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Chapter 1

Basics

1.1 Goniometric functions

For the goniometric ratios for a point p on the unit circle holds:
cos(¢p) =z, , sin(¢) =y, , tan(¢)=
sin?(z) 4 cos?(z) = 1 and cos~2(z) = 1 + tan?(z).

cos(a £ b) = cos(a) cos(b) F sin(a) sin(b) , sin(a £+ b) = sin(a) cos(b) £ cos(a) sin(b)
tan(a) + tan(b)

tan(a £b) = T @ tan(b)
The sum formulas are:
sin(p) +sin(g) = 2sin(z3(p+ q)) cos(3(p — q))
sin(p) —sin(q) = 2cos(5(p +q))sin(3(p — q))
cos(p) +cos(q) = 2cos(5(p+q))cos(5(p — q))
cos(p) —cos(q) = —2sin(5(p+q))sin(5(p — q))
From these equations can be derived that
2cos?(z) =1+ cos(2z) ,  2sin®(z) =1 — cos(2z)
sin(m — ) =sin(z) ,  cos(m —x) = — cos(z)
sin(3m — x) =cos(z) ,  cos(3m — x) = sin(z)

Conclusions from equalities:

sin(x) = sin(a) = x=ax2krorz=(r—a)*t2kr, k€N
cos(z) = cos(a) = x=a=+2kmor x = —a+2knr

tan(z) = tan(a) = r=axkrand x # g +km

The following relations exist between the inverse goniometric functions:

1
arctan(z) = arcsin (;El> = arccos () , sin(arccos(x)) = /1 — 22
e+

2 +1
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1.2 Hyperbolic functions
The hyperbolic functions are defined by:

e? —e” 7 e’ +e 7 sinh(x)
2 )

sinh(z) =

From this follows that cosh?(z) — sinh?(z) = 1. Further holds:

arsinh(z) = In|x + Va2 4+ 1| , arcosh(z) = arsinh(y/ 22 — 1)

1.3 Calculus
The derivative of a function is defined as:

& _ Sk~ @)

dr h—0 h

Derivatives obey the following algebraic rules:

xT

dx — xd
Y

y2

For the derivative of the inverse function f™(y), defined by f™(f(z)) = x, holds at point P = (z, f(z)):

(75, (%),

Chain rule: if f = f(g(x)), then holds

g df dg

de d79 dx
Further, for the derivatives of products of functions holds:

n

o™ =3" <Z> k) g0

k=0

For the primitive function F(x) holds: F'(z) = f(x). An overview of derivatives and primitives is:
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y=f(z) | dy/dz = f'(z) [ f(z)dx
az™ anz"™ ! a(n+ 1)~ tgntl
1/z —z72 In |z|
a 0 azx
a: a® h;(a) a®/ lil(a)
@log(x) (zln(a))~! (zln(z) — z)/1n(a)
In(z) 1/x zln(z) —
sin(x) cos(x) — cos(z)
cos(x) —sin(z) sin(x)
tan(z) cos2(x) —In | cos(z)|
sin™!(xz) —sin"%(z) cos(x) In | tan(3z)|
sinh(x) cosh(x) cosh(x)
cosh(x) sinh(x) sinh(x)
arcsin(z) 1/v/1— a2 xarcsin(z) + v1 — z2
arccos(z) —1/v1 —a? xarccos(x) — V1 — a2
arctan(z) (1+a2%)71! zarctan(z) — £ In(1 + 2?)
(a4 222 | —z(a+2?)73/? X In |z + Va + 22|
(a® — 2?)~t 2z(a? + 2%)7?2 %ln|(a+x)/(a—x)|

1 \23/2
The curvature p of a curve is given by: p = (—’_(yﬂ)|)
Y
f(x)

/!
The theorem of De ’1 Hépital: if f(a) =0 and g(a) = 0, then is lim “—— = lim ()
v—a g(z)  a—a g'(z)

1.4 Limits

s T —1 t z
T L e S .1 ) I iy oSV S (1+§) — o
z—0 x z—0 x z—0 €T k—0 T—00 x
InP 1 P
lmzeIn(m) =0 , lim @ _o g BEFD i T g s ] > 1.
z]0 z—oo0 ® z—0 T z—o00 q¥
lim (al/“” - 1) =1In(a) , lim aresin(z) _ 1, lim Jz=1
x—0 r—0 x Tr—00

1.5 Complex numbers and quaternions

1.5.1 Complex numbers

The complex number z = a + bi with ¢ and b € IR.

a is the real part, b the imaginary part of z.
|z| = Va2 + b2. By definition holds: i?> = —1. Every complex number can be written as z = |z| exp(iyp),
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with tan(p) = b/a. The complex conjugate of z is defined as Z = z* := a — bi. Further holds:

(a+bi)(c+di) = (ac—0bd)+i(ad+ bc)
(a+bi)+ (c+di) = a+c+i(b+d)
a+bi  (ac+ bd)+i(bc — ad)
c+di 2+ d?
Goniometric functions can be written as complex exponents:
. 1, i
sin(xz) = Z(e” —e™')
cos(z) = %(e“c +e7)

From this follows that cos(iz) = cosh(z) and sin(iz) = isinh(x). Further follows from this that
et = cos(z) £ isin(z), so e* # 0Vz. Also the theorem of De Moivre follows from this:
(cos(p) + isin(p))™ = cos(np) + isin(nep).

Products and quotients of complex numbers can be written as:

2122 = |z - [2(cos(pr + @2) +isin(er + p2))
z z .
= = Lll(um(@l—-¢2)+-2$n(¢1—-@2»
zZ9 |22|
The following can be derived:
|21 + 22| < |z + [z2] |21 — 22| 2| |21] = |22] |

And from z = rexp(if) follows: In(z) = In(r) + i, In(z) = In(2) £ 2nmi.

1.5.2 Quaternions

Quaternions are defined as: z = a + bi + ¢j + dk, with a,b,c,d € IR and i?> = j2 = k*> = —1. The products
of i, j, k with each other are given by ij = —ji =k, jk = —kj =i and ki = —ik = j.

1.6 Geometry
1.6.1 Triangles

The sine rule is:
a b c

sinfa) _ sin(B)  sin(9)
Here, « is the angle opposite to a, 3 is opposite to b and v opposite to c. The cosine rule is: a? =
b% + ¢ — 2bccos(a). For each triangle holds: o + 8+ v = 180°.

Further holds:

s(a+p8) a+bd

tan(3(a—3)) a—b
The surface of a triangle is given by Labsin(y) = 2ah, = \/s(s — a)(s — b)(s — ¢) with h, the perpendicular
onaands=3i(a+b+c).
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1.6.2 Curves

Cycloid: if a circle with radius a rolls along a straight line, the trajectory of a point on this circle has the
following parameter equation:

x=a(t+sin(t)) , y=a(l+ cos(t))

Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point
on the small circle has the following parameter equation:

x = asin (Mt> + (R+a)sin(t) , y=acos (R:at> + (R + a) cos(t)
a

Hypocycloid: if a small circle with radius a rolls inside a big circle with radius R, the trajectory of a
point on the small circle has the following parameter equation:

z = asin <R; at) +(R—a)sin(t) , y=—acos <Ra_at> + (R — a) cos(t)

A hypocycloid with a = R is called a cardioid. It has the following parameterequation in polar coordinates:
r = 2a[l — cos(p)].

1.7 Vectors

The inner product is defined by: @-b = Z aib; = |@| - |b]| cos(p)
i

where ¢ is the angle between @ and b. The external product is in IR? defined by:

ayb, — a,b, €r €y €
axb= a,by — azb, =|a; ay a
azby — ayby by b, b,

Further holds: |@ x b| = |@| - |b|sin(p), and @ x (b x &) = (@-&)b— (@-b)C.

1.8 Series

1.8.1 Expansion

The Binomium of Newton is:

here " ._ni!
v k)T Kk

n n
By subtracting the series > 7* and 7 }_ 7* one finds:
k=0 k=0

1—pntl

n
k
ZOT 1-r
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- 1
and for |r| < 1 this gives the geometric series: Zrk = .
1—r
k=0
N
The arithmetic series is given by: Z(a +nV)=a(N+1)+iN(N+1)V.
n=0

The expansion of a function around the point a is given by the Taylor series:

(2 - a)? (= )"

5@+t = [T (0) + R

f(@) = fla)+ (z —a)f'(a) +
where the remainder is given by:
Ra(h) = (1= 6)" 2 £ 01

and is subject to:

mhntl Mpntt
a1 = )= o
From this one can deduce that -
1—-x)*= Z (2):5"
n=0

One can derive that:

=1 s =1 T =1 76
2T XwTw 2w
21 N A R N G O K
Yo =inn+1)@2n+1), Y =1 > —— =In(2)
k=1 n=1 n=1
SIS U SN N S s I
—4n? -1 27 L (2n-1)2 87 Z(2n-1F 967 ‘= (2n-1)° 32

1.8.2 Convergence and divergence of series

If > |uy| converges, > w, also converges.
n n

If lim wu, # 0 then > u, is divergent.
n—oo n

An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent
(Leibniz).

If fpoo f(z)dz < oo, then 3 f,, is convergent.
n
If w, > 0 Vn then is Y u, convergent if > In(u, + 1) is convergent.

Cn+1

1
If w,, = c,a™ the radius of convergence p of > u, is given by: — = lim {/|c,| = lim
n p n—oo n—0o0 n
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o0
The series Z - is convergent if p > 1 and divergent if p < 1.
n

n=1

If: lim 2 — p, than the following is true: if p > 0 than > w, and ) v, are both divergent or both

n—00 Uy

convergent, if p = 0 holds: if )" v, is convergent, than ) u, is also convergent.
n n

If L is defined by: L = lim 3/|n,|, or by: L = lim Un+l
n—oo

n—oo n

, then is Y u, divergent if L > 1 and
n

convergent if L < 1.

1.8.3 Convergence and divergence of functions
f(z) is continuous in z = a only if the upper - and lower limit are equal: li%n fz) = 1ifn f(z). This is
Trla rla

written as: f(a”) = f(a™).

If f(x) is continuous in a and: li%n fl(z) = 1iIn f(x), than f(x) is differentiable in z = a.

We define: ||f|lw = sup(|f(z)| | € W), and lim f,(x) = f(x). Than holds: {f,} is uniform convergent
it Tim [|f, — /]| = 0, or: Y(= > 0)3(N)¥(n > N)[lfu — f]| < &.

Weierstrass’ test: if > ||uy,||w is convergent, than " w, is uniform convergent.

- b
We define S(z) = Z up(x) and F(y) = /f(x, y)dzx := F. Than it can be proved that:
n=N @

H Theorem \ For \ Demands on W \ Than holds on W H
TOWS fn continuous, f is continuous
{fn} uniform convergent
C series S(z) uniform convergent, S is continuous
U, continuous
integral | f is continuous F' is continuous
rOwWS fn can be integrated, fn can be integrated,
{fn} uniform convergent [ fx)dz = lim [ fdx
n—o0
I series S(x) is uniform convergent, S can be integrated, [ Sdz =3 [u,dx
u, can be integrated
integral | f is continuous [ Fdy = [ f(z,y)dzdy
rows {fa} €C7L {f2} unif.conv — ¢ | f' = ¢(z)
D series un, €C71 Sy, conv; Youl, we. | S'(z) = ul ()
integral | 0f/Jy continuous Fy,= [ fy(z,y)dx
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1.9 Products and quotients

For a,b, c,d € IR holds:

The distributive property: (a + b)(c+ d) = ac + ad + bc + bd

The associative property: a(bc) = b(ac) = c(ab) and a(b+ ¢) = ab+ ac
The commutative property: a +b =06+ a, ab = ba.

Further holds:

n
a2" — b2n _ a2n—1 4+ a2n—2b + a2n—3b2 4+t b2n—1 7 a2n+1 — b2n+1 _ Za2n—kb2/€
atb a+b =
ad + b3

(axb)(a®>+ab+b0?)=a®+b®, (a+b)(a—b)=a®+b, = a® F ba + b?

a+b

1.10 Logarithms

Definition: “log(z) = b < a® = x. For logarithms with base e one writes In(x).

Rules: log(z™) = nlog(z), log(a) + log(b) = log(ab), log(a) — log(b) = log(a/b).

1.11 Polynomials

Equations of the type
n
Z akxk =0
k=0

have n roots which may be equal to each other. Each polynomial p(z) of order n > 1 has at least one root
in €. If all a; € IR holds: when x = p with p € € a root, than p* is also a root. Polynomials up to and
including order 4 have a general analytical solution, for polynomials with order > 5 there does not exist a
general analytical solution.

For a,b,c € IR and a # 0 holds: the 2nd order equation ax? + bx + ¢ = 0 has the general solution:
v —b+ Vb2 — dac
N 2a

For a,b,c,d € IR and a # 0 holds: the 3rd order equation ax® + bx? + cx +d = 0 has the general analytical
solution:

B 3ac — b? b
neo= 942K 3a
oy — 2% — _K+3ac—b2_b+i\/§< 3ac—b2>
3 2 18a2K  3a 2 9a2K

. 1/3
9abe — 27da? — 2b3 N V3 V4ac® — 2b? — 18abed + 27a2d2 + 4db3> /

ith K =
W ( 5443 1842
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1.12 Primes

A primeis a number € IN that can only be divided by itself and 1. There are an infinite number of primes.

Proof: suppose that the collection of primes P would be finite, than construct the number ¢ =1+ [] p,
peP

than holds ¢ = 1(p) and so @ cannot be written as a product of primes from P. This is a contradiction.

If 7r(x) is the number of primes < z, than holds:

lim m(z) =1 and lim ;r(m) =1
w5 7/ In(z) T
5 In(t)

For each N > 2 there is a prime between N and 2N.
The numbers F), := 2% 4+ 1 with k € IN are called Fermat numbers. Many Fermat numbers are prime.

The numbers M, := 2¥—1 are called Mersenne numbers. They occur when one searches for perfect numbers,
which are numbers n € IN which are the sum of their different dividers, for example 6 = 14+24-3. There are
23 Mersenne numbers for k& < 12000 which are prime: for & € {2,3,5,7,13,17,19, 31, 61,89, 107,127, 521,
607,1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213}.

To check if a given number n is prime one can use a sieve method. The first known sieve method was
developed by Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don’t prove
that a number is prime but give a large probability.

1. Take the first 4 primes: b= {2,3,5,7},
2. Take w(b) = b"~! mod n, for each b,

3. If w =1 for each b, then n is probably prime. For each other value of w, n is certainly not prime.



Chapter 2

Probability and statistics

2.1 Combinations

The number of possible combinations of k elements from n elements is given by

(1) =

The number of permutations of p from n is given by

TR (Z)

The number of different ways to classify n; elements in i groups, when the total number of elements is IV,
is

N!
Hni!

2.2 Probability theory

The probability P(A) that an event A occurs is defined by:

where n(A) is the number of events when A occurs and n(U) the total number of events.

The probability P(—A) that A does not occur is: P(—A) =1 — P(A). The probability P(A U B) that A
and B both occur is given by: P(AU B) = P(A) + P(B) — P(AN B). If A and B are independent, than
holds: P(AN B) = P(A) - P(B).

The probability P(A|B) that A occurs, given the fact that B occurs, is:

P(AN B)

P(AIB) = =55

10
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2.3 Statistics

2.3.1 General

The average or mean value (z) of a collection of values is: (z) = Y. x;/n. The standard deviation o in
the distribution of x is given by:

n
o2
n—1

When samples are being used the sample variance s is given by s? =

The covariance o, of x and y is given by::

(zi — (@) (i — (¥))

n—1

o

i=1

ny ==

The correlation coefficient r4, of  and y than becomes: ryy = 04y /0,0,.

The standard deviation in a variable f(x,y) resulting from errors in  and y is:

af \*. (of \° ofof
2 _ —J _J _J ~J

2.3.2 Distributions

1. The Binomial distribution is the distribution describing a sampling with replacement. The
probability for success is p. The probability P for k successes in n trials is then given by:

Ple =) = (Z)pm —pnt

The standard deviation is given by o, = y/np(1l — p) and the expectation value is € = np.

2. The Hypergeometric distribution is the distribution describing a sampling without replacement
in which the order is irrelevant. The probability for k£ successes in a trial with A possible successes
and B possible failures is then given by:

<A> ( . )

k)\n—k

Ple=k) =7
n

The expectation value is given by e = nA/(A + B).

3. The Poisson distribution is a limiting case of the binomial distribution when p — 0, n — oo and
also np = X is constant.
Ae™A

P(x) "
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This distribution is normalized to Z P(z)=1.
=0

. The Normal distribution is a limiting case of the binomial distribution for continuous variables:

Pla) = - 127T exp (_; <o: U<:17>>2>

. The Uniform distribution occurs when a random number z is taken from the set a < x < b and

is given by: .
P<x):b—a it a<az<b

P(z) =0 in all other cases

(b—a)?
(z) = 2(b—a) and 0” = T
. The Gamma distribution is given by:
l.aflefa:/ﬁ
Pz)=— if 0<y<
{ P s

with @ > 0 and 3 > 0. The distribution has the following properties: (x) = a3, 0% = a/3?.

. The Beta distribution is given by:

20711 — 2)f1
Bla, B)

P(z) =0 everywhere else

P(x) = if 0<z<1

« 9 af

:Oz-i-ﬁ’a. = (a+ﬂ)2(a—|—ﬂ+1)'

and has the following properties: (x)

For P(x?) holds: a = V/2 and 8 = 2.

. The Weibull distribution is given by:

P(x):gx“_le_wa if 0<z<ocoAaAB>0

g
P(z) =0 1in all other cases

The average is (z) = 8Y/°T((a + 1)a)

. For a two-dimensional distribution holds:

Pl(CCl) :/P(.Tl,l‘z)dl‘g N PQ(Q?Q) = /P(S(Jl,l‘g)dl'l

with

cloor2)) = [[ gt a2 Plar, wa)dindes =32 3 g P

1 X2
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2.4 Regression analyses

When there exists a relation between the quantities x and y of the form y = axz + b and there is a measured
set x; with related y;, the following relation holds for a and b with & = (z1, 22, ...,2,) and €= (1,1, ..., 1):

J—al —bee< & é>"+

From this follows that the inner products are 0:

with (Z,%) =Y 22, (Z,7) = Y. ziyi, (£,€) = x; and (€,€) = n. a and b follow from this.
i i i
A similar method works for higher order polynomial fits: for a second order fit holds:

§—ax? —bi —c€e< x2,7,8 >

with 22 = (22,...,22).

A n

The correlation coefficient r is a measure for the quality of a fit. In case of linear regression it is given by:

ny xy—3 Ty y
Ve — () (n ) y? - (X y)?)




Chapter 3

Calculus

3.1 Integrals

3.1.1 Arithmetic rules

The primitive function F(x) of f(z) obeys the rule F'(z) = f(x). With F(x) the primitive of f(x) holds
for the definite integral

If u = f(z) holds:
b f(b)

[otr@nir@) = [ g
a f(a)
Partial integration: with F' and G the primitives of f and g holds:

[ 161 9@t = @16t - [ 6L

A derivative can be brought under the intergral sign (see section for the required conditions):

z=h(y)
_ 0f(z,y) dg(y) dh(y)
- / o] - | gran = st G2 + i) 52

z=g(y) z=g(y)

3.1.2 Arc lengts, surfaces and volumes

The arc length ¢ of a curve y(x) is given by:

/ (&
dx
The arc length ¢ of a parameter curve F'(Z
= / Fds = / (t)|dt

14



Chapter 3: Calculus 15

with

/ (7, f)ds = / (&, £(t))dt = / (v1dz + vady + vsdz)

The surface A of a solid of revolution is:

dean [t (2

The volume V of a solid of revolution is:
V=nm / f2(x)dx

3.1.3 Separation of quotients

Every rational function P(x)/Q(z) where P and @ are polynomials can be written as a linear combination
of functions of the type (z — a)* with k € Z, and of functions of the type

__prta
(= aP+ 2y

with b > 0 and n € IN. So:

Recurrent relation: for n # 0 holds:

/ dz _ 1 x n 2n —1 / dx
(x2 4+ 1)+ 2n (22 + 1)m 2n (z2+1)»

3.1.4 Special functions

Elliptic functions

Elliptic functions can be written as a power series as follows:

—  (2n—1)!
_ k2qi — 2n ;2
1 — k2sin’(z) = Ez 52 — 1)k sin“"(x)
1 — (2n — 1!
=1+ E ( n2 ”) k2" sin" ()
1 — k2sin’(x) e OO

with n!l = n(n — 2)IL
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The Gamma function
The gamma function I'(y) is defined by:

oo

I(y) = /efmxyfldsc

0

One can derive that T'(y + 1) = yI'(y) = y!. This is a way to define faculties for non-integers. Further one
can derive that

L(n+3)= 2—\/:?(211 — 1! and TM(y) = /e_”“'avy_1 In"(z)dz
0

The Beta function

The betafunction 3(p, q) is defined by:

1
Bp.a)= [ "1 —2) da
/

with p and ¢ > 0. The beta and gamma functions are related by the following equation:

_T(pl(q)
B(p,q) = W

The Delta function

The delta function é(x) is an infinitely thin peak function with surface 1. It can be defined by:

§(z) = lim P(e,z) with P(e,z) =

e—0 —  when |z| <¢

{ 0 for |z| >¢
2e

Some properties are:
oo

/ Sx)dw =1 | 7F(a:)5(a:)dx — F(0)

3.1.5 Goniometric integrals

When solving goniometric integrals it can be useful to change variables. The following holds if one defines
tan(3x) := t:

2dt (@) 1—1¢2 () 2t
r = ——= COS(T) = ——— SIr) = ——=
1427 1427 1+¢t2
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Each integral of the type [ R(z,Vax? + bx + ¢)dz can be converted into one of the types that were treated
in section After this conversion one can substitute in the integrals of the type:

of vVa+l=t+z
cos(
/R(x, V1—a22)dz z =sin(p) ,dx = cos(p)dy of V1—x2=1—tx
1 .
/R(m, vaz—=1)dz x = yda = sin(p) dp of Va2 —1=z—t

cos(p) cos?(p)

/R(x, 224+ Dde : x=tan(p) ,dx =

These definite integrals are easily solved:

w/2
, (n—D(m —1)N /2 when m and n are both even
n m — .
/ cos™ (z) sin™ (z)dz = (m +n)!! 1 in all other cases
0

Some important integrals are:

/ 2 / x2dx / 3da: B 7L4
T 1242 (e* +1)2 15
0 —o0 0

3.2 Functions with more variables

3.2.1 Derivatives

The partial derivative with respect to x of a function f(x,y) is defined by:
<3f> ~ Jim f(@o + h, yo) — (2o, Y0)

ox h—0 h

The directional derivative in the direction of « is defined by:

% _ lr%l f(zo + rcos(a), yo +rr sin(@)) — f(zo,50) _ (Vf, (sin @, cos ) — vlj;lﬁ

When one changes to coordinates f(z(u,v),y(u,v)) holds:
of af ox L of af 8y

ou Oz ou y du
If 2(¢t) and y(t) depend only on one parameter ¢ holds:
of _ Ofdx L of of dy

ot Oz dt Oy dt
The total differential df of a function of 3 variables is given by:

9 4o W gy 1 9L g

i = Oz oy 0z
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So
d 0 of d of d
f_f+fy+f2

de  O0xr  Oydr Ozdx
The tangent in point &y at the surface f(z,y) = 0 is given by the equation f,(Zo)(z—2x0)+ fy(Zo)(y—yo) = 0.
The tangent plane in &y is given by: fy(Zo)(x — z0) + fy(Zo)(y — yo) = z — f(Zo).

3.2.2 Taylor series

A function of two variables can be expanded as follows in a Taylor series:
1 [ o or
f(@o+h,yo + k) = pzz(:) ol <h(‘3x1’ + k(’?gﬂ’) f(zo,y0) + R(n)

with R(n) the residual error and
hﬁ + kﬁ f( b) = i p hmkp—mm
OxP OyP &0 = m dxmPyr—m

3.2.3 Extrema

When f is continuous on a compact boundary V there exists a global maximum and a global minumum
for f on this boundary. A boundary is called compact if it is limited and closed.

Possible extrema of f(x,y) on a boundary V € IR? are:
1. Points on V where f(z,y) is not differentiable,
2. Points where V f=0,

3. If the boundary V is given by ¢(z,y) = 0, than all points where 6f(x,y) + )\ﬁgo(a:,y) = 0 are
possible for extrema. This is the multiplicator method of Lagrange, A is called a multiplicator.

The same as in IR? holds in IR? when the area to be searched is constrained by a compact V, and V is
defined by ¢1(z,y,2) = 0 and pa(z,y,z) = 0 for extrema of f(x,y, z) for points (1) and (2). Point (3) is
rewritten as follows: possible extrema are points where V f(x,y, z) + A1 V1 (2, y, 2) + AaVea(z,y,2) = 0.

3.2.4 The V-operator

In cartesian coordinates (z,y, z) holds:

ﬁ — g"+£"+2“
T ayey 92"
s of.  of,

gradf = axem—l—ayey—kazez
diva = day | Oay | Oa,

8x+8y+8z
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dd — Oa, B Oay \ n oa, B
e = Oy Oz Cx 0z
82f o*f | O*f
2 —— PR PR
Vi = et e T o

In cylindrical coordinates (r, ¢, z) holds:

Oa,\ _, . Oay
oz ) v Ox

v = 25412 -+4§1€
o e 8@ 0z °
_of e 1of s of .
gradf = oty 9% e 9.
.. _ 0Oa, a, 10a,  Oa,
diva = or r Op 0z
curld = 18&2—% e, + Bar_(f?az €, + %
N r Op 0z " 0z or ¢ or
iy _ PF 107 10 o
02 ror  r20g? 022
In spherical coordinates (r, 6, ¢) holds:
ﬁ = 2" + 12" + Li"
T o T 9% T rsing Jp Co
_ 9f,  1of & 1 of
gradf = ar T t r90°° ’I’Sin@%ew
oL Oa, 2a, 1 Oag ag 1 Oa,
diva = or + r r 80 ' rtand + rsinf Oy
o 1 5‘a¢ ap 1 8a9 5 1 5‘ar
curld = (r 00 +rtan9 rsinf 8g0>er+<rsin9 Op
dag ag 1 da, \ _
( or + 96 )
Gy _ Bl oM 1 or 1 oy
o 0r2  ror 12002 r2tanf 00 r2sin? 0 Op?

day
dy

)gz

% _ 104,

r o rop

Oa, Gy
ar> ot

General orthonormal curvilinear coordinates (u,v,w) can be derived from cartesian coordinates by the
transformation Z = Z(u, v, w). The unit vectors are given by:

where the terms h; give normalization to length 1. The differential operators are than given by:

gradf =

diva =

S 1 o%

eu—a%,

iﬁ* + — 1af“
hlc')u" ha

1
hihahs

S 1 o%

GU—E%,

101,

6'1)
hs ow

~ 1 oz

ew—E%

0 0 0
0 (au(hzh?,au) + %(hshwv) + aw(hﬂlzaw))
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o 1 8(h3aw hgav 1 (hlau) B(hgaw) 5
cwld = hghg ( ov B ) hghl ( ow B ou ev +
1 a(hgav _ hlau
hlhz 3u

2, 1 0 hghsaf hshy Of hihs Of
v f a h1h2h3 8u hl 8u +8 hg 811 +8 h3 611)

Some properties of the V-operator are:

div(¢?) = ¢divd + grade - ¥ curl(¢@) = peurld + (gradg) x ¢ curl gradé = 0
div(@ x ¥) = ¥+ (curlid) — @ - (curld)  curl curld = grad dive — V2@ div curld =0
div grad¢ = V2¢ V2§ = (V2v1, V2ug, V203)

Here, ¥ is an arbitrary vectorfield and ¢ an arbitrary scalar field.

3.2.5 Integral theorems

Some important integral theorems are:
Gauss: ﬂ (v-7)d*A = ///(divﬁ)d‘gv
Stokes for a scalar field: j{(¢ - €;)ds = //(ﬁ x grad¢)d? A

Stokes for a vector field: ]{(17 éy)ds = //(curlﬁ- i)d*A

this gives: ﬂ (curl? - A)d*A =0

Ostrogradsky: ﬂ (7 x 7)d*A = / / / (curlv)d® A
ﬂ (¢ )d*A = ///(grad¢)d3v

Here the orientable surface [[ d*4 is bounded by the Jordan curve s(t).

3.2.6 Multiple integrals
Let A be a closed curve given by f(z,y) = 0, than the surface A inside the curve in IR? is given by

- ff o=

Let the surface A be defined by the function z = f(x,y). The volume V bounded by A and the zy plane

is than given by:
V=[] fedsay
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The volume inside a closed surface defined by z = f(z,y) is given by:

V:///d3V://f(x7y)d;vdy:///dmdydz

3.2.7 Coordinate transformations

The expressions d2A and d*V transform as follows when one changes coordinates to @ = (u,v,w) through
the transformation z(u,v,w):

V:///f(x,y,z)dzdydz:/// f(Z(w)) ? dudvdw
U
In IR? holds:
0T |z,
ot | Yu Yo

Let the surface A be defined by z = F(z,y) = X (u,v). Than the volume bounded by the zy plane and F
is given by:

//f(g?)cﬂA _ // F(#(@)) ‘aaf x %ﬂ dudv = // f @y, F(a,y)\ 1+ 0,F2 + 0, F2dudy
S G G

3.3 Orthogonality of functions

The inner product of two functions f(x) and g(z) on the interval [a, b] is given by:

b

(f.9) = / f(2)g(z)dx

a
or, when using a weight function p(x), by:

b

(f.9) = / p(2) f (2)g(x)da

a

The norm || f|| follows from: || f]|*> = (f, f). A set functions f; is orthonormal if (fi, f;) = d;;.

Each function f(z) can be written as a sum of orthogonal functions:
f@) =Y cigi(x)
=0

and Y ¢ < ||f||?. Let the set g; be orthogonal, than it follows:

fagi

c; =
’ (givgi)
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3.4 Fourier series

Each function can be written as a sum of independent base functions. When one chooses the orthogonal
basis (cos(nz),sin(nz)) we have a Fourier series.

A periodical function f(x) with period 2L can be written as:

f(z)=ao+ i [an cos (?) + b, sin (%)}
n=1

Due to the orthogonality follows for the coefficients:

L . .
ao:ﬁ f®)dt anzz/f(t)cos (TLLWt) dt bn:z/f(t)sin (nL7Tt> i@t

A Fourier series can also be written as a sum of complex exponents:

flz) = Z Cnem:C

n=-—oo
with

1T ,
Cn = %/f(ac)e_”””dac

The Fourier transform of a function f(z) gives the transformed function f(w):

P 1 r —iwT
f(w)=m£ fla)e o de

The inverse transformation is given by:

N |

[Fat) + fa)] =%27T [ Ferera

where f(2%) and f(27) are defined by the lower - and upper limit:

fa™) =lim f() . f(a*)=lim f(x)

zTa zla

For continuous functions is 3 [f(z™) + f(z7)] = f().
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Differential equations

4.1 Linear differential equations

4.1.1 First order linear DE

The general solution of a linear differential equation is given by ya = yg + yp, where yg is the solution of
the homogeneous equation and yp is a particular solution.

A first order differential equation is given by: y'(z) + a(x)y(x) = b(x). Its homogeneous equation is
y'(x) + a(z)y(x) = 0.

The solution of the homogeneous equation is given by
yu = kexp (/ a(x)dx)

Substitution of exp(Az) in the homogeneous equation leads to the characteristic equation A+ a =10
=>A=—a.

Suppose that a(z) = a =constant.

Suppose b(x) = aexp(ux). Than one can distinguish two cases:
1. X\ # u: a particular solution is: yp = exp(ux)

2. X = p: a particular solution is: yp = xexp(ux)

When a DE is solved by variation of parameters one writes: yp(x) = yu(z)f(z), and than one solves f(x)
from this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is given by: y”(z) + ay’(z) + by(x) =
¢(x). If e(x) = ¢ =constant there exists a particular solution yp = ¢/b.

Substitution of y = exp(Az) leads to the characteristic equation A% + a\ + b = 0.

There are now 2 possibilities:
1. A1 # Ao than yg = aexp(Ai1z) + Sexp(Aaz).

2. A1 = A2 = A: than yg = (a + Bz) exp(Ax).

23
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If ¢(x) = p(x) exp(ux) where p(x) is a polynomial there are 3 possibilities:
LA, A # e yp = q(z) exp(px).
2. A=, Ao # et yp = zq(z) exp(pz).
3. A1 =X = yp = 22q(x) exp(ux).

where ¢(z) is a polynomial of the same order as p(z).

When: 3" (z) + w?y(z) = wf(z) and y(0) = 3’ (0) = 0 follows: y(x) = [ f(z)sin(w(x — t))dt.

O—x5

4.1.3 The Wronskian

We start with the LDE y”(z) + p(2)y’(z) + ¢(x)y(x) = 0 and the two initial conditions y(xg) = Ky and
y'(x0) = Ky. When p(x) and ¢(z) are continuous on the open interval I there exists a unique solution
y(z) on this interval.

The general solution can than be written as y(z) = ¢1y1 () +co2ya2(x) and y; and y, are linear independent.
These are also all solutions of the LDE.

The Wronskian is defined by:

= Y1ys — Y2

Yy Y2
Wiy, =
(yl y2) ‘ yi y/2

y1 and yo are linear independent if and only if on the interval I when Jxy € I so that holds:
W (y1(z0), y2(wo)) = 0.
4.1.4 Power series substitution

When a series y = Y ana™ is substituted in the LDE with constant coefficients y” (x) + py'(z) + qy(z) = 0
this leads to:

Z [n(n — l)anx"_2 + pnapz™ !+ qanx"] =0

n

Setting coefficients for equal powers of = equal gives:
(n+2)(n+1)apt2 +p(n + apt1 + gap, =0

This gives a general relation between the coefficients. Special cases are n = 0,1, 2.

4.2 Some special cases

4.2.1 Frobenius’ method
Given the LDE

d?y(x) N b(x) dy(x) N ()

dx? r dx 2
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with b(x) and ¢(z) analytical at 2 = 0. This LDE has at least one solution of the form
yi(x) = 2™ Z apx” with ¢ =1,2
n=0
with 7 real or complex and chosen so that ag # 0. When one expands b(z) and c(x) as b(z) = by + byz +
box? + ... and c(z) = ¢y + c1x + cox? + ..., it follows for 7:
r2 4 (bg—1)r+co=0

There are now 3 possibilities:

1. 71 = ro: than y(z) = y1(z) ln |z| + y2(z).

2. 1y —ry € IN: than y(z) = ky1(x) In |z| + y2(x).

3. 11— 1y # Z: than y(z) = y1(2) + y2(x).

4.2.2 FEuler

Given the LDE 2y () (@)
d7y(x dy(x
2
¥ a2 tax dx
Substitution of y(z) = 2" gives an equation for r: 72 + (a — 1)r + b = 0. From this one gets two solutions
r1 and ro. There are now 2 possibilities:

+by(z) =0

1. 71 # ro: than y(z) = Cra™ + Cyz™.

2. ry =71y =r: than y(r) = (C1In(z) + Co)z".

4.2.3 Legendre’s DE
Given the LDE

1) )

The solutions of this equation are given by y(z) = aP,(z) + by2(x) where the Legendre polynomials P(x)

are defined by:
dn (1 _ x2)n
Pol®) = G (m)

+n(n—1Dy(z) =0

For these holds: ||P,|? =2/(2n + 1).

4.2.4 The associated Legendre equation

This equation follows from the #-dependent part of the wave equation V2W¥ = 0 by substitution of
& = cos(6). Than follows:

1-% (-5 oa- ) - mP) =0
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Regular solutions exists only if C' =1[(l + 1). They are of the form:

\mlpO(g) (1 _52)|m\/2 dlml+l

m m d
p"l(g) = (1 - ¢/ agml ~ 21 dglml+

— 1)l

For |m| > [ is Pl‘ml(g) = 0. Some properties of P (£) zijn:

1 oo

2 1
/on(f)Plg(f)df = m&l' .Y RO = iosie
=0

-1

This polynomial can be written as:

/ (4 &2 —1cos(f

0

m»a

4.2.5 Solutions for Bessel’s equation

Given the LDE
Py(z) | dy(z)
22
dx? T dx

also called Bessel’s equation, and the Bessel functions of the first kind

+ (2% = v*)y(z) =0

o 0 (71)mx2m
Jow) == Z 22mtvmIT (v + m 4+ 1)

m=0

for v := n € IN this becomes:

o (71)mx2m
Jn(z) =2 mz::O 22m+nml(n + m)!
When v # Z the solution is given by y(z) = aJ,(x) + bJ_,(z). But because for n € Z holds:
n(z) = (=1)"J,(z), this does not apply to integers. The general solution of Bessel’s equation is given

by y(x) = aJ,(x) + bY,(x), where Y, are the Bessel functions of the second kind:

Ju(x) COS(VT‘-) — J_V(x) and Yn(l‘) = lim Yu(x)

sin(v) von

Y., (z) =

The equation 2%y”(x) + zy'(z) — (2% + v?*)y(z) = 0 has the modified Bessel functions of the first kind
I,(x) =iV J,(iz) as solution, and also solutions K, = 7[I_,(x) — I, (x)]/[2sin(v7)].

Sometimes it can be convenient to write the solutions of Bessel’s equation in terms of the Hankel functions

HV(2) = Jo(2) + iY(z) , HP(2) = Ju(2) — iV, (2)
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4.2.6 Properties of Bessel functions
Bessel functions are orthogonal with respect to the weight function p(x) = x.

J_n(z) = (=1)"J,(x). The Neumann functions N,,(x) are definied as:

1 I — o
Np(z) = %Jm(x) In(z) + e nE,O o
The following holds: lirr%) Im () = 2™, lirr%J Npp(x) =27™ for m # 0, lirrb No(z) = In(x).
xr— xr— r—
fim H(r) = O i () =[S cos(r - a) |, Jim Ja(e) =\ sine )
im =—— im J,(z) =4/ —cos(zx —z,) , lim J_,(z)=4/—sin(z—z,
lim H(r 7 ;o lim (2 —cos(z—a Jim. x —sin(z —z

with z,, = iw(n+ 3).

Int1(z) + Jn-1(z) = ?Jn(x) s Ing1(@) = Jnoa(z) = 2

The following integral relations hold:

™

3

2m
Im () = % /exp[i(gc sin(f) — m#)]df = 1 /cos(x sin(f) — m#)do

o

4.2.7 Laguerre’s equation

Given the LDE

Solutions of this equation are the Laguerre polynomials L, (z):

L) = S o) = 32 S (1)

m=0

4.2.8 The associated Laguerre equation

Given the LDE

fmm+(m+1_0dmm+<n+%m+w>mwzo

dx? x dx T

Solutions of this equation are the associated Laguerre polynomials L (x):

m _ (_1)mn] —x,. . —m dr—m —x_n
Lii(@) = (n—m)!e T g (e v )
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4.2.9 Hermite

The differential equations of Hermite are:

d*He,, dHe,,
+2nH, () =0 and en(®) _ s (@) + nHe,(x) =

d*H,, () dH,,(x)
-2 dx? dx

dx? dx

Solutions of these equations are the Hermite polynomials, given by:

H,(z) = (—=1)" exp <;x2>

d"(exp(—%xz))

dan = 2"/?He, (2V/2)

d" (exp(—2?))

He, (z) = (—1)"(exp (z*) = 27"/2H,,(z/V2)

dzm
4.2.10 Chebyshev
The LDE
d*U, () AU, (x)
_ 2 n _ n —_
(1—2%) U2 3z T +n(n+2)U,(z) =0
has solutions of the form
sin[(n + 1) arccos(z)]
Up(z) =

(@) Vi-a?
The LDE

2

(1- xQ)d Tn(z) _ xdTn(m) + 12T, (x) =0

dx? dx

has solutions T,,(x) = cos(n arccos(x)).

4.2.11 Weber
The LDE W)/ (z) + (n + 5 — $2*)W,(z) = 0 has solutions: W, (z) = He,(z) exp(—1z?).

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are:

"= a\/y? + b2 y = bsinh(a(z — x¢))
"= a\/y? - b2 y = bcosh(a(z — z0))
a\/b? —y? y = beos(a(x — xq))

Y

Y

y/

y; = a(y? + v? y = btan(a(x — xo))
v

)

)
y? — b2) y = beoth(a(z — x))
) y = btanh(a(z — x0))

"—q b—y _ b
W\ YTIT Cbexp(—ax)
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4.4 Sturm-Liouville equations

Sturm-Liouville equations are second order LDE’s of the form:

-Qi@@ﬂ§?)+«wmm=Amwwu>

The boundary conditions are chosen so that the operator

=2 (se)g ) + oo

is Hermitean. The normalization function m(z) must satisfy

b
/ﬁummwwm:%

a
When y;(x) and yo(x) are two linear independent solutions one can write the Wronskian in this form:

C

W(y17y2) = ‘ yll y2 - p(f]}')

(T

where C' is constant. By changing to another dependent variable u(x), given by: u(z) = y(x)/p(x), the
LDE transforms into the normal form:

d*u(x) (e =0 wi 2 = 1 (p'(z) 2 _1p"(z)  q(z) — Am(z)
T o) =0 i 1t = 3 () - TS - 10

4
If I(x) > 0, than y”/y < 0 and the solution has an oscillatory behaviour, if I(xz) < 0, than 3" /y > 0 and
the solution has an exponential behaviour.

4.5 Linear partial differential equations

4.5.1 General

The normal derivative is defined by:

ou -
67’]7, - (vua n)

A frequently used solution method for PDE’s is separation of variables: one assumes that the solution
can be written as u(x,t) = X (x)T(¢t). When this is substituted two ordinary DE’s for X (z) and T'(t) are
obtained.

4.5.2 Special cases
The wave equation

The wave equation in 1 dimension is given by
0%u 5 0%u
i e
ot? ox?
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When the initial conditions u(z,0) = ¢(x) and du(z,0)/0t = ¥(x) apply, the general solution is given by:

x4ct
u(z,t) = % [o(x + ct) + p(x — ct)] + % / U (&)d¢

The diffusion equation

The diffusion equation is:

Its solutions can be written in terms of the propagators P(x,«’,t). These have the property that
P(z,2',0) = §(xr — 2’). In 1 dimension it reads:

1 —(z — :r:')2>
P(z,2' t) = ex
(@20 = 5 e &P ( 4Dt
In 3 dimensions it reads: ,
| —(F— &)
P ') = — —w=r )
(@.2%.t) = S D eXp( 4Dt )

With initial condition u(x,0) = f(x) the solution is:

u(:c,t):/f(:c')P(x,x/,t)dx’
g

The solution of the equation
ou 0%u
——-D— = t
5~ Paz = 9@1)
is given by

u(x, t) = /dt'/dx’g(x'7t’)P(x,x',t—t’)

The equation of Helmholtz

The equation of Helmholtz is obtained by substitution of u(Z,t) = v(¥)exp(iwt) in the wave equation.
This gives for v:
V20(Z,w) + k?v(Z,w) =0

This gives as solutions for v:

1. In cartesian coordinates: substitution of v = Aexp(ik - Z ) gives:

o(F) = / / A(k)e®7

with the integrals over k2 = k2.
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2. In polar coordinates:
Z i (k1) + By Ny (kr))e™#
m=0

3. In spherical coordinates:

0 l
v(r,0,0) = > [Aun i1 (kr) +BlmJ_l_§(kr)}Y(\9/’;¢)
=0 m=—1

4.5.3 Potential theory and Green’s theorem

Subject of the potential theory are the Poisson equation V?u = — f(Z') where f is a given function, and the
Laplace equation V?u = 0. The solutions of these can often be interpreted as a potential. The solutions of
Laplace’s equation are called harmonic functions.

When a vector field ¢ is given by ¥ = grady holds:

b

/ (5,7)ds = o(B) — (@)

a
In this case there exist functions ¢ and @ so that ¥ = grade + curlw.

The field lines of the field ¥(Z) follow from:

The first theorem of Green is:

///uV%—i— (Vu, Vv) d3 # —dz

The second theorem of Green is:

///uv%—w? |43V = ﬂ( Ov )dZA

A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function
with a normal derivative of 0 on the boundary of an area is constant within that area.

The Dirichlet problem is:
Viu(@)=—f(&) , T€R , u(@)=g(&) foral &ecS.
It has a unique solution.

The Neumann problem is:

= h(Z) for all Ze€ S.
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The solution is unique except for a constant. The solution exists if:

—/4/ f(f)d3v—5§§ h(Z)d*A

A fundamental solution of the Laplace equation satisfies:
V2u(#) = —6(F)
This has in 2 dimensions in polar coordinates the following solution:

u(r) = h;(;)

This has in 3 dimensions in spherical coordinates the following solution:

1
) =
The equation Vv = —§(& — E) has the solution
1
(@)= ———
17— €]

After substituting this in Green’s 2nd theorem and applying the sieve property of the § function one can
derive Green’s 3rd theorem:

- 1 Vu o 1 10u 0 (1 2
€= [[[ T 15 v (7)) 4
R S

The Green function G(Z, _') is defined by: V2G = 75(575), and on boundary S holds G(Z,£) = 0. Than
G can be written as:

. 1 .
G(Z,§)=———= +9(@,¢
#.6) = g H9EO)
Than ¢(Z, { ) is a solution of Dirichlet’s problem. The solution of Poisson’s equation V2u = — f(Z) when

on the boundary S holds: w(Z) = g(¥), is:

u€) = [[[ c@drr@av - §f o
R S

8
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Linear algebra

5.1 Vector spaces

G is a group for the operation ® if:
1. Va,be G =a®be G: agroup is closed.
2. (a®b)®c=a® (b®c): agroup is associative.
3. de € G so that a ® e = e ® a = a: there exists a unit element.
4. Ya € Gda € G so that a ® @ = e: each element has an inverse.

If
5. a®b=>bRa

the group is called Abelian or commutative. Vector spaces fgrm an Abglian group for addition and multi-
plication: 1-d@ =@, Mud) = (A\u)d@, (A + p)(@+ b) =A@ + Ao+ pd + pb.

W is a linear subspace if Vi, Wy € W holds: A\ + pws € W.
W is an invariant subspace of V for the operator A if Vad € W holds: Aw € W.

5.2 Basis

For an orthogonal basis holds: (&, €;) = ¢d;;. For an orthonormal basis holds: (€&;, €;) = d;;.

The set vectors {@,} is linear independent if:

Z)\l&'l =0 < vz)\z =0
The set {d@,} is a basis if it is 1. independent and 2. V =< dy, a3, ... >= > \id;.

5.3 Matrix calculus

5.3.1 Basic operations

For the matrix multiplication of matrices A = a;; and B = by; holds with " the row index and k the column
index:
Ank.preks — ¢mke - (AB); =Y aigb;
k

33
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where " is the number of rows and * the number of columns.

The transpose of A is defined by: a]; = a;;. For this holds (AB)" = BT AT and (A")~! = (A™")". For the
inverse matriz holds: (A-B)~! = B~!. A~!. The inverse matrix A~! has the property that A- A=t = II
and can be found by diagonalization: (A;;|II) ~ (H|A;j1).

b\ 1 d b
d Cad—bc\ —¢ a

The determinant function D = det(A) is defined by:

The inverse of a 2 x 2 matrix is:

o 2

det(A) = D(Ei*l, 5:*2, ceey Ei*n)

For the determinant det(A) of a matrix A holds: det(AB) = det(A) - det(B). Een 2 x 2 matrix has

determinant:
a b
det(c d)—ad—cb

The derivative of a matrix is a matrix with the derivatives of the coefficients:

dA dCLij dAB - dA dB
T TR TR

The derivative of the determinant is given by:

ddet(A di da dGr
w D i 76n)+D(&13%775:n)++D(C—il”%)

@ - Plg

When the rows of a matrix are considered as vectors the row rank of a matrix is the number of independent
vectors in this set. Similar for the column rank. The row rank equals the column rank for each matrix.

Let A:V — ‘:/ be the complex extension of the real linear operator A : V' — V in a finite dimensional V.
Then A and A have the same caracteristic equation.

When A;; € IR and v + iv3 is an eigenvector of A at eigenvalue A = A1 4 ¢A2, than holds:
1. AT; = M1 — Aoty and Ay = Ao + A1 o.
2. U * =1 — iV is an eigenvalue at \* = \; — i)\o.
3. The linear span < 7,72 > is an invariant subspace of A.

If k,, are the columns of A, than the transformed space of A is given by:

R(A) =< A&y, ..., A, >=<ky,....ky >

If the columns &, of a n x m matrix A are independent, than the nullspace N'(A) = {0}.
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5.3.2 Matrix equations

We start with the equation
A-#=b

and b # 0. If det(A) = 0 the only solution is 0. If det(A) # 0 there exists exactly one solution # 0.

The equation
A7=0

has exactly one solution # 0 if det(A4) = 0, and if det(A) # 0 the solution is 0.
Cramer’s rule for the solution of systems of linear equations is: let the system be written as
A-Z=b=a 121+ ..+ Tuwn=b

then z; is given by:

D(al, sy @1, b7 Aj41, ...,an)

det(A)

l’j:

5.4 Linear transformations

A transformation A is linear if: A(AT + B7) = NAZ + SAY.

Some common linear transformations are:

H Transformation type \ Equation H
Projection on the line < @ > P(#)=(a,z)a/(a,a)
Projection on the plane (@,Z) =0 Q) =2— P(¥)
Mirror image in the line < @ > S(Z)=2P(%)- 2
Mirror image in the plane (@,7) =0 T(Z)=2Q(Z) —¥=%—2P(Z)

For a projection holds: & — Py (¥) L Py (%) and Py (%) € W.
If for a transformation A holds: (AZ,¥) = (¥, Ay) = (A%, Ay), than A is a projection.
Let A: W — W define a linear transformation; we define:

o If S is a subset of V: A(S) := {AZ¥ € W|Z € S}

o If T is a subset of W: A= (T) :={Z € V|A(Z) € T}

Than A(S) is a linear subspace of W and the inverse transformation A< (T) is a linear subspace of V.
From this follows that A(V') is the image space of A, notation: R(A). A~(0) = Ey is a linear subspace of
V', the null space of A, notation: N'(A). Then the following holds:

dim(N(A)) + dim(R(A)) = dim(V)
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5.5 Plane and line

The equation of a line that contains the points @ and bis:

The equation of a plane is:
T=aG+ANb—a)+pul@—a) =ad+ \FL + pi
When this is a plane in IR?, the normal vector to this plane is given by:
. 71X T
nwv ===
|T1 X 7‘2|

A line can also be described by the points for which the line equation ¢: (@, Z) + b = 0 holds, and for a
plane V: (@, %) + k = 0. The normal vector to V is than: @/|dl.

The distance d between 2 points p and ¢ is given by d(p,¢) = || — ¢

In IR? holds: The distance of a point § to the line (@, %) + b= 0 is

~—

|(@,p) + b]

al

d(p,l) =
Similarly in IR?: The distance of a point 7 to the plane (@,7) +k = 0 is

. a,p)+k
g, v) = [ @ZIEH

dl

This can be generalized for IR™ and €™ (theorem from Hesse).

5.6 Coordinate transformations

The linear transformation A from IK™ — IK™ is given by (IK = IR of C):
g — Am an

where a column of A is the image of a base vector in the original.

The matrix A? transforms a vector given w.r.t. a basis o into a vector w.r.t. a basis 3. It is given by:

AL = (B(Ad), ..., B(Ady))
where (&) is the representation of the vector Z w.r.t. basis (.

The transformation matriz Sg transforms vectors from coordinate system « into coordinate system 3:

Sg = ng = (B(a@r), ..., B(dn))
and S2 - Sg=1
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The matrix of a transformation A is than given by:

Al = (Ale, .., Ale,)
For the transformation of matrix operators to another coordinate system holds: A9 = Sf\AgSg , AS =
SgALSS and (AB)) = A}BS.

Further is A2 = S8 A2 Af = AQSE. A vector is transformed via X, = SBX .

a“ o

5.7 Eigen values

The eigenvalue equation

AZ = \Z
with eigenvalues A can be solved with (A — AII) = 0 = det(A — A[) = 0. The eigenvalues follow from this
characteristic equation. The following is true: det(A) =[] A; and Tr(A) = > au =D A

The eigen values A; are independent of the chosen basis. The matrix of A in a basis of eigenvectors, with
S the transformation matrix to this basis, S = (E),, ..., Ex, ), is given by:

A =S"tAS = diag(\1, ..., An)

When 0 is an eigen value of A than Ey(A) = N(A).
When A is an eigen value of A holds: A% = \"Z.

5.8 Transformation types

Isometric transformations

A transformation is isometric when: ||AZ|| = ||Z||. This implies that the eigen values of an isometric
transformation are given by A = exp(ip) = |A| = 1. Than also holds: (A%, Ay) = (Z,¥).

When W is an invariant subspace if the isometric transformation A with dim(A4) < oo, than also W+ is
an invariante subspace.

Orthogonal transformations

A transformation A is orthogonal if A is isometric and the inverse A~ exists. For an orthogonal trans-
formation O holds OTO = II, so: OT = O~!. If A and B are orthogonal, than AB and A~! are also
orthogonal.

Let A:V — V be orthogonal with dim(V) < co. Than A is:
Direct orthogonal if det(A) = +1. A describes a rotation. A rotation in IR? through angle ¢ is given

. (o) —smie)
o [ cos(e) —sinp

sin(p)  cos(p)
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So the rotation angle ¢ is determined by Tr(A) = 2cos(p) with 0 < ¢ < 7. Let A; and Ay be the roots of
the characteristic equation, than also holds: (A1) = R(A2) = cos(p), and A\ = exp(ip), A2 = exp(—iyp).

In IR? holds: A\; = 1, Ay = A} = exp(ip). A rotation over Ej, is given by the matrix
1 0 0

0 cos(p) —sin(p)
0 sin(p) cos(p)

Mirrored orthogonal if det(A) = —1. Vectors from E_; are mirrored by A w.r.t. the invariant subspace
E+,. A mirroring in IR? in < (cos(3¢),sin(3¢)) > is given by:

o < cos(p)  sin(p) )

sin(p) — cos(p)

Mirrored orthogonal transformations in IR? are rotational mirrorings: rotations of axis < @; > through
angle ¢ and mirror plane < @ >*. The matrix of such a transformation is given by:

-1 0 0

0 cos(p) —sin(p)
0 sin(p) cos(p)

For all orthogonal transformations O in IR? holds that O(%) x O(7) = O(% x 7).

IR™ (n < 00) can be decomposed in invariant subspaces with dimension 1 or 2 for each orthogonal trans-
formation.

Unitary transformations

Let V' be a complex space on which an inner product is defined. Than a linear transformation U is unitary
if U is isometric and its inverse transformation A~ exists. A n x n matrix is unitary if UFU = II. Tt has
determinant |det(U)| = 1. Each isometric transformation in a finite-dimensional complex vector space is
unitary.

Theorem: for a n X n matrix A the following statements are equivalent:
1. A is unitary,
2. The columns of A are an orthonormal set,

3. The rows of A are an orthonormal set.

Symmetric transformations

A transformation A on IR™ is symmetric if (AZ,y§) = (Z,A¥). A matrix A € IM™*™ is symmetric
if A= AT. A linear operator is only symmetric if its matrix w.r.t. an arbitrary basis is symmetric.
All eigenvalues of a symmetric transformation belong to IR. The different eigenvectors are mutually
perpendicular. If A is symmetric, than A7 = A = A" on an orthogonal basis.

For each matrix B € IM™*"™ holds: BT B is symmetric.
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Hermitian transformations

A transformation H : V — V with V = €™ is Hermitian if (HZ,y) = (&, Hy ). The Hermitian conjugated
transformation A of A is: [a;;] = [a};]. An alternative notation is: AH = Af. The inner product of two
vectors ¥ and ¢ can now be written in the form: (%,7) = #H¢.

If the transformations A and B are Hermitian, than their product AB is Hermitian if:
[A,B] = AB— BA=0. [A, B] is called the commutator of A and B.

The eigenvalues of a Hermitian transformation belong to IR.

A matrix representation can be coupled with a Hermitian operator L. W.r.t. a basis €; it is given by
Linn = (€, LEy).

Normal transformations

For each linear transformation A in a complex vector space V there exists exactly one linear transformation
B so that (AZ,y) = (&, By). This B is called the adjungated transformation of A. Notation: B = A*.
The following holds: (CD)* = D*C*. A* = A~! if A is unitary and A* = A if A is Hermitian.

Definition: the linear transformation A is normal in a complex vector space V if A*A = AA*. This is
only the case if for its matrix S w.r.t. an orthonormal basis holds: ATA = AAt.

If A is normal holds:
1. For all vectors # € V' and a normal transformation A holds:
(AZ, AY) = (A" AZ,§) = (AA™Z,§) = (A*Z, A™Y)
2. # is an eigenvector of A if and only if 7 is an eigenvector of A*.
3. Eigenvectors of A for different eigenvalues are mutually perpendicular.
4. If E) if an eigenspace from A than the orthogonal complement Ej- is an invariant subspace of A.

Let the different roots of the characteristic equation of A be §; with multiplicities n;. Than the dimension
of each eigenspace V; equals n;. These eigenspaces are mutually perpendicular and each vector & € V' can
be written in exactly one way as

F=) 4 with &€V
i
This can also be written as: Z; = P;& where P; is a projection on V;. This leads to the spectral mapping
theorem: let A be a normal transformation in a complex vector space V' with dim(V') = n. Than:
1. There exist projection transformations P;, 1 < ¢ < p, with the properties
L] P,LPJ:OfOI'Ziléj7
o PL+..+P, =1,
o dimP; (V) + ... +dimP,(V) =n
and complex numbers aj, ..., so that A = a1 P1 + ... + apPp.
2. If A is unitary than holds |a;| =1 Vi.
3. If A is Hermitian than o; € IR Vi.
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Complete systems of commuting Hermitian transformations

Consider m Hermitian linear transformations A; in a n dimensional complex inner product space V.
Assume they mutually commute.

Lemma: if F) is the eigenspace for eigenvalue A from A;, than F) is an invariant subspace of all trans-
formations A;. This means that if ¥ € F,, than A;7 € E,.

Theorem. Consider m commuting Hermitian matrices A;. Than there exists a unitary matrix U so that
all matrices UTA,;U are diagonal. The columns of U are the common eigenvectors of all matrices A;.

If all eigenvalues of a Hermitian linear transformation in a n-dimensional complex vector space differ, than
the normalized eigenvector is known except for a phase factor exp(ic).

Definition: a commuting set Hermitian transformations is called complete if for each set of two com-
mon eigenvectors ¥, U; there exists a transformation Ay so that ¥; and ¥; are eigenvectors with different
eigenvalues of Ay.

Usually a commuting set is taken as small as possible. In quantum physics one speaks of commuting
observables. The required number of commuting observables equals the number of quantum numbers
required to characterize a state.

5.9 Homogeneous coordinates

Homogeneous coordinates are used if one wants to combine both rotations and translations in one ma-
trix transformation. An extra coordinate is introduced to describe the non-linearities. Homogeneous
coordinates are derived from cartesian coordinates as follows:

. wx X

_ | wy 1Y

Y T wz |l Z
z

cart w w

hom hom

sox = X/w, y =Y/w and z = Z/w. Transformations in homogeneous coordinates are described by the
following matrices:

1. Translation along vector (Xg, Yy, Zo, wo):

Wo 0 0 X()

o 0 wo 0 Yp
= 0 0 wWo Z()
0 0 0 wo

2. Rotations of the x,y, z axis, resp. through angles «, 3, :

1 0 0 0 cos@ 0 sing O
0 cosa —sina 0 0 1 0 0
Ra(a) = 0 sina cosa O Ry(B) —sin8 0 cosfB O
0 0 0 1 0 0 0 1
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cosy —siny 0 O

sin cos 0 0

o= "0 T 1
0 0 0 1

3. A perspective projection on image plane z = ¢ with the center of projection in the origin. This
transformation has no inverse.

SO O
o o = O
~ = O O
O O O O

5.10 Inner product spaces

A complex inner product on a complex vector space is defined as follows:
1. (@b)=(ba),
2. (@, B1b1 + Babs) = B1(a@,b1) + Ba(@,b2) for all @ by, by € V and By, 32 € C.
3. (@,@)>0forall@eV, (da)=0if and only if @ = 0.
)

Due to (1) holds: (@, @) € IR. The inner product space C™ is the complex vector space on which a complex
inner product is defined by:

(dvg) = Za;‘kbi

i=1
For function spaces holds:
b
= / fr(t)g
For each @ the length ||@]| is defined by: ||@|| = \/(@,@). The following holds: ||@| — ||b]| < ||@+ b <

@ +[|5]], and with ¢ the angle between @ and b holds: (@,b) = ||@| - ||b]| cos(¢).

Let {dy,...,d,} be a set of vectors in an inner product space V. Than the Gramian G of this set is given
by: Gij = (d;,d;). The set of vectors is independent if and only if det(G) = 0.

A set is orthonormal if (d@;,d;) = 6;5. If €, €, ... form an orthonormal row in an infinite dimensional vector
space Bessel’s inequality holds:
oo
2% > E (&, )|
=1

The equal sign holds if and only if lim ||Z, —Z| = 0.

The inner product space £2 is defined in €' by:

0?2 = { (a1,aq,...) | Z|an|2<oo}

A space is called a Hilbert space if it is ¢2 and if also holds: lim |ant1 —an| = 0.
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5.11 The Laplace transformation
The class LT exists of functions for which holds:

1. On each interval [0, A], A > 0 there are no more than a finite number of discontinuities and each
discontinuity has an upper - and lower limit,

2. Jtp € [0,00 > and a, M € IR so that for ¢ > to holds: |f(t)| exp(—at) < M.
Than there exists a Laplace transform for f.

The Laplace transformation is a generalisation of the Fourier transformation. The Laplace transform of a
function f(t) is, with s € C and ¢ > 0:

F(s):/f(t)e*“dt
0

The Laplace transform of the derivative of a function is given by:

£(5®) = =f7700) = sf7(0) — o = 5TLF(0) + 5 F(s)
The operator £ has the following properties:

1. Equal shapes: if @ > 0 than

2. Damping: L (e™® f(t)) = F(s+ a)

3. Translation: If @ > 0 and g is defined by g(t) = f(t —a) if ¢ > a and g(¢t) = 0 for ¢t < a, than holds:
L(g(t)) =e " L(f(1)).

If s € IR than holds R(Af) = L(R(f)) and S(Af) = L(S(f)).

For some often occurring functions holds:

tn

v at _ —n—1
e (s—a)
s—a
e cos(wt) CE T
: w
e sin(wt) CE

5(t—a) exp(—as)
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5.12 The convolution

The convolution integral is defined by:

(f +g)(t) f(u)g(t —u)du
/

The convolution has the following properties:
1. fxg€LT
2. L(f xg) = L(f)-L(g)
3. Distribution: fx(g+h)=f*xg+ fxh
4. Commutative: fxg=gx* f
5. Homogenity: f* (Ag) = A\f*g

If ,C(f) = F1 . Fg, than is f(t) = f1 * fg.

5.13 Systems of linear differential equations

We start with the equation # = AZ. Assume that 7 = vexp(At), than follows: AT = A7. In the 2 x 2 case
holds:

1. )\1 = )\22 than f(t) = Z’l_))l exp()\lt)
2. A1 # Aot than Z(t) = (ut + U) exp(At).

Assume that A = a4+ i is an eigenvalue with eigenvector v, than \* is also an eigenvalue for eigenvector
¥*. Decompose ¥ = i + iw, than the real solutions are

c1[ti cos(Bt) — wsin(Bt)]e™ + co[vcos(Bt) + @ sin(Bt)]e™

There are two solution strategies for the equation I = A7:
1. Let ¥ = Texp(At) = det(A — N\21) = 0.

2. Introduce: & = u and y = v, this leads to & = @ and § = v. This transforms a n-dimensional set of
second order equations into a 2n-dimensional set of first order equations.
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5.14 Quadratic forms
5.14.1 Quadratic forms in IR?

The general equation of a quadratic form is: ¥ AZ + 28T P + S = 0. Here, A is a symmetric matrix. If
A = S71AS = diag(\y, ..., \y) holds: @7 Aw + 2a7 P+ S = 0, so all cross terms are 0. @ = (u,v,w) should
be chosen so that det(S) = +1, to maintain the same orientation as the system (z,y, z).

Starting with the equation
az? + 2bzy + ey’ +dr+ey+ f =0

we have |A| = ac — b?>. An ellipse has |A| > 0, a parabola |A| = 0 and a hyperbole |A| < 0. In polar

coordinates this can be written as: ep

T 1- e cos()
An ellipse has e < 1, a parabola e = 1 and a hyperbola e > 1.

r

5.14.2 Quadratic surfaces in IR?

Rank 3: ) ) )
x Y z
pﬁ +qb7 —|—ch2 =d

e Ellipsoid: p=qg=r=d =1, a,b, c are the lengths of the semi axes.

e Single-bladed hyperboloid: p=q¢=d=1,r = —1.

e Double-bladed hyperboloid: r=d=1,p=q= —1.

e Cone: p=gq=1,r=-1,d=0.
Rank 2:

72 Y2

Ps + 12
Elliptic paraboloid: p=¢q¢=1,r=-1,d =0.

z
+7"§:d

Hyperbolic paraboloid: p=r=—-1,¢g=1,d =0.

Elliptic cylinder: p=g=—-1,7r=d =0.

Hyperbolic cylinder: p=d=1,q=—-1,r =0.
e Pair of planes: p=1,¢=-1,d=0.

Rank 1:
py’ +aqv=d

e Parabolic cylinder: p,q > 0.
e Parallel pair of planes: d >0, ¢ =0, p # 0.
e Double plane: p #0, g =d = 0.
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Complex function theory

6.1 Functions of complex variables

Complex function theory deals with complex functions of a complex variable. Some definitions:
f is analytical on G if f is continuous and differentiable on G.
A Jordan curve is a curve that is closed and singular.

If K is a curve in € with parameter equation z = ¢(t) = z(t) + iy(t), a <t < b, than the length L of K is

given by:
b b
dz\? dy 2
L= — — | dt=

The derivative of f in point z = a is:

dz
dt

b
dt = / 16/(1) dt

If f(z) = u(z,y) + iv(z,y) the derivative is:
_Ou  Ov Ou  0Ov

f'(2)

7%+2%77287y+8y
Setting both results equal yields the equations of Cauchy-Riemann:
ou  Ov Ju v

dx 9y ' dy oz

These equations imply that V2u = VZv = 0. f is analytical if v and v satisfy these equations.

6.2 Complex integration

6.2.1 Cauchy’s integral formula

Let K be a curve described by z = ¢(t) on a <t <b and f(z) is continuous on K. Than the integral of f
over K is:

b
/ f(2)dz = / Fo()d(t)de T B(g)  p(a)
K

a

45
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Lemma: let K be the circle with center ¢ and radius r taken in a positive direction. Than holds for
integer m:
1 dz [0 if m#1
2mi (z—a)m_{lifm—l
K

Theorem: if L is the length of curve K and if |f(z)| < M for z € K, than, if the integral exists, holds:
/f(z)dz <ML
K

Theorem: let f be continuous on an area G and let p be a fixed point of G. Let F(2) = fpz f(&)d¢ for all
z € G only depend on z and not on the integration path. Than F(z) is analytical on G with F'(z) = f(z).

This leads to two equivalent formulations of the main theorem of complex integration: let the function f
be analytical on an area GG. Let K and K’ be two curves with the same starting - and end points, which
can be transformed into each other by continous deformation within G. Let B be a Jordan curve. Than

holds
[ 1= [ 11z § iz =0
K K’ B

By applying the main theorem on e?*/z one can derive that

sin(x) ™

de = T

/ T v 2
0

6.2.2 Residue

A point a € C is a regular point of a function f(z) if f is analytical in a. Otherwise a is a singular point
or pole of f(z). The residue of f in a is defined by

Res (2) = 5  f(2)d:
K

where K is a Jordan curve which encloses a in positive direction. The residue is 0 in regular points, in
singular points it can be both 0 and # 0. Cauchy’s residue proposition is: let f be analytical within and
on a Jordan curve K except in a finite number of singular points a; within K. Than, if K is taken in a
positive direction, holds:

1

n
37 § 72z =3 Res £
% k=1
Lemma: let the function f be analytical in a, than holds:

G

z=a z —Q

= f(a)
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This leads to Cauchy’s integral theorem: if F' is analytical on the Jordan curve K, which is taken in a
positive direction, holds:
17 f(2) ds — { f(a) if a inside K
2ri | z—a 0 if a outside K
K

Theorem: let K be a curve (K need not be closed) and let ¢(£) be continuous on K. Than the function

o) = [ 4%
K

is analytical with n-th derivative

f(n)(z) = ”!/ (§¢_(fz))(i§+1

K

Theorem: let K be a curve and G an area. Let ¢(&, z) be defined for £ € K, z € G, with the following
properties:

1. ¢(&, 2) is limited, this means |¢(&,2)] < M for £ € K, z € G,
2. For fixed £ € K, ¢(&, z) is an analytical function of z on G,
3. For fixed z € G the functions ¢(&, z) and 9¢(E, z)/Iz are continuous functions of £ on K.

Than the function

ﬂ@=/¢@d%
K

is analytical with derivative
9¢(&, =)
/ _ )
£ = [ 225 e
K

Cauchy’s inequality: let f(z) be an analytical function within and on the circle C': |z — a| = R and let
|f(2)] < M for z € C. Than holds

Mn!
<

@) < 7

6.3 Analytical functions definied by series

The series Y fn(z) is called pointwise convergent on an area G with sum F(z) if

_ N ;
V6>OVZ€GE|NOEIRVTL>7ZO f(Z) - Z fn(z) <e
L n=1 i

The series is called uniform convergent if
_ N :
Vex0INoe R n>no3zea | |f(2) — Z fa(2)| <e
L n=1 i




48 Mathematics Formulary by ir. J.C.A. Wevers

Uniform convergence implies pointwise convergence, the opposite is not necessary.
oo
Theorem: let the power series > a,z™ have a radius of convergence R. R is the distance to the first

n=0
non-essential singularity.

o If lim {/|a,| = L exists, than R =1/L.
o If lim |ap+1|/|an| = L exists, than R =1/L.
n—oo
If these limits both don’t exist one can find R with the formula of Cauchy-Hadamard:

1
= lim sup y/|an,|
R n—o0

6.4 Laurent series

Taylor’s theorem: let f be analytical in an area GG and let point a € G has distance r to the boundary
of G. Than f(z) can be expanded into the Taylor series near a:

f(a)

n!

Fo) =S ene—a) with o
n=0

valid for |z — a| < r. The radius of convergence of the Taylor series is > r. If f has a pole of order k in a
than ¢q,...,cp—1 =0, ¢, # 0.

Theorem of Laurent: let f be analytical in the circular area G : r < |z — a] < R. Than f(z) can be
expanded into a Laurent series with center a:

oo

) e fw)dw
fz) = Z cn(z —a)®  with Cn_%%(w—a)”"‘l , NEXZ

n=-—o0
valid for r < |z—a| < R and K an arbitrary Jordan curve in G which encloses point a in positive direction.

o0
The principal part of a Laurent series is: > ¢_,(z —a)™™. One can classify singular points with this.
n=1
There are 3 cases:
1. There is no principal part. Than a is a non-essential singularity. Define f(a) = ¢y and the series is
also valid for |z — a| < R and f is analytical in a.
2. The principal part contains a finite number of terms. Than there exists a k € IN so that
lim(z —a)* f(2) = c_ # 0. Than the function g(z) = (z — a)* f(z) has a non-essential singularity in
z—a

a. One speaks of a pole of order k in z = a.

3. The principal part contains an infinite number of terms. Then, a is an essential singular point of f,
such as exp(1/z) for z = 0.

If f and ¢ are analytical, f(a) # 0, g(a) = 0, ¢’'(a) # 0 than f(z)/g(z) has a simple pole (i.e. a pole of
order 1) in z = a with
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6.5 Jordan’s theorem

Residues are often used when solving definite integrals. We define the notations Cf = {z||z| = p, 3(z) > 0}
and C; = {z|[z| = p,3(z) < 0} and M*(p, f) = max lf(2)], M~ (p, f) = max |f(2)]. We assume that

z P z P
f(2) is analytical for &(z) > 0 with a possible exception of a finite number of singular points which do not

lie on the real axis, lim pM™(p, f) = 0 and that the integral exists, than
p—o0

oo

/ f(z)dx = 2m'ZResf(z) in $(z) >0
Replace MT by M~ in the conditions above and it follows that:
7 fz)dx = —QwiZResf(z) in S(z) <0
Jordan’s lemma: let f be continuous for |z| > R, S(z) > 0 and pli_)rgo M™(p, f) = 0. Than holds for a > 0

lim | f(2)e'**dz =0

pP— 00
+
Cy

Let f be continuous for |z| > R, ¥(z) < 0 and lim M~ (p, f) = 0. Than holds for oo < 0

p—00

lim [ f(2)e"**dz =0

p—00
Co

Let z = a be a simple pole of f(z) and let Cs be the half circle |z —a| = §,0 < arg(z — a) < 7, taken from
a+ 9 toa—49. Than is
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Tensor calculus

7.1 Vectors and covectors

A finite dimensional vector space is denoted by V,W. The vector space of linear transformations from V
to W is denoted by £(V,W). Consider L(V,IR) := V*. We name V* the dual space of V. Now we can
define vectors in ¥V with basis ¢ and covectors in V* with basis ¢. Properties of both are:

1. Vectors: & = z'¢; with basis vectors ¢;:

0
~ Oxt

—

Ci

Transformation from system i to ¢’ is given by:

. -/ -/ .
cy =Auci=0,€V , ¥ =A; 2"

R . ad
2. Covectors: & = x;¢ with basis vectors ¢

7 .
= dz’

op

Transformation from system 4 to ¢’ is given by:
5! N * - i =
¢ =A;c eV, Iy =A%

Here the Einstein convention is used:
a'b; == E a'b;
i

The coordinate transformation is given by:
i _ oz’ Y dx’

YT o T o
From this follows that A% - AF = §F and A%, = (AV)~".

In differential notation the coordinate transformations are given by:

, oxt 0 ox' 9
dx' = 7 dx and i T A A
ox Ox ox" Ox
The general transformation rule for a tensor T is:
-4
T an oz | Ou® Qui»  z™ O™
Seesmo Q| Qxpr QxPn Qust Qusm v

For an absolute tensor ¢ = 0.

a0
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7.2 Tensor algebra

The following holds:
aij(xi =+ yi) = Q5% + G45Yi, but: aij(xi + yj) 5_'5 Qi T; + Qi5Y;
and
(aij + aji)xixj = 2a¢jxixj, but: (aij + aji)xiyj 5_'5 2aijmiyj
en (aij — aﬂ)ximj =0.

The sum and difference of two tensors is a tensor of the same rank: AP + BF. The outer tensor product
results in a tensor with a rank equal to the sum of the ranks of both tensors: AP" - By* = CF{™. The
contraction equals two indices and sums over them. Suppose we take r = s for a tensor Ag;P", this results

in: ApPT = B, The inner product of two tensors is defined by taking the outer product followed by
T

a contraction.

7.3 Inner product

Definition: the bilinear transformation B : V x V* — IR, B(Z,7) = §(Z) is denoted by < Z,4 >. For
this pairing operator < -,- >= § holds:

J(@) =< T,y>=ya' , <Ci,&>=0

Let G : V — V* be a linear bijection. Define the bilinear forms

g:VxV—IR 9(Z,7) =< Z,Gy >
h:V*x V"= IR W, i) =< G'Z,7 >
Both are not degenerated. The following holds: h(GZ, G¥) =< Z, Gy >= g(Z,¥). If we identify V and V*

with G, than g (or h) gives an inner product on V.

The inner product (, ) on A¥(V) is defined by:

1
(@7 \II)A = E((I)v \I/)T,S(V)
The inner product of two vectors is than given by:

(fa g) = xiyi < 51'3 GE] >= gi]xzzj
The matrix g;; of G is given by
The matrix g of G~ is given by:

ok
gk,lE'l _ G—lé'

For this metric tensor g;; holds: gijgjk = 6F. This tensor can raise or lower indices:

i i g,
r; =gzt , x' =gl

i g
1T = J— 1] 7
and du* =¢ = g"¢j.
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7.4 'Tensor product

Definition: let ¢/ and V be two finite dimensional vector spaces with dimensions m and n. Let U* x V*
be the cartesian product of & and V. A function t : U* x V* — IR; (i6;0) — t(4;7) = t*Pusug € IR is
called a tensor if ¢ is linear in @ and @. The tensors t form a vector space denoted by U ® V. The elements
T € V@YV are called contravariant 2-tensors: T = TV¢é @ Cj = T99; ® 0;. The elements T € V* ® V* are

called covariant 2-tensors: T = T, ijé' ’ ®c g ijdxi ® dad. The elements T € V* ® V are called mixed 2
tensors: T = Ti'jé‘Z ®¢ = Ti'jdxi ® 05, and analogous for T' € V ® V*.

The numbers given by

o8 — 45 &7

with 1 < a <m and 1 < 8 < n are the components of ¢.

)

Take & € U and y € V. Than the function ¥ ® ¥, definied by

(Z @ §)(i,7) =< T, >y< §,7 >y

is a tensor. The components are derived from: (¥ ® ¥');; = u;v7. The tensor product of 2 tensors is given
by:

2 . , ,
(0) form: (T & @)(p, Q) = v'piwFaq, = T piqy
0 Y o i i
<2> form: (P @ q)(7,7) = po'grw® = Tipv'w®
1 ] N T k_ mi .k
1 form: (U ® p)(q, W) = v'giprw” = Tqiw

7.5 Symmetric and antisymmetric tensors

A tensor t € V* @ V* is called symmetric resp. antisymmetric if VZ, 5 € V holds: t(Z,¢) = (¥, T) resp.
t(#,y) = —t(y,Z). The linear transformations S and A in V ® W are defined by:

SHT,F) = FHE Y +1FT))
At(%7§’) = %(t(%’:‘j’)_t(:‘j”%))

Analogous in V* ® V*. If t is symmetric resp. antisymmetric, than St =t resp. At =t.

The tensors €; V €; = €;¢; = 25(€; ® €;), with 1 < ¢ < j < n are a basis in S(V ® V) with dimension
in(n+1).

The tensors €; A €; = 2A(€; ® €;), with 1 <4 < j < n are a basis in A(V ® V) with dimension in(n — 1).
The complete antisymmetric tensor € is given by: €;jx€kim = 0i10jm — Oimdji-

The permutation-operators ey, are defined by: ej123 = €231 = e312 = 1, e213 = €132 = ez21 = —1, for all
other combinations e, = 0. There is a connection with the & tensor: €,4 = g~/ 2¢,,, and P = g'/2ePa".
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7.6 Outer product

Let o € A¥(V) and B € AY(V). Than a A 3 € A*TL(V) is defined by:
(k + 1)
EN!
If o and B € A} (V) =V* holds: aAfB=a®[ - R«

The outer product can be written as: (@ x b); = £4;5a7b%, @ x b= G~ - %(Ga A Gb).

aAfp= Ala® )

Take d, l_;, ¢,d € IR*. Than (dt A dz)(a, l_;) = agby — bpay is the oriented surface of the projection on the
tz-plane of the parallelogram spanned by @ and b.

Further
. Qg bo Co
(dt Ndy Ndz)(a,b,¢) =det| az ba ¢
ay by 4

is the oriented 3-dimensional volume of the projection on the fyz-plane of the parallelepiped spanned by
a,band C.

(dtANdxNdyNdz)(@, g, ¢, d) = det(a, 5, ¢, d) is the 4-dimensional volume of the hyperparellelepiped spanned
by @, b, ¢ and d.

7.7 The Hodge star operator

A*(V) and A"7*(V) have the same dimension because () = (,,",) for 1 <k < n. Dim(A"(V)) = 1. The
choice of a basis means the choice of an oriented measure of volume, a volume p, in V. We can gauge p
so that for an orthonormal basis €; holds: u(é€;) = 1. This basis is than by definition positive oriented if

2, 1 :’2 )
p=¢€¢ Ne AN..Ne =1
Because both spaces have the same dimension one can ask if there exists a bijection between them. If
VY has no extra structure this is not the case. However, such an operation does exist if there is an inner
product defined on V and the corresponding volume p. This is called the Hodge star operator and denoted
by *. The following holds:

Ve dr(v) Tuwerr—nv)Voenry) 0 A xw = (6, w)p

For an orthonormal basis in IR? holds: the volume: 1 = dx Ady A dz, *dz Ady Adz = 1, xdz = dy A dz,
xdz = dx N dy, xdy = —dx A dz, *(dx A dy) = dz, *(dy A\ dz) = dx, *(dz A dz) = —dy.

For a Minkowski basis in IR* holds: p = dt Adz AdyAdz, G =dt ®dt —dr @ dr — dy ® dy — dz ® dz, and
xdt Nde ANdy ANdz =1 and 1 = dt Adx Ady A dz. Further xdt = dx A dy N\ dz and xdx = dt A dy N dz.

7.8 Differential operations

7.8.1 The directional derivative

The directional derivative in point d is given by:

of
ox?

Laf =< @, df >=d’



54 Mathematics Formulary by ir. J.C.A. Wevers

7.8.2 The Lie-derivative

The Lie-derivative is given by:

(Lyw)! = w0 — v'Ouw?

7.8.3 Christoffel symbols

To each curvelinear coordinate system u* we add a system of n® functions F§ i of i, defined by

0?7 ;0%

_ i

ouiouk — IR gyt

These are Christoffel symbols of the second kind. Christoffel symbols are no tensors. The Christoffel
symbols of the second kind are given by:

i i 0% i
{jk} == <6u’“3uj’dm >

with Fj- =Tt e Their transformation to a different coordinate system is given by:
F;-I/k/ == i'A;/Az/F;k + Az/ ((%/AZ,)
The first term in this expression is 0 if the primed coordinates are cartesian.

There is a relation between Christoffel symbols and the metric:
F;‘k = %gir(ajgkr + Okgrj — Orgjk)

and 'y, = 93(In(y/]g])).

Lowering an index gives the Christoffel symbols of the first kind: F;k = g”l“jkl.

7.8.4 The covariant derivative

The covariant derivative V; of a vector, covector and of rank-2 tensors is given by:

Via' = 0;a'+ I‘;ka}“

Via; = 0ja; — Ffjak

Vyag = 0Oyaf — I gad +T5. a5
Vytag = 04003 — Fiaagg — F%aae
V,a*? = 9,a% + Fgeagﬁ + ngao‘s

Ricci’s theorem:
Vagap = Vag™? =0
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7.9 Differential operators

The Gradient

is given by:
;O0f 0
d — G—ld — qki __

grad(f) f=9" 5 i 5%
The divergence
is given by:

, i 1

div(a') = V;a* = %Gk(\/gak)
The curl
is given by:

rot(a) =G ' x-d-Gd = —eP""V a, = V,a, — V,a,

The Laplacian

is given by:

g iy 1 0 o)
A(f) =div grad(f) = *dxdf = V,;gY0;f =gV, V,;f = ﬁaxi <\/§g”8x‘};)

7.10 Differential geometry

7.10.1 Space curves

We limit ourselves to IR? with a fixed orthonormal basis. A point is represented by the vector ¥ =

(x1,22,23). A space curve is a collection of points represented by ¥ = #(t). The arc length of a space

curve is given by:
¢
dz\? dy 2 dz\?
0= f V (&) +(#) + (&) »
to

The derivative of s with respect to t is the length of the vector dz/dt:

ds\* _ (di d¥
dt) — \dtdt
The osculation plane in a point P of a space curve is the limiting position of the plane through the tangent

of the plane in point P and a point () when @) approaches P along the space curve. The osculation plane
is parallel with Z(s). If & # 0 the osculation plane is given by:

J=F+ M +pi so det(f—7,2,&)=0
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In a bending point holds, if f;«é 0:

J=Z+AXT+p T
The tangent has unit vector ¢ = &, the main normal unit vector i = & and the binormal b = # x Z. So the
main normal lies in the osculation plane, the binormal is perpendicular to it.

Let P be a point and @ be a nearby point of a space curve Z(s). Let Ay be the angle between the tangents
in P and @ and let Ay be the angle between the osculation planes (binormals) in P and . Then the
curvature p and the torsion T in P are defined by:

dp\? . Ap\? i\ 2
2 _ [aP) _ [y 2 _ (9¥
P _<ds> Ei%(As) T T\ s

and p > 0. For plane curves p is the ordinary curvature and 7 = 0. The following holds:
PP =00 = (&&) and 77 =(bD)
Frenet’s equations express the derivatives as linear combinations of these vectors:

E:pﬁ , T._i:—pE—Q—Tl; , b=—71i

From this follows that det(Z, , i") = p*1.

Some curves and their properties are:

Screw line 7/p =constant

Circle screw line T =constant, p =constant
Plane curves 7=0

Circles p =constant, 7 =0

Lines p=17=0

7.10.2 Surfaces in IR
h

A surface in IR? is the collection of end points of the vectors & = Z(u,v), so z = 2" (u®). On the surface
are 2 families of curves, one with v =constant and one with v =constant.

The tangent plane in a point P at the surface has basis:

51 = 81f and 52 = 6Qf

7.10.3 The first fundamental tensor

Let P be a point of the surface Z = Z(u®). The following two curves through P, denoted by u® = u®(t),
u® = v*(7), have as tangent vectors in P

dZ  du® . dz¥  dov?

at = a7 0 = a0

The first fundamental tensor of the surface in P is the inner product of these tangent vectors:
d¥ dT\ (@ )du"‘ dv®
dat’dr )~ P a ar
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The covariant components w.r.t. the basis ¢, = 0, are:

Gap = (Eon Eﬁ)
For the angle ¢ between the parameter curves in P: u = t,v =constant and u =constant, v = 7 holds:

gi2

V911922

For the arc length s of P along the curve u®(t) holds:

cos(@) =

ds? = gopdu®du®

This expression is called the line element.

7.10.4 The second fundamental tensor

The 4 derivatives of the tangent vectors 0,03% = 0,C3 are each linear independent of the vectors ¢, ¢
and N , with N perpendicular to ¢; and ¢;. This is written as:

00l =T 48, + hapN

This leads to: )
[0 =(",0aCs) . hap=(N,0as) = ——— det(1, &, Dalls)

v/det |g|

7.10.5 Geodetic curvature

A curve on the surface £(u®) is given by: u® = u®(s), than & = F(u*(s)) with s the arc length of the
curve. The length of # is the curvature p of the curve in P. The projection of # on the surface is a vector
with components

pY =i 4+ T g
of which the length is called the geodetic curvature of the curve in p. This remains the same if the surface
is curved and the line element remains the same. The projection of Z on N has length

p = hagu®u’
and is called the normal curvature of the curve in P. The theorem of Meusnier states that different curves
on the surface with the same tangent vector in P have the same normal curvature.

A geodetic line of a surface is a curve on the surface for which in each point the main normal of the curve
is the same as the normal on the surface. So for a geodetic line is in each point p” = 0, so

Py - du® du” _

dsz T refTgs ds

The covariant derivative V/dt in P of a vector field of a surface along a curve is the projection on the
tangent plane in P of the normal derivative in P.
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For two vector fields ¢(t) and @(t) along the same curve of the surface follows Leibniz’ rule:
A5.@) _ (VI (5 T
-\ dt T dt

\Y dv? du®
St )= [ — 7Y . 28\
G (dt T has g >C’Y

Along a curve holds:

7.11 Riemannian geometry
The Riemann tensor R is defined by:
RfjaBT” =V, VgTH" — VgV, T"

This is a (;’) tensor with n?(n? — 1)/12 independent components not identically equal to 0. This tensor
is a measure for the curvature of the considered space. If it is 0, the space is a flat manifold. It has the
following symmetry properties:

Raﬁ/tu = R/u/ozﬂ = *Rﬁa/tv = *R(xﬂuu

The following relation holds:
Vo, V|TH = RZQﬁTf + Ry o514

The Riemann tensor depends on the Christoffel symbols through
Rg;w = aﬂrgu - &,F%‘H + Fgurg’v o gu
In a space and coordinate system where the Christoffel symbols are 0 this becomes:
ngy = %gag (aﬁaﬂgau - aﬁaugau + aaaugﬂu - acra,ugﬁv)

The Bianchi identities are: VyRaguy + ViRagay + VuRagur = 0.

The Ricci tensor is obtained by contracting the Riemann tensor: R,z = RZW, and is symmetric in its

indices: Ro3 = Rgo. The Einstein tensor G is defined by: GeP = R*B — %gaﬁ. It has the property that
VG2 = 0. The Ricci-scalar is R = g*° R, 3.
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Numerical mathematics

8.1 Errors

There will be an error in the solution if a problem has a number of parameters which are not exactly
known. The dependency between errors in input data and errors in the solution can be expressed in the
condition number c. If the problem is given by x = ¢(a) the first-order approximation for an error da in a
is:

dx _ag'(a) da

z  ¢la) a
The number c(a) = |a¢'(a)|/|$(a)]. ¢ < 1 if the problem is well-conditioned.

8.2 Floating point representations

The floating point representation depends on 4 natural numbers:
1. The basis of the number system 3,
2. The length of the mantissa t,
3. The length of the exponent g,

4. The sign s.

Than the representation of machine numbers becomes: ’ rd(z) = s - m - 3¢ | where mantissa m is a number

with ¢ -based numbers and for which holds 1/8 < |m| < 1, and e is a number with ¢ S-based numbers
for which holds |e] < 37 — 1. The number 0 is added to this set, for example with m = e = 0. The largest
machine number is

GAmax = (1 - ﬁ_t)ﬁﬁq_l
and the smallest positive machine number is
Amin = ﬂ_ﬂq

The distance between two successive machine numbers in the interval [3P~1, 8P] is gP~t. If z is a real
number and the closest machine number is rd(z), than holds:

rd(z) = z(1 +¢) with le| < 2187
z=rd(z)(1+¢) with || <ig

99
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The number 7 := %ﬁl_t is called the machine-accuracy, and
el <n x —rd(x) <
T

An often used 32 bits float format is: 1 bit for s, 8 for the exponent and 23 for de mantissa. The base here
is 2.

8.3 Systems of equations

We want to solve the matrix equation AZ = b for a non-singular A, which is equivalent to finding the
inverse matrix A~!. Inverting a n x n matrix via Cramer’s rule requires too much multiplications f(n)
with n! < f(n) < (e — 1)n!, so other methods are preferable.

8.3.1 Triangular matrices

Consider the equation UZ = ¢ where U is a right-upper triangular, this is a matrix in which U;; = 0 for
all j <1, and all U;; # 0. Than:

Tn = Cn/Unn

Tp—1 = (Cn—l - Un—l,nxn)/Un—l,n—l

n
z1 = (a— Y Uyx;)/Un

=2
In code:

for (k = n; k > 0; k--)
{
S = clk]l;
for (j =k + 1; j < mn; j++)
{
S -= ULkI[j1 * x[j1;
}
x[k] =S / Ulk] [k];
}

This algorithm requires %n(n + 1) floating point calculations.

8.3.2 Gauss elimination

Consider a general set Ar¥ = b. This can be reduced by Gauss elimination to a triangular form by
multiplying the first equation with A;; /A, and than subtract it from all others; now the first column
contains all 0’s except A1;. Than the 2nd equation is subtracted in such a way from the others that all
elements on the second row are 0 except Ass, etc. In code:
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for (k = 1; k <= n; k++)

{
for (j = k; j <= n; j++) ULkI[j] = A[k][j];
clk] = blkl;
for (i =k + 1; 1 <= n; i++)
{
L = A[il[k] / Ukl [k];
for (j =k + 1; j <= n; j++)
{
ATi1(j] -= L = Ulk][j1;
}
b[i] -= L * c[k];
}
}
This algorithm requires %n(n2 — 1) floating point multiplications and divisions for operations on the

coefficient matrix and %n(n — 1) multiplications for operations on the right-hand terms, whereafter the
triangular set has to be solved with %n(n + 1) operations.

8.3.3 Pivot strategy

Some equations have to be interchanged if the corner elements Ay, ASQ), ... are not all # 0 to allow Gauss
elimination to work. In the following, A™ is the element after the nth iteration. One method is: if

A,(Clzfl) = 0, than search for an element A;’Zﬁl) with p > k that is # 0 and interchange the pth and the nth
equation. This strategy fails only if the set is singular and has no solution at all.

8.4 Roots of functions

8.4.1 Successive substitution

We want to solve the equation F'(z) = 0, so we want to find the root a with F'(«) = 0.
Many solutions are essentially the following:

1. Rewrite the equation in the form x = f(z) so that a solution of this equation is also a solution of
F(z) = 0. Further, f(z) may not vary too much with respect to x near a.

2. Assume an initial estimation z( for a and obtain the series x,, with z, = f(x,_1), in the hope that

lim z, = .
n—oo

Example: choose

h(z) F(x)
r)=f03—¢ —
T =5 ="~ 6w
than we can expect that the row x,, with
rg = f
h(z,—
Tn = Tp-1—E& (x 1)
g(xnfl)
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converges to .

8.4.2 Local convergence

Let « be a solution of x = f(x) and let x, = f(x,—1) for a given zy. Let f’(x) be continuous in a
neighbourhood of a. Let f'(a) = A with |A] < 1. Than there exists a 6 > 0 so that for each zy with
|zo — a| < § holds:

1. lim n, = q,
n—oo

2. If for a particular k holds: x) = «, than for each n > k holds that x,, = o. If z,, # « for all n than

holds 4
lim 2"y , lim —n " %n-l =A | lim —> % _
n—oo & — Tp—1 nN—=00 Tp—-1 — Tnpn-2 n—=00 Ty — Tn—1 1-A4
The quantity A is called the asymptotic convergence factor, the quantity B = —19log|A| is called the
asymptotic convergence speed.
8.4.3 Aitken extrapolation
We define
Ty — Ty
A= lim —= n-l
n—0o Tp_1 — Tp_2
A converges to f'(a). Than the row
n
Qp = Tp + (xn - $n—1)

will converge to a.

8.4.4 Newton iteration

There are more ways to transform F(x) = 0 into z = f(x). One essential condition for them all is that in
a neighbourhood of a root « holds that |f/(x)| < 1, and the smaller f’(z), the faster the series converges.
A general method to construct f(z) is:

f(x) =2 — ®(2)F ()
with ®(z) # 0 in a neighbourhood of a. If one chooses:

1

Y= P

Than this becomes Newtons method. The iteration formula than becomes:

F(xnfl)

Ly = Tp—1 — 7]—7’/(1:”_1)

Some remarks:
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e This same result can also be derived with Taylor series.

e Local convergence is often difficult to determine.

o If z, is far apart from « the convergence can sometimes be very slow.
e The assumption F(«) # 0 means that « is a simple root.

For F(x) = 2* — a the series becomes:

This is a well-known way to compute roots.

The following code finds the root of a function by means of Newton’s method. The root lies within the
interval [x1, x2]. The value is adapted until the accuracy is better than +eps. The function funcd is a
routine that returns both the function and its first derivative in point x in the passed pointers.

float SolveNewton(void (*funcd) (float, float*, float*), float x1, float x2, float eps)
{

int j, max_iter = 25;
float df, dx, f, root;

root = 0.5 * (x1 + x2);
for (j = 1; j <= max_iter; j++)

{
(*funcd) (root, &f, &df);
dx = f/df;
root = -dx;
if ( (x1 - root)*(root - x2) < 0.0 )
{
perror ("Jumped out of brackets in SolveNewton.");
exit(1);
}
if ( fabs(dx) < eps ) return root; /* Convergence */
}
perror ("Maximum number of iterations exceeded in SolveNewton.");
exit(1);
return 0.0;

8.4.5 The secant method

This is, in contrast to the two methods discussed previously, a two-step method. If two approximations
z, and x,_; exist for a root, than one can find the next approximation with
Tn — Tp—1

F(xy,) — F(zp-1)

If F(x,) and F(x,_1) have a different sign one is interpolating, otherwise extrapolating.

Tp+1l = Tn — F(xn)
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8.5 Polynomial interpolation

A base for polynomials of order n is given by Lagrange’s interpolation polynomials:

Litx) =] S

=0 i — Tl
1]

The following holds:
1. Each L;(z) has order n,
2. LJ(ZEZ) = 51']' for Z,j = O, ]., e n,

3. Each polynomial p(x) can be written uniquely as
plx) = ¢;Li(z) with ¢; =p(z))
3=0

This is not a suitable method to calculate the value of a ploynomial in a given point £ = a. To do this,
the Horner algorithm is more usable: the value s = Y, cx2"* in 2 = a can be calculated as follows:

float GetPolyValue(float c[], int n)
{

int i; float s = c[n];

for (i =n-1; i >= 0; i--)

{

s =8 *a+ cl[i];
¥
return s;

}
After it is finished s has value p(a).

8.6 Definite integrals

Almost all numerical methods are based on a formula of the type:

n

b
[ $@ds =3 cupte + 701)

i=0
with n, ¢; and x; independent of f(z) and R(f) the error which has the form R(f) = Cf(@ (&) for all
common methods. Here, £ € (a,b) and ¢ > n + 1. Often the points z; are chosen equidistant. Some
common formulas are:
e The trapezoid rule: n =1, 290 =a, z1 =b, h=b— a:
b

[ s -

a

| >

h3
[f(x0) + f(x1)] — Ef”(ﬁ)



Chapter 8: Numerical mathematics 65

(a+b), z2=b, h=1%(b—a):

N

e Simpson’s rule: n =2, xg =a, 1 =
b
[ @ = 5 (#@0) + 4@ + fla)] - 5 1OE)

e The midpoint rule: n =0, zo = 2(a+b), h="b— a:

b

h3
[ e = hptao) + g7 1(©

a

The interval will usually be split up and the integration formulas be applied to the partial intervals if f
varies much within the interval.

A Gaussian integration formula is obtained when one wants to get both the coeflicients ¢; and the points
z; in an integral formula so that the integral formula gives exact results for polynomials of an order as
high as possible. Two examples are:

1. Gaussian formula with 2 points:

rom=s () s ()] o

—h

2. Gaussian formula with 3 points:

h

/f(a:)dx — g [Bf (—hﬁ) +8£(0) +5f (hﬁ)] + %f@ ©

—h

8.7 Derivatives
There are several formulas for the numerical calculation of f/(x):

e Forward differentiation:

flx+h) - fz)

R ()
e Backward differentiation: )
f’(x): f<x)_£(x )+%hf//(§)

e Central differentiation:
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e The approximation is better if more function values are used:

_ —f@+2h)+8f(x+h) —8f(x—h)+ f(z —2h) h*

()
12h +30f ©

f'(z)

There are also formulas for higher derivatives:

A x - x z—h)— flz— 4
F(2) = fla+2h) +16f(z + h) = 30f(x) + 16f(z —h) = f(x —2h) B!

(6)
12h2 90 FLE)

8.8 Differential equations

We start with the first order DE y'(z) = f(xz,y) for > z( and initial condition y(x¢) = z¢. Suppose we
find approximations z1, 23, ..., 2, for y(z1), y(x2),..., y(z,). Than we can derive some formulas to obtain
Zn+1 as approximation for y(z,41):

e Euler (single step, explicit):
2

—=y"(€)

Zn+1 = Zn + hf<xnazn) + 9

e Midpoint rule (two steps, explicit):
3

Mo

Zn+1 = fn—1 + 2hf(177,, Zn) + 3

e Trapezoid rule (single step, implicit):
h3

Zng1 = Zn + sh(f(@n, 20) + f(@nt1, 2ng1)) — ﬁym(é)
Runge-Kutta methods are an important class of single-step methods. They work so well because the

solution y(x) can be written as:

Yn+1 = Yn + hf(gna y(gn)) with &, € (xn, xn—&-l)

Because &, is unknown some “measurements”’ are done on the increment function k¥ = hf(z,y) in well
chosen points near the solution. Than one takes for z, 1 — 2z, a weighted average of the measured values.
One of the possible 3rd order Runge-Kutta methods is given by:

ki = hf(zn,2n)
ke = hf(mn—&—%h,zn—i—%kl)
ks = hf(xn+%h,zn+%k2)
Zntl = Zn + 5(2k1 + 3kg + 4k3)
and the classical 4th order method is:
ki = hf(zn,zn)
ko = hf(wn—i—%h,zn—k%k‘l)
ks = hf(xn—i—%h,zn—i—%kg)
ki = hf(zn+h oz, + ks)

Zntl = Zn T+ %(/ﬁ + 2ky + 2ks + k4)
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Often the accuracy is increased by adjusting the stepsize for each step with the estimated error. Step
doubling is most often used for 4th order Runge-Kutta.

8.9 The fast Fourier transform

The Fourier transform of a function can be approximated when some discrete points are known. Suppose
we have N successive samples hy = h(tg) with ty = kA, kK =0,1,2,..., N — 1. Than the discrete Fourier
transform is given by:

N—-1
H, = E hke%rzkn/N
k=0

and the inverse Fourier transform by

= 4
hy = N Z Hne—szkn/N
n=0
This operation is order N2. It can be faster, order N -?log(NN), with the fast Fourier transform. The basic
idea is that a Fourier transform of length N can be rewritten as the sum of two discrete Fourier transforms,
each of length N/2. One is formed from the even-numbered points of the original N, the other from the
odd-numbered points.

This can be implemented as follows. The array datal[1l..2#nn] contains on the odd positions the real
and on the even positions the imaginary parts of the input data: datal[1] is the real part and data[2]
the imaginary part of fy, etc. The next routine replaces the values in data by their discrete Fourier
transformed values if isign = 1, and by their inverse transformed values if isign = —1. nn must be a
power of 2.

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b); (b)=tempr

void FourierTransform(float data[], unsigned long nn, int isign)

{
unsigned long n, mmax, m, j, istep, 1i;
double wtemp, wr, wpr, wpi, wi, theta;
float tempr, tempi;

n =nn << 1;

j=1

for (i =1; 1 < n; i += 2)
{

if (j>1i)

{

SWAP(dataljl, datalil);

SWAP(datal[j+1], datali+1]);
}
m

=n > 1;
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while (m >= 2 & j > m )

{
jo=m
m >>= 1;
}
jem
}
mmax = 2;

while ( n > mmax ) /* Outermost loop, is executed log2(nn) times */
{

istep = mmax << 1;

theta = isign * (6.28318530717959/mmax) ;

wtemp = sin(0.5 * theta);

wpr = -2.0 * wtemp * wtemp;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
for (m = 1; m < mmax; m += 2)
{
for (i = m; 1 <= n; i += istep) /* Danielson-Lanczos equation */
{
J = i + mmax;
tempr = wr * datalj] - wi * datal[j+1];
tempi = wr * datal[j+1] + wi * datalj];
datalj] = datal[i] - tempr;
data[j+1] = datal[i+1] - tempi;

datali] += tempr;
datal[i+1] += tempi;

3
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;
X
mmax=istep;
3

}



