

Stephen Randy Davis

F-rst
Y, ii/;'''!i: r:l l :' ul1 rt''7'l !; y' ;,, ::.

C# pour les Nuls

Publié par

Hungry Minds. Inc.

9t)9 Third Avenue

New york, NY 10022

Copyright O 2001 par Hungry Minds, Inc.

Pour les Nuls est une mârqlre déposée de Hungry Mincls, Inc

For Dummies est lrne marque cléposée de Hungry Minds, Inc

Collection dirigée par Jean-Pierre Cano

Traduction : Philippe Reboul

Édition : Pierre Chauvor

Maquette et illustration': Stéphane Angot

Tous droits réservés. Toute reproduction, même partielle, du contenu, de la couverture ou des
icônes, par quelque procéclé que ce soit (électronique, photocopie, bande magnétique ou autre)
est interdite sans autorisation par écrit de Hungry Minds, Inc.

ildition française publiée en accord avec Hungry Minds, Inc.

O 2002 par Éclitions First Interactive

33, avenue de la République

75011 Paris - France

Tét. 01 40'2r 46 46

Fax 0l 40 2L 46 20

E-mail : firstinfo@efirst.com

Web: www.efirst.com

ISBN: 2-84427-259-2

Dépôt légal : 1"' trimestre 2002

Limites de responsabilité et de garantie. L'auteur et I'éditeur de cet ouvrage ont consacré tous leurs
efforts à préparer ce livre. Hrrngry Minds et l'auteur déclinent toute responsabilité concernant la
fiabilité ou I'exhaustivité clu contenu de cet ouvrage. Ils n'assument pas de responsabilités pour ses
qualités d'aclaptation à quelque objectif que ce soit, et ne pourront être en aucun cas tenus responsa-
bles Jrour quelque perte, profit ou autre dommage commercial que ce soit, notamment mais pas

exclusivement particulier, accessoire, conséquent, ou autres.

Marques déposées. Toutes les informations connues ont été communiquées sur les marques déposées
pour les procluits, services et sociétés mentionnés dans cet ouvrage. Hungry Mincls, Inc. et les Éditions
First Interactive cléclinent toute responsabilité quant à I'exhaustivité et à l'interprétation des informa-
tions. Tous les autres noms cle marque et de produits utilisés dans cet ouvrage sont des marques
déposées ou cles appellations commerciales de leur propriétaire respectif.

Sommaire

Prgmière partîe : Créer fus premigrs prngrammes C#.....................

Chapitre I : Créer votre premier programme C# pour Windows................ 3

Chapitre 2 : Créer votre première application console en C#

Créer un modèle d'application console
Créer le programme source
Tester le résultat

Créer votre première véritable application console
Examinons ce programme

Le cadre de travail du programme
Les commentaires
La substance du programme

2r
22
22
23

24
25

26
26

27

Deurième partîe : Programmatîon élémentaire en C#.............. 29

Chapitre 3 : Déclarer des variables de type valeur 3l
Déclarer une variable32

Qu'est-ce qq'un int ? 33

Les règles de déclaration de variable............. ...34
Variations sur un thème : des int de différents types' 35

ut G# pour les Nuls

Représenter des fractions
Utiliser des variables en virgule flottante

Déclarer une variable à virgule flottante
Convertissons encore quelques températures
Quelques limitations des variables en virgule flottante

Utiliser le type decimal, hybride d'entier et de virgule flottante
Déclarer une variable de type decimal
Comparer les types decimal, int, et float

Soyons logique, examinons le type bool
Un coup d'æil aux types caractère

La variable de type char
Types char spéciaux
Le type string
Comparer string et char

Qu'est-ce qu'un type valeur ?.........
Déclarer des constantes numériques
Changer de type : le cast

Chapitre 4 : Les opérateurs sont sympas
Faire de I'arithmétique

Les opérateurs simples
Ordre d'exécution des opérateurs
L'opérateur d'assignation et ses variantes
L'opérateur d'incrémentation

Faire des comparaisons - est-ce logique ?
Comparer des nombres en virgule flottante : qui a le plus gros float ?.........
Encore plus fort : les opérateurs logiques

Trouver les âmes sæurs : accorder les types d'expression
Calculer le type d'une opération
Assigner un type

L'opérateur ternaire, le redoutable

37
38

38
40
40
42
43
44
44
45
45
46
46
47
49
50
5l

53
53
54
55
56
57
59
60
61

63
63

65
66

Chapitre 5 : Contrôler le flux d'exécution d'un programme...................... 69

Contrôler le flux d'exécution...........
Et si j'ai besoin d'un exemple ?

Qu'est-ce que je peux faire d'autre ?
Éviter même le else
Instructions if imbriquées

Les commandes de boucle
Commençons par la boucle de base, while
Et maintenant, do... while
Briser une boucle, c'est facile
Faire des boucles jusqu'à ce qu'on y arrive
Les règles de portée des variables

Comprendre Ia boucle la plus utilisée : for

70
71

74
75
76
79
80
84
85

86
90
91

Un exemple de boucle for

Pourquoi auriez-vous besoin d'une autre boucle ?..............

Des boucles imbriquées
L'instruction de contrôle switch
Le modeste goto

sommaire Ul I

9l
92
93
97

100

Troisiène partîe : Programmatîon et obiets............................... l0l

Chapitre 6 : Rassembler des données : classes et tableaux f 03

Montrez votre classe
Définir une classe

Quel est notre objet ?..............
Accéder aux membres d'un objet
Pouvez-vous me cionner des références ?..............
Les classes qui contiennent des classes sont les plus heureuses du monde..
Les membres statiques d'une classe
Définir des membres de type const

Les tableaux : la classe Array
Les arguments du tableau
Le tableau à longueur fixe
Le tableau à longueur variable

Des tableaux d'objets

Une structure de contrôle de flux pour tous les tableaux : foreach
Trier un tableau d'objets

Chapitre 7: Mettre en marche quelques fonctions de grande classe 135

Définir et utiliser une fonction..........
Un exemple de fonction pour vos fichiers
Donner ses arguments à une fonction

Passer un argument à une fonction

Passer plusieurs arguments à une fonction
Accorder la définition d'un argument et son utilisation
Surcharger une fonction ne signifie pas lui donner trop de travail
Implémenter des arguments par défaut
Passer des arguments d'un type valeur

Retourner une valeur à I'expéditeur
Utiliser return pour retourner une valeur..............
Retourner une valeur en utilisant un passage par référence

Quand utiliser return et quand utiliser out ?

Définir une fonction qui ne retourne pas de valeur
La question de MainQ : passer des arguments à un programme

Passer des arguments à I'invite de DOS

Passer dcs arguments à partir d'une fenêtre
Passer des arguments à partir de Visual Studio .NET

104

r05
106

r07
111

113

115

116

116

116

tt7
r20
r24
r27
r28

135

r37
r43
r44
r45
t46
r47
t49
l5l
157
r57
158
158
160

164
165
r68
t70

Ul I I c# pour tes Nuts

Chapitre 8 : Méthodes de classe

Passer un objet à une fonction
Définir des fonctions et des méthodes d'obiet

Définir une fonction membre statique d'une classe
Définir une méthode
Le nom complet d'une méthode

Accéder à I'objet courant
Qu'est-ce que this ?

Quand this est-il explicite ?..............
Et quand je n'ai pas this ?..............

Obtenir de I'aide de Visual Studio - la saisie automatique
Obtenir de I'aide sur les fonctions intégrées de la bibliothèque standard C#.
Obtenir de I'aide sur vos propres fonctions et méthodes

Encore plus d'aide
Générer une documentation XML

Chapitre 9 : Jouer avec des chaînes en C#
Effectuer des opérations courantes sur une chalne

L'union est indivisible, ainsi sont les chalnes
Égalité pour toutes les chalnes : la méthode CompareQ
Voulez-vous comparer en majuscules ou en minuscules ?
Et si ie veux utiliser switch ?

Lire les caractères saisis
Analyser une entrée numérique
Traiter une suite de chiffres..............

Contrôler manuellement la sortie
Utiliser les méthodes TrimQ et PadQ
Recoller ce que le logiciel a séparé : utiliser la concaténation
Mettre SplitQ dans le programme de concaténation

Maltriser String.FormatQ

175

175
177
177
179
r82
183
184
185
188
190
191

193
195
200

20r
202
202
204
208
209
210
212
215
2r7
2r7
22r
223
224

Quatrième partie : La programmatîon orientée ùbiet................. 229

Chapitre l0 : La programmation orientée objet : qu'est-ce que c'est ? ...231
L'abstraction, concept numéro un de la programmation orientée objet............. 231

Préparer des nachos fonctionnels ...232
Préparer des nachos orientés objet .233

La classification, concept numéro deux de la programmation orientée objet 234
Pourquoi classifier ?.............. 235
Une interface utilisable, concept numéro trois de la programmation orientée objet . 236
Le contrôle d'accès, concept numéro quatre de la programmation orientée objet 237

Comment la programmation orientée objet est-elle implémentée par C#........... 238

Sommaire

Chapitre I I : Rendre une classe responsable

Restreindre I'accès à des membres de classe
Un exemple public de public BankAccount
Allons plus loin : les autres niveaux de sécurité

Pourquoi se préoccuper du contrôle d'accès ?

Des méthodes pour accéder à des objets
Le contrôle d'accès vole à votre secours

IX

, ;; ";;;,pi; : : :

239

239
240
243
244
245
246
250
250
252
253
255
256
258
261
262
263
265
270

272
274
275
278
278
279
280
28r
282
282
283
284
286
286
288
29r
293

295

Et alors ? ...,..........
Définir des propriétés de classe

Donner un bon départ à vos objets : les constructeurs
Le constructeur fourni par C#
Le constructeur par défaut

Construisons quelque chose
Exécuter le constructeur à partir du débogueur
Initialiser un objet directement : le constructeur par défaut
Voyons comment se fait la construction avec des initialisations

Surcharger le constructeur
Éviter les duplications entre les constructeurs
Être avare de ses obiets

Chapitre l2 : Acceptez-vous I'héritage ?
Hériter d'une classe
À quoi me sert I'héritage ?
Un exemple plus concret : hériter d'une classe BankAccount
EST_UN par rapport à A_UN - j'ai du mal à m'y retrouver........

La relation EST_UN
Contenir BankAccount pour y accéder
La relation A_UN

Quand utiliser EST_UN et quand utiliser A_UN ?
Autres considérations

Changer de classe
Des casts invalides à I'exécution..........
Éviter les conversions invalides en utilisant Ie mot-clé is

L'héritage et le constructeur
Invoquer le constructeur par défaut de la classe de base
Passer des arguments au constructeur de la classe de base : le mot-clé base ..

La classe BankAccount modifiée

Chapitre 13 : Quel est donc ce polymorphisme ?

Surcharger une méthode héritée296
Ce n'est qu'une question de surcharge de fonction296
À classe clifférente, méthode clifférente297
Redéfinir une méthode d'une classe de base .298

G# pour les Nuls

Revenir à la base
Le polyrnorphisme

Qu'y a-t-il de mal à utiliser chaque fois le type déclaré?
Accéder par le polymorphisme à une méthode redéfinie en utilisant is
Déclarer une méthode comme virtuelle

La période abstraite de C#
Le factoring entre classes
Il ne me reste qu'un concept : la classe abstraite
Comment utiliser une classe abstraite ?
Créer un obiet d'une classe abstraite : non !

Redérnarrer une hiérarchie de classes
Sceller une classe

303
305
306
308
309
311

311

3r7
318
320
32r
325

327
329
330
332
332
334
336
342
342
345
346
348
349
350
353
353

354

360
362
365
367

368
37r
373
375
378
380

Chapitre l4 : Quand une classe n'est pas une classe : I'interface
et la structure...........327

Qu'est-ce que PEUT_ETRE_UTILISE_COMME ?

Qu'est-ce qu'une interface ?
Pourriez-vous me donner un exemple simple ?...........
Ptris-je voir un programme qui PEUT-ÊTRE- UTILISÉ-COMME un exemple ?

Créer votre interface "faites-le vous-même"
Interfaces prédéfinies
Assembler le tout

Héritage et interface
Rencontrer une interface abstraite
Une structure n'a pas de classe

La structure C#
Le constructeur de structure..........
Les méthodes d'une structure sont rusées............
Mettre une structure à l'épreuve par I'exemple

Réconcilier la valeur et la référence : unifier le système de types
Les types structure prédéfinis
Comment le systèrne de types est-il unifié par des structures communes ?

Un exemple

Chapitre 15 : Quelques exceptions d'exception 359

Traiter une erreur à I'ancienne mode : la retourner
Retourner une indication d'erreur
Je suis là pour signaler ce qui me paraît nécessaire

Utiliser un rnécanisme d'exceptions pour signaler les erreurs
Puis-je avoir un exemple ?..........
Créer votre propre classe d'exceptions

Assigner plusieurs blocs catch
Laisser quelques envois vous filer entre les doigts
Relancer un objet

Iiedéfinir une classe d'exceptions

Somma ire

Chapitre 16 : Manipuler des fichiers en C#......... 385

Diviser un même programme en plusieurs fichiers source ... 385
Réunir des fichiers source dans un espace de nom 387

Déclarer un espace de nom 388
Accéder à des modules du même espace de nom 388
Utiliser un espace de nom avec le mot-clé using 390
Contrôler I'accès aux classes avec les espaces de nom........ 391

Rassembler des données dans des fichiers394
Utiliser StreamWriter 396
Améliorez votre compréhension et votre vitesse de lecture avec
StreamReader 402

XI

409
410
410
411
412
412
413
415
417

419
422
424
426
429
431
431

433

433
435
439
439
440
442
442
444
446
446
448

Cin4uième partie : Programtner lrour Windouls a(ec Uisual Studio 407

Quel est Ie problème ?

Exposer le problème
Concevoir la présentation
Ma solution

Dessiner la solution
Créer le cadre de travail de I'application Windows
Ignorez ce type qui se cache derrière le rideau
Éditer la fenêtre d'édition
Construire les menus
Ajouter les contrôles d'ajustement de la police
Encore un coup de peinture et nous y sommes
Redimensionner le formulaire

Qu'avons-nous fabriqué ?
Comment apprendre à connaltre les composants ?

Et maintenant ?

Un menu garanti pour éditer le menu Edition
Mettre hardiment en gras et en italique

Changer de police et de taille
Implémenter les options du menu Format

Choisir la taille de police
Changer de taille en utilisant la TrackBar
Changer de taille en utilisant la TextBox.........

Enregistrer le texte de I'utilisateur
Lire le nom du fichier
Lire un fichier RTF.........

Xl I G# pour tes Nuls

Écrire un fichier RTF........ .. 449
Mettre Lire et Écrire dans une bolte, avec un menu par-dessus.................. 450

Ne perdez pas mes modifications en quittant ! 452
Implémenter le bouton de fermeture de la fenêtre . 456
Réaliser vos propres applications Windows 457

Sixiène partîe : Petits suttpléments par paque$ de dîx...........r. 459

Chapitre 19 : Les dix erreurs de génération les plus courantes
(et comment y remédier).......... 461

'className' ne contient pas de définition pour'memberName' 462
Impossible de convertir implicitement le type 'x'en 'y' 464
'className.memberName'est inaccessible en raison de son niveau de protection .. 466
Utilisation d'une variable locale non assignée 'n' 467

Le fichier'programName.exe' ne peut pas être copié dans le répertoire
d'exécution. Le processus ne peut pas.. ... 468
Le mot-clé new est requis sur'subclassName. methodName', car il masque
le membre hérité 'baseclassName.methodName' 469
'subclassName' : ne peut pas hériter de la classe scellée'baseclassName' 470
'className'n'implémentepaslemembred'interface'methodName' .. 470
'methodName' : tous les chemins de code ne retournent pas
nécessairement une valeur
) attendue

Pas de données ni de fonctions globales
Tous les objets sont alloués à partir du tas
Les variables de type pointeur ne sont pas autorisées..............
Vendez-moi quelques-unes de vos propriétés
Je n'inclurai plus jamais un fichier
Ne construisez pas, initialisez
Définis soigneusement tes types de variable, mon enfant
Pas d'héritage multiple
Prévoir une bonne interface
Le système des types unifiés

471
472

Chapitre 20 : Les dix plus importantes différences entre C# et C++ 473

474
474
475
475
476
477
478
478
478
479

481Index

lntroduction

u fil des années, les langages de programmation ont beaucoup
évolué. Dans les premiers temps, les langages étaient malcommodes

et les outils volumineux. Ecrire un programme qui fasse quoi que ce soit
d'utile était une chose difficile. Au fur et à mesure des progrès de la techno-
logie, des langages plus avancés apparaissaient sur le marché. Il y eut donc,
assez rapidement, le langage C, et par la suite Q++ (prononcer "C plus
plus"). Les outils s'amélioraient aussi. Très vite, il apparut des environne-
ments de développement intégré, avec des éditeurs, des concepteurs, des
débogueurs et Dieu sait quoi d'autre, réunis dans des ensembles faits pour
vous accompagner du berceau à la tombe.

On pourrait croire que ces nouveaux outils avaient rendu la programma-
tion plus facile, mais il n'en était rien : les problèmes n'en étaient que plus
compliqués. C'est juste au moment où je pensais que les programmeurs
allaient enfin rattraper ce processus qu'est apparu le développement
pour le Web.

Avec I'avènement du Web, le monde s'est divisé en deux camps : les
adeptes des solutions basées sur le système d'exploitation Windows, et
"les autres". Au début, ce sont "les autres" qui prirent I'avantage. Leurs
outils, basés sur le langage Java, permettaient d'écrire des programmes
distribués sur le Web.

C'est en juin 2000 que Microsoft a présenté sa réponse, sous la forme
d'une famille de langages et d'outils appelée .NET (prononcer "point net",
ou "dot net" pour faire américain), avec son emblématique langage de
programmation C# (prononcer "C sharp", autrement dit "do dièse").
Bientôt peut-être, on pourra programmer en si bémol majeur !

Les buveurs de Java en revendiquent la supériorité, mais les NETitiens ont
aussi leurs arguments. Sans prendre part à leur polémique, on peut dire
qu'une bonne partie de la différence peut se résumer en une phrase : Java
vous dit qu'il vous suffit de tout réécrire en Java, et vous pourrez exécuter

KIU G# pour tes Nuts

le résultat sur n'importe quelle machine ; .NET vous dit de ne rien réécrire,
et vous pourrez exécuter le résultat sous Windows. (En principe, .NET n'est
pas directement lié au système d'exploitation Windows, mais en pratique il
y a bien peu de chances que d'autres systèmes d'exploitation importants
viennent se placer sous la bannière .NET.)

C# fonctionne au mieux dans I'environnement .NET, permettant de créer
des programmes qui communiquent sur le Web, capables notamment de
fournir des services à des pages Web existantes. C# peut être intégré à

d'autres langages de programmation, comme Visual Basic et Visual C++,
permettant aux programmeurs de faire migrer les applications existantes
vers le Web sans qu'il soit nécessaire de les réécrire toutes pour cela.

Toutefois, C# n'en est pas moins un langage autonome. Avec I'environne-
ment Microsoft Visual Studio .NET, C# apporte aux programmeurs les
instruments dont ils ont besoin pour créer des applications harmonieuses.

Au suiet de ce liure
Ce livre a pour but de vous décrire C#, mais il y a une difficulté.

C# a été créé par Microsoft en tant que partie essentielle de son initiative
.NET. Pour des raisons sans doute politiques, Microsoft a soumis au comité
de normalisation internationale ECMA au cours de l'été 2000 les spécifica-
tions du langage C#, bien avant que .NET ne devienne une réalité. En
théorie, n'importe quelle entreprise peut donc proposer sa propre version
de C#, écrite pour fonctionner sous n'importe quel système d'exploitation
et sur n'importe quelle machine plus grosse qu'une calculatrice.

Toutefois, au moment où j'écris ces lignes, il n'existe qu'un seul fournis-
seur qui propose un compilateur C# : Microsoft. En outre, Visual C# n'est
proposé que d'une seule manière : en tant qu'élément de la suite d'outils
Visual Studio .NET.

Aussi, pour vous décrire C#, je ne pourrai éviter de vous parler de Visual
Studio, au moins jusqu'à un certain point ; j'ai donc essayé d'en maintenir
l'évocation à un minimum raisonnable. Je pourrais me contenter de vous
dire : "Ouvrez votre programme de la manière qui vous plaira" ; mais je
vous dirai plutôt : "Lancez C# à partir de Visual Studio en appuyant sur la
touche F5." Je veux que vous puissiez-vous concentrer sur le langage C#
sans avoir à vous casser la tête sur des questions mineures.

Introduction

D'un autre côté, je suis conscient du fait que beaucoup de lecteurs, sinon la
plupart d'entre eux, voudront utiliser C# dans le but d'écrire cles applications
pour Windows. Bien que ce ne soit pas un livre sur la programmation sous
Windows en tant que telle, j'ai consacré une partie à montrer comrnent C# et
Visual Studio forment, ensemble, un puissant environnement de programma-
tion pour Windows.

Je sais aussi que certains utilisateurs se serviront de C# afin de créer des
applications distribuées pour le Web ; mais comme on ne peut pas tout
mettre dans ce livre, il me faut bien définir une limite quelque part. C#
pour les lYuls ne s'attaque pas aux questions de .NET et de la programma-
tion distribuée.

XU

utiliser

Hrlpothèses qratuîtes
Avant de pouvoir commencer à programmer en C#, il vous faut avoir
installé sur votre ordinateur un environnement de développement C# ;

autrement dit, au moment où j'écris, Visual Studio de Microsoft. Pour
construire les programmes de ce livre, vous devez avoir installé Visual
Studio .NET.

Pour pouvoir seulement exécuter un programme généré avec C#, il faut
avoir le Common Language Runtime (CLR). Au cours de sa procédure
d'installation, Visual Studio .NET copie le CLR sur votre machine. D'autre
part, Microsoft a I'intention d'inclure le CLR dans les versions ultérieures
de Windows, mais ne I'a pas encore fait pour le moment.

A

Lomment ce litlre
J'ai fait en sorte que ce livre soit aussi facile à utiliser que possible. Il est
déjà bien assez difficile de comprendre un nouveau langage. Inutile de
rendre les choses encore plus compliquées. Ce livre est divisé en six
parties. Dans la première, je vous présente la programmation en C# avec
Visual Studio. Vous y serez guidé étape par étape à travers la création de
deux types différents de programme. Je vous encourage fortement à
commencer par là en lisant ces deux chapitres avant de vous aventurer
dans les autres parties du livre. Même si vous avez déjà écrit des pro-
grammes, c'est le schéma de base présenté dans la première partie qui
sera utilisé tout au long du livre.

XUI c# pour tes Nuts

De la deuxièrne à la quatrièrne partie, les chapitres sont autonomes. Je

les ai écrits de manière que vous puissiez ouvrir le livre au hasard sur
n'importe lequel d'entre eux et commencer à lire. Toutefois, si vous êtes
un débutant en programmation, il vous faudra commencer par lire la
deuxième partie avant de pouvoir passer à la suite. Mais si vous revenez
à un sujet particulier pour vous rafralchir la mémoire. vous ne devriez
pas avoir de difficultés à aller directement à la section correspondante
sans conrmencer par lire les 20 pages précédentes.

La cinquième partie revient quelque peu au style "faites comme ceci".
C# pour les Nuls est un livre sur la programmation en C#, mais c'est en
créant de véritables applications pour Windows que C# et Visual
Studio .NET brillent de tous leurs feux. Cette partie va donc vous guider
à travers les étapes de la construction d'un programme pour Windows,
au-delà des choses élémentaires. Une fois que vous aurez tout lu, vous
ne saurez pas encore tout sur la construction d'applications Windows
puissantes, rnais vous aurez appris ce qu'il faut pour partir dans cette
direction.

Et bien sûr, la sixième partie termine le livre selon la tradition des livres
Pour 1e.s 1/u/.s.

Comment ce lîure est organîsé
Voici un bref tour d'horizon de ce que vous allez trouver dans chaque
partie :

Première partie : Créer tus premiers
proqrammes c#
Dans votre vie future de programmeur C#, vous allez créer beaucoup de
programmes. Quelle meilleure manière de commencer que d'écrire une
petite application Windows amusante ('ai bien dit petite) ? Cette partie
va vous montrer, étape par étape, comment écrir'e la plus petite applica-
tion Windows possible en utilisant l'interface Visual Studio .NET. Vous
apprendrez aussi à créer le cadre de base C# que nous allons utiliser dans
le reste du livre,

f ntroduction XUI I

Deuxiètne partîe : Programmatîon élénentaire
en C#

Dans sa définition la plus élémentaire, une pièce de Shakespeare n'est
rien d'autre qu'un ensemble de séries de mots, liées les unes aux autres.
D'un point de vue tout aussi élémentaire, 90 "/n de l'écriture de n'importe
quel programme C# consiste en création de variables, en opérations
arithmétiques et en instructions de contrôle du chemin d'exécution du
programme. Cette partie est consacrée à ces opérations élémentaires.

Troisiètne partîe : Programmation et objets
Déclarer des variables ici et là et faire avec elles des additions et des
soustractions est une chose, écrire de véritables programmes pour de
véritables utilisateurs en est une autre. La troisième partie est consacrée
à la manière d'organiser vos données pour les rendre plus faciles à
utiliser dans la création d'un programme.

Quatrîèrne partîe : La proqrammatîon orîentée
objet
Vous pouvez toujours organiser les différentes parties d'un avion comme
vous voulez, mais tant que vous ne serez pas arrivé à lui faire faire quel-
que chose, ce ne sera rien d'autre qu'une collection de parties. Il pourra
aller quelque part seulement lorsque vous I'aurez fait décoller.

C'est sur la base du même principe que la quatrième partie va vous
expliquer comment transformer une collection de données en un vérita-
ble objet. Un objet qui contient différents éléments, bien sûr, mais qui
peut imiter les propriétés d'un objet du monde réel. Cette partie présente
donc I'essence de la programmation orientée objet.

Cînquième partie : Programmer pnur Windows
auec Uisual Studio

Il ne suffit pas d'avoir compris le langage C# pour savoir écrire une
application Windows complète avec toutes sortes de fonctions, de bou-
tons et autres raffinements. Rien que pour le plaisir, la cinquième partie

XUlll cnpour tes Nuts

vous guide dans I'utilisation de C# avec I'interface Visual Studio afin de
créer une application Windows "non élémentaire". Vous serez fier du
résultat, même si vos enfants n'appellent pas leurs copains pour le voir.

F. .\
Sîxième partie : Petîts sulrtrléments par
paquets de dix
C# est très doué pour trouver des erreurs dans vos programmes. Par
moment, je le trouve même un peu trop empressé à me faire remarquer
mes faiblesses. Mais, croyez-le ou non, il fait ça pour vous rendre service.
Il vous fait remarquer des problèmes que vous auriez dt découvrir vous-
même s'il n'avait pas été là pour ça.

Malheureusement, les messages d'erreur peuvent être un peu confus.
L'un des chapitres de cette partie présente les messages d'erreur de
génération C# les plus courants, leur signification, et la manière de s'en
débarrasser.

De nombreux lecteurs viendront à C# avec I'expérience antérieure d'un
autre langage de programmation. Le deuxième chapitre de cette partie
expose les dix principales différences entre C# et son géniteur, C++.

Au sujet du site Web

Sur notre site Web, vous trouverez tout Ie code source contenu dans ce liwe.
Rendez-vous sur le site des éditions First à I'adresse w.w.w. ef irst . com. Une
fois sur la page d'accueil, cliquez sur First Interactive, puis sur la rubrique
Téléchargement. Ensuite, faites défiler les ouwages jusqu'à C# Pour les [Vuls,
cliquez sur le lien pour télécharger le fichier ZIP contenant I'ensemble des
fichiers, et décompressezJe dans un répertoire de votre choix.

dans ce liure
Tout au long de ce livre, j'utilise les icônes suivantes pour mettre en
évidence des informations importantes.

e9N'@^
S%Ç| \ Cette icône indique des aspects techniques que vous pouvez ignorer en
= td \7 / première lecture.\ô/

lcônes utilisées

Introduction

L'icône Truc signale une information qui peut vous épargner pas mal de
temps et d'efforts.

Souvenez-vous de cela. C'est important.

Souvenez-vous aussi de ce qui est indiqué par cette icône. C'est le genre
de chose qui vous tombe dessus au moment où vous vous y attendez le
moins et qui peut produire un bogue vraiment difficile à débusquer.

Cette icône identifie le code que vous trouverez sur le site des éditions
First. Vous y gagnerez quelques efforts de frappe au clavier, mais n'en
abusez pas. Vous comprendrez mieux C# en saisissant les programmes
vous-même.

dans ce liure

XIX

U
.Ë

éf\=(D

*-f*li3F l----Fr:fn
| | \-.Y

Ël

Contuntions utilîsées
Pour faciliter les choses, j'ai utilisé différentes conventions. Les termes
qui ne sont pas des "mots ordinaires" apparaissent dans cette poiice,
afin de réduire au minimum les risques de confusion. Les listings de
programmes sont mis en retrait dans le texte de la façon suivante :

use System;

namespace MyNameSpace

{

public class MyClass

{

]

l

Chaque listing est suivi par une explication subtile et profonde. Les
programmes complets sont en téléchargement sur le site des éditions
First, ce qui fera votre bonheur, mais les petits fragments de code n'y
sont pas.

Enfin, vous verrez des séquences d'ouverture de menus comme dans
"Sélectionnez Fichier/Ouvrir avec/Bloc-notes", ce qui signifie : cliquer sur
le menu Fichier, puis, dans le menu qui apparalt, sur Ouvrir avec, et enfin,
dans le sous-menu qui apparalt, de sélectionner Bloc-notes.

XX C# pour les Nuls

aller maîntenant
Naturellement, la première étape est de comprendre le langage C#, idéale-
ment en lisant C# pour les [t'luls. En ce qui me concerne, je m'accorderais
quelques mois pour écrire des programmes C# simples avant de passer à

l'étape suivante qui est d'apprendre à créer des applications Windows. La
cinquième partie pourrait faire paraître les choses faciles, mais il y a pas
mal de pièges. Essayez tous les composants disponibles dans la bolte à

outils de Visual Studio. Son système d'aide en ligne, très complet et prati-
que, les décrits tous. Accordez-vous un bon nombre de mois d'expérience
de création d'applications Windows avant de vous lancer dans l'écriture de
programmes destinés à être distribués sur Internet.

Entre-temps, vous disposez de plusieurs endroits pour vous tenir au
courant de I'actualité de C#. Pour commencer, tournez-vous vers la
source officielle I nsdn . microsof t . com. Il existe aussi de nombreux sites
Web de programmeurs qui contiennent des éléments très complets sur
C#, et qui permettent aussi de participer à des discussions en ligne sur
les sujets les plus divers, de la manière d'enregistrer un fichier source aux
mérites combinés des ramasse-miettes (garbage collectors) déterministes
et non déterministes. Voici quelques grands sites sur C#, sans ordre
particulier :

,/ www. codeguru. earthweb . com/ c sharp

t/ csharpindex. com

t/ r^/ww. c- sharpcorner. com

J'ai aussi mon propre site Web, wlvw. stephendavls . com, qui contient une
liste de questions fréquemment posées (FAQ, Frequently Asked Ques-
tions). S'il y a une chose que vous n'arrivez pas à comprendre, Ia réponse
à ce qui vous préoccupe s'y trouve peut-être déjà. J'y ai aussi ajouté une
liste de toutes les erreurs qui ont pu se glisser dans le livre. Enfin, il y a
un lien vers mon adresse de messagerie qui vous permettra de m'envoyer
un mail si vous ne trouvez pas ce que vous cherchez.

0ù

Première partie

Gréeruos premiers
programmes c#

"Avont d'aborder fes ospects avancés comme
la fonction' Eject erLesTouristesQuiNaSuiventPos',
nous sllons commenceî por f es principes de bese."

Dans cette partîe...
Ilrtt:t I ici à ce que vous ayez maltrisé C#, vous avez pas mal de

V chemin à faire. Autant commencer par vous amuser un
peu. Cette première partie va vous montrer les étapes de la
création d'une application Windows aussi simple que possible
en utilisant I'interface de Visual Studio .NET. Vous y apprendrez
aussi à créer le cadre de travail de base en C# pour les exemples
de programmes qui apparaissent tout au long de ce livre.

Chapitre 1

Gréervotre premier
programme c#pour

Wi ndows

Dans ce chapitre :

Qu'est-ce qu'un programme ? Qu'est-ce que C# ? Où suis-je ?

Créer un programme pour Windows.

Bien accorder votre environnement Visual Studio .NET pour C#.

ans ce chapitre, je vais donner quelques explications sur les
ordinateurs, les langages de programmation, C#, et Visual

Studio .NET. Ensuite, je vous guiderai à travers les étapes de la création
d'un programme pour Windows très simple, écrit en C#.

Les langaqes de programmation, C#, et .NET

Un ordinateur est un serviteur remarquablement rapide, mais remarqua-
blement stupide. Il fera tout ce que vous lui demanderez (dans la limite de
ses capacités) très vite, et même de plus en plus vite. À I'heure actuelle,
un microprocesseur d'usage courant pour PC est capable de traiter près
d'un milliard d'opérations par seconde.

4 Première partie:Créer vos premiers programmes C#

Malheureusement, un ordinateur ne comprend rien de ce qui ressemble à
un langage humain. Vous pouvez toujours me dire : "Mon téléphone
compose le numéro de la personne que je veux appeler si je lui dis son
nom. Je sais qu'il y a un petit ordinateur qui pilote mon téléphone. Donc,
cet ordinateur parle français." En fait, c'est un programme qui interprète
ce que vous dites, pas I'ordinateur lui-même.

Le langage de I'ordinateur est souvent appelé longage machine. Pour un
être humain, il est possible, mais extrêmement difficile et fertile en erreurs,
d'écrire en langage machine.

Pour des raisons historiques, le langage machine est aussi appelé langage
d'assemblage. Chaque constructeur fournissait avec ses machines un
programme nommé assembleur qui convertissait des mots particuliers en
instructions du langage machine. Ainsi, vous pouviez écrire des choses
vraiment cryptiques du genre l'{OV AX, Ci{ (c'est une véritable instruction
pour processeur Intel), et I'assembleur convertissait cette instruction en
une suite de bits correspondant à une seule instruction machine.

Les êtres humains et les ordinateurs ont décidé de se rencontrer quelque
part entre les deux. Les programmeurs écrivent leurs programmes dans
un langage qui est loin d'être aussi libre que le langage humain, mais
beaucoup plus souple et plus facile à utiliser que le langage machine. Les
langages qui occupent cette zone intermédiaire (par exemple C#) sont
appelés langages de hout niueau (le terme haut a ici un sens relatif).

programme

Qu'est-ce qu'un programme ? Avant tout, un programme pour Windows
est un fichier exécutable que I'on peut lancer en double-cliquant sur son
icône dans une fenêtre. Par exemple, la version du traitement de texte
Word que j'utilise pour écrire ce livre est un programme. On peut appeler
cela un progromme exécutable, ou tout simplement un exécutoble. Le nom
du fichier d'un programme exécutable se termine généralement par
I'extension .EXE.

Mais un programme est aussi autre chose. Un programme exécutable
comporte un ou plusieurs fichiers source. Un fichier de programme C# est
un fichier texte qui contient une séquence de commandes C#, se suivant
selon les règles de la syntaxe de C#. On appelle fichier source un tel fichier,
probablement parce que c'est une source de frustration et d'angoisse.

1t$!Qa.

{cg)

Qu'est-ce (u'un)

Chapitre 1 : Créer votre premier programme C# pour Windows

Qu'est-ce que C#

Le langage de programmation C# est I'un de ces langages intermédiaires
qu'utilisent les programmeurs pour créer des programmes exécutables. C#

comble le fossé qui existait entre le puissant mais compliqué C+* et le facile
mais limité Visual Basic. Un fichier de programme C# porte I'extension .CS.

C# est :

t/ Souple : Un programme C# peut être exécuté sur la machine sur
laquelle il se trouve ou bien transmis par I'intermédiaire du Web
pour être exécuté sur un ordinateur distant.

t/ Puissant : C# dispose essentiellement du même jeu d'instructions
que C++, mais avec les angles arrondis.

t/ Facile à utiliser: Dans C#, les commandes responsables de la plupart
des erreurs dans Q+r ort été modifiées pour les rendre plus stres.

t/ Visuel : La bibliothèque de C# fournit les outils nécessaires pour
créer directement des fenêtres d'affichage élaborées, avec des
menus déroulants, des fenêtres à onglets, des barres de défilement
et des images d'arrière-plan, entre autres.

t/ Prêt pour Internet : C# est le pivot de la nouvelle stratégie Internet
de Microsoft, nommée .NET (prononcer point net).

,/ Sûr: Tout langage destiné à une utilisation sur Internet doit conte-
nir sous une forme ou sous une autre des outils de sécurité pour se
protéger contre les hackers.

Enfin, C# est une partie intégrante de .NET.

Qu'est-ce 4ue .NET ?

.NET est la stratégie adoptée par Microsoft dans le but d'ouvrir le Web
aux simples mortels comme vous et moi. Pour comprendre cela, il vous
faut en savoir un peu plus.

Il est très difficile de programmer pour Internet dans des langages un peu
anciens comme C ou C++. Sun Microsystems a répondu à ce problème en
créant le langage Java. Celui-ci repose sur la syntaxe de C++, rendue un peu
plus accessible, et est centré sur le principe d'un développement distribué.

?

6 Première

.Ë

^tËK
'qg,

partie : Créer vos premiers programmes G#

Quand un programmeur dit "distribué", il pense à des ordinateurs dispersés
géographiquement, exécutant des programmes qui se parlent les uns aux
autres, dans la plupart des cas par Internet.

Microsoft a décidé de se lancer dans la course et a acquis une licence du
code source de Java, créant sa propre version nommée Visual J++ (pronon-
cer "J plus plus"). Microsoft obtint ainsi un accès instantané aux progrès
accomplis par Sun et de nombreuses autres entreprises en développant
des utilitaires en Java. Il y eut toutefois quelques problèmes lorsque
Microsoft tenta d'ajouter des fonctions à Java, car son contrat de licence du
code source le lui interdisait. Pire encore, le contrat était si simple qu'il
était impossible d'y lire autre chose que ce qu'on avait voulu y mettre. Sun
avait réussi à bouter Microsoft hors du marché Java.

Il était finalement aussi bien de se retirer de Java, parce qu'il avait un
sérieux problème : pour en tirer tous les avantages, il y avait intérêt à
écrire tout son programme en Java. Comme Microsoft avait trop de
développeurs et trop de millions de lignes de code source existantes, il lui
fallait inventer un moyen de prendre en compte plusieurs langages. C'est
ainsi que .NET vint au monde.

.NET est un cadre de travail, en bien des points semblable à celui de Java.

La plate-forme de la génération précédente était constituée d'outils aux
noms étranges, comme Visual C++ 6.0, COM+, ASP*, Dynamic Linked
Libraries et Windows 2000 (et versions antérieures). .NET leur apporte
Visual Studio .NET, une amélioration de COM+, ASP.NET, une nouvelle
version de Windows, et des serveurs prenant en compte .NET. .NET quant
à lui prend en compte les nouveaux standards de communication comme
XML et SOAP, plutôt que les formats propriétaires de Microsoft. Enfin,
.NET prend en compte le dernier grand mot d'ordre qui fait fureur,
comme en son temps I'orientation objet : les services Web.

Microsoft revendique volontiers que .NET est très supérieur à la suite
d'outils pour le Web de Sun, basée sur Java, mais la question n'est pas là.

Contrairement à Java, .NET ne vous demande pas de réécrire vos program-
mes existants. Un programmeur Visual Basic peut se contenter d'ajouter à
son programme quelques lignes de C# afin de le rendre "bon pour le Web"
(ce qui signifie qu'il sait se procurer des données sur Internet). .NET prend
en compte tous les langages de Microsoft, plus une vingtaine de langages
d'autres origines, mais c'est bien C# qui est le navire amiral de la flotte
.NET. Contrairement à la plupart des autres langages, C# peut accéder à

toutes les fonctions de .NET.

Chapitre 1 : Gréer votre premier programme C# pour Windows 7

Qu'est-ce que Uisual Studîo .NET ? et C# ?

Vous vous posez strement beaucoup de questions. Le premier langage de
programmation populaire de Microsoft a été Visual Q++, ainsi nommé
parce qu'il avait une interface utilisateur graphique (ou GUI, Graphical
User Interface). Celle-ci contenait tout ce dont on pouvait avoir besoin
pour développer des programmes C*+ bien ficelés.

Puis Microsoft a créé d'autres langages de type "Visual", notamment
Visual Basic et Visual FoxPro, pour finalement les intégrer tous dans un
même environnement :Visual Studio. Visual Studio 6.0 se faisant de moins
en moins jeune, les développeurs en attendaient avec impatience la
version 7. C'est peu après le lancement de celle-ci que Microsoft a décidé
de la renommer Visual Studio .NET, de manière à mettre en évidence la
relation entre ce nouvel environnement et .NET.

D'abord, j'ai plutôt pris ça pour un stratagème, jusqu'au moment où j'ai
commencé à I'examiner sérieusement. Visual Studio .NET est assez
significativement différent de ses prédécesseurs, suffisamment pour
iustifier un nouveau nom.

Microsoft a nommé Visual C# son implémentation du langage C#. En réalité,
ce n'est rien d'autre que le composant C# de Visual Studio. C# est C#, avec
ou sans Visual Studio.

Et voilà. Plus de questions.

Créer une application pour hAindoos a(lec C#

Pour vous aider à vous mettre dans le bain avec C# et Visual Studio, cette
section va vous conduire à travers les étapes de la création d'un programme
Windows. Un programme Windows est couramment appelé une application
Windows, plus familièrement WinApp. Notre première WinApp nous servira
de schéma de base pour les programmes Windows que nous allons créer par
la suite.

En outre, ce programme va vous servir de test pour votre environnement
Visual Studio. Ce n'est qu'un test, mais c'est aussi un véritable programme
Windows. Si vous réussissez à créer, générer et exécuter ce programme,
alors votre environnement Visual Studio est correctement configuré, et
vous êtes prêt à lever I'ancre.

Première partie : ùêer vos premiers programmes C#

Créer le nodèle

Écrire une application Windows à partir de zéro est un processus clifficile,
c'est bien connu. ll y a beaucoup de gestionnaires de sessions, de
descripteurs, de contextes, beaucoup de défis à relever, même pour un
programme simple.

Visual Studio .NET en général et C# en particulier simplifient considéra-
blement la tâche de création d'une application Windows, même déjà très
simple. Pour être franc, je regrette un peu que vous ne soyez pas obligé
de tout faire à la main. Si le cæur vous en dit, vous pouvez essayer avec
Visual C**. . . Mais je n'insiste pas.

Comme le langage C# est conçu spécialement pour faire des programmes
qui s'exécutent sous Windows, il peut vous épargner bien des complica-
tions. En plus, Visual Studio .NET comporte un Assistant Applications qui
permet de créer des modèles de programme.

Typiquement, un modèle de programme ne fait rien par lui-même, en tout cas
rien d'utile (un peu comme la plupart de mes programmes), mais il vous fait
passer sans effort le premier obstacle dr,r démarrage. Certains modèles de
programme sont raisonnablement sophistiqués. En fait, vous serez bien
étonné de tout ce que l'Assistant Applications est capable de faire.

ô*\q/\

'e,
Pour commencer, lancez Visual Studio .NET.

N'oubliez pas qu'il faut d'abord avoir installé Visual Studio.

l. Pour lancer Visual Studio, cliquez sur DémarrerlProgrammes/
Microsoft Visual Studio.NET 7.0/Microsoft Visual Studio.NET 7.0,
comme le montre la Figure l. l.

Le CPU s'agite, le disque de même, et Visual Studio apparalt. C'est
ici que les choses deviennent intéressantes.

2. Sélectionnez Fichierfl\ouveau/Projet, comme le monEe la Figure 1.2.

Visual Studio ouvre la boîte de dialogue Nouveau projet, comme le
montre la Figure 1.3.

Un projet est une collection de fichiers que Visual Studio assemble
pour en faire un seul programme. Tous vos fichiers seront des
fichiers source C#, portant I'extension .CS. Un fichier de projet
porte I'extension .PRJ.

Chapitre 1 : Créer votre premier programme C# pour Windows I
.-.il

I
&5dôûnsr*s

t ---?t
t,-dI
ffi

P66Èô de trôvd

,#
t*il,***

Windûws Update

Nouveôu dscumffit Of f icÊ

ûuvrir un dscrfient Office

'-l Arcessoires

,.! oémarage

.fu Êxptor*eur Windows

,..& InternÊt Explorer

.p outlookExpress

:! outils Microsoft office
"|ffi, Mi..Ïôrùlt1utlod.,

ffi NicroscftExrd

ftl tticrosdt t4ord

j xn"t relp workshop

-:i F4'(r')sdt ,NET Frômê$,ûrk5D{

,$ mfrosoft np6fètion CBrfer Teit

-

Figure 1.1:
La ligne
droite n'est
pas le plus
court chemin
du Bureau à

c#.

-

Mi(losaft Offirê Toôls

;fioemaner J æ tlglts rÉl^6

Dans le volet Types de projets, sélectionnez Projets Visual C#, et
dans le volet Modèles, séIectionnez Application Windows. Si vous
ne voyez pas la bonne icône de modèle, ne vous inquiétez pas.
Faites défiler Ie contenu du volet Modèles pour la faire apparaître.

Ne cliquez pas encore sur OK.

Dans le champ Nom, entrez un nom pour votre projet ou laissez
le nom par défaut.

L'Assistant Applications va créer un dossier dans lequel il va stocker
différents fichiers, notamment le fichier source initial C# du projet.
L'Assistant Applications utilise comme nom de ce dossier le nom que
vous avez entré dans le champ Nom. Le nom initial par défaut est
'un/indowsAppllcationl. Si vous I'avez déjà utilisé pour un projet, il
devient WindowsApplicat ion} ou rjlndowsAppiication3. et ainsi de
suite.

Pour cet exemple, vous pouvez utiliser le nom par défaut ainsi que
I'emplacement par défaut pour Ie nouveau dossier : Mes
documents\Projets Visual Studio\Wi nd owsAp p 1 i c at i on 1 .

ir D
3J

3.

4.

visud stldiû,NET EnterprisÊ FeËturês

visud Studio.NEl lools

lP N5ml for Visual studio,t'ET 7,0

t0 Première partie : Créer vos premiers programmes C#

-

Figure 1.2 :

Créer un
n0uveau
projet vous
met sur la
voie d'une
a pplication
Windows.

-

-

Figure 1.3 :

L Assistant
Applications
de Visual
studio est
prêt à créer
p0ur v0us un
nouvea u

pr0gramme
Windows.

-

w @
ffi

Fibtiottreowde

f;g iiîJ

j

Ert,liothÈque de
,:,lnlrÉlBs

",LlindDi!5

æ
Eibliothèque de
contrôles U/eb

J Pr,:,lels !'i5uBl Eitsir

--i PrrriÊts ltisuàl f#
J Ffflett liituil !:++

J Fr ljÉts dt rrrniitturaLiorr et de 'lepl,:ienre
J ùlLrE5 Êr,liel:5

J -irilui:frrri !4:rt:l 5frt,Jir €-
AFÊliration

-Ë*

, I AsF'.rJE
lll

A5P,FIET<t | :J1
Prijet de ':reatron d'une ôppliràtion àvec une interfare utrliEateur Windoi+s

Emplacement I I
,- | l,f,,ûtuments and 5ettrnqslAdrnrnistr,:teur\Mes ,Jo,:umentsiFr, ;|

Le proiel vè êhe rréé sur C:\,,.\Mes dscumentsiProiets Visuol Studio\WindowsApplicètiont.

Parcourir ,..
I

vtlus I T- "l
--l Annuhr I Aid* |

5. Cliquez sur OK.

Le disque dur s'agite quelques instants (parfois longs) avant
d'ouvrir un cadre vierge nommé Forml au milieu de la fenêtre
Visual Studio.

Ghapitre 1 : Créer votre premier programme C# pour Windows

t\r
Générer et exécuter tlotre premier ûéritable

'Uindoulsprogramme u

Une fois que I'Assistant Applications a chargé le modèle de programme,
Visual Studio ouvre le programme en mode Conception. Vous devez
convertir en application Windows ce programme source C# vide, rien que
pour vous assurer que I'application initiale créée par I'Assistant Applica-
tions ne contient pas d'erreurs.

^"9FK On appel le générer(build) l'acte de convertir un fichier source C# en une
à7 ,31ll) véritable application Windows en état de fonctionner. Si votre fichier source

\g/ contient des erreurs, Visual C# les trouvera dans le processus de construction.

Sélectionnez Générer/Générer. Une fenêtre de résultats s'ouvre, dans
laquelle défile une succession de messages. Le dernier de ces messages
doitêtreGénération : 1 a réussi, O a échoué, 0 a été ignoré.

La Figure 1.4 montre à quoi ressemble mon Bureau après la génération de
I'application Windows par défaut. Vous pouvez déplacer les fenêtres
comme vous voulez. Les plus importantes sont la fenêtre Forml.csIDesign]
et la fenêtre Sortie.

tl

-

Figure 1.4 :

Le modèle de
pr0gramme
initial pour
Windows n'a
rien de bien
exc ita nt.

-

Dgnnès g'-til5

: -
'

Debuq

Fenêtre Help

-#

Forml 5ystem,Wrrdorys Forrn5.Fûfr w

fl:l e, f-Ë-l z -l.-l zr l@l /
B , ;. ..,.u.,""
, ArressibleDescflÉ

r AaÉessrbleNdnre
1i AccessibleRole Defaqlt

;â h?rrn,:rttt
Ëdtrloror Ll Lontror

; EacksroundlmogtI iaucun)
: aursor Oefault

:E) nont l'Îrrosol't 5ans 5el

ForeColor I Conhol1ext

FÉrmBsrder5tl,lÈ 5izèble

Rightl0teft No

Text, Forml
j
Er
â

:8 l. +rr rçt*rI rtzzt,tl
: AllowDrûF False

aûntextllenu {aucunl
i Enôbled True

ImeMode Nofontrûl
E ! .tçq rIr.tr r' ,tti::t*r
El (Dyndfri.Propertr

4 l:,*.1t4't.,,,.
t,,.-,,. -, :. ..: :::.::.. ... :.:: ::.:::..

ïext
Le tËxte cor*cnu dânr ce csntrôle,

GerrÉrat rorl :

{

La gânération a réursi Coll Chl

l2 Première partie : Créer vos premiers programmes G#

Vous pouvez maintenant exécuter ce programme en sélectionnant Déboguer/
Exécuter sans débogage. Lorsque vous le lancez, ce prograrnme doit ouwir
une fenêtre exactement semblable à la fenêtre Forml.cs[Design], mais sans les
points, comme le montre la Figure 1.5.

Dans la terminologie C#, cette fenêtre s'appelle un formulaire. Un formulaire
est doté d'un cadre, avec en haut une barre de titre contenant les boutons
Réduire, Agrandir, et Fermer.

Pour arrêter le programme, cliquez sur le bouton Fermer dans le coin
supérieur droit de la fenêtre.

Vous voyez: il n'est pas si difficile de programmer en C#.

Indépendamment de ce qu'il fait, ce programme initial est un test pour
votre installation. Si vous êtes parvenu jusqu'ici, alors votre environne-
ment Visual Studio est dans l'état qui convient aux programmes que nous
allons voir dans la suite de ce livre.

Pendant que vous y êtes, mettez donc à jour votre CV pour y faire savoir que
vous êtes officiellement un programmeur d'application Windows. Pour le
moment, vous pouvez vous contenter de mettre "application" au singulier.

Dessîner une applîcation

Le programme Windows par défaut n'est pas bien excitant, mais vous
pouvez I'améliorer un peu. Revenez dans Visual Studio, et sélectionnez
I'onglet Forml.csIDesign]. C'est la fenêtre du Concepteur de formulaires.

-

Figure 1.5 :

La fenêtre du
modèle
d application
Windows
fonctionne,
mais elle ne
suffit pas à

convaincre
que Visual
Studio.NET
vaut son prix.

- 1t${Qa.

{dg)

U

Chapitre 1 : Créer votre premier programme G# pour Windows t3

Le Concepteur de formulaires est un outil très puissant. Il vous permet de
"dessiner" vos programmes dans le formulaire. Une fois que vous avez
terminé, cliquez sur Générer, et le Concepteur de formulaires crée le code
C# nécessaire pour réaliser une application avec le joli cadre que vous
venez de dessiner.

Dans les sections suivantes, vous allez générer une application avec deux
champs de texte et un bouton. L'utilisateur peut saisir ce qu'il veut dans
I'un des champs de texte (la source), mais pas dans I'autre (la cible).
Lorsque I'utilisateur clique sur un bouton intitulé Copier, le programme
copie le texte du champ source dans le champ cible.

tl,lettre en place Quel(ues contrôles

L'interface utilisateur de Visual Studio est constituée de différentes
fenêtres. Tous les éléments comme les boutons et les zones de texte sont
des contrô1es. Afin de créer un programme Windows, vous allez utiliser
ces outils pour en réaliser l'interface utilisateur graphique (GUI), qui est
généralement la partie Ia plus difficile à réaliser d'un programme
Windows. Dans le Concepteur de formulaires, ces outils se trouvent dans
une fenêtre nommée Bolte à outils.

Si la Bô1te à outils n'est pas ouverte, sélectionnez Affichage/Bolte à outils.
La Figure 1.6 montre cette Boîte à outils.

-

Figure 1.6:
La Boîte à

outils de

Visual Studio
contient une
quantité de

contrôles
utiles.

-

DDnnÉÊs

,:ompùsânts

'r/y'rndows Forn-rs

\ Fc,inteur

A tatel

A LinLLabel

gll E.rttc'n

iii,r- Te:<tBo:r

$ Marnf"lenu

lv LneaxDox

(. HâùlOtrUtf0Tl

Grùupuox

-dl Picture8çx

,
-.j h'Anel

! natacrid

.9 ListBctx

ll checkedlist8ox

:g L0mBoErlx

;:- Llslvre({
;:

PresiÊ-F,ôpiers cirr:ulàire

Gènerni

t4 Première partie : Gréer vos premiers programmes C#

.$$G ^/ Si vos fenêtres ne sont pas aux mêmes endroits que les miennes, ne vous

Hinquiétezpas.VotreBo1teàoutilspeuttrèsbiensetrouveràgauche,à
t(7, droite ou au milieu de l'écran. Vous pouvez déplacer chaque fenêtre où
V vous voulez dans la fenêtre Visual Studio.

La Boîte à outils comporte plusieurs sections, dont Données, Composants,
et Windows Forms (qui sera peut-être devenue "Formulaires Windows"
dans la version que vous aurez entre les mains). Ces sections permettent
simplement d'organiser les contrôles afin que vous puissiez les trouver
plus facilement. La Bolte à outils contient de très nombreux contrôles, et
vous pouvez aussi créer les vôtres.

Dans la Bolte à outils, cliquez sur Windows Forms. Ces contrôles vont
vous permettre d'améliorer vos formulaires. Vous pouvez utiliser les
petites flèches que vous voyez à droite pour faire défiler la liste.

Pour ajouter un contrôle dans un formulaire, il suffit de le faire glisser et
de le déposer à I'endroit voulu. Essayez :

l. Faites glisser le contrôle Textbox sur le formulaire Forml, et
relâchez le bouton de la souris.

Une zone de texte apparalt dans le formulaire, contenant le texte
t extEox 1 . C'est le nom assigné à ce contrôle par le Concepteur de
formulaires. Vous pouvez redimensionner la zone de texte en
cliquant dessus et en faisant glisser ses poignées.

Vous ne pouvez augmenter que la longueur d'une zone de texte, pas
sa hauteur, car par défaut une zone de texte ne comporte qu'une
seule ligne.

2. Faites glisser une autre zone de texte et déposez-la au-dessous de
la première.

3. Faites maintenant glisser un bouton et déposez-le au-dessous des
deux zones de texte.

4. Redimensionnez le formulaire et déplacez les contrôles que vous
venez d'y mettre jusqu'à ce que le résultat vous convienne.

La Figure 1.7 montre mon formulaire.

Chapitre 1 : Créer votre premier programme C# pour Windows t5

-

Figure 1.7 :

Mon
formulaire
est sûrement
plus beau
que le vôtre.

-

Wi +1çlx
'' Iter:tE'rr:1 ...

0. ltertEr'irj

rllaîtri ser le s propri étés

Le problème le plus flagrant de cette application est maintenant que
l'étiquette du bouton qu'elle contient, buttonl, n'est pas très descriptive.
Nous allons commencer par y remédier.

Chaque contrôle possède un ensemble de propriétés qui en déterminent
I'apparence et le fonctionnement. Vous pouvez y accéder par la fenêtre
Propriétés :

l. SéIectionnez le bouton en cliquant dessus.

2. Faites apparaître la fenêtre Propriétés en sélectionnant Affrchage/
Fenêtre Propriétés.

Le contrôle Button possède plusieurs ensembles de propriétés,
dont les propriétés d'apparence, qui apparaissent dans la partie
supérieure de la fenêtre Propriétés, et les propriétés de comporte-
ment, qui apparaissent au-dessous. C'est la propriété Text que vous
devez changer.

3. Dans la colonne de gauche de la fenêtre Propriétés, sélectionnez
la propriété Text. Dans la colonne de droite, tapez Copier, et
appuyez sur Entrée.

La Figure 1.8 montre ces paramètres dans la fenêtre Propriétés, et
le formulaire qui en résulte.

t6 Première partie : Créer vos premiers programmes G#

I
button I 51'sl:ern, \,l/ind,:','rs, Forms, Butt'ln

f-'=l s; frl,a1 -t l
| .- I dr lt9 | /

Ere,:h,tri,undlmaqe l--_l (aucun)

-

Figure 1.8 :

La fenêtre
Propriétés
v0us 0ermet
de maîtriser
vos contrôles.

-

RighlT,:Lel't No

-

FlaL5lyle

E l-aJTtl:

Ftrefol,:r

Inr,rqe

Inr,r'leÂlgn

Intaqelrr,le;r

E | ..,,,i.,,,;r..
Âllr,r+Dr,:p

aonLe:rtlt:rrU

ttralogResult

' . l':l:l:l ':
Text
Le texte cùntenu dans ce rontlôle,

Default

5tandard

l'licrrrsoFt 5ôns 5erifj tl,Z5pt

! fontrolText

[--l (nurun)

Ivliddlefenter

l-l lnucun)

f"liddle,lerrter

IdISÉ

I ÉUCUn l

l,l:rne

4.

Vous pouvez utiliser la propriété Text d'un contrôle zone de texte
pour en changer le contenu initial. Pour les deux zones de texte de
notre exemple, j'ai défini cette propriété comme "Tapez quelque
chose ici" et "Le programme copie ici ce que vous avez tapé", afin
que I'utilisateur sache quoi faire après avoir lancé le programme.

De même, la propriété Text du formulaire lui-même correspond au
texte qui apparalt dans sa barre de titre, et vous pouvez la changer.
Cliquez dans un endroit quelconque dans le formulaire, tapez ce
qui vous convient dans la propriété Text, et appuyez sur Entrée.
J'ai fait apparaltre dans la barre de titre "Programme qui copie du
texte."

Sélectionnez la zone de texte du bas, et faites défrler ses prcpriétes de
comportement pour faire apparaûre la propriété ReadOnly (lecture
seule). Définissez cette propriété comme vraie en cliquant dessus et
en séIectionnant True dans le menu déroulant qui apparaît, comme le
montre la Figure 1.9.

Dans la barre d'outils de Visual Studio, cliquez sur Ie bouton
Enregistrer pour enregistrer votre travail.

Pendant que vous travaillez, pensez à cliquer régulièrement sur le
bouton Enregistrer pour être sûr de perdre le moins de choses
possible en cas d'incident.

D.

n n'
P Copier

-

Figure 1.9:
Définir une
zone de texte
en lecture
seule
(Read0nly)

empêche
l'utilisateur
de modifier
le champ
c0rrespon-
dant.

-

-

Figure 1.10:
La fenêtre du
pr0gramme
est le
formulaire
que v0us
venez de
créer.

-

Chapitre 1 : Créer votre premier programme C# pour Windows t7

Générer l'application

Pour générer I'application, sélectionnez Générer/Générer. Cette action
génère une nouvelle application Windows avec le formulaire que vous
venez de créer. Si elle n'était pas déjà ouverte, la fenêtre Sortie apparaît,
dans laquelle vous voyez défiler le flot de messages dont le dernier doit
êtreGénération : 1 a réussi, O a échoué, 0 a été ignoré.

Vous pouvez maintenant exécuter le programme en sélectionnant
Déboguer/Exécuter sans débogage. Le programme ouvre un formulaire
conforme à celui que vous venez de créer, comme le montre la Figure 1.10.

Vous pouvez taper ce que vous voulez dans la zone de texte du haut, mais
vous ne pouvez rien entrer dans celle du bas (à moins d'avoir oublié de
définir comme vraie la propriété ReadOnly).

-ltrl Àj

lrEEtrEE@

lTape: quelque cf'cse ici

,.i,t'ar:i .- : : -r:.l,tf:r.,r L. .:.l .

progal]w copie ici ce que rous èyez tèpé

lle programme copie ici ce quÊ vous avez tapé

t8 Première partie : Créer vos premiers programmes C#

Faisons-lui faire quelque chose

Ce programme se présente bien, mais il ne fait rien. Si vous cliquez sur le
bouton Copier, rien ne se passe. Jusqu'ici, vous n'avez fait que définir les
propriétés d'apparence - celles qui définissent I'apparence des contrôles.
Il vous faut maintenant mettre dans Ie bouton Copier I'astuce qui va lui
faire effectivement copier le texte de la source à la cible :

l. Dans le Concepteur de formulaires, sélectionnez le bouton Copier.

2. Dans la fenêtre Propriétés, cliquez sur le bouton contenant un
éclair, au-dessus de la liste des propriétés, pour ouvrir un nouvel
ensemble des propriétés.

Ce sont les éuénements.lls définissent ce que fait un contrôle au
cours de I'exécution du programme.

Vous devez définir l'événement Click. Comme son nom I'indique, il
définit ce que fait le bouton lorsque I'utilisateur clique dessus.

3. Doublecliquez sur l'événement Click et voyez l'écran se hnsfonner.

La fenêtre de conception est I'une des deux manières de voir votre
application. L'autre est la fenêtre de code qui montre le code source
C# que le Concepteur de formulaires a construit pour vous automati-
quement. Visual Studio sait qu'il vous faut entrer un peu de code C#
afin que votre programme fasse ce que vous attendez de lui.

Lorsque vous double-cliquez sur la propriété Click, Visual Studio
affiche la fenêtre Code et crée une nouvelle méthode, à laquelle il
donne le nom descriptif buttonl*Click () . Lorsque I'utilisateur
clique sur le bouton Copier, cette méthode effectue le transfert du
texte de textBoxl, la source, à textBox2,la cible.

Pour le moment, ne vous inquiétez pas de ce qu'est une méthode.
J'en donnerai la description au Chapitre 8.

Cette méthode copie simplement la propriété Text de textBoxl
dans la propriété Text de textBox2.

4. Dans la méthode buttonl_C1ick O, ajoutez simplement la ligne
de code suivante :

textBox2.Text = textBoxl.Text;

Ghapitre 1 : Créer votre premier programme G# pour Windows

Remarquez que C# essaie de vous faciliter la tâche de saisie du code.
La Figure 1.1 1 montre I'affichage au moment où je tape le nom de la
dernière propriété Text de la ligne ci-dessus. La liste déroulante des
propriétés de la zone de texte correspondante apparalt, vous offrant
un aide-mémoire des propriétés disponibles, avec une info-bulle qui
vous dit de quoi il s'agit. Cette fonction vous permet de compléter
automatiquement ce que vous tapez, et c'est une aide précieuse au
cours de la programmation (pour que ça marche, ne faites pas de
fautes de frappe dans ce qui précède - attention aux majuscules et
minuscules).

5. Sélectionnez Générer/Générer pour ajouter au programme la
nouvelle méthode de clic.

Essayer le produit final
Pour exécuter encore une fois le programme, sélectionnez Déboguer/
Exécuter sans débogage. Tapez un peu de texte dans Ia zone de texte
source, et cliquez sur le bouton Copier. Le texte est aussitôt copié dans la

tg

1r${Qa^

ftg)

-

Figure 1.11 :

La fonction
de sugges-
tion automa-
tique affiche
les noms des
propriétés au
fur et à

mesure que
vous tapez.

-

F.,:hiet Edition Affrchage PJojet

ll 'i .3: ' L - .,! rai'I#
t'. -. ,' Forml,cs*

|

ÉèFerÊr

:':)',

!ébog,:er ûutils.â

l?f I'tt nd: 1,,:AFFI c:lr,rn i.F:{ni I :l

i
[::l rl, fa i
L.,_l:r IEI

:J

l.:'T-ù.Tl1rË 1Èll

:-lf,l1r !r:,lal llil]til

.ù.FËIrr:at 1rn. Frtrl ilËrr FÊrlrr1 (l j ;

lelÈ | 5l:rln0 | E'[Un' bn5É. I Lrl
1r

5ùrne

>l

+r

:t*
Z

Pret

; :,.;,, .. E ssrtie

Col 40

20 Première partie : Créer vos premiers programmes G#

zone de texte cible, comme le montre la Figure 1.12. Vous pouvez joyeuse-
ment répéter le processus autant que vous voulez avec tout ce qui vous
passe par la tête, jusqu'à ce que l'épuisement vous submerge.

-ltrlxJ

lJ'ai tapÉ r,ea darrr la zone de lerte t.rurrte

-

Figure 1.12 :

Ça marche !

-

lJ'ai tapé ceci danç le asne de texte srrurce

En considérant le processus de création, vous serez peut-être frappé par
son orientation graphique. Faites glisser des contrôles, déposez-les où
vous voulez dans le formulaire, définissez leurs propriétés, et vous y êtes.
Il vous a suffi d'écrire une seule ligne de code C#, et même ça n'était pas
bien difficile.

on pourrait objecter que ce programme ne fait pas grand-chose, mais je
ne suis pas d'accord. Consultez simplement un manuel de programmation
des débuts de Windows, à l'époque où les assistants d'application n'exis-
taient pas encore, et vous verrez combien d'heures de programmation il
fallait pour réaliser une application aussi simple que celle-ci.

Programmeurs Uisual Basic, attention !
Ceux d'entre vous qui sont des programmeurs Visual Basic ont peut-être
une impression de déjà vu. En fait, le Concepteur de formulaires fonc-
tionne assez largement comme les dernières versions de I'environnement
Visual Basic, mais il est beaucoup plus puissant (en tout cas, par rapport
aux versions antérieures à Visual Basic .NET). Le langage C# en lui-même
est d'ailleurs plus puissant que le précédent Visual Basic. La bibliothèque
de routines .NET est plus puissante que I'ancienne bibliothèque de Visual
Basic. Enfin, .NET prend en compte le développement distribué et en
différents langages, ce que ne faisait pas Visual Basic. En clehors de tout
cela, je dirais qu'ils sont à peu près identiques.

^tËK
'qE,

Chapitre 2

Gréervotre première
application console en C#

Dans ce chapitre :

Créer une application console plus maniable'

Examiner le modèle d'application console'

Explorer les différentes parties du modèle'

ême le programme windows le plus élémentaire peut être

décourageant pour le programmeur c# débutant. si vous ne me

croyezpas, alleisimplement voir Ie Chapitre 1. Un programme du type

qu" t'on appelle application console génère significativement moins de

code c# et est beaucoup plus facile à comprendre.

Dans ce chapitre, vous allez utiliser Visual Studio afin de créer un modèle

d,application console, que vous allez ensuite simplifier un peu manuelle-

ment. Vous pourrez utifiser le résultat comme modèle pour bon nombre

des programmes que je présente dans ce livre'

SP*E Le principal but de ce livre (en tout cas des premières parties) est de
y -.îi \ ;J; aider à comprendre c#. pour faire en c# un ieu qui aura un succès

\ !g:I l

\ 5 I mondial, il faut d'abord que vous connaissiez le langage c#'

22 Première partie : Créer vos premiers programmes C#

Créer un rnodèle d'applicatîon cnnsnle

^"1$K
Les instructions suivantes concernent Visual Studio. Si vous utilisez un

+Y ,^, \ autre environnement, c'est à la documentation de celui-ci que vous devez

(O) vous référer. Mais quel que soit votre environnement, vous pouvez y
V-,/ taper directement le code C#.

Créer le programme source

Pour créer votre modèle d'application console en C#, suivez ces étapes :

l. Sélectionnez Fichier/Nouveau/Projet pour créer un nouveau projet.

Visual Studio affiche une fenêtre contenant des icônes qui repré-
sentent les différents types d'application que vous pouvez créer.

2. Dans cette fenêtre Nouveau projet, cliquez sur I'icône Application
console.

Faites attention à bien sélectionner le dossier des projets Visual C#
dans la fenêtre Nouveau projet. Si vous en sélectionnez un autre
par erreur, Visual Studio peut créer une horreur comme une appli-
cation Visual Basic ou Visual C*n.

Avec Visual Studio, il est nécessaire de créer un projet avant de
pouvoir commencer à entrer votre programme C#. Un projet est un
peu comme un tiroir dans lequel vous allez entasser tous les fichiers
qui constituent votre programme. Lorsque vous demandez au
compilateur de générer le programme, il extrait du projet les fichiers
dont il a besoin afin de créer le programme à partir de ceux-ci.

Le nom par défaut de votre première application est
ConsoleApplicationl. L'emplacement par défaut du fichier corres-
pondant est un peu trop en profondeur à mon gott dans le dossier
Mes documents. Puisque je suis un peu difficile (ou peut-être parce
que j'écris un livre), je préfère classer mes programmes où je veux,
et pas nécessairement là où Visual Studio veut les mettre.

3. Pour changer le dossier par défaut de vos programmes, cliquez
sur le bouton Parcourir et naviguezjusqu'à I'endroit voulu.

Pour le dossier dans lequel je place tous mes programmes, j'ai
choisi le nom Programmes C#.

ôf\ç/ .--). \e,
.Ë

Chapitre 2:Créer votre première application console en G#

4. Dans le champ Nom, entrez le nom que vous voulez donner au
projet que vous crêez. Pour ce premier programme, nous allons
nous en tenir à la tradition avec Hel1o.

5. Cliquez sur OK.

Après quelques instants de travail, Visual Studio génère un fichier
nommé Clas s 1 . c s. (Si vous regardez dans la fenêtre nommée
Explorateur de soiutions, vous y verrez plusieurs autres fichiers.
Vous pouvez les ignorer pour le moment.)

Le contenu de votre première application console apparalt ainsi (les
commentaires en anglais seront peut-être en français dans la version que
vous utiliserez) :

using System;

nanespace He11o
tt

lll (rrmlnary)

| | | Suwary description for Classl.
I I I 4tsw*nary)
class Class1
{

static void Main(string[1 args)
{

ll
/l rooo: Add code to start application here

il
]

'l

t

Par rapport au programme exécutable Windows que vous avez créé au
Chapitre 1, Visual Studio a inversé les lignes using Systern et namespace
He11o. C# accepte ces commandes dans un ordre comme dans I'autre (il y
a une différence. mais elle est subtile et bien en dehors du cadre de ce
chapitre).

Tester le résultat

Sélectionnez Générer/Générer pour faire de votre programme C# un
programme exécutable.

23

ôf\=(t

24 Première partie : Gréer vos premiers programmes C#

Visual Studio répond par le message suivant :

- Début de la génération: Projet: Hel1o, Configuration: Debug ,NEf -

Préparation des ressources. . .
:Mise à jour des références...

Compilation principale en cours. . .

Génération terminée -- 0 erreur, 0 avertissenent
Génération d'assenblys satellites en cours...

---- Terniné ---
Génération : I a réussi, 0 a échoué, 0 a été ignoré

Dans lequel Ie point important est I a réussi.
^rtC,hv-

-

æUnerèglegénéraledelaprogrammationestque''aréuSSi''Veutdire,,çaf fxlltL]r, va", et "a échoué" veut dire "ça ne va pas".

- Pour exécuter le programme, sélectionnez Déboguer/Démarrer. Le
programme se termine immédiatement. Apparemment, il n'a rien fait
du tout, et en fait c'est bien le cas. Le modèle n'est rien d'autre qu'une
coquille vide.

Créer tutre premîère ttérîtable application console

Modifiez maintenant le fichier du modèle C1ass1. cs, conformément à ce
qui suit.

-rr Cr\V- ^1.,-.-
71r{Ç Ne vous préoccupez pas d'entrer un ou deux espaces ou une ou deux
LL?r, lignes blanches. En revanche, respectez les majuscules et les minuscules.

-

using Systen;
namespace IIe1lo

t

^!!hr.^ ^t^^a
I,^.SS1

PUUTfL LrADù UrA

{

I | ç'est ici que coûureRce le progranne
static void Mai.n(string I args)
{

Chapitre 2: Créer votre première application console en G# 25

// Dernande son non à 1'util-isateur
Console.Writeline("Entrez votre nom: t') ;

ll Lit le nom entré par 1'utilisateur
string sNane - Console.Readline0;

/i Accueille 1'utilisateur par son non

Console.hlriteline("He1Lo, " * sNane) ;

i / Rttend confirnation de ltuti.lisateur
Console.Writeline("Appuyez sur Entrée pour terniner...") ;

Console.ReadO;

]

Sélectionnez Générer/Générer pour faire de cette nouvelle version de
C1ass1. cs le programme C1ass1. exe.

Dans la fenêtre Visual Studio .NET, cliquez sur Déboguer/Démarrer. Le
programme vous demande immédiatement votre nom. Tapez votre nom
et appuyez sur la touche Entrée. Le programme répond :

Entrez votre non:

Hildegarde
He11o, Hildegarde
Appuyez sur Entrée pour terniner...

Le programme répond par le mot "Hello", suivi par le nom que vous avez
entré. Puis il attend que vous appuyiez sur Ia touche Entrée pour rendre
son dernier soupir.

4${ea^ Vous pouvez aussi exécuter votre programme à partir de la ligne de

At'^!\ commande DOS. Ouvrez une fenêtre DOS. Tapez cd \Programmes
:HW) c*rH"llo\bin\Debug. Puis, pour exécuter le progra..", tapez Hello

\ô/ et appuyez sur Entrée. Le résultat doit être le même. Vous pouvez aussi
naviguer jusqu'au dossier \Programmes C1É\ue11o\bin\Debug dans
I'Explorateur Windows et double-cliquer sur le fichier He11o. exe.

Eramînons ce programme

Dans les sections qui suivent, nous allons prendre à part I'une après I'autre

chaque partie de cette application console en C# afin d'en comprendre le

fonctionnement.

26 Première partie : Gréer vos premiers programmes G#

Le eadre de trat/aîl du programme

Pour toute application console, le cadre de travail de base commençe par

using System;

nanespace Hel1o

publie class Classl
t

I I C'est ici que coruaencê le prograrnme

public static void Main(string[] args)

i
// Le code sera placé ici

]

l
l

L'exécution proprement dite du programme commence iuste après
I'instruction qui contient Main et se termine à la parenthèse fermante qui
suit Main. Je vous expliquerai en temps utile le sens de ces instructions.
Je ne peux pas en dire plus pour le moment.

L'instruction using Sysrem peut venir juste avant ou juste après I'instruc-
tion namespace Hel1o l. L'ordre dans lequel elles se présentent n'a pas

d'importance.

Les commentaÎres

Ce modèle contient déjà un certain nombre de lignes, et j'en ai ajouté
plusieurs autres, comme ici :

// C'est ici que conmence 1e programme

public static void Maj"n(stringIJ args)

Dans cet exemple, C# ignore la première ligne. C'est ce que I'on appelle un
commentaire.

^}kt Toute ligne commençant par lloupar lll es:une ligne de texte libre qui

ftXl sera ignorée par C#. Pour le moment, vous pouvez consiclérer ll eI lll
lLvrf\SrZ7 comme équivalents.

-

Ghapitre 2 : Créer votre première application console en G#

Pourquoi mettre dans un programme des lignes destinées à être ignorées ?

Un programme, même un programme C#, n'est pas facile à comprendre.
Souvenez-vous qu'un langage de programmation est un compromis entre
ce que comprennent les ordinateurs et ce que comprennent les êtres
humains. Introduire des commentaires permet d'expliquer les instructions
C#. Ceux-ci peuvent vous aider à écrire le code, et ils seront particulière-
ment utiles au malchanceux qui devra reprendre votre programme un an
plus tard et reconstituer votre logique. Ajouter des explications facilite
beaucoup les choses.

.qa/ N'hésitez pas à faire des commentaires, et faites-en le plus tôt possible. Ils

ft}Il vous aideront, ainsi que les autres programmeurs concernés, à vous

\\f/ rappeler ce que vous avez voulu faire en écrivant ces instructions.

La substance du lrrogramme
Le cæur de ce programme se trouve dans le bloc de code délimité par
I'instructionMain i):

/l Denande son non à 1'utilisateur
console.l,lriteline("Entrez votre nogl: ") ;

ll tit 1e non entré par 1'utilisateur
string sNane = Console.Readline0;

/l Accueille 1'utilisateur par son nom

Console .l,Jriteline ("He11o , " * sName) ;

L'exécution du programme commence par la première instruction C#:
Console . WriteLine. Celle-ci écrit dans la console la chaîne de caractères
Entrez votre nom:.

L'instruction suivante lit la réponse entrée par I'utilisateur et la stocke
dans une "bolte de travail" nommée sName fi'en dirai plus sur ces empla-
cements de stockage au Chapitre 3). La troisième instruction combine la
châîne He11o et le nom entré par I'utilisateur, et envoie I'ensemble sur la
console.

Les trois dernières lignes attendent que I'utilisateur appuie sur la touche
Entrée avant de poursuivre. Elles assurent ainsi que I'utilisateur a le

temps de lire ce que le programme vient d'afficher :

27

28 Première partie : Créer vos premiers programmes G#

/l Attend confirmation de 1'utilisateur
Console.EriteLine ("Appuyez sur Entrée pour terniner. . . ") ;

Console.Read0;

Cette étape peut être importante selon votre environnement et selon la
manière dont vous exécutez le programme. Dans Visual Studio, vous avez
deux manières d'exécuter un programme. Si vous utilisez la commande
DéboguerlDémarrer, Visual Studio ferme la fenêtre de résultats dès que le
programme se termine. C'est la même chose qui se produit lorsque vous
exécutez le programme en double-cliquant sur I'icône du fichier exécuta-
ble dans I'Explorateur Windows.

"ùtq-$, Quelle que soit la manière dont vous
à-i ilû j que l'utilisateur appuie sur la touche

x T .t les problèmes.

exécutez le programme, attendre
Entrée avant de quitter résout tous

Deuxième partie

Programmation
élémentaire en C,#

"Excusez-mai. Y a-t-il quelgu'un ici
qui ne soit PAS en train de pcrlar de C# ?"

Dans cette partie...

es programmes les plus récents de commerce électronique,
de business to business et de dot.com en tout genre utilisent

les mêmes éléments de base que le plus simple programme de

conversion de température. Cette partie présente les bases de la

création de variables, de I'exécution d'opérations arithmétiques,
et de la maltrise du cheminement de I'exécution d'un programme.

Chapitre 3

Déclarer des variables
de type valeur

Dans ce chapitre :

Créer un emplacement de stockage : la variable en C#.

Utiliser des entiers.

Traiter des valeurs fractionnelles.

Déclarer des variables d'autres types.

Traiter des constantes numériques.

Changer de type.

a plus fondamentale de toutes les notions de la programmation est
celle de variable. Une variable C# est comme une petite bolte dans

laquelle vous pouvez stocker des choses, en particulier des nombres.
pour vous en servir ensuite.

Le terme uariable est emprunté au monde des mathématiques. Par exemple :

signifie qu'à partir du moment où on a écrit cela, on peut utiliser le terme
n quand on veut dire 1, aussi longtemps que I'on n'aura pas attribué un
autre sens à n (un nombre, une équation, un concept ou autre).

32 Deuxième partie : Programmation élémentaire en C#

Dans le monde de la programmation, la signification du mot variable n'est
guère différente. Lorsqu'un programmeur C# écrit :

int

Ces instructions cléfinissent un "élément" n, et lui assignent la valeur 1. À
partir de ce point dans le programme, la variable n a la valeur I jusqu'à ce
que le programmeur change cette valeur pour un autre nombre.

Malheureusement pour les programmeurs, C# impose plusieurs limita-
tions aux variables - limitations dont les mathématiciens n'ont pas à se
soucier (sauf ceux qui s'aventurent à lire ce livre).

n'

I'

Déclarer une t/ariable

i nt

Quand un mathématicien dit : "n égale 1", cela signifie que le terme n est
équivalent à 1, raisonnement que vous pouvez trouver étrange. Le mathé-
tnaticien est libre d'introduire des variables au gré de sa fantaisie. Par
exemple :

+zy+y
,, + 1 ^1^-^I ' ! qrurù

Ici, le mathématicien a écrit une équation quadratique. Peut-être les varia-
bles x et y ont-elles déjà été définies quelque part. Toutefois, lorsqu'il voit
apparaltre une nouvelle variable, k, le programme tombe des nues. Dans
cet exemple, ft ne signifie pas essentiellement qu'il a la valeur de y plus 1,

mais qu'il représente le concept de y plus 1. C'est une sorte de raccourci.
Jetez un coup d'æil à n'importe quel manuel de mathématiques, et vous
veyyez ce que je veux dire. Je dis bien : jetez un coup d'cril. Vous êtes ici
pour lire mon livre et pas un autre.

Un programmeur doit être précis dans Ia terminologie qu'il utilise. Par
exemple, il peut écrire le code suivant :

x=yl
si k:
x=k2

.Ë

^tËK
=({g,

Ghapitre 3 : 0éclarer des variables de type valeur 33

La première ligne signifie : "Creuser un petit espace de stockage dans la
mémoire de I'ordinateur, et lui assigner le nom n." Cette étape revient à
ajouter un dossier dans une armoire à dossiers suspendus et à écrire n
sur son étiquette. La deuxième ligne signifie : "Stocker la valeur I dans la
variable n, en remplaçant par cette valeur tout ce que la variable pouvait
contenir auparavant." Dans une armoire à dossiers suspendus, l'équiva-
lent serait : "Ouvrir le dossier n, enlever tout ce qu'il contient, et mettre I
à la place."

Le symbole = est appelé opérateur d'assignation. Je dis bien le "symbole
et non le "signe" ou autre terme plus ou moins vague.

Le mathématicien dit : "n égale 1." Le programmeur C# le dit d'une ma-
nière plus précise : "Stocker la valeur I dans la variable n." (Pensez à
I'armoire à dossiers suspendus, et vous veyrez que c'est préférable.) Les
opérateurs C# disent à I'ordinateur ce que vous voulez faire. Autrement
dit, les opérateurs sont des verbes et non des descripteurs. L'opérateur
d'assignation prend la valeur qui est à sa droite et la stocke dans la
variable qui est à sa gauche.

Qu'est-ce qu'un i rrt .)

Les mathématiciens manipulent des concepts. Ils peuvent créer des
variables quand ça leur chante, et une même variable peut revêtir diffé-
rentes significations dans la même équation. Au mieux, un mathématicien
considère une variable comme une valeur sans forme fixe, au pire, comme
un vague concept. Ne riez pas, c'est probablement de la même manière
que vous voyez les choses.

Si le mathématicien écrit :

n - l.1l r t

n = | l... . . - t

n : Maison

n * ttleg llartiens sont panni nousn

Chacune de ces lignes associe la variable n à une chose différente, et le
mathématicien n'y pense même pas. Je n'y pense pas beaucoup moi-même,
sauf pour la dernière ligne.

C# est loin d'offrir une telle souplesse. En C#, chaque variable possède un
type fixe. Lorsque vous choisissez un nouveau dossier suspendu pour

34 Deuxième partie : Programmation élémentaire en C#

votre armoire, vous devez en prendre un de la taille qui convient. Si vous
avez choisi un dossier suspendu "de type entier", vous ne pouvez pas
espérer y mettre la carte de France.

Pour I'exemple de la section précédente, vous allez choisir un dossier sus-
pendu conçu dans le but de contenir un nombre entier : ce que C# appelle
une variable de type int (integer). Les entiers sont les nombres comme 0, 1,

2,3, et ainsi de suite, plus les nombres négatifs, -1, -2, -3, et ainsi de suite.

Avant de pouvoir utiliser une variable, vous devez la déclarer. Une fois
que vous avez déclaré une variable de type int, elle peut contenir et
régurgiter des valeurs entières, comme le montre I'exemple suivant :

IT

'i nf

int

n=

Déclare une variable

Déc1are une variable
avec 1a valeur 2

m = ?'

Assigne à la variable

entière n

entière m et f initialise

n la valeur stoekée dans m

La première ligne après le commentaire est une déclaration qui crée une
zone de stockage, n, faite pour contenir une valeur entière. Aussi long-
temps qu'il ne lui est pas assigné une valeur, la valeur initiale de n n'est
pas spécifiée. La deuxième déclaration crée une variable entière m, avec 2

pour valeur initiale.

^tt Le terme initialisersignifie assigner une valeur initiale. Initialiser une
à-f ilû) variable, c'est lui assigner une valeur pour la première fois. Tant qu'une

\g/ variable n'a pas été initialisée, on n'en connalt pas la valeur.

La dernière instruction de cet exemple assigne à la variable n la valeur
stockée dans m, qui est 2. La variable n continue à contenir la valeur 2

jusqu'à ce qu'une nouvelle valeur lui soit assignée.

Les règles de déclaration de uarîable

Vous pouvez initialiser une variable dans la déclaration elle-même .

/ I DécIare une nouvelle variable int
| | et lui donne I eomne valeur initiale
int o = 1l

Ghapitre 3 : Déclarer des variables de type valeur 3 5

Ce qui revient à mettre la valeur 1 dans votre nouveau dossier suspendu
au moment où vous le mettez dans I'armoire, plutôt que de le mettre
d'abord pour le rouvrir ensuite et y mettre la valeur.

Vous pouvez déclarer une variable n'importe où (en fait, presque n'importe
où) clans un programme, mais vous ne pouvez pas utiliser une variable
avant de I'avoir déclarée et de lui avoir donné une valeur. Les deux instruc-
tions suivantes sont donc illicites :

ll Ce qui suit est illicite car n n'a pas reçu
ll une valeur avant d'être utilisée
int m;

n=n;
ll Ce qui suit est illicite car p n'a pas été
ll dêclarée avant d'être utilisée
p = 2i
int pi

Enfin, vous ne pouvez pas déclarer deux fois la même variable.

Uariations sur un thème : des int de dîfférents
tapes

La plupart des variables simples sont de type int. C# en offre un certain
nombre de variantes pour quelques occasions particulières.

Toutes les variables de type int sont limitées aux nombres entiers. Le
type int souffre aussi d'autres limitations. Par exemple, une variable de
type int ne peut stocker de valeur qu'à I'intérieur de l'étendue -2 milliards
; t 'rilliards.

1t$!Qa^
Q L 't

^.v7atr
\

:(dqfl) L'étendue exacte est de -2 147 483 648 à2 147 483 647.

\ô/

^s}ÉK Deux milliards de centimètres représentent à peu près la rnoitié de la
\J/;l ^..?r \ circonférence de la Terre.-\ vra)

\E/"\-/

36 Deuxième partie: Programmation élémentaire en C#

Au cas où 2 milliards ne vous suffirait pas, C# offre un type d'entier nommé
iong (abréviation de long int) qui peut contenir un nombre entier beau-
coup plus long. Le seul inconvénient du type long est qu'il occupe plus de
place dans votre armoire : un entier de type long consomme huit octets (64
bits), soit deux fois plus qu'un int ordinaire.

.r$c ./ Autrement dit, un entier iong occupe deux dossiers d'une capacité d'un

HintclansvotrearmoireàdossierSSuSpendus'Commecettemétaphore
t(7, d'armoire à dossiers suspendus commence à être un peu usée, je parlerai
Y à partir de maintenant en octets.

Un entier l-ong représente un nombre entier qui peut aller approximative-
ment de -1Otsà 101e.

L'étendue exacte d'un entier long est de -9 223 372 036 854 775 808 à
9 223 372 036 854 775 807.

C# offre plusieurs autres types de variable entière montrés par le Tableau 3.1.

1e${Qa.
^.rr7p7\

'qg,

Tableau 3.1 : Taille et étendue des types entiers en C#.

Type Taille (octets) Étendue Exemple

sbyte

byte

short

ush ort

int

uint

long

ulong

1

1

2

2

4

4

B

B

-128 à 127

0à255

-32,768 à 32,767

0 à 65,535

-2 milliards à 2 milliards

0 à 4 milliards

-101s à 101e (beaucoup)

0 à 1020

sbyte sb = 12;

byte b = 12;

short Sr = 123456',

ushort usil = 62345678;

1nt n = 1234567890;

uint un = 3234567890U

long | = 1234567890121

long ul = 123456789012U1

Comme je I'expliquerai dans la section "Déclarer des constantes numéri-
ques", plus loin dans ce chapitre, une valeur fixe telle que 1 a aussi un
type. Par défaut, une constante simple comme 1 est considérée de type
int. Une constante de type autre que int doit être marquée par son type.
Par exemple, l23U est un entier non signé (unsigned), de type ui irt.

Chapitre 3 : Déclarer des variables de type valeur 37

La plupart des variables de type entier sont signées, ce qui signifie qu'el-
les ont un signe (+ ou -), et qu'elles peuvent donc représenter des valeurs
négatives. Un entier non signé ne peut représenter que des valeurs
positives, avec I'avantage de pouvoir contenir une valeur deux fois plus
élevée. Comme vous pouvez le voir dans le Tableau 3.1, les noms de la
plupart des types d'entier non signé commencent par u (pour unsigned),
alors que les types signés n'ont généralement pas de préfixe.

Représenter des fractions
Les entiers conviennent très bien pour la plupart des calculs. mais beau-
coup font intervenir des fractions, qui ne peuvent être représentées par
des nombres entiers. L'équation toute simple qui convertit en degrés
Celsius une température exprimée en degrés Fahrenheit met le problème
en évidence :

// Conversion de 1a température 41 degrés Fahrenheit
int nFahr = 41;
int nCelsius = (nFahr - 32) - (5 / 9)

Cette équation fonctionnera très bien en nombres entiers pour certaines
valeurs. Par exemple, 4l degrés Fahrenheit équivaut à 5 degrés Celsius.

Essayons une autre valeur : 100 degrés Fahrenheit. Selon notre équation,
100-32 = 68;68 fois 519 = 37. C'est faux:la bonne réponse est 37,78. Mais
cette réponse est encore fausse car le résultat exact est 37 ,77 7. . . avec des
7 jusqu'à l'infini.

-9t4K Une variable int ne peut représenter que des nombres entiers. L'équivalent
i(ilfi) entier de 37,78 est 37. Cette manière d'escamoter la partie décimale d'un

\g) nombre pour le faire tenir clans une variable entière s'appelle tronquer.

tg9!Ra" Tronquer n'est pas la même chose qu'arrondir. Tronquer consiste à

S7^Ël \ supprimer la partie décimale, alors qu'arrondir consiste à prendre la
=lÉ Sf f valeur entière la plus proche. Ainsi, tronquer 1,9 donne 1. Arrondir 1,9i({ô",' donne la valeur 2.

Pour une température, 37 peut être une approximation satisfaisante. On
ne va pas mettre une chemise à manches longues à 37 degrés et une
chemise à manches courtes à37,7 degrés. Mais pour bien des applica-
tions, sinon presque toutes, il est inacceptable de tronquer un nombre.

38 Deuxième partie : Programmation élémentaire en G#

En fait, c'est plus compliqué que ça. Une variable de type int n€ peut pas

stoker la fraction 519 qui correspond toujours pour elle à la valeur 0. Il en
résulte que l'équation de notre exemple ci-dessus calcule la valeur 0 pour
nCelsius pour toutes les valeurs de nFahr. On est bien obligé d'admettre
que c'est inacceptable.

Sur le site Web, le dossier ConvertTernperatureWithRound0ff, contient
un programme de conversion de température avec des variables de type
int. À ce stade, vous n'en comprendrez peut-être pas tous les détails,
mais vous pouvez jeter un coup d'æil aux équations et exécuter le pro-
gramme Ciassl . exe pour voir les résultats qu'il produit.

1r$!Qa"
^v71t7

\:HW
)\ô/

Utîliser des tlariables en tlirgule flottante
Les limitations d'une variable de type int sont inacceptables pour la
plupart des applications. L'étendue n'est généralement pas le problème :

un entier long de 64 bits à des chances d'être suffisant pour tout le
monde. Ce qui est difficile à avaler, c'est de n'avoir droit qu'aux nombres
entiers.

Dans bien des cas, vous aurez besoin de nombres dont la partie décimale
n'est pas nulle. Les mathématiciens les appellent les nombres réels. J'ai
toujours trouvé ça ridicule. Y a-t-il des nombres entiers qui soient irréels ?

-sq4<o Remarquez que j'ai dit qu'un nombre réel peut avoir une partie décimale
.ù/ i: \ non nulle, mais ce n'est pas obligatoire. Autrement dit, 1,5 est un nombre
=(UA) réel, mais 1,0 également. Par exemple, 1,0 + 0,1 égale 1,1. Un nombre réel

N7/ plus un nombre réel donne un nombre réel. Gardez cela en tête pour la
suite de ce chapitre.

Heureusement, C# connalt les nombres réels. Il y en a de deux sortes :

décimaux et à virgule flottante. Le type le plus courant est à virgule
flottante. Je décrirai le type decimal un peu plus loin dans ce chapitre.

Déclarer une

Une variable en virgule flottante est de type f 1oat, et vous pouvez
déclarer de la façon suivante :

float f = 1.0:

tlarîable à r/îrgule flottante
la

Ghapitre 3 : Décf arer des variables de type valeur 39

Une fois déclarée comme f 1oat, la variable f est de type f loat pour
toutes les instructions qui vont s'y appliquer.

. \eENrgr. Un nombre à virgule flottante doit son nom au fait que la virgule décimale

S/^ËT \ y est autorisée à "flotter" de gauche à droite au lieu de se trouver à un
=ldl\y / emplacement fixe. Il permet donc de représenter aussi bien 10,0 que 1,00

\Ô/ ou 0,100, ou tout ce que I'on peut imaginer.

Le Tableau 3.2 donne I'ensemble des types de variable en virgule flottante.
Tous ces types sclnt signés, ce qui veut dire qu'une variable en virgule
flottante peut recevoir une valeur négative aussi bien que positive.

Tableau 3.2: Taille et étendue des types de variable en virgule flottante.

Type Taille [octets] Etendue Précision Exemple

float B

double 16

1.5 * 10'45 à

5.0 * 10324 à

3.4 * 1038

1.7 x
10308

6-

15

7 chiffres float f =

- 16 chiffres double

1.2F;

d = 1.2:

-$tf, Le type par défaut pour une variable en virgule flottante est double et

V nonr :.--'

Dans le Tableau 3.2, la colonne Précision contient le nombre de chiffres
exacts pour chaque type de variable à virgule flottante. Par exemple, la
fraction 5/9 vaut exactement 0,555... avec une infinité de 5. Mais une
variable de type f loat contient un certain nombre de chiffres exacts, ce
qui veut dire que les chiffres qui se trouvent au-delà du sixième ne le sont
pas nécessairement. Aussi, exprimé dans le type f loat, 5/9 pourrait très
bien apparaître comme ceci :

0,5555551457382

Vous savez donc que tous les chiffres apparaissant après le sixième 5 ne
peuvent pas être considérés comme exacts.

Une variable de type f loat possède en fait 6,5 chiffres exacts. Cette
valeur étrange vient du fait que la précision en virgule flottante est don-
née par un calcul qui fait intervenir 10 puissance un logarithme en base 2.

Voulez-vous vraiment en savoir plus ?

-rËK
'qg,

40 Deuxième partie : Programmation élémentaire en G#

Avec une variable de type double, la même fraction 5/9 pourra apparaltre
de cette facon :

t555555555555555 iB230.t 23

Le type double possède quant à lui entre l5 et 16 chiffres exacts.

.sût 1 Comme en C# une variable à virgule flottante est par défaut en double

Hprécision(letypedoub1e),vouspouveZutilisercetype,àmoinsd'avoir
Itgrf une raison particulière de ne pas le faire. Toutefois, qu'il utilise le types---'r ' ' 1e ou le type f 1oat, on dira toujours d'un programme qu'il travaille

-

douD

en virgule flottante.

Conturtissons encnre quelques températures

Voici la formule qui permet de convertir en degrés Celsius une tempéra-
ture en degrés Fahrenheit en utilisant des variables en virgule flottante :

double dCelsius = (dFahr - 32.0) * (5.0 | g,O)

*rt't${â Le site Web contient une version en virgule flottante, nommée
;d F1$? convertTernperaturewithFloat, du programme de conversion de

!=, temoérature'

L'exemple suivant montre le résultat de I'exécution du programme
Con,zertTemner-af rrre'u,/lthF1oat, utilisant des variables de type double:

Entrez 1a tenpérature en degrés

Température en degrés Celsius -
Appuyez sur Entrée pour quitter

C'est mieux que les problèmes
école primaire.

Quel4ues linitations
f lottante

Vous pouvez être tenté d'utiliser
flottante parce qu'elles résolvent

Fahrenheit: 100

37.777771777711779

le progranme..,

de robinet que I'on apprenait à résoudre à

des en

tout le temps des variables à virgule
le problème des nombres tronqués. Il

ûrguletlarîables

Chapitre 3 : Déclarer des variables de type valeur 4l
est vrai qu'elles utilisent plus de mémoire, mais de nos jours la nrémoire
ne cotte pas cher. Alors, pourquoi pas ? Mais les variables à virgule
flottante ont aussi des limitations.

Utiliser une t/ariable comme compteur

Vous ne pouvez pas utiliser une variable à virgule flottante comme comp-
teur. En C#, certaines structures ont besoin de compter (comme dans 1,

2,3, et ainsi cle suite). Nous savons tous que 1,0,2,0, et 3,0 font aussi bien
que 1,2,3 pour compter, mais C# ne le sait pas. Comment ferait C# pour
savoir si vous voulez dire l0 000 001 ou 10 000 000 ?

Que vous trouviez ou non cet argument convaincant, vous ire pouvez pas
utiliser une variable à virgule flottante comme compteur.

Comparer des nombres

Il faut être très prudent quand on compare des nombres en virgule
flottante. Par exemple, 1.2,5 peut être représenté comme 12,500001.
La plupart des gens ne se préoccupent pas de la précision de ce petit 1

supplémentaire, mais un ordinateur prend les choses de façon extrême-
ment littérale. Pour C#, 12,500000 et 12,500001 ne sont pas du tout la
même chose.

Aussi, si vous ajoutez l,l à ce que vous voyez comme 1,1, vous ne
pouvez pas savoir a priori si le résultat est2,2 ou 2,200001. Et si vous
demandez "dDoubleVariabie est-elle égale à2,2 ?", vous n'aurez pas

forcément le résultat que vous attendez. En général, vous allez devoir
vous en remettre à une comparaison un peu factice comme celle-ci :

"La valeur absolue de la différence entre dDoubleVariable et 2,2 est-elle
inférieure à 0,000001 ?"

^çcj!t_Qa^
Le processeur Pentium a une astuce pour rendre ce problème moins gênant :

4/1!;l\ il effectue les calculs en virgule flottante dans un format particulièrement
:HW) tong, c'est-à-dire qu'il utilise 80 bits au lieu de 64. Quand on arrondit un

\Ô/ nombre en virgule flottante de 80 bits pour en faire une variable de type
f loat de 64 bits, on obtient (presque) toujours le résultat attendu, même s'il
y avait un ou deux bits erronés dans le nombre de 80 bits.

42 Deuxième partie: Programmation élémentaire en C#

La ttitesse de calcul

Les processeurs de la famille x86 utilisés par les PC un peu anciens fonc-
tionnant sous Windows faisaient les calculs arithmétiques en nombres
entiers beaucoup plus vite que les mêmes calculs avec des nombres en
virgule flottante. De nos jours, ce serait sortir de ses habitudes pour un
programmeur que de limiter son programme à des calculs arithmétiques en
nombres entiers.

Avec le processeur Pentium III de mon PC, pour un simple test (peut-être
trop simple) d'à peu près 300 millions d'additions et de soustractions, le
rapport de vitesse a été d'environ 3 à 1. Autrement dit, pour toute addi-
tion en type double, j'aurais pu faire trois additions en type int (les
calculs comportant des multiplications et des divisions donneraient peut-
être des résultats différents).

1t${Qa^ J'ai dù écrire mes opérations d'addition et de soustraction de manière à
Ae/!!\ éviter les effets de cache. Le programme et les données étaient mis en
9(dW) .a.he, mais le compilateur ne pouvait mettre en cache dans les registres

\Ô/ du CPU aucun résultat intermédiaire.

Une étendue pas si limitée

Dans le passé, une variable en virgule flottante pouvait posséder une
étendue beaucoup plus large qu'une variable d'un type entier. C'est
toujours le cas, mais l'étendue du type long est assez grande pour rendre
la question pratiquement dépourvue d'intérêt.

Même si une variable de type f loat peut représenter un assez grand
nombre, le nombre de chiffres exacts est limité. Par exemple, il n'y aura
pas de différence entre 123456789F et 123456000F.

ôf\=Q)

Utîliser le tupe d e c im aI, hr4brîde d'entier et de

f lottanteûrgule
Comme je I'explique dans les sections précédentes de ce chapitre, les
types entiers comme les types en virgule flottante ont chacun leurs
inconvénients. Une variable en virgule flottante a des problèmes d'ar-
rondi, ainsi que des limites de précision, alors qu'une variable 1nt fait

Chapitre 3 : Décf aret des variables de type valeur 43

tout simplement sauter la partie décimale du nombre. Dans certains cas,
il vous faudra une variable qui combine le meilleur de ces deux types :

t/ Comme une variable en virgule flottante, pouvoir représenter une
fraction.

t/ Comme une variable entière, offrir une valeur exacte utilisable dans
des calculs. Par exemple, 12,5 est effectivement 12,5, et non
12,500001.

Heureusement, C# offre un tel type de variable, nommé decimai. Une
variable de ce type peut représenter tout nombre compris entre 10t8 et
1028 (ça fait beaucoup de zéros). Et elle le fait sans problèmes d'arrondi.

Déclarer une ttariable de ttlpe d e c 1ma 1

Une variable de type decimal se déclare comme n'importe quelle autre :

decinal rn1: /l Bien
decinal m2 = 100; ll Mieux
decinal rn3 = 100M: ll Eneore nieux

La déclaration de m1 définit une variable mi sans lui donner une valeur
initiale. Tant que vous ne lui aurez pas assigné une valeur, son contenu
est indéterminé. C'est sans importance, car C# ne vous laissera pas

utiliser cette variable tant que vous ne lui aurez pas donné une valeur.

La seconde déclaration crée une variable rn2 et lui donne 100 comme
valeur initiale. Ce qui n'est pas évident, c'est que 100 est en fait de type
int. C# doit donc convertir cette valeur de type int €n type decimal
avant de I'initialiser. Heureusement, C# comprend ce que vous voulez
dire et effectue la conversion pour vous.

La déclaration de m3 est Ia meilleure des trois. Elle initialise m3 avec la

constante de type decimal 100M. La lettre M à la fin du nombre signifie
que la constante est de type decimal. $/oyez la section "Déclarer des

constantes numériques", plus loin dans ce chapitre.)

44 ûeuxième partie : Programmation élémentaire en C#

Conparer les trlpes d e c ima 1, int, et f1 o at
Une variable de type dec imal semble avoir tous les avantages et aucun
des inconvénients des types int et double. Elle a une très grande éten-
due, elle n'a pas de problèmes d'arrondi, et 25,0 y est bien 25,0 et non
25,00001.

Le type decimai a toutefois deux limitations significatives. Tout d'abord,
une variable de type decimal ne peut pas être utilisée comme compteur,
car elle peut contenir une partie décimale. Vous ne pouvez donc pas vous
en servir dans une boucle de contrôle de flux, comme je I'explique au
Chapitre 5.

Le second inconvénient du type decirnal- est tout aussi sérieux, ou
même plus. Les calculs effectués avec des variables de ce type sont
significativement plus lents que ceux effectués avec des variables de
type int ou f1cat. Je dis bien "significativement". Mon test simple de
300 millions d'additions et de soustractions a été à peu près cinquante
fois plus long qu'avec le type int, et je soupçonne que ce rapport serait
encore plus défavorable avec des opérations plus complexes. En outre,
la plupart des fonctions de calcul, comme les exponentielies ou les
fonctions trigonométriques n'admettent pas le type decimai.

Il est clair que le type decinal convient très bien auxapplications comme
la comptabilité, pour lesquelles la précision est très importante mais le
nombre de calculs relativement réduit.

Soqons loqîque, examinons le tqtte b o o 1

Enfin, un type de variable logique. Une variable du type booléen bool
peut prendre deux valeurs : true ou f alse (vrai ou faux). Je parle sérieu-
sement : un type de variable rien que pour deux valeurs.

Les programmeurs C et C** 6n1 I'habitude d'utiliser une variable i-nt avec
la valeur 0 (zéro) pour signif ier f a 1 s :,r, et une valeur autre que zéro pour
signifier tru.e. Ça ne marche pas en C#.

Une variable boo 1 se déclare de la façon suivante :

bool variableBool = true:

tgq\Qa.
^t7çq \:(dw

)\ô/

Chapitre 3 : Déclarer des variables de type valeur 45

Il n'existe aucun chemin de conversion entre une variable bool et tous les
autres types. Autrement dit, vous ne pouvez pas convertir directement
une variable bool en quelque chose d'autre (et même si vous pouviez,
vous ne devriez pas, parce que ça n'a aucun sens). En particulier, vous ne
pouvez pas transformer une variable bool en int (par exemple sur la
base du principe que false devient zéro), ni en string (par exemple sur
la base du principe que false devient "fa1se").

Toutefois, une variable de type bool joue un rôle important pour forcer
I'exécution d'un programme C# à suivre tel ou tel cheminement, comme je
I'explique au Chapitre 5.

Un coup d'æîl aur types caractère
Un programme qui ne fait rien d'autre que cracher des nombres peut conve-
nir très bien à des mathématiciens, des comptables, des assureurs qui font
des statistiques, et des gens qui font des calculs balistiques (ne riez pas, les
premiers ordinateurs ont été construits pour générer cles tables de trajectoi-
res d'obus à I'usage des artilleurs). Mais pour la plupart des applications, les
programmes doivent pouvoir traiter des lettres aussi bien que des nombres.

C# dispose de deux manières différentes de traiter les caractères : à titre
individuel (par le type char), et sous forme de chalnes (par le type string).

La turiable de tupe char
Une variable de type char est une bolte qui peut contenir un seul caractère.
Une constante caractère apparalt tel un caractère entouré d'apostrophes,
comme dans cet exemple :

char c - tat;

Vous pouvez y mettre n'importe quel caractère de I'alphabet latin, hébreu,
arabe, cyrillique, et bien d'autres. Vous pouvez aussi y mettre des caractè-
res japonais Katakana ou bien des caractères Kanji, chinois ou japonais.

En outre, le type char peut être utilisé comme compteur, ce qui veut dire
que vous pouvez avoir recours à une variable char pour contrôler les
structures de boucle que je décrirai au Chapitre 5. Une variable caractère
ne peut avoir aucun problème d'arrondi.

46 Deuxième partie : Programmation élémentaire en C#

^nu1$Q(
Une variable de type char n'est pas associée à une police. Vous pouvez

+/ .--., \ très bien y stocker un caractère Kanji que vous trouvez très beau, mais si
t^-. \

tO / vous I'affichez, il ne ressemblera à rien si vous ne le faites pas avec la
V,,/ bonne police.

Tqpes char s1réciaur

Certains caractères, selon la police utilisée, ne sont pas imprimables, au
sens où vous ne voyez rien si vous les affichez à l'écran ou si vous les
imprimez avec votre imprimante. L'exemple le plus banal en est I'espace,
représenté par ' '. Il y a aussi des caractères qui n'ont pas d'équivalent sous
forme de lettre (par exemple, le caractère de tabulation). Pour représenter
ces caractères, C# utilise la barre oblique inverse, comme le montre le
Tableau 3.3.

Tableau 3.3 : Caractères spéciaux.

Gonstante caractère Valeur

'v'

'\0'

'\r'

'\\'

nouvelle ligne

tabulation

caractère null

retour chariot

barre oblique inverse

Le trlpe string
Le type srring est également d'usage courant. Les exemples suivants
montrent comment déclarer et initialiser une variable de type st ring :

I I dêclaration puis initialisation
string soneStringl;
soneStringl = "eeci est une chaîne";
I I initialisation avec 1a déclaration
string soneString2 = "ceci est une chaine";

Chapitre 3 : Déclarer des variables de tïtpe valeur

Une constante de type châîne est une chalne de caractères entourée de
guillemets. Une chalne peut contenir tous les caractères spéciaux du
Tableau 3.3. Une chalne ne peut pas s'étendre sur plus d'une ligne dans Ie
fichier source C#, mais elle peut contenir le caractère de retour à la ligne,
comme le montre I'exemple suivant :

I I eeci est illicite
string soneString * "Ceci est une ligne
et en voilà une autre";
I I nais ceci est autorisé
stri.ng sonestring = "Ceci est une ligne\net en voilà une autre";

A I'exécution, la dernière ligne de I'exemple ci-dessus écrit les deux
membres de phrase sur deux lignes successives :

Ceci est une ligne
et en voilà une autre

Une variable de type string ne peut pas être utilisée comme compteur, et
ce n'est pas un type contenant une valeur. Il n'existe aucune "chalne" qui ait
une signification intrinsèque pour le processeur. Seul un des opérateurs
habituels est utilisable avec un objet de type string:l'opérat€ur + effectue
la concaténation de deux chalnes en une seule. Par exemple :

string s - "Ceei est un nenbre de phrase"
* " et en voilà un autrerr;

Ce code place dans la variable string s la chalne suivante :

'rteci est un nembre de uhrase èt en voiLà un autre'l

Encore un mot : une chaîne ne contenant aucun caractère (que I'on écrira
"") est une chalne valide.

Ĉonparer string êt char
Bien qu'une chaîne soit constituée de caractères, le type st ring est très
différent du type char. Naturellement, il existe quelques différences
triviales. Un caractère est placé entre apostrophes, comme ceci :

l- |
a

47

48 Deuxième partie : Programmation élémentaire en G#

alors qu'une chalne est placée entre guillemets :

"ceci. est une chalne"

Les règles qui s'appliquent aux chalnes ne sont pas les mêmes que celles
qui s'appliquent aux caractères. Pour commencer, une variable char ne
contient par définition qu'un seul caractère. Le code suivant, par exem-
ple, n'a aucun sens :

char cl
char c2

char c3

En fait, ce code peut presque se compiler, mais avec une signification
complètement différente de I'intention initiale. Ces instructions provo-
quent la conversion de c1 en une variable int qui reçoit la valeur numéri-
que du caractère initialement contenu dans c 1, puis la même chose pour
c2, eT finalement I'addition de ces deux entiers. L'erreur se produit lors-
que I'on essaie de stocker le résultat dans c3. Une valeur numérique de
type int û€ peut pas être stockée dans une variable de type char, par
définition plus petite. En tout cas, cette opération n'a aucun sens.

Une chaîne, en revanche, peut avoir une longueur quelconque, et la
concaténation de deux chalnes a un sens :

+.i-^ ^1 : il^ilr
ùLr{rrË ùr a ,

a+r'.ina ô1 =
llhll .

ùL!rrré ù4 u t

strjnq s3 = s1 i s2; l lTe résultat est "ab"

Il y a dans la bibliothèque de C# une collection entière d'opérations sur
les chalnes. Je les décrirai au Chapitre 9.

Conventions sur les noms

La programmation est assez di{-ficile sans que les programmeurs la rendent plus difficile
encore. Pour rendre votre code sourceC# plus lisible, adoptez une c0nvention sur les noms,

et tenez-vous-y. ldéalement, cette convention doit être aussi proche que possible de celle
adoptée par la plupart des programmeurs C#.

æ lâ1.

= rht.

=c1*c2

^"tËK
'qE,

Chapitre 3 : Déclarer des variables de type valeur

La règf e générale estque le nom d'un objet autre qu'une variable doit commencer par une lettre
majuscule. Choisissez des noms aussi descriptifs que possible, ce qui signifie bien souvent des

noms composés de plusieurs mots. Chacun de ces mots doit commencer par une majuscule

{sauf le premier dans le cas d'une variable}, et ils doivent être collés les uns aux autres, sans

être reliés par des tirets de soulignement, comme ceci : ceciEsrUnlcngNomDeVariable

J'ai aussi adopté la règle supplémentaire selon laquelle la première lettre du nom d'une
variable en indique le type. La plupart de ces lettres sont assez explicites : f pour f 1oat, d
pour double, s pour string, et ainsi de suite. La seule qui nécessite un petit effort de

mémoire est n pour int. ll y a toutefois une exception à cette règle : pour des raisons qui

remontent au langage FOfiTRAN des années soixante, les lettres i, j, et k sont couramment
utilisés seules comme nom pour les variables de type int.

Remarquezque j'aiditavoir"adopté" cette convention. Ce n'estpas moiquil'aiinventée, mais
quelgu'un qui travaillait chez Microsoft à l'époque du langage C. Comme il était d'origine
hongroise, rette convention a reçu le nom de notation hongroise.

La notation hongroise semble ne plus être en faveur. Je continue toutefois à la préférer, car
elle me permet de connaître du premier coup d'æil le type de chaque variable dans un
programme sans avoir à me référer à la déclaration.

Qu'est-ce qu'un tqpe

Toutes les instructions C# doivent être traduites en instructions machine
du processeur utilisé. Dans le cas du PC, un processeur Intel. Ces proces-
seurs utilisent aussi la notion de variable. Par exemple, le processeur Intel
comporte huit emplacements internes, appelés registres, dont chacun peut
stocker un int. Sans trop entrer dans les détails, je dirai simplement que
les types décrits dans ce chapitre, à I'exception de decimal et strlng, sont
intrinsèques au processeur. Aussi, il existe une instruction machine qui
signifie : "Ajouter un int à un autre inr", et une instruction semblable pour
ajouter un double à un double. Comme ces types de variable sont intégrés
au fonctionnement du processeur, on les appelle des types intrinsèques.

En outre, les types de variable que je décris dans ce chapitre sont de
longueur fixe (encore une fois, à I'exception de string). Une variable de
longueur fixe occupe toujours la même quantité de mémoire. Ainsi, si j'écris
I'instruction a : b, C# peut transférer la valeur de b dans a sans prendre

49

ûaleur ?

50 Deuxième partie : Programmation élémentaire en G#

des mesures spéciales pour traiter un type de donnée de longueur variable.
Un type de variable qui a cette caractéristique est appelé typu ualeur.

Les types int, double, L-.oii, et leurs dérivés immédiats, comme int non
signé, sont des types de variable intrinsèques. Les types de variable
intrinsèques, ainsi que Ie type decinal, sont aussi appelés types valeur.
Le type string rr'est ni I'un ni I'autre.

Les types définis par le programmeur, que je décris au Chapitre 6, ne sont
ni des types valeur, ni des types intrinsèques.

.Ë6

Déclarer des constantes nutnériques
Bien qu'il y ait très peu d'absolus dans la vie, je vais vous dire quelque

-of4q
chose d'absolu sur C# :

^-/:-/ -t- \ '- rne valeur et un type.-i
II

) I oute expressron a L

Dans une déclaration comme int n, vous pouvez facilement voir que la
variable n est de type int, et vous pouvez raisonnablement supposer que
le calcul n * 1 est de type int. Mais quel est le type de la constante 1 ?

Le type d'une constante dépend de deux choses : sa valeur, et la présence
optionnelle d'une lettre descriptive à la fin de celle-ci. Tout nombre entier
inférieur à 2 milliards est supposé être de type int. Un nombre entier
supérieur à 2 milliards est supposé être de type 1ong. Tout nombre en
virgule flottante est sutrtposé être de type double.

Le Tableau 3.4 présente des constantes déclarées pour être d'un type
particulier. La lettre qui sert de descripteur peut être aussi bien en
majuscule qu'en minuscule. tu et 1u sont équivalents.

Tableau 3.4 : Constantes déclarées avec leur type.

Constante Type

1

iU

1L

1.0

Lnt

rinqi onod int.),'.- *

long int

d o ui:, 1e

Ghapitre 3: Déclarer des variables de type valeur 5 |

Constante Type

1.0F

1M

t rue

ç^1^^I.1 LbC

r-la

'\n'

f I ^-r_!IUAL

decimal

bool

bool

^t^-LllAt

char (caractère de nouvelle ligne)

'\x123' char (caractère dont la valeur numérique est hex 123)

"a string" string
s t r ins (chaîne vide)

' ' le castLnanger ae rype .'

Un être humain ne traite pas de manière différente les différents types de
nombre. Par exemple, un individu normal (contrairement à un program-
meur C# distingué tel que vous) ne se demande pas si le nombre 1 est
signé, non signé, court ou long.

Bien que C# considère ces divers types comme différents, il n'ignore pas
qu'il existe une relation entre eux. Par exemple, le code suivant convertit
une variable de type int €r long :

int nValue = 10;

long lValue;
1Va1ue = nValue; // ceci fonctionne

Une variable de type int peut être convertie en long car toute valeur lnt
peut être stockée dans une variable de type long et que I'un comme
I'autre type peut être utilisé comme compteur.

Toutefois, une conversion dans la direction opposée peut poser des
problèmes. Par exemple, ce qui suit est illicite :

long lValue = 10;

int nValue;
nValue = lValue; I I ceei est illicite

52 Deuxième partie : Programmation élémentaire en C#

Certaines valeurs que l'on peut stocker dans une variable de type long
sont trop grandes pour une variable int (par exemple, 4 milliards). Dans
ce cas, C# génère une erreur, car des informations pourraient être per-
dues dans la conversion. Ce type de bogue est très difficile à identifier.

Mais si vous savez que la conversion est possible ? Par exemple, bien que
lVa1ue soit de type 1cng, peut-être savez-vous que sa valeur ne peut pas
dépasser 100 dans ce programme. Dans ce cas, la conversion de la varia-
ble de type long iValue en variable nValue de type int ne poserait aucun
problème.

Vous pouvez dire à C# que vous savez ce que vous faites en utilisant un
CqST:

long 1Va1ue = 10;

int nValue;
nValue = (int)lValue; ll naintenant ça marche

Dans un cast, vous placez entre parenthèses le nom du type que vous
voulez obtenir, juste avant le nom de la variable à convertir. Le cast ci-
dessus dit : "Convertir en int la valeur de 1Va1ue. Je sais ce que je fais."

Un nombre qui peut être utilisé comme compteur peut être converti automa-
tiquement en type f 1oar, mais la conversion d'un nombre en virgule flottante
en nombre pouvant servir de compteur nécessite un cast:

double dValue = 10.0;
long lVa1ue = (1ong)dValue;

Toute conversion de et vers le type decimal nécessite un cast. En fait,
tout type numérique peut être converti en n'importe quel autre type
numérique par I'application d'un cast.

Ni le type bool ni le type strlng ne peuvent être convertis directement
en un autre type, quel qu'il soit.

1t$!ea. C# comporte des fonctions intégrées qui peuvent convertir un nombre,
Ae/!!\ un caractère ou un type booléen en son équivalent de type string. Par
:(dq9) "r"-ple,

vous po,rrrà, convertir la valeur de type bool true pour en faire
\Ô/ la valeur string "true", mais on ne peut pas considérer cela comme une

conversion directe. La valeur booléenne true et la chaîne "true" sont des
choses absolument différentes.

Chapitre 4

Les op érateurs sont sympas

Dans ce chapitre :

Faisons un peu d'arithmétique.

Faisons des comparaisons.

Aller plus loin avec des opé:rateurs logiques.

es mathématiciens créent des variables et les manipulent de différentes
manières. Ils les additionnent, les multiplient, parfois même les intègrent.

Le Chapitre 2 explique comment déclarer et définir des variables, mais il ne dit
rien sur la manière de les utiliser afin d'en faire quelque chose. Ce chapitre
examine les opérations que I'on peut exécuter avec des variables pour réaliser
effectivement quelque chose.

^qa/ Écrire un programme qui fait vraiment quelque chose, c'est bien. Si vous

ff"ll n'y arrivez pas, vous ne devien drezjamais un véritable programmeur C#,

\f/ à moins, bien str, que vous ne soyez un consultant, comme moi.

Faîre de l'arithnétî4ue
L'ensemble des opérateurs arithmétiques est divisé en plusieurs grou-
pes : Ies opérateurs arithmétiques simples, Ies opérateurs d'assignation,
et un groupe d'opérateurs spéciaux, propres à la programmation. Une fois
que vous les aurez digérés, il vous faudra faire de même pour un autre
ensemble d'opérateurs : les opérateurs logiques.

5tt Deuxième partie : Programmation élémentaire en G#

Les opérateurs sîmples

Les opérateurs simples sont pour la plupart ceux que vous avez appris à
l'école primaire. Le Tableau 4.1 en donne la liste :

Tableau 4.1 : Les opérateurs simples.

0pérateur Signification

- (moins unaire)

I

+

- (moins binaire)

%

prendre le négatif de la valeur

multiplier

diviser

additionner

so ustra i re

modulo

La plupart de ces opérateurs sont appelés opérateurs binaires, parce
qu'ils opèrent sur deux valeurs : celle qui se trouve du côté gauche de
I'opérateur et celle qui se trouve du côté droit. La seule exception est le
moins unaire, mais il est aussi simple que les autres :

nl * 5;
n2 = -nl ; I I n2 a naintenant 1a valeur -5

La valeur de - n est le négatif de la valeur de n.

L'opérateur modulo vous est peut-être moins familier que les autres. C'est
tout simplement le reste d'une division. Ainsi, 5 % 3 vaut 2, et 25 % 3 vaut
1(25-3.8).

La définition stricte de I'opérateur 7u est : "x = (x I y) * x Yo y" .

Les opérateurs arithmétiques autres que modulo sont définis pour tous
les types numériques. L'opérateur modulo n'est pas défini pour les types
en virgule flottante, car une division effectuée en virgule flottante n'a pas
de reste.

int
int

1e$!Qa.
rqr,/Ç-t \

'qE,

Ghapitre 4 : Les opérateurs sont sympas

0rdre d'exécution des opérateurs

Il arrive que le sens d'une expression arithmétique ne soit pas parfaite-
ment clair. Par exemple :

intn:5

Est-ce que le programmeur veut dire "multiplier 5 par 3 et ajouter 2", ce
qui fait 17, ou bien "multiplier 5 par la somme de 3 et 2", ce qui fait 25 ?

-efr{cS/ j5: \ C# effectue I'exécution d'une suite d'opérateurs de gauche à droite. Le résultat
=(

$g ,
de I'exemple ci<lessus est donc I'assignation de la valeur 17 à la variable n.

Dans I'exemple suivant, C# détermine la valeur de n en commençant par
diviser 24 par 6, puis en divisant le résultat de cette opération par 2 (et
non en divisant 24 par le résultat de la division de 6 par 2) :

intn*241612

D'autre part, les opérateurs ont une hiérarchie, ou ordre de priorité. C#
commence par examiner I'expression, et exécute les opérations en commen-

çant par celle qui a le niveau de priorité le plus élevé. Dans mes précédents
livres, je me suis donné le plus grand mal pour expliquer la priorité des
opérateurs, mais je me suis depuis rendu compte que ce n'était qu'une
perte de temps (et de neurones). Il vaut toujours mieux se débarrasser de
la question de la priorité des opérateurs en utilisant les parenthèses.

De cette façon, la valeur de I'expression suivante est claire, quel que soit
I'ordre de priorité des opérateurs :

int n = (7 % 3) * (4 + (6 / 3));

C# commence par évaluer I'expression qui se trouve dans le bloc de
parenthèses le plus profondément enfoui :

int n = (7 % 3) - (4 + 2);

Cela fait, il remonte vers le bloc de parenthèses le plus englobant, en
évaluant chaque bloc I'un après I'autre :

int n = 1 * 6;

55

56 Deuxième partie : Programmation élémentaire en C#

Pour arriver au résultat final :

intn=7

Cette règle connaît peut-être une exception. Je trouve ce comportement
intolérable, mais de nombreux programmeurs omettent les parenthèses
dans des exemples comme le suivant, car tout le monde sait que la
priorité de la multiplication est plus élevée que celle de I'addition :

intn*7*2n3;

Le résultat de cette expression et 13 (et non 27).

L'opérateur d'assÎgnation et ses (ariantes

C# a hérité de C et C++ une idée intéressante : I'assignation y est un
opérateur binaire. L'opérateur d'assignation a la valeur de I'argument qui
est à sa droite. L'assignation a le même type que les deux arguments qui
doivent donc eux-mêmes être de même type.

Cette nouvelle conception de I'opérateur d'assignation n'a aucun effet sur
les expressions que vous avez vues jusqu'ici :

n = 5 * 3;

Dans cet exemple, 5 * 3 vaut 15 et est de type int. L'opérateur d'assigna-
tion stocke la valeur de type int qui se trouve à sa droite dans la variable
de type int qui se trouve à sa gauche, et retourne la valeur 15. Mais ce
n'est pas tout, cette nouvelle conception de I'opérateur d'assignation
autorise la forme suivante :

m = n = 5 * 3;

Les opérateurs d'assignation sont évalués I'un après I'autre, de droite à
gauche. Dans cet exemple, le premier à partir de la droite stocke la valeur
15 dans la variable n, et retourne 15. Le deuxième et dernier à partir de la
droite stocke la valeur l5 dans n et retourne 15, qui n'est utilisé par aucun
autre opérateur.

Ghapitre 4 : Les opérateurs sont sympas 5 7

Du fait de cette définition étrange de I'opérateur d'assignation, les expres-
sions suivantes, bien qu'étranges, sont licites :

int n;
int m;

n - n = 1.

C# offre une extension de I'ensemble des opérateurs simples avec un
ensemble d'opérateurs construits à partir d'autres opérateurs binaires.
Par exemple :

n ** 1;

Cette expression est équivalente à:

n * n * 1.

Il existe un tel opérateur d'assignation pour pratiquement tous les opéra-
teurs binaires. Je ne sais pas exactement comment ils sont venus au
monde, mais pourtant, ils existent.

L' o p érate ur d' i n cré tn e n tatî o n

Parmi toutes les additions que I'on peut avoir à faire dans un programme,
la plus courante consiste à ajouter I à une variable :

n - n * 1;

Nous avons vu que C# offre le raccourci suivant :

n *= 1;

Mais c'est encore trop compliqué. C# fait encore mieux :

++n; /l incréruente n de I

Les trois instructions ci-dessus sont équivalentes. Chacune incrémente n

de la valeur l.

58 Deuxième partie: Programmation élémentaire en G#

L'opérateur d'incrémentation est plutôt bizarre, mais, croyez-le ou non,
C# en a en fait deux:ttn, et n*t. Le premi€r, **n, estl'opéroteur de
préincrémentution, et le secoûd, n**, estl'opérateur de postincrémentation.
La différence est subtile, mais importante.

Souvenez-vous que toute expression a un type et une valeur. Dans I'exem-
ple suivart, *+n et rr** sont tous deux de type int i

int n;
n = 1;

int o - ++n;

n = j.rt I t

int m = n**;

Mais quelles sont les valeurs qui en résultent pour m et o ? (Je vous donne
un indice : c'est 1 ou 2.)

La valeur de o est 2, eTla valeur de m est 1. Autrement dit, la valeur de
I'expression **n est la valeur de n après avoir été incrémentée. alors que
la valeur de I'expression n** est la valeur de n avant d'avoir été incrémen-
tée. Dans les deux cas, Ie résultat est 2.

Sur le mêmeprincipe, il y a des opérateurs de décrémentation (n- - et
- n) pour remplacer n : n 1. Ils fonctionnent exactement de la même
manière que les opérateurs d'incrémentation.

Pourquoi un opérateur d'incrémentation, et pourquoi Gn

avoir deux ?

L'obscure raison d'être de l'opérateur d'incrémentation vientdu faitque le calculateur PDP-8

des années soixante-dix possédait une instruction d'incrÉmentation. La chose serait
aujourd'hui de peu d'intérêt si le langage C, à I'origine de la lignée qui conduit aujourd'hui à

C#, n'avait pas été écrit justement pour le PDP-8. Comme cette machine possédait une
instruction d'incrémentation, n++ générait moins d'instructions machine que n : n*1.
Puisque les machines de l'époque étaienttrès lentes, on ne ménageait pas ses efforts pour

faire l'économie de quelques instructions machine.

Les compilateurs d'aujourd'hui sont plus astucieux, il n'y a davantage de différence entre le

temps d'exécution de n** et celui iJe n : n*1, donc plus de besoin pour un opérateur

Ghapitre 4 : les opérateurs sont sympas 59

d'incrémentation. Mais les programmeur$ ssnt des créatures qui ont leurs habitudes, st cet
opérateur est toujours là. Vous ne verrez presque jamais un programmeur C++ incrémenter
ull:rri3.ble en utilis.ant la,forme plus longue mais plus intuitive n : n*1. Vous le verrez
plutôt utiiiser l'opôrate ur d' inc rém e ntâtiûn.

D'autre part,lorsqu'on le rencontre isolé {c'est-à-dire pas à I'intérieur d'une expression plus
grandel, c'est presque toujours I'opérateur de postincrÉmentation qui apparaÎt et non

I'opérateur de préincrémentation. ll n'y a aucunê raison à cela, en dehors de l'habitude et du

faii que ça à l'àir plus cool.

Faire des comparaîsons - est-ce logi4ue .)

C# comporte également un ensemble d'opérateurs de comparaison
logique, montrés par le Tableau 4.2.

Tableau 4.2: Les opérateurs de comparaison logique.

â == b a a la même valeur que b

a > b a est plus grand que b

a >= b a est supérieur ou égal à b

a < b a est plus petit que b

â (= b a est inférieur ou égal à b

a l= b a n'est pas égal à b

Ces opérateurs sont appelés opérateurs de comparoison logique, car ils
retournent une valeur de type bool true ou false (vrai ou faux).

Voici un exemple qui fait intervenir une comparaison logique :

int n = 5;

int n * 6t

bool b * n) n;

60 Deuxième partie : Programmation élémentaire en C#

Cet exemple assigne la valeur f alse à la variable b, car 5 n'est pas plus
grand que 6.

Les opérateurs de comparaison logique sont définis pour tous les types
numériques, notamment f 1oat, double, decimal, et char. Tout ce qui suit
est licite :

bool b;
b = 3) 2;

b = 3.0) 2.0;

i _ ;;; i ;;;;b=10M)12M;

Un opérateur de comparaison logique produit toujours un résultat de
type booL. Il n'est pas valide pour une variable de type string (C# offre
d'autres moyens de comparer des chaînes).

Conparer des nombres en Uirgule flottante :
-.,-l ,^ ^r,. r--1 Iqu a Ie plus qros r I oar !

Comparer deux nombres en virgule flottante tient parfois un peu du jeu
de hasard, et il faut être très prudent. Considérez les comparaisons
suivantes :

float f1;
float f2;
fl = 1fl'

f.2 = f.I | 3i
bool b1 = (3 * f2) == fl;

1/ = tt I 4.

bool b2 = (3 * f2) == fl;

La seule diff érence entre le calcul de b I et le calcul de b 2 est la valeur
originale de f 1. Quelles sont donc les valeurs de b1 et b2 ? Lavaleur de b2
est évidemment true:9/3vaut 3;3 * 3vaut 9;et 9 est égal à9.

Lavaleurde bi n'est pas aussi évidente: 10/3vaut 3.333...3.333... * 3
vaut 9.999... 9.999... est-il égal à 10 ? Ça dépend du niveau intellectuel de
votre processeur et de votre compilateur. Avec un Pentium ou un proces-
seur plus récent, C# n'est pas assez malin pour se rendre compte que b I

Chapitre 4 : Les opérateurs sont sympas 6 I

devrait être true si le résultat du calcul est un peu décalé par rapport à la

comparaison.

lrpU{a"
At^tJ\ Pour faire un peu mieux, vous pouvez utiliser de la façon suivante la

=HlW) fonction de valeur absolue pour comparer f 1 et f 2 :

\ô/
Math.Abs(d1 - 3.0 - dZ) (.00001; //choisissez le niveau de précision

Cette fonction retourne rrue dans les deux cas. Vous pouvez utiliser la

constante Double. Epsilon à la place de .00001 pour obtenir le niveau de

précision le plus élevé possible. Epsilon est la plus petite différence
possible entre deux variables de type double qui ne sont pas rigoureuse-
ment égales.

Encore plus fort : les opérateurs logîques

Les variables de type bool disposent d'un autre ensemble d'opérateurs
logiques, définis rien que pour elles, montrés par Ie Tableau 4'3.

Tableau 4.3: Les opérateurs logiques.

Opérateur Betourne t rue si...

!a

a&b

alb

a^b

a&&b

all b

a est false

a et b sont t rue

a ou b ou les deux sont true (aussi appelé a eVou b)

a est true ou b est true rTtâis pas les deux (aussi appelé a xor b)

a et b sont true avec une évaluation en court-circuit

a ou b sont true avec une évaluation en court-circuit

L'opérateur !est l'équivalent logique du signe moins. Par exemple, !a est

true si a est fa1se, et false si a €St true.

Les deux opérateurs suivants sont assez clairs. Tout d'abord, a & b n'est

true quesi a et b sont true. Et a I b est true si a oub Sont true. Le

signe n (aussi appelé le ou exclusif) est un peu une bête curieuse. anb est

true si a ou b sont true mais pas si a etb sont true.

62 Deuxième partie : Programmation élémentaire en G#

Ces trois opérateurs produisent comme résultat une valeur logique de
type boo1.

Les opérateurs &, | , et n existent aussi dans une version que I'on appelle
opérateur de bits. Appliqués à une variable de type j-nt, ils opèrent bit par bit.
Ainsi, 6 &3vaut 2 (01102 &00112 donne 0010t, 6 I 3vaut 7 (01102 i 00112

donne 01112), et 6 ^ 3 vaut 5 (01102 ^ 00112 donne 01012). L'arithmétique
binaire est une chose extrêmement sympathique, mais sort du cadre de cet
ouvrage.

Les deux derniers opérateurs logiques sont semblables aux trois pre-
miers, mais présentent une différence subtile avec eux. Considérez
I'exemple suivant :

bool b = (boolExpressionl) & (boolExpression2);

Dans ce cas, C# évalue boolExpressiorrl et boolExpression2, en cherchant
à déterminer si I'une et I'autre sont true pour en déduire la valeur de b.

Toutefois, cet effort pourrait être inutile. Si I'une de ces deux expressions est
fa1se, il n'y a aucune raison d'évaluer I'autre, car quelle qu'en soit la valeur,
le résultat de I'ensemble sera f alse.

L'opérateur && permet d'éviter d'évaluer inutilement les deux expres-
sions :

bool b = (boolExpressionl) && (boolExpressi.on2);

Dans ce cas, C# évalue boolExpressionl. Si elle est fa1se, b reçoit la
valeur f alse, et le programme poursuit son chemin. Si elle est true, C#

évalue boolExpression2 et stocke le résultat dans b.
ôllu\',- -lix L'opérateur && utilise ce que I'on appelle une eualuation en court-circuit,

lfej| car il court-circuite si nécessaire la seconde opération booléenne.
Y

L'opérateur I i fonctionne sur le même principe :

bool b = (boolExpressionl) ll (boolExpression2);

Si boolExpressionl est true, il n'y a aucune raison d'évaluer booiExpression2,
car le résultat sera t rue de toute faÇon.

^dËK
'qg,

Chapitre 4 : Les opérateurs sont sympas 63

Troutler les âmes sæurs : accorder les tqpes
d'erpression

Dans un calcul, le type d'une expression est tout aussi important que sa

valeur. Examinez I'expression suivante :

i n+ n .lllL ll ,

n = 5 * 5 t 7:

Ma calculatrice me dit que n vaut 32, mais cette expression a aussi un type.

Traduite en termes de types, cette expression devient :

int [*] int * int * int;

Afin d'évaluer le type d'une expression, suivez le même cheminement que

pour en déterminer la valeur. La multiplication a une priorité plus élevée

que I'addition. Un int multiplié par un int donne un int. L'addition vient
ensuite. Un int plus un int donne un int. On peut donc réduire I'expres-

sion ci-dessus de la façon suivante :

int*int*int
int * int
int

Calculer le tqpe d'une opératîon

Accorder des types suppose de creuser dans les sous-expressions. Chaque

expression a un type, et les types du côté gauche et du côté droit d'un

opérateur doivent correspondre à ce qui est attendu par celui- ci :

typel (op) type2 @---) tYPe3

(La flèche signifie "produit".) typ" I et type2 doivent être compatibles

avec I'opérateur op.

64 Deuxième partie : Programmation élémentaire en G#

La plupart des opérateurs admettent
I'opérateur de multiplication :

différents types. Par exemple,

int * int
uint * uint
long * long
float * float
decimal * decimal

double * double

Ainsi,2* 3 utilise
type int.

{9---2 1nt

@- - -) uint
@---) long
@---) float
@- - -) decimal
@---) double

la version int * int de I'opérateur * pour produire 6, de

Connersion de tqpe inltlîcite

Tout cela est très bien pour multiplier deux int ou deux f loat. Mais
qu'arrive-t-il lorsque les deux arguments ne sont pas de même type ? Par
exemple, dans ce cas :

int nl = 10:

double d2 = 5.0;
double dResult = nl * d2;

Tout d'abord, C# ne comporte pas d'opération 1nt * double. Il pourrait se
contenter de produire un message d'erreur, mais il essaie plutôt de
comprendre ce qu'a voulu faire Ie programmeur. C# dispose des versions
int * :inr et dou'l1e * ,jouble de la multiplication. Il pourrait convertir d2

en son équivalent int, mais il en résulterait la perte de la partie décimale
du nombre (ce qui se trouve à droite du point décimal). C# convertit
donc en dor-rbie lavariable int n1 €t utilise I'opération ciouble * ciouble.
C'est ce que I'on appelle une promotion implicite.

Une promotion implicite est implicite parce que C# I'effectue automatique-
ment, et c'est une ptomotion parce qu'elle transforme une valeur d'un
certain type en un type de capacité supérieure. La liste des opérateurs de
multiplication donnée à Ia section précédente apparaît dans I'ordre de
promotion croissante de irit à dor,rble ou de int à decimal.ll n'existe
aucune conversion implicite entre les types en virgule flottante et le type
iecinal. La conversion d'un type de capacité supérieure tel que double
en un type de moindre capacité tel que int s'appelle une rétrogrodotion.

Une promotion est aussi appelée cont.tersion uerc le hout, et une rétrogradation
conuersion uers le bas.

Chapitre 4 : Les opérateurs sont sympas 6 5
;1t0lv.r

Connersion de tqpe explicite - le cast

Et si C# se trompait ? Et si le programmeur voulait vraiment effectuer une
multiplication en nombres entiers ?

Vous pouvez toujours changer le type d'une variable d'un type valeur en
utilisant I'opérateur cast. Un casf consiste à mettre entre parenthèses le
type désiré et à le placer immédiatement avant Ia variable ou I'expression
concernée.

De cette façon, I'expression suivante utilise I'opérateur int * int :

int n1 * 1û;

double ô2 = 5.0;
int nResult = nl - (int)d2;

Le cast de d 2 en l nt est une rétrogrodation explicite, parce que le program-
meur a explicitement déclaré son intention.

Vous pouvez faire une conversion explicite entre deux types valeur quels
qu'ils soient, que ce soit une promotion ou une rétrogradation.

Êvitez les conversions de type implicites. Utilisez plutôt un cast avec les
types valeur pour faire des conversions explicites.

Laissez la logi4ue tran(uille

C# n'offre aucune conversion de type de ou vers le type boo1.

Assigner un tqtte

Le même principe de compatibilité de types s'applique à I'opérateur
d'assignation.

66 Deuxième partie : Programmation élémentaire en C#

^f\
En général, une incompatibilité de type produisant un message d'erreur

=f 1|) a" compilation se produit dans I'opérateur d'assignation, mais pas à

\!!_/ I'endroit qui est la source de I'incompatibilité.

Considérez I'exemple de multiplication suivant :

nl = 10;
-t E (ô * n1.
llA J.V ttLt

La deuxième ligne de cet exemple génère un message d'erreur dû à une
incompatibilité de type, mais I'erreur se produit lors de I'assignation, et
non lors de la multiplication. En voici la terrible histoire : afin d'effectuer
la multiplication, C# convertit implicitement n1 en double. C# peut alors
effectuer une multiplication en type double, dont le résultat est dans le
tout-puissant type d oub 1e.

Toutefois, les types de ce qui est à droite et à gauche de I'opérateur d'assi-
gnation doivent être compatibles, mais le type de ce qui est à gauche ne
peut pas changer, car C# n'accepte pas de rétrograder implicitement une
expression. Le compilateur génère donc le message d'erreur suivant :

Impossible de convertir lmplicitenent 1e type double en int.

C# autorise cette expression avec un cast explicite :

int nl - 1o;

int n2 = (int) (5.0 - nl);

(Les parenthèses sont nécessaires parce que I'opérateur de cast a un
niveau de priorité très élevé.) Cela fonctionne. La variable n 1 est promue
en double, la multiplication est effectuée, et le résultat en double est
rétrogradé en int. Toutefois, on peut alors se demander si le program-
meur est sain d'esprit, car il aurait été beaucoup plus facile pour lui
comme pour le compilateur d'écrire 5 * n1.

int
.i n+tlt L

L'opérateur ternaîre, le redoutable
La plupart des opérateurs admettent deux arguments, certains n'en
admettent qu'un, et un seul en admet trois : I'opérateur ternaire. Celui-ci
est redoutable et pour une bonne raison. Il a le format suivant :

bool expression ? expressionl : expression2

Chapitre 4 : Les opérateurs sont sympas 67

Et je rendrai les choses encore plus confuses avec un exemple :

int a: 1:

int b = 2;
intnMax=(a)b)?a:b;

Dans cet exemple, si a est plus grand que b, la valeur de I'expression est
a. Si a n'est pas plus grand que b, la valeur de I'expression est b.

L'opérateur ternaire est impopulaire pour plusieurs raisons. Tout d'abord,
il n'est pas nécessaire. Utiliser le type d'une instruction if (que nous
décrirons au Chapitre 5) a le même effet et est plus facile à comprendre.
D'autre part, I'opérateur ternaire donne une véritable expression, quel que
soit son degré de ressemblance avec un type ou un autre d'instruction if .

Par exemple, les expressions I et 2 doivent être de même type. Il en résulte
ceci :

int a: 1;

double b = 0.0:
intnMax=(a)b)?a:b;

Cette instruction ne se compile pas, alors que nMax aurait dû recevoir la
valeur de a. Comme a et b doivent être de même type, a €St promu en
doubl e pour être compatible avec b. Le type qui résulte de ?: est mainte-
nant double, qui doit être explicitement rétrogradé en 1nt pour que
I'assignation soit possible :

int a = 1;

double b = 0.0;
int nMax;

/ I ceei fonctionne
nl{ax * (int)((a) b) ? a : b) ;

//de même que ceci
nMax=(a)b)?a:(int)b;

Vous aurez rarement I'occasion de voir une utilisation de l'opérateur
ternaire.

Chapitre 5

Gontrôler lefl ux d'exécuti on
d'un programme

Dans ce chapitre :

Prendre une décision si vous le pouvez.

Décider quoi faire d'autre.

Faire des boucles sans tourner en rond.

Utiliser la boucle whi1e.

Utiliser la boucle for.

onsidérez le très simple programme suivant :

using Systen;

narnespac e He11o1,lor1 d

{

public class Classl
i

, t,
i /Je prograrnme coru[ence lcl
static voi.d Main(string[l args)
(

I I denande son non à 1'utilisateur
Console . Writeline ("Entrez votre non: ") ;

//tit te nom entré par 1'utilisateur
string sNane - Console. Readline () ;

//accueille 1'utilisateur par son nom

tonsole.l,lriteli.ne("1{e11o, " * sNane) ;

//attend confirnation de 1'utilisateur
Console.I.lriteLine("Appuyez sur Entrée pour terminer...") ;

Console.Read0 ;

70 Deuxième partie : Programmation

l
l

]

élémentaire en C#

fîr\(Ll

En dehors du fait qu'il présente quelques aspects fondamentaux de la
programmation en C#, ce programme n'a pratiquement aucun intérêt. Il
ne fait qu'afficher ce que vous avez entré. On peut imaginer un exemple
un peu plus compliqué qui prendrait les données saisies par I'utilisateur,
ferait quelques calculs avec elles et afficherait un résultat (sinon pour-
quoi faire des calculs ?), puis se terminerait. Toutefois, même un tel
programme ne peut avoir qu'une utilité limitée.

L'une des caractéristiques les plus importantes de n'importe quel proces-
seur est sa capacité de prendre des décisions. Par "prendre des décisions",
je veux dire que le processeur oriente I'exécution du programme vers un
chemin d'instructions si une certaine condition est vraie, et vers un autre
chemin dans le cas contraire. Tout langage de programmation doit compor-
ter cette capacité fondamentale pour contrôler le flux d'exécution des
programmes.

Il y a trois types de base d'instructions de contrôle de flux : I'instruction
if . la boucle. et le saut.

L'une des instructions de boucle, foreach, est décrite au Chapitre 6.

Controler le flux d'exécution

/l 1'exécution est orientée ici
]

// 1'exécution se nottrsttit iei. nrrp

Les parenthèses qui suivent immédiatement I'instruction if contiennent
une instruction de type boo i (pour en savoir plus sur les expressions de
type boo1, reportez-vous au Chapitre 4). Juste après cette expression, il y
a un bloc de code, délimité par une paire de parenthèses. Si I'expression
est vraie, le programme exécute ce bloc de code. Si I'expression n'est pas
vraie, il ignore ce bloc de code et passe directement à ce qui suit.

La base de la capacité de prise de décision de C# est I'instruction 1f :

if
{

(bool expression)

si 1'expression est vraie

1'expression soit vraie ou non

Chapitre 5: Contrôler le flux d'exécution d'un programme 7t

L'instruction

I I garantir
ll si â êst
ir(a(û)

tl
a * 0;

l

if est plus facile à comprendre avec un exemple concret :

que a n'est pas inférieur à 0

infêrieur à 0.

. alors, assigner û à a

.rËK
=qE,)

Ce fragment de code permet de garantir que la variable a est toujours
supérieure ou égale à zéro. L'instruction if dit : "Si a est inférieur à 0,

alorsassigner0àa."

Les parenthèses sont facultatives. C# traite "if (expression booléerne)
instruction" exaCtement de la même manière que "if (expres sion
booléenne) { instruction) ". Le consensus général (auquel je souscris)
est de toujours utiliser les parenthèses. Autrement dit, faitesle.

d'un

Imaginez un petit programme qui calcule des intérêts. L'utilisateur entre
le principal et le taux d'intérêt, et le programme donne la valeur qui en

résulte à la fin de I'année (ce n'est pas un programme très sophistiqué).
En C#, ce calcul tout simple apparaît comme suit :

//calcul de l"a valeur du prineipaL
I lplus f intérêt
decinal nlnterestPaid ;

mlnterestPaj.d = nPrincipal t (nlnterest / tOO) ;

/1calcu1e naintenant le total
u;.tni--t;;;i

-;;i".ip.i-i
nïnterestPaid ;

La première équation multiplie le principal, mPrincipal, par le taux
d'intérêt, mlnteresr (divisé par 100, car le taux d'intérêt est généralement
exprimé en pourcentage), pour obtenir I'intérêt à payer, mf nterestPaid.
L'intérêt à payer est alors ajouté au principal, ce qui donne le nouveau
principal, stocké dans la variable rnTotal.

Le programme doit être capable de répondre à presque tout ce qu'un être
humain est capable d'entrer. Par exemple, on ne peut pas accepter un
principal ou un intérêt négatif. Le programme Calculatelnterest ci-dessus

contient des vérifications pour éviter ce genre de choses :

exemple IEt si i'aî besoîn

72 Deuxième partie : Programmation élémentaire en G#

_-"-ffi
æ,

// Calculatelnterest -

I I calcule 1e montant de f intérêt
ll à payer pour un principal donné. Si le
I I principal ou le taux d'intérêt est négatif,
I I oroduit un nessage d 'erreur -

o-
r v--ve-.

using System;

nanespace Calculate Interest
L

public class Class1

t

public static int Main(string[J args)

t

//demande à 1'utilisateur d'entrer le principal initial
Console, Write ("Entrez le principal : ");
string sPrincipal = Console.ReadLine0 ;

decirual nrPrincipal = Convert,ToDecinal(sPrincipal) ;

| 1,,ârifia nrrs 1e principal n'est pas négatifr-- ---o- ---
r /

^\1I tnrr]-nclpal \ u/

t

Console.l,lriteline{"Le principal ne peut pas être négatif");
!lmPrincipal = 0;

l
//demande à 1'utilisateur d'entrer le taux d'intérêt
Console,llrite("Entrez 1e taux d'intérêt :") ;

strins sTnterest = Console.Readline0 ;

decimal nlnterest = Convert.ToDecinal (slnterest) ;

I lvêrifie oue 1e taux d'intérêt ntest pas négatif.
if (mTntprest (0)\Ir+.. Lv- vv e

I
I

Console.l,lriteline("Le taux d'intérêt doit être positif") ;

nlnterest * 0;
1

i/""1.ut* la valeur du principal
IIplvs f intérêt
decinal mlnterestPaid ;

nlnterestPaid = mPrincipal * (nlnterest / tOO) ;

//ca1cu1e maintenant le total
decirnal mÎotal = nPrincipal * mlnterestPaid;
//affiche résultat
Console.l^lritelineO ; /i skip a line
Console. i,iriteLine ("Princi.pa1 = " * nPrincipal) ;

Console.l,lriteline("Taux d'intérêt * " * nlnterest * "%");
Console . llriteline () ;

Console. trlriteline ("Interêt payé

Console .1{riteline ("Total

= rr * mlnterestPaid);
= tr * nlotal) ;

I / attend confirmation de 1'utilisateur
Console.Writeline("Appuyez sur Entrée pour terniner. . .t') ;

Console.Read0;

Chapitre 5: Contrôler le flux d'exécution d'un programme

return 0 i

]

Le programme Ca1 culate Int e rest
I'utilisateur en utilisant I'instruction
sur la console.

commence par demander son nom à
WriteLine O pour écrire une chaîne

^9\./ Dites à l'utilisateur exactement ce que vous voulez. Si possible, incliquez

ft}il aussi le format que vous voulez. Les utilisateurs donnent rarement de

\r/ bonnes réponses à une invite aussi peu claire que).

Notre exemple utilise la commande Readline () pour lire sous forme
d'une chalne de caractères ce que tape I'utilisateur au clavier jusqu'à la
touche Entrée. Comme ce programme attend le principal dans le type
decimal, la chalne entrée doit être convertie avec la commande
Con.",ert. ToDecimal (). Le résultat est alors stocké dans mPrincipal.

o$!9{r Les commandes Readline O, Writeline O, et ToDecimal O, sont toutes

SZ- ^\ des exemples d'cppels de fonction. Je décrirai en détail les appels cle

(t / fonctions au Chapitre 6, mais ceuxlà sont assez immédiatement compré-
V--/ hensibles. Vous devriez avoir au moins une idée de ce dont il s'agit. Si

mes lumineuses explications ne sont pas assez lumineuses pour vous,
vous pouvez les ignorer et aller voir le Chapitre 6.

La ligne suivante effectue la vérification de mPrincipal. Si sa valeur est
négative, le programme annonce sans ménagement à I'utilisateur qu'il a
fait une ânerie. Il fait ensuite la même chose pour le taux d'intérêt. Cela
fait, il effectue le calcul de I'intérêt, très simple, que nous avons déjà vu
plus haut, et affiche le résultat en utilisant une série de commandes
',^,riLeLineO.

Le programme affiche les résultats suivants, sur la base d'un principal
légitime et d'un taux d'intérêt usuraire, curieusement légal en bien des
contrées :

Entrez 1e princip at :1234
Entrez le taux drintérêt :21

Principal = 1234

Taux d'intérêt = Zlol

1t,rnterêt payé = 259.14

73

74 Deuxième partie : Programmation élémentaire en G#

Total = 1493.14
Appuyez sur Entrée pour terniner...

Avec une entrée invalide, le programme produit la réponse suivante :

Entrez 1e principal :1234

Entrez le taux d'intérêt :-12.5
Le taux d'intérêt doit être positif

Principal * 1234

Taux d'intérêt = 0%

Interêt payé = 0

Total * 1234

Appuyez sur Entrée pour terminer..,

^$$G t Pour que le source soit plus lisible, mettez en retrait les lignes d'une
7X instruction if. C# ne tient pas compte de la mise en retrait. Beaucoup

t(9, d'éditeurs de code comporte une fonction de mise en retrait automati-
Y que : chaque fois que vous tapez la commande 1f , le texte correspondant

est mis en retrait automatiquement. Pour activer cette fonction dans
Visual Studio, sélectionnez Outils/Options, et cliquez sur le dossier
Éditeur de texte. Parmi les sous-dossiers de celui-ci, sélectionnez C#, et,
dans ce dernier, Tabulations. Dans cette page, sélectionnez Mise en
retrait Intelligente, et dans la zone Tabulations, spécifiez la taille du
retrait que vous voulez (en nombre d'espaces). Pour ce livre, j'ai utilisé
une mise en retrait de deux espaces.

Qu'est-ce que je peux faire d'autre ?

Certaines fonctions ont besoin de tester des conditions mutuellement
exclusives. Par exemple, le segment de code suivant stocke le plus élevé
de deux nombres, a et b dans la variable max :

l/ stocke dans riax le
int nax;
I I si a est plus grand

if(a)b)
t

I / conserr/ê
mar = ai

J

I I si a est inférieur

plus élevé de a et b

que b.

a conne maxinun

ot égal à b,

Ghapitre 5: Gontrôler le flux d'exécution d'un proglamme 7 5

if (a (= b)
I

I I conserve b conne maxinum

max = b;

l

La seconde instruction if est ici inutile, car les deux conditions sont
mutuellement exclusives. Si a est plus grand que b, alors il ne peut pas
être inférieur ou égal à b. C'est pour les situations de ce type qu'il y a dans
C# une instruction e1se.

Le mot-clé else définit un bloc de code qui sera exécuté si I'expression
logique contenue dans I'instruction if n'est pas vraie.

Notre calcul de maximum devient maintenant :

// stocke dans max le plus élevé de a et b

int max;

I I si a est plus grand que b.
if(a)b)
t

I I .conserve a conne naxinum; sinon
max s a;

I

e1s e

I

I I conserve b conne naxinum

max = b;

J

Si a est plus grand que b, c'est le premier bloc de code qui est exécuté.
Dans le cas contraire, c'est le second. Au bout du compte, nax contient la
valeur du plus grand de a ou b.

*... ^ , -EUlrcf meme rc e-Lse

Les séquences de plusieurs clauses else peuvent donner une certaine
confusion. Certains programmeurs, dont moi-même, préfèrent les éviter
lorsque ça permet de faire un code plus clair. On pourrait écrire le calcul
du maximum de la facon suivante :

// stocke dans max 1e plus é1evé de a et b

int max;

76 Deuxième partie : Programmation élémentaire en G#

// suppose que

nax = 8;

I I si ce n'est
if(b)a)
t

ll ,..a1ors,
max = b;

l

^ ^-! -1,.- --^-J rttp hd Ëù L PJ-uù Ël.duu l-- -

nec lo n.âc

on peut changer d'avis

Il y a des programmeurs qui évitent ce style comme la peste, et je peux
les comprendre, mais ça ne veut pas dire que je vais faire comme eux. Je

me contente de les comprendre. Les deux styles, avec ou sans "e1se",
sont couramment utilisés, et vous les rencontrerez souvent.

lnstructions if inbrîquées

Le programme Caiculatelnterest prévient I'utilisateur en cas d'entrée
invalide, mais il ne semble pas très pertinent de poursuivre le calcul de
I'intérêt si I'une des valeurs est invalide. Ça ne peut guère tirer à consé-
quence ici, parce que le calcul de I'intérêt est pratiquement immédiat et
parce que I'utilisateur peut en ignorer le résultat, mais il y a bien des
calculs qui sont loin d'être aussi rapides. De plus, pourquoi demander à
I'utilisateur un taux d'intérêt s'il a déjà entré une valeur invalide pour le
principal ? ll sait bien que le résultat du calcul sera invalide, quelle que
soit la valeur qu'il saisit maintenant.

Le programme ne devrait donc demander le taux d'intérêt à I'utilisateur
que si la valeur du principal est valide, et n'effectuer Ie calcul de I'intérêt
que si les deux valeurs sont valides. Pour réaliser cela, il vous faut deux
instructions 1f . I'une dans I'autre.

Une instruction if placée dans le corps d'une autre instruction if est
appelée une instruction imbriquée.

Le programme suivant, C a 1 c u 1 at e I nt e r e s t\^li thEmb eci d e dTe s t, utilise des
instructions if imbriquées pour éviter les questions inutiles si un problème
est détecté avec les valeurs entrées.

I I CateulatelnterestWithEmbeddedïest -

I I calcule 1e montant de f intérêt à

| | payer pour un principal donné. Si
I I le principal ou le taux d'intérêt est
I I négatif, alors génère ttn nessage d'erreur

Ghapitre 5 : Gontrôler le flux d'exécution d'un programme 7 7

I I et n'effectue pas le ca1cu1.

using System;

natuespace CalculatelnterestWithBmbeddedTest
t

public class Class1

{

public static void Main(string[] args)
t

//detin:.t un taux d'intérêt naxinun
int nMaxinunlnterest = 50;

//demande à 1'utilisateur d'entrer 1e principal initial
Console.l^irite("Entrez 1e principal :") ;

string sPrincipal = Console.ReadlineO ;

decimal mPrincipal : Convert,ToDecimal(sPrincipal) ;

I lsi Ie principal est négatif.{ / ^\1t lmrrlncr_pal \ u./

{

IL génère un message d'erreur.
Console,I,{riteLine("Le principal ne peut pas être négatif");

l
else
t

I | . sinon, demande 1e taux d'intérêt
Console.Write("Entrez 1e taux d'intérêt :");
string sTnterest = Console. ReadLine 0 ;

decimal nlnterest = Convert.ToDeciraal(sTnterest) ;

I lsi 7e taux d'intérêt est négatif ou trop é1evé.

if (nlnterest (0 ll rnlnterest) nMaximumlnterest)

{

I I .génère un autre nessage d'erreur
Console.l,lriteline("Le taux d'intérêt doi.t être positif 'r +

"et pas supérieur à u + nMaximunlnterest) ;

mlnterest = 0;
tl

1erse
It

I t-//1e principal et f intérêt sont tous deux 'ralides
//calcule donc La valeur du principal
//p1us lrintérêt
decimal mlnterestPaid ;

mlnterestPaid * mPrincipal * (nlnterest / 100);

/lca1eule naintenant 1e tstal
decimal mÏotal * nPrincipaL * mÏnterestPaid;
f I ar, 1 t r.
/ /affiche résultat
Consol"e.l,lriteline0 ; // skip a line
Console,1{riteline("Principal = " r mPrincipal);
Console.Writeline("Taux d'intérêt = tr f nlnterest * "%"):
ConsoLe.I,lriteLine() ;

7 8 Deuxième partie : Programmation élémentaire en C#

Çonsole.Writeline("Intérêt payé = tr + mlnterestPaid);
Console.l,lriteline ('tTotal = rt + nlotal) ;

)

llattend confirmation de 1'utilisateur
Console.l,lriteline("Appuyez sur Entrée pour terniner. . . ") ;

Console.Read0;

)

Le programme commence par lire Ia valeur du principal entrée par I'utilisa-
teur. Si elle est négative, il affiche un message d'erreur et se termine. Dans le

cas contraire, Ie contrôle passe à la clause e1se, et le programme poursuit
son exécution.

Dans cet exemple, la vérification du taux d'intérêt a été améliorée. Le
programme demande ici un taux d'intérêt qui ne soit pas négatif (règle
mathématique) et qui soit inférieur à un maximum (règle juridique). Cette
instruction i f utilise un test composé :

if (mlnterest (0 ll nlnterest) nl'laxinumlnterest)

Cette expression est vraie si mI nt e r e s t est inférieur à zêro ou si
nlnteresr- est plus grand que nllaximumïnterest. Remarquez que j'ai
déclaré nl'laxirnurillnteres'1- en haut du programme au lieu de le coder
localemenl sous forme de constante.

-r\0.t\\vl -a

I/....fil Définissez toujours au début de votre programme les constantes importantes.
l\rt

L

-
Placer les constantes dans des variables au début du programme est utile
à plusieurs titres. Tout d'abord, chaque constante a ainsi un nom :

nMaximunlnterest est beaucoup plus descriptif que 50. D'autre part, elles
sont beaucoup plus faciles à retrouver dans les expressions. Enfin, il est
beaucoup plus aisé d'en changer la valeur en cas de nécessité. Remarquez
que c'est n|laxinunlnter€st qui apparaÎt dans le message d'erreur. Si

vous remplacez nl4axi:,nurnlnterest par 60, par exemple, cette modifica-
tion n'affecte pas seulement le test, mais aussi le message d'erreur.

Si I'utilisateur entre une valeur correcte pour le principal mais un taux
d'intérêt négatif, le programme affiche :

Entrez 1e principal :I234
Entrez le taux d'intérêt :-12.5

Chapitre 5 : Contrôler le flux d'exécution d'un programme

Le taux d'intérêt doit être positif et pas supérieur à 50.

Appuyez sur Entrée pour terniner. . .

Ce n'est que si I'utilisateur entre des valeurs correctes pour le principal et
pour le taux d'intérêt que le programme effectue le calcul demandé :

Entrez 1e principal :1234
Entrez le tâux d'intérêt :12.5

Principal = 1234

Taux d'intérêt = 12.5 r,

Interêt payé = 154.25

Total = 1388.25

Appuyez sur Entrée pour terminer. . .

Les comtnandes de

L'instruction i f permet à un programme de s'orienter sur un chemin ou sur
un autre dans le code en cours d'exécution, selon la valeur d'une expression
booiéenne. Elle permet de faire des programmes incomparablement plus
intéressants que ceux qui sont dépourvus de capacité de décision. Ajoutez
maintenant la capacité d'exécuter un ensemble d'instructions de façon
itérative, et vous avrez fait un autre saut qualitatif dans la capacité de vos
programmes.

Considérez le programme Calculatelnterest que nous avons vu plus
haut dans ce chapitre. On pourrait faire la même chose avec une calcula-
trice ou même à la main avec un crayon et un papier, en se donnant
moins de mal que pour écrire et exécuter un programme.

Et si vous pouviez calculer le montant du principal pour chaque période
d'un an successive ? Ce serait beaucoup plus utile. Une simple macro de
feuille de calcul Excel serait toujours plus facile à réaliser, mais au moins,
ilyaunprogrès.

Ce qu'il vous faut, c'est un moyen pour I'ordinateur d'exécuter plusieurs
fois la même séquence d'instructions. C'est ce qu'on appelle une boucle.

79

boucle

80 Deuxième partie : Programmation élémentaire en C#

Commençons qtar la 1
--1- \-

Le mot-clé de C# ;l:rie permet d'exécuter une boucle de la forme la plus
simple :

vhile (boo1 expression)
{

//1'exécution est répétée tant que 1'expression reste vraie
]

La première fois que I'instruction de boucle while est rencontrée, I'expres-
sion booléenne est évaluée. Si elle est vraie, le code contenu dans Ie bloc
qui suit est exécuté. Lorsque I'accolade qui en indique la fin est rencontrée,
I'exécution reprencl à I'instruction wl'ri 1e. Dès que I'expression booléenne
est fausse, le bloc de code qui suit est ignoré, et l'exécution du programme
passe clirectentent à ce qui suit.

Si la condition n'est pas vraie la première fois que I'instruction wliile €st
rencontrée. le bloc de code qui suit n'est jamais exécuté.

boucle de base, wh i

cfq-'.'
=,:c|,,)

Les programrneurs s'expriment souvent de façon un peu bizarre (il sont
d'ailleurs bizarres la plupart du temps). Un programmeur pourrait dire
qu'une bor-rcle est exécutée jusqu'à ce qu'une certaine condition soit
fausse. Pour moi, cela voudrait dire que le contrôle passe en dehors de la
boucle dès que la condition devient fausse, quel que soit le point où il en
est de son exécution à ce moment-là. Ce n'est évidemment pas comrne ça
que ça se passe. l-e programme ne vérifie si la condition est vraie ou non
que lorsque le contrôle cle I'exécution arrive effectivement en haut de la
boucle.

Vous pouvez utiliser I'instruction ',;fri i e pour réaliser le programme
Cari:lll..tie-r.i.:,r Ê,jl'iab1e., Qui est une version en boucle du programme
Ca i c,,r 1 a t e I r i e r e s *.. Ca i c u1 at e 1 i t e r e s t TaL i e calcule une table des
valeurs du principal pour chaque année, en mettant en évidence I'accu-
mulation des ir-rtérêts annuels :

/ / CalculatelnterestTable - ca1cul de f intérêt cumulé

I I payé sur la base d'un principe déterminé
I I sur une oériode de olusieurs années

uùrrrË JyùLcur,

nâmpsn2cÊ Ce I r^rrlatelntereStTablel.qirrLUPsu!

{

"^ "-^
Q"^+^-.uù!lrË ù/ùLcl4,

Chapitre 5: Contrôler le flux d'exécution d'un programme 8l

public class C1ass1

{

public static void Main(stringIJ args)
{

//demande à 1'utilisateur d'entrer 1e principal initial
Console.hlrite("Entrez 1e principal : ") ;

string sPrincipal = Console,ReadLine0 ;

decimal mPrincipal = Convert.ToDecimal (sPrincipal) ;

tlllal lê nrln.1h.1 an+ nÂ-.+i1/ / Dr rç yrarrLfyof c>L rrtrBdLl!.
. è / n a /

^\1r {mHr1nc1nâl \ uJ

t

ll .génère un message d'erreur.
Console.WriteLine("Le principal ne peut pas être négatif");

]

else
{

I I . sinon, denande 1e taux d'intérêt
Console.I,irite("Entrez 1e taux d'intérêt :");
string sTnterest = Console,Readli-ne0 ;

decimal nilnterest = Convert,ToDecimal(slnterest) ;

//si 1e taux d'intérêt est négatif..
if (mlnterest (0)

{

IL génère un autre message d'erreur
Console.i,iriteline("Le taux d'intérêt doit être positif") ;

nïnterest = 0;

l
e1s e

{

//1e principal et le taux d'intérêt sont vaLides

//demande donc 1e nombre d'années
Console.l.Jrite("Entrez 1e nombre d'années :") ;

strins sDuration = Console. Readline () ;

int nDuration = Convert.ToInt32 (sDuration) ;

llvé.rifie la valeur entrée
Console.l,JriteLine0; I I écrit une ligne blanche

Console.1rlriteLine ("Principal = " -l- nPrincipal) ;

Console,I,,Iriteline("Taux d'intérêt = 'r + mlnterest + rtt/rt)'
Console.Writeline("Durée ='tf nDuration * "ans");
Console.l,,lriteLi.ne () ;

lleffectue une boucle selon 1e nombre d'années spécifié
inf nïerr = l'

while(nYear (= nDuration)
{

l/ca1cule 1a valeur du principal
ll .l/plus I'intérêt
deci.mal mlnterestPaid ;

mlnterestPaid = mPrincipal * (mlnterest I 100);

82 Deuxième partie:Programmation élémentaire en C#

/lealcu1e naintenant 1e nouveau principal en ajoutant
//f intérêt au principal précédent

mPrincipal = mPrincipal * nlnterestPaid;
//arrondit 1e principal" au centirue le plus proche

nPrincipal : decimal.Round (nrPrinci-pa|, 2) ;

I I atfiche le résultat
Console . l.Jriteline (nYear + rr - rr + nTPrincipal) ;

I I passe à 1'année suivante
nYear = nYear * li

l
I I attend confirmation de 1'utilisateur
Console,Vlriteline("Appuyez sur Entrée pour terminer. . .") ;

Console.Read0;

l

L'essai d'exécution de ce programme donne ce qui suit :

Entrez le principal :1234

Entrez 1e taux d'intérêt : i2 .5
Entrez 1e nonbre d'années :10

Principal = 1234

Taux d'intérêt = L2.5'l'

Durée = 10 ans

1 - 1388.25

2-1561.78
3-1757

4-r97 6 .62

5-2223.7
6-2501.66

7 -2814,37

B-3166.1i
9-3561,94
10-4007.18
Appuyez sur Entrée pour terniner, . .

Chaque valeur représente le principal total à I'issue du nombre d'années
écoulées, Sur la base d'un cumul annuel d'intérêt simple. Par exemple, un
principal initial de | 234 € à 12,5'1, donne 3 561 ,94 € au bout de neuf ans.

Ghapitre 5;Contrôfer le flux d'exécution d'un programme

La plupart des valeurs comportent deux décimales pour les centimes.
Comme les zéros de la partie décimale ne sont pas affichés, certaines
valeurs n'ont qu'un chiffre ou même aucun après la virgule. Ainsi, 72,70
est affiché comme 12,7. Vous pouvez y remédier en utilisant les caractè-
res de rnise en forme décrits au Chapitre 9.

Le prograrnme Calcuiar-elnterestTabie commence par lire la valeur du
principal et celle du taux d'intérêt entrées par I'utilisateur, et par vérifier
quelles sont valides. Il lit ensuite le nombre d'années sur lequel effectuer
I'itération. et stocke cette valeur dans la variable nDuration.

Avant d'entrer dans la boucle while, le programme déclare une variable
nYear, qu'il initialise à la valeur i. Ce sera "l'année en cours", c'est-à-dire
que cette valeur va changer "chaque année" à chaque boucle successive
exécutée par le programme. Si le numéro de I'année contenu dans n r e a r
est inférieur à la durée totale contenue dans nDurati on, le principal pour
"l'année en cours" est recalculé en utilisant I'intérêt calculé sur la base de
"l'année précédente". Le principal calculé est affiché avec le numéro de
I'année correspondante.

1r$!Qa"
ô7^ËT \ L'instruction decirnal . Round () arrondit la valeur calculée au centime le

=\Él\y j plus proche.
\ô/

La clé du fonctionnement de ce programme se trouve dans la dernière
ligne du bloc. L'instruction nYear : nYear t 1; incrémente nYear de 1.

Si nYear a la valeur 3 avant cette instruction, elle aura la valeur 4 après.
Cette incrémentation fait passer le calcul d'une année à la suivante.

Une fois que I'année a été incrémentée, le contrôle revient en haut de la
boucle, où la valeur de n lear est comparée à la durée demandée. Dans
I'exemple exécuté ci-dessus, si le numéro de I'année en cours est inférieur
ou égal à 10, le calcul continue. Après avoir été incrémentée dix fois, la
valeurde nYear devient 11, qui est plus grand que 10, et lecontrôledu
programme passe à I'instruction qui suit immédiatement la boucle whi1e.
Autrement dit. il sort de la boucle.

^9\.1 La plupart des commandes de boucle suivent ce même principe de base
(Gil qui.ontiste à incrémenter une variable servant de compteur jusqu'à ce

\ÈZl qu'elle dépasse une valeur fixée.

La variable nYear servant de compteur dans Calc.rlatelnterestTable
doit être déclarée et initialisée avant la boucle while dans laquelle elle est
utilisée. En outre, I'incrémentation de la variable nYear doit généralement
être la dernière instruction de la boucle. Comme le montre cet exemple,

83

1ep!Qa"

{dg)

84 Deuxième partie : Programmation élémentaire en G#

vous devez prévoir de quelles variables vous aurez besoin. Ce procédé
vous sera plus facile à manier une fois que vous aurez écrit quelques
milliers de boucl€s'v,'hi1e, comme moi.

: nYear * 1 ;. Sans I'incrémentation, la
l, et le programme continue à exécuter la
C'est ce qu'on appelle une boucle infinie. La
d'arrêter le programme (ou de redémarrer

.Ëôl

U
Faites attention à ce que la condition de sortie de la boucle puisse réelle-
ment être satisfaite. En général, il suffit pour cela que la variable compteur
soit correctement incrémentée. Sans cette précaution, vous êtes bon pour
la boucle infinie et I'utilisateur rancunier.

Comme une boucle infinie est une faute assez courante, ne soyez pas trop
vexé si vous vous y laissez prendre.

Et maintenan\ C o... wh i 1 e

Il existe une variante de while :c'est la boucle dc... whiie. Avec elle, la
condition n'est évaluée qu'à la fin de la boucle :

nYear = J;

I | . instructions.
nYear = nYear * 1;

I while (nYear (nDuration);

À ta Oitterence de la boucle whl1e, la boucle d:r... whl1e est exécutée au

moins une fois, quelle que soit la valeur de rLDur ation. Toutefois, ce type
de boucle est assez peu utilisé en pratique.

int
do

t

>/
^,,\ Lorsque vous écrivez une boucle r'hi 1e, n'oubliez pas d'incrémenter la

(tl I variable servant de compteur, comme je l'ai fait dans cet exemple :\t/\-----./

int nyeâr = 1;
/ a

^\vn1le lnlear \ lu,l

{

l l . instructions,
j

J'ai omis I'instruction nYear
valeur de nlear est toujours
boucle sans jamais s'arrêter.
seule manière d'en sortir est
I'ordinateur).

Chapitre 5 : Contrôler le flux d'exécution d'un programme 85

Briser une c'est

Il existe deux instructions de contrôle spéciales que vous pouvez utiliser
dans une boucle:break et continue. La commande break fait passer le

contrôle à la première expression qui suit la boucle dans laquelle elle se

trouve. La commancle conl:i nue fait passer le contrôle directement à
I'expression conditionnelle en haut de la boucle afin de recommencer de

la manière apPropriée.

-q\!C ^, J'ai rarement utilisé continue dans ma carrière de programmeur, et je

Hdoutequ'ilyaitbeaucoupdeprogrammeursquisesouviennentseulement
I[qIl de son existence. Ne I'oubliez tout de même pas complètement. Elle vous
\ÈZl servira peut-être un jour pour jouer au Scrabble.

Par exemple, imaginez que vous vouliez récupérer votre argent à la

banque dès que le principal dépasse un certain nombre de fois le montant

initial, indépendamment du nombre d'années écoulées. Vous pouvez

facilement résoudre ce problème en ajoutant ce qui suit dans la boucle :

(mPrincipal) (maxPorrer

break;

n0riginalPrincipal))

j

La commande b reak ne sera exécutée que lorsque la condition de I'ins-

truction if sera vraie. Dans ce cas, lorsque la valeur calculée du principal

sera supérieure à maxPower multiplié par la valeur initiale du principal.
L'exécution de la commancle break fait passer le contrôle en dehors de la

boucle whrle (nYear:

exécution jusqu'à sa fin.

facîleboucle,

1t
t
!

',.tfâ
'.ù/ | ha"
F f-fiT.X.)I li'/

Ë,

Vous trouverez sur le site Web une version du calcul de table d'intérêt qui

comporte cette adjonction (il serait un peu long d'en donner le source ici).

Voici un exemple de résultats affichés par ce programme :

Entrez 1e principal :100

Entrez 1e taux d'intérêt :25

Entrez le nombre d'années :100

Principal = 100

Taux d'intérêt = 25i,

Durée = 100 ans

86 Deuxième partie : Programmation élémentaire en C#

Arrêter si la valeur initiale est nultiDliée nar 10

1-r25
2-156.25

3-195.31

4-244.14

5-305,1B

6-381.4B
7-476.85
B-596.06

9-745.08
10-93 I .35

i1-1164.19
Ànnrrrroz crlr Fntréê nnrrr tarminor

Le programme se termine dès que le principal
Comme vous voyez, il est plus performant que

calculé dépasse
la llelle au bois

I 000 o.

dormant.

Faire des ce qu'on ,/ arriûe

Le programme Cairru,ratelnrel"esi-Tab1e est assez malin pour se termi-
ner si I'utilisateur entre une valeur invalide, mais c'est tout de même un
peu dur pour I'utilisateur de le planter là sans autre forme de procès.
Même mon peu sympathique programrne de comptabilité me donne droit
à trois essais pour entrer mon rnot de passe avant de me laisser tomber.

Une combinaison de iihlie et tt:e;,r permet de donner au programme un peu
plus de souplesse. Le progralnme ila,tcr-riaielni Èr cstTableluloreF'cr qir.ing
en montre le principe :

// CalculatelnterestTableMoreForgiving - calcule I'intérêt
I I payé sur un nombre d'années déterminé. Cette
| | version donne à L'utilisateur 3 possibilités
I I un principal et un taux d'intérêt valides.
rtqino Svqtpm'

nâmF sna c e tln I r"rr late Inte restTab leMo reFors.ivins
t

,,^i-- O,,^r^-.uÈrrr6 ùy ù LEul,

public class Classi
i

public static void Main(string[] args)
{

// définit un taux d'intérêt maxi.mal

int nMaxinumfnterest = 50:

boucles iusqu'à

Chapitre 5 : Contrôler le flux d'exécution d'un programme 87

// denande à 1'utilisateur
I I :,,^^,, t: ^^ ^,,',,ne ValeUfr r JuDgu a Lc Yu u

decinal mPrincipal;
while (true)
{

le nrincin:l initial; continue
valide soit entrée

Console.l*lrite("Entrez 1e principal :") ;

a*r.inn oDrinnj^a1 = COnSOle,ReadLine0 ;ù Lr rrrË ù! r rrrlryc

nPrincipal = Convert.?oDecimal (sPrincipal) ;

I I sort de 1a boucle si valeur entrée est valide
i \

^\lt lmfrlnclpaL)= u)

{

break I

]
I I oânàro 11n mpssâoê rl'errerrr si val ertr entrée est invalide
Console.WriteLine("Le principal ne peut pas être négatif");
Console.l,JriteLine ("Veui11ez recomnencer") ;

Console.l'lriteline () ;

1t

// demande maintenant à 1'utilisateur le taux d'intérêt
decinal nlnterest:
whi.1e (true)
{

Console,l^lrite("Entrez 1e taux d'intérêt :") ;

string sTnterest : Console.ReadlineO ;

mlnterest : Convert.ToDecirnal (slnterest) ;

ll n'accepte pas un taux d'intérêt négatif ou trop grand'.'
j.f (mlnterest >= 0 && mlnterest (= nMaxinunlnterest)

{

break;
]
I I .et génère aussi un message d'erreur
Console.l^lriteLine("Le taux d'intérêt doit être positif " *

"et pas supérieur à " + nMaximumlnterest) ;

Console,l^lriteLine ("Veui.11ez reconnencer") ;

Console,illriteline0;
]

ll I'int|rêt corune 1e principal sont valides,
// demande donc 1e nombre d'années

Console. lirite ("Entrez 1e nombre d'années : ") ;

string sDuration = Console. Readline 0 ;

int nDuration = Convert. ToInt32 (sDuration) ;

l/ vérifie la valeur entrée
Console.Writeline0; l/ écrit une

Console.l,lriteline("Principal =

Console.}lriteline ("Taux d' intérêt =

I i -.o h l rnnha. '\,' + mPrrnnlhâ I t.' srr!frj!rHufl'

" * mlnterest * "%") l

" * nDuration f " ans");Console . lrlriteLine ("Durée
/\

uonsote. l/crlteLlne U ;

// effectue une boucle sur 1e nombre d'années spécifié

88 Deuxième partie : Programmation élémentaire en C#

int nYear = 1;

while (nTear (= nDuration)
{

/l calcule 1a valeur du principal
ll
i / Dlus l'lnteret
decinal mlnterestPaid :

mlnterestPaid = mPrincipal n (mlnterest I t0O);
l/ calcule naintenant le nouveau principal en ajoutant
I I I'intêrêt au précédent principal
nPrincipal : mPrincipal * mlnterestPaid;
// arrondit 1e principal au centine 1e plus proche

mPrincipal = decinal . Round (mPrincipa! , 2) :

I I afî.lche 1e résultat
Console.I^Iritetine(nYear + rf -fr * nPrincipal) ;

// oasse à 1'année suivante
nYear = nïear f 1;

l
ll attend confirmation de 1'utilisateur
Console.l,lriteline("Appuyez sur Entrée pour terminer. . . ");
Console.Read () ;

l

Ce programme fonctionne largement de la même manière que les exem-
ples précédents, sauf pour ce qui est entré par I'utilisateur. Dans ce cas,
c'est une boucle while eui remplace les instructions 1f utilisées précé-
demment pour détecter les entrées invalides. Par exemple :

decinal mPrincipal:
while (true)
{

Console.I{rite("Entrez 1e principal :") ;

string sPrincipal = Console.Readline0 :

mPrincipal = Convert.ToDecimal(sPrincipal) ;

I I sort de 1a boucle si valeur entrée est valide
if (mPrincipal)= 0)
{
L

break;
l
// génère un message d'erreur si valeur entrée est invalide
Console.\lJriteLine("Le principal ne peut pas être négatif");
Console,Writeline ("Veui11ez recomnencer") ;

Console . llriteLi.ne () ;

]

Chapitre 5:Contrôler le flux d'exécution d'un programme

Cette portion de code reçoit une valeur de I'utilisateur à I'intérieur d'une
boucle. Si la valeur entrée est satisfaisante, Ie programme sort de la
boucle et poursuit son exécution. Si la valeur est incorrecte, un message
d'erreur est envoyé à I'utilisateur, et le contrôle repasse au début de la
boucle de saisie.

|X Vous pouvez le voir de cette façon : "Le programme ne sort pas de la
IICff I boucle tant que I'utilisateur n'a pas répondu correctement."
\z

Remarquez que la condition a été inversée, car il ne s'agit plus qu'une réponse
incorrecte produise un message d'erreur, mais qu'une réponse correcte fasse
sortir de la boucle. Dans la partie concernant Ia saisie du taux d'intérêt, par
exemple, le test Principai < 0 | mF rincipal) nl'laximumlnterest
devient mlnterest >: 0 && mlnterest (: nMaximumlnterest. Il est clair
que mlnterest): 0 est le contraire de mlnterest (0. Ce qui n'est peut€tre
pas aussi évident est que le OR | | est remplacé par un AND &&. Autrement dit :

"Sortir de la boucle si le taux d'intérêt est supérieur à zéro et inférieur au
montant maximum."

Dernier point à noter: la variable mPrincipai doit être déclarée en
dehors de la boucle, pour des questions de règles sur la portée des
variables, que j'expliquerai dans Ia section suivante de ce chapitre.

Vous allez peut-être trouver cela évident, mais I'expression true est évaluée
comme true. Par con-céquent, while (true) est I'archétype de la boucle
infinie. C'est la commande break qu'elle contient qui fait sortir de la boucle.
Aussi, si vous utilisez une boucle while (true), faites particulièrement
attention à ce que la condition de break puisse être satisfaite.

Voici un exemple de résultat d'exécution de ce programme :

Entrez 1e principal :-1000
Le principal ne peut pas être négatif
Veuillez recommencer

Entrez 1e principal :1000

Entrez 1e taux d'intérêt : - l0
Le taux d'intérêt doit être positif et pâs supérieur à 50

Veuillez recomnencer

Entrez le taux d'intérêt :10

Entrez 1e nombre d'années :5

Princinel = 1 000

8g

{f\q/ z<r- \e,

90 Deuxième partie : Programmation élémentaire en G#

Taux d'intérêt = 10%

Durée = 5 ans

t - 1100

^
1^i^z'!trv

3 - 1331

4-1464.r
5-1610.51

Appuyez sur Entrée pour terniner...

Le programme n'accepte ni principal négatif ni taux d'intérêt négatif, et
m'explique patiemment mon erreur chaque fois.

Expliquez toujours exactement son erreur à I'utilisateur avant de lui
demander à nouveau d'entrer une valeur.

Les règles de portée des

Une variable déclarée dans le corps d'une boucle n'est définie que dans
cette boucle. Examinez ce fragment de code :

int nDays : 1;

while(nDays (nDuration)
{

.in+ nÂ,,nra^a = n\/c1rro / nllrrr<.-LllL rlëvËIéBtr llvoauc I LLUqJ D t

I I . instructions
nDays = nDays i 1;

l

Lavariable nA."'eiage n'est pas définie en dehors de la boucle vrhile. Il ya
différentes raisons à cela, mais considérez celle-ci : lors de la première
exécution de la boucle, le programme rencontre la déclaration lnt
nA,,'ere,ge, et la variable est définie. Lors de la seconde exécution de la
boucle, le programme rencontre à nouveau la déclaration de nAve r age.

S'il n'y avait pas les règles de portée des variables, ce serait une erreur,
car la variable est déjà définie.

Il y a d'autres raisons, plus convaincantes que celle-ci, mais je m'en
tiendrai là pour le moment.

Il me suffit de clire que la variable nAveragê disparalt, aux yeux de C#, dès
que le programme atteint I'accolade fermante qui indique la fin de la
boucle.

hriables

^ô2ËK:(dqf
)\ô/

Chapitre 5: Contrôler le flux d'exécution d'un programme 9l

^ ilre la boucle la plus utilîsée.' f orç0mpf9ttr
La boucle wl,ile est la plus simple des structures de boucle cle C#. et la
plus utilisée après f or.

Une boucle f or a la structnre suivante :

f.or (initflxpressioni condition ; increnent[xpression)
{

I I . instructions.
l

Lorsqu'une boucle for est rencontrée, le programme commence par exécu-
ter inrtEx,f ression. puis il évalue la condition. Si la condition est vraie, le
prograrnrne exécute les instructions qui constituent Ie corps de la boucle,
lequel est délimité par les accolades qui suivent immédiatement I'instruction
,or. Lorsque I'accolade fermante est atteinte, le contrôle passe à I'exécution
de increinentExpressi on, puis à nouveau à l'évaluation de la condition, et la
boucle recommence aussi lorlgtemps que la condition de f or reste vraie.

En fait, la définition d'une boucle f or peut être convertie dans la boucle
whiie suivante :

initExpression;
çhile (condition)
t

I | . instructions.
incrementExDression;

l

Un evemlrle de boucle f o r
Un exemple vous permettra de mieux comprendre le fonctionnement
d'une boucle f or :

1/ instructions C#

a = 1;

92 Deuxième partie : Programmation élémentaire en G#

I I et naintenant une boucle
for(int nYear = 1; nYear (nDuratj,on; nYear = nYear * 1)

{

IL corps de la boucle
]

I I Ie programme continue ici
^ = 1,a L.

Supposez que le programme vienne d'exécuter I'instruction a 1 ;. Il
déclare ensuite la variable nf ear €t I'initialise à 1. Cela fait, il compare
nÏear à nr)urar,rcr,. Si rrYear est plus petit que rrDulaiion, le corps de la
boucle (les instructions contenues dans les accolades) est exécuté.
Lorsqu'il rencontre I'accolacle fermante, le programme revient en haut de
la boucle, et exécute I'expression rrYear : nYeai: * i avant d'effectuer la
comparaison nTear (nDurar-ion.

Pour(uoi auriez-(/ous besoin d'une autre boucle ?

A quoi peut bien servir une boucle f o r si C# perrnet de faire la même
chose avec une boucle,,;hrie ? La réponse la plus simple est qu'elle ne
sert à rien. Une boucle f rr n'ajoute rien à ce qu'une boucle whiie permet
déjà de faire.

Toutefois. les clifférentes parties de la boucle ror existent par commodité,
et pour différencier clairement les trois parties que toute boucle doit
comporter : I'initialisation, le critère de sortie, et I'incrémentation. Non
seulement c'est plus facile à lire, mais c'est aussi plus difficile à rater
(souvenez-vous que les erreurs les plus courantes dans une boucle v;hiLe
sont d'oublier d'incrémenter la variable compteur et de ne pas définir
correctement le critère de sortie).

Indépendamrnent de tout alibi justificateur, la raison la plus importante
de comprendre la boucle f or est que c'est celle que tout le monde utilise,
donc celle que vous allez voir neuf fois sur dix quand vous lirez du code
écrit par quelqu'un d'autre.

La boucle f ,-,: €st conçue de telle sorte que la première expression initialise
une variable compteur, et la dernière I'incrémente. Toutefois, le langage C#
n'impose pas cette règle. Vous pouvez faire ce que vous voulez dans ces
deux parties de I'instruction, mais sachez que vous seriez mal inspiré d'y
faire autre cïrose"

1t$!log^
^r,7çç

\
Ë\dW

)\Ô/

Chapitre 5: Contrôler le flux d'exécution d'un programme 93

L'opérateur d'incrémer-rtation est
boucles f or fie décris I'opérateur
Chapitre 4). Une boucle f or pour
cumulés pourra s'écrire ainsi :

particulièrement populaire dans Ies

cl'incrémentation, ainsi que d'autres, au
notre exemple de calcul des intérêts

for(int nYear = l; nYear (nDuration; nYear*i)
i

I | .corps de 1a boucle
]

.q$q ,., C'est presque toujours I'opérateur cle postincrémentation qlle volls verrez

Hdansunebouclefor,plutôtquel'opérateurclepréincrémentation,bienque
t(9, I'effet en soit le même dans ce cas. Il n'y a pas d'autres rai.sons à cela que
Y I'habitude et le fait que ça a I'air plus cool. (On m'a dit que ça marchait très

bien pour briser la glace. Rien n'est moins str, mais vous pouvez toujours
essayer d'exiber votre code, à tout hasard.)

La boucle f or a aussi une variante clont je ne peux pas faire semblant de
comprendre la raison d'être. Si la condition logique est omise, elle est
considérée comme vraie. Par conséquent, f ol I : ;) produit une boucle
infinie.

.$a/ Vous verrezeffectiven-rent f o r (i ',',utilisée pour réaliser une boucle
ft?ll infinie beaucoup plus souvent Que ,,1,i 1e (r i ,re) . Pourquoi ? Je tr'en ai pas

NV| la moindre idée.

Des boucles imbriquées
Une boucle peut être placée à I'intérieur cl'une autre boucle :

for(,condition .)
t

fnr l' ,r1trê
!vr \

t

I I . corps

l
l

Une boucle incluse dans une autre est entièrement exécutée à chaque

-.sg4le
passage de la boucle qui ia contient'

t(
1g)

U"" boucle incluse dans une autre boucle est appelée une boucle imbriquée.

conditi.on .)

de 1a boucle

e4 Deuxième partie : Programmation élémentaire en G#

Des boucles imbriquées ne peuvent pas être "entrelacées". Par exemple,
ce qui suit n'est pas possible :

do

{

for(.)
{

] while (

]

I ldébut d'une boucle do

I ldâbut d'une boucle for

.) I ltin de 1a boucle do.. while
I lfin de 1a boucle for

Je ne suis même pas très sûr de ce que ça voudrait dire, mais c'est sans
importance, puisque de toute façon c'est illicite.

Une instruction break dans une boucle imbriquée ne fait sortir que de la
boucle dans laquelle elle se trouve.

Dans I'exemple suivant, I'instruction L, i'r.?,'r'. fait sortir de la boucle B, et
revenir à la boucle A :

// boucle for A

for(.condition .)

{

// boucle for B

for(.autre condi.tion
{

I I . corps du code

if (. . condition
t

break: llfait
]

]

]

,)

de La boucle
.)

sortir de 1a boucle B nais pas de A

1t${a.
^v7ç-y

\
eHq9

)\ô/

C# n'a pas de commande :, r'g.11., eui fasse sortir simultanément des deux
boucles.

Ce n'est pas une linritation aussi importante qu'il y paraît. En pratique, la
logique souvent cornplexe de telles boucles imbriquées est mieux
encapsulée dans une fonction. L'exécution d'un rerurn à I'intérieur de
n'importe quelle boucle fait alors sortir de la fonction, donc de toutes les
boucles imbriquées, quelle que soit la profondeur à laquelle on peut se
trouver. Je décrirai les fonctions au Chapitre 7.

Ghapitre 5 : Gontrôler le flux d'exécution d'un programme I5

..rtlgap" I 'lç* Le saugrenu programme Display'XWithNestedLoo;:s utilise deux bouclesÈr ffit-'l

Hl
imbriquées pour afficher un grand X sur la console de I'application :

// DisplayXWithNestedloops - utilise deux boucles iurbriquées

I I pour dessiner un X

using System;

nanespace DisplayXWithNestedloops
{

publi.c class Class1

t
public static void Main(string[] args)
t

int nConsolel,lidth = 40;

// itère sur 1es lignes du "cadre"
for(int nRowNum = 0;

nRowNun (nConsoleWidth:
nRovNum {= 2)

t

// itère naintenant sur les colonnes
for (int nColumnNun = 0;

n0olunnNun (nConsoleWidth;
nColumnNum#')

t

I I Ie caractère par défaut est un espace

char c = ' t;

I I si Ie numéro de la ligne est éga1 à celui de 1a colonne...
if (nColumnNun == nRovNum)

i
IL renplace 1'espace par un backslash
c ='\\':

l

ll si 7a colonne est du côté opposé de la ligne...
int nMirrorColunn = nConsoleWidth - nRovNum;

if (nColunnNun == nMirrorColumn)
{

I I . renplace 1'espace par un slash

',
c o'/';

'l

I affiche 1e caractère correspondant à I'intersection
I I de la ligne et de la colonne

Console.l4rrite(c);
l
Console.l.lriteline 0 ;

l
ll attend, confirmation de 1'utilisateur
Consol.e.l.lriteline("Appuyez sur Entrée pour ternriner...") ;

Console,Read0;

96 Deuxième partie : Programmation

]

l
l

élémentaire en C#

Ce programme commence par définir un nombre arbitraire de lignes et de
colonnes, représentant la taille du X à dessiner. Si vous augmentez ce
nombre, le X sort de la fenêtre de I'application.

Ce programme utilise une boucle f or pour réaliser I'itération sur les lignes
du X. À I'intérieur de celle-ci, il entre dans une seconde boucle for qui
réalise I'itération sur les colonnes de I'affichage. Ce procédé définit une
matrice d'affichage. Il ne reste plus qu'à décider quelles cellules de la
matrice recevront un espace, ce qui les rendra invisibles, et lesquelles
recevront un caractère. Remplissez les bonnes cellules, et vous aurez un X.

Le programme commence par définir une variable c de type char, qu'il
initialise avec un espace qui sera sa valeur par cléfaut. Il compare ensuite
le numéro de la ligne et celui de la colonne. S'ils sont égaux, il remplace
I'espace par une barre oblique inverse (backslash).

"t\
Souvenez-vous que le backslash est utilisé pour indiquer les caractères

=Qt
:Ë::Ïl(rtllJË"il?'i;Ji'n""

re caractère de nouverre rigne Le caractère

Par lui-même, le remplacement de I'espace lorsque le numéro de la ligne
est égal au numéro de la colonne trace une ligne du coin supérieur gau-
che de Ia matrice au coin inférieur droit. Pour obtenir un effet miroir, le
prograrnme place une barre oblique ('/') lorsque le numéro de la colonne
symétrique est égal au numéro de la ligne.

Ce qui donne le résultat suivant :

Ghapitre 5 : Contrôler le flux d'exécution d'un programme

\
\

\
\

Appuyez sur Entrée pour terminer...

Il y a des choses plus utiles, mais c'est amusant.

Si vous voulez être sérieux, allez voir I'exemple DisplaySin, qui utilise le
même genre de logique pour afficher verticalement une ligne sinusoidale
dans la fenêtre de I'application. Je suis peut-être un excité (et même certai-
nement), mais j'aime beaucoup ce programme. C'est sur des programmes
de ce genre qu'il m'est arrivé de me casser les dents.

97

*-o"uli3
f--t-i..(.)I t\t

æl

L'instruction de contrôle s\^/i t chl

Il vous arrivera souvent de vouloir tester la valeur d'une variable. Par
exemple, nl"laritaisiatus pourrait valoir 0 pour signifier "célibataire",
1 pour "marié", 2 pour "divorcé", 3 pour "veuf", et 4 pour "c'est pas vos
oignons". Afin de reconnaître ces différents cas, vous pouvez utiliser une
série d'instructions if :

if (nMaritalStatus =: 0)

t

I ldoit être célibataire
I I . instructions.

]

e1s e

t

if (nMaritalStatus == 1)

I

//doit être narié
I I .êutres instructions

Et ainsi de suite.

Vous pouvez vous rendre compte que la répétition de ces instructions if
est un peu fastidieuse. Il est si courant d'avoir à tester des cas multiples
que C# offre une structure spéciale pour faire un choix dans un ensemble

98 Deuxième partie : Programmation élémentaire en C#

de conditions mutuellement exclusives. Cette instruction s'appelle switch
et fonctionne de la façon suivante :

switch (nMari.talStatus)

{

case 0:

I I instructions si célibataire.
break;

^^^^ 1.
LAùç l.

I I instructions si marié.
break;

case 2:

I I instructions si divorcé.
break;

case 3:

I I instructions si veuf.
break;

case 4:

I I al1ez vous rhabiller.
break;

default:
I lpasse ici quand aucun cas ne correspond ;

//c'est probablement une condition d'erreur
break;

break;
]

L'expression qui se trouve en haut de l'instruction swit,-h est évaluée.
Dans ce cas, c'est simplement la variable nflaritaiS ratus" La valeur de
cette expression est alors comparée à celle qui suit chaque mot-clé case.
Si elle ne correspond à aucun de ces cas, le contrôle passe directement à
la condition,lefault.

L'argument de I'instruction switcl'r peut aussi être de type st ring :

string s = "Davis";
switch (s)

{

case ttDavistt:

I I le contrôle passera par ici..
break;

case "Srnith":
I I instructions si marié.
1^-^^1,.

câse "Jones " :

I I instructions si divorcé.

Chapitre 5 : Contrôler le flux d'exécution d'un programme

break;
case "Hvidsten":

tl
break;

default:
/l passe

break;
j

L'utilisation de I'instruction swirci, comporte quelques contraintes sévères:

,/ L'argument de s-,,;i rch O doit être cl'ur-r type admis comme compteur
ou de type str:iii:.,.

Les valeurs en virgule flottante sont exclues.

Lesvaleurs de case doivent être de même type que I'expression de
sr,,ui t ch.

Les valeurs de r-âSÊ doivent être des constantes au sens où leur
valeur doit être connue lors de la compilation (une instruction telle
que case x €st illicite, à moins que x ne soit une constante).

Chaque clause cese doit se terminer par une instruction breat",
(ou autre commande de sortie dont nous n'avons pas encore
parlé, comme return). Cette commande de sortie fait sortir le
contrôle de I'instruction switcl'.

Cette règle a toutefois une exception : une même clause cas-ô peut comporter
plusieurs fois le mot-clé i:,?,s-ô, comme dans I'exemple suivant :

string s = "Davis";
switch (s)

{

case ttDavigtt:

case "Hvidstenî':
lltait 1a même chose pour Davis ou Hvidsten
I lcar leur si.tuation est la même

break;
case "Smith":

I I instructions si. narié.
break;

default:
I I passe ici quand aucun cas ne corresponi
b reak ;

]

99

instructions si veuf.

i^.i.rro..l o1t^r1n n.c nê anrrecnnndrLr 9UOllU AULUII LAJ r.u

,/
t/

t/

t/

100 Deuxième partie:Programmation élémentaire en C#

Ce procédé permet au programme cl'exécuter les mêmes opérations, que
le contenu de la chalne soit "Davis" ou "Hvidsten".

Le modeste goto
Vous pouvez aussi transférer le contrôle d'une manière non structurée en
utilisant I'instruction goto. Elle est suivie par I'un des éléments suivants:

t/ Une étiquette.

t/ Un case d'une instruction sw. rch.

t/ Le mot-clé def au1t, représentant la clause par défaut d'une instruc-
tion sw,tch.

Le fragment de code suivant
gcto :

I lsl 7a condition est vraie.
if(a)b)
i

montre comment est utilisée I'instruction

IL le contrô1e passe de goto à 1'étiquette spécifiée
goto exitlabel;

]
I I . quel que soit 1e

exitlabel :

//le eontrôle nasse ici

r"odc nrri sÊ trnrve ici,

L'instruction goto est impopulaire, pour les mêmes raisons qui en font
une commande de contrôle si puissante : elle est presque entièrement
dépourvue de structure. Si vous I'utilisez, il peut être extrêmement
difficile de maltriser le flux de I'exécution au-delà d'un petit morceau de
code particulièrement trivial.

.$sc ./ L'utilisation de goto a déclenché quasiment des guerres de religion. En

Hfait,lelangageC#lui-mêmeaétécritiquépouravoiradoptécetteinstruc-
t\?, tion. En réalité, goto n'est ni si horrible ni nécessaire. Comme vous
Y pourrez presque toujours éviter de vous en servir, je vous recommande

de vous en tenir à bonne distance.

Tioisième partie

Programmation et obiets

'yoilà {Tôrzan en avoir rnôrre I Encore

mauvais message I Quoi ça veut dire zt

TarZan tout essayer lTôrzan furieux
comrne Cheetah t

Dans cette partÎe...

ne chose est de déclarer une variable ici et là pour faire
des additions et des soustractions ; tout autre chose est

d'écrire de véritables programmes que les gens peuvent utiliser
(des gens ordinaires, mais des gens). Dans cette partie, vous
allez découvrir comment regrouper des données et faire des
opérations sur ces données. Ce sont les connaissances de base
nécessaires à tout travail de programmation, que vous veryez
souvent dans les offres d'emploi.

Rassembler des données :

classes ettableaux

Dans ce chapitre :

Les classes en C#.

Stocker des données dans un objet.

Assigner et utiliser une référence à un objet.

Créer et générer un tableau d'objets.

Ghapitre 6

ous pouvez librement déclarer et utiliser tous les types intrinsèques,
tels que in i, ':1.,.iib1e et bocl, afin de stocker les informations nécessai-

res à vos programmes. Pour certains programmes, de si simples variables ne
suffisent pas. Toutefois, nombre de programmes ont besoin de rassembler
sous forme d'ensembles pratiques les données qui sont en relation les unes
avec les autres.

Certains programmes ont besoin de rassembler les données qui appartien-
nent logiquernent à un même groupe mais ne sont pas pour autant de
même type. Par exemple, une application utilisée par une université traite
des étudiants, chacun ayant son nom, la moyenne de ses notes, et son
numéro d'identification. Logiquement, le nom peut être de type s*r-ring, la
moyenne des notes de type double, et le numéro d'identification de type
1ong. Un programme de ce type a besoin de réunir toutes ces variables de
types différents dans une même structure nommée Stucient. Heureuse-
ment, C# offre une structure appelée c/asse qui permet de regrouper des
variables de types différents.

| 0 4 Troisième partie : Programmation et obiets

Dans d'autres cas, un programme aura besoin de rassembler une série
d'objets de même type. Prenez par exemple un programme qui calcule
la moyenne générale des notes d'un étudiant sur I'ensemble d'un cycle
d'études. Comme on veut que la précision du résultat final ne soit pas
affectée par I'arrondi des moyennes intermédiaires, le type double est ce
qui convient le mieux pour la moyenne de chaque matière pour chaque
année. Il faudra donc une forme ou une autre de collection de variables
de type double afin de contenir toutes les moyennes annuelles pour
chaque matière. C'est dans ce but que C# permet de réaliser un tableau.

Enfin, un véritable programme de traitement des données sur les étu-
diants aura besoin de définir des groupes d'étudiants par diplôme. Un tel
programme devra alors faire fusionner la notion de classe et la notion de
tableau pour réaliser un tableau d'étudiants. Par la magie de la program-
mation en C#, c'est ce que vous pouvez faire aussi.

lVlontrez uotre classe

Une classe est une réunion de données et de fonctions dissemblables,
dans un même petit ensemble bien ordonné. C# vous donne la liberté de
faire des classes aussi mal fichues que vous voulez, mais une classe a
pour but de représenter un concept.

Les analystes disent : "Une classe introduit dans le programme une carte
du problème à résoudre." Par exemple, imaginez que vous vouliez réaliser
un simulateur de trafic. Celui-ci va représenter le trafic, dans le but de
réaliser de nouvelles rues, avec des intersections ou même des autorou-
tes. J'aimerais bien que vous fassiez un simulateur de trafic qui résoudrait
le problème de I'intersection devant chez moi.

Toute description d'un problème concernant le trafic comporterait le
terme uéhicule. Un véhicule a une vitesse maximale, qui doit avoir sa
place dans les équations. Il a aussi un poids, et certains sont purement et
simplemer-rt des épaves. D'autre part, ur-r véhicule peut démarrer et
s'arrêter. La notion de uéhicule f.ait donc partie du problème à résoudre.

Un bon programme de simulation de trafic en C# comprendrait nécessai-
rement la classe Vehicle, dans laquelle seraient décrites les propriétés
significatives d'un véhicule. La class€ r,'L-hiir,t e aurait des propriétés telles
eue d f opSpeeo, n;ielght, et bClunker. Je parlerai des propriétés stop et
g.i au Chapitre 7.

Ghapitre 6: Rassembler des données: classes et tableaux | 05

Défînir une classe

La classe Vehi c 1e pourrait par exemple se présenter ainsi :

public class Vehicle
{

public string sModel;
public string sManufacturer;
public int nNun0fDoors;
public int nNum0fWheels;

j

I I non du nodè1e

I I non du construcreur
// nomhrp dê nortcs du véhicule
// nombre de roues du véhicule

.gtt\
Yi .'-<) \o/

U

La définition d'une classe commence par les mots pubiic c 1ass, suivis
du nom de la classe. dans ce cas. \rehic1e.

C# fait la différence entre les majuscules et les minuscules dans les noms
de classe, comme pour tous les autres noms utilisés en C#. C# n'impose
aucune règle sur les noms de classe, mais il existe une règle non officielle
selon laquelle le nom d'une classe doit commencer par une majuscule.

Le nom d'une classe est suivi par une accolade ouwante et une accolade
fermante. Entre ces deux accolades apparaissent les membre.s que comporte
éventuellement cette classe. Les membres d'une classe sont des variables qui
en constituent les éléments. Dans cet exemple, la classe Vehicie commence
par le membre string sModel, qui contient Ie modèle du véhicule. Si c'est une
voiture particulière, le nom du modèle pourrait être "Eldorado". Vous en voyez
certainement tous les jours. Le second membre de notre exemple de classe
Vehicle est str:ing sllanufacturer, qui contient naturellement le nom du
constructeur. Enfin, les deux dernières propriétés sont le nombre de portes et
le nombre de roues du véhicule.

Comme pour toute variable, donnez aux membres d'une classe des noms
aussi descriptifs que possible. Dans I'exemple ci-dessus, j'ai ajouté des
commentaires à la déclaration de chaque membre, mais ce n'était pas
nécessaire. Le nom de chaque variable dit clairement de quoi il s'agit.

L'attribut publec eui précède le nom de la classe rend celle-ci universelle-
ment accessible en tout endroit du programme. De même, I'attribut pubiic
placé devant le nom d'un membre de la classe le rend tout aussi accessible
en tout endroit du programme. On peut également utiliser d'autres attributs.
Le Chapitre 11 traite en détail la question de I'accessibilité.

106 Troisième partie:Programmation et obiets

objet ?

Une définition de classe doit décrire les propriétés d'un objet qui joue un
rôle incontournable dans le problème à résoudre. C'est un peu difficile à

faire dans I'immédiat, parce que vous ne savez pas encore quel est le
problème, mais je suppose que vous voyez où je veux en venir.

Quel est notre

Définir une classe Vehic 1e n'est pas la même chose que de construire une
voiture. Vous n'aurez pas ici à emboutir de la tôle ni à visser des écrous.
Un objet classc se déclare de façon semblable, mais pas tout à fait identi-
que, à un objet intrinsèque.

D'une façon générale, le terme objet signifie "quelque chose". Ça ne nous
aide pas beaucoup. Une variable int est un objet int. Un véhicule est un
objet vehrcle. Vous-rnême, vous êtes un objet lecteur. Quant à moi, je
suis un auteur...

Le fragment de code suivant crée une voiture de la classe Vehic 1e :

Vehicle myCar;

myCar = ner^r Vehicle0 ;

La première ligne déclare une variable myCar de type Vehicle, tout
comme vous auriez pu déclarer un objet nQuelqueChose de la classe int.
La commande nern' vehicle () crée un objet de type Vehicle et le
stocke dans la variable rlyCar. Le new n'a rien à voir avec l'âge de myCar.

Cette commande crée une nouvelle zone de mémoire dans laquelle votre
programme pourra stocker les propriétés de myCar.

Dans la terminologie C#, on dira que myCar est un objet de la classe
Vehicie, mais aussi que mvCar est une instance de Vehicle. Dans ce
contexte, instonce signifie "un exemple de", ou "un exemplaire de". On
peut aussi utiliser ce terme sous forme de verbe, en parlant d'insfancier
un Vehicie.

Comparez la déclaration de myCar avec celle de la variable entière num :

h11m.

-
1,

int
nun

1t${Qa^
^.v7çq

\

'(cg,

1r!!{a"
Aa,/ tarl \e(dw

)\ô.,

Chapitre 6: Rassembler des données: classes et tableaux 107

[.a prernière ligne déclare la variable num, et la deuxième ligne stocke dans
I'emplacement défini par la variable nr-iin une constante déjà existante de

type int.

Il y a en fait une différence dans la rnanière de stocker en mémoire I'objet
intrinsèque nun et I'objet mvCar. La constante 1 n'occupe pas de mémoire,
car le CPU et le compilateur C# savent déjà I'un et I'autre ce qu'est un "1".

N{ais votre CPU ne sait pas ce qu'est un ïehicle. L'expression ne,,r
-,i ehic Le alloue l'espace mémoire nécessaire à la description d'un objet
,,'-.hrcJ e pour le CPU, pour C#, et pour le reste du monde.

Accéder aur membres d'un

Tout objet de la classe Vehicle a ses propres membres. L'expression
suivante stocke le nombre I dans le membre nlJumberOf Dcors de I'objet
référencé par rnvCar :

mvCar.nNumberOfDoors = 1;

Toute opération en C# doit être évaluée par type aussi bien que par
valeur. L'objet myCar est un objet du type ïehic ie. La variable
','ei''ic1e. nliuinbe,rOf Doors est cle type int (voyezla définition de la
classe Vehicle). Comme la constante 5 est aussi de type int, le type de
ce qui est à droite de l'opérateur d'assignation est le même que celui de
ce qui est à gauche.

De même, le code suivant stocke une référence aux chalnes décrivant le
modèle et le nom du constructeur de myCar :

nyCar.sManufacturer = I'BMI,I"; // ne perdez pas espoir
myCar,sModel = "Izeta"; I / c'est une époque disparue

(L'lzeta était une petite voiture construite pendant les années cinquante,
dont I'unique porte constituait toute la face avant.)

objet

I 08 Troisième partie : Programmation et objets

Soyons ringard$: pourquoi s' embêter avec des classes

Avec le temps,l'édifice des classes a pris de l'importance dans les langages de programma-

tion. Si vous examinez la chaîne que forment les principaux langages, et leurs périodes de

popularité maximale, vous p0uvez y distinguer le schéma suivant ;

,t Fortran (de la fin des années cinquante au début des années quatre-vingtl : pas de

notion de classe.

C{delafindesannéessoixante-dixaudébutdesannéesquatre-vingtdix} :lesclasses
ne sont utilisées qu'à des fins d'organisation. ll est possible d'écrire des progrârnmes
qui n'en font aucun usage.

C++ {du milieu des années quatre-vingt à aujourd'hui) : la notion de classe y est
beaucoup plus évoluée, ll esttoujours possible d'écrire des programmes qui ne s'en

servent pas, mais seulement en se limitant à un sous-ensemble du langage.

Java (du milieu des années quatre-vingt-dix à auiourd'hui) : la notion de classe y est
fondamentale. lmpossible d'écrire du code sans y avoir recours.

,/ C# (aujourd'hui) : comme Java.

La notion de classe a pris une importance croissante parce que les programmeurs se sont
rendu compte que les classes étaient très efficaces pour représenter des objet du monde
réel. lmaginez par exemple que je sois en train d'écrire un programme de gestion de comptes
bancaires. Un compte bancaire présente des caractéristiques telles que le nom de son

titulaire, le numéro du compte, le solde, et le nom de la banque. 0r, je sais bien que ces
propriétés font partie d'un même ensemble, car elles décrivent toutes le même objet: un

compte de ma banque. Connaître le solde sans connaître le numéro du compte correspon-
dant, par exemple, n'a aucun sens.

En C#,ie peux créerune classe BankAccount, associée à une variable string contenant
le nom du titulaire, une variable int contenant le numéro du compte, une variable double
ou dec ima1, contenantle solde, une variable st ring contenantle nom de la banque, et ainsi
de suite. Un seul objet de la classe BankAccount contient donc toutes les propriétés.
pertinentes pour mon problème, d'un compte bancaire donné.

?

tl

t/

,/

Ghapitre 6: Rassembler des données: classes et tableaux 109

Un exemple de programmes à base d'objets

Le très simple programme suivant, VehicleDataOnlr' :

t/ Définit la classe ïehic1e.

t/ Crée un objet nyCar.

t/ Assigne les propriétés de myCar.

t/ Récupère ces valeurs dans I'objet pour les afficher.

|/ lr"hinlaïlaraonlrr

"^:-,- C.,^+^*.uDrrrË ùJ D LErl,

crée un objet de type Vehicle,
donne une valeur à ses nembres à partir des

saisies de 1'utilisateur, et affiche 1e tout

namespace VehicleDataOnly
r
t

public class Vehicle
{

nublic strins sModel; I / norn du modèle- -- -"D

public string sManufacturer; | / non, du constructeur
public int nNum0fDoors; / I nombre de portes du véhicule
public int nNum0fWheels; I I nonbre de roues du véhicule

I
)

,,L1.t^ ^1^^ .,1 -SS1PUUAIL _fdùù Urd

{

I I C'est ici que commence 1e programme

static voj-d Main(stringIJ args)
tt

// denande son non à 1'utilisateur
Console.Writeline("Entrez 1es propriétés de votre véhicule") ;

I I crée une instance de Vehicle
Vehicle myCar = new Vehicle0;
// utilise une variable pour donner une valeur à un membre

Console.Write("Notn du rnodèle = ") ;

string s = Console.Readline{);
myCar. sModel = s;
I I on peut âussi donner une valeur à un menbre directenent
Console,l,Jrite("Nom du constructeur = tr);
myCar.sManufacturer = Console.neadtine0 ;

I I leetwe du reste des données

Console.Write("Nombre de portes = ");
s = Console.Readline{) ;

myCar.nNumOfDoors = Convert.Tolnt32(s) ;

tonsole.l.Jrite("Nonbre de roues = ");
s = Console.ReadlineO;

I | 0 Troisième partie : Programmation et objets

myCar.nNum0fl{hee1s = Convert.ToInt32 (s) ;

/l affiche maintenant 1es résultats
Console .1,{riteLine (" \nVotre véhicule est une r') ;

Console.Writeline(myCar.sManufacturer *' rr + myCar.sModel) ;

Console.I,iriteLine("avec " * myCar.nNun0fDoors t " portes, "
* "sur " { my0ar.nNum0fWheels
* " rouesrt) ;

/l attend confirmation de 1'utilisateur
Console.lJriteline("Appuyez sur Entrée pour terminer. . .") ;

Console.Read0;

J

Le source de ce programme commence par une définition de la classe
Vehi c 1 e.

La définition d'une classe peut être placée avant ou après Ciassl. C'est
sans importance. Adoptez simplement un style, et gardez-le.

Le programme crée un objet myCar de la classe Vehicle, puis remplit
chacune de ces propriétés en lisant ce qui est saisi au clavier par I'utilisa-
teur. Il n'y a pas de vérification de la validité des données. Le programme
restitue alors à l'écran, dans un format légèrement différent, les données
saisies par I'utilisateur.

L'exécution de ce programme affiche les résultats de la façon suivante :

Entrez 1es propriétés de votre véhicule
Nom du modè1e = Metropolitan
Nom du constructeur = Nash

Nombre de portes = 2

Nombre de roues = +

Votre véhicule est une
\T^^L M^+-^-^1.i+I\asn r"lelropolt lan
avec 2 portes, sur 4 roueg
Appuyez sur Entrée pour terniner..,

À ta aifference de Readline O, les appels à Read () laissent le curseur à la
fin de la chalne affichée. La saisie de I'utilisateur apparalt donc sur la
même ligne que I'invite. D'autre part, I'ajout du caractère de nouvelle
ligne, '\n', produit une ligne blanche à I'affichage, sans avoir à utiliser
pour cela driteline O.

U

Ghapitre 6:Rassembler des données: classes et tableaux I I I

Distinguer les objets les uns des autres

Un constructeur automobile sait identifier sans erreur chaque voiture
qu'il produit. De même, un programme peut créer de nombreux objets de
la même classe :

Vehiele carl = nerr VehicleO;
ear1. sManufacturer = "Studebaker" ;

carl. sModel = "Avanti" I

I I ee qui suit est sans effet sur carl
Vehicle earl = new Vehicle0;
car2. sManufacturer = "Hudson";
car2. nVehicleNanePart = "Hornet" :

Si vous créez un objet carT et que vous lui assignezle nom de construc-
teur "Hudson", ça n'aura aucun effet sur la Studebak€r carI

La capacité de distinguer les objets les uns des autres constitue une
partie de la puissance de la notion de classe. L'objet associé à la 2 CV
Citroën peut être créé, manipulé ou même ignoré, comme une entité à
part entière, distincte des autres objets, y compris I'Avanti (bien que ce
soient toutes deux des classiques).

L'opérateur point et I'opérateur d'assignation sont les deux seuls opéra-
teurs définis sur les types de référence :

I I ctée une référence nul1e
Vehicle yourCar;
l/ assigne une valeur à la référence
yourCar = new Vehicle0 I

yourCar. sManufacturer = "Rambler" ;

ll crée une nouvelle référence et 1a fait pointer vers 1e mêrne objet
Vehicle yourSpousalCar = yourCar;

La première ligne crée un objet yourCar sans lui assigner une valeur. On
dit qu'une référence qui n'a pas été initialisée pointe vers I'oô7et nu7l.
Toute tentative d'utiliser une référence non initialisée produit une erreur
immédiate qui met fin à I'exécution du programme.

Poutlez-(lntts me donner des références ?

| | 2 Troisième partie:Programmation et objets

6${ea^ Le compilateur C# est capable d'identifier la plupart des tentatives d'utiliser
ler

-!3\
une référence non initialisée, et d'afficher un avertissement lors de la généra-

:(d W) tion. Si une telle erreur n'est pas détectée par le compilateur, tout accès à une
\Ô/ référence non initialisée met fin immédiatement à I'exécution du programme.

La deuxième instruction crée un nouvel objet Vehic 1e, et I'assigne à
yourCar. La dernière instruction de ce fragment de code assigne la
référence yor-lrSpousalCar à la référence yourCar. Comme le montre la
Figure 6.1,Ie résultat de cette instruction est que yourSpousalCar se
réfère au même objet que yourCar.

-

Figure 6.1 :

La relation
entre deux
réfé ren ces
au mêrre
objet.

-

..--yourcut\

iii?i1Ï:J, >tr"h'*l
Y / l-..- ..--l

yourSpo usalCar-/ I
"Rambler"

I

Les deux appels suivants ont le même cffet :

/l construisez votre voiture
Vehicle yourCar = new Vehicle0;
yourCar,sModel = "Ford T";
I I eIIe appartient aussi à votre femne

Vehicle yourSpousalCar = yourCar;
I I si 1'une change, 1'autre change aussi
yourSpousalCar,sModel = "Daytona" ;

Console.l,Jriteline("votre voiture est une t' + yourCar,sModel);

L'exécution de ce programme afficherait "Da5rtona", et non "Ford T". Remar-
quez que yourSp<rusalCar ne pointe pas vers yourCar. Au contraire, ce sont
les deux qui se réfèrent au môme véhicule.

En outre, la référence yourSpousalCar serait encore valide, même si la
variable yourCar était d'une manière ou d'une autre "perdue" (se trouvait
hors de portée, par exemple) :

// construisez votre voiture
Vehicle yourCar = new Vehicle0;
yourCar,sModel = "Ford Tr';
I I ^11 '+rsJ11 aussi à votre fenmeI I ËIrË dPydrLrËrIL duDùf q vvLlç !Çuus

Ghapitre 6 : Rassembler des données : classes et tableaux

Vehicle yourSpousalCar = your0ar;
ll ryand e11e s'en va avec votre voiture.
yourCar = nu1l; I I yourCar référence maintenant "1'objet NULL"

IL yourSpousalCar référence toujours le même véhicule
Console.l^lriteLine("Votre voiture était une " * yourSpousalCar.sModel) ;

L'exécution de ce programme affiche le résultat "Votre voiture était une
Ford T", bien que la référence à vou rCar ne soit plus valide.

L'objet n'est plus cccessible à partir de la référence yourCar. Il ne devient
pas complètement inaccessible tant que)'olrrCar €t yourSpousallla: ne
sont pas "perdus" ou annulés.

n3

qt$!Qa"

frg)

heureuses

I I non du modèle

I I nan du constructeur
// noinhrp dê nortes du véhicule
// nombre de roues du véhicule
// puissance du moteur (Chevaux-Vapeur)

// cylindrée du moteur (litres)

Toutefois, la puissance et la cylindrée du moteur ne résument pas toutes les
caractéristiques cle la voiture. Par exemple, la Jeep de mon fils est proposée
Éivec deux moteurs différents qui lui donnent une puissance complètement
riifférente. La Jeep de 2,4litres de cylindrée est un veau, alors que Ia même
voiture équipée du moteur de 4 litres est plutôt nerveuse.

Autrement clit, le moteur est une entité à lui seul et mérite sa propre classe :

class Motor
f
I

n"hlin int nDnr.rar.yuVI rL lll L lMWq! ,

Les classes qui contiennent des classes sont
les plus du monde

Les membres d'une classe peuvent eux-mêmes être des références à d'ar-rtres

classes. Par exemple, un véhicule a un moteur, qui a une puissance et cliffé
rents paramètres qui définissent son efficacité (mais un vélo n'a pas de cylin-
drée). On peut introduire ces différents facteurs dans la classe, comme ceci :

-.,L1.: ^ ^1^^- \r^L.: ^1ePUUTTL Lr4ùù VErlfL

{

public string sModel;
public string sManufacturer;
^'.11 ;^ i-+ -À1,.-nfDOOfS;yuvrll rllL llllqltlv

^"L1.i^ ;-+ -ÀT'.^^f\nJheelS;yu!ffL rlrL rrrrul[v

public int nPower;
nrrhl i^ lnrrhla licnln.'pmpnt.yuvlrL uvuuaç Urryrq!Lu!çrrL,

l

/i puissance du moteur (Chevaux-Vapeur)

I I tl Troisième partie : Programmation et obiets

public double displacernent; /l cylindrée du moteur (litres)
1

Et vous pouvez utiliser cette classe dans la classe Vehicle :

public class Vehicle
t

public string sModel; I / non du modè1e

public string sl{anufacturer; I I non du constructeur
public int nNurn0fDoors ; l/ nombre de portes du véhicule
public int nNun0fWheels; I I nonbre de roues du véhicule
public Motor notor;

l

La création de mvCar se présente maintenant ainsi:

I lcrê.ons d'abord un objet de 1a classe Motor

t'lotor LargerMotor * new Motor0;
largerMotor.nPower = 230:

largerMotor.displacenent = 4.0i
I I crêons maintenant 1a voiture
Vehicle sonsCar = nel'I Vehicle0;
sonsCar.sModel = "Cherokee Sport";
sonsCar. sManfacturer * "JeeP";
sonsCar.nNumberofDoors = 2 ;

sons0ar.number0fWheels = 4;

llmettons un noteur dans 1a voiture
sonsCar.notor = largerMotor ;

L'objet de la classe Vehicle vous offre deux moyens d'accéder à la cylin-
drée de son moteur. Vous pouvez procéder une étape à la fois :

Motor m = sons0ar.notor;
Console,Writeline("La cylindrée du noteur est " * m.displacenent);

Ou alors. v accéder directement :

Console.Idriteline("La cylindrée du noteur est " * sonsCar.motor.displacernent);

D'une manière ou d'une autre, vous ne pouvez accéder à la cylindrée
(displacemenl-) que par I'objet de la classe Motor.

,c$ARG'f
;..ù ffi Cet exemple fait partie du programme VehlcleAndMotor QUi se trouve sur

=,

le site \\:eb.

Ghapitre 6: Rassembler des données: classes et tableaux | | 5

Les metnbres staûques d'une classe

La plupart des membres d'une classe servent à décrire chaque objet de
cette classe. Voyez la classe Car :

nrrhlin nlnc< (ler

{

public string slicensePlate;
]

//1e numéro d' innatriculation

Le numéro d'immatriculation est une propriété d'objet, ce qui signifie qu'il
cléfinit individuellement chaque objet de la classe Car. Par exemple, vous
avez de la chance que ma voiture n'ait pas le numéro ci immatriculation
que la vôtre. Ça pourrait vous attirer des ennuis.

Car nyCar = ner^r Car 0 ;

myCar. slicensePlate = "XYZ123'r ;

Car yourCar = net$I Car0;
yourCrr. slicensePlate = "48C789" ;

Mais il y a aussi des propriétés partagées par toutes les voitures. Par
exemple, le nombre total de voitures construites est une propriété de la
classe Car, et non de quelconque objet. Un tel membre d'une classe est
appelé propriété de closse, et est identifié en C# par le mot static :

nrrhlin nl.âc< Crr

{

public static int nNumber0fCars;
public string slicensePlate;

]

/lnombre de voitures construites
l11e nuuréro d' innatriculation

Ce n'est pas par un objet de la classe qu'on accède à un membre statique,
mais par la classe elle-rnême, comme le montre cet exemple :

I I cr6e un nouvel objet de 1a classe Car

Car newCar = netri Car 0 ;

new0ar. slicensePLate = "48C123" ;

I I incrénente le nombre de voitures pour tenir conpte de 1a nouvelle
Car . nNurnbe r0fCars** ;

On accède au membre d'objet newCar. sLicensePiare par I'objet newCar,
alors qu'on accède au membre de classe (statique) Car. nl'iumloerOfCars
par la classe Car.

| | 6 Troisième partie : Programmation et objets

Les tableauv : la classe

Définir des membres de trlpe const
Le type const est un type spécial de membre statique. La valeur d'une
variable const doit être établie dans la déclaration, et vous ne pouvez la
changer nulle part dans le programme :

class C1ass1

{

// nonbre de jours dans 1'année
public const int nDayslnYear = 366;
public static void Main(stringil args)
{

int [] nMaxTemperatures - new int [nDaysÏnYear] ;

for(int index = 0; index (nDayslnYear; index**)
{

/ I .additionne la température naxinale pour chaque

/l jour de 1'année.

l

Vous pouvez utiliser en n'importe quel endroit de votre programme la
constante nDavs InYear à la place de la valeur 366. L'utilité d'une variable
de type const est de remplacer une constante dépourvue de signification
telle que 366 par un nom descriptif comme nf avs InYear, ce qui rend le
programme plus lisible.

An-,-r-,lf r r d_y

Les variables qui ne contiennent qu'une seule valeur sont bien pratiques, et
les classes qui permettent de décrire les objets composites sont cruciales.
Mais il vous faut aussi une structure capable de contenir un ensemble
d'objets de même type. La classe intégrée 'lr ra.,/ est une structure qui peut
contenir une série d'éléments de même type (valeurs de type 1nt, double, et
ainsi de suite, ou alors obiets de la classe \iehi,---e, i{or-or:, et ainsi de suite).

Les arguments du tableau

Considérez le problème du calcul de Ia moyenne d'un ensemble de dix
nombres en virgule flottante. Chacun de ces dix nombres nécessite son

Chapitre 6 : Rassembler des données : classes et tableaux n7
propre stockage au format double (calculer
variables int pourrait produire des erreurs
I'avons dit au Chapitre 3) :

une moyenne avec des
d'arrondi, comme nous

double d0

double dl
double d2

double d3

double d4

d0uble d)
double d6

double d7

double d8

double d9

Vous devez
diviser par

= 5.

=),
= J.

= Â 5.
* R,

* I'

= Qr

= 1.

= f .

maintenant faire la somme de toutes ces valeurs, puis Ia
10 (le nombre de valeurs) :

double dsun = d0 + dl + d2 + d3 + d4 + d5 + d6 + di + d8 + d9;
double dAverage = dSum / 10;

Il est un peu fastidieux d'écrire le nom de chacun de ces éléments pour en
faire la somme. Passe encore si vous n'avez que dix nombres, mais imagi-
nez que vous en ayez cent ou meme mille.

Le tableau à longueur fixe
Heureusement, vous n'avez pas besoin de nommer chaque élément
séparément. C# offre une structure, le tableau, qui permet de stocker une
séquence de valeurs. En utilisant un tableau, vous pouvez réécrire de la
façon suivante le premier fragment de code de la section précédente :

double[] dArray = (.5,2,7,3,5, 6.5, 8, 1, 9, 1, 3l;

-$ttK La classe Array présente une syntaxe spéciale qui la rend plus facile à
à-f ilû) utiliser. Les doubles crochets ll représentent Ia manière qui permet

Wt/ d'accéder aux différents éléments du tableau :

dArray[0] correspond à d0

dArray[1] correspond à d1

I | 8 Troisième partie : Programmation et objets

i / FixedArrayAverage

=Ë

#ie,

L'élément numéro 0 du tableau correspond à d0, l'élément numéro 1 à d1,
et ainsi de suite.

Les nurnéros cles éléments du tableau (0, 1 ,2, eI ainsi de suite) constituent
l'index.

L'index d'un tableau commence à 0, et non à l. Par conséquent, l'élément
du tableau correspondant à I'index I n'est pas le premier élément, mais
l'élément numéro 1, ou "l'élément I de I'index". Le premier élément est
l'élément numéro 0. Si vous voulez vraiment parler normalement, souve-
nez-vous que le premier élément est à I'index 0, et le deuxième à I'index 1.

dAr ray ne constituerait pas une grande amélioration sans la possibilité
d'utiliser une variable comme index du tableau. Il est plus facile d'utiliser
une boucle f o r que de se référer manuellement à chaque élément, comme
le montre le programme suivant :

calcule 1a moyenne d'un nombre déterniné
de valeurs en utilisant une boucle

nanespace FixedArrayAvera ge

{

'.^.1 -^ C,,^+^-.uùrrr5 uJ ù LçIr,

public class Classl
{

public static int Main(stringll args)
{

double[] dArray =
f5) 7 ? 5 A ç R 1 q 1 ?].r, JrJ ., Jt I

I I tait la sonme des valeurs du tableau
I I dans 1a variable dSum

double dSum = 0;
for(inti=0;i(11;i++)
{

dsum : dSun -f dnrray[iJ I

]

// calcule maintenant 1a moyenne

double dAverage = dSum / i0;
Console . llr j.telj.ne (dAverage) ;

I I attend confirmation de 1'utilisateur
Console.hlriteline("Appuyez sur nntrée pour terminer.
Console. Read 0 ;

return 0;

l
]

]

rr).

Chapitre 6 : Rassembler des données : classes et tableaux

Le programme commence par initialiser à 0 la variable dSum. Il effectue
ensuite une boucle sur les valeurs stockées dans dArray, en ajoutant
ctracune d'elles à clSum. À la fin de la boucle, dSun contient la somme de
toutes les valeurs du tableau. Celle-ci est alors divisée par le nombre
d'éléments pour obtenir la moyenne. Le résultat affiché par I'exécution de
ce programme est 4,6, comme on pouvait I'attendre fi'ai vérifié avec ma
calculatrice).

ng

Et si vous dépassez la taille du tableau

Le programme FixedArrayAverage effectue une boucle sur un tableau de dix éléments.
Heureusement, cette boucle passe effectivement sur tous ces dix éléments. Mais si j'avais
fait une erreur dans l'itération ? ll y a deux cas à envisager.

Sije n'avais itéré que sur neuf éléments, C# ne l'aurait pas considéré comme une erreur : s

vous voulez lire neuf éléments d'un tableau qui en contient dix, de quel droit C# viendrait-il le

contester ? Bien sûr, la moyenne serait incorrecte, mais le programme n'aurait aucun moyen

de le savoir.

Etsij'avais itéré suronze éléments {ou plus} ? Maintenant, ça regarde beaucoup C#.C#ne
vous permet pas d'indexer au-delà de la taille d'un tableau, de crainte d'écraser une valeur
importante dans la mémoire. Pour le vérifier, j'ai remplacé le test de comparaison de la boucle
forpâf cequisuit:for(int i:0; i (11; i++),enremplaçant10par11.L'exécution
du programme a produit I'erreur suivante {en français et en anglais dans le texte) :

Exception non gérée : Systen.Index0ut0fRangeException : une

exeeption qui de type Systen.Index0ut0fRangeException a été 1evée.

at FixedArrayAverage.Classl.Main(StringIJ args) in c : \c#programs\
fixedarrayaverage\class1 . cs: line l7

Au premier abord, ce message d'erreur paraît imposant, mais on peut facilement en saisir
l'essentiel : il s'est produit une erreur IndexOut0fRangeException. ll est clair que C#

indique que le programme a essayé d'accéder à un tableau au-delà de ses limites (le onzième

élémentd'un tableau qui n'en cornporte que dix). La suite du message indique la ligne exacte

à laquelle s'est produite cette tentative d'accès, mais vous n'avez pas encore assez avancé

dans ce livre pour comprendre tout ce qu'il vous dit.

?

Chapitre 6: Rassembler des données: classes et tableaux l2 |

I I déclare un tableau de 1a tail1e correspondante
double[] dArray : new doublelnumElenrents];
I I rennf it ie tahleau avec les valeurs
for (int i = 0; i (numElements; i++)
{

// demande à 1'utilisateur une nouvelle valeur
Console.Write("Entrez la valeur nerr + (1 + 1) + ": ");
string sVal = Console.ReadLine0;
double dValue = Convert.ToDouble(sVa1) ;

// stocke 1a nouvelle valeur dans 1e tableau
dArrayIi] = dValue;

i
I I lait 1'addition de 'nunElenents' valeurs
I I du tableau dans 1a variable dsum

double dSum = 0;
for (int i = 0; i (nunELements; i++)
{

dsum=dSum*dArrayliJ;
]

// calcule maintenant 1a moyenne

double dAverape = dSum I nunrElements;*"''-*b"

// affiche 1es résultats dans un fornat agréable
Console.i,.iriteline0;
Console , l,/rite (dAverage

* " est la moyenne de ("
+ dArray [o]) ;

for (int i = 1; i (nuniElements; i++)
{

Console.Write(rr ''j- rt + dArrayIi]);
l
Console.l.IriteLine(") I u + numElements);
// attend confirmation de 1'utilisateur
Console,I,rlriteLine("Appuyez sur Entrée pour terminer. ..") ;

Console.Read0;
return 0;

l

Voici un exemple de résultats affichés, pour lequel j'ai entré cinq valeurs,
de I à 5, dont la moyenne calculée par le programme est de 3 :

Nonbre de valeurs pour 1a moyenne à calculer : 5

Entrez la valeur ne1: I
Entrez 1a valeur ne\: 2

Entrez 1a valeur ne3: 3

Entrez la valeur neA: 4

Chapitre 6:Rassembler des données:classes et tableaux 123

// derrande à 1'utilisateur une nouvelle valeur
Console.hlrite("Entrez 1a valeur nett + (i. + t) * ": ");
string sVal = Console.ReadlineO;
double dValue = Double.FromString(sVa1) ;

l/ stocke la nouvelle valeur dans 1e tableau
dArrayIi] = dValue;

]

Le tableau dAr r a-; €St déclaré comme ayant une longueur de
numElements. L'astucieux programmeur (moi-même) a donc utilisé une
boucle f or pour itérer numElements fois sur les éléments du tableau.

Il serait lamentable d'avoir à trimbaler partout avec dArray la variable
numElements, rien que pour connâître la longueur du tableau. Heureusement,
ce n'est pas nécessaire. Un tableau possède une propriété nommée Length qui
contient sa longueur. dArray. Lerrgth a donc la même valeur que nunElements.

La boucle f or suivante aurait été préférable :

ll rpnnfit lp tableau avec 1es valeurs
for (int i = 0; i (dArray.Length; i++)
{

Pour4uoi les déclarations des tableaux de longueur fire et de
longueur hriable sont-elles si différentes ?

Superficiellement, la syntaxe de la déclaration d'un tableau de longueur
fixe ou de longueur variable est assez différente :

doubl.e[] dFixedlengthArray * {5,2,7,3.5, 6.5, 8, 1, 9, l, 3l;
double[] dVariabLelengthArrây - new doublellûl ;

La différence vient du fait que C# essaie de vous éviter un peu de travail.
C# alloue à votre place la mémoire nécessaire dans le cas d'un tableau
de longueur fixe comme dFixedLengthArray. J'aurais pu aussi le faire
moi-même :

double[] dFixedlengthArray = nerr double[10] {5, 2, 7,

Ici, j'ai utilisé new pour allouer explicitement la mémoire, et j'ai fait suivre
cette déclaration par les valeurs initiales des membres du tableau.

Chapitre 6 : Rassembler des données : classes et tableaux | 2 5

Le programme peut maintenant définir les propriétés de chaque étudiant :

studentslil = new Student0;
students Ii] . sName = "Mon nom";

students lil . dCPn * dMyGPA;

C'est cette merveille que vous pouvez voir dans le programme
.Ar,erageStr-rc1er,t,,lFA ci-dessous, qui recueille des informations sur un
certain nombre d'étudiants et affiche la moyenne globale des points de
leurs unités de valeur :

I I AverageStudentGPA - calcule 1a moyenne des points
I I d'UV (GPA) d'un certain nombre d'él r:liants.
',^.i-^ ("^+^-.uùrrr5 uJùLçrlrl

nanespace AverageStudentGPA

{
public class Student

{

public string sName;
nrrhlin inrrh'l ^ dÇp[.

]
^..L1.: ^ ^1^^^ n115S1
PUUATU Ufdùù Urd

{

// moyenne des points d'UV

public static void Main(string[] args)
t

l/ dernande 1e nombre d'étudiants
Console.tlriteline("Entrez le nombre d'étudiants") ;

string s = Console.Readline0;
int nNumber0fStudents = Convert.ToÏnt32 (s) ;

// définit un tableau d'objets Student

Studentl] students = nel^r StudentlnNunber0fStudents] ;

I I rennlit maintenant 1e tableau
for (int i: 0; i (students.Length; i++)

{

I I denande 1e nom à 1'utilisateur, et aioute i
ll a t'index, parce que 1es objets des tableaux en C#

// sont numérotés à partir de 0

Console.Write("Intrez 1e non de I'étudiant "
+(i+1)t":");

string sName = ConsoLe.Readline0;
Console.Write("Entrez sa moyenne de points d'UV : ");
string sAvg = Console.Readline0;
double dGPA = Convert.ToDouble(sAvg) ;

I I crée un obipt Strrdpnf à nartir de ces données

Student thisStudent = neld Student 0 ;

thisstudent. sName = sName;

Chapitre 6 : Rassembler des données : classes et tableaux

F,ntrez. sâ môvÊn1Ê ,l^ -^'i-+^ I rTTlt . j,5DttLLçL ùq luvjçllrlç uE yvfrrLù u uv

Entrez 1e nom de 1'étudiant 3: Carrie
n-+-^- de ooints d'UV : 4.0lllL!Ë4 ùê nlUJClI-lC uL yvrrrLo u uv

La noyenne générale des 3 étudiants est 3.5
Appuyez sur Entrée pour terminer...

^$st1^{t singulier, cornme s:-dent. D'autre part, il doit inclure le nom de la classe,

t\7, Comme clans baiSt':iclent ou goocistudeni, ou encore sex,vCoedSt,urlent.
Y Le nom d'un tableau (ou de tout autre collection, à vrai dire) doit de préfé-

rence être au pluriel, comme stuients ou phonelJunbers, ou encore
p ho n eli,.irib e i s I nli;". P a 1mP I 1 o i. Comme d'habitude, ces suggestions ne
reflètent que I'opinion de I'auteur de ce livre et non de l'éditeur, encore
moins de ses actionnaires. C# ne se préoccupe absolument pas de la
manière dont vous définissez les noms de vos variables.

t27

tableaur :
Une structure de contrôle de flur pnur tous les

foreachr
A partir d'un tableau d'objets de la classe Studeni-, la boucle suivante
calcule la moyenne des points de leurs UV :

nrrhl'i c el nss Strrdent

{
nrrhl i n <trino cT\^*^ 'uriOlltE,

nrthli^ rlnrrhla rlflPÀ'

l
n'!hlr^

^t^dd
r'r^dr1

PUUTTL LrAùù VrdDù

{

// movenne des points d'UV

public static void Main(string[] args)
{

I I .erée le tableau,
I I et fait 1a moyenne des étudiants
double dSum = 0.0;
for (int i = 0; i (students,Length;
{

dSun *= students Ii] .dgPn;

l
double dAvg = dsum/students.Length;
I I .utilise le tableau.

du tableau

1fT I

I 28 Troisième partie : Programmation et objets

La boucle - o r- effectue une itération sur tous les membres du tableau.

ç-/ â\;/ ^..L \ students. i,enpth contient le nombre d'éléments du tableau.-(Ë'
a-;,,.":"" r,;r:,rr" o" contrôle de flux, nommée roreach, spéciale-
ment conçue pour I'itération dans un conteneur tel qu'un tableau. Elle
fonctionne de la façon suivante :

ll ç^.:+ l^ *^,,^-^^ À^-I t rcllL rd lruyetllte ueùj

double dSum = 0.0;
foreach (Student stud
{

dSun *= stud. dGPA;

]
double dAvg : dSuûr/students.Length;

Lors du premier passage de la boucle, I'instruction r o re;ach va chercher
le premier objet Student dans le tableau, et le stocke dans la variable

.istud. A chaque passage successif, I'instruction f oreach va chercher
l'élément suivant. Le contrôle sort de f oreach lorsque tous les éléments
du tableau ont été traités de cette façon.

Remarquez qu'aucun index n'apparalt dans I'instruction f creach, ce qui
réduit considérablement les risques d'erreur.

Les programmeurs C, C++ et Java ne se sentiront sans doute pas très
confortables au premier abord avec f oreach, car cette instruction est
propre à C#. Mais elle a la qualité de grandir en quelque sorte pour vous.
Pour accéder aux tableaux, c'est la plus facile à utiliser de toutes les
commandes de boucle.

La structure f oreach est en fait plus puissante que cet exemple ne le laisse
paraltre. En dehors des tableaux, elle fonctionne aussi avec d'autres types de
collection (les collections sont expliquées au Chapitre 16). D'autre part, notre
exemple de foreach ignorerait les éléments du tableau qui ne seraient pas
du type Student.

étudiants du tableau

in students)

U
oc$IQa"

frg)

tableauTrîer un d'objets
La nécessité de trier les éléments d'un tableau est une difficulté bien
connue de la programmation. Que la taille d'un tableau ne puisse être ni
augmentée ni réduite ne signifie pas que ces éléments ne puissent pas

Ghapitre 6: Rassembler des données:classes et tableaux I 29

-

Figure 6.2 :

"Permuter

deux objets'
signifie en
réa lité
"permuter

deux
références
au même
objet".

-

être déplacés, ni que I'on ne puisse en ajouter ou en supprimer. Par
exemple, le fragment de code suivant permute deux éléments de Student
dans le tableau students :

Student tenp = students[i]; /l net de côté 1'étudiant noi
studentsIi] : studentsIj] ;

studentsljl = tenp;

Ici, la référence d'objet de I'emplacement i du tableau students est
sauvegardé, afin qu'elle ne soit pas perdue lorsque la deuxième instruc-
tion change la valeur de students Ii] . Enfin, le contenu de la variable
temp est stocké à I'emplacement j. Dans une représentation visuelle, cette
opération ressemble à la Figure 6.2.

Avant:

Après:

studentslil

studentsljl

Le programme suivant donne une démonstration de la manière d'utiliser
la possibilité de manipuler les éléments d'un tableau pour effectuer un tri.
Cet algorithme de tri s'appelle "en bulles" (bubble sort). Ce n'est pas le

130 Troisième partie: Programmation et objets

meilleur sur de grands tableaux contenar-rt des milliers cl'éléments, mais il
est simple et efficace pour de petits tableaux:

ll SortStudents - ce programne montre coînnent trier
I I un tableau d'objets
,.^-:-- O,,^+^-.uù rrLB D) ù L Crrl ,

nânêsnâctr SortStudents

t

class Class i
{

public static 'roid Main(string[1 args)
t

I I crée un tableau d'étudiants
Studentll students = new Student[5];
students IO] = Stuaent,Nevstudent ("ilomer", 0) ;

students It] : Student,NenSt,rCent("Lisa", 4.0) ;

students IZ] = Student . NewStrrdent ("Bart" , 2. 0) ;

students [3] : Student . Newstudent ("l,{arge" , 3 .0) ;

rrlstudentsl4i = Stuoeirt.NewStuIsn;("llagg-e", 3.5) :

// output the iist as is:
Console . ldriteline (r'A,rant de tr j-er : ") ;

OutputStudentArray (students) ;

I I trie maintenant 1a liste des étudiants
I I du meilleur au pius nauvais

Console.WriteLine("\nTri en ccurs\n") ;

Student. Sort (students) ;

// affiche la liste triée
Console.Writeline("Étudiants par résultats décroissants :") ;

OutputStudentArray (student s) ;

/l attend confirmation de 1'utilisateur
Console,!,IriteLi.ne("Appuyez sur Entrée pour terminer, . .") ;

Console. Read 0 ;

]

l/ OutputStudentArray affiche tous 1es étudiants du tableau
public static void 0utputStudentArray(Studentl] students)
{

foreach(Student s in students)
i

Console.llriteline (s.GetString ()) ;

l
l

]
i / Student - description d'un
class Student

{

-,.L1.i^ ^+-.i-^ ^NpuD-r-LC s Lrrng sflame;

nrrhlic riorrhlp dGrade : 0.0;

étudiant (nom et résultats)

Chapitre 6 : Rassembler des données : cf asses et tableaux | 3 |

ll Netrstudent - retourne un nouvel objet Student initialisé
public static Student Nerustudent(string sName, double dGrade)

{

Student student = nerd Student 0 ;

student. sName = sName;

student. dGrade = dGrade;

return student;
l
I I r'^+e*-) ^rvertit en chaîne 1'obiet StudentI I UsLùLrarrË LUllvc! Lf L crr Lrrdrlrc

I I en cours
public string GetString0
{

a++-ia^ ^:
[il.ùLrrrrË ù ,

s *= dGrade;
g f= tr - tr'

s f= sName;

return s;
]
/l Sort - trie un tableau d'étudiants par ordre de résultats
I I déeroissants, avec 1'algorithme en bulles
public static void Sort(Studentll students)
{

hnnl hRonontT.nnn.

// rénète 1a bouc'i c ittsntt'à ne ntr4 1a liste soit triée
À^
UU

{

| | cet indicateur sera défini comme vrai si un objet
I I est trouvé ma1 classé
bRepeatloop = false;
i/ itère sur 1a liste des étudiants
for(int index = 0; index ((students.Length 1); index++)

{

I I si deux étudiants sont dans le mauvais sens.
if (studentsIindex] ,dGrade (

studentsIindex + 1] ,dGrade)

t

I I . i1s sont permutés.

Student to = students Iindex] ;

Student from = studentslindex + 1];
students lindex] = from;
studentslindex + 1] = to;
I I . et f indj.cateur bRepeatloop dit si il faudra
I I f.aire encore un passage sur 1a liste des étudiants
I I (continue à itérer jusqu'à ce que tous les objets
// soient dans le bon ordre)
bRepeatloop = true;

l
]

| 32 Troisième partie : Programmation et objets

I while (bRepeatloop);

j

Commençons par examiner ce qu'affiche le programrne, rien que pour
nous faire une idée :

Avant de trier :

0 - Homer

2 - Bart
3 - Marge

3.5 - Maggie

Tri en cours

Étudiants par résultats décroissants :

4 Li.sa

3.5 - Maggie

3 - Marge

2 - Bart
0 - Honer
Ànnttt'ao o'rr Fn+r6a nnrrr tarminarnyyuJÉL ùur lrrL!sË Pvu! LErluJllc!,,.

Afin de gagner du temps, le vôtre comme le mien, j'ai codé localement la
création de cinq étudiants. La méthode lrlewS*r-udenr O alloue un nouvel
objet Student, initialise son nom et son "grade", et retourne le résultat. Le
programme utilise la fonction OutpL,rtS tudentAr ra',1(.) pour afficher le
tableau des étudiants avant qu'il soit trié.

Le programme invoque ensuite la fonction Sort= (.i .

Après le tri, Ie programme répète le processus d'affichage dans le seul but
de vous impressionner avec le résultat maintenant trié.

Bien str, la principale nouveauté du programme Scrr:Students est la
méthode Sort O. Cet algorithme fonctionne en effectuant une boucle
continue sur la liste des étudiants jusqu'à ce qu'elle soit triée. À chaque
passage, le programme compare chaque étudiant à son voisin. S'ils ne
sont pas dans Ie bon ordre, la fonction les permute et met à jour un
indicateur pour signaler que la liste n'était pas complètement triée. Les
Figures 6.3 à 6.6 montrent la liste des étudiants après chaque passage.

Chapitre 6: Rassembler des données: classes et tableaux 133

-

Figure 6.3 :

Avant de
c0mmencer
le tri en
bul I es.

-

-

Figure 6.4 :

Après le
premier
passage du
tri en bulles.

-

-

Figure 6.5 :

Après le

deuxième
passage du
tri en bulles.

-

Lisa 4

Bart 2

Marge 3

Maggie 3.5

Homer O <- Homer finit par se retrouver tout en bas.

Lisa 4 <- Lisa reste tout en haut.

Marge 3

Maggie 3.5

Bart 2 <- Bart est descendu, mais reste au-dessus d'Homer.

Homer A

Lisa 4

Maooie 3.5 E
_) Maggie et Marge sont permutées.

Marge 3 4
Bart 2

Homer A

-

Figure 6.6 :

Après
I'ava nt-
dernier
passage, la

liste est
triée. Le

passage final
met fin au tri
en consta-
tant que rien
ne change.

-

Homer a
Lisa 4

Bart 2

Marge 3

Maggie

| 3 4 Troisième partie : Programmation et obiets

Au bout du compte, les rneilleurs étudiants, comme Lisa et Maegie,
remontent comme des bulles jusqu'en haut, alors que les plus mauvais,
comme Homer, tombent au fond. Voilà pourquoi ça s'appelle le tri en
bulles.

-gf{c Ce qui permet de réaliser une fonction de tri, celle-ci ou n'importe quelle
137 -^$:

\, autre, c'est que les éléments du tableau peuvent être réordonnés en
=f ItU) assignant à un autre élément clu tableau la valeur qui en référence un

{t-l autre. Remarquez que I'assignation d'une référence ne fait pas une copie
de I'objet, raison pour laquelle c'est une opération très rapicle.

Chapitre 7

Mettre en marche quelques
fonctions de grande classe

Dans ce chapitre :

Définir une fonction.

Passer des arguments à une fonction.

Obtenir des résultats (c'est agréable).

Étudier I'exemple 1,{riteLine O.

Passer des arguments au programme.

es programmeurs ont besoin d'avoir la possibilité de diviser de
grands programmes en morceaux plus petits, donc plus faciles à

manier. Par exemple, les programmes présentés dans les chapitres
précédents sont proches des limites de ce qu'une personne normalement
constituée peut digérer en une seule fois.

C# permet de diviser le code d'un programme en un certain nombre de
morceaux que I'on appelle des fonctions. Des fonctions bien conçues et bien
implémentées peuvent simplifier considérablement le travail d'écriture
d'un programme complexe.

Définîr et utiliser une fonction
Considérez I'exemple suivant :

class Exanple
t

| 36 Troisième partie : Programmation et obiets

Exanple example = new Exanple0;
ovrmnlo nTnt = l.

Exanrple.nStaticlnt = 2i

h'rhl1^ rh+ hln+,yuvrrL

nrrhl i,. ct:t i c i n- nStatic Int
nrrhf in vn j rl Mpn\prFunction ()r*'---
t

Console.1,rlriteLine("ceci est une fonction membre") ;

]
public static vo:d ClassFur:c:jcn ()

{

Console.I^lriteline("ceci est une fonction de classe");

J

L'élément ilr,- est ûr:r nTetnbre drntné(r. une clonnée menrbre d une classe
(la classe E.',a.-r ;,;), comme nous en avons vu beaLlcoup au Chapitre 6,

mais l'élément I'j-.:r., r r F'-r .'- '. , est (l'Lrn qenre nouveau : c'est une
fonction membre (une fonction. menrbre cl'une classe). Une fonction est un
bloc de code C# clue volls pouvez exécLlter en référençant son nom. Ce

sera plus clair avec Lln exemple (n'oubliez pas nos conventions, le nom
d'une classe commence par Llne majllscule : .,i::r.p

' er est un objet de la
classe Exan,nl e).

Le fragment de code suivant assigne une valeur à la donnée nlrrt (membre
de I'objet ei:an; I *. de la classe i,:,:,r: r - ,), et à la varialtle statique nSrar: ic lnt
(référencée par la classe r;.:ar',.- et non l)ar un objet de cette classe, puis-
qu'elle est statique) :

I lrrâa rrn nhiot

/lutilise 1'objet pour initialiser
//un membre donnée

//utilise 1a classe pour initialiser
//.,- *^-L-^ ^+â+-.i â//un mernDre srarlque

Le fragment de code suivant définit et invoque llemberFunction |)

ClassFunction (1, presque de la même manière :

et

Example exanple = new nxample0;
example . MemberFunct j.on () ;

Exanple. ClassFunction 0 ;

I lcrép rrn nhipt
I ltttil icp I'nhict nnrrr inrrnnrtpr

/ lune fonction membre

//utilise 1a classe pour invoquer
/ lune fonction de classe

L'expression exanl le .l'Ien:^,r:i !,.r:,,:tl lr i' . passe le contrôle au code contenu
dans la fonction. Le processus suivi par C# pour Exan,ple. ClassFurrcr:ion ()

est presque identique. L'exécution de ce sirnple fragment de code produit

Chapitre 7: Mettre en marche quelques fonctions de grande classe | 37

I'affichage suivant à I'aide de l'instruction',r''riteLine () contenue dans
chaque fonction :

ceci est une fonction nembre

ceci est une fonction de classe

Une fois que la fonction a achevé son exécution, elle restitue le contrôle
au point où elle a été invoquée.

æLorsquejeclécrisdesfonctions,jemetslesparenthèsespourqu'ellesf ç>,1llglf soient plus faciles à reconnaltre, sinon j'ai un peu de nral à rn'y retrouver.

Ce petit morceau de code C# avec ses deux exemples cle fonctions ne fait rien
d'autre qu'afficher deux petites chalnes cle caractères sur la console, rnais urte
fonction effectue généralement des opérations utiles et parfois cornplexes ; par
exemple calculer un sinus ou concaténer cleux chaîr-res cle caractères, otr
encore, envoyer subrepticement par rnail votre {.JIù- à Microsoft. Vous pouvez
faire des fonctictns aussi longues et compliquées que vous votrlez.

Un enemple de fonctîon qtour uos fichiers
Dans cette section, je vais reprendre les exemples monolithiques du
programffie i,ai c,i,.,te,l1,er es-i'ial,ie du Chapitre 5, et les cliviser en
plusieurs fonctions cle taille raisonnable, pour rnontrer à quel point
I'utilisation de fonctions peut contribuer à rendre le progranrrne plus
facile à écrire et à comprendre.

Je décrirai en détail les rnanières de cléfinir et d'appeler une fonction dans
des sections ultérieures de ce chapitre. Cet exemple n'est là que pour
donner une vue d'ensemble.

En lisant simplement les commentaires sans le code C#, vous devez
pouvoir vous faire une idée assez claire de ce que fait un programme. Si

ce n'est pas le cas, c'est que les commentaires sont mal faits.

Dans les grandes lignes, le programme Ca. cur atelnre res'-Tab i e apparalt
comme suit :

public static void Main(string[] args)
{

//demande à 1'utilisateur d'entrer 1e principal initial

I 38 Troisième partie : Programmation et objets

//si le principal est négatif
I I génère un message d'erreur
l/den,ande à 1'utilisateur d'entrer 1e taux d'intérêt
I lsi 7e taux d'intérôt est négatif, génère un message d'erreur
//denande à 1'utilisateur d'entrer le nombre d'années

I laff.iche 1es données saisies par 1'utilisteur
//effectue une boucle avec 1e nombre d'années soécifié
while(nYear (= nDuration)
r
L

//ca1cule 1a valeur du principal
lI .//olus I'intérêt
/ /rf ti".i.r. 1es résultats

i
l

Si vous I'examinez avec un peu de recul, vous verrez que ce programme
se décompose en trois sections distinctes :

Une section initiale de saisie dans laquelle I'utilisateur entre les
données, à savoir le principal, le taux d'intérêt, et la clurée.

t/ Une section d'affichage des donrrées entrées, afin que I'utilisateur
puisse les vérifier.

t/ Une section finale qui calcule et affiche les résultats.

Ce sont de bons endroits où regarder pour trouver la bonne manière de
diviser un programme. En fait, si vous examinez de plus près la section de
saisie de ce programme, vous pouvez voir que c'est essentiellement le
même code qui est utilisé pour saisir :

Le principal.

Le taux d'intérêt.

La durée.

Cette observation nous donne un autre bon endroit où chercher.

C'est à partir de là que j'ai créé le programme Caiculatelnr:erestTabie
i,,r'i t- hFunc l i on s l

I I CalculatelnterestTablel,lithFunctions - génère une table d'intérêts
I I semblable à d'autres programmes de

I I table d'intérêts. nais utilise une

I I certaine division du travail
I I entre plusieurs fonctions.

t/

,/

t/

tz

Chapitre 7 : Mettre en marche quelques fonctions de grande classe | 39

using Systen;
namespace CalculatelnterestTablel,lithFunct ions
{

public class C1ass1

{

public static voj.d Main(stri.ng[] args)
{

//Section L - saisie des données nécessaires pour créer la table
decimal mPrincipal : 0;

decimal mlnterest = 0;
deci.mal mDuration = 0;
InputlnterestData (ref mPrincipal ,

ref mlnterest,
ref mDuration);

l/Section 2 - affiche les données pour vérification
Console.Writeline0; II skip aline
Console.IdriteLine("Principal = " *mPrincipal);
Console.llri.teline("Taux d'intérêt = rr + nlnterest + "%");
Console.Writeline("Durée = rr +mDuration+ " ans");
Console.I,Iriteli.ne () ;

/ lSeclton 3 - affiche La table des intérête calcuLés
OutputlnterestTable (nPrincipal, mlnterest, mDuration) ;

I I attend confirnation de 1'utilisateur
Console.i.trriteline("Appuyez sur Entrée pour terminer. . . ") ;

Console.ReadO;
l
i / Inoutlntere.+n.+. - r.i+ À -"-tir du Clavier 1e nr.i neina.l .Lv! vù L!q Lq If L q

!a! L1! Uu LIAv IE! f,tr y! arrulyal ,

I I les informati.ons sur le taux d'intérôt
ll et 1a durée, nécessaires pour calculer
I I la table des valeurs futures
/ / (CeUte fonction inrplémente la Section 1 en 1a divisant
/ len Erots conposanLs)
nrrhl'in stetin rroid TnnrrtTntora<tlleiafrof âeoinel mPrinninalryqsq\!

ref decimal nlnterest,
ref decimal mDuration)

{

I I ta - lecture du principal
mPrincipal = InputPositiveDecimal("1e principal") ;

I I 7b - lecture du taux d'intérêt
mlnterest = InputPositiveDecimal("le taux d'intérêt") ;

I I 7e - lecture de la durée
mDuration : InputPositiveDecimal ("1a durée") ;

]

// InputPositiveDecimal - lecture d'un nombre décima1 nositif---r-,- yvçf ufr

I I à partir du clavier
//(sai'sie du principal, du taux d'intérêt ou de La durée

l/i\ s'agit de saisir un nonbre décimaL et de

//vétttLer gu,il est positif)

| 40 Troisième partie : Programmation et objets

public static decimal InputPositiveDecinal(string sPrompt)
I
(

I I eont inrre irscu'à ce cue 1'utilisateur entre une valeur valide
while (true)
It

ll denande une valeur à 1'utilisateur
Console. Write ("Entrez 'r + sPrompt * " : t') ;

I I Lit une valeur décimale saisie au clavier
string slnput : Console.Readline0 ;

decimal mValue = Convert.ToDecimal (slnput) ;

I I sort de la boucle si la valeur entrée est correcte
i,f (mValue)= 0)

{-.
// retourne 1a valeur décirnale valide entrée par 1'uti.lisateur
return mValue;

'I

J

/ / ^.i -^- ^Â-À-^ ^^,,- -.i ^-^ l ^- 1 | ^--^..I I Slnon, genere un message pour slgnaler l'erreur
Console.\tlriteline(sPrompt * " doit avoir une valeur positive");
Console,l,{riteline ("Veui11ez reconnencer") ;

Console.lJriteline0;
l
J

.I

)

// OutputtnterestTable - à partir du principal et du taux d'intérêt,
I I génère 1a table des valeurs futures pour

I I le nombre de périodes indiquées par

I I mDuration.

/ / (cecl inplénent.e la section 3 du progranure)

public static void OutputlnterestTable(decinal rnPrincipal,
decimal mTnterest,
decimal mDuration)

{

for (int nYear = 1; nYear (= mDuration; nYear**)
I
t

// calcule 1a valeur du principal
II plus f interêt
decimal nlnterestPaid ;

mlnterestPaid: mPrincipal * (mlnterest / 100);
// calcule naintenant 1e nouveau principal en ajoutant
/ I 7'intérêt au précédent principal
mPrincipal = nPrincipal t mlnterestPâj.d;
I I arrondit 1e principal au centime 1e plus proche
mPrincipal : decinal , Round (rnPrincipal , 2) ;

ll affiche 1e résultat
Console.l,rlriteline(nYear + rt-ti * nPrincipal) ;

]
I

Ghapitre 7 : Mettre en marche quelques fonctions de grande classe | 4 |

J'ai divisé I'ensemble Main O en trois parties clairement distinctes, dont
chacune est indiquée par un commentaire en gras, ensuite j'ai divisé à

nouveau Ia première section en 1a, 1b, et lc.

^$tlK
Normalement, les commentaires en gras n'auraient rien à faire là. Ils ne feraient

i(ilû) eu'"n.ombrer inutilement le source. En pratique, de tels commentaires sont

\g) inutiles si vos fonctions sont bien conçues.

La section 1 appelle la fonction inputlnterestData O afin de saisir les
trois variables dont le programme a besoin pour calculer les résultats :

mPrinclpal, mlnterest, et mDuration. La section 2 affiche ces trois
valeurs de la même manière que les versions antérieures du programme.
La partie finale utilise la fonction OutputlnterestTable O pour afficher
les résultats.

Commençant par le bas et progressant vers le haut, la fonction
OutputlnterestTable O effectue une boucle pour calculer les intérêts
successifs. C'est la même boucle que celle qui est utilisée dans le pro-
gramme CalculateInterestTable, sans avoir recours à une fonction, au
Chapitre 5. Mais I'avantage de cette version est que lorsque vous écrivez
cette section du code, vous n'avez pas besoin de vous préoccuper des
détails de la saisie et de la vérification des données. En écrivant cette
fonction, vous avez simplement à penser : "Étant données trois valeurs, le
principal, le taux d'intérêt et la durée, calculer et afficher la table des
intérêts." C'est tout. Une fois que vous avez terminé, vous pouvez revenir
à la ligne qui a invoqué la fonction 0rrtnutTnteresf Table O, et continuer
à partir de là.

C'est la même logique de diviser pour régner qui est à l'æuvre dans la
fonction InputlnterestData O. Vous pouvez vous y concentrer exclusive-
ment sur la saisie des trois valeurs décimales. Toutefois. dans ce cas. on
s'aperçoit que la saisie de chaque valeur fait appel aux mêmes opérations.
La fonction InputPositiveDecimal O rassemble ces opérations dans un
bloc de code que vous pouvez appliquer tout aussi bien au principal, au
taux d'intérêt, et à la durée.

Cette fonction TnputPositiveDecimal O affiche I'invite qu'elle a reçue
lorsqu'elle a été invoquée, et attend la saisie de I'utilisateur. Puis, si cette
valeur n'est pas négative, elle la retourne au point où elle a été appelée. Si

la valeur est négative, la fonction affiche un message d'erreur et demande
à nouveau la valeur à I'utilisateur.

t42 Troisième partie : Programmation et objets

Du point de vue de I'utilisateur. ce programme foncticlnne exactement cle
la même manière que la version nronolitl-riclue clu Chapitre 5, et c'est bien
ce que nous vouli<lns :

Entrez 1e principal:100
Entrez le taux d'intérêt: - 10

le taux d'intérêt doit avoir une valeur nositive
Veuillez recommencer

Entrez 1e taux d'intérêt: 10

Entrez 1a durée:10

Principal = 100

Taux d'intérêt = 10i,

Durée = 10 ans

1-i10
2-tzL
3-i33.1
4-146,41
5-16i.05
6-171.16

7 - 194.88

8 - 214 .37

9-235.8r
1A - 259 .39

Appuyez sur Entrée pour terminer,..

J'ai donc pris un prograntme un peu long et un peu compliqué, et je I'ai
divisé en éléments plus petits et pius con'r1tréhensibles, tout en faisant
disparaltre certaines cluplications qu'il comportait.

Pourquoi des fonctions ?

Lorsque le langage F0RTRAN a introduit la notion de fonction dans les années cinquante, le
seuf but en était d'éviter la duplication de code en rassemblant les portions identiques dans
un seul éf ément commun. f maginez que vous ayez eu à écrire un programme devant calculer
et afficher des ratios en de nombreux endroits différents. Votre pr0gramme aurait pu appeler
une fonction DisplayRatto O chaque fois que nécessaire, pratiquement dans le seul but
de mettre plusieurs fois dans le programme le même bloc de code. L'économie peut paraître
modeste pourunefonction aussi petite que f rspia,-t-tat jo O, mais unefonction peutêtre
beaucoup plus grande. En outre, une fonction d'usage courant comme ,,ni r itelile g peut
être invoquée en des centaines d'endroits différents d'un même prggramme.

Ghapitre 7:Mettre en marche quelques fonctions de grande classe | 43

lly a un autre avantage qui devient rapidement évident: il est plus facile d'écrire correcte-
mentlecoded'unefonction.LafonctionDispl-ayRatloO vérifiequeledénominateurn'est
pas nul. Sivous répétez le code du calcul en plusieurs endroits dans votre pr0gramme, il est
facile d'oublier ce test ici ou là.

Encore un avantage un peu moins évident: une fonction bien conçue réduit la complexité
d'un programme. Une fonction bien définie doit correspondre à un concept bien défini. ll doit
être possible d'en décrire la finalité sans utiliser les mots ef et ou.

Une fonction comm€ calculareSin () constitue un exemple idéal. Le programmeur qui a

besoin de réaliser de tels calculs peut alors implémenter cefie opération complexe sans
inquiétude sur la manière de I'utiliser, et sans se préoccuper de son fonctionnement interne.
Le nornbre de choses dont le programmeur doit se préoccuper en est considérablement
réduit. D'autre part, en réduisant le nombre de "variables", une tâche imporïante se trouve
réduite à deux tâches nettement plus petites et plus faciles.

Un programme de grande taille {par exemple un traitement de texte} se compose de nombreu-
ses couches successives de fonctions, corresp0ndant à des niveaux croissants d'abstraction.
Par exemple, une fonction RedisplayDocument () appellerait sans aucun doute une fonc-
tion Reparagraph () pour réafficher les paragraphes dans le document. La fonction
ReparagraphO devrait alors à son tour invoquer une fonction CalculateWordWrap o
pour déterminer où placer les retours à la ligne qui déterminent I'affichage du paragraphe.

talculatel,Iordwrap O elle-même appellerait une fonction LookupwordBreak O pour

déciderdes éventuelles coupures de mots à la fin des lignes. Comme vous le voyez, nous venons
de décrire chacune de ces fonctions en une seule phrase simple.

Sans la possibilité de représenter des concepts complexes, il deviendrait presque impossible
d'écrire des programmes de complexité simplement moyenne, a fortiori un système d'exploi-
tation romme Windows XP, un utilitaire comme WinZip, un traitement de terte c0mrne
WordPerfect, ou encore un jeu comme StarFighter, pour ne citer que quelques exemples.

Donner ses argutnents à une fonction
Une méthode comme celle de I'exemple suivant est à peu près aussi utile
que ma brosse à cheveux car aucune donnée n'est passé à la fonction, et
aucune n'en sort :

nrrhl ic .qtetic vnid 0rrtnrt o
I

Console.ldriteline("ceci est une fonction") ;

I

| 4 4 Troisième partie : Programmation et ob jets

Comparez cet exemple aux véritables fonctions qui font waiment quelque
chose. Par exemple, I'opération de calcul d'un sinus nécessite une donnée (il
faut bien que ce soit Ie sinus de quelque chose). De même, pour concaténer
deux chaînes en une seule, il faut commencer par en avoir deux. Il faut passer
deux chalnes comme données à la fonction Concatenate r) . Il vous faut donc
un moyen de passer des données à une fonction et de récupérer ce qui en sort.

Passer un arqument à une

Les valeurs qui constituent des données d'une fonction sont appelées
orguments de la fonction.La plupart des fonctions ont besoin d'argurnents
pour accomplir ce qu'elles ont à faire. Pour passer des arguments à une
fonction, on en place la liste entre les parenthèses qui suivent son nom.
Yoyez maintenant la petite modification apportée à la classe Exarrpie :

public class Example

{

nrrhl in <f af in rrnir{ f\rrf ntr* llctrin^ €"n^(+ri-^'lpuurlL ÈLeLfL vuru vuLyuL \DL!rtlË tutrLJL!rirË/

{

Console.Writeline("Output0 a reçu lrargument : "
+ funcString);

]
1

J'aurais pu invoquer cette fonction depuis la même classe de Ia façon
suivante :

ôrrf nrrf f rlTJal i
^rr

) .
\ rrlfrv / t

Et j'aurais reçu le même mémorable résultat :

Â"+-"+t'l 1|^-^.'*^-+ . U^l1uurpuL|./ a reçu I argumenr ; nel.Lo

Le programme passe à la fonction Output O une référence à la chalne
"Hello". Lafonction reçoit cet référence et lui assigne le nom fuircString.
La fonctiot Outp,.rt O peut alors utiliser furrcString dans le code qu'elle
contient, comme n'importe quel autre variable de type str irrg.

Je vais maintenant apporter une modification mineure à cet exemple :

string upperString = "He11o";
Output (upperString) ;

fonction

Ghapitre 7:Mettre en marche quelques fonctions de grande classe I 45

L'assignation de la variable upperString lui fait référencer la chalne
"Hello". L'invocation Output (upperString) passe à la fonction I'objet
référencée par upFerStrrng, eui est notre vieille connaissance "Hello".
La Figure 7.1 représente ce processus. À partir de là, I'effet est le même.

-

Figure 7.1 :

L'invo cation
Out put
f r rnnorStri nc I

copie la

valeur de
rrnnor(t.i nr-rr. _" -_ _.,t
da ns
frnnÇtr: nc

-
Passer argutnents à une

Quand je demande à ma fille de laver la voiture, elle me donne en général
plusieurs arguments. Comme elle passe beaucoup de temps sur le canapé
pour y réfléchir. elle peut effectivement en avoir plusieurs à sa disposition.

Vous pouvez définir une fonction comportant plusieurs arguments de
divers types. Considérez I'exemple suivant, AverageAr:olrispla,u* O :

I I AverageAndDisplay
using System;

namespace Exanple

t

nrrhlic elnss Classl
t

public static void Main(string[] args)
(
t

// accède à 1a fonction menbre

AverageAndDisplay("UV 1", 3.5, ''lJV 2rr, 4,0) ;

// attend confirmation de 1'utilisateur
Console.l,lriteLine("Appuyez sur Entrée pour terminer..,") ;

Console.Read0;
l
I I AverageAndDisplay - fait 1a moyenne de deux nombres associés
I / à leur nom et affiche 1e résultat
public static void AverageAndDisplay(string s1, double d1,

string s2, double d2)

upperString

Output

:r Jrr il r9 =-\

\ ------>

\,/Y/
(funcString)/

"Hello"

fonctionltlusÎeurs

*ruiÏ3
,.r +-l:,;\

I tti
I | ,./C'

4aa
I 4O Troisième partie : Programmation et'obiets

double dAverage = (dl + d2) | 2:

Console,Writeline("La noyenne de " * s1

f " dont 1a valeur est " * dl
*"etde" ts2
* " dont 1a valeur est " t d2

* rr est égale à " + dAverage);

]

L'exécution de ce
ligne ne vient pas

petit programme produit
du programme) :

I'affichage suivant (le saut de

La moyenne de UV 1 dont la valeur est 3,5 et de UV 2

dont 1a valeur est 4 est éga1e à 3.75
Ànnlrroz crrr Fntr6o nnrrr 1'orm'inor

La fonction À,..erageAndDispi at. (I est déclarée avec plusieurs arguments,
dans I'ordre dans lequel ils doivent lui être passés.

Comme d'habitucle, I'exécution de notre exemple de programme commence
avec la première instruction qui suit 1'{ain (). La première ligne qui ne soit
pas un commentaire dans i"iain 0 invoque la fonction AverageArrdDisplal'()
en lui passant les deux châlnes "UV 1" et "uV 2", et les deux valeurs de type
d,I e3.5et4.0.

La fonction i..'erageAndltisplai. O calcule la moyenne des deux valeurs
double c1i et d2, qui lui ont été passées avec leurs noms respectifs conte-
nus dans sl et s2. et cette movenne est stockée dans dA-,,eraqe.

Accorder la
utîlîsatîon

d'un argument et sondéfinîtion

Dans un appel de fonction, I'ordre et le type des arguments doivent
correspondre à la définition de la fonction. Ce qui suit est illicite et
produit une erreur lors de la génération :

/l AverageWithCompilerError -cette version ne se spmnilê n'c I

',--l*^ C,,^+^*.uùf lrB ù)/ Ë LËxl ,

namespace AverageWithComp ilerError
{

Ghapitre 7: Mettre en marche quelques fonctions de grande ctasse | 47

public class C1ass1

{

public static void t'lain(string ll args)
I

l/ accède à la fonction membre

AverageAndDisplay("UV 1", rrUV 2", 3.5, 4.0) ;

/l attend confirmation de 1'utilisateur
Console.firiteLine ("Appuyez sur Entrée pour terniner. . . ") ;

Console.Read0;
l
I I AverageAndDisplay - fait 1a moyenne de deux nonbres associés
I | à leur nom et affiche 1e résultat
public static void AverageAndDisplay(string s1, double d1,

string s2, double d2)
I

double dAverage = (d1 + d2) I 2;

Console.l,lriteline("La noyenne de " * sl
t t' dont la valeur est " * d1

*"etde" *s2
* " dont 1a valeur est " * d2

* " est éga1e à " + dAverage);

l
J

I

C# ne peut pas faire correspondre les arguments qui sont passés dans I'appel à

AverageAndDisplay 0 avec la définition de la fonction. La chaÎne "LJV 1"

correspond bien au premier argument qui est de type string dans la défini-
tion de la fonction, mais pour le deuxième, la définition de la fonction demande
un type double alors que c'est une châÎne qui est passée dans I'appel.

Il est facile de voir que j'ai simplement interverti le deuxième et le troisième
argument dans I'appel de la fonction. Voilà ce que je n'aime pas avec ces
ordinateurs : ils prennent littéralement tout ce que je leur dis. Je sais bien
que je I'ai dit, mais ils pourraient comprendre ce que je voulais dire !

ne pas luîsignîfieSurcharqer une fonction
donner trop de traMîl

5>}qS, Vous pouvez donner le même nom à deux fonctions
à-f ilû \ condition que leurs arguments soient différents. On

\gt/ le nom de la fonction.

d'une même classe, à
appelle ça surcharger

t48 Troisième partie : Programmation et objets

Voici un exemple cle surcharge :

I I ^"^-^ ^^ ^-rn"r snl rvOverl o,adpd - cette version montrê ore/ / nvE!aécnllu!f,ùyrqjvvçrrvqu9u LçLLE vsrDrvrr lltvlr--- a--

1r fnnntinn Arrpr:snÂn,1T1.i.^l o-'ro rurrç Lfv!r rrvu!uë;CnllUUfùyroJ

peut être surchargée

t ",lorri:1a vaieur est " * d2

* " est égaie à " + dAverage);

void AverageAndDispJ-ay(double di, doubie d2)

rrqino Srr<tpm'*- -"b

nanespac e Ave rageAndDisplayOver loaded

{

njthltn crec< { le.gg]

{

public static void Main(stringil args)
{

// accède à la première fonction membre

AverageAndDisplay("mes points d'UV", 3.5, "vos points d'UV", 4.0);
Console.WritelineO;
// accède à la deuxi.ène fonc*.ion nembre

AverageAndDisplay (3.5, 1. û) ;

ll attend confirmation de 1'util-isateur
Console.i{riteLine("Appu1's2 sur Entrée pour terminer.,.") ;

Console.Read0;
l
I I ArerageAndDisplay - fait ia moyenne de deux nombres associés
I I à leur non et affiche 1e résultat
public static void AverageAnriDisplayfstring s1, double d1,

srring s2, double d2)

{

doub:e dAverage = (dl + d2) I ?.;

Console,WriteLine("La moyenne de " T s1

* 'r dont 1a yaleur est " * d1);
Console,lrlritel,ine("et de " +^1

l
^"L1 i ^ a+^+.i n
PUVTTL ù LALaL

{

double dAverase : (Ci + d2) I 2:

Console.hiriteLine ("La rnoyenrre de " * d1

*"et" +d2
* " est égale à " + dAverage);

l

Ce programme cléfinit deux versi()n.s de la fonction r-, u'âgelir,dDrsplay ().
Il invoque I'une puis I'autre en leur passant respectivement les arguments
qu'il leur faut. C# peut iclentifier la fonctit-rn (lemanclée par le programrne en

Ghapitre 7:Mettre en marche quelques fonctions de grande classe I 49

comparant I'appel à la définition. Le programme se compile correctement,
et son exécution donne I'affichaee suivant :

La moyenne de nes points d'UV dont 1a valeur est 3,5
^+ r^ "^^ -^i-+^ J'UV dont la valeur est 4 est éga1e à 3,75ËL UC VUù' PUrrlLb U

r ^ -^,,^--^ ,1 ^ I (^+ t, ^^t a^^1 ^ \ 3,75!o ruvJsrrlrç uc JrJ EL T cùL cédrË é .

Annlt\to" cltr Fntrêa n^rrr tormlnôr

En règle générale, C# ne permet pas à deux fonctions du même programrne
d'avoir le même nom. Après tout, comment pourrait-il deviner quelle
fonction vous vouliez appeler ? Mais le nombre et le type des arguments de
la fonction font partie de son nom. On pourrait appeler une fonction tout
simplement r.,.'eraceAr.il.-rispi a.i'\, mais C# fait la différence entre les
fonctions À.ieras.€i\nilispla; is',r ing,,i:,:t,1e, stl'ing, douL'-.e et
h.rerageAn:lli s1;1a,,' iclouble . i1o,lb 'e I . En voyant les choses de cette
façon, il est clair que les deux fonctions sont différentes.

lnplémenter des arguments par
Bien souvent, vous voudrez pouvoir disposer de deux versions (ou plus)
d'une même fonction. L'une pourra être la version compliquée qui offre
une grande souplesse mais nécessite de nombreux arguments pour être
appelée, dont plusieurs que I'utilisateur peut très bien ne même pas
comprendre.

.P\ En pratique, quand on parle de "l'utilisateur" d'une fonction, il s'agit"Qt ;:iffili,'il:i:îÏÏÏilJrî'"ïiit
usage ce n'est pas rorcément re

Une autre version de la même fonction, bien qu'un peu fade, offrirait des
performances acceptables, en remplaçant certains des arguments par des
valeurs par défaut.

La surcharge d'un nom de fonction permet d'implémenter facilement des
valeurs par défaut.

Examinez ces deux versions de la fonction L)i spl31-p.eundeCDecina i O :

défaut

// FunctionsWithDefaultArguments -

/ I fonction,
I I défaut, en

offre des variantes de la même

certaines avec des arguments par

surchargeant 1e nom de 1a fonction

| 50 Troisième partie : Programmation et objets

using System;

nanespac e FunctionsWithDefaultArormpnts
i

public class C1ass1

t

public static void Main(string[] args)
{

/l accède à 1a fonction nenbre
Console . Writeline (" { 0 } ", DisplayRoundedDec inal (1 2 . 34567 8i'{, 3)) ;

ll attend confirrnation de 1'utilisateur
Console. t^lriteLine ("Appuyez sur. Entrée pour terminer , . . ") ;

Console.Read0;
l
// DisplayRoundedDecimal - convertit en chaîne une valeur
I I décimale, avec le nombre spécifié
tl
I I de chiffres significatifs
public static string DisplayRoundedDecimal(decimal mValue,

int nNunberOfSignifieantDigits)

t

// commence pas arrondir 1e nombre sur 1a base du nonbre
tt// spécifié de chiffres significatifs
decinal mRoundedValue =

dec imal . Round (nValue ,

nNunb erOfS ignif ic antDigits) ;

// Convertit en chalne le résultat obtenu
string s * Convert.?oString(rnRoundedValue) ;

reïurn s;
]
public static string DisplayRoundedDecinal(decirnal mValue)

t

// invoque DisplayRoundedDecimal(decinal, int),
I I en spécifiant 1e nonbre de chiffres par défaut
string s = DisplayRoundedDecinal(mValue, 2) ;

return s;
l

l
]

La fonction DlspiayRoundedDecimal (decirnal , int) convertit en châîne la
valeur décimale qui lui est passée, avec le nombre spécifié de chiffres après la
virgule. Comme les valeurs de type decimal sont très souvent utilisées pour
représenter des valeurs monétaires, on utilise le plus souvent deux chiffres
après la virgule. Aussi, la fonction DisplayRoundedDecimal (decimal) fait le
même travail de conversion, mais en utilisant le paramètre par défaut de detx
chiffres après la virgule, ce qui évite à I'utilisateur d'avoir seulement à se
demander ce que veut dire le deuxième argument.

Chapitre 7 : Mettre en marche quelques fonctions de grande classe

-gU!{c Rernarquez que la version générique (declrnai) de cette fonction fait son

.-d/ :$: \ travail en appelant la version complète (Cecinal . j nt). Laversion
=(lt[,) générique trouve toute seule les arguments que le programmeur n a pas

\St-i envie de chercher clans la documentation.

Fournir des arguments par défaut présente plus d'intérêt que d'épargner
simplement quelques efforts à un programmeur paresseux. Les recher-
ches inutiles dans la documentation pour y trouver Ia signification d'argu-
ments qui sont normalement définis par défaut distraient le programmeur
de sa tâche principale et la lui rendent plus difficile, lui font perdre clu
temps, et augmentent le risque de produire des erreurs. Le programmeur
qui est I'auteur d'une fonction comprend les relations entre ses argu-
ments. C'est à lui que revient la charge d'en fournir une version simplifiée,
plus facile à utiliser.

Passer des arguments d'un trlpe hleur
Les types de variables de base, int, doubie, et iecinal, sont appelés

Upes ualeur.ll y a deux manières de passer à une fonction des variables
d'un type valeur. La forme par défaut consiste à passer par uoleur. L'autre
forme consiste à pctsser par référence.

Les programmeurs ont leur manière de dire les choses. En parlant d'un type
valeur. quand un programmeur dit "passer une variable à une for-rction", cela
signifie généralement "passer à une fonction la valeur d'une variable".

Passer par ualeur des arguments d'un tqpe Ualeur

Contrairement à une référence à un objet, une variable d'un type valeur
comme int ou iouble est normalement passée parvaleur, ce qui signifie
que c'est la valeur contenue dans la variable qui est passée à la fonction,
et non la variable elle-même.

Passer par valeur a pour effet que la modification de la valeur d'une
variable d'un type valeur dans une fonction ne change pas à la valeur de
cette variable dans le programme qui appelle la fonction.

// PassByValue - montre 1a sémantique du passage par valeur
using System;

namespace PassByValue
{

t5t

*fR.''=oi

#i[o,

I 5 2 Troisième partie : Programmation et ob jets

public class Classi
{

I I ..

I I Update - essaie de modifier 1a valeur
I I des arguments qui lui sort passés

public static void Update(int i, doubLe C)

L

1 = /t)'

d = 20.0:
l
public static void Main(string[] args)
t

I I déc|are deux variables et 1es ini.ti-alise
int i = 1;

double d = 2.0;
Console.WriteLine("Avant 1'appel à'Jpdate(int, double) :") ;

Console.Writeline(!'i - 'r + i + ", d = " * d);
/i invoque 1a fonction
Update(i, d);
ll renarquez que les valeurs 1 et 2.0 n'ont pas changé

Console.lrlriteLine ("Après 1'appe1 à Update (int, double) : ") :

Console.Writeline("i = " + j- + 'r, d = " + d);
// attend confirmation de 1'utilisateur
Console.!'IriteLine("Appuyez sur Entrée pour terminer,,.") :

Console, Read O ;

1
)

l
l

L'exécution de ce programme prodtrit l'affichage suivant :

Avant 1'appe1 à Updare(int, double):
i = i, d = 2

Après 1'appe1 à Update(int, double):

Ànnrrrroz crrr F'nfrÂa nnrrl|orminorve rvu!

L'appel à-Lipria"-Ê () passe les valeurs I et 2.0, et non une référence aux
variables i et C. Aussi, Ia modification de ces valeurs à I'intérieur de Ia
fonction n'a aucun effet sur Ia valeur des variables dans la rclutine appe-
lant la fonction.

Passer par référence des arguments d'un t,lpe hleur

Il est avantageux de passer par référence à une fonction un argumeltt d'un type
valeur, en particulier lorsque le programme appelant à besoin de donner à

_-"-ffi
@t

Ghap itre 7: Mettre en marche quelques fonctions de grande classe I 53

cette fonction la possibilité de changer la valeur de la variable. Le programme
qui suit, PassByReference, met en évidence cette possibilité.

C# donne au programmeur la possibilité cle passer des arguments par
référence en utilisant les mots-clés ref et cut. C'est ce que montre une
petite modification de I'exemple PassByValue de Ia section précédente.

// PassByReference - demonstrate pass by reference semantics
,, ^.: - ^ C.,^+ ^* ,uùrrré ùJùLc$,

namespace PassByReference
(
L

public elass Classl
{t

I I Update - essaie de nrodifier 1a valeur
I I des argunents qui 1ui sont passés

public static void Update(ref int i, out double d)
I
I

i = l0;
d = 20.0;

]
public static void Hain(string[] args)
t

I I déclare deux vari.ables et 1es initialise
int i = 1;

double d I

Console.I,IriteLine("Avant 1'appe1 à Update(ref int, out double):");
Console.ltlriteline(rri = r? + i + ", d n'est pas initialisé");
// invoque 1a fonetion
Update(ref i, out d);
l-l renarquez que les valeurs 1 et 2.0 n'ont pas changé

Console.llriteline("Après 1'appel à Update(ref int, out double) :") ;

Console.Writeline('ri - u * i + ", d = " + d) ;

/i attend confirmation de 1'utilisateur
tonsole.l^lriteLine("Appuyez sur Ëntrée pour terminer. . . ") ;

uons0le.KeadlJ;

]

Le mot-clé ref indique que c'est une référence que C# doit passer à i, et
non la valeur contenue dans cette variable. Il en résulte que les modifica-
tions apportées à cette valeur dans la fonction sont exportées dans le
programme qui I'appelle.

De façon similaire, le mot<lé out dit "restituer par référence, mais peu m'importe
quelle était la valeur initiale, puisque de toute façon je vais la remplacer" (ça fait

I 5 4 Troisième partie : Programmation et objets

tt ^// PassByReferenceError

using System;

beaucoup de choses en trois mots). Le mot<lé out est applicable lorsque la
fonction ne fait que retourner une valeur au programme appelant.

L'exécution de ce programme produit I'affichage suivant :

Avant 1'appel à Update(ref int, out double):
i = 1, d n'est pas initialisé
^--:^ 1 r ^--^r À iinriate(ref int. out double) :nyrsù L dPvÉL d uyuoLs\rçr rrrLr uuL uuuuItr,/,

i = 10, d = 20

Appuyez sur Entrée pour terminer. . ,

Un argument out est toujours ref .

Notez que les valeurs initiales de i et de d sont écrasées dans la fonction
Update O. De retour dans Main O, ces variables ont reçu leur valeur
modifiée. Comparez cela à la fonction Pas sByValue () , dans laquelle les
variables ne reçoivent pas leur valeur modifiée.

Ne passez pas une uariable par référence à une fonction deux fois en
même temps

Jamais, sous aucun prétexte, vous ne devez passer deux fois par référence
la même variable dans un même appel à une fonction. La raison en est plus
difficile à expliquer qu'à montrer. Examinez la fonction Update O suivante :

montre une situation drerrêur potentielle
quand on appelle une fonction avec

des arguments passés par référence

namespâce PassByReferenceBrror

{

pub-lic class ClassI
t

I I Update - essaie de modifier la valeur
des arguments qui 1ui sont passés

public static void DisplayAndUpdate(ref int nVarl, ref
I
t

Console.ltlriteline("La valeur initiale de nVarl est "
nVarl = 10;

Console,l^Iriteline("La valeur initiale de nVar2 est tr

nfar} = 20:
'I

r

public static void Main(string[] args)
{

I I déclare deux variables et 1es initialise

int nVar2)

I rrYqrr,/,

I nvârlJ:

Chap itre 7: Mettre en marche quelques fonctions de grande classe | 5 5

int n = 1;

Console.l,/riteline("Avanr 1'appe1 à Update(ref n, ref n) :");
Console.l,lriteline('r1 = t' * n) ;

Console. i,lri"teline O ;

// invoque 1a fonction
DisplayAndUpdate(ref n, ref n);
// remarquez que 1es valeurs 1 et 2.0 n'ont pas changé

Console.I,lritelineO;
Console.I,iriteLine("Après 1'appe1 à Update(ref n, ref n):");
Console.Writeline('t1 = " * n) ;

// attend confirmation de 1'uti-lisareur
Console.WriteLine("Appuyez sur Entrée pour terminer. ..") ;

Console.ReadO;

l

Update i r"i i:ri . ref in:) est maintenant déclarée pour accepter par
référence deux arguments de type in*-, ce qui, en soi, n'est pas un pro-
blème. Le problème se produit lorsque la fonction l"lain O invoque
Update O en lui passant la même variable pour les deux arguments. Dans
la fonction, --ipiate ' t modifie rrruiar,, ce qui, par référence à n, remplace
sa valeur initiale de I par la valeur 10. En même temps, Upclate O mociifie
nVar2, alors que la valeur de n, à laquelle elle se réfère, a déjà été modi-
fiée en recevant la valeur 10.

Ce qui est mis en évidence dans I'exemple suivant :

Avant 1'appe1 à Update(ref n, ref n):
n=1

La valeur initiale de nVarl est 1

La valeur initiale de nVar2 est 10

Après 1'appe1 à Update(ref n, ref n):
n=20
Ânnrrrran arrr Fnfpf,6 nnttr torm"inarnyyuJË4 Ëu! lltL!çç yvur Lç!llrrrlç! t ! !

Ce qui se passe exactement au cours de ce petit jeu de scène entre n, nVarl,
et nVar2, est à peu près aussi évident que la danse nuptiale d'un oiseau
exotique. Ni I'auteur de la fonction Lîpdate O, ni le programmeur qui I'utilise,
n'ont prévu ce curieux résultat. Autrement dit, ne le faites pas.

Il n'y a aucun inconvénient à passer une même valeur à plusieurs arguments
différents dans un meme appel de fonction sitoutes les variables sont passées
par valeur.

df\=(D

U

| 56 Troisième partie : Programmation et objets

Pourquoi y a-t-il certains arguments qui sortent mais n'entrent pas ?

C#veille sans relâche à empôcher le programmeur de faire une bêtise. L'une des bêtises que

peutfaire un programmeur est d'oublier d'initialiser une variable avant de commencer à s'en
servir (c'est particulièrement vrai pour les variables utilisées comme compteur|. Lorsque

vous essayez d'utiliser une variable que vous avez déclarée mais pas initialisée, C# génère

une erreur.

int nVariable;
Console.l{riteline("ceci est une erreur "
nVariable = 1;
Console.l{riteline('rnais ceci n'en est pas

Mais C# ne peut pas assurer la surveillance

void SomeFunction(ref int
{

Console . l.lriteline ("ceci
]

* nVariable) ;

" * nVariable) ;

variables à I'intérieur d'une fonction :

Itnê

des

nVariable)

est-i1 une erreur ? 't + nVariable);

Comment SomeFunction () pourrait-elle savoirsinVarlable â été initialisée avantd'être
passéedansl'appeldelafonction ?Ellenelepeutpas.Aufieude cela,C#examinelavariable
dans l'appel. Par exemple, I'appel suivant génère une erreur de compilation :

int nUninitializedVariable ;

SorneFunet ion (ref nUninit ia1 izedVariabl. e) ;

Si C# avait acce pté cet appel, SomeFunction () se serait vu passer une référence à une

variable non initialisée {donc n'ayant aucun sens}. Le mot-clé out permet aux deux parties

de se mettre d'accord sur le fait qu'aucune valeur n'a encore été assignée à la variable.
L'exemple suivant se compile sans problème :

int nljninitializedVariable ;

SomeFunction (out nUninitializedVariable) ;

Au passage, il est licite de passer en tant qu'argument out une variable initialisée :

int nlnitializedVariable = 1;

SomeFunction (out nTnitializedVariable) ;

LavafeurdenlnitiallzedlariableseraécraséedansSomeFunctionO,maisiln'ya
aucun risque que soit passée une valeur dépourvue de sens.

Ghapitre 7: Mettre en marche quelques fonctions de grande classe I 57

Retourner une hleur à l'erltédîteur
Dans bien des opérations clu monde réel, des valeurs sont créées pour être
retournées ;\ celui clui les a envoyées. Par exemple, sir' i' I accepte un argument
pour lequel elle calcule la fonction trigonométrique sinus, et retourne la valeur
corresponclante. Une fonction dispose de deux moyens pour retourner une
valeur à celui qui I'a appelée. La plus courante est I'utilisation clu champ
r err.l::i, mais ily a une autre méthode qui utilise l'appel par référence.

Utilîser return ttour retourner une hleur
L'exemple suivant montre une petite fonction qui retourne la moyenne
des arguments qui lui sont passés :

public class Example

t

public static double Average(double d1, double d2)

{

double dAverage = (d1 + d2) I z:

return dAverage:
l
public static void Test 0
I

double v1 = 1.0;
double v2 = 3.0;
double dAverageValue = Average(v1, v2);
Console.I,lriteline("La moyenne de 't { vl

1"etde"+v2*t'est"
* dAverageValue);

I I eeci foncti.onne également
Console.Writeline{"La moyenne de 't * v1

I ^..::-i: ,'.',.,r
u' " * est "

, ëvcrdËctur, v2));

]

]

Remarquez tout d'abord que je déclare cette fonction comme pub-iic
Cc,ribLe rr,.,ei'ag: i,. Le dciLbie qui précède le nom signifie que la fonction
A.u'er:aBe () retourne une valeur en double précision à celui qui I'a appelée.

La fonction Àur.rage i) attribue les noms d1 et d2 auxvaleurs en double
précision qui lui sont passées. Elle crée une variable oAi e rage à laquelle
elle assigne la moyenne de di et d2, puis elle retourne au programme
appelant la valeur contenue dans dAvei'age.

I 5 8 Troisième partie : Programmation et obiets

Dans ce cas, certains diraient que "la fonction retotrrne ,-,..,,'i :1!,:,". C'est
un abus de langage, mais un raccourc'i rl'usagc courant. Dire clur:
cÀ,.'r,r-,r-r: ou t<lut autre variable est passée ou retournée r-rù 11trr,: ce soit
n'a aucun sens. Dans ce cas, c'est la valc'ttr cotttetttte cians i ",r ,,.'.,flui
est retournée au programme appelant.

L'appel à , 'i i,::r-l:r i r clans la fonction -", . senrble iclenticlue à n'importe
quel autre appel de fonction. mais la valeur de type . ,., , r€'tr-rlrnrÉ-'e par
r1-.'.:i':.i;t: i , est stockée clans la variablet I : :., , i,

Une fonction qui retourne une valeur. c()nrme ', "' ,. . ne peut pas la
retourner en rencontrant la dernière lrarenthèse fernrante de la fonction.
Si c'était le cas, comrnent ferait C# pour savoir cprelle valeur retourner ?

en utîlîsant un passage

Une fonction peut aussi retourner une ou plusieurs valeurs à la routine
qui I'appelle en utilisant les mots-clés : :: et (-,Lrr. Reqardez I'exemple
Llpdate (; décrit dans la section "Passer par référence cles argurnents d'un
type valeur", plus haut dans ce chapitre :

t t tt^)^+^ - ^^^^t^ de nrodifier 1a valeurI r uPuoLc trDùditr

I I des arguments qui 1ui sont passés

public static void Update(ref int i, out double C)

f

! rv t

d = /t) tt.

j

La fonction est déclarée vcld, comme si elle ne retournait pas de valeur
au programme appelant, mais puisque la variable I est déclarée r-ef et la
variable d est déclarée out, toute modification apportée à ces deux
variables dans -;tpoat-

e () est conservée dans le prograrnme appelant.

Quand utîlîser return et (uand utîliser out
Vous pensez peut-être : "Une fonction peut retourner une valeur au
programme appelant, ou bien utiliser pour cela c,r ou rr: i. Quancl faut-il
utiliser rer-i1rn, €t quand faut-il utiliser oui ?" Après tout, j'aurais très bien
pu écrire de la façon suivante la fonction A.;erage i, :

A9L\"(o)

Retourner une fuleur
par référence

)

Ghapitre 7: Mettre en marche quelques fonctions de grande classe I 59

public class Example

{

public static void Average(out double

{

dResults, double d1, double d2)

d2) I z;

'test ()

AverageAndProduct (out double dAverage,

out double dProduct,
double dl, double d2)

dResults = (dt +

]
nrrhf in ctatin rrnid

{

double v1 = 1.0;
double v2 = 3.0;
double dAverageValue;
Average(dAverageValue, v1, v2) ;

Console.l.lriteline("La noyenne de " * v1

*ttetdett*v2*"est"
f dAverageValue;

i

C'est le plus souvent par I'instruction retur:n que vous allez retourner
une valeur au programme appelant, plutôt que par la directive c,,1i:, bien
qu'il soit difficile de contester que ça revient au même.

Utiliser our- avec une variable d'un type valeur comme rloubie nécessite
un procédé supplémentaire que I'on appelle boxing, dont la description
sort du cadre de ce livre. Toutefois, I'efficacité ne doit pas être un facteur
clé dans votre choix.

C'est typiquement quand une fonction retourne plusieurs valeurs au

programme appelant que vous allez utiliser o'L1tr. Par exemple :

public class Example

i
-..L1.: ^ -+-+.:^,,.ridPUUr,l-U ùLdLfU VU

t

dAverage=(dl+62; l2;
dProduct = dl * d2;

]

.r$9- 1 Une fonction qui retourne à elle seule plusieurs valeurs est une créature

7X que I'on ne rencontre pas aussi souve;t qu'on pourrait le croire. Une telle

tsfl, fonction est souvent encapsulée dans un obiet de classe ou dans un
Y tableau de valeurs.

ogq{qa.

frg)

I 60 Troisième partie : Programmation et obiets

laleur
Définir une fonctîon qui ne retourne lras de

La déclaration public double A.",erage (double, double) déclare une
fonction A',,'erage O, qui retourne la moyenne de ses arguments sous forme
double.

Il y a des fonctions qui ne retournent aucune valeur au programme appe-
lant. Une fonction que nous avons utilisée plus haut comme exemple,
AverageA:dDispia-r (), affiche la moyenne des arguments qui lui sont
passés, mais ne retourne pas cette moyenne au programme appelant. Ce
n'est peut-être pas une bonne idée, mais telle n'est pas ici la question. Au
lieu de laisser en blanc le type retourné, une fonction comffle
A.rerap.eAndDi spla\.() est déclarée de la façon suivante:

publi.c void AverageAndDisplay(double, double)

Le mot-clé .,'oio, placé à I'endroit où apparaltrait normalement le type
retourné, signifie pos de Upe. Autrement dit, la déclaration void indique
que la fonction A'..erageAncDispiay O ne retourne aucune valeur au
programme appelant.

{$a/ Une fonction qui ne retourne aucune valeur est appelée une fonction sans

ft>ll gpe (uoid function). Par opposition, une fonction qui retourne une valeur
lù/i7 est appelée une fonction Upée (non-uoid function).

-z
Une fonction typée doit restituer le contrôle au programme appelant par une
instruction rerurn suivie par la valeur à retourner. Une fonction sans type
n'a aucune valeur à retourner. Elle restitue le contrôle lorsqu'elle rencontre
un retui n eui n'est suivi d'aucune valeur. Par défaut, une fonction sans type
se termine automatiquement (restitue le contrôle au programme appelant)
lorsque le contrôle atteint I'accolade fermante qui en indique la fin.

Examinez la fonction li splayRatlo () :

public class Exanple

{

^"L1.:^ ^+^+.:^ .,^idyuurrL DL4LfL vu

t

DisplayRatio (double dNumerator,

double dDenoninator)

if
t

si le dénominateur est égal à zéro,
(dDenoninator == 0.0)

Ghapitre 7 : Mettre en marche quelques fonctions de grande classe | 6l

I I affiche un message d'erreur et...
Console , WriteLine (

"Le dénoninateur d'un quotient ne peut pas être 0");
I I retourne à l"a fonction appelante
return:

l
I I ceci n'est exécuté que si dDenominator n'est pas nu1

double dRatio = dNumerator / dDenominator;

Console.lllriteline("Le quotient " * dNumerator
*"sur"*dDenominator
* " est éea1 à " * dRatio);

]

La fonctiot l-'r spla-L'Ratic I I regarde si la valeur de dLenoninator €st égale

à zéro. Si c'est le cas, elle affiche un rnessage d'erreur et restitue le contrôle
au programme appelant, sans essayer de calculer le ratio. Sans cette
précaution, la valeur du numérateur serait divisée par zéro, et produirait
une erreur du processeur, que I'on appelle aussi du nom plus imagé de
processor upchuck (Autrement dit, "le processeur dégueule". Désolé.)

Si dnenominator rl'€st pas égal àzéro,la fonction affiche le ratio. La
parenthèse fermante qui suit immédiatement I'instruction I,,,rriteLlne o
est celle qui indique la fin de la fonction Dispiar,P.atio (), donc joue le
rôle d'une instruction ret l,ir ll.

RéfÉrence à nul1 et référence à zéro

Lorsqu'elfe est créée, une variable de référence se voit assigner la valeur par défaut nu11.

Mais une référence à nu11 n'est pas la même chose qu'une référence àzéro. Par exemple,

les deux références ci-dessous sont complètement différentes :

class Example

{

int nValue;
I
I

I I crée une référence null refl
Exanple refl;

ll crée naintenant une référence à un objet de valeur nu11e

Example ref2 = new 8xample0;
ref2.nValue = 0:

t62 Troisième partie : Programmation et objets

La variable ref 1 està peu près aussivide que mon portefeuille. Elle pointe vers l'objetnull-.
c'est-à-dire vers aucun objet. En revanche, ref 2 pointe vers un obiet dont la valeur est 0.

Cette différence est beaucoup moins claire dans l'exemple suivant:

string s1;
-qtrino ë? = trlr'

C'est essentiellement la même chose: s1 pointe vers I'objet nu11, et s2 pointe vers une
chaîne vide, La différence est significative, comme fe montre la fonction suivante :

I I Test - modules dp test norrr rrti.ljser la bibliothèque TestLibrary
nanespace lest
{

using Systeu;

public class Classl
{

hrrL1.i^ ^+^+.i^ ..i-+ rt^i- l----:, rl \puurr.c srarr.c int Main(string IJ strings)
t

Console.lr'riteline("Ce prograurne uti.lise tr *
"1a fonction TestString()',) ;

Console.tlriteLine0;
Exanple exanpleObject = new Sxarnple0;

Console.llriteline("Passage d'un objet nu11 :") ;
string s - nu11;
exanpleObj ect. TestString { s) ;

Console.l.IriteLine0;

// passe naintenant à la fonction une chaine vide
Console.Hriteline("Passage d'une chaîne vide :") ;

exanpleObject . TestString (" ") ;

Console.Writeline0;

i I enfin, passage d,une véritable chaîne
Console.l,lriteline("passage d'une véritable chaîne :") ;

exanple0bject.TestString(',chaîne de test',) ;

Console. Irlriteline () ;

ll attend confirmation de l,utilisateur
ConsoLe.i,lriteline(,,Appuyez sur Entrée,pour terniner. . .,,) ;

Console. nead ()

- return 0;

t
I

Chapitre 7: Mettre en marche quetques fonctions de grande cfasse | 63

nl acc Fvamnl o

t

. public vojd TestString(string sTest)
{

// commence par vérifier si l"a chaîne est vide
if (sTest =: nu11)

i
Console.i,{riteLine ("sTest est vide") ;

reïurn:
J

I I vérif.ie si sTest pointe vers une chaîne vj-de

if (String.Conpare(sTest, "") =: 0)

{

Console.l,'lriteLine("sTest référence une chaîne vj.de") I

return ;

l
J

// puisque tout va bien, affiche 1a chaîne

Console.iljriteLine("sTest se réfère à : "' * sTest + rrIir) '

1
J

Lafonction TestStrlng O utilise la comparaison sTest :: nul-l poursavoirsiune chaîne
apourvaleurnuil.MaistestStringO doitutiliserlafonctionCompareO pourtestersi
une chaîne vide {Compare O retourne un 0 si les deux chaînes qui lui sont passées sont
égales).

Ce programme affiche les résultats suivants :

n^ *-^^*^-*^ "*r1ise 1a fonction TestStrinsovç yru6!énutrs uLrlrèE la rvllL Lfulr - -- -- -----o v

Passage d'un objet nu11 :

sÏest est vide

Passape d'une chaîne vide :

sTest référence une chaîne vide

Passage d'une véritable chaine :

.^ rÉfÀr^ À . t+an1 qfrjnslùE IEltrrtr d.. LcùL u,!rlrb

Appuyez sur Entrée pour terminer.,.

t64 Troisième partie : Programmation et objets

La question de Ma i ii () : passer des arguments
a un pr0qramme

Examinez toutes les applications console de ce livre. L'exécution com-
mence toujours par |1a,r, i r. Sa déclaration vc)Lls dit clairement de quoi il
s'agit :

public static void Main(stringIJ args)
t

I I emplacement de votre programme.

l

l'lair-' i t est une fonction statique ou une fclnctior-r de classe cle la classe
Class -. définie par I'Assistant Applications cle \risual Stuclio. ;.1-r ne
retourne aucune valeur et accepte comme arguments un tableau d'objets
de type sr r-n,1. Que sont ces chalnes ?

Pour exécuter une application console, I'utilisateur entre le nont du pro-
gramme. Après ce nom, il a la possibilité cl'ajouter des argumeltts. C'est ce
que vous voyez tout Ie temps, par exenlple avec une conlmtrncle contme
ùoi..)' ri"c nf irlrrei C: \inc,nCL,ts;.rier, Qui copie le fichier ilL.itf ,.:i -er dans le
dossier noi,dCrSSier du répertoire racine du lecteur C.

Comme vous pouvez le voir dans I'exemple ,,rl spia.,'Ar gu;f,rrl t.s suivant, le
tableau de valeurs de type st ring passé à llal n i I constitue les arguments
du programme :

/l DisplayArguments affiche 1es arguments qui sont passés

au programme

".{-^
(rra+^m 'sÈrrr5 pJ ù Lçu,

namespace DisplayArgument s

{

PsuIrL Lréùù rcùL

{

public static int Main(string[] args)
{

// compte 1e nombre dtargunents
Console.l,{riteLine("Ce programme a {0) arguments"

args . Length) ;

I I les arguments sont :

int nCount = 0;
foreach(string arg in args)
(

t65Ghapitre 7 : Mettre en marche quelques fonctions de grande classe

Console.IrJritelj.ne("L'argunent {0} est [1]",
ncount#, arg) ;

]

I I attend confirmation de 1'utilisateur
Console.lrlriteLine("Appuyez sur Entrée pour terminer' "") ;

Console.ReadO;
return 0:

l

Ce programme commence par afficher la longueur du tableau args. Cette

valeur correspond au nombre cles arguments passés à la fonction. Le

programme effectue alors une boucle sur tous le.s élérnents cle ar'Ès,

affichant successivement chacun d'entre eux Sur la console.

L'exécution de ce Programme Peut
suivants :

DisplayArgunents lc argl argZ

Ce programne a 3 argunents
L'argunent 0 est /c
L'argunent 1 est argl
Ltargument 2 est arg2

Appuyez sur Entrée pour terminer...

produire par exemple les résultats

Vous pouvez voir que le nom du programme lui-même n'apparalt pas

dans la liste des arguments (il existe aussi une fonction qui permet au

programme de trouver dynamiquement son propre nom). D'autre part'

I'option / c n'est pas traitée différemment des autres arguments' C'est le

programme lui-même qui se charge de I'analyse des arguments qui lui

sont Passés.

wLaplupartdesapplicationSconSoleautorisentl'utilisationd'optionsqui
lLrrlrf permettent de contrôler certains détails du fonctionnement du programme.

Y

Passer des arguments à l'înûte de D0S

Pour exécuter à partir de I'invite de Dos le programme

-,isp ial'^:g ln(rrs, suiVez ces étapes :

1. Cliquez sur Démarrer/Programmes/Accessoires/Invite de

commandes.

I 66 Troisième partie : Programmation et obiets

-

Figure7.2:
L'utilitaire de
recherc he
de Windows
est une aide
précieuse
p0ur
retrouver ses
f ic h iers.

-

2.

Vous devez voir apparaltre une fenêtre à fond noir contenant la
respectable antiquité C: \) , suivie d'un curseur clignotant.

Naviguez jusqu'au dossier contenant le projet DispiayArguments
en tapant au clavier \Programmes C#\DisplayArguments. (Le
dossier par défaut pour les exemples de ce programme est
Prograinnes C/É. Utilisez le vôtre si vous en avez choisi un autre)

L'invite devient c : \ C/ÉPrograms \nisplayArguments).

Si vous ne le trouvez pas, utilisez Windows pour rechercher le
programme. Dans I'Explorateur Windows, cliquez du bouton droit
sur le dossier racine C:\, et sélectionnez Rechercher comme le
montre la Figure 7.2.

Dans la bolte de dialogue qui apparaît, Entrée DisplayArguments.exe,
et cliquez sur Rechercher. Le nom du fichier apparalt en haut du volet
de droite de la fenêtre Résultats de la recherche, comme le montre la
Figure 7.3. Ignorezle fichier DisplayArguments. exe qui se trouve
dans le dossier obj. Vous aurez peut-être besoin de faire défiler
horizontalement Ie contenu de la fenêtre pour voir le chemin d'accès
complet au fichier s'il est enfoui profondément dans I'arborescence
des dossiers. C'est souvent le cas sivous stockez vos fichiers dans le
dossier Mes documents.

Ghapitre 7:Mettre en marche quelques fonctions de grande ctasse | 67

Visual Studio .NET place normalement les exécutables qu'il génère
dans un sous-dossier bir'\'l-.hug,. Mais si vous modifiez la configura-
tion, ce dossier peut tout aussi bien être bin\r:elease ou un autre.

,î;-;;, :

Fi,:hier Edrl:rm Àtfirhaqe Fs'/Êils ùutrl5 |

'' ;) $recf en:ter -jDcssierr J
Adresse IlJ FÊlultill,lÉ 1.. fi:f Èr :!È

Re(her.her

t{ Noveru ,"V

û"1 Flechercher des lrchrers ou dossrers

FÊ:fiÈfafÉr l.r: |!:lrer: :r ;: Jl::,er: r r ' -

, t't À-

-lûi:l
@
{". ,']l

lI trrç'b1,r+rqrr rtr f: rie

i-ùrlÉr tr I ii lÈ.fÈ

U
Figure 7.3 :

Le voilà !

Le nom du
dossier
apparaît à

droite du
nom du
f ichier.

-

lJ. :r,t r,:r -

3. Dans la fenêtre d'invite de commandes, tapez cd debug\bin pour
passer dans le répertoire qui contient les exécutables.

L'invite devient C : \ ClÉPr c gr ar,s'rtispla-,'Arguments \bin\,De:ug.

Windows accepte sans problème les noms de fichier ou de
répertoire contenant des espaces, mais DOS peut avoir du mal à
s'y retrouver. Si vous avez un nom de fichier ou de répertoire
contenant des espaces, vous devez I'entourer par des guillemets.
Par exemple, pour naviguer jusqu'à un fichier qui se trouve dans le
dossier Mes fichiers, i'utiliserai une commande comme celle-ci :

cd \"Mes fichi-ers"

À I'invite de commandes, tapez DisplayArguments lc argl arg2
pour exécuter le programme DisplayArguments.exe.

Le programme doit répondre en affichant les résultats montrés par
la Figure 7.4.

4.

- \tf:] rfrtra! -# [if i,. Àri]jf arls'ban ['Èt!]
',-l:1-. r1f:rl:, 'Èr<:{ t.lr,

- F\ :,1 iîfrÉrr ' ,t [::t l.r Ar]!riÈrii :,t I [Éb:]

| 68 Troisième partie : Programmation et objets

-

Figure 7.4 :

L'exécution
de Dlsplay
Argunents à

partir de

I invite du

D0S affiche
les arguments
que vous avez
passés au
programme.

- Passer des arguments partir d'une

Vous pouvez exécuter un programme comme DisplayArgrLments en
tapant son nom dans la ligne de commande d'une fenêtre de commandes.
Vous pouvez aussi I'exécuter à partir de I'interface Windows en double-
cliquant sur le nom du fichier du programme, dans une fenêtre ou dans
I'Explorateur Windows.

Comme le montre la Figure 7.5, un double clic sur le fichier
Displ-ayArguriênts exécute le programme comme si vous aviez entré son
nom sans arguments sur la ligne de commande :

Ce programme a 0 argunent
Appuyez sur Entrée pour terminer. . .

Pour terminer le programme et fermer la fenêtre, appuyez sur Entrée.

Faire glisser et déposer un ou plusieurs fichiers sur le fichier
DisplayArguments. exe exécute le programme comme si vous aviez
entré DisplayArguments noms des ftchiers sur la Iigne de commande.
(Pour faire glisser et déposer plusieurs fichiers à la fois, commencez par
les sélectionner en cliquant successivement sur chacun d'eux tout en
maintenant enfoncée Ia touche Ctrl, comme le montre la Figure 7.6 ; puis
faites glisser I'ensemble pour le déposer sur DisplayArgunrents. exe.)
Faire glisser et déposer simultanément les fichiers argl . rxt et
ar92. txt sur DisplayArguments. exe provoque I'exécution du pro-
gramme avec plusieurs arguments comme le montre la Figure 7.7.

a fenêtre

Chapitre 7: Mettre en marche quelques fonctions de grande classe 169

lr;---;
I i-r*n,i;;,*ntt

t-t
P,Fte de tra\.3i1

"&)
r-l-

Fà\t.rris iÉJEèu

!,: -

internÊt E:{plùrèr

!j'."-
DénarrÊr ,.]ullùr,l

Elpfert

|.7;\
;Êi

Fsvari: ré:.eau

_) JÊirhÉrrre

Àdrer:t iJl-[r,1

[ro55rÊr i

; Ft!fÈJÈfr:.ll
+ J trj,trÈiLÉ -'r À |

- *l I ilr]È t:t i'
. l. ltÈtl
+ I [r:,:]rl:rrlj lrl iÉii rt:
* _J ir,ar:t,rt
+ I Fr: tr.lr I tE!

_,.] Frt'tr :r'li;: ,--#

K

iJ

-

Figure 7.5 :

Dans
Windows,
vous p0uvez
exécuter un
pr0gramme
console en
double-
cliquant sur
le nom du
fichier
c0rresp0n-
dant.

-

-

Figure 7.6:

Dans
Windows,
VOUS OOUVEZ

faire olisser
et déposer un

fichier sur un
programme
consote pour
déclencher
s0n

r l:.:.|:'

Internet ErÊ,k'rer

4,'.
f,Ém3frtsr ûutloûk

Elpress

ç'' :

]i
iorbeille

À:rt:'el lirrL,r';r,-fir'r -l ri'lr

c_!l À:rnl'l. rFr ::

E [,t::Ft:i'ir]u1f |:5.i5Êr:t

<ÀtrsFl: ,{r,:rnr,t:: ,:5[r]r r::E

At,6t13 qr'trfr1ill! ilr
[,r::t]3i qr lUfi{!:!: :.rj:

execuuon.
i

-l

-

I 7 0 Troisième partie : Programmation et objets

La Figr,rre 7.7 montre
déposant des.sus les

le résultat de I'exécution de f)i
fichiers ar:gi . *.xi €t .,ri'r..- . :r,,,..

:. -.) '--, -.'; ' l- J.-. 111 : : , ' : €Il

-

Figure 7.7 :

Faire glisser
des fichiers
sur le nom
d'un
programme
produit le

même
résultat que
si vous
l'aviez
exécuté à

pa rtir de la

ligne de
commande
en lui
passant les
noms des
fichiers
correspon -

dants.

-

!

l4e5 dc,:umPrrls

,-l
s:1

Pùste dÈ trd?àil

oa'' i. '1i

Corbeille

JJ

'l- FTf.ÊdÉrlÈ

AdrË5ri I ,l i Él-r ,i

) JFe,:f,er,:her -j!ur::,rer: .,!

tj],-l::,.1 :: li ' f -r:r,::i:
Etr:.t,I: Àr!,,n,t,,i: :::t:t +: : -s i :rÉ:i ,rl!

n)l'1i= Àrln,e-ii r::[f]ll::Èr -1.: ,.r:ri.l1 rr Nr:i!" rÈ:

.âtr:Fl:,'Àrt,rr enr', r. 1r i l':rl a-,rl' ir,ri,:

t+,
l\.-.

lntÊrrr;t ExFlor?i

tk, -'

DÉmèrrer 'Sutloal
ErFrBJ5

J

ste\=(t

: ot,iEtl jl 5ÈlÈilnnr,ÉiJl

Remarquez que Windows passe les fichiers à, , s;,ia. .:i-!r1ii?rr:,, dans un
ordre quelconque.

Passer des arguments
Studîo .NET

partir de Uisual

Pour exécuter un programme à partir de Visual Studio .NET, commencez
par vous assurer que le programme est généré sans erreurs. Sélectionnez
Générer/Générer, et regardez si la fenêtre Sortie affiche cles erreurs. La
réponse satisfaisante est Génératlor. : i -' ré'rsri, 0 a^ érh ,'é, I a

été igrror"é. Si ce n'est pas ça, votre programme ne démarrera pas.

À partir cle là, I'exécution de votre prograrnme sans lui passer cl'arguments
est un jeu d'enfant. Si la génération a réussi, sélectionnez Déboguer/Démarrer
(ou appuyez sur F5), et Ie programme démarre.

a

- l tsl rlr :r,nlÊ f

Ghapitre 7: Mettre en marche quelques fonctions de grande classe l7l

Par défaut, c'est sans arguments que Visual Studio exécute un programme.
Si ce n'est pas ce que vous voulez, vous devez indiquer à Visual Studio les
arguments à utiliser :

l. Ouvrez I'Explorateur de solutions en sélectionnant Affichage/
Explorateur de solutions.

La fenêtre de I'Explorateur de solutions affiche une description de
votre solution. Une solution se compose d'un ou plusieurs projets.
Chaque projet est la description d'un programme. Par exemple, le
projet Disp-Lav,rrguments dit que Ciassi.cs est I'un des fichiers de
ce programme et que celui-ci est une application console. Un projet
contient aussi d'autres propriétés, dont les arguments à utiliser
pour exécuter le programme avec Visual Studio.

C'est au Chapitre 17 que je décris le fichier de solution.

2. Cliquez du bouton droit sur Displar',.rÊ.Linr€nr-s, et sélectionnez
Propriétes dans le menu qui apparaît, comme le montre la Figure 7.8.

Une fenêtre comme celle de la Figure 7.9 apparalt, montrant beau-
coup de propriétés du projet avec lesquelles vous pouvez jouer. S'il
vous plalt, ne le faites pas.

n!.11!j.,,j, :

EichiÉr Edition {fhchaqe Pritet €Ènéref Qébaguer qutjls FeBâtfe Help

J' __1
. .-: ,*:.i ËD r,ÉE.ur - i$

Elasst.cs
l@re

r.i:1rl lllrstErr, '1
rr!u:'!-,f !a -. ! r. i'r r j -aiLïr.U1Èrrr-::

:J

,,,1 I r,- - :.=- T:=r

i

; t) , r - :'i'r- lr.: IIalr:i:', 1Lr._il] :Ë:{:

i

:a r-: r:.r. j , :l: 1: .:!.aa:" .-

'. ,t.i - lÉ . III i: ÈL I rr- I rf p l r,tqÈ rurù(':

ar :{-r . LEùJI h; ;

: :. .a. "l .1 ..1' .'- a ri": :

1t1i rril!rlnt = tl:

i:,È:i1:lr'siIllr:1 .1r:f ill ÉEJJ j

i/d r'r u ,{r t,5Eli. :r'trfrirr'1 i I ttr rr: :

hËltTffi- iPtSujtgllit*.ilJJli]llr
+ _J FÈlËrerr:Èi

tj] A:serrl'lr Ir,f :.:ç

{l - :ss1.':::

'Li. lenettt

lÈ'leferef

Ajlrllei)

,lji,uter rrre reIerentt

Àl,rrler unË reiererrce'{tt,

[:eftrrr,:rJnrnrt t,rc]el de,lerr;rt;le

let,lluÊf)

- Erteqrst:rer f,'5F 3rAf lJf.ÈnL5-

Figure 7,8 :

Pour
accéder aux
pro priétés
d'un projet,
cliquez du

bouton droit
sur son nom.

-

Y. 1tç'g net

l:?l , lW.

3. Dans Ie volet de gauche de la fenêtre Pages de propriétés, sous Ie
dossier Propriétés de configuration, sélectionnez Débogage.

| 7 2 Troisième partie : Programmation et obiets

Dans le volet de droite, dans la
a un champ nommé Arquments

-

Figure 7,9 :

Dans le

champ
Arguments
de la ligne de
comma n0e
de la fenêtre
Pages de
propriétés,
entrez les
a rguments
du pro-
gramme.

n

rubrique Options de démarrage, il
de la ligne de commande.

4. Tapez les arguments que vous voulez passer à votre programme
quand il est lancé par Visual Studio.

Dans la Figure 7.9, ce sont les arguments /c argl ar92 qui seront
passés au programme.

5. Cliquez sur OK, puis exécutez le programme normalement en
sélectionnant Déboguer/Démarrer.

Comme le montre la Figure 7.10, Visual Studio ouvre une fenêtre
DOS avec les résultats attendus :

Ce prograrnme a 3 arguments
L'argument 0 est lc
L'argument 1 est argl
L'argument 2 est arg}
Appuyez sur Entrée pour terminer...

F_rcfief Edihon Al'l'ichàge lrû jet Ge*érer

,l- -a -- aa.+ ! . q .'

Classt,cs
I

Qébcguer gutil! Feqéh* Help

, L1Étrlrl

x

I
?f t,isFl :'Ar',: rn'er't': Te:t: :)

' Ç,:a"* :
Explorateur de soh:tions - Disp{à,,. 4 . X

-.,r -a)

fr :olrt'on 'Lr5Flni,ArqrrrnÊfrt5' l1 Frr,jel

!-0nfi,rurttiDn F.h--rj-,tr-d' ---:
Flate-forme , Fr;tr*î

'***!
GestionnèûÊderonfiE:ratim:.,. I

8.... ., .,..
tI-,i:,iÊF" ,r:i;

[]Ênr,3r r Êr l',lFç ir: rl:,r.r

[]enr,rrt Èr l-lFL

F.rrÈ lP dÈ.,,r,,!,1P

Àrlr.'Ér lÊ 'lEt'i,,t3ttÈ A:F Fil5E

À':l:,rer e Jehr,tÈqÈ A:,F.llET FÈlse

Â,:tr/Ef lÈ dEt,r!l,l,lÈ n:n û3ra,-tE Fi sÈ

À:l:rr'Èf lÊ d--b,tl.:,1È :l(,lL _iÉr rer F,l15Ê

.., a, , .l'

EtrG@EGIEE!E@/t'irlrlrrqil
FÊFerl:Ie JÈ lfd'r]rl

T,:rllr:!rj rtlt]tSet InlÈfTÈl Erfr rlrE Ttita

11.., ,,
Arguments de la ligne de commônde
Indique ler êf'lunrents de lë ligne de corrmande à appeler lcrs de l'exécution
du prograrrrnre, oisF,ûnibl-ês lorsque le mlde DÉboqage est d#ini Four le d ,,,

f tr- -l Annul?r i ,, , I tit It

Fl

Ghapitre 7:Mettre en marche quelques fonctions de grande classe | 73

-

Figure 7.10 :

Visual Studio
peut passer
des argu-
ments à une
a pplication
console.

-

ttrtils Feqétïe Help

p ôetu,1

La seule différence entre la sortie de I'exécution d'un programme à partir
de Visual Studio .NET et la sortie de I'exécution du même programme à

partir de la ligne de commancle est I'absence du nom du programme dans
I'affichage.

La fonction Writ eline ()

Vous avez peut-être remarqué que l'instructiofi i,,/rireLine O que vous avez utilisée jusqu'à

maintenant dans divers programmes n'est rien d'autre qu'un appel à une fonction, invoquée

avec ce que l'on appelle une classe Console l

Console.Writeline("ce;:i est un appel de fonction");

I,'Iriteline () est I'une des nombreuses fonctions prédéfinies offertes par l'environnement
C#. Console est une classe prédéfinie qui se réfère à fa console de l'application.

| 7 4 Troisième partie : Programmation et objets

L'argument de la fonction \r,lriteLine O que vous avez utilisée jusqu'ici dans divers
exemples est une simple chaîne. L'opérateur "+" permet aux programmeurs de combiner des
chaînes, ou de combiner une chaîne et une variable intrinsèque avant que le résultat de cette
opération soit passé à Writeline () :

string s = "Sarâh"
COnSOle,Writelin.i/'rTo -rennol1o r'* S * " et j'ai t'+ 3 + "ang.") ;

Tout ce que voit Writeline () dans cet exemple est "Je m'appelle Sarah et j'ai 3 ans."

Dans une autre forme, Writeline O offre un ensemble d'arguments plus souple :

Console.Writeline("Je n'appe11e {01 et j'ai {1} ans.",
"sarah',- 3);

lci, la chaîne "Sarah" est insérée à l'endroit où apparaît le symbole {0}. Le zéro se réfère au
premier argument qui suit la chaîne elle-même. Le nombre entier 3 est inséré à l'endroit
marqué par{1}. Cette forme est plus efficace que I'exemple précédent, car la concaténation
de chaînes n'estpas une chose aussifacile qu'ilyparaît. C'estunetâche quiprend dutemps.
mais ilfaut bien que quelqu'un f e fasse.

ll n'y aurait pas grand-chose d'autre à en dire si c'était là la seule différence. Mais cette
deuxième forme de t,vriteLine O offre également différentes possibilités de contrôle du
format de sortie. Je les décrirai au Chapitre I.

Méthodes de classe

Dans ce chapître :

Passer un objet à une fonction.

Convertir en méthode une fonction membre.

Qu'est-ce que this ?

Créer une très belle documentation.

Chapitre I

Passer un objet à une fonctîon

es fonctions décrites au Chapitre 7 sont un excellent moyen de diviser
un problème de programmation en éléments plus petits et plus

maltrisables. La possibilité de passer à une fonction et de récupérer des
valeurs entières ou en virgule flottante permet au code de I'application de
communiquer avec elle.

Quelques variables ne peuvent communiquer que les informations qu'elles
contiennent. Un programme orienté objet repose sur le regroupement
d'informations dans des objets. C'est pour cette raison que C# offre un
moyen pratique et élégant de communiquer à des fonctions des objets de
classe.

Vous pouvez passer une référence à un objet comme argument à une
fonction de la même manière qu'une variable d'un type valeur, à une
différence près : un objet est toujours passé par référence.

.a-2
I I O rroisième partie : Programmation et objets

Le petit programme suivant montre comment passer un objet à une
fonction :

// Pass0bjecr - montre comment passer un objet
ll à une fonction
rrcino Sv<tom'

nâmêsDâcê PassOhr'ect

i
nrrl^rlic r. lnss Strrdent

{

pubiic string sName;

l
nl.hlr^ ^ ^^n t'-SS1
yuurrL Lad'ùù uf,d.

t

public static void Main(string[] args)
{

Student student = new Student 0 ;

// définit 1e nom en y accédant directement
Console.ldriteLine("La première fois :") ;

student, sName = "Madeleine";
OutputName (student) ;

I I change 1e nom en utilisant une fonction
Console , l,IriteLine ("Après avoir été modifié : ") ;

SetName (student, "l{i1la") ;

OutputName(student);
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...") ;

Console.Read0;
l
// ^"+-"+ÀT^-^ affiche le nom de 1'étudi"antr I vuLPuLrrd.xrtr

public static void OutputName(Student student)
{

//affiche le nom de 1'étudiant couranr
Console.l,trriteLine ("Le non de 1'étudiant est {0} " , student. sNane) ;

l
/l SetName nrodifie le non de 1'objet étudiant
public static void SetNane(Student student, string sName)

t

student.sName = sNane;

l

l

Le programme crée un objet de la classe Studenr, Çui ne comporte rien
d'autre qu'un nom. Ici, nous aimons la simplicité chez les étudiants. Le
programme commence par définir directement le nom de l'étudiant, et le

Chapitre I : Méthodes de classe t77

passe à la fonction d'affichage Out putlJane () , qui affiche alors le nom de
tout objet de la classe Student qu'elle reçoit.

Le programme change alors le nom de l'étudiant en appelant la fonction
SetNanie O. Comme en C#, tous les objets sont passés par référence, le
changement fait à str.rclent est répercuté dans la fonction appelante.
Lorsque Main O affiche à nouveau le norn de l'étudiant, celui-ci a charrgé :

T ^ *-^-.: À-^ -ç^i ^ ,!d u!Euf,Ë!g lurD.

Le non de 1'étudiant est Madeleine

Après avoir été nodifi.é :

Le non de 1'étudi-ant est Wil1a
Appuyez sur Entrée pour terminer..

La fonction SetName () change le nom de l'objet studerrt de la classe
Srudenr, €t cette modification est reprise par le programme appelant.

classe

/ / Pass0bj ectToMetnberFunction

il

using System;

utilise des fonctions nenbres statiques
pour manipuler des champs

dans I'obiet

Défînîr des fonctîons et des néthodes d'objet
Une classe est faite pour rassembler des éléments qui représentent des
objets ou des concepts du monde réel. Par exemple, une classe Vehir:1e
peut contenir des éléments qui sont des données telles que la vitesse
maximale, le poids, la capacité de charge, et ainsi de suite. Mais un objet
de la classe Vehicle possède également des propriétés actives : la capa-
cité de démarrer, de s'arrêter, et ainsi de suite. Celles-ci sont décrites par
des fonctions qui utilisent les données des objets de cette classe. Ses

fonctions font partie de la classe Vehicle tout autant que les propriétés
de ses objets.

Défînir une fonctîon membre stati4ue d'une

Vous pourriez par exemple réécrire le programme de la section précédente
en I'améliorant un peu :

nanespace Pass0b j ectToMemberFunction

| 7 8 Troisième partie : Programmation et objets

public class Student

{

public string sliame;

/l OutputNane - affiche 1e non de 1'étudiant
public static void 0utputName(Student student)
t

I I affiche le nom de 1'étudiant courant
Console.Writeti.ne("Le nom de 1'étudiant est t0J", student.sNane);

l
// SetNanre modifie le non de 1'objet student
public static void SetName(Student student, string sName)

t

student,sNane = sNane:

l
l
-..11.: ^ ^1^-- ClasslPUUITL LrAùù

t
public static void Main(stringll args)
t

Student student È netr Student 0 ;

I I ââf.init le nom en y accédant directement
Console.l^IriteLine("La prenière foi.s :") ;

student. sName = trMâdeleine";

Student, OutputNane (student) ;

I I ehange 1e non en utilisant une fonction
Console.l,lriteline("Après avoir été nodifié :") ;

Student.SetName(student, "l.Jil1a") ;

Student . OutputName (student) ;

I I attend, confirmation de 1'utilisateur
Console.]rfriteLine("Appuyez sur Entrée pour terniner. . . ") ;

Console.Read0;
]

]
l

Ce programme ne présente qu'une différence significative avec le programme
Pass0bject de la section précédente:j'ai mis les fonctions OutputName O et
SetNanre O dans la classe Student.

Du fait de cette modification, Main t) doit référencer la classe Student
dans les appels à Setl'Jame O et à OutputName O. Ces deux fonctions sont
maintenant des membres de la classe Student, €t non de C1ass1, la
fonction dans laquelle réside l"lain O.

C'est une étape modeste mais significative. Placer OutputName O dans la
classe elle-même la rend plus réutilisable : une fonction extérieure qui aura

Ghapitre E : Méthodes de classe

besoin d'afficher l'objet trouvera OutprrtlJane i) avec d'autres fonctions
d'affichage à cet endroit, car faisant partie de la classe.

C'est également une meilleure solution cl'un point de vrre philosophique.
Clas s 1 ne doit pas avoir à se préoccuper de la rnanière d'initialiser le
nom d'un objet Stu,-leni, ni de la manière d'afficher des élérnents impor-
tants. C'est la classe Srudent qui cloit contenir ces infornrations.

En fait, ce n'est pas fla 1n () clui devrait comrnencer par initialiser le nom à
"Madeleine". EIIe devrait plutôt appeler pour cela SetNarni: i).

Depuis la classe Stucient, une fonction membre peut en invoquer une
autre sans avoir à évoquer explicitement le nom de la classe. Se ti{ame ()
peut invoquer t)utputl'larne () sans avoir besoin pour cela de référencer le
norn de la classe. Si vous omettez celui-ci, C# suppose que la fonction à
laquelle vous voulez accéder appartient à la même classe.

Définir une nét(tode

C'est par I'objet, et non par la classe, que l'on accède à un membre donnée
d'un objet. On peut donc écrire :

Student student = new Student 0 ;

student.sName = t'Madeleine"
;

C# vous permet d'invoquer de la même manière une fonction membre
non statique :

student. SetNane ("Madeleine") ;

C'est la technique que montre I'exemple suivant :

// InvokeMethod - invoque une

using Systen;
namespace InvokeMethod

{

class Student
t

fonction nembre à oarti.r de 1'obr'et

t79

U

*-f,*Êi3h l----Hi';'fI trY"Y/

æt

| | te nom de 1'étudiant décrit 1'objet student
pubLic string sFirstName;
publie string slastNane;
// SetName - net de côté le non de l'étudiant

I 8 0 Troisième partie : Programmation et ob jets

public void SetName(string sFNane, string slName)

I

sFirstNane : sFNane;

slastName : slNane:
l

// ToNameString - converti en chaîne pour affichage
I I 1'obiet student
public string toNameString0
{

string s = sFirstNane * tr rr + slastName;
return s;

)

l
public class Classl
{

public static void Main0
{

Student student = new Student 0 ;

student . SetName ("Stephen" , "Davis") ;

Console.I,.Iriteline("Le non de 1'étudiant est'r
* studenr.ToNaneStringO) ;

// attend confirniation de 1'utili"sateur
Console.\'lriteline("Appuyez sur Entrée pour terminer., .") ;

Console,Read0;
l

1
)

]

La sortie de ce programme est cette simple liqne :

Le non de 1'étudiant est Steohen Davis

En dehors d'avoir un nom beaucoup plus court, ce programme est très
semblable au programile FassOb j ectTol,lenberFunction que nous avons
vu plus haut. Cette fonction utilise des fonctions non statiques pour
manipuler un prénom et un nom.

Le programme commence par créer un nouvel objet, sti-rdent, de la classe
Student. Il invoque ensuite la fonction SetName O, qui stocke les deux
chalnes "Stephen" et "Davis" dans les membres donnée sFirstlJane et
sLastl'Iarne. Enfin, le programme appelle la fonction membre
TolJameSt rlng () , qui retourne le nom complet de student €û
concaténant les deux chaÎnes.

ChapitreS: Méthodes de classe | 8l

Pour des raisons historiques qui n'ont rien à voir avec C#, une fonction
membre non statique est communément appelée une ntéthode. J'utilise le
terme ntéthode pour une fonction membre non statique, et le terme
fonction pour toutes les autres fonctions.

Regardez à nouveau la fonction Setf,lame O qui met à jour le nom et le
prénom dans un objet de la classe Student. Quel objet modifie
Setl{arne O ? Pour voir le problème, considérez I'exemple suivant :

Student christa = nei," Student 0 ;

Student sarah = new Student () ;

christa. SetName (uChrista" , "Snith") ;

sarah. SetName ("Sarah" , "Jones") ;

Le premier appel à Setl'Jame O met à jour le nom et le prénom de I'objet
christa. Le deuxième appel met à jour I'objet sarah.

:712 Voilà pourquoi un programmeur C# dit que cette méthode opère sur
lfdll I'objet couront. Dans le premier appel, I'objet courant est cl,rista. dans le
lL-r^t\ÈZl deuxième, c'est sarah.

Pourquoi des méthodes ?

Pourquoi des méthodes ? Pourquoi de simples fonctions ne suffiraient-elles pas ? Les

méthodes jouent deux rôles différents mais importants.

La méthode SetName () masque les détails de la manière dont les noms sont stockés dans
la classe Student. Ce sont des informations dont des fonctions extérieures à Student ne

sont pas censées avoir besoin. C'est un peu comme la manière dont nous utilisons les
boutons d'un four à micro-ondes : ces boutons masguent le fonctionnement interne de

l'appareil, que nous n'avons pas besoin de connaître.

Le second rôle d'une méthode est de représenter les propriétés véritables de la classe. Un

avion peut accélérer, virer, décof ler et atterrir (entre autres choses). Une classe Al rplane
complète devrait donc comporter les méthodes Accelerate (), Bank (). Take0f f (), et
Land (), reproduisant fidèlement ces propriétés. Mettre la représentation d'une classe en

âccord avec son équivalent du monde réel permet de penser à un programme dans des

termes quisont ceux du véritable problème, plutôt qu'en un vocabulaire ar-tificiel dicté par le

langage de programmation utilisé.

| 82 Troisième partie:Programmation et obiets

Le nom complet d'une méthode

La description que j'ai faite du nom d'une méthocle comporte un problème
subtil mais important. Pour le voir, exarninez I'exemple de code suivant :

nrrhl i n cl ess Pprson

{

public void Addresso
t

Console. l^lriteline ("Hi" ; ;

l
l
nrrhl i,. r. l:ss T,etter

t

string sAddress;
//rnet de côté 1'adresse
publi.c void Address(string sNewAddress)

{

sAddress = sNevAddress;

l
l

Toute considération ultérieure sur la méthode.oclrÊsLr i I est maintenant
ambiguë. La rnéthode Adoress O de Person lt'a rien à voir avec la méthode
ACdress (l cle l.etter. Si un ami programmeur me dit d'utiliser la méthode
.,,idress (,, de quelle Address () parle-t-il ?

Le problème ne vient pas des méthodes elles-mêmes mais de ma description.
En fait, il n'y a pas de méthode Address O, mais seulement une méthode
Person. Ad.lress () et une méthode Letter. Address O. Ajouter le nom de la

classe au début du nom de la méthode indique clairement de quelle méthode
il s'agit.

Cette description est très semblable à la question des noms propres.
Dans ma famille, on m'appelle Stephen. Il n'y a pas d'autre Stephen dans
ma famille, mais il y en a deux autres là où je travaille.

Si je déjeune avec quelques collègues et que les deux autres Stephen ne sont
pas là, il est évident que le nom Sfep hen se réfère à moi. Mais de retour dans

les bureaux, si vous appelez le nom "Stephen", c'est ambigu car il peut se

référer à n'importe lequel de nous trois. Il vous faudra donc appeler "Stephen

Davis" pour éviter Ia confusion avec "Stephen Williams" ou "Stephen Leija".

Autrement dit, vous pouvez considérer Address O comme le prénom, ou
le surnom. d'une méthode.

Chapitre 8 : Méthodes de classe I 83

AP\ Le nom de la classe est un autre moyen de différencier cles nom.s cle méthode
=l -t' \ surchargés, les autres étant les noms et le nombre de ses arguments de,,1
\tt I tonctron.

Accéder
Examinez la

class Student

i
llle nom de 1'étudiant décrit 1'obiet student
nrrhl jn ctrinc .F'i-.+\1-*^.yuurrL ùL!rrré ù!t!DLL\dUlY,

nrrh'l .in clrinc ^T^a+trI^-^.yuUlaL ÈL!ilrË ùIréùL.lIdllltj'

// SetName - met de côté le non de 1'étudiant
public void SetName(string sFName, string slName)
f
t

sFirstName = sFNane;

slastName = slNane;

l
l
public class C1ass1

{

public static void Hain0
{

Student studentl = nevr Student 0 ;

studentl . SetNarne ("Joseph" , "Snith") ;

Student student2 - new Student 0 ;

student2. SetNarne("John", "Davis") ;

l
]

La fonction Main O utilise la méthode Setllame O pour mettre à jour
d'abord student 1, puis student2. Mais vous ne voyez de référence à

aucun objet de la classe Student dans Ia méthode SetlJame () elle-même.
En fait, elle ne contient aucune référence à un objet de la classe Student.
Une méthode opère sur "l'objet courant". Comment fait-elle pour savoir
quel est I'objet courant ? L'objet courant est prié de se lever.

La réponse est simple. L'objet courant est passé comme argument implicite
dans I'appel à la méthode. Par exemple :

biet courant
méthode SruCerni . Setl'lan

à l'o

studentl . SetNane ("Joseph" , "Snith") ;

| 8 4 Troisième partie : Programmation et objets

Cet appel est équivalent à:

Student.setName(student1, "Joseph", "Smith") ; I I appel équivalent
I I (mais ceci ne sera pas

I I g6n&é eorrecternent)

Je ne suis pas en train de dire que vous pouvez invoquer SetNane O de deux
manières différentes, mais simplement que les deux appels sont équivalents
d'un point de vue sémantique. L'objet qui se trouve juste à gauche de "." (le
premier argument caché) est passé à la fonction tout comme les autres
arguments.

Passer un objet implicitement est facile à avaler, mais que diriez-vous
d'une référence d'une méthode à une autre ?

public class Student

t
ntrhli^ c*riro cE'i r"ctNrmo'PUVTTL ù L! f rrË ùr r! D Llrellç t

-,.1^1.i ^ ^+-.:-^ ^T ^^+[1^-^.PUUaJL ùLtArrË ù!AùLrrdrlË,

public void SetName(string sFirstName, strlng slastNarne)

t

SetFirstName (sFirstName) ;

SetlastName (slastName) ;

]
public void SetFirstNane(string sName)

t

sFirstNane = sNane i

l
public void SetlastName(string sName)

{

slastNane = sName;

l
]

Aucun objet n'apparaît dans I'appel à SetFirstName O. L'objet courant
continue à être passé en silence d'un appel de méthode au suivant. Un
accès à n'importe quel membre depuis une méthode d'objet est censé
concerner I'objet courant.

Qu'est-ce que this .)

Contrairement à la plupart des arguments, toutefois, I'objet courant n'appa-
raÎt pas dans Ia liste des arguments de la fonction et ne se voit donc pas
assigner un nom par le programmeur. Au lieu de cela, C# assigne à cet objet
le nom this.

Ghapitre 8: Méthodes de classe | 85

#\=(d
)

this est un mot-clé, et ne doit clonc être utilisé pour rien d'autre.

On pourrait donc écrire I'exemple précédent de la façon suivante :

public class Student
t

^,,L1i^ a+r.i-^ aD"i *-+À1^*^.yswLLw o u. rrr$ sFirstNarne ;

ntrhl in ei-rinc' nT aa+1\T^n^.yss4+s r L. rrrËi È!d.ù Lllclllle ,

public void SetName(string sFirstName, string slastName)
t

ll référence expliciterûent "1'objet courant" référencés par this
this. SetFirstNane (sFirstName) ;

this . SetLastNane (slastName) ;

]
public void SetFirstName(string sName)

t

this.sFirstName = sName;

l
public void SetlastNane (string sNane)

{

this. slastName : sName;

]
]

Remarquez I'introduction explicite du mot-clé this. Ajouter this aux
références au membre n'ajoute en fait rien, car this est implicitement
supposé. Toutefois, quand Main () effectue I'appel suivant, this référence
stud ent I partout dans S erName () et dans toute autre méthode que
pourrait appeler Main O.

student1,SetName("John", "Smith") ;

Quand rhl s est-il explîcite .)

Normalement, il n'est pas nécessaire de se référer explicitement à this,
car il est implicitement compris par Ie compilateur là où il est nécessaire.
Toutefois, il y a deux cas assez courants dans lesquels this est nécessaire.
Tout d'abord, pour initialiser un membre donnée:

1l Address - définit un "cadre de base" pour une adresse aux USA

class Person

t

public string sName;

| 86 Troisième partie : Programmation et objets

yuuf rL rll L rltu I

nrrhli^ r'n'izl Tni+(o1r'i 1gyu!arL vvlu IllaL \ùL!arr6

t
L

this. sName = sName;

this . nID = nID ;

1
J

. Yh\s1\ame, r-nr ntu/

]

Les arguments de la méthode Init O sont nommés sllanc €t nIi', ce qui
est identique aux noms des membres donnée correspondants. Cette
disposition rend la fonction facile à lire, car elle permet de savoir exacte-
ment où est stocké quel argument. Le seul problème est que le nom si'i.,Lme

dans la liste des arguments rend obscur le nom du membre donnée.

L'introduction de this permet de savoir de quel -ql'Jane il s'agit : dans
Init O, Ie nom sllame se réfère à I'argument de la fonction, alors que
thi s . sNane se réfère au membre donnée.

Vous aurez également besoin de this pour mettre de côté l'objet courant
afin de I'utiliser ultérieurement ou de le faire utiliser par une autre fonction.
Regardez I'exemple suivant, R,e f e r enc i n gTh i sExp 1 i c it i'i:

/ / Rpf ercnni noThi cEynl 'i n'i t lrr - nê nr-- riogramme montre
/ I conment utiliser explicitement 1a référence à this
rrs'ino Svctpm'

namespace Ref erenc ingTh j.sExplic itly
t

public class C1ass1

{

public static int Main(string[] strings)
(
t

I lcrée un objet student
Student student = new Student () ;

student. Init("Stephen Davis", L234) ;

//inscrit 1'étudiant à un cours
Console. ItlriteLine

lttt . !^'rr\f"rnscrlptlon ûe)tepnen Davls a 510tog1e tu1"/;
student.Enro11 ("Biologie 101") ;

/laffichage des cours auxquels est inscrit 1'étudiant
Console.Iljriteline("Nouve11es caractéristiques de 1'étudiant :") ;

student. DisplayCourse () ;

// attend confirmation de 1'utilisateur
Console. Idriteline ("Appuyez sur Entrée pour terminer. . . ") ;

Console.ReadO;
return 0;

Chapitre I : Méthodes de classe | 87

// Student - notre étudiant d'université
orrblic elass Strrdent

{

lltout étudiant a un nom et un nunéro d'identification (id)
public string sName;

public int nID;
l/1e cours auquel est inscrit 1'étudiant
Courselnstance courselnstance ;

ll Init - initialise 1'objet student
public void Init(string sName, int nID)

{

this.sNane = sName;

this.nID : nID;
courselnstance = nul1;

]

/l Enro1l - inscrit 1'étudiant courant à un cours
public void Enro1l(string sCourseID)

{

courselnstance = new Courselnstance 0 ;

courselnstance. Init (this , sCourseID) ;

l
//affiche 1e nom de 1'étudiant
I I et Ie cours
nrrhl in yni r.l Di.^l ""f^'r.^^/\r----- -ùPrdluuurùs\/
{

Console. l,irj.teLine (sName) ;

courselnstance.Display () ;

l
i
// Courselnstance - associe 1'étudiant au cours
I I auquel i1 est inscrit
-..L1.r^ ^1 ^^- n^,.rselnstance
PUUTTL LIéDù VVU

{

oublic Student student;
public string sCourselD;

I I tnit - établit le lien entre l'étudiant et 1e cours
public void Init(Student student, string sCourseID)

i
this. student = student;
this. sCourseID = sCourseïD;

]

// Display - affiche f intitulé du cours
public void Display0
{

Console.l,lriteline (sCourseID) ;

l
l

tt

| 88 Troisième partie : Programmation et objets

Ce programme est très quelconque. L'objet de la classe Student peut contenir
un nom, un identificateur, et un seul type de cours universitaire (ce n'est pas

un étudiant très occupé). l,lain () crée l'étudiant, puis invoque lnit I) pour
initiali.ser I'objet de la classe Str-iCent. À ce point, la référence corjf sLrf ristance
reçoit la valeur nui 1, car l'étudiant ne s'est pas encore inscrit au cours.

La méthode Enroll O inscrit l'étudiant en initialisant courselnst,ance avec
un nouvel objet. Toutefois, la méthode Cour-qelnstance.Inrr O prend un
étudiant comme premier argument avec I'identificateur du cours comme
deuxième argument. Quel étudiant faut-il passer ? Il est évident qu'il faut
passer l'étudiant courant, celui auquel se réfère this (on peut donc dire
que Enrcli t) inscrit cet (tris) étudiant au cours Courseinstanr:e). Les
méthodes Disi-.1a-, O affichent I'étucliant et les noms des cours.

Et quand je n'ai pas this
Mélanger des fonctions de classe et des rnéthodes d'objet, c'est un peu cornme
de mélanger des cow-boys et les propriétaires de ranch. Heureusement, C#
vous donne quelque moyen de contourner les problèmes relationnels de ces
créatures. Ça me rappelle un peu la chanson d'Oklahornct!: "Oh, la fonction et
la méthode peuvent être amies..."

Pour voir le problème, regardez I'exemple de programme
Mixin gFunc t i onsAndMethod s :

// l'tixingfunctionsAndl'lethods - mélanger des fonctions de classe et
I I des méthodes d'objet peut causer des problènes
',^i-^ C,,^+^*.uùfrr6 ùy ù Lctrl,

nane space MixingFunct ionsAndMethods
It

nrrb'1 ic cl ass Strrdent

{

public string sFirstName;
public string slastNane;
// lnitstudent - initialise 1'objet student
public void InitStudent(string sFirstName, string slastName)
î
l

this. sFirstName = sFirstNane:
this. slastNane = slastName I

.I

J

I/ OutputBanner affiche f introduction
public static void OutputBanner0
{

Console.I,rIritel,ine("Regardez comme je suis nalin :");

I

Ghapitre 8:Méthodes de classe 189

I I Console.l,/riteLine(? quel objet student utilisons-nous ?);
]

public void OutputBannerAndNarre ()

{

// c'est 1a classe Student qui est supposée mais pas ça
i / 1'objet est passé à 1a méthode statique
OutputBanner () ;

ll ce n'est pas 1'objet this qui est passé mais 1'objet
i/ student courant qui est passé explicitenent
OutputNane (this) :

]

// Outputnane - affiche 1e norr de 1'étudiant
public static void Outputliane(Student student)
{

ll iei,1'objet student est référencé explicitement
Console.l.]riteLine ("Le non de 1'étudiant est {01 " ,

student . ToNameStrins ()) ;

1
t

// ToNaneString - va chercher 1e nom de 1'étudiant
n,rhl i n ctri-1g ToNameString 0
{

ll ici, le non de 1'objet courant est implicite -

// ce qui. aurait pu être écrit :

// return this.sFirstName + rt tr * thi-s.slastNane;
return sFirstName + tr n * slastNane:

]

]

public class C1ass1

t
public static void Main(string[] args)
i

Student student = new Student 0 ;

student. InitStudent("Made1eine", "Cather") ;

// affiche 1a bannière et te nom

Student. OutputBanner 0 ;

Student . OutputNane (student) ;

Console.TiritelineO;
// affi.che à nouveau 1a bannière et 1e nom

student . OutputBannerAndName i) ;

I I attend confirnation de 1'utilisateur
Console.llriteLine("Appuyez sur Entrée pour terminer... ") ;

Console. Read 0 ;

l
]

I

Commencez par le bas, avec |lain () , pour mieux voir le problème. Ce
programme commence par créer un objet StLident €t initialiser son nom.

| 90 Troisième partie : Programmation et objets

Maintenant, ce nigaud (le programme, pas l'étudiant) veut simplement
afficher le nom, précédé par un bref message et une bannière.

l,lain O commence par afficher la bannière et le message en utilisant des
fonctions de classe. Le programme invoque la fonction OutputBanner o
pour la bannière, et la fonctioû ('rf pr-rtllame) pour afficher le message et
le nom de l'étudiant. La fonction OutputBanner () affiche simplement un
message sur la console. Main () passe I'objet student comme argument à
OutputNarne O afin que celle-ci puisse afficher le nom de l'étudiant.

Ensuite, Main () utilise I'approche de Ia fonction ou de la méthode d'objet
pour afficher la bannière et le message en appelant
student . 0utputBannerÀndl,larre 1 .r .

0utp,-rtBanner AnillJarie () commence par invoquer la fonction statique
0rrtputBanner'(). La classe Sttident est supposée. Aucun objet n'est passé,
car la fonction statique n'en a pas besoin. Ensuite, OutputBannerAndl'Iame o
appelle la fonction 0utputl.Jame () . Celle-ci est également une fonction
statique mais un objet de la classe St,udent lui est passé comme argument
par Lrr r pu: Ban:.- r And I Ja:-

Un cas plus intéressant est I'appel de Tol'.larneStrlng () depuis CutoiltNane O.
Cette dernière fonction est déclarée sratlc, et par conséquent n'a pas de
this. Elle a un objet explicite de la classe Student qu'elle utilise pour réaliser
cet appel.

La fonctioo 0utpul-Banner (I voudrait peut-être pouvoir appeler aussi
ToNameString O, mais elle n'a pas d'objet de la classe Str-rdent à utiliser.
Elle n'a pas de pointeur tfiis parce que c'est une fonction statique et
qu'aucun objet ne lui a été passé explicitement.

Une fonction statique ne peut pas appeler une méthode non statique sans
lui passer explicitement un objet. Pas d'objet, pas d'appel.

0btenir de l'aide de Uîsual Studîo - la saisîe
autotnatÎ(ue

Visual Studio .NET comporte une fonction de saisie automatique extrême-
ment utile au programmeur. Lorsque vous tapez le nom d'une classe ou
d'un objet dans votre code source, Visual Studio utilise les premiers
caractères que vous tapez pour anticiper la suite et vous proposer un
choix de noms parmi lesquels se trouve celui que vous voulez saisir.

Ghapitre I : Méthodes de classe t9t

Cette fonction de saisie automatique est plus facile à décrire par un
exemple. J'utiliserai pour cela le fragment suivant du code source du
programme Mixi ngFrrn c t, i on s Andi'lethod s :

// affiche 1a bannière et 1e non

Student .OutputBanner () ;

Student . OutputName (student) ;

Console.I,Triteline0;
I I af.fiche à nouveau la bannière et 1e nom

student . OutputBannerAndName () ;

la bibliothèque
0btenir de l'aide sur les fonctîons întégrées de

standard C#

Dans le fragment de code ci-dessus, lorsque je tape Console., Visual
Studio affiche la liste des méthodes de Consol-e. Lorsque que je tape le 1,/,

Visual Studio sélectionne dans cette liste la première méthode dont le
nom commence par W, qui est i,Jrite O.Le déplacement de la sélection
d'un cran vers le bas, en utilisant la touche de curseur correspondante,
sélectionne r,n/rireLirre O. À droite de la liste, en regard de vJriteLine (),
apparalt une info-bulle qui en contient la description, comme le montre la
Figure 8.1. Cette info-bulle indique également qu'il existe dix-huit autres
versions surchargées de la fonction r,,rrriteLine O (chacune avec un
ensemble d'arguments différent, bien str).

-

Figure 8.1 :

La fonction
de saisie
automatique
de Visual
Studio est
une aide
précieuse
pour choisir
la bonne
méthode.

-

:it llrlE 851 ,-rrf

"' ù n"rd
r: :,ti:r,t i FtÉldlrrrÈ

,l tti-=,:' Q F Èf ÈrÈrr-eE,l!Jl5

C :letErr':t

O:,eLIn

e iÈli 'rl
Q'.\rit:.:

Entr.:É t Êrlr 1llÈf . . ''

r

I
r
T
I

-&

Il me reste à compléter le nom de la fonction, \ririteli ne. Dès que je tape la
parenthèse ouvrante, VisualStudio affiche une infobulle indiquant les argu-
ments que comporte la fonction, comme le montre la Figure 8.2. Remarquez

| 92 Troisième partie : Programmation et objets

que cette info-bulle commence par indiquer le numéro de la version de la
fonction parmi toutes celles qui existent, avec deux flèches qui permettent de
faire défiler ces versions pour identifier celle que vous voulez.

Schier E-ditron

14,tt,. a"

-'lr "|' !-+

Elassl.cs+
l

EfqjÊt lenérer Qeboguer q,!til: FanêLre $e{p

&*&q4 1&.-

tr _ e r,ebu,,l

lt!llr:,rn,tF:nttr'rr:Ànlt4elh:,l5., lii:1 ;l] tlr,trn,i:trn,'t[] ar't:t

Ê)rplorÀteur dE scdulfrns - t4ixin.., + Ji

$ 5,rlrrl:rr'r'll irr'tFrrr:i.,rsAr'llrElh:,15
- VixinqfunctronçAndMethods

:l{:J

-

Figure 8.2 :

La fonction
de saisie
a utomatiq ue
affiche aussi
la liste des
arguments
pour la
version de
votre choix
de la

fonction
\,,rriteline (1.

--rtC.($-:-

lsz//
-

Vous n'avez donc pas besoin de taper le nom de la fonction. Imaginez que
vous ayez tapé Writel pour identifier exactement la méthode voulue. En
voyant le nom iir:iteLine sélectionné dans la liste, il vous suffit de taper
une parenthèse ouvrante pour que Visual Studio complète automatique-
ment ce nom pour vous, après quoi, il vous restera à taper les paramètres
que vous voulez passer, et la parenthèse fermante.

Pour faire apparaltre la description des arguments de la version de
',,iriteline 0 que vous cherchez, cliquez sur I'une des flèches dans I'info-
bulle qui apparalt lorsque vous tapez la parenthèse ouvrante. Dans cette
info-bulle, la description du premier argument que vous avez à saisir
apparalt en gras, comme le montre la Figure 8.2.

Aussitôt que j'ai entré la chalne "chaÎne", et une virgule. Visual Studio met
en gras la description du prochain argument à saisir, comme le montre la
Figure 8.3.

. I jÊ I I - .'rrl ir'rs:le 'JlrtrteLirrÉ istring format, t,.3f.jnt5 ,tt,je':f[] :rl1l

U

Ghapitre I : Méthodes de classe | 93

et

:J
L
:J

Vous pouvez aussi obtenir de I'aide sur vos propres fonctions.

En continuant avec I'exemple de la section précédente, j'efface la chalne
"chalne" pour la remplacer intentionnellement par une chalne vide :

Console.'ririteLir:e i). Sur la ligne suivante, je tape "student.". Dès que
j'ai tapé le point, Visual Studio affiche la liste des membres de I'objet
strLden.i-, comme Ie montre la Figure 8.4.

Remarquez les icônes qui précèdent les noms des méthodes dans la fenêtre
d'aide : un petit rectangle qui penche vers la droite indiclue un membre
donnée ; un petit rectangle qui penche vers la gauche indique une méthode.

Qenérer QÉboguer Qutils Fe8Étre Help

& "&'& l.& -

'P - r oetu!

Erploraleur ,je ç,:lutions - l"liïin.,. + .v.

] :-clrIc'r l lr rr,lFrir'rlr:f;5Âr,Jl lBlf Êdi

.F HixrnqFun{tionf AndMethods
+ :j Ée|eferari

1l] À::enblrlrri:'::
.j! alè551 rs

;l I Cr,t:in strrnçll;r,1:i

Dès que vous tapez la virgule qui suit un argument après I'avoir saisi, Visual
Studio affiche en gras dans I'info-bulle la description du prochain argument
à saisir. Bien str, cette aide est disponible pour toutes les rnéthodes
intégrées de la bibliothèque standard C# utilisées par votre programme.

rtcnter torilùn
l--, ,,, .
' ..' + 4, 'l'-, t' '

rl-lw

flasst.cs*
I

{fFichage lrr,1e!

ii4:{,àii.t 1*:

-

Figure 8.3 :

A chaque
étape, Visual
Studio
affiche en
gras la
desc ription
du prochain
argument à

saisir.

-

0btenir de l'aîde sur rlos prolrres
néthodes

fonctions

l^ I lE 1'l - ,/,r I ' ,rfsirlË rriillÈLr.e lilrrrrl ir,fiill:, pôrdnrs obiect[] argl
:- rl,-lrl.t .._]. Irl-L:ltrr.pr.i_rr,-l].J:illtÉ I ;

t94 Troisième partie : Programmation et obiets

" .::' .

Qeboguer Qutils Fe1Êhe

,"6 "& -

,tr - v, tel:tt_t

;i I èll:rnsrrrr':[] :,;:'

EaplorùterJr desdulirn:: - lL'li{rr.,. 4 rl
)*"

â :',: | :| rr'l,lr inqF!fr :ir : n:Àr|Jl lEi:frt,,J:'

- -@HixinqFunctionsAndMethodt
i j rE lrrilLE:

1ll Â:;errl,l,'irri: ::
r_!l d;s:1,cr

arlt: -l:' :Li::- 1 1,r,1rl

4 E,tr:ij
ç ,ÈlHi::l-',riÈ
9 ,.eLï frÊ

4 ir t;t uleri
eEïl,lfir, ïrÏr;
/::Lt:ll,llriE
S li,fjtrnÈ:,1:rrr,l

e T,t5lrrr,l

Ces icônes sont faciles à reconnaltre. Celle d'un membre donnée est en
bleu clair. celle d'une méthode est en violet et précédée de trois traits
horizontaux.

Pfrlel $Énérer

7
Help

:J
*j
,:l

Figure 8.4 :

La saisle
automatique
est égale-
ment
disponible
DOUT VOS

pr0presg
^r\|'t\\vl ,a,--
fÀ,
\Èz

Dans la fenêtre, il y a des méthodes que je ne reconnais pas. Ce sont des
méthodes de base que reçoivent d'office tous les objets. Dans ce groupe de
méthocles standard. vous voyez notre propre ilutpr-itBannerAn,ilrlane (). Dès
que je tape le O, elle est mise en surbrillance, et I'info-bulle apparalt pour
en décrire les arguments, afin que je sache comment I'utiliser.

^qa/
Encore une fois, il vous suffit alors de taper une parenthèse ouvrante

I/}il pour que le nom de la méthode, préalablement mis en surbrillance dans

tSZt la liste. soit automatiquement complété.
Y

Cette aide marche aussi pour les fonctions. Lorsque j'entre le nom de
classe S:,ident suivi par un point, Visual Studio affiche la liste des
membres de SruCent. Si je tape ensuite OutputN, Visual Studio affiche
I'info-bulle contenant la liste des arguments de Outputllan.e |), comme le
montre la Figure 8.5.

n hiet Editiûn

î- 4a:,, ':.:,.. ;t,

,t-,+J

flassl.cs*
|

Ghapitre 8: Méthodes de classe | 95

',J':"Ç1 :
E) ç,liil.3lpur 'le sDlrjhçns - Mr{n,,, 4 x

]'-:r'lutrrr, l''Ï rr,lFun,:lDn:Andtiel:h'rd::'
- -@HixrngrunctronsAndMethods

a
-{-t

-

Figure 8.5 :

La fonction
de saisie
a utom atiq u e

de Visual
Studio donne
bea ucoup
d'informa-
tion, pour les
méthodes
d'o bjet
comme pour
les fonctions
de classe.

-

I

ti lii, ir,QFur rlEr,sÀrdlfethi'd: '-l ls:r !

!;il}: I1- !:'Ii::r:: : In:rS 1

I'rùrif i :.i:t ii r..,tr,:l lliitlt i-:lr1tr,.r[] aL!{;rl

5tu-lÉnt :.t-u,tlent =]iEi" Slr.lclEllr il j
slritlÉnt, Iùfi:1trf,,lÊrt ("I'lf,ÉleIi1nE". "i.ir:LÊr"l,:

ri:::'t..:- :41 .-ara.:.:, .,
qt r\ilÊf r û!rr hrlr Eër,r,È1- i '

.

::it)-lùÊrrf , f,rt prrt-14

ir,rr-rr 1 E,uu1.
:i i i,,utt,ult8ar,r,er

-à
(ur:ie a ùll'ttulea i,' t rt p rtl I ix É i il,J,l trrl :f u Jerlf

Encore plus d'aîde

La fonction de saisie automatique cle Visual Studio apporte une aide
importante en anticipant sur les membres qlre vous voulez saisir dès que
vous entrez le nom de la classe ou de l'obiet.

Visual Studio ne peut fournir qu'une aicle limitée pour les fonctions et les
classes créées par I'utilisateur. Par exemple, il ne sait pas ce que fait la
méthode Or,itpurlJame O. Heureusement, Visual Studio vous offre un
moyen détourné de dire à la fonction de saisie automatique ce que fait la
fonction, et même un peu plus.

Pour indiquer une ligne de commentaire normal, vous utilisez deux barres
obliques : / /. Mais Visual Studio comprend aussi comme un commentaire
spécial ce qui est indiqué par trois barres obliques : I I I . Un tel commentaire
de documentotion permet de donner à Visual Studio des informations supplé-
mentaires, utilisables par la fonction de saisie automatique.

t96 Troisième partie: Programmation et objets

1t$!Qa^ Pour être honnête, c'est le langage Java qui a introduit cette idée. Java

S%H\ dispose d'un programme supplémentaire capable d'extraire les commen-
=\çJ\y J taires marqués par ces trois barres obliques pour les rassembler dans unY'Ô/ fichier de documentation séparé. C# a apporté une amélioration à cette

innovation : I'aide en cours cl'édition.

Un commentaire de clocumentation petrt contenir n'importe quelle
combinaison des contmandes montrées par le Tableau 8.1.

Tableau 8.1 : Balises communes des commentaires de documentation.

Balise Signification

<pa ra m></pa ra m>

<su mma ry></summ a ry>

<returns></returns>

Description d'un argument de la fonction, affichée par I aide après la
saisie du nom de la fonction et de la parenthèse ouvrante, expliquant
ce que vous avez à saisir.

Description de la fonction elle-même, affichée en cours d'édition
lors de la saisie du nom de la fonction.

Description de la valeur retournée par la fonction.

or$lQa^4i7çq \

'Qg,

Un commentaire de documentation doit se conformer à la règle XML/HTML :

une commande commence par (c onmand) et se termine par (/ c cmrnand).
En fait, on les appelle ordinairement bolises XML, du fait de leur relation
avec XML.

Vous disposez de bien d'autres balises XML. Pour en savoir plus à leur
sujet, consultez I'aide en ligne de Visual Studio (plus officiellement connue
sous le nom de MSDN pour Visual Studio) en sélectionnant ?/lndex, et tapez
"XML" dans le champ Rechercher.

L'exemple suivant est une version commentée du programme
Mixj-ngFunctionsAndl"{ethod s :

// I'li"xi.ngFunctionsAndMethods - mélanger des fonctions de cl"asse et des
I I méthodes d'objet peut causer des problènes
using System;

namespace MixingFunctionsAndMethods

{

lll ktnnary)
I I I sinple description d'un étudiant

I 26 Troisième partie : Programmation et objets

thisStudent.dGPA = dGPA;

ll ajoute 1'objet Student au tableau
studentsli] = thisStudent;

]
I I ealcule la noyenne des étudiants du tableau
double dSun = 0.0;
for (int i = 0; i (students.Length; i++)
t

dSum *= students Ii] . dGPA;

]
rlnrrhlo dAtro = /(116/o+rr,.lanfa Tarnfh.uvuure unv6 u!ud/ ùLUUstlLD,!slrËLrl ,

/ 1 nrrtnrrt fho error-- age

Console.l{riteline0 ;

Console.Writeline("La moyenne générale des "
* students.Length
* " étudiants est " + dAvg);

l/ attend confirmation de lrutilisateur
Console.l,lriteline("Appuyez sur Entrée pour terminer, . .t') ;

Console.Read0;

]

Le programme demande à I'utilisateur le nombre d'étucliants à prendre en
compte. Il crée ensuite le tableau de références à des objets Student,
correctement dimensionné.

Le programme entre maintenant dans une boucle for initiale qui va lui
permettre de remplir le tableau. L'utilisateur se voit demander le nombre
et la moyenne des UV de chaque étudiant, I'un après I'autre. Ces données
sont utilisées pour créer un objet de Student, qui devient aussitôt le
nouvel élément du tableau.

Une fois que toutes les références à des objets de Student sont à leur place, le
programme entre dans une deuxième boucle. Dans celleci, la moyenne des LJV

de chaque étudiant est lue au moyen de I'instruction students [1] . GPA. Toutes
ces moyennes sont arrondies et additionnées, la moyenne générale en est
calculée, puis finalement affichée pour I'utilisateur.

Voici un exemple de résultats affichés par ce programme :

Entrez le nombre d'étudiants
J

Entrez le non de 1'étudiant l: Randy

Entrez sâ moyenne de points d'UV : 3.0
Entrez le nom de 1'étudiant 2: Jeff

Troisième partie : Programmation et objetst24

ôgs\
S/ /-.) \e,

Oes tableaw(d'objets
Les programmeurs ont souvent besoin de travailler avec des ensembles
d'objets définis par I'utilisateur. Par exemple, une université aura besoin
de définir une structure pour décrire la population des étudiants qui
suivent ses cours.

Une classe Str.i,lent simplifiée peut se définir ainsi :

public class Student
{

^,.L1i^ ^+-..i-^ ^I\lpuDi_r_c srrlng sr\ane;

public double dGPA; // moyenne des points d'UV

i

Cette classe ne contient rien d'autre que le nom de l'étudiant et la
moyenne des points de ses "unités de valeur" (ou U\). Je mets "unités de
valeur" entre guillemets parce que cet exemple (et tous ceux qui suivent
jusqu'à la fin du chapitre) repose sur le système universitaire américain,
dans lequel la notion de "grade" correspond très approximativement à
nos UV (GPA signifie Grade Point Average, autrement dit, dans notre
exemple, moyenne des points d'UV).

La ligne suivante déclare un tableau de num références à des objets de la
classe S' u; Êrir i

Studenl[] students = nerr/ St.udentfnu:rl;

new Student inunl ne déclare pos un tableau d'objets de la classe
Student. Cette ligne déclare un tableau de références à des objets de la
classe Student.

Jusqu'ici, chaque élément srudents l1l référence I'objet nul1. On pour-
rait aussi dire qu'aucun des éléments du tableau ne pointe vers un objet
de Student. Il faut commencer par remplir le tableau, comme ceci :

for (int i = 0; i (students,Length; i++)
t

students[i] = new Students0;

t22 Troisième partie : Programmation et objets

Entrez 1a valeur ne5 I

3 est 1a noyenne de (1 + 2 + 3 + 4 + 5) I 5

Appuyez sur Entrée pour terniner...

Le programme VariableArravAverap.e commence par demander à
I'utilisateur le nombre de valeurs dont il veut calculer la moyenne. Le
résultat est stocké dans la variable int numElenents. Dans I'exemple ci-
dessus, j'ai entré la valeur 5.

Le programme continue en définissant le tableau dArra.v avec le nombre
d'éléments spécifié. Dans ce cas, il définit un tableau à cinq éléments. Puis
le programme effectue une boucle avec le nombre d'itérations spécifié par
numElemÊnts, lisant chaque fois une nouvelle valeur entrée par I'utilisateur.

Une fois que I'utilisateur a entré les valeurs, le programme applique le
même algorithme utilisé par le programme FixedArrai'A"eL age pour
calculer la moyenne des valeurs.

Enfin, la section finale affiche le résultat du calcul, avec les valeurs qui
ont été entrées, dans une présentation agréable à lire.

U
^dËK:(dw

)\ô/

ll n'est pas toujours facile d'obtenir un affichage satisfaisant sur la
console. Examinez soigneusement chaque instruction du programme
FixedArralrArrerage, les accolades ouvrantes, les signes égale, les
signes plus, et toutes les valeurs de la séquence, et comparez le tout
avec I'affichage.

Le programme Varj-ableArrayAverage ne satisfait pas entièrement ma soif
de souplesse. Je ne veux pas avoir besoin de lui dire de combien de valeurs
je veux faire la moyenne. Je préfère entrer autant de nombres que je veux, et
demander au programme au moment que je choisis de calculer la moyenne
de ce que j'ai entré. C# offre d'autres types de conteneurs, dont certains que
je peux agrandir ou réduire à volonté. IIs sont décrits au Chapitre 16.

La propriété fength

La boucl€ f or que nous avons utilisée pour remplir le tableau dans le
programme'/ariableArrayAverage commence de la façon suivante :

/ / déclare un tableau de la tai1le correspondante
double[1 darray = new doublelnunElernents];
// renplit le tableau avec les valeurs
for (int i = 0; i (numElenênts; iff")

| 20 Troisième partie : Programmation et objets

Le

Le tableau utilisé dans I'exemple de programme FlxedArrayAverage
souffre de deux problèmes sérieux. Tout d'abord, la taille du tableau est
fixée à dix éléments. Pire encore, la valeur de ces dix éléments est directe-
ment spécifiée dans le programme.

Un programme qui pourrait lire un nombre variable de valeurs, éventuel-
lement déterminées par I'utilisateur au cours de I'exécution, serait beau-
coup plus souple. Il fonctionnerait non seulement pour les dix valeurs
spécifiées dans FixedArrayAverage, mais aussi pour n'importe quel autre
ensemble de valeurs.

La déclaration d'un tableau de longueur variable diffère légèrement de
celle d'un tableau de longueur fixe et à valeurs fixes :

double[] dArray : new double[N];

N représente le nombre d'éléments à allouer.

La nouvelle version de ce programme, VariableArrayAverage, permet à
I'utilisateur de spécifier le nombre de valeurs à entrer. Comme ce programme
conserye les valeurs entrées, non seulement il calcule la moyenne, mais il
affiche aussi les résultats dans un format agréable :

I I ',lariableArrayAverage fait 1a noyenne des valeurs
I I d'un tableau dont la taille est déterninée
I I par l'utilisateur lors de l'exécution.
I I Remplir un tableau avec des valeurs
I I pernet de les référencer aussi souvent
I I qu. t'on veut. Dans ce cas, 1e tableau
I I produit un affichage agréable,
namespace VariableArrayAverage
l
t

using Systen;
public class Classl
t

-.,L1.i^ ^+-+puorr.c sraric int Main(string[] args)
{

// commence par lire 1e nonbre de types double

II que 1'utilisateur a f intention d'entrer
Console.l,lrite("Nombre de valeurs pour 1a moyenne à calculer : ");
a+riaa .ÀIlmElements : Console.Readline0 ;È Lr frré ùrlr Ic .I\ËauuarrË \ / ,

int nunElements = tonvert.Tolnt32 (sNumElements) ;

Console.Writeline0;

tableau à longueur uarîable

Chapitre I : Méthodes de classe I 97

ll/ (lsunnary)
uublic class Student

{

| | / (orr-^orrr).

I I I t' étudiant reçoit un nom

I I I (lswnary)
oublic strins sFirstName;

/// (sumnary)

I I I non de famille de 1'étudiant
J ll 1l^.,**^-.,\I I I \/ÈUrUrtrdrj/

oublic strins slastName;

/l lnitStudent - initialise 1'objet student
I I | (<,rmmrrrr\

I I I initialise 1'objet student avant qu'i1 puisse être utilisé
lll (lsunnary)
I I I (paran name:"sFirstName")l'étudiant reçoit un nom(/param)

I I I ftaran name="sLastName")nom de fami11e de 1'étudiant(/param)
public void InitStudent(strir:g sFirstName, string sLastName)

{

this. sFirstNane : sFirstNane;
this. slastName = slastNane;

l
/ / n,.+-,,+n affi.che f introductionI M LPU Llclllls!

lll (orr^ rr.r)
lll aî.tiche une bannière avant d'afficher les nons des étudiants
I I I (lswnary)
nrrhf i n ctati n 1rôi 11 a)lltnlrtRennor ()s usrrr.ç! \ /

{

Console,l,lriteLine("Regardez comme je suis malin :") ;

// Console.IdriteLine(? quel objet student utilisons-nous ?);
]

/ / 0utnrrtBannerAndNane

lll Gunnary)
lll affiehe une bannière suivie par le non de 1'objet student courant
lll <l*r*m"rrr)
nrrh l i e voi 11 0rrtnutBannerAndNane 0
i

// c'est la classe Student qui est supposée mais pas ça
/ / I 'nhict p<t nnssé à 'l e méthode st:ti nttp

ôrrtnrrtRannpr f l '

ll ce nrest pas 1'objet this qui est passé nais 1'objet
// student courant qui est passé explicitement
OutputName(this, 5);

l

t98 Troisième partie : Programmation et obiets

// Outputname - affiche le nom

/// (summary)

I I I atf,iche sur la console le
I I | (ls,innary)

l l l haran name="student")Le non de 1'étudiant que

ilt vous voulez afficher(/Param)

de 1'étudiant

nom de 1'étudiant

Ghapitre I : Méthodes de classe

/l affiche la bannière et le nom

Student. OutputBanner 0 ;

string s = Student.0utputNanre(student, 5);
Console.I^IriteLine0;

// affiche à nouveau 1a bannière et 1e nom

student . OutputBannerAndName () ;

I I attend eonfirmation de 1'utilisateur
Console , Writeline ("Appuyez sur Entrée pour terminer ,

Console,Read 0 ;

]

Les commentaires expliquent la finalité de la fonction, à quoi sert chaque
argument, le type de donnée retournée, et la relation avec une autre fonction.

En pratique, les étapes suivantes décrivent ce qui est affiché lorsque je
saisis dans Ilain O la fonction -S:udent .0utputNanLe O :

1. Visual Studio me propose une liste de fonctions. Une fois que j'ai mis
en surbrillance celle que je veux, Outputlr'are (), Visual Studio en
affiche une courte description, extraite de 'surnnai,: ? ' /s,rmnrar_y'),

comme le montre la Figure 8.6.

199

il\,

nÊnref EE80n

i:'; ;ç.,::,.. t

tlassl,c;*
|

ffiirha,1e

;,:!? 1î.

it.l :tt't:t

Pûiet ÈenÉrer

. ".. &*&
Qébrguer Sutili Fetêtre Eeh

n&. /6
-

'tr - I Lebu'l

|
/lt"t . nlfrr :lr.nrÀr llnpffri'i -.:srl J | ôtt:lnstrrnl[]arqsi :l) |

I

-J I -'.tri,- '
rl r,tts x'-r ', .a il'--f l:

:J .ÈHixinqrun(tionrAndMethods
+ jl ÊÈiÊfEr,rt

(-| ÉtiÈnrL,t'lni ,:r

rjf ClÊr'l.cs

-

Figure 8.6 :

Avec un
pr0gramme
documenté
EN XML,
Visual Studio
est capable
de bien
mieux
décrire la

fonction
et ses
a rguments.

-

0 E,rurls

C uLF|JLEnrnÊr

,t
J

IJ

E FeiErEn,:ÈEluôls

200 Troisième partie : Programmation et objets

2. Une fois que j'ai saisi ou sélectionné Ie nom cle la fonction, Vi.sual
Studio affiche une description clu prernier paramètre, extraite dtr
champ (par an)(lpa,,;rm), ainsi clue sorr type.

3. Visual Studio répète ce processus pour le deuxiènre argunrent,
n lriden t .

Bien c1r-r'ils sclient un peu fastidieux à saisir, les comrnentaires cle

clocumentation rendent les méth<ldes beaucoup plus faciles à utiliser.

Générer une documentation XILL

Vous pouvez facilement clemancler à Visual Stuclio cl'extraire sous forme
de fichier XML tous les comnrentaires de clocumentation que vr)rrs avez
entrés.

Cette section est très technique. Si vous ne savez pas ce qu'est un fichier
XML, tout cela ne vous dira pas grancl-chose. Si vous savez comment est
fait un fichier XML, vous allez trouver cette fonction très utile.

Sélectionnez Affichage/Explorateur de solutions pour afficher I'Explorateur
de solutions. Dans I'Explorateur de solutions, cliquez clu bouton droit sur le
norl du prograrnme, et sélectionnez Propriétés. Dans le volet cle gauche de
la fenêtre Pages de propriétés, cliquez sur le dossier Prcpriétés de
configuration 1:our I'ouvrir, et sélectionnez Générer clans les pages clui
apparaissent au-dessous de ce dossier. Dans la section Sortie clu volet
de droite de la fenêtre Pages de propriétés, sélectionnez la propriété
nontmée Ficli-ier de clocumt:ntatiorr XML. Dans la cellule qui se trouve
à clroite de ce norn, entrez un nom de fichier. Comme je n'avais pas de
meilleure idée. j'ai mis xn-Loul-pu1 . xml. Clicluez sur OK pour applicluer
cette modification et fermer la fenêtre Pages de propriétés.

:$uv I
\'1

-tZX Vous pouvez aussi accéder aux propriétés clu projet en sélectionnant
It9r, Projet/Propriétés.
L-,{t
-.

,-t

Sélectionnez maintenant Générer/Régénérer tout pour être str que tout a
bien été généré correctement.

Regarclez dans le même dossier que le fichier source ul asg I . cs (le fichier
du projet est dans le même clossier). Le nouveau fichier xrnl,rrrtf,r-Lt. rrni
décrit toutes les fonctions clocurlentées par les balises XML.

^"tFJk
=Qg,

Chapitre I
Joueravec des chaînes en C#

Dans ce chapitre :

Tordre une chalne et tirer dessus - mais vous ne pouvez pas la pousser.

Analyser une chalne lue par le programme.

Mettre en forme manuellement une chalne de sortie.

Mettre en forme une chalne de sortie en utilisant la méthode ;r ring . Fo I ra: | ,, .

I{ou, de nombreuses applications, vous pouvez traiter un élément de
I type string comme n'importe quel type cle variabte intégré, tel que
int ou char. Certaines des opérations ordinairement réservées pour ces
types intrinsèques sont utilisables pour les chalnes :

int i - i; /i déclare et ini-tialise un int
string s = "abc" ; I I déclare et initialise un string

Pour d'autres aspects, un élément string est traité comme une classe
définie par I'utilisateur :

string s1 * nev String0;
string g2 = "abcd";
int nlengthOfString = s2.Length;

Alors, qu'est-ce que c'est : un type de variable ou une classe ? En fait,
St ring est une classe pour laquelle C# offre un traitement spécial. Par
exemple, le mot-clé string est synonyme du nom de classe Str-irq .

String s1 = "abcd"; // assigne une chaîne littérale à un objet String
string s2 = sl : I I assigne un objet String à une variable string

202 Troisième partie : Programmation et objets

Dans cet exemple, s-rl est déclaré en tant qu'objet de la classe)^rring
(avec un 5 tnajr-tscule), alors que s2 est cléclaré en tant que variable cle
type s trr rrg (avec un.s minuscule). Mais ces deux assignatiorls montrent
que str j rg et :i tr ing sont de même type (autrernent dit, compatibles).

.t9!I{0?r En fait, cette propriété est égalernent vraie pour les autres types de

â7^H\ variable, mais clans Lrne mesure plus limitée. Même le type int- possède sa
=(,Él\y / classe corresponclante, Ir,t,l2, douf-,ie correspond à la classe t-)oub1e, et

\Ô/ ainsi cle suite. La clifférence est que ritrirrg et String, sont réellement une
seule et même chose.

Effectuer des opérations courantes sur une chaîne

Les programmeurs C# effectuent plus d'opérations sur les chaînes que la
chirurgie esthétique sur les hollywoodiens qui ne demandent que ça. Il
n'y a gr-rère cle progrummes qui n'utilisent pas I'opératenr d'acldition sur
des ctrnlne.s :

-+*.:*- ^IT^-^ -D L L rrrË ùr\d.r*c t'Randy"
;

Console.1,lriteline(*'Son nom est 'r * sNarne);

C'est laclasse 5jt rinu qui fournit cet opérateurspécial, mais elle offre
également cl'trutre.s rnéthodes, plus clirectes, pour manipuler les chalnes.

L'unîon est îndiuîsible, ainsi sont les

De ce que vous n'avez pas forcément appris à l'école, il y a au moins une
chose c1u'il vous faut apprenclre : une fois qu'il a été créé, vous ne pouvez
pas moclifier un objet st riiig. Même si je parle de modifier une chaîne, C#
ne dispose d'aucune opération qui modifie I'objet string lui-même. Il
existe toutes sortes cl'opérations pour modifier la chalne avec Iaquelle
vous travaillez, mais c'est toujours avec un nouvel objet que la chaîne
modifiée est retournée.

Par exemple, I'opération "ll s'appelle" + "Hectc)r" ne modifie aucune de ces
deux chalnes, mais en produit une troisième : "ll s'appelle Hector". L'une
des conséquences de ce principe est que vous n'avez pas à vous inquiéter
que quelqu'un moclifie une chaîne "derrière votre dos".

chaînes

Chapitre 9 : Jouer avec des chaînes en C# 203

Voyez cet exernple simple :

I | -. ,.
^ ^I I MotifrrS+rinn - les mé+hodes fottrnies nar la claSSe

I I String ne modifient pas l'objet
I I lui-même (s.ToUpper| ne nodifie pas s,

I I mais retourne une nouvelle chaine
ll qui a été convertj.e)
'.^.i-^ C.'^+^- 'uùarrË !jùLslu,

namespace Example

i
LfdSù urdùnl

I
t

public static void Main(stringIJ args)
{

ll ctê.e un objet student
Student si = new Student0;
s1. sName = "Jenny";
I I crée maintenant un nouvel objet avec le nême nom

Student s2 = new Student 0 ;

92. sName = sl. sName;

l l "changer" le nom de 1'objet sl ne change pas

I I I'obiet 1ui-même, parce que ToUpper0 retourne
l/ une nouvelle chaîne sans modifier 1'original
s2.sNarne = s1. sName.ToUpperO ;

Console.l^Iriteline("sl - [0], s2 - {11",
s1. sNane,

s2. sName) ;

I I attend confirmation de 1'utilisateur
Console.l^IriteLine("Appuyez sur Entrée pour terminer., .") ;

Console.ReadO;
'I

)

ll Student - nous avons besoi-n d'une classe eontenant une chaîne

class Student
I(

public String sName;

]

l
]

Les objets Str-Lcl€i-rt :r, et s2 sont définis de telle manière que leur membre
donnée sfJarae pointe vers la même chalne. L'appel à la méthode
ToUpper () convertit la chalne s l. sr'lane pour la mettre entièrernent en
majuscules. Normalement, cela devrait poser un problème, car s I et s 2

pointent tous deux vers le meme objet, mais TcLIi per () ne modifie pas
sName : elle crée une nouvelle chalne er] maiuscules.

204 Troisième partie:Programmation et objers

La sortie de ce l)rogramme est fort simple :

sl'Jenny s2 - JENNY

Appuyez sur Entrée pour terminer...

19!llQp" L'invariabilité des chalnes est égalentent importante pour les constantes de

ô7^Ë[\ type s Lr i ng. Une ciraÎne conlrne "c]eci est une chalne" est une forme cle

=(çf V / constante cle type ::t r iirg. tout cornme I est une constante cle type j nt. De la
\Ô-l tnêlne matrière clrre je rre jette pas mes chemises après usage pour récluire le

volume cle ma garde-robe, un cornpilateur peut choisir de combiner tou.s les
accès à la mêrne constatrte "ceci est une c:ha1ne". Le principe cle réutilisation
d'une constartte cle type chalne permet cle récluire la taille cl'un prograrnrle,
mais il serait irnpossible si un objet de type:;rring pouvait être moclifié.

Egalité pour toutes les chaînes : la néthode
Conipar e o
De nombreuses clpérations traitent une chalne comme un ol-rjet unique.
Par exerntr-lle, la rnéthode C i,,np a r e () compare deux chalnes comme si
elles étaient cles nombres :

Si la chalrte de gauche est supérieure à la chalne de clroite, iJriilpar e ()
retourne 1.

.Si la chaîne de gauche est inférieure à la ctraÎ-re de droite, L)oni;:rr c ()
retourne -1.

t/ Si les cleux chaînes sclnt égales, Compare () retourne 0.

Réduit aux conlmentaires clui le décrivent, I'algorithme fonctionne cle la
façon suivante :

conpare(string si, string s2)

{

// effectue une boucle sur chaque caractère des chaînes, jusqu,à
ll ce qu'un caractère d'une chaîne soit pLus grand que

I I le caractère correspondanr de 1'autre chaîne
foreach caractère de 1a chaîne 1a plus courte

if (1e caractère de s1) au caractère de s2, vus comme des nombres)
return I

if (le caractère de s2 (au caractère de s1)
return - l

ll lous 1es caractères correspondent, mais si 1a chaîne s1

tl

tl

Chapitre 9 : Jouer avec des chaînes en G# 2 0 5

I I est plus longue, alors e11e est plus grande

si s1 contient encore des caractères
return 1

I I si s2 est plus longue, alors e11e est plus grande
si s2 contient encore des caractères

return - 1

I I si tous les caractères correspondênt et si les deux chaines
l l ont 1a mênre longueur, alors e11es sont "égales"
return 0

]

Ainsi, "abcd" est plus grand que "abbd", et "abcde" est plus grand que
"abcd". Vous n'aurez pas besoin tous les jours de savoir si une chaîne est
plus grande qu'une autre, mais il vous arrivera d'avoir besoin de savoir si
deux chalnes sont égales.

Conpare O retourne 0 lorsque les deux chaînes sont égales. Le programme
de test suivant utilise cette caractéristique de Compare O pour effectuer une
certaine opération quand il rencontre une ou des chalne(s) particulière(s).

Eui ldAsentence demande à I'utilisateur d'entrer des li.enes de texte.
Chaque ligne est concaténée avec la précédente pour former une phrase,
jusqu'à ce que I'utilisateur entre les mots EXIT, exit, QILII ou quit :

Srd$STa i / nuitalsentence - 1e progranrne suivant construit
La- L-|ffi tlr I r,in , t des phrases en concaténant 1es saisies

ffil| ll de l'utilisateur, jusqu'à ce que celui-ci entre

-
ll 1'un des caractères de fin -

I I ce progranne donne un exenple de la nécessité
I I de vérifier si deux ehaînes sont éga1es

using System;

namespac e BuildASentence
I
L

publi.c class C1ass1

{

public static void Main(stringiJ args)
{

Console.l{riteline("Chaque ligne que vous entrez sera"
* "ajoutée à une phrase, jusqu'à ce que vous"
* "entriez EXIT ou QUIT");

// deniande une saisie à I'utilisateur et continue à concaténer
// jusqu'à ce que 1'utilisateur entre exit ou quit
I | (comnence avec une phrase vide)
strins sSentence = t"t;

206 Troisième partie : Programmation et objets

for(;;)
t

I I Lit 1a saisie suivante
Console.Writeline("Entrez une chaîne") ;

string sLine = Console.ReadLine0;
ll sort de 1a boucle si c'est une chaîne de fin
if (IsTerminateString (sLine))

{

break;
]

// sinon, ajoute à 1a phrase 1a chaîne saisie
sSentence : String.Concat(sSentence, sline) ;

I I dit à 1'utilisateur où i-l en esr
Console.WriteLine("\nVous avez entré : {01", ssentence) ;

l
Console.l,lriteLine("\nPhrase complète :\n{01", sSentence) ;

I I attend confirnation de lrutilisateur
Console.l,lriteLine("Appuyez sur Entrée pour terminer. , . ") ;

Console.Read0;
l
// IsTerminatestring - retourne true si 1a chaîne source
ll est égale à l'une des chaînes de fin
public static bool IsTerninateString(string source)
{

string IJ sTerms = {"EXII",
ll^,.i+ll

ËÀf L

"QIJTT" ,

r qUit,, l ;

I I conpare 1a chaîne entrée à chacune
It
I I des chaînes de fin licites
foreach(string sTerm in sTerms)

{

/1 retournÊ true si 1es deux chaînes sont éga1es
if (String.Compare(source, sTerm) == 0)

{

return true;
)

l
return false;

l

Après avoir demandé à I'utilisateur de saisir la prernière ligne, le pro-
gramme créé une chalne initiale vide nommée sSentence, puis il entre
dans une boucle "infinie".

Chapitre I : Jouer avec des chaînes en G#

Les structures while (true) et f or (; ;) produisent une boucle sans fin,
c'est-à-dire aussi longtemps qu'un break ou retur:n interne n'en fait pas
sortir. Les deux boucles sont équivalentes, et dans la pratique vous
rencontrerez les deux.

BuildAsentence demande à I'utilisateur d'entrer une ligne de texte. qu'il
lit avec la méthode Readline (). Puis il vérifie si la chalne entrée est otr
non le signal convenu pour la fin, en utilisant la chalne créée localement,
TsTerminateString O. Cette fonction retourne true si sline est I'une
des chalnes convenues pour la fin, et f alse dans le cas contraire.

Par convention, le nom d'une fonction qui teste une propriété et retourne
true ou f aise doit commencer par Is. Dans notre exemple, le nom de la
fonction I sTerminateString () signifie la question : "sLine est-elle une
chalne de fin ?" Bien str, ce n'est là qu'une convention humaine. Elle ne
signifie rien pour C#.

Si sline n'est pas I'une des chalnes de fin, elle est concaténée avec la
partie de la phrase déjà saisie, au moyen de la fonction St ring . Cciic a: () .

Le programme affiche immédiatement le résultat, afin que I'utilisateur
sache où il en est.

La méthode IsTernrnateString O cléfinit un tableau de chalnes sTe:ns,
dont chaque membre est I'une des chalnes de fin. Si la chalne testée est
égale à I'une des chalnes de ce tableau, cette méthode retourne true, ce
qui conduit le programme à s'arrêter plus vite qu'un programmeur obligé
à écrire en COBOL.

Le programme doit prendre en compte "EXIT" et "exit", car Conpare o
considère par défaut ces deux chalnes comme différentes. (À la manière
dont le programme est écrit, il ne connalt que deux manières d'écrire exrr.
Une chalne telle que "Exit" ou "eXit" ne serait pas reconnue comme
chalne de fin.)

La fonction IsTerminateString O effectue une boucle pour chacune des
chalnes du tableau des chalnes de fin. Si Compare O retourne que la
chalne testée est égale à I'une des chalnes de fin du tableau, la fonction
IsTerminateString O retourn€ true. Si aucune égalité n'a été trouvée à
la fin de la boucle, la fonction IsTerminateStrine () retourne false.

:t\vl .a

jæL'itérationSuruntableauestuntrèsbonmoyendetestersiunevariable
ff-^llforl correspond à une valeur parmi plusieurs.
l-t

207

b'

4f\
=€)

208 Troisième partie : Programmation et objets

Voici un exemple de résultat du programme Build.ASentence :

taL^^..^ 1-j^-^ ^..^ ^.i^..+i^ .:, ..-^vudguc rrËrc Ad€ voUS entfez Sera ajoUtée à Une

ohrase iusou'à np attp vntts pntriez EXIT ou QUITvu qw4r

Entrez une chaîne
Progranner avec C#

Vous avez entré : Progranrner avec C/l

Entrez une chaîne

, crest amusant

Vous avez entré : Programmer avec C1É, c'est amusant

Entrez une chaîne
(plus ou uroins)

Vous avez entré ;Programner avec Cll, crest amusant (p1us ou moins)
Entrez une chaîne
EXIT

Phrrso nnmnT Àtp

Programner avec Cil, c'est amusant (p1us ou noins)
Annrrrroz crrr F'nfrÂo nnnr forminar[yHeJ v!

J'ai mis en gras ce qui a été saisi par I'utilisateur.

Uoulez-uous comparer en maiuscules 0u en
tll

mrnuscules !
La méthode Ccnpare (I utilisée par isTerrnina-r-eString O considère "EXIT"

et "exit" comme cles chalnes différentes. Mais il existe une autre version
surchargée de cette fonction qui comporte un troisième argument. Celui-ci
indique si la comparaison doit ou non faire la différence entre les majuscules
et les minuscules. L'argument Lr ue indique d'ignorer Ia différence.

Laversion suivante de IsTermirrateStringO retourne trlle si lachaîne qui
lui est passée correspond à une chalne de fin, qu'elle soit en majuscules, en
minuscules ou dans n'importe quelle combinaison des deux.

// IsÏerminatestring - retourne true si 1a chaîne source string is equal
ll est éga1e à l'une des chaines de fin
nrrhl'in cfaiin hool IsTerninateString(string sOurCe)..6\ULr

t

//donne true si on lui passe exit ou quit, sans tenir conpte
/l des najuscules et des minuscules

Chapitre I : Jouer avec des chaînes en C#

return (String.Comnare("exit", source, true) == 0) l l

(String.Compare("quit", source, true) == 0);
]

Cette versicln d€ - ::1r'i,,'ir l i.,,,, e.1r l'- .,;, i est plus sirnple que la précéclente
qui utilisait une boucle. Elle n'a pas be.soin de se préoccuper cles majuscules
et des minuscules. et elle peut utiliser une seule instruction conditionnelle,
car elle n'a nraintenant que deux possibiliteis à prenclre en compte.

Cette version de I ,:'i'r: i.,.ir;: i ç1-', r. :- i: !r n'a rnême pas besoin cl'une instruc-
tion i f. L'expression booléenne retourne clirecternent la valeur calculée.

Et sî je tleux a- '-i -l-
bW-L L

Pour tester si une chalne est égale à une valeur particulière. vous pouvez
aussi utiliser la structure :;-",,;ri-,ri , r.

51}qS. En général, on se sert de la structure s-,n 1'- r;11 r r pour comparer une
ù(ilû) variable utilisée comme compteur à un ensemble de valeurs possibles,

\U / mais cette structure fonctionne atrssi sur cles chalnes.

La version suivante cle , sT-ollilaie:,-. r irr- r..' utilise la structure s..,it.:h i)

// IsTerminateString - retourne true si 1a chaîne source
I I est éga1e à l'une des chaînes de fin
public static bool TsTerrninateString(string source)
{

switch (source)

{

case I'EXfT":

c as e ttexit
" :

^aâ^ il^ITT11||.Lqùc qurr

case t'quit":
return true;

]

return false:
]

l

Cette approche fonctionne parce que vous ne comparezici qu'un nombre
limité de chalnes. Une boucle f or O offre un moyen beaucoup plus souple
de rechercher des valeurs de type chalne. La version de Compare () qui
ignore la distinction entre majuscules et minuscules donne au programme
une plus grande souplesse.

209

ch .)utîlîser

2l 0 Troisième partie : Programmation et objets

lt ^/ / StrlngloUnarAccess

Lîre les caractères sarsis

Un programme peut lire ce qui est saisi au clavier caractère par caractère,
mais cette approche peut devenir problématique, car il faut se soucier des
fins de ligne et autres. Une approche plus pratique consiste à lire la chalne
pour examiner ensuite les caractères qu'elle contient.

L'analyse des caractères que contient une chalne est aussi un sujet que je
n'aime pas évoquer, cle crainte que les programmeurs n'abusent de cette
technique. Il arrive que les programmeurs aillent un peu trop vite à sauter
sur une chalne avant qu'elle soit entièrement saisie pour en extraire ce
qu'ils y trouvent. C'est particulièrement vrai des programmeurs f ++, câr
jusqu'à I'introduction d'une classe de chalnes, c'était la seule manière
dont ils pouvaient manipuler les chaînes.

En utilisant la structttre f r.-,r'each ou I'opérateur inder [], un programme
peut lire une chalne conlme si c'était un tableau de caractères.

5lttrS, Bien str, une chalne n'est pas simplement un tableau cle caractères. Si on
i(ilû) n" peut lire une chalne qu'un caractère à la fois, on ne peut pas l'écrire de

\ ln ./ la même manière.

L'exemple sirnple clu programme St r in gToCh a rAc c e s s montre l'utilisation
de cette technique ,

accède aux caractàres d'une chalne
coffne si 1a chaîne était un tableau

using Systen;
namespace StringToCharAccess

{
I r . I

^lpublic class Classl
t
L

^..L 1 .l ^ ^+^+-i ^puDl:.c srar:-c voj.d Main(string[] args)
t

I I lit une chaîne saisie au clavier
Console.l,lriteline("Entrez au hasard une chaîne de caraetères"

* "(attention I au hasard)");
strins sRandom = Console.Readline0 ;-"--"b

// conmence par afficher sous forne de chaîne
Console.WriteLine("Votre saisie conme chaîne :" f sRandon);
Console.I,rIriteline () ;

// affiche maintenant sous forme de suite de caractères
ConsoLe. l,Irite ("Votre saisie affichée en utilisant foreach : ") ;

foreach(char c in sRandom)
T

Ghapitre 9 : Jouer avec des chaînes en C# 2n
Console.Write(c);

]
Console.I.lritelineO; ll ternine la ligne
I I put a blank line divider
Console.l,trriteline 0 ;

I I af.f.iche naintenant sous forne de suite de caractères
Console.l'irite(rrVotre saisie affichée en utilisant for :t');
for(int i = 0; i (sRandom.Length; i++)
rt

Console. l^Irite (sRandomIi]) ;

]

Console.I,Iriteline0; i / ternine 1a ligne
// attend confirnation de 1'utilisateur
Console.!trriteLine("Appuyez sur Entrée pour terminer. ..") ;

uonsoIe. Kead U ;

)

Ce programme affiche de trois manières différentes une chalne saisie au
hasard par I'utilisateur. Il commence par I'afficher en utilisant la méthode
habituelle l,irir-el.ine (string), puis il I'affiche en utilisant la structure
f oreach pour en extraire chaque caractère I'un après I'autre, et enfin. il se
sert de I'index d'un tableau avec [] pour faire la même chose.

Ce qui donne le résultat suivant :

Entrez au hasard une chaîne de caractères (attention : au hasard)

Stephen Davis est un beau garçon

Votre saisie conme chaine : Stephen Davis est un beau garçon

Votre saisie affichée en utilisant foreach : Stephen Davj.s est un beau garçon

Votre saisie affichée en utilisant for : Stephen Davis est un beau garçon

Appuyez sur Enrrée pour terminer...

On ne se lasse pas d'une vérité.

Dans certains cas, vous ne voudrez pas avoir
ble à une extrémité ou I'autre de la chalne.

un caractère non imorima-

Un coractère non imprimoble est un caractère qui n'est pas normalement
affiché à l'écran : un espace, une nouvelle ligne, une tabulation, et quelques
autres.

2 I 2 Troisième partie : Programmation et objets

Pour épurer de ces caractères les extrémités de Ia chalne, vous pouvez
utiliser la méthode Trim O :

ll se débarrasse des espaces à chaque extrémité d'une chaîne
sRandom = sRandon.Trin0 ;

Bien que ce soit une fonction membre, Strrng. Tri n O retourne une
nouvelle chalne. La version précédente de la chalne avec les caractères
imprimables en surnombre est perdue et ne peut plus être utilisée.

Analqser une entrée numérî(ue

La fonction R eadllne |) utilisée pour lire sur la console retourne un type
string. Un programme qui attend une entrée numérique doit convertir
cette chalne. C# offre dans la classe Con-... r t I'outil de conversion dont
vous avez besoin pour cela. Cette classe comporte une méthode de
conversion du type sr-ring à tous les autres types cle variable. Ainsi, le
fragment de code suivant lit un nombre saisi au clavier, et le stocke dans
une variable de type int :

string s = Console.Readline0;
int n = Convert. Int32 (s) ;

Les autres méthodes de conversion portent des noms plus évidents :

ToDouble (). ToFloat (). et ToBoolean ().

To I nt 3 2 () se réfère à un entier signé de 32 bits (32 bits est la longueur
d'un int normal). ToInt64O correspond àun long (qui fait 64 bits).

Lorsque Corvert O rencontre un type de caractère inattendu, il peut
produire un résultat inattendu. Vous devez donc être str du type de
donnée que vous êtes en train de manier.

La fonction suivante retourne true si la chaîne qui lui est passée n'est
constituée que de chiffres. Vous pouvez appeler cette fonction avant de
convertir la chalne en un type entier. Si une chalne de caractère n'est
constituée que de chiffres, il y a des chances que ce soit un nombre licite.

Atry(Pour une variable en virgule flottante, il serait nécessaire de prévoir la

=(^Â' \ virgule, ainsi que le signe moins pour les nombres négatifs. Ne vous\r'r / ,

\?_/ laissez Pas surPrendre.

Ghapitre 9:Jouer avec des chaînes en C# 2 | 3

// IsAllDigits - retourne true si tous les caractères de la chaîne

I I sont des chiffres
public static bool IsAllDigits(string sRar^r)

t
// r.ommpneê nar se débarragser des caractères inutiles
/l à chaque extrénité ; s'iL ne reste rien,
// c'est que la chaîne nrest pas un nonbre

string s = sRaw.Trim0; i / supprime 1es espaces aux extrémités
if (s.Length == 0)

t

return false;
l
// effectue une boucle sur 1a chaine
for(int index = 0; index (s.Length; index**)
i

ll si ce nrest pas un chiffre, c'est que la chaîne

| | n'est sans doute pas un nonbre

if (Char. IsDigit (s Ij.ndex]) == false)
{

return false;
l

l
I I tous 1es caractères sont des chiffres, 1a chaîne doit être un nombre

return true:
l

La fonction IsAllDigirs O commence par supprimer tout caractère non
imprimable aux deux extrémités de la chalne. S'il ne reste rien, c'est que
la chalne est vide et ne peut pas etre un entier. Puis, la fonction passe en
boucle sur chaque caractère de la chaîne. Si I'un de ces caractères n'est
pas un chiffre, la fonction retourne f a1se, indiquant que la chalne n'est
sans doute pas un nombre. Si cette fonction retourne true, il y a les plus
grandes chances que la chaîne puisse être convertie en un type entier.

L'échantillon de code suivant lit un nombre saisi au clavier, et I'affiche sur
la console (pour simplifier I'exemple, j'ai omis I'utilisation de la fonction

. ? t]lsAllIJrsrrs().

$'
o$'ARGFf, !! t-t1 1ni-ir - 1!^--l, t- T__^1 t t rsAllDigits - démonstration de 1a méthode IsAllDigits

using Systemt

namespace Exanple

t

class Classl
{

public static int Main(string[] args)
{

La.

2 I 4 Troisième partie : Programmation et objets

I I lit une chaîne saisie au clavier
Console.Writeline("Entrez un nonbre entier") ;

string s - Console.Readline0;
// conmence par vérifier si 1a chaîne entrée peut être un nombre

if (! IsAllnigits (s))

t

Console,l^iriteline("Ce n'est pas un nombre !");
]

e1s e

{

I I convertit la chaine en un nonbre entier
int n = Int32.Parse(s);
// affiche maintenant le double du nonbre
Console.Writeline("2 * {0} = {1}", n, 2 * n);

]

// attend confirnation de 1'util"isateur
Console.Il]riteline("Appuyez sur Entrée pour terniner...") ;

uonsol.e. Kead U ;

return 0;

]

Le programme lit sur la console une ligne saisie au clavier. Si I sAl1Di gi r s ()
retourne fa1se, le programme fait des remontrances à I'utilisateur. Dans le
cas contraire, le programme convertit la chalne en nombre par I'appel
Con'rert .'fc r-nt3 2 () . Enfin, Ie programme affiche le nombre ainsi que le
double de celui-ci (pour bien montrer qu'il a effectivement converti la châîne,
comme il le dit).

Voici un exemple de fonctionnement de ce programme :

Entrez un nombre entier
iA3

Ce n'est pas un nombre !

Appuyez sur Entrée pour terminer. . .

1t9!t\JQa. Une meilleure approche pourrait être de laisser Convert essayer de

â7^Ël \ convertir n'importe quoi et de traiter les exceptions qui pourraient en

=[É,\7 / sortir. Toutefois, il y a les plus grandes chances qu'elle ne produise
\Ô/ aucune exception, mais retourne simplement des résultats incorrects

(par exemple, I quand on lui propose "lA3").

Ghapitre 9 : Jouer avec des chaînes en C# 2l 5

Traiter une suîte de chîffres

#"Ti3,\ ffi..1

Ë,

Bien souvent, un programme reçoit une suite de chiffres tapés au clavier sur
une seule ligne. En utilisant la méthode S,: ri r,g. Srl it () , vous pouvez facile.
ment diviser cette chalne en un certain nombre de soulschalnes, une pour
chacun des nornbres clont I'ensemble est constitué, et les traiter séparément.

La fonction S rr I j t i .r clivise une chalne en un tableau cle chalnes plus petites
en utilisant pour cela un délirniteur. Par exenrple, sivous demanclez à
Solit O de diviser une chalne en utilisant la virqule comrne délimiteur.
" 1,2,3" produit trois chalnes : " l" , "2" et "3".

Le programnre suivant utilise Sp,r+ ,..) pour saisir une suite de nombres à
additionner :

lI *tt Pâr(Êsên1rênnpWithSnlir - 'l it ripg Série de nOmbres

I I séparés par des virgules, les transforme en

I I nombres entiers. et en affiche 1a somne

nanespac e ParseSequencelllithSplit
t

using System;

class C1ass1

{

public static int Main(string[1 args)
{

// derrande à 1'utilisateur de saisir une série de nornbres

Console . illriteLine (

'rEntrez une série de nombres séparés par des virgules"
):

I I lit une ligne de texte
string input = Console.Readline0;
Gonsole.Writeline0;
// convertit la ligne en segnents

ll en utilisant 1a virgule ou 1'espace conme séparateur
charll cDividers = {',', ' 'J;
string [] segnrents = input, Split (cDividers) ;

/l convertit chaque segment en nonbre
int nSonme = 0:

foreach(string s in segments)

{

I I (saute tout segment vide)
if (r.T,eneth) 0)

t

ll sawe les chaînes qui ne sont pas des nombres

if (IsAllDieits (s))

{

2 I 6 Troisième partie : Programmation et objets

l/ converti.t 1a chaîne en un entier 32 bits
int num : Int32.Parse(s);
Console.I,lr j-teline ("Nouveau nonbre = {0J 'r , nun) ;

/l ajoute ce nombre à 1a sonme

nSum *= num;

]

// affiche 1a somne

Console.WriteLine("Sonne = {0}", nSun) ;

I I attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer. ..") ;

Console. Read 0 ;

return 0;

l
i / fsnllni.gits - retourne true si tous 1es caractères
I I sont des chiffres
public static bool IsAllDigits(string sRaw)

i
// comnence Dar se débarrasser des caractères inutiles
// à chaque extrémité ; s'i1 ne reste rien
// c'est que 1a chaîne n'est pas un nombre

string s = sRaw.Trim0;
if (r.Length == 0)

{

return false;
l
// effectue une boucle sur 1a chaîne
for(int index = 0; index (s.Length; index**)
{

I I si ce nrest pas un chiffre, c'est que 1a chaîne
I I n'est sans doute pas un nombre

if (Char. IsDigit (s Iindex]) == false)
{

return false;
l

]

I I tous 1es caractères sont des chiffres, c'est sans doute un nombre
rêt1trr) l-rt1ê.

l

l

Le programme Par seSequence'rn/ithSplit commence par lire une chalne
saisie au clavier. Il passe à la méthode Split O le tableau cDirriders afin
d'indiquer que la virgule et I'espace sont les caractères utilisés pour
séparer deux lrornbres dans la chalne.

Chapitre 9 : Jouer avec des chaînes en C# 2t7

Le programme effectue une itération sur chacun des "sous-tableaux"
créés par Spli: O en utilisant la structure foreach. Il ignore tous les
sous-tableaux de longueur nulle (qui résulteraient de la présence de deux
délimiteurs consécutifs). Le programme vérifie ensuite que la chalne
contient effectivement un nombre en utilisant la méthode IsAllDlgits o
Chaque nombre valide est converti en entier puis ajouté à la variable
nSun. Les nombres qui ne sont pas valides sont ignorés fi'ai choisi de ne
pas émettre de message d'erreur).

Voici un exemple d'exécution de ce programme :

Entrez une série de nombres séparés par des virgules
11 ^ 7J,
!'LJ Q' J A

Nouveau nombre = 1

Nouveau nonbre = 2

Nouveau nonbre = 3

Nouveau nonbre = 4

Sonme = 10

Appuyez sur Entrée pour terniner. . .

Le programme parcourt cette liste, acceptant comme séparateurs
virgule, I'espace ou les deux. Il ignore le a et affiche le résultat 10.

^r\C.:\\v- -a

HDansunprogrammedestinéàunusagevéritable,vousnevoudreZSanS
l[Orf doute pas ignorer une donnée incorrecte sans rien signaler à I'utilisateur.
Y

manuellement la sortie
La maltrise de la sortie d'un programme est un aspect très important de
la manipulation des chalnes. Soyons clair : la sortie d'un programme est
ce qu'en voit I'utilisateur. Quelle que soit l'élégance de sa logique interne,
I'utilisateur ne sera pas bien impressionné si la sortie est plutôt piteuse.

La classe String offre des rnoyens de mettre en forme directement pour la
sortie des données de type chaîne. Les sections suivantes décrivent les métho
des Trim (), Pad (), padRisht (), Padleft (), Subst:ing (), et concar I) .

Utiliser les méthodes Trim () et PaC ()

Vous pouvez utiliser la méthode Trim O pour supprimer les caractères
indésirables aux deux extrémités d'une chalne. Vous allez typiquement

Ia

Contrôler

2 | 8 Troisième partie : Programmation et obiets

vous en servir pour supprimer des espaces afin d'aligner correctement
les chalnes envovées à la sortie.

Les fonctions Pad sont un autre moyen d'usage courant pour mettre en
forme la sortie. Celles-ci ajoutent des caractères à I'une ou I'autre extré-
mité d'une chalne pour lui donner une longueur déterminée. Par exemple,
vous pourrez vouloir ajouter des espaces à I'extrémité clroite ou gauche
d'une chaîne pour I'aligner à droite ou gauche, ou alors ajouter des "*" ou
autres caractères pour signifier quelque chose de particulier.

Le programme A1ignoutput suivant
extraire et aligner une série de noms

ces deux fonctions pourutilise
:

'odsg9
,,1{J\,- | l*

[-T'ç'?

æ,

// Ali8n0urput justifie à gauche et aligne un ensenble
de chaînes pour enbellir la sortie du programme

nânespace Align0utput
{

,'-.i-^ Q.'a+a* 'uùrrr5 9JùLclu,

class C1ass1

{

public static int Main(string[] args)
t

strinsil nanes = ["Christa ",v Y_ +..b !J

t' Sarah" ,

"Jonathan" ,

,rsant,,

" Hildegarde "J;
// cornnence par affieher les noms coame ils se présentent
I I (tout en se souvenant de la chaîne 1a plus longue)
Console.Writeline("Les nons suivants ont des "

{ ttl^-^,,^,,.t Liff Âranfocrr).I rUrrË{JËUt ù vr! Lvu /
'

foreach(string s in nanes)

{

Console.lllriteline("Ceci est Le non '{0J' initia1", s);
I

Console . I^lriteline () ;

// nodifie maintenant 1es chaînes, de rnanière qu'e1Ies
/i justifiées à gauche et qu'elles aient toute la nême

strlngIJ sAlignedNames = TrinÂndPad(names) ;

// affiche enfin 1es chaines modifiées,
ll irstifiéps pt sl'ion6oq

soient
longueur

Console..|,trriteline("Voici 1es mêmes noms"

* "affichéS SUr 1a baSe de 1a nême lono'rorrrrr)'
foreach(string s in sAlignedNames)

Chapitre 9: Jouer avec des chaînes en C# 2 | I

Console. Writeline (

"Ceci est le non'{01'après alignement", s);
]

// attend confirnration de 1'utilisateur
Console.I,lriteline("Appuyez sur Entrée pour terminer. ..") ;

Console.Read0;
return 0;

]

// lrim.qndPad - à partir d'un tableau de chaînes, supprine
I I les espaces à chaque extrénité, puis
| / insère 1es espaces nécessaires pour les aligner
I I toutes sur la plus longue
public stâtj.c string[] trirnlndPad(string[] strings)
i

// copie l-e tableau source dans un tableau
I | rye vous pourrez manipuler
stringll stringsloAlign = new StringIstrings.Length] ;

l/ conrrence par suppriner 1es espaces inutiles à chaque

// extrémj.té de chaque non

for(int i = 0; i (stringsToAlign.Length; i++)
t

stringsÎoAlignliJ = strings[i] .Trin0 ;

]

l/ trouve naintenant 1a longueur de la chaîne 1a plus longue,
I I de façon que toutes 1es autres s'alJ.gnent sur el1e
int nMaxlength = 0;
foreach(string s in stringsToAlign)
t

if (s.Length) nMaxlength)

t

nMaxlength = s. Length;
l

i
// enfin. iustifie toutes 1es chaînes sur la base

I I de 1a longueur de 1a chaîne 1a plus longue
for(int i = 0; i (stringsToAlign.Length; i++)
{

stringsToAlign Ii] =

stringsToAiign[i] .PadRight(nMaxlength + l) ;

l
// retourne 1e résultat à 1a fonction appelante
return stringsToAlign ;

]

220 Troisième partie : Programmation et objets

Al ignOutp rt définit un tableau de noms de longueur et d'alignement
inégaux (on pourrait tout aussi facilement écrire un programme pour lire
ces noms sur la console ou dans un fichier). La fonction Main O commence
par afficher les noms tels qu'ils sont, puis les aligne en utilisant la méthode
TrinAndPao O avant d'afficher à nouveau le résultat sous forme de chalnes
de longueur égale avec les noms alignés à gauche :

Les nons suivânts ont des longueurs différentes
Ceci est 1e non 'Christa ' initial
Ceci est 1e nom ' Sarah' initial
teci- est 1e nom 'Jonathan' initial
Ceci est le nom 'Sam' initial
Ceci est le nom ' Hildesarde ' i.nitial

Voici les nênes noms affichés sur la base de 1a nême longueur
Ceci est le nom 'Christa ' après alignement
Ceci est le nom 'Sarah ' après alignement
Ceci est 1e nom 'Jonathan ' après alignement
Ceci est 1e nom 'Sam ' après alignement
Ceci est le nom 'Hildegarde ' après alignement

La méthode TrirnAndPad O commence par faire une copie du tableau de
chalnes reçu. En général, une fonction qui opère sur un tableau doit
retourner un nouveau tableau modifié plutôt que de modifier le tableau
qui lui est passé. C'est un peu comme quand j'emprunte le pickup de mon
beau-frère : il s'attend à le voir revenir dans l'état où il me I'a prêté.

TrlmAndPad O commence par effectuer une itération sur les éléments du
tableau, appelant Trin () sur chaque élément pour en supprimer les carac-
tères inutiles à chaque extrémité. Puis la fonction effectue à nouveau une
itération sur les éléments du tableau pour en trouver le membre le plus
long. Elle effectue enfin une dernière itération, appelant PadRight () pour
ajouter les espaces nécessaires à chaque élément, afin qu'ils aient tous la
longueur du plus long.

PadRi ght (10) ajoute des espaces à I'extrémité droite d'une chaîne jus-
qu'à lui donner une longueur de 10 caractères. Par exemple, elle ajoute
quatre espaces à I'extrémité droite d'une chaîne de six caractères.

TrimAndPad O retourne le tableau des chalnes allégées de leurs caractè-
res non imprimables à droite et à gauche par Trim O , et mis à la bonne
longueur, du bot"t côté, par PadRight O. Main 0 effectue une itération sur
cette liste pour afficher I'une après I'autre toutes les chaînes.

Recoller ce que le
la concaténation

Chapitre 9 : Jouer avec des chaînes en G# 22 |

a séparé : utiliserlogiciel

,,"cÈtla
L*- I].Ë

æ,

Vous serez souvent confronté à la nécessité de diviser une chalne en plusieurs
morceaux, ou d'insérer une chalne au milieu d'une autre. Le remplacement
d'un caractère par un autre est très facile à faire avec la méthode Replare O :

cf rino o = ttI'\anoêr Rpnttin<fl'ùL!rrlË ù vqrlbe

a.Replace(s, ",'l')

Dans cet exemple, la chalne est convertie en "DangerlRequins

Remplacer toutes les apparitions d'un caractère par un autre (dans ce
cas, I'espace par un point d'exclamation) est particulièrement utile pour
générer une chaîne contenant la virgule comme séparateur afin de la
diviser ultérieurement. Toutefois, le cas le plus courant et le plus difficile
est I'opération qui consiste à diviser une chalne en plusieurs sous-ensem-
bles, à les manipuler séparément, puis à les recombiner pour former à
nouveau une seule chalne modifiée.

Par exemple, la fonction Rerno.reSpecialChars O supprime toutes les
apparitions d'un certain nombre de caractères spéciaux dans une chalne
donnée. Le programme Remove\^u'hiteSpace ci-dessous utilise cette fonc-
tion pour supprimer les caractères non imprimables (espace, tabulations
et caractères de nouvelle ligne) dans une chaîne :

// RenoveWhiteSpace - définit une fonction RenoveSpecial0hars0
I I qui peut supprimer un caractère quelconque d'un
I I eertain ensenble drune chaîne donnée. Utilisez
I I cette fonction pour supprimer 1es caractères
ll blancs dans une chaîne utilisée comne exenpLe.
nanespace RemoveWhiteSpace

using System;

public class C1ass1

i
nrrhlin cfafi6 int Main(strins['l strinss)yuurrL o,o,ic i.nt Main(stringIJ strings]
t

ll aenntt 1es caractères blancs
char[] c!ûhiteSpace = {' ', '\n', '\t'};
// cornmence par une chaîne contenant des caractères blancs
string s = " ceci est une\nchaîne'*;
ionroi..lfriteline("chaîne initiale :" * s);

222 Troisième partie : Programmation et objets

I I affiche 1a chaîne sans les caractères blancs
Console.WriteLine("après :" I

RemoveSpeci"al0hars (s, cWhiteSpace)) ;

/ I attend confirmation de 1'utilisateur
Console,WriteLine("Appuyez sur Entrée pour terminer. ..") ;

Console.Read0;
return 0;

l
// RemovpSnpcialChnrs - srrnnlimp dp 1a chaîne toute
I I occurrence du caractère spécifié
nrhl jn cfefi n ctri.lg RemoveSpecialChars (string slnput,

char [] cTargets)
{

string s0utput = slnput;
for(;;)
{

// trouve f index du caractère, sort de la boucle
I I s'iI n'en reste plus
int n0ffset : sOutput . IndexOf (cTargets) ;

if (nOffset =: -1)

t

break;
]

// divise la chaîne en la partie qui précède

I I Ie caractère et la partie qui 1e suit
qtr.i no cRpforo : c0rrtnrrt Srrhctrjnn /0 nôf f ca+') .

ç ùvuLyuL.UuUDLrIrrÈi\v, lMrDcL/t

-+-i^- ^^r+^- = c011tn11t Srrhctrino (nflf f <pt * I) .
bLrlilË snl LËI ùvuLyuL, JuuùLlr116\r.v!rrLL ' !)

'

I I rêunit maintenant 1es deux sous-chaînes et le
// caractère manquant entre 1es deux

s0utput = String.Concat(sBefore, sAfter) ;

l
rêt11rn côrrinttt,

l

]

C'est la fonctior RemoveSpecialChars O qui constitue le cæur de ce
programme. Elle retourne une chalne qui est la chalne entrée, s Input, mais
dont tous les caractères contenus dans le tableau cTargets ont été suppri-
més. Pour mieux comprendre cette fonction, imaginez que la chalne était
"ab,cd,e", et que le tableau de caractères spéciaux à supprimer contenait
simplement le caractère','.

La fonctioû Remor,,eSpecialChars O entre dans une boucle dont elle ne
sort qu'une fois que toutes les virgules ont été supprimées. La fonction
Ind ex0f Any () retourne I'index du tableau pour la première virgule qu'elle
peut trouver. Si elle retourne -1, c'est qu'aucune virgule n'a été trouvée.

Chapitre I : Jouer avec des chaînes en G# 223

À sa première invocation, inclexLlfArr.,, () retourne un 2 ('a'est {}, 'ir' est 1,

et ',' est 2). Les deux fonctions suivantes décomposent la chalne err

morceaux à I'endroit donné par I'index. Subs-ti i;:g i.,-t , 2 t crée une sous-
chaîne composée de deux caractères, et commençant à I'index (i : 'ab". Le
deuxième appel à Subst r ing i3) crée une chalne commençant à I'irrder 3

et allant jusqu'à la fin de la chalne initiale: "cd,e" (c'est le "* 1" qui fait
passer après la première virgule). C'est la fonction ',r-,r,r--,-.,-,

'
Çiti recolle

les deux sous-chaînes pour créer "abccl,e".

Le contrôle repasse en haut de la boucle. L'itération suivante trouve la
virgule à I'index 4.La chalne concaténée est "abcde'. Comme il ne reste
plus de virgule, I'index retourné par la dernière itération est -1.

Le programme Femo-,,ei,ihir,eSpar Ê affiche une cltalne cclntett;tttt plusieurs
types de caractères non imprimables. Il r-rtilise ensuite la fonc:ticlrr
F.emo.,ÊSp-.cia iChars () pour enlever ces caractères non itnprinialtles.
La sortie de ce programme se présente de la façon suivante :

chaîne initiale : ceci est une

chaîne
après : ceciestunechaîne
Annrtrroz crrr Fntréo nnrrr tormi ner

ll,lettre Splrt O dans le lrrogramme de
concaténation

Le programme F.er,c-".e1,;'hitespacr€ donne un exemple d'utilisation cles

méthodes Concat O et IndexOf (), mais il n'emprunte pas lavoie laplus
efficace. Comme d'habitude, un bref examen révèle une solution lrlus
efficace qui utilise notre vieil ami *qp1ir, i I r

tl ^/ i KenoveSpeclalunars

*..L1.:^ ^+^+)^ ^+-)puDlr_c srarj-c srrlng

{

- supprine de 1a ehaîne toute occurrence
du caractère spécifié

RenoveSpecialChars (string slnput,
cherfl r.Taropts)

// diviser 1a chaîne entrée en uti.lisant les caractères
l/ cible coûme délimiteurs
string li sSubStrings = slnput. Split (clargets) ;

l/ s0utput contiendra 1es inforinations finales de sortie
<l-rino <0rf ntrt = lllr'

// effectue une boucle sur 1es sous-chaînes résultant de la division

22 t, Troisième partie : Programmation et objets

foreach(string subString in sSubStrings)
{

sOutput = String.Concat(s0utput, subString) ;

]

return sOutput;
l

Cette version utilise la fonction Split () pour diviser la chalne entrée en
un ensemble de sous-chalnes sur la base des caractères de séparation.
Ceux-ci sont supprimés au passage. Ils ne font pas partie des sous-chalnes
créées.

La boucle foreacli de la deuxième partie du programme recolle les
différentes sous-chalnes. La sortie du programme est la même.

llvlaîtriser String. Format o
La classe String offre aussi la méthode Format O pour mettre en forrne la
sortie, en particulier la sortie des nombres. Dans sa forme la plus simple,
Forrnat O permet d'insérer une chalne, une variable numérique ou b<>cl-

léenne dans une chalne de contrôle. Par exemple, examinez I'appel suivant :

String.Format("{0} fois {l} éga1e 12}" , 2, 3, 2*3);

On appelle chaîne de contrô1e le premier argument de !'ormat O. Les i :i r que
vous voyez dans cette chaîne indiquent que le énièrne argument suivant la
chalne de contrôle doit être inséré à ce point. Zéro correspond au premier
argument (dans ce cas, 2), un se réfère au suivant (3), et ainsi de suite.

Il en résulte la chalne :

"2 fois 3 éga1e 6"

Sauf indication contraire, Format () utilise un format de sortie par défaut
pour chaque type d'argument. Format O permet de modifier le format de
sortie en mettant des modificateurs aux emplacements voulus. Le Ta-
bleau 9.1 donne une liste de certains de ces contrôles. Par exemple,
| 0 : E6 I dit : "Afficher les nombres en notation scientifique, en utilisant six
caractères pour la mantisse."

Ghapitre 9:Jouer avec des chaînes en G# 225

Tableau 9.1 :Gontrôles de mise en forme utilisant String.Format O.

Contrôle Exemple Résultat Notes

C - monnaie {0:C} avec 123,456 123,45 F Le symbole monétaire dépend du

paramétrage de localisation, de même
que I'usage de la virgule ou du point

comme séparateur de la paftie

décimale.

{0:C} avec -123,456 (123,45 F)

D - décimal {0:D5} avec 123 00123 Entiers seulement.

E - exponentiel {0:E) avec 123,45 1,2345E+02 Oue l'on appelle aussi "notation

scientifique".

F - fixe {0:F2} avec 123,4567 123,45 Le nombre qui suit le F indique le nombre

de chiffres après la virgule.

N - nombre {0:N} 123456,789 123 456,19 Ajoute le séparateur de milliers (dépend

du paramètre de localisation) et arrondit
au centième le plus proche.

{0:N1} 123456.789 123 456,8 Contrôle le nombre de chiffres après la

virgule.

{0:N0} 123456.789 123 457 ldem.

X - hexadécimal {0:X} OxFF 0xFF est égal à 255.

{0:0...} {0:000.00} 12,3 012,30 Met un 0 s'il n'y a pas de chiffre.

{0:#...} {0:###.##}12,3 12,3 lmpose un espace blanc si le nombre

n'occupe pas I'espace spécifié. Aucun
autre champ ne peut enquêter sur

l'espace défini par les trois chiffres
avant la virgule, et les deux après
(permet de maintenir l'alignement autour
de la virgule).

{0:##n.0#} 0 0,0 Un signe # impose un espace, et un 0

impose l'affichage d'un chiffre, même si

celui-ci est 0.

{0:# or 0%} {0:#00.#%l ,1234 12,3% Le % affiche le nombre sous forme de

pourcentage (multiplie par 100 et ajoute

le signe %).

{0:#00.#%]10234 02,3o/o

226 Troisième partie : Programmation et objets

Ces contrôles de formats peuvent paraltre un peu déconcertants (et je n'ai
même pas parlé des contrôles détaillés de date et de format monétaire).
Pour vous aider à apprivoiser ces options, le programme suivant,
OutputFormatCcirtrcls, vous permet d'entrer un nombre en virgule flot-
tante suivi par une séquence de codes de contrôle. Le programme affiche
alors le nombre en utilisant I'instruction Fornar O avec la séquence de
contrôle de format spécifiée :

1I a/ / {Jlrtn11th'ôrm,atn^-+-^1 ^ - ^^er^+ à 1'UtiliSateUr de redéfinir 1e fornatt t vuLyuLrv!llraLvvrlL!vrù yçrnrçL

I I des nonbres saisis en utilisant à l'exécution
I I divers codes de contrôle de format
nanespace OutputFornatControls
t

using System;

public class C1ass1

{

public static int Main(stringIJ args)
{

I I lit les nombres saisis jusqu'à ce que

/l 1'utilisateur entre une liene blanche au lieu
// d'un nombre
1^r | . ' Irv! \ r , /

t

// commence par lire un noûbre,
I I et se termine lorsque 1'utilisateur n'entre rien
I I qu'une ligne blanche
Console.lilriteline("Entrez un nombre de type double");
string sNumber - Console.Readline0 ;

if (sNumber.Length : 0)

{

break;
I

J

double dNurnber : Double.Parse(sNunber) ;

I I lit maintenant 1es codes de contrô1e, séparés
I I Les uns des autres par des espaces

Console.l{riteline("Entrez 1es codes de contrôle"
* " séparés par un espace");

char l] separator = {' 'J ;

string sFormatString = Console.Readline0 ;

stringl] sFormats : "

sFornatString. Split (separator) ;

/l effectue une boucle sur les codes de contrôle 1'un après 1'autre
foreach(string s in sÏormats)
t

(s.Length != 0)

I I crêe une co$mande de format complète

if
{

Chapitre 9 : Jouer avec des chaînes en G# 227

// à partir des codes de contrôle entrés
string sFormatConnand = 'riO' rr * g * nltt '

// affiche 1e nonbre entré en utilisant
I I Ia connande de fornat reconstituée
Console . 1lIrite (

"La connande de format {0} donne ",
sFormatConrnand) ;

try
{

Console. I'lriteline (sFormatConnand, dNumber) ;

l
catch (Exception)

{

Console.l.rlriteline ("(commande illégale)") ;

]

Console .l,lriteline 0 ;

]
/i attend confirmation de 1'utilisateur
Console.Hriteline("Appuyez sur Entrée pour terniner. . .") ;

Console.Read0;
return 0;

l

Le programme continue à lire dans la variable dNumber les nombres entrés
par I'utilisateur, jusqu'à ce que celui-ci entre une ligne vide. Remarquez que
le programme ne comporte aucun test pour déterminer si la valeur entrée est
un nombre en virgule flottante licite. Nous supposons ici que I'utilisateur sait
ce qu'est un nombre.

Le programme lit ensuite une série de codes de contrôle, séparés par des
espaces. Chaque contrôle est combiné avec une chalne "{0}" dans la variable
sFormatComrnand. Par exemple, si vous avez entré N4, le programme stocke la
chaîne de contrôle "{0:N4}". L'instruction suivante écrit sur la console le
nombre dNumber en utilisant la commande sFormatCommand ainsi construite :

Console . liriteline (sFo rmatComnand , dNumbe r) ;

Dans le cas de notre N4. la commande serait :

Console.Writeline("{0:N4}", dNumber) ;

228 Troisième parrie : programmarion er objers

Entrez un nombre de type double
,L2345
Entrez 1es codes de contrô1e séparés
00.0%

La commande de format {0:00.0:(} donne
Entrez un nombre de type double

Appuyez sur Entrée pour ternirer...

Voici un exemple de sortie obtenue avec ce programme ('ai mis en gras
ce que j'ai entré) :

Bntrez un nombre de type double
1,2345 ,67 89

Entrez 1es codes de contrô1e séparés par un espace
c E F1 N0 0000000.00000

La commande de format {0:Cl donne 12 345,69 F

La comnande de format {0:E} donne 1,234568E+004

La connande de fornat {0:F1l donne IZ34S,7

La commande de fornat {0:N0l donne IZ 346

La commande de format {0:0000000.000001 donne 0012345,67g90

par un espace

L2,3',i,

Appliqué au nombre 12345,6789, la commancle N0 ajoute des séparateurs
de milliers aux bons endroits (c'est la partie "N") et fait disparaltre tout ce
qui suit la virgule décimale (c'est la partie "0"), pour afficher 12 346 (le
dernier chiffre a été arrondi, et non tronqué).

De même, appliqué à 0,12345, le cocle de contrôle 00.0i% affiche r2,3,/o. Le
code % multiplie le nombre par 100 et ajoute le signe %,.Le00.0 indique que
la sortie doit comporter au moins cleux chiffres à gauche cle la virgule, et
seulement un à droite. Avec le rnême 00.0'/n,le nombre 0,01 est affiché
comme 0I.0'/,,.

,194(ac Le mystérieux t t'tr' . . catch attrape au passage toutes les erreurs qui
6f^Ëâ \ peuvent se produire si jamais vous entrez une commande cle format illicite,
= [çJ\f) pu, exemple un "D", qui signifie décimal. Je parlerai des exceptions au(Ô- Chapitre 15.

0uatrième partie

La programmation
orientée obiet

Dans cette partÎe...

a programmation orientée objet est le terme dont I'usage
est accompagné de la plus grande quantité de mousse

dans le monde de la programmation (il a été éclipsé pendant
un an ou deux par ".com" et "e-commerce", mais vous pouvez
oublier tout ça depuis le crash .com de 2001).

C++ r€V€ndique d'être un langage orienté objet. C'est ce qui le
différencie de C. Java est sans aucun doute un langage orienté
objet, de même qu'une centaine ou à peu près d'autres langa-
ges inventés au cours des dix dernières années. Mais que
signifie orienté objet ? Est-ce que je I'ai ? Est-ce que je peux
I'avoir ?

La quatrième partie présente les caractéristiques de C# qui en
font un langage fondamentalement orienté objet.

Chapitre 10

La programmation orientée
obiet:qu'est-ce que c'est ?

Dans ce chapitre :

La programmation orientée objet et le four à micro-ondes.

Les bases de la programmation orientée objet.

Abstraction et classification.

Comprendre I'importance de la programmation orientée objet.

e chapitre apporte tout simplement la réponse à la question : "Quels
sont les concepts sur lesquels repose la programmation orientée

objet, et en quoi sont-ils différents de ceux que nous avons vus dans la
deuxième partie de ce livre ?"

L'abstractinfr, cnncept numéro un de la
programmation orientée objet

Quand je regarde un match de football (américain) à la télévision avec
mon fils, il me prend souvent une envie irrésistible de nachos (chose
inventée jadis par les Mexicains pour les gens qui regardent la télévision
aujourd'hui). Je mets des chips dans une assiette, je les recouvre de
haricots, de fromage et de beaucoup de jalapeflos, et je mets le tout
quelques minutes dans le four à micro-ondes.

Pour utiliser le four à micro-ondes, j'ouvre la porte, je mets I'assiette à

I'intérieur, je referme la porte, et j'appuie sur quelques boutons qui se

232 0uatrième partie:La programmation orientée obiet

trouvent sur la face avant. Quelques minutes plus tard, les nachos sont
prêts.

Maintenant, pensez à tout ce que je ne fais pas pour utiliser le four à
micro-ondes:

t/ Je ne change pas le câblage ni quoi que ce soit à I'intérieur du four
à micro-ondes pour le faire fonctionner. Il a une interface (la face
avant avec tous ses boutons et I'affichage de I'heure) qui me per-
met de faire tout ce dont i'ai besoin.

t/ Je n'ai pas à modifier le logiciel utilisé par son microprocesseur
pour piloter le fonctionnement du four, même si c'est un autre plat
que j'ai fait chauffer la dernière fois que je m'en suis servi.

t/ Je ne regarde pas sous le capot.

/ Même si c'était mon métier de tout savoir sur le fonctionnement
interne d'un four à micro-ondes, y compris sur son logiciel, je ne me
préoccuperais pas de tout cela pour I'utiliser dans le seul but de
faire chauffer mes nachos.

Ce ne sont pas là des observations profondes. On ne peut vivre avec le
stress que jusqu'à une certaine limite. Pour réduire le nombre de choses
dont on a à se préoccuper, on ne travaille que jusqu'à un certain niveau
de détail. Dans la langue de la programmation orientée objet (OO), le
niveau de détail auquel on travaille est appelé niueau d'abstraction.
Autrement dit, pour faire chauffer mes nachos, j'ai foit obstroction des
détails du fonctionnement interne du four à micro-ondes.

Lorsque je fais chauffer des nachos, je vois le four à micro-ondes comme
une bolte. Tant que je n'utilise que I'interface du four (les boutons de la
face avant), rien de ce que je fais n'est susceptible de le faire entrer dans
un état instable et de le mettre hors d'usage, ou pire, de transformer mes
nachos en une masse noire informe et d'y mettre le feu.

Préparer des nachos fonctionnels
Imaginez que je demande à mon fils d'écrire un algorithme décrivant la
manière dont son père prépare les nachos. Quand il aura compris ce que
je veux, il écrira quelque chose comme : "Ouvrir une bolte de haricots,
râper du fromage, couper les jalapeûos" et ainsi de suite. Une fois arrivé

-
Ghapitre 10: La programmation orientée objet:qu'est-ce que c'est ? 233

au four à micro-ondes, il écrira sans doute : "Faire chauffer cinq minutes
dans le four à micro-ondes."

Cette description est simple et complète, mais ce n'est pas de cette façon
qu'un prograrnmeur écrirait un programme fonctionnel pour préparer des
nachos. Un programmeur vit dans un monde dépourvu d'objets tels que
des fours à micro-ondes et autres appareils ménagers. II se préoccupe
généralement de diagrammes de flux, avec des milliers de chemins
fonctionnels. Dans une solution fonctionnelle au problème des nachos, le
contrôle passerait de mes doigts aux boutons de la face avant du four,
puis à son fonctionnement interne. Très vite, le flux suivrait les chemins
d'une logique complexe sur la durée pendant laquelle faire fonctionner le
générateur de micro-ondes, et le moment de faire retentir la petite musi-
que qui vous dit que c'est prêt.

Dans ce monde de programmation fonctionnelle, il n'est pas facile de
penser en termes de niveaux d'abstraction. Il n'y a ici ni objets ni abstrac-
tions derrière lesquels on pourrait rnasquer la complexité.

Préparer des nachos orîentés objet

Dans une approche orientée objet de la préparation des nachos, je com-
mencerais par identifier les différents types d'objets intervenant dans le
problème : chips, haricots, fromage et four à micro-ondes. Ensuite, j'entre-
prendrais la tâche de représenter ces objets dans le logiciel, sans me
préoccuper des détails de leur utilisation dans le programme final.

Lorsque je fais cela, on dit que je travaille (et que je pense) au niveau des
objets de base. ll me faut penser à faire un four utile, mais à ce stade je
n'ai pas encore à réfléchir au processus logique de la préparation des
nachos. Après tout, les concepteurs du four à micro-ondes n'ont pas
pensé spécifiquement à ma manière de me préparer des nachos. Ils se
sont plutôt consacrés à résoudre le problème de la conception et de la
fabrication d'un four à micro-ondes utile.

Une fois que j'ai codé et testé les objets dont j'ai besoin, je peux monter au
niveau d'abstraction suivant. .fe peux maintenant quitter le niveau du four
pour penser au niveau de la préparation des nachos. À ce stade, je peux
traduire directement en code C# les instructions rédigées par mon fils.

23 4 0uatrième partie : La programmation orientée objet

La classîfîcation, coneept numéro deur de la
programmation ori entée

La notion de classification est inséparable cle Ia notion d'abstraction. Si je
demandais à mon fils : "Qu'est-ce qu'un four à micro-ondes ?", il répon-
drait sans doute:"C'est un four qui..." Et si je lui clemandais:"Qu'est-ce
qu'un four ?", il pourrait répondre: "C'est un appareil ménager qui..." Et si
je lui demandais : "Qu'est-ce qu'un appareil rnénager ?", il réponclrait peut-
être : "Pourquoi poses-tu des questions stupides ?"

Les réponses données par mon fils dans mon exemple viennent de ce qu'il
sait de notre four à micro-ondes, cas particulier du type d'objet appelé
four à micro-oncles. D'autre part, mon fils considère un four à micro-ondes
comme un four d'un type particulier, et un four en général comrne un
appareil ménager d'un type particulier.

Dans la langue de la programmation orientée objet, mon four à micro<rndes
est une instonce de la classe Four à micro-oncles. l-a classe Four à microondes
est une sousclasse de la classe Four. et la classe Four est une sous<lasse de la
classe Appareil ménager.

L'être humain aime classifier. Tout ce qui peuple notre rnonde est or-
donné en taxonomies. Ce procédé nous pernret de réduire le nombre de
choses que nous avons à retenir. Pensez par exemple à la première fois
que vous avez vu une "spacecar". La publicité la décrivait probablernent
comme révolutionnaire ("vous ne verrez plus jamais I'automobile de la
même manière"). Et il est vrai que c'était une nouveauté, mais après tout
une spacecar n'est rien d'autre qu'une voiture. En tant que telle, elle
partage toutes ses propriétés (ou au moir-rs la plupart) avec les autres
voitures. Elle a un volant, des sièges, un moteur, des freins, et ainsi de
suite. Je peux en conduire une sans commencer par lire le mode d'emploi.

Je n'ai pas besoin de m'encombrer la mémoire avec la liste de tout ce
qu'une spacecar partage avec les autres voitures. Tout ce que j'ai à
retenir est "une spacecar est une voiture qui...", €t les quelques proprié-
tés qui sont propres aux spacecars (par exemple, le prix). Mais je peux
aller plus loin. La classe Voiture est une sous-classe de la classe Véhicules
à roues, laquelle contient d'autres rnembres, coffrme les camions et les
décapotables. Et la classe Véhicules à roues peut être une sous-classe de
la classe Véhicule, qui contient les bateaux et les avions. Et ainsi de suite,
aussi loin que vous voulez.

objet

-
Chapitre 10: La programmation orientée objet: qu'est-ce que c'est ? 235

Pour(uoi
Pourquoi devrait-on classifier ? Ça a I'air de demancler du travzril.
D'ailleurs, ça fait si longtemps qu'on utilise I'approche font:tionrrelle. alors
pourquoi changer maintenant ?

La conception et la fabrication d'un four à micro-ondes spécialelnerrt porlr ce
problème particulier peut sembler une tâche plus facile que la réalisation cl'un
objet four, plus générique. Supposez par exemple que je veuille fabrirluer trn
four à micro-ondes pour faire chauffer des nachos et rien d'autre. Il ne rne
faudrait rien d'autre dans le panneau de commande.s qu'un bouton Dérnarrer,
car j'utilise toujours le même temps cle chauffage pour mes nachos. .le pourrais
me dispenser de tous les autres boutons comrne Décongélation et autres.
D'autre part, il n'aurait besoin de contenir rien de plus qu'une assiette. Iin
volume permettant de faire cuire une dinde serait ici du gaspillage.

Je peux donc me dispenser du concept de "four à micro-ondes". Je n'ai
besoin que de ce qu'il fait. Puis, j'introcluis dans le processus les instrtrctions
qui permettent de le faire fonctionner : "Mettre les nachos clans la Llolte ;

connecter le fil rouge au fil noir ; mettre le tube raclar sous tension cle

3 000 volts ; entendre le petit bruit qui indique le dérnarrage ; ne pas s'appro-
cher trop près si on a I'intention d'avclir des enfant.s." Ce genre de choses.

Mais I'approche fonctionnelle a quelques inconvénients :

t/ Trop compliquée : Je ne veux pas mélanger les clétaiis cle la fabrica-
tion d'un four à micro-ondes avec ceux cle la préparation cles

nachos. Si je ne peux pas définir les objets et les extraire de cette
montagne de détails pour les utiliser de façon indépendante, je suis
obligé de prendre en compte tous les détails de tous les aspects du
problème en même temps.

t/ Dépourvue de souplesse : Un jour ou I'autre, je peux avoir besoin de
remplacer le four à micro-ondes par un four d'un autre type. Il clevrait
être possible de le faire tant qu'ils ont la même interface. S'ils ne sont
pas clairement délimités et développés de façon inclépendante, Lur objet
d'un certain type ne peut pas être simplement remplacé par un autre.

tz Non réutilisable : Un four permet de faire de nombreux prlats

différents. Je ne veux pas avoir à créer un nouveau four polrr
chaque nouvelle recette. Après avoir résolu le problèrne une fois,
je veux pouvoir réutiliser la mêrne .solution en d'autre.s endroits de
mon programme. Et si j'ai vraiment de la chance, je pourrai nrêrne
la réutiliser plus tard dans d'autres programmes.

classif ier .)

236 0uatrième partie : [a programmation orientée objet

Une interface utilîsable, concept numéro trois
de la ltrogrammatîon nrientée objet

Un objet doit être capable de présenter une interface extérieure suffi-
sante, mais aussi simple que possible. C'est un peu I'inverse clu concept
numéro quatre. Si I'interface de I'objet est insuffisante, les utilisateurs
peuvent être amenés à en ouvrir le capot, en violation directe des lclis cle

Dieu et de la Société (ou tout au moins en violation des lois du Texas sur
la responsabilité juridique - je vous le déconseille fortement). D'un autre
côté, si son interface est trop compliquée, personne n'achètera I'objet, ou
en tout cas personne n'utilisera toutes ses fonctionnalités.

Les gens se plaignent régulièrement de la complexité de leurs magnétos-
copes. Ils ont trop de boutons avec trop de fonctions différentes. Bien
souvent, un même bouton a plusieurs fonctions différentes selon l'état de
I'appareil. En plus, il n'y a pas deux moclèles de magnétoscopes clui aient
la même interface. Quelles qu'en soient les raisons, les magnétoscopes
ont des interfaces trop compliquées et trop peu standardisées pour être
utilisables par la plupart des gens.

Comparez cela avec une voiture. Il serait difficile de prétendre qtr'une
voiture est moins compliquée qu'un magnétoscope, mais les gens ne
semblent pas avoir de difficultés à les conduire. Je vois au moins trois
différences significatives entre une voiture et un magnétoscope.

Toutes les voitures présentent plus ou moins les mêmes commandes à
peu près au même endroit. Par exemple (histoire vraie), ma sceur a eu
une voiture (oserais-je le dire, une voiture française) dont la commande
des phares était à gauche du volant, combinée avec la commande du
clignotant. Il fallait pousser la manette vers le bas pour éteindre les
phares, et vers le haut pour les allumer. On peut trouver que c'est une
petite différence, mais je ne suis jamais arrivé à tourner à gauche de nuit
avec cette voiture sans éteindre les phares.

Une voiture bien conçue n'utilise pas la même commande pour plusieurs
opérations différentes selon l'état dans lequel elle se trouve. Je ne connais
que très peu d'exceptions à cette règle.

_ Chapitre l0: La pr0grammation orientée objet: qu'est-ce que c'est ?

Le contrôle d'accès, concept numéro (uatre de
la programmation orientée objet

237

Un four à micro-ondes doit être construit de telle sorte qu'aucune combi-
naison de pressions sur les boutons de la face avant ne puisse me blesser
en aucune manière. Il y a certainement des combinaisons qui ne font rien,
mais aucune ne doit :

tz Endommager I'appareil. Vous devez pouvoir placer I'appareil dans
une sorte d'état étrange dans lequel il ne fera rien tant que vous ne
I'aurez pas ranimé, mais il doit être impossible de causer un dom-
mage quelconque à I'appareil en utilisant les commandes de la face
avant.

,/ Mettre le feu à I'appareil et par conséquent à la maison. Que
I'appareil tombe en panne, c'est ennuyeux, mais qu'il prenne feu,
c'est beaucoup plus grave. Nous vivons dans une société très
procédurière. Il peut résulter de ce genre de choses des procès très
curieux.

Toutefois, pour que ces deux règles soient respectées, vous avez aussi
votre part de responsabilité : vous ne pouvez f,aire aucune modification à
I'intérieur de I'appareil.

Presque tous les appareils ménagers, de n'importe quel niveau de
complexité, notamment les fours à micro-ondes, comportent un petit
sceau qui empêche le consommateur d'accéder à leurs composants
internes. Si le sceau est brisé, la responsabilité du fabricant n'est plus
engagée. Si je modifie les composants internes d'un four, c'est moi qui
suis responsable s'il met le feu à la maison.

De même, une classe doit permettre de contrôler I'accès à ses membres.
Aucune séquence d'appels aux membres d'une classe ne doit provoquer
le plantage de mon programme. La classe ne peut pas le garantir si des
éléments externes ont accès à ses composants et à son état interne. La
classe doit pouvoir maintenir ses membres critiques inaccessibles au
monde extérieur.

238 0uatrième partie : [a programmation orienrée objer

Comment la programtnation nrîentée objet est-elle
imltlémentée par C#

Dans un certain sens, ce n'est pas la bonne question. C# est un langage
orienté objet : il n'implémente pas la programmation orientée objet, c'est
le programmeur qui le fait. Vous pouvez écrire un programme qui ne soit
pas orienté objet en C# comme dans n'importe quel autre langage, mais
C# permet décrire facilement un programme orienté objet.

C# offre les fonctionnalités nécessaires à l'écriture de programmes orientés
objet:

Le contrôle d'accès : C# permet de contrôler la manière dont on
accède à un membre. Les mots-clés C# vous permettent de déclarer
certains membres ouverts au publlc alors que les membres internes
(lnterna1) sont protégés (prorected) des regards extérieurs et que
leurs secrets sont maintenus privés (pri,"'ate). Le Chapitre ll vous
livre les secrets du contrôle d'accès.

La spécialisation : C# supporte la spécialisation à travers un
mécanisme appelé héritage de closse. une classe hérite des mem-
bres d'une autre classe. Par exemple, vous pouvez créer une classe
car comme type particulier de la classe vehlcle. Le Chapitre 12 est
le spécialiste de la spécialisation.

Polymorphisme : Cette caractéristique permet à un objet d'exécuter
une opération à la manière qui lui convient. Le type Fusée de la classe
véhic1e peut implémenter I'opération Démarrage très différemment
de ce que fait le type voiture de la même classe (en tout cas, j'espère
que c'est toujours le cas pour ma voiture). Ces chapitres l3 et 14 ont
chacun leur propre manière de décrire le polymorphisme.

t/

/

t/

Rendre une classe
responsable

Dans ce chapitre :

Permettre à une classe de se protéger par le contrôle d'accès.

Permettre à un objet de s'initialiser lui-même par le constructeur.

Définir plusieurs constructeurs pour la même classe.

Construire des membres statiques ou des membres de classe.

ne classe doit être tenue pour responsable de ses actions. Tout
comme un four à micro-ondes ne doit pas prendre feu si j'appuie

sur le mauvais bouton, une classe ne doit pas mourir d'épouvante si je lui
présente des données incorrectes.

Pour être tenue responsable de ses actions, une classe doit avoir la
garantie que son état initial est correct, et pouvoir contrôler ses états
suivants afin qu'ils le restent. C'est ce que permet C#.

Restreindre l'accès A des membres de classe

Une classe simple définit tous ses membres comme public. Considérez
un programme BankAccounr qui tient à jour un membre donnée ba lance
contenant le solde de chaque compte. Définir ce membre comme pLrbl-ic
permet à tout le monde d'y accéder.

Je ne sais pas comment est votre banque, mais la mienne est loin d'être
assez confiante pour mettre à ma disposition une pile d'argent, et un

240 Ouatrième partie : La programmation orientée objet

registre sur lequel il me suffirait d'inscrire ce que j'ai pris dans Ia pile ou
ce que j'y ai ajouté. Après tout, je pourrais très bien oublier d'inscrire mes
retraits dans le registre. Je ne suis plus si jeune. Ma mémoire baisse.

Le contrôle d'accès permet d'éviter les petites erreurs comme d'oublier
d'inscrire un retrait ici ou là. Il pernret au.ssi cl'éviter de véritables grosses
erreurs avec les retraits.

Je sais exactement ce que pensent ceux qui ont I'esprit fonctionr-rel : "ll
suffit de cléfinir une règle selon laquelle les autres classes ne peuvent pas
accéder directernent au membre r.,a:-â:c.." Cette approche pourrait
fonctionner en théorie, mais en pratique ça ne marche pas. Les gens sont
toujours plein de bonnes intentions au départ. mais ces bonnes inten-
tions sont écrasées sous Ie poids de I'exigence de terminer le produit
pour le livrer au client.

de public BairkAc c ount
L'exemple suivant de classe BarkAc.:-rr..:rr déclare toutes se.s méthcldes
pub11c, mais déclare comme pri.'are les deux membres donnée
nliextAcccunt et rlEalance :

i/ BankAccount - crée un conpte bancaire en utilisant une variable
I I de type double pour stocker le solde du compte

I I (conserve le solde dans une variable privée
I I pour masquer son inplémentation au

I I monde extérieur)
"^i-^ C"^+^*.u9rrr6 9J D Lç!r,

nanespâce DoubleBankAccount

{

nrrhra^
^rÀdd

t'^SS1yuurru Lraùù vlé

{

public static void Main(stringIJ args)
t

I I crée un nouveau compte bancaire
Console.l.IriteLine("Création d'un objet compte bancaire") ;

BankAccount ba = ner,.r BankAccount0;
ba. InitBankAccount () ;

//on peut accéder au solde par 1a méthode Deposit()
I I car e1le a accès à tous 1es

// membres donnée

ba.Deposit(10);
// 1'accès direct à un menbre donnée provoque une erreur
ll àIa conpilation

Un exemple yrublic

Chapitre 1l : Rendre une classe responsable 2 4 |

Console.liriteli-ne("Au cas où vous arriveriez jusqu'ici"
* "\nCe qui suit est censé produire"
* I'une erreur à 1a compilation");

ba. dBalanee t= 10 ;

// attend confirmation de 1'utilisateur
Console.l'IriteLine("Appuyez sur Entrée pour terminer,..") ;

Console,Read 0 ;

l
ll Banknccount - définit une classe qui représente un compte siurple
nrrhl ie class BankAccount

{

nrivatp statie int nNextAccountNunber : 1000;

private int nAccountNumber;

// conserve 1e sol-de dans une seule variable de type double
nrivatp dorrhlp dBalance;

// ln:-t - initialise 1e compte avec le prochain numéro cie compte

I I et un solde de 0
, /\puDllc vo10 rnr.tbanxAccounï \ J

{

nAccountNumber = **nNextAccountNumber ;

dBalance = 0.0;
i
// GetBalance - retourne 1e solde courant
public double GetBalance0
i

return dBalance;

l
// AccountNumber

public int GetAccountNumber0

{

return nAccountNunber ;

l
public void SetAccountNumber(int nAccountNumber)

{

this.nAccountNumber = nAccountNumber ;

l
/ / n^-^^'r+ - +^!it dénôt nositif est autoriséI I r,/trPUùlL LUUL uçyuL PvorLr! çù

public void Deposit (double dAmount)

t

if (dAnount) 0.0)
{

dBalance *= dAmount;

]

l
// Withdrar,{ - tout retrait est autorisé jusqu'à la valeur
I ! du solde ; retourne 1e nontant retiré
public double l,lithdrar,r(double dWithdrawal)

242 Ouatrième partie : [a programmation orientée objet

if (dBalance (= dWithdrawal)
{

dWithdrawal = dBalance;
l
dBalance -= dWithdrawal ;

return dWithdrawal;
l
/i GetStrins - retourne dans une chaîne les informations srrr lpr.onntê-_,- -- *..ô s Lrvrrù ùuL 4c LvxlP LË

public string GetString0
t

string s = String.Fornat("/É{Ol = {t:C}",
GetAccountt{umber () ,

GetBalance 0) ;

ratll rn c .

]

]

Souvenez-vous que dans ce code, dBalance dhrithdrawat est la rnême
chose eue dBalance : dBalance dwithdrawal. Les programmeurs C#
ont tendance à utiliser la notation la plus concise possible.

Déclarer un membre comme public le rend disponible pour n'importe
quel autre code dans votre programme.

La classe BankAccount offre la méthode InitBankAccounr O pour initiali-
ser les membres de la classe, la méthode Deposit O pour traiter cles
dépôts, et la méthode Withdraw O pour traiter les retraits. Les méthocles
Deposit O et Withdr aw O fournissent même des règles rudimentaires,
comme : "on ne peut pas déposer une valeur négative", et "On ne peut pas
retirer plus que ce que contient le compte." Vous convienclrez certaine-
ment que ce sont de bonnes règles pour une banque. Toutefois, n'importe
qui peut accéder à tout cela aussi Iongtemps que dBalance €st accessible
aux méthodes externes (dans ce contexte, externe signifie "externe à la
classe, mais dans le même programme").

{ô

Avant de trop vous enthousiasmer, remarquez que ce programme ne se
génère pas. Une tentative de le générer génère en fait le message cl'erreur
suivant :

'DoubleBankAccount.BankAccount.dBalancer est inaccessible en raison de son
niveau de protection.

Ghapitre 11 : Rendre une classe responsable 2 43

Je ne sais pas pourquoi il ne se contente pas de dire : "N'entrez pas, c'est

privé", mais c'est essentiellement ce que ça veut dire. L'instruction
ba.dBalance +: 10; est illicite parce que dBalance n'est pas accessible

à Main O. Le remplacement de cette ligne par ba. Deposit (10) résout le

problème.

{q./ Le type d'accès par défaut est private. Oublier de déclarer un membre

n)il en tant que tel revient à le déclarer comme private, mais il vaut mieux

lS/ indiquer le mot private pour éviter toute ambiguité.
Y

Allons plus loîn
sécurîté

.' les autres nitleaux de

Cette section suppose quelques notions sur l'héritage (Chapitre 12) et les

espaces de noms (Chapitre 16). Vous pouvez I'ignorer pour le moment,
mais vous Saurez qu'elle est là lorsque vous en aurez besoin.

C# offre d'autres niveaux de sécurité, au-delà de public et private :

t/ Un membre public est accessible par toutes les classes du programme.

t/ Un membre private n'est accessible que par la classe dans laquelle
il est déclaré.

,/ Un membre protected n'est accessible que par la classe dans

laquelle il est déclaré et par toutes ses sous-classes.

,/ Un membre internal est accessible par toutes les classes du même

espace de noms (essentiellement, par tout groupe de modules C#

que vous aurez spécifié pour cela, c'est-à-dire tous les modules que

vous aurez écrits pour le programme, mais pas ceux écrits par votre
voisin de palier).

t/ Un membre internal protected est accessible par la classe dans

laquelle il est déclaré et toutes ses sous-classes, ainsi que par les

classes du même module.

C'est le masquage d'un membre en le déclarant private qui offre le

maximum de sécurité. Toutefois, dans de nombreux cas, vous n'aurez pas

besoin de ce niveau de sécurité. Après tout, comme les membres d'une

sous-classe dépendent déjà des membres de la classe de base, protected
offre un niveau de sécurité confortable.

ôfry\=(t

244 0uatrième partie : La programmation orientée objet

Si vous déclarez chaque module comme un espace de nom différent, la
déclaratiort d'un rnembre comme i.nternal le rend disponible unique-
ment dans ce module. Mais si vous utilisez un seul espace de nom pour
tous vos modules, il n'y aura guère de différence entre une déclaration
irrternai ou irrl,ernal proreirteci et une déclaration public.

Pourquoi se t réocculrer du d'accès
Déclarer les mernbres internes d'une classe comme public est une
mauvaise idée. au moins pour les raisons suivantes :

Si tous les membres donnée sont public, vous ne pouvez pas
savoir facilement quand et comment ils sont modifiés. Pourquoi
utiliser les méthodes Deçrosit () et i^/ithdraw () pour traiter les
chèques ? En fait, pourquoi avoir besoin de ces méthodes ? N'im-
porte quelle méthode de n'importe quelle classe peut modifier ces
éléments n'importe quancl. Si d'autres fonctions peuvent accéder à
ces membres donnée, elles le feront certainement.

Mon programme BankAccounr peut très bien tourner pendant une
heure ou deux avant que je réalise que I'un des comptes a un solde
négatif. La méthode \,,iithdraw O aurait dû garantir que cela ne
puisse pas arriver. De toute évidence, une autre fonction a dt
accéder au solde sans passer par Wi thd raw () . Découvrir quelle
fonction en est responsable et de quelle manière est un problème
très difficile.

Exposer tous les membres donnée d'une classe rend I'interface
trop compliquée. En tant que programmeur utilisant Ia classe
BankAccount, je ne veux rien savoir de ce qu'elle contient. Il me
suffit de savoir qu'elle me permet de déposer et de retirer des
fonds.

t/ Exposer les éléments internes conduit à exporter les règles de
classe. Par exemple, la classe BankAccount ne permet en aucune
circonstance que le solde devienne négatif. C'est une règle commer-
ciale de la banque, qui doit être isolée dans la méthode I,,/irhd raw () ,
faute de quoi il faudra ajouter la vérification de cette règle en tout
endroit du programme où le solde est modifié.

Qu'arrive-t-il lorsque la banque décide de modifier les règles pour que les
"clients privilégiés" soient autorisés à avoir un solde légèrement négatif

contrôle l

/

t/

Ghapitre 11 : Rendre une classe responsable 2 4 5

sur une période limitée ? Il me faut maintenant rechercher dans tout le
programme toutes les portions de code qui accèdent au solde afin d'y
adapter en conséquence les vérifications correspondantes.

Oes méthodes pour accéder à des objets

Si vous examinez plus attentivement la classe tsankAccount, vous y verrez
quelques autres méthodes. L'une d'elles, GetStrlng (), retourne une
version de type chaîne du compte, adaptée à l'affichage par une instruc-
tion Console. writeLine O. Toutefois, I'affichage du contenu d'un objet
BankAccount peut être difficile si ce contenu est inaccessible. D'autre
part, selon la politique "Rendez à César ce qui est à César", c'est à la
classe que revient le droit de décider comment elle doit être affichée.

Vous remarquerez aussi une méthode, GetBalance O, et un ensemble de
méthodes : Get:\cccuntNunber () et SetAccountNumber O. Vous vous
demandez peut-être pourquoi j'ai déclaré comme priirate un membre
donnée comme CBalance, tout en fournissant une méthode GetBalance o
pour en retourner la valeur. J'ai deux raisons pour cela. Tout d'abord,
GetBalance O n'offre pas de moyen de modifier dBalance. Elle ne fait
qu'en retourner la valeur, ce qui fait que le solde est en lecture seule. Par
analogie avec une véritable banque, je peux consulter le solde de mon
compte librement, mais je ne peux pas en retirer de I'argent sans passer
par la procédure de retrait de la banque.

En second lieu, GetBaiance O masque aux méthodes externes le format
interne de la classe. Il est tout à fait possible que GetBalance O effectue
de nombreux calculs concernant la lecture des reçus, des frais de gestion
de compte, et tout ce que ma banque veut soustraire du solde de mon
compte. Les fonctions externes n'en savent rien et n'ont rien à en faire.
Naturellement, je veux savoir quels frais on m'a fait payer, mais je ne peux
rien y faire, à moins de changer de banque.

Enfin, GetBalanre () offre un mécanisme qui permet d'apporter des
modifications internes à la classe sans qu'il soit nécessaire de changer les
utilisateurs de BankAccount. Si le ministère des Finances demande à ma
banque de gérer autrement ses dépôts, cela ne doit rien changer à la
manière dont je peux accéder à mon compte.

246 Ouatrième partie : La programmation orientée objet

egemple
Le controle d'accès fule à tutre secours : un

Le programnle I)r, ,i. l-.-B:lr:ik..ir r':rrlfL' suivant ntet etr évidence un défaut
potentiel dans le programrne Ban.t.ri:.i.rr.irii'. Le progranrme complet est sur
le site Web, rnais le listing c:i-dessous ne montre que l'iain O, clui est la seule
portion du programnre comportant une différenc-e avec Barkr,,:cor-rirt, :

// DoubleBankAccount - crée un compte bancaire en utilisant une variable
| | de type double pour stocker le solde du compte

I I (conserve 1e solde dans une variable privée
I I pour masquer son implémentation au

I I monde extérieur)
nqnocn:no Toct

t

using Systen;
nrrhlie class Classl
{

public static int Main(string[] strings)
{

I I cr6e un nouveau cotnpte bancaire
Consol-e.Writeline ("Créati.on d'un objet compte bancaire") ;

BankAccount ba = new BankAccount 0 ;

ba. InitBankAccount () ;

// effectue un dépôt
rlorrble rjDenosit : I23.454:
Console.ltlriteLine("Dépôt de i0:C)", dDeposit) I

ba. Deposit (dDeposit) ;

I I solde du conrpte

Console.l,lriteLine ("Compte : {0i",
ba.GetString0);

\
I I et voilà le problèrre

double dAddition = 0.002;
Console,!,IriteLine("Ajout de {0:C}", dAddition) ;.i
hn - Dpnosi t { rlAddition) ;\s:'su4

// solde résultant
Console,Writeline{"Compte résultant = {0}",

ba.GetString0);
ll attend confirmation de L'utilisateur
Console,Writeline("Appuyez sur Entrée pour terminer.
Console.Read0;
return 0:

rr I '

Ghapitre 11 : Rendre une classe responsable

La fonction llain i.) crée un compte bancaire puis y dépose 123,454 F, montant
qui contient un nombre décimal de centimes. l'lain O ajoute alors une petite
fraction de centinles au solde, et affiche le solde résultant.

La sortie de ce programme se présente de la façon suivante :

Création d'un objet compte bancaire
Dépôt de 123,45 F

Compte = lftOOt - 123,45 E

Ajout de 0,00 F

Compte résultant : #tOOt = 123,45 F

Ànnrrrraz arrr 1'n+réo nnrrr torm.inornPyuJçÉ ùu! lltL!cc PUur Lç!urllcr. . ,

C'est là que les utilisateurs commencent à se plaindre. Pour moi, je n'arrive
pas à mettre mes chéquiers en accord avec les relevés de compte de ma
banque. En fait, je suis très content si je tombe juste à 100 dollars près, mais
il y a des gens qui tiennent absolument à ce que leur relevé de compte soit
bon au centime près. Apparemment, il y a un bogue dans ce programme.

Le problème, bien str, c'est que 123,454 F apparalt comme 123,45 F. Pour
éviter cela, la banque décide d'arrondir les clépôts et les retraits au centime
le plus proche. Si vous déposez 723,454 F, la banque en retire les 0,4 centi-
mes en excès. Comme elle fait la même chose lorsque la différence est en
votre faveur, ça ne change rien dans la durée.

La manière la plus facile de réaliser cela consiste à convertir les comptes
en deciniai et à utiliser la méthode Round0f f O, comme le montre le
programme Dec lrnalBankAccount suivant :

// DecimalBankAccount - crée un compte bancaire en utilisant une

I I variable decinal pour stocker 1e solde du conpte
ttsino Svstom'

nanespace Dec irralBankAccount
r
t

public class C1ass1

{

-,,r"1.i^ ^+^+)^ void Main(stringil args)PUUafL ùLdLrL VUaU rlclrlr\ËLrrrrËlJ dLÉ>l

t

I I crée un nouveau compte bancaire
Console.i,IriteLine("Création d'un objet conpte bancaire") :

BankAccount ba = new BankAccount O ;

ba. InitBankAccount () ;

// effectue un dépôt
double dDeposit = 123.454:
Console. l,lriteLine ("Dépôt de {0 : Ci " , dDeposit) ;

247

2 48 Ouatrième partie : [a programmation orientée objet

ba. Deposit (dDeposit) ;

ll .."1dp drr ..\mntê

Console.WriteLine("Compte = {01 ",
ba.GetStringO);

// et maj.ntenant, ajout d'un très petit nontant
double dAddition : 0.002;
Console.l,lriteLine("Ajout de i0:CJ", dAddition) ;

ba. Deposit (dAddition) ;

I I solde résultant
Console,I^lriteLine("Compte résultant : [0]",

ba.GetString0):
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer.,.") ;

Console. Read 0 ;

j

// BankRccount - définit une classe qui représente un compte simple
public class BankAccount
II

private static i.nt nNextAccountNumber = 1000;
private int nAccountNumber;

// conserve 1e solde dans une seule vari.able de tvoe decirnal
private decimal nBalance;
I I tnit - initialise le compte avec le prochain numéro de compte

et un solde de 0

-.,1" 1 .: ^ ,.^: À r^ i*!rnkACcoUnt 0yuuf rL vvru fllrLUo

{

nAccountNunber = **nNextAccountNumber ;

mBalance = 0;

l

i / GetBalance - retourne le solde courant
public double GetBalance0
{

return (double)nBalance
;

l
// AccountNumber

public int GetAccountNumber 0
{

return nAccountNumber ;

l
public void SetAccountNumber(int nAccountNumber)

{

this . nAccountNumber = nAccountNumber ;

]
// Denosit - 1'orr dénôt nositif esr autorisé
public void Deposit(double dAmount)

{

if (dAnount) 0.0)

Chapitre 11 : Rendre une classe resp0nsable 2 49

// arrondit la variable double au centime le plus proche avânt
// d'effectuer 1e dépôt
decimal mTemp = (decimal)dAmount;

mTemp = Decimal,Round(mTerrp, 2);
mBalance += nTenp;

]
// Wi"thdrar,v - tout retrait est autorisé jusqu'à la valeur
I I du solde ; retourne le montant retiré
public decimal Withdraw(decimal dWithdrar,val)
{

if (mBalance (= dWithdrawal)
{

dWithdrawal : mBalance;

]

mBalance -= dllithdrawal;
return dl^lithdrawal ;

l
// GetString - retourne dans une chaîne les infornations srrr le c.)mnte

public string GetString0
{

string s = String.Format("lf{Ol = {1:C1",
GetAccountNunber () ,

GetBalance 0) ;

rêtlrrn a.

]

J

J'ai converti toutes les représentations internes en valeur dec rnat, qui
est dans tous les cas un type mieux adapté que dcublÊ au traitement de
solde de compte bancaire. La méthode Deposit (,r utilise maintenant la
fonction Decimal. Found O pour arrondir Ie montant des dépôts au
centime le plus proche avant d'effectuer le dépôt correspondant. La
sortie de ce programme est maintenant ce que nous sommes en droit
d'attendre :

Création d'un objet compte bancaire
Dépôt de 123,45 F

conpte - lltoot = r23,45 F

Ajout de 0,00 F

Conpte résultant = #toot = r23,45 E

Appuyez sur Entrée pour terniner. . .

2 5 0 Ouatrième partie : La programmation orientée ob jet

Et alors)

On pourrait toujours dire que j'aurais dû écrire dès le départ le programme
BankAccount en utilisant le type decimal pour les données saisies, et je serais
probablement cl'accord. Mais ce n'est pas si évident. Bien des applications ont
été écrites en utilisant le type double comme moyen de stockage. Un problème
s'est produit, mais la classe EankAccor-rnt était capable de le résoudre de façon
interne sans nécessiter de modifications à I'application elle.même.

Dans ce cas, la seule fonction affectée a été ltlain O , mais les effets
auraient pu s'étendre à des centaines d'autres fonctions accédant aux
comptes bancaires, et ces fonctions auraient pu se trouver dans des
dizaines de modules. Si la correction avait été faite à I'intérieur de la
classe Ba nhAc c c, Lri-i1-, aucune de ces fonctions n'aurait dt être modifiée.
Mais cela n'aurait pas été possible si les membres internes de la classe
avaient été exposés à des fonctions externes.

ê#\ Les moclifications internes à une classe nécessitent quand même toujours
=O,

n,;iilL::.'"""u
diverses portions de code, même si celles-ci n'ont pas

Défînir des propriétés de classe

Les méthodes GetX O et SetX O des différentes versions du programme
Bank-Acco-rnt sont appelées fonctions d'occès, ou, plus simplement,
eccesseurs. Bien qu'en théorie elles soient synonymes de bonnes habitu-
des de programmation, les fonctions d'accès peuvent en pratique devenir
un peu maladroites. Par exemple, Ie code suivant est nécessaire pour
incrémenter nAc c ounrl'Junber de 1.

SetAccountNun,ber(GetAccountNumber11 + 1) ;

C# définit une structure nommée une propriété qui permet d'utiliser
beaucoup plus facilement les fonctions d'accès. Le fragment de code
suivant définit une propriété de lecture-écriture, AccounrNumber:

public int AccountNumber

t

set Ireturn nAccountNumber; J--_..------,,
set {nAccountNunber = value: }

l

Chapitre 11 : Rendre une classe responsable 2 5 I

La section get est implémentée chaque fois que la propriété est lue, alors
que la section set est invoquée lors de l'écriture. La propriété Balance ci-
dessous est en lecture seule, car seule la section set est définie :

public double Balance

{

oÊ1

t

return (double)mBalance ;

l
]

À I'utilisation, ces propriétés apparaissent de la façon suivante :

BankAccount ba : new BankAccount 0 ;

// stocke 1a propriété numéro de compte

ba.AccountNumber = 1001 ;

I I tit les deux propriétés
Console.writeLine("lf[0] = {l :c}",

ba.AccountNumber, ba.Balance) ;

Les propriétés Accountliumber et Balance ressemblent beaucoup à des

membres donnée publics, par leur présentation comme par leur utilisa-
tion. Toutefois, les propriétés permettent à la classe de protéger ses

membres internes (tsa1ance est une propriété en lecture seule) et de

masquer leur implémentation. Remarquez que Balance effectue une
conversion. Elle aurait pu aussi exécuter les calculs les plus abondants.

<$-_--
xParconvention(cen'estpaSuneobligationdeC#),lenomd'unepropriété
Ilof l commence par une lettre majuscule.
L-.tv

- Une propriété n'est pas nécessairement dépourvue d'effet. Le compilateur
C# peut optimiser un simple accesseur pour qu'il ne génère pas plus de
code machine que I'accès direct à un membre donnée. C'est important,
pas seulement pour I'application, mais aussi pour C# lui-même. Toute la
bibliothèque C# fait un usage abondant des propriétés.

Propriétés staûques

Un membre donnée statique (de classe) peut être exposé par I'intermé-
diaire d'une propriété statique, comme le montre I'exemple simple suivant :

public class BankAccount

I

252 Ouatrième partie:La programmation orientée objet

private static int nNextAccountNumber = 1000;
public static int NextAccountNunber

{

get {return nNextAecountNunber ; J

]

il
]

La propriété l'lext,\ccr-,untlir:rnber est accessible par la classe, car ce n'est
pas la propriété d'un objet particulier :

I I Lit la propriété numéro de conpte
int nValue = BankAccount.NextAccountNumber;

Propriétés a(lec effets de bord

Une opération get peut exécuter plus cle travail que la simple extraction
de la propriété associée :

public static int AccountNumber

I
I I "*rr^it la propriété et prépare

I I I'extraction de la suivante
get { return **nNextAccountNumber ; J

1

Cette propriété incrémente le membre statique numéro de compte avant
de retourner le résultat. Toutefois, ce n'est sans doute pas une bonne
idée, car I'utilisateur de la propriété n'a aucune idée de ce qui se passe en
dehors de la lecture de la propriété.

Tout comme les fonctions accesseurs qu'elles imitent, les propriétés ne
doivent pas changer l'état d'une classe.

n bon départ à ûos objets : lesu0nner u
c0nstructeurs

Contrôler I'accès à une classe n'est que la nroitié du problème. Un objet
a besoin d'un bon départ dans lavie s'il veut qrandir. IJr-re classe peut
fournir une méthode d'initialisation, appelée par I'application pour faire

Chapitre 11 : Rendre une classe responsable 2 53

démarrer les choses, mais que se passe-t-il si I'application oublie d'appe-
ler la fonction ? La classe commence avec de mauvaises initialisations,
et la situation ne peut pas s'améliorer ensuite. Si vous voulez tenir la
classe pour responsable de ce qu'elle fait, vous devez commencer par
lui assurer un bon démarrage.

C# résout le problème en appelant la fonction d'initialisation pour vous.
Par exemple :

MyObject mo : new My0bject0;

En d'autres termes, non seulement cette instruction va chercher un objet
dans une zone particulière de la mémoire, mais elle I'initialise en appelant
la fonction d'initiali.sation.

Ne confondez pas les termes classe eI objet. Chien est une classe. Mon
chien S c o c. r e r est un obiet de la classe Chi en.

Le constructeur fournî par C#

C# se débrouille très bien pour savoir si une variable a été initialisée. Il ne
vous permettra pas d'utiliser une variable non initialisée. Par exemple, le
code suivant génère une erreur à la compilation :

public static void Main(string[] args)
{

int n;
double d;
double dCalculatedValue = n * d:

]

C# sait que ni n ni d n'ont reçu une valeur, et ne leur permet pas d'être
utilisées dans I'expression. La compilation de ce petit programme génère
les erreurs de compilation suivantes :

Utilisation d'une variable 1oca1e non assignée
Utilisation d'une variable 1oca1e non assignée

Par comparaison, C# offre un constructeur par défaut qui initialise le
contenu d'un objet à 0 pour une variable intrinsèque, à f alse pour une

t-l
ll

tdt

2 5 4 0uatrième partie : La programmation orientée objer

variable booléenne, et à nLr-11 pour une référence d'objet. Voyez I'exemple
de programme suivant :

,1d;
^^

Q*a+^* 'uùrrré J) ù Lçlt,

namespace DecimalBankAccount

{

public class Ciassl
i

public stat j.c void Maj_n(string [] args)
t

/l courmence par créer un objet
My0bject local0bject = new My0bject0;
Console.i^IriteLine("1oca1Object.n est {0J", localObject.n) ;

if (localObiect.next0biect == null)
(
L

Console.i^lriteline ("local0bjecr.nextObject est null") ;

l

I I attend confirnation de 1'utilisateur
Console.!'IriteLine("Appuyez sur Entrée pour terminer. . .") ;

Console. Read 0 ;

l
l
public class MyObject

t

internal int n;
internal MyObject next0bject ;

l
l

Ce programme définit une classe MyOb i e c r_, eui contient une variable L cle
type int, et une référence à un objet, nertOb i e c t. La fonction i"iair i r crée
un objet l1',,Crb,ject, et affiche Ie contenu initial de rr et de rextrjb',,, r.

Ce programme produit la sortie suivante :

1oca10bject,n est 0

1^^^1^L.'^^+ -^--t0hipct p<t nrr'1 lf vLorvuJ EL L . ilEÀ - _ _ J _ _

Annttrroz qttr EntrÉo nnrrr forminor

Lorsque I'objet est créé, C# exécute ur-r petit morceau de code pour
I'initialiser, ainsi que ses membres. Livrés à eux-mêlnes, les membres
donnée,.\:i.,'l:r,ject.i-, et le-xtr-;L îe.i ne contienclraient que de.s valellrs
aléatoires. sans signification.

Le code qui initialise les objets lorsqu'ils sont créés s'appelle le constructeur.

Ghapitre 11 : Bendre une classe responsable 2 5 5

Le constructeur par défaut
C# garantit qu'un objet commence sa vie dans un état connu : rien que
des zéros. Toutefois, pour de nombreuses classes (sans doute la plupart
des classes), ce n'est pas un état valide. Considérezla classe Ba:rr,.-r,:.r.r iirr:
que nous avons déjà vue dans ce chapitre :

public class BankAccount

{

int nAecountNumber;

double dBalance;
IL autres membres

l

Bien qu'un solde initial de 0 soit acceptable, un numéro de compte égal à
0 n'est certainement pas un numéro de compte valide.

La classe BankAccount contient la méthode IniiEa:r.r.,ci-ri-rr-.r-,1- ir POuf
initialiser I'objet. Toutefois, cette solution fait peser une responsabilité
trop lourde sur I'application elle-même. Si I'application n'invoque pas la
fonction InitBankAccount O, les méthodes de compte bancaire ne
fonctionneront sans doute pas, sans que ce soit de leur faute. Il est
préférable qu'une classe ne dépende pas de fonctions externes pour
mettre ses objet dans un état valide.

En réponse à ce problème, la classe peut fournir une fonction spéciale qui
sera automatiquement appelée par C# lors de la création de I'objet : le
constructeur de classe. Celui-ci aurait pu être nommé rnit () , Starr () , ou
Create O, pourvu que ce nom vous plaise, mais le constructeur porte le
nom de la classe. Aussi, le constructeur de la classe tsankAcccunt- se
présente de la façon suivante :

public int Main(stringil args)
{

BankAccount ba = new BankAccount O ;

l
public class BankAccount

{

I I Ies numéros de compte coruûencent à 1000 et augmentent

/i séquentiellement à partir de 1à

static int nNextAccountNunber = 1000:
| | nat À inrrr 'l p nrrmÉrn rlo nnmnf o at 'l o cn1rl o nnrrr nhrnrro nhipt

int nAccountNumber:

double dBalance:

256 Ouatrième partie : La programmation orientée objet

I / constructeur BankAccount

public BankAccount ()

L

nAccountNunber = *tnNextAccountNumber ;

dBalance : 0.0;
l

]

Le contenu du constructeur
méthode oriqinale Ir r*: . . '

utilisée de la rnême manière

BankÀcccunt est le même que celui de la
). Toutefois, une méthode n'est ni déclarée

-^-L-^^duL!cù llElllu!cD.

nl

t/ Le constructeur porte le même nom que la classe.

,/ Le constrtrcteur n'a pas de type retourné, même pas void.

t/ l'{ai rr r i n'a pas besoin cl'invoquer une fonction supplémentaire
pour initialiser I'objet lorsqu'il est créé.

Construisons quelque chose

Essayez donc un de ces constructeurs.Yoyez le programme
D emo r-r s t r a r'- e D e f a l i t C o n s t r u c t o Tr Suivant :

// DenonstrateDefaultConstructor - nontre le fonctionnenent
des constructeurs par défaut ; crée une classe
avec un constructeur, puis exécute
quelques scénarios

de la classe
e new }ly0ther0bject0;
de 1'objet

ttcino Svctpm.*- -"ô
namespâce DemonstrateDefaultConstructor
It

// Hy0bject - crée une classe avec un constructeur bruyant
il et rrn oh i et i nterne
publie class My0bject
{

// ce membre est une propriété
ctnt.i n Mrrfltharôh.inn+ a+a+i nflhiÈLqLrL rrJvLrrcrvuJtrLL ùLéLlUVUJ

I I ce membre est une propriété
Mrr0thorôhiant drrnnmi nôh i .

public My0bject 0
t

Console.lJriteline ("Démarrage du constructeur ilyObject") I

dynanicObj : new My0ther0bject0;
Console.llriteline (r'Fin du construeteur MyObject") ;

Chapitre 11 : Rendre une classe resp0nsable 2 5 7

/i My0ther0bject - cette classe a aussi un constructeuf bruyant
I I nais pas de nembres j.nternes

^"h1i ^ ^1... Mrrfltherflh jont
PUUTIL UIdùù r'rjvLrrçrvuJçLL

L

nrrhi i n lv{rr0rLarôhi ont ()

{

Console.Writeline("Construction de My0therObject en cours") ;

l
l
public class Classi
t

public static void Main(string[] args)
It

Console. trlriteLine ("Démarrage de Main () ") ;

I I crê.e un ob jet
My0bject localObject = new My0bject0;
/l attend confirmation de 1'utilisateur
Console.l{riteLine("Appuyez sur Entrée pour terminer.. .r') ;

Console.Read0;
J

]

l

L'exécution de ce programme génère la sortie suivante :

Démarrage de Main0
tonstruetion de My0ther0bject en cours
Démarrage du constructeur MyObject

Construction de Hy0ther0bject en cours
Fin du constructeur My0bject
Appuyez sur Entrée pour terminer. . .

Reconstruisons ce qui vient de se produire :

1. Le programme démarre, et Main () affiche le message initial.

2. Main () crée un localObject, de type My0b j ect.

3. |1y0b ject contient un membre statique, static0b j, de la classe
MyOther0bject. Tous les membres donnée statiques sont créés
avant que le premier MyOb ject soit construit. Dans ce cas, C#
remplit static0b j avec un Ml,'Other0b j ect nouvellement créé,
avant de passer le contrôle au constructeur MyOb j ect. Cette étape
correspond au second message.

4.

5.

6.

7.

258 Ouatrième partie: La programmation orientée objet

Le constructeur d€ l"i-r'ObJ ec t reçoit le contrôle. Il affiche son
premier message : Déna rrage dLi colrstrr-icteur MyCb i ect.

Le constructeur l"lyOir r'ect crée un objet cle la classe l'1'y0tirer0b j ect
en utilisant I'opérateur new. et affiche le deuxième message du
con-structeur I"h'Ot he rOb J1 e c t

Le contrôle revient au constructeur i'll-,'lli', 1eci, eui retourne à i"lain O .

Mission accorlplie !

Erécuter le constructeur à partir du débogueur

Pour avoir encore un peu plus cle mérite, exécutez maintenant le même
programme à partir du débogueur :

l. Générez à nouveau le prograrnme : sélectionnez Générer/Générer.

2. Avant de commencer à exécuter le programme à partir du
débogueur, définissez un point d'arrêt à I'appel
Conso ie . i'iri-i eLine () dans le constmcteur i4y0therOb j ect.

Pour définir un point cl'arrêt, clicluez <'lans la barre grise verticale
qui constitue le bord gauche cle l;r ferrêtre de code, en regard de la
ligne pour laquelle vous voulez cléfinir un point d'arrêt.

La Figure 1 l.l montre I'affichage avec le point d'arrêt.

Au lieu de sélectionner Détloguer/Démarrer, selectionnez Déboguer/
Pas à pas détaillé (ou, mieux encore, appuyez sur la touche Fl l).

Vos fenêtres doivent s'agiter un peu pendant quelques secondes,
puis I'appel Console.l',r j telin-o O doit apparaltre sur fond jaune.

Appuyez à nouveau sur la touche Fl l.

Votre affichage doit maintenant ressembler à ce que montre la
Figure 11.2.

Sélectionnez Déboguer/Démarrer ou appuyez sur F5, et le pro-
gramme s'exécute jusqu'au point d'arrêt dans MyOtherCb_jecr,
comme le montre la ligne en surbrillance dans la Figure 11.3.

Appuyez encore deux fois sur la touche Fl l, et vous êtes de nouveau
au début du constrrcteur l{.,,tlb i ec+,, comme le montre la Figure I1.4.

3.

4.

D.

6.

Ghapitre 11 : Rendre une classe responsable 2 5g

-

Figure 11.1:
La ligne en
surbrillance
sur fond
rouge dans
le construc-
teur
I Fr rtl orll r- t

indique la
présence
d'un point
d arrêt.

-

-

Figure 11.2:
L'affichage
du

débogueur
de Visual
studio, juste

avant de
passer au

constructeur.

-

AutEmètiqLe

l'+om

I'rr :1,-rt'tttl:

F w *. :. .'; ,,": "-..: rle,': fr) - - r,"iç.i.., a" t,4 ag ., '.., Au.g.&& 4 -
Frùqrrrrffle Ii'r-] t,tr ,:rrrL',rLet,i v ThfEad [];trl .::,in! nrnr:r ? FfamÊ de Frle t,Êrrrnslr,ilet)Birull,,,:n5lrutl::r - -

._). .::,ià tfi :1,).:,, (i.1 ,tr. e r,ehu,] - rS
flassl.rs j

J | ê1'1,:ln strir,l[] rrq:l -:'
i., u' ù.r L.Ë11]f5:! StauE.jrlt: _,:n!t.tE:] | I

,$ DenronstrateDefaultf onstructor
+ 4 FfrETr r,ts:

1!] A::enrbl'lnf,:,,:r

1! Clasrl.cs

ExÊlorôtÊur d.

x Pile de5 ôFpÊls I

J ttûrr Lar

(:r I er']n5l:rEtEDetÈrlll:i:r,n5lrU:l:r{,e:,el[,Ëtrf]rrslr ll:e[]Ef,3U l:r-LrrrslfUlof :#

,l
*1
:J

!,11Êuf

ntl

t

nAuromitiquelÇ tr ffipiluout tr;,
Col irLô gènerôtirn a rÊBssi Ln 38 aË;

f l ::,:t.t

260 Ouatrième partie:La programmation orientée obiet

ficfrier Edilir-,n Atfi{h,3qe qrËjet raêrÈrer QÉhoqrer gutils

? w i: ,' ;-' ' : He.
"r]1

. -
-."".';)- '.:.

F t r,t)t amrùè ll!:l t,Éfrr: n5l:r i/:et, - lln eàd Iir!É],: i:n: rrn, :.

t- .,...,, :;l;:;I 't ,t:t. ,:::r, , ' ,tr - a r'rt,r,l - ,!a

flassl.cs
I

,lr-:Ë IÈ.TIrr--Llr_: "'- I_=f r.l r t:r|lÉ l1'rr

Er t,L,rètÈ!r de s,:|:lron: - trenl:r;tr ,.. f ,,
i

l

i' .r' - -'_: . . :. its , ' ,_ .. ,::. :i
.p DenronstrateDefaultf onstructor

:i
---1:j

-

Figure 1 1,3 :

Le contrôle
passe 0ans
le construc-
teur
l"h;t'}|horlhioe l

avant de se
diriger vers
le construc-
teur
l,Ii'Object.

-

-

Figure 11.4 :

Le construc-
teur
M-,'Obi ec t
reçoit le

contrôle une
fois que
l'o b jet
statique
Itf.rlthonlh-i.e t
n ât6

c0nstru it,

-

AutûrnËtiquÈ

l!Èfi

l+i lfi:

!riJ:1.r,: r:lti: '.::r i ll.ir[.-!::]r':j[]

''- I:: :' LF.'Ir r: -L -r.= | "l FluaLr.:1:{=

-il
S;r

tréleut T|pe *}
itÈnarjlrllaIal]rll :,rjlrr,:l:r l1 :,r:frÈr [,Êr,:rr:|:.

- Fr,3mÈ dË Frie Iaf r]rr!lrnlÈ[Èii]ll, ,rTr!ff!:Lrr '

ç ['etu,1 - t,

:J
--J
:l

ùutonôtigue

l,J,ln

E 1f,,.

+il

I
F lÈ dÊ:: ôFF,Él!

TYpe

- ['Êf-,]rrilr ltEIrÈf,:!li]:itrr!ff rJ:l:r,r ll,/:-t,jE,:ll trÈnr:rrslr

)
L4l À,rlûhôtrqui | $rsl l# EJ Fre des ar,ç,ets I r.tl î
Là gÈnerarlûn Ë reusii Ln t h {-,rl ,t i-l',

tr'rn tu-ol
(ttn,rr:Lr:l"t'rl.irfi,:rrlff,l:l,t,t Ê'elIif:f5]:tt|È[,Èi:,t]:,_,:ir:l;!:]:r,l#

]

[Énr:riifitE[Èi:r]ii 'rriir r.i-f i i l::f ':,r!lftlË[i[]lll_:fst:rtr:r':1,:#
]

l

261Chapitre 11 : Rendre une classe responsable

Continuez d'appuyer sur la touche Fl I pour avancer dans le
programme.

N'oubliez pas de continuer après la commande [],.-,i-, s o L e . r. Ê.: :l .

Vous devrez appuyer sur Entrée dans la fenêtre du programrle
avant de pouvoir continuer à avancer pas à pas dans la fenêtre du
débogueur Visual Studio.

lnitialîser un dîrectement : constructeur

t.

leobjet
par défaut

Vous pourriez croire que presque n'importe quelle classe peut avoir un
constructeur par défaut d'un certain type, et dans une certaine mesure.
vous avez raison. Toutefois, C# vous permet d'initialiser directenrent un
membre donnée en utilisant une instruction d'initialisation.

Ainsi, j'aurais pu écrire la classe Bar,kAccount de Ia façon suivante :

publie class BankAccount

t
// l-es nunéros de compte commencent à 1000 et augmentent
I I ^t ^,,^^.i ^1|pmpnf à nert.i r dp 1à| | ùg9uElrLftrarclucllL o yq! Lrr uc

static i.nt nNextAccountNunber = 1000;

ll net à jour 1e numéro de compte et 1e solde pour chaque objet
int nAccountNumber = **nNextAccountNunber :

double dBalance = 0.0t
ll autres memDres.

j

nAccountNumber €t dBalance se voient assigner une valeur dans leur
déclaration, ce qui a le même effet qu'un constructeur.

Soyons très clair sur ce qui va se passer exactement. Vous pensez peut-
être que cette instruction assigne directement 0.0 à cga Lance. Mais
dBalance n'existe qu'en tant que partie d'un objet. Aussi, I'assignation
n'est-elle pas exécutée avant qu'un objet BankAccount soit créé. En fait,
cette assignation est exécutée chaque fois qu'un tel objet est créé.

C# récolte toutes les instructions d'initialisation qui apparaissent dans les
déclarations de la classe, et les réunit dans un constructeur initial.

262 Ouatrième partie : La programmation orientée objet

Les instructions d'initialisation sont exécutées dans I'ordre où elles se
présentent dans les déclarations de la classe. Si C# rencontre des
initialisations et un constructeur. les initialisations sont exécutées avant
le corps du constructeur.

Uoqons comment se fait la construction auec
des initialisations
Déplacez maintenant I'appel rrew l"f.,'OtherObiect O du constructeur
l1_1,f;5 ject à la déclarettion elle-même, comme ci-dessous, puis exécutez
nouveau le progranlnle :

nrrhf ic class Mv0hiect

{

// ce membre est une propriété
<tnt'i n Mvôthorôhiont ctetirnhi

// ce membre est une propriété
MvôthprChiont rlrrn-aminOhi = now

public My0bj ect ()

{

Console.tr.lriteline ("Démarrage du constructeur My0bject") ;

Console.Writeline{"Fi.n du constructeur My0bject") ;

)

Le programme modifié donne la sortie suivante

Démarrage de Main0
Construction de My0therObject en cours
Construction de My0therObject en cours
Démarrage du constructeur My0bject
Fin du constructeur My0bject
Appuyez sur Entrée pour terminer...

Vous trouverez le programme complet sur le site Web, sous le nom
remarquable de lenon s t r at e Con s t ruc t o rlv'i th I nlt i aliz e r .

de la classe
= new My0ther0bject0;
de 1'objet
Mrrôthorôh'iont f) .

vvJ çç L \ / t

Chapitre 11 : Rendre une classe responsable 2 63

Surcharger le constructeur
On peut surcharger un constructeur, tout comme n'importe quelle autre
méthode.

Surcharger une fonction signifie définir deux fonctions portant le même
nom, mais ayant des arguments différents. Pour en savoir plus, voyez le
Chapitre 7.

Imaginez que vous vouliez offrir deux manières de créer un Bank-Account
une avec un solde àzéro, comme le mien la plupart du temps, et une
autre avec une valeur initiale :

// BankAccountWithMultipleConstructors -#"*$3f\ ffir]I t"'7

æ,
tl
ll

fournit à notre compte bancaire
un certain nonbre de construeteurs,
un pour chaque occasion

using System;

nâmespac e BankAccountWithMult ip1 eConstructors
t

using Systen;
public class C1ass1

t

public static int Main(stringil args)
{

I I crée un conpte bancaire avec des valeurs initiales valides
BanhAccount ba1 = nerrr BankÀccount 0 ;

Console.l,rlriteline (bal . GetString()) ;

ËankAccount ba? = new BankAccount(100);
Console.lririteline (ba2 . GetString 0) ;

BankAccount ba3 = new BankAccount(Iz3|, 200);
Console,Writeline (ba3, GetString 0) ;

// attend confirmation de 1'utilisateur
Console.i,ilriteLine("Appuyez sur Entrée pour terminer...") ;

Console.Read0;
return 0;

l
]
// BankAccount - simule un sinple conpte bancaire
public class BankAccount

t

I I les numéros de compte coffrencent à 1000 et augmentent
// séouentiel I ^-^-+ À ^^-+i - ,l^ 1àt t DLyusrrLlcrrçulclIL a PaL Lal uE

static i.nt nNextAccountNumber = 1000;

264 ouatrième partie: La programmarion orientée objer

Il +4^^+: .'^..- 1// r:.enr a Jour re numéro de compte et 1e solde
i.nt nAccountNunber;
double dBalance;
// fournit une série de constructeurs selon 1es besoins
public BankAccount ()

{

nAccountNurnber : #nNextAccountNurnber i

dBalance = 0.0;
l
public BankAccount (double dlnitialBalance)
{

// reprend une partie du code du constructeur par défaut
nAccountNumber = #nNextAccountNumber ;

/l et nai"ntenant, le code propre à ce constructeur
l/ commence avec 1e solde initial, à condition qu'i1 soit positif
if (dlnitialBalance (0)

{

dlnitialBalance = 0;
l
dBalance : dlnitialBalance;

l
public BankAccount (int nlnitialAccountNumber,

double dlnitialBalance)
{

I I ignore 1es numéros de compte négatifs
if (nlnitialAccountNumber (= 0)

t

nlnitialAccountNumber = *tnNextAccountNumber
;

]

nAccountNumber = nlnitialAccountNumber ;

// comnence avec le solde initial, à condition qu'i1 soit positif
if (dInitialBalance (o)

{

dTnitialBalance : 0;

]

dBalance = dlnitialBalance;
I

- 11!public string GetString0
{

return String.Format("#{O} = {l:N}",
nAccountNunber, dBalance) ;

]

Ghapitre 11 : Rendre une classe responsable 26 5

Cette version du programme BankAccountWithMuitipleCcnstruciors
comporte trois constructeurs :

t/ Le premier constructeur assigne un numéro de compte, et définit
un solde égal à 0.

t/ Le deuxième constructeur assigne un numéro de compte, mais
initialise le solde du compte avec une valeur positive. Les valeurs
de solde négatives sont ignorées.

t/ Le troisième constructeur permet à I'utilisateur
numéro de compte positif et un solde positif.

En utilisant chacun de ces trois constructeurs, Main ()

bancaire différent, et affiche les objets créés. La sortie
ce programme se présente de la façon suivante :

/ltoot = o.oo

llnaz: ioo.oo

lltzlt = 2oo.oo
Ànnrrrroz crrr T'ntr6o nnrrr torminpr

de spécifier un

crée un compte
de I'exécution de

Ettîter

Dans le monde réel, une classe effectuerait beaucoup plus de tests sur les
paramètres d'entrée donnés au constructeur, pour vérifier leur validité.

Ce sont les mêmes règles qui s'appliquent aux fonctions vous permet-
tant de différencier les constructeurs. Le premier objet à être construit
par Main O, bai, est créé sans argument et est donc orienté vers le
constructeur par défaut pour y recevoir le numéro de compte par défaut
et un solde égal à zéro. Le deuxième compte, ba2, est envoyé au cons-
tructeur BankAccount (double) pour y recevoir le numéro de compte
suivant, mais il est créé avec un solde initial de 100. Le troisième, ba3,

reçoit un traitement complet, BankAc c ount (int , ri oub 1e) , avec son
propre numéro de compte et un solde initial.

t t)t
les duplicatÎnns entre les cnnstructeurs

Tout comme un scénario de série télévisée, les trois constructeurs de

BankAcc ounr comportent une proportion significative de duplications.
Comme on peut I'imaginer, la situation serait bien pire dans des classes du
monde réel qui pourraient avoir de nombreux constructeurs, et surtout
bien plus de données à initialiser. De plus, les tests à effectuer sur les

données saisies peuvent avoir une plus grande importance dans une classe

266 Ouatrième partie : La programmation orientée obiet

du monde réel que sur une page Web. La duplication cle règles commercia-
les est à la fois fastidieuse et source d'erreurs. Les vérifications peuvent
facilemer-rt se trouver en désaccorcl. Par exemple, ch-r fait cl'une simple
erreur de codage, deux constructeurs peuvent appliquer atr solde cles

règles différentes. De telles erreurs sont très difficiles à retrouver.

Vous préféreriez peut-être qu'un constructeur en appelle urt autre. rnais les
constructeurs ne sont pas des fonctions : on ne peut pas les appeler.
Toutefois, vous pouvez créer une alternative sous la forrne cl'une fonction
qui effectue la véritable construction, et lui passer le contrôle, comrne le
mOntre le programme Salrkr.cccJntCorrst r',-.i i ir: s:r,ôFr,/':rr. , ';lt ci-dessous :

// BankAccountContructorsAndFunction -

I I fournit à notre compte bancaire
I I un certain nonbre de constructeurs,
I I un pour chaque occasion
using Systen;
name spac e BankAc c ount Cont ruct o r sAndFunct ion
{

"^.; -^ Q"n+an.uDrrr6 ujôLçru,

publj-c class C1ass1

{

public static int Main(stringIJ args)
{

I I crêe un compte bancaire avec des valeurs initiales valides
BankAccount ba1 = new BankAccount 0 ;

Console.ItIriteline (bal.GetString 0) ;

BankAccount ba2 = new BankAccount (100) ;

Console.Writeline (ba2 . GetString 0) ;

BankAccount ba3 = new BankAccount(i234, 200);

Console. l./riteLine (ba3 , GetString 0) ;

// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terniner. ..") ;

Console.Read0;
return 0;

j

l
// BankAccount - simule un simple compte bancaire
public class BankAccount

{

I I |es numéros de compte commencent à 1000 et augnentent

l/ séquentiellement à partir de 1à

static int nNextAccountNumber = 1000;

// tient à jour le numéro de compte et le solde
int nAccountNumber;

double dBalance;

// place tout 1e véritable code d'initiaiisation

Chapitre tl : Rendre une classe responsable 267

I I dans une fonctj.on conventionnelle séparée
public BankAccount0

{

. Init(**nAceountNumber, 0'0) ;

]
public BankAccount (double dlnitialBalance)
{

Tnit (**nAccountNumber, dlnitialBalance) ;

]
ll c'est 1e constructeur le nlrrs snéeifinrre orii fait tout
I I 7e véritable travail"
public SankAccount (int nlnitialAecountNunber,

double dIni.tialBalance)

{

Init (nlni.tialAccountNumber, dlnitialBalance) ;

l
nrirrato,,nid lnil (int nlnitialAccountNUrnber,

double dïnitialSalance)
t

nAccountNunber = nlnitialAccountNunber :

/l comnence avec 1e solde initial, à condition qu'i1 soit positif
I F I r- t /

^\1r (0ln1t141Ëalance \ u/

{

dlnitialBalance = 0:
]

dBalance = dlnitialBalance;
]

public string GetString0
t

return String.Format("{É{0i = {l :NJ",
nAccountNunber, dBalance) ;

]
i

]

Dans cet exemple, c'est la méthode Init O qui fait le véritable travail de
construction. Toutefois, cette approche n'est pas absolument irréprocha-
ble pour plusieurs raisons, dont I'appel d'une méthode d'un objet avant
que celui-ci ait été entièrement construit n'est pas la moindre. C'est une
chose très dangereuse.

Heureusement, ce n'est pas nécessaire. Un constructeur peut se référer à
un autre avec une variante de I'utilisation du mot-clé tlris :

// SankAccountContructorsAndThis -

I I fourni.t à notre compte bancaire
I I un certain nombre de constructeurs.

268 Ouatrième partie : La programmation orientée objet

un Dour chaoue occasion
ti^.i-^ Q"a+an'ublrrB oy b Ltrnl,

naïre space BankAce ountC0ntructo rsAndïhis
t

,,^;-^ C,"^+^-,uùrllË Jy ù Lcnr,

public class Classl
{

public static int Main(stringI args)
{

I I crée un conpte bancaire avec des valeurs initiales valides
BankAccount ba1 = new BankAccount 0 ;

Console.l,iriteline (bal.GetString0) ;

BankAccount ba2 = new BankAccount(100);

Console.Writeline (ba2, GetString ()) ;

BankAccount ba3 = new BankAccountQ234, 2û0);
Console.l,Iriteline (ba3 .GetString 0) ;

// attend confirnation de 1'utilisateur
Console. l^lriteline ("Appuyez sur Entrée pour terminer. . . ") i

Console. Read 0 ;

return 0:

l
1
)

I I nankeccount - simule un simple compte bancaire
publj-c class BankAccount
ît

I I les numéros de cornpte commencent à 1000 et augmentent

// séquentiellement à partir de 1à

static int nNextAccountNumber = 1000;

ll tient à iour ie numéro de comnte et le solde

int nAccountNumber;

double dBalance;
/l invoque 1e constructeur spécifique en fournissant
I I des valeurs par défaut pour les arguments manquânts
nrrhlin RanlrÀnn9111 0 : thiS(0, 0) tllerrrrr.çuvur.!\/ . srr+v\v, w/

public BankAccount(double dlnitialBalance) :

this (0, dlnitialBalance) {}
// c'est le constructeur le plus spécifJ.que quL fait tout
I I te véritable travail
public BankAccount (int nlnitialAccountNumber,

doub 1e dlnitialBalance)
I
t

I I ignore 1es numéros de compte négatifs ; un numéro de cornpte nu1

// indique que nous devons utiliser 1e prochain nunéro disponible
if (nlnitialAccountNurnber (= 0)

t

nlnitialAccountNumber = **nNextAccountNunber ;

l
nAccountNunber = nlnitialAccountNumber ;

Chapitre 11 : Rendre une classe responsable 269

// commence avec le solde initial, à condition gu'il soit positif
if (dTnitialBalance (0)\v-.r+!rs,!**-nce \ uJ

{

dTnitialBalance * 0;
j

dBalance = dlnitialBalance;
l
public stri.ng GetString0
t

return String.Fornar("{ltOt = [].:N]",
nAccountNumber, dBalance) ;

]

J

Cette version de BankAccount contient les trois constructeurs que nous
avons vus dans la version précédente, mais au lieu de répéter les mêmes
tests dans chaque constructeur, les deux constructeurs les plus simples
invoquent le troisième (le plus souple), qui fournit des valeurs par défaut
pour les arguments manquants.

La création d'un objet en utilisant le constructeur par défaut invoque le
constructeur BankAccount () :

BankAccount bai = new BankAccount 0 ;

Le constructeur BankAccount O donne immédiatement le contrôle au
constructeur BankAccount (int, Couble), en lui passant les valeurs par
défaut 0 et 0.0 :

public BankAccount0 : this(0, 0) tl

Le tout-puissant troisième constructeur a été modifié pour rechercher un
numéro de compte nul et le remplacer par un numéro valide.

Le contrôle est restitué au constructeur par défaut une fois que le construc-
teur invoqué a terminé son travail. Dans ce cas, le corps du constructeur
par défaut est vide.

La création d'un compte bancaire avec un solde mais un numéro de
compte par défaut passe par le chemin suivant :

public BankAccount(double d) : this(0, d) {l

2 7 0 Ouatrième partie : La programmation orientée objet

Êue a(lare de ses objets
On ne peut pas construire un objet sans un constructeur correspondant.
Si vous définissezvolre propre constructeur, C# retire le sien. En combi-
nant ces deux aspects, vous pouvez créer une classe qui ne peut être
instanciée que localement.

Par exemple, seule une méthode définie dans le même espace de nom que
BankAccount peut créer un objet BankAccount avec Ie constructeur
déclaré comme internal (pour en savoir plus sur les espaces de nom,
reportez-vous au Chapitre l6) :

ll Ba*.kAccount - simule un simple compte bancaire
public class BankAccount

{

I I Les numéros de compte connencent à 1000 et augnentent
// séarrentieilement à oartir de ià
static int nNextAccountNumber = 1000:

ll tient à jour 1e nunéro ds ssmnte ot le snldp
int nAccountNunber;

double dBalance:

// invoque 1e constructeur spécifique en fournissant
I I des valeurs par défaut pour 1es arguments manquants

internal BankAccount ()

{

nAccountNumber = *tnNextAccountNumber ;

dBalance = 0:

l
public string GetString0
{

return String.Format ("11{Ol = {1 ;N1",
nAccountNunber, dBalance) ;

]
]

Ghapitre 12

Acceptez-vous I'h éritage ?

Dans ce chapitre :

Définir un nouveau type de classe. lrlus fondamental.

Faire la différence entre "EST UN" et "A UN".

Changer la classe d'un objet.

Construire des membres statiques, clu de classe.

Inclure des constructeurs dan.s une hiérarchie cl'héritage.

Invoquer spécifiquement le constructeur cle la classe de base.

a programmation orientée objet repose sur trois principes : la possibilité
de contrôler I'accès aux objets (l'encapsulation), la possibilité

d'hériter d'autres classes, et la possibilité de répondre de façon appropriée
(le polymorphisme).

L'héritage est une notion ordinaire. Je suis un être humain, sauf à I'instant où je

sors du sontmeil. J'hérite de certaimes propriétés de la classe Humain, comme
ma capacité de dialoguer (plus ou ntoins), et ma dépendance à l'égard de I'air,

de la nourriture et de boissclns contenant beaucoup de caféine. La classe
Hunain hérite sa clépenclance à l'égarcl de I'air, de I'eau et de Ia nourriture de la

classe llammif ère, qui, elle-mênte, hérite de la classe Animal.

La capacité cle transmettre cles propriétés à un "héritier" est un aspect très
puissant de la programmation orientée objet. E,lle permet de décrire les

choses d'une manière économique. Par exemple, si mon fils me demande :

"Qu'est-ce que c'est un canard ?" Je peux répondre : "C'est un oiseau qui fait
coin coin." En dépit cle ce que vous pouvez penser, cette réponse contient
une quantité considérable cl'informations. Mon fils sait ce qu'est un oiseau,
et il sait maintenant qu'utr canard possède toutes les propriétés qu'il
connalt des oiseaux, plus la propriété supplémentaire "faire coin coin".

272 Quatrième partie : La programmation orientée obiet

Les langages orientés objet expriment
tant à une classe d'hériter d'une autre.
permet aux langages orientés objet de

du monde réel que les langages qui ne

I'héritage.

la classe SubCl-ass hérite de

de 1a classe de base :");

sous - classe
d'une sous-classe :");

Hériter d'une classe

Dans I'exemple IttherltanceExarnple suivant,
la classe IlaseCrass l

// InheritanceExample - offre 1a démonstration

using System;

la plus simple de 1'héritage

nanespace InheritanceExanPle

{

public class BaseClass

t
public int nDataMenber;

public voi-d Somel'lethod0

t

Console.!'lriteline ("SoneMethod () ") ;

l
l
public class SubClass: BaseClass

t

public void Some0therMethod0

{

Console.l,lriteLine ("Sone0therMethod 0 ") :

l
l
public class Test

{

public static int Main(stringIJ args)

{

I I crée un objet de 1a classe de base

Console.ltlriteline ("Utilisons un objet
BaseClass bc = new BaseClassO;
bc.nDataMember = 1;

bc.SomeMethodO;

// créons naintenant un élément d'une

Console.lJriteline ("Utilisons un objet
SubClass sc = ne.,/ Sub0lassO;

sc.nDataMernber = 2;

sc. SoneMethod(J ;

cette relation d'héritage en permet-
C'est cette caractéristique qui
produire des modèles Plus Proches
disposent pas du PrinciPe cle

Ghapitre 12: Acceptez-vous l'héritage ? 273

sc. Sonre0therMethod () ;

// attend confirmation de 1'utilisateur
Console.tdriteline ("Appuyez sur Entrée pour terminer, . .") ;

Console.Read0;
return 0:

l

La classe BaseCiass est définie av€'c un rnembre donnée, et Ltne simple
fonction membre, Soneile'r1ro,1 r t. L'objet L,i de la classe BaseC rass €st
créé et utilisé dans liai:i i).

La classe SubClass hérite de la classe EaseCia:rs en plaçant le nom de celle<i
après le signe deux-points (:) dans sa déclaration. SubClass récupère donc
tous les membres de BaseCiass, et peut y ajouter les siens. ilain (I montre
que SubClass â maintenant un membre clonnée, rrDatalien'.ler, et une fonction
membre, SoneMethoc O, qui viennent rejoindre le nouveau membre de la
famille, la petite méthode SoneCthe rt-l r a,;s . r .

Le programme produit Ia sortie attendue fie suis toujours surpris quand
un de mes programmes donne les résultats attendus) :

Utilisons un objet de 1a classe de base :

SoneMethod ()

Utilisons un objet d'une sous-classe :

SoneMethod ()

Sone0therMethod ()

Appuyez sur Entrée pour terminer. . .

Ceci est stupéfiant

Pour comprendre leur environnement, les êtres humains construisent de vastes taxonomies.

Par exemple, Milou est un cas pafticulier de chien, qui est un cas particulier de canidé, qui

est un cas particulier de mammifère, et ainsi de suite. Notre représentation du monde qui

nous entoure estfaçonnée par cette manière de classifier les choses.

Dans un langage orienté objetcomme t#, nous disons que la classe Student hérite de la

classe Person. Nous disons aussi Que Person est une classe de base de Student, et que

Student est une sous-classe de Person. Enfin, nous disons qu'un Student EST-UNE

rerson.

274 ouatrième partie : La programmation orientée objet

Bemarquez que la propriété IST-UN n'est pas réflexive:un student EST_UNE person,
mais I'inverse n'est pas vrai. Une Person N'EST*PAS_UN Srudent. Un énoncé comme
celui-ci se réfère toujours au cas général. ll pourrait se trouver qu'une person particulière
soit effectivement un Student, mais beaucoup de gens qui sont membres de la classe
Person ne sont pas membres de la classe Student. En outre,la classe Student possède
des propriétés qu'elle ne partage pas avec la classe pe rs on. Par exemple, un studen r a une
moyenne de points d'UV, mais une person ordinaire n'en a pas.

L'héritage est une propriété transitive. Par exemple, si je définis une nouvelle classe
GraduateStud€nt cOmme une sOus-classe de Student, alors un Graduatestudent êSt
aussi une Person. Et il doit en être ainsi : siun GraduateStudent EST_UN student et un
Student EST-UNE Person, alors un GraduateStudent EST_UNE person. C0FD.

À quoi me sert
L'héritage a plusieurs fonctions irnportantes. Vous pourriez penser qu'il
sert à réduire le volume de ce que vous avez à taper au clavier. Dans une
certaine mesure, c'est vrai : lorsque je décris un objet de la classe
student, je n'ai pas besoin de répéter les propriétés d'une person. Un
aspect plus important, mais lié à celui-ci, est le grand mot d'or dre réutiti-
.ser. Les théoriciens des langages de programmation savent depuis long-
temps qu'il est absurde de recommencer de zéro pour chaque nouveau
projet en reconstruisant chaque fois les mêmes composants.

Comparez la situation du cléveloppement cle logiciel à celle cl'autres indus-
tries. Y a-t-il beaucoup de constructeurs automobile qui commencent par
concevoir et fabriquer leurs propres pinces et tournevis pour construire une
voiture ? Et même s'ils le faisaient, combien recommenceraient de zéro en
réalisant des outils entièrement nouveaux pour chaque nouveau modèle ?
Dans les autres industries, on s'est rendu compte qu'il est plus pertinent
d'utiliser des vis et des écrous standards, et même des composants plus
importants comme des moteurs, que de repartir de zéro chaque fois.

L'héritage permet de tirer le meilleur parti des composants logiciels
existants. Vous pouvez adapter des classes existantes à de nouvelles
applications sans leur apporter de modifications internes. C'est une
nouvelle sous-classe, contenant les ajouts et les modifications nécessai-
res, qui hérite des propriétés d'une classe existante.

l'héritage I

Cette capacité va de pair avec un troisième avantage de I'héritage. Imagi-
nez que vous héritiez d'une classe existante. Un peu plus tard, vous vous
apercevez que celle-ci a un bogue qu'il vous faut corriger. Si vous avez
modifié la classe pour la réutiliser, vous devez rechercher manuellement
le bogue, le corriger et tester le résultat, séparément, pour chaque appli-
cation qui I'utilise. Si vous avez hérité de la classe sans lui faire de modifi-
cations, vous pourrez dans la plupart des cas introduire sans surprises la
classe corrigée dans toutes les applications qui I'utilisent.

Mais le plus grand avantage de principe de I'héritage est de coller à la
réalité de la vie. Les choses héritent des propriétés d'autres choses.
Comme disait ma grand-mère, c'est la nature des choses.

Ghapitre 12 :Acceptez-vous l'héritage ? 27 5

d'uneUn evernlrle plus concret :
BankAc c ount

classe(tériter

Ma banque connalt plusieurs types de comptes bancaires. L'un d'eux, le
compte rémunéré, possède des propriétés ordinaires d'un compte ban-
caire, plus la capacité d'accumuler des intérêts. L'exemple de programme
suivant, SimpleSavingsAccount, réalise en C# un modèle de ces relations :

Que les plus impressionnables d'entre vous ne s'affolent pas : ce listing
est un peu long, mais il est divisé en parties clairement distinctes.

é*\q/\e,
--"-ffi
ry

l/ SinplesavingsAccount - inplônente un SavingsAccount coiture forne
ll d'un BankAccoTJnt ; n'rrtiLise pas de méthode virtuelle
using System;

nanespace SimpleSavingsAccount

i
I I BankAccount - sinule un conpte bancaire possédant

I I un numéro de compte (assigné à La création
I I du conpte) et un solde
public elass BankAccouni

t

I I les numéros de conpte connencent à 1000 et augnentent

// séquentiellement à partir de 1à

public static int nNextAccountNunber * 1000;

I I net à jour 1e numéro de cornpte et Ie solde pour chaque objet
pubLic int nAccountNunber;
public deciural mBalance ;-l

I tnit - initialise 1e conpte avec le proehain nunéro de compte

I / et 1e solde initial" spécifié

2 7 6 0uatrième partie : La programmation orientée ob jet

I | (qui est éga1 à zêro par défaut)
public void InitBankAccount0
{

InitBankAccount (0) ;

l
public void InitBankAccount (decimal mlnitialBalance)
{

nAccountNunber * **nNextAccountNumber ;

nBalance = mlni"tialBalancei
l
// Balance (so1de)

public decimal Balance

t

get I return nBalance;]

]
// Deposit - tout dépôt positif est autorisé
public void Deposit (decimal mÀnount)

{

if (mAmount) 0)

{

nBalance *= mAnount;

l
]

1/ I'lithdraw - tout retrait est autorisé jusqu'à la valeur
I I du solde ; retourne 1e nontant retiré
public decimal Withdraw(decinal mWithdrawal)

{

if (mBalance (= mWithdrawal)

{

nWithdrawal = nBalance;

]
nBalance -= rnl,lithdrawal ;

return nrWithdrawal;

]
// ToString - met le compte sous forme de chaîne
public string ToBankAccountString()

{

return String.Fornat("{0} - {1:C}",
nAccountNunber, mBalance) ;

]

]

// SavingsAccount - compte bancaire qui rapporte des intérêts
public class SavingsAccount : BankAccount

{

public decimal nlnterestRate;
l/ tnitsavingsAccount - 1it le taux d'intérêt, exprimé en

I I pourcentage (valeur comprise entre 0 et 100)

public void InitSavingsAccount (decirnal mlnterestRate)

Chapitre 12:Acceptez-vous l'héritage ? 277

InitSavingsAccount (0, mlnterestRate) ;

l
nrrhl.in .,ni.{ fnjtSavincsÂccount(decimal mlnitiai,y su r:v

decimal mlnterestRate)
{

Ini-tBankAccount (mInitia1) ;

this.mlnterestRate : mlnterestRate / tO0:
l
J

// Accurnulatelnterest - invoquée une fois par période
public void Accumulatelnterest()
t

mBalance = mBalance * (decimal) (mBalance * mlnterestRate) ;

l
// ToStri-ng - met le compte sous forne de chaîne

public string ToSavingsAccountString0
t

return String.Format(" [0] ({11,') ",
ToBankAccountString0, mlnterestRate * 100) ;

l
l
public class C1ass1
I
L

public static int Main(string[] args)
{

I I crêe un conpte bancaire et 1'affiche
BankAccount ba = new BankAccount{);
ba. InitBankAccount (100) ;

ba.Deposit(100);
Console.1,{riteline("Conpte {0J", ba.ToBankAccountString0) ;

I I et naintenant un compte rémunéré

SavingsAccount sa = new SavingsAccount();
sa. InitSavi.ngsAccount (100, 12. 5M) ;

sa.Accumulatelnterest () ;

Console.i^lriteline("Compte {01", sa.ToSavingsAccountString()) ;

// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer. ..") ;

Console.Read0;
return 0;

'|

J

1
)

1

J

La classe Bank,!.,. rrr i n'est guère clifférente de celles qui apparaissent
dans d'autres chapitres de ce livre. Elle commence par la fonction
d'initialisation sLlrchargée lri'. 3:rri..,rc.roiir'- | I : une pour les comptes qui

Sont Créés avec un Solde initial, une autre pour ceux qui devront se

contenter de comnlencer cle zértl.

2 7 8 Ouatrième partie : La programmation orienrée ob jer

La propriété Balance permet de lire le solde, mais sans donner la possibi-
lité de le modifier. La méthode Deposit O accepte tout dépôt positif. La
méthode Withd raw () vous permet de retirer tout ce que vous voulez dans
la limite de ce que vous avez sur votre compte. ToBankAccountStrine o
crée une chalne qui donne la description du compte.

La classe SavingsAccount hérite de toutes ces bonnes choses de
BankAccount. A cela, elle ajoute un taux d'intérêt, et la possibilité
d'accumuler des intérêts à intervalle régulier.

Maln O en fait le moins possible. Elle crée un BankAccount, affiche le compte,
crée un SavingsAccount, ajoute une période d'intérêts, et affiche le résultat :

Compte 1001 - 200,00 n

Compte 1002 - 112,50 [(12,5%)

Appuyez sur Entrée pour terminer...

ld!- L Remarquez que la méthode InitSavingsAccount o invoque
75 InitBankAccount O. Cela initialise les membres donnée propres au

f\!/ compte. La méthode InitSa-.'ingsAccount O aurait pu les initialiser
Y directement, mais il est de meilleure pratique de permettre à

BankAccount d'initialiser ses propres membres.

EST_UN par ralrport à A_UN - i'ai du mal à
t.

m'ul retroutler
La relation entre SavingsAccount et BankAccount n'est rien d'autre que la
relation fondamentale EST-UN. Pour commencer, je vais vous montrer
pourquoi, puis je vous montrerai à quoi ressemblerait une relation A_UN.

La relatîon EST UN

La relation EST-UN entre -s3r.,i11gsr\ccount et BarrkAccount est mise en
évidence par la modification suivante à c 1a s s 1 dans le programme
SirnpleSa-,'iiigsAccouni- de la section précédente :

pub-Lrc class Classl
It

/ / fti rpetttennsi f - ef f ectue automaticuement 1e riénôt 11 'rrn chènrrpsu Lvruo LrtcYuç

public static void DirectDeposit(BankAccount ba,

Chapitre | 2: Acceptez-vous l'hérit age ? 27I

rlpnim:i mPnrr)

ba. Deposit (mPay) ;

l
public static int Main(stringIJ args)
t

I I crée un conpte bancaire et 1'affiche
BankAccount ba = new BankAccount 0 ;

ba. InitBankAccount (100) ;

DirectDeposit(ba, 100) ;

Console.liriteline("Compte {0J ", ba.ToBankAccountString0) ;

/ I et naintenanr un compre rénunéré
SavingsAccount sa = ne!/ SavingsAccount0;
sa. InitSavingsAccount (i2 . 5M) ;

DirectDeposit(sa, 100) ;

sa, Accumulatelnterest () ;

Console, i,lriteline ("Conpte {0J " , sa, TosavingsAccountString 0) ;

// attend confirmation de 1'utilisateur
tonsole.T,Iriteline("Appuyez sur Entrée pour terniner...',) ;

Console.ReadO;
return 0;

]

]

Les effets de ce programme n'ont pas changé. La seule véritable diffé-
rence est que tous les dépôts sont maintenant effectués par la fonction
locale DirectDeposit |), Les arguments de cette fonction sont le compte
bancaire et le montant à déposer.

Remarquez (c'est le bon côté de la chose) que l'lain () peut passer à
DirecrDeposit O soit un compte ordinaire, soit un compte rémunéré, car
ur.t SavingsAccc'unt EST_UN BankÀ,:corrni et en reçoit par conséquent
tous les droits et privilèges.

Contenir B ankAc c ou nt pour ,/ accéder

La classe Sa,,'ingsAccorrnt aurait pu accéder d'une autre manière aux
membres de BankAccount :

// SavingsAccount - compte bancaire qui rapporte des intérêts
public class SavingsAccount_

{

public SankAccount bankAccount ;

public decimal nlnterestRate;
// InitsavingsAccount - 1it 1e taux d'intérôt, expriné en

2 8 0 0uatrième partie : La programmation orientée objet

I I pourcentage (valeur conprise entre 0 et 100)

public void InitSavingsAccount(BankAccount bankAccount,
dec imal mlnterestRate)

t

this.bankAccount = bankAccount ;

this.mlnterestRate = mlnterestRate I 100:

]

// Accumulatelnterest - invoquée une fois par période
nrrbl ie void Accumulatelnterest0uv!çve \/

{

bankAccount.mBalance = bankAccount.mBalance
+ (bankAccount.nBalance * mlnterestRate) ;

j

// Deposit - tout dépôt positif est autorisé
public void Deposit (decimal mAmount)

{

bankAccount . Deposit (rnAnount) ;

l

i / Withdraw - tout retrait est autorisé jusqu'à la valeur
I I du solde : retourne 1e montant retiré
public double Withdraw(decimal rnWithdrawal)
I
t

return bankAccount, Withdraw(mWi.thdra,,+a1) ;

'l
.J

l

Ici, la classe Sa'ringsAccount contient un membre donnée bankAccount
(au lieu cl'en hériter de'laril.,."ie rri)-n:). L'objet bankAccount contient le
solde et le numéro clu compte, irtformations nécessaires pour la gestion
du compte rémunéré. Les données propres à un compte rémunéré sont
contenues dans la classe Sa.,,'ing.:ticit.ult t

Dans ce cas, nous disons eue...,:^'.':',.E.----,-r' rii:'t A_UN BanitAccounl--.

La relation A UN

La relation A_UN est fondamentalement différente de la relation EST_UN.
Cette différence ne selnble pas rnauvaise dans I'exemple de code suivant :

I I cré.e un nouveâu compte rémunéré

BankAccount ba = new BankAccount 0
SavingsAccount_ sa = nev SavingsAccount 0;
sa. InitSavingsAccount (ba, 5) ;

I I et y dépose cent euros
sa.Deposit(100) ;

Ghapitre 12: Acceptez-vous l'héritage ? 28 |

I / puis accumule des intérêts
sa . Accunulatelnterest () ;

Le problème est qu'un SavingsAccount_ ne peut pas être utilisé comme
un BankAccount. Par exemple, le code suivant ne marche pas :

ll DirectDeposit - effectue autonatiquenent 1e dépôt d'un chèque
void DirectDeposit(BankAccount ba, int nPay)

{

- ba.Deposit (nPay) ;

]
void SoneFunction0
t

// 1'exemple qui suit ne narche pas

SavingsAccount* sa = new SavingsAccount_0;
DirectDeposit (sa, 100) ;

I I suite.
)

DirectDeposit () ne peut pas accepter un SavingsAccount_ en lieu et place
d'un BankAccount. C# ne peut voir aucune relation évidente entre les deux.

Quand utilîser EST_UN et quand utiliser A_UN ?
La distinction entre les relations EST_UN et A_UN est plus qu'une question
de commodité logicielle, Cette relation a un corollaire dans le monde réel.

Par exemple, une Ford Explorer EST_UNE voiture (quand elle n'est pas
sur Ie toit). Une Explorer A_UN moteur. Si un ami me dit : "Viens avec ta
voiture", et que j'arrive dans une Explorer, il n'a aucun reproche à me
faire (ou alors, s'il en a, ce n'est pas parce que I'Explorer n'est pas une
voiture). Il pourrait me faire des reproches si j'arrivais en portant dans
mes bras le moteur de mon Explorer.

La classe Explorer doit apporter une extension à la classe Car, non
seulement pour donner à Explorer accès aux méthodes de Car, mais
aussi pour exprimer la relation fondamentale entre les deux.

Malheureusement, un programmeur débutant peut faire hériter Car de
Motor, donnant à la classe Car accès aux membres de Motor, dont Car a
besoin pour fonctionner. Par exemple, Car peut hériter de la méthode
Motor. Go O, mais cet exemple met en lumière I'un des problèmes qui
résultent de cette approche. Même si les êtres humains s'expriment parfois

2 8 2 Ouatrième partie : La programmation orientée ob jet

de façon ambiguë, faire démarrer une voiture n'est pas la même chose que
faire démarrer un moteur. L'opération démarrage de la voiture dépend
évidemment du démarrage du moteur, mais ce sont deux choses distinc-
tes : il faut aussi passer la première, lâcher les freins, et ainsi de suite.

PIus encore, sans doute, faire hériter Car de i{ctor est une représentation
erronée des choses. Une voiture n'est tout simplement pas un type
particulier de moteur.

"9ÉK
L'élégance du logiciel est un but qui se passe de justification. Non seulement

i(ilû) elle le rend plus compréhensible, plus fiable et aisé à maintenir, mais elle

\g_/ réjouit le gott et facilite la digestion, entre autres.

Autres considérations
C# implémente un ensemble de caractéristiques conçues pour supporter
I'héritage.

Changer de classe

Un programme peut changer Ia classe d'un objet. En fait, c'est une chose
que vous avez déjà vue dans cet exemple. SomeFunctlon O peut passer un
objet SavlngsAccouirt à une méthode qui attend un objet BankAccounr.

Vous pouvez rendre cette conversion plus explicite :

SavingsAccout () ;

ll ox:
I I une conversion vers 1e

I I 1o n^ct avnl ini+^ ^^*I t r! !qoL çÂyrfLrLc cDL

// Nont

I I Ia conversion vers 1e haut impiicite est i.nterdite
I I ceci est correct

sa : (SavingsAccount)ba;

La première ligne stocke un objet SavrngsAccoinr- dans une variable
BankAccoLlnt. C# effectue pour vous cette conversion. La deuxième ligne
utilise I'opérateur cast pour convertir explicitement I'objet.

Les deux dernières lignes reconvertissent I'objet BankAccount en
SavingsÀccounr.

BankAccount ba;
SavingsAccount sa = netll

ba : sa;
ba = (BankAccount)sa;

sa : ba;

bas imo l 'i c'i te est admise
rrâf ârâ

Chapitre 12 : Acceptez-vous l'héritage ? 2 83

-.of4Q La propriété EST_UN n'est pa.s réflexive. Autrement dit, même si Explorer
eY jE: \ est une voiture, une voiture n'e.st pa.s nécessairement une Explorer. De
=(gA J même, un EaiLi'...,r:-.r,r,*- n'est pas nécessairement un Sa.,ringsAccount, et la

\-,/ conversion implicite n'est clonc pas autorisée. La dernière ligne est admise
parce que le prograrnmeur a indiclué sa volonté de "tenter le coup".

Des casts inûalides

En général, le castir-rg cl'un objet de lai,i,...CCo.1fr1- à Sa,"'ingsAccount €st
une opération dangereuse. Consiclérez l'exentple suivant :

public static void ProcessAmount(BankAccount bankAccount)
t

I I dêpose une grosse somme sur le compte

bankAccount.Deposit (toooo. oo) ;

I I si 1'objet est un SavingsAccount,
// recueille f intérêt dès maintenant
SavingsAccount SavingsAccount = (savingsAccount)bankAccount;
^^,,.:--- À^^^..-+

^ ^^.,-..1 ^+^T-+^-^^+ / lùov rrrËùnLLuurt, Accumulatelnterest () ;

]

^',L1.i^
a+a+.ia "^.i,l T^^+/r^^+/\yuurrL ùLoLlL vulu IcùLUoùL\l

{

SavingsAccount sa = nehr SavingsAccount O ;

ProcessAnount (sa) ;

BankAecount ba = new BankAccount 0 ;

ProcessAmount (ba) ;

l

ProcessAnaount () exécute un certain nombre d'opérations, dont I'invocation
de la méthode Accr:nulateliri-ef esr i'r. Le cast de ba à un SavingsAccount
est nécessaire, parce eue ba est déclaré comm€ urr BankAccount. Le pro-
gramme se compile correctement, parce que toutes les conversions de type
sont faites par un cast explicite.

Tout se passe bien avec le premier appel à f'rocessAmount O, dans
Test O. L'objet sa de la classe Sa..ingsi\ccoririt est passé à la méthode
ProcessAmount l). Le cast de Fai'k.\cco'.rnr- à Sa-ringsAccount ne pose pas
de problème parce qlle I'objet ha était de toute façon à I'origine un objet
Sar.ingsÀ . .r'. .

Le deuxième appel à Pr o..rss.i.11,-r,lrr i ' n'est toutefois pas aussi chanceux.
Le cast à Sa.,'irrg,sAr:r:crrnT- ne peut pas etre autorisé. L'obiet ba rI'â pas de
méthode Ac cunuiat r-: i nt e r e st 1

à l'exécution

Af\s/\e,

2 8 4 Ouatrième partie : La programmation orientée ob jet

Une conversion incorrecte génère une erreur à I'exécution du programme
(ce qu'on appelle une erreur run-time). Une erreur à I'exécution est beau-
coup plus difficile à identifier et corriger qu'une erreur à la compilation.

Éuiter les conuersions innalides en utilisant le
mot-clé i s

La fonction ProcessAmount O se porterait très bien si elle pouvait être
stre que I'objet qui lui est passé est bien un Sa,"'lngsAccounr avant
d'effectuer la conversion. C'est dans ce but que C# offre le mot-clé 1s.

L'opérateur i s admet un objet à sa gauche et un type à sa droite. Il re-
tourne 'r f ue si le type à I'exécution de I'objet qui est à sa gauche est
compatible avec le type qui est à sa droite.

Vous pouvez modifier I'exemple précédent pour éviter I'erreur à I'exécu-
tion en utilisant I'opérateur is :

public static void ProcessAmount(BankAccount bankAccount)
t

l/ dépose une grosse somme sur le compte

bankAccount. Deposit (10000 . 00) ;

I I si 1'objet est un SavingsAccount
if (bankAccount is SavingsAccount)
{

ll .,.recuei11e f intérêt dès maintenant
SavingsAccount SavingsAccount = (SavingsAccount)bankAccount;

savingsAccount . Accumulatelnterest () ;

j

]
public static void TestCast o
{

SavingsAccount sa = nev/ SavingsAccount0;
ProcessAmount (sa) ;

BankAccount ba = ner,i BankAceount 0 ;

ProcessAmount (ba) ;

l

L'instruction rf supplémentaire teste I'objet banx.rccoLlï-ir- pour vérifier
qu'il est bien de la classe SavlngsAccounr. L'opérateur is retourne true
lorsque ProcessAnount O est appelée pour la première fois. Toutefois,
lorsqu'un objet bankAccount lui est passé dans le deuxième appel, I'opé-
rateur i^s retourne faise, évitant ainsi le cast invalide. Cette version de
ce programme ne génère pas d'erreur à I'exécution.

Ghapitre 12 : Acceptez-vous l'héritage ? 28 5

^qa/ D'un côté, je vous recommande fortement cle protéger tous vos casts vers

ft?ll le haut avec I'opérateur i s pour éviter le risque d'une erreur à I'exécution,

\1l/ d'un autre côté, je vous conseille d'éviter tout cast vers le haut, si possible.

La classe ob j ect

Les classes suivantes sont en relation les unes avec les autres:

public class MyBaseClass {}
pubLic class I'lySubClass : I'lyBase0lass {}

La relation entre ces deux classes permet au programmeur d'effectuer le test suivant à

l'exécution:

public class Test
{

public static void GenericFunction(MyBase01ass mc)

t
I I si 1'objet est vrainent une sous-classe..,
if (nc is !'lySubClass)

ll ...alors 1e traite corme une sous-classe
MySubClass msc E (MySubClass)mc;

I I suite
l

]

]

Dans ce cas, la fonction Gene r icFunc r i on O différen cie les sous-classes de MyB a s eC l a s s

en utilisant le mot-clé is.

Commentfaire la différence entre ces classes, apparemmentsans lien entre elles, en utilisant

le même 0pérateur is ? C# étend toutes ces classes à partir de leur classe de base commune,

object. Autrement dit, toute classe qui n'hérite pas spécifiquement d'une âutre classe

hérite de Ia classe object. Ainsi, les deux déclarations suivantes sontidentiques:

class MyClassl : object {}
class My0lass2 {)

MyClassl et MyClass2 ont en commun la classe de base object, ce qui autorise la

fonction générique suivante :

oublic class Test
'(

286 Ouatrième partie: La programmation orientée obiet

public static void GenericFunction(object o)

i

if (o is l'IyClass1)
I
r

MyClassl mcl = (MyClass1)o;
tltt

)

l
'I

J

GenerlcFunction () peut être invoquée avec n'imporle queltype d'objet. Le mot-clé :-s
extraira des huîtres ob j ect toutes les perles de MyClass 1.

et constructeur
Le programme Inherir-anceExampl e que nous avons vu plus haut dans ce
chapitre repose sur ces horribles fonctions Inlt. . . pour initialiser les
objets BatrkAccoufit et SavingsAccoLiitt en leur donnant un état valide.
Équiper ces classes de constructeurs est certainement la meilleure
manière de procéder, mais elle introduit une petite complication.

lntuquer le constructeur par
classe de base

Le constructeur par défaut de la classe de base est invoqué chaque fois
qu'une sous-class'e est construite. Le constructeur de la sous-classe
invoque automatiquement le cclnstructeur de la classe de base, comme le
montre cet exemple simple :

ll Inhpri+inoAConstructor - montrp orre lp consTrl{"teur
| { de 1a classe de base est invoqué
I I autonatiquenent
,,^.:-^ e.,-+^- 'uùrlrË JJ D LEIT,

namespace InheritingAConstructor
t

public class C1ass1

t

leL'héritage

défaut de la

Chapitre 12 : Acceptez-vous I'héritage ? 287

public static int Main(string[] args)
I

Console.I.Jriteline("Création d'un objet Base0lass") I

Base0lass bc = new Base0lassO;

Console.Writeline("\nÎ'laintenant, crêation d'un objet Subclass") ;

SubClass sc * nefir SubClass 0 ;

l/ attend confirnation de 1'utilisateur
Console.Writeline("Appuyez sur Entrée pour terniner"'") ;

Console.nead0;
return Û:

l
public class BaseClass

{

public BaseClass 0
{

Console.liriteline ("Construction de BaseClass") ;

1

publie class SubClass : Base0lass
I
I

public Sub0lass0

;

.,
Console'I,lriteline ("Construc

]
l

Les constructeurs de Baseclass et subclass ne font rien de plus qu'afficher

un message sur la ligne de commande. La création de I'obiet Baseclass

invoque le construcîeur par défaut de la classe BaseClass' La création d'un

objet SubClass invoque le constructeur de BaseClass avant d'invoquer Son

propre constructeur.

Ce programme donne la sortie suivante :

Création d'un objet Baee0lass

Construction de BaseClass

Maintenant, création d'un objet Sub0lass

tonstruction de BaseCl'ass

Construction de SubClass

Appuyez sur Entrée pour terniner" '

une hiérarchie de classes héritées ressemble beaucoup aux différents

étages d'un immeuble. Chaque classe Se trouve au-dessus des classes

288 0uatrième partie : La programmarion orienrée objer

dont elle réalise une extension. Il y a une raison à cela : chaque classe est
responsable de ce qu'elle fait. Une sous-classe ne doit pas plus être tenue
pour responsable de I'initialisation des membres de la classe de base
qu'une fonction extérieure quelconque. La classe BaseClass doit se voir
donner la possibilité de construire ses membres avant que les membres
de SubClass aient la possibilité d'y accéder.

Passer des arquments au constructeur de la
classe de base .. le mot-clé b a s e

La sous-classe invoque le constructeur par défaut de sa classe de base,
sauf indication contraire, même à partir cl'un ct-rnstructeur cl'une sous-
classe autre que le constructeur par défaut. C'est ce que montre I'exemple
légèrement modifié ci-dessous :

using System

nanespace Exanple
{

public class Classl
{

public static int Main(stringIJ args)
t

Console.l,ilriteLine("Invocation de SubClass 0',) ;

SubClass scl = new SubClassO;
Console.hlriteLine("\nlnvocation de SubClass(int) "1 ;

Sub0lass sc2 = new SubClass(0);
// attend confirmation de 1'utilisateur
Console,i.IriteLine("Appuyez sur Entrée pour terminer. . . ") ;

Console.Read O ;

return 0;

]

l
public class BaseClass

{

public BaseClass 0
{

console.Llriteline("construction de Baseclass (default)")
r

]

publie BaseClass(int i)
t

COnSOle .l,/s itoT.i nô /'rC^ncrrtnri6l de BaseClaSS (int) ") ;

l
l
public class SubClass: Base0lass

Chapitre 12: Acceptez-vous l'héritage ? 289

/\n11n | 1a \11n1 Iteq I I

{
Console. l{riteLine ("Construction

l
oublic SubClass(int i)
{

de SubClass (default)") ;

Console.1,IriteLine('rConstruction de SubClass (int) ") ;

l

L'exécution de ce progralnme donne les résultats suivants :

Invocation de SubClassi)

Construction de BaseClass (default)
Construction de SubClass (default)

Invocation de SubClass(int)
Construction de BaseClass (default)
Construction de SubClass (int)
Ànnrrrraa orrr Frl réo nnrrr torminornyPUJ ç! ùU: !rtLrcç yvu! Lsrrufrrs! '..

Le programme commence par créer un objet par défaut. Comme prévu, C#

invoque le constructeur par défaut cle SiibClar;s, qui commence par passer
le contrôle au constructeur par défaut de BaseClass. Le programme crée
alors un objet, en passant un argument entier. À nouveau comme prévu, C#

invoque SubClass (int). Ce constructeur invoque le constructeur par
défaut de BaseCjass, colTtme dans I'exemple précédent, car il n'a pas de
données à passer.

Un constructeur d'une sous-classe peut invoquer un constructeur particulier
de la classe de base en utilisant le mot-clé base.

^tf Ce procédé est très similaire à la manière dont un constructeur en invoque
;(ilû) un autre de la même classe en utilisant le mot-clé this. Pour tout savoir sur

\ry les constructeurs avec this, voyez le Chapitre 11'

Par exemple, examinez le petit programme I1.",3l.,sl3seConstructor I

// InvokeBaseConstruetor - nontre coTnment une sous-classe peut

I I invoquer le constructeur de 1a clagse de base

I I de son choix en utilisant 1e mot-clé base

using System;

nanespace TnvokeBaseConstructo r

290 0uatrième partie:La programmation orientée objet

public class BaseClass

t
public BaseClass ()

t

Console.l,iiriteLine("Construction de BaseClass (default) ") ;

l
public BaseClass(int i)
{

Console.I^IriteLine("Construction de BaseClass([0])", i) ;

l
l
public class SubClass: BaseClass

t
public SubClass ()

{

Console.l'/riteline("Construction de SubClass (default)") ;

l
public SubClass(int i1, int i2) : base(i1)
{

Console.lrlriteLine("Construction de SubClass(i01, {1J)",
il, i2);

]

]

public class C1ass1

t

public static int Main(stringIJ args)
t

Console,lllriteLine("Invocation de SubClass 0 ") ;

SubClass sc1 = new SubClass0;
Console.WriteLine("\nlnvocation de SubClass(t, 2) ") ;

SubClass sc2 = ner,r SubClass(1, 2);
// attend confirmation de 1'utilisateur
Console . l'/riteLine ("Appuyez sur Entrée pour terminer. . . ") ;

Console,Read0;
return 0;

l
]

l

Ce programme donne la sortie suivante :

Invocation de SubClass 0
tonstruction de Base0lass (default)
Construction de SubClass (default)

Invocation de SubClass(1, 2)

Ghapitre 12 : Acceptez-vous l'héritage ? 2g F

Construction de BaseClass (1)

tonstruction de SubClass (1, 2)

Appuyez sur Entrée pour terminer...

Cette version commence de la même manière que les exemples précédents,
en créant un objet SubCiass par défaut, utilisant les constructeurs par
défaut de BaseClass et de SubCiass.

Le deuxième objet est créé avec I'expression SubClass (1, 2).C# invoque
le constructeur SubClass (1nt, int), qui utilise le mot-clé base pour
passer I'une des valeurs au constructeur tsaseCias s (int) . On peut se
douter que SubClas s passe Ie premier argument à la classe de base pour
traitement, et continue en utilisant la deuxième valeur pour elle-même.

*u"uli3,\tr

La classe BankAc c ount nodifîée
Le programme ConstructorSavingsAccounr est une version modifiée du
programme SinpleBankAccount. Dans cette version, le constructeur de
SavingsAccount peut repasser des informations aux constructeurs de
BankAccount. Seuls Main O et les constructeurs eux-mêmes apparaissent ici :

// ConstructorsavingsAccount * implémente un SavingsAccount
ll colnme forme d'un SankAccount : n'utilise
ll aucune méthode virtuelle, mai.s implémente
I I correctenent 1es constructeurs
using System;

namespace ConstructorSavingsAccount
t

/i BankAccount - simule un compte bancaire possédant

| | un numéro de compte (assigné à 1a création
I I du compte) et un solde
public cLass BankAccount
t
L

I I tes numéros de conpte conmencent à 1000 et augnentent
/l séquentiellenent à partir de 1à

public static int nNextAccountNumber = 1000;

ll net à jour le nunéro de comntp pt le solrle nour chaoue obiet
public int nAceountNumber;

public decimal nBalance;

// tonstrueteurs
- /\ /^\public BankAccount () : this (0)

t

]
public BankÀccount (decinal nlnitialBalance)

292 0uatrième parrie:La programmarion orienrée objer

nAccountNumber = finNextAccountNunber ;

mBalance = mlnitialBalance ;

l

I I même chose ici
l
// savingsAccount - compte bancaire qui rapporte des intérêts
public class Savi_ngsAccount : BankAccount
{

public decimal nlnterestRate;
// tnitsavingsAccount * 1it 1e taux d'intérêt, exprimé en
I I pourcenrage (valeur comprise entre 0 et 100)
n'rl, 1.i^ c-,,.;-^^^.puur_r-c ùavr_ngsAccount(decirnal nlnterestRate) : this(0, mlnterestRate)
{

l
public SavingsAccount(decimal mlnitial,

decimal mlnterestRate) : base(nInitial)
{

this.mlnterestRate = nlnterestRate / tOO;
l
I I même chose ici

]
public class C1ass1

{

// n;-^^*n^-^^..ir// u].recrueposlr - effectue automatiquement le dépôt d'un chèque
public static void DirectDeposit(BankAccount ba,

decimai npay)
{

ba. Deposit (mpay) ;

l
public stati.c int Main(string[] args)
{

I I crée un compte bancaire et 1'affiche
BankAccount ba = new BankAccount(i00);
DirectDeposit(ba, 100) ;

Console,l,Iriteline("Conpte {0}", ba.ToBankAccountString0) ;

// et naintenant un compte rémunéré
SavingsAccount sa = neu, SavingsAccount(12,5M) ;

Di.rectDeposit (sa, t00) ;

sa.Accumulatelnterest () ;

Console,l^lriteline("Compte [0] ", sa.ToSavingsAccountString0) ;

/ I attend confirmation de 1'utilisateur
Console.l,lriteline("Appuyez sur Entrée pour terminer..,") ;

Console.Read0;
return 0;

l

-

Figure 12.1 .

Le chemine-
ment de la

constru ction
d'un objet
(.errino<Arnn mt

en utilisant le

c0nstructe u r

par défaut.

-

Ghapitre 12 : Acceptez-vous f 'hér itage ? 293

BankAccourlt définit cleux constructeurs : un qui admet un solde initial, et le
constructeur par défaut qui ne I'aclmet pas. Afin cl'éviter toute publication de
code dans le constructeur, le constructeur par défaut invoque le constructeur
de tsanL<A.rcc'it.'ri:,, . ,:,i- 1 .ti:t:ri- É- I elt utilisant le mot-clé thls.

La classe Sa-"'ir,gsrLrLrr,rrl: fournit égalenrent deux constructeurs. Le
constructeur S a.lt:,gs,!c..,,:nt i'i:rt-er€:sr- f a+,e) invoque le constructeur
SavingsAccoi.Lil i i t€resi t âir-:. iit.lttai baiance; en lui passant un
solde initial de 0. Ce constructeur, le plus général, passe le solde initial au
constructeur Banli;(rij.iLLnt rir,tial baiance) en utilisant le mot-clé
base, comme le montre de façon graphique la Figure 72.1.

BankAccount(0)

) nurr" le solde à la classe de base

Savings Account (125%, gl

\ donne au solde la valeur par défaut 0

Savin gs Ac cou nt (125%l

J'ai modifié Main O pour me débarrasser de ces infernales fonctions
Init. . . O, en les remplaçant par des constructeurs. La sortie de ce
programme est la même :

compte 1001 - 200,00 €
compte 1002 - 112,50 € (12,5ti)

Appuyez sur Entrée pour terminer. . .

Le destructeur
C# offre aussi une méthode qui fait I'inverse du constructeur, appelée le
destructeur. Le destructeur porte le nom de la classe, précédé par un tilde
(-). Par exemple, la rnéthode -Faseijlass est le destructellr de BaseCiass.

C# invoque le destructeur lorsqu'il n'utilise plus I'objet. Le destructeur
par défaut est le seul qui peut être créé, car le destructeur ne peut être
invoqué directement. En outre, le destructeur est toujours virtuel.

294 0uatrième partie: La programmation orientée objet

Dans le cas d'une succession d'héritages de classes, les destructeurs sont
invoqués dans I'ordre inverse des constructeurs. Autrement dit, le destruc-
teur de la sous-classe est invoqué avant le destructeur de la classe de base.

Le ramasse-miettes et le destructeur G#

La môthode du destructeur estbeaucoup moins utile en C#que dans d'autres langagesorientés
objet, comme C++, car C# possède de ce I'on appelle une destruction non déterministe.

La mémoire allouée à un objet est supprimée du tas lorsque le programme exécute la

commande new. Ce bloc de mémoire reste réservé aussi longtemps que les références
valides à celui-ci restent actives.

Une zone de mémoire est dite "inaccessible" lorsque la dernière référence à celle-ci passe

hors de portée. Autrement dit, personne ne peut plus accéder à cette zone de mémoire quand
plus rien n'y fait référence.

C# ne fait rien de particulier lorsqu'une zone de mémoire devient inaccessible. Une tâche de

faible priorité est exécutée à I'arrière-plan, recherchant les zones de mémoire inaccessibles.
Ce qu'on appelle le ramasse-miettes s'exécute à un faible niveau de priorité afin d'éviter de

diminuer les performances du programme. Le ramasse-miettes restitue au tas les zones de

mémoire inaccessibles qu'il trouve.

En temps normal, le ramasse-miettes opère en silence à l'arrière-plan. ll ne prend le contrôle
du programme qu'à de brefs moments, lorsque le tas est sur le point d'être à court de mémoire,

Le destructeur de C# est non déterministe parce qu'il ne peut pas être invoqué avant que

I'objet âit été récupéré par le ramasse-miettes, ce qui peut se produire longtemps après qu'il
a cessé d'être utilisé. En fait, si le programme se termine avant que l'objet soittrouvé par le
ramasse-miettes et retourné au tas, le destructeur n'est pas invoqué du tout.

Au bout du compte, l'effet qui en résulte est qu'un programm eur C# ne peut pas se reposer
sur le destructeur pour opérer automatiquement comme dans un langage comme C++.

Chapitre 13

Ouel est donc ce
polymorphisme ?

Dans ce chapitre :

L'embarras du choix : masquer ou écraser une méthode de la classe de base.

Construire des classes abstraites : parlez-vous sérieusement ?

Déclarer comme abstraites une méthode et la classe qui la contient.

Faire commencer une nouvelle hiérarchie au-dessus d'une hiérarchie existante.

Empêcher qu'une classe puisse être transformée en sous-classe.

,
héritug" permet à une claSse "d'adopter" les membreS d'une autre.

Ainsi, je peux créer une classs 5st,ingsAccount qui hérite de mem-

bres donnée comme inBalance et de méthodes comme Deposit O de la

classe de base BankAccount. C'est très joli, mais cette définition de I'héri-

tage ne suffit pas à représenter convenablement ce qui se passe dans le

monde réel.
ôllu

jlff Si vous avez besoin de vous rafralchir la mémoire sur I'héritage des

tl$/, classes, relisez le Chapitre 14.
Y

Un four à micro-oncles est un type de four, non pas parce qu'il a I'air d'un

four, mais parce qu'il remplit les mêmes fonctions qu'un four. Un four à

micro-ondes remplit aussi des fonctions supplémentaires, mais au moins, il

remplit les fonctions de base d'un four - et le plus important, c'est qu'il fait

chauffer mes nachos quand je dis "StartCooking". Le processus interne

que doit mettre en æuvre le four pour remplir sa mission ne m'intéresse

pas, pas plus que le type de four dont il s'agit, ni son fabricant.

296 Ouatrième partie: La programmation orientée objet

De notre point de vue d'être humain, la différence entre un four à micro-
ondes et un four conventionnel ne semble pas de la plus haute importance,
mais envisagez un instant la question du point de vue du four. Les étapes
du processus interne mis en æuvre par un four conventionnel sont complè-
tement différentes de celles d'un four à micro-ondes (sans parler d'un four
à convection).

Le pouvoir du principe de I'héritage repose sur le fait qu'une sous-classe
n'est pas obligée d'hériter à I'identique de toutes les méthodes de la classe de
base. Une sous-classe peut hériter de I'essence des méthodes de la classe de
base tout en réalisant une implémentation différente de leurs détails.

Surcharger une méthode

Plusieurs fonctions peuvent porter le même nom, à condition qu'elles
soient différenciées par le nombre et/ou le type de leurs arguments.

Ce n'est (u'une question de surcharge de fonctîon
-u#t$

PY -^û- \ Donner le même nom à deux fonctions (ou plus) s'appelle surchorger un
=i

V) no- de fonction.

Les arguments d'une fonction font partie de son nom complet, comme le
montre I'exemple suivant :

oublic class l4vClass

I

nrrhlin ct:f in rrnid ÀI'rrnnti^n1)

t

/ I f.aire quelque chose

)

nrrhl in cfrtin rrnirl ÂÊrrnntinn/int\srrç urv.r \Jrrr/

t

I I faire cirelnue chose d'autre
l
public static void AFunction(double d)

{

I I faire encore quelque chose d'autre
l
public static void Main(stringll args)
t

hérîtée

#5e,

Ghapitre 13 : Ouel est donc ce polymorphisme ? 29 7

AFunetion0;
Alunction(l);
AFunction(2.0);

j

C# peut différencier les méthodes par leurs arguments. Chacun cles

appels dans Main O accède à une fonction différente.

Le type retourné ne fait pas partie du nom complet. Vous pouvez avoir
deux fonctions qui ne diffèrent que par le type retourné.

différente, néthode différente

nenbre MyClass. AMethod ()

MyClass0;

A classe

Comme on peut s'y attendre, la classe à laquelle appartient une fonction
ou une méthode fait aussi partie de son nom complet. Voyez le segment
de code suivant :

public class MyClass

{

public static void AFunction0;
public static void AMethodO;

]
public UrClass

{

public static void AFunction0;
public static void AMethod0;

public class C1ass1

t
publi.c static vo j-d Main (string [1 args)
{

/\urutass.AtunctlonU ;

// invoque la fonction
My0lass ncObject : new

ncObject.Al'lethod0;

)

Le nom de la classe fait partie du nom étendu de la fonction. Il y a le même tlpe
de relation entre la fonction MyClass.AFunction O et la fonction UrC-Lass .

AFunction 0 qu'entre la fonction MaVoiture. Démarrerl'latinHiver () et la
fonction VotreVoiture . DémarrerMatinHiver () (avec la vôtre, ça marche).

29 8 0uatrième partie : La programmation orienrée ob jer

Redéfinir une néthode d'une classe de base

Ainsi, une méthode cl'une classe peut surcharger une autre méthode de la
même classe en ayant des arguments différents. De même, une méthode
peut aussi .surcharger une rnéthode de sa classe de base. Surcharger une
méthode d'une classe de base s'appelle redéfinir, ou cocher la méthode.

Imaginez que ma banque adopte une politique qui établisse une différence
entre les retraits sur les comptes rémunérés et les autres types de retrait.
Pour les besoins de notre exemple, imaginez aussi qu'un retrait effectué sur
un compte rémunéré coûte une commission de 1,50 F.

Avec I'approche fonctionnelle, vous pourriez implémenter cette politique
en définissant dans la classe un indicateur qui dise si I'objet est un
Sa-ringSnCC,r,.lnr ou un simple Eani:A,:c,Juni. La méthode de retrait
devrait alors tester l'indicateur pour savoir si elle doit ou non imputer la
commission cle 1.50 F :

public BankAccount (int nAccountType)
{

private decimal mBalance:

private bool isSavingsAccount;
// indique 1e solde initial et dit si le compte
// que vous êtes en train de créer est ou non

// un compte rémunéré

public BankAccount (decimal mInitialBalance,
bool isSavingsAccount)

{

mBalance = mlnitialBalance ;

this, isSavinssAccount = isSavinssAccount :

i
public decimal Withdrav(decimal nAmount)

t

I I si Ie compte est un conpte rénunéré
if (isSavingsAccount)

i
llI I . , .alors soustrait 1.50 F

mBalance -:1,50M:
l
// poursuit avec le même code pour le retrait :

if (mAnountToWithdraw) mBalance)

{

mAmountToWithdrar,v = mBalance ;

]

mBalance -= nAmountToWithdraw;

return mAnountTo}.fithd rar^r :

Ghapitre 13 : 0uel est donc ce polymorphisme ?

'I

J

l
class Mytlass
{

public void SomeFunction0

t
I I le veux ne créer un conpte rérnunéré :

BankAccount ba = new BankAccount(0, true);
1

r

]

Ma fonction doit clire au constructeur si le compte bancaire est un
SavingsÀccoirrrt ert lui passant un indicateur. Le constructeur conserve
cet indicateur et I'utilise dans la rnéthode 'riithoraw O pour décider s'il
faut imputer la commission de 1,50 F.

L'approche orientée objet consiste à recléfinir la méthode Withci raw () dans
la classe de base BanL<Account, derrière une méthode de meme nom, de
même taille et de même couleur de cheveux, dans la classe SavingsAccount

t,
i I HidinsWithdrawal - redéfinit la méthode de retrait de la
I I classe de base avec une méthode de La

I I sous-classe du mêne non

using Systen;
nânespace Hidi.ngl,lithdrawal
t

// BankAccount - un compte bancaire très ordinaire
pub1lc class BankAccount
ft

protected decirnal nBalance;
public BankAccount (decimal mlnitialBalance)
t

mBalance = mïnitialBalance ;
1

t

public decimal Balance

{

get { return nBalance; }

J

nrrhl r'c decimal Withdraw(decimal mAmount)\sv!+rx
t
t

decinal mAmountToWithdraw = nAmount;

if (nAurountÏoWj.thdrai,s) mBalance)
î
L

mAmountÏoWithdrarar = mBalance ;

l
mBalance -= nAnountTol,lithdraw;

return mAnountTol,Ii.thdraw ;

2gg

.e"*li3
h ffiriiI tY,x

æt

300 0uatrième partie:La programmation orientée objet

l
// SavingsAccount - compte bancaire qui rapporte des intérêts
public class SavingsAccount : BankAccount

I
public decimal mlnterestRate;
// SavingsAccount - 1it 1e taux d'intérêt, exprimé en

pourcentage (valeur comprise entre 0 et 10Û)

public SavingsAccount (decimal mInitialBalance,
dec irnal mlnterestRate)

: base (mInitialBalance)
I
r

this.mlnterestRate = mlnterestRate / 100;
1
)

// Accumulatelnterest - invoquée une fois par période
nrrhl i c voi rl Anr^trmrri atoTntpro<t i)

!L- !v u \ /

r
I

mBalance * mBalance * (mBalance * mTnterestRate);
l
// Withdraw - tout retrait est autorisé iusou'à 1a valeur

du solde ; retourne le montant retiré
public decimal Withdraw(decinal mWithdraval)
{

// soustrait 1.50 F

base. 'vlj-thdraw(l . 5t't) ;

| | "^"^ maintenant effectuer un retrait avec ce nrri restpI I VVUù UVUVgL lnaLLLLglléIlL EtlELLUtrl Ull !CL!é1L dVLu re yur !sÈLC

return base . Wi.thdraw (mi^iithdrawal) ;
l

]
nlrhri^ ^t^^a t r^^^1
PUUTfL Urdùb ufdDù

{

public static void MakeAWithdrar+al(BankAccount ba,
decimal nAmount)

{

ba. Withdraw (mAmount) ;

l
public static int Main(string[] args)
{

BankAccount ba;
C^"-i-^^Àaanln+ùavrngsAcCounL sa;
ll crée un compte bancaire, en retire 100 F, et
// affiche les résultats
ba = nevr BankAccount(200M);
ba. I.Iithdrar,,i{ 1 00M) ;

// essaie de faj-re la même chose avec un cornpte rémunéré

sa = new SavingsAccount(200M, 12);
sa.llithdraw(100M) ;

// affiche 1e solde résultant

Chapitre 13 : 0uel est donc ce polymorphisme ? 30 I

Console.l,iriteLine("Quand il est invoqué directenent ;") ;

Console.l,rlrj-teLi.ne("Le solde de BankAccount est {0:C1",
ba.Balance);

Console.l,iriteLine ("Le solde de SavingsAccount est {0: CJ " ,

sa. Balance) ;

// attend confirmation de 1'utilisateur
Console.i,Iriteline("Appuyez sur Entrée pour terniner...") ;

Console.Read{);
return 0;

l

Dans ce cas, la fonction l'1ain () crée un objet BankAcco'rnt avec un solde initial
cle 200 F, et effectue un retrait de 100 F. l"laln 0 répète cette opération avec un
objet Sa.,'ingsAc.ourr:. Lorsque l'lain 0 effectue le retrait depuis la classe de
base, llaril,Ac c cunt . irii thd r ar" () effectue cette tâche avec un aplomb remar-
quable. Lorsque l"iain O retire ensuite 100 F du compte rémunéré, la méthode
Savings,-.,1,' ;rLrrt . i.ii:iidrar,,O fait payer les 1,50 F.

..$$C ,t Remarquer que la classe Sa.;ingsAccount .l,riithdrait utilis€ tsankgcco,int .

H,,l|ithdr:aw()plutôtquedemanipulerdirectementlesolde.Danstoutela
t(9, mesure du possible. faites en sorte que ce soit la classe de base qui manipule
y elle-même ses membres.

En 4uoi uaut-il mieux redéfinir une méthode (u'aiouter un simple test ?

Vu de I'extérieur. I'ajout d'un indicateur à la méthode BankAcount . Wlthdraw 0
peut sembler plus simple que le procédé qui consiste à redéfinir une méthode.
Après tout, ça ne fait qu'ajouter quatre petites lignes de code, dont deux ne
sont que des accolades.

Le problème, c'est en quelque sorte la tuyauterie. Le premier inconvénient
est que la classe llankAccounr n'a aucune raison de se mêler des détails de
Sa,,'ings,\ccor'Lnt. Cela violerait notre règle "Rendons à César ce qui est à
César", et nous conduit au véritable problème : imaginez que ma banque
décide d'ajouter des comptes CheckingAccount ou CDAccount ou encore
Tb I i iAc c ounr: ? C'est une chose possible, et tous ces types de compte
différents seraient associés à des politiques de retrait différentes, chacune
nécessitant son propre indicateur. Après I'ajout de trois ou quatre nouveaux
types de compte, notre vieille méthode 'dlthd rav; () commencerait à devenir
bien compliquée. Chacune de ces classes devrait plutôt s'occuper elle-même
de sa politique de retrait et laisser tranquille notre pauvre vieille
BankAccour,t .,/ilthd raw () .

302 0uatrième partie:La programmation orientée objet

Et si je redéfinis accidentellement une méthode de la classe de base ?

Il peut arriver à tout le monde de redéfinir accidentellement une méthode de la
classe de base. Par exemple, je peux avoir une méthode Véhlcule. Virage ()

qui fait tourner le véhicule. Plus tard, quelqu'un étend ma classe Véhicule
avec une classe Avion, dont la méthode Virage O est entièrement différente. Il
est clair que nous avons là un cas de confusion d'identité. Ces deux méthodes
n'ont rien à voir I'une avec I'autre, sinon qu'elles portent le même nom.

Heureusement pour nous, C# sait détecter ce problème.

En compilant I'exemple précédent, Hidlng\,,/ithcl raw () , C# génère un
avertissement patibulaire. Le texte de ce message est un peu long, mais
en voici la partie importante :

Le not-clé new est requis sur

' Hidingi,lithdrawal. SavingsAccount. trtlj.thdrarv (decimal)', car i1
masque le membre hérité
' HidingWithdrarral . BankAc count . t.,lithd raw (dec imal)'

C# essaie de vous dire que vous avez écrit dans une sous-classe une
méthode portant le même nom qu'une méthode de la classe de base. Est-
ce vraiment ce que vous vouliez faire ?

.3!!- .a- Ce message n'est qu'un avertissement. Vous ne le remarquerez même pas,

iNàmoinsdepasserà|afenêtreSortiepourvoircequiyestaffiché'Dans
t\7, presque tous les cas, vous y verrez un avertissement qui vous prévient que
Y quelque chose pourrait bien vous mordre si vous n'y mettez pas bon ordre.

Le descripteur ne" indique à C# qu'une méthode est redéfinie intention-
nellement et que ce n'est pas le résultat d'une négligence :

// plus de problèmes avec withdraw0
new public decimal Withdraw(decinal dWithdraval)
{

I I pas de modifications internes.
l

Cette utilisation du mot-clé new n'a rien à voir avec I'utilisation du même
mot-clé pour créer un objet.

Je me permettrai de faire remarquer ici que c'est I'une des choses que je
trouve agaçantes chez C# (et C++ âvânt lui) : faites ce que vous voulez
avec mes méthodes, mais ne surchargez pas mes mots-clés. Quand je dis
new, c'est que je veux créer un objet. Ils auraient pu utiliser un autre mot-
clé pour indiquer une surcharge intentionnelle.

U
1r${Qa"

^r,7çrt7
\:(dw

)\ô/

Ghapitre 13:0uel est donc ce polymorphisme ? 303

ReUenîr à la ba s e

Revenons à la méthode savingsAccounr .1,{ithdraw O de I'exemple que
nous avons vu plus haut dans ce chapitre. L'appel à
BankAccount . w"-thd r aw () depuis cette nouvelle méthode contient le mot-
clé supplémentaire ba s e.

La version suivante de la fonction avec ce mot-clé supplémentaire ne
marche pas :

new public double Withdraw(double dWithdrawal)
{

double dAnountllithdrawn = Withdraro(dltithdrawal) I

if (++nNunber0fl^lithdrawalsThisPeriod) 1)

t

dArnountl,lithdravn t= l,lithdraw (1 . 5) ;

]

return dAnountl{ithdrar+n ;

l

Cet appel a le même problème que celui-ci :

vo]-d tn f J

{

tn]; I I je m'appelle moi-nêne
l

L'appel à fn O depuis fn 0 aboutit à s'appeler soi-même, sans fin. De même,
un appel de Withdraw 0 à elle,même fait qu'elle s'appelle elle-même en boucle,
comme un chat qui court après sa queue, jusqu'à ce que Ie programme finisse
par se planter.

D'une manière ou d'une autre, il vous faut indiquer à C# que I'appel depuis
SavingsAccount . Withdraw () est là pour invoquer la méthode de la classe
de base, BankAccount . \,/ithdraw 0 . Une solution consiste à faire un cast du
pointeur this dans un objet de la classe BankAccounr avant d'effectuer
I'appel.

// tlithdraw - cette version accède à 1a rnéthode redéfinie dans 1a classe de

ll base en définissant explicitement 1e cast de 1'objet this
new public double Withdrar,r{double dWithdrawal)
{

I I cast du pointeur this dans un objet de la classe BankAccount

30 4 Ouatrième partie : La programmation orientée obiet

BankAccount ba = (BankAccount)this;

// invoque Withdrar.+0 en utilisant cet objet BankAccount

i / appelle 1a fonction BankAceount.Withdraw0
double dAmountl^lithdrawn = ba.Withdraru(dWithdrawal) I

if (**nSurrber0fWithdrawalsThisPeriod) 1)

{

dAnountWi.thdralrn f= ba , I^Iithdrar,r (1 . 5) ;

]

return dAtnountWithd rar,un :

Cette solution fonctionne : I'appel ba . l,,Jithd raw () invoque maintenant la
méthode BankAccor.lnt, comme on le voulait. L'inconvénient de cette
approche est la référence explicite à Bani.;Account. Une modification
ultérieure du programme pourrait modifier la hiérarchie d'héritage de
telle manière que -sa.,'ings,.iccoLlnr n'hérite plus directement de
BankAccount,. Une telle réorganisation brise cette fonction d'une façon
qu'un nouveau programrneur pourra avoir du mal à trouver. Pour moi, je
n'arriverais jamais à trouver un bogue comme celui-là.

Il vous faut un moyen de dire à C# d'appeler la fonction ''^Iithdrawo
depuis "la classe qui est juste au-dessus" dans la hiérarchie, sans la
nommer explicitement. Ce serait la classe qui est étendue par
savirrgsAcc'.-'illrt. C'est dans ce but que C# comporte le mot-clé base.

C'est le même rnot-clé base qu'utilise un constructeur pour passer des
arguments au constructeur de la classe de base.

Le mot-clé base de C# est la même chose que this, mais redéfinit le cast
à la classe de base, quelle que soit cette classe :

ll With&aw - tout retrait est autorisé jusqu'à la valeur
I I du soide ; retourne l-e montant retiré
new public decimal Withdraw(decimal nWithdrawal)
t

II
/ / sousrrait 1 .50 F

base. l,lithdraw(1 .5M) ;

// vous pouvez maintenant effectuer un retrait avec ce qui reste
return base.Withdrai,r(mWithdrawal) ;

I

L'appel base.,,iit-hdra-, (; invoque maintenant la méthode
13ankÀccorLn: . iriit-hrir ar' O , évitant par-là I'écueil qui consiste à s'invoquer
elle-même. En outre, cette solution ne sera pas brisée si la hiérarchie
d'héritage est modifiée.

=tô
.-!/

Le polqnorphisme

Chapitre 13 : 0uel est donc ce polymorphisme ? 30 5

void MakeAWithdrar*a1 {BankAccount ba,

decinal rnAmount)

Vous pouvez surcharger une méthocle d'une classe de base avec une mé-
thode d'une sous-classe. Aussi simple qu'elle paraisse, cette solution apporte
des possibilités considérables, et de ces possibilités viennent des dangers.

Voilà une question difficile : la clécision d'appeler l,ankAccount.l^iithdraw
ou Sar.irigsh.iri,r,ir:--. r;- .t. i:a,,ii cloit-elle être prise à la compilation ou à
I'exécution ?

Pour faire comprenclre la différence, je vais modifier le programme
Hiding,r'itlidr.:r,.' i . que nous avons vu plus haut d'une manière
apparemment inoffensive. Je vais appeler cette nouvelle version
Hidlns.l\iithlr;i,,,,:.1 F,.I.,':i:,rpi,-',-,,-l-" (i'ai allégélelistingenn'ymettant
pas ce qui n'a pas changé).

public class C1ass1
{

nrrhl i r. ctnti n

{

ba. Withdraw (mAnount) ;

)

public static int Main(stringIJ args)
{

BankAccount ba;

SavingsAccount sa;
ba = new BankAccount(200M);

MakeAWithdrawal (ba, 100M) ;

sa = new SavingsAccount(200M, L2);
MakeAWithdrawal (sa, 100M) ;
tl// affiche 1e solde résultant
Console.WriteLine("\nÉvoqué par un intermédiaire,") ;

Console.l,iriteLine("Le solde de BankAccount est [0:C]", ba.Balance) ;

Console.1{riteLine("Le solde de SavingsAccount est {0:CJ", sa.Balance) ;

/l attend confiriiiation de 1'utilisateur
Console . l,trriteLine ("Appuyez sur Entrée pour terniner. . . ") ;

Console. Read 0 ;

return 0;

]

306 Ouatrième partie:La programmation orientée obiet

La sortie de ce progralntne peut être
ce que vous attendiez :

Évoqué pâr un internédiaire,
Le solde de BankAccount est i00,00 F

Le solde de SavingsAccount est 100,00 F

Appuyez sur Entrée pour terminer...

ou ne pas être déconcertante, selon

Cette fois, plutôt qtre cl'effectuer un retrait datts lilain O, le programme
passe I'objet cclmpte ttancaire à la fonctittn l"lal.reAl,"r'ithdrar,,ual O.

La première question est clépourvue de mystère : Pourquoi la fonction
l"1ake,-riritrcli il-niar,. i r ac<:epte-t.-elle un ttbjet Sa.,'ingsr\ccount alors qu'elle
dit clairement qu'elle attend un objet Iiar-LkHcc(,u1rt ? La réponse est
évidente : "Patrce qu'un S :- -., i r' g sAc c i)'r1n i. ES'|'-UN B a nkAc r: oLint."

La deuxième question est plus subtile. Quand il lui est passé un objet
Bankrrccourlt, l"iaiier,i.ii tt'c-l1a',,,,ai (t invoque BankÀccount . \,^rithciraw (J.

C'est assez clair. Mais lorsqu'il lui est passé un objet SavingsAccount,
IlakeAii ithtrrawal i) appelle la nrênre méthode. Ne devrait-elle pas invo-
quer la méthode n'i t-t,c r aw () dans la sous-classe ?

I-e procureur veut montrer que I'appel à ba .'r^i ithtlr:aw O devrait invoquer
la méthode Barii..c,-t.rn:.i^iir-irrlrai;O.ll est clair que I'objet ba est un
BankAccouirt. Faire autre chose ne pourrait que faire naltre la confusion.
Mais la défense a rles térnclius dans i"lain 1) pour prouver que bien que
I'objet ira soit déclaré comme ban.l.'.^c.roi-1irî-, c'est en fait un
Savin! sÀc. r,rirrr. Le jury ne s'y retrouve plus. Les deux arguments sont
tout aussi valides I'un que I'autre.

Dans ce cas, C# se range du côté du procureur. Le choix le plus str est de
s'en tenir au type déclaré, parce qu'il évite toute erreur de communication.
L'objet est donc cléclaré être un BankÀc.rc,un1,, et la cause est enteudue.

A-t-il de mal foîs leà utiliser chaque9u'tl
tqpe déclaré l
Dans certains cas, vous ne vouclrez pas utiliser le type déclaré. Ce que vous
voudrez vrailnent, c'est effectr-rer I'appel sur la base du type réel, c'est-à-dire
le type à i'exéctrtion, par oppositiort au type déclaré. Cette possibilité de
décider à I'exécution s'appelle polyrnorphisme, ou late binding (liaison
tardive). Utiliser le type déclaré s'appelle early binding (liaison précoce).

1t$!Qa.{:/Çrr \
=qE)

éËK
'(dg,

1t$!Qa.
^.v7çq

\

'(dE,)

Chapitre 13 : 0uel est donc ce polymorphisme ? 307

Le terme polymorphisme vient du grec : poly signifie plusieurs , morph
signifie forme, et isme signifie peut-être quelque chose en grec.

Polymorphisme et late binding ne sont pas exactement la même chose,
mais la différence est subtile. La notion de polymorphisme se réfère à la
possibilité de décider à I'exécution qu'elle méthode invoquer. La notion
de late binding se réfère à la manière dont un langage implémente le
polymorphisme.

Le polymorphisme est un aspect crucial de la puissance de la programma-
tion orientée objet. Il est si important qu'un langage qui ne le comporte
pas ne peut pas être présenté comme un langage orienté objet.

Un langage qui comporte des classes mais pas le polymorphisme est
appelé langage à base objets. Le langage Ada en est un exemple.

Sans le polymorphisme, I'héritage n'aurait guère de signification. Je vais
donner encore un exemple pour vous le montrer. Imaginez que j'aie écrit
ce programme à succès mondial qui utilisait une classe nommé Student.
Après quelques mois de conception, de codage et de test, je publie cette
application pour récolter les avis de mes collègues et des critiques en
tout genre (on a même parlé de créer une nouvelle catégorie de prix
Nobel pour le logiciel, mais par modestie jai ignoré ces suggestions).

Le temps passe, et mon patron me demande d'ajouter à ce programme la
prise en compte des étudiants diplômés, qui ne sont pas tout à fait identi-
ques aux étudiants ordinaires (ils revendiquent sans doute de ne pas être
identiques du tout). Supposez que la formule de calcul des frais de scolarité
soit complètement différente de celle utilisée pour un étudiant ordinaire.
Mais mon patron ne sait pas et ne veut pas savoir qu'à ce niveau de profon-
deur du programme il y a de nombreux appels à la fonction calcTuition O .

void SomeFunction(Student s)

t

I I quoi qu'el1e puisse faire.
s.CalcTuition0;

continue
l

Si C# n'admettait pas le late binding, il me faudrait passer en revue le
code de sorleF,;ncticn O pour vérifier si I'objet student qui lui est passé
est un Gradua*r-eS*.udent ou un Student. Le programme appellerait
Student. CaicTuition () lorsque s est un Student, et GraduateStudent.
CalcTuition O lorsque c'est un étudiant diplômé.

308 0uatrième partie:La programmation orientée obiet

Tout cela ne se présente pas mal, sauf pour trois choses. Pour commen-
cer, ce n'est Ià qu'une fonction. Supposez que calcTuition () soit appelée
depuis de nombreux endroits. Supposez aussi que calcTuition i) ne soit
pas la seule différence entre les deux classes. Mes chances de trouver
tous les endroits qui doivent être modifiés ne sont pas des plus élevées.

Avec le polymorphisme, je peux laisser C# décider de la méthode à appeler.

redéf inie
Accéder par le polqmorlrhîsme à une néthode

en utÎlisant is
Comment rendre mon programme polymorphe ? C# offre une approche
pour résoudre le problème manuellement avec un tout nouveau mot-clé :

is. L'expression ba is SavingsAccount retourne true ou false selon la
classe de I'objet à I'exécution. Le type déclaré pourrait être BankAccount,
mais quel est-il en réalité ?

public class Classl
{

public static void MakeAWithdrawal(BankAccount ba,
decinal mArnount)

{

if ba is Savi-nesAccount

{

SavingsAccount sa = (SavingsAccount)ba;

sa . Withdraw (urAmount) ;

el se

ba . Withdraw(mAmount) ;

:

Maintenant, quand l'{aln O passe à la fonction un objet SavingsAccounr,
MakeA\ii thd rawaf () vérifie à I'exécution le type de I'objet ba et invoque
Sa';ingsAccount . i,r'ithdr a"' () .

og$!ea^ Au passage, je vous signale que le programmeur aurait pu réaliser le cast et

ae/!!t\ I'appel dans une même ligne : ((SavingsAcr.lount)ba) .',,^/ithdraw (mAmount.) .9/nl?Yô \ - "
=[ÉJ\y j Je ne mentionne la chose que parce que vous la verrez beaucoup dans des

\ô/ programmes écrits par des gens qui aiment faire de I'esbroufe.

,,"$$Igâ
,,.&v- l- lrJ,r,\ l-..ffÂvnI I"\7ry

Ghapitre 13:0uel est donc ce polymorphisme ? 309

En fait, I'approche "is" fonctionne, mais c'est vraiment une mauvaise
idée. Elle nécessite que SomeFunction O connaisse tous les différents
types d'étudiants et quels sont ceux qui sont représentés par les différen-
tes classes. Cela fait peser une trop lourde responsabilité sur les épaules
de la pauvre vieille SomeFunction O . Pour le moment, mon application ne
connaÎt que deux types de comptes bancaires, mais supposez que mon
patron me demande d'en implémenter un nouveau, CheckingAccount, €t
que celui-ci soit associé à une autre politique de Withd raw () . Mon pro-
gramme ne fonctionnera pas correctement si je ne trouve pas toutes les
fonctions qui testent à I'exécution le type de cet argument.

Déclarer une méthode comme ûrtuelle
En tant qu'auteur de SomeFunction O , je ne veux pas connaltre tous les
différents types de compte. Je veux que ce soit aux programmeurs qui
utilisent SomeFunction O de connaltre leurs types de compte, et qu'ils me
laissent tranquille avec ça. Je veux que ce soit C# qui prenne les décisions
sur les méthodes à invoquer en fonction du type de I'objet à I'exécution.

Pour dire à C# de faire le choix à I'exécution de la version de Withdrawai o
à utiliser, je marque la fonction de la classe de base avec le mot-clé
virtual, et la fonction de chaque sous-classe avec le mot-clé overr,de.

J'ai réécrit I'exemple de programme précédent en utilisant le polymorphisme.
J'ai ajouté des instructions de sortie aux méthodes L/ithdraw () pour montrer
que ce sont effectivement les bonnes méthodes qui sont invoquées ('ai
supprimé ce qui faisait double emploi pour ne pas vous ennuyer avec des
choses inutiles). Voici donc le programme Polymorphiclnheritance:

// folynorphiclnheritance * utilise le polynorphi.sne pour

I I redéfinir une méthode dans la classe de base

using System;

nâmespâc e Polymorphic Inheritanc e

t

/i BankAccount - un compte bancaire très ordinaire
public class BankAccount

i
I L , la mêne chose ici
public virtual decimal Withdraw{decinal mAnount)

{

decinal nAmountToWithdrarrr = rnAnount ;

if (nAmountToWithdraw) mBalance)
I

3 | 0 Ouatrième partie : La programmation orienrée objer

mAmountTol^lithdraw = mBalance ;

l
nBalance -= mÂnountToWithdraw;

return mAmountToWithdraw ;

l

// SavingsAccount - compte bancaire qui rapporte des intérêts
public class SavingsAccount : BankAccount
I
t

l l , la même chose ici- aussi
i / tllthdraw * tout retrait est autorisé jusqu'à la valeur
I I du solde ; retourne le nontant retiré
override public decimal Wj.thdraw(decirnal nrWithdrawal)
t

tl// soustrait 1.50 F

base.l{ithdrav(1,5M);
I I vous pouvez naintenant effectuer un retrait avec ce qui reste
return base. Withdrarq(rirWithdraval) ;

)

)

public class C1ass1

t

public static void MakeAWithdrawal(BankAccount ba,
decimal mArnount)

I
t

ba. Withdraw(mAmount) ;

]

public static void Majn(stringll args)
t

ll nae rla nlrcnnnmnn+ i^-i -^- -1,,^, , .. pas de changement ici non plus
l

l
l

L'exécution de ce programme donne la sortie suivante :

Évoqué par un interrnédiaire,
Le solde de BankAccount est 100,00 F

Le solde de SavingsAccount est 98,50 F

Annrrvoz srrr Fntrée norr r terminprLLLrUrtrç! | t .

La fonction -r,r'i thd ra',\i i.) est marquée comme .,,i rrual dans la classe de base
BarrkAc.culrt. alors que la méthode i,,ithdraw O de la sous{lasse est marquée
avec le mot<lé L).u,errlCe. Bien que la méthode MakeAl,/ithdrawal 0 soit
inchangée, le programme donne une sortie clifférente parce que I'appel
ba.l^rithri ra-w (; est résolu sur la base du type de ba à I'exécution.

Ghapitre 13 : Ouel est donc ce p0lymorphisme ? 3l I

^$ùC .z Pour vous faire une idée précise de la manière dont tout cela fonctionne, il
7X est nécessaire que vous exécutiez le programme clans le débogueur de Visual

t(?, Studio. Générez le programme comme d'habitude, et appuyez sur la touche
Y Fl1 autant de fois que nécessaire pour faire avancer le programme pas à pas.

Il est impressionnant de voir le même appel aboutir à une méthode ou à une
autre selon le moment où il se produit.

La ytériode abstraite de C#

À ce que je sais, un canarcl est un type cl'oiseau, de même qu'un colibri et
une hirondelle. En fait, tout oiseau est un sous-type d'oiseau. La récipro-
que de ce principe est qu'il n'existe pas d'oiseau qui ne soit pas un sous-
type d'oiseau. Cette remarque ne paralt pas très profonde, mais en fait,
elle I'est. L'équivalent logiciel de cet énoncé est que tout objet oiseau est
une instance d'une certaine sous-classe de Ci seau. Il n'y a pas d'instance
de la classe Oisea'i.

Il y a divers types d'oiseaux qui partagent de nombreuses propriétés
(sinon, ils ne seraient pas des oiseaux), mais il n'y a pas deux types dont
toutes les propriétés sont les mêmes (sinon, ce ne serait pas deux types
différents). Pour prendre un exemple particulièrement simple, tous les
oiseaux n'ont pas la même manière de Voier O. Le canard a son style,
I'hirondelle aussi. Ils ont beaucoup de points communs, mais ce n'est
pas exactement la même chose. Le style du colibri est complètement
différent. Ne me posez pas de questions sur les émeus et les autruches.

Mais si tous les oiseaux n'ont pas la même manière de voler, alors, qu'est-ce
que Oiseau. Voler () ? La réponse est simple : c'est le sujet de cette section.

Le factorinq entre

Les gens produisent des taxonomies d'objets en les regroupant sur la
base des propriétés qu'ils partagent. Pour comprendre comment fonc-
tionne la classification, considérez les classes HighSchool et University,
comme le montre la Figure 13.1. Cette figure utilise UML (Unified
Modeling Language), qui est un langage graphique, pour décrire une
classe en même temps que les relations de celle-ci avec d'autres.

classes

3 | 2 0uatrième partie : La programmation orientée objet

-

Figure 13.1 :

Une descrip-
tion sous la
forme UML
des classes
Hi ghS choo i
et Unive r -

sily.

-

Le langage UML

Le langage UML{Unified Modeling Language)estun langagede modélisation,permettantde
définir clairement une grande partie des relations entre des objets dans un pr0gramme. L'un

des avantages d'UML est que I'on peut en ignorer les aspects les plus spécialisés sans en
perdre entièrement la signification.

Les caractéristiques de base d'UML sont les suivantes :

tl Une classe est représentée par un rectangf e, divisé verticalement en trois sections.

Le nom de la classe apparaît dans la première section en partant du haut.

tl Les membres donnée de la classe apparaissent dans la section du milieu, et les

méthodes dans la section du bas. Si la classe n'a pas de membres donnée ou de

méthodes, vous pouvez omettre la section du milieu ou celle du bas.

tl Les membres précédés par un signe + sont publics, et ceux qui sont précédés par un

signe - sont privés. UML ne dispose pas de symboles pour représenter la visibilité et
la protection.

Un membre privé n'est accessible qu'à d'autres membres de la même classe. Un

membre public est accessible à toutes les classes.

tl Le symbole "{abstract}" à côté d'un nom indique que [a classe ou la méthode est
a bstraite.

UML utilise en fait un symbole différent pour une méthode abstraite, mais je simplifie.

University

- numStudents
+ nAvgSAT

+ Enroll 0
+ GetGrant 0

- numStudents

+ Enroll 0

Student

Ghapitre 13 : Ouel est donc ce polymorphisme ? 313

É

tl

Une flèche entre deux classes représente une relation entre ces deux classes. Un

nombre au-dessus du trait exprime la cardinalité. Le symbole "*" signifie un nombre
quelconque. Si aucun nombre n'est présent, la cardinalité estsupposée égale à 1.

Ainsi, dans la Figure 13.1, vous pouvez voir qu'une université peut avoir un nombre
quelconque d'étudiants.

Un trait se terminant par une grande flèche largement ouverte exprime la relation
EST-UN {l'héritage). D'autres types de relations sont également représentés, dont la
relation A-UN.

Un objet Voiture EST_UN Véhicule, mais un objet Voiture A_UN Moteur.

Vous pouvez voir dans la Figure 13.1 que les high schools et les universités
ont en commun plusieurs propriétés similaires (en fait, bien plus qu'on ne
pourrait le penser). Ces deux types d'établissement offrent une méthode
Enrol1 O, publiquement disponible, pour ajouter de nouveaux objets
Si-udent-. En outre, I'un et I'autre comportent un objet privé nurnStuden*;s eui
contient le nombre d'étudiants de l'établissement. Enfin, I'une des caractéris-
tiques communes est la relation entre les étudiants : un établissement peut
avoir un nombre quelconque d'étudiants, mais un étudiant ne peut faire
partie que d'un seul établissement à la fois. La plupart des universités, et
même certaines high schools, offrent plus que ce que je viens de décrire,
mais il me suffit d'un type de chaque.

En plus des caractéristiques d'une high school, I'université contient une
méthode GetGrant O et un membre donnég n[lrgSAT. L'entrée dans une
high school ne nécessite pas I'examen SAT (Scholastic Aptitude Test), et
on ne peut y obtenir de prêt fédéral (à moins que je ne sois allé dans les
mauvaises high schools).

La Figure l3.l est tout à fait correcte, mais beaucoup d'informations s'y
trouvent dupliquées. On pourrait réduire cette duplication en permettant
à la classe la plus compliquée, University, d'hériter de la classe plus
simple HighSchool, comme le montre la Figure 13.2.

La classe HrgfrSchocl est inchangée, mais la classe Uni.,rersitv est plus
facile à décrire. Nous disons que "une University est une Highschool qui
possède aussi un objet nAvgSAT et une méthode GetGrant O ", mais cette
solution comporte un problème fondamental : une université n'est pas
une high school qui... quoi que ce soit.

3 I tl 0uatrième partie : La programmation orientée objet

-

Figure 13.2 :

L'héritage de
HighSchcol
simplifie la

c lasse
Univer -

sity, mais il

introduit
quelq ues
problèmes.

-

High School

- numStudents

+ Enroll 0

University

+ nAvgSAT

+ GetGrant 0

Vous me direz : "Et alors ? I'héritage fonctionne, et ça fait du travail en
moins." C'est vrai, mais les réserves que je fais ne sont pas que de trivia-
les questions de style. De fausses représentations de ce genre sont
sources de confusion pour le programmeur, dans I'immédiat comme par
la suite. Un jour, un programmeur qui ne connaltra pas mes astuces de
programmation devra lire mon code et comprendre ce qu'il fait. Une
représentation fausse est clifficile à comprendre et à utiliser.

En outre, de telles représentations fausses peuvent conduire ultérieurement
à des problèmes. lmaginez que la high school décide de nommer un étudiant
"favori" pour son banquet annuel (usage local). Le programmeur, astucieux,
ajoute alors à la classe HighSchool la méthode \larneFavorit.e O, que I'appli-
cation invoque pour nommer favori I'objet Student correspondant.

Mais maintenant, j'ai un problème. La plupart des universités n'ont pas
pour pratique de nommer quoi que ce soit favori, mais aussi longtemps
que Universi-ty hérite de uighschool, elle hérite de la méthode
NameFavorite (). Une méthode supplémentaire peut sembler sans impor-
tance. Vous pourriez dire : "ll suffit de I'ignorer."

Une méthode de plus n'a pas grande importance, mais c'est une pierre de
plus dans le mur de la confusion. Avec le temps, les méthodes et les
propriétés supplémentaires s'accumulent, jusqu'à ce que la classe iJni -

versity se trouve bien encombrée de tous ces bagages. Ayez pitié du
pauvre développeur de logiciel qui doit comprenclre quelles méthodes
sont "véritables" et lesquelles ne le sont pas.

Un tel "héritage de complaisance" conduit à un autre problème. À ta manière
dont elle est écrite, la Figure 13.2 implique qu'une Uni-rersity et une
HighSchool ont la même procédure de recrutement. Si peu waisemblable que
cela paraisse, supposez que ce soit wai. Le programme est développé, emballé

E

Figure 13.3 :

Hl ghS cho o 1

9t Univer -

s ity doivent
I'une et
I'autre être
basées sur
une classe
c0mmune
School.

-

Ghapitre 13 : 0uel est donc ce polymorphisme ? 3l 5

et expédié au public qui n'attend que lui (bien str, je n'ai pas oublié d'y mettre
le nombre de bogues nécessaires pour que tout le monde veuille s'offrir,
moyennant un prix tout à fait raisonnable, la mise à jour vers la version 2).

Quelques mois passent, et l'établissement décide de modifier sa procé-
dure de recrutement. Il ne sera pas évident pour tout le monde qu'en
modifiant la procédure de recrutement de la high school c'est aussi la
procédure d'inscription au collège voisin qui a été modifiée.

Comment faire pour éviter un tel problème ? Une solution est de ne pas aller à
l'école, mais une autre consiste à corriger la source du problème : une univer-
sité n'est pas un type particulier de high school. Il existe bien une relation entre
les deux, mais cette relation n'est pas EST_UN. Au contraire, universités et high
schools sont deux types différents d'établissement scolaire.

La Figure 13.3 décrit cette relation. La classe School nouvellement définie
contient les propriétés communes des deux types d'établissement, y
compris leurs relations avec les objets Student. School contient même la
méthode commune Enro11O, bien qu'elle soit abstraite car Highschool
et University ne I'implémentent pas de la même manière.

School
{abstract}

numStudents

+ Enroll 0
- {abstract}

+ nAvgSAT

+ Enroll 0
+ NameFavorite

+ Enroll 0
+ GetGrant 0

Les classes HighSchool et University héritent maintenant toutes deux
d'une classe de base commune. Chacune contient des membres qui lui
sont propres:l'TameFavorite O dans le cas de HighSchool, et GetGrant ()
pour University. De plus, ces deux classes substituent à la méthode
Enro1l () une redéfinition de celle-ci décrivant le mode de recrutement
de chaque type d'établissement.

3 | 6 0uatrième partie : La programmation orientée objet

L'introduction de la classe School présente au moins deux gros avantages.
Le premier est de correspondre à la réalité. Une University est une School,
mais ce n'est pas une fligirSchool. Correspondre à la réalité, c'est bien, mais
ce n'est pas suffisant. Le deuxième avantage est d'isoler chaque classe des
modifications apportées à I'autre. Quand mon patron viendra me voir un peu
plus tard, ce qui se produira sans aucun doute, pour me demander d'intro-
duire le discours de bienvenue à I'université, je pourrai ajouter la méthode
Commencenent-Speech i) à la classe'tln1,",.ersity, sans affecter la clasSe
HighSchcoi.

Ce processus qui consiste à externaliser les propriétés communes de
classes similaires s'appelle factoring. C'est une caractéristique importante
des langages orientés objet, pour les raisons que nous avons décrites plus
haut, plus une nouvelle : la réduction de la redondance. Je vais me répéter :

la redondance ne peut faire que du mal. Ne la laissez jamais entrer.

Le factoring n'est légitime que si la relation d'héritage correspond à la réalité.
Son application à une classe S,--.ur rs et une classe Joystick parce que I'un
comme I'autre est un clispositif matériel de pointage est légitime. Son applica-
tion à une classe S,, r i I et une classe Af f ichag3 parce que I'un comme
I'autre fait des appels cle bas niveau au système d'exploitation ne I'est pas.

Le factoring peut produire plusieurs niveaux d'abstraction, et en général,
c'est le cas. Par exemple, un programme écrit pour une hiérarchie plus
complète d'établissements scolaires pourrait avoir une structure de
classes plus proche cle celle montrée par la Figure 13.4.

r--

Etablissement scolaire

;r
Lqi:e l

Supérieur

Ecole supérieure
I

Université

Classes préparatoires

L{"+,q

#Ï\
(l.,/

-

Figure 13.4:
Le factoring
prod u it
gé né ra le-

ment des
c0uc nes
supplémen-
taires dans
la hiérarchie
d'héritage.

- Vous
Sch,:o

voir clue j'ai inséré une nouvelle
-.11,,,,1i ir 1re. J'ai subdivisé cette

classe entre Universitv et
nouvelle classe en Collese et

Ghapitre 13 : 0uel est donc ce polymorphisme ? 3l 7

Urrl-"'er s-:i.i-r'. Ce type de hiérarchie de classes à plusieurs niveaux est
courant et sotrhaitable lorsque I'on met des relations en facteurs cornmuns.
Il correslroncJ a\ la réalité et il pourra parfois vous suggérer des solutions
subtiles à un problème.

Remarr.luez toutefois qu'il n'y a pas de Théorie unifiée du factoring applicable à
n'importe tluel ensernble cle classes. Les relations montrées par la Figure 13.4

semblent naturelles, mais supposez qu'une application différencie plutôt les
types d'étatrlissenrents scolaires selon qu'ils sont aclministrés ou non par des
éltrs locaux. Les relations correspondantes, montrées par la Figure 13.5,

conviennent nrieux à ce type de problème.

ll ne me reste concept classe abstraite

Si intellectuellement satisfaisant que puisse être le factoring, il introduit
un problème qui lui est propre. Revenez encore une fois à BankAccount.
Pensez un instant à la manière dont vous pourriez définir les différentes
fonctions membre qui y sont définies.

La plupart des fonctions membre de BankAccount ne sont pas un problème,
car elles sont implémentées de la même manière par les deux types de
compte. C'est avec BankAccount que vous devez implémenter ces fonctions
communes. '!\ i *, hd r aw O , quant à elle, est différente. Les règles de retrait
d'un compte réniunéré sont différentes de celles d'un compte chèque. Vous
aurez donc à implémenter SavingsAccoulrt . i'jithd rawal () différemment
de ClireckingAccount .ldirhdraw O. Mais comment implémenter
Patk..cc:)'-:.-- . .'. i ,hr t â,^,a I ?

-

Figure 13.5:
ll nyapas
de factoring
"universel".

La manière
a ppropri ée
de définir les

flasses
dépend en
partie du
problème à

résoudre.

-

I

i

l

I

I

I

i

:laQu'un

Collège Classes préparatoires

3l 8 0uatrième partie : La programmation orientée objet

Si vous demandez son aide au directeur de la banque, j'imagine que la
conversation pourrait ressembler à ceci :

"Quelles sont les règles pour effectuer un retrait sur un compte ?" deman-
dez-vous, plein d'espoir.

"Quel type de compte ? Un cornpte chèque ou un compte rémunéré ?"

"Un compte, répondez-vous, simplement un compte."

Regard vague et désespéré.

Le problème est que cette question n'a pas de sens. Il n'y a pas de compte qui
soit "simplement un compte". Tous les comptes (dans cet exemple) sont soit
des comptes chèque, soit des comptes rémunérés. La notion de compte est
une notion abstraite qui rassemble les propriétés communes aux deux classes
correspondant à une réalité concrète. Elle est incomplète, car il lui manque la
propriété critique',,\rithciraw O (en allant plus loin dans les détails, vous
trouverez peut€tre d'autres propriétés qui font défaut à un simple compte).

Le concept de EarLkAccount est un concept abstrait.

Comment une abstraite

Une classe abstraite sert à décrire des concepts abstraits.

Une c/czsse abstruile est une classe comportant une ou plusieurs méthodes
abstraites. Une méthode abstraite est une méthode déclarée abstract.
Allons plus loin : une méthode abstraite n'a pas d'implémentation. Vous
êtes maintenant dans le brouillard.

Considérez ce programme de démonstration, allégé pour la circonstance :

// Abstractlnheritance - 1a classe BankAccount est vraiment
I I abstraite parce qu'il n'existe pas

I I d'implémentation unique pour Withdraw
nanesDace Abstractlnheritance
L

..^.: -^ C,,a+^*.uùJrrË ùyùLtrilI
'

ll AbstractBase0lass - crée une elasse abstraite de contenant rien d'autre
I I qu'une méthode OutputQ
abstract public class AbstractBaseClass
I
t

.lclasseutîliser

3 I 8 Ouatrième partie : La programmation orientée obiet

Si vous demandez son aide au directeur de la banque, j'imagine que la
conversation pourrait ressembler à ceci :

"Quelles sont les règles pour effectuer un retrait sur un compte ?" deman-
dez-vous, plein d'espoir.

"Quel type de compte ? Un compte chèque ou un compte rémunéré ?"

"Un compte, répondez-vous, simplement un compte."

Regard vague et désespéré.

Le problème est que cette question n'a pas de sens. Il n'y a pas de compte qui

soit "simplement un compte". Tous les comptes (dans cet exemple) sont soit
des comptes chèque, soit des comptes rémunérés. La notion de compte est

une notion abstraite qui rassemble les propriétés communes aux deux classes

corresponclant à une réalité concrète. Elle est incomplète, car il lui manque la

propriété critique l^Jithdraw 0 (en allant plus loin dans les détails, vous

trouverez peut€tre d'autres propriétés qui font défaut à un sirnple compte).

Le concept de BankAccount est un concept abstrait.

Comment une abstraite .)

Une classe abstraite sert à clécrire des concepts abstraits.

Une c/ass e abstraile est une classe comportant une ou plusieurs méthodes
abstraites. Une méthode abstraite est une méthode déclarée abstract.
Allons plus loin : une méthode abstraite n'a pas d'implémentation. Vous
êtes maintenant dans le brouillard.

Considérez ce programme de démonstration, allégé pour la circonstance :

// Abstractlnheritanee - la classe BankAccount est vrainent
I I abstraite parce qu'i1 n'existe pas

I I d'irnplémentation unique pour Withdraw

nanespace Abstractlnheritance
t

usi-ng Systen;

ll AbstractBaseClass - crée une classe abstraite de contenant rien d'autre
I I qu'une méthode 0utPut0
abstract public class AbstractBaseClass

t

classeutiliser

3l 6 ouatrième partie : La programmation orientée obiet

-

Figure 13.4:

Le factoring
produit
généra le-

ment des
couc hes

supplémen-
taires dans
la hiérarchie
d héritage.

- Vous pouvez voir clue j'

Sch"..r:!i;.--r. ' l

ai inséré une nouvelle
r's. J'ai subdivisé cette

ê*\=(0,

L'introduction de la classe School- présente au moins deux gros avantages.

Le premier est de correspondre à la réalité. Une University est une School,

mais ce n'est pas une lii gh-scho':i' Correspondre à la réalité, c'est bien, mais

ce n'est pas suffisant. Le deuxième avantage est d'isoler chaque classe des

modifications apportées à I'autre. Quand mon patron viendra me voir un peu

plus tard, ce qui se prodtrira sans aucun doute, pour me demander d'intro-
duire le discours de bienvenue à I'université, je pourrai ajouter la méthode
conirnencenelll-s;e e'rl il à la classe Llrrllersit-1', sans affecter la classe

HighSchco-.

Ce processus qui consiste à externaliser les propriétés commtlnes de

classes similaires s'appelle foctoring. C'est une caractéristique importante
des langages orientés objet, pour les raisons que nous avons décrites plus

haut, plus une nouvelle : la réduction de la redondance. Je vais me répéter :

la redondance ne peut faire que du mal. Ne la laissez jamais entrer.

Le factoring n'est légitime que si la relation d'héritage correspond à la réalité.
Son application à une classe Soi,Lrl s et une classe Joystick parce que I'un

comme I'autre est un dispositif matériel de pointage est légitime. Son applica-
tion à une classe ;lil.li:rs et une cla.Sse,{ff ichage parce que I'un Comme

I'autre fait cles appels de bas niveau au système d'exploitation ne I'est pas.

Le factoring peut procluire plusieurs niveaux d'abstraction, et en général,

c'est le cas. Par exemple, un programme écrit pour une hiérarchie plus
complète d'établissements scolaires pourrait avoir une structure de

classes plus proche de celle montrée par la Figure 13.4.

Etablissement scolaire

'---3__,
1ry.":_l

Supérieur

E."b;pd;l Université

Classes préparatoires

classe entre University et
nouvelle classe en Coileee et

3 | 4 Ouatrième partie : La programmation orientée objet

High School

- numStudents

+ Enroll 0

+ GetGrant 0

Vous me direz : "Et alors ? I'héritage fonctionne, et ça fait du travail en
moins." C'est vrai. mais les réserves que je fais ne sont pas que de trivia-
les questions de style. De fausses représentations de ce genre sont
sources de confusion pour le programmeur, dans I'immédiat comme par
la suite. Un jour, un programmeur qui ne connaîtra pas mes astuces de
programmation devra lire mon code et comprendre ce qu'il fait. Une
représentation fausse est difficile à comprendre et à utiliser.

En outre, de telles représentations fausses peuvent conduire ultérieurement
à des problèmes. Imaginez que la high school décide de nommer un étudiant
"favori" pour son banquet annuel (usage local). Le prograrnmeur, astucieux,
ajoute alors à Ia classe Highschool la méthode NarneFavorite O, que I'appli-
cation invoque pour nommer favori l'objet Student correspondant.

Mais maintenant, j'ai un problème. La plupart des universités n'ont pas
pour pratique de nommer quoi que ce soit favori, mais aussi longtemps
eue University hérite de HighSchool, elle hérite de la méthode
NameFavorite O. Une méthode supplémentaire peut sembler sans impor-
tance. Vous pourriez dire : "ll suffit de I'ignorer,"

Une méthode de plus n'a pas grande importance, mais c'est une pierre de
plus dans le mur de la confusion. Avec le temps, les méthodes et les
propriétés supplémentaires s'accumulent, jusqu'à ce que la classe Uni -

versit's se trouve bien encombrée de tous ces bagages. Ayez pitié du
pauvre développeur de logiciel qui doit comprendre quelles méthodes
sont "véritables" et lesquelles ne le sont pas.

Un tel "héritage de complaisance" conduit à un autre problème. À ta manière
dont elle est écrite, la Figure 13.2 implique qu'une University et une
HighSchool ont la même procédure de recrutement. Si peu waisemblable que
cela paraisse, supposez que ce soit wai. Le programme est développé, emballé

-

Figure 13.2 :

L'héritage de
HlghSchool
simplifie la

classe
Univer -

sity, mais il

introd uit
quelq u es
problèmes.

-

3 | 2 Ouatrième partie : La programmation orientée objet

-

Figure 13.1 :

Une descrip-
tion sous la
forme UML
des classes
Hi ghS chc o i
etUrrlver
ci trr

-re9!Qa.
^w7ç-7

\oz

Le langage UML

Le langage UML {Unified Modeling Language} est un langage de modélisation, permettant de

définir clairement une grande partie des relations entre des objets dans un programme. L'un
des avantages d'UML est que I'on peut en ignorer les aspects les plus spécialisés sans en

perdre entièrement la signific ation.

Les caractéristiques de base d'UML sont les suivantes :

,/ Une classe est représentée par un rectangle, divisé vefticalement en trois sections.

Le nom de la classe apparaît dans f a première section en partant du haut.

/ Les membres donnée de la classe apparaissent dans la section du milieu, et les
méthodes dans la section du bas. Si la classe n'a pas de membres donnée ou de

méthodes, vous pouvez omefire la section du milieu ou celle du bas.

/ Les membres précédés par un signe + sont publics, et ceux qui sont précédés par un

signe - sont privés. UML ne dispose pas de symboles pour représenter la visibilité et
la protection.

Un membre privé n'est accessible qu'à d'autres membres de fa même classe. Un

membre public est accessible à toutes les classes,

/ Le symbole "{abstract}" à côté d'un nom indique que la classe ou la méthode est
abstraite.

University

- numStudents
+ nAvgSAT

Student

+ Enroll 0
+ GetGrant

UML utilise en fait un symbole différent pour une méthode abstraite, mais je simplifie.

3l 0 Ouatrième partie : La programmation orientée obiet

mAmountToWithdraw = nBalance ;

l
nBalance -= mAnountToWithdraur;

return mAmountToWithdraw ;

]

// SavingsAccount - compte bancaire qui rapporte des intérêts
public class SavingsAccount : BankAccount

t
I I 1a mêrne chose ici aussi-

// Withdra$ - tout retrait est autorisé jusqu'à 1a valeur
I I du solde ; retourne 1e nontant retiré
override public decimal Withdraw(decimal mWithdrarual)
t
t

tl/1 soustrait 1.50 F

base.Withdrari(1 . 5M) ;

// vous pouvez maintenant effectuer un retrait avec ce qui reste
return base.Withdrarr(mWithdra,,ral) :

1
)

l
public class Classl
{

^.,k 1 ; ^ .+"+is void MakeAllithdrawal (BankAccount ba,yuuJfL ùLéLIl vvlu lls^cnnfLlrurqwcf \!qrrnrr

dec imal rrrAmount)

(
t

ba . Withdraw (nAmount) ;

j

nrrhiir. stetic void Main(string[] args)\v9+4..oLJ_-o-'

{

I I . . . pas de changement ici non Plus
]

l
l

1

L'exécution de ce programme donne la sortie suivante :

Évoqué par un internédiaire,
Le solde de BankAecount est 100,00 F

Le solde de SavingsAecount est 98,50 F

Appuyez sur Entrée pour terminer...

La fonction \^rithdraw () est marquée comme virtual dans la classe de base

BankAc c oun r. alors que la méthode tii thd raw () de la soustlasse est marquée

avec le mot-clé override. Bien que la méthode MakeA\,nlithdrawal 0 soit
inchangée, le programme donne une sortie différente parce que I'appel

ba. Wlthdraw O est résolu sur la base du type de ba à I'exécution.

308 Ouatrième partie : La programmation orientée obiet

Tout cela ne se présente pas mal, sauf pour trois choses. Pour commen-
cer, ce n'est Ià qu'une fonction. Supposez que calcTuition () soit appelée
depuis de nombreux endroits. Supposez aussi que calcTrrition O ne soit
pas la seule différence entre les deux classes. Mes chances de trouver
tous les endroits qui doivent être modifiés ne sont pas des plus élevées.

Avec le polymorphisme, je peux laisser C# décider de la méthode à appeler.

utilisant isredéf inie
Accéder rytar le polqmorp(risme à une néthode

en

Comment rendre mon programme polymorphe ? C# offre une approche
pour résoudre le problème manuellement avec un tout nouveau mot-clé :

is. L'expression l:'a is Sa..'ingsAccoLlnr- retourne trlie ou faise selon la
classe de I'objet à I'exécution. Le type déclaré pourrait être BanhAccourir,
mais quel est-il en réalité ?

publi-c class C1ass1

t
nrrhl jn cratis void MakeAWithdrawal(BankAccount ba,

deci.mal nAmount)

{

if ba is SavinssAccount

t

SavingsAccount sa : (SavingsAccount)ba;

sa . Withdraw (mAmount) ;

e1 se

ba . Withdrav (mAmount) ;

l

Maintenant, quand l.lain () passe à la fonction un objet SavjngsAccorjnt,
MakeA'uJi thd rawal (I vérifie à I'exécution le type de I'objet ba et invoque
SavirrgsÀc counr .'yiithdraw () .

1t$!Qa. Au passage, je vous signale que le programmeur aurait pu réaliser le cast et

â7^H\ I'appel dans une nrême ligne I ((SavingsA.-iount)ba) .'y/ithdraw(mAmor-int).

= \Ë V / Je ne mentionne la chose que parce que vous la verrez beaucoup dans des
\Ô/ programmes écrits par des gens qui aiment faire de I'esbroufe.

Chapitre 14 : Ouand une classe n'est pas une classe : l'interface et la structure 3 5 7

EST-UN Int32 en utilisant le mot-clé 1s. La sortie de cette portion clu
programme se présente ainsi :

Bxtrai.t d'une liste les nombres entiers
L'élément numéro 1 est 2

L'élément numéro 3 est 4

I-e programme termine son numéro de cirque en utilisant une fois de plu.s
la descendance d'cb j ect. Toutes les sous-classes d''',r: j i,r i ({:'e.st-e\-clire
toutes les classes) implémentent toS:r-rrgi,. Par c<inséc1uent, si nous
voulons simplement afficher les membres du tableau d'objets. nolls n'avons
absolument pas besoin de nous préoccuper cle leur type. La section finale
de Main () effectue encore une boucle sur les objets clu tableeru. demanclant
cette fois à chaque objet de se mettre en forme lui-mêrne en r-rtilisant sa
méthode ToString O. Les résultats apparaissent ainsi :

Affichase de tous 1es obiets de la Liste"- - --"*b-

0hiets|.0'l pst (th'i c is a <trino)--J--- L-r

0hiatc f1 I act (?)

0biets[2] pc1 (fl1p."1 rl,r nr^^..-*o (trrrr^trrroFvemnle)vvJçLù Lal çù L \ur4ùùt uu p!ué!dill[E v

0hipts f?l pct (4)
rlhr^+âll,r ^^+ 1(\)wuJËLDLTJ CùL \J.J

Appuyez sur Entrée pour terminer. , .

Comme les animaux sortant de I'Arche de Noé. chaque objet se pré.sente
comme le seul de sa catégorie. J'ai implémenté une nréthocle 'i':-.

S : : i :, : ,

triviale pour Classi, rien que pour montrer qu'elle sait jouer avec toutes
les autres classes.

En fait, c'est indubitablement ToString O qui permet à C, r'rSr, é:.,,,: i : e,,
d'exécuter son tour de magie. Je ne suis pas allé voir dans le cocle source,
mais je parierais volontiers que',,,rr-te O accepte ses arguments en tant
qu'objets. Elle peut alors invoquer simplemett Tr S *, i r i,g . r sur I'objet pour
le convertir en un format affichable (en dehors du premier argument, qui
peut contenir des indications {n} de contrôle de format).

dËK
'qE,

306 0uatrième partie: La programmation orientée objet

La sortie de ce progl'arnrne peut être or.r

ce que vous attendiez :

Évoqué par un interr:iédiaire,
Le solde de BankAccount est 100,00 F

Le solde de SavingsAccount est 100,00 F

Annrrrroz crrr FntrÂo nnrrr tarminpr

ne pas être déconcertante, selon

Cette fois. plutôt que d'effectuer un retrait clans i'ia-in O, le programme
passe I'objet cclntpte tlancaire à la fonction :'1ai:erliiitir,lrawai ,).

La prernière question est clétrlourvue de rnystère : Pourquoi la fonction
l"Iake.tr,,;rhri'.':,1',,:,r , t, ac:cepte-t-elle un objet Sa'.': rLg:;Âc.ûur,t- 31915 qu'elle
dit clairement qu'elle attenrl r,rn objet i-:it:-L,errcc.,;i,i,"ri. ? [,a réponse est
évidente : "Parce qu'un Sr-" - il!Sri-ii((iLii,t. ES"|-UN B:rni.:Acccr.iirt.

La deuxièrne question est plus subtile. Quand il lui est passé un objet
Bank,rccount, l'lair.e.iiv: thcira-*a,l O invoque Bai-rkAccoLlnt .l,r j thdraw O.
C'est assez clair. Mais lorsqtr'il lui est passé un objet SavingsAccoLrnr,
lvlakeAtilithdrav:a, (; appelle la même méthode. Ne devrait-elle pas invo-
quer la méthode i,; r -r. hc r a r i I dans la sous-classe ?

Le procureur veut montrer que I'appel à ba. Witfidr:aw O devrait invoquer
la méthode Bar-iirÀrr r,.; L.Ln t . ,^/i t:hrl raw () . Il est clair que I'objet ba est un
BankAccounr-. Faire autre chose ne pourrait que faire naître la confusion.
Mais la défense a cles témoins dans l,iain () pour prouver que bien que
I'objet ba soit déclaré comme BankActroi-rrit, c'est en fait un
Sa,.,ingsAcc crLrir'1-. I-e jury ne s'y retrouve plus. Les deux arguments sont
tout aussi valides I'un que I'autre.

Dans ce cas, C# se range clu côté du procureur. Le choix le plus sûr est de
s'en tenir au type déclaré, parce qu'il évite toute erreur de communication.
L'objet est donc déclaré être un BankAccL)unt, et la cause est entendue.

Qu'U A-t-il de mal
tqpe déclaré .)

Dans certains cas, vous ne voudrez pas utiliser le type déclaré. Ce que vous
voudrez vraiment. c'est effectuer I'appel sur la base du type rée[, c'esl-à-dire
le type à I'exécr,rtion, par opposition au type déclaré. Cette possibilité de
décider à I'exécution s'appelle polymorphisme, ou late binding (liaison
tardive). Utiliser le type déclaré s'appelle early binding (liaison précoce).

à utiliser chaque fois le

Chapitre 14 : Ouand une classe n'est pas une classe : l'interface et la structure 35 5

nrlh, i â '^^-1PUUTIL rtoùD uJdbù

{

public static int Main(string[1 args)
{

I I cré.e un int et f initiali.se à 1a valeur 0

int i = new int0;
I I Iut assigne une valeur et la restitue par
ll .r'

I I I' interface IFormattable
i = 1;

OutputFunct ion (i) ;

I I 7a constante 2 inplémente la même interface
OutputFunction(2);
I I en fait, i'ous pouvez utiliser directenent 1e même objet
Console,T,,/riteLine("Extrait directement = {0}", 3.TcStringO) ;

I I cect peut être très utile ; vous pouvez extraire un int
I I d'tne liste :

Console.klriteLine("\nExtrait d'une liste les nombres entiers") ;

object[1 objects = new object[5];
objects[0] = "this is a string";
objects ltl = z;
objects[2] = new Classi0;
objects13l = a:
objects [4] = :. S;

for(int index = 0; index (objects.Length: index+r)
{

if (objectsIindex] is int)
{

int n = (int)objectsIindex];
Console.|lriteLine("L'é1ément numéro {01 est [1]",

index, n);
)

]

/l altre utilisation de 1'unification des types
Console.I/riteLine("\nAffichage de tous les objets de 1a 1iste");
int nCount = 0;
fnroanh (nhiont

^ ir ahiantol!VIgOLI!\VUJçLL V IIT VVJçULD/

t

Console.l^lriteLine("0b3'ets [{0}] est <{1})",
nCount**, o.ToString0) ;

]

I I attend confirmation de 1'utilisateur
Console.ltlriteLinei"Appuyez sur Entrée pour terminer. . . ") ;

Console. Read O ;

return 0;

]
// 0rrtoutFuncrion - affiChe tOUte pÉrhnio nrri imnlAmgllg

I I ToString0
public static void OutputFunction(IFormattable id)
{

30 4 Ouatrième partie : La programmation orientée obiet

BankAccount ba = (BankAccount)this;

// invoque inlithdraw0 en utilisant cet objet BankAccount

I I appelle 1a fonction BankAccount.Withdrav0
double dAmountl^lithdrawn = ba.Withdraw(dlJithdrawal) ;

if (+*nNuniberOfi,lithdrawalsThisPeriod) 1)

{

dAmountWithdrarrn *= ba.Withdraw(1. 5) ;

]
return dAmountl{ithdrawn l

Cette solution fonctionne : I'appel ba . i,Jittrd raw () invoque maintenant la
méthode Bank.r,rrrcur-1r,, comme on le voulait. L'inconvénient de cette
approche est la référence explicite à BankAc c ount. Une modification
ultérieure du programme pourrait modifier la hiérarchie d'héritage de
telle manière que lJa.,,:-rrg,.:.{c.)un-, n'hérite plus directement de
BankAc count. Une telle réorganisation brise cette fonction d'une façon
qu'un nouveau programmeur pourra avoir clu mal à trouver. Pour moi, je
n'arriverais jamais à trouver un bogue comme celui-là.

Il vous faut un moyen de dire à C# d'appeler la fonction ,r'ithdra'"ro
depuis "la classe qui est juste au-dessus" dans la hiérarchie, sans la
nommer explicitement. Ce serait la classe qui est étendue par
Sa,,,lngsAcccuril-. C'est dans ce but que C# comporte le mot-clé base.

C'est le même mot-clé base qu'utilise un constructeur pour passer des
arguments au constructeur de la classe de base.

Le mot-clé L,ase de C# est la ntême chose que this, mais redéfinit le cast
à la classe de base, quelle que soit cette classe :

/l Withdraw - tout retrait est autorisé jusqu'à 1a valeur
I I du solde ; retourne 1e montant retiré
new public decimal Withdraw(decimal mhrithdrawal)

{

II// soustrart 1.50 F

base.itlithdraw(1.5M) ;

// vous pouvez maintenant effectuer un retrait avec ce qui reste
return base. Withdrai,r(ml,Iithdrawal) ;

]

L'appel base . r^,titilila-w (.r invoque maintenant la méthode
BankAc c oul: . i,,ri-,.hd r aw O , évitant par-là l'écueil qui consiste à s'invoquer
elle-même. En outre, cette solution ne sera pas brisée si la hiérarchie
d'héritage est modifiée.

Chapitre 14 : 0uand une ctasse n'est pas une classe:l'interface et la structure 353

L'appel suivant est I'appel à la fonction ChangeRef erenceFunction |).
Cette fonction apparalt identique à ChangeValueFunction O, à I'exception
de I'ajout du mot-clé ref à la liste des arguments. Comm€ test est
maintenant passé par référence, l'argument t se réfère à I'objet original
test et non à une copie nouvellement créée.

Le dernier appel de l.1ain O est un appel à la méthode ChangeMethod O.
Comme un appel à une méthode passe toujours I'objet courant par
référence, les modifications effectuées par cette méthode sont conser-
vées une fois cle retour dans l"1ain () .

La sortie de ce programme se présente de la façon suivante :

Valeur initiale de test
id = (10.00, 20.00)
Valeur de test après 1'appel
id = (10.00, 200.00)
Valeur de test après 1'appe1
id = (100.0û, 200.00)
Valeur de test après I'appe1
id = (1,000.00, 2,000.00)
Appuyez sur Entrée pour terminer.

tléconcîlîer la et la
stlstème de ttqpes

Les structures et les classes présentent une similitude frappante : toutes
deux dérivent d'0bject. En fait, toutes les classes et toutes les structures,
qu'elles le disent ou non, dérivent d'Ob j ect. C'est ce qui unifie les diffé-
rents types de variables.

Cette unification des types de variables est étrangère aux autres langages
dérivés de C, comme C++ et Java. En fait, Ia séparation entre les objets de
type référence et de type valeur en Java peut être un véritable casse-tête.
Comme tout est un casse-tête en C*+, un de plus ou de moins ne se
remarque même pas.

Les ttlpes structure prédéfînis

La similitude entre les types structure et les types valeur simples n'est pas
que superficielle. En fait, un type valeur simple est une structure. Par

ChangeValueFunction (100, 200. 0)

ChangeReferenceFunction (100, 200. 0)

ChangeMethod(1000, 2000,0)

référence.' unîfier lehleur

1t$!Qa"É!,/t-t \

'qE,

302 Ouatrième partie : La programmation orientée obiet

Le not-clé nerl est requis sur

' Hidinglrlithdrawal . SavingsAc eount . liithdrav (dec imal)'
fiâ snlrp .l e memhre hérité
' HidingWithdrawal. BankAccount.I,iithdrau(decimal)'

C# essaie de vous dire que vous avez écrit dans
méthode portant le même nom qu'une méthode
ce vraiment ce que vous vouliez faire ?

Et si je redefinis accidentellement une méthode de la classe de base

Il peut arriver à tout le monde de redéfinir accidentellement une méthode de Ia
classe de base. Par exemple, je peux avoir une méthode t/éhlcu1e. Virage o
qui fait tourner le véhicule. Plus tard, quelqu'un étend ma classe Véhicule
avec une classe Avion, dont la méthode Virage 0 est entièrement différente. Il
est clair que nous avons là un cas de confusion d'identité. Ces deux méthodes
n'ont rien à voir I'une avec I'autre, sinon qu'elles portent le même nom.

Heureusement pour nous, C# sait détecter ce problème.

En compilant I'exemple précédent, Hiding\,Jithdrar^; () , C# génère un
avertissement patibulaire. Le texte de ce message est un peu long, mais
en voici la partie importante :

.)

, car il

une sous-classe une
de la classe de base. Est-

^$st -a Ce message n'est qu'un avertissement. Vous ne le remarquerez même pas,

7X à moins de passer à la fenêtre Sortie pour voir ce qui y est affiché. Dans

t\!|, presque tous les cas, vous y verrez un avertissement qui vous prévient que
Y quelque chose pourrait bien vous mordre si vous n'y mettez pas bon ordre.

Le descripteur new indique à C# qu'une méthode est redéfinie intention-
nellement et que ce n'est pas le résultat d'une négligence :

/i plus de problèrnes avec withdraw0
new public decimal Withdrar,r(decinal dl^lithdrar,ral)
(
t

I L pas de modifications internes,
]

Cette utilisation du mot-clé new n'a rien à voir avec I'utilisation du même
mot-clé pour créer un objet.

Je me perrnettrai de faire remarquer ici que c'est I'une des choses que je
trouve agaçantes chez C# (et C+* nvsnt lui) : faites ce que vous voulez
avec mes méthodes, mais ne surchargez pas mes mots-clés. Quand je dis
new, c'€st que je veux créer un objet. Ils auraient pu utiliser un autre mot-
clé pour indiquer une surcharge intentionnelle.

U
1e$\a.

^v7ç|
\

'qE,

Chapitre 14 : Ouand une classe n'est pas une classe: l'interface et la structure 35 |

I I une strrlct neut avoir une méthode

public void ChangeMethod(int nNewValue, double dNewValue)

{

n : nNevValue;
d : dNewValue;

]
tt 6

^.// ToString - redéfinit 1a r:réthode ToString dans 1'objet
override public string ToString0
{

return string.Fornat("([0:N], [1:N])", n, d);
i

l
hrrhrr^ ^rô^^ / r^-^1
Puurfr ufdbU \rId5È

t

public static int Main(string[] args)
i

I I crée un objet Test
Test test = nev Test(i0);
Console.l.jriteLine("Va1eur i-nitiale de test") ;

OutputFunction (test) ;

// essaie de modifier 1'objet de test en 1e passant
H ^^^^^t I coume argument

ChangeValueFunction(test, 100, 200.0) ;

Console.illriteline("Valeur de test après 1'appe1" t
" ChangeValueFunction (lOO, 200.0) ") ;

OutputFunction (test) ;

// essaie de modifier 1'objet de test en 1e passanr
il ^^^^^I t conme argument

ChangeReferenceFunction (ref test , 100, 200.0) ;

Console.}lriteLine("Va1eur de test après 1'appe1" +

" ChangeReferenceFunction(100, 200.0) ") ;

OutputFunction (test) ;

I I une méthode peut modifier 1'objet
test.ChangeMethod(tOOO, 2000.0) ;

Console.WriteLine("Va1eur de tesr après 1'appe1" r
' ChangeMethod(1000, 2000.0) ") ;

OutputFunction (test) ;

// attend confirnation de 1'uti.lisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...") ;

Console.ReadO;
return 0;

l
I I ChangeValueFunction - passe la struct par référence
public static void ChangeValueFunction(Test t,

int newValue, double dNer.vValue)

{

t.N = newValue;

Test.D = dNewValue;

l

300 0uatrième partie : La programmation orientée obiet

l
// SavingsAccount - compte bancaire qui rapporte des intérêts
public class SavingsAccount : BankAccount

{

public decimal mlnterestRâte;
i / SavingsAccount - iit 1e taux d'intérêt, exprimé en

I I pourcentage (valeur comprise entre 0 et 100)

public SavingsAccount (decimal mÏnitialBalance,
decimal mlnterestRate)

: base (nInitialBalance)
{

this.mlnterestRate = mlnterestRate / 100;

l
// Accumulâtelnterest - invoquée une fois par période
nrrblie void Accrrmulatelnterest0
i

nBalance = mBalance * (niBalance * mTnterestRate);

]

/i Withdraw - tout retrait est autorisé jusqu'à 1a valeur
I I du solde ; retourne 1e montant retiré
public decimal Withdraw(decinal mWithdrar+al)

i
/l soustrait 1.50 F

base.l,lithdrav (i . st't) ;

I I vous pouvez maintenant effectuer un retrait avec ce qui reste
return base, Withdraw(ml,Iithdrawal) ;

l

r I | 1 , - ,
^1 - , -1public class Classl

{

nrrhf ic gtar-ie voiC MakeAWithdrawal(BankAccount ba,

decimal nAmount)
a

L

ba . Withd raw (rnAmount) ;

l
public static int Main(stringIl args)

{

BankAccount ba;

SavingsAccount sa;

I I erée un conpte bancaire, en retire 100 F, et
// affiche 1es résultats
ba = new BankAccount(200M);

ba . Withdraw { I 00M) ;

// essaie de faire 1a même chose avec un conpte réniunéré

sa = nel,,r SavingsAecount (200M, t2) ;

sa.Withdraw(100M);
i / affiche 1e solde résultant

Chapitre 14 : Ouand une classe n'est pas une classe: l'interface et ta structure 349

Vous pouvez réaliser vous-même un constructeur (qui n'est clorrc pas un
constructeur par cléfaut) qui fait effectivement quelque chose :

public struct Test
{

private int n;
public Test(int n)

t

this.n = n:

l
]

public class C1ass1

t
-"1^1.: ^ ^+^+).puuarL suaurd void Main(string[] args)
(

Test test = new Test(10);
l

]

En dépit des apparences, la déclaration test r,Ê,.,i l;r3r. iri r ' n'alloue
pas de mémoire. Elle ne fait qu'initialiser la rnémoire du type valeur clui
est déjà là.

Les méthodes d'une structure sont rusées

Une structure peut avoir des membres qui en sont des instances, nr;tamment
des méthodes et des propriétés. Une structure peut avoir des menrbres
statiques. Ces derniers peuvent avoir des initialiseurs, mais les membres non
statiques (1es instances) ne le peuvent pas. Normalement, un objet de type
structure est passé à une fonction par valeur, mais il peut être passé par
référence, à condition que ce soit spécifiquement indiqué dans I'appel à la
fonction. Une structure ne peut pas hériter d'une classe (autre que ' . r

'Ê. L,

comme je I'explique dans la section "Réconcilier la valeur et Ia référence :

unifier le système de types", plus loin dans ce chapitre), et une classe ne peut
pas en hériter. Une structure peut implémenter une interface.

Si vous ne vous souvenez pas de la différence entre un membre statique
et une instance, reportez-vous au Chapitre 8. Pour vous rafraîchir la
mémoire sur le passage par valeur et le passage par référence, voyez le
Chapitre 7.Le Chapitre 12 traite de l'héritage. Et si vous ne savez pas ce
qu'est une interface, c'est dans ce chapitre que vous trouverez la réponse.

ffi

298 0uatrième partie:La programmation orientée objet

Redéfinir une méthode d'une classe de base

Ainsi. une méthocle d'une classe peut surcharger une autre méthode de la
même classe en ayant des arguments clifférents. De même, une méthode
peut aussi surcharger une méthode de sa classe de base. Surcharger une
méthode d'une clas.se de base s'appelle redéfinir, ou cocher la méthode.

Imaginez que ma banque adopte une politique qui établisse une différence
entre les retraits sur les comptes rémunérés et les autres types de retrait.
Pour les besoins cle notre exemple, imaginez aussi qu'un retrait effectué sur
un compte rémunéré cotte une conlrnission de 1,50 F.

Avec I'approche fonctionnelle. volls pourriez implémenter cette politique
en définissant dans la classe un indicateur qui dise si I'objet est un
Sa,,'ingsr\c co''iirt ou un simple BankÀccount. La méthode de retrait
devrait alors tester I'indicateur pour savoir si elle cloit ou non imputer la
commission de 1.50 F :

public BankAccount (int nAccountType)

t
private decimal mBalance;
nri rrrte hool isSavingsAccount;
i/ indique 1e solde initial et dit si 1e compte

/l que vous êtes en train de créer est ou non

l/ rrn eomnte rémunéré

oublic BankAccount (decimal nlnitialBalance,
bool isSavingsAccount)

{

mBalance : mlnitialBalance;
this.isSavingsAccount : isSavingsAccount;

l
public decimal l,iithdraw (decimal mAmount)

i
l l si 1e compte est un compte rémunéré
'i f (i c(erri nnn Ânnnrrn+ \

;t
\rùravrrrËùnLLvurrL/

t

I L .,a1ors soustrait 1.50 F

nBalance -= 1.50M;

l
// poursuit avec 1e même code pour le retrait I

if (mAmountïoWithdraw) m3alance)

mAmountToWithdrai^r = mBalance ;

)

mBalance -: nAmountToWithdrar'r;

return nrAnountToWithdraw ;

Chapitre 14 : Ouand une classe n'est pas une classe: l'interface et la structure 347

n = 1;

ll \a déclaration d'une struct ressenble à la déclaration d'un sinple int
MyStruct ms;

ns.n = 3; /i accède aux membres conme à un objet de classe
ms,d = 3,0;
I I un objet de classe doit être a11oué à partir
// d'une zone séparée de 1a ménoire
MyClass mc = new MyClass;
mn n = ?.

mc.d = 2.0;

Un objet strL,icr- est stocké en mémoire de la même manière qu'une
variable intrinsèque. La variable ns D'est pas une référence à un bloc de
mémoire externe alloué à partir d'une zone de mémoire séparée.

^tËK
La "zone de mémoire spéciale" clont viennent les objets de classe s'appelle

ô/ ^ Lvat \.(dl\y J le /as (the heap).Ne me demandez pas pourquoi.
\ô/

L'objet ms se trouve dans la même zone de mémoire locale que la variable
n, comme le montre la Figure 14.1.

-

Figure 14.1 :

La variable
SITUCtUIê mS

réside" dans
la même
zone de
mémoire que

la variable de
type valeur rr,
alors que la

zone dans
laquelle
réside I'objet
mc vient d'un
espace
mémoire
particulier
du tas.

- La distinction entre un type référence et un type valeur est encore plus
évidente dans I'exemple qui suit. L'allocation d'un tableau de 100 objets

1
I

3

3.0

I

l-n
l.+ms
I

* mc

Vt't-L

2

2.0

296 Ouatrième partie : La programmation orientée obiet

De notre point de vue d'être humain, la différence entre un four à micro-
ondes et un four conventionnel ne semble pas de la plus haute importance,
mais envisagez un instant la question du point de vue du four. Les étapes
du processus interne mis en (Euvre par un four conventionnel sont complè-
tement différentes de celles d'un four à micro-ondes (sans parler d'un four
à convection).

Le pouvoir du principe de I'héritage repose sur le fait qu'une sous-classe
n'est pas obligée d'hériter à l'identique de toutes les méthodes de la classe de
base. Une sous-classe peut hériter de I'essence des méthodes de la classe de
base tout en réalisant une implémentation différente de leurs détails.

Surcharger une mét(rode héritée
Plusieurs fonctions peuvent porter le même nom, à condition qu'elles
soient différenciées par le nombre et/ou le type de leurs arguments.

Ce n'est (u'une (uestion de surcharge de fonctîon
-rf4kS/ -6: \ Donner le même nom à deux fonctions (ou plus) s'appelle surchorger un

tl nom de fonction.

Les arguments d'une fonction font partie de son nom complet, comme le
montre I'exemple suivant :

public class My0lass

t
public static void AFunction0
{

I I faire cuelcue chosea---a

i
public static void AFunction(int)
{

t t r^: -^ ^..^1-Ue ChOSe d'aUtreI t rda!e qusrq

]
public static void AFunction(double d)

{

ll f.abe encore quelque chose d'autre
l
public static void Main(string[] args)
{

Ghapitre 14 : 0uand une classe n'est pas une classe: l'interface et la structure 345

l'exigence d'implémenter CompareTo O. Conr,are Tir I) y ajoute
GetVaiue (.) , qui retourne la valeur des objets dans un r r.',.

^59trK Bien qu'elle puisse retourner la valeur cle I'objet .sous forme i nr, il'.' , . l'1r-

à"(,ffÏi \ ne dit rien sur ce que contient la classe. La génération cl'une valeur r :,i peut

\T / très bien mettre en jeu un calcul complexe.

La classe BaseClass implémente l'interface ICcnpare (la n-réthocle concrète
GetValue O retourne le membre donnée nYalue). Toutefois, la méthocle
CornpareTo (1, qui est également exigée par I'interface l'l r:r.i,.-, i,," est déclarée
- t- - *,. , - ,

d.U> L] dL L.

Déclarer une class€ abstract signifie qu'il
auquel manque I'implémentation d'une ou
ce cas, la méthode CorrrpareTo ()).

s'agit d'un concept incomplet,
de plusieurs propriétés (clans

Subtllass fournit la méthode Connareîo O nécessaire.

Remarquez que SubClass implémente automatiquement I'interface , : i -.
bien qu'elle ne le dise pas explicitement. Base(-i.,-rs âvait promis cl'implémen-
ter les méthodes de Iconpare, et SubCias-; EST-UNE lasell, .,::::. En héritant
de ses méthodes. SubCl-ass implémente automatiquement Iiti-nrr., ri-:.

Main() crée deux objets de la classe Sui,:Cl-a,,s:; avec cles valeurs clifféren-
tes. Elle passe ensuite des objets à l'11'F unc () . La méthode l'l'.,F.r:r ,

s'attend à recevoir deux objets de I'interface I r.li,r.Dari:. i'1-,,l ir:r.- utilise la
méthode CompareTo O pour décider quel objet est le plus grar-rd. pui.s

GetValue () pour afficher la "valeur" des deux objets.

Ce programme donne une sortie courte et agréable :

La valeur de ie1 est 10 et ce11e de ic2 est 20

Les objets eux-mêmes considèrent que icl est plus petir que ic2
Appuyez sur Entrée pour terminer. , .

Une structure n'a pas de classe
C# semble être doté d'une double personnalité pour la rnanière cle décla-
rerlesvariables.Lesvariablesd'untypevaleurCommeli,letl:l.:'
sont déclarées et initialisées d'une certaine rnanière :

int
n= 'I .

29 4 Ouatrième partie : La programmation orientée objet

1e$!Qa"
^w71-7

\a
=

Dans le cas d'une succession d'héritages de classes, les destructeurs sont
invoqués dans I'ordre inverse des constructeurs. Autrement dit, le destruc-
teur de la sous-classe est invoqué avant le destructeur de la classe de base.

Le ramasse-miettes et le destructeur G#

La méthode du destructeur est beaucoup moins utif e en C#que dans d'autres f angages orientés
objet, cCImme C++, car C# possède de ce I'on appelle une destruction non déterministe.

La mémoire allouée à un objet est supprimée du tas lorsque le programme exécute la

comrnande new, Ce bloc de mémoire reste réservé aussi longtemps que les références
valides à celui-ci restent actives.

Une zone de mémoire est dite "inaccessible" lorsque la dernière référence à celle-ci passe

hors de portée. Autrement dit, personne ne peut plus accéder à cette zone de mémoire quand
plus rien n'y fait référence.

Ç# nefait rien de particulier lorsqu'une zone de mémoire devient inaccessible. Une tâche de

faible priorité est exécutée à I'arrière-plan, recherchantles zones de mémoire inaccessibles.
Ce qu'on appelle le ramasse-miettes s'exécute à un faible niveau de priorité afin d'éviter de

diminuer les performances du programme, Le ramasse-miettes restitue au tas les zones de

mémoire inaccessibles qu' il trouvÀ.

Ën temps normal, le ramasse-miettes opère en silence à I'arrière-plan. ll ne prend le contrôle
du programme qu'à de brefs moments, lorsque le tas est sur le point d'être à court de mémoire.

Le destructeur de t# est non déterministe parce qu'il ne peut pas être invoqué avant que

l'objetaitété récupéré parle ramasse-miettes, ce quipeutse produire longtemps après qu'if

a cessé d'être utilisé. En fait, si le programme se termine avant que l'objet soit trouvé par le

ramasse-miettes et retourné au tas, le destructeur n'est pas invoqué du tout,

Au bout du compte, l'effet qui en résulte est qu'un programmeur C# ne peut pas se reposer
sur le destructeur pour opérer automatiquement comme dans un langage comme C++.

Ghapitre 14 : Ouand une classe n'est pas une clas:;e:l'interface et la structure 343

I I Abstractlnterface -

"--i^^ C,,^+^-.uù1116 uj ù Lçfl,

namespace Abstractlnterface
I
t

// ICornpare - interface capable de se comparer e11e-même
a- Jlaff.i^hor .o '1rônrê rtelprrrEL U aJ- LIIC! ùa P!vt,!

public interface ICompare : ICornparable

{

// GetValue - retourne sâ propre valeur sous forme d'un
int GetValue O ;

l

rhcf rrnt nrrh l 'i n

i
int nValue;
public BaseClass (int nInitialValue)
i

nValue = nInitialValue;
]
lt// implémente d'abord f interface ÏCompare

I I avec une néthode concrète
public int GetValue 0
{

return nValue;

l
// complète f interface ICompare avec une méthode abstraite
eh<trrnf nrrhl.in jr+ l.nmaa-^T^/^h.innr- rinlr+ôhi..nt\ .quoLÀq!L yuuraL rrrL uLJtrrPdrtrru\uuJËuL rlËrILvuJerLL/,

l
/ / (rrhfll âee - 6.66n1À+^ 1^ ^1 ^ ^.^ Â^ ho.o ^. ..l1Âf ;- j -,--...r1eLe ia ctasse oe udse eli reuertlr,ssant

1a méthode abstraite CornpareTo 0
public class SubClass: BaseClass
I
L

1/ nasse au constructeur de l-a classe de base

I I Ia valeur oassée au constructeur nréeédent

public SubClass(int nInitialValue) : base(nInitialValue)
{

]
tI ^/ / uomparelo -

orrprridp nrrhl ic int CnmnnrpTn(nhiont riahtôhiant)vvç!!ruç yuvarL irrL vvrxyutçrv\vuJsuL trSrrLVUJçrL/

{

BaseClass bc = (Base0lass)right0bject;
return GetValue0 .ConpareTo{bc.GetValue0) ;

BaseClass - implémente f interface ICompare en

fournissant une méthode concrèt,: GetValueO et
une méthode abstraite Compareïo 0
class BaseClass : ICompare

imnl Émpntp I rinf arfnno Tflnmnnrrhl e ' rêi-^rrrna

une indication disant si un objet d'une sous'classe
na+ a l

',n ^-^^À
n', 1esl plus granq qu un autre

montre comment une interface
peut être implémentée avec
,,-^ ^l -^^^ ^l^+-^)utrv Lroùùc ouo u, ortê

; -+f,tl L

292 0uatrième partie : La programmation orientée objet

nAccountNumber = **nNextAccountNumber ;

nBalance = rnlniti-alBalance ;

l
I I même chose ici

]

// SavingsAccount - compte bancaire qui rapporte des intérêts
nrrhlin nlacq (errinncÂnnnrrn# . Ra.Llr*-**, ,*rrgsAccounr : DanKAccount

{

orrblic dee'inal mlnterestRate;
// tnitSauinssAccount - 1it le tarx rJ'intérêt exnripf sp'^"o-"-'--'."

I I pourcentage (valeur comprise entre 0 et 100)

public SavingsAccount(decimal mlnterestRate) : this(0, mlnterestRate)
I

l
^,.L1 i ^ c-..-i -^^ ^:count (decimal mlnitial ,yuurrL uqv rrr6ùn\

decimal mlnterestRate) : base(minitial)
{

thi.s.mlnterestRate = mlnterestRate / tOO;

)

t I même chose ici
l
hllhlr^

^l^F-
l,^^,j1

PUUTfL LJdùù Urdùi

f

// Directltenosit - effectue automatiouement Ie déoôt d'rrn chècrrpurrrYuç

nrrhl i n <r.ati n 'oid DirectDeposit (BankAccount ba,
decimal npay)

{

ba. Deposi.t (nPay) ;

]
public static int Main(string[1 args)
{

I I crée un compte bancaire et 1'affiche
BankAccount ba = new BankAccount(100);
DirectDenosit (ba, 100) ;

Console.l.Iriteline("Compte {0i ", ba,ToBankAccountString0) ;

// et maintenant un compte rémunéré

SavingsAccount sa = new SavingsAccount(12.5M) ;

DirectDeposit(sa, 100) ;

sa. Accunulatelnterest () ;

Console.Writeline("Compte [0J", sa.ToSavingsAccountString()) ;

l/ attend confirmation de 1'utilisateur
Console.w*riteLine("Appuyez sur Entrée pour terniner...") ;

Console.Read0;
return 0;

l
]

Chapitre 14 : Ouand une classe n'est pas une classe: l'interface et la structure 34 |

Le tableau trié d'objets Student €st alors passé à la méthode localement
définie DisplavArray O. Celle-ci effectue une itération sur un tableau
d'objets qui implémentent Ge*.S*,rinq O. Elle utilise la propriété
Array. Length pour savoir combien d'objets contient le tableau, puis elle
appelle Get,strirq O pour chaque objet, et affiche le résultat sur la
console en utilisant ririreLine (I .

Le programme, de retour dans Main O , continue en triant et en affichant
les oiseaux. Je suppose que vous conviendrez que les oiseaux n'ont rien à

voir avec des étudiants, mais la classe Bird implémente I'interface
IComparable en comparant les noms des oiseaux, et I'interface
IDi splayable €n retournant le nom de chaque oiseau.

Remarquez que lufain () ne récupère pas cette fois le tableau des oiseaux.
Ce n'est pas nécessaire. C'est la même chose que ce fragment de code :

class BaseClass {}
class Subtlass : BaseClass {l
class C1ass1

{

public static void SomeFunction(Base0lass bc) {}
public static void AnotherFunction 0
t

Subtlass sc = new SubClass0;
SomeFunction(sc);

l
]

Ici, un objet de la classe SubClas s p€ut être passé à la place d'un objet
d'une classe de base, parce qu'une sous-classe EST_UNE classe de base.

De même, un tableau d'objets Bird peut être passé à une méthode atten-
dant un tableau d'objets IConparable, parce que Bird implémente cette
interface. L'appel suivant à lisplayArray O passe le tableau birds, encore
une fois sans cast, parce que Bird implémente I'interface IDisplayabie.

La sortie du programme se présente de Ia façon suivante :

Tri de la liste des étudiants
L1SA : IUU

Marge : 85

Bart :50

Maggie :30

Homer :0

290 0uatrième partie : ta programmation orientée obiet

public class BaseClass

{

public BaseClass ()

{

Console.}lriteline("Construction de BaseClass (default)") ;

l
public BaseClass(int i)
t

Console.ItiriteLine("Construction de BaseClass([0])", i) ;

l
l
public class SubClass : BaseClass

t

public SubClass ()

t

Console.l^Iriteline("Construction de SubClass (default) ") ;

l
public SubClass(int it, int i2) : base(i1)
i

Console.I{riteLine("Construction de SubClass({01, [1])",
il, i2);

]
]

public class Classl
{

public sratic int Main(stringIJ args)
t

Console.Writeline("Invocation de SubClass0 ") ;

SubClass sc1 = new Sub0lass0;
Console.lrlriteLine("\nlnvocation de SubClass(1, 2;"; ;

SubClass sc2 = neu SubClass(1, 2);
I I attend confirmation de 1'utilisateur
Console.l.lriteline ("Appuyez sur Entrée pour terniner. . . ") ;

Console.Read0;
return 0;

l
]

l

Ce programme donne la sortie suivante :

Invocation de Sub0lass 0
Construction de Base0lass (default)
Construction de SubClass (default)

Invocation de SubClass(1, 2)

Ghapitre 14 : Ouand une classe n'est pas une classe: l'interface et la structure 339

public string GetString0
{

string sPadName : Name.fadRight(9) ;

string s = String.Format("[0J : {1:N0i",
sPadName, Grade);

return s;
]

]

l{ --- --Birds - tri des oiseaux par non --
I I Bird * tableau de noms d'oiseau
cl ass Bi rd : TComr:--^L1^ rn.: ^-1^..^b1eLf,qDù uaru . rvvxrPdldUaE. LUL>yLajdl

{

private string sName;

// Constructor - initialise un nouvel objet student
public Bird(string sName)

t

this. sName = sNane;

]

ll CreateBirdlist - retourne une liste d'oiseaux à 1a fonction appelante
r+^+..i ^ -+-.i-^ i1 SBirdNames =DLALTL DLrfrré[J

{ "Tourtere11e", "Vautour", "A1ouette", "Étourneau",
"0rivet', "Corbeau", "Hirondel1e"] ;

{ rf / \puDl1c statlc blrdL.j ureateblro],lstl/
{

Bird[] birds = new BirdIsBirdNarnes,Length];
for(int i = 0; i (birds.Length; i++)
{

birds Ii] = new Bird (sBirdNames Ii]) ;

]

return birds;
]

// accède aux méthodes en lecture seule
-..L1.i- ^+-.i -- [T^puDl1C Srrlng Name

{

get
{

return sName;

]
]
tt/i implémente lrinterface IComparable :

/l Cornpareïo - compare les noms des oiseaux, utilise
I I la méthode de comparaison intégrée de la classe Srring
public int Compareto(object right0bject)
{

// nous aLlons conparer 1'oiseau 'rcourant'r à

l/ 1'objet oiseau "de Croite"
Bird leftBird = this;
Bird rightBird = {Bird)right0bject;
return String.Compare(ieftgird.Name, rightBird.Name) ;

288 Ouatrième partie : La programmation orientée obiet

dont elle réalise une extension. Il y a une raison à cela : chaque classe est
responsable de ce qu'elle fait. Une sous-classe ne doit pas plus être tenue
pour responsable de I'initialisation des membres de la classe de base
qu'une fonction extérieure quelconque. La classe BaseClass doit se voir
donner la possibilité de construire ses membres avant que les membres
de SubCias s aient la possibilité d'y accéder.

urt
Passer des arguments au constructeur de la
classe de base .' le mot-clé b a s e

La sous-classe invoque le constructeur par défaut de sa classe de base,
sauf indication contraire, même à partir d'un constructeur d'une sous-
classe autre que le constructeur par défaut. C'est ce que montre I'exemple
légèrement modifié ci-dessous :

....i-^ Qrra+nmuùrrr6 ujÈLçrlr

namespaee Exanple

t
public class C1ass1

{

public static int Main(string[] args)

{

Console.lJriteline ("Tnvocatlon de SubClass 0 ") ;

SubClass scl = ner,r SubClass0;
Console.l^Iriteline("\nlnvocation de SubClass (int) ") ;

SubClass sc2 = ner,r SubClass (0) ;

// attend confirrnation de 1'utilisateur
Console.l^IriteLine("Appuyez sur Entrée pour terminer. .,") ;

Console. Read 0 ;

return 0 I

l
]
public class BaseClass

{

public BaseClass 0
t

Console.Writeline("Construction de BaseClass (default) ") ;

]
public BaseClass(int i)
{

Console.}Jriteline ("Construction de Base0lass (int) ") ;

l
l
public class SubClass: SaseClass

Ghapitre 14 : Ouand une classe n'est pas une classe:l'interface et la structure 337

// explicite des objets...
Arrav. Sort l.hi rds) ;vv! ç \vf r

DisplayArray(birds);
ll attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer..,") ;

Console.Read0;
l
/ | \: ^' 1 -"4 --^" - affiche un tablearr d'ohipts nrri| | !f,>Pré/ôllé) dLIILiIE Ull LdUfc@u u vuJçLù yur

I I inplémentent f interface lDisplayable
nrrhlin ct:tir vnirl DicnlrrrArrev

(iDisplayable I displayables)
{

.int lpnoth: dr^-1-,.^L1^- T^-^*l
___ _ _ ___o ___ rrsplaya0res . Lengrn;
for(int index = 0; index (length; index**)
i

IDisplayable displayable = displayables Iindex] :

Console.l{riteLine(" i0J ", displayable.GetString0) ;

l
l

]

ll ---- Students - trie 1es étudiants par moyenne de points d'UV ----
// Student - description d'un étudiant avec son nom et ses points d'UV

class Student : IComparable, IDisplayable
{

orivate strins sName;r"'*
--"i--^+^ r^..L1^ rGrade = 0.0;PLAVOLg UUUUlC U

// Constructor - initialise un nouvel objet student
public Student(string sName, double dGrade)

I

ll net de côté les données de 1'objet
this.sName = sName;

this. dGrade = dGrade;

l
// CreateStudentList - pour gagner de 1a p1ace, crée
I I une liste fixe d'étudiants
static stringIJ sNames =

{"Horner", "Marge", "Bart", "Lisa", "Maggie"} ;

static double ll dGrades =

l0, 85, 50, 100, 30] ;

public static Student[] CreateStudentlist0
{

Student[] sArray = ner/ StudentIsNames.Length] ;

for (int i = 0; i (sNames.Length; i++)
{

sArray Ii] = ner,r Student (sNames lil , dGrades Ii]) ;

l
F^+1rFh

^A--^,,,tgLuLll ùdrL4j/,

l
/l accède aux méthodes en lecture seule

286 0uatrième partie : La programmation orientée obiet

public static void GenericFunction(object o)

1

if (o is MyClassl)

{

MyClassl mc1 = (MyClass1)o;
1t
'T

l
'I
J

]

GenericFunction O peut être invoquée avec n'importe queltype d'objet. Le mot-clé is
extraira des huîtres ob j ect toutes les perles de MyClass 1.

et le constructeur
Le programme InheritanceEx:rmp1e que nous avons vu plus haut dans ce

chapitre repose sur ces horribles fonctions Init. . . pour initialiser les

objets BankAc(lounr et SavirrgsAccount en leur donnant un état valide.
Équiper ces classes de constructeurs est certainement la meilleure
manière de procéder, mais elle introduit une petite complication.

lnttoquer le constructeur par défaut de la
classe de base

Le constructeur par défaut de la classe de base est invoqué chaque fois
qu'une sous-classe est construite. Le constructeur de la sous-classe
invoque automatiquement le constructeur de la classe de base, comme le
montre cet exemple simple :

// lnheritingA0onstructor - slûntre que 1e constructeur
I I de la classe de base est invoqué

I I autonatiquenent
using System;

namespace InheritingAConstructor
t

public class Class1

t

L'héritage

Chapitre 14 : 0uand une classe n'est pas une classe:l'interface et la structure 335

Cette rnéttrocle trie trn tableau d'otrjets clui implénrentent I'interface
I r-lr:rll ar :,.i:: ... [,â classe de ces obf ets n'a même pas cl'irnportance. Ils
pourraient trris bien, par exemple. être cles objets Strrtent. I-a classe
r.rr a-,' pclurrait ntême trier la version suivante de S': rrrleir', l

/l Studenr - description d'un étudiant avec son nom er ses points d'UV

class Student : IComparable

t
private double dGrade;

// accède aux méthodes en lecture seule
oublic dorrble Grade

{

get
{

return cjGrade;

l
l
// CompareTo - compare un étudiant à un autre ;

I I un étudiant est "neilleuril gu'un autre
ll si ses points d'UV sont meilleurs
public int CompareTo(object right0bject)
{

Student leftStudent = this;
Student rightStudent = (Student)right0bject;
I I aên*e naintenant - 1 , 0, ou 1 sur 1a base duo'"-- -

// critère de tri (la moyenne des points d'UV de 1'étudiant)
/1 ^r\1t {rrphtstrrrlênt.braoe r rett>tudent.Grade)

{

return - 1 ;

(rightStudent. Grade) leftStudent. Grade)

rol-rrrn I.
ÀLlg!!l À,

]
return 0;

]

Le tri d'un tableau d'objets St,.rdent est réduit à un simple appel :

void MyFunction(student [] students)
{

I I trie le tableau d'objets l0omparable
Array . Sort (students) ;

j

i
if
{

Vous fournissez le cornparateur, et Array fait tout le travail.

284 Ouatrième partie:La programmation orientée objet

TestCast ()

= new SavingsAccount 0 ;

4;#\ Une conversion incorrecte génère une erreur à l'exécution du programme
=f ^< \ (." qu'on appelle une erreur run-time). Une erreur à I'exécution est beau-

\!!-/ coup plus clifficile à iclentifier et corriger qu'une erreur à la compilation.

Éttîter les conuersions intulîdes en utilisant
mot-clé i s

La fonction PrccessAncurrt O se porterait très bien si elle pouvait être
stre que I'objet qui lui est passé est bien un Sa,,'i i'ssAccoun: avant
d'effectr-rer Ia conversion. C'est dans ce but que C# offre le rnot-clé j -:.

L'opérateur is admet un objet à sa gauche et un type à sa droite. Il re-
tourne true si le type à I'exécution de I'objet qui est à sa gauche est
compatible avec le type qui est à sa droite.

Vous pouvez modifier I'exemple précédent pour éviter I'erreur à I'exécu-
tion en utilisant I'opérateur i s :

public static void ProcessAmount (BankAccount bankAccount)
{

I I dépose une grosse somme sur le compte

bankAccount. Deposit (10000. 00) ;

I I si 1'objet est un SavingsAccount
if (bankAccount i.s SavingsAccount)
{

ll ...recuei11e f intérêt dès maintenant
SavingsAccount SavingsAccount = (SavingsAccount)bankAccount;

savingsAccount . Accunulatelnterest () ;

l
]
-..L1.: ^ ^+^+.1 ^ ..^..i I
PUUr.r_U ùLaL_LU VUI_U

{

SavingsAccount sâ

ProcessAnount (sa)

BankAccount ba =
ProcessAnount (ba)

l

BankAccount 0 ;

L'instruction if supplémentaire teste I'objet b,ank.rccount pour vérifier
qu'il est bien de la classe Sa,irngsAccoul,t. L'opérateur is retourne rrue
lorsque ProcessArnount, () est appelée pour la première fois. Toutefois,
lorsqu'un objet banl.:Account lui est passé dans le deuxième appel, I'opé-
rateur is retourne faise, évitant ainsi le cast invalide. Cette version de
ce programme ne génère pas d'erreur à I'exécution.

le

new

Ghapitre 14 : Ouand une cfasse n'est pas une classe:l'interface et la structure 333

gê1

I
L

return dGrade:

]

]
I I r^-o+-] -^ - rÊtôrrrnê unp ro0résentation de 1'étudiantI I Ug LO Ll IrrË r ç LVU!rrç Ullç r ç-

-',L1.1 ^ ^+-1^4 GetStrino ()PsurlL D LÀ frrb ve ev sÀ rrtb | /

t

string sPadName = Name.PadRight(9) ;

string s = String.Format("t0J : tlrN0]",
sPadName, Grade);

return s I

]

l

L'appel à i'adRrght () garantit que le norn dans lequel sera inséré le
champ aura au moins neuf caractères de long. Si le nombre fait moins de
neuf caractères, la différence est comblée par des espaces. Ajuster une
chalne à une longueur standard permet d'aligner des objets en colonne.
L'indication | 1 :N0 I dit, "afficher le grade avec des virgules ou des points
(selon le paramètre de localisation) comme séparateur de milliers."
L'indication {0} qui précède arrondit la partie décimale.

Avec cette déclaration. je peux maintenant écrire le fragment de pro-
gramme suivant (le programme complet est donné dans la section "As-

sembler le tout", plus loin dans ce chapitre) :

ii DisplayArray - affiche un tableau d'objets qui
I I implérnentent f interface IDisplayable
public static void DisplayArray

(IDisplayable [] displayables)
t

int length = displayables.Length;
for(int index = 0; index (length; index*+)
t
I

IDisplayable displayable = displayables Iindex] ;

Console.lrlriteline (" i01 ", displayable.GetString0) ;

]

l

Cette méthode D.spia;'rAr ray i, 1 peut afficher n'importe quel type de
tableau, à condition que les rnembres du tableau définissent une méthode
GetStringt). Voici un exemple de sortie de Displai'Arra'y(; :

Homer :0
Marge :85

282 0uatrième partie : La programmation orientée obiet

de façon ambiguë, faire démarrer une voiture n'est pas la même chose que
faire démarrer un moteur. L'opération démarrage de la voiture clépend
évidemment du démarrage du moteur, mais ce sont cleux chose.s distinc-
tes : il faut aussi passer la première, lâcher les freins, et ainsi de suite.

Plus encore, sans doute, faire hériter Ca: de i,|r,r-rl €st une représentation
erronée des choses. Une voiture n'est tout simplement pas un type
particulier de moteur.

L'élégance du logiciel est un but qui se passe de justification. Non seulement
elle le rend plus compréhensible, plus fiable et aisé à maintenir, mais elle
réjouit le gott et facilite la digestion, entre autres.

Autres considératîons
C# implémente un ensemble de caractéristiques conçues pour supporter
I'héritage.

Changer de

Un programme peut changer la classe d'un objet. En fait, c'est une chose
que vous avez déjà vue dans cet exemple. SomeFunction O peut passer un
objet SavingsAccount à une méthode qui attend un objet BankAcLount.

Vous pouvez rendre cette conversion plus explicite :

BankAccount ba I

SavingsAccount sa * ne!/ SavingsAccout 0 ;

I I ot<:

ba = sa I / une conversion vers le bas irnplicite est adnise
ba = (BankAccount)sa; I I te cast explicite est préféré

// Nonl

sa = ba; l/ 1a conversion vers 1e haut implicite est interdite
I I ceci est correcr

sa = (savingsAccount)ba;

La première ligne stocke un objet Sa'.'ingsAcccLlnt dans une variable
BankAccount. C# effectue pour vous cette conversion. La deuxième ligne
utilise I'opérateur cast pour convertir explicitement I'obiet.

Les deux dernières lignes reconvertissent I'objet BankAccount en
SavinqsAccount.

classe

Chapitre 14 : Ouand

]

Chacune de ces trois classes hérite d'une classe de base clifférente. mais
implémente la même interface IRecirrilabie.

r$.; Notez la clistinction dans la terminologie. On hérite d'une case cle base, ou
nX on l'étend, tnais on irnpléntente une interface. Ne me regardez pas cornme

tI$, ça. Je ne sais pas pourquoi ce sont ces termes qui ont été choisis, nrais
Y cette terminologie aide effectivement à faire les distinctior-rs nécessaires.

L'interface iil.e r.:y'(lab 1e indique que chacune cles trois classes peut être
utilisée pour écrire une note en utilisant la méthode T,i.i..i ,.i,t . ftour
comprenclre I'trtilité de ce procédé, voyez la fonction suivantet :

public class Class1
t

static public void RecordShoppinglist(IRecordable recordObject)
{

I I erêer une liste de commissions
string slist = GenerateShoppinglist0 ;

I I puis 1a noter
recordObject. TakeANote (slist) ;

]

public static void Main(stringll args)
i

PDA pda : new PDAO;

RecordShoppingList (pda) ;

i

Concrètement, ce fragment de code dit que la fonctioû Recorcishc,;irr r,gL,st 0
accepte comme argument tout objet qui implémente la méthod€ fai.+..1t: -.e o
(en termes humains, "tout objet qui peut enregistrer une note").
RecordShopplngl-s;t () ne fait aucune hypothèse sur Ie type exact d'objet
recorciObiect. Que I'objet soit effectivement un PDA ou un certain type de
EtectrcnicDe'r'.ic€ est sans importance, pourvu qu'il puisse prendre une note.

une classe n'est pas une classe:l'interface et ta structure 33 |

écrire une note sur le PDA

l

PUUfAU LIdUU

{

^,,1-1.i ^ ,,^i,1yu9ltL vvf,u

{

il
l

l

Tan+as . /r^-^,'+^-!oPLUP , vVtuPULtr!,

TakeANote (string

raper une note sur

IRecordable

sNot e)

1e clavier

280 0uatrième partie: La programmation orientée obiet

I I pourcentage (valeur comprise entre 0 et 100)

public void InitSavingsAccount (BankAccount bankAccount,

dec irnal mlnt erestRate)
I
t

this.bankAccount = bankAccount ;

this,mln:erestRate : mlnterestRate / tOO;

l
// Accumulatelnterest - invoquée une fois par période
public void AccumulateTnteresto
I
t

bankAccount.mBalance = bankAccount,mBalance
t (bankAccount.mBalance * mlnterestRate) ;

]

l/ Deposit - tout dépôt positif est autorisé
public void Deposit(decimal mAmount)

i
bankAccount . Deposi.t (mAmount) ;

j

i I Withdraw - tout retrait est autorisé jusqu'à la valeur
I I du solde ; retourne 1e montant retiré
public double Withdraw{decinal ml'iithdrawal)
t

return bankAccount . Withdrar^' (mi,lithdrawal) ;

l
]

Ici, la classe Sa.,r j ngsliccount contient un membre donnée bankAccount
(au lieu d'en hériter de tsankAccor,Lrit). L'objet bankAccount contient le
solde et le numéro du compte, informations nécessaires pour la gestion
du compte rémunéré. Les données propres à un compte rémunéré sont
contenues dans la classe SavilssAccoLlnr

Dans ce cas, nous disons que :ia-i j ngsÀccount A_UN BankAccounr:.

La relation A UN

La relation A_UN est fondamentalement différente de la relation EST_UN.

Cette différence ne serlble pas rnauvaise dans I'exemple de code suivant :

I I crée un nouveau compte rémunéré

BankAccount ba = nev BankAccount(J

SavingsAccount_ sa = new SavingsAccount*0;
sa. InitSavingsAccount (ba, 5) ;

I I et y dépose cent euros
, /. ^^\sa.ueposltll.uul;

Ghapitre 14 : Ouand une classe n'est pas une classe:l'interface et la structure 329

Toutefois, cette solution souffre de deux gros problèmes. Le premier est
fonclanrental : on ne peut pas prétendre que le stylo, le PDA et I'ordina-
teur portatrle sont liés par une relation cluelconque cle type EST_UN.
Savoir cornrllent fonctionne Lln stylo et comment s'en servir pour prendre
une rtote ne rne d<lnne auclrne information sur ce qu'est un ordinateur
portable et la rnanière dont il enregistre les informations. I-e nom
Tl,;:rj,,ri'r :,i,..i,. r,' est pltts rrne clescription qu'une classe de base.

Le second prolllèrne est purement technique. Il serait mieux de décrire
L.tl,r,;p COrIlrIle une sous-classe de Cc,trp;',- e r . Bien que I'on puis.se raison-
nablemerrt étenclre la class€ Pirr, à partir de la même classe de base
ilc-,il|i.ii f i" on ne lteut pas en clire autant de !'e:r. ll fauclrait pour cela
cléfinir utt stvlo contme un certain type de i''ier:hariic a ii^jr itirigle-.-rce
ou cle l)t,-, . i:e i'1,::l;---r:ir i ii-qï!i1r,:tirir':. -l'clutefclis. une classe C# ne peut pas
hériter clr-'deux classes clifférentes en même temp.s, elle ne peut être
qu'ul] setri et rirêrle type tle chose.

En revç:rr;-urt i'r rros trois classes initiale.s, le seul point que les classes Pen,

i'r .. et ,', , .;. ottt eI] conrnrun l)our ce que nous voulorts faire est qu'elles
perrvenl toirtes être lrtilisées pour stocker cluelque t'lrost-'. [,a relation
PLlti'T'-[i'l RIr--L.i']'ll ,lSÉ-CONIME i..,,i,,.- r L.i:r;, t nous permet de communiquer
I'usage rllri ;rerrt err etre fait cians un trtrt particulier, sans pour autant
irnpli<1uer lute relation irrhérerrte entre ces trois r:lassr:s.

Urte clescrilrtiorr rl'interface ressernl;le beerucoup à une classe sans clonnées,
dans larluelle torttes les rnéthorles seraient abstraites. I-Jne tlescription
cl'interface p()Lrr cles "chr-rses qui enregistrent" pourrait ressembler à ceci :

interface IRecordable
i

void TakeANote(String sNote) ;

l

Rentarquer le rnot-clé inr erf a.ce à la place de c1ass. Entre les accolades
se trouve urle liste de méthodes abstraites. Une interface ne contient
aucune définition de nrembre donnée.

La rnéthode Tal.re.l'loie O est écrite sans implémentation. Les mots-clés
public et'.'r"-tr-ial ou a.Sstracr ne Sont pas nécessaires. Toutes les
méttrocles d'une interface sont publiques, et une interface n'entre pas en
jeu clans un héritage normal.

Qu'est-ce qu'une interface .)

278 0uatrième partie:La programmation orientée objet

La propriété Balance permet de lire le solde, mais sans donner la possibi-
lité de le modifier. La méthode Deposit O accepte tout dépôt positif. La
méthode r^/ithd raw () vous permet de retirer tout ce que vous voulez dans
la limite de ce que vous avez sur votre compte. ToBarrkAccor-intS -rir'g o
crée une chalne qui donne la description du compte.

La classe SavlngsAccount hérite de toutes ces bonnes choses de
BankAccount. À cela, elle ajoute un taux d'intérêt, et la possibilité
d'accumuler des intérêts à intervalle régulier.

Ma in O en fait le moins possible. Elle crée un BankAccount, affiche le compte,
crée un Sar.ingsAc c ount, ajoute une période d'intérêts, et affiche le résultat :

Compte 1001 - 200,00 [
Compte 1002 - 112,5A D (12,5',,)

Appuyez sur Entrée pour terminer...

^e.St7X rnitBankAccount O . Cela initialise les membres donnée propres au

ttgrf compte. La méthode Initsa..,ingsAccount () aurait pu les initialiser
Y directement, mais il est de meilleure pratique de permettre à

BankAccount d'initialiser ses propres membres.

EST_UN par rapport à A_UN - i'ai du nal à
m'U retroufur

La relation entre Sar-ingsAccount et Banl<Account n'est rien d'autre que la
relation fondamentale EST_UN. Pour commencer, je vais vous montrer
pourquoi, puis je vous montrerai à quoi ressemblerait une relation A_UN.

La relation EST UN

La relation EST_UN entre SavingsAccourlL et Bar,krrircounr est mise en
évidence par la modification suivante à Classi dans le programme
SirnpleSa.,.ingsAccoLlni de la section précédente :

public class C1ass1
t
L

// Direetltenos'i t - effectue automat-i 0rement le dénôr r1 trrn r.hènnp

public static void DirectDeposit(BankAccount ba,

Chapitre 14

Ouand une classe n'est pas
une classe : I'interface et la

structure

Dans ce chapitre :

Explorer la relarion PEUT_ÊTRE_UTIUSÉ_COMME.

Définir une interface.

Utiliser I'interface pour effectuer des opérations communes.

Définir une structure.

Utiliser la structure pour rassembler des classes, des interfaces et des types
valeur intrinsèques.

ne classe peut contenir une référence à une autre classe. C'est
alors une simple relation A_UN. Une classe peut étendre une autre

classe par le merveilleux procédé de I'héritage. C'est une relation EST_UN.
L'interface de C# implémente également une autre association, tout aussi
importante : la relation pEUT_ÊTRE_UTILISÉ_COtUnzIE.

Qu'e st-ce que ttEllT _ÊT ï?E _l,lT I Ll St! _CLIUME ?
Si je veux prendre en vitesse une petite note, je peux la griffonner sur un
bout de papier avec un stylo, faire Ia même chose sur mon assistant
numérique personnel (PDA) ou la taper sur mon ordinateur portable.

276 0uatrième partie: La programmation orientée objet

ll (qui. est éga1 à zêro pat défaut)
nrrhl in rrnid Tn'i tRanlrAnnnrrnt 1)

{

InitBankAccount (0) ;

]

public void InitBankAccount (decimal mlnitialBalance)
{

nAccountNunber = **nNextAccountNumber ;

mBalance * mlni-tialBalance;
]
tl

-
4// Balance (so1de)

oublie deeimel Balance

t

get I return mBalance;]

i
// DeOOsit - tor'+ Ji.A+ n^..i+'if ^st autorisé--r--- JL UCyVL PVÈfLfr tr

public void Deposit (decimal mArnount)

{

if (mAmount) 0)

t

nBalance *= mAnount;

]

]

// Wittdrar,I - tout retrait est autorisé jusqu'à la valeur
| | du solde ; retourne 1e montant retiré
public decimal lti.thdraw(decinal mlJithdrawal)
t

if (mBalance (- $lJithdrawal)
t

nlrlithdrawal = nBalance I

l
mBalance -- ntrli"thdrawal ;

return mWithdrawal;

]
I J q^<+-:^tt rvuL!rrrË uet le compte sous forme de chaîne
public string ToBankAccountString ()

{

return String.Format("{0i - [1:CJ",
nAccountNunber, mBalance) ;

]

l
I I SavingsAccount - compte bancaire qui rapporte des intérêts
public class SavingsAccount : BankAccount

{

public decimal nÏnterestRatei
/l InitsavingsAccount - lit 1e taux d'intérêt, exprimé en

I I pourcentage (valeur comprise entre 0 et 100)

public void InitSavingsAccount (decimal nlnterestRate)

Ghapitre 13 : 0uel est donc ce pof ymorphisme ? 32 5

Sceller une classe

Vous pouvez très bien décider que vous ne voulez pas que les générations
futures de prograrnrneurs puissent étendre une de vos clas.se.s. Dans ce cas,
vous pouvez la verrouiller en utilisant le mot-clé r;ea-l :'-1. Une classe scellée
ne peut être utilisée comme classe de base pour une aritre clas.se, cluelle
qu'elle soit"

Examinez le bloc de code suivant :

,,^i*- O,,^+^*,uùf,rr6 oy D Ltrlu.

public class BankAccount

i
/l Withdrawal * tout retrait est autorisé jusqu'à la valeur
I I du solde : retourne le montant reti.ré
virtual public void Withdraw(double dt/ithdraw)
{

Console.l,{ri-teLine ("invoque BankAccount.Withdraw() ") ;

]

l
oublic sealed class SavinssAccorrnt : BankAccount

{

override public void l{ithdrar^r(double dWj.thdra'la1)
rt

COnSole . ldr j tai.i n o f "
j nvnnrr" CavingSAcco1nt . Withdrar^r () ") ;

i
]
public class SpecialSaleAccount : SavingsAccount

t

override public void l^lithdraw(double dWithdraval)
t

Console . l,lriteline (" invoque Spec ialSaleAc count . Witlidraw () ") ;

I
J

l

Ce fragment de code produit I'erreur de compilation suivante :

'SoecialSaleAccorrnt' : ne Delrt DAs hériter de la classe
sce11ée'SavingsAccount'

Le mot-clé sealeci vous permet de protéger votre classe des assauts
d'une éventuelle sous-classe. Par exemple, permettre aux programnteurs
d'étendre une classe qui implémente la sécurité d'un système permettrait
à celui qui le voudrait d'y introduire une porte dérobée.

274 0uatrième partie : La programmation orientée obiet

ftemarquez que la propriété EST_UN n'est pas réffexive: un Student EST_UNE person,

mais I'inverse n'est pas vrai. Une Person N'EST_PAS_UN Student. Un énoncé comme
celui-ci se réfère toujours au cas général. ll pourrait se trouver qu'une Person particulière
soit effectivement un Student, mais beaucoup de gens qui sont membres de la classe
Person ne sont pas membres de la classe Student. En outre,la classe Student possède

des propriétés qu'elle ne partage pas avec la classe Pe rs on. Par exemple, un Student a une

moyenne de points d'UV, mais une Person ordinaire n'en a pas.

L'héritage est une propriété transitive. Par exemple, si je définis une nouvelle classe

Graduatestudent comme Une sous-classe de Student, alors un Graduatestudent est
aussi urtÊ Person. Et ildoit en être ainsi ;si un Graduatestudent EST*UN Student et un

Student EST*UNË Person, alors un GraduateStudent EST-UNE person, C0FD.

À quoi me sert

L'héritage a plusieurs fonctions importantes. Vous pourriez penser qu'il
sert à réduire le volume de ce que vous avez à taper au clavier. Dans une
certaine mesure, c'est vrai : lorsque je décris un objet de la classe
Student, je n'ai pas besoin de répéter les propriétés d'une Person. Un
aspect plus important, mais lié à celui-ci, est le grand mot d'ordre réutili-
ser. Les théoriciens des langages cle programmation savent depuis long-
temps qu'il est absurde de recommencer de zéro pour chaque nouveau
projet en reconstruisant chaque fois les mêmes composants.

Comparez la situation du développement de logiciel à celle d'autres indus-
tries. Y a-t-il beaucoup de constructeurs automobile qui commencent par
concevoir et fabriquer leurs propres pinces et tournevis pour construire une
voiture ? Et même s'ils le faisaient, combien recommenceraient de zéro en

réalisant des outils entièrement nouveaux pour chaque nouveau modèle ?

Dans les autres industries, on s'est rendu compte qu'il est plus pertinent
d'utiliser des vis et des écrous standards, et même des composants plus
importants comme des moteurs, que de repartir de zéro chaque fois.

L'héritage permet de tirer le meilleur parti des composants logiciels
existants. Vous pouvez adapter des classes existantes à de nouvelles
applications sans leur apporter de modifications internes. C'est une
nouvelle sous-classe, contenant les ajouts et les modifications nécessai-
res, qui hérite des propriétés cl'une classe existante.

l'héritage I

Chapitre 13 : 0uel est donc ce polymorphisme ? 323

t

Console.!JriteLine(" appelle SpecialSaleAccount.!'lithdravr0") ;

]

l

// SaleSpecialCustomer - compte utilisé pour des clients particuliers
I I pendant 1a période des soldes
public class SaleSpecialCustoner : SpecialSaleAccount
i

cverri.de public void liithdraw(double dWithdrawal)
{

Console. lrlriteLine
(" appelle SaleSpecialCustomer.Withdraw()");

l
]

ll
]

Chacune de ces classes étend la classe qui se trouve au-dessus. Remar-
qUeZ tOutefoiS que Si-.e.:lai-Salel'r:.LruLr. i^,:it-horali() a été marqUée
comrne ',,irili,,, brisant en ce point la chaÎne des héritages. Dans la
pefspective cle 3.r;,kn... '-.,rriri, leS ClaSSeS Sp,-.cia] caieAr cor,in'. €t
ili;1eS1re ,:ra !.lr-,s,r.:rr:r(rr ressemblent exactement à:ia-,-lngsAccc1.rnt. Ce
n'est que {lans la perspective d'un Spe:raLSa ieAc.or-int que la nouvelle
version cle iii I i,clr au i' r devient clisponible.

Cela est dérnontré par ce petit programme. La fonction l{ain O invoque
une série cle méthocles Test (1, dont chacune est conçue pour accepter
une sous-classe différente. Chacune de ces versions de Test () appelle
Iwithdra-; (I clans la perspective d'un objet de classe différent.

La sortie cle ce programme se présente de la façon suivante :

Passage d'un BankAccount
\nnttr pff p,^f rrcr Test (BankACcOUnt)r uu L \yg4rr!rr!uvqrr L /

appelle BankAccount . Withdraw ()

Pncs:op d rfin sn..i--^^^^^..-!_ _-_*D_ - _-. _*vflrËùl1uLUultL
norrr pffpct,ror Test (BankAccount)! ç v urr L /

appel 1e SavingsAccount . Withdraror ()

pour effectuer Test(SavingsAccount)
appelle SavingsAccount, Withdraw()

Poccono I trrn (noçialSaleACCOUnt
roDùqéc u ulr JPI

pour ef fectuer Test (BankÀccount)

appelle SavingsÀccoun!.Wi lhdraw ()

pour effectuer Test (SavingsAccount)

272 Ouatrième partie : La programmation orientée obiet

Les langages orientés obiet expriment
tant à une classe d'hériter d'une autre.
permet aux langages orientés objet de
du monde réel que les langages qui ne
I'héritage.

la classe SrbCiass hérite de

de la classe de base :");

sous -classe

d'une sous-classe :");

Hérîter d'une classe

Dans I'exemple InheritanceExanple suivant,
la classe BaseClass :

/l tnheritanceExample - offre la dénionstration

using Systern;

1^ -1.,^ .i--1^ l^ lrhér.i t:opId Pfu> bJilurtr u€ -.------o-

nqmâcnrnê Tnhpri i:nr,pF,xemnl p

{

-..L1.: ^ ^1-^^ D-"eC1ass
PUU.LfU Ufdùù uéù

{

nrrhf in ini nflnl4lvlenbef ;y|\vLLv

nuhlic void SomeMethod0

t

Console.l,/riteline ("SomeMethod 0 ") ;

l
l
nrrhlic class SubClass : BaseClass

{

n'h1in'rnil (nmo0thorMpthodfl
PUUTTL VVrU UVI.vv lrlvs\/

{

Conso1e.l,lriteline ("SoneOtherMethod () ") ;

]

]
nrrhlin nlecc'l'oql

{

public static int Main(stringlJ args)
(
t

l l er6e rrn ohiet de la classe de base

Console.l,lriteline ("Utilisons un objet
BaseClass bc = new BaseClass0;
bc.nDataMenber - 1;

bc, SomeMethod0 ;

ll eréons naintenant un é1ément d'une

Console.l^Iriteline ("Utilisons un objet
SubClass sc = new SubClass 0 ;

sc.nDataMember = 2i

sc.SomeMethod{);

cette relation d'héritage en permet-
C'est cette caractéristique qui
produire des modèles plus Proches
disposent pas du principe de

Redémarrer une hîérarchie de classes

Le mot-clé virtual peut aussi être utilisé pour démarrer une nouvelle
hiérarchie d'héritage. Examinez la hiérarchie de classes montrée dans le
programme Inhe rit a ircr e'ies t l

// tnheritanceTest

nanespace TnheritanceTest
{

using Systen;
public class Class1

t

public static int Main(stringIJ strings)
t

/''\Console.hlriteLine("\nPassage d'un BankAccount") ;

BankAccount ba = new BankAccount 0 ;

'Iest.t tDaj ;

Console.lrlriteline ("\nPassage d'un SavingsAccount") ;

SavingsAccount sa = new SavingsAccount 0 ;
Â <f \lestt (sa,/ ;

Test2 (sa) ;

Console.l{riteline("\nPassage d'un SaleSpecialcustomert') ;

SaleSpecialCustomer ssc = new SaleSpecialCustomer0 ;

Testl (ssc) ;

?est2 (ssc) ;

Test3 (ssc) ;

Test4 (ssc) ;

d'un SpecialSaleAccount") ;

SpecialSaleAccount () ;

de 1'utilisateur

Appuyez sur Entrée pour terminer,..");

Ghapitre 13 : 0uel est donc ce polymorphisme ?

examine comment le mot-c1é virtual
narrf Âfra rrtiljcÉ n^'r. lih^ôtsycuL sL!c uLrrtrùE yvu! ldIM!

une nouvelle hiérarchie d'héritaee

32 1

#"u$3
h l_frrl,i

I I .,''

æt

Cons o1 e . l.lr it eline (" \ nPa s sa ge

SpecialSaleAccount ssa = new

Testl (ssa) ;
a

^/
\lesIz tssa/ ;

lest3 (ssa) ;

// attend confirmation
Console. 1{riteline () ;

Console. 1,lriteLine ("Hit
Consol,e. Read 0 ;

return 0;

l

public static void Testl (BankAccount account)

27 0 Ouatrième partie : La programmation orientée objet

Être auare de ses objets
On ne peut pas construire un objet sans un constructeur corresponclant.
Si vous définissez votre propre constructeur, C# retire le sien. En combi-
nant ces deux aspects, vous pouvez créer une classe qui ne peut être
instanciée que localement.

Par exemple, seule une méthode définie dans le même espace de nom que
BankAccount peut créer un objet tsank.,rccount avec Ie constructeur
déclaré comme internal (pour en savoir plus sur les espaces de nom,
reportez-vous au Chapitre l6) :

i/ BankAccount - simule un simple compte bancaire
public class BankAccount

{

I I 7es numéros de compte comnencent à i000 et augmentent

i / séquentiellement à partir de 1à

static int nNextAccountNumber = 1000;

// tient à jour le numéro de compte et le solde
int nAccountNunber:

double dBalance;
i/ invoque 1e constructeur spécifique en fournissant
I I des valeurs par défaut pour 1es arguments nanquants
internal BankAccount {)

{

nAccountNumber = **nNextAccountNumber :

dBalance - 0:

l
public string GetString0
{

rêturn String.Format("#{Oi = {1:Ni",
nAccountNumber, dBalance) ;

]

l

Chapitre 13 : 0uel est donc ce potymorphisme ? 3 | I

// Output - classe abstraite qui affiche une chaîne
ahctrent nrrhl i n rrn'i d Otrtnrrt (ctri nd en11+hr1È(+ ri.. \ 'LyuL \oLrarrÉ ùvuLyuLULrfrr6/'

l
// SubClassl - inplémentation concrète de AbstractBaseClass
nublic class SubClassl : AbstractBaseClass
t

override public void Output(string sSource)

{

ctrino c = cSôr1rcp ToTTnnpr{l'ç!
'

rvuytJ u! \ /
'

Console.lliriteLine("Appe1 à SubClassl,0utput0 depuis [0]", s) ;

]

]

l/ SubClass2 - autre implémentation concrète de AbstractBaseClass
*"L1';^ ^1^^^ c"Lnlass2 : AbstractBase0lassl,uurrç Lroùù uuuuJ

{

override public void Output(string sSource)
i

strins s = sSource.ToloverO;- -- -"o
Console.l,./riteLine("Appe1 à SubClass2,0utput0 depuis {0}", s) ;

l

i
class Classi
t

public static void Test(AbstractBaseClass ba)

{

ba.0utput("Test");
l
pubiic static void Main(string[] strings)
{

* 0n ne peut pas créer d'objet AbstractBaseClass car c'est une
* classe ahstraite. Cli génère une erreur à 1a compilation si vous
* ne mettpz nas en commentaire 1a lisne oui srrit

// AbstractBaseClass ba = new AbstractBaseClass 0 ;

// répète la nême expérience avec Subclassl
Console.IrIriteLine("Création d'un objet Subclassl") ;

SubClassl sc1 = ner,r Sub0lassl0 ;

Test (sc1) ;

// et enfin un objet Subclass2
Console,WriteLine("\nCréation d'un objet Subclass2") ;

SubClass2 scT = new SubClass2 0 ;Â/lesr (scrl ;

l l attend confi.rmation de I'utilisateur
Console,i{riteLine("Appuyez sur Entrée pour terminer, ..") ;

Console. Read 0 ;

]

]

Chapitre l6 : Manipuler des fichiers en C#

arabe, hincli, ni de toute autre langue. Le format de fichier Unicocle, plus
souple, bénéficie d'une compatibilité ascendante avec des caractères
ANSI, et offre un assez grand nombre d'autres alphabets. Unicocle exi.ste
en plusieurs formats, mais UTFS en est le format par défaut pour C#.

Le programme Friel,lrir-e suivant lit des lignes de données sur la console
et les écrits sur un fichier choisi par I'utilisateur :

// Fileidrite - écrit dans un fichier texte
I I ce qui. est saisi sur 1a console
using Systen;
using System. I0;
namespace Filel^lrite
t

public class C1ass1

{

public static void Main(string[] args)
t

| | crée 1'objet de non de fichier - 1a boucle while nous permet

// de continuer à essayer avec différents noms de fichi.ers
// jusqu'à ce que nous réussissions
StreanWriter srd = nul1:
string sFileName = r'rr '

vhile (true)
{

try
{

// saisie du non du fichier de sortie (Entrée pour quitter)
Console.ldrite("Entrez un non de fichier "

* "(Entrez un nom vide pour quitter):");
sFileName = Console.Readline0 ;

if (sFileName.Length *= 0)

t
I I pas de non de fichier fait pâsser au-de1à de 1a boucle
i / r,ihile par sécurité
break:

]

// ouvre le fichier pour y écrire ; envoie une exception si
/l 1e fichier existe déjà :

I I FileMode.CreateNew pour créer un fichier si
I I i.l n'existe pas déjà, ou envoie

I I une exception si 1e fichier existe
I I FileMode.Append pour créer un nouveau fichier ou ajouter
I I quelque chose à un fichier existant
I I FileMode.Create pour créer un nouveau fichier ou

I I pour tronquer un fichier existant
I | 1es possibilités de FileAccess sont :

I I FileAccess.Read,

397

."uË3
,\ Ha;'l

I] \.Y

æt

3 5 6 0uatrième partie : La programmation orientée obiet

Console.tr'lriteline ("Va1eur donnée par
i.l 'l'^\trlnôl ll.

il111nl1tF11nat1^n : {ll}"vuLPu tvr

]
// tnStri no - fnrrrnit rrno c'imnlo fnnnt'inn r1o t\;nê ctr'I I luJ L! -r-llt - ruul^^- -,,- - -- 1fl8
nrrorridp nrrhl in ctrino Tn(trinof)u Lt frr6 rvu Lt arr6 \,/

{

return "Classl du prograrrne StructureExample";
]

]

Ce programme met à l'épreuve la structure Inr32.

Main O commence par créer un objet i de type int. i"iain O utilise le
constructeur par défaut Int32 O (mais vous pourriez dire le corlstructeur
int ()) pour initialiser i à 0. Le programme poursuit en assignant une
valeur à 1. Il est évident que cela diffère légèrement du format que vous
utiliseriez pour créer vous-même une structure.

Main O passe la variable i à Or-itputFunctior O, qui est déclarée pour
accepter un objet implémentant I'interface IFornattabl e. Celle-ci est la
même que I'interface IDispiayable eue j'ai définie dans d'autres program-
mes (la seule méthode de IFormattabie est ToStrirg). Toutes les classes
et toutes les structures héritent par 0bject de I'interface IFcrr.,:.'1 t:blc.

OutputFunction O dit à I'objet IFormattable de s'afficher lui-même (la
variable Int3 2 n'a aucun problème parce qu'elle a sa propre méthode
ToSt ring ()). Cela est démontré encore plus clairement dans I'appel à
OutputFunction (2) . Étant de type Int3 2, la constante 2 implémente
également IFormattable. Enfin, rien que pour vous le mettre sous les
yeux, Maln O invoque directement 3 . ToString O. La sortie de cette
première section de Maln O est :

Yaleur donnée par OutputFunction = I
Valeur donnée par OutputFunction = 2

Extrait directement * 3

Le programme entre maintenant dans une section sans équivalent.
Main () déclare un tableau d'objets de type 0b j ect. Il stocke un objet
string dans le premier élément, un objet int dans le deuxième, une
instance de C1ass1 dans le troisième, et ainsi de suite. Cela est autorisé,
parce que String, Int3 2, et Ciassl dérivent tous d'Object.

Le programme fait alors une boucle sur les objets du tableau. Main O est
capable d'aller chercher les entiers en demandant à chaque objet s'il

Chapitre 16 : Manipuler des f ichiers en C# 39 5

Les classes d'l/O sont décrites dans I'espace de nom S1-stem. r,-. La classe
de base des I/O de fichier est FileSrrean. Autrefois. le programmeur
ouvrait un fichier. La commande c.pen préparait le fichier et retournait un
handle. En général, ce handle n'était rien de plus qu'un numéro d'identifi-
cation. Chaque fois qu'on voulait faire une opération de lecture ou d'écri-
ture sur ce fichier, il fallait présenter ce numéro.

C# utilise une approche plus intuitive. Il associe chaque fichier à un objet
de la classe Fi it,St,rcarn. Le constructeur de FiieStream ouvre le fichier.
Les méthodes de Frt eStream effectuent les opérations d I/O sur le fichier.

.s\)G / Fr leSirean n'est pas la seule classe qui peut effectuer des opérations d'l/O

Hsurdesfichiers,maisc,eStbienellequireprésentenotrebonvieuxfichier
t\9, de base, qui correspond à 90 %, de nos besoins d'l/O sur les fichiers. C'est la
Y classe racine qui est décrite dans cette section. Si elle est satisfaisante pour

C#, elle I'est aussi pour moi.

Fi leS i- re:rir, est une classe très basique. Ouvrir un fichier, fermer un
fichier, lire un bloc et écrire un bloc, c'est à peu près tout ce qu'elle vous
donne. Heureusement, I'espace de nom -Svsten.IO contient un ensemble
de classes qui complètent FileS ti €aiir pour vous donner un accès plus
facile aux fichiers. et un sentiment de confort douillet :

/ Fea 1r- :. , i .-L. riteEinar r' : Ce sont deux classes de flux qui contien-
nent des méthodes permettant de lire et d'écrire tous les types
valeur : FeadCrLar (),

"i
riteChar O, ReadB.,'t-e O, i^lriteBl''te O, et

ainsi de suite. C'est utile pour écrire un objet en format binaire (non
lisible par un être humain).

/ Te;<tPeader,'l'li:,'lr-iter : Deux classes permettant de lire et
d'écrire des caractères (du texte). Elles se présentent en cleux
versions: Si r:rLgF,:ader l:trirrglir-i*,er et S:reanrReadei ,

S -. r'e anil i^, i. -o : .

,/ :l':r lng,F,e zter,/-Çi-rlngr'^/rirer : Une simple classe de flux qui se

contente cle lire et d'écrire des chalnes.

t/ S:reanll.c:::lei-/-ctreanh''ri:er : Une classe plus sophistiquée de
lecture et d'écriture de texte pour ceux qui en veulent plus.

Cette section fournit les programmes suivants, clui montrent comment
utiliser ces classes : Filetirite et Fi iel.eai.

3 5 4 ouatrième partie : La programmation orientée objet

exemple, ini- n'est que I'autre nom de la structure int3 2, double est I'autre
nom de la structure flor,ib-re, et ainsi de suite. Le Tableau 14.1 donne la liste
complète des types et leur nom de structure correspondant.

Tabfeau 14.1 : Les noms de structure des types de variable intrinsèques.

Nom de type Nom de structure

bool

byt e

sbyte

cha r

decimal

double

float
int
ui nt

1 ong

u1 ong

ohicet.-"J---

short

usho rt

llcolearr
l-.+,-.

S P,',-: e

Cha r

Decinai

Doub I e

Singie

Int32

UInt-12
T-+ÉI Li I U A

Uint64

0b-ject

Int 16

Uinr,6

Comment le sqstème de ttlpes est-il unifîé par
des structures communes ? Un exemple

int n'€St que I'autre nom cle la structure Int32. Comme toutes les structures
dérivent d'Cb,j ect, lnt doit en dériver comme les autres. Cela conduit à
quelques résultats fascinants, comme le montre le programme suivant :

i I TypeUnification - montre comnent int et Int32
I I sont en fait la nême chose

using System;

namespace TypeUnification
{

Ghapitre 16: Manipuler des fichiers en G# 393

^^^^';sControlLibrraurqùPaLc nLLtrÈ

t
..^.i*^ C,,^+^-,uùtrrrB JyùLtrnr,

public class Cl.ass2

{

public void A_pub1ic 0
It

Console . i,iriteline ("C1ass2 . A_pub1ic ") ;
lt
nrnientcd rrni d R nrnf antori i l

{

Console, i{riteline (" Clas s 2 . B_protect ed ") ;

1
)

private void C_privateo
I
L

Console . l,'/riteline (" Clas s 2 . C*pri-vate ") ;

]
internal voi-d D internal o
{

Console . Ialriteline ("Class2 . D_internal") ;

l
'i-+^--^1 -"otected void E internalorotectedorlr Ltrr rrar yr

{

Console .I,rlriteLine ("Class2 , E_internalprotected") ;

]

l
j

Le programme AccessContror est constitué de Ciassl et Ciass3, qui
sont contenues dans I'espace de nom ÀccessCon:ro1, et de la classe
C1ass2 de I'espace de nom AccessConr-roilii. Les appels aux méthodes
dans Clas s I .l,Iain () mettent en évidence chaque type d'accès :

t/ Les méthodes déclarées comme pubiic sont accessibles à toutes
les méthodes de tous les espaces de nom. Aussi, Ciassl peut
invoquer directement C1ass2 . A pu'ciic (, .

t/ Les méthodes déclarées comme protected sont accessibles depuis
la classe C1ass2 et toute classe qui hérite de Classl. L'appel
classl . B_pr otected () est autorisé, parce que C1ass1 hérite de
C1ass2. L'appel c1ass3.B_p.ctectei est illicite.

t/ Les méthodes déclarées pri.,,ate ne sont accessibles qu'aux autres
membres de la même classe. Aussi, I'appel clas s- .1 p: i à,,?)

n'est pas autorisé, alors que I'appel ciassi.C pri-".are O est
correct.

3 5 2 Ouatrième partie : La programmation orientée objet

// ChangeReferenceFunction - passe 1a struct par référence
public static void ChangeReferenceFunction(ref Test t,

int newValue, double dNewValue)

{

t.N = newValue;

Test. D = dNewValue;

]
/ / 0r:tnrrtl'rrnnt j nn - aff iche toute méthode oui imolémentevsLPu LrrvuL Yur

I I ToString0
)]rtn]ltF11nal'1ônl I lllcnlr\rrhlê 1d IyUUalL D LdLIL VUaU vuLyu \re+ùVroJaurç ru/

{

Console. WriteLine (r'id = {0} " , id. ToString 0) ;

l

l

Le programme S'- r ric i-.rr eEx.rnpi e définit tout d'abord une interface,
IL)ispia',.a'1, e, puis une simple structure, Tes*., eui implémente cette
interface. T'es'- cléfinit égalemer-rt deux membres:un membre instance, n,

et un membre statique, .r. Un initialiseur statique assigne la valeur 20 à d.

Toutefois, le rnembre instance ii n'a pas droit à un initialiseur.

La structur€ Te -l définit un constructeur, une propriété instance li, et
une propriété statique I

Tes t définit sa propre méthode, Changel,iethod () , ainsi que la redéfinition
de la méthode ToSt: irrg O. En fournissant ToSt-ring (), Test implémente
I'interface i D i s p 1 a-v-ab I e.

La fonction i'Ia,;; () met Te s | à l'épreuve. Tout d'abord, elle crée un objet
test dans Ia rnémoire locale, et utilise le constructeur pour initialiser cet
espace. |lair i) appelle alors OutputFunctlon () pour afficher I'objet.

Main O appelle ensuite la fonction ChangeValueFunctlon () , lui passant
test avec deux constantes numériques. Changeri a lue!'unciion .) assigne
ces deux valeurs aux membres n et ci de Te.st. Une fois que cette fonction
a retourné ses résultats, ,iui-n-rtFuncr-1cr, () révèle que d a été moclifié,
alors que n ne I'a pas été.

L'appel à Cha:rger.i iil,.Le!'Lrnctlcn i) passe par valeur I'objet tesi- de type
.structure. À I'intérieur de cette fonction, I'objet t est une copie du test
original, et non I'objet lui-même. Aussi, I'assignation à t . N change la copie
locale, mais n'a aucun effet sur *iÊSi de retour dans i'I,rin O. Toutefois, tous
les objets de la classe Test partagent le même membre statique d. Aussi,
I'assignation à Te s r. .Ir change . pour tous les obiets, y compris t€s t.

classesl'accès

*e"*lil
F l-----H:\;ir| | ?,-J

Ët
// AccessControl - nontre 1es différentes fornes
I I de contrôle d'accès
nânespâce AccessControl
{

using System;

using AccessControllib ;

public class Classl: Class2

{

public static int Main(string[] strings)
{

Class1 c1ass1 = nev Class1 0 ;

Class2 c1ass2 = new C1ass2 0 l

C1ass3 c1ass3 = nelr C1ass3 0 ;

ll les méthodes publiques sont accessibles par d'autres classes
I I dans d'autres espaces de nom

I
^

r /\
Lloùù4 In puuffL \,,r

'

| | 7es méthodes protégées sont accessibles à travers
I I ta hiérarchie d'héritage
c1ass1 . B*protected () ;

i /c1ass3 . B-protected () ;

I I 7es rnéthodes privées ne sont accessibles que par

Chapitre 16 : Manipuler des f ichiers en C# 39 |

Contrôler
de nom

auN aûee les espaces

Les espaces de nom autorisent un certain niveau d'indépendance dans
des ensembles de classes qui n'ont pas grand-chose à voir entre elles. Par
exemple, si vous travaillez sur un ensemble de classes mathématiclues,
vous pouvez utiliser une classe comme conteneur pour y stocker des
ensembles de valeurs.

-grf{c Le niveau d'indépendance est appeléle niueou de couplage. Une classe qui
9-/ -i: \ accède aux membres internes d'une autre classe est dite fortement couplée.
=(ItY) O"t classes qui n'accèdent I'une à I'autre que par des méthocles publiques

\=-/ sont dites faiblement couplées.

Le Chapitre 11 montre comment des descripteurs publlc. r t',')...crei1 et
prl,raie- séparent les classes dans un même espace de nom. L'ajout du
mot-clé internai spécifie qu'un objet est accessible à partir clu même
espace de nom mais pas aux classes externes. Les membres spécifiés
comme interna L protected sont accessibles à la fois aux classes du
même espace de nom et aux sous-classes.

Le programme Acces sCont ro1 suivant montre le fonctionnement de
I'ensemble complet des contrôles d'accès :

350 ouatrième parrie: La programmarion orienrée objer

.rflkc Toutes les classes héritent d'Ob-iect qu'elles le disent explicitement ou
â%H\ non. Vous pouvez redéfinir les mérhocles cl'C;b i ec:. En teimes pratiques,=\S\f) la seule méthode que vous pouvez vouloir recléfinir e.sr ro.Srr ri,. ir. Celle-\-/ ci permet à I'objet de créer une représentation affichable de lui-même.

l,lettre une structure à l'épreut/e par |exemple
L'exemple de programme suivant montre les différentes caractéristiques
d'une structure :

// structureExample - montre 1es différentes propriétés
I I d'un objet struct
using System;

using System. Collections;
namespace StructureExample
{

public j_nterface IDisplayable
{

string ToString0;
j
public struct Test : IDisplayable
{

I I une struct peut avoir des nenbres donnée
I I objet er de classe (statiques)
I I 7es menbres statiques peuvent avoir des initiariseurs
private int n;
private static double d = 20.0;
I / on peut utiliser un constructeur pour initialiser
ll les nembres donnée d'une struct
publi"c Test(int n)
{

this.n = n;
l
ll une struct peut avoir des propriétés d,objet
I I et des propriétés de classe (statiques)
public int N

{

get { return n; J

set { n : value; }
l
public static double D

{

get { return d; l
set { d = value; l

i

Ghapitre 16: Manipuler des fichiers en C# 389

)

namespace Paint
{
L

public class PaintColor
i

public PaintColor(int nRed, int nGreen, int nBlue) {l
public void Paint0 {l
public static void StaticPaintO {l

l
I
J

nâmesnâce MnthRoutines
I
L

public class Test

{

static public void Main(stri.ngll args)
r
t

I I crée un objet de type Sort dans 1'espace de nom

I I où nous nous rrouvons et invocue une fonction
Sort obj = new Sort 0 ;

obj . SoneFunct ion () ;

ll crée un objet dans un autre espace de nom, renarquez que

ll Ie non de 1'espace de nom doit figurer explicitement dans toute
I I réf.ôrence de classe
Paint.PaintColor black = new Paint.Pai"ntColor(0, 0, 0);
black. Paint 0 ;

Paint. Paint0olor. StaticPaint () ;

]
1
J

1
J

Dans ce cas, les deux class Sort et Test sont contenues dans le même
espace de nom, l/iat.hRcul-ines, bien qu'elles apparaissent dans des
déclarations différentes dans le module.

Normalement. Sort et Test seraient dans des modules source C# différents
que vous pourriez générer ensemble pour en faire un seul programme.

La fonctior 'ie..:t . i"lair' (r peut référencer la classe Sort sans spécifier I'espace
de nom parce que les deux classes sont dans le même espace de nom. Toute
fois, Liain O doit spécifier I'espace de nom Pa in-, quand elle se réfère à

l'ai n',Co'or, comme dans I'appel à Paiir'- . PalltCo Lor . StaticPalnr (1.

Remarquez que vous n'avez pas besoin de prendre des précautions spéciales
en vous référant à ir,ark. Paint 0 , parce que la classe et I'espace de nom de
I'clbjet b iai:k sont connus.

3 48 0uatrième partie : La programmation orientée objet

de référence nécessite que le programme invoque 101 fois ne,,v (une fois
pour le tableau et une fois pour chaque objet) :

MyClass [] mc = new MyClass ItOO] ;

for(int i = 0; i (ms.Length; i++)
t

urc Ii] = new MyClass 0 ;

l
nc[0] .n = 0;

Ce tableau est égalernent un gros consomrnateur de ressources, de temps
comme d'espace. Tout d'abord, chaque élément du tableau mc doit être
assez vaste pour contenir une référence à un objet. En outre, chaque
objet MyCiass fait une consornmation invisible de ressources au-dessus
et au-delà du ser-rl rnembre donnée n. Enfin, il y a le temps que prend le
programme pollr effer:tuer toutes les manceuvres nécessaires afin de
réduire cent fois cle suite un petit bloc de mémoire.

La mémoire clestinée aux objets de type structure est allouée en tant que
partie du tableau :

ll déelaration d'un tableau du simple type valeur int
.i*+ fl i^+^-^-^ .:-+ f1n^l .rrrL Ll rrrLçËç!r = Il€W int [100] ;

integers lOl = O;

ll La déclaration d'un tableau de struct est tout aussi sinple
Mrr(trrnt[1 .o = new MyStructitO0];rvLLl .av

ms[0] .n * 0;

Le constructeur de structure

Une structure peut être initialisée en utilisant une syntaxe semblable à
celle des classes, ce qui est intéressant :

public struct MyStruct
It

hllhl1^ thf n.

l
MyStruct ms * new MyStruct 0 ;

En dépit des apparerlces, cela n'alloue pas un bloc de mémoire à partir du
tas, mais initialise seulement n et d à la valeur zéro.

Chapitre 16 : Maniputer des fichiers en C# 387

Un fichier de projef contient des instructiorrs sur les fichiers qui constituent
le projet et la manière dont il.s se combinent.

Vous pouvez combiner des fichiers de projet pour produire des combinaisons
de programlne qui dépendent des rnêmes classes définies par I'utilisateur.
Par exemple, vous pouvez vouloir associer un programme d'écriture avec le
programme de lecture correspondant. De cette manière, si I'un des deux
change, I'autre est automatiquement régénéré. L'un des projets décrirait le
programme d'écriture, et I'autre clécrirait le programme de lecture. On appelle
solution un ensemble de fichiers de projet.

.a\\G-æUnprogrammeurVisuaIC#utilisel'ExplorateurdeVisualStudiopour

fl?It combiner en projets des fichiers source C# clans I'environnement Visual

\7 Studio.

Réunir des fichiers source dans un espace de nom

Vous avez la possibilité de réunir des classes communes dans un espace
auquel a été assigné un nom significatif. Par exemple, vous pouvez compi-
ler toutes les routines dont la signification est mathématique dans un
espace de nom lulatfrRoutine-c.

Il est possible, mais très improbable, cle diviser un même fichier en plusieurs
espaces de noms. Il est plus courant de regrouper plusieurs fichiers dans un
même espace de nom. Par exemple, le fichier Poin -.cs peut contenir la
classe Point et la classe Th:eeDSpac e . c s pour décrire les propriétés d'un
espace euclidien. Vous pouvez combiner Pr-,int . r:s, Thl eeDspace .,- s, et
d'autres fichiers source dans I'espace de nom MathRouti nes.

Un espace de nom sert à plusieurs choses. C'est d'abord une réunion de
classes. En tant que programmeur, vous pouvez raisonnablement supposer
que les classes qui constituent I'espace de nom llathRoutiries ont toutes
quelque chose à voir avec des fonctions mathématiques. Par voie de
conséquences, si vous recherchez une certaine fonction mathématique,
c'est dans les classes qui constituent ilathP,our-lnes que vous pouvez aller
la chercher en premier.

Un espace de nom évite les possibilités de conflit de nom. Par exemple,
une bibliothèque d'entrées/sorties pour fichiers peut contenir une classe
Convert qui convertit une représentation cl'un type de fichier en un autre
type. En même temps, une bibliothèque de traduction peut contenir une
classe du même nom. L'assignation des espaces de nom Filero et

346 0uatrième partie : La programmation orientée objet

Mais une référence à un objet est déclarée et initialisée d'une manière
complètement différente :

public class MyClass

t
public int n;

l
MyClass mc;

, M,,a1^^lul{J - rrew r'tyurass \,) ;

La variable de classe nc est appelée un type référence, parce qu'elle se
réfère à une zone de mémoire potentiellement distante. Une variable
intrinsèque detype ini ou dc,.LL-.ie est appelée uariable de type ualeur.

Toutefois. si vous examinez plus attentivernent n et n., vous verrez que la
seule véritable différence est que C# alloue autornatiquement la mémoire
pour utte variable de type valeur, alors que vous devez allouer la mémoire
pour un objet cle classe. N'y at-il rien qui puisse réunir les deux dans une
Théorie unifiée des classes ?

La structure C#

C# cléfinit un troisième type de variable, appelé une sfructure, qui comble
le fossé entre les types référence et les types valeur.

La syntaxe d'une déclaration de structure ressemble à celle d'une classe :

public struct MyStruct
t

nrrhlin 'i nt n,

public double d;
j

public class MyClass

{

nrrhli^ 'i n+ n'yuuarL rrrL rrt

nrrhl 'i
^ ul nrrhl o d.

l

On accède à un objet structure comme à un objet cle classe, mais I'alloca-
tion est identique à celle d'un type valeur :

ll déclare et accède à une variable d'un type valeur simple
int n:

{ô

Chapitre 16

Manipuler des fichiers en C#

Dans ce chapitre :

Gérer plusieurs fichiers source pour un même programme.

Lire et écrire des fichiers de données.

n C#, l'accès oux fichiers signifie deux choses différentes. La plus
évidente est I'enregistrement et la récupération de données sur le

disque. Il y a toutefois une autre signification qui concerne la manière
dont le code source C# est regroupé dans des fichiers source.

Les fonctions permettent de diviser une longue chaîne de code en unités
séparables et maintenables. L'organisation en classes permet de regrouper les

données comme les fonctions de façon pertinente afin de réduire encore la
complexité du programme. C# offre un autre niveau de regroupement : il vous
permet de regrouper des classes similaires dans une bibliothèque séparée.

un meme programme en
source

Les programmes de ce livre ne sont faits que dans un but de démonstration.
Ils ne dépassent pas quelques dizaines de lignes de long et ne contiennent
qu'un petit nombre de classes. Un programme de niveau industriel, avec tous
les aspects décoratifs nécessaires, peut comporter des centaines de milliers
de lignes de code, réparties dans plusieurs centaines de classes.

Il devient rapidement impraticable de stocker toutes ces classes dans un
même module. Pour commencer, il y a I'exigence de maintenir les classes
bien en ordre. Ensuite, le travail de réalisation de grands programmes est
généralement réparti entre de nombreux programmeurs. Le même fichier

plusieursDîuiser

fîchîers

344 Ouatrième partie : La programmation orientée obiet

]
htthl'^ ^lô^ô f'rôF^lyuuIfL Laaùù uraùù

i
public static int Main(stringIJ strings)
t

SubClass sc1 : new SubClass(10) ;

SubClass sc2 = new Subtlass(20);
MyFunc (sc1, sc2) ;

// attend confirmati.on de 1'utilisateur
Console,i.lriteline("Appuyez sur Entrée pour terminer, . .") ;

Console,Read 0 ;

return 0;

l
// l,tyFunc - utilise 1es méthodes fournies par f interface ICompare

I I pour afficher 1a valeur de deux objets, puis
ll f indication de celui qui est 1e plus grand (se1on
lI

^
\

t t I 'oDJ et lu1-nemel
public static void MyFunc(ICompare ic1, ICompare ic2)
{

Console.lrlriteline("La valeur de ic1 est i0l et cel1e de ic2 est {11",
ic 1 . GetValue () , ic 2 . GetValue ()) ;

string s;

switch (ic1, CompareTo(ic2))

{

case 0 l

s = rrest éga1 à";
break;

' case -1:

s = rrest plus petit que";

break;
case 1:

s = I'est plus grand que";

break;
default r

s * "quelque chose qui cloche";
break;

l
Console , l,lriteline t

"Les objets eux-mêmes considèrent que ic1 t0J ic2", s);

]

Abstractlnterface est encore un programme un peu long, mais relativement
simple.

L'interface IConpare décrit une classe qui peut comparer deux objets et
aller chercher leur valeur. ICompare hérite de I'interface IConparal-t:

rt9{Qa.
^v7çq \:(dq9

)\ô/

^tËK
=Qg,

Ghapitre 15: Ouelques exceptions d'exception 383

Le remplacement de ces fonctions signifie que même les fonctions conçues
pour attraper les exceptions de la classe générique Exceprion n'ot-lt qu'un
accès limité aux nouveaux membres donnée.

En commençant par |Ialr, () , le programme crée un objet |1at-lrClas s dont
la valeur est 0, puis essaie astucieusement d'en prendre I'inverse. Je ne
sais pas si vous avez déjà essayé, mais je n'ai jamais vu beaucoup d'inver-
ses de 0, et si rna fonction était censée retourner Lln nombre, ça me
rendrait un peu n'réfiant.

Le processeur Intel retourne effectivement une valeur pour 1.0/0.0 : Irrf iniry.
Il existe plusieurs valeurs spéciales en virgule flottante pour traiter de tels cas
plutôt que d'envoyer une exception, car tous les langages n'ont pas la capacité
de traiter cles exceptions. Parmi ces valeurs spéciales, ily a I'infini positif et
négatif, et le s),mbole iJaii Q,lot-a-Number - pas un nombre) positif et négatif.

Dans les circonstances normales, la méthode In.,rerse i) retourne le
résultat attendu. Quand on lui passe une valeur nulle, cette méthode aux
idées larges envoie une CustomException, passant une chalne d'explica-
tions avec I'objet fautif.

Travaillant à I'envers, Main () attrape I'exception, puis affiche un bref mes-
sage destiné à expliquer où en est le message dans son traitement : "Erreur
f atale inc onnue" signifie probablement que le programme est sur le point
de fermer boutique et de rentrer chez lui. Main O donne ensuite à I'exception
la possibilité de s'expliquer en invoquant sa méthode ToStrlng O. ffoyez
l'encadré "ToStringQ, la carte de visite de la classe" dans ce chapitre.)

Comme dans ce cas I'objet exception est effectivement un
Cu s tornEv-c epr- I on, le contrôle passe à Cus t ornExc ept i on . To S t ring () .

Cette méthode T'oStrirrg O affiche le message de I'exception avec la
méthode cible initiale et le numéro de ligne correspondant.

Message O est une méthode virtuelle d'Exception, dont toute classe
d'exceptions personnalisée doit hériter.

Plutôt que de faire des hypothèses hasardeuses, Ves sage () permet
également à I'objet l,iathClass de s'afficher lui-même en utilisant sa
méthode Tcstrlng r.). Iiat-hCiass . ToSrring () retourne une chaîne
contenant la valeur et la description de l'objet.

Ne supposez rien de plus que ce que vous savez. C'est sur la méthode
ToSt'ring O d'un objet que vous devez compter pour créer une version
st ring de celui-ci, plutôt que d'essayer d'accéder à I'objet lui-même pour
en extraire Ies valeurs à afficher.

3 42 Ouatrième partie : La programmation orientée objet

Tri de la liste des oiseaux
Alouette
Corbeau

Étourneau
Grive
Hirond el I e
Tourterelle
Vautour
Appuyez sur Entrée pour terminer.,,

Les étudiants et les oiseaux sont triés, dans la logique de leurs catégories
respectives.

Héritage et interface
Une interface peut "hériter" des méthodes d'une autre interface. Je mets
des guillemets autour clu rnot hériter, parce qu'il ne s'agit pas d'un vérita-
ble héritage, mênre s'il en a pourtant I'air :

I | -a// IConpare * interface capable de se comparer e1le-nrême

I I et d'afficher sa propre valeur
public interface lCompare : IConparable

L

// getValue - rerourne sa propre valeur sous forne d'un int
int GetValue 0 ;

]

L'interface illorLr,,:ir e ltérite de iComparabl e I'exigence d'implémenter la
méthode Cr-,r;1por e io (). A Cela, elle ajoute I'exigence cl'implémenter
Get v'aiue t'). LIn objet lf ,olPare peut être utilisé comme un objet
iComparab Le, car, par cléfinition, le premier implérnente les exigences du
second. Toutefois, il ne s'agit pas là d'un héritage complet au sens C#,
orienté objet, de ce terme. Le polymorphisme n'est pas possible. De plus,
les relations de constructeurs ne s'appliquent pas.

Je donne une démonstration de I'héritage d'interface dans le programme
Abstract Inter-J ace. dans la section suivante.

Afin d'implémenter urte interface, une classe doit redéfinir chaque méthode de
celleci. Toutefois, une classe peut redéfinir une méthode d'une interface par
une méthode abstraite (naturellement, bien sûr, une telle classe est abstraite) :

Rencontrer une interface abstraite

Ghapitre 15 : 0uelques exceptions d'exception 38 |

usLng Systen;
namespace CustonException
{

public class CustornException : Excepti.on
{

private MathClass mathobject;
private string sMessage;
public CustomException(string sMsg, MathClass mo)

{

nathobject = mo;

sMessage = sMsg;

]
override public string Message

{

petf rpttrrn (+"ina Faræa+/rtT^ -ao-^^^ ^.- lInl\ lrnh jat oqt []Jrl6çLr!sLurrr uLL1116tru!ltroL\ !ë jllcbSd8e gbL \tuJ /, - _-L
gl'fsssnoo mrthnhiant rr1g1ling0) ;]

]

override public string ToString0
{

string s = Message;

s *= "\nException envoyée par";
s *= TargetSite;
rêt1rrn c.

l
l
// MathClass - collection de fonctions mathénatiques
I I de nia création (pas encore grand-chose à montrer)
public class MathClass
{

private int nValueOfObject;
--i,,^+^ ^+-.:-- côhianfllocnrintintpr.J_v.1Le sLrLltg -_-J__ rl,.__.1 ;

public MathClass(string sDescription, int nValue)
{

nValue0f0bject = nValue;
s0bjeetDescription : sDescription;

]
public int Value {get {return nValueOf0bject;}}
// l{essage - affiche le nessage avec 1a valeur de

I I l'objet Math0lass attaché
public string Message

t

get
{

return String.Fornat(''({0J = {1J)",
s0bjectDescription,
nValue0f0bject);

l
]

// ToString - combj.ne 1e nessage personnalisé avec

3 40 Ouatrième partie : La programmation orientée obiet

]
I I :*^1 r-^-+^-+ 1 | i-+^-f^^^ 1n.i.^1 ^Vab1e :| | lurPfEruçrrLsrrL r lrrLç!léLE ayrùPro)

// CetStrins - retourne 1e non de 1'oiseau
public string GetStringo
{

return liane;

l

]

La class Student (elle est à peu près au milieu de ce listing) implémente les
interfaces ICornparabie et IDispl ar.able que nous avons décrites plus haut.
ConpareTo O compare les étudiants par "grade", ce qui a pour conséquence
que les étudiants sont triés par grade. GetString O retourne le nom et le
grade de l'étudiant.

Parmi les autres méthodes de Stu'lent, il y a les propriétés en lecture seule
Name et Grade, un constructeur simple, et une méthode CreateStudentlist ().
Cette dernière retourne simplement une liste fixe d'étudiants (au départ, j'avais
pensé permettre à I'utilisateur d'entrer au clavier les noms des étudiants, mais
le listing devenait si gros qu'on n'y voyait plus I'essentiel).

La classe Bird, en bas du listing, irnplémente également les interfaces
IComparable et IDispla;'ab1e. Elle implémente CornpareTo () en comparant
des noms d'oiseaux à I'aide d'une méthode similaire intégrée à la classe
String. Ainsi, un oiseau est "plus grand" qu'un autre si son nom est plus
grand. Cette méthode permet de trier les oiseaux par ordre alphabétique.
La méthode GetName O retourne simplement le nom de I'oiseau.

Nous sommes maintenar-rt prêts à revenir dans l"lai n () , au bon endroit. La
méthode CreateStudentli st () est utilisée pour retourner une liste non
triée, qui est stockée dans le tableau students.

-sq4kP-/ j5: \ Pour nommer une collection d'objets, comme un tableau, utilisez un nom

V ' au Pluriel'

Ce tableau d'étudiants est d'abord introduit dans un tableau
comparabl e0b,i ect s. Celui-ci est différent des tableaux utilisés dans
les autres chapitres (en particulier ceux du Chapitre 6). Ceux-ci sont
des tableaux d'objets d'une classe particulière, par exemple un tableau
d'objets Srudenr, alors que conf.,ar-abieCrbi ec+;s est un tableau d'objets
qui implérnentent I'interface ICoinparable, indépendamment de la classe
à laquelle ils appartiennent.

Le tableau conparabief l-,-ject-c
en trie les éléments sur la base

est passé à la méthode Array . Sor: |), qui
clu grade.

Chapitre 15 : 0uelques exceptions d'exception 37I

n'rhli^ "^.i'1 f1 /)
vvrs !r \/

t

try
t

f20;
l
I I attrape une erreur
catch(MyException ne)

{

I / . . . traite une partie de 1'erreur
Console . i'/riteLine ("Exception MyException attrapée dans f1 0 ") ;

I I génère maintenant une nouvelle exception
I I pour remonter la chaîne de transmission
throw nev Exception("Erreur envoyée parf10") ;

l
l

Envoyer un nouvel objet exception permet à une classe de formuler un
nouveau message d'erreur avec des informations supplémentaires, tout
en clarifiant ce qu'il pouvait y avoir d'approximatif au départ. Passer un
objet Exception générique à la place d'un objet spécialisé MyException
garantit que I'exception sera traitée à un niveau situé au-dessus de f 1 O.

Envoyer une nouvelle exception présente I'inconvénient que I'indication de
pile redémarre au point du nouvel envoi. La source de I'erreur originale est
donc perdue, à moins que f 1 () n'ait pris des précautions spéciales pour la
conserver.

Une commande throw seule, sans argument, renvoie le même objet
exception :

public void fl o
i

try
{

t20;
l
ii attrape une erreur
catch(Exception e)
It

I | . . . traite une partie de l'erreur
Console.l.lrireLine ("Exception attrapée dansfl () ") ;

ll . poursuite du cheninement de l'exception
+1^-^,,.Llltuw r

l

338 0uatrième partie : La programmation orientée objer

public string Nane

{

oêfD''

{

rÊt1r rn sNemo .

l
l
nrrhlic dorrhle Grade

{

ger

{

return dGrade;

l
l
// implémente f interface I0omparable :

| | îanraraTn - ^^rqnrrÊ à rrn nrrtro nh-iet (ànnc. e o ,^aa.| | vvruyerçiu LvltrHatç o ull auL!ç vLi _-

I I des objets Student) et décide lequel
I I vient après l'autre dans le
I I tableau trié
public int CompareTo(object rightObject)
{

I I conoare 1'obiet Student courant (aooelons-le
- - --J

I I 'celui de gauche') à 1 tautre student (appelons - 1e

ll 'celui de droite'), et génère une erreur si aucun des deux
// n'est un obiet Student
Student leftStudent = this;
:r (| t-: ^1^+ÂL..i^^t is student))ar \; \!rËrrLwuJcu

{

Console , l,lriteLine
("I"Iéthode de conparaison à laquel1e est passé un nonStudent");

return 0;

l
Student rightStudent = (Student)right0bject;
// génère maintenant -1, 0, ou I sur 1a base du

// critère de tri (1a moyenne des points d'UV de 1'étudiant)
/ I Oa classe Double contient une méthode CompareTo0

I I que nous aurions pu utiliser à 1a place)
if (rightStudent.Grade (leftStudenr.grade)
{

rotrrrn -1.

(rightStudent.Grade) leftStudent.Grade)

return 1;

l
return 0;

]
l l inpTénentent f interface IDisplayable :

// GetString - retourne une représentati.on de 1'étudiant

l
if
{

Ghapitre 15 : Ouelques exceptions d'exception 37 7

Console.Read0;

]

Ma:'-n (j crée un objet C l as s i et l'utilise immédiatement pour invoquer la
méthode r i r r, Cette méthode appelle f2 l),qui appelle f,t (), qui appelle
f + ') . La fonction ; -.) effectue cles vérifications d'erreur extrêmement
sophistiqttées, clui la conduisent à envoyer soit un objet i'lyExceprrcr-r, soit
un objet Er,: - 1, i- , r n générique, selon la valeur de I'arqument bcloléen.
L'exception est cl'abord passée à f -i I). Là, C# ne trouve aucune instruction
catch, et le contrôle remonte donc à r2 (), qui attrape I'objet I'lvException.
Comme I'objet trxcep.- r on générique n'a pas encore trouvé d'instruction
catci.r corresponclante, le contrôle continue à remonter. Finalement, c'est
t 1 r') qui cclntient une instruction ':ai (1r Corr€sponclant à I'objet envoyé.

Le deuxième aptrtel de r{aini; pysvoque I'envoi par f+() d'un objet
iuli-E>rc e 1r*- I rr r, qtri esl attrapé par f :l () . Cette exception n'est pa.s envoyée
à f I i), parce qu'elle a été attrapée et traitée par f 2 i).

Le progranrme clonne la sortie suivante :

Bnvoie d'abord une exception généri"que

Dxception générique attrapée dans f1 0
Exception générique envoyée dans f4 0

Envoie d'abord une exception spécifique
Bxception MyException attrapée dans f2 0
MyException envoyée dans f40
Ânnrrrroz <ttr Fnt râo rnttr +arminor

Une fonction comme f 3 () , qui ne contient aucune instruction catch,, n'a
rien d'inhabituel. Je pourrais même dire que la plupart des fonctions ne
contiennent aucune instruction catch, mais je pourrais tout aussi bien ne
pas le dire. Une fonction n'a aucune raison d'attraper une exception si elle
ne contient rien qui lui permette de traiter I'erreur d'une manière perti-
nente. lmaginez une fonction mathématique ComputeX () qui appelle
Factorial () pour effectuer certains de ses calculs. En supposant que son
code interne soit correct, si Fact,rrial O envoie une exception, c'est parce
que la fonction appelante lui a passé une valeur incorrecte. ComputeX o
peut ou non être capable d'identifier pourquoi cette valeur était incorrecte,
mais en tous les cas, elle ne peut certainement pas résoudre le problème.

Une fonction comme f2 () n'attrape qu'un seul type d'exception. Elle recherche
une certaine classe d'erreurs. Par exemple, l"fyException peut faire partie des

336 0uatrième partie: La programmation orienrée objet

Comparez cet exemple à t'algorithme de tri du Chapitre 6. L'implémenta-
tion de cet algorithme demandait pas mal cle travail et nécessitait beau-
coup de code. Il est vrai que rien ne vous garantit que Ai'ra.,i. Sor:r |) est
meilleur ou plus rapide que cet algorithme. Il est seulement plus facile.

Assembler le tout
Voilà le moment que vous attendiez tous : le prograrnme Sc,r.i Inte r-t'a c e
complet, construit en utilisant ce que nous avons décrit plus haut dans ce
chapitre :

// Sortlnterface - montre conment
l l on peut utiliser 1e principe de f interface pour offrir
I I une meilleure souplesse pour 1e factoring
/ I et f implémentation des classes
using System;

nanespace Sortlnterface
{

// fnisplayable - objet capable de se convertir lui-même en
I t une chaine affichable
'i ntprf :no Ti-l'i c.1 ayable
{

// Getstring - retourne votre représentation sous forme de chaîne
string GetString0;

]

class C1ass1

{

public static void Main(stringlJ args)
r
L

I I trie 1es étudiants par leur moyenne de points d'UV...
tonsole.Ltriteline(',Tri de 1a liste des étudiants");
/l reçoit un tableau d'étudiants non trié
Studentll students = Student.CreateStudentlist0 ;

// utilise f interface IComparable pour trier
I I 7e tableau
IComparable [] comparableObjects = (IComparable []) students;
Array. Sort (comparable0bjects) ;

I I I interface IDisplayable affiche maintenant 1es résultats
IDisplayable [] displayableObjects = (lnisplayable ll) students;
DisplayArray (displayable0bjects) ;

I I trie maintenant par nom un tableau d'oiseaux en utilisant
I I Les mêmes routines, bien que 1es classes Bird
I I et Student n'aient pas de classe de base comnune
Console.lfriteline("\nïri de la liste des oiseaux"):
Bird[] birds = Bird.CreateBirdlist0 ;

I I renarquez qu'il n'est pas indispensable de faire un cast

Chapitre 15 : 0uelques exceptions d'exception 37 5

doigts
Laîsser quelques enlois t/ous fîler entre les

Et si C# part à la recherche d'une instruction carch dans la fonction
appelante correspondant à I'objet exception envoyé, et n'en trouve
aucune qui corresponde ? Et si la fonction appelante ne contient aucune
instruction carch ? Que faire ?

Examinez cette simple succession d'appels cle fonctions :

i I ltyException - nontre comment une nouvelle classe d'exceptions peut
ll être créée, et comment des fonctions peuvent
ll attraper exactement ce qu'e1les sont faites
I I nolr trâ'itpr tnut en laissant passer les autres
using System;

name space l'lyExc ept ion
{

// i-ntrodui"t un certain type de 'MyClass '

public class MyClassi)
i I Uynxception - - ajoute à la classe Exception standard

une référence à MyClass
public class MyException : Exception
{

private lly0lass myobject;

public MyExcepti-on(stri-ng sMsg, MyClass no) : base(sMsg)
{

nyobject - mo;

]

// pernet aux classes extérieures d'accéder à une classe d'information
publ.ic I'ly0lass My0ustom0b ject { get Ireturn nyobject;]]

l

public class tlassi
t

I I tt - - attrape tout objet Exceprion générique
public void fl (bool bExceptionType)
{

try
{

f2 (bExceptionType) ;

]

catch(Exception e)

t

console.l*Iriteline ('rException générique attrapée dans f1 () ") ;

33 4 0uatrième parrie : La programmarion orienrée objet

Bart :50
Lisa :100

Maggie :30

lYrv- ,/

fr-(Que c'est beau ! Voyez comme les résultats sont alignés sur les noms
llr9r, complétés par des espaces pour faire tous la même longueur.
Y

De même, vous trouverez dans la bibliothèque stanclard de C# des interfa-
ces intégrées en abondance. Par exemple, I'interface IComparabie est
définie de la façon suivante :

interface IComparable
{

I I conpare 1'objet courant à 1'objet ,o, ; retourne
ll 1 s'i1 est plus grand, - s'il est plus petit,0 dans 1es autres câs
int CornpareTo(object o) ;

]

Une classe implémente I'interface IC.-.r,parab1e en implémentant une
méthode CorLpar-,oTo i). Par exemple, Sr,:ing f) implémente cette méthode
en comparant deux chalnes. Si les chalnes sont iclentiques, elle retourne 0.
Si elles ne le sont pas, elle retourne soit I soit un signe -, selon la plus
"grande" des deux chalnes.

si vous voulez savoir comment une chaine peut être "plus grande" qu,une
autre, voyez le Chapitre 9.

N'y voyez aucune intention darwinienne, mais vous pouvez dire qu'un
objet Student est "plus grancl" qu'un autre objet Student si sa moyenne
de points d'uv (grade point average) est plus grande. c'est soit un étu-
diant plus brillant, soit un meilreur courtisan, peu importe.

Implémenter la méthocle compa:eTo O implique que les objets peuvent
être triés. Si un étudiant est "plus grancl" qu'un autre, vous devez pouvoir
trier les étucliants du "plus petit" au "plus grand". En fait, la classe Array
implémente déjà Ia méthode suivante :

Array. Sort (ICornparable ll objects) ;

Interfaces t rédéfinies

Chapitre 15 : Ouelques exceptions d'exception 37 3

De retour dans l{ai n O, I'instruction catch spécifie qu'elle attend un objet
llyException. Une fois I'exception attrapée, Ie code de I'application peut
encore demander n'importe quelle propriété d'une Excep*.ion, comme
dans I'appel à toString O. Cette instruction catch peut également invo-
quer des méthodes de I'objet l"iirCiass fautif stocké dans I'envoi (throw).

Assîgner plusieurs blocs catch
Le fragment de code de la section précédente décrit le processus par
lequel un objet irlyE:,ception localement défini est envoyé et attrapé. Mais
examinez à nouveau I'instruction catch utilisée dans cet exemple :

public void SorneFunction0

{

try
{

Some0therFunction () ;

]
catch(MyException me)

{

l
i

Et si SomeOtherFunction O avait envoyé une simple Exception ou une
exception d'un type autre que Mylxc eption ? Autant essayer d'attraper
un ballon de football avec un filet à papillon. Le catch ne correspond pas
à I'envoi. Heureusement, C# permet au programme de définir toutes
sortes d'instructions catch, selon le type d'exception à attraper.

Les instructions catch doivent figurer I'une après I'autre après le bloc
try, de la plus spécifique à la plus générale. C# teste chaque bloc catch
en comparant séquentiellement les objets envoyés au type d'argument de
I'instruction catch.

public void SoneFunction0
i

+ rttLr y

{

SomeOtherFunction 0 ;

]

catch(MyException me)

{

i/ tous 1es objets MyException sont attrapés ici

332 0uatrième partie : La programmation orientée objet

Puis-je tuir un programme quî pEtlT-ÊTRE-
UTI LISE_C0tl,lI,lE un eremple t

Le programme Sortlnterface ci-dessous est une offre spéciale. Ses
capacités, qui vous sont apportées par deux interfaces différentes, ne
pourraient jamais être obtenues par une relation d'héritage. Une fois
implémentées, les interfaces se tiennent prêtes à votre service.

Je veux toutefois diviser le programme Sorti:rt€rf ace en sections, pour
mettre en évidence différents principes. Je veux simplement faire en sorte
que vous puissiez voir exactement comment fonctionne ce programme.

Créer tlotre interface "faîtes-le tlous-même"

L'interface il- sDia.o'a'Die suivante sera satisfaite avec toute classe contenant
une méthode GetSt.ring O. Cette méthode retourne une représentation sous
forme de st rinq de I'objet qui peut être affiché en utilisant ,^u'riteL j ne () :

I I -^
.

I I TDisplayable - objet qui implémente
I | la néthode GetStrine0
interface IDisplayable
{
t

I I retovne votre description
string GetString0;

'1

J

La classe Student suivante implémente Idisplayable :

s1 ciass btuoent : IDisolavable
i

private string sName;

private double dGrade = 0.0;
/l accède aux méthodes en lecture seule
-..L1.i^ -+-.:-^ Nameyuvf,ru ù L! rrrË

t

get
{

return sName:

l
]
public double Grade

{

Ghapitre 15 : Ouelques exceptions d'exception 37 I

Le reste de cette sortie est ce que I'on appelle une indication de pile (stack
trace). La première ligne de I'indication de pile indique I'endroit à partir
duquel I'exception a été envoyée. Dans ce cas : Factorial (int) (plus
précisément, la ligne 23 du fichier source C1ass1 . cs. Factorial (), ou la
ligne 52 du même fichier, a été invoquée dans la fonction Main (strlng IJ).
L'indication de pile s'arrête à I'tain (), parce que c'est le module dans lequel
I'exception a été attrapée.

rr|r
t\\u-- .1

æL'indicationdepileestdisponibledansl'unedesfenêtresdudébogueur
If Cff I de Visual Studio. Je la décrirai au Chapitre 16.

Y
Il faut bien admettre que c'est plutôt impressionnant. Le message décrit le
problème et identifie I'argument qui en est responsable. L'indication de
pile vous dit à quel endroit I'exception a été envoyée, et comment le
programme y est arrivé. Avec ces informations, vous pouvez vous jeter
sur le problème comme la foudre.

Créer tutre propre classe d'erceyrtions
La classe Exception standard fournie par la bibliothèque de classe de C# est
capable de déliwer beaucoup d'informations. Vous pouvez demander à I'objet
exception à quel endroit il a été envoyé, ainsi que toute châîne demandée par
la fonction qui signale I'erreur. Dans certains cas, toutefois, la classe Exception
standard ne convient pas. Il peut y avoir trop d'informations pour qu'elles
puissent tenir dans une seule chalne. Par exemple, une fonction d'application
peut vouloir se faire passer I'objet incriminé pour I'analyser.

Une classe localement définie peut hériter de la classe Exception, comme
de n'importe quelle autre classe :

e Exception standardi / CustomException - ajoute à 1a classe Exception standa
I I une référence à MyClass

public class CustomException : Exception
{

private Mvclasss ,,1::i':::.
M.,cl.ddCustonnxception(string sMsg, MyClass no) : base(sMsg)

{
tyob3'..a = *0,

l
// permet aux classes extérieures d'accéder à une classe d'information
public MyClass MyCustomObject{ get {return myobject;J}

330 Ouatrième partie: La programmation orientée objet

^$sq t_ Par convention, faites commencer le nom d'une interface par la lettre 1, et

7X accolez-lui un adjectif. comme d'habitude, ce ne sont là que les sugges-

tsp, tions qui ont pour but de rendre vos programmes plus lisibles. C# vous
Y permet d'utiliser les noms que vous voulez.

La déclaration suivante indique que la classe PIrA implémente I'interface
I recor'iabie :

nrrhlin nlncc

{

nuhf in rrni ri

t

il
l

]

II n'y a pas de différence de syntaxe entre
base ThingsThatReccrci et la déclaration
IRec o rd ab 1 e.

PDA: IRecordable

TakeANote (string sNote)

fait cuelsue chose Dour enresistrer la note..*-'1.-.Y

la déclaration d'une classe de
qui implémente une interface

Voilà la principale raison d'être de la convention sur les noms d'interfaces :

elle permet de reconnaître une interface d'une classe.

La conclusion est qu'une interface clécrit une capacité. En tant que
classe, j'obtiens mon brevet iF.er:or-dabi,-: lorsque j'implérnente la
capacité TakeAl'loi e.

nublic class Pen : IRecordable
{

public void TakeANote(string sNote)

{

I I prendre une note sur un bout de papier
]

l

PUUJr-U UJ-dbb

{

PUUTTU VVtU

t

Pourriez-uous tne donner un enemple sinple I
Une classe implémente une interface en fournissant une définition pour
chaque méthode de celle-ci :

PDA : ElectronicDevice, IRecordable

TakeANote (string sNote)

Chapitre 15 : Ouelques exceptions d'exception 369

nValue);
throw new Exception{s) ;

]
// commence par donner 1a valeur 1 à un "accumulateur"
double dFactorial : 1.0;
I I tait une boucle à partir de nValue en descendant de 1 chaque fois
ttt t îô11r nrl ltrnl rpr I'aCCUmUlateUf
II ^^- i^ ..-1^,.- rbtenueI I PAL LO VOf gU! L

do

{

dFactorial *= nValue;

] while (- -nValue) l) ;

// retourne 1a valeur stockée dans 1'accumulateur
return dFactorial;

]
nrrblic c1ass Class1

{

public static void Main(string[] args)
{

try
{

tt/l appelTe en boucle 1a fonction Factorial de 6 à -6
for(inti=6;i)-6;i--)
{

lt/i calcule 1a factorielle du nombre

double dFactorial = MyMathFuncti-ons.Factorial(i) ;

// affiche 1e résultat à chaque passage

Console.1^lriteLinel"i = {0}, factorielle = {l}",
i, MyMathFunctions.Faetorial(i)) ;

]

l
catch(Exception e)
f

u0ns0le.l'/r1teL1ne("Irreur ratale :"J ;

Console.Writeline (e.ToString ()) ;

]
l/ attend confir:nation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer. , . ") ;

Console.Read0;
]

]

i

Presque tout le contenu de cette version "exceptionnelle" de l"lain O est
placé dans un bloc trv.

32 8 0uatrième partie : La programmation orienrée ob jer

Je peux donc dire que ces trois objets (le stylo, le PDA et I'ordinateur
portable) implémentent I'opération TakeAlJote. En utilisant la magie de
I'héritage, je pourrais implémenter la chose en C#, de la façon.suivante :

abstract class lhingsThatRecord
{

nh<f rrnt nrrhl 'i n "oid TakeANOte (string SNOte) ;

]
public class Pen : ThingsThatRecord
{

override public void TakeANote(string sNote)
{

I I prendre une note sur un bout de papier
i

]
public class PDA : ThingsThatRecord
{

override public void TakeANote(String sNote)
t

I L prendre une note sur son pDA

,
public class Laptop : ThingsThatRecord
t

override public void TakeANote(String sNote)

/ | ce que vous voulez
l

]

-rlî

>7V Si le terme abstract vous remplit de perplexité, revenez au Chapitre 13.

Ifcilt Si la notion meme cl'héritage n'évoque pour vous que mystère, il vous fautl\zt\ passer un peu de temps dans le Chapitre 72.

Cette solution reposant sur I'héritage semble fonctionner très bien pour
ce qui ne concerne que I'opération TakeAl{ote O. Une fonction comme
RecordTask O peut utiliser la méthode TakeANote O pour noter une liste
de commissions sans se soucier du type d'appareil utilisé :

void RecordTask(ThingsïhatRecord thi.ngs)
{

// cette néthode âbstrâite est implémentée par toutes 1es classes
tt
I I q:i héritent de ThingsThatRecord
things.TakeANote("Liste de comnissions,') ;

I L et ainsi de suite
l

Chapitre 15 : Ouelques exceptions d'exception 36 7

t/ Il mélange le code normal et le code de traitement des erreurs, ce
qui obscurcit le chemin d'exécution normal, sans erreur.

Ces problèmes ne paraissent pas si graves dans cet exemple simple, mais
ils ne font qu'empirer avec la complexification du code de Ia fonction
appelante. Le résultat est que le code de traitement des erreurs n'est
jamais écrit pour traiter autant de conditions d'erreur qu'il devrait.

Heureusement, le mécanisme des exceptions résout tous ces problèmes.

C# introduit un rnécanisme entièrement nouveau, nommé exceptions, pour
identifier et traiter les erreurs. Ce mécanisme repose sur les mots-clés t ry,
thrcw, caT-ith, et f 1r'ai. Dans les grandes lignes, il fonctionne de la façon
suivante': une fonction va essayer (t ry) d'exécuter une portion de code. Si

cette portion de code détecte un problème, elle envoie (thr:ow) une indica-
tion d'erreur, que la fonction peut attraper (catch), et, quoi qu'il arrive, elle
exécute finalement (f ina i) un certain bloc de code à la fin :

public class Mytlass
{

nrrhlic vnid SomeFunction0urrv L4vrr \ /

{

/l ceci est fait pour âttraper une erreur
try
II

I I appelTe une fonction
SomeOtherFunction () ;

ll autant d'autres appels que vous voulez

l
catch(Exception e)

t

I I te contrôle passe par ici en cas

// <i'erreur en un point quelconque du bioc try ou

ll de toute fonction appelée par celui-ci ;

il 1'objet Exception donne 1a description de 1'erreur
l

l
nrrhf in vnid Ss6sQtherFUnCtiOn0
PueffL

i
| | l'erreur se produit quelque part dans 1a fonction

Utîliser un mécanîsme d'erceptions t our signaler
les erreurs

326 Ouatrième partie: La programmation orientée objet

Sceller une classe empêche un autre programme, lequel peut d'ailleurs se
trouver quelque part sur Internet, d'en utiliser une version modifiée. Le
programme distant peut utiliser la classe telle qu'elle est, mais il ne peut
en hériter ni en redéfinir aucun élément.

i = 6, factorielle
1 =), tactorl.el_le
i = 4, factorielle
-i = I fentnriallo

i = 2, factorielle
i - 1, factorielle
1 = u, racl0r1elle
lactoriaL 0 a reçu
Appuyez sur Entrée

Chapitre 15 : Ouelques exceptions d'exception 36 5

- tzv

- rlv

:6
-L

-1

-U

un nombre négatif
nntrr torminor

1t$Qa"

{cg)

L'indication d'une condition d'erreur à I'aide d'une valeur retournée par une
fonction n'est autre que la manière dont le traitement d'erreur a toujours
été réalisé depuis les premiers jours de FORTRAN. Pourquoi changer ?

/e suis là pour sîgnaler ce qui me paraît nécessaire

Quel est I'inconvénient de retourner des codes d'erreur ? C'était très bien
pour FORTRAN ! C'est vrai, mais à cette époque les tubes à vide étaient
aussi très bien pour les ordinateurs. Malheureusement, I'approche des
codes d'erreur présente plusieurs inconvénients.

Tout d'abord, cette solution dépend de la possibilité de retourner une
valeur normalement illicite, mais il existe des fonctions pour lesquelles
toutes les valeurs qu'il est possible de retourner sont licites. Toutes les
fonctions n'ont pas la chance de ne retourner que des valeurs positives.
On ne peut pas calculer le logarithme d'un nombre négatif, mais un
logarithme peut être positif ou négatif.

Bien que I'on puisse contourner ce problème en utilisant la valeur retour-
née par une fonction pour une indication d'erreur et un argument de type
out pour retourner une donnée, cette solution est moins intuitive et fait
perdre une partie de la nature expressive d'une fonction. Quoi qu'il en
soit, lorsque que vous aurez vu comment fonctionnent les exceptions,
vous vous débarrasserez bien vite de cette idée.

D'autre part, un entier ne permet pas de stocker beaucoup d'information.
La fonction Far:tor:iai O retourne -1 si I'argument qui lui est passé est
négatif. L,'identification du problème pourrait être plus facile si nous
savions exactement ce qu'était cette valeur négative, mais il n'y a pas de
place pour retourner cette inforrnation.

Troisièmement, le traitement des erreurs retournées est optionnel. Vous ne
gagnerez pas grand<hose en faisant retourner par Factorial O un code

32 4 Ouatrième partie : La programmation orientée objet

appelle SavingsAccount.Withdraw()

pour effectuer Test (SpecialSaleAccount)

appelle SpecialSaleAccount. Withdraw ()

Passage d'un SaleSpecialCustomer
pour effectuer Test (BankAccount)

appelle SavingsAccount. Withdraw()

pour effectuer Test (SavingsÀccount)

appelle SavingsAccount .Withdraw ()

pour effectuer Test {Specia1SaleÀccount)
appel 1e SaleSpecialCus toner. Wi thdraw ()

pour effectuer Test(SaleSpecialCustomer)
appe 1 I e Sa1 e S pe c ia1 Cust ome r . l,lithd rar,r ()

Appuyez sur Entrée pour terminer... J'ai mis en gras les appels clui pré-
sentent un intérêt particulier. Les classes tsankAcccuni €t
Sa.;ir,gsAccount fonctionnent exactement comme on peut I'attendre.
Toutefois, en appelant Test (Sa,,'ings.Account), SreciaiSa lesA.:i:ount €t
SaieSpecialCurri-rnÊ: se passent eux-mêmes corlme un
SavirrgsAc.orlnt. Ce n'est qu'en regardant le niveau immédiatement
inférieur que la nouvelle hiérarchie Sa-cSlecialC'rsr.,.riili peut être
utilisée à la place de SpeclalSaleÀ:cc,ir-'..

Créer une nouvelle hiérarchie

PourquoiC# permet-ilde créer une nouvelle hiérarchie d'héritage ? Le polymorphisme n'est-
il pas déjà assez compliqué comme ça ?

C# a êté créé pour être un langage "netable", au sens où les classes exécutées par un
programme, même les sous-classes, doivent pouvoir être distribuées sur Internet. Autrement
dit, un programme que j'écris peut utiliser directement des classes venant de dépôts
accessibles par Internet.

Je peux donc étendre une classe que j'ai téléchargée sur Internet. La redéfinition des
méthodes d'une hiéra rc hie de c la sses sta nda rd, testée, peut avoir des effets q u i n'étaient pas

voulus. L'établissement d'une nouvelle hiérarchie de classes permet à mon programme de
bénéficier du polymorphisme sans risque de briser le code existant.

Ghapitre 15 : Ouelques exceptions d'exception 363

public class MyMathFunctions

{

I I ce cui suit renréspntp lps veleurs illicites
public const int NEGATIVB_NUMBER = -1;

nublic const int NON INTEGER VALUE = -2;

// Factorial - retourne 1a factorielle d'une valeur
I I fournie
public static double Factorial(double dValue)

i
// interdit les nombres négatifs
if (dValue (0)

{

return NEGATIVE_NUMBER ;

]

// vérifie si 1e nombre est bien entier
int nValue = (int)dValue;
if (nValue l= dValue)

{

return N0N_INTEGER_VAIUE ;

l
// commence Dar donner 1a valeur 1 à un "accumulateur"
double dFactorial = 1.0;
I I tait une boucle à partir de nValue en descendant de i chaque fois
I I nol:r mrrl tinlier 1'accunulateur
I I par 1a valeur obtenue
do

{

dFactorial *= dValue;
dValue -= 1.0;

I while(dValue) l);
// retourne 1a valeur stockée dans 1'accumulateur
return dFactorial;

l
h'!hlr^ ^t^^^ / t^d^1yuurrL Lldùè uI4ùD

{

public static void Main(stringll args)
t

I I appelle en boucle 1a fonction Faciorial de 6 à -6

for(inti=6;i)-6;i--)
{

// calcule la factorielle du nombre

double dFactori-a1 = MyMathFunctions.Factorial(i) ;

if (dEactorial == MyMathFunctions.NEGATIVE- NUMBER)

I

Console . }trriteLine
("Factoriai0 a reçu un nombre négatif");

break;
l

32 2 Ouatrième partie : La programmation orientée objet

Console.Writeline (" pour effectuer Test (BankAccount) ") ;

account . l,lithdraw (1 00) ;

l

public static void Test2(SavingsAccount account)

{

Console,WriteLine(" pour effectuer Test(SavingsAccount)") ;

account . Withdraw (100) r

]

nrrbl ir" stat'i c vo'i d Tpsf i l'Snpeial SaleAccount account)

{

Console,WriteLine (" pour effectuer Test (SpecialSaleAccount) ") ;

account, Withdraw(100) ;

l

public static void Test4(SaleSpecialcustomer account)

{

Console.Writeline(" pour effectuer Test(SaleSpecialCustomer)") ;

account . withdraw (1 00) ;

]

l
// BankAccount - simule un compte bancaire possédant

I I un numéro de conpte (assigné à 1a création
I I du compte) et un solde
publie class BankAccount

{

i / Withdrar,'ral - tout retrait est autorisé jusqu'à 1a valeur
il du solde ; retourne 1e montant retiré
virtual public void Withdraw(double dWithdraw)

{

Console.Writeline(" appelle BankAccount.Withdraw()") ;

]

l
// SavingsAccount - compte bancaire qui rapporte des intérêts
public class SavingsAccount : BankAccount

{

override public void Withdraw(double dHi-thdrawal)

{

Console.i,{riteline(" appelle SavingsAccount.Withdraw0") ;

]

l

// SpecialsaleAccount - compte utilisé uniquement en période de soldes
nrrhf ie elass SneeialSaleAccount : SavinssAccount

{

new virtual public void Withdraw(double dWithdrarral)

Chapitre 15 : 0uelques exceptions d'exception

II/ I rnnol I e on hnrrnl ^| | ofyçf,rL çrr uvuçaE

for(inti=6;i)
t

I I affiche 1e résultat à chaque passage

Console.Writeline("i = {01, factorielle = [].1",
i, MyMathFunctions.Factorial (i)) ;

')

J

I I attend confirmation de 1'utilisateur
Console.ldriteLine("Appuyez sur Entrée pour terminer,. .") ;

Console.Read0;

l

La fonctiot Fei i,::iti.- I . commence par initialiser à 1 unevariable qui va
servir d'accumulateur. Elle entre ensuite dans Llne boucrle. mirltipliant
I'accumulateur par des valeurs successivement de plus en l)lus petites,
depuis rïa.lrl. jusqu'à ce que n\Ia1,re atteigne 1. La valerlr résultante cle

I'accumulateur est retournée au point cl'appel de la for-rctirrn.

L'algorithme de F: :rc,r r ar (t semble satisfaisant jusqu'à ce (lue lon voie
comment elle est appelée. I'lain i I entre dans une boucle en colttntençant
à Ia valeur ad hoc pour la factorielle, et décrémente cette valelrr i) chaque
passage, jusqu'à 1. Toutefois, au lieu de s'arrêter, l.i.: r r cor-rtinrre jusqu'à
-6. Je sais bien que -6 est une valeur surprenante, mai.s il farrt bien .s'arrê-
ter cluelque part.

L'exécution de cette fonction produit la sortie suivante :

factorielle = 72A

factorielle = i20
factori.elle = 24

factorielle = 6

factorielle = 2

factorielle = 1

factorielle = 0

factorielle = - 1

factorielle = -2

factorielle = -3

factorielle = -4

factorielle = -5

srrr F,ntrép norrr terminef . ,

Un simple coup d'æil avisé à ces résultats permet de voir qu'ils n'ont
aucun sens. Pour commencer, le résultat d'une factorielle ne peut pas être

36t

1a fonction Factorial de 6 à -6

1-- |

320 0uatrième partie: La programmation orientée objet

Ce programme commence par définir la classe AbstractBaseClass avec
une seule méthode abstraite, Output O. Comme elle est déclarée abs-
traite, 0'L1r.put () n'a pas d'implémentation.

Il y a deux classes qui héritent de AbstractBase-Class : SubClassl et
SubClass2. L'une et I'autre sont des classes concrètes, car elles
redéfinissent la méthode Outpr-rt () par des méthodes "réelles".

^e,sc _a Une classe peut être déclarée abstraite, qu'elle comporte ou non des

fitc membres abstraits ; mais une classe ne peut être concrète que lorsque
lf$rf toutes ses méthodes abstraites ont été recléfinies par des méthodes
Y réelles.

Les deux méthodes Output O des deux sous-classes sont différentes, de
façon triviale. Toutes deux acceptent une chalne d'entrée, qu'elles régur-
gitent vers I'utilisateur. Mais I'une convertit I'ensemble de la chalne en
majuscules, et I'autre convertit I'ensemble en minuscules.

La sortie de ce programme met en évidence la nature polymorphe de la
classe Abst ractBaseClas s :

Création d'un objet Subclassl
Appel à SubClassl.Output0 depuis TEST

Création d'un objet Subclass2
Appel à SubClass2.Output0 depuis test
Appuyez sur Entrée pour terniner...

^ t\l:t\\vl -a\----
Iâl Une classe abstraite est automatiquement virtuelle.
\Y'

- Créer un objet d'une classe abstraite : nnn !
A propos du programme Abstractlnheritance, remarquez qu'il est
illicite de créer un objet de la classe AbstractBaseCiass, mais que
I'argument de Test O est déclaré être un objet de la classe
AbstractBaseClass ou de I'une de ses sous-classes. C'est ici la clause
concernant les sous-classes qui est cruciale. Les objets de SubClassi et
SubClass2 peuvent être passés, car I'une et I'autre sont des sous-classes
concrètes de Ab st ractBas eClas s.

15Chapitre

Ouelques exceptions
d'exception

Dans ce chapître :

Traiter des erreurs avec les codes retournés.

Utiliser plutôt le mécanisme des exceptions.

Créer votre propre classe d'exceptions.

Renvoyer I'envoi de I'extérieur.

Redéfinir des méthodes critiques dans la classe des exceptions.

e sais que c'est difficile à accepter, mais il arrive qu'une méthode (ou
une fonction) ne fasse pas ce qu'elle est censée faire. Même celles que

j'écris (surtout celles que j'écris) ne font pas toujours ce qu'elles doivent
faire. Il est notoire que les utilisateurs aussi ne sont pas fiables. II suffit que
vous demandiez un int pour qu'il y en ait un qui entre une chaîne de caractè-
res. Parfois, une méthode poursuit son chemin joyeusement, ignorant
voluptueusement qu'elle est en train de produire n'importe quoi. Il y a
toutefois de bons programmeurs qui écrivent leurs fonctions de manière à
anticiper sur les problèmes et les signaler lorsqu'ils se produisent.

"9tt$
Je parle ici des erreurs à I'exécution, et non cles erreurs de compilation

àf ilfi) qu" C# vous envoie à la tête lorsque vous essayez de générer votre
, U-/ Programme.

Le méconisme des exceptions est un moyen de signaler ces erreurs de la
telle manière que la fonction appelante peut comprendre et traiter le
problème au mieux.

Ghapitre 16 : Manipuler des f ichiers en C# 3I I

Le programme commence dans llain O par une boucle-"i,- re cott€nant
un bloc try. Ce n'est pas rare pour un programme de manipulation cle

fichiers (dans la section sur Stre:rnP.eade;:, c'est une approche un peu
différente qui aboutit au même résultat).

Placez toutes les fonctions d'l/O dans un bloc i-r-i.avec une instructiotr caT-r.r.r

qui génère un message d'erreur approprié. Il est généralement considéré de
mauvaise pratique de générer un message d'erreur inapproprié.

La boucle whi 1e s€rt à deux choses différentes. Tout d'abord. elle perrnet au
programme de revenir en arrière et d'essayer à nouveau en cas d'échec d'une
llO.Par exemple, si le programme ne trouve pas un fichier que I'utilisateur
peut lire, il peut demander à nouveau le nom du fichier pour être str de ce
qu'il fait avant d'envoyer promener I'utilisateur. Ensuite. I'exécution d'une
commande break dans le programme vous fait sortir d'un air clégagé du bloc
try, et vous dépose à la fin de la boucle. C'est un mécanisme très pratique
pour sortir d'une fonction ou d'un programme.

Le programme Filei;r ite lit sur la
termine en sortant de la boucle-"^il.:
nu11. L'essentiel du programme se

Pour commencer, le programme crée un objet Fi l eSt: -.an qui représente
le fichier de sortie sur le disque. Le constructeur:'r-eStrearn utilisé ici
accepte trois arguments :

Le nom du fichier: Il est clair que c'est le nom du fichier à ouvrir. Un
simple nom de fichier comme f i L e:,ane . :xt est supposé être dans le
répertoire courant. Un nom de fichier qui commence par une barre
oblique inverse, comme \ur-- rélerioir,:\loncief icirier. i.x*, €st
supposé être le chentin d'accès complet au fichier sur la machine
locale. Un nom de fichier qui commence par deux barres obliques
inverses, par exemple \ \ ..--- r re n.ach i ne \, un r énerto i r c \'lr: aLit r€
répertoir e\nondef lchier. rxi. est supposé être le chemin d'accès
à un fichier résidant sur une autre machine. À partir de là, le codage
du nom de fichier devient rapidement compliqué.

Le mode de fichier: Cet argument spécifie ce que vous voulez faire
avec le fichier. Les modes d'écriture de base sont la création
(CreatelJew), I'ajout (Aopeni), et la réécriture (Cr eate). \'.' ,:z '- -l{er,,'

crée un nouveau fichier. Si le fichier existe déjà, rlreateile.,L envoie
une IOExceotion. Le mode Create simple crée le fichier s'il n'existe
pas déjà, mais l'écrase (le remplace) s'il existe cléjà. r.ppeni ajoute
quelque chose à Ia fin d'un fichier s'il existe déjà, et crée un nou-
veau fichier dans le cas contraire.

YKe,

console Ie nom du fichier à créer. Il se
ie si I'utilisateur entre un nom de fichier
produit dans les deux lignes suivantes.

t/

tz

Chapitre 16 : Manipuler des f ichiers en C# 40 I

fichier que vous avez entré (lath est une classe conçue pour manipuler
des informations sur les chemins d'accès).

Le chemin d'ctccès (path) est le nom complet du dossier dans lequel se
trouve le fichier. Dans le nom de fichier complet c:\user\tenD
dlreC*rct'1.\tex',.lxt, le chemin d'accès est la partie c:\user\i,i-lr
oireC*;orv.

La méthocle ilrnbiner i) est capable de se rendre compte qu'un fichier
comme c: \tes:.txt, PathO n'est pas dans le répertoire courant.

En rencontrant la fin de la boucle whiie, soit en exécutant tout le bloc
tr.1, soit en y étant envoyé par I'instruction catci'r, le programme revient
tout en haut pour permettre à I'utilisateur d'écrire un autre fichier.

Voici un exemple d'exécution de ce programme. Ce que j'ai saisi apparalt
en gras :

Entrez un nom de fichier (Entrez un

Entrez du texte ; une ligne blanche

'Je tape quelque chose

Et encore ça
EÈ puis encore ça

Entrez un nom de fichier (Entrez un

Entrez du texte ; une ligne blanche
C'est ici que j'ai fait une erreur.
TestFiLe2.

.Ë

1e$!Qa.
^.v7çq

\
=qE/

Entrez un nom de fichier (Entrez un nom vide pour quitter):TestFiLel.txt
Erreur sur 1e fichierC: \ClÉfrograms\Filei,lrite\bin\lebug\TestFilel . txt
Le fichier existe,

nom vide pour quitter) :TestFilel.txt
pour arrêter

nom vide pour quitter) :lestFile2.txt
pour arrêter
J'aurais dû I'appeler

Entrez un non de fichier (Entrez un nom vide pour quitter) :

Annttvcz <rrr Fntr6p nnrrr tprminor

Si j'entre un texte quelconque dans TestFilel . txt, tout se passe bien.
Mais lorsque que j'essaie d'ouvrir à nouveau le fichier TestFi ie1 . -rx:, le
programme m'envoie le message Le f ichier existe, avec le nom du
fichier. Le chemin d'accès au fichier est un peu tourmenté, parce que le
"répertoire courant" est celui dans lequel Visual Studio met le fichier
exécutable. En corrigeant mon erreur, j'entre du texte en spécifiant le bon
nom de fichier (iestFile2 . txt), sans protestation du programme.

Chapitre 16: Manipuler des fichiers en C# 403

break;
l

ll erreur envoyée indique 1e non du fichier et 1'erreur
ê\nrl.n l,r)F.Ynên11 on Iel\-----'-r --'

{

Console . I,]riteline (" {0J \n\n" , fe. Message) ;

]

l
I I lit 1e contenu du fichier
Console.i,lriteLine("\nContenu du fichier :") ;

try
t

I | 1:- ..-^ 1.:--: à 1a fOiSI I l-J.L Urltr f fBrrt

r,vhile (true)
{

I I lit une ligne
string slnput = sr.Readline0;
// cuitte si nous n'obtenons rien en retour
'1 T tStnnllr =: nul_LJ

{

break;
l
ll écrit sur la console ce qu'il a 1u dans 1e fichier
Console . LIriteline (slnput) ;

l
l
catch (l0Exception fe)
{

I I artreoe toute erreur de lecture/écriture et la sisnale- *- "*b..*--

I I (ce aui fait aussi sortir de 1a boucle)
Console . l,Jrite (fe. Message) ;

l
I I f.erne le fichier maintenant que nous en avons fini avec 1ui

I I (en ignorant toute erreur)
try
{

sr. C1ose 0 ;

]
catch i l
// attend confirnation de 1'utilisateur
Console.I,lriteLine("Appuyez sur Entrée pour terminer. . .") ;

Console.Read0;

I
J

Fiieheaci a une autre approche des noms de fichier. Dans ce prograrnlne,
I'utilisateur ne lit qu'un fichier. Il doit entrer un nom de fichier valide pour

Chapitre 16 : Manipuler des fichiers en C# 40 5

Readline O. Le programme affiche cette ligne sur Ia console avec I'omni-
présent appel Coirsole. i,JrlteLi:icr (t avant de revenir au début de la
boucle pour lire une autre ligne cle texte. L'appel F eaC'iiie (; retourne un
nu11 lorsque le programme atteint la fin du fichier. Quand cela se produit,
le programme sort de la boucle de lecture, ferme I'objet, et se termine.

Remarquez comment I'appel cicse (, est inséré dans son propre petit
bloc try. Une instruction caici, sans arguments attrape tout ce qui passe

à sa portée. Toute erreur envoyée par C,cse L, est attrapée et ignorée.
L'instruction catch est là pour empêcher I'exception de se propager vers
le haut de la chalne et d'arrêter I'exécution du programme. L'erreur est
ignorée parce que le programme ne peut rien faire en cas cle 1,,,.-sil

invalide, et parce qu'il va de toute façon se termir-rer à la ligne suivante.

.$sC ,. Je ne donne I'exemple de catch sans arguments qu'à des fins de clémons-

Htration.Laprésenced,unseulappeldansSonproprebloc'iïaVeCune
tt9, instruction carcfi "attrape-tout" évite qu'un programme s'arrête à cause
Y d'une erreur sans importance. N'utilisez toutefois cette technique que

pour une erreur vraiment sans importance, ne pouvant causer aucun
dommage.

Voici un exemple d'exécution de ce programme :

Entrez le nom d'un fi-chier texte à lire :TestFilex.txl
Could not find fi1e "C: \C#Prosrams\FileRead\TestFilex.txtr'

Entrez 1e nom d'un fichier texte à

Contenu du fichier ;

,Te tane nrrel nrre chose
Et onnnro nn

Et nrri c ênr.ôrê a\â-" r-r" ""'*-- Y*
Annrrrroz <rrr Fnfréo nnrrr term'inpr

lire:TeslFilel.txt

^*\=(t

Sauf erreur de ma part, c'est la même entrée qu'avec le fichier
TestFilel . txt que nous avons créé avec le programme Fr-ei'ir lte.

Ce n'est toutefois pas le même fichier. J'ai dt copier Ie fichier créé
avec Test'rnJrite du répertoire Trst-ll: !:Ê \1 ii\ie5ug au répertoire
TestRead\b,r\deb.ig. Si vous voulez que ce soit le même fichier dans
les deux cas, il vous faut donner le chemin d'accès complet, comme
c:\test.txt (j'aurais pu le faire pour ces deux exemples, mais je ne
voulais pas mettre de désordre dans votre répertoire racine).

Ginquième partie

Programmerpour
Wi ndowsavecVisual

Studio

"On vient nettoyer le code."

Chapitre 17

Gréer une application
Wi ndows: le ramage

et le plumage

Dans ce chapitre :

Trouver un problème à résoudre.

Concevoir une solution.

Dessiner la solution avec la souris.

omprendre C# ne suppose pas d'apprendre à écrire des aptrllications
Windovvs pleinen-rent fonctionnelles. Avant de vou.s mettre à la

programmation sous Windows en C#, vous devez avoir cle solicles notions de
la prograrnmation en C#, ce qui ne peut s'acquérir qu'au prix de r1r-relques

mois de programmation d'applications console.

^dËK
Je dois nuancer quelque peu l'affirmation qui précècle si vous avez cléjà

:Hqfl) créé des applications Windows dans un langage de progranlmation
{/ô / comme C++.

Toutefois, vous pouvez vous familiariser avec la programnration pour
Windows en passant par les étapes successives de la réalisation d'une
application simple. Ce chapitre va vous guider à travers les étapes qui
permettent de "dessiner" les applications en utilisant le Concepteur de
formulaires de Visual Studio. Le Chapitre l8 présente les étapes qui
permettent d'effectuer des opérations suggérées par les formulaires,
menus, bannières, boutons, et autres merveilles que vous allez réaliser
dans ce chapitre.

- Ghapitre 17:Créer une application Windows: le ramage et le plumage 4l I

2. Faites une description visuelle de la solution.

Tout programme doit être doté d'une interface raisonnablernent
humaine, faute de quoi un être humain raisonnable ne pourra pas
s'interfacer avec lui. Dans le cas d'une application Windor,l's, cela
signifie décider des accessoires à utiliser, et où les placer. Choisir
les bons accessoires suppose d'avoir au moins fait connaissance
avec ceux qui sont disponibles, mais aussi d'avoir un peu cle talent
artistique (ce qui me met en dehors du coup). et encore d'avoir
envie de travailler sur le problème concerné. Pour remplir cette
fonction, il vous suffit de vous asseoir devant votre ordinateur. l-e
Concepteur de formulaires pour Windows est d'une telle souplesse
que vous pouvez I'utiliser comme un outil de dessin.

3. Concevez la solution sur la base de sa présentation et de la
description du problème.

La conception d'une grande application doit être définie dans les
plus grands détails. Par exemple, je travaille en ce moment sur un
système de réservation pour une grande compagnie aérienne. Le
travail de conception de ce programme occupe quinze personnes
pendant à peu près six mois, après quoi le travail de codage et de
débogage prend encore douze mois. Cependant. une petite applica-
tion Windows est souvent largement définie par son interface. C'est
plus ou moins le cas avec SimrleECi:oi.

Concetuîr la présentatîon

SimpleEditor est un éditeur, et c'est un éditeur simple, Il doit avoir une
grande fenêtre dans laquelle I'utilisateur peut entrer du texte. Comme
cette fenêtre est la partie la plus importante cle n'importe quel éditeur,
elle doit occuper pratiquement tout l'écran.

Toute application Windows nécessite un menu Fichier, imrnédiatement
suivi à sa droite par un rnenu Éclition. Les autres éléments de la barre cle

menus dépendent de I'application. sauf pour I'aide qui en est le clernier.

Dans le menu Fichier, il nous faut un moyen d'ouwir un fichier (Fichier/Ouvrir),
un moyen d'enregistrer un fichier (Fichier/Enregistrer), et un moyen de sortir
(Fichier/Quitter). Le petit bouton de fermeture dans le coin supérieur droit de
la fenêtre doit avoir le même effet que Fichier/Quitter. Nous n'avons pas besoin
d'une commande Fichier/Fermer. C'est très joli, mais comme nous n'en avons
pas besoin, c'est une chose que nous pouvons garder pour la version 2.

- Ghapitre 17:Gréer une application Windows: le ramage et le plumage 4l3

Comme je I'expliquerai dans les sections qui suivent, ces étapes ne sont
pas mal faites si vous les suivez I'une après I'autre.

Créer le cadre de tranaîl de l'applîcatîon Windouls

Pour créer le cadre de travail de I'application Windows :

l. Sélectionnez Fichier/Nouveau/Projet.

La fenêtre Nouveau projet apparalt.

2. Au lieu de I'icône Application console, cliquez sur I'icône Appti-
cation Windows, et entrez comme nom SimpleEditor.

-grfl(c Dans la fenêtre Nouveau projet, le champ Emplacement spécifie le

-.-/ -i: \ répertoire dans lequel seront stockés les fichiers de SimpleEditor.
=(fA) Autrement dit, Visual Studio va mettre tous les fichiers que je vais

\t/ créer dans c:\Programmes c/É\simpleEoitor.

3. Cliquez sur OK.

Visual Studio travaille quelques instants pour générer I'affichage
montré par la Figure 17.2.

-

tigure 17.2:
L'affic h age
initial pour
toutes les
applications
Windows.

-

rùm8ordÈr5i/Ê 5,rable

FqhtToLeft li.

Ir--t
E ina,."r. t.,:.1

AIc\4tro! FisF

::t te lWç, l3qrri
ÉnànÉd Ît te

ImetlDde l,n:!nt.r
B t;tytt :,

Ei iorEniPnpÊrù'

Ie*
LE lexiÊÉnd6u &ffiGcdrdt

Ce curieux affichage s'appelle le Concepteur de formulaires (ou, plus
simplement, le Concepteur). Le cadre de vous voyez à gauche est le
formulaire, qui va être la base de notre programme SirnpleEdltor.

Ei(htr/ Edilr ètrôaW PJoÈl Gênââ Sdqs

.!' -L'-t tà I l -' '!'
I i!. ::':: :.t ,r i.r remt.€r [&99]

EO

?i"ffi,,Î:li#"i:'l;|,t2,';',. -inl:J

- Ghapitre 77 : Crêer une application Windows: le ramage et le plumage 4l 5

algnorez ce ttlpe qui se cache derrière le rideau

Avant d'aller plus loin, je veux jeter un coup d'æil au code C# généré par
le Concepteur. Je veux savoir ce qui se trame là-dedans. L'Explorateur de
solutions montre que le fichier source de ce programme se trouve dans
un fichier nommé F,.--rm1. c:s, ce qui correspond au nom qui se trouve au-
dessus du formulaire dans la fenêtre du Concepteur.

Sélectionnez Affichage/Code pour faire apparaltre une nouvelle fenêtre
contenant le code source C# de F o rin I . .' -c, que voici :

.'^"i-^ C,,a+^-.
uùrrrË eJùLEur,

using System.Drawing;
using Systern. Collections ;

using System, ComponentModel ;

using System.Windows . Forms;

using System.Data;
nanespace SimpleEditor
{

//l (sumnary)

I I I Snnnerv dpsc ri nti on for T'orml
,

lll (lsunnary)
nrhl j^ nlrcc l'61911 : SyStenr.WindOvS.FOrmS.FOrm
I
t

/i/ (sunmary)

I I I Required designer variable.
I I I (lsmnary\
private System. ConponentModel, Container components = nul1;
public Forml 0
{

lt
tt ^i / Required for Windows Form Designer support
lt
InitializeConponent () ;

lt
i / TODû: Add any constructor code after InitializeComponent call
lt

l
lll kunnary)
I I I clean up any resources being used.

I I I (lsumary)
protected override void Dispose(bool disposing)

rt

if(disposing)

{

if (conponents != nu11)
f

t

4t6 Ginquième partie: Programmer pour Windows avec Visuaf Studio

components.Dispose0;
l

l
heca D'i cnnco (rli cnncin- I .v4ùs . urDyvoc \ uIDyuù rrIË ,, t

l

#region Windows Form Designer generated code

/ / I (sunrnary)

/// Renrrirerl method for Designer support - do not modify
I I I the contents of this nrethod r+ith the code editor.
lll llsunnary)
private void InitializeConponent0
{

/ / For:nt

this.AutoScaleBaseSize * new System.Drawing.Size(5, 13) ;

this.ClientSize = new Systen.Drawing.Size {292, 273);
this.Name = "Forml";
this.Text * "Sirnple Editor";

l

/// (summary)

I I I fhe main entry point for the application.
lll (lsunnary)

ISTAThread]

static void Main0
{

Annl inatinn Rln /nor., Ë'^rml i/\ I .4ytl!rLo rrvtl .l\ulr \rrgw I ulIlI \ / ,/ ,

l

'

Je sais que le programme doit cornmencer par static Main O, qui se trouve
ici tout en bas du listing. Voilà ce qui nourrit ma conviction que c'est ici qu'il
faut commencer. La seule instruction que contient Main O crée un objet
Forml () et le passe à une méthode Application. Run (). Je ne suis pas str
de ce que fait F.un O, mais je soupçonne fortement que la classe I'orm1
correspond à la fenêtre Forml que j'ai vue dans le Concepteur.

1e${Qa. En fait, Application. Run O lance I'objet Form sur son propre thread

â7^Ël \ d'exécution. Le thread initial s'arrête aussitôt que le nouveau Forml est
=lÉf \ff / créé. Le thread Fornl se poursuit jusqu'à ce qu'il soit intentionnellement

Y,Ô/ arrêté. Le programme SirnpleEditor lui-même poursuit son exécution
aussi longtemps que des threads définis par I'utilisateur sont actifs.

Le constructeur de Formi invoque une méthode InitializeComponent O.
Tout code d'initialisation du programmeur doit être placé après cet appel
(tout au moins, c'est ce que dit Ie commentaire).

4l 4 Cinquième partie : Programmer pour Windows avec Visual Studio

Un formulaire est une fenêtre contenant une barre de titre, et
optionnellement des barres de défilement. Dans la terminologie de
C#, une fenêtre n'est rien d'autre qu'un cadre rectangulaire dans
lequel vous pouvez placer des images ou du texte. Une fenêtre n'a
pas nécessairement des menus ou des étiquettes, ni même ces
petits boutons Fermer, Réduire et Restaurer.

4. Générez Ie programme que Windows vient de créer sur la base
du modèle.

Vous pouvez me traiter de paranoïaque, mais je veux être certain
que toutes les erreurs qui pourront apparaltre par la suite seront
réellement de mon fait et ne viendront pas de Visual Studio. Sans
aucun doute, la solution va se générer sans encombre à ce stade.
L'exécution de ce programme ne révèle rien d'autre qu'un formu-
laire vierge, doté de l'étiquette Forml.ll suffit de cliquer sur le
bouton Fermer pour arrêter le programme.

Le volet qui occupe la partie droite de I'affichage est la fenêtre
Propriétés. Ça ne saute peut-être pas aux yeux, mais son contenu
est en relation directe avec le formulaire qui est dans la partie
gauche de I'affichage. Par exemple, vous pouvez voir que la pro-
priété Text est Fo rrnl . Vous pouvez la modifier pour vous rendre
compte de I'effet produit.

5. Sélectionnez la propriété Text, et donnez-lui Ia valeur Simple Editor.

L'étiquette Forml contenue dans la barre de titre du formulaire
devient Simple Editor.

6. Générez à nouveau I'application, et exécutez-la.

Le nom du formulaire a changé, comme le montre la Figure 17.3.

-

Figure 17.3 :

Changer la

propriété
Text du
formulaire
change le

nom qui

a ppa raît
oans sa

barre de titre.

-

4l 2 Cinquième partie : Programmer pour Windows avec Visual Studio

-

Figure 17.1 :

Ma solution
du problème
SinpleEditor.

-

Le menu Édition a besoin des trois grandes options d'édition : Couper,
Copier et Coller. D'autre part, tous les éditeurs comprennent les raccour-
cis clavier de ces trois options : Ctrl+X, Ctrl+C, et Ctrl+V, respectivement.

SimpleEditor aura également besoin d'un menu Format, comportant les

options Gras et ltalique pour mettre en forme le texte.

Fournir une aide véritable est une tâche difficile - beaucoup trop compliquée
pour un éditeur simple comme SimpleEciitor. Le menu d'aide de cette
application devra se contenter du minimum absolu : I'option À propos de.

Dernière exigence : il nous faut un moyen de contrôler la taille de police.
Voilà une chose qui laisse la place à un peu de fantaisie. En plus d'une
simple fenêtre dans laquelle I'utilisateur peut entrer la taille de police
souhaitée, SimpleEdltor y ajoutera une sorte de barre munie d'un index
que I'on peut faire glisser, que nous appellerons TrackBar. Pour obtenir 8

points, faites glisser I'index à I'extrémité gauche. Faites-le glisser à I'extré-
mité droite, et vous clbtenez 24 points. (J'ai une autre raison de procéder
ainsi : je veux vous montrer comment relier deux objets d'l/O de manière
qu'un changement dans I'un soit répercuté dans I'autre.)

Itla solutîon
Avec les paramètre.s que j'ai décrits dans la section précédente, je suis
arrivé à la solution montrée par la Figure 17.1. Vos propres résultats
peuvent être différents selon vos gotts personnels.

W:" -lol t{J

Fichier Edition Frrrét ?

ralb
'Je

police jîf-
s- | 14

)

r:I -ll IirJ+ *rr 1 - p trI: t -'rn =rl

lus grand

Dessîner la solutîon
Comme vous pouvez I'imaginer,
pour arriver en partant de zéro

j'ai dt passer par de nombreuses étapes
à l'æuvre d'art montrée par la Figure 17.1.

4l 0 Cinquième partie : Programmer pour Windows avec Visual Studio

Quel est le problène)

Il m'a fallu une longue et difficile réflexion (au moins un quart d'heure)
pour imaginer un problème qui mette en lumière la puissance de C# sans
me faire prendre du poids. Le voici : créer un éditeur .simltle que nous
appellerons S LnpleEciit-or. Il aura les caractéristiques suivantes :

t/ L'utilisateur peut entrer et effacer du texte (sinor-r, ce rle serait pas
vraiment un éditeur).

t/ L'utilisateur peut couper et coller du texte. non .seulement clans

SrrpieEdi*.o1, mais aussi entre il ::;;, '.:i1,,1i., r ct d'etutres applica-
tions, par exemple Word.

SinltcEcr*.or supporte les polices en gras, en italique ou les deux.

L'utilisateur peut sélectionner une taille cle police cle B à 24 points.
Ces limites sont arbitraires, mais il s'agit ici cle ne pas aller trop loin
en nombre de points.

SrnpleEclitor ne doit pas vous permettre de quitter sans vous
avoir demandé poliment d'enregistrer le fichier que vous venez de
modifier (mais vous restez libre cle quitter sans enregistrer si c'est
bien ce que vous voulez).

t/

t/

t/

Erposer le problème

Chaque fois que vous êtes devant un problème à résoudre, vous devez
commencer par vous mettre devant le tableau noir et réfléchir sérieuse-
ment aux obstacles à franchir. Dans le cas d'une application Windows,
cette tâche se divise en trois étapes :

l. Décrivez le problème en détail.

Ces détails sont les spécifications auxquelles doit se conformer
I'application. Au cours de la programmation. vous pourrez être
tenté d'ajouter une fonctionnalité ici ou là. Résistez. Cette maladie
s'appelle fonctionnalite. Tout en avançant, notez les améliorations
possibles pour une version future, mais l'ajout de fonctionnalités en
cours de route fait courir le risque de créer une application qui finit
par être tout à fait autre chose que ce qu'elle était censée être au
départ.

âgrrs rctte lîaytî& n " *

orttlircrr<llt. i"# eçt iilrEt r,lr<)se. apl)t'(:n<lre ii ri<:rire Lllle
alipiil:irtlrrrr \i'irrrirlrvr; <:oirrplète ar,/ec totrs sc:s assernïrlages

et ses cld:ct>r;iti<ltts lrit'-tt ett illiir'..'r'r) est utre atttre. flien (]lle pour
le plaisir, l;r cirrriiiii'iiir 1r;u iiet \-()u$ grricle pras a. pas clarrs I'utilisa-
tion cle C# avec j'!ritrrfi:.r:c Visiurl Studio afin rle créer" urie lt;rplica-
tion Winclorv:i 'rpri rrr.: soit p;i"s trivi;r.le". Vorrs serez fier rlrr rÉ:sultat,
rnême siv<ts t.'liflurl.s lr';ri:pelieiit pas leurs cotrr;rins trtour le voir.

40 4 Ouatrième partie : La programmation orientée objet

que le programme donne la sortie attendue. Une fois que le programme a

lu le fichier, il se termine. Si I'utilisateur veut lire un autre fichier, il lui
suffit d'exécuter à nouveau le programme.

Le programme commence par une boucle rihr le, coilffie son cousin
Filel^i rite. Dans cette boucle, il va chercher le nom de fichier entré par
I'utilisateur. Si le nom de fichier est vide, le programme envoie un message
d'erreur:\Ious a\r?.z entré un nom ie rlchiel ,,'ide. Dans le cas contraire,
le nom de fichier est utilisé pour ouwir un objet FrleSt-reai. en mode cle

lecture. L'appel Frle.LJpen () est ici le même clue celui utilisé dans i -..-r',:ire :

/ Le premier argument est le nom du fichier.

t/ Le deuxième argument est le modèle du fichier. Le mode
Fil-.Mode. Ctpen dit : "Ouvrir le fichier s'il existe. sinon envoyer une
exception." L'autre possibilité est r-lprq1,11ew, qui crée un ficl-rier de
longueur nulle si celui-ci n'existe pas déjà. Personnellement, je n'ai
jamais rencontré le besoin de ce mode (qui veut lire un fichier
vide ?), mais chacun mène sa barque comme il I'entend.

t/ Le dernier argument indique que je veux lire à partir de ce
File-Çtream. Les autres solutions sont ririte et R..aiLi^ir ite.

L'objet FileS:rean f s résultant est alors inséré dans un objet StreairP.r:ac1er
sr qui offre des méthodes pratiques pour accéder au fichier texte.

Toute cette section d'ouverture de fichier est enchâssée dans un bloc t r.,.,
lui-même enchâssé dans une boucle whiie, insérée dans une énigme. Ce

bloc t ry est strictement réservé à I'ouverture de fichier. Si une erreur se
produit pendant le processus d'ouverture, I'exception est attrapée, un
message d'erreur est affiché, et le programme reprend au début de la
boucle pour demander à nouveau un nom de fichier à I'utilisateur. Toute-
fois, si le processus aboutit à un objet nouveau-né St reanReader en bonne
santé, la commande break fait sortir de la logique d'ouverture de fichier et
fait passer Ie chemin d'exécution du programme à la section de lecture.

.ssG ./ FileRead et Frle'ririte représentent deux manières différentes de traiter
Hdesexceptionsdefichier.VouspouVeZinsérertoutleprogramrrrede
tTg, traitement de fichier dans un même bloc rr-,,, comme dans Fi le,.,r rte, ou
Y bien vous pouvez donner son propre bloc I r_,. à la section d'ouverture de

fichier. Cette dernière solution est généralement la plus facile, et elle
permet de générer un message d'erreur plus précis.

Une fois le processus d'ouverture de fichier terminé, le programme
FileRead lit une ligne de texte dans le fichier en utilisant I'appel

402 0uatrième partie:La prog;ramrnation orientée ohjet

Amétiorez $çtre cûrnpré(tensînn et ûotre
Uitesse de f ectmre aûec S t- r e anii.l r: a ,l e r
Il est très a.qré;,rhle rl'é<'rire sur ull fichier. mai.s c'est plr-rtôt inutile si vous
ne pouvez l)a$ lirt'lr: fir.ririer i,lar la suite. i,e proglAmûte r i ii.,,eacl suivant
affir:he'sur l;i c(-jn-c{)Jr.r r* rlll'rl lit clans ie fichier, (e lrrogramnte lit un
fichier tt-rxtt: (:{-i:rinrr".'r:ltri {ltrr:' créÉ} L, .,: .' r . :

// FileRead 1it un fichier texte et l'écrit
I I sur la console
,,.i-^ C"^+^*.uùrrr6 uJ ù Lclr t

rrc"ino Svctonr ï0'*- "'^b

irétucùy4Lg f -Lgr\Ëéu

{

^ ..^ ,'.ss]yuufrL traùù vaq

{

pubric static voiii Mai;r(stringI args)

{

l/ i1 nous faut un objet pour lire le fichier
streamReaoer sr;
strins sF:leName = "";- "'"ô
ii continue à essayer de lire un noin de fichier jusqu'à ce qu'il en

// trcuve un (1a seule naaière de quitter pour I'utiiisateur est
I I d'arrêter 1e programne en appuyant sur Ctrl + C)

while {true)
t

f r\r-- J

i
I I Iit le non du fichier d'entrée
Console,Write("Entrez le nom d'un fichier texte à lire :");
sFileName = Console. Readline 0 ;

ll 1'utilisâteur n'a rien entré ; envoie une erreur
ll pour 1ui dire que ce n'esr pas satisfaisant
if (sFileName,Length == 0)

t

throw rLew IOException("Vous avez entré un non de fichier vide");
]

l/ ouvre un flux de fichier pour la lecture ; ne crée pas

// le fichier s'i1 n'existe pas déjà
FileStream fs = Fi1e.0pen (sFileName,

Fj.ieHode.0pen,
FileAccess . Read) ;

// convertit ceci en StreanReader - ce sont les trois premiers

// octets du fj-chier qui seront utilisés pour indiquer
i / 1'encodage utilisé (mais pas 1e langage)

sr = nev StreamReader(fs, true);

400 Ouatrième partie : La programmation orientée objet

,/ Le type d'accès : Un fichier peut être ouvert pour la lecture, l'écri-
ture ou les deux.

^1'sCHpondpardéfautàunoucleuxclesargumentsdemodeetd'accès.Toute-
t(9, fois, à mon humble avis, il vaut mieux spécifier explicitement ces argu-
Y ments, car ils ont un effet important sur le programme.

Dans la ligne suivante, le programme insère dans un objet Streaml^/riter,
sw, I'objet FileStream qu'il vient d'ouvrir. La classe Streamrudriter permet
d'insérer les objets FiieStream, afin de fournir un ensemble de méthodes
pour traiter du texte. Le premier argument du constructeur
Stream\,,/riter est I'objet FlleStrearn. Le deuxième spécifie le type
d'encodage à utiliser. L'encodage par défaut est UTF8.

rg9{Qa. Il n'est pas nécessaire de spécifier I'encodage pour lire un fichier.

S7^Hl\ Stream'riri:er inscrit le type d'encodage dans les trois premiers octets
=\Éf \ff / d, f ichier. A l'ouverture du fichier, ces trois octets sont lus pour déter-

(Ô" miner I'encodage.

Le programme f iie',^,'rlte commence alors à lire sous forme de chaînes
les lignes saisies sur la console. Le programme arrête de lire lorsque
I'utilisateur entre une ligne blanche, mais jusque-là il continue à absorber
tout ce qu'on lui donne pour le déverser dans I'objet StreamWriter sw en
utilisant la méthode iiriteLine ().

La similitude entre St ream\.,iriter . t.iriteLine () et Console .t^i riteLine ()

n'est pas qu'une coincidence.

Enfin, le fichier est fermé par I'instruction sw . C1o s e () .

Remarquez que le programme donne à la référence sw la valeur nu11 à Ia
fermeture du fichier. Un objet fichier est parfaitement inutile une fois que
celui-ci a été fermé. II est de bonne pratique de donner à la référence la
valeur nu11 une fois qu'elle est devenue invalide, afin de ne pas essayer
de l'utiliser à nouveau dans I'avenir.

Le bloc catch qui suit la fermeture du fichier est un peu comme un
gardien de but : il est là pour attraper toute erreur de fichier qui aurait pu
se produire en un endroit quelconque du programme. Ce bloc émet un
message d'erreur. contenant le nom du fichier qui en est responsable.
Mais il ne se contente pas d'indiquer simplement le nom du fichier : il
vous donne son chemin d'accès complet, en ajoutant à I'aide de la mé-
thode Path. combirre O le nom du répertoire courant avant le nom de

1t-c!!Qa^

^rv7çq
\

:/dqf,
)v,ô/

b'

39 8 Ouatrième partie : La programmation orientée ob jet

I I FileAccess.Write,
| | FileAccess.ReadWrite
FileStream fs = File.0pen (sFileName,

FileMode . CreateNew,

FileAccess.l.rlrite) ;

// génère un flux de fichier avec des caractères UTFS

sw = new StreamWriter (fs , System. Text , Encoding. UTIB) ;

I I lit une chalne à 1a fois, et envoie chacune au

// FileStrean ouvert pour écriture
Console.l'lriteLine("Entrez du texte ; ligne blanche pour arrêter");
while (true)
{

I I |it 1a ligne suivante sur la console ;

i/ quitte si 1a ligne est blanche
string slnput = Console,ReadLine0 ;

if (slnput.Length :: 0)

{

break;
l
ll êcrit sur le fichier de sortie la lisne oui .rient d'être lue
sw. l,friteLine (slnput) ;

l

I I ferne 1e fj-chier que nous avons créé
sl^r. C1ose 0 ;

sw = null;
i
catch(IOException fe)
i

I I une erreur s'est produite quelque part pendant

// 1e traitement du fichier indique à 1'utilisateur
// le nom eomnlet du fichier :

I t ^: ^..-^ ^'. -om drr rénprto.i rc Dar défaut| | dJUULC 4U rrvru uu !cyç! Lvr!c f
IT
/ / celui du fichier
strino cDi r = Di roctorv CotCrrrrpntDi rpntorv() :uvrJ \ / ,

string s = Path. Conbine (sDir, sFileName) ;

Console.l,/riteLine("Xrreur sur 1e fichier{01", s) ;

// affj.che naintenant 1e message d'erreur de 1'exception
Console . Writeline (fe . Message) ;

]

]

I I attend confirmation de 1'utilisateur
Console.l'lriteLine("Appuyez sur Entrée pour terminer. . . ") ;

Console.Read O ;

1
J

Fil-e\n'rite utilise I'espace de nom Systen.l(l ainsi que S','srerr. S-,,'stern.lO

contient les fonctions d'l/O sur les fichiers.

39 6 0uatrième partie : La programmation orientée ob jet

U0 asynchrones : est-ce que ça vaut la peine d'attendre

Normalement, un prCIgramme attend qu'une requête d'l/0 sur un fichier soit satisfaite avant
de poursuivre son exécution. Appelez une méthode read O, etvous ne récupérerez géné-
ralement pas le contrôle aussi longtemps que les données du fichier ne seront pas installées
à bord en sécurité. C'est ce que l'on appelle une l/0 synchrone.

Avec C#, les classes de System. r0 supportent également les f/0 asynchrones. En les
utilisant, l'appel à read () restitue immédiatement le contrôle pour permettre au programme
de poursuivre son exécution pendant que la requête d'l/0 est satisfaite à I'arrière-plan. Le
pr0gramme est libre de vérifier l'état d'un indicateur pour savoir s1 la requête d'l/0 a abouti.

C'est un peu comme de faire cuire un hamburger. Avec des l/0 synchrones vous mettez la viande
hachée à cuire sur la plaque chauffante, vous la surveillez jusqu'à ce qu'elle soit cuite, et c'est
seulement à partir de là que v0us pouvez vous mettre à couper les oignons qui vont aller dessus.

Avec des l/0 asynch rones, voLrs p0uvez couper les oignons pendant q ue la viande hachée est
en train de cuire. De temps en temps, vous jetez un coup d'æil pour voir si elle est cuite. Le

momentvenu, v0us abandonnez un instantvos oignons, etvous prenez la viande sur la plaque
chauffante pour la mettre sur le pain.

Les l/0 asynchrones peuvent améliorer significativement les perforrnances d'un programme,
mais elles ajoutent un niveaur supplémentaire de complexité.

Utilîser S t i:" e r-r ili,{r i t e r
[-es programmes génèrent cleux sortes de sortie. Cert;rins programrnes
écrivent cles tiiot:s tlc rlortnées clans un pur fornrat binaire. Ce type cle
sortie est trtile porrr stocker cles objets cl'urie nranière efficace.

Beattcoup cle pro{tar}}ines, sirron la plupart. liseni r:t écrivent des chalnes cle
texte, lisibles par ult É:tre lrurrrairr. Les classes cle flux Sr: eai:l,,rrirer et
StrcanP,e,:;,.r,1,-:r s()ut les plus souples cles classes arccueillantes pour I'homnte.

Les dounées lisiltie.s ;iar un être hurnain étaierrt antérieurement des
chalnes ASCII, ou, i.rrI peu plus tarc1, ÀNSL Ces deux sigles se réfèrent aux
organisati<lns cle stanciardisation tlrri ont rléfiiri c:es formats. Toutefois, le
codage ANSI lte pennet 1r;ts cl'inttigrer les alphabets venant de plu.s loin
que l'Autriclre à l't-st, et tie plir.s loin que [{arvai'à I'Or:e.st. Il ne peut conte-
nir que I'allrhabett latin. Il ne clispose pas de I'alphabet r:yrillique, hébreu,

?

rs9Ka^
Ae/'!-t\
:(dqfl

)\ô/

39 4 ouatrième partie : La programmation orienrée objer

Une méthode déclarée internal est accessible par toutes les classes
du même espace de nom. Aussi, I'appel class2. D internal O n'est
pas autorisé. L'appel cl ass3. c internal O est autorisé parce que
Ciass3 fait partie de I'espace de nom AccessControl.

Le mot-clé internai protected combine I'accès interr:a1 et
I'accès protected. Aussi, I'appel class L E-internalprotected o
est autorisé, parce que C1ass1 étend Class2 (c'est la partie
protected). L'appel cf ass3 . E_internalprotecreci () est égale-
ment autorisé, parce que C1ass1 et C1ass3 font partie du même
espace de nom (c'est la partie inrernal).

La déclaration de c1ass3 comme internal a pour effet de réduire
I'accès à celle-ci à 1nterna1, ou moins. Aussi, les méthodes pub11c
deviennent internal, alors que les méthodes protected deviennent
ir iernal DLofecleJ.

Ce programme donne la sortie suivante :

C1ass2.A-public
Class2.B_protected
C1ass1.C-private
C1ass3.D_internal
C1ass2 . E*internalprotected
C1ass3 . E_internalprotected
Appuyez sur Entrée pour terminer...

rsq- I Déclarez toujours les méthodes avec un accès aussi restreint que possi-

lX ble. Une méthode privée peut être modifiée à volonté sans inquiéter de

[f9, I'effet que cela pourrait avoir sur d'autres classes. Une classe ou une
Y méthode interne de Ma thRoutines est utilisé par d'autres classes de

nature mathématique. Si vous n'êtes pas convaincu de la sagesse du
couplage faible entre les classes, allez voir le Chapitre 1 1.

Rassenbler des données dans des
Les applications console de ce livre reçoivent essentiellement leurs entrées
de la console, et y envoient de même leur sortie. Les programmes des
autres sections que celle-ci ont mieux à faire (ou autre chose) que de vous
embêter avec des manipulations de fichiers. Je ne veux pas les obscurcir
avec la question supplémentaire des entrées/sorties 0/O).Toutefois, les
applications console qui n'effectuent pas d'opération d'entrée/sortie sur
des fichiers sont à peu près aussi courantes que les phoques dans la Seine.

t/

t/

t/

fichîers

392 guarrième parrie : La programmation orientée obiet

| | la môme classe
I I class2. C-private () ;

c1ass1.C-private0 ;

I I les méthodes internes ne sont accessibles que par

I I les classes du même espace de nont

I I c|ass2. D-internal () ;

c1ass3.D -internal 0 ;

I I ïes méthodes internes protégées sont accessibles

// soit par 1a hiérarchie d'héritage soit par

I I toute classe ciu même espace de nom

class I . E-internalprotected () ;

class3 . E-internalprotected () ;

// attend confirmation de 1'utilisateur
Console,WriteLine("Appuyez sur Entrée pour terminer. . , ") ;

Â 1/\uons0ie. Kea0 (,r ;

return 0;

l . /\
-r,hr-^ ,r^rd | --lvatel/yuurru vvfu w_y!

t

Console, !ûriteline ("Class 1, C-private") ;

l
j

// Classl - une classe interne est accessible aux autres

I I classes du même espace de nom, mais

I I pas aux classes externes qui utilisent cet

I I espace de non

internal class Class3

{

I I Ia déclarati-on d'une classe comme interne force toutes
I I les méthodes publiques à être également internes
nrrhlin vnid A nrrblic0
t

Console . l,Jriteline ("C1ass3 .A-pub1ic ") ;

]
nrntpntpd vnid B nrotectpdoy!vLçLLçu vvru rlv!çs\/

{

Console.hlriteline ("Class3 . B-protected") ;

]
internal voi.d D-internal o
t

Console . 1,,Iriteline (" Class3 . D*internal") ;

l
^,rhlin ,r^i,l E' inf arnr'lnrntontod o
yuurJL v vfu u_frr v LvL uee \ /

t

Console . |jritel,ine ("C1ass 3 . E-internalprotected") ;

]
j

39 0 Ouatrième partie : La programrnation orientée ohiet

Utilîser un eslîûçe de nom atlec le wot-clé usirrg

Se référcrr à rrnr: r"lasse p;lr son noni pleinentent qualifié plcut clevetiir utt
peufasticlieux. Lernot"cli.r::,:rg_cleC#vousperntetd'évitercepetlstltlt"
l.a c<>rnrnûncli' ,, ,-i ,,,;ijotrte I'espace rJe norn s1récifié à ture liste d'esl)aces
cle nclrn par tlirf;iut rlrre (.# <.:rlrrsrrlte p)()ur essayer cle réscx-rclre utt noltt cle

classe. L'exc.inple rle l)r()qr;unlne.suivarrt se corntrlile sitns une plzrintrt:

namespace Paint
{

public cl.ass PaintColcr
{

public PaintCol"or(int nRed, int nGreen, int nBLue) i]
public vcid Paint0 {l
publ"ic static vcid StaticPaint0 {l

]

i
namespac e llathP.out ines
{

I I ajoute ?aint alx espaces de nom dans lesquels on cherche

/ / automatiquement
using Paint;
public class Test
{

static public voj.d Main(stringll args)
t

I I crêe un cbjet dans urr autre espace de non - i1 n'est
ll pas nécessaire Ce faire figurer 1e nom de 1'espace de nom, car
// celui -ci est inclus dans une instruction "usins"
PaintColor bl-ack = new PaintColor(0, 0, 0);
b1ack. Pai.;.t () ;

PaintColor, StaricPaint 0 ;

]

l

La courrnancle ..,r i r. ,, rlit : ' Si volls ne trouvez pas ia c'lasse spécifiée dans
I'espace d€' rrorn courant. voyez si vous la trouvez (lans celui-ci." Vot.ls

pouvez spécifier arrtarrt tl'espaces cle norn que vous voulez, mais toutes
les cornrnanrlc-s ',r.r , - ; cloivent apparaltre I'une après I'autre tout à fait au

début clu pr()qraûllllÉ].

9i51 Tous les proqramme.s (:onrmencent par la crltumande iising SJ,.ten: , Elle

I(Bfl donne au proqr:i.lnrne rrn accès autotratique à trtutes les fonctions cle la

\SZl bibliothèque syst€illte, conllî€ ;,ir r i :',: r- t

-

388 0uatrième partie : La programmation orientée objet

Ti-ansiati onLibr.r
évite le problènre :

-f,...,, ,,i -il,
I GtLi .) L -I- r - l

:--. respectivernent à

FileIO. Ccn,rert ne
f--.- f r'.' .-:' i

ces deux ensembles de classes
peut pas être confondu avec

Déclarer un espace de nom

On déclare un espace de nom en utilisant le mot-clé nanÊ.-:pâce, suivi par
un nom et un bloc d'accolades ouvrante et fernrante. Les classes spéci-
fiées dans ce bloc font partie de I'espace de nom.

namespace MyStuff
{

class MyClass {i
class UrClass {J

l

Dans cet exemple, I

l'{ySruff.
etl I r ;,.,,s font partie de I'espace de nom

,,s$G t L'Assistant Application de Visual Stuclio place chaque classe qu'il crée dans

HuneSpaCeclenomportantlemêrnenOmquelerépertoirequ'ilcrée.Exami-
t\7, nez tous les programmes cle ce livre : ils ont tous étés créés à I'aide de
V I'Assistant Application. Par exemple, le programnle AliqnOutput a été créé

dans le dossier --t1!.ni;u-f lrL1*.. Le nom du fichier source est Class i . cs, qui
corresponcl au nom de la classe par défaut. Le nom de I'espace de nom dans
lequel se trouve Class l . t-:: est le même que celui du dossier:Ai,gnoLitpl-1...

Si vous ne spécifiez pas une désignation d'espace de nonr, C# place votre
classe dans I'espace de norn global. C'est I'espace de nom de base pour
tous les autres espaces de nom.

Accéder à des modules du même espace de nom

Le nom de l'espace de norn (l'rrne'classe est une partie du rtonl cle la
classe étendue. Voyez I'exemple suivant :

namespace MathRoutines

t

class Sort
{

public void SomeFunction0 {l

386 Ouatrième partie:La programmation orientée obiet

ne peut pas être modifié par deux programmeurs en même temps. Chacun
d'eux a besoin de son propre fichier source. Enfin, la compilation d'un
module de grande taille peut prendre beaucoup de temps (on peut toujours
aller prendre un café, mais il arrive un moment où votre patron devient
soupçonneux). Recompiler un tel module parce qu'une seule ligne d'une
seule classe a été modifiée devient intolérable.

Pour toutes ces raisons, un bon programmeur C# divise son programme
en plusieurs fichiers source .CS, qui sont compilés et générés ensemble
afin de former un seul exécutable.

Imaginez un système de réservation de billets d'avion : il y a I'interface avec les
agents de réservation que les clients appellent au téléphone, une autre inter-
face pour la personne qui est au comptoir d'enregistrement, la partie Internet,
sans parler de la partie quivérifie I'occupation des sièges dans I'avion, plus la
partie qui calcule le prix (y compris les taxes), et ainsi de suite. Un programme
comme celui-ci devient énorme bien avant d'être terminé.

Rassernbler toutes ces classes dans un même fichier source C1ass1 . cs
est remarquablement déraisonnable, pour les raisons suivantes :

t/ Un fichier source ne peut être modifié que par une seule personne à la
fois. Vous pouvez avoir vingt à trente programmeurs travaillant en
même temps sur un grand projet. Un seul fichier pour vingtquatre
programmeurs impliquerait que chacun d'eux ne pourrait travailler
qu'une heure par jour, à supposer qu'ils se relaient vingtquatre heures
sur vingtquatre. Sivous divisiez le programme en vingtquatre fichiers,
il serait possible, bien que difficile, que tous les programmeurs tra-
vaillent en même temps. Mais sivous divisez le programme de telle
manière que chaque classe a son propre fichier, I'orchestration du
travail de ces vingtquatre programmeurs devient beaucoup plus facile.

,/ Un fichier source unique peut devenir extrêmement difficile à
comprendre. Il est beaucoup plus aisé de saisir le contenu d'un
module comme ResAgertlnterface . cs, GateAgentlnterface . cs,
Resirgent.cs, GateAgent. cs, Fare. cs ou Aircraft. cs.

t/ La régénération complète d'un grand programme comme un sys-
tème de réservation de billets d'avion peut prendre beaucoup de
temps. Vous n'aurez certainement pas envie de régénérer toutes les
instructions qui composent le système simplement parce qu'un
programmeur a modifié une seule ligne. Avec un programme divisé
en plusieurs fichiers, Visual Studio peut régénérer uniquement le
fichier modifié, et rassembler ensuite tous les fichiers objet.

38 4 Ouatrième partie : La programmation orientée obiet

Le programme CustonException donne la sortie suivante :

Erreur fatale inconnue :

Le nessase est (Tmnossihle d'inverser 0). I'ohiet est (Value = 0)

CustomExc eption . MathClass

Exception envoyée parDouble Inverse0
Annrrrraz crrr Fntréo nnrtr tprminor

Jetons un coup d'æil à cette sortie : le message lifc,,.ir faia L.r i rc.or.-
nue : vient de l'{a: i-' i l. La chaÎne -,t nÊ's'ré- -.il'. (-in:ossi l-,-i-' r,l 'in
,,.erser 0,\, I'c,l iet esi <--) vient de ilu.-"t,-.11E:tcÊLrti.l. Le message
Value 0 vient cle I'objet l"1ai-irCiass lui-même. La dernière ligne, Excep
tion en.".ovée parDouble In'rerse, vient de C,-Lsl-r,'t:Fl,ce 'rti cn.

ToString{}, Ia carte de visite de la classe

Toutes les classes héritent d'une classe de base commune, judicieusement nommé 0b j ec t.
C'est au Chapitre l7 que j'explore cette propriété qui unifie les classes, mais il est utile de

mentionner icique Ob j ect contient une méthode, ToString (), qui convertit en string le

contenu de l'objet. L'idée est que chaque classe doit redéfinir la méthode ToSt ring O par

une méth0de lui permettant de s'afficher elle-même d'une façon pertinente. Dans le chapltre
précédent, j'ai utilisé la méthode GetStringO parce que je ne voulais pasy aborder les

questions d'héritage, mais le principe est le même. Par exemple, une méthode
Srudent.ToString O pourrait afficher le nom et le numéro d'identification de l'étudiant.

La plupart des foncti0ns, même les fonctions intégrées de la bibliothèque C#, utilisent la

méthode ToString O pour afficher des objets, Ainsi, le remplacement de ToString O a

pour effetsecondaire très utile que l'objetsera affiché dans son propre format, quelle que soit
la fonction qui se charge de I'affichage.

Comme dirait Bill Gates, "C'est cool."

382 Ouatrième partie:La programmation orientée objet

/ I le message standard Exception. ToString 0
override public string ToString0
t

string s = Message * "\n";
s *= base,ToStrine0;

]

// Inverse - retourne lix
public double Inverse0
I
t

if (nValue0fObiect :: 0)

{

throw new CustomException("Inpossible d'inverser 0", this) ;
'I

)

return i.0 / (double)nValue0fOb.iect;

]

l
public class C1ass1

{

public static void Main(string[] args)
{

try
t

I I prend f inverse de 0

MathClass math0bject = new MathClass("Va1eur", 0);
Console.Writeline("L'inverse de d.Value esti0J",

math0bject. Inverse 0) ;

1
]

catch (Exception e)

t

Console.Writeline("\nErreur fatale inconnue : \n{0}",
e.ToStrine0);

'I
J

// attend confirmation de 1'utilisateur
Console.tr{riteLine("Appuyez sur Entrée pour t€rminer., .") ;

Console.Read0;
l

]

l

Permettez-moi de faire une remarque : cette classe Cusl-onli:rcept-.on
n'est pas si remarquable que cela. Elle stocke un message et un objet, tout
comme }li'f-xcrepr j-.rn. Toutefois, au lieu de fournir de nouvelles méthodes
poqr accéder à ces clonnées, elle remplace la propriété lle s s a ge existante
qui retourne le message d'erreur contenu dans l'exception, et Ia méthode
To-String O qui retourne le message plus I'indication de pile.

380 ouatrième partie : La programmarion orienrée objer

Renvoyer le même objet exception présente un avantage et un inconvé-
nient. Cela permet aux fonctions interrnécliaires d'attraper des exceptions
pour libérer ou fermer des éléments alloués par elles, tout en permettant
à I'utilisateur final de I'objet exception de suivre I'indication de pile
jusqu'à Ia source de I'exception. Toutefois, une fonction intermédiaire ne
peut pas (ou ne doit pas) ajouter des informations supplémentaires à
I'exception en la modifiant avant de la renvover.

une d'evceptions
La classe d'exceptions suivante définie par I'utilisateur peut stocker cles
informations supplémentaires qui ne pourraient pas l'être dans un objet
Exc ept ion conventionnel :

I I Mytxception - ajoute à la classe standard Exception
I I une référence à MyClass
publi"c class Myfixception : Excepti.on
t

private MyClasss myobject;
MyException(string sMsg, MyClass mo) : base(sMsg)
r
I

nyobjec-u = moi

]

ll pernet aux classes extérieures d'accéder à une classe d'information
public My0lass My0bjectI get Ireturn myobject;))

]

Yoyez à nouveau ma bibliothèque de fonctions BrilliantLibrar;,. Çs5
fonctions savent comment remplir ces nouveaux membres de la classe
MyException et aller les chercher, fournissant ainsi uniquement les infor-
mations nécessaires pour remonter à la source de toute erreur connue et
de quelques autres restant à découvrir. L'inconvénient de cette approche
est que seules les fonctions de Ia bibliothèque BrilliantLibrar-.,r peuvent
recevoir un bénéfice quelconque des nouveaux membres de MyException.

Le remplacement des méthodes déjà présentes dans la classe Exception
peut donner des fonctions existantes autres que I'accès BrilllantLibrary
aux nouvelles données. Considérezlaclasse d'exceptions définie dans le
programme Cusr omExc ep tion suivant :

i / CustomException - crée une exception personnalisée qui
! I affiche 1es inforrnations que nous voulons, srais
I I dans un fornat plus agréable

classeRedéfinir

37 8 Ouatrième partie : La programmation orientée obiet

types d'exception définie pour la brillante bibliothèque de classe que je viens
d'écrire (c'est pour ça que je I'appelle Êr j liiantli l-,rar'.'). Les fonctions qui
composent Briillan+-Llbrarv envoient et attrapent des exceptions
l'{.,'Exc eption.

Toutefois, lesfonctionsdelabibliothèque:r--ll;:r:..r:.rar', peuventaussi
appeler des fonctions cle la bibliothèque générique S'.'s,r'.:r,. I-es prernière.s
peuvent ne pas savoir comment traiter les exceptions de la bibliothèque
Si.sten, en particulier si elles sont causées par une entrée erronée.

Si vous ne savez pas quoi faire avec une exception, laissez-la passer poLlr
qu'elle arrive à la fonction appelante. Mais soyez honnête avec vous-même :

ne laissez pas passer une exception parce (lue vous n'avez simplernent pas
le courage d'écrire le code de traitement cl'erreur correspondant.

Relancer un

Dans certains cas, une méthocle ne peut pas traiter entièrement une
erreur, mais ne veut pas laisser passer I'excepti<)n sans y mettre son grain
de sel. C'est comme une fonction mathématique qui appelle:a.i)rral ,)
pour s'apercevoir qu'elle renvoie une exception. Mênte si la cause pre-
mière du problème peut être une donnée incorrecte. la fonction rnathé-
matique est peut-être en mesure de fournir des indications supplémentai-
res sur ce qui s'est passé.

Un bloc catch peut digérer partiellement I'exception envoyée et ignorer le
reste. Ce n'est pas ce qu'il y a de plus beau, mais ça existe.

L'interception d'une exception d'erreur est une chose très courante pour
les méthodes qui allouent des éléments. Par exemple, imaginez une
méthode F O qui ouvre un fichier quand elle est invoquée, et le referme
quand elle se termine. Quelque part dans le cours de son exécution, F ()
invoque G O . Une exception envoyée de G (I passerait directement à
travers r () sans lui laisser la moindre chance cle fermer le fichier. Celui-ci
resterait donc ouvert jusqu'à ce que le programme lui-même se termine.
Une solution idéale serait que F r) contienne un bloc catch qui ferrne les
fichiers ouverts. Bien entendu, F O est libre de passer I'exception au
niveau supérieur après en avoir fait ce qu'il fallait pour ce qui la concerne.

Il y a deux manières de renvoyer une erreur. La première consiste à

envoyer une deuxième exception, avec les mêmes informations ou éven-
tuellement des informations supplémentaires :

ôf\q/\e,
objet

37 6 Ouatrième partie : La programmation orientée obiet

Console. Writeline (e. Message) ;

]

I I tZ ' - préparez-vous à attraper une exception MyException

^,,11.i^',^;,r f?/h^^1 bExceptionType)PUUIrL VVaU !' \wvv

{
t rrt

i
f? thFvnant; ^.Type) irJ \vu.r!vyL4vrrr

]
catch (MvExceotion me)

{

Console.liriteline("Exception MyException attrapée dans f20") ;

Console . Writeline (me. Message) ;

l
l

I I tl - - n'essayez pas d'attraper des exceptions
publ1c vold tJ(00o1 D.Lxceptlontype/

t
f4 (bExcepti.onType) ;

]

I I t+ - - envoie des exceptions d'un type ou d'un autre
public void f4(boo1 bExceptionType)

{

I I nous travaillons avec un objet 1oca1

MyClass mc = new MyClass0;
if (bExceptionType)

{

ll une erreur se produit - I'objet est envoyé avec 1'exception
throw nev MyException("MyException envoyée dans f40",

rac);

l
throw new Exception ("Exception générique envoyée dans f4 () ") ;

]

public static void Main(string[] args)

{

// envoie d'abord une exception générique

Console.Writeline("Envoie d'abord une exception génériQue") ;

nev C1ass1 () . f1 (fa1se) ;

I I envoie maintenant une de nes exceptions
Console.l,IriteLine ("\nEnvoie d'abord une exception spécifique") :

new Class1 () . f1 (true) ;

// attend confirmation de 1'utilisateur
Console.i,iriteLj.ne("Hit Appuyez str Entrée pour terminer. . ' ") ;

374 Ouatrième partie : La programmation orientée objet

l

Af\=(t

catch (Exception e)

{

I I les âutres exceptions non encore attrapées sont attrapées ici
l

]

Si SorneOr-herFunctlon |) envoyait un objet Exception, celui-ci ne serait
pas attrapé par I'instruction catch (MyExceprion) car une Exception
n'est pas de type l"1''rException. Il serait attrapé par I'instruction catch
suivante : caT-ch (Exception).

Toute classe qui hérite de MyExceprion EST_uNE tqyException:

class MySpecialException : MyBxception
{

I I instructions quelconques . ..
]

Si elle en a la possibilité, I'instruction catch lul.,,Exception attrapera tout
objet I'lyS p e c i alExc epr i on envoyé.

Faites toujours se succéder les instructions catch de la plus spécifique à
Ia plus générale. Ne placez jamais en premier I'instruction catch Ia plus
générale :

public void SomeFunction0
t

try
{

SomeOtherFunction{);
l
catch (Exception me)

t

// tous 1es objets MyExcepti.on sont attrapés ici
l
catch(MyException e)

{

I I auctne exception ne parvient jamais jusqu'ici paree qu'e1le
I I est attrapée par unê instruction catch plus générare

l
]

Dans cet exemple, I'instruction catch la plus générale coupe I'herbe sous
le pied de Ia suivante en interceptant tous les envois.

37 2 Ouatrième partie : La programmation orientée obiet

Cette classe C,l-*:rnEx.-ept,irrir est faite sur mesure pour signaler une erreur

au logiciel qui traite avec la tristement célèbre i"l.,.C i as s. Cette sous-classe

d'Exceprion met de côté la même châlne que l'original, mais dispose en

plus cle la possibilité cle stocker dans l'exception la référence au fautif.

L'exemple suivant attrape la classe (lrs*:rr:l,li!t'-,i'' 1, et nlet en utilisation

ses informations sur I'l', illass ;

public class Classl
i

publi.c void SomeFunctiono

t
try
{

I I opérations préa1ab1es à 1a fonction exemple

SomeOtherFunction () ;

I I autres oPérations.

l
catch (MyExcePtion me)

{

// vous avez toujours accès aux néthodes d'Exception

strj.ng s = me.ToString0;
I I nais vous âvez aussi accès à toutes 1es propriétés et nTéthodes

// de votre pr0pre classe d'exceptions
MyClass mo = me.MYCustom0bject;

I I par eremple, denandez à 1'objet MyClass de s'affi-cher lui-môme

string s = mo'GetDescriPtionO;
]

l
public void Sone0therFunction()

{

I I créatian de mYobject

MyClass myobject = ner^r MyClass0;

I I signale une erreur concernant myobject

throw nev MyBxception("Erreur dans 1'objet de MyClass", myobject);

I I . reste de la fonction
l

l

Dans ce fragment de code, SoineFunction r) invoque Sc,neCthelFuncli tlll () de

I'intérieur d'un bloc rr-v. SorneOtherFunction O crée et utilise un objet

rnyobi ect. Quelqu" puit clans Sr-rneOthe r-Funct ron () , une fonction de vérifica-

tion d'erreur se prépare à envoyer une exception pour signaler qu'une condi-

tion d'erreur vient de se produire. Plutôt que de créer une simple Exi-e'i:i01,

SomeF unction (,r se sert de la toute nouvelle classe l'l'u.E:;cepti:'tr, pour en-

voyer non seulement un message cl'erreur, mais aussi I'objet 11'\rrb -i
ec t fautif .

37 0 Ouatrième partie : La programmation orientée objet

1t$\a. Cotnme l'Iairi ir est le point cle clépart clu programme, il est bon de toujours

S/^Ç1 \ en placer le contetru clans un bloc t r ,-. Toute exception qui ne sera pas
=(!É,\7 f "attrapée" ailleurs renrontera finalernent jr-rsqu'à I'lain (r . C'est clonc votreY'Ô/ dernière opportunité cle récupérer Llne erreur avant qu'elle aboutisse à

Windows, dont le rnessage d'erreur sera beaucoup plus difficile à interpréter.

Le bloc catch situé à la fin cle Iii:1r i I attrape I'objet E:,cip*r.ic,n et utilise sa
méthode Jr-.!r-:riçr i', pollr afficher sou.s fonne d'une simple chalne la rnajeure
partie des inforrnatiotts sur I'erreur contenues dans I'obiet exi: eDlir,r.

.($-_.-

æLapropriétéE>lile.1l1-t-.l..'l],':]:,.:1;l.retOurnleunSouS-enSemblepluslisible,f J-^t .Ilorf mais moins descriptif cles informations sur I'erreur.
Y

Cette version de la fonction i'ri:r-i-,r j a i i' contient la même vérification pour
un argument négatif que la précédente. Si I'argument est négatif, Fac i-orf a L o
met en forme un message d'erreur qui clécrit le problème, incluant la valeur
incriminée. Facr:cr'1ai l.,r regroupe ensuite ces informations dans un objet
Exception nouvellement créé, qu'elle envoie à la fonction appelante.

La sortie de ce programme apparalt comme suit ('ai un peu arrangé les
messages d'erreur pour les rendre plus lisibles) :

i = 6, factorielle : 720

i = 5, factorielle = 120

1 = 4. factorieTTe = 24

i = 3, factorielle = 6

i = 2, factorielle = 2

i = 1, factorielle : 1

i * 0, factorielle = 0

Erreur fatale :

System.Exception: Argument négatif illicite passé à Factorial -1
at Factorial (Int32 nValue) in c: \cifprograrn\Factorial\classl . cs;1ine 23

ât FactorialException.Classl.Main(String [] args) in c: \c/fprogram\Factorial\
class1 . cs : line 52

Appuyez sur Entrée pour terminer...

Les premières lignes affichent les véritables factorielles des nombres 6 à
0. La factorielle de -1 génère un message commençant par ErT. eur f a-
ta1e, ce qui est susceptible d'attirer I'attention de I'utilisateur.

La première ligne du message d'erreur a été mise en forme dans la fonc-
tion Factcrial O elle-meme. Cette ligne décrit la nature du problème, en
indiquant la valeur incriminée -1.

368 Ouatrième partie:La programmation orientée objet

throv nev Exception("Description de 1'erreur") ;

I I suite de 1a fonction

]

La fonction SoneFunction O contient un bloc de code identifié par le mot-
clé try. Toute fonction appelée dans ce bloc, ou toute fonction qui I'ap-
pelle, est considérée comme faisant partie du bloc try.

Un bloc Lr.,r est immédiatement suivi par le mot-clé catcl-r, lequel est suivi
par un bloc auquel le contrôle est passé si une erreur se produit en un
endroit quelconque dans le bloc try. L'argument passé au bloc catch est
un objet de la classe Exception ou d'une sous-classe de celle-ci.

À un endroit quelconque dans les profoncleurs cle SomeOtherFunction O,
une erreur se produit. Toujours prête, la fonction signale une erreur à
I'exécution en envoyant (throv;) un objet Frception âu premier bloc pour
que celui-ci I'attrape (catch).

Puis-je atuir un exemple .)
Le programme FactorlalException suivant met en évidence les élé-
ments clés du mécanisme des exceptions :

// FactorialException - crée une fonction factorielle qui
I I indique à FactorialQ 1es arguaents illicites
I t en utilisant un objet Exception
using System;

namespace FactorialException
t

i / MyMathfunctions - collection de fonctions mathématiques

ll de ma création (pas encore grand-chose à montrer)
public class l'lyMathFunctions

i
// lactorial - retourne la factorielle d'une valeur
I I fournie
public static double Factorial(int nValue)

t

i/ interdit les nombres négatifs
if (nValue (0)

{

// signale un argunent négatif
string s = String.Forrnat(

"Argument négatif illicite passé à Factorial {0J",

_-"-ffi
@

366 0uatrième partie: La programmation orientée obiet

d'erreur que la fonction appelante ne teste pas. Bien str, en tant que program-

meur en chef, je peux me laisser aller à proférer des menaces. Je me souviens
d'avoir lu toutes sortes de liwes de programmation regorgeant de menaces de

bannissement du syndicat des programmeurs pour ceux qui ne s'occupent pas

des codes d'erreur, mais tout bon programmeur FORTRAN sait bien qu'un

Iangage ne peut obliger personne à vérifier quoi que ce soit, et que, très
souvent, ces vérifications ne sont pas faites.

Souvent, même si je vérifie I'indication d'erreur retournée par Fa: r .r i '.I r

ou par toute autre fonction, la fonction appelante ne peut rien faire d'autre
que de signaler I'erreur. Le problème est que la fonction appelante est

obligée de tester toutes les erreurs possibles retournées par toutes les

fonctions qu'elle appelle. Bien vite, le code commence à avoir cette allure là :

I I appelTe SomeFunction, 1it 1'erreur retournée, 1a traite
// et retourne
errRtn = someFuncO;

if (errRtn == SE*ERR0R1)

{

Console.1,Iriteline("Erreur de type 1 sur appel à someFunc0");
return MY_ERROR_1;

l
if (errRtn == SF-ERROR2)

{

Console.l'IriteLine("Erreur de type 2 sur appel à someFunc0");

return My_ERROR,2;

l
I I appelle SomeOtherFunetions, 1it 1'erreur, retourne, et ainsi de suite
errRtn : some0therFunc0 ;

if (errRtn == S0F*ERRORI)

{

Console.l,lriteLine("Erreur de type I sur appel à someFunc0");

return MY*ERROR-3;

l
if (errRtn == SOF-ERROR2)

{

Console.liriteline("Erreur de type I sur appel à someFunc0");

return MY_ERROR_4;

)

Ce mécanisme présente plusieurs inconvénients :

t/ Il est très répétitif.

t/ Il oblige le programmeur à inventer de nombreuses indications
d'erreur et à en maltriser I'emploi.

36 4 Ouatrième partie : La programmation orientée obiet

(dFactorial =: l4vMathl'unctions . NON*INTEGER*VALUE)
\eL ev evÀ +É+ --J

Console. I^Iriteline
("Factorial0 a reçu un nonbre non entier");

break;
]

I I af.f.iche le résultat à chaque passage

Console.I^IriteLine("i = {0}, factorielle = {1}",
i, MyMathFunctions.Factorial(i)) ;

1
J

// attend confirnation de 1'utilisateur
Console.l^lriteLine("Appuyez sur Entrée pour terniner.. . ") ;

Console.Read{);

j

Faciorial O comnence maintenant par effectuer une série de tests. Le

premier regarde si la valeur passêe est négative (0 est accepté parce qu'il

donne un résultat raisonnatlle). Si oui, la fonction retourne immédiatement une

indication d'erreur. Si non, la valeur de I'argument est comparée à sa version

entière : si elles sont égales, c'est que la partie ciécimale de I'argument est nulle.

t:{ain () teste le résultat retourné par Faci-cri al 0 , à la recherche de I'indica-

tion éventuelle d'une erreur. Toutefois, des valeurs Comme -1 et-2 n'ont
guère de significat,ion pour un programmeur qui effectue la maintenance de

son code ou qui I'utilise. Pour rendre un peu pius parlante I'erreur retournée,

la classe t4yMarhFirncl, ions cléfinit deux constantes entières. La constante

NEGATIVE_|JUi'{BER reçoit la valeur -1, et NOI'I IhITEGER VALUE reçoit la valeur
-2. Cela ne change rien, mais I'utilisation des constantes rend le programme

beaucoup plus lisible, en particulier la fonction appelante Maln O.

Dans la convention sur les noms Southern Naming Convention, les noms des

constantes sont entièrement en majuscules, les mots étant séparés par un tiret
de soulignement. Certains programmeurs, plus libéraux, refusent de faire

allégeance, mais Ce n'est pas la Convention qui a des chances de changer.

Les constantes cclntenant les valeurs d'erreur sont accessibles par la

classe, Comme dans l"l;,:l"1rlhCl as s .IIEGATIVE i'lUl'iBER. Une variable de

type cons*, €st automatiquement statique, ce qui en fait une propriété de

classe partagée par tous les objets'

La fonction Facr i r- j a t () signale nraintenant qu'une valeur négative lui a

été passée conlnle argument. Elle le signale à Main O Qui se termine alors

en affichant un message d'erreur beaucoup plus intelligible :

if
t

U

362 Ouatrième partie:La programmation orientée objet

négatif. Ensuite, remarquez que les valeurs
la même manière que les valeurs positives.
chose qui cloche.

négatives ne crclissent pas de
Manifestement, il y a quelque

Les résultats incorrects retournés ici sont assez subtils par rapport à ce qui
aurait pu se produire. Si la boucle de Factc,r'iai O avait été écrite sous la
forme do i . . . I whiie (dValue l: 0), le programme se serait planté en
passant un nombre négatif. Bien str, je n'aurais jamais écrit une condition
comme,"hile (dValue !: 0), car les erreurs dues à I'approximation
auraient pu faire échouer de toute façon la comparaison avec zéro.

Retourner une îndication d'erreur

Bien qu'elle soit assez simple, il rnanque à la fonction Fa - - r,a - '. une impor-
tante vérification d'erreur : la factorielle d'un nombre négatif n'est pas définie,
pas plus que la factorielle d'un nombre non entier. La fonction Facl-c:' :il i)
doit donc comporter un test pour vérifier que ces conditions sont rernplies.

Mais que fera la fonction Factorial O avec une condition d'erreur si la
chose se produit ? Elle connaltra I'existence du problème, mais sans
savoir comment il s'est produit. Le mieux que r'ar:roria,1 ,I puisse faire
est de signaler les erreurs à la fonction qui I'appelle (peut-être celle-ci
sait-elle d'où vient le problème).

La manière classique d'indiquer une erreur dans une fonction consiste à
retourner une certaine valeur que la fonction ne peut pas autrement retour-
ner. Par exemple, la valeur d'une factorielle ne peut pas être négative. La
fonction Factorial O peut donc retourner -1 si un nombre négatif lui est
passé, -2 pour un nombre non entier, et ainsi de suite. La fonction appelante
peut alors examiner la valeur retournée : si cette valeur est négative, elle sait
qu'une erreur s'est produite, et la valeur exacte indique la nature de I'erreur.

Le programme FactorialErrorReturn suivant contient les ajustements
nécessaires :

// FactorialErrorReturn - crée une fonction factorielle qui
I I retourne une indication d'erreur ouand

I I quelque chose ne va pas
.. ^.: * ^ C.,^+ ^- ,uùf]rË Jy b Lsnl,

nalnespace FactorialErrorReturn
{

li Myl"lathFunctions - collection de fonctions mathérnatiques
I I de ma création (pas encore grand-chose à uiontrer)

^"ffi
=(dg,

36 0 Ouatrième partie : La programmation orientée ob jet

Traiter une erreur à l'ancienne mode : la retourner
Ne pas signaler une erreur à I'exécution n'est jamais une bonne idée. Je
dis bien jamais.' si vous n'avez pas I'intention de déboguer vos program-
mes et si vous ne vous souciez pas qu'ils marchent, alors seulement c'est
peut-être une bclnne idée.

Le programnle !'ar:'-or i alErrcr suivant montre ce qui arrive quand les
erreurs ne sont pas clétectées. Ce programme calcule et affiche la fonction
factorielle pour de nombreuses valeurs, dont certaines sont tout juste licites.

La factorielle du rtornbre N est égale à N * (N-1) . (N-2) 1. Par
exemple, la factorielle cle 4 est 4* 3n 2* l, soit 24.La fonction factorielle
n'est valide que pour les nombres entiers naturels (positifs).

I I Factorial}JithError - créer et utiliser une fonction
I I factorielle qui ne contj.ent aucune

I I vérification
using System;

nânespace FactorialWithError
t

// Uyttathfunctions - collection de fonctions nathématiques
I I de ma création {pas encore grand-chose à montrer)
public class MyMathFunctions
t

i/ Factorial - retourne 1a faetorielle
I I fournie
public static double Factorial(double
t

/l conrnence par donner 1a valeur 1 à

double dFactorial = 1.0:
I I f.ait une boucle à partir de nValue en descendant de 1 chaque fois
I I norr mrrl ti nlier 1 'accumulateur
I I par 1a valeur obtenue

do

t

dFactorial *= dValue;
dValue -= 1.0;

J while(dValue) 1);
// retourne la valeur stockée dans 1'accumulateur
return dFactorial;

l
]

^rrhli^ ^t^dd t t^ddI
PUUr.r-U \-r-d.t'U rwr-d.55.1.

{

public static void MainistringIJ args)

d'une valeur

0varuel

un ttâccumulateurtt

4t6 Cinquième partie : Programmer pour Windows avec Visual Studio

components.Dispose () ;

J

l
haee Di(b^<â(,lian^ain.).--- \ urDyvùrrrÈi ,/

'

l
liregion Windovs Form Designer generated code

lll kunnary)
/// Required method for Designer support - do not nodify
I I I rhe contents of thi.s method r+ith the code editor.
lll llsunnary)
private void InitializeComponent0
{

// Formt

anr..OurorcaleBasesize + ne!, Systern.Drawing.Size(5, 13) ;

this. ClientSize = new Systen. Drawing. Size (292 , 273) :

this.Nane = t'Fornl";

this.Text = "Sinple Ïditor";
l
/lendregion
/// (summary)

I I I ftte main entry point for the application.
lll (lsunnary)

I stlthread]

static void Main0
r

Annl i eeti on . Rrrn (new Forml ()) ;

^tËK
'(dE,)

]

Je sais que le programme doit commencer par static Main O, qui se trouve
ici tout en bas du listing. Voilà ce qui nourrit ma conviction que c'est ici qu'il
faut commencer. La seule instruction que contient Main O crée un objet
Fornl O et le passe à une méthode Application.Run O. Je ne suis pas str
de ce que fait Run O, mais je soupçonne fortement que la classe Forml
correspond à la fenêtre Forml que j'ai vue dans le Concepteur.

En fait, Application. Run O lance I'objet Form sur son propre thread
d'exécution. Le thread initial s'arrête aussitôt que le nouveau Forml est
créé. Le thread Forml se poursuit jusqu'à ce qu'il soit intentionnellement
arrêté. Le programme SimpleEditor lui-même poursuit son exécution
aussi longtemps que des threads définis par I'utilisateur sont actifs.

Le constructeur de Forml invoque une méthode Initiali zeComçonent ().
Tout code d'initialisation du programmeur doit être placé après cet appel
(tout au moins, c'est ce que dit le commentaire).

Ghapitre 20

Les dix plus importantes
diff érences entre C#et G++

Dans ce chapitre :

Pas de données ni de fonctions globales.

Tous les objets sont alloués à partir du tas.

Les variables de type pointeur ne sont pas autorisées.

Vendez-moi quelques-unes de vos propriétés.

Je n'inclurai plus jamais un fichier.

Ne construisez pas, initialisez.

Définis soigneusement tes types de variable, mon enfant.

Pas d'héritage multiple.

Prévoir une bonne interface.

Le système des types unifiés.

e langage C# est assez largement basé sur C++. Cela n'a rien d'étonnant,
puisque Microsoft avait déjà fait Visual C++, qui a été le langage de

programmation le plus répandu pour I'environnement Windows. Tous les
meilleurs accros de la programmation s'en servaient. Mais ça fait déjà quel-
que temps que C++ âvoue son âge.

C# n'est pas une couche de peinture sur une carcasse rouillée. Il comporte
de nombreuses améliorations, à la fois par I'ajout de nouvelles fonctionnali-
tés et par le remplacement de fonctionnalités déjà satisfaisantes par de
meilleures. Voici les dix meilleures améliorations de C# par rapport à C++.

4 | 4 Ginquième partie : Programmer pour Windows avec Visual Studio

-ËK
=($9,

Un formulaire est une fenêtre contenant une barre de titre, et
optionnellement des barres de défilement. Dans la terminologie de
C#, une fenêtre n'est rien d'autre qu'un cadre rectangulaire dans
lequel vous pouvez placer des images ou du texte. Une fenêtre n'a
pas nécessairement des menus ou des étiquettes, ni même ces
petits boutons Fermer, Réduire et Restaurer.

4. Générez le programme que Windows vient de créer sur la base
du modèle.

Vous pouvez me traiter de paranoiaque, mais je veux être certain
que toutes les erreurs qui pourront apparaltre par la suite seront
réellement de mon fait et ne viendront pas de Visual Studio. Sans

aucun doute, la solution va se générer sans encombre à ce stade.
L'exécution de ce programme ne révèle rien d'autre qu'un formu-
laire vierge, doté de l'étiquette Forml. Il suffit de cliquer sur le
bouton Fermer pour arrêter le programme.

Le volet qui occupe la partie droite de I'affichage est la fenêtre
Propriétés. Ça ne saute peut-être pas aux yeux, mais son contenu
est en relation directe avec le formulaire qui est dans la partie
gauche de I'affichage. Par exemple, vous pouvez voir que la pro-
priété Text est Form1. Vous pouvez la modifier pour vous rendre
compte de I'effet produit.

5. Sélectionnez la propriété Text, et donnez-lui la valeur Simple Editor.

L'étiquette Forml contenue dans la barre de titre du formulaire
devient Simple Editor.

6. Générez à nouveau I'application, et exécutez-la.

Le nom du formulaire a changé, comme le montre la Figure 17.3.

W

-

Figure 17.3 :

Changer la

propriété
1'-^xt 0U

formulaire
change le

nom qui

a ppa raît
dans sa

barre de titre.

-

Chapitre 19:Les dix erreurs de génération les plus courantes...

t/ Votre chien a mangé votre manuscrit. Plus simplement, vous avez
oublié cette méthode ou vous n'en connaissiez pas I'existence.
Soyez plus attentif la prochaine fois.

t/ Vous avez fait une faute de frappe dans le nom de la méthode ou
vous lui avez passé de mauvais arguments.

Examinez I'exemple suivant :

Interface Me

{

void aFunction (f1oat) ;

l
public class MyClass : l'Ie

t

public void aFunction{double d)

{

]

l

La classe l"lyC1ass n'implémente pas la fonction aliunction (f loat r de
I'interface. La fonction aFunction (double) ne compte pas, parce que les
arguments ne correspondent pas.

Sur le métier remettez votre ouvrage, et passez en revue chacune de vos
méthodes jusqu'à ce que toutes les méthodes de I'interface soient correc-
tement implémentées.

Ne pas implémenter complètement une interface est essentiellement la
même chose que d'essayer de créer une classe concrète à partir cl'une
classe abstraite sans redéfinir toutes les méthodes abstraites.

47t

1e$\a"
^v7çq \
=(&"*.

'methodNatne' : tous les chemîns de code ne
retournent pas nécessairement une hleur

Par ce message. C# vous dit que votre méthode a été déclarée non-void et
que un ou plusieurs chemins d'exécution ne retournent rien. Cela peut se
produire de I'une des deux manières suivantes :

t/ Vous avez une instruction if avec un return sans valeur spécifiée.

t/ Plus vraisemblablement, vous avez calculé une valeur et vous ne
I'avez jamais retournée.

4 | 2 Cinquième partie : Programmer pour Windows avec Visual Studio

-

Figure 17.1 :

Ma solution
du problème
SimpleEdi:or.

-

Le menu Édition a besoin des trois grandes options d'édition : Couper,
Copier et Coller. D'autre part, tous les éditeurs comprennent les raccour-
cis clavier de ces trois options : Ctrl+X, Ctrl*C, et Ctrl+V, respectivement.

SimpleEditor aura également besoin d'un menu Format, comportant les

options Gras et Italique pour mettre en forme le texte.

Fournir une aide véritable est une tâche difficile - beaucoup trop compliquée
pour un éditeur simple comme SimpleEditor. Le menu d'aide de cette
application devra se contenter du minimum absolu : I'option À propos de.

Dernière exigence : il nous faut un moyen de contrôler la taille de police.
Voilà une chose qui laisse la place à un peu de fantaisie. En plus d'une
simple fenêtre dans laquelle I'utilisateur peut entrer la taille de police
souhaitée, SlmpleEditor y ajoutera une sorte de barre munie d'un index
que I'on peut faire glisser, que nous appellerons TrackBar. Pour obtenir 8

points, faites glisser I'index à I'extrémité gauche. Faites-le glisser à I'extré-
mité droite, et vous obtenez 24 points. (J'ai une autre raison de procéder
ainsi : je veux vous montrer comment relier deux objets d'l/O de manière
qu'un changement clans I'un soit répercuté dans I'autre.)

Ila solutîon
Avec les paramètres que j'ai décrits dans la section précédente, je suis
arrivé à la solution montrée par la Figure 17.1. Vos propres résultats
peuvent être différents selon vos gotts personnels.

wf#ij
Fichier EditEn FDrmêt ?

Talle,3e police {Ï*
,d-l- 24

)

Dessîner la solution
Comme vous pouvez I'imaginer,
pour arriver en partant de zéro

j'ai dû passer par de nombreuses étapes
à l'æuvre d'art montrée par la Figure 17.1.

Ghapitre l9:Les dix erreurs de génération les plus courantes... 469

cloche entre Visual Studio et le répertoire du programme. Fermez la
solution, quittez Visual Studio, redémarrez, puis ouvrez à nouveau la
solution. Si ça ne marche pas, je suis sincèrement désolé.

Le mot-clé neut est re(uîs sur 'subclassName.
nethodNaffil| car il masque le membre hûrîte
' b as e c I as s N am e. m eth o dN atn e'

Avec ce message, C# vous dit que vous avez surchargé une méthode dans
une classe de base sans la redéfinir par une méthode qui la cache (voyez le
Chapitre 13 pour en savoir plus à ce sujet). Regardez I'exemple suivant :

public class BaseClass

{
public void Functiono
t

l
l
nublic class Sub0lass: BaseClass

{

public void Functiono
{

l
l
public class MyClass

{
public void Test0
t

SubClass sb = new SubClass 0 ;

sb.Function0;
]

'l
J

La fonction Test O ne peut pas accéder à la méthode BaseClass . Function o
à partir de I'objet sb d'une sous<lasse, car elle est redéfinie par SubClass.
I'unction O. Vous aiez I'intention de faire I'une des choses suivantes :

t/ Vous vouliez redéfinir la méthode de la classe de base. Dans ce cas,
ajoutez le mot-clé new dans la définition de SubCias s, comme dans
I'exemple suivant :

public class Sub0lass : BaseClass

{

4l 0 Cinquième partie : Programmer pour Windows avec Visual Studio

Quel est le problème .)

Il rn'a fallu une longue et clifficile réflexion (au rnoins un quart cl'heure)
pour imaginer un problème qui mette en lumière la puissance de C# sans
me faire prendre du poids. Le voici : créer un écliteur simple que nous
appellerons Sinp-eEd ir ,r. Il aura les caractéristiques suivantes:

t/ L'utilisateur peut entrer et effacer du texte (sinon. ce ne serait pas
vraiment un éditeur).

t/ L'utilisateur peut couper et coller du
SlnnLeEciit-c,r, mais aussi entre 5.trr
tior-rs, par exemple Word.

non .serulenrent dans
ri,r t:t d'autres applica-

texte,
I r- lrLl a

t/ Sinir,eEclit-c-r supporte les polices en gra.s, en italiqlle ou les deux.

,/ L'utili.sateur peut sélectionner une taille cle police cle 8 à 24 points.
Ces limites sont arbitraires, mais il s'agit ici de ne pas aller trop loin
en nombre de points.

,/ SimpleEr.litcr ne doit pas vous permettre de quitter sans vous
avoir demanclé poliment d'enregistrer le fichier que vous venez de
moclifier (mais vous restez libre cle quitter san.s enregistrer si c'est
bien ce que vous voulez).

Exposer le problème

Chaque fois que vous êtes devant un problème à résoudre, vous devez
commencer par vous mettre devant le tableau noir et réfléchir sérieuse-
ment aux obstacles à franchir. Dans le cas cl'une apltlication Windows,
cette tâche se divise en trois étapes :

l. Décrivez le problème en détail.

Ces détails sont les spécifications auxcluelles cloit se conformer
I'application. Au cours de Ia programmation, vous pourrez être
tenté d'ajouter une fonctionnalité ici ou là. Résistez. Cette maladie
s'appelle fonctionnalite. Tout en avançant, notezles améliorations
possibles pour une version future, rnais I'ajout de fonctionnalités en
cours de route fait courir le risque de créer Llne application qui finit
par être tout à fait autre chose que ce qu'elle était censée être au
départ.

Chapitre 19: Les dix erreurs de génération les plus courantes... t+67

Par défaut, un membre d'une classe est';l'l-,,.ate, et une classe est internal.
Aussi, nPrivateMember est toujours privé dans I'exemple suivant :

class MyClass

t
public void SomeFunction0
t

YourClass uc = netr YourClassu;
I I ceci ne fonctionne pas correcremenr parce que MyClass

I I ne peut pas accéder au nernbre privé
uc,nPrivateMember = 1:

l
]
public class YourClass

{

int nPrivateMenber : 0; // ce membre est toujours privé
l

En outre, même si SoineF,lr:.-ti.-iril est cléclarée pribirc, on ne peut pas y
accéder à partir d'une classe d'un autre module, car i'1','Ciass elle-mêrne
est interne.

La morale de I'histotre est la suivante : "Spécifiez toujours le niveau de
protection de vos classes et de leurs membres." Et nous avons un lemme
qui dit : "Ne déclarez pas de membres publics dans une classe qui elle-
même est interne. Ça n'apporte que de la confusion."

Utilisatîon d'une t/ariable locale non assîgnée 'n'
Comme il le dit si clairement, ce message indique que vous avez déclaré
une variable mais que vous ne lui avez pas donné de valeur initiale. C'est en
général un simple oubli, mais ça peut aussi se produire lorsque vous voulez
vraiment passer une variable comme argument our à une fonction :

public class MyClass

t

nrrhlic rrn'i d SomrrE'rrnntinn(lyqurru Y vÀv uwuç! qrr! L*vrr \ /

{

Irt L tl t

I I ceci fonctionne parce que C# ne retourne une valeur que dans n

// i1 ne pâsse pas une valeur dans la fonction
Some0therFunction (out n) ;

l
public void Some0therFunction(out int n)

t

l)ams *ette {raytie o.
^

onrllrerrrlle ('# r:si:-rrre clrose, apllrettclrtt ai tir:tire une
allplicatirlrr \t'iIirirx'1,':i r:orrtillètr: a.,/ec lotrs ses assentblages

et ses déc<;r;r.lion$ l.rilrr eri irlirt'o en e.st tute atttre. I{iert que l)our
le plai.sir. lir rirrrjr iir''iirt par.tie 1"sr-r$ qtricle pras à p;rs datts I'utilisa-
tion cle C# a'u'cr I'irrTi'riar:r: \'isiuil Stuclio ;rfin cle cr(:er rrne;lpplica-
tion Wincknvs rtili rrr.: soit tr:;rs Triviale". Vous serez fier cir r rd':sultat.

même si vr,ls ç:nfani.s rr';r,uilellent pas leurs copr;lirts pour le voir.

Chapitre 19:Les dix erreurs de génération les plus courantes... 465

I I ceci fonctionne très bien
float fResult = 2 * f;
return fResult;

]

La constante 2 est cle type in*-. Un int multiplié par un f -:ar clonne un
f 1oat, qui peut être stocké dans la variable fResu;t-, de type f l,,r:rf .

Le message d'erreur de conversion implicite peut aussi apparaltre lorsque
vous effectuez des opérations sur des types "rlon naturels". Par exernple,
vous ne pouvez pas additionner deux variables de type char, mais C# peut
convertir pour vous une variable de type char en une valeur de type i:ri_
lorsque c'est nécessaire pour réaliser I'opération. Ce qui conduit à ceci :

class MyClass

i
static public void SomeFunctiono
t

char c1 = ta';
char c2 = 'b';
// ie ne sai s même nâs cê nrrp npr.i oourrait
ll neis nâc nô1lr 11.,*- *a ra]-son que vous croyez
char c3 = c1 * c2;

]

Aclditionner deux caractères n'a en soi aucun sens, mais C# essair: quancl
même. Comme I'addition n'est pas définie pour le type rlra r, il convertit
c 1 et c 2 en valeurs j nt âv€c lesquelles il effectue I'addition. Malheureuse-
ment, la valeur lrit Qui en résulte ne peut pas être convertie à nouveau en
type char sans intervention extérieure.

La plupart des conversions, mais pas toutes, se passent très bien avec un
cast explicite. La fonction suivante fonctionne sans se plaindre :

class MyClass

{

static public float FloatTimes2(f1oat f)
(
t

I I cecz fonctionne très bien avec 1e cast explicite
float fResult = (float) (2.0 - f);
return fResult:

j

l

vouloir dire ; c'est illicite

Chapitre 19:Les dix erreurs de génération les plus courantes... 463

cf oii n nlhl i ^ rrni rl MrrFrrnni'i nn f StUdent S)\vguuurrL e/

I

Console.Writeline("Nom de 1'étudiant : r * s.sStudentName) ;

Console.WriteLine("Nunéro d'identification de 1'étudiant = " * s.nTd);
l

)

Le problème est ici que I'l7F:rnc tion i) fait référence à un membre donnée
nlct au lieu du véritable membre donnée nrD. Vous voyez la ressenlblance,
mais C# ne Ia voit pas. Le programmeur a écrit nId, mais il n'y a pas de rrld,
et puis c'est tout.

Un peu moins populaire, mais également dans le Top 10, vous avez aussi
la possibilité que la variable ait été déclarée dans une portée différente :

class MyClass
It

static public void Averagelnputo
I

int nCount : 0;
while (true)
{

I I tit un nonbre
string s = Console.Readline0l
int n = Int32.Parse(s);
rt// quitte si 1'utilisateur entre un nombre négatif
if(n(0)
{

break;
l
I I ajovte la valeur entrée
nSun f= n;

nCount#;
1
J

// affiche naintenant 1es résultats
Console.Wri.teline("Le total est r' * nSuur) ;

tonsole.Writelinet"ta moyenne est " * nSun / nCount);
I I ceci produit un rxcssage d'erreur de génération
Console.Writeline("La valeur finale était " + s);

t
)

La dernière liqne de cette fonction est incorrecte. Le problème est qu'une
variable est limitée à la portée dans laquelle elle est définie. La variable s

n'est pas définie en dehors de la boucle whrle ().

40 4 Ouatrième partie : La programmation orientée objet

que le programme donne la sortie attendue. Une fois que le programme a

lu le fichier, il se termine. Si I'utilisateur veut lire un autre fichier, il lui
suffit d'exécuter à nouveau le programme.

Le programme commence par une boucle-;h rle, comme son cousin
File\^rrite. Dans cette boucle, il va chercher le nom de fictrier entré par
I'utilisateur. Si le nom de fichier est vide, le programme envoie un nlessage
d'erreur : \Ious ave-z cntré un iLom de f ici,i er -' l de. Dans le cas cclntraire.
le nom de fichier est utilisé pour ouwir un objet Fi-Le-S:i e a:. en mode de
lecture. L'appel File . Open (I est ici le rnême que celui utilisé clans F i i:::r rte :

/ Le premier argument est le nom clu fichier.

Le deuxième argument est le modèle du fichier. Le mode
Filel{ode.0pen dit : "Ouvrir le fichier s'il existe, sinon envoyer une
exception." L'autre possibilité est Cpenlile-,,,, qui crée un fichier de
longueur nulle si celui-ci n'existe pas déjà. Personnellement, je n'ai
jamais rencontré le besoin de ce mode (qui veut lire r-rn fichier
vide ?), mais chacun mène sa barque comme il l'entencl.

Le dernier argument indique que je veux lire à partir de ce
Fi-ieStream. Les autres solutions sont ,,.,'r.ie et F.e'acj,'ir it...

L'objet FileStream f s résultant est alors inséré dans un objet ST- rcair,lir:ac1er
s r qui offre des méthodes pratiques pour accéder au fichier texte.

Toute cette section d'ouverture de fichier est enchâssée dans un bloc .. r-,,',

lui-même enchâssé dans une boucle v;hi1e, insérée dans une énigme. Ce

bloc try est strictement réservé à I'ouverture de fichier. Si une erreur se
produit pendant le processus d'ouverture, I'exception est attrapée, un
message d'erreur est affiché, et le programme reprend au début de la
boucle pour demander à nouveau un nom de fichier à I'utilisateur. Toute-
fois, si le processus aboutit à un objet nouveau-né St reamReader en bonne
santé, la commande break fait sortir de la logique d'ouverture de fichier et
fait passer le chemin d'exécution du programme à la section de lecture.

.r\!G ./ FileRead et Fiiei^i rite représentent deux manières différentes de traiter
Hdesexceptionsdefichier.VouspouVeZinsérertout|eprogrammecle
t(?, traitement de fichier dans un même bloc t i'\,, comme dans Fi 1er'rr: j te, ou
Y bien vous pouvez donner son propre bloc i- r-,. à la section d'ouverture de

fichier. Cette dernière solution est généralement la plus facile, et elle
permet de générer un message d'erreur plus précis.

Une fois le processus d'ouverture de fichier terminé, le programme
FileRead lit une ligne de texte dans le fichier en utilisant I'appel

t/

t/

Chapitre 19

Les dixerreursi de génération
les plus courantes

(et commentyremédier)

Dans ce chapitre :

'className' ne contient pas cle définitiol) pour'memberName'.

Impossible de convertir implicitement le type'x' en 'y'.

'className.memberName' est inaccessible en raison de son niveau de protection.

Utilisation d'une variable locale non assignée 'n'.

Le fichier'programName.exe'ne peut pas être copié dans le répertoire d'exécution.
Le processus ne peut pas...

Le mot-clé new est requis sur'subclassName.metl"rodNarne', car il masque le
membre hérité'baseclassName.methodNarne'.

'subclassName' : ne peut pas hériter de la classe scellée 'baseclassName'.

'className' n'implémente pas le rrembre d'interface 'methodName'.

'methodName' : tous les chemins de code ne retournent pas nécessairement une
valeur,

) attendue.

e façon très scolaire, C# fait de son mieux pour trouver des erreurs
dans votre code. Il se iette sur les fautes de svntaxe comme un

fauve sur sa proie. En dehors des erreurs vraiment bêtes, comme essayer
de compiler votre liste de commissions, on a I'impression d'entendre
toujours le même cri de protestation, inlassablement.

Ce chapitre présente dix messages d'erreur cle génération que I'on rencontre
souvent, mais quelques avertissements s'imposent. Tout d'abord, C# est

402 Ouatrième partie: La prCIuramrnation orientée ohjet

Améliorez tutre cnmpréhension et tutre
(itesse de {ectwrs eÂec S t r. e ii m ii r: a,l e r
Il e.st trè.s aqré';rl>Jr: qléit'rire slrr un fichier. nrais c'est plrrtôt inutile si votrs
ne pouvez !);rs lirt, lr: fir-.irier pitr la suite. i,e progran)nre ,'i 1.,'i,.rrr,: suivartt
affic:hr.. sur l;r r()n,c(ile i'r <1r-r'il lit clans ie fichier, ('e pr()qramrrre lit un
fichielr te-.xte C{,}!lnrt't'c[tri {ll-re (rée !]-' : ''-.:

// FileRead 1it un fichier texte et 1'écrit
srrr 1e console

,,^.i*^ Q"-+^-'uÈarr5 ujùeç!rr

uùrrrË uyù;ç!r,a!,

irarrg)ydL: f rf Ei\cou

{

public class Classl
i

rrrhl ir ct:-ie rrni.i]nïai. /c.ri.- flvvatl !larrr \ùLr4l!Ë LJ

{

// il nous faut un objet pour

StreamReaoer sr;
strins sFiieName = "";- *- -"ô

args)

lire 1e fichier

// continue à essayer de lire un nom de fichier jusqu'à ce qu'il en

// trcuve un (i.a seule manière de quitter po:r I'utilisateur esr
I I d'arrèter 1e prograinne en appuyant sur Ctrl + C)

while (true)
{

try
{

ll lit le non du fichier d'entrée
Console.Wrj.te("Entrez 1e nom d'un fichier texte à lire :");
sFileName = Console. Readline 0 ;

ii 1'utilisateur n'a rien entré ; envoie une erreur
ll pour 1ui dire que ce n'est pas satisfaisant
if (sFileName,length == 0)

t

throw ne*- IOException ("Vous ar,'ez entré un nom de f ichier vide") ;

l
ll owre un flux de fichier pour 1a lecture ; ne crée pas

// le fichier s'i1 n'existe pas déjà
FileStream fs = Fi1e.0pen (sFileNane,

Fil ei{ode . 0pen ,

FileAccess. Read) ;

1/ convertit ceci en StreamReader - ce sont les trois preniers
i/ octets du fichier qui seront utilisés pour indiquer
// i'encodage utilisé (nais pas 1e langage)

sr = ner,,i StreamReader (f s , true) I

Sixième partie

Petits suppléments
par paquets de dix

400 Ouatrième partie: La programmation orientée obiet

tz Le type d'accès: Un fichier peut être ouvert pour la lecture, l'écri-
ture ou les deux.

.s$9_ ^. !'i l e S t r e an dispose de nombreux constructeurs, dont chacun corres-

Hpondpardéfautàunoudeuxclesargumentsdemodeetd'accès.Toute-
llgrf fois, à mon humble avis, il vaut mieux spécifier explicitement ces argu-
Y ments, car ils ont un effet important sur le programme.

Dans la ligne suivante, le programme insère dans un objet StreamWriter,
sw, I'objet FileStrearn qu'il vient d'ouvrir. La classe StreamWriter permet
d'insérer les objets FlleStream, afin de fournir un ensemble de méthodes
pour traiter du texte. Le premier argument du constructeur
Stream\,n/riter est I'objet FlleStream. Le deuxième spécifie le type
d'encodage à utiliser. L'encodage par défaut est UTF8.

,tggler^ Il n'est pas nécessaire de spécifier I'encodage pour lire un fichier.
5e !!\ Srream'r,n/riter inscrit le type d'encodage dans les trois premiers octets
:HW) Ou fichier. À I'ouverture du fichier, ces trois octets sont lus pour déter-

'J'Ô/ miner I'encoclage.

Le programme Fi 1e',.rtrite commence alors à lire sous forme de chaÎnes
les lignes saisies sur la console. Le programme arrête de lire lorsque
I'utilisateur entre une ligne blanche, mais jusque-là il continue à absorber
tout ce qu'on lui donne pour le déverser dans l'objet Stream\,nlriter sw en

utilisant la méthode i,ririt elin-. () ,

La similitude entre StreamWriter .

"n/riteLine
() et Console .\r/ri*reLine o

n'est pas qu'une coincidence.

Enfin, le fichier est fermé par I'instruction sw. Close () .

Remarquez que le programme donne à la référence sw Ia valeur nul1 à la
fermeture du fichier. Un objet fichier est parfaitement inutile une fois que
celui-ci a été fermé. Il est de bonne pratique de donner à la référence la
valeur nu11 une fois qu'elle est devenue invalide, afin de ne pas essayer
de I'utiliser à nouveau dans I'avenir.

Le bloc catch qui suit la fermeture du fichier est un peu comme un
gardien de but : il est là pour attraper toute erreur de fichier qui aurait pu

se produire en un endroit quelconque du programme. Ce bloc émet un
message d'erreur. contenant le nom du fichier qui en est responsable.
Mais il ne se contente pas d'indiquer simplement le nom du fichier : il
vous donne son chemin d'accès complet, en ajoutant à I'aide de Ia mé-

thode Path. Corlbirre () le nom du répertoire courant avant le nom de

1t$!Qa.
^<r7çq

\:(dw
)\ô/

U

Ghapitre 18: Achever votre application Windows 457

private void ApplieationWindowClosing(object sender,
Systern. ComponentModel. CancelEventArgs e)

{

(!IsChangeOK0)

e.Cancel = true;

]

5. Générez le programme et exécutez-le"

6. Entrez du texte et cliquez sur le bouton de fermeture de la fenêtre.

Vous voyez apparaître le même message d'avertissement que celui
produit par la comrlande Fichier/Quitter.

La création d'un programme comme SimpieEdiror nécessite de nom-
breuses étapes, et c'est une application relativement simple. Or, il est en
fait beaucoup plus facile de créer une application Windows avec Visual
Studio .NET qu'avec les outils que nous connaissions auparavant. Il y a
quatre ou cinq ans, ntême une petite chose comme I'affichage d'une
simple boîte de message était difficile. Au temps anciens de Windows 3.1,
c'était une montagne.

Quoi qu'il en soit, ne vous laissez pas décourager. Pensez à la présenta-
tion et au fonctionnement que vous attendez de votre application. Mettez
tout cela par écrit. Alors seulement, vous pouvez utiliser le Concepteur
de formulaires pour dessiner les éléments qui la composent. Utilisez la
fenêtre Propriétés pour identifier les propriétés, statiques et dynamiques,
que vous voulez définir afin que I'application fonctionne exactement
comme vous voulez.

1r
t

Réalîser uos propres applications Wîndouts

398 Ouatrième partie : La programmation orientée obiet

| | FileAccess.Write,
I / FileAccess.ReadWrite
FileStream fs = File.0pen(sFileName,

FileMode. CreateNew,

FileAccess.lJrite) ;

l/ génère un flux de fichier avec des caractères UTFS

sv = new Strean,I,.Iriter(fs, System.Text,Encoding.UTFS) ;

I I lit une chaine à 1a fois, et envoie chacune au

// FileStream ouvert pour écriture
Console.1,rlriteline("Entrez du texte ; ligne blanche pour arrêter");
while (true)

t

I / |it 1a ligne suivante sur 1a console ;

// quitte sj.la ligne est blanche

string slnput = Console.ReadLine0 ;

i.f (s Input . Length == 0)

{

break;
l

I I êcrit sur 1e fichier de sortie la ligne qui vient d'être 1ue

sw. |Iriteline (slnput) ;

l
I I lerne le fichier que nous avons créé

sw. C1ose 0 ;

sw = null;
l
catch(IOException fe)
{

ll une erreur s'est produite quelque part pendant

ll 7e traitement du fichier indique à 1'utilisateur
// Ie nom eomnlet du fichier :

I | ^:^,.-^ ^.' -ôm drr rénerfnirp Dar défautI I êJVULS AU rrutr! UU !çPc!LVi!ç l.

// celui du fiehier
ctrino cDir = flircctnrv GptCttrrpntDirpetorvO :Lv!J \ / ,

string s : Path.Conbine(sDir, sFileName) ;

Console.l,lriteLine("Erreur sur 1e fichier{01 ", s) ;

I I af.fiche naintenant 1e nessage d'erreur de I'exception
Console . Writeline (fe.Message) ;

i
l
I I attend confirmation de 1'utilisateur
Consol-e.l.lriteLine("Appuyez sur Entrée pour terminer. . . ") ;

Consoie.Read0;

J

File\nirite utilise I'espace de nom Sirstem. i0 ainsi QU€ S-,'sten. !i.,'sten.IO
contient les fonctions d'l/O sur les fichiers.

contenu de la zone de texte. Dans le Concepteur de formulaires, sélectionnez
encore une fois le composant Rr.],Te:<r-Br-:. pttis, dans la fenêtre Propriétés,
attribuez le nom de méthode T.-:':tr-harq,,:r à la propriété Te>:tChanged. Cette
méthode ne fait rien de plus que d'assigner la valeur voulue à notre indicateur :

// cette uréthode est appelée lorsque 1e texte est nodifié
private void TextChanged(object sender, System.EventArgs e)

t

bïextChanged = true;
]

ll est temps d'essayer le résultat :

1. Dans le programme préalablement régénéré, ouvrez un fichier
RTF.

2. Faites une modification quelconque

3. Sélectionnez Fichier/Quitter.

La bolte de dialogue d'avertissement
Figure 18.8. Vous pouvez pousser un

eci est le te:rte original.

J'ai écrit ceci deputs le
dernier en registremenl du

Cliquez sur Oui, et le programme se ferme.

Répétez le processus en commençant par l'étape l. Cliquez sur
Non, et le programme continue comme si rien ne s'était passé.

Chapitre 18:Achever votre application Windows 655

dans la zone de texte.

apparalt, comme dans Ia
soupir de soulagement.

-

Figure 18.8 :

(i mn l oFrl'i ,: r, i^

fait apparai
tre un
avertisse-
ment lorsque
| 'utilisate u r
essaie de
faire quelque
chose qui
provoq uera it
la perte de
ses derniè-
res modifica-
tions.

J

4.

D.

Le texle a ètÉ nradifis, i:liquer 5uf l-JNi pour ignrrrer Ïos mndifrr;tilns

ïaille de p

39 6 Ouatrième partie : La programmation orientée objet

l/0 asynchrones : est-ce que ça vaut la peine d'attendre

Normalement, un programme attend qu'une requête d'l/0 sur un fichier soit satisfaite avant
de poursuivre son exécution. Appelez une méthode read (), et vous ne récupérerez géné-

ralement pas le contrôle aussi longtemps que les données du fichier ne seront pas installées
à bord en sécurité. C'est ce que I on appelle une l/0 synchrone.

Avec C#, les classes de System.Iû supportent également les l/0 asynchrones. En les

utilisant,l'appelà read () restitue immédiatementle contrôle pourpermettre au programme

de poursuivre son exécution pendant que la requête d'l/0 est satisfaite à l'arrière-plan. Le

pr0gramme est libre de vérifier ['état d'un indicateur pour savoir si la requête d'l/0 a abouti.

C'est un peu comme de faire cuire un hamburger. Avec des l/0 synchrones vous mettez la viande

hachée à cuire sur la plaque chauffante, vous la surveillez jusqu'à ce qu'elle soit cuite, et c'est
seulement à partir de là que v0us pouvez vous mettre à couper les oignons quivont aller dessus.

Avec des 1/0 asynchrones,vous p0uvez c0uperles oignons pendantque la viande hachée est
en train de cuire. De temps en temps, vous jetez un c0up d'æil pour voir si elle est cuite. Le

momentvenu, vous abandonnez un instantvos oignons, etvous prenez la viande sur la plaque

chauffante pour la mettre sur le pain.

Les l/0 asynchrones peuvent améliorer signif icativement les perforrnances d'un programme,

mais elles ajoutent un niveau supplémentaire de complexité.

Utîlîser Sj r r:eijilr\,\iriter
Les programrnes génèrent cleux sortes de sortie. Certains programrlres
écrivent cles tlloc:s cle clorrnées clans un pur fornrat binaire. Ce type cle

sortie est utiie polrr stocker cles objets cl'une nranière efficace.

Beaucoup de prograrlnres. sirron la plupart. lise'nt et écrivent des chaînes de
texte. lisibles pilr rrn être lturrrairr. Les classes cle flux S-,i eaiiiii:i'.er et
St-rearI'.eri,,,::r sont les 1>lus sc.ruples cles classes accueillantes pour I'homnte.

Les données lisibles lrar tin être htrmain étaient antérieurement cles

chalnes ASCII, (.)ri. url per-r plus tarcl, r\NSL Ces cleux siglt-'s se réfèrent aux
organisations de sTandarrJisation clrri orit défiiri t:es formats. Toutefois, le
codage ANSI r)e penuet lras cl integrer les alphabets venant cle plus loin
qtre I'Ar.rtriclre à l'l-st, ert cle prlrrs loin que: Harvai à l'[)Lrest. Il ne peut conte-
nir que I'alphabert l;rtin. II ne clispose pas de I'alphatret cyrilliclue, hébreu,

?

4$!Qa^
^<v7çq\:/dw

)YÔ/

Ghapitre 18:Achever votre application Windows 453

à cet indicateur lorsqu'un fichier est lu (rien n'y a encore été rnodifié). Saisir du
texte. collper clu texte ou coller du texte dans la zone de texte assiqne - r',re à
cet inclicateur. L'exécution de la cornmande Enregistrer assigne à r'rouveau
f a.L se à I'indicateur. l)onnons à celui-ci le nom bT+::'ihar,ie r.

Naturellement, I'utilisateur peut toujours quitter le prograrnme, nrême si
la dernière version de son travail n'a pas été enregistrée, mais il clevra
maintenant décider consciemment de le faire (atrtrement dit. cliqLrer.sur
un bouton OK dans une fenêtre d'avertissernent).

C'est ce que fait avec simplicité la méthode *sC1,.r:rqeOi'i, i suivante

ll Ia méthode suivante garantit que 1'utilisateur ne perdra pas

ll ses modifications par inadvertance, en affichant un nessage

| | si la RichTextBox n'est pas "propre"
bool bTextChanged = false;
private bool IsChangeOK0

{

// i1 est toujours sans inconvénient de quitter 1e programme

ll si rien n'a été modifié
if (bTextChanged == false)
t

return true:
]
I I nais quelque chose a été modifié ; le programme denande

I I à I'utilisateur ce qu'i1 veut en faire
DialogResult dr = MessageSox.Show("Le texte a été modifié. "

t "Cliquez sur 0K pour i.gnorer vos modi.fic.ations, ",
"Texte nodifié",
MessageBoxButtons . YesNo) ;

return dr == DialogResult.Yes;
l

IsChange0K () retourne true si I'utilisateur est d'accord pour perclre les
dernières modifications du contenu de Ri chText6r,.x. Mais avant tout, si
I'indicateur de modification a pour valeur f a1se, c'est que rien n'a changé
depuis la dernière commande Fichier/Enregistrer, et que rien ne peut donc
être perdu.

Si quelque chose a été modifié, la fonction ouvre une bolte de clialogue
l'{essageBox pour demander à I'utilisateur ce qu'il veut faire:continuer et
perdre ses modifications. ou annuler et les conserver. La clasSe i.ir: - s r J.,.lr,rrr..

est aussi simple que cette bolte de dialogue. La méthode Sh,:rr, () r-ruvre une
boîte de dialogue avec le titre et le message spécifiés. La propriété i esl,tr dit :

"Faire cette bolte de dialoeue avec un bouton Oui et un bouton Non." Si

39 {f Ouatrième partie : La programmation orientée objet

Une méthode déclarée internal est accessible par toutes les classes
du rnême espace de nom. Aussi, I'appel c1ass2. D_internal () n'est
pas autorisé. L'appel c1ass3. C_internal O est autorisé parce que
Ciass3 fait partie de I'espace de nom AccessControl.

Le mot-clé irrtei nal protected combine I'accès internal et
I'accès protectecl. Aussi, I'appel classl. E_internalprotected o
est autorisé, parce que C1ass1 étend C1ass2 (c'est Ia partie
iLJtocr ed). L'appel class3.E_in.erna.J pr ocecred () est égale-
ment autorisé, parce que Classl et Ciass3 font partie du même
espace de nom (c'est Ia partie internal).

La déclaration de Class.J comme internal a pour effet de réduire
I'accès à celle-ci à internal, ou moins. Aussi, les méthodes public
cleviennent internal, alors que les méthodes protecteci deviennent
inte rnal Lr rotected.

Ce programme donne la sortie suivante :

Class2 . A_public
C1ass2 . B-protected
C1ass1 . C_private
Class3 . D*internal"
C1ass2 . E-internalprotected
Class3 . E-internaLprotected
Appuyez sur Entrêe pour terniner. ..

^1.$tlX ble. Une méthode privée peut être modifiée à volonté sans inquiéter de

K7, I'effet que cela pourrait avoir sur d'autres classes. Une classe ou une
Y méthode interne de t'tathRouri nes est utilisé par d'autres classes de

nature mathématique. Si vous n'êtes pas convaincu de la sagesse du
couplage faible entre les classes, allez voir le Chapitre 1 1.

,/

t/

t/

Rassembler des données dans des fichiers
Les applications console de ce livre reçoivent essentiellement leurs entrées
de la console, et y envoient de même leur sortie. Les programmes des
autres sections que celle-ci ont mieux à faire (ou autre chose) que de vous
embêter avec des manipulations de fichiers. Je ne veux pas les obscurcir
avec la question supplémentaire des entrées/sorties (l/O).Toutefois, les
applications console qui n'effectuent pas d'opération d'entrée/sortie sur
des fichiers sont à peu près aussi courantes que les phoques dans la Seine.

4. Faites la même chose pour I'option de menu Fichier/ouvrir, en
utilisant Ie nom de fonction FileOpen.

,tii itit
fichier Edition {ffir:hage pJ.rieL ÇÉrÉrer QÈbnquer DqnnÉes lutil: Fe1Ëke Help

.=!-..1 -*filffi :i

Forml.cslDesign]* 1,,,

taÇi!/i!::11:; :,,,,,
Fichier Edltion FûrnÊt

çu\/flf I

5 ûpÊrrFilÊCiàloql ,:!:l i r! eFileC,iôlrtrl i

1fll . Erp,op,,.térf-

5. Implémentez les méthodes FileOpen O et FlleSave O comme suit :

private void File0pen(object sender, System.EventArgs e)
{

0penAndReadFile () ;

]

private void FileSave(object sender, Systen,EventArgs e)
{

SaveSpecifiedFile 0 ;

]

Ce sont ces deux fonctions simples qui permettent à sirrrpleEditor
d'être un véritable éditeur : il peut maintenant lire et écrire des
fichiers. Par exemple, bien que ça ne se voie pas, le texte que montre
la Figure 18.7 a en fait été écrit dans Word (enregistré au format RTF,
bien sûr), et lu en utilisant la commancle Fichier/Ouvrir.

Chapitre 18:Achever votre applicarion Windows 451

trEtul

-

Figure 18.6 :

Donner le
n0m
FileSave à

la propriété
Click du
sous-menu
Enregistrer
génère une
nouvelle
fonction, qui

sera
invoquée
chaque fois
que I'utilisa-
teur
sélection-
nera Fichier/
Enreg istrer.

-

39 2 Quatrième partie : La programmation orientée obiet

// 1a:nêrne classe
I I elass2, C-private () ;

c1ass1.C_privateO;
I I Les néthodes internes ne sont accessibles que par

I I Les classes du même espace de nom

I I class2.D*internal () ;

c1ass3.D-j-nternal0;
I I les méthodes internes protégées sont accessibles

// soit par 1a hiérarchie d'héritage soit par

ll tome classe du même espace de nom

c1ass1 . E-internalprotected () ;

class3 . I-internalprotected () ;

l/ attend confirnation de I'utilisateur
Console.l,IriteLine("Appuyez sur Entrée pour terTniner' . .") ;

Console.ReadO;
return 0;

l
nrrhl i r. voi d C nrivate 0
t

Console. hlriteline ("Class1 . C-private") ;

l
]

// Class: - une classe interne est accessible aux autres

l l classes du même espace de nom, maj.s

I I pas aux classes externes qui utilisent cet

I I espace de nom

internal class Class3

t

I I Ia déclaration d'une classe comme interne force toutes
I I Les méthodes publiques à être également internes
public void A_pub1ic 0
{

Console. l^lriteLine ("CLass3 .A- public") ;

]
nrntontod vnid R nrntantpd{)

{

Console.l.lriteline ("Class3 .B-protected") ;

]
internal void D-internal 0
{

Console. Writeline { "C1ass3 . D-internal ") ;

l
-"h1 i. .r^i rl Ê inf orna l nrntontod ()yuurrL vvru !_rrr vLveeus\/

t

Console . Writeline ("Class3 . B-internalprotected") ;

]

l

AP\=qt

Chapitre 18 : Achever votre application Windows 449

(
i.

ll aff.iche 1e message d'erreur dans 1a fenêtre de texte e1le-rnêne

richTextBoxl.Text = "Impossible de lire 1e fichier\n";
richTextBoxl . Text *= e.Message;

bReturnValue = true:
]
return bReturnvalue:

l

Cette fonction commence par afficher une bolte de dialogue
0penFileDialog. Si la bolte de dialogue retourne OK, la fonction essaie
d'ouvrir le fichier sélectionné en utilisant la rnéthode rlpenFi 1e () . Si cette
méthode retourne un objet St:ean valide, OpenAnCPeadFile O insère
I'objet Stream dans un StreanP.c'adi:r, plus pratique. Elle lit ensuite tout le
contenu du fichier, puis elle le copie dans P,rchTexiBo:< eû I'assignant à sa
propriété P.tf. Enfin, Oirer,Arrdi'l.e:,lF-r-r'. : ferme le fichier.

Un éditeur qui lit tout le fichier en nrémoire est beaucoup plus facile à
écrire qu'un éditeur qui err laisse la rnajeure partie sur le disque. En tout
cas, C# ne limite pas son cornposant Ê i :lr-,-extB,rx au tampon n-rémoire si
frustrant de 64 Ko du Bloc-notes.

Si une erreur d'UO de fichier se produit. 0penAnctP.eadFlie I) envoie le
message erreur dans la zone de texte i i:hTe){tBcx elle-même.

Nous avons ajouté le composant .-'pen!'iie Dialog à SinpleEditcr en le
faisant glisser depuis la Boîte à outils.

Écrire un fichîer RTF

La classe SaveFiieDraiog offre des méthodes qui sont tout aussi prati-
ques que celles qui servent à ouvrir le.s fichiers :

// enregistre le fichier sur le disque ; retourne true en cas de succès

ll (cette fois, ne pas essayer d'a--traper une exception - je ne

// saurais de toute façon pas quoi en faj-re)
private bool SaveSpecifiedFile0
{

bool bReturnValue = false:
l l ce code est construit sur le nême modè1e que OpenAndReadFile 0
if (saveFileDialogl . ShowDialog () == DialogResult,0K)
t

System,I0.Stream strOutput = saveFileDialogl.0penFile0 ;

390 ouatrième partie ; La programmation orientée objet

Utilîser un espece de nom a(/ec Ie mot-clé usi-ng

Se référer a url(' r'l;rsse l)ar s1;11 nonr pleinentent rlualifié prertt deveriir utt
peu fasticlieux f ,e rnot"r:lé ,r:-- i:-r' de C# vous pertrtet cl'éviter ce penslltrl"
La cornrnancle , r:i ; a!oute I'espace de rtorn spécifié à urte liste r:1'esliaces

cle norri par tléf:rrrt rlirr. ('# <ronsrrlte p()ur essayer cle résourlre un rtorn cle

classe. I-'exc'rnple rle 1)r()r{rarnrne suiv;urt se conr;rile sans r-rne plainte :

nanespace Paint
t

public class PaintColcr
{

public Paj.ntCoior(int nRed, int nGreen, int nBLue) {l
public vcid Pa j,nt 0 | l
publ"ic static vcid StaticPaint0 {l

l
l

-^ v^+.".D..-.i;.ssrrqilç ù y4L tr l-1o Lrrl\!] Lf L

T
L

ll aiorto Peint- :':x êsn2nÊ(r1 o nom

I I ^,,+^^^+.i ^,,^*^/ / auromarrquenent
,,^.i-^ D.;-+.uDrrr6 r arll L ,

nlrbI1c clâss l'êst

{

dnns 'l esfi1rÊ 1 s on cherche

static public void Main(string[] args)
{

I I crêe r:n ohipt denc l1n âlrtrÊ pcnace de nom - l1 n'est
ll pas nécessaire de faire figurer ie non de 1'espace de non, car
/ / celrr j. - ci e st inclus dans une instruc*,ion "using"
PaintColcr black = new PaintColor(0, 0, 0);
black. Paint 0 ;

PaintColor. StaticPaint () ;

j

J

La comnilncle r,,.i..,. cJit:"Si vorrs ne trollvez pas la classe spécifiée dans
l'espace d€' rront courârtt, voyez si vous la trouvez dans celui-ci." Vous
pouvez spécifielr autant d'espaces de rloilr que vous voulez, mais toutes
les commanries ., , :: cloivent apparaltre I'une après I'autre tout à fait au
début clu programrltÉ)"

U Tous les progrilnrf nes
dr>nne aLr proqrilnln)Él
bibliothèque systr'rnre,

(:onlnlencellt par la cotumande i.,sing S.r'sieiri;, Elle
rrn accès alltomatique à toutes les fonctions cle la
contlne irrrtei,: rE i r.

-

Figure 18.5 :

Déposer sur
(i'rnloF.li+;r

un c0mp0-
sant
'lp.-rFiieJialcg
et un
comp0sant
Sa-re-Filei!:loq
a pp0rïe
l'essentiel du

dialogue
nécessaire à

I'ouverture et
à l enregis-
trement de
fichiers.

-

Chapitre 18:Achever votre application Windows 447

appelle des filtres. La dernière option de la liste des filtres est
toujours *.*, qui signifie tous les fichiers.

iiil,..:
E{hier Edition ù'firhaqe fr,ljet Q;,néret pèboquer :,!nE6 E,r:ils FeDÈh{- BelF

.=j:-:J.*étti&
fornrl.cs IDesign]+ I

E,lilrûn Fûrmèl

. { tr:nrÉr:

I
Lfrt,osirrts

I "t'innonos
Fotns

I lf;l t-onte; ll'lenr:
i-
|

:rJ TnelEat

I 5tatusEar
1-

I ,,., t^hlil'trlcon

E oFBnFileÛtàl'rE

5 SiveFiletrÊlÈ,1
q

- ,-.,
-j[J FÉntL,r'3lah]

1l E rrlrro,rt4

PfE:sÈ-F6Erers circulàirÈ

Gin:rèl

$ eoli* : ruiils i@

! iper,FitrDr.:1r,11 B:xr./E:rlÈDttrql

Les filtres du composant OpenFileDi alog sont stockés dans sa
propriété Fiiter. La syntaxe utilisée dans ce champ est un peu
déconcertante : un filtre est défini par un couple formé de son nom
et de I'extension de fichier correspondante, séparés par un carac-
tère l, deux filtres consécutifs étant également séparés par un
caractère l.

3. Assignez à la propriété Filter la chaîne "Fichiers RTFI *.rtf lTous
les fichiers | *.*".

Cette opération indique à 0penFileDialog de ne rechercher initia-
lement que les fichiers RTF, mais laisse à I'utilisateur la possibilité
de rechercher tous les fichiers.

"Tous les fichiers |
." doit toujours être la dernière entrée de la

Iiste des filtres. Pour I'utilisateur. c'est la sélection de la dernière
chance.

4. Faite de même pour la propriété Filr,pr du composant
SaveFi1eDia1og.

388 0uatrième partie : La programmation orientée objet

Transiariorilibrai,;
évite le problème : f i
Tra i'rs iat- ic l.ili b r a l'.-

ces deux ensembles de classes
peut pas être confondu avec

Déclarer un eslrace de nom

On déclare un espace cle nom en utilisant le mot-clé nanÊ.spa.e, suivi par
un nom et un bloc cl'accolades ouvrante et fermante. Les classes spéci-
fiées dans ce bloc font ltartie de I'espace de nom.

nanespace MyStuff
t

class MyClass {}
class UrClass ll

l

Dans cet exemple. 1,., il , :.i,. s €t
MySt'.rff.

font partie de I'espace de nom

^1'$q]X un espace de nom portant le même nom que le répertoire qu'il crée. Exami-

IrT9, nez tous les programmes cle ce livre: ils ont tous étés créés à I'aicle cle

Y I'Assistant Application. Par exemple, le programme Ai ignOrir:pl1t a été créé
dans le dossier,t lipnr-)ir'f.1r,: t. Le nom du fichier source est (llassl . cs, qui
correspond au nom de la classe par défaut. Le nom de I'espace de nom dans
lequel se trouve C,lassl. cs est le même que celui du dossier:Aligro'.rrp1,1t.

Si vous ne spécifiez pas ur-re désignation d'espace de nom, C# place votre
classe dans I'espace de nom global. C'est I'espace de nom de base pour
tous les autres espaces de nom.

Accéder à des modules du même espace de nom

Le nom de I'espace cle norn cl'une classe est une partie du nom cle la
classe étenclue. Voyez l'exenrple suivant :

namespace MathRoutines

{

class Sort
{

public void SomeFunction 0 { l

df\
=€)

Chapitre 18 : Achever votre application Windows 445

I I ignore toute erreur de conversion qui pourrait se produire

'. J

t

ll s'il y a quelque chose ici ...
I l' è /

^//if (sText.Leneth) 0)

ll ... le convertit en entier
int nFontSize = Int32.Parse(sText) ;

I / si la valeur est dans 1'étendue valide ...
if (nFontSize)= trackBarl.Minimum && nFontSize (= trackBarl.Maximun)
{

ll .., net à jour 1a trackbar et
trackBarl.Value = nFontSize:

tlll ... ajuste la police (SetFont0 1it sa tai11e de

/i police direetement sur 1a TrackBar
SetFont 0 ;

l
l
catch I i ;

Cette méthode est invoquée pour chaque caractère envoyé dans
cette zone de texte, et non pollr le dernier uniquement. Par exemple,
la saisie de 24 génère deux appels : un pour le 2, et un pour la valeur
24.Dans cette application, c'est sans conséquence, mais sachez-le.

FontSlzeErrtered O commence par lire le contenu de TextBox, puis elle
entre dans un bloc rr.,'. [2 fonction inr3 2 . Parse O convertit le contenu
de TextBox en une valeur irir. Cette fonction de conversion envoie une
exception si la chalne trouvée ici ne peut pas être convertie en un entier
valide. L'instruction catch universelle placée en bas de cette fonction
bloque les problèmes, mais ignore I'exception et ne modifie pas la taille
de la police. De même, si la châîne entrée par I'utilisateur peut être
conve-tie en un nombre entier mais que celui{i se trouve en dehors de
l'étendue autorisée (8 à24 points), elle est ignorée.

Si la taille saisie est autorisée, FontSlzeEntered () met à jour
TrackBar en assignant cette nouvelle valeur à sa propriété Va1ue.
Par exemple, supposez que I'index de TrackBar soit situé à la valeur
12. Dès que I'utilisateur entre la chalne 22, I'index passe directement
à la position 22, presque à I'extrémité droite de la barre.

La fonction Fonr () met à jour la police elle-même.

386 Ouatrième partie:La programmation orientée obiet

ne peut pas être modifié par deux programmeurs en même temps. Chacun
d'eux a besoin de son propre fichier source. Enfin, la compilation d'un
module de grande taille peut prendre beaucoup de temps (on peut toujours
aller prendre un café, mais il arrive un moment où votre patron devient
soupçonneux). Recompiler un tel module parce qu'une seule ligne d'une
seule classe a été modifiée devient intolérable.

Pour toutes ces raisons, un bon programmeur C# divise son programme
en plusieurs fichiers source .CS, qui sont cornpilés et générés ensemble
afin de former un seul exécutable.

Imaginez un système de réservation de billets d'avion : il y a I'interface avec les

agents de réservation que les clients appellent au téléphone, une autre inter-
face pour la personne qui est au comptoir d'enregistrement, la partie Internet,
sans parler de la partie qui vérifie I'occupation des sièges dans I'avion, plus la
partie qui calcule le prix (y compris les taxes), et ainsi de suite. Un programme
comme celui-ci devient énorme bien avant d'être terminé.

Rassembler toutes ces classes dans un même fichier source Clas s I . c s

est remarquablement déraisonnable, pour les raisons suivantes :

t/ Un fichier source ne peut être modifié que par une seule personne à la
fois. Vous pouvez avoir vingt à trente programmeurs travaillant en
même temps sur un grand projet. Un seul fichier pour vingtquatre
programmeurs impliquerait que chacun d'eux ne pourrait travailler
qu'une heure par jour, à supposer qu'ils se relaient vingtquatre heures
sur vingtquatre. Sivous divisiez le programme en vingtquatre fichiers,
il serait possible, bien que difficile, que tous les programmeurs tra-
vaillent en même temps. Mais si vous divisez le programme de telle
manière que chaque classe a son propre fichier, I'orchestration du
travail de ces vingtquatre programmeurs devient beaucoup plus facile.

/ Un fichier source unique peut devenir extrêmement difficile à

comprendre. Il est beaucoup plus aisé de saisir le contenu d'un
module comme ResAgentlnterf ace. cs, GateAgentln*r-erf ace. cs,
ResAgent.c s, GateAgent . cs, Fare . cs ou Ai rcraf t . cs.

t/ La régénération complète d'un grand programme comme un sys-
tème de réservation de billets d'avion peut prendre beaucoup de
temps. Vous n'aurez certainement pas envie de régénérer toutes les
instructions qui composent le système simplement parce qu'un
programmeur a modifié une seule ligne. Avec un programme divisé
en plusieurs fichiers, Visual Studio peut régénérer uniquement le
fichier modifié, et rassembler ensuite tous les fichiers objet.

Dans le Concepteur de formulaires, sélectionnez la TrackBar.

Dans la fenêtre Propriétés, sélectionnez l'événement S c r o I l.
Comme nom de fonction, entrez FontSizeControl.

Passez dans I'affichage du code source, et implémentez les nou-
velles fonctions comme suit :

li invoquée quand I'utilisateur déplace f index de 1a TrackBar

private void FontSizeControl(object sender, System.EventArgs e)

{

I I Lit 1a nouvelle taille de police directement sur 1a TrackBar

fontSize : trackBarl..Value ;

I I Ia convertit en chaîne et la copie
I I \a TextBox pour accorder les deux

textBoxl.?ext = String.Eornat (" {0J ",

// ajuste naintenant la police
SetFont () ;

j

For.itSizeCon'Lro1O est invoquée chaque fois que l'utilisateur
déplace I'index dans la barre. Cette fonction lit la nouvelle valeur
(un nombre entier compris entre 8 et24, inclusivement) dans
I'objet TrackBar. FontSj-zeControl O utilise la méthode
St ring . F o rmat () pour convertir ce nombre en une chalne de texte
qui est alors copiée dans la TextBox Taille de police. Cela fait,
FontSizeControl O invoque SetFont O pour modifier la police
utilisée dans la fenêtre d'édition.

Je donne la description de SetFont O dans la section "Changer de
police et de taille", plus haut dans ce chapitre.

4. Générez le programme et exécutez-le.

5. Entrez du texte dans la fenêtre et sélectionnez-le avec la souris.

6. Faites glisser vers la droite et vers la gauche I'index de la taille
de police.

La Figure 18.4 montre le résultat. Il est vrai qu'une simple image n'est pas très
parlante, mais la valeur qui apparâît dans la zone de texte Taille de police est
instantanément mise à jour selon la position de I'index dans la barre, pendant
que le texte sélectionné est agrandi ou réduit en conséquence.

l.

,

Ghapitre t8 : Achever votre application Windows 443

dans

I0nt51zeJ;

3.

38 4 0uatrième partie : La programmation orientée obiet

Le programme CustomException donne Ia sortie suivante :

Erreur fatale i-nconnue :

Le message est (Iinpossibie d'inverser 0), I'objet est (Va1ue = 0)

CustomExc ept ion . MathCl a s s

Exnpntion pnvovée narDorrble Inverse0!.reçy

Annrrrroz crrr Entrép nottr rcrm'i npr.

JetOnS Un COup d'æil à Cette sortie:le mesSage !.ir:r-ir f ,l:'.ie i:ir r:,tr

nue : vient de]"1air: i). La chalne -e r:Ê: rsas.Ê Ês1. ('in:cssiSl e d'in-
,./-ôrser 0), i'cb-jet ?s1- (--) Vient Cle r,rrst,.'rnE:.c-.pticr. Le message

Valrle C vient de I'objet l"la.,.hClass lui-même. La dernière ligne, Frcep -

tion en.",cvée DarDouble Inverse, vient de Crjsl-ltrf,xcapt ic:1.

ToString{}, la carte de visite de la classe

Toutes les classes héritent d'une classe de base commune, judicieusement nommé 0b j ec t.
C'est au Chapitre 17 que j'explore cette propriété qui unifie les classes, mais il est utile de

mentionner ici que Ob j ect contient une méthode, To S t r ing (), qui convertit en st r ing le

cgntenu de l'objet. L'idée est que chaque classe doit redéfinir la méthode ToString () par

une méthode lui permettant de s'afficher elle-même d'une façon pertinente. Dans le chapitre

précédent, j'ai utilisé la méthodê GetString () parce que je ne voulais pas y aborder les

questions d'héritage, mais le principe est le même. Par exemple, une méthode

Srudent.ToString O pourrait afficher le nom et le numéro d'identification de l'étudiant.

La pfupart des fonctions, même les fonctions intégrées de la bibliothèque C#, utilisent la

méthode ToString () pour afficher des objets. Ainsi, le remplacement de ToString O a

pCIur effetsecondairetrès utile que I'objetsera affiché dans s0n propre format, quelle que soit

la fonction qui se charge de I'affichage.

Comme dirait Bill Gates, "C'est cool.'

Ghapitre 18 : Achever votre application Windows 441

4. Implémentez les nouvelles fonctions de la façon suivante :

private void FornatBold{object sender, System.EventArgs e)

{

isBolded = !isBolded;
nenultemi0.thecked - i.sBolded;
SetFont 0 ;

1

private void Formatltalics(object sender, System.EventArgs e)

{

isltalies = !isltalics;
nenultenli.Checked = isltalics :

SetFont () ;

]

Chacune de ces fonctions inverse l'état de I'indicateur correspondant,
et invoque SetFcnt () pour modifier la police en conséquence.

Formaltsiid ll et t- -,t râr-I-al-1cs O assignent true ou false à

menuf ten.i 0. Checkeo pour placer ou non une coche devant l'option
de menu correspondante afin de montrer si elle est activée
(rnenultenil0 correspond à I'option de menu Format/Gras, et
menulteni 1 à I'option Format/ltalique).

Les noms de vos options de menu pourront être différents si vous
ne les avez pas mis dans le même ordre que moi. Pour savoir quel
est le nom cl'un composant particulier, sélecticlnnez celui-ci dans le
Concepteur de formulaires. Le nom et le type du composant appa-
raissent en haut de la fenêtre Propriétés.

Rien ne vous oblige à vous en tenir aux noms assignés par le Concep-
teur de formulaires. Vous pouvez changer à votre guise la propriété
lJarne lorsque vous créez l'objet. Vous pouvez ainsi choisir des noms
plus parlants et plus faciles à retenir.

5. Par acquit de conscience, ajoutez dans le constructeur un appel à
SetForrt O pour définir correctement la police initiale :

public Forml ()

t

// Required for Windows Form Designer support
lT.lirL^rr,

"cornponent
() ;

382 Ouatrième partie: La programmation orientée obiet

I I le message standard Exception.ToStringO
override public string toString0
I
t

string s = Message * "\n";
s *: base.ToStrine0 ;

return s;

]

l/ Inverse - retourne 1/x
public double Inverse0
t

if (nValue0f0bject := 0)
ft

throw new CustomException("Impossible d'inverser 0", this) ;

l
)

return 1.0 / (double)nValueOf0bject;

l
l

public class Class1
I

public static void Main(stringIJ args)

{

try
I
t

// prend f inverse de 0

MathClass nathObject = new MathClass("Va1eur", 0);
Console.!^IriteLine("L'inverse de d.Value est{0}",

niath0bject, Inverse 0) ;

l
catch(Exception e)

{

Console.Writeline("\nErreur fatale inconnue : \n{01 ",
e.ToStrins0);

1
J

// attend confirmation de 1'utilisateur
Console.I,.IriteLine("Appuyez sur Entrée pour terminer. ..") ;

Console. Read 0 ;

l
]

l

Permettez-moi de faire une rerrrarque : cette classe CrrstomException
n'est pas si remarquable que cela. Elle stocke un message et un objet, tout
comme l'lyExce prioi. Toutefois, au lieu de fournir de nouvelles méthodes
poqr accéder à ces données, elle remplace la propriété Message existante
qui retourne le message d'erreur contenu dans I'exception, et la méthode
ToStringO qui retourne le message plus I'indication de pile.

Ghapitre 18 : Achever votre application Windows 439

SimpleEditor. Le format RTF conserve les informations sur la mise en forme :

la première ligne était en style Titre 1, la deuxième en style Normal, et la
troisième en stvle Code.

-

Figure 18.2 :

Le texte
venant de
Word a

conservé sa

mise en
forme.

-

Editiffi Fofmât

Taûla de poke [---
8*24

.9tlfl C'est le composant RichTextBox eui fait tout le travail de mise en forme
=(fl, qu'il fallait autrefois faire soi-même au prix de mille difficultés.

p tp.z+- a ;tÉ - . 1lé a ',rn. ,le W: rd
lt4(g

v!
'

tlvlettre hardinent en gras et en italîque
SimpleEd iror peut maintenant couper et coller du texte mis en forme,
mais il ne sait pas encore modifier la police. Pour cela, il nous faut intro-
duire les contrôles du menu Format et du champ Taille de police.

Changer de police et de taille
Changer de police, mettre le texte en gras ou en italique est en fait pres-
que la même fonction. Vous pouvez donc vous épargner quelques efforts
en créant une seule fonction capable de réaliser ces trois opérations,
comme ceci :

ll---- ---'--l'lise en forme et tai1le de la police
bool isBolded = false;
bool isltalics * false;
float fontSize * 12.0F;
private void SetFont{)
{

FontStyle fs * FontStyle.Regular;
if (isBolded)

t

38 0 0uatrième partie : La programmation orientée obiet

Renvoyer le même objet exception présente un avantage et un inconvé-
nient. Cela permet aux fonctions intermédiaires d'attraper des exceptions
pour libérer ou fermer des éléments alloués par elles, tout en permettant
à I'utilisateur final de I'objet exception de suivre I'indication de pile
jusqu'à la source de I'exception. Toutefois, une fonction intermédiaire ne
peut pas (ou ne doit pas) ajouter des informations supplémentaires à
I'exception en la modifiant avant de la renvoyer.

une d'exceptîons
La classe d'exceptions suivante définie par I'utilisateur peut stocker des
informations supplémentaires qui ne pourraient pas l'être dans un objet
Exc eption conventionnel :

/i MyException - ajoute à 1a classe standard Exception
I I une référence à MyClass
publi-c class MyExeeption : ExceptJ.on

{

private MyClasss myobject;
MyException(string sMsg, MyClass no) : base(sMsg)

t

myobject = mo;

]

l/ pemet aux classes extérieures d'accéder à une classe d'infornation
public MyClass MyObject{ get {return nryobject;))

l

Voyez à nouveau ma bibliothèque de fonctions BrilliantLibrarr'. Ces
fonctions savent comment remplir ces nouveaux membres de la classe
l4vException et aller les chercher, fournissant ainsi uniquement les infor-
mations nécessaires pour remonter à la source de toute erreur connue et
de quelques autres restant à découvrir. L'inconvénient de cette approche
est que seules les fonctions de la bibliothèque BriliiantLib rary peuvent
recevoir un bénéfice quelconque des nouveaux membres de MyEr,ception.

Le remplacement des méthodes déjà présentes dans la classe Exception
peut donner des fonctions existantes autres que I'accès Br:illiarrtLibrary
aux nouvelles données. Considérezla classe d'exceptions définie dans le
programme CustomExc eption suivant :

// CustomException - crée une exception personnalisée qui
I I affiche les informations que nous voulons, mais

I I dans un fornat plus agréable

classeRedéfinir

Ghapitre 18 : Achever votre application Windows 437

// et voilà, nous avons ce qu'il nous faut
return (string) o;

l

ReadClrpboard O commence par essayer de récupérer un objet dans le
Presse-papiers. Si elle n'y trouve rien, elle ne retourne rien. Elle essaie
alors de lire dans I'objet une chalne RTF. Encore une fois, si I'objet
clipboard n'est pas une chalne RTF, elle retourne nu11. Enfin, s'il y a
quelque chose dans Ie Presse-papiers, et si c'est une chalne RTF,
ReadClipboard O retourne la chaîne à la fonction appelante.

l. Dans I'Explorateur de solutions, double-cliquez sur Form1. cs
pour afficher le code source C# du projet.

2. Dans Ie code source, insérez les méthodes l,JriteClipboar l () et
ReadClipboard ().

Utilisez pour cela Édition/Couper, Édition/Copier, et Édition/Coller.

3. Dans le Concepteur de formulaires, sélectionnez I'option de
menu Éaition/Coller.

4. Dans la fenêtre Propriétés, cliquez sur le bouton contenant un
éclair pour afficher les propriétés actives Qes événements).
Sélectionnez l'événement Ci i ck.

5. Dans le champ qui se trouve à droite de c1ick, entrez un nom de
fonction significatif. Pour que ce soit cohérent avec I'option de
menu, j'ai mis EdltPaste.

Le Concepteur de formulaires crée une méthode vide, qui est liée à
I'option de menu de telle sorte que c'est cette méthode qui est
invoquée lorsque I'utilisateur clique sur celui-ci.

6. Répétez les étapes 3 à 5 pour les options de menu Couper et
Copier. J'ai nommé ces méthodes EditCut et EditCopy.

7. Vous devez ajouter manuellement le contenu de ces méthodes,
comme suit :

private void EditCut(object sender, Systen.EventArgs e)

t

string rtfîext * rich?extSoxl.SelectedRtf;
liriteClipboard (rtfïext) ;

37 8 ouatrième partie : La programmation orientée objet

types d'exception définie pour la brillante bibliothèque cle classe que je viens
d'écrire (c'est pour ça que je I'appelle tsr-iI lrantLi i r a:'.). Les foncticns qui
composent Bri i I iant -rhraii- envoient et attrapent des exceptions
llyExc ept ion.

Toutefois, les fonctions de la bibliothèque:l:- j i r-arr--i:,rai'i.peuvent aussi
appeler des fonctions cle la bibliothèque génériqu€ S.,':,,i -.r. I-es première.s
peuvent ne pas savoir comment traiter les exceptions de la bibliothèque
Systen, en particulier si elles sont causées par une entrée erronée.

Si vous ne savez pas quoi faire avec une exception, laissez-la passer pour
qu'elle arrive à la fonction appelante. Mais soyez honnête avec vous-même :

ne laissez pas passer une exception parce que vous n'avez simplernent pas
le courage d'écrire le code de traiternent (l'erreur correspondant.

Relancer un obiet

Dans certains cas. une méthode ne peut pas traiter entièrement une
erreur, mais ne veut pas laisser passer l'exception sans y mettre son grain
de sel. C'est comme une fonction mathén-ratique clui appelle jr':r,r'',,r-.,.. i ()
pour s'apercevoir qu'elle renvoie une exception. Même si la cause pre-
mière du problème peut être une donnée incorrecte. la fonction mathé-
matique est peut-être en mesure de fournir des indications supplémentai-
res sur ce qui s'est passé.

Un bloc catch peut digérer partiellement I'exception envoyée et ignorer le
reste. Ce n'est pas ce qu'il y a de plus beau, mais ça existe.

L'interception d'une exception d'erreur est une chose très courante pour
les méthodes qui allouent des éléments. Par exemple, imaginez une
méthode F O qui ouvre un fichier quand elle est invoquée, et le referme
quand elle se termine. Quelque part dans le cours cle son exécution, F')

invoque G O . Une exception envoyée de G (I passerait directement à
travers F O sans lui laisser la moindre chance de fermer le fichier. Celui-ci
resterait donc ouvert jusqu'à ce que le programme lui-même se termine.
Une solution idéale serait que F O contienne un bloc catch qui ferme les
fichiers ouverts. Bien entendu, r (l est libre de passer I'exception au
niveau supérieur après en avoir fait ce qu'il fallait pour ce qui la concerne.

Il y a deux manières de renvoyer une erreur. La première ccinsiste à

envoyer une deuxième exception, avec les mêmes informations ou éven-
tuellement des informations supplémentaires :

#i(l-,

Ghapitre l8 : Achever votre application Windows 435

lichrÊr €dtEs Afh.hage ErrFt 6enaâ !ÉbDârÈr tgnnier QdilJ Fetâbe

.J. :,t. ,-: Izlt ffi
Forml,cs[Desiqn]

|

*"'i;.#.ï.iilt'.':,; | : :

F[hPr edtion Formët

f-l o, [âl -;L:) ër L:--l /
a.

À::Êiirb el,-irr!
À.iÉi5rb EllsmE

E: .,,

É.r1,}inl
8:r lÉr:if rÉ

E Lrrr
F tliT:LÈfl
!i rllf:i,::

Tii

â....

i,Èfrit

I rrd,:I
F 'Ên:t'
lEenr L

I r,r,::rre,i
Iôbleôu 5trinq[

-

Figure 18.1 :

Même le
m0deste
c0mposant
TextBox a

des dizaines
de propriétés
a ctives.

-

r} r{rl
7 11)

I

.tl
l

Un mentl lrour édîter le menu

Comme il n'y a aucune raison particulière de commencer par un compo-
sant plutôt que par un autre, pourquoi ne pas aller du plus facile au plus
difficile ? Dans les premières versions de Windows, I'une des fonctions les
plus difficiles à manier était le Presse-papiers, mais la bibliothèque de C#
fait de la copie et de la récupération de données dans le Presse-papiers
un jeu d'enfant.

Le Presse-papiers est une zone d'arrière-plan de Windows dans laquelle
est stocké ce qui a été copié ou coupé en attendant d'être collé par la
suite. C'est dans Windows que doit se trouver le Presse-papiers, parce
que I'utilisateur peut y copier un objet, par exemple du texte, dans une
application, et le coller dans une autre.

La méthode SetDataOb j ect de la classe Clipboard (le clipbocrd est le
Presse-papiers) écrit un objet Data0b ject dans le Presse-papiers. L'objet
DataOb ject contient les données à stocker et la description de leur type.

L'identification du type de donnée est très importante. Par exemple, I'utilisa-
teur peut essayer de couper le contenu d'une feuille de calcul et de le coller
dans la fenêtre de Si inpl e-ECitor. S'il n'y avait pas un moyen de filtrer ce
contenu, SimpleEditor afficherait une châîne de n'importe quoi (au mieux).

garanti Édîton

dPÏi-Q)

o-a-.û
Ia,lle de p(Jrcdq D

37 6 Ouatrième partie : La programmation orientée obiet

Console. lJriteline (e. Message) ;

]

I I tZ - - préparez-vous à artraper une exception MyException

^,,hli^ ,,^;Â +1i'h^"' '
f uurrL . r --..,f DExcePÎ10n1YPe,

{

L!.I

{
\

IJ (bIxceptlonlype/ ;

l
catch (MyException me)

{

Console.tr^lriteline("Exception MyException attrapée dans f20 ") ;

Console . l^Iriteline (ne. Message) ;

l
]

I I tl - - n'essayez pas d'attraper des exceptions

public void f3 (boo1 bExceptionType)

{

f4 (bBxceptionType) ;

]

ll t4'- envoie des exceptions d'un type ou d'un autre
public void f4(boo1 bExceptionType)

t

I I nous travaillons avec un objet 1ocal

My0lass mc = new l{yClass 0 ;

if (bExc eptionType)

{

I I une erreur se produit - I'objet est envoyé avec 1'exception

thron new MyException("MyException envoyée dans f40",
mc);

]

throw new Exception("Exception générique envoyée dans f40");
]

public static void Maj.n(stringll ares)

{

I I envoie d'abord une exception générique

Console.I.,lriteline("Envoie d'abord une exception génériQue") ;

new C1ass1 0 . f1 (fa1se) ;

// envoie maintenant une de mes exceptions

Console.Idriteline("\nEnvoie d'abord une exception spécifique") ;

nerv C1ass10 .f1 (true) ;

// attend confirriation de 1'utilisateur
Console.l.lriteline("Hit Appuyez sur Entrée pour terminer...") I

Ghapitre 18

Achever votre a pp I ication
Wi ndows

Dans ce chapitre :

Implémenter les options des menus.

Copier des données dans le Presse-papiers et les récupérer.

Faire des manipulations simples sur les polices.

Lier ensemble deux contrôles pour que les modifications effectuées dans I'un
soient reflétées dans I'autre.

Lire et enregistrer le contenu de l'éditeur.

Utiliser des boltes de dialogue.

u Chapitre 17, nous avons créé une jolie petite application SimpleECitor.
Malheureusement, au point où nous en sommes, elle ne fait encore rien.

Dans ce chapitre, nous allons ajouter les couches nécessaires pour la faire
fonctionner. Vous allez transformer SimpleEditor en quelque chose d'utile : un
éditeur capable de lire et d'écrire des fichiers texte, de mettre du texte en gras et
en italique, de changer Ia taille de la police, d'écrire dans le Pressepapiers et d'en

..ÀR,:r^ lire le contenu, et que I'on peut redimensionner à volonté.
uRttqFg

;ar i-l# Le code complet de SimpreEditor €St sur le site Web.

æ,

Ajouter des actîons
Le Concepteur de formulaires simplifie le travail de création d'une application
Windows. Il permet d'ouwir une Boîte à outils regorgeant d'accessoires
comme des boutons, des zones de texte ou des étiquettes (de façon plus

37tl Ouatrième partie: La programmation orientée objet

'I
)

catch(Exception e)
rt

I I Les autres exceptions non encore attrapées sont attrapêes ici
l

l

Si ScmeOtherFunct-t on () envoyait un objet Ex-cepr:ion, celui-ci ne serait
pas attrapé par I'instruction catch (l'lyException) car une Exception
n'est pas de type l1','E:icepti;n. Il serait attrapé par I'instruction catch
suivante : ca:ch (Exception).

Toute classe qui hérite de MyException EST_UNE MyException:

class MySpecialException : MyException
{

ll instructions quelconoues ..,
l

Si elle en a la possibilité, I'instruction ca'1-ch l"lyException attrapera tout
objet l"fr;-Ç pec i a lExc e pt io n envoyé.

F'aites toujours se succéder les instructions carch de la plus spécifique à
la plus générale. Ne placez jamais en premier I'instruction catch la plus
générale :

nlln I 1n lrn1d \ômâ81lhn11ôn I Igrrl !:vrr \ /

r
t

+ rlr
LI Y

{

Some0therFunction 0 ;

l
catch (Exception me)
It

I I tols 1es objets MyException sont attrapés ici
1
J

catch (MyException e),-
t

// aucune exception ne parvient jamais jusqu'ici parce qu'el1e
I I est attrapée par une instruction catch plus généra1e

]

l

Dans cet exemple, I'instruction catch la plus générale coupe I'herbe sous
le pied de la suivante en interceptant tous les envois.

.Ë)

ô9D'\=(t

- Chapitre 17 : Gréer une application Windows : le ramage et le plumage 43 I

^sst .t Les propriétés que vous n'avez pas modifiées sont les propriétés par

7X défaut de I'objet, qui n'apparaissent donc pas dans le code, Par exemple,

ttgrf vous pouvez voir que trackBarl est ancrée sur AnchorSryles. Bottom,
Y AnchorSty Les. Lef t et AnchorStyles. Right. D'autre part, les propriétés

llaxirnum et Minimum reçoivent les valeurs 24 et 8, et la propriété Val ue, la
taille de police initiale, reçoit la valeur 12.

Le reste de la méthode InitializeComponents O est très long, mais suit la
même logique qui consiste à assigner une valeur à chaque propriété moclifiée.

Comment aplrrendre à connaître les cnmlrosants ?

L'une des questions souvent posées par les nouveaux programmeurs C#
pour Windows est : "Comment sait-on quels composants sont disponibles et
ce que fait chacun d'eux ?" Un bon moyen de faire connaissance consiste à
jouer avec eux : choisissez un composant, faites-le glisser sur le formulaire,
sélectionnez-le, et commencez à passer en revue ses propriétés.

Un autre moyen consiste à rechercher les composants dans I'aide de Visual
Studio. Le nom de la classe est le même que celui qui apparaît dans la Bolte
à outils. Ainsi, si vous voulez savoir comment utiliser un RadioButton,
vous pouvez commencer par entrer RadioButton dans I'index de I'aide.
L'aide de Visual Studio fait apparaltre une fenêtre contenant une descrip-
tion du composant, et parfois un exemple de code.

Enfin, dans tous les exemples que vous pourrez trouver, explorez la méthode
InitializeCornpcnenrs 0 jusqu'à ce que vous arriviez à comprendre ce qu'a
fait le Concepteur de formulaires. Ce procédé vous permettra de découwir
de nouveaux composants et leurs propriétés, et vous donnera une idée de ce
à quoi ils servent.

Avec I'expérience, il devient de plus en plus facile de trouver le bon
composant.

maintenant
N'oubliez pas que le programme SlmpleEditor que nous avons créé dans
ce chapitre est très simple. Il est très joli, mais il est si simple qu'en réalité
qu'il ne fait rien. Au Chapitre 18, nous allons ajouter le code nécessaire
pour faire de SinrpleEdltor un véritable éditeur.

IEt

37 2 0uatrième partie : La programmation orientée obiet

Cette classe Crsr-omExcepticn €st faite sur mesure pour signaler une erreur
au logiciel qui traite avec la tristement célèbre I'i',.C i: ss. Cette sous-classe
d'Exc -aption met de côté la même chalne que I'original, mais dispose en
plus de la possibilité de stocker dans I'exception la référence au fautif.

L'exemple suivant attrape la classe iils*.cnrE;<,- Ê-Jti,rr €t met en utilisation
ses information.s sur l"li-Ciass :

public class C1ass1

{

public void SomeFunction0

i
try
t

I I opérations préalables à la fonction exemple

SoneOtherFunction0;
I I autres opérations.

l
catch (MyException me)

{

// vous avez toujours accès aux méthodes d'Exception
string s = me.ToString0;
I I nais vous avez aussi accès à toutes les propriétés et méthodes

// de votre propre classe d'exceptions
MyClass no = ne.MyCustonObject;

I I par exemple, demandez à 1'objet MyClass de s'afficher 1ui-mêrie

string s = mo.GetDescriptionO;
l

l

public void SomeOtherFunction0

{

I I eréation de nyobject
l'lyClass myobject = new MyClass 0 ;

I I signale une erreur concernant myobject

throw new l'lyException("Erreur dans 1'objet de MyC1ass", myobject);

I I . reste de 1a fonction
l

j

Dans ce fragment de code, SoneFunctlon 0 invoque Sonefit,herFulic*'ion () de

I'intérieur d'un bloc ir,\'-. soneotherFunction
'
) qvs" et utilise un objet

myob j ect. Quelque part dans SoleOtherFunctror O, une fonction de vérifica-
tion d'erreur se prépare à envoyer une exception pour signaler qu'une condi-
tion d'erreur vient de se produire. Plutôt que de créer une simple Excepiiori,
SoneFunction () se sert de la toute nouvelle classe 1"1''iExcep r-ron, pour en-

voyer non seulement un message d'erreur. mais aussi I'objet r.r;r.,11- e,- i fautif.

- Chapitre 77 : ùéer une application Windows : le ramage et le plumage 429
'n

-

Figure 11.12:
Une fois
convenable-
ment ancrés,
les compo-
sants de
Ç-i mnl oFrJit,rr

en suivent
fidèlement le
redimension-
nement.

-

Taille de p,:fice l--

Fkhier Editiûn FDfrnal I

Qu'atlons-nous fabriqué t
Le listing ci-dessctus montre un soll.s-ensemble de la méthode
Inltiall zeC.r,tD(;rrent (t créée par le Concepteur de formulaires. Puisque
cette méthode est très volumineuse, je n'en donne ici qu'un petit extrait :

nanespace SimpleEditor
i

/// (summary)

/// Sunrnary description for Forni.
l// (lsunnary)
public class I'orrnl : System,l,Jindows.Forms,Form
{

private System.Windows.Forns.RichTextBox richTextBoxl ;

private Systern.Windovs. Forns .l'lainMenu mainMenul ;

private System. Windows. Eorms.Menulten menulteml ;

II

#region !{indor,rs Form Designer generated code
private void InitializeComponent0
t

this.mainMenul = new System.Windows.Forns.MainMenu0 ;

this.menulteml = nev System.Windovs.Forns.Menulten0 ;

this.trackBarl = nev System.ldindovs.Forns,Track3ar0 ;

/l
II

/ / naintlenul
il
this.mainMenul.MenuTtems,AddRange(new System.Windows,Forns.l'lenuTtem[] {

this,menuItenl.

1t!BIQa^
avzç-; \
:(dq9

)

\ô/

37 0 ouatrième partie : La programmation orientée objet

Comme l,'lai:' ir est le point cle clépart clr-r programme, il est bon cle toujours
en placer le contenu dans un bloc i i:-,-. Toute exception qui ne sera pas
"attrapée" ailleurs remontera finalernent jusclu'à i'1a j n r.) . C'est donc votre
dernière opportunité cle récupérer une erreur avant qu'elle aboutisse à

Windows, dont le message d'erreur sera beaucoup plus difficile à ir-rterpréter.

Le bloc cetciL situé à la fin cle ilalri r. I attrape I'objet E>:,:r1,'r. ic r et utilise sa
méthode'laS'-rlrç. 'r porlr afficher sous frlrme d'une sirnple chaÎne la rnajeure
partie des informations sur I'erreur contenues dans I'objet exc epi i ,.r.

,.t\v-_ ,a

æLapropriétéExce.:i.ltiil:.i].::.-::]i:EÉ]retclurneunSouS-ensenrblepluslisible.t J-^t :llcf f mais moins descriptif cles informatictns sur l'erreur.
Y

Cette version de la fonction i':..c:.-.: , a I , , contient la même vérification pour
un argument négatif que la précédente. Si I'argument est négatif, rla.tcr ia-l ()
met en forme un message d'erreur clui décrit le problème, incluant la valeur
incriminée. Fac1-oi iai i; regroupe ensuite ces informations dans un objet
Exception nouvellement créé, qu'elle envoie à la fonction appelante.

La sortie de ce programme apparalt comme suit ('ai un peu arrangé les
messages d'erreur pour les rendre plus lisibles) :

i = 6, factorielle = 720

i = 5, factorielle : 120

i - 4, factorielle = 24

i = 3, factorielle = 6

i = 2, factorielle * 2

i = 1, factorielle = 1

i = 0, factorielle = 0

Erreur fatale :

Systen.Bxception: Argument négatif illicite passé à F'actorial -1

at Factorial(Int32 nValue) in c:\c#program\Factorial\c1ass1.cs:1ine 23

at FactorialException.Classl.Main(StringlJ args) in c:\c#prograrn\Factorial\
c1ass1 , cs: line 52

Appuyez sur Entrée pour terniner...

Les premières lignes affichent les véritables factorielles des nornbres 6 à
0. La factorielle de -1 génère un nessage commençant par Er reur f a -

ta1e, ce qui est susceptible d'attirer I'attention de I'utilisateur.

La première ligne du message d'erreur a été mise en forme dans la fonc-
tion Facl,orial O elle-même. Cette ligne décrit la nature du problème, en
indiquant la valeur incriminée -1.

_ Ghapitre 17 : ùéer une application Windows: le ramage et le plumage 427

-

Figure 17.9 :

Laisser aux
mêmes
endroits les
composants
lorsque le

formulaire est
redimensionné
n'est sans
doute pas ce
qu'attendent
les utilisa-
te u rs.

-

3.

En somme, la l:aci',l,ar- cloit être ancrée aux bords inférieur, droit
et gauche du formulaire.

2. Pour définir I'ancrage, sélectionnez la Tr ac.:E:,rr, et cliquez sur
Anchor dans la fenêtre Propriétés.

La propriété d'ancrage apperraît sur la
pointant vers le bas.

Cliquez sur la flèche.

droite, avec une petite flèche

Une petite fenêtre apparalt. contenant quatre bras formant une
croix, chacun d'eux représentant un ancrage. Vous pouvez voir que
I'ancrage par défaut est le coin supérieur gauche du formulaire (ce
qui explique pourquoi la Tr ackBar ne bougeait pas quand on
redimensionnait le formulaire).

4. Sélectionnez les bras du bas, de droite et de gauche, et
désélectionnez celui du haut.

La Figure 17.10 montre Ie résultat.

Si vous préférez, vous pouvez aussi taper manuellement Bottom, Top,
Left, ou Right dans le champ r:i,,.r ir,-,i sâns utiliser la fenêtre d'ancrage.

5. Définissez I'ancrage séparément pour chaque composant.

Le Tableau 17.2 indique I'ancrage qui convient pour chaque composant.

Iarlle 'ie
p.rlice l-_-

368 Ouatrième partie : La programmation orientée objet

throw new Exception ("Description de 1'erreur") ;

I I suite de 1a fonction

j

La fonction SomeFunction O contient un bloc de code identifié par le mot-
clé try. Toute fonction appelée dans ce bloc, ou toute fonction qui I'ap-
pelle, est consiclérée comme faisant partie du bloc tr';'.

Un bloc tr',r est immédiatement suivi par le mot-clé catch, lequel est suivi
par un bloc auquel le contrôle est passé si une erreur se produit en un
endroit quelconque dans le bloc try. L'argument passé au bloc catch est
un obiet de Ia classe E;<ception ou d'une sous-classe de celle-ci.

À un endroit quelconque dans les profondeurs cle SomeOtherFunction O,
une erreur se produit. Toujours prête, la fonction signale une erreur à
I'exécution en envoyant (thror.) un objet Exception au premier bloc pour
que celui-ci I'attrape (catch).

Puis-je atuir un exemple.)
Le programme FactorialException suivant met en évidence les élé-
ments clés du mécanisme des exceptions :

// FactorialException - crée une fonction factorielle qui
l l indique â Factorial 0 1es arguments lllicites
I I en utilisant un objet Exception
',^:^-

(.,a+^a.usrrr8 ùy s Lerii;

nanespace FactorialException
t

// l,tyltatnfunctions - collection de fonetions nathénatiques
I I de na création (pas encore grand-chose à montrer)
-.,L1.: ^ -1^^^yuurrL "rooo MyMâthFunctions

{

ll Tactorial - retourne 1a faetorielle d'une valeur
I t fournie
public static double Factorial(int nValue)

t

l/ interdit les nonbres négatifs
if (nValue (0)

{

I I signale un argument négatif
string s = String.Format(

'rArgument négatif illicite passé à Factorial {0J",

f"-ËfJÈ f--t'I.y.)I |",1

CI

- Chapitre 17:Gréer une application Windows:le ramage et le plumage 425

Pour résoudre ce problème, placez un composant Label à gauche
de la TextBox, et entrez "Taille de police" dans sa propriété Text.
Une police Arial en l0 points gras conviendra bien à l'étiquette
de la TextBox.

Ajoutez maintenant une étiquette à I'extrémité gauche de la
TrackBar. DonnezJui également une police Arial en l0 points
gras. Entrez 8 dans la propriété Text, puisque c'est la valeur que
nous avons donnée à la propriété Minimum de la TrackBar.

Faites de même pour l'étiquette de I'extrémité droite de la
TrackBar. Entrez 24 dans sa propriété Texte, eui est la valeur de
la propriété l,laximum de la TrackBar.

Au Chapitre 18, je vous montrerai comment les valeurs de ces
étiquettes peuvent être définies automatiquement en fonction des
propriétés de la TrackBar, mais pour le moment nous allons nous
contenter de le faire manuellement.

Encore une fois, générez à nouveau SimpleEditor pour être sûr
que tout va bien.

Personne ne pourrait être plus heureux avec le résultat montré par
la Figure 17.8.

l.

,

3.

^dËK=qg,
4.

-

Figure 17.8 :

SimpleEditor
est prêt pour

aller danser.

-

Taille de po[ce l-*

366 ouatrième partie: La programmation orientée obiet

d'erreur que Ia fonction appelante ne teste pas. Bien str, en tant que program-
meur en chef, je peux me laisser aller à proférer des menaces. Je me souviens

d'avoir Iu toutes sortes de liwes de programmation regorgeant de menaces de

bannissement du syndicat des programmeurs pour ceux qui ne s'occupent pas

des codes d'erreur, mais tout bon programmeur FORTRAN sait bien c1u'un

langage ne peut obliger personne à vérifier quoi que ce soit, et que, très
souvent, ces vérifications ne sont pas faites.

Souvent, même si je vérifie I'indication d'erreur retournée par Fa': t ,, r -a L i i

ou par toute autre fonction, la fonction appelante ne peut rien faire d'autre
que de signaler I'erreur. Le problème est que la fonction appelante est

obligée de tester toutes les erreurs possibles retournées par toutes les

fonctions qu'elle appelle. Bien vite, le code commence à avoir cette allure là:

// appelle SomeFunction, 1it 1'erreur retournée, 1a traite
// et retourne
errRtn = someFunc0;
if (errRtn == SF*ERRORI)

{

Console.WriteLine("Erreur de type 1 sur appel à someFunc0");
return MY_ERROR_1;

]

if (errRtn == SF-ERROR2)

{

Console.i.lriteLine("Erreur de type 2 sur appel à sorneFunc0"):
return My_ERROR-2;

l
I I appelle SomeOtherFunctions, 1it 1'erreur, retourne, et ainsi de suite
errRtn = someOtherFunc0 ;

if (errRtn == SOF ERROR1)

i
Console.l'trriteline("Erreur de type i sur appel à someFunc0");
return MY_ERR0R*3;

l
if (errRtn == SOF-ERROR2)

{

Console.lfriteline("Erreur de type 1 sur appel à someFunc0");
return MY-ERROR-/*;

l

Ce mécanisme présente plusieurs inconvénients :

t/ Il est très répétitif.

t/ Il oblige le programmeur à inventer de nombreuses indications
d'erreur et à en maltriser I'emploi.

Ghapitre 17 : Créer une application Windows: le ramage et le plumage 423

Au lieu de faire apparaître les sous-propriétés de Font dans la fenêtre
Propriétés, vous pouvez ouwir la bolte de dialogue Police : dans la boîte
de dialogue Propriétés, cliquez sur Fonr, puis cliquez sur Ie petit carré
gris contenant des points de suspension qui apparalt dans ce champ.

Dans la fenêtre Police, sélectionnez la police Arial, une taille de
12 points, et le style Gras.

Faites glisser le coin inférieur gauche de la zone de texte afin de
la redimensionner pour deux chiffres dans la taille et la police
que vous venez de sélectionner.

Eichhr gclitim Sfi&ôqe ProiEt ffnérer Ébæua Donftics gutdr Fe!&rÊ Hdp

2.

3.

=!'I-fiSHffi i ?:t?l l-,-
:: :)';: i'. : ., , jt : :j..1. Êcrm I .cs [Design]t |

,' : .

t Ûet!'l T ,À-l {n

text0oxl 5vstem.!VrndÉws,Forms T -

Bn.kr:ùlo1 f Wrndow

Sorders[yle F]red3D

aursor l8eam

E Font llrcrosorl 5èn5

ForÊCr,lor I wrndowTe, t

El Lines lableau String[
RrghiToleft No

5crollBôf' lJone

ftfltextao*t
TexlA|gn Left

B i.urt2rv|ur.t't
AcceFtsPÊtlrr, Fal.e

Ac.eFtsTèb False

Àllt,Droç FilsÊ

Text
Le lexlÉ conteru dân! ce cmtr6lÊ,

-

Figure 17.7 :

Certaines
propriétés,
c0mme
Font, sont
en fait un

ensemble de
SOUS-

propriétés,
que vous
devez définir
individuelle-
ment.

- 4. Assignez Center à Ia propriété TextAlign, supprimez le contenu
de Text, et vous y êtes.

Au cas où vous ne sauriez pas très bien ce que vous permet de faire
un certain composant, la liste des propriétés est là, dans la fenêtre
Propriétés, pour vous en donner une idée. Sélectionnez simplement
le composant, et parcourez le contenu de la fenêtre Propriétés en
définissant les propriétés selon ce qui vous convient. Vous ne
pouvez pas faire de dégâts : si vous n'aimez pas le résultat, vous
pourrez toujours modifier la propriété. Si vous avez modifié tant de
choses que vous ne vous y retrouvez plus, sélectionnez le compo-
sant, appuyez sur la touche Suppr, et il a disparu.

364 Ouatrième partie: La programmation orientée obiet

(dFactorial =: l'lyMathFunctions.NON-INTEGER-VALUE)

Console . }lriteLine
("Factoria10 a reçu un nonbre non entier");

breah;
l
!

I I aî.f.iche 1e résultat à chaque pâssâge

Console.l'Iriteline(r'i = {0}, factorielle = {1}",
i, MyMathFunctions.Factorial(i)) ;

l
// attend confirnation de 1'utilisateur
Console . l,JriteLine ("Appuyez sur Entrée pour terminer . . .

Console.ReadO I

l

Factorlal O commence maintenant par effectuer une série de tests. Le

premier regarde si la valer-rr passêe est négative (0 est accepté parce qu'il

donne un résultat raisonnable). Si oui, la fonction retourne immédiatement une

indication d'erreur. Si non, la valeur de I'argument est comparée à sa version

entière : si elles sont égales, c'est que la partie décimale de I'argument est nulle.

l"lain O teste le résultat retourné par Facto:ia1O, à la recherche de I'indica-

tion éventuelle d'une erreur. Toutefois, des valeurs Comme -I eI -2 n'ont
guère de significat-ion pour un programmeur qui effectue la maintenance de

son code ou qui I'utilise. Pour rendre un peu pius parlante I'erreur retournée,

la classe MyMathFiriict j cns définit deux constantes entières. La constante

NEGATTVE lJUl"iBER. reçoit la vaieur -1, et NOI'I-II'JTEGER-VALUE reçoit la valeur
-2. Cela ne change rien, mais I'utilisation des constantes rend le programme

beaucoup plus lisible, en particulier la fonction appelante Main O '

Dans la convention sur les noms Southern Naming Convention, les noms des

constantes sont entièrement en majuscules, les mots étant séparés par un tiret
de soulignement. Certains programmeurs, plus libéraux, refusent de faire

allégeance, mais ce n'est pas la convention qui a des chances de changer.

Les constantes contenant les valeurs d'erreur sont accessibles par la
classe, comme clans l"1vi"1athCiass. i'jEGATIVE IJUMBER. Une variable de

type const est autornatiquement statique, ce qui en fait une propriété de

classe partagée par tous les objets.

La fonction Fa.-rrJ,- lal O signale ntaintenant qu'une valeur négative lui a
été passée conlnle arguntent. Elle le signale à Main O qui se termine alors

en affichant un nlessage d'erreur beaucoup plus intelligible :

if
t

U
=Ë)

- Ghapitre 17 : Crêer une application Windows : le ramage et le plumage 42 I

Cliquez sur I'un des éléments du ntenu, et examinezlaliste des propriê
tés. On y trouve bien str une propriété T'ext - cette fois, c'est l'étiquette
du menu. Le champ Shortc rit €St aussi une propriété intéressante,
montrée par la Figure 17.6. Si vous cliquez dessus, une liste déroulante
apparalt, contenant tous les raccourcis clavier que vous pouvez utiliser
pour sélectionner cet élérnent.

-

Figure 17.6:
La propriété
Shortcut
permet de
spécifier le
raccourci
clavier que
vous v0ulez
assigner à

| élément de
menu.

-
Appuyer sur un raccourci clavier permet d'exécuter la même
commande qu'en sélectionnant I'option de menu associée. Par
exemple, appuyer sur Ctrl*C clonne le rnême résultat que Éclition/
Copier, mais c'est plus rapide.

7. Dans le formulaire, cliquez sur l'élément de menu Fichier/Ouvrir,
et assignez CtrlO à sa propriété Shorrcu*;, corme le montre la
Figure 17.6. En répétant ce processus, assignez un raccourci
clavier à tous les autres éléments de menu, selon le Tableau 17.1.

8. Comme d'habitude, générez à nouveau le programme et essayez-le.

Vous pouvez taper dans la zone de texte et ouvrir les différents menus
principaux. Naturellement, au point où nous en sommes, simpleEditor
est encore plus que simple. C'est une coquille vide. Si vous sélectionnez
Fichier/Quitter, il ne se passe rien du tout. II vous faut ajouter du code
derrière chacun de ces éléments de menu pour qu'ils fassent quelque
chose. C'est le sujet du Chapitre 18.

&9.::::':',::i;: t' ::::'' " .,
Eichier EdiliEn AfÊr.hÈgÈ erojÈt 5énérer !ébûgrer DlnneÈ. lriil5 FenÉtrÈ ielp

362 Ouatrième partie:La programmation orientée objet

négatif. Ensuite, remarquez que les valeurs
la même manière que les valeurs positives.
chose qui cloche.

négatives ne croissent pas de
Manifestement, il y a quelque

Les résultats incorrects retournés ici sont assez subtils par rapport à ce qui
aurait pu se produire. Si la boucle de Facior:.-a,()avait été écrite sous la
forme do i . . . I whiie (dVa1,re l: 0), le programme se serait planté en
passant un nombre négatif. Bien str, je n'aurais jamais écrit une cclndition
comme whiie (ciValue I: 0), car les erreurs dues à I'approximation
auraient pu faire échouer de toute façon la comparaison avec zéro.

Retourner une indication d'erreur

Bienqu'ellesoitassezsimple,il rnanqueàlafonctionFacii'i,aii', uneimpor-
tante vérification d'erreur : la factorielle d'un nombre négatif n'est pas définie,
pas plus que la factorielle d'un nombre non entier. La fonction Fact.jf ia. ()

doit donc comporter un test pour vérifier que ces conditions sont rernplies.

Mais que fera la fonction Factorial O avec une condition d'erreur si la
chose se produit ? Elle connaltra I'existence du problème, mais sans
savoir comment il s'est produit. Le mieux que : ac--or.a i , .; puis.se faire
est de signaler les erreurs à la fonction qui I'appelle (peut-être celle-ci
sait-elle d'où vient le problème).

La manière classique d'indiquer une erreur dans une fonction consiste à

retourner une certaine valeur que la fonction ne peut pas autrement retour-
ner. Par exemple, la valeur d'une factorielle ne peut pas être négative. La
fonction Factorial O peut donc retourner -1 si un nombre négatif lui est
passé, -2 pour un nombre non entier, et ainsi de suite. La fonction appelante
peut alors examiner la valeur retournée : si cette valeur est négative, elle sait
qu'une erreur s'est produite, et Ia valeur exacte indique la nature de I'erreur.

Le programme F a c t o r i a 1 E r r o r Re t u r n suivant contient les ajustement.s
nécessaires :

I I îactatialErrorReturn - crée une fonction fâctorielle qui
I I retourne une indication d'erreur quand

I I quelque chose ne va pas

using System;

nanespace FactorialErrorReturn
{

// MyMathFunctions * collection de fonctions mathématiques

I I de *ia création (pas encore grand-chose à montrer)

1e$!Qa"

{cg)

- Ghapitre | 7 : Créer une application Windows : te ramage et le plumage 4l I

c'est le texte qui apparalt dans la zone de texte. Pour un bouton,
c'est l'étiquette qui apparaît sur le bouton. Cette propriété a tou-
jours le même sens, mais elle est interprétée selon le contexte.

.a

Ehhier EdÊion Affithâge go,et Çénéra $bogua 09nnéeç For06t QLÊik FeÊâre Heb

.:rl' u' e W ffi 'N -u:: 'i'
i ..)t. t: ').t':rt: .":ù Fqml.cJ fDesignl* |

'as*':
Boiteàwtils q \
DonrÉes

aompNæt5

Windows Flrm t .

.â T-"t
*l'splitlÊr

fi oomsnupcbwn

ll? Numsrl-FDm
F lfskBa
t,-Progrê5igd

Qf nthrextaox

''ttj rfr4d.st

Ël Helpprovider

3r rootp

El contextf'lenu

:j loob€r

Prtræ-pèpias cùcrràire ç
6enâ d

-

Figure 17.4:
La zone
RlchTextBox
est I endroit
où l'utilisa-
ïeur p0urra
éditer son
texte dans
ù![Prslua Lv!.

- 4. Pour voir où vous en êtes arrivé, générez et exécutez à nouveau
I'application.

SimpleEditor apparâît, avec la zone de texte au milieu. Vous pouvez y
taper du texte, déplacer le curseur dans le but d'insérer du texte où
vous voulez, et même sélectionner du texte. Bien str, vous ne pouvez
rien faire de ce texte, mais SimpleEditor a déjà fait pas mal de progrès.

Construîre les menus

Rien n'oblige à placer ces étapes ici, mais j'ai choisi d'ajouter maintenant
les menus et leurs options. Pour cela, il vous faut un composant MainMenu :

l. Dans la Boîte à outils, cliquez sur le composant MainMenu. Dans le
formulaire, cliquez à I'emplacement de l'éIément le plus à gauche
du menu principal.

Un petit cadre apparalt, contenant les mots Tape z ici.

360 Ouatrième partie: La programmation orientée obiet

Traiter une erreur à l'ancîenne mode : la retourner

Ne pas signaler une erreur à I'exécution n'est jamais une bonne idée. Je
dis bien jamois.' si vous n'avez pas I'intention de déboguer vos program-
mes et si vous ne vous souciez pas qu'ils marchent, alors seulement c'est
peut-être une bonne idée.

Le programnle !-ar:tur i alErrcr suivant mclntre ce qui arrive quand les
erreurs ne sont pas clétectées. Ce programme calcule et affiche la fonction
factorielle pour de nombreuses valeurs, dont certaines sont tout juste licites.

La factorielle du nonrbre
exemple, la factorielle de
n'est valide que pour les

N est égale à N " (N-l) . (N-2) 1. Par
4 est 4 * 3 * 2 * 1, soit 24. La fonction factorielle
nombres entiers naturels (positifs).

ll Factoriall.{ithError - créer et utiliser une fonction
I I factorielle qui ne contient aucune

I I vérification
using System;

namespace Factoriall,IithError
t

li MyMathFunctions - collection de fonctions rnathématiques

/ / de na création (pas encore grand-chose à nontrer)
public class MyMathFunctions
It

// Factorial - retourne 1a factorielle
I I fournie
public static double Factorial(double
{

// commence Dar donner la valeur 1 à un "accumulateur"
double dFactorial = 1.0;
I I tait une boucle à partir de nValue en descendant de I chaque fois
ll norr mrilt'i nlier 1'accumulateur
I I par la valeur obtenue

do

{

dFactorlal *= dValue;
dValue -= 1.0;

J while(dValue) 1);
// retourne 1a valeur stockée dans 1'accumulateur
return dFactorial;

J

l
nrrhlie class Classl

t

public static void Main(string[] args)

d'une valeur

dValue)

- Ghapitre l7 : Crêer une application Windows : le ramage et f e plumage 4 | 7

C'est dans la méthode InitializeComponent que sont créés les compo-
sants Windows. Le commentaire spécial placé iuste avant cette fonction
dit en effet : "Ne touchez pas à cette section du code, parce que c'est là
que moi, le Concepteur de formulaires, je fais mon boulot." En fait, le
Concepteur génère le code situé entre les commentaires lf t "gton et
/Êendregion, €û réponse à ce que je dessine.

Dans ce cas simple, I'application commence par définir le membre
AutoScaleBaseSize de I'objet this. Je suis pas très str de ce qu'est cette
propriété. Heureusement, comme c'est le Concepteur de formulaires qui
s'en occupe pour moi, je n'ai pas besoin de le savoir, mais je sais que thls
est I'objet Form lui-même. En continuant jusqu'à la dernière ligne de
Initiali zeComponent, je peux voir que "Simple Editor" est assigné à
this. Text.

Prenez le temps d'étudier soigneusement ce point, car c'est là I'essentiel
du Concepteur de formulaires. Le Concepteur affiche les propriétés du
formulaire. L'une de ces propriétés est Text, à laquelle j'ai donné la valeur
"Simple Editor". Le Concepteur a ajouté une ligne de code qui assigne en
conséquence cette valeur à la propriété Text du formulaire.

La méthode lispose est invoquée lorsque Forml est fermé. Elle n'est pas
particulièrement intéressante dans ce cas, parce que la fermeture du
formulaire ferme aussi l'éditeur.

d'édition
La propriété la plus importante de SimpleEditor est la fenêtre d'édition :

l. Ouvrez la Boîte à outils en sélectionnant Affichage/Boîte à outils.

La Bolte à outils contient une collection d'objets graphiques en C#, que
I'on appelle aussi parfois composonfs. On y trouve divers ensembles
d'accessoires, dont un ensemble nommé Windows Forms, contenant les
accessoires dont nous avons besoin pour réaliser SimpleEditor.

Le terme composonf ne s'applique pas seulement aux objets graphi-
ques, mais tous les objets graphiques sont des composants. C'est
donc ce terme que nous utilisons ici.

Les accessoires de données sont utilisés pour réaliser facilement
des liens avec des bases de données externes. Les composants
gèrent le multitâche. La section Général de la Boîte à outils est
I'endroit où vous pouvez stocker les accessoires que vous réalisez

Édîter la fenêtre

Û
tËK

'qE,)

Les hriables de
autorisées

Ghapitre 19: Les dix erreurs de génération les plus courantes... 47 5

C# résout ce problème en allouant tous les objets à partir du tas. Mieux
encore, C# retourne la mémoire au tas pour vous. Plus d'écran noir parce
que vous avez envoyé au tas le mauvais bloc de mémoire.

tupe qtointeur ne sont pas

L'introduction des pointeurs par le langage C a beaucoup fait pour son succès.
Les manipulations de pointeur étaient une fonctionnalité puissante. Les
vétérans de la programmation en langage machine pouvaient y reproduire les
astuces de programmation qui leur étaient familières. C** a conseryé de C,

sans modifications, les fonctionnalités sur les pointeurs et le tas.

Malheureusement, ni le programmeur ni le programme ne peuvent distinguer
un bon pointeur d'un mauvais. Lisez un bloc de mémoire avec un pointeur non
initialisé et, sivous avez de la chance, votre programme se plante. Si vous
n'avez pas de chance, le programme poursuit son petit bonhomme de chemin
en traitant comme un objet valide le bloc de mémoire trouvé au hasard.

Les problèmes de pointeur sont souvent difficiles à identifier. Un programme
qui contient un pointeur invalide se comporte en général de façon différente
à chaque exécution.

Heureusement pour tous ceux qui sont concernés, C# a écarté les problè-
mes de pointeur en se débarrassant des pointeurs en général. Les référen-
ces qu'il utilise à la place sont indépendantes du type et ne peuvent pas
être manipulées par I'utilisateur pour en faire quelque chose qui pourrait
démolir le programme.

Uendez-moî de t/os proprîétésquelques-unes

Tout bon programmeur sait que I'accès à un membre donnée doit être
soigneusement contrôlé à l'aide d'une méthode get O pour en retourner
la valeur, et éventuellement d'une méthode set O pour lui assigner une
valeur. Tout programmeur qui a déjà utilisé les fonctions get O et set o
est conscient du fait que leur emploi n'est pas une chose très naturelle :

using Systen;
nublic class Student

Chapitre 19 : Les dix erreurs de génération les plus courantes... 47 7

fichiers "include", qui sont alors utilisés par les modules ; toutefois, il
peut devenir très compliqué de placer tous ces fichiers include dans le
bon ordre pour que votre module se compile correctement.

C# se débarrasse de cette absurdité en recherchant lui-même les définitions de
classe, et en les trouvant. Si vous invoquez une classe StuCen*., C# recherche
et trouve lui-même la définition de cette classe pour s'assurer que vous I'utili-
sez correctement. Il n'a pas besoin pour cela que vous lui donniez un indice.

Ne construisez pns, initîalisez
J'ai trouvé évidente I'utilité des constructeurs la première fois que j'ai jeté
les yeux sur I'un d'eux. Fournir une fonction spéciale pour s'assurer que
tous les membres donnée ont été définis correctement ? Quelle bonne
iclée ! Le seul inconvénient, c'est que j'ai fini par ajouter un constructeur
trivial chaque fois que j'écrivais une classe :

public class Account

{

private double balance;
private int numChecksProcessed;

private CheckBook checkBook;

public Account ()

{

balance : 0.0;
numChecksProcessed = 0;

checkBook = new CheckBook0;

l
]

Pourquoi ne pourrais-je pas initialiser directement un membre donnée en
laissant le langage générer le constructeur pour moi ? C++ demande
pourquoi, C# ré;rsn6 pourquoi pas ? C# se débarrasse des constructeurs
inutiles en autorisant I'initialisation directe :

public class Account

{

private double balance = 0.0;
pri-vate int numChecksProcessed = 0;
orivate CheckBook checkBook * new CheckBook0;

1
)

Chapitre 19: Les dix erreurs de génération les plus courantes...

Les programmeurs ont ensuite réalisé que I'interface, plus légère, pouvait
rendre les mêmes services. Une classe qui implémente une interface,
comme I'exemple suivant, promet à C# comme à tout le monde qu'elle
offre les méthodes read () et r,rrite () correspondantes :

interface IPersistable
{

void read O ;

void writeO;
i

479

Le sqstème des tqpes unif iés

En C++, la classe est une fonctionnalité fort sympathique. Elle permet aux
données et à leurs fonctions associées d'être rassemblées dans un ensem-
ble propre et net, fait pour reproduire la manière dont les gens voient les
choses dans le monde réel. Le seul inconvénient est que tout langage doit
offrir de la place pour les types de variable simples comme les entiers et
les nombres en virgule flottante. Cette nécessité a produit un systèrne de
castes. Les objets de classe vivaient d'un côté, et les variables de type
valeur comme irt et f loat vivaient de I'autre. Bien str, les types valeur
et les types objet étaient autorisés à jouer dans le même programme,
mais le programmeur devait maintenir cette séparation dans son esprit.

C# abat le mur de Berlin qui séparait les types valeur des types objet.
Pour chaque type valeur, il y a une "classe de type valeur" correspon-
dante, que I'on appelle une sfructure. Ces structures à faible cott peuvent
se mélanger librement avec les objets de classe, permettant aux program-
meurs d'écrire des instructions comme celles-ci :

MyClass ny0bject = new MyClass0;
/i affiche un "myObject* nis sous forme de chaîne

Console.trtrriteline (my0bjeet. ToString 0) ;

int i * 5;

i I affiche un int sous forne de chaîne

Console.Writeline (i. ToString0) ;

/l affiehe 1a constante 5 sous forme de chaîne
Console.l.Iriteline (S . foString 0) ;

Non seulement je peux invoquer la même méthode sur un lnt que sur un
objet de M1'Cias s, mais je peux aussi le faire avec une constante comme
"5". Ce scandaleux mélange des types de variable est une fonctionnalité
puissante de C#.

NET
description 3, 5, 7

A-UN 280
quand utiliser 281

Abstract 318

Abstractlnheritance 3 I 8

Abstractlnterface 343
Abstraction 231, 232
Accès

à des membres de
classe, restreindre 239

contrôle de l', 237 244, 246
AccessControl 391

Accesseur 250
Addition sur des chalnes.

opérateur 202
Aide

en cours d'édition 196

plus 195

saisie automatique 190

AlignOutput 218
Ancrer un contrôle dans un

formulaire 426
Application

ajouter des actions l8
commentaires 26

console
cadre de travail 26

créer 24

créer un modèle de 22

dessiner 12

Index

dossier dans lequel
enregistrer 22

exécuter 19

à partir de la ligne de
commande DOS 25

générer 17

nom par déiauT22
où sont les instructions 27

Application Windows
afficher le code source 415

ajouter
des actions 433
des contr6les 422
des étiquettes 424

concevoir la
présentation 4l 1

connaltre les
composants 431

construire les menus 419

créer le cadre de
travail 413

définir 410
dessiner 412

redimensionner le
formulaire 426

Argument(s)
accorder définition et

utilisation 146

d'un type valeur, passer
à une fonction 151

par défaut,
implémenter 149

passer
à I'invite de DOS 165

à MainQ 164

à partir de Visual
Studio .NET 170

à partir d'une
fenêtre 168

à un programme 164

à une fonction 144

par référence à une
fonction 154

plusieurs à une
fonction 145

qui sortent mais n'entrent
pas 156

surcharger une
fonction 147

Arithmétique (opérateurs) 53

Array (classe) 116

syntaxe I 17

Arrondir 37

Assembleur 4

Assignation, opérateur de 56

Assistant Applications 8
Asynchrone (l/O) 396

Automatique, saisie 190

AverageAndDisplay 145

AverageAndDisplay-
Overloaded 148

AverageStudentGPA 125

AverageWith
CompilerError 146

Balise des commentaires de
documentation 196

BankAccount 240,291
BankAccountC ontructors-

AndFunction 266

String 201

Classif ication 234, 235,
273,311

Clipboard 435

Commandes de boucle 79

Comment aire 26

de documentation 195

balise 196

Comparaison, opérateurs
de 59

CompareQ 204
avec majuscules et

minuscules 208
Comparer des nombres 41

Compteur 44, 45, 47,52
utiliser une variable

comme 41

Concaténation 47,221
Concepteur de formulaires 12

Console,
application, créer un

modèle de22
classe 173

Const 116

Constante numéricue
déclarer 50

type 50

Constructeur(s) 252

comment se fait la
construction 262

de la classe de base,
passer des arguments
au 288

de structure 348
et héritage 286

éviter les duplications
entre les 265

exécuter à partir du
débogueur 258

exemple 256
par défau|253,26l

de la classe de base,
invoquer 286

surcharger 263
ConstructorSavings-

Account 291

Continue 85

Contrôle
ancrer dans un formu-

laire 426
d'accès 237,244,246
dans une application

Windows, ajouter 422
mettre en place 13

propriétés 15

Conversion
implicite 464
invalide, éviter en

utilisant is 284
Conversion de température 40

Convert 212

Couplage 391

CustomException 380

Decimal 42

limitations 44

vitesse de calcul 44

DecimalBankAccou nt 247
Déclaration

tableau 123

Déclarer
constante numérique 50

variable 32

DemonstrateDefault-
Constructor 256

Dessiner une application 12

Destructeur 293

Déterministe 294
DisplayArguments 164

DisplayRoundedDecimal 149

DisplayXWithNestedloops 95

Distribué (développement) 5

Do... while 84

Documentation
commentaire de 195

balise 196

XML, générer 200

lndex 483

Donnée membre d'une
classe 136

DOS, passer des arguments à

I'invite de 165

Dossier de classement d'une
application 22

Double 39

DoubleBankAccount 246

Early binding 306

Enregistrer, avant de
quitter 452

Erreur
codes d'erreur 365

retourner 360. 362

utiliser un mécanisme
d'exceptions 367

Espace de nom
accéder à des modules

du rnême 388
contrôler I'accès aux

classes avec 391

déclarer 388
réunir des fichiers

source dans 387

utiliser avec using 390
EST-UN 278

quand utiliser 281

Étiquette clans une applica-
tion Windows, ajouT.er 424

Événement 18,434
Exception

classe de. redéfinir 380
créer une classe de 371

exemple 368
intercepter et

renvoyer 378
laisser passer 375

utiliser un mécanisme
cle 367

Exécutable 4

instructions if imbri-
quées 76

Incrémentation, opérateurs
de 57, 58

Index d'un tableau 118

InheritanceExample 2 72

InheritanceTest 321

InheritingAConstructor 286
Initialisation, référence non

initialisée 112

Instance 106,234
Int 33, 35

Interface
à créer soi-même 332
abstraite 342

description 329
et héritage342
exemple 330
prédéfinie 334

InvokeBaseConstructor 289

InvokeMethod 179

Is 284, 308
IsAllDigits 213

Italique (mettre en) 439

7-K
Java 5
Label425
Langage(s)

c#3,5
d'assemblage 4

de haut niveau 4

Java 5
machine 4

Late binding 306
Length 122

Liaison
précoce 306

tardive 306
Lire les caractères saisis au

clavier 210

Logique
opérateurs 61

type bool 44

de comparaison 59

MainQ, passer des
arguments à 164

Majuscules 208
Masquer Toir redéfinir
Membre

de classe, restreindre
I'accès 239

donnée 136

d'un objet, accéder à 107

fonction 136

statique d'une classe 115

Mémoire, stocker un obiet
en 107

Menus
ajouter des actions 435
d'une application

Windows, construire 419

implémenter les
options 440

Méthode 181

abstraite 318
accès 394
déclarée

comme virtuelle 309
internal 394
private 393

protected 393

public 393
définir 179

différente selon la
classe 297

d'objet, définir 177

d'une classe de base,
redéfinir 298

d'une structure 349

Index 485

héritée, surcharger 296
nom complet 182

propriétés actives 434
redéfinie, Accéder à 308
redéfinir

accidentellement 302

ou ajouter un test 301

rôles 181

Minuscules 208
MixingFunctionsAnd-

Methods 188, 196

Modèle 8
ModifyString 203

Nachos 231

New 258, 469
Nom

complet
d'une méthode 182

d'une fonction 296

conventions sur 48

de classe 105

de fichier ,lire 446
de fonction,

surcharger 147

de variable 127

d'une fonction 207

espace de 387
Nombre(s)

comparer des 41

en virgule flottante,
comparer 60

entré au clavier 215

format de sortie 224

réels 38

Notation hongroise 49

Null 111

référence à 161

Numérique
entrée, analyser 212

Replace 221

Return 157, 158

RichTextBox 418
RTF 4I8

écrire un fichier 449
lire un fichier 448

Saisie automatique 190

sur les fonctions de la
bibliothèque
standard 191

sur vos propres fonc-
tions et méthodes 193

SavingsAccount 279
Sceller une classe 325
Sealed 325
Sécurité

niveaux de 243
SetX 250
Signée (variable) 37
SimpleEditor 410

enregistrer avant de
quitter 452

fenêtre d'édition 417
SimpleSavingsAccou nt 27 5

Sortie d'un programme
contrôler manuellem ent 2I7

Sortlnterface 336
SortStudents 130

Source 4

fichiers
diviser un programme

en plusieurs 385

réunir dans un espace
de nom 387

split 215, 223

Statique
membre d'une classe 115
propriété 251

StreamReader, utiliser 402

StreamWriter 395

utiliser 396
String 46,202

classe 201

convertir en un autre
type 212

StringReader 395

StringToCharAccess 2 I 0

StringWriter 395

Struct 346
Structure 346

constructeur de 348
et classe 345

exemple 350
méthodes d'une 349
types structure

prédéfinis 353
StructureExample 350
Surcharger Voir aussr

redéfinir
constructeur 263
fonction I47,296
une méthode

d'une classe de base 298
héritée 296

Switch 97
pour tester une chaîne 209

Tt
Tableau 116 Voir cussi Array

à longueur
fixe I 17

variable 120

déclaration 123

dépassement de taille 119

d'objets 124

foreach 127

index 118

longueur 123

propriété Length 122

trier 128

Taille, de police, changer 439
Température (conversion) 40

lndex 487

Test 162

TextBox 422

changer la taille de
police en utilisant 444

TextReader 395
TextWriter 395
This 184

absent 188

explicite 185

Throw 367
Tolnt32 212
Tolnt64 212
ToString 384
TrackBar 424

changer la taille de
police en utilisant 442

Trier un tableau 128
Trim 212,217
Tronquer 37

True 44
Try 367
Type

assigner un 65

bool 44
char 45
const 116

conversion de 45

conversion de, le cast 51

conversion explicite,
le cast 65

conversion implicite 64
de longueur fixe 49

de référence, opérateurs
sur 111

decimal 42

decimal, int, et float
(comparaison) 44

déclaré, utiliser chaque
fois 306

défini par le program-
meur 50

d'expression, accorder 63
double 39

d'une constante 50
d'une opération,

calculer 63

erlt?ll .sr^E-I

'V'd'S tuudo8âJ red

7697 rar,ruul ue
raurudur.p 9^âr{JV

488 c# pour tes Nuts

entiers divers 35

étendue 42
évaluation par 107
float 38

fonction avec ou sans 160
int 33

intrinsèque 49
string 46

convertir 212

et char, comparais on 47
struct 346
structure prédéfinie 353

type valeur 49

unifier le système de 353
vitesse de calcul selon

le 42

TypeUnification 354

UML (Unified Modeling
Language) 312

Using, utiliser un espace de
nom avec 390

Valeur, évaluation par, 107
Variable

de longueur fixe 49

decimal, déclarer 43

déclarer 32

en virgule
flottante 38

flottante, comparer 60
flottante, déclarer 38
flottante, limitations 40
flottante, précision 39

initialiser 467
logique 44
nom 127

non déclarée 462
passer par référence

à une fonction 154

ou par valeur 151

règles de
déclaration 34
portée 90

signée oLr non signée 37
.structure 346
utiliser comûte

cornpteur 41

VariableArrayAverage 1 20

VehicleDataOnly 109
Virgule flottante 38

comparer des nombres
en 60

format cle calcul du
Pentium 41

limitations 40
précision 39

Virtuelle, méthode, déclarer
comme 309

Visual Basic 20

Visual Studio
fenêtres de 13

interface utilisateur 13

plus d'aide 195

saisie automatique 190

Visual Studio .NET 7
Vitesse de calcul, 42 44
Void 16i)

While 80

Windttws
créer une application

avec C# 7
définir une

application 410
générer et exécuter un

premier programme 11

Presse-papiers 435
WriteBinary 395

Writeline 173

X-Z
XML 196

documentation,
générer 200

Zéro, référence à 161

486 c# pour tes Nuts

Obiect (classe) 285
Objet(s)

accéder
à, méthodes pour 245

aux membres d'un 107

changer de classe 282

constructeur 252
courant 181

accéder à 183

courant, this 184

distinguer les uns des
autres I I I

d'une classe abstraite 320

fonctions et méthodes
de, définir 177

null 111

passer à une fonction 175

programmation
orientée 231

propriété(s) 110

de 115

stocker en mémoire 107

string 202

structure 346
tableau de I24

Opérateur(s)
d'addition sur les

chaînes 202

d'assignation 56, 111

de comparaison 59
d'incrémentation 57. 58

logiques 6l
ordre d'exécution 55
point 111

simples 54

ternaire 66

Orientée objet
(programmation) 231

Out 153, 158

OutputFormatCont r ols 226

Pad 217

ParseSequenceWithSplit 2 I 5

PassByReference 153

PassByReferenceError I 54

PassByValue 151

PassObject 176

PassObiectToMember-
Function 177

Pentium
calculs en virgule

flottante 41

vitesse de calcul 42

PEUT_ÊTRE-UTILISÉ-
COMME 327

Police, changer de 439
Polymorphiclnheritance 309
Polymorphisme 305,306

accéder à une méthode
redéfinie 308

Portée des variables, règles
de 90

Précision 39,41
Presse-papiers 435
Programmation

fonctionnelle 233, 235
langages de 3
orientée objet 231

abstraction 231

classification 234, 235

contrôle d'accès 237

implémentation en
c# 238

interface utilisable 236

Programme Voir cussi
application

contrôler manuellement
Ia sortie 217

définir une application
Windows 410

définition 4

diviser en plusieurs
fichiers source 385

exécutable 4

exécuter en déposant un
fichier dessus 168

interface 236

modèle de 8
passer des arguments

à 164

Propriété(s)
active 177,434

accéder aux 434
avec effets de bord 252
de classe, définir 250
des contrôles 15

d'objet 115

Length 122

statique 251,434
Protection, niveau de 466
Public 105,239

exemple 240

Etl
Quitter, enregistrer avant

de 452
Ramasse-miettes 294
ReadBinary 395
Readline 212

Redéfinir
accidentellement 302
une méthode d'une

classe de base 298
ou ajouter un test 301

Redimensionner le formu-
laire d'une application
Windows 426

Réel (nombre) 38
Ref 153

Référence
à null et à zéro 161

non initialisée 112

ReferencingThisExplicitly I 86

Registres (du processeur) 49

RemoveWhiteSpace 221

g

48 4 G# pour les Nuts

Exécuter un programme en
déposant un fichier
dessus 168

Expression
accorder les types 63
évaluation 55

FactorialErrorRetur n 362
FactorialException 368
FactorialWithError 360
Factorielle 360
Factoring 311
Fahrenheit 40
False 44

Fenêtre
Code 18

de Visual Studio 11

passer des arguments à
partir d'une 168

Propriétés 15

Résultats 11

Fermeture (bouton de),
implémenter 456

Fichier(s)
Iire le nom du 446
rassembler des données

dans 394
RTF 418

écrire 449
lire 448

source 4
diviser un programme

en plusieurs 385
réunir dans un espace

de nom 387
FileRead 402
FileWrite 397
Final 367
FixedArrayAverage 118
Float 38

FIux d'exécution

conditions mutuellement
exclusives, 74

contrôler, 70
exemple, 71

foreach, 127
goto, 100

switch, 97
Fonction

appelée méthode 181

d'accès 250
définir et utiliser 135
d'objet, définir 177
exemple 137

indiquer une erreur
dans 362

membre
d'une classe 136

statique d'une classe,
définir 177

nom 147,207
complet 296

passer
des arguments à 143

des arguments d'un
type valeur 151

des arguments par
référence 152,154

des arguments par
valeur 151

un objet à 175
pourquoi ? I42
qui ne retourne pas de

valeur, définir 160
retourner une valeur 157
sans type 160

surcharger 147,296
typée ou non typée 160
utiliser return 157
void ou non-void 160
Writeline 173

For 91

Foreach 127,210
Format 224

RTF 418
Formulaire 12

ajouter un contrôle
dans 14

ancrer les composants 426
Concepteur de

formulaires 12

redimensionner 426
Four à micro-ondes 231
Fraction

précision 39

représenter 37
FunctionsWithDefault-

Arguments 149

Générer 11

une application l7
GetX 250
Goto 100

Gras (mettre en) 439

Hêritage 272

et constructeur 286
et interfac e 342
exemple 275

utilité 274
HidingWithdrawal 299

Hiérarchie de classes 321

Hongroise (notation) 49
HTML 196

,I

I/O asynchrones 396
If, 70

éviter le else 75

482 G# pour tes Nuts

BankAccountContructors-
AndThis 267

BankAccountWithMultiple-
Constructors 263

Base 288, 303
Boîte à outils 13

Bool 44

conversion 45

Bord, effets de252
Boucle(s)

break et continue 85

briser 85

commandes de 79

do... while 84

for 91

à quoi sert-elle ? 92

exemple 91

imbriquées 93

while 80
Boxing 159

Break 85

Build Voir générer
BuildASentence 205

Bulles (tri en) 129

C#
créer une application

Windows avec 7

description 3, 5, 7

Cacher l/oir redéfinir
Cadre de travail d'une

application Windows,
créer 413

Calculatelnterest 72

CalculatelnterestTable 80, 137

CalculatelnterestTableMore-
Forgiving 86

CalculatelnterestTablewith-
Functions 138

CalculatelnterestWith-
EmbeddedTest 76

Caractère
non imprimable 46,211
de retour à la ligne 47

saisis au clavier, lire 210

variable de type 45

Cast 5l
invalide à I'exécution 283

Catch 367
assigner plusieurs

blocs 373

laisser passer des
exceptions 375

sans arguments 405
Celsius 40
Chalne 47 Voir oussi string

analyser des caractères
d'une 210

Compare 204

concaténation 47,221
contrôler manuellement

la sortie d'un
programme 217

convertir en un autre
Iype 212

de contrôle 224

Format 224

invariabilité 204
lire 210
opérateur

*47
d'addition 202

Parl217
Replace 221

Split 215,223
suite de chiffres tapés au

clavier, traiter 215

Trim2IT
utiliser srvitch avec 209

Char 45

Classl 164

Classe 104

abstraite 3 i 7
utiliser 318

Array I 16

changer la classe d'un
objet 282

classification 273, 31 I
Console 173

contenant d'autres
classes 1 13

contrôler I'accès aux
classes avec les espa-
ces de nom 391

créer un objet d'une, 106

de base, passer des
arguments au construc-
teur de 288

cléfinition 105, 106, 110

destructeur 293

d'exceptions
créer 371

redéfinir 380

et structure 345

étendre 323
factoring 3l I
faiblement couplée 391

fonction membre 136

statique d'une,
définir 177

fortement couplée 391

héritage 272

hiérarchie de
créer une nouvelle 324
redémarrer 321

historique 108

instance 234
d'une 106

membre(s) 105

donnée 136

statiques d'une 115

ne pouvant être
instanciée que
localement 270

nom, majuscules et
minuscules 105

object 285

propriétés de, définir 250

restreindre l'accès à des
membres 239

scellée 470

sceller 325

sous-class e 234

47I Sixième partie : Petits suppléments par paquets de dix

Définis soigneusement tes ttlttes de t/ariable,
tmon enfant

C++ est très politiquement correct. Il ne marcherait à aucun prix sur les
plates-bandes d'un ordinateur en exigeant qu'un type de variable particulier
soit limité à une étendue de valeurs particulière. Il spécifie qu'un int fait à
peu près "telle taille" et qu'un long est "plus grand". Cette décision conduit à
des erreurs obscures quand on essaie de déplacer un programme d'un type
de processeur à un autre.

C# n'y va pas par quatre chemins. Il dit qu'un int fait 32 bits et qu'un long
fait 64 bits, et que c'est comme ça. En tant que programmeur, vous pou-
vez envoyer cela à votre banque ou à un autre ordinateur sans qu'il en
résulte d'erreurs inattendues.

Pas d'héritage multîple
C++ autorise une même classe à hériter de plus d'une classe de base. Par
exemple, une classe CanapéLit peut hériter de la classe Lit et de la
classe Canapé. Ça ne semble pas manquer de rigueur, et ça peut effective-
ment être très utile. Le seul inconvénient, c'est que I'héritage de plusieurs
classes de base peut provoquer des erreurs de programmation qui sont
parmi les plus difficiles à identifier que I'on connaisse.

C# se met en retrait, et évite des erreurs supplémentaires en écartant
I'héritage multiple. Toutefois, ce choix n'aurait pas été possible si C#
n'avait pas remplacé I'héritage multiple par une nouvelle fonctionnalité :

I'interface.

Prétloir une bonne interface

Quand les gens ont pris un peu de recul pour réaliser dans quel cauche-
mar ils s'étaient mis avec I'héritage multiple, ils se sont rendu compte que
dans 90 % des cas, la deuxième classe de base n'était là que pour décrire
la sous-classe. Par exemple, une classe parfaitement ordinaire pouvait
hériter d'une classe abstraite Persistable, avec une méthode abstraite
read O et une autre write O. Cela obligeait la sous-classe à implémenter
Ies méthodes read O et'*,r-ite O et à dire au monde extérieur que ces
méthodes étaient disponibles si on voulait s'en servir.

47 6 Sixième partie : Petits supplémenrs par paquets de dix

private string sName;

public void set(string sName)

{

this. sName : sName;

]
public string get 0
I
L

I I retourne une copie du nom

rêtrrrn St-jno nOpy(SName)
;

I

l
class Ï{yClass

t

public void AddlastName(Student student)
{

cirrdonf cot/<lr{g1t.get0 + " Kringle");
1

'ôve\/
L'LbL' t t

J

]

La notion de Propriété en C# permet cl'implémenter les fonctions get O et
set O d'une manière complètement naturelle dans le programme :

usirig System;

public class Student
i

^-.i,'^+^
n+g.r'ar -t\T^*^.pr].vare srrlng sr\ame;

public string Nane

t

set{sNane=value;}
get { return String.Copy(sName); l

l
l
class MvClass
It

public void AddlastName(Student student)
t

student.Nane = student.Nane * "Kringle" l

]

]

/e n'inclurai plus jamais un fichier
C++ impose une cohérence rigoureuse des types. C'est une bonne chose.
Il le fait en vous obligeant à déclarer vos fonctions et vos classes dans des

47 4 Sixième partie : Petits suppléments par paquets de dix

Pas de données ni de
Ç++ pâsse pour un langage orienté objet, et il I'est, au sens où vous
pouvez I'utiliser pour programmer d'une manière orientée objet. Vous
pouvez aussi mettre de côté les objets en plaçant simplement les données
et les fonctions dans un espace global, ouverts à tous les éléments et à
tout programmeur doté d'un clavier.

C# demande au programmeur de lui faire allégeance : toutes les fonctions
et tous les membres donnée doivent faire partie d'une classe. Si vous
voulez accéder à cette fonction ou à ces données, vous devez passer par
I'auteur de cette classe. Il n'y a pas d'exception à cela.

Tous les objets sont alloués à partîr du tas
C comme C** nplerisent I'allocation de mémoire de trois manières diffé-
rentes, chacune avec ses propres inconvénients :

tz Les objets globaux existent du début à la fin de I'exécution du
programme. Un programme peut facilement allouer plusieurs
pointeurs au même objet global. Si vous en modifiez un, ils sont
tous modifiés, qu'ils soient prêts pour cela ou non.

t/ Un objet de pile est propre à une fonction (ce qui est une bonne
chose), mais son allocation disparaît lorsque la fonction retourne
son résultat. Tout pointeur qui pointe vers un objet dont I'allocation
mémoire a été supprimée devient invalide. Ce serait très bien si
quelqu'un avait prévenu le pointeur, mais le malheureux s'imagine
toujours qu'il pointe vers un objet valide, et le programmeur aussi.

tz Les objets du tas sont alloués en fonction des nécessités. Ces
objets sont prop.res à un thread d'exécution particulier.

Le problème est qu'il est trop facile d'oublier à quel type de mémoire se
réfère un pointeur. Un objet du tas doit être retourné quand on en a fini avec
lui. Oubliez-le, et votre programme aura de moins en moins de mémoire
disponible, jusqu'à ce qu'il ne puisse plus fonctionner. D'un autre côté, si
vous libérez plus d'une fois le même bloc du tas pour "retourner" un bloc de
la mémoire globale ou de Ia pile, votre programme est parti pour une longue
sieste. Il faudra peut€tre Ctrl+Alt+Del pour le réveiller.

fonetions globales

47 2 Sixième partie : Petits suppléments par paquets de dix

Ces deux possibilités sont mises en évidence dans la classe suivante :

public class I'lyClass

{
public string ConvertïoString(int n)

{

// convert the int n into a strins s

string s = n.ToString0;
l
public string ConvertPositiveNurnbers (int
{

I I oùy positive numbers are valid for
if(n)0)
t

string s * n.ToString0;
tËLulll È,

]

Console.Hriteline("the argunent {0J is inva1id", n);

l

ConrrertToString O calcule une chalne à retourner, mais ne la retourne
jamais. Ajoutez simplem€nt rt:u::, -.: er bas de la méthode.

Convertpositivelrl'_rrnbers () retourne la version chalne de I'argument 1nt
n lorsque celui-ci est positif. En outre, il génère correctement un message
d'erreur lorsque n n'est pas positif. Mais même si n n'est pas positif, la
fonction doit retourner quelque chose. Dans ces cas-là, retournez soit un
nu11, soit une chalne vide "". La solution qui conviendra le mieux dépend
de I'application.

n)

conversion

3 attendue
Ce message indique que C# attendait encore une accolade fermante à Ia
fin du listing. Quelque part dans le code, vous avez oublié de fermer une
définition de classe, une fonction ou un bloc if . Reprenez votre code et
appariez soigneusement les accolades ouvrantes et fermantes jusqu'à ce
que vous trouviez la coupable.

.9\..4 Ce message est souvent le dernier d'une série de messages d'erreur
I(/ll souvent idiots. Ne vous préoccupez pas des autres avant d'avoir remédié
\p1/ à celui_ci.

-

47 0 Sixième partie : Petits suppléments par paquets de dix

new public void Function0
It

l
i

t/ Vous vouliez vraiment hériter de la classe de base par polymor-
phisme, auquel cas vous auriez dt déclarer les deux classes de la
façon suivante :

public class BaseClass

t

public virtual void Funetion 0
{

l
]

public class SubClass: BaseClass

t

public overrides void Function0
-l

L

l
]

Voyez le Chapitre 13 pour en savoir plus.
. alllllfa ^

rlr,,/t \ Colr n'g5t paS Une erreqr, maiS SeUlement Un avertisSement danS lao-/nhd{ \ ""'*
=\d\y / fenêtre Liste des tâches.

\ô/

'subclassName' : ne peut pas hériter de la
classe scellée'baseclassName'

Ce message indique que la classe est scellée et que vous ne pouvcz donc
pas en hériter, ni en modifier les propriétés. Typiquement, seules les
classes des bibliothèques sont scellées. Vous ne pouvez rien y changer.

'className' n'împlénente pas le membre
d' i nterface'meth odN ame'

L'implémentation d'une interface représente une promesse de fournir une
définition pour toutes les méthodes que comporte cette interface. Ce

message vous dit que vous n'avez pas tenu cette promesse car vous n'avez
pas implémenté la méthode citée. Il peut y avoir plusieurs raisons à cela :

468 Sixième partie : Petits suppléments par paquets de dix

n = 1.

)

Dans ce cas, aucune valeur n'est assignée à n dans SomeFunction O, mais
elle en reçoit une dans SomeOtherFunction (). Cette dernière ignore la
valeur d'un argument cut comme s'il n'existait pas, ce qui est le cas ici.

copié dans le répertoîre d'exécution. Le processrls
ne lreut pas...

En général, ce message se répète de nombreuses fois. Dans presque tous
les cas, il signifie que vous avez. oublié d'arrêter le programme avant de le
générer à nouveau. Autrement dit, voilà ce que vous avez fait :

l. Vous avez généré votre programme avec succès (supposons que
ce soit une application consoleo bien que cela puisse se produire
avec n'importe quelle sortie en C#).

2. Vous avez vu Ie message "Appuyez sur Entrée pour terminer",
mais, dans votre hâte, vous ne I'avez pas fait. Votre programme
est donc toujours en cours d'exécution, et vous êtes retourné
dans Visual Studio pour modifier le fichier.

3. Vous avez essayé de générer à nouveau le programme avec vos
modifications. C'est là que vous avez obtenu ce message d'erreur.

Un fichier exécutable .EXE est verrouillé par Windows jusqu'à ce que le
programme termine effectivement son exécution. Visual C# ne peut pas
écraser la version précédente du fichier exécutable .EXE avec la nouvelle
version tant que le programme n'a pas terminé son exécution.

Revenez à I'application, et faites le nécessaire pour qu'elle se termine.
Dans le cas d'une application console, appuyez simplement sur la touche
Entrée. Vous pouvez aussi mettre fin à I'exécution d'un programme dans
Visual Studio en sélectionnant DébogueriArrêter le déboguage.

Une fois que la version antérieure du programme a terminé son exécution,
générez à nouveau I'application.

Si vous n'arrivez pas à vous débarrasser de I'erreur en mettant fin à
I'exécution du programme, il est possible qu'il y ait quelque chose qui

Le fichier'programName.exe' ne peut pas être

466 Sixième partie : Petits suppléments par paquets de dix

Le résultat de 2.A * f est toujours de type ciouble, mais le programtneur a

indiqué qu'il voulait que le résultat soit converti en type f 1oat, ntême au
cas improbable où il en résulterait une perte d'informations.

Une autre approche consisterait à s'assurer que toutes les constantes
sont de même type :

class MyClass

I

static public float FloatTimes2(f1oat f)
r
\

I I ceci fonctionne bien parce que 2.0F est une constante de type float
float fResult = 2,0F * f;
return fResult:

l
l

Cette version de la fonction utilise une constante 2.0 de type f 1o.r au lieu
du type dor-Lbie par défaut. Un f ioat multiplié par un f loat €st ur r i,,-.r.

'className.memberName' est inaccessîble en
tl

raison de son niûeau de qtrotection
Ce message indique qu'une fonction essaie d'accéder à un membre auquel
elle n'a pas accès. Par exemple, une méthode d'une classe peut essayer
d'accéder à un membre privé d'une autre classe (voyez le Chapitre l1) :

public class MyClass

t

public void SomeFunction0

{

YourClass uc = new YourClass 0 ;

I I ceci ne fonctionne pas correctement pârce que MyClass

// ne peut pas accéder au membre privé
uc.nPrivateMember = 1;

I
)

l
public class YourClass

{

private int nPrivateMember = 0;

J

En général, I'erreur n'est pas aussi flagrante. Bien souvent, vous avez simple-
ment laissé le descripteur hors de I'objet membre ou de Ia classe elle-rnême.

464 Sixième partie : Petits suppléments par paquets de dix

Ce message indique généralement que vous essayez d'utiliser deux types
de variable ctifférents dans la même expression. Par exemple :

int nÀaa = lfl .

// génère un message d'erreur
int nFactoredAge = 2.0 * nAge;

Le problème est ici que 2.0 est une variable de type doubie. La variable nAge

de type int multipliée par le 2.0 de type doubl e produit une valeur de type
double. C# ne va pas automatiquement stocker une valeur de type doubie
dans la variable de type int nFactoredAge, car il pourrait en résulter une
perte d'information (en particulier, la partie décimale de la valeur doubie).

Certaines conversions ne sont pas aussi évidentes, comme dans I'exemple
suivant :

class MyClass

t
^r^r'r ^ -"11'r ^ float FloatTimes2 (float f)b Ld.LJ.ç PUUrr(:

1

l/ ceci produit une erreur de oénér:tion
float fResult = 2.0 * f;
return fResult;

)

On pourrait croire que multiplier par deux un type f loat ne pose pas de
problème, mais c'est justement là qu'est le problème. 2.0 n'est pas de type
f loat mais de type double. Un f loat multiplié par un double donne un
double. C# ne va pas stocker une valeur de type double dans une variable
de type f 1oat, à cause - vous avez deviné - de la perte d'informations qui
pourrait en résulter (dans ce cas, plusieurs chiffres de précision).

Les conversions implicites peuvent déconcerter plus encore le lecteur
désinvolte (c'est mon cas, dans les bons jours). Cette version de
Floa*.-Times2 () marche très bien :

class MyClass

{

static public float FloatÏimes2(float f)
{

lmpossîble de cnnuertir împlicitement le ttlpe 'x'
en

"/'

46 2 Sixième partie : Petits suppléments par paquets de dix

parfois affreusement bavard. J'ai récluit certains des messages d'erreur pour
les faire tenir sur une page. En plus, il y a dans un message d'erreur différents
endroits où apparaît le nom d'un membre donnée offensant ou d'une classe
irrévérencieuse. J'ai remplacé ces noms par variableflane, memberName ou
c las sNane.

Enfin, C# ne se contente pas de cracher le nom de la classe. Il préfère
mettre sur la table I'espace de nom au grand complet (au cas, bien str, où
le message aurait été trop court avec la première solution).

'className' ne contient pas de définîtion pnur
'memberName'

Ce message d'erreur peut signifier que vous avez oublié de déclarer une
variable, comme dans I'exemple suivant :

for(index = 0; index (10; index++)

{

I I instructions
l

La variable index n'est définie nulle part (pour savoir comment déclarer
les variables, reportez-vous au Chapitre 3). Cet exemple devrait avoir été
écrit de la façon suivante :

for(int index = 0; index (1t; index++)

t

I I instructions

La même chose s'applique aux membres donnée d'une classe (voyez le
Chapitre 6).

Il y a en fait plus de chances que vous ayez fait une faute de frappe dans
un nom de variable. En voici un bon exemple :

class Student

i
oublic strine sStudentName;r.--------..o
public int nID;

l
^1^^^ M.,a1^^^
u rêù D |rJ/ vrdù ù

{

Dans cette partil...

1 t uel livre Pour Les nuls serait complet sans notre

V traclitionnelle partie des dix ? C# est très doué pour
trouver cles erreurs dans vos programmes lorsque VouS

essayez cle les générer. Vous l'avez SaI-lS doute remarqué.
Mais les ntessages d'erreur qu'il génère peuvent être assez

obscurs. Vous I'avez sans doute remarqué aussi. Le Chapi-

tre 19 passe en revue les dix messages d'erreur de générations

les plus courants et ce qu'ils signifient le plus souvent. Et comtne

savoir c'est pouvoir, VouS y trouverez aussi des suggestions de

correction pour les problèmes correspondants.

Beaucoup cles lecteurs cle ce livre seront venus à C# par le
plus répanclu cle tous les langages orientés objet, C++. Le

chapitre 20 clonne la liste des dix différences principales

entre ces deux langages.

456 Cinquième partie : Programmer pour Windows avec Visual Studio

de fermeture de la

Il reste encore un petit problème. Il est toujours possible de quitter
I'application en fermant la fenêtre :

l. Dans le Concepteur de formulaires, sélectionnez le cadre de la
fenêtre du programme.

2. Dans la fenêtre Propriétés, sélectionnez l'événement Closing.

3. Entrez le nom de fonction ApplicationWindowClosing.

C'est la propriété Cios irrg qui est invoquée lorsque I'utilisateur
clique sur Ie bouton de ferrneture de la fenêtre (le x dans le coin
supérieur clroit). Il est facile d'associer une méthode à cette pro-
priété. La difficulté est de savoir quoi faire quand elle reçoit le
contrôle. La réponse est donnée par un aspect des méthodes de
propriété, que j'ai passé sous silence jusqu'ici.

Lorsque C# appelle une méthode en réponse à un clic sur un
bouton ou à la saisie d'une valeur, il lui passe deux arguments. Le
premier de ceux-ci est appelé le sender. Cet objet est le composant
qui est à I'origine du stimulus. Les méthodes que nous avons
générées ne pouvaient être invoquées que par une seule source.
Toutefois, il peut être utile de différencier les senders, car cela
récluit Ia quantité de code à écrire [e suis toujours d'accord pour
écrire moins de code). Par exemple, une même méthode peut être
utilisée pour traiter plusieurs boutons radio, le sender indiquant
quel est le bouton sur lequel a cliqué I'utilisateur.

Le deuxième argument contient d'autres informations sur l'événe-
ment, qui ont trait à la raison pour laquelle la méthode a été appe-
lée. Toutefois, la classe CancelE,ientArgs passée à notre méthode à

la suite d'un clic sur le bouton de fermeture de la fenêtre contient
une propriété Cancel (Annuler). Si vous donnez à cet indicateur la
valeur i ru€, I'opération de fermeture de la fenêtre est tuée dans
l'æuf .

4. Modifiez Ia méthode .rpplication'riindowClosing O sur la base de
la même logique "ne pas perdre les modifications" que nous
avons utilisée avec succès pour la commande Fichier/Quitter:

lmplémenter le bouton
fenêtre

45 4 Ginquième partie : Programmer pour Windows avec Visual Studio

l"iessaq€'Br. x retourne DialogP.esur t . Ies, c'est que I'utilisateur dit qir'il ust
d'accord pour ne pas enregistrer ses moclifications.

C'est ce que réalisent les modifications suivantes aux méthocles
Fileltperi l, f 'ieSa,.'er) et FiieExjt O :

orivatp void Filpônpn|,nh'ipnt conrlor (rrci-om Frrontl! 44vvrv-. -, _.^,,\rgs e)

{

I I n'êcrase pas 1e précédent fichi-er en ouvrant 1e nouveau
if (IsChangeOK0 == false)
I
L

return:
l
/ I tout va bien. dit-i1
OpenAndReadFile () ;

// \a zone de texte est naintenant dans 1'état non modifié
LT^--+nL^--^) = false;urcÀLUlld.lLË€u

]
private void FileSave(object sender, System.EventArgs e)

{

/1 donne la valeur false à f indicateur de modificati.on
I I si I'enregistrement a fonctionné
1r ()avebpecltl_ed.L 11e U /

{

bTextChanged = false;
l

]
private void FileExit(object'sender, System,EventArgs e)

{

// ne quitre pas si les modifications n'ont pas été déjà enregistrées
ll ou tant que 1'utilisateur ne dit pas qu'i1 est d'accord
if (IsChange0K0 == false)
{

return;
]

I I Ia voie est libre
Application.Exit 0 ;

l

Dans tous les cas, la méthode J s rlhang-e0K r.) s51 invoquée avant d'exécuter
une opération qui pourrait provoquer la perte d'une modification.

Il nous manque encore quelque chose : il faut que I'indicateur bTextthar,e ert

reçoive la valeur r rLre à chaque modification apportée dans la zone de texte.
Ir.icl'rTe;iiii.,.x nous donne ce qu'il nous faut : la propriété dynamique
Tertchange,j i,i, qui est invoquée chaque fois que quelque chose modifie le

452 Cinquième partie : Programmer pour Windows avec Visual Srudio

-

Figure 18.7 :

SlnpleEdit rr
est mainte-
nant un
vérita ble
éditeur,
capable de
lire d'un seul
coup de gros
fichier RTF

-
Ne lrerdez pas mes modifîcations en quifiant I

L'implémentation de la commande Fichier/Quitter est une chose facile :

l. Dans le concepteur de formulaires, sélectionnez I'option de
menu Fichier/Quitter.

2. Dans la fenêtre Propriétés, sélectionnez l'événement (liick. et
entrez le nom de fonction FileExit.

3. Implémentez de Ia façon suivante Ia méthode pileExir i. j que
vous venez de créer :

private void FileExit(object sender, System,BventArgs e)
{

Application.Exit0;
]

C'est la classe Appiication qui contrôle I'ensemble du programnre.
Comme son nom I'indique, sa méthode E;<ir O fait directement sortir de
la scène. L'inconvénient de cette solution est que quitter le programme
sans avoir commencé par faire Fichier/Enregistrer provoque la perte cle
vos dernières modifications. ce n'est pas une chose à faire.

Heureusement, les méthodes de lecture et d'écriture nous donnent ce clont
nous avons besoin pour éviter cette catastrophe. Sa'reSpecifiedFil-e ()
retourne un bcol qui indique si la donnée a effectivement été enregistrée.
Nous n'avons besoin ici que d'un indicateur "grossier", disant s'il y a ou non
dans RichTextBox quelque chose à enregistrer. Nous pouvons assigner f aise

r--lÊ tÈ:it+ ,t Êt+ ,-:.r++
,,la|,-, rliffÈr?frt+:, ç i,lr _ 1,.:

diverses tailles
divers styles

Taille de police [E*

450 cinquième partie : Programmer pour Windows avec Visual Studio

if (str0utput != nu11)

{

Systeur. I0. Streaml'lriter stri'ltr =

new Systern. I0. Streaml,lriter (strOutput) ;

st r!{tr . I/Jrite (richTextBoxl . Rtf) ;

strl,Jtr. Close 0 ;

bReturnValue = true:
l

]
return bReturnValue;

l

Cette fonction suit exactement le même chemin que la méthode
OpenAndReadFlle O que nous avons vue plus haut. Pour commencer, elle
ouvre la bolte de dialogu€ SaveFileDiaiog, et attend qu'elle lui retourne
OK. Le programme essaie alors d'ouvrir le fichier. Si I'opération aboutit, le
programme écrit dans le fichier tout le contenu de la propriété Rtf de la
zone de texte R.ichTexttsox.

Nous avons ajouté le composant Sa-,'eFiieDialog à SirnpleEditor: en le
faisant glisser depuis la Bolte à outils. Aucun ajustement n'a été nécessaire.

ll,lettre Lîre et Ecrire dans une boîte, a(/ec un
t

menu par-^essas

Les méthodes OpenÀndP,eacll'j 1e O et Sar,'eSpecif iedFile O sont bien
jolies, mais totalement inutiles tant qu'elles ne sont pas liées chacune à
une option de menu.

Pour implémenter les options de menu Fichier/Ouvrir et Fichier/Enregis-
trer, suivez ces étapes :

Entrez les méthodes CpeirAndReaolile O et SarreSpecif iedFile ()
décrites dans les sections précédentes.

Dans le Concepteur de formulaires, sélectionnez I'option de
menu Fichier/Enregistrer.

Dans la fenêtre Propriétés, sélectionnez l'événement Click, puis
entrez le nom de fonction FileSave, comme le montre la Figure 18.6.

l.

,

3.

448 Ginquième partie : Programmer pour Windows avec Visual Studio

Lîre un fichier RTF

La bolte de dialogue 0penFileliaiog est étonnamment facile à utiliser. Lzr

méthode Srro"i)r aiog i) ouvre la bolte de dialogue. SinpieEoir(Jr n'a rien
à faire pendant que I'utilisateur fait cléfiler le contenu de cette boîte de
dialogue à la recherche du fichier à ouvrir. Une fois qu'il a terminé, il
clique sur OK (ou sur Annuler s'il n'a rien trouvé). C'est seulement alors
que le contrôle est restitué à la fonction appelante. La valeur retournée
par Shor.,,Dia-Lcg r.) est Dialc.,gF.esu1t.0K si I'utilisateur a cliqué sur le
bouton OK. S'il a cliqué sur autre chose, ça ne nous intéresse pas.

La méthode r,rpenF; ie i) retourne soit un iir. S,trearn valide qui permet de
lire le fichier, soit un ruli si le fichier spécifié ne peut pas être lu pour
une raison ou pour une autre. Ces deux méthodes sont combinées dans la
fonction 0leir-n:FeaciFi 1e O suivante :

ll |it dans 1a RichTextBox le fichier spécifié par 1'utilisateur
I I (retourne true si 1a RichTextBox est rnodifiée)
private bool 0penAndReadFile o
i

bool bReturnValue : false:
try
{

I I lit le non de fichi.er entré par 1'utilisateur
if (openFileDialogl . ShowDialog () == DialogResult.0K)
{

I I owre le fichier
System,I0.Stream strlnput : openFileDialogl.0penFile0 ;

if (strlnput != nu11)

{

I I si I'ouverture du fichier a réussi. 1ui associe
// un lecteur de flux
System. I0.StreamReader strRdr =

new System. I0. StreamReader (strlnput) ;

I I 7it tout 1e contenu du fichier
string sContents = strRdr.ReadïoEnd0 ;

richTextBoxi . Rtf = sContents ;

/l nous avons modifié la fenêtre de texte
bReturnValue = true;
// assurons-nous de fermer 1e fichier pour que d'autres
/l puissent 1e lire
strRdr. Close O ;

l
l

]

catch (Exception e)

446 Cinquième partie: Programmer pour Windows avec Visual Studio

4. Générez le programme et exécutez-le.

5. Entrez du texte et sélectionnez-le.

6. Entrez une taille de police entre 8 et 24.

La taille du texte sélectionné change, et I'index de la barre se
déplace à la position correspondante.

Enregistrer le texte de

Sans la possibilité de lire et d'écrire des fichiers, SiinpleEditor ne serait
rien de plus qu'un jouet.

Lire le nom du fichier
Pour lire un fichier, il faut savoir lequel il faut lire. Pour cela, C# fournit
une bolte de dialogue spéciale. nommée 0penFileDiaiog. Tôt ou tard,
I'utilisateur voudra enregistrer sur le disque le texte qu'il vient de saisir et
de mettre en forme. Vous avez deviné:vous avez besoin pour cela de
0penFileDiaiog. Associez à ces deux boîtes de dialogue les fonctions de
lecture et d'écriture de fichier que nous avons vues au Chapitre 16, et
vous avez un éditeur complet.

Ajouter une boîte de dialogue OpenFileDiaiog est un jeu d'enfant:

l. Dans le Concepteur de formulaires, faites glisser un composant
OpenFileDialog de la Boîte à outils jusqu'à la zone qui se trouve
au-dessous de la fenêtre d'édition 0a zone dans laquelle il y a
déjà MainMenul).

2. Faites la même chose avec un composant SaveFileDialog.

Le résultat doit ressembler à la Figure 18.5.

Le composant OpenFileli:-rioe ne contient qu'une seule propriété
statique vraiment intéressante. Quand on utilise cette bolte de
dialogue pour ouvrir un fichier, il y apparalt généralement dans
une liste cles fichiers de divers types. Par exemple, le Bloc-notes
commence par rechercher les fichiers *.txt, alors que Word
commence par rechercher les fichiers *.doc. C'est ce qu'on

l'utîlisateur

444 Cinquième partie : Programmer pour Windows avec Visual Studio

-

Figure 18.4:

Grâce au lien
établi entre
CES dEUX

composants,
la valeur qui

apparaît dans
la lextBrx
est mise à

jour en

fonction de la
position de

l'index dans la

TrackBar.

-
Changer de taille en utilisant la TextBox
L'utilisateur peut aussi entrer directement une taille de police dans la
zone de texte Taille de police (sinon, elle ne servirait pas à grand-chose).
Cette fonction doit donc fonctionner dans la direction opposée à la
fonction FontSizeControl O, mais elle est également un peu plus compli-
quée car elle doit prendre en compte les erreurs de saisie éventuelles de
I'utilisateur. Mais au bout du compte, FontSizeEntered O doit exécuter la
même opération : lire la nouvelle valeur, modifier la taille de police, et
ajuster la position de I'index de la barre en conséquence.

l. Sélectionnez I'objet TextBox de la taille de police.

2. Dans la fenêtre Propriétés, sélectionnez l'événement
TextChanged, et entrez le nom de fonction FontSizeEntered.

C'est cette méthode qui sera invoquée par C# lorsque I'utilisateur
entrera une nouvelle valeur dans la zone de texte Taille de police.

3. Dans le code source, implémentez la nouvelle fonction comme suit :

/l invoquée quand 1'utilisateur tape quelque chose dans la TextBox

/i utilisé pour définir la taille de la police
private void FontSizeEntered(object sender, System.EventArgs e)

{

I I t:-t 1e contenu de 1a TextBox

string sÎext = text8oxi.îext;

ri: i'elr,ri,:,Èlerriann" CgftâineS paftieS

,* ;"i â$ fA nd iËS er, t'-,,',rnt

::r:rer l'irrdÉi{,lu lr,t,:,1.: E,;r

r
I sllle rle Pollce I lE

442 Ginquième partie : Programmer pour Windows avec Visual Studio

il
// mnnn. ^lt ^--- ^tr rvuv. nuu arry uOflstructor COde

// donne à la police 1e style et
tiet.E-ont t I ;

]

6. Générez le programme et exécutez-le.

7. Entrez du texte, et sélectionnez-le avec la souris.

8. Sélectionnez Format/Gras et Format/Italique dans un ordre
quelconque.

La Figure 18.3 montre du texte mis en gras et en italique dans la fenêtre de

-qirnpleEdrtor" Remarquez aussi que les options activées à I'endroit où se

trouve le curseur sont précédées d'une coche dans le menu, qui vous permet
donc de savoir guelle sera la mise en forme du texte que vous allez taper à
partir de là. C'est le résultat de notre définition de la propriété Checked.

Wi": -lal-xl
Firhier Ëdilim FBrmàt ?

Taille de policr l--

after InitializeComponent call

l^ +a1 | lo nâr .lêf ,Ut

-

Figure 18.3:
SinpleEditor
permet
maintenant
de saisir du

texte en gras
et en
ita liq u e.

-
Choîsir la taille de police

Le changement de la taille de police utilise la même fonction SetFont O,
mais avec une petite complication, car elle peut être définie par deux
composants différents.

Changer de taille en utilîsant la TrackBar

C'est une opération qui se fait assez directement :

440 Cinquième partie : Programmer pour Windows avec Visual Studio

fr l: FontStyle.Bold;
l
if {isTtalics)

t-fs |
= FontStyle. Italic ;

]

Font font = nelr Font(richÏextBoxl.Font.FontFamily, fontSize, fs);
richTextBoxl. SelectionFont = font ;

l

La base de cette fonction est le constructeur Font (). Il en existe de nom-
breuses versions, mais celle-ci admet les arguments qui nous intéressent :

la police courante, la nouvelle taille, et la nouvelle police. FontStyle
rassemble sous forme de bits des propriétés comme gras, italique, barré et
souligné. Commencez par FontStyle. Regular et ajoutez celles que vous
voulez de ces propriétés en utilisant I'opérateur C# OR (I l). Les deux
indicateurs isBolded et isltalics stockent les informations disant si le
texte est ou non en gras ou en italique.

Le premier argument du constructeur spécifie la police courante Qa possibilité
de changer de police ne fait pas partie des fonctionnalités que nous avons
retenues pour SimpleEditor). La commande richTextBoxl . Font retourne
une description de la police courante. La propriété FontFamily retourne le
type de police (par exemple, "Arial" ou "Times New Roman"). Le constructeur
crée donc un nouvel objet Font, avec la même police mais dans une nouvelle
taille, et dont les attributs gras et italiques ont éventuellement été changés.

La dernière assignation modifie la police du texte sélectionné ou du texte
qui sera tapé à partir du point où se trouve le curseur.

.j99q ,,
SZ' .-\ L'expression richTextBoxl . Font f ont; modifie la police de tout le

(,-) texte qui se trouve dans la zone de texte.v-/
lnplémenter les optîons du menu Format

Les étapes ci-dessous implémentent les options du menu Format :

l. Dans les menus, sélectionnez Format/Gras.

2. Dans la fenêtre Propriétés, sélectionnez l'événement Click, et
entrez le nom FormatBold.

3. Répétez le même processus pour I'option de menu Format/
Italique, en utilisant le nom Formatltalics.

438 Ginquième partie : Programmer pour Windows avec Visual Studio

tl// efface ce qui est déjà 1à

richTextBoxl.SelectedRtf = "" ;

l

private void EditCopy(object sender, System.EventArgs e)

{

strins rtfText = richTextBoxl.SelectedRtfl
14lr j.teC1 ipboard (rtfText) ;

l

private void EditPaste(object sender, System.EventArgs e)

{

string s = ReadClipboardO;
if (r l= null)
{

richTextBoxl. SelectedRtf = s;
l

]

La propriété SelecteoRtf contient à chaque instant le texte qui est
sélectionné. La méthode EditCopi.O passe cette propriété à
l',;ri t-er-llipboard (). La méthode EditCrit () fait la même chose, mais
en supprimant le texte sélectionné en assignant une chalne vide à

cette propriété. La méthode EditPaste O lit dans le Presse-papiers
une chalne RTF, par laquelle il remplace le texte sélectionné (ou
insère cette chalne à I'endroit où se trouve le curseur s'il n'y a pas de
texte sélectionné).

Double-cliquer sur le nom d'une propriété dans la fenêtre Proprié-
tés vous conduit directement à la fonction correspondante. Cette
astuce peut faire gagner pas mal de temps.

8. Générez à nouveau SimpleEditor. Vous avez maintenant un
programme qui peut vraiment couper, copier et coller.

9. Exécutez le programme en sélectionnant Déboguer/Démarrer.

10. Tapez quelques lignes de texte dans la fenêtre d'édition.

I l. Sélectionnez une portion de texte, sélectionnez Édition/Couper
(ou appuyez sur Ctrl+X), placez le curseur à I'endroit que vous
voulez, sélectionnez Édition/Cotler (ou appuyez sur Ctrl+\), et
voilà ! Le texte a été déplacé.

Plus impressionnant encore, SimpleEditor peut échanger du texte par Couper
et Coller avec d'autres applications, par exemple Word. La Figure 18.2 montre
une portion de texte coupée dans un document Word et collée dans

436 Cinquième partie : Programmer pour Windows avec Visual Studio

La fonction suivante stocke dans le Presse-papiers une chalne de texte
identifiée comme de type RTF (Rich Text Format) :

-\private void l'lriteClipboard(string rtfText)
{

Data0bject data = new Data0bject0;
data . SetData (DataFormat s . Rtf , rtfText) ;

Clipboard. SetData0bject (data, true) ;

l

La méthode tJriteClrpboard () accepte un argument strlng pour le
copier dans le Presse-papiers. Elle commence par créer un objet
DataOb j ect () , dans lequel elle stocke la chalne et I'indication que le texte
est en fait une série de commandes RTF, et non un objet de type feuille de
calcul ou base de données. Laclasse DataForrnats n'est en fait rien de
plus qu'un ensemble de descripteurs de différents formats de données,
DataForrnats , Rtf étant celui qui nous intéresse ici. La méthode
SetDataOb j ec'. O copie la chaÎne RTF dans le Presse-papiers.

La lecture des données dans le Presse-papiers est le même processus en
sens inverse, mais il vous faut y ajouter quelques tests pour garantir que
la requête de lecture sera ignorée si la donnée contenue dans le Presse-
papiers n'est pas de type chalne :

private string Readtlipboard0
{

ii récupère le contenu du Presse-papiers
Tn-+^nL.i^^+ Ir,eLqvvJ.", uâtâ = Clipboard.GetDataObject0 ;

if (data == nu11)

t

return nul1;
]
ll we fois 1es données récupérées, vérifie qu'el1es sont

I I au format RTF

nh'iont n = datâ.GetData(DataFOrmatS,Rtf , trUe) ;evsug\vq sruv/ t

if (o == nul1)
{

return nu11;

J

// nous avons quelque chose, mais assurons-nous

I I que c'est bien une chaine
if ((o is string) == false)L"ôt rurvv/

t

return nul1;
l

43 4 Cinquième partie : Programmer pour Windows avec Visual Studio

^tËK
'(dg,

formelle, ces accessoires sont appelés des composonrt. il suffit de choisir un
composant dans la Boîte à outils, et de le faire glisser pour le déposer sur le
formulaire. Vous pouvez ensuite le personnaliser en ajustant toutes les pro
priétés que vous voulez dans la fenêtre Propriétés, judicieusement nommée.

La fenêtre Propriétés liste deux types fondamentalement différents de
propriétés. Le premier de ces ensembles, que j'appelle les propriétés stati-
ques, comporte la police, la forme, la couleur d'arrière"plan, et le texte initial.
Ce sont également des propriétés du point de vue du langage C#. @our en
savoir plus sur la structure Propriété de C#, reportez-vous au Chapitre 11.)

La fenêtre Propriétés contient aussi un ensemble de propriétés complète-
ment différent, qui correspondent plutôt aux méthodes de C#. Je les
appelle proprietés octiues.

1c${Qa. Les propriétés actives correspondent en fait à ce que I'on appelle un

â%H\ détégué. Un délégué est une référence à un couple objet/méthode. Dans ce
=\É\ff / cas, I'objet est le composant sélectionné, et la méthode est la "propriété"

\Ô/ de la liste des propriétés actives.

Les propriétés dynamiques sont plus communément appelées des événe-
ments. La méthode qui est invoquée lorsque l'événement se produit
s'appelle un gesfionnoire d'éuénemenl. Mais je ne veux pas introduire de
complications inutiles.

Les propriétés actives d'un objet sont les méthodes invoquées par C#
lorsque certaines circonstances particulières se produisent. Par exemple,
la propriété Button. Click est invoquée lorsque que I'utilisateur clique
sur un bouton. Mais ces propriétés actives offrent un contrôle bien plus
précis que cela. Par exemple, si vous voulez différencier le fait d'enfoncer
un bouton ou de le relâcher, vous avez une propriété différente pour
chacune de ces deux actions. Une propriété active est déclenchée quand
le pointeur se trouve sur un bouton, que I'utilisateur clique ou non, et
c'est une autre propriété qui passe à I'action lorsque la souris va ailleurs
(c'est généralement ce qui est utilisé pour changer la couleur d'un bouton
quand le pointeur passe dessus).

Pour accéder aux propriétés actives, sélectionnez le composant, et cliquez sur
le bouton contenant un éclair en haut de la fenêtre Propriétés. La Figure 18.1

montre une partie des propriétés actives d'un composant TextBox.

Afin que le programme SinipleEditor fasse ce que I'on attend de lui, vous
devez définir une ou plusieurs propriétés actives pour chacun de ses
composants. SimpleEdi tor paralt soudain moins simple.

430 Ginquième partie : Programmer pour Windows avec Visual Studio

this . nenuïtem5 ,

this . nenultemg ,

this . nenulteml2]) ;

ll
I I trackBaù
tlIt

this. trackBarl . Anchor = ((System. Windows, Forns.AnchorStyles.lottom
I

System. Windows . I'orms . AnchorStyles . Left)
I ^ r h' r \I System,I,lindorrs.Forns.AnchorStyles.Right) ;

this.trackBarl.Location = ner+ System.Drar+ing.Point(40, 248) ;

this.trackBarl.MaximrLn = 24;

this . trackBari .Minimum = 8;

this.trackBarl.Nane = "trackBarL" ;

this.trackBarl.Size = new Systern.Drauing.Size(208, 42) ;

this . trackBarl . TabIn dex = 2;

this . trackBarl . Value = 12 ;

l
/lendregion

]
I

J'ai supprimé toutes les sections qui ne concernent pas le menu principal
(MainMenu), I'une des options du Menu, et la TrackBar. Chacun de ces
objets est un membre donnée de la classe Form1. Le Concepteur de
formulaires crée les noms de ces membres donnée en concaténant le type
de I'obiet avec un numéro.

^s$c ^.. J'aurais pu vous faire définir des noms dans la fenêtre Propriétés pour

7X obtenir quelque chose de plus parlant, mais c'était sans importance. Pour

ttg|| des programmes de grancle taille, la définition de vos propres noms peut
V rendre le code qui en résulte beaucoup plus facile à lire.

La méthode Initial.i zoe nmnônênt I) Commence par Créer un objet de
chaque type.

.*a/ Ne vous étonnez pas du fait que le Concepteur cle formulaires donne le

ft?ll nom complet de ôhaque clasie, y compris son espace de nom
llE!l

\SZt (Systen.I,^/indows.Forrns).

Dans I'une des sections suivantes du programme,
InitializeCoinponent O assigne à chacun de ces objets les propriétés
que vous avez définies dans la fenêtre Propriétés.

428 Cinquième partie: Programmer pour Windows avec Visual Studio

w Si vous générez à nouveau SinpleEditor, le redimensionnement
fonctionne cornme vous pouvez I'attendre, comme le montrent le
"petit SirnpleEditor" de la Figure lT.Il et le "grand SimpleEditor"
de la Figure 17.12.

Tabfeau 17.2: Type d'ancrage pour chaque composant.

Composant Ancrage

RichTextBox

Zone de texte "Taille de police'

Étiquette "Taille de police"

Tra ckBa r

Étiquette de I'extrémité gauche de la TrackBar

Étiquette de I'extrémité droite de la TrackBar

Haut, bas, gauche, droite

Bas

Bas

Bas, gauche, droite

Bas, gauche

Bas, droite

-

Figure 17.10:

Cliquez sur les
bras de la

fenêtre
d ancrage
p0ur

sélectionner
(gris foncé) ou

désélectionner
(blancl

I ancrage
dans chaque
direction.

-

-

Figure 17.11 :

Le oetit
SinpleEdit,:r.

-

Taille de police [-

426 Cinquième partie : Programmer pour Windows avec Visual Studio

ôP\g/e,

Redinensîonner le fornulaire
Les utilisateurs aiment que les fenêtres soient redimensionnables. Pour
être plus précis, les utilisateurs peuvent avoir envie de redimensionner le
formulaire de SimpleEditor. Par défaut, un formulaire est
redimensionnable, mais les objets qu'il contient ne le sont généralement
pas. C'est une chose à laquelle vous pouvez remédier, mais la solution n'est
pas triviale.

Si vous voulez faire simple, ne permettez pas aux utilisateurs de
redimensionner le formulaire. Ce n'est pas forcément évident, mais le
redimensionnement est une fonction du cadre. L'assignation de la valeur
Fixed3D à la propriété FormBorderStyle met le formulaire hors d'atteinte
du zèle des souris.

l. Sélectionnez le formulaire. Identifrez la propriété FornBorderSty'1e.
Sa valeur par défaut est S izable. Cliquez sur cette propriété pour
faire apparaître une liste déroulante des valeurs possibles. Sélec-
tionnez Fixed3D pour interdire le redimensionnement.

La suite de cette section, consacrée à la manière de rendre
SimpleEditor redimensionnable, peut être considérée comme
appartenant au domaine technique. Vous pouvez I'ignorer et
continuer à avancer. Vous y reviendrez quand vous voudrez.

Pour rendre un formulaire redimensionnable, la difficulté est de dire
aux composants qu'il contient comment ils doivent répondre. Par
défaut, la plupart des composants ne sont pas redimensionnables.
Si vous redimensionnez le formulaire, ils resteront là où ils étaient,
comme le montre la Figure 17.9.

Si SimpleEditor doit être redimensionnable, ses composants
doivent savoir quoi faire. Par exemple, si le cadre est agrandi, la
TrackBar doit se déplacer vers la droite, tout en suivant le bord
inférieur du formulaire. Autrement dit, la TrackBar est ancrée en
bas du formulaire. Si le formulaire est allongé verticalement, la
TrackBar reste sur le bord inférieur.

En plus, la TrackBar doit s'étirer horizontalement entre le bord
gauche et le bord droit du formulaire. Cet effet est produit par son
ancrage sur les bords droit et gauche. Quelle que soit la largeur
donnée au formulaire, la TrackBar ne doit jamais dépasser du
formulaire, par la droite ou par la gauche.

424 Ginquième partie : Programmer pour Windows avec Visual Studio

Encore un détail : il faut centrer horizontalement la zone de texte
dans le formulaire. Vous pouvez le faire visuellement, mais il y a
une meilleure solution.

Sélectionnez la zone de texte, et cliquez sur I'outil Centrer hori-
zontalement dans la barre d'outils Disposition.

La zone de texte est centrée horizontalement dans le formulaire.

Venons"en maintenant à notre TrackBar. Sélectionnez le compo-
sant TrackBar dans la Boîte à outils, et placez-Ie tout en bas du
formulaire S imp 1 eEci it o r.

La taille verticale d'un composant TrackBar est fixe, mais vous
pouvez l'étirer horizontalement pour lui donner la longueur que
vous trouverez raisonnable. Encore une fois, "raisonnable" est une
question de préférence personnelle, et vous pourrez modifier cette
longueur lorsque vous aurez vu ce qu'elle donne en pratique.

Une TrackBar possède plusieurs propriétés de comportement
intéressantes. En fonctionnement, SimpleEditor aura besoin de
demander à la TrackBar la valeur qu'elle contient. Ce qui soulève la
question : "À quelle valeur correspondent la position la plus à
droite et la position la plus à gauche de I'index ?" Ces deux valeurs
sont définies respectivement par les propriétés Mininum et l,laxinun
de TrackBar. Nous avons dit que la taille de la police peut aller de 8
à 24 points.

Sélectionnez la TrackBar (si elle ne I'est pas déjà). Assignez Ia
valeur 8 à la propriété Minlrnum, €t la valeur 24 àla propriété
Maxirnun. Assignez la valeur l2 à la propriété Value.

Centrez la TrackBar : sélectionnez-la, et cliquez sur le bouton
Centrer horizontalement dans la bane d'outils Disposition.

Encore un coup de peÎnture et nous tl sommes

Les composants dont nous avions besoin pour la taille de la police sont
en place et prêts à fonctionner, mais ils pourraient être plus sympathi-
ques. Vous et moi, nous savons à quoi ils servent, mais personne d'autre
ne va le deviner. SimpleEditor a besoin de quelques étiquettes pour
indiquer à quoi servent les différents champs.

J.

6.

t.

8.

422 cinquième partie: Programmer pour Windows avec Visual Studio

Tableau 17.1 : Raccourcis clavier des éléments de menu.

Élément de menu Raccourci

Fichier/0uvrir Ctrl0

Fichier/Enregistrer CtrlS

Fichier/0uitter Ctrl0

Édition/Couper CtrlX

Éditioni Copier CtrlC

Édition/Coller CtrlV

Format/G ras CtrlB

Format/ltalique Ctrll

?F1

.ffi

Ajouter les contrôles d'ajustement de la yrolîce

SimpleEditor doit aussi être capable de modifier la police, dans certai-
nes limites arbitraires. Dans cette section, vous allez ajouter une zone de
texte dans laquelle I'utilisateur pourra taper la taille qu'il veut donner à la
police. SirnpleEditor disposera aussi d'un contrôle analogue, que I'on
appelle TrackBar, dans lequel I'utilisateur peut faire glisser un index
d'une extrémité à I'autre pour augmenter ou diminuer la taille de la police.

En dehors de rendre SimpleEditor plus facile à utiliser, cette fonctionna-
lité permet aussi de montrer comment relier deux contrôles.

l. Ouwez la Boîte à outils, et faites glisser un contrôle TextBox en bas
de la fenêtre SirnpleEditor. Comme la taille par défaut est un peu
grande pour deux chiffres, vous pouvez la réduire horizontalement.

Il y a beaucoup de choses dans la propriété Font (police) : la police
elle-même et sa taille, ainsi que des propriétés comme Bold (gras),
Italic (italique), et Str,keout (barré). C'est pour cette raison
qu'il y a un petit signe plus à gauche de la propriété Font. Cliquez
sur ce signe plus, et vous voyez apparaltre toutes les propriétés
que contient Fonr, comme le montre la Figure 17.7. (Et le signe plus
devient un signe moins - si vous cliquez sur le signe moins, vous ne
voyez plus que la propriété Font, comme avant.)

420 Ginquième partie : Programmer pour Windows avec Visual Studio

2. Suivez les instructions simples qui appamissent dans le Concepteur :

cliquez sur les mots Tapez ici, puis tapez Ie nom de votre premier
élément de menu : Fichier.

Le Concepteur répond en affichant un autre cadre Tapre z icl au-
dessous, et encore un autre à droite du premier, comme le montre
la Figure 17.5. C'est tellement excitant que je ne sais pas par lequel
commencer.

/,
lirhier Edihon AffiÊhôqe erûiet ÉenérÊr qéboguer Dgnnéet qûii5 Fetêtre Uelp

-

Figure 17.5 :

Le compo-
sa nt
ll(1a111lqL1U

VOUS

propose de
taper I option
du menu
principal et
celle du

s0us-menu.

- Cliquez dans le cadre Tape z ici au-dessous de Fichier, et entrez
les trois options du menu Fichier : Ouvrir, Enregistrer, et Quitter.

Cela fait, cliquez dans le cadre Tape z ici à droite du menu
Fichier, et entrez Édition et ses options : Couper, Copier, et Coller.

Déplacez-vous à nouveau d'un cran vers la droite, et ajoutez
Format et ses options : Gras et ltalique.

Enfin, ajoutez ? Q'aide) à la barre de menus.

Remarquezla nouvelle zone ouverte par le Concepteur au-dessous
de la zone de dessins avec la création de votre premier menu
principal. Vous pouvez cliquer sur I'objet rnainMenul qui y apparalt
pour définir les propriétés d'ensemble de ces menus. Vous pouvez
aussi utiliser cette zone pour y placer les objets qui ne sont pas

directement visibles (par exemple, une boîte de dialogue qui
apparaît seulement dans certaines circonstances).

iÂffi tr- eLeiû1 ' .-s

' Forml,ci [Derig"]" | '

'-$."1â'l
- bite è out'l.j I c

^l oonnees
-.l

connosentç
I

I
Wind6$rs Forft,s

I i Potnte'rt

I A t"t'"t

I A tir*taua

I J. *uont=-
I lstr rex(uor

i di l'4ùnMeru

I r".t**..
ô Rôdio&tton

l' 6roupBo.

43 PEtureBo!

:J i.-l tun"t

F oatecrid

Fresæ-pôpier5 qtrculôîË

Générùl

*eoil"u*t,tr[d-T

3.

4.

D.

6.

4 | 8 Ginquième partie : Programmer pour Windows avec Visual Studio

vous-même. Tous ces sujets sont fort intéressants, mais, comme
vous vous en doutez. sortent du cadre de ce livre.

En faisant défiler vers le haut et vers le bas le contenu de la Bolte à
outils, vous découvrez une pléthore de composants. On y trouve des
étiquettes, des boutons, des zones de texte, des menus, et une quan-
tité d'autres objets graphiques. Il y en a strement un qui est ce dont
nous avons besoin pour la fenêtre d'édition. On pourrait penser que le
composant TextBox €st ce qu'il nous faut, mais une zone de texte est
plutôt adaptée à la saisie d'un texte simple (en général, une ligne). Par
exemple, vous utiliserez une zone de texte pour permettre à I'utilisa-
teur d'entrer un simple nombre entier pour la taille de police.

En fait, le meilleur choix pour la fenêtre d'édition est le composant
RichTextBox. Celui-ci permet de saisir et d'afficher du texte dans le
format nommé RTF (Rich Text Format). Un fichier RTF est sembla-
ble à un fichier au format Microsoft Word (.DOC), à cette différence
que RTF est plutôt un standard. Ce format a toutes les propriétés
dont nous avons besoin : italique, gras, différentes tailles de police,
et il est pris en compte par la plupart des traitements de texte pour
Windows, dont Word, et d'autres traitements de texte écrits pour
d'autres systèmes d'exploitation, par exemple pour Unix.

Afin de créer la fenêtre d'édition, cliquez sur le symbole
Rj-chTextBox dans la Boîte à outils. Placez le pointeur dans le
coin supérieur gauche du formulaire Simple Editor, puis mainte-
nez enfoncé le bouton gauche de la souris pour le faire glisser
vers le bas et vers la droite, créant ainsi une zone d'édition
comme celle que montre la Figure 17.4.

Ne vous préoccupez pas trop de la taille et de I'emplacement exact
de la zone R.ichTextBox. Vous pourrez toujours Ia déplacer et la
redimensionner autant que nécessaire.

Je n'aime pas beaucoup le texte initial de richTextBoxl. Pour le
modifier, ouvrez la fenêtre Propriétés, et remplacez le contenu
de la propriété Text par rien. Autrement dit, effacez ce qui s'y
trouve pour laisser ce champ vierge.

Le texte disparaÎt de la zone RichTextBox.

La même propriété peut être interprétée de façon différente par
deux composants différents. La propriété Text en est le meilleur
exemple. Pour un formulaire, c'est l'étiquette qui se trouve dans la
barre de titre. Pour une zone de texte (TextBox ou RrchTextBox),

,

3.

vous voici confronté à un micro-ordinateur - prus par nécessité que par
goût, avouons-le -, sans savoir par quel bout prendre cet instrument
barbare et capricieux. oubliez toute appréhension, cette nouvelle
collection est réellement faite oour vous !

Grâce à ce livre, vous allez rapidement écrire vos premières applications
en c#, sans pour autant devenir un gourou de la programmation. c#, c'est
le nouveau langage de programmation développé par Microsoft, et qui se
présente comme la pierre angulaire de la solution .NET du géant du
logiciel. Rassurez-vous, on ne vous assommera pas avec toutes res
subtilités du langage, mais vous posséderez les bases nécessaires oour
utiliser la panoplie d'outils du parfait programmeur C#.

çn
,,j
p-(
Jz
(n
FU
nJ

b'
-î'ii

65 3303 B

tsBN-2-84427-2s9 2

Au vu de ce symbole, si

vous êtes allergique à la

technique, passez votre

chemin.

Cette icône signale une

manipulation qui va vous

simplifier la vie.

Désolé, il faut quand ntcm,

retenir ceci.

Lfr
È"'i

f-\
n

Retrouvez First Interactive sur Internet

www.efirst.com ,llilIxilrililill[|iltlll
r)1, t.J):l tJ

FinstllungryMinds-
First

21,90 € (143,6s F)

