d’énergie négative. En reportant (29) dans

(10.b) on trouve pour w,(p) les équations :
p-m)w,(P)=0:¢,=+1 (30.a)
p+m)w,(p)=0:¢,=-1. (30.b)

Lorsque p =0, p = my" et on obtient quatre solutions linéairement
indépendantes qui peuvent étre choisies de la fagon suivante :

1 0
wy=u®©0) = 8 ; wy = u®0) = (1)
0 0 1)
0 0
ws=o0@) = |05 wi=0@0)= | ¢
0 1

Les spineurs u(v") correspondent a e, = +1(—1): ce sont des
spineurs d’énergie positive (négative). Pour p quelconque, on remarque
que :

(p—m)(p+m)=(p"-m?)=0.
Ceci permet d’écrire la solution générale de (30) :
uO(p) = C (p+ m) u(0) (32.2)
vP(p) = - C'(p—m)v(0) (32.b)

ou C et C’ sont des constantes de normalisation. Afin d’exhiber
explicitement ces solutions, on peut recourir & la représentation (13)
des matrices de Dirac qui donne :

E —o-p
”:(Jm 4 ) (33)

Les spineurs u")(p) et v (p) s’écrivent en fonction des spineurs a deux

composantes x
1 0
x = (0>; x® = (1>

1 ((Ep+m)x(')
\/Ep+m (o-p)x®

sous la forme :

En.>0: uM(p)= ) (34.a)
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0. oOm) = 1 @-p)x®” )
En.<0: o (p)ﬂ\/Ep+m((Ep+m)x('). (34.b)

Les constantes de normalisation C = C' = (E, + m)~'? dans (32) ont
été choisies de telle sorte que (*):

a(')(p)u(s)(p) = 2m6rs
E(")(P) v(s)(p) = -2 mB,S (35)
a0 (p)v®(p) = 0.

On remarquera le signe (—) dans la relation d’orthogonalité des
spineurs d’énergie négative. Les relations de fermeture sont également
trés utiles, par exemple dans les calculs de sections efficaces. Evaluons
par exemple la matrice A, (p):

S uOE) )

r=1

Z@i—m—) u{H0)(p+ m)an (p +m)yp 29(0)

_ 1
" 2(E, +m)
= (p+m)aB-

(A (P))ap

I

(P+m)n (1 + ’YO)Ay (P+m)y

Un calcul analogue montre que :
2 p—
A @)ag = - 3 00@) @) =~ (P~ M)ap -
r=1

On peut donc définir deux « projecteurs » A, (p) et A_ (p), projetant
respectivement sur les états de moment p et d’énergie positive et
négative :

A, (@)=Y u@)a”@)=F+m (36.2)
A_@)=-Y o)V @P@)=— @ -m) (36.b)

(*) La plupart des auteurs utilisent la normalisation :

AOuD =5, P05

s

La normalisation (35), qui est peu élégante dans certains cas (cf. (37)), permet d’utiliser
les mémes formules de section efficace pour les bosons et les fermions.
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qui vérifient :

A, +A_=2m; A, A =A_A, =0; A2 =2mA,. (37)

A cause de la normalisation (35), A, et A_ ne sont pas exactement
des projecteurs. Mais méme si les spineurs sont normahses l’unlte,
A, et A_ ne sont pas hermitiques, sauf si p=0: A+ =y0A, YO
L’indice (r) est un indice de spin et on peut facilement définir des
opérateurs de projection sur les différents états de spin. Les quatre
degrés de liberté du champ de Dirac correspondent a deux degrés de
liberté de spin pour chaque signe de Vénergie.

A.4. Quantification du champ de Dirac

Comme dans le cas du champ de Klein-Gordon, nous allons partir de
la décomposition de Fourier du champ de Dirac classique. Pour chaque
valeur de p les spineurs & "(p) et v (p) forment une base de I'espace 2
quatre dimensions des spineurs de Dirac, et I'on peut écrire :

bt %) = ZJ(Z Fog @@
+dr@)vO@) ] (38.2)

W@, x)= Z f o )32E (67 ()" (p) e +
+d,(p) vV (p)e P *]. (38.b)

Comme ¢ est un champ complexe, il est nécessaire d’introduire deux
coefficients indépendants b,(p) et d,*(p), la conjugaison complexe étant
associée aux énergies négatives.

Suivant I’étude que nous avons faite au début du paragraphe, il est
logique de postuler que les coefficients de Fourier b,(p), d,(p) et leur
complexes conjugués doivent étre remplacés par des opérateurs obéis-
sant a4 des relations d’anticommutation :

{b,(@), bl (@)} = @7V 2E, 5, 8%p-p)
(39)
{d@), dt®")} = Q@Y 2E, 5, §(p—p')

tous les autres anticommutateurs étant nuls. Ainsi que nous allons le
montrer trés bientdt, ce postulat de quantification ne conduit a aucune
incohérence, alors que 'hypothése de relations de commutation n’est
pas acceptable.
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Les champs quantifiés  (x) et ¢ (x) s’obtiennent a partir de (38) en
remplagant les coefficients de Fourier b,.(p), d,(p) par des opérateurs
b,(p), d,(p):

V)= 3 | by @ e
+dl (P)vO(p)e] (40.a)

\_2 jm [b) ()2 (p)e? +
+d,(p)v"(p)e ). (40.b)

Comme dans le cas du champ de Klein-Gordon, les opérateurs
d’annihilation (création) sont associés aux énergies positives (négati-
ves). Il est instructif de comparer les équations (40) a celles (X.107)
obtenues dans le cas du champ scalaire chargé.

On vérifie (exercice 6) que les relations (39) impliquent les relations
d’anticommutation suivantes pour les champs :

(Wt x), )X} = 845 8O —x'). (@1)

Mais d’aprés (23) le moment conjugué de ¥, n’est autre que
iYrg, ce qui permet de récrire (41) sous la forme :

{(Wa(t,x), mg(t,x")} =18, 8P(x —x"). (42)

L’hypothese (39) revient en fait a postuler des relations d’anticommuta-
tion entre le champ et son moment conjugué, ce qui est aprés tout
I'hypothese la plus naturelle, aprés que Pon ait constaté la faillite des
relations de commutation.

Examinons maintenant le hamiltonien et la charge. D’apres (24) le
hamiltonien H est donné par :

H=i J Px §(x) y°a¢a§x) .

Pour calculer H on utilise la relation de Parseval : si

Vo= [ e ve)

alors :

jdax.p(x)qo(x):j v®) o p).

d’p
Qwy
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Dans le cas considéré, d’apres la décomposition de Fourier (40) on
obtient les coefficients :

F(®) = Yy [4,@)00@)e ™ +b] (- p)a¥(p)e™]
r P
VP %E[bi—mum(—p)e et _ 4! (p) v (p) €.

Il faut maintenant tenir compte des relations d’orthogonalité (exer-
cice 5) :

5O@) Y u(-p) =0
(43)

E(r)(p) ,YOv(s)(p) = u(r)(p) ,yOu(s)(p) =2 Ep ars

pour obtenir le hamiltonien en fonction des éoefﬁcients de Fourier :
2

— %P g le)be)-d.@)d @) 44

He g [ TR LOLOREOLO

Grace aux relations d’anticommutation (39) on peut transformer le
terme précédé d’un signe (—) dans (44) ; pour plus de clarté, on peut
utiliser une normalisation discréte comme dans (1X.44) :

—d, dl = ~1+d],d,,.
En redéfinissant le zéro d’énergie, le hamiltonien se met sous la
forme (*) :

-3 [ oobs £ B @0 d @) o

Une autre fagon d’obtenir (45) a partir de (44) est d’utiliser le produit
normal, avec une différence importante par rapport au cas des bosons :
quand on fait passer a gauche les opérateurs de création, tous les anti
commutateurs doivent &tre omis :

:bb' = —bTb
(*) On peut facilement généraliser (45) 3 une composante quelconque de Iénergie-
moment :

P, =

"

,
] g

SE
j 2 1Td)3 2E P#[b: ()b, (p)+ drT ®)d,()].
! P
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Le point important dans ce calcul du hamiltonien est que les relations
d’anticommutation sont indispensables pour obtenir un hamiltonien
défini positif. Avec des relations de commutation, le deuxi¢me terme
de (44) ne pourrait pas étre rendu positif, méme si I'on redéfinissait le
zéro d’énergie. Ce résultat est un cas particulier du théoréme spin-
statistique : les champs de spin demi-entier (1/2, 3/2, ...) doivent étre
quantifiés avec des relations d’anficommutation. Inversement les
champs de spin entier (0, 1, ...) doivent &tre quantifiés avec des
relations de comwnutation : dans le cas contraire, on peut montrer que la
localité ne serait pas satisfaite. Cette relation spin-statistique est une
conséquence profonde — et fascinante — du mariage de la mécanique
quantique avec la relativité. Il n’existe pas a4 ma connaissance —
d’argument intuitif simple pour justifier ce résultat.

Pour terminer l'interprétation physique de notre quantification, reste
a calculer la charge :

Q=6Jd3x:$(x)7°¢f(x)=-

Le calcul est en tout point analogue au précédent et le résultat en est :

2 d3
) j Gk Cle® - d e, (0

On remarquera Panalogie avec Péquation (X.111) obtenue dans le cas
du champ scalaire chargé.

Si 'on se souvient que b, (p) b,(p) et d! (p) d,(p) sont les opérateurs
nombre de particules de moment p et de spin r, I’examen de (45) et (46)
montre que b} (p) crée une particule de charge e et de moment p, tandis
que d] (p) crée une particule de charge — ¢ et de moment p. Le champ
¢ (x) crée une charge — e(d, (p)) ou détruit une charge e(b,(p));
inversement ¢ (x) fait varier la charge de + e¢. Une formulation plus
générale de cette propriété est donnée a I'exercice (9).

Si par convention on appelle la particule de charge e la « particule »,
alors celle de charge — e est '« antiparticule » : 'exemple classique est
celui de I’électron (particule) et du positron (antiparticule). Remar-
quons que l'on peut aussi définir des charges qui ne sont pas
nécessairement la charge électrique : par exemple la charge baryonique
distingue le neutron de I’antineutron.

En résumé les quatre degrés de liberté d’un champ de Dirac
permettent de décrire une particule possédant deux degrés de liberté de
spin, et une antiparticule possédant également deux degrés de liberté de
spin.

En choisissant une représentation particuliere des matrices de Dirac,
la représentation de Majorana, il est possible de décrire commodément
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des particules de spin 1/2 qui soient leur propre antiparticule : de telles
particules sont appelées « particules de Majorana ». Dans ce cas le
champ de Dirac posséde seulement deux degrés de liberté (cf. exercice
X11.13).

A.5. Propagateur du champ de Dirac

Nous avons constaté dans les deux chapitres précédents le rdle crucial
joué par la valeur moyenne sur le vide du produit-T de deux champs. I
est donc naturel d’étudier le produit-T de deux champs de Dirac.
Toutefois, en raison des relations d’anticommutation, il est nécessaire
de modifier un signe dans la définition du produit-7 de deux champs de
Dirac ; on définira :

T(Ya(x) Fp(x')) = 0(x°—x) Yo (x) P (x') ~
— 0 —xD Pe(x) Y (x) . (47)

La permutation de deux champs de Dirac induit toujours un signe —.
Evaluons la valeur moyenne sur le vide de ce produit-7" en utilisant la
représentation de Fourier (40) du champ de Dirac libre :

_ &
(27my2E,
X [0(t —t') B+ Mg e PEF) (1 — 1) — M), P )], (48)

O T(Wa(x) Pp(x)) 10y =

Pour obtenir cette équation, on a utilis€ les relations de fermeture
(36). Comme dans le cas du champ de Klein-Gordon, on peut écrire le
résultat en utilisant le contour de Feynman (exercice 7) :

O T(Wa@) F5()) [0) = [7(x = x))as
_dp - ipx—x") M ) (49)
@) P —m’+ie

Le propagateur de Feynman Sp(p) pour le champ de Dirac sera
donné dans 'espace de Fourier par :

Se(p) = g*rm) i . (50)

pPP-mi+ic p—m+ie

Il est facile de vérifier directement que ce propagateur est bien une
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fonction de Green de 1’équation de Dirac :
(id — m) Sp(x) = i6 D(x) . (51)

On peut également exprimer Sp(x — x') en fonction de Ap(x — x') ; en
effet d’apres (49) :

Sp(x —x')= (18, + m) Ap(x —x") . (52)

B. THEOREME DE WICK POUR LES FERMIONS

B.1. « Oscillateur fermionique » couplé a une source externe

Plutdt que de traiter le cas général, j’expliquerai la méthode a suivre
sur un exemple élémentaire. Cet exemple n’est autre que la transposi-
tion au cas des fermions du probléme de l'oscillateur harmonique
couplé a une source classique (cf. IX-C.2). Considérons deux opérateurs

et ¢ tels que:
Wi GP=0; (4,8} =1 (53)
ainsi que le « hamiltonien » d’un « oscillateur fermionique » :
Hy=Eyy .

Pour coupler et ¢ & une source externe, on introduit des éléments
1 (¢), 7(¢) d’une algebre de Grassmann (*), c’est-a-dire des « nombres

" anticommutants » : 7 (z) et 7 () anticommutent entre eux ainsi qu’avec
les ¢ et les o :

(@@} = (n@),7¢)) = {n@), ¢} =---=0. (54)

Le « hamiltonien » complet est :

H=Eyy - ()¢ —§n(). (55)

(¥*) Algebre de Grassmann & : soit N variables (générateurs) 7, ... n, telles que
® {77,‘, 71,'} =0
G)sinef:An, el (AeC)
(iii) m;, myeA AN + e A
(iv) np, m;edim;nesd
Alors les m; engendrent une algébre de Grassmann.
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Soulignons qu’il s’agit d’un probléme purement mathématique ; il n’est
pas nécessaire que H soit hermitique, ni que ¢ et ¢ soient hermitiques
conjugués. Les seules relations importantes sont (53) et (54). Suivons la
méthode du chapitre IX, paragraphe C.2 en introduisant les opérateurs

¥;(t) et §,;(t) de la représentation interaction :

tlll(t)zeiH"'xpe'iHO'; lpl(t):eiHot $e—iﬂot‘
Comme [H05 'J’] == E‘l’ et [H07 J’] = E‘p :

vi(t) =y F1)=e"§
et le hamiltonien de la représentation interaction devient :
H@)y=-[n@)e ¢+ Fen@)]. (56)

Le commutateur [H,(z), H;(t')] est indépendant des opérateurs

Yoet g
(1), Hi)] = @) n @) e B —n@e) q () e B0 (57)
et comme (777 ) commute avec i et 7, on vérifie immédiatement que :
L, (e), Hy ()], Hy(21")] = 0.

Ceci permet d’utiliser lidentité de 1’exercice (IX.10.b) pour écrire
U;(t) sous la forme :

Ui(t) = exp (—i jt H,(t’)dt’) x

1
X eXp <_% H de' dt" 0 (' — t")[H, (1), H,(t")]) . (58)
La forme normale de U, (¢) s’obtient en utilisant & nouveau l'identité :
1
AegBo 2 (4, 5]
le résultat final s’écrivant :

Ui(t) = :exp (—thHI(t’)dt’) T X

t H t »
X exp (— H de' de" 5 (t') 0(¢ — ") e EC -1 n(t”)) . (59
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On remarquera la similitude entre cette équation et (IX.73). Si ¢ et
¢ sont maintenant identifiés a des opérateurs de création et d’annihila-
tion a et a' (cf. 3):

O) T (') §1(t")) |0) = (' —1") e EC 1)

le terme d’intégrale double dans (59) vaut également :

)

ﬂ de’ de” 7 (1) 0| T(r (") Fr(t"))|0) m(¢) .

Compte tenu de ’'expérience acquise avec les champs de bosons, il n’est
pas difficile de deviner la forme du théoréme de Wick pour les
fermions :

T(exp<ijd4x<ﬁ(x>¢<x)+ J(x)n(x)))) -
=:exp (i J dx (7 (x) ¢ (x) + & (x) ﬂ(x))> P X

xexp(~ ﬂ dix d*x" m(x"){0] T(¢(x) ¥(x'))]0) n(x’)) )

(60) -

La démonstration suit exactement le canevas qui précede ; elle se
trouve a P'exercice 8. Dans I'équation (60), les champs  (x), ¢ (x), tout
comme ¢ (x) dans (IX.85) sont des champs /ibres. On remarquera que
le coefficient de I'intégrale double dans (60) est (— 1), alors qu’il valait
(—1/2) dans (IX.85): ceci est simplement dii a la présence de deux
charges, ou de deux types de particules. Dans le cas de bosons chargeés,
on a constaté exactement le méme phénoméne (cf. X.115).

En développant les exponentielles dans (60) et en identifiant les
coefficients de n et 77, on obtient des identités du type :

TWE) T &) =9 @) &)+ (O] T(¥(x) & (x))|0) .

Les relations d’anticommutation des sources externes 7 (x) et 7(x)
donnent automatiquement le signe correct. En pratique il conviendra
de faire attention a ordre des facteurs : dans Pexpression équivalente a
(IX.86) pour les fermions, chaque terme devra étre multiplié par la
signature de la permutation faisant passer de l’ordre/?.rl,litial a l'ordre
final des ¢ et des .
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B.2. Formulation fonctionnelle : intégration sur des variables de Grass-
mann

Il est possible d’écrire une fonctionnelle génératrice des fonctions de
Green pour les fermions. Cependant, au lieu d’intégrer sur des nombres
comme dans le cas des bosons, il fandra intégrer sur les éléments d'une
algébre de Grassmann. Commengons par le cas d’un seul degré de

liberté, en introduisant deux variables de Grassmann ¢ et W
$r=9>=0; (¥, ¥} =0 (61)

(remarquez bien la différence entre (53) et (61) : dans le premier cas on

a affaire & un opérateur (de champ), dans le second a un champ
classique, ou plus exactement a la généralisation fermionique d’un
champ classique). Compte tenu de (61), le polyndme le plus général

que Pon peut construire avec ¢ et ¢ est (¥):

P()=ay+a; ¢ +3 & +ap §y. (62)

Nous définirons I'intégrale sur les variables grassmanniennes par :
J d¢ =0; J d¢ ¢ =1
[ar-0:  [eww-

ce qui donne :

fdwdwom: jdaﬁ(a1~an$)=—au. 63)

(En effet J dy f¢ = — j dy¢ ¢ = — ¢.) Comme application immé-

diate de (63) on peut calculer I'intégrale « gaussienne » :
J dy dy e % =a.

Essayons de généraliser Vintégrale gaussienne a plusieurs variables en
examinant le cas de deux degrés de liberté :
2

- B Ay ‘
J‘dd;l dg dd, dg e ”Z—;l ]~ (64)

(’i) Si ay et ay; sont des nombres, a,(a, ) est une constante de Grassmann par rapport a
¢ (). On notera également la propriété : d(Ay) = A~ dy.



XI.B.2 Théoréme de Wick pour les fermions 467

Si 'on développe I’exponentielle, le seul terme donnant une contribu-
tion non nulle est celui qui contient en facteur §; ¥y ¢, ¢, ; tenant

compte des relations d’anticommutation, le résultat de 'intégrale (64)
est:

All A22 — A12 A21 =detA.
1l n’est pas ditficile de se convaincre du résultat général :

N _ ) ¥ Aij ¥;
J I_I dl!l,dllll e ©/ ! = detA . (65)
i=1

W=

Ce résultat est a comparer avec celui de I’équation (A.12) (pour
j=0; dxdy= (dzdz*)/2i):

N . d * N
Jﬂl d;’i;’ exp(—'zlz,-*Ai,-zj) — (detA)l.  (66)
i= i, j=

On note que Putilisation de variables grassmanniennes a remonté le-
déterminant de A du dénominateur au numérateur. Cette propriété se
révele trés utile, par exemple dans le cas des théories de jauge non
abéliennes, pour écrire des jacobiens sous forme de développements
diagrammatiques. Un exemple de ce type d’utilisation est donné a
Iexercice 14. Comme dans le cas des variables ordinaires, on peut
rajouter des termes linéaires dans ’exponentielle de (65) et définir une
intégrale I(n, 1) dépendant de sources (grassmanniennes) m et
7

N —_— —_ _
I(7,n)= Hdd’id‘l’iexp(_ U A+ T+ gimy)

i=1
Le changement de variables :
=+ ARty Fj= ] + M A

donne la transposition de I’équation (A.12) au cas des variables. de
Grassmann :

I(m,m) = (det A) exp(; Aj' m;) . (67)

Cette expression permet d’écrire une fonctionnelle génératrice
Z (1, n ) des fonctions de Green :

Z(ﬁ,n)=J@(¢7,¢)x

xexp(i J dx[FGF~m) o +V(F, ¥)+ 79 + 4711])(68)
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ol la prescription m — m — ie assure que le propagateur est Sp(p).
Retrouvons par exemple I’équivalent du théoreme de Wick a partir de

Zo(ﬁ’ "7)-
Zo(7, 1) = f 77, w)exp(i f Ex[FF—m) v+ 79 + t/7n]> -
=Wexp(—Jd4xd4x’ 7 () i(i8 — m)-! n(x’)) . (69)

D’apres I’équation (51), (i) (i — m)~! est bien égal au propagateur
Sg(x). Suivant les indications données au chapitre précédent, on
montre que les fonctions de Green calculées par différentiation
fonctionnelle a partir de Z(7j, 1) coincident avec celles que 'on obtient
a partir du théoréme de Wick.

C. FORMALISME LAGRANGIEN POUR LE CHAMP
ELECTROMAGNETIQUE CLASSIQUE

C.1. Equations de Maxwell et potentiel électromagnétique

Dans la formulation élémentaire des équations de Maxwell, on
introduit un champ électrique E et un champ magnétique B couplés a
une densité de charge p et & une densité de courant j, aussi appelées
sources du champ électromagnétique :

V.E-p (70.) ; VXB——%I%:=j (70.b)

VxE:—% (71.3); V.B=0 (71.b)

(ot ¢ =1; la loi de Coulomb avec les conventions (70) est |F| =
|41 2| /4 7r?). Les équations (70) impliquent I'équation de continuité
pour (p,j), qui exprime la conservation locale de la charge :

op -
at+V-.]_0. (72)
Les €équations (71), indépendantes de (p, j), impliquent Texistence
d’un potentiel scalaire ¢ et d’un potentiel vecteur A tels que :
dA

E=—V<p——87 (73.a) ; B=VxA. (73.b)
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Les champs E et B ne sont pas modifiés par une transformation de
jauge :

¢—»¢’=¢+%{t“; A-A"=A-VA (74)

ot A(f, x) est une fonction arbitraire du temps et de I'espace.

C.2. Formulation covariante

Les potentiels (¢, A) sont rassemblés en un quadrivecteur (a
I’ambiguité prés des transformations de jauge) A*(x):

A'x) =, x);  A'(x)= (A)(,x)
et de méme pour (p,j): _
Pey=p@x); )= ()@ x)

j*(x) est le quadrivecteur-courant électromagnétique, qui vérifie la
version covariante de Péquation de continuité (72), aussi appelée
équation de conservation du courant j, :

*j,(x)=0. - (75)
Avec ces notations la transformation de jauge (74) devient :
A, (x)> A, (x)=A,(x) +3,A(x)

ot A(x) est une fonction arbitraire de x.
Le tenseur champ électromagnétique F** est défini par :

FH = — F"" = gAY — 3" A" (76)

et s’écrit sous forme matricielle :

VvV —
0 —E, —E, —E
Fl'“’:’.l. El 0 _B3 B2
l E2 B3 0 —Bl

E; -B, B 0
Le tenseur dual F** se déduit de F*” par (cf. équation C.1):

fruv 1 vpo
Frr = S ek B, (77)
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et correspond a la substitution E - B, B — — E qui laisse invariante les

équations de Maxwell en V'absence de source (p,j). Dans cette
formulation covariante, les équations de Maxwell deviennent :

¥F,, =], (78)

“F,, =0. (79)

L’équation (78) est une équation dynamique, faisant intervenir la

source j*, tandis que I'équation (79) est une équation de contraintes.
Les équations de Maxwell se déduisent de la densité de lagrangien :

1 0 .
$=*ZF" F, —j*A, (80)
qui en termes de E et B s’écrit :
$:%(E2—B2)—p<p+j-A. (81)

On peut arriver a la forme (80) du lagrangien en écrivant ’expression
la plus générale, invariante de Lorentz, invariante de jauge et quadrati-
que en A, et 3,4,. Une forme équivalente a (80) est (cf. les remarques
suivant Péquation (IX.31.a)) :

1 .
L =5 AMOGun — 3, 0,) A" = j* A, . (82)

L’équation (78) s’écrit en fonction du potentiel :

(Dguv—auav)AV:ju . (83)

La jauge de Lorentz est définie par 3,4 = 0, et dans ce cas (83) se
simplifie en :

OA# =j*#. (84)
Il est intéressant de calculer les moments conjugués :
o 0 = ag = 0
3(d040)
k_ 9L  pko_ .
3(9pA;)

Le point important est que A, n’a pas de moment conjugué !
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C.3. Invariance de jauge et conservation du courant

La conservation du courant (75) est une propriété remarquable qu’il
convient d’étudier attentivement.

I existe une technique générale pour obtenir des courants conserveés :
c’est celle du théoréme de Noether, qui relie invariance du lagrangien et
conservation d’un courant. Supposons par exemple qu’une densité de
lagrangien % dépende de N champs ¢,(x) et soit invariante dans des
transformations dépendant d’un parametre A:

0 (x) = ¢, (x) = (67, 0, (x) (85)

ol T est une matrice hermitique ; prenons A infinitésimal et dévelop-
pons au premier ordre en A:

?(x) = ¢,(x) — AT, o (x) - (86)
La variation du lagrangien est :
9.L 9.7
8F =—"—8@0,¢,)+—8¢p,=
IO R T
0.L 0. 80.L
=5 ___a<p,) - (a ___) s¢,+°% 50,
}L( a(a,u(Pr) # a(ap, ‘Pr) a‘PT

Les deux derniers termes de la seconde équation se compensent a cause
des équations du mouvement, et comme 8. =0 on en déduit :

a”[a—(g%a%] ~0. 87)

L’expression (87) constitue le théoréme de Noether. En reportant (86)
dans (87) on obtient le courant conserveé :
0.L

]'u(x)=—ia—(me 55 3*j,(x)=0. (88)

Appliquons ce résultat au lagrangien de Dirac (20) :
L =Fx)d-m)y.

Ce lagrangien est invariant dans la transformation de jauge globale
(pour éviter toute confusion entre ¢ = 2, 71 ... et la charge de I’électron,
nous désignerons celle-ci par g jusqu’a la fin du chapitre) :

ety F — Jel1t, (89)
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Comme 3.9 /8(3,¢) =idy*, on retrouve l'expression du courant
conservé :

Jux)=q¥(x) v, ¥ (x)-

Invariance de jauge locale

Supposons maintenant que A, au lieu d’étre une constante, dépende
de x ; la transformation :

b - e 90 g (x); & — ¥ (x) e'74® (90)

est appelée transformation de jauge locale. Cette transformation de
jauge est dite abélienne, car le produit de deux transformations est
commutatif. Le lagrangien (20) n’est pas invariant dans cette transfor-
mation, car :

0’ (¥) = 3, (€710 g (x) = — g (2, 4) ¥’ (x) +
+ €700, (x)) £ €D (2,4 (1))

Pour obtenir un lagrangien invariant par (90), écrivons le lagrangien
complet du champ électromagnétique couplé au champ de Dirac, qui
n'est autre que le lagrangien de [I'électrodynamique quantique (QED)
(bien que pour le moment nous en soyons toujours aux champs
classiques)

Low = — 3 Fur F** + 5B —m) d ~ g8 () 7, ¥ () A*()

1)

Les deux premiers termes de (91) correspondent respectivement aux
lagrangiens libres du champ électromagnétique et du champ de Dirac,
tandis que le dernier terme est un terme d’interaction, qui couple ces
deux champs entre eux. Nous voyons que le premier terme de
9,¥’ est éliminé si nous effectuons, simultanément a (90), une
transformation de jauge :

A, A, =A,(x)+3, A(x) 92)

sur le champ électromagnétique. Le lagrangien complet (91) est alors
invariant par transformation de jauge locale. Inversement, on peut
chercher une dérivée D, appelée dérivée covariante, telle que :

D, y'(x) =e 4O D y(x).
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11 est clair que cette dérivée covariante est :
D, =9, +igA,(x). (93)
En effet :
(0, +1gA, +1g(8,4)) €@ Y (x)= e D (3, +igA,) ¥ (x) .

Autrement dit D, ¢ (x) se comporte comme ¢ (x) dans une transfor-
mation de jauge, d’ou le nom de dérivée covariante. Lorsqu’un
lagrangien est invariant par une transformation de jauge globale (89),
on pourra le rendre invariant par transformation de jauge locale (90), a
condition d’introduire un champ vectoriel A,(x) (parfois appelé
« champ compensateur ») se transformant suivant (92) et couplé aux
champs initiaux par la prescription du couplage minimal :

3,3, +igA, . | (94)

Ceci revient a remplacer dans le lagrangien initial les dérivées
3, par les dérivées covariantes D, (93). La méme méthode — un peu
plus sophistiquée — permettra aussi de transformer une invariance de
jauge globale non abélienne en invariance locale (cf. XIII-A.2).

D. QUANTIFICATION DU CHAMP ELECTROMAGNETIQUE

D.1. Problémes dans la quantification du champ électromagnétique

Dans les exemples étudiés jusqu’a présent, le nombre de degrés de
liberté des champs en un point x était égal au nombre de degrés de
liberté physiques : un pour le champ de Klein-Gordon neutre, deux
pour le champ chargé, quatre pour le champ de Dirac (dans le cas du
champ vectoriel, la composante supplémentaire est facilement éliminée
(cf. X-E.2)). Le probleme dans la quantification du champ électroma-
gnétique vient de ce que le nombre de degrés de liberté que l'on doit
utiliser est plus grand que le nombre de degrés de liberté physiques : ce
dernier est égal a deux, car un photon posséde seulement deux états de
polarisation, par exemple circulaire droite et circulaire gauche (le
photon a spin 1, mais 'analyse générale des représentations du groupe
de Poincaré permet de montrer qu’une particule de masse nulle et de
spin j ne peut avoir que deux états de spin lorsque ses interactions
conservent la parité : la projection du spin sur la direction de
propagation, ou hélicité, vaut + j ; dans le cas du photon, les états de

N

polarisation circulaire droite (gauche) correspondent & I'hélicité
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+ 1 (- 1)). La polarisation d’'un photon de moment k,, = (k, 0, 0, k;)

et d’hélicité +1 (—1) peut étre décrite par un quadrivecteur
e

- (0=t =1 o). s (oL =1 )
€ (0, NN ,O) ;o Ep (0, 5 \/E’O (95)
Les conventions de phase dans (95) sont choisies de fagon a respecter
les conventions de phase habituelles du moment angulaire (!). On note
que k* s,(f )=k-e®)=0: la polarisation du photon est transverse.
Le champ électromagnétique F*”(= (E, B)) posséde six composan-
tes ; cependant deux d’entre elles seulement sont indépendantes a cause
des équations de contraintes (71) ou (79). On pourrait penser a
quantifier les champs E et B en tenant compte de ces contraintes.
Cependant on se heurterait immédiatement a une difficulté de taille :
I'interaction électromagnétique écrite en termes de (E,B) est non
locale en mécanique quantique. Un exemple tres explicite est donné par
Peffet Bohm-Aharonov. Cet effet est obtenu dans une expérience
d’interférences d’électrons, du type trous d’Young, en plagant derriére
lécran E; et entre les deux fentes, un solénoide long et fin, de telle
sorte que le champ magnétique a I’extérieur du solénoide soit nul 4 une
excellente approximation (figure 3).

(1)

/1

Source

d’électrons S

St

AMANNANNNNN

Figure 3. L’expérience de Bohm-Aharonov.
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En Pl'absence du solénoide, on observe une certaine figure d’interfé-
rences sur I'écran E,: en effet soit a;(a,) I'amplitude de probabilité
pour qu’un électron émis par la source § arrive au point d’impact I en
choisissant le trajet 1 (2). Ces deux amplitudes de probabilité ont des
phases 8, et 8, différentes, et la différence de phase A = 6, — §,
contrdle le phénomene d’interférences (en admettant que |a;| ~ |a,|).
En présence d’'un champ magnétique B = V x A, le lagrangien des
électrons est modifié¢ (cf. (81)):

LoL' =L+gv-A=L+ 8L

ainsi que les phases associées aux deux trajets ; par exemple pour le
trajet 1:
4 I
8, 8] = 31+55=51+%J v-Ad = 81+%J A-d1 (96)
t5(1) $(1)
(en effet 'amplitude de probabilité d’un trajet est ~ exp (iS/#): cf.

(VIII-2)):
Le déphasage entre les deux trajets en présence du solénoide est :

I I
A=68]-68=a+1 J A-dl—f A-dl}
f S(1) S2)

=A+1ﬂ B.dS
f r

ou I est le contour délimité par les deux trajets. Le résultat (97) est
invariant de jauge, mais on voit que le champ magnétique influence la
propagation des électrons, alors qu’il est nul dans la région ou la
probabilité de présence de ceux-ci est différente de zéro. 1l faudrait
donc écrire une interaction non locale entre le champ B et les électrons,
alors que linteraction entre ceux-ci et le potentiel A est parfaitement

locale : J A - dl est calculé le long du trajet (*).

97)

Nous ne pouvons pas échapper a la quantification du potentiel (on
continuera malgré tout a parler de la quantification du champ électro-
magnétique), ce qui implique une confrontation & linvariance de
jauge : comme les potentiels ne sont pas uniques, il n’est pas étonnant
que le nombre de degrés de liberté soit plus €élevé que le nombre de
degrés de libertés physiques. Les difficultés apparaissent aussi bien dans

(*) L'importance du rdle des potentiels en mécanique quantique ne devrait pas
surprendre : la formulation élémentaire de la mécanique classique (lois de Newton) fait
intervenir la force, mais la formulation élémentaire de la mécanique quantique (€quation
de Schrodinger) fait intervenir P'énergie potentielle.



476 Quantification du champ de Dirac XI.D.1

la quantification canonique que dans la méthode des intégrales de
chemin :

— quantification canonique : le moment conjugué de A, n’existe
pas: my =0, ,

— intégrales de chemin : essayons d’écrire pour le champ électroma-
gnétique une généralisation naive de la fonctionnelle génératrice du
champ scalaire ; 'action dépend du lagrangien libre %, et d’un courant
conservé classique j, (x)

Z(y)= J 9A, exp(i J dx(Ly(A,) —j”A“))

(98)
= J PA, exp(iS[A])
avec (cf. (82)):
Zy=1ArOg,, -3, 0,]4". (99)

On notera le signe dans (99) : dans le cas de la composante de temps, le
signe du d’Alembertien est opposé a celui du champ de Klein-Gordon,
alors que les signes sont identiques dans le cas des composantes
d’espace : une régle mnémotechnique consiste & remarquer que les
composantes d’espace de A, sont les composantes physiques, et que
pour ces composantes on doit avoir le méme signe que pour le champ
scalaire. D’aprés I'expérience acquise au chapitre X, on serait tenté
d’écrire pour le propagateur du photon :

Diu = [Dgyy - a,u av]_l .

Malheureusement l'opérateur [Og,, — 8, d8,] n’a pas d’inverse: il
donne zéro si on I'applique a4 8” A ; de facon équivalente, dans 1’espace
de Fourier, (g,, — k, k,/k?) projette sur le sous-espace orthogonal &
k. (au sens de la métrique de Minkowski). Dans le cas du champ
vectoriel (X-E.2), (g9, — k, k,/m?) est inversible sauf si k* = m?2
Pour quantifier 4, il faut fixer une jauge. Les choix standard sont :

i "A,(x)=0 jauge de Lorentz (100)
(i) V-Ax)=0 jauge de Coulomb (101)
(iii) n*A,(x)=0  jauge axiale (n2<0) (102)

La jauge de Lorentz ne fixe pas complétement le potentiel : on peut
encore faire des transformations de jauge :

AI‘- —»Ap, + aﬂ()(x)
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a condition que 6 (x) obéisse a I’équation
06(x)=0.

Au contraire les choix (101) et (102) fixent le potentiel de fagon unique,
si Pon exige que celui-ci tende vers zéro a Yinfini. Cependant la
quantification dans la jauge de Coulomb (101) ou dans la jauge axiale
(102) brise la covariance formelle de la théorie, et nous nous limiterons
a des équations fixant la jauge qui soient explicitement covariantes,
bien que la méthode exposée ci-dessous soit générale. Les jauges
covariantes conduisent en effet & des calculs beaucoup plus simples que
les jauges (101) ou (102); elles ont I'inconvénient d’introduire des
degrés de liberté non physiques. Lorsqu’il est essentiel de garder
uniquement les degrés de liberté physiques, le choix d’'une jauge axiale
par exemple peut €tre indispensable.

D.2. Quantification dans la jauge de Lorentz : fonctionnelle génératrice

Le probléme de I'intégrale fonctionnelle (98) vient de ce que I'on
intégre sur un nombre de configurations beaucoup trop grand, puisque
deux configurations A, (x) et A, + 3, A(x) sont physiquement équiva-
lentes. Au lieu d’intégrer sur toutes les configurations, il faudrait
arriver a intégrer seulement sur les classes d’équivalence de configura-
tions, deux configurations étant équivalentes quand elles se déduisent
I'une de l'autre par une transformation de jauge.

La méthode exposée ci-dessous est tout a fait heuristique ; il faudra
vérifier qu’elle conduit a des régles de Feynman donnant une théorie
unitaire, locale et renormalisable : cette vérification sera I'objet du
chapitre suivant. Remarquons simplement que, par rapport a la
quantification canonique, cette méthode est incomparablement plus
rapide, et a P'avantage de préparer a la quantification des théories de
jauge non abéliennes.

L’intégration sur les classes d’équivalence peut étre réalisée en fixant
la jauge par une condition du type :

f(A) =0 (103)

a condition que (103) fixe de fagon unique le représentant dans la classe
d’équivalence. Introduisons la notation suivante pour les transforma-
tions de jauge :

A,’f(x):AH(x)+8MA(x). (104)

Comme (104) est un simple changement d’origine de A, la mesure
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d’intégration DA, est invariante dans la transformation de jauge
(104) :

DAL = 94, (: 1 dAM(x)) .
XK
Définissons ensuite la quantité invariante de jauge Af(A) par:
a4 [ T8 (F(A%0) A = 1. (105)

Cette quantité est bien invariante de jauge car si Ay(x) est une fonction
fixée :

[ macrat @) aaw - | mev@temaam

dot As(A) = As(A A"). On peut maintenant introduire (105) dans
I'intégrale de chemin (98), en utilisant la conservation du courant pour
montrer que S[A] = S[A"]:

2() = [ [194,0) 50 4,(4) [] (£ (4°6))) dA(x)
- [ [eae) | [raas @ ™ 4 [T 8 (GA )
= J I dA(x) J [T dA, () e A, (A) TT 8 (F(AG))) - (106)

Dans la derni¢re ligne de 1’équation (106), on a pu mettre en facteur un
«volume » [] dA(x), indépendant des champs, et que I'on peut donc

x
ignorer : c’est une simple constante multiplicative. Nous arrivons donc
au résultat suivant pour Z(j):

Z(j) = J DA, M AL(A)T] 8(f(A)). (107)
Le calcul de A;(A), donné par :
a7 ) = [ [1aac) [T a(0*ad)

n’est en principe possible que si la condition f(A) = 0 fixe A, de fagon
unique, ce qui n’est pas le cas de la jauge de Lorentz dans I'espace de
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Minkowski. Cependant on peut procéder dans I'espace euclidien — en
faisant appel au postulat d’euclidicité — auquel cas ce probléme ne se
pose pas. Evaluons donc A;(A) avec comme condition de jauge la
condition de Lorentz (100). Gréce & la fonction 8, il suffit de considérer
des configurations A/ (104) voisines d’une configuration 8*A, = 0:

AL =0"(9,A)=D0A.

Ceci montre que A¢(A ) est en fait indépendant de A. Cette propriété ne
serait pas vraie avec un choix de jauge plus complexe (cf. exercice 14),
ou dans le cas d’une théorie non abélienne, mais dans le cas présent
4;(A) est une simple constante multiplicative que 'on peut ignorer et
Z(j) est donnée par :

Z(j) = f 24, "M 8(0*4,) . (108)

Cette forme de Z(j) donnerait le propagateur du photon sous forme
transverse ; il est commode de généraliser légérement I’équation (108),
en prenant pour condition de jauge :

A4, —c(x)=0.

Ceci modifie trivialement 'expression (108) pour Z(j). On peut ensuite
faire une moyenne sur c(x) avec un poids gaussien dépendant d’un
parametre arbitraire a :

Z() = JQA@C(X)SXP(—%Jd“x cz(x)+iS[A]> y
x ] 8(8*A, —c(x))
soit :

Z(j) = J@A exp(iS[A]—i%J (aﬂA")zd“x) . (109)

L’expression (109) montre que lon peut remplacer le lagrangien
initial %, (99) par le lagrangien de Stiieckelberg :

1 » 1
,?s:iA"[Elgw—au 9,]A4 —ﬁ(aﬂA“)z. (110)

Le terme non invariant de jauge (1/2 a)(8*A,, )* dans (110) est appelé
«terme fixant la jauge ». Il est maintenant possible d’obtenir le
propagateur par inspection, car ¥ ¢ s’écrit aussi :

| 1 ,_1 .
$s=§A“[Dgw‘ (1-3) a""’”]A =7 A K AT
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L’opérateur K, est inversible, et il est facile de trouver l'inverse dans
Iespace de Fourier (exercice 12) :

Dpr o i oy KRN 111
¥ k2+is( g ( a)k2+is (1)

Pour obtenir (k?+ie)~! dans (111), on a rajouté 3 % un terme en
—ieA* A,, pour lequel on peut donner la justification heuristique
suivante : dans le cas d’un méson vecteur massif, le terme de masse du
lagrangien vaut m?A* A,, et la prescription m?— m?~ iz rajoute
—1ieA* A,. On peut également faire appel au postulat d’euclidicité (X-
B.2).

Les cas particuliers a = 0 et a = 1 donnent le propagateur dans la
« jauge de Feynman » et la « jauge de Landau » respectivement :

a = | (Feynman) : D§Y = ];_219”_ (112)
+ 1€
a = 0 (Landau) : Dpr =L (ger KEET N qq3y
K +ie k* 4 ie

Dans la jauge de Landau, le propagateur est transverse : k, D§” = 0.
Le lagrangien de I'électrodynamique que nous avons obtenu grice aux
manipulations qui précédent est renormalisable (nous le verrons au
chapitre suivant), mais cela n’est pas suffisant pour en faire une théorie
physiquement satisfaisante. Il faudra encore vérifier I'unitarité de la
matrice S et I'indépendance des quantités physiques par rapport a la
condition de jauge, et en particulier par rapport au paramétre
a; en d’autres termes il faudra vérifier l'indépendance de jauge des
quantités physiques. Ceci n’est pas évident car les fonctions de Green
dépendent de a, et plus généralement de la condition de jauge.

Revenons brievement sur les équations du mouvement du lagrangien
de Stueckelberg (110) couplé & un courant conservé j* ; ces équations
s’écrivent :

OA* — (1—%) 8" (3,4”) = j*. (114)
La conservation du courant implique que (38,4") est un champ libre :
0@,A*)=0.

Classiquement on pourrait imposer 3,A* = 0 comme condition aux
limites a ¢ = — o0, et 3,A" resterait partout égal a zéro : le terme en
(-1/2a)(3,4A*)* wa pas de conséquences physiques. En théorie
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quantique, on ne peut pas prendre 8, A* = 0 comme condition opérato-
rielle ; en effet le moment conjugué de A° 79 vaut:

w0 -1 (,an).

On peut simplement exiger que la partie & fréquences positives

a*AS") donne zéro si on 'applique & un état physique |¢) :
AL )

ce qui assure que (¥ |3,A*|y) = 0. Comme A" posséde maintenant
un moment conjugué, la quantification canonique peut s’écrire sans
probléme, a condition d’introduire une métrique indéfinie.

EXERCICES

1) Démontrer I'identité :
1
<x1 XNl W> = W <0| t//(xl) .,’(XN)I ‘I’) .
(Suggestion : examiner le cas ot | V') = |n,, ... Ay, ... )).

2) Montrer que 8*j,(x) =0 avec j,(x) = $(x) v, ¥ (x).
(a) A, =0 (b)y A, #0.
3) Vérifier les relations d’orthonormalisation (35).

4) Montrer, & laide de (19) que §x) y*¢(x) et ¢(x) o P(x) se
transforment respectivement comme un quadrivecteur et un tenseur antisymé-
trique dans une transformation de Lorentz.

5) Démontrer 'identité de Gordon :
! 1 — ! ! s 14 r
@)y u@)=s—a@)l@+p ) +ic* @' -p).]u@).

Calculer également U (p') v*v(p) et D(p’) v* u(p).
En déduire les relations d’orthonormalisation (43).
Vérifier e résultat en utilisant Pexpression explicite (34) de u et v.

6) Vérifier la relation d’anticommutation (41). (On pourra utiliser les
relations de fermeture (36)).
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7) Vérifier en détail le passage de (47) a (48) et de (48) a (49). Utiliser la
relation d’anticommutation (41) pour montrer que Sz(x) est une fonction de
Green de 'équation de Dirac: (id—m) Sp(x) =i 8 W(x).

8) Terminer la démonstration du théoreme de Wick pour les fermions. On
pourra, soit procéder directement (cf. Itzykson-Zuber), soit utiliser la méthode
du chapitre IX en sommant sur p et I'indice de spin r:

1w = [P @)= [ dre e,
On notera que (¢, — p) est couplé a d) (p) et n(t, —p) a d,(p), d’ot une
interversion des rdles de n et 7 dans ce cas.

9) Démontrer les relations de commutation :

Q. ¥y )]=-ev(x); [Q,0K)]=eP(x).
Quelle est Vinterprétation physique de ces relations ?
10) Retrouver les équations de Maxwell 4 partir du lagrangien (80).

11) Montrer que I’équation de Schrodinger d’une particule de charge g dans
un champ électromagnétique (¢, A) est invariante par transformation de jauge
dans le sens suivant : si ¢ — ¢ + 9gA, A > A — VA, ¢'(t, X) = exp(~igA) x
x ¥ (¢, x) obéit a I'équation de Schrodinger dans le potentiel (¢, A'). En
déduire Yinvariance des probabilités de transition ().

12) En écrivant D,f,, = ag,, + Bk, k,, déterminer a et B et obtenir la forme
(111) du propagateur.

13) (a) Partant du lagrangien d’un méson vecteur de masse A couplé a un
courant j*

$=%A"[(D+/\2)gaﬁ—8a 2,14° —j, A"

on rajoute un terme — (1/2 a)(8,4 %)% Quelles sont les équations du mouve-
ment ? Montrer que si j* est un courant conservé, 8,4 “ est un champ libre.

(b) Obtenir ’expression du propagateur (régulier si A — 0) :

D;,n“’z__i_____[ guv+(1_a)__q____]

q* - A +ie ar?+ie

(¢} Montrer que le lagrangien transformé est invariant par la transformation :
A, > A p+9,0

pourvu que (00 +aA?) 8 (x) = 0. Montrer que I'on peut rendre A . transverse
(8*A, = 0) par une transformation de jauge de ce type, et que Padjonction du
terme en (—1/2a)(3,4*)* ne modifie pas le contenu physique de %.
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14) Quantifier le champ électromagnétique en prenant comme condition de

jauge f(A) =9,4"+ —é— gA, A" =0 (cette jauge est sans intérét en €lectrody-

namique, mais 'exercice constitue une bonne préparation a la quantification
des théories de jauge non abéliennes) (°).

(a) Calcul de
4;'(A) = J [19AG) ] 8(f(A%x))).

A cause de la forme (107) de Z(j), il suffit de calculer A; au voisinage d’une
configuration [A4,] telle que f(A) =0

Ay af w_ Of ou
f(Au)_f(A“)+aA“5A _aA“a A.

En déduire :
Ap=det [(O,+gA,(x)8") 6 D(x —y)].

(Suggestion : J [TdA 8 (M;; A)) = (det M;;)™1).

(b) Faire une moyenne sur une fonction c¢(x), comme dans le passage de
(108) a (109) et obtenir la fonctionnelle génératrice Z(j) sous la forme :

20)- [ 24, 2. wyew (i[s1a1- 55 [ax¢er] ) «

><6Xp<—iJd‘x[J(D+gAua“)¢]) .

(Suggestion : utiliser (65)).
(¢) Le lagrangien effectif contient des particules fictives (fantdmes de

Fadeev-Popov) décrites par les champs et §. Déduire de Z(j) les régles de
Feynman pour I'électrodynamique dans cette jauge (cf. X-E.3).

(d) Montrer que la diffusion photon-photon reste triviale (en I’absence
d’électrons) malgré la présence de vertex a 3 et 4 photons :



484 Quantification du champ de Dirac XI.

Montrer également que les corrections au propagateur du photon restent nulles
a l'ordre d’une boucle :

o

..(

svwaaan = photon o> o = fantdme

(il est nécessaire d’utiliser une régularisation invariante de jauge, comme la
régularisation dimensionnelle).
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CHAPITRE XII

Electrodynamique quantique

L’électrodynamique quantique, théorie quantique et relativiste de
'interaction des électrons et des photons, est la théorie physique dont
les vérifications expérimentales sont — et de trés loin — les plus
précises. Je me contenterai de détailler un exemple, celui du moment
magnétique anormal de I’électron. Toute particule chargée de charge e
et de masse m posséde un moment magnétique g, dont la valeur est
donnée en fonction de son spin S par :

e

Tm

k=g
ol g est le facteur gyromagnétique. Classiquement g = 1 : il suffit de
calculer le moment magnétique d'une distribution de charges en
rotation pour établir ce résultat. L’équation de Dirac prédit g = 2 pour
I’électron, en excellent accord avec I'expérience (en fait on sait que
cette prédiction n’est pas typique de I’équation de Dirac : les équations
d’onde galiléennes pour un spin 1/2 conduisent aussi a g = 2 (*)). Les
corrections radiatives, ¢’est-a-dire les termes de la théorie des perturba-
tions faisant intervenir des diagrammes avec boucles prédisent une
modification de la valeur de Dirac, qui, au premier ordre en « (défini a
Péquation (2)) est donnée par :

[43
g=2(1+2—ﬂ_>.

Ce résultat sera établi au paragraphe C. On est allé beaucoup plus loin
dans le développement perturbatif : le troisiéme ordre en « (72 graphes)
a été complétement évalué et I'on dispose d’une évaluation partielle du
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quatrieme ordre (%) (891 graphes !). Ecrivant :
g = 2 (1 + ae)

la valeur théorique de a, est:

2 3 4
a;h=12_0.328478445(ﬁ) +1.1765 (13) (ﬁ> +0(5>
2 T a a

ol le (13) reflete Vincertitude sur les deux derniers chiffres du
coefficient de (a/7)*; ceci donne :

al = 1159652478 (144).10~ 12
alors que la valeur expérimentale est () :
al™® = 1159652209 (31). 10712,

un accord spectaculaire ! D’autres vérifications trés précises sont aussi
obtenues pour : le moment magnétique anormal du muon, le déplace-
ment Lamb, la structure fine du positronium etc. Ces vérifications
démontrent que les corrections radiatives, et le programme de renorma-
lisation correspondant, ne sont pas une spéculation de théoriciens. Ce
chapitre ne donne évidemment qu’une vue trés limitée des développe-
ments de I’électrodynamique quantique ; néanmoins il permettra, pour
la premiere fois dans ce cours, le calcul d’effets observables dans une
théorie quantique des champs.

Le paragraphe A est consacré aux regles de Feynman pour Vélectro-
dynamique ; en pratique la seule difficulté est liée a un probléme de
signe, dit a la présence de fermions. Le paragraphe B donne deux
applications simples de ces régles, faisant intervenir seulement des
diagrammes en arbres. Les diagrammes & une boucle sont abordés au
paragraphe C avec le calcul des corrections radiatives aux propagateurs
du photon et de Iélectron et au vertex électron-photon. Enfin
I'importante question des identités de Ward est examinée au paragra- -
phe D, qui décrit aussi trés schématiquement le programme de renor-
malisation. On trouvera en D.4 une discussion qualitative de la
renormalisation et du groupe de renormalisation de ’électrodynamique,
qui peut étre lue indépendamment du reste du chapitre.



XII.A.1 Reégles de Feynman 487

A. REGLES DE FEYNMAN
POUR L’ELECTRODYNAMIQUE QUANTIQUE

Le lagrangien de départ a été déterminé au chapitre précédent :

, 1 1,
gQEDZ[_%FuVF“ +§‘/\2A“AM—-§—Q(3’LA'“)2}+

+ [J<%3—m) t/f] + [—epy, pA*] | (D)

Le premier crochet correspond au lagrangien % du champ électroma-
gnétique libre, aprés la modification de Stiieckelberg. Dans certains
calculs intermédiaires, il peut étre nécessaire d’attribuer une masse
non-nulle A au photon. Les résultats physiques, lorsque le probléme est
bien posé, doivent étre finis a la limite A — 0. L’exercice (XI.13)
montre que I'introduction de cette masse peut se faire sans probléme.
Le deuxiéme crochet correspond au lagrangien %, du champ de Dirac
libre (XI.20), et le troisitme crochet au terme d’interaction &, du
champ de Dirac avec le champ électromagnétique, obtenu grice a la
prescription du couplage minimal (X1.94). .

La charge e dans (1) est la charge de I’électron (e < 0) ; les résultats
physiques sont en général exprimés en fonction de la constante de
structure fine a, qui est un nombre sans dimensions :

e? e? 1

“=4—(=m>=m : )

A.1. Fonctions de Green dans I’espace de configuration
L’expérience acquise dans le cas du champ scalaire et les résultats
¢établis au chapitre précédent nous permettent d’écrire rapidement les

régles de Feynman pour les fonctions de Green, obtenues par différen-
tiation fonctionnelle & partir de la fonctionnelle génératrice :

Z(]’ 7, 71):)'9(14;“ 1/7, l,’I)X

X eXp <in4x($QED +J*A, + Y+ l/771)) - (3)
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Les fonctions de Green G@™™ sont données par :
(__ i)2n +m

G;(Lzlr.’.’,ﬁ,,,()ﬁ e Yn X e Xy 52y Zy) = _ZW X

8¢tmZd, 1, 1)
x .
aﬁ(yl) Sﬁ(yn) 677 (xl) 8"7(""}1) 8']”"(21) e 8J‘Lm(zm) J=T=n=0

4)

La source J, (tout comme 7m et 7) est une source auxiliaire
mathématique qui sert & obtenir les fonctions de Green ; elle n’a aucune
raison d’obéir a 8*J,, = 0. Le nombre de dérivations par rapport a n et
71 est le méme, car dans le cas contraire I'intégration sur les variables
anticommutantes donne zéro, le lagrangien contenant uniquement la
combinaison ¢. Pour des raisons de commodité d’écriture, on
utilisera parfois la notation opératorieile :

2n,m . . _
G,(L,.,,M),"(Y1, s Y3 Xl s X 520y ey Zp ) =

= O T O - v On) () o F () AL (21) - Ay (2)) 10)

)

Sous cette forme on retrouve le résultat précédent : la conservation de
la charge implique que le nombre de ¢ est égal a celui de .

Le propagateur de I'électron Sy est représenté par un trait plein

orienté dans le sens de propagation de la charge de Iélectron (dans

Pécriture de (6), on rencontre la difficulté habituelle : les réactions sont

écrites de gauche a droite (I’électron entre dans le diagramme a gauche)
tandis que la multiplication des opérateurs va de droite a gauche) :

p
185,03 = 4,0 ) ©)

L’opérateur ¢, (x) crée un électron (ou détruit un positron) en x ; cet
électron se propage de x en y et est détruit en y par ¥4(y) : le flot de
charge va de x vers y. Le propagateur représente aussi la création d’un
positron en y suivi de sa destruction en x : 'ordre des temps n’intervient
pas dans les regles de Feynman.

Rappelons les définitions des transformées de Fourier :

d i i
SF _ — p —1p(y—x)< ) .
aaly = %) J 2 7T)4e P—m+ie ) ga (7-2)

(P___—~ni+is )Ba = Jd4(y-—x)eip(y_X)S£a(y—x). (7.b)

On note que les conventions (7) pour les transformées de Fourier sont
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bien compatibles avec les conventions utilisées pour définir les fonctions
de Green : dans (7.b) e~ ¥ correspond 4 un moment p entrant dans le

diagramme a gauche, e¢” 3 un moment (—p) entrant dans le

N

diagramme a droite. Si nous définissons le propagateur complet
S(y —x) par:

P p'
D 85,0 —x) = O TW () F,NI0) (B
X, a y’B

d’apreés nos conventions pour la transformée de Fourier d’'une fonction
de Green: ’

Cm)Ys®p+p')Sep,p)=

= J d*x dy e_i(p”p'y)Spa(y -x). 9

Afin d’éviter toute confusion, il convient de bien distinguer la fleche
sur le propagateur, qui indique la direction du flot de charge, de la
fleche indiquant le flot de moment.

Le propagateur du photon pose moins de problémes car il n’est pas
orienté : il sera représenté par un trait ondulé (sans orientation) :

q
XNAAAAAAAAN DI, (y-x)=Dj,(x=y)=A,(0)A4,x) (10
X, B y, v
d4q ie” ig(y - %) [ (1 - a)qv qu :|
DE (y-x)= g+ . (11
w(y =) QRm)Y g —A%+ie Y gt—art+ie (1)

Le propagateur complet du photon, D,, (y — x) sera :

D, (y—x)= (0| T(A,(y) A.(x)) 0} . (12)

Le vertex électron-photon-électron se lit directement sur le lagrangien
(1) : a chaque vertex doit étre associé un facteur —iey*:

i—iey® (13)

Le seul point délicat concerne les signes, auxquels il faut faire tres
attention chaque fois qu’on a affaire 4 des fermions. A cause de la
conservation de la charge, une ligne d’électrons a seulement deux
possibilités :

(i) se refermer sur elle-méme : c’est le cas des boucles d’électrons,

(ii) traverser tout le diagramme, c’est-a-dire entrer en un certain
point x; et en ressortir en un point y;.
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Examinons d’abord le cas d’une boucle, par exemple celle de la
figure 1 : le développement de ’exponentielle

2 e ! ol 8§ est I'action correspondant au cou-
W plage électron-photon dans (1), conduit a:

i J(l)tk(l)117(2)111(2)*/7(3)!//(3)!5(4)211(4))

14.a

Figure 1. Une boucle
ou tous les facteurs sans intérét pour le signe

fermionique. .
y*, A_,...) ont été omis. Notez que I'ordre
" q

des ¢ est sans importance car deux (¢) commutent entre eux.

Cependant pour mettre (14.a) sous forme d’un produit de propagateurs,
il faut par exemple faire passer ¢ (4) a gauche dans (14.a) ce qui donne,
aprés application du théoréme de Wick, la contribution suivante :

| —— 1 U | ——
—y @MW)y ey )6 B)yB)v(4)  (14b)

oll le signe (— ) provient de ce que ¢ (4) a anticommuté avec un
nombre impair de champs. Le résultat est évidemment le méme pour un
nombre quelconque de facteurs ¥, et nous aboutissons a la conclu-
sion: @ chaque boucle de fermions doit étre associé un facteur
(-1).

En ce qui concerne les lignes traversant le diagramme, examinons par
exemple le graphe de la figure 2 : il lui correspondra un facteur :

f 1 — T 1
W) d (@) Y (1) () ¢ () ¥ (x)
(15.a)
Figure 2.
alors que I'on avait au départ :
W) W) & () () b (1) (1) - (15.0)

Il faudra tenir compte pour ce diagramme de deux facteurs de signe :

— un facteur (— 1) associé a la boucle électronique,
— un facteur égal au signe de la permutation faisant passer de P'ordre
(15.b) a (15.a) ; ce signe est + 1 dans le cas particulier considéré.

Déterminons enfin le facteur de symétrie ; pour les besoins de la
démonstration, on décompose chaque vertex en un cercle correspon-
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dant & un facteur ¢ et une croix correspondant 4 un facteur ¥, de telle
sorte que toute ligne de fermion parte d’une croix et arrive & un cercle :

X y -
x——»——-——o = ll’()))d’(x)

Toute contraction joint obligatoirement une croix a un cercle. Ainsi
dans le diagramme de la figure 3, il y a une seule fagon de faire les
contractions :

NQM U MV\/"\OMM
Figure 3. '

et I'application du théoréme de Wick donne un seul terme. Comme il
n’y a pas de 1/(factorielle) dans le lagrangien £, tous les diagrammes
topologiquement inéquivalents auront un facteur de symétrie égal a 1.
Remarquez que les diagrammes de la figure 4, contribuant a la
diffusion photon-photon sont topologiquement inéquivalents :

1

e —

Figure 4. Diagrammes de la diffusion photon-photon.
On peut résumer les régles de Feynman dans I’espace de configura-
tion :
1) Propagateur de électron: . :S5,(y—x)

X, a y’B

2) Propagateur du photon : FVVINIVINIVSERE % fﬂ (y—x)
x’ l"l‘ Y»V
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4) Facteur (— 1) pour toute boucle de fermions.

5) Signe global associé & la configuration des lignes externes.

6) Facteur de symétrie égal a 1 pour tous les diagrammes topologi-
quement inéquivalents.

7) Intégration sur tous les points internes du diagramme.

A.2. Eléments de matrice S

Passons maintenant aux régles de Feynman pour les €léments de
matrice S. Si nous transposons la méthode exposée au chapitre X,
paragraphe C.3, nous constatons que nous avons besoin des contrac-
tions suivantes :

¥ _ 0 —ipx
Yx)b, (p)=u"(p)e _,__@ Electron entrant

—_—
P
bl Ap) L’7(X) = ﬁ(')(p)ei’”‘ @__,_ Electron sortant
—_—
p
b (x) d: P)=3"@)e ™ _ ) @ Positron entrant
—_—
p
d,(p) v (x)=v O(p)e™ @__4_____ Positron sortant
P

Al u (X) a|: (k) = SL(LS)(k)e—“kX MW@ Photon entrant

k
a,(k) A, (x) = £ (k) eikx @mew Photon sortant
kK

Dans les deux derniéres équations, & ,(f)(k) est un quadrivecteur
polarisation (cf. X1.95) et s un indice de polarisation (circulaire, linéaire
ou autre). Comme les photons entrants et sortants sont physiques, on
peut, pour calculer les contractions, utiliser une décomposition de
Fourier du champ électromagnétique possédant seulement deux degrés
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de liberté transverses (physiques) :

A"(x):sgzj @Yoy

x [ePk)a, (k) e ™ 1+ (&) al (k) e*] (16)

avec: k¥ e, =k.e=0.
Appliquons par exemple ces regles au calcul de Pélément de
matrice S de Peffet Compton :

y(k,s)+e(p,r)—> y(k',s") +e(p’,r')

au premier ordre en e Il s’agit de calculer :
f@)— 1e) d*x d*y (k',s';p',r' T(tl?(x)'y“tl((x)Au(x)x

x$) v (A0 |k s;p,ry (17

ol le 1/2 ! provient du développement de exp (iS; ). Cependant I’associa-
tion (x « électron p ; y « électron p’) donne la méme contribution que
Passociation inverse : on pourra comme d’habitude omettre le 1/2! a
condition de ne pas tenir compte de la permutation des vertex x et y.
Nous aurons deux diagrammes, donnés a un facteur prés par (figure 5).

ky“ kl, v
: I £ 06) 00 T @) ¥ Splr - x) x

Xy u(r)(p)e ipx —lkx elp ¥y erk ¥y

e (k) )T (') ¥* Sp(y - x)
Xy v u(')(p)e‘ipx e iky eip’y eik'x

(b)

Figure 5. Diagrammes de I'effet Compton a I'ordre ¢2

Compte tenu de l'expression (7.a) de Sp(y —x) en fonction de sa
transformée de Fourier, on peut effectuer I'intégration sur x et y et
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obtenir S§ sous la forme :

S = W) ePE) a0 @)N{@ ) 8NP + k- q) x

x @)W +k —q) (~iey”) (2;)4q2f;ﬁig (—iev®)

+Qa)eWp—k —q)2n)Y W@ —k-qg)(—iey*)

G e ) u0). (18)

Les régles de Feynman associent un facteur (2 7 )* 6 #)(...) 4 chaque

N

vertex, et un facteur 1/(2 m)* & chaque propagateur. Pour calculer
Pélément de matrice 7, on doit extraire un facteur (2 7 )
5W(p' + k' — p — k) étant donné que :

Sy=8+iQm) 8P~ P)Ty. (19)
Suivant la remarque faite au chapitre V, paragraphe B.5, il est plus
commode de tenir compte des facteurs (2 7)* en les associant aux

intégrales sur les boucles: | d*q/(2 7w)*. Résumons les régles de

Feynman pour les éléments de matrice T dans I'espace de Fourier.

1) Tracer tous les diagrammes connexes topologiquement inéquiva-
lents ne contenant pas d’insertion d’énergie propre sur les lignes
externes.

2) Associer a chaque ligne électronique interne un facteur

i _i(p+m)

p-m+ie  pl_m?iie’

3) Associer a chaque ligne photonique interne un facteur
(~ G+ (1~ @)k, b,/ (K2 +ie))/ (K +ie).
Si nécessaire on rétablira la masse A dans des calculs intermédiaires (cf.
(11)). ’
4) Associer a chaque vertex un facteur — iey *,

5) Mettre les lignes externes sur couche de masse (p*=m?
k*=0) et associer a ces lignes les facteurs suivants :
électron entrant : u")(p); électron sortant : 7" (p)

positron entrant : v")(p); positron sortant : v (p)
photon entrant : £{)(k); photon sortant : &{)"(k).
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6) Multiplier chaque ligne électronique externe par un facteur
237 et chaque ligne photonique externe par z3” ; z, et z; sont reliés aux
constantes de renormalisation du champ électronique et du champ

photonique (cf. paragraphe C et X.83).

7) Associer un facteur (— 1) a toute boucle d’électrons, et déterminer
le signe global du diagramme dépendant de la configuration des lignes
externes.

8) Multiplier par un facteur — i (cf. (19)).

9) Intégrer sur toutes les boucles avec un facteur d'q/(2 m)*.

Comme les opérateurs de création et d’annihilation des fermions ont
la méme normalisation que ceux des bosons, les sections efficaces
seront données par (X.62). Ces sections efficaces dépendent des indices
de polarisation (s) du photon, et des indices de spin (r) des électrons.
Dans de nombreux cas on n’observe pas les spins finaux et les particules
initiales ne sont pas polarisées : il faut alors sommer sur les indices de
spin finaux et moyenner sur les indices de spin initiaux.

B. APPLICATIONS

Nous donnerons deux applications simples de ces regles de Feynman
en calculant a 'ordre le plus bas de la théorie des perturbations :

— la diffusion d’un électron par un champ coulombien statique,
— la section efficace e* e™ - u* w”.

Dans ces deux exemples, nous aurons affaire uniquement a des
diagrammes en arbres, et la question des divergences et de la
renormalisation ne se pose pas.

B.1. Diffusion d’un électron par un champ coulombien

Le lagrangien décrivant la diffusion d’un électron par un champ
extérieur Aff)(x) est :

L= —eg () v* ¥ (x) A*OR). (20)

Au premier ordre de la théorie des perturbations, I'élément de
matrice S vaut : :

Sy =—le J dx(p’, 1| Y (x) y* Y (x) [p,r) APR) 21
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ol p(p’) et r(r') sont les moments et les indices de spin de I’électron
initial (final). Le graphe de Feynman
P, 7 P L. correspondant a (21) est dessiné sur la
" figure 6. Nous nous contenterons de calcu-

ler la diffusion par un potentiel coulom-

bien :
Ax) = ﬁ" . AWX)=0. (22)
Figure 6. Diffusion par un Les équations (20) et (22) décrivent a

une bonne approximation la diffusion
d’'un électron par un noyau lourd de
charge Z, lorsque I’énergie de I’électron est faible par rapport a la’
masse du noyau: ce dernier peut étre considéré comme la source
statique du champ A ,(f). Le noyau absorbe le moment (p’ — p) transféré
a Pélectron : le moment de I’électron ne sera pas conservé, tandis que
son énergie sera, elle, conservée. Tout ceci est évidemment trés
analogue a la diffusion par un potentiel. Lorsque Za < 1, 'approxima-
tion du premier ordre (21) sera a priori une bonne approximation ;
lorsque Za n’obéit pas a cette condition, le résultat (26) est néanmoins
correct grice aux propriétés particuliéres du potentiel de Coulomb. Le
calcul de Sy dans (21) est immédiat :

champ extérieur.

1
B

=iZa 278 (E'-=E)a™ @) y'uP@p)—"—

iZe”

Sﬁ 47

= a"p)y° u“’(p)fd“x @' —p)x
. (23)
(p - )2
Pour trouver la section efficace, il faut adapter l€gérement la méthode
utilisée au chapitre X, paragraphe C.1. Comme seule I’énergic est
conservée, on définira, comme en théorie du potentiel :

La section efficace est donnée en fonction de Ty par:
1 o 2 d3pr

= T 2@é(E'—E)———F———. 25

2lp] (Z' 7l ) ( )(277)325' 25)

Les détails de la démonstration de (25) sont renvoyés a ’exercice 1. La
notation _Z_ = % ). indique une sommation sur le spin final et une

moyenne sur le spin initial : on suppose 1’électron initial non polarisé et
on n’observe pas la polarisation de 1’électron final. Effectuons cette
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sommation :

< |+ ' s 1 ’
Y 1a0®) v ue)? = STy (p+m) y'(p +m)] =
=2(EE'+p-p' +m?).
D’autre part ’espace de phase dans (25) s’écrit :

2w (E—E)&p'  pdo

Qu)Y2E 22 w)?

ol 2 = (0, ¢) est 'angle de diffusion de I’électron final. Rassemblant
tous les facteurs on obtient la section efficace do /d2 :

do (Za ) 2 2, 2

—=——" (E*+m”+p-cos b). 26

dn 8p4sin40/2( P ) 29)
Cette expression constitue la généralisation relativiste de la formule de
Rutherford, ou formule de Mott ; elle aurait d’ailleurs pu étre obtenue
a partir de I’équation de Dirac & 1 particule. A la limite non relativiste
(p?/m*— 0) I’équation (26) devient :

do ___ (Zay

d2  4m?v*sin* /2
ol v = p/E est la vitesse de I'électron. C’est naturellement la formule
classique de Rutherford.

B.2. Calcul de e* e” > ™ ™~

Le lepton u, ou muon, a exactement les mémes propriétés que
Pélectron, mis a part sa masse : m, =200 m, ; la réaction

ete ot p”

qui se produit & un nombre considérable d’exemplaires dans les
anneaux de collision e* e~ (Orsay, DESY... et bient6t LEP), est plus
simple a calculer que e* e~ - e* e~ (ou e” e” - e e7) car un seul
graphe donne une contribution & I'ordre le plus bas de la théorie des
perturbations. Ce graphe est le « graphe d’annihilation », dessiné sur la
figure 7, qui définit

Figure 7. Réaction e¢* ¢~ —» " u~ avec un photon intermédiaire.
4 p
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aussi la cinématique : I’électron et le positron «s’annihilent » pour
donner un photon (virtuel) v, qui se désintegre et donne la paire
p* p finale. Afin de simplifier la cinématique, il est commode de
supposer que les énergies en jeu (kg, poy, kg, pg) sont trés grandes par
rapport aux masses m, de I’électron et m,, du muon (dans le référentiel
ot 'on meéne le calcul). L’élément de matrice T correspondant au
graphe est:

Ty = —(—’qif—)zﬁ(k')wwk)a(p)m(p') @7)

(on remarque que le terme en g, g, du propagateur du photon donne
— heureusement — une contribution nulle). Comme I’on n’observe pas
les polarisations, il faut calculer les sommes sur les indices de spin :

2 a(p) ¥y o(@) 0 (P) ¥ up) = Tr [(7 + my) ¥, @' —my) %] =
=Tr (py, P v,)=4@.p, +pP.pP,)—4®.P' )G, =Ly, . (28)
On trouve de méme dans le cas de I’électron :

Y [0k v, u®)|’ =0, ~4(k, K, + ki k,) 4k k') g,, -

Comme g*L,, =q"L,, =0, on peut remplacer dans le calcul de
L,, " le facteur {,, par:

b,,=-8k,k,~2qg%q,,

ce qui donne (le facteur 1/4 correspond & la moyenne sur les spins
initiaux) :

%F“,L‘”zl6(p.k)2—16(p.k)(q.k)—4q2(p.q)+4q4.

Plagons-nous dans le référentiel du centre de masse, qui est aussi
celui du laboratoire dans le cas d’un anneau de collision e¢* e~ ;

(\/—qE,O,O,O); k=<%\/q—2,0a0,%\/q_2),
(%\/;2,0,0,*%\/;2);
p= (%\/q—z,%\/;zsin 9,0,%\/;%05 0) ,

ol 6 est 'angle entre la direction finale du p ~ et celle du faisceau. Dans
ce référentiel, on obtient :

i

q
kl

%fw L*" =q*(1 +cos’ 9). (29)
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Pour obtenir la section efficace on se reporte a (X.60) :

2
%:f‘;—z(ucoszo) (30)

ce qui donne pour la section efficace totale :

4 wa?

s (31)

Tt =

B.3. Application : calcul du rapport R

La section efficace e* e~ — hadrons peut étre calculée en chromody-
namique quantique : dans cette théorie (cf. XIII-D), les hadrons sont
composés de quarks ponctuels g; et cette section efficace est simplement
donnée par :

Yo(ee —qq;)

[

ol la somme porte sur toutes les especes de quarks qui peuvent étre
« produites » a Pénergie considérée (en réalité la prédiction théorique
vaut pour g° - — o0, c’est-a-dire dans la région non physique. On peut
montrer que dans la région g%> 0, la prédiction doit étre valable en
moyenne (cf. XIII-D.4)). Les quarks connus a ’heure actuelle avec leur
charge ¢;, mesurées en unités de la charge du proton, sont :

Quark u (up) : e=2/3 Quark d (down) : e=-1/3
Quark s (strange) : e = —1/3 Quark ¢ (charmed) : e =2/3
Quark b (beauty) : e=—1/3.

It

De plus chaque quark existe en trois exemplaires, en raison de la
propriété de «couleur » (rien a voir bien sir avec la couleur ordi-
naire !). .

Les trois premiers quarks sont légers (m < masse du proton). Le
quark ¢ a une masse = 1.5 GeV et le quark b une masse =5 GeV : il
faut donc une énergie minimale de 3 GeV et 10 GeV respectivement
pour les « produire » dans un anneau de collision. Les quarks sont
couplés au photon par leur charge, et on pourra écrire sous forme

diagrammatique (figure 8) :
N g; 2
+>“”’<(7.»|
—>’vw<p' 12
e’ Wt
Figure 8. Ecriture diagrammatique du rapport R.

)y

_ o(e* e - hadrons) 4

R =
o(e'e »ptpT)

e
e
e
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Pour g > 10 GeV le rapport R devrait étre égal a:

e=3((3)' ()

)= (3)7+(5))

XIIL.B.3

11
5

Les résultats expérimentaux sont en bon accord avec cette prédiction
(figure 9). En réalité la chromodynamique quantique prédit que R doit
étre un peu plus grand que 11/3, a cause des corrections radiatives (cf.

XII1-D.4).
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2 aDHHM x SLAC-LBL = PLUTO
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>
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Figure 9. Compilation récente du rapport R™.

On a des raisons théoriques trés séricuses de prévoir P'existence d’un
sixiéme quark, le quark ¢ (top) de charge 2/3. Au seuil de production de
ce quark, le rapport R devrait sauter de 11/3 a 15/3.

Par ailleurs, les hadrons, produits de désintégration de quarks
(inobservables), sont trés fortement collimés autour de la direction des
quarks et antiquarks formés initialement : on a affaire 4 des « jets »

(figure 10) :

e’ s 0 e’
——— e e
———e B ———
k k'

Figure 10. Production d’un jet.
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A partir de ces jets, on peut reconstituer (approximativement) la
direction du quark et de I'antiquark : on trouve que cette direction suit
une loi en (1 + cos® 6), ce qui est en parfait accord avec (30). Ceci
confirme que les quarks ont, en accord avec d’autres arguments, un spin
1/2. En effet des quarks de spin zéro, par exemple, auraient une
distribution angulaire en sin® & (cf. exercice 8).

C. DIAGRAMMES A UNE BOUCLE EN ELECTRODYNAMIQUE

Dans ce paragraphe nous abordons I'étude de la renormalisation de
I’électrodynamique quantique avec le calcul des diagrammes a 1 boucle.
Mais il vaut la peine d’étudier au préalable le comptage de puissances,
afin de déterminer les diagrammes divergents. Le comptage de
puissances est plus compliqué que dans le cas scalaire du chapitre V, a
cause du spin des particules. D’autre part certaines propriétés de
symétrie, comme la symétrie de jauge, ont pour conséquemnice de
diminuer le degré de divergence de certains diagrammes : le comptage
de puissances se révéle trop pessimiste. Unl exemple spectaculaire de
réduction des divergences est le lagrangien « supersymétrique » de
Pexercice 13.

C.1. Comptage de puissances pour I’électrodynamique

Comme l'action de Dirac:

dixJ(%_g;m) ¥

est sans dimension, la dimension [¢] du champ de Dirac est :

D 1 3.
—_—— — — ! = - = 4 . 32
< . . . D
Le champ électromagnétique ayant la dimension usuelle [A] = 5~ 1,
la dimension de e est :
[e]=2- % . (33)

La constante de couplage est sans dimension pour D = 4, ce que nous
savions déja (cf. (2)), et ceci suggere que D’électrodynamique est
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renormalisable pour la dimension physique D =4 de Iespace-
temps (*).

Le propagateur d’un électron a dimension (— 1), celui d’un photon
dimension (—2) et le degré superficiel de divergence d’un vertex
propre G, w (G) est donné par (cf. V-F.1) :

w(G)=4L—Ip—21Ig (34)

ou L est le nombre de boucles, I le nombre de lignes internes
d’électrons (fermions) et Iz le nombre de lignes internes de photons
(bosons). Si V est le nombre de vertex on a également (Ep(Ep) =
nombre de lignes externes de fermions (bosons)) :

2V =21p+Ep; V=2Ip+Eg; L=Ip+1Ig-V +1 (35

soit :

w(G):4—%EF—EB . (36)

Cette formule est 'analogue de (V.67) dans le cas de I'électrodynami-
que. Les fonctions de Green superficiellement divergentes seront
a priori ;

(1) le propagateur du photon : I w0 (G) =2

(2) le propagateur de I’électron : D w(G)=1

(3) le vertex photon-électron : WW% w(G)=0
(4) le vertex a 3 photons : %AAAA 0w(G)=1

-~

(5) la fonction de Green a 4 photons : ::@::/ w(G)=0

Mais ce comptage de puissances est trop pessimiste. En effet
examinons chaque cas plus a fond :

1) L’identité de Ward (cf. D.1) pour le propagateur du photon
permet de montrer que les corrections au propagateur libre sont
proportionnelles a :

~ g K+ k, k,

(*) Les idées théoriques récentes suggérent que la dimension physique de I'espace-
temps est supéricure & 4:10,26 ou autre. Les dimensions supplémentaires sont
heureusement inobservables, 2 moins d’atteindre des énergies ~ 10" GeV.
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ol k est le moment du photon. On peut donc extraire deux puissances
de k et w (G) = 0 au licu de 2. Naturellement, comme cette propriété
est liée a linvariance de jauge, il sera nécessaire d’utiliser une
régularisation qui préserve cette invariance, sous peine de retomber sur
w(G) =2

2) Ecrivons le propagateur complet inverse S~ !(p) de I’électron sous
la forme :

S p)=p-m-2(p). (37)

L’énergie propre 3(p) est une matrice dans I’espace de Dirac qui doit
s’exprimer en fonction de la matrice unité 1 et de p'; le calcul & une
boucle (cf. C.3) montre que I'énergie propre 3(p) est de la forme :

2(p)=mA@PH 1+ (p—m) B(p?) (38)

ou A et B ont un degré superficiel de divergence w (G) = 0. Dans le cas
général, le coefficient A (p?) de la matrice unité 1 est également de la
forme mA (p?); ceci est dii a linvariance du lagrangien dans la
transformation :

ey

lorsque la masse de I’électron est nulle : le contre-terme de masse dm
est toujours proportionnel & m et w (G) = 0.

3) Le résultat brut o (G) = 0 reste valable.

4) Ce vertex est exclu par la conjugaison de charge : dans cette
transformation A, (x) - — A, (x). Une vérification explicite est fournie
par le théoréme de Furry (exercice 2) : si un nombre impair de photons
est accroché a une boucle électronique, la contribution du diagramme
est nulle.

5) Le vertex propre I'® dépend de quatre indices de Lorentz (u, v,
p, o) correspondant aux quatre moments ki, k,, k3, k,; mais une
identité de Ward implique (cf. exercice 10) :

4
k{L F;(Lv)po(kl’ k2: k3’ k4) =0.

Ceci permet d’extraire quatre puissances de k, et le degré superficiel
de divergence est — 4 et non 0.

En résumé, dans I'étude des divergences, on pourra se limiter aux
fonctions de Green suivantes :

e propagateur du photon,
e propagateur de 1’électron,
e vertex électron-photon.
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C.2. Propagateur du photon et polarisation du vide

La premiére correction au propagateur D, du photon est donnée
par le graphe a une boucle (figure 11) :

p—-9q

Figure 11. Correction & une boucle au
propagateur du photon.

dont l'expression analytique est :

Df*(q) 1I3(q) DE(q)
avee

D Tr (v.(p+m —g+m
H‘SIIE:*eZ/J«EJ’ dpD (v (p )’Y;s(qu , )) .
@ 7)Y (p*~m? +ie)((p —q) —m® +ig)
Dans P'application des régles de Feynman, il ne faut pas oublier le
(-1) di a la boucle électronique. J’ai adopté une régularisation
dimensionnelle avec, comme d’habitude :

39)

e=4—-D

(ne pas confondre avec ¢ dans les propagateurs) et un facteur
1 © compense la dimension non-nulle de la constante de couplage
lorsque D # 4. Les dénominateurs dans (39) sont combinés grice a

I'identité de Feynman :

TR
ab o [ax +b(1 - x))?

et apres un changement de variables p — p + xq destiné a éliminer les

termes linéaires en p au dénominateur, on écrit (39) sous la forme :
1 D N + Xxq,

ny e o] o N

0 Qm)Y PP +x(1-x)g*—m?+ie)

(40)

Le numérateur N, 4 est donné par le calcul de la trace dans (39) ; on
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peut omettre les termes lin€aires en p qui disparaissent dans I'intégra-
tion, et remarquer que (cf. équation (B.7)):

j Prp.p. FO) =5 gwfd"ppzf(pz)

pour obtenir 'expression suivante de N .z :
Naﬁ = —8X(1 _x)[qa qB _ngaﬁ] +
+4gaﬁ[< %_1) pz—-x(l—x)q2+m2] . (@)

L’expression (41) contient une partie transverse, proportionnelle a :

9« 9
daﬁ = — gal3 -+ qzﬂ (42)

et un terme proportionnel a g,5. Pour faire Pintégration sur p dans
(40), nous aurons besoin des deux intégrales (cf. équations (B.4) et

(B.5)) :

= de 1 B i r@-Dnp/2)

Iy = CrY Gl Miricy GaP 2 U’ —icP P27 (43.a)
= d®p p’ =i DI (1-DJ/2)

I = J 2 W)D (PZ—,/”Z—Q—iE)Z - 2(47T)D/2 [ﬂ2~i8]1‘D/2 (43.b)

ol les facteurs + i proviennent de la rotation de Wick.
Montrons que le terme en g,5 dans (41) donne une contribution nulle
aprés intégration sur p ; mettant en facteur

4i

Gp R e

on trouve pour le coefficient de g, :

(3-1) () or(1-8) +r(2-5) -0

La correction Hc(,lg est purement transverse : ceci est en accord avec
P’identité de Ward :

qﬂ HaB =0

que nous montrerons au paragraphe suivant. Cependant cette propriété
de I1,5 n'est vraie que si I'on utilise une régularisation invariante de
jauge, comme la régularisation dimensionnelle : I'invariance de jauge
ne dépend pas de la dimension d’espace, parce que ’on peut généraliser
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I’algebre des matrices de Dirac & une dimension D quelconque... sauf si
I'on a besoin de y5: heureusement ys n’intervient pas en électrodyna-
mique. Une autre régularisation invariante de jauge est celle de Pauli-
Villars. Au contraire la régularisation de Schwinger (V.58) ne respecte
pas linvariance de jauge: on trouve des termes quadratiquement
divergents proportionnels & g,g, qui donnent une correction a la masse
du photon ().

Rassemblant tous les facteurs on obtient pour H,Sll} (g) al'ordre d’une
boucle :

D
F<2—§)(—nga¢;+qaqa)x

x Jldx (1~ x) (44)
0

(m?*—ie —x(1 —x)q?? 2/’

8elp® .
Ht(xl/f(q)=m/—2

Avant d’exploiter cette équation, répétons la manceuvre qui nous a
conduit au chapitre V a P'expression du vertex propre I"?®:

D** = D¥ + DF* M, DE” + DE® 5 DE* I1,, DE* + ... (45)

Cette équation est écrite sous forme diagrammatique sur la figure 12 :

Figure 12. Sommation pour le propagateur.

ou les boules non hachurées représentent des graphes 1-particule
irréductibles. Ecrivant :
DEY - 7 ot _iagtgq”
L N NERY
g +ie  (g°+1ig)

(40)
HaB = iqzdaﬁa (qZ)

et effectuant la sommation de la série géométrique dans (45) on
obtient :

per_ ___id*’ iag*q"
) NNy 2, i
°(1+a@(q”)) (g°+ie)

Le vertex propre I'® peut étre défini par le dénominateur de (47)

(47)

r®=q*1+ a(g%). (48)
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Ce vertex propre obéit a I'® (g2 = 0) = 0 : si la masse du photon est
initialement nulle, elle le reste. Mais le terme @ (¢%) va conduire a une
renormalisation du champ électromagnétique A ,, qui sera effectuée en
introduisant un contre-terme dépendant de la constante de renormalisa-
tion Zs.

Examinons I'expression de @ (q%) a l'ordre d’une boucle :

oM(g?) - 8e2m"I(e/2) ! dx x (1 — x)
(g%) 4 )72 L (mz—is—x(l—x)qz)e/z. (49)

Comme il fallait s’y attendre, cette expression est divergente en
dimension 4. Utilisant :

2

r{&\y_-2_

(2) € Y
on obtient & Pordre £°:
(J(l)(q2):§_::_<1 llnC dex(l—x)x

£
2
xln<m_1€—:2(l_x)q) (50)

avec C =4 me ",
Le terme divergent est (2 a /3 m) (1/¢). Avec une régularisation de
type Pauli-Villars, utilisant un cut-off A, on aurait :
¢ 1 _ i A
Qm)kt 1672 m?

tandis que :

J k1 i 2
Qm)Pk* 16mie’

Pour comparer les parties divergentes dans les deux régularisations, il
suffit de remplacer 2/ ¢ par In (A*/m?) ; naturellement les parties finies
sont différentes ; de méme cette substitution ne donnerait pas le
résultat correct dans un calcul & deux boucles : on pourrait seulement
comparer les parties les plus divergentes, en 1/¢% et en In? (A%/m?).
Pour renormaliser I'expression divergente (49), on ajoute au lagrangien
(1) un contre-terme :
1

8L = — 4Z1>F,”Ff“=523“),4#(1:1;;”_a,LaV)AV. (51)
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A Tordre d’une boucle Z; — 1 = Z{V, ot Z{ est la contribution a
Pordre de [ boucles :

Zy=1+ZM0 4+ 2P+ 1 Z0 4.
Le contre-terme (51), traité perturbativement, conduit a un vertex:
oo = iZSN(- 4% g0, + 4, 4) (52)
qui transforme I'® en I'):

I =g 0+ a(g)) +2Z{M] (53)

(comparez (46) et (52)). On a maintenant plusieurs choix possibles pour
la renormalisation ; a Pordre d’une boucle on obtient par exemple dans
le schéma minimal (MS):

2a
zZM o M (54.2)
3me
tandis que dans le schéma (MS):
2 agr
-3 (1 gme)
Z! —— (1+5lC). (54.b)

Toutefois, des schémas tels que (MS) ou (MS), bien que parfaite-
ment cohérents, ne sont pas habituels en électrodynamique, car dans
cette théorie il existe une limite classique & fréquence nulle. En effet
considérons deux sources j }(}) etj ’(Lz) du champ électromagnétique ; ces

sources vont interagir par échange de photons, soit un terme d’interac-
tion :

1

P+ a (qz))jM)(— DG

~ii(a) D*(9) (= q) = — i @)

ou 'on a utilisé la conservation du courant g, j*(q) = 0. A la limite
statique gy = 0, linteraction (55) devient :

1
q’(1+a(-q")

jo@) )fo(“l)- (56)

1/q* étant 1/(4 wr) (cf. 23). L’examen de (56) pour ¢* — 0 montre
que, si nous voulons retrouver la loi de Coulomb a longue distance avec
la définition usuelle de la charge électrique, il est nécessaire de
renormaliser @ (g2) avec la condition @x(g?) = 0, qui n’est pas vérifiée
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dans les schémas MS ou MS. 1l est habituel d’utiliser le schéma sur
couche de masse ou :
af(g?) = oW (g) - aM(0) =
1 2
=—2—ﬁj drx(1 —x)In (1 _gxl-x) ) . (57)
7 Jo m

Avec ce choix le résidu du podle 4 g% = 0 dans le propagateur complet
du photon est égal 4 id,,, ; en d’autres termes la constante z; (cf. X.83)
est égale a 1. Dans le schéma de renormalisation sur couche de masse,
le propagateur complet renormalisé fof,) s’écrit finalement :

R) id,, B iaq, q,
M@t +ie)A + D) - aM(0))  (¢P+ie)

L’intégrale sur le paramétre de Feynman x dans (57) est élémentaire
(exercice 4). Limitons-nous & deux remarques :

1) L’intégrale dans (57) est définie sans probléeme pour g2 < 4 m?,
largument du logarithme étant positif. Comme dans 'exemple étudié
au chapitre X, paragraphe D.1, @§’(¢%) présente une coupure pour
g*=4m? qui est le seuil de production de la paire e* e~ ; la valeur
physique est la limite du résultat de I'intégrale pour g° = q* +ie, en
raison

¢q2+is

e S AT ITe I TRV SV I TV
0 4 m?

Figure 13. Définition de @{’(¢?) dans un
plan coupé en ¢°.

de la prescription m? » m? — ie. La partie imaginaire de @§’(q”) est

reliée, grace aux régles de coupure, au taux de désintégration d’un

photon virtuel de masse = 4 m? en deux électrons (exercice 4) :

2
Imafg’) =5 l ~w~< , :

@ (g% obéit a une relation de dispersion qui nécessite une soustrac-
tion, reflétant la divergence du calcul perturbatif et la nécessité de la
renormalisation.

2) A la limite statique g2 = — q” et pour ¢* < m?, on peut développer
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(57) en puissances de q”:

2a

2 1 2
1+¢5§e”(—q2)=1———q—2f defx(l—x)p=1--29
T m 0

157Tm2

La loi de Coulomb dans I’espace de Fourier est modifiée de la fagon
suivante :

1 1 1
- z.__2+

2 2 2
q q2<1_ a l) q° 15 mm

[47

157Tm2

c’est-a-dire dans I’espace ordinaire :

1 o 1 + o
4 ar 4 7r 15 mm

S8 (r). (59)

Cette modification de la loi de Coulomb affecte les états s de 'atome
d’hydrogene : elle induit par exemple un déplacement de — 27 MHz du
niveau sy, et sépare les niveaux 2y, et 2pin qui sont dégénérés a
I’approximation de I'équation de Dirac. Le calcul précédent ne donne
qu’une (petite) partie de la séparation ’p,,-%,, qui est de + 1 000 MHz
environ. Mais ce calcul montre déja la réalité des corrections radiatives,
c’est-a-dire des corrections perturbatives obtenues par des calculs de
diagrammes comprenant des boucles.

Les corrections radiatives au propagateur du photon sont souvent
appelées corrections de polarisation du vide : en effet la production de
paires (virtuelles) e*-¢~ entraine un effet d’écran, et la correction a la
loi de Coulomb peut étre interprétée par I'existence d’une constante
diélectrique du vide. L’effet d’écran entraine physiquement que la
charge a longue distance est plus faible que la charge a courte distance.
Ceci est confirmé par un calcul plus complet des corrections a la loi de
Coulomb (exercice 5) :

e e
m—’v(r)=mQ(r)
@ 1
Q(r)=1+§—w<1nm—2y—§>:mr<<1 (60.2)
Q(r)21+72_%w—fae_2mr :mr>1 . (60b)

Pour mr > 1, on remarque le facteur e 2™ dans (60.b) : P'effet étant
d a la production d’une paire e™ ¢~ de masse = 2 m, sa décroissance a
longue distance doit étre exponentielle avec une longueur caractéristi-
que (2m)~1; il suffit de reproduire I’argument classique de Yukawa : &
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la limite statique, I’équation de Klein-Gordon couplée a une source
ponctuelle & (r) s’écrit :

(V2 —m?) ¢ (r) = 8(r)

et a pour solution :

—mr

olr)=- 4 7r’
Le champ décroit exponentiellement avec une longueur caractéristique
m1,

Dans le cas r - 0, ou plus précisément lorsque mr < 1, on pourrait
penser que la masse de I’électron peut étre négligée et que I'électrodyna-
mique devient invariante d’échelle : comme le potentiel a pour dimen-
sion 1, il devrait étre, d’aprés I'invariance d’échelle naive, proportionnel
a 1/r a courte distance. Pour des raisons qui ont été discutées au
chapitre VII, nous savons qu’il n’en est rien : invariance d’échelle est
brisée par la nécessité d’introduire une échelle de masse pour la
renormalisation. Cependant la présence de la masse de I'électron dans
(60.a) provient de la renormalisation sur couche de masse et en général
c’est une masse de soustraction u qui remplacera m : tout ceci sera
discuté un peu plus loin, lorsque nous examinerons le groupe de
renormalisation de I’électrodynamique.

C.3. Propagateur de I’électron

Les corrections radiatives au propagateur de 1’électron dépendent
explicitement de la jauge, et en particulier du paramétre a fixant la
jauge dans la forme covariante du propagateur. Nous allons conserver
cette forme compléte du propagateur, en calculant dans un premier
temps dans la jauge de Feynman, et en rajoutant ensuite la contribution
4, 4, D’autre part il sera nécessaire d’attribuer une masse non-nulle au
photon en raison des divergences infrarouges. Suivant la technique
exposée plus haut pour le propagateur du photon, on écrira le
propagateur complet S(p) en fonction de I’énergie propre 3(p):

i
S0) = 55 1)
m
S(p) =i —
- pP—-q —
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Dans la jauge de Feynman a = 1 I'expression de 3(p) est:

dPq Yul@—g+m)y*
CmY(g>= A +ie)((p—q)P —mP+ie)

S(p)=—ietuc (62)
Le calcul utilise exactement les mémes techniques que celui du

propagateur du photon ; on utilise les identités (C.8) et (C.9) avec pour
résultat :

Zutl(e/2
Z(P)=e———-—&ﬂ)g)//2 )x

' mD+ (2-D)(1-=x)p
. Jo e [xm2~ie+ (1—x)A2_.x(1_x)p2]e/2'

On développe a lordre &°:
(41 £
E(p):m(3m~(p~m))(1+§1nC) +
1
+ 2 {—m+ (p—m)—J dx[2m(1 +x) —
47 0

_ —2(1 —x)(F—m)]In [f(x,p?)/1’]} (63)
avec :
f,p)=xm?+ (1 -x)A?—x(1-x)p*—ie.
I’énergie propre X (p) est de la forme :

2(@)=A@") + (p~m)B@P?) (64)

avec des coefficients divergents A (p?) et B(p?). La renormalisation se
fait en introduisant un contre-terme de masse et un contre-terme de
renormalisation du champ, exprimé en fonction de la constante
Z, de renormalisation du champ électronique :

8L =smWyy +Zz(1)< % vy —mw) : (65)

Ces contre-termes introduisent deux vertex supplémentaires traités
perturbativement :

—_— ;iSm(l)
—o— iZPE—-m)

et donnent I’énergie propre renormalisée :

) =A@ - omW 1 (p—m)[BP?) - Z{"]. (66)
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A nouveau il est facile de déterminer dm™® et Z{) par simple

inspection de (64) dans les schémas (MS) ou (MS), par exemple dans le
schéma MS :

8m(1)=3a:m
2me

zo - &

2 2me

En général on préfere renormaliser sur couche de masse, en exigeant
que le propagateur renormalisé se comporte comme i(z—m)~! au
voisinage du pdle p = m. 1l faut donc choisir :

dm® = A (m? (67.a)
zZ{M = 2 mA’ (m?) + B(m?) = 3z : (67.b)
ap ”}: m

L’intégrale donnant A (m?) est infrarouge-convergente, mais Z§ pose
un probléme : en effet nous cherchons a renormaliser juste au seuil d’un
état électron-photon, et il n’est pas étonnant que 1’on rencontre une
divergence infrarouge. 1l est nécessaire de garder une masse au photon,
ce qui place le seuil p? = (m + A )? de production de I'état électron-

photon au-dessus du point de renormalisation. L’expression (64)
permet de calculer Z{V:

um_ @ £
Zh= - % <1+21nC)

b 1+4m2fdx (1 —x%)
4 m o x*mi+ (1—x)A2

+2 J‘ldx(l —x)In (xzmz/,uz)} . (68)
0

On a posé A = 0 dans les intégrales qui sont infrarouge-convergen-
tes. L’intégrale infrarouge-divergente est :

I:Jldx x(1-x%

0o xXtmP+ (1-—x)r?

car si A =0, elle diverge en dx/x & x = 0. Comme le point dangereux
est x =0, on peut remplacer I, avec une erreur de Pordre de
A2 m?

—;In— par:

me A2

1 1 2
X X 1 m 1
I' = dx ——— — dx —~ = —-In—=— - —
L x*m?+ A’ L m* 2m? A% 2m?
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L’expression finale pour Z{" est :

P 2

2
o __* £ e m _ m
ZP = - 52 <1+21nC>+47T<21n/\2 4+1nM2>. (69)

Calculons maintenant la contribution ¥, due au terme en g, q, du
propagateur :

el —au | 84 1p’-m?*)
S, p)=ie*(1-a)u J(Zw)p[(p—q)z—m2+ie
__ qp-m) } 1
(p—qP—m?+ie (¢ = A +ie)(g?— ar?+ie)
=iez(1—a)(11-12—13). (70)

L’intégrale I; est nulle par symétrie. L’intégrale I, est ultraviolette-
convergente par comptage de puissances, tandis que I, est ultraviolette-
divergente. Dans le calcul de 33,/ P|,= > 1€ contraire sera vrai de la
convergence infrarouge : on voit que I, a une puissance de g supplémen-
taire si ¢ — 0. A cause des facteurs (p? — m?) dans I, et (¢ — m) dans
I,, 3, ne contribue pas & la renormalisation de masse. Ce résultat est
d’ailleurs vrai a tous les ordres de la théorie des perturbations : ém est
indépendant de la jauge (cette propriété est une conséquence de
Pinvariance de jauge de ¢ (x) ¢ (x): cf. exercice 12.a).

Pour calculer % il faut combiner trois dénominateurs ; en adaptant
I’équation (B.3) au calcul de /; on obtient :

ol _—2im2J Xy dxydr; 6(1 —x; — x3) 1)
W lp=m (@) ) x¥tm>—ar?x;+ar?+ 21 -a)x,
qui est effectivement infrarouge divergent. Evaluons (71) :
al, —1i m? a
— = n—+-——ha-1}. 72
8P |p=m (477)2[ A2 1-a ] (72)
L’intégrale I, se transforme en :
al, iDr(s/z),ﬁJ
— =——"t o dx;dx, 6(1 —x;—x
ap - 2(477)1)/2 1 2 ( 1 2))(
2,2 2 2 -3 ir(3-b/2)
A1 — A - il Sl 4
X eim®+ad* (1 —x;) + A%5(1 — a) x,] TS
x}m?
dexlaze(l—‘xl'—xZ) !
142

[xim?+ar?(l—x)+ A 1 —a)x,] 2
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La partie dépendante de jauge 93,/dp| yom St finalement :

3%, a(l-a)[2 e w?  a
apﬂ=m=_7ﬁr_[z(1+§mc)+m;3+1_ama+1}
(73)
Rassemblant les résultats de (69) et (73) on obtient pour Z{V:
m:_ﬂi< £ )
Z, e 1+ 5 InCj +
@ m? am?

Les termes ultraviolets-divergents ou infrarouges-divergents dépen-
dent tous deux de la jauge ; a cet ordre de la théorie des perturbations,
les divergences ultraviolettes disparaissent dans la jauge de Landau
(a = 0), et les divergences infrarouges dans la jauge de Yennie-Fried :
a=3.

C.4. Vertex électron-photon

La normalisation est telle qu’a l'ordre zéro de la théorie des
perturbations le vertex propre I', est égal 4 y,. Nous n’allons pas
calculer le vertex complet, mais nous limiter au cas ou les deux
électrons externes sont sur couche de masse ce qui permettra d’utiliser :

P=m; p'=m
ainsi que l'identité de Gordon (exercice XI.5) :

1 , i vy
’Y'Lzm(P +P)“+m‘7#(17 -P),- (75)

Figure 14. Le vertex électron-photon.



516 Electrodynamique quantique X11.C.4

~

Calculons d’abord dans la jauge de Feynman la contribution & une
boucle AM* a I', (la figure 14 définit la cinématique) :

. d’k p +k+m
ADE = _je? e Ve X
Kl o kP —mEirie
x y* pP+k+m « 1 (76)

(p+k) —mP+ic  KkP— A’ +ie

Le numérateur N, (p, p') se simplifie en utilisant I'équation de Dirac et
quelques identités de ’appendice C.2:

N*@',p, k) =v*4k. (p+p')+4p.p'— 2-D) K]+
+2Q-D)Yk*—4@+p' W]k+4mk".

On adapte lidentité (B.3) au présent calcul, et on remarque que 'on a
effectué le changement de variables : ’

kok—-x"p —xp.

Aprés ce changement de variables, les termes linéaires en k au
numérateur peuvent étre omis; d’autre part le dénominateur
D(x,x";9°):

D(x,x',g)=m*(x +x' P+ A1 —x—x") —xx' q*—ie (77)
est symétrique en x et x' et on peut omettre dans le numérateur tous les

termes antisymétriques dans I’échange x « x'. Ces simplifications étant
faites, le numérateur N, devient :

N = w{(iiﬁplzkz-qz[za ) —x')— (4= D)xx']+
+m’[41 -x-x")+ (2-D)(x +x')2]}—
—imoe*q,(x+x)2+ 2-D)x+x")). (78)

Apres ces calculs quelque peu fastidieux, le vertex Af}) devient :

AL = —2ie2pejdxdx' 0(1—x—x')x

de N/.L(pl’pvk)
(2 W)D (kz“ D(x’x,’ qZ))3 .

(79)

Seul le terme en k? dans (78) donne une contribution ultraviolette-
divergente. Dans les autres termes, on peut poser D = 4. D’autre part,
il sera commode d’écrire A, en fonction de deux facteurs de forme
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Fi(q*) et Fy(¢%):
i v
Ap, = 7;1. Fl(q2)+2_ma-p,vq F2(q2)' (80)

On obtient par identification, apres avoir effectué I'intégrale sur k et le

développement a I'ordre &°:

€
FO(?) = 5 (1+§lnC> _

_Z% {1+dedx’0(1—x—x’){lnix’;%g-2—)
gl -x)(t —x’)+m2[2(1 —x-x')— (x+x')2]} (81.2)
D(x,x', g% D(x,x',q%)

2
am
F{'q*) = p

J*dxdxl 9(1_x~x’)(x+X')(1—x‘x’) (81b)

D(x,x',q%

Avant de commenter les expressions (81), calculons la partie
dépendante de jauge du vertex ; aprés application de I'équation de
Dirac, celle-ci se réduit (cf. exercice 6) a:

Ab(p',p) =i’ p(1 —a) y* x

dPk 1
% J Q2 m)P (k- A%+ie)(k?—ar?+ie) (82)

L’intégrale dans (82) est a la fois infrarouge et ultraviolette divergente :

en effet elle vaut dek/ [27)P k%] si A =0, et elle est donc

proportionnelle a Jdk/k, qui diverge logarithmiquement aussi bien

pour k — 0 que pour k — 0. Le résultat final s’écrit :
o=t [(Geame)
A’ = 2ar £+21nC +

1 ;LZ a
—{nZ 1 1 . (83
+2<nA2+l_ana+ H (83)

Ce résultat est indépendant de g et contribue uniquement au facteur
de forme F;, ce qui était déja évident sur I'expression initiale (82).

Le facteur de forme F, présente a la fois des divergences infrarouges
et ultraviolettes, alors que F, est convergent dans les deux cas: on
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remarque que les divergences infrarouges proviennent de la région x,
x' — 0, et que le facteur (x + x') au numérateur de (81.b) suffit a les
éliminer. Pour éliminer les divergences ultraviolettes, on renormalise
en ajoutant au lagrangien un contre-terme :

8% = —ezZM gy, yA* (84)

qui conduit au vertex supplémentaire :

/wvs< —ieZl(l) ’Y“

Calculons Z{" dans le schéma MS par exemple ; 'élimination du pole
a & = 0 donne, compte tenu de (81.a) et (83):

ZV= -2 (- (-a) = - (85)

2me

Comparant avec (74), on constate 1’égalité des termes en 1/& de
ZM et ZW; ceci n’est évidemment pas un hasard, mais une consé-
quence de lidentité de Ward pour le vertex (cf. D.1). Lorsque I’on
renormalise sur couche de masse, Z; va contenir des divergences
infrarouges, tout comme Z, : la renormalisation sur couche de masse
consiste 2 imposer pour le vertex renormalisé Fz(q?):

FlR(qZZO):O' (86)

Imposer cette condition revient a définir la charge e de I’électron de la
facon suivante : 'amplitude de probabilité pour Pabsorption (ou
I’émission) d’un photon de fréquence nulle est égale a ey”. Cette
condition donne pour VARE

ZM = —F(g*=0) (87)

ot Fi(g*>=0) est donné dans la jauge de Feynman a =1 par (cf.

(8l.2)) :
Fi(g*=0) = 5% (1 +§1nC) -

«

~5= {1 + J dedx’ (1 —x —x")[In (m*(x +x')*/n?) +

+m2[2(1—x—x’)— (x+x’)2]” ‘

mi(x +x' P+ A1 -x—-x")
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Les intégrales sur x et x’ se calculent en posant :

Uu=x+x'; v=x-x'; jdxdx’()(l-x—x’)f(u):

= Jl uf(u)du (88)

0
et 'on trouve :
W(g2=0) = _*_ £ _
F(g?=0) = 2% <1+21nC>
o 1, m

I mZ 2

Rajoutant le terme dépendant de jauge (83) on obtient pour
zV:

1y_ _ aa € )
Zy e (1+21nC +

a m? am?

On remarque Pégalité Z{() = Z{Y, lorsque Z{V est calculé dans le
cadre de la renormalisation sur couche de masse (cf. (74)). Cette égalité
est une conséquence de lidentité de Ward (114). En réalité cette
identité impose que F{R(0) = 0 si I'on choisit 83z/8p|,_,, = 0 (exer-
cice 11).

On peut étre légitimement inquiet de I'apparition des divergences
infrarouges. En fait elles disparaissent dans tout probleme qui est
physiquement bien posé : si 'on dispose d’une résolution expérimentale
en énergie AE, il est impossible de séparer un électron isolé d’un
électron accompagné de photons de faible énergie, et dont I’énergie
totale est < AE. SiI’on tient compte de cette résolution expérimentale,
les In A 2 vont se traduire dans le calcul de la section efficace par des
In AE : la masse du photon introduite dans les calculs intermédiaires
disparait du résultat physiquement observable. Un autre exemple
d’élimination des divergences infrarouges est donné au chapitre XII,
paragraphe D.

C.S5. Moment magnétique anormal de I’électron

Tous ces problémes sont absents dans le cas du facteur de forme
F,(g?). Calculons-le pour g>=0:

Fi(0)

amszM’ (1 —x—x)x+x)1—-x—x")
@ m*(x +x' )
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Le changement de variables (88) donne immédiatement le résultat :

1
F{M0) = EJ du(l—u) = 5—

T Jo 2

F{0) = 5— | . o)

Ce terme peut étre interprété comme une correction radiative au
facteur gyromagnétique de ['électron ; on Pappelle souvent « moment
magnétique anormal ».

Examinons en effet la diffusion d’un électron par un champ extérieur,
en tenant compte des corrections a une boucle calculées précédemment.
Les diagrammes que l'on doit considérer au 1% ordre en Za sont
(figure 15 — il faut évidemment y rajouter les contre-termes) :

g +T+ %t; + i + E
(a) (b) (e) (e)

(d)
Figure 15. Corrections radiatives a la diffusion

(S I
N =

par un champ extérieur.

mais si la renormalisation est faite sur couche de masse, les diagrammes
(d) et (¢) ne contribuent pas : la constante z, (cf. X.83) est égale a 1. La
contribution des diagrammes (@) + (b) + (c¢) est:

—iZe* APO(y* + AP* + TP+ DY, y7).

Limitons-nous au cas ou le transfert de moment g = p’ — p est faible :
g?><m?% On pourra remplacer F{}(q?) par ¢°F{¥(g*=0) ce qui
donne pour I'expression précédente :

iz Al v (1o (FRO - 525 ) ) g ot FOO)

ou le facteur — a /(15 7#m?) vient du diagramme (c) (cf. (59)). Passant
dans l'espace de configuration et utilisant ’identité de Gordon, on
obtient I’expression du hamiltonien d’un électron dans un champ
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extérieur lentement variable :
H=e [ @780 5,00 - ERO) - a/15 o) x

X AROG) + (1 + FE0) 70 5(x) 0, ¥ () FH ) 92)

avec (cf. XI1.76) :
F?-_B, F®»-_-B, F¥=_B,

et compte tenu de la représentation de Dirac des matrices o
(appendice C), le deuxi¢tme terme de (92) se met sous la forme :

mv

—B[ﬁ(l+%>2jd3x¢7(x)%m/z(x) . (93)

En labsence de corrections radiatives, on reconnait le facteur
gyromagnétique 2(e/2m) de I'équation de Dirac. La correction
relative a ce facteur est bien a/2 7 ~ 107>

En résumé, on peut dégager les deux points importants de ce
paragraphe :

(i) L’addition au lagrangien (1) des contre-termes (51), (65) et (84) a
permis de rendre finis les calculs & une boucle.

(ii) Les corrections radiatives ont des conséquences physiques obser-
vables, et sont en accord avec les résultats expérimentaux.

D. IDENTITES DE WARD, UNITARITE, RENORMALISATION

D.1. Identités de Ward

Les identités de Ward sont une conséquence de la conservation du
courant : 3*j,(x) = 0. Nous les démontrerons en utilisant la méthode
qui semble la plus rapide, sinon la plus naturelle, en rajoutant au
lagrangien % ,gp (1) celui d’un champ scalaire ¢ de (masse)? =
aA? découplé des photons et des électrons :

b =Lopp+ &Ly $¢=—%¢(D+a/\2)¢. (94)

L’équation (94) paraitra sans doute quelque peu « parachutée » ; une
démonstration plus naturelle, mais un peu plus longue, fondée sur les
équations du mouvement, est proposée a Pexercice (9), et cette
démonstration montre pour quelles raisons on est amené a (94). Le
champ ¢ est utilis€ pour faire des transformations de jauge locales,
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dépendant d’un paramétre infinitésimal :

A () > ALK =A, (%) + © 3,0 (x) (95.2)
W) > ¥ (x) = ¥ (x) —fewd (x) @ (x) (95.5)
FE) o ¥ () = § () +iewe () §(x). 95.0)

Soit S[A, ¢s, ¢ ] action correspondant au lagrangien (1) et » AS sa
variation au premier ordre en o dans (95) :

SIA ', §']1=S[A, 4, 1+ w AS (96)

et soit X(A, ¢, ¢¥) un produit de champs pris en des points
(¥is -+, ¥,;) DoOtés collectivement y :

X' () =XA" ¢, ¢)=X(A, ¢, ¥)+ o0 AX(y). N

Comme la mesure d’intégration est invariante dans la transformation
(95), et que ¢ est un champ libre, nous obtenons I'identité :

QOITX(Y) ¢(2))]0) = éOIT(X’(Y) ¢ (2))]0) (98)

La deuxi¢me fonction de Green dans (98) est donnée par :

OITEG) 0 GNI0) =& | D(A v, §, @) expiSia, v, #1+
+io AS 1iS,} X() ¢ () + 0 AXG) ¢ ()]

Le développement de cette équation au premier ordre en o donne
(AZ (x) est la variation du lagrangien) :

mJ@(A,w, 7, 9)AX(Y) ¢ (2) +

+i J d*x A,S”(x)X(y)qa(z)] S ¥ ¥l 1S,
c’est-a-dire :
(O]T(AX(Y) ¢ (2))[0) =
=—i jd4x<O|T(A$(x)X(y) ¢ (2))]0) . (99)
Seule la partie non invariante de jauge de % :

1 1
—5g (AR +5 024, A¥
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est affectée par la transformation (95), ce qui permet d’écrire immédia-
tement A.¥ (aprés une intégration par parties) :

AL (x) = — [a#A"(x)][ ( %u + /\2) <p(x)] : (100)

Cette équation montre bien que la forme des identités de Ward
dépend du choix du terme fixant la jauge dans le lagrangien. Les
identités de Ward obtenues a partir de la jauge de P'exercice (XI.14)
seraient différentes de celles que nous allons écrire dans la jauge de
Lorentz, et elles seraient beaucoup plus compliquée7 (cf. XIII, exer-
cice 5).

Dans les identités qui vont suivre, on doit considérer que toutes les
dérivations sont a lextérieur du produit-T, méme si je les écris a
I'intérieur afin d’améliorer la lisibilité des équations (cf. la discussion
suivant X.50). En reportant I'équation (100) dans (99), on obtient
I'identité :

j<0|T<a,LA“<x>X<y)<mx+av><p(x><o<z>)|0>d4 -

= —ia (0|T(AX(y) ¢(2))|0) . (101)

Si Pon tient compte du fait que ¢ (x) est un champ libre de masse
ar?:

(@ + aA DO T(e () ¢ (2))]0) = =18 Ox —2)

on déduit de (101) la forme générale des identités de Ward :

0JT(3*A, (x) X(¥))]0) = a(0]T(¢(x) AX(y))|0) | . (102)

Nous allons maintenant illustrer ce résultat sur deux cas particuliers,
celui du propagateur du photon (cf. (12)) :

D,,(x~y)=(0|T(A,(x) A, (¥))|0)

et celui du vertex €lectron-photon :
Vu(xy,2) = QO|TALx) ¥ (¥) #(2))]0) . (103)

Dans le premier cas on choisit :

i

X(»)=A4,0); AX(y)= P

®(y)
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et 'équation (102) donne :

" B 3
OITE 4, 4,0))10) =2 OIT(#@) 25 00)) 10
SOit :
2D, -y =—a-ap(x—y). (104)
ox, ¥ ax?

On peut également écrire I'identité de Ward en appliquant 'opérateur
de Klein-Gordon (O, + aA ?) aux deux membres de I'équation (104) :

@, + ar B —L (0| T(A*(x) A*(»))]0) = ia 58— 5@(x —y). (105)
ax” X,

Dans le cas du vertex (103) on choisit :

Xy, z2)=4¢ () ¥(2)
AX = —iep (y) ¢ () ¥(2) +ieyp (¥) ¢ (z) ¥(2)

et I’équation (102) donne :
0 .
SV, (x,7,2) = —iealAr(x —y) ~ Ar(x —2)] SG~2) (106)
u

ol S(y — z) est le propagateur électronique complet (8). Appliquons a
nouveau I'opérateur de Klein-Gordon aux deux membres de I'équation
(106) :

(Dx+a)\2)5i~Vu(x,y,z)=
=-—ea[d(x—y)-86(x—-2)]S(y—2z). (107)

Les équations (105) et (107) sont des équations du mouvement pour
lopérateur 8*A, (x), et elles expriment que ce champ est un champ
libre de (masse )? = aA?:

@, +ar?) a,4%(x) = 0

identité qui se déduit des équations du mouvement classiques : cf. exer-
cice XI.13. On remarquera en effet que les membres de droite de (105)
et (107) ont la forme des membres de droite des équations (X.50) et
(X.51), lorsque linteraction est nulle. Cette propriété apparait de fagon
beaucoup plus transparente dans la démonstration de I’exercice (9).

Pour écrire la forme explicite des identités de Ward, il est commode
de passer a I'espace de Fourier. Considérons une fonction de Green
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G@™™) (cf. (14)) ; dans I'espace de Fourier, 3/dx* donne un facteur
iq, ou q est la variable conjuguée de x : le moment g quitte le vertex x.
Si nous effectuons une variation sur un opérateur A, {y) dans le
membre de droite de (102), nous obtenons dans 'espace de¢ Fourier un

facteur :

aq,
——— Q27)sM(qg+k
qz_a“( )" 8%g + k)

ol k est la variable conjuguée de y.
Soit maintenant une ligne électronique entrant avec un moment p

dans le diagramme, correspondant 4 un opérateur de champ ¥ (z). Le
membre de droite de (102) donne alors un facteur :

iea Ap(x — 2){0|T(¥ (z)...)|0)

correspondant dans Pespace de Fourier (cf. figure 16) a:

—ea

Germ-1_. ;p+q,..).
o (.5p+q,...)

Figure 16. Représentation graphique du membre de droite de (102)
pour des lignes électroniques entrantes et sortantes.

Enfin pour un électron sortant du diagramme avec un moment
p’, il suffira de changer le signe du résultat précédent :

ea
5 G p'+g, ...
Z—an? ( p'+q,...)

(rappelons que par convention tous les moments entrent dans le
diagramme). On obtient donc la forme générale des identités de Ward,



526 Electrodynamique quantique XIL.D.1

pour une fonction de Green arbitraire (il est commode d’inclure le
facteur (2 m)* 8 (cf. X.28) dans la définition de G@?™™)):

#G(Z’n m+l) (‘1, kla eees m sP1y -5 Pns —p{’ T _p’,') =

:q ~ "2{(2”)4 ®(gq + k) x
xq,,lG(z”’”‘l)(k ... )+ Perm.
ecg?37>(“.,pla-q,n.;.n)f+Penn-

+eGREMN) (s —pi+q,...) +Perm.} . (108)

Appliquons maintenant cette équation dans deux cas particuliers :

(a) Propagateur du photon: n =0, m=1:

iag,

q"D,“,(q) = - m—z

(109)

Cette équation est évidemment la transformée de Fourier de (104):
(notez que G{? differe de D, par un facteur (2 m)* 8 ). Mais le
propagateur libre D, (11) vérifie :

- iaq,

»DE(q) = ——= .
q (q) = pYY:

(110)

La comparaison de (109) et (110) montre que les corrections
radiatives au propagateur du photon sont purement transverses :

q” H,u.v(q) =0 (111)
résultat que nous avions vérifié a 'ordre d’une boucle par un calcul
explicite.

(b) Vertex électron-photon: n =1, m = 0.
L’équation (108) donne dans ce cas la transformée de Fourier de
(106) :

”V(qpp)— Azww+q)nﬂp—qﬂ (112)

ou les notations sont celles du paragraphe C.4 (figure 14). II et

commode de transformer cette relation en utilisant le vertex propre
r

moe

Vi=D,(q)Sp') (-iel*) S(p)
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et I'identité (109) met le résultat final sous la forme (*) :

q*T,(p,p") =ils~'(p") - S~'(P)] |. (113)

II est instructif de vérifier que les signes sont corrects a 'ordre de zéro
boucle, ou :

T,=v,; iS'(p)=(p-—m).
La limite ¢ — 0 de (113) donne aussi une identité utile :

98! 83
I (p,p)=i = - —.
,u(p p) ap[u ‘Yp, ap'u

(114)

D.2. Unitarité

Le réle fondamental des identités de Ward est de préserver I'unitarité
de I’électrodynamique (**). En effet I'unitarité dépend de la validité
des regles de coupure: les états intermédiaires dans les régles de
coupure doivent donner une contribution identique a celle des états
physiques. Examinons par exemple une diffusion photon-électron avec
un état intermédiaire & un électron et deux photons, cas qui contient

tous les ingrédients de la démonstration générale (figure 17) :

A

Figure 17. Etat intermédiaire a un électron et deux photons.

(*) Le facteur (i) dans le membre de droite de (113) provient de la définition du
propagateur (comme les facteurs (4 7) en électrostatique, les facteurs i éjectés de
certaines formules finissent toujours par refaire surface).

(**) Dans les théories de jauge non abéliennes, il peut arriver qu’un courant
correspondant & une invariance de jauge locale, conservé au niveau classique, ne puisse
plus I'étre aprés renormalisation : c’est le probléme des « anomalies », qui, pour les
mémes raisons qu’en électrodynamique, peut constituer une menace mortelle pour
I'unitarité.
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Pour fixer les idées et simplifier les notations, on se place dans le cas de
la masse nulle et de la jauge de Feynman. Le propagateur coupé du
photon de moment k£ dans I'état intermédiaire est :

2
@)

alors que la somme sur les polarisations d’un photon physique ne donne
pas —g,,, mais:

“gpv o(k()) a(kz) (115)

. k,n,+k,n
Z E;SS)(k) 855) kK)=—9g, + —p——k.—n‘—p (116)

ou n, est le vecteur (kg, — k) si k, = (ko, k) : le membre de droite de
(116) est le projecteur sur le sous-espace orthogonal a k, et a
n,. L'unitarité perturbative ne sera vérifi€e que si la contribution de
(115) est identique a celle de (116). Ce résultat est une conséquence
d’une identité de Ward, que nous écrirons sous forme diagrammatique
pour la fonction de Green correspondant a 'amplitude de diffusion A,
en calculant k* G%3), (figure 18) :

—k — k

— Ty

~x ’
e R

(b) (©

)‘ X

1
_k L -

+ 'll + 7 l k = 0
! ’
(d) (e)

Figure 18. Identité de Ward pour G

La contribution (b) est nulle car le photon initial est un photon
physique : g* £{(g) = 0. 1l est nécessaire de montrer que la contribu-
tion (c¢) est nulle, méme si la polarisation du photon k' n’est pas
physique : la condition k£ + k' = 0 étant incompatible avec les fonctions
6 (k%) et 6 (k’°) du propagateur coupé, on obtient le résultat souhaité.

Le cas des électrons est un peu plus compliqué : rappelons que
I’élément de matrice S se calcule en multipliant la fonction de Green par
les propagateurs complets inverses afin d’obtenir la fonction de Green
amputée de ses propagateurs complets :

GEY. U,k p' 5q,p).
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Dans cette opération, le terme (e) de la figure 18 devient :
, 4 r. -1

Lorsque l'on prend la limite sur couche de masse p =m, S~ Yp)
s’annule et il en est de méme de (¢) ; un raisonnement analogue montre
que si électron (p') est sur couche de masse, le terme (d) donne zéro.
En résumé, pour des électrons externes sur couche de masse, on obtient
I'identité de Ward pour la fonction de Green connexe, amputée de ses
propagateurs complets :

k* G2, (k. k',p'59,p)=0. (117)

Ceci est évidemment un résultat général, valable pour toute fonction de
Green G@m™.

L’identité (117) montre que le projecteur (116) sur les états physiques
peut étre remplacé par — g, : grice a 'identité de Ward, seuls les états
physiques contribuent aux régles de coupure.

D.3. Renormalisation

Notre discussion était pour le moment quelque peu formelle car elle
ignorait les divergences, et il nous faut attaquer les problémes de
renormalisation. Comme au chapitre VI, il ne s’agit pas de donner ici
une preuve compléte, mais de mettre la renormalisabilité de 1’électrody-
namique au méme niveau de plausibilité que celle de la théorie en
¢* Pour fixer les idées, nous utiliserons le schéma minimal en
définissant la constante de renormalisation Z,, par: my = Z, m. A
lordre d’une boucle, et rassemblant les contre-termes (51), (65) et (84)
nous avons obtenu :

___1 I’3% 1 2 IL__L ~y2
L == g Fu F* + 5024, A% == (3,4) +

©

+t/7<ig—m) W — ey, yA* — 1 (Zy—1)F,, F*

1
)
(22 Zy - V)P + (Z -1 Fidy
—e(Zy—-1)dy, pA*. (118)
Si nous voulons que les fonctions de Green renormalisées obéissent aux

identités de Ward, il est nécessaire que les versions renormalisées de
(109) et de (114) soient correctes. En ce qui concerne (109), ceci
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implique qu’il n’y a pas de contre-terme en A, A* et en (3,A*)%.
Examinons maintenant (114): dans la renormalisation :

Fu(p’pl)_’ru,R(p>pl) = F;L,rcg(p’pl)‘*'zl(l)’y
1S71(p) - iSg ' (p) = 1Sy (p) + Z§(p— m)

ou I'y 1 ;(p,p') €t Sy(p) ont été calculés avec une régulgrisation
dimensionnelle. Comme cette régularisation préserve linvariance de
jauge (d’ol son intérét)

rcg(p p)— reg(p)
op*

et si nous voulons la méme identité pour les fonctions renormalisées, il
est nécessaire que :

ZM = Z@ (119.a)

Cette identité est automatique dans le schéma minimal, étant donné
que les parties divergentes du vertex et du propagateur sont nécessaire-
ment identiques. En jouant sur les parties finies des contre-termes, on
pourrait prendre Z; # Z,, mais un tel choix serait fatal & I'unitarité.
Introduisons maintenant champs et constantes nues en écrivant :

AY = Zi2 A+ (120.a) ; Yo = Z32 ¢ (120.d)
e =2,Z;'27"%e=27"e (120.b); my=2Z,m (120.e)
A =2Z7'a2 (120.c) ; ay =2Zza. (120.f)

Le lagrangien (118) s’écrit en fonction de ces quantités nues :

1

$=——F&VFO#V+2

/\ZAO‘L Al — 2 (a Ad”)2
+ ‘Z;o( %3*”10) Yo —eg Yo v, Yo AE (121)

ce qui montre que la structure du lagrangien est préservée par la
renormalisation. Le réle de I'identité Z; = Z, est crucial pour préserver
cette structure ; en effet :

8, +ieA¥ 8, +1Z71 Zyeg Al = 3, + ieg A (122)

et le couplage minimal est bien préservé. Dans le cas général, on
procédera par récurrence. Supposons que l'on ait calculé les fonctions
de Green renormalisées et les contre-termes a I'ordre de [-boucles. On
calcule les fonctions de Green régularisées a I’aide du lagrangien (121),
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ou e, my,.. sont des fonctions de ¢ présentant des pdles en
-1, ..., e~'. En raison de la structure du lagrangien (121), les fonctions
de Green régularisées obéiront aux identités de Ward. La procédure
examinée ci-dessus a4 l'ordre d’une boucle pourra étre reprise pour
définir les contre-termes a ’ordre de (/ + 1)-boucles, tout en préservant
I'identité (114) pour les fonctions de Green renormalisées, si ’on choisit
Z{+Y = z{+1, On aura donc de fagon générale la relation :

€

Z =2, |. (119.b)

Les fonctions de Green nues a I'ordre de (I + 1) boucles, obéiront a
I'identité de Ward générale (108), étant donné qu’elles ont été calculées
avec le lagrangien (121), ol les paramétres sont évalués a U'ordre de [
boucles (rappelons que mis a part G2, G@% et G&V qui ont été
examinées ci-dessus, les fonctions de Green sont superficiellement
convergentes). Les identités de Ward pour les fonctions de Green
renormalisées se déduisent de la structure multiplicative de la renorma-
lisation :

G&Zn,m) = Zz—nza—m/Z GéZn,m)
et des identités (cf. 120) :
agrd=ar?;  Zi'ag=a; Zijage; = ae

oll a, A et e sont les quantités renormalisées.

En résumé, I'électrodynamique renormalisée est bien unitaire et
locale (cette derniére propriété étant conséquence de la construction de
Bogolioubov). 1l resterait 4 montrer que les quantités physiques,
comme les éléments de matrice S, sont indépendantes de jauge. I est
possible, par exemple, de s’assurer que les éléments de matrice S sont
indépendants de @, ce qui n'est pas évident a priori, car cette
indépendance résulte d’une compensation entre le facteur z,(a) (cf.
X.83) et la dépendance en a des fonctions de Green. Le fait que les
quantités physiques soient indépendantes de a montre que I'on peut
prendre la limite a — oo dans le propagateur (11) ; on retombe alors sur
la forme naive du propagateur d’un champ vectoriel massif (X.121) qui
donne une théorie manifestement unitaire. Malgré les divergences
séveres dues au facteur m~? dans les fonctions de Green, le lagrangien
d’'un champ vectoriel massif (couplé & un courant conservé) est
renormalisable, si 'on calcule seulement les quantités physiques ; ce
lagrangien est équivalent physiquement a celui modifié par Stuéckel-
berg.
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D.4. Groupe de renormalisation pour Pélectrodynamique

Avant de passer aux résultats formels, il vaut la peine de donner une
description intuitive de la variation de la charge électrique, ou de «, en
fonction de la distance, qui permet une description élémentaire de la
e _ ¢ renormalisation et du groupe de renormalisa-
@ tion. Considérons deux charges statiques (infini-
e >~ ment lourdes) + ¢ et — e placées a une distance
r<m~1; I'énergie potentielle de ces deux char-

Figure 19. ges est, a 'ordre de zéro boucle, — ay/r. Cette

énergie potentielle est corrigée par Peffet

d’écran des paires virtuelles e* e~ (figure 19) ou, en d’autres termes,

par la polarisation du vide ; nous obtiendrons I'effet de cette polarisa-

tion en intégrant sur les fluctuations de longueur d’onde A du champ
électromagnétique créé par la paire e*-e” :

a(r) = ao—dagj da (123)
A1 A

ol la forme dA /A est imposée par I'analyse dimensionnelle ; d est une
constante positive (car Veffet d’écran réduit I'énergie potentielle), A un
cut-off ultraviolet et r le cut-off infrarouge : en effet si A Sr, la

fluctuation ne distingue pas entre les deux charges. Le résultat de
Iintégration dans (123) est :

a(r)=ag—dalln(Ar). (124)

Soit maintenant R une distance de référence, qui définit la charge
a (R) a distance R ; exprimons «, en fonction de a(R):

ag=a(R)+da?(R)In (AR)
et reportons dans (124) :

a(r)=a(R)<1—da(R)1n§) . (125)

Cette opération a fait disparaitre la charge nue « au profit de la charge
de référence a distance R, en éliminant du méme coup le cut-off A:
nous venons de renormaliser la charge. Cette renormalisation a
introduit une échelle de longueur R qui brise linvariance d’échelle
naive de UPélectrodynamique : celle-ci prédit que pour mr<1,
a(r) > Cte, ce qui n’est manifestement pas le cas. Par analyse
dimensionnelle, « (r) est de la forme :

a(r):F(a(R),{i)
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et en dérivant par rapport a r:

da (r) ' -
H—ln_rr- r=R=F (a(r),1)=~-B(a(r))
= —dal(r) + 0(a’(r)). (126)

L’équation (126) définit la variation de la charge en fonction de la
distance, ou, ce qui revient au méme, en fonction d’'une masse
# ~1/r. On reconnait dans (126) la définition de la fonction B de
Callan-Symanzik. L’équation (126) montre que, pour « suffisamment
petit, la charge augmente quand la distance diminue : quand r — 0, on
se rapproche de la valeur « vraie » (infinie) de la charge.

Revenons maintenant aux calculs plus formels en utilisant les
résultats du chapitre VII. Comme la constante de structure fine a les
mémes dimensions que la constante de couplage g de la théorie scalaire,
on pourra utiliser les formules du chapitre VII en remplagant g par « (si
I'on travaillait avec e au lieu de «, il faudrait remplacer & par
£/2). La relation entre a, et a est:

ap=25'a. (127)
La constante de renormalisation Z; a été calculée au paragraphe C.2 ;
sa partie divergente est 4 I'ordre d’une boucle (cf. 54) :

_2a

37e’

z{ =

Gréce a I'équation (VII-81) (et en se souvenant que la relation entre
do €t g est g, = Zg) on obtient immédiatement la fonction B (a) au
premier ordre en a:

Bla)=pdal) 2o, o | (128)

La constante d dans (126) vaut 2/3 =.
Toujours & I'ordre d’une boucle on peut caiculer « (¢2) en fonction de

a(p?):

a(a?) = a(l’«z)
(61)—1_20{(“2)1 A (129)
(5

La constante de couplage croit avec q2, ou, ce qui revient au méme,
décroit avec la distance, ce qui confirme la discussion heuristique
précédente.
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2 montre que I’électrodynamique n’est pas

Le signe du terme en «
asymptotiquement libre. Comme la théorie en ¢, I'électrodynamique
n’est vraisemblablement pas définie de fagon non triviale en dimen-
sion 4 comme limite d’une théorie a cut-off. Cependant la valeur de
q° pour laquelle a (g?) devient = 1 est astronomique. Comme on pense
aujourd’hui que I’électrodynamique doit étre incluse dans une théorie
de jauge non abélienne plus vaste, ce probléme de « non-liberté
asymptotique » n’a probablement aucune importance et ne remet pas
en cause les succes du programme de renormalisation.

Un mot enfin sur la définition de la charge électrique : en électrody-
namique I'existence d’une limite classique a fréquence nulle donne une
définition naturelle de la charge électrique. Lorsque la renormalisation
est faite sur couche de masse, la limite de basse énergie de la diffusion
Compton est donnée a tous les ordres de la théorie des perturbations
par le résultat classique de la diffusion d’une onde électromagnétique
par une charge ponctuelle (formule de Thomson)

a:gT"G;.)Z. (130)

Ce résultat est établi grice a I'identité de Ward pour I'effet Compton
(exercice 10). Si « désigne la valeur de la constante de structure fine
dans le schéma sur couche de masse et « g sa valeur dans le schéma MS
(par exemple), il est facile de trouver le lien entre les deux définitions
de a:

z a? [ Cp? 5
aMS=T3QZQ+3—7Tln(m2)+O(OL). (124)

La relation dépend bien évidemment de I'échelle de masse u utilisée
dans le schéma minimal. L’avantage d’un schéma tel que MS est qu’il
permet de prendre sans probléme la limite m — 0 de I'électrodynami-
que. Dans le schéma sur couche de masse, ceci n’est pas possible en
raison des divergences infrarouges. Un bon exemple est fourni par la
formule (60.a) donnant le potentiel V (r) a courte distance : méme si
mr — 0, il n’est pas possible de prendre la limite m = 0, alors que dans
ce domaine la masse de I’électron n’est plus pertinente. Cette difficulté
est uniquement conséquence du schéma de renormalisation, et ne se
produit pas par exemple dans le schéma MS.
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EXERCICES

1) En adaptant le calcul du paragraphe (X-C.1) au cas de la diffusion d’une
particule (relativiste) par un potentiel, démontrer la relation (25).

2) Théoréme de Furry

(a) Utiliser I'unicité des représentations irréductibles des relations d’anticom-
mutation (XI.11) des matrices v, pour montrer I'existence d’une matrice C
(appelée matrice de conjugaison de charge) telle que :

CyMC"lz—yz.

(b) En déduire : CSp(x —y)C~ ' = [§z(y - x)]%

(c) Soit une boucle électronique 2 laquelle s’attache un nombre impair de
photons. Montrer que I'expression analytique du graphe correspondant est
nulle.

3) Photoproduction de mésons-°

On se propose de calculer la section efficace de production de mésons
w° dans la réaction de photoproduction :

v (k) + proton (p) — méson = °(q) + proton (p’)
a partir du lagrangien d’interaction phénoménologique :
Zi(x) =~ elp‘)’,; YA* —iGPys o .

(Ce lagrangien ne doit pas étre pris au sérieux ; il donne de trés mauvais
résultats, sauf au seuil de production. L’objectif de ’exercice est avant tout de
donner un exemple de calcul de section efficace qui ne présente pas trop
d’algebre fastidieuse.)

Dans %, (x), ¢ est le champ du proton, ¢ celui du méson 7%, e la charge du
proton et G une constante de couplage telle que G%/4 7 = 15.

(a) Dessiner les graphes de Feynman contribuant a la réaction a P'ordre eG et
donner leur expression analytique. Vérifier que la somme .#, de ces deux
graphes obéit bien a la condition k*.#, =0 quand les protons p et
p' sont sur couche de masse (p®= p'* = m?).

(b) Calculer la section efficace do/df2 de la photoproduction pour des
photons et des protons non polarisés, a Pordre (eG )°. Calculer numériquement
et dessiner do /d{2 en fonction de 6 dans le référentiel du centre de masse, pour
une énergie E, = 300 MeV dans le référentiel du laboratoire. Comparer avec
les résultats expérimentaux et commenter.

Suggestion : utiliser k* .# , = 0 pour remplacer la somme sur les polarisations
du photon par —-g¢,,.
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Réponse :

4 Z |E(5)ﬂﬂl

spins

L2y 20 _ 9
=62G2[2m2u2( 1 . 1 )_(I B +2up7(1 2m)]

(s=m*» (u—-m?? s —mHDu-md»

ot u est Ja masse du méson 7%, m celle du proton, s = (p + k), u = (p' — k)
et i = (q— k).

4) Etude du propagateur du photon (°)

(a) Effectuer I'intégration sur x dans Pexpression (57) de @{’(g?) et obtenir
le résultat final sous la forme (%< 4 m?):

_ 8 1
o) = 5= [g_xz_z G-X)Xhn

1-X

1+X:|

avec X = (1 —4m?*/g*)"®. On pourra utiliser le changement de variables
y=1-2x.
(b) Lorsque g°= 4 m?, w(” acquiert une partie imaginaire. En intégrant par

parties et en utilisant le changement de variables s = 4 m2/ (1 — y%), mettre
a$ sous la forme :

2 (o 2
@=L [T d 1 (g 2my ) 4m
# am? S 5~ q*+ie s

et en déduire que @Y’(g?) obéit a une relation de dispersion avec une
soustraction, tandis que sa partie imaginaire est donnée par :

_:L —(1)r .2y _ & 2m2 4}"’!2
~Im a{)(g) = 5% (1+ = -

(©) Relier Im w(‘)(qz) au «taux de désintégration » I'(g%) d’un photon
virtuel de masse ¢ en une paire électron-positron (cf. X-63) :

Vaim aP(gd) = r'g?.

5) Corrections de polarisation du vide au potentiel de Coulomb (%)

(a) On se propose de calculer le potentiel V (r) en tenant compte de la
correction de polarisation du vide a lordre d’une boucle, dans les limites
mr<1 et mr>»1. On doit donc calculer la transformée de Fourier de
&$(g%) a la limite statique g* = — q*. En déformant le contour d’intégration le
long de I'axe imaginaire positif, montrer que la correction 8V (r) au potentiel
de Coulomb peut s’écrire ;

~2mrx 1 \/x2—1
(a5l ) VAL

2
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(b) Démontrer les expressions (60.a) et (60.b) dans les cas limites

mr<1 et mr> 1. Dans le premier cas, on introduira un paramétre
X1 @

x, tel que (mr) !s x,; > 1 et on décomposera I'intégrale en +

1 xy
6) (a) Démontrer 'identité (souvent utile)

P SR SR
prbk-m"p-m p-m prk-m’

(b) En utilisant cette identité sous la forme :

1 1
Frkem s e P

ainsi que 1’équation de Dirac, démontrer I’équation (82) donnant la partie
dépendante de jauge du vertex €lectron-proton.

7) Comportement & grand q° du facteur de forme F,(q?)

On se propose de déterminer le comportement pour g* — = co du facteur de
forme F,z(q®). Afin de simplifier les calculs, on se placera dans le cas
m = 0 (pour le cas m # 0, cf. Itzykson-Zuber, chapitre 7). On étudie d’abord la

limite g% — o0, avec g?= — Q2 et on renormalise sur couche de masse :
Fr(@*=0)=0
w(@ =0)=0.

(a) Montrer que l'on peut prendre la limite m =0 dans (81.a), ce qui
simplifie la formule donnant F,4(q%):

n_ & o QP AR —x—x")
F1R(Q)—2ﬂjdxdx{ In N0 —x—x)

_ 9 -x)(a-x") }
' QP A2 —x—x") )

(b) En déduire :

2 1 2 3 2 g 2 A2
FIR(Q2>=3—;’T[—§1n2<%) +-lnF——_Tr_+0( )]

Comment doit-on modifier ce résultat pour g°— + 0o ?
8) Electrodynamique des particules scalaires
(a) Partant du lagrangien libre du champ scalaire chargé :

L) = (0,0N)0*0)-m’e' o

obtenir le lagrangien d’un champ scalaire chargé couplé au champ électroma-
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gnétique ainsi que les régles de Feynman :

1

I I w
Y
’,,r” \\\\‘ et S \\‘::
—ie(P+p' 2ie?g,,

(b) Calculer dans le laboratoire la section efficace différentielle de Peffet
Compton sur un méson 7 * a ordre e* en supposant les photons initiaux non
polariseés :

Yy&K)+ 7 @)y (K)+ 7 (p').

On admettra (ce qui nest pas le cas) que les mésons- sont couplés de fagon
ponctuelle au photon. ’
(Suggestion : choisir e,(f) £, de telle sorte que-e.p=¢".p =0)

(c) Calculer la section efficace de la réaction :
ete  swtw”
a Tordre e*, en supposant que les électrons initiaux ne sont pas polarisés ;

montrer que :
do at .,
— = ——5in" 0.
dQ 8 q2
Quel serait la valeur du rapport R (cf. B.3) si les quarks avaient un spin zéro ?

(d) Calculer la correction & une boucle au propagateur du photon. Vérifier
que le résultat est bien transverse.

(¢) Examiner la renormalisabilit¢ de I'électrodynamique des particules
scalaires. Montrer en particulier que I'on doit introduire un contre-terme en
(cplf ¢ )% Evaluer la partie divergente de ce contre-terme 2 Pordre d’une
boucle-

9) Identités de Ward et équations du mouvement ()

(a) Montrer que les équations du mouvement (X.51) peuvent s’écrire :

J@Beisw]( ngx)x_isg)(i)) -0

ot B désigne un des champs (A,, ¢, ¢) et X un produit de champs :

B(y,) ... B(y,). 1l faudra toutefois faire attention aux relations d’anticommuta-
tion des variables de Grassmann.

(b) En utilisant 'équation donnant 8S/84  ainsi que :

88 — 85 . _
‘ls—l’;¢—¢—8;_=”lap[¢’7p¢]
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établir la relation :

58
L34,

1 2) 5
= (=0+A%) (0. A4") —ie— ¢ +ied —
(am (2,4*) lewsb d'aw
(¢} En écrivant les équations du mouvement pour 0] T((3,4%) X)|0) puis
88
pour (OIT(

50 /5.4 > |0, démontrer la forme générale des identités de
Ward :
(%Dx+A2)<MYK%A“@)XMO)=

a

=i5—;(O|T( e )>|o> e<oyr($(x)8;i;))|o>
+e«nr(¢u)8¢()>|o>.

(d) Montrer que cette relation est bien identique a (102).

10) Identités de Ward pour le vertex a 4 photons et Ieffet Compton (*)

(a) En appliquant I'identité (108) au cas n = 0, m = 3, et en utilisant (109),
démontrer 'identité de Ward pour le vertex propre & quatre photons :

ktros (ky, kyy Ky ky) =0

By BRI Ry

(Ne pas oublier les termes disconnectés de G©®* )

(b) On applique maintenant I'identité (108) au cas n = 1, m = 2, correspon-

N

dant a l'effet Compton (ou 2 la production d’une

paire e* e~ par deux photons). Soit Gc(yzfn), =C,.la P
fonction de Green connexe amputée de ses propaga- \ /
teurs externes (figure 20). Démontrer la relation :

P P’
K*Cppr ke, K 1p, —p') = VN
=ie’I,(p+k,p')Sp+k)S'(p) - Figure 20.
~ie2S}(p') S(p' — k) T,.(p,p' — k) L amplitude Compton.

ou I', est le vertex propre électron-photon (cf. 113). Vérifier cette identité a
I'approximation en arbres.

(¢) Montrer que pour k£ — 0, I'amplitude Compton vers I'avant (k = &*)
s’exprime uniquement en fonction de P'énergie propre X (p).

11) On écrit le propagateur inverse et le vertex propre a transfert nul et sur
couche de masse (p=m) sous la forme :

i ' p)=p-m-A@P" - (F-m)B(@p?)

L., = 7, (1 + F10) + F2(0)) - 22 F,(0)
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Utiliser Pidentité (114) pour relier F,(0) et F,(0) a A’(m?) et B(m?). En
déduire que la renormalisation sur couche de masse et la condition Z; =
Z, imposent F,,(0) = 0.

12) Dépendance de jauge de Z, (°)

(a) Résultats préliminaires :

(i) Montrer que la fonction de Green (0| T(FY,(x) F{*(y))|0) est indépen-
dante du parameétre de jauge a, (on pourra revenir a 'argument du chapitre XI,
paragraphe D.2). En déduire qu’il en est de méme pour la partie transverse du

propagateur Dﬁ,,, et utiliser ce résultat pour montrer que Z, est indépendant de
qa.

(i) Supposons que le lagrangien dépende d’un paramétre a. Montrer que la
dépendance en a des fonctions de Green est donnée par :

3 OIT10y =i oI 7( 52

X) 105 - ©OITX)|0) x
EA . aS
X (0] 2= |o>] - 1(0|T(:E:X) 105
ou le symbole : : indique que 'on soustrait la valeur moyenne sur le vide.
(iii) Montrer que linsertion | d*x: (p(x)%x—)—: compte le nombre de -

lignes externes des fonctions de Green. Plus précisément :
88 i

ZO‘IJd“xJ.@ () ——: () ... o (xy) e’ =

[Z(0)] ¢ (P()8<p(x) (%) - @ (xy)

= —iN (0| T(p (1) ... ¢ (x))[0) .
(b) On se place pour simplifier dans le cas ol la masse de I’électron est égale

a zéro (m =0) et on utilise le schéma de soustraction minimal. Démontrer
I'identité :

dln Z,
a

% O[T(X)|0) =%Jd4x<0|T(:¢2(x):A2X)|O) = N, O|T(X)[0) —;

ou AX est la variation de X dans une transformation de jauge (cf. (102)) et
N, le nombre de champs ¢ dans X.

(¢) En prenant X = ¢ (y) ¥ (z) démontrer Tidentité, écrite sous forme
graphique (figare 21) :

i 4 \
-
’
NG 4 \\ ’
1Y 4

3 7 f LD
24 01T () #(2))0) =,-€_"‘@_""ie+(ie)2 ’

—— S —
-

’ a
{ )]
\

oMz,
" “ (—ie)?_r;a—( Z72—~—)

. . dln Z,
Figure 21. Equation pour - .

da
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Remarquant que lintégrale donnant le premier graphe est convergente, en
déduire dans le schéma MS :

Z,(a) = Z,(a = O)exp[ = a] .

a@
2me

Vérifier ce résultat 4 Pordre d’une boucle (cf.(74)).

13) Fermions de Majorana et lagrangien supersymétrique (**)

(a) La matrice de conjugaison de charge C définie & I'exercice 2 permet de
relier les solutions d’énergie positive et négative de ’équation de Dirac :

u(p’s) = CET(p, S) 5 U(p’s) = CﬁT(p,s) .

- . . . . 0 —io
Vérifiez-le dans le cas de la représentation de Dirac ot C = (_ io, 0 2) .
Noter les conventions de phase pour les spineurs lorsque p = 0.

(b) On écrit la décomposition de Fourier dun champ de Majorana
A (x) sous la forme :

A0) = 3 [ @) e 45 @) o, 5) o).
Vérifier que A (x) est égal a son conjugué de charge A°(x):
Ax) = A%x) = CAT(x).

Le champ A (x) a seulement deux degrés de liberté, et non quatre : les fermions
de Majorana sont identiques aux antifermions.

(¢) On se propose d’établir les régles de Feynman pour un champ de
Majorana couplé & un champ scalaire :

$=%X(i3—m))\——;—¢(D+m2)q>+g(XF)\)<p

ou I' =1 ou iys. Etablir les régles suivantes pour les contractions :

r
> AOA(Y) = Sp(x —y)

y X
|
r———————x A (x)A(Y)=-S;(x—y)C
y x
> - AE)A()=C ' Sp(x—y)
y X

Calculer I'amplitude de probabilité pour la désintégration d’un méson virtuel en
deux fermions :

pl’sl
- = —2igi (p, s,) Tv(py, 5,) = —2iga (py, s,) I'CE (p,)
P23

(& une ambiguité de signe pres).
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Montrer que dans le calcul de la boucle de la figure 22, on peut associer au
vertex un facteur (— 2 ig), a condition de tenir compte d’un facteur de symétrie

égal a 1/2.

Figure 22. Correction d’énergie propre au propagateur du méson.

(d) Soit le lagrangien supersymétrique (1) :
Z=L@Ar+)@Br-Lmia B+ IxG8-m)A -
2t 20 2 2
_ gmA (A’ + B?) — % G2(A%+ B2 — gX (A — iys B) A

ou A (B) est un champ scalaire (pseudoscalaire). Etablir les régles de Feynman
suivantes :

A A A A

AN ’ N ’
R = - 12ig° \x/ = —4ig*
// \\ 4 \\

A A B B

>_-é =_-2ig >-_§ =—2gv;

Montrer que la correction 8m au propagateur d’'un méson présente seulement
une divergence logarithmique. (On utilisera une régularisation avec cut-off :
pourquoi 7) Montrer qu’il suffit d'une renormalisation du champ pour rendre la
théorie finie a 'ordre d’une boucle. Ces résultats se généralisent 4 un nombre
de boucles quelconque ().

NOTES ET REFERENCES

On lira avant toute chose le petit livre de R. Feynman, Q.F.D., Princeton University
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pourra comparer les calculs a une boucle de Bjorken-Drell (chapitre 8) et de Itzykson-
Zuber (chapitre 7), qui utilisent une régularisation avec cut-off, a ceux du présent exposé.
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CHAPITRE XIII

Théories de jauge
non abéliennes

Les théories de jauge non abéliennes étaient, en 1986, a la base du
«modele standard » de la physique des particules élémentaires ; ce
« modele standard » comporte deux volets :

(i) le modele de Glashow-Salam-Weinberg (GSW) qui unifie les
interactions électromagnétiques et faibles en interactions électro-fai-
bles ;

(ii) la chromodynamique quantique (QCD) qui, selon Pexpression
consacrée, est la « théorie présumée des interactions fortes ».

On a tenté de rassembler le modele GSW et la chromodynamique
quantique dans des théories unifiées des interactions faibles, électroma-
gnétiques et fortes ; ces théories dites de « grande unification » ont
aussi comme ingrédient de base des théories de jauge non abéliennes.
Cependant il n’existe pas a heure actuelle de consensus sur une telle
grande unification, car le modele le plus simple (SU(5)) est en
désaccord avec les données expérimentales sur la stabilité du proton.

La complexité des théories de jauge non abéliennes est sup€rieure
par un ordre de grandeur au moins a celle de 1’électrodynamique
quantique : il a fallu une bonne vingtaine d’années aprés leur décou-
verte initiale par Yang et Mills (!) en 1954 pour que I'on arrive a bien les
contrfler en théorie des perturbations, et il reste encore nombre de
problémes ouverts dans le domaine non perturbatif. De plus le champ
d’application de ces théories est trés vaste. 1l n’est donc pas question de
donner en un seul chapitre autre chose qu’une introduction trés
succincte ; un exposé un peu approfondi exigerait sans doute un volume
équivalent a ce livre. L’objectif poursuivi dans ce chapitre est double :

(i) donner une premiére approche élémentaire qui permette au
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lecteur d’aborder plus facilement les exposés spécialisés cités en
référence ;

(ii) détailler un certain nombre de calculs fondamentaux (phénoméne
de Higgs, fonction B (g), équation d’Altarelli-Parisi), ce qui pourra
servir d’introduction aux articles consacrés plus spécifiquement a la
physique des particules.

Ce chapitre débute par un exposé de la théorie classique (paragra-
phe A), suivi d’une discussion de la quantification (paragraphe B).
Cependant Yinvariance de jauge et la renormalisation sont traitées de
fagon trés schématique. Le paragraphe C traite du modeéle GSW,
restreint au cas des leptons: l'objectif est avant tout de montrer
comment une symétrie brisée permet, a travers le phénomene de Higgs,
la construction d’une théorie renormalisable de bosons vectoriels
massifs. Le paragraphe D est consacré & la chromodynamique quanti-
que : on détaille le calcul de la fonction B (g) a 'ordre d’une boucle, ce
qui permet de montrer la propriété cruciale de liberté asymptotique.
L’exemple de Pannihilation e*-e~ a Pordre « est également étudié en
détail. Enfin le paragraphe E donne un bref apercu des tentatives
actuelles pour passer dans le domaine non perturbatif a I'aide de calculs
sur réseau. Les paragraphes C et E sont largement indépendants du
paragraphe B, et peuvent étre abordés immédiatement apres la lecture
du paragraphe A.

A. CHAMPS DE JAUGE NON ABELIENS :
THEORIE CLASSIQUE

Les théories de jauge non abéliennes utilisent comme ingrédient
fondamental les groupes de Lie compacts; afin de donner une
introduction élémentaire, nous résumerons briévement les propriétés
du groupe de Lie non trivial le plus simple, le groupe SU(2). Cet
exemple permettra d’introduire les notions (générateurs infinitési-
maux...) dont nous aurons besoin par la suite. Le lecteur familier de la
théorie des groupes de Lie peut sauter directement au paragraphe A.2
apres un coup d’eeil sur les notations.

A.1. Le groupe SU(2)

Considérons le groupe formé des matrices 2 x 2, unitaires et de
déterminant 1, que nous pouvons écrire en fonction de quatre nombres
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complexes a, b, ¢, d (en tout huit parameétres) :

U:(Z Z). | 1)

Ces nombres a, b, ¢, d vérifient les relations :
ad — bc = 1 )
ainsi que :
a=d*,; b*=—-c¢. 3)
Il reste finalement trois paramétres indépendants; le nombre de
parameétres indépendants est appelé dimension du groupe de Lie : la

dimension de SU(2) est égale a 3. Combinant (2) et (3) on obtient aussi
Pidentité : '

la]>+ |b|2=1
qui implique que le domaine de variation de a et b est fini et fermé : les
parametres a et b prennent leurs valeurs dans un domaine compact,
d’oul la dénomination : groupe de Lie compact.

Examinons maintenant la matrice U au voisinage de I'identité en
écrivant ;

U=1-i¢; U'=1+igt. 4)

Les conditions UU' =1 et det U = 1 montrent que la matrice & est
hermitique et de trace nulle :

E=¢",  Tre=0. 5)

Toute matrice obéissant a (5) peut s’écrire en fonction des matrices de
Pauli 7,, a=1, 2, 3:

@) @) el Yo

en introduisant trois parametres réels A, (infinitésimaux pour le
moment, mais qui pourront ultérieurement prendre des valeurs finies) :

¢ zAa(Ta/Q'); A, =Tr (gTa) (7)
(rappelons P'identité vérifiée par les matrices de Pauli :

Te Tp = Sab + i‘c"abc Tc) . (8)
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L’ensemble des parameétres A, permet de définir un vecteur unitaire
i par:

Aa = Sﬁa 5 € = (Aa Aa)ll2

ol &€ < 1. Un élément du groupe SU(2) peut s’écrire comme produit de
N éléments infinitésimaux & la limite N — oo :

Uy (8)= tim |U ( 6 HN
= m —_—
o Noow [ 8 N
= I 18, )N: ~io@-m)/2
Nl_{nw <1 2Nﬁ T e )

et inversement il est facile de montrer que tout élément du groupe peut

se mettre sous la forme (9). La matrice %'r - 0 est appelée générateur

infinitésimal des transformations suivant la direction i ; il y a évidem-
ment autant de générateurs infinit€simaux indépendants que de parame-
tres, soit trois générateurs infinitésimaux 7, dans le cas de SU(2). Les
relations de commutation de ces générateurs infinitésimaux :

I: % Tas % Tb:' = i""abc% Te (10)

constituent 'algébre de Lie du groupe. 1l convient & ce point d’étre un
peu plus précis sur la terminologie. Le groupe SU(2) existe indépen-
damment de sa réalisation (ou représentation) par des matrices ; il est
défini par une certaine loi de composition donnant la multiplication de
deux €éléments ainsi que 'inverse d’un élément. On peut faire corres-
pondre a tout élément g de SU(2) une matrice D(g) agissant dans un

N

espace a n dimensions telle que :
D (g1 9,) = D(91) D(g2) - (11)

L’ensemble de ces matrices forme une représentation de dimension » du
groupe de Lie; si la correspondance est biunivoque, on a une
représentation fidele, et si les matrices D sont unitaires, une représenta-
tion unitaire. En fait ce que P'on vient de décrire ci-dessus n’est autre
que la représentation fondamentale. 11 existe évidemment une représen-
tation triviale de dimension 1, qui & tout élément g fait correspondre le
nombre 1. Une autre représentation bien connue (non fidéle) est
obtenue a laide des matrices de rotation dans un espace a trois
dimensions, qui forment le groupe SO(3). Les groupes SU(2) et
SO (3) sont homomorphes : a chaque élément de SO (3) correspondent
deux éléments de SU(2).



XIILA.1 Champs de jauge non abéliens 549

Montrons rapidement ces propriétés classiques : soit x, de composan-
tes x,, un vecteur de I'’espace a trois dimensions et construisons la
matrice 2 x 2 hermitique et de trace nulle :

X= %xa . (12)

Définissons la matrice X,(0) et le vecteur x,(0) par les équations :
1
Xa(0) = Up(0) XU, (8) = 5 %0, (0) 7, - (13)

En utilisant (10) on montre que x,(6) vérifie la relation :

dx;(0) o
—d0 - X x,(60) (14)
qui implique que x,(6 ) se déduit de x par une rotation d’angle 6 autour
de l'axe fi. Ceci établit la correspondance entre les éléments de
SU(2) et les rotations a trois dimensions, et de plus I’équation (14)
donne les générateurs infinitésimaux de la représentation de dimen-
sion 3 :

00 0 0 0 | 0 —i 0
T,={0 0 —i|; T,=(0 0 0); Ts=(i 0 0]. (15
0i 0 —i 0 0 0 0 0

Les matrices T, ont la méme loi de commutation que les matrices

Ta

N =

[Ta’ Tb] = i£abc Tc . (16)

D’autre part les éléments de matrice (7,),, sont donnés explicitement
par :

(Ta)bc = - i‘c"abc . (17)

Enfin, prenant & = 2 = on constate qu’a la rotation identité correspon-
dent deux matrices distinctes de SU(2), les matrices + 1 et — 1.
Nous venons de construire explicitement trois représentations de
SU(2), de dimension 1, 2 et 3 ; la théorie usuelle du moment angulaire
nous apprend qu’il en existe une infinité, de dimension 1, 2, 3, 4, ...,
(2j+1), ... correspondant a la description d’un moment angulaire 0,
1/2, 1, 3/2, ..., j,... Dans un espace de dimension (2j +1), les
générateurs de lalgébre de Lie seront représentés par des matrices
(27 +1)x (2j+1) vérifiant les relations de commutation (16). Par
abus de langage, on appelle souvent « élément de la représentation de
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dimension (2 +1)» un vecteur de base de P'espace vectoriel, alors
qu’en toute rigueur les éléments de la représentation sont des matrices.

Dans le cas d’'un groupe de Lie G de dimension r, on aura r
générateurs infinitésimaux ¢, vérifiant une algebre :

[tw tb] = ifabc L (18'3)

ol les fu., qui généralisent les ¢, de SU(2), sont appelées constantes
de structure du groupe (ou de lalgebre) de Lie. Ces constantes de
structure sont réelles et antisymétriques pour toute permutation
impaire de deux indices :

fabc::‘fbac=—facb=_fcba:fbca:fcab' (19)

On utilisera uniquement les représentations unitaires U(g) du groupe
G (d’ailleurs pour un groupe de Lie compact toute représentation est
équivalente a une représentation unitaire) ; sauf mention explicite du
contraire, on supposera toujours qu’il s’agit de représentations irréduc-
tibles (cf. références pour la définition). Dans une telle représentation,
les générateurs infinitésimaux seront représentés par des matrices

hermitiques T, vérifiant les relations de commutation :
[Ta’ Tb] =1fume Te - (18b)

Dans la représentation adjointe du groupe de Lie, les générateurs
infinitésimaux sont représentés par des matrices r x r données par (cf,

(17) :

(Ta)bc = ifabc . (20)

Dans la représentation adjointe, les générateurs infinitésimaux sont
donc représentés par des matrices imaginaires pures, et les matrices
U(g) sont réelles et orthogonales. Dans le cas de SU(2), les matrices de
la représentation adjointe de dimension3 ne sont autres que les
matrices de rotation, qui sont bien réelles et orthogonales.

En physique des particules élémentaires, les groupes les plus utilisés
sont du type SU(N ) : ce sont les groupes de matrices N x N unitaires
et de déterminant 1. Ce sont des groupes 2 (N?— 1) paramétres ; en
dehors du cas N = 2, il existe deux représentations fondamentales de

dimension N, notées N et N. Les générateurs infinitésimaux des
représentations fondamentales sont en général normalisés par la
relation :

Tr (T Ty) = 5 b4 1)
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A.2. Transport paralléle et dérivation covariante

Revenons sur le cas de 1'électromagnétisme traité au chapitre XI en
prenant pour exemple la mécanique quantique élémentaire. Soit
¢ (x) la fonction d’onde d’une particule chargée, par exemple un
€lectron ; il est possible de modifier de fagon globale, c’est-a-dire de
fagon identique en tout point d’espace, la fonction d’onde de la
particule sans modifier les résultats physiques. Il n’est pas possible de le
faire localement : modifier de 180° la phase de la fonction d’onde au
voisinage d’un des deux trous dans une expérience de trous d’Young
bouleverse la figure d’interférences. Cependant, ainsi que nous I’avons
déja vu, une telle modification locale est possible si les particules sont
couplées a4 un champ électromagnétique. En effet, le propagateur de
I'équation de Schrodinger (cf. VIII-B.1) Fy(2,1) en l'absence de
champ :

Fo(2,1) = (x| U, 1) [ %)

est modifié en présence du champ : si 'on calcule ce propagateur a
l'aide d’une intégrale de chemin, le poids statistique de chaque trajet C
entre les points (1) et (2) doit étre multiplié par le facteur :

2
i A.dx

R(C ;A):elf‘ (22)

(la charge a été prise égale a I'unité afin d’alléger les notations). Une
transformation de jauge :

A>-A'=A-VA
transforme R(C ; A) en R(C ; A'):
R(C;A') = e M R(C ; A) ™ (23)
ce qui absorbe un changement local de la phase :
e(X)—> @' (x)=e "M e (x) (24)
et laisse invariantes les amplitudes de probabilité :
del de, ¥ *(x) F(2,1) @ (x7) -

Dans le langage de la géométrie différentielle (*), le facteur

(*) Le lecteur habitué a la géométrie différenticlle reconnaitra aussi en A une
connexion et en F,, (paragraphe A.3) un tenseur de courbure.
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R(C ; A) effectue un « transport parallele » de la fonction d’onde entre
les points x; et x, : il permet une comparaison des phases entre ces deux
points. Limitons-nous maintenant & un déplacement infinitésimal :

X; =X; X, =X +dx

R(C;A)=1+iA dx. (25)

Le transport parallele de la fonction d’onde ¢ (x) en x + dx a pour
résultat ¢'(x):

e'(x) = (1 +iA-dx) e (x). (26)

La dérivée covariante D¢ sera définie, non pas a J'aide de
[¢ (x +dx) — ¢ (x)], mais & Paide de [¢(x + dx)— ¢'(x)]:

e(x+dx)— @'(x)=dx-De . 27

Par construction ¢‘(x) se transforme comme ¢ (x + dx) dans une
transformation de jauge, ce qui assure que D¢, contrairement a
V¢, se transforme comme ¢:

D'¢'(x)=(V-iA") ¢'(x) = ¢ “®Do(x). (28)

Les transformations de jauge (24) sont appelées abéliennes, car le
produit de deux transformations commute. Le groupe de jauge est le
groupe de Lie U(1), paramétré par les nombres réels A dans I’intervalle
[0, 27 ].

Nous allons maintenant généraliser ce qui préceéde au cas non
abélien. Soit un groupe de Lie G compact, semi-simple et dont I'alge¢bre
de Lie est définie par des constantes de structure f,, : ce groupe sera
appelé groupe de jauge de la théorie non abélienne. Nous utiliserons
uniquement des représentations unitaires du groupe G, ou les généra-
teurs infinitésimaux sont représentés par des matrices hermitiques
T, vérifiant :

[Ta’ Tb] = ifabc Tc . (18b)

Un élément quelconque de la représentation s’écrira en fonction de
parametres réels A,, sous la forme :

U@g)=e

Considérons un ensemble de champs classiques {¢;(x)},i =1,...,n
(on se place & nouveau dans I'espace de Minkowski) se transformant a
l'aide d’une représentation de dimension n du groupe G :

[U@@) el (x) = [ ™) ¢;(x). (30)

“ihaTo (29)
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L’indice i est un indice de symétrie interne, dont il n’est pas
nécessaire de préciser la signification physique pour le moment.
L’équation (30) définit une transformation de jauge globale non
abélienne pour les champs ¢;, qui généralise la transformation de phase
(X1.89) du cas abélien. 1l est facile d’écrire des interactions invariantes
par une telle transformation. Par exemple si G = SU(2), si ¢;
appartient a la représentation de dimension2 et A/ a celle de
dimension 3 (le champ ¢; est supposé scalaire de Lorentz ; on pourrait
aussi bien prendre des exemples construits avec un champ spinoriel), les
interactions :

el ()0 ei(x) ou o] X)) (Buei(x)) AF()

sont manifestement invariantes par (30). Il n’en est plus de méme si
nous permettons a la transformation de jauge (30) de devenir locale,
avec des paramétres A dépendant de x :

[U@@@) el ) = [e” ) 0,(x) . (31)

Afin de pouvoir écrire des interactions invariantes, il faudra, comme
dans le cas abélien, introduire un champ de jauge A} (x), dépendant de

I'indice de symétrie interne a ; dans une représentation donnée on
définira o/ #(x) par :

HH(x) =T, Al (x) . (32)

Le champ o/*(x), qui prend ses valeurs dans I'algébre de Lie du
groupe, permet d’effectuer le transport parallele ; dans le cas d’un
trajet infinitésimal nous généralise-

rons (25) par:

R(x+dx,x;A)=1—idx, &*(x) dx* () %
(33) \

mais pour un trajet fini il faut prendre ()

garde au fait que les &/*(x) ne ™

commutent pas entre eux. Le pro- Figure 1.

bleme est exactement le méme que
celui de l'opérateur d’évolution (cf.
chapitre IX) : au lieu de découper
Pintervalle [0, T] en N intervalles T7/N, N — oo, on découpe le trajet C
en N trajets infinitésimaux dx* (/) (figure 1), et on définit R(C ; A) par
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la limite :
N
R(C;A)= lim [] (1-idx*(),.(0))
Nosoo =1
N idx# () A L
= lim ] e ¢ OFO
Now (=1

Le résultat peut s’écrire formellement :

R(C;A)=P (34)

i rz PRORS
L)

ol le symbole P joue exactement le réle du symbole T dans I’équation
(IX.69). Comme dans le cas abélien, la connexion &/, aura pour réle
de compenser les changements de phase locaux :

R(C;A)=U@®)R(C;4) U (g(xn)). (35)

Afin de déduire de (35) la loi de transformation de & *, il suffit de
prendre pour C un trajet infinitésimal :
1—-idy, " =U(@(x+dx)) (1 —ide, &¥) U l(gx)) =
=1-idx,[(@*U) U '+ Ul * U]

soit :

oA, =U(g)#, U g)+i,U@)IU '(g) |. (36)

La loi de transformation (36) généralise la transformation de jauge
(X1.92) du champ électromagnétique ; par la suite on écrira souvent
&9 au lieu de /.

La loi de transformation (36) fait intervenir les matrices U(g) d’une
représentation déterminée, et il semble a priori que cette loi dépende
de la représentation considérée, ce qui serait fort ennuyeux : il faudrait
introduire un champ A} pour chaque représentation. Heureusement il
n’en est rien, car la loi de transformation ne dépend que de I'algébre de
Lie du groupe ; on le voit aisément en prenant la forme infinitésimale
de (36):

U(g) =1-iA, T,
Ta SA# = - iAa[Tm Tb] A# + (ap.Aa) Ta .
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Comme les générateurs T, sont linéairement indépendants, on obtient :

BAL = fape Ay AL + "4, | . (37)

Lorsque A est indépendant de x (transformation de jauge globale) cette
équation montre que A} se transforme suivant la représentation adjointe
du groupe G puisque dans cette représentation (7,)p = — ifape-
Contrairement au cas abélien, le champ A/ n’est pas neutre pour la
symétrie interne considérée : le champ électromagnétique ne transporte
pas de charge, mais le champ A} transporte les nombres quantiques
associés a la symétrie considérée. C’est cette propriété qui rend les
théories de jauge non abéliennes non linéaires dés le niveau classique :
le principe de superposition n’y est plus valable.

La discussion qui précéde peut paraitre un peu longue, mais elle a
Pavantage de donner directement le transport paralléle et la dérivation
covariante ; dans un transport paraliéle :

e(x)-» @'(x)=R(x+dx,x;A4) ¢(x)
=@ (x)—i(dx, ") @(x).

Par construction (cf. (35)), ¢'(x) se transforme comme ¢ (x + dx) dans
(31), et on peut comparer valablement ¢(x +dx) et ¢’(x); en
particulier on peut calculer immédiatement la dérivée covariante :

p(xr+dx)—e'(x) =dx*[o,0 +idd , 0] = dx*(D, ¢)

soit :

D*=or1+isd# =01 +iT, AP (38)

ou en rétablissant les indices :

Df = 3%8;; +i(T,);; AY |- (39.a)

La dérivée covariante vérifie par construction la propriété fondamen-
tale :

D e'(x)=U(gx)) D, ¢(x) (40)

ce qui permet d’écrire immédiatement des interactions invariantes de
jauge. On notera également que dans la représentation adjointe la
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dérivée covariante s’écrit :

DY = 8%8,, + fupc AL . (39.b)

A.3. Tenseur F*” et lagrangien

Afin d’établir la forme du tenseur F/”, généralisation non abélienne
du tenseur champ é€lectromagnétique F**, nous allons écrire équiva-
lent de la formule de Stokes en électromagnétisme :

[ aax=([oes

oit C est une courbe fermée. Considérons un contour infinitésimal
rectangulaire C, centré en un point x, et dont les cOtés sont

' da, et 8b,. Les points 1, 2, 3 et 4 sont
choisis au milien des quatre cdtés du
rectangle (figure 2). Nous allons calculer

3 —

-— R(C ; A) pour ce contour :

‘} R(C;A) = n'® gloa, g0
4@ xe 29 8b . .
{ K w o 18bu IR mida, HH()

1

> ; Les valeurs de & *(i) sont obtenues par
s un développement limité autour de x, par

exemple :
Figure 2.

(1) = o (x) — % 8b, 8"l *(x) .

Si les &/* étaient des nombres, comme en électromagnétisme, on
obtiendrait simplement :

R(C;A)=e 'LA dx“~e—iaau8b,,(a“A"—a”A“)
JA) = =~

1 J do,, F**
=e 41)

ou do#” = da" A 8b” est I’élément d’aire orienté. Lorsque &/ * est une
matrice, on doit rajouter un terme provenant de la non-commutativité,
qui est donné par :

i8b, A" (x) ei da,, o *(x) e i8b, o *(x) e—i da, o H#(x) )

e (42)
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L’identité classique en théorie des groupes de Lie :

eich eiv'r:"g e ieh e ie'g _1_ gg' [h, g] ~e" ee'fh, g]
permet d’évaluer (42) :
da, 8b,[A", "]

€

Combinant ce dernier résultat avec (41), on constate que R(C ; A) se
met sous la forme :

R(C ; A) = exp (—ina,‘,{a"d"— o'+ il .gw]}) . @3)

Contrairement au cas abélien, qui conduit au théoréme de Stokes; on
ne peut pas généraliser cette équation au cas d’un contour fini.
L’équation (43) nous conduit & définir le tenseur & #” par:

Frr= ot — A i, A (@4)

ou, en rétablissant les indices :

i = ovAL - 0" AL — fac AL AL |. (45)

Revenons a l'interprétation du calcul que nous venons d’effectuer : la
quantité R(C ; 4) a une signification précise, elle donne la « rotation »

de la phase du champ pour un trajet fermé, et cette rotation a des effets
observables, par exemple dans une expérience du type Aharonov-
Bohm : cette rotation est liée au flux de % ,,. Cependant, dans une

transformation de jauge, R(C ; 4) se transforme suivant :
R(C;A)=U(@x)R(C;A)U ' (g(x)),
et n'est donc pas invariant de jauge, contrairement au cas abélien.
Comme do *” et # *” sont tous deux antisymétriques dans ’échange
r o« v, F'* doit étre donné par une loi de transformation identique :
Fr=U(x) F* U Hgx)) (46)
ce qui donne pour une transformation infinitésimale :

SF:V:fabcAchlw' (47)
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Cette équation montre d’une part que F/” se transforme suivant la
représentation adjointe, et d’autre part que la loi de transformation ne
fait pas intervenir 3,4, ; cependant, contrairement au cas de I’électro-
magnétisme, cela ne suffit pas pour rendre F*¥ invariant de jauge.
Néanmoins I’équation (46) suggere une généralisation de l'action du
champ électromagnétique, qui soit invariante de Lorentz, invariante de
jauge et se réduise a (XI.80) dans le cas d’un groupe abélien (on utilise
(21) pour passer de la premiere a la seconde forme de §):

§S=- L j ExTr (FH F,,) = — j A% FE'Frp.  (48)

2 g* 4g2

Dans I'équation (48), g est une constante de couplage ; ultérieurement
on fera un changement d’échelle A, —» gA, sur les champs, ce qui

éliminera le 1/g° en facteur dans I'action. L’expression (48) conduit a
des couplages & trois et a quatre particules de jauge, puisque
F#¥ est quadratique en A*. Cest cette propriété qui rend les champs de
jauge non abéliens hautement non triviaux, méme en I’absence d’autres
particules, alors que le champ électromagnétique en I’absence d’élec-
trons est un champ libre.

Pour déterminer les équations du mouvement, on couple A* & un
courant j/ appartenant a la représentation adjointe du groupe de
jauge :

S=- Jd‘*x{—l—Tr (FrF ) +1jraA ] . (49)
wv a una
2¢ g

Avant de passer 2 la généralisation des équations de Maxwell, on

notera l'identité :

[Dy, D] =iF ., (50)
qui donne en particulier : .

D, D, F*’(= (D, D)) FI") = 0. v

Le principe variationnel appliqué a P’action S (49) donne les équations
du mouvement (exercice 1) :

D, F* = gj* (52)
et, & cause de (51), I'équation de continuité pour j* s’écrit :

D,j"=0. (53)
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On notera que cette équation fait intervenir la dérivée covariante, c’est-
a-dire le champ A,. En fait il fallait s’y attendre car le champ
A, transporte les nombres quantiques de la symétrie interne, et il est
aussi sa propre source. On montre également I’analogue des identités
de Bianchi en géométrie différentielle (exercice 2) :

D,F,, +D,F,,+D,F,, =0. (54)

Enfin (exercice 3), on notera que la condition & ,, = 0 au voisinage
d’un point implique que &/, est, dans ce voisinage, de la forme :

o, (x) =i, U@ U '(9) (55)

que 'on appelle aussi « champ de pure jauge ».

Pour conclure ce paragraphe, résumons les différences essentielles,
au niveau classique, entre champs de jauge abéliens et non abéliens.
Dans le cas non abélien :

(i) le tenseur F*” n’est pas invariant de jauge ;

(ii) méme au niveau classique, il est impossible de formuler la
théorie sans faire appel aux potentiels (cf. (52)-(54)) ;

(iii) enfin les champs de jauge non abéliens possédent des propriétés
topologiques non triviales. Dans le cas abélien, F** = 0 est équivalent &
A" = 3" A, et on peut passer continiiment de cette valeur a A* = 0.
Ceci n'est pas possible dans le cas non abélien. Par exemple si 'on
choisit la jauge A% =0, le champ de pure jauge :

A=i(VU(g) U (g), lm U@k) =1

fxl-

est caractérisé par un nombre topologique qui prend des valeurs
entieres. Les solutions classiques des équations de Yang-Mills possédent
des propriétés fascinantes, mais leur étude sort du cadre de cet exposé.

B. QUANTIFICATION DES THEORIES DE JAUGE
NON ABELIENNES

B.1. Fonctionnelle génératrice

Nous allons adapter a une situation plus complexe la méthode
exposée au chapitre XI paragraphe D, en suivant la méme approche
heuristique. Il s’agit d’arriver a intégrer uniquement sur les classes
d’équivalence de configurations [A4,], au lieu d’intégrer sur toutes les
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configurations : deux configurations appartiennent & la méme classe
d’équivalence si elles se déduisent 'une de P’autre par une transforma-
tion de jauge (36). Il est nécessaire de fixer la jauge par une condition
du type :

fo(Af)=0.

La transformation de jauge (36) est, en un point x fixé, une transforma-
tion unitaire suivie d’'un changement d’origine : elle laisse invariante la
mesure d’intégration :

I

24 =9Ag(: 0 dA:(x)> .

X, a, p

L’action S est également invariante par transformation de jauge.
Définissons la quantité As(A) par (afin d’éviter une prolifération
d’indices, jomettrai en général I'indice de Lorentz et parfois 'indice de
groupe) :

A7H(A) = | [T dg @) [] (fa(A9())) (56)

Il est facile de vérifier que As(A) est invariant de jauge en utilisant
Pinvariance de la mesure de Haar (la mesure de Haar est la mesure
invariante pour l'intégration sur les parametres du groupe ; on peut
montrer que cette mesure est unique, a un facteur multiplicatif pres) :

dg =d(g09)

ou g, est un élément fixe du groupe. Ecrivons maintenant la « fonction
de partition » Z sous la forme :

7 = [ T1Au0 €51 4,4) [T 8 (7)) ] d (0

- [ st j [1 448 () € A4 ) [T 5 (fulA()))

x,a

La deuxiéme intégrale est indépendante de g, ce qui permet de
factoriser le produit des intégrales sur le volume du groupe en chaque
point. Divisant par ce facteur (infini, mais constant) nous arrivons a
Pexpression suivante de Z :

Z = J DA SHIAL(A) ] 8(f.(A(X))). (57)

Il s’agit maintenant d’évaluer A;(A) dans I’équation (56) ; gréce a la
fonction 8, il suffit d’intégrer sur les configurations [A] voisines de
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celles qui vérifient la condition de jauge. Partant d’'une configuration
[A] telle que f,(A) =0, on effectue une transformation de jauge
infinitésimale (37) ; afin de simplifier la discussion je me limite a la
jauge de Lorentz 8,4} = 0, mais I'argument est général (cf. également
I'exercice XI.14) :
aﬂA#g = a;LA# + ap.[a#Aa + fabc Ab Acﬂ]
=0A, + fo AL 3% A, .

Ecrivons ce résultat sous la forme :
0,20 = | Il 40)

avec
[Mf(x’y)]ab: (D 8ab+fabcAcﬂ 8”)8(4)()6—_)7). (58)
Avec ces notations A;(A) devient (cf. exercice (XI.14.a)

car

[1dg() =[] dA®)-

Pour que ce déterminant soit praticable, il faut le transformer en série
perturbative en I’écrivant sous forme d’une intégrale sur des variables
de Grassmann 7 (x) et 7 (x) grace a (XI1.65):

v, = [ @, ﬁ)exp(—ijd‘*x 'y 1ML 00 )

(les variables 7 et 77 ne doivent pas étre confondues avec les sources 7
et 7 de XI-B.2, malgré I'identité des notations). Ceci permet d’écrire,
en ignorant des constantes multiplicatives, la fonctionnelle génératrice
sous la forme :

Z = J D(A, m, 7)exp (i J d*x geff(x)) [] 8 (8. 4%(x)) (59.2)

avec

1
gcff(x) = —_2ny F;wa - ﬁa(x)[lj 6ac -

49
- fabcA# a,u] ’T)C(X) . (59b)

Le lagrangien (59.b) fait intervenir des champs fermioniques fictifs
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7,(x) et n,(x), appelés « fantémes de Fadeev-Popov » ; ces champs
n’apparaissent évidemment jamais comme particules externes dans les
éléments de matrice S, mais seulement sous forme de lignes internes.
Notez que ces «fermions » sont des particules de spin zéro ; s’ils
apparaissaient comme particules externes, ils violeraient le théoréme
spin-statistique. Comme ce sont des champs de fermions, il ne faut pas
oublier un facteur — 1 chaque fois qu’ils forment une boucle dans un
graphe. 1l reste maintenant a répéter sans modifications les étapes
menant de I'équation (XI.108) a I’équation (XI.109). Le lagrangien
& .i(x) a utiliser dans (59.a) comprendra finalement : un lagrangien du
champ de jauge ¥, un terme fixant la jauge Fsr et un terme
&£ pp correspondant aux fantémes de Fadeev-Popov. On peut également
rajouter un terme de couplage 4 des fermions que 'on prendra dans la
représentation de générateurs infinitésimaux T, : sauf mention explicite
du contraire, on se limitera au cas ou les générateurs 7, sont ceux des
représentations fondamentales. Enfin il sera commode de faire le
changement d’échelle suivant sur les champs de jauge et de noter

g (au licu de g) la constante de couplage :
Al gAl.

Reste & résumer les résultats (en effectuant une intégration par parties

sur Fpp) :
gzg(;-f-ggp-i”gpp—ng (603)
1 y )
Le=— 7 (3"Ay — YAl — gf e AL A (3,A,, —

- aVA[.La —gfadeA/.chve) (60b)

Lor = - §1~a (3, ALY (60.c)
cgFP = (a#ﬁa)(ausac - gfabcAyb) MNe

= (8*7,) (D, m), (60.d)
Ly = bliv, (848, + igAL(T);) —m 8] ¢; . (60.¢)

B.2. Régles de Feynman

Les régles de Feynman se lisent directement sur les équations (60), en
se souvenant qu’a un terme 3, ¢ (x) dans le lagrangien correspond dans
P'espace de Fourier un facteur — ig,,, ol g, est le moment entrant dans
le vertex. Donnons d’abord I'expression des propagateurs :
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(i) Champ de jauge :

Vw—kwfw a <—g +(1—-a) “u b ) (61.a)
v,b maa  kZiie " k% +ie .
(ii) F-P
A, i8
e x 2 (61.b)
b a k*+ie
(ili) Fermion :
£, i5 i5,(p
g ton +m)
P — = (61.0)
/ j P-m+ic  pl_m?iie

Nous admettrons sans démonstration la prescription k?— k% + ie
pour le propagateur (61.b) ; on peut montrer que cette prescription est
la seule compatible avec l'unitarité et la causalité. Les fantomes de
Fadeev-Popov sont d’ailleurs essentiels pour assurer I'unitarité via les
régles de coupure.

Etudions ensuite le vertex a trois particules de jauge : un terme du
lagrangien (60.b) contribuant & ce vertex sera par exemple :

9 Fue 9" AL Aup Gy AL

Par application du théoréme de Wick, ce terme donnera une contribu-
tion du type :

gfabcpygp.p

11 y a en fait 3! = 6 contributions au théoreme de Wick et quatre termes
dans le lagrangien (60.b). Le vertex complet s’écrira :

- gfabc[g;w(P - q)p + gvp(q - r)p. + gpy.(r _p)v] . (62&)
On trouve de méme ’expression du vertex a quatre particules de jauge :

®,a v,b
,_f'J — 14 [feab fecd(g/.tp gva_gy.o gvp)

+ feac fedb(gp.o' gpv - gp.v gpu) (62b)

+ fead febc(g,u.v gzrp - gp.p gav)]
o,d p,c
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Le couplage entre les gluons et les fantdmes est donné par le
lagrangien (60.d). Calculons le vertex :

)I} b

M, a ,./

-/\/\/\./\/\/'V\/\,~

bt .

k ‘\\
9 .

Le terme de (60.d) contribuant a ce vertex peut s’écrire :
gfabc(auﬁb) Aéu N
et donne la contribution :

gfape P . (62.c)

Enfin le vertex gluon-fermion se déduit de (60.d)

/
k ,
AoAn 2o igy*(T,),; (62.d)
M, a \p
N
J

Ces régles sont évidemment plus compliquées que celles de 1’électro-
dynamique quantique. Dans le calcul d’'un graphe de Feynman, il sera
en général conseillé de commencer par le calcul du «facteur de
groupe » provenant des f,, et des (T,);. Les regles générales pour le
calcul de ce facteur de groupe ont été données par Cvitanovic
(®. Contentons-nous de donner ci-dessous les facteurs de groupe
intervenant dans les calculs de diagrammes a une boucle les plus
simples. On utilisera les identités suivantes, valables pour une représen-
tation R (exercice 4) :

Tr (Ta Tb) = T(R) Sab (63.3)
Y (T} =C®)1. (63.b)

Soit r la dimension du groupe et n la dimension de la représentation des
fermions (en général N pour SU(N)) ; on déduit de (63) la relation :

nC(R) = rT(R) . (64)
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On note en général C la valeur de C (R) pour la représentation des
fermions ; dans le cas de SU(N ) nous obtenons pour la représentation
fondamentale :

N2-1
2N

CR)=Cp= (SUN)). (65)
Dans le cas de la représentation adjointe, n=r et C(R)=
T(R) = C4(C 4 = N pour SU(N)). Examinons quelques cas importants
de diagrammes a une boucle :
(i) Energie propre de particules de jauge :

b
d
Al fape Fane = (Tdse (Todos = Ca Bug
c

N8, (SUN)) (66.a)

N

(ii) Energie propre d’un fermion appartenant A la représentation
fondamentale de SU(N):

a
"‘m"— : (Ta)kj (Ta)ji = CF Sik

=S5k (SUWN))  (66)

(iii) Boucle de fermions contribuant a I’énergie propre des particules
de jauge :

i

V\W\’\Ovvvw (Tb)i/ (T“)ji = TF 8
a b

j :%aab (f.21)  (66.0)

Le lecteur vérifiera sans difficulté ces résultats dans le cas du groupe
SU(2). D’autres exemples sont donnés a I’exercice 4.

On procéde ensuite comme dans une théorie des champs usuelle, en
intégrant sur les boucles etc. Il faut prendre garde & ne pas oublier les
facteurs de symétrie :

W : Facteur de symétrie 1/2

ainsi que le facteur (— 1) associ¢ aux boucles de F-P:

122N “waaan  : Facteur (- 1)
.'-.4.."
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B.3. Renormalisation et identités de Ward

Les regles de Feynman énoncées précédemment vont naturellement
conduire a des intégrales divergentes, et il est nécessaire de renormali-
ser. Un bon exercice (mais qui demande une certaine persévérance)
consiste 2 calculer tous les diagrammes divergents a Pordre d’une
boucle et & en déduire les constantes de renormalisation. Afin de
maintenir I'invariance de jauge tout au long du calcul, il est conseillé
d’utiliser une régularisation dimensionnelle, et de déterminer les
constantes de renormalisation a ’aide du schéma minimal. Le lecteur
courageux qui veut se lancer dans ce calcul trouvera quelques indica-
tions supplémentaires au paragraphe D.

Le comptage de puissances détermine les diagrammes primitivement
divergents ; comme il s’agit de fonctions de Green, les fantdmes
peuvent parfaitement apparaitre comme particules externes dans les
diagrammes, puisqu’il sera par exemple nécessaire de renormaliser leur
propagateur. D’autre part, en raison de la transversité du propagateur
du champ de jauge et de la factorisation de p,, dans 'énergie propre des
fantdmes, il n’apparait ni contre-termes de masse, ni contre-terme en
(3,A*Y. Compte-tenu de ces remarques, il est facile de faire le
décompte des diagrammes a évaluer (entre parenth¢ses la constante de
renormalisation) :

(a) Energie propre des particules de jauge : W‘@W‘N (Z3)

(b) Energie propre des fantomes : >@> (Z;)

(c) Energie propre des fermions :
~— D ()

(d) Vertex a 3 particules de jauge : (Z1)

(e) Vertex particule de jauge-fantome : (Z))

(f) Vertex fermion-particule de jauge : (Zyr)
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(g) Vertex a 4 particules de’ jauge : (z,)

LI

Procédant comme au chapitre VI, on rajoute les contre-termes au
lagrangien £ . (60), obtenant pour résultat (les indices et facteurs de
groupe ne sont pas écrits explicitement et la masse des fermions a été
prise égale a zéro) :

L8P = — %z3(amv_ 87AR) (3,4, — 0,4,) +

+8z,(ra7 - 07 4r) A4, —%gz Z,A A, A" A

1 -~ - .
— 5o (84" + Z3(0,7)(3%n) — g2, (3% 1) Aum
+Zy iy, 0" ~Zip gy, YA*. (67)
Les champs et parametres nus sont définis par :

Ay = Z3"A no(Mo) = Z n(7);  wo=2Z}"y
go=2Z,Z;"g; Q=2Z34a; Jor=2Z1rZ7'""Z;1g .

(68)

Le lagrangien ¥ + 8.% peut étre considéré comme le lagrangien
initial % (Aq, Mg, Yo, 4, 90> Jor = Jo) & condition que les identités
suivantes soient satisfaites :

Z, z, Z, z
R @
3

Ces identités, qui généralisent la relation Z; = Z, de I’électrodynamique
quantique, sont vérifiées explicitement dans le calcul a I'ordre d’une
boucle. Dans le cas général, elles peuvent étre démontrées, comme en
électrodynamique, a l'aide de la généralisation des identités de Ward
aux théories non abéliennes, qui sont appelées identités de Slavnov-
Taylor. Cependant les identités de Slavnov-Taylor sont beaucoup plus
complexes que celles de la théorie abélienne. La facon la plus élégante
et la plus compacte de démontrer ces identités utilise la transformation
de Becchi, Rouet et Stora (BRS) qui est exposée par exemple dans
Itzykson-Zuber (cf. également I'exercice 5). Nous nous bornerons a
indiquer brievement ol réside la difficulté.

Rappelons que pour quantifier le champ de jauge, nous avons dil
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« fixer la jauge » par une condition f(A) = 0. Ceci a introduit dans le
lagrangien effectif deux termes :

PLor= 5= (A ot L

qui ne sont pas invariants de jauge. Si Pon essaie de répéter I'argument
de XII-D.1, en rajoutant un champ ¢, appartenant a la représentation
adjointe du groupe de jauge, qui sert a effectuer la transformation de
jauge infinitésimale (w <1):

Al = o fupc pp Al + @ (ap.‘Pa) (70)

généralisant (XIL.98), les termes L et FLpp vont engendrer des
interactions du type ¢ AA, ¢An, ¢71An, en plus du terme (XI1.100).
Ceci rend Vécriture d’une identité du type (XI1.102) beaucoup plus
complexe. En électrodynamique, la simplicité de la jauge de Lorentz
a”A, = 0 vient de ce que les fantomes de F-P sont en principe présents,
mais ils sont découplés et on peut les ignorer. Il n’en est pas de méme
dans la jauge 9,A" +g/2 A ,A* =0 de l'exercice XI.14 : dans cette
jauge on doit écrire des identités du type Slavnov-Taylor (exercice 5).
On retiendra de cette discussion schématique les relations de dépen-
dance entre la condition de jauge, le lagrangien des fantdmes de F-P et
les identités de Ward-Slavnov-Taylor.

C. MODELE DES INTERACTIONS ELECTRO-FAIBLES

Dans le cas d’une théorie de jauge abélienne avec couplage a un
courant conservé, on peut introduire un terme de masse pour le boson
de jauge sans détruire la renormalisabilité de la théorie : en effet le
terme dangereux du propagateur massif :

k,k,/m?

" qui introduit une « constante de couplage » m~2 de dimension — 2, est
contrdlé par la conservation du courant, du moins pour les quantités
physiques. Il n’en est pas de méme dans les théories non abéliennes, ou
I'introduction brutale d’un terme de masse détruit la renormalisabilité.
Si 'on souhaite donner une masse aux particules de jauge, ce qui est
indispensable pour décrire des forces a courte portée comme les
interactions faibles, il est nécessaire de passer par une construction
utilisant une brisure (spontanée) de symétrie.
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C.1. Bosons de Goldstone et phénoméne de Higgs

- Lorsqu’une symétrie continue est spontanément brisée, il apparait
des particules de masse nulle appelées bosons de Goldstone. Un modele
trés simple pour expliquer ce phénomeéne est fourni par la théorie de
Ginzburg-Landau avec un parametre d’ordre de dimension n = 2.
L’action effective I'(¢) sera écrite pour une théorie euclidienne :

4

m=1,2, 3, 4; (8,0) =Y (3,¢). La disposition des indices

w=1

(A4, A, aulieude A, A*) permettra de distinguer la théorie euclidienne
de celle de I'espace de Minkowski. A I’approximation en arbres, cette
action effective est donnée par :

1 1
r@)= [ as[} @uef+5 Guenr-
| oo 2, 2y (o20 27
5 M (‘P1+‘P2)+Z(<P1+<P2)] - (7
Le coefficient de (¢} + @2) est négatif, ce qui correspond a une

température inférieure & la température critique : T < T,.. La constante
de couplage A doit étre positive.

P2
Le potentiel effectif V (¢, ¢3) I
que l'on peut écrire :
V(e @2) =
A 2 oy B ]2
=— +e3) -+ | +
HIGERE .
+ Cte (72)
présente un minimum pour
2
2 2 M
P1+ Pr= T
Dans le plan (@1, ¢,), ce mini- Figure 3.

mum se trouve dong situé sur un

cercle (figure 3). La forme du potentiel est dessinée sur la figure 4.
- Suivant le mécanisme habituel de brisure de symétrie, on choisit un état
fondamental particulier (un vide en théorie des champs); dans le
langage du magnétisme, on choisit une direction d’aimantation particu-
liere. Un choix possible est :

2
‘P1=U=\/MT; ®;=0 (73)

v est la « valeur moyenne sur le vide » du champ ¢;.
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Vie)
e X505
VA== ==
Figure 4.

Les fluctuations de (¢4, ¢,) autour de I’état fondamental (73) seront
décrites par ¢, et un champ 7:

n=¢;—-0. (74)

Reportant cette expression dans le potentiel effectif (72) on obtient :
A
V(n, @) =plnlraom(n’+ e+ 7 (02 +ed). (79

Cette forme du potentiel effectif montre que 'on est en présence d’une
particule (n) massive, de masse V2w, et d’une particule (¢,) de
masse nulle, qui est le boson de Goldstone. Ces particules sont couplées
entre elles, avec des couplages cubique et quartique. L’existence du
boson de Goldstone est facile a interpréter : les fluctuations autour de
Iétat fondamental dans une direction perpendiculaire a I'axe ¢; ne
colitent aucune énergie, alors que les fluctuations le long de cet axe se
font dans un potentiel harmonique.

On peut démontrer sans difficulté le résultat suivant (exercice 6) :
soit H le sous-groupe du groupe de symétrie G de l'action effective qui
laisse invariant ’état fondamental. Si G a N générateurs indépendants
et Hena M, il existe (N — M) bosons de Goldstone. Dans I'exemple
précédent N =1 (G=U(1)) et M =0.

D’introduction d’un champ de jauge couplé au champ ¢ a pour effet
de faire disparaitre le boson de Goldstone, qui se retrouve comme
composante longitudinale d’'un champ de jauge massif: c’est le
phénoméne de Higgs. Reprenons 'action effective (71) en rajoutant un
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champ de jauge (abélien) A, . Il est commode d’introduire les champs
chargés p et ¢ *:

¢=%(¢1+i¢z); <p*=—\}—§(¢1~i‘P2) (76)

et la dérivée covariante :
D,e=9,-igA, .

L’action effective devient :
r=|daxlir,  F D, ¢)* (D Aot o -2
= xZ nv y.v+(p.(P) ( }L‘P)+ ¢ ‘P—ﬂ .

On choisit a nouveau 1’état fondamental :
v
©1=10; ¢r=0; ¢ = —=.
» \/2

Au lieu des champs (¢, ¢,), utilisons les champs réels (£, ) en
écrivant :

@ (x) = elt®)/? %ﬂ_ .
2

En I'absence du champ A ,, et en se limitant aux termes quadratiques en
n, &, Taction effective (77) s’écrirait :

I'e)= Jd4x{%(aun)2+% (3u§)2+
+% QurHn’+0M (8,60 02 )] .

On voit que le champ £ est de masse nulle : c’est le boson de Goldstone.
Cependant nous sommes dans le cadre d’une théorie de jauge, ce qui
nous permet de faire des transformations de jauge ; choisissons la
transformation particuliere :

¢(x) - o' (x)=e "o (x) (78.2)
Au(x) > AL() = A, _;]%aﬂg(x). (78.b)

L’action effective (77) est invariante dans cette transformation ;
comme :

: v+
¢ (x) = —=

V2
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on peut reporter cette valeur dans (77) en écrivant (A,, ¢ ) au lieu de
A, ¢'):

Ir= Jd“x[%Fwa+%(aun +igA, (v +1m)) x

: A 22
X (3,m —1qA”(v—|—n))+Z [(v +n)2_/~‘47} ]
1 1 V)
- Jd‘*thWF,mLi @,1)
1
+§q202AﬂA“+q2nvAMA#

+%q2n2AuA#+u2n2+)wn3+%n4”. (79)

Le contenu physique se lit directement sur Péquation (79) ; on obtient :

e un champ vectoriel massif de masse carrée m? = g v? = g u?/A ;
e un champ scalaire  de masse carrée 2 u >

Ces deux champs sont couplés entre eux par des interactions cubiques
et quartiques. La transformation de jauge a fait disparaitre le champ de
masse nulle £ qui se retrouve en fait comme composante longitudinale
d’un champ vectoriel massif A, : le nombre de degrés de liberté est bien
conservé. Au départ on disposait de deux degrés de liberté pour le
champ de jauge et de deux pour les champs scalaires ; & I'arrivée on
trouve trois degrés de liberté pour un champ vectoriel massif et un pour
le champ scalaire.

Nous venons donc de donner un exemple du phénoméne de Higgs :
un champ de jauge de masse nulle acquiert une masse en se propageant
dans le vide des champs scalaires, appelés pour cette raison « champs de
Higgs ». Le méme phénomene se produit dans le cas de théories de
jauge non abéliennes. Le phénomene de Higgs permet aux bosons de
jauge d’acquérir une masse, tout en préservant la renormalisabilité : en
effet le lagrangien initial est renormalisable (le couplage des champs de
Higgs ne contient que des termes renormalisables), et on peut montrer
que la brisure de symétric préserve la renormalisabilité. Apres la
transformation de jauge (78), on tombe sur une théorie manifestement
unitaire, puisque dans le cas d’un boson vectoriel massif le propagateur
coupé ne fait intervenir que des états physiques.

Ceci permet de conclure — et une analyse compléte du probléme
confirme cette conclusion — que Pon peut construire de cette fagon une
théorie unitaire et renormalisable de bosons massifs dans le cadre d’une
théorie de jauge non abélienne (et c’est la seule facon de le faire !).
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C.2. Théorie de Fermi des interactions faibles

La théorie des interactions faibles, connue sous le nom de « théorie
de Fermi », a en réalité été mise au point & la fin des années 50, en
modifiant la théorie proposée par Fermi une vingtaine d’années
auparavant. Cette théorie peut étre caractérisée de la fagon suivante :

(i) c’est une théorie courant-courant,
(i) elle conduit a une interaction effective non renormalisable &
quatre fermions,

(iii) elle viole 1a parité de fagon maximale.

Examinons rapidement ces trois points, en renvoyant par exemple au
livre de Gasiorowicz pour des détails complémentaires. Nous nous
limiterons aux interactions faibles des leptons e*, v,, ¥, (neutrino et
antineutrino électroniques), n*, v,, 7, (neutrino et antineutrino
muoniques). Rappelons que les neutrinos sont électriquement neutres
(d’ou leur nom), ont un spin 1/2 et une masse compatible avec zéro. Le
lagrangien de Fermi s’écrit en fonction du courant faible J, (x) et d’'une
constante de couplage G (constante de Fermi) sous la forme :

z(x):—TJA(x)JA*(x> (80)
ot J, comprend une partie électronique J{* et une partie muonique
J{*) (ainsi qu’une partie associée au lepton 7 et une partie hadronique
que nous n’étudierons pas ici) :

Gr
2

L) =IO +T(x) (81)
avee

JOx) = §.0) va(1 = vs) ¥, (x) (82.a)
et

Ty = Fu(x) val = v5) ¥, (x) - (82.b)

Dans I'équation (82), les champs ., ¥, , ¥, et ¥, sont les champs de

Dirac associ€s aux quatre types de particules. Le lagrangien (80) décrit
par exemple la désintégration du muon (exercice 7) :

o> e + v+,

ou les diffusions élastiques v,- e~, 7,- ¢~ (exercice 8).
La constante de Fermi Gy a pour dimension — 2 (les champs de
fermions ont une dimension 3/2). Elle vaut :

Gp~1.16 x 10~5 (GeV)~2.
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Comme il n’y a pas de symétrie particuliere susceptible de réduire le
degré de divergence, la théorie de Fermi est non renormalisable.

Enfin le facteur (1 — y5) dans (82) conduit & une violation maximale
de la parité : si les neutrinos ont une masse nulle, ils ont toujours une
hélicité — 1 (= polarisation circulaire gauche), tandis que les antineutri-
nos ont toujours une hélicité + 1 (= polarisation circulaire droite). Il
est commode d’introduire les projecteurs sur les états d’hélicité + 1
(dans le cas de la masse nulle, la chiralité = valeur propre de
vs, coincide avec I’hélicité) :

1 1
PL=§(1~75); PR=§(1+75)- (83)

Enfin on peut (pour le moment de fagon purement formelle) mettre le
neutrino et Pélectron gauches dans un doublet (représentation de
dimension 2) d’un groupe SU(2), appelé SU(2),, et procéder de la
méme fagon pour le muon et son neutrino :

xi@= (1) 5 xw= () 5 asia-vve @9

Le courant J{®) par exemple s’écrira :

JO=2x.(e) Yo T Xrl(€) (85)
avec :

_ 1 . 0 0
T =§(Tl—172)=<1 0)

Cette écriture suggere une symétrie interne décrite par un groupe
SU(2), et appelée isospin faible (& ne pas confondre avec Iisospin des
interactions fortes). Cependant il n’y a pas encore véritablement de
symétrie, car le courant neutre faible ne correspond pas a la matrice
73: il ne suffit pas de remplacer 7~ dans (85) par 7, pour avoir
Iexpression de ce courant neutre.

D’autre part on cherche a remplacer la théorie de Fermi, qui posséde
le défaut majeur de ne pas étre renormalisable, par une théorie oi
I'interaction faible est transportée par un boson vectoriel massif chargé
noté W (figure 5) :

XE

Figure 5. La diffusion v, ~ e~ (a) dans la théorie de Fermi,
(b) dans une théorie avec echange de boson vectoriel massif W.
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Si I'on souhaite disposer d’une théorie renormalisable, il est néces-
saire que ces bosons soient les particules de jauge d’une théorie de
jauge non abélienne, rendues massives grace au phénoméne de Higgs.
On ne peut pas prendre comme groupe de jauge SU(2);, pour les
raisons expliquées ci-dessus. Il est donc naturel d’introduire dans le
probléme un autre courant neutre, celui de 'électromagnétisme, ce qui
mene a l'unification des interactions électromagnétiques et faibles. A
I’époque ou le modele a été élaboré, on ne connaissait pas grand chose
des courants neutres et deux possibilités étaient ouvertes :

(i) identifier le courant neutre avec le courant électomagnétique et se
contenter de trois bosons de jauge: deux bosons massifs W+ et
W~ transportant I'interaction faible et un photon (y). Ceci est possible
au prix de leptons supplémentaires. Dans ce modele, dii & Georgi et
Glashow, il n’y a pas de courant neutre faible.

(ii) Introduire deux courants neutres, I'un électromagnétique, I'autre
faible. Il faut donc quatre bosons de jauge, W*, Z° et y et quatre
générateurs infinitésimaux pour le groupe de jauge : c’est le modele
GSW.

Le modele de Georgi-Glashow est mathématiquement plus élégant
que celui de GSW, car il repose sur un groupe de Lie simple
(SO(3)), ce qui a avantage d’expliquer la quantification de la charge
électrique. Cependant ce n’est pas lui qui a été choisi par la nature.

C.3. Modele de Glashow-Salam-Weinberg (GSW)

Donnons maintenant quelques détails techniques sur le modele
GSW, qui est a 'heure actuelle tres largement confirmé par les données
expérimentales. Le groupe de jauge G est le produit d’'un groupe
SU(2) par un groupe U(1), ce qui donne bien quatre générateurs :

G=SUQR).xU()y.

L’indice L désigne l'isospin faible des leptons gauches, et Pindice Y
Ihypercharge faible, définie ci-dessous. II est nécessaire de se donner
deux constantes de couplage, g pour SU(2), et g’ pour U(1)y.

Les représentations de SU(2), sont étiquetées par Iisospin faible 7,
qui peut prendre les valeurs 0, 1/2, 1, 3/2, ... (en pratique seules les
3 premieres valeurs interviennent). Les éléments d’une représentation
sont étiquetés par la composante 3 de l'isospin: I3 = -1, - T +1, ...,
I. Le couplage d’une particule au boson de jauge de U(1l)y est
g'Y/2, ot le facteur 1/2 est conventionnel. Comme le groupe est
abélien, la valeur de Y est arbitraire, et doit étre déterminée a poste-
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riori. Les leptons gauches sont rangés dans des doublets (représenta-
tions d’isospin I = 1/2) de SU(Q2); :

w@= ()5 o= (), (5)

et leur hypercharge vaut Y, ; le neutrino correspond a I; = 1/2,
lélectron (ou le muon) a I; = —1/2. Les leptons droits qui ne
participent pas aux interactions faibles décrites par des courants chargés
sont rangés dans des singlets (I = 0) de SU(2); et on leur attribue une
hypercharge Y. On notera yg(e) = e, xp(p) = pg.

Les champs de jauge de SU(2); seront notés W/ (a =1, 2,
3) et celui de U(1)y, B*. Au départ tous ces champs ont une masse
nulle. Il en est de méme pour les leptons, puisque l'électron et le
neutrino doivent avoir la méme masse en I'absence de brisure de
symétrie. Nous allons commencer par ce cas, en renvoyant a une étape
ultérieure I’étude de cette brisure.

Ecrivons le lagrangien .#; des fermions, obtenu a partir du lagrangien
de Dirac a I'aide du couplage minimal (38) ; dans le cas du groupe
SU(2), il est commode d’utiliser une notation vectorielle : W} peut étre

considéré comme la composante a d’un vecteur W* d’un espace a trois

dimensions, car il se transforme suivant la représentation de dimen-
sion3 de SU(2):

$,=)7Riy"<a“+%g’YRB#) Xg +
i
3

i

+)7Liy“<au+ g'YLBM+2g§-’.W“) x.- (87)

Ecrivons le couplage des fermions aux champs de jauge neutres
B* et W{, en omettant les facteurs multiplicatifs sans importance pour
l'argument qui va suivre :

g' YrjBB* + g Y, jLB* +gjL v, WE

ou jR et jL sont proportionnels & (1 — y5) et (1 + vs) respectivement.
Ceci donne pour les neutrinos (Yz =0, I;=+12) et pour les
électrons (I, = —1/2):

vig' Y jEB* +gjt wy (88.2)
e g [YrjR+ Y, jE] B —gjL Wi (88.b)
Nous allons maintenant effectuer une transformation canonique sur

les champs B* et W#, en introduisant deux champs A* et Z*, tels que
A* ne soit pas couplé au neutrino et soit couplé aux électrons avec
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conservation de la parité : autrement dit A* a toutes les propriétés du
champ électromagnétique. Soit donc :
B* = —sin 6Z* + cos 6A* (89.a)
W4 = cos 0Z# +sin A #. (89.b)

L’angle 6 est appelé angle de Weinberg; il est souvent noté
fw. Reportant (89) dans (88) on obtient pour le couplage du champ
A*r:

v:lg' Y, jkcos 0 +gjksin 0] A*
e:[g' YpjRcos @ + (g' Y cos 0 —gsin6)ji] A",

Afin que A* ait les propriétés du champ électromagnétique nous
devons exiger que la charge du neutrino soit nulle :

g' Y cos8 +gsinf =0

et que le couplage du photon soit proportionnel a y*, c’est-a-dire a
Ji + i
g'Yrcos & =g' Y cos 8 —gsin 6.

Ces deux équations donnent pour Y; et Yg:

Yi=-Ztgo; vr=2Y,.

g
On peut toujours choisir la normalisation de g’ de telle sorte que
Y, =—1 (et donc Yz = —2); g et g' sont alors reliés par :
g'=gtgb |. (90)

Pour relier g a la charge électrique e, écrivons le couplage des électrons
en rétablissant les facteurs multiplicatifs :

L YueL =%1Z7(e) Yu(1—vs) ¢ (e)
J(e){—%g’ Yu(l+ vs)cos 0 —% (g'cos O +gsinb)y, x

X (L~vys)}y(e)=—gsin0y(e) v, ¢(e) A*

d’ot Iidentification :

e=gsin0 |. (91)
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Il est facile de terminer le calcul pour déterminer le couplage des
électrons et des neutrinos au boson Z* (exercice 9). On trouve par
exemple dans le cas des électrons :

gzcgsgo lIj(e) ’YI-L(CV‘CA ys)dj(e)ZH (923)

avec

(92.b)

FNP

CV=—?}:+Sin20; CA=——

Notre théorie des interactions faibles présente pour le moment un
défaut majeur : on sait que ces interactions sont a trés courte portée et
doivent donc étre transmises par des bosons vectoriels massifs. 11 est
nécessaire de trouver un mécanisme qui donne une masse aux bosons
W= et Z,, tout en préservant la masse nulle du photon. Le lecteur ne
sera pas surpris que ’on fasse maintenant appel au mécanisme de Higgs
pour fabriquer ces masses. Compte-tenu du théoréme de I'exercice
(6.b), il est nécessaire qu’aucun générateur de SU(2); ne laisse le vide
invariant si 'on veut que les bosons W= et Z; deviennent massifs. Au
contraire la combinaison linéaire :

A* =sin O W4 + cos 6B*

doit conserver une masse nulle ; comme cette combinaison linéaire est
couplée a la charge électrique Q, il est nécessaire que Q laisse le vide
invariant. Remarquons que les valeurs trouvées précédemment pour
Y; et Yy permettent d’écrire :

Q=I3+%Y (93)

et la solution la plus économique consiste & introduire deux doublets
(h*, 1% et (k% k™) de particules de Higgs, décrits par des champs
complexes ¢.: (h*,h™) et ¢q: (h% A°) (en tout quatre degrés de

liberté) :
ht 1 R 1
(ho).l_z, Y=1; (h‘)'lzi’ Y=-1.
L’opérateur Q0 est représenté par une matrice
10
2=<(p o)

pour le doublet (h*, h%). Si 'on choisit de briser la symétrie en donnant
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a ¢, une valeur moyenne sur le vide non nulle, en écrivant :

¢ = (ZO> (e =% (8) 949

on obtient un état fondamental qui n’est invariant, ni par SU(2),, ni par
U(1)y, mais qui est bien invariant dans une transformation de jauge
correspondant a la charge électrique : Q est une combinaison linéaire
convenable de générateurs infinitésimaux de SU(2), et de U(1l)y.
Ecrivons explicitement le couplage des bosons de Higgs aux champs de
jauge, en utilisant la prescription du couplage minimatl :

i, i L '
i”s:{<a#+§g B#+§gT.W#><p] X

w1 1 o> e
X [(a +59 B#+2g'r.W ) (p:l. (95)
Suivant la méthode exposée au paragraphe C.1, on introduit, au lieu
des champs ¢ et o, trois champs &, &,, é; et un champ 7:

0
p=e"t2 vt | =UN(E) e
V2

et on effectue la transformation de jauge de SU(2), :
o' =U(E)e; x1=U()xL; XrR=XR

B,=B,; W,=U@E&W,U &)+ 515 (e, 0)(U ).
Cette transformation a pour effet de transformer les champs §;,
&,, &, qui seraient des bosons de Goldstone en I'absence de particules
de jauge, en composantes longitudinales de bosons vectoriels. Il reste
un champ scalaire : le boson de Higgs. Dans cette opération, qui suit
exactement le méme schéma que celui décrit dans le cas abélien au
paragraphe C.1, le lagrangien des scalaires devient :

1 i : - W
Ly =5 @)@ ) + Q%’-’lxi (g'B+g7.WPx_ (96)
ol x_ est I'élément (0, 1) du doublet de SU(2),. Calculons le terme
quadratique en W et B, qui va donner I'information sur les masses, en

exprimant g’ a l'aide de (90) :

£ - % v’ [g* (Wi + W3) + > (W3 + tg® 0B> —2tg 6W; B)] . (97)
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Cette expression montre que les bosons W, et W,, ou les combinai-
sons chargées :

(Wl +iW,)

1 . .
ont une masse my, = 5 4. Pour obtenir la masse des bosons neutres, il

faut diagonaliser la deuxi¢me parenthése de (97) grace a la transforma-
tion (89), ce qui donne en fin de compte pour la partie quadratique de
L

2. o e myern)+ i@ e wiwe s L2 7 zu (o8)
P2k 4 # 8cos?o "

Comme promis le champ A# reste de masse nulle. On identifie la
masse du boson Z;:

gv
2 cos 0

my =

En résumé le mécanisme de Higgs a transféré trois degrés de liberté
des champs de Higgs a des composantes longitudinales de trois bosons
de jauge massifs ; les masses sont données en fonction de la valeur
moyenne sur le vide v du champ de Higgs et de 'angle de Weinberg 6:

1 my

1 1 2y | 99

Le lagrangien total comprend encore un terme d’interaction des
champs de Higgs entre eux et des champs de Higgs avec les fermions :

To -2t @) —glxr(e’ x1) +hec.]. (100)

L int = MZ ¢
Les deux premiers termes de %, donnent une masse VZ2poala

particule de Higgs neutre qui survit a la brisure de symétrie. Le
troisitme donne une masse aux électrons et aux muons (! =e ou

m):
& s )  my =22 (101)
int = — = = —=.
t \/ i \/2
En résumé, le lagrangien complet du modele GSW s’écrit (cf. (87)),
(95) et (100) :

$=-2F,,  .F* fwf'”+$,+$+$,m (102)

=
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ou F wv €st le tenseur associé€ au champ de jauge W,L et f,, celui associé
au champ de jauge (abélien) B,,.
A la limite ou les énergies en jeu sont faibles par rapport a la masse du

W, on retrouve la théorie de Fermi, par exemple pour la désintégration
du muon (figure 6) :

ATA A A 2
L -g** + 4" g /my
— ——a(v, ) v, = ys)u(um)

@vzp * ’ q*—my

x () 2 (L= v5) 0(v,) - 8}; @) 12— vs)u(w)) x

x (@(e) y*(1 - vs)v(»,)).

(a) (®)

Figure 6. Désintégration du muon dans GSW (a)
et dans la théorie de Fermi (b).

Ceci permet de faire 'identification :

Gr 4 1

—. 103
V2 8mi 207 (103)

Cette relation permet de calculer la valeur moyenne sur le vide
v:
v = 246 GeV

tandis que (99) donne la masse des bosons W et Z en fonction de 'angle
de Weinberg, Gy et e :

2 m
2 e 2 w
my——— . mi- . (104)
" 42 Gpsin? 6 £ cos? 6

Expérimentalement my, = 82+ 2 GeV et mz; = 93 + 2 GeV.
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x

Le test principal du modéle GSW consiste a vérifier I'identité des
valeurs de sin 8 mesurées dans différentes expériences. Pour résumer la
situation, on peut dire que sin # apparait dans trois types de données :

2

Q) sin? 9 = — =¢ A
42Grmy  V2Gpmby
(i) sin® 0 = 1 — mi/mj

(iii) sin® @ est déterminé par le couplage des courants neutres dans
les diffusions »N, eD, etc... Ces quantités sont en général différentes
dans tout modele non minimal (c’est-a-dire comprenant plus de bosons
de jauge, ou de bosons de Higgs, etc.). Cependant, avant de tester
I'identité de ces trois types de détermination, on doit tenir compte des
corrections radiatives (). Il est nécessaire de se fixer un schéma de
renormalisation, et le plus populaire consiste & utiliser (ii) comme
définition de sin® . Dans ce cas les corrections radiatives seront
présentes pour les déterminations (i) et (iii). La valeur acceptée en 1986
pour les déterminations du type (iii) (corrections radiatives incluses)
est :

sin? § ~ 0.23 = 0.01
ce qui est en bon accord avec la valeur déduite de la définition (ii) :
sin® @ = 0.21 +0.02 .

En ce qui concerne (i), on peut écrire les corrections radiatives sous la
forme :

2 77& a (my) .
sin 0_<\/§Gpm‘%v) p (1+e)

ou & ne contient pas de grands logarithmes, du type In (my/m,). La
correction la plus importante vient du passage de a (a~'=137) a
a (my)(a~Y(my) = 128), car ce passage fait précisément intervenir
des grands logarithmes ; cette discussion montre que les constantes de
couplage variables avec ’échelle de masse ne sont pas une vue de
esprit. La détermination (i) de sin?> § donne 0.22 + 0.02. En résumé
l’accord est trés bon entre le modele GSW et 'expérience. Des tests
plus décisifs pourront étre effectués quand on disposera de mesures trés
précises de la masse des bosons W et Z.

Le modéle GSW a donc permis de prédire avec succés deux
phénomenes qui n’avaient a priori rien d’évident :

(i) l’existence de courants neutres,

(i) Pexistence de deux bosons massifs dont la masse était supérieure
par deux ordres de grandeur a celles des particules connues en 1970.
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Il faut y rajouter la prédiction du quark charmé, dont je n’ai pas pu
parler, ayant laissé de c6té le cas des hadrons.
Malgré ces succes, il faut reconnaitre les points faibles de ce modele :

e le «secteur de Higgs » est trés peu contraint ; en particulier la
masse du boson de Higgs qui survit a la brisure de symétrie et les masses
des leptons sont tout a fait arbitraires (g, dans (101) est arbitraire) ;

o le modéle n’est pas asymptotiquement libre, en raison du groupe
de jauge U(1)y et du couplage en ¢* des bosons de Higgs ;

e le groupe de jauge est un produit direct, ce qui introduit deux
constantes de couplage ; d’autre part le groupe U(1)y est abélien, et la
quantification de la charge électrique n’est pas expliquée.

D. CHROMODYNAMIQUE QUANTIQUE

La « théorie présumée des interactions fortes » est la chromodynami-
que quantique (QCD). Cette théorie repose sur une symmétrie interne
appelée — de fagon tout a fait arbitraire — symétrie de couleur. Le
groupe de symmétrie est SU(3) et les constituants élémentaires des
hadrons, a savoir les quarks et antiquarks, sont rangés respectivement
dans les représentations fondamentales 3 et 3 de SU(3). Rappelons
qu’un groupe SU(N ) a deux représentations inéquivalentes de dimen-
sion N, les représentations fondamentales N et N. Cependant dans le
cas N = 2, ces deux représentations sont équivalentes. Les vecteurs de
base de ces représentations sont, dans le cas de SU(3), étiquetés par la
couleur, par exemple :

1 0 0
|bleuy = | 0] ; |rouge) ={1}; |[vert) =|0
0 0 1

En plus de la couleur, les quarks se différencient par leur saveur
(flavour) : comme on Ya vu au chapitre précédent, on connait cing
types de quarks : up (u), down (d), strange (s), charmed (c), beauty
(b), et il en existe vraisemblablement un sixieéme, le quark top
(¢). 1 ne faut pas confondre la symétrie SU(3) de couleur avec la
symétrie SU(3) de saveur découverte par Gell-Mann et Neeman : celle-
ci est une symétrie des saveurs (u, d, s ), et commute avec la symétrie de
couleur : chaque saveur existe en trois couleurs. La symétrie de saveur
est approchée (par exemple les quarks u, d, s ont des masses
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différentes) alors que la symétrie de couleur est exacte. De plus, et c’est
1a le plus important, la symétrie de couleur est aussi une symétrie locale,
et elle est a la base d’'une théorie de jauge non abélienne qui est
précisément la chromodynamique quantique. Comme SU(3) a
8 (= 3? — 1) générateurs, il y aura huit bosons de jauge appelés gluons.

En résumé, les interactions fortes sont décrites par une théorie de
jauge non abélienne dont le groupe de jauge est SU(3) ; les particules
de matiere (spin 1/2) sont les quarks et antiquarks, appartenant aux
représentations 3 et 3 de SU(3). Les particules de jauge (spin 1) sont les
gluons, appartenant a la représentation de dimension 8 de SU(3). Les
hadrons observés dans la nature sont de deux types : les fermions, aussi
appelés baryons (proton, neutron, ...) et les bosons, qui sont les mésons
(méson-m, méson-K, ...). Les baryons sont formés de trois quarks dont
la fonction d’onde est un singlet de SU(3), et les mésons sont formés
d’'une paire quark-antiquark dont la fonction d’onde appartient égale-
ment a la représentation de dimension 1 de SU(3) : les hadrons sont des
singlets de couleur. L’hypothése selon laquelle on ne peut observer que
des singlets de couleur est appelée hypothese de confinement.

Si I’hypothe¢se de confinement est correcte, on remarque que la
condition asymptotique (X.7) ne peut pas étre valable pour les champs
de quarks ¢ et ¢, puisqu’il n’existe pas de quarks libres. On suppose
que Porigine de cette propriété réside dans les divergences infrarouges
trés séveres de la chromodynamique. Seules des combinaisons qui sont
des singlets de couleur comme ; §; ou &; ik ¥i Y; ¥ peuvent correspon-
dre a des états asymptotiques.

D.1. Liberté asymptotique

La propriété la plus importante de QCD est la liberté asymptotique
(qui est une propriété des théories de jauge non abéliennes). Cest cette
propriété qui permet de calculer perturbativement certaines réactions a
haute énergic, comme I'annihilation e* ¢~ que nous verrons au
paragraphe D.2. Pour démontrer la propriété de liberté asymptotique,
nous devons obtenir la relation entre la constante de couplage nue
go et la constante de couplage renormalisée g :

do =29 .

Compte tenu des identités de Ward (69), il y a plusieurs fagons de
mener ce calcul ; la plus simple est probablement d’utiliser le couplage
gluon-quark (cf. equation (68)) :

G0=ZirZi"Z;g;  Z=Z,p2Z5"2Z7'. (105
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Afin d’éviter les rotations de Wick et d’autres sources de facteursi,
jutiliserai la théorie euclidienne, ce qui sera également une préparation au
paragraphe E. Le lagrangien % de la théorie euclidienne s’obtient a I'aide des
substitutions (A désigne un vecteur de I'espace euclidien a D dimensions,
uw=1,..,D):

a,‘A,L
YO

Il

AB* »—-A-B=-A,B,; 3,A" 5V A
YA 5 —v-A=—vy,A,; vy, ->vV

il

et en changeant le signe du résultat. Par exemple pour un champ scalaire :
2 =L@.e)ere)-ime?
2 2
Ze =L ey +imie =1 (,0)(0,0) +3m 0.
Les matrices 7y, obéissent aux relations d’anticommutation :

(Vi 7vs} =28, (106)

et il faut se rappeler que V —ip (au lieu de 9* — — ip*) pour un moment
entrant dans un vertex. Les régles de Feynman se déduisent des remarques ci-
dessus (en omettant la notation vectorielle : k — k) :

L. 8 4 k, k,

OAAAAAAAAAIK = (5#,,*(1*“) 3 ) (107.a)
k- k-

v,b M, a

L 5
Moo an X @ (107.b)
b a k-

p

> S dulm—p) (107.¢)

/- j pF+m pr+m?

Les vertex (62.a, ¢, d) doivent étre multipliés par (i) et (62.b) par (- i), sans

oublier la substitution g,, - —§,,.

Nous allons évaluer les constantes de renormalisation a ’ordre d’une boucle
en commengant par Z;; les contributions & I'énergie propre d’un gluon
proviennent d’une boucle de gluons, d’'une boucle de F-P et d’une boucle de
quarks. Le calcul sera fait dans la jauge de Feynman (a = 1) et en utilisant la
régularisation dimensionnelle, ou 'on peut ignorer les tadpoles (cf. V-E.1) ; on
omettra un facteur multiplicatif u °, qui ne joue aucun réle dans le calcul qui va
suivre. Les facteurs de groupe dépendront de Cp et C 4 (cf. 66). Pour le groupe
SU(3) il suffira de faire la substitution :

Cr=43; C,=3.
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Commengons par la boucle de gluons (figure 7) :

J=—(a+k)

v, b

Figure 7. Contribution des gluons a I'énergie propre du gluon.

L’expression du graphe de la figure 7 est :

1 N,,d%q
M k) = 56000 C [ =20 (108)

P (g + kY
ol 1/2 est le facteur de symétrie, C 4 le facteur de groupe (cf. equation (66.a)) et
N,, est donné par :
Ny =8,,5k+2q.k+29%+24,9,2D-3)+
+kyk,(D~6)+ (g k,+kyq,)2D—-3).

Apres avoir utilisé I'identité de Feynman pour combiner les dénominateurs, on
effectue le changement de variables ¢ = ¢’ — xk en conservant seulement les
termes pairs en ¢, et on intégre sur g a I'aide des identités de I'appendice B,
avec pour résultat ;

D . D
H(G) zgchaadF(z_D/z)B<7_1,7_1)
Ap ;s ad 4(47T)D/2(k2)2—D/2 (D_l)
x[(6D—5)k?8,,— (TD~6)k, k,]. (109)

X

Le calcul de la boucle de F-P est plus simple (figure 8) :

b
. , .
k k+q . -k
—_— . . -—
moa coAd
. q
i, -— .
’.o‘.-"
[

Figure 8. Contribution de la boucle de F-P
a I'énergie propre du gluon.
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d?q (@ +k),
R _
i 0T ] @ g kP
D . D
_gZCAaadF(z‘D/z)B(—2——1’—2-'__1) [k25 +
- (4 )P/ (k- D/? 4(D-1) Ap
+(D-2)k, k,]. (110)

La somme des deux contributions (109) et (110) est transverse (on vérifie ainsi
une identité de Ward : cf. exercice 5.c) :

D D
gZCAs.,dr(z—D/z)B(Tl ;’2“1)
4 ,’T)D/Z(kZ)Z—D/Z 2(D-1) x
x 3D -2)[k*6,, -k, k,] (111)

H}\u;ad =

et on en déduit le terme divergent :

iv s 5 2
1 = 7= C, a,,d( 2 ) ( : ) (K28, —ky k,) (112)

o

ol, par analogie avec Iélectrodynamique, on a introduit la constante de
couplage forte o, = g?/4 . Il n’est pas nécessaire de faire le calcul de la boucle
de quarks, qui est identique a celui de la polarisation du vide en électrodynami-
que, mis & part un facteur de groupe (66.¢). Si n; est le nombre de saveurs, on
obtient a partir de (XII.54) le résultat suivant pour Z; dans le schéma
MS:
o
za=1+4—%<§c,,—gnnf)2 (113)

P .

1l faut ensuite calculer les graphes contribuant a Z, et a2 Z, (figure 9) :

A
A e
(a) c
(b) N (c)

™~

Figure 9. Graphes contribuant a Z, et Z, 5.

Les graphes (a) et (b) de la figure 9 sont, & part un facteur de groupe,
identiques & ceux de I'électrodynamique. Ces facteurs sont respectivement :

(a) : C (cf. 66.¢) ; ®:Cp - % C , (exercice 4.a) .



588 Théories de jauge non abéliennes XIII.D.1

Les facteurs C de (a) et (b) se compensent dans le calcul de Z et il reste une
contribution effective :

a
Zi Zf P =1 - <—%CA) % (114)

Reste le graphe (c), dont le calcul exact est assez long ; heureusement nous
pouvons nous contenter de sa partie divergente. La contribution du graphe (c)
contient en facteur (figure 10) :

. 3 1 1
g fabc( §Ac>ﬂ< 2%)”

A, est un générateur infinitésimal de la représentation fondamentale.

ou

Dr’apres Iexercice (4.b), ce facteur multiplicatif vaut :
. - .
'z‘g CA(E.)\a)ji. (115)

Ecrivons maintenant’ le numérateur dans le calcul
de la boucle (figure 10) :

Nu = [suv(k'p+q)p+avp(p+p’—'2q)p+
+8,,(g-pP' ~k)lv,(=D ..

] . Comme nous cherchons uniquement le terme diver-
Figure 10. Evaluation gent, il suffit de conserver le terme quadratique en g :
du graphe c.
N,-2¢”y,+4q,4 5397,

et aprés une intégration triviale sur g on obtient la partie divergente du
graphe :

iv 1 o 1 2
ri= [59(/\41);;' ‘Y,L] 4—'}; <§CA) (3><;.>

ce qui donne une contribution Z{ a Z, ;-

@_1_% (3 2
Z€ =1 4w<2c,,)8. (116)

Rassemblant les résultats (113), (114) et (116) on déduit Pexpression
de Z en les reportant dans (105) (les quantités Z;, Z, et Z, dépendent
de la jauge, c’est-a-dire de a ; cependant Z, du moins dans le schéma
MS, est indépendant du parameétre de jauge : exercice 12) :

as 11 2 2
Z—l—z—;[-gCA—ngnf]—g . (117)
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La fonction B (a,) se lit immédiatement sur (117) (C 4 =N, T = 1/2),
en utilisant (VII-81) et al= Z?a,:

dag a? /11 2 3
= = ——{ = - = M ‘
B(ay)=pn 3 3 ( 3 N 3nf) +0(a?) |, (118)

Le terme en a7 dans (118) est négatif si ny < HnN

7 et dans ce cas la

chromodynamique est asymptotiquement libre.

Dans la littérature on se sert souvent de la constante de couplage
a,(q?), dépendant d’une masse g caractéristique du processus étudié :
le choix de a,(g?) permet de faire de la théorie des perturbations
améliorée par le groupe de renormalisation. Intégrons I’éguation
différentielle :

da, 4 )
dlng? "o e
avec
1 11 2
30=167T2(-3—N—§nf) (119)

(le choix de la normalisation de B est expliqué a I’équation (121)), sous

la forme :
[+ o] da 2
J‘ e =1In i.
a4 TBoal A

ol A est une constante d’intégration. Le résultat est :

1
4 wByIn (q%/ A%

Qg (qZ) = (120)

La constante de couplage décroit comme (Ing?)~'. Il faut bien
comprendre la signification physique de (120) : au licu de se donner un
point de renormalisation w2 et une constante de couplage a,(n?), on

fixe l'intensité du couplage par un paramétre dimensionné A, qui est
~ une constante d’intégration de I’équation différentielle de renormalisa-
tion : cette procédure a été appelée « transmutation dimensionnelle ».
Elle ne se limite évidemment pas au premier ordre en « ; écrivant :

B(@)=-Bog’-B.9° +0(g") (121)
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ot les coefficients B et B, sont universels (cf. VII-A.5), et B, est donné
par (%)

1 2( 34 N2 10Nng nf(NZ—l)
Bl_(167r2)( Ty ) )

on obtient, avec un choix convenable de la constante d’intégration
(exercice 11) :

1

a,(q?) = ————— x
4’”30111%}
1 Bjilnln g%/ A* In In? g%/ A2 123
X - 2 2742 +0 2 2742 - (123)
Bilng“/A In"g%/A

Le parametre A dépend du schéma de renormalisation. La valeur
acceptée pour Az (cf. note page 263) était en 1986 :

S0 MeV = Az = 200 MeV .

I’importance du parametre A est qu’il fixe ’échelle de masse de la
théorie, indépendamment de la masse des quarks, c’est-a-dire méme si
la masse des quarks est nulle ou méme si les quarks sont absents. Ceci
sera revu sous un autre angle au paragraphe E.3.

D.2. Annihilation e* e : cinématique

Nous nous proposons maintenant de préciser le calcul du rapport R
fait au chapitre XII, paragraphe B.3, en évaluant la correction d’ordre
a, & ce rapport et en discutant la validité de I'approche théorique. Au
passage nous aurons l'occasion de découvrir des phénomeénes intéres-
sants comme les singularités infrarouges et colinéaires, et d’écrire une
équation trés importante, 1'’équation d’Altarelli-Parisi, dans un cas
particulier. '

Supposons que nous observions dans 'annihilation e*-e~ en hadrons,
un hadron de type particulier H (par exemple un méson w*), de
moment py dans le référentiel du centre de masse e*-e~ ; ’énergie
Py u de ce hadron sera comprise entre my et q /2. Négligeant la masse du
hadron (my < q/2, ol g est la masse du photon virtuel), il est naturel
d’introduire la variable zy comprise entre 0 et 1 :

=2P0H_2PH-61_
q ¢

Zy O=szyg=l. (124)
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On peut mesurer la section efficace do/dz,, de production d’un
hadron de moment zyq/2, et définir la fonction de fragmentation
Dy(zy) par:

1 do

Dy(zy) = o7z (125)

ol oy est la section efficace totale e*-e~ — hadrons.
Donnons d’abord une description cinématique du processus. La
réaction :

et-e- 5> H(py) + X

est représentée sur la figure 11 ; X représente 'ensemble des particules
non observées.

Figure 11. La réaction e’ —e” — H(py) + X.

Définissons le tenseur W,’f,, a laide des éléments de matrice du
courant électromagnétique j, (le facteur (4 )~ ! est conventionnel) :

1
W, = 2 [ 4002 m) 59 - pu—px) x
% (pus X] [, (0)10) 0150 |pm X)  (126)

ot d® ¥ est I'espace de phase. La section efficace do s’écrit en

fonction de W/, et du tenseur leptonique [, :

l,, =4k, k, +k,k,)-2q%g,,
sous la forme :

4

3
do—:..e_ 4P

1 H
—— 4 gl W, . 127)
8‘12614 (2 77)32P0H *

La conservation du courant j, permet d’écrire le tenseur WH, en
fonction de deux invariants de Lorentz Wi et W¥, également appelés



592 Théories de jauge non abéliennes XIIL.D.3

fonctions de structure, qui dépendent uniquement de zy et de
2.
q-:

9y qu

W;I;Iv = - (g;uz -

. p”H_qF(PH-q) pVany(sz-q) WH (128)
q* q

>Wl+

et 'on trouve :

do - ’n-azzHly.uwH —
dzpdcos By q* ad q°

WQZZH

[WH q8 sin® OHWf]
(129)

ol 8 est ’angle entre k et py. Si ’on ne s’intéresse pas a la distribution
angulaire, on peut intégrer sur cos 6y avec pour résultat :

2mwa’z 4ma’z
do _27a ZH wH 9z wi| = _ZT_(X_Z_H wH  (130)
dZH qz 12 3 q

oit I'on a défini W¥ par :

WH = _ ;gWYVH. (131)

D.3. Equation d’Altarelli-Parisi

L’équation (131) termine I'étude cinématique, et nous passons
maintenant 4 la dynamique. La chromodynamique quantique nous
apprend que le processus fondamental est la production de quarks,
d’antiquarks et de gluons, et que les hadrons ne se forment qu’ultérieu-
rement, par le mécanisme — pour le moment imparfaitement connu —
du confinement. Ignorant pour le moment le confinement, nous allons
étudier la production d’un quark, en définissant pour ce quark les
quantités z, W, et W, analogues de zy, W¥, et W¥. Le processus le
plus simple (ordre (a,)° en QCD) est la réaction e*-e- —q — 7,
étudiée au chapitre XII. Dans ce cas la fonction de fragmentation vaut
§(1 —z) et la section efficace do /dz (cf. XIL.31 ; e, est la charge du
quark en unités de la charge du proton) :

——=———e28(1-2) (132)
q

W=58(-2). (133)
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La correction d’ordre «; est donnée par le processus :
et +te  5q+g+g

ou g représente un gluon. Les deux graphes contribuant a cette réaction
sont dessinés sur la figure 12 qui définit aussi la cinématique :

p P
q
————— k S N k
p) . p/
(a) (b)
Figure 12. La réaction e —e™ — ggg a l'ordre «.

Comme nous supposons g > 1 GeV, nous pouvons négliger la masse
des quarks. Dans ces conditions I’élément de matrice de la réaction

v*(q)—q()+q@') +g(k) sécrit :

sy = i) e a@)] ey

i

p+k z]v(p) (134)

ol ¢, est la polarisation du gluon. Prenant le carré de I’élément de
matrice, sommant sur les spins finaux et saturant avec g*”, nous
obtenons, aprés un calcul de traces de matrices y sans aucune difficulté
(exercice 13) :

M) =~ " S My, MF=8Cpel LS 2T ”u+2"1 (135)

spins
ol nous avons introduit les variables de Mandelstam s, ¢ et u :
s=@ +kY; t=@+p'V; u=@+k)} (136)

tandis que Cr =4/3 (= (N*~1)/2 N avec N = 3). Les variables z et
z' s’expriment en fonction de s, u et g:

_2p.q s, _2p'.q u
z_———q—z—-—:l—_z, z' = > =1—q—2 (137)

et permettent de récrire | |?:

| M2 =8Cre2g® X(z,2') =8 Cpelg? = 22127 (138)

)1 -z’
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Arrétons-nous un instant sur Yexpression (138) ; supposons d’abord
z # 1: la quantité X (z, z') est singuliere lorsque z' — 1. Dans ce cas le
gluon et le quark ont leurs moments paralleles et de méme sens : on dit
aussi qu’ils sont colinéaires (*). Pour traiter la singularité correspon-
dante il est nécessaire, dans une étape intermédiaire, de se donner une
régularisation. La méthode la plus correcte consiste a travailler dans un
espace a 4 + ¢ dimensions (exercice 14). Cependant, a l'ordre de la -
théorie des perturbations ol nous travaillons, il est aussi possible de
donner une masse A # 0 au gluon sans violer la conservation du
courant. Comme linterprétation physique est plus claire, j’utiliserai
cette « régularisation infrarouge ». Nous verrons dans un instant que les
configurations colinéaires z % 1, z' -1 et z' # 1, z - 1 donnent des
contributions en In g2/A?, singulieres a la limite A —0: ce sont les
singularités colinéaires, également appelées singularités de masse. La
région z — 1, z’ — 1 correspond a I’émission d’un gluon de moment tres
faible, appelé pour cette raison gluon infrarouge ou gluon mou. Cette
région donne une singularité infrarouge en In*(g?/A?), caractéristique
d’une théorie de jauge. En effet une théorie renormalisable ordinaire,
comme la théorie en ¢ a six dimensions, ne donne que des singularités
de masse.

Evaluons maintenant de fagon précise la quantité W= —12g av WHEYS
d’aprés (126) nous devons intégrer sur les moments p’ et k de P'antiquark et du
gluon. Cette intégration se fait commodément
dans le référentiel du centre de masse de ces
deux particules : p’ + k = 0 (figure 13) :

’ +1
w1 JlP_lLJ deos 0412, (139)

- 64 ’TT2 \/E 1
Un petit exercice de cinématique relativiste
donne :
. 2 2
Figure 13. Cinématique dans _s+q . 49 —95.
. qo = = = P = =
le référentiel p’ + k = 0. T 25 po= Il 25
s — A2

= ||Ip'|| = —. (140
po=|p'll WL (140)

Au lieu d’intégrer sur cos 6 dans (139), nous allons intégrer sur la variable

(*) On serait tenté d’attribuer la singularité au graphe (a) de Ia figure 12, Cependant la
contribution de chaque graphe n’est pas invariante de jauge. Il est facile de trouver des
jauges (exercice 15) ol le graphe (a) donne une contribution nulle.
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!

z' reliée & cos 6 par:

' ’ s—AZ
2= LB (g2 4 5) - (4= ) cos ] = S=2 [(g7+ 5) = (g7~ 5) cos 0]
9’ Vs 2sq
(141)
soit :
dz' | _zfip'|l
dcos 6 s
et:
- JZM dz' | M2 . (142)
64 72z ).
L’équation (141) donne également les limites d’intégration en z':
2 2
Z,',,:l—z—)\—sz’ A Zy - (143)

<l- 2
q° q*(1-z)

D’autre part nous devons corriger 'élément de matrice carré |.# |* dans (138)
pour tenir compte de la masse A du gluon:

. . gy A 1 1
X(z,2') > X(z,2") p ( (1_2)2+(1_Z,)2> . (144)

Enfin il est commode d’utiliser pg)ur (1 — z)™! une définition du type valeur

A A Lo
principale ; comme 0 <z =<1 - — nous écrivons :

7
1-a%/q? i _ 2 2
f / ____dzf(z)zfdzf—(———z) £ f(l)lni?—z+0<"—2) (145)
0 1-2 0 1-z2 A q
ou en termes de la distribution (1 —z);':
11 q°
1_z_(1_Z)++8(1~z)ln)\2. (146)

On définit de méme la distribution [In (1 -2z)/(1 ~2)], :

(20=2) (B0} lig_gwL  a)

1~z 1-z

Nous voyons émerger les termes singuliers In (g%/A?) et In? (g°/A?) annoncés.
Apres cette préparation, nous sommes enfin en mesure d’intégrer sur
z'; les termes qui tendent vers zéro a la limite A2 0, par exemple
(A%/g») In (g°/A?) seront omis.

o 2 gy M (2’2 _1)dz'
J dz’X(z,z')=1+ZJ d2,+ 1 J (z ),z=11(2)+12(2)-

1-z z’,nl—z 1-z o 1-z

m
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Le résultat de Vintégration est :

1+ z°

(1)

L(z) = 77—~

1n/\—+(1+z)(1n(1_2)> +1+22

1-2z l—zlnz+

+8(1—z)In? (g%/rD)

_ 3 3 1, _ g 1
IZ(Z)__M+§ 2 5(1 Z)< 11’1)\2 4)

Le deuxieme terme de (144) donne les contributions suivantes :

/\2 1 )\2
- 5z8(1-2); T —»1-z.
g’(1-z)? "2 g’ —-z'y

Rassemblant tous ces résultats on obtient pour W :

2a,e? NE (qz//\z) In (1-z) Inz
W= 31'rzq l:(1+z)|: 1-z), (nl——zz >++1_——z]-

3

—m+%(1+z)+5(1 z)[lnq %mz—ﬁ%”. (148)

Cette expression exhibe, comme prévu, des singularités infrarouges et colinéai-

res. Cependant notre calcul de W n’est pas complet. En cffet, nous devons

ajouter. le graphe correspondant a une

correction radiative au vertex photon-

_____ - quark (figure 14) qui est du méme ordre

en a,; cette contribution est appelée

. «virtuelle » (le gluon dans la figure 14

Figure 14. Echange d’un gluon  €tant virtuel), par opposition a la contribu-
virtuel dans y* - gg.  tion (148) qui est appelée « réelle ».

La contribution a W du graphe de la
figure 14 s’obtient simplement en multipliant celle du graphe d’ordre (a,)° (cf.
(133)) par 2 Re F(q?), ot F,(g?) est le facteur de forme évalué au chapitre XII
(équation (81.a)). Cette expression permet de montrer que la contribution du
graphe de la figure 14 & W est donnée par (exercice XI1.7 ; il ne faut pas oublier
le prolongement analytique g* <0 - g>=0):

2a

a, ¢, 7
2 —_
—els(l- z)[ln -3 ln +5-% ] ) (149)

La renormalisation étant faite sur couche de masse, il n’y a pas de corrections
dues aux lignes externes.
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Additionnant (133), (148) et (149), nous obtenons do /dz sous la
forme :

do 4ma’ ), 2ay (72 9
dz 342 eq{S(l—z)[1+3Tr<—3——Z>]+
2a 2
s q In (1-—2)) Inz
+ —_
SW[qu(Z)lnAZ*F(l-FZ)[( 17 ++1~z]

—2—(1~37)+-+% (1+z)” (150)

ol P (z) est la fonction d’Altarelli-Parisi :

2
qu(z)=(11—jzz—)++;( z)_(lJf_ZZ_)+ sy

L’addition des graphes réels et virtuels a fait disparaitre les singulari-
tés infrarouges. Le mécanisme de cette compensation est connu sous le
nom de « mécanisme de Bloch-Nordsieck ». Il reste dans (150) unique-
ment les singularités de masse, qui sont proportionnelles a la fonction
P,,(z). Essayons maintenant d’interpréter cette équation ; évidemment
une interprétation directe comme section efficace n’est pas possible, car
le résultat dépend de la masse A du gluon, qui est seulement un
intermédiaire de calcul. De plus le résultat dépend de la régularisation
infrarouge utilisée. Cependant, nous pouvons tirer de (150) ’équation
suivante pour la fonction de fragmentation D (z, ¢2), valable a 'ordre
a,, et qui ne dépend plus de A*:

dD(z, ¢°) J dx p
qq

D(x g>) +0(a2) (152)
dlngq?

(dans le membre de droite de (152), D(x, ¢%) = 8 (1 — x) est calculé a
lordre (a,)). Cette équation suggere ’équation d’évolution suivante
pour la fonction Dy(zy, %), ou équation d’Altarelli-Parisi :

dDy(zy, ¢%) (1
ding? L,_gj< ) Dalx, ) (15
ol
#(z) = ~—S(7q—) Poy(2) + O(af). (154)

Il est effectivement possible de prouver une telle équation d’évolution,
mais sa démonstration sort du cadre de ce livre.
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D.4. Correction d’ordre « au rapport R

Aprés ce long détour, qui nous a cependant fait voir nombre de
propriétés intéressantes, revenons a notre objectif initial qui était le
calcul du rapport R. Notons que lintégrale sur z de do/dz est
simplement la section efficace totale o, car un seul quark est produit

dans Pétat final. En utilisant les identités

j dz(1 +22)(ln (1_2))
*3

1 2
1+:z T
Ldzl_zlnz————:;

on obtient a partir de (150) :

2
oyt e;(l +°‘?) (155)

soit pour le rapport R :

R=3Z (eéi))z(l s(q )

X4 0( 2)) : (156)

Comme la seule échelle de masse dans le probléme est g, nous avons
utilisé la constante de couplage a,(q?). Il y a trois remarques
importantes a faire :

(i) aux énergies les plus élevées accessibles aujourd’hui,
a(g?)/m=0.1: le calcul perturbatif est donc justifi€, quoique sa
précision reste trés inférieure a celle de Délectrodynamique, ou
a/m~ 10-3.

(ii) Pintégration sur tous les états finaux dans (155) a fait disparaitre
toutes les singularités, infrarouges et colinéaires. Nous venons de

vérifier sur cet exemple un théoréme dii a Kinoshita, Lee et Nauenberg
(théoreme KLN) ().

(iii) On peut montrer que le confinement ne modifie pas le résultat
(156) quand g*- co. En effet le temps de formation de I’état final
quark-gluon est de I’ordre de 1/q, alors que le temps de confinement
doit étre de l'ordre de 1 (GeV)~!, compte tenu des échelles d’énergie
caractéristiques des deux processus. On peut imaginer une expérience
théorique effectuée a un temps ¢ tel que ¢~ '<r <1 (GeV) '. Cette
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expérience mesurerait la section efficace (156). Une fois cette section
efficace construite, le confinement ne peut plus la modifier.

Ce paragraphe D ne donne qu’un apergu trés limit€é du vaste champ
d’applications de la chromodynamique perturbative : annihilation
et-e~, mais aussi diffusion profondément inélastique d’€lectrons,
production de paires de leptons, production de bosons W et Z, de jets,
diffusion a grand moment transverse, etc. Le lecteur intéressé est
renvoyé a la littérature citée dans les références.

E. THEORIES DE JAUGE SUR RESEAU

La chromodynamique quantique perturbative ignore le probléme du
confinement ; les prédictions ne sont possibles que pour certains
processus de haute énergie : plus exactement il est nécessaire d’avoir
dans la réaction comsidérée un transfert de moment g tel que
g’> A? ou A est le paramétre caractérisant la constante de couplage de
QCD, a,(q?) (cf. équation (120)). Ce paramétre A est de l'ordre de
0.1 GeV et sa valeur correspond bien a une échelle d’énergie caractéris-
tique du confinement. La chromodynamique perturbative ne permet
pas de calculer les quantités physiques reliées au confinement : fonction
de fragmentation Dy(zy, g§) (condition initiale dans I'équation d’évolu-
tion (153)), masses des hadrons, sections efficaces totales hadroniques,
etc. Toutes ces quantités doivent étre calculées avec des techniques non
perturbatives, c’est-a-dire a ’heure actuelle avec des techniques numéri-
ques.

L’idée la plus fructueuse consiste a « mettre la théorie sur réseau »,
c’est-a-dire a écrire une action (appelée hamiltonien dans la premiére
partie : cf. X-B.3) qui, a la limite ou le pas du réseau g — 0, redonne
Paction (48) de la théorie continue. Afin de nous ramener a un
probleme de mécanique, statistique classique, nous partirons de I’action
euclidienne a quatre dimensions, et nous calculerons des énergies
libres, des fonctions de corrélation, etc. Ainsi, avec ce dernier
paragraphe, nous avons « bouclé la boucle » : partis de la mécanique
statistique classique, nous I'avons abandonnée pour une longue excur-
sion en théorie quantique des champs, et nous y revenons avec les
théories de jauge sur réseau.

Avant de passer a4 des exemples, une remarque préliminaire
s’impose : dans la théorie sur réseau, le seul parametre dimensionné est
a ; si nous souhaitons calculer par exemple une masse m, celle-ci sera

proportionnelle & a=':m = (éa)™ !, ou £est la longueur de corrélation
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en unités du pas du réseau. Comme m doit rester finie & la limite
a — 0, il est nécessaire que ¢ — o0, c’est-a-dire que 'on se trouve a un
point critique de la théorie considérée. Ainsi que nous 'avons déja vu
(chapitres VI et VII), la construction d’une théorie renormalisée
implique Pexistence d’'un point critique. Dans le cas de la chromodyna-
mique, un point critique (on espére que c’est le seul) se trouve a
go = 0, étant donné que g, = 0 est un point fixe : la limite continue sera
telle que go(a) — 0. Notez que la constante de couplage est ici la
constante de couplage nue : en effet le réseau sert a régulariser la
théorie, et g, est la constante de couplage de la théorie régularisée.

E.1. Modéle de Wegner

Afin d’introduire les théories de jauge sur réseau dans un cas
élémentaire, nous décrirons d’abord le modéle de Wegner a deux
dimensions. Considérons un réseau carré a deux dimensions comportant
N sites (N » 1), ou des spins d’Ising S; = = 1 sont placées sur les liens
{et non aux nceuds) du réseau (figure 15) :

LI ]

Figure 15. le modele de Wegner a deux dimensions.

Le hamiltonien (ou action) est donné par la somme de produits de
quatre spins le long d’un carré, ou
plaquette (P) (figure 16),

2S:(P)
” H=-TY85(P)Sy(P)
P
Sa(P) p 5,(P) X S;(P)S,(P) (157)
1l la sommation portant sur les N pla-
quettes. La fonction de partition Z
Si(P) vaut :

Figure 16. Une plaquette. Z=Y3e" BH (158)

[8:]
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Soit G(x) la transformation qui renverse tous les spins situés sur les
liens partant du point x (qui est un nceud du réseau (figure 17)) et

Figure 17. La transformation de jauge locale G(x).

laisse inchangés les autres spins. Cette transformation laisse invariant le
hamiltonien (157), et elle peut étre interprétée comme une transforma-
tion de jauge locale : & chaque point x est associé un référentiel
permettant de définir I'orientation des quatre spins sur les liens partant
de x. L’invariance de H montre que lorientation relative de deux
référentiels (x) et (x') est arbitraire. Le groupe de jauge, qui est le
groupe dont les €éléments permettent de relier deux référentiels au
méme point x entre eux est ici le groupe a deux éléments {+1, ~ 1},
appelé groupe Z,.

Le modele de Wegner se généralise a une dimension D quelconque,
et il posséde une transition de phase pour D = 3. On peut se poser la
question du paramétre d’ordre : est-il possible que dans une phase
basse température (S;) soit différent de zéro ? Il est facile de voir qu’il
n’en est rien: en effet, plagant le systtme de spins dans un champ
magnétique infinitésimal B, on constate que les hamiltoniens de deux
configurations de spins reliées par une transformation de jauge locale
G (x) different d’une quantité infinitésimale (exercice 16). Au contraire
dans le cas du modele d’Ising ordinaire, renverser tous les spins colte
une énergie NB. L’argument peut étre généralisé et rendu rigoureux
pour tout systéme de spins présentant une symétrie de jauge locale
(théoreme d’Elitzur). Il nous faut donc trouver un autre type de
parametre d’ordre, qui sera en fait non local.

La fonction de partition Z est facile a évaluer lorsque D = 2 : en effet
il suffit de développer 'exponentielle dans (158) en utilisant identité :

PP 5B _ ch (BT) + 5,(P) ... S{(P)sh (BT) .

Pour que la somme sur les configurations soit non nulle, il faut (par un



602 Théories de jauge non abéliennes XIILE.2

argument analogue a celui de I-B.2) que P'on ait zéro plaquette, ou bien
que les plaquettes recouvrent I'ensem-
ble du réseau (avec des conditions aux
R 4 limites périodiques). Le résultat final
T est (N>1):

A

- Z = [4ch (BN]V.

Figure 18. La boucle de Wilson, COnsidérons maintenant sur le réseau
un rectangle # de c6tés T et R

(figure 18), et la « boucle de Wilson » W(Z#):

W(%):%z (ns,) e BH (159)

551 %
ou [] S, représente le produit de tous les spins situés sur les liens
4

définissant le contour du rectangle. 1l est facile de montrer les deux
propriétés suivantes :

(i) W(Z) est invariant dans une transformation de jauge locale ;

(i) nW(£)= (Inth BJ) TR:In W(Z) est proportionnel a laire
du rectangle # (il suffit de remarquer que les plaquettes doivent
recouvrir intégralement le rectangle %).

Le modéle de Wegner a deux dimensions rappelle manifestement le
modele d’Ising & 1dimension, et il n’est pas difficile de montrer
I’équivalence des deux modeles (exercice 17).

La quantit¢ W(Z) est le parametre d’ordre (non local) recherché ;
elle est invariante de jauge, et lorsque D = 3, la transition de phase se
signale de la facon suivante : In W cesse d’étre proportionnel a I'aire du
rectangle, et devient proportionnel a son périmetre. La « loi d’aire »
In W~ TR est obtenue par un développement haute température,
valable lorsque 8 — 0, et la « loi de périmétre » In W ~ (T + R) par un
développement basse température, valable lorsque B8 — oo.

E.2. Action de Wilson et couplage fort

Venons-en maintenant a des théories plus réalistes ; soit G un groupe
de Lie compact, SU(N) pour fixer les idées, et soient sur un réseau
cubique deux sites voisins i et j. Nous désignons par u le vecteur
joignant i et j selon un sens déterminé

Mm

Mmoo

i J
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Définissons maintenant un élément de Palgébre de Lie de G,
& ., fonction du point y milieu du lien (i, j), par:
1

ﬂy_ =§/\bAp.,b

ol les matrices 3 A sont les générateurs infinitésimaux de G dans la

représentation fondamentale, et soit Uj; la matrice (a désigne le pas du
réseau) :

Uy = e 90%%u (160)

ij
Dans cette équation, g est la constante de couplage nue, correspondant
a l'utilisation d’une régularisation sur réseau.

La matrice U,-}l = Uj;, et on utilise souvent la notation U, , au lieu de

J
U,'j:

M
e U(r

x X+ p

U*l

T Yxdp,—p

Une transformation de jauge locale g; agit de la facon suivante :
Uij— 9, Uy gj_l (161)

ol g; et g; sont des matrices associées aux sites i et j. Il est clair (cf. (35))
que la matrice U;; est analogue sur réseau de la quantité R(C ; A) du
paragraphe A.2. La méthode utilisée
au paragraphe A.3 suggére une forme

de I’action invariante de jauge : I K
S=3Sp (162)
g R FY €D
avec (»)
Sp=pB x i i
X (1 - % Re Tr (U;; Uy Uy Uli)> Figure 19. Contour pour (163).
(163)

ol le produit des matrices U est pris le long du contour limitant une
plaquette (figure 19). On peut répéter le calcul menant & I'expression
(43) lorsque a — 0 :

Sp =8 (1 ——I%Re Tr (exp(—igoa* F ,,, + O(a4)))) .
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Développant I'exponentielle, utilisant Tr A, = 0 et sommant sur les
plaquettes on obtient a la limite a — 0 :

_Bg31

S=5+3 j d*x[Tr (F,, F,.) + 0(a?)]

et comparant avec (48) aprés le changement d’échelle A, - gA, on
peut faire l’identification :

g =" (164)

L’action définie par (162) et (163) est appelée action de Wilson. Ce
n’est pas la seule a donner (48) a la limite continue. On peut la modifier
par des termes en a?, @, etc., qui s’annulent a la limite continue (du
moins a I'approximation en arbres). Ces termes sont, du point de vue
du point fixe & g, = 0, des champs inessentiels. Cependant ils peuvent
étre utilisés en pratique pour améliorer la convergence vers la limite
continue. A ce stade, il conviendrait de rajouter des fermions.
Cependant, les fermions sur réseau posent un certain nombre de
probleémes, aussi bien théoriques que numeériques, et je m’en tiendrai
dans cet exposé aux champs de jauge purs.

Comme dans le cas du modéle de Wegner, on introduira un
parametre d’ordre non local, la boucle de Wilson pour un contour C:

W(C) = % J 29 (Tr I Uk,> e (165)

Dans (165), le produit des matrices Uy, est pris le long d’un contour
fermé C formé de liens sur le réseau: W(C) est manifestement
invariant de jauge. La mesure d’intégration Zg est un produit de
mesures de Haar pour chacun des liens. Compte tenu du caractére
compact du volume d’intégration, il n’est pas nécessaire de factoriser un
volume infini en fixant une jauge.

Etudions maintenant linterprétation physique de la boucle de
Wilson ; a la limite continue le produit des matrices U, dans (165)
devient (cf. 34) :

i &, dx
90§c ® M)

HUklaP(e
C

et représente 'interaction du champ A, avec une source ponctuelle.
Prenons pour C un contour rectangulaire dont un c6té (7') est parallele

a laxe du temps (euclidien), et Pautre (R) parallele a un axe de
coordonnées ; nous supposerons T > R. La source ponctuelle est alors
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une paire quark-antiquark statiques créés a une distance R a
T =0, et s’annihilant au temps 7. La quantit¢ W(C) peut étre
interprétée comme le rapport de deux fonctions de partition, P'une en
présence d’une source J, et l'autre avec J = 0:

W(C) = g_.g% _ - FO-FO) |

Pour T> R, [F(J)— F(0)] est proportionnel & T, I’énergie libre F
€tant extensive ; d’autre part nous avons vu au chapitre VIII que la
densité d’énergie libre pouvait étre identifiée avec I’énergie de I'état
fondamental ; comme la paire quark-antiquark est statique, cette
énergie est purement potentielle et égale & V (R) T. Par conséquent :

W(C)~e VBT | (166)

Supposons (nous allons le montrer dans un instant lorsque g, est
grand) que Pon trouve, comme dans le modele de Wegner, une « loi
d’aire » :

V(R) T = o (TRa?) (167)

olt o est une constante ; le potentiel quark-antiquark serait alors
lin€aire, et nous aurions confinement : il faudrait fournir une énergie
infinie pour éloigner le quark et antiquark a 'infini. La constante o est
appelée « tension de la corde ».

Pour montrer (167) a la limite haute température (cf. 164)
go— oo, on utilise un développement haute température. On peut
montrer que le terme dominant s’obtient en pavant la boucle avec des
plaquettes (figure 20). En effet les inté-

grales sur un lien vérifient les proprié- — -
tés : : ﬁ
11
Jdg:l Jdg Uij U™ = 57 8u 8k
219 1
fng:jngT=fngU= ” ” < ]
:JngTUT=O. (168) R

Figure 20.

Le principe de la démonstration est identique a celui de la preuve
utilisée par exemple au chapitre IV dans le développement haute
température du modéle X — Y. Pour N = 3, qui est le cas physiquement
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intéressant on obtient :

W Rz ()

ce qui donne pour la tension de la corde :

og=a%ln (3gd) | (169)

11 est possible de montrer que le développement haute température a un
rayon de convergence fini, et par conséquent la théorie vérifie bien la
propriété de confinement pour g§ assez grand. Malheureusement cette
théorie a grand gj a trés peu de rapport avec une théorie continue (par
exemple 'invariance de Lorentz est grossierement violée) et il nous faut
faire le lien avec les petites valeurs de g, qui, ainsi que nous I'avons vu,
correspondent a la limite continue.

E.3. Couplage faible et invariance d’échelle asymptotique

Supposons que nous voulions calculer une quantité ayant les dimen-

sions d’'une masse, par exemple la racine carrée de la tension de la

corde, o '?; par analyse dimensionnelle o' doit s’écrire :

o= (g0 (170)

Lorsque a —» 0, ce qui correspond a un cut-off en k tendant vers
Iinfini, o!? doit devenir indépendant de a :

ol

da
ce qui donne une équation différentielle pour f(g,) :

f(g0) + f'(90) B(go) =0 amn

aved !
BGo) =~ a3 g0(@). (172)

L’équation différentielle (171) s’intégre sans difficulté si 'on utilise le
développement (121) de B (g,) (on a montré au chapitre VII, paragra-
phe A.5, que les coefficients B, et B; étaient identiques pour
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B(g) et B(gy)):
B(go)=—Bogo—B193+0(9l)-

Le choix d’une constante d’intégration particuliére dans la solution de
(171) définit un paramétre dimensionné A; (L pour lattice = réseau) :

0'1/2 =C4 AL (173.3)
— 2 _ 2
Ap=ate /R g, g2y P21 L O(gh)).  (173.b)

On remarquera le comportement non analytique en g, quand
gy — 0, analogue a celui trouvé en IV-C. Cette propriété montre qu’un
calcul perturbatif de o est a priori impossible. A; est indépendant du
cut-off ¢~ 1, et fixe I'échelle de masse de la théorie : on retrouve le
phénoméne de « transmutation dimensionnelle ». Toutes les quantités
ayant dimension d’une masse s’expriment en fonction de A; :

m; =¢; Ap (174)
et les rapports m;/m;, m;/o'? etc. sont universels : ils ne dépendent
que du groupe de jauge G. Naturellement I'équation (174) ne sera
valable que si a est suffisamment petit, de sorte que I'on se trouve dans
le régime continu : dans ce régime, la propriété d’invariance d’échelle
est satisfaite. L’invariance d’échelle asymptotique est une exigence plus
forte : on demande que la dépendance par rapport a ¢, soit donnée par
(173.b), c’est-a-dire controlée par les termes B, et B; de la fonction
B (90)-

Comme le réseau est une régularisation, on peut relier g, a la
constante de couplage renormalisée g par g, = Z, Z5 > g, en calculant

les constantes de renormalisation Z; et Z;. D’autre part, on peut aussi
utiliser un schéma de régularisation dimensionnel, et relier gy et
g dans le schéma MS, par exemple. La comparaison de g, (réseau) et
go(MS) pour une méme valeur de g permet de relier A (défini
perturbativement) et A; ; on trouve pour SU(3):

Aﬁsz 29 AL .

Si Az était bien connu expérimentalement (ce qui n’est pas le cas), on
pourrait fixer A; sans ambiguité, et par conséquent I’échelle de masse
sur le réseau.

De nombreux calculs numériques utilisant la méthode de Monte-
Carlo ont été effectués au cours des cinq derni¢res années. Je renvoie
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aux articles spécialisés cités en référence pour une revue détaillée ;
comme ces résultats numériques sont susceptibles d’évoluer rapidement
(avec le développement des ordinateurs spécialisés) je me borne a
donner un exemple de résultats pour la tension de la corde (figure 21)

©:

1.0 —
i n
~ - R
B / A
Y
- Invariance o4
172 . ~
oa | d’échelle ® -~
asymptotique A S A
0.1 -
‘_ | / 4 L 1 1 i d Bl

/

0,2 5.4 5.6 58 60 62 64

Figure 21. Une compilation récente pour la tension de la corde o'? Les
résultats numériques suggérent que linvariance d’échelle asymptotique est
satisfaite pour B = 5.8.

Une tension de la corde différente de zéro depuis la région de
couplage fort jusqu’a la région ol I'invariance d’échelle asymptotique
est valable, sans indication pour une transition de phase dans une
région intermédiaire, serait un argument trés fort en faveur d’une
théorie unique des interactions fortes, confinant les quarks a grande
distance et asymptotiquement libre a courte distance : dans ce cas — et
il n’y a pour le moment aucune indication pour penser le contraire — la
chromodynamique quantique serait vraiment /a théorie des interactions
fortes.

Cette breve revue des théories de jauge sur réseau n’a décrit qu’une
partie infime des travaux consacrés a ce probléme. J’espére simplement
avoir montré que ces théories reposent sur une synthése remarquable
de I'ensemble des idées exposées dans ce livre.
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EXERCICES

1) (a) Démontrer les identités (50) et (51).

(b) Démontrer les équations du mouvement (52) ainsi que I’équation de
continuité (53).

2) (a) Démontrer Yidentité :
(D", F*) = (DL F*) T, .
(b) En utilisant cette identité ainsi que (50), montrer Pidentité de Bianchi
(5:))‘ Montrer que si #,, = 0 dans le voisinage d’un point x, alors :
A, (x) =1[2,U(g(x))] U (g (x))
dans ce voisinage et réciproquement.

4) (a) Démontrer les équations (63).

(b) Déterminer les facteurs de groupe pour les graphes de la figure 22.

I i W il
W
(a) (0) ©

(d)

Figure 22.

Réponse :
1 1 2 1
(a) CF_ECA; (b) —ic,«ﬁ © =Cf; (@ "Z'CACF-
S) La transformation de Becchi-Rouet-Stora (BRS)

(a) Examinons d’abord I’électrodynamique, lorsque la jauge a été fixée de
fagon générale par la condition f(4) = 0. (Pour fixer les idées, on pourra se

référer a la « jauge pédagogique » 3"A, + %A o A" =0 de Pexercice XI.14).
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On doit ajouter au lagrangien un terme de fantOmes (désignés par m et
7 au lieu de ¢ et § dans Pexercice XI1.14) :

P = - jd“y 700) My (x, ¥) 1 ()

8 f(A%x))

ol : M(x,y)= 5AG)

A=0

On définit la transformation BRS par :
8A4,(x)= (3,m(x)) 8L ;5 8u(x) = —iey (x) n(x) 8¢
M) =L F(A) 805 BT =ieFx) m(x) B
dn(x)=0

ol 8¢ est une variable de Grassmann anticommutant avec n et 7 ;
8X /8¢ sera défini en faisant passer 8{ & droite et en divisant 8X par
8,:8A,/8{ =8,m. On remarquera que la loi de transformation de

A, est une transformation de jauge ol A(x) = n(x) 8. Montrer que le
lagrangien :
g--Yp Frv_ L (fa)+ e
4 2a Fp

est invariant dans la transformation BRS: 8.# /8¢ = 0. Montrer €galement
I'invariance de la mesure & (A, n, 7). En examinant la variation de la fonction
de Green:

O TX(y) 7(x))|0)

ol X(y) est un produit de champs A,, ¢ et ¢ (mais ne comportant pas de
n et 77) démontrer I'identité de Ward-Slavnov-Taylor :

O T(XG) FANI0) =a 0 T( 57 76)) 10y

Retrouver (XI1.102) dans le cas de la jauge de Lorentz 8*A4, = 0.

(b) Revenons aux théories non abéliennes, ou la transformation BRS est
définie par :

BAL() = Dl my(x) B2
BM(¥) = = fu(4) 82

815(8) = = & fuse mp(x) M)

Montrer que ¥ + L rp + £ g st invariant BRS (Uintroduction des fermions
ne présente aucune difficulté). Montrer I'invariance de la mesure d’intégration
DA, ", 7).
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(¢) Résultat préliminaire : établir ’équation du mouvement donnant :

8S
o|T 7, (x 0) .
O ( 52w ) 1)
(On se restreindra au cas de la jauge de Lorentz 8,AF = 0.) En écrivant :
8 —
37 OITGALE) ()]0 =0

montrer que le propagateur du champ de jauge vérifie 'équation (XI1.104) :
comme en électrodynamique, les corrections radiatives au propagateur sont
transverses.

6) Théoréeme de Goldstone et phénoméne de Higgs dans le cas général
0

(a) Soient n champs réels ¢; se transformant suivant une représentation
réelle de générateurs 7° (a=1,...,N) d’un groupe G de dimension N ;
Paction effective est donnée par :

r= f dx (0,0, 3,0, + V(¢;)).

Soit v; la valeur de ¢; minimisant V :

@V/oe)|, , =0.

Montrer que VZ%M,?,(ga —~v),(¢ —v); au voisinage de ce point, et que

M} Th v, = 0.

Soit H le sous-groupe de G, de dimension M, qui laisse le vide invariant :
T°v = 0 si T°est un générateur de H. En déduire que la matrice M>a(N — M)
valeurs propres nulles.

(b) Si l'on se place dans le cadre d’une théorie de jauge, montrer que
(N — M) bosons de jauge deviennent massifs grace au phénomeéne de Higgs.

7) Vie moyenne du muon
Montrer que dans la théorie de Fermi, la vie moyenne 7 du muon est donnée
par:
192 #°
T = 2 5 -
Grm;,,

Montrer que la forme de ce résultat peut étre prévue par des considérations
dimensionnelles.

8) Diffusion », e et ¥, e dans la théorie de Fermi
Calculer la section efficace différenticlie de la diffusion élastique v e et
7, e dans le référentiel du centre de masse, en utilisant la théorie de Fermi.
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Montrer que les sections efficaces totales sont données par :

4 G%
o(v,e) = WFEE

4GE 3EI+E?
U(Vee): F3E 2

_— " E?
37 (E,+E,)

ob E, et E, sont les énergies de I'électron et du neutrino dans le référentiel du
centre de masse.

9) Couplage aux courants neutres

(a) Montrer que le couplage du boson Z° aux leptons peut s’écrire :

e
sin 6 cos @

FO[ 370 =79 L= 7, Qsin’ 6] w(1)

ol I, est la composante 3 de I'isospin et Q la charge du lepton considéré.

(b) Recalculer les sections efficaces neutrino-électron et anti-neutrino élec-
tron de Yexercice (8) en tenant compte des courants neutres. On pourra se
limiter au cas oli E, > m, et utiliser I'identité de Fierz :

Ty, A—rys)e)Ey* A —-ys)v)= (Fy,(1—-7ys)v)Ey* Q- 7s)v).

Montrer que les sections efficaces sont maintenant :

Gis

o(vee) = 5 [(1+2sin2 0) + 3 sin' o]
Gis

a(v,e) =ﬁ [4sin4 0 +-§— (1 + 2sin® 9)2]

avec s = (E, + E,)* < mj,.

10) Production de bosons W et Z

Dans les anneaux de collision du CERN, la production de bosons W et Z
s'effectue par « fusion » d’une paire quark-antiquark (figure 23).

&
N

S
r

Figure 23.
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On écrit les couplages des bosons aux leptons et aux quarks sous la forme :

V@ NCy v —Cavuvs)u(p) (quarks)
k' )Cy v, —Chv,vs)vik) (leptons)
et on définit :
2Re Cy C} 2Re Cy C4*
CE e Y TTe L
[Cv|"+ [ Cal |C4l™+ | Cy|

Montrer que la section efficace pour observer un lepton faisant un angle ¢
avec la direction du boson, dans le référentiel au repos de ce dernier, est
proportionnelle 4 :

(1 +cos’ @) +2aa’cos ¢ .
Pour les couplages au W, C, = C, et la distribution angulaire est en

(1 +cos ¢ )%

11) Définition de A

La constante de couplage o, vérifie ’équation d’évolution :

da, 202 _ 4 302
m:_4ﬂBOaS(Q)_ wBya(QF) + -

~Boa(Q)(1 + By a (@) +---).

1

En intégrant cette équation sous la forme :

2
J S BoIn =5 + Cte
a@ x*(1 + B, x) A

montrer que I'on peut écrire :

aS(Q2)=_1.~(1+£+m+g>
Boy y y
avec y = In (Q?/A?). Déterminer c, d, ainsi que Pordre de grandeur de &, et en

déduire que I'on peut poser ¢ = 0 par un choix convenable de la constante
d’intégration. Retrouver ainsi ’équation (123).

12) Indépendance de jauge de Z (%)

On se propose de montrer que la constante de renormalisation Z (définie par
go = 1 *7?Zg) est indépendante du paramétre de jauge a dans le schéma
minimal.

(a) Soit G une charge invariante (cf. VII-A.2) formée avec des fonctions de



614 Exercices XI1I1.14

Green d’opérateurs invariants de jauge. Montrer que :

d F) R
da lgo,EG(g,a,u)= (5;+p(g,a)> G(g,a,n)=0.

\ 8
oup(g,a)=2L

g ¢

(b) Utiliser le fait que p (g, a) est indépendant de ¢ ainsi que le développe-
ment (VIL77) de Z dans le schéma minimal pour montrer que Z est
indépendant de a. Pourquoi ce résultat n’est-il pas valable en général ?

13) Démontrer I'équation (135).
14) Régularisation dimensionnelle des singularités infrarouges

On se place dans le cas m = 0.

(a) Calcul du vertex
Calculer I'expression du vertex de la figure 14 (4 'ordre d’une boucle) en
partant de (XII.78) et en intégrant sur la variable de boucle :

e‘?ngF 4 —1 2 ,7\&e/2 dx dx 1
“=W7“(( m) pe’) 1dx; 6(1 —x; — x5)
—~ DY _ D_,
2,
x 20 -m)(1-8)+ D -)xnlng)’ |
ol e =4—-D et Q*= — g?> 0. Le premier terme est U-V divergent et sera

renormalisé dans le schéma MS (cf. le facteur (p?e?/(4 w))*/?). Apres
soustraction du pole U-V en 1/¢, le résultat est prolongé analytiquement a des

valeurs de ¢ <0, ¢ = — 2 w. Montrer que Ag , s’écrit (la formule B.9 est trés
utile) :
a; v, Cr Q*\v( 2 4 ? 0?
Ag = ——2 "2l | = == - In= .
e 4m e"[(ﬁ) vt Wt 6)+ni12

Montrer également que la correction d’énergie propre aux lignes de quarks
externes vérifie, apres soustraction du pdle U-V et prolongement analytique
pour p? <0 a des valeurs de ¢ négatives :

L7 4

asCF 1

1,:0_— 4

(b) Calcul de I'émission de gluons : montrer que (135) doit étre remplacé
par:

2,7 —w 2 2 2 2
8CF3392<IZ; ) (1+w)[u +su:2tq +w (u:ss) ]
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et que (139) devient (en incluant un facteur z?* di a (130)):

— "P'““ J] d 9 in 6 2 @ M 2
8 TW'r(l+w) )y (cos 0)(sin 6|4

En déduire I'expression de W pour des gluons réels :
2a.e; [ Q)@ 2 3 7 at 1 1+2°
W=‘3—m_(:z) {5(1—Z>(;z'm+r 2 >+;(1_z)++

o In(1-2) 1+z2 3 5 3
+(1“)< 1-z )++21—zlnz T0-z). T2 2%

(c) En rajoutant le graphe virtuel (a) ainsi que les corrections dues aux lignes
externes, obtenir 'équivalent de (150) dans le cadre de la régularisation
dimensionnelle. Vérifier I’élimination des divergences IR en 1/w® entre le
terme « réel » et le terme « virtuel », et identifier les singujarités colin€aires.
Intégrer sur z et retrouver la valeur (156) du rapport R.

15) Approximation infrarouge et jauge planaire

(a) On suppose que I'on utilise un référentiel ol ky, | k|| — 0 dans le calcul
de I'élément de matrice (134). Montrer que dans ces conditions :

. AT e.p e.p ,
'/”;L'_—lqu"z_[p.k_P!.kJu-(p)‘y“v(P)'
(b) On utilise une jauge axiale telle que n* A, = 0, ol r,, est un vecteur fixé.

Montrer que la somme sur les polarisations du gluon s’effectue en saturant avec
le tenseur d,,, :

k,n,+k,n, n'k,k,
k.n (k.n)?’

dy,v = _gp.v +

Calculer || en utilisant n, = ap, + bp,, ot a et b sont des constantes.
Montrer que le terme d’interférence des deux graphes de la figure 12 s’annule,
et que l'on peut trouver des choix de jauge ou I'un des deux graphes de la
figure 12 s’annule.

16) Théoréme d’Elitzur (°)

Considérons le modele de Wegner dans une dimension D arbitraire, et soit
S(n, 1) un spin S situé sur le lien p partant du site #. On place le systéme dans
un champ magnétique extérieur B et on calcule la valeur moyenne de
S(n, m):

S(n, 1) exp [31 Y SSSS+ B Y S(n, p )]
(S(n, ® )>B _ [S(n, )] P n, p

exp [BJ Y SSSS+B Y S(n, p )]
[$(n, )] P n K
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Soit {l,} I’ensemble des liens partant du site n et §' (/) le transformé de jauge
de S(!) dans la transformation de jauge qui renverse les spins sur les liens
l,:
38y =8'I)-SU)y=-28() si le {l,}
85(1)=0 si ¢ {I,}.

En effectuant le changement de variables S — S’, démontrer la relation :

(S(n,u))8=<—S(n,,u)exp[—B Y «SS(I)]>
Te {in}

et en déduire :
21 ¢S(n, )y | < |e*PP—1] 50 si B-O.

17) Equivalence du modé¢le de Wegner D = 2 et du modele d’Ising D = 1,
)

Dans le réseau a deux dimensions de la figure 15, on choisit deux axes et x
paralléles aux deux directions des liens. Montrer que par une suite de
transformations de jauge locales on peut, en négligeant les effets de bord, se
ramener au cas ou tous les spins situés sur les liens paralleles a ’axe Tsont égaux
a +1:5(n, 7)=1. En déduire que la fonction de partition est un produit de
fonctions de partition de modeles d’Ising a une dimension. En utilisant le
résultat (1.9) donnant la fonction de corrélation du modele d’Ising D =1,
retrouver la «loi d’aire » pour W(£) (cf. (159)).
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ment accessible ; on pourra aussi se reporter au livie de F. Yndurain, Quantum
Chromodynamics, Springer Verlag (1983). Des calculs détaillés sont donnés par E. de



XIII. Notes et références 617

Rafacl, Cours de Gif-sur-Yvette (1978) et M. Le Bellac, ibid (1981). Enfin pour les
théories de jauge sur réseau, on pourra consulter le livre de M. Creutz, Quarks, Gluons

and Lattices, Cambridge University Press (1983), ainsi que Kogut (section VIII) et Rev.
Mod. Phys., 55, 775 (1983).

() C. Yang et R. Mills, Phys. Rev., 96, 191 (1954).

(® P. Cvitanovic, Phys. Rev., D 14, 1536 (1976).

() A. Sirlin, Phys. Rev., D 22,971 (1980). W. Marciano et A. Sirlin, Phys. Rev., D 22,
2695 (1980).

() W. Caswell, Phys. Rev. Lett., 33, 244 (1974).

(®) T. Kinoshita, Journ. Math. Phys., 3, 650 (1962). T. Lec et M. Nauenberg, Phys.
Rev., B 133, 1549 (1964).

(®) G. Schierholz, Prétirage CERN TH 4139 (1985).

(") Abers-Lee, sections 2 et 3.

(®) D. Gross in Methods in Field Theory, Ecole des Houches (1975), section 5.

(*) Kogut, section V.






APPENDICE A

Transformées de Fourier
Intégration gaussienne

A.1. TRANSFORMEES DE FOURIER

Toutes les démonstrations seront faites uniquement a une dimension
(D = 1), la généralisation &2 un nombre arbitraire de dimensions étant triviale.

Diagonalisation d’une matrice invariante par translation

Considérons une matrice (réelle) A,, O=<s, t<N -1 telle que A, ne
dépende que de la différence (s — ¢). On suppose également des conditions aux
limites cycliques: p + N = p pour tout entier p.

Théoréme : La matrice A, est diagonalisée par une transformation de Fourier

N . .. 1
sur réseau, correspondant a la transformation unitaire Usq = Teqx’ avec :
N

2mp

Xo=sa; q=—

ol s et p sont des entiers compris entre 0 et N — 1 et a est le pas du réseau.

Ce résultat est bien connu, par exemple de la théorie des modes de vibration
normaux. Redémontrons-le rapidement :

1 iq’ x, ~ igx,
Aq"l=]_v-ze TAge
s,
_ 1 -ilg-q')x — iz~ %5)
_Nze ZA(s—t)e .
§

La somme sur ¢ est indépendante de s, grace a la condition g = 2 7p /Na et
aux conditions aux limites cycliques ; appelons-la A (q) :

Ay, =38,,4(). 6)

En général A(s — t) ne dépend que de |s — ], et A(q) est réel. Par invariance
de la trace dans une transformation de similarité :

TrA, = ZA~(q). V3]
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Passage a la limite continue

Pour passer a la limite continue, il est commode de définir A(q) par:
A(q)_—.aZA(s—t)e_iq(x’—x*)—»deA(x)eiq" 3)
t

par passage d’une somme de Riemann a une intégrale. De méme, la somme sur
g peut étre replacée par une intégrale en utilisant :

zq;’_:qu )

. . 27 .
Uintervalle entre deux valeurs successives de g étant 7k D’autre part, au lieu

des limites 0 < g =< 2777, il est en général plus commode de choisir :

a3

®)

<g=

2y

Dans ces conditions, la transformation de Fourier inverse est donnée par :
AW = LT Ao [ S ag) e ©)
Na ” —n/a 2
et la relation sur la trace devient :
Tra, =N | 3L 4(q). %
st 2 T

A D-dimensions les relations précédentes se généralisent en :

A(q) = Jde e X A(x) (8.a)
dD —ig.x F
AX) = E’f_)u"‘ 1% 1(q). (8.b)

Produit de deux matrices

Une relation utile peut étre obtenue en examinant le produit de deux
matrices. Cherchons la transformée de Fourier de Z AyBy =Y Aq 8, By:
t

1

1 ig’ xg —igxy
j_v—ze Ast 8tu Buve =2
tu

9" xg — ikx, 1kxu — igxy
Z Z e TAye By e
u k
50

N2
Y 8,k A(g') 8y B(a) = 8,0 Aq) B(q) -

La transformée de Fourier du produit matriciel est le produit des transfor-
mées de Fourier. Ceci n’est pas étonnant, le produit matriciel n’étant pas autre
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chose qu’une convolution grice a la propriété d’invariance par translation des
matrices A et B. 1l est également intéressant de remarquer que la transformée
de Fourier de A; ' est 1/A(q).

A.2. INTEGRALES GAUSSIENNES
Cas d’une variable
Considérons la quantité Z(j):

Yy
2G)= [ axe
1

Z(0) = jdxe'f’”‘2 ~JZ7jA.

Pour calculer Z(j) on effectue le changement de variables: x = x' + j /A

1 . b, 1.1
—ixAx+]x=—§x Ax +2’A’
1.1,
z() =24 2(0). ©)

Cas de N variables
, il 1Y N
Z(j) = ‘[ ndxiexp<—§ Z X Ay x; + Z]ixi)
i=1 Bj=1 i=1

ou Ay; est une matrice symétrique (*) et strictement positive. Pour aliéger les
notations on pose (7T = transposé) :

N N
Z xiA,-ix]-=xTAx; Zjixi=ij

ij=1 i=1

ol x et jsont les vecteurs colonnes (x; ... xy) et (j; ... jy), xT et j7 des vecteurs
lignes. Effectuons le changement de variables :

x=x'"+A7'j,
(la matrice A~! existe car A est supposée positive) :

17 o Y r o, Tor,
2xAx+1 X=-5x Ax+21A j

(*) Si A;; comportait une partie antisymétrique, celle-ci donnerait un résultat nul dans
Z X Ay X
ij
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d’our :

17,1,

zGy=e?" "z) |. (10)

Dans de nombreux cas, I’équation (10) est suffisante (par exemple pour le
calcul d’une fonction de corrélation ou Z(0) s’élimine). 11 n’est pas trés
compliqué de calculer Z(0):

ITAx

Z(0) = “-[1 dr;e 2

Soit R une transformation orthogonale (RRT = 1 ) diagonalisant A :

d

Effectuons le changement de variables de jacobien unité :

x'=Rx; (detR=1)
-—lx'TDx’

N 1 N
Jndxie2 =JnMi'ez
i i=1

La derniére intégrale est un produit de N intégrales gaussiennes indépendantes
et vaut :

AW T (ay 2 T
2m) il:ll )" = (det )P
N (2 ,n_)N/Z
20 = (det A)2 an

Démontrons enfin un corollaire des équations (10) et (11); considérons
d’abord une seule variable complexe z = x + iy et lintégrale :

I = szz oAzt Ha _ J. dx dy e—A(x2+y2)+2i1x+2fzy

ol j =j, +ij, et A =a; +1ia,, avec a; > 0. Le calcul de I est immédiat :

1=Z¢ral
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Passons au cas de N variables complexes z; :
N
1 to .t
I = f l—[ dZZ,- e ¢ Az+z j+j z
i=1

ot la conjugaison hermitique remplace la transposition. On suppose que A peut
&tre diagonalisée par une transformation unitaire U :

A=U'DU

ott D est une matrice diagonale dont les éléments d; ont une partie réelle
positive. Ecrivons :

U=R+iS
ol R et S sont des matrices réelles ; la relation U'U=1 donne:

RRT+88"=1; RS"-SR"=0.
La transformation z' = Uz équivaut a:
G)=( =) (G)
y' S R/ \y
et la matrice faisant passer de (x,y) a (x',y') est orthogonale, et donc de

déterminant 1. Le jacobien de la transformation est 1, ce qui permet d’obtenir
le résultat :

d t tot Nt
J l_[ dZZ,- e % Azvz j+] zzd;AeJ Al . (12)

i=1

A.3. INTEGRALES EN DIMENSION D
En coordonnées polaires ’élément de volume en dimension D est :
dPx = r?-'drsin®-% 0, ,d6, ,sin®?* 4, ,do,_,...do,
O=<6, <27 O<b,=<m k+1.

Trés souvent, I'intégrand est indépendant des angles et il suffit de connaitre la
surface S, de la sphére a D dimensions :

dPx - S, rP-tar.

Celle-ci s’obtient aisément en calculant de deux maniéres I'intégrale
2 2
J= Jde e—(X1+~~-+xn)= D72

[}
_ D-1 _r2 _}_ _D_
J_SDLr e dr_2SDF(2)
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d’ou :

2 7P/

" T )

Sp

Exemples: D=1, 8,=2m; D=3, 8,=4n; D=4, 5,=2=2
En général la mesure d’intégration est d°x/ (2 7 )P et il est utile de définir :

Sp 2

Kp = = 14
PT@nY @GP I(D)2) 9
avec en particulier :
1
K, = ppet (15)

Les expressions (13) et (14) peuvent étre prolongées analytiquement a des
valeurs non entiéres de D.



APPENDICE B

Intégrales de Feynman
en régularisation dimensionnelle
(cas euclidien)

Combinaison des dénominateurs :

1 F(a1+a2+---+an)J " ( oo >
= de; 61— % x;) %
ATar A T Tan . ey J A1 L

i=1

ap~1 e, -1

X Xy e X, [xlAl+x2A2+---+x"A”]—(“1+"'+°‘n).
Boucle a deux lignes internes : ¢’ = g — xk

q, my

— 1 D_
LI, ' J:jmjdqu
@m)

x g7+ x(1 =x) K>+ xmi+ (1 —x)ym?]’

Boucle a trois lignes internes : ¢’ =g — X, 3 + X3 P;

~ 3 B 3 qu’ 1
_2jdei6<1 iglx‘) (Z'TT)D[‘IVZ‘FD]3

2
D =x,m?+x, M} + X3 M2+ X, X3 Y+ X, X3 P2 + X, X, P3 .

(B.1)

(B.2)

(B.3)
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Intégrales sur q :

d’q 1 _ I'(N-D/2) 1
J. Y (@?+m) @@ (N) (mA)V P2 ®4
f d®q q° _I'(N-1-D/2) D (B.5)
(2 7T)D (q2+m2)N 2(4 7T)D/2 F(N) (mZ)N—l—D/Z
f d%q 99, I'(N—1-D/2) d;; (B.6)
Q7)Y (g +m) 2(4 7P L(N) (mP)¥ 1P '
J(z 94 g% = % J (2d q)Dq (g% . (B.7)

Développement de la fonction I':

£ _ _f 2
F<N—§>_F(N)<1 2¢(N)+0(s)) (B.8)
N 3 11
l//(N)~ Z——‘Y—SN 1= 75 So=0, S =1, Sz—2 Sa=€
ji=
2
F(l—%)=1+§y+%sz<y2+%>+0(e3)
£ ’7TZ 2 3
=exp<§7+4—88)+0(e) (B.9)
€ 2
F<§)=;—'y+0(s). (B.10)
Développement de la fonction B :
_L(e+B) _ a-1 g1
B(a,B) ROYEON fdxx (1-x) (B.11)

B(N_§,1_£> -1 (1+ss,v_§s~_l+0(52>) (B.12)

1
Ty (1_§sN_1—§+ sSN+1+0(82)> . (B.13)
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Formulaire

C.1. GROUPE DE LORENTZ

Quadrivecteur :
VE= (VO,VY= (VO V)= (V, V.V, V.).

Tenseur métrique :

9"’ =diag (1,-1,-1,-1).
Transformation de Lorentz :

x™=Atx"; ATgA=g.
Groupe propre :

Ad=1, detA=1.

Groupe orthochrone :

Gradient :
0 0
d = — = _— — = a,V .
. (ax" ax') (%, V)

Produit scalaire :
x*y, =x°y9_x.y
*V,=Volv.vV.
Tenseur complétement antisymétrique :

1 si la permutation 0123 — w vp o est paire
g#7??1 _ 1 sila permutation 0123 — p vp o est impaire (C.1)
0 dans les autres cas .
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Opérateur 4-moment :
pt=io*= (13" -iv).
D’ Alembertien :
O=29,0" =;;2;2—V2.
C.2. MATRICES DE DIRAC
Définitions :
Y v} = 7w ve+ 7, 7. =26, 1
quzé [v* v*); vs=iy%y! ,yz},a:;_!i Eavpe YV ¥ YO
Equation de Dirac :
(iv* 8, ~m) ¢ = (iF-m)y=0.
Spineur conjugué :
b=y"y; FGEF+m)=0.
Conjugaison hermitique :
V= YoYuYos  Yo¥sYo=—vl=—1s.
Si s, et ¢, sont deux spineurs de Dirac et I' une matrice 4 x 4 :
(81 Tw2)* = Falvo T vo) ¥y - (€2
Matrice de conjugaison de charge :
Cy,Cl=-vyl; CysC'=4I. (C.3)
Dans les représentations usuelles :
c'=c’=c'=-c. (C.4)

Matrices de Pauli :

= (08 e () e () e

Représentation de Dirac :

() (G 5)e e (83 e
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Représentation chirale :

r= (L 0)s (S, §) e (6 8):

Identités utiles en dimension D(g¢ = v, a*):

ab + ba=2a.b

Y*y.,=D

yiay,=-2a+ (4 -D)a
y*aby,=4a.b—- (4-D)dp
viabey, = —2¢ba + (4 —D)abe

Identités sur les traces :

Tr1=4
Trap=4a.b
Trysy,=0

Tr (ehpd¢d) = 4[(@a.b)(c.d)—(a.c)(b.d)+ (a.d)(b.c)]
Tr (v. abdd) = — 4ie**"a, b, c, d,
Tr (@ 2,21 =0;Tr (@) ... t,) =Tr (82, .- 1)

Tr () o 2,) = (@1 a) Tr (@3 o d3,) — (@10 a3) T (@odrg o ) + -+

+ (@, a,,)Tr (@ody o foy_1) -

Solutions de I’équation de Dirac :

Energie positive :(p—m)u(p)=0;a@)(p—m)=20
Energie négative : (p+ m)v(@) =0;v(p)(p+m) =0.

Normalisation :

Z(@)u(p)=-v(@)v@)=2m
() v (@) = T(@)u@®) =0

Normalisation des densités :

Zp)y'ul@)=v(p)r°'v(P)=2E,
a(-p)y'v@)=v(-p)y'u(p)=0.

Projecteurs :

T uPP) TP @) = (A, ug = (P+m)ug

r=1

=Y oP@)VP @)= (A g = (—P+mM)ap -

629

(k)

(C.8)
(C.9)
(C.10)
(C.11)

(C.12)
(C.13)
(C.14)

(C.15)
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C3

Spineurs d’hélicité A déterminée (représentation de Dirac) :

1 ((Ep+m)RXA> )

u =———
A () \/Ep+m 2 pARx,

1 —2pARio, x
UA(p)Z'—.:( 2
\/Ep+m

avee

(C.16)

(Ep+m)Ria-2XA>

p=(psin6,0,pcos 0); R=exp(—%aze) ;

Xin = ((1)) et X_ip= <(1)> .

Identités de Gordon :

B) v u@) = 5= B@) P + )" +ic (- q),

Tu@@) (C.17)

Z)v*vsu(@) = %ﬁ(P)[(P —q) vs+ioc*"(p +q), yslu@@)  (C.18)

TE) 7 0@ = 5= TG + ) +ic(p-q)]o@)  (C19)
@) v* ¥59@) = — 7= B @IP ~ ) ¥s +i0 " (@ +4), vs]v(@) . (C.20)

C.3. SECTIONS EFFICACES
Normalisation des états (w, = Vi + m?):

pIP)Y=Q27)Y20,8%p-p)

Matrice S:

Sp=8p+iQm) 8P, —P)Ty.

Section efficace 1 +2 51" +2'+---+N":

K 3.7
1 2 4 s d’pq &py 1
do =— |T,|° Q7w) 8@(P,-P, =
77 | Tal @mY 87P, )(277)32w1' Cry2ey
F = [(p,.p,) —mimj]*;
& = facteur dii 4 I'identité des particules.
Taux de désintégration: 1 - 1' +2' +..-. + N':
3.7 3,7
1 2 4 s d’p; dpy 1
ar = —— | T;|° Q=) WP, - P =
o, | Tal” @) 8Py 1)(277)32(,,; Quy2e, s
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Section efficace 1 +2 —» 1’ + 2’ dans le référentiel du centre de masse :

do __ 1 K|
d2 64 w25 |k

el = 5 lﬁ [(s = (my + mP)(s — (my — T2, (C21)

| T(s,cos 6)|*; s = (py+P2)

Théoréme optique :

— 1 = . .
T = T Im T(s, 0 = 0) (C.22)

C.4. REGLES DE FEYNMAN

Régles de Feynman pour une fonction de Green connexe sans lignes externes
G™(p,, ..., py) ot les moments p; entrent dans le diagramme et :

(2 77)4 6(4)( % pl> GC(N)(pi) —- J (ﬁ d4x,- c-iPixi> Gc(N)(xi) .

i=1 i=1

(i) Tracer tous les diagrammes topologiquement inéquivalents.
(ii) Associer a chaque ligne interne un propagateur :

k
spin0:  _ _ — . i
K—-m?tie
p
spin 1/2: - : i _ _itp+m)
]-m-&—is pz_m2+i£,
k . ,
Spin 1: v vvmr:/—\rwvv‘ oo 1! <__ g, + k;l- kv
K —m?yie B
k .
particule de jauge : b sanarananaan @ 18, (~g +(1—a)k“ky)
v n k*+ ie W kK + e
Fantéme de k .
Fadeev-Popov : b .".",:"“. a 19
K+ ie

(iii) Associer a chaque vertex un facteur déterminé par le lagrangien
d’interaction, conserver le moment & chaque vertex. Un facteur — ik, est
associé a 3,, ou k, est le moment entrant dans le vertex.
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(iv) Intégrer sur toutes les boucles avec un facteur d*g/(2 ). Associer un
facteur — 1 & toute boucle fermionique.

(v) Multiplier par un facteur de symétrie et un signe global associé a la
configuration des lignes de fermions externes.

Relation fonction de Green-matrice §: soit Tj; I'élément de matrice T
connexe de la réaction

Pi+Pr+ PN PL+PI Py
Si Pon suppose toutes les particules de spin z€ro et de masse m :

N M
T, =—i(z)® ™72 lim  lim IT 0@ [T 0pio) x

pFam?ptom?i=1 j=1

x GNEM(=pis ooy = Pha 3 Pis o Pat)

ot G est une fonction de Green connexe renormalisée amputée de ses

propagateurs externes complets et iz; le résidu du propagateur renormalis€ au
pole k%= m?

Facteurs associés aux particules externes (spin 1/2 et spin 1).

Fermion entrant : z;?u(p); Fermion sortant : z;?Z"(p).

Antifermion entrant : z}2v™(p); Antifermion sortant : z 2 v®(p).
Particule de spin 1 : facteur z}? £ (2% ¢ %)
pour une particule entrante (sortante) ; si k/Oz :

k
hélicité 0 : e = <"—'i,0,0,-°)
m m
. 1 —i
hélicité — 1: e = (0,——_,——_,0> .
g V2’2
Regles pour les vertex :

(a) Théorie en ¢*:

><. 1 —ig
(b) Electrodynamique :

i~iey,
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(¢) Electrodynamique scalaire :

M = v
i~ie(k+ k'), 12iet g,
LSS SR
"~
v~ \\ ’/\\
e ~. // \\

(d) Théories de jauge non abéliennes : {T,, T] = if s T,

w.a q)/ v,b

i~ G el P =), + 9, (@ — 1) + G, (r = D))

— )
PN
’U/’va v b' :‘igz[feab f’ECd(g;Lp gva—gua gup)+
+ feac fedb(g;ur gpv - gp.u gpo) +
O',d p.c +fead febc(gy.v g[rp—gp.p gau)]
%
p,a %)
AN “gfape P"
——
P NE:

{
K, a R
/\/\W< :—lg'y“(Ta),]-

Couplage a des bosons de spin zéro :

L . a
p p' . ,
ped . @)y @ +p), (C.24)
’) \
i~ ~
,a v,b

ig” g { T To} (C.25)
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(e) Modele Glashow-Salam-Weinberg :
e=¢gsind; tgd=g'/g
B* =cos A" —sin 6Z*
W =sin 0A* +cos 0Z*".

Couplage du Z° aux fermions :

e
sin 6 cos 0

FO[ 5 7u =) L=y, 0sin* 0] w ()

I; = composante 3 de T'isospin, Q = charge du fermion f.

C.4

(C.26)



Index

A

Action : 331, 354.

Action effective : 206.

Action euclidienne : 322, 341.
Aimantation spontanée : 27.
Altarelli-Parisi (équation d°) : 597,
Amplitude de probabilité : 319.
Amplitude vide-vide : 335.

Analyse dimensionnelle : 80, 120,
274.

Anisotropie cubique : 148.
Annihilation (opérateur d’): 348,

360, 450, 459.
Anomalie : 240, 527.
Anticommutation (relations d’) : 450,
459.
Arbres (approximation en) : 214.

Asymptotiquement libre (théorie) :
279, 589.
B
Baryon : 584.

Becchi-Rouet-Stora (BRS ; transfor-
mation de) : 567, 609.

Bloch-Nordsieck  (mécanisme
597.

Blocs de spin: 92, 110.

Bogolioubov (construction de): 394,
422.

Bogolioubov-Hepp-Parasiuk-Zim-
mermann (BPHZ ; schéma) : 251.

Bohm-Aharonov (effet) : 474.

Boson : 449.

Boson W: 447, 578, 581.

Boson Z°: 447, 578, 581.

Boucle : 200.

Brisure de symétrie : 27, 36, 68, 569.

de) :

C

Callan-Symanzik (C-S;
de) : 285, 292, 298, 311.

Causalité : 390, 394.

Champ : 61, 447.

Champ classique : 357, 363, 452.

Champ moyen : 34.

Champs ¢;, et ¢, : 378, 389, 391.

Champ scalaire chargé : 434.

Champ vectoriel massif : 437.

Charge invariante : 275.

Chiralité : 574.

Chromodynamique quantique
(QCD) : 448, 583.

Classique (approximation) : 214,

Coleman-Weinberg (potentiel
269, 315.

Commutation (relations de — canoni-
ques ; RCC) : 321, 356, 358, 366.

Comptage de puissances : 223, 501.

Compton (effet) : 493, 534, 539.

Condition asymptotique : 391, 417.

Cone de lumiére : 370.

Confinement : 584, 605.

Connexe (diagramme) : 201.

Connexe (fonction de corrélation) :
44, 201, 204,

Connexion : 551.

Constante de couplage : 29, 93, 95,
178.

Constante de couplage nue : 236, 240,
600.

Constante de couplage renormalisée :
242.

Constantes de structure : 550.

Constante de structure fine : 487.

équations

de) :
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Contre-termes : 247, 250, 507, 529.

Corrections radiatives : 485, 510.

Corrélation (fonction de) : 32, 43, 73,
181, 184, 194.

Corrélation (longueur de): 33, 47,
246, 327, 599.

Couleur : 499, 583.

Couplage dérivatif : 387, 440.

Couplage fort : 602.

Couplage faible : 606.

Coupure (régles de) : 428, 527.

Courant conservé : 435, 455, 462.

Courant neutre : 574.

Covariance de Lorentz : 364, 454.

Covariante (dérivée) : 472, 552, 555.

Création (opérateur de): 348, 360,
450, 459.

Critique (température) : 55, 80.

Critiques (exposants ou indices) : 41,
47, 74, 110, 299, 310.

Cumulant : 112, 202.

Cut-off : 69, 215, 218, 239.

D

Degré superficiel de divergence : 223,
237, 502.

Densité de lagrangien : 357, 387, 454,
470. ‘

Développement basse température :
155.

Développement &: 128.

Développement haute température :
31, 153, 605.

Développement en nombre de bou-
cles: 79, 213.

Développement
184, 397.

Diagramme vide-vide : 187, 398.

Dilatation (facteur de): 53, 89, 92,
95.

Dimension anormale : 120, 272, 290.

‘Dimension canonique (ou normale) :
120, 290.

Dimension d’un groupe de Lie : 547.

Dimension du paramétre d’ordre : 29,
131, 183.

Dirac (champ de) : 458.

Dirac (équation de) : 452.

perturbatif : 121,

Dirac (matrices de): 453, 628.
Dyson (équation de) : 373.

E

Echelle (champ d”) : 103.

Echelle (invariance d’) : 51, 53, 106,
290, 300.

Echelle (loi d°) : 49, 58, 110.

Electrodynamique quantique
(QED) : 447, 472, 485.

Elitzur (théoréme d’) : 601, 615.

Energie libre : 49, 108.

Energie propre : 207, 399, 503.

Equations du mouvement : 354, 357,
364, 480 ; (pour les fonctions de
Green) : 408.

Essentiel (champ ou opérateur) : 103.

Etat cohérent : 377, 385.

Etats in et out: 374, 389.

Euclidicité (postulat d’) : 408,

Euclidien (prolongement) : 340, 345,
407.

Euclidienne (région) : 405, 406.

Euclidienne (théorie) : 405, 585.

Euler-Lagrange (équation d’): cf.
équations du mouvement.

F

Facteur de flux : 412.

Facteur de forme : 516.

Facteur de symétrie : 190, 192, 491.

Fadeev-Popov (fantdme de) : 562.

Fermi (constante de): 573.

Fermi (théorie de): 573.

Fermion : 449.

Feynman (contour de) : 339, 369.

Feynman (diagrammes ou graphes
de) : 186.

Feynman (identité de) : 215, 232.

Feynman (regles de) : 189, 200, 398,
491, 494, 562, 585.

Flot de renormalisation : 98.

Fluctuation-dissipation  (théoréme) :
45.

Fluctuation du vide (diagramme de) :
187.

Fock (espace de) : 362, 449.
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Fonction B(g): 137, 170, 280, 285,
291, 533, 589.

Fonctions de corrélation nues: 244,
253 ; renormalisées : 244, 253.

Fonctions de corrélation une-parti-
cule irréductibles (1-PI) : 205, 399.

Fonction génératrice : 44, 178.

Fonctionnelle : 69.

Fonctionnelle (dérivation ou déri-

vée) . 69.
Fonctionnelle (intégration ou inté-
grale) : 70, 319.
Fonctionnelle génératrice :
— des fonctions de corrélation :
181,
— des diagrammes connexes : 202,
204,
— des produits-T (ou fonctions de
Green) : 335, 397, 467, 487,
561,
— des vertex propres : 206, 399.
Fragmentation (fonction de) : 591.

G

Gaussien (modele) : 79, 118.
Gaussienne  (intégration ou
grale) : 78, 621.
Gell-Mann et Low (formule de) : 396.
Générateur infinitésimal : 548.
Ginzburg (critere de) : 75.
Ginzburg-Landau (hamiltonien de) :
66, 68, 115, 131, 181, 183.
Gluon : 448, 584.
Gluon mou (ou infrarouge) : 594.
Goldstone (boson de) : 85, 569.
Gordon (identité de) : 481, 630.
Grassmann (algébre de) : 463.
Grassman (variable de) : 466.
Green (fonction de) : 337, 340, 368.
Groupe de renormalisation : 89, 100,
302, 305, 532.

inté-

H

Hamiltonien : 355, 357.
Hamiltonien (densité de) : 181, 247.
Heisenberg (modele de) : 29, 167.
Hélicité : 473, 574, 630, 632.

Higgs (boson de) : 448, 579.

Higgs (phénomene de) : 572.
Hyperboloide de masse : 364.
Hypercharge faible : 575.

1

Inessentiel (champ ou opérateur) :
103, 276, 301.

Infrarouge (divergence): 81,
226, 283, 519.

Insertion de masse : 257.

Intégrale de chemin: 319, 324, 331,
353, 401.

Interaction : 182, 387,

Invariance d’échelle naive : 106, 120,
532.

Ising (modele d’) : 28, 325.

Isospin faible : 574, 575.

J

215,

Jauge :
— axiale : 476, 615,
— (champ de) : 447, 553,
— de Coulomb : 476,
— de Feynman : 480,
— (groupe de) : 552,
— (invariance globale de) : 471,
— (invariance locale de) : 472,
— de Landau : 480,
— de Lorentz : 470,
-— (transformation de) : 469, 472,

551, 554, 557,
— (transformation globale de):
471, 553,
— (transformation locale de) : 472,
553.
K

Kinoshita-Lee-Nauenberg
théoréme de) : 598.
Klein-Gordon (équation de) : 363.

Klein-Gordon (champ de) : 366.

L

Lagrangien : 331, 355,
— (densité de) : 357, 387, 470, 472,
487, 561,
— euclidien : 341, 407,
— d’interaction : 387,
— libre : 387.

(KLN ;
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Landau (approximation de) : 62, 67.

Landau (théorie de) : 71.

Largeur de la région critique : 106,
107.

Legendre (transformation de): 49,
206.

Liberté asymptotique : 295, 584.

Lie (groupe de) : 546.

Lie (algebre de): 548.

Ligne physique : 97.

Localité : 368, 390.

Logarithmes dominants : 279, 304.

Longueur de corrélation : 33, 47, 246,
327, 599.

M

Marginal (champ, opérateur ou varia-
ble) : 103, 132.
Masse nue : 236, 240.
Masse renormalisée : 242.
Matrice S: 376, 389, 393, 409, 414,
419,
Matrice T : 410.
Matrice de transfert : 328.
Méson : 584.
Métastabilité : 72.
Minimal (MS; schéma de soustrac-
tion) : 261, 307, 508, 587.
Modéle :
-— gaussien : 79, 118,
— de Heisenberg : 29, 167,
— d’Ising : 28, 325,
— o-non linéaire : 167,
— de Villain : 159,
— de Wegner : 600,
— XY 153.
Modes normaux : 121, 352, 358.
Moment : 21, 178, 367.
Moment conjugué : 355, 358,
Moment magnétique anormal :
520.
Muon : 497,

485,

N
Neether (théoréme de) : 471.
Nombre d’occupation ; 361, 450.

Normalisation (conditions de): 245,
254, 260, 400.

o

Opérateur composé : 236, 255.
Opérateur d’évolution : 323, 372,
Onde de spin : 158, 162.

P

Paquet d’ondes : 365.
Paramétre d’ordre : 27.
Pauli (matrices de) : 547, 628.
Perturbatif (développement) : 121
184, 397.
Phonon : 361.
Plaquette : 93, 600.
Point fixe : 98, 287, 292.
— gaussien : 125,
— infrarouge stable : 293,
— non gaussien : 126,
— ultraviolet stable : 294.
Poisson (formule de sommation de) :
161.
Polarisation : 439, 473.
Polarisation du vide : 510, 532.
Potentiel effectif : 212.
Potentiel thermodynamique (ou de
Gibbs) : 49.
Produit normal : 362.
Produit-T : 327, 333, 370, 462.
Propagateur : 189, 370, 462, 479, 488,
489.

Q

Quantification :
— d’un champ classique : 352,
— du champ de Dirac : 458,
— du champ électromagnétique :
473,
— du champ de Klein-Gordon :
366,
— des théories de jauge non abé-
liennes : 559,
— des vibrations élastiques : 359.
Quark : 448, 499, 583.

R

Réduction (formules de) : 417.
Relations de dispersion : 426.
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Régularisation : 239,
— dimensionnelle : 215, 240, 403,
504, 585,
— de Schwinger : 218, 239,
— sur réseau : 240, 603.
Renormalisables, non renormalisa-
bles, super-renormalisables (théo-
ries) : 238.
Renormalisation :
— du champ : 243,
— (constante de) : 244,
— de la constante de couplage :
242,
— sur couche de masse : 400,
— de I'électrodynamique : 529,
— (équations différentielles de) :
126,
— (groupe de) cf. groupe,
— de la masse : 241,
— des opérateurs composés : 258,
— des théories de jauge non abé-
liennes : 566.
Représentation :
— adjointe : 550,
— fondamentale : 548, 550,
— d’un groupe : 548.
Représentation interaction : 373, 392.

S

Saveur : 583.

Schwinger (régularisation de): 218,
239.

Section efficace : 412, 630.

Singularité infrarouge : 594.

Singularité de masse (ou colinéaire) :
594.

Source (du champ): 181, 334, 363,
377, 467, 488.

Soustraction (point de) : 254, 400.

Spin-statistique (théoréme) : 461.

Structure (constante de) : 550.

Structure (fonctions de) : 592.

Stuéckelberg (lagrangien de) : 479.
Susceptibilité magnétique : 39.
Surface critique : 97.
Symétrie brisée : cf. brisure de symé-
trie.
Symétrie O(n): 184.
T
Tadpole : 214, 398.
Taux de désintégration : 412, 630.
Tension de la corde : 605.
Transformation du groupe de renor-
malisation (TGR) : 90, 92, 117.
Transmutation dimensionnelle : 589.
Transport paralléle : 552, 555.
Tricritique (point) : 103.

U
Ultraviolette (divergence) : 215, 223.

* Unitarité : 377, 390, 423, 527.

Universalité : 52, 107.
v

Valeur moyenne sur le vide : 569.
Variable essentielle, marginale, ines-
sentielle : cf. champ —.
Vertex : 186, 189, 399, 489.
Vertex propre : 205, 399.
Vide : 333, 361, 388, 569.
Villain (modéle de) : 159.
Vortex : 157.
w

Ward (identité de) : 523, 566, 610.
Wegner (modele de) : 600.
Weinberg (angle de) : 577, 580.
Weinberg (théoreme de) : 229.
Wick (rotation de) : 405.

. Wick (théoreme de) : 180, 379, 465.

Wilson (action de) : 604.
Wilson (boucle de) : 602, 604.

XYZ
XY (modele) : 153.
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