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Physical Constants

| Name | Symbol Value Unit |
Number 7 T 3.14159265358979323846
Number e e 2.71828182845904523536
Euler’s constant v = lin;O (E 1/k — ln(n)) = 0.5772156649

n- k=1

Elementary charge e 1.60217733- 1019 C
Gravitational constant G, 6.67259 - 1011 m3kg~1s2
Fine-structure constant a = e?/2hceg ~1/137
Speed of light in vacuum c 2.99792458 - 108 m/s (def)
Permittivity of the vacuum €0 8.854187- 10712 F/'m
Permeability of the vacuum I 47 - 1077 H/m
(4meg) ! 8.9876 - 10° Nm2C—2
Planck’s constant h 6.6260755 - 10734 Js
Dirac’s constant h=h/27 1.0545727- 10734 Js
Bohr magneton up = eh/2me 9.2741-10~2* Am?
Bohr radius ao 0.52918 A
Rydberg's constant Ry 13.595 ev
Electron Compton wavelength | Ace = h/mec 2.2463 - 10712 m
Proton Comptonwavelength | A¢cp, = h/mpe 1.3214- 10715 m
Reduced mass of the H-atom | up 9.1045755 - 1031 kg
Stefan-Boltzmann'sconstant | o 5.67032- 1078 Wm—2K 4
Wien's constant kw 2.8078-1073 mK
Molar gasconstant R 8.31441 Jmol ~T.K—1
Avogadro’s constant Na 6.0221367 - 1023 mol —!
Boltzmann's constant k= R/Na 1.380658 - 10~23 JK
Electron mass Me 9.1093897 - 10731 kg
Proton mass mp 1.6726231- 10727 kg
Neutron mass Mn 1.674954 - 10~27 kg
Elementary mass unit my = 15m(1FC)  1.6605656 - 1027 kg
Nuclear magneton UN 5.0508 - 1027 JT
Diameter of the Sun Dg 1392 - 10° m
Mass of the Sun Mg 1.989 - 1039 kg
Rotational period of the Sun To 25.38 days
Radius of Earth Ra 6.378 - 10° m
Mass of Earth Ma 5.976 - 10%* kg
Rotational period of Earth Ta 23.96 hours
Earth orbital period Tropical year 365.24219879 days
Astronomical unit AU 1.4959787066 - 101 m
Light year lj 9.4605 - 1015 m
Parsec pc 3.0857 - 1016 m
Hubble constant H ~ (75 £ 25) km-s~!-Mpc—!




Chapter 1

M echanics

1.1 Point-kineticsin afixed coordinate system
1.1.1 Déefinitions

The position 7, the velocity ¥ and the acceleration @ are defined by: 7= (z,y, 2), ¥ = (,9, 2), d = (&, §, 2).
Thefollowing holds:

s(t) = so +/|U(t)|dt; 7(t) = 7o +/U(t)dt; #(t) = —i—/c’i(t)dt

When the acceleration is constant this gives: v(t) = vo + at and s(t) = so + vot + Sat?,
For the unit vectorsin adirection L to the orbit €, and parallel to it &), holds:

LW dF . v, @
€ =15 = 57 €= —€n; €n = 57
0] ds |et|
For the curvaturek and the radius of curvature holds:
- dey, AP |de 1
ds  ds? ds ||

1.1.2 Polar coordinates
Polar coordinates are defined by: = = rcos(f), y = rsin(f). So, for the unit coordinate vectors holds:
&, = 0¢p, &g = —08,

The velocity and the acceleration are derived from: 7 = r¢,., @ = i-é, + 10y, @ = (i —r0%)é, + (270 +r6)éj.

1.2 Relative motion

QXﬁQ

For the motion of apoint D w.r.t. apoint Q holds: 7'p = 7q + 5— With Qﬁ =i —rqgandw = 6.
w

Further holds: o« = 6. ' means that the quantity is defined in a moving system of coordinates. In a moving
system holds:

T=tq+v' +dxFandd=dqg+a +ax7 +280x 7" +dx(Jx7)

withd x (& x 7') = —w?7!,

1.3 Point-dynamicsin a fixed coordinate system

1.3.1 Force, (angular)momentum and energy

Newton’s 2nd law connects the force on an object and the resulting accel eration of the object where the mo-
mentunis given by p’' = mu:
— . dﬁ B d(m@') _ m@ T 7 dm m,=g)nst méa

oAt dt dt dt
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Newton's 3rd law is given by: Fhction = — Freaction-
For the power P holds: P = 144 = F - &. For thetotal energy W, thekinetic energy 7" and the potential energy
Ubholds W =T+U; T=-UwithT = %va.

Thekick S isgivenby: § = Ap = /ﬁdt
2 2
Thework A, delivered by aforce, is A = / F.ds= / F cos(a)ds
1 1

Thetorque 7 is related to the angular momentum L: 7 = L = 7 x F; and
L =7 x p=mi x 7, |L| = mr’w. Thefollowing equation is valid:

v
26

T =
Hence, the conditions for amechanical equilibriumare: 3" F; = 0 and 3. 7 = 0.

The force of frictionis usually proportional to the force perpendicular to the surface, except when the motion
starts, when a threshold hasto be overcome: Fyic = f + Frorm - €t-

1.3.2 Conservativeforcefields

A con§ervative force can be written as the gradient of a potential: Fcons = —VU. From this follows that
V x F = 0. For such aforcefield also holds:

]fﬁ-dgzo = U:UO—/ﬁ-dg
0

So the work delivered by a conservative force field depends not on the trgjectory covered but only on the
starting and ending points of the motion.

1.3.3 Gravitation
The Newtonian law of gravitationis (in GRT one also uses « instead of G):

= mimsa _,
Fy,=-G 2 er

The gravitational potential isthen givenby V' = —Gm/r. From Gauss law it then follows: V2V = 47Go.

1.3.4 Orbital equations
If V"= V(r) one can derive from the equations of Lagrange for ¢ the conservation of angular momentum:

oL oV d 5 9
_— = — = —_— = LZ = =
9~ 90 0= o (mr<¢) =0= mr-¢ = constant

For the radial position as a function of time can be found that:

(dr>2 oW V) L2

dt) m - m2r2
The angular equation is then:

[ [me2 W —V) L2
¢—¢0=/lm£ \/ m T 22

0

o ~2field i1
dr” ="%arccos [ 1+ —L—T0
( L+ km/L2

To

If F = F(r): L =constant, if F isconservative: W =constant, if F* | #'then AT = 0 and U = 0.




4 Physics Formulary by ir. J.C.A. Wevers

Kepler'sorbital equations

Inaforcefield F = kr—2, the orbits are conic sections with the origin of the forcein one of thefoci (Kepler's
1st law). The eguation of the orbit is:

12
) = ———————— or 22+ 9P = (0 —ex)?
r(®) 1+ecos(d —bp)’ Ty =(t-en)
with ) ) , ,
L 2WL k
Gu2 Mo’ © + G2u3 M2, a T1oe2 ow

a ishaf the length of the long axis of the elliptical orbit in case the orbit is closed. Half the length of the short
axisisb = val. ¢ isthe excentricityof the orbit. Orbitswith an equal ¢ are of equal shape. Now, 5 types of
orbits are possible:

1. k< 0ande = 0: acircle.

2. k<0and0 < e < 1: andlipse.

3. k< 0ande = 1: aparabole.

4. k < 0ande > 1: ahyperbole, curved towards the centre of force.

5. k> 0ande > 1: ahyperbole, curved away from the centre of force.
Other combinations are not possible: the total energy in arepulsiveforcefield is always positiveso e > 1.

If the surface between the orbit covered between ¢, and ¢, and the focus C around which the planet movesis
A(ty,t2), Kepler's2ndlaw is

A(ty,t2) = 2m(1t2 t1)
Kepler's 3rd law is, with T" the period and M, the total mass of the system:
T_Q_ 472
a3 o GMtot
1.3.5 Thevirial theorem

Theviria theorem for one particleis:

-1 =02 (1) = ~§ (Foi) =4 (0 ) = 4n0) iU =~

Theviria theorem for a collection of particlesis:

<T>=—%< > ﬁzﬁ+2ﬁu%>

particles pairs

These propositions can also be written as: 2Exin + Epot = 0.

1.4 Point dynamicsin a moving coor dinate system

141 Apparent forces

Thetotal forcein amoving coordlnate system can be found by subtracting the apparent forces from the forces
working in thereferenceframe: F'/ = F' — F,,,. The different apparent forces are given by:

1. Transformation of the origin: F,, = —md,
2. Rotation: £, = —ma x 7/

3. Coriolisforce: Foor = —2md X U

4. Centrifugal force: Fup = mw?7,’ = —Fup; Fop = et
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1.4.2 Tensor notation
Transformation of the Newtonian equations of motionto = ® = z%(x) gives:
du _ Dut d’
dt — 0z8 dt’
The chainrule gives:

idmo‘ B d2ze _d <8x°‘ dfﬁ) _ 0x“ d?z8 dzP d <5‘xa)

dt dt  d?  dt\0zf dt ) 0if diz " dt dt \9xP
SO:
doxe 0 davdrt P dv)
dt 078~ 8z 9T8 dt ~ OTPOTY dt
Thisleads to:

x> Qx® d*z° 0%z dz) [dz®
a2 omf d ' 0xPom dt <W)
Hence the Newtonian equation of motion
d?z®
mW =

Az dz? dx
- Fa - = — Fa
m{ az T dt}

[e%

will be transformed into:

B drY
The apparent forces are taken from he origin to the effect sideintheway I' 3, ddit ddit .

1.5 Dynamicsof masspoint collections

15.1 Thecentre of mass

The velocity w.r.t. the centre of mass Ris givenby v — ﬁ The coordinates of the centre of mass are given by:

o > mT;
m Emz

In a2-particle system, the coordinates of the centre of mass are given by:

.ﬁ B m1771 + mQFQ
mi + M2

With 7 = 7 —
1 1 1

7, the kinetic energy becomes; T' = %MmtRQ + 172, with the reduced masg given by:

S .
The motion within and outside the centre of mass can be separated:
Loutside = 7_—'outside ; Linside = 7_—;nside

—
—

D=mMUn; Fexe =mdm; Fio=pu

15.2 Collisions

With collisions, where B are the coordinates of the collision and C an arbitrary other position, holds: = mo,
isconstant,and 7" = %mﬁ 2 isconstant. The changesin the relative velocitiesan be derived from: S = Ap' =

m

(1(Tate — Toefore). FUrther holds ALc = CB x S, 7 || S =constant and L w.r.t. B is constant.
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1.6 Dynamicsof rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:
L'=I13+ L
where I isthe moment of inertiavith respect to a central axis, which is given by:

2

1= E mﬂ:; 2 y T/ = Wrot = %WIijgigj = 1Iw2
)

or, in the continuous case:

I= %/r'idv - /r'idm

i j 2 : ro
Li = I”wj ; I“ = L ] LJ = IJL = — mkmixj
k

Further holds:

Steiner'stheoremis: Iy, ¢ p = Iw.rt.c + m(DM)? if axisC || axisD.

[ Object [ 1 [ Object [ 1 |
Cavern cylinder I =mR? Massive cylinder = ImR?
Disc, axisin planediscthroughm | I = 1mR? Halter I =IuR?
Cavern sphere I=2mR? Massive sphere I=2mR?
Bar, axis L through c.0.m. I=Lmi? Bar, axis L throughend | I = imi?
Rectangle, axis L planethr. com. | I = Sm(a? +b?) || Rectangle, axis | bthr. m | I = ma?

1.6.2 Principal axes
Each rigid body has (at least) 3 principal axes which stand L to each other. For a principal axis holds:
oI oI oI

Owy - 6—wy - ow.,

=0s0 L, =0

. . I, — I .
Thefollowlng holds: wy, = —Q4jkWiW; with Aijk = : 7 L jf I <1, <Is.
k

1.6.3 Timedependence

For torque of force 7 holds:

ThetorqueT isdefinedby: T = F x d.

1.7 Variational Calculus, Hamilton and L agrange mechanics

1.7.1 Variational Calculus

Starting with:
b
- - S — _a
6/£(q,q,t)dt — 0 with §(a) = 5(b) = 0 and 6 (dx> = 2 (ou)

a
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the equations of Lagrange can be derived:

doL oL
dt 8¢; g
When there are additional conditions applying to the variational problem §.J(u) = 0 of the type

K (u) =constant, the new problem becomes: §.J(u) — MK (u) = 0.

1.7.2 Hamilton mechanics

The Lagrangianis given by: £ = >~ T(¢;) — V(¢;). The Hamiltonianis givenby: H = > ¢ip; — L. In 2
dimensionsholds: £ =T — U = im(i? + r2¢?) — U(r, ¢).

If the used coordinates are canonicalthe Hamilton equations are the equations of motion for the system:

dgi _OH  dp;  OH

dt — dp; " dt  dq;
Coordinates are canonical if the following holds: {¢;,¢;} =0, {p:,p;} =0, {@,p;} = ;; where{, } isthe

Poisson bracket
0A OB 0AOB
B =X [5G o

The Hamiltonian of a Harmonic oscillator is given by H (x,p) = p2?/2m + %mwaQ. With new coordinates
(0, I), obtained by the canonical transformationz = /21 /mw cos(8) andp = —v/2Imw sin(f), with inverse
6 = arctan(—p/mwz) and I = p? /2mw + tmwa? it follows: H(0,1) = wl.

The Hamiltonian of a charged particle with charge g in an external electromagnetic field is given by:

2
=L (ﬁ—q/f) +qV
2m

This Hamiltonian can be derived from the Hamiltonian of afree particle H = p2/2m with the transformations
P — p— q/f and H — H — qV. Thisis elegant from arelativistic point of view: thisis equivaent to the
transformation of the momentum 4-vector p® — p® — gA®. A gauge transformation on the potentials A
corresponds with a canonical transformation, which make the Hamilton equations the equations of motion for
the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:

15)% 0%V
=0; = e Qiqr With Vi, =
(8%)0 0; Vi(g) =V(0)+ Virqiqr. With Vi, (8%8%)0

WithT = %(Mikfﬁ,q}c) one receives the set of equations MG + Vg = 0. If ¢;(t) = a; exp(iwt) is substituted,
this set of equations has solutionsif det(V — w?M) = 0. This leads to the eigenfrequencies of the problem:
9 aEVak
Wy = TM
Qg Q.
eigenvibrations.

. If the equilibrium is stable holds: Vk that w? > 0. The general solution is a superposition if

1.7.4 Phase space, Liouville'sequation

In phase space holds:

(T

o 0 0H & oH
)SOV.UZ<3%3P¢ 8]%8%)

)

0
Op;
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If the equation of continuity, 0;0 + V - (¢o7) = 0 holds, this can be written as:

do
{QaH}‘FE—O

For an arbitrary quantity A holds:

dA 0A
—— —J{A H il
dt {4, }+8t

Liouville' s theorem can than be written as:

do . o _
7 0; or: / pdq = constant
1.7.5 Generating functions

Starting with the coordinate transformation:

{ Qi = Qi(qi, pi,t)
P; = Pi(¢i,pi, t)

one can derive the following Hamilton equations with the new Hamiltonian K:

dQ; 0K dP; 0K
dt — op,’ dt  0Q;

Now, a distinction between 4 cases can be made:

1 Ifp;¢ — H=PQ;,— K(P;,Q;,t) — %, the coordinates follow from:
8F1 8F1 aFl
=—; PP=——"—: K=H+—
Di dg; ) i an, + ot
. F5(q;, P .
2. Ifp;g; — H=—-PQ; — K(P;,Q;,t) + % the coordinates follow from:
8F2 8F2 8F2
; = ; Qi=—%; K=H+ —/—
p 8q1; Q 6Pz + ot
3. If —piqs — H=PFP,Q;, — K(P;,Q;,t) + W, the coordinatesfollow from:
G- ors P = ors3 K:H—i—%

- 8pi ' _6Q1; ' 8t
dFy(pi, Pi,t)
dt
OF; OF, OF,

i=—mti Q= oo K=H+ =0
a4 8pi Q 6Pz +8t

4. If —p;q; — H=—-P,Q; — K(P;,Q;,t) + , the coordinates follow from:

Thefunctions F, F5, F3 and F, are caled generating functions




Chapter 2

Electricity & Magnetism

2.1 TheMaxwell equations

The classical electromagnetic field can be described by the Maxwell equationsThose can be written both as
differential and integral equations:

# ([j 0 )d2A = eree,included \4 [j = Pfree
#(é-ﬁ)dmzo V-B=0
_ d® - 0B
E - = ——— F=———
}{ ds o V x B .
L v . . 9D
%H -ds = Ifree,included + E V x H = Jpee + E

For the fluxes holds; ¥ = // (D7) dQA,@://(E-ﬁ)dQA.

The electric displacement D, polarization P and dectric field strength E depend on each other according to:

np}
3€Q]€T

D =coE + P =¢cpe,E, P= > po/Vol, e = 1+ xe, With x, =
The magnetic field strength H, the magnetization M and the magnetic flux density B depend on each other
according to:

2
B = po(H + M) = pope H, M =371 /Vol, piy = 1 4 Xm, With X = Mg']z;jo

2.2 Forceand potential

The force and the electric field between 2 point charges are given by:

o QIQQ — =1 ﬁ
Py = o E=—
12 dmege,r? € Q
The Lorentzforce is the force which is felt by a charged particle that moves through a magnegic fi gl d. The
origin of thisforceis arelativistic transformation of the Coulomb force: Fi, = Q(v x B) =1(I x B).

The magnetic field in point P which results from an electric current is given by the law of Biot-Savartalso
known asthe law of Laplace. In here, di || I and 7 pointsfrom dl to P:

pol
dl><,,

dB
P= 47Tr2

If the current is time-dependent one has to take retardationinto account: the substitution 7(t) — I(t —r/c)
hasto be applied.

The potentials are given by: Vi, = —/E dfand A = 1B x 7.
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Here, the freedom remains to apply a gauge transformationThe fields can be derived from the potentials as
follows:

Further holdstherelation: c25 = 7 x E.

2.3 Gaugetransformations

The potentials of the electromagnetic fields transform as follows when a gauge transformation is applied:

{ A =A-vVf
i 9f
V=Vt

so the fields E and B do not change. Thisresultsin a canonical transformation of the Hamiltonian. Further,
the freedom remains to apply alimiting condition. Two common choices are:
P

LoV = 0. Thisseparates the differential equationsfor AandV:0OV = - £

1. Lorentz-gauge: V- A + — —
~gag v +62 ot €0

04 = —uoj.
2. Coulombgauge: V- A =0.1f p=0and .J = 0 holdsVV = 0 and follows A from 0 A = 0.

2.4 Energy of the electromagnetic field

The energy density of the electromagneticfieldis:

aw
dvol—w—/HdB+/EdD

The energy density can be expressed in the potentials and currents as follows:

wmag:%/j"/i’d?’x , welzé/de?’x

2.5 Electromagnetic waves

25.1 Electromagnetic wavesin vacuum

The wave equation OW (7, t) = — (7, t) has the general solution, with ¢ = (o)~ /2:

\I/(F,t) _ / f(ﬁt_ |F_F/|/C)d3r/

Ar |7 — 7|

If thisiswritten as: J (7, t) = J(7) exp(—iwt) and A(7,t) = A(7) exp(—iwt) with:

. . A 1 e =
xumzli/quﬁﬁﬁﬁ_iﬁfw, V() = /;@qﬁmﬁﬁ_zﬁfw

4m |7 — 7' 4me |7 — 7|
A derivation via multipole expansion will show that for the radiated energy holds, if d, A > r:
dP k2 N iR i3 2
- = = 7 ,~Td /
dQY  32m2eqc /JJ' (e "
The energy density of the electromagnetic wave of avibrating dipole at alarge distanceis:
2 12 0 4 2 12 2] 4 k4 =2
w= e = PO o oty (), = DS Oy KD

16m2eqr2c 32m2eor2ct T T 12mey

The radiated energy can be derived from the Poynting vectorS: § = E' x H = cW¢é,. Theirradianceis the
time-averaged of the Poynting vector: I = (|.S |);. Theradiation pressure p, isgivenby p, = (1 + R)|S | /¢,
where R is the coefficient of reflection.
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2.5.2 Electromagnetic wavesin matter
The wave equationsin matter, with c,,.. = (eu)~'/? the lightspeed in matter, are:

2 2
<V2—6ua——%2>ﬁ—0, (VQ—Eua——ﬁ£>§—0

give, after substitution of monochromatic planewaves: E = E exp(i(k-7—wt)) and B = Bexp(i(k-7F—wt))
the dispersion relation;

k% = epw? + s
p

Thefirst term arises from the displacement current, the second from the conductance current. If £ iswrittenin
theform k := k' + k" it follows that:

1 1
k' =wy/2 1 1+ —— and k' =w/3 -1 1+ —
wq/ 3EM + + (pew)? W/ 5EM + + (pew)?

Thisresultsin adampedwave: E = E exp(—k"7-7) exp(i(k'7i - 7—wt)). If the material isagood conductor,

the wave vanishes after approximately one wavelength, & = (1 +4) , / ;;_w

2.6 Multipoles

1 1 _ : kn
Because ———- =~ ) ") Pi(cos ) the potential can bewrittenas: V = @ sk
[Pt dme o= 7

For the lowest-order terms this resultsin:
e Monopole: [ =0, ko = [ pdV
e Dipole: I =1,k; = [rcos(8)pdV
e Quadrupole: | = 2, ky = %2(327? —7?)

1. The electric dipole: dipole moment: 5 = QIé, where & goes from @ to &, and F = (- V) Eey, and
W = _ﬁ' Eout-

Electricfield: £~ —2— (227 _ 5) . Thetorqueis 7 — 7 x Foy
Amers 72
2. Themagnetic dipole: dipole moment: if » > /A: i =T x (A2L), F = (ji - V)Bous
2
muv L =
| = 2Ble/VZ_PJXBout )
Magnetic field: B = —~ ST ). Themomentis: 7= ji X Bou
473 r2
2.7 Electriccurrents
ap

+ V- J = 0. Theelectric currentis given by:

1:%://@%)(1%4

For most conductors holds: J = E /p, where p isthe resistivity.

The continuity equation for chargeis: 9
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If the flux enclosed by a conductor changes this results in an induced voltag€/i,g = — N @ If the current

flowing through a conductor changes, this results in a self-inductance which opposes the original change:
Vaelfind = —Lﬁ If aconductor enclosesaflux ¢ holds: & = LI.

dt’
The magnetic induction within a coil is approximated by: B = _puNT where! isthelength, R theradius
' VI2 + 4R? ’

and N the number of coils. The energy contained within acoil isgivenby W = 1LI? and L = uN2A4/!1.

The capacityis defined by: C = Q/V. For acapacitor holds: C' = ege, A/d where d is the distance between

the plates and A the surface of one plate. The electric field strength betweentheplatesis E = o/c¢ = Q/c0A

where ¢ is the surface charge. The accumulated energy is given by W = %CVQ. The current through a
av

capacity isgivenby I = _CE'
For most PTC resistors holds approximately: R = Ro(1 + oT'), where Ry = pl/A. For a NTC holds:
R(T) = Cexp(—B/T) where B and C depend only on the material.

If a current flows through two different, connecting conductors 2 and y, the contact area will heat up or cool
down, depending on the direction of the current: the Peltier effect The generated or removed heat is given by:
W =11, It. Thiseffect can be amplified with semiconductors.

The thermic voltagebetween 2 metalsis given by: V = (T — T). For a Cu-Konstantane connection holds:
v 2 0.2—-0.7mVI/K.

In an electrical net with only stationary currents, Kirchhoff’s equations apply: for aknot holds: 3" I,, = 0,
adlongaclosed path holds: > V,, =Y I, R, = 0.

2.8 Depolarizing field

If a dielectric material is placed in an electric or magnetic field, the field strength within and outside the
materia will change because the material will be polarized or magnetized. If the medium has an ellipsoidal
shape and one of the principal axes is parallel with the external field E, or By then the depolarizing is field
homogeneous.

, , , NP
Edep = Emat - EO = - -
0

ﬁdep = ﬁmat - ﬁO = _NM

N is a constant depending only on the shape of the object placed in the field, with 0 < N < 1. For afew
limiting cases of an ellipsoid holds: athin plane: A" = 1, along, thin bar: A" = 0, asphere: ' = 1.

2.9 Mixturesof materials

The average electric displacement in a material which is inhomogenious on a mesoscopic scale is given by:

1
(D) = (¢E) = ¢* (E) wheree* = ¢, (1 - %) where z = ¢, /e,. For a sphere holds: & =
2

1+ 2z, Further holds:

1
<Z %) <eg* < Zd)igi

7
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Relativity

3.1 Special reativity

3.1.1 TheLorentz transformation
The Lorentz transformation (z/,t") = (Z'(Z, t), ' (Z, t)) leaves the wave egquation invariant if c isinvariant:

9? 0? 0? 1 62 0? 0? 9? 1 92

02 o o2 T For o2 T oyt "o Zoim

This transformation can aso be found when ds? = ds’? is demanded. The genera form of the Lorentz
transformation is given by:

=/

=7+

QoUEDT o (-2

|U|2 YUt

where

The velocity difference v/ between two observers transforms according to:

- o -1 - o
. LR . VL
v’—<v<1— 122)> <v2+(7—1) 122v1—7v1>
c Vi

If the velocity is parallél to the z-axis, thisbecomesy’ = v, 2/ = z and:

/

¥ =vyx—nvt), =~y +ot")

/
/ v , TV , Vo — V1
t_WG—jg)at_V(t+;?)a1)_——Wﬁ5

If ¥ = ve, holds:
BW
P;_’Y<Pz—7) ) W’:’y(W—vpz)

With g = v/c the electric field of amoving chargeis given by:

Q (1-p)er

E =
dmegr? (1 — (2 sin’(6))3/2

The electromagnetic field transforms according to:

q q q q - OxE
E =~7E+7xB), B’—7<B—UX2 )
C
Length, mass and time transform according to: At, = yAtg, m; = ymg, I, = lo/~, with ¢ the quantities
in a co-moving reference frame and . the quantities in a frame moving with velocity v w.r.t. it. The proper
time 7 isdefined as: d72 = ds?/c?, so AT = At/~. For energy and momentum holds: W = m ,c? = yW,
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VYQ = mic* + p*c?. p = myw = ymov = Wo/c?, and pc = W3 where 3 = v/c. Theforceis definedby
F = dp/dt.

4-vectors have the property that their modulus is independent of the observer: their components can change
after a coordinate transformation but not their modulus. The di Lference of two 4-vectors transforms aso as
a 4-vector. The 4-vector for the velocity isgivenby U * = di The relation with the “common” velocity

. . . T

u' = dx'/dtis U® = (yu',icy). For particles with nonzero restmass holds: UU,, = —c?, for particles
with zero restmass (so with v = ¢) holds: U*U,, = 0. The 4-vector for energy and momentum is given by:
p* = moU® = (yp',iW/c). S0: pap® = —mic? = p* — W?2/c2.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

/

1. Motion: with €, - €. = cos(,) follows: F= 1 veos(y)

C
This can give both red- and blueshift, also L to the direction of motion.

2. Gravitational redshift: % _ =M

e
3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:
Ao  Ro
)\1 o Rll
3.1.3 Thestress-energy tensor and thefield tensor

The stress-energy tensor is given by:
1 o N
T = (902 + p)upty + pguw + = (F’U,OtFl/ + %Q,WF ﬁFag)

The conservation laws can than be written as: V,7# = 0. The electromagnetic field tensor is given by:

C0Ag A,

Fag = ox®  9zP

with 4, := (A,iV/c) and Jy = (J,icp). The Maxwell equations can than be written as:
aI/Fl“/ = MOJU ) aAEu/ + ap,Fl/A + al/FA,u =0

The equations of motion for a charged particlein an EM field become with the field tensor:

dpa
=2 — gF,u”
dr 4 ap

3.2 General relativity

3.21 Riemannian geometry, the Einstein tensor
The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time
T or arc length s as parameter. For particles with zero rest mass (photons), the use of afree parameter is
required because for them holds ds = 0. From § | ds = 0 the equations of motion can be derived:

d?z ., dz? dxY

ds> P ds ds
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2. The principle of equivalenceinertial mass = gravitational mass = gravitation is equivalent with a
curved space-time were particles move along geodesics.

3. By aproper choice of the coordinate system it is possible to make the metric locally flat in each point
it gap(xi) = nap =diag(—1,1,1,1).
The Riemann tensaiis defined as: R’jaﬁT” = Vo VgT#* — VgV, T", wherethe covariant derivativeis given

by V;a' = d;a" + F;kak and Vja; = 9;a; — I‘fjak. Here,

rs or
Oxidxk ozt’

o9 (3% Ogie g,k
=5 \laxta 7~

: for Euclidean spaces thisreducesto: "%, =
2 \9zF = 9z7 Ozt ) ’ * ik

are the Christoffel symbolsFor a second-order tensor holds: [V, V[T = R} T, + RY,5T¥, Viah =

Okal =T} ja;+T},ab, Viayy = Ogaiy =Tl ai; =T aj and Via = dpa'l +T,a" +T,a™. Thefollowing
holds: R, = 9,15, — 0,4, + I'5,I'g, —I'5,1'5,.

The Ricci tensoris a contraction of the Riemann tensor: R, := R’

" which is symmetric: Ros = Rga.
The Bianchi identitiesare: ViaRuoguw +VoRagry +VuRagun = 0.

The Einstein tensots given by: G*% := R*# — 14 R, where R := RY is the Ricci scalar for which
holds: V3Gap = 0. With the variational principle § [(£(g,.) — Rc?/16mk)\/|gld*z = 0 for variations
Guv — Guv + 0g,. the Einstein field equationsan be derived:

8 . . 8
Gop = —"Tos| ,whichcanasobewritten as Ry = —(Tag — 1gasT")
C C

For empty spacethisis equivalent to R,z = 0. Theequation R.s,, = 0 hasas only solution aflat space.

The Einstein equations are 10 independent equations, which are of second order in g ,,,,. From this, the Laplace
equation from Newtonian gravitation can be derived by stating: ¢, = 7. + b, Where |h| < 1. Inthe
stationary case, thisresultsin V2hgo = 8wko/c?.

81k

The most general form of thefield equationsis: R,z — %ga,gR + Agap = —5 Tup
C

where A isthe cosmological constanthis constant plays arole in inflatory models of the universe.

3.2.2 Theline eement
ozk ozk

The metric tensoiin an Euclidean spaceis given by: g;; = Dt D
" OX
k

In general holds: ds? = g,,dz"dz”. In specia relativity this becomes ds? = —c2dt? + dz? + dy* + dz>.
This metric, n,,, :=diag(—1, 1,1, 1), is caled the Minkowski metric

The external Schwarzschild metrapplies in vacuum outside a spherical mass distribution, and is given by:
2 2m\ 5.9 2m\ 2 2 102

Here, m := Mr/c? is the geometrical massf an object with mass M, and dQ? = df? + sin? fdp?. This
metric is singular for r = 2m = 2xM/c?. If an object is smaller than its event horizon 2m, that implies that
its escape velocity is > ¢, it iscalled ablack hole The Newtonian limit of this metricis given by:

ds® = —(1 4+ 2V)c2dt? + (1 — 2V)(dz? + dy* + d=?)

where V' = —xM/r is the Newtonian gravitation potential. In general relativity, the components of g, are
associated with the potentials and the derivatives of ¢,,,, with the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near
r = 2m. They are defined by:
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o > 2m:
T T t
SN | (_) h_
U o exp | 7 cos (4m)
T . t
vo= o lexp (—) sinh (R)
o < 2m:
t
u = 1-— # exp (4—) sinh (R)
t
o () ()

e r = 2m: here, the Kruskal coordinates are singular, which is necessary to eliminate the coordinate
singularity there.

The line element in these coordinatesis given by:

3
32m efr/2m

ds* = — (dv? — du?) + r2dQ?

r

Theliner = 2m correspondsto u = v = 0, thelimit 2° — oo withu = v and 20 — —oo withu = —v. The
Kruskal coordinates are only singular on the hyperbolev 2 — «? = 1, this correspondswith r = 0. Ontheline
dv = +du holdsdf = dy = ds = 0.

For the metric outside a rotating, charged spherical mass the Newman metric applies:

I — e2 2 2 052 0
ds? — <1 _ %) 2dt? — ( T +a”cos > dr? — (r2 + a2 cos? 9)d92 -
72 + a2 cos

2 —2mr 4+ a? — e2

2mr — e?)a?sin? 0\ . 2a(2mr — €2 .
(r2 +a’® + ( o a2)(:052 7 ) sin? 0dp? + (W) sin? 0(dy)(cdt)

wherem = kM/c?,a = L/Mcand e = kQ/eoc?.
A rotating charged black hole has an event horizon with R = m + vm?2 — a2 — €2,

Near rotating black holes frame dragging occurs because g, # 0. For the Kerr metric (e = 0, a # 0) then
follows that within the surface Rg = m + v/m?2 — a2 cos? 6 (de ergosphere) no particle can be at rest.

3.2.3 Planetary orbitsand the perihelion shift

Tofind aplanetary orbit, the variational problem§ | ds = 0 hasto be solved. Thisis equivalent to the problem
§ [ds? =6 [ gijdx'dx? = 0. Substituting the external Schwarzschild metric yields for a planetary orbit:

d_u @—i—u = d_u <3mu+ﬁ)
do \ dp? Cdy h?
wherew := 1/r and h = r%¢ =constant. The term 3mu is not present in the classical solution. This term can
2
in the classical case also be found from a potentia V (r) = — rM <1 + h—2>
r r
Theorbital equation givesr =constant as sol ution, or can, after dividing by du/dp, be solved with perturbation

theory. In zeroth order, this resultsin an eliptica orbit: uo(¢) = A + Bcos(¢) with A = m/h? and B an
arbitrary constant. In first order, this becomes:

B2 B2
ui(p) = A+ Beos(p —ep) + & (A + 34" GA COS(QQO))
where ¢ = 3m?/h? issmall. The perihelion of a planet is the point for which  is minimal, or « maximal.
Thisisthe caseif cos(¢p —ep) = 0 = ¢ =~ 2wn(1 + ). For the perihelion shift then follows: Ay = 27e =
67m?/h? per orbit.
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3.24 Thetrajectory of aphoton

For the trajectory of a photon (and for each particle with zero restmass) holds ds? = 0. Substituting the
external Schwarzschild metric resultsin the following orbital equation:

du [ d*u
%(d—gﬂ-l-u—?)mu) =0

3.25 Gravitational waves

Starting with the approximation g,,, = 7, + hy for weak gravitational fields and the definition ), =
huw — 30 hs it follows that Oh/, = 0 if the gauge condition 9h/,, /0x” = 0 is satisfied. From this, it

follows that the loss of energy of amechanical system, if the occurring velocities are < ¢ and for wavelengths
> the size of the system, is given by:

dt - 5cd =\ dt?

]

dE G (dBQij)2

with Q;; = [ o(z;x; — 26;;7%)d®x the mass quadrupole moment.

3.2.6 Cosmology

If for the universe as awhole is assumed:

1. There exists aglobal time coordinate which acts as 2° of a Gaussian coordinate system,

2. The 3-dimensional spaces are isotrope for a certain value of 22,

3. Each point is equivalent to each other point for afixed z:°.
then the Robertson-Walker metrican be derived for the line element:

R(t)
2

#(-5%)

For the scalefactorR(t) the following equations can be derived:

ds® = —c?dt* + (dr? + r2dQ?)

2R  R?+ ke? 8
25 c__7mp+A

R+ ke®  8mro A
TR Z e
where p is the pressure and ¢ the density of the universe. If A = 0 can be derived for the deceleration
parametery: )
_RR_ g

R2  3H?2
where H = R/R is Hubble’s constant This is a measure of the velocity with which galaxies far away are
moving away from each other, and hasthe value ~ (754 25) km-s~1-Mpc~?. Thisgives 3 possible conditions
for the universe (here, W is the total amount of energy in the universe):

q:

1. Parabalical universe k =0, W =0, q = % The expansion velocity of the universe — 0 if t — oo.
The hereto related critical densityis o. = 3H?/87k.

2. Hyperbolical universe: k = —1, W < 0, ¢ < 3. The expansion velocity of the universe remains
positive forever.

3. Elliptical universe: £ =1, W > 0, q > % The expansion velocity of the universe becomes negative
after some time: the universe starts collapsing.
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Oscillations

4.1 Harmonic oscillations

The general form of aharmonic oscillationis: W(t) = Wel(@iE#) = P cos(wt + ),

where ¥ isthe amplitude A superposition of several harmonic oscillations with the same frequencgsultsin
another harmonic oscillation: R X
Z U, cos(ay; + wt) = P cos(f + wt)

with: .
>0, sin(ay)
tan(f) = ——— and ®% = U2 42 U, 0. cos(ay; — v
0) = Sgomas DD
For harmonic oscillations holds: /x(t)dt = & and %T(t) = (iw)"z(t).
W v

4.2 Mechanic oscillations

For a construction with a spring with constant C' parallel to adamping & which is connected to amass M, to
which a periodic force F'(t) = F cos(wt) is applied holds the equation of motion m& = F(t) — k& — Cuz.
With complex amplitudes, this becomes —mw?z = F — Cx — ikwz. Withwi = C/m follows:

F F

T = - ,and for thevelocity holds: ©+ = ——
m(wg — w?) + ikw Y ivVCmé + k
where§ = wi — %. The quantity Z = F/# is called the impedancef the system. The quality of the system
0
isgivenby Q = %

The frequency with minimal | Z| is called velocity resonance frequencyhisis equal to wy. Inthe resonance
curve|Z|/v/Cmisplotted against w/wy. Thewidth of thiscurveis characterized by the pointswhere | Z (w)| =
|Z(wo)|v/2. Inthese pointsholds: R = X andd = +Q ', and the widthis 2Awp = wy/Q.

The stiffnesof an oscillating systemisgiven by F'/x. Theamplitude resonance frequeney, isthe frequency

whereiwZ isminimal. Thisisthecasefor wa = wgy/1 — %QQ.
The damping frequencyp is ameasure for the time in which an oscillating system comes to rest. It is given

by wp = wp4/1 — rcly A weak damped oscillation (k2 < 4m(C) dies out after T, = 27 /wp. For acritical
dampedoscillation (k2 = 4mC) holds wp = 0. A strong damped oscillation (k2 > 4m(C') drops like (if
k% > 4mC) z(t) ~ xgexp(—t/T).

4.3 Electric oscillations
The impedancds given by: Z = R + iX. The phase angle is ¢ := arctan(X/R). The impedance of a

resistor is R, of a capacitor 1/iwC and of aself inductor iw L. The quality of acoil isQ = wL/R. Thetota
impedancein case several elements are positioned is given by:
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1. Seriesconnection: V =17,
G =37, D=3 Lis —— =3 &, Q=2 7= R(1+iQo)
i i Ctot : Cz R

2. parale connection: V = 17,

1 1 1 1 R R
Y =Y Cu=YG, Q= 2=
Lot 27: Zi " Lot zz: L;’ fot 27: - Q Zy 14+1iQ0

| L 1
Here,ZQ: EandW():\/T_C

The power given by asourceisgivenby P(t) = V(t) - I(t), so (P), = vt Lo cos(Ag)
= 1V Icos(¢y — ¢s) = 3I°Re(Z) = 1V?Re(1/Z), where cos(A¢) isthe work factor.

4.4 Wavesin long conductors

. . L
These cablesarein use for signal transfer, e.g. coax cable. For them holds: Z = 4/ dL da

dx dC’
- L dx dx
The transmission velocity isgivenby v = 4/ JLac

4.5 Coupled conductorsand transformers

For two coils enclosing each others flux holds: if @15 isthe part of the flux originating from I through coil 2
whichisenclosed by cail 1, than holds ® 15, = M;515, ®21 = Moy 1. For the coefficients of mutual induction
Mij holds:

N1®1  Na®,

M12:M21 =M=k L1L2: = NNlNQ
I I

where 0 < k£ < 1 isthe coupling factor For atransformer isk ~ 1. At full load holds:

i _ L wM o [Li M
Vo I iwLo+ Riaa  VIa Ny

4.6 Pendulums

Theoscillationtime T = 1/ f, and for different types of pendulumsis given by:
e Osgcillating spring: T' = 2m+/m/C if the spring forceisgivenby F = C - Al.

e Physical pendulum: T' = 274/ /7 with 7 the moment of force and I the moment of inertia.

. . 21 . N
e Torsionpendulum: T' = 27+/I/k withx = TZ the constant of torsion and I the moment of inertia
TreAp

e Mathematical pendulum: T' = 27 /I /g with ¢ the acceleration of gravity and [ the length of the pendu-
[um.
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Waves

5.1 Thewave equation
The general form of the wave equation is: Ou = 0, or:

L0 u_ Pu Pu_ 10
v2 Ot Ox2  Oy? 022 w2 o2

where v is the disturbance and v the propagation velocity In general holds: v = fA. By definition holds:
kA =2mandw = 27 f.

In principle, there are two types of waves:
1. Longitudinal waves: for these holds & || 7' || .
2. Transversal waves: for these holds & || & L .

The phase velocitys given by v, = w/k. The group velocityis given by:
dw dvpn k dn
vg = gp = voh g = v (“5@)

where n is the refractive index of the medium. If v, does not depend on w holds: vy, = vs. In adispersive
medium it is possible thet vy > v, OF vy < Vpn, aNd Vg - vF = 2. If one wants to transfer information with
awave, e.g. by modulation of an EM wave, the information travels with the velocity at with a change in the
electromagnetic field propagates. This velocity is often amost equal to the group vel ocity.

For some media, the propagation velocity follows from:

e Pressurewavesinaliquid or gas: v = +/r/0, Wwhere « is the modulus of compression.

e For pressurewavesin agasaso holds: v = \/vp/o = \/YRT/M.
e Pressure wavesin athin solid bar with diameter << A\: v = \/E/p

o wavesinastring: v = \/Fypanl/m

Surfacewaveson aliquid: v = \/(@ + 2;—7) tanh (@)

A

where h isthe depth of theliquid and ~ the surface tension. If A < A holds: v ~ /gh.
5.2 Solutions of the wave equation
5.2.1 Planewaves

In n dimensions a harmonic plane wave is defined by:

n
u(Z,t) = 2™ cos(wt) Z sin(k;x;)
i=1
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The equation for a harmonic traveling plane waveis: u(Z, t) = i cos( k-7 +wt—+ )

If waves reflect at the end of a spring thiswill result in achange in phase. A fixed end gives a phase change of
7 /2 to the reflected wave, with boundary condition «(I) = 0. A lose end gives no change in the phase of the
reflected wave, with boundary condition (Ou/0x); = 0.

If an observer is moving w.r.t. the wave with a velocity v.,s, he will observe a change in frequency: the

Doppler effect Thisis given by: fi = %.
0 f

5.2.2 Spherical waves

When the situation is spherical symmetric, the homogeneous wave equation is given by:
1 9?(ru)  9%(ru)

v2 Ot or? =0

with general solution:
f(r—ot) . ng(r + vt)

’U,(T,t) =0 r r

5.2.3 Cylindrical waves

When the situation has a cylindrical symmetry, the homogeneous wave equation becomes:
10% 10 ou
v2 Ot2  ror \  Or
ThisisaBessel equation, with solutions which can be written as Hankel functions. For sufficient large values
of r these are approximated by:

u(r,t) = U cos(k(r £ vt))

\/77

5.2.4 Thegeneral solution in one dimension

Starting point is the equation:
N m

0%u(x,t 0
3(752 ) - Z (bm—amm) u(z,t)
m=0
where b,,, € IR. Substituting u(x,t) = Ae’**~«*) gives two solutionsw; = w;(k) as dispersion relations.
The general solution is given by:
u(z,t) = / (a(k)ei(kx_wl(k)t) + b(k)ei(kx_W(k)t)) dk

Because in general the frequenciesw; are non-linear in k thereis dispersion and the sol ution cannot be written
any more as a sum of functions depending only on x + vt: the wave front transforms.

5.3 Thestationary phase method

Usually the Fourier integrals of the previous section cannot be calculated exactly. If w (k) € IR the stationary
phase method can be applied. Assuming that a(k) is only aslowly varying function of k, one can state that the
parts of the k-axis where the phase of kx — w(k)t changesrapidly will give no net contribution to the integral

because the exponent oscillates rapidly there. The only areas contributing significantly to the integral are areas

with a stationary phase, determined by %(kx — w(k)t) = 0. Now the following approximationis possible:

o0 N
/ a(k)ei(kx—w(k)t)dk ~ Z

i=1

2w
d2w(ki)
dk’?

exp [—itm +i(kiz — w(k;)t)]




22 Physics Formulary by ir. J.C.A. Wevers

5.4 Green functionsfor theinitial-value problem

Thismethod s preferableif the solutions deviate much from the stationary solutions, like point-like excitations.
Starting with the wave equation in one dimension, with V2 = 92 /922 holds: if Q(z, 2’,t) isthe solution with
initial values Q(z, ', 0) = 6(z — o) and 22@ 20 o and P(a, o7, 1) the solution with initial values

ot
W = ¢(z — ), then the solution of the wave equation with arbitrary initial

conditions f(z) = u(z, 0) and g(z) = du(z,0)

P(z,2’,0) = 0 and
isgiven by:

oo

u(e, t) = / F@)Q, o, t)da' + / g(e')P(z, o', t)da’

—0o0

P and @ are caled the propagators They are defined by:

Qz,2',t) = $[6(xz—2 —ovt)+ (-2’ +ot)]
Pz, 2. 1) if [x—2a'| <wvt
if |z—2a|>wvt
. , OP(x,2',t)
Further holdstherelation: Q(z, z',t) = —

5.5 Waveguides and resonating cavities

The boundary conditions for a perfect conductor can be derived from the Maxwell equations. If 7 is a unit
vector L the surface, pointed from 1to 2, and K isa surface current density, than holds:

-(ﬁg—ﬁl)zd nX(EQ—El) 0

(By—B1)=0  fix(Hy—H)=K

ISTRSTH

In a waveguide holds because of the cylindrical symmetry: E(Z,t) = &(z,y)eik*=«) and B(Z,t) =
B(x,y)e!*==«)  From this one can now deducethat, if B, and £, are not = 0:

i 9B, 9€. i 9B, 9€.
Bmiz—:uwQ— Q(kc?x s 8y> By*z—:uwQ—kQ (ké)y —Hmwc?x)

o og. OB\ . _ i (0& _ 0B
Tt — k2 "oz T My v o — k2 oy~ Mo

Now one can distinguish between three cases:

1. B, = 0: the Transversal Magnetic modes (TM). Boundary condition: £, |su.t = 0.

z

n

=0.

surf

2. E, = 0: the Transversal Electric modes (TE). Boundary condition:

For the TE and TM modes this gives an eigenvalue problem for £, resp. B, with boundary conditions:

62 82 2 H i 2 2 2
(W + 8—g/2> 1 = —~v“y with eigenvalues v := cuw” — k
This gives a discrete solution ¢, with eigenvaluey2: k = /euw? — vZ. For w < wy, k isimaginary
and the wave is damped. Therefore, wy is caled the cut-off frequency In rectangular conductors the
following expression can be found for the cut-off frequency for modes TE ,,, ,, of TM,,, .-

2

A =
(m/a)? + (n/b)?
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3. E, and B, are zero everywhere: the Transversal electromagnetic mode (TEM). Than holds: & =
+w,/ep and vy = v, just as if here were no waveguide. Further & € IR, so there exists no cut-off

frequency.

In arectangular, 3 dimensional resonating cavity with edges a, b and ¢ the possible wave numbers are given

by: k, = mr , ky = % , k= % Thisresultsin the possible frequencies f = vk /2 in the cavity:
F=5\ gty ta

For a cubic cavity, with a = b = ¢, the possible number of oscillating modes Ny, for longitudinal waves is
given by:

B dma’ f3

33

Because transversal waves have two possible polarizations holds for them: N1 = 2/Ny..

Ny

5.6 Non-linear wave equations
The Van der Polequation is given by:

d? d
ﬁ: —ewp(1l — ﬁxQ)d—f +wiz=0

Bx2 can be ignored for very small values of the amplitude. Substitution of z ~ e™* gives. w = %wo(ie +
24/1— %52). The lowest-order instabilities grow as %awo. While z is growing, the 2nd term becomes larger

and diminishes the growth. Oscillations on atime scale ~ w; ' can exist. If z is expanded as = = 2(*) +
exM 4 222 4 ... and thisis substituted one obtains, besides periodic, secular termsv et. If it is assumed
that there exist timescales 7,,, 0 < 7 < N with 97, /0t = ™ and if the secular terms are put O one obtains:

d (1 /de\> | , NT2%
E{E(E) +§WOJ) —&wﬂl—ﬁl‘)(E)

Thisis an energy equation. Energy is conserved if the left-hand side is 0. If 22 > 1/, the right-hand side
changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth
of oscillations.

The Korteweg-De Vriegquation is given by:

du + Gu _ au@ + b2&
ot Oz Oz ox3
—— N——

non—lin  dispersive

=0

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions
of the following form exist:
—d

ule =) = cosh?(e(x — ct))

withc =1+ 1ad and e? = ad/(12b%).
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Optics

6.1 Thebending of light

For the refraction at a surface holds: n; sin(f;) = n;sin(6;) where n is the refractive indexof the material.

Snell’'slaw is:
n2_Mo_ v
ni1 o )\2 o V2
If An < 1, thechangein phase of thelightis Ay = 0, if An > 1 holds: Ay = «. Therefraction of lightin a
material is caused by scattering from atoms. Thisis described by:

2
2 Ne€ i
n“=1+

gom 0, — w? —idw

where n. is the electron density and f; the oscillator strengthfor which holds: > f; = 1. From thisfollows

J
that v, = ¢/(1 + (nee?/2eomw?)). From this the equation of Cauchy can be derived: n = ao + a1 /A\%. More
genera, it ispossible to expand n as. n = %.
k=0
For an electromagnetic wave in general holds: n = /&1t

The path, followed by alight ray in material can be found from Fermat'’s principle

2 2 2
6/dt=5/@ds=0é5/n(s)ds=0
1 1 1

6.2 Paraxial geometrical optics

6.2.1 Lenses

The Gaussian lens formula can be deduced from Fermat’s principle with the approximations cos ¢ = 1 and
sin ¢ = . For therefraction at a spherical surface with radius R holds:

ni n2 ny —n2

v b R

where |v| isthe distance of the object and |b| the distance of the image. Applying thistwice resultsin:

1 ( 1) 1 1

= (n — - =

f : Ry Ry
where n, isthe refractiveindex of thelens, f isthefocal length and R, and R, arethe curvatureradii of both
surfaces. For a double concave lens holds R; < 0, Ro > 0, for a double convex lens holds R; > 0 and

Rs < 0. Further holds:
1

S|~
S =
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D := 1/ f is caled the dioptric power of alens. For alens with thickness d and diameter D holds to a good
approximation: 1/f = 8(n — 1)d/D?. For two lenses placed on aline with distance d holds:

1 1 1 d

FTRT Rk

In these equations the following signs are being used for refraction at a spherical surface, as is seen by an

incoming light ray:

[ Quantity | + —
R Concave surface | Convex surface
f Converginglens | Diverging lens
v Real object Virtual object
b Virtual image Real image

6.2.2 Mirrors

For images of mirrors holds:

L1, 1 2 #(1 1 2
f v b R 2 \R w

where h is the perpendicular distance from the point the light ray hits the mirror to the optical axis. Spherical

aberration can be reduced by not using spherical mirrors. A parabolical mirror has no spherical aberration for

light rays parallel with the optical axis and is therefore often used for telescopes. The used signs are:

| Quantity | + | — |
R Concave mirror | Convex mirror
f Concave mirror | Convex mirror
v Real object Virtual object
b Real image Virtual image

6.2.3 Principal planes

The nodal pointsN of alens are defined by the figure on the right. If thelensis
surrounded by the same medium on both sides, the nodal points are the same as
the principal points H. The plane L the optical axis through the principal points N
is called the principal plane If the lens is described by a matrix m ;; than for the

distances h; and ho to the boundary of the lens holds: ON:
-1 —1
hy = nmL , ho = nm22
mio mi2

6.2.4 Magnification

Thelinear magnificatioris defined by: N = b
(%

The angular magnifications defined by: N, = _ Gayst

anone
where oy IS the size of the retinal image with the optical system and o pone the size of the retinal image
without the system. Further holds: IV - N, = 1. For atelescope holds: N = fobjective/ focular. The f-number
is defined by f/Dobjective-
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6.3 Matrix methods

A light ray can be described by a vector (n«, y) with « the angle with the optical axis and y the distance to
the optical axis. The change of a light ray interacting with an optical system can be obtained using a matrix

n uItipIication:
( NoQig ) 7\'( ni1o )
Y2 1

where Tr(M) = 1. M isaproduct of elementary matrices. These are:

1. Transfer dong lengthi: My = ( l/ln (1) )

2. Refraction at a surface with dioptric power D: Mt = ( (1) _1D )

6.4 Aberrations

Lenses usually do not give a perfect image. Some causes are:

1. Chromatic aberration is caused by the fact that n = n()\). This can be partially corrected with alens
which is composed of more lenses with different functions n ;(\). Using N lenses makes it possible to
obtain the same f for N wavelengths.

2. Spherical aberration is caused by second-order effects which are usually ignored; a spherical surface
does not make a perfect lens. Incomming rays far from the optical axiswill more bent.

3. Comaiscaused by the fact that the principal planes of alensareonly flat near the principal axis. Further
away of the optical axisthey are curved. This curvature can be both positive or negative.

4. Astigmatism: from each point of an object not on the optical axis the image is an llipse because the
thickness of the lensis not the same everywhere.

5. Field curvature can be corrected by the human eye.

6. Distorsion gives abberations near the edges of the image. This can be corrected with a combination of
positive and negative lenses.

6.5 Reflection and transmission
If an electromagnetic wave hits a transparent medium part of the wave will reflect at the same angle as the

incident angle, and a part will be refracted at an angle according to Snell’s law. It makes a difference whether
the E field of thewaveis L or || w.r.t. the surface. When the coefficients of reflection r and transmission ¢ are

H E('i H ’ EOZ ’ H E('i || ’ E('i

where Ey,. isthereflected amplitude and E; the transmitted amplitude. Then the Fresnel equations are:

tan(6; — 6;) sin(6; — 0;)

= tan(6; +6;) = sin(0; + 6;)
. 2sin(6;) cos(6;) _ 2sin(6;) cos(6;)
I~ sin(0, + 0;) cos(6; — 6;) * sin(6; + 6;)

Thefollowing holds: ¢t — 7, = 1andt + 7 = 1. If the coefficient of reflection R and transmission 7" are
defined as (with 8; = 6,.):

I; cos(6y)

and T I; cos(6;)

R

i
=)
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with I = (|S]) itfollows: R+T = 1. A special caseisr = 0. Thishappensif the angle between the refl ected
and transmitted raysis 90°. From Snell’s law it then follows: tan(6;) = n. Thisangleis called Brewster's
angle Thesituation withr; = 0 isnot possible.

6.6 Polarization

Ip _ Imax - Imin
Ip + Iu N Imax + Imin
where the intensity of the polarized light is given by I, and the intensity of the unpolarized light is given by

I,. Ihax and I, are the maximum and minimum intensities when the light passes a polarizer. If polarized
light passes through a polarizer Malus lawapplies: 1(6) = 1(0) cos?(6) where @ is the angle of the polarizer.

Thepolarizationisdefined as: P =

The state of alight ray can be described by the Stokes-parameterstart with 4 filters which each transmits half
the intensity. The first is independent of the polarization, the second and third are linear polarizers with the
transmission axes horizontal and at +45°, while the fourth isacircular polarizer which is opaque for L-states.
Then hOldSSl =21,8, =21, — 21, Sg =2I3 —2I; and Sy =21, — 211.

The state of apolarizedlight ray can also be described by the Jones vectar

= EOxeww

b= ( Eoye'#v )
For the horizontal P-state holds: E = (1,0), for the vertical P-state E = (0, 1), the R-state is given by
E = 1V2(1,—i) and the L-state by £ = 11/2(1,4). The change in state of a light beam after passage of

optical equipment can be described as E»=M-E,. For some types of optical equipment the Jones matrix M
isgiven by:

Horizontal linear polarizer: < (1) 8 )
S . 00
Vertical linear polarizer: ( 01
: . o (11
Linear polarizer at +45 5
1 1
1

Lineair polarizer at —45° 1 (

')
. . i 1 0
1-) plate, fast axis vertical e’ /4( 0 —i )

1-) plate, fast axis horizontal el /4 < (1) ?
Homogene circular polarizor right i ( —15 i
Homogene circular polarizer left % < 1 _11

6.7 Prismsand dispersion

A light ray passing through a prism is refracted twice and aquires a deviation from its original direction
0 = 60; + 0; + o w.r.t. theincident direction, where « is the apex angle, 6; is the angle between the incident
angle and a line perpendicul ar to the surface and 6,/ is the angle between the ray leaving the prism and aline
perpendicular to the surface. When 6; variesthereis an angle for which § becomes minimal. For the refractive
index of the prism now holds:

Sin(3 (Gmin + @)

sin(3a)
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The dispersion of a prism is defined by:
dé  dédn
D = —= ——
dx  dndX
wherethefirst factor depends on the shape and the second on the composition of the prism. For the first factor
follows:
dé 2sin(a)

dn COS(%((Smin +a))

For visible light usually holds dn/d\ < 0: shorter wavelengths are stronger bent than longer. The refractive
index in this area can usually be approximated by Cauchy’s formula.

6.8 Diffraction

Fraunhofer diffraction occurs far away from the source(s). The Fraunhofer diffraction of light passing through
multiple dlits is described by:

I(0)  (sin(u) 2 sin(Nwv) 2

- () ()

where u = wbsin(f)/\, v = wdsin(f)/A. N isthe number of dlits, b the width of a dlit and d the distance
between the dlits. The maximain intensity are given by dsin(6) = k.

The diffraction through a spherical aperture with radius a is described by:

0 - (Al

The diffraction pattern of a rectangular aperture at distance R with length a in the z-direction and b in the
y-directionis described by:
I(x,y)  (sin(a’) > /sin(3)\?
- () (%57

wherea’ = kaz/2R and 8’ = kby/2R.

When X rays are diffracted at a crystal holds for the position of the maxima in intensity Bragg's relation
2d sin(f) = nA where d is the distance between the crystal layers.

Close at the source the Fraunhofermodel is invalid because it ignores the angle-dependence of the reflected
waves. Thisis described by the obliquity or inclination factor, which describes the directionality of the sec-

ondary emissions: E(f) = 3 Eo(1 + cos(f)) where § isthe angle w.r.t. the optical axis.

Diffraction limits the resolutionof a system. This is the minimum angle Af .,;, between two incident rays
coming from points far away for which their refraction patterns can be detected separately. For a circular dlit
holds: Afin = 1.22X/D where D is the diameter of the dlit.

For a grating holds: Af,in = 2)\/(Nacos(6,,)) where a is the distance between two peaks and N the
number of peaks. The minimum difference between two wavel engths that gives a separated diffraction pattern
in amultiple slit geometry is given by AX/A = nN where N is the number of lines and . the order of the
pattern.

6.9 Special optical effects

e Birefringe and dichroism. D isnot parallel with E if the polarizability P of amaterial is not equal in
all directions. There are at least 3 directions, the principal axesin which they are parallel. Thisresults
in 3 refractive indices n; which can be used to construct Fresnel’s ellipsoid. Incase ns = n3 # ny,
which happense.g. at trigonal, hexagonal and tetragonal crystalsthereisoneoptical axisin the direction
of ny. Incident light rays can now be split up in two parts: the ordinary waveis linear polarized L the
plane through the transmission direction and the optical axis. The extraordinary waves linear polarized
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in the plane through the transmission direction and the optical axis. Dichroismis caused by a different
absorption of the ordinary and extraordinary wave in some materials. Double image®ccur when the
incident ray makes an angle with the optical axis. the extraordinary wave will refract, the ordinary will
not.

e Retarders: waveplatesand compensators. Incident light will have a phase shift of Ay = 2nd(|ng —
ne|) /Mo If an uniaxia crystal is cut in such away that the optical axisis parallel with the front and back
plane. Here, )\ is the wavelength in vacuum and n and n, the refractive indices for the ordinary and
extraordinary wave. For a quarter-wave plate holds: Ay = /2.

e The Kerr-effect: isotropic, transparent materials can become birefringent when placed in an electric
field. Inthat case, the optical axisisparallel to E. Thedifferencein refractiveindex in thetwo directions
is given by: An = MoK E?, where K is the Kerr constantof the material. If the electrodes have an
effective length ¢ and are separated by a distance d, the retardation is given by: Ay = 27 K/¢V 2/d?,
where V' isthe applied voltage.

e ThePockelsor linear electro-optical effect can occur in 20 (from atotal of 32) crystal symmetry classes,
namely those without a centre of symmetry. These crystals are also piezoelectric their polarization
changes when a pressureis applied and viceversa: P = pd + ¢\ E. Theretardation in a Pockels cell is
Ap = 27rn0r63V/)\0 where rg3 isthe 6-3 element of the el ectro-optic tensor.

e The Faraday effect: the polarization of light passing through material with length d and to which a
magnetic field is applied in the propagation direction is rotated by an angle 5 = VBd whereV is the
Verdet constant

e Cerenkov radiation ariseswhen acharged particlewith v, > v arrives. Theradiation is emitted within
acone with an apex angle a with sin(a) = ¢/¢medium = ¢/Nvy.

6.10 The Fabry-Perot interferometer

For a Fabry-Perot interferometer holds in
generd: T+ R+ A = 1 where T isthe
transmission factor, R the reflection factor
and A the absorption factor. If F'isgiven
by F = 4R/(1 — R)? it follows for the
intensity distribution:

1__[1_ A ]2 1
I, 1—R| 1+ Fsin®()

The term [1 4+ Fsin?(0)]7' := A(0) is Source  Lens d . Screen
called the Airy function Focussing lens

The width of the pesks at half height is given by v = 4/VF. ThefinesseF is definedas F = 1xv/F. The
maximum resolution is then given by A f1,i, = ¢/2ndF.
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Statistical physics

7.1 Degrees of freedom

A moleculeconsisting of n atomshas s = 3n degreesof freedom. Thereare 3 translational degrees of freedom,
alinear molecule has s = 3n — 5 vibrational degrees of freedom and a non-linear molecule s = 3n — 6. A
linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count double. So,

for linear moleculesthisresultsin atotal of s = 6n — 5. For non-linear molecules thisgives s = 6n — 6. The
average energy of a moleculein thermodynamic equilibriumis (E'tot) = %sk:T. Each degree of freedom of a
molecule hasin principle the same energy: the principle of equipartition

Therotational and vibrational energy of amolecule are:

h2

Wrot = ﬁ

l(l -+ 1) = Bl(l =+ 1) R Weib = (’U -+ %)th

The vibrational levels are excited if kT ~ hw, the rotational levels of a hetronuclear molecule are excited if
kT = 2B. For homonuclear moleculesadditional selection rulesapply so therotational levelsarewell coupled
if kT ~ 6B.

7.2 Theenergy distribution function

The general form of the equilibrium velocity distribution function is
P(vg, vy, v, )dvgdoydv, = P(vg)dv, - P(vy)dvy, - P(v,)dv, with

1 v?
aﬁexp 2 dv;

where a = /2kT/m is the most probable velocitgf a particle. The average velocity is given by (v) =
20/ /7, and (v?) = 3 a2, Thedistribution as afunction of the absolute value of the velocity is given by:

P(vz)dvq =

The general form of the energy distribution function then becomes:

e = (£) (£ ) ar

where c(s) isanormalization constant, given by:

1. Evens: s =2l ¢(s) = =
2[
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7.3 Pressureon awall

The number of molecules that collides with awall with surface A within atime 7 is given by:

co m 2T

=] ] foamevtrn s

From this follows for the particle flux on thewall: ® = 4n (v). For the pressure on the wall then follows:

2 SN 2
d3p2%7 © p= 2n(E)
T 3

7.4 Theequation of state

If intermolecular forces and the volume of the molecules can be neglected then for gases from p = %n (E)
and (E) = 3kT can be derived:

pV =nsRT = %Nm <U2>

Here, n isthe number of molesparticlesand IV is the total number of particles within volume V. If the own
volume and the intermol ecul ar forces cannot be neglected the Van der Waal®qguation can be derived:

2

an
(p—l— V28> (V —bng) =ngRT

There is an isotherme with a horizontal point of inflection. In the Van der Waals equation this corresponds
with the critical temperature, pressurand volumeof the gas. Thisisthe upper limit of the area of coexistence
between liquid and vapor. From dp/dV = 0 and d?p/dV? = 0 follows:

8a

r— Se Vr:3bs
= O7bR ¢ "

N a
’ pCT - 27b2 I

For the critical point holds. pe, Vi or/RTer = % which differs from the value of 1 which follows from the
genera gaslaw.

Scaled on the critical quantities, withp* := p/pey, T* = T /Tey and Vi = Vi / Vi or With V,,, := V/n s holds:

* 3 * *
<P + W) (Vi —3)=5T

Gases behave the same for equal values of the reduced quantities: the law of the corresponding stateA virial
expansions used for even more accurate views:

1 B(I) C(T)
T ) = T — .
p(T, Vi) R(Vm+ vt t

The Boyle temperaturéy is the temperature for which the 2nd viria coefficient is 0. In a Van der Waals gas,
thishappensat Ty = a/Rb. Theinversion temperaturé; = 27%.

The equation of state for solids and liquidsis given by:

1% 1 /0V 1 /0V
— =1 AT — Ap=14+ — | — AT + — [ — A
v, e T erar =ity (aT),, v (ap)T b
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7.5 Collisions between molecules

The collision probability of aparticlein agasthat istranslated over adistance dx isgiven by nodz, where o is
the cross sectionThe mean free path isgiven by ¢ = anl with u = /v? + v2 the relative velocity between
g

. / 1 1 .
the particles. If m; < my holds: X 1+ @, s0f = —.1f m;i = ms holds. £ = . Thismeans
U1 mo no na\/ﬁ

. . L 1 .
that the average time between two collisionsisgivenby = = — If the molecules are approximated by hard
g

spheres the cross sectionis: o = m(D? + D3). The average distance between two moleculesis 0.55n ~%/3.
Collisions between molecules and small particlesin a solution result in the Brownian motion For the average

motion of a particlewith radius R can be derived: (22) = 1 (r?) = kT't/3mnR.

A gas is called a Knudsen gasf ¢ > the dimensions of the gas, something that can easily occur at low
pressures. The equilibrium condition for a vessel which has a hole with surface A in it for which holds that
0> \/A/mis ni1y/T1 = nay/Ts. Together with the general gaslaw follows: p1 /v/T1 = p2/V/Ts.

If two plates move along each other at a distance d with velocity w,. the viscosityn isgivenby: F, = A, .

The velocity profile between the plates is in that case given by w(z) = zw,/d. It can be derived that =
10l (v) wherew isthe thermal velocity

The heat conductancein anon-moving gasis described by: o K

atureprofileT'(z) = T + z(T> — T1)/d. It can be derived that k = £C,,ynl (v) /Na. Also holds: k = Cyn.
A better expression for « can be obtained with the Eucken correctionx = (1 + 9R/4c,v)Cy - n with an
error <5%.

Q _ (TQQT1

> , which resultsin atemper-

7.6 Interaction between molecules

For dipole interaction between molecules can be derived that U ~ —1/r6. If the distance between two
molecules approaches the molecular diameter D a repulsing force between the electron clouds appears. This
force can be described by Uyep, ~ exp(—r) or Viep = +C5/r® with 12 < s < 20. This results in the
Lennard-Jonegotentia for intermolecular forces:

o2 (2)

with aminimum e at » = r,. Thefollowing holds: D =~ 0.89r,,. For the Van der Waals coefficients a and b
and the critical quantitiesholds: @ = 5.275N3 D3¢, b = 1.3NA D3, KTy, = 1.2e and Vi 1 = 3.9NA D3.

A more simple model for intermolecular forces assumes a potential U (r) = oo for r < D, U(r) = Uyyj for
D <r <3DandU(r) = 0forr > 3D. Thisgives for the potential energy of one molecule: E . =

3D
/ U(r)F(r)dr.
D

with F'(r) the spatia distribution function in spherical coordinates, which for a homogeneous distribution is
givenby: F(r)dr = 4nmr2dr.

Some useful mathematical relations are:

00 00 '\/_ 00
_ 2 2n)l\/m .2
e Tdx =n! z?e " dr = (2n) , 22 le™ g = 1p)
n!22n+1 2
0 0 0




Chapter 8

Thermodynamics

8.1 Mathematical introduction

If there exists arelation f(x,y,2) = 0 between 3 variables, one can write: © = z(y, 2), y = y(x, z) and
z = z(x,y). Thetotal differentialdz of z isthan given by:

0z 0z
= (), (5). 0

By writing this also for dz and dy it can be obtained that

(). (&), (&),

Because dz isatotal differentia holds § dz = 0.

A homogeneous function of degree m obeys. ¢ F(x,y,z) = F(ex,ey,ez). For such a function Euler's

theorem applies:
OF oF oF

ba e dy— + 2

8.2 Dé€finitions

e Theisochoric pressure coefficient: 3y = 1 @
p \OT )

e Theisotherma compressihility: k= 1 (8_V)
V\op ),

e Theisobaric volume coefficient: v, = % (g—‘;)p
e The adiabatic compressibility: kg = —% (%—Z)S

For anideal gasfollows. v, = 1/T, kr = 1/pand gy = —1/V.

8.3 Thermal heat capacity

o))

e The specific heat at constant X is: Cx =T (—S

o))

N—

T) x

),
),

cE

e The specific heat at constant pressure: C,, = (

Qa‘m
NS

e The specific heat at constant volume: C'y = (
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For anideal gasholds: C,,, — C,,v = R. Further, if the temperatureis high enough to thermalize all internal
rotational and vibrational degrees of freedom, holds: Cy = sR. Hence C,, = 1 (s + 2)R. For their ratio now
followsy = (2 + s)/s. For alower T' one needs only to consider the thermalized degrees of freedom. For a
Van der Waals gas holds: C',, v = 1 sR + ap/RT?.

p oV OV\® [ ap
— = —_ . _ — — - - >
cr-co=1(51), <8T)p T(@T),,(av —
Because (9p/0V)r isaways < 0, thefollowing is always vaid: C), > Cy . If the coefficient of expansionis
0,Cp, =Cy,anddsoat T = OK.

In general holds:

8.4 Thelaws of thermodynamics

The zeroth law states that heat flows from higher to lower temperatures. The first law is the conservation of
energy. For aclosed system holds: @ = AU + W, where @ is the total added heat, W' the work done and
AU thedifferencein the internal energy. In differential form this becomes: dQ = dU + dW, where & means
that the it is not a differential of a quantity of state. For a quasi-static process holds: @W = pdV. So for a
reversible process holds: @Q) = dU + pdV'.

For an open (flowing) system thefirst law is: () = AH + W; + AEyin + AE,o¢. One can extract an amount
of work T from the system or add W = —W¥; to the system.

Thesecond law states: for aclosed system there exists an additive quantity .S, called the entropy, the differential
of which hasthe following property:

> =
ds T;

If the only processes occurring are reversible holds: dS = dQ..v/T. S0, the entropy difference after a

reversible processis:
2

a"- rev
52—812/ QT

1

So, for areversible cycle holds: ]{% =0.

For anirreversible cycle holds: 7{% < 0.

The third law of thermodynamicsis (Nernst):

From this it can be concluded that the thermal heat capacity — 0 if T — 0, so absolute zero temperature
cannot be reached by cooling through afinite number of steps.

8.5 Statefunctionsand Maxwell relations

The quantities of state and their differentials are:

Internal energy: U dU =TdS — pdV
Enthalpy: H=U+pV dH=TdS+Vdp
Free energy: F=U-TS dF = —=58dT — pdV
Gibbsfreeenthalpy: G=H-TS dG=—-SdT+ Vdp
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From this one can derive Maxwell’s rel ations:

arN _ _(op ory _ (v oY _ (98 VN _ (98
oV Si 8SV’ dp Sf 8Sp’ orT Vf ov )’ oT pf op )
From the total differential and the definitions of C'y, and C), it can be derived that:

op 9%
TdS = T+T(— V TdS = T—-T|—
dS = CydT + (8T> y dV and TdS = Cpd (5‘T)p dp

For anideal gasalso holds:

B T |4 B Ty P ,
SmCV1n<TO)+Rln<VO>+SmO and Smeln<TO) Rln<p0>+5m0

Helmholtz' equations are:

ou\ . (op oH\ . . (0V
@), =), > (&), =v-r(),

for an enlarged surface holds: @, = —ydA, with ~ the surface tension. From this follows:
(v _(oF
7=\oa), \o4),

8.6 Processes

-, o . Work done

The efficiencyn of aprocessisgivenby: n = Heat added
. L ) Cold delivered
The Cold factor¢ of acooling down processis givenby: & = “Work added

Reversible adiabatic processes

For adiabatic processes holds: W = U; — Us. For reversible adiabatic processes holds Poisson’s equation:
with v = C,/Cy one gets that pV/? =constant. Also holds: TV7~! =constant and 77p! =7 =constant.
Adiabatics exhibit a greater steepness p-1” diagram than isothermics because vy > 1.

I sobaric processes
Hereholds, Hy — H; = ff CpdT. For areversibleisobaric processholds: Hy — Hi = Qrev-
Thethrottle process

Thisisalso caled the Joule-Kelvineffect and is an adiabatic expansion of a gas through a porous material or a
small opening. Here H is a conserved quantity, and d.S > 0. In general thisis accompanied with a changein
temperature. The quantity which isimportant here is the throttle coefficient

oT 1 oV
== = |T(=) =
o <8P>H Cp <8T)p v
The inversion temperatures the temperature where an adiabatically expanding gas keeps the same tempera-

ture. If T > T; the gas heats up, if T' < T the gas cools down. T} = 2T, with for Tg: [0(pV)/Op]r = 0.
Thethrottle processis e.g. applied in refridgerators.

The Carnotprocess

The system undergoes a reversible cycle with 2 isothemics and 2 adiabatics:
1. Isothermic expansion at T'. The system absorbs a heat Q1 from the reservoir.

2. Adiabatic expansion with atemperature drop to 7's.
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3. Isothermic compression at 7', removing Q2 from the system.
4, Adiabatic compressionto T4 .

The efficiency for Carnot’s processis:

The Carnot efficiencyyc is the maximal efficiency at which a heat machine can operate. If the process is
applied in reverse order and the system performsawork — W the cold factor is given by:

_ Qo] Qo Ty

¢ w _|Q1|—|Q2|:T1—T2

The Stirling process

Stirling’s cycle exists of 2 isothermics and 2 isochorics. The efficiency in the ideal case is the same as for
Carnot’s cycle.

8.7 Maximal work

Consider asystem that changesfrom state 1 into state 2, with the temperature and pressure of the surroundings
given by T and pg. The maximum work which can be obtained from this change is, when all processes are
reversible:

1. Closed system: Wnax = (U1 — UQ) — To(Sl — Sg) +po(V1 — Vé)
2. Open Wstem Wmax = (Hl — Hg) — To(Sl — Sg) — AEkin — AEpot-

The minimal work needed to attain acertain state is: Winin = —Winax-

8.8 Phasetranstions

Phase transitions are isothermic and isobaric, so dG = 0. When the phases are indicated by «, 3 and ~ holds:
G =GP and

m

_ga _gB _ "Ba
ASm = 55 = 55 =

where rg,, is the transition heat of phase 5 to phase a and T} is the transition temperature. The following
holds: 75 = rag @Nd 18 = rya — 7. Further

G
Sm = ( m)
or »

so G hasatwist in the transition point. In atwo phase system Clapeyron’s equation is valid:

dp _ Sp —Sp _ Tpa
ar  ve—-vy (Ve -ViT

For an ideal gas one finds for the vapor line at some distance from the critical point:
p =poe "Pe/RT

There exist also phase transitions with r 3, = 0. For those there will occur only a discontinuity in the second
derivates of (7 ,,,. These second-order transitions appear at organization phenomena

A phase-change of the 3rd order, so with e.g. [03G,,,/0T?], non continuous arises e.g. when ferromagnetic
iron changes to the paramagnetic state.
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8.9 Thermodynamic potential

When the number of particles within a system changes this number becomes athird quantity of state. Because
addition of matter usually takes place at constant p and 7', G is the relevant quantity. If a system exists of more
components this becomes:

dG = —SdT + Vdp+ Y _ pidn;

where u = < oG

3 > is called the thermodynamic potential. Thisis a partial quantity For V' holds:
U p,T\n;

(& av c
1 Tj5Ds i=1
where V; is the partial volume of component <. The following holds:

va = Z x1‘/;
0 = > xdV;
where x; = n;/n isthe molar fraction of component . The molar volume of a mixture of two components
can be aconcavelinein aV-z4 diagram: the mixing contracts the volume.
The thermodynamic potentials are not independent in a multiple-phase system. It can be derived that

> nidp; = —SdT + Vdp, thisgivesat constant p and T": > x;dp; = 0 (Gibbs-Duhmen).

Each component has as much p's as there are phases. The number of free parameters in a system with ¢
components and p different phasesisgivenby f = c+2 — p.

8.10 Ideal mixtures
For amixture of n components holds (the index © is the value for the pure component):

0 0 0
Umixture = § anq , Hmixture = E n7H1 , Smixture = N E JhSz + ASmix

wherefor ideal gasesholds: AS i = —nRin In(x;).

For the thermodynamic potentialsholds: 1; = uf + RT In(z;) < p9. A mixture of two liquidsisrarely ideal:
thisis usually only the case for chemically related components or isotopes. In spite of this holds Raoult’s law
for the vapour pressure holds for many binary mixtures. p; = z;p? = y;p. Hereis z; the fraction of the ith
component in liquid phase and y; the fraction of the ith component in gas phase.

A solution of one component in another gives rise to an increase in the boiling point AT, and a decrease of
the freezing point AT;. For 2 < 1 holds:

RT? RT?
ATk = LS T , ATS = — 5 T
TBa Le7e]

with 7., the evaporation heat and 3 < 0 the melting heat. For the osmotic pressurél of a solution holds:
HanLl = .I?QRT

8.11 Conditionsfor equilibrium

When a system evolves towards equilibrium the only changes that are possible are those for which holds:
(dS)uy > 00r (dU)syv <0or (dH)s, < 0or (dF)ry < 0or (dG@)r, < 0. Inequilibrium for each
component holds: ;& = u? = 7.
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8.12 Statistical basisfor thermodynamics

The number of possibilities P to distribute N particles on n possible energy levels, each with a g-fold degen-
eracy is called the thermodynamic probability and is given by:

P:N!H%

The most probable distribution, that with the maximum value for P, is the equilibrium state When Stirling’s
equation, In(n!) = nln(n) — n is used, one finds for a discrete system the Maxwell-Boltzmann distribution.
The occupation numbersin equilibrium are then given by:

N (L
n; = Zgze p T
The state sun¥ isanormalization constant, givenby: Z = > g, exp(—W; /kT). For an ideal gas holds:
A

V (2rmkT)>/?

Z = W3

Theentropy can then bedefined as: | S = k In(P) | For asystem in thermodynamic equilibrium this becomes:

N
S:%—l—kNln(g)—l—kN%%—l—kln(Z—)

N N!
| ' 2rmkT)%/?
For anideal gas, with U = ng then holds: S = %kN + kN ln (%)

8.13 Application to other systems

Thermodynamics can be applied to other systems than gases and liquids. To do thistheterm dWW = pdV has
to be replaced with the correct work term, like @W .., = —F'dl for the stretching of awire, TWe, = —vdA
for the expansion of a soap bubble or @W .., = —BdM for amagnetic system.

A rotating, non-charged black hole has a temparature of T = hc/8wkm. It has an entropy S = Akc?3/4hk
with A the area of its event horizon. For a Schwarzschild black hole A is givenby A = 16mm 2. Hawkings
areatheorem states that dA/dt > 0.

Hence, the lifetime of ablack hole ~ m?3.




Chapter 9

Transport phenomena

9.1 Mathematical introduction

An important relation is: if X isaquantity of a volume element which travels from position 7to ¥+ di in a
time dt, the total differential dX isthen given by:

dX—a_Xd _|_6_Xd _|_8_Xd _;,_aXd :>d_X—a_X +8_X _|_8X +8_X
= oz dy 0z ot T R e I PR T
Thisresultsin general to: % = aa—)t( +(7- V)X |

From this follows that also holds: %// Xd*V = %// Xd3V+#X(17 ii)d*A

where the volume V' is surrounded by surface A. Some properties of the V operator are:

—

div(¢?') = ¢divd 4 grad¢ - ¥ rot(¢t0') = ¢rotd + (gradg) x ¥  rot grade =0
div(@ x ¥') = @ - (rotii) — @ - (rot¥’)  rot rotv’ = grad dive — V2§ div rotv =0
div gradg = V2¢ V27 = (V2v1, V20q, V203)

Here, v isan arbitrary vector field and ¢ an arbitrary scalar field. Some important integral theorems are:
Gauss: #(ﬁ-ﬁ)d%z // (divd)d®*V
Stokes for ascalar field: j{(qﬁ - &)ds = //(ﬁ x grad¢)d? A
Stokes for a vector field: ?{( Cy)ds = // (rotv - 1)

Thisresultsin: #(row- ii)d*A =0

Ostrogradsky: # x §)d*A / / / (rot¥ )d> A
Gomaa— [[f @aderav

Here, the orientable surface [ [ d* A islimited by the Jordan curve § ds.

9.2 Conservation laws
On avolume work two types of forces:
1. Theforce f, on each volume element. For gravity holds. fo = og.

2. Surface forces working only on the margins: ¢. For these holds: ¢ = 7 T, where T is the stress tensor
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T can be split in a part pl representing the normal tensions and a part T’ representing the shear stresses:
T = T’ + pl, where is the unit tensor. When viscous aspects can be ignored holds: divT= —gradp.

When the flow velocity is ¥ at position 7 holds on position 7 + dr:

u(dr)y = U(F) + dr - (grad?’)
~—~— ————
translation  rotation, deformation, dilatation

The quantity L:=gradv can be split in a symmetric part D and an antisymmetric part W. L = D + W with

1 /0v; Ov; 1 /0v; Ov;
Di‘ = = : J Wz == L J
) (&rj i 5‘:@) Y2 (8%- Ox;
When the rotation or vorticity = rot#' is introduced holds: W;; = %eijkwk. & represents the local rotation
velocity: dr - W = Jw x dr.

For aNewtonian liquicholds: T’ = 27D. Here, 1 is the dynamical viscosity. Thisis related to the shear stress
T by:

Tij :775‘:5»
J

For compressible media can be stated: T' = (1/div#')l + 2nD. From equating the thermodynamica and
mechanical pressureit follows: 35’ + 21 = 0. If the viscosity is constant holds: div(2D) = V27 + grad div{.

The conservation laws for mass, momentum and energy for continuous media can be written in both integral
and differential form. They are:

Integral notation:

1. Conservation of mass:. %/// od®V + ﬁg(ﬁ ii)d*A =0
2. Conservation of momentum: — /// ovd3V + #QU 7-7)d*A // fod®V + #* Td*A

3. Conservation of energy: /// Lv? +€)od®V + #(%02 +e)o(¥-7)d*A =

—%ffq d2A+/// f0d3v+%§f(ﬁﬁ)A

1. Conservation of mass: % +div- (o) =0

Differential notation:

—
—

. 0 >
2. Conservation of momentum: ga—: + (o0 V)T = fo + divT = fy — gradp + divT’

ds
3. Conservation of ener 7 _ 2 _P%_ 4 T:D
vl R T T g

Here, e istheinternal energy per unit of mass E/m and s is the entropy per unit of mass S/m. §= —« VT is

the heat flow. Further holds:
oE Oe _0E Oe

P=Tov T Ao LT 5 s

Oe oh
O = (a—T)V and Cp= (a—T),,

with h = H/m the enthal py per unit of mass.
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From this one can derive the Navier-Stokesequations for an incompressible, viscous and heat-conducting
medium:

divi = 0
v R R R 24
05+ o(v- V)7 = og— gradp+nV=u
oT . ,
QCE—FQC(U-V)T = kV*T+27D:D

with C' the thermal heat capacity. The force F' on an object within a flow, when viscous effects are limited to
the boundary layer, can be obtained using the momentum law. If a surface A surrounds the object outside the
boundary layer holds:

Fe —gé{[pm o9(7 - 71 )] d2 A

9.3 Bernoulli’sequations

Starting with the momentum equation one can find for a non-viscous medium for stationary flows, with
(- grad)v = 1grad(v?) + (rotv) x ¥

and the potential equation § = —grad(gh) that:

d .
v+ gh+ / % _ constant along a streamline
0

For compressible flows holds: %UQ + gh + p/o =constant along a line of flow. If also holds rotv' = 0 and

the entropy is equal on each streamline holds %vQ + gh + [ dp/o =constant everywhere. For incompressible
flows this becomes: %vQ + gh + p/ o =constant everywhere. For ideal gases with constant C',, and Cy holds,
withy = C,/Cy:

2

1,240 0 P10, ©
5V +7—1g 5V +’Y—1 constant
With avelocity potential defined by ¢ = grad¢ holds for instationary flows:
¢

d
o + v+ gh+ / ?p = constant everywhere

9.4 Characterising of flows by dimensionless numbers

The advantage of dimensionless numbers is that they make model experiments possible: one has to make
the dimensionless numbers which are important for the specific experiment equal for both model and the
real situation. One can aso deduce functional equalities without solving the differential equations. Some
dimensionless numbers are given by:

2

Strouha: Sr = % Froude: Fr = v Mach: Ma = v

v gL c

L L

Fourier: Fo— -  Péclet: Pe= -~ Reynolds. Re = it

wlL? a v

v La 02
Prandtl: Pr= - Nusselt: Nu= —  Eckert: Ec =

a K cAT

Here, v = 1/ isthe kinematic viscositye is the speed of sound and L is a characteristic length of the system.
o followsfrom the equation for heat transport <0, T’ = o AT and a = «/oc isthethermal diffusion coefficient.

These numbers can be interpreted as follows:

e Re: (stationary inertial forces)/(viscousforces)
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Sr: (non-stationary inertial forces)/(stationary inertial forces)

Fr: (stationary inertia forces)/(gravity)

Fo: (heat conductance)/(non-stationary change in enthal py)

Pe: (convective heat transport)/(heat conductance)

Ec: (viscous dissipation)/(convective heat transport)

Ma: (velocity)/(speed of sound): objects moving faster than approximately Ma = 0,8 produce shock-
waves which propagate with an angle 6 with the velocity of the object. For this angle holds Ma=
1/ arctan(6).

e Prand Nu arerelated to specific materials.

Now, the dimensionless Navier-Stokes equation becomes, with ' = z/L, 7' = #/V, grad’ = Lgrad, V'? =
L2V? and t/ = tw:

817/ —=/ IAYd4 / g v/217/
I + (U -V ——gradp—i-ﬁ—l— e

9.5 Tubeflows

For tube flows holds: they are laminar if Re< 2300 with dimension of length the diameter of the tube, and
turbulent if Re is larger. For an incompressible laminar flow through a straight, circular tube holds for the
velocity profile:

_ 1ldp 2
v(r) = p dx(R —7r)
R
T dp 4
For the volumeflow holds: ®y = [ v(r)2nrdr = ———R
8n dx
0

The entrance lengti. is given by:
1. 500 < Rep < 2300: Lo/2R = 0.056Rep
2. Re > 2300: Lo/2R ~ 50

4R3aﬁd_p
3 dx

For flows at asmall Re holds: Vp = V2% and divi’ = 0. For the total force on a sphere with radius R in a
flow then holds: F' = 67nRv. For large Re holdsfor the force on asurface A: F' = %CwAQ’UQ.

For gastransport at low pressures (Knudsen-gas) holds: @y =

9.6 Potential theory

ThecirculationT isdefined as: T’ = 7{(6- & )ds = //(rotﬂ') CAd?A = //(w i )d? A

For non viscous media, if p = p(p) and all forces are conservative, Kelvin's theorem can be derived:

dr
dt
For rotationless flows a velocity potential ¥ = grad¢ can be introduced. In the incompressible case follows

from conservation of mass V2¢ = 0. For a 2-dimensional flow a flow function v(x, ) can be defined: with
d 4 g the amount of liquid flowing through a curve s between the points A and B:

B B
CIJAB=/U ni)d /dey—vyda:
A A

=0
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and the definitions v, = 9¢/dy, v, = —0y/0z holds. ® ap = ¢(B) — 1(A). In genera holds:

o Py
ox2  oy2 7

In polar coordinates holds:

_loyp _9¢ o _ O _10¢
TR0 T o - Or  rof
For source flows with power Q in (z,y) = (0,0) holds: ¢ = % In(r) sothat v, = Q/27r, vg = 0.

For adipole of strength Q inz = a and strength —Q in 2 = —a followsfrom superposition: ¢ = —Qax /271>
where Qa is the dipole strength. For avortex holds: ¢ = I'0/2.

If an object is surrounded by an uniform main flow with ¥ = vé’,, and such alarge Re that viscous effects are
limited to the boundary layer holds: F, = 0 and F,, = —ol'v. The statement that , = 0 is d’ Alembert’'s
paradox and originates from the neglection of viscous effects. Thelift F',, is aso created by » because I # 0
dueto viscous effects. Henxe rotating bodies also create aforce perpendicular to their direction of motion; the
Magnus effect

9.7 Boundary layers

9.7.1 Flow boundary layers

If for the thickness of the boundary layer holds: 6 < L holds: § ~ L/+/Re. With v, the velocity of the main
flow it follows for the velocity v, L the surface: v, L ~ dv... Blasius' eguation for the boundary layer is,
with v, /v = f(y/d): 2f" + f f"" = 0 with boundary conditions f(0) = f’(0) = 0, f’(c0) = 1. Fromthis
follows: Cyy = 0.664 Re /2.

The momentum theorem of Von Karman for the boundary layer is: %(ﬁzﬂ) + 6*@3—2 = T—;

where the displacement thickness § *v and the momentum thickness Yv? are given by:

? = /(v — Vg )Updy , v = /(v —vg)dy and 19 = —n 0vs
dy y=0
0 0
. . [ Ovg . . odp 12nve
The boundary layer is rel eased from the surface if n = 0. Thisis equivaent with iR
y=0

9.7.2 Temperature boundary layers

If the thickness of the temperature boundary layer 6 < L holds: 1. If Pr < 1: § /67 ~ v/Pr.
2.1f Pr>> 1: § /61 ~ V/Pr.

9.8 Heat conductance
For non-stationairy heat conductance in one dimension without flow holds:
or _ s O°T
ot  oc 0x?
where ® isasourceterm. If & = 0 the solutions for harmonic oscillations at « = 0 are:

T-Tw _ (_ﬁ) cos (wt_ﬁ)
Tom — T  OP\TD D
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with D = /2k/wpc. At x = wD the temperature variation is in anti-phase with the surface. The one-

dimensional solutionat ® = 0 is )
1 T
T(x,t) = ——exp | ——
() 2v/rmat p< 4at>

Thisis mathematical equivalent to the diffusion problem:

on
— =DV’n+P—-A
o Vin +

where P isthe production of and A the discharge of particles. The flow density J = —DVn.

9.9 Turbulence

The time scale of turbulent velocity variations 7 is of the order of: 7, = 7v/Re/Ma? with 7 the molecular
time scale. For the velocity of the particles holds: v(t) = (v) + v'(¢) with (v/(¢)) = 0. The Navier-Stokes
equation now becomes:

—a(;” (@) V) (@) = _—V;m V2 () + —leQSR
where Sg;; = —o (viv;) is the turbulent stress tensor. Boussinesy's assumptionis: 7;; = —o (vjv}). Itis

stated that, analogous to Newtonian media: S = 2pv; (D). Near a boundary holds: v, = 0, far away of a
boundary holds: v; =~ vRe.

9.10 Self organization

For a (semi) two-dimensional flow holds: C;—C: = %—j + J(w,¥) = vV3w
With J(w, ) the Jacobian. Soif v = 0, w is conserved. Further, the kinetic energy /m A and the enstrofy V'

are conserved: with 7 = V x (k1)
E ~ (Vi) ~ /E(k,t)dk =congant , V ~ (V%9)? ~ /kQE(k,t)dk = constant
0 0

From this follows that in a two-dimensional flow the energy flux goes towards large values of k: larger struc-
tures becomelarger at the expanse of smaller ones. In three-dimensional flowsthe situation isjust the opposite.




Chapter 10

Quantum physics

10.1 Introduction to quantum physics

10.1.1 Black body radiation
Planck’s law for the energy distribution for the radiation of a black body is:

Smhf3 1 8mhe 1
w(f) = —23 ohf/RT _ ] wA) = =3 ohe/ AT _ |

Stefan-Boltzmann's law for the total power density can be derived from this: P = AcT*. Wien'slaw for the
maximum can also be derived from this: T ax = kw.

10.1.2 The Compton effect
For the wavelength of scattered light, if light is considered to exist of particles, can be derived:

N =X+ i(1 —cosf) = X+ Ac(1 — cosf)
me

10.1.3 Electron diffraction

Diffraction of electrons at a crystal can be explained by assuming that particles have a wave character with
wavelength A = h/p. Thiswavelength is called the Broglie-wavelength.

10.2 Wavefunctions

The wave character of particles is described by a wavefunction . This wavefunction can be described in
normal or momentum space. Both definitions are each others Fourier transform:

Dk, t) = %/\I/(x,t)e_imdx and U(z,t) = %/@(k,t)e““dk

These waves define a particle with group velocity v, = p/m and energy E = hw.

The wavefunction can be interpreted as a measure for the probability P to find a particle somewhere (Born):
P = |1|?d®V. The expectation value (f) of aquantity f of asystemisgiven by:

/// VPV, (1) = /// o fOd*V,

Thisis also written as (f(t)) = (®|f|®). The normaizing condition for wavefunctions follows from this:
(@|D) = (V[¥) = 1.

10.3 Operatorsin quantum physics

In quantum mechanics, classical quantitiesare translated into operators. These operators are hermitian because
their eigenvalues must be real:

[ viavedv = [vatave v
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When u,, isthe eigenfunction of the eigenvalue equation AV = oW for eigenvaluea ,,, ¥ can be expanded into
abasis of eigenfunctions: ¥ = > ¢, u,. If thisbasis is taken orthonormal, then follows for the coefficients:

cn = (un| ). If thesystemisin astate described by ¥, the chanceto find eigenvalue a ,, when measuring A is
given by |¢,,|? in the discrete part of the spectrum and |c,,|2da in the continuous part of the spectrum between
a and a + da. The matrix elementd;; is given by: A;; = (u;|Alu;). Because (AB);; = (u;|ABlu;) =
(ui) A Jun) (un|Bluy) holds: Y Juy ) {u,| = 1.

The time-dependence of an operator is given by (Heisenberg):
dA 0A [A H]

dt ot in
with [4, B] = AB — BA the commutatorof A and B. For hermitian operators the commutator is always
complex. If [A, B] = 0, the operators A and B have acommon set of eigenfunctions. By applying thisto p ,,

and z follows (Ehrenfest): md? (z), /dt* = — (dU (z)/dz).
Thefirst order approximation (F'(x)), = F((x)), with F' = —dU /dx represents the classical equation.

Before the addition of quantummechanical operators which are a product of other operators, they should be
made symmetrical: aclassical product AB becomes %(AB + BA).

10.4 Theuncertainty principle

If the uncertainty AA in A isdefined as: (AA)? = (Y[ Aop — (A) |2) = (A%) — (A)? it follows:
AA-AB > 5| (W[[A, B][) |

Fromthisfollows: AE- At > 1h, and because [z, p,] = ih holds: Ap, - Az > 1h,and AL, - AL, > 1RL..
10.5 The Schrodinger equation
The momentum operator is given by: p., = —ihV. The position operator is. z., = ihV,. The energy

operator isgiven by: E,, = ihd/0t. The Hamiltonian of a particle with mass m, potential energy U and total
energy E isgivenby: H = p2/2m + U. From H+) = E) then follows the Schiddinger equation

h?_, Lo
—%v w+U¢_E¢_mE

Thelinear combination of the solutions of this equation give the general solution. In one dimensionit is;

viwt) = <Z+/dE> c(E)ug(x)exp (-%)

The current density J isgivenby: J = i(u)*w —YVy*)
m

T
OP(z,t)
ot

The following conservation law holds: = -V J(z,t)

10.6 Parity

The parity operator in one dimension is given by Py (z) = ¢ (—=x). If the wavefunction is split in even and
odd functions, it can be expanded into eigenfunctions of P:

Y(@) = 5(¥() +9(-2)) + 3(¥(2) — ¥(-2))
even: ’(/J+ odd: ¥~

[P, H] = 0. Thefunctionsy)™ = 1(1 4+ P)y(z,t) and ¢~ =
eguation. Hence, parity is a conserved quantity.

(1 — P)y(x,t) both satisfy the Schrodinger

1
2
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10.7 Thetunnd effect

The wavefunction of a particle in an co high potential step from 2 = 0 to x = a is given by ¢(z) =
a~'/?sin(kz). The energylevelsare given by E,, = n?h?/8a*m.

If the wavefunction with energy W meets a potential well of W, > W the wavefunction will, unlike the
classical case, be non-zero within the potential well. If 1, 2 and 3 are the areas in front, within and behind the
potential well, holds:

v :Aeikx+Be—ikx . o :Ceik/x+De—ik/x . U3 :A/eik’x

with k2 = 2m(W — Wy)/h? and k2 = 2mW. Using the boundary conditions requiring continuity: ) =
continuous and 9+ /0x =continuousat * = 0 and = a gives B, C and D and A’ expressed in A. The
amplitude T of the transmitted wave is defined by 7' = |A’|2/|A]2. If W > W, and 2a = n)\ = 2mn/k
holds: 7' = 1.

10.8 Theharmonic oscillator

For aharmonic oscillator holds: U = $bz? and w? = b/m. The Hamiltonian H isthen given by:

2
H= ;; + %mw%z = %hw +wAtA
m

with

p ip
A= /imwz+ and AT:\/lmwx—
2 V2mw 2 2mw

A # AT isnon hermitian. [A4, AT] = h and [A, H] = hwA. A isaso caled raising ladder operator At a
lowering ladder operatarH Aug = (FE — hw)Aug. Thereisan eigenfunction « for which holds: Aug = 0.
The energy in this ground state is %hw: the zero point energy. For the normalized eigenfunctionsfollows:

U —L A—T nu with —f/wex _mwx2
n—m N 0 o=\ p on

with E,, = (3 + n)hiw.

10.9 Angular momentum

For the angular momentum operators L holds: [L ., L?] = [L., H| = [L?, H] = 0. However, cyclically holds:
[Ly, Ly] = ihL,. Not al components of L can be known at the same time with arbitrary accuracy. For L .

holds: 5 5 5
L. =—ih— = —ih | 2— — y—
! Op ! (m oy 8x>
The ladder operators L .. aredefined by: Ly = L, +iL,. Nowholds: L? = L, L_ + L? — hL,. Further,

Ly = het™ (i% +icot(9)5%>
From [L,L.] = —hAL, follows: L,(LyYm) = (m+ D)A(L4Yim).
From[L_, L.] = hL_ follows: L,(L_Y},,) = (m — 1)A(L_Y).
From [L?, Ly] = O follows: L2(L+Y},) = 1(1 + 1)R*(L+Yim).

Because L. and L, are hermitian (thisimplies L, = L) and | L+ Y3, |2 > 0 follows: I(1 + 1) — m? —m >
0 = —I < m < [. Further follows that [ has to be integral or half-integral. Half-odd integral values give no
unique solution » and are therefore dismissed.
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10.10 Spin

For the spin operators are defined by their commutation relations: [S ., S, | = k.S, . Because the spin operators
do not act in the physical space (z, y, z) the uniqueness of the wavefunction is not a criterium here: aso half
odd-integer values are allowed for the spin. Because [L, S] = 0 spin and angular momentum operators do not

have a common set of eigenfunctions. The spin operators are given by S = %hé, with

= (01 (0 —i (1 0
de=\ 10 )%= i o 9= 0 -1

The eigenstates of S, are called spinors xy = a1 x+ + a—x—, where x4+ = (1,0) represents the state with
spinup (S, = 3h) and x— = (0, 1) represents the state with spin down (S. = —1%). Then the probability
to find spin up after a measurement is given by |« |? and the chance to find spin down is given by |« _|?. Of
course holds oy | + |a—|? = 1.

Qu
Qu

The electron will have an intrinsic magnetic dipole moment A due to its spin, given by M = —egsS/2m,
with gs = 2(1 4+ «/27 + - - -) the gyromagnetic ratio. In the presence of an externa magnetic field this gives
apotential energy U = — M - B. The Schrodinger equation then becomes (because dx/0x ; = 0):

ox(t) _egsh . =

mT  4m 7 Bx(®)

with & = (., 3y, 32). If B = Bé, there are two eigenvalues for this problem: . for E = +egshB/4m =
+hw. So the general solutionis given by x = (ae ~*, be™"). From this can be derived: (S,) = 17 cos(2wt)
and (S,) = 1M sin(2wt). Thusthe spin precesses about the z-axis with frequency 2w. This causes the normal
Zeeman splitting of spectral lines.

The potential operator for two particles with spin + %h isgiven by:
1
n?
Thismakesit possible for two statesto exist: .S = 1 (triplet) or S = 0 (Singlet).

V(r) = Vi(r) + — (81 - S2)Va(r) = Vi(r) + 5Va(r)[S(S + 1) — §]

10.11 TheDirac formalism

If the operators for p and E are substituted in the relativistic equation E2 = m2c* + p?c?, the Klein-Gordon
eguation is found:

1 02 méc? .
(VQ‘C—Qw‘%WW‘O

The operator O — m2¢?/h? can be separated:
1 92 méc? 0 moc 0 moc
2_ - - 0 B B T
v c? Ot? h? {,y)\ Oz h } {ry” dz,, T3 }

where the Dirac matricesy are givenby: {yx, 7.} = 7. + 7 = 205, (Ingeneral relativity this becomes
2gx,). Fromthisit can be derived that the v are hermitian 4 x 4 matrices given by:

(0 —ioy (T 0

With this, the Dirac equation becomes:

0 moc oo
(7)\8—.13,\ + 7) Y(Et) =0

where ) (x) = (1 (x), P2(x), ¥3(x), a(x)) isaspinor.
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10.12 Atomic physics
10.12.1 Solutions

The solutions of the Schrodinger equation in spherical coordinates if the potential energy is a function of r
alone can bewritten as: ¢(r, 0, ) = Ry (r)Yi,m, (0, ©)Xm., With

Clm
V2

For an atom or ion with one electron holds: Ry, (p) = Cime ?/2p L2 (p)

Vi = le (COS H)szLp

with p = 2rZ/nag with ag = eoh?/mm.e. The L? are the associated L aguere functions and the P arethe
associated L egendre polynomials:

/2 dml
dxlml

(@ 1] L L) = L g B e

Pl‘ml(x) = (]. — SC2) (n _ m)| dxn—m

n—1

The parity of these solutionsis (—1)*. Thefunctionsare2 3~ (21 + 1) = 2n2-folded degenerated.
=0

10.12.2 Eigenvalue equations

The eigenval ue equations for an atom or ion with with one electron are;

[ Equation | Eigenvalue | Range |
Hopp = E E, = pe*Z?/8¢2h’n? | n > 1
LiopYim = L:Yiym | L. =myh =l <m <l
L2 iy = LY}y | L? =1(1+ 1)K I<n
SzopX = SzX S, =msh me = i%
S2.x = S%x 52 = s(s+ 1)h? s=1

10.12.3 Spin-orbit interaction

Tpe total momentum is given by _f =L+ M. The total magnetic dipole moment of an electron is then
M = My + Ms = —(e/2m.)(L + gsS) where gs = 2.0023 is the gyromagnetic ratio of the electron.
Further holds: J2? = L2 + S? +2L-S = L?> + S? +2L.S. + L. S_ + L_S,. J has quantum numbers j
with possible values j = [ 4 1, with 25 + 1 possible z-components (m ; € {—j, .., 0, .., j}). If theinteraction
energy between S and L issmall it can be stated that: E = E,, + Es;, = E,, + aS - L. It can then be derived
that:
|En| Z2%a?
= I
REnl(l+1)(1+ 3)

After arelativistic correction this becomes:

E.|Z%a% [ 3 1
P B2 (3 1)
n 4n ji+ts

The fine structurein atomic spectra arises from this. With g5 = 2 follows for the average magnetic moment:
M,y = —(e/2me)ghJ, where g isthe Landé-factor:

S-J GG+1) +s(s+1) = I(1+1)
— 14 — 1+ S
g J2 2i(j + 1)

For atoms with more than one el ectron the following limiting situations occur:
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1. L — S coupling: for small atoms the electrostatic interaction is dominant and the state can be char-
acterizedby L, S, Jymy. J € {|IL-S5|,..L+S—-1,L+ S}tandmy € {—J,..,J —1,J}. The
spectroscopic notation for thisinteractionis: 2511 ;. 25 + 1 isthe multiplicity of amultiplet.

2. j — j coupling: for larger atoms the electrostatic interaction is smaller than the L ; - s; interaction of
an electron. The state is characterized by j;...j,, J, m; where only the j; of the not completely filled
subshells are to be taken into account.

The energy difference for larger atoms when placed in a magnetic field is. AE = gugm B where g is the
Landé factor. For atransition between two singlet states the line splitsin 3 parts, for Am ; = —1,0 + 1. This
resultsin the normal Zeeman effect. At higher S the line splits up in more parts: the anomal ous Zeeman effect.

Interaction with the spin of the nucleus gives the hyperfine structure.

10.12.4 Selection rules

For the dipole transition matrix elements follows: po ~ |(lams|E - 7|lym4)|. Conservation of angular mo-
mentum demands that for the transition of an electron holdsthat Al = +1.

For an atom where L. — S coupling is dominant further holds: AS = 0 (but not strict), AL = 0,4+1, AJ =
0,+1 exceptfor J = 0 — J = 0 transitions, Am ; = 0, +1, but Am; = 0 isforbiddenif AJ = 0.

For an atom where j — j coupling is dominant further holds: for the jumping electron holds, except Al = +1,
aso: Aj = 0,41, and for al other electrons: Aj = 0. For the total atom holds: AJ = 0,+1 but no
J=0— J=0transitionsand Am ; = 0, %1, but Am; = 0 isforbiddenif AJ = 0.

10.13 Interaction with electromagnetic fields
The Hamiltonian of an electron in an electromagnetic field is given by:

H = i(*+eﬁ)2 —eV = —h—2v2 + B L+ < e —eV
2 P  2u 2 2u
where 1 is the reduced mass of the system. The term ~ A? can usually be neglected, except for very strong
fields or macroscopic motions. For B = Be., itisgiven by e2B?(z? + 32)/8u.

When a gauge transformation A’ = A — Vf, V' =V + 0f /0t is applied to the potentials the wavefunction
is also transformed according to v’ = we’4°//" with ge the charge of the particle. Because f = f(z,t), this
is caled alocal gauge transformation, in contrast with a global gauge transformation which can always be

applied.

10.14 Perturbation theory

10.14.1 Time-independent perturbation theory

To solve theequation (Ho + AH1)v,, = E,, onehasto find the eigenfunctionsof H = H( + AH;. Suppose
that ¢,, is a complete set of eigenfunctions of the non-perturbed Hamiltonian Ho: Ho¢, = E%¢,. Because
¢n, isacomplete set holds:

k#n

Uy = N()\) {¢n + Z C7zk(/\)¢k}

When c,,;, and E,, are being expandedinto \: ¢, = /\csk) + )\2c§fk) NEPI
E,=EY+AEY + EP ...
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and thisis put into the Schrodinger equation the result is: E,(Ll) = (¢n|H1|dy) and
(1) <¢m|H1|¢n> ;
nm EQ EQ
Hi|pn AH1 |,
Z | ¢k| 1|¢ ’ . Soto first order holds: ¢,, = ¢,, + Z % O .
k#n k#n n k
In case the levels are degenerated the above does not hold. In that case an orthonormal set eigenfunctions ¢ ,,;
is chosen for each level n, SO that (¢ |dnj) = dmndij. NOW ¢ is expanded as:

m # n. The second-order correction of the energy is then given by:

{Zazd)nz +A Z Cok Zﬁzd)kz }

k#n 7

E.i=E°% + )\E(lz) is approximated by E?, := E?. Substitution in the Schrodinger equation and taking dot
product with ¢,,; gives: Y a; (¢n;|Hi i) = E,(ll)aj. Normalization requiresthat " |a;|? = 1.

10.14.2 Time-dependent perturbation theory

From the Schrodinger equation zhalg—it) = (Ho + AV (t))y(t)

'EO .
- "t) ¢dn With e, (t) = Oni + )\cgll)(t) + .-

and the expansion v (t) Z cn(t) exp (
A / i((E° — EO
follows: ¢ (¢) 7_/ (OnlV () 60) exp (LB BV
ih A
0

10.15 N-particle systems

10.15.1 General

Identical particles are indistinguishable. For the total wavefunction of a system of identical indistinguishable
particles holds:

1. Particles with a half-odd integer spin (Fermions): 1 ota1 Must be antisymmetric w.r.t. interchange of
the coordinates (spatial and spin) of each pair of particles. The Pauli principle results from this: two
Fermions cannot exist in an identical state because then 114421 = 0.

2. Particles with an integer spin (Bosons): 1ota1 MuUst be symmetric w.r.t. interchange of the coordinates
(spatia and spin) of each pair of particles.

For a system of two electrons there are 2 possibilities for the spatial wavefunction. When a and b are the
guantum numbers of electron 1 and 2 holds:

¥s(1,2) = ¥a(L)96(2) + Ya(2)9(1)  $Ya(1,2) = ¢a(1)96(2) — Pa(2)h(1)

Because the particles do not approach each other closely the repulsion energy at ¢ o in this state is smaller.
The following spin wavefunctions are possible;

Xa = 3V20x+(1)x-(2) = x+2)x-(1)] ms=0

X+(1)x+(2) ms = +1
xs =14 3V20(Wx-(2) + x+(2)x-(1)] ms=0
xX-(1)x-(2) me = —1

Because the total wavefunction must be antisymmetric it follows: 1 ¢ota1 = ¥Ws XA OF Yiotal = YAXS-
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For N particles the symmetric spatial function is given by:
¥s(1,.., N) =Y ¢(al permutationsof 1..N)

The antisymmetric wavefunction is given by the determinant ¢ 5 (1, ..., N)

1 .
= WW&(JH

10.15.2 Molecules

Thewavefunctionsof atoma and b are ¢, and ¢,,. If the 2 atoms approach each other there aretwo possihilities:
the total wavefunction approaches the bonding function with lower total energy 5 = 1v2(¢o + @) or
approaches the anti-bonding function with higher energy ¢ ap = %\/i (¢o — ¢p). If amolecular-orbital is
symmetric w.r.t. the connecting axis, like a combination of two s-orbitalsit is called a o-orbital, otherwise a
m-orbital, like the combination of two p-orbitals along two axes.

(Y| H[Y)
(W)

The energy calculated with this method is always higherthan the real energy if « is only an approximation for
the solutionsof Hvy = E1). Also, if there are more functionsto be chosen, the function which givesthe lowest
energy is the best approximation. Applying thisto the functiony = > ¢;¢; onefinds: (H;; — ES;;)c; = 0.
This equation has only solutionsif the secular determinanttd ;; — ES;;| = 0. Here, H;; = (¢;|H|¢;) and
Sij = (¢il¢p;). a; := H;; isthe Coulomb integral and §;; := H;; the exchangeintegral. S;; = 1 and S;; is
the overlap integral.

Theenergy of asystemis. F =

The first approximation in the molecular-orbital theory is to place both electrons of a chemical bond in the
bonding orbital: (1,2) = 5 (1)¥s(2). This resultsin a large electron density between the nuclei and
thereforearepulsion. A better approximationis: (1, 2) = C19p(1)yp(2) + Cotpap(1)yap(2), withC; =1
In some atoms, such as C, it is energetical more suitable to form orbitals which are alinear combination of the
s, p and d states. There are three ways of hybridizationin C:

1. SP-hybridization: s, = %\/5(?/}25 + 1)9p_). There are 2 hybrid orbitals which are placed on one line
under 180°. Further the 2p, and 2p, orbitals remain.

2. SP? hybridization: ’L/JSp2 = wgs/\/g-f— Cﬂ/)gpz + Cngpy,Where (Cl, 02) € {(\/ 2/3, 0), (—1/\/6, 1/\/5)
,(=1/3/6,—1/+/2)}. The 3 SP? orhitals lay in one plane, with symmetry axes which are at an angle of
120°.

3. SP* hybridization: 1,3 = 5 (a5 +12p_ + 12 + 2y ). The4 SP° orbitals form atetraheder with the
symmetry axes at an angle of 109°28’.

10.16 Quantum statistics

If asystem exists in a state in which one has not the disposal of the maximal amount of information about the
system, it can be described by a density matrix. If the probability that the systemisin state v ; isgivenby a;,
one can write for the expectation value a of A: (a) = > r; (w;|Al;).

%

If 4 is expanded into an orthonormal basis {$} as: () = 3 cg)dm, holds:
k

(A) = (Ap)ir = Tx(Ap)
k
where p;, = cjc. p is hermitian, with Tr(p) = 1. Further holds p = " r;|1;)(;|. The probability to find
eigenvalue a,, when measuring A is given by p,,,, if one uses a basis of eigenvectors of A for {¢}. For the
time-dependence holds (in the Schrodinger image operators are not explicitly time-dependent):

. dp
h— =[H
i = [H,p]
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For a macroscopic system in equilibrium holds [H, p] = 0. If al quantumstates with the same energy are
equally probable: P, = P(E;), one can obtain the distribution:

o—En/kT

Po(B) = pan = ———— with the state sum 7 = Zn:e_E"/kT
The thermodynamic quantities are related to these definitions as follows: F' = —kT'In(Z), U = (H) =
Epn = _é)kiT In(Z2), S = —kZPn In(P,). For amixed state of A/ orthonormal quantum states with

probab|l|ty 1/M follows: S = kln(M)

The distribution function for the internal states for a system in thermal equilibrium is the most probable func-
tion. Thisfunction can be found by taking the maximum of the function which gives the number of stateswith
Stirling's equation: In(n!) &~ nln(n) — n, and the conditions > n;, = N and > n, W), = W. For identical,

k k
indistinguishable particles which obey the Pauli exclusion principle the possible number of statesis given by:

F= an gk_nk

This results in the Fermi-Dirac statistics For indistinguishable particles which do notobey the exclusion
principle the possible number of statesis given by:

Nk

pP= N'H‘Zk
k

This results in the Bose-Einstein statisticsSo the distribution functions which explain how particles are
distributed over the different one-particle states k£ which are each g -fold degenerate depend on the spin of the
particles. They are given by:

Jk
exp((Ex — p)/kT) + 1

1. Fermi-Dirac statistics: integer spin. ny € {0,1}, ny =
withIn(Zg) = > gi In[1 + exp((E; — p)/kT)).

N|=

2. Bose-Einstein statistics: half odd-integer spin. ny, € IN, ny, = — Ik

Zg exp((Ex — p)/kT) — 1
withln(Z,) = — > gx In[1 — exp((E; — p)/kT)).

Here, Z, isthe large-canonical state sum and p the chemical potential. It is found by demanding > n, = N,
and for |t holds: hm u = Ep, the Fermi-energy. NV isthetotal number of particles. The Maxwell-Boltzmann

distribution can be derlvedfrom thisinthelimit £y, — pu > kT

N E Ey
Nk = — exp <_I<:_T> with Z = ng exp( kT)

With the Fermi-energy, the Fermi-Dirac and Bose-Einstein statistics can be written as:

9k
exp((Ey — Er)/kT) + 1

1. Fermi-Dirac statistics: nj, =

gk

2. Bose-Einstein statistics. nj;, = .
"= (B — Ep)/kT) — 1




Chapter 11

Plasma physics

11.1 Introduction
Ne
Ne + No
where n, isthe electron density and n the density of the neutrals. If a plasma contains also negative charged
ions « is not well defined.

The degree of ionizatiom of aplasmaisdefined by: o =

The probability that atest particle collides with another is given by dP = nodxz where o isthe cross section
The collision frequency v. = 1/7. = nov. The mean free paths given by A\, = 1/no. Therate coefficient
K isdefined by K = (ov). The number of collisions per unit of time and volume between particles of kind 1
and 2isgivenby ning (ov) = Knine.

The potential of an electron is given by:

Eok?TeTi - 60]€Te
e2(ned; + niTe) TV nee2

V(r) —° exp (—%) with Ap =

a 47‘(607“ D

because charge is shielded in a plasma. Here, Ap is the Debye length For distances < Ap the plasma
cannot be assumed to be quasi-neutral. Deviations of charge neutrality by thermic motion are compensated by
oscillations with frequency

nee?

Wpe =
P MeEo

The distance of closest approximation when two equal charged particles collide for a deviation of 7/2 is
2by = €?/(4megimu?). A “neat” plasmais defined as a plasmafor which holds: by < ne'? < \p < L.

Here L, := |n./Vne| isthe gradient length of the plasma
11.2 Transport
Relaxation times are defined as 7 = 1/v.. Starting with o, = 47b% In(A¢) and with 2mv? = kT it can be

found that:
Aredm*® 8V2med/m(kT)?/?

Tm el In(Ac) netIn(Ag)
For momentum transfer between electrons and ions holds for a Maxwellian velocity distribution:
B 677\/55(2)« /e (KT, )3/ B 67r\/§€(2)w /mi(kTi)3/2

o~ . ..
Tee ~ Tei » Tii

neet In(Ac)
The energy relaxation times for identical particles are equal to the momentum relaxation times. Because for
e-i callisions the energy transfer is only ~ 2m./m; thisis a slow process. Approximately holds: 7ec : 7e; :
Tie : T2 = 1:1: \/mi/me : mi/me.

nie4 h’l(Ac)

The relaxation for e-o interaction is much more complicated. For 7' > 10 eV holds approximately: o ., =
10~ 7vg 2/®, for lower energiesthis can be afactor 10 lower.

Theresistivity n = E/J of aplasmais given by:

nee?  e2y/meIn(Ac)

Melei B 67T\/§E(2)(I€Te)3/2

n=
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The diffusion coefficient D is defined by means of the flux T by T' = niug = —DVn. The equation
of continuity is 9;n + V(nvaig) = 0 = 9yn = DV?n. Onefindsthat D = %/\VU. A rough estimate gives
™ = Lp/D = Lf)fc /2. For magnetized plasma's A\, must be replaced with the cyclotron radius. In electrical
fildsalso holds J = nepE = e(nepte + nip)E With 1 = e /muv, the mobility of the particles. The Einstein
ratiois:

Because a plasma is electrically neutral electrons and ions are strongly coupled and they don’t diffuse inde-
pendent. The coefficient of ambipolar diffusio® ,,,;, is defined by =T, = F = —Damb Ve ;. Fromthis
follows that

kT./e — kTi/e _ kTeps

1/ pe = 1/ i e
In an external magnetic field By particles will move in spira orbits with cyclotron radiusp = muwv/eBy

and with cyclotron frequency 2 = Bge/m. The helical orbit is perturbed by collisions. A plasmais called
magnetizedf A\, > p. ;. So the electrons are magnetized if

D amb —

Pe _ Vmee3ne In(Ac)
Aee  6m\/3e3(KT.)3/2By

Magnetization of only the electrons is sufficient to confine the plasma reasonable because they are coupled
to the ions by charge neutrality. In case of magnetic confinement holds: Vp = J x B. Combined with the
two stationary Maxwell equations for the B-field these form the ideal magneto-hydrodynamic equations. For
auniform B-field holds: p = nkT = B?/2uq.

If both magnetic and electric fields are present electrons and ions will move in the same direction. If E =

E,é. + E.é. and B = B.é, the E x B drift resultsin avelocity @ = (E x B)/B? and the velocity in the
r, o planeisr(r, p,t) = 4 + p(t).

11.3 Elastic collisions

11.3.1 General

The scattering angle of a particle in interaction with another
particle, as shown in the figure at theright is:

Particles with an impact parameter between b and b + db,
moving through aring with do = 27bdb leave the scattering
area at a solid angle d2 = 2wsin(x)dy. The differential
cross sectioms then defined as:

do
dQ)

b 0b

sin(x) Ox

1(Q) =

For apotential energy W (r) = kr—" follows: 1(Q,v) ~ v=4/™,

For low energies, O(1 eV), o hasaRamsauer minimunit arises from the interference of matter waves behind
the object. I(£2) for angles0 < x < A/4 islarger than the classical value.
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11.3.2 The Coulomb interaction

For the Coulomb interaction holds: 2bg = q1¢2/2megmuv3, O W (r) = 2bg/r. Thisgivesb = by cot(%x) and

2
I(Q = — b _ 2701
sin(x) Ox  4sin®(3x)

Because the influence of a particle vanishes at r = Ap holds: ¢ = (A% — b3). Because dp = d(mv) =
mug(1 — cos x) across section related to momentum transfer o, is given by:

In(v*)

1
Om = /(1 —cos \)1(Q)dQ = 47b3 In (17> = 47btIn (/\—D) = dmby In(Ag) ~ —3
Sin(5 Xmin) b v

0

whereIn(A¢) isthe Coulomb-logarithmFor this quantity holds: Ac = Ap/bg = 9n(Ap).

11.3.3 Theinduced dipoleinteraction

Theinduced dipole interaction, with 7 = o E, gives a potential V and an energy W in adipolefield given by:

2

D ér le|p ae
V = W = — = —
(r) Amegr? (r) 8meor? 2(4meg)?rt
. 2¢? r d
w.thba:4%ho|ds:xzw—2b/ s
(4meo)? 5mug 2 [y b2 N b
o r2 " 4t

If b > b, the charge would hit the atom. Repulsing nuclear forces prevent this to happen. If the scattering
angleis alot times 27 it is called capture. The cross section for capture o,;, = wb? is called the Langevin
limit, and is alowest estimate for the total cross section.

11.3.4 The centre of mass system

If collisions of two particles with masses m, and mo which scatter in the centre of mass system by an angle x
are compared with the scattering under an angle 6 in the laboratory system holds:

ma sin(x)

tan(f) = my + ma cos(x)

The energy loss AE of theincoming particleis given by:

AE %mgvg  2mima

E %mw% a (m1 +m2)

5 (1 —cos(x))

11.3.5 Scattering of light

Scattering of light by free electronsis called Thomson scattering. The scattering is free from collective effects
if kAp < 1. Thecross section o = 6.65 - 10~2m? and

Af 2u .

7 = ? Sln(%x)
Thisgivesfor the scattered energy Excar ~ nA/ (A2 — A2)? with n the density. If A >> )\ itiscalled Rayleigh
scattering. Thomson sccattering is alimit of Compton scattering, whichisgivenby A’ — A = Ag(1 — cos x)
with Ac = h/mc and cannot be used any moreif relativistic effects become important.
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11.4 Thermodynamic equilibrium and reversibility

Planck’s radiation law and the Maxwellian vel ocity distribution hold for a plasmain equilibrium:

8rhy’ 1 21n FE
T = NFE,T)YAE = ———=VFE —— | dFE
Pl D)y = — = e =17 » NEDAE = s eXp( kT) d

“Detailed balancing” means that the number of reactionsin one direction equals the number of reactionsin the
opposite direction because both processes have equal probability if one corrects for the used phase space. For

the reaction
Z Xforward : Z Xback

forward back
holdsin a plasmain equilibrium microscopiaeversibility:
H ﬁforward - H ﬁback
forward back

If the velocity distribution is Maxwellian, this gives:

iy = N h? o~ Biin /KT
g (2mm kT)3/2

where g isthe statistical weight of the stateand /g := 7. For electronsholds g = 2, for excited states usually
holdsg = 2j + 1 = 2n2.

With this one finds for the Boltzmann balance, X, + e~ 2 X; + e~ + (E1p):

nb g E,—F
Ir _Ip P L
exp( - )

And for the Sahabalance, X, + e~ + (E,;) = X{ +2e~:

ng nf‘ Ne h3 <Epi >
L=t = —exp
9 g ge (2rmekTL)3/? kT,

Because the number of particles on the left-hand side and right-hand side of the equation is different, a factor
g/ Ve remains. This factor causes the Saha-jump

From microscopic reversibility one can derive that for the rate coefficients K (p, ¢, T') := (ov) pg hoOldS:

dp Aqu
K T)=22K T ——r
(¢,p,T) P (p. 4, )eXp( kT)

q

11.5 Inelastic collisions

11.5.1 Typesof collisions

The kinetic energy can be split in a part of and a part in the centre of mass system. The energy in the centre of
mass system is available for reactions. This energy is given by

mims (Ul - U2)2

E =
2(m1 + ma2)
Some types of inelastic collisions important for plasma physics are:
1. Excitation: A, + e~ 2 Ay +e”

2. Decay: A, @A, + hf
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. lonisation and 3-particles recombination: A, + e~ & AT + 2e™
. radiative recombination: A* + e~ 2 A, + hf

. Stimulated emission: A, + hf — A, +2hf
Associativeionisation: A** + B = ABt + e~

. Penningionisation: b.v. Ne* + Ar 2 Ar™ + Ne + e~

. Chargetransfer: AT + B2 A + BT

© o0 N o 0 A~ W

. Resonant chargetransfer: AT + A2 A + A+

11.5.2 Cross sections

Callisions between an electron and an atom can be approximated by a collision between an electron and one
of the electrons of that atom. This resultsin

do wZ%et

d(AE) ~ (4mz0)2E(AE)?

.. 7TZ264AE 1
Then follows for the transition : E) = il
| pP—q qu( ) (47T50)2E(AE)12)(1
L L 1 1 1.250F
For ionization from state p holds to a good approximation: o, = 47m(2)Ry (— - —) In < 56 )
E, E E,
] Al - BIn(E)]?
For resonant charge transfer holds: o.x = 1T OB

11.6 Radiation

In equilibrium holds for radiation processes:

npApg + npBpep(v,T) = ngBypp(v,T)
~——

emission  stimulated emission absorption
Here, A,, isthe matrix element of the transition p — ¢, and is given by:

8m2e?3|rp |2 . .
Apg = Tcgpq With rpq = (Vp|7[tq)
For hydrogenic atoms holds: A, = 1.58 - 108Z4p=45, with 4, = 1/7, = 3" A,,. Theintensity I of alineis
q
givenby I, = hfAygn,/4m. The Einstein coefficients B are given by:

FApg ang Bra _ 94

P4 8mhy? By 9

A spectra lineis broadened by several mechanisms:
1. Because the states have afinite life time. The natural lifetime of astate p isgivenby 7, = 1/ >~ A,,.
q

From the uncertainty relation then follows: A(hv) - 7, = 15, this gives

P 2
E Apq
A]/ = 1 = a
4mT, 4r

The natural linewidth is usually < than the broadening due to the following two mechanisms:
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2. The Doppler broadening is caused by the thermal motion of the particles:

AN 2 21In(2)kT;
A ¢ m;

This broadening results in a Gaussian line profile:
k, = ko exp(—[2VIn 2(v — vp)/Avp)?), with k the coefficient of absorption or emission.

3. The Stark broadening is caused by the electric field of the electrons:

n 2/3
Ahja = [C(ne TJ

with for the H-3 line: C'(ne, T.) ~ 3 - 10*4A~3/2cm=3.

The natural broadening and the Stark broadening result in a Lorentz profile of a spectra line:
ky, = 2koAvr/[(3AvL)? + (v — 11)?]. Thetotal line shapeis aconvolution of the Gauss- and Lorentz profile
and is called a Voigt profile

The number of transitionsp — ¢ isgiven by n, B,,p and by npny s (oac) = n,(pdv/hv)oa,c where dv isthe
line width. Then follows for the cross section of absorption processes: o, = By hv/cdv.

The background radiation in a plasma originates from two processes:

1. Free-Bound radiation, originating from radiative recombination. The emission is given by:

B C1 znine he
=S [ ()| o0

with C; = 1.63 - 10~ Wm*K'/25r—! and ¢ the Biberman factor

2. Free-freeradiation, originating from the acceleration of particlesin the EM-field of other particles:

CY zinine he
€rr = F \/k_Te exp <_M) fffO‘aTe)

11.7 TheBoltzmann transport equation
It is assumed that there exists a distribution function F* for the plasma so that
F(r,0,t) = Fp.(F,t) - F,(U,t) = Fi(z,t)Fa(y, t)F3(2,t) Fa(vg, t) F5 (vy, t) Fs (vs, t)

. dFF OF oF
Thenthe BTEis;, — = — - (FT v (F3)= | =—
enthe IS dt 8t +V ( v)+v ( a) (at)coll—rad
Assuming that v does not depend on  and a ; does not dependonv;, holds V.- (Fv) = 9-VF and V- (Fad ) =
d-V,F. Thisis aso true in magnetic fields because da;/0x; = 0. The velocity is separated in a thermal
velocity 7, and adrift velocity «. Thetotal density isgivenby n = [ Fdv and [ 0Fdv = nid.

The balance equations can be derived by means of the moment method:

1. Mass balance: /(BTE)dU:> % LV (n) = <%)

—

di
2. Momentum balance: /(BTE)mﬁdﬁ = mnd—:f +VT +Vp=mn{@)+R

3. Energy balance: /(BTE)vadﬁ: ;% + gpv BHV-7=0Q
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Here, (@) = e/m(E+ @ x B ) isthe average acceleration, ¢ = Lnm (7,24, ) the heat flow,

Q = / mo? <—> dv the source term for energy production, R is a friction term and p = nkT the
pressure. ¢

> - Lt o)

A thermodynamic derivation gives for the total pressure: p = nkT =
24megAD

i

For the electrical conductancein a plasma follows from the momentum balance, if w. > w;:

nf:E—jX§+Vpe

€ne

In a plasma where only elastic e-a collisions are important the equilibrium energy distribution functionis the

Druyvesteyn distributian
E\*? 3me [ E\’
N(E)dE = Cn, | — — —
(E)d Cn (Eo) exp[ o (Eo)

with Ey = eE\, = eE/no.

11.8 Coallison-radiative models

These models are first-moment equations for excited states. One assumes the Quasi-steady-state solution is
valid, whereV~1[(On, /0t = 0) A (V - (npW,) = 0)]. Thisresultsin:

3np>1 - 8711 N % % Ly 8711
< ot >Cr0 © ot +V'(n1w1)<at )Cr C ot +V (nlwl)<at)cr

with solutionsn, = rins+rink = b,n} . Further holdsfor all collision-dominated levelsthat 6b,, := b, —1 =
bopg With peg = \/Ry/Ep1 and 5 < x < 6. For systems in ESP, where only collisional (de)excitation
between levels p and p + 1 is taken into account holds z = 6. Even in plasma’s far from equilibrium the
excited levelswill eventually reach ESP, so from a certain level up the level densities can be cal culated.

To find the population densities of the lower levels in the stationary case one has to start with a macroscopic
equilibrium:

Number of populating processes of level p = Number of depopulating processes of level p ,

When thisis expanded it becomes:;

2
Ne Z ngKgp +ne Z ngKqp + Z ngAgp + NiniKip + NeNiGrad =

<p > >p
q<p q>p q->p coll. recomb. rad. recomb

coll. excit. coll. deexcit. rad. deex. to

Nellp Z Kpq +neny Z Kpg+ np Z Apq +nenpKpi

q<p q>p a<p .
coll. ion.

coll. deexcit. coll. excit. rad. deex. from

11.9 Wavesin plasma’s

Interaction of electromagnetic waves in plasma’s results in scattering and absorption of energy. For electro-
magnetic waves with complex wave number & = w(n + ix)/c in one dimension onefinds:
E, = Epe "*?/¢cos|w(t — nz/c)]. Therefractive index n is given by:

k¢ w?
n=c—=—= 1——2
w o vr w
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For disturbancesin the z-direction in a cold, homogeneous, magnetized plasma: B = By&, + Beilk==w1) and
n = ng + ne' >~ (external E fields are screened) follows, with the definitionsa = w,/w and g = Q/w
and w? = w3 + Wl

1 —if
S - 1-p7 1-5

J=GE ,with ¢ =icqw Y ol | _ibs L
1-pz 1-p2

0 0 1

where the sum is taken over particle species s. The dielectric tensor £, with property:
k-(E-E)=0
isgivenby £ = I — & /icow.

i N a? a? s 9
WlththedefmmonsS:l—Z D:Z P:l—Za

L (S —iD 0
E=|iD S o0
0 0 P

The eigenvalues of this hermitian matrix aae R = S + D, L = S — D, A3 = P, with eigenvectors ¢, =
1V2(1,4,0), & = 2v2(1,—i,0) and €5 = (0,0,1). €&, is connected with a right rotating field for which
iE,/E, = 1and € is connected with aleft rotating field for whichiE ./ E,, = —1. When k makes an angle §
with B onefinds;

follows:

P(n? - R)(n®> - L)
S(n? — RL/S)(n? — P)
where n isthe refractive index. From this the following solutions can be obtained:

tan?(0) =

A. 6 = 0: transmission in the z-direction.
1. P=0: E, = E, = 0. Thisdescribes alongitudinal linear polarized wave.
2. n? = L: aleft, circular polarized wave.
3. n? = R: aright, circular polarized wave.
B. 6 = w/2: transmission L the B-field.
1. n? = P: theordinary mode: E, = E,, = 0. Thisis atransversal linear polarized wave.
2. n? = RL/S: the extraordinary mode: iE,./E, = —D/S, an liptical polarized wave.

Resonance frequenciase frequencies for which n? — oo, so vy = 0. For these holds. tan() = —P/S.
For R — oo this gives the electron cyclotron resonance frequency w = Q,, for L — oo the ion cyclotron
resonance frequency w = €2; and for .S = 0 holds for the extraordinary mode:

2y mi ¥ LMy (W
a -— ) =1-—=— -—
Me w? m2 w? w?

Cut-off frequencieare frequenciesfor whichn? = 0, so vy — co. Fortheseholds: P = 0or R =0 or L = 0.
Inthe casethat 32 >> 1 onefinds Alfvén waves propagating parallel to the field lines. With the Alfvén vel ocity
QeQi 2

VA = —5 5
2 2
Wpe + Wp;

follows: n = /1 + ¢/va, andincase vy < ¢: w = kva.




Chapter 12

Solid state physics

12.1 Crystal structure

A lattice is defined by the 3 trandation vectors a;, so that the atomlc composition looks the same from each
point ¥ and 7 = 7+ T, where T' is atransl ation vector given by: T = u1d1 + ugds + usds Withu; € IN. A
| attice can be constructed from primitive cells. As aprimitive cell one can take a parallellepiped, with volume

Veell = |@1 - (d2 X @)

Because a lattice has a periodical structure the physical properties which are connected with the lattice have
the same periodicity (neglecting boundary effects):

Ne (7 + f) = ne(F)

This periodicity is suitable to use Fourier analysis: n(7) is expanded as:

F)zZnGeXp(ié-f’
G

/// ) exp(— iG - 7)dV
ceH

cell

with

G isthereciprocal lattice vectarIf G iswritten as G = v1b1 + vaby + v3bs With v; € IN, it follows for the
vectors b;, cyclicaly:

EZ_ — o= C_iitl X @'1:1-2
a; - (ai+1 X ai+2)

The set of é—vegtorsqdete_r’mi nes the Rontgen diffractions: a maximum in the reflected radiation occurs if:
Ak = G with Ak = k — k. So: 2k - G = G2. From this follows for parallel lattice planes (Bragg reflection)
that for the maximaholds: 2d sin(6) = nA.

The Brillouin zone is defined as a Wigner-Seitz cell in the reciprocal lattice.

12.2 Crystal binding

A distinction can be made between 4 binding types:
1. Van der Waals bond
2. lon bond
3. Covaent or homopolar bond
4. Metdlic bond.

For theion binding of NaCl the energy per moleculeis calculated by:

E = cohesive energy(NaCl) — ionization energy(Na) + electron affinity(Cl)
The interaction in a covalent bond depends on the relative spin orientations of the electrons constituing the
bond. The potential energy for two parallel spinsis higher than the potential energy for two antiparallel spins.
Furthermore the potential energy for two parallel spins has sometimes no minimum. In that case binding is not
possible.
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12.3 Crystal vibrations

12.3.1 A lattice with onetype of atoms

In this model for crystal vibrations only nearest-neighbour interactions are taken into account. The force on
atom s with mass M can then be written as:

dPug

Fo=M—r-
dt?

= C(Us+1 - us) + C(Usfl - us)
Assuming that all solutions have the same time-dependence exp(—iwt) thisresultsin:
—Mw?uy = Clugyy + g1 — 2ug)

Further it is postulated that: w11 = uwexp(isKa) exp(+iKa).

This gives: us = exp(iKsa). Substituting the later two equations in the fist results in a system of linear
equations, which has only a solution if their determinant is 0. This gives:

4C
w? = 573 sin?(1 Ka)

Only vibrations with a wavel ength within the first Brillouin Zone have a physical significance. This requires
that —7m < Ka < .

The group velocity of these vibrationsis given by:

d 2
= C—acos(%Ka).

YTk VM

and is 0 on the edge of a Brillouin Zone. Here, thereis a standing wave.

12.3.2 A lattice with two types of atoms

Now the solutions are: w
1 1 1 1\? 4sin®(Ka) S ~
2 _ = ) = ] c
“ C<M1 +M2>ic\/<Ml +M2) M My 12\_12
Connected with eech value of K aretwo valuesof w, ascanbe | /%Ic:
seen in the graph. The upper line describes the optical branch, e
the lower line the acoustical branch. In the optical branch, d
both types of ions oscillate in opposite phases, in the acoustical 0 K
branch they oscillate in the same phase. This results in a much T/a

larger induced dipole moment for optical oscillations, and also a
stronger emission and absorption of radiation. Furthermore each
branch has 3 polarization directions, one longitudinal and two
transversal.

12.3.3 Phonons

The quantum mechanical excitation of a crystal vibration with an energy hw is called a phonon Phonons
can be viewed as quasi-particles: with collisions, they behave as particles with momentum 7K. Their total
momentum is 0. When they collide, their momentum need not be conserved: for a normal process holds:
Ky, + Ky = K3, for an umklapp process holds. K, + K> = K3 + G. Because phonons have no spin they
behave like bosons.
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12.3.4 Thermal heat capacity

Thetota energy of the crystal vibrations can be cal culated by multiplying each mode with its energy and sum
over al branches K and polarizations P:

hw
U= ZZFM (np) Z/ exp hw/kT)—ldw
for agiven polarization A. The thermal heat capacity is then:

B hw/k:T exp(fuw/kT)
Clattice = kZ/ (exp(hw/kT) — 1)2 *

The dispersion relation in one dimension is given by:
LdK L
D(w)dw = d —dw = Ldw
T dw T Ug
In three dimensions one applies periodic boundary conditions to a cube with IV 3 primitive cells and a volume
L3: exp(i(Kyx + Kyy + K.2)) = exp(i(Ky(z + L) + Ky(y + L) + K.(z + L))).
Because exp(27i) = 1 thisisonly possibleif:

2w 47 67 2NT
K, K,,K,=0; + —; £+ —; £ —; ...+ —
Y 0 L L L L

So thereis only one allowed value of K per volume (27/L)? in K -space, or:

L\ v
(22) =5
allowed K-values per unit volume in K -space, for each polarization and each branch. The total number of
states with awave vector < K is:
([ L\’ 4rK?®
B (E) 3

for each polarization. The density of states for each polarization is, according to the Einstein model:

D(w) = % = <‘;TI<22) dw 83 //

The Debye modéior thermal heat capacities is alow-temperature approximation which isvalid up to ~ 50K.
Here, only the acoustic phonons are taken into account (3 polarizations), and one assumes that v = WK,
independent of the polarization. From thisfollows: D(w) = Vw? /27203, where v isthe speed of sound. This

gives.
T v hw VTt [ Pda
U=3 [ Dw)(n) hwd dw .
/ v = / 2m2v3 exp(hw/kT) — 1 27203R° / et —1
0

Here, zp = hiwp /kT = 0p/T. p isthe Debye temperaturand is defined by:

g _ I (6r2N\
PV

where N isthe number of primitive cells. Because zp — oo for T — 0 it follows from this:

T )37 w3z 3riNKET* RENETS

— ONET | — = ~T* and =
v=9 <9D e —1 50p Cv 563
0

In the Einstein model for the thermal heat capacity one considers only phonons at one frequency, an approxi-
mation for optical phonons.




Chapter 12: Solid state physics 65

12.4 Magneticfield in the solid state

The following graph shows the magnetization versus fieldstrength for different types of magnetism:

M
Msat

ferro
oM

Xm = J77
OH paramagnetism

diamagnetism

12.4.1 Dielectrics

The quantum mechanical origin of diamagnetism is the Larmorprecession of the spin of the electron. Starting
with acircular electron orbit in an atom with two electrons, there is a Coulomb force F'. and a magnetic force
on each electron. If the magnetic part of the forceis not strong enough to significantly deform the orbit holds:

F. B B B\? B
WQ:ﬂie—w:ng:e—(wo+5):>w: woj:e— +~-~%w0j:e—:woj:wL
mr m m 2m 2m

Here, wy, is the Larmor frequency One electron is accelerated, the other decelerated. Hence there is a net
circular current which results in a magnetic moment . The circular currentisgivenby I = —Zew 1, /27, and
(p)y = IA = Im (p*) = 2In (r?). If N isthe number of atoms in the crystal it follows for the susceptibility,
with M = [IN:
poM poN Ze?
= M = e ()
B 6m

12.4.2 Paramagnetism

Starting with the splitting of energy levelsin aweak magnetic field: AU, — ji - B = mygupB, and with a
distribution f,,, ~ exp(—AU,,/kT), onefindsfor the average magnetic moment (1) = >_ fi it/ > fm. After
linearization and because Y- m; =0, J =2J 4+ 1and > m? = 2J(J + 1)(J + 3) it follows that:

_ oM poN () pod(J + g N
X» =g B 3kT

Thisisthe Curie law, x, ~ 1/T.

12.4.3 Ferromagnetism

A ferromagnet behaves like a paramagnet aboveqa critical temperature T'... To describe ferromagnetism afield
Bp parallel with M is postulated: Bg = Ao M. From there the treatment is anal ogous to the paramagnetic
case; c

poM = Xp(Ba + Bg) = xp(Ba + AoM) = po <1 - )\?) M

poM

B, T-1T,
If B isestimated thisway it resultsin values of about 1000 T. Thisis clearly unrealistic and suggests another
mechanism. A quantum mechanlcal approach from Heisenberg postulates an interaction between two neigh-

bouring atoms: U = —2J85; S =—[i- Bp. J isan overlapintegra givenby: J = 3kT./225(S + 1), with
z the number of neighbours. A dlstl nction between 2 cases can now be made:

From thisfollows for aferromagnet: x p = which is Weiss-Curie’s law

1. J > 0:5;and S; become parallel: the material is aferromagnet.
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2. J <0:5; and S; become antiparallel: the material is an antiferromagnet.

Heisenberg’s theory predicts quantized spin waves. magnons. Starting from a model with only nearest neigh-
bouring atoms interacting one can write:

—

U= _2J§p ) (S’pfl + 5;erl) ~ fip - By with Ep = ——(Sp-1 + Sp+1)

The equation of motion for the magnons becomes: % = %gp X (Sp_1 4 Spi1)

From here the treatment is analogous to phonons. postulate traveling waves of the type S'p = dexp(i(pka —
wt)). Thisresultsin a system of linear equations with solution:

hw = 4JS5(1 — cos(ka))

125 Freeelectron Fermi gas

125.1 Thermal heat capacity

The solution with period L of the one-dimensiona Schrodinger equation is: ¢ ,,(z) = Asin(27z/An) with
n\, = 2L. From thisfollows
R rnmy 2
=52 (T)

In alinear lattice the only important quantum numbers are n and m ;. The Fermi levelis the uppermost filled
level in the ground state, which has the Fermi-energyE'r. If ng is the quantum number of the Fermi level, it
can be expressed as. 2ny = N s0 Ex = h*7r2N?/8mL. In 3 dimensions holds:

23\ /3 2 /o an 23
kF:(37T ) andEF:h—(?m )

Vv 2m Vv
3/2
The number of states with energy < E isthen: N — 3% <2:2E) .
T

. _ ANV [2m\*/? 3N
and the density of States becomes: D(E) = —- = - — <?) VE = 25"
The heat capacity of the electronsis approximately 0.01 timesthe classical expected value gN k. Thisiscaused
by the Pauli exclusion principle and the Fermi-Dirac distribution: only electronswithin an energy range ~ kT'
of the Fermi level are excited thermally. Thereis afraction ~ T/Tr excited thermally. The internal energy
then becomes:

T ou T
~ NET— = —~ Nk—
U k T and C a7 kTF

A more accurate analysis gives: Ceiectrons = 37> NKT/Tr ~ T. Together with the 7% dependence of the
thermal heat capacity of the phononsthe total thermal heat capacity of metalsis described by: C = yT'+ AT 3.

12.5.2 Electric conductance

The equation of motion for the charge carriersis: F = mdv/dt = th/dt. The variation of & is given by
6k = k(t) — k(0) = —eEt/h. If 7 is the characteristic collision time of the electrons, &k remains stable if
t = 7. Thenholds: (') = pE, with . = et /m the mobility of the electrons.

The current in aconductor isgivenby: J = ngé = o E = E/p = nepE. Becausefor the collision time holds:
1/ = 1/7 + 1/7, where 71, isthe collision time with the lattice phonons and 7; the collision time with the
impuritiesfollows for the resistivity p = pr + p;, with %ir% pr = 0.
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125.3 TheHall-effect

If amagnetic field is applied L to the direction of the current the charge carriers will be pushed aside by the
Lorentz force. Thisresultsin amagneticfield L to the flow direction of the current. If J= Je, and B= Be,
than E, /E, = uB. The Hal coefficient is defined by: Ry = E,/J, B, and Ry = —1/neif J, = nepE;.
TheHall voltageis givenby: Vi = Bvb = I B/neh whereb isthe width of the material and / de height.

12.5.4 Thermal heat conductivity

With ¢ = vp7 the mean free path of the electrons follows from x = $C (v) £: Kelectrons = T>nk*T'T/3m.
From this follows for the Wiedemann-Franz ratios /o = £ (rk/e)?T.

12.6 Energy bands

In the tight-bondapproximation it is assumed that ¢ = e**"?¢(x — na). From this follows for the energy:
(EY = (Y|H|Y) = Eay — a — 28 cos(ka). So this gives a cosine superimposed on the atomic energy, which
can often be approximated by a harmonic oscillator. If it is assumed that the electron is nearly free one can
postulate: ) = exp(z‘E - 7). Thisis atraveling wave. This wave can be decomposed into two standing waves:

U(+) = exp(irz/a)+ exp(—inrx/a) = 2cos(nx/a)
Y(—) = exp(irz/a) —exp(—irx/a) = 2isin(nz/a)
The probability density |1/(+)|? is high near the atoms of the lattice and low in between. The probability

density [1)(—)|? is low near the atoms of the lattice and high in between. Hence the energy of ¢ (+) is aso
lower than the energy of ¢)(—). Supposethat U (z) = U cos(2mx/a), than the bandgap is given by:

Egap = /U(w) ()P = [W(=)*]de=U
0

12.7 Semiconductors

The band structures and the transitions between them of direct and indirect semiconductors are shown in
the figures below. Here it is assumed that the momentum of the absorbed photon can be neglected. For an
indirect semiconductor a transition from the valence- to the conduction band is also possible if the energy of
the absorbed photon is smaller than the band gap: then, also a phonon is absorbed.

E  /conduction E

\ / band :\\ W
D
C) We QO C) w

Direct transition Indirect transition

This difference can also be observed in the absorption spectra:
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absorption absorption -
|
|
|
|
E : E
hwe E; + hQ
Direct semiconductor Indirect semiconductor

So indirect semiconductors, like Si and Ge, cannot emit any light and are therefore not usable to fabricate
lasers. When light is absorbed holds: ky, = —ke, En(kn) = —Feo(ke), th = U, and my, = —m? if the
conduction band and the valence band have the same structure.

Instead of the normal electron mass one has to use the effective maswithin alattice. It is defined by:

., F _dp/dt  dK hg((ﬁE)‘l

dk?

a dug/dt  dug

with E = hw and vy = dw/dk and p = hk.

With the distribution function f.(F) =~ exp((u — E)/kT) for the electronsand f,(E) = 1 — f.(E) for the
holes the density of statesis given by:

1 /2m*\*?
D(E):W(n—2> VBB

with E. the energy at the edge of the conductance band. From this follows for the concentrations of the holes

p and the electrons n:
¥ m kT \ > uw—FE.
= | Do(E)fo(E)dE =2 | ——=- -
n= [ DumEe =2 () ow (M)
E.

c

ET \° E
For the product np follows. np = 4 (2 h2> \/mEmy exp (—ﬁ)
™

For an intrinsic (no impurities) semiconductor holds: n; = p;, for an — type holds: n > pandinap — type
holds: n < p.

An exciton is a bound electron-hole pair, rotating on each other as in positronium. The excitation energy of an
exciton is smaller than the bandgap because the energy of an exciton islower than the energy of afree electron
and afree hole. This causes a peak in the absorption just under £,.

12.8 Superconductivity
12.8.1 Description

A superconductor is characterized by azeroresistivity if certain quantitiesare smaller than somecritical values:
T<T.,I<I.and H< H.. The BCS-modepredicts for the transition temperature 7'..:

T. = 1.140p exp <ﬁiﬂp)>

while experimentsfind for H . approximately:

) = ) (1- 1)
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Within a superconductor the magnetic field is 0: the Meissner effect

There aretype | and type Il superconductors. Because the Meissner effect implies that a superconductor is a
perfect diamagnet holds in the superconducting state: H= MOJ\ZI . Thisholdsfor atype | superconductor, for
atype Il superconductor this only holdsto acertain value H .1, for higher values of H the superconductor isin
avortex stateo avalue H.o, which can be 100 times H.;. If H becomeslarger than H .o the superconductor
becomes anormal conductor. Thisis shown in the figures below.

poM to M

H 5 H
Hc Hcl Hc2

Type | Type Il

The transition to a superconducting state is a second order thermodynamic state transition. This means that
thereisatwist intheT" — S diagram and a discontinuity inthe C'x — T' diagram.

12.8.2 The Josephson effect

For the Josephson effect one considers two superconductors, separated by an insulator. The electron wave-
function in one superconductor is ¥ 1, in the other 5. The Schrodinger equations in both superconductorsis
set equal:

0 0

zh% — Wy | zh% = KT
hT isthe effect of the coupling of the electrons, or the transfer interaction through the insulator. The electron
wavefunctionsare written as, = /n1 exp(i61) and vo = /ns exp(if2). Because a Cooper pair exist of two
electronsholds: ) ~ \/n. Fromthisfollows, if ny ~ na:

891 005 onsg ong

o o ™Mo T T

The Josephson effect results in a current density through the insulator depending on the phase difference as.
J = Josin(fz — 01) = Josin(d), where Jy ~ T'. With an AC-voltage across the junction the Schrodinger
eguations become:

iYL _ g, — eV and 22 = BTy + eV,
ot ot
Thisgives: J = Jysin (92 — 01— 26;/t)-

Hence thereis an oscillation with w = 2¢V/h.

12.8.3 Flux quantisation in a superconducting ring
For the current density in general holds: J = qu* ) = %[Wa —qA]
From the Meissner effect, B = 0 and .J = 0, follows: hVO = gA = § VOdl = 6, — 6, = 275 with s € IN.

Because: § Adl = [[(rotA, i )do = [[(B,7i)do = W follows: ¥ = 27hs/q. The size of aflux quantum
followsby setting s = 1: ¥ = 27h/e = 2.0678 - 10715 Tm?,
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12.8.4 Macroscopic quantum interference

. . 2eW
From 6y — 6; = 2eV /1 follows for two parallel junctions: §, — 6, = eT, S0

J=Ja+ Jp, =2Jpsin (50 cos (%)) Thisgives maximaif eV /h = s.

12.8.5 TheLondon equation

A current density in a superconductor proportional to the vector potential Ais postul ated:

— —

J=—— or rotJ = —
y) [10A7,

where A\, = \/zomc?/ng?. Fromthisfollows: V2B = B/)2.

The Meissner effect is the solution of this equation: B(z) = By exp(—x/AL). Magnetic fields within a
superconductor drop exponentially.

12.8.6 The BCSmodel

The BCS model can explain superconductivity in metals. (So far thereis no explanation for high-1". supercon-
ductance).

A new ground state where the electrons behave like independent fermions is postulated. Because of the in-
teraction with the lattice these pseudo-particles exhibit a mutual attraction. This causes two electrons with
opposite spin to combineto a Cooper pair It can be proved that this ground state is perfect diamagnetic.

The infinite conductivity is more difficult to explain because a ring with a persisting current is not a real
equilibrium: a state with zero current has alower energy. Flux quantization prevents transitions between these
states. Flux quantization is related to the existence of a coherent many-particle wavefunction. A flux quantum
is the equivalent of about 10* electrons. So if the flux has to change with one flux quantum there has to occur
atransition of many electrons, which is very improbable, or the system must go through intermediary states
where the flux is not quantized so they have a higher energy. Thisis also very improbable.

Some useful mathematical relations are:

[ee] (o] [ee]
xdr w2 / x2dz 3dm 7r
e +1  12a2 ’ (e® +1)2
0

0 —o0

00 o0 o0 1
And, when Z(—l)" = 1 follows: /Sin(px)dx = /cos(pa:)da: =
0 0

n=0




Chapter 13

Theory of groups

13.1 Introduction

13.1.1 Definition of a group
G isagroup for the operation e if:
1. V4 peg = Ae B € G: Gisclosed
2. Vapceg = (AeB)e(C = Ae(Be(): Gobeystheassociative law
3. dgeg SOthat VacgA e E = E e A= A: G hasaunit element
4. VacgIa-1cg Sothat Ae A~ = E: Each elementin G hasaninverse
If also holds:

5.Va,Bcg = Ao B = Be Athegroupiscalled Abelianor commutative

13.1.2 The Cayley table

Each element arises only once in each row and column of the Cayley- or multiplication table: because EA ; =
A;l(Ak,Aq; ) = A; each A; appears once. There are h positions in each row and column when there are h
elementsin the group so each element appears only once.

13.1.3 Conjugated elements, subgroups and classes

B is conjugateto A if 3xcg suchthat B = XAX~!. Then A is aso conjugate to B because B =
(X-HAXx-H-L

If B and C are conjugateto A, B is also conjugate with C.

A subgroups a subset of G whichisalso agroup w.r.t. the same operation.

A conjugacy classs the maximum collection of conjugated elements. Each group can be split up in conjugacy
classes. Some theorems:

e All classes are completely digjoint.
e Eisaclassitsalf: for each other elementin thisclasswouldhold: A = XEX ~1 = E.
e Fistheonly classwhich isalso asubgroup because all other classes have no unit element.
e Inan Abelian group each element is a separate class.
The physical interpretation of classes. elements of a group are usually symmetry operations which map a

symmetrical object into itself. Elements of one class are then the same kind of operations. The opposite need
not to be true.
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13.1.4 Isomorfism and homomorfism; representations

Two groups are isomorphicif they have the same multiplication table. The mapping from group G ; to Go, so
that the multiplication table remains the same is a homomorphic mapping. It need not be isomorphic.

A representations a homomorphic mapping of a group to a group of square matrices with the usual matrix
multiplication as the combining operation. Thisis symbolized by I". The following holds:

N(E)=1I , T(AB)=T(AL(B) , (A7) = [[(4)]™
For each group there are 3 possibilities for a representation:
1. A faithful representation: all matrices are different.
2. Therepresentation A — det(I'(A)).
3. Theidentical representation: A — 1.

An equivalent representatidis obtained by performing an unitary base transformation: I'/(A) = S~'T'(A)S.

13.1.5 Reducibleand irreducible representations

If the sameunitary transformation can bring all matrices of a representation I in the same block structure the
representation is called reducible
r(A) 0
v = (0 vy )

Thisiswrittenas: ' = T @ '), If thisis not possible the representation is called irreducible.
The number of irreducible representations equals the number of conjugacy classes.

13.2 Thefundamental orthogonality theorem
13.21 Schur’slemma

Lemma: Each matrix which commutes with all matrices of an irreducible representation is a constant x I,
where I isthe unit matrix. The oppositeis (of course) also true.

Lemma: If there exists a matrix M so that for two irreducible representations of group G, v (4;) and
Y 2)(A;), holds: M~y (4;) = 4@ (A4;) M, than the representations are equivalent, or M = 0.
13.2.2 Thefundamental orthogonality theorem

For a set of unequivalent, irreducible, unitary representations holds that, if 4 is the number of elementsin the
group and ¢; isthe dimension of the ;th representation:

1) % 1 h
Z F;(u)/ (R)F%(R) = Z(Sij(sya(suﬁ
Reg g

13.2.3 Character

The characterof arepresentation is given by the trace of the matrix and is therefore invariant for base trans-
formations: | x /) (R) = Tr(I'Y)(R))

Also holds, with IV, the number of elementsin a conjugacy class: | >~ x“*(Ci)x") (Ci) Nk, = hdi;
k

n
Theorem: > (7 =
i=1
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13.3 Thereation with quantum mechanics

13.3.1 Representations, energy levelsand degeneracy

Consider a set of symmetry transformations 7’ = Rz which leave the Hamiltonian H invariant. Theﬁe trans-
formations are a group. An isomorfic operation on the wavefunctionis given by: Pgy)(%) = o (R~1%). This
is considered an active rotation These operators commute with H: Pr’H = HPg, and leave the volume
element unchanged: d(RZ) = di.

Pr isthe symmetry group of the physical system. It causes degeneracy: if ¢, isasolution of Hvy,, = E, 9,
than also holds: H(Pryy,) = E.(Prr). A degeneracy which is not the result of a symmetry is caled an
accidental degeneracy

Assume an /,,-fold degeneracy at F,,: then choose an orthonormal set w(”) =1,2,...,¢,. Thefunction

PryS™ isin the same subspace: Pryy(™) = Zw(")F(M

where I'("™) is an irreducible, unitaryrepresentation of the symmetry group G of the system. Each n corre-
sponds with another energy level. One can purely mathematical derive irreducible representations of a sym-
metry group and label the energy levels with a quantum number this way. A fixed choice of T ") (R) defines

the base functions wﬁ"). Thisway one can aso label each separate base function with a quantum number.
Particlein a periodical potential: the symmetry operation is a cyclic group: note the operator describing one

trandation over oneunit as A. Then: G = {4, A2 A3,... A" = E}.
The groupis Abelian so all irreducible representations are one-dimensional. For 0 < p < h — 1 follows:

F(p) (An) — eQm’pn/h

2 2 ; L
If one defines: & = —% (mod%), SO PAl/)p(J,‘) = wp(x — a) = e%rzp/hwp(x), this gives Bloch’s

theorem ¢y () = ug(x)e™™®, with ug(z + a) = ug(z).

13.3.2 Breaking of degeneracy by a perturbation

Suppose the unperturbed system has Hamiltonian H, and symmetry group Go. The perturbed system has
H = Ho + V, and symmetry group G C Go. If T(")(R) is an irreducible representation of G, it isaso a
representation of G but not all elements of T'("™) in G, are also in G. The representation then usually becomes
reducible T(™) = (") ¢ T("2) @ .. The degeneracy is then (possibly partially) removed: see the figure
bel ow.

m = dim(T"(™))
En ’ﬂ2 - d|m(]_"(n2))

Uy = dim(D (7))
Spectrum H, Spectrum H

Theorem: The set of £,, degenerated eigenfunctions 1/)5”) with energy E,, is a basis for an ¢,,-dimensional
irreducible representation T (™) of the symmetry group.

13.3.3 Theconstruction of a base function
n 4
Each function F' in configuration space can be decomposed into symmetry types” = Z Z f,gj )
j=1k=1

The following operator extracts the symmetry types:

0 N |
(E > T (R)PR> F=f9

Reg
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Thisis expressed as: fé,j) isthe part of F' that transforms according to the w1 row of TG).
F' can aso be expressed in base functions p: F = Z cawp( 7). The functions fﬁj) are in genera not
transformed into each other by elements of the group. However this does happeniif ¢ jor = ¢jq.

Theorem: Two wavefunctions transforming according to non-equivalent unitary representations or according
to dli fferent rows of an unitaryvi rreduci ble representation are orthogonal :
(@D 19y ~ 5,56,5, and (' 1) isindependent of x.

13.3.4 Thedirect product of representations

Consider aphysical system existing of two subsystems. The subspace D () of the system transforms according

to TV, Basefunctions are o (), 1 < k < ¢;. Now form all £, x £, products o\ (1) ? (#2). These
defineaspace D) © D),

These product functions transform as:

PrleM (@)D (#2)) = (Pre (1)) (Pre) (#2))

In general the space DY) ® D) can be split up in a number of invariant subspaces:

' er® = Znir‘(i)

)

A useful tool for this reductionis that for the characters hold:

YO (R (R Z niy® (R

13.3.5 Clebsch-Gordan coefficients
(@) (5)

With the reduction of the direct-product matrix w.r.t. thebasis ¢ . ¢y’ one uses anew basis go,(f”) These base
functionslie in subspaces D (**), The unitary base transformation is given by:

Pl =3 oD (irjA|akp)
KA

and the inverse transformation by: ¢ {7 = 3" () (akplirj )
akp

)

In essence the Clebsch-Gordan coefficients are dot products: (ikjA|akp) := <<,9 K Px |ga(ak)>

13.3.6 Symmetric transfor mations of operators, irreducible tensor operators

Observables (operators) transform as follows under symmetry transformations: A’ = PRAP*. If aset of
operatorsA with 0 < x < /¢; transform into each other under the transformations of G holds:

PRAECj)PRl ZA(J)F(J)

If ') isirreducible they are called irreducible tensor operatorg /) with components A
An operator can aso be decomposed into symmetry types: A = > a,(j ) , with:
ik

) 0. o 3
a)) = (z’ > T <R>> (PRAPg")

Reg
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Theorem: Matrix elements H;; of the operator H which isinvariant under vV 4c¢, are O between states which
transform according to non—equival ent irreducible unitary representations or according to different rowsof such
arepresentation. Further <<pr) |H|1/J,Ef)> isindependent of x. For H = 1 this becomes the previous theorem.

Thisis applied in quantum mechanics in perturbation theoryand variational calculus Here onetries to diag-
onalize H. Solutions can be found within each category of functions ¢ (J) with common i and x: H is already
diagonal in categories as awhole.

Perturbation cal culus can be applied independent within each category. With variational calculus the try func-
tion can be chosen within a separate category because the exact eigenfunctions transform according to a row
of anirreducible representation.

13.3.7 TheWigner-Eckart theorem

Theorem: The matrix element (0{”|AY |4} canonly be £ 0if T @ T*) = . @ T® @ ... If thisis
the case holds (if I'(*) appears only once, otherwise one has to sum over a):

(V1A [0) = (iAljmkin) D A9 )

This theorem can be used to determine selection rules: the probability of a dipole transition is given by (€'is
the direction of polarization of the radiation):
8r2e? f3|ra)? . oL
PD = T@C‘S with T2 = <12m2|€ - T |Z1m1>
Further it can be used to determine intensity ratios: if there is only one value of a the ratio of the matrix
elements are the Clebsch-Gordan coefficients. For more a-values rel ations between the intensity ratios can be
stated. However, the intensity ratios are also dependent on the occupation of the atomic energy levels.

13.4 Continuous groups

Continuous groups have h = co. However, not al groups with h = oo are continuous, e.g. the trandation
group of an spatially infinite periodic potential is not continuous but does have h = oc.

13.4.1 The 3-dimensional translation group

For the trandation of wavefunctions over a distance a holds: P,u(xz) = ¢¥(x — a). Taylor expansion near «
gives.
dp(x) 1 ,d*Y(z)

Yl —a) =vle) ey T+ e

—+...

. L ho . .
Because the momentum operator in quantum mechanicsisgivenby: p, = — 92 this can be written as:
1 0%

Yz —a) = e P/ My (x)

13.4.2 The 3-dimensional rotation group

Thisgroupis called SO(3) because afaithful representation can be constructed from orthogonal 3 x 3 matrices
with a determinant of +1.

For an infinitesimal rotation around the z-axis holds:
Pg‘gml/)(l‘, Y, Z) ~ 1/)(33, y+200,, 2 — y59r)
= )+ (3005~ 00, ) vl )

i60, L, (
= (1 - A ) 1/’(%!/72)
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o h
Because the angular momentum operator isgivenby: L, = 3 (z2 — %)

So in an arbitrary direction holds:  Rotétions: P, 7 = exp(—ia(i - J)/h)
Trandations: P, 7 = exp(—ia(i-7)/h)
Jz, Jy and J, are celled the generatorsf the 3-dim. rotation group, p ., p, and p, are called the generators of
the 3-dim. translation group.

The commutation rules for the generators can be derived from the properties of the group for multiplications:
translations are interchangeable < p,py, — pyp. = 0.

Rotations are not generally interchangeable: consider a rotation around axis 7 in the xz-plane over an angle
a. Thenholds: P, 5 = P_g y P 2 Ps 4, SO

o 10T /R _ i0J, /b =icde /By —i0.J, /h

If aqand 0 are very small and are expanded to second order, and the corresponding terms are put equal with
7 - J = Jycos + J, sin 6, it followsfromthe o term: J, Jy — JyJ, = ihJ..

13.4.3 Properties of continuous groups

The elements R(p1, ..., p,) depend continuously on parameters p, ..., p,. For the translation group this are
e.0. ang, an, and an.. It isdemanded that the multiplication and inverse of an element R depend continuously
on the parameters of R.

The statement that each element arises only once in each row and column of the Cayley table holds also for
continuous groups. The notion conjugacy class for continuous groupsis defined equally as for discrete groups.
The notion representation is fitted by demanding continuity: each matrix element depends continuously on

pi(R).

Summation over al group elementsis for continuous groups replaced by an integration. If f(R) isafunction
definedon G, eg. I',3(R), holds:

/ F(R)AR = / / FRM1s oo pu))g(R(Prs o pa))dlps - -~
g P1 Pn

Here, g(R) isthe density function

Because of the properties of the Cayley tableisdemanded: [ f(R)dR = [ f(SR)dR. Thisfixes g(R) except
for a constant factor. Define new variablesp” by: SR(p;) = R(p}). If onewrites: dV := dp; - - - dp,, holds:

av
av’

9(5) = g(E)

dv . . dv
Here, Pl isthe Jacobian i

op';

= det (3])7; ) ,and g(E) is constant.
J

For the translation group holds: ¢(@) = constant = ¢(0 ) because g(aft )da’' = (0 )dd and d@’ = da.
This leads to the fundamental orthogonality theorem:

7)% j 1
/F;(u)/ (R)FSE(R)CZR: Z(S?j(s,uozéuﬁ/dR
g G

and for the characters hold:
/X“)*(R)XU)(R)dR = 8ij /dR
G G
Compacigroups are groups with afinite group volume: fg dR < cc.
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13.5 Thegroup SO(3)

One can take 2 parameters for the direction of the rotational axis and one for the angle of rotation ¢. The
parameter space is a collection points 7 within a sphere with radius . The diametrical points on this sphere
are equivalent because Ry . = Ry — .

Another way to define parameters is by means of Eulers angleslf «, 8 and v are the 3 Euler angles, defined
as.
1. Thespherical anglesof axis3w.rt. zyz ared, ¢ := 3, «. Now arotation around axis 3 remains possible.

2. The spherical angles of the z-axisw.rt. 123 aref, p := 5,7 — 7.

then the rotation of a quantum mechanical system is described by:
W — e—szhe—wa/ne—sz/nw_ So P = e—ie(ﬁ~f)/h_

All irreducible representations of SO(3) can be constructed from the behaviour of the spherical harmonics
Yim (0, ) with —1 < m <[ andfor afixed:

PRYlm(ea 30) = Z Y (97 @)Dg)m/ (R)
m/’
DW isan irreducible representation of dimension 21 + 1. The character of D (! is given by:

l l

(@) = 3 @ =142 cos(ha) = T T 21

= — sin(za)

In the performed derivation « is the rotational angle around the z-axis. Thisexpressionisvalid for all rotations
over an angle o because the classes of SO(3) are rotations around the same angle around an axis with an
arbitrary orientation.

Viathe fundamental orthogonality theorem for characters one obtains the following expression for the density
function (which is normalized so that ¢(0) = 1):
sin®(3a)
(30)?
With this result one can see that the given representations of SO(3) are the only ones: the character of another

representation ' would have to be L to the already found ones, s0 x’(a) sin?(3a) = 0Va = y/(a) = 0Va.
Thisis contradictory because the dimension of the representation is given by x ’(0).

g(a) =

Because fermions have an half-odd integer spin the states ¢ 5,,, With s = % andm, = i% constitute a 2-dim.
space which isinvariant under rotations. A problem arises for rotations over 27

—2miS, /h __—2mim, _
?/J%ms — € i w%ms =¢e qw%ms - w%ms

However, in SO(3) holds: R, 2 = E. So hereholds E — +1I. Because observable quantities can always be
written as (@|1)) or (¢| A|r), and are bilinear in the states, they do not change sign if the states do. If only one
state changes sign the observable quantities do change.

The existence of these half-odd integer representations is connected with the topological properties of SO(3):
the group is two-fold coherent through the identification Ry = Ror = E.

13.6 Applicationsto quantum mechanics

13.6.1 Vectormode for the addition of angular momentum

If two subsystems have angular momentum quantum numbers 5, and j, the only possible values for the total
angular momentumare J = j1 + j2, j1 +j2—1, ..., |71 — j2|. Thiscan bederived from group theory asfollows:
from x U1 (a)xV2) (a) = Y n;x) () follows:

J

DUV g pU2) = pliitiz) g pliitia=1) o g pii—iz20)
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The states can be characterized by quantum numbers in two ways. with j1,mq, jo, mo and with 51, jo, J, M.
The Clebsch-Gordan coefficients, for SO(3) called the Wigner coefficientsan be chosen real, so:

Vj1jaIM = > Yiimajams (Jimajeme|JM)
mi1ma

Vjrmajams > Yiyjaam (Gimajame| JM)
JM

13.6.2 Irreducibletensor operators, matrixelements and selection rules
Some examples of the behaviour of operatorsunder SO(3)

1. Suppose j = 0: this gives the identical representation with ¢; = 1. This state is described by a

scalar operator. Because PRA(()U)P}; 1= A(()O) this operator is invariant, e.g. the Hamiltonian of a
freeatom. Thenholds: (J'M'|H|JM) ~ dnra .-

2. A vector operator: A= (Az, Ay, A.). The cartesian components of avector operator transform equally
as the cartesian components of by definition. So for rotations around the z-axis holds:

cosae —sina 0
D(R,.)=| sina cosa 0
0 0 1

The transformed operator has the same matrix elementsw.r.t. Pry and Pr¢:

(Pry|PRA PR ' |Pré) = (¥]|As|¢), and x(Ra,.) = 1 + 2cos(). According to the equation for
characters this means one can choose base operators which transform like Y7, (6, ¢). These turn out to
be the spherical components:

a1

w ﬂ(Ax +id,), AV =4, A" =_—(4,-i4,)

3. A cartesian tensor of rank 2: T, is a quantity which transforms under rotationslike U; V;, where U/ and
V are vectors. So Tj; transforms like PrTi; Pp = 3. Ty Dyi(R) Dy (R), so like D) @ D) =
kl

D® ¢ DM @ D), The 9 components can be split in 3 invariant subspaces with dimension 1 (D (9)),
3(DW) and 5 (D®). The new base operators are:
I. TH(L) = Tyy + Tyy + Ts.. Thistransformsasthe scalar U - V, soas D(©).

1. The 3 antisymmetric components A, = (T, — T},..), etc. These transform as the vector U x V/,
soas DM,

[1l. The 5 independent components of the traceless, symmetric tensor S:
Sq;j = %(Tz] + Tﬂ) — %(squr(T) ThesetransformasD(Q).

Selection rulesfor dipoletransitions

Dipole operators transform as D (1) for an electric dipole transfer is the operator e, for a magnetic e( L+
25)/2m.

From the Wigner-Eckart theorem follows: (.J/M’| A |JM) = 0 except D" isapart of D) @ D) =
DY ¢ D) @ pUJ=1D, Thismeansthat J' € {J + 1,J,|J —1]}: J' = JorJ' = J =+ 1, except
J' =J=0.

L andé-equation for the anomalous Zeeman splitting

According to Landé's model the lnteragion betwgen a rgagnetic moment withﬁan external magnetic field is
determined by the projection of M on J because L and S precede fast around J. This can also be understood
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from the Wigner-Eckart theorem: from this follows that the matrix elements from all vector operators show a
certain proportionality. For an arbitrary operator A follows:

(agm|A - T |ajm)
(5 + 1R

(agm’| Alagm) = (agm/|T |ajm)

13.7 Applicationsto particle physics

The physics of a system does not change after performing a transformation )/ = %) where § is a constant.
Thisisaglobal gauge transformatiornhe phase of the wavefunction changes everywhere by the same amount.

Thereexists somefreedomin theqchoiceqof the potentials A and ¢ at the same E and B: gauge transformations
of the potentials do not change £ and B (See chapter 2 and 10). The solution ¢’ of the Schrodinger equation
with the transformed potentialsis: ¢’ = e~/ (7)),

Thisis alocal gauge transformationtheqphase of the wavefunction changes different at each position. The
physics of the system does not changeif A and ¢ are also transformed. Thisis now stated as aguide principle:
the “right of existence” of the electromagnetic field is to allow local gauge invariance

The gauge transformations of the EM-field form agroup: U(1), unitary 1 x 1-matrices. The split-off of charge
in the exponent is essential: it allows one gauge field for all charged particles, independent of their charge.

This concept is generalized: particles have a“ specia charge” Q. The group elements now are
Pr = exp(—iQ0O).

Other forcefields than the electromagnetic field can al so be understood thisway. The wesk interaction together
with the electromagnetic interaction can be described by aforcefield that transformsaccordingto U(1)@ SU(2),
and consists of the photon and three intermediary vector bosons. The colour force is described by SU(3), and
has a gauge field that exists of 8 types of gluons.

In general the group elementsaregivenby Pr = exp(—z’f . @)), where ©,, arereal constantsand T, operators
(generators), like Q). The commutation rules are given by [T';,T;] = i) ¢;jxTk. The c;;, are the structure

k
constantof the group. For SO(3) these constants are ¢, = €5k, here ;5 is the complete antisymmetric
tensor with e1o3 = +1.

These constants can be found with the help of group product elements. because G is closed holds:

06T i6' To=i6Tq—i®" T _ o~i®"T Taylor expansion and setting equal ©™©’™-terms results in the com-
mutation rulas.

The group SU(2) has 3 free parameters. because it is unitary there are 4 rea conditions over 4 complex
parameters, and the determinant has to be +1, remaining 3 free parameters.

Each unitary matrix U can be written as: U = e ~*H . Here, H is a Hermitian matrix. Further it always holds
that: det(U) = e *T*(H),

For each matrix of SU(2) holdsthat Tr(H)=0. Each Hermitian, traceless 2 x 2 matrix can be written asalinear
combination of the 3 Pauli-matricess;. So these matrices are a choice for the operators of SU(2). One can
write: SU(2)={exp(—3i5 - 0)}.

In abstraction, one can consider an isomorphic group where only the commutation rules are considered to be
known regarding the operators T';: [T1, T3] = iT3, €tc.

In elementary particle physicsthe T; can be interpreted e.g. as the isospinoperators. Elementary particles can
be classified in isospin-multiplets, these are the irreducibl e representations of SU(2). The classificationiis:

1. Theisospin-singlet = the identical representation: e—iT® =1 T,=0

2. Theisospin-doublet = the faithful representation of SU(2) on 2 x 2 matrices.
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The group SU(3) has 8 free parameters. (The group SU(IN) has NV 2 — 1 free parameters). The Hermitian,
traceless operators are 3 SU(2)-subgroupsin the €' é5, €13 and the €;¢e3 plane. This gives 9 matrices, which
are not al 9 linear independent. By taking alinear combination one gets 8 matrices.

8
In the Lagrange density for the colour force one has to substitute 2 — D = 2 — E T; AL
Ox Dzx Ox p ¥

Theterms of 3rd and 4th power in A show that the colour field interacts with itself.




Chapter 14

Nuclear physics

14.1 Nuclear forces

The mass of anucleusis given by:

My = Zmp + Nmy — Ebind/c2

D N 00 ©
T
1

The binding energy per nucleonis givenin (MeV)51 | 8
the figure at the right. The top is at 33Fe, 4t _
the most stable nucleus. With the constants

15760 MeV
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ay
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a4
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O P, N W
T
1

200 240

and A = Z + N, inthedropletor collective modebf the nucleus the binding energy E v;.q IS given by:

2(Z-1)  (N-2)?
)

Ebind

> ZalA—a2A2/3 — as
C

+ ea5A_3/4

These terms arise from:
1. a;: Binding energy of the strong nuclear force, approximately ~ A.
2. aqy: Surface correction: the nucleons near the surface are less bound.
3. a3 Coulomb repulsion between the protons.
4. a4: Asymmetry term: asurplus of protons or neutrons has alower binding energy.
5

. as. Pair off effect: nuclei with an even number of protonsor neutrons are more stable because groups of
two protons or neutrons have alower energy. The following holds:

Z even, N even: e = +1, Z odd, N odd: e = —1.
Z even, N odd: e = 0, Z odd, N even: ¢ = 0.

The Yukawa potential can be derived if the nuclear force can to first approximation, be considered as an

exchange of virtual pions:
U(r) = _ Woro exp (—L)
r 70

WithAE - At = h, E, = moc? and g = cAt follows: 7o = h/mgc.

In the shell model of the nucleus one assumes that a nucleon moves in an average field of other nucleons.
Further, there is a contribution of the spin-orbit coupling ~ L-S: AV, = %(2l + 1)hw. So each level
(n,1) is split in two, with j = [ 4+ L1, where the state with j = | + % has the lowest energy. This is just
the opposite for electrons, which is an indication that the L — S interaction is not electromagnetical. The
energy of a 3-dimensional harmonic oscillator is E = (N + 2)hw. N = ny + ny +n. = 2(n — 1) + 1
where n > 1 is the main oscillator number. Because —I < m < [ and m, = +ih there are 2(21 + 1)
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substates which exist independently for protonsand neutrons. This givesriseto the so called magical numbers
nuclei where each state in the outermost level are filled are particulary stable. This is the case if N or Z
€ {2,8,20,28,50,82,126}.

14.2 The shape of the nucleus
A nucleusisto first approximation spherical with aradiusof R = RoA'/3. Here, Ry ~ 1.4-10~'> m, constant

for al nuclei. If the nuclear radiusis measured including the charge distribution one obtains R g ~ 1.2 - 10~ 1°
m. The shape of oscillating nuclei can be described by spherical harmonics:

R =Ry

1 + Z aleEm(ev @)]

lm

[ = 0 givesrise to monopol e vibrations, density vibrations, which can be applied to the theory of neutron stars.
[ =1 givesdipolevibrations, | = 2 quadrupole, with as o = S cosy and az,+2 = %\/ﬁﬁ sin v where 5 isthe
deformation factor and ~y the shape parameter. The multipole moment is given by i, = Zer'Y;™ (6, ¢). The
parity of the electric momentisIIz = (—1)!, of the magnetic moment I1; = (—1)'*1.
There are 2 contributionsto the magnetic moment: M; = —— I and Mg = gs—— 5.

2my, 2my,
where g is the spin-gyromagnetic ratio For protons holds g = 5.5855 and for neutrons gs = —3.8263.
The z-components of the magnetic moment aregivenby M ;, . = uxm; and Mg . = gspunmg. Theresulting
magnetic moment is related to the nuclear spin I according to M = gr(e/ 2mp)f. The z-component is then
M. = pngrmr.

14.3 Radioactive decay

The number of nuclei decaying is proportional to the number of nuclei: N = —AN. Thisgivesfor the number
of nuclei N: N(t) = Noexp(—At). The half life timefollows from 7. A = In(2). The average life time
of anucleusis 7 = 1/A. The probability that N nuclei decay within atime interval is given by a Poisson
distribution:

ANe=2
If a nucleus can decay into more final states then holds: A = 3" \;. So the fraction decaying into state i is
Ai/ > Ai. There are 5 types of natura radioactive decay:

1. a-decay: the nucleus emits a He?* nucleus. Because nucleons tend to order themselves in groups of
2p+2n this can be considered as a tunneling of a He?* nucleus through a potential barrier. The tunnel
probability P is

P |ncom.|ng amp|.|tUde — 026 Wwith ¢ = l Zm/[V(T) — E]d?“
outgoing amplitude h

G iscalled the Gamow factor

2. [3-decay. Here a proton changes into a neutron or vice versa
ptF =14+ Wt =n®+et +u,andn® - pT+ W~ - pT+e +7,.

3. Electron capture: here, a proton in the nucleus captures an electron (usually from the K-shell).
4, Spontaneous fission: a nucleus breaks apart.
5. ~-decay: here the nucleus emits a high-energetic photon. The decay constant is given by

21
)\ — P(l) ~ E'Y E'YR ~ 1074[
hw (he)? \| ke
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where [ is the quantum number for the angular momentum and P the radiated power. Usualy the
decay constant of electric multipole moments is larger than the one of magnetic multipole moments.
The energy of the photon is ., = E; — Ey — Tg, with Tr = EZ2/2mc? the recoil energy, which
can usualy be neglected. The parity of the emitted radiation is 11! = II° - IIf. With I the quantum
number of angular momentum of the nucleus, L = 7 +/I(I + 1), holds the following selection rule:
I = Iy < AL < |Ti+ T

14.4 Scattering and nuclear reactions

14.4.1 Kinetic model

If a beam with intensity I hits a target with density n and length z (Rutherford scattering) the number of
scatterings R per unit of timeisequal to R = Inzo. From thisfollowsthat the intensity of the beam decreases
as —dI = Inodzx. Thisresultsin I = Ipe "% = [je  H*,

_ _ - do _ R(6,¢)
Because dR = R(0, ¢)dSY/4nm = Inzdo it follows: 0= el
. . . . . AN do
If N particles are scattered in amaterial with density n then holds: = nd—QAQAx
do o Z1Z2€2 1

For Coulomb collisionsholds. —| =
A 8meopvg sin®(30)

14.4.2 Quantum mechanical model for n-p scattering

The initial state is a beam of neutrons moving along the z-axis with wavefunction v ;,;; = ¢*** and current
density Jinie = v|winic|? = v. At large distances from the scattering point they have approximately a spherical
wavefunction ... = f(0)e’*" /r where f(6) isthe scattering amplitudeThetotal wavefunctionisthen given
by

eikr

1/) = win + wscat = eikz + f(@)

r

The particle flux of the scattered particlesis v|1scat|? = v|f(6)|2dS2. Fromthisit followsthat o(6) = | £(0)|>.
The wavefunction of the incoming particles can be expressed as a sum of angular momentum wavefunctions:

Ginie = ¥ = "4y
!

Theimpact parameter is related to the angular momentum with L = bp = bhk, S0 bk =~ [. At very low energy
only particleswith [ = 0 are scattered, so

o _ sin(kr)
b=+ > and vy = o
>0
If the potential is approximately rectangular holds: ¢ (, = Cw
.. 9 102
The cross section is then o (6) = Smkf‘)) SO 0 = /0(9)619 = M%lz(éo)
h2k2/2m

At very low energies holds: sin?(dy) = A
0

. . . . 4
with T, the depth of the potential well. At higher energiesholds: o = k_g E sin?(&;)
l
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14.4.3 Conservation of energy and momentum in nuclear reactions

If aparticle P, collides with aparticle P, which isin rest w.r.t. the laboratory system and other particles are
created, so
Pi+P — Z Py
k>2

the total energy @ gained or requiredisgivenby Q = (m +ma — Y. my)c?.

k>2
The minimal required kinetic energy 7" of P, in the laboratory system to initialize the reaction is

mi +ma + Y. my
2m2

T=-Q

If @ < 0thereisathreshold energy.

14.5 Radiation dosimetry

Radiometric quantitiegetermine the strength of the radiation source(s). Dosimetric quantitiesre related to
the energy transfer from radiation to matter. Parameters describing a relation between those are called inter-
action parametersThe intensity of abeam of particlesin matter decreases according to I(s) = I exp(—pus).
The deceleration of a heavyparticle is described by the Bethe-Bloch equation

dE ¢
ds  v?

The fluentionis given by ® = dN/dA. Thefluxisgivenby ¢ = d®/dt. The energy lossis defined by ¥ =
dW/dA, and the energy flux density ¢» = d¥/dt. The absorption coefficienis given by u = (dN/N)/dx.
The mass absorption coefficierstgiven by 1./ 0.

The radiation doseX isthe amount of charge produced by the radiation per unit of mass, with unit C/kg. An
old unit is the Rontgen: 1Ro= 2.58 - 10~* C/kg. With the energy-absorption coefficient .  follows:

dQ  epp
X=—"=—FY
dm Wy
where W isthe energy required to digoin an elementary charge.

The absorbed dos® isgivenby D = dE,ps/dm, with unit Gy=Jkg. An old unitistherad: 1 rad=0.01 Gy.
The dose tempds defined as D. It can be derived that

p="FEy
0

The Kerma K is the amount of kinetic energy of secundary produced particles which is produced per mass
unit of the radiated object.

The equivalent dosé7 is a weight average of the absorbed dose per type of radiation, where for each type
radiation the effects on biological material is used for the weight factor. These weight factors are called the
quality factors. Their unitisSv. H = @QD. If the absorption is not equally distributed also weight factors w
per organ need to be used: H = > wy, Hy,. For some types of radiation holds:

| Radiation type | Q|
Rontgen, gammaradiation 1
(3, electrons, mesons 1
Thermic neutrons 3to5
Fast neutrons 10t0 20
protons 10
«, fission products 20




Chapter 15

Quantum field theory & Particle physics

15.1 Creation and annihilation operators

A state with more particles can be described by a collection occupation numbers |n 1nang - - ). Hence the
vacuum state is given by |000 - - -). Thisis a complete description because the particles are indistinguishable.
The states are orthonormal:

o0
(nanans - - - [nfnln - ) = Hann
=1
The time-dependent state vector is given by

V()= Y Cung(D)nin--)

ning---

The coefficients ¢ can be interpreted as follows: |c,, ... |2 is the probability to find n; particles with momen-
tum k1, n, particleswith momentum ks, etc., and (¥ (¢)[¥ (1)) = 3 |en, (t)|? = 1. Theexpansion of the states
in time is described by the Schrodinger equation

d

— U (t)) = H|W(t

i 1Y) = H[¥(t)
where H = Hy + Hin. Hp is the Hamiltonian for free particles and keeps |c,,, (t)|? constant, Hiy is the
interaction Hamiltonian and can increase or decrease ac? at the cost of others.
All operators which can change occupation numbers can be expanded in the a and « T operators. « is the
annihilation operatorand a ' the creation operatoyand:

a(ki)|ning---n;---) = /mi|nang---my—1--2)
aT(EZ)|n1n2nZ> — \/n2+1|n1n2nl+1>

Because the states are normalized holds a|0) = 0 and a(k;)a’(k;)|n;) = ng|n;). So aa’ is an occupation

number operator. The following commutation rules can be derived:

—

la(R),alR)] =0, [al (), a'(Bp)) =0, [a(Ro),al ()] = 6y

Hence for free spin-0 particles holds: Hy = " a'(k;)a(k;)hwr,

15.2 Classical and quantum fields

Starting with areal field ®(z) (complex fields can be split in a real and an imaginary part), the Lagrange
densityL is afunction of the position z = (Z,ict) through the fields: £ = £(®“(x),0,P%(x)). The L&
grangianis givenby L = [ £(z)d3x. Using the variational principle §1(2) = 0 and with the action-integral
I(Q) = [ L(®“,5,P*)d*z the field equation can be derived:

oL 0 oL

950 Oy 0(0, %) O

The conjugated fields, analogousto momentum in classical mechanics, defined as:

I%(z) = aa(ii
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With this, the Hamilton density becomes H () = II*®* — £L(z).

Quantization of aclassical field is analogous to quantization in point mass mechanics: the field functions are
considered as operators obeying certain commutation rules:

[@(&), @7 (@")] =0 , [I*(@), 7@ =0, [&%(&),11°(F")] = idap(7 — ')

15.3 Theinteraction picture

Some equivalent formulations of quantum mechanics are possible:
1. Schrodinger picture: time-dependent states, time-independent operators.
2. Heisenberg picture: time-independent states, time-dependent operators.
3. Interaction picture: time-dependent states, time-dependent operators.

The interaction picture can be obtained from the Schrodinger picture by an unitary transformation:
|B(t)) = "5 |05 (¢)) and O(t) = o OSeHo

Theindex S denotes the Schrodinger picture. From this follows:

i—|®(1)) = Hin(t)|2(2)) and Z'%0(15) = [O(t), Ho]

15.4 Real scalar field in theinteraction picture

Itis easy to find that, with M := mZc?/h?, holds:

5 2(@) =Tl(x) and ZTi(x) = (V> = M?)®(x)
From this follows that ® obeys the Klein-Gordon equation (O — M 2)® = 0. With the definition k2 =

k2 + M? := w? and the notation k - Z — ikot := kx the general solution of this equation is:

(I> a? \/_Z m( ) zkx_|_a (E)e—”ﬁ”) , m \/_Z\/;( zkx—i—a (E)e_7kT)

Thefield operators contain avolume V', which is used as normalization factor. Usually one can take the limit
V — oc.

In general it holds that the term with e ~**7 | the positive frequency part, is the creation part, and the negative
frequency part is the annihilation part.

the coefficients have to be each others hermitian conjugate because @ is hermitian. Because ® has only one
component this can be interpreted as a field describing a particle with spin zero. From this follows that the
commutationrulesare given by [®(x), ®(z')] = iA(z — ') with

Aly) - 1 /sin(ky) B

(271’)3 WE

A(y) isan odd functionwhichisinvariant for proper L orentz transformations (no mirroring). Thisis consistent
with the previously found result [®(Z, ¢, ®(Z’,¢)] = 0. In general holds that A(y) = 0 outside the light cone.
So the equations obey the locality postulate.

The Lagrange density isgiven by: £(®,0,®) = —1 (0,90, ® + m>®?). The energy operator is given by:

Hz/H(x x—ZhwkaE (k)
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15.5 Charged spin-0 particles, conservation of charge

The Lagrange density of charged spin-0 particlesisgivenby: £ = — (0,90, ®* + M?®d*).

Noether’s theorem connects a continuous symmetry of £ and an additive conservation law. Suppose that
L((®2),0,(®%)) = L (®*,,9*) and there exists a continuous transformation between ® <~ and &’ such

as Y = @* + ¢f*(®). Then holds
o ([ oL .\
oz, (8(8V<I>@)f ) =0

Thisis acontinuity equation = conservation law. Which quantity is conserved depends on the symmetry. The
above Lagrange density is invariant for a change in phase ® — ®e®: aglobal gauge transformation. The
conserved quantity is the current density .J,,(z) = —ie(29,®* — %0, ®). Because this quantity is O for real
fields a complex field is needed to describe charged particles. When this field is quantized the field operators
aregiven by

(alF)e™ + b (F)e ™) | of(a (al (R e+ b(E ye )

1 1 1 1
"= 2 ey

Hence the energy operator is given by:

H= Z hw, (aT(E)a(E) + bT(E)b(E))
k

and the charge operator is given by:

From this follows that afa := N+(E ) is an occupation number operator for particles with a positive charge
and b'b := N_ (k) is an occupation number operator for particles with a negative charge.

15.6 Field functionsfor Spin-% particles

Spin is defined by the behaviour of the solutions ¢ of the Dirac equation. A scalarfield ® has the property
that, if it obeys the Klein-Gordon equation, the rotated field ®(z) := ®(A~'z) aso obeysit. A denotes
4-dimensional rotations. the proper Lorentz transformations. These can be written as:

o= 0 0
—ifi-L H .
CI)(:E) = (I)(l')e ' with L,“, = —ih ("L"ua—xu - (EV%H>
For u < 3,v < 3 thesearerotations, for v = 4, 1 # 4 these are Lorentz transformations.

A rotated field ¢) obeys the Dirac equation if the following condition holds: (z) = D(A)y(A~'z). This
resultsin the condition D=y, D = A, ,,7,,. Onefinds: D = 'S with S, = —ihv,7,. Hence:

1/)(37) _ e_i(S+L)w($) — e—ijw(x)
Then the solutions of the Dirac equation are given by:
P(w) = ul (7)o FIEED

Here, r is an indication for the direction of the spin, and + is the sign of the energy. With the notation
V" (p) = u” (—p) and u" (p") = u', (p') one can write for the dot products of these spinors:

T (V" (D E T (" (7 E ro(=\, =
u+(p)u+(p) = M(Srr’ ) U—(p)u— (p) = M(Srr’ ; UJr(p)u— (p) =0
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Because of the factor E/M this is not relativistic invariant. A Lorentz-invariant dot product is defined by
ab := a'~,b, where@ := a'~, isarow spinor. From this follows:

WPV (F) = Gerr 0T () = =0 W (B)07 () =0
Combinations of thetype aa givea4 x 4 matrix:

2

o = _Z'YAPA+M &) —ipy — M
ZU P (p) = —F7— Z” Jor () =T oM

r=1

The Lagrange density which results in the Dirac equation and having the correct energy normalizationis:
— 0
£(o) = =00 (g + M1 ) 01o)

and the current density is J, (z) = —iely, 1.

15.7 Quantization of spln-— fields

The general solution for the fieldoperatorsisin this case:

ie) = @ ; % 3 (e @0 () + L) )

¥(z) = @ Epj % Z (cE(F)a (7)™ + dy (F)07 (7))

Here, ¢! and ¢ are the creation respectively annihilation operators for an electron and d f and d the creation
respectively annihilation operators for a positron. The energy operator is given by

H =Y E;Y (chi)er(p) — de(#)dL(7))

To prevent that the energy of positronsis negative the operators must obey anti commutation rules in stead of
commutation rules:

[ (P), e, (7)) 4 = [dv(7), dl, (7)) = 6rr6py , @l other anti commutatorsare 0.

)’ r

The field operators obey
[Ya(@):¥p(2)] =0, [Ya(@),dp(@)] =0, Wal2),s(a")]s = —iSas(z — ')

with S(z) = (wé% - M) A(z)

The anti commutation rules give besides the positive-definite energy also the Pauli exclusion principle and the
Fermi-Dirac statistics: because cf.(p)cl (5) = —cl(7)cl(p) holds: {c.(p)}? = 0. It appearsto beimpossible
to create two electrons with the same momentum and spin. Thisisthe exclusion principle. Another way to see
thisisthe fact that { N.f(5)}? = N (p): the occupation operators have only eigenvalues 0 and 1.

To avoid infinite vacuum contributions to the energy and charge the normal producis introduced. The expres-
sion for the current density now becomes J,, = —ieN (1y,%). This product is obtained by:

e Expand al fieldsinto creation and annihilation operators,

e Keep al terms which have no annihilation operators, or in which they are on the right of the creation
operators,

e In all other terms interchange the factors so that the annihilation operators go to the right. By an inter-
change of two fermion operators add a minus sign, by interchange of two boson operators not. Assume
hereby that all commutators are zero.
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15.8 Quantization of the electromagnetic field

104,04,
2 9z, Oz,

Starting with the Lagrange density £ =
it followsfor the field operators A(x):

1 1
A(”Zﬁgm

4
Z (am(_')em(];)eikz + aT(E)em(E)*efikm)
m=1
The operators obey [a,, (k ), ajn/(l;)] = Omm Ok All other commutators are 0. m gives the polarization
direction of the photon: m = 1,2 gives transversal polarized, m = 3 longitudinal polarized and m = 4
timelike polarized photons. Further holds:

[Au(x), Ay (2")] = 16, D(z — ') with D(y) = A(y)lm=0

In spite of the fact that A, = ¢V isimaginary in the classical case, A, is still defined to be hermitian be-
cause otherwise the sign of the energy becomes incorrect. By changing the definition of the inner product in
configuration space the expectation valuesfor A1 2 3(x) € IR and for A4(z) becomeimaginary.

If the potentials satisfy the Lorentz gauge condition 9,4, = 0 the £ and B operators derived from these
potentials will satisfy the Maxwell equations. However, this gives problems with the commutation rules. It is
now demanded that only those states are permitted for which holds

DA+
[ _
5o |®) =0

Thisresultsin: <8A“> =0.
axu,

From this follows that (a3 (k) — a4(k))|®) = 0. With alocal gauge transformation one obtains Ns(k ) = 0
and N4(E) = 0. However, this only applies to free EM-fields: in intermediary states in interactions there
can exist longitudinal and timelike photons. These photons are also responsible for the stationary Coulomb
potential.

15.9 Interactingfieldsand the S-matrix

The S(scattering)-matrix gives a relation between the initial and final states of an interaction: |®(c0)) =
S|®(—o0)). If the Schrodinger equation isintegrated:

t

B(1)) = |®(—00)) — i / Hie (1) (1))t

— 00

and perturbation theory is applied one finds that:

= —1)" = n
S = Z)%/'"/T{Hint(xl)'"Hirlt(xn)}d4$1 R — Z%S( )

Here, the T-operator means atime-ordered productthe terms in such a product must be ordered in increasing
time order from the right to the left so that the earliest terms act first. The S-matrix is then given by: S,;; =
(@] S[®;) = (Pi|P(00)).

The interaction Hamilton density for the interaction between the electromagnetic and the €lectron-positron
fieldis: Hing(x) = —J,(2)Au(x) = ieN (Yy,0A,)

When thisis expanded as: Hin, = ieN ((w_+ + P )t ) (AF + A;))
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eight terms appear. Each term corresponds with a possible process. The term iez/)_+%w+A; acting on |®)
givestransitionswhere A creates a photon, 4t annihilates an electron and ¢+ annihilates a positron. Only
termswith the correct number of particlesin theinitial and final state contributeto amatrix element (® ;|5|®;).
Further the factorsin H;,; can create and thereafter annihilate particles. the virtual particles

The expressions for S (") contain time-ordered products of normal products. This can be written as a sum of
normal products. The appearing operators describe the minimal changes necessary to change the initial state
into the final state. The effects of the virtual particles are described by the (anti)commutator functions. Some
time-ordened products are:

T{e@e@)} = N{®@)2(y)}+3A"@—y)
T{va@bs)} = N{val@ds()} - 155 — 1)
T{A@AW)} = N{A0)A, W)} + 10 Dh (@~ )

Here, ST (2) = (7,0, — M)AF (z), D¥ (z) = A¥(2)],,—0 and

—;/e Bk ifze>0

(271’)‘3 w,;
AF(z) =
1 e—ik:ﬂ 3 .

Theterm LAF(z — y) is called the contraction of ®(x) and ®(y), and is the expectation value of the time-

ordered product in the vacuum state. Wick’s theorem gives an expression for the time-ordened product of

an arbitrary number of field operators. The graphical representation of these processes are called Feynman
diagrams In the x-representation each diagram describes a number of processes. The contraction functions
can also be written as:

—2i etk —2i iy — M
AF () = lim d4k and S¥(z) = lim —— / i L g
(x) —0 (2m)4 / k2 +m2 — S (z) = Eli% (2m)* € p2 + M2 —je p

In the expressions for S(?) this givesriseto terms §(p + k — p’ — k’). This means that energy and momentum
is conserved. However, virtual particles do not obey the relation between energy and momentum.

15.10 Divergencesand renormalization

It turns out that higher orders contribute infinite terms because only the sum p + & of the four-momentum of
the virtual particles is fixed. An integration over one of them becomes cc. In the z-representation this can
be understood because the product of two functions containing 5-like singularitiesis not well defined. Thisis
solved by discounting al divergent diagramsin arenormalization of e and M. It is assumed that an electron, if
there would not be an electromagnetical field, would have amass M ( and a charge e unequal to the observed
mass M and charge e. In the Hamilton and Lagrange density of the free electron-positron field appears M .
So this gives, with M = My + AM:

Lo—p(@) = —9(@) (30 + Mo)¥(x) = —(@) (1,0 + M)¥(x) + AM(2))(x)
and Hine = ieN (Y10 Ay) — ideN (Y A,).

15.11 Classification of elementary particles

Elementary particles can be categorized as follows:
1. Hadrons: these exist of quarks and can be categorized in:

|. Baryons:. these exist of 3 quarks or 3 antiquarks.
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I1. Mesons: these exist of one quark and one antiquark.

2. Leptons: €F, u*, 7%, ve, vy, Ve, Ve, Uy, U
3. Fidd quanta: v, W*, Z°, gluons, gravitons (?).
4. Higgs particle: ¢.

An overview of particles and antiparticlesis given in the following table:

[ Paticle [ spin(m)B L T T3 S C B* chage(e) mo(MeV) | antipart. ||
u 2 /3 0 12 12 0 0 O +2/3 5 a
d 2 3 0 12 -1/2 0 0 O —-1/3 9 d
S 2 /3 0 O 0 -1 0 O -1/3 175 s
C V2 143 0 O 0 0 1 ©O +2/3 1350 c
b 172 U3 0 0 0 0 0 -1 -1/3 4500 b
t 2 143 0 O 0 0O 0 O +2/3 173000 t
e 2 0 1 O 0 0 0 O -1 0.511 et
wo 2 0 1 O 0 0O 0 O -1 105.658 ut
T~ 2 0 1 O 0 0O 0 O -1 1777.1 Tt
Ve 2 0 1 0 0 0 0 O 0 0(?) 7
vy, 2 0 1 0 0 0O 0 O 0 0(?) v,
vy 2 0 1 0 0 0O 0 O 0 0(?) v,
~ 1 0 0 0 0 0 0 O 0 0 5
gluon 1 0 0 0 0 0 0 O© 0 0| gluon
W+ 1 0 0 O 0 0 0 O +1 80220 | W~
z 1 0 0 O 0 0 0 O 0 91187 z
graviton 2 0 0 o 0 0O 0 O 0 0 | graviton
Higgs 0 0 0 0 0 0 0 O 0 125600 | Higgs

Here B isthe baryon number and L the lepton number. It isfound that there are three different lepton numbers,
one for e, 1 and 7, which are separately conserved. T is the isospin, with T'5 the projection of the isospin on
the third axis, C the charmness, S the strangeness and B* the bottomness. The anti particles have quantum
numbers with the opposite sign except for the total isospin T. The composition of (anti)quarks of the hadrons
is given in the following table, together with their massin MeV in their ground state:

70 | 1V2(ua+tdd) 1349764 || J¥ | cc 30968 ¥+ | dds 1197436
nt ud 139.56995 || T bb  9460.37 =0 uss 13149
T da 13956995 || pt | uud 93827231 | Z° | wss 13149
KO sd 497.672 p~ | tud 93827231 || =~ | dss 132132
KO ds 497.672 n® | udd 93956563 || =* | dss 1321.32
K+ us 493677 m° | add 93956563 || Q- | sss 167245
K- sa 493.677 A | uds 1115684 Ot | ss§ 167245
Dt cd 1869.4 A | uds 1115684 Af | udc 22851
D~ de 1869.4 ¥t | uus 1189.37 A% | aTmu 12320
DO cu 1864.6 Y- | wus 1189.37 A%t | uuu 12320
DO uc 1864.6 »0 | uds 119255 At | uud 12320
Ft s 1969.0 »0 | mds 119255 A° | udd 12320
F- < 1969.0 ¥~ | dds 1197.436 A~ | ddd 12320

Each quark can exist in two spin states. So mesons are bosons with spin 0 or 1 in their ground state, while
baryons are fermions with spin % or % There exist excited states with higher internal L. Neutrino’s have a
helicity of —% while antineutrino’s have only + % as possible value.

The quantum numbers are subject to conservation laws. These can be derived from symmetries in the La
grange density: continuous symmetries give rise to additive conservation laws, discrete symmetries result in
multiplicative conservation laws.

Geometrical conservation lavese invariant under L orentz transformations and the CPT-operation. These are:
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1. Mass/energy because the laws of nature are invariant for translationsin time.
2. Momentum because the laws of nature are invariant for translations in space.
3. Angular momentum because the laws of nature are invariant for rotations.

Dynamical conservation lawae invariant under the CPT-operation. These are;

1. Electrical charge because the Maxwell equations are invariant under gauge transformations.
Colour chargeis conserved.

w N

Isospin because QCD isinvariant for rotationsin T-space.

e

Baryon number and lepton number are conserved but not under a possible SU(5) symmetry of the laws
of nature.

o

Quarkstype is only conserved under the colour interaction.
6. Parity is conserved except for weak interactions.

The elementary particles can be classified into three families:

leptons | quarks | antileptons | antiquarks
1st generation e d et d
Ve u Ve u
2nd generation |  u~ s ut B
Vy (o v, C
3rd generation T b rt b
vy t U, t

Quarks exist in three colours but because they are confinedthese colours cannot be seen directly. The color
force does not decrease with distance. The potential energy will become high enough to create a quark-
antiquark pair when it istried to disoin an (anti)quark from a hadron. Thiswill result in two hadrons and not
in free quarks.

15.12 P and CP-violation

It is found that the weak interaction violates P-symmetry, and even CP-symmetry is not conserved. Some
processes which violate P symmetry but conserve the combination CP are:

1. p-decay: p= — e~ 4 v, + .. Left-handed electrons appear more than 1000x as much as right-handed
ones.

2. (3-decay of spin-polarized ®°Co: °Co —° Ni + e~ + .. More electrons with aspin parallel to the Co
than with aspin antiparallel are created: (parallel —antiparallel)/(total)=20%.

3. There is no connection with the neutrino: the decay of the A particle through: A — p* 4+ 7~ and
A — 1 4 70 has al'so these properties.

The CP-symmetry was found to be violated by the decay of neutral Kaons. These are the lowest possible states
with a s-quark so they can decay only weakly. Thefollowing holds: C|K ©) = 5|K%) wherer is a phase factor.
Further holds P|K®) = —|K°) because K° and K° have an intrinsic parity of —1. From this follows that K °
and KO are not eigenvalues of CP: CP|K?) = |KO). Thelinear combinations

K?) := $V2(K%) + [K)) and [K9) := $v2(|K) — [K?))
are eigenstates of CP: CP|KY) = +|K?) and CP|K9) = —|K3). A base of K¢ and K9 is practica while
describing weak interactions. For colour interactions abase of K © and K is practical because then the number
u—number T is constant. The expansion postulate must be used for weak decays:

K?) = ((KY[K®) + (K3[K"))
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The probability to find a final state with CP= —1 is 1| (K3|K°)|?, the probability of CP=+1 decay is
1 0110\ |2
3 (KFIK) 2.

Therelation between the mass eigenval ues of the quarks (unaccented) and thefieldsarising in the weak currents

(accented) is (v, ¢/, t') = (u, ¢, t), and:
0 O cosf; sinf; O
1 0 —sinf; cosf; O
0 e 0 0 1

d 1 0 0 1

s = 0 cosfy sinfy 0

v 0 —sinfy cosfy 0
1 0 0 d
0 cosf3 sinfs s
0 —sinf3 cosbs b

01 = ¢ isthe Cabibbo anglesin(6¢) ~ 0.23 4 0.01.

15.13 Thestandard model

When one wantsto make the L agrange density which describesafield invariant for local gauge transformations
from a certain group, one has to perform the transformation
0 D 0 g

Oz, - Dz, o 0x,, h

Ly AJ,
Here the L, are the generators of the gauge group (the “charges’) and the Aﬁ are the gauge fields. g isthe
matching coupling constant. The Lagrange density for a scalar field becomes:

L=—-1(D,®*D"® + M>®*®) — L F, FI¥

and thefield tensorsare given by: F, = 9, A% — 9, A% + gcft AL AT

15.13.1 Theelectroweak theory

The electroweak interaction arises from the necessity to keep the Lagrange density invariant for local gauge
transformations of the group SU(2)®@U(1). Right- and left-handed spin states are treated different because the
weak interaction does not conserve parity. If afifth Dirac matrix is defined by:

0
0
V5=V =
0

_ o O O
o O o
o o = O

the left- and right- handed solutions of the Dirac equation for neutrino’s are given by:

YL =2(1+7)0 and yr=1(1—)¥

It appearsthat neutrino’sare always| eft-handed while antineutrino’sare awaysright-handed. Thehypercharge
Y, for quarksgivenby Y = B+ S + C + B* + T’, isdefined by:

Q=13Y+T;

s0 [Y, T)] = 0. Thegroup U(1)y ®@SU(2) 1 is taken as symmetry group for the el ectroweak interaction because
the generators of this group commute. The multiplets are classified as follows:

€ | ver € | UL O | U | dr
T | 0 3 i 0| O
05 -4 -3]0]0
v -of | 4 |43
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Now, 1 field B,,(z) is connected with gauge group U(1) and 3 gauge fields /Tu(a:) are connected with SU(2).
Thetotal Lagrange density (minusthe fieldterms) for the el ectron-fermion field now becomes:

EO,EW = _(wve,L;E)'yu (au, - i%/_(,u . (%&) - %Z B,u : (_1)> ( QZ;Z:I:L ) -

’
’L/)eR'YH (au, - %i%(_2)3u> weR

Here, %6 arethe generators of 7" and —1 and —2 the generatorsof Y.

15.13.2 Spontaneous symmetry breaking: the Higgs mechanism

All leptons are massless in the equations above. Their mass is probably generated by spontaneous symmetry
breaking Thismeansthat the dynamic equationswhich describe the system have asymmetry which the ground
state does not have. It is assumed that there exists an isospin-doublet of scalar fields ® with electrical charges
+1 and 0 and potential V (®) = —p2®*® + \(®*®)2. Their antiparticles have charges —1 and 0. The extra
termsin £ arising from these fields, Ly = (D, ®)* (D} ®) — V(®), are globally U(1)®SU(2) symmetric.
Hence the state with the lowest energy corresponds with the state @ *(2)®(z) = v = p?/2\ =constant.
The field can be written (were w® and z are Nambu-Gol dstone bosons which can be transformed away, and
me = pV2) as:

() (o s o= )

Because this expectation value # 0 the SU(2) symmetry is broken but the U(1) symmetry is not. When the
gauge fieldsin the resulting Lagrange density are separated one obtains:

Wo o= V24l +id2) |, WiF = V24l - iA2)

94} — g'B, .
Z, = ;Qﬁg’; = Ai cos(Bw) — By, sin(6w)
'A3 +gB ;
A4, = % = Ai sin(fw) + By cos(Ow)
g g
where 6y is called the Weinberg angle For this angle holds: sin?(fw) = 0.255 4+ 0.010. Relations for the
masses of the field quanta can be obtained from the remaining terms. My, = %vg and My = %v\/gQ + g2,

/

T E— cos(fw) = gsin(fw)

/92 + 912
Experimentally it is found that My, = 80.022 4 0.26 GeV/c? and Mz = 91.187 4 0.007 GeV/c?. According
to the weak theory this should be: My, = 83.0 & 0.24 GeV/c? and Mz = 93.8 + 2.0 GeV/c2.

and for the elementary charge holds. e =

15.13.3 Quantumchromodynamics

Coloured particlesinteract because the Lagrange density isinvariant for the transformations of the group SU(3)
of the colour interaction. A distinction can be made between two types of particles:

1. “White" particles: they have no colour charge, the generator T =0.

2. “Coloured” particles: the generators T are 8 3 x 3 matrices. There exist three colours and three anti-
colours.

The Lagrange density for coloured particlesis given by
Loop =Y Uy" Dy + Y WMy ¥, — L FS, FI
k k,l

The gluons remain massless because this Lagrange density does not contain spinless particles. Because |eft-
and right- handed quarks now belong to the same multiplet a mass term can be introduced. This term can be
brought in the form My; = mydg,;.
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15.14 Path integrals

The development in time of a quantum mechanical system can, besides with Schridingers equation, also be
described by a path integral(Feynman):

P t) = /F(x',t',m,t)w(x,t)da:

inwhich F(z', ¢, z,t) is the amplitude of probability to find asystemontime¢’ in 2’ if it wasin z ontime?.

e F(' t' z,t) = /exp (is[x]) d[z)
o h

where S[z] is an action-integral: S[z| = [ L(x,,t)dt. The notation d[z] means that the integral has to be

taken over al possible paths [z]:
/d[m] = nng;o%]'[ { / dx(tn)}

n
v — 00

in which N is a normalization constant. To each path is assigned a probability amplitude exp(iS/h). The
classical limit can be found by taking S = 0: the average of the exponent vanishes, except where it is
stationary. In quantum fieldtheory, the probability of the transition of a fieldoperator (%, —o0) to @ ' (%, 00)

isgiven by -
F(3/(F, 00), (7, —00)) = /eXp (#) d[®]

with the action-integral
S[®] = /£(<I>, 0,®)d*z

Q

15.15 Unification and quantum gravity

The strength of the forces varies with energy and the reciprocal coupling constants approach each other with
increasing energy. The SU(5) model predicts complete unification of the electromagnetical, weak and colour
forcesat 10'°GeV. It also predicts 12 extra X bosons which couple leptons and quarks and are i.g. responsible
for proton decay, with dominant channel p* — 7% + e*, with an average lifetime of the proton of 103! year.
Thismodel has been experimentally falsified.

Supersymmetric models assume a symmetry between bosons and fermions and predict partners for the cur-
rently known particles with a spin which differs % The supersymmetric SU(5) model predicts unification at
10'6GeV and an average lifetime of the proton of 1032 year. The dominant decay channelsin this theory are
pm — Kt +7,andpt — K° + ut.

Quantum gravity playsonly arole in particle interactions at the Planck dimensions, where A ¢ =~ Rg: mp; =
\/ hC/G =3- 1019 GeV, tp; = h/mp162 = 4/ hG/CS = 10743 sec and rp] = Ctp] & 10735 m.




Chapter 16

Astrophysics

16.1 Determination of distances

The parallax is mostly used to determine distances in nearby space. The parallax is the angular difference
between two measurements of the position of the object from different view-points. If the annual paralax is
given by p, the distance R of the object isgivenby R = a/ sin(p), in which a istheradius of the Earth’s orhit.
The clusterparallaxis used to determine the distance of a group of stars by using their motion w.r.t. afixed
background. The tangential velocity v and the radial velocity v, of the stars along the sky are given by

vy =Vecos(d) , v =Vsin(d) =wR

_5 T T T T T
where 6 is the angle between the star and the point of convergencend R the 4t g
distancein pc. Thisresults, with v, = v, tan(6), in: (1) -3 Type 1
. tan(6 I 2 7
R—%n()i]%—? a1t Type2 |
0 L
wherep isthe parallax in arc seconds. The parallax is then given by X —  RRlyree
0103 1 3 10 30100
4.744 4O,
= —- P (days
P vy tan () (days) —

with 1. de proper motion of the star in ”//yr. A method to determinethe distance of objects which are somewhat
further away, like galaxies and star clusters, uses the period-Brightnessrelation for Cepheids. Thisrelation is
shown in the above figure for different types of stars.

16.2 Brightnessand magnitudes

The brightnesss the total radiated energy per unit of time. Earth receives s, = 1.374 kw/m? from the Sun.
Hence, the brightness of the Sunisgivenby L = 471?sq = 3.82 - 1026 W. It is also given by:

Lo = ATR2 / TF,dv
0

wherer F), isthemonochromaticradiation flux. At the position of an observer thisis« f,,, with f, = (R/7)*F,
if absorptionisignored. If A, isthe fraction of the flux which reaches Earth’s surface, the transmission factor
isgiven by R, and the surface of the detector is given by a2, then the apparent brightness b is given by:

b= 7Ta2/fVA,,RVdV
0

The magnituden is defined by:

= (100)%(7r1,2—m1) = (2.512)"m2~™
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because the human eye perceives lightintensities logaritmical. From this follows that my — m; = 2.5 -1°
log(b1/bz), or: m = —2.5 -19 log(b) + C. The apparent brightness of a star if this star would be at a distance
of 10 pc is called the absolute brightnes®3: B/b = (#/10)2. The absolute magnitude is then given by
M = —2.51%0g(B)+C,or: M = 5+m—5-log(#). When an interstellar absorption of 10 ~*/pcistaken
into account one finds:

M= (m—4-10"%) +5—5-10log(#)

If a detector detects all radiation emitted by a source one would measure the absolute bolometric magnitude
If the bolometric correctionBC' is given by

Energy flux received [ fodv
BC =2.5.10] =25.10] _—
¢ 5 log <Energy flux detected) 5 log ( [ fvA R, dv

holds: M, = My — BC where My, isthe visual magnitude. Further holds

L
My, =—2.5-log (L—> +4.72
©

16.3 Radiation and stellar atmospheres

The radiation energy passing through a surface dA is dE = I,(0, ) cos(8)dvdQdAdt, where I, is the
monochromatical intensitfWvm—2sr—'Hz~']. When there is no absorption the quantity I, is independent
of the distance to the source. Planck’s law holds for a black body:

The radiation transport through alayer can then be written as:

dI,
ds

= _IVK’V + jl/
Here, j, is the coefficient of emissioand «,, the coefficient of absorptian| ds is the thickness of the layer.

The optical thickness:, of thelayer isgivenby 7, = [ k,ds. Thelayer isoptically thinif 7, < 1, the layer
isopticaly thick if 7, > 1. For astellar atmospherein LTE holds: j, = ., B, (T). Then also holds:

I(s)=1,0e"™ +B,(T)(1—-e"™)

16.4 Composition and evolution of stars

The structure of a star is described by the following equations:

d]\iﬂ(r) = dmo(r)r?
dptr) __GM(r)e(r)
dr 'r2
LCE:) = Amo(r)e(r)r?
(%@) = —% 57572 % , (Eddington), or
rad
(%ff)) = :]C((:)) VT_ld];(:) , (convective energy transport)

Further, for stars of the solar type, the composing plasma can be described as an ideal gas:

o(r)kT(r)

p(r) = i
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where 1 is the average molecular mass, usually well approximated by:

o 1
nmg  2X +3YV +17

/’l‘:

where X is the mass fraction of H, Y the mass fraction of He and Z the mass fraction of the other elements.
Further holds:

k(r) = f(o(r), T(r),composition) and e(r) = g(o(r), T(r), composition)

Convection will occur when the star meets the Schwartzschild criterium:

ary  _ (4T
dr conv dr rad

Otherwise the energy transfer takes place by radiation. For stars in quasi-hydrostatic equilibrium hold the
approximationsr = 1R, M(r) = 4 M, dM/dr = M/R, k ~ p ande ~ oT* (this last assumption is only
valid for stars on the main sequence). For pp-chainsholds i ~ 5 and for the CNO chains holds ;. = 12 tot 18.
It can be derived that L ~ M 3: the mass-brightness relatiorFurther holds: L ~ R* ~ T%;. Thisresultsin
the equation for the main sequence in the Hertzsprung-Russel diagram:

90g(L) = 8 1% log(Teq) + constant

16.5 Energy production in stars

The net reaction from which most stars gain their energy is: 4'H — “He + 2et + 2v, + 7.
This reaction produces 26.72 MeV. Two reaction chains are responsible for this reaction. The slowest, speed-
limiting reaction is shown in boldface. The energy between bracketsisthe energy carried away by the neutrino.

1. The proton-proton chain can be divided into two subchains:
H 4+ pt — 2D + et + v, andthen 2D + p — 3He + 7.
I. ppl: *He +3 He — 2p* + “He. Thereis 26.21 + (0.51) MeV released.
[I. pp2: 3He + o — "Be + 7
i. "Be+e~ — "Li+ v, then "Li + p* — 24He + . 25.92 + (0.80) MeV.
ii. 'Be+p" — 5B +,then®B + ™ — 2He + 7. 19.5+ (7.2) MeV.
Both ”Be chains become more important with raising 7'.

2. The CNO cycle. The first chain releases 25.03 + (1.69) MeV, the second 24.74 + (1.98) MeV. The
reactions are shown below.

— N
Vs — BN4ptsa+'2C 5N 4 pt — 160 4~
150 4ot — BN+ 1zc+p+l_)13N_,_7 160_’_p+l_) TR |
14N+p+T—> 150 4 ~ 13N—>13é+e++y 17F—>17Cl)+e++z/
N - 130+erl_>14N_’_,y 17O+p+l—>a+14N

— 7
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The V-operator

In cartesian coordinates (x, y, z) holds:

ﬁz%é‘ﬁ%é‘wi@ , gradf = Vf—af*ﬁ%*ﬁ%é;
divda=V. 3= %aer%Jr%Z , V2f = %—ngyé-f—%
rot&'zﬁx&':(({gzj—%> +(?§—%)€y+(%—%)€z
In cylinder coordinates (r, ¢, z) holds:
ﬁzgéwiai ga+§ez : gradf—a—i“w%%éqﬁ%éz

. Oap ar 10a, Oa, V2 _82f 19f 10%f 0%f
o e e T VT e T eap T

rot = (1902 9% o | (Dar Da) . %+a_«:_18ar ¢
S \rode 0z )" oz or ) ¥ or r Op

In spherical coordinates (r, 8, ¢) holds:

vV = 0 r+12 9+.Liélp
or r 00 rsinf dp
gaaf = e 100a 4 s,
diva = i;f 2? %%4_”6;91194_7*511119%
rotd = (é%—’—rt?n@_rsiln@%_ﬁ)g <TS§D0%CZ_%L:_GT@> v

Oag a9 10a,)\ _
<8r LT ae>
5‘2f+25‘f 1 0%f 1 of 1 0% f

Vif = —= == = —
or2  ror 12002  r2tanf 00  r2sin 0 02

General orthonormal curvelinear coordinates (u, v, w) can be obtained from cartesian coordinates by thetrans-
formation & = Z(u, v, w). The unit vectors are then given by:

s Loz . 108 103
uihlau’ vihg&)’ wihg(‘)w
where the factors h; set the normto 1. Then holds:
1 8f_, 1 8fq 1 0f
gradf - hl au €u + — hg 81) h_ga_we“)
.S 1 0
le a = h1h2h3 (8'(}; (h2h3au) (thla’U) + _(h’lh’Qaw))
5 1 8(h3aw hQGU (hlau) 8(h3aw) N
ota = hahs ( v ) h3h1 ( ow  Ou et
1 8(]12&1, _ hlau
hlhg ou

., 18 hghgaf hshy Of hahs Of
V= ok [8u I ou +8v e ov) T 0w \ s ow
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The Sl units
Basic units Derived unitswith special names
[ Quantity | Unit Sym. | [ Quantity | Unit Sym. Derivation ||
Length metre m Frequency hertz Hz st
Mass kilogram kg Force newton N kg -m s 2
Time second s Pressure pascd Pa  N-m2
Therm. temp. kelvin K Energy joule J N-m
Electr. current ampere A Power watt w J.s 1L
Luminousintens. | candela cd Charge coulomb C A-s
Amount of subst. | mol mol El. Potential volt \Y; W.A-1L
) El. Capacitance | farad F c-v-!
Extraunits El. Resistance ohm Q VAl
Plane angle radian rad El. Conductance | siemens S AV
solid angle sterradian s Mag. flux weber Wb V-s
Mag. flux density | tesla T Wb - m—2
Inductance henry H Wb-A-!
Luminous flux lumen Im cd - sr
[lluminance lux Ix Im - m—2
Activity bequerdd Bq s—!
Absorbed dose gray Gy J kgt
Doseequivalent | sievert Sv J-kg!
Prefixes
yotta Y 10%* |giga G 10° [deci d 107! |pico p 1072
zetta Z 102! {mega M 10° |centi ¢ 1072 | femto f 10715
exa E 10® | kilo k 102 |milli m 1073 |ato a 107'®
peta P 10 | hecto h 102 | micro p  107% | zepto z 102
te)a T 102 |deca da 10 |[nano n 107° |yocto y 10~




