

C#

POUR

LES NULS

Stephen Randy Davis

F t
s g v g i s

C# pour les Nuls

Publié par

Hungry Minds, Inc.
909 Third Avenue
New york, NY 10022

Copyright © 2001 par Hungry Minds, Inc.

Pour les Nuls est une marque déposée de Hungry Minds, Inc
For Dummies est une marque déposée de Hungry Minds, Inc
Collection dirigée par Jean-Pierre Cano

Traduction : Philippe Reboul

Edition : Pierre Chauvot

Magquette et illustration': Stéphane Angot

Tous droits réservés. Toute reproduction, méme partielle, du contenu, de la couverture ou des
icones, par quelque procédé que ce soit (électronique, photocopie, bande magnétique ou autre)
est interdite sans autorisation par écrit de Hungry Minds, Inc.

iidition francaise publiée en accord avec Hungry Minds, Inc.
© 2002 par Editions First Interactive

33. avenue de la République

75011 Paris - France

TélL 01 40 21 46 46

Fax 01 40 21 46 20

E-mail : firstinfo@efirst.com

Web : www.efirst.com

ISBN : 2-84427-259-2

Dépot légal : 1° trimestre 2002

Limites de responsabilité et de garantie. L'auteur et I'éditeur de cet ouvrage ont consacré tous leurs
efforts a préparer ce livre. Hungry Minds et I'auteur déclinent toute responsabilité concernant la
fiabilité ou I'exhaustivité du contenu de cet ouvrage. lls n’assument pas de responsabilités pour ses
qualités d’adaptation a quelque objectif que ce soit, et ne pourront étre en aucun cas tenus responsa-
bles pour quelque perte, profit ou autre dommage commercial que ce soit, notamment mais pas
exclusivement particulier, accessoire, conséquent, ou autres.

Marques déposées. Toutes les informations connues ont été communiquées sur les marques déposées
pour les produits, services et sociétés mentionnés dans cet ouvrage. Hungry Minds, Inc. et les Editions
First Interactive déclinent toute responsabilité quant a I'exhaustivité et a I'interprétation des informa-
tions. Tous les autres noms de marque et de produits utilisés dans cet ouvrage sont des marques
déposées ou des appellations commerciales de leur propriétaire respectif.

Sommaire

Premiére partie : Créer vos premiers programmes CH.........ccccceeeees 1

Chapitre 1 : Créer votre premier programme C# pour Windows................ 3
Les langages de programmation, C#, et NET ... 3
Qu'est-Ce qU'UN PIrOZramMIME 7 ...ocooiiiiiiirieieiieee ettt e 4
QU'EST-CE QUE CH 7 oot s 5
Qu'est-ce QUE NET 7 ..ottt 5
Qu'est-ce que Visual Studio NET 2 et CH# 7 ..o 7
Créer une application pour Windows avec C#ccceevvveniniiiininniciiecicenne 7
Créer 1€ MOAEIEcoviiiiieii ittt st ee e e aesnesne e 8
Générer et exécuter votre premier véritable programme Windows.............. 11
Dessiner une appliCationcccocvviiiiiiiiniiiiiiiciici e 12
Faisons-lui faire quelque ChoSeccccoiiiiiiiniii e, 18
Essayer le produit finalc...ccccecniiiiniiiiiiii 19
Programmeurs Visual Basic, attention ! ..., 20
Chapitre 2 : Créer votre premiére application console en C# 21
Créer un modele d'application consoleccccoviiinininiiiiii e, 22
Créer 1€ Programine SOUICEccccvivieiiiiiiiiineriiissrie e enie e ssaneeeseeseseesaeas 22
TESLEr 1€ TESUILALocviieiiciiiee ettt s be e 23
Créer votre premiére véritable application consoleccocovinceiinnicnicenccnnns 24
EXamiNons C& PrOZIAIMITIEccveieriieuerieenierieieeieettereniesieeeesbestesse st esssiee e sssssesaesiesns 25
Le cadre de travail du programmeocevveeieeeerienieneeeeeerecencssesissne s 26

LeS COMIMEIEAITES ...vvovveviiieietietiiiee ettt te et e st eee e st e et b ese e ae 26

La substance du Programimecooceeerinmencenns s 27

Deuxiéme partie : Programmation élémentaire en C# 29

Chapitre 3 : Déclarer des variables de type valeurccocceevieeeecnnennnnen. 31
Déclarer une variable ... 32
QU'eSt-Ce QU'UN TN ? ooviiiiiiiiiiiee s 33

Les regles de déclaration de variable ..., 34

Variations sur un théme : des int de différents typesccccoivvvvviiiinnnins 35

U’ C# pour les Nuls

Représenter des fractionsoocoiiiiiiiiie ettt 37
Utiliser des variables en virgule flottantecccoccoiioiiiiiiiiiiiii e 38
Déclarer une variable a virgule flottantecccooooi, 38
Convertissons encore quelques températuresccccceeevvevrnicnniennicriinnnnnnnn. 40
Quelques limitations des variables en virgule flottante..............cccccoe. 40
Utiliser le type decimal, hybride d'entier et de virgule flottantecc.c.... 42
Déclarer une variable de type decimalcc.ccocoiinnnini 43
Comparer les types decimal, int, et float ... 44
Soyons logique, examinons le type bool ... 44
Un coup d'ceil aux types CAracCterec..cooveviiviieiiiiiiiiiicceciie e 45
La variable de type Char ... 45
Types Char SPECIAUXccoviiiiiiiceic e s 46

Le tyPE STHING .eocuviiiiieiieiiiee e 46
Comparer String €t Charccooeeiiiiiiii e 47
Qu'est-Ce qU'UN tYPE VAIEUT 7 ..oviviiiieiioie ettt e e 49
Déclarer des constantes NUIMETIQUEScceevereriiieeeirienireenieeeireenreeseeeseeesivsesseneees 50
Changer de type : 1€ CASt ...oeieriiriicie e 51
Chapitre 4 : Les opérateurs SONt SYMPASccccevveeererriicisessssssnnreeessesssssssiases 53
Faire de I'arithmeEtiQUecoviviiiiiiiieee e 53
Les OPErateurs SIMPIEScooooieiiiiicee ettt e 54
Ordre d'exécution des OPErateurscceccvviviiiviiciiniiiieieie e 55
L'opérateur d'assignation et ses variantesccccocoeviiiiiniininninniennn, 56
L'opérateur d'incrémentationcccocuiovieerieiieeieenie et 57
Faire des comparaisons — est-ce 10gique ? ...t 59
Comparer des nombres en virgule flottante : qui a le plus gros float ?......... 60
Encore plus fort : les opérateurs logiques ..., 61
Trouver les ames sceurs : accorder les types d'eXpressioncocceevincinnininnn 63
Calculer le type d'une opérationc.ccceevveeeniniiiiciiii e 63
ASSIGNET UN LYPE ..ottt ettt s b et srens 65
L'opérateur ternaire, le redoutableccocooiiiiiininciic e 66
Chapitre 5 : Controler le flux d'exécution d'un programme..........c..ccuuueee 69
Controler le flux d'@XECULIONcooeeiieiiiiieiiiectrecc e 70
Et sij'ai besoin d’un exemple ? ..o 71
Qu'est-ce que je peux faire d'autre ?ccccoeivevrirneceneeee e 74
EVIter MEIME 1€ @ISovoveieiiiiieiee et 75
Instructions if imMbriQUEESscccccoireeieiieiic s 76

Les commandes de boucleccooevieiiininiiiiii e 79
Commencons par la boucle de base, while............c..coooo 80

Et maintenant, do... Wil c.ueeveeiiiii e 84
Briser une boucle, €'est facCilecccuvviivieiieiiiieece e 85
Faire des boucles jusqu'a ce qU'ON ¥ arriVecccovverrereenienenierceeeeene e 86

Les régles de portée des variablescccciniiiiiiiiiniii 90

Comprendre la boucle la plus utilisée : fOrccoooiiiirveniiiicc, 91

Sommaire
Un exemple de boucle fOr ... 91
Pourquoi auriez-vous besoin d'une autre boucle ? ... 92
Des boucles IMDIIQUEESoceeieiiiieiccieiiiicciie e 93
L'instruction de controle SWitCh ..o 97
Le MOAESEE GO0 ..uviiieiiieiriieie ettt s 100
Troisieme partie : Programmation et objets...............cccceeecerecnnns 101
Chapitre 6 : Rassembler des données : classes et tableauxcceeuu. 103
MONEreZ VOITE CIASSE ..oviiiiiiiie ittt 104
DAfINIF UNE ClASSE ..vovvieiiiiiii ittt s e 105
Quel €St NOLIE ODJEE 7 ..iiiiiieiie e 106
Accéder aux membres d'un Objetoceeirciiniiriiiii 107
Pouvez-vous me donner des références 7 ... 111
Les classes qui contiennent des classes sont les plus heureuses du monde .. 113
Les membres statiques d'une classe ... 115
Définir des membres de tyPe CONStc.ooviiiiiiiieiieiciiiie e 116
Les tableaux : 1a ClasSSe AITAY ...oiiviiieerieiiieiicierienec ettt a e 116
Les arguments du tableauccoiiiii 116
Le tableau & 10ngueur fiXecccooiciiieiiiiiiiiii 117
Le tableau a longueur variable ... 120
Des tableaux d'ODJets ... 124
Une structure de contrdle de flux pour tous les tableaux : foreach 127
Trier un tableau d'ODJESc.cccivivrieiicieeee e 128
Chapitre 7 : Mettre en marche quelques fonctions de grande classe 135
Définir et utiliser une fonCtioNccccevieoiniirce e 135
Un exemple de fonction pour vos fichiers ... 137
Donner ses arguments & une fonCtion ... 143
Passer un argument & une fonction ... 144
Passer plusieurs arguments a une fonction ... 145
Accorder la définition d'un argument et son utilisation ... 146
Surcharger une fonction ne signifie pas lui donner trop de travail 147
Implémenter des arguments par défaut ...
Passer des arguments d'un type valeurcccocoiiiiiniiiiiienncn
Retourner une valeur a I'eXpéditeurcooovviiiiiiiii
Utiliser return pour retourner une valeur
Retourner une valeur en utilisant un passage par référencec......... 158
Quand utiliser return et quand utiliser OUt ?cccovvviiiiiiiiie 158
Définir une fonction qui ne retourne pas de valeurcc.ccooniriernnneen 160
La question de Main() : passer des arguments a Un Programmeo.ocoevnies 164
Passer des arguments a l'invite de DOS ... 165
Passer dos arguments a partir d'une fen@tre ... 168

Passer des arguments a partir de Visual Studio .NET ... 170

Vil

V”’ C# pour les Nuls

Chapitre 8 : Méthodes de Classe..........uuieeeeriiiiiiininriniiicereniinininieninieneennnes 175
Passer un objet & une fonCtion ..o 175
Définir des fonctions et des méthodes d'objet ... 177

Définir une fonction membre statique d'une classe ..., 177
Définir une MEtNOAEcocveeviieiiiiieeiee e e 179
Le nom complet d'une méthodecoccooviiiiiiiiiiniiiee 182
Accéder A 1'0DJel COUTANTcoviiiiiiiiiieece et e e 183
QU'ESE-CE QUE ThiS 7 weoiiiiiiieiieece e e 184
Quand this est-il EXPHCItE 7iiiiviiiiiiie e s 185
Et quand je n'ai pas this 7 ..o 188
Obtenir de l'aide de Visual Studio — la saisie automatiquecccovvrenni 190
Obtenir de l'aide sur les fonctions intégrées de la bibliothéque standard C#. 191
Obtenir de 'aide sur vos propres fonctions et méthodes ... 193
Encore plus d'aideooooiiiii e 195
Générer une documentation XMLccccocniiniininiiie 200

Chapitre 9 : Jouer avec des chaines en C#cueerieeeieciinininnnnnneceniinsnens 201

Effectuer des opérations courantes sur une chaineccccociviniiinciininnnn 202
L'union est indivisible, ainsi sont les chalnescc.cccooevciiiiciininnninn, 202
Egalité pour toutes les chaines : la méthode Compare()coccoveuevereernne 204
Voulez-vous comparer en majuscules ou en minuscules ? ... 208
Et si je veux utiliser switCh 7 ... 209
Lire les caracteres SAUSIS ...cooceoieoiiiiiiieie et 210
Analyser une entrée NUMEriQUEccceceenririeiiniiniiiiiiiiie e 212
Traiter une suite de chiffrescccooocveiiiiiiinn e 215

Controler manuellement 1a SOrtieooccoovieiiiiiiniiiiii e 217
Utiliser les méthodes Trim() et Pad() ...ocoeeoeeereimienieiiiiecniicciccceee 217
Recoller ce que le logiciel a séparé : utiliser la concaténation 221
Mettre Split() dans le programme de concaténationcccccocceievininne. 223

Maitriser String. FOrmat()cocovoiieieieiree e 224

Quatriéme partie : La programmation orientée objet 229

Chapitre 10 : La programmation orientée objet : qu'est-ce que c'est ? ... 231

L'abstraction, concept numéro un de la programmation orientée objet 231
Préparer des nachos fonctionnels ... 232
Préparer des nachos orientés objet ..o 233

La classification, concept numéro deux de la programmation orientée objet....... 234

Pourquoi ClasSifier 7ooiooeieiieee et s s 235

Une interface utilisable, concept numéro trois de la programmation orientée objet . 236
Le controle d'acces, concept numéro quatre de la programmation orientée objet 237
Comment la programmation orientée objet est-elle implémentée par C# 238

Sommaire

Chapitre 11 : Rendre une classe responsable..............cooiiivnnnirrinicnnnnen 239
Restreindre Y'acces a des membres de €lasse.........ccoovviiiiviiiiiicccceecee, 239
Un exemple public de public BankAccount ..., 240
Allons plus loin : les autres niveaux de Sécuritéccoccooveiiiiiieennenn, 243
Pourquoi se préoccuper du controle d'accés ?ccoovvevieriiviiiicicce e 244
Des méthodes pour accéder a des objets ..ot 245

Le controle d'acces vole a votre secours : un exemple ... 246

Bt @IOTS 7 oottt 250
Définir des propriétés de Classecccoiiiiiiveiiiiiiicee e 250
Donner un bon départ a vos objets : les constructeurscceceevciniiieniennenn. 252
Le constructeur fourni par C# ... 253
Le constructeur par défaut ..o 255
Construisons quelque ChOSe ... 256
Exécuter le constructeur a partir du débogueurcccocoviiiiiciiicnnnnnn, 258
Initialiser un objet directement : le constructeur par défaut 261
Voyons comment se fait la construction avec des initialisations 262
Surcharger 1€ CONSTIUCLEULccoiiiiiiiiieiiieciieieeee sttt eae st ere e sae e eraaaeaae e 263
Eviter les duplications entre 1es CONStIUCLEULScov.vvvvevereereesereeeseeneos 265
Ere avare de $€5 ODJELS . ..o.v.oioeeeeoeeee oo 270
Chapitre 12 : Acceptez-vous I'héritage ?cccoovvvmmmmereieiinisirernncecceieennnes 271
HErIter d'UNE ClaSSoivieici et 272
A QUOI ME SErt TNEIEAZE ?ooooioio oo 274
Un exemple plus concret : hériter d'une classe BankAccountc.ccoevrennn. 275
EST_UN par rapport a A_UN —j'ai du mal @ m'y retrouver...........cccccoccoverrniennnnn 278
La relation EST _UNo, 278
Contenir BankAccount pour y accéderccooiiviiiiiiniiciiiieice e 279

La relation A_UN ...ttt 280
Quand utiliser EST_UN et quand utiliser A_UN ?ccoooviiiiiieicer e, 281
Autres CONSIAEratiONSc.ciuiiiiiiii et sen et reennens 282
Changer de ClaSSe ...t 282

Des casts invalides & I'eXECULIONcoccoicvivieiiiininicceeceee e 283
Eviter les conversions invalides en utilisant le mot-Clé isccoco........ 284
L'héritage et 1€ CONSIIUCLEUYccooiiiiiiiiic et 286
Invoquer le constructeur par défaut de la classe de base..........cccooeceenee. 286
Passer des arguments au constructeur de la classe de base : le mot-clé base .. 288

La classe BankAccount modifi€eccoceevvvoviniiiiniin e 291
L& d@STIUCTRUL ..ottt 293
Chapitre 13 : Quel est donc ce polymorphisme ?c.cccovemmereeeeeireiiinrenne 295
Surcharger une méthode héritéecccociiiiiiiii 296
Ce n'est qu'une question de surcharge de fonctionc..c.ococcoocvivernennnnn. 296

A classe différente, méthode différente..................c..ococooviiioieeeeceeere. 297

Redéfinir une méthode d'une classe de basecccccoveiiiiiiiiccci, 298

X

C# pour les Nuls

Revenir @ 1a DASE ..o e 303
Le POLYMOTPRISITIC ..ottt sttt ettt eneenie 305
Qu'y a-t-il de mal & utiliser chaque fois le type déclaré ?ccoceerine, 306
Accéder par le polymorphisme a une méthode redéfinie en utilisant is 308
Déclarer une méthode comme virtuelleccoooevoiiiiiniiiiie e 309
La période abstraite de CH ... 311
Le factoring entre ClaSSeSivvveieeiiiiieiiee e 311
Il ne me reste qu'un concept : la classe abstraite ..., 317
Comment utiliser une classe abstraite ?occooiiiiiiiice e 318
Créer un objet d'une classe abstraite : non! ..o 320
Redémarrer une hiérarchie de classescccoooieiiiiiiiiiiie e 321
Sceller UNE ClASSEccvi ittt e esbe e e e naea e srnae s 325

Chapitre 14 : Quand une classe n'est pas une classe : I'interface

L E 0 1 Tl 11 IO SO 327
Qu'est-ce que PEUT_ETRE_UTILISE_COMME ?cocoovimiiieereeeeeeeceeeeeeeseeeen. 327
Qu'est-ce qUUNE INEETTACE 7 .oooiiiiiiiiiiiice et 329
Pourriez-vous me donner un exemple simple ?..........c...ccoeooiiiiiiieiiiiee e 330
Puis-je voir un programme qui PEUT_ETRE_ UTILISE_COMME un exemple ? 332

Créer votre interface "faites-le vous-meéme"cccooeeviveiviiiniicceniennene 332
Interfaces Prédéfiniesccooviiviiiiiiiecece et 334
Assembler 1€ TOUL ..o 336
HEritage et INTEITACE ...c.viviiiiiiee et 342
Rencontrer une interface abstraitecocoocioiiiiiiiiii e 342
Une structure n'a pas de ClaSSe ...t 345
La STrUCHUTE CH oot ee ettt e e eaeae s eaeeeas 346
Le constructeur de StruCtUrecccoioiiiiiiieeiiee et 348
Les méthodes d'une structure SONt FUSEEScccevvvieeeiieriiiieiiecie e 349
Mettre une structure a I'épreuve par I'exemplec.ccocvovieviiceniceieenenne 350
Réconcilier la valeur et la référence : unifier le systeme de types........ccoeeveeuenee. 353
Les types structure prédéfinis ... 353
Comment le systéme de types est-il unifié par des structures communes ?
UN @XEIMIPIE oottt 354

Chapitre 15 : Quelques exceptions d'eXceptionccereverecreerissnececnne 359

Traiter une erreur a l'ancienne mode : la retournerccccoccoorveiiivnncnnee. 360
Retourner une indication d'erreurccccooeioiiiiinenicinee e 362
Je suis 1a pour signaler ce qui me paralt nécessairec.ccececvevereeiennnnn 365
Utiliser un mécanisme d'exceptions pour signaler les erreurscccceeeveene 367
Puis-je avoir UN €XEMPIE 7ccoiiciiiireieiirririeieeie st sie et eteee et se et aeteets s sassesnsesees 368
Créer votre propre classe d'eXCePtionNScccceviiiiiiieieeiie s 371
Assigner plusieurs blocs CatCh ... 373
Laisser quelques envois vous filer entre les doigtscccooevveviieiviciennn, 375
Relancer Un ODJet ... 378

Redéfinir une classe d'eXCeptions ..o 380

Sommaire
Chapitre 16 : Manipuler des fichiers en C#..........cccccevvvviiiinnveeniiniienccinnnn. 385
Diviser un méme programme en plusieurs fichiers sourcecccoveeiivercennnn 385
Réunir des fichiers source dans un espace de NOM........c.coceveverveiinenereneenreinenenne 387
Déclarer un €space de NOMoociiiiiiiiiiiniiiciiereee ettt ene s 388
Accéder a des modules du méme espace de NOMccceeeeiieiieeeeieeeennn. 388
Utiliser un espace de nom avec le mot-Clé USINGcoveeeeviverireiirvenneennnnns 390
Controler 'accés aux classes avec les espaces de nom........ccccooeeeecennene. 391
Rassembler des données dans des fichierscccocciiiniiii 394
Utiliser StreamWIILercocooiiiiiiiiciicec e e 396
Améliorez votre compréhension et votre vitesse de lecture avec
StreamBREAAEcoiiiiiiiii e e e 402

Cinquieme partie : Programmer pour Windows avec Uisual Studio 507

Chapitre 17 : Créer une application Windows : le ramage et le plumage 409
Quel est 1e PrODIEIME ? ..ot 410
EXPOSer 1€ DroDICIMEcoiiiiiiiiiiiieiic et 410

Concevoir 1a Présentationccooceivieiiieieiicee st 411
M SOLULION ..ottt et e s 412
DesSSINEr 12 SOIULION ...oc.viriiiiecii ettt s s e 412
Créer le cadre de travail de 'application Windowscccccecevvinincnnnnn. 413
Ignorez ce type qui se cache derriére le rideauc.ccoocveiieeniiniceninens 415
Editer la fendtre d'@ditionc.coovvoiiivieieeeeeeee et 417
Construire 185 MEeNUSccieiriieiiicieeee e 419
Ajouter les controles d'ajustement de la policecocvvveeeieiiiiiniicene, 422
Encore un coup de peinture et NOUS ¥ SOMIMEScccovvvrriievvveneenirirenieecrenns 424
Redimensionner le formulaireccoooieeieiiiiieesiecie e 426
Qu'avons-nous fabriqQUE 7 ... e 429
Comment apprendre a connaitre les composants ?cccocceevvevveeierivenienvenenannns 431
Et MainteNant 7 ..c.o..ocooioiieiieiiee et 431

Chapitre 18 : Achever votre application Windows...........cccecevuerernee. - 433
Ajouter des ACHIONS ...ocoiiiiiiii e 433
Un menu garanti pour éditer le menu Editionocccoevvvviieeeirevereeeeecerennans 435
Mettre hardiment en gras et en italiquecccccoviriniiiiiincii e 439

Changer de police et de taillecceoiiiiiciiiiiieceeee e 439
Implémenter les options du menu Formatcooccoceeieiiievnnencieenecicnienne. 440
Choisir la taille de POLCEcooviiiiieics s 442
Changer de taille en utilisant 1a TrackBarcccecoovieiiiiiiieciiccieceeie e, 442
Changer de taille en utilisant 1a TeXtBOXcccccoovvvviiiviiiiiciiciecee e 444
Enregistrer le texte de I'UtiliSateurcocoeeevieiirieicicece e 446
Lire le nom du fichier ... e 446

Lire un fichier RTE ...ooo ottt st ste e 448

X1

X1l

C# pour les Nuls

Ecrire un fichi€r RTFcoo.ooioeoeeeeeeeeeeeeeee et 449
Mettre Lire et Ecrire dans une boite, avec un menu par-dessus................. 450
Ne perdez pas mes modifications en quittant !ccccoveiiiiiiinniiccreee. 452
Implémenter le bouton de fermeture de la fenétreccccooevviinvciniiiiinniennns 456
Réaliser vos propres applications Windowsc.coccceeriieniiciiiennsennniiee e 457

Sixieme partie : Petits suppléments par paquets de dix 459

Chapitre 19 : Les dix erreurs de génération les plus courantes

(et comment y remMEAIer)ccovvviiiiereriiicnremneernvesiienrressssssmessssessssssasesssssess 461
'className' ne contient pas de définition pour 'memberName'c.....c.cccceeuee. 462
Impossible de convertir implicitement le type X' €n'y' ...cccooeniiiiiniiiienieen 464
‘className.memberName' est inaccessible en raison de son niveau de protection .. 466
Utilisation d'une variable locale non assignée M’cocoeccivenvieeiecninicnnenccninnne 467
Le fichier 'programName.exe' ne peut pas étre copié dans le répertoire
d'exécution. Le processus Ne PEUL PAS. .. .ccocoiririiiiieiieiiceenneecteee e seeeeeieeenes 468
Le mot-clé new est requis sur 'subclassName. methodName', car il masque
le membre hérité 'baseclassName.methodName'ccccccoieriiiiiinnniinnecinnnnn. 469
'subclassName' : ne peut pas hériter de la classe scellée 'baseclassName'......... 470
'className' n'implémente pas le membre d'interface 'methodName'.................. 470
‘'methodName’ : tous les chemins de code ne retournent pas
nécessairement UNE VAIEUTc.ccioriiiiiiiiniinieii ettt siteeiesiees e senesies s 471
FAEENAUE ..ottt e st st 472

Chapitre 20 : Les dix plus importantes différences entre C# et C++....... 473
Pas de données ni de fonctions globalesc.c.cccooevnininciiiniii 474
Tous les objets sont alloués & partir du tasc.ocooeeieiiecieniiiieceeceeeeee e 474
Les variables de type pointeur ne sont pas autoriséescoccecvceevereenenenncencns 475
Vendez-moi quelques-unes de vOS Propriétésccvvvvveeieieieecieneceie e 475
Je n'inclurai plus jamais un fichier ..o 476
Ne construisez pas, INIAlISEZcccovviiieeiiei e 477
Définis soigneusement tes types de variable, mon enfantccoccceccvcinncnnn. 478
Pas d'héritage multiplecccoveiiiiiiieee e 478
Prévoir une bomnne interface ... e 478
Le systéme des types UNIFESoccouiieoiiriiiiii e 479

Introduction

u fil des années, les langages de programmation ont beaucoup

évolué. Dans les premiers temps, les langages étaient malcommodes
et les outils volumineux. Ecrire un programme qui fasse quoi que ce soit
d'utile était une chose difficile. Au fur et 2 mesure des progres de la techno-
logie, des langages plus avancés apparaissaient sur le marché. Il y eut donc,
assez rapidement, le langage C, et par la suite C++ (prononcer "C plus
plus™). Les outils s'amélioraient aussi. Tres vite, il apparut des environne-
ments de développement intégré, avec des éditeurs, des concepteurs, des
débogueurs et Dieu sait quoi d'autre, réunis dans des ensembles faits pour
vous accompagner du berceau a la tombe.

On pourrait croire que ces nouveaux outils avaient rendu la programma-
tion plus facile, mais il n'en était rien : les problémes n'en étaient que plus
compliqués. C'est juste au moment ol je pensais que les programmeurs
allaient enfin rattraper ce processus qu'est apparu le développement
pour le Web.

Avec I'avénement du Web, le monde s'est divisé en deux camps : les
adeptes des solutions basées sur le systéme d'exploitation Windows, et
"les autres". Au début, ce sont "les autres” qui prirent l'avantage. Leurs
outils, basés sur le langage Java, permettaient d'écrire des programmes
distribués sur le Web.

C'est en juin 2000 que Microsoft a présenté sa réponse, sous la forme
d'une famille de langages et d'outils appelée .NET (prononcer "point net",
ou "dot net" pour faire américain), avec son emblématique langage de
programmation C# (prononcer "C sharp", autrement dit "do diése").
Bientot peut-étre, on pourra programmer en si bémol majeur !

Les buveurs de Java en revendiquent la supériorité, mais les NETitiens ont
aussi leurs arguments. Sans prendre part a leur polémique, on peut dire
qu'une bonne partie de la différence peut se résumer en une phrase : Java
vous dit qu'il vous suffit de tout réécrire en Java, et vous pourrez exécuter

X’U C# pour les Nuls

le résultat sur n'importe quelle machine ; .NET vous dit de ne rien réécrire,
et vous pourrez exécuter le résultat sous Windows. (En principe, .NET n'est
pas directement lié au systéme d'exploitation Windows, mais en pratique il
y a bien peu de chances que d'autres systémes d'exploitation importants
viennent se placer sous la banniere .NET.)

C# fonctionne au mieux dans lI'environnement .NET, permettant de créer
des programmes qui communiquent sur le Web, capables notamment de
fournir des services a des pages Web existantes. C# peut étre intégré a
d'autres langages de programmation, comme Visual Basic et Visual C++,
permettant aux programmeurs de faire migrer les applications existantes
vers le Web sans qu'il soit nécessaire de les réécrire toutes pour cela.

Toutefois, C# n'en est pas moins un langage autonome. Avec l'environne-
ment Microsoft Visual Studio .NET, C# apporte aux programmeurs les
instruments dont ils ont besoin pour créer des applications harmonieuses.

Au sujet de ce livre

Ce livre a pour but de vous décrire C#, mais il y a une difficulté.

C# a été créé par Microsoft en tant que partie essentielle de son initiative
.NET. Pour des raisons sans doute politiques, Microsoft a soumis au comité
de normalisation internationale ECMA au cours de I'été 2000 les spécifica-
tions du langage C#, bien avant que .NET ne devienne une réalité. En
théorie, n'importe quelle entreprise peut donc proposer sa propre version
de C#, écrite pour fonctionner sous n'importe quel systeme d'exploitation
et sur n'importe quelle machine plus grosse qu’une calculatrice.

Toutefois, au moment ot j'écris ces lignes, il n'existe qu'un seul fournis-
seur qui propose un compilateur C# : Microsoft. En outre, Visual C# n'est
proposé que d'une seule maniére : en tant qu'élément de la suite d'outils
Visual Studio .NET.

Aussi, pour vous décrire C#, je ne pourrai éviter de vous parler de Visual
Studio, au moins jusqu'a un certain point ; j'ai donc essayé d'en maintenir
I'évocation a un minimum raisonnable. Je pourrais me contenter de vous
dire : "Ouvrez votre programme de la maniére qui vous plaira" ; mais je
vous dirai plutot : "Lancez C# a partir de Visual Studio en appuyant sur la
touche F5." Je veux que vous puissiez-vous concentrer sur le langage C#
sans avoir a vous casser la téte sur des questions mineures.

Introduction XV

D'un autre c6té, je suis conscient du fait que beaucoup de lecteurs, sinon la
plupart d’entre eux, voudront utiliser C# dans le but d’écrire des applications
pour Windows. Bien que ce ne soit pas un livre sur la programmation sous
Windows en tant que telle, j'ai consacré une partie a montrer comment C# et
Visual Studio forment, ensemble, un puissant environnement de programma-
tion pour Windows.

Je sais aussi que certains utilisateurs se serviront de C# afin de créer des
applications distribuées pour le Web ; mais comme on ne peut pas tout
mettre dans ce livre, il me faut bien définir une limite quelque part. C#
pour les Nuls ne s'attaque pas aux questions de .NET et de la programma-
tion distribuée.

Hypothéses gratuites

Avant de pouvoir commencer a programmer en C#, il vous faut avoir
installé sur votre ordinateur un environnement de développement C# ;
autrement dit, au moment ot j'écris, Visual Studio de Microsoft. Pour
construire les programmes de ce livre, vous devez avoir installé Visual
Studio .NET.

Pour pouvoir seulement exécuter un programme généré avec C#, il faut
avoir le Common Language Runtime (CLR). Au cours de sa procédure
d'installation, Visual Studio .NET copie le CLR sur votre machine. D'autre
part, Microsoft a I'intention d'inclure le CLR dans les versions ultérieures
de Windows, mais ne l'a pas encore fait pour le moment.

Comment utiliser ce livre

J'ai fait en sorte que ce livre soit aussi facile a utiliser que possible. Il est
déja bien assez difficile de comprendre un nouveau langage. Inutile de
rendre les choses encore plus compliquées. Ce livre est divisé en six
parties. Dans la premiére, je vous présente la programmation en C# avec
Visual Studio. Vous y serez guidé étape par étape a travers la création de
deux types différents de programme. Je vous encourage fortement a
commencer par la en lisant ces deux chapitres avant de vous aventurer
dans les autres parties du livre. Méme si vous avez déja écrit des pro-
grammes, c'est le schéma de base présenté dans la premiere partie qui
sera utilisé tout au long du livre.

XU’ C# pour les Nuls

De la deuxieéme a la quatrieme partie, les chapitres sont autonomes. Je
les ai écrits de manieére que vous puissiez ouvrir le livre au hasard sur
n'importe lequel d'entre eux et commencer a lire. Toutefois, si vous €tes
un débutant en programmation, il vous faudra commencer par lire la
deuxiéme partie avant de pouvoir passer a la suite. Mais si vous revenez
a un sujet particulier pour vous rafraichir la mémoire, vous ne devriez
pas avoir de difficultés a aller directement a la section correspondante
sans commencer par lire les 20 pages précédentes.

La cinquiéme partie revient quelque peu au style "faites comme ceci".
C# pour les Nuls est un livre sur la programmation en C#, mais c'est en
créant de véritables applications pour Windows que C# et Visual
Studio .NET brillent de tous leurs feux. Cette partie va donc vous guider
a travers les étapes de la construction d'un programme pour Windows,
au-dela des choses élémentaires. Une fois que vous aurez tout lu, vous
ne saurez pas encore tout sur la construction d'applications Windows
puissantes, mais vous aurez appris ce qu'il faut pour partir dans cette
direction.

Et bien sar, la sixieme partie termine le livre selon la tradition des livres
Pour les Nuls.

Comment ce livre est organisé

Voici un bref tour d'horizon de ce que vous allez trouver dans chaque
partie :

Premiere partie : Créer vos premiers
programmes C#

Dans votre vie future de programmeur C#, vous allez créer beaucoup de
programmes. Quelle meilleure maniére de commencer que d'écrire une
petite application Windows amusante (j'ai bien dit petite) ? Cette partie
va vous montrer, étape par étape, comment écrire la plus petite applica-
tion Windows possible en utilisant l'interface Visual Studio .NET. Vous
apprendrez aussi a créer le cadre de base C# que nous allons utiliser dans
le reste du livre.

Introduction XU”

Deuxieme partie : Programmation élémentaire
en C#

Dans sa définition la plus élémentaire, une piéce de Shakespeare n'est
rien d'autre qu’un ensemble de séries de mots, liées les unes aux autres.
D'un point de vue tout aussi élémentaire, 90 % de l'écriture de n'importe
quel programme C# consiste en création de variables, en opérations
arithmétiques et en instructions de controle du chemin d'exécution du
programme. Cette partie est consacrée a ces opérations élémentaires.

Troisieme partie : Programmation et objets

Déclarer des variables ici et 1a et faire avec elles des additions et des
soustractions est une chose, écrire de véritables programmes pour de
véritables utilisateurs en est une autre. La troisiéme partie est consacrée
a la maniere d'organiser vos données pour les rendre plus faciles a
utiliser dans la création d'un programme.

Ouatrieme patrtie : La programmation ovientée
objet

Vous pouvez toujours organiser les différentes parties d'un avion comme
vous voulez, mais tant que vous ne serez pas arrivé a lui faire faire quel-
que chose, ce ne sera rien d'autre qu'une collection de parties. Il pourra
aller quelque part seulement lorsque vous l'aurez fait décoller.

C'est sur la base du méme principe que la quatriéme partie va vous
expliquer comment transformer une collection de données en un vérita-
ble objet. Un objet qui contient différents éléments, bien sir, mais qui
peut imiter les propriétés d'un objet du monde réel. Cette partie présente
donc I'essence de la programmation orientée objet.

Cinquieme patrtie : Programmer pour Windows
avec Visual Studio

Il ne suffit pas d'avoir compris le langage C# pour savoir écrire une
application Windows compleéte avec toutes sortes de fonctions, de bou-
tons et autres raffinements. Rien que pour le plaisir, la cinquieéme partie

XU”’ C# pour les Nuls

vous guide dans l'utilisation de C# avec l'interface Visual Studio afin de
créer une application Windows "non élémentaire”. Vous serez fier du
résultat, méme si vos enfants n'appellent pas leurs copains pour le voir.

Sivieme partie : Petits suppléments par
paquets de dix

C# est tres doué pour trouver des erreurs dans vos programmes. Par
moment, je le trouve méme un peu trop empressé a me faire remarquer
mes faiblesses. Mais, croyez-le ou non, il fait ¢ca pour vous rendre service.
Il vous fait remarquer des problémes que vous auriez dia découvrir vous-
méme s'il n'avait pas été la pour ca.

Malheureusement, les messages d’'erreur peuvent étre un peu confus.
L'un des chapitres de cette partie présente les messages d'erreur de
génération C# les plus courants, leur signification, et la maniére de s’en
débarrasser.

De nombreux lecteurs viendront a C# avec l'expérience antérieure d'un
autre langage de programmation. Le deuxiéme chapitre de cette partie
expose les dix principales différences entre C# et son géniteur, C++.

Au sujet du site Web

Sur notre site Web, vous trouverez tout le code source contenu dans ce livre.
Rendez-vous sur le site des éditions First a 'adresse www.efirst.com Une
fois sur la page d'accueil, cliquez sur First Interactive, puis sur la rubrique
Téléchargement. Ensuite, faites défiler les ouvrages jusqu'a C# Pour les Nuls,
cliquez sur le lien pour télécharger le fichier ZIP contenant I'ensemble des
fichiers, et décompressez-le dans un répertoire de votre choix.

Icénes utilisées dans ce livre

Tout au long de ce livre, j'utilise les icones suivantes pour mettre en
évidence des informations importantes.
‘\QS,\'\NIO(/(~
é" Cette icone indique des aspects techniques que vous pouvez ignorer en
= premiére lecture.

BC

<R
L'icone Truc signale une information qui peut vous épargner pas mal de
temps et d'efforts.

QQ\“’Z Pag
£ Souvenez-vous de cela. C'est important.
WUON . . N A, .
& Souvenez-vous aussi de ce qui est indiqué par cette icone. C'est le genre

A de chose qui vous tombe dessus au moment oll vous vous y attendez le
moins et qui peut produire un bogue vraiment difficile a débusquer.

Cette icone identifie le code que vous trouverez sur le site des éditions
First. Vous y gagnerez quelques efforts de frappe au clavier, mais n'en
abusez pas. Vous comprendrez mieux C# en saisissant les programmes
vous-méme.

Conventions utilisées dans ce livre

Pour faciliter les choses, j'ai utilisé différentes conventions. Les termes
qui ne sont pas des "mots ordinaires" apparaissent dans cette police,
afin de réduire au minimum les risques de confusion. Les listings de
programmes sont mis en retrait dans le texte de la facon suivante :

use System;
namespace MyNameSpace
{
public class MyClass
({
)

Chaque listing est suivi par une explication subtile et profonde. Les
programmes complets sont en téléchargement sur le site des éditions
First, ce qui fera votre bonheur, mais les petits fragments de code n'y
sont pas.

Enfin, vous verrez des séquences d’ouverture de menus comme dans
"Sélectionnez Fichier/Ouvrir avec/Bloc-notes”, ce qui signifie : cliquer sur
le menu Fichier, puis, dans le menu qui apparait, sur Ouvrir avec, et enfin,
dans le sous-menu qui apparait, de sélectionner Bloc-notes.

Introduction X’X

XX

C# pour les Nuls

On aller maintenant

Naturellement, la premiére étape est de comprendre le langage C#, idéale-
ment en lisant C# pour les Nuls. En ce qui me concerne, je m'accorderais
quelques mois pour écrire des programmes C# simples avant de passer a
l'étape suivante qui est d'apprendre a créer des applications Windows. La
cinquiéme partie pourrait faire paraitre les choses faciles, mais il y a pas
mal de piéges. Essayez tous les composants disponibles dans la boite a
outils de Visual Studio. Son systéme d'aide en ligne, trés complet et prati-
que, les décrits tous. Accordez-vous un bon nombre de mois d'expérience
de création d'applications Windows avant de vous lancer dans l'écriture de
programmes destinés a étre distribués sur Internet.

Entre-temps, vous disposez de plusieurs endroits pour vous tenir au
courant de l'actualité de C#. Pour commencer, tournez-vous vers la
source officielle : msdn.microsoft.com. Il existe aussi de nombreux sites
Web de programmeurs qui contiennent des éléments trés complets sur
C#, et qui permettent aussi de participer a des discussions en ligne sur
les sujets les plus divers, de la maniére d'enregistrer un fichier source aux
mérites combinés des ramasse-miettes (garbage collectors) déterministes
et non déterministes. Voici quelques grands sites sur C#, sans ordre
particulier :

¥ www.codeguru.earthweb.com/csharp
V¥ csharpindex.com
V¥ www.c-sharpcorner.com

J'ai aussi mon propre site Web, www. stephendavis.com, qui contient une
liste de questions fréquemment posées (FAQ, Frequently Asked Ques-
tions). S'il y a une chose que vous n'arrivez pas a comprendre, la réponse
a ce qui vous préoccupe s'y trouve peut-&tre déja. J'y ai aussi ajouté une
liste de toutes les erreurs qui ont pu se glisser dans le livre. Enfin, il y a
un lien vers mon adresse de messagerie qui vous permettra de m'envoyer
un mail si vous ne trouvez pas ce que vous cherchez.

Premiere partie
Créervos premiers
programmes C#

"Avant d'aborder les aspects avancés comme
la fonction 'EjecterLesTouristesQuiNeSuiventPas’,
nous allons commencer par les principes de base."

Dans cette partie...

[
D ici a ce que vous ayez maitrisé C#, vous avez pas mal de

chemin a faire. Autant commencer par vous amuser un
peu. Cette premiére partie va vous montrer les étapes de la
création d'une application Windows aussi simple que possible
en utilisant l'interface de Visual Studio .NET. Vous y apprendrez
aussi a créer le cadre de travail de base en C# pour les exemples
de programmes qui apparaissent tout au long de ce livre.

Chapitre 1

Créervotre premier
programme C# pour
Windows

Dans ce chapitre :
Qu'est-ce qu'un programme ? Qu'est-ce que C# ? Ou suis-je ?
Créer un programme pour Windows.

Bien accorder votre environnement Visual Studio .NET pour C#.

D ans ce chapitre, je vais donner quelques explications sur les
ordinateurs, les langages de programmation, C#, et Visual

Studio .NET. Ensuite, je vous guiderai a travers les étapes de la création
d'un programme pour Windows trés simple, écrit en C#.

Les langages de programmation, C#, et .NET

Un ordinateur est un serviteur remarquablement rapide, mais remarqua-
blement stupide. Il fera tout ce que vous lui demanderez (dans la limite de
ses capacités) trés vite, et méme de plus en plus vite. A I'heure actuelle,
un microprocesseur d'usage courant pour PC est capable de traiter prés
d'un milliard d'opérations par seconde.

4

Premiére partie : Créer vos premiers programmes C#

HNJ,
‘Q«g(- 006‘

Noj,

Malheureusement, un ordinateur ne comprend rien de ce qui ressemble a
un langage humain. Vous pouvez toujours me dire : "Mon téléphone
compose le numéro de la personne que je veux appeler si je lui dis son
nom. Je sais qu'il y a un petit ordinateur qui pilote mon téléphone. Donc,
cet ordinateur parle francais.” En fait, c'est un programme qui interpréte
ce que vous dites, pas l'ordinateur lui-méme.

Le langage de I'ordinateur est souvent appelé langage machine. Pour un
étre humain, il est possible, mais extrémement difficile et fertile en erreurs,
d'écrire en langage machine.

Pour des raisons historiques, le langage machine est aussi appelé langage
d'assemblage. Chaque constructeur fournissait avec ses machines un
programme nommé assembleur qui convertissait des mots particuliers en
instructions du langage machine. Ainsi, vous pouviez écrire des choses
vraiment cryptiques du genre MOV AX, CX (c'est une véritable instruction
pour processeur Intel), et I'assembleur convertissait cette instruction en
une suite de bits correspondant a une seule instruction machine.

Les étres humains et les ordinateurs ont décidé de se rencontrer quelque
part entre les deux. Les programmeurs écrivent leurs programmes dans
un langage qui est loin d'étre aussi libre que le langage humain, mais
beaucoup plus souple et plus facile a utiliser que le langage machine. Les
langages qui occupent cette zone intermédiaire (par exemple C#) sont
appelés langages de haut niveau (le terme haut a ici un sens relatif).

Ou'est-ce qu'un programme ?

Qu'est-ce qu'un programme ? Avant tout, un programme pour Windows
est un fichier exécutable que I'on peut lancer en double-cliquant sur son
icone dans une fenétre. Par exemple, la version du traitement de texte
Word que j'utilise pour écrire ce livre est un programme. On peut appeler
cela un programme exécutable, ou tout simplement un exécutable. Le nom
du fichier d'un programme exécutable se termine généralement par
I'extension .EXE.

Mais un programme est aussi autre chose. Un programme exécutable
comporte un ou plusieurs fichiers source. Un fichier de programme C# est
un fichier texte qui contient une séquence de commandes C#, se suivant
selon les régles de la syntaxe de C#. On appelle fichier source un tel fichier,
probablement parce que c'est une source de frustration et d'angoisse.

Chapitre 1 : Créer votre premier programme C# pour Windows

Ou'est-ce que C# ?

Le langage de programmation C# est I'un de ces langages intermédiaires
qu'utilisent les programmeurs pour créer des programmes exécutables. C#
comble le fossé qui existait entre le puissant mais compliqué C++ et le facile
mais limité Visual Basic. Un fichier de programme C# porte I'extension .CS.

C#est:

-+ Souple : Un programme C# peut étre exécuté sur la machine sur
laquelle il se trouve ou bien transmis par l'intermédiaire du Web
pour étre exécuté sur un ordinateur distant.

v Puissant : C# dispose essentiellement du méme jeu d'instructions
que C++, mais avec les angles arrondis.

v Facile a utiliser : Dans C#, les commandes responsables de la plupart
des erreurs dans C++ ont été modifiées pour les rendre plus sures.

-+ Visuel : La bibliothéque de C# fournit les outils nécessaires pour
créer directement des fenétres d'affichage élaborées, avec des
menus déroulants, des fenétres a onglets, des barres de défilement
et des images d'arriére-plan, entre autres.

v~ Prét pour Internet : C# est le pivot de la nouvelle stratégie Internet
de Microsoft, nommée .NET (prononcer point net).

v Sir: Tout langage destiné a une utilisation sur Internet doit conte-
nir sous une forme ou sous une autre des outils de sécurité pour se
protéger contre les hackers.

Enfin, C# est une partie intégrante de .NET.

Ou'est-ce que .NET ?

.NET est la stratégie adoptée par Microsoft dans le but d'ouvrir le Web
aux simples mortels comme vous et moi. Pour comprendre cela, il vous
faut en savoir un peu plus.

Il est tres difficile de programmer pour Internet dans des langages un peu
anciens comme C ou C++. Sun Microsystems a répondu a ce probleme en
créant le langage Java. Celui-ci repose sur la syntaxe de C++, rendue un peu
plus accessible, et est centré sur le principe d'un développement distribué.

5

Premiere partie : Créer vos premiers programmes C#

€2 P4
:Q.\) §
S

=

WNJ,
év& %

No;,

211

Quand un programmeur dit "distribué”, il pense a des ordinateurs dispersés
géographiquement, exécutant des programmes qui se parlent les uns aux
autres, dans la plupart des cas par Internet.

Microsoft a décidé de se lancer dans la course et a acquis une licence du
code source de Java, créant sa propre version nommée Visual J++ (pronon-
cer "J plus plus™). Microsoft obtint ainsi un acces instantané aux progres
accomplis par Sun et de nombreuses autres entreprises en développant
des utilitaires en Java. Il y eut toutefois quelques problémes lorsque
Microsoft tenta d'ajouter des fonctions a Java, car son contrat de licence du
code source le lui interdisait. Pire encore, le contrat était si simple qu'il
était impossible d'y lire autre chose que ce qu'on avait voulu y mettre. Sun
avait réussi a bouter Microsoft hors du marché Java.

Il était finalement aussi bien de se retirer de Java, parce qu'il avait un
sérieux probléme : pour en tirer tous les avantages, il y avait intérét a
écrire tout son programme en Java. Comme Microsoft avait trop de
développeurs et trop de millions de lignes de code source existantes, il lui
fallait inventer un moyen de prendre en compte plusieurs langages. C'est
ainsi que .NET vint au monde.

.NET est un cadre de travail, en bien des points semblable a celui de Java.

La plate-forme de la génération précédente était constituée d'outils aux
noms étranges, comme Visual C++ 6.0, COM+, ASP+, Dynamic Linked
Libraries et Windows 2000 (et versions antérieures). .NET leur apporte
Visual Studio .NET, une amélioration de COM+, ASP.NET, une nouvelle
version de Windows, et des serveurs prenant en compte .NET. .NET quant
a lui prend en compte les nouveaux standards de communication comme
XML et SOAP, plutét que les formats propriétaires de Microsoft. Enfin,
.NET prend en compte le dernier grand mot d'ordre qui fait fureur,
comme en son temps l'orientation objet : les services Web.

Microsoft revendique volontiers que .NET est trés supérieur a la suite
d'outils pour le Web de Sun, basée sur Java, mais la question n'est pas la.
Contrairement a Java, .NET ne vous demande pas de réécrire vos program-
mes existants. Un programmeur Visual Basic peut se contenter d'ajouter a
son programme quelques lignes de C# afin de le rendre "bon pour le Web"
(ce qui signifie qu'il sait se procurer des données sur Internet). NET prend
en compte tous les langages de Microsoft, plus une vingtaine de langages
d'autres origines, mais c'est bien C# qui est le navire amiral de la flotte
NET. Contrairement a la plupart des autres langages, C# peut accéder a
toutes les fonctions de .NET.

Chapitre 1 : Créer votre premier programme C# pour Windows 7

Ou'est-ce que Visual Studio .NET ? et C# ?

Vous vous posez siirement beaucoup de questions. Le premier langage de
programmation populaire de Microsoft a été Visual C++, ainsi nommé
parce qu'il avait une interface utilisateur graphique (ou GUI, Graphical
User Interface). Celle-ci contenait tout ce dont on pouvait avoir besoin
pour développer des programmes C++ bien ficelés.

Puis Microsoft a créé d'autres langages de type "Visual”, notamment
Visual Basic et Visual FoxPro, pour finalement les intégrer tous dans un
méme environnement : Visual Studio. Visual Studio 6.0 se faisant de moins
en moins jeune, les développeurs en attendaient avec impatience la
version 7. C'est peu aprés le lancement de celle-ci que Microsoft a décidé
de la renommer Visual Studio .NET, de maniére a mettre en évidence la
relation entre ce nouvel environnement et .NET.

D'abord, j'ai plutot pris ¢a pour un stratagéme, jusqu'au moment ou j'ai
commencé a l'examiner sérieusement. Visual Studio .NET est assez
significativement différent de ses prédécesseurs, suffisamment pour
justifier un nouveau nom.

Microsoft a nommé Visual C# son implémentation du langage C#. En réalité,
ce n'est rien d'autre que le composant C# de Visual Studio. C# est C#, avec
ou sans Visual Studio.

Et voila. Plus de questions.

Créer une application pour Windows avec C#

Pour vous aider a vous mettre dans le bain avec C# et Visual Studio, cette
section va vous conduire a travers les étapes de la création d'un programme
Windows. Un programme Windows est couramment appelé une application
Windows, plus familierement WinApp. Notre premiére WinApp nous servira
de schéma de base pour les programmes Windows que nous allons créer par
la suite.

En outre, ce programme va vous servir de test pour votre environnement
Visual Studio. Ce n'est qu'un test, mais c'est aussi un véritable programme
Windows. Si vous réussissez a créer, générer et exécuter ce programme,
alors votre environnement Visual Studio est correctement configuré, et
vous étes prét a lever l'ancre.

8

Premiére partie : Créer vos premiers programmes C#

S

Créer le modele

Ecrire une application Windows a partir de zéro est un processus difficile,
c'est bien connu. Il y a beaucoup de gestionnaires de sessions, de
descripteurs, de contextes, beaucoup de défis a relever, méme pour un
programme simple.

Visual Studio .NET en général et C# en particulier simplifient considéra-
blement la tache de création d'une application Windows, méme déja tres
simple. Pour €tre franc, je regrette un peu que vous ne soyez pas obligé
de tout faire a la main. Si le cceur vous en dit, vous pouvez essayer avec
Visual C++... Mais je n'insiste pas.

Comme le langage C# est concu spécialement pour faire des programmes
qui s'exécutent sous Windows, il peut vous épargner bien des complica-
tions. En plus, Visual Studio .NET comporte un Assistant Applications qui
permet de créer des modeles de programme.

Typiquement, un modele de programme ne fait rien par lui-mé€me, en tout cas
rien d'utile (un peu comme la plupart de mes programmes), mais il vous fait
passer sans effort le premier obstacle du démarrage. Certains modeles de
programme sont raisonnablement sophistiqués. En fait, vous serez bien
étonné de tout ce que I'Assistant Applications est capable de faire.

Pour commencer, lancez Visual Studio .NET.
N'oubliez pas qu'il faut d'abord avoir installé Visual Studio.

1. Pour lancer Visual Studio, cliquez sur Démarrer/Programmes/
Microsoft Visual Studio.NET 7.0/Microsoft Visual Studio.NET 7.0,
comme le montre la Figure 1.1.

Le CPU s'agite, le disque de méme, et Visual Studio apparatit. C'est
ici que les choses deviennent intéressantes.

2. Sélectionnez Fichier/Nouveau/Projet, comme le montre la Figure 1.2.

Visual Studio ouvre la boite de dialogue Nouveau projet, comme le
montre la Figure 1.3.

Un projet est une collection de fichiers que Visual Studio assemble
pour en faire un seul programme. Tous vos fichiers seront des
fichiers source C#, portant lI'extension .CS. Un fichier de projet
porte l'extension .PRJ.

Chapitre 1: Créer votre premier programme C# pour Windows

Figure 1.1:
La ligne
droite n'est
pas le plus
court chemin
du Bureau a
C#.

% Windows Update

Q ; Nouveau documerit Office

24 -
% Ouvrir un document Office -:j Microsoft Office Tools

Faay .i'j Accessoires
.}E} Démarrage
) Explorateur Windows

& Internet Explorer

i Outlook Express

.j Outils Microsoft Office 4
fﬁ Microsoft Qutlook

Ig Microsoft Excel

Microsoft Word

) HIML Help Workshop

3 Microsoft \NET Framework SDK
3 Microsoft Application Center Test

v v v v

= visual Studio MET 7.0 » _5 visual Studio, NET Enterprise Features »

[Boemaner A& w4

g [E] ticrosoft visio 2 visual Studi,NET Tools »

Dacuments (3 P Mirrasoft Visual Studio. NET 7.0

- € MSON for visual Studio NET 7.0
Paramétres » * ”
Rechercher »i eidf
Aide
Exécuter...
Arréter... g . i

HHE 1606

3.

Dans le volet Types de projets, sélectionnez Projets Visual C#, et
dans le volet Mod¢les, sélectionnez Application Windows. Si vous
ne voyez pas la bonne icone de modéle, ne vous inquiétez pas.
Faites défiler le contenu du volet Modéles pour la faire apparaitre.

Ne cliquez pas encore sur OK.

Dans le champ Nom, entrez un nom pour votre projet ou laissez
le nom par défaut.

L'Assistant Applications va créer un dossier dans lequel il va stocker
différents fichiers, notamment le fichier source initial C# du projet.
L'Assistant Applications utilise comme nom de ce dossier le nom que
vous avez entré dans le champ Nom. Le nom initial par défaut est
WindowsApplicationl. Sivous l'avez déja utilisé pour un projet, il
devient WindowsApplication2 ou WindowsApplication3, et ainsi de
suite.

Pour cet exemple, vous pouvez utiliser le nom par défaut ainsi que
I'emplacement par défaut pour le nouveau dossier : Mes
documents\Projets Visual Studio\WindowsApplicationl.

9

10

Premiére partie : Créer vos premiers programmes C#

Figure 1.2
Créer un
nouveau
projet vous
met sur la
voie d'une
application
Windows.

Figure 1.3:
L'Assistant
Applications
de Visual
Studio est
prét a créer
pour vous un
nouveau
programme
Windows.

4
Fichier © Edition Affichage Qutils Fepétre Help

Nouveay o)53 projet., culmein |

Enregistrer tout Chi+Maj+s

Coritydlz de code source

Ouwrir > 7 Fichier... chlsh W

7 Houvelle solution. ..

Alouter un projet »

Dugerir une sclution. .

Nouveau projet

Types de prajets © Modéles
] Projets Yisual Basic — ——
- Projsts Visual C# it et
- Fred &l s Eiblictheque de Bibliotheque de
3 Proiets de configuration et de deploieme classes contréles Windows

+

o] Aubres proj

) Folutions visual Shodic ﬂ“ @ M

Application web Service Web Bibliothegque de

ASFLNET ASPNET contrles Web
4 | 2
Projet de ireation d'une application avec une interface utiisateur Windows
Nom : I windowssapplication

Emplacement i‘::mocuments and SettingsiAdministr ateuriMes documantsifn J_} Parcouri... l

Le projet va étre créé sur C:\...\Mes documentsiProjets Visual Studio\WindowsaApplicationt .

Felus ok 1 amuer | fde |

5. Cliquez sur OK.

Le disque dur s'agite quelques instants (parfois longs) avant
d'ouvrir un cadre vierge nommé Form/ au milieu de la fenétre
Visual Studio.

tZ P4
Q$\) $

Figure 1.4:
Le modele de
programme
initial pour
Windows n'a
rien de bien
excitant.

Chapitre 1: Créer votre premier programme C# pour Windows

Générer et exécuter votre premier véritable
programme Windows

Une fois que I'Assistant Applications a chargé le modéle de programme,
Visual Studio ouvre le programme en mode Conception. Vous devez
convertir en application Windows ce programme source C# vide, rien que
pour vous assurer que l'application initiale créée par I'Assistant Applica-
tions ne contient pas d'erreurs.

On appelle générer (build) 'acte de convertir un fichier source C# en une
véritable application Windows en état de fonctionner. Si votre fichier source
contient des erreurs, Visual C# les trouvera dans le processus de construction.

Sélectionnez Générer/Générer. Une fenétre de résultats s'ouvre, dans
laquelle défile une succession de messages. Le dernier de ces messages
doit €tre Génération : 1 a réussi, 0 a échoué, 0 a été ignoré.

La Figure 1.4 montre a quoi ressemble mon Bureau apres la génération de
I'application Windows par défaut. Vous pouvez déplacer les fenétres
comme vous voulez. Les plus importantes sont la fenétre Form1.cs[Design]
et la fenétre Sortie.

*. Windowsapplication1 - Microsoft Visual C#.NET [design] - Forrn .cs (Desigi EIEY
Fichier ~Edition Affichage Projet Générer Déboguer Dgnnées Qutis Fepétre Help

AR i 4 1L) Debug .] -

Proprétes B X
A]Fnrml System,Wlnduws‘Fovrns.Fon:_i

EED

B o4 pga

Form1.cs [Design] l
s!

g

AccessibleDescrip

AccessibleMame

AccessibleRole Default
B spparence

. BackColar [contrat
a. Eackground]magtE] (Aucun)
. Cursor Default
B Fort Microsoft Sans Sel
ForeColor ControlText

FormBorderStyle Sizable
RightToLeft No

A

o Text Form1
-ﬂ; B tompartement
mam . AlowDrap False
ContextMenu (aucun)
|Générer ;I Enabled True
3 ' o ' i) ’ 2] ImeMode NoContral
—————————————————————— Terming -—--=—--===-—-me——eme o LB canfioarations

. {DynamicProperti
Genération : 1 a réussi, 0 a échowé, 0 a été ignoxé "

oo I o
i Tent
<1 Le texte contenu dans ce contrdle,
4 | Nt

La génération a réussi i Tin17 Col 1 chi S

11

12

Premiere

Figure 1.5:
La fenétre du
modeéle
d'application
Windows
fonctionne,
mais elle ne
suffit pas a
convaincre
que Visual
Studio .NET
vaut son prix.
R

HN/
S

A
(]
=

5

partie : Créer vos premiers programmes C#

Vous pouvez maintenant exécuter ce programme en sélectionnant Déboguer/
Exécuter sans débogage. Lorsque vous le lancez, ce programme doit ouvrir
une fenétre exactement semblable a la fenétre Form1.cs[Design], mais sans les
points, comme le montre la Figure 1.5.

Dans la terminologie C#, cette fenétre s'appelle un formulaire. Un formulaire
est doté d'un cadre, avec en haut une barre de titre contenant les boutons
Réduire, Agrandir, et Fermer.

Pour arréter le programme, cliquez sur le bouton Fermer dans le coin
supérieur droit de la fenétre.

Vous voyez : il n'est pas si difficile de programmer en C#.

Indépendamment de ce qu'il fait, ce programme initial est un test pour
votre installation. Si vous étes parvenu jusqu'ici, alors votre environne-
ment Visual Studio est dans l'état qui convient aux programmes que nous
allons voir dans la suite de ce livre.

Pendant que vous y étes, mettez donc a jour votre CV pour y faire savoir que
vous étes officiellement un programmeur d'application Windows. Pour le
moment, vous pouvez vous contenter de mettre "application" au singulier.

Dessiner une application

Le programme Windows par défaut n'est pas bien excitant, mais vous
pouvez I'améliorer un peu. Revenez dans Visual Studio, et sélectionnez
I'onglet Form1.cs[Design]. C'est la fenétre du Concepteur de formulaires.

Figure 1.6:
La Boite a
outils de
Visual Studio
contient une
quantité de
controles
utiles.
L]

13

Chapitre 1: Créer votre premier programme C# pour Windows

Le Concepteur de formulaires est un outil trés puissant. Il vous permet de
"dessiner” vos programmes dans le formulaire. Une fois que vous avez
terminé, cliquez sur Générer, et le Concepteur de formulaires crée le code
C# nécessaire pour réaliser une application avec le joli cadre que vous
venez de dessiner.

Dans les sections suivantes, vous allez générer une application avec deux
champs de texte et un bouton. L'utilisateur peut saisir ce qu'il veut dans
I'un des champs de texte (la source), mais pas dans 'autre (la cible).
Lorsque I'utilisateur clique sur un bouton intitulé Copier, le programme
copie le texte du champ source dans le champ cible.

Mettre en place quelques contréles

L'interface utilisateur de Visual Studio est constituée de différentes
fenétres. Tous les éléments comme les boutons et les zones de texte sont
des controles. Afin de créer un programme Windows, vous allez utiliser
ces outils pour en réaliser l'interface utilisateur graphique (GUI), qui est
généralement la partie la plus difficile a réaliser d'un programme
Windows. Dans le Concepteur de formulaires, ces outils se trouvent dans
une fenétre nommeée Boite a outils.

Si la Boite a outils n'est pas ouverte, sélectionnez Affichage/Boite & outils.
La Figure 1.6 montre cette Boite a outils.

Boite & outls = oo : =

Données
Composants
‘Windows Forms

R Faintaur
A Label

A tinkLabsl
sbf Button

ath TextBox
% MainMenu
¥ CheckBox
& RadioButton
” GroupBox
23 PictureBox
{7} Panel

41 DataGrid
=4 ListBox

n'-uj CheckedtistBox
=% ComboBox

337 Listview

Presse-papiers circulare v

Géneral

’4 Premiére partie : Créer vos premiers programmes C#

QL

Si vos fenétres ne sont pas aux mémes endroits que les miennes, ne vous
inquiétez pas. Votre Boite a outils peut trés bien se trouver a gauche, a
droite ou au milieu de I'écran. Vous pouvez déplacer chaque fenétre ou
vous voulez dans la fenétre Visual Studio.

La Boite a outils comporte plusieurs sections, dont Données, Composants,
et Windows Forms (qui sera peut-étre devenue "Formulaires Windows"
dans la version que vous aurez entre les mains). Ces sections permettent
simplement d'organiser les contrdles afin que vous puissiez les trouver
plus facilement. La Boite a outils contient de tres nombreux controles, et
vous pouvez aussi créer les votres.

Dans la Boite a outils, cliquez sur Windows Forms. Ces controles vont
vous permettre d'améliorer vos formulaires. Vous pouvez utiliser les
petites fleches que vous voyez a droite pour faire défiler la liste.

Pour ajouter un controle dans un formulaire, il suffit de le faire glisser et
de le déposer a I'endroit voulu. Essayez :

1. Faites glisser le controle Textbox sur le formulaire Forml, et
relachez le bouton de la souris.

Une zone de texte apparait dans le formulaire, contenant le texte
textBox1. C'est le nom assigné a ce controle par le Concepteur de
formulaires. Vous pouvez redimensionner la zone de texte en
cliquant dessus et en faisant glisser ses poignées.

Vous ne pouvez augmenter que la longueur d'une zone de texte, pas
sa hauteur, car par défaut une zone de texte ne comporte qu'une
seule ligne.

2. Faites glisser une autre zone de texte et déposez-la au-dessous de
la premiére.

3. Faites maintenant glisser un bouton et déposez-le au-dessous des
deux zones de texte.

4. Redimensionnez le formulaire et déplacez les contrdles que vous
venez d'y mettre jusqu'a ce que le résultat vous convienne.

La Figure 1.7 montre mon formulaire.

Figure 1.7:
Mon
formulaire
est sirement
plus beau
que le votre.

Chapitre 1 : Créer votre premier programme C# pour Windows

o ju] o

: iteﬂBox]

o fiesbosz b
ool buttonl }
o j=)

Maitriser les propriétés

Le probleme le plus flagrant de cette application est maintenant que
I'étiquette du bouton qu'elle contient, buttonl, n'est pas trés descriptive.
Nous allons commencer par y remédier.

Chaque contrdle posséde un ensemble de propriétés qui en déterminent
I'apparence et le fonctionnement. Vous pouvez y accéder par la fenétre
Propriétés :

1. Sélectionnez le bouton en cliquant dessus.

2. Faites apparaitre la fenétre Propriétés en sélectionnant Affichage/
Fenétre Propriétés.

Le controle Button posséde plusieurs ensembles de propriétés,
dont les propriétés d'apparence, qui apparaissent dans la partie
supérieure de la fenétre Propriétés, et les propriétés de comporte-
ment, qui apparaissent au-dessous. C'est la propriété Text que vous
devez changer.

3. Dans la colonne de gauche de la fenétre Propriétés, sélectionnez
la propriété Text. Dans la colonne de droite, tapez Copier, et
appuyez sur Entrée.

La Figure 1.8 montre ces parameétres dans la fenétre Propriétés, et
le formulaire qui en résulte.

15

10

Premiére partie : Créer vos premiers programmes C#

Figure 18:
La fenétre
Propriétés
vous permet
de maitriser

vos controles.

N\

Propriétés : g Al
]huttnnl Systern.\Windows. Forms, Button E
5 (@7
- _\;rr:wundima"je’] (aucun) . _:J

Cursor Default

FlatStyle Standard
‘E Fant Micrasoft Sans Serif; 8,25pt

FareColor Bl ControText

Image] taucun)

ImnageAlign MiddleCenter

Imagelndex] (Aucun)

ImageLst {aucun) el
" RightTaleft Mo
" Textalign MiddleCeriter ,
B et et :
© AllowDrop False

CaontextMery {aucuny

CialagResult None
czmEesbled e e :
Text %
Le texte conteru dans ce contrile. |

Vous pouvez utiliser la propriété Text d'un contréle zone de texte
pour en changer le contenu initial. Pour les deux zones de texte de
notre exemple, j'ai défini cette propriété comme "Tapez quelque

chose ici” et "Le programme copie ici ce que vous avez tapé", afin
que l'utilisateur sache quoi faire apreés avoir lancé le programme.

De méme, la propriété Text du formulaire lui-m&me correspond au
texte qui apparait dans sa barre de titre, et vous pouvez la changer.
Cliquez dans un endroit quelconque dans le formulaire, tapez ce
qui vous convient dans la propriété Text, et appuyez sur Entrée.
J'ai fait apparaitre dans la barre de titre "Programme qui copie du
texte."

Sélectionnez la zone de texte du bas, et faites défiler ses propriétés de
comportement pour faire apparaitre la propriété ReadOnly (lecture
seule). Définissez cette propriété comme vraie en cliquant dessus et
en sélectionnant True dans le menu déroulant qui apparait, comme le
montre la Figure 1.9.

Dans la barre d'outils de Visual Studio, cliquez sur le bouton
Enregistrer pour enregistrer votre travail.

Pendant que vous travaillez, pensez a cliquer régulierement sur le
bouton Enregistrer pour étre siir de perdre le moins de choses
possible en cas d'incident.

Figure 1.9:
Définir une
zone de texte
en lecture
seule
(ReadQOnly)
empéche
I'utilisateur
de modifier
le champ
correspon-
dant.

Figure 1.10:
La fenétre du
programme
estle
formulaire
gue vous
venez de
créer.

Chapitre 1: Créer votre premier programme C# pour Windows

§) =
D e L s . !textnnxz Systam Windows Forms. TextBox :_1
+ -+ {Tapez quelque chose ict N N e
T e oo o SlEeEs
S o MarLength 32767 Al

-+ tiLe programme copie ici ce que vous avez tapé
s . o

Multiline False

| TahIndex
© TabStop

Uisible T
. Wordwrap True
B onbguation - ,V:-j
“ReadDnly
! Contrdle sile texte dans le contréle d'édition peut étre ou nar
modifié.

Générer 'application

Pour générer l'application, sélectionnez Générer/Générer. Cette action
génére une nouvelle application Windows avec le formulaire que vous
venez de créer. Si elle n'était pas déja ouverte, la fenétre Sortie apparait,
dans laquelle vous voyez défiler le flot de messages dont le dernier doit
étre Génération : 1 a réussi, 0 a échoué, 0 a été ignoré.

Vous pouvez maintenant exécuter le programme en sélectionnant
Déboguer/Exécuter sans débogage. Le programme ouvre un formulaire

conforme a celui que vous venez de créer, comme le montre la Figure 1.10.

Vous pouvez taper ce que vous voulez dans la zone de texte du haut, mais
vous ne pouvez rien entrer dans celle du bas (a moins d'avoir oublié de
définir comme vraie la propriété ReadOnly).

!Le programme copie ici ce que vous avez tapé

Copiet l

17

18

Premiere partie : Créer vos premiers programmes C#

Q¢

Faisons-lui faire quelque chose

Ce programme se présente bien, mais il ne fait rien. Si vous cliquez sur le
bouton Copier, rien ne se passe. Jusqu'ici, vous n'avez fait que définir les
propriétés d'apparence — celles qui définissent I'apparence des controles.
Il vous faut maintenant mettre dans le bouton Copier I'astuce qui va lui
faire effectivement copier le texte de la source a la cible :

1. Dans le Concepteur de formulaires, sélectionnez le bouton Copier.

2. Dans la fenétre Propriétés, cliquez sur le bouton contenant un
éclair, au-dessus de la liste des propriétés, pour ouvrir un nouvel
ensemble des propriétés.

Ce sont les événements. lls définissent ce que fait un contréle au
cours de l'exécution du programme.,

Vous devez définir I'événement Click. Comme son nom I'indique, il
définit ce que fait le bouton lorsque 'utilisateur clique dessus.

3. Doublecliquez sur I'événement Click et voyez 1'écran se transformer.

La fenétre de conception est I'une des deux maniéres de voir votre
application. L'autre est la fenétre de code qui montre le code source
C# que le Concepteur de formulaires a construit pour vous automati-
quement. Visual Studio sait qu'il vous faut entrer un peu de code C#
afin que votre programme fasse ce que vous attendez de lui.

Lorsque vous double-cliquez sur la propriété Click, Visual Studio
affiche la fenétre Code et crée une nouvelle méthode, a laquelle il
donne le nom descriptif buttonl_Click(). Lorsque l'utilisateur
clique sur le bouton Copier, cette méthode effectue le transfert du
texte de textBox1, la source, a textBox2, la cible.

Pour le moment, ne vous inquiétez pas de ce qu'est une méthode.
J'en donnerai la description au Chapitre 8.

Cette méthode copie simplement la propriété Text de textBoxl
dans la propriété Text de textBox2.

4. Dans la méthode buttonl_Click(), ajoutez simplement la ligne
de code suivante :

: textBox2.Text = textBoxl.Text;

Figure 1.11:
La fonction
de sugges-
tion automa-
tique affiche
les noms des
propriétés au
fureta
mesure gue
vous tapez.
.|

Chapitre 1: Créer votre premier programme C# pour Windows

Remarquez que C# essaie de vous faciliter la tache de saisie du code.
La Figure 1.11 montre l'affichage au moment ot je tape le nom de la
derniére propriété Text de la ligne ci-dessus. La liste déroulante des
propriétés de la zone de texte correspondante apparait, vous offrant
un aide-mémoire des propriétés disponibles, avec une info-bulle qui
vous dit de quoi il s'agit. Cette fonction vous permet de compléter
automatiquement ce que vous tapez, et c'est une aide précieuse au
cours de la programmation (pour que ¢ca marche, ne faites pas de
fautes de frappe dans ce qui précéde -~ attention aux majuscules et

minuscules).
.- WindowsApplication1 - Microsoft Visusl CHNET [design] - Farmkce® =18 x]
Fuchier Edition Affichage Projet Génerer [Déboguer Outils Fenftre Help

[RETRE ™ < A -0, pebug i et
2 ¥ Forml.ts*’ Lo

f’;'\“w‘wnd\,wsﬂpplmah»:rn 1. Fatmi :j L.Eumﬁmﬁthd v
' af

[=
< S T
;i Mainin
dpplication.PFuninew Forml{)j;
pravare woid kunconl _Clickiohject sender,
rextBoxZ.Text = textBoxl. Text|
F TabIndesCharged _A__‘
H

— =
4 I[Dmpnete] string TertBoxBase. Text .f,j—
Sortie o ? X
Générer 28} Textlength —d =
Cénéravion : 1 a 10 3 Echoud, g Tep ~ -
Déploiement : 0 a 11, 0 a échouds——r o -

| | o

1<

v aeniate, [Sorbie

113 col4o chdo Ins|

3

5. Sélectionnez Générer/Générer pour ajouter au programme la
nouvelle méthode de clic.

Essayer le produit final

Pour exécuter encore une fois le programme, sélectionnez Déboguer/
Exécuter sans débogage. Tapez un peu de texte dans la zone de texte
source, et cliquez sur le bouton Copier. Le texte est aussitot copié dans la

19

20

Premiére partie : Créer vos premiers programmes C#

Figure 1.12:
Camarche !

NN/,
é&c 0(/6\

No7,

zone de texte cible, comme le montre la Figure 1.12. Vous pouvez joyeuse-
ment répéter le processus autant que vous voulez avec tout ce qui vous
passe par la téte, jusqu'a ce que I'épuisement vous submerge.

[®programme qui tvﬂ N =101 x1

jJ'ai tapé ceci dans la zone de texte source

3J‘ai tapé ceci dans la zone de texte source

En considérant le processus de création, vous serez peut-étre frappé par
son orientation graphique. Faites glisser des contréles, déposez-les ou
vous voulez dans le formulaire, définissez leurs propriétés, et vous y étes.
Il vous a suffi d'écrire une seule ligne de code C#, et méme ca n'était pas
bien difficile.

On pourrait objecter que ce programme ne fait pas grand-chose, mais je
ne suis pas d'accord. Consultez simplement un manuel de programmation
des débuts de Windows, a I'époque ot les assistants d'application n'exis-
taient pas encore, et vous verrez combien d'heures de programmation il
fallait pour réaliser une application aussi simple que celle-ci.

Programmeurs Uisual Basic, attention !

Ceux d'entre vous qui sont des programmeurs Visual Basic ont peut-étre
une impression de déja vu. En fait, le Concepteur de formulaires fonc-
tionne assez largement comme les derniéres versions de |'environnement
Visual Basic, mais il est beaucoup plus puissant (en tout cas, par rapport
aux versions antérieures & Visual Basic .NET). Le langage C# en lui-méme
est d'ailleurs plus puissant que le précédent Visual Basic. La bibliotheque
de routines .NET est plus puissante que l'ancienne bibliotheque de Visual
Basic. Enfin, .NET prend en compte le développement distribué et en
différents langages, ce que ne faisait pas Visual Basic. En dehors de tout
cela, je dirais qu'ils sont & peu prés identiques.

Chapitre 2

Créer votre premiere
application console en G#

Dans ce chapitre :
Créer une application console plus maniable.
Examiner le modele d'application console.

Explorer les différentes parties du modeéle.

M éme le programme Windows le plus élémentaire peut étre
décourageant pour le programmeur C# débutant. Si vous ne me

croyez pas, allez simplement voir le Chapitre 1. Un programme du type
que l'on appelle application console génere significativement moins de
code C# et est beaucoup plus facile a comprendre.

Dans ce chapitre, vous allez utiliser Visual Studio afin de créer un modele
d'application console, que vous allez ensuite simplifier un peu manuelle-
ment. Vous pourrez utiliser le résultat comme modele pour bon nombre
des programmes que je présente dans ce livre.

\TA o . s .
sb\) A Le principal but de ce livre (en tout cas des premiéres parties) est de
= vous aider 2 comprendre C#. Pour faire en C# un jeu qui aura un succes
mondial, il faut d'abord que vous connaissiez le langage C#.

22

Premiere partie : Créer vos premiers programmes C#

Créer un modele d'application console

&Q\ON/ Les instructions suivantes concernent Visual Studio. Si vous utilisez un
)

<

autre environnement, c'est a la documentation de celui-ci que vous devez

vous référer. Mais quel que soit votre environnement, vous pouvez y
taper directement le code C#.

Créer le programme source

Pour créer votre modele d'application console en C#, suivez ces étapes :

1.

. g\\p‘RGE/?

T[-‘(‘(~

Sélectionnez Fichier/Nouveau/Projet pour créer un nouveau projet.

Visual Studio affiche une fenétre contenant des icénes qui repré-
sentent les différents types d'application que vous pouvez créer.

Dans cette fenétre Nouveau projet, cliquez sur l'icone Application
console,

Faites attention a bien sélectionner le dossier des projets Visual C#
dans la fenétre Nouveau projet. Si vous en sélectionnez un autre
par erreur, Visual Studio peut créer une horreur comme une appli-
cation Visual Basic ou Visual C++.

Avec Visual Studio, il est nécessaire de créer un projet avant de
pouvoir commencer a entrer votre programme C#. Un projet est un
peu comme un tiroir dans lequel vous allez entasser tous les fichiers
qui constituent votre programme. Lorsque vous demandez au
compilateur de générer le programme, il extrait du projet les fichiers
dont il a besoin afin de créer le programme a partir de ceux-ci.

Le nom par défaut de votre premiére application est
ConsoleApplicationl. L'emplacement par défaut du fichier corres-
pondant est un peu trop en profondeur a mon goiit dans le dossier
Mes documents. Puisque je suis un peu difficile (ou peut-étre parce
que j'écris un livre), je préfére classer mes programmes ol je veux,
et pas nécessairement la ot Visual Studio veut les mettre.

Pour changer le dossier par défaut de vos programmes, cliquez
sur le bouton Parcourir et naviguez jusqu'a I'endroit voulu.

Pour le dossier dans lequel je place tous mes programmes, j'ai
choisi le nom Programmes C#.

Chapitre 2 : Créer votre premiere application console en C# 23

4. Dans le champ Nom, entrez le nom que vous voulez donner au
projet que vous créez. Pour ce premier programme, nous allons
nous en tenir a la tradition avec Hello.

5. Cliquez sur OK.

Apreés quelques instants de travail, Visual Studio génere un fichier
nommé Classl.cs. (Si vous regardez dans la fenétre nommeée
Explorateur de solutions, vousy verrez plusieurs autres fichiers.
Vous pouvez les ignorer pour le moment.)

Le contenu de votre premiére application console apparait ainsi (les
commentaires en anglais seront peut-étre en francais dans la version que
vous utiliserez) :

~ using System;

“namespace Hello
N
/11 <summary>
- 1] Summary description for Classl.
A Lfsummary>
clasg Classl
{
static void Main(string{] args)
-
ol A
// TODO: Add code to start application here
)
x‘\x\ow ¢ Par rapport au programme exécutable Windows que vous avez créé au
$ Chapitre 1, Visual Studio a inversé les lignes using System et namespace
Hello. C# accepte ces commandes dans un ordre comme dans l'autre (il y
a une différence, mais elle est subtile et bien en dehors du cadre de ce
chapitre).

Tester le résultat

Sélectionnez Générer/Générer pour faire de votre programme C# un
programme exécutable.

24 Premiére partie : Créer vos premiers programmes C#

Visual Studio répond par le message suivant :

- Début de la génération: Projet: Hello, Configuration: Debug NET

Préparation des ressources...
- Mise 4 jour des références...
Compilation principale en cours...

Génération terminée -- 0 erreur, 0 avertissement:
Génération d'assemblys satellites en cours...

B R R T TSR EE Terming -«s---s-esriensacenas
Génération : 1 a réussi, 0 a échoué, 0 a été ignoré

Dans lequel le point important est 1 a réussi.

Une régle générale de la programmation est que "a réussi" veut dire "ca

z 11

va", et "a échoué"” veut dire "¢ca ne va pas’.

Pour exécuter le programme, sélectionnez Déboguer/Démarrer. Le
programme se termine immédiatement. Apparemment, il n'a rien fait
du tout, et en fait c'est bien le cas. Le modéle n'est rien d'autre qu'une
coquille vide.

Créer votre premiere véritable application console

Modifiez maintenant le fichier du modeéle Classt.cs, conformément a ce
qui suit.

Qe

Ne vous préoccupez pas d'entrer un ou deux espaces ou une ou deux
lignes blanches. En revanche, respectez les majuscules et les minuscules.

using System;
namespace Hello

{ .
public class Classl
{
/! C'est ici que commence le programme
static void Main(string[] args)

{

HNJ,
‘o\?«c’ 0[/@

No),

Chapitre 2 : Créer votre premiere application console en C#

// Demande son nom a l'utilisateur
Console.WriteLine("Entrez votre nom:");

// Lit le nom entré par l'utilisateur
string sName = Console.ReadLine();

// Accueille 1'utilisateur par son nom
Console.WriteLine("Hello, " + sName);

/! attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Sélectionnez Générer/Générer pour faire de cette nouvelle version de
Classl.cs le programme Classl.exe.

Dans la fenétre Visual Studio .NET, cliquez sur Déboguer/Démarrer. Le
programme vous demande immédiatement votre nom. Tapez votre nom
et appuyez sur la touche Entrée. Le programme répond :

Entrez votre nom:

Hildegarde

Hello, Hildegarde

Appuyez sur Entrée pour terminer...

Le programme répond par le mot "Hello", suivi par le nom que vous avez
entré. Puis il attend que vous appuyiez sur la touche Entrée pour rendre
son dernier soupir.

Vous pouvez aussi exécuter votre programme a partir de la ligne de
commande DOS. Ouvrez une fenétre DOS. Tapez cd \Programmes
C#\Hello\bin\Debug. Puis, pour exécuter le programme, tapez Hello
et appuyez sur Entrée. Le résultat doit étre le mé€me. Vous pouvez aussi
naviguer jusqu'au dossier \Programmes C#\Hello\bin\Debug dans
I'Explorateur Windows et double-cliquer sur le fichier Hello.exe.

Examinons ce programme

Dans les sections qui suivent, nous allons prendre a part I'une aprés l'autre
chaque partie de cette application console en C# afin d'en comprendre le

fonctionnement.

25

26 Premiére partie : Créer vos premiers programmes C#

Le cadre de travail du programme

Pour toute application console, le cadre de travail de base commence par

using Systenm;

namespace Hello
{ ;
public class Classl
{
// Clest ici que commence le programme
public static void Main(stringl] args)
{
// Le code sera placé ici
}
}
}

L'exécution proprement dite du programme commence juste aprés
l'instruction qui contient Mzin et se termine a la parenthese fermante qui
suit Main. Je vous expliquerai en temps utile le sens de ces instructions.
Je ne peux pas en dire plus pour le moment.

Qyﬁlﬂﬂy " T
N Linstruction using System peut venir juste avant ou juste apreés l'instruc-
= tion namespace Hello [.L'ordre dans lequel elles se présentent n'a pas

d'importance.

Les commentaires

Ce modele contient déja un certain nombre de lignes, et j'en ai ajouté
plusieurs autres, comme ici :

/] C'est ici que commence le programme
public static void Main(string[] args)

Dans cet exemple, C# ignore la premiére ligne. C'est ce que I'on appelle un
commentaire.

C
<5 Toute ligne commencant par //ou par /// est une ligne de texte libre qui
sera ignorée par C#. Pour le moment, vous pouvez considérer // et ///
comme équivalents.

QU

Chapitre 2 : Créer votre premiére application console en C#

Pourquoi mettre dans un programme des lignes destinées a étre ignorées ?

Un programme, méme un programme C#, n'est pas facile a comprendre.
Souvenez-vous qu'un langage de programmation est un compromis entre
ce que comprennent les ordinateurs et ce que comprennent les étres
humains. Introduire des commentaires permet d'expliquer les instructions
C#. Ceux-ci peuvent vous aider a écrire le code, et ils seront particuliére-
ment utiles au malchanceux qui devra reprendre votre programme un an
plus tard et reconstituer votre logique. Ajouter des explications facilite
beaucoup les choses.

N'hésitez pas a faire des commentaires, et faites-en le plus tot possible. lis
vous aideront, ainsi que les autres programmeurs concernés, a vous
rappeler ce que vous avez voulu faire en écrivant ces instructions.

La substance du programme

Le cceur de ce programme se trouve dans le bloc de code délimité par
l'instruction Main {) :

/! Demande son nom a 1'utilisateur
Console.WritelLine("Entrez votre nom:");

// Lit le nom entré par 1'utilisateur
string gName = Console.ReadLine();

// Accueille 1'utilisateur par son nom
Console.WriteLine("Hello, " + sName);

L'exécution du programme commence par la premiére instruction C# :
Console.WriteLine. Celle-ci écrit dans la console la chaine de caractéres
Entrez votre nom:

L'instruction suivante lit la réponse entrée par l'utilisateur et la stocke
dans une "boite de travail” nommeée sName (j'en dirai plus sur ces empla-
cements de stockage au Chapitre 3). La troisiéme instruction combine la
chaine Hello et le nom entré par l'utilisateur, et envoie 'ensemble sur la
console.

Les trois derniéres lignes attendent que I'utilisateur appuie sur la touche
Entrée avant de poursuivre. Elles assurent ainsi que I'utilisateur a le
temps de lire ce que le programme vient d'afficher :

27

28 Premiére partie : Créer vos premiers programmes C#

€Z P4
QQ’\) $

/] Attend confirmation de l'utilisateur ;
Console.WriteLine("Appuyez sur Entrée pour terminmer...");
Console.Read(); ‘

Cette étape peut étre importante selon votre environnement et selon la
maniére dont vous exécutez le programme. Dans Visual Studio, vous avez
deux maniéres d'exécuter un programme. Si vous utilisez la commande
Déboguer/Démarrer, Visual Studio ferme la fenétre de résultats dés que le
programme se termine. C'est la méme chose qui se produit lorsque vous
exécutez le programme en double-cliquant sur I'icone du fichier exécuta-
ble dans 'Explorateur Windows.

Quelle que soit la maniére dont vous exécutez le programme, attendre
que l'utilisateur appuie sur la touche Entrée avant de quitter résout tous
les probléemes.

Deuxieme partie

' Programmation
élémentaire en C#

f - qui ne soit PAS en train de parler de C# ?"

Dans cette partie...

L es programmes les plus récents de commerce électronique,
de business to business et de dot.com en tout genre utilisent
les mémes éléments de base que le plus simple programme de
conversion de température. Cette partie présente les bases de la
création de variables, de I'exécution d'opérations arithmétiques,
et de la maitrise du cheminement de I'exécution d'un programme.

Chapitre 3

Declarer des variables
de type valeur

Dans ce chapitre :
Créer un emplacement de stockage : la variable en C#.
Utiliser des entiers.
Traiter des valeurs fractionnelles.
Déclarer des variables d'autres types.
Traiter des constantes numériques.

Changer de type.

L a plus fondamentale de toutes les notions de la programmation est
celle de variable. Une variable C# est comme une petite boite dans
laquelle vous pouvez stocker des choses, en particulier des nombres,
pour vous en servir ensuite.

Le terme variable est emprunté au monde des mathématiques. Par exemple :

signifie qu'a partir du moment oui on a écrit cela, on peut utiliser le terme
n quand on veut dire 1, aussi longtemps que 'on n'aura pas attribué un
autre sens a n (un nombre, une équation, un concept ou autre).

32 Deuxiéme partie : Programmation élémentaire en C#

Dans le monde de la programmation, la signification du mot variable n'est
guere différente. Lorsqu'un programmeur C# écrit :

int n;
n=1;

Ces instructions définissent un "élément"” n, et lui assignent la valeur 1. A
partir de ce point dans le programme, la variable n a la valeur 1 jusqu'a ce
que le programmeur change cette valeur pour un autre nombre.

Malheureusement pour les programmeurs, C# impose plusieurs limita-
tions aux variables - limitations dont les mathématiciens n'ont pas a se
soucier (sauf ceux qui s'aventurent a lire ce livre).

Déclarer une variable

Quand un mathématicien dit : "'n égale 1", cela signifie que le terme n est
équivalent & 1, raisonnement que vous pouvez trouver étrange. Le mathé-
maticien est libre d'introduire des variables au gré de sa fantaisie. Par
exemple :

x=y tlyty
sik=y+1 alors
x =k

Ici, le mathématicien a écrit une équation quadratique. Peut-€tre les varia-
bles x et y ont-elles déja été définies quelque part. Toutefois, lorsqu'il voit
apparaitre une nouvelle variable, &, le programme tombe des nues. Dans
cet exemple, k ne signifie pas essentiellement qu'il a la valeur de y plus 1,
mais qu'il représente le concept de y plus 1. C'est une sorte de raccourci.
Jetez un coup d'ceil & n'importe quel manuel de mathématiques, et vous
verrez ce que je veux dire. Je dis bien : jetez un coup d’'weil. Vous étes ici
pour lire mon livre et pas un autre.

Un programmeur doit €tre précis dans la terminologie qu'il utilise. Par
exemple, il peut écrire le code suivant :

int n;
n=1;

Chapitre 3 : Déclarer des variables de type valeur

NEZ P4 g

N'g %,

N/
‘;\6‘» %

NO7,

La premiére ligne signifie : "Creuser un petit espace de stockage dans la
mémoire de l'ordinateur, et lui assigner le nom n." Cette étape revient a
ajouter un dossier dans une armoire a dossiers suspendus et a écrire n
sur son étiquette. La deuxiéme ligne signifie : "Stocker la valeur 1 dans la
variable n, en remplacant par cette valeur tout ce que la variable pouvait
contenir auparavant.” Dans une armoire & dossiers suspendus, I'équiva-
lent serait : "Ouvrir le dossier n, enlever tout ce qu'il contient, et mettre 1
ala place.”

Le symbole = est appelé opérateur d'assignation. Je dis bien le "symbole”
et non le "signe” ou autre terme plus ou moins vague.

Le mathématicien dit : "n égale 1." Le programmeur C# le dit d'une ma-
nieére plus précise : "Stocker la valeur 1 dans la variable n." (Pensez &
I'armoire a dossiers suspendus, et vous verrez que c'est préférable.) Les
opérateurs C# disent a I'ordinateur ce que vous voulez faire. Autrement
dit, les opérateurs sont des verbes et non des descripteurs. L'opérateur
d'assignation prend la valeur qui est a sa droite et la stocke dans la
variable qui est a sa gauche.

Ou'est-ce qu'un int ?

Les mathématiciens manipulent des concepts. lls peuvent créer des
variables quand ca leur chante, et une méme variable peut revétir diffé-
rentes significations dans la méme équation. Au mieux, un mathématicien
considére une variable comme une valeur sans forme fixe, au pire, comme
un vague concept. Ne riez pas, c'est probablement de la méme maniére
que vous voyez les choses.

Si le mathématicien écrit :

': n=1;
o=l
n = Maison
n = "Les Martiens sont parmi nous"

Chacune de ces lignes associe la variable n a une chose différente, et le
mathématicien n'y pense méme pas. Je n'y pense pas beaucoup moi-méme,
sauf pour la derniére ligne.

C# est loin d'offrir une telle souplesse. En C#, chaque variable posséde un
type fixe. Lorsque vous choisissez un nouveau dossier suspendu pour

33

34 Deuxieme partie : Programmation élémentaire en C#

EZ P4
Qg\) $

votre armoire, vous devez en prendre un de la taille qui convient. Si vous
avez choisi un dossier suspendu "de type entier", vous ne pouvez pas
espérer y mettre la carte de France.

Pour 'exemple de la section précédente, vous allez choisir un dossier sus-
pendu congu dans le but de contenir un nombre entier : ce que C# appelle
une variable de type int (integer). Les entiers sont les nombres comme 0, 1,
2, 3, et ainsi de suite, plus les nombres négatifs, -1, -2, -3, et ainsi de suite.

Avant de pouvoir utiliser une variable, vous devez la déclarer. Une fois
que vous avez déclaré une variable de type int, elle peut contenir et
régurgiter des valeurs entiéres, comme le montre I'exemple suivant :

// Déclare utie variable entiére n
int n;
/1 Déclare une variable entidre m et 1'initialise
// avec la valeur 2
intm = 2;
/] Assigne & la variable n la valeur stockée dans m
n=m

La premiére ligne aprés le commentaire est une déclaration qui crée une
zone de stockage, n, faite pour contenir une valeur entiére. Aussi long-
temps qu'il ne lui est pas assigné une valeur, la valeur initiale de n n'est
pas spécifiée. La deuxieme déclaration crée une variable entiére m, avec 2
pour valeur initiale.

Le terme initialiser signifie assigner une valeur initiale. Initialiser une
variable, c'est lui assigner une valeur pour la premiére fois. Tant qu'une
variable n'a pas été initialisée, on n'en connait pas la valeur.

La derniére instruction de cet exemple assigne a la variable n la valeur

stockée dans m, qui est 2. La variable n continue a contenir la valeur 2
jusqu'a ce gu'une nouvelle valeur lui soit assignée.

Les régles de déclaration de variable

Vous pouvez initialiser une variable dans la déclaration elle-méme :

// Déclare une nouvelle variable int
/! et lui donne 1 comme valeur initiale
int o = 1;

Chapitre 3 : Déclarer des variables de type valeur 35

L

Ce qui revient a mettre la valeur 1 dans votre nouveau dossier suspendu
au moment ol vous le mettez dans l'armoire, plutét que de le mettre
d'abord pour le rouvrir ensuite et y mettre la valeur.

Il vaut mieux initialiser une variable dans la déclaration. Dans la plupart
des cas, mais pas tous, C# initialisera la variable pour vous, mais il vaut
mieux ne pas dépendre de lui pour cela.

Vous pouvez déclarer une variable n'importe o (en fait, presque n'importe
oll) dans un programme, mais vous ne pouvez pas utiliser une variable
avant de I'avoir déclarée et de lui avoir donné une valeur. Les deux instruc-
tions suivantes sont donc illicites :

/! Ce qui suit est illicite car m n'a pas regu
// une valeur avant d'Btre utilisée

int m;

n = m;

/] Ce qui suit est illicite car p n'a pas été
/! déclarée avant d'étre utilisée

p=2;

int p;

Enfin, vous ne pouvez pas déclarer deux fois la méme variable.

Variations sur un theme : des int de différents
types

La plupart des variables simples sont de type int. C# en offre un certain
nombre de variantes pour quelques occasions particuliéres.

Toutes les variables de type int sont limitées aux nombres entiers. Le
type int souffre aussi d'autres limitations. Par exemple, une variable de
type int ne peut stocker de valeur qu'a l'intérieur de I'étendue -2 milliards
a 2 milliards.

L'étendue exacte est de -2 147 483 648 a 2 147 483 647.

Deux milliards de centimétres représentent a peu pres la moitié de la
circonférence de la Terre.

36

Deuxiéme partie : Programmation élémentaire en C#

Au cas ol 2 milliards ne vous suffirait pas, C# offre un type d'entier nommé
long (abréviation de long int) qui peut contenir un nombre entier beau-
coup plus long. Le seul inconvénient du type long est qu'il occupe plus de
place dans votre armoire : un entier de type 1ong consomme huit octets (64
bits), soit deux fois plus qu'un int ordinaire.

Autrement dit, un entier 1ong occupe deux dossiers d'une capacité d'un
int dans votre armoire a dossiers suspendus. Comme cette métaphore
d'armoire a dossiers suspendus commence a €tre un peu usée, je parlerai
a partir de maintenant en octets.

Un entier long représente un nombre entier qui peut aller approximative-
ment de -101a 10,

L'étendue exacte d'un entier long est de -9 223 372 036 854 775 808 a
9223 372 036 854 775 807.

C# offre plusieurs autres types de variable entiére montrés par le Tableau 3.1.

Tableau 3.1: Taille et étendue des types entiers en C#.

Type Taille (octets) Etendue Exemple

shyte 1 -128a 127 shyte sh =12,

byte 1 0a255 byte b=12;

short 2 -32,768 a 32,767 short sn = 123456;

ushort 2 0465535 ushort usn = 62345678;
int 4 -2 milliards & 2 milliards int n=1234567890;

uint 4 0 a 4 milliards uint un = 3234567890U
fong 8 -10 a 10" {(beaucoup) long | = 123456789012L
ulong 8 0a10® fong ul = 123456789012UL

Comme je 'expliquerai dans la section "Déclarer des constantes numéri-
ques", plus loin dans ce chapitre, une valeur fixe telle que 1 a aussi un
type. Par défaut, une constante simple comme 1 est considérée de type
int. Une constante de type autre que int doit étre marquée par son type.
Par exemple, 123U est un entier non signé (unsigned), de type uint.

Chapitre 3 : Déclarer des variables de type valeur

La plupart des variables de type entier sont signées, ce qui signifie qu'el-
les ont un signe (+ ou -), et qu'elles peuvent donc représenter des valeurs
négatives. Un entier non signé ne peut représenter que des valeurs
positives, avec l'avantage de pouvoir contenir une valeur deux fois plus
€levée. Comme vous pouvez le voir dans le Tableau 3.1, les noms de la
plupart des types d'entier non signé commencent par u (pour unsigned),
alors que les types signés n'ont généralement pas de préfixe.

Représenter des fractions

QQ\)‘l PAJ‘

HNJ
‘5& e

No;,

Les entiers conviennent trés bien pour la plupart des calculs, mais beau-
coup font intervenir des fractions, qui ne peuvent étre représentées par
des nombres entiers. L'équation toute simple qui convertit en degrés
Celsius une température exprimée en degrés Fahrenheit met le probléeme
en évidence :

// Conversion de la température 41 degrés Fahrenheit
int nFahr = 41;
int nCelsius = (nFahr - 32) * (5 / 9)

Cette équation fonctionnera trés bien en nombres entiers pour certaines
valeurs. Par exemple, 41 degrés Fahrenheit équivaut a 5 degrés Celsius.

Essayons une autre valeur : 100 degrés Fahrenheit. Selon notre équation,
100-32 = 68 ; 68 fois 5/9 = 37. C'est faux : la bonne réponse est 37,78. Mais
cette réponse est encore fausse car le résultat exact est 37,777... avec des
7jusqu'a l'infini.

Une variable int ne peut représenter que des nombres entiers. L'équivalent
entier de 37,78 est 37, Cette maniére d'escamoter la partie décimale d'un
nombre pour le faire tenir dans une variable entiéere s'appelle tronqguer.

Tronquer n'est pas la méme chose qu'arrondir. Tronquer consiste a
supprimer la partie décimale, alors qu'arrondir consiste a prendre la
valeur entiére la plus proche. Ainsi, tronquer 1,9 donne 1. Arrondir 1,9
donne la valeur 2.

Pour une température, 37 peut étre une approximation satisfaisante. On
ne va pas mettre une chemise a manches longues a 37 degrés et une
chemise a manches courtes a 37,7 degrés. Mais pour bien des applica-
tions, sinon presque toutes, il est inacceptable de tronquer un nombre.

37

38

Deuxieme partie : Programmation élémentaire en C#

En fait, c'est plus compliqué que ca. Une variable de type int ne peut pas
stoker la fraction 5/9 qui correspond toujours pour elle a la valeur 0. Il en
résulte que I'équation de notre exemple ci-dessus calcule la valeur 0 pour
nCelsius pour toutes les valeurs de nFahr. On est bien obligé d'admettre
que c'est inacceptable.

_WABRGE, Sur le site Web, le dossier ConvertTemperatureWithRoundOff, contient

& < un programme de conversion de température avec des variables de type

@ int. A ce stade, vous n'en comprendrez peut-étre pas tous les détails,
mais vous pouvez jeter un coup d'ceil aux équations et exécuter le pro-
gramme Classl.exe pour voir les résultats qu'il produit.

Utiliser des variables en virgule flottante

Les limitations d'une variable de type int sont inacceptables pour la
plupart des applications. L'étendue n'est généralement pas le probleme :
un entier long de 64 bits a des chances d'étre suffisant pour tout le
monde. Ce qui est difficile a avaler, c'est de n'avoir droit qu'aux nombres
entiers.

Dans bien des cas, vous aurez besoin de nombres dont la partie décimale
n'est pas nulle. Les mathématiciens les appellent les nombres réels. J'ai
toujours trouvé ca ridicule. Y a-t-il des nombres entiers qui soient irréels ?

Remarquez que j'ai dit qu'un nombre réel peut avoir une partie décimale
non nulle, mais ce n'est pas obligatoire. Autrement dit, 1,5 est un nombre
réel, mais 1,0 également. Par exemple, 1,0 + 0,1 égale 1,1. Un nombre réel
plus un nombre réel donne un nombre réel. Gardez cela en téte pour la
suite de ce chapitre.

Heureusement, C# connait les nombres réels. Il y en a de deux sortes :
décimaux et a virgule flottante. Le type le plus courant est a virgule
flottante. Je décrirai le type decimal un peu plus loin dans ce chapitre.

Déclarer une variable a virgule flottante

Une variable en virgule flottante est de type float, et vous pouvez la
déclarer de la facon suivante :

float £ = 1.0;

Chapitre 3 : Déclarer des variables de type valeur

Une fois déclarée comme float, la variable f est de type float pour
toutes les instructions qui vont s'y appliquer.

«Q&‘,\'\NIQ(@ Un nombre a virgule flottante doit son nom au fait que la virgule décimale
&

y est autorisée a "flotter” de gauche a droite au lieu de se trouver a un
emplacement fixe. [l permet donc de représenter aussi bien 10,0 que 1,00
ou 0,100, ou tout ce que l'on peut imaginer.

Le Tableau 3.2 donne l'ensemble des types de variable en virgule flottante.
Tous ces types sont signés, ce qui veut dire qu'une variable en virgule
flottante peut recevoir une valeur négative aussi bien que positive.

Tableau 3.2: Taille et étendue des types de variable en virgule flottante.

Type Taille [octets] Etendue Précision Exemple

float 8 15%10%a3.4*10% 6 - 7 chiffres float f = 1.2F;

double 16 5.0*10°% 317 *10% 15 - 16 chiffres double d = 1.2;
q,\)E.Z Pag

S Le type par défaut pour une variable en virgule flottante est double et

non float.

Dans le Tableau 3.2, la colonne Précision contient le nombre de chiffres
exacts pour chaque type de variable a virgule flottante. Par exemple, la
fraction 5/9 vaut exactement 0,555... avec une infinité de 5. Mais une
variable de type f1loat contient un certain nombre de chiffres exacts, ce
qui veut dire que les chiffres qui se trouvent au-dela du sixiéme ne le sont
pas nécessairement. Aussi, exprimé dans le type float, 5/9 pourrait tres
bien apparaitre comme ceci :

0.5555551457382

Vous savez donc que tous les chiffres apparaissant aprés le sixieme 5 ne
peuvent pas étre considérés comme exacts.

Une variable de type float posséde en fait 6,5 chiffres exacts. Cette
valeur étrange vient du fait que la précision en virgule flottante est don-
née par un calcul qui fait intervenir 10 puissance un logarithme en base 2.
Voulez-vous vraiment en savoir plus ?

39

40

Deuxiéme partie : Programmation élémentaire en C#

«Q\“C

Avec une variable de type double, la méme fraction 5/9 pourra apparaitre
de cette facon :

0.55555555555555557823

Le type double posséde quant a lui entre 15 et 16 chiffres exacts.

Comme en C# une variable a virgule flottante est par défaut en double
précision (le type double), vous pouvez utiliser ce type, 8 moins d'avoir
une raison particuliére de ne pas le faire. Toutefois, qu'il utilise le type
double ou le type float, on dira toujours d'un programme qu'il travaille
en virgule flottante.

Convertissons encore quelques températures

Voici la formule qui permet de convertir en degrés Celsius une tempéra-
ture en degrés Fahrenheit en utilisant des variables en virgule flottante :

double dCelgius = {dFahr - 32.0) * (5.0 / 9.0)

Le site Web contient une version en virgule flottante, nommée
ConvertTemperatureWithFloat, du programme de conversion de
température.

L'exemple suivant montre le résultat de I'exécution du programme
ConvertTemperatureWithFloat, utilisant des variables de type double:

Entrez la température en degrés Fahrenheit:100
Température en degrés Celsius = 37.777777777777779
Appuyez sur Entrée pour quitter le programme...

C'est mieux que les problemes de robinet que I'on apprenait a résoudre a
école primaire.

Ouelques limitations des variables en virgule
flottante

Vous pouvez étre tenté d'utiliser tout le temps des variables a virgule
flottante parce qu'elles résolvent le probléme des nombres tronqués. Il

Chapitre 3 : Déclarer des variables de type valeur

N
é‘&“ I 0(/&

No;,

est vrai qu'elles utilisent plus de mémoire, mais de nos jours la mémoire
ne colite pas cher. Alors, pourquoi pas ? Mais les variables a virgule
flottante ont aussi des limitations.

Utiliser une variable comme compteur

Vous ne pouvez pas utiliser une variable a virgule flottante comme comp-
teur. En C#, certaines structures ont besoin de compter (comme dans 1,
2, 3, et ainsi de suite). Nous savons tous que 1,0, 2,0, et 3,0 font aussi bien
que 1, 2, 3 pour compter, mais C# ne le sait pas. Comment ferait C# pour
savoir si vous voulez dire 10 000 001 ou 10 000 000 ?

Que vous trouviez ou non cet argument convaincant, vous ne pouvez pas
utiliser une variable & virgule flottante comme compteur.

Comparer des nombres

Il faut étre trés prudent quand on compare des nombres en virgule
flottante. Par exemple, 12,5 peut étre représenté comme 12,500001.

La plupart des gens ne se préoccupent pas de la précision de ce petit 1
supplémentaire, mais un ordinateur prend les choses de facon extréme-
ment littérale. Pour C#, 12,500000 et 12,500001 ne sont pas du tout la
méme chose.

Aussi, si vous ajoutez 1,1 & ce que vous voyez comme 1,1, vous ne
pouvez pas savoir a priori si le résultat est 2,2 ou 2,200001. Et si vous
demandez "dDoubleVariable est-elle égale & 2,2 7", vous n'aurez pas
forcément le résultat que vous attendez. En général, vous allez devoir
vous en remettre a une comparaison un peu factice comme celle-ci :

"La valeur absolue de la différence entre dDoubleVariable et 2,2 est-elle
inférieure a 0,000001 ?"

Le processeur Pentium a une astuce pour rendre ce probleme moins génant :
il effectue les calculs en virgule flottante dans un format particulierement
long, c'est-a-dire qu'il utilise 80 bits au lieu de 64. Quand on arrondit un
nombre en virgule flottante de 80 bits pour en faire une variable de type
float de 64 bits, on obtient (presque) toujours le résultat attendu, méme s'il
y avait un ou deux bits erronés dans le nombre de 80 bits.

41

b2

Deuxieme partie : Programmation élémentaire en C#

‘\‘“ON /
/So
<

La vitesse de calcul

Les processeurs de la famille x86 utilisés par les PC un peu anciens fonc-
tionnant sous Windows faisaient les calculs arithmétiques en nombres
entiers beaucoup plus vite que les mémes calculs avec des nombres en
virgule flottante. De nos jours, ce serait sortir de ses habitudes pour un
programmeur que de limiter son programme a des calculs arithmétiques en
nombres entiers.

Avec le processeur Pentium lll de mon PC, pour un simple test (peut-étre
trop simple) d'a peu prés 300 millions d'additions et de soustractions, le
rapport de vitesse a été d'environ 3 a 1. Autrement dit, pour toute addi-
tion en type double, j'aurais pu faire trois additions en type int (les
calculs comportant des multiplications et des divisions donneraient peut-
étre des résultats différents).

Jai du écrire mes opérations d'addition et de soustraction de maniere a
éviter les effets de cache. Le programme et les données étaient mis en
cache, mais le compilateur ne pouvait mettre en cache dans les registres
du CPU aucun résultat intermédiaire.

Une étendue pas si limitée

Dans le passé, une variable en virgule flottante pouvait posséder une
étendue beaucoup plus large qu'une variable d'un type entier. C'est
toujours le cas, mais I'étendue du type long est assez grande pour rendre
la question pratiquement dépourvue d'intérét.

Méme si une variable de type f1oat peut représenter un assez grand
nombre, le nombre de chiffres exacts est limité. Par exemple, il n'y aura
pas de différence entre 123456 789F et 123456000F.

Utiliser le type decimal, hybride d'entier et de
virgule flottante

Comme je 'explique dans les sections précédentes de ce chapitre, les
types entiers comme les types en virgule flottante ont chacun leurs

inconvénients. Une variable en virgule flottante a des problémes d'ar-
rondi, ainsi que des limites de précision, alors qu'une variable int fait

Chapitre 3 : Déclarer des variables de type valeur 43

tout simplement sauter la partie décimale du nombre. Dans certains cas,
il vous faudra une variable qui combine le meilleur de ces deux types :

v Comme une variable en virgule flottante, pouvoir représenter une
fraction.

v* Comme une variable entiére, offrir une valeur exacte utilisable dans
des calculs. Par exemple, 12,5 est effectivement 12,5, et non
12,500001.

Heureusement, C# offre un tel type de variable, nommé decimal. Une
variable de ce type peut représenter tout nombre compris entre 10% et
10 (ca fait beaucoup de zéros). Et elle le fait sans problémes d'arrondi.

Déclarer une variable de type decimal

Une variable de type decimal se déclare comme n'importe quelle autre :

decimal ml; // Bien
decimal m2 = 100; // Mieux
decimal m3 = 100M; // Encore mieux

La déclaration de m1 définit une variable m1 sans lui donner une valeur
initiale. Tant que vous ne lui aurez pas assigné une valeur, son contenu
est indéterminé. C'est sans importance, car C# ne vous laissera pas
utiliser cette variable tant que vous ne lui aurez pas donné une valeur.

La seconde déclaration crée une variable m2 et lui donne 100 comme
valeur initiale. Ce qui n'est pas évident, c'est que 100 est en fait de type
int. C# doit donc convertir cette valeur de type int en type decimal
avant de l'initialiser. Heureusement, C# comprend ce que vous voulez
dire et effectue la conversion pour vous.

La déclaration de m3 est la meilleure des trois. Elle initialise m3 avec la
constante de type decimal 100M. La lettre M 4 la fin du nombre signifie
que la constante est de type decimal. (Voyez la section "Déclarer des
constantes numériques”, plus loin dans ce chapitre.)

44 Deuxiéme partie : Programmation élémentaire en C#

Comparer les types decimal, int, et float

Une variable de type decimal semble avoir tous les avantages et aucun
des inconvénients des types int et double. Elle a une trés grande éten-
due, elle n'a pas de problémes d'arrondi, et 25,0 y est bien 25,0 et non
25,00001.

Le type decimal a toutefois deux limitations significatives. Tout d'abord,
une variable de type decimal ne peut pas étre utilisée comme compteur,
car elle peut contenir une partie décimale. Vous ne pouvez donc pas vous
en servir dans une boucle de contréle de flux, comme je l'explique au
Chapitre 5.

Le second inconvénient du type decimal est tout aussi sérieux, ou
méme plus. Les calculs effectués avec des variables de ce type sont
significativement plus lents que ceux effectués avec des variables de
type int ou float. Je dis bien "significativement”. Mon test simple de
300 millions d'additions et de soustractions a été a peu pres cinquante
fois plus long qu'avec le type int, et je soupconne que ce rapport serait
encore plus défavorable avec des opérations plus complexes. En outre,
la plupart des fonctions de calcul, comme les exponentielles ou les
fonctions trigonométriques n'admettent pas le type decimal.

Il est clair que le type decimal convient trés bien aux applications comme
la comptabilité, pour lesquelles la précision est trés importante mais le
nombre de calculs relativement réduit.

Soyons logique, examinons le type bool

Enfin, un type de variable logique. Une variable du type booléen bool
peut prendre deux valeurs : true ou false (vrai ou faux). Je parle sérieu-
sement : un type de variable rien que pour deux valeurs.

CHNIg s s . .
é‘“ % Les programmeurs C et C++ ont 'habitude d'utiliser une variable int avec
la valeur 0 (zéro) pour signifier fals«, et une valeur autre que zéro pour
signifier true. Ca ne marche pas en C#.

No;,

Une variable bool se déclare de la facon suivante :

bool variableBool = true;

Chapitre 3 : Déclarer des variables de type valeur

[l n'existe aucun chemin de conversion entre une variable bool et tous les
autres types. Autrement dit, vous ne pouvez pas convertir directement
une variable bool en quelque chose d'autre (et méme si vous pouviez,
vous ne devriez pas, parce que ¢a n'a aucun sens). En particulier, vous ne
pouvez pas transformer une variable bool en int (par exemple sur la
base du principe que false devient zéro), ni en string (par exemple sur
la base du principe que false devient "false").

Toutefois, une variable de type bool joue un role important pour forcer
I'exécution d'un programme C# & suivre tel ou tel cheminement, comme je
I'explique au Chapitre 5.

Un coup d'@il aux types caractére

Un programme qui ne fait rien d'autre que cracher des nombres peut conve-
nir trés bien a des mathématiciens, des comptables, des assureurs qui font
des statistiques, et des gens qui font des calculs balistiques (ne riez pas, les
premiers ordinateurs ont été construits pour générer des tables de trajectoi-
res d'obus a l'usage des artilleurs). Mais pour la plupart des applications, les
programmes doivent pouvoir traiter des lettres aussi bien que des nombres.

C# dispose de deux maniéres différentes de traiter les caractéres : a titre
individuel (par le type char), et sous forme de chaines (par le type string).

La variable de type char

Une variable de type char est une boite qui peut contenir un seul caractere.
Une constante caractére apparait tel un caractére entouré d'apostrophes,
comme dans cet exemple :

char ¢ = 'a'; -

Vous pouvez y mettre n'importe quel caractére de I'alphabet latin, hébreu,
arabe, cyrillique, et bien d'autres. Vous pouvez aussi y mettre des caracte-
res japonais Katakana ou bien des caractéres Kanji, chinois ou japonais.

En outre, le type char peut étre utilisé comme compteur, ce qui veut dire
gque vous pouvez avoir recours a une variable char pour controler les
structures de boucle que je décrirai au Chapitre 5. Une variable caractére
ne peut avoir aucun probléme d'arrondi.

45

46 Deuxieme partie : Programmation élémentaire en C#

Une variable de type char n'est pas associée a une police. Vous pouvez
trés bien y stocker un caractéere Kanji que vous trouvez trés beau, mais si
vous l'affichez, il ne ressemblera a rien si vous ne le faites pas avec la
bonne police.

Types char spéciaux

Certains caracteéres, selon la police utilisée, ne sont pas imprimables, au
sens ol vous ne voyez rien si vous les affichez a I'écran ou si vous les
imprimez avec votre imprimante. L'exemple le plus banal en est I'espace,
représenté par ' . Il y a aussi des caractéres qui n'ont pas d'équivalent sous
forme de lettre (par exemple, le caractére de tabulation). Pour représenter
ces caracteres, C# utilise la barre oblique inverse, comme le montre le
Tableau 3.3.

Tableau 3.3 : Caracteres spéciaux.

Constante caractere Valeur

n' nouvelle ligne

At tabulation

\0' caractere null

\r' retour chariot

A\Y barre oblique inverse

Le type string

Le type string est également d'usage courant. Les exemples suivants
montrent comment déclarer et initialiser une variable de type string :

/! déclaration puis initialisation

string someStringl;

someStringl = "ceci est une chaine";

{/ initialisation avec la déclaration
string someString2 = "ceci est une chaine";

Chapitre 3 : Déclarer des variables de type valeur

Une constante de type chaine est une chalne de caractéres entourée de
guillemets. Une chaine peut contenir tous les caractéres spéciaux du
Tableau 3.3. Une chaine ne peut pas s'étendre sur plus d'une ligne dans le
fichier source C#, mais elle peut contenir le caractére de retour a la ligne,
comme le montre I'exemple suivant :

/1 ceci est illicite

string someString = "Ceci est une ligne

et en voild une autre";

/] mais ceci est autorisé

string someString = "Ceci est une ligne\net en voila une autre";

A l'exécution, la derniére ligne de I'exemple ci-dessus écrit les deux
membres de phrase sur deux lignes successives :

Ceci est une ligne
et en voila une autre

Une variable de type string ne peut pas étre utilisée comme compteur, et
ce n'est pas un type contenant une valeur. Il n'existe aucune "chaine" qui ait
une signification intrinseéque pour le processeur. Seul un des opérateurs

habituels est utilisable avec un objet de type string : l'opérateur + effectue
la concaténation de deux chaines en une seule. Par exemple :

string s = "Ceci est un membre de phrase"
+ " et en voild un autre";

Ce code place dans la variable string s la chalne suivante :
"Ceci est un membre de phrase et en voila un autre”

Encore un mot : une chaine ne contenant aucun caractére (que l'on écrira
"M est une chaine valide.

Comparer string et char

Bien qu'une chaine soit constituée de caractéres, le type string est trés
différent du type char. Naturellement, il existe quelques différences
triviales. Un caractére est placé entre apostrophes, comme ceci :

Oal

b7

48

Deuxieme partie : Programmation élémentaire en C#

alors qu'une chaine est placée entre guillemets :

"ceci est une chaine"

Les régles qui s'appliquent aux chaines ne sont pas les mémes que celles
qui s'appliquent aux caractéres. Pour commencer, une variable char ne
contient par définition qu'un seul caracteére. Le code suivant, par exem-
ple, n'a aucun sens :

char ¢l = 'a';
char ¢2 = 'b';
char ¢3 = cl + ¢2

En fait, ce code peut presque se compiler, mais avec une signification
complétement différente de I'intention initiale. Ces instructions provo-
quent la conversion de ¢! en une variable int qui recoit la valeur numéri-
que du caractére initialement contenu dans c 1, puis la méme chose pour
<2, et finalement l'addition de ces deux entiers. L'erreur se produit lors-
que l'on essaie de stocker le résultat dans ¢3. Une valeur numérique de
type int ne peut pas étre stockée dans une variable de type char, par
définition plus petite. En tout cas, cette opération n'a aucun sens.

Une chaine, en revanche, peut avoir une longueur quelconque, et la
concaténation de deux chaines a un sens :

string sl = "a";
string s2 = "b";
string s3 = sl + s2; //le résultat est "ab"

Il y a dans la bibliotheque de C# une collection entiére d'opérations sur
les chaines. Je les décrirai au Chapitre 9.

Conventions sur les noms

La programmation est assez difficile sans que les programmeurs la rendent plus difficile
encore. Pour rendre votre code source C# plus lisible, adoptez une convention sur les noms,
et tenez-vous-y. Idéalement, cette convention doit étre aussi proche que possible de celle
adoptée par la plupart des programmeurs C#.

Chapitre 3 : Déclarer des variables de type valeur

Larégle générale estque le nom d'un objetautre qu'une variable doit commencer par une lettre
majuscule. Choisissez des noms aussi descriptifs que possible, ce qui signifie bien souvent des
noms composés de plusieurs mots. Chacun de ces mots doit commencer par une majuscule
(sauf le premier dans le cas d'une variable), etils doivent &tre collés les uns aux autres, sans
étre reliés par des tirets de soulignement, comme ceci: ceciEstUnLongNomDeVariable

J'ai aussi adopté la régle supplémentaire selon laquelle la premiére lettre du nom d'une
variable en indique le type. La plupart de ces lettres sont assez explicites : f pour float, d
pour double, s pour string, et ainsi de suite. La seule qui nécessite un petit effort de
mémoire est n pour int. Il y a toutefois une exception a cette régle : pour des raisons qui
remontent au langage FORTRAN des années soixante, les lettres 1, j, et k sont couramment
utilisés seules comme nom pour les variables de type int.

Remarquez que j'ai ditavoir "adopté” cette convention. Ce n'est pas moi quil'aiinventée, mais
quelgu'un qui travaillait chez Microsoft a I'époque du langage C. Comme il était d'origine
hongroise, cette convention a regu le nom de notation hongroise.

La notation hongroise semble ne plus étre en faveur. Je continue toutefois a la préférer, car
elle me permet de connaitre du premier coup d'ceil le type de chaque variable dans un
‘programme sans avoir & me référer a la déclaration.

Ou'est-ce qu'un type valeur ?

Toutes les instructions C# doivent étre traduites en instructions machine
du processeur utilisé. Dans le cas du PC, un processeur Intel. Ces proces-
seurs utilisent aussi la notion de variable. Par exemple, le processeur Intel
comporte huit emplacements internes, appelés registres, dont chacun peut
stocker un int. Sans trop entrer dans les détails, je dirai simplement que
les types décrits dans ce chapitre, a 'exception de decimal et string, sont
intrinséques au processeur. Aussi, il existe une instruction machine qui
signifie : "Ajouter un int & un autre int", et une instruction semblable pour
ajouter un double a un double. Comme ces types de variable sont intégrés
au fonctionnement du processeur, on les appelle des types intrinseques.

En outre, les types de variable que je décris dans ce chapitre sont de
longueur fixe (encore une fois, a I'exception de string). Une variable de
longueur fixe occupe toujours la méme quantité de mémoire. Ainsi, si j'écris
l'instruction a = b, C# peut transférer la valeur de b dans a sans prendre

49

50

Deuxieme partie : Programmation élémentaire en C#

des mesures spéciales pour traiter un type de donnée de longueur variable.
Un type de variable qui a cette caractéristique est appelé type valeur.

Les types int, double, bowl, et leurs dérivés immédiats, comme int non
signé, sont des types de variable intrinséques. Les types de variable
intrinséques, ainsi que le type decimal, sont aussi appelés types valeur.
Le type string n'est ni l'un ni l'autre.

Les types définis par le programmeur, que je décris au Chapitre 6, ne sont
ni des types valeur, ni des types intrinséques.

Déclarer des constantes numeériques

Bien qu'il y ait trés peu d'absolus dans la vie, je vais vous dire quelque
§’\'\EZ Pag chose d'absolu sur C#:
S

= Toute expression a une valeur et un type.

Dans une déclaration comme int n, vous pouvez facilement voir que la
variable n est de type int, et vous pouvez raisonnablement supposer que
le calcul n + 1 est de type int. Mais quel est le type de la constante 1 ?

Le type d'une constante dépend de deux choses : sa valeur, et la présence
optionnelle d'une lettre descriptive a la fin de celle-ci. Tout nombre entier
inférieur a 2 milliards est supposé étre de type int. Un nombre entier
supérieur & 2 milliards est supposé étre de type long. Tout nombre en
virgule flottante est supposé étre de type double.

Le Tableau 3.4 présente des constantes déclarées pour étre d'un type
particulier. La lettre qui sert de descripteur peut étre aussi bien en
majuscule qu'en minuscule. 1U et 1u sont équivalents.

Tableau 3.4 : Constantes déclarées avec leur type.

Constante Type

1 int

1U unsigned int
1L long int

1.0 double

Chapitre 3 : Déclarer des variables de type valeur

Constante Type

1.0F float

1M decimal

true bool

false bool

'a' char

"\n' char (caractére de nouvelle ligne)

"\x123" char (caractére dont la valeur numérique est hex 123)
"a string" string

nn

string (chaine vide)

Changer de type : le cast

Un étre humain ne traite pas de maniére différente les différents types de
nombre. Par exemple, un individu normal (contrairement a un program-
meur C# distingué tel que vous) ne se demande pas si le nombre 1 est
signé, non signé, court ou long.

Bien que C# considére ces divers types comme différents, il n'ignore pas
qu'il existe une relation entre eux. Par exemple, le code suivant convertit
une variable de type int en long :

int nV‘:aklue!g 10;
long 1Value; KRR
1Value = nValue; // ceci fonctionne

Une variable de type int peut étre convertie en long car toute valeur int
peut étre stockée dans une variable de type long et que I'un comme
I'autre type peut étre utilisé comme compteur.

Toutefois, une conversion dans la direction opposée peut poser des
problémes. Par exemple, ce qui suit est illicite :

long 1Value = 10;
int nValue; E .
nValue = 1Value; // ceci est illicite

51

52

Deuxieme partie : Programmation élémentaire en C#

N/

NoOy,

Certaines valeurs que l'on peut stocker dans une variable de type long
sont trop grandes pour une variable int (par exemple, 4 milliards). Dans
ce cas, C# génére une erreur, car des informations pourraient étre per-
dues dans la conversion. Ce type de bogue est trés difficile a identifier.

Mais si vous savez que la conversion est possible ? Par exemple, bien que
1value soit de type 1ong, peut-étre savez-vous que sa valeur ne peut pas
dépasser 100 dans ce programme. Dans ce cas, la conversion de la varia-
ble de type long iValue en variable nvalue de type int ne poserait aucun
probléme.

Vous pouvez dire & C# que vous savez ce que vous faites en utilisant un
cast :

long 1Value = 10;
int nValue;
nValue = {int)1Value; // maintenant ga marche

Dans un cast, vous placez entre parenthéses le nom du type que vous
voulez obtenir, juste avant le nom de la variable a convertir. Le cast ci-
dessus dit : "Convertir en int la valeur de 1vValue. Je sais ce que je fais."

Un nombre qui peut étre utilisé comme compteur peut étre converti automa-
tiqguement en type £ loat, mais la conversion d'un nombre en virgule flottante
en nombre pouvant servir de compteur nécessite un cast :

double dValue = 10.0;
long 1Value = (long)dValue;

Toute conversion de et vers le type decimal nécessite un cast. En fait,
tout type numérique peut étre converti en n'importe quel autre type
numérique par l'application d'un cast.

Ni le type bool nile type string ne peuvent étre convertis directement
en un autre type, quel qu'il soit.

C# comporte des fonctions intégrées qui peuvent convertir un nombre,
un caractére ou un type booléen en son équivalent de type string. Par
exemple, vous pouvez convertir la valeur de type bool true pour en faire
la valeur string "true”, mais on ne peut pas considérer cela comme une
conversion directe. La valeur booléenne true et la chaine "true" sont des
choses absolument différentes.

Chapitre 4
Les opérateurs sont sympas

Dans ce chapitre :

Faisons un peu d'arithmétique.
Faisons des comparaisons.

Aller plus loin avec des opérateurs logiques.

L es mathématiciens créent des variables et les manipulent de différentes

maniéres. s les additionnent, les multiplient, parfois méme les intégrent.
Le Chapitre 2 explique comment déclarer et définir des variables, mais il ne dit
rien sur la maniére de les utiliser afin d’en faire quelque chose. Ce chapitre
examine les opérations que 1'on peut exécuter avec des variables pour réaliser
effectivement quelque chose.

&5 Ecrire un programme qui fait vraiment quelque chose, c'est bien. Si vous

n'y arrivez pas, vous ne deviendrez jamais un véritable programmeur C#,

a moins, bien siir, que vous ne soyez un consultant, comme moi.

Faire de l'arithmétique

L'ensemble des opérateurs arithmétiques est divisé en plusieurs grou-
pes : les opérateurs arithmétiques simples, les opérateurs d'assignation,
et un groupe d'opérateurs spéciaux, propres a la programmation. Une fois
que vous les aurez digérés, il vous faudra faire de méme pour un autre
ensemble d'opérateurs : les opérateurs logiques.

54 Deuxieme partie : Programmation élémentaire en C#

Les opérateurs simples

Les opérateurs simples sont pour la plupart ceux que vous avez appris a
I'école primaire. Le Tableau 4.1 en donne la liste :

Tableau 4.1 : Les opérateurs simples.

Opérateur Signification

- {moins unaire) prendre le négatif de la valeur

* multiplier

/ diviser

+ additionner

- {moins binaire) soustraire

% modulo
La plupart de ces opérateurs sont appelés opérateurs binaires, parce
qu'ils opérent sur deux valeurs : celle qui se trouve du c6té gauche de
l'opérateur et celle qui se trouve du coté droit. La seule exception est le
moins unaire, mais il est aussi simple que les autres :

int nl = 5;
int n2 = -nl; // n2 a maintenant la valeur -5

La valeur de -n est le négatif de la valeur de n.
L'opérateur modulo vous est peut-étre moins familier que les autres. C'est
tout simplement le reste d'une division. Ainsi, 5 % 3 vaut 2, et 25 % 3 vaut
1(25-3 *8).

&

A . ' - " "

) La définition stricte de I'opérateur % est : "x = (x/y) +x % y".

Les opérateurs arithmétiques autres que modulo sont définis pour tous
les types numériques. L'opérateur modulo n'est pas défini pour les types
en virgule flottante, car une division effectuée en virgule flottante n'a pas
de reste.

Chapitre 4 : Les opérateurs sont sympas 55

£Z Pgq
@d &
()

Ordre d'exécution des opérateurs

Il arrive que le sens d'une expression arithmétique ne soit pas parfaite-
ment clair. Par exemple :

intn=5*3+2;

Est-ce que le programmeur veut dire "multiplier 5 par 3 et ajouter 2", ce
qui fait 17, ou bien "multiplier 5 par la somme de 3 et 2", ce qui fait 25 ?

C# effectue 'exécution d'une suite d'opérateurs de gauche a droite. Le résultat
de I'exemple ci-dessus est donc l'assignation de la valeur 17 & la variable n.

Dans l'exemple suivant, C# détermine la valeur de n en commencant par
diviser 24 par 6, puis en divisant le résultat de cette opération par 2 (et
non en divisant 24 par le résultat de la division de 6 par 2) :

intn=24/6/2

D'autre part, les opérateurs ont une hiérarchie, ou ordre de priorité. C#
commence par examiner l'expression, et exécute les opérations en commen-
cant par celle qui a le niveau de priorité le plus élevé. Dans mes précédents
livres, je me suis donné le plus grand mal pour expliquer la priorité des
opérateurs, mais je me suis depuis rendu compte que ce n'était qu'une
perte de temps (et de neurones). Il vaut toujours mieux se débarrasser de
la question de la priorité des opérateurs en utilisant les parenthéses.

De cette facon, la valeur de l'expression suivante est claire, quel que soit
l'ordre de priorité des opérateurs :

intn=(7%3)* &+ (6/3));

C# commence par évaluer l'expression qui se trouve dans le bloc de
parenthéses le plus profondément enfoui :

intn=(7%3)* (4+2);

Cela fait, il remonte vers le bloc de parenthéses le plus englobant, en
évaluant chaque bloc I'un apres l'autre :

intn=1*6;

56 Deuxieme partie : Programmation élémentaire en C#

Pour arriver au résultat final :

int n =7

Cette régle connait peut-étre une exception. Je trouve ce comportement
intolérable, mais de nombreux programmeurs omettent les parenthéses
dans des exemples comme le suivant, car tout le monde sait que la
priorité de la multiplication est plus élevée que celle de I'addition :

intn=7+2*%*3;

Le résultat de cette expression et 13 (et non 27).

L'opérateur d'assignation et ses variantes

C# a hérité de C et C++ une idée intéressante : I'assignation y est un
opérateur binaire. L'opérateur d'assignation a la valeur de l'argument qui
est a sa droite. L'assignation a le méme type que les deux arguments qui
doivent donc eux-mémes €tre de méme type.

Cette nouvelle conception de 1'opérateur d'assignation n'a aucun effet sur
les expressions que vous avez vues jusqu'ici :

n=75"%*3;

Dans cet exemple, 5 * 3 vaut 15 et est de type int. L'opérateur d'assigna-
tion stocke la valeur de type int qui se trouve a sa droite dans la variable
de type int qui se trouve a sa gauche, et retourne la valeur 15. Mais ce
n'est pas tout, cette nouvelle conception de 'opérateur d'assignation
autorise la forme suivante :

m=n=5"%*3;

Les opérateurs d'assignation sont évalués I'un apres l'autre, de droite a
gauche. Dans cet exemple, le premier a partir de la droite stocke la valeur
15 dans la variable n, et retourne 15. Le deuxiéme et dernier a partir de la
droite stocke la valeur 15 dans m et retourne 15, qui n'est utilisé par aucun
autre opérateur.

Chapitre 4 : Les opérateurs sont sympas 57

Du fait de cette définition étrange de |'opérateur d'assignation, les expres-
sions suivantes, bien qu'étranges, sont licites :

int n;
int m;
n=mn=2;
C# offre une extension de I'ensemble des opérateurs simples avec un

ensemble d'opérateurs construits a partir d'autres opérateurs binaires.
Par exemple :

n+=1;
Cette expression est équivalente a:
n=n+1;
1l existe un tel opérateur d'assignation pour pratiquement tous les opéra-

teurs binaires. Je ne sais pas exactement comment ils sont venus au
monde, mais pourtant, ils existent.

L'opérateur d'incrémentation

Parmi toutes les additions que l'on peut avoir a faire dans un programme,
la plus courante consiste a ajouter 1 a une variable :

n=n+1;
Nous avons vu que C# offre le raccourci suivant :

o= 1

s

Mais c'est encore trop compliqué. C# fait encore mieux :

++n; // incrémente n de 1

Les trois instructions ci-dessus sont équivalentes. Chacune incrémente n
de la valeur 1.

58 Deuxieme partie : Programmation élémentaire en C#

L'opérateur d'incrémentation est plutot bizarre, mais, croyez-le ou non,
C# en a en fait deux : ++n, et n++. Le premier, ++n, est l'opérateur de
préincrémentation, et le second, n++, est l'opérateur de postincrémentation.
La différence est subtile, mais importante.

Souvenez-vous que toute expression a un type et une valeur. Dans I'exem-
ple suivant, ++n et n++ sont tous deux de type int :

int n;
n=1;
int o = +in;
n=1;
int m = nt+;

Mais quelles sont les valeurs qui en résultent pour m et o ? (Je vous donne
un indice : c'est 1 ou 2.)

La valeur de o est 2, et la valeur de m est 1. Autrement dit, la valeur de
I'expression ++n est la valeur de n apres avoir été incrémentée, alors que
la valeur de I'expression n++ est la valeur de n avant d'avoir été incrémen-
tée. Dans les deux cas, le résultat est 2.

Sur le méme principe, il y a des opérateurs de décrémentation (n- - et
--n) pour remplacer n = u-1.lls fonctionnent exactement de la méme
marniére que les opérateurs d'incrémentation.

Pourquoi un opérateur d'incrémentation, et pourquoi en
avoir deux ?

L'obscureraisond'étre del'opérateur d'incrémentation vientdu faitque le calculateur PDP-8
des années soixante-dix possédait une instruction d'incrémentation. La chose serait
aujourd'hui de peu d'intérét sile langage C, & I'origine de la lignée qui conduit aujourd'huia -
C#, n'avait pas été écrit justement pour le PDP-8. Comme cette machine possédait une
instruction d'incrémentation, n++ générait moins d'instructions machine que n = n+1.
Puisque les machines de I'époque étaient trés lentes, on ne ménageait pas ses efforts pour
faire I'économie de quelques instructions machine. ~

Les compilateurs d"aujourd’hui sont plus astucieux, il n'y a davantage de différence entre le
temps d'exécution de n++ et celui de n = n+1, donc plus de besoin pour un opérateur

Chapitre 4 : Les opérateurs sont sympas

4 inab!e en u’altsant la forme plus !ongue mais plus mtuntlve n = ntl, Vous Ie verrez
p t6t utiliser I'opérateur d'incrémentation. s

D autre part, lorsqu'on le rencontre isolé (c'est-a-dire pas a |'intérieur d'une express:on plus
,grande), c'est presque toujours loperateur de postincrémentation qui apparait et non
rateur de préincrémentation. lin’ y aaucune raison a cela endehors de I hab:tude etdu
quegaa 'air plus cool.

Faire des comparaisons — est-ce logique ?

C# comporte également un ensemble d'opérateurs de comparaison
logique, montrés par le Tableau 4.2.

Tableau 4.2 : Les opérateurs de comparaison logique.

Opérateur L'opérateur est vrai si...
a== a alaméme valeur que b
a>b a est plus grand que b
a>=b a est supérieur ou égalab
a<b a est plus petitque b
a<=b a estinférieur ou égalab
al=b an'estpaségalab

Ces opérateurs sont appelés opérateurs de comparaison logique, car ils
retournent une valeur de type bool true ou false (vrai ou faux).

Voici un exemple qui fait intervenir une comparaison logique :

1ntm*5

boolb‘m)n,

59

60 Deuxiéme partie : Programmation élémentaire en C#

Cet exemple assigne la valeur false ala variable b, car 5 n'est pas plus
grand que 6.

Les opérateurs de comparaison logique sont définis pour tous les types
numériques, notamment float, double, decimal, et char. Tout ce qui suit
est licite :

ool b;
b=30D
b=3.002.00
Cb=ral> by
‘b= 10M > 12M;

Un opérateur de comparaison logique produit toujours un résultat de
type bool. Il n'est pas valide pour une variable de type string (C# offre
d'autres moyens de comparer des chaines).

Comparer des nombres en virgule flottante :
qui a le plus gros float ?

Comparer deux nombres en virgule flottante tient parfois un peu du jeu
de hasard, et il faut étre trés prudent. Considérez les comparaisons
suivantes :

float f1;

float £2;

fl = 10;

f2=f1/ 3;

bool bl = (3 * f2) == fl;
fl1 =09;

2 =£f1/ 3;
bool b2 = (3 * f£2) == fl;

L]

La seule différence entre le calcul de b1 et le calcul de b2 est la valeur
originale de £1. Quelles sont donc les valeurs de bl et b2 ? La valeur de b2
est évidemment true:9/3vaut3;3 *3vaut 9; et 9 est égal 2 9.

La valeur de b1 n'est pas aussi évidente : 10/3 vaut 3.333... 3.333... * 3
vaut 9.999... 9.999... est-il égal & 10 ? Ca dépend du niveau intellectuel de
votre processeur et de votre compilateur. Avec un Pentium ou un proces-
seur plus récent, C# n'est pas assez malin pour se rendre compte que bl

Chapitre 4 : Les opérateurs sont sympas

NI
‘;\f&“ LN

NOy,

devrait tre true si le résultat du calcul est un peu décalé par rapport a la
comparaison.

Pour faire un peu mieux, vous pouvez utiliser de la fagon suivante la
fonction de valeur absolue pour comparer f1 et £2:

Math.Abs{dl - 3.0 * d2) < .00001; //choisissez le niveau de précision

Cette fonction retourne true dans les deux cas. Vous pouvez utiliser la
constante Double.Epsilon ala place de .00001 pour obtenir le niveau de
précision le plus élevé possible. Epsilon est la plus petite différence
possible entre deux variables de type double qui ne sont pas rigoureuse-
ment égales.

Encore plus fort : les opérateurs logiques

Les variables de type bool disposent d'un autre ensemble d'opérateurs
logiques, définis rien que pour elles, montrés par le Tableau 4.3.

Tableau 4.3 : Les opérateurs logiques.

Opérateur Retourne true si...

la aestfalse

a&h aetbsonttrue

alb a ou b ou les deux sont t rue (aussi appelé a et/ou b)

ahhb a est true ou b est t rue mais pas les deux (aussi appelé a xor b)
a&&hb a et b sont t rue avec une évaluation en court-circuit

allb a ou b sont true avec une évaluation en court-circuit

L'opérateur ! est I'équivalent logique du signe moins. Par exemple, !a est
true siaest false, et false siaesttrue.

Les deux opérateurs suivants sont assez clairs. Tout d'abord, a & b n'est
true que siaet bsont true.Eta | besttruesiaoubsonttrue. lLe
signe " (aussi appelé le ou exclusif) est un peu une béte curieuse. a"b est
true si a ou b sont true mais pas si a et b sont true.

01

62 Deuxiéme partie : Programmation élémentaire en C#

WNJ,
‘:'\?S‘ 0(/@

No,,

<35

Ces trois opérateurs produisent comme résultat une valeur logique de
type bocl.

Les opérateurs &, |, et * existent aussi dans une version que l'on appelle
opérateur de bits. Appliqués a une variable de type int, ils operent bit par bit.
Ainsi, 6 & 3 vaut 2 (0110, & 0011, donne 0010,), 6 | 3 vaut 7 (0110, | 0011,
donne 0111,), et 6 » 3 vaut 5 (0110, * 0011, donne 0101,). L'arithmétique
binaire est une chose extrémement sympathique, mais sort du cadre de cet
ouvrage.

Les deux derniers opérateurs logiques sont semblables aux trois pre-
miers, mais présentent une différence subtile avec eux. Considérez
I'exemple suivant :

bool b = (boolExpressionl) & (boolExpression2);

Dans ce cas, C# évalue boolExpressionl et boolExpression2, en cherchant
a déterminer si I'une et 'autre sont true pour en déduire la valeur de b.
Toutefois, cet effort pourrait étre inutile. Si l'une de ces deux expressions est
false, il n'y a aucune raison d'évaluer l'autre, car quelle qu'en soit la valeur,
le résultat de 'ensemble sera false.

L'opérateur && permet d'éviter d'évaluer inutilement les deux expres-
sions :

bool b = (boolExpressionl) && (boolExpressionl);

Dans ce cas, C# évalue boolExpressionl. Sielle est false, b recoit la
valeur false, et le programme poursuit son chemin. Si elle est true, C#
évalue boolExpression? et stocke le résultat dans b.

L'opérateur && utilise ce que l'on appelle une évaluation en court-circuit,
car il court-circuite si nécessaire la seconde opération booléenne.

L'opérateur || fonctionne sur le méme principe :

bool b = (boolExpressionl) || (boolExpression2);

SiboolExpressionl est true, il n'y a aucune raison d'évaluer boolExpression?,
car le résultat sera true de toute facon.

Chapitre 4 : Les opérateurs sont sympas 63

Trouver les dmes seurs : accorder les types
d'expression

Dans un calcul, le type d'une expression est tout aussi important que sa
valeur. Examinez l'expression suivante :

int n;
n=5%*5+T7,;

Ma calculatrice me dit que n vaut 32, mais cette expression a aussi un type.

Traduite en termes de types, cette expression devient :
int [=] int * int + int;

Afin d’évaluer le type d'une expression, suivez le méme cheminement que
pour en déterminer la valeur. La multiplication a une priorité plus élevée

que l'addition. Un int multiplié par un int donne un int. L'addition vient
ensuite. Un int plus un int donne un int. On peut donc réduire I'expres-
sion ci-dessus de la facon suivante :

int * iant + int
int + int
int

Calculer le type d'une opération
Accorder des types suppose de creuser dans les sous-expressions. Chaque

expression a un type, et les types du coté gauche et du coté droit d'un
opérateur doivent correspondre a ce qui est attendu par celui- ci :

~ typel <op> typel @---> type3

(La fleche signifie "produit”.) typel et type2 doivent étre compatibles
avec l'opérateur op.

64

£Z P4
QQj\) $

Q//

=

N

Deuxiéme partie : Programmation élémentaire en C#

La plupart des opérateurs admettent différents types. Par exemple,
l'opérateur de multiplication :

int * int @---> int
uint * uint @---> uint
long * long @---> long
float * float @---> float
decimal * decimal @---> decimal
double * double @---> double

Ainsi, 2 * 3 utilise la version int * int de 'opérateur * pour produire 6, de
type int.

Conversion de type implicite

Tout cela est trés bien pour multiplier deux int ou deux float. Mais
qu'arrive-t-il lorsque les deux arguments ne sont pas de méme type ? Par
exemple, dans ce cas :

int nl = 10;
double d2 = 5.0;
double dResult = nl * d2;

Tout d'abord, C# ne comporte pas d'opération int * double. Il pourrait se
contenter de produire un message d'erreur, mais il essaie plutot de
comprendre ce qu'a voulu faire le programmeur. C# dispose des versions
int * int et double * double de la multiplication. Il pourrait convertir d2
en son équivalent int, mais il en résulterait la perte de la partie décimale
du nombre (ce qui se trouve a droite du point décimal). C# convertit
donc en double la variable int nl et utilise I'opération double * double.
C'est ce que l'on appelle une promotion implicite.

Une promotion implicite est implicite parce que C# l'effectue automatique-
ment, et c'est une promotion parce qu'elle transforme une valeur d'un
certain type en un type de capacité supérieure. La liste des opérateurs de
multiplication donnée a la section précédente apparait dans l'ordre de
promotion croissante de int a double oude int & decimal. Il n'existe
aucune conversion implicite entre les types en virgule flottante et le type
decimal. La conversion d'un type de capacité supérieure tel que double
en un type de moindre capacité tel que int s'appelle une rétrogradation.

Une promotion est aussi appelée contersion vers le haut, et une rétrogradation
conversion vers le bas.

Chapitre 4 : Les opérateurs sont sympas 65

Une rétrogradation (ou conversion vers le bas) implicite n'est pas autorisée.
Dans un tel cas, C# génére un message d'erreur.

Conversion de type explicite — le cast

Et si C# se trompait ? Et si le programmeur voulait vraiment effectuer une
multiplication en nombres entiers ?

Vous pouvez toujours changer le type d'une variable d'un type valeur en
utilisant I'opérateur cast. Un cast consiste a mettre entre parenthéses le
type désiré et a le placer immédiatement avant la variable ou l'expression
concernée.

De cette facon, 'expression suivante utilise l'opérateur int * int :

| mnt ,‘niy - 10;
double d2 = 5.0;
dnt nResult =nl * (int)d2;

Le cast de d2 en int est une rétrogradation explicite, parce que le program-
meur a explicitement déclaré son intention.

Vous pouvez faire une conversion explicite entre deux types valeur quels
qu'ils soient, que ce soit une promotion ou une rétrogradation.

Evitez les conversions de type implicites. Utilisez plutdt un cast avec les
types valeur pour faire des conversions explicites.

Laissez la logique tranquille

C# n'offre aucune conversion de type de ou vers le type bool.

Assigner un type

Le méme principe de compatibilité de types s'applique a I'opérateur
d'assignation.

66 Deuxieme partie : Programmation élémentaire en C#

‘\‘“ON 7
Ago

En général, une incompatibilité de type produisant un message d'erreur
de compilation se produit dans I'opérateur d'assignation, mais pas a
I'endroit qui est la source de l'incompatibilité.

Considérez I'exemple de multiplication suivant :

int nl-= 10;
int n2 = 5.0 * nl;

La deuxiéme ligne de cet exemple génére un message d'erreur di a une
incompatibilité de type, mais l'erreur se produit lors de l'assignation, et
non lors de la multiplication. En voici la terrible histoire : afin d'effectuer
la multiplication, C# convertit implicitement nl en double. C# peut alors
effectuer une multiplication en type double, dont le résultat est dans le
tout-puissant type double.

Toutefois, les types de ce qui est a droite et & gauche de I'opérateur d'assi-
gnation doivent étre compatibles, mais le type de ce qui est a gauche ne
peut pas changer, car C# n'accepte pas de rétrograder implicitement une
expression. Le compilateur génére donc le message d'erreur suivant :
Impossible de convertir implicitement le type double en int

C# autorise cette expression avec un cast explicite :

int nl = 10;
int n2 = (int) (5.0 * al);

(Les parenthéses sont nécessaires parce que 'opérateur de cast a un
niveau de priorité trés élevé.) Cela fonctionne. La variable n1 est promue
en double, la multiplication est effectuée, et le résultat en double est
rétrogradé en int. Toutefois, on peut alors se demander si le program-
meur est sain d'esprit, car il aurait été beaucoup plus facile pour lui
comme pour le compilateur d'écrire 5 * ni.

L'opérateur ternaire, le redoutable

La plupart des opérateurs admettent deux arguments, certains n'en
admettent qu'un, et un seul en admet trois : I'opérateur ternaire. Celui-ci
est redoutable et pour une bonne raison. Il a le format suivant :

bool expression ? expressionl : expression?

Chapitre 4 : Les opérateurs sont sympas

Et je rendrai les choses encore plus confuses avec un exemple :

int a = 1;
int b = 2;
int nMax = (a > b) 7 a : b;

Dans cet exemple, si a est plus grand que b, la valeur de l'expression est
a. Si a n'est pas plus grand que b, la valeur de l'expression est b.

L'opérateur ternaire est impopulaire pour plusieurs raisons. Tout d'abord,
il n'est pas nécessaire. Utiliser le type d'une instruction if (que nous
décrirons au Chapitre 5) a le méme effet et est plus facile & comprendre.
D'autre part, I'opérateur ternaire donne une véritable expression, quel que
soit son degré de ressemblance avec un type ou un autre d'instruction 1 f.
Par exemple, les expressions 1 et 2 doivent étre de méme type. Il en résulte
ceci:

int a = 1;
double b
int nMax

[]

—_

™.
(=3

~ -

o

~

>

m

ot

Cette instruction ne se compile pas, alors que nMax aurait du recevoir la
valeur de a. Comme a et b doivent étre de méme type, a est promu en
double pour étre compatible avec b. Le type qui résulte de 7; est mainte-
nant double, qui doit étre explicitement rétrogradé en int pour que
I'assignation soit possible :

int a = 1;

double b = 0.0;

int nMax;

//ceci fonctionne

nMax = (int)({a > b) 7 a : b);
//de méme que ceci

nMax = (a > b) ? a : (int)b;

Vous aurez rarement l'occasion de voir une utilisation de 'opérateur
ternaire.

67

Chapitre 5

Controler le flux d'execution
d'un programme

Dans ce chapitre :
Prendre une décision si vous le pouvez.
Décider quoi faire d'autre.
Faire des boucles sans tourner en rond.
Utiliser la boucle while.

Utiliser la boucle for.

onsidérez le trés simple programme suivant :

using System;
" namespace HelloWorld
{
public class Classl
R ' ,
//le programme commence ici
static void Main(string(] args)
{ ' :
//demande son nom & 1'utilisateur
Console.WriteLine("Entrez votre nom:");
//1it le nom entré par 1'utilisateur
gtring sName = Console.ReadLine():
//accueille 1'utilisateur par son nom
Console.WriteLine("Hello, " + sName);
//attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

70 Deuxieéme partie : Programmation élémentaire en C#

En dehors du fait qu'il présente quelques aspects fondamentaux de la
programmation en C#, ce programme n'a pratiquement aucun intérét. Il
ne fait qu'afficher ce que vous avez entré. On peut imaginer un exemple
un peu plus compliqué qui prendrait les données saisies par l'utilisateur,
ferait quelques calculs avec elles et afficherait un résultat (sinon pour-
quoi faire des calculs ?), puis se terminerait. Toutefois, méme un tel
programme ne peut avoir qu'une utilité limitée.

L'une des caractéristiques les plus importantes de n'importe quel proces-
seur est sa capacité de prendre des décisions. Par "prendre des décisions",
je veux dire que le processeur oriente l'exécution du programme vers un
chemin d'instructions si une certaine condition est vraie, et vers un autre
chemin dans le cas contraire. Tout langage de programmation doit compor-
ter cette capacité fondamentale pour controler le flux d'exécution des
programmes.

Il'y a trois types de base d'instructions de controle de flux ; I'instruction
if, la boucle, et le saut.

L'une des instructions de boucle, foreach, est décrite au Chapitre 6.

Contréler le flux d'exécution

La base de la capacité de prise de décision de C# est l'instruction if :

if {bool expression)
{

/] 1'exécution est orientée ici si l'expression est vraie

}

/1 1l'exécution se poursuit ici, que l'expression soit vraie ou non

Les parenthéses qui suivent immédiatement l'instruction i f contiennent
une instruction de type bool (pour en savoir plus sur les expressions de
type tool, reportez-vous au Chapitre 4). Juste apres cette expression, il y
a un bloc de code, délimité par une paire de parenthéses. Si l'expression
est vraie, le programme exécute ce bloc de code. Si I'expression n'est pas
vraie, il ignore ce bloc de code et passe directement a ce qui suit.

Chapitre 5 : Contrdler le flux d'exécution d'un programme 7 1

L'instruction if est plus facile & comprendre avec un exemple concret :

1/ garantir que a n‘est;paj&iafé:ryieur a0
/] si a est inférieur 2 0. . .
it

. . alors, assigner 0 & a

Ce fragment de code permet de garantir que la variable a est toujours
supérieure ou égale 4 zéro. L'instruction if dit : "Si a est inférieur a 0,
alors assigner 0 a a.”

Les parenthéses sont facultatives. C# traite "if (expression booléenne)
instruction” exactement de la méme maniére que "if (expression

| booléenne) [instruction}”. Le consensus général (auquel je souscris)
est de toujours utiliser les parenthéses. Autrement dit, faites-le.

Et si j'ai besoin d'un exemple ?

Imaginez un petit programme qui calcule des intéréts. L'utilisateur entre
le principal et le taux d'intérét, et le programme donne la valeur qui en
résulte a la fin de I'année (ce n'est pas un programme trés sophistiqué).
En C#, ce calcul tout simple apparait comme suit :

maintenant le total SRR
mTotal = mPrincipal + mlnterestPaid;
La premiére équation multiplie le principal, mPrincipal, par le taux
d'intérét, mInterest (divisé par 100, car le taux d'intérét est généralement
exprimé en pourcentage), pour obtenir l'intérét & payer, mInterestPaid.
L'intérét a payer est alors ajouté au principal, ce qui donne le nouveau
principal, stocké dans la variable mTotal.

Le programme doit étre capable de répondre a presque tout ce qu'un étre
humain est capable d'entrer. Par exemple, on ne peut pas accepter un
principal ou un intérét négatif. Le programme CalculateInterest ci-dessus
contient des vérifications pour éviter ce genre de choses :

72 Deuxieme partie : Programmation élémentaire en C#

[/ Calculatelnterest -

1l calcule le montant de 1‘intéfét o
" 4 payer pour un principal donné. Si le
o principal ou le taux d'intérét est négatif,

/l- produit un message d'erreur.
using System; o e TR
namespace Calculatelnterest
{
" public class Classl
r :
~public static int Main(string[] args)
; ‘ =BR

//demande & 1'utilisateur d'entrer le principal initial
~ Console.Write("Entrez le principal :");

string sPrincipal = Console.ReadLine(); :

decimal mPrincipal = Convert.ToDecimal(sPrincipal);

//vérifie que le principal n'est pas négatif :

if (mPrincipal < 0) : .

{ :
Console.Writeline{"Le principal ne peut pas &tre négatif");
mPrincipal = 0;

}

//demande & 1'utilisateur d'entrer le taux d'intérét

Console.Write("Entrez le taux d'intérdt :");

string sInterest = Console.ReadLine();

decimal mInterest = Convert.ToDecimal (sInterest);

//vérifie que le taux d'intérét n'est pas négatif.

if (mInterest < 0)

{ .
Console.WritelLine("Le taux d'intérét doit &tre positif");
minterest = 0;

}

//caleule la valeur du principal

[/plus 1'intérét

decimal mInterestPaid; o S
nInterestPaid = mPrincipal * (mInterest / 100);

{lcalcule maintenant le total

decimal mTotal = mPrincipal + mInterestPaid;

//affiche résultat

Console.WriteLine(); // skip a line
Console.WriteLine("Principal =" 4+ mPrincipal);
Console.WriteLine("Taux d'intérét = " + nlnterest + "%");
Console.WriteLine();)
Console.WriteLine("Interét payé =" <+ mInterestPaid);
Console.WriteLine("Total o= +-mTotal);
//attend confirmation de 1'utilisateur -
Congole.WriteLine{"Appuyez sur Entrée pour terminer...");
Congole.Read(); : ‘

Chapitre 5 : Contrdler le flux d'exécution d'un programme 73

/\%\\‘“ON 7

return 0;
}
}
}

Le programme Calculatelnterest commence par demander son nom a
l'utilisateur en utilisant l'instruction WriteLine () pour écrire une chaine
sur la console.

Dites a l'utilisateur exactement ce que vous voulez. Si possible, indiquez
aussi le format que vous voulez. Les utilisateurs donnent rarement de
bonnes réponses a une invite aussi peu claire que ».

Notre exemple utilise la commande ReadLine () pour lire sous forme
d'une chaine de caractéres ce que tape l'utilisateur au clavier jusqu'a la
touche Entrée. Comme ce programme attend le principal dans le type
decimal, la chaine entrée doit €tre convertie avec la commande
Convert.ToDecimal (). Le résultat est alors stocké dans mPrincipal.

Les commandes ReadLine (), WriteLine(), et ToDecimal (), sont toutes
des exemples d'appels de fonction. Je décrirai en détail les appels de
fonctions au Chapitre 6, mais ceux-la sont assez immédiatement compré-
hensibles. Vous devriez avoir au moins une idée de ce dont il s'agit. Si
mes lumineuses explications ne sont pas assez lumineuses pour vous,
vous pouvez les ignorer et aller voir le Chapitre 6.

La ligne suivante effectue la vérification de mPrincipal. Si sa valeur est
négative, le programme annonce sans ménagement a l'utilisateur qu'il a
fait une anerie. Il fait ensuite la méme chose pour le taux d'intérét. Cela
fait, il effectue le calcul de l'intérét, trés simple, que nous avons déja vu
plus haut, et affiche le résultat en utilisant une série de commandes
WriteLine ().

Le programme affiche les résultats suivants, sur la base d'un principal
légitime et d'un taux d'intérét usuraire, curieusement légal en bien des
contrées :

“Entrez le principal :1234
Entrez le taux d'intérét :21

Principal = 1234
Taux d'intérét = 21%

Interét payé = 259.14

74 Deuxieme partie : Programmation élémentaire en C#

Total o= 1493.14
Appuyez sur Entrée pour terminer...

Avec une entrée invalide, le programme produit la réponse suivante :

Entrez le principal :1234
Entrez le taux d'intérét :-12.5
Le taux d'intérét doit &tre positif

* Principal = 1234
Taux d'intérét = 0%

" Interdt payé =0
Total =:1234
. Appuyez sur Entrée pour terminer...

Pour que le source soit plus lisible, mettez en retrait les lignes d'une
instruction if. C# ne tient pas compte de la mise en retrait. Beaucoup
d'éditeurs de code comporte une fonction de mise en retrait automati-
que : chaque fois que vous tapez la commande if, le texte correspondant
est mis en retrait automatiquement. Pour activer cette fonction dans
Visual Studio, sélectionnez Outils/Options, et cliquez sur le dossier
Editeur de texte. Parmi les sous-dossiers de celui-ci, sélectionnez C#, et,
dans ce dernier, Tabulations. Dans cette page, sélectionnez Mise en
retrait Intelligente, et dans la zone Tabulations, spécifiez la taille du
retrait que vous voulez (en nombre d'espaces). Pour ce livre, j'ai utilisé
une mise en retrait de deux espaces.

Ou'est-ce que je peux faire d'autre ?

Certaines fonctions ont besoin de tester des conditions mutuellement
exclusives. Par exemple, le segment de code suivant stocke le plus élevé
de deux nombres, a et b dans la variable max :

/] stocke dans max le plus élevé de a et b

int max;
/1 si a est plus grand que b. . .
Cif (a > b)
o
]l . . . conserve a comme maximum
max = a;

}

//'si a est inférieur ou égal &'b. . .

Chapitre 5 : Contrdler le flux d'exécution d'un programme

if (a <=b)

{

-/l . . . conserve b comme maximum
max = b;

La seconde instruction if est ici inutile, car les deux conditions sont
mutuellement exclusives. Si a est plus grand que b, alors il ne peut pas
étre inférieur ou égal a b. C'est pour les situations de ce type qu'il y a dans
C# une instruction else.

Le mot-clé e1se définit un bloc de code qui sera exécuté si l'expression
logique contenue dans l'instruction i f n'est pas vraie.

Notre calcul de maximum devient maintenant :

/] stocke dans max le plus élevé de a et b

int max;

/] si a est plus grand que b. .

Cif (a2 D)

(: ,
/{ . . .conserve a comme maximum; sinon . . .
‘max = a; :

3 :
else

t , 2 '
// .. . conserve b comme maximum
nax = b; . g i

Si a est plus grand que b, c'est le premier bloc de code qui est exécuté.
Dans le cas contraire, c'est le second. Au bout du compte, max contient la
valeur du plus grand de a ou b.

Eviter méme le c1se

Les séquences de plusieurs clauses e1se peuvent donner une certaine
confusion. Certains programmeurs, dont moi-méme, préferent les éviter
lorsque ¢a permet de faire un code plus clair. On pourrait écrire le calcul
du maximum de la facon suivante :

/] stocke dans nax le plus élevé de aethb
int max; S ' '

75

76 Deuxiéme partie : Programmation élémentaire en C#

/] suppose que a est plus grand que b
max = a;
/] si ce n'est pas le cas. . .
if (b > a)
{
/1 ...alors, on peut changer d'avis
max = b;

}

Il y a des programmeurs qui évitent ce style comme la peste, et je peux
les comprendre, mais ca ne veut pas dire que je vais faire comme eux. Je
me contente de les comprendre. Les deux styles, avec ou sans "else’,
sont couramment utilisés, et vous les rencontrerez souvent.

Instructions it imbriquées

Le programme Calculatelnterest prévient l'utilisateur en cas d'entrée
invalide, mais il ne semble pas trés pertinent de poursuivre le calcul de
l'intérét si l'une des valeurs est invalide. Ca ne peut guére tirer a consé-
quence ici, parce que le calcul de l'intérét est pratiquement immédiat et
parce que l'utilisateur peut en ignorer le résultat, mais il y a bien des
calculs qui sont loin d'étre aussi rapides. De plus, pourquoi demander a
l'utilisateur un taux d'intérét s'il a déja entré une valeur invalide pour le
principal ? ll sait bien que le résultat du calcul sera invalide, quelle que
soit la valeur qu'il saisit maintenant.

Le programme ne devrait donc demander le taux d'intérét a 'utilisateur

que si la valeur du principal est valide, et n'effectuer le calcul de l'intérét
que si les deux valeurs sont valides. Pour réaliser cela, il vous faut deux

instructions if, l'une dans l'autre.

Une instruction if placée dans le corps d'une autre instruction 1if est
appelée une instruction imbriquée.

Le programme suivant, CalculateInterestWithEmbeddedTest, utilise des

instructions if imbriquées pour éviter les questions inutiles si un probléme
est détecté avec les valeurs entrées.

/{ CalculatelnterestWithEmbeddedTest -

1/ calcule le montant de 1'intérét 2
/1 payer pour un principal donné. Si
/7 le principal ou le taux d'intérét est

/1 négatif, alors géndre un message d'erreur

1

Chapitre 5 : Contrdler le flux d'exécution d'un programme

et n'effectue pas le calcul.

using System;
namespace CalculatelnterestWithEmbeddedTest

{

public class Classl

{

public static void Main(string[] args)

{

//définit un taux d'intérét maximum

int nMaximumInterest = 50;

//demande & 1'utilisateur d'entrer le principal initial
Console.Write("Entrez le principal :");

string sPrincipal = Console.ReadLine(};

decimal mPrincipal = Convert.ToDecimal(sPrincipal);
//si le principal est négatif.

if (mPrincipal < 0)

{
/! . . .géndre un message d'erreur. . .
Console.WriteLine("Le principal ne peut pas &tre négatif");
}
else
i
/1 . . .sinon, demande le taux d'intérét

Console.Write("Entrez le taux d'intérdt :");

string sInterest = Console.ReadLine():

decimal mInterest = Convert.ToDecimal(sInterest);

//si le taux d'intérdt est négatif ou trop élevé. .

if (mInterest < 0 || mInterest > nMaximumInterest)

{
// . . .génére un autre message d'erreur
Console.WriteLine("Le taux d'intérét doit &tre positif " +

"et pas supérieur & " + nMaximumInterest);
“mlnterest = 0;
],

Celse

LB

"ff//le principal et 1'intérét sont tous deux valides
' [lcalcule donc la valeur du principal '
" [lplus 1'intérét

. decimal mInterestPaid;

. mInterestPaid = mPrincipal * (mInterest / 100);

‘//calcule maintenant le total

- decimal mTotal = mPrincipal + mInterestPaid;
© o+ /laffiche résultat , ’
. Gonsole.WriteLine(); // skip a line

f:Censcle.WriteLine("Principal = " + mPrincipal);
 Console.Writeline("Taux d'intérét = " + nlnterest + "%");

h'}Console.WriteLine();

77

78 Deuxieme partie : Programmation élémentaire en C#

L

Console.WriteLine("Intérét payé = " + mlnterestPaid);
Console.WriteLine("Total ="+ pTotal);
}
}
//attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read():

Le programme commence par lire la valeur du principal entrée par 'utilisa-
teur. Si elle est négative, il affiche un message d'erreur et se termine. Dans le
cas contraire, le controle passe a la clause e1se, et le programme poursuit
son exécution.

Dans cet exemple, la vérification du taux d'intérét a été améliorée. Le
programme demande ici un taux d'intérét qui ne soit pas négatif (regle
mathématique) et qui soit inférieur a un maximum (régle juridique). Cette
instruction if utilise un test composé :

if (mInterest < 0 || mInterest > nMaximumInterest)

Cette expression est vraie si mInterest est inférieur a zéro ou si
minterest est plus grand que nMaximumInterest. Remarquez que jai
déclaré nMaximumInterest en haut du programme au lieu de le coder
localement sous forme de constante.

Définissez toujours au début de votre programme les constantes importantes.

Placer les constantes dans des variables au début du programme est utile
a plusieurs titres. Tout d'abord, chaque constante a ainsi un nom :
nMaximumInterest est beaucoup plus descriptif que 50. D'autre part, elles
sont beaucoup plus faciles a retrouver dans les expressions. Enfin, il est
beaucoup plus aisé d'en changer la valeur en cas de nécessité. Remarquez
que c'est nMaximurInterest qui apparait dans le message d'erreur. Si
vous remplacez nMaximumInterest par 60, par exemple, cette modifica-
tion n'affecte pas seulement le test, mais aussi le message d'erreur.

Si l'utilisateur entre une valeur correcte pour le principal mais un taux
d'intérét négatif, le programme affiche :

Entrez le principal :1234
Entrez le taux d'intérét :-12.5

Chapitre 5 : Contrdler le flux d'exécution d'un programme 79

Le taux d'intérét doit &tre positif et pas supérieur a 50.
Appuyez sur Entrée pour terminer...

Ce n'est que si ['utilisateur entre des valeurs correctes pour le principal et
pour le taux d'intérét que le programme effectue le calcul demandé :

Entrez le principal :1234
Entrez le taux d'intérét :12.5

Principal = 1234
Taux d'intérét = 12.5%

Interét payé = 154.25
Total 1388.25
Appuyez sur Entrée pour terminer...

1

Les commandes de boucle

L'instruction if permet & un programme de s'orienter sur un chemin ou sur
un autre dans le code en cours d'exécution, selon la valeur d'une expression
booléenne. Elle permet de faire des programmes incomparablement plus
intéressants que ceux qui sont dépourvus de capacité de décision. Ajoutez
maintenant la capacité d'exécuter un ensemble d'instructions de facon
itérative, et vous aurez fait un autre saut qualitatif dans la capacité de vos
programmes.

Considérez le programme CalculateInterest que nous avons vu plus
haut dans ce chapitre. On pourrait faire la méme chose avec une calcula-
trice ou méme a la main avec un crayon et un papier, en se donnant
moins de mal que pour écrire et exécuter un programme.

Et si vous pouviez calculer le montant du principal pour chaque période
d'un an successive ? Ce serait beaucoup plus utile. Une simple macro de
feuille de calcul Excel serait toujours plus facile a réaliser, mais au moins,
il y a un progres.

Ce qu'il vous faut, c'est un moyen pour l'ordinateur d'exécuter plusieurs
fois la méme séquence d'instructions. C'est ce qu'on appelle une boucle.

80 Deuxiéeme partie : Programmation élémentaire en C#

Commencons par la boucle de base, while

Le mot-clé de C# wi:: 1e permet d’'exécuter une boucle de la forme la plus
simple :

while(bool expression)
{
//1'exécution est répétée tant que l'expression reste vraie

La premiére fois que !'instruction de boucle while est rencontrée, I'expres-
sion booléenne est évaluée. Si elle est vraie, le code contenu dans le bloc
qui suit est exécuté. Lorsque 'accolade qui en indique la fin est rencontrée,
I'exécution reprend a l'instruction while. Dés que I'expression booléenne
est fausse, le bloc de code qui suit est ignoré, et I'exécution du programme
passe directement a ce qui suit.

Si la condition n'est pas vraie la premiere fois que l'instruction while est
rencontrée, le bloc de code qui suit n'est jamais exécuté.

Les programmeurs s'expriment souvent de facon un peu bizarre (il sont
d'ailleurs bizarres la plupart du temps). Un programmeur pourrait dire
gu'une houcle est exécutée jusqu'a ce qu'une certaine condition soit
fausse. Pour moi, cela voudrait dire que le controle passe en dehors de la
boucle dés que la condition devient fausse, quel que soit le point ot il en
est de son exécution & ce moment-la. Ce n'est évidemment pas comme c¢a
que ca se passe. Le programme ne vérifie si la condition est vraie ou non
que lorsque le controle de I'exécution arrive effectivement en haut de la
boucle.

Vous pouvez utiliser l'instruction whi e pour réaliser le programme
CalculazelnterestTable, qui est une version en boucle du programme
Calculatelnterest.CalculateinterestTat le calcule une table des
valeurs du principal pour chaque année, en mettant en évidence l'accu-
mulation des intéréts annuels :

// CalculateInterestTable - calcul de 1'intérét cumulé
/1l payé sur la base d'un principe déterminé
/1 sur une période de plusieurs années

using System;

namespace CalculatelnterestTable

{

using System;

public class Classl
{
public static void Main(string{] args)
{
//demande & 1'utilisateur d'entrer le principal initial
Console.Write("Entrez le principal :");
string sPrincipal = Console.Readline();
decimal mPrincipal = Convert.ToDecimal(sPrincipal);
//si le principal est négatif. . .
if (mPrincipal < 0)
{
/] . . .géndte un message d'erreur. . .
Congsole.Writeline("Le principal ne peut pas &tre négatif");
}
else
{
// . . .sinon, demande le taux d'intérét
Console.Write("Entrez le taux d'intérét :");
string sInterest = Console.ReadLine();
decimal mInterest = Convert,ToDecimal{sInterest);
//si le taux d'intérét est négatif.. . .
if (mInterest < 0)
{
// . . .génére un autre message d'erreur
Console.WriteLine("Le taux d'intérét doit &tre positif");
minterest = 0;
1
else
{
//1le principal et le taux d'intérét sont valides
//demande donc le nombre d'années
Console.Write("Entrez le nombre d'années :");
string sDuration = Console.ReadLine();
int nDuration = Convert.ToInt32(sDuration);
/fvérifie la valeur entrée
Console.WriteLine(); // écrit une ligne blanche

Console.WriteLine("Principal =" + pPrincipal);
Console.WriteLine("Taux d'intérét = " + mInterest + "%");
Console.WriteLine("Durée =" + pDuration + "ans");

Console.WriteLine();
//effectue une boucle selon le nombre d'années spécifié
int nYear = 1;
while(nYear <= nDuration)
{
/{calcule la valeur du principal
//plus 1'intérét
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);

Chapitre 5: Controler le flux d'exécution d'un programme

81

82

Deuxiéme partie : Programmation élémentaire en C#

//calcule maintenant le nouveau principal en ajoutant
//1'intérét au principal précédent

mPrincipal = mPrincipal + minterestPaid;

//arrondit le principal au centime le plus proche
mPrincipal = decimal.Round (mPrincipal, 2);

//affiche le résultat

Console.WritelLine(nYear + "-" + mPrincipal);

//passe & 1'année suivante

nYear = nYear + 1;

}
}
//attend confirmation de l'utilisateur
Congole.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

L'essai d'exécution de ce programme donne ce qui suit :

Entrez le principal :1234
Entrez le taux d'intérét :12.5
Entrez le nombre d'années :10

Principal 1234
Taux d'intérét = 12.5%
Durée 10 ans

1-1388.25
2-1561.78
3-1757
4-1976.62
5-2223.7
6-2501.66
7-2814.37
8-3166.17
9-3561.94
10-4007.18
Appuyez sur Entrée pour terminer...

Chaque valeur représente le principal total a I'issue du nombre d'années
écoulées, sur la base d'un cumul annuel d'intérét simple. Par exemple, un
principal initial de 1 234 € a4 12,5 % donne 3 561,94 € au bout de neuf ans.

Chapitre 5 : Contrdler le flux d'exécution d'un programme 83

«Qc,umg(, La plupart des valeurs comportent deux décimales pour les centimes.
Comme les zéros de la partie décimale ne sont pas affichés, certaines
valeurs n'ont qu'un chiffre ou méme aucun apres la virgule. Ainsi, 12,70
est affiché comme 12,7. Vous pouvez y remédier en utilisant les caracte-
res de mise en forme décrits au Chapitre 9.

Le programme CalculateinterestTable commence par lire la valeur du
principal et celle du taux d'intérét entrées par l'utilisateur, et par vérifier
quelles sont valides. 11 lit ensuite le nombre d'années sur lequel effectuer
l'itération, et stocke cette valeur dans la variable nDuration.

Avant d'entrer dans la boucle while, le programme déclare une variable
nYear, qu'il initialise & la valeur 1. Ce sera "l'année en cours”, c'est-a-dire
que cette valeur va changer "chaque année" a chaque boucle successive
exécutée par le programme. Si le numéro de 'année contenu dans nYear
est inférieur a la durée totale contenue dans nDuration, le principal pour
"I'année en cours” est recalculé en utilisant l'intérét calculé sur la base de
"l'année précédente”. Le principal calculé est affiché avec le numéro de
I'année correspondante.

&,
o
2

L'instruction decimal.Round () arrondit la valeur calculée au centime le
plus proche.

La clé du fonctionnement de ce programme se trouve dans la derniére
ligne du bloc. L'instruction nYear = nYear + 1; incrémente nYear de 1.
Si nYear ala valeur 3 avant cette instruction, elle aura la valeur 4 apreés.
Cette incrémentation fait passer le calcul d'une année a la suivante.

Une fois que I'année a été incrémentée, le controle revient en haut de la
boucle, ol la valeur de n7ear est comparée a la durée demandée. Dans
I'exemple exécuté ci-dessus, si le numéro de I'année en cours est inférieur
ou égal a 10, le calcul continue. Aprés avoir été incrémentée dix fois, la
valeur de nYear devient 11, qui est plus grand que 10, et le contrdle du
programme passe a l'instruction qui suit immédiatement la boucle while.
Autrement dit, il sort de la boucle.

W[. - .
<X La plupart des commandes de boucle suivent ce méme principe de base
qui consiste a incrémenter une variable servant de compteur jusqu'a ce
qu'elle dépasse une valeur fixée.

La variable nYear servant de compteur dans CalculatelnterestTable
doit étre déclarée et initialisée avant la boucle while dans laquelle elle est
utilisée. En outre, l'incrémentation de la variable nYear doit généralement
étre la derniére instruction de la boucle. Comme le montre cet exemple,

84 Deuxieme partie : Programmation élémentaire en C#

vous devez prévoir de quelles variables vous aurez besoin. Ce procédé
vous sera plus facile 2 manier une fois que vous aurez écrit quelques
milliers de boucles while, comme moi.

Lorsque vous écrivez une boucle while, n'oubliez pas d'incrémenter la
variable servant de compteur, comme je l'ai fait dans cet exemple :

int nYear = 1;
while (nYear € 10)
{
!/ . . .instructions.

)

J'ai omis linstruction nYear = n¥ear + 1:.Sans l'incrémentation, la
valeur de nYear est toujours 1, et le programme continue a exécuter la
boucle sans jamais s'arréter. C'est ce qu'on appelle une boucle infinie. La
seule maniére d'en sortir est d'arréter le programme (ou de redémarrer
I'ordinateur).

Faites attention a ce que la condition de sortie de la boucle puisse réelle-
ment étre satisfaite. En général, il suffit pour cela que la variable compteur
soit correctement incrémentée. Sans cette précaution, vous étes bon pour
la boucle infinie et I'utilisateur rancunier.

Comme une boucle infinie est une faute assez courante, ne soyez pas trop
vexé si vous vous y laissez prendre.

Et maintenant, do.. while

Il existe une variante de while : c'est la boucle do.. while. Avec elle, la
condition n'est évaluée qu'a la fin de la boucle :

int nYear = 1;

do

{
// . . .instructions. . .
nYear = nYear + 1;

} while (nYear < nDuration);

A la différence de la boucle while, la boucle do.. while est exécutée au
moins une fois, quelle que soit la valeur de nDuration. Toutefois, ce type
de boucle est assez peu utilisé en pratique.

Chapitre 5 : Contréler le flux d'exécution d'un programme 85

Qe

Briser une boucle, c'est facile

Il existe deux instructions de contrdle spéciales que vous pouvez utiliser
dans une boucle : break et continue. La commande break fait passer le
controle a la premiére expression qui suit la boucle dans laquelle elle se
trouve. La commande continue fait passer le controle directement a
I'expression conditionnelle en haut de la boucle afin de recommencer de
la maniére appropriée.

J'ai rarement utilisé continue dans ma carriére de programmeur, et je
doute qu'il y ait beaucoup de programmeurs qui se souviennent seulement
de son existence. Ne I'oubliez tout de méme pas complétement. Elle vous
servira peut-étre un jour pour jouer au Scrabble.

Par exemple, imaginez que vous vouliez récupérer votre argent ala
banque deés que le principal dépasse un certain nombre de fois le montant
initial, indépendamment du nombre d'années écoulées. Vous pouvez
facilement résoudre ce probléme en ajoutant ce qui suit dans la boucle :

if (mPrincipal > (maxPower * mOriginalPrincipal))
{

break;
}

La commande brezk ne sera exécutée que lorsque la condition de I'ins-
truction i f sera vraie. Dans ce cas, lorsque la valeur calculée du principal
sera supérieure a maxPower multiplié par la valeur initiale du principal.
L'exécution de la commande break fait passer le controle en dehors de la
boucle while(nYear <= nDuration), et le programme poursuit son
exécution jusqu'a sa fin.

Vous trouverez sur le site Web une version du calcul de table d’intérét qui
comporte cette adjonction (il serait un peu long d'en donner le source ici).

Voici un exemple de résultats affichés par ce programme :

Entrez le principal :100
Entrez le taux d'intérét :25
Entrez le nombre d'années :100

Principal =100
Taux d'intérét = 25%
Durée 100 ans

86 Deuxieme partie : Programmation élémentaire en C#

SAPRGER

712<¢

€

i,

Arréter si la valeur initiale est multipliée par 10

1-125
2-156.25
3-195.31
4-244 .14
5-305.18
6-381.48
7-476.85
8-596.06
9-745.08
10-931.35
11-1164.19
Appuyez sur Entrée pour terminer...

Le programme se termine des que le principal calculé dépasse 1 000 @.
Comme vous voyez, il est plus performant que la Belle au bois dormant.

Faire des boucles jusqu'a ce qu'on y arrive

Le programme CalcuiatelnterestTable est assez malin pour se termi-
ner si I'utilisateur entre une valeur invalide, mais c'est tout de méme un
peu dur pour I'utilisateur de le planter la sans autre forme de proces.
Méme mon peu sympathique programme de comptabilité me donne droit
a trois essais pour entrer mon mot de passe avant de me laisser tomber.

Une combinaison de whilz et brezi permet de donner au programme un peu

plus de souplesse. Le programme CziculatelnterestTableMoreForgiving
en montre le principe :

/1 CalculateInterestTableMoreForgiving - calcule 1'intérét

/1 payé sur un nombre d'années déterminé. Cette
/! version donne & i'utilisateur 3 possibilités
/1 un principal et un taux d'intérét valides.

using System;
namespace CalculateInterestTableMoreForgiving
{
using System;
public class Classl
{
public static void Main(string[] args)
(
// définit un taux d'intérét maximal
int nMaximumInterest = 50;

Chapitre 5 : Controler le flux d'exécution d'un programme

/] demande & 1'utilisateur le principal initial; continue
/! jusqu'a ce qu'une valeur valide soit entrée
decimal mPrincipal;
while(true)
{
Console.Write("Entrez le principal :");
string sPrincipal = Congole.ReadLine();
mPrincipal = Convert.ToDecimal(sPrincipal);
/1 sort de la boucle si valeur entrée est valide
if (mPrincipal >= 0)
{
break;
}
// génére un message d'erreur si valeur entrée est invalide
Console.WriteLine("Le principal ne peut pas &tre négatif");
Console.WriteLine("Veuillez recommencer");
Console.WriteLine();
}
// demande maintenant & 1'utilisateur le taux d'intérét
decimal mInterest;
while(true)
{
Console.Write("Entrez le taux d'intérét :");
string sInterest = Console.ReadLine():
mInterest = Convert.ToDecimal(sInterest);
// n'accepte pas un taux d'intérét négatif ou trop grand...
if (mInterest >= 0 && mInterest <= nMaximumInterest)
{
break;
}
/. . .et génére aussi un message d'erreur
Console.WriteLine("Le taux d'intérét doit &tre positif " +
"et pas supérieur & " * nMaximumInterest);
Console.WriteLine("Veuillez recommencer");
Console.WriteLine();
}
/! 1'intérét comme le principal sont valides,
// demande donc le nombre d'années
Console.Write("Entrez le nombre d'années :");
string sDuration = Console.ReadLine();
int nDuration = Convert.ToInt32(sDuration);
/1 vérifie la valeur entrée
Congole.WriteLine(); // écrit une ligne blanche

Console.WriteLine("Principal = " + pPrincipal);
Console.WriteLine("Taux d'intérét = " + mInterest + "%");
Congole.WriteLine("Durée = " + pDuration + " ans");

Console.WriteLine();
/! effectue une boucle sur le nombre d'années spécifié

87

88 Deuxieme partie : Programmation élémentaire en C#

int nYear = 1;
while(nYear <= nDuration)
{
/] calcule la valeur du principal
I} plus 1'intérét
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);
/] calcule maintenant le nouveau principal en ajoutant
// 1'intérét au précédent principal
mPrincipal = mPrincipal + mInterestPaid;
/I arrondit le principal au centime le plus proche
mPrincipal = decimal.Round(mPrincipal, 2);
// affiche le résultat
Console.WriteLine(nYear + "-" + mPrincipal);
/! passe & 1'année suivante
nYear = nYear + 1;

]

/! attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Ce programme fonctionne largement de la méme maniére que les exem-
ples précédents, sauf pour ce qui est entré par l'utilisateur. Dans ce cas,
c'est une boucle while qui remplace les instructions i{ utilisées précé-
demment pour détecter les entrées invalides. Par exemple :

decimal mPrincipal;

while(true)

{
Console .Write("Entrez le principal :");
string sPrincipal = Console.ReadLine();
mPrincipal = Convert.ToDecimal(sPrincipal);
/] sort de la boucle si valeur entrée est valide
if (mPrincipal >= 0)
{

break;

}

// génére un message d'erreur si valeur entrée est invalide
Console.WritelLine("Le principal ne peut pas étre négatif");
Console.WriteLine("Veuillez recommencer™);
Console.WriteLine();

Chapitre 5 : Contréler le flux d'exécution d'un programme

<

s‘“ON 7
4&

Cette portion de code recoit une valeur de l'utilisateur a l'intérieur d'une
boucle. Si la valeur entrée est satisfaisante, le programme sort de la
boucle et poursuit son exécution. Si la valeur est incorrecte, un message
d'erreur est envoyé a l'utilisateur, et le controle repasse au début de la
boucle de saisie.

Vous pouvez le voir de cette facon : "Le programme ne sort pas de la
boucle tant que I'utilisateur n'a pas répondu correctement."

Remarquez que la condition a été inversée, car il ne s'agit plus qu'une réponse
incorrecte produise un message d'erreur, mais qu'une réponse correcte fasse
sortir de la boucle. Dans la partie concernant la saisie du taux d'intérét, par
exemple, le test Principal < 0 || mPrincipal > nMaximumInterest
devient mInterest »= 0 && mInterest <= nMaximumInterest.Il est clair
que mInterest »>= 0 estle contraire demInterest < 0.Ce quin'est peut-etre
pas aussi évident est que le OR | | est remplacé par un AND &&. Autrement dit :
"Sortir de la boucle si le taux d'intérét est supérieur a zéro et inférieur au
montant maximum."

Dernier point a noter : la variable nPrincipal doit &tre déclarée en
dehors de la boucle, pour des questions de regles sur la portée des
variables, que j'expliquerai dans la section suivante de ce chapitre.

Vous allez peut-étre trouver cela évident, mais I'expression true est évaluée
comme true. Par conséquent, while (true) estl'archétype de la boucle
infinie. C'est la commande brezk qu'elle contient qui fait sortir de la boucle.
Aussi, si vous utilisez une boucle while (true), faites particuliérement
attention a ce que la condition de break puisse étre satisfaite.

Voici un exemple de résultat d'exécution de ce programme :

;iEnttez‘lé”principal +-1000
~ Le principal ne peut pas étre négatif
Veuillez recommencer

‘Ertrez le principal :1000

- Entrez le taux d'intérét :-10
Le taux d'intérét doit étre positif et pas supérieur & 50
Veuillez recommencer

Entrez le taux d'intérédt :10
“Entrez le nombre d'années :5

- Principal = 1000

89

90 Deuxiéme partie : Programmation élémentaire en C#

A

NOZ?

Taux d'intérét = 10%
Durée 5 ang

1-1100

2-1210

3-1331

4-1464.1

5-1610.51

Appuyez sur Entrée pour terminer...

Le programme n'accepte ni principal négatif ni taux d'intérét négatif, et
m'explique patiemment mon erreur chaque fois.

Expliquez toujours exactement son erreur a l'utilisateur avant de lui
demander a nouveau d'entrer une valeur.

Les regles de portée des variables

Une variable déclarée dans le corps d'une boucle n'est définie que dans
cette boucle. Examinez ce fragment de code :

int nDays = 1;

while(nDays < nDuration)

{
int nAverage = nValue / nDays;
// . . .instructions . . .
nDays = nDays + 1;

La variable niverage n'est pas définie en dehors de la boucle while. lly a
différentes raisons a cela, mais considérez celle-ci : lors de la premiere
exécution de la boucle, le programme rencontre la déclaration int
niverage, et la variable est définie. Lors de la seconde exécution de la
boucle, le programme rencontre a nouveau la déclaration de nAverage.
S'il n'y avait pas les régles de portée des variables, ce serait une erreur,
car la variable est déja définie.

Il y a d'autres raisons, plus convaincantes que celle-ci, mais je m'en
tiendrai la pour le moment.

Il me suffit de dire que la variable niAverage disparait, aux yeux de C#, des
que le programme atteint 'accolade fermante qui indique la fin de la
boucle.

Chapitre 5: Contrdler le flux d'exécution d'un programme 9 7

,\Q‘\m

Un programmeur expérimenté dit que la portée de la variable niverage
est limitée a la boucle while.

Comprendre la boucle la plus utilisée : for

La boucle while est la plus simple des structures de boucle de C#, et la
plus utilisée apreés for.

Une boucle for ala structure suivante :

for(initExpression; condition; incrementExpression)
{

// . . .instructions. . .
}

Lorsqu'une boucle for est rencontrée, le programme commence par exécu-
ter initExpression, puis il évalue la condition. Si la condition est vraie, le
programme exécute les instructions qui constituent le corps de la boucle,
lequel est délimité par les accolades qui suivent immédiatement l'instruction
Zor. Lorsque l'accolade fermante est atteinte, le contrdle passe a I'exécution
de incrementExpression, puis a nouveau a I'évaluation de la condition, et la
boucle recommence aussi longtemps que la condition de for reste vraie.

En fait, la définition d'une boucle for peut étre convertie dans la boucle
while suivante :

initExpression;
while(condition)
{
{/ . . .instructions. . .
incrementExpression;

Un exemple de boucle for

Un exemple vous permettra de mieux comprendre le fonctionnement
d'une boucle for :

/! instructions Cff
a=1;

92 Deuxieme partie : Programmation élémentaire en C#

// et maintenant une boucle
for(int nYear = 1; nYear < nDuration; nYear = nYear + 1)
{
/1. . .corps de la boucle . . .
}
/] le programme continue ici
a=12;

Supposez que le programme vienne d'exécuter l'instructiona = 1;.11
déclare ensuite la variable nvear et I'initialise a 1. Cela fait, il compare
nYear a nDuration. SinYear est plus petit que nDuration, le corps de la
boucle (les instructions contenues dans les accolades) est exécuté.
Lorsqu'il rencontre ['accolade fermante, le programme revient en haut de
la boucle, et exécute l'expression nvear = nYear + 1 avant d'effectuer la
comparaison nYear < nDuration.

Pourquoi auriez-vous besoin d'une autre boucle ?

A quoi peut bien servir une boucle for si C# permet de faire la méme
chose avec une boucle while ? La réponse la plus simple est qu'elle ne
sert a rien. Une boucle for n'ajoute rien a ce qu'une boucle while permet
déja de faire.

Toutefois. les différentes parties de la boucle for existent par commodité,
et pour différencier clairement les trois parties que toute boucle doit
comporter : l'initialisation, le critére de sortie, et I'incrémentation. Non
seulement c'est plus facile a lire, mais c'est aussi plus difficile a rater
(souvenez-vous que les erreurs les plus courantes dans une boucle while
sont d'oublier d'incrémenter la variable compteur et de ne pas définir
correctement le critére de sortie).

Indépendamment de tout alibi justificateur, la raison la plus importante
de comprendre la boucle for est que c'est celle que tout le monde utilise,
donc ceile que vous allez voir neuf fois sur dix quand vous lirez du code
écrit par quelqu'un d'autre.

La boucle i<+ est concue de telle sorte que la premiére expression initialise
une variable compteur, et la derniére l'incrémente. Toutefois, le langage C#
n'impose pas cette régle. Vous pouvez faire ce que vous voulez dans ces
deux parties de linstruction, mais sachez que vous seriez mal inspiré d'y
faire autre chose.

Chapitre 5 : Controler le flux d'exécution d'un programme 93

L'opérateur d'incrémentation est particuliérement populaire dans les
boucles for (je décris l'opérateur d'incrémentation, ainsi que d'autres, au
Chapitre 4). Une boucle for pour notre exemple de calcul des intérets
cumulés pourra s'écrire ainsi :

for(int nYear = 1; nYear € nDuration; nYeartt)
{
/!l . . .corps de la boucle . . .

}

Que C'est presque toujours I'opérateur de postincrémentation que vous verrez
dans une boucle for, plutdt que 'opérateur de préincrémentation, bien que
l'effet en soit le méme dans ce cas. ll n'y a pas d'autres raisons a cela que
I'habitude et le fait que ¢a a l'air plus cool. (On m'a dit que ¢a marchait trés
bien pour briser la glace. Rien n'est moins sir, mais vous pouvez toujours
essayer d'exiber votre code, a tout hasard.)

La boucle for a aussi une variante dont je ne peux pas faire semblant de
comprendre la raison d'étre. Si la condition logique est omise, elle est

considérée comme vraie. Par conséquent, for {: ;) produit une boucle
infinie.

Qe . . R P
Vous verrez effectivement for (; ;) utilisée pour réaliser une boucle

infinie beaucoup plus souvent que while(cruel. Pourquoi ? Je n'en ai pas
la moindre idée.

Des boucles imbriquées

Une boucle peut étre placée a l'intérieur d'une autre boucle :

for(. . .condition . . .)
(
for(. . .autre condition . . .)
{
// . . .corps de la boucle . .

)
}

Une boucle incluse dans une autre est entierement exécutée a chaque

assage de la boucle qui la contient.
“Q . . . -
= Une boucle incluse dans une autre boucle est appelée une boucle imbriquée.

94 Deuxieme partie : Programmation élémentaire en C#

Des boucles imbriquées ne peuvent pas étre "entrelacées”. Par exemple,
ce qui suit n'est pas possible :

do //début d'une boucle do
{

for(. . .) //début d'une boucle for

{

} while(. . .) //fin de la boucle do.. while
) //fin de la boucle for

Je ne suis méme pas trés siir de ce que ¢a voudrait dire, mais c'est sans
importance, puisque de toute facon c'est illicite.

Une instruction break dans une boucle imbriquée ne fait sortir que de la
boucle dans laquelle elle se trouve.

Dans l'exemple suivant, l'instruction hrezk fait sortir de la boucle B, et
revenir a la boucle A :

/! boucle for &
for(. . .condition . . .)
{

// boucle for B

for(. . .autre condition . . .}
{
// . . .corps du code de la boucle . . .
if (. . .condition . . .)
{
break; //fait sortir de la boucle B mais pas de A

}
}
}

C# n'a pas de commande - rezk qui fasse sortir simultanément des deux
boucles.

«@HNIQ(,@ Ce n'est pas une limitation aussi importante qu'il y parait. En pratique, la
&, logique souvent complexe de telles boucles imbriquées est mieux
encapsulée dans une fonction. L'exécution d'un return a l'intérieur de
n'importe quelle boucle fait alors sortir de la fonction, donc de toutes les
boucles imbriquées, quelle que soit la profondeur a laquelle on peut se
trouver. Je décrirai les fonctions au Chapitre 7.

Noy,

Chapitre 5 : Contrdler le flux d'exécution d'un programme

Le saugrenu programme DisplayXWithNestedLoops utilise deux boucles
imbriquées pour afficher un grand X sur la console de 'application :

// DisplayXWithNestedLoops - utilise deux boucles imbriquées

/1

pour dessiner un X

using System;
namespace DisplayXWithNestedLoops

{

public class Classl

{

public static void Main(string[] args)

{

int nConsoleWidth = 40;
/! itére sur les lignes du “cadre"
for(int nRowNum = 0;
nRowNum < nConsoleWidth:
nRowNum += 2)
{
// itére maintenant sur les colonnes
for (int nColumnNum = 0;
nColumnNum < nConsoleWidth;
nColumnNumt+)

/] le caractére par défaut est un espace
char ¢ = ' ',
/1 si le numéro de la ligne est égal & celui de la colonmne...
if (nColumnNum == nRowNum)
{
/] . . .remplace l'espace par un backslash
c="\\";
}
/! si la colonne est du c6té opposé de la ligne...
int nMirrorColumn = nConsoleWidth - nRowNum;
if (nColumnNum == nMirrorColumn)
({
/] .. .remplace l'espace par un slash
c="/y '
}
// affiche le caractére correspondant & 1l'intersection
// de la ligne et de la colonne
~Consgole.Write(c);
5 ’
Console.WriteLine();
]
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");

" Congole.Read();

95

96 Deuxieme partie : Programmation élémentaire en C#

Q’“ON /
&,{9

Ce programme commence par définir un nombre arbitraire de lignes et de
colonnes, représentant la taille du X a dessiner. Si vous augmentez ce
nombre, le X sort de la fenétre de I'application.

Ce programme utilise une boucle for pour réaliser l'itération sur les lignes
du X. A l'intérieur de celle-ci, il entre dans une seconde boucle for qui
réalise l'itération sur les colonnes de l'affichage. Ce procédé définit une
matrice d'affichage. Il ne reste plus qu'a décider quelles cellules de la
matrice recevront un espace, ce qui les rendra invisibles, et lesquelles
recevront un caractére. Remplissez les bonnes cellules, et vous aurez un X.

Le programme commence par définir une variable ¢ de type char, qu'il
initialise avec un espace qui sera sa valeur par défaut. [l compare ensuite
le numéro de la ligne et celui de la colonne. S'ils sont égaux, il remplace
I'espace par une barre oblique inverse (backslash).

Souvenez-vous que le backslash est utilisé pour indiquer les caractéres
spéciaux. Par exemple, '\n' est le caractére de nouvelle ligne. Le caractere
spécial \\" est le backslash.

Par lui-méme, le remplacement de l'espace lorsque le numéro de la ligne
est égal au numéro de la colonne trace une ligne du coin supérieur gau-
che de la matrice au coin inférieur droit. Pour obtenir un effet miroir, le
programme place une barre oblique (/") lorsque le numéro de la colonne
symétrique est égal au numéro de la ligne.

Ce qui donne le résultat suivant :

Chapitre 5 : Contrdler le flux d'exécution d'un programme

Appuyez sur Entrée pour terminer...

Il y a des choses plus utiles, mais c'est amusant.

Si vous voulez étre sérieux, allez voir I'exemple DisplaySin, qui utilise le
méme genre de logique pour afficher verticalement une ligne sinusoidale
dans la fenétre de l'application. Je suis peut-étre un excité (et méme certai-
nement), mais j'aime beaucoup ce programme. C'est sur des programmes
de ce genre qu'il m'est arrivé de me casser les dents.

L'instruction de contréle switch

Il vous arrivera souvent de vouloir tester la valeur d'une variable. Par
exemple, nMaritalStatus pourrait valoir 0 pour signifier "célibataire”,

1 pour "marié", 2 pour "divorcé”, 3 pour "veuf’, et 4 pour "c'est pas vos
oignons". Afin de reconnaitre ces différents cas, vous pouvez utiliser une
série d'instructions if :

if (nMaritalStatus == 0)
{
//doit &tre célibataire
// . . .instructions. . .
}
else
{
if (nMaritalStatus == 1)

{
//doit étre marié
f/ . . .autres instructions . . .

Et ainsi de suite.

Vous pouvez vous rendre compte que la répétition de ces instructions it
est un peu fastidieuse. 1l est si courant d'avoir a tester des cas multiples
que C# offre une structure spéciale pour faire un choix dans un ensemble

97

98 Deuxieme partie : Programmation élémentaire en C#

de conditions mutuellement exclusives. Cette instruction s'appelle switch
et fonctionne de la facon suivante :

switch(nMaritalStatus)

{

case 0:
/{ . . . instructions si célibataire.
break;

case 1:
/! . . . instructions si marié.
break;

case 2:
// . . . instructions si divorcé.
break;

case 3:
// . . . instructions si veuf,
break;

case 4:
// . . . allez vous rhabiller.
break;

default:
//passe ici quand aucun cas ne correspond ;
//c'est probablement une condition d'erreur
break;

break;

}

L'expression qui se trouve en haut de l'instruction switch est évaluée.
Dans ce cas, c'est simplement la variable nMaritalStatus. La valeur de
cette expression est alors comparée a celle qui suit chaque mot-clé case.
Si elle ne correspond & aucun de ces cas, le contrdle passe directement a
la condition default.

L'argument de l'instruction switch peut aussi étre de type string:

string g = "Davis";

switch(s)
{
cagse "Davis":
// . . . le contrdle passera par ici.
break;
case "Smith":
// . . . instructions si marié.
break;

case "Joneg":
// . . . instructions si divorcé.

Chapitre 5 : Controler le flux d'exécution d'un programme 99

break;
case "Hvidsten":
// . . . instructions si veuf. . .
break;
default:
/! passe ici quand aucun cas ne correspond
break;

NEZ P4
K

= L'utilisation de l'instruction switch comporte quelques contraintes séveres :

v L'argument de switch() doit étre d'un type admis comme compteur
oude type string.

v Les valeurs en virgule flottante sont exclues.

v Les valeurs de case doivent étre de méme type que l'expression de
switch.

v Les valeurs de case doivent €tre des constantes au sens ou leur
valeur doit étre connue lors de la compilation (une instruction telle
que case x est illicite, a moins que x ne soit une constante).

v Chaque clause case doit se terminer par une instruction brezk
(ou autre commande de sortie dont nous n'avons pas encore
parlé, comme return). Cette commande de sortie fait sortir le
controle de l'instruction switch.

Cette régle a toutefois une exception : une méme clause case peut comporter
plusieurs fois le mot-clé ~as=, comme dans I'exemple suivant :

string s = "Davis";
switch(s)
{
case "Davis":
case "Hvidsten":
//fait la méme chose pour Davis ou Hvidsten
/lcar leur situation est la méme
break;
case "Smith":
// . . . instructions si marié.
break;
default:
/! passe ici quand aucun cas ne correspond
break;

700 Deuxiéme partie : Programmation élémentaire en C#

Ce procédé permet au programme d'exécuter les mémes opérations, que
le contenu de la chaine soit "Davis" ou "Hvidsten".

Le modeste goto

Vous pouvez aussi transférer le contrdle d'une maniére non structurée en
utilisant l'instruction goto. Elle est suivie par 1'un des éléments suivants :

v Une étiquette.
1+ Un case d'une instruction switch.

v Le mot-clé default, représentant la clause par défaut d'une instruc-
tion switch.

Le fragment de code suivant montre comment est utilisée I'instruction

goto !

//si la condition est vraie. . .
if (a > b)
{
/!l . . .le contrdle passe de goto & 1'étiquette spécifiée
goto exitLabel;
}
/1 . . .quel que soit le code qui se trouve ici. . .
exitLabel:
//le contréle passe ici

L'instruction goto est impopulaire, pour les mémes raisons qui en font
une commande de controle si puissante : elle est presque entiérement
dépourvue de structure. Si vous I'utilisez, il peut étre extrémement
difficile de maitriser le flux de I'exécution au-dela d'un petit morceau de
code particuliérement trivial.

QuC L'utilisation de goto a déclenché quasiment des guerres de religion. En
fait, le langage C# lui-méme a été critiqué pour avoir adopté cette instruc-
tion. En réalité, goto n'est ni si horrible ni nécessaire. Comme vous
pourrez presque toujours éviter de vous en servir, je vous recommande
de vous en tenir a bonne distance.

Troisieme partie
Programmation et objets

"Joila { Tarzah eh avoir marre { Encore
mauvais message ! QuUOi Ca veut dire ?!
Tarzan tout essayer | Tarzah furieux
comme Cheetah !

Dans cette partie...

ne chose est de déclarer une variable ici et 1a pour faire

des additions et des soustractions ; tout autre chose est
d'écrire de véritables programmes que les gens peuvent utiliser
(des gens ordinaires, mais des gens). Dans cette partie, vous
allez découvrir comment regrouper des données et faire des
opérations sur ces données. Ce sont les connaissances de base
nécessaires a tout travail de programmation, que vous verrez
souvent dans les offres d'emploi.

Chapitre 6

Rassembler des donnees:
classes et tableaux

Dans ce chapitre :
Les classes en C#.
Stocker des données dans un objet.
Assigner et utiliser une référence a un objet.

Créer et générer un tableau d'objets.

ous pouvez librement déclarer et utiliser tous les types intrinséques,

tels que int, dcuble et boel, afin de stocker les informations nécessai-
res a vos programmes. Pour certains programmes, de si simples variables ne
suffisent pas. Toutefois, nombre de programmes ont besoin de rassembler
sous forme d'ensembles pratiques les données qui sont en relation les unes
avec les autres.

Certains programmes ont besoin de rassembler les données qui appartien-
nent logiquement & un méme groupe mais ne sont pas pour autant de
méme type. Par exemple, une application utilisée par une université traite
des étudiants, chacun ayant son nom, la moyenne de ses notes, et son
numéro d'identification. Logiquement, le nom peut étre de type string, la
moyenne des notes de type double, et le numéro d'identification de type
long. Un programme de ce type a besoin de réunir toutes ces variables de
types différents dans une méme structure nommée Student. Heureuse-
ment, C# offre une structure appelée classe qui permet de regrouper des
variables de types différents.

'04 Troisieme partie : Programmation et objets

Dans d'autres cas, un programme aura besoin de rassembler une série
d'objets de méme type. Prenez par exemple un programme qui calcule

la moyenne générale des notes d'un étudiant sur I'ensemble d'un cycle
d'études. Comme on veut que la précision du résultat final ne soit pas
affectée par I'arrondi des moyennes intermédiaires, le type double est ce
qui convient le mieux pour la moyenne de chaque matiere pour chaque
année. Il faudra donc une forme ou une autre de collection de variables
de type double afin de contenir toutes les moyennes annuelles pour
chaque matiére. C'est dans ce but que C# permet de réaliser un tableau.

Enfin, un véritable programme de traitement des données sur les étu-
diants aura besoin de définir des groupes d'étudiants par diplome. Un tel
programme devra alors faire fusionner la notion de classe et la notion de
tableau pour réaliser un tableau d'étudiants. Par la magie de la program-
mation en C#, c'est ce que vous pouvez faire aussi.

Montrez votre classe

Une classe est une réunion de données et de fonctions dissemblables,
dans un méme petit ensemble bien ordonné. C# vous donne la liberté de
faire des classes aussi mal fichues que vous voulez, mais une classe a
pour but de représenter un concept.

Les analystes disent : "Une classe introduit dans le programme une carte
du probléme a résoudre.” Par exemple, imaginez que vous vouliez réaliser
un simulateur de trafic. Celui-ci va représenter le trafic, dans le but de
réaliser de nouvelles rues, avec des intersections ou méme des autorou-
tes. J'aimerais bien que vous fassiez un simulateur de trafic qui résoudrait
le probléme de l'intersection devant chez moi.

Toute description d'un probléme concernant le trafic comporterait le
terme vehicule. Un véhicule a une vitesse maximale, qui doit avoir sa
place dans les équations. Il a aussi un poids, et certains sont purement et
simplement des épaves. D'autre part, un véhicule peut démarrer et
s'arréter. La notion de véhicule fait donc partie du probléme a résoudre.

Un bon programme de simulation de trafic en C# comprendrait nécessai-
rement la classe Vehicle, dans laquelle seraient décrites les propriétés
significatives d'un véhicule. La classe vehicle aurait des propriétés telles
que dTopSpeed, neight, et bClunker. Je parlerai des propriétés stop et
go au Chapitre 7.

Q‘\\ON/
4&

Définir une classe

La classe Vehicle pourrait par exemple se présenter ainsi :

public class Vehicle

{

public string sModel; /1 nom du modéle

public string sManufacturer; // nom du constructeur

public int nNumOfDoors; /! nombre de portes du véhicule
public int nNumOfWheels; // nombre de roues du véhicule

La définition d'une classe commence par les mots pubiic class, suivis
du nom de la classe, dans ce cas, Vehicle.

C# fait la différence entre les majuscules et les minuscules dans les noms
de classe, comme pour tous les autres noms utilisés en C#. C# n'impose
aucune régle sur les noms de classe, mais il existe une régle non officielle
selon laquelle le nom d'une classe doit commencer par une majuscule.

Le nom d'une classe est suivi par une accolade ouvrante et une accolade
fermante. Entre ces deux accolades apparaissent les membres que comporte
éventuellement cette classe. Les membres d'une classe sont des variables qui
en constituent les éléments. Dans cet exemple, la classe Vehicle commence
par le membre string sModel, qui contient le modeéle du véhicule. Si c'est une
voiture particuliére, le nom du modéle pourrait étre "Eldorado”. Vous en voyez
certainement tous les jours. Le second membre de notre exemple de classe
Vehicle est string sManufacturer, qui contient naturellement le nom du
constructeur. Enfin, les deux derniéres propriétés sont le nombre de portes et
le nombre de roues du véhicule.

Comme pour toute variable, donnez aux membres d'une classe des noms
aussi descriptifs que possible. Dans l'exemple ci-dessus, j'ai ajouté des
commentaires a la déclaration de chaque membre, mais ce n'était pas
nécessaire. Le nom de chaque variable dit clairement de quoi il s'agit.

L'attribut public qui précéde le nom de la classe rend celle~ci universelle-
ment accessible en tout endroit du programme. De méme, l'attribut public
placé devant le nom d'un membre de la classe le rend tout aussi accessible
en tout endroit du programme. On peut également utiliser d'autres attributs.
Le Chapitre 11 traite en détail la question de I'accessibilité.

Chapitre 6 : Rassembler des données : classes et tableaux 705

’06 Troisieme partie : Programmation et objets

€Z P4
Qg\) &y

Une définition de classe doit décrire les propriétés d'un objet qui joue un
réle incontournable dans le probléme a résoudre. C'est un peu difficile a
faire dans l'immédiat, parce que vous ne savez pas encore quel est le
probléeme, mais je suppose que vous voyez OU je veux en venir.

Ouel est notre objet ?

Définir une classe Vehicle n'est pas la méme chose que de construire une
voiture. Vous n'aurez pas ici a emboutir de la téle ni a visser des écrous.
Un objet classc se déclare de facon semblable, mais pas tout a fait identi-
que, a un objet intrinséque.

D'une facon générale, le terme objet signifie "quelque chose". Ca ne nous
aide pas beaucoup. Une variable int est un objet int. Un véhicule est un
objet Vehicle. Vous-méme, vous étes un objet lecteur. Quant a moi, je
suis un auteur...

Le fragment de code suivant crée une voiture de la classe Vehicle :

Vehicle myCar;
myCar = new Vehicle();

La premieére ligne déclare une variable myCar de type Vehicle, tout
comme vous auriez pu déclarer un objet nQuelqueChose de la classe int.
La commande new Vehicle () crée un objet detype Vehicle etle
stocke dans la variable myCar. Le new n'a rien a voir avec I'age de myCar.
Cette commande crée une nouvelle zone de mémoire dans laquelle votre
programme pourra stocker les propriétés de myCar.

Dans la terminologie C#, on dira que myCar est un objet de la classe
Vehicle, mais aussi que myCar est une instance de Vehicle. Dans ce
contexte, instance signifie "un exemple de", ou "un exemplaire de". On
peut aussi utiliser ce terme sous forme de verbe, en parlant d'instancier
un Vehicle.

Comparez la déclaration de myCar avec celle de la variable entiére num :

int num;
num = 1;

Chapitre 6 : Rassembler des données : classes et tableaux ’07

cHN/g,
N> ¢,
& N
[~)
=

La premiére ligne déclare la variable num, et la deuxiéme ligne stocke dans
I'emplacement défini par la variable num une constante déja existante de

type int.

11y a en fait une différence dans la maniére de stocker en mémoire l'objet
intrinséque num et I'objet myCar. La constante 1 n'occupe pas de mémoire,
car le CPU et le compilateur C# savent déja l'un et I'autre ce qu'est un "1".
Mais votre CPU ne sait pas ce qu'est un Vehicle. L'expression new
Yehicle alloue l'espace mémoire nécessaire a la description d'un objet
Yehicle pour le CPU, pour C#, et pour le reste du monde.

Accéder aux membres d'un objet

Tout objet de la classe Vehicle a ses propres membres. L.'expression
suivante stocke le nombre 1 dans le membre nlNumberOfDoors de 'objet
référencé par myCar :

myCar.nNumberOfDoors = 1;

Toute opération en C# doit étre évaluée par type aussi bien que par
valeur. L'objet myCar est un objet du type Vehicle. La variable
Jehicle.nNumberOfDoors est de type int (voyez la définition de la
classe Vehicle). Comme la constante 5 est aussi de type int, le type de
ce qui est a droite de l'opérateur d'assignation est le méme que celui de
ce qui est a gauche.

De méme, le code suivant stocke une référence aux chaines décrivant le
modele et le nom du constructeur de myCar :

myCar.sManufacturer = "BMW"; /] ne perdez pas espoir
myCar.sModel = "Izeta"; /] c'est une époque disparue

(L'lzeta était une petite voiture construite pendant les années cinquante,
dont l'unique porte constituait toute la face avant.)

708 Troisiéme partie : Programmation et objets

Soyons ringards : pourquoi s' embéter avec des c’lasses?

Avec le temps, I'édifice des classes a pris de I'importance dans les langages de programma-
tion. Si vous examinez la chaine que forment les principaux langages, et leurs périodes de
popularité maximale, vous pouvez y distinguer le schéma suivant :

»* Fortran (de la fin des années cinquante au début des années quatreﬂihgtﬂ)’: pas de
notion de classe. : RO

v Cl(delafindesannées soixante-dix au débutdes années quatre-vingt dix) ‘les classes
ne sont utilisées qu'a desfins d'organisation. ll est possible d'écrire des programmes
quin'en font aucun usage. : :

v C++ {du milieu des années quatre-vingt & aujourd'hui) : a notion de classe y est
beaucoup plus évoluée. Il est toujours possible d'écrire des programmes quine s'en
servent pas, mais seulement en se limitant @ un sous-ensemble du langage.

v* Java (du milieu des années quatre-vingt-dix a aujourd'hui) : la notion de classe y est
fondamentale. Impossible d'écrire du code sans y avoir recours.

v C# (aujourd’hui) : comme Java.

La notion de classe a pris une importance croissante parce que les programmeurs se sont
rendu compte que les classes étaient trés efficaces pour représenter des objet du monde
réel. Imaginez par exemple que je sois entrain d'écrire un programme de gestion de comptes
bancaires. Un compte bancaire présente des caractéristiques telles que le nom de son
titulaire, le numéro du compte, le solde, et le nom de la banque. Qr, je sais bien que ces
propriétés font partie d'un méme ensemble, car elles décrivent toutes le méme objet: un
compte de ma banque. Connaitre le solde sans connaitre le numéro du compte correspon-
dant, par exemple, n'a aucun sens.

En C#, je peux créer une classe BankAccount, associée a une variable string contenant
le nom du titulaire, une variable int contenantle numéro du compte, une variable double
oudecimal,contenantle solde,unevariable st ring contenantle nomdelabanque, etainsi
de suite. Un seul objet de la classe BankAccount contient donc toutes les propriétés,
pertinentes pour mon probléme, d'un compte bancaire donné.

Chapitre 6 : Rassembier des données : classes et tableaux ’09

Un exemple de programmes & base d'objets
Le trés simple programme suivant, VehicleDataOnly :
v Définit la classe Vehicle.
v Crée un objet myCar.
v Assigne les propriétés de myCar.
P

Récupeére ces valeurs dans I'objet pour les afficher.

// VehicleDataOnly - crée un objet de type Vehicle,

/! donne une valeur & ses membres & partir des
/! saisies de 1'utilisateur, et affiche le tout
using System;

namespace VehicleDataOnly

public class Vehicle

{
public string sModel; // nom du modéle
public string sManufacturer; // nom du constructeur
public int nNumOfDoors; // nombre de portes du véhicule
public int nNumOfWheels; /! nombre de roues du véhicule

}
public class Classl
{
/! C'est ici que commence le programme
static void Main(string{] args)
{
// demande son nom & 1'utilisateur
Console.WriteLine("Entrez les propriétés de votre véhicule");
/] crée une instance de Vehicle
Vehicle myCar = new Vehicle(};
/! utilise une variable pour donner ume valeur & un membre
Console.Write("Nom du modéle = ");
string s = Console.ReadLine();
myCar.sModel = s;
/! on peut aussi donner une valeur & un membre directement
Console.Write("Nom du constructeur = ");
myCar.sManufacturer = Console.ReadLine():
/1 lecture du reste des données
Console.Write("Nombre de portes = ");
s = Console.ReadLine();
myCar . nNumOfDoors = Convert.ToInt32(s);
Console.Write("Nombre de roues = ");
s = Console.ReadLine();

’ 70 Troisieme partie : Programmation et objets

myCar,nNumOfWheels = Convert.ToInt32(s);
// affiche maintenant les résultats
Console.WriteLine("\nVotre véhicule est une ");
Console.WriteLine(myCar.sManufacturer + " " + myCar.sModel);
Console.WriteLine("avec " + myCar.nNumOfDoors + " portes, "
+ "sur " + myCar.nNumOfWheels
+ " roues");
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read():

Le source de ce programme commence par une définition de la classe

Vehicle.
Q&&ZPA¢
"z§ La définition d'une classe peut étre placée avant ou aprés Classl. C'est
sans importance. Adoptez simplement un style, et gardez-le.
Le programme crée un objet myCar de la classe Vehicle, puis remplit
chacune de ces propriétés en lisant ce qui est saisi au clavier par l'utilisa-
teur. ll n'y a pas de vérification de la validité des données. Le programme
restitue alors a I'écran, dans un format légerement différent, les données
saisies par l'utilisateur.
L'exécution de ce programme affiche les résultats de la facon suivante :
Entrez les propriétés de votre véhicule
Nom du modéle = Metropolitan
Nom du constructeur = Nash
Nombre de portes = 2
Nombre de roues = 4
Votre véhicule est une
Nash Metropolitan
avec 2 portes, sur 4 roues
Appuyez sur Entrée pour terminer...
ue A la différence de ReadLine (), les appels a Read () laissent le curseur 2 la
3 bp

fin de la chaine affichée. La saisie de I'utilisateur apparait donc sur la
méme ligne que l'invite. D'autre part, I'ajout du caractére de nouvelle
ligne, \n', produit une ligne blanche a I'affichage, sans avoir a utiliser
pour celaWritelLine().

Chapitre 6 : Rassembler des données : classes et tableaux 7 7 ,

Distinguer les objets les uns des autres

Un constructeur automobile sait identifier sans erreur chaque voiture
qu'il produit. De méme, un programme peut créer de nombreux objets de
la méme classe :

Vehicle carl = new Vehicle();
carl.sManufacturer = "Studebaker”;
carl.sModel = "Avanti";

/1 ce qui suit est sans effet sur carl
Vehicle car2 = new Vehicle();
car2.gManufacturer = "Hudson";
car?.nVehicleNamePart = "Hornet";

Si vous créez un objet car? et que vous lui assignez le nom de construc-
teur "Hudson", ca n'aura aucun effet sur la Studebaker car1.

La capacité de distinguer les objets les uns des autres constitue une
partie de la puissance de la notion de classe. L'objet associé ala 2 CV
Citroén peut étre créé, manipulé ou méme ignoré, comme une entité a
part entiere, distincte des autres objets, y compris I'Avanti (bien que ce
soient toutes deux des classiques).

Pouvez-vous me donner des références ?

L'opérateur point et I'opérateur d'assignation sont les deux seuls opéra-
teurs définis sur les types de référence :

/1 crée une référence nulle

Vehicle yourCar;

/] assigne une valeur & la référence

yourCar = new Vehicle();

yourCar.sManufacturer = "Rambler";

// crée une nouvelle référence et la fait pointer vers le méme objet
Vehicle yourSpousalCar = yourCar;

La premiére ligne crée un objet vourCar sans lui assigner une valeur. On
dit qu'une référence qui n'a pas été initialisée pointe vers l'objet null.
Toute tentative d'utiliser une référence non initialisée produit une erreur
immédiate qui met fin a I'exécution du programme.

7 ’2 Troisieme partie : Programmation et objets

,&c,“mq(, Le compilateur C# est capable d'identifier la plupart des tentatives d'utiliser

/5 une référence non initialisée, et d'afficher un avertissement lors de la généra-

= tion. Si une telle erreur n'est pas détectée par le compilateur, tout accés a une
référence non initialisée met fin immédiatement a 'exécution du programme.
La deuxiéme instruction crée un nouvel objet Vehicle, et I'assigne a
yourCar. La derniére instruction de ce fragment de code assigne la
référence yourSpousalCar a la référence yourCar. Comme le montre la
Figure 6.1, le résultat de cette instruction est que yourSpousalCar se
référe au méme objet que yourCar.

|

Figure 6.1: _-yourCar

La relation A .

entre deux /assignation Vehicl

références v d'une valeur ehicle

au mérne " "

objet. yourSpousalCar Rambler

]

Les deux appels suivants ont le méme cffet :

/! construisez votre voiture

Vehicle yourCar = new Vehicle();

yourCar.sModel = "Ford T";

// elle appartient aussi & votre femme

Vehicle yourSpousalCar = yourCar;

/! si 1'une change, l'autre change aussi
yourSpousalCar,sModel = "Daytona";

Console.WriteLine("votre voiture est une " + yourCar.sModel);

L'exécution de ce programme afficherait "Daytona’, et non "Ford T". Remar-
quez que yourSpousalCar ne pointe pas vers yourCar. Au contraire, ce sont
les deux qui se référent au méme véhicule.

En outre, la référence yourSpousalCar serait encore valide, méme si la
variable yourCar était d'une manieére ou d'une autre "perdue” (se trouvait
hors de portée, par exemple) :

// construisez votre voiture

Vehicle yourCar = new Vehicle();
yourCar.sModel = "Ford T";

/] elle appartient aussi & votre femme

Chapitre 6 : Rassembler des données : classes et tableaux ’ 73

Vehicle yourSpousalCar = yourCar;

/] quand elle s'en va avec votre voiture. . .

yourCar = null; // yourCar référence maintenant "1'objet NULL"
/1. . .yourSpousalCar référence toujours le méme véhicule
Console.WriteLine("Votre voiture était une " + yourSpousalCar.sModel);

L'exécution de ce programme affiche le résultat "Votre voiture était une
Ford T", bien que la référence & yourCar ne soit plus valide.

L'objet n'est plus accessible a partir de la référence yourCar. Il ne devient
pas completement inaccessible tant que yourCar et yourSpouszlCar ne
sont pas "perdus” ou annulés.

Les classes qui contiennent des classes sont
les plus heureuses du monde

Les membres d'une classe peuvent eux-mémes étre des références a d'autres
classes. Par exemple, un véhicule a un moteur, qui a une puissance et diffé-

rents parametres qui définissent son efficacité (mais un vélo n'a pas de cylin-
drée). On peut introduire ces différents facteurs dans la classe, comme ceci :

public class Vehicle
{

public string sModel; // nom du modéle

public string sManufacturer; // nom du constructeur

public int nNumOfDoors; /] nombre de portes du véhicule

public int nNumOfWheels; // nombre de roues du véhicule

public int nPower; /] puissance du moteur (Chevaux-Vapeur)
public double displacement; /! cylindrée du moteur (litres)

Toutefois, la puissance et la cylindrée du moteur ne résument pas toutes les
caractéristiques de la voiture. Par exemple, la Jeep de mon fils est proposée
avec deux moteurs différents qui lui donnent une puissance complétement
différente. La Jeep de 2.4 litres de cylindrée est un veau, alors que la méme
voiture équipée du moteur de 4 litres est plutdt nerveuse.

Autrement dit, le moteur est une entité a lui seul et mérite sa propre classe :

class Motor

{

public int nPower; /] puissance du moteur (Chevaux-Vapeur)

7 ’4 Troisiéme partie : Programmation et objets

public double displacement; /1 cylindrée du moteur (litres)
}

Et vous pouvez utiliser cette classe dans la classe Vehicle:

public class Vehicle

{
public string sModel; /! nom du modéle
public string sManufacturer; // nom du constructeur
public int nNumOfDoors; /{ nombre de portes du véhicule
public int nNumOfWheels; /! nombre de roues du véhicule

public Motor motor;

La création de myCar se présente maintenant ainsi :

//créons d'abord un objet de la classe Motor
Motor largerMotor = new Motor();
largerMotor.nPower = 230;
largerMotor.displacement = 4.0:
//créons maintenant la voiture
Vehicle sonsCar = new Vehicle();
gonsCar.sModel = "Cherokee Sport™;
sonsCar.sManfacturer = "Jeep";
sonsCar.nNumberofDoors = 2;
sonsCar.number0fWheels = &;
//mettons un moteur dans la voiture
sonsCar.motor = largerMotor;

L'objet de la classe Vehicle vous offre deux moyens d'accéder a la cylin-
drée de son moteur. Vous pouvez procéder une étape a la fois :

Motor m = sonsCar.motor;
Console.WriteLine("La cylindrée du moteur est " + m.displacement);

Ou alors, y accéder directement :

Console.Writeline("La cylindrée du moteur est " + sonsCar.motor.displacement);

D'une maniére ou d'une autre, vous ne pouvez accéder a la cylindrée
(displacement) que par l'objet de la classe Motor.

Cet exemple fait partie du programme VehicleAndMotor qui se trouve sur
le site Web.

Chapitre 6 : Rassembler des données : classes et tableaux ’ 75

Les membres statiques d'une classe

La plupart des membres d'une classe servent a décrire chaque objet de
cette classe. Voyez la classe Car :

public class Car

{

public string sLicensePlate; //1le numéro d'immatriculation

}

Le numéro d'immatriculation est une propriété d'objet, ce qui signifie qu'il
définit individuellement chaque objet de la classe Car. Par exemple, vous
avez de la chance que ma voiture n'ait pas le numéro d immatriculation
que la votre. Ca pourrait vous attirer des ennuis.

Car myCar = new Car();
myCar.sLicensePlate = "XYZ123";

Car yourCar = new Car();
yourCar.sLicensePlate = "ABC789";

Mais il y a aussi des propriétés partagées par toutes les voitures. Par
exemple, le nombre total de voitures construites est une propriété de la
classe Car, et non de quelconque objet. Un tel membre d'une classe est
appelé propriété de classe, et est identifié en C# par le mot static:

public class Car

({
public static int nNumberOfCars; //nombre de voitures construites
public string sLicensePlate; //le numéro d'immatriculation

}

Ce n'est pas par un objet de la classe qu'on accéde a un membre statique,
mais par la classe elle-méme, comme le montre cet exemple :

/] crée un nouvel objet de la classe Car

Car newCar = nev Car{);

newCar.sLicensePlate = "ABC123";

// incrémente le nombre de voitures pour tenir compte de la nouvelle
Car.nNumberOfCars++;

On acceéde au membre d'objet newCar.sLicensePlate par l'objet newCar,
alors qu'on accéde au membre de classe (statique) Car.nNumberOfCars
par la classe Car.

7 76 Troisieme partie : Programmation et objets

Définir des membres de type const

Le type const est un type spécial de membre statique. La valeur d'une
variable const doit étre établie dans la déclaration, et vous ne pouvez la
changer nulle part dans le programme :

class Classl
{
// nombre de jours dans 1'année
public const int nDaysInYear = 366;
public static void Main(string{} args)
{
int[] nMaxTemperatures = new int[nDaysInYear];
for(int index = 0; index < nDaysInYear; index+t)
{
/!l . . .additionne la température maximale pour chaque
// jour de 1l'année. . .
}
}
}

Vous pouvez utiliser en n'importe quel endroit de votre programme la
constante nDaysInYear ala place de la valeur 366. L'utilité d'une variable
de type const est de remplacer une constante dépourvue de signification
telle que 366 par un nom descriptif comme naysTnYear, ce qui rend le
programme plus lisible.

Les tableaux : la classe Array

Les variables qui ne contiennent qu'une seule valeur sont bien pratigues, et
les classes qui permettent de décrire les objets composites sont cruciales.
Mais il vous faut aussi une structure capable de contenir un ensemble
d'objets de méme type. La classe intégrée irray est une structure qui peut
contenir une série d'éléments de méme type (valeurs de type int, double, et
ainsi de suite, ou alors objets de la classe Vehic e, Motor, et ainsi de suite).

Les arguments du tableau

Considérez le probleme du calcul de la moyenne d'un ensemble de dix
nombres en virgule flottante. Chacun de ces dix nombres nécessite son

Chapitre 6 : Rassembler des données : classes et tahleaux ’ ’ 7

QQ’\)E.Z P4g

propre stockage au format double (calculer une moyenne avec des
variables int pourrait produire des erreurs d'arrondi, comme nous
I'avons dit au Chapitre 3) :

double d0
double d1
double d2 =
double d3
double d4 =
double d5
double dé
double d7
- double d8
double d9

[N S N N N
W = O = O W~ W,
v

Vous devez maintenant faire la somme de toutes ces valeurs, puis la
diviser par 10 (le nombre de valeurs) :

double dSum = d0 + d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 + d9;
double dAverage = dSum / 10;

Il est un peu fastidieux d'écrire le nom de chacun de ces éléments pour en
faire la somme. Passe encore si vous n'avez que dix nombres, mais imagi-
nez que vous en ayez cent ou méme mille.

Le tableau a longueur fixe

Heureusement, vous n'avez pas besoin de nommer chaque élément
séparément. C# offre une structure, le tableau, qui permet de stocker une
séquence de valeurs. En utilisant un tableau, vous pouvez réécrire de la
facon suivante le premier fragment de code de la section précédente :

double[] dArray = {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};

La classe Array présente une syntaxe spéciale qui la rend plus facile a
utiliser. Les doubles crochets [] représentent la maniére qui permet
d'accéder aux différents éléments du tableau :

do
d1

e

~dArray[0] correspond
dArray[1] correspond

ms

’ ’8 Troisieme partie : Programmation et ohjets

L'élément numéro 0 du tableau correspond a 40, I'élément numéro 1 4 d1,
et ainsi de suite.

Les numéros des éléments du tableau (0, 1, 2, et ainsi de suite) constituent
l'index.

L'index d'un tableau commence a 0, et non a 1. Par conséquent, 1'élément
du tableau correspondant a l'index 1 n'est pas le premier élément, mais
I'élément numéro 1, ou "I'élément 1 de l'index". Le premier élément est
I'élément numéro 0. Si vous voulez vraiment parler normalement, souve-
nez-vous que le premier élément est a l'index 0, et le deuxiéme a l'index 1.

dArray ne constituerait pas une grande amélioration sans la possibilité
d'utiliser une variable comme index du tableau. Il est plus facile d'utiliser
une boucle for que de se référer manuellement a chaque élément, commme
le montre le programme suivant :

/1 FixedArrayAverage - calcule la moyenne d'un nombre déterminé
/1 de valeurs en utilisant une boucle
namespace FixedArrayAversge
{
using System;
public class Classl
{
public static int Main(string[] args)
{
double[] dArray =
{5, 2, 7,35, 6.5,8,1,9, 1, 3}
// fait la somme des valeurs du tableau
// dans la variable dSum
double dSum = 0;
for (int 1 = 0; i < 11; i+t)
{
dSum = dSum + dArray[i];
)
/] calcule maintenant la moyenne
double dAverage = dSum / 10;
Console.WriteLine(dAverage);
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer..."):
Console.Read();
return 0;

Chapitre 6 : Rassembler des données : classes et tableaux ’ ’9

Le programme commence par initialiser & 0 la variable dSum. Il effectue
ensuite une boucle sur les valeurs stockées dans dArray, en ajoutant
chacune d'elles & dSum. A la fin de la boucle, dSur contient la somme de
toutes les valeurs du tableau. Celle-ci est alors divisée par le nombre
d'éléments pour obtenir la moyenne. Le résultat affiché par I'exécution de
ce programme est 4,6, comme on pouvait l'attendre (j'ai vérifié avec ma
calculatrice).

Et si vous dépassez la taille du tableau ?

Le programme FixedArrayAverage effectue une boucle sur untableau de dix éléments.
Heureusement, cette boucle passe effectivement sur tous ces dix éléments. Mais si j'avais
fait une erreur dans l'itération ? Il y a deux cas a envisager.

Sije n'avais itéré que sur neuf éléments, C# ne 'aurait pas considéré comme une erreur : si
vous voulez lire neuf éléments d'un tableau qui en contient dix, de quel droit C# viendrait-il le
contester ? Bien siir, la moyenne seraitincorrecte, mais le programme n'auraitaucun moyen
de le savoir.

Et si 'avais itéré sur onze éléments (ou plus) ? Maintenant, ¢a regarde beaucoup C# C# ne
vous permet pas d'indexer au-dela de la taille d'un tableau, de crainte d'écraser une valeur
importante dansiamemoire. Pour le vérifier,|'airemplacé le testde comparaison delaboucle
forparcequisuit: for (int i = 0; i < 11; i++),enremplagant10par11.L'exécution
du programme a produit I'erreur suivante (en francais et en anglais dans le texte) :

Exception non gérée : System.IndexOutOfRangeException : une

exception qui de type System.IndexOutOfRangeException a été levée.
at FixedArrayAverage.Classl.Main(String[] args) in c:\cffprograms\
fixedarrayaverage\classl.cs:line 17

Au premier abord, ce message d'erreur parait imposant, mais on peut facilement en saisir
I'essentiel ; il s'est produit une erreur TndexOutOfRangeException. Il est clair que C#
indique que le programme a essayé d'accédera untableau au-dela de seslimites (le onziéme
élémentd'un tableau quin'en comporte que dix). La suite du message indique la ligne exacte
alaquelle s'est produite cette tentative d'accés, mais vous n'avez pas encore assez avancé
dans ce livre pour comprendre tout ce qu'il vous dit.

Chapitre 6 : Rassembler des données : classes et tableaux 72 7

// déclare un tableau de la taille correspondante
double[] dArray = new double[numElements];
/] remplit le tableau avec les valeurs
for (int i = 0; i < numElements; it+)
{
/! demande & 1'utilisateur une nouvelle valeur
Console.Write("Entrez la valeur no" + (1 + 1) +": ");
string sVal = Console.ReadLine();
double dValue = Convert.ToDouble(sVal);
/! stocke la nouvelle valeur dans le tableau
dArray[i] = dValue;
}
/] fait 1'addition de 'numElements' valeurs
/! du tableau dans la variable dSum
double dSum = 0;
for (int 1 = 0; 1 < numElements; i++)
{
dSum = dSum + dArray[i]:
}
// calcule maintenant la moyenne
double dAverage = dSum / numElements;
/! affiche les résultats dans un format agréable
Console.WriteLine();
Console.Write(dAverage
+ " est la moyenne de ("
+ dArray[0]);
for (int i = 1; i < numElements; it++)
{
Congole.Write(" + " + dArray[i]);
}
Console.WriteLine(") / " + numElements);
/! attend confirmation de 1'utilisateur
Console.WriteLine{"Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

Voici un exemple de résultats affichés, pour lequel j'ai entré cinq valeurs,
de 1 a 5, dont la moyenne calculée par le programme est de 3 :

Nombre de valeurs pour la moyenne & calculer : 5

Entrez la valeur n?l:
Entrez la valeur n%2:
Entrez la valeur n®3:
Entrez la valeur n%i:

B WD

Chapitre 6 : Rassembler des données : classes et tableaux ’23

// demande & 1'utilisateur une nouvelle valeur
Console.Write("Entrez la valeur n®" + (i + 1) + " "),
string sVal = Console.ReadLine();

double dValue = Double.FromString(sVal);

/] stocke la nouvelle valeur dans le tableau

dArray[i] = dValue;

Le tableau dArrayv est déclaré comme ayant une longueur de
numElements. L'astucieux programmeur (moi-méme) a donc utilisé une
boucle for pour itérer numElements fois sur les éléments du tableau.

Il serait lamentable d'avoir a trimbaler partout avec dArray la variable
numElements, rien que pour connaitre la longueur du tableau. Heureusement,
ce n'est pas nécessaire. Un tableau posséde une propriété nommeée Length qui
contient sa longueur. dArray.Length a donc la méme valeur que numElements.

La boucle for suivante aurait été préférable :

!/ remplit le tableau avec les valeurs
for (int i = 0; i < dArray.Length; i++)
{

Pourquoi les déclarations des tableaux de longueur fixe et de
longueur variable sont-elles si différentes ?

Superficiellement, la syntaxe de la déclaration d'un tableau de longueur
fixe ou de longueur variable est assez différente :

double[] dFixedLengthArray = (5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3);
double[] dVariableLengthArray = new double[10];

La différence vient du fait que C# essaie de vous éviter un peu de travail.
C# alloue a votre place la mémoire nécessaire dans le cas d'un tableau
de longueur fixe comme dFixedlengthArray. J'aurais pu aussi le faire
moi-meéme :

double[] dFixedLengthArray = new double[10] {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};

Ici, j'ai utilisé new pour allouer explicitement la mémoire, et j'ai fait suivre
cette déclaration par les valeurs initiales des membres du tableau.

Chapitre 6 : Rassembler des données : classes et tableaux 725

Le programme peut maintenant définir les propriétés de chaque étudiant :

students[i] = new Student();

students[i] .sName = "Mon nom";
students[i].dGPA = dMyGPA;

C'est cette merveille que vous pouvez voir dans le programme
AverageStudentCPA ci-dessous, qui recueille des informations sur un
certain nombre d'étudiants et affiche la moyenne globale des points de
leurs unités de valeur :

// AverageStudentGPA - calcule la moyenne des points
/1 : d'UV (GPA)d'un certain nombre d'é+udiants.
uging System;
namespace AverageStudentGPA
{
public class Student
{
public string sName;
public double dGPA; /! moyenne des points d'UV
}
public class Classl
{

public static void Main(string[] args)
{
/] demande le nombre d'étudiants
Console.WriteLine("Entrez le nombre d'étudiants");
string s = Console.ReadLine();
int nNumberOfStudents = Convert.ToInt32(s);
// définit un tableau d'objets Student
Student[] students = new Student[nNumberOfStudents]:
/1 remplit maintenant le tableau
for (int i = 0; i < students.Length; i++)
i
"~ /] demande le nom & 1'utilisateur, et ajoute 1
/! & 1'index, parce que les objets des tableaux en C#
/] sont numérotés a partir de 0
Console.Write("Entrez le nom de 1'étudiant "
+E 1)
string sName = Console.ReadLine();
Console.Write("Entrez sa moyenne de points d'UV : ");
string sAvg = Console.ReadLine();
double dGPA = Convert.ToDouble(sAvg);
/] crée un objet Student & partir de ces données
Student thisStudent = new Student();
thisStudent.sName = sName;

Chapitre 6 : Rassembler des données : classes et tableaux ’2 7

Entrez sa moyenne de points d'UV : 3.5
Entrez le nom de 1'étudiant 3: Carrie
Entrez sa moyenne de points 4'UV : 4.0

La moyenne générale des 3 étudiants est 3.5
Appuyez sur Entrée pour terminer...

Qe Le nom d'une variable de référence a des objets doit de préférence étre au
singulier, comme student. D'autre part, il doit inclure le nom de la classe,
comme dans badStudent ou goodStudent, ou encore sexyCoedStudent.
Le nom d'un tableau (ou de tout autre collection, a vrai dire) doit de préfé-
rence €tre au pluriel, comme students ou phoneNumbers, ou encore
phoneNumbersInMyPalmPilotr. Comme d'habitude, ces suggestions ne
refletent que 'opinion de l'auteur de ce livre et non de I'éditeur, encore
moins de ses actionnaires. C# ne se préoccupe absolument pas de la
maniere dont vous définissez les noms de vos variables.

Une structure de contréle de flux pour tous les
tableaux : foreach

A partir d'un tableau d'objets de la classe Student, la boucle suivante
calcule la moyenne des points de leurs UV :

public class Student
{
public string sName;
public double dGPA; /] moyenne des points d4'UV
}
public class Classl
{
public static void Main(string[] args})
{
// . . .crée le tableau. . .
// et fait la moyenne des étudiants du tableau
double dSum = 0.0;
for (int 1 = 0; i < students.Length; it+)
{
dSum += students[i].dGPA;
}
double dAvg = dSum/students.Length;
/1. . .utilise le tableau. . .

’28 Troisieme partie : Programmation et objets

La boucle “or effectue une itération sur tous les membres du tableau.

QQ,\)EZ Pas
£ students.Length contient le nombre d'éléments du tableau.

C# offre une structure de contréle de flux, nommée foreach, spéciale-
ment concue pour l'itération dans un conteneur tel qu'un tableau. Elle
fonctionne de la facon suivante :

// fait la moyenne des étudiants du tableau

double dSum = 0.0;

foreach (Student stud in students)

{

dSum += stud.dGPA;

}

double dAvg = dSum/students.length;
Lors du premier passage de la boucle, I'instruction foreach va chercher
le premier objet Student dans le tableau, et le stocke dans la variable
stud. A chaque passage successif, l'instruction foreach va chercher
I'élément suivant. Le controle sort de foreach lorsque tous les éléments
du tableau ont été traités de cette facon.
Remarquez qu'aucun index n'apparait dans l'instruction foreach, ce qui
réduit considérablement les risques d'erreur.

<Que Les programmeurs C, C++ et Java ne se sentiront sans doute pas trés

confortables au premier abord avec foreach, car cette instruction est
propre a C#. Mais elle a la qualité de grandir en quelque sorte pour vous.
Pour accéder aux tableaux, c'est la plus facile a utiliser de toutes les
commandes de boucle.

La structure foreach est en fait plus puissante que cet exemple ne le laisse
paraitre. En dehors des tableauy, elle fonctionne aussi avec d'autres types de
collection (les collections sont expliquées au Chapitre 16). D'autre part, notre
exemple de foreach ignorerait les éléments du tableau qui ne seraient pas
du type Student.

Trier un tableau d'objets

La nécessité de trier les éléments d'un tableau est une difficulté bien
connue de la programmation. Que la taille d'un tableau ne puisse étre ni
augmentée ni réduite ne signifie pas que ces éléments ne puissent pas

Chapitre 6 : Rassembler des données : classes et tableaux ’29

Figure 6.2:
"Permuter
deux objets”
signifie en
réalité
‘permuter
deux
références
au méme
objet".
|

étre déplacés, ni que I'on ne puisse en ajouter ou en supprimer. Par
exemple, le fragment de code suivant permute deux éléments de Student
dans le tableau students :

Student temp = students[i]; // met de c&té 1'étudiant n°i
students[i] = students[i];
students[j] = temp;

Ici, la référence d'objet de 'emplacement i du tableau students est
sauvegardé, afin qu'elle ne soit pas perdue lorsque la deuxiéme instruc-
tion change la valeur de students[1i]. Enfin, le contenu de la variable
temp est stocké a I'emplacement j. Dans une représentation visuelle, cette
opération ressemble a la Figure 6.2.

Avant :

P

students]i] "Marge"

——

I\

[

students]j] "Homer"

-

studentsli]
@
students][j]

N =

Apres:

\

A\

\

Le programme suivant donne une démonstration de la maniére d'utiliser
la possibilité de manipuler les éléments d'un tableau pour effectuer un tri.
Cet algorithme de tri s'appelle "en bulles" (bubble sorf). Ce n'est pas le

’30 Troisiéme partie : Programmation et objets

meilleur sur de grands tableaux contenant des milliers d'éléments, mais il
est simple et efficace pour de petits tableaux :

/] SortStudents - ce programme montre comment trier
/! un tableau d'objets
using System;
namespace SortStudents
{
class Classl
{
public static void Main(string{] args)
{
/] crée un tableau d'étudiants
Student[] students = new Student(5];

students[0] = Student.NewStudent("Homer", 0);
students(1] = Student.NewStudent{"Lisa", 4.0);
students[2] = Student.NewStudent{"Bart", 2.0);
students[3] = Student.NewStudent{"Marge", 3.0);
students[4] = Student.NewStudent("Maggie", 3.5);

/! output the list as is:
Console.WriteLine("Avant de trier :"):
OutputStudentArray(students);
// trie maintenant la liste des étudiants
// du meilleur au plus mauvais
Console.WriteLine("\nTri en cours\n");
Student.Sort(students);
/] affiche la liste triée
Console.WriteLine("Etudiants par résultats décroissants :");
OutputStudentArray(students);
// attend confirmation de 1'utilisateur
Congole.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
)
/] OutputStudentArray - affiche tous les étudiants du tableau
public static void OutputStudentArray(Student[] students)

{
foreach(Student s in students)
{
Console.Writeline(s.GetString());
}
}

}
/] Student - description d'un étudiant (nom et résultats)
class Student
{
public string sName;
public double dGrade = 0.0;

Chapitre 6 : Rassembler des données : classes et tableaux 73 ’

/! NewStudent - retourne un nouvel objet Student initialisé
public static Student NewStudent({string sName, double dGrade)
{

Student student = new Student():

student.sName = sName;

student.dGrade = dGrade;

return student;

}
/] GetString - convertit en chaine 1'objet Student
/1 en cours
public string GetString()
{
string s = "";
g += dGrade;
g += no_ ";
s t= gName;
return s;
)
/] Sort - trie un tableau d'étudiants par ordre de résultats
I décroissants, avec l'algorithme en bulles
public static void Sort(Student[] students)
{

bool bRepeatLoop;
/! répéte la boucle jusqu'a ce que la liste soit triée
do
{
/] cet indicateur sera défini comme vrai si un objet
/] est trouvé mal classé
bRepeatLoop = false;
/! itére sur la liste des étudiants
for(int index = 0; index ¢ (students.Length - 1); index++)
{
// si deux étudiants sont dans le mauvais sems. . .
if (students[index].dGrade <
students[index + 1].dGrade)

/!l .-, .ils sont permutés. . .

Student to = students{index];

Student from = students[index + 1];

students [index] = from;

students{index + 1] = to;

/!l . . .et 1'indicateur bRepeatLocp dit si il faudra
// faire encore un passage sur la liste des étudiants
/! (continue & itérer jusqu'a ce que tous les objets
// soient dans le bon ordre)

bRepeatLoop = true;

’32 Troisiéme partie : Programmation et objets

} while (bRepeatLoop);
}
}
}

Commencons par examiner ce qu'affiche le programine, rien que pour
nous faire une idée :

Avant de trier :

0 - Homer
4 - Lisa
2 - Bart
3 - Marge
3.5 - Maggie

Tri en cours

Etudiants par résultats décroissants :

4 - Lisa

3.5 - Maggie
3 - Marge

2 - Bart

0 - Homer

Appuyez sur Entrée pour terminer...

Afin de gagner du temps, le votre comme le mien, j'ai codé localement la
création de cinq étudiants. La méthode NewStudent () alloue un nouvel
objet Student, initialise son nom et son "grade”, et retourne le résultat. Le
programme utilise la fonction OutpurStudentarrav() pour afficher le
tableau des étudiants avant qu'il soit trié.

Le programme invoque ensuite la fonction Sort (1.

Apres le tri, le programme répéte le processus d'affichage dans le seul but
de vous impressionner avec le résultat maintenant trié.

Bien siir, la principale nouveauté du programme SortStudents est la
méthode Sort (). Cet algorithme fonctionne en effectuant une boucle
continue sur la liste des étudiants jusqu'a ce qu'elle soit triée. A chaque
passage, le programme compare chaque étudiant a son voisin. S'ils ne
sont pas dans le bon ordre, la fonction les permute et met a jour un
indicateur pour signaler que la liste n'était pas complétement triée. Les
Figures 6.3 & 6.6 montrent la liste des étudiants aprés chaque passage.

Chapitre 6 : Rassembler des données : classes et tableaux ’33

Figure 6.3:
Avant de
commencer
le trien
bulles.

Figure 6.4
Apres le
premier
passage du
tri en bulles.

Figure 6.5:
Apreés le
deuxiéme
passage du
tri en bulles.
I

Figure 6.6
Aprés
|"avant-
dernier
passage, la
liste est
triée. Le
passage final
met fin au tri
en consta-
tant que rien
ne change.
AN

Homer @

Lisa 4

Bart 2

Marge 3

Maggie 3.5

Lisa 4

Bart 2

Marge 3

Maggie 3.5

Homer @ -—— Homer finit par se retrouver tout en bas.

Lisa 4 -<— Lisa reste tout en haut.
Marge 3
Maggie 3.5
Bart 2 =— Bart est descendu, mais reste au-dessus d'Homer.
Homer @
Lisa 4
Maggie 3.5)
Maggie et Marge sont permutées.
Marge 3 D 99 9 P
Bart 2
Homer @

’34 Troisieme partie : Programmation et objets

Au bout du compte, les meilleurs étudiants, comme Lisa et Maggie,
remontent comme des bulles jusqu'en haut, alors que les plus mauvais,
comme Homer, tombent au fond. Voila pourquoi ¢a s'appelle le tri en
bulles.

Q}EZ P4g Ce qui permet de réaliser une fonction de tri, celle-ci ou n'importe quelle
;/ ? \ autre, c'est que les éléments du tableau peuvent étre réordonnés en
)) assignant a un autre élément du tableau la valeur qui en référence un
autre. Remarquez que l'assignation d'une référence ne fait pas une copie
de I'objet, raison pour laquelle c'est une opération trés rapide.

Chapitre 7

Mettre en marche quelques
fonctions de grande classe

Dans ce chapitre :
Définir une fonction.
Passer des arguments a une fonction.
Obtenir des résultats (c'est agréable).
Etudier 'exemple WriteLine ().

Passer des arguments au programme.

L es programmeurs ont besoin d'avoir la possibilité de diviser de
grands programmes en morceaux plus petits, donc plus faciles a
manier. Par exemple, les programmes présentés dans les chapitres
précédents sont proches des limites de ce qu'une personne normalement
constituée peut digérer en une seule fois.

C# permet de diviser le code d'un programme en un certain nombre de
morceaux que l'on appelle des fonctions. Des fonctions bien concues et bien

implémentées peuvent simplifier considérablement le travail d'écriture
d'un programme complexe.

Définir et utiliser une fonction

Considérez I'exemple suivant :

class Exampie :

{

’36 Troisiéme partie : Programmation et objets

public int nInt;
public static int nStaticInt
public void MemberFunction()
{
Console.WriteLine("ceci est une fonction membre");
}
public static void ClassFunction()
{
Console.WriteLine("ceci est une fonction de classe");

L'élément 1.~ est un membre donnée, une donnée membre d'une classe
(la classe Zraz 2 2), comme nous en avons vu beaucoup au Chapitre 6,
mais I'élément M=mzor o oo or 0 est d'un genre nouveau : ¢'est une
fonction membre (une fonction, membre d'une classe). Une fonction est un
bloc de code C# que vous pouvez exécuter en référencant son nom. Ce
sera plus clair avec un exemple (n'oubliez pas nos conventions, le nom
d'une classe commence par une majuscule : exaxp e est un objet de la
classe Example).

ol

Le fragment de code suivant assigne une valeur a la donnée nint (membre
de I'objet example dela classe Zxzrp. o), et & la variable statique nStaticlInt
(référencée par la classe Fzar > - et non par un objet de cette classe, puis-
qu'elle est statique) :

Example example = new Example(); //crée un objet

example.nInt = 1; //utilise 1'objet pour initialiser
//un membre donnée
Example.nStaticInt = 2; /lutilise la classe pour initialiser

//un membre statique

Le fragment de code suivant définit et invoque MemberFunction() et
ClassFunction(), presque de la méme manieére :

Example example = new Example(); //crée un objet

example.MemberFunction(); [/utilise 1'objet pour invoquer
//une fonction membre
Example.ClassFunction(); //utilise la classe pour invoquer

//une fonction de classe

L'expression exam; le .M rFunetion (0 passe le controle au code contenu
dans la fonction. Le processus suivi par C# pour Example.ClassFunction()
est presque identique. L'exécution de ce simple fragment de code produit

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’3 7

QUG

l'affichage suivant & l'aide de l'instruction WriteLine () contenue dans
chaque fonction :

ceci est une fonction membre
ceci est une fonction de classe

Une fois que la fonction a achevé son exécution, elle restitue le controle
au point ou elle a été invoquée.

Lorsque je décris des fonctions, je mets les parenthéses pour qu'elles
soient plus faciles a reconnaitre, sinon j'ai un peu de mal & m'y retrouver.

Ce petit morceau de code C# avec ses deux exemples de fonctions ne fait rien
d'autre qu'afficher deux petites chaines de caracteres sur la console, mais une
fonction effectue généralement des opérations utiles et parfois complexes ; par
exemple calculer un sinus ou concaténer deux chaines de caractéres, ou
encore, envoyer subrepticement par mail votre URL a Microsoft. Vous pouvez
faire des fonctions aussi longues et compliquées que vous voulez.

Un exemple de fonction pour vos fichiers

Dans cette section, je vais reprendre les exemples monolithiques du
programme Calcuizate nterestTable du Chapitre 5, et les diviser en
plusieurs fonctions de taille raisonnable, pour montrer a quel point
l'utilisation de fonctions peut contribuer a rendre le programme plus

facile a écrire et a comprendre.

Je décrirai en détail les manieres de définir et d'appeler une fonction dans
des sections ultérieures de ce chapitre. Cet exemple n'est la que pour
donner une vue d'ensemble.

En lisant simplement les commentaires sans le code C#, vous devez
pouvoir vous faire une idée assez claire de ce que fait un programme. Si
ce n'est pas le cas, c'est que les commentaires sont mal faits.

Dans les grandes lignes, le programme CalculatelnterestTable apparait
comme suit :

public static void Main(string([] args)
{

//demande & 1'utilisateur d'entrer le principal initial

’38 Troisieme partie : Programmation et objets

/1si le principal est négatif
//génére un message d'erreur
//demande & 1'utilisateur d'entrer le taux d'intérét
//si le taux d'intérét est négatif, génére un message d'erreur
//demande & 1'utilisateur d'entrer le nombre d'années
/{affiche les données saisies par l'utilisteur
/leffectue une boucle avec le nombre d'années spécifié
while(nYear <= nDuration)
{

//calcule la valeur du principal

//plus 1'intérét

//affiche les résultats

Si vous I'examinez avec un peu de recul, vous verrez que ce programme
se décompose en trois sections distinctes :

v Une section initiale de saisie dans laquelle I'utilisateur entre les
données, a savoir le principal, le taux d'intérét, et la durée.

v Une section d'affichage des données entrées, afin que l'utilisateur
puisse les vérifier.

v+ Une section finale qui calcule et affiche les résultats.

Ce sont de bons endroits ol regarder pour trouver la bonne maniére de
diviser un programme. En fait, si vous examinez de plus pres la section de
saisie de ce programme, vous pouvez voir que c'est essentiellement le
méme code qui est utilisé pour saisir :

v Le principal.
v Le taux d'intérét.
v Ladurée.
Cette observation nous donne un autre bon endroit ou chercher.

C'est a partir de la que j'ai créé le programme CalculatelnrerestTable-
WithFunctions:

/! CalculateInterestTableWithFunctions - génére une table d'intéréts

/1 semblable & d'autres programmes de
/! table d'intéréts, mais utilise une
/1 certaine division du travail

1/ entre plusieurs fonctions.

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’39

using System;
namespace CalculateInterestTableWithFunctions
{
public class Classl
{
public static void Main(string[] args)
{
//Section 1 - saigie des données nécessaires pour créer la table
decimal mPrincipal = 0;
decimal mInterest = 0;
decimal mDuration = 0;
InputInterestData(ref mPrincipal,
ref mInterest,
ref mDuration);
//Section 2 - affiche les données pour vérification
Console.WriteLine(); // skip a line
Congole.WriteLine("Principal =" + mPrincipal);
Console.WriteLine("Taux d'intérét = " + mInterest + "%");)
Console.WriteLine("Durée =" + mDuration + " ans");
Console.WriteLine();
//Section 3 - affiche la table des intéréts calculés
OutputInterestTable(mPrincipal, mInterest, mDuration);
/] attend confirmation de l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
}
// InputinterestData - lit & partir du clavier le principal,
1/ les informations sur le taux d'intérét
/] et la durée, nécessaires pour calculer
/1 la table des valeurs futures
//(Cette fonction implémente la Section 1 en la divisant
//en trois composants)
public static void InputInterestData(ref decimal mPrincipal,
ref decimal mInterest,
ref decimal mPuration) -

/] la - lecture du principal

mPrincipal = InputPositiveDecimal("le principal");

// 1b - lecture du taux d'intérét

nInterest = InputPositiveDecimal("le taux d'intérdt");
// le - lecture de la durée

mDuration = InputPogitiveDecimal("la durée");

)
/1 InputPositiveDecimal - lecture d'un nombre décimal positif
/1 a partir du clavier

//(saisie du principal, du taux d'intérét ou de la durée
//il s'agit de saisir un nombre décimal et de
//vérifier qu'il est positif)

740 Troisieme partie : Programmation et objets

public static decimal InputPositiveDecimal(string sPrompt)
{

/] continue jusqu'a ce que l'utilisateur entre une valeur valide

while(true)

(
// demande une valeur & 1'utilisateur
Console.Write("Entrez " + sPrompt + ":");
/! 1it une valeur décimale saisie au clavier
string sInput = Console.ReadLine();
decimal mValue = Convert.ToDecimal(sInput);
/] sort de la boucle si la valeur entrée est correcte
if (mValue >= 0)
[-

/] retourne la valeur décimale valide entrée par l'utilisateur
return mValue;

}
// sinon, génére un message pour signaler 1'erreur
Console.WriteLine(sPrompt + " doit avoir une valeur positive");
Console.WriteLine("Veuillez recommencer");
Console.WriteLine();

}
/! OutputInterestTable - & partir du principal et du taux d'intérét,

1l génére la table des valeurs futures pour
11 le nombre de périodes indiquées par
1/ nDuration.

//(ceci implémente la section 3 du programme)

public static void OutputInterestTable(decimal mPrincipal,
decimal mInterest,
decimal mDuration)

{
for (int nYear = 1; nYear (= mDuration; nYear++)
{
/] calcule la valeur du principal
/] plus 1'interdt
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);
/1 calcule maintenant le nouveau principal en ajoutant
// 1'intérét au précédent principal
mPrincipal = mPrincipal + mInterestPaid;
/! arrondit le principal au centime le plus proche
mPrincipal = decimal.Round (mPrincipal, 2);
/] affiche le résultat
Console.WriteLine(nYear + "-" + mPrincipal);
}
}

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’4 7

Jai divisé I'ensemble Main () en trois parties clairement distinctes, dont
chacune est indiquée par un commentaire en gras, ensuite j'ai divisé a
nouveau la premiere section en la, 1b, et 1c.

EZ P4 . . . s el s .
&\) $ Normalement, les commentaires en gras n'auraient rien a faire 1a. lls ne feraient
= qu'encombrer inutilement le source. En pratique, de tels commentaires sont

inutiles si vos fonctions sont bien congues.

La section 1 appelle la fonction InputInterestData () afin de saisir les
trois variables dont le programme a besoin pour calculer les résultats :
mPrincipal, mInterest, et mDuration. La section 2 affiche ces trois
valeurs de la méme maniére que les versions antérieures du programme.
La partie finale utilise la fonction OutputInterestTable () pour afficher
les résultats.

Commencant par le bas et progressant vers le haut, la fonction
OutputInterestTable () effectue une boucle pour calculer les intéréets
successifs. C'est la méme boucle que celle qui est utilisée dans le pro-
gramme CalculatelnterestTable, sans avoir recours a une fonction, au
Chapitre 5. Mais l'avantage de cette version est que lorsque vous écrivez
cette section du code, vous n'avez pas besoin de vous préoccuper des
détails de la saisie et de la vérification des données. En écrivant cette
fonction, vous avez simplement a penser : "Etant données trois valeurs, le
principal, le taux d'intérét et la durée, calculer et afficher la table des
intéréts." C'est tout. Une fois que vous avez terminé, vous pouvez revenir
a la ligne qui a invoqué la fonction OutputInterestTable (), et continuer
a partir de la.

C'est la méme logique de diviser pour régner qui est a I'ceuvre dans la
fonction InputInterestData(). Vous pouvez vous y concentrer exclusive-
ment sur la saisie des trois valeurs décimales. Toutefois, dans ce cas, on
s'apercoit que la saisie de chaque valeur fait appel aux mémes opérations.
La fonction InputPositiveDecimal () rassemble ces opérations dans un
bloc de code que vous pouvez appliquer tout aussi bien au principal, au
taux d'intérét, et a la durée.

Cette fonction TnputPositiveDecimal () affiche l'invite qu'elle a recue
lorsqu'elle a été invoquée, et attend la saisie de I'utilisateur. Puis, si cette
valeur n'est pas négative, elle la retourne au point ot elle a été appelée. Si
la valeur est négative, la fonction affiche un message d'erreur et demande
a nouveau la valeur a l'utilisateur.

’42 Troisieme partie : Programmation et objets

Du point de vue de l'utilisateur. ce programme fonctionne exactement de
la méme maniere que la version monolithique du Chapitre 5, et ¢'est bien
ce que nous voulions ;

Entrez le principal:100

Entrez le taux d'intérédt:-10

le taux d'intérét doit avoir une valeur positive
Veuillez recommencer

Entrez le taux d'intérét:10
Entrez la durée:10

Principal = 100
Taux d'intérét = 10%
Durée 10 ans

1-110
2-121
3-133.1
4-146.41
5-161.05
6-177.16
7-194.88
8-214.37
9-235.81
10-259.39
Appuyez sur Entrée pour terminer...

J'ai donc pris un programme un peu long et un peu compliqué, et je I'ai
divisé en éléments plus petits et plus compréhensibles, tout en faisant
disparaitre certaines duplications qu'il comportait.

Pourquoi des fonctions ?

Lorsque le langage FORTRAN a introduit la notion de fonction dans les années cinguante, e
seul but en était d'éviter la duplication de code en rassemblant les portions identiques dans
un seul élément commun. Imaginez que vous ayez eu a écrire un programme devant calculer
etafficher desratios en de nombreux endroits différents. Votre programme aurait pu appeler
une fonction DisplayRatio () chaque fois que nécessaire, pratiquement dans le seul but
de mettre plusieurs fois dans le programme le méme bloc de code. L'économie peut paraftre
modeste pour une fonction aussi petite que D4 splayRatio (), mais une fonction peut étre
beaucoup plus grande. En outre, une fonction d'usage courant comme riteLine () peut
étre invoquée en des centaines d'endroits différents d'un méme programme.

Chapitre 7 : Mettre en marche quelques fonctions de grande classe 743

Iy a un autre avantage qui devient rapidement évident : il est plus facile d'écrire correcte-
mentle coded'unefonction.LafonctionDisplayRatio () vérifie que le dénominateur n'est
pas nul. Si vous répétez le code du calcul en plusieurs endroits dans votre programme, il est
facile d'oublier ce testici ou la.

Encore un avantage un peu moins évident : une fonction bien congue réduit la complexité
d'un programme. Une fonction bien définie doit correspondre a un concept bien défini. Il doit
étre possible d'en décrire la finalité sans utiliser les mots et et ou.

Une fonction comme calculateSin() constitue un exemple idéal. Le programmeur qui a
besoin de réaliser de tels calculs peut alors implémenter cette opération complexe sans
inquiétude surla maniére de I'utiliser, et sans se préoccuper de son fonctionnementinterne.
Le nombre de choses dont le programmeur doit se préoccuper en est considérablement
“réduit. D'autre part, en réduisant le nombre de "variables’, une tdche importante se trouve
réduite a deux tdches nettement plus petites et plus faciles.

Un programme de grande taille (par exemple un traitement de texte) se compose de nombreu-
ses couches successives de fonctions, correspondant a des niveaux croissants d'abstraction.
Par exemple, une fonction RedisplayDocument () appellerait sans aucun doute une fonc-
. tion Reparagraph() pour réafficher les paragraphes dans le document. La fonction
 Reparagraph() devrait alors & son tour invoquer une fonction CalculateWordWrap ()
- pour déterminer ou placer les retours a la ligne qui déterminent I'affichage du paragraphe.
CalculateWordWrap () elle-méme appellerait une fonction LookUpWordBreak () pour
~déciderdeséventuelles coupures de mots alafin deslignes. Comme vousle voyez, nousvenons
de décrire chacune de ces fonctions en une seule phrase simple.

- Sanslapossibilité de représenter des concepts complexes, il deviendrait presque impossible
~d'écrire des programmes de complexité simplement moyenne, a fortiori un systéme d'exploi-
tation comme Windows XP, un utilitaire comme WinZip, un traitement de texte comme
‘WordPerfect, ou encore un jeu comme StarFighter, pour ne citer que quelgues exemples.

Donner ses arguments & une fonction

Une méthode comme celle de I'exemple suivant est a peu prés aussi utile
que ma brosse a cheveux car aucune donnée n'est passé a la fonction, et
aucune n'en sort :

: public static void Output()
[
-Console:WriteLine("ceci est une fonction");

’44 Troisieme partie : Programmation et objets

Comparez cet exemple aux véritables fonctions qui font vraiment quelque
chose. Par exemple, 'opération de calcul d'un sinus nécessite une donnée (il
faut bien que ce soit le sinus de quelque chose). De mé€me, pour concaténer
deux chaines en une seule, il faut commencer par en avoir deux. Il faut passer
deux chaines comme données a la fonction Concatenate (). Il vous faut donc
un moyen de passer des données a une fonction et de récupérer ce qui en sort.

Passer un argument a une fonction

Les valeurs qui constituent des données d'une fonction sont appelées
arguments de la fonction. La plupart des fonctions ont besoin d'arguments
pour accomplir ce qu'elles ont a faire. Pour passer des arguments a une
fonction, on en place la liste entre les parenthéses qui suivent son nom.
Voyez maintenant la petite modification apportée a la classe Exarple:

public class Example
{
public static void Output(string funcString)
{
Console.WriteLine("Output() a regu l'argument :
+ funeString);

"

J'aurais pu invoquer cette fonction depuis la méme classe de la facon
suivante :

Output("Hello");

Et j'aurais recu le méme mémorable résultat :

Output() a regu 1l'argument : Hello

Le programme passe a la fonction Ourput () une référence a la chaine
"Hello". La fonction recoit cet référence et lui assigne le nom funcString.
La fonction Output () peut alors utiliser funcString dans le code qu'elle
contient, comme n'importe quel autre variable de type string.

Je vais maintenant apporter une modification mineure a cet exemple :

string upperString = "Hello";
Output (upperString);

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’45

L'assignation de la variable upperString lui fait référencer la chaine
"Hello". L'invocation Output (upperString) passe a la fonction l'objet
référencée par upperString, qui est notre vieille connaissance "Hello".
La Figure 7.1 représente ce processus. A partir de la, l'effet est le méme.

Figure 7.1
L'invocation
Output

(upperString) Uppersnm\g X» "Hello"

copie la
valeur de
upperString | Output (funcString)
dans
funcString
]

Passer plusieurs arguments a une fonction

Quand je demande a ma fille de laver la voiture, elle me donne en général
plusieurs arguments. Comme elle passe beaucoup de temps sur le canapé
pour y réfléchir, elle peut effectivement en avoir plusieurs a sa disposition.

Vous pouvez définir une fonction comportant plusieurs arguments de
divers types. Considérez I'exemple suivant, AverageAndDisplay () :

/] AverageAndDisplay
using System;
namespace Example
(
public class Classl
{
public static void Main(string[] args)
{
/! accéde & la fonction membre
AverageAndDisplay ("UV 1", 3.5, "UV 2", 4.0);
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
}
/] AverageAndDisplay - fait la moyenne de deux nombres associés
// 4 leur nom et affiche le résultat
public static void AverageAndDisplay(string sl, double d1,
string s2, double d2)

7&6 Troisieme partie : Programmation et-objets

{
double dAverage = (dl + d2) / 2;
Console.WriteLine{"La moyenne de " + gl
+ " dont la valeur est " + dl
+ " et de " + 82
+ " dont la valeur est " + d2
+ " est égale & " + dAverage);

L'exécution de ce petit programme produit l'affichage suivant (le saut de
ligne ne vient pas du programme) :

La moyenne de UV 1 dont la valeur est 3.5 et de UV 2
dont la valeur est 4 est égale & 3.75
Appuyez sur Entrée pour terminer...

La fonction AverzpgeindDisplay () est déclarée avec plusieurs arguments,
dans l'ordre dans lequel ils doivent lui &tre passés.

Comme d'habitude, I'exécution de notre exemple de programme commence
avec la premiére instruction qui suit Main (). La premiere ligne qui ne soit
pas un commentaire dans ¥ain () invoque la fonction AverageAndDisplay ()
en lui passant les deux chaines "UV 1" et "UV 2", et les deux valeurs de type
doubie 3.5 et 4.0.

La fonction AverageAndDisplay () calcule la moyenne des deux valeurs
double d1 et dZ, qui lui ont été passées avec leurs noms respectifs conte-
nus dans <1 et s2, et cette moyenne est stockée dans dAverage.

Accorder la définition d'un argument et son
utilisation

Dans un appel de fonction, l'ordre et le type des arguments doivent
correspondre a la définition de Ja fonction. Ce qui suit est illicite et
produit une erreur lors de la génération :

/! AverageWithCompilerError -cette version ne se compile pas !
using System;

namespace AverageWithCompilerError

{

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’4 7

public class Classl
{
public ‘static void Main(string{] args)
{
/] accdde & la fonction membre
AverageAndDisplay("UV 1", "UV 2", 3.5, 4.0);
/! attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
}
/] AverageAndDisplay - fait la moyenne de deux nombres associés
/1 4 leur nom et affiche le résultat
public static void AverageAndDisplay(string sl, double dl,
string s2, double d2)
{
double dAverage = (dl + d2) / 2;
Console.WriteLine("La moyenne de " + sl
+ " dont la valeur est " + dl
+ " et de " + 82
+ " dont la valeur est " + d2
+ " est égale & " + dAverage);

C# ne peut pas faire correspondre les arguments qui sont passés dans l'appel a
AverageAndDisplay () avec la définition de la fonction. La chaine "UV 1"
correspond bien au premier argument qui est de type string dans la défini-
tion de la fonction, mais pour le deuxieéme, la définition de la fonction demande
un type double alors que c'est une chaine qui est passée dans l'appel.

Il est facile de voir que j'ai simplement interverti le deuxiéme et le troisieme
argument dans I'appel de la fonction. Voila ce que je n'aime pas avec ces
ordinateurs : ils prennent littéralement tout ce que je leur dis. Je sais bien
que je l'ai dit, mais ils pourraient comprendre ce que je voulais dire !

Surcharger une fonction ne signifie pas lui
donner trop de travail
@Q’\)EZ Pas Vous pouvez donner le méme nom a deux fonctions d'une méme classe, a

2 condition que leurs arguments soient différents. On appelle ¢a surcharger
le nom de la fonction.

758 Troisieme partie : Programmation et objets

Voici un exemple de surcharge :

(,\\P‘BGEO . .
K /] AverageAndDisplayOverloaded - cette version montre que
& /1 la fonction AverageAndDisplay
11 peut &tre surchargée

using System;
namespace AverageAndDisplayOverloaded

{
public class Classl
(
public static void Main(stringl] args)
{
// accéde & la premiére fonction membre
AverageAndDisplay("mes points d'UV", 3.5, "vos points d'UV", 4.0);
Console.WriteLine();
/! accéde a la deuxiéme fonction membre
AverageAndDisplay (3.5, 4.0);
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
}
/! AverageAndDisplay - fait la moyenne de deux nombres associés
1/ 4 leur nom et affiche le résultat
public static void AverageAndDisplay(string sl, double dl,
string s2, double d2)
(
double dAverage = (dl + d2) / 2;
Console.WriteLine("La moyenne de " + sl
+ " dont la valeur est " +d1);
Console.WriteLine("et de " + 52
+ " dont la valeur est " + d2
+ " egt égale a2 " + dAverage);
}
public static void AverageAndDisplay(double dl, double d2)
{
double dAverage = (d1 + d2) / 2:
Console.Writeline("La moyenne de " + 4l
+ " et + d2
+ " est égale a " + dAverage);
}
}
]

Ce programme définit deux versions de la fonction 4veragesndDisplay ().
Il invoque ['une puis 'autre en leur passant respectivement les arguments
qu'il leur faut. C# peut identifier la fonction demandée par le programme en

Chapitre 7 : Mettre en marche quelques fonctions de grande classe 749

comparant 'appel a la définition. Le programme se compile correctement,
et son exécution donne l'affichage suivant :

La moyenne de mes points d'UV dont la valeur est 3,5
et de vos points d'UV dont la valeur est 4 est égale & 3,75

La moyenne de 3,5 et 4 est égale & 3,75
Appuyez sur Entrée pour terminer...

En regle générale, C# ne permet pas a deux fonctions du méme programme
d'avoir le méme nom. Apres tout, comment pourrait-il deviner quelle
fonction vous vouliez appeler ? Mais le nombre et le type des arguments de
la fonction font partie de son nom. On pourrait appeler une fonction tout
simplement &verageAndDisplay i), mais C# fait la différence entre les
fonctions 4veragesrdDisplayistring, double, string, double et
AverageindDisplay (double. double).En voyantles choses de cette
facon, il est clair que les deux fonctions sont différentes.

Implémenter des arguments par défaut

Bien souvent, vous voudrez pouvoir disposer de deux versions (ou plus)
d'une méme fonction. L'une pourra étre la version compliquée qui offre
une grande souplesse mais nécessite de nombreux arguments pour étre
appelée, dont plusieurs que l'utilisateur peut trés bien ne méme pas
comprendre.

MO/ . i, o ,
& En pratique, quand on parle de "'utilisateur” d'une fonction, il s'agit
souvent du programmeur qui en fait usage. Ce n'est pas forcément le
véritable utilisateur du programme.

Une autre version de la méme fonction, bien qu'un peu fade, offrirait des
performances acceptables, en remplacant certains des arguments par des
valeurs par défaut.

La surcharge d'un nom de fonction permet d'implémenter facilement des
valeurs par défaut.

Examinez ces deux versions de la fonction DisplayRoundedDecimai () :

// FunctionsWithDefaultArguments - offre des variantes de la méme
/! fonction, certaines avec des arguments par
/! défaut, en surchargeant le nom de la fonction

’50 Troisieme partie : Programmation et objets

using System;
namespace FunctionsWithDefaultArguments
{
public class Classl
{
public static void Main(string{] args)
{
/] accéde & la fonction membre
Console.WriteLine("{0}", DisplayRoundedDecimal(12.345678M, 3));
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur-Entrée pour terminer,..");
Console.Read();
}
/] DisplayRoundedDecimal - convertit en chaine une valeur
I décimale, avec le nombre gpéeifié
1 de chiffres significatifs
public static string DisplayRoundedDecimal(decimal mValue,
int nNumberOfSignificantDigits)
{
/! commence pas arrondir le nombre sur la base du nombre
/] spécifié de chiffres significatifs
decimal mRoundedValue =
decimal.Round(mValue,
nNumberOfSignificantDigits);
/1 Convertit en chaine le résultat obtenu -
string s = Convert.ToString(mRoundedValue);
return s;
} ;
public static string DisplayRoundedDecimal(decimal mValue)
{
/1 invoque DisplayRoundedDecimal (decimal, int),
/] en spécifiant le nombre de chiffres par défaut
string s = DisplayRoundedDecimal (mValue, 2);
return s;

La fonction DisplayRoundedDecimal (decimal, int) convertit en chaine la
valeur décimale qui lui est passée, avec le nombre spécifié de chiffres apres la
virgule. Comme les valeurs de type decimal sont trés souvent utilisées pour
représenter des valeurs monétaires, on utilise le plus souvent deux chiffres
apres la virgule. Aussi, la fonction DisplayRoundedDecimal (decimal) fait le
méme travail de conversion, mais en utilisant le parameétre par défaut de deux
chiffres apres la virgule, ce qui évite a I'utilisateur d'avoir seulement i se
demander ce que veut dire le deuxiéme argument.

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’5 7

QIEZPag Remarquez que la version générique (decimal) de cette fonction fait son
S T travail en appelant la version compléte (decimal, int).La version
@/} générique trouve toute seule les arguments que le programmeur n'a pas
envie de chercher dans la documentation.

<<,‘\X\ON/ Fournir des arguments par défaut présente plus d'intérét que d'épargner
$.y \ simplement quelques efforts a un programmeur paresseux. Les recher-

@/ ches inutiles dans la documentation pour y trouver la signification d'argu-
ments qui sont normalement définis par défaut distraient le programmeur
de sa tache principale et la lui rendent plus difficile, lui font perdre du
temps, et augmentent le risque de produire des erreurs. Le programmeur
qui est I'auteur d'une fonction comprend les relations entre ses argu-
ments. C'est a lui que revient la charge d'en fournir une version simplifiée,
plus facile a utiliser.

Passer des arguments d'un type valeur

Les types de variables de base, int, double, et decimal, sont appelés
types valeur. 1l y a deux maniéres de passer a une fonction des variables
d'un type valeur. La forme par défaut consiste a passer par valeur. L'autre
forme consiste a passer par référence.

Les programmeurs ont leur maniére de dire les choses. En parlant d'un type
valeur, quand un programmeur dit "passer une variable a une fonction”, cela
signifie généralement "passer a une fonction la valeur d'une variable".

Passer par valeur des arguments d’un type valeur

Contrairement a une référence a un objet, une variable d'un type valeur
comme int ou double est normalement passée par valeur, ce qui signifie
que c'est la valeur contenue dans la variable qui est passée a la fonction,
et non la variable elle-méme.

Passer par valeur a pour effet que la modification de la valeur d'une
variable d'un type valeur dans une fonction ne change pas a la valeur de
cette variable dans le programme qui appelle la fonction.

‘5’, /1 PassByValue - montre la sémantique du passage par valeur
~ a0 using System;
g namespace PassByValue
{

’52 Troisieme partie : Programmation et objets

public class Classl
({
/! Update - essaie de modifier la valeur
1 des arguments qui lui sont passés
public static void Update(int i, doudble d)
{
i=10;
= 20.0;

[=%
Il

}
public static void Main(string{] args)
{
// déclare deux variables et les initialise

inti=1;

double d = 2.0;

Console.WriteLine("Avant 1'appel & Update(int, double):");
Console.WriteLine("i ="+ i+ ", d ="+ d);

/] invoque la fonction

Update(i, d);

// remarquez que les valeurs 1 et 2.0 n'ont pas changé
Console.WriteLine("Aprés 1'appel & Update(int, double):");
Console.Writeline("i ="+ i+ ", d ="+ d);

/] attend confirmation de 1'utilisateur

Console.WriteLine ("Appuyez sur Entrée pour terminer...");
Console.Read();

L'exécution de ce programme produit l'affichage suivant :

Avant 1'appel & Update(int, double):

i=1,d=2
Aprés 1'appel & Update(int, double):
i=1,d=2

Appuyez sur Entrée pour terminer...

L'appel a Upda+e () passe les valeurs 1 et 2.0, et non une référence aux
variables i et d. Aussi, la modification de ces valeurs a l'intérieur de la
fonction n'a aucun effet sur la valeur des variables dans la routine appe-
lant la fonction.

Passer par référence des arguments d’'un type valeur
4 9 yp

Il est avantageux de passer par référence a une fonction un argument d'un type
valeur, en particulier lorsque le programme appelant & besoin de donner &

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’53

cette fonction la possibilité de changer la valeur de la variable. Le programme
qui suit, PassByReference, met en évidence cette possibilité,

C# donne au programmeur la possibilité de passer des arguments par
référence en utilisant les mots-clés ref et cut. C'est ce que montre une
petite modification de I'exemple PassByValue de la section précédente.

/] PassByReference - demonstrate pass by reference semantics
using System;
namespace PassByReference
{
public clags Classl
{
/] Update - essaie de modifier la valeur
/] des arguments qui lui sont passés
public static void Update(ref int i, out double d)
{
i=10;
20.0;

]

}
public static void Main(string[] args)
{

// déclare deux variables et les initialise

int 1 = 1;

double d;

Console.WriteLine("Avant 1'appel & Update(ref int, out double):");
Console.Writeline("i =" + i+ ", d n'est pas initializé");

/! invoque la fonction

Update(ref 1, out d);

/] remarquez que les valeurs 1 et 2.0 n'ont pas changé
Console.WriteLine("Aprés 1'appel & Update(ref int, out double):");
Console.WriteLine("i ="+ i+ ", d ="+ d);

/1 attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Le mot-clé ref indique que c'est une référence que C# doit passer a 1, et
non la valeur contenue dans cette variable. Il en résulte que les modifica-
tions apportées a cette valeur dans la fonction sont exportées dans le
programme qui l'appelle.

De fagon similaire, le mot-clé out dit "restituer par référence, mais peu m'importe
quelle était la valeur initiale, puisque de toute facon je vais la remplacer” (ca fait

’54 Troisieme partie : Programmation et objets

beaucoup de choses en trois mots). Le mot-clé cut est applicable lorsque la

fonction ne fait que retourner une valeur au programme appelant.

L'exécution de ce programme produit l'affichage suivant :

Avant 1'appel a Update(ref int, out double):

i=

1, d n'est pas initialigé

Aprés 1'appel & Update(ref int, out double):

i=

10, 4 = 20

Appuyez sur Entrée pour terminer...

Un argument out est toujours ref.

Notez que les valeurs initiales de i et de d sont écrasées dans la fonction
Update (). De retour dans Mzin (), ces variables ont recu leur valeur
modifiée. Comparez cela & la fonction PassByValue (), dans laquelle les

variables ne recoivent pas leur valeur modifiée.

Ne passez pas une variable par référence a une fonction deux fois en

méme temps

Jamais, sous aucun prétexte, vous ne devez passer deux fois par référence
la méme variable dans un méme appel a une fonction. La raison en est plus
difficile a expliquer qu'a montrer. Examinez la fonction Update () suivante :

/1
1

using System;

/! PassByReferenceError - montre une situation d'erreur potentielle

quand on appelle une fonction avec
des arguments passés par référence

namespace PassByReferenceError

{

public class Classl

{

/] Update - essaie de modifier la valeur

/1 des arguments qui lui sont passés

public static void DisplayAndUpdate(ref int nVarl, ref int nVar?2)
{
Console.WriteLine("La valeur initiale de nVarl est " + nVarl);
nVarl = 10; :
Console.WriteLine("La valeur initiale de nVar2 est " + nVarl);
nVar2 = 20; ;

}

public static void Main(string[] args)

{

// déclare deux variables et les initialise

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’55

int n = 1;
Console .WriteLine("Avant 1'appel a Update(ref n, ref n):");
Console.Writeline("n = " + n);

Congole.WriteLine();

/! invoque la fonction

DisplayAndUpdate(ref n, ref n);

/] remarquez que les valeurs 1 et 2.0 n'ont pas changé
Congole.WriteLine();

Console.WriteLine("Aprés 1'eppel & Update(ref n, ref n):");
Console.WriteLine("n =" + n);

// attend confirmation de 1l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Update(ref int, ref int) est maintenant déclarée pour accepter par
référence deux arguments de type in+, ce qui, en soi, n'est pas un pro-
bléme. Le probléme se produit lorsque la fonction Main () invoque
Update () en lui passant la méme variable pour les deux arguments. Dans
la fonction, Update () modifie nVar’, ce qui, par référence a r, remplace
sa valeur initiale de 1 par la valeur 10. En méme temps, Update () modifie
nVar?, alors que la valeur de r, a laquelle elle se référe, a déja été modi-
fiée en recevant la valeur 10.

Ce qui est mis en évidence dans l'exemple suivant :

Avant 1'appel & Update(ref n, ref n):
n=1

La valeur initiale de nVarl est 1
La valeur initiale de nVar2 est 10

Aprés 1'appel & Update(ref n, ref n):
n =20
Appuyez sur Entrée pour terminer...

Ce qui se passe exactement au cours de ce petit jeu de scéne entre n, nvarl,
et nvar2, est a peu pres aussi évident que la danse nuptiale d'un oiseau
exotique. Ni l'auteur de la fonction Update (), ni le programmeur qui l'utilise,
n'ont prévu ce curieux résultat. Autrement dit, ne le faites pas.

I n'y a aucun inconvénient & passer une méme valeur a plusieurs arguments
différents dans un méme appel de fonction si toutes les variables sont passées
par valeur.

56 Troisieme partie : Programmation et objets

Pourquoi y a-t-il certains arguments qui sortent mais n'entrent pas ?

C#veille sansrelache a empécher le programmeur de faire une bétise. L'une des bétises que
peutfaire un programmeur est d'oublier d'initialiser une variable avantde commenceras'en
servir (c'est particuliérement vrai pour les variables utilisées comme compteur). Lorsque
vous essayez d'utiliser une variable que vous avez déclarée mais pas initialisée, C# génére
une erreur.

int nVariable;

Console.WriteLine("ceci est une erreur " + nVariable);
nVariable = 1;

Console.WriteLine("mais ceci n'en est pas une " + nVariable);

Mais C# ne peut pas assurer la surveillance des variables a I'intérieur d'une fonction :

void SomeFunction(ref int nVariable)

{

Console.WriteLine("ceci est-il une erreur ? " + nVariable);
}

CommentSomeFunction () pourrait-elle savoirsinVariable aétéinitialisée avantd'étre
passée dans|l'appel delafonction ? Elle nele peut pas. Aulieude cela, C#examine la variable
dans I'appel. Par exemple, |'appel suivant géneére une erreur de compilation :

int nUninitializedVariable;
SomeFunction(ref nUninitializedVariable);

Si C# avait accepté cet appel, SomeFunction() se serait vu passer une référence a une
variable non initialisée (donc n‘ayant aucun sens). Le mot-clé cut permet aux deux parties
de se mettre d'accord sur le fait qu'aucune valeur n‘a encore été assignée a la vanable,

~ L'exemple suivant se compile sans probléme :

“int nUninitializedVariable; :
‘SomeFunction(out nUninitializedVariable);

Au passage, il est licite de passer en tant qu'argument out une variable initialisée :

int nInitializedVariable = 1;
SomeFunction(out nInitializedVariable):

Lavaleurde nInitializedVariable sera écrasée dans SomeFunction (), maisiln y a
aucun risque que soit passée une valeur dépourvue de sens.

Chapitre 7 : Mettre en marche quelques fonctions de grande classe 757

Retourner une valeur a ('expéditeur

Dans bien des opérations du monde réel, des valeurs sont créées pour étre
retournées a celui qui les a envoyées. Par exemple, si: (! accepte un argument
pour lequel elle calcule la fonction trigonométrique sinus, et retourne la valeur
correspondante. Une fonction dispose de deux moyens pour retourner une
valeur a celui qui I'a appelée. La plus courante est I'utilisation du champ
return, mais il y a une autre méthode qui utilise I'appel par référence.

Utiliser return pour retourner une valeur

L'exemple suivant montre une petite fonction qui retourne la moyenne
des arguments qui lui sont passés :

public class Exemple
{
public static double Average(double dl, double d2)
{
double dAverage = (dl + d2) / 2;
return dAverage;
]
public static void Test()
{
double vl = 1.0;
double v2 = 3.0;
double dAverageValue = Average(vl, v2);
Console.WriteLine("La moyenne de " + vl
+"etde"tv2t+"est!"
+ dAverageValue);
/] ceci fonctionne également
Console.WriteLine("La moyenne de " + vl
+"etde"+v2"+est"
+ Average(vl, v2));

Remarquez tout d'abord que je déclare cette fonction comme public
double Average().Le double qui précede le nom signifie que la fonction
Average () retourne une valeur en double précision a celui qui l'a appelée.

La fonction Average () attribue les noms d1 et d2 aux valeurs en double
précision qui lui sont passées. Elle crée une variable dAverage alaquelle
elle assigne la moyenne de d1 et d2, puis elle retourne au programme
appelant la valeur contenue dans dAverage.

758 Troisiéme partie : Programmation et objets

BLY Dans ce cas, certains diraient que "la fonction retourne ..v-1zc0e”. Cest
$/:\ un abus de langage, mais un raccourci d'usage courant. Dxre que
(' > diverage ou tout autre variable est passée ou retournée ou que ce soit
" _ n'aaucun sens. Dans ce cas, c'est la valeur contenue dans © o1 - oo qui
est retournée au programme appelant.
L'appela . -¢-2p2{" dans la fonction "~ semble identique a n'importe
quel autre appel de fonction, mais la valeur de tvpe o retournée par
Averape! est stockée dans la variable 1 - caac T
%Q‘“ON/ U B)
& ne fonction qui retourne une valeur. comme = - -+ ne peut pas la
N ey retourner en rencontrant la derniere pd}enthese fermante de la fonction.
5‘3 Si c'était le cas, comment ferait C# pour savoir quelle valeur retourner ?

Retourner une valeur en utilisant un passage
par référence

Une fonction peut aussi retourner une ou plusieurs valeurs a la routine
qui I'appelle en utilisant les mots-clés - et su+. Regardez I'exemple
Update (1 décrit dans la section "Passer par référence des arguments d'un
type valeur”, plus haut dans ce chapitre :

/! Update - essaie de modifier la valeur

I des arguments qui lui sont passés
public static void Update(ref int i, out double d)
{

10;

20.0;

o -
i on

La fonction est déclarée void, comme si elle ne retournait pas de valeur
au programme appelant, mais puisque la variable i est déclarée r=f et la
variable d est déclarée out, toute modification apportée a ces deux
variables dans Update () est conservée dans le programme appelant.

Ouand utiliser return et quand utiliser out ?

Vous pensez peut-étre : "Une fonction peut retourner une valeur au
programme appelant, ou bien utiliser pour cela cit ou r=*. Quand faut-il
utiliser return, et quand faut-il utiliser out 7" Aprés tout, j'aurais trés bien
pu écrire de la facon suivante la fonction Average () :

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’59

public class Example

{
public static void Average(out double dResults. double dl, double d2)

{
dResults = (d1 + d2) / 2;

}

public static void Test()

{
double v1 = 1.0;
double v2 = 3.0;
double dAverageValue;
Average(dAverageValue, v1, v2);
Console.Writeline("La moyenne de " + vl

+"etde " tvy2t+"oest"

+ dAverageValue;

C'est le plus souvent par l'instruction return que vous allez retourner
une valeur au programme appelant, plutdt que par la directive out, bien
qu'il soit difficile de contester que ca revient au meme.

Utiliser out avec une variable d'un type valeur comme double nécessite
un procédé supplémentaire que l'on appelle boxing, dont la description
sort du cadre de ce livre. Toutefois, l'efficacité ne doit pas étre un facteur

clé dans votre choix.

NN/,
‘sgﬁ 0«0

NOj,

C'est typiquement quand une fonction retourne plusieurs valeurs au
programme appelant que vous allez utiliser out. Par exemple :

public class Example

{
public static void AverageAndProduct(out double dAverage,
out double dProduct,

double d1, double d2)
{
dAverage = (d1 + d2) / 2;
dProduct = d1 * d2;
)
}

Une fonction qui retourne a elle seule plusieurs valeurs est une créature
que l'on ne rencontre pas aussi souvent qu'on pourrait le croire. Une telle
fonction est souvent encapsulée dans un objet de classe ou dans un

tableau de valeurs.

L

760 Troisieme partie : Programmation et objets

,\Q\\)C

Définir une fonction qui ne retourne pas de
valeur

La déclaration public double Average(double, double) déclare une
fonction tverage (), qui retourne la moyenne de ses arguments sous forme
double.

Il y a des fonctions qui ne retournent aucune valeur au programme appe-
lant. Une fonction que nous avons utilisée plus haut comme exemple,
AverageAndDisplay (), affiche la moyenne des arguments qui lui sont
passés, mais ne retourne pas cette moyenne au programme appelant. Ce
n'est peut-étre pas une bonne idée, mais telle n'est pas ici la question. Au
lieu de laisser en blanc le type retourné, une fonction comme
AverageAndDisplay () est déclarée de la facon suivante :

public void AverageAndDisplay(double, double)

Le mot-clé vcid, placé a I'endroit ol apparaitrait normalement le type
retourné, signifie pas de type. Autrement dit, la déclaration void indique
que la fonction A~verageAncDisplay () ne retourne aucune valeur au
programme appelant.

Une fonction qui ne retourne aucune valeur est appelée une fonction sans
type (void function). Par opposition, une fonction qui retourne une valeur
est appelée une fonction typée (non-void function).

Une fonction typée doit restituer le controle au programme appelant par une
instruction return suivie par la valeur a retourner. Une fonction sans type
n'a aucune valeur a retourner. Elle restitue le controle lorsqu'elle rencontre
un return qui n'est suivi d'aucune valeur. Par défaut, une fonction sans type
se termine automatiquement (restitue le controle au programme appelant)
lorsque le controle atteint I'accolade fermante qui en indique la fin.

Examinez la fonction DisplayRatio() :

public class Example
{
public gtatic void DisplayRatio(double dNumerator,
double dDenominator)
{
/] si le dénominateur est égal & zéro...
if (dDenominator == 0.0)
{

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’6 7

// . . . affiche un message d'erreur et...
Console.WriteLine(
"Le dénominateur d'un quotient ne peut pas &tre 0");
// . . . retourne a la fonction appelante
return;
)
/] ceci n'est exécuté que si dDenominator n'est pas nul
double dRatio = dNumerator / dDenominator;
Console.WritelLine("Le quotient " + dNumerator
+ " sur " + dDenominator
+ " est égal &4 " + dRatio);

La fonction MisplayRatio!) regarde sila valeur de dDenominator est égale
a zéro. Si c'est le cas, elle affiche un message d'erreur et restitue le controle
au programme appelant, sans essayer de calculer le ratio. Sans cette
précaution, la valeur du numérateur serait divisée par zéro, et produirait
une erreur du processeur, que l'on appelle aussi du nom plus imagé de
processor upchuck. (Autrement dit, "le processeur dégueule”. Désolé.)

Si dDenominator n'est pas égal a zéro, la fonction affiche le ratio. La
parenthése fermante qui suit immédiatement l'instruction Writeline ()
est celle qui indique la fin de la fonction DisplayFatio(), donc joue le
role d'une instruction retur:.

¢ :Réf;éirence anull etréférence azéro

Lorsqu'elle est créée, une variable de référence se voit assigner la valeur par défaut null.
Mais une référence & null n'est pas la méme chose qu'une référence a zéro. Par exemple,
les deux références ci-dessous sont complétement différentes :

‘¢lass Example
at
int nValue;
e
/! crée une référence null refl

Example refl;

/{ crée maintenant une référence & un objet de valeur nulle
~BExample ref2 = new Example();
ref2.aValue = 0;

’62 Troisieme partie : Programmation et objets

{

{

Lavariable ref1 esta peu prés aussivide que mon portefeuille. Elle pointe versl'objetnull
¢c'est-a-dire vers aucun objet. En revanche, ref? pointe vers un objet dont |a valeur est 0.

Cette différence est beaucoup moins claire dans I'exemple suivant :

string s1;
string §2 = "";

C'est essentiellement la méme chose : s1 pointe vers I'objet null, et s2 pointe vers une
chaine vide. La différence est significative, comme le montre la fonction suivante :

/] Test - modules de test pour utiliser la bibliothéque TestLibrary
namespace Test

using System;
public class Classl

public static int Main(string[] strings)

{
Console.WriteLine("Ce programme utilise " +
"la fonction TestString()"%):
Console.WriteLine();
Example exampleObject = new Example();

Console.WriteLine("Passage d'un objet null :");
string s = null;

exampleObject.TestString(s);
Console.WriteLine();

/1 passe maintenant & la fonction une chaine vide
Console.WriteLine("Pagsage d'une chaine vide :");
~exampleObject.TestString(""); :
Console.WriteLine();

/] enfin, passage d'une véritable chaine
Console.WriteLine("Passage d'une véritable chaine :"):
exampleObject.TestString("chaine de test");
Console.WriteLine(); :

/] attend confirmation de 1'utilisateur

Console.WriteLine("Appuyez sur Entrée pour terminer..."):

3

Console.Read();
return 0;

Chapitre 7 : Mettre en marche quelques fonctions de grande classe 763

class Example
{
public void TestString(string sTest)
(
/! commence par vérifier si la chaine est vide
if (sTest == null)
{
Console.WriteLine("sTest est vide"):
return;
}
/{ vérifie si sTest pointe vers une chaine vide
if (String.Compare(sTest, "") == 0)
{
Console.WriteLine("sTest référence une chaine vide");

return;
N
i

// puisque tout va bien, affiche la chaine
Console.Writeline("sTest se référe & : "" + gTest + "'");

LafonctionTestString () utiliselacomparaisonsTest == null poursavoirsiune chaine
a pourvaleur null. Mais TestString() doitutiliserlafonction Compare () pourtester si
une chaine vide (Compare () retourne un 0 si les deux chaines qui lui sont passées sont
égales).

Ce programme affiche les résultats suivants :
Ce programme utilise la fonction TestString()

Passage d'un objet null :
sTest est vide

Passage d'une chaine vide :
sTest référence une chalne vide

Pagsage d'une véritable chaine :
se réfere a : 'test string'

Appuyez sur Entrée pour terminer...

’64 Troisieme partie : Programmation et ohjets

La question de Vzain () : passer des arguments
a un programme

Examinez toutes les applications console de ce livre. L'exécution com-
mence toujours par Maint . Sa déclaration vous dit clairement de quoi il
s'agit :

public static void Main(string[] args)
(
/! . . . emplacement de votre programme. . .

Mzirn () est une fonction statique ou une fonction de classe de la classe
Cilass1, définie par I'Assistant Applications de Visual Studio. »zi: 7 ne
retourne aucune valeur et accepte comme arguments un tableau d'objets
de type st ring. Que sont ces chaines ?

Pour exécuter une application console, I'utilisateur entre le nom du pro-
gramme. Aprés ce nom, il a la possibilité d'ajouter des arguments. C'est ce
que vous voyez tout le temps, par exemple avec une commande comme
copy monfichier C:\mondossier, qui copie le fichier mentict ier dansle
dossier mondossier du répertoire racine du lecteur C.

Comme vous pouvez le voir dans 'exemple isplavirguments suivant, le
tableau de valeurs de type string passé azir. () constitue les arguments
du programme :

/] DisplayArguments - affiche les arguments qui sont passés
/1l au programme
using System;
namespace DisplayArguments
{
public class Test
{
public static int Main(string[] args)
{
/] compte le nombre d'arguments
Console.WriteLine("Ce programme a {0] arguments",
args.Length);
/! les arguments sont :
int nCount = 0;
foreach(string arg in args)
(

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’65

e

Console.WriteLine("L'argument {0} est (11",
nCountt+, arg);
}
// attend confirmation de l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour termimer...");
Console.Read();
return 0;
}
}
}

Ce programme commence par afficher la longueur du tableau args. Cette
valeur correspond au nombre des arguments passés a la fonction. Le
programme effectue alors une boucle sur tous les éléments de args,
affichant successivement chacun d'entre eux sur la console.

L'exécution de ce programme peut produire par exemple les résultats
suivants :

DisplayArguments /c argl arg?

Ce programme a 3 arguments
L'argument 0 est /c

L'argument 1 est argl

L'argument 2 est argl

Appuyez sur Entrée pour terminer...

Vous pouvez voir que le nom du programme lui-méme n'apparait pas
dans la liste des arguments (il existe aussi une fonction qui permet au
programme de trouver dynamiquement son propre nom). D'autre part,
l'option /c n'est pas traitée différemment des autres arguments. C'est le
programme lui-méme qui se charge de l'analyse des arguments qui lui
sont passés.

La plupart des applications console autorisent |'utilisation d'options qui
permettent de contrdler certains détails du fonctionnement du programme.

Passer des arguments a l'invite de DOS

Pour exécuter a partir de l'invite de DOS le programme
DisplayArguments, suivez ces étapes:

1. Cliquez sur Démarrer/Programmes/Accessoires/Invite de
commandes.

’66 Troisieme partie : Programmation et objets

Vous devez voir apparaitre une fenétre a fond noir contenant la
respectable antiquité C:\> , suivie d'un curseur clignotant.

Naviguez jusqu'au dossier contenant le projet DisplayArguments
en tapant au clavier \Programmes C#\DisplayArguments. (Le
dossier par défaut pour les exemples de ce programme est
Programmes Cif. Utilisez le votre si vous en avez choisi un autre.)

L'invite devient C: \C#Programs\DisplayArguments>,

Qe Si vous ne le trouvez pas, utilisez Windows pour rechercher le
programme. Dans I'Explorateur Windows, cliquez du bouton droit
sur le dossier racine C:\, et sélectionnez Rechercher comme le
montre la Figure 7.2,

7 81 Disque local (C2)) =] x|
Mesd;:l;{ ks Fichisr Edition Affichage Favoris Outis 2
merts
‘HPrécédente v 0 L] [RRachercher U4Cosmers 4 Ll X wY | B
i Adresse {_} Oisnue oosl (20 .
“% Dossiers x Taile [Type
Poste de traval A pures N Ouassier de fichiers
- de Fichiers
de fickiets
Z de fichiers
Favoris réseay __dProgrammes Z# de Fichiers
_isEPCT Ciessier de Fichiers
oi _ITemp Cossier de fichiers
o] WD
Internet Explorer = Lre
e 1¥a
i 1¥o
B Réduire Lko Fichier systéme 23112001 19:1°
.| Y B -
— MEMES . Explorer

. D Sutlook N S -

Figure7.2: pidiea DD o

L'utilitaire de i L e —

- " armater...
recherche = i
. Colier
de Windows |- s WIS . | D
. P) 4 i L enommer N ’ ,
Sf;;gi:;de ! "f! 12 shiek(s) (Espace disque ¢ propriétés i39octets fdPostedetraval -
Corbelle R

pour

retrouver ses

fichiers.

E—

Dans la boite de dialogue qui apparait, Entrée DisplayArguments.exe,
et cliquez sur Rechercher. Le nom du fichier apparait en haut du volet
de droite de la fenétre Résultats de la recherche, comme le montre la
Figure 7.3. Ignorez le fichier DisplayArguments.exe qui se trouve
dans le dossier cbi. Vous aurez peut-étre besoin de faire défiler
horizontalement le contenu de la fenétre pour voir le chemin d'acces
complet au fichier s'il est enfoui profondément dans I'arborescence
des dossiers. C'est souvent le cas si vous stockez vos fichiers dans le
dossier Mes documents.

Chapitre 7 : Mettre en marche quelques fonctions de grande classe

Figure 7.3:
Le vaila !

Le nom du
dossier
apparait a
droite du
nom du
fichier.
]

-

& Résultats de la recherche

Fichier Ediion Affichage Favers Outls m

Adresse [5] Feculrars de v
Rechercher ®
O Nouveau (R

o] Recheicher des hchiers ou dossiers

Fieck

Visual Studio .NET place normalement les exécutables qu'il génere

dans un sous-dossier bir\Debug. Mais si vous modifiez la configura-

tion, ce dossier peut tout aussi bien étre bin\release ou un autre.

£ Prechercrer - Dossiers 4 0 X) Eie

cher les fohwers o

Iz dosner: nomre:

![u

Cortenant i teste

3 objet(s)

3. Dans la fenétre d'invite de commandes, tapez cd debug\bin pour

passer dans le répertoire qui contient les exécutables.
L'invite devient C: \C#Programs'\DisplayArguments\bin\Dedug.

Windows accepte sans probléme les noms de fichier ou de
répertoire contenant des espaces, mais DOS peut avoir du mal a
s'y retrouver. Si vous avez un nom de fichier ou de répertoire
contenant des espaces, vous devez I'entourer par des guillemets.
Par exemple, pour naviguer jusqu'a un fichier qui se trouve dans le
dossier Mes fichiers, j'utiliserai une commande comme celle-ci :

cd \"Mes fichiers"

A l'invite de commandes, tapez DisplayArguments /c argl arg2
pour exécuter le programme DisplayArguments.exe.

Le programme doit répondre en affichant les résultats montrés par
la Figure 7.4.

107

’68 Troisieme partie : Programmation et objets

Figure 7.4
L'exécution
de Display
Argumentsa
partir de
l'invite du
DOS affiche
les arguments
que vous avez
passés au
programme.

nvite de commandes - DisplayArguments /c argl atg2: =
rosoft Uindows 2888 [Vepsion 5.
Copyright 1985-2888 M osnft

>cd Programmes CH\Disy fArgunents\binsDebug™

Progranmes CH#\DisplayBrguments\hin\Debug>Displavfirguments ¢ argl arg2

programme a 3 arguments
L’ argunent @ est /c
1 e
2

argl
2 arg2
+ Entrée pour terminer...

Passer des arguments a partir d'une fenétre

Vous pouvez exécuter un programme comme DisplayArguments en
tapant son nom dans la ligne de commande d'une fenétre de commandes.
Vous pouvez aussi l'exécuter & partir de l'interface Windows en double-
cliquant sur le nom du fichier du programme, dans une fenétre ou dans
I'Explorateur Windows.

Comme le montre la Figure 7.5, un double clic sur le fichier
DisplayArguments exécute le programme comme si vous aviez entré son
nom sans arguments sur la ligne de commande :

Ce programme a 0 argument
Appuyez sur Entrée pour terminer...

Pour terminer le programme et fermer la fenétre, appuyez sur Entrée.

Faire glisser et déposer un ou plusieurs fichiers sur le fichier
DisplayArguments.exe exécute le programme comme si vous aviez
entré DisplayArguments noms des fichiers sur la ligne de commande.
(Pour faire glisser et déposer plusieurs fichiers a la fois, commencez par
les sélectionner en cliquant successivement sur chacun d'eux tout en
maintenant enfoncée la touche Ctrl, comme le montre la Figure 7.6 ; puis
faites glisser I'ensemble pour le déposer sur DisplayArguments.exe.)
Faire glisser et déposer simultanément les fichiers argl.txt et
arg2.txt sur DisplayArguments.exe provoque l'exécution du pro-
gramme avec plusieurs arguments comme le montre la Figure 7.7.

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’69

Figure 7.5
Dans
Windows,
VOus pouvez
exécuter un
programme
console en
double-
cliquant sur
le nom du
fichier
correspon-
dant.

Figure 76
Dans
Windows,
VOUS pouvez
faire glisser
et déposer un
fichier sur un
programme
console pour
déclencher
son
exécution.

{

Paste de travail

Favaris réseau

Internet Explorer

Démarrer Qutlook
Express

Corbeile

5

- Frécedente v

-} QRechercer

< Yoossers f >

=10l

Adresse | _d ot

:j P

fen

Modifiz e

M

Ce programme a @ arguments

fAppuyez sur Entrée pour terminer...

tisplavargumen

Casg [« Argurm

Talle | Tyge

-

Mes documerts

Interniet Explorer

Diémarrer Outlook
Espress

Corbeille

- Précéderte) gARectercher Y 4 o BHy
Adresse i; Detug ~ o0
Dessiers Talle | Type
4 be APpiCation
fdr Progras Debog (e
BN DisplayArgumenits v =i0jx|
Fichier Editon Affichage Favors Okl m
o Précédente v 2 DRechercher L Gossiers 4 -) X
Advesse || Crsplayi qurrarts] ek
Dassiers x | Tsile [Type

|
+ | Inetput

s

: 2l

2 Sedtir s

Apphaziond A}

e fidhners
et de fidwars

Do

- Arqurents
- bt
_ Debug i
+ bk
«
Z obiet{s) tiorng(s) 14 cotets

it Poste de traval

’ 70 Troisieme partie : Programmation et objets

La Figure 7.7 montre le résultat de l'exécution de 01
déposant dessus les fichiers argl. txt et argl . tur.

:
1

S | o cocumenits

Figure 7.7 : .
Faire glisser ;.«—J
W MCe programme a 2

des flChlerS L’ argument @ est C:\Pregrann C#N\DisplayfArgunentsi\argl . txt
sur [e nom L’ argument 1 _est Programmes CE\DisplayArgumentsi\arg2.txt

d'un
programme | Faverisréseau
produit le
méme
réSU[tat que Interret Explore
si vous
l‘aylez - e
execute a Demarrer Outhon!
partir de la Bpress
ligne de
commande
en lui
passant les " T tresteramans
noms des Corbeile - e

fichiers L e
correspon- < 12]
d a ntS . 2 obietis) sehectionnéis)
|

S RIG Y

-

{\ON /
N

Remarquez que Windows passe les fichiers a iisplz~irgurent = dans un

ordre quelconque.

Passer des arguments a partir de Visual
Studio .NET

Pour exécuter un programme a partir de Visual Studio .NET, commencez
par vous assurer que le programme est généré sans erreurs. Sélectionnez
Générer/Générer, et regardez si la fenétre Sortie affiche des erreurs. La
réponse satisfaisante est Génération : 1 2 réusci, 0 2 échoud, O a
été ipnové. Sice n'est pas ca, votre programme ne démarrera pas.

A partir de 13, I'exécution de votre programme sans lui passer d'arguments
est un jeu d'enfant. Si la génération a réussi, sélectionnez Déboguer/Démarrer
(ou appuyez sur F5), et le programme démarre.

Chapitre 7 : Mettre en marche quelques fonctions de grande classe ’ 7’

Par défaut, c'est sans arguments que Visual Studio exécute un programme.
Si ce n'est pas ce que vous voulez, vous devez indiquer a Visual Studio les
arguments a utiliser :

1. Ouvrez I'Explorateur de solutions en sélectionnant Affichage/
Explorateur de solutions.

La fenétre de I'Explorateur de solutions affiche une description de
votre solution. Une solution se compose d'un ou plusieurs projets.
Chaque projet est la description d'un programme. Par exemple, le
projet DisplayArguments dit que Classi.cs est I'un des fichiers de
ce programme et que celui-ci est une application console. Un projet
contient aussi d'autres propriétés, dont les arguments a utiliser
pour exécuter le programme avec Visual Studio.

Qe C'est au Chapitre 17 que je décris le fichier de solution.

2, Cliquez du bouton droit sur Displayvirgurents, et sélectionnez
Propriétés dans le menu qui apparait, comme le montre la Figure 7.8.

Une fenétre comme celle de la Figure 7.9 apparait, montrant beau-
coup de propriétés du projet avec lesquelles vous pouvez jouer. S'il
vous plait, ne le faites pas.

.. DisplayArguments - Microsoft Visual C#.NET [design] Clads ¢ ks =10 x|
Fichier Edition Affichage Projet Gérérer Déboguer Qutils FenStre Help

Ao HE . Debug -

Classl.cs l

MERY

= Displayirgumentsz

j oA Folution ‘DisplayArqurents (1 projst
ot S | Display Argument s
- 2| Fef W13 i

o R

v Genersr

puwslre ~iaz= Test REQérerer

. Ajauter 3
puwhlic stanic ant Main(string[] args
i Ajouter une reference. .

|
. o S e Ayouter une réference Wb
Flgure 78: co Writeline ("Ce progrsaos)
Lengthi Définnr camme projet de demarrage
Pour s Dsbonusr ,

acceder aux
propriétés
d'un projet,
cliquez du ; :
bouton droit et e

L Tl Erveqistrer Displayiv gurents
in args)

peoie. riteline ("L argueer

arc)

< SuUpprimer
sursonnom. L | Rerarrer
- Prét 1= Propridtés N l

3. Dans le volet de gauche de la fenétre Pages de propriétés, sous le
dossier Propriétés de configuration, sélectionnez Débogage.

7 72 Troisieme partie : Programmation et objets

Figure 7.9 :
Dansle
champ
Arguments
de la ligne de
commande
de la fenétre
Pages de
propriétés,
entrez les
arguments
du pro-
gramme.
|

Dans le volet de droite, dans la rubrique Options de démarrage, il y
aun champ nommé Arguments de la ligne de commande

: =g
Fichier
.E_D BETERE ¥ Debug v T M
Classl.cs \ t = Explorateur de sa\uﬁon;- 6isp|q, ‘il X
DR
o ;2 Sohtion TisplayArguments' (1 projet.
S i 51
v Gestionnaire de configurations. .. i
Frajet
plication:
Cremarrer LRL
A Fage de démsrrage
False
False
anage False
ar False
igne de cammar JlEETR IR
Taujaurs wriliser Inbeenzt Explore True
At ts de la ligne de ¢ d
Indique les arguments de la liane de commande & appeler lors de lexécution
du programme, Disponibles lorsque le mode Débogage est défini pour led ...
SR K A— L1
« 3K i Areuler Aide j j _.’.J
Prét 2
N
4. Tapez les arguments que vous voulez passer a votre programime

Ce programme
L'argument 0
L'argument 1
L'argument 2

quand il est lancé par Visual Studio.

Dans la Figure 7.9, ce sont les arguments /¢ argl arg? qui seront
passés au programme.

Cliquez sur OK, puis exécutez le programme normalement en
sélectionnant Déboguer/Démarrer.

Comme le montre la Figure 7.10, Visual Studio ouvre une fenétre
DOS avec les résultats attendus :

a 3 arguments
est /e

est argl

est argl

Appuyez sur Entrée pour terminer...

Chapitre 7 : Mettre en marche quelques fonctions de grande classe 1 73

Figure 7.10:
Visual Studio
peut passer
des argu-
ments a une
application
console.
|

A t, 228
Fichier Edition Affichage Proiet Gérérer Déboguer

Qutils Fenétre Help

Explo?atedr de solutions - tﬁspié, LB %

using Iyatew;

progranne
rgument @ ¢
L’ argunent 1
L' argument 2 e
Appuyez sur En

P “ B - ‘ ‘& ‘6 ?’% v
YRR = s Ga y Cebug
Classl.cs I
P:D:gp\aymguments Test _'J I M

ey
R
j 3 Sofution Cisplayargonents’ (1 projet,
s

E DisplayArguments

=10]x]

<

iSortie

La génération & réussi

12

Cniz ol cht T ms

La seule différence entre la sortie de 'exécution d'un programme a partir
de Visual Studio .NET et la sortie de I'exécution du méme programme a
partir de la ligne de commande est 'absence du nom du programme dans

l'affichage.

La fonction Writeline()

Vous avez peut-&tre remarqué que l'instructionWriteLine () que vous avez utilisée jusqu'a
maintenant dans divers programmes n'est rien d'autre qu'un appel a une fonction, invoquée
avec ce que I'on appelle une classe Console:

Console.WriteLine("ceci est un appel de fonction");

WriteLine () estl'une des nombreuses fonctions prédéfinies offertes par 'environnement
C#. Console estune classe prédéfinie qui se référe & la console de I'application.

7 74 Troisieme partie : Programmation et objets

L'argument de la fonction Writeline() que vous avez utilisée jusqu'ici dans divers
exemples estune simple chaine. L'opérateur "+' permet aux programmeurs de combiner des
chaines, ou de combiner une chaine et une variable intrinséque avant que le résultat de cette

opération soit passé & WriteLine() :

string s = "Sarah"
Console.WriteLine("Je m'appelle " + s + " et j'ai " + 3 + "ans.”);

Tout ce que voitWriteLine () dans cet exemple est "Je m'appelle Sarah etj'ai 3 ans."
Dans une autre forme, WriteLine () offre un ensemble d'arguments plus souple :

Console.WriteLine("Je m'appelle (0} et j'ai {1} anms.",
"Sarah", 3);

Ici, la chaine "Sarah" est insérée a |'endroit ol apparait le symbole {0}. Le zéro se référe au
premier argument qui suit la chaine elle-méme. Le nombre entier 3 est inséré & I'endroit
marqué par {1}. Cette forme est plus efficace que 'exemple précédent, car la concaténation
de chaines n'estpas une chose aussifacile gu'ily parait. C'estune tadche qui prend dutemps,
mais il faut bien que quelqu'un le fasse.

Il n'y aurait pas grand-chose d'autre a en dire si ¢'était 13 la seule différence. Mais cette
deuxiéme forme de WriteLine () offre également différentes possibilités de contrdle du
format de sortie. Je les décrirai au Chapitre 9.

Chapitre 8
Methodes de classe

Dans ce chapitre :

Passer un objet a une fonction.

Convertir en méthode une fonction membre.

Qu'est-ce que this ?

Créer une tres belle documentation.

L es fonctions décrites au Chapitre 7 sont un excellent moyen de diviser
un probléme de programmation en éléments plus petits et plus
maitrisables. La possibilité de passer a une fonction et de récupérer des
valeurs entiéres ou en virgule flottante permet au code de 'application de
communiquer avec elle.

Quelques variables ne peuvent communiquer que les informations qu'elles
contiennent. Un programme orienté objet repose sur le regroupement
d'informations dans des objets. C'est pour cette raison que C# offre un
moyen pratique et élégant de communiquer & des fonctions des objets de

classe.

Passer un objet a une fonction

Vous pouvez passer une référence a un objet comme argument a une
fonction de la méme maniére qu'une variable d'un type valeur, a une
différence prés : un objet est toujours passé par référence.

’ 76 Troisieme partie : Programmation et objets

Le petit programme suivant montre comment passer un objet a une
fonction :

/] PassObject - montre comment passer un objet
/! & une fonction
using System;
namespace PassObject
{
public class Student
(
public string sName;
]
public class Classl
{
public static void Main(string[] args)
{
Student student = new Student();
/] définit le nom en y accédant directement
Console.WritelLine("La premiére fois :");
student.sName = "Madeleine";
OutputName (student):
// change le nom en utilisant une fonction
Console.WriteLine("Aprés avoir été modifié :");
SetName (student, "Willa");

OutputName (student);

/! attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

}
// OutputName - affiche le nom de 1'étudiant
public static void OutputName(Student student)
{
/laffiche le nom de 1'étudiant courant
Console.WriteLine("Le nom de 1'étudiant est {0}", student.sName);
1
/! SetName - modifie le nom de 1'objet étudiant
public static void SetName(Student student, string sName)
{
student.sName = sName;

Le programme crée un objet de la classe Student, qui ne comporte rien
d’'autre qu'un nom. Ici, nous aimons la simplicité chez les étudiants. Le
programme commence par définir directement le nom de I'étudiant, et le

Chapitre 8 : Méthodes de classe ’ 77

passe a la fonction d'affichage OutputName (), qui affiche alors le nom de
tout objet de la classe Student qu'elle recoit.

Le programme change alors le nom de I'étudiant en appelant la fonction
SetName (). Comme en C#, tous les objets sont passés par référence, le
changement fait & student est répercuté dans la fonction appelante.
Lorsque Main () affiche & nouveau le nom de ['étudiant, celui-ci a changé :

La premiére fois :

Le nom de 1'étudiant est Madeleine
Aprés avoir été modifié :

Le nom de 1'étudiant est Willa
Appuyez sur Entrée pour terminer...

La fonction SetName () change le nom de l'objet student de la classe
Student, et cette modification est reprise par le programme appelant.

Définir des fonctions et des méthodes d'objet

Une classe est faite pour rassembler des éléments qui représentent des
objets ou des concepts du monde réel. Par exemple, une classe Vehicle
peut contenir des éléments qui sont des données telles que la vitesse
maximale, le poids, la capacité de charge, et ainsi de suite. Mais un objet
de la classe Vehicle posséde également des propriétés actives : la capa-
cité de démarrer, de s'arréter, et ainsi de suite. Celles-ci sont décrites par
des fonctions qui utilisent les données des objets de cette classe. Ses
fonctions font partie de la classe Vehicle tout autant que les propriétés
de ses objets.

Définir une fonction membre statique d'une
classe

Vous pourriez par exemple réécrire le programme de la section précédente
en 'améliorant un peu :

// PassObjectToMemberFunction - utilise des fonctions membres statiques
l pour manipuler des champs

/! , dans 1'objet

using System;

namespace PassCbjectToMemberFunction

’ 78 Troisieme partie : Programmation et objets

{
public class Student
{
public string sName;
// QutputName - affiche le nom de 1'étudiant
public static void OutputName(Student student)
{
//affiche le nom de 1'étudiant courant
Console.WriteLine("Le nom de 1'étudiant est {0}", student.sName);
)
// SetName - modifie le nom de 1'objet student
public static void SetName(Student student, string sName)
{
student.sName = sName;

)
public class Classl
{
public static void Main(string[] args)
{
Student student = new Student();
//définit le nom en y accédant directement
Console.Writeline("La premidre fois :");
student.sName = "Madeleine";
Student.OutputName (student);
//change le nom en utilisant une fonction
Console.WriteLine("Aprés avoir été modifié :");
Student.SetName(student, "Willa");
Student.OutputName (student);
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Ce programme ne présente qu'une différence significative avec le programme
PassObject de la section précédente : j'ai mis les fonctions OutputName () et
SetName () dans la classe Student.

Du fait de cette modification, Main () doit référencer la classe Student
dans les appels a SetName () et a QutputName (). Ces deux fonctions sont
maintenant des membres de la classe Student, et non de Classli, la
fonction dans laquelle réside Main ().

C'est une étape modeste mais significative. Placer QutputName () dans la
classe elle-méme la rend plus réutilisable : une fonction extérieure qui aura

Chapitre 8 : Méthodes de classe ’ 79

besoin d'afficher I'objet trouvera Outpurliame () avec d'autres fonctions
d'affichage & cet endroit, car faisant partie de la classe.

C'est également une meilleure solution d'un point de vue philosophique.
Classl ne doit pas avoir a se préoccuper de la maniére d'initialiser le
nom d'un objet Student, ni de la maniére d'afficher des éléments impor-
tants. C'est la classe Student qui doit contenir ces informations.

<8g

En fait, ce n'est pas Main () qui devrait commencer par initialiser le nom a
"Madeleine”. Elle devrait plutot appeler pour cela SetName ().

Depuis la classe Student, une fonction membre peut en invoquer une
autre sans avoir a évoquer explicitement le nom de la classe. Setllame ()
peut invoquer OutputName () sans avoir besoin pour cela de référencer le
nom de la classe. Si vous omettez celui-ci, C# suppose que la fonction &
laquelle vous voulez accéder appartient a la méme classe.

Définir une méthode

C'est par l'objet, et non par la classe, que l'on accéde & un membre donnée
d'un objet. On peut donc écrire :

Student student = new Student();
student.sName = "Madeleine";

C# vous permet d'invoquer de la méme maniére une fonction membre
non statique :

student.SetName("Madeleine”);

C'est la technique que montre I'exemple suivant :

// InvokeMethod - invoque une fonction membre & partir de 1'objet
' using System;
‘namespace InvokeMethod
{ e
. class Student
A
// le nom de 1'étudiant décrit 1'objet student
public string sFirstName;
public string slLastName;
/] SetName - met de c6té le nom de 1'étudiant

780 Troisiéme partie : Programmation et objets

public void SetName(string sFName, string sLName)
{
sFirstName = sFName;
sLastName = sLName;
}
// ToNameString - converti en chailne pour affichage
1/ 1'objet student
public string ToNameString()
{
string s = sFirstName + " " + sLastName;
return §;
}
}
public class Classl
{
public static void Main()
{
Student student = new Student();
student.SetName ("Stephen", "Davis");
Console.WritelLine("Le nom de 1'étudiant est "
+ gtudent.ToNameString());
// attend confirmation de 1'utilisateur
Console.Writeline("Appuyez sur Entrée pour terminer...");
Console.Read();

La sortie de ce programme est cette simple ligne :

Le nom de 1'étudiant est Stephen Davis

En dehors d'avoir un nom beaucoup plus court, ce programme est trés
semblable au programme PassObjectToMemberFunction que nous avons

vu plus haut. Cette fonction utilise des fonctions non statiques pour
manipuler un prénom et un nom.

Le programme commence par créer un nouvel objet, student, de la classe

Student. Il invoque ensuite la fonction SetName (), qui stocke les deux
chaines "Stephen” et "Davis” dans les membres donnée sFirstName et
sLastName. Enfin, le programme appelle la fonction membre
TolNameString(), quiretourne le nom complet de student en
concaténant les deux chaines.

Chapitre 8 : Méthodes de classe ,8 ’

Q’\)EZ Pa¢ Pour des raisons historiques qui n'ont rien a voir avec C#, une fonction
S Y membre non statique est communément appelée une méthode. J'utilise le
“a terme méthode pour une fonction membre non statique, et le terme
fonction pour toutes les autres fonctions.

Regardez a nouveau la fonction Setliame {) qui met a jour le nom et le
prénom dans un objet de la classe Student. Quel objet modifie
SetName (} ? Pour voir le probléeme, considérez I'exemple suivant :

Student christa = new Student();
Student sarah = new Student():
christa.SetName("Christa", "Smith");
sarah.SetName("Sarah", "Jones");

Le premier appel a SetName () met a jour le nom et le prénom de 'objet
christa. Le deuxiéme appel met a jour l'objet sarah.

{4
< Voila pourquoi un programmeur C# dit que cette méthode opeére sur
I'objet courant. Dans le premier appel, I'objet courant est christa, dans le
deuxiéme, c'est sarah.

Pourquoi des méthodes ?

Pourquoi des méthodes ? Pourquoi de simples fonctions ne suffiraient-elles pas ? Les
méthodes jouent deux réles différents mais importants.

La méthode SetName () masque les détails de la maniére dont les noms sont stockés dans
la classe Student. Ce sont des informations dont des fonctions extérieures a Student ne
sont pas censées avoir besoin. C'est un peu comme la maniére dont nous utilisons les
boutons d'un four & micro-ondes : ces boutons masquent le fonctionnement interne de
V'appareil, gue nous n'avons pas besoin de connaitre.

Le second rdle d'une méthode est de représenter les propriétés véritables de la classe. Un

~avion peut accélérer, virer, décoller et atterrir (entre autres choses). Une classe Airplane
compléte devrait donc comporter les méthodes Accelerate(), Bank (), TakeOff (), et
Land (), reproduisant fidélement ces propriétés. Mettre la représentation d'une classe en
accord avec son équivalent du monde réel permet de penser & un programme dans des
termes qui sont ceux du véritable probléme, plutét qu'en un vocabulaire artificiel dicté parle
langage de programmation utilisé.

’82 Troisieme partie : Programmation et objets

Le nom complet d'une méthode

La description que j'ai faite du nom d'une méthode comporte un probléme
subtil mais important. Pour le voir, examinez 'exemple de code suivant :

public class Person
{
public void Address()
{
Console.WriteLine("Hi");
}
}
public clags Letter
{
string sAddress:
//met de c6té 1'adresse
public void Address(string sNewAddress)
{
sAddress = sNewAddress;
]
}

Toute considération ultérieure sur la méthode 4ddress () est maintenant
ambigué. La méthode Address () de Person n'arien a voir avec la méthode
Address () de Letter. Si un ami programmeur me dit d'utiliser la méthode
Address(;, de quelle Address{) parle-t-il 7

Le probléme ne vient pas des méthodes elles-mémes mais de ma description.
En fait, il n'y a pas de méthode Address (), mais seulement une méthode
Person.Address () et une méthode Letter.Address (). Ajouter le nom de la
classe au début du nom de la méthode indique clairement de quelle méthode
il s'agit.

Cette description est trés semblable a la question des noms propres.
Dans ma famille, on m'appelle Stephen. Il n'y a pas d'autre Stephen dans
ma famille, mais il y en a deux autres Ia ou je travaille.

Si je déjeune avec quelques collegues et que les deux autres Stephen ne sont
pas 13, il est évident que le nom Stephen se référe a moi. Mais de retour dans
les bureaus, si vous appelez le nom "Stephen’, c'est ambigu car il peut se
référer & n'importe lequel de nous trois. Il vous faudra donc appeler "Stephen
Davis" pour éviter la confusion avec "Stephen Williams" ou "Stephen Leija".

Autrement dit, vous pouvez considérer Address () comme le prénom, ou
le surnom, d'une méthode.

Chapitre 8 : Méthodes de classe 783

(\ON / [y . B
4&“ . Lenom de la classe est un autre moyen de différencier des noms de méthode
< surchargés, les autres étant les noms et le nombre de ses arguments de
fonction.

Accéder a l'objet courant

\

Examinez la méthode Student . Setlame !) suivante :

class Student
{
/l1le nom de 1'étudiant décrit 1'objet student
public string sFirstName;
public string sLastName;
/] SetName - met de c6té le nom de 1'étudiant
public void SetName(string sFName, string sLName)
{
gFirstName = gFName;
sLastName = sLName;
}
}
public clagss Classl
{
public static void Main()
{
Student studentl = new Student();
studentl.SetName("Joseph™, "Smith");
Student student2 = new Student():
student?2.SetName ("John", "Davis");
}
}

La fonction Main () utilise la méthode SetName (} pour mettre a jour
d'abord student1, puis student2. Mais vous ne voyez de référence a
aucun objet de la classe Student dans la méthode SetName () elle-méme.
En fait, elle ne contient aucune référence a un objet de la classe Student.
Une méthode opére sur "l'objet courant”. Comment fait-elle pour savoir
quel est I'objet courant ? L'objet courant est prié de se lever.

La réponse est simple. L'objet courant est passé comme argument implicite
dans l'appel a la méthode. Par exemple :

studentl,SetName("Joseph”, "Smith");

’84 Troisieme partie : Programmation et objets

Cet appel est équivalent a:

Student.SetName (studentl, "Joseph", "Smith"); //appel équivalent
// (mais ceci ne sera pas
// généré correctement)

Je ne suis pas en train de dire que vous pouvez invoquer SetNaxe () de deux
maniéres différentes, mais simplement que les deux appels sont équivalents
d'un point de vue sémantique. L.'objet qui se trouve juste a gauche de "." (le
premier argument caché) est passé a la fonction tout comme les autres
arguments.

Passer un objet implicitement est facile a avaler, mais que diriez-vous
d'une référence d'une méthode & une autre ?

public class Student
{
public string sFirstName;
public string sLastName;
public void SetName(string sFirstName, string sLastName)
{
SetFirstName (sFirstName);
SetLastName (sLastName) ;

}

public void SetFirstName(string sName)

{
sFirstName = sName;
!
public void SetLastName(string sName)
{
sLastName = sName;
}
}

Aucun objet n'apparait dans I'appel a SetFirstName (). L'objet courant
continue a étre passé en silence d'un appel de méthode au suivant. Un
acces a n'importe quel membre depuis une méthode d'objet est censé
concerner l'objet courant.

Ou'est-ce que this ?

Contrairement a la plupart des arguments, toutefois, I'objet courant n'appa-
rait pas dans la liste des arguments de la fonction et ne se voit donc pas
assigner un nom par le programmeur. Au lieu de cela, C# assigne a cet objet
le nom this,

Chapitre 8 : Méthodes de classe ’85

this est un mot-clé, et ne doit donc étre utilisé pour rien d'autre.

On pourrait donc écrire I'exemple précédent de la facon suivante :

public class Student
{
public string sFirstName;
public string sLastName;
~public void SetName(string sFirstName, string sLastName)
{
/] référence explicitement "l'objet courant" référencés par this
this.SetFirstName(sFirstName);
this.SetLastName (sLastName);
1}
public void SetFirstName(string sName)
{
this.sFirgtName = gName;
}
public void SetLastName(string sName)
{
this,sLastName = sName;
}
}

Remarquez l'introduction explicite du mot-clé this. Ajouter this aux
références au membre n'ajoute en fait rien, car this est implicitement
supposé. Toutefois, quand Main () effectue I'appel suivant, this référence
studentl partout dans SetName () et dans toute autre méthode que
pourrait appeler Main().

gtudentl.SetName ("John", "Smith");

Ouand this est-il explicite ?

Normalement, il n'est pas nécessaire de se référer explicitement a this,
car il est implicitement compris par le compilateur 1a ot il est nécessaire.
Toutefois, il y a deux cas assez courants dans lesquels this est nécessaire.
Tout d'abord, pour initialiser un membre donnée :

/1 Address - définit un "cadre de base” pour une adresse aux USA
- class Person

* public string sName;

’86 Troisieme partie : Programmation et objets

public int nID;
public void Init{string sName, int nID)
{
this.sName = sName;
this.nID = nlD;
}

Ty

Les arguments de la méthode Tnit () sont nommés sName et nID, ce qui
est identique aux noms des membres donnée correspondants. Cette
disposition rend la fonction facile a lire, car elle permet de savoir exacte-
ment ol est stocké quel argument. Le seul probléme est que le nom sliare
dans la liste des arguments rend obscur le nom du membre donnée.

L'introduction de this permet de savoir de quel sName il s'agit : dans
Init (), le nom sName se référe a 'argument de la fonction, alors que
this.sName se référe au membre donnée.

Vous aurez également besoin de this pour mettre de coté l'objet courant
afin de l'utiliser ultérieurement ou de le faire utiliser par une autre fonction.
Regardez I'exemple suivant, ReferencingThisExplicitly:

/| ReferencingThisExplicitly - ce programme montre

/1 comment utiliser explicitement la référence & this

using System;

namespace ReferencingThisExplicitly

(

public class Classl
{
public static int Main(string[] strings)
{
[lcrée un objet student
Student student = new Student();
student.Init("Stephen Davis", 1234);
//inscrit 1'étudiant & un cours
Console.WriteLine
("Inscription de Stephen Davis & Biologie 101");

student.Enroll("Biologie 101");
//affichage des cours auxquels est inscrit 1'étudiant
Congole.WriteLine("Nouvelles caractéristiques de 1'étudiant :");
student.DisplayCourse();
/! attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Congole.Read();
return 0;

Chapitre 8 : Méthodes de classe 187

// Student - notre étudiant d'université
public class Student
{
//tout étudiant a un nom et un numéro d'identification (id)
public string sName;
public int niD;
//le cours auquel est inscrit 1'étudiant
Courselnstance courselnstance;
// Init - initialise 1'objet student
public void Init(string sName, int nID)
(
thig.sName = sName;
this.nID = nlD;
courselnstance = null;
}
// Enroll - inscrit 1'étudiant courant & un cours
public void Enroll(string sCourseID)
(
courselnstance = new Courselnstance();
courselnstance.Init(this, sCourselD);
)
//affiche le nom de 1'étudiant
/let le cours
public void DisplayCourse()
{
Console.WriteLine(sName);
courseInstance.Display();

}
}
// Courselnstance - associe 1'étudiant au cours
1! auquel il est inscrit

public class Courselnstance
{
public Student student;
public string sCourselD;
/] Init - établit le lien entre 1'étudiant et le cours
public void Init(Student student, string sCourseID)
{
this.student = student;
this.sCourseID = sCourselD;
}
/! Display - affiche 1'intitulé du cours
public void Display()
{
Console.WriteLine(sCourseID);
)

788 Troisieme partie : Programmation et objets

Ce programme est trés quelconque. L'objet de la classe Student peut contenir
un nom, un identificateur, et un seul type de cours universitaire (ce n'est pas
un étudiant trés occupé). Main () crée I'étudiant, puis invoque Init{) pour
initialiser l'objet de la classe Student. A ce point, la référence cours=Tnsrance
recoit la valeur null, car I'étudiant ne s'est pas encore inscrit au cours.

La méthode Enroll () inscrit I'étudiant en initialisant courseInstance avec
un nouvel objet. Toutefois, la méthode CourseInstance.Iniz{) prend un
étudiant comme premier argument avec l'identificateur du cours comme
deuxieme argument. Quel étudiant faut-il passer ? Il est évident qu’il faut
passer I'étudiant courant, celui auquel se référe +his (on peut donc dire
que Enroll () inscrit cet (this) étudiant au cours Courseinstance). Les
méthodes Display () affichent I'étudiant et les noms des cours.

Et quand je n'ai pas this ?

Mélanger des fonctions de classe et des méthodes d'objet, c'est un peu comme
de mélanger des cow-boys et les propriétaires de ranch. Heureusement, C#
vous donne quelque moyen de contourner les problémes relationnels de ces
créatures. Ca me rappelle un peu la chanson d'Oklahoma! : "Oh, la fonction et
la méthode peuvent étre amies..."

Pour voir le probléme, regardez I'exemple de programme
MixingFunctionsAndMethods :

ARG,
SR // MixzingFunctionsAndMethods - mélanger des fonctions de classe et

1/ des méthodes d'objet peut causer des problémes
using System; ‘
namespace MixingFunctionsAndMethods
{
public class Student
{
public string sFirstName;
public string sLastName;
// InitStudent - initialise 1'objet student
public void InitStudent(string sFirstName, string slastName)
{
thig.sFirstName = sFirstName;
this.sLastName = slastName;
}
// OutputBanner - affiche 1'introduction
public static void OutputBanner()
{

Console.WriteLine("Regardez comme je suis malin :");

&

T

Chapitre 8 : Méthodes de classe ’89

// Console.WriteLine(? quel objet student utilisons-nous ?);
)
public void OutputBannerAndName()
{
/] c'est la classe Student qui est supposée mais pas ¢a
/] 1'objet est passé & la méthode statique
OutputBanner();
/] ce n'est pas 1'objet this qui est passé mais 1'objet
/] student courant qui est passé explicitement
OutputName (this);
}
// OutputName - affiche le nom de 1'étudiant
public static void OutputName(Student student)
{
/] ici, 1'objet student est référencé explicitement
Console.WriteLine("Le nom de 1'étudiant est {0)",
student.ToNameString());
}
// ToNameString - va chercher le nom de 1'étudiant
public string ToNameString()
{
/] ici, le nom de 1l'objet courant est implicite -
/] ce qui aurait pu 8tre écrit :

/! return this.sFirstName + " " + this.slLastName;
return sFirstName + " " + slastName;
}
}
public class Classl
{
public static void Main(string[] args)
{
Student student = new Student();
student.InitStudent("Madeleine", "Cather");
/[affiche la banniére et le nom
Student.OutputBanner () ;
Student.OutputName (student);
Console.WriteLine();
/1 affiche & nouveau la banniére et le nom
student.OutputBannerAndName() ;
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer..."):
Console.Read();
}
}

Commencez par le bas, avec Main (), pour mieux voir le probléme. Ce
programme commence par créer un objet Student et initialiser son nom.

790 Troisieme partie : Programmation et objets

\ 74}
Q$\) §

S
=

Maintenant, ce nigaud (le programme, pas I'étudiant) veut simplement
afficher le nom, précédé par un bref message et une banniére.

Main () commence par afficher la banniére et le message en utilisant des
fonctions de classe. Le programme invoque la fonction OutputBanner ()
pour la bannieére, et la fonction OutputName () pour afficher le message et
le nom de I'étudiant. La fonction OutputBanner () affiche simplement un
message sur la console. Main () passe l'objet student comme argument a
OutputName () afin que celle-ci puisse afficher le nom de I'étudiant.

Ensuite, Main () utilise I'approche de la fonction ou de la méthode d'objet
pour afficher la banniére et le message en appelant
student.OutputBannerandName ().

OutputBannerAndName () commence par invoquer la fonction statique
OutputBanner (). La classe Student est supposée. Aucun objet n'est passé,
car la fonction statique n'en a pas besoin. Ensuite, OutputBannerAndName ()
appelle la fonction CutputName (). Celle-ci est également une fonction
statique mais un objet de la classe Student lui est passé comme argument
par OutputBannerAndName ().

Un cas plus intéressant est I'appel de ToNameString () depuis OutputName ().
Cette derniére fonction est déclarée s+atic, et par conséquent n'a pas de
this. Elle a un objet explicite de la classe Student qu'elle utilise pour réaliser
cet appel.

La fonction OutputBanner () voudrait peut-étre pouvoir appeler aussi
ToNameString (), mais elle n'a pas d'objet de la classe Student a utiliser.
Elle n'a pas de pointeur this parce que c'est une fonction statique et
qu'aucun objet ne lui a été passé explicitement.

Une fonction statique ne peut pas appeler une méthode non statique sans
lui passer explicitement un objet. Pas d'objet, pas d'appel.

Obtenir de l'aide de Uisual Studio — la saisie
automatique

Visual Studio .NET comporte une fonction de saisie automatique extréme-
ment utile au programmeur. Lorsque vous tapez le nom d'une classe ou
d'un objet dans votre code source, Visual Studio utilise les premiers
caracteéres que vous tapez pour anticiper la suite et vous proposer un
choix de noms parmi lesquels se trouve celui que vous voulez saisir.

Figure 8.1:
La fonction
de saisie
automatique
de Visual
Studio est
une aide
précieuse
pour choisir
la bonne
méthode.

Chapitre 8 : Méthodes de classe

Cette fonction de saisie automatique est plus facile a décrire par un
exemple. J'utiliserai pour cela le fragment suivant du code source du
programme MixingFunctionsAndMethods :

// affiche la banniére et le nom
Student.OutputBanner() ;

Student.OutputName (student);
Console.WriteLine();

/! affiche & nouveau la bannidre et le nom
student.OutputBannerAndName () ;

Obtenir de l'aide sur les fonctions intégrées de
la bibliothéque standard C#

Dans le fragment de code ci-dessus, lorsque je tape Console., Visual
Studio affiche la liste des méthodes de Console. Lorsque que je tape le W,
Visual Studio sélectionne dans cette liste la premiere méthode dont le
nom commence par W, qui est Write (). Le déplacement de la sélection
d'un cran vers le bas, en utilisant la touche de curseur correspondante,
sélectionne WriteLine (). A droite de la liste, en regard de WriteLine (],
apparait une info-bulle qui en contient la description, comme le montre la
Figure 8.1. Cette info-bulle indique également qu'il existe dix-huit autres
versions surchargées de la fonction WriteLine () (chacune avec un
ensemble d'arguments différent, bien str).

— S
Frudent student = nEw Student {0
t.InitStudent ("Madeleine”, “Carhsr');
Arudent ooucpucBannsr ()
Frudent . CurputName (student)
Console. W
T @ cpenStandardoutot aff
srails = 1) 7
0 ad Lo
Iy & Feadune =ur Entres pour rerwliner...”
i o & PeferenceEquals
'
¥ -
@ irite: : .
.—'.L_..._,.—_—..——_—.-——— & vaid Corsole, Wnkebing (string Format, patams shisct[arg) (+ 18 surcharges) B
Prét Ln 56 otz chi3 NS

Il me reste & compléter le nom de Ja fonction, Writeline. Dés que je tape la
parenthése ouvrante, Visual Studio affiche une info-bulle indiquant les argu-
ments que comporte la fonction, comme le montre la Figure 8.2. Remarquez

191

’92 Troisieme partie : Programmation et objets

Figure 8.2:
La fonction
de saisie
automatique
affiche aussi
la liste des
arguments
pour la
version de
votre choix
dela
fonction

WriteLine().

<

que cette info-bulle commence par indiquer le numéro de la version de la
fonction parmi toutes celles qui existent, avec deux fleches qui permettent de
faire défiler ces versions pour identifier celle que vous voulez.

.. MiningFunctionsAndMetheds - Microsoft Visual CANEL 14 IS
Fichier Edition hage Proiet Genérer Déboguer
%% % % .
ww - s Debu v b DI £
Classl.cs* I ® - Explorateur de sclutions - Mixin.., & X

oo
b Seiution MrdngFunctionssndiethads'
j - E MixingFunctionsAndMethods

+

F 3$MianaFunchicnsandiethods Classt

:j f.r-w.am««:.mng[} arash

"+ sLastlame;

ot Maan(ztraing (] args)

ent =tudent

', M"lather”);

dritetine: (string format, pararms objsct] arwﬂ
sCurputBannerAindllsaee () 2

Writeline ("Lppuyez sur Entrée pour terwiner...”

ole Read i

Ha

Ced 31 Chaz

3
NG

Fréy Lri 56

Vous n'avez donc pas besoin de taper le nom de la fonction. Imaginez que
vous ayez tapé WriteL pour identifier exactement la méthode voulue. En
voyant le nom WriteLine sélectionné dans la liste, il vous suffit de taper
une parenthése ouvrante pour que Visual Studio compléte automatique-
ment ce nom pour vous, apres quoi, il vous restera a taper les paramétres
que vous voulez passer, et la parenthése fermante.

Pour faire apparaitre la description des arguments de la version de
WriteLine () que vous cherchez, cliquez sur I'une des fleches dans I'info-
bulle qui apparait lorsque vous tapez la parenthése ouvrante. Dans cette
info-bulle, la description du premier argument que vous avez a saisir
apparait en gras, comme le montre la Figure 8.2.

Aussitot que j'ai entré la chaine "chaine”, et une virgule, Visual Studio met
en gras la description du prochain argument a saisir, comme le montre la
Figure 8.3.

Chapitre 8 : Méthodes de classe 793

., MiningFunctionsAndMethods - Microsoft Visual C#NET [designt =121 %]
Fichier Edition Affichage Projet Générer Deéboguer Qutils Fepdtre Help
A : %% % %,
- . @ - s Debug - e
Classt.cs* l Esplorateur de solutions - Moan.,, & %
[2 210 mgFunatensandiethod] [@Mainistrro) arasi =] FE
e et e e e B scltien My ingFunchonsandethods'
. o R :‘j - 8 MixingFunctionsAndMethods
T 1 gFirsrMame + " " + sLastMame;] Classt.cs
pudnlie lasz Tlasal
IR
Figure 8.3: 1
A chaque
étape, Visual i
B chaine',
Stl‘_ldlo eline (string forrrat, params object{] "Lﬂ
affiche en i (] 5
gras la . Jirineline ("Appuyes Sur Entrés pour rerminer...”
description Beadi];
du prochain
argument a :
. -
saisir. <« | :JFJ 4 | »
r—————)E))) nse Col4a ch3t i

Dés que vous tapez la virgule qui suit un argument apres l'avoir saisi, Visual
Studio affiche en gras dans l'info-bulle la description du prochain argument
a saisir. Bien sur, cette aide est disponible pour toutes les méthodes
intégrées de la bibliothéque standard C# utilisées par votre programme.

Obtenir de 'aide sur vos propres fonctions et
méthodes

Vous pouvez aussi obtenir de l'aide sur vos propres fonctions.

En continuant avec 'exemple de la section précédente, j'efface la chaine
"chalne” pour la remplacer intentionnellement par une chaine vide :
Console.WriteLire{).Sur laligne suivante, je tape "student.”". Dés que
j'ai tapé le point, Visual Studio affiche la liste des membres de 'objet
student, comme le montre la Figure 8.4.

Remarquez les icones qui préceédent les noms des méthodes dans la fenétre
d'aide : un petit rectangle qui penche vers la droite indique un membre
donnée ; un petit rectangle qui penche vers la gauche indique une méthode.

194 Troisieme partie : Programmation et objets

-+, MiningFunctionsAndMethods - Microsoft Visual CRNET Tdesion] - (it =18l x
Edition Projet Générer Deboguer Fenétre Help
05 % b an + %% % %
e TR I - O- o - os LT
Class1l.cs* \ ; i Evplorateur de solutions - Mixin,,. &

[* #¥inaFonction sandethiad] | emaristing] angst -] :
-
B, j o Solution M naFunctiansAndiethids’
: ~i

@ MixingFi

1 sFiraclaes 4+ " 7+ zLastlame;

oowoad Malnistvang[] args)

"Cather "y

L]

Figure 8.4 :

La saisie

automatique

est égale- ;

ment sur Entree pouwr ferminsr..."ji:

disponible : & Intsiudert

pour vos o 0 oo Student, SutputBanner Andisme]

propres ¢ sLssrtiame .

methodes. i 2 ,

R Lnss Cal15 chis IN|

Qe . . N . . P
Ces icOnes sont faciles a reconnaitre. Celle d'un membre donnée est en
bleu clair. celle d'une méthode est en violet et précédée de trois traits
horizontaux.
Dans la fenétre, il y a des méthodes que je ne reconnais pas. Ce sont des
méthodes de base que recoivent d'office tous les objets. Dans ce groupe de
méthodes standard, vous voyez notre propre OutputBannerAndlame (). Dés
que je tape le O, elle est mise en surbrillance, et I'info-bulle apparait pour
en décrire les arguments, afin que je sache comment ['utiliser.

L Encore une fois, il vous suffit alors de taper une parenthése ouvrante

pour que le nom de la méthode, préalablement mis en surbriilance dans
la liste, soit automatiquement complété.

Cette aide marche aussi pour les fonctions. Lorsque j'entre le nom de
classe Student suivi par un point, Visual Studio affiche la liste des
membres de Student. Si je tape ensuite OutputN, Visual Studio affiche
I'info-bulle contenant la liste des arguments de OutputlName (), comme le
montre la Figure 8.5.

Figure 8.5:
La fonction
de saisie
automatique
de Visual
Studio donne
beaucoup
d'informa-
tion, pour les
méthades
d‘objet
comme pour
les fonctions
de classe.

Chapitre 8 : Méthodes de classe ’95

*:. MixingFunctionsAndMethods - Microsolk Visiial C#NET

Eichier ~ Edition Affichage Erojet Générer Deéboguer
D = % % N,
[EA RSP - &l s Lstug . - »
Classi.cs* I Explorsteur de solutions - Mixn.,, 3 x|
P:M\‘mgFunct«nr.-;AndM?thod»:. Class :j rbmamlsr,mng[] A1) :J - .
j 3 Salution FangfuncionsAndhetheds'
2} - B MiangFunctionsAndMethads
return sFirstlsme + " " + sLastNane;
pudilie olasz Clazal
pukrlic Fratic wold Mainistring[] aras)
Student student = new foudenc i)
student . Initstw
! Liveior im Ee
Ztudent . OutputBanner i)
Tadent, out pu\:N‘l
CENS0 4 Equsls
T @ CutputBarner
EJDGENNY O tputiame dert -:-tuderrt?wl
Z CErInEY. .. "
\
-
4 LY IESY SR
prét Lnss Col 2z chzz s

Encore plus d'aide

La fonction de saisie automatique de

Visual Studio apporte une aide

importante en anticipant sur les membres que vous voulez saisir dés que
vous entrez le nom de la classe ou de l'objet.

Visual Studio ne peut fournir qu'une aide limitée pour les fonctions et les
classes créées par l'utilisateur. Par exemple, il ne sait pas ce que fait la
méthode OutputName (). Heureusement, Visual Studio vous offre un

moyen détourné de dire a la fonction
fonction, et méme un peu plus.

de saisie automatique ce que fait la

Pour indiquer une ligne de commentaire normal, vous utilisez deux barres
obliques : //. Mais Visual Studio comprend aussi comme un commentaire
spécial ce qui est indiqué par trois barres obliques : ///. Un tel commentaire
de documentation permet de donner a Visual Studio des informations supplé-
mentaires, utilisables par la fonction de saisie automatique.

796 Troisieme partie : Programmation et objets

,\gc,HNloa Pour €tre honnéte, c'est le langage Java qui a introduit cette idée. Java
dispose d'un programme supplémentaire capable d'extraire les commen-
taires marqués par ces trois barres obliques pour les rassembler dans un
fichier de documentation séparé. C# a apporté une amélioration a cette
innovation : l'aide en cours d'édition.

NOr

Un commentaire de documentation peut contenir n'importe quelle
combinaison des commandes montrées par le Tableau 8.1.

Tableau 8.1 : Balises communes des commentaires de documentation.

Balise Signification

<param></param> Description d'un argument de la fonction, affichée par I'aide aprés la
saisie du nom de [a fonction et de la parenthése ouvrante, expliquant
Ce que vous avez a saisir.

<summary></summary> Description de la fonction elle-méme, affichée en cours d'édition
fors de la saisie du nom de fa fonction.

<returns></returns> Description de la valeur retournée par la fonction.

SWON/ - Un commentaire de documentation doit se conformer a la régle XML/HTML :
S une commande commence par {command> et se termine par </ccmmand>.

En fait, on les appelle ordinairement balises XML, du fait de leur relation
avec XML.

<

&
)
2

«@‘,\'\Nlo(/@ Vous disposez de bien d'autres balises XML. Pour en savoir plus a leur
sujet, consultez l'aide en ligne de Visual Studio (plus officiellement connue
sous le nom de MSDN pour Visual Studio) en sélectionnant ?/Index, et tapez
"XML" dans le champ Rechercher.

L'exemple suivant est une version commentée du programme
MixingFunctionsAndMethods

/1 MixingFunctionsAndMethods - mélanger des fonctions de classe et des
/! méthodes d'objet peut causer des problémes
using System; ‘
namespace MixingFunctionsAndMethods
{

/1] <summary>

/1] simple description d'un étudiant

726 Troisiéme partie : Programmation et objets

thisStudent.dGPA = dGPA;
/] ajoute 1'objet Student au tableau
students{i] = thisStudent;
}
/! calcule la moyenne des étudiants du tableau
double dSum = 0.0;
for (int i = 0; i < students.length; i++)
{
dSum += gstudents[i].dGPA;
}
double dAvg = dSum/students.Length;
// output the average
Console.WriteLine();
Console.WriteLine("La moyenne générale des "
+ students.Length
+ " étudiants est " + dAvg);
/] attend confirmation de l'utilisateur
Console.Writeline("Appuyez sur Entrée pour terminer...");
Console.Read();

Le programme demande a l'utilisateur le nombre d'étudiants a prendre en
compte. Il crée ensuite le tableau de références & des objets Studenrt,
correctement dimensionné.

Le programme entre maintenant dans une boucle for initiale qui va lui
permettre de remplir le tableau. L'utilisateur se voit demander le nombre
et la moyenne des UV de chaque étudiant, 'un aprés l'autre. Ces données
sont utilisées pour créer un objet de Student, qui devient aussitot le
nouvel élément du tableau.

Une fois que toutes les références a des objets de Student sont a leur place, le
programme entre dans une deuxiéme boucle. Dans celle-ci, la moyenne des UV
de chaque étudiant est lue au moyen de l'instruction students[1i].GPA. Toutes
ces moyennes sont arrondies et additionnées, la moyenne générale en est
calculée, puis finalement affichée pour l'utilisateur.

Voici un exemple de résultats affichés par ce programme :

Entrez le nombre d'étudiants

3

Entrez le nom de 1'étudiant 1: Randy
Entrez sa moyenne de points d'UV : 3.0
Entrez le nom de 1'étudiant 2: Jeff

’24 Troisiéme partie : Programmation et objets

Des tableaux d'objets

Les programmeurs ont souvent besoin de travailler avec des ensembles
d'objets définis par l'utilisateur. Par exemple, une université aura besoin
de définir une structure pour décrire la population des étudiants qui
suivent ses cours.

Une classe Student simplifiée peut se définir ainsi :

public class Student
{

public string sName;

public double dGPA; /! moyenne des points d'UV
}

Cette classe ne contient rien d'autre que le nom de I'étudiant et la
moyenne des points de ses "unités de valeur” (ou UV). Je mets "unités de
valeur” entre guillemets parce que cet exemple (et tous ceux qui suivent
jusqu'a la fin du chapitre) repose sur le systéme universitaire américain,
dans lequel la notion de "grade" correspond trés approximativement a
nos UV (GPA signifie Grade Point Average, autrement dit, dans notre
exemple, moyenne des points d'UV).

La ligne suivante déclare un tableau de num références a des objets de la
classe Stucent :

Student{] students = new Student[num];

new Student [num] ne déclare pas un tableau d'objets de la classe
Student. Cette ligne déclare un tableau de références a des objets de la
classe Student.

Jusqu'ici, chaque élément students[i] référence l'objet null. On pour-
rait aussi dire qu'aucun des éléments du tableau ne pointe vers un objet
de Student. Il faut commencer par remplir le tableau, comme ceci :

for (int 1 = 0; i < students.length; i++)
{
students[i] = new Students();

}

722 Troisieme partie : Programmation et objets

Entrez la valeur n®5: 5

3 est lamoyenne de (1 +2+3+4+5) /5
Appuyez sur Entrée pour terminer...

Le programme VariableArrayAverage commence par demander &
I'utilisateur le nombre de valeurs dont il veut calculer la moyenne. Le
résultat est stocké dans la variable int numElements. Dans I'exemple ci-
dessus, j'ai entré la valeur 5.

Le programme continue en définissant le tableau d4rray avec le nombre
d'éléments spécifié. Dans ce cas, il définit un tableau a cinq éléments. Puis
le programme effectue une boucle avec le nombre d'itérations spécifié par
numElements, lisant chaque fois une nouvelle valeur entrée par ['utilisateur.

Une fois que 'utilisateur a entré les valeurs, le programme applique le
méme algorithme utilisé par le programme FixedArrayAverage pour
calculer la moyenne des valeurs.

Enfin, la section finale affiche le résultat du calcul, avec les valeurs qui
ont été entrées, dans une présentation agréable a lire.

Il n'est pas toujours facile d'obtenir un affichage satisfaisant sur la
console. Examinez soigneusement chaque instruction du programme
FixedArrayAverage, les accolades ouvrantes, les signes égale, les
signes plus, et toutes les valeurs de la séquence, et comparez le tout
avec l'affichage.

Le programme VariableArrayAverage ne satisfait pas entiérement ma soif
de souplesse. Je ne veux pas avoir besoin de lui dire de combien de valeurs
je veux faire la moyenne. Je préfére entrer autant de nombres que je veux, et
demander au programme au moment que je choisis de calculer la moyenne
de ce que jai entré. C# offre d'autres types de conteneurs, dont certains que
je peux agrandir ou réduire a volonté. lls sont décrits au Chapitre 16.

La propriété 1.ength

La boucle for que nous avons utilisée pour remplir le tableau dans le
programme VariableArrayAverage commence de la facon suivante :

/! déclare un tableau de la taille correspondante
double[] dArray = new double[numElements];

/] remplit le tableau avec les valeurs

for (int i = 0; i < numElements; i++)

,20 Troisieme partie : Programmation et objets

Le tableau a longueur variable

Le tableau utilisé dans I'exemple de programme FixedArrayAverage
souffre de deux problemes sérieux. Tout d'abord, la taille du tableau est
fixée & dix éléments. Pire encore, la valeur de ces dix éléments est directe-
ment spécifiée dans le programme.

Un programme qui pourrait lire un nombre variable de valeurs, éventuel-
lement déterminées par l'utilisateur au cours de I'exécution, serait beau-
coup plus souple. Il fonctionnerait non seulement pour les dix valeurs
spécifiées dans FixedArrayAverage, mais aussi pour n'importe quel autre
ensemble de valeurs.

La déclaration d'un tableau de longueur variable difféere 1égérement de
celle d'un tableau de longueur fixe et a valeurs fixes :

doublel] dArray = new double[N];
N représente le nombre d'éléments a allouer.
La nouvelle version de ce programme, VariableArrayAverage, permet a
I'utilisateur de spécifier le nombre de valeurs a entrer. Comme ce programme

conserve les valeurs entrées, non seulement il calcule la moyenne, mais il
affiche aussi les résultats dans un format agréable :

/] VarzableArrayAverage - fait la moyenne des valeurs

1/ d'un tableau dont la taille est détermlnee ‘
/1 par 1'utilisateur lors de 1'exécution.

/! Remplir un tableau avec des valeurs

/1 : permet de les référencer aussi souvent

/! que 1'on veut. Dans ce cas, le tableat

1 produit un affichage agréable

namespace VariableArrayAverage
{
using System;
public class Classl
(
public static int Main(string[] args)
{ '
/] commence par lire le nombre de types double
// que 1'utilisateur a 1'intention d'entrer
Console.Write("Nombre de valeurs pour la moyenne a calculer : ");
string sNumElements = Console.ReadLine(); !
int numElements = Convert.ToInt32(sNumElements);
Console.WriteLine(); "

Chapitre 8 : Méthodes de classe ’9 7

/11 {/summary>

public clags Student

{
//1 {summary>
/// 1'étudiant recoit un nom
/11 <{/summary>
public string sFirstName;
/1] {summary>
/1] nom de famille de 1'étudiant
/11 </summary>
public string sLastName;

// InitStudent - initialise 1'objet student
/11 {summery>
/1] initialise 1'objet student avant qu‘'il puisse &tre utilisé
/11 {/summary>
/! <{param name="sFirstName">1'étudiant regoit un nom{/param>
/1] <{param name="sLastName">nom de famille de 1'étudiant{/param>
public void InitStudent(string sFirstName, string sLastName)
{
this.sFirstName = sFirstName;
thig.sLastName = sLastName;
}
// OutputBanner - affiche 1'introduction
/1] {gummary>
/1] affiche une banniére avant d'afficher les noms des étudiants
/1] {/summary>
public static void OutputBanner()
{
Console.WriteLine("Regardez comme je suis malin :");
/] Console.WriteLine(? quel objet student utilisons-nous 7);

}

// OutputBannerAndName
/1] {summary> ,
/1] affiche une bannidre suivie par le nom de l'objet student courant
/1] </summary?>
public void OutputBannerAndName ()
{
// c'est la classe Student qui est supposée mais pas ga
/] 1'cbjet est passé 4 la méthode statique
OutputBanner();

/! ce n'est pas 1'objet this qui est passé mais 1'objet
// student courant qui est passé explicitement
QutputName (this, 5);

’98 Troisieme partie : Programmation et objets

[/ OutputName - affiche le nom de 1'étudiant
/1] {summary>?
/1] affiche sur la console le nom de 1'étudiant
111 {/summary>
/1] <param name="student">Le nom de 1'étudiant que
Hi vous voulez afficher</param
/11 {param name="nIndent">Nombre d'espaces pour le retrait{/param
1}/ <returnsdla chaine qui a été affichée</returns’
public static string OutputName(Student student,
int nlndent)
(
[} ici, 1'objet student est référencé explicitement
string s = new String(' ', nlIndent); ,
g += String,Format("Le nom de 1' étudlant est {O}"
student . ToNameString())
Console.WriteLine(s);
return s;

)

/1 ToNameString - va chercher le nom de l‘étudiant, ,
/1] {summary> ‘ '
/11 convertit en chalne le nom de 1'étudiant pour l'afflcher
#11-<{/sunmary> :
/11 {returnsdle nom de 1! etudlant sous forme de. chaxne(/returns)
publ;c string ToNameString() !
{
// ici, le nom de 1'objet courant est 1mpllc1te ¥
/] ce qui aurait pu &tre écrit :
/! rveturn this.sFirstName + " " + this.sLastName:
return sFirstName + " " + sLastName;
o
}
111 Csummary)
]} Bxercise class
M} <[summary>
5 publlc class Classl
{
o J]] Ksummary>
/{1 Le programne commence ici
H <] summary?
/1] <param name="args"></param?
publzc static void Main(string[] args)
{)
Student student = new Student();
student . InitStudent("Madeleine", "Cather™);

Chapitre 8 : Méthodes de classe 799

// affiche la bannidre et le nom
Student.QutputBanner();

string s = Student.OutputName(student, 5);
Console.WriteLine();

/! affiche & nouveau la banniére et le nom
student.OutputBannerAndName () ;

// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Congole.Read();

Les commentaires expliquent la finalité de la fonction, a quoi sert chaque
argument, le type de donnée retournée, et la relation avec une autre fonction.

En pratique, les étapes suivantes décrivent ce qui est affiché lorsque je
saisis dans Main () la fonction Student.OutputName () :

1. Visual Studio me propose une liste de fonctions. Une fois que j'ai mis
en surbrillance celle que je veux, Outputlane{), Visual Studio en
affiche une courte description, extraite de <{sumrary></summary>,
comme le montre la Figure 8.6.

. MixingFunctionsAndMethods - Micrasoft Visist L#, PREIRS
ichier Edition &ffichage Projet Générer Déboguer Outils Help
Doete e
S S &- y Debug e - R ?
Classl.cs* ' Explorateur de solutons - Mixin... & ¥
g Mg ransAndethids. a1 <] ["emanisnallargs! -] 3
o Solubon HengFuncinsandMethads
4] = 8 MixingFunctionsAndMethods
N :
L] . o) Classl.cs
- . purlic static woid Main(string[] args)
Figure 8.6: :
Avec un Ftndent student = new Student (1:
srudent . Init#nudent (“Hadeleine”, "Cather”);
programme
documenté G
tutputEanner i
en XML, =t s = Zrudent.|
Visual Studio @ sk |
R CutputBanner
estcapa ble ® l;mg Srudert otk e {Studert studet, it nxnderi‘
de blen @ ReferenceEquals laffiche sur s console fe non de fétudant
mieux
décrire la
fonction
et ses N
arguments. « | 2 I
s) tn g Col 32 h2 s

200 Troisieme partie : Programmation et objets

CHNig,
R\l 778
A

2. Une fois que j'ai saisi ou sélectionné le nom de la fonction, Visual
Studio affiche une description du premier parameétre, extraite du
champ <paran><{/parar>, ainsi que son type.

3. Visual Studio répéte ce processus pour le deuxiéme argument,

nlindent.

Bien qu'ils soient un peu fastidieux a saisir, les commentaires de
documentation rendent les méthodes beaucoup plus faciles a utiliser.

Générer une documentation XML

Vous pouvez facilement demander a Visual Studio d'extraire sous forme
de fichier XML tous les commentaires de documentation que vous avez
entrés.

Cette section est trés technique. Si vous ne savez pas ce qu'est un fichier
XML, tout cela ne vous dira pas grand-chose. Si vous savez comment est
fait un fichier XML, vous allez trouver cette fonction trés utile.

Sélectionnez Affichage/Explorateur de solutions pour afficher I'Explorateur
de solutions. Dans I'Explorateur de solutions, cliquez du bouton droit sur le
nom du programme, et sélectionnez Propriétés. Dans le volet de gauche de
la fenétre Pages de propriétés, cliquez sur le dossier Propriétés de
configuration pour l'ouvrir, et sélectionnez Générer dans les pages qui
apparaissent au-dessous de ce dossier. Dans la section Sortie du volet

de droite de la fenétre Pages de propriétés, sélectionnez la propriété
nommeée Fichier de documentation XML. Dans la cellule qui se trouve
a droite de ce nom, entrez un nom de fichier. Comme je n'avais pas de
meilleure idée, j'ai mis xmloutput.xml. Cliquez sur OK pour appliquer
cette modification et fermer la fenétre Pages de propriétés.

Vous pouvez aussi accéder aux propriétés du projet en sélectionnant
Projet/Propriétés.

Sélectionnez maintenant Générer/Régénérer tout pour étre siir que tout a
bien été généré correctement.

Regardez dans le méme dossier que le fichier source Classi.cs (le fichier
du projet est dans le méme dossier). Le nouveau fichier xmloutput.xml
décrit toutes les fonctions documentées par les balises XML.

Chapitre 9
Jouer avec des chaines en C#

Dans ce chapitre :
Tordre une chaine et tirer dessus — mais vous ne pouvez pas la pousser.
Analyser une chaine lue par le programme.
Mettre en forme manuellement une chaine de sortie.

Mettre en forme une chaine de sortie en utilisant la méthode String.Foruat ().

our de nombreuses applications, vous pouvez traiter un élément de

type string comme n'importe quel type de variable intégré, tel que
int ou char. Certaines des opérations ordinairement réservées pour ces
types intrinséques sont utilisables pour les chaines :

int i = 1; /] déclare et initialise un int
‘string § = "abe"; // déclare et initialise un string

Pour d'autres aspects, un élément string est traité comme une classe
définie par l'utilisateur :

string sl = new String();
string s2 = "abed";
int nLengthOfString = s2.Length;

Alors, qu'est-ce que c'est : un type de variable ou une classe ? En fait,
String est une classe pour laquelle C# offre un traitement spécial. Par
exemple, le mot-clé string est synonyme du nom de classe String :

String sl = "abcd"; // assigne une chaine littérale & un objet String
string s2 = sl; /] assigne un objet String & une variable string

202 Troisieme partie : Programmation et objets

Dans cet exemple, ¢1 est déclaré en tant qu'objet de la classe String
(avec un S majuscule), alors que s2 est déclaré en tant que variable de
type string (avec un s minuscule). Mais ces deux assignations montrent
que string et 5tring sont de méme type (autrement dit, compatibles).

En fait, cette propriété est également vraie pour les autres types de
variable, mais dans une mesure plus limitée. Méme le type int posséde sa
classe correspondante, Int 32, doutle correspond a la classe Double, et
ainsi de suite. La différence est que string et String sont réellement une
seule et méme chose.

Effectuer des opérations courantes sur une chaine

Les programmeurs C# effectuent plus d'opérations sur les chaines que la
chirurgie esthétique sur les hollywoodiens qui ne demandent que ca. Il
n'y a guere de programmes qui n'utilisent pas I'opérateur d'addition sur
des chaines :

string sName = "Randy";
Console.WriteLine("Son nom est " + gName);

C'est la classe String qui fournit cet opérateur spécial, mais elle offre
également d'autres méthodes, plus directes, pour manipuler les chaines.

L'union est indivisible, ainsi sont les chaines

De ce que vous n'avez pas forcément appris a I'école, il y a au moins une
chose qu'il vous faut apprendre : une fois qu'il a été créé, vous ne pouvez
pas modifier un objet string. Méme si je parle de modifier une chaine, C#
ne dispose d'aucune opération qui modifie I'objet string lui-méme. Il
existe toutes sortes d'opérations pour modifier la chaine avec laquelle
vous travaillez, mais c'est toujours avec un nouvel objet que la chaine
modifiée est retournée.

Par exemple, I'opération "Il s'appelle” + "Hector" ne modifie aucune de ces
deux chalnes, mais en produit une troisiéme : "Il s'appelle Hector". L'une
des conséquences de ce principe est que vous n'avez pas a vous inquiéter
que quelqu'un modifie une chaine "derriére votre dos".

Voyez cet exemple simple :

// ModifyString - les méthodes fournies par la classe

String ne modifient pas 1'objet
lui-méme (s.ToUpper() ne modifie pas s,
mais retourne une nouvelle chaine
qui a été convertie)

System;

namespace Example

class Classl

public static void Main(string[] args)

/] crée un objet student
Student sl = new Student();
sl.sName = "Jenny";
/! crée maintenant un nouvel objet avec le méme nom
Student s2 = new Student();
§2.gName = gl.sName;
// "changer" le nom de 1'objet sl ne change pas
/] 1'objet lui-méme, parce que ToUpper() retourne
/] une nouvelle chaine sans modifier 1'original
82.sName = sl.sName.ToUpper();
Congole.Writeline("sl - [0}, s2 - {1}",

s1.sName,

s2.sName) ;
/] attend confirmation de 1'utilisateur

Congole.WriteLine("Appuyez sur Entrée pour terminer..

Console.Read();

Chapitre 9 : Jouer avec des chaines en C# 203

M)

// Student - nous avons besoin d'une classe contenant une chaine
class Student

1/
1
1
/1
using
{
{
{
}
{
}
}
}

Les objets Student s°

public String sName;

et s2 sont définis de telle maniére que leur membre

donnée shame pointe vers la méme chaine. L'appel a la méthode

ToUpper () convertit la chalne si.sName pour la mettre entierement en
majuscules. Normalement, cela devrait poser un probléme, car <1 et s2
pointent tous deux vers le méme objet, mais ToUpper () ne modifie pas
sName : elle crée une nouvelle chaine en majuscules.

204 Troisiéme partie : Programmation et objets

La sortie de ce programme est fort simple :

sl - Jenny, s2 - JENNY
Appuyez sur Entrée pour terminer...

,\gc,uma(, L'invariabilité des chaines est egalement importante pour les constantes de
type string. Une chaine comme "ceci est une chaine" est une forme de
constante de type string, tout comme 1 est une constante de type int. De la
méme maniére que je ne jette pas mes chemises apres usage pour réduire le
volume de ma garde-robe, un compilateur peut choisir de combiner tous les
acces a la méme constante "ceci est une chaine". Le principe de réutilisation
d'une constante de type chaine permet de réduire la taille d'un programme,
mais il serait impossible si un objet de type string pouvait étre modifié.

NOr

Egalité pour toutes les chaines : la méthode
Compare ()

De nombreuses opérations traitent une chaine comme un objet unique.
Par exemple, la méthode Compare () compare deux chaines comme si
elles étaient des nombres :

v Sila chaine de gauche est supérieure a la chaine de droite, Coupare ()
retourne 1.

v Sila chaine de gauche est inférieure i la chalne de droite, Compara ()
retourne -1.

-+ Siles deux chaines sont égales, Compare () retourne 0.

Réduit aux commentaires qui le décrivent, l'algorithme fonctionne de la
facon suivante :

~ compare(string sl, string s2)
o
/] effectue une boucle sur chaque caractére des chaines, jusqu'a
/] ce qu'un caractére d'une chaine soit plus grand que
/] le caractére correspondant de 1'autre chaine
foreach caractére de la chaine la plus courte
f (le caractdre de sl > au caractére de 52, vus comme des nombres)
return 1 '
f {le caractére de s2 < au caractére de si)
return -1
/] Tous les caractéres correspondent, mais si la chaine sl

Chapitre 9 : Jouer avec des chaines en C# 205

0

/1 est plus longue, alors elle est plus grande
si sl contient encore des caractéres
return 1
/! si s2 est plus longue, alors elle est plus grande
si s2 contient encore des caractéres
return -1
/! si tous les caractéres correspondent et si les deux chaines
/! ont la méme longueur, alors elles sont "égales"
return 0

Ainsi, "abcd"” est plus grand que "abbd", et "abcde"” est plus grand que
"abcd". Vous n'aurez pas besoin tous les jours de savoir si une chaine est
plus grande qu'une autre, mais il vous arrivera d'avoir besoin de savoir si
deux chaines sont égales.

Vous aurez besoin de savoir si une chaine est plus grande qu'une autre
lorsque vous voudrez trier des chaines.

Compare () retourne 0 lorsque les deux chaines sont égales. Le programme
de test suivant utilise cette caractéristique de Compare () pour effectuer une
certaine opération quand il rencontre une ou des chaine(s) particuliére(s).

BuildASentence demande a l'utilisateur d'entrer des lignes de texte.

Chaque ligne est concaténée avec la précédente pour former une phrase,
jusqu'a ce que l'utilisateur entre les mots EXIT, exit, QUIT, ou quit :

// BuildASentence - le programme suivant construit

/1 des phrases en concaténant les saisies

/f de 1'utilisateur, jusqu'ad ce que celui-ci entre
/1 1'un des caractéres de fin -

1/ ce programme donne un exemple de la nécessité
/ de vérifier si deux chaines sont égales

uging System;
namespace BuildASentence
{
public class Classl
{
public static void Main(string[] args)
{
Console.WriteLine("Chaque ligne que vous entrez sera"
+ "ajoutée & une phrase, jusqu'a ce que vous"
+ "entriez EXIT ou QUIT");
/] demande une saisie & l'utilisateur et continue & concaténer
/] jusqu'a ce que l'utilisateur entre exit ou quit
/! (commence avec une phrase vide)
string sSentence = "";

206 Troisieme partie : Programmation et objets

for(s;)
(
// lit la saisie suivante
Console.WriteLine("Entrez une chaine");
string sLine = Console.ReadLine();
/! sort de la boucle si c'est une chaine de fin
if (IsTerminateString(sLine))
{
break;
}
/I sinon, ajoute & la phrase la chaine saisie
sSentence = String.Concat(sSentence, slLine);
// dit & 1'utilisateur ol il en est
Console.WriteLine("\nVous avez entré :{0)}", sSentence);
)

Console.WriteLine("\nPhrase compléte :\n{0]", sSentence);

/! attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

}

/] IsTerminateString - retourne true si la chaine source
/! est égale & 1'une des chaines de fin
public static bool IsTerminateString(string source)
{
string{] sTerms = {"EXIT",
"exit",
"QUIT",
"quit"};
/" compare la chaine entrée & chacune
!/ des chaines de fin licites
foreach(string sTerm in sTerms)

{
/] retourne true si les deux chaines sont égales
if (String.Compare(source, sTerm) == 0)
{
return true;
}
}
return false;

Aprés avoir demandé a l'utilisateur de saisir la premiere ligne, le pro-
gramme créé une chaine initiale vide nommeée sSentence, puis il entre
dans une boucle "infinie".

Q\)EZPAJ‘ Les structures while(true) et for(; ;) produisent une boucle sans fin,

Q,Q‘“ON 7

R

c'est-a-dire aussi longtemps qu'un break ou return interne n'en fait pas
sortir. Les deux boucles sont équivalentes, et dans la pratique vous
rencontrerez les deux.

BuildASentence demande a I'utilisateur d'entrer une ligne de texte, qu'il
lit avec la méthode ReadLine (). Puis il vérifie si la chaine entrée est ou
non le signal convenu pour la fin, en utilisant la chaine créée localement,
IsTerminateString (). Cette fonction retourne true si sLine est l'une
des chaines convenues pour la fin, et false dans le cas contraire.

Par convention, le nom d'une fonction qui teste une propriété et retourne
true ou false doit commencer par Is. Dans notre exemple, le nom de la
fonction [sTerminateString() signifie la question : "sLine est-elle une
chaine de fin ?" Bien siir, ce n'est 1a qu'une convention humaine. Elle ne
signifie rien pour C#.

Si sLine n'est pas I'une des chaines de fin, elle est concaténée avec la
partie de la phrase déja saisie, au moyen de la fonction String.Cenca< {].
Le programme affiche immédiatement le résultat, afin que l'utilisateur
sache ou il en est.

La méthode IsTerminateString() définit un tableau de chaines sTems,
dont chaque membre est I'une des chaines de fin. Si la chaine testée est
égale a I'une des chaines de ce tableau, cette méthode retourne true, ce
qui conduit le programme a s'arréter plus vite qu'un programmeur obligé
a écrire en COBOL.

Le programme doit prendre en compte "EXIT" et "exit", car Compare ()
consideére par défaut ces deux chaines comme dlfferentes (A la maniére
dont le programme est écrit, il ne connait que deux manieres d'écrire exit.
Une chaine telle que "Exit" ou "eXit" ne serait pas reconnue comme
chaine de fin.)

La fonction IsTerminateString () effectue une boucle pour chacune des
chaines du tableau des chaines de fin. Si Compare () retourne que la
chaine testée est égale a I'une des chaines de fin du tableau, la fonction
IsTerminateString() retourne true. Si aucune égalité n'a été trouvée a
la fin de la boucle, la fonction IsTerminateString () retourne false.

L'itération sur un tableau est un trés bon moyen de tester si une variable
correspond a une valeur parmi plusieurs.

Chapitre 9 : Jouer avec des chaines en C# 20 7

208 Troisieme partie : Programmation et objets

Voici un exemple de résultat du programme BuildASentence:

Chaque ligne que vous entrez sera ajoutée & une
phrase jusqu'a ce que vous entriez EXIT ou QUIT
Entrez une chaine
Programmer avec C#

Vous avez entré : Programmer avec Cf
Entrez une chaine
, ¢'est amusant

Vous avez entré : Programmer avec C#, c'est amusant
Entrez une chaine
(plus ou moins)

Vous avez entré :Programmer avec Cff, c'est amusant (plus ou moins)
Entrez une chaine
EXIT

Phrase compléte :
Programmer avec Cff, c'est amusant (plus ou moins)
Appuyez sur Entrée pour terminer...

J'ai mis en gras ce qui a été saisi par l'utilisateur.

Voulez-vous comparer en majuscules ou en
minuscules ?

La méthode Compare (i utilisée par IsTerminateString () considere "EXIT"
et "exit” comme des chaines différentes. Mais il existe une autre version
surchargée de cette fonction qui comporte un troisieme argument. Celui-ci
indique si la comparaison doit ou non faire la différence entre les majuscules
et les minuscules. L'argument true indique d'ignorer la différence.

La version suivante de IsTerminateString() retourne true sila chaine qui
lui est passée correspond a une chaine de fin, qu'elle soit en majuscules, en
minuscules ou dans n'importe quelle combinaison des deux.

/! IsTerminateString - retourne true si la chaine source string is equal
/! est égale & 1'une des chaines de fin
public static bool IsTerminateString(string source)
{
//donne true si on lui passe exit ou quit, sans tenir compte
/! des majuscules et des minuscules

Chapitre 9 : Jouer avec des chaines en C# 209

tZ P4,
QQ\) &

g\“‘z PA-S'

return (String.Compare("exit", source, true) == 0} ||
(String.Compare("quit", source, true) == 0);
}
Cette version de "=Terrirazelr 1o est plus simple que la précédente

qui utilisait une boucle. Elle n'a pas besoin de se préoccuper des majuscules
et des minuscules. et elle peut utiliser une seule instruction conditionnelle,
car elle n'a maintenant que deux possibilités a prendre en compte.

Cette version de 1«7 reSirize n'améme pas besoin d'une instruc-
tion if. L'expression booleenne retourne directement la valeur calculée.

Et si je veux utiliser switch ?

Pour tester si une chaine est egale a une valeur particuliere, vous pouvez
aussi utiliser la structure swicor (5.

En général, on se sert de la structure switch () pour comparer une
variable utilisée comme compteur a un ensemble de valeurs possibles,
mais cette structure fonctionne aussi sur des chaines.

La version suivante de _sTerninatestring{; utilise la structure switch() :

/] IsTerminateString - retourne true si la chaine source
/! est égale 4 1'une des chaines de fin
public static bool IsTerminateString(string source)
{
switch(source)
{
case "EXIT":
case "exit":
case "QUIT":
case "quit":
return true;
}
return false;

Cette approche fonctionne parce que vous ne comparez ici qu'un nombre
limité de chaines. Une boucle for () offre un moyen beaucoup plus souple
de rechercher des valeurs de type chaine. La version de Compare () qui
ignore la distinction entre majuscules et minuscules donne au programme
une plus grande souplesse.

2 ’0 Troisieme partie : Programmation et objets

Q&&ZR4S

Live les caracteres saisis

Un programme peut lire ce qui est saisi au clavier caractére par caractére,
mais cette approche peut devenir problématique, car il faut se soucier des
fins de ligne et autres. Une approche plus pratique consiste a lire la chaine
pour examiner ensuite les caractéres qu'elle contient.

L'analyse des caractéres que contient une chaine est aussi un sujet que ie
n'aime pas évoquer, de crainte que les programmeurs n'abusent de cette
technique. Il arrive que les programmeurs aillent un peu trop vite a sauter
sur une chaine avant qu'elle soit entierement saisie pour en extraire ce
qu'ils y trouvent. C'est particulierement vrai des programmeurs C++, car
jusqu'a l'introduction d'une classe de chaines, c'était la seule maniere
dont ils pouvaient manipuler les chaines.

En utilisant la structure foreach ou l'opérateur index [], un programme
peut lire une chaine comme si ¢'était un tableau de caracteres.

Bien str, une chaine n'est pas simplement un tableau de caractéres. Si on
ne peut lire une chaine qu'un caractere a la fois, on ne peut pas I'écrire de
la méme maniere.

L'exemple simple du programme StringToCharAccess montre l'utilisation
de cette technique :

/! StringToCharAccess - accidde aux caractéres d'une chaine
i comme si la chaine était un tableau
using System;)

" ‘namespace StringToCharAccess
{
public class Classl
e
~ public static void Main(string[] args)
{ , ; :

/] 1it une chaine saisie au clavier : -
Console.WriteLine("Entrez au hasard une chaine de caractéres"
-+ "(attention : au hasard)");

string sRandom = Console.ReadLine();

/] commence par afficher sous forme de chaine
Console.WriteLine("Votre saisie comme chaine :" + sRandom);
Congsole.WriteLine(); k

/! affiche maintenant sous forme de suite de caractéres
Console.Write("Votre saisie affichée en utilisant foreach :");
foreach(char ¢ in sRandom)

{

Chapitre 9 : Jouer avec des chaines en C# 2 ’ ’

Console.Write(c);
}
Console.Writeline(); // termine la ligne
// put a blank line divider
Console.WriteLine();
/] affiche maintenant sous forme de suite de caractéres
Console.Write("Votre saisie affichée en utiligant for :");
for(int i = 0; i < sRandom.length; itt)
(

Console.Write(sRandom{i]);
}
Console.WriteLine(); // termine la ligne
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Ce programme affiche de trois maniéres différentes une chaine saisie au
hasard par l'utilisateur. Il commence par l'afficher en utilisant la méthode
habituelle WriteLine{string), puis il l'affiche en utilisant la structure
foreach pour en extraire chaque caractére l'un apres l'autre, et enfin, il se
sert de l'index d'un tableau avec [] pour faire la méme chose.

Ce qui donne le résultat suivant :

Entrez au hasard une chaine de caractéres (attention : au hasard)
Stephen Davis est un beau gargon

Votre saisie comme chaine : Stephen Davis est un beau gargon
Votre saisie affichée en utilisant foreach : Stephen Davis est un beau gargon

Votre saisie affichée en utilisant for : Stephen Davis est un beau gargon
Appuyez sur Entrée pour terminer...

On ne se lasse pas d'une vérité.

Dans certains cas, vous ne voudrez pas avoir un caractére non imprima-
ble a une extrémité ou l'autre de la chaine.

NEZ PAg
§’ Un caractére non imprimable est un caractere qui n'est pas normalement
= affiché a I'écran : un espace, une nouvelle ligne, une tabulation, et quelques
autres.

2 72 Troisieme partie : Programmation et objets

cZ P4
QQ\) §

€2 P4
P

Q“\ON /
/(8'

Pour épurer de ces caracteres les extrémités de la chaine, vous pouvez
utiliser la méthode Trim() :

/] se débarrasse des espaces & chague extrémité d'une chaine
sRandom = sRandom.Trim();

Bien que ce soit une fonction membre, String.Trim() retourne une
nouvelle chaine. La version précédente de la chaine avec les caractéres
imprimables en surnombre est perdue et ne peut plus étre utilisée.

Analyser une entrée numérique

La fonction ReadLine () utilisée pour lire sur la console retourne un type
string. Un programme qui attend une entrée numérique doit convertir
cette chalne. C# offre dans la classe Conver® 'outil de conversion dont
vous avez besoin pour cela. Cette classe comporte une méthode de
conversion du type string a tous les autres types de variable. Ainsi, le
fragment de code suivant lit un nombre saisi au clavier, et le stocke dans
une variable de type int :

string s = Console.ReadLine();
int n = Convert.Int32(s);

Les autres méthodes de conversion portent des noms plus évidents :
ToDouble(;, ToFloat (), et ToBoolean().

ToInt32() se référe a un entier signé de 32 bits (32 bits est la longueur
d'un int normal). ToInt64 () correspond & un long (qui fait 64 bits).

Lorsque Convert () rencontre un type de caractére inattendu, il peut
produire un résultat inattendu. Vous devez donc étre sir du type de
donnée que vous étes en train de manier.

La fonction suivante retourne true sila chaine qui lui est passée n'est
constituée que de chiffres. Vous pouvez appeler cette fonction avant de
convertir la chaine en un type entier. Si une chaine de caractére n'est
constituée que de chifires, il y a des chances que ce soit un nombre licite.

Pour une variable en virgule flottante, il serait nécessaire de prévoir la
virgule, ainsi que le signe moins pour les nombres négatifs. Ne vous
laissez pas surprendre.

Chapitre 9 : Jouer avec des chaines en C# 2 ’3

// IsAllDigits - retourne true si tous les caractéres de la chaine
/1 sont des chiffres
public static bool IsAllDigits(string sRaw)
{
/! commence par se débarrasser des caractéres inutiles
/] & chaque extrémité ; s'il ne reste rien,
/! c'est que la chaine n'est pas un nombre
string s = cRaw.Trim(); // supprime les espaces aux extrémités
if (s.Length == ()
{
return false;
}
/] effectue une boucle sur la chaine
for(int index = 0; index < s.Length; index++)
{
// si ce n'est pas un chiffre, c'est que la chalne
// n'est sans doute pas un nombre
if (Char.IsDigit(s[index]) == false)
{
return false;
}
}

// tous les caractéres sont des chiffres, la chaine doit &tre un nombre
return true;

La fonction IsA11Digits () commence par supprimer tout caractére non
imprimable aux deux extrémités de la chaine. S'il ne reste rien, c'est que
la chaine est vide et ne peut pas étre un entier. Puis, la fonction passe en
boucle sur chaque caractere de la chaine. Si l'un de ces caractéres n'est
pas un chiffre, la fonction retourne false, indiquant que la chaine n'est
sans doute pas un nombre. Si cette fonction retourne true, il y a les plus
grandes chances que la chaine puisse étre convertie en un type entier.

L'échantillon de code suivant lit un nombre saisi au clavier, et I'affiche sur
la console (pour simplifier 'exemple, j'ai omis 'utilisation de la fonction
IsAllDigits()).

// 1sAl1Digits - démonstration de la méthode IsAllDigits
using System:

namespace Example

{

class Classl

{

public static int Main(string[] args)
{ .

2 74 Troisieme partie : Programmation et objets

// 1lit une chaine saisie au clavier
Console.WriteLine("Entrez un nombre entier");
gtring s = Console.ReadLine();
/] commence par vérifier si la chalne entrée peut &tre un nombre
if (!IsAllDigits(s))
{
Console.WriteLine("Ce n'est pas un nombre !");
}
else
{
// convertit la chaine en un nombre entier
int n = Int32.Parse(s);
// affiche maintenant le double du nombre
Console.WriteLine("2 * {0} = {1}, n, 2 * n);
}
/! attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Conscle.Read();)
return 0;

Le programme lit sur la console une ligne saisie au clavier. Si TsAl1Digits()
retourne false, le programme fait des remontrances a l'utilisateur. Dans le
cas contraire, le programme convertit la chaine en nombre par l'appel
Convert.TcInt32 (). Enfin, le programme affiche le nombre ainsi que le
double de celui-ci (pour bien montrer qu'il a effectivement converti la chaine,
comme il le dit).

Voici un exemple de fonctionnement de ce programme :

Entrez un nombre entier

143

Ce n'est pas un nombre !

Appuyez sur Entrée pour terminer...

Une meilleure approche pourrait étre de laisser Convert essayer de
convertir n'importe quoi et de traiter les exceptions qui pourraient en
sortir. Toutefois, il y a les plus grandes chances qu'elle ne produise
aucune exception, mais retourne simplement des résultats incorrects
(par exemple, 1 quand on lui propose "1A3").

Chapitre 9 : Jouer avec des chaines en C# 2 ’5

Traiter une suite de chiffres

Bien souvent, un programme recoit une suite de chiffres tapés au clavier sur
une seule ligne. En utilisant la méthode S+ring.Spiit (), vous pouvez facile-
ment diviser cette chaine en un certain nombre de sous-chaines, une pour
chacun des nombres dont I'ensemble est constitué, et les traiter séparément.

La fonction split () divise une chaine en un tableau de chaines plus petites
en utilisant pour cela un délimiteur. Par exemple, si vous demandez a
Split{) de diviser une chaine en utilisant la virgule comme délimiteur,
"1,2,3" produit trois chaines : "1", "2" et "3".

Le programme suivant utilise Sp:it) pour saisir une suite de nombres a
additionner :

/] ParseSequenceWithSplit - lit une série de nombres

/1 géparés par des virgules, les transforme en
1 nombres entiers, et en affiche la somme
namespace ParseSequenceWithSplit

{

using System;
class Classl
{
public static int Main(string(] args)
{
// demande & 1'utilisateur de saisir une série de nombres
Console.WriteLine(
"Entrez une série de nombres séparés par des virgules”
)
/] 1it une ligne de texte
string input = Console.ReadLine();
Console.WritelLine();
/! convertit la ligne en segments
/1 en utilisant la virgule ou 1'espace comme séparateur
char[] cDividers = (',", ' '};
string[] segments = input.Split(cDividers);
/] convertit chaque segment en nombre
int nSomme = 0;
foreach(string s in segments)
{
/! (saute tout segment vide)
if (s.Length > 0)
{
/!l saute les chaines qui ne sont pas des nombres
if (IsAllDigits(s))
{

2 ’6 Troisieme partie : Programmation et objets

// convertit la chaine en un entier 32 bits

int num = Int32.Parse(s);
Console.WriteLine("Nouveau nombre = (0}", num);
// ajoute ce nombre & la somme :
nSum += num;

}
}
// affiche la somme
Console.WriteLine("Somme = {0}", nSum);
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Conscle.Read();
return 0;
}
/] 1sAllDigits - retourne true si tous les caractéres
/! sont des chiffres
public static bool IsAllDigits(string sRaw)
{
/! commence par se débarrasser des caractdres inutiles
/! & chaque extrémité ; s'il ne reste rien
/! ¢'est que la chaine n'est pas un nombre
string s = sRav.Trim();
if (s.Length == 0)
{
return false;
}
/! effectue une boucle sur la chaine
for(int index = 0; index < s.Length; indextt)
{
/] si ce n'est pas un chiffre, c'est que la chaine
// n'est sans doute pas un nombre
if (Char.IsDigit(s[index]) == false)
{
return false;
}
)
/] tous les caractéres sont des chiffres, ¢'est sans doute un nombre
return true;

Le programme ParseSequenceWithSplit commence par lire une chaine
saisie au clavier. Il passe a la méthode Split() le tableau cDividers afin
d’indiquer que la virgule et I'espace sont les caracteres utilisés pour
séparer deux nombres dans la chaine.

Chapitre 9 : Jouer avec des chaines en C# 2 ’ 7

Le programme effectue une itération sur chacun des "sous-tableaux”
créés par Spli- () en utilisant la structure foreach. Il ignore tous les
sous-tableaux de longueur nulle (qui résulteraient de la présence de deux
délimiteurs consécutifs). Le programme vérifie ensuite que la chaine
contient effectivement un nombre en utilisant la méthode IsA11Digits ().
Chaque nombre valide est converti en entier puis ajouté a la variable
nSumr. Les nombres qui ne sont pas valides sont ignorés (j'ai choisi de ne

pas émettre de message d'erreur).

Voici un exemple d'exécution de ce programme :

Entrez une série de nombres séparés par des virgules
1,2, a8, 3 4

Nouveau nombre =
Nouveau nombre =
Nouveau nombre =
Nouveau nombre =
Somme = 10

Appuyez sur Entrée pour terminer...

o N

Le programme parcourt cette liste, acceptant comme séparateurs la
virgule, 'espace ou les deux. Il ignore le a et affiche le résultat 10.

\Q\\)C
Dans un programme destiné a un usage véritable, vous ne voudrez sans
doute pas ignorer une donnée incorrecte sans rien signaler a l'utilisateur.

Contréler manuellement la sortie

La maitrise de la sortie d'un programme est un aspect trés important de
la manipulation des chaines. Soyons clair : 1a sortie d'un programme est
ce qu'en voit l'utilisateur. Quelle que soit I'élégance de sa logique interne,
l'utilisateur ne sera pas bien impressionné si la sortie est plutot piteuse.

La classe String offre des moyens de mettre en forme directement pour la

sortie des données de type chaine. Les sections suivantes décrivent les métho-
des Trim(), Pad(), PadRight (), PadLeft (), Substring(),etConcat{).

Utiliser les méthodes Trim () et Pad ()

Vous pouvez utiliser la méthode Trim () pour supprimer les caractéres
indésirables aux deux extrémités d'une chaine. Vous allez typiquement

2 78 Troisieme partie : Programmation et objets

vous en servir pour supprimer des espaces afin d'aligner correctement
les chaines envoyées a la sortie.

Les fonctions Pad sont un autre moyen d'usage courant pour mettre en
forme la sortie. Celles-ci ajoutent des caractéres a I'une ou l'autre extré-
mité d'une chaine pour lui donner une longueur déterminée. Par exemple,
vous pourrez vouloir ajouter des espaces a l'extrémité droite ou gauche
d'une chaine pour l'aligner a droite ou gauche, ou alors ajouter des "*" ou
autres caracteres pour signifier quelque chose de particulier.

Le programme AlignOutput suivant utilise ces deux fonctions pour
extraire et aligner une série de noms :

N

/] AlignOutput - justifie & gauche et aligne un ensemble

/1 de chaines pour embellir la sortie du programme
namespace AlignQOutput
{

using System;
class Classl
{
public static int Main(string[] args)
{
string[] names = {"Christa ",
" Sarah",
"Jonathan",
"Sam",
" Hildegarde "};
// commence par afficher les noms comme ils se présentent
/] (tout en se souvenant de la chaine la plus longue)
Console.WriteLine("Les noms suivants ont des "
+ "longueurs différentes");

foreach(string s in names)
{
Conscle.WriteLine("Ceci est le nom '{0}' initial", s);
))
Console.WriteLine();

/] modifie maintenant les chaines, de maniére qu'elles soient
/! justifiées i gauche et qu'elles aient toute la méme longueur
string[] sAlignedNames = TrimAndPad(names);
// affiche enfin les chaines modifiées,
/! justifiées et alignées
Console.WritelLine("Voici les mémes noms"

+ "affichés sur la base de la méme longueur");
foreach(string ¢ in sAlignedNames)

Chapitre 9 : Jouer avec des chaines en C# 2 7 9

}
1l

pu
{

{

Console.WriteLine(

"Ceci est le nom '{0}' aprés alignement", s);

}
/] attend confirmation de 1l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

TrimAndPad - & partir d'un tableau de chaines, supprime
les espaces & chaque extrémité, puis
insére les espaces nécessaires pour les aligner
toutes sur la plus longue

blic static string[] TrimAndPad(string[] strings)

/1 copie le tableau source dans un tableau
/l que vous pourrez manipuler
string[] stringsToAlign = new String[strings.Length];

/] commence par supprimer les espaces inutiles & chaque
/] extrémité de chaque nom
for(int i = 0; i < stringsToAlign.Length; it+)
{
stringsToAlign[i] = strings[i].Trim();
}

/] trouve maintenant la longueur de la chaine la plus longue,
/1 de fagon que toutes les autres s'alignent sur elle
int nMaxLength = 0;
foreach{string s in stringsToAlign)
{

if (s.Length > nMaxLength)

{

nMaxlength = g.Length;

}
}
/] enfin, justifie toutes les chaines sur la base
/] de la longueur de la chaine la plus longue
for(int i = 0; i < stringsToAlign.Length; i++)
{

stringsToAlign[i] =

stringsToAlign[i].PadRight (nMaxLength + 1);

}
/] retourne le résultat a la fonction appelante
return stringsToAlign;

220 Troisieme partie : Programmation et objets

AlignOutput définit un tableau de noms de longueur et d'alignement
inégaux (on pourrait tout aussi facilement écrire un programme pour lire
ces noms sur la console ou dans un fichier). La fonction Main () commence
par afficher les noms tels qu'ils sont, puis les aligne en utilisant la méthode
TrimAndPad () avant d'afficher & nouveau le résultat sous forme de chaines
de longueur égale avec les noms alignés a gauche :

Les noms suivants ont des longueurs différentes
Ceci est le nom 'Christa ' initial

Ceci est le nom ' Sarah' initial

Ceci est le nom 'Jonathan' initial

Ceci est le nom 'Sam' initial

Ceci est le nom ' Hildegarde ' initial

Voici les mémes noms affichés sur la base de la méme longueur
Ceci est le nom 'Christa ' aprés alignement

Ceci est le nom 'Sarah ' aprés alignement
Ceci est le nom 'Jonathan ' aprés alignement
Ceci est le nom 'Sam ' aprés alignement

Ceci est le nom 'Hildegarde ' aprés alignement

La méthode TrimindPad () commence par faire une copie du tableau de
chaines recu. En général, une fonction qui opére sur un tableau doit
retourner un nouveau tableau modifié plutot que de modifier le tableau
qui lui est passé. C'est un peu comme quand j'emprunte le pickup de mon
beau-frére : il s'attend a le voir revenir dans 1'état o1 il me l'a prété.

TrimAndPad () commence par effectuer une itération sur les éléments du
tableau, appelant Trim{) sur chaque élément pour en supprimer les carac-
teéres inutiles & chaque extrémité. Puis la fonction effectue a nouveau une
itération sur les éléments du tableau pour en trouver le membre le plus
long. Elle effectue enfin une derniére itération, appelant PzdRight () pour
ajouter les espaces nécessaires a chaque élément, afin qu'ils aient tous la
longueur du plus long.

PadRight (10) ajoute des espaces a 'extrémité droite d'une chaine jus-
qu'a lui donner une longueur de 10 caracteres. Par exemple, elle ajoute
quatre espaces a l'extrémité droite d'une chaine de six caracteéres.

TrimAndPad () retourne le tableau des chaines allégées de leurs caracte-
res non imprimables a droite et & gauche par Trim(), et mis a la bonne
longueur, du bon c6té, par PadRight (). Main() effectue une itération sur
cette liste pour afficher l'une aprés l'autre toutes les chaines.

Chapitre 9 : Jouer avec des chaines en C# 22 ’

Recoller ce que le logiciel a séparé : utiliser
la concaténation

Vous serez souvent confronté a la nécessité de diviser une chaine en plusieurs
morceaux, ou d'insérer une chaine au milieu d'une autre. Le remplacement
d'un caractere par un autre est trées facile a faire avec la méthode Replace () :

string s = "Danger Requins";
a.Replace(s, ' ', ')

Dans cet exemple, la chaine est convertie en "Danger!Requins”.

Remplacer toutes les apparitions d'un caractére par un autre (dans ce
cas, I'espace par un point d'exclamation) est particulierement utile pour
générer une chaine contenant la virgule comme séparateur afin de la
diviser ultérieurement. Toutefois, le cas le plus courant et le plus difficile
est I'opération qui consiste a diviser une chaine en plusieurs sous-ensem-
bles, & les manipuler séparément, puis a les recombiner pour former a
nouveau une seule chaine modifiée.

Par exemple, la fonction RemoveSpecialChars () supprime toutes les
apparitions d'un certain nombre de caractéres spéciaux dans une chaine
donnée. Le programme RemoveWhiteSpace ci-dessous utilise cette fonc-
tion pour supprimer les caractéres non imprimables (espace, tabulations
et caractéres de nouvelle ligne) dans une chaine :

- /] RemoveWhiteSpace - définit une fonction RemoveSpecialChars()

A - qui peut supprimer un caractére quelconque d'un
GNLE : certain ensemble d'une chaine donnée. Utilisez
S bb e cette fonction pour supprimer les caracteres

11 B " blancs dans une chaine utilisée comme exemple

* namespace RemoveWhiteSpace
.
' using System;
“public class Classl

{

- public static int Main(string[] strings)

o

-// définit les caractéres blancs

char[] cWhiteSpace = {' ', "\n', '\t'}; b

// commence par une chaine contenant des caractéres blancs .
‘string s = " ceci est une\nchalne", ‘ i
* Congole.WriteLine("chaine initiale :" + g);

222 Troisieme partie : Programmation et objets

// affiche la chaine sans les caractéres blancs
Console.WriteLine("aprés :" +

RemoveSpecialChars(s, cWhiteSpace));
// attend confirmation de l'utilisateur

Congole.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

}

/! RemoveSpecialChars - supprime de la chaine toute

/! occurrence du caractére spécifié

public static string RemoveSpecialChars(string sInput,
char(] cTargets)
{

string sOutput = sInput;

for(;:)

{
/! trouve 1'index du caractére, sort de la boucle
/] s'il n'en reste plus
int n0ffset = sOutput.IndexOf(cTargets);
if (nOffget == -1)
{

break;

}
/] divise la chaine en la partie qui précéde
/! le caractére et la partie qui le suit
string sBefore = sOutput.Substring(0, nOffset);
string sAfter = sOutput.Substring(nOffset + 1);
/! réunit maintenant les deux sous-chaines et le
/! caractére manquant entre les deux
sOutput = String.Concat(sBefore, sAfter);

}

return sOutput;

}

C'est la fonction RemoveSpecialChars () qui constitue le ceeur de ce
programme. Elle retourne une chaine qui est la chaine entrée, sInput. mais
dont tous les caractéres contenus dans le tableau cTargets ont été suppri-
més. Pour mieux comprendre cette fonction, imaginez que la chaine était
"ab,cd,e”, et que le tableau de caractéres spéciaux a supprimer contenait

(I

simplement le caractére ',

La fonction RemoveSpecialChars () entre dans une boucle dont elle ne
sort qu'une fois que toutes les virgules ont été supprimées. La fonction
Index0OfAny () retourne I'index du tableau pour la premiére virgule qu'elle
peut trouver. Si elle retourne -1, c'est qu'aucune virgule n'a été trouvée.

Chapitre 9 : Jouer avec des chaines en C# 223

A sa premiére invocation, IndexOfinv () retourne un 2 (a' est 0, b’ est 1,
et ', est 2). Les deux fonctions su1vantes decomposent la chaine en
morceaux a l'endroit donné par l'index. Subs 0, 2) crée une SOus-
chaine composée de deux caracteres, et Commen(;ant alindex 0:"ab". Le
deuxiéme appel a Substring(3) crée une chaine commencant a 'index 3
et allant jusqu'a la fin de la chaine initiale : "cd,e” (c’est le "+ 1" qui fait
passer apres la premiere virgule). C'est la fonction Corcz+ 0 qui recolle
les deux sous-chaines pour créer "abcd,e”.

Le contrdle repasse en haut de la boucle. L'itération suivante trouve la
virgule a l'index 4. La chaine concaténée est "abcde”. Comme il ne reste
plus de virgule, l'index retourné par la derniére itération est -1.

Le programme RemcveldhiteSpace affiche une chaine contenant plusieurs
types de caractéres non imprimables. Il utilise ensuite la fonction
RemoveSpecialChars () pour enlever ces caractéres non imprimables.

La sortie de ce programme se présente de la facon suivante :

chaine initiale : ceci est une
chaine

aprés : ceciestunechaine

Appuyez sur Entrée pour terminer...

Mettre Split () dans le programme de
concaténation

Le programme RemovelWhiteSpace donne un exemple d'utilisation des
méthodes Concat () et TndexOf (), mais il n'emprunte pas la voie la plus
efficace. Comme d'habitude, un bref examen révele une solution plus
efficace qui utilise notre vieil ami Sp

/! RemoveSpecialChars - supprime de la chaine toute occurrence
/! du caractére spécifié
public static string RemoveSpecialChars(string sInput,
char[] cTargets)
{
!/ diviser la chaine entrée en utilisant les caractéres
// cible comme délimiteurs
string[] sSubStrings = sInput.Split(cTargets);
/] sOutput contiendra les informations finales de sortie
string sOutput = "";
// effectue une boucle sur les sous-chaines résultant de la division

224 Troisieme partie : Programmation et objets

foreach(string subString in sSubStrings)
(
sOutput = String.Concat(sOutput, subString);
}
return sOutput;

)

Cette version utilise la fonction Sp1it () pour diviser la chaine entrée en
un ensemble de sous-chaines sur la base des caracteres de séparation.
Ceux-ci sont supprimés au passage. lIs ne font pas partie des sous-chaines
créées.

La boucle foreach de la deuxiéme partie du programme recolle les
différentes sous-chaines. La sortie du programme est la méme.

Maitriser String.Format ()

La classe String offre aussi la méthode Format () pour mettre en forme la
sortie, en particulier la sortie des nombres. Dans sa forme la plus simple,
Format () permet d'insérer une chaine, une variable numérique ou hoo-
léenne dans une chaine de contréle. Par exemple, examinez l'appel suivant :

String.Format("{0} fois {1} égale {2}", 2, 3, 2*3);

On appelle chaine de controle le premier argument de Format (). Les i que
vous voyez dans cette chaine indiquent que le énieme argument suivant la
chaine de controle doit étre inséré a ce point. Zéro correspond au premier
argument (dans ce cas, 2), un se référe au suivant (3), et ainsi de suite.

Il en résulte la chaine :

"2 fois 3 égale 6"

Sauf indication contraire, Format () utilise un format de sortie par défaut
pour chaque type d'argument. Format () permet de modifier le format de
sortie en mettant des modificateurs aux emplacements voulus. Le Ta-
bleau 9.1 donne une liste de certains de ces controles. Par exemple,

{0:E6 dit: "Afficher les nombres en notation scientifique, en utilisant six
caractéres pour la mantisse."

Chapitre 9 : Jouer avec des chaines en C# 225

Tableau 9.1: Controles de mise en forme utilisant String.Format ().

Controle Exemple Résultat Notes

C — monnaie {0:C} avec 123,456 12345F Le symbole monétaire dépend du
paramétrage de localisation, de méme
que l'usage de la virgule ou du point
comme séparateur de la partie

décimale.

{0:C} avec —123,456 (123,45 F)

D — décimal {0:D5} avec 123 00123 Entiers seulement.

E — exponentiel {0:E) avec 123,45 1,2345E+02 Que I'on appelle aussi "notation
scientifique".

F—fixe {0:F2} avec 123,4567 12345 Le nombre qui suit le Findique le nombre
de chiffres apres la virgule.

N — nombre {0:N} 123456,789 123456,79 Ajoute le séparateur de milliers (dépend
du paramétre de localisation) et arrondit
au centieme le plus proche.

{0:N1} 123456.789 123 456,8 Contréle le nombre de chiffres apres la
virgule.

{0:NO} 123456.789 123 457 Idem.

X — hexadécimal {0:X} OxFF OxFF est égal a 255.

{0:.0..} {0:000.00} 12,3 012,30 Metun 0s'iin'y a pas de chiffre.

{o:#.} {0:## #1123 12,3 Impose un espace blanc sile nombre
n'occupe pas l'espace spécifié. Aucun
autre champ ne peut enquéter sur
I'espace défini par les trois chiffres
avant la virgule, et les deux apres
(permet de maintenir I'alignement autour
de la virgule).

{0:##0.0#1 0 0,0 Un signe #impose un espace, etun 0
impose l'affichage d'un chiffre, méme si
celui-ci estO0.

{0:# or 0%} {0:#00.#%} 1234 12,3% Le % affiche le nombre sous forme de
pourcentage {muitiplie par 100 et ajoute
le signe %).

{0:#00.#%]} 0234 02,3%

226 Troisieme partie : Programmation et objets

Ces controles de formats peuvent paraitre un peu déconcertants (et je n'ai
meéme pas parlé des contrdles détaillés de date et de format monétaire).
Pour vous aider a apprivoiser ces options, le programme suivant,
OutputFormatControls, vous permet d'entrer un nombre en virgule flot-
tante suivi par une séquence de codes de controle. Le programme affiche
alors le nombre en utilisant l'instruction Format () avec la séquence de
controle de format spécifiée :

/] OutputFormatControls - permet & 1'utilisateur de redéfinir le format
/l des nombres saisis en utilisant & 1'exécution
/1 divers codes de contrdle de format
namespace QutputFormatControls
({
using System;
public class Classl
{
public static int Main(string[] args)
{
// 1it les nombres saisis jusqu'a ce que
/! 1'utilisateur entre une ligne blanche au lieu
/! d'un nombre
for(;;)
{
/! commence par lire un nombre,
/! et se termine lorsque 1'utilisateur n'entre rien
/!l qu'une ligne blanche
Congole.WriteLine("Entrez un nombre de type double");
string sNumber = Console.ReadLine();
if (sNumber.Length == ()
{
break;
}
double dNumber = Double.Parse(sNumber);
/] lit maintenant les codes de contréle, séparés
[/ les uns des autres par des espaces
Console.WriteLine("Entrez les codes de controle"
+ " géparés par un espace");
char[] separator = {' '};
string sFormatString = Console.ReadLine();
string[] sFormats =
sFormatString.Split(separator);
/] effectue une boucle sur les codes de contrdle 1'un aprés 1'autre
foreach(string s in sFormats)
{
if (s.Length != 0)
{
/] crée une commande de format compléte

Chapitre 9 : Jouer avec des chaines en C# 22 7

/! & partir des codes de contrdle entrés
string sFormatCommand = "{0:" + s + "}";
// affiche le nombre entré en utilisant
/! la commande de format reconstituée
Console.Write(
"La commande de format {0} donne ",
sFormatCommand) ;
try
{
Console.WriteLine(sFormatCommand, dNumber);
)
catch(Exception)
{
Console.WriteLine("<{commande illégale>"};
)

Console.WriteLine();

]
}

"1/ attend confirmation de 1'utilisateur ;
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

Le programme continue a lire dans la variable dNumber les nombres entrés
par l'utilisateur, jusqu'a ce que celui-ci entre une ligne vide. Remarquez que
le programme ne comporte aucun test pour déterminer si la valeur entrée est
un nombre en virgule flottante licite. Nous supposons ici que I'utilisateur sait
ce qu'est un nombre.

Le programme lit ensuite une série de codes de controle, séparés par des
espaces. Chaque controle est combiné avec une chaine "{0}" dans la variable
sFormatCommand. Par exemple, si vous avez entré N4, le programme stocke la

chaine de controle "{0:N4}". L'instruction suivante écrit sur la console le
nombre dNumber en utilisant la commande sFormatCommand ainsi construite :

' Coﬁs61e.writeLine(sFormatCommand, dNumber) ;

Dans le cas de notre N4, la commande serait :

:Conéole;WriteLine("{O:Né}", dNumber) ;

228 Troisiéme partie : Programmation et objets

Voici un exemple de sortie obtenue avec ce programme (j'ai mis en gras
ce que j'ai entré) :

Entrez un nombre de type double

12345,6789

Entrez les codes de contrdle séparés par un espace
C E F1 NO 0000000.00000

La commande de format {0:C) donne 12 345,68 T

La commande de format {0:E} donne 1.234568E+004

La commande de format {0:F1) donne 12345,7

La commande de format {0:NO) donne 12 346

La commande de format {0:0000000.00000) donne 0012345,67890

Entrez un nombre de type double

112345

Entrez les codes de contrdle séparés par un espace
00.0%

La commande de format {0:00.0%} donne 12,3%

Entrez un nombre de type double

Appuyez sur Entrée pour terminer...

Appliqué au nombre 12345,6789, la commande N0 ajoute des séparateurs
de milliers aux bons endroits (c'est la partie "N") et fait disparaitre tout ce
qui suit la virgule décimale (c'est la partie "0"), pour afficher 12 346 (le
dernier chiffre a été arrondi, et non tronqué).

De méme, appliqué a 0,12345, le code de controle 00.0% affiche 12,3%. Le
code % multiplie le nombre par 100 et ajoute le signe %. Le 00.0 indique que
la sortie doit comporter au moins deux chiffres a gauche de la virgule, et
seulement un & droite. Avec le méme 00.0%, le nombre 0,01 est affiché
comme 01,0%.

Le mystérieux trv...catch attrape au passage toutes les erreurs qui
peuvent se produire si jamais vous entrez une commande de format illicite,
par exemple un "D", qui signifie décimal. Je parlerai des exceptions au
Chapitre 15.

Quatrieme partie
La programmation
orientee objet

... Et voil3 nos
spécialistes de la
programmation
orientée objet.

Dans cette partie...

L a programmation orientée objet est le terme dont l'usage
est accompagné de la plus grande quantité de mousse
dans le monde de la programmation (il a été éclipsé pendant
un an ou deux par ".com" et "e-commerce”, mais vous pouvez
oublier tout ¢a depuis le crash .com de 2001).

C++ revendique d'étre un langage orienté objet. C'est ce qui le
différencie de C. Java est sans aucun doute un langage orienté
objet, de méme qu'une centaine ou a peu prés d'autres langa-
ges inventés au cours des dix derniéres années. Mais que
signifie orienté objet ? Est-ce que je l'ai ? Est-ce que je peux
I'avoir ?

La quatriéme partie présente les caractéristiques de C# qui en
font un langage fondamentalement orienté objet.

Chapitre 10

La programmation orientee
objet: qu'est-ce que c'est ?

Dans ce chapitre :
La programmation orientée objet et le four & micro-ondes.
Les bases de la programmation orientée objet.
Abstraction et classification.

Comprendre l'importance de la programmation orientée objet.

‘ e chapitre apporte tout simplement la réponse a la question : "Quels

sont les concepts sur lesquels repose la programmation orientée
objet, et en quoi sont-ils différents de ceux que nous avons vus dans la
deuxiéme partie de ce livre ?"

L'abstraction, concept numéro un de la
programmation orientée objet

Quand je regarde un match de football (américain) a la télévision avec
mon fils, il me prend souvent une envie irrésistible de nachos (chose
inventée jadis par les Mexicains pour les gens qui regardent la télévision
aujourd'hui). Je mets des chips dans une assiette, je les recouvre de
haricots, de fromage et de beaucoup de jalapefos, et je mets le tout
quelques minutes dans le four a micro-ondes.

Pour utiliser le four & micro-ondes, j'ouvre la porte, je mets l'assiette a
l'intérieur, je referme la porte, et j'appuie sur quelques boutons qui se

232 Quatrieme partie : La programmation orientée objet

trouvent sur la face avant. Quelques minutes plus tard, les nachos sont
préts.

Maintenant, pensez a tout ce que je ne fais pas pour utiliser le four a
micro-ondes ;

»” Je ne change pas le cablage ni quoi que ce soit a l'intérieur du four
a micro-ondes pour le faire fonctionner. Il a une interface (la face
avant avec tous ses boutons et l'affichage de I'heure) qui me per-
met de faire tout ce dont j'ai besoin.

v Je n'ai pas a modifier le logiciel utilisé par son microprocesseur
pour piloter le fonctionnement du four, méme si c'est un autre plat
que j'ai fait chauffer la derniere fois que je m'en suis servi.

v Je ne regarde pas sous le capot.

» Meéme si c¢'était mon métier de tout savoir sur le fonctionnement
interne d'un four a micro-ondes, y compris sur son logiciel, je ne me
préoccuperais pas de tout cela pour l'utiliser dans le seul but de
faire chauffer mes nachos.

\391 P4s Ce ne sont pas la des observations profondes. On ne peut vivre avec le
9 stress que jusqu'a une certaine limite. Pour réduire le nombre de choses
dont on a a se préoccuper, on ne travaille que jusqu'a un certain niveau
de détail. Dans la langue de la programmation orientée objet (00), le
niveau de détail auquel on travaille est appelé niveau d'abstraction.
Autrement dit, pour faire chauffer mes nachos, j'ai fait abstraction des
détails du fonctionnement interne du four a micro-ondes.

Lorsque je fais chauffer des nachos, je vois le four a micro-ondes comme
une boite. Tant que je n'utilise que l'interface du four (les boutons de la
face avant), rien de ce que je fais n'est susceptible de le faire entrer dans
un état instable et de le mettre hors d'usage, ou pire, de transformer mes
nachos en une masse noire informe et d'y mettre le feu.

Préparer des nachos fonctionnels

Imaginez que je demande a mon fils d'écrire un algorithme décrivant la
maniére dont son pére prépare les nachos. Quand il aura compris ce que
je veux, il écrira quelque chose comme : "Ouvrir une boite de haricots,
raper du fromage, couper les jalapenos” et ainsi de suite. Une fois arrivé

___ Chapitre 10 : La programmation orientée ohjet : qu'est-ce que c'est ? 233

au four a micro-ondes, il écrira sans doute : "Faire chauffer cinq minutes
dans le four a micro-ondes.”

Cette description est simple et complete, mais ce n'est pas de cette facon
qu'un programmeur écrirait un programme fonctionnel pour préparer des
nachos. Un programmeur vit dans un monde dépourvu d'objets tels que
des fours a micro-ondes et autres appareils ménagers. Il se préoccupe
généralement de diagrammes de flux, avec des milliers de chemins
fonctionnels. Dans une solution fonctionnelle au probléme des nachos, le
contrdle passerait de mes doigts aux boutons de la face avant du four,
puis a son fonctionnement interne. Treés vite, le flux suivrait les chemins
d'une logique complexe sur la durée pendant laquelle faire fonctionner le
générateur de micro-ondes, et le moment de faire retentir la petite musi-
que qui vous dit que c'est prét.

Dans ce monde de programmation fonctionnelle, il n'est pas facile de
penser en termes de niveaux d'abstraction. Il n'y a ici ni objets ni abstrac-
tions derriere lesquels on pourrait masquer la complexité.

Préparer des nachos orientés objet

Dans une approche orientée objet de la préparation des nachos, je com-
mencerais par identifier les différents types d'objets intervenant dans le
probléme : chips, haricots, fromage et four & micro-ondes. Ensuite, j'entre-
prendrais la tache de représenter ces objets dans le logiciel, sans me
préoccuper des détails de leur utilisation dans le programme final.

Lorsque je fais cela, on dit que je travaille (et que je pense) au niveau des
objets de base. Il me faut penser a faire un four utile, mais a ce stade je
n'ai pas encore a réfléchir au processus logique de la préparation des
nachos. Aprés tout, les concepteurs du four a micro-ondes n'ont pas
pensé spécifiquement 3 ma maniére de me préparer des nachos. lls se
sont plutot consacrés a résoudre le probléme de la conception et de la
fabrication d'un four a micro-ondes utile.

Une fois que j'ai codé et testé les objets dont j'ai besoin, je peux monter au
niveau d'abstraction suivant. Je peux maintenant quitter le niveau du four
pour penser au niveau de la préparation des nachos. A ce stade, je peux
traduire directement en code C# les instructions rédigées par mon fils.

234 Quatrieme partie : La programmation orientée objet

La classification, concept numéro deux de la
programmation orientée objet

La notion de classification est inséparable de la notion d'abstraction. Si je
demandais & mon fils : "Qu'est-ce qu'un four a micro-ondes ?", il répon-
drait sans doute : "C'est un four qui..." Et si je lui demandais : "Qu’est-ce
qu'un four ?", il pourrait répondre : "C'est un appareil ménager qui..." Et si
je lui demandais : "Qu'est-ce qu'un appareil ménager ?", il répondrait peut-
étre : "Pourquoi poses-tu des questions stupides ?"

Les réponses données par mon fils dans mon exemple viennent de ce qu'il
sait de notre four a micro-ondes, cas particulier du type d'objet appelé
four & micro-ondes. D'autre part, mon fils considére un four a micro-ondes
comme un four d'un type particulier, et un four en général comme un
appareil ménager d'un type particulier.

Dans la langue de la programmation orientée objet, mon four a micro-ondes
est une instance de la classe Four a micro-ondes. La classe Four a micro-ondes
est une sous-classe de la classe Four, et la classe Four est une sous-classe de la
classe Appareil ménager.

L'etre humain aime classifier. Tout ce qui peuple notre monde est or-
donné en taxonomies. Ce procédé nous permet de réduire le nombre de
choses que nous avons a retenir. Pensez par exemple & la premieére fois
que vous avez vu une "spacecar’. La publicité la décrivait probablement
comme révolutionnaire ("vous ne verrez plus jamais 'automobile de la
méme maniére"). Et il est vrai que c'était une nouveauté, mais apres tout
une spacecar n'est rien d'autre qu'une voiture. En tant que telle, elle
partage toutes ses propriétés (ou au moins la plupart) avec les autres
voitures. Elle a un volant, des siéges, un moteur, des freins, et ainsi de
suite. Je peux en conduire une sans commencer par lire le mode d'emploi.

Je n'ai pas besoin de m'encombrer la mémoire avec la liste de tout ce
qu'une spacecar partage avec les autres voitures. Tout ce que j'ai a
retenir est "une spacecar est une voiture qui...", et les quelques proprié-
tés qui sont propres aux spacecars (par exemple, le prix). Mais je peux
aller plus loin. La classe Voiture est une sous-classe de la classe Véhicules
aroues, laquelle contient d'autres membres, comme les camions et les
décapotables. Et la classe Véhicules a roues peut étre une sous-classe de
la classe Véhicule, qui contient les bateaux et les avions. Et ainsi de suite,
aussi loin que vous voulez.

___ Chapitre 10 : La programmation orientée objet : qu'est-ce que c'est? 235

Pourquoi classifier ?

Pourquoi devrait-on classifier ? Ca a 'air de demander du travail.
D'ailleurs, ca fait si longtemps qu'on utilise I'approche fonctionnelle, alors
pourquoi changer maintenant ?

La conception et la fabrication d'un four a micro-ondes spécialement pour ce
probleme particulier peut sembler une tache plus facile que la réalisation d'un
objet four, plus générique. Supposez par exemple que je veuille fabriquer un
four & micro-ondes pour faire chauffer des nachos et rien d'autre. Il ne me
faudrait rien d'autre dans le panneau de commandes qu'un bouton Démarrer,
car j'utilise toujours le méme temps de chauffage pour mes nachos. Je pourrais
me dispenser de tous les autres boutons comme Décongélation et autres.
D'autre part, il n'aurait besoin de contenir rien de plus qu'une assiette. Un
volume permettant de faire cuire une dinde serait ici du gaspillage.

Je peux donc me dispenser du concept de "four a micro-ondes”. Je n'ai
besoin que de ce qu'il fait. Puis, jintroduis dans le processus les instructions
qui permettent de le faire fonctionner : "Mettre les nachos dans la boite ;
connecter le fil rouge au fil noir ; mettre le tube radar sous tension de

3 000 volts ; entendre le petit bruit qui indique le démarrage ; ne pas s'‘appro-
cher trop prés si on a l'intention d'avoir des enfants.” Ce genre de choses.

Mais I'approche fonctionnelle a quelques inconvénients :

v Trop compliquée : Je ne veux pas mélanger les détails de la fabrica-
tion d'un four & micro-ondes avec ceux de la préparation des
nachos. Si je ne peux pas définir les objets et les extraire de cette
montagne de détails pour les utiliser de facon indépendante, je suis
obligé de prendre en compte tous les détails de tous les aspects du
probléme en méme temps.

v Dépourvue de souplesse : Un jour ou l'autre, je peux avoir besoin de
remplacer le four a micro-ondes par un four d'un autre type. Il devrait
étre possible de le faire tant qu'ils ont la méme interface. S'ils ne sont
pas clairement délimités et développés de fagon indépendante, un objet
d'un certain type ne peut pas €tre simplement remplacé par un autre.

v+ Non réutilisable : Un four permet de faire de nombreux plats
différents. Je ne veux pas avoir a créer un nouveau four pour
chaque nouvelle recette. Apres avoir résolu le probléme une fois,
je veux pouvoir réutiliser la méme solution en d'autres endroits de
mon programme. Et si j'ai vraiment de la chance, je pourrai méme
la réutiliser plus tard dans d'autres programmes.

236 Quatrieme partie : La programmation orientée objet

Une interface utilisable, concept numéro trois
de la programmation orientée objet

Un objet doit étre capable de présenter une interface extérieure suffi-
sante, mais aussi simple que possible. C'est un peu l'inverse du concept
numéro quatre. Si l'interface de 1'objet est insuffisante, les utilisateurs
peuvent étre amenés a en ouvrir le capot, en violation directe des lois de
Dieu et de la Société (ou tout au moins en violation des lois du Texas sur
la responsabilité juridique - je vous le déconseille fortement). D'un autre
c6té, si son interface est trop compliquée, personne n'achetera l'objet, ou
en tout cas personne n'utilisera toutes ses fonctionnalités.

Les gens se plaignent réguliéerement de la complexité de leurs magnétos-
copes. llIs ont trop de boutons avec trop de fonctions différentes. Bien
souvent, un méme bouton a plusieurs fonctions différentes selon I'état de
l'appareil. En plus, il n'y a pas deux modeéles de magnétoscopes qui aient
la méme interface. Quelles qu'en soient les raisons, les magnétoscopes
ont des interfaces trop compliquées et trop peu standardisées pour étre
utilisables par la plupart des gens.

Comparez cela avec une voiture. 1l serait difficile de prétendre qu'une
voiture est moins compliquée qu'un magnétoscope, mais les gens ne
semblent pas avoir de difficultés a les conduire. Je vois au moins trois
différences significatives entre une voiture et un magnétoscope.

Toutes les voitures présentent plus ou moins les mémes commandes &
peu prés au méme endroit. Par exemple (histoire vraie), ma sceur a eu
une voiture (oserais-je le dire, une voiture francaise) dont la commande
des phares était a gauche du volant, combinée avec la commande du
clignotant. Il fallait pousser la manette vers le bas pour éteindre les
phares, et vers le haut pour les allumer. On peut trouver que c'est une
petite différence, mais je ne suis jamais arrivé a tourner a gauche de nuit
avec cette voiture sans éteindre les phares.

Une voiture bien concue n'utilise pas la méme commande pour plusieurs
opérations différentes selon I'état dans lequel elle se trouve. Je ne connais
que tres peu d'exceptions a cette regle.

___ Chapitre 10 : La programmation orientée objet : qu'est-ce que c'est ? 23 7

Le contréle d'acces, concept numéro quatre de
la programmation orientée objet

Un four & micro-ondes doit étre construit de telle sorte qu'aucune combi-
naison de pressions sur les boutons de la face avant ne puisse me blesser
en aucune maniére. Il y a certainement des combinaisons qui ne font rien,
mais aucune ne doit :

+~ Endommager I'appareil. Vous devez pouvoir placer l'appareil dans
une sorte d'état étrange dans lequel il ne fera rien tant que vous ne
l'aurez pas ranimé, mais il doit étre impossible de causer un dom-
mage quelconque a l'appareil en utilisant les commandes de la face
avant.

1~ Mettre le feu a I'appareil et par conséquent a la maison. Que
I'appareil tombe en panne, c'est ennuyeux, mais qu'il prenne feu,
c'est beaucoup plus grave. Nous vivons dans une société tres
procéduriére. Il peut résulter de ce genre de choses des proceés trés
curieux.

Toutefois, pour que ces deux régles soient respectées, vous avez aussi
votre part de responsabilité : vous ne pouvez faire aucune modification a
l'intérieur de 'appareil.

Presque tous les appareils ménagers, de n'importe quel niveau de
complexité, notamment les fours a micro-ondes, comportent un petit
sceau qui empéche le consommateur d'accéder a leurs composants
internes. Si le sceau est brisé, la responsabilité du fabricant n'est plus
engagée. Si je modifie les composants internes d'un four, c'est moi qui
suis responsable s'il met le feu a la maison.

De méme, une classe doit permettre de controler 'accés a ses membres.
Aucune séquence d'appels aux membres d'une classe ne doit provoquer
le plantage de mon programme. La classe ne peut pas le garantir si des
éléments externes ont accés a ses composants et a son état interne. La
classe doit pouvoir maintenir ses membres critiques inaccessibles au
monde extérieur.

238 Quatriéme partie : La programmation orientée objet

Comment la programmation orientée objet est-elle
implémentée par C#

Dans un certain sens, ce n'est pas la bonne question. C# est un langage
orienté objet : il n'implémente pas la programmation orientée objet, c'est
le programmeur qui le fait. Vous pouvez écrire un programme qui ne soit
pas orienté objet en C# comme dans n'importe quel autre langage, mais
C# permet décrire facilement un programme orienté objet.

C# offre les fonctionnalités nécessaires a I'écriture de programmes orientés
objet :

»* Le contrdle d'acces : C# permet de controler la maniére dont on
acceéde a un membre. Les mots-clés C# vous permettent de déclarer
certains membres ouverts au public alors que les membres internes

internal) sont protégés (protected) des regards extérieurs et que
leurs secrets sont maintenus privés (private). Le Chapitre 11 vous
livre les secrets du controle d'acces.

»* La spécialisation : C# supporte la spécialisation a travers un
mécanisme appelé héritage de classe. Une classe hérite des mem-
bres d'une autre classe. Par exemple, vous pouvez créer une classe
Car comme type particulier de la classe Vehicle. Le Chapitre 12 est
le spécialiste de la spécialisation.

v Polymorphisme : Cette caractéristique permet & un objet d'exécuter
une opération a la maniére qui lui convient. Le type Fusée de la classe
Véhicle peut implémenter I'opération Démarrage trés différemment
de ce que fait le type Voiture de la méme classe (en tout cas, j'espére
que c'est toujours le cas pour ma voiture). Ces chapitres 13 et 14 ont
chacun leur propre maniére de décrire le polymorphisme.

Chapitre 11

Rendre une classe
responsable

Dans ce chapitre :
Permettre a une classe de se protéger par le contrdle d'acces.
Permettre a un objet de s'initialiser lui-méme par le constructeur.
Définir plusieurs constructeurs pour la méme classe.

Construire des membres statiques ou des membres de classe.

une classe doit étre tenue pour responsable de ses actions. Tout
comme un four a micro-ondes ne doit pas prendre feu si j'appuie
sur le mauvais bouton, une classe ne doit pas mourir d'épouvante si je lui
présente des données incorrectes.

Pour étre tenue responsable de ses actions, une classe doit avoir la
garantie que son état initial est correct, et pouvoir controler ses états
suivants afin qu'ils le restent. C'est ce que permet C#.

Restreindre ['acces a des membres de classe

Une classe simple définit tous ses membres comme public. Considérez
un programme BankAccount qui tient & jour un membre donnée bzlance
contenant le solde de chaque compte. Définir ce membre comme public
permet a tout le monde d'y accéder.

Je ne sais pas comment est votre banque, mais la mienne est loin d'étre
assez confiante pour mettre & ma disposition une pile d'argent, et un

240 Quatriéme partie : La programmation orientée objet

registre sur lequel il me suffirait d'inscrire ce que j'ai pris dans la pile ou
ce que j'y ai ajouté. Apres tout, je pourrais trées bien oublier d'inscrire mes
retraits dans le registre. Je ne suis plus si jeune. Ma mémoire baisse.

Le controle d'acces permet d'éviter les petites erreurs comme d'oublier
d'inscrire un retrait ici ou la. [l permet aussi d'éviter de véritables grosses
erreurs avec les retraits.

Je sais exactement ce que pensent ceux qui ont I'esprit fonctionnel : "Il
suffit de définir une regle selon laquelle les autres classes ne peuvent pas
accéder directement au membre ha:ance." Cette approche pourrait
fonctionner en théorie, mais en pratique ca ne marche pas. Les gens sont
toujours plein de bonnes intentions au départ, mais ces bonnes inten-
tions sont écrasées sous le poids de l'exigence de terminer le produit
pour le livrer au client.

Un exemple public de public BankAccount

~ount déclare toutes ses méthodes
<e les deux membres donnée

L'exemple suivant de classe Bankz
public, mais déclare comme pri-a
nNextAccount et dBalance:

// BankAccount — crée un compte bancaire en utilisant une variable

/1 de type double pour stocker le solde du compte
/1 (conserve le solde dans une variable privée

// pour masquer son implémentation au

/! monde extérieur)

using System;
namespace DoubleBankAccount
{
public class Classl
{
public static void Main(string[] args)
{
/] crée un nouveau compte bancaire
Console.WriteLine("Création d'un objet compte bancaire");
BankAccount ba = new BankAccount();
ba.InitBankAccount();
//on peut accéder au solde par la méthode Deposit()
/] car elle a accés & tous les
// membres donnée
ba.Deposit(10);
// 1'accés direct & un membre donnée provoque une erreur
/! & la compilation

Chapitre 11 : Rendre une classe responsahle 24 ’

Console.WriteLine("Au cas ol vous arriveriez jusqu'ici"
+ "\nCe qui suit est censé produire”
+ "une erreur & la compilation");
ba.dBalance += 10;
/! attend confirmation de 1'utilisateur
Congole.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

]
// BankAccount — définit une classe qui représente un compte simple
public class BankAccount
(
private static int nNextAccountNumber = 1000;
private int nAccountNumber;
/] conserve le solde dans une seule variable de type double
private double dBalance;
/{ Init — initialise le compte avec le prochain numéro de compte
/! et un solde de 0
public void InitBankAccount()
{
nAccountNumber = ++nNexthccountNumber;
dBalance = 0.0;
}
/! GetBalance — retourne le solde courant
public double GetBalance()
{
return dBalance;
}
/1 AccountNumber
public int GetAccountNumber ()
{
return nAccountNumber;
]
public void SetAccountNumber (int nAccountNumber)
({
this.nAccountNumber = nAccountNumber;
)
// Deposit — tout dépdt positif est autorisé
public void Deposit(double dAmount)

{

if (dAmount > 0.0)

{

dBalance *+= dAmount;

}
)
// Withdraw ~ tout retrait est autorisé jusqu'a la valeur
Il du solde ; retourne le montant retiré

public double Withdraw(double dWithdrawal)

242 Quatriéme partie : La programmation orientée objet

if (dBalance <= dWithdrawal)
(
dWithdrawal = dBalance;
}
dBalance -= dWithdrawal;
return dWithdrawal;
]
!/ GetString — retourne dans une chaine les informations sur le compte
public string GetString()
{
string s = String.Format ("#{0} = {1:C}",
GetAccountNumber (),
GetBalance());
return s;

Souvenez-vous que dans ce code, dBalance -= dWithdrawal est la méme
chose que dBalance = dBalance - dWithdrawal. Les programmeurs C#
ont tendance a utiliser la notation la plus concise possible.

Déclarer un membre comme public le rend disponible pour n'importe
quel autre code dans votre programme.

La classe BankAccount offre la méthode TnitBankAccount () pour initiali-
ser les membres de la classe, la méthode Deposit () pour traiter des
dépots, et la méthode Withdraw() pour traiter les retraits. Les méthodes
Deposit() et Withdraw() fournissent méme des régles rudimentaires,
comme : "On ne peut pas déposer une valeur négative”, et "On ne peut pas
retirer plus que ce que contient le compte.” Vous conviendrez certaine-
ment que ce sont de bonnes régles pour une banque. Toutefois, n'importe
qui peut accéder a tout cela aussi longtemps que dBalance est accessible
aux méthodes externes (dans ce contexte, externe signifie "externe a la
classe, mais dans le méme programme").

Avant de trop vous enthousiasmer, remarquez que ce programme ne se
génere pas. Une tentative de le générer génére en fait le message d'erreur
suivant :

'DoubleBankAccount.BankAccount.dBalance' est inaccessible en raison de son
niveau de protection.

Chapitre 11 : Rendre une classe responsable 243

\0
&%\\1 N/

Je ne sais pas pourquoi il ne se contente pas de dire : "N'entrez pas, c'est
privé", mais c'est essentiellement ce que ¢a veut dire. L'instruction
ba.dBalance += 10; estillicite parce que dBalance n'est pas accessible
aAMain(). Le remplacement de cette ligne par ba.Deposit (10) résout le
probléme.

Le type d'acces par défaut est private. Oublier de déclarer un membre
en tant que tel revient a le déclarer comme private, mais il vaut mieux
indiquer le mot private pour éviter toute ambiguité.

Allons plus loin : les autres niveaux de
sécurité

Cette section suppose quelques notions sur I'héritage (Chapitre 12) et les
espaces de noms (Chapitre 16). Vous pouvez l'ignorer pour le moment,
mais vous saurez qu'elle est 12 lorsque vous en aurez besoin.

C# offre d'autres niveaux de sécurité, au-dela de public et private:
v Un membre public est accessible par toutes les classes du programme.

v Un membre private n'est accessible que par la classe dans laquelle
il est déclaré.

»* Un membre protected n'est accessible que par la classe dans
laquelle il est déclaré et par toutes ses sous-classes.

»* Un membre internal est accessible par toutes les classes du méme
espace de noms (essentiellement, par tout groupe de modules C#
que vous aurez spécifié pour cela, c'est-a-dire tous les modules que
vous aurez écrits pour le programme, mais pas ceux €crits par votre
voisin de palier).

»* Unmembre internal protected est accessible par la classe dans
laquelle il est déclaré et toutes ses sous-classes, ainsi que par les
classes du méme module.

C'est le masquage d'un membre en le déclarant private qui offre le
maximum de sécurité. Toutefois, dans de nombreux cas, vous n'aurez pas
besoin de ce niveau de sécurité. Aprés tout, comme les membres d'une
sous-classe dépendent déja des membres de la classe de base, protected
offre un niveau de sécurité confortable.

244 Quatrieme partie : La programmation orientée objet

Si vous déclarez chaque module comme un espace de nom différent, la
déclaration d'un membre comme internzl le rend disponible unique-
ment dans ce module. Mais si vous utilisez un seul espace de nom pour
tous vos modules, il n'y aura guére de différence entre une déclaration
internal ou internal protected et une déclaration public.

Pourquoi se préoccuper du contrile d'acces ?

Déclarer les membres internes d'une classe comme public est une
mauvaise idée, au moins pour les raisons suivantes :

v~ Si tous les membres donnée sont public, vous ne pouvez pas
savoir facilement quand et comment ils sont modifiés. Pourquoi
utiliser les méthodes Deposit() et Withdraw() pour traiter les
cheques ? En fait, pourquoi avoir besoin de ces méthodes ? N'im-
porte quelle méthode de n'importe quelle classe peut modifier ces
éléments n'importe quand. Si d'autres fonctions peuvent accéder a
ces membres donnée, elles le feront certainement.

Mon programme BankAccount peut trés bien tourner pendant une
heure ou deux avant que je réalise que I'un des comptes a un solde
négatif. La méthode Withdraw() aurait dii garantir que cela ne
puisse pas arriver. De toute évidence, une autre fonction a di
accéder au solde sans passer par Withdraw(). Découvrir quelle
fonction en est responsable et de quelle maniére est un probléme
tres difficile.

» Exposer tous les membres donnée d'une classe rend l'interface
trop compliquée. En tant que programmeur utilisant la classe
BankAccount, je ne veux rien savoir de ce qu'elle contient. Il me
suffit de savoir qu'elle me permet de déposer et de retirer des
fonds.

»* [Exposer les éléments internes conduit a exporter les régles de
classe. Par exemple, la classe BankAccount ne permet en aucune
circonstance que le solde devienne négatif. C'est une regle commer-
ciale de la banque, qui doit étre isolée dans la méthode Withdraw(),
faute de quoi il faudra ajouter la vérification de cette régle en tout
endroit du programme ot le solde est modifié.

Qu'arrive-t-il lorsque la banque décide de modifier les regles pour que les
“clients privilégiés" soient autorisés a avoir un solde légérement négatif

Chapitre 11 : Rendre une classe responsahle 245

sur une période limitée ? Il me faut maintenant rechercher dans tout le
programme toutes les portions de code qui accédent au solde afin d'y
adapter en conséquence les vérifications correspondantes.

Des méthodes pour accéder a des objets

Si vous examinez plus attentivement la classe BankAccount, vous y verrez
quelques autres méthodes. L'une d'elles, GetString (), retourne une
version de type chaine du compte, adaptée a l'affichage par une instruc-
tion Console.WriteLine (). Toutefois, l'affichage du contenu d'un objet
BankAccount peut étre difficile si ce contenu est inaccessible. D'autre
part, selon la politique "Rendez & César ce qui est a César", c'est a la
classe que revient le droit de décider comment elle doit étre affichée.

Vous remarquerez aussi une méthode, GetRalance (), et un ensemble de
méthodes : CetAccountNumber () et SetAccountNumber (). Vous vous
demandez peut-€tre pourquoi j'ai déclaré comme private un membre
donnée comme dEkalance, tout en fournissant une méthode GetBalance ()
pour en retourner la valeur. J'ai deux raisons pour cela. Tout d'abord,
GetBalance () n'offre pas de moyen de modifier dBalance. Elle ne fait
qu'en retourner la valeur, ce qui fait que le solde est en lecture seule. Par
analogie avec une véritable banque, je peux consulter le solde de mon
compte librement, mais je ne peux pas en retirer de l'argent sans passer
par la procédure de retrait de la banque.

En second lieu, GetBalance () masque aux méthodes externes le format
interne de la classe. Il est tout a fait possible que GetBalance () effectue
de nombreux calculs concernant la lecture des recus, des frais de gestion
de compte, et tout ce que ma banque veut soustraire du solde de mon
compte. Les fonctions externes n'en savent rien et n'ont rien 4 en faire.
Naturellement, je veux savoir quels frais on m'a fait payer, mais je ne peux
rien y faire, 3 moins de changer de banque.

Enfin, GetRalance () offre un mécanisme qui permet d'apporter des
modifications internes a la classe sans qu'il soit nécessaire de changer les
utilisateurs de BankAccount. Si le ministére des Finances demande a ma
banque de gérer autrement ses dépots, cela ne doit rien changer a la
maniere dont je peux accéder a mon compte.

246 Quatriéme partie : La programmation orientée objet __

Le contréle d'acces vole a votre secours : un
evemple

Le programme D¢ b oBankaccount suivant met en évidence un défaut
potentiel dans le programme Eankicoournt. Le programme complet est sur
le site Web, mais le listing ci-dessous ne montre que Main(), qui est la seule
portion du programme comportant une différence avec Bankiéccount :

// DoubleBankAccount — crée un compte bancaire en utilisant une variable

de type double pour stocker le solde du compte
(conserve le solde dans une variable privée
pour masquer son implémentation au

monde extérieur)

namespace Test

{

using System;
public clasg Classl

{

public static int Main(string[] strings)

{

// crée un nouveau compte bancaire
Console.WriteLine("Création d'un objet compte bancaire");
BankAccount ba = new BankAccount(); ‘ '
ba.InitBankAccount();
/! effectue un dépdt
double dDeposit = 123.454;
Console.WriteLine("Dépdt de (0:C}", dDeposit);
ba.Deposit(dDeposit);
// solde du compte
Congole.WriteLine("Compte = {0)",

ba.GetString());

/] et voila le probléme

double dAddition = 0.002; ’
Console.WriteLine("Ajout de (0:C)", dAddition);
ba.Deposit{dAddition);

/] solde résultant

Console.WriteLine("Compte résultant = {0}",

ba.GetString());
// attend confirmation de l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

Chapitre 11 : Rendre une classe responsable 24 7

La fonction Mzin () crée un compte bancaire puis y dépose 123,454 F, montant
qui contient un nombre décimal de centimes. Main () ajoute alors une petite
fraction de centimes au solde, et affiche le solde résultant.

La sortie de ce programme se présente de la facon suivante :

Création d'un objet compte bancaire
Dépdt de 123,45 F

Compte = #1001 = 123,45 F

Ajout de 0,00 F

Compte résultant = #1001 = 123,45 F
Appuyez sur Entrée pour terminer...

C'est la que les utilisateurs commencent a se plaindre. Pour moi, je n'arrive
pas a mettre mes chéquiers en accord avec les relevés de compte de ma
banque. En fait, je suis trés content si je tombe juste a 100 dollars prés, mais
il y a des gens qui tiennent absolument a ce que leur relevé de compte soit
bon au centime prés. Apparemment, il y a un bogue dans ce programme.

Le probléme, bien sir, c'est que 123,454 F apparait comme 123,45 F. Pour
éviter cela, la banque décide d'arrondir les dépots et les retraits au centime
le plus proche. Si vous déposez 123,454 F, la banque en retire les 0,4 centi-
mes en exces. Comme elle fait la méme chose lorsque la différence est en
votre faveur, ¢a ne change rien dans la durée.

La maniére la plus facile de réaliser cela consiste a convertir les comptes
en decimal et a utiliser la méthode Round0£f (), comme le montre le
programme DecimalBankAccount suivant :

/] DecimalBankAccount — crée un compte bancaire en utilisant une
/1 variable decimal pour stocker le solde du compte
using System;
namespace DecimalBankAccount
{
public class Classl
{
public static void Main(string[] args)
{
/! crée un nouveau compte bancaire
Console.WriteLine("Création d'un objet compte bancaire");
BankAccount ba = new BankAccount();
ba.InitBankAccount();
/] effectue un dépdt
double dDeposit = 123.454;
Console.WriteLine ("Dépét de {0:C}", dDeposit);

248 Quatrieme partie : La programmation orientée objet

ba.Deposit(dDeposit);
/! solde du compte
Console.WriteLine("Compte = {0}",
ba.GetString());
// et maintenant, ajout d'un trés petit montant
double dAddition = 0.002;
Console.WriteLine("Ajout de (0:C}", dAddition);
ba.Deposit(dAddition);
/] solde résultant
Console.WriteLine("Compte résultant = (0}",
ba.GetString());
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
J
}
// Bankfccount - définit une classe qui représente un compte simple
public class BankAccount
{
private static int nNextAccountNumber = 1000;
private int nAccountNumber;
// conserve le solde dans une seule variable de type decimal
private decimal mBalance;
// Init - initialise le compte avec le prochain numéro de compte

/1 et un solde de 0
public void InitBankAccount()
{

nAccountNumber = +nNextAccountNumber;
mBalance = 0;
)
/! GetBalance — retourne le solde courant
public double GetBalance()
{
return (double)mBalance;
1
/] kecountNumber
public int GetAccountNumber ()
{
return nAccountNumber;
}
public void SetAccountNumber (int nAccountNumber)
{
thig.nAccountNumber = nAccountNumber;
}
/] Deposit — tout dépdt positif est autorisé
public void Deposit(double dAmount)
{
if (dAmount > 0.0)

Chapitre 11 : Rendre une classe responsable 249

/] arrondit la variable double au centime le plus proche avant
/] d'effectuer le dépét

decimal mTemp = (decimal)dAmount;

mTemp = Decimal.Round(mTemp, 2);

mBalance += mTemp;

}

}

/] Withdraw — tout retrait est autorisé jusqu'a la valeur
/] du solde ; retourne le montant retiré
public decimal Withdraw(decimal dWithdrawal)

{

if (mBalance <= dWithdrawal)
{

dWithdrawal = mBalance;
}
mBalance -= dWithdrawal;
return dWithdrawal;

}
/] GetString — retourne dans une chaine les informations sur le compte
public string GetString()
{
string s = String.Format ("#{0} = {1:C}",
GetAccountNumber (),
GetBalance());
return s;
}
}

J'ai converti toutes les représentations internes en valeur decimal, qui
est dans tous les cas un type mieux adapté que dcuble au traitement de
solde de compte bancaire. La méthode Deposit () utilise maintenant la
fonction Decimal.Round () pour arrondir le montant des dépdts au
centime le plus proche avant d'effectuer le dépét correspondant. La
sortie de ce programme est maintenant ce que nous sommes en droit
d'attendre :

Création d'un objet compte bancaire
Dépdt de 123,45 F

Compte = #1001 = 123,45 F

Ajout de 0,00 F

Compte résultant = #1001 = 123,45 F
Appuyez sur Entrée pour terminer...

250 Quatriéme partie : La programmation orientée objet

Q‘“ON 7
é&

Et alors ?

On pourrait toujours dire que j'aurais di écrire des le départ le programme
BankAccount en utilisant le type decimal pour les données saisies, et je serais
probablement d'accord. Mais ce n'est pas si évident. Bien des applications ont
été écrites en utilisant le type double comme moyen de stockage. Un probléme
s'est produit, mais la classe BankAccount était capable de le résoudre de fagon
interne sans nécessiter de modifications a l'application elle-méme.

Dans ce cas, la seule fonction affectée a été Main (), mais les effets
auraient pu s'étendre a des centaines d'autres fonctions accédant aux
comptes bancaires, et ces fonctions auraient pu se trouver dans des
dizaines de modules. Si la correction avait été faite a l'intérieur de la
classe Rankiccount, aucune de ces fonctions n'aurait di étre modifiée.
Mais cela n'aurait pas été possible si les membres internes de la classe
avaient été exposés a des fonctions externes.

Les modifications internes & une classe nécessitent quand méme toujours
de tester & nouveau diverses portions de code, méme si celles-ci n'ont pas
été modifiées.

Définir des propriétés de classe

Les méthodes GetX () et SetX () des différentes versions du programme
Bankiccount sont appelées fonctions d'accés, ou, plus simplement,
accesseurs. Bien qu'en théorie elles soient synonymes de bonnes habitu-
des de programmation, les fonctions d'accés peuvent en pratique devenir
un peu maladroites. Par exemple, le code suivant est nécessaire pour
incrémenter nAccountNumber de 1.

SetAccountNumber (GetAccountNumber () + 1);

C# définit une structure nommée une propriété qui permet d'utiliser
beaucoup plus facilement les fonctions d'acces. Le fragment de code
suivant définit une propriété de lecture-écriture, AccountNumber :

public int AccountNumber
{
get{return nAccountNumber;}
set{nAccountNumber = value;}
}

Chapitre 11 : Rendre une classe responsable

QL

La section get est implémentée chaque fois que la propriété est lue, alors
que la section set est invoquée lors de I'écriture. La propriété Balance ci-
dessous est en lecture seule, car seule la section set est définie :

public double Balance
-
get
{
return (double)mBalance;
}
}

A l'utilisation, ces propriétés apparaissent de la facon suivante :

BankAccount ba = new BankAccount();

/] stocke la propriété numéro de compte

ba.AccountNumber = 1001;

/] lit les deux propriétés

Console.WriteLine ("#{0} = {1:C}",
ba.AccountNumber, ba.Balance);

Les propriétés AccountNumber et Balance ressemblent beaucoup a des
membres donnée publics, par leur présentation comme par leur utilisa-
tion. Toutefois, les propriétés permettent a la classe de protéger ses
membres internes (Balance est une propriété en lecture seule) et de
masquer leur implémentation. Remarquez que Balance effectue une
conversion. Elle aurait pu aussi exécuter les calculs les plus abondants.

Par convention (ce n'est pas une obligation de C#), le nom d'une propriété
commence par une lettre majuscule.

Une propriété n'est pas nécessairement dépourvue d'effet. Le compilateur
C# peut optimiser un simple accesseur pour qu'il ne génére pas plus de
code machine que l'acceés direct 2 un membre donnée. C'est important,
pas seulement pour l'application, mais aussi pour C# lui-méme. Toute la
bibliothéque C# fait un usage abondant des propriétés.

Propriétés statiques

Un membre donnée statique (de classe) peut étre exposé par l'intermé-
diaire d'une propriété statique, comme le montre 'exemple simple suivant :

public class BankAccount
{

251

252 Quatrieme partie : La programmation orientée objet

private static int nNextAccountNumber = 1000;
public static int NextAccountNumber
{
get{return nNextAccountNumber;}
}
...

La propriété NexticcountNumber est accessible par la classe, car ce n'est
pas la propriété d'un objet particulier :

/] 1it la propriété numéro de compte
int nValue = BankAccount.NextAccountNumber;

Propriétés avec effets de bord

Une opération get peut exécuter plus de travail que la simple extraction
de la propriété associée :

public static int AccountNumber

{
/] extrait la propriété et prépare
/] 1'extraction de la suivante
get{return ++nNextAccountNumber;}

}

Cette propriété incrémente le membre statique numéro de compte avant
de retourner le résultat. Toutefois, ce n'est sans doute pas une bonne
idée, car l'utilisateur de la propriété n'a aucune idée de ce qui se passe en
dehors de la lecture de la propriété.

Tout comme les fonctions accesseurs qu'elles imitent, les propriétés ne
doivent pas changer l'état d'une classe.

Donner un bon départ a vos objets : les
constructeurs

Controler l'accés a une classe n'est que la moitié du probléme. Un objet
a besoin d'un bon départ dans la vie s'il veut grandir. Une classe peut
fournir une méthode d'initialisation, appelée par I'application pour faire

Chapitre 11 : Rendre une classe responsable 253

démarrer les choses, mais que se passe-t-il si 'application oublie d'appe-
ler la fonction ? La classe commence avec de mauvaises initialisations,
et la situation ne peut pas s'améliorer ensuite. Si vous voulez tenir la
classe pour responsable de ce qu'elle fait, vous devez commencer par
lui assurer un bon démarrage.

C# résout le probléme en appelant la fonction d'initialisation pour vous.
Par exemple :

MyObject mo = new MyObject();

En d'autres termes, non seulement cette instruction va chercher un objet
dans une zone particuliére de la mémoire, mais elle I'initialise en appelant
la fonction d'initialisation.

Ne confondez pas les termes classe et objet. Chien est une classe. Mon
) chien Scocter est un objet de la classe Chien.

Le constructeur fourni par C#

C# se débrouille trés bien pour savoir si une variable a été initialisée. Il ne
vous permettra pas d'utiliser une variable non initialisée. Par exemple, le
code suivant génére une erreur a la compilation :

public static void Main(string[] args)
{

int n;

double d;

double dCalculatedValue = n + d;

C# sait que ni n ni d n'ont recu une valeur, et ne leur permet pas d'étre
utilisées dans I'expression. La compilation de ce petit programme génére
les erreurs de compilation suivantes :

Utilisation d'une variable locale non assignée 'n'
Utilisation d'une variable locale non assignée 'd'

Par comparaison, C# offre un constructeur par défaut qui initialise le
contenu d'un objet a 0 pour une variable intrinséque, a false pour une

254 Quatriéme partie : La programmation orientée objet

variable booléenne, et a null pour une référence d'objet. Voyez I'exemple
de programme suivant :

using System;
namespace DecimalBankAccount
(
public class Classl
{
public static void Main(string[] args)
{
/] commence par créer un objet
MyObject localObject = new MyObject();
Console.WriteLine("localObject.n est {0}", localObject.n);
if (localObject.nextObject == null)
(
Console.WriteLine("localObject.nextObject est null");
)
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read(});

3
public class MyObject
(
internal int n;
internal MyObject nextObject;
}

Ce programme définit une classe MyObject, qui contient une variable = de
type int, et une référence a un objet, next0bject. La fonction Main{: crée

un objet My 0b fect, et affiche le contenu initial de = et de nextOh et

Ce programme produit la sortie suivante :

localObject.n est 0
localObject.nextObject est null
Appuyez sur Entrée pour terminer...

Lorsque l'objet est créé, C# exécute un petit morceau de code pour
I'initialiser, ainsi que ses membres. Livrés 4 eux-mémes, les membres
donnée lccaihiect.n et nextibi=ct ne contiendraient que des valeurs
aléatoires, sans signification.

Le code qui initialise les objets lorsqu'ils sont créés s'appelle le constructeur.

Chapitre 11 : Rendre une classe responsable 255

Le constructeur par défaut

C# garantit qu'un objet commence sa vie dans un état connu : rien que
des zéros. Toutefois, pour de nombreuses classes (sans doute la plupart
des classes), ce n'est pas un état valide. Considérez la classe Bankiccoant
que nous avons déja vue dans ce chapitre :

public class BankAccount
{
int nAccountNumber;
double dBalance;
/! . . .autres membres

Bien qu'un solde initial de 0 soit acceptable, un numéro de compte égal a
0 n'est certainement pas un numéro de compte valide.

La classe BankAccount contient la méthode InitFankiccount {1 pour
initialiser 1'objet. Toutefois, cette solution fait peser une responsabilité
trop lourde sur l'application elle-méme. Si I'application n'invoque pas la
fonction InitBankAccount (), les méthodes de compte bancaire ne
fonctionneront sans doute pas, sans que ce soit de leur faute. [l est
préférable qu'une classe ne dépende pas de fonctions externes pour
mettre ses objet dans un état valide.

En réponse a ce probléme, la classe peut fournir une fonction spéciale qui
sera automatiquement appelée par C# lors de la création de I'objet : le
constructeur de classe. Celui-ci aurait pu étre nommé Init (), Start(), ou
Create(), pourvu que ce nom vous plaise, mais le constructeur porte le
nom de la classe. Aussi, le constructeur de la classe BankAccount se
présente de la facon suivante :

public int Main(string[] args)
{
BankAccount ba = new BankAccount();
}
public class BankAccount
{
// les numéros de compte commencent & 1000 et augmentent
/] séquentiellement & partir de 12
static int nNextAccountNumber = 1000;
/! met & jour le numéro de compte et le solde pour chaque objet
int nAccountNumber;
double dBalance;

256 Quatriéme partie : La programmation orientée objet

/! constructeur BankAccount

public BankAccount()

{
nAccountNumber = ++nNextAccountNumber;
dBalance = 0.0;

[/ . . . autres membres. . .

Le contenu du constructeur RankAccount est le méme que celui de la
méthode originale Tr.it. .. }. Toutefois, une méthode n'est ni déclarée ni
utilisée de la méme manieére :

v Le constructeur porte le méme nom que la classe.
¥ Le constructeur n'a pas de type retourné, méme pas void.

¥ VMzinti) n'apas besoin d'invoquer une fonction supplémentaire
pour initialiser l'objet lorsqu'il est créé.
Construisons quelque chose

Essayez donc un de ces constructeurs. Voyez le programme
t

DemonstratelefaultConstructor suivant :

/] DemonstrateDefaultConstructor — montre le fonctionnement

/] des constructeurs par défaut ; crée une classe
/1 avec un constructeur, puis exéeute '
/1 quelques scénarios

using System;
namespace DemonstrateDefaultConstructor
{
// MyObject — crée une classe avec un comstructeur bruyant

/! et un objet interne
public class MyObject
{

/] ce membre est une propriété de la classe

static MyOtherObject staticObj = new MyOtherObject():
/] ce membre est une propriété de 1'objet
MyOtherObject dynamicObj;

public MyObject()

{
Console.Writeline("Démarrage du constructeur MyObject"):
dynamicObj = new MyOtherObject();

Console.WriteLine("Fin du constructeur MyObject");

Chapitre 11 : Rendre une classe responsable 257

}
}
/] MyOtherObject - cette classe a aussi un constructeur bruyant
/1 mais pas de membres internes
public class MyOtherObject
{
public MyOtherObject()
{
Console.WriteLine("Construction de MyOtherObject en cours");
}
}
public class Classl
{
public static void Main(string[] args)
{
Console.WriteLine("Démarrage de Main()");
/] crée un objet
MyObject localObject = new MyObject();
/1 attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

L'exécution de ce programme génére la sortie suivante ;

Démarrage de Main()

Construction de MyOtherObject en cours
Démarrage du constructeur MyObject
Construction de MyOtherObject en cours
Fin du constructeur MyObject

Appuyez sur Entrée pour terminer...

Reconstruisons ce qui vient de se produire :
1. Le programme démarre, et Main () affiche le message initial.
2. Main() crée un localObject, de type MyObject.

3. VMyObject contient un membre statique, staticObj, de la classe
MyOtherObject. Tous les membres donnée statiques sont créés
avant que le premier MyOb ject soit construit. Dans ce cas, C#
remplit staticObj avec un MyOtherObject nouvellement créé,
avant de passer le controle au constructeur MyOb ject. Cette étape
correspond au second message.

258 Quatrieme partie : La programmation orientée objet

€Z P4
Q%\) &)

Le constructeur de MyObiect recoit le controle. I affiche son
premier message : Dérarrage du constructeur MyObject.

Le constructeur MyObiect crée un objet de la classe MyOtherObiect
en utilisant l'opérateur new, et affiche le deuxiéme message du
constructeur MvOtherUbject

Le contrdle revient au constructeur Mv0biect, qui retourne a Main().

Mission accomplie !

Exécuter le constructeur a partir du débogueunr

Pour avoir encore un peu plus de mérite, exécutez maintenant le méme
programme a partir du débogueur :

1.
2.

Générez a nouveau le programme : sélectionnez Générer/Générer.

Avant de commencer a exécuter le programme a partir du
débogueur, définissez un point d'arrét a 'appel
Console.Writeline() dans le constructeur I'y0therObject.

Pour définir un point d'arrét, cliquez dans la barre grise verticale
qui constitue le bord gauche de la fenétre de code, en regard de la
ligne pour laquelle vous voulez définir un point d'arrét.

La Figure 11.1 montre I'affichage avec le point d'arrét.

Au lieu de sélectionner Déboguer/Démarrer, sélectionnez Déboguer/
Pas a pas détaillé (ou, mieux encore, appuyez sur la touche F11).

Vos fenétres doivent s'agiter un peu pendant quelques secondes,
puis l'appel Console.Writeline () doit apparaitre sur fond jaune.

Appuyez a nouveau sur la touche F11.

Votre affichage doit maintenant ressembler a ce que montre la
Figure 11.2.

Sélectionnez Déboguer/Démarrer ou appuyez sur F5, et le pro-
gramme s'exécute jusqu'au point d'arrét dans MyOtherChiect,
comme le montre la ligne en surbrillance dans la Figure 11.3.

Appuyez encore deux fois sur la touche F11, et vous étes de nouveau
au début du constructeur yCb ject, comme le montre la Figure 11.4.

Chapitre 11 : Rendre une classe responsable 259

*,, DemonstrateDefaultConstractor - Microsoft Visual CoNET :
Fichier Edition Affichage Projet Générer Déboguer Qutils Fepétre Help

© % "% %,
W 8-y petug . -

=i8lx]

ey

Cassl.cs 1

[? ¢ vemunstratatet o [T,

Myitherllyect ()

. onsole.Brite i yOot. ject .en cour
I

Figure 11.1:

. pk
La ligne en ‘
SUrbrl“ance Main| 1rg[] ars
sur fond Conscle,Writelbine {"Demarrage de Mainil ") |
rouge dans |, BT e | f
le construc- |7 , ' ' '
Sortie 2 %
teur Générer M
MyOtherObject | ---- - Tarming —=mm---mm-cmmo-mmmman -
mqlque la Générarion ¢ L a r 0 = échous, 0 a £né igmors
presence -
\ . -
d'unpoint | | ,
' a
d'arrét. T |
A Prét) Ln 27 o 31 Chas INS|
*. DemonstrateDefaultConstructor - Microsoft ¥isual CENET [tk =18] x]
Fichier Editisn Affichage Projet nérer Déboguer Outils Fey
v ® oo v ELETEobes - B
Programme [792] Dermn el v Thread [@ea] snom: v Frame de pile DemanstrateDefaultCanstroctor v
o » -y betug -k - »
Classt.cs | i« Exploratenr de solutions - Demonstr.,. B X
[¢ DemonstrateCef aultConstructor ~] | @tainistring] args) -] S
. Solution TemaonstrateDef sultZonstruckar' {1 g
j 58 DemonstrateDefaultConstructor
] Refere
o] rrblyInfo.cs
o¥] Classt.
ring[] args)
Conzole.Writsline ("Démwarrage de MNain{)"):
o HyCh localChject = new HyGhject():
. i d : [class Demamstrate[:efau\tx:w:m'-rruw:tar,M‘;,'Otnect]

Figure 11.2: = Rzadi);
L'affichage i i
du < ’ | K !

JWriteline {"ippuyez sur Entrés pour terminer. !

Explorateur d..

dé bOg ueur Automatigue B X Pile des appels . o) Tax
de Visual Horn Valeur e 1 Mem Lang. - |
Studlo JUSIE IncalObiect rull Dernarstr C> DemonstrateCef aulbConstructor,seel DemonstrateDef sulkConstroctor C#
avant de

passer au

constructeur. [Automatique | & vt ,@ vl —@Piledssappels :T_U] wris st (5]

| - génetatxdn a réussi) R i3

260 Quatrieme partie : La programmation orientée objet

Eichier Edition Affichage Projet

Déboguer Cutils Fendtre Help

» w oo Ti o Hes

eDefaultizo

Frogramms [792] Demonstratels ~ Thread [s fom v Frame de ple Cemo
R [(gj- s Cebug - Ry

Classi.cs \

% ¢ iemonst ateCet aubi

struztar, My Other O

L} mul]rhembwe i j

sz Myorhers

puakzlac MyOthe

<]
SEEE—— T Console.lriteline ["Construction de Myltherdhiect en cours"y:

Figure 11.3:
Le contrdle
passe dans palrlic rraric woid Main

args)

structar v

Explorateur de solutions - Demonstr... 3

Solutian Terms

%A DemonstrateDefaultConstructor |

R

st D

NEIET

ot »

bt (1 g

le construc- Congole. Mriteline ("Déwarrage de Main ()i :J ,‘_] L4

teur < | o

M EL’O]D'\ eCt | automatiqus B % Pile des appels
avantde se |nom Walewt Tope -}

e this ADEmensh shelef 3l 7o thens Dernansts shruschs
diriger vers atructo

le construc-
teur N

"=

=

o Exploratewr 5.]]

MyObject. | Qaemwae[W & = 5
R [La genération & renssi Lnza ol 13 h4 INS
DemonstrateDefault Constructor - Microsoft -18] %]
nérer Deboguer

Hex S - Sar SECGE L 4 %% M | J

Programme [792] Cemonstratele » Thread [598) ns nof = v Frame de pie DemonstrateDefsobCanstrschn v
e W g] v 4 Diebug v . 2
Classl.cs I v ¥ Explorategr de salutions - Demonstr... &K

[% 2 Dzmanstr steDef aubConstructar 1y

Z g
Myl jeot j
P

s Myotherdh

= new Wyltheribiect {;:

e | HyOTherongect dynamicOns
. > ks lic Mylhect {)

Figure 11.4: |° i rEeEl]

Le construc-
teur
MyObject

structsur Mylhgec

Aynany

Console. . WriteLine (M"Fin dn constru

recoit le L . . e : . .

contrdle une |

fOIS qU e Autornatique b 4 F‘ile des appe
l'O blet Hom waleuy Type _i tomm

styateDefaultCanstroctor Fydbiect] Demonste T Dem
Loz

this L

statique
MyOtherObiect
a été N

Salutinn ‘Temrstr shelef auklonstogck
E DemenstrateDefaultConstructor
oy Fefere

v

3 A Eporateur d.. | ol

construit, [0 awomations [T~ B B e s ot | T

I | L= gSnération a réussi Ln 16

Col 9

Ch3

Chapitre 11 : Rendre une classe responsahle 26 ’

QQ,\3&2 P4g

< wh
a

7. Continuez d’appuyer sur la touche F11 pour avancer dans le
programine.

N'oubliez pas de continuer apreés la commande Console.Read)
Vous devrez appuyer sur Entrée dans la fenétre du programme
avant de pouvoir continuer a avancer pas a pas dans la fenétre du
débogueur Visual Studio.

Initialiser un objet directement : le constructeur
par défaut

Vous pourriez croire que presque n'importe quelle classe peut avoir un
constructeur par défaut d'un certain type, et dans une certaine mesure,
vous avez raison. Toutefois, C# vous permet d'initialiser directement un
membre donnée en utilisant une instruction d'initialisation.

Ainsi, j'aurais pu écrire la classe BankAccount de la facon suivante :

public class BankAccount
{

// les numéros de compte commencent & 1000 et augmentent

/] séquentiellement & partir de 1

static int nNextAccountNumber = 1000;

// met & jour le numéro de compte et le solde pour chaque objet
int nAccountNumber = +nNextAccountNumber;

double dBalance = 0.0;

/. . . autres membres. . .

nAccountNumber et dBalance se voient assigner une valeur dans leur
déclaration, ce qui a le méme effet qu'un constructeur,

Soyons trés clair sur ce qui va se passer exactement. Vous pensez peut-
étre que cette instruction assigne directement 0.0 & ¢Baznce. Mais
dBalance n'existe qu'en tant que partie d'un objet. Aussi, I'assignation
n'est-elle pas exécutée avant qu'un objet EankAccount soit créé. En fait,
cette assignation est exécutée chaque fois qu'un tel objet est créé.

C# récolte toutes les instructions d'initialisation qui apparaissent dans les
déclarations de la classe, et les réunit dans un constructeur initial.

262 Quatriéme partie : La programmation orientée objet

Les instructions d'initialisation sont exécutées dans l'ordre ou elles se
présentent dans les déclarations de la classe. Si C# rencontre des
initialisations et un constructeur, les initialisations sont exécutées avant
le corps du constructeur.

Voyons comment se fait la construction avec
des initialisations

Déplacez maintenant 'appel new MyOtherObiect () du constructeur
MyObject & la déclaration elle-méme, comme ci-dessous, puis exécutez a
nouveau le programme :

public class MyObject
{
/! ce membre est une propriété de la classe
static MyOtherObject staticObj = new MyOtherObject();
/] ce membre est une propriété de 1'objet
MyOtherObject dynamicObj = new MyOtherObject();
public MyObject()
{
Console.WriteLine("Démarrage du constructeur MyObject");
Console.WriteLine("Fin du constructeur MyObject");
}

Le programme modifié donne la sortie suivante :

Démarrage de Main()

Construction de MyOtherObject en cours
Construction de MyOtherObject en cours
Démarrage du constructeur MyObject

Fin du constructeur MyObject

Appuyez sur Entrée pour terminer...

Vous trouverez le programme complet sur le site Web, sous le nom
remarquable de DemonstrateConstructorWithInitializer.

Chapitre 11 : Rendre une classe responsahle 263

Surcharger le constructeur

On peut surcharger un constructeur, tout comme n'importe quelle autre
méthode.

tZ P, . e g . -
st\) As Surcharger une fonction signifie définir deux fonctions portant le méme
= nom, mais ayant des arguments différents. Pour en savoir plus, voyez le

Chapitre 7.

Imaginez que vous vouliez offrir deux maniéres de créer un BankAccount :
une avec un solde a zéro, comme le mien la plupart du temps, et une
autre avec une valeur initiale :

// BankAccountWithMultipleConstructors -

11 fournit & notre compte bancaire
I un certain nombre de constructeurs,
/! un pour chaque occasion

using System;
namespace BankAccountWithMultipleConstructors
{
using System;
public class Classl
{
public static int Main(string[] args)
{
/] crée un compte bancaire avec des valeurs initiales valides
BankAccount bal = new BankAccount();
Console.WriteLine(bal.GetString());
" BankAccount ba? = new BankAccount(100);
Console.WriteLine(ba2.GetString());
BankAccount ba3 = new BankAccount(1234, 200);
' Console.WriteLine(ba3,GetString{));
/] attend confirmation de 1'utilisateur :
Console.WriteLine("Appuyez sur Entrée pour terminer...");
~ Console.Read(); '
return 0;
}
)
// BankAccount — simule un simple compte bancaire
public class BankAccount
{
/] les numéros de compte commencent & 1000 et augmentent
/] séquentiellement & partir de 1a

static int nNextAccountNumber = 1000;

264 Quatriéme partie : La programmation orientée objet

// tient 2 jour le numéro de compte et le solde
int nAccountNumber;
double dBalance;
/] fournit une série de constructeurs selon les besoine
public BankAccount()
{
nAccountNumber = +nNextAccountNumber;
dBalance = 0.0:
}
public BankAccount(double dInitialBalance)
{
/1 reprend une partie du code du constructeur par défaut
nAccountNumber = +nNextAccountNumber;
/1 et maintenant, le code propre & ce constructeur
/! commence avec le solde initial, & condition qu'il soit positif
if (dInitialBalance < 0)

{
dInitialBalance = 0;
}
dBalance = dInitialBalance;

}
public BankAccount(int nInitialAccountNumber,
double dInitialBalance)
{
/1 ignore les numéros de compte négatifs
if (nInitialAccountNumber <= 0)
{
nInitialAccountNumber = ++nNextAccountNumber;
o Co
“nAccountNumber = nInitialAccountNumber; o
/1 commence avec le solde initial, & condition qu'il soit positif
if (dInitialBalance < 0)

{
dInitialBalance = 0;
}
dBalance = dInitialBalance:

}
public string GetString()
{
return String.Format("#{0} = (1:N}",
nhccountNumber, dBalance);

S\ON /
O
& C# ne vous offre plus de constructeur par défaut si vous définissez le
voOtre, quel que soit son type.

Chapitre 11 : Rendre une classe responsable 265

Cette version du programme BankAccountWithMultipleConstructors
comporte trois constructeurs :

v Le premier constructeur assigne un numéro de compte, et définit
un solde égal a 0.

»* Le deuxiéme constructeur assigne un numéro de compte, mais
initialise le solde du compte avec une valeur positive. Les valeurs
de solde négatives sont ignorées.

»* Le troisieme constructeur permet a l'utilisateur de spécifier un
numéro de compte positif et un solde positif.

En utilisant chacun de ces trois constructeurs, Main () crée un compte
bancaire différent, et affiche les objets créés. La sortie de I'exécution de
ce programme se présente de la facon suivante :

#1001 = 0.00
#1002 = 100.00
#1234 = 200.00

Appuyez sur Entrée pour terminer...

Dans le monde réel, une classe effectuerait beaucoup plus de tests sur les
| parametres d'entrée donnés au constructeur, pour vérifier leur validité.

Ce sont les mémes régles qui s'appliquent aux fonctions vous permet-
tant de différencier les constructeurs. Le premier objet & étre construit
par Main(), bal, est créé sans argument et est donc orienté vers le
constructeur par défaut pour y recevoir le numéro de compte par défaut
et un solde égal a zéro. Le deuxiéme compte, ba2, est envoye au cons-
tructeur BankAccount (double) pour y recevoir le numéro de compte
suivant, mais il est créé avec un solde initial de 100. Le troisiéme, ba3,
recoit un traitement complet, BankAccount (int, double), avec son
propre numéro de compte et un solde initial.

Eviter les duplications entre les constructeurs

Tout comme un scénario de série télévisée, les trois constructeurs de
BankAccount comportent une proportion significative de duplications.
Comme on peut l'imaginer, la situation serait bien pire dans des classes du
monde réel qui pourraient avoir de nombreux constructeurs, et surtout
bien plus de données a initialiser. De plus, les tests a effectuer sur les
données saisies peuvent avoir une plus grande importance dans une classe

266 Quatrieme partie : La programmation orientée objet

du monde réel que sur une page Web. La duplication de regles commercia-
les est a la fois fastidieuse et source d'erreurs. Les vérifications peuvent
facilement se trouver en désaccord. Par exemple, du fait d'une simple
erreur de codage, deux constructeurs peuvent appliquer au solde des
regles différentes. De telles erreurs sont tres difficiles a retrouver.

Vous préféreriez peut-étre qu'un constructeur en appelle un autre. mais les
constructeurs ne sont pas des fonctions : on ne peut pas les appeler.
Toutefois, vous pouvez créer une alternative sous la forme d'une fonction
qui effectue la véritable construction, et lui passer le controle, comme le
montre le programme BznkiccountConstrociorsaindPunation ci-dessous :

// BankAccountContructorsAndFunction -

/1 fournit & notre compte bancaire
/1 un certain nombre de constructeurs,
/1l un pour chaque occasion

using System;
namespace BankAccountContructorsAndFunction
{
using System;
public class Classl
{
public static int Main(string[] args)
{
// crée un compte bancaire avec des valeurs initiales valides
BankAccount bal = new BankAccount();
Console.WriteLine(bal.GetString());
BankAccount ba2 = new BankAccount(100);
Conscle.WriteLine(ba2.GetString());
BankAccount ba3 = new BankAccount (1234, 200);
Console.WriteLine(ba3.GetString());
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

}
// BankAccount — simule un simple compte bancaire
public class BankAccount
{
/! les numéros de compte commencent & 1000 et augmentent
/] séquentiellement & partir de 12
static int nNextAccountNumber = 1000;
/] tient & jour le numéro de compte et le solde
int nAccountNumber;
double dBalance;
/] place tout le véritable code d'initialisation

Chapitre 11 : Rendre une classe responsable 26 7

// dans une fonction conventionnelle séparée
public BankAccount()
{
Init(++nAccountNumber, 0.0);
}
public BankAccount(double dInitialBalance)
{
Init(++nAccountNumber, dInitialBalance);
1
/] c'est le constructeur le plus spécifique qui fait tout
/! le véritable travail
public BankAccount(int nInitialAccountNumber,
double dInitialBalance)
{
Init(nInitialAccountNumber, dInitialBalance);
}
private void Init(int nInitialAccountNumber,
double dInitialBalance)
{
nAccountNumber = nInitialAccountNumber;
// commence avec le solde initial, & condition qu'il soit positif
if (dInitialBalance < 0)
{
dInitialBalance = 0;
}
dBalance = dInitialBalance;
}
public string GetString()
{
return String.Format("#(0} = (1:N}",
nAccountNumber, dBalance);

Dans cet exemple, c'est la méthode Init () qui fait le véritable travail de
construction. Toutefois, cette approche n'est pas absolument irréprocha-
ble pour plusieurs raisons, dont l'appel d'une méthode d'un objet avant
que celui-ci ait été entierement construit n'est pas la moindre. C'est une
chose trés dangereuse.

Heureusement, ce n'est pas nécessaire. Un constructeur peut se référer a
un autre avec une variante de I'utilisation du mot-clé this :

/! BankAccountContructorsAndThis -
= fournit & notre compte bancaire
/1l un certain nombre de constructeurs,

268 Quatrieme partie : La programmation orientée ohjet

/! un pour chaque occasion
using System;
namespace BankAccountContructorsAndThis
{
using System;
public class Classl
{
public static int Main(string[] args)
{
/] crée un compte bancaire avec des valeurs initiales valides
BankAccount bal = new BankAccount();
Console.WriteLine(bal.GetString());
BankAccount ba2 = new BankAccount(100);
Console.WriteLine(ba2.GetString());
BankAccount ba3 = new BankAccount(1l
Congole.WriteLine(ba3.GetString());
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;
}
}
// BankAccount — simule un simple compte bancaire
public class BankAccount
{
// les numéros de compte commencent a 1000 et augmentent
/] séquentiellement & partir de 13
static int nNextAccountNumber = 1000;
// tient & jour le numéro de compte et le solde
int nAccountNumber;
double dBalance;
// invoque le constructeur spécifique en fournissant
/] des valeurs par défaut pour les arguments manquants
public BankAccount() : this(0, 0) {)
public BankAccount(double dInitialBalance) :
this(0, dInitialBalance) {}
/] c'est le constructeur le plus spécifique qui fait tout
/] le véritable travail
public BankAccount(int nInitialAccountNumber,
double dInitialBalance)

234, 200);

{
/1 ignore les numéros de compte négatifs ; un numéro de compte nul
/] indique que nous devons utiliser le prochain numéro disponible
if (nInitialAccountNumber <= Q)
{
nInitialAccountNumber = ++nNextAccountNumber;
}

nAccountNumber = nInitialAccountNumber;

Chapitre 11 : Rendre une classe responsable 269

/] commence avec le solde initial, & condition qu'il soit positif
if (dInitialBalance € 0)
{
dInitialBalance = 0;
I
- dBalance = dInitialBalance;
}
public string GetString()
{
‘return String.Format("#{0} = {1:N}",
nAccountNumber, dBalance);

Cette version de BankAccount contient les trois constructeurs que nous
avons vus dans la version précédente, mais au lieu de répéter les mémes
tests dans chaque constructeur, les deux constructeurs les plus simples
invoquent le troisieme (le plus souple), qui fournit des valeurs par défaut
pour les arguments manquants.

La création d'un objet en utilisant le constructeur par défaut invoque le
constructeur BankAccount () :

BankAccount bal = new BankAccount();

Le constructeur BankAccount () donne immédiatement le contrdle au
constructeur BankAccount(int, double), en lui passant les valeurs par
défaut 0 et 0.0 :

‘ publiciBankAccount() : this(0, 0) {}

Le tout-puissant troisiéme constructeur a été modifié pour rechercher un
numéro de compte nul et le remplacer par un numéro valide.

Le controle est restitué au constructeur par défaut une fois que le construc-
teur invoqué a terminé son travail. Dans ce cas, le corps du constructeur

par défaut est vide.

La création d'un compte bancaire avec un solde mais un numéro de
compte par défaut passe par le chemin suivant :

public-BankAccount (double d) : this(0, d) (}

2 70 Quatrieme partie : La programmation orientée objet

Etre avare de ses objets

On ne peut pas construire un objet sans un constructeur correspondant.
Si vous définissez votre propre constructeur, C# retire le sien. En combi-
nant ces deux aspects, vous pouvez créer une classe qui ne peut étre
instanciée que localement.

Par exemple, seule une méthode définie dans le méme espace de nom que
BankAccount peut créer un objet BankAccount avec le constructeur
déclaré comme internal (pour en savoir plus sur les espaces de nom,
reportez-vous au Chapitre 16) :

// BankAccount — simule un simple compte bancaire
public class BankAccount
{
/] les numéros de compte commencent & 1000 et augmentent
/] séquentiellement & partir de 12
static int nNextAccountNumber = 1000;
/] tient & jour le numéro de compte et le solde
int nAccountNumber;
double dBalance;
/] invoque le constructeur spécifique en fournissant
/! des valeurs par défaut pour les arguments manquants
internal BankAccount()
{
nAccountNumber = ++nNextAccountNumber;
dBalance = 0;
}
public string GetString()
{
return String.Format("#{0} = {1:N}",
nAccountNumber, dBalance);

Chapitre 12
Acceptez-vous I'héritage ?

Dans ce chapitre :
Définir un nouveau type de classe, plus fondamental.
Faire la différence entre "EST_UN" et "A_UN".
Changer la classe d'un objet.
Construire des membres statiques, ou de classe.
Inclure des constructeurs dans une hiérarchie d'héritage.

Invoquer spécifiquement le constructeur de la classe de base.

L a programmation orientée objet repose sur trois principes : la possibilité
de controler l'accés aux objets (I'encapsulation), la possibilité
d'hériter d'autres classes, et la possibilité de répondre de facon appropriée
(le polymorphisme).

L'héritage est une notion ordinaire. Je suis un étre humain, sauf a lI'instant ot je
sors du sommeil. J'hérite de certaines propriétés de la classe Humain, comme
ma capacité de dialoguer (plus ou moins), et ma dépendance a I'égard de l'air,
de la nourriture et de boissons contenant beaucoup de caféine. La classe
Humain hérite sa dépendance a I'égard de l'air, de l'eau et de la nourriture de la
classe Mammifare, qui, elle-méme, hérite de la classe Animal.

La capacité de transmettre des propriétés a un "héritier" est un aspect trés
puissant de la programmation orientée objet. Elle permet de décrire les
choses d'une maniére économique. Par exemple, si mon fils me demande :
"Qu'est-ce que c'est un canard ?" Je peux répondre : "C'est un oiseau qui fait
coin coin.” En dépit de ce que vous pouvez penser, cette réponse contient
une quantité considérable d'informations. Mon fils sait ce qu'est un oiseau,
et il sait maintenant qu'un canard posséde toutes les propriétés qu'il
connait des oiseaux, plus la propriété supplémentaire "faire coin coin".

2 72 Quatrieme partie : La programmation orientée objet

Les langages orientés objet expriment cette relation d'héritage en permet-
tant a une classe d'hériter d'une autre. C'est cette caractéristique qui
permet aux langages orientés objet de produire des modeles plus proches
du monde réel que les langages qui ne disposent pas du principe de
I'héritage.

Hériter d'une classe

Dans l'exemple InheritanceExanple suivant, la classe SubClass hérite de
la classe BaseClass :

/1

using

{

// InheritanceExample — offre la démonstration

la plus simple de 1'héritage
System;

namespace InheritanceExample

public class BaseClass

{

public int nDataMember;
public void SomeMethod()

{

}
}

Console.WriteLine ("SomeMethod()");

public class SubClass : BaseClass

(

public void SomeOtherMethod()

{

}
}

Console.WriteLine("SomeOtherMethod{)"):

public class Test

{

public static int Main(string(] args)

{

/] crée un objet de la classe de base
Console.WriteLine("Utilisons un objet de la classe de base BN
BaseClass bc = new BaseClass();

bc.nDataMember = 1;

be.SomeMethod () ;

/] créons maintenant un élément d'une sous-classe
Console.WriteLine("Utilisons un objet d'une sous-classe ")
SubClass sc = new SubClass();

sc.nDataMember = 2;

sc.SomeMethod () ;

sc.SomeOtherMethod();

/1 attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour termimer...");
Console.Read();

return 0;

La classe BaseCliass est définie avec un membre donnée, et une simple
fonction membre, Someilethod (). L'objet to de la classe BaseClass est
créé et utilisé dans Main ().

La classe SubClass hérite de la classe Bas=Class en placant le nom de celleci
apres le signe deux-points (©) dans sa déclaration. SubClass récupere donc
tous les membres de BaseClass, et peut y ajouter les siens. ilain () montre
que SubClass a maintenant un membre donnée, nDataMerber, et une fonction
membre, SomeMethod (), qui viennent rejoindre le nouveau membre de la
famille, la petite méthode SomeGthetCliass).

Le programme produit la sortie attendue (je suis toujours surpris quand
un de mes programmes donne les résultats attendus) :

Utilisons un objet de la classe de base :
SomeMethod ()

Utilisons un objet d'une sous-classe :
SomeMethod ()

SomeOtherMethod()

Appuyez sur Entrée pour terminer...

Ceci est stupéfiant

Pour comprendre leur environnement, les étres humains construisent de vastes taxonomies.
Par exemple, Milou est un cas particulier de chien, qui est un cas particulier de canidé, qui
‘est un cas particulier de mammifére, et ainsi de suite. Notre représentation du monde qui
nous entoure est fagonnée par cette maniére de classifier les choses. ~

;Dansyun langage orienté objet comme C#, nous disons que la classe Student hérite de la.

classe Person. Nous disons aussi que Person est une classe de base de Student, et que
Student est une sous-classe de Person. Enfin, nous disons qu'un Student EST_UNE
Person.

Chapitre 12 : Acceptez-vous I'héritage ? 2 73

2 74 Quatriéme partie : La programmation orientée objet

Remarquez que la propriété EST_UN n'est pas réflexive : un Student EST_UNE Person,
mais l'inverse n'est pas vrai. Une Person N'EST_PAS_UN Student. Un énoncé comme
celui-ci se référe toujours au cas général. Il pourrait se trouver qu'une Person particuliére
soit effectivement un Student, mais beaucoup de gens qui sont membres de la classe
Person ne sont pas membres de la classe Student. En outre, la classe Student possede
despropriétésqu'ellene partage pasaveclaclasse Person. Parexemple,un Student aune
moyenne de points d'UV, mais une Person ordinaire n'en a pas.

L'héritage est une propriété transitive. Par exemple, si je définis une nouvelle classe
GraduateStudent comme une sous-classe de Student, alorsun GraduateStudent est
aussiune Person. Etil doit en étre ainsi: siun GraduateStudent EST_UN Student etun
Student EST_UNE Person, alors un GraduateStudent EST_UNE Person. CQFD.

A quoi me sert 'héritage ?

L'héritage a plusieurs fonctions importantes. Vous pourriez penser qu'il
sert a réduire le volume de ce que vous avez a taper au clavier. Dans une
certaine mesure, c'est vrai : lorsque je décris un objet de la classe
Student, je n'ai pas besoin de répéter les propriétés d'une Person. Un
aspect plus important, mais lié a celui-ci, est le grand mot d'ordre réutili-
ser. Les théoriciens des langages de programmation savent depuis long-
temps qu'il est absurde de recommencer de zéro pour chaque nouveau
projet en reconstruisant chaque fois les mémes composants.

Comparez la situation du développement de logiciel a celle d'autres indus-
tries. Y a-t-il beaucoup de constructeurs automobile qui commencent par
concevoir et fabriquer leurs propres pinces et tournevis pour construire une
voiture ? Et méme s'ils le faisaient, combien recommenceraient de zéro en
réalisant des outils entierement nouveaux pour chaque nouveau modéle ?
Dans les autres industries, on s'est rendu compte qu'il est plus pertinent
d'utiliser des vis et des écrous standards, et méme des composants plus
importants comme des moteurs, que de repartir de zéro chaque fois.

L'héritage permet de tirer le meilleur parti des composants logiciels
existants. Vous pouvez adapter des classes existantes a de nouvelles
applications sans leur apporter de modifications internes. C'est une
nouvelle sous-classe, contenant les ajouts et les modifications nécessai-
res, qui hérite des propriétés d'une classe existante.

Chapitre 12 : Acceptez-vous I'héritage ? 2 75

Cette capacité va de pair avec un troisiéme avantage de I'héritage. Imagi-
nez que vous héritiez d'une classe existante. Un peu plus tard, vous vous
apercevez que celle-ci a un bogue qu'il vous faut corriger. Si vous avez
modifié la classe pour la réutiliser, vous devez rechercher manuellement
le bogue, le corriger et tester le résultat, séparément, pour chaque appli-
cation qui l'utilise. Si vous avez hérité de la classe sans lui faire de modifi-
cations, vous pourrez dans la plupart des cas introduire sans surprises la
classe corrigée dans toutes les applications qui l'utilisent.

Mais le plus grand avantage de principe de I'héritage est de coller a la
réalité de la vie. Les choses héritent des propriétés d'autres choses.
Comme disait ma grand-meére, c'est la nature des choses.

Un exemple plus concret : hériter d'une classe
BankAccount

Ma banque connait plusieurs types de comptes bancaires. L'un d'eux, le
compte rémunéré, possede des propriétés ordinaires d'un compte ban-
caire, plus la capacité d'accumuler des intéréts. L'exemple de programme
suivant, SimpleSavingsAccount, réalise en C# un modele de ces relations :

Que les plus impressionnables d'entre vous ne s'affolent pas : ce listing
est un peu long, mais il est divisé en parties clairement distinctes.

//k31mple8avingsAccount = 1mplémente un Sav1ngsAccount comme forme" .
e d'un BankAccount n utillse pas de methode vzrt Ile

_11ng System.

namespace SimpleSav1ngsAccount

1 ‘

Lt BankAccount - gimule un compte bancaire possédant

S : un numéro de compte (assigné &:la création

uf:J/; . du compte) et un solde

f vphblib‘CIass BankAccount e

{

/1 les numéros de compte commencent 3 1000 et augmentent
s sequentlellement 4 partir de 1a
“-public ‘static int nNextAccountNumber = 1000; : :
/! met & jour le numéro de compte et le solde pour chaque objet
~pub11c int nAccountNumber; : o e
public dEC1mal mBalance; ; ;
- Inlt — initialise le compte avec le prochain numéro de compte
S et le solde initial spécifié . U

276 Quatriéme partie : La programmation orientée objet

/! (qui est égal & zéro par défaut)
public void InitBankAccount()
{
InitBankAccount (0);
}
public void InitBankAccount(decimal mInitialBalance)
{
nAccountNumber = +nNextAccountNumber;
mBalance = mInitialBalance;
}
// Balance (solde)
public decimal Balance
{
get { return mBalance;}
}
/] Deposit — tout dépdt positif est autorisé
public void Deposit(decimal mAmount)
{
if (mAmount > 0)
{
mBalance += mAmount;
]
}
// Withdraw — tout retrait est autorisé jusqu'a la valeur
/1 du solde ; retourne le montant retiré
public decimal Withdraw(decimal mWithdrawal)
{
if (mBalance <= mWithdrawal)
(
mWithdrawal = mBalance;
}
mBalance -= mWithdrawal;
return mWithdrawal;
}
/] ToString — met le compte sous forme de chaine
public string ToBankAccountString()
{
return String.Format("{0} - {1:C}",
nAccountNumber, mBalance);
}
}
/] SavingsAccount — compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount
{
public decimal mInterestRate;
/! InitSavingsAccount — 1lit le taux d'intérét, exprimé en
/1 pourcentage (valeur comprise entre 0 et 100)
public void InitSavingsAccount(decimal mInterestRate)

Chapitre 12 : Acceptez-vous I'héritage 7 2 77

{
InitSavingsAccount(0, mInterestRate);
]
public void InitSavingsAccount(decimal mInitial,
decimal mInterestRate)
{
InitBankAccount(mInitial);
this.mInterestRate = mInterestRate / 100;
}
/! Accumulatelnterest — invoquée une fois par période
public void Accumulatelnterest()
{
mBalance = mBalance + (decimal)(mBalance * mInterestRate):
}
/] ToString — met le compte sous forme de chaine
public string ToSavingsAccountString()
{
return String.Format("(0} ({1}%)",
ToBankAccountString (), minterestRate * 100);

}
}
public class Classl
{
public static int Main(string[] args)
{
// crée un compte bancaire et 1'affiche
BankAccount ba = new BankAccount():
ba.InitBankAccount(100);
ba.Deposit(100);
Console.WriteLine("Compte {0)", ba.ToBankAccountString());
/! et maintenant un compte rémunéré
SavingsAccount sa = new Savingshccount();
sa.InitSavingsAccount (100, 12.5M);
sa.AccunulateInterest();
Console.WriteLine("Compte (0}", sa.ToSavingsAccountString());
/1 attend confirmation de 1l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Congole.Read();
return 0;
}
}

La classe Barkaccount n'est guére différente de celles qui apparaissent
dans d'autres chapitres de ce livre. Elle commence par la fonction
d'initialisation surchargée T+ i 2znizaccount () @ une pour les comptes qui
sont créés avec un solde initial, une autre pour ceux qui devront se
contenter de commencer de zéro.

2 78 Quatrieme partie : La programmation orientée objet

R

La propriété Balance permet de lire le solde, mais sans donner la possibi-
lité de le modifier. La méthode Deposit () accepte tout dépét positif. La
méthode Withdraw() vous permet de retirer tout ce que vous voulez dans
la limite de ce que vous avez sur votre compte. ToBankAccountString ()
crée une chaine qui donne la description du compte.

La classe SavingsAccount hérite de toutes ces bonnes choses de
BankAccount. A cela, elle ajoute un taux d'intérét, et la possibilité
d'accumuler des intéréts a intervalle régulier.

Main () en fait le moins possible. Elle crée un BankAccount, affiche le compte,
crée un SavingsAccount, ajoute une période d'intéréts, et affiche le résultat :

Compte 1001 - 200,00 X
Compte 1002 - 112,50 X (12,5%)
Appuyez sur Entrée pour terminer...

Remarquez que la méthode InitSavingsAccount () invoque
InitBankAccount (). Cela initialise les membres donnée propres au
compte. La méthode InitSavingsAccount () aurait pu les initialiser
directement, mais il est de meilleure pratique de permettre a
BankAccount d'initialiser ses propres membres.

EST_UN par rapport a A_UN — j'ai du mal a
m'y retrouver

La relation entre Savingsiccount et BankAccount n'est rien d'autre que la
relation fondamentale EST_UN. Pour commencer, je vais vous montrer
pourquoi, puis je vous montrerai & quoi ressemblerait une relation A_UN.

La relation EST UN

La relation EST_UN entre Savingsiccount et BankAccount est mise en
évidence par la modification suivante & C12ss1 dans le programme
SimpleSavingsiccount de la section précédente :

public class Classl

{

// DirectDeposit — effectue automatiquement le dépdt d'un chéque
public static void DirectDeposit{BankAccount ba,

Chapitre 12 : Acceptez-vous I'héritage ? 2 79

decimal mPay)

(
ba.Deposit (mPay) ;

]

public static int Main(string[] args)

{
/1 crée un compte bancaire et 1'affiche
BankAccount ba = new BankAccount();
ba.InitBankAccount(100);
DirectDeposit(ba, 100);
Console.WriteLine("Compte (0}", ba.ToBankAccountString());
// et maintenant un compte rémunéré
SavingsAccount sa = new SavingsAccount();
sa.InitSavingsAccount(12.5M);
DirectDeposit(sa, 100);
sa.Accumulatelnterest();
Console.WriteLine("Compte {0}", sa.ToSavingsAccountString());
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

Les effets de ce programme n'ont pas changé. La seule véritable diffé-
rence est que tous les dépots sont maintenant effectués par la fonction
locale DirectDeposit (). Les arguments de cette fonction sont le compte
bancaire et le montant a déposer.

Remarquez (c'est le bon c6té de la chose) que Main () peut passer &
DirectDeposit{) soit un compte ordinaire, soit un compte rémunéré, car
un SavingsAcceount EST_UN Bankiccount et en recoit par conséquent
tous les droits et privileges.

Contenir BankAccount pour y accéder

La classe SavingsAccount aurait pu accéder d'une autre maniére aux
membres de BankAccount :

/] SavingsAccount — compte bancaire qui rapporte des intéréts
public class SavingsAccount_
{

public BankAccount bankAccount;

public decimal mInterestRate;

/] InitSavingsAccount — lit le taux d'intérédt, exprimé en

280 Quatriéme partie : La programmation orientée objet

/! pourcentage (valeur comprise entre 0 et 100)
public void InitSavingsAccount(BankAccount bankAccount,
decimal mInterestRate)

{

this.bankAccount = bankAccount;

this.mInterestRate = mInterestRate / 100;
}
/] Accumulatelnterest — invoquée une fois par période
public void Accumulatelnterest()
{

bankAccount.mBalance = bankAccount.mBalance

+ (bankAccount.mBalance * mInterestRate);

}
/] Deposit — tout dépdt positif est autorisé
public void Deposit(decimal mAmount)
{

bankAccount.Deposit (mAmount);

}
/] Withdraw — tout retrait est autorisé jusqu'a la valeur
1 du solde ; retourne le montant retiré

public double Withdraw(decimal mWithdrawal)
{

return bankAccount.Withdraw(mWithdrawal);
}

Ici, la classe SavingsiAccount_ contient un membre donnée bankAccount
(au lieu d'en hériter de Baniccount). L'objet bankAccount contient le
solde et le numéro du compte, informations nécessaires pour la gestion
du compte rémunéré. Les données propres a un compte rémunéré sont
contenues dans la classe Savingsicoount_.

Dans ce cas, nous disons que szvirgsacoount_ A_UN BankAccount.

La relation A_UN

La relation A_UN est fondamentalement différente de la relation EST_UN.
Cette différence ne semble pas mauvaise dans I'exemple de code suivant :

/] crée un nouveau compte rémunéré
BankAccount ba = new BankAccount()
SavingsAccount sa = new SavingsAccount ();
sa.InitSavingsAccount(ba, 5);

/! et y dépose cent euros

sa.Deposit(100);

Chapitre 12 : Acceptez-vous I'héritage ? 28 ’

/1 puis accumule des intéréts
sa.AccumulateInterest();

Le probléme est qu'un SavingsAccount_ ne peut pas étre utilisé comme
un BankAccount. Par exemple, le code suivant ne marche pas :

/] DirectDeposit — effectue automatiquement le dépdt d'un chéque
void DirectDeposit(BankAccount ba, int nPay)
{
ba.Deposit (nPay);
}
void SomeFunction()
{
/! 1'exemple qui suit ne marche pas
SavingsAccount_ sa = new SavingsAccount_();
DirectDeposit(sa, 100);
/. . . suite. .

DirectDeposit () ne peut pas accepter un SavingsAccount_ en lieu et place
d'un BankAccount. C# ne peut voir aucune relation évidente entre les deux.

Ouand utiliser EST_UN et quand utiliser A_UN ?

La distinction entre les relations EST_UN et A_UN est plus qu'une question
de commodité logicielle. Cette relation a un corollaire dans le monde réel.

Par exemple, une Ford Explorer EST_UNE voiture (quand elle n'est pas
sur Je toit). Une Explorer A_UN moteur. Si un ami me dit : "Viens avec ta
voiture", et que j'arrive dans une Explorer, il n'a aucun reproche & me
faire (ou alors, s'il en a, ce n'est pas parce que 'Explorer n'est pas une
voiture). Il pourrait me faire des reproches si j'arrivais en portant dans
mes bras le moteur de mon Explorer.

La classe Explorer doit apporter une extension a la classe Car, non
seulement pour donner a Explorer accés aux méthodes de Car, mais
aussi pour exprimer la relation fondamentale entre les deux.

Malheureusement, un programmeur débutant peut faire hériter Car de
Motor, donnant a la classe Car accés aux membres de Motor, dont Car a
besoin pour fonctionner. Par exemple, Car peut hériter de la méthode
Motor.Go (), mais cet exemple met en lumiére 'un des problémes qui
résultent de cette approche. Méme si les étres humains s'expriment parfois

282 Quatriéme partie : La programmation orientée objet

€7 P4
QQ\) $

)
-

de fagcon ambigué, faire démarrer une voiture n'est pas la méme chose que
faire démarrer un moteur. L'opération démarrage de la voiture dépend
évidemment du démarrage du moteur, mais ce sont deux choses distinc-
tes : il faut aussi passer la premiére, lacher les freins, et ainsi de suite.

Plus encore, sans doute, faire hériter Car de Mctor est une représentation
erronée des choses. Une voiture n'est tout simplement pas un type
particulier de moteur.

L'élégance du logiciel est un but qui se passe de justification. Non seulement
elle le rend plus compréhensible, plus fiable et aisé & maintenir, mais elle
réjouit le goiit et facilite la digestion, entre autres.

Autres considérations

C# implémente un ensemble de caractéristiques con¢ues pour supporter
I'héritage.

Changer de classe
Un programme peut changer la classe d'un objet. En fait, ¢'est une chose
que vous avez déja vue dans cet exemple. SomeFunction() peut passer un

objet SavingsAccount a une méthode qui attend un objet BankAccount.

Vous pouvez rendre cette conversion plus explicite :

BankAccount ba;
SavingsAccount sa = new SavingsAccout();

/] OK:
ba = sa; // une conversion vers le bas implicite est admise
ba = (BankAccount)sa; // le cast explicite est préféré
!/ Non!
sa = ba; /] la conversion vers le haut implicite est interdite

/] ceci est correct
sa = (SavingsAccount)ba;

La premiere ligne stocke un objet Savingsiccount dans une variable
BankAccount. C# effectue pour vous cette conversion. La deuxiéme ligne
utilise I'opérateur cast pour convertir explicitement 1'objet.

Les deux dernieres lignes reconvertissent l'objet BankAccount en
SavingsAccount.

Chapitre 12 : Acceptez-vous I'héritage ? 283

\;EZ Pae La propriété EST_UN n'est pas réflexive. Autrement dit, méme si Explorer
est une voiture, une voiture n'est pas nécessairement une Explorer. De
méme, un Bankiczount n'est pas nécessairement un SavingsAccount, et la
conversion implicite n'est donc pas autorisée. La derniére ligne est admise
parce que le programmeur a indiqué sa volonté de "tenter le coup’.

Des casts invalides a ['exécution

En général, le casting d'un objet de 3anlkiccount & Savingshccount est
une opération dangereuse. Considérez 'exemple suivant :

public static void ProcessAmount(BankAccount bankAccount)
{
/] dépose une grosse somme sur le compte
bankAccount.Deposit(10000.00);
/] si 1'objet est un SavingsAccount, .
/] recueille 1'intérét dés maintenant
SavingsAccount SavingsAccount = (SavingsAccount)bankAccount;
savingsAccount.AccumulateInterest();
}
public static void TestCast()
{
SavingsAccount sa = new SavingsAccount();
ProcessAmount (sa) ;
BankAccount ba = new BankAccount();
ProcessAmount (ba) ;

Processimount {) exécute un certain nombre d'opérations, dont l'invocation
de la méthode Accumulatelnterest (). Le cast de ba dun SavingsAccount
est nécessaire, parce que bz est déclaré comme un BankAccount. Le pro-
gramme se compile correctement, parce que toutes les conversions de type
sont faites par un cast explicite.

Tout se passe bien avec le premier appel & ProcessAmount (), dans

Test (). L'objet sa de la classe Savingsiccount est passé a la méthode
ProcessAmount (). Le cast de Fankiccount a SavingsAccount ne pose pas
de probléme parce que I'objet »z était de toute facon a l'origine un objet
SavingsAccount.

Le deuxieme appel a Processimount () n'est toutefois pas aussi chanceux.
Le cast & Savingsiccount ne peut pas étre autorisé. L'objet ba n'a pas de
méthode Accumulareinte

284 Quatrieme partie : La programmation orientée objet

Une conversion incorrecte génére une erreur a l'exécution du programme
(ce qu'on appelle une erreur run-time). Une erreur a 'exécution est beau-
coup plus difficile a identifier et corriger qu'une erreur a la compilation.

Eviter les conversions invalides en utilisant le
mot-clé is

La fonction Processimount () se porterait trés bien si elle pouvait étre
slire que l'objet qui lui est passé est bien un SavingsAccount avant
d'effectuer la conversion. C'est dans ce but que C# offre le mot-clé is.

L'opérateur is admet un objet a sa gauche et un type a sa droite. Il re-
tourne true sile type a I'exécution de l'objet qui est a sa gauche est
compatible avec le type qui est a sa droite.

Vous pouvez modifier I'exemple précédent pour éviter l'erreur a I'exécu-
tion en utilisant l'opérateur is :

public static void ProcessAmount(BankAccount bankAccount)
{
/1 dépose une grosse somme sur le compte
bankAccount .Deposit(10000.00);
/! si 1'objet est un SavingsAccount . . .
if (bankAccount is SavingsAccount)
{
/1 ...recueille 1'intérét dés maintenant
SavingsAccount SavingsAccount = (SavingsAccount)bankAccount;
savingsAccount.Accumulatelnterest();
]
}
public static void TestCast()
{
SavingsAccount sa = new SavingsAccount();
ProcessAmount (sa);
BankAccount ba = new BankAccount();
ProcessAmount (ba);

L'instruction if supplémentaire teste I'objet bankAccount pour vérifier
qu'il est bien de la classe SzvingsAccount. L'opérateur is retourne true
lorsque Processamount () est appelée pour la premiére fois. Toutefois,
lorsqu'un objet bankaAccount lui est passé dans le deuxiéme appel, 'opé-
rateur is retourne false, évitant ainsi le cast invalide. Cette version de
ce programme ne génere pas d'erreur a l'exécution.

C , PP .
& D'un c6té, je vous recommande fortement de protéger tous vos casts vers

le haut avec I'opérateur is pour éviter le risque d'une erreur a l'exécution,
d'un autre ¢oté, je vous conseille d'éviter tout cast vers le haut, si possible.

La classe object

Les classes suivantes sont en relation les unes avec les autres :

pﬁblic class MyBaseClass {}
-public class MySubClass : MyBaseClass {}

La relation entre ces deux classes permet au programmeur d'effectuer le test suivant a
I'exécution :

public class Test
{
public static void GenericFunction(MyBaseClass mc)
({
// si 1'objet est vraiment une sous-classe...
if (mc is MySubClass)
!
/] ...alors le traite comme une sous-classe
MySubClass msc = (MySubClass)mc;

Il . . . suite .
}
}
1

Danscecas,lafonction GenericFunction() différencielessous-classesdeMyBaseClass

‘en utilisant le mot-clé is.

Commentfaire ladifférence entre ces classes, apparemmentsans lienentre elles, en utilisant
" leméme opérateur is 7 C#étend toutes ces classes a partir de leur classe de base commune,

object. Autrement dit, toute classe qui n'hérite pas spécifiquement d'une autre classe
hérite de la classe object. Ainsi, les deux déclarations suivantes sont identiques :

class MyClassl : object {}
~ class MyClass2 (]

MyClassl et MyClass2 ont en commun la classe de base object, ce qui autorise la

fonction générique suivante :

‘”pubiic class Test
o

Chapitre 12 : Acceptez-vous |'héritage ? 285

286 Quatrieme partie : La programmation orientée objet

public static void GenericFunction(object o)
{
if (o is MyClassl)
{
MyClassl mel = (MyClassl)o;
...
}
]
}

GenericFunction() peut étre invoquée avec n'importe quel type d'objet. Le mot c!e is
extraira des huitres object toutes les perles de MyClassl.

L’héritage et le constructeur

Le programme Inheritancefxample que nous avons vu plus haut dans ce
chapitre repose sur ces horribles fonctions Init... pour initialiser les
objets BankAccount et SavingsAccount en leur donnant un état valide
Equiper ces classes de constructeurs est certainement la meilleure
maniere de procéder, mais elle introduit une petite complication.

Invoquer le constructeur par défaut de la
classe de base

Le constructeur par défaut de la classe de base est invoqué chaque fois
qu'une sous-classe est construite. Le constructeur de la sous-classe
invoque automatiquement le constructeur de la classe de base, comme le
montre cet exemple simple :

// InheritingAConstructor - montre que le constructeur
/! de la classe de base est invoqué
/! automatiquement

using System;
namespace InheritingAConstructor
{

public class Classl

{

Chapitre 12 : Acceptez-vous I'héritage ? 287

-public static int Main(string[] args)
P S N
. Console.WriteLine("Création d'un objet BaseClass"):
BaseClass be = new BaseClass();
Congole.WriteLine("\nMaintenant, création d'un objet SubClass"):
SubClass sc = new SubClass(): '
/1 attend confirmation de 1l'utilisateur
Console.Writeline("Appuyez sur Entrée pour terminer...");
Congole.Read():
return 0:
}
}
public class BaseClass
{
public BaseClass()
{
Console.WriteLine("Construction de BaseClass");
}
}
public class SubClass : BaseClass
.
public SubClass()
L.
_ Congole.WriteLine("Construction de SubClass");
yoo

Les constructeurs de BaseClass et SubClass ne font rien de plus qu'afficher
un message sur la ligne de commande. La création de I'objet BaseClass
invoque le constructeur par défaut de la classe BaseClass. La création d'un
objet SubClass invoque le constructeur de BaseClass avant d'invoquer son
propre constructeur.

Ce programme donne la sortie suivante :

" Création d'un objet BaseClass
Construction de BaseClass

Maintenant, création d'un objet SubClass
~ Construction de BaseClass '
. Construction de SubClass
. Appuyez”sur Entrée pour terminer...

Une hiérarchie de classes héritées ressemble beaucoup aux différents
étages d'un immeuble. Chaque classe se trouve au-dessus des classes

288 Quatriéme partie : La programmation orientée objet

dont elle réalise une extension. Il y a une raison i cela : chaque classe est
responsable de ce qu'elle fait. Une sous-classe ne doit pas plus étre tenue
pour responsable de l'initialisation des membres de la classe de base
qu'une fonction extérieure quelconque. La classe BaseClass doit se voir
donner la possibilité de construire ses membres avant que les membres
de SubClass aient la possibilité d'y accéder.

Passer des arguments au constructeur de la
classe de base : le mot-clé bhase

La sous-classe invoque le constructeur par défaut de sa classe de base,
sauf indication contraire, méme a partir d'un constructeur d'une sous-
classe autre que le constructeur par défaut. C'est ce que montre I'exemple
légérement modifié ci-dessous :

using System
namespace Example
{
public class Classl
{
public static int Main(string[] args)
{
Console.WriteLine("Invocation de SubClass()"):
SubClass scl = new SubClass();
Console.WriteLine("\nInvocation de SubClass(int)");
SubClass sc2 = new SubClass(0);
/1 attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
retutn 0;
}
}
public class BaseClass
{
public BaseClass()
{
Console.WriteLine("Construction de BaseClass (default)"):
}
public BaseClass(int i)
(
Console.WriteLine("Construction de BaseClass (int)"):
]
}
public class SubClass : BaseClass

Chapitre 12 : Acceptez-vous I'héritage ? 289

{
public SubClass()
{

Console.WriteLine("Construction de SubClass (default)");
}
public SubClass(int i)
{

Congole.WriteLine("Construction de SubClass (int)}"):

}

L'exécution de ce programme donne les résultats suivants :

Invocation de SubClass()
Construction de BaseClass (default)
Construction de SubClass (default)

Invocation de SubClass(int)
Construction de BaseClass (default)
Construction de SubClass (int)
Appuyez sur Entrée pour terminer...

Le programme commence par créer un objet par défaut. Comme prévu, C#
invoque le constructeur par défaut de SubClass, qui commence par passer
le controle au constructeur par défaut de BaseClass. Le programme crée
alors un objet, en passant un argument entier. A nouveau comme prévu, C#
invoque SubClass (int). Ce constructeur invoque le constructeur par
défaut de BaseClass, comme dans l'exemple précédent, car il n'a pas de
données a passer.

Un constructeur d'une sous-classe peut invoquer un constructeur particulier
de la classe de base en utilisant le mot-clé base.

S Ce procédé est trés similaire a la maniere dont un constructeur en invoque
z ."f un autre de la méme classe en utilisant le mot-clé this. Pour tout savoir sur
les constructeurs avec this, voyez le Chapitre 11.

Par exemple, examinez le petit programme InvokeBaseConstructor:

/! InvokeBaseConstructor — montre comment une sous-classe peut

/! invoquer le constructeur de la classe de base
/! de son choix en utilisant le mot-clé base
using System;

namespace InvokeBaseConstructor

290 Quatrieme partie : La programmation orientée objet

{
public class BaseClass
{
public BaseClass()
{
Console.WriteLine("Construction de BaseClass (default)");
}
public BaseClasg(int i)
{
Console.WriteLine("Construction de BaseClass({0})", i);
}
}
public class SubClass : BaseClass
{
public SubClass()
{
Console.WriteLine("Construction de SubClass (default)");
1
public SubClass(int il, int i2) : base(il)
{
Console.WriteLine("Construction de SubClass({0}, {1})",
il, i2);

}
public class Classl
{
public static int Main(string[] args)
({
Console.WriteLine("Invocation de SubClass()");
SubClass scl = new SubClass();
Console.WriteLine("\nInvocation de SubClass{l, 2)}");
SubClass sc2 = new SubClass(l, 2);
// attend confirmation de 1'utilisateur
Console.WriteLine ("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

Ce programme donne la sortie suivante :

Invocation de SubClass()
Construction de BaseClass (default)
Construction de SubClass (default)

Invocation de SubClass(l, 2)

Chapitre 12 : Acceptez-vous |'héritage ? 29 i

Construction de BaseClass(l)
Construction de SubClass(l, 2)
Appuyez sur Entrée pour terminer...

Cette version commence de la méme maniére que les exemples précédents,
en créant un objet SubClass par défaut, utilisant les constructeurs par
défaut de BaseClass et de SubClass.

Le deuxiéme objet est créé avec l'expression SubClass (1, 2;.C# invoque
le constructeur SubClass(int, int}, qui utilise le mot-clé base pour
passer l'une des valeurs au constructeur 2aseClass (int). On peut se
douter que SubClass passe le premier argument a la classe de base pour
traitement, et continue en utilisant la deuxiéme valeur pour elle-méme.

La classe BankAccount modifiée

Le programme ConstructorSavingsAccount est une version modifiée du
programme SirpleBankAccount. Dans cette version, le constructeur de
SavingsAccount peut repasser des informations aux constructeurs de
BankAccount. Seuls Main () et les constructeurs eux-mémes apparaissent ici :

/] ConstructorSavingsAccount — implémente un SavingsAccount

1 comme forme d'un BankAccount ; n'utilise
1 aucune méthode virtuelle, mais implémente
/! correctement les constructeurs

using System;
namespace ConstructorSavingsAccount
{ ,
/1 BankAccount — simule un compte bancaire possédant
I ! un numéro de compte (assigné & la création
/! ~ du compte) et un solde
public class BankAccount
{
/1 les numéros de compte commencent & 1000 et augmentent
/! séquentiellement & partir de 13
public static int nNextAccountNumber = 1000;
!/ met & jour le numéro de compte et le solde pour chaque objet
public int nAccountNumber;
public decimal mBalance;
/] Constructeurs
public BankAccount():this(0)
{
)
public BankAccount(decimal mInitialBalance)

292 Quatrieme partie : La programmation orientée objet

{
nAccountNumber = ++nNextAccountNumber;
mBalance = mInitialBalance;
)
// . . . néme chose ici . . .
)
/1 SavingsAccount — compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount
{
public decimal mInterestRate;
/! InitSavingsAccount - lit le taux d'intérét, exprimé en

// pourcentage (valeur comprise entre 0 et 100)
public SavingsAccount(decimal mInterestRate) : this(0, mInterestRate)
{

}
public SavingsAccount(decimal mInitial,
decimal mInterestRate) : base(mInitial)
{
this.mInterestRate = mInterestRate / 100:
}
/1. . . méme chose ici . . .
}
public class Classi
{
/] DirectDeposit — effectue automatiquement le dépdt d'un chéque
public static void DirectDeposit(BankAccount ba,
decimal mPay)
{
ba.Deposit (mPay) ;
}
public static int Main(string] args)
{
/] crée un compte bancaire et 1'affiche
BankAccount ba = new BankAccount(100);
DirectDeposit(ba, 100);
Console.WriteLine("Compte {0}", ba.ToBankAccountString());
[/ et maintenant un compte rémunéré
SavingsAccount sa = new SavingsAccount (12.5¥);
DirectDeposit(sa, 100);
sa.Accumulatelnterest();
Console.WriteLine("Compte {0}", sa.ToSavingsAccountString());
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer..."):
Console.Read();
return 0;

Chapitre 12 : Acceptez-vous I'héritage ? 293

Figure 12.1:
Le chemine-
ment de la
construction
d'un objet
SavingsAccourt,
en utilisant le
constructeur
par défaut.

BankAccount définit deux constructeurs : un qui admet un solde initial, et le
constructeur par défaut qui ne 'admet pas. Afin d'éviter toute publication de
code dans le constructeur, le constructeur par défaut invoque le constructeur
de BankAccournt (inizial halzncs! enutilisant le mot<clé this.

La classe Szvingsiccount fournit également deux constructeurs. Le
constructeur Savingsiccount(interest rate) invoque le constructeur
SavingsAccounz(interest rate, initial balance) en lui passant un
solde initial de (0. Ce constructeur, le plus général, passe le solde initial au
constructeur 2anksccount (initial balance) en utilisant le mot-clé
base, comme le montre de facon graphique la Figure 12.1.

Bank Account (@)
S passe le solde a la classe de base

Savings Account {12.5%, @)
donne au solde la valeur par défaut @

Savings Account (12.5%)

J'ai modifié Main () pour me débarrasser de ces infernales fonctions
Init... (), enles remplacant par des constructeurs. La sortie de ce
programme est la méme :

Compte 1001 - 200,00 €
~ Compte 1002 - 112,50 € (12,5%)
Appuyez sur Entrée pour terminer...

Le destructeur

C# offre aussi une méthode qui fait I'inverse du constructeur, appelée le
destructeur. Le destructeur porte le nom de la classe, précédé par un tilde
(~). Par exemple, la méthode ~Ezs2C1zss est le destructeur de BaseClass.

C# invoque le destructeur lorsqu'il n'utilise plus l'objet. Le destructeur
par défaut est le seul qui peut 8tre créé, car le destructeur ne peut étre
invoqué directement. En outre, le destructeur est toujours virtuel.

294 Quatrieme partie : La programmation orientée objet

Dans le cas d'une succession d'héritages de classes, les destructeurs sont
invoqués dans l'ordre inverse des constructeurs. Autrement dit, le destruc-
teur de la sous-classe est invoqué avant le destructeur de la classe de base.

NN/,
“;\Q& 00@

Noy,

Le ramasse-miettes et le destructeur C#

" Laméthode du destructeur est beaucoup moins utile en C#que dans d'autres langagesorientés
objet, comme C++, car C# posséde de ce I'on appelle une destruction non déterministe.

La mémoire allouée & un objet est supprimée du tas lorsque le programme exécute la
commande new. Ce bloc de mémoire reste réservé aussi longtemps que les références
. valides a celui-ci restent actives.

Une zone de mémoire est dite "inaccessible” lorsque la derniere référence a celle-ci passe:
horsde portée. Autrement dit, personne ne peut plus accéder a cette zone de mémoire quand
plus rien n'y fait référence.

. C#nefaitrien de particulier lorsgu'une zone de mémoire devientinaccessible. Unetiche de
faible priorité estexécutée al'arriére-plan, recherchantles zones de mémoire inaccessibles.
Ce gu'on appelle le ramasse-miettes s'exécute a un faible niveau de priorité afin d'éviter de
diminuer les performances du programme. Le ramasse-miettes restitue autas les zones de
mémoire inaccessibles qu'il trouve.

En temps normal, le ramasse-miettes opére en silence a I'arriére-plan. il ne prend le contréle
du programme qu'a de brefs moments, lorsque le tas est sur le point d'étre a court de mémoire.

Le destructeur de C# est non déterministe parce qu'il ne peut pas étre invoque avant que
I'objet ait été récupéré par le ramasse-miettes, ce qui peut se produire longtemps aprés qu'il
a cessé d'étre utilisé. En fait, si le programme se termine avant que |'objet soit trouvé par le
ramasse-miettes et retourné au tas, le destructeur n'est pas invoqué du tout.

Au bout du compte, I'effet qui en résulte est qu'un programmeur C# ne peut pas se reposer
sur le destructeur pour opérer automatiquement comme dans un langage comme C++.

Chapitre 13

Quel estdonc ce
polymorphisme ?

Dans ce chapitre :
I'embarras du choix : masquer ou écraser une méthode de la classe de base.
Construire des classes abstraites : parlez-vous sérieusement ?
Déclarer comme abstraites une méthode et la classe qui la contient.
Faire commencer une nouvelle hiérarchie au-dessus d'une hiérarchie existante.

Empécher qu'une classe puisse &étre transformée en sous-classe.

|

héritage permet & une classe "d'adopter” les membres d'une autre.
Ainsi, je peux créer une classe SavingsAccount qui hérite de mem-
bres donnée comme mkalznce et de méthodes comme Deposit() dela
classe de base Bankaccount. C'est trés joli, mais cette définition de 1'héri-
tage ne suffit pas a représenter convenablement ce qui se passe dans le
monde réel.
2uC
Si vous avez besoin de vous rafraichir la mémoire sur I'héritage des
classes, relisez le Chapitre 14.

Un four & micro-ondes est un type de four, non pas parce qu'il a I'air d'un
four, mais parce qu'il remplit les mémes fonctions qu'un four. Un four a
micro-ondes remplit aussi des fonctions supplémentaires, mais au moins, il
remplit les fonctions de base d'un four — et le plus important, c'est qu'il fait
chauffer mes nachos quand je dis "StartCooking”. Le processus interne
que doit mettre en ceuvre le four pour remplir sa mission ne m'intéresse
pas, pas plus que le type de four dont il s'agit, ni son fabricant.

296 Quatrieme partie : La programmation orientée objet

De notre point de vue d'étre humain, la différence entre un four & micro-
ondes et un four conventionnel ne semble pas de la plus haute importance,
mais envisagez un instant la question du point de vue du four. Les étapes
du processus interne mis en ceuvre par un four conventionnel sont comple-
tement différentes de celles d'un four & micro-ondes (sans parler d'un four
a convection).

Le pouvoir du principe de I'héritage repose sur le fait qu'une sous-classe
n'est pas obligée d'hériter a l'identique de toutes les méthodes de la classe de

base. Une sous-classe peut hériter de l'essence des méthodes de la classe de
base tout en réalisant une implémentation différente de leurs détails.

Surcharger une méthode héritée

Plusieurs fonctions peuvent porter le méme nom, a condition qu'elles
soient différenciées par le nombre et/ou le type de leurs arguments.

Ce n'est qu'une question de surcharge de fonction

Donner le méme nom a deux fonctions (ou plus) s'appelle surcharger un
nom de fonction.

Les arguments d'une fonction font partie de son nom complet, comme le
montre I'exemple suivant :

public class MyClass

(public static void AFunction()
{ // faire quelque chose
iublic static void AFunction(int)
(/] faire quelque chose d'autre
;ublic static void AFunction(double d)
{ /! faire encore quelque chose d'autre
;ublic static void Main(string[] args)
{

Chapitre 13 : Quel est donc ce polymorphisme ? 29 7

AFunction();
AFunction(1l);
AFunction(2.0);

C# peut différencier les méthodes par leurs arguments. Chacun des
appels dans Main () accéde & une fonction différente.
(\ON /
COSERY
S Le type retourné ne fait pas partie du nom complet. Vous pouvez avoir
deux fonctions qui ne different que par le type retourné.

A classe différente, méthode différente

Comme on peut s'y attendre, la classe a laquelle appartient une fonction
ou une méthode fait aussi partie de son nom complet. Voyez le segment
de code suivant :

public class MyClass
{
public static void AFunction();
public static void AMethod();
}
public UrClass
{
public static void AFunction();
public static void AMethod();
public class Classl
{
public static void Main(string(] args)
{
UrClass.AFunction():
/] invoque la fonction membre MyClass.AMethod()
MyClass mcObject = new MyClass();
meObject. AMethod () ;

Le nom de la classe fait partie du nom étendu de la fonction. Il y a le méme type
de relation entre la fonction MyClass.AFunction() etlafonction UrClass.
AFunction() qu'entre la fonction MaVoiture. DémarrerMatinHiver() etla
fonction VotreVoiture.DémarrerMatinfHiver () (avec la votre, ca marche)

298 Quatrieme partie : La programmation orientée objet

Redéfinir une méthode d'une classe de base

Ainsi, une méthode d'une classe peut surcharger une autre méthode de la
meéme classe en ayant des arguments différents. De méme, une méthode
peut aussi surcharger une méthode de sa classe de base. Surcharger une
méthode d'une classe de base s'appelle redéfinir, ou cacher la méthode.

Imaginez que ma banque adopte une politique qui établisse une différence
entre les retraits sur les comptes rémunérés et les autres types de retrait.
Pour les besoins de notre exemple, imaginez aussi qu'un retrait effectué sur
un compte rémunéré cofite une commission de 1,50 F.

Avec l'approche fonctionnelle, vous pourriez implémenter cette politique
en définissant dans la classe un indicateur qui dise si I'objet est un
SavingsAccount ou un simple BankAccount. La méthode de retrait
devrait alors tester l'indicateur pour savoir si elle doit ou non imputer la
commission de 1,50 F :

public BankAccount(int nAccountType)
{
private decimal mBalance;
private bool isSavingsAccount;
// indique le solde initial et dit si le compte
/] que vous étes en train de créer est ou non
/1 un compte rémunéré
public BankAccount(decimal mInitialBalance,
bool isSavingsAccount)
(
mBalance = mInitialBalance;
this,isSavingsAccount = isSavingsAccount;
}
public decimal Withdraw(decimal mAmount)
{
/] si le compte est un compte rémunéré . . .
if (isSavingsAccount)
{
// ...alors soustrait 1.50 F
mBalance -= 1.50M;
)
/1 poursuit avec le méme code pour le retrait :
if (mAmountToWithdraw > mBalance)
{
mAmountToWithdraw = mBalance;
}
mBalance -= mAmountToWithdraw;
return mAmountToWithdraw;

Chapitre 13 : Quel est donc ce polymorphisme ? 299

}
}
class MyClass
i
public void SomeFunction()
{
/] Je veux me créer un compte rémunéré :
BankAccount ba = new BankAccount(0, true);

Ma fonction doit dire au constructeur si le compte bancaire est un
SavingsAccount en lui passant un indicateur. Le constructeur conserve
cet indicateur et I'utilise dans la méthode Withdraw() pour décider s'il
faut imputer la commission de 1,50 F.

L'approche orientée objet consiste a redéfinir la méthode Withdraw() dans
la classe de base Bankiccount, derriere une méthode de méme nom, de
meme taille et de méme couleur de cheveux, dans la classe SavingsAccount:

/] HidingWithdrawal — redéfinit la méthode de retrait de la
1 classe de base avec une méthode de la
1/ sous-classe du méme nom
using System;
namegpace HidingWithdrawal
{
/I BankAccount — un compte bancaire trés ordinaire
public class BankAccount
{
protected decimal mBalance;
public BankAccount(decimal mInitialBalance)
C
mBalance = mInitialBalance;
]
public decimal Balance

{
get { return mBalance; }
!
public decimal Withdraw(decimal mAmount)
(

~-decimal mAmountToWithdraw = mAmount;
if (mAmountToWithdraw > mBalance)
{
mAmountToWithdraw = mBalance;
}
mBalance -= mAmountToWithdraw;
“return mAmountToWithdraw;

300 Quatrieme partie : La programmation orientée objet

3
}
// SavingsAccount — compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount g
{
public decimal mInterestRate;

/1 SavingsAccount - lit le taux d'intérét, exprimé en

A1 pourcentage (valeur comprise entre 0 et 100)

public SavingsAccount{decimal mInitialBalance, i

decimal mInterestRate)
: base(mInitialBalance)
{
this.nInterestRate = mInterestRate / 100;

}

/! AccumulateInterest — invoquée une fois par perlode :
public void AccumulateInterest()

{

mBalance = mBalance + (mBalance * mInterestRate);

} ;
/! Withdraw - tout retrait est autorisé jusqu'a la valeur
/1 du solde ; retourne le montant retiré
public decimal Withdraw{decimal mWithdrawal)

{

/] soustrait 1.50 F

base.Withdraw(1.5M);

/! vous pouvez maintenant effectuer un retrait avec ce qui reste
return base.Withdraw(mWithdrawal);

}
public class Classl
{
public static void MakeAWithdrawal (BankAccount ba,
decimal mAmount)
{
ba.Withdraw(mAmount) ;
}
public static int Main(string[] args)
{
BankAccount ba;
SavingsAccount sa;
/] crée un compte bancaire, en retire 100 F, et
/] affiche les résultats
ba = new BankAccount (200M);
ba.Withdraw(100M);
/] essaie de faire la méme chose avec un compte rémunéré
sa = new SavingsAccount(200M, 12);
sa.Withdraw(100M);
/1 attiche le solde résultant

e

Console.WriteLine("Quand il est invoqué directement :");

Console.WriteLine("Le solde de BankAccount est {0:C}",
ba.Balance);

Console.WriteLine("Le solde de SavingsAccount est {0:C}",
sa.Balance);

/] attend confirmation de 1l'utilisateur

Console.WriteLine("Appuyez sur Entrée pour terminer...");

Console.Read();

return 0;

Dans ce cas, la fonction Main () crée un objet BankAccount avec un solde initial
de 200 F, et effectue un retrait de 100 F. Main () répéte cette opération avec un
objet Savingsaccournt. Lorsque Main{() effectue le retrait depuis la classe de
base, BankAccount . Withdraw() effectue cette tache avec un aplomb remar-
quable. Lorsque Mair () retire ensuite 100 F du compte rémunéré, la méthode
Savingsiccount.Wirhdraw() fait payer les 1,50 F.

Remarquer que la classe Savings/Account.Withdraw utilise BankAccount.
Withdraw() plutot que de manipuler directement le solde. Dans toute la
mesure du possible, faites en sorte que ce soit la classe de base qui manipule
elle-méme ses membres.

En quoi vaut-il mieux redéfinir une méthode qu'ajouter un simple test ?

Vu de l'extérieur, 'ajout d'un indicateur a la méthode Bankacount.Withdraw()
peut sembler plus simple que le procédé qui consiste a redéfinir une méthode.
Apreés tout, ca ne fait qu'ajouter quatre petites lignes de code, dont deux ne
sont que des accolades.

Le probléme, c'est en quelque sorte la tuyauterie. Le premier inconvénient
est que la classe BankAccount n'a aucune raison de se méler des détails de
SavingshAccount. Cela violerait notre régle "Rendons a César ce qui est &
César”, et nous conduit au véritable probléme : imaginez que ma banque
décide d'ajouter des comptes CheckingAccount ou CDAccount Ou encore
Thbillaccount ? C'est une chose possible, et tous ces types de compte
différents seraient associés a des politiques de retrait différentes, chacune
nécessitant son propre indicateur. Aprés l'ajout de trois ou quatre nouveaux
types de compte, notre vieille méthode Withdraw() commencerait a devenir
bien compliquée. Chacune de ces classes devrait plutot s'occuper elle-méme
de sa politique de retrait et laisser tranquille notre pauvre vieille
BankAccount.Withdraw().

Chapitre 13 : Quel est donc ce polymorphisme ? 30 7

302 Quatrieme partie : La programmation orientée objet

06

No;,

Et si je redéfinis accidentellement une méthode de la classe de base ?

Il peut arriver a tout le monde de redéfinir accidentellement une méthode de la
classe de base. Par exemple, je peux avoir une méthode Véhicule.Virage ()
qui fait tourner le véhicule. Plus tard, quelqu'un étend ma classe Véhicule
avec une classe Avion, dont la méthode Virage () est entierement différente. Il
est clair que nous avons 1a un cas de confusion d'identité. Ces deux méthodes
n'ont rien a voir I'une avec l'autre, sinon qu'elles portent le méme nom.

Heureusement pour nous, C# sait détecter ce probléme.

En compilant I'exemple précédent, Hidinglithdraw(), C# génére un
avertissement patibulaire. Le texte de ce message est un peu long, mais
en voici la partie importante :

Le mot-clé new est requis sur
'HidingWithdrawal.SavingsAccount.Withdraw(decimal) ', car il
masque le membre hérité

'HidingWithdrawal.BankAccount .Withdraw(decimal)'

C# essaie de vous dire que vous avez écrit dans une sous-classe une
méthode portant le méme nom qu'une méthode de la classe de base. Est-
ce vraiment ce que vous vouliez faire ?

Ce message n'est qu'un avertissement. Vous ne le remarquerez méme pas,
a moins de passer a la fenétre Sortie pour voir ce qui y est affiché. Dans
presque tous les cas, vous y verrez un avertissement qui vous prévient que
quelque chose pourrait bien vous mordre si vous n'y mettez pas bon ordre.

Le descripteur new indique & C# qu'une méthode est redéfinie intention-
nellement et que ce n'est pas le résultat d'une négligence :

/] plus de problémes avec withdraw()
new public decimal Withdraw(decimal dWithdrawal)
{

/! . . . pas de modifications internes. . .

}

Cette utilisation du mot-clé new n'a rien a voir avec l'utilisation du méme
mot-clé pour créer un objet.

Je me permettrai de faire remarquer ici que c'est I'une des choses que je
trouve agacantes chez C# (et C++ avant lui) : faites ce que vous voulez
avec mes méthodes, mais ne surchargez pas mes mots-clés. Quand je dis
new, c'est que je veux créer un objet. lls auraient pu utiliser un autre mot-
clé pour indiquer une surcharge intentionnelle.

Chapitre 13 : Quel est donc ce polymorphisme ? 303

Revenir a la base

Revenons a la méthode Savingsiccount.Withdraw() de I'exemple que
nous avons vu plus haut dans ce chapitre. L'appel a
BankAccount.Withdraw() depuis cette nouvelle méthode contient le mot-
clé supplémentaire base.

La version suivante de la fonction avec ce mot-clé supplémentaire ne
marche pas :

new public double Withdraw(double dWithdrawal)

{ double dAmountWithdrawn = Withdraw(dWithdrawal):
if (+nNumberOfWithdrawalsThisPeriod > 1)
{ dAmountWithdrawn += Withdraw(1.5);
ieturn dAmountWithdrawn;

Cet appel a le méme probléme que celui-ci :

void fn()
{

fn(); // je m'appelle moi-méme
}

L'appel a £n() depuis fn () aboutit & s'appeler soi-méme, sans fin. De méme,
un appel de Withdraw() a elleméme fait qu'elle s'appelle elle-méme en boucle,
comme un chat qui court aprés sa queue, jusqu'a ce que le programme finisse
par se planter.

D'une maniére ou d'une autre, il vous faut indiquer a C# que l'appel depuis
SavingsAccount.Withdraw() estla pour invoquer la méthode de la classe
de base, BankAccount.Withdraw(). Une solution consiste a faire un cast du
pointeur this dans un objet de la classe BankAccount avant d'effectuer
I'appel.

// Withdraw — cette version accide & la méthode redéfinie dans la classe de
/1 base en définissant explicitement le cast de 1'objet this
new public double Withdraw(double dWithdrawal)

{

/] cast du pointeur this dans un objet de la classe BankAccount

304 Quatrieme partie : La programmation orientée objet

€Z P4
QQ\) $

BankAccount ba = (BankAccount)this;
/] invoque Withdraw() en utilisant cet objet BankAccount
!/ appelle la fonction BankAccount.Withdraw()
double dAmountWithdrawn = ba.Withdraw(dWithdrawal);
if (++tnNumberOfWithdrawalsThisPeriod > 1)
{
dAmountWithdrawn += ba.Withdraw(1.5);
}
return dAmountWithdrawn;

Cette solution fonctionne : l'appel ba.Withdraw() invoque maintenant la
méthode BankAccount, comme on le voulait. L'inconvénient de cette
approche est la référence explicite & BankAccount. Une modification
ultérieure du programme pourrait modifier la hiérarchie d'héritage de
telle maniére que Savingsiccount n'hérite plus directement de
BankAccount. Une telle réorganisation brise cette fonction d'une facon
qu'un nouveau programmeur pourra avoir du mal a trouver. Pour moi, je
n'arriverais jamais a trouver un bogue comme celui-la.

11 vous faut un moyen de dire & C# d'appeler la fonction Withdraw()
depuis "la classe qui est juste au-dessus” dans la hiérarchie, sans la
nommer explicitement. Ce serait la classe qui est étendue par
Savingsaccount. C'est dans ce but que C# comporte le mot-clé base.

C'est le méme mot-cié hase qu'utilise un constructeur pour passer des
arguments au constructeur de la classe de base.

Le mot-clé hase de C# est la méme chose que this, mais redéfinit le cast
a la classe de base, quelle que soit cette classe :

// Withdraw — tout retrait est autorisé jusqu'i la valeur
/! du solde ; retourne le montant retiré
new public decimal Withdraw(decimal mWithdrawal)
{
/] soustrait 1.50 F
base.Withdraw(l.5M);
/! vous pouvez maintenant effectuer un retrait avec ce qui reste
return base.Withdraw(mWithdrawal);

L'appel base.Withdraw() invoque maintenant la méthode
BankAccount.Withdraw(), évitant par-1a I'écueil qui consiste a s'invoquer
elle-méme. En outre, cette solution ne sera pas brisée si la hiérarchie
d'héritage est modifiée.

Chapitre 13 : Quel est donc ce polymorphisme ? 305

Le polymorphisme

Vous pouvez surcharger une méthode d'une classe de base avec une mé-
thode d'une sous-classe. Aussi simple qu'elle paraisse, cette solution apporte
des possibilités considérables, et de ces possibilités viennent des dangers.

Voila une question difficile : la décision d'appeler FankAccount.Withdraw
ou Savingsicocunt. @ thdraw doit-elle étre prise a la compilation ou a
I'exécution ?

Pour faire comprendre la différence, je vais modifier le programme
HidingWithdrawa. que nous avons vu plus haut d'une maniére
apparemment inoffensive. Je vais appeler cette nouvelle version
HidingWithdrawal Polvyorphically (fai allégé le listing en n'y mettant
pas ce qui n'a pas changé).

public class Classl
{
public static void MakeAWithdrawal(BankAccount ba,
decimal mAmount)

PARGER
Ky

{
ba.Withdraw(mAmount);
}
public static int Main(string[] args)
{
BankAccount ba;
SavingsAccount sa;
ba = new BankAccount (200M);
MakeAWithdrawal (ba, 100M);
sa = new SavingsAccount(200M, 12);
MakeAWithdrawal(sa, 100M);
/] affiche le solde résultant
Console.WriteLine("\nfvoqué par un intermédiaire,");
Console.WriteLine("Le solde de BankAccount est (0:C}", ba.Balance);
Console.WriteLine{"Le solde de SavingsAccount est {0:C}", sa.Balance);
// attend confirmation de 1'utilisateur
Console.WriteLine ("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

306 Quatrieme partie : La programmation orientée objet

La sortie de ce programine peut étre ou ne pas étre déconcertante, selon
ce que vous attendiez :

Evoqué par un intermédiaire,

Le solde de BankAccount est 100,00 F
Le solde de SavingsAccount est 100,00 F
Appuyez sur Entrée pour terminer...

Cette fois, plutot que d'effectuer un retrait dans Main (), le programme
passe l'objet compte bancaire a la fonction MakeAWithdrawal ().

La premiére question est dépourvue de mysteére : Pourquoi la fonction
MakeAlWithdrawal ' accepte-t-elle un objet SavingsAccount alors qu'elle
dit clairement qu'elle attend un objet Bankacccunt ? La réponse est
évidente : "Parce qu'un fzvingsiccount EST_UN BankAccount.'

La deuxiéme question est plus subtile. Quand il lui est passé un objet
Barnkiccount, MakealWithdrawal () invoque BankAccount . Withdraw().
C'est assez clair. Mais lorsqu'il lui est passé un objet SavingsAccount,
MakedlWithdrawal () appelle la méme méthode. Ne devrait-elle pas invo-
quer la méthode Withdraw() dans la sous-classe ?

Le procureur veut montrer que l'appel & ba.Withdraw() devrait invoquer
la méthode Rankicoount Withdraw (). Il est clair que I'objet ba est un
BankAccount. Faire autre chose ne pourrait que faire naitre la confusion.
Mais la défense a des témoins dans Main () pour prouver que bien que
l'objet ba soit déclaré comme Bankiccount, c'est en fait un
SavingsAccount. Le jury ne s'y retrouve plus. Les deux arguments sont
tout aussi valides I'un que l'autre.

Dans ce cas, C# se range du c¢6té du procureur. Le choix le plus sir est de
s'en tenir au type déclaré, parce qu'il évite toute erreur de communication.
L'objet est donc déclaré étre un Bankaccount, et la cause est entendue.

Ou'y a-t-il de mal a utiliser chaque fois le
type déclaré ?

Dans certains cas, vous ne voudrez pas utiliser le type déclaré. Ce que vous
voudrez vraiment, c¢'est effectuer 'appel sur la base du type réel, c'est-a-dire
le type a l'exécution, par opposition au type déclaré. Cette possibilité de
décider a l'exécution s'appelle polymorphisme, ou late binding (liaison
tardive). Utiliser le type déclaré s'appelle early binding (liaison précoce).

Chapitre 13 : Quel est donc ce polymorphisme ? 307

Le terme polymorphisme vient du grec : poly signifie plusieurs, morph
signifie forme, et isme signifie peut-eétre quelque chose en grec.

Polymorphisme et late binding ne sont pas exactement la méme chose,
mais la différence est subtile. La notion de polymorphisme se réfere a la
possibilité de décider a I'exécution qu'elle méthode invoquer. La notion
de late binding se référe a la maniére dont un langage implémente le
polymorphisme.

Le polymorphisme est un aspect crucial de la puissance de la programma-
tion orientée objet. Il est si important qu'un langage qui ne le comporte
pas ne peut pas étre présenté comme un langage orienté objet.

Un langage qui comporte des classes mais pas le polymorphisme est
appelé langage a base objets. Le langage Ada en est un exemple.

Sans le polymorphisme, I'héritage n'aurait guére de signification. Je vais
donner encore un exemple pour vous le montrer. Imaginez que j'aie écrit
ce programme a succes mondial qui utilisait une classe nommé Student.
Apreés quelques mois de conception, de codage et de test, je publie cette
application pour récolter les avis de mes collégues et des critiques en
tout genre (on a méme parlé de créer une nouvelle catégorie de prix
Nobel pour le logiciel, mais par modestie jai ignoré ces suggestions).

Le temps passe, et mon patron me demande d'ajouter a ce programme la
prise en compte des étudiants diplémés, qui ne sont pas tout a fait identi-
ques aux étudiants ordinaires (ils revendiquent sans doute de ne pas étre
identiques du tout). Supposez que la formule de calcul des frais de scolarité
soit complétement différente de celle utilisée pour un étudiant ordinaire.
Mais mon patron ne sait pas et ne veut pas savoir qu'a ce niveau de profon-
deur du programme il y a de nombreux appels a la fonction calcTuition().

void SomeFunction(Student s)

{

/1 . . . quoi qu'elle puisse faire. . .
s.CalcTuition();
// . . . continue . . .

}

Si C# n'admettait pas le late binding, il me faudrait passer en revue le
code de someFunction() pour vérifier sil'objet student qui lui est passé
est un GraduateStudent ou un Student. Le programme appellerait

Student.CalcTuition() lorsque s est un Student, et GraduateStudent.
CalcTuition() lorsque c'est un étudiant diplomé.

308 Quatrieme partie : La programmation orientée objet

Tout cela ne se présente pas mal, sauf pour trois choses. Pour commen-
cer, ce n'est la qu'une fonction. Supposez que calcTuition () soit appelée
depuis de nombreux endroits. Supposez aussi que calcTuition() ne soit
pas la seule différence entre les deux classes. Mes chances de trouver
tous les endroits qui doivent étre modifiés ne sont pas des plus élevées.

Avec le polymorphisme, je peux laisser C# décider de la méthode a appeler.

Accéder par le polymorphisme a une méthode
redéfinie en utilisant i s

Comment rendre mon programme polymorphe ? C# offre une approche
pour résoudre le probléme manuellement avec un tout nouveau mot-clé :
is. L'expression ba is SavingsAccount retourne true ou false selon la
classe de I'objet a I'exécution. Le type déclaré pourrait étre BankAccount,
mais quel est-il en réalité ?

public class Classl
{
public static void MakeAWithdrawal (BankAccount ba,
decimal mAmount)
{
if ba is SavingsAccount
{
SavingsAccount sa = (SavingsAccount)ba;
sa.Withdraw(mAmount) ;
} else
{
ba.Withdraw(mAmount) ;
}
J
)

Maintenant, quand lzin () passe & la fonction un objet Savingsiccount,
MakeAWithdrawal () vérifie a I'exécution le type de 'objet ba et invoque
SavingsAccount.Withdraw().

RSN Au passage, je vous signale que le programmeur aurait pu réaliser le cast et
& I'appel dans une méme ligne : ((SavingsAccount)ba).Withdraw (mAmount).
Je ne mentionne la chose que parce que vous la verrez beaucoup dans des
programmes écrits par des gens qui aiment faire de I'esbroufe.

NO7,

Chapitre 13 : Quel est donc ce polymorphisme ? 309

En fait, I'approche "is" fonctionne, mais c'est vraiment une mauvaise
idée. Elle nécessite que SomeFunction() connaisse tous les différents
types d'étudiants et quels sont ceux qui sont représentés par les différen-
tes classes. Cela fait peser une trop lourde responsabilité sur les épaules
de la pauvre vieille SomeFunction (). Pour le moment, mon application ne
connait que deux types de comptes bancaires, mais supposez que mon
patron me demande d'en implémenter un nouveau, CheckingAccount, et
que celui-ci soit associé a une autre politique de Withdraw(). Mon pro-
gramme ne fonctionnera pas correctement si je ne trouve pas toutes les
fonctions qui testent a I'exécution le type de cet argument.

Déclarer une méthode comme virtuelle

En tant qu'auteur de SomeFunction (), je ne veux pas connaitre tous les
différents types de compte. Je veux que ce soit aux programmeurs qui
utilisent SomeFunction() de connaitre leurs types de compte, et qu'ils me
laissent tranquille avec ca. Je veux que ce soit C# qui prenne les décisions
sur les méthodes a invoquer en fonction du type de l'objet a I'exécution.

Pour dire a C# de faire le choix a I'exécution de la version de Withdrawal ()
a utiliser, je marque la fonction de la classe de base avec le mot-clé
virtual, et la fonction de chaque sous-classe avec le mot-clé cverride.

J'ai réécrit I'exemple de programme précédent en utilisant le polymorphisme.
J'ai ajouté des instructions de sortie aux méthodes Withdraw() pour montrer
que ce sont effectivement les bonnes méthodes qui sont invoquées (j'ai
supprimé ce qui faisait double emploi pour ne pas vous ennuyer avec des
choses inutiles). Voici donc le programme PolymorphicInheritance:

// PolymorphicInheritance — utilise le polymorphisme pour
oy ~ redéfinir une méthode dans la classe de base
- using System;)
“namespace PolymorphicInheritance
{
/1 BankAccount - un compte bancaire trés ordinaire
- public class BankAccount

{

/1. . . la méme chose ici . . .
public virtual decimal Withdraw(decimal mAmount)
{

decimal mAmountToWithdraw = mAmount;
if (mAmountToWithdraw > mBalance)
{

3 ’0 Quatrieme partie : La programmation orientée objet

mAmountToWithdraw = mBalance;
}
mBalance -= mAmountToWithdraw;
return mAmountToWithdraw;
}
]

// SavingsAccount — compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount
{
[/ . . . la méme chose ici aussi . . .
// Withdraw - tout retrait est autorisé jusqu'a la valeur
/! du solde ; retourne le montant retiré
override public decimal Withdraw(decimal mWithdrawal)
{
/] soustrait 1.50 F
base.Withdraw(1.5M);
/] vous pouvez maintenant effectuer un retrait avec ce qui reste
return base.Withdraw(mWithdrawal);
}
}
public class Classl
{
public static void MakeAWithdrawal(BankAccount ba,
decimal mAmount)
{
ba.Withdraw(mAmount) ;
}
public static void Main(string[] args)

{
/1 . .. pas de changement ici non plus . . .

L'exécution de ce programme donne la sortie suivante :

Evoqué par un intermédiaire,

Le solde de BankAccount est 100,00 F
Le solde de SavingsAccount est 98,50 F
Appuyez sur Entrée pour terminer...

La fonction Withdrzw() est marquée comme virtual dans la classe de base
BarkAccount, alors que la méthode Withdraw() de la sous-classe est marquée
avec le mot-clé override. Bien que la méthode MakeAWithdrawal () soit
inchangée, le programme donne une sortie différente parce que I'appel
ba.Withdraw() est résolu sur la base du type de ba & I'exécution.

Chapitre 13 : Quel est donc ce polymorphisme ? 3 ’ ’

‘\%\)c Pour vous faire une idée précise de la maniére dont tout cela fonctionne, il
est nécessaire que vous exécutiez le programme dans le débogueur de Visual
Studio. Générez le programme comme d'habitude, et appuyez sur la touche
F11 autant de fois que nécessaire pour faire avancer le programme pas a pas.
Il est impressionnant de voir le méme appel aboutir & une méthode ou a une
autre selon le moment ot il se produit.

La période abstraite de C#

A ce que je sais, un canard est un type d'oiseau, de méme qu'un colibri et
une hirondelle. En fait, tout oiseau est un sous-type d'oiseau. La récipro-
que de ce principe est qu'il n'existe pas d'oiseau qui ne soit pas un sous-
type d'oiseau. Cette remarque ne parait pas trés profonde, mais en fait,
elle 'est. L'équivalent logiciel de cet énoncé est que tout objet oiseau est
une instance d'une certaine sous-classe de Ciseau. Il n'y a pas d'instance
de la classe Oiseau.

Il y a divers types d'oiseaux qui partagent de nombreuses propriétés
(sinon, ils ne seraient pas des oiseaux), mais il n'y a pas deux types dont
toutes les propriétés sont les mémes (sinon, ce ne serait pas deux types
différents). Pour prendre un exemple particulierement simple, tous les
oiseaux n'ont pas la méme maniére de Voler (). Le canard a son style,
I'hirondelle aussi. lIs ont beaucoup de points communs, mais ce n'est
pas exactement la méme chose. Le style du colibri est complétement
différent. Ne me posez pas de questions sur les émeus et les autruches.

Mais si tous les oiseaux n'ont pas la méme maniére de voler, alors, qu'est-ce
que Oiseau.Voler{) ? Laréponse est simple : c'est le sujet de cette section.

Le factoring entre classes

Les gens produisent des taxonomies d'objets en les regroupant sur la
base des propriétés qu'ils partagent. Pour comprendre comment fonc-
tionne la classification, considérez les classes HighSchool et University,
comme le montre la Figure 13.1. Cette figure utilise UML (Unified
Modeling Language), qui est un langage graphique, pour décrire une
classe en méme temps que les relations de celle-ci avec d'autres.

3 '2 Quatriéme partie : La programmation orientée objet

]

Figure 13.1: - . '

Une descrip- High School University

}:;)&ZOB?V:E - numStudents "—q Student] - numStudents X Student
des classes +Enroll () + nAvgSAT

Stll%:ls\fs;m + Enroll ()

sity + GetGrant ()

I

> Le langage UML
Le ﬁlahgége UML(Uniﬁed Modeling Language) estunlangage de mn‘délisation,fpermettantde: :

~ des avantages d' UML est que I'on peut en ignorer les aspects les plus spécialisés sans en
- perdre entierement la signification.

- Les caractéristiques de base d'UML sont les suivantes :

1 Une classe est représentée par un rectanygle, divisé verticalement en trois sections.
Le nom de la classe apparait dans la premiére section en partant du haut.

»” Les membres donnée de la classe apparaissent dans la section du milieu, et les
méthodes dans la section du bas. Sila classe n'a pas de membres donnée ou de
méthodes, vous pouvez emettre la section du milieu ou celle du bas. ‘ ,

4~ Les membres précédés par un signe + sont publics, et ceux qui sont précédés parun
signe - sont privés. UML ne dispose pas de symboles pour représenter ia vns:b:llte et
la protection. ~

Un membre privé n'est accessible qu'a d'autres membres de la méme classe Un .
membre public est accessible a toutes les classes. '

v~ Le symbole "{abstract}" & c6té d'un nom indique que la classe ou la methode est
abstraite. ‘

UML utilise en fait un symbole différent pour une méthode abstraite, mais je simplifie.

définir clairement une grande partie des relations entre des objets dans un programme. L'un

Chapitre 13 : Quel est donc ce polymorphisme ? 3 ’3

v Une fleche entre deux classes représente une relation entre ces deux classes. Un
nombre au-dessus du trait exprime la cardinalité. Le symbole "*" signifie un nombre
quelconque. Si aucun nombre n'est présent, la cardinalité est supposée égale a 1.
Ainsi, dans la Figure 13.1, vous pouvez voir gu'une université peut avoir un nombre
quelconque d'étudiants.

» Un trait se terminant par une grande fléche largement ouverte exprime la relation
EST_UN (I'héritage). D'autres types de relations sont également représentés, dont la
relation A_UN.

Un objet Voiture EST_UN Véhicule, mais un objet Voiture A_UN Moteur.

Vous pouvez voir dans la Figure 13.1 que les high schools et les universités
ont en commun plusieurs propriétés similaires (en fait, bien plus qu'on ne
pourrait le penser). Ces deux types d'établissement offrent une méthode
Fnroll (), publiquement disponible, pour ajouter de nouveaux objets
Student. En outre, l'un et l'autre comportent un objet privé numStudents qui
contient le nombre d'étudiants de I'établissement. Enfin, l'une des caractéris-
tiques communes est la relation entre les étudiants : un établissement peut
avoir un nombre quelconque d'étudiants, mais un étudiant ne peut faire
partie que d'un seul établissement a la fois. La plupart des universités, et
méme certaines high schools, offrent plus que ce que je viens de décrire,
mais il me suffit d'un type de chaque.

En plus des caractéristiques d'une high school, 'université contient une
méthode GetGrant () et un membre donnée nAvgSAT. L'entrée dans une

high school ne nécessite pas I'examen SAT (Scholastic Aptitude Test), et
on ne peut y obtenir de prét fédéral (a moins que je ne sois allé dans les

mauvaises high schools).

La Figure 13.1 est tout a fait correcte, mais beaucoup d'informations s'y
trouvent dupliquées. On pourrait réduire cette duplication en permettant
a la classe la plus compliquée, University, d'hériter de la classe plus
simple HighSchool, comme le montre la Figure 13.2.

La classe HighSchool est inchangée, mais la classe University est plus
facile a décrire. Nous disons que "une University est une HighSchool qui
posséde aussi un objet nAvgSAT et une méthode GetGrant ()", mais cette
solution comporte un probléme fondamental : une université n'est pas
une high school qui... quoi que ce soit.

3 ’4 Quatrieme partie : La programmation orientée objet

Figure 13.2:
L'héritage de
HighSchool
simplifie la
classe
Univer-
sity, maisil
introduit
quelques
problemes.
L]

High School

- numStudents

‘—ﬂ Student }

+ Enroll ()

A

University
+ nAvgSAT
+ GetGrant ()

Vous me direz : "Et alors ? I'héritage fonctionne, et c¢a fait du travail en
moins.” C'est vrai, mais les réserves que je fais ne sont pas que de trivia-
les questions de style. De fausses représentations de ce genre sont
sources de confusion pour le programmeur, dans 'immédiat comme par
la suite. Un jour, un programmeur qui ne connaitra pas mes astuces de
programmation devra lire mon code et comprendre ce qu'il fait. Une
représentation fausse est difficile & comprendre et a utiliser.

En outre, de telles représentations fausses peuvent conduire ultérieurement
a des problémes. Imaginez que la high school décide de nommer un étudiant
"favori” pour son banquet annuel (usage local). Le programmeur, astucieux,

ajoute alors ala classe HighSchool la méthode NameFavorite (), que l'appli-
cation invoque pour nommer favori l'objet Student correspondant.

Mais maintenant, j'ai un probléme. La plupart des universités n'ont pas
pour pratique de nommer quoi que ce soit favori, mais aussi longtemps
que University hérite de HighSchool, elle hérite de la méthode
NameFavorite (). Une méthode supplémentaire peut sembler sans impor-
tance. Vous pourriez dire : "Il suffit de l'ignorer."

Une méthode de plus n'a pas grande importance, mais c'est une pierre de
plus dans le mur de la confusion. Avec le temps, les méthodes et les
propriétés supplémentaires s'accumulent, jusqu'a ce que la classe Uni -
versity se trouve bien encombrée de tous ces bagages. Ayez pitié du
pauvre développeur de logiciel qui doit comprendre quelles méthodes
sont "véritables” et lesquelles ne le sont pas.

Un tel "héritage de complaisance" conduit & un autre probléme. A la maniére
dont elle est écrite, la Figure 13.2 implique qu'une University et une
HighSchool ont la méme procédure de recrutement. Si peu vraisemblable que
cela paraisse, supposez que ce soit vrai. Le programme est développé, emballé

Chapitre 13 : Quel est donc ce polymorphisme ? 3 ’5

Figure 13.3:
HighSchool
etUniver-
sity doivent
{'une et
|'autre étre
basées sur
une classe
commune
School.

et expédié au public qui n'attend que lui (bien siir, je n'ai pas oublié d'y mettre
le nombre de bogues nécessaires pour que tout le monde veuille s'offrir,
moyennant un prix tout a fait raisonnable, la mise a jour vers la version 2).

Quelques mois passent, et 1'établissement décide de modifier sa procé-
dure de recrutement. Il ne sera pas évident pour tout le monde qu'en
modifiant la procédure de recrutement de la high school c'est aussi la
procédure d'inscription au collége voisin qui a été modifiée.

Comment faire pour éviter un tel probléme ? Une solution est de ne pas aller a
I'école, mais une autre consiste a corriger la source du probléme : une univer-
sité n'est pas un type particulier de high school. Il existe bien une relation entre
les deux, mais cette relation n'est pas EST_UN. Au contraire, universités et high
schools sont deux types différents d'établissement scolaire.

La Figure 13.3 décrit cette relation. La classe School nouvellement définie
contient les propriétés communes des deux types d'établissement, y
compris leurs relations avec les objets Student. Scheool contient méme la
méthode commune Enroll(), bien qu'elle soit abstraite car HighSchool
et University ne l'implémentent pas de la méme maniére.

School
{abstract}

4*q Student ‘

- numStudents

+ Enroll ()
- {abstract}

)

High School University
+ nAvgSAT

+ Enroll () + Enroll ()

+ NameFavorite (+ GetGrant ()

Les classes HighSchool et University héritent maintenant toutes deux
d'une classe de base commune. Chacune contient des membres qui lui
sont propres : NameFavorite () dans le cas de HighSchool, et GetGrant ()
pour University. De plus, ces deux classes substituent a la méthode
Enroll() une redéfinition de celle-ci décrivant le mode de recrutement
de chaque type d'établissement.

3 76 Quatrieme partie : La programmation orientée objet

Figure 13.4;
Le factoring
produit
générale-
ment des
couches
supplémen-
taires dans
la hiérarchie
d'héritage.
]

L'introduction de la classe School présente au moins deux gros avantages.
Le premier est de correspondre a la réalité. Une University est une School,
mais ce n'est pas une HighSchool. Correspondre a la réalité, c'est bien, mais
ce n'est pas suffisant. Le deuxiéme avantage est d'isoler chaque classe des
modifications apportées a l'autre. Quand mon patron viendra me voir un peu
plus tard, ce qui se produira sans aucun doute, pour me demander d'intro-
duire le discours de bienvenue a l'université, je pourrai ajouter la méthode
CommencementSpeech () alaclasse University, sans affecter la classe
HighSchool.

Ce processus qui consiste a externaliser les propriétés communes de
classes similaires s'appelle factoring. C'est une caractéristique importante
des langages orientés objet, pour les raisons que nous avons décrites plus
haut, plus une nouvelle : la réduction de la redondance. Je vais me répéter :
la redondance ne peut faire que du mal. Ne la laissez jamais entrer.

Le factoring n'est légitime que si la relation d'héritage correspond a la réalité.
Son application a une classe Scuris et une classe Joystick parce que l'un
comme l'autre est un dispositif matériel de pointage est légitime. Son applica-
tion & une classe S~u:ris et une classe Affichage parce que l'un comme
l'autre fait des appels de bas niveau au systéme d'exploitation ne l'est pas.

Le factoring peut produire plusieurs niveaux d'abstraction, et en général,
c'est le cas. Par exemple, un programme écrit pour une hiérarchie plus
complete d'établissements scolaires pourrait avoir une structure de
classes plus proche de celle montrée par la Figure 13.4.

‘ Etablissement scolaireJ

A

I
).

R A N— '_\‘
College]LLycée ,1

[Ecole supérieureJ l Université'

{

‘ Classes préparatoires—’

Vous pouvez voir que j'ai inséré une nouvelle classe entre University et
Scheol 1 EisnerlLaarning. Jai subdivisé cette nouvelle classe en College et

Figure 13.5:
lin'y a pas
de factoring
"universel”.
La maniere
appropriée
de définir les
classes
dépend en
partie du
probléeme a
résoudre.

University. Ce type de hiérarchie de classes a plusieurs niveaux est
courant et souhaitable lorsque 'on met des relations en facteurs communs.
Il correspond a la réalité et il pourra parfois vous suggérer des solutions
subtiles a un probléme.

Remarquez toutefois qu'il n'y a pas de Théorie unifiée du factoring applicable a
n'importe quel ensemble de classes. Les relations montrées par la Figure 13.4
semblent naturelles, mais supposez qu'une application différencie plutot les
types d'établissements scolaires selon quils sont administrés ou non par des
élus locaux. Les relations correspondantes, montrées par la Figure 13.5,
conviennent mieux a ce type de probléme,

Etablissement scolaire—}

A

J—_S;c:mdaire Supérieur
—T
[j\ 1
B i
| public | | prive | Université
A I\
L [

[College privé } lLCIasses préparatoires]

Il ne me reste qu'un concept : la classe abstraite

Si intellectuellement satisfaisant que puisse étre le factoring, il introduit
un probléme qui lui est propre. Revenez encore une fois a BankAccount.
Pensez un instant 4 la maniére dont vous pourriez définir les différentes
fonctions membre qui y sont définies.

La plupart des fonctions membre de Bankiccount ne sont pas un probléme,
car elles sont implémentées de la méme maniére par les deux types de
compte. C'est avec Bankiccount que vous devez implémenter ces fonctions
communes. Withdraw (), quant a elle, est différente. Les régles de retrait
d'un compte rémunéré sont différentes de celles d'un compte chéque. Vous
aurez donc a implémenter Savingsiccount.Withdrawal() différemment
de CheckingAccount.Withdraw(). Mais comment implémenter
BankAccount.Withdrawal() ?

Chapitre 13 : Quel est donc ce polymorphisme ? 3 ’ 7

3 ,8 Quatrieme partie : La programmation orientée objet

Si vous demandez son aide au directeur de la banque, j'imagine que la
conversation pourrait ressembler a ceci :

"Quelles sont les régles pour effectuer un retrait sur un compte ?" deman-
dez-vous, plein d'espoir.

"Quel type de compte ? Un compte chéque ou un compte rémunéré ?"
"Un compte, répondez-vous, simplement un compte.”
Regard vague et désespéré.

Le probléme est que cette question n'a pas de sens. Il n'y a pas de compte qui
soit "simplement un compte”. Tous les comptes (dans cet exemple) sont soit
des comptes cheque, soit des comptes rémunérés. La notion de compte est
une notion abstraite qui rassemble les propriétés communes aux deux classes
correspondant a une réalité concrete. Elle est incompléte, car il lui manque la
propriété critique Withdraw() (en allant plus loin dans les détails, vous
trouverez peut-etre d'autres propriétés qui font défaut a un simple compte).

Le concept de BankAccount est un concept abstrait.

Comment utiliser une classe abstraite ?

Une classe abstraite sert a décrire des concepts abstraits.

Une classe abstraite est une classe comportant une ou plusieurs méthodes
abstraites. Une méthode abstraite est une méthode déclarée abstract.
Allons plus loin : une méthode abstraite n'a pas d'implémentation. Vous
étes maintenant dans le brouillard.

Considérez ce programme de démonstration, allégé pour la circonstance :

/! AbstractInheritance — la classe BankAccount est vraiment
/1 abstraite parce qu'il n'existe pas
/! d'implémentation unique pour Withdraw
namespace AbstractInheritance
{
using System;
// AbstractBaseClass — crée une classe abstraite de contenant rien d'autre
1/ qu'une méthode Output{)
abstract public class AbstractBaseClass
({

3 78 Quatriéme partie : La programmation orientée objet

Si vous demandez son aide au directeur de la banque, jimagine que la
conversation pourrait ressembler a ceci :

"Quelles sont les régles pour effectuer un retrait sur un compte ?" deman-
dez-vous, plein d'espoir.

"Quel type de compte ? Un compte chéque ou un compte rémunéré ?"
"Un compte, répondez-vous, simplement un compte.”
Regard vague et désespéré.

Le probléme est que cette question n'a pas de sens. Il n'y a pas de compte qui
soit "simplement un compte”. Tous les comptes (dans cet exemple) sont soit
des comptes cheque, soit des comptes rémunérés. La notion de compte est
une notion abstraite qui rassemble les propriétés communes aux deux classes
correspondant a une réalité concréte. Elle est incompléte, car il lui manque la
propriété critique Withdraw() (en allant plus loin dans les détails, vous
trouverez peut-étre d'autres propriétés qui font défaut a un simple compte).

Le concept de Bankiccount est un concept abstrait.

Comment utiliser une classe abstraite ?

Une classe abstraite sert a décrire des concepts abstraits.

Une classe abstraite est une classe comportant une ou plusieurs méthodes
abstraites. Une méthode abstraite est une méthode déclarée abstract.
Allons plus loin : une méthode abstraite n'a pas d'implémentation. Vous
étes maintenant dans le brouillard.

Considérez ce programme de démonstration, allégé pour la circonstance :

// AbstractInheritance — la classe BankAccount est vraiment
1 abstraite parce qu'il n'existe pas
1! d'implémentation unique pour Withdraw
namespace AbstractInheritance
{
using System;
// AbstractBaseClass — crée une classe abstraite de contenant rien d'autre
/1 qu'une méthode Output()
abstract public class AbstractBaseClass
(

3 ’6 Quatriéme partie : La programmation orientée objet

Figure 13.4:
Le factoring
produit
générale-
ment des
couches
supplémen-
taires dans
la hiérarchie
d'héritage.
. |

Lintroduction de la classe School présente au moins deux gros avantages.
Le premier est de correspondre a la réalité. Une University est une School,
mais ce n'est pas une HighSchool. Correspondre a la réalité, c'est bien, mais
ce n'est pas suffisant. Le deuxieme avantage est d'isoler chaque classe des
modifications apportées a l'autre. Quand mon patron viendra me voir un peu
plus tard, ce qui se produira sans aucun doute, pour me demander d'intro-
duire le discours de bienvenue & I'université, je pourrai ajouter la méthode
CommencementSreach’ alaclasse University, sans affecter la classe
HighSchool.

Ce processus qui consiste a externaliser les propriétés communes de
classes similaires s'appelle factoring. C'est une caractéristique importante
des langages orientés objet, pour les raisons que nous avons décrites plus
haut, plus une nouvelle : la réduction de la redondance. Je vais me répéter :
la redondance ne peut faire que du mal. Ne la laissez jamais entrer.

Le factoring n'est légitime que si la relation d'héritage correspond a la réalité.
Son application & une classe Souris et une classe Joystick parce que l'un
comme l'autre est un dispositif matériel de pointage est légitime. Son applica-
tion a une classe Soiris et une classe Affichage parce que I'un comme
l'autre fait des appels de bas niveau au systéme d'exploitation ne l'est pas.

Le factoring peut produire plusieurs niveaux d'abstraction, et en général,
c'est le cas. Par exemple, un programme écrit pour une hiérarchie plus
compléte d'établissements scolaires pourrait avoir une structure de
classes plus proche de celle montrée par la Figure 13.4.

1 Etablissement scolaire

I

College Lycee Ecole supeneure @

i Classes preparatowes J

Vous pouvez voir que j'ai inséré une nouvelle classe entre University et
School : HigherLearning. Jai subdivisé cette nouvelle classe en College et

314

Quatriéme partie : La programmation orientée objet

Figure 13.2:
L'héritage de
HighSchool
simplifie la
classe
Univer-
sity, maisil
introduit
quelques
problémes.

L |

High School
- numStudents
+ Enroll ()
University
+ nAvgSAT
+ GetGrant ()

Vous me direz : "Et alors ? 'héritage fonctionne, et ¢a fait du travail en
moins." C'est vrai, mais les réserves que je fais ne sont pas que de trivia-
les questions de style. De fausses représentations de ce genre sont
sources de confusion pour le programmeur, dans I'immédiat comme par
la suite. Un jour, un programmeur qui ne connaitra pas mes astuces de
programmation devra lire mon code et comprendre ce qu'il fait. Une
représentation fausse est difficile & comprendre et & utiliser.

En outre, de telles représentations fausses peuvent conduire ultérieurement
a des problemes. Imaginez que la high school décide de nommer un étudiant
"favori” pour son banquet annuel (usage local). Le programmeur, astucieux,

ajoute alors a la classe HighSchool la méthode NameFavorite (), que l'appli-
cation invoque pour nommer favori I'objet Student correspondant.

Mais maintenant, j'ai un probléme. La plupart des universités n'ont pas
pour pratique de nommer quoi que ce soit favori, mais aussi longtemps
que University hérite de HighSchool, elle hérite de la méthode
NameFavorite (). Une méthode supplémentaire peut sembler sans impor-
tance. Vous pourriez dire : "Il suffit de l'ignorer.”

Une méthode de plus n'a pas grande importance, mais ¢'est une pierre de
plus dans le mur de la confusion. Avec le temps, les méthodes et les
propriétés supplémentaires s'accumulent, jusqu'a ce que la classe Uni -
versity se trouve bien encombrée de tous ces bagages. Ayez pitié du
pauvre développeur de logiciel qui doit comprendre quelles méthodes
sont "véritables" et lesquelles ne le sont pas.

Un tel "héritage de complaisance” conduit & un autre probléme. A la maniére
dont elle est écrite, la Figure 13.2 implique qu'une University et une
HighSchool ont la méme procédure de recrutement. Si peu vraisemblable que
cela paraisse, supposez que ce soit vrai. Le programme est développé, emballé

3 ’2 Quatrieme partie : La programmation orientée objet

|
Figure 13.1; - —
Une descrip- High School University
Poor':n?ﬂsM'i - numStudents —"i{ Studeﬂ - numStudents ‘—t@ent
des classes +Enroll () + NAVQSAT
bohseheol + Enroll (
sity. + GetGrant () J
|

Sy

(=)

z 5

Le langage UML

Le langage UML (Unified Modeling Language) est un langage de modélisation, permettant de

“définir clairement une grande partie des relations entre des objets dans un programme. L'un

~ des avantages d'UML est que I'on peut en ignorer les aspects les plus spécialisés sans en
“perdre entiérement la signification.

Les ‘ca:‘ryactéristiques de base d’'UML sont les suivantes :

¥ Une classe est représentée par un rectangle, divisé verticalement en trois sections.
Le nom de la classe apparait dans la premiére section en partant du haut.

»~ Les membres donnée de la classe apparaissent dans la section du milieu, et les
méthodes dans la section du bas. Si la classe n'a pas de membres donnée ou de
~ méthodes, vous pouvez omettre la section du milieu ou celle du bas. :

v Les membres précédés par un signe + sont publics, et ceux qui sont précédés par un
signe - sont privés. UML ne dispose pas de symboles pour representer la visibilité et
‘;la protection. ‘

,‘V;U;n membre privé n'est accessible qu'a d'autres membres de la méme classe. Un
: membre public est accessible a toutes les classes. :

V*Le symbole "{abstract}" & c6té d'un nom |nd|que que la classe ou la méthode est
abstralte

, UML utilise en fait un symbole différent pour une méthode abstraite, mais je simplifie.

3 70 Quatriéme partie : La programmation orientée objet

mAmountToWithdraw = mBalance;

}

mBalance -= mAmountToWithdraw;

return mAmountToWithdraw;

}

}
// SavingsAccount — compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount

{
/! . . . la méme chose ici aussi . . .
// Withdraw — tout retrait est autorisé jusqu'a la valeur
1/ du solde ; retourne le montant retiré

override public decimal Withdraw(decimal mWithdrawal)
{
// soustrait 1.50 F
base.Withdraw(1.5M);
/] vous pouvez maintenant effectuer un retrait avec ce qui reste
return base.Withdraw(mWithdrawal);

}
public class Classl

{
public static void MakeAWithdrawal(BankAccount ba,
decimal mAmount)
{
ba.Withdraw(mimount);
}
public static void Main(string[] args)

{

!/ . .. pas de changement ici non plus . . .

L'exécution de ce programme donne la sortie suivante :

Evoqué par un intermédiaire,

Le solde de BankAccount est 100,00 F
Le solde de SavingsAccount est 98,50 F
Appuyez sur Entrée pour terminer...

La fonction Wi thdraw() est marquée comme virtual dans la classe de base
BankaAccount, alors que la méthode Withdraw () de la sous-classe est marquée
avec le mot-clé override. Bien que la méthode MakeAWithdrawal () soit
inchangée, le programme donne une sortie différente parce que l'appel
ba.Withdrew{) est résolu sur la base du type de ba a I'exécution.

308 Quatrieme partie : La programmation orientée objet

Tout cela ne se présente pas mal, sauf pour trois choses. Pour commen-
cer, ce n'est la qu'une fonction. Supposez que calcTuition () soit appelée
depuis de nombreux endroits. Supposez aussi que calcTuition() ne soit
pas la seule différence entre les deux classes. Mes chances de trouver
tous les endroits qui doivent étre modifiés ne sont pas des plus élevées.

Avec le polymorphisme, je peux laisser C# décider de la méthode a appeler.

Accéder par le polymorphisme & une méthode
redéfinie en utilisant is

Comment rendre mon programme polymorphe ? C# offre une approche
pour résoudre le probléme manuellement avec un tout nouveau mot-clé :
is. L'expression ba is SavingsAccount retourne true ou false selon la
classe de I'objet & I'exécution. Le type déclaré pourrait étre Bankiccount,
mais quel est-il en réalité ?

public class Classl
(
public static void MakeAWithdrawal(BankAccount ba,
decimal mAmount)
(
if ba is SavingsAccount
{
SavingsAccount sa = (SavingsAccount)ba;
sa.Withdraw(mAmount) ;
} else
{
ba.Withdraw(mdmount);
}
)
]

Maintenant, quand Mair () passe a la fonction un objet Savingsiccount,
Make&Withdrawal () vérifie a l'exécution le type de l'objet ba et invoque
SavingsAccount.Withdraw().

«&0“”’00 Au passage, je vous signale que le programineur aurait pu réaliser le cast et
I'appel dans une méme ligne : ((SavingsAccount)ba).VWithdraw(mAmount).
Je ne mentionne la chose que parce que vous la verrez beaucoup dans des
programmes écrits par des gens qui aiment faire de I'esbroufe.

I\
(=)
=2

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 35 7

EST_UN Int32 en utilisant le mot-clé i s. La sortie de cette portion du
programme se présente ainsi :

Extrait d'une liste les nombres entiers
L'élément numéro 1 est 2
L'élément numéro 3 est 4

Le programme termine son numéro de cirque en utilisant une fois de plus
la descendance d'Cbject. Toutes les sous-classes d't i« (¢'est-d-dire
toutes les classes) implémentent oS+ r2ng (). Par conséquent, si nous
voulons simplement afficher les membres du tableau d'objets, nous n'avons
absolument pas besoin de nous préoccuper de leur type. La section finale
de Main () effectue encore une boucle sur les objets du tableau, demandant
cette fois a chaque objet de se mettre en forme lui-méme en utilisant sa
méthode Tostring (). Les résultats apparaissent ainsi :

Affichage de tous les objets de la liste

Objets[0] est {this is a string>

Objets[1] est <2>

Objets[2] est <Classl du programme StructureFxample>
Objets[3] est <&

Objets[4] est 5.5

Appuyez sur Entrée pour terminer...

Comme les animaux sortant de 'Arche de Noé, chaque objet se présente
comme le seul de sa catégorie. J'ai implémenté une méthode oSt -ig 1
triviale pour Classi, rien que pour montrer qu'elle sait jouer avec toutes
les autres classes.

En fait, c'est indubitablement ToString () qui permet & Crnsc e Wrivel;
d'exécuter son tour de magie. Je ne suis pas allé voir dans le code source,
mais je parierais volontiers que Wr:te () accepte ses arguments en tant
qu'objets. Elle peut alors invoquer simplement ~oString {1 sur 'objet pour
le convertir en un format affichable (en dehors du premier argument, qui
peut contenir des indications {n} de controle de format).

306 Quatrieme partie : La programmation orientée objet

La sortie de ce programine peut étre ou ne pas étre déconcertante, selon
ce que vous attendiez :

Evoqué par un intermédiaire,

Le solde de BankAccount est 100,00 F

Le solde de SavingsAccount est 100,00 F
Appuyez sur Entrée pour terminer...

Cette fois, plutot que d'effectuer un retrait dans Main (), le programme
passe l'objet compte bancaire a la fonction MakeaWithdrawal ().

La premiére question est dépourvue de mystére : Pourquoi la fonction
Makediw:thdrawa (i accepte-t-elle un objet Sz ngsiccount alors qu'elle
dit clairement gu'elle attend un objet “anx/iccount ? La réponse est
évidente : "Parce qu'un Sz ngsiccount EST_UN Bankiccount.”

La deuxieme question est plus subtile. Quand il lui est passé un objet
BankAccount, MakeAWwithdrawal () invoque BankAccount.Withdraw().
C'est assez clair. Mais lorsqu'il lui est passé un objet Savingsiccount,
MakeAWithdrawa® () appelle la méme méthode. Ne devrait-elle pas invo-
quer la méthode Withdraw(' dans la sous-classe ?

Le procureur veut montrer que l'appel a ba.Withdraw() devrait invoquer
la méthode BankAccount . Withdraw(). Il est clair que 1'objet ba est un
BankAccount. Faire autre chose ne pourrait que faire nattre la confusion.
Mais la défense a des témoins dans tiain () pour prouver que bien que
I'objet ba soit déclaré comme Eankiccount, c'est en fait un
Savingshccount. Le jury ne s'y retrouve plus. Les deux arguments sont
tout aussi valides I'un que l'autre.

Dans ce cas, C# se range du coté du procureur. Le choix le plus stir est de
s'en tenir au type déclaré, parce qu'il évite toute erreur de communication.
L'objet est donc déclaré étre un BankAccount, et la cause est entendue.

Ou'y a-t-il de mal a utiliser chaque fois le
type déclaré ?

Dans certains cas, vous ne voudrez pas utiliser le type déclaré. Ce que vous
voudrez vraiment, c'est effectuer I'appel sur la base du type réel, c'est-a-dire
le type & I'exécution, par opposition au type déclaré. Cette possibilité de
décider a I'exécution s'appelle polymorphisme, ou late binding (liaison
tardive). Utiliser le type déclaré s'appelle early binding (liaison précoce).

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 355

public class Class!
{
public static int Main(string[] args)
{
/! crée un int et 1'initialise & la valeur 0
int 1 = new int();
/] lui assigne une valeur et la restitue par
// 1'interface IFormattable
i=1
OutputFunction(i);
// la constante 2 implémente la méme interface
QutputFunction(2);
// en fait, vous pouvez utiliser directement le méme objet
Console.WriteLine("Extrait directement = (0}", 3.ToString());
/] ceci peut étre trés utile ; vous pouvez extraire un int
/] d'une liste :
Console.WriteLine("\nExtrait d'une liste les nombres entiers”);
object[] objects = new object[5];
objects[0] = "this is a string";

objects[1l] = 2;
objects[2] = new Classl();
objects[3] = 4:
objects[4] = 5.5;
for(int index = 0; index < objects.Length; indext+)
{
if (objects[index] is int)
{

int n = (int)objects[index];
Console.WriteLine("L'élément numéro {0) est {1}",
index., n);
)
}
// autre utilisation de 1'unification des types
Console.WriteLine("\nAffichage de tous les objets de la liste");
int nCount = 0;
foreach(object o in objects)
{
Console.WriteLine("Objets[(0}] est <{1}>",
nCountt++, ¢.ToString());
}
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read () ;

return 0;
}
/] OutputFunction — affiche toute méthode qui implémente
/1 ToString()

public static void OutputFunction(IFormattable id)
{

304 Quatrieme partie : La programmation orientée objet

\EZ P4
QQ\« $

BankAccount ba = (BankAccount)this;
/] invoque Withdraw() en utilisant cet objet BankAccount
/] appelle la fonction BankAccount.Withdraw()
double dAmountWithdrawn = ba.Withdraw(dWithdrawal):
if (++nNumberOfWithdrawalsThisPeriod > 1)
{
dAmountWithdrawn += ba.Withdraw(l.5);

}

return dAmountWithdrawn;

Cette solution fonctionne : l'appel ba.Withdraw() invoque maintenant la
méthode Eankiccount, comme on le voulait. L'inconvénient de cette
approche est la référence explicite a Bank4ccount. Une modification
ultérieure du programme pourrait modifier la hiérarchie d’héritage de
telle maniére que S2vingsiccount n'hérite plus directement de
BankAccount. Une telle réorganisation brise cette fonction d'une facon
qu'un nouveau programmeur pourra avoir du mal a trouver. Pour moi, je
n'arriverais jamais a trouver un bogue comme celui-la.

Il vous faut un moyen de dire a C# d'appeler la fonction Withdraw()
depuis "la classe qui est juste au-dessus” dans la hiérarchie, sans la
nommer explicitement. Ce serait la classe qui est étendue par
SavingshAcccunt. C'est dans ce but que C# comporte le mot-clé base.

C'est le méme mot-clé base qu'utilise un constructeur pour passer des
arguments au constructeur de la classe de base.

Le mot-clé base de C# est la méme chose que this, mais redéfinit le cast
a la classe de base, quelle que soit cette classe :

// Withdraw — tout retrait est autorisé jusqu'a la valeur
/1 du solde ; retourne le montant retiré
new public decimal Withdraw(decimal mWithdrawal)
{
/! soustrait 1.50 F
base.Withdraw(1.5M);
/! vous pouvez maintenant effectuer un retrait avec ce qui reste
return base.Withdraw(mWithdrawal);

L'appel base.Withdraw(invoque maintenant la méthode
BankAccount.Withdraw(}, évitant par-la I'écueil qui consiste a s'invoquer
elle-méme. En outre, cette solution ne sera pas brisée si la hiérarchie
d'héritage est modifiée.

Chapitre 14 : Quand une classe n'est pas une classe : l'interface et la structure 35 3

L'appel suivant est l'appel a la fonction ChangeReferenceFunction().
Cette fonction apparait identique & ChangeValueFunction(), a l'exception
de l'ajout du mot-clé ref a la liste des arguments. Comme test est
maintenant passé par référence, l'argument t se référe a I'objet original
test et non a une copie nouvellement créée.

Le dernier appel de Main () est un appel a la méthode ChangeMethod ().
Comme un appel a une méthode passe toujours 'objet courant par
référence, les modifications effectuées par cette méthode sont conser-
vées une fois de retour dans Main ().

La sortie de ce programme se présente de la facon suivante :

Valeur initiale de test

id = (10.00, 20.00)

Valeur de test aprés 1'appel ChangeValueFunction(100, 200.0)

id = (10.00, 200.00)

Valeur de test aprés l'appel ChangeReferenceFunction(100, 200.0)
id = (100.00, 200.00)

Valeur de test aprés l'appel ChangeMethod(1000, 2000.0)

id = (1,000.00, 2,000.00)

Appuyez sur Entrée pour terminer...

Réconcilier la valeur et la référence : unifier le
systeme de types

Les structures et les classes présentent une similitude frappante : toutes
deux dérivent d'0bject. En fait, toutes les classes et toutes les structures,
qu'elles le disent ou non, dérivent d'Object. C'est ce qui unifie les diffé-
rents types de variables.

Cette unification des types de variables est étrangére aux autres langages
dérivés de C, comme C++ et Java. En fait, la séparation entre les objets de
type référence et de type valeur en Java peut étre un véritable casse-téte.
Comme tout est un casse-téte en C++, un de plus ou de moins ne se
remarque méme pas.

Les types structure prédéfinis

La similitude entre les types structure et les types valeur simples n'est pas
que superficielle. En fait, un type valeur simple est une structure. Par

302 Quatrieme partie : La programmation orientée ohbjet

S

Et si je redéfinis accidentellement une méthode de la classe de base ?

Il peut arriver a tout le monde de redéfinir accidentellement une méthode de la
classe de base. Par exemple, je peux avoir une méthode Véhicule.Virage ()
qui fait tourner le véhicule. Plus tard, quelqu'un étend ma classe Véhicule
avec une classe Avion, dont la méthode Virage () est entierement différente. Il
est clair que nous avons la un cas de confusion d'identité. Ces deux méthodes
n'ont rien a voir l'une avec l'autre, sinon qu'elles portent le méme nom.

Heureusement pour nous, C# sait détecter ce probléme.

En compilant I'exemple précédent, HidingWithdraw(), C# génere un
avertissement patibulaire. Le texte de ce message est un peu long, mais
en voici la partie importante :

Le mot-clé new est requis sur
'HidingWithdrawal.SavingsAccount.Withdraw(decimal)', car il
masque le membre hérité
'"HidingWithdrawal.BankAccount.Withdraw(decimal)'

C# essaie de vous dire que vous avez écrit dans une sous-classe une
méthode portant le méme nom qu'une méthode de la classe de base. Est-
ce vraiment ce que vous vouliez faire ?

Ce message n'est qu'un avertissement. Vous ne le remarquerez méme pas,
a moins de passer a la fenétre Sortie pour voir ce qui y est affiché. Dans
presque tous les cas, vous y verrez un avertissement qui vous prévient que
quelque chose pourrait bien vous mordre si vous n'y mettez pas bon ordre.

Le descripteur new indique a C# qu'une méthode est redéfinie intention-
nellement et que ce n'est pas le résultat d'une négligence :

/! plus de problémes avec withdraw()
new public decimal Withdraw(decimal dWithdrawal)
{

// . . . pas de modifications internes. . .

Cette utilisation du mot-clé new n'a rien a voir avec l'utilisation du méme
mot-clé pour créer un objet.

Je me permettrai de faire remarquer ici que c'est I'une des choses que je
trouve agacantes chez C# (et C++ avant lui) : faites ce que vous voulez
avec mes méthodes, mais ne surchargez pas mes mots-clés. Quand je dis
new, c'est que je veux créer un objet. lls auraient pu utiliser un autre mot-
clé pour indiquer une surcharge intentionnelle.

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 35 ’

/! une struct peut avoir une méthode
public void ChangeMethod(int nNewValue, double dNewValue)
{
n = nNewValue;
d = dNewValue;
}
// ToString — redéfinit la méthode ToString dans 1'objet
override public string ToString()
{
return string.Format("({0:N}, (1:N})", n, d);
}

]
public clags Classl
{
public static int Main(stringl[] args)
{
/] crée un objet Test
Test test = new Test(10);
Console.WriteLine("Valeur initiale de test");
QutputFunction(test);
/! essaie de modifier 1'objet de test en le passant
/! comme argument
ChangeValueFunction(test, 100, 200.0);
Console.WriteLine("Valeur de test aprés 1'appel" +
" ChangeValueFunction (100, 200.0)");
OutputFunction(test);
/! essaie de modifier 1'objet de test en le passant
/! comme argument
ChangeReferenceFunction(ref test, 100, 200.0);
Console.WriteLine("Valeur de test aprés l'appel" +
" ChangeReferenceFunction(100, 200.0)");
OutputFunction(test);
// une méthode peut modifier 1'objet
test.ChangeMethod (1000, 2000.0);
Console.WriteLine("Valeur de test aprés 1'appel" +
. " ChangeMethod (1000, 2000.0)");
OutputFunction(test);
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;
}
/] ChangeValueFunction — passe la struct par référence
public static void ChangeValueFunction(Test t,
int newValue, double dNewValue)
{
t.N = newValue;
Test.D = dNewValue;
)

300 Quatriéme partie : La programmation orientée objet

}
}
/1 SavingsAccount — compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount
{
public decimal mInterestRate;
/! Savingshccount — lit le taux d'intérét, exprimé en
/1 pourcentage {valeur comprise entre 0 et 100)
public SavingsAccount(decimal mInitialBalance,
decimal mInterestRate)
: base(mInitialBalance)
{
this.minterestRate = mInterestRate / 100;
}
/] AccumulateInterest — invoquée une fois par période
public void AccumulateInterest()

{

mBalance = mBalance + (mBalance * mInterestRate);
}
/] Withdraw - tout retrait est autorisé jusqu'a la valeur
/! du solde ; retourne le montant retiré
public decimal Withdraw(decimal mWithdrawal)
{

/!l soustrait 1.50 F
base.Withdraw(1.5M);
// vous pouvez maintenant effectuer un retrait avec ce qui reste
return base.Withdraw(nWithdrawal);
}
}
public class Classl
{

public static void MakeAWithdrawal(BankAccount ba,
decimal mAmount)
{ . :
ba.Withdraw(mimount) ;

}

public static int Main(string[] args)
({
BankAccount ba;
SavingsAccount sa;

/] crée un compte bancaire, en retire 100 F, et
/] affiche les résultats -
ba = new BankAccount(200M);
ba.Withdraw({100M);

!/ essaie de faire la méme chose avec un compte rémunéré
sa = new SavingsAccount(200M, 12);

sa.Withdraw(100M);

/1 affiche le solde résultant

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 34 9

Vous pouvez réaliser vous-méme un constructeur (qui n'est donc pas un
constructeur par défaut) qui fait effectivement quelque chose :

public struct Test
{
private int n;
public Test(int n)
{
this.n = n;
}
}
public class Classl
{
public static void Main(string[] args)
(
Test test = new Test(10);
}
}

En dépit des apparences, la déclaration test = rew Teztiii: n'alloue
pas de mémoire. Elle ne fait qu'initialiser la mémoire du type valeur qui
est déja la.

Les méthodes d'une structure sont rusées

Une structure peut avoir des membres qui en sont des instances, notamment
des méthodes et des propriétés. Une structure peut avoir des membres
statiques. Ces derniers peuvent avoir des initialiseurs, mais les membres non
statiques (les instances) ne le peuvent pas. Normalement, un objet de type
structure est passé a une fonction par valeur, mais il peut étre passé par
référence, a condition que ce soit spécifiquement indiqué dans I'appel a la
fonction. Une structure ne peut pas hériter d'une classe (autre que - * s,
comme je 'explique dans la section "Réconcilier la valeur et la référence :
unifier le systéme de types", plus loin dans ce chapitre), et une classe ne peut
pas en hériter. Une structure peut implémenter une interface.

Q\)EZ Pag Si vous ne vous souvenez pas de la différence entre un membre statique
.Ee et une instance, reportez-vous au Chapitre 8. Pour vous rafraichir la
mémoire sur le passage par valeur et le passage par référence, voyez le
Chapitre 7. Le Chapitre 12 traite de I'héritage. Et si vous ne savez pas ce
qu'est une interface, c'est dans ce chapitre que vous trouverez la réponse.

298 Quatrieme partie : La programmation orientée objet

Redéfinir une méthode d'une classe de base

Ainsi, une méthode d'une classe peut surcharger une autre méthode de la
méme classe en ayant des arguments différents. De méme, une méthode
peut aussi surcharger une méthode de sa classe de base. Surcharger une
méthode d'une classe de base s'appelle redéfinir, ou cacher la méthode.

Imaginez que ma banque adopte une politique qui établisse une différence
entre les retraits sur les comptes rémunérés et les autres types de retrait.
Pour les besoins de notre exemple, imaginez aussi qu'un retrait effectué sur
un compte rémunéré coite une commission de 1,50 F.

Avec l'approche fonctionnelle, vous pourriez implémenter cette politique
en définissant dans la classe un indicateur qui dise si I'objet est un
SavingsAccount ou un simple Bankiccount. La méthode de retrait
devrait alors tester l'indicateur pour savoir si elle doit ou non imputer la
commission de 1,50 F :

public BankAccount(int nAccountType)
{
private decimal mBalance;
private bool isSavingsAccount;
// indique le solde initial et dit si le compte
/] que vous &tes en train de créer est ou non
/1 un compte rémunéré
public BankAccount(decimal mInitialBalance,
bool isSavingsAccount)
{
mBalance = mInitialBalance;
this.isSavingsAccount = isSavingsAccount;
}
public decimal Withdraw(decimal mAmount)
{
/] si le compte est un compte rémunéré . . .
if (isSavingshAccount)
{
/] ...alors soustrait 1.50 F
mBalance -= 1.50M;
}
/] poursuit avec le méme code pour le retrait :
if (mAmountToWithdraw > mBalance)
{
mAmountToWithdraw = mBalance;
}
mBalance -= mAmountToWithdraw;
return mAmountToWithdraw;

Chapitre 14 : Quand une classe n'est pas une classe : l'interface et la structure 34 7

n=1;

/1 la déclaration d'une struct ressemble a la déclaration d'un simple int
MyStruct ms;

ms.n = 3; // accéde aux membres comme & un objet de classe

ms.d = 3.0;

/! un objet de classe doit étre alloué & partir

/! d'une zone séparée de la mémoire

MyClass mc = new MyClass;

me.n = 2;

me.d = 2.0;

Un objet struct est stocké en mémoire de la méme maniére qu'une

variable intrinséque. La variable ms n'est pas une référence a un bloc de

mémoire externe alloué a partir d'une zone de mémoire séparée.
<iNlgy, . P . . .
& La "zone de mémoire spéciale’ dont viennent les objets de classe s'appelle
le tas (the heap). Ne me demandez pas pourquoi.

NO;,

L'objet ms se trouve dans la méme zone de mémoire locale que la variable
n, comme le montre la Figure 14.1.

Figure 14.1:
La variable
structure ms
‘réside" dans
la méme
zone de
mémoire que
la variable de

type valeur n, J/\/l/
alors que la
zone dans l/\/‘/

laquelle |
réside {'objet |
I

me vientd'un
espace
mémoire
particulier
du tas.
L]

La distinction entre un type référence et un type valeur est encore plus
évidente dans l'exemple qui suit. L'allocation d'un tableau de 100 objets

296 Quatrieme partie : La programmation orientée objet

De notre point de vue d'étre humain, la différence entre un four a micro-
ondes et un four conventionnel ne semble pas de la plus haute importance,
mais envisagez un instant la question du point de vue du four. Les étapes
du processus interne mis en ceuvre par un four conventionnel sont comple-
tement différentes de celles d'un four a micro-ondes (sans parler d'un four
a convection).

Le pouvoir du principe de I'héritage repose sur le fait qu'une sous-classe
n'est pas obligée d'hériter a l'identique de toutes les méthodes de la classe de
base. Une sous-classe peut hériter de I'essence des méthodes de la classe de
base tout en réalisant une implémentation différente de leurs détails.

Surcharger une méthode héritée

Plusieurs fonctions peuvent porter le méme nom, a condition qu'elles
soient différenciées par le nombre et/ou le type de leurs arguments.

Ce n'est qu'une question de surcharge de fonction

€2 P4

$\3 §

S Donner le méme nom a deux fonctions (ou plus) s'appelle surcharger un
nom de fonction.

Les arguments d'une fonction font partie de son nom complet, comme le
montre 'exemple suivant :

public class MyClass

{ public static void AFunction()
{ /! faire quelque chose
;ublic static void AFunction{int)
{ /! faire quelque chose d'autre
;ublic static void AFunction(double d)
{ /] faire encore quelque chose d'autre
;ublic static void Main(string[] args)

{

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 345

I'exigence d'implémenter CompareTo (). Compar=To () y ajoute
GetValue [, qui retourne la valeur des objets dans un rx.

)

eZ P, . . . Db . o)

@‘b\) 48 Bien qu'elle puisse retourner la valeur de l'objet sous forme irr, G-z loa !

= ne dit rien sur ce que contient la classe. La génération d'une valeur ::+ peut
trés bien mettre en jeu un calcul complexe.

La classe BaseClass implémente l'interface TCompare (la méthode concrete
GetValue () retourne le membre donnée nvalue). Toutefoxs la méthode
CompareTo(}, qui est également exigée par l'interface TCorpar -, est déclarée
abstract.

Déclarer une classe 2bstract signifie qu'il s'agit d'un concept incomplet,
. auquel manque l'implémentation d'une ou de plusieurs propriétés (dans
ce cas, la méthode CompareTo ().

SubClass fournit la méthode ConpareTo () nécessaire.

Remarquez que SubClass implémente automathuement linterface | “orpar e,
bien qu'elle ne le dise pas explicitement. BaseC 1255 avait promis d'implémen-
ter les méthodes de Icompare, et SunClass EST_UNE BaseClaze. En héritant
de ses méthodes, SubClass implémente automatiquement Icompars,

Main() crée deux objets de la classe SuiClzass avec des valeurs différen-
tes. Elle passe ensuite des objets a MyFunc (). La méthode i Funo
s'attend a recevoir deux objets de linterface TCor pare. MyFunc utilise la
méthode CompareTo () pour décider quel objet est le plus grand, puis

GetVealue() pour afflcher la "valeur” des deux objets.

Ce programme donne une sortie courte et agréable :

La valeur de icl est 10 et celle de ic2 est 20
Les objets eux-mémes considérent que icl est plus petit que ic2
Appuyez sur Entrée pour terminer...

Une structure n'a pas de classe

C# semble étre doté d'une double personnalité pour la maniére de décla-
rer les variables. Les variables d'un type valeur comme .+ et 220t
sont déclarées et initialisées d'une certaine maniere :

int n;
n=1;

294 Quatrieme partie : La programmation orientée objet

Dans le cas d'une succession d'héritages de classes, les destructeurs sont
invoqués dans l'ordre inverse des constructeurs. Autrement dit, le destruc-
teur de la sous-classe est invoqué avant le destructeur de la classe de base.

N/
éﬁc’ 00@

No;,

Le ramasse-miettes et le destructeur C#

Laméthode du destructeur estheaucoup moins utile en C#que dans d'autres fangages orientés
- objet, comme C++, car C# possede de ce I'on appelle une destruction non déterministe.

La mémoire allouée & un objet est supprimée du tas lorsque le programme exécute la
" commande new. Ce bloc de mémoire reste réservé aussi longtemps que les références
valides a celui-ci restent actives.

Une zone de mémoire est dite "inaccessible" lorsque la dernigére référence a celle-ci passe
horsde portée. Autrement dit, personne ne peut plus accéder a cette zone de mémoire quand
plus rien n'y fait référence.

- C#nefaitrien de particulier lorsqu'une zone de mémoire devientinaccessible. Une tache de
 faible priorité estexécutée a I'arrigre-plan, recherchantles zones de mémoire inaccessibles. . |
~ Cequ'on appelle le ramasse-miettes s'exécute a un faible niveau de priorité afin d'éviter de
- diminuer les performances du programme. Le ramasse-miettes restitue au tas les zones de

~ mémoire inaccessibles qu'il trouve.

En temps normal, le ramasse-miettes opére en silence a I'arrigre-plan. Il ne prend le controle
du programme qu'a de brefs moments, lorsque le tas est sur le point d'étre a court de mémoire.

- Le destructeur de C# est non déterministe parce qu'il ne peut pas étre invoqué avant que

- I'objetait été récupéré par le ramasse-miettes, ce qui peut se produire longtemps aprés qu'il
a cessé d'étre utilisé. En fait, si le programme se termine avant que I'objet soit trouvé parle

~_ramasse-miettes et retourné au tas, le destructeur n'est pas invoqué du tout.

Au bout du compte, I'effet qui en résulte est qu'un programmeur C# ne peut pas sereposer.
sur le destructeur pour opérer automatiquement comme dans un langage comme C++.

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 343

/] AbstractInterface — montre comment une interface
11 peut 8tre implémentée avec
1/ une classe abstraite

using System;

namespace AbstractInterface

{

/] ICompare — interface capable de se comparer elle-méme

1 et d'afficher sa propre valeur

public interface ICompare : IComparable

{
/] GetValue — retourne sa propre valeur sous forme d'un int
int GetValue();

}

/! BaseClass — implémente 1'interface ICompare en

/] fournissant une méthode concréte GetValue() et

/1 une méthode abstraite CompareTol()

abstract public class BaseClass : ICompare
{
int nValue;
public BaseClass(int nInitialValue)
{
nValue = nInitialValue;
}
/! implémente d'abord 1'interface ICompare
/! avec une méthode concréte
public int GetValue()
{
return nValue;
}
/] compléte 1'interface ICompare avec une méthode abstraite
abstract public int CompareTo(object rightObject);

}

// SubClass — compléte la classe de base en redéfinissant
/! la méthode abstraite CompareTo()

public class SubClass: BaseClass

{

/! passe au constructeur de la classe de base
/! la valeur passée au constructeur précédent
public SubClass(int nInitialValue) : base(nInitialValue)

{

}

/] CompareTo — implémente 1'interface IComparable ; retourne

1/ une indication disant si un objet d'une sous-classe
/f est plus grand qu'un autre

override public int CompareTo(object rightObject)

{

BaseClass bc = (BaseClass)rightObject;
return GetValue().CompareTo(bc.GetValue());

292 Quatriéme partie : La programmation orientée objet

{
nAccountNumber = ++nNextAccountNumber;
mBalance = mInitialBalance;
]
/1 . . . méme chose ici .
}
/! SavingsAccount — compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount
{
public decimal mInterestRate;
// InitSavingsAccount — lit le taux d'intérét, exprimé en
/] pourcentage (valeur comprise entre 0 et 100)
public SavingsAccount(decimal mInterestRate) : this(0, mInterestRate)
{
}
public SavingsAccount{(decimal mInitial,
decimal mInterestRate) : base(mInitial)

{

this.mInterestRate = mInterestRate / 100;
}
/{ . . . méme chose ici . . .

]
public class Classl
{
/! DirectDeposit — effectue automatiquement le dépbt d'un chique
public static void DirectDeposit(BankAccount ba,
decimal mPay)
{
ba.Deposit(mPay);
}
public static int Main(string[] args)
{
/] crée un compte bancaire et 1'affiche
BankAccount ba = new BankAccount(100);
DirectDeposit(ba, 100);
Console.WriteLine("Compte {0}", ba.ToBankAccountString());
/! et maintenant un compte rémunéré
SavingsAccount sa = new SavingsAccount(12.5M);
DirectDeposit(sa, 100);
sa.AccumulateInterest();
Console.WriteLine("Compte {0)}", sa.ToSavingsAccountString());
/! attend confirmation de 1'utilisateur
Console.Writeline("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 34 ’

Le tableau trié d'objets Student est alors passé a la méthode localement
définie DisplayArray (). Celle-ci effectue une itération sur un tableau
d'objets qui implémentent CetString (). Elle utilise la propriété
Array.Length pour savoir combien d'objets contient le tableau, puis elle
appelle GetString () pour chaque objet, et affiche le résultat sur la

5N/

console en utilisant Writeline ().

Le programme, de retour dans Main (), continue en triant et en affichant
les oiseaux. Je suppose que vous conviendrez que les oiseaux n'ont rien a
voir avec des étudiants, mais la classe Bird implémente l'interface
IComparable en comparant les noms des oiseaux, et l'interface
IDisplayable en retournant le nom de chaque oiseau.

Remarquez que Main () ne récupére pas cette fois le tableau des oiseaux.
Ce n'est pas nécessaire. C'est la méme chose que ce fragment de code :

class BaseClass {}
class SubClass : BaseClass {)
class Classl
{
- public static void SomeFunction(BaseClass be} {}
public static void AnotherFunction()
{
SubClass sc = new SubClass{);
SomeFunction(sc);
}
}

Ici, un objet de la classe SubClass peut étre passé a la place d'un objet
d'une classe de base, parce qu'une sous-classe EST_UNE classe de base.

De méme, un tableau d'objets Bird peut étre passé a une méthode atten-
dant un tableau d'objets IComparable, parce que Bird implémente cette
interface. L'appel suivant a DisplayArray () passe le tableau birds, encore
une fois sans cast, parce que Bird implémente l'interface IDisplayable.

La sortie du programme se présente de la facon suivante :

Tri de la liste des étudiants

Liga 1100
Marge :85
Bart 150
Maggie :30

Homer :0

290 Quatriéme partie : La programmation orientée objet

{
public class BaseClass
{
public BaseClass()
{
Console.WriteLine("Construction de BaseClass (default)");
}
public BaseClass(int i)
(
Console.WriteLine("Construction de BaseClass({0})", i);
}
)
public class SubClass : BaseClass
{
public SubClass()
{
Console.WriteLine("Construction de SubClass (default)”);
]
public SubClass(int il, int i2) : base(il)
{
Console.WriteLine("Construction de SubClass({0}, {11)",
il, 12);
}
}
public class Classl
{
public static int Main(string[] args)
{
Console.WriteLine("Invocation de SubClass()");
SubClass scl = new SubClass();
Console.WriteLine ("\nInvocation de SubClass(l, 2)"):
SubClass sc2 = new SubClass(l, 2);
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminmer...");
Console.Read();
return 0;
}
}

Ce programme donne la sortie suivante :

Invocation de SubClass()
Construction de BaseClass (default)
Construction de SubClass (default)

Invocation de SubClass(l, 2)

Chapitre 14 : Quand une classe n’est pas une classe : l'interface et la structure 339

public string GetString()
{
string sPadName = Name.PadRight(9);
string s = String.Format("{0}:{1:NO}",
sPadName, Grade);
return s;
}
}
A Birds ~ tri des oiseaux par nom --------
/] Bird - tableau de noms d'oiseau
class Bird : IComparable, IDisplayable
{
private string sName;
// Constructor — initialise un nouvel objet student
public Bird(string sName)
{
this.sName = sName;
}
/] CreateBirdList — retourne une liste d'oiseaux & la fonction appelante
static string[] sBirdNames =
{ "Tourterelle", "Vautour", "Alouette", "Etourneau",
"Grive", "Corbeau", "Hirondelle"];
public static Bird[] CreateBirdList()
{
Bird[] birds = new Bird[sBirdNames.Length];
for(int 1 = 0; i < birds.Length; it++)
{
birds[i] = new Bird(sBirdNames[i]):
}
return birds;
}
/] accéde aux méthodes en lecture seule
public string Name
{
get
{
return sName;
}
}
/] implémente 1'interface IComparable :
/! CompareTo — compare les noms des oiseaux, utilise

1 la méthode de comparaison intégrée de la classe String
public int CompareTo(object rightObject)
{

// nous allons comparer l'oiseau "courant" &

// 1'objet oiseau "de droite"

Bird leftBird = this;

Bird rightBird = (Bird)rightObject;

return String.Compare(leftBird.Name, rightBird.Name);

288 Quatrieme partie : La programmation orientée objet

dont elle réalise une extension. Il y a une raison a cela : chaque classe est
responsable de ce qu'elle fait. Une sous-classe ne doit pas plus étre tenue
pour responsable de l'initialisation des membres de la classe de base
qu'une fonction extérieure quelconque. La classe BaseClass doit se voir
donner la possibilité de construire ses membres avant que les membres
de SubClass aient la possibilité d'y accéder.

Passer des arguments au constructeur de la
classe de base : le mot-clé base

La sous-classe invoque le constructeur par défaut de sa classe de base,
sauf indication contraire, méme a partir d'un constructeur d'une sous-
classe autre que le constructeur par défaut. C'est ce que montre 'exemple
légerement modifié ci-dessous :

using System
namespace Example
{
public class Classl
{
public static int Main(string[] args)
{
Console.WriteLine("Invocation de SubClass()");
SubClass scl = new SubClass();
Console.WriteLine("\nInvocation de SubClass(int)");
SubClass sc2 = new SubClass(0);
// attend confirmation de 1l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;
]
}
public class BaseClass
{
public BaseClass()
{
Congole.WriteLine("Construction de BaseClass (default)");
}
public BaseClass(int i)
{
Console.WriteLine("Construction de BaseClass (int)");
}
}

public class SubClass : Base(lass

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 33 7

/! explicite des objets...
Array.Sort(birds);

DisplayArray(birds);
// attend confirmation de 1'utilisateur
Console.WritelLine("Appuyez sur Entrée pour terminer...");

Console.Read();
}
// DisplayArray — affiche un tableau d'objets qui
1/ implémentent 1'interface IDisplayable
public static void DisplayArray
(IDisplayable[] displayables)
{
int length = displayables.Length;
for(int index = 0; index < length; index++)
{
IDisplayable displayable = displayables[index];
Console.WriteLine("{0}", displayable.GetString());
)
3
]
// ---- Students — trie les étudiants par moyenne de points d'UV ----
/! Student — description d'un étudiant avec son nom et ses points d'UV
class Student : IComparable, IDisplayable
{
private string sName;
private double dGrade = 0.0;
// Constructor — initialise un nouvel objet student
public Student(string sName, double dGrade)
{
/! met de c6té les données de 1'objet
this.sName = sName;
this.dGrade = dGrade;

]
/] CreateStudentList — pour gagner de la place, crée
1 une liste fixe d'étudiants

static string[] sNames =
{"Homer", "Marge", "Bart", "Lisa", "Maggie"};
static double[] dGrades =
{0, 85, 50, 100, 30};
public static Student{] CreateStudentList()
{
Student[] sArray = new Student[sNames.Length];
for (int 1 = 0; i < sNames.Length; it+)
{
sArray[i] = new Student(sNames[i], dGrades[i]);
}
return sArray;
}

/! accéde aux méthodes en lecture seule

286

Quatrieme partie : La programmation orientée objet

public static void GenericFunction(object o)
{
if (o is MyClassl)
{
MyClassl mcl = (MyClassl)o;
...
}
]
}

GenericFunction() peut étre invoquée avec n'importe quel type d'objet. Le mot-clé is
extraira des huitres object toutes les perles de MyClassl.

L'héritage et le constructeur

Le programme InheritanceExample que nous avons vu plus haut dans ce
chapitre repose sur ces horribles fonctions Init. .. pour initialiser les
objets BankAccount et SavingsAccount en leur donnant un état valide.
Equiper ces classes de constructeurs est certainement la meilleure
maniere de procéder, mais elle introduit une petite complication.

Invoquer le constructeur par défaut de la
classe de base

Le constructeur par défaut de la classe de base est invoqué chaque fois
qu'une sous-classe est construite. Le constructeur de la sous-classe

invoque automatiquement le constructeur de la classe de base, comme le
montre cet exemple simple :

// InheritingAConstructor - montre que le constructeur
/1 de la classe de base est invoqué
/1! automatiquement

using System;
namespace InheritingAConstructor
{

public class Classl

{

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 335

Cette méthode trie un tableau d'objets qui implémentent l'interface
TComparab <. La classe de ces objets n'a méme pas d'importance. 1ls
pourraient trés bien, par exemple. étre des objets Student. La classe
Array pourrait méme trier la version suivante de Student :

// Student - description d'un étudiant avec son nom et ses points d'UV
class Student : IComparable
{

private double dGrade;

/] accéde aux méthodes en lecture seule

public double Grade

{

get
{
return dGrade;

)
)
// CompareTo — compare un étudiant & un autre ;
/! un étudiant est "meilleur" qu'un autre
1 si ses points d'UV sont meilleurs

public int CompareTo(object rightObject)
{
Student leftStudent = this:
Student rightStudent = (Student)rightObject;
/! génére maintenant -1, 0, ou 1 sur la base du
// critére de tri (la moyenne des points d'UV de 1'étudiant)
if (rightStudent.Grade < leftStudent.Grade)
{
return -1;
}
if (rightStudent.Grade > leftStudent.Grade)
{
return 1;
}

return 0;

Le tri d'un tableau d'objets Student est réduit & un simple appel :

void MyFunction(Student[] students)

{
/] trie le tableau d'objets IComparable
Array.Sort(students);

)

Vous fournissez le comparateur, et Array fait tout le travail.

284 Quatriéme partie : La programmation orientée objet

Q‘“ON 7
A§°
<

Une conversion incorrecte génére une erreur a l'exécution du programme
(ce qu'on appelle une erreur run-time). Une erreur a l'exécution est beau-
coup plus difficile a identifier et corriger qu'une erreur a la compilation.

Eviter les conversions invalides en utilisant le
mot-clé is

La fonction Processimount () se porterait trés bien si elle pouvait étre
stre que I'objet qui lui est passé est bien un Savingsiccount avant
d'effectuer la conversion. C'est dans ce but que C# offre le mot-clé i s.

L'opérateur is admet un objet & sa gauche et un type & sa droite. [l re-
tourne true sile type a I'exécution de I'objet qui est a sa gauche est
compatible avec le type qui est a sa droite.

Vous pouvez modifier I'exemple précédent pour éviter l'erreur a I'exécu-
tion en utilisant 'opérateur is:

public static void ProcessAmount (BankAccount bankAccount)
{
/] dépose une grosse somme sur le compte
bankAccount.Deposit(10000.00);
/] si 1'objet est un Savingshccount . . .
if (bankAccount is SavingsAccount)
{
/1 ...recueille 1'intérdt dés maintenant
SavingsAccount SavingsAccount = (SavingsAccount)bankAccount;
savingsAccount.Accumulatelnterest();
!
}
public static void TestCast()
{
SavingsAccount sa = new SavingsAccount();
ProcessAmount (sa) ;
BankAccount ba = new BankAccount();
ProcessAmount (ba) ;

L'instruction if supplémentaire teste I'objet barnkaccount pour vérifier
qu'il est bien de la classe SavingsAccount. L'opérateur is retourne true
lorsque Processamount () est appelée pour la premiére fois. Toutefois,
lorsqu'un objet bank4ccount lui est passé dans le deuxiéme appel, I'opé-
rateur is retourne false, évitant ainsi le cast invalide. Cette version de
ce programme ne génere pas d'erreur a l'exécution.

Chapitre 14 : Quand une classe n'est pas une classe : l'interface et la structure 333

get
{
return dGrade;
}
}
/] GetString — retourne une représentation de 1'étudiant
public string GetString()
{
string sPadName = Name.PadRight(9);
string s = String.Format("{0}:(1:NO}",
sPadName, Grade);
return s;

}

L'appel a PadRight () garantit que le nom dans lequel sera inséré le
champ aura au moins neuf caractéres de long. Si le nombre fait moins de
neuf caractéres, la différence est comblée par des espaces. Ajuster une
chaine a une longueur standard permet d'aligner des objets en colonne.
L'indication {1:N0) dit, "afficher le grade avec des virgules ou des points
(selon le parametre de localisation) comme séparateur de milliers.”
L'indication {0} qui précéde arrondit la partie décimale.

Avec cette déclaration, je peux maintenant écrire le fragment de pro-
gramme suivant (le programme complet est donné dans la section "As-
sembler le tout”, plus loin dans ce chapitre) :

/] DisplayArray — affiche un tableau d'objets qui
// implémentent 1'interface IDisplayable
public static void DisplayArray
(IDisplayable(] displayables)
{
int length = displayables.Length;
for(int index = 0; index € length; indext+)
{
IDigplayable displayable = displayables[index];
Console.WriteLine("{0}", displayable.GetString());
}
}

Cette méthode D:splayArray () peut afficher n'importe quel type de
tableau, a condition que les membres du tableau définissent une méthode
GetString (). Voici un exemple de sortie de Displayirray () :

Homer :0
Marge 85

282 Quatrieme partie : La programmation orientée objet

M P4e

de facon ambigué, faire démarrer une voiture n'est pas la méme chose que
faire démarrer un moteur. L'opération démarrage de la voiture dépend
évidemment du démarrage du moteur, mais ce sont deux choses distinc-
tes : il faut aussi passer la premiére, lacher les freins, et ainsi de suite.

Plus encore, sans doute, faire hériter Ca- de i'oto est une représentation
erronée des choses. Une voiture n'est tout simplement pas un type
particulier de moteur.

L'élégance du logiciel est un but qui se passe de justification. Non seulement
elle le rend plus compréhensible, plus fiable et aisé a maintenir, mais elle
réjouit le goit et facilite la digestion, entre autres.

Autres considérations

C# implémente un ensemble de caractéristiques congues pour supporter
I'héritage.

Changer de classe
Un programme peut changer la classe d'un objet. En fait, c'est une chose
que vous avez déja vue dans cet exemple. SomeFunction() peut passer un

objet Savingsiccount a une méthode qui attend un objet BankAccount.

Vous pouvez rendre cette conversion plus explicite :

BankAccount ba;
SavingsAccount sa = new SavingsAccout();

/1 OK:
ba = sa; /] une conversion vers le bas implicite est admise
ba = (BankAccount)sa; // le cast explicite est préféré
/1 Non!
sa = ba; /] la conversion vers le haut implicite est interdite

/] ceci est correct
sa = (SavingsAccount)ba;

La premiere ligne stocke un objet SavingsAccount dans une variable
BankAccount. C# effectue pour vous cette conversion. La deuxiéme ligne
utilise I'opérateur cast pour convertir explicitement l'objet.

Les deux derniéres lignes reconvertissent l'objet BankAccount en
SavingsAccount.

Chapitre 14 : Quand une classe n'est pas une classe : I'interface et la structure 33 ’

QUC

/] . . . écrire une note sur le PDA . . .
}
}
public class Laptop : Computer, IRecordable
{
public void TakeANote(string sNote)
{
!/ . . . taper une note sur le clavier . . .

Chacune de ces trois classes hérite d'une classe de base différente, mais
implémente la méme interface TRecordable.

Notez la distinction dans la terminologie. On hérite d'une case de base, ou
on I'étend, mais on implémente une interface. Ne me regardez pas comme
ca. Je ne sais pas pourquoi ce sont ces termes qui ont été choisis, mais
cette terminologie aide effectivement a faire les distinctions nécessaires.

L'interface IRecordable indique que chacune des trois classes peut étre

utilisée pour écrire une note en utilisant la méthode T:i:c21; v« . Pour
comprendre l'utilité de ce procédé, voyez la fonction suivante :

public class Classl
{
static public void RecordShoppingList(IRecordable recordObject)
{
/] créer une liste de commissions
string sList = GenerateShoppinglList();
/! puis la noter
recordObject.TakeANote(sList);
}
public static void Main(string[] args)
(
PDA pda = new PDA();
RecordShoppingList(pda);
}

Concretement, ce fragment de code dit que la fonction RecordShnnninalis
accepte comme argument tout objet qui implémente la méthode 74!
(en termes humains, "tout objet qui peut enregistrer une note").
RecordShoppinglist () ne fait aucune hypothése sur le type exact d'objet
recordObiect. Que l'objet soit effectivement un P04 ou un certain type de
ElectronicDevice est sans importance, pourvu qu'il puisse prendre une note.

280 Quatrieme partie : La programmation orientée objet

/11 pourcentage (valeur comprise entre 0 et 100)
public void InitSavingsAccount(BankAccount bankAccount,
decimal mInterestRate)

{

this.bankAccount = bankAccount;

this.mInterestRate = mInterestRate / 100;
}
/] Accumulatelnterest — invoquée une fois par période
public void Accumulatelnterest()
{

bankAccount.mBalance = bankAccount.mBalance

+ (bankAccount.mBalance * mInterestRate);

}
/] Deposit — tout dépdt positif est autorisé
public void Deposit(decimal mAmount)
{

bankAccount.Deposit (mAmount);
]
// Withdraw — tout retrait est autorisé jusqu'a la valeur
/1 du solde ; retourne le montant retiré
public double Withdraw(decimal mWithdrawal)
{

return bankAccount.Withdraw(mWithdrawal);
}

Ici, la classe Savingsiccount contient un membre donnée bankAccount
(au lieu d'en hériter de Bankiccount). L'objet hankAccount contient le
solde et le numéro du compte, informations nécessaires pour la gestion
du compte rémunéré. Les données propres a un compte rémunéré sont
contenues dans la classe SavingsiAccount .

Dans ce cas, nous disons que Savingsiccount_ A_UN BankAccount.

La relation A_UN

La relation A_UN est fondamentalement différente de la relation EST_UN.
Cette différence ne semble pas mauvaise dans l'exemple de code suivant :

/] crée un nouveau compte rémunéré
BankAccount ba = new BankAccount()
Savingshccount sa = new SavingsAccount_();
sa.InitSavingsAccount(ba, 5);

/] et y dépose cent euros

sa.Deposit(100);

Chapitre 14 : Quand une classe n'est pas une classe : l'interface et la structure 329

Toutefois, cette solution souffre de deux gros problémes. Le premier est
fondamental : on ne peut pas prétendre que le stylo, le PDA et I'ordina-
teur portable sont liés par une relation quelconque de type EST_UN.
Savoir comment fonctionne un stylo et comment s'en servir pour prendre
une note ne me donne aucune information sur ce qu'est un ordinateur
portablP et la maniére dont il enregistre les informations. Le nom
ThinesThar=ecor? est plus une description qu'une classe de base.

Le second probleme est purement technique. Il serait mieux de décrire
Laptop comume une sous-classe de Compurer. Bien que 1'on puisse raison-
nablement étendre la classe P/ & partir de [a méme classe de base
Compiurer, on ne peut pas en dire autant de Pen. Il faudrait pour cela
cltfmn un Ptvlo comme un certain type de MechanicalliritingDevice
oude peviceliaisitaineYourshirs. T outefmsA, une classe C# ne peut pas
hériter de deux classes différentes en méme temps, elle ne peut étre
qu'un seul et méme type de chose.

Ep revenant a nos trois classes initiales, le seul point que les classes Pen,

Placet ToLo ont en commun pour ce que nous voulons faire est qu'elles
peuvent toutes etre utilisées pour stocker quelque chose. La relation
PEUT_ETRE_UTILISE_COMME 2cccrdarte nous permet de communiquer

l'usage qui peut en étre fait dans un but particulier, sans pour autant
impliquer une relation inhérente entre ces trois classes.

Ou'est-ce qu'une interface ?

Une description d'interface ressemble beaucoup a une classe sans données,
dans laquelle toutes les méthodes seraient abstraites. Une description
d'interface pour des "choses qui enregistrent” pourrait ressembler a ceci :

interface IRecordable

{
void TakeANote(String sNote);
}

Remarquer le mot-clé irterface ala place de c1ass. Entre les accolades
se trouve une liste de méthodes abstraites. Une interface ne contient
aucune définition de membre donnée.

La méthode TzkeAllote () est écrite sans implémentation. Les mots-clés
public et virtual ou abstract ne sont pas nécessaires. Toutes les
méthodes d'une interface sont publiques, et une interface n'entre pas en
jeu dans un héritage normal.

2 78 Quatriéme partie : La programmation orientée objet

NS

La propriété Balance permet de lire le solde, mais sans donner la possibi-
lité de le modifier. La méthode Deposit () accepte tout dépot positif. La
méthode Withdraw() vous permet de retirer tout ce que vous voulez dans
la limite de ce que vous avez sur votre compte. ToBankAccountSzring()
crée une chaine qui donne la description du compte.

La classe SavingsAccount hérite de toutes ces bonnes choses de
BankAccount. A cela, elle ajoute un taux d'intérét, et la possibilité
d'accumuler des intéréts a intervalle régulier.

Main() en fait le moins possible. Elle crée un Bankaccount, affiche le compte,
crée un SavingsAccount, ajoute une période d'intéréts, et affiche le résultat :

Compte 1001 - 200,00 X
Compte 1002 - 112,50 & (12,5%)
Appuyez sur Entrée pour terminer...

Remarquez que la méthode InitSavingsAccount () invoque
InitBankAccount (). Cela initialise les membres donnée propres au
compte. La méthode InitSavingsAccount () aurait pu les initialiser
directement, mais il est de meilleure pratique de permettre a
BankAccount d'initialiser ses propres membres.

EST_UN par rapport a A_UN — j'ai du mal a
m'y retrouver

La relation entre SavingsAccount et BankAccount n'est rien d'autre que la
relation fondamentale EST_UN. Pour commencer, je vais vous montrer
pourquoi, puis je vous montrerai a quoi ressemblerait une relation A_UN.

La relation EST UN

La relation EST_UN entre SavingsAccount et BankAccount est mise en
évidence par la modification suivante a Classl dans le programme
SimpleSavingshccount de la section précédente :

public class Classl

{
// DirectDeposit — effectue automatiquement le dépét d'un chéque
public static void DirectDeposit(BankAccount ba,

Chapitre 14
Quand une classe n'est pas
une classe : I'interface et la
structure

Dans ce chapitre :
Explorer la relation PEUT_ETRE_UTILISE_COMME.
Définir une interface.
Utiliser l'interface pour effectuer des opérations communes.
Définir une structure.

Utiliser la structure pour rassembler des classes, des interfaces et des types
valeur intrinséques.

u ne classe peut contenir une référence a une autre classe. C'est
alors une simple relation A_UN. Une classe peut étendre une autre
classe par le merveilleux procédé de I'héritage. C'est une relation EST_UN.
L'interface de C# implémente également une autre association, tout aussi
importante : la relation PEUT_ETRE_UTILISE_COMME.

Ou'est-ce que PEUT ETRE_UTILISE_COMME ?

Si je veux prendre en vitesse une petite note, je peux la griffonner sur un
bout de papier avec un stylo, faire la méme chose sur mon assistant
numeérique personnel (PDA) ou la taper sur mon ordinateur portable.

2 76 Quatriéme partie : La programmation orientée objet

1 (qui est égal A zéro par défaut)
public void InitBankAccount()
f
InitBankAccount (0);
}
public void InitBankAccount(decimal mInitialBalance)
{
nAccountNumber = ++nNextAccountNumber;
mBalance = mInitialBalance;
}
/! Balance (solde)
public decimal Balance
{
get { return mBalance;}
}
/] Deposit — tout dépdt positif est autorigé
public void Deposit(decimal mAmount)
{
if (mAmount > 0)
{
mBalance += mAmount;
}
}
// Withdraw — tout retrait est autorisé jusqu'a la valeur
/! du solde ; retourne le montant retiré
public decimal Withdraw(decimal mWithdrawal)
{
if (mBalance <= mWithdrawal)
{
mWithdrawal = mBalance;
]
mBalance -= mWithdrawal;
return mWithdrawal;
}
// ToString — met le compte sous forme de chaine
public string ToBankAccountString()
{
return String.Format("{0} - {1:C}",
nAccountNumber, mBalance);
}
}
/! SavingsAccount ~ compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount
{
public decimal mInterestRate;
/] InitSavingsAccount — 1lit le taux d'intérdt, exprimé en
/1 pourcentage (valeur comprise entre 0 et 100)
public void InitSavingsAccount(decimal mInterestRate)

Chapitre 13 : Quel est donc ce polymorphisme ? 325

Sceller une classe

Vous pouvez trés bien décider que vous ne voulez pas que les générations
futures de programmeurs puissent étendre une de vos classes. Dans ce cas,
vous pouvez la verrouiller en utilisant le mot-clé s ~a. Une classe scellée
ne peut étre utilisée comme classe de base pour une dutre classe, quelle
qu'elle soit.

Examinez le bloc de code suivant :

using System;
public class BankAccount
{
/] Withdrawal — tout retrait est autorisé jusqu'a la valeur
/1 du solde ; retourne le montant retiré
virtual public void Withdraw(double dWithdraw)
{
Console.WriteLine("invoque BankAccount.Withdraw()"):
}
}
public sealed class SavingsAccount : BankAccount
{
override public void Withdraw(double dWithdrawal)
{
Congole.WriteLine("invoque SavingsAccount.Withdraw()");
}
}
public class SpecialSaleAccount : SavingsAccount
{
override public void Withdraw(double dWithdrawal)
{
Console.WriteLine("invoque SpecialSaleAccount.Withdraw()");

}

Ce fragment de code produit 'erreur de compilation suivante :

'SpecialSaleAccount’ : ne peut pas hériter de la classe
scellée 'SavingsAccount'

Le mot-clé scaled vous permet de protéger votre classe des assauts
d'une éventuelle sous-classe. Par exemple, permettre aux programmeurs
d'étendre une classe qui implémente la sécurité d'un systéme permettrait
a celui qui le voudrait d'y introduire une porte dérobée.

2 74 Quatrieme partie : La programmation orientée objet

Remarquez que la propriété EST_UN n'est pas réflexive : un Student EST_UNE Person,
mais l'inverse n'est pas vrai. Une Person N'EST_PAS_UN Student. Un énoncé comme

- celui-ci se référe toujours au cas général. Il pourrait se trouver qu'une Person particuliére
soit effectivement un Student, mais beaucoup de gens qui sont membres de la classe
Person ne sont pas membres de la classe Student. En outre, la classe Student posséde
des propriétésqu'elle ne partage pasaveclaclasse Person. Parexemple,un Student aune
moyenne de points d'UV, mais une Person ordinaire n'en a pas.

L'héritage est une propriété transitive. Par exemple, si je définis une nouvelle classe
GraduateStudent comme une sous-classe de Student, alorsunGraduateStudent est
aussiune Person. Etil doiten étre ainsi:siunGraduateStudent EST_UN Student etun
Student EST UNE Person, alors un GraduateStudent EST_UNE Person. CQFD.

A quoi me sert ['héritage ?

L'héritage a plusieurs fonctions importantes. Vous pourriez penser qu'il
sert & réduire le volume de ce que vous avez a taper au clavier. Dans une
certaine mesure, c'est vrai : lorsque je décris un objet de la classe
Student, je n'ai pas besoin de répéter les propriétés d'une Person. Un
aspect plus important, mais lié a celui-ci, est le grand mot d'ordre réutili-
ser. Les théoriciens des langages de programmation savent depuis long-
temps qu'il est absurde de recommencer de zéro pour chaque nouveau
projet en reconstruisant chaque fois les mémes composants.

Comparez la situation du développement de logiciel a celle d'autres indus-
tries. Y a-t-il beaucoup de constructeurs automobile qui commencent par
concevoir et fabriquer leurs propres pinces et tournevis pour construire une
voiture ? Et méme s'ils le faisaient, combien recommenceraient de zéro en
réalisant des outils entierement nouveaux pour chaque nouveau modele ?
Dans les autres industries, on s'est rendu compte qu'il est plus pertinent
d'utiliser des vis et des écrous standards, et méme des composants plus
importants comme des moteurs, que de repartir de zéro chaque fois.

L'héritage permet de tirer le meilleur parti des composants logiciels
existants. Vous pouvez adapter des classes existantes a de nouvelles
applications sans leur apporter de modifications internes. C'est une
nouvelle sous-classe, contenant les ajouts et les modifications nécessai-
res, qui hérite des propriétés d'une classe existante.

Chapitre 13 : Que! est donc ce polymorphisme ? 323

{
Congole.WriteLine (" appelle SpecialSaleAccount.Withdraw()");

}
]

/] 8aleSpecialCustomer - compte utilisé pour des clients particuliers
/1 pendant la période des soldes
public class SaleSpecialCustomer : SpecialSaleAccount
{

override public void Withdraw(double dWithdrawal)

{

Console.Writeline
(" appelle SaleSpecialCustomer.Withdraw()");

Chacune de ces classes étend la classe qui se trouve au-dessus. Remar-
quez toutefois que SpeciziSaleiccount.wWithdraw() a été marquée
comme virtual, brisant en ce point la chaine des héritages. Dans la
perspective de 2ankaccount, les classes SpecialSaledccount et
SzleSpecialiustoner ressemblent exactement a Savingssccount. Ce
n'est que dans la perspective d'un SpecialSaleiccount que la nouvelle
version de Withdrawi) devient disponible.

Cela est démontré par ce petit programme. La fonction Main () invoque
une série de méthodes Test (), dont chacune est congue pour accepter
une sous-classe différente. Chacune de ces versions de Test () appelle

Withdraw(} dans la perspective d'un objet de classe différent.

La sortie de ce programme se présente de la facon suivante :

Passage d'un BankAccount
pour effectuer Test(BankAccount)
appelle BankAccount.Withdraw()
Passage d'un SavingsAccount
pour effectuer Test(BankAccount)
appelle SavingsAccount.Withdraw()
pour effectuer Test(Savingshccount)
appelle SavingsAccount.Withdraw()
Passage d'un SpecialSaleAccount
pour effectuer Test(BankAccount)
appelle SavingsAccount.Withdraw()
pour effectuer Test(SavingsAccount)

2 72 Quatriéme partie : La programmation orientée objet

Les langages orientés objet expriment cette relation d'héritage en permet-
tant & une classe d'hériter d'une autre. C'est cette caractéristique qui
permet aux langages orientés objet de produire des modéles plus proches
du monde réel que les langages qui ne disposent pas du principe de
I'héritage.

Hériter d'une classe

Dans l'exemple TnheritanceExample suivant, la classe SubClass hérite de
la classe BaseClass:

/] InheritanceExample - offre la démonstration
/! la plus simple de 1'héritage
using System;
namespace InheritanceExample
{
public class BaseClass
{
public int nDataMember;
public void SomeMethod()
{
Console.WriteLine("SomeMethod()");
}
}
public class SubClass : BaseClass
{
public void SomeOtherMethod()
{
Console.WriteLine("SomeOtherMethod ()");
}
}
public class Test
{
public static int Main(string[] args)
{
/] crée un objet de la classe de base
Console.WriteLine("Utilisons un objet de la classe de base :");
BaseClass be = new BaseClass():
bc.nDataMember = 1;
be.SomeMethod () ;
/! créons maintenant un élément d'une sous-classe
Console.WriteLine("Utilisons un objet d'une sous-classe :");
SubClass sc = new SubClass();
sc.nDataMember = 2;
sc.SomeMethod () ;

Chapitre 13 : Quel est donc ce polymorphisme ? 32 ’

Redémarrer une hiérarchie de classes

Le mot-clé virtual peut aussi étre utilisé pour démarrer une nouvelle
hiérarchie d'héritage. Examinez la hiérarchie de classes montrée dans le
programme InheritanceTest :

/! InheritanceTest - examine comment le mot-clé virtual

/1 peut 8tre utilisé pour lancer

/1 une nouvelle hiérarchie d'héritage
namespace InheritanceTest

{

using System;
public class Classl
{
public static int Main(string[] strings)
{
Console.WriteLine("\nPassage d'un BankAccount");
BankAccount ba = new BankAccount();
Testl(ba);

Console.WriteLine("\nPassage d'un SavingsAccount");
SavingsAccount sa = new SavingsAccount(});
Testl(sa);

Test2(sa);

Console.WriteLine("\nPassage d'un SpecialSaleAccount");
SpecialSaleAccount ssa = new SpecialSaleAccount();
Testl(ssa);

Test2(ssa);

Test3(ssa);

Console.WriteLine("\nPassage d'un SaleSpecialCustomer");
SaleSpecialCustomer ssc = new SaleSpecialCustomer();
Testl(ssc);

Test2(ssc);

Test3(ssc);

Test4(ssc);

/! attend confirmation de l'utilisateur

Console.WriteLine();

Console.WriteLine("Hit Appuyez sur Entrée pour terminer...");
Congole.Read();

return 0;

public static void Testl(BankAccount account)

2 70 Quatrieme partie : La programmation orientée objet

Etre avare de ses objets

On ne peut pas construire un objet sans un constructeur correspondant.
Si vous définissez votre propre constructeur, C# retire le sien. En combi-
nant ces deux aspects, vous pouvez créer une classe qui ne peut étre
instanciée que localement.

Par exemple, seule une méthode définie dans le méme espace de nom que
BankAccount peut créer un objet Bankaccount avec le constructeur
déclaré comme internal (pour en savoir plus sur les espaces de nom,
reportez-vous au Chapitre 16) :

// BankAccount - simule un simple compte bancaire
public class BankAccount
{
/! les numéros de compte commencent i 1000 et augmentent
/! séquentiellement & partir de 12
static int nNextAccountNumber = 1000;
// tient & jour le numéro de compte et le solde
int nAccountNumber;
double dBalance;
/! invoque le constructeur spécifique en fournissant
/! des valeurs par défaut pour les arguments manquants
internal BankAccount()
{
nAccountNumber = ++nNextAccountNumber;
dBalance = 0;
)
public string GetString()
{
return String.Format ("#{0} = {1:N}",
nAccountNumber, dBalance);

Chapitre 13 : Quel est donc ce polymorphisme ? 3 ’9

// OQutput — classe abstraite qui affiche ume chaine
abstract public void Output(string sOutputString);
}
/! SubClassl — implémentation concréte de AbstractBaseClass
public class SubClassl : AbstractBaseClass
{
override public void Output(string sSoutce)
{
string ¢ = sSource.ToUpper({);
Console.WriteLine("Appel & SubClassl.Output() depuis {0}", s);:
}
}
// SubClass? — autre implémentation concréte de AbstractBaseClass
public class SubClass2 : AbstractBaseClass
{
override public void Output({string sSource)
(
string s = sSource.ToLower();
Console.WriteLine("Appel & SubClass2.Output() depuis {0}", s);
]
]
class Classl
{
public static void Test(AbstractBaseClass ba)
{
ba.Output ("Test");
}
public static void Main(string[] strings)
{
/*
* On ne peut pas créer d'objet AbstractBaseClass car c'est une
* classe shstraite. Cff génére une erreur a la compilation si vous
* ne mettez pas en commentaire la ligne qui suit
*/
/] AbstractBaseClass ba = new AbstractBaseClass();
/I répéte la méme expérience avec Subclassl
Console.WriteLine{"Création d'un objet Subclassl”);
SubClassl scl = new SubClassl();
Test(scl);
// et enfin un objet Subclass?
Console.WriteLine("\nCréation d'un objet Subclass2");
SubClass2 sc2 = new SubClass2();

Test(sc2);
// attend confirmation de l'utilisateur
Congole.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

}

Chapitre 16 : Manipuler des fichiers en C# 39 7

arabe, hindi, ni de toute autre langue. Le format de fichier Unicode, plus
souple, bénéficie d'une compatibilité ascendante avec des caracteres
ANSI, et offre un assez grand nombre d'autres alphabets. Unicode existe
en plusieurs formats, mais UTF8 en est le format par défaut pour C#.

Le programme Filelirite suivant lit des lignes de données sur la console
et les écrits sur un fichier choisi par I'utilisateur :

/] FileWrite - écrit dans un fichier texte
/! ce qui est saisi sur la console
using System;
using System.IO;
namespace FileWrite
{
public class Classl
{
public static void Main(string[] args)
{
/] crée 1'objet de nom de fichier - la boucle while nous permet
// de continuer & essayer avec différents noms de fichiers
/! jusqu'i ce que nous réussissions
StreamWriter sw = null;
string sFileName = "";
while(true)
{
try
{
/] saisie du nom du fichier de sortie (Entrée pour quitter)
Console.Write("Entrez un nom de fichier "
+ "(Entrez un nom vide pour quitter):");
sFileName = Console.ReadLine();
if (sFileName.length == 0)
{
/! pas de nom de fichier - fait passer au-deld de la boucle
/] while par sécurité
break;
}
/] ouvre le fichier pour y écrire ; envoie une exception si
/] le fichier existe déja :
/! FileMode.CreateNew pour créer un fichier si

/! il n'existe pas déja, ou envoie

/] une exception si le fichier existe

/| FileMode.Append pour créer un nouveau fichier ou ajouter
/1 quelque chose & un fichier existant

/! FileMode.Create pour créer un nouveau fichier ou

1 pour tronquer un fichier existant

/! les possibilités de FileAccess sont :
/1 FileAccess.Read,

356 Quatrieme partie : La programmation orientée objet

Console.WriteLine("Valeur donnée par OutputFunction = (0}",
id,ToString());
}
/] ToString — fournit une simple fonction de type string
override public string ToString()
{
return "Classl du programme StructureExample";
}
}
}

Ce programme met a I'épreuve la structure Trnt32.

Main() commence par créer un objet i de type int. Main () utilise le
constructeur par défaut Int32 () (mais vous pourriez dire le constructeur
int ()) pour initialiser 1 a 0. Le programme poursuit en assignant une
valeur a i. Il est évident que cela différe Iégérement du format que vous
utiliseriez pour créer vous-méme une structure,

Main() passe la variable i a CutputFunction(), qui est déclarée pour
accepter un objet implémentant l'interface IFormattable. Celle-ci est la
méme que l'interface [Displayable que j'ai définie dans d'autres program-
mes (la seule méthode de TFormattablie est ToString). Toutes les classes
et toutes les structures héritent par Object de l'interface [Forrmatizble.

OutputFunction() dit al'objet IFormattable de s'afficher lui-méme (la
variable Int32 n'a aucun probléme parce qu'elle a sa propre méthode
ToString()). Cela est démontré encore plus clairement dans l'appel a
OutputFunction(2). Etant de type Int32, la constante 2 implémente
également TFormattable. Enfin, rien que pour vous le mettre sous les
yeux, Main () invoque directement 3.ToString(). La sortie de cette
premiere section de Main () est:

Valeur donnée par OutputFunction = 1
Valeur donnée par OutputFunction = 2
Extrait directement =3

Le programme entre maintenant dans une section sans équivalent.
Main() déclare un tableau d'objets de type Obiect. Il stocke un objet
string dans le premier élément, un objet int dans le deuxiéme, une
instance de Class1 dans le troisieme, et ainsi de suite. Cela est autorisé,
parce que String, Int32, et Classl dérivent tous d'0Object.

Le programme fait alors une boucle sur les objets du tableau. Main () est
capable d'aller chercher les entiers en demandant a chaque objet s'il

Chapitre 16 : Manipuler des fichiers en C# 395

Les classes d'I/O sont décrites dans l'espace de nom System.T0. La classe
de base des I/O de fichier est FileStream. Autrefois, le programmeur
ouvrait un fichier. La commande cpen préparait le fichier et retournait un
handie. En général, ce handle n'était rien de plus qu'un numéro d'identifi-
cation. Chaque fois qu'on voulait faire une opération de lecture ou d'écri-
ture sur ce fichier, il fallait présenter ce numéro.

C# utilise une approche plus intuitive. Il associe chaque fichier a un objet
de la classe i leStream. Le constructeur de FileStream ouvre le fichier.
Les méthodes de F:ieStreanm effectuent les opérations d'l/O sur le fichier.

FileStream n'est pas la seule classe qui peut effectuer des opérations d'1/O
sur des fichiers, mais c'est bien elle qui représente notre bon vieux fichier
de base, qui correspond a 90 % de nos besoins d'l/O sur les fichiers. C'est la
classe racine qui est décrite dans cette section. Si elle est satisfaisante pour
C#, elle 'est aussi pour moi.

FileStream est une classe tres basique. Ouvrir un fichier, fermer un
fichier, lire un bloc et écrire un bloc, c'est a peu prés tout ce qu'elle vous
donne. Heureusement, l'espace de nom Svstem. 10 contient un ensemble
de classes qui complétent FileStream pour vous donner un acces plus
facile aux fichiers, et un sentiment de confort douillet :

V¥ ReadBinary/WriteBinary:Ce sont deux classes de flux qui contien-
nent des méthodes permettant de lire et d'écrire tous les types
valeur : ReadChar (), WriteChar (), ReadByte (), WriteByte(), et
ainsi de suite. C'est utile pour écrire un objet en format binaire (non
lisible par un étre humain).

V¥ TextReader/Texliriter :Deux classes permettant de lire et
d'écrire des caracteres (du texte). Elles se présentent en deux
versions : StringReader/Stringdriter et StreamReader/

¥ StringReader/StringWrizer :Une simple classe de flux qui se
contente de lire et d'écrire des chaines.

¥ StreamReader/StreamWri=er : Une classe plus sophistiquée de
lecture et d'écriture de texte pour ceux qui en veulent plus.

Cette section fournit les programmes suivants, qui montrent comment

utiliser ces classes : FileWrite et FileFead,

35& Quatrieme partie : La programmation orientée objet

exemple, int n'est que l'autre nom de la structure Int32, double est l'autre
nom de la structure Double, et ainsi de suite. Le Tableau 14.1 donne la liste
compléte des types et leur nom de structure correspondant.

Tableau 14.1: Les noms de structure des types de variable intrinseques.

Nom de type Nom de structure
bool Bcolean
byte Byte
shyte SByte
char Char
decimal Decimal
double Double
float Single
int Int32
uint UInt32
long Intts
ulong Ulntod
object Object
short Intlé
ushort UInti6

Comment le systeme de types est-il unifié par
des structures communes ? Un exemple

int n'est que l'autre nom de la structure Int32. Comme toutes les structures
dérivent d'Object, int doit en dériver comme les autres. Cela conduit &
quelques résultats fascinants, comme le montre le programme suivant :

/] TypeUnification — montre comment int et Int32
1 sont en fait la méme chose

~ using System;
namespace TypeUnification

{

Chapitre 16 : Manipuler des fichiers en C# 393

namespace AccessControlLib
({
using System;
public class Class2
{
public void A_public()
{
Console.WriteLine("Class2.A _public");
}
protected void B_protected()
(
Console.WriteLine("Class2.B_protected");
}
private void C_private()
{
Console.WritelLine("Class2.C_private");
}
internal void D internal()
{
Console.Writeline("Class2.D_internal");
1

internal protected void E_internalprotected()

{
Console.WriteLine("Class2.E_internalprotected");

Le programme AccessControl est constitué de Ciassi et Class?3, qui
sont contenues dans l'espace de nom AccessControl, et de la classe
Class? del'espace de nom AccessControlLin. Les appels aux méthodes
dans Class!.Main() mettent en évidence chaque type d'accés :

v~ Les méthodes déclarées comme public sont accessibles a toutes
les méthodes de tous les espaces de nom. Aussi, Clzss! peut
invoquer directement Class2.4A public().

v Les méthodes déclarées comme protected sont accessibles depuis
la classe Class? et toute classe qui hérite de Class!. L'appel
classl.B protected() est autorisé, parce que Classl hérite de
Class2.L'appel class3.B_protected () estillicite.

v Les méthodes déclarées private ne sont accessibles qu'aux autres
membres de la méme classe. Aussi, I'appel class?.C_private()
n'est pas autorisé, alors que l'appel class?.C_private({) est
correct.

352 Quatrieme partie : La programmation orientée objet

// ChangeReferenceFunction — passe la struct par référence
public static void ChangeReferenceFunction(ref Test t,
int newValue, double dNewValue)

{

t.N = newValue;

Test.D = dNewValue;
}
// OutputFunction — affiche toute méthode qui implémente
/! ToString()
public static void QutputFunction(IDisplayable id)
{

Console.WriteLine("id = {0}", id.ToString());
}

Le programme S+ ructureBxample définit tout d'abord une interface,
TDhisplayabie, puis une simple structure, Test, qui implémente cette
interface. Te=r définit également deux membres : un membre instance, n,
et un membre statique, 4. Un initialiseur statique assigne la valeur 20 a d.
Toutefois, le membre instance » n'a pas droit & un initialiseur.

La structure Tes+ définit un constructeur, une propriété instance N, et
une propriété statique I

Test définit sa propre méthode, Changelethod (), ainsi que la redéfinition
de la méthode ToString (). En fournissant ToString (), Test implémente
linterface IDispla

I
VAabie.,

La fonction Ma:7 () met Test al'épreuve. Tout d'abord, elle crée un objet
test dans la mémoire locale, et utilise le constructeur pour initialiser cet
espace. Main () appelle alors OutputFunction() pour afficher I'objet.

Mzin () appelle ensuite la fonction ChangeValueFunction (), lui passant
test avec deux constantes numériques. ChangeValueFunction!) assigne
ces deux valeurs aux membres r: et d de Test. Une fois que cette fonction
aretourné ses résultats, OutputFuncticn () révéle que d a été modifié,
alors que n ne l'a pas été.

L'appel a ChangeValueFuncrion) passe par valeur I'objet test de type
structure. A l'intérieur de cette fonction, I'objet « est une copie du test
original, et non 'objet lui-méme. Aussi, I'assignation a t.N change la copie
locale, mais n'a aucun effet sur t<st de retour dans Main (). Toutefois, tous
les objets de la classe Test partagent le méme membre statique d. Aussi,
l'assignation a Test . change ¢ pour tous les objets, y compris test.

Q&EZR4J

Contréler l'acceés aux classes avec les espaces
de nom

Les espaces de nom autorisent un certain niveau d'indépendance dans
des ensembles de classes qui n'ont pas grand-chose a voir entre elles. Par
exemple, si vous travaillez sur un ensemble de classes mathématicues,
vous pouvez utiliser une classe comme conteneur pour y stocker des
ensembles de valeurs.

Le niveau d'indépendance est appelé le niveau de couplage. Une classe qui

accede aux membres internes d'une autre classe est dite fortement couplée.
Des classes qui n'accedent I'une a l'autre que par des méthodes publiques

sont dites faiblement couplées.

Le Chapitre 11 montre comment des descripteurs public, protecrad et
private séparent les classes dans un méme espace de nom. L'ajout du
mot-clé internal spécifie qu'un objet est accessible a partir du méme
espace de nom mais pas aux classes externes. Les membres spécifiés
comme internal protected sont accessibles a la fois aux classes du
méme espace de nom et aux sous-classes.

Le programme AccessControl suivant montre le fonctionnement de
I'ensemble complet des controles d'acces :

/] AccessControl - montre les différentes formes
/1 de contréle d'accés
namespace AccessControl
{
using System;
- using AccessControlLib;
public class Classl : Class2
{
public static int Main(string[] strings)
{
Classl classl = new Classl();
Class2 class2 = new Class2();
Class3 class3 = new Class3();
/] les méthodes publiques sont accessibles par d'autres classes
// dans d'autres espaces de nom
clags2.A_public();
/] les méthodes protégées sont accessibles a travers
// la hiérarchie d'héritage
classl.B_protected();
//class3.B_protected();
// les méthodes privées ne sont accessibles que par

Chapitre 16 : Manipuler des fichiers en C# 39 ’

350 Quatrieme partie : La programmation orientée objet

,\@HNIQO& Toutes les classes héritent d'Object qu'elles le disent explicitement ou

& non. Vous pouvez redéfinir les méthodes d'Obiect. En termes pratiques,
la seule méthode que vous pouvez vouloir redéfinir est ToString (). Celle-
ci permet a l'objet de créer une représentation affichable de lui-méme.

N
()
2

Mettre une structure a l'éprenve par | evemple

L'exemple de programme suivant montre les différentes caractéristiques
d'une structure :

/] StructureExample - montre les différentes propriétés
/1 d'un objet struct
using System;
using System.Collections;
namespace StructureExample
{
public interface IDisplayable
{
string ToString():
}
public struct Test : IDisplayable
{
/! une struct peut avoir des membres donnée
/1 objet et de classe (statiques)
/] les membres statiques peuvent avoir des initialiseurs
private int n;
private static double d = 20.0;
/] on peut utiliser un constructeur pour initialiser
/] les membres donnée d'une struct
public Test(int n)
{
this.n = n;
}
/] une struct peut avoir des propriétés d'objet
/1 et des propriétés de classe (statiques)
public int N
{
get { return n;}
set { n = value; }
}
public static double D
{
get { return d; }
set { d = value; }
}

Chapitre 16 : Manipuler des fichiers en C# 389

}
namespace Paint
{
public class PaintColor
{
public PaintColor(int nRed, int nGreen, int nBlue) [}
public void Paint() {}
public static void StaticPaint() ()
)
)
namespace MathRoutines
{
public class Test
{
static public void Main(string[] args)
(
/] crée un objet de type Sort dans 1'espace de nom
// ol nous nous trouvons et invoque une fonction
Sort obj = new Sort();
obj.SomeFunction();
/! crée un objet dans un autre espace de nom, remarquez que
// le nom de 1l'espace de nom doit figurer explicitement dans toute
/] référence de classe
Paint.PaintColor black = new Paint.PaintColor(0, 0, 0);
black.Paint();
Paint.PaintColor.StaticPaint();

Dans ce cas, les deux class Sort et Test sont contenues dans le méme
espace de nom, VarhRoutines, bien qu'elles apparaissent dans des
déclarations différentes dans le module.

Normalement, Sort et Test seraient dans des modules source C# différents
que vous pourriez générer ensemble pour en faire un seul programme.

La fonction Test .Main (] peut référencer la classe Sort sans spécifier I'espace
de nom parce que les deux classes sont dans le méme espace de nom. Toute-
fois, Main () doit spécifier I'espace de nom Pz int quand elle se référe a
PaintColor, comme dans l'appel & Paint . PaintColor.StaticPaint ().
Remarquez que vous n'avez pas besoin de prendre des précautions spéciales
envous référant a b ack. Paint (), parce que la classe et 'espace de nom de
I'objet biack sont connus.

348 Quatrieme partie : La programmation orientée objet

de référence nécessite que le programme invoque 101 fois new (une fois
pour le tableau et une fois pour chaque objet) :

MyClass[] mc = new MyClass[100];
for(int i = 0; i < ms.Length; itt)
{

me[i]
}
mc[0].n = 0;

]

new MyClass();

Ce tableau est également un gros consommateur de ressources, de temps
comme d'espace. Tout d'abord, chaque élément du tableau mc doit étre
assez vaste pour contenir une référence a un objet. En outre, chaque
objet MyClass fait une consommation invisible de ressources au-dessus
et au-dela du seul membre donnée n. Enfin, il y a le temps que prend le
programme pour effectuer toutes les manceuvres nécessaires afin de
réduire cent fois de suite un petit bloc de mémoire.

La mémoire destinée aux objets de type structure est allouée en tant que
partie du tableau :

// déclaration d'un tableau du simple type valeur int

int[] integers = new int{100];

integers[0] = 0;

/] la déclaration d'un tableau de struct est tout aussi simple
MyStruct{] ms = new MyStruct{100];

ms[0].n = 0; ‘

Le constructeur de structure

Une structure peut étre initialisée en utilisant une syntaxe semblable a
celle des classes, ce qui est intéressant :

public struet MyStruct
{
public int n;
public double d;
}
MyStruct ms = new MyStruct();

En dépit des apparences, cela n'alloue pas un bloc de mémoire a partir du
tas, mais initialise seulement n et d a la valeur zéro.

Chapitre 16 : Manipuler des fichiers en C# 387

QQ\“‘Z PAJ’
S Y Un fichier de projet contient des instructions sur les fichiers qui constituent
w le projet et la maniére dont ils se combinent.

Vous pouvez combiner des fichiers de projet pour produire des combinaisons
de programme qui dépendent des mémes classes définies par I'utilisateur.

Par exemple, vous pouvez vouloir associer un programme d'écriture avec le
programme de lecture correspondant. De cette maniére, si I'un des deux
change, l'autre est automatiquement régénéré. L'un des projets décrirait le
programme d'écriture, et I'autre décrirait le programme de lecture. On appelle
solution un ensemble de fichiers de projet.

Un programmeur Visual C# utilise I'Explorateur de Visual Studio pour
combiner en projets des fichiers source C# dans I'environnement Visual
Studio.

Réunir des fichiers source dans un espace de nom

Vous avez la possibilité de réunir des classes communes dans un espace
auquel a été assigné un nom significatif. Par exemple, vous pouvez compi-
ler toutes les routines dont la signification est mathématique dans un
espace de nom MathRoutines.

QMEZP4e Il est possible, mais trés improbable, de diviser un méme fichier en plusieurs
& espaces de noms. Il est plus courant de regrouper plusieurs fichiers dans un
méme espace de nom. Par exemple, le fichier Poin=.cs peut contenir la
classe Point etla classe ThreeDSpace. cs pour décrire les propriétés d'un
espace euclidien. Vous pouvez combiner Point.cs, ThreeDSpace. e, et
d'autres fichiers source dans l'espace de nom MathRoutines.

Un espace de nom sert a plusieurs choses. C'est d'abord une réunion de
classes. En tant que programmeur, vous pouvez raisonnablement supposer
que les classes qui constituent I'espace de nom MathRoutines ont toutes
quelque chose a voir avec des fonctions mathématiques. Par voie de
conséquences, si vous recherchez une certaine fonction mathématique,
c'est dans les classes qui constituent MathRoutines que vous pouvez aller
la chercher en premier.

Un espace de nom évite les possibilités de conflit de nom. Par exemple,
une bibliothéque d'entrées/sorties pour fichiers peut contenir une classe
Convert qui convertit une représentation d'un type de fichier en un autre
type. En méme temps, une bibliothéque de traduction peut contenir une
classe du méme nom. L'assignation des espaces de nom Filel(et

346 Quatriéme partie : La programmation orientée objet

Mais une référence a un objet est déclarée et initialisée d'une maniére
completement différente :

public class MyClass
(
public int n;
}
MyClass mc;
mc = new MyClass();

La variable de classe nc est appelée un type référence, parce qu'elle se
référe & une zone de mémoire potentiellement distante. Une variable
intrinséque de type int ou <cuble est appelée variable de type valeur.

Toutefois, si vous examinez plus attentivement . et r.c, vous verrez que la
seule véritable différence est que C# alloue automatiquement la mémoire
pour une variable de type valeur, alors que vous devez allouer la mémoire
pour un objet de classe. N'y a-t-il rien qui puisse réunir les deux dans une
Théorie unifiée des classes ?

La structure C#

C# définit un troisiéme type de variable, appelé une structure, qui comble
le fossé entre les types référence et les types valeur.

La syntaxe d'une déclaration de structure ressemble a celle d'une classe :

public struct MyStruct
{
public int n;
public double d;
}
public class MyClass
{
public int n;
public double d;
}

On accede a un objet structure comme a un objet de classe, mais 'alloca-
tion est identique a celle d'un type valeur :

/1 déclare et accdde & une varizble d'un type valeur simple
int n;

Chapitre 16
Manipuler des fichiers en C#

Dans ce chapitre :
Gérer plusieurs fichiers source pour un méme programme.

Lire et écrire des fichiers de données.

En C#, l'acceés aux fichiers signifie deux choses différentes. La plus

évidente est I'enregistrement et la récupération de données sur le
disque. Il y a toutefois une autre signification qui concerne la maniere

dont le code source C# est regroupé dans des fichiers source.

Les fonctions permettent de diviser une longue chaine de code en unités
séparables et maintenables. L'organisation en classes permet de regrouper les
données comme les fonctions de facon pertinente afin de réduire encore la
complexité du programme. C# offre un autre niveau de regroupement : il vous
permet de regrouper des classes similaires dans une bibliothéque séparée.

Diviser un méme programme en plusieurs
fichiers source

Les programmes de ce livre ne sont faits que dans un but de démonstration.
Ils ne dépassent pas quelques dizaines de lignes de long et ne contiennent
qu'un petit nombre de classes. Un programme de niveau industriel, avec tous
les aspects décoratifs nécessaires, peut comporter des centaines de milliers
de lignes de code, réparties dans plusieurs centaines de classes.

Il devient rapidement impraticable de stocker toutes ces classes dans un
méme module. Pour commencer, il y a I'exigence de maintenir les classes
bien en ordre. Ensuite, le travail de réalisation de grands programmes est
généralement réparti entre de nombreux programmeurs. Le méme fichier

344 Quatrieme partie : La programmation orientée objet

}
public class Classl
{
public static int Main(string[] strings)
{
SubClass scl = new SubClass(10);
SubClass sc2 = new SubClass(20);
MyFunc(scl, sc2);
/! attend confirmation de 1'utilisateur

Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;
} .
/! MyFunc - utilise les méthodes fournies par 1'interface ICompare
/1 pour afficher la valeur de deux objets, puis
1/ 1'indication de celui qui est le plus grand (selon
// 1'objet lui-méme)
public static void MyFunc(ICompare icl, ICompare ic2)
{

Console.WriteLine("La valeur de icl est {0) et celle de ic2 est {1}",
icl.GetValue(), ic2.GetValue()):
string s;
switch (icl.CompareTo(ic2))
{
case 0:
s = "est égal a";
break;
case -1:
s = "est plus petit que";
break;
case 1:
s = "est plus grand que";
break;
default:
s = "quelque chose qui cloche";
break;
}
Console.WriteLine(
"Les objets eux-mémes considérent que icl {0} ic2", s);

AbstractInterface est encore un programme un peu long, mais relativement
simple.

L'interface TCompare décrit une classe qui peut comparer deux objets et
aller chercher leur valeur. ICompare hérite de l'interface IComparabie

Chapitre 15 : Quelques exceptions d'exception 383

AN/
“;\g\l 00€

N
[~}
=

Le remplacement de ces fonctions signifie que méme les fonctions congues
pour attraper les exceptions de la classe générique Exception n'ont quun
acces limité aux nouveaux membres donnée.

En commencant par Main (), le programme crée un objet MathClass dont
la valeur est 0, puis essaie astucieusement d'en prendre I'inverse. Je ne
sais pas si vous avez déja essayé, mais je n'ai jamais vu beaucoup d'inver-
ses de (, et si ma fonction était censée retourner un nombre, ¢a me
rendrait un peu méfiant.

Le processeur Intel retourne effectivement une valeur pour 1.0/0.0: Infinity.
Il existe plusieurs valeurs spéciales en virgule flottante pour traiter de tels cas
plutot que d'envoyer une exception, car tous les langages n'ont pas la capacité
de traiter des exceptions. Parmi ces valeurs spéciales, il y a I'infini positif et
négatif, et le symbole 1121 (Not_a_Number - pas un nombre) positif et négatif.

Dans les circonstances normales, la méthode Inverse () retourne le
résultat attendu. Quand on lui passe une valeur nulle, cette méthode aux
idées larges envoie une Customkxception, passant une chaine d'explica-
tions avec l'objet fautif.

Travaillant & 'envers, Main () attrape I'exception, puis affiche un bref mes-
sage destiné a expliquer ol en est le message dans son traitement : "Erreur
fatale inconnue” signifie probablement que le programme est sur le point
de fermer boutique et de rentrer chez lui. Main () donne ensuite a I'exception
la possibilité de s'expliquer en invoquant sa méthode ToString (). (Voyez
I'encadré "ToString(), la carte de visite de la classe” dans ce chapitre.)

Comme dans ce cas 'objet exception est effectivement un
CustomBxceprion, le contrdle passe & CustomFxceprion.ToeString ().
Cette méthode ToString () affiche le message de I'exception avec la
méthode cible initiale et le numéro de ligne correspondant.

Message () est une méthode virtuelle dException, dont toute classe
d'exceptions personnalisée doit hériter.

Plutot que de faire des hypothéses hasardeuses, Message () permet
également a l'objet MathClass de s'afficher lui-méme en utilisant sa
méthode TcString (). MathClass.ToString () retourne une chaine
contenant la valeur et la description de 'objet.

Ne supposez rien de plus que ce que vous savez. C'est sur la méthode
ToString () d'un objet que vous devez compter pour créer une version
string de celui-ci, plutdt que d'essayer d'accéder a 'objet lui-méme pour
en extraire les valeurs a afficher.

342 Quatrieme partie : La programmation orientée objet

Tri de la liste des oiseaux
Alouette
. Corbeau
Etourneau
Grive
Hirondelle
Tourterelle
Vautour
Appuyez sur Entrée pour terminer...

Les étudiants et les oiseaux sont triés, dans la logique de leurs catégories
respectives.

Héritage et interface

Une interface peut "hériter” des méthodes d'une autre interface. Je mets
des guillemets autour du mot hériter, parce qu'il ne s'agit pas d'un vérita-
ble héritage, méme s'il en a pourtant l'air :

- /1 ICompare = interface capable de se comparer ‘elle-méme
1 et.d'afficher sa propre valeur
public interface ICompare : IComparable

{

/] GetValue — retourne sa propre valeur sous forme d'un int
int GetValue();
}

L'interface ICompare hérite de IComparable l'exigence d'implémenter la
méthode ConparaTo (). A cela, elle ajoute I'exigence d'implémenter
GetValue().Un objet TCompare peut étre utilisé comme un objet
IComparable, car, par définition, le premier implémente les exigences du
second. Toutefois, il ne s'agit pas la d'un héritage complet au sens C#,
orienté objet, de ce terme. Le polymorphisme n'est pas possible. De plus,
les relations de constructeurs ne s'appliquent pas.

Je donne une démonstration de I'héritage d'interface dans le programme
Abstractinterface, dans la section suivante.

Rencontrer une interface abstraite

Afin d'implémenter une interface, une classe doit redéfinir chaque méthode de
celleci. Toutefois, une classe peut redéfinir une méthode d'une interface par
une méthode abstraite (naturellement, bien siir, une telle classe est abstraite) :

Chapitre 15 : Quelques exceptions d'exception 38 7

using System;
namespace CustomException
{
public class CustomException : Exception
(
private MathClass mathobject;
private string sMessage;
public CustomException(string sMsg, MathClass mo)
{
mathobject = mo;
sMessage = sMsg;
}
override public string Message
{
get{return String.Format("Le message est <{0)>, 1'objet est {1}",
sMessage, mathobject.ToString());}
}
override public string ToString()
{
string s = Message;
s += "\nException envoyée par";
s *+= TargetSite;
return s;
]
}
/] MathClass - collection de fonctions mathématiques
l de ma création (pas encore grand-chose & montrer)
public class MathClass
{
private int nValueOfObject;
private string sObjectDescription;
public MathClass(string sDescription, int nValue)
{
nValueOfObject = nValue;
sObjectDescription = sDescription;
}
public int Value {get ({return nValueOfObject;}}
!/ Message - affiche le message avec la valeur de

/] 1'objet MathClass attaché
public string Message
{
get
{
return String.Format("({0} = {1})",
sObjectDescription,
nValueOfObject);
}
}

/] ToString - combine le message personnalisé avec

340 Quatrieme partie : La programmation orientéee ohjet

\€Z P4
QQ\) §

}

/! implémentent 1'interface IDisplayable :
/! GetString — retourne le nom de 1'oiseau
public string GetString()

{

return Name;
)
}
}

La class Student (elle est a peu prés au milieu de ce listing) implémente les
interfaces [Comparable et [Displayable que nous avons décrites plus haut.
CompareTo () compare les étudiants par "grade’, ce qui a pour conséquence
que les étudiants sont triés par grade. GetString () retourne le nom et le
grade de I'étudiant.

Parmi les autres méthodes de Student, il y a les propriétés en lecture seule
Name et Grade, un constructeur simple, et une méthode CreateStudentList ().
Cette derniére retourne simplement une liste fixe d'étudiants (au départ, j'avais
pensé permettre a l'utilisateur d'entrer au clavier les noms des étudiants, mais
le listing devenait si gros qu'on n'y voyait plus I'essentiel).

La classe Bird, en bas du listing, implémente également les interfaces
IComparable et IDisplayable. Elle implémente CompareTo () en comparant
des noms d'oiseaux a l'aide d'une méthode similaire intégrée a la classe
String. Ainsi, un oiseau est "plus grand" qu'un autre si son nom est plus
grand. Cette méthode permet de trier les oiseaux par ordre alphabétique.
La méthode GetName () retourne simplement le nom de l'oiseau.

Nous sommes maintenant préts a revenir dans Main (), au bon endroit. La
méthode CreateStudentList () est utilisée pour retourner une liste non
triée, qui est stockée dans le tableau students.

Pour nommer une collection d'objets, comme un tableau, utilisez un nom
au pluriel.

Ce tableau d'étudiants est d'abord introduit dans un tableau
comparableObjects. Celui-ci est différent des tableaux utilisés dans

les autres chapitres (en particulier ceux du Chapitre 6). Ceux-ci sont
des tableaux d'objets d'une classe particuliere, par exemple un tableau
d'objets Student, alors que comparableCbjects est un tableau d'objets
qui implémentent l'interface IComparable, indépendamment de la classe
a laquelle ils appartiennent.

Le tableau comparabielbjects est passé a la méthode Array.Sor= (), qui
en trie les éléments sur la base du grade.

Chapitre 15 : Quelques exceptions d'exception 3 79

public void £1()
{
try
{
£20);
}
// attrape une erreur . . .
catch(MyException me)
{

// ... traite une partie de l'erreur . . .
Console.WriteLine ("Exception MyException attrapée dans f1()");
// . . . génére maintenant une nouvelle exception

/! pour remonter la chaine de transmission
throw new Exception("Erreur envoyée parfl()");

Envoyer un nouvel objet exception permet a une classe de formuler un
nouveau message d'erreur avec des informations supplémentaires, tout
en clarifiant ce qu'il pouvait y avoir d'approximatif au départ. Passer un
objet Exception générique a la place d'un objet spécialisé MyException
garantit que l'exception sera traitée & un niveau situé au-dessus de £1 ().

Envoyer une nouvelle exception présente l'inconvénient que l'indication de
pile redémarre au point du nouvel envoi. La source de I'erreur originale est
donc perdue, a moins que £1 () n'ait pris des précautions spéciales pour la
conserver.

Une commande throw seule, sans argument, renvoie le méme objet
exception :

public void £1()
{
try
{
f20);
}
/] attrape une erreur . . .
catch(Exception e)
{

/] ... traite une partie de l'erreur . . .
Console.WriteLine("Exception attrapée dansfl()");
/!l . . . poursuite du cheminement de 1l'exception
throw;

)

338 Quatrieme partie : La programmation orientée objet

public string Name
{
get
{
return sName;
]
]
public double Grade
{
get
{
return dGrade;
3
}
/] implémente 1'interface IComparable :

I

/] CompareTo — compare & un autre objet (dans ce cas,

/! des objets Student) et décide lequel
/1 vient aprés l'autre dans le

/1l tableau trié

public int CompareTo(object rightObject)

{

/! compare 1'objet Student courant (appelons-le
/1 'celui de gauche') & l'autre student (appelons-le
/] 'celui de droite'), et génére une erreur si aucun des deux
// n'est un objet Student
Student leftStudent = this;
if (!(rightObject is Student))
(
Console.WriteLine
("Méthode de comparaison & laquelle est passé un nonStudent");
return 0;
}
Student rightStudent = (Student)rightObject;
/] génére maintenant -1, 0, ou 1 sur la base du
/] critére de tri (la moyenne des points d'UV-de 1'étudiant)
/] (la classe Double contient une méthode CompareTo()
/1 que nous aurions pu utiliser & la place)
if (rightStudent.Grade < leftStudent.Grade)
{
return -1;
)
if (rightStudent.Grade > leftStudent.Grade)
{
return 1;
}
return 0;
}
// implémentent 1'interface IDisplayable :
/] GetString — retourne une représentation de 1'étudiant

Chapitre 15 : Quelques exceptions d'exception 3 77

Console.Read();
}

Main () crée un objet Classi et I'utilise immédiatement pour invoquer la
méthode 11 (. Cette méthode appelle £2 (), qui appelle £3 (), qui appelle
4. Lafonction 7« effectue des vérifications d'erreur extrémement
sophistiquées, qui la conduisent a envoyer soit un objet MyException, soit
un objet Exceution générique, selon la valeur de l'argument booléen.
L'exception est d'abord passée & £3 (). La, C# ne trouve aucune instruction
catch, et le controle remonte donc a £2 (), qui attrape l'objet MyException.
Comme l'objet Zxception générique n'a pas encore trouvé d'instruction
catch correspondante, le controle continue a remonter. Finalement, c'est
10} qui contient une instruction catch correspondant a l'objet envoyé.
Le deuxieme appel de Maini) provoque l'envoi par f4{) d'un objet
MyException, qui est attrapé par £2 (). Cette exception n'est pas envoyée
£ parce qu'elle a été attrapée et traitée par £2 ().

Le programme donne la sortie suivante :

Envoie d'abord une exception générique
Exception générique attrapée dans f1()
Exception générique envoyée dans fi()

Envoie d'abord une exception spécifique
Exception MyException attrapée dans £2()
MyException envoyée dans f4()

Appuyez sur Entrée pour terminer...

Une fonction comme {3 (), qui ne contient aucune instruction catch, n'a
rien d'inhabituel. Je pourrais méme dire que la plupart des fonctions ne
contiennent aucune instruction catch, mais je pourrais tout aussi bien ne
pas le dire. Une fonction n'a aucune raison d'attraper une exception si elle
ne contient rien qui lui permette de traiter l'erreur d'une maniére perti-
nente. Imaginez une fonction mathématique ComputeX () qui appelle
Factorial {} pour effectuer certains de ses calculs. En supposant que son
code interne soit correct, si Factorial () envoie une exception, c'est parce
que la fonction appelante lui a passé une valeur incorrecte. ComputeX ()
peut ou non étre capable d'identifier pourquoi cette valeur était incorrecte,
mais en tous les cas, elle ne peut certainement pas résoudre le probléme.

Une fonction comme 2 () n'attrape qu'un seul type d'exception. Elle recherche
une certaine classe d'erreurs. Par exemple, MyException peut faire partie des

336 Quatriéme partie : La programmation orientée objet

Q’\)EZ P4y Comparez cet exemple 4 l'algorithme de tri du Chapitre 6. L'implémenta-

.; tion de cet algorithme demandait pas mal de travail et nécessitait beau-

coup de code. Il est vrai que rien ne vous garantit que Ar rav.Sort () est
meilleur ou plus rapide que cet algorithme. Il est seulement plus facile.

Assembler le tout

Voila le moment que vous attendiez tous : le programme Scr+ Tnterface
complet, construit en utilisant ce que nous avons décrit plus haut dans ce
chapitre :

// SortInterface — montre comment

1/ on peut utiliser le principe de 1'interface pour offrir
/1 une meilleure souplesse pour le factoring
/] et 1'implémentation des classes

using System;
namespace SortInterface
{
// IDisplayable - objet capable de se convertir lui-méme en
/1 une chaine affichable
interface IDisplayable
{
/] GetString — retourne votre représentation sous forme de chaine
string GetString();
}
class Classl
{
public static void Main(string[] args)
{
/1 trie les étudiants par leur moyenne de points d'UY...
Console.WriteLine("Tri de la liste des étudiants"):
/! regoit un tableau d'étudiants non trié
Student[] students = Student.CreateStudentList();
/] utilise 1'interface IComparable pour trier
/! le tableau
IComparable[] comparableObjects = (IComparable[])students:
Array.Sort(comparableObjects);
// 1'interface IDisplayable affiche maintenant les résultats
IDisplayable([] displayableObjects = ({IDisplayable[])students;
DisplayArray(displayableObjects) ;
/! trie maintenant par nom un tableau d'oiseaux en utilisant
/! les mémes routines, bien que les classes Bird
/] et Student n'aient pas de classe de base commune
Console.WriteLine("\nTri de la liste des oiseaux"):
Bird[] birds = Bird.CreateBirdList();
/1 remarquez qu'il n'est pas indispensable de faire un cast

Chapitre 15 : Quelques exceptions d'exception 3 75

Laisser quelques envois vous filer entre les
doigts

Et si C# part a la recherche d'une instruction catch dans la fonction
appelante correspondant a I'objet exception envoyé, et n'en trouve
aucune qui corresponde ? Et si la fonction appelante ne contient aucune

instruction catch ? Que faire ?

Examinez cette simple succession d'appels de fonctions :

!/ MyException - montre comment une nouvelle classe d'exceptions peut

/! étre créée, et comment des fonctions peuvent
/! attraper exactement ce qu'elles sont faites
/1 pour traiter, tout en laissant pagser les autres

using System;
namespace MyException
{
/] introduit un certain type de 'MyClags'
public class MyClass{}
/] MyException - - ajoute & la classe Exception standard
/! une référence & MyClass
public class MyException : Exception
{
private MyClass myobject;

public MyException(string sMsg, MyClass mo) : base(sMsg)
{ :

myobject = mo;
}

/I permet aux classes extérieures d'accéder & une classe d'information
public MyClass MyCustomObject{ get {return myobject;}}
}

publiciclass Classl
{
/1 £1 - - attrape tout objet Exception générique
public void f1(bool bExceptionType)
| :
try
{
£2(bExceptionType);
}
catch(Exception e)
{
Console.WriteLine("Exception générique attrapde dans f1()");

334 Quatrieme partie : La programmation orientée objet

Bart :50
Lisa 1100
Maggie :30
,\Q‘\)C
Que c'est beau ! Voyez comme les résultats sont alignés sur les noms
complétés par des espaces pour faire tous la méme longueur.
Interfaces prédéfinies
De méme, vous trouverez dans la bibliothéque standard de C# des interfa-
ces intégrées en abondance. Par exemple, l'interface IComparable est
définie de la facon suivante :
interface IComparable
(
/] compare 1'objet courant & 1'objet 'o' ; retourne
/711 s'il est plus grand, - s'il est plus petit, 0 dans les autres cas
int CompareTo(object o);
}
Une classe implémente l'interface IComparable en implémentant une
méthode CompareTo (). Par exemple, String () implémente cette méthode
en comparant deux chaines. Si les chaines sont identiques, elle retourne 0.
Si elles ne le sont pas, elle retourne soit 1 soit un signe -, selon la plus
"grande” des deux chaines.
$\)EZ P‘qJ‘
5 Si vous voulez savoir comment une chaine peut étre "plus grande” qu'une

autre, voyez le Chapitre 9.

N'y voyez aucune intention darwinienne, mais vous pouvez dire qu'un
objet Student est "plus grand” qu'un autre objet Student si sa moyenne
de points d'UV (grade point average) est plus grande. C'est soit un étu-
diant plus brillant, soit un meilleur courtisan, peu importe.

Implémenter la méthode CompareTo() implique que les objets peuvent
etre triés. Si un étudiant est "plus grand” qu'un autre, vous devez pouvoir
trier les étudiants du "plus petit” au "plus grand". En fait, la classe Array
implémente déja la méthode suivante :

Array.Sort(IComparable[] objects);

Chapitre 15 : Quelques exceptions d'exception 3 73

De retour dans ¥Main (), l'instruction catch spécifie qu'elle attend un objet
MyException. Une fois I'exception attrapée, le code de I'application peut
encore demander n'importe quelle propriété d'une Exception, comme
dans l'appel & ToString (). Cette instruction catch peut également invo-
quer des méthodes de 1'objet MyClass fautif stocké dans l'envoi (throw).

Assigner plusieurs blocs catch

Le fragment de code de la section précédente décrit le processus par
lequel un objet MyException localement défini est envoyé et attrapé. Mais
examinez a nouveau l'instruction catch utilisée dans cet exemple :

public void SomeFunction{)
{
try
{
SomeOtherFunction();

}
catch(MyException me)
{
}
}

Et si SomeOtherFunction() avait envoyé une simple Exception ou une
exception d'un type autre que MyZxception ? Autant essayer d'attraper
un ballon de football avec un filet & papillon. Le catch ne correspond pas
a l'envoi. Heureusement, C# permet au programme de définir toutes
sortes d'instructions catch, selon le type d'exception a attraper.

Les instructions catch doivent figurer 1'une apres l'autre apres le bloc
try, de la plus spécifique a la plus générale. C# teste chaque bloc catch
en comparant séquentiellement les objets envoyés au type d'argument de
l'instruction catch.

public void SomeFunction()
{

try

{

SomeOtherFunetion();

}

catch(MyException me)

{

/] tous les objets MyException sont attrapés ici

332 Quatriéme partie : La programmation orientée objet

Puis-je voir un programme qui PEUT_ETRE_
UTILISE_COMME un exemple ?

Le programme SortInterface ci-dessous est une offre spéciale. Ses
capacités, qui vous sont apportées par deux interfaces différentes, ne
pourraient jamais étre obtenues par une relation d'héritage. Une fois
implémentées, les interfaces se tiennent prétes a votre service.

Je veux toutefois diviser le programme Sort Interface en sections, pour
mettre en évidence différents principes. Je veux simplement faire en sorte
que vous puissiez voir exactement comment fonctionne ce programme.

Créer votre interface "faites-le vous-méme"

L'interface 1D:spiavable suivante sera satisfaite avec toute classe contenant
une méthode GetString (). Cette méthode retourne une représentation sous
forme de string de l'objet qui peut étre affiché en utilisant WriteLine() :

// IDisplayable — objet qui implémente
/1 la méthode GetString()
interface IDisplayable
{

/] retourne votre description

string GetString();
)

La classe Student suivante implémente Idisplayable:

si class Student : IDisplayable
{
private string sName;
private double dGrade = 0.0;
/! accdde aux méthodes en lecture seule
public string Name
{
get
{
return sName;
}
}
public double Grade
!

Chapitre 15 : Quelques exceptions d'exception 3 77

Le reste de cette sortie est ce que I'on appelle une indication de pile (stack
trace). La premiere ligne de l'indication de pile indique I'endroit & partir
duquel I'exception a été envoyée. Dans ce cas : Factorial (int) (plus
précisément, la ligne 23 du fichier source Classl.cs. Factorial(},oula
ligne 52 du méme fichier, a été invoquée dans la fonction Main(string[]).
L'indication de pile s'arréte a Main (), parce que c'est le module dans lequel
I'exception a été attrapée.

L'indication de pile est disponible dans 1'une des fenétres du débogueur
de Visual Studio. Je la décrirai au Chapitre 16.

Il faut bien admettre que c'est plutot impressionnant. Le message décrit le
probléme et identifie I'argument qui en est responsable. L'indication de
pile vous dit a quel endroit I'exception a été envoyée, et comment le
programme y est arrivé. Avec ces informations, vous pouvez vous jeter
sur le probleme comme la foudre.

Créer votre propre classe d'exceptions

La classe Exception standard fournie par la bibliotheque de classe de C# est
capable de délivrer beaucoup d'informations. Vous pouvez demander a l'objet
exception a quel endroit il a été envoyé, ainsi que toute chaine demandée par
la fonction qui signale I'erreur. Dans certains cas, toutefois, la classe Exception
standard ne convient pas. Il peut y avoir trop d'informations pour qu'elles
puissent tenir dans une seule chaine. Par exemple, une fonction d'application
peut vouloir se faire passer I'objet incriminé pour l'analyser.

Une classe localement définie peut hériter de la classe Exception, comme
de n'importe quelle autre classe :

//‘CustomException — ajoute 4 la classe Exception standard
S o - une référence & MyClass ‘

public class CustomException : Exception

e
private MyClasss myobject;
CustomException(string sMsg, MyClass mo) : base(sMsg)
{

myobject = mo;

} , : :
/1 permet aux classes extérieures d'accéder & une classe d'information
public MyClass MyCustomObject{ get {return myobject;}}

330 Quatrieme partie : La programmation orientée objet

QU Par convention, faites commencer le nom d'une interface par la lettre /, et
accolez-lui un adjectif. Comme d'habitude, ce ne sont la que les sugges-
tions qui ont pour but de rendre vos programmes plus lisibles. C# vous
permet d'utiliser les noms que vous voulez.

La déclaration suivante indique que la classe PDA implémente l'interface
Irecordable:

public class PDA : IRecordable
{
public void TakeANote(string sNote)
{
/! . . . fait quelque chose pour enregistrer la note . . .
}
}

Il n'y a pas de différence de syntaxe entre la déclaration d'une classe de
base ThingsThatRecord et la déclaration qui implémente une interface
IRecordable.

Voila la principale raison d'étre de la convention sur les noms d'interfaces :
elle permet de reconnaitre une interface d'une classe.

La conclusion est qu'une interface décrit une capacité. En tant que
classe, j'obtiens mon brevet IRecordable lorsque j'implémente la
capacité TakeANote.

Pourriez-vous me donner un evemple simple ?

Une classe implémente une interface en fournissant une définition pour
chaque méthode de celle-ci :

public class Pen : IRecordable
{
public void TakeANote(string sNote)
{
/{ . . . prendre une note sur un bout de papier . . .
)
]
public class PDA : ElectronicDevice, IRecordable
{
public void TakeANote(string sNote)
{

Chapitre 15 : Quelques exceptions d'exception 369

nValue);

throw new Exception(s);
}
// commence par donner la valeur 1 & un "accumulateur"
double dFactorial = 1.0;
// fait une boucle & partir de nValue en descendant de 1 chaque fois
/! pour multiplier 1'accumulateur
/! par la valeur obtenue
do
{

dFactorial *= nValue;
} while(--nValue > 1);
// retourne la valeur stockée dans 1'accumulateur
return dFactorial;

}
}
public clags Classl
{
public static void Main(string[] args)
{
try
{
// appelle en boucle la fonction Factorial de 6 & -6
for (int i =6; i > -6; i--)
{
/! calcule la factorielle du nombre
double dFactorial = MyMathFunctions.Factorial(i);
/] affiche le résultat & chaque passage
Console.WriteLine("i = {0}, factorielle = {11}",
i, MyMathFunctions.Factorial(i));
)
I
catch(Exzception e)
{ ,
Congole.WriteLine("Erreur fatale :");
" Console.WriteLine(e.ToString());
}
/1 ‘attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();
}
}

Presque tout le contenu de cette version "exceptionnelle" de Main () est
placé dans un bloc try.

328 Quatriéme partie : La programmation orientée objet

Je peux donc dire que ces trois objets (le stylo, le PDA et 'ordinateur
portable) implémentent I'opération TakeANore. En utilisant la magie de
I'héritage, je pourrais implémenter la chose en C#, de la facon suivante :

abstract class ThingsThatRecord

{ abstract public void TakeANote(string sNote);

;ublic class Pen : ThingsThatRecord

{ override public void TakeANote(String sNote)
{

/1. . . prendre une note sur un bout de papier . . .

)
public class PDA : ThingsThatRecord
{
override public void TakeANote(String sNote)
{
/] . . . prendre une note sur son PDA . . .
}
}
public class Laptop : ThingsThatRecord
{
override public void TakeANote(String sNote)
{
Il . . . ce que vous voulez . . .
}
}

Sile terme abstract vous remplit de perplexité, revenez au Chapitre 13.
Si la notion méme d'héritage n'évoque pour vous que mystere, il vous faut
passer un peu de temps dans le Chapitre 12.

Cette solution reposant sur I'héritage semble fonctionner trés bien pour
ce qui ne concerne que l'opération TakeANote (). Une fonction comme
RecordTask () peut utiliser la méthode TakeAlNoze () pour noter une liste
de commissions sans se soucier du type d'appareil utilisé :

void RecordTask(ThingsThatRecord things)
{
/] cette méthode abstraite est implémentée par toutes les classes
/1 qui héritent de ThingsThatRecord
things.TakeANote("Liste de commissions");
// . . . et ainsi de suite . . .

Chapitre 15 : Quelques exceptions d'exception

v 1l mélange le code normal et le code de traitement des erreurs, ce
qui obscurcit le chemin d'exécution normal, sans erreur.

Ces problemes ne paraissent pas si graves dans cet exemple simple, mais
ils ne font qu'empirer avec la complexification du code de la fonction
appelante. Le résultat est que le code de traitement des erreurs n'est
jamais écrit pour traiter autant de conditions d'erreur qu'il devrait.

Heureusement, le mécanisme des exceptions résout tous ces problémes.

Utiliser un mécanisme d'exceptions pour signaler
les erreurs

C# introduit un mécanisme entierement nouveau, nommeé exceptions, pour
identifier et traiter les erreurs. Ce mécanisme repose sur les mots-clés try,
throw, catch, et final. Dans les grandes lignes, il fonctionne de la facon
suivante’: une fonction va essayer (try) d'exécuter une portion de code. Si
cette portion de code détecte un probléme, elle envoie (throw) une indica-
tion d'erreur, que la fonction peut attraper (catch), et, quoi qu'il arrive, elle
exécute finalement (firai) un certain bloc de code & la fin :

public class MyClass
{
public void SomeFunction()
{
/] ceci est fait pour attraper une erreur
try
{
// appelle une fonction
SomeOtherFunction(); , ‘
/! . . . autant d'autres appels que vous voulez . . .
}
catch(Exception e)
{
// le contréle passe pat ici en cas
/! d'erreur en un point quelconque du bloc try ou
/! de toute fonction appelée par celui-ci ;
// 1'objet Exception donne la description de 1'erreur
}
}
public void SomeOtherFunction()

{
/! . . . llerreur se produit quelque part dans la fonction . .

367

326 Quatrieme partie : La programmation orientée objet

Sceller une classe empéche un autre programme, lequel peut d'ailleurs se
trouver quelque part sur Internet, d'en utiliser une version modifiée. Le
programme distant peut utiliser la classe telle qu'elle est, mais il ne peut
en hériter ni en redéfinir aucun élément.

&

NO

<S§“thzo

6, factorielle = 720
5, factorielle = 120
= 4, factorielle = 24
3, factorielle = 6
2, factorielle = 2
=1, factorielle =1
i =0, factorielle =0
Factorial() a regu un nombre négatif
Appuyez sur Entrée pour terminer...

[T S S - LI =N

L'indication d'une condition d'erreur a l'aide d'une valeur retournée par une
fonction n'est autre que la maniére dont le traitement d'erreur a toujours
été réalisé depuis les premiers jours de FORTRAN. Pourquoi changer ?

Je suis la pour signaler ce qui me parait nécessaire

Quel est l'inconvénient de retourner des codes d'erreur ? C'était trés bien
pour FORTRAN ! C'est vrai, mais a cette époque les tubes a vide étaient
aussi trés bien pour les ordinateurs. Malheureusement, 'approche des
codes d'erreur présente plusieurs inconvénients.

Tout d'abord, cette solution dépend de la possibilité de retourner une
valeur normalement illicite, mais il existe des fonctions pour lesquelles
toutes les valeurs qu'il est possible de retourner sont licites. Toutes les
fonctions n'ont pas la chance de ne retourner que des valeurs positives.
On ne peut pas calculer le logarithme d'un nombre négatif, mais un
logarithme peut €tre positif ou négatif.

Bien que l'on puisse contourner ce probléme en utilisant la valeur retour-
née par une fonction pour une indication d'erreur et un argument de type
out pour retourner une donnée, cette solution est moins intuitive et fait
perdre une partie de la nature expressive d'une fonction. Quoi qu'il en
soit, lorsque que vous aurez vu comment fonctionnent les exceptions,
vous vous débarrasserez bien vite de cette idée.

D'autre part, un entier ne permet pas de stocker beaucoup d'information.
La fonction Factorial () retourne -1 si I'argument qui lui est passé est
négatif. L'identification du probléme pourrait étre plus facile si nous
savions exactement ce qu'était cette valeur négative, mais il n'y a pas de
place pour retourner cette information.

Troisiemement, le traitement des erreurs retournées est optionnel. Vous ne
gagnerez pas grand-chose en faisant retourner par Factorial () un code

Chapitre 15 : Quelques exceptions d'exception 365

324 Quatriéme partie : La programmation orientée objet

appelle SavingsAccount.Withdraw()
pour effectuer Test(SpecialSaleAccount)
appelle SpecialSaleAccount.Withdraw()
Passage d'un SaleSpecialCustomer
pour effectuer Test(BankAccount)
appelle SavingsAccount.Withdraw()
pour effectuer Test(SavingsAccount)
appelle SavingsAccount.Withdraw()
pour effectuer Test(SpecialSaleAccount)
appelle SaleSpecialCustomer.Withdraw()
pour effectuer Test(SaleSpecialCustomer)
appelle SaleSpecialCustomer.Withdraw()

Appuyez sur Entrée pour terminer... J'ai mis en gras les appels qui pré-
sentent un intérét particulier. Les classes Bankiccount et
SavingsAccount fonctionnent exactement comme on peut l'attendre.
Toutefois, en appelant Test (SavingsAccount), SpecialSalesiccount et
SaleSpecialCustomer se passent eux-mémes comme un
SavingsAccount. Ce n'est qu'en regardant le niveau immédiatement
inférieur que la nouvelle hiérarchie SaleSpecizlCustomer peut étre
utilisée a la place de SpecialSaleiccount.

Créer une nouvelle hiérarchie

Pourquoi C# permet-il de créer une nouvelle hiérarchie d'héritage ? Le polymorphisme n'est-
il pas déja assez compliqué comme ¢a ?

C# a été créé pour étre un langage "netable”, au sens ol les classes exécutées par un
programme, méme les sous-classes, doiventpouvoir étre distribuées sur Internet. Autrement
dit, un programme que j'écris peut utiliser directement des classes venant de dépéts
accessibles par Internet.

Je peux donc étendre une classe que j'ai téléchargée sur Internet. La redéfinition des
méthodes d'une hiérarchie de classes standard, testée, peut avoir des effets quin'étaientpas
voulus. L'établissement d'une nouvelle hiérarchie de classes permet & mon programme de
bénéficier du polymorphisme sans risque de briser le code existant.

Chapitre 15 : Quelques exceptions d'exception 363

public class MyMathFunctions

{

}

// ce qui suit représente les valeurs illicites
public const int NEGATIVE NUMBER = -1;

public const int NON_INTEGER_VALUE = -2;

/] Factorial — retourne la factorielle d'une valeur
1 fournie

public static double Factorial(double dValue)

{
/! interdit les nombres négatifs
if (dvalue < 0)
{
return NEGATIVE NUMBER;
}
// vérifie si le nombre est bien entier
int nValue = (int)dValue;
if (nValue {= dValue)
{
return NON_INTEGER_VALUE;
}
/! commence par donner la valeur 1 & un "accumulateur"
double dFactorial = 1.0;
/! fait une boucle & partir de nValue en descendant de 1 chaque fois
[/ pour multiplier 1'accumulateur
/] par la valeur obtenue
do :
(
dFactorial *= dValue:
dValue -= 1.0;
) while(dValue > 1):
/] retourne la valeur stockée dans 1'accumulateur
return dFactorial;

public class Classl

{

public static void Main(string[] args)

{
// appelle en boucle la fonction Factorial de 6 & -6
for (int i =6; 1 > -6; i--)
{
/! calcule la factorielle du nombre
double dFactorial = MyMathFunctions.Factorial(i);
if (dFactorial == MyMathFunctions.NEGATIVE NUMBER)
{
Console.WriteLine
("Factorial() a regu un nombre négatif");
break;
}

322 Quatriéme partie : La programmation orientée objet

{

Console.WriteLine(" pour effectuer Test(BankAccount)");
account.Withdraw(100);
}

public static void Test2(SavingsAccount account)

{
Console.WriteLine(" pour effectuer Test(SavingsAccount)");
account.Withdraw(100);

}

public static void Test3(SpecialSaleAccount account)

{
Console.WriteLine(" pour effectuer Test(SpecialSaleAccount)");
account.Withdraw(100);

}

public static void Test4(SaleSpecialCustomer account)

{

Console.WriteLine(" pour effectuer Test(SaleSpecialCustomer)");
account.Withdraw(100);

}
}
// BankAccount - simule un compte bancaire possédant
/! un numéro de compte (assigné & la création
1 du compte) et un solde
public class BankAccount
{
// Withdrawal - tout retrait est autorisé jusqu'a la valeur
/1 du solde ; retourne le montant retiré
virtual public void Withdraw(double dWithdraw)
{
Console.WriteLine(" appelle BankAccount.Withdraw()");
}
}

/! SavingsAccount - compte bancaire qui rapporte des intéréts
public class SavingsAccount : BankAccount

{
override public void Withdraw(double dWithdrawal)
{
Console.WriteLine(" appelle SavingsAccount.Withdraw()");
}
}

/! SpecialSaleAccount - compte utilisé uniquement en période de soldes
public class SpecialSaleAccount : SavingsAccount

{
new virtual public void Withdraw(double dWithdrawal)

Chapitre 15 : Quelques exceptions d'exception 36 ’

/] appelle en boucle la fonction Factorial de 6 & -6
for (int 1 =6; 1 > -6; i--)
{
/] affiche le résultat i chaque passage
Console.WriteLine("i = (0}, factorielle = (11",
i, MyMathFunctions.Factorial(i));
}
/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

La fonction Facr=riz! ' commence par initialiser a 1 une variable qui va
servir d'accumulateur. Elle entre ensuite dans une boucle, multipliant
l'accumulateur par des valeurs successivement de plus en plus petites,
depuis nValue jusqu'a ce que nValue atteigne 1. La valeur résultante de
l'accumulateur est retournée au point d'appel de la fonction.

L'algorithme de Fa-rorial () semble satisfaisant jusqu'a ce que 'on voie
comment elle est appelée. Mzin () entre dans une boucle en commencant
a la valeur ad hoc pour la factorielle, et décrémente cette valeur & chaque
passage, jusqu'a 1. Toutefois, au lieu de s'arréter, =~ continue jusqu'a
-6. Je sais bien que -6 est une valeur surprenante, mais il faut bien s'arre-

ter quelque part.

L'exécution de cette fonction produit la sortie suivante :

= 6, factorielle = 720
=5, factorielle = 120
= 4, factorielle = 24
= 3, factorielle = 6
= 2, factorielle = 2
=1, factorielle =1
= 0, factorielle = 0

1, factorielle = -1
= -2, factorielle =

3, factorielle
= -4, factorielle
= -5, factorielle = -5
Appuyez sur Entrée pour terminer...

]

L]

T N = T S SOy Sy S NPV A
[

Un simple coup d'ceil avisé & ces résultats permet de voir qu'ils n'ont
aucun sens. Pour commencer, le résultat d'une factorielle ne peut pas étre

320 Quatrieme partie : La programmation orientée objet

el &

855

Ce programme commence par définir la classe AbstractBaseClass avec
une seule méthode abstraite, Cutput (). Comme elle est déclarée abs-
traite, Output () n'a pas d'implémentation.

[l y a deux classes qui héritent de AbstractBaseClass: SubClassl et
SubClass?2. L'une et 'autre sont des classes concrétes, car elles
redéfinissent la méthode Output () par des méthodes "réelles".

Une classe peut étre déclarée abstraite, qu'elle comporte ou non des
membres abstraits ; mais une classe ne peut étre concréte que lorsque
toutes ses méthodes abstraites ont été redéfinies par des méthodes
réelles.

Les deux méthodes Cutput {) des deux sous-classes sont différentes, de
facon triviale. Toutes deux acceptent une chaine d'entrée, qu'elles régur-
gitent vers l'utilisateur. Mais l'une convertit I'ensemble de la chaine en
majuscules, et 'autre convertit I'ensemble en minuscules.

La sortie de ce programme met en évidence la nature polymorphe de la
classe AbstractBaseClass :

Création d'un objet Subclassl
Appel & SubClassl.Output() depuis TEST

Création d'un objet Subclass?
Appel & SubClass2.Output() depuis test
Appuyez sur Entrée pour terminer...

Une classe abstraite est automatiquement virtuelle.

Créer un objet d'une classe abstraite : non !

A propos du programme AbstractInheritance, remarquez qu'il est
illicite de créer un objet de la classe AbstractBaseClass, mais que
I'argument de Test () est déclaré étre un objet de la classe
AbstractBaseClass ou de l'une de ses sous-classes. C'est ici la clause
concernant les sous-classes qui est cruciale. Les objets de SuhClassi et
SubClass? peuvent étre passés, car l'une et l'autre sont des sous-classes
concrétes de AbstractBaseClass.

Chapitre 15
Quelques exceptions
d'exception

Dans ce chapitre :

Traiter des erreurs avec les codes retournés.

Utiliser plutot le mécanisme des exceptions.

Créer votre propre classe d'exceptions.

Renvoyer l'envoi de I'extérieur.

Redéfinir des méthodes critiques dans la classe des exceptions.

€Z P4
QQ\) §$

e sais que c'est difficile & accepter, mais il arrive qu'une méthode (ou

une fonction) ne fasse pas ce qu'elle est censée faire. Méme celles que
j'écris (surtout celles que j'écris) ne font pas toujours ce qu'elles doivent
faire. I est notoire que les utilisateurs aussi ne sont pas fiables. Il suffit que
vous demandiez un int pour qu'il y en ait un qui entre une chaine de caracte-
res. Parfois, une méthode poursuit son chemin joyeusement, ignorant
voluptueusement qu'elle est en train de produire n'importe quoi. Il y a
toutefois de bons programmeurs qui écrivent leurs fonctions de maniére a
anticiper sur les problémes et les signaler lorsqu'ils se produisent.

Je parle ici des erreurs a 'exécution, et non des erreurs de compilation
que C# vous envoie a la téte lorsque vous essayez de générer votre
programme.

Le mécanisme des exceptions est un moyen de signaler ces erreurs de la
telle maniére que la fonction appelante peut comprendre et traiter le
probléme au mieux.

Chapitre 16 : Manipuler des fichiers en C# 399

Le programme commence dans Main () par une boucle wh: e contenant
un bloc try. Ce n'est pas rare pour un programme de manipulation de
fichiers (dans la section sur StrearReader, c'est une approche un peu
différente qui aboutit au méme résultat).

0N
(\‘"‘“ {_ Placez toutes les fonctions d'I/O dans un bloc t - avec une instruction czatch
< qui génere un message d'erreur approprié. Il est généralement considéré de

mauvaise pratique de générer un message d'erreur inapproprié.

La boucle while sert a deux choses différentes. Tout d'abord. elle permet au
programme de revenir en arriére et d'essayer a nouveau en cas d'échec d'une
I/0. Par exemple, si le programme ne trouve pas un fichier que l'utilisateur
peut lire, il peut demander a nouveau le nom du fichier pour étre sar de ce
quil fait avant d'envoyer promener |'utilisateur. Ensuite, I'exécution d'une
commande breai dans le programme vous fait sortir d'un air dégagé du bloc
try, et vous dépose a la fin de la boucle. C'est un mécanisme trés pratique
pour sortir d'une fonction ou d'un programme.

Le programme Vilewrite lit sur la console le nom du fichier a créer. Il se
termine en sortant de la boucle wh ' 1e sil'utilisateur entre un nom de fichier
null. L'essentiel du programme se produit dans les deux lignes suivantes.

Pour commencer, le programme crée un objet FileStream qui représente
le fichier de sortie sur le disque. Le constructeur == " eStream utilisé ici
accepte trois arguments :

v Le nom du fichier : Il est clair que c'est le nom du fichier a ouvrir. Un
simple nom de fichier comme 7 lename.<xt est supposé étre dans le
répertoire courant. Un nom de fichier qui commence par une barre
oblique inverse, comme \ur répertoir=\nomdefichier.tx", est
supposé étre le chemin d’accés complet au fichier sur la machine
locale. Un nom de fichier qui commence par deux barres obliques
inverses, par exemple \\votre rmachinelun répertoirelun autre
répertoire\nomdefichier.txt, est supposé étre le chemin d'acces
a un fichier résidant sur une autre machine. A partir de 13, le codage
du nom de fichier devient rapidement compliqué.

+»* Le mode de fichier : Cet argument spécifie ce que vous voulez faire
avec le fichier. Les modes d'écriture de base sont la création
(CreateNew), l'ajout (Append), et la réécriture (Create). Createlew
crée un nouveau fichier. Si le fichier existe déja, Createliew envoie
une I0Exception. Le mode Create simple crée le fichier s'il n'existe
pas déja, mais l'écrase (le remplace) s'il existe déja. Apperd ajoute
quelque chose a la fin d'un fichier s'il existe déja, et crée un nou-
veau fichier dans le cas contraire.

Chapitre 16 : Manipuler des fichiers en C# 40 ’

fichier que vous avez entré (Path est une classe con¢ue pour manipuler
des informations sur les chemins d'acces).

NEZP4e Le chemin d'acces (path) est le nom complet du dossier dans lequel se
Rk p q
S f\ trouve le fichier. Dans le nom de fichier complet ¢ : \user\temp
“a directoryitext.zxt, le chemin d'acces est la partie c: \user\tems
directory
3 . L e
La méthode Corbire () est capable de se rendre compte qu'un fichier
comme c:\tes-.txt, Path() n'est pas dans le répertoire courant.

N07'€

En rencontrant la fin de la boucle while, soit en exécutant tout le bloc
try, soit en y étant envoyé par l'instruction catch, le programme revient
tout en haut pour permettre a l'utilisateur d'écrire un autre fichier.

Voici un exemple d'exécution de ce programme. Ce que j'ai saisi apparait
en gras :

Entrez un nom de fichier (Entrez un nom vide pour quitter):TestFilel.txt
Entrez du texte ; une ligne blanche pour arréter

Je tape quelque chose

Et encore ¢a

Et puis encore ga

Entrez un nom de fichier (Entrez un nom vide pour quitter):TestFilel.txt
Erreur sur le fichierC:\C#Programs\FileWrite\bin\Debug\TestFilel.txt
Le fichier existe.

Entrez un nom de fichier (Entrez un nom vide pour quitter):TestFile2.txt
Entrez du texte ; une ligne blanche pour arréter

C'est ici que j'ai fait une erreur. J'aurais di 1'appeler

TestFile2.

Entrez un nom de fichier (Entrez un nom vide pour quitter):
Appuyez sur Entrée pour terminer...

Si j'entre un texte quelconque dans TestFilel.txt, tout se passe bien.
Mais lorsque que j'essaie d'ouvrir a nouveau le fichier TestFilel . txx, le
programme m'envoie le message Le fichier existe, avecle nom du
fichier. Le chemin d'accés au fichier est un peu tourmenté, parce que le
"répertoire courant” est celui dans lequel Visual Studio met le fichier
exécutable. En corrigeant mon erreur, j'entre du texte en spécifiant le bon
nom de fichier (TestFile2.txt), sans protestation du programme.

Chapitre 16 : Manipuler des fichiers en C# 403

break;
)
// erreur envoyée - indique le nom du fichier et 1'erreur
catch(IOException fe)
{
Console.WriteLine("{0}\n\n", fe.Message);:
}
}
/] lit le contenu du fichier
Console.WriteLine("\nContenu du fichier :");
try
{
// 1it une ligne & la fois
while(true)
{
// lit une ligne
string sInput = sr.Readline();
/! quitte si nous n'obtenons rien en retour
if {sInput == null)
{
break;
]
/] écrit sur la console ce qu'il a lu dans le fichier
Console.WriteLine(sInput):

)

catch(I0Exception fe)

{
/] attrape toute erreur de lecture/écriture et la signale
/! (ce qui fait aussi sortir de la boucle)
Console.Write(fe.Message):

)

"~ // ferme le fichier maintenant que nous en avons fini avec lui
/] (en ignorant toute erreur)

try
{
sr.Close();
}
catch {)

/] attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

FileRead a une autre approche des noms de fichier. Dans ce programme,
l'utilisateur ne lit qu'un fichier. Il doit entrer un nom de fichier valide pour

Chapitre 16 : Manipuler des fichiers en C# 405

QUL

<("\“\UN 7
<&

ReadLine (). Le programme affiche cette ligne sur la console avec I'omni-
présent appel Console.Writeline () avant de revenir au début de la
boucle pour lire une autre ligne de texte. L'appel Readline (| retourne un
null lorsque le programme atteint la fin du fichier. Quand cela se produit,
le programme sort de la boucle de lecture, ferme l'objet, et se termine.

Remarquez comment l'appel Cicse () est inséré dans son propre petit
bloc try. Une instruction catch sans arguments attrape tout ce qui passe
a sa portée. Toute erreur envoyée par Ciose ! est attrapée et ignoreée.
L'instruction cazch est la pour empécher 'exception de se propager vers
le haut de la chaine et d'arréter 'exécution du programme. L'erreur est
ignorée parce que le programme ne peut rien faire en cas de Cicse
invalide, et parce qu'il va de toute facon se terminer a la ligne suivante.

Je ne donne 'exemple de catch sans arguments qu'a des fins de démons-
tration. La présence d'un seul appel dans son propre bloc =rv avec une
instruction catch "attrape-tout” évite qu'un programme s'arréte a cause
d'une erreur sans importance. N'utilisez toutefois cette technique que
pour une erreur vraiment sans importance, ne pouvant causer aucun
dommage.

Voici un exemple d'exécution de ce programme :

Entrez le nom d'un fichier texte a lire :TestFilex.txt
Could not find file "C:\C#Programs\FileRead\TestFilex.txt".

Entrez le nom d'un fichier texte & lire :TestFilel.txt

Contenu du fichier :

Je tape quelque chose

Et encore ¢a

Et puis encore ¢a

Appuyez sur Entrée pour terminer...

Sauf erreur de ma part, c'est la méme entrée qu'avec le fichier
TestFilel.txt quUe NOUS avons créé avec le programme FiZetzite,

Ce n'est toutefois pas le méme fichier. J'ai dt copier le fichier créé
avec TestWrite du répertoire Testiirite\bin\debug au répertoire
TestRead\bin\debug. Si vous voulez que ce soit le méme fichier dans
les deux cas, il vous faut donner le chemin d'acces complet, comme
c:\test.txt (jlaurais pu le faire pour ces deux exemples, mais je ne
voulais pas mettre de désordre dans votre répertoire racine).

Cinquieme partie
Programmer pour

Windows avec Visual
Studio

GCRCHATENNANT

"On vient nettoyer le code."

Chapitre 17
Creer une application
Windows : le ramage
et le plumage

Dans ce chapitre :
Trouver un probléme a résoudre.
Concevoir une solution.

Dessiner la solution avec la souris.

C omprendre C# ne suppose pas d'apprendre a écrire des applications

Windows pleinement fonctionnelles. Avant de vous mettre a la
programmation sous Windows en C#, vous devez avoir de solides notions de
la programmation en C#, ce qui ne peut s'acquérir qu'au prix de quelques
mois de programmation d'applications console.

«QG“NIQ(,“ B . e . . PN . s
« e dois nuancer quelque peu l'affirmation qui précéde si vous avez déja
créé des applications Windows dans un langage de programmation
comme C++.

NO;,

Toutefois, vous pouvez vous familiariser avec la programmation pour
Windows en passant par les étapes successives de la réalisation d'une
application simple. Ce chapitre va vous guider a travers les étapes qui
permettent de "dessiner” les applications en utilisant le Concepteur de
formulaires de Visual Studio. Le Chapitre 18 présente les étapes qui
permettent d'effectuer des opérations suggérées par les formulaires,
menus, bannieres, boutons, et autres merveilles que vous allez réaliser
dans ce chapitre.

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage 4 ’ ’

2. Faites une description visuelle de la solution.

Tout programme doit étre doté d'une interface raisonnablement
humaine, faute de quoi un étre humain raisonnable ne pourra pas
s'interfacer avec lui. Dans le cas d'une application Windows, cela
signifie décider des accessoires a utiliser, et ol les placer. Choisir
les bons accessoires suppose d'avoir au moins fait connaissance
avec ceux qui sont disponibles, mais aussi d'avoir un peu de talent
artistique (ce qui me met en dehors du coup), et encore d'avoir
envie de travailler sur le probléme concerné. Pour remplir cette
fonction, il vous suffit de vous asseoir devant votre ordinateur. Le
Concepteur de formulaires pour Windows est d'une telle souplesse
que vous pouvez l'utiliser comme un outil de dessin.

3. Concevez la solution sur la base de sa présentation et de la
description du probléme.

La conception d'une grande application doit étre définie dans les
plus grands détails. Par exemple, je travaille en ce moment sur un
systéme de réservation pour une grande compagnie aérienne. Le
travail de conception de ce programme occupe quinze personnes
pendant & peu prés six mois, apres quoi le travail de codage et de
débogage prend encore douze mois. Cependant, une petite applica-
tion Windows est souvent largement définie par son interface. C'est
plus ou moins le cas avec SimpleRditer.

Concevoir la présentation

SimpleRditor est un éditeur, et c'est un éditeur simple. Il doit avoir une
grande fenétre dans laquelle l'utilisateur peut entrer du texte. Comme
cette fenétre est la partie la plus importante de n'importe quel éditeur,
elle doit occuper pratiquement tout I'écran.

Toute application Windows nécessite un menu Fichier, immédiatement
suivi a sa droite par un menu Edition. Les autres éléments de la barre de
menus dépendent de 'application, sauf pour l'aide qui en est le dernier.

Dans le menu Fichier, il nous faut un moyen d'ouvrir un fichier (Fichier/Ouvrir),
un moyen d'enregistrer un fichier (Fichier/Enregistrer), et un moyen de sortir
(Fichier/Quitter). Le petit bouton de fermeture dans le coin supérieur droit de
la fenétre doit avoir le méme effet que Fichier/Quitter. Nous n'avons pas besoin
d'une commande Fichier/Fermer. C'est trés joli, mais comme nous n'en avons
pas besoin, c'est une chose que nous pouvons garder pour la version 2.

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage

T
Figure 17.2:

L'affichage
initial pour
toutes les

applications

Windows.

Comme je I'expliquerai dans les sections qui suivent, ces étapes ne sont
pas mal faites si vous les suivez l'une aprés l'autre.

Créer le cadre de travail de I'application Window's

Pour créer le cadre de travail de 'application Windows :
1. Sélectionnez Fichier/Nouveau/Projet.
La fenétre Nouveau projet apparait.

2. Aulieu de l'icone Application console, cliquez sur l'icone Appli-
cation Windows, et entrez comme nom SimpleEditor.

Dans la fenétre Nouveau projet, le champ Emplacement spécifie le
répertoire dans lequel seront stockés les fichiers de SimpleEditor.
Autrement dit, Visual Studio va mettre tous les fichiers que je vais
créer dans C:\Programmes C#\SimpleEditor.

3. Cliquez sur OK.

Visual Studio travaille quelques instants pour générer I'affichage
montré par la Figure 17.2.

SimpleEditor - Microsaft Visual C4#.MET [design] - Foym s [Busignf: "7
Ficher Edfron Affichage Projet Gendrer Datioquer [gonées Gutls Fendwre Help

PR IRRv = < N) Lo h oy bebug M-
“a Formi.cs [Design] |

Le texte conteny dans ce contrdle.

Prét

Ce curieux affichage s'appelle le Concepteur de formulaires (ou, plus
simplement, le Concepteur). Le cadre de vous voyez a gauche est le
formulaire, qui va étre la base de notre programme SimpleEditor.

413

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage 4 75

lgnorez ce type qui se cache derriere le rideau

Avant d'aller plus loin, je veux jeter un coup d'ceil au code C# généré par
le Concepteur. Je veux savoir ce qui se trame la-dedans. L'Explorateur de
solutions montre que le fichier source de ce programme se trouve dans
un fichier nommeé Forml.cs, ce qui correspond au nom qui se trouve au-
dessus du formulaire dans la fenétre du Concepteur.

Sélectionnez Affichage/Code pour faire apparaitre une nouvelle fenétre
contenant le code source C# de Forn! . cs, que voici :

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
namespace SimpleEditor
{
/1] <{summary>
/// Summary description for Forml.
/1] {/summary>
public class Forml : System.Windows.Forms.Form
{
/1] {summary>
/1] Required designer variable.
/1 </summary>
private System.ComponentModel.Container components = null;
public Forml()
0
1
/! Required for Windows Form Designer support
/1
InitializeComponent();
i
/] TODO: Add any comstructor code after InitializeComponent call
/!
o
/1] {summary>
f1] Clean up any resources being used.
/11 </summary>
protected override void Dispose(bool disposing)
{
if(disposing)
{
- if (components != null)

4 76 Cinquiéme partie : Programmer pour Windows avec Visual Studio

N
‘5& 7N

NO;,

componentg.Dispose();
}
}
base.Dispose(disposing):
)
f#region Windows Form Designer generated code
/1] {summary>
//] Required method for Designer support - do not modify
/1] the contents of this method with the code editor.
/1] {/summary>
private void InitializeComponent()
{
/!
/! Forml
/! ,
this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(292, 273);
this.Name = "Forml";
this.Text = "Simple Editor";
}
ffendregion
/1] <summary>
/1] The main entry point for the application.
/11 {]summary>
[STAThread]
static void Main()
(;
Application.Run(new Forml());
}
}
}

Je sais que le programme doit commencer par static Main(}, qui se trouve
ici tout en bas du listing. Voila ce qui nourrit ma conviction que c'est ici qu'il
faut commencer. La seule instruction que contient Main () crée un objet
Forml () et le passe a une méthode Application.Run(). Je ne suis pas sir
de ce que fait Run (), mais je soupconne fortement que la classe Form!
correspond a la fenétre Form1 que j'ai vue dans le Concepteur.

En fait, Application.Run() lance l'objet Form sur son propre thread
d'exécution. Le thread initial s'arréte aussitot que le nouveau Forml est
créé. Le thread Forml se poursuit jusqu'a ce qu'il soit intentionnellement
arrété. Le programme SimpleEditor lui-méme poursuit son exécution
aussi longtemps que des threads définis par I'utilisateur sont actifs.

Le constructeur de Forml invoque une méthode TnitializeComponent ().
Tout code d'initialisation du programmeur doit étre placé apres cet appel
(tout au moins, c'est ce que dit le commentaire).

4 ’4 Cinquieme partie : Programmer pour Windows avec Visual Studio

S

Figure 17.3:
Changer la
propriéte
Text du
formulaire
change le
nom qui
apparait
dans sa
barre de titre.

Un formulaire est une fenétre contenant une barre de titre, et
optionnellement des barres de défilement. Dans la terminologie de
C#, une fenétre n'est rien d'autre qu'un cadre rectangulaire dans
lequel vous pouvez placer des images ou du texte. Une fenétre n'a
pas nécessairement des menus ou des étiquettes, ni méme ces
petits boutons Fermer, Réduire et Restaurer.

Générez le programme que Windows vient de créer sur la base
du modéle.

Vous pouvez me traiter de paranoiaque, mais je veux étre certain
que toutes les erreurs qui pourront apparaitre par la suite seront
réellement de mon fait et ne viendront pas de Visual Studio. Sans
aucun doute, la solution va se générer sans encombre a ce stade.
L'exécution de ce programme ne révele rien d'autre qu'un formu-
laire vierge, doté de I'étiquette Forml. Il suffit de cliquer sur le
bouton Fermer pour arréter le programme.

Le volet qui occupe la partie droite de l'affichage est la fenétre
Propriétés. Ca ne saute peut-étre pas aux yeux, mais son contenu
est en relation directe avec le formulaire qui est dans la partie
gauche de l'affichage. Par exemple, vous pouvez voir que la pro-
priété Text est Forml. Vous pouvez la modifier pour vous rendre
compte de l'effet produit.

Sélectionnez la propriété Text, et donnez-lui la valeur Simple Editor.

L'étiquette Form1 contenue dans la barre de titre du formulaire
devient Simple Editor.

Générez a nouveau l'application, et exécutez-la.

Le nom du formulaire a changé, comme le montre la Figure 17.3.

=10/

4 ’2 Cinquiéme partie : Programmer pour Windows avec Visual Studio

L]
Figure 17.1:

Ma solution
du probleme

SimpleEditor.

Le menu Edition a besoin des trois grandes options d'édition : Couper,
Copier et Coller. D'autre part, tous les éditeurs comprennent les raccour-
cis clavier de ces trois options : Ctrl+X, Ctrl+C, et Ctrl+V, respectivement.

SimpleEditor aura également besoin d'un menu Format, comportant les
options Gras et Italique pour mettre en forme le texte.

Fournir une aide véritable est une tache difficile - beaucoup trop compliquée
pour un éditeur simple comme SimpleEditor. Le menu d'aide de cette
application devra se contenter du minimurmn absolu : 'option A propos de.

Derniére exigence : il nous faut un moyen de controler la taille de police.
Voila une chose qui laisse la place a un peu de fantaisie. En plus d'une
simple fenétre dans laquelle 'utilisateur peut entrer la taille de police
souhaitée, SimpleFditor y ajoutera une sorte de barre munie d'un index
que l'on peut faire glisser, que nous appellerons TrackBar. Pour obtenir 8
points, faites glisser l'index & 'extrémité gauche. Faites-le glisser a l'extré-
mité droite, et vous obtenez 24 points. (J'ai une autre raison de procéder
ainsi : je veux vous montrer comment relier deux objets d'1/0O de maniére
qu'un changement dans l'un soit répercuté dans l'autre.)

Ma solution
Avec les parametres que j'ai décrits dans la section précédente, je suis

arrivé a la solution montrée par la Figure 17.1. Vos propres résultats
peuvent étre différents selon vos golits personnels.

=10l x

Fichier Edition Format

Cec est du tete en 10 pomts normal
Ceci est en gras
Ceci est en italique

Plus grand
Plus petit
Et e retour a 12 poinds

T adle de police 411

Dessiner la solution

Comme vous pouvez l'imaginer, j'ai dii passer par de nombreuses étapes
pour arriver en partant de zéro a I'ceuvre d'art montrée par la Figure 17.1.

4 ’0 Cinquiéme partie : Programmer pour Windows avec Visual Studio

Quel est le probleme ?

Il m'a fallu une longue et difficile réflexion (au moins un quart d'heure)
pour imaginer un probléme qui mette en lumiére la puissance de C# sans
me faire prendre du poids. Le voici : créer un éditeur simple que nous
appellerons SirpleEditor. Il aura les caractéristiques suivantes :

v~ L'utilisateur peut entrer et effacer du texte (sinon, ce ne serait pas

vraiment un éditeur).

L'utilisateur peut couper et coller du texte, non seulement dans
SimpleEditor, mais aussi entre 57 efdi-or et d'autres applica-
tions, par exemple Word.

SimpleEd?tor supporte les polices en gras, en italique ou les deux.

L'utilisateur peut sélectionner une taille de police de 8 a 24 points.
Ces limites sont arbitraires, mais il s'agit ici de ne pas aller trop loin
en nombre de points.

Simpletditor ne doit pas vous permettre de quitter sans vous
avoir demandé poliment d'enregistrer le fichier que vous venez de
modifier (mais vous restez libre de quitter sans enregistrer si c'est
bien ce que vous voulez).

Exposer le probleme

Chaque fois que vous étes devant un probléme a résoudre, vous devez
commencer par vous mettre devant le tableau noir et réfléchir sérieuse-
ment aux obstacles a franchir. Dans le cas d'une application Windows,
cette tache se divise en trois étapes :

1.

Décrivez le probléme en détail.

Ces détails sont les spécifications auxquelles doit se conformer
I'application. Au cours de la programmation, vous pourrez étre
tenté d'ajouter une fonctionnalité ici ou la. Résistez. Cette maladie
s'appelle fonctionnalite. Tout en avancant, notez les améliorations
possibles pour une version future, mais l'ajout de fonctionnalités en
cours de route fait courir le risque de créer une application qui finit
par étre tout a fait autre chose que ce qu'elle était censée étre au
départ.

Dans cette partie. ..

omprendre OF est une chose, apprendre a écvire une

applicatinn Windows compleéte avec tous ses assemblages
et ses décorations bien en place en est une autre. Rien que pour
le plaisir, la cingitidcine partie vous guide pas a pas dans l'utilisa-
tion de C# avec interface Visual Studio afin de créer une applica-
tion Windows “qui ne soit pas triviale”. Vous serez fier du résultat,
meme si vos enfants n'appelient pas leurs copains pour le voir.

404 Quatrieme partie : La programmation orientée objet

«Q\\)C

que le programme donne la sortie attendue. Une fois que le programme a
lu le fichier, il se termine. Si l'utilisateur veut lire un autre fichier, il lui
suffit d'exécuter a nouveau le programme.

Le programme commence par une boucle «wni 12, comme son cousin
FileWrite.Dans cette boucle, il va chercher le nom de fichier entré par
l'utilisateur. Si le nom de fichier est vide, le programme envoie un message
derreur : Vous avez entré un nom de Tichier vide.Dans le cas contraire,
le nom de fichier est utilisé pour ouvrir un objet ¥ 1 eStrear en mode de

lecture. L'appel File.Open() esticile méme que celui utilisé dans 72 1cirite:
v Le premier argument est le nom du fichier.

v Le deuxiéme argument est le modele du fichier. Le mode
FileMode.Open dit : "Ouvrir le fichier s'il existe, sinon envoyer une
exception.” L'autre possibilité est Operilew, qui crée un fichier de
longueur nulle si celui-ci n'existe pas déja. Personnellement, je n'ai
jamais rencontré le besoin de ce mode (qui veut lire un fichier
vide ?), mais chacun meéne sa barque comme il I'entend.

v Le dernier argument indique que je veux lire a partir de ce
FileStream. Les autres solutions sont Write et Readirite.

L'objet FileS=ream fs résultant est alors inséré dans un objet Streanfeader
sr qui offre des méthodes pratiques pour accéder au fichier texte.

Toute cette section d'ouverture de fichier est enchassée dans un bloc trv,
lui-méme enchassé dans une boucle whi’e, insérée dans une énigme. Ce
bloc try est strictement réservé a 'ouverture de fichier. Si une erreur se
produit pendant le processus d'ouverture, l'exception est attrapée, un
message d'erreur est affiché, et le programme reprend au début de la
boucle pour demander & nouveau un nom de fichier a l'utilisateur. Toute-
fois, si le processus aboutit a un objet nouveau-né StreamReader en bonne
santé, la commande brezk fait sortir de la logique d'ouverture de fichier et
fait passer le chemin d'exécution du programme a la section de lecture.

FileRead et TileWrite représentent deux manieres différentes de traiter
des exceptions de fichier. Vous pouvez insérer tout le programme de
traitement de fichier dans un méme bloc ~rv, comme dans Fileirite, ou
bien vous pouvez donner son propre bloc = ry a la section d'ouverture de
fichier. Cette derniére solution est généralement la plus facile, et elle
permet de générer un message d'erreur plus précis.

Une fois le processus d'ouverture de fichier terminé, le programme
FileRead lit une ligne de texte dans le fichier en utilisant l'appel

402 Quatrieme partie : La programmation orientée objet

Améliorez votre compréhension et votre
vitesse de lecture avec StroamReader

Il est tres agréable d'écrire sur un fichier, mais ¢'est piut(‘)t inutil si vous

ne pouvez pas lire le fichier par la suite. L.e programme ~ Read suivant
affiche sur la console ce gu il lit dans ie f](hl(‘l Ce programme lit un
fichier texte comme celui que ¢crée &7 W07 o0

PRGE,
& o // FileRead - lit un fichier texte et 1'écrit

/! sur la console
using System;
using System.IO;
namespace FileRead
(
public class Classl
{
public static void Main(stringl] args)
{
/! il nous faut un objet pour lire le fichier
StreamReader sr;
string sFileName = "";
/] continue A essayer de lire un nom de fichier jusqu'a ce qu'il en
// trouve un {la seule maniére de quitter pour l'utilisateur est
// d'arréter le programme en appuyant sur Ctrl + C)
while(true)
{
try
({

T,

/1 1it le nom du fichier d'entrée
Console.Write("Entrez le nom d'un fichier texte & lire :");
gFileName = Congole.ReadLine();
// 1'utilisateur n'a rien entré ; envoie une erreur
// pour lui dire que ce n'est pas satisfaisant
if (sFileName.Length == 0)
(
throw new I0Exception("Vous avez entré un nom de fichier vide");
}
/] ouvre un flux de fichier pour la lecture ; ne crée pas
/! le fichier s'il n'existe pas déja
FileStream fs = File.Open(sFileName,
FileMode.Open,
FileAccess.Read);
/] convertit ceci en StreamReader - ce sont les trois premiers
/! octets du fichier qui seront utilisés pour indiquer
/! 1'encodage utilisé (meis pas le langage)
sr = new StreamReader(fs, true);

400 Quatriéme partie : La programmation orientée objet

e

1 Le type d'acces : Un fichier peut étre ouvert pour la lecture, I'écri-
ture ou les deux.

FileStream dispose de nombreux constructeurs, dont chacun corres-
pond par défaut a un ou deux des arguments de mode et d'acces. Toute-
fois, & mon humble avis, il vaut mieux spécifier explicitement ces argu-
ments, car ils ont un effet important sur le programme.

Dans la ligne suivante, le programme insére dans un objet StreamWriter,
sw, l'objet FileStream qu'il vient d'ouvrir. La classe StreamWriter permet
d'insérer les objets FiieStream, afin de fournir un ensemble de méthodes
pour traiter du texte. Le premier argument du constructeur
StreamWriter est l'objet FileStream. Le deuxieme spécifie le type
d'encodage a utiliser. L'encodage par défaut est UTF8.

Il n'est pas nécessaire de spécifier I'encodage pour lire un fichier.
StreamWrizer inscrit le type d'encodage dans les trois premiers octets
du fichier. A I'ouverture du fichier, ces trois octets sont lus pour déter-
miner l'encodage.

Le programme Filelirite commence alors a lire sous forme de chaines
les lignes saisies sur la console. Le programme arréte de lire lorsque
l'utilisateur entre une ligne blanche, mais jusque-la il continue a absorber
tout ce qu'on lui donne pour le déverser dans l'objet StreamWriter swen
utilisant la méthode Writeline ().

La similitude entre StreamWriter.Writeline() et Console.Writeline()
n'est pas qu'une coincidence.

Enfin, le fichier est fermé par l'instruction sw.Close ().

Remarquez que le programme donne a la référence sw la valeur null ala
fermeture du fichier. Un objet fichier est parfaitement inutile une fois que
celui-ci a été fermé. Il est de bonne pratique de donner a la référence la
valeur null une fois qu'elle est devenue invalide, afin de ne pas essayer
de l'utiliser a nouveau dans l'avenir.

Le bloc catch qui suit la fermeture du fichier est un peu comme un
gardien de but : il est la pour attraper toute erreur de fichier qui aurait pu
se produire en un endroit quelconque du programme. Ce bloc émet un
message d'erreur, contenant le nom du fichier qui en est responsable.
Mais il ne se contente pas d'indiquer simplement le nom du fichier : il
vous donne son chemin d'accés complet, en ajoutant a l'aide de la mé-
thode Path.Combine () le nom du répertoire courant avant le nom de

398 Quatrieme partie : La programmation orientée objet

I FileAccess.Write,
/1 FileAccess.ReadWrite
FileStream fs = File.Open(sFileName,
FileMode.CreateNew,
FileAccess.Write);
/] génére un flux de fichier avec des caractéres UTFS§
sw = new StreamWriter(fs, System.Text.Encoding.UTF8);
// 1it une chaine & la fois, et envoie chacune au
[/ FileStream ouvert pour écriture
Console.WriteLine("Entrez du texte ; ligne blanche pour arréter");
while(true)
{
/] 1it la ligne suivante sur la console ;
/7 quitte si la ligne est blanche
string sInput = Console.ReadLine();
if (sInput.Length == 0)
(
break;
}
/] écrit sur le fichier de sortie la ligne qui vient d'étre lue
sw.WriteLine(sInput);
}
// ferme le fichier que nous avons créé
sw.Close();
sw = null;
}
catch(IOException fe)
{
/] une erreur s'est produite quelque part pendant
// le traitement du fichier - indique & 1'utilisateur
/1 le nom complet du fichier :
/] ajoute au nom du répertoire par défaut
/! celui du fichier
string sDir = Directory.GetCurrentDirectory(});
string s = Path.Combine(sDir, sFileName);
Console.Writeline("Erreur sur le fichier{0}", s);
/] affiche maintenant le message d'erreur de 1'exception
Console.WriteLine(fe.Message);
}
}
/1 attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

FileWrite utilise l'espace de nom System. 10 ainsi que System. Svsten.

contient les fonctions d'l/O sur les fichiers.

396 Qu

atrieme partie : La programmation orientée objet

N/
‘;\6: U

NO7,

I/0 asynchrones : est-ce que ¢a vaut la peine d'attendre ?

Normalement, un programme attend qu'une requéte d'l/O sur un fichier soit satisfaite avant
de poursuivre son exécution. Appelez une méthode read (), et vous ne récupérerez géné-
ralement pas le controle aussilongtemps que les données du fichier ne seront pas installées
a bord en sécurité. C'est ce que I'on appelle une I/0 synchrone.

Avec C#, les classes de System.I0 supportent également les I/0 asynchrones. En les
utilisant,I'appel a read () restitue immédiatement le contrdle pour permettre au programme
de poursuivre son exécution pendant que la requéte d'l/0 est satisfaite a I'arriére-plan. Le
programme est libre de vérifier |'état d'un indicateur pour savoir si la requéte d'l/0 a abouti.

C'estun peu comme de faire cuire un hamburger. Avec des /0 synchrones vous mettez la viande
hachée 3 cuire sur la plaque chauffante, vous la surveillez jusqu'a ce qu'elle soit cuite, et ¢'est
seulement a partir de 1a que vous pouvez vous mettre a couper les oignons qui vont aller dessus.

Avecdes|/Oasynchrones, vous pouvez couperles oignons pendantque laviande hachée est
en train de cuire. De temps en temps, vous jetez un coup d'ceil pour voir si elle est cuite. Le
momentvenu, vous abandonnez uninstantvos oignons, etvous prenezla viande surla plaque
chauffante pour la mettre sur le pain,

Les|/0 asynchrones peuventaméliorersignificativementles performances d'un programme,
mais elles ajoutent un niveau supplémentaire de complexité.

Utiliser StreanWriter

Les programmes géneérent deux sortes de sortie. Certains programmes
écrivent des blocs de données dans un pur format binaire. Ce type de
sortie est utile pour stocker des objets d'une maniére efficace.

Beaucoup de programmes, sinon la plupart, lisent et écrivent des chaines de
texte, lisibles par un étre humain. Les classes de flux Streaniiriter et

StreamPeader sont les plus souples des classes accueillantes pour 'homme.

CHNigy, Les données lisibles par un étre humain étaient antérieurement des

<& N o 0 . o
é"/ chaines ASCIL, ou, un peu plus tard, ANSI. Ces deux sigles se référent aux
= organisations de standardisation qui ont défini ces formats. Toutefois, le

codage ANSI ne permet pas d'intégrer les alphabets venant de plus loin
que I'Autriche 4 I'tist, et de plus loin que Hawai a 'Ouest. Il ne peut conte-
nir que l'alphabet latin. Il ne dispose pas de l'alphabet cyrillique, hébreu,

394 Quatrieme partie : La programmation orientée objet

v+ Une méthode déclarée internal est accessible par toutes les classes
du méme espace de nom. Aussi, I'appel class2.D_internal {) n'est
pas autorisé. L'appel class3.C internal () est autorisé parce que
Class3 fait partie de l'espace de nom AccessControl.

¥ Lemotclé internal protected combine l'accés interral et
l'acces protected. Aussi, I'appel classl.f_internalprotected()
est autorisé, parce que Class1 étend Class2 (c'est la partie
protected). L'appel clase3.E internalprotected() est égale-
ment autorisé, parce que Class1 et Class3 font partie du méme
espace de nom (c'est la partie internal).

v Ladéclaration de Class3 comme internal a pour effet de réduire
lacces a celleci a internal, ou moins. Aussi, les méthodes public
deviennent internal, alors que les méthodes protected deviennent
internal protected

Ce programme donne la sortie suivante :

Class2.A_public

Class2.B_protected
Classl.C_private

Class3.D_internal
Class?2.E_internalprotected
Class3.E_internalprotected

Appuyez sur Entrée pour terminer...

<Que Déclarez toujours les méthodes avec un accés aussi restreint que possi-
ble. Une méthode privée peut étre modifiée a volonté sans inquiéter de
l'effet que cela pourrait avoir sur d'autres classes. Une classe ou une
méthode interne de MathRoutines est utilisé par d'autres classes de
nature mathématique. Si vous n'étes pas convaincu de la sagesse du
couplage faible entre les classes, allez voir le Chapitre 11.

Rassembler des données dans des fichiers

Les applications console de ce livre recoivent essentiellement leurs entrées
de la console, et y envoient de méme leur sortie. Les programmes des
autres sections que celle-ci ont mieux & faire (ou autre chose) que de vous
embeéter avec des manipulations de fichiers. Je ne veux pas les obscurcir
avec la question supplémentaire des entrées/sorties (1/0). Toutefois, les
applications console qui n'effectuent pas d'opération d'entrée/sortie sur
des fichiers sont & peu prés aussi courantes que les phoques dans la Seine.

392 Quatriéme partie : La programmation orientée objet

/] la méme classe
//class2.C_private();
classl.C_private();
// les méthodes internes ne sont accessibles que par
// les classes du méme espace de nom
//class2.D_internal();
class3.D _internal();
// les méthodes internes protégées sont accessibles
/] soit par la hiérarchie d'héritage soit par
// toute classe du méme espace de nom
classl.E_internalprotected();
class3.E_internalprotected();
// attend confirmation de 1'utilisateur
Console.Writeline("Appuyez sur Entrée pour terminer...");
Console.Read();
return 0;

}

public void C_private()

{
Console.WriteLine("Classl.C_private"):

)

}
// Class3 - une classe interne est accessible aux autres

/1 classes du méme espace de nom, mais

I pas aux classes externes qui utilisent cet
/] espace de nom

internal class Class3

{

// la déclaration d’une classe comme interne force toutes
/! les méthodes publiques & étre également internes
public void A public(}
{
Console.WriteLine("Class3.A_public");
}
protected void B_protected()
{
Console.WriteLine("Class3.B_protected");
}
internal void D_internal()
{
Console.WriteLine("Class3.D_internal");
}
public void E_internalprotected()
{
Console.WriteLine("Class3.E_internalprotected");
}

390 Quatrieme partie : La programmation orientée objet

Utiliser un espace de nom avec le mot-clé using

Se référer a une classe par son nom pleinement qualifié peut devenir un

peu fastidieux Le motclé =iy de C# vous permet d'éviter ce pensuin.
La commande - ajoute I'espace de nom spécifié a une liste d'espaces
5 8 p 1

de nom par défaut que C# consulte pour essayer de résoudre un notn de
classe. L'exeniple de programine suivant se compile sans une plainte :

namespace Paint

{
public class PaintColor
{
public PaintColor(int nRed, int nGreen, int nBlue) {}
public void Paint{) {J
public static void StaticPaint() {}
)
}
namespace MathRoutines
{

/] ajoute Paint aux espaces de nom dans lesquels on cherche
/] automatiquement

using Paint;

public class Test

{
static public void Main(string{] args)
(
// crée un objet dans un autre espace de nom - il n'est
/] pas nécessaire de faire figurer le nom de 1'espace de nom, car
/] celui-ci est inclus dans une instruction "using"
PaintColor black = new PaintColor(0, 0, 0);
black.Paint();
PaintColor.StaticPaint();
}
]
}
La commande = ¢ dit : "Si vous ne trouvez pas la classe spécifiée dans

I'espace de nom courant, voyez si vous la trouvez dans celui-ci.” Vous
pouvez spécifier autant d'espaces de nom que vous voulez, mais toutes
les commandes = ¢ doivent apparaltre 'une aprés l'autre tout a fait au
début du programme.

Tous les programmes commencent par la commande using Systen:. Elle
denne au programme un accés automatique a toutes les fonctions de la
bibliothéque systéme, comme Writeline .

388 Quatrieme partie : La programmation orientée objet

<C

€2 P4
Q6\) §

TranslationlLibra-v respectivement a ces deux ensembles de classes
évite le probléme : FileT0O.Convert ne peut pas étre confondu avec

Translationlibrary . Conart.

Déclarer un espace de nom

On déclare un espace de nom en utilisant le mot-clé namespace, suivi par
un nom et un bloc d'accolades ouvrante et fermante. Les classes spéci-
fiées dans ce bloc font partie de I'espace de nom.

namespace MyStuff
{
class MyClass {}
class UrClass {}
]

Dans cet exemple, 0 2=¢ et ' C1z2a font partie de I'espace de nom
MyStuff.

L'Assistant Application de Visual Studio place chaque classe qu'il crée dans
un espace de nom portant le méme nom que le répertoire qu'il crée. Exami-
nez tous les programmes de ce livre : ils ont tous étés créés a l'aide de
I'Assistant Application. Par exemple, le programme Al ignOutput a été créé
dans le dossier 2 1ignGurput. Le nom du fichier source est Classi.cs, qui
correspond au nom de la classe par défaut. Le nom de I'espace de nom dans
lequel se trouve Clzss!.cs est le meme que celui du dossier ; A1:gnOutput.

Si vous ne spécifiez pas une désignation d'espace de nom, C# place votre
classe dans l'espace de nom global. C'est I'espace de nom de base pour
tous les autres espaces de nom.

Accéder a des modules du méme espace de nom

Le nom de I'espace de nom d'une classe est une partie du nom de la
classe étendue. Voyez l'exemple suivant :

namespace MathRoutines
{
class Sort
{
public void SomeFunction(){}

386 Quatrieme partie : La programmation orientée objet

ne peut pas étre modifié par deux programmeurs en méme temps. Chacun
d'eux a besoin de son propre fichier source. Enfin, la compilation d'un
module de grande taille peut prendre beaucoup de temps (on peut toujours
aller prendre un café, mais il arrive un moment ol votre patron devient
soupconneux). Recompiler un tel module parce qu'une seule ligne d'une
seule classe a été modifiée devient intolérable.

Pour toutes ces raisons, un bon programmeur C# divise son programme
en plusieurs fichiers source .CS, qui sont compilés et générés ensemble
afin de former un seul exécutable.

Imaginez un systéme de réservation de billets d'avion : il y a l'interface avec les
agents de réservation que les clients appellent au téléphone, une autre inter-
face pour la personne qui est au comptoir d'enregistrement, la partie Internet,
sans parler de la partie qui vérifie 'occupation des sieges dans l'avion, plus la
partie qui calcule le prix (y compris les taxes), et ainsi de suite. Un programme
comme celui-ci devient énorme bien avant d'étre terminé.

Rassembler toutes ces classes dans un méme fichier source Classl.cs
est remarquablement déraisonnable, pour les raisons suivantes :

v Un fichier source ne peut étre modifié que par une seule personne a la
fois. Vous pouvez avoir vingt a trente programmeurs travaillant en
meéme temps sur un grand projet. Un seul fichier pour vingt-quatre
programmeurs impliquerait que chacun d'eux ne pourrait travailler
qu'une heure par jour, a supposer qu'ils se relaient vingt-quatre heures
sur vingt-quatre. Si vous divisiez le programme en vingt-quatre fichiers,
il serait possible, bien que difficile, que tous les programmeurs tra-
vaillent en méme temps. Mais si vous divisez le programme de telle
maniére que chaque classe a son propre fichier, I'orchestration du
travail de ces vingt-quatre programmeurs devient beaucoup plus facile.

v+» Un fichier source unique peut devenir extrémement difficile a
comprendre. Il est beaucoup plus aisé de saisir le contenu d'un
module comme ResAgentInterface.cs, GateAgentinterface.cs,
ResdAgent.cs, GateAgent.cs, Fare.cs ouAircraft.cs.

v Larégénération compléte d'un grand programme comme un sys-
teme de réservation de billets d'avion peut prendre beaucoup de
temps. Vous n'aurez certainement pas envie de régénérer toutes les
instructions qui composent le systéme simplement parce qu'un
programmeur a modifié une seule ligne. Avec un programme divisé
en plusieurs fichiers, Visual Studio peut régénérer uniquement le
fichier modifié, et rassembler ensuite tous les fichiers objet.

384 Quatrieme partie : La programmation orientée objet

Le programme CustomException donne la sortie suivante :

Erreur fatale inconnue :

Le message est {Impossible d'inverser 0>, 1'objet est (Value = 0)
CustomException.MathClass

Exception envoyée parDouble Inverse()

Appuyez sur Entrée pour terminer...

Jetons un coup d'ceil & cette sortie : le message “rreur fatale incon-
rnue : vientde Mair (. Lachaine e mecsage est
verser 0>, 1'chiet a2st {~~»vientde CustonException. Le message
Value = (vient de l'objet MathClzass lui-méme. La derniére ligne, Excep-
tion envovée parDouble Inverse,vient de CustomException.

{Impcssible d'in-

ToString(), la carte de visite de la classe

Toutes les classes héritentd'une classe de base commune, judicieusementnommé Object.
C'est au Chapitre 17 que j'explore cette propriété qui unifie les classes, mais il est utile de
mentionnerici que Ob ject contientune méthode, ToString (), quiconvertitenstringle
contenu de |'objet. L'idée est que chaque classe doit redéfinir la méthode ToString () par
une méthode lui permettant de s'afficher elle-méme d'une fagon pertinente. Dans le chapitre
précédent, j'ai utilisé la méthode GetString() parce que je ne voulais pasy aborder les
guestions d'héritage, mais le principe est le méme. Par exemple, une méthode
Student.ToString() pourrait afficher le nom et le numéro d'identification de I'étudiant.

La plupart des fonctions, méme les fonctions intégrées de la bibliotheque C#, utilisent la
méthode ToString () pour afficher des objets. Ainsi, le remplacement de ToString() a
poureffetsecondaire trés utile que I'objet sera affiché dans son propre format, quelle que soit
la fonction qui se charge de I'affichage.

Comme dirait Bill Gates, "C'est cool."

382 Quatriéme partie : La programmation orientée objet

/1 le message standard Exception.ToString()
override public string ToString()
{
string s = Message *+ "\n";
s += base.ToString();
return s;
}
/! Inverse - retourne 1/x
public double Inverse()
{
if (nValueOfObject == 0)
{
throw new CustomException("Impossible d'inverser 0", this);
)
return 1.0 / (double)nValueOfObject:
}
)
public class Classl
{
public static void Main(string[] args)
{
try
({
/! prend 1'inverse de 0
MathClass mathObject = new MathClass("Valeur", 0);
Console.WriteLine("L'inverse de d.Value est{0}",
mathObject.Inverse());
]
catch(Exception e)
(
Console.WriteLine("\nErreur fatale inconnue :\n{0}",
e.ToString());
}

/! attend confirmation de l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Permettez-moi de faire une remarque : cette classe CustomException
n'est pas si remarquable que cela. Elle stocke un message et un objet, tout
comme MyException. Toutefois, au lieu de fournir de nouvelles méthodes
pour accéder a ces données, elle remplace la propriété Message existante
qui retourne le message d'erreur contenu dans I'exception, et la méthode
ToString() qui retourne le message plus I'indication de pile.

380 Quatriéme partie : La programmation orientée objet

Renvoyer le méme objet exception présente un avantage et un inconvé-
nient. Cela permet aux fonctions intermédiaires d'attraper des exceptions
pour libérer ou fermer des éléments alloués par elles, tout en permettant
a l'utilisateur final de l'objet exception de suivre l'indication de pile
jusqu'a la source de I'exception. Toutefois, une fonction intermédiaire ne
peut pas (ou ne doit pas) ajouter des informations supplémentaires a
I'exception en la modifiant avant de la renvoyer.

Redéfinir une classe d'exceptions

CARRGER

La classe d'exceptions suivante définie par 'utilisateur peut stocker des
informations supplémentaires qui ne pourraient pas I'étre dans un objet
Exception conventionnel :

// MyException - ajoute & la classe standard Exception
/1 une référence a MyClass
public class MyException : Exception
{
private MyClasss myobject;
MyException(string sMsg, MyClass mo) : base(sMsg)
{
myobject = mo;
}
/] permet aux classes extérieures d'accéder & une classe d'information
public MyClass MyObject(get {return myobject;}}

Voyez a nouveau ma bibliothéque de fonctions BrilliantLibrary. Ces
fonctions savent comment remplir ces nouveaux membres de la classe
MyException et aller les chercher, fournissant ainsi uniquement les infor-
mations nécessaires pour remonter a la source de toute erreur connue et
de quelques autres restant a découvrir. L'inconvénient de cette approche
est que seules les fonctions de la bibliotheque BrilliantLibrary peuvent
recevoir un bénéfice quelconque des nouveaux membres de MyException.

Le remplacement des méthodes déja présentes dans la classe Exception
peut donner des fonctions existantes autres que I'accés BrilliantLibrary
aux nouvelles données. Considérez la classe d'exceptions définie dans le
programme CustomException suivant :

/1 CustomException - crée une exception personnalisée qui
/1l affiche les informations que nous voulons, mais
1 dans un format plus agréable

3 78 Quatrieme partie : La programmation orientée objet

types d'exception définie pour la brillante bibliothéque de classe que je viens
d'écrire (c'est pour ¢a que je l'appelle 2riliizntlitrary). Les fonctions qui
composent BrillZantLibrary envoient et attrapent des exceptions
MyException.

Toutefois, les fonctions de la bibliothéque =2 271 an0 1 i rary peuvent aussi
appeler des fonctions de la bibliothéque générique <=~ -7 Les premieres
peuvent ne pas savoir comment traiter les exceptions de la bibliotheque
System, en particulier si elles sont causées par une entrée erronée.

Si vous ne savez pas quoi faire avec une exception, laissez-la passer pour
qu'elle arrive a la fonction appelante. Mais soyez honnéte avec vous-méme :
ne laissez pas passer une exception parce que vous n'avez simplement pas
le courage d'écrire le code de traitement d'erreur correspondant.

Relancer un objet

Dans certains cas, une méthode ne peut pas traiter entierement une
erreur, mais ne veut pas laisser passer I'exception sans y mettre son grain
de sel. C'est comme une fonction mathématique qui appelle 7actorial ()
pour s'apercevoir qu'elle renvoie une exception. Méme si la cause pre-
miére du probléme peut étre une donnée incorrecte, la fonction mathé-
matique est peut-étre en mesure de fournir des indications supplémentai-
res sur ce qui s'est passé.

Un bloc catch peut digérer partiellement l'exception envoyée et ignorer le
reste. Ce n'est pas ce qu'il y a de plus beau, mais ¢a existe.

L'interception d'une exception d'erreur est une chose trés courante pour
les méthodes qui allouent des éléments. Par exemple, imaginez une
méthode F () qui ouvre un fichier quand elle est invoquée, et le referme
quand elle se termine. Quelque part dans le cours de son exécution, F ()
invoque G (). Une exception envoyée de G() passerait directement a
travers F () sans lui laisser la moindre chance de fermer le fichier. Celui-ci
resterait donc ouvert jusqu'a ce que le programme lui-méme se termine.
Une solution idéale serait que F{) contienne un bloc catch qui ferme les
fichiers ouverts. Bien entendu, ¥ () est libre de passer l'exception au
niveau supérieur apres en avoir fait ce qu'il fallait pour ce qui la concerne.

Il y a deux manieres de renvoyer une erreur. La premiére consiste a
envoyer une deuxiéme exception, avec les mémes informations ou éven-
tuellement des informations supplémentaires :

3 76 Quatriéme partie : La programmation orientée objet

Console.WriteLine(e.Message);
}
}

/] £2 - - préparez-vous & attraper une exception MyException
public void f2(bool bExceptionType)
{
try
{
£3(bExceptionType);
}
catch(MyException me)
{
Congole.WriteLine("Exception MyException attrapée dans £f2()");
Console.WriteLine(me.Message);
}
]

// £3 - - n'essayez pas d'attraper des exceptions
public void f3(bool bExceptionType)
{
f4{(bExceptionType);
}

// £4 - - envoie des exceptions d'un type ou d'un autre
public void f4(bool bExceptionType)
(
/! nous travaillons avec un objet local
MyClass mc = new MyClass();
if (bExceptionType)
{
/] une erreur se produit - l'objet est envoyé avec l'exception
throw new MyException("MyException envoyée dans f4()",
me);
}

throw new Exception("Exzception générique envoyée dans £4()");

}

public static void Main(string[] args)

{
/! envoie d'abord une exception générique
Console.WriteLine("Envoie d'abord une exception générique");
new Classl().fl(false);
// envoie maintenant une de mes exceptions
Console.WriteLine("\nEnvoie d'abord une exception spécifique");
new Classl().fl(true);

// attend confirmation de 1'utilisateur
Console.WriteLine("Hit Appuyez sur Entrée pour terminer...");

374

Quatrieme partie : La programmation orientée objet

]
catch(Exception e)
{

/] les autres exceptions non encore attrapées sont attrapées ici

)

SiSomeOtherFunction()envoymtun(ﬂﬁetException,CduFCinesermt
pas attrapé€ par l'instruction catch (MyException) car une Exception
n'est pas de type MyException. Il serait attrapé par l'instruction catch
suivante : catch (Exception).

QQ,\)EZ PAJ‘
S Sy : ; .
= Touteckwsequ1henh&deMyExceptlonEST_UNEPQﬁkceptlon:
class MySpecialException : MyException
{
/1. . . instructions quelconques ...
)
Si elle en a la possibilité, I'instruction catch MyException attrapera tout
objet MySpecialException envoyé.
WTON P N
& Faites toujours se succéder les instructions cztch de la plus spécifique a
< la plus générale. Ne placez jamais en premier l'instruction catch la plus

générale :

public void SomeFunction()
{
try
{
SomeOtherFunction();
1
catch(Exception me)
{
/1 tous les objets MyException sont attrapés ici
}
catch(MyException e)
{
/! aucune exception ne parvient jamais jusqu'ici parce qu'elle
/1 est attrapée par une instruction catch plus générale
}
]

Dans cet exemple, l'instruction catch la plus générale coupe l'herbe sous
le pied de la suivante en interceptant tous les envois.

3 72 Quatriéme partie : La programmation orientée objet

Cette classe CustomException est faite sur mesure pour signaler une erreur
au logiciel qui traite avec la tristement célebre MvClzss. Cette sous-classe
d'Txception met de coté la méme chaine que l'original, mais dispose en
plus de la possibilité de stocker dans l'exception la référence au fautif.

L'exemple suivant attrape la classe CuszonZzcention et met en utilisation
ses informations sur ivClass !

public class Classl
{
public void SomeFunction()
{
try
{
// . . . opérations préalables & la fonction exemple
SomeOtherFunction();
// . . . autres opérations.
)
catch(MyException me)
{
/! vous avez toujours accés aux méthodes d'Exception
string s = me.ToString();
/] mais vous avez aussi accds 4 toutes les propriétés et méthodes
/] de votre propre classe d'exceptions
MyClass mo = me.MyCustomObject;
/1 par exemple, demandez & 1'objet MyClass de s'afficher lui-méme
string s = mo.GetDescription();
}
}
public void SomeOtherFunction()
{
/] création de myobject
MyClass myobject = new MyClass():
/] . . . signale une erreur concernant myobject .
throw new MyEzception("Erreur dans 1'objet de MyClass", myobject);
// . . . reste de la fonction . . .

]

Danscefragnuﬂﬂ:decode,SomeFunction&)invoqueSomeOtherFunctiOnf) de
lintérieur d'un bloc «rv. SomeOtherfunction() crée et utilise un objet
myobiect. Quelque part dans ScrmeOtherfunction (), une fonction de vérifica-
tion d'erreur se prépare a envoyer une exception pour signaler qu'une condi-
tion d'erreur vient de se produire. Plutdt que de créer une simple Zxception,
SomeFunction () se sert de la toute nouvelle classe lyException, pour en-

voyer non seulement un message d'erreur, mais aussi l'objet nyob iect fautif.

3 70 Quatrieme partie : La programmation orientée objet

,\@HNIQ(, Comme Mai:(] est le point de départ du programme, il est bon de toujours

NOr

S8E

en placer le contenu dans un bloc tr+. Toute exception qui ne sera pas
"attrapée” ailleurs remontera fmalement jusqu'aliain (1. C'est donc votre

derniere opportunité de récupérer une erreur avant qu'elle aboutisse a

Windows, dont le message d'erreur sera beaucoup plus difficile a interpréter.

Le bloc cateh situé alafin de 11a<1: () attrape I'objet Exception et utilise sa
méthode ToSt-in¢ {} pour affmher sous forme d'une simple chaine la majeure
partie des informations sur l'erreur contenues dans l'objet exceptio:.

La propriété Exception.l=suage retourne un sous-ensemble plus lisible,
mais moins de%cnptlf des informations sur l'erreur.

Cette version de la fonction Fzc:criz1 (" contient la méme vérification pour
un argument négatif que la précédente. Si largument est négatif, Factorial ()
met en forme un message d'erreur qui décrit le probléme, incluant la valeur
incriminée. Factorial (1 regroupe ensuite ces informations dans un objet
Exception nouvellement créé, qu'elle envoie a la fonction appelante.

La sortie de ce programme apparait comme suit (j'ai un peu arrangé les
messages d'erreur pour les rendre plus lisibles) :

, factorielle = 720
, factorielle = 120
factorielle = 24
, factorielle = 6
, factorielle = 2
, factorielle =1
i=90, factorielle = 0
Erreur fatale :
System.Exception: Argument négatif illicite passé & Factorial -1

at Factorial(Int32 nValue) in c:\cffprogram\Factoriallclassl.cs:line 23

at FactorialException.Classl.Main(String[] args) in c:\cfprogram\Factoriall

classl.cs:line 52
Appuyez sur Entrée pour terminer...

[Sl ¥ S TR R
[
=R W O

Les premiéres lignes affichent les véritables factorielles des nombres 6 &
0. La factorielle de -1 génére un message commencant par Erreur fa-
tale, ce qui est susceptible d'attirer I'attention de I'utilisateur.

La premiére ligne du message d'erreur a été mise en forme dans la fonc-
tion Factorial () elle-méme. Cette ligne décrit la nature du probléme, en
indiquant la valeur incriminée -1.

368 Quatrieme partie : La programmation orientée objet

throw new Exception("Description de 1'erreur");
// . . . suite de la fonction . . .

La fonction SomeFunction () contient un bloc de code identifié par le mot-
clé «ry. Toute fonction appelée dans ce bloc, ou toute fonction qui l'ap-
pelle, est considérée comme faisant partie du bloc try.

Un bloc «rv est immédiatement suivi par le mot-clé catch, lequel est suivi
par un bloc auquel le controle est passé si une erreur se produit en un
endroit quelconque dans le bloc try. L'argument passé au bloc catch est
un objet de la classe Exception ou d'une sous-classe de celle-ci.

A un endroit quelconque dans les profondeurs de SomeOtherFunction (),
une erreur se produit. Toujours préte, la fonction signale une erreur a
I'exécution en envoyant (throw) un objet Exception au premier bloc pour
que celui-ci I'attrape (catch).

Puis-je avoir un exemple ?

Le programme FactorialException suivant met en évidence les élé-
ments clés du mécanisme des exceptions :

/] FactorialException — crée une fonction factorielle qui
/1 indique & Factorial() les arguments illicites
2 en utilisant un objet Exception
' using System;
namespace FactorialException
{
/] ¥MyMathFunctions — collection de fonctions mathématiques
/1 de ma création (pas encore grand-chose & montrer)
public class MyMathFunctions
{
/] Factorial — retourne la factorielle d'une valeur
1 fournie
public static double Factorial(int nValue)
{
/] interdit les nombres négatifs
if (nValue < 0)
{
// signale un argument négatif
string s = String.Format(
"Argument négatif illicite passé a Factorial {0}",

366 Quatriéme partie : La programmation orientée objet

d'erreur que la fonction appelante ne teste pas. Bien sir, en tant que program-
meur en chef, je peux me laisser aller a proférer des menaces. Je me souviens
d'avoir Iu toutes sortes de livres de programmation regorgeant de menaces de
bannissement du syndicat des programmeurs pour ceux qui ne s'occupent pas
des codes d'erreur, mais tout bon programmeur FORTRAN sait bien qu'un
langage ne peut obliger personne a vérifier quoi que ce soit, et que, tres
souvent, ces vérifications ne sont pas faites.

Souvent, méme si je vérifie l'indication d'erreur retournée par Factorial()
ou par toute autre fonction, la fonction appelante ne peut rien faire d'autre
que de signaler l'erreur. Le probléme est que la fonction appelante est
obligée de tester toutes les erreurs possibles retournées par toutes les
fonctions qu'elle appelle. Bien vite, le code commence a avoir cette allure 1a :

/! appelle SomeFunction, lit l'erreur retournée, la traite

/] et retourne

errRtn = someFunc();

if (errRtn == SF_ERRORL)

{
Console.WriteLine("Erreur de type 1 sur appel & someFunc()");
return MY_ERROR_1;

}

if (errRtn == SF_ERROR2)

{
Console.WriteLine("Erreur de type 2 sur appel & someFunc()");
return My ERROR_2;

}

/1 appelle SomeOtherFunctions, lit 1l'erreur, retourne, et ainsi de suite

errRtn = someQtherFunc();

if (errRtn == SOF_ERROR1)

(.
Console.WriteLine("Erreur de type 1 sur appel & someFunc()");
return MY _ERROR 3;

]

if (errRtn == SOF_ERROR2)

{
Console.WriteLine("Erreur de type 1 sur appel & someFunc()");
return MY ERROR 4;

}

Ce mécanisme présente plusieurs inconvénients :
v 1l est trés répétitif.

1+ 1l oblige le programmeur a inventer de nombreuses indications
d'erreur et a en maitriser I'emploi.

364 Quatrieme partie : La programmation orientée objet

if (dFactorial == MyMathFunctions.NON_INTEGER_VALUE)
[
Console.WriteLine
("Factorial() a re¢u un nombre non entier");
break;
}
/] affiche le résultat a chaque passage
Console.WriteLine("i = (0}, factorielle = {1}",
i, MyMathFunctions.Factorial(i));
}
// attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

}

Tactorial () commence maintenant par effectuer une série de tests. Le
premier regarde si la valeur passée est négative (0 est accepté parce quil
donne un résultat raisonnable). Si oui, la fonction retourne immédiatement une
indication d'erreur. Si non, la valeur de 'argument est comparée a sa version
entiere : si elles sont égales, c'est que la partie décimale de I'argument est nulle.

Main () teste le résultat retourné par Factorial (), ala recherche de l'indica-
tion éventuelle d'une erreur. Toutefois, des valeurs comme -1 et -2 n'ont
guere de signification pour un programmeur qui effectue la maintenance de
son code ou qui l'utilise. Pour rendre un peu pius parlante l'erreur retournée,
la classe MyMathFunct ione définit deux constantes entieres. La constante
NEGATIVE NUMBER recoit la valeur -1, et NON_INTEGER_VALUE recoit la valeur
-2. Cela ne change rien, mais l'utilisation des constantes rend le programme
beaucoup plus lisible, en particulier la fonction appelante Main ().

Dans la convention sur les noms Southern Naming Convention, les noms des
constantes sont entiérement en majuscules, les mots étant séparés par un tiret
de soulignement. Certains programmeurs, plus libéraux, refusent de faire
allégeance, mais ce n'est pas la convention qui a des chances de changer.

Les constantes contenant les valeurs d'erreur sont accessibles par la
classe, comme dans MyifathClass. NEGATIVE NUMBER. Une variable de
type const est automatiquement statique, ce qui en fait une propriété de
classe partagée par tous les objets.

La fonction Factoriz’ () signale maintenant qu'une valeur négative lui a
été passée comme argument. Elle le signale & Main () qui se termine alors
en affichant un message d'erreur beaucoup plus intelligible :

362 Quatrieme partie : La programmation orientée objet

&
S
=

négatif. Ensuite, remarquez que les valeurs négatives ne croissent pas de
la méme maniére que les valeurs positives. Manifestement, il y a quelque
chose qui cloche.

Les résultats incorrects retournés ici sont assez subtils par rapport a ce qui
aurait pu se produire. Si la boucle de Factorial () avait été écrite sous la
formedo (...} while (dValue != 0),le programme se serait planté en
passant un nombre négatif. Bien sir, je n'aurais jamais écrit une condition
comme while(dValue != 0),car les erreurs dues a l'approximation
auraient pu faire échouer de toute facon la comparaison avec zéro.

Retourner une indication d'erreur

doit donc comporter un test pour vérifier que ces COHdlthl’lS sont remplles

Mais que fera la fonction Factorial () avec une condition d'erreur si la
chose se produit ? Elle connaitra I'existence du probléme, mais sans
savoir comment il s'est produit. Le mieux que Fzctorial {; puisse faire
est de signaler les erreurs a la fonction qui l'appelle (peut-etre celle-ci
sait-elle d'ou vient le probleme).

La maniére classique d'indiquer une erreur dans une fonction consiste a
retourner une certaine valeur que la fonction ne peut pas autrement retour-
ner. Par exemple, la valeur d'une factorielle ne peut pas étre négative. La
fonction Factorial () peut donc retourner -1 si un nombre négatif Iui est
passé, -2 pour un nombre non entier, et ainsi de suite. La fonction appelante
peut alors examiner la valeur retournée : si cette valeur est négative, elle sait
qu'une erreur s'est produite, et la valeur exacte indique la nature de l'erreur.

Le programme FactorialErrorReturn suivant contient les ajustements
nécessaires :

/] FactorialErrorReturn — crée une fonction factorielle qui
/! retourne une indication d'erreur quand
11 quelque chose ne va pas
using System;
namespace FactorialErrorReturn
{
/! MyMathPunctions — collection de fonctions mathématiques
/1 de ma création (pas encore grand-chose & montrer)

360 Quatriéme partie : La programmation orientée objet

Traiter une erreur a ('ancienne mode : la retourner

Ne pas signaler une erreur a I'exécution n'est jamais une bonne idée. Je
dis bien jamais : si vous n'avez pas l'intention de déboguer vos program-
mes et si vous ne vous souciez pas qu'ils marchent, alors seulement c'est
peut-étre une bonne idée.

Le programme FactorialError suivant montre ce qui arrive quand les
erreurs ne sont pas détectées. Ce programme calcule et affiche la fonction
factorielle pour de nombreuses valeurs, dont certaines sont tout juste licites.

La factorielle du nombre N est égale a N * (N-1) * (N-2) * ... * 1. Par
exemple, la factorielle de 4 est 4 * 3 * 2 * 1, soit 24. La fonction factorielle
n'est valide que pour les nombres entiers naturels (positifs).

[/ FactorialWithError — créer et utiliser une fonction
/! factorielle qui ne contient aucune
I vérification ‘
using System;
namespace FactorialWithError
{
// MyMathFunctions — collection de fonctions mathématiques
/1 de ma création (pas encore grand-chose & montrer)
public class MyMathFunctions
{
/1 Factorial — retourne la factorielle d'une valeur
/! fournie , :
public static double Factorial(double dValue)
{
/] commence par donner la valeur 1 & un “accumulateur"
double dFactorial = E : i
//- fait une boucle 2 partlr de nValue en descendant de 1 chaque fOIS .
// pour multiplier 1'accumulateur
/] par la valeur obtenue
do
{
dFactorial *= dValue;
dValue -= 1.0;
} while(dValue > 1);
/] retourne la valeur stockée dans 1'accumulateur
return dFactorial;
}
}
public class Classl
{
‘public static void Main(string[] args)

4 ’6 Cinquiéme partie : Programmer pour Windows avec Visual Studio

components.Dispose();
}
}
base.Dispose(disposing);
}
fregion Windows Form Designer generated code
/1] {summary>
//! Required method for Designer support - do net modify
//] the contents of this method with the code editor.
/1] {/summary>
private void InitializeComponent()
{
1
/! Forml
/1 ,
this.AutoScaleBaseSize = new System.Drawing.Size{(5, 13);
this.ClientSize = new System.Drawing.Size(292, 273):
this.Name = "Formi"; Vi
this.Text = "Simple Editor";
}
fendregion
/11 {summary>
/// The main entry point for the application.
/11 {/summary>
[STAThread]
static void Main()
{
Application.Run{new Forml());
} ,
}
}

Je sais que le programme doit commencer par static Main(), qui se trouve
ici tout en bas du listing. Voila ce qui nourrit ma conviction que c'est ici qu'il
faut commencer. La seule instruction que contient Main () crée un objet
Forml () et le passe & une méthode Application.Run(). Je ne suis pas str
de ce que fait Run (), mais je soupconne fortement que la classe Forml
correspond a la fenétre Form1 que j'ai vue dans le Concepteur.

En fait, Application.Run() lance l'objet Form sur son propre thread
d'exécution. Le thread initial s'arréte aussitot que le nouveau Forml est
créé. Le thread Form1 se poursuit jusqu'a ce qu'il soit intentionnellement
arrété. Le programme SimpleEditor lui-méme poursuit son exécution
aussi longtemps que des threads définis par l'utilisateur sont actifs.

Le constructeur de Forml invoque une méthode InitializeComponent ().
Tout code d'initialisation du programmeur doit €tre placé apres cet appel
(tout au moins, c'est ce que dit le commentaire).

Chapitre 20

Les dix plus importantes
difféerences entre C# et C++

Dans ce chapitre :

Pas de données ni de fonctions globales.

Tous les objets sont alloués a partir du tas.

Les variables de type pointeur ne sont pas autorisées.
Vendez-moi quelques-unes de vos propriétés.

Je n'inclurai plus jamais un fichier.

Ne construisez pas, initialisez.

Définis soigneusement tes types de variable, mon enfant.
Pas d'héritage multiple.

Prévoir une bonne interface.

Le systeme des types unifiés.

L e langage C# est assez largement basé sur C++. Cela n'a rien d'étonnant,
puisque Microsoft avait déja fait Visual C++, qui a été le langage de
programmation le plus répandu pour l'environnement Windows. Tous les
meilleurs accros de la programmation s'en servaient. Mais ca fait déja quel-
que temps que C++ avoue son age.

C# n'est pas une couche de peinture sur une carcasse rouillée. Il comporte
de nombreuses améliorations, a la fois par l'ajout de nouvelles fonctionnali-
tés et par le remplacement de fonctionnalités déja satisfaisantes par de
meilleures. Voici les dix meilleures améliorations de C# par rapport a C++.

4 74 Cinquiéme partie : Programmer pour Windows avec Visual Studio

€Z P4
$\3 $§
N
=

Figure 17.3:
Changer la
proprieté
Text du
formulaire
changele
nom qui
apparatit
dans sa

barre de titre.

B SimpleEditor

Un formulaire est une fenétre contenant une barre de titre, et
optionnellement des barres de défilement. Dans la terminologie de
C#, une fenétre n'est rien d'autre qu'un cadre rectangulaire dans
lequel vous pouvez placer des images ou du texte. Une fenétre n'a
pas nécessairement des menus ou des étiquettes, ni méme ces
petits boutons Fermer, Réduire et Restaurer.

Générez le programme que Windows vient de créer sur la base
du modéle.

Vous pouvez me traiter de paranoiaque, mais je veux étre certain
que toutes les erreurs qui pourront apparaitre par la suite seront
réellement de mon fait et ne viendront pas de Visual Studio. Sans
aucun doute, la solution va se générer sans encombre a ce stade.
L'exécution de ce programme ne révele rien d'autre qu'un formu-
laire vierge, doté de I'étiquette Forml. Il suffit de cliquer sur le
bouton Fermer pour arréter le programme.

Le volet qui occupe la partie droite de l'affichage est la fenétre
Propriétés. Ca ne saute peut-étre pas aux yeux, mais son contenu
est en relation directe avec le formulaire qui est dans la partie
gauche de l'affichage. Par exemple, vous pouvez voir que la pro-
priété Text est Forml. Vous pouvez la modifier pour vous rendre
compte de l'effet produit.

Sélectionnez la propriété Text, et donnezlui la valeur Simple Editor.

L'étiquette Forml contenue dans la barre de titre du formulaire
devient Simple Editor.

Générez a nouveau l'application, et exécutez-la.

Le nom du formulaire a changé, comme le montre la Figure 17.3.

Chapitre 19 : Les dix erreurs de génération les plus courantes... 4 77

v Votre chien a mangé votre manuscrit. Plus simplement, vous avez
oublié cette méthode ou vous n'en connaissiez pas l'existence.
Soyez plus attentif la prochaine fois.

v Vous avez fait une faute de frappe dans le nom de la méthode ou
vous lui avez passé de mauvais arguments.

Examinez I'exemple suivant :

Interface Me

{

void aFunction(float);

}

public class MyClass : Me

{
public void aFunction(double d)
{
}

}

La classe MyClass n'implémente pas la fonction aFunction(flozz! de
I'interface. La fonction aFunction(double) ne compte pas, parce que les
arguments ne correspondent pas.

Sur le métier remettez votre ouvrage, et passez en revue chacune de vos
méthodes jusqu'a ce que toutes les méthodes de l'interface soient correc-

tement implémentées.

&tiNlg,, . . N . .
& ¢ Ne pas implémenter complétement une interface est essentiellement la

& -~ t P ~ ~ . 1
=4 méme chose que d'essayer de créer une classe concréte a partir d'une
classe abstraite sans redéfinir toutes les méthodes abstraites.

'methodName' : tous les chemins de code ne
retournent pas nécessairement une valeur

Par ce message, C# vous dit que votre méthode a été déclarée non-void et
que un ou plusieurs chemins d'exécution ne retournent rien. Cela peut se
produire de I'une des deux maniéres suivantes :

¥ Vous avez une instruction if avec un return sans valeur spécifiée.

v Plus vraisemblablement, vous avez calculé une valeur et vous ne
l'avez jamais retournée.

4 72 Cinquiéme partie : Programmer pour Windows avec Visual Studio

Figure 17.1:
Ma solution
du probleme
SimpleEdizor.
]

Le menu Edition a besoin des trois grandes options d'édition : Couper,
Copier et Coller. D'autre part, tous les éditeurs comprennent les raccour-
cis clavier de ces trois options : Ctrl+X, Ctrl+C, et Ctrl+V, respectivement.

SimpleEditor aura également besoin d'un menu Format, comportant les
options Gras et Italique pour mettre en forme le texte.

Fournir une aide véritable est une tache difficile — beaucoup trop compliquée
pour un éditeur simple comme SimpleEditor. Le menu d'aide de cette
application devra se contenter du minimum absolu : I'option A propos de.

Derniere exigence : il nous faut un moyen de controler la taille de police.
Voila une chose qui laisse la place a un peu de fantaisie. En plus d'une
simple fenétre dans laquelle I'utilisateur peut entrer la taille de police
souhaitée, SimpleEditor y ajoutera une sorte de barre munie d'un index
que l'on peut faire glisser, que nous appellerons TrackBar. Pour obtenir 8
points, faites glisser l'index a I'extrémité gauche. Faites-le glisser a I'extré-
mité droite, et vous obtenez 24 points. (J'ai une autre raison de procéder
ainsi : je veux vous montrer comment relier deux objets d'l/O de maniére
gu'un changement dans I'un soit répercuté dans l'autre.)

Ma solution

Avec les parameétres que j'ai décrits dans la section précédente, je suis
arrivé a la solution montrée par la Figure 17.1. Vos propres résultats
peuvent étre différents selon vos gotits personnels.

=0lx|

Fichier Edition Format

Ceci est du texte en 12
Ceci est en gras
Ceci est en italique
Plus grand

Flus peti

Ef de retour 212 points

pornts normal

Talle de police §1 2
a 1

Dessiner la solution

Comme vous pouvez l'imaginer, j'ai dQ passer par de nombreuses étapes
pour arriver en partant de zéro a I'ceuvre d'art montrée par la Figure 17.1.

Chapitre 19 : Les dix erreurs de génération les plus courantes... 469

cloche entre Visual Studio et le répertoire du programme. Fermez la
solution, quittez Visual Studio, redémarrez, puis ouvrez a nouveau la
solution. Si ca ne marche pas, je suis sincerement désolé.

Le mot-clé new est requis sur 'subclassName.
methodName', car il masque le membre hérité
‘baseclassName.methodName'

Avec ce message, C# vous dit que vous avez surchargé une méthode dans
une classe de base sans la redéfinir par une méthode qui la cache (voyez le
Chapitre 13 pour en savoir plus a ce sujet). Regardez I'exemple suivant :

'public class BaseClass
{
public void Function()
{
}
}
public class SubClass : BaseClass
(
public void Function()
{
}
}
public class MyClass
{
public void Test()
{
~ SubClass sb = new SubClass();
- sb.Function();
} .
}

La fonction Test {) ne peut pas accéder a la méthode BaseClass. Function()
a partir de I'objet sb d'une sous-classe, car elle est redéfinie par SubClass.
Function (). Vous aviez l'intention de faire 'une des choses suivantes :

v Vous vouliez redéfinir la méthode de la classe de base. Dans ce cas,
ajoutez le mot-clé new dans la définition de SubClass, comme dans
I'exemple suivant :

public cclass SubClass : BaseClass
{

4 70 Cinquieme partie : Programmer pour Windows avec Visual Studio

Quel est le probleme ?

Il m'a fallu une longue et difficile réflexion (au moins un quart d'heure)
pour imaginer un probléme qui mette en lumiére la puissance de C# sans
me faire prendre du poids. Le voici : créer un éditeur simple que nous
appellerons SimpleEditor, Il aura les caractéristiques suivantes :

17

L'utilisateur peut entrer et effacer du texte (sinon. ce ne serait pas
vraiment un éditeur).

L'utilisateur peut couper et coller du texte, non seulement dans
SimpleEditor, mais aussi entre S:mplefdivor et d'autres applica-
tions, par exemple Word.

SimpleEditcr supporte les polices en gras, en italique ou les deux.

L'utilisateur peut sélectionner une taille de police de 8 a 24 points.
Ces limites sont arbitraires, mais il s'agit ici de ne pas aller trop loin
en nombre de points.

SimpleEditor ne doit pas vous permettre de quitter sans vous
avoir demandé poliment d'enregistrer le fichier que vous venez de
modifier (mais vous restez libre de quitter sans enregistrer si c'est
bien ce que vous voulez).

Exposer le probléme

Chaque fois que vous étes devant un probléme a résoudre, vous devez
commencer par vous mettre devant le tableau noir et réfléchir sérieuse-
ment aux obstacles a franchir. Dans le cas d'une application Windows,
cette tache se divise en trois étapes :

1.

Décrivez le probléme en détail.

Ces détails sont les spécifications auxquelles doit se conformer
l'application. Au cours de la programmation, vous pourrez étre
tenté d'ajouter une fonctionnalité ici ou la. Résistez. Cette maladie
s'appelle fonctionnalite. Tout en avancant, notez les améliorations
possibles pour une version future, mais l'ajout de fonctionnalités en
cours de route fait courir le risque de créer une application qui finit
par étre tout a fait autre chose que ce qu'elle était censée étre au
départ.

Chapitre 19 : Les dix erreurs de génération les plus courantes... 46 7

Par défaut, un membre d'une classe est private, et une classe est internal.
Aussi, nPrivateMember est toujours privé dans l'exemple suivant :

class MyClass
{
public void SomeFunction()
{
YourClass uc = new YourClass();
/] ceci ne fonctionne pas correctement parce que MyClass
/] ne peut pas accéder au membre privé
uc.nPrivateMember = 1;
}
}
public class YourClass
{

int nPrivateMember = 0; /! ce membre est toujours privé

}

En outre, méme si SomeFuncticn() est déclarée pi:blic, on ne peut pasy
accéder a partir d'une classe d'un autre module, car 1yClass elle-méme
est interne.

La morale de l'histoire est la suivante : "Spécifiez toujours le niveau de
protection de vos classes et de leurs membres." Et nous avons un lemme
qui dit : "Ne déclarez pas de membres publics dans une classe qui elle-
méme est interne. Ca n'apporte que de la confusion.”

Utilisation d'une variable locale non assignée 'n'

Comme il le dit si clairement, ce message indique que vous avez déclaré
une variable mais que vous ne lui avez pas donné de valeur initiale. C'est en
général un simple oubli, mais ¢a peut aussi se produire lorsque vous voulez
vraiment passer une variable comme argument cut a une fonction :

public class MyClass
{
public void SomeFunction()
{
int n;
/! ceci fonctionne parce que Cf ne retourne une valeur que dans n
/! il ne passe pas une valeur dans la fonction
SomeOtherFunction(out n);
}
public void SomeOtherFunction(out int n)

{

Dans cette partie. ..

omprendre CF est une chose, apprendre a écrire une

application Windows compléte avec tous ses assemblages
et ses décorations bien en place en est une autre. Rien que pour
le plaisir. la cingsiitane partie vous guide pas a pas dans l'utilisa-
tion de C# avec F'interface Visual Studio afin de créer une applica-
tion Windows “"qui ne soit pas triviale”. Vous serez fier dn résultat,
méme si vos enfants n'appellent pas leurs copains pour le voir.

Chapitre 19 : Les dix erreurs de génération les plus courantes... 465

// ceci fonctionne trés bien
float fResult =2 * f;
return fResult;

}

La constante 2 est de type int. Un int multiplié par un - -z donne un
float, qui peut étre stocké dans la variable TResul«, de type float.

Le message d'erreur de conversion implicite peut aussi apparaitre lorsque
vous effectuez des opérations sur des types "non naturels”. Par exemple,
vous ne pouvez pas additionner deux variables de type char, mais C# peut
convertir pour vous une variable de type char en une valeur de type int
lorsque c'est nécessaire pour réaliser I'opération. Ce qui conduit & ceci :

class MyClass
{
static public void SomeFunction()
{
char ¢l = 'a';
char ¢2 = 'b';
/] je ne sais méme pas ce que ceci pourrait vouloir dire ; c'est illicite
/!l mais pas pour la raison que vous croyez
char ¢3 = ¢l + ¢2;

Additionner deux caractéres n'a en soi aucun sens, mais C# essaie quand
méme. Comme l'addition n'est pas définie pour le type ct.ar, il convertit
cletc2envaleurs int avec lesquelles il effectue I'addition. Malheureuse-
ment, la valeur irt qui en résulte ne peut pas étre convertie & nouveau en
type char sans intervention extérieure.

La plupart des conversions, mais pas toutes, se passent trés bien avec un
cast explicite. La fonction suivante fonctionne sans se plaindre :

class MyClass
{
static public float FloatTimes2(float f)
{
/] ceci fonctionne trés bien avec le cast explicite
float fResult = (float) (2.0 * f);
return fResult;

Chapitre 19 : Les dix erreurs de génération les plus courantes... 463

static public void MyFunction(Student s)
{
Console.WriteLine("Nom de 1'étudiant = " + s.sStudentName);
Congole.WriteLine("Numéro d'identification de 1'étudiant = " + s.nld);
}
}

Le probléme est ici que MyFurnction () fait référence a un membre donnée
nId au lieu du véritable membre donnée n1D. Vous voyez la ressemblance,
mais C# ne la voit pas. Le programmeur a écrit n1d, mais il n'y a pas de n1d,
et puis c'est tout.

Un peu moins populaire, mais également dans le Top 10, vous avez aussi
la possibilité que la variable ait été déclarée dans une portée différente :

class MyClass
{
static public void AverageInput()

{

int nCount = 0;

while(true)

{
/1 1it un nombre
string s = Console.ReadLine();
int n = Int32.Parse(s);
/] quitte si 1'utilisateur entre un nombre négatif
if (n-< 0)
{

break:

}
/] ajoute la valeur entrée
nSum += n;
nCounttt;

[/ affiche maintenant les résultats
" “Console.WriteLine("Le total est " + nSum);
_Console.Writeline("La moyenne est " + nSum / nCount):
/] ceci produit un wessage d'erreur de génération
Console.WriteLine("La valeur finale était " + g);

La derniére ligne de cette fonction est incorrecte. Le probléme est qu'une
variable est limitée a la portée dans laquelle elle est définie. La variable s
n'est pas définie en dehors de la boucle while ().

404 Quatrieme partie : La programmation orientée objet

que le programme donne la sortie attendue. Une fois que le programme a
lu le fichier, il se termine. Si l'utilisateur veut lire un autre fichier, il lui
suffit d'exécuter a nouveau le programme.

Le programme commence par une boucle wh:1e, comme son cousin
FileWrite. Dans cette boucle, il va chercher le nom de fichier entré par
l'utilisateur. Si le nom de fichier est vide, le programme envoie un message
derreur : Vous avez entré un nom de fichier vide.Dans le cas contraire,
le nom de fichier est utilisé pour ouvrir un objet FileStrear en mode de
lecture. L'appel File.Open() esticile méme que celui utilisé dans Fi clhirite:

v Le premier argument est le nom du fichier.

v Le deuxiéme argument est le modele du fichier. Le mode
FileMode.Open dit: "Ouvrir le fichier s'il existe, sinon envoyer une
exception.” L'autre possibilité est Cperliew, qui crée un fichier de
longueur nulle si celui-ci n'existe pas déja. Personnellement, je n'ai
jamais rencontré le besoin de ce mode (qui veut lire un fichier
vide ?), mais chacun méne sa barque comme il I'entend.

+* Le dernier argument indique que je veux lire a partir de ce
FileStream. Les autres solutions sont irite et Readirit=

L'objet FileStream fs résultant est alors inséré dans un objet Streamzeader
sr qui offre des méthodes pratiques pour accéder au fichier texte.

Toute cette section d'ouverture de fichier est enchassée dans un bloc trv,
lui-méme enchassé dans une boucle while, insérée dans une énigme. Ce
bloc try est strictement réservé a 'ouverture de fichier. Si une erreur se
produit pendant le processus d'ouverture, I'exception est attrapée, un
message d'erreur est affiché, et le programme reprend au début de la
boucle pour demander a nouveau un nom de fichier a l'utilisateur. Toute-
fois, si le processus aboutit a un objet nouveau-né StreamReader en bonne
santé, la commande break fait sortir de la logique d'ouverture de fichier et
fait passer le chemin d'exécution du programme a la section de lecture.

FileRead et FileWrite représentent deux manieres différentes de traiter
des exceptions de fichier. Vous pouvez insérer tout le programme de
traitement de fichier dans un méme bloc + rv, comme dans Fileiirite, ou
bien vous pouvez donner son propre bloc tzv a la section d'ouverture de
fichier. Cette derniére solution est généralement la plus facile, et elle
permet de générer un message d'erreur plus précis.

Une fois le processus d'ouverture de fichier terminé, le programme
FileRead lit une ligne de texte dans le fichier en utilisant l'appel

Chapitre 19

Les dix erreurs de géneration
les plus courantes
(et commenty remédier)

Dans ce chapitre :

'className' ne contient pas de définition pour ‘'memberName'.

Impossible de convertir implicitement le type 'x en 'y

‘className.memberName' est inaccessible en raison de son niveau de protection.
Utilisation d'une variable locale non assignée n'.

Le fichier 'programName.exe’ ne peut pas étre copié dans le répertoire d'exécution.
Le processus ne peut pas...

Le mot-clé new est requis sur 'subclassName.methodName', car il masque le
membre hérité 'baseclassName.methodName'.

'subclassName' : ne peut pas hériter de la classe scellée 'baseclassName'.
‘className' n'implémente pas le membre d'interface ‘'methodName'.

'methodName' : tous les chemins de code ne retournent pas nécessairement une
valeur,

} attendue.

D e facon tres scolaire, C# fait de son mieux pour trouver des erreurs
dans votre code. Il se jette sur les fautes de syntaxe comme un
fauve sur sa proie. En dehors des erreurs vraiment bétes, comme essayer
de compiler votre liste de commissions, on a I'impression d'entendre
toujours le méme cri de protestation, inlassablement.

Ce chapitre présente dix messages d'erreur de génération que l'on rencontre
souvent, mais quelques avertissements s'imposent. Tout d'abord, C# est

402 Quatrieme partie : La programmation orientée ohjet

L CRPRGES

Améliorez votre compréhension et votre
vitesse de lecture avec StreznReader

Il est trés agréable d'écrire sur un fichier. mais c'est plutot inutile si vous
ne pouvez pas lire le fichier par la suite. l.e programme =1 [+=cad suivant
affiche sur la console ce qu'il lit dans le flc}um Ce programme lit un
fichier texte commnie celud que crée 57 :

/] FileRead - lit un fichier texte et 1'écrit
/! sur la console
using System;
using System.IC;
namespace FileRead
{
public class Classi
{
public static void Main(string[] args)
(
// il nous faut un objet pour lire le fichier
treamReader sr;
string sFileName = "";
// continue a essayer de lire un nom de fichier jusqu'd ce qu'il en
/] trouve un (la seule maniére de quitter pour l'utilisateur est
/] d'arréter le programme en appuyant sur Ctrl + C)
while(true)
{
try
{
/] 1it le nom du fichier d'entrée
Console.Write("Entrez le nom d'un fichier texte & lire :");
sFileName = Ccnsole.ReadLine();
/] 1'utilisateur n'a rien entré ; envoie une erreur
// pour lui dire que ce n'est pas satisfaisant
if (gFileName.Length == 0)
{
throw new I0Exception("Vous avez entré un nom de fichier vide");
}
/! ouvre un flux de fichier pour la lecture ; ne crée pas
/! le fichier s'il n'existe pas déja
FileStream fs = File.Open(sFileName,
FileMode.Open,
FileAccess.Read);
/! convertit ceci en StreamReader - ce sont les trois premiers
/! octets du fichier qui seront utilisés pour indiquer
// 1'encodage utilisé (mais pas le langage)
sr = new StreamReader(fs, true);

Sixieme partie
Petits suppléments
par paquets de dix

Marketing informatique :
L'interface magique

CRATENNANT—

‘Pour moi,
c'est |a page
d'accueil

Je me
sens mal.

Ab t Je vois
'Explorateur
Windows.

400 Quatriéme partie : La programmation orientée objet

Qe

GHN/g,
<& Z
&

NN/,

NGy,

1 Le type d'acces : Un fichier peut étre ouvert pour la lecture, I'écri-
ture ou les deux.

FileStream dispose de nombreux constructeurs, dont chacun corres-
pond par défaut a un ou deux des arguments de mode et d'accés. Toute-
fois, & mon humble avis, il vaut mieux spécifier explicitement ces argu-
ments, car ils ont un effet important sur le programme.

Dans la ligne suivante, le programme insére dans un objet StreamWriter,
sw, l'objet FileStream qu'il vient d'ouvrir. La classe StreamWriter permet
d'insérer les objets FileStream, afin de fournir un ensemble de méthodes
pour traiter du texte. Le premier argument du constructeur
StreamWriter est I'objet FileStrean. Le deuxiéme spécifie le type
d'encodage a utiliser. L'encodage par défaut est UTFS.

Il n'est pas nécessaire de spécifier I'encodage pour lire un fichier.
StreamWriter inscrit le type d'encodage dans les trois premiers octets
du fichier. A 'ouverture du fichier, ces trois octets sont lus pour déter-
miner l'encodage.

Le programme FilelWrite commence alors a lire sous forme de chaines
les lignes saisies sur la console. Le programme arréte de lire lorsque
l'utilisateur entre une ligne blanche, mais jusque-la il continue & absorber
tout ce qu'on lui donne pour le déverser dans l'objet StreamWriter swen
utilisant la méthode Writeline().

La similitude entre StreamiWriter.WriteLine() et Console.Writeline()
n'est pas qu'une coincidence.

Enfin, le fichier est fermé par l'instruction sw.Close ().

Remarquez que le programme donne a la référence sw la valeur null ala
fermeture du fichier. Un objet fichier est parfaitement inutile une fois que
celui-ci a été fermé. Il est de bonne pratique de donner a la référence la
valeur null une fois qu'elle est devenue invalide, afin de ne pas essayer
de I'utiliser 2 nouveau dans l'avenir.

Le bloc catch qui suit la fermeture du fichier est un peu comme un
gardien de but : il est 1a pour attraper toute erreur de fichier qui aurait pu
se produire en un endroit quelconque du programme. Ce bloc émet un
message d'erreur, contenant le nom du fichier qui en est responsable.
Mais il ne se contente pas d'indiquer simplement le nom du fichier : il
vous donne son chemin d'acceés complet, en ajoutant a 'aide de la mé-
thode Path.Combine () le nom du répertoire courant avant le nom de

Chapitre 18 : Achever votre application Windows 457

private void ApplicationWindowClosing(object sender,
‘System.ComponentModel.CancelEventArgs e)
{

if (1IsChangeOK())

{

e.Cancel = true;

}

}

5. Générez le programme et exécutez-le.
6. Entrez du texte et cliquez sur le bouton de fermeture de la fenétre.

Vous voyez apparaitre le méme message d'avertissement que celui
produit par la commande Fichier/Quitter.

Réaliser vos propres applications Window's

La création d'un programme comme Simpleiditor nécessite de nom-
breuses étapes, et c'est une application relativement simple. Or, il est en
fait beaucoup plus facile de créer une application Windows avec Visual
Studio .NET qu'avec les outils que nous connaissions auparavant. lly a
quatre ou cing ans, méme une petite chose comme l'affichage d'une
simple boite de message était difficile. Au temps anciens de Windows 3.1,
c'était une montagne.

Quoi qu'il en soit, ne vous laissez pas décourager. Pensez a la présenta-
tion et au fonctionnement que vous attendez de votre application. Mettez
tout cela par écrit. Alors seulement, vous pouvez utiliser le Concepteur
de formulaires pour dessiner les éléments qui la composent. Utilisez la
fenétre Propriétés pour identifier les propriétés, statiques et dynamiques,
que vous voulez définir afin que l'application fonctionne exactement
comme vous voulez.

398 Quatriéme partie : La programmation orientée objet

/' FileAccess.lrite,
1/ FileAccess.ReadWrite
FileStream fs = File.Open(sFileName,
FileMode.CreateNew,
FileAccess.Write);
/] génére un flux de fichier avec des caractéres UTF8
sw = new StreamWriter(fs, System.Text.Encoding.UTF8);
// 1it une chaine & la fois, et envoie chacune au
// FileStream ouvert pour écriture
Console.WriteLine("Entrez du texte ; ligne blanche pour arréter");
while(true)
{
// lit la ligne suivante sur la console ;
/! quitte si la ligne est blanche
string sInput = Console.ReadLine();
if (sInput.Length == 0)
{
break;
]
/] écrit sur le fichier de sortie la ligne qui vient d'é&tre lue
sw.WriteLine(sInput);
}
// ferme le fichier que nous avons créé
gw.Close();
sw = null;
}
catch(I0Exception fe)
{
/! une erreur s'est produite quelque part pendant
/] le traitement du fichier - indique & 1'utilisateur
/] le nom complet du fichier :
/! ajoute au nom du répertoire par défaut
/] celui du fichier
string sDir = Directory.GetCurrentDirectory();
string s = Path.Combine(sDir, sFileName);
Console.WriteLine("Erreur sur le fichier{0}", s);
/! affiche maintenant le message d'erreur de l'exception
Console.WriteLine(fe.Message);
}
}
// attend confirmation de l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer..."):
Console.Read();

FileWrite utilise I'espace de nom System. 10 ainsi que System. System. I

contient les fonctions d'l/O sur les fichiers.

Chapitre 18 : Achever votre application Windows 455

|
Figure 18.8:

SimpleEditor

fait apparai-
tre un
avertisse-
ment lorsque
I'utilisateur
essaie de
faire quelque
chose qui
provoguerait
la perte de
ses dernie-
res modifica-
tions.
T

contenu de la zone de texte. Dans le Concepteur de formulaires, sélectionnez
encore une fois le composant R:chTextkox, puis, dans la fenétre Propriétés,
attribuez le nom de méthode Te:tChangec ala propriété TextChanged. Cette

méthode ne fait rien de plus que d'assigner la valeur voulue a notre indicateur :

/1 cette méthode est appelée lorsque le texte est modifié
private void TextChanged(object sender, System.EventArgs e)
{

bTextChanged = true;
}

Il est temps d'essayer le résultat :

1. Dans le programme préalablement régénéré, ouvrez un fichier
RTF.

2. Faites une modification quelconque dans la zone de texte.
3. Sélectionnez Fichier/Quitter.

La boite de dialogue d'avertissement apparait, comme dans la
Figure 18.8. Vous pouvez pousser un soupir de soulagement.

=T

Ceci est |le texte original.

J'ai eécrit ceci depuis le
dernier enregistrement du

fichier. Texte modifié]
Le texte a été madifié. Cliquez sur OK pour ignarer vos modifications.
Taills de p ol Men

8 T v

4. Cliquez sur Qui, et le programme se ferme.

5. Répétez le processus en commencant par I'étape 1. Cliquez sur
Non, et le programme continue comme si rien ne s'était passé.

396 Quatrieme partie : La programmation orientée objet

NN/
‘;4& %

No7,

1/0 asynchrones : est-ce que ¢a vaut la peine d'attendre ?

Normalement, un programme attend qu'une requéte d'l/0 sur un fichier soit satisfaite avant
de poursuivre son exécution. Appelez une méthode read (), et vous ne récupérerez géné-
ralement pas le contrdle aussilongtemps que les données du fichier ne seront pas installées
a bord en sécurité. C'est ce que I'on appelle une I/0 synchrone.

Avec C#, les classes de System. IO supportent également les I/0 asynchrones. En les
utilisant, I'appel a read () restitue immédiatement le contrdle pour permettre au programme
de poursuivre son exécution pendant que la requéte d'l/0 est satisfaite a I'arriére-plan. Le
programme est libre de vérifier |'état d'un indicateur pour savoir si la requéte d'l/0 a abouti.

C'estun peu comme de faire cuire un hamburger. Avec des I/0 synchrones vous mettez la viande
hachée a cuire sur la plague chauffante, vous la surveillez jusqu'a ce qu'elle soit cuite, et ¢'est
seulement a partir de 1a gue vous pouvez vous mettre a couper les oignons qui vont aller dessus.

Avec des|/0 asynchrones,vous pouvez couperlesoignons pendantque laviande hachée est
en train de cuire. De temps en temps, vous jetez un coup d'ceil pour voir si elle est cuite. Le
momentvenu, vous abandonnez uninstantvas oignons, etvous prenez la viande surla plaque
chauffante pour fa mettre sur le pain.

Lesl/0asynchrones peuventaméliorer significativementles performancesd’un programme,
mais elles ajoutent un niveau supplémentaire de complexité.

Utiliser Streamiriter

Les programmes génerent deux sortes de sortie. Certains programmes
écrivent des blocs de dounées dans un pur format binaire. Ce type de
sortie est utile pour stocker des objets d'une maniére efficace.

Beaucoup de programmes, sinon la plupart, lisent et écrivent des chaines de
texte, lisibles par un étre humain. Les classes de flux Streaniirizer et
StreamFeader sont les plus souples des classes accueillantes pour 'homme.

,&c,\\ma,/<° Les données lisibles par un étre humain étaient antérieurement des

é‘/ chaines ASCH, ou, un peu plus tard, ANSI Ces deux sigles se réferent aux
= organisations de standardisation qui ont défini ces formats. Toutefois, le

codage ANSI ne permet pas d'intégrer les alphabets venant de plus loin
que lI'Autriche a I'Est, et de plus loin que Hawai a I'0Ouest. Il ne peut conte-
nir que l'alphabet Jatin. Il ne dispose pas de l'alphabet cyrillique, hébreu,

Chapitre 18 : Achever votre application Windows 453

a cet indicateur lorsqu'un fichier est lu (rien n'y a encore été modifié). Saisir du
texte, couper du texte ou coller du texte dans la zone de texte assigne ~:ue a
cet indicateur. L'exécution de la commande Enregistrer assigne a nouveau
false alindicateur. Donnons a celuici le nom bTex-Chanze .

Naturellement, l'utilisateur peut toujours quitter le programme, méme si
la derniére version de son travail n'a pas été enregistrée, mais il devra
maintenant décider consciemment de le faire (autrement dit, cliquer sur
un bouton OK dans une fenétre d'avertissement).

C'est ce que fait avec simplicité la méthode ZsChangeQK . suivante :

a3

/] la méthode suivante garantit que l'utilisateur ne perdra pas
/! ses modifications par inadvertance, en affichant un message
// si la RichTextBox n'est pas "propre"
bool bTextChanged = false;
private bool IsChangeOK()
{
/! il est toujours sans inconvénient de quitter le programme
/] si rien n'a été modifié
if (bTextChanged == false)
{
return true;
}
/! mais quelque chose a été modifié ; le programme demande
/! & 1'utilisateur ce qu'il veut en faire
DialogResult dr = MessageBox.Show("Le texte a été modifié. "
+ "Cliquez sur OK pour ignorer vos modifications.",
"Texte modifié",
MessageBoxButtons.YesNo);
return dr == DialogResult.Yes;

IsChange0OK () retourne true sil'utilisateur est d'accord pour perdre les
dernieres modifications du contenu de RichTextBEcox. Mais avant tout, si
I'indicateur de modification a pour valeur false, c'est que rien n'a changé
depuis la derniére commande Fichier/Enregistrer, et que rien ne peut donc
étre perdu.

Si quelque chose a été modifié, la fonction ouvre une boite de dialogue
MessageBox pour demander a l'utilisateur ce qu'il veut faire : continuer et
perdre ses modifications. ou annuler et les conserver. La classe Ve :sageBox
est aussi simple que cette boite de dialogue. L.a méthode show () ouvre une
boite de dialogue avec le titre et le message spécifiés. La propriété v<sio dit :
"Faire cette boite de dialogue avec un bouton Oui et un bouton Non." S

394 Quatriéme partie : La programmation orientée objet

v Une méthode déclarée internal est accessible par toutes les classes

du méme espace de nom. Aussi, 'appel class2.D_internal() n'est
pas autorisé. L'appel class3.C_internal () est autorisé parce que
Class3 fait partie de l'espace de nom AccessControl.

Le mot-clé internal protected combine l'accés internal et
l'acces protected. Aussi, l'appel class1.E_internalprotected()
est autorisé, parce que Class! étend Class2 (c'est la partie
protected). L'appel class3.E_internalprotected{() est égale-
ment autorisé, parce que Class! et Class3 font partie du méme
espace de nom (c'est la partie internal).

La déclaration de Class3 comme internal a pour effet de réduire
l'acces a celle-ci & internal, ou moins. Aussi, les méthodes public
deviennent internal, alors que les méthodes protected deviennent
interral protected.

Ce programme donne la sortie suivante :

Class2.A public

Class2.B_protected

Classl.C private

Class3.D_internal
Class2.E_internalprotected
Class3.E_internalprotected

Appuyez sur Entrée pour terminer...

Déclarez toujours les méthodes avec un accés aussi restreint que possi-
ble. Une méthode privée peut étre modifiée a volonté sans inquiéter de
l'effet que cela pourrait avoir sur d'autres classes. Une classe ou une
méthode interne de MathRoutines est utilisé par d'autres classes de
nature mathématique. Si vous n'étes pas convaincu de la sagesse du
couplage faible entre les classes, allez voir le Chapitre 11.

Rassembler des données dans des fichiers

Les applications console de ce livre recoivent essentiellement leurs entrées
de la console, et y envoient de méme leur sortie. Les programmes des
autres sections que celle-ci ont mieux a faire (ou autre chose) que de vous
embeéter avec des manipulations de fichiers. Je ne veux pas les obscurcir
avec la question supplémentaire des entrées/sorties (1/0). Toutefois, les
applications console qui n'effectuent pas d'opération d'entrée/sortie sur
des fichiers sont a peu prés aussi courantes que les phoques dans la Seine.

Chapitre 18 : Achever votre application Windows 45 ’

Figure 18.6:
Donner le
nom
FileSavea
la propriété
Clickdu
sous-menu
Enregistrer
géneére une
nouvelle
fonction, qui
sera
invoquée
chaque fois
que I'utilisa-
teur
sélection-
nera Fichier/
Enregistrer.

4. Faites la méme chose pour I'option de menu Fichier/Ouvrir, en
utilisant le nom de fonction FileOpen.

.; SimpleEditor - Microsoft Visual C#.NET [design] - Forrn Lés [esion =101x]
Eichier Editior &ffichage Projet Gérérer Déboguer Dgnnées Qutits Fenftre Help
A2 WG L B e Lo bs et - o @ EE
Formi.cs [Design]* | ¢+ - - R oot 2]
ot 'imenultzmﬁ m ‘u"/lrujDWSFGm’_:J
; =10} x} ;
Fichier Edition Format ? __j
. -
] Cisposed
Drawlten
Measureltemn
Papp
Sefect
=zl
& manMenul T coanFieDisiont T saveFilebislagt : e al o
3B o i B Propriétés

5. Implémentez les méthodes FileOpen () et FileSave () comme suit :

‘private void FileOpen(object sender, System.EventArgs e)
AL ,

o OpenAhdReadFile();

b :

"",pryivat’e void FileSave(object sender, System.EventArgs e)
e
SaveSpecifiedFile();
}

Ce sont ces deux fonctions simples qui permettent a SimpleEditor
d'@tre un véritable éditeur : il peut maintenant lire et écrire des
fichiers. Par exemple, bien que ca ne se voie pas, le texte que montre
la Figure 18.7 a en fait été écrit dans Word (enregistré au format RTF,
bien siir), et lu en utilisant la commande Fichier/Ouvrir.

3 92 Quatrieme part

}

/1
/]
1/
1/
in

(

ie : La programmation orientée objet

// la méme classe
/lclass2.C_private();
classl.C_private();
// les méthodes internes ne sont accessibles que par
// les classes du méme espace de nom
/lclass?2.D_internal();
class3.D_internal();
/] les méthodes internes protégées sont accessibles
/] soit par la hiérarchie d'héritage soit par
/! toute classe du méme espace de nom
classl.E_internalprotected();
class3.E_internalprotected();
// attend confirmation de l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read ()
return 0;

)

public void C_private()

(
Console.WriteLine("Classl.C_private");

)

Clags3 - une classe interne est accessible aux autres
classes du méme espace de nom, mais
pas aux classes externes qui utilisent cet
espace de nom

ternal class Class3

/| la déclaration d’une classe comme interne force toutes
// les méthodes publiques & étre également internes
public void A_public()
{
Console.Writeline("Class3.A_public");
}
protected void B_protected()
{
Console.WriteLine("Class3.B_protected");
}
internal void D_internal()
{
Console.WriteLine("Class3.D_internal");
}
public void E_internalprotected()
{
Congole.WriteLine("Class3.E_internalprotected");

}

Chapitre 18 : Achever votre application Windows 449

s‘“UN/
A;o

tZ P4
QQ\& - $

/! affiche le message d'erreur dans la fenétre de texte elle-méme
richTextBoxl.Text = "Impossible de lire le fichier\n";
richTextBoxl.Text += e.Message;
bReturnValue = true;

}

return bReturnValue;

}

Cette fonction commence par afficher une bhoite de dialogue
OpenFileDialog. Sila boite de dialogue retourne OK, la fonction essaie
d'ouvrir le fichier sélectionné en utilisant la méthode Openfile (). Sicette
méthode retourne un objet Stream valide, OpenandReadFile () insére
l'objet Stream dans un StreamReadesr, plus pratique. Elle lit ensuite tout le
contenu du fichier, puis elle le copie dans RichTextBox en l'assignant a sa
propriété R+ {. Enfin, CpenindResdriiec: ferme le fichier.

Un éditeur qui lit tout le fichier en mémoire est beaucoup plus facile a
écrire qu'un éditeur qui en laisse la majeure partie sur le disque. En tout
cas, C# ne limite pas son composant £+ -hTextBox au tampon mémoire si
frustrant de 64 Ko du Bloc-notes.

Si une erreur d'l/O de fichier se produit. OpenindReadfile () envoie le
message erreur dans la zone de texte »ichTextBox elle-méme.

Nous avons ajouté le composant CpenFileDialog a SimpleEditor enle
faisant glisser depuis la Boite a outils.

Ecrire un fichier RTF

La classe SzveFileDialog offre des méthodes qui sont tout aussi prati-
ques que celles qui servent a ouvrir les fichiers :

/] enregistre le fichier sur le disque ; retourne true en cas de succés
/] (cette fois, ne pas essayer d'attraper une exception - je ne
/] saurais de toute fagon pas quoi en faire)
private bool SaveSpecifiedFile()
{

bool bReturnValue = false;

/! ce code est construit sur le méme mod2le que OpenAndReadFile()

if (saveFileDialogl.ShowDialog() == DialogResult.0K)

{

System.I0.Stream strQutput = saveFileDialogl.OpenFile();

390 Quatrieme partie : La programmation orientée objet

Utiliser un espace de nom avec le mot-clé using

Se référer a une classe par son nom pleinement qualifié peut devenir un
peu fastidieux. Le mot-clé us ing de C# vous permet d'éviter ce pensum.
La commande « ¢ ajoute 'espace de nom spécifié a une liste d'espaces
de nom par défaut que C# consulte pour essayer de résoudre un nom de
classe. L'exemple de programme suivant se compile sans une plainte :

namespace Paint

{
public class PaintColor
{
public PaintColor(int nRed, int nGreen, int nBlue) {}
public void Paint() (}
public static void StaticPaint() {}
)
}

namespace MathRoutines
{
/] ajoute Paint aux espaces de nom dans lesquels on cherche
// autcmatiquement
using Paint;
public class Test

{
static public void Main(stringl] args)
{
// crée un cbjet dans un autre espace de nom - il n'est
/] pas nécessaire de faire figurer le nom de 1'espace de nom, car
/] celui-ci est inclus dans une instruction "using"
PaintColor black = new PaintColor(0, 0, 0);
black.Paint();
- PaintColor.StaticPaint();
}
J
}
La commande =12 dit : "Si vous ne trouvez pas la classe spécifiée dans

I'espace de nom courant, voyez si vous la trouvez dans celui-ci.” Vous
pouvez spécifier autant d'espaces de nom que vous voulez, mais toutes
les commandes -z doivent apparaitre 'une aprés l'autre tout a fait au
début du programme.

Tous les programimes commencent par la commande using Systen:. Elle
donne au programme un accés automatique a toutes les fonctions de la
bibliothéque systéme, comme WritelLine ().

appelle des filtres. L.a derniére option de la liste des filtres est
toujours *.*, qui signifie tous les fichiers.

T

Fi gure 185: .. simpleEditor - Microsoft Visual CALNET[desidn] - Fovmtics fOs : {0y x|
D é po ser sur Fichier Edition Affichage Projet Gérérer [éboguer Donrees e Help

SimpleFditer -

un compo- Ao E e R B . »
sa nt Forml.cs [Design]* ‘\ S Boite & outils 3 x

TR PRI] Doroges

Openr l_LeD:u:Ll\,% = Clx o posants

etun Windovs Forms -
composant 2] Contesthizny
SaveFildatalos 4 ToolBar

=] oo StatusBar

a}pporte_ v Notifylton

I'essentiel du T OperFikDialag

dialogue T saveFisbiskon

nécessaire a T Fenttisig

' il

I'ouverture et rosled

A i 2 e-papiers circulaine v
al'enregis- st T cperfielonl Teaveriemishoa Gt
trement de TR aote s outls (5
fichiers. Pré:
R

Les filtres du composant OpenFileDialog sont stockés dans sa
propriété rilter. La syntaxe utilisée dans ce champ est un peu
déconcertante : un filtre est défini par un couple formé de son nom
et de I'extension de fichier correspondante, séparés par un carac-
tere |, deux filtres consécutifs étant également séparés par un
caractere |.

Assignez a la propriété Fil:tcr la chaine "Fichiers RTF| *.rtf| Tous
les fichiers| *.*".

Cette opération indique a OpenFileDialog de ne rechercher initia-
lement que les fichiers RTF, mais laisse a I'utilisateur la possibilité
de rechercher tous les fichiers.

"Tous les fichiers | *.*" doit toujours étre la derniére entrée de la
liste des filtres. Pour l'utilisateur, c'est la sélection de la derniére
chance.

Faite de méme pour la propriété i 1 ter du composant
SaveFileDialog.

Chapitre 18 : Achever votre application Windows 44 7

388 Quatrieme partie : La programmation orientée ohjet

NS

<§&£ZRQY

TranslationLibrarv respectivement a ces deux ensembles de classes
évite le probléme : Fil«10.Convert ne peut pas étre confondu avec

Transiationlibrary.Convert,

Déclarer un espace de nom

On déclare un espace de nom en utilisant le mot-clé namespace, suivi par
un nom et un bloc d'accolades ouvrante et fermante. Les classes spéci-
fiées dans ce bloc font partie de l'espace de nom.

namespace MyStuff
{
clags MyClass ()
class UrClass ()
]

Dans cet exemple, ¥+ Ciazs et 50 asz= font partie de 'espace de nom
MyStuff.

L'Assistant Application de Visual Studio place chaque classe qu'il crée dans
un espace de nom portant le méme nom que le répertoire qu'il crée. Exami-
nez tous les programmes de ce livre : ils ont tous étés créés a l'aide de
I'Assistant Application. Par exemple, le programme 411ignOutput a été créé
dans le dossier AlignCutput. Le nom du fichier source est Class1.cs, qui
correspond au nom de la classe par défaut. Le nom de l'espace de nom dans
lequel se trouve Classl.cs est le méme que celui du dossier : 414 gnOutput.

Si vous ne spécifiez pas une désignation d'espace de nom, C# place votre
classe dans l'espace de nom global. C'est I'espace de nom de base pour
tous les autres espaces de nom.

Accéder a des modules du méme espace de nom

Le nom de l'espace de nom d'une classe est une partie du nom de la
classe étendue. Voyez I'exemple suivant :

namespace MathRoutines
{

class Sort

{

public void SomeFunction() (]

‘\‘(\ON 7
Ago

Chapitre 18 : Achever votre application Windows 445

/1 ignore toute erreur de conversion qui pourrait se produire

try

{

/] s'il y a quelque chose ici ...
/]if (sText.Length > 0)

...

le convertit en entier

int nFontSize = Int32.Parse(sText);

// si la valeur est dans 1'étendue valide ...
if (nFontSize >= trackBarl.Minimum && nFontSize <= trackBarl.Maximum)

{

}

catch {};

. met a jour la trackbar et ..,
trackBarl.Value = nFontSize:

. ajuste la police (SetFont() lit sa taille de
// police directement sur la TrackBar

Cette méthode est invoquée pour chaque caractére envoyé dans
cette zone de texte, et non pour le dernier uniquement. Par exemple,
la saisie de 24 génére deux appels : un pour le 2, et un pour la valeur
24. Dans cette application, c'est sans conséquence, mais sachez-le.

FontSizeEntered{) commence par lire le contenu de TextBox, puis elle
entre dans un bloc try. La fonction Int32.Parse () convertit le contenu
de TextRox en une valeur int. Cette fonction de conversion envoie une
exception si la chalne trouvée ici ne peut pas étre convertie en un entier
valide. L'instruction cztch universelle placée en bas de cette fonction
bloque les problémes, mais ignore 'exception et ne modifie pas la taille
de la police. De méme, si la chaine entrée par l'utilisateur peut étre
convertie en un nombre entier mais que celui-ci se trouve en dehors de
I'étendue autorisée (8 a 24 points), elle est ignorée.

Si la taille saisie est autorisée, FontSizeEntered () met & jour
TrackBar en assignant cette nouvelle valeur a sa propriété value.
Par exemple, supposez que l'index de TrackBar soit situé a la valeur
12. Dés que l'utilisateur entre la chaine 22, l'index passe directement
a la position 22, presque a l'extrémité droite de la barre.

La fonction Font () met a jour la police elle-méme.

386 Quatrieme partie : La programmation orientée objet

ne peut pas étre modifié par deux programmeurs en méme temps. Chacun
d'eux a besoin de son propre fichier source. Enfin, la compilation d'un
module de grande taille peut prendre beaucoup de temps (on peut toujours
aller prendre un café, mais il arrive un moment o1 votre patron devient
soupc¢onneux). Recompiler un tel module parce qu'une seule ligne d'une
seule classe a été modifiée devient intolérable.

Pour toutes ces raisons, un bon programmeur C# divise son programme
en plusieurs fichiers source .CS, qui sont compilés et générés ensemble
afin de former un seul exécutable.

Imaginez un systeme de réservation de billets d'avion : il y a l'interface avec les
agents de réservation que les clients appellent au téléphone, une autre inter-
face pour la personne qui est au comptoir d'enregistrement, la partie Internet,
sans parler de la partie qui vérifie l'occupation des sieéges dans l'avion, plus la
partie qui calcule le prix (y compris les taxes), et ainsi de suite. Un programme
comme celui-ci devient énorme bien avant d'étre terminé.

Rassembler toutes ces classes dans un méme fichier source Classl.cs
est remarquablement déraisonnable, pour les raisons suivantes :

v~ Un fichier source ne peut &tre modifié que par une seule personne a la

fois. Vous pouvez avoir vingt a trente programmeurs travaillant en
méme temps sur un grand projet. Un seul fichier pour vingt-quatre
programmeurs impliquerait que chacun d'eux ne pourrait travailler
qu'une heure par jour, a supposer qu'ils se relaient vingt-quatre heures
sur vingt-quatre. Si vous divisiez le programme en vingt-quatre fichiers,
il serait possible, bien que difficile, que tous les programmeurs tra-
vaillent en méme temps. Mais si vous divisez le programme de telle
maniére que chaque classe a son propre fichier, I'orchestration du
travail de ces vingt-quatre programmeurs devient beaucoup plus facile.

v+ Un fichier source unique peut devenir extrémement difficile a
comprendre. Il est beaucoup plus aisé de saisir le contenu d'un
module comme ResAgentInterface.cs, GateAgentInterface.cs,
ReshAgent.cs, GateAgent.cs, Fare.csouAircraft.cs.

v Larégénération compléte d'un grand programme comme un sys-
téme de réservation de billets d'avion peut prendre beaucoup de
temps. Vous n'aurez certainement pas envie de régénérer toutes les
instructions qui composent le systéme simplement parce qu'un
programmeur a modifié une seule ligne. Avec un programme divisé
en plusieurs fichiers, Visual Studio peut régénérer uniquement le
fichier modifié, et rassembler ensuite tous les fichiers objet.

Chapitre 18 : Achever votre application Windows 443

1. Dans le Concepteur de formulaires, sélectionnez la TrackBar.

2. Dans la fenétre Propriétés, sélectionnez I'événement Scroll.
Comme nom de fonction, entrez FontSizeControl.

3. Passez dans l'affichage du code source, et implémentez les nou-
velles fonctions comme suit :

/! invoquée quand 1'utilisateur déplace 1'index de la TrackBar
private void FontSizeControl(object sender, System.EventArgs’e)
{
// lit la nouvelle taille de police directement sur la TrackBar
fontSize = trackBarl.Value;

/] la convertit en chaine et la copie dans
/] la TextBox pour accorder les deux
textBoxl.Text = String.Format("{0}", fontSize);

/] ajuste maintenant la police
SetFont () ;

FontSizeControl () est invoquée chaque fois que l'utilisateur
déplace l'index dans la barre. Cette fonction lit la nouvelle valeur
(un nombre entier compris entre 8§ et 24, inclusivement) dans
l'objet TrackBar. FontSizeControl () utilise la méthode
String.Format () pour convertir ce nombre en une chaine de texte
qui est alors copiée dans la TextBox Taille de police. Cela fait,
FontSizeControl () invoque SetFont () pour modifier la police
utilisée dans la fenétre d'édition.

Je donne la description de SetFont () dans la section "Changer de
police et de taille", plus haut dans ce chapitre.

4. Générez le programme et exécutez-le.
5. Entrez du texte dans la fenétre et sélectionnez-le avec la souris.

6. Faites glisser vers la droite et vers la gauche l'index de la taille
de police.

La Figure 18.4 montre le résultat. Il est vrai qu'une simple image n'est pas trés
parlante, mais la valeur qui apparait dans la zone de texte Taille de police est
instantanément mise a jour selon la position de l'index dans la barre, pendant
que le texte sélectionné est agrandi ou réduit en conséquence.

384 Quatriéme partie : La programmation orientée objet

Le programme CustonfException donne la sortie suivante :

Erreur fatale inconnue :

Le message est {Impossible d'inverser 0>, 1'objet est (Value = 0)
CustomException.MathClass

Exception envoyée parDouble Inverse()

Appuyez sur Entrée pour terminer...

Jetons un coup d'ceil a cette sortie : le message Er i i !
nue : vientde Mairn().Lachaine Le mezsage ezt (Tmpossible d'in-
verser 0>, 1'objer est <{~~>vient de CustonzZxcepricn. Le message
Value = 0 vient del'objet MzthClzass lui-méme. La derniére ligne, Excep -

tion envovyée parDouble Inverse, vientde CustomException.

ToString(), la carte de visite de la classe

Toutes les classes héritentd’une classe de base commune, judicieusementnommé Ob ject.
C'est au Chapitre 17 que j'explore cette propriété qui unifie les classes, mais il est utile de
mentionnerici que Object contientune méthode, ToString (), quiconvertitenstringle
contenu de I'objet. L'idée est que chaque classe doit redéfinir la méthode ToString () par
une méthode lui permettant de s'afficher elle-méme d'une fagon pertinente. Dans le chapitre
précédent, j'ai utilisé la méthode GetString () parce que je ne voulais pas y aborder les
questions d'héritage, mais le principe est le méme. Par exemple, une méthode
Student.ToString () pourrait afficher le nom et le numéro d'identification de I'étudiant.

La plupart des fonctions, méme les fonctions intégrées de la bibliotheque C#, utilisent la
méthode ToString () pour afficher des objets. Ainsi, le remplacement de ToString() a
pour effetsecondaire trésutile que I'objetsera affiché dans son propre format, quelle que soit
la fonction qui se charge de I'affichage.

Comme dirait Bill Gates, "C'est cool."

Chapitre 18 : Achever votre application Windows 44 ’

4. Implémentez les nouvelles fonctions de la facon suivante :

private void FormatBold(object sender, System.EventArgs e)
{

isBolded = !isBolded;

menulteml(0.Checked = isBolded;

SetFont();
}

private void FormatItalics(object sender, System.EventArgs e)
{

isItalics = !isItalics;

menultemll.Checked = isItalics;

SetFont();
}

Chacune de ces fonctions inverse 1'état de l'indicateur correspondant,
et invoque SetFont () pour modifier la police en conséquence.

AT

FormatBcid() et Formati<alics() assignent true ou false a
menultenl0.Checked pour placer ou non une coche devant l'option
de menu correspondante afin de montrer si elle est activée
(renultenl0 correspond a l'option de menu Format/Gras, et
menultemll al'option Format/Italique).

Les noms de vos options de menu pourront étre différents si vous
ne les avez pas mis dans le méme ordre que moi. Pour savoir quel
est le nom d'un composant particulier, sélectionnez celui-ci dans le
Concepteur de formulaires. Le nom et le type du composant appa-
raissent en haut de la fenétre Propriétés.

Qe Rien ne vous oblige a vous en tenir aux noms assignés par le Concep-
teur de formulaires. Vous pouvez changer a votre guise la propriété
Name lorsque vous créez l'objet. Vous pouvez ainsi choisir des noms
plus parlants et plus faciles a retenir.

5. Par acquit de conscience, ajoutez dans le constructeur un appel a
SetFont () pour définir correctement la police initiale :

public Formi()

{
/!
/1 Required for Windows Form Designer support
/!

InitializeComponent();

382 Quatriéme partie : La programmation orientée objet

/1 le message standard Exception.ToString()
override public string ToString()
{
string s = Message + "\n";
s += base.ToString(};
return s;
}
// Inverse - retourne l/x
public double Inverse()
{
if (nValueOfObject == 0)
{
throw new CustomException("Impossible d'inverser 0", this);
)
return 1.0 / (double)nValueOfObject;
}
]
public class Classl
{
public static void Main(string[] args)
{
try
{
// prend 1'inverse de 0
MathClass mathObject = new MathClass("Valeur", 0);
Console.WriteLine("L'inverse de d.Value est{0}",
mathObject.Inverse());
}
catch(Exception e)
{
Console.WriteLine("\nErreur fatale inconnue :\n{0}",
e.ToString());
)

// attend confirmation de l'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Permettez-moi de faire une remarque : cette classe CustonException
n'est pas si remarquable que cela. Elle stocke un message et un objet, tout
comme MyException. Toutefois, au lieu de fournir de nouvelles méthodes
pour accéder a ces données, elle remplace la propriété Message existante
qui retourne le message d'erreur contenu dans l'exception, et la méthode
ToString () qui retourne le message plus l'indication de pile.

Chapitre 18 : Achever votre application Windows 439

]
Figure 18.2:
Le texte
venant de
Word a
conserve sa
mise en
forme.
|

$\)EZ Pag

SimpleEditor. Le format RTF conserve les informations sur la mise en forme :
la premiére ligne était en style Titre 1, la deuxieéme en style Normal, et la
troisiéme en style Code.

“® Gimpletditor
Fichier Edition Format ?

Ce texte a été collé & partr de Word

Titre de niveau 1

Texte normal

/{ cecl ressemble a du code

Tadle de police l

,,,,,,,,,,,,,,,,

C'est le composant RichTextBox qui fait tout le travail de mise en forme
qu'il fallait autrefois faire soi-méme au prix de mille difficultés.

Mettre hardiment en gras et en italique

SimpleEditor peut maintenant couper et coller du texte mis en forme,
mais il ne sait pas encore modifier la police. Pour cela, il nous faut intro-
duire les contrdles du menu Format et du champ Taille de police.

Changer de police et de taille

Changer de police, mettre le texte en gras ou en italique est en fait pres-
que la méme fonction. Vous pouvez donc vous épargner quelques efforts
en créant une seule fonction capable de réaliser ces trois opérations,
comme Ceci :

TR e maio -Mise en forme ot taille de la police---==<---=----
bool 1sBolded = false,

. bool isItalics = falge;
. float fontSize = 12.0F;
. private void SetFont() -

{
. PontStyle fs = FontStyle Regular
'kf‘1f (1sBolded) L

o

380 Quatrieme partie : La programmation orientée objet

Renvoyer le méme objet exception présente un avantage et un inconvé-
nient. Cela permet aux fonctions intermédiaires d'attraper des exceptions
pour libérer ou fermer des éléments alloués par elles, tout en permettant
a l'utilisateur final de 'objet exception de suivre l'indication de pile
jusqu'a la source de l'exception. Toutefois, une fonction intermédiaire ne
peut pas (ou ne doit pas) ajouter des informations supplémentaires a
I'exception en la modifiant avant de la renvoyer.

Redéfinir une classe d'exceptions

La classe d'exceptions suivante définie par l'utilisateur peut stocker des
informations supplémentaires qui ne pourraient pas l'étre dans un objet
Exception conventionnel :

/] MyException — ajoute & la classe standard Exception
/1 une référence & MyClass
public class MyException : Exception
{
private MyClasss myobject:
MyException(string sMsg, MyClass mo) : base(sMsg)
(
myobject = mo;
}
/] permet aux classes extérieures d'accéder 2 une classe d'information
public MyClass MyObject{ get {return myobject;}]

Voyez a nouveau ma bibliothéque de fonctions BrilliantLibrary. Ces
fonctions savent comment remplir ces nouveaux membres de la classe
MyException et aller les chercher, fournissant ainsi uniquement les infor-
mations nécessaires pour remonter a la source de toute erreur connue et
de quelques autres restant a découvrir. L'inconvénient de cette approche
est que seules les fonctions de la bibliothéque BrilliantLibrary peuvent
recevoir un bénéfice quelconque des nouveaux membres de MyException.

Le remplacement des méthodes déja présentes dans la classe Exception
peut donner des fonctions existantes autres que I'accés BrilliantLibrary
aux nouvelles données. Considérez la classe d'exceptions définie dans le
programme CustomException suivant :

/] CustomException - crée une exception personnalisée qui
/! affiche les informations que nous voulons, mais
/1 dans un format plus agréable

Chapitre 18 : Achever votre application Windows 43 7

/] et voila, nous avons ce qu'il nous faut
return (string)o;
}

ReadClipboard () commence par essayer de récupérer un objet dans le
Presse-papiers. Si elle n'y trouve rien, elle ne retourne rien. Elle essaie
alors de lire dans l'objet une chaine RTF. Encore une fois, si 'objet
clipboard n'est pas une chaine RTF, elle retourne null. Enfin, s'ily a
quelque chose dans le Presse-papiers, et si c'est une chaine RTF,
ReadClipboard () retourne la chaine a la fonction appelante.

1. Dans I'Explorateur de solutions, double-cliquez sur Formi.cs
pour afficher le code source C# du projet.

2. Dans le code source, insérez les méthodes WriteClipboard () et
ReadCliphboard ().

Utilisez pour cela Edition/Couper, Edition/Copier, et Edition/Coller.

3. Dans le Concepteur de formulaires, sélectionnez l'option de
menu Edition/Coller.

4. Dans la fenétre Propriétés, cliquez sur le bouton contenant un
éclair pour afficher les propriétés actives (les événements).
Sélectionnez I'événement Click.

5. Dans le champ qui se trouve a droite de Click, entrez un nom de
fonction significatif. Pour que ce soit cohérent avec l'option de
menu, j'ai mis EditPaste.

Le Concepteur de formulaires crée une méthode vide, qui est liée a
I'option de menu de telle sorte que c'est cette méthode qui est
invoquée lorsque l'utilisateur clique sur celui-ci.

6. Répétez les étapes 3 a 5 pour les options de menu Couper et
Copier. J'ai nommé ces méthodes EditCut et EditCopy.

7. Vous devez ajouter manuellement le contenu de ces méthodes,
comme suit :

private void EditCut(object sender, System.EventArgs e)
{
string rtfText = richTextBoxl.SelectedRtf;
WriteClipboard(rtfText);

3 78 Quatrieme partie : La programmation orientée objet

<"\\‘(\ON ’

types d'exception définie pour la brillante bibliothéque de classe que je viens

d'écrire (c'est pour ca que je l'appelle 3ri’l<antLibhrary). Les fonctions qui
composent BrillizntLibrary envoient et attrapent des exceptions
MyException.

Toutefois, les fonctions de la bibliotheque =117 i ant . inrarv peuvent aussi

appeler des fonctions de la bibliothéque generlque Sveten Les premieres
peuvent ne pas savoir comment traiter les exceptions de la bibliothéque
System, en particulier si elles sont causées par une entrée erronée.

Si vous ne savez pas quoi faire avec une exception, laissez-la passer pour
qu'elle arrive a la fonction appelante. Mais soyez honnéte avec vous-méme :
ne laissez pas passer une exception parce que vous n'avez simplement pas
le courage d'écrire le code de traitement d'erreur correspondant.

Relancer un objet

Dans certains cas. une méthode ne peut pas traiter entiérement une
erreur, mais ne veut pas laisser passer l'exception sans y mettre son grain
de sel. C'est comme une fonction mathématique qui appelle Facrorial ()
pour s'apercevoir qu'elle renvoie une exception. Méme si la cause pre-
miére du probléme peut étre une donnée incorrecte, la fonction mathé-
matique est peut-€tre en mesure de fournir des indications supplémentai-
res sur ce qui s'est passé.

Un bloc catch peut digérer partiellement l'exception envoyée et ignorer le
reste. Ce n'est pas ce qu'il y a de plus beau, mais ca existe.

L'interception d'une exception d'erreur est une chose trés courante pour
les méthodes qui allouent des éléments. Par exemple, imaginez une
méthode F () qui ouvre un fichier quand elle est invoquée, et le referme
quand elle se termine. Quelque part dans le cours de son exécution, ¥ ()
invoque G (). Une exception envoyée de G (passerait directement a
travers ¥ () sans lui laisser la moindre chance de fermer le fichier. Celui-ci
resterait donc ouvert jusqu'a ce que le programme lui-méme se termine.
Une solution idéale serait que F () contienne un bloc catch qui ferme les
fichiers ouverts. Bien entendu, ¥ (] est libre de passer I'exception au
niveau supérieur apres en avoir fait ce qu'il fallait pour ce qui la concerne.

Il y a deux maniéres de renvoyer une erreur. La premiére consiste a
envoyer une deuxiéme exception, avec les mémes informations ou éven-
tuellement des informations supplémentaires :

Chapitre 18 : Achever votre application Windows 435

- SimpleEditor - Microsoft Visual CA#.NET [design] = Forit s fDesig
Fichier £dtion Affichage Brolet Generer [Shoguer Données Oubis Fendlre Help

R TR = K I T T fetun v

Form1.cs {Design] |

s Sty -

Fichier Edition Format 7

IEear

quure 18.1: s Vaueaepcamegl 2 :
Méme le 5 voo 2

modeste | - T
composant
TextBox a
des dizaines
de propriétés
actives.
I

e

Tableau String(
s
Hare

2 mantenut

Un menu garanti pour éditer le menu Edition

Comme il n'y a aucune raison particuliere de commencer par un compo-
sant plutdt que par un autre, pourquoi ne pas aller du plus facile au plus
difficile ? Dans les premiéres versions de Windows, I'une des fonctions les
plus difficiles & manier était le Presse-papiers, mais la bibliothéque de C#
fait de la copie et de la récupération de données dans le Presse-papiers
un jeu d'enfant.

NEEPAe Le Presse-papiers est une zone d'arriere-plan de Windows dans laquelle

S est stocké ce qui a été copié ou coupé en attendant d'étre collé par la
suite. C'est dans Windows que doit se trouver le Presse-papiers, parce
que l'utilisateur peut y copier un objet, par exemple du texte, dans une
application, et le coller dans une autre,

La méthode SetDataObject dela classe Clipboard (le clipboard est le
Presse-papiers) écrit un objet Data0Object dans le Presse-papiers. L'objet
DataObject contient les données a stocker et la description de leur type.

QWON, - Lidentification du type de donnée est trés importante. Par exemple, l'utilisa-
$ \ teur peut essayer de couper le contenu d'une feuille de calcul et de le coller
dans la fenétre de SimpleEditor. S'il n'y avait pas un moyen de filtrer ce
contenu, SimpleEditor afficherait une chaine de n'importe quoi (au mieux).

3 76 Quatriéme partie : La programmation orientée objet

Console.WriteLine(e.Message);

}
}
/] f2 - - préparez-vous & attraper une exception MyException
public void £2(bool bExceptionType)
{
try
{
£3 (bExceptionType);
}
catch(MyException me)
{
Console.WriteLine ("Exception MyException attrapée dans £f2()");
Console.WriteLine (me.Message);
}
)
// £3 - - n'essayez pas d'attraper des exceptions
public void £3(bool bExceptionType)
{
f4 (bExceptionType);
}
// f&4 - - envoie des exceptions d'un type ou d'un autre
public void f4(bool bExceptionType)
{
/! nous travaillons avec un objet local
MyClass mc = new MyClass();
if (bExceptionType)
{
/! une erreur se produit - 1'cbjet est envoyé avec 1'exception
throw new MyException("MyException envoyée dans f4()",
me);
}
throw new Exception("Exception générique envoyée dans f4()");
}

public static void Main(string[] args)

{
// envoie d'abord une exception générique
Console.WriteLine("Envoie d'abord une exception générique");
new Classl().fl(false);
// envoie maintenant une de mes exceptions
Console.WriteLine ("\nEnvoie d'abord une exception spécifique");
new Classl().fl(true);

// attend confirmation de 1'utilisateur
Console.WriteLine("Hit Appuyez sur Entrée pour terminer...");

Chapitre 18

Achever votre application
Windows

Dans ce chapitre :

Implémenter les options des menus.
Copier des données dans le Presse-papiers et les récupérer.
Faire des manipulations simples sur les polices.

Lier ensemble deux contrdles pour que les modifications effectuées dans I'un
soient reflétées dans l'autre.

Lire et enregistrer le contenu de I'éditeur.
Utiliser des boites de dialogue.

A u Chapitre 17, nous avons créé une jolie petite application SimpleEditor.
Malheureusement, au point oli nous en sommes, elle ne fait encore rien.
Dans ce chapitre, nous allons ajouter les couches nécessaires pour la faire
fonctionner. Vous allez transformer SimpleEditor en quelque chose d'utile : un
éditeur capable de lire et d'écrire des fichiers texte, de mettre du texte en gras et
en italique, de changer la taille de la police, d'écrire dans le Presse-papiers et d'en
lire le contenu, et que I'on peut redimensionner a volonté.

Le code complet de SimpleEditor est sur le site Web.

Ajouter des actions

Le Concepteur de formulaires simplifie le travail de création d'une application
Windows. Il permet d'ouvrir une Boite a outils regorgeant d'accessoires
comme des boutons, des zones de texte ou des étiquettes (de facon plus

3 74 Quatrieme partie : La programmation orientée objet

}
catch(Exception e)
(

/] les autres exceptions non encore attrapées sont attrapées ici
}
}

Si ScmeOtherFunction() envoyait un objet Exception, celui-ci ne serait
pas attrapé par l'instruction catch (MyException) car une Exception
n'est pas de type lyException. Il serait attrapé par l'instruction catch
suivante : catch(Exception).

Toute classe qui hérite de MyException EST_UNE MyException:

class MySpecialException : MyException
{
/! . . . instructions quelconques ...

}

Si elle en a la possibilité, l'instruction catch MyException attrapera tout
objet MySpecialException envoyé.

Faites toujours se succéder les instructions catch de la plus spécifique a
la plus générale. Ne placez jamais en premier l'instruction catch la plus
générale :

public void SomeFunction()
{
try
{
SomeOtherFunction();
]
catch(Exception me)
{
/] tous les objets MyException sont attrapés ici
)
catch(MyException e)
{
/] aucune exception ne parvient jamais jusqu'ici parce qu'elle
/] est attrapée par une instruction catch plus générale
3
}

Dans cet exemple, l'instruction catch la plus générale coupe I'herbe sous
le pied de la suivante en interceptant tous les envois.

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage 43 7

<Que Les propriétés que vous n'avez pas modifiées sont les propriétés par
défaut de 'objet, qui n'apparaissent donc pas dans le code. Par exemple,
vous pouvez voir que trackBarl est ancrée sur AnchorStyles.Botton,
AnchorStyles.Left et AnchorStyles.Right. D'autre part, les propriétés
Meximum et Minimum recoivent les valeurs 24 et 8, et la propriété value, la
taille de police initiale, recoit la valeur 12.

Le reste de laméthode TnitializeComponents () est trés long, mais suit la
méme logique qui consiste a assigner une valeur a chaque propriété modifiée.

Comment apprendre a connaitre les composants ?

L'une des questions souvent posées par les nouveaux programmeurs C#
pour Windows est : "Comment sait-on quels composants sont disponibles et
ce que fait chacun d'eux ?" Un bon moyen de faire connaissance consiste a
jouer avec eux : choisissez un composant, faites-le glisser sur le formulaire,
sélectionnez-le, et commencez 4 passer en revue ses propriétés.

Un autre moyen consiste a rechercher les composants dans 'aide de Visual
Studio. Le nom de la classe est le méme que celui qui apparait dans la Boite
a outils. Ainsi, si vous voulez savoir comment utiliser un RadioButton,
vous pouvez commencer par entrer RadioButton dans l'index de l'aide.
L'aide de Visual Studio fait apparaitre une fenétre contenant une descrip-
tion du composant, et parfois un exemple de code.

Enfin, dans tous les exemples que vous pourrez trouver, explorez la méthode
InitializeComponents () jusqu'a ce que vous arriviez a comprendre ce qu'a
fait le Concepteur de formulaires. Ce procédé vous permettra de découvrir
de nouveaux composants et leurs propriétés, et vous donnera une idée de ce
a quoi ils servent.

Avec l'expérience, il devient de plus en plus facile de trouver le bon
composant.

Et maintenant ?

N'oubliez pas que le programme SimpleEditor que nous avons créé dans
ce chapitre est trés simple. 1l est trés joli, mais il est si simple qu'en réalité
qu'il ne fait rien. Au Chapitre 18, nous allons ajouter le code nécessaire
pour faire de SimpleEditor un véritable éditeur.

3 72 Quatriéme partie : La programmation orientée objet

Cette classe CustomException est faite sur mesure pour signaler une erreur
au logiciel qui traite avec la tristement célebre }vCizss. Cette sous-classe
d'Exception met de coté la méme chaine que 'original, mais dispose en
plus de la possibilité de stocker dans l'exception la référence au fautif.

L'exemple suivant attrape la classe CustorExceprion et met en utilisation

LY

ses informations sur MyClass :

public class Classl

(
public void SomeFunction()
{

try

{
// . . . opérations préalables & la fonction exemple
SomeOtherFunction();
// . . . autres opérations.

}
catch(MyException me)

{
/1 vous avez toujours accés aux méthodes d'Exception

string s = me.ToString();

/! mais vous avez aussi accés & toutes les propriétés et méthodes
/] de votre propre classe d'exceptions

MyClass mo = me.MyCustomObject;

/! par exemple, demandez & 1'objet MyClass de s'afficher lui-méme
string s = mo.GetDescription();

)
public void SomeOtherFunction()
{
/1 création de myobject
MyClass myobject = new MyClass();

// . . . signale une erreur concernant myobject .
throw new MyException("Erreur dans 1'objet de MyClass", myobject);
/!l . . . reste de la fonction .
)
}
Dans ce fragment de code, SomeFunction () invoque SerebtherFunction() de

l'intérieur d'un bloc try. SomeOtherFunction{) crée et utilise un objet
myobiect. Quelque part dans SomeOtherFunction (), une fonction de vérifica-
tion d'erreur se prépare a envoyer une exception pour signaler qu'une condi-
tion d'erreur vient de se produire. Plutot que de créer une simple Exception,
SomeFunction() se sert de la toute nouvelle classe MyException, pour en-
voyer non seulement un message d'erreur, mais aussi I'objet nvob iec - fautif.

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage 429

[= W Bsimpletditor - =181 x]
Fichier Edition Format 7

Figure 17.12:
Une fois
convenable-
ment ancrés,
les compo-
sants de
SimpleEditor
en suivent
T’I:dellr?']renlfsr:to:'le- Taille de polce r_—
nement.

N

Ou'avons-nous fabriqué ?

Le listing ci-dessous montre un sous-ensemble de la méthode
InitializeComponent () créée par le Concepteur de formulaires. Puisque
cette méthode est tres volumineuse, je n'en donne ici qu'un petit extrait :

namespace SimpleEditor
{
/1] <summary>
//] Summary description for Forml.
/11 </summary>
public class Forml : System.Windows.Forms.Form
{
private System.Windows.Forms.RichTextBox richTextBoxl;
private System.Windows.Forms.MainMenu mainMenul;
private System.Windows.Forms.Menultem menulteml;
...
k#region Windows Form Designer generated code
private void InitializeComponent()
{
this.mainMenul = new System.Windows.Forms.MainMenu();
this.menulteml = new System.Windows.Forms.Menultem();
this.trackBarl = new System.Windows.Forms.TrackBar();
/...
/1
/! mainMenul
1)
this.mainMenul.Menultems.AddRange (new System.Windows.Forms.Menultem[] {
this.menultenl,

3 70 Quatrieme partie : La programmation orientée objet

,&c,umol, Comme Mzin /) est le point de depart du programme, il est bon de toujours

NOr

en placer le contenu dans un bloc - rv. Toute exception qui ne sera pas
"attrapée” ailleurs remontera fmalement jusquaMain(). Cest donc votre

derniére opportunité de récupérer une erreur avant qu'elle aboutisse a

Windows, dont le message d'erreur sera beaucoup plus difficile a interpréter.

Le bloc catchisitué alafin de M=1::7) attrape I'objet Ex-2pticn et utilise sa
méthode T~S+ring : pour afficher sous forme d'une simple chaine la majeure
partie des mformatxons sur l'erreur contenues dans l'objet excepticon.

La propriété Exception. ge retourne un sous-ensemble plus lisible,
mais moins descrlptlf des informations sur 'erreur.

Cette version de la fonction Fac=orial) contient la méme vérification pour
un argument négatif que la précédente. Si 'argument est négatif, factorial ()
met en forme un message d'erreur qui décrit le probléme, incluant la valeur
incriminée. Factorial () regroupe ensuite ces informations dans un objet
Exception nouvellement créé, qu'elle envoie a la fonction appelante.

La sortie de ce programme apparait comme suit (j'ai un peu arrangé les
messages d'erreur pour les rendre plus lisibles) :

i =6, factorielle = 720
i =75, factorielle = 120
i =4, factorielle = 24
i =13, factorielle = 6
i =2, factorielle = 2
i =1, factorielle = 1
i =0, factorielle = 0

Erreur fatale :

System.Exception: Argument négatif illicite passé & Factorial -1
at Factorial(Int32 nValue) in c:\c#program\Factoriallclassl.cs:line 23
at FactorialException.Classl.Main(String[] args) in c:\cffprogram\Factoriall
classl.cs:line 52

Appuyez sur Entrée pour terminer...

Les premiéres lignes affichent les véritables factorielles des nombres 6 a
0. La factorielle de -1 génére un message commencant par Erreur fa-
tale, ce qui est susceptible d'attirer 'attention de l'utilisateur.

La premiére ligne du message d'erreur a été mise en forme dans la fonc-
tion Factorial () elleeméme. Cette ligne décrit la nature du probléme, en
indiquant la valeur incriminée -1.

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage 42 7

Figure 17.9:
Laisser aux
mémes
endroits les
composants
lorsque le
formulaire est
redimensionné
n'est sans
doute pas ce
qu'attendent
les utilisa-
teurs.
|

S

- simpleEditor . i ’ =lalxd

Fichier Edition Format 7

Taile de police

En somme, la Trackiar doit étre ancrée aux bords inférieur, droit
et gauche du formulaire.

Pour définir l'ancrage, sélectionnez la T:acibar, et cliquez sur
Anchor dans la fenétre Propriétés.

La propriété d'ancrage apparait sur la droite, avec une petite fleche
pointant vers le bas.

Cliquez sur la fléche.

Une petite fenétre apparait, contenant quatre bras formant une
croix, chacun d'eux représentant un ancrage. Vous pouvez voir que
I'ancrage par défaut est le coin supérieur gauche du formulaire (ce
qui explique pourquoi la TrackBar ne bougeait pas quand on
redimensionnait le formulaire).

Sélectionnez les bras du bas, de droite et de gauche, et
désélectionnez celui du haut.

La Figure 17.10 montre le résultat.

Si vous préférez, vous pouvez aussi taper manuellement Bottom, Top,
Left, ou Right dans le champ :r.cnor sans utiliser la fenétre d'ancrage.

Définissez I'ancrage séparément pour chaque composant.

Le Tableau 17.2 indique I'ancrage qui convient pour chaque composant.

368 Quatrieme partie : La programmation orientée objet

throw new Exception("Description de 1'erreur");
/l . . . suite de la fonction . . .

La fonction SomeFunction () contient un bloc de code identifié par le mot-
clé = ry. Toute fonction appelée dans ce bloc, ou toute fonction qui 'ap-
pelle, est considérée comme faisant partie du bloc try.

Un bloc trv est immédiatement suivi par le mot-clé catch, lequel est suivi
par un bloc auquel le controle est passé si une erreur se produit en un
endroit quelconque dans le bloc try. L'argument passé au bloc catch est
un objet de la classe Exception ou d'une sous-classe de celle-ci.

A un endroit quelconque dans les profondeurs de SomeOtherFunction(),
une erreur se produit. Toujours préte, la fonction signale une erreur a
I'exécution en envoyant (throw) un objet Zxception au premier bloc pour
que celui-ci I'attrape (catch).

Puis-je avoir un exemple ?

Le programme FactorialException suivant met en évidence les élé-
ments clés du mécanisme des exceptions :

/] FactorialException — crée une fonction factorielle qui
1/ indique & Factorial() les arguments illicites
I en utilisant un objet Exception
using System;
namespace FactorialException
{
/! MyMathFunctions — collection de fonctions mathématiques

/! de ma création (pas encore grand-chose & montrer)
public class MyMathFunctions ‘ !
{

/] Factorial — retoutne la factorielle d'une valeur

/] fournie

public static double Factorial(int nValue)
{
/] interdit les nombres négatifs
if (nValue < 0)
{
/! signale un argument négatif
string s = String.Format(
"Argument négatif illicite passé & Factorial {0}",

‘ _ Chapitre 17 : Créer une application Windows : le ramage et le plumage 425

1. Pour résoudre ce probléme, placez un composant Label a gauche
de la TextBox, et entrez "Taille de police” dans sa propriété Text.
Une police Arial en 10 points gras conviendra bien a I'étiquette
de la TextBox.

2. Ajoutez maintenant une étiquette a l'extrémité gauche de la
TrackBar. Donnez-lui également une police Arial en 10 points
gras. Entrez 8 dans la propriété Text, puisque c'est la valeur que
nous avons donnée a la propriété Minimun de la TrackBar.

3. Faites de méme pour I'étiquette de l'extrémité droite de la
TrackBar. Entrez 24 dans sa propriété Texte, qui est la valeur de
la propriété Maximum de la TrackBar.

CHNig, Au Chapitre 18, je vous montrerai comment les valeurs de ces
| é" étiquettes peuvent étre définies automatiquement en fonction des
‘ = propriétés de la TrackBar, mais pour le moment nous allons nous
contenter de le faire manuellement.
4. Encore une fois, générez a nouveau SimpleEditor pour &tre siir
que tout va bien.
Personne ne pourrait €tre plus heureux avec le résultat montré par
la Figure 17.8.
[simpleEditor -{0l %
Fichier Edition Format ?
I
Figure 17.8:
SimpleEditor Taile de police |
estprétpour o 24
aller danser. S
|

366 Quatriéme partie : La programmation orientée objet

d'erreur que la fonction appelante ne teste pas. Bien sur, en tant que program-
meur en chef, je peux me laisser aller a proférer des menaces. Je me souviens
d'avoir lu toutes sortes de livres de programmation regorgeant de menaces de
bannissement du syndicat des programmeurs pour ceux qui ne s'occupent pas
des codes d'erreur, mais tout bon programmeur FORTRAN sait bien qu'un
langage ne peut obliger personne a vérifier quoi que ce soit, et que, trés
souvent, ces vérifications ne sont pas faites.

Souvent, méme si je vérifie I'indication d'erreur retournée par Factorial (]
ou par toute autre fonction, la fonction appelante ne peut rien faire d'autre
que de signaler l'erreur. Le probléme est que la fonction appelante est
obligée de tester toutes les erreurs possibles retournées par toutes les
fonctions qu'elle appelle. Bien vite, le code commence & avoir cette allure la :

/! appelle SomeFunction, lit 1'erreur retournée, la traite

/! et retourne

errRtn = someFunc();

if (errRtn == SF_ERROR1)

{
Console.WriteLine("Erreur de type 1 sur appel & someFunc()"};
return MY _ERROR_1;

}

if (errRtn == SF_ERROR2)

{
Console.WriteLine{("Erreur de type 2 sur appel & someFunc()");
return My ERROR 2;

}

/! appelle SomeOtherFunctions, lit l'erreur, retourne, et ainsi de suite

errRtn = someQtherFunc();

if (errRtn == SOF_ERROR1)

(:
Console.WriteLine("Erreur de type 1 sur appel a someFunc()");
return MY_ERROR_3;

}

if (errRtn == SOF_ERROR2)

{
Console.WriteLine("Erreur de type 1 sur appel & someFunc()");
return MY_ERROR_4;

}

Ce mécanisme présente plusieurs inconvénients :
vl est trés répétitif.

v 1l oblige le programmeur & inventer de nombreuses indications
d'erreur et & en maitriser I'emploi.

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage 423

Au lieu de faire apparaitre les sous-propriétés de Font dans la fenétre
Propriétés, vous pouvez ouvrir la boite de dialogue Police : dans la boite
de dialogue Propriétés, cliquez sur Font, puis cliquez sur le petit carré
gris contenant des points de suspension qui apparait dans ce champ.

2. Dans la fenétre Police, sélectionnez la police Arial, une taille de
12 points, et le style Gras.

3. Faites glisser le coin inférieur gauche de la zone de texte afin de
la redimensionner pour deux chiffres dans la taille et la police
que vous venez de sélectionner.

*.. SimpleEditor - Microsoft Visual C#.NET [design] - Formics [Designl®’ = .
Ficier Edtion Affichage Projet Générer Déboguer Données Qutls Fendtre Help
Ty Detug .o v HER 7
[tentBox1 System.windows.Forms.T v]
={0] x P
=a GICTEAE
. . o Acce scrip =]
— - SR Accessiblzhame
N | AccessibleRole Default
. . Bl spparevs
Figure 17.7: | . Backor [window
Certaines . | Borderstyle Fixed3D
eoo s 1 Cursor IBeam
proprietes, : S Font Microsaft Sans Ser]
. . 1 Forecalor El windowText
comme ' '@ Lines Tableau Stringl
Font, sont | RohtToleft No
n H ScrollBars Hane
en faitun : | T tevt5ox
ensemble de L Texhlan Lefr
. B Corapartement
Sous- ' . : i - s " AcceptsPetur False
sl | hcceptsTab Fake
proprietes, | Moebrop Fake -
que vous : : R . ROTRRE . RS Rkt
devez définir [Le texte contenu dans e contréle.
individuelle-
ment & mairtenut
G =

4. Assignez Center ala propriété TextAlign, supprimez le contenu
de Text, et vous y €tes.

Qe Au cas ol vous ne sauriez pas trés bien ce que vous permet de faire
un certain composant, la liste des propriétés est 1a, dans la fenétre
Propriétés, pour vous en donner une idée. Sélectionnez simplement
le composant, et parcourez le contenu de la fenétre Propriétés en
définissant les propriétés selon ce qui vous convient. Vous ne
pouvez pas faire de dégats : si vous n'aimez pas le résultat, vous
pourrez toujours modifier la propriété. Si vous avez modifié tant de
choses que vous ne vous y retrouvez plus, sélectionnez le compo-
sant, appuyez sur la touche Suppr, et il a disparu.

364 Quatrieme partie : La programmation orientée objet

e

$\)EZ PAJ’

NQ%Q

if (dFactorial == MyMathFunctions.NON_INTEGER_VALUE)
{
Congole.WriteLine
("Factorial() a regu un nombre non entier");
break;
}
/] affiche le résultat & chaque passage
Console.WriteLine("i = {0}, factorielle = {1}",
i, MyMathFunctions.Factorial(i));
)
/! attend confirmation de 1'utilisateur
Console.WriteLine("Appuyez sur Entrée pour terminer...");
Console.Read();

Factorial () commence maintenant par effectuer une série de tests. Le
premier regarde si la valeur passée est négative (0 est accepté parce qu'il
donne un résultat raisonnable). Si oui, la fonction retourne immédiatement une
indication d'erreur. Si non, la valeur de 'argument est comparée a sa version
entiere : si elles sont égales, c'est que la partie décimale de I'argument est nulle.

Main () teste le résultat retourné par Factorial (), alarecherche de l'indica-
tion éventuelle d'une erreur. Toutefois, des valeurs comme -1 et -2 n'ont
guére de signification pour un programmeur qui effectue la maintenance de
son code ou qui l'utilise. Pour rendre un peu pius parlante I'erreur retournée,
la classe MyMathFunctions définit deux constantes entieres. La constante
NEGATIVE NUMBER recoit la valeur -1, et NON_INTEGER VALUE recoit la valeur
-2. Cela ne change rien, mais l'utilisation des constantes rend le programme
beaucoup plus lisible, en particulier la fonction appelante Main ().

Dans la convention sur les noms Southern Naming Convention, les noms des
constantes sont entierement en majuscules, les mots étant séparés par un tiret
de soulignement. Certains programmeurs, plus libéraux, refusent de faire
allégeance, mais ce n'est pas la convention qui a des chances de changer.

Les constantes contenant les valeurs d'erreur sont accessibles par la
classe, comme dans MyMathClass . NEGATIVE NUMBER. Une variable de
type const est automatiquement statique, ce qui en fait une propriété de
classe partagée par tous les objets.

La fonction Factorial() signale maintenant qu'une valeur négative lui a
été passée comme argument. Elle le signale & Main () qui se termine alors
en affichant un message d'erreur beaucoup plus intelligible :

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage 42 ’

Figure 17.6:
La propriété
Shortcut
permet de
spécifier le
raccourci
clavier que
vous voulez
assigner a
I'élément de
menu.

$\)EZ P, As

"lliii

Cliquez sur ['un des éléments du menu, et examinez la liste des proprié-
tés. On y trouve bien sir une propriété Text — cette fois, c'est I'étiquette
du menu. Le champ Shortcur est aussi une propriété intéressante,
montrée par la Figure 17.6. Si vous cliquez dessus, une liste déroulante
apparait, contenant tous les raccourcis clavier que vous pouvez utiliser
pour sélectionner cet élément.

! Frét

¢ SO A =102

Eichier Edition Affichage Projst Générer Déboguer Danndes Ot Fepstrs Help
_g - g g fj L Dehug - ; pamo»
. % Forml.cs [Design]*‘ < Propriétés qox
4 [menultems Zystz windows Famn |

Fichier Edition Forrat >
Envegstrer
Cuitter

& manterul

b
o

LIRS

i Fropertic -

[

menultem’
Frreate

(e
loffiers

m

Thecred

Cief sultltem

Shortcut
Indique Je raccoun 47

8.

Appuyer sur un raccourci clavier permet d'exécuter la méme
commande qu'en sélectionnant I'option de menu associée. Par
exemple, appuyer sur Ctrl+C donne le méme résultat que Edition/
Copier, mais c'est plus rapide.

Dans le formulaire, cliquez sur 1'élément de menu Fichier/Ouvrir,
et assignez CtrlO a sa propriété Shortcut, comme le montre la
Figure 17.6. En répétant ce processus, assignez un raccourci
clavier a tous les autres éléments de menu, selon le Tableau 17.1.

Comme d'habitude, générez & nouveau le programme et essayez-le.

Vous pouvez taper dans la zone de texte et ouvrir les différents menus
principaux. Naturellement, au point oli nous en sommes, SimpleEditor
est encore plus que simple. C'est une coquille vide. Si vous sélectionnez
Fichier/Quitter, il ne se passe rien du tout. Il vous faut ajouter du code
derriére chacun de ces éléments de menu pour qu'ils fassent quelque
chose. C'est le sujet du Chapitre 18.

362 Quatrieme partie : La programmation orientée objet

HN/,
‘5& %,

AN
o
=

négatif. Ensuite, remarquez que les valeurs négatives ne croissent pas de
la méme manieére que les valeurs positives. Manifestement, il y a quelque
chose qui cloche.

Les résultats incorrects retournés ici sont assez subtils par rapport a ce qui
aurait pu se produire. Si la boucle de Factorial{) avait été écrite sous la
formedo [...] while (dValue != 0),le programme se serait planté en
passant un nombre négatif. Bien sir, je n'aurais jamais écrit une condition
comme while(dValue != 0),car les erreurs dues al'approximation
auraient pu faire échouer de toute facon la comparaison avec zéro.

Retourner une indication d'erreur

Bien qu'elle soit assez simple, il nanque a la fonction Fac:orial () une impor-
tante vérification d'erreur : la factorielle d'un nombre négatif n'est pas définie,
pas plus que la factorielle d'un nombre non entier. La fonction Factcria’ ()
doit donc comporter un test pour vérifier que ces conditions sont remplies.

Mais que fera la fonction Factorial () avec une condition d'erreur si la
chose se produit ? Elle connaitra I'existence du probléme, mais sans
savoir comment il s'est produit. Le mieux que 7zctorial) puisse faire
est de signaler les erreurs a la fonction qui I'appelle (peut-étre celle-ci
sait-elle d'ou vient le probleme).

La maniéere classique d'indiquer une erreur dans une fonction consiste a
retourner une certaine valeur que la fonction ne peut pas autrement retour-
ner. Par exemple, la valeur d'une factorielle ne peut pas étre négative. La
fonction Factorial () peut donc retourner -1 si un nombre négatif lui est
passé, -2 pour un nombre non entier, et ainsi de suite. La fonction appelante
peut alors examiner la valeur retournée : si cette valeur est négative, elle sait
qu'une erreur s'est produite, et la valeur exacte indique la nature de l'erreur.

Le programme FactorialErrorReturn suivant contient les ajustements
nécessaires :

// FactorialErrorReturn — crée une fonction factorielle qui
/1 retourne une indication d'erreur quand
/1 quelque chose ne va pas
using System;
namespace FactorialErrorReturn
{
/] MyMathFunctions — collection de fonctions mathématiques
/! de ma création (pas encore grand-chose & montrer)

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage

]
Figure 17.4:

La zone
RichTextBox
est I'endroit
ou I'utilisa-
teur pourra
éditer son
texte dans

SimpleEditor.

c'est le texte qui apparait dans la zone de texte. Pour un bouton,
c'est I'étiquette qui apparait sur le bouton. Cette propriété a tou-
jours le méme sens, mais elle est interprétée selon le contexte.

T BEY £y Debug .
;500 Formics [Design]* | ©

R
Donndes o
=104} COMPOSANLS o
g et g WindowsForms a4
o ehTemBod 3 Timer
. . +|» Spliter
(% DomainlpDown
< [T NumericUpDown
: = TrackBar
:Cl o . W ProgressBar
R . B8 RichTextBox
i) ImageList
i Ei} HelpProvider
k., ToolTip
1E] ContextMenu
e 44 ToolBar

rj! Simpletditor

Presse-papiers circulage ‘r
Genéral
"33 poite 4 outis

4. Pour voir ou vous en &tes arrivé, générez et exécutez a nouveau
I'application.

SimpleEditor apparait, avec la zone de texte au milieu. Vous pouvez y
taper du texte, déplacer le curseur dans le but d’insérer du texte ou
vous voulez, et méme sélectionner du texte. Bien siir, vous ne pouvez
rien faire de ce texte, mais SimpleEditor a déja fait pas mal de progres.

Construive les menus

Rien n'oblige a placer ces étapes ici, mais j'ai choisi d'ajouter maintenant
les menus et leurs options. Pour cela, il vous faut un composant MainMenu :

1. Dans la Boite a outils, cliquez sur le composant MainMenu. Dans le
formulaire, cliquez a I'emplacement de 1'élément le plus a gauche
du menu principal.

Un petit cadre apparait, contenant les mots Tapez ici.

360 Quatrieme partie : La programmation orientée objet

Traiter une erveur a 'ancienne mode : la retourner

Ne pas signaler une erreur a I'exécution n'est jamais une bonne idée. Je
dis bien jamais : si vous n'avez pas l'intention de déboguer vos program-
mes et si vous ne vous souciez pas qu'ils marchent, alors seulement c'est
peut-étre une bonne idée.

Le programme FactorialErreor suivant montre ce qui arrive quand les
erreurs ne sont pas détectées. Ce programme calcule et affiche la fonction
factorielle pour de nombreuses valeurs, dont certaines sont tout juste licites.

Q\)Ez Pag . . s N F * * *
S La factorielle du nombre N est égale a N * (N-1) * (N-2) * ... * 1. Par
= exemple, la factorielle de 4 est 4 * 3 * 2 * 1, soit 24. La fonction factorielle
n'est valide que pour les nombres entiers naturels (positifs).

/! FactorialWithError — créer et utiliser une fonction
/! factorielle qui ne contient aucune
I vérification
using System;
namespace FactorialWithError
{ ;
. // MyMathFunctions — collection de fonctions mathématiques
/! de ma création (pas encore grand-chose & montrer)
‘public class MyMathFunctions i
{

/] Factorial — retourne la factorielle d'une valeur

/] ~ fournie
public static double Factorial(double dvValue)
{ : :

/1 commence par donner la valeur 1 & un "accumulateur"
double dFactorial = 1.0; : :
/] fait une boucle & partir de nValue en descendant de 1 chaque fois
/] pour multiplier 1'accumulateur :
/] par la valeur obtenue
do
{
dFactorial *= dValue;
dvalue -= 1.0;
} while(dValue > 1);
/1 retourne la valeur stockée dans 1'accumulateur
return dFactorial;

}
public class Classl

{
public static void Main{string[] args)

_ Chapitre 17 : Créer une application Windows : le ramage et le plumage 4 ’ 7

C'est dans la méthode InitializeComponent que sont créés les compo-
sants Windows. Le commentaire spécial placé juste avant cette fonction
dit en effet : "Ne touchez pas a cette section du code, parce que c'est la
que moi, le Concepteur de formulaires, je fais mon boulot.” En fait, le
Concepteur génére le code situé entre les commentaires #region et
ffendregion, en réponse a ce que je dessine.

Dans ce cas simple, l'application commence par définir le membre
AutoScaleBaseSize de l'objet this. Je suis pas trés siir de ce qu'est cette
propriété. Heureusement, comme c'est le Concepteur de formulaires qui
s'en occupe pour moi, je n'ai pas besoin de le savoir, mais je sais que this
est I'objet Form lui-méme. En continuant jusqu'a la derniére ligne de
InitializeComponent, je peux voir que "Simple Editor" est assigné a
this.Text.

Prenez le temps d'étudier soigneusement ce point, car c'est 1a I'essentiel
du Concepteur de formulaires. Le Concepteur affiche les propriétés du
formulaire. L'une de ces propriétés est Text, a laquelle j'ai donné la valeur
"Simple Editor". Le Concepteur a ajouté une ligne de code qui assigne en
conséquence cette valeur a la propriété Text du formulaire.

La méthode Dispose est invoquée lorsque Forml est fermé. Elle n'est pas
particulierement intéressante dans ce cas, parce que la fermeture du
formulaire ferme aussi 1'éditeur.

o a ~ | V4 . &
Editer la fenétre d'édition
La propriété la plus importante de SimpleEditor est la fenétre d'édition :
1. Ouvrez la Boite a outils en sélectionnant Affichage/Boite a outils.

La Boite a outils contient une collection d'objets graphiques en C#, que
l'on appelle aussi parfois composants. On y trouve divers ensembles
d'accessoires, dont un ensemble nommé Windows Forms, contenant les
accessoires dont nous avons besoin pour réaliser SimpleEditor.

Le terme composant ne s'applique pas seulement aux objets graphi-
ques, mais tous les objets graphiques sont des composants. C'est
donc ce terme que nous utilisons ici.

Les accessoires de données sont utilisés pour réaliser facilement
des liens avec des bases de données externes. Les composants
gerent le multitache. La section Général de la Boite a outils est
I'endroit oll vous pouvez stocker les accessoires que vous réalisez

Chapitre 19 : Les dix erreurs de génération les plus courantes...

C# résout ce probléme en allouant tous les objets a partir du tas. Mieux
encore, C# retourne la mémoire au tas pour vous. Plus d'écran noir parce
que vous avez envoyé au tas le mauvais bloc de mémoire.

Les variables de type pointeur ne sont pas
autorisées

L'introduction des pointeurs par le langage C a beaucoup fait pour son succes.
Les manipulations de pointeur étaient une fonctionnalité puissante. Les
vétérans de la programmation en langage machine pouvaient y reproduire les
astuces de programmation qui leur étaient familieres. C++ a conservé de C,
sans modifications, les fonctionnalités sur les pointeurs et le tas.

Malheureusement, ni le programmeur ni le programme ne peuvent distinguer
un bon pointeur d'un mauvais. Lisez un bloc de mémoire avec un pointeur non
initialisé et, si vous avez de la chance, votre programme se plante. Si vous
n'avez pas de chance, le programme poursuit son petit bonhomme de chemin
en traitant comme un objet valide le bloc de mémoire trouvé au hasard.

Les problémes de pointeur sont souvent difficiles a identifier. Un programme
qui contient un pointeur invalide se comporte en général de facon différente
a chaque exécution.

Heureusement pour tous ceux qui sont concernés, C# a écarté les proble-
mes de pointeur en se débarrassant des pointeurs en général. Les référen-
ces qu'il utilise a la place sont indépendantes du type et ne peuvent pas
€tre manipulées par l'utilisateur pour en faire quelque chose qui pourrait
démolir le programme.

Vendez-moi quelques-unes de vos propriétés

Tout bon programmeur sait que I'accés a un membre donnée doit étre
soigneusement controlé a l'aide d'une méthode get () pour en retourner
la valeur, et éventuellement d'une méthode set () pour lui assigner une
valeur. Tout programmeur qui a déja utilisé les fonctions get () et set ()
est conscient du fait que leur emploi n'est pas une chose trés naturelle :

using System;
public class Student

b75

Chapitre 19 : Les dix erreurs de génération les plus courantes... 4 77

fichiers "include”, qui sont alors utilisés par les modules ; toutefois, il
peut devenir trés compliqué de placer tous ces fichiers include dans le
bon ordre pour que votre module se compile correctement.

C# se débarrasse de cette absurdité en recherchant lui-méme les définitions de
classe, et en les trouvant. Si vous invoquez une classe Student, C# recherche
et trouve lui-méme la définition de cette classe pour s'assurer que vous l'utili-
sez correctement. Il n'a pas besoin pour cela que vous lui donniez un indice.

Ne construisez pas, initialisez

J'ai trouvé évidente 1'utilité des constructeurs la premiére fois que j'ai jeté
les yeux sur I'un d'eux. Fournir une fonction spéciale pour s'assurer que
tous les membres donnée ont été définis correctement ? Quelle bonne
idée ! Le seul inconvénient, c'est que j'ai fini par ajouter un constructeur
trivial chaque fois que j'écrivais une classe :

public class Account
{
private double balance;
private int numChecksProcessed;
private CheckBook checkBook;
public Account()
{
balance = 0.0;
numChecksProcessed = 0;
checkBook = new CheckBook();
]
}

Pourquoi ne pourrais-je pas initialiser directement un membre donnée en
laissant le langage générer le constructeur pour moi ? C++ demande
pourquoi, C# réond pourquoi pas ? C# se débarrasse des constructeurs
inutiles en autorisant I'initialisation directe :

public class Account
{

private double balance = 0.0;

private int numChecksProcessed = 0;

private CheckBook checkBook = new CheckBook();
}

Chapitre 19 : Les dix erreurs de génération les plus courantes... 4 79

Les programmeurs ont ensuite réalisé que l'interface, plus légere, pouvait
rendre les mémes services. Une classe qui implémente une interface,
comme l'exemple suivant, promet a C# comme a tout le monde qu'elle
offre les méthodes read () et write() correspondantes :

interface IPersistable
{

void read();

void write();
}

Le systeme des types unifiés

En C++, la classe est une fonctionnalité fort sympathique. Elle permet aux
données et a leurs fonctions associées d'étre rassemblées dans un ensem-
ble propre et net, fait pour reproduire la maniére dont les gens voient les
choses dans le monde réel. Le seul inconvénient est que tout langage doit
offrir de la place pour les types de variable simples comme les entiers et
les nombres en virgule flottante. Cette nécessité a produit un systéeme de
castes. Les objets de classe vivaient d'un co6té, et les variables de type
valeur comme int et float vivaient de l'autre. Bien sir, les types valeur
et les types objet étaient autorisés a jouer dans le méme programme,
mais le programmeur devait maintenir cette séparation dans son esprit.

C# abat le mur de Berlin qui séparait les types valeur des types objet.
Pour chaque type valeur, il y a une "classe de type valeur” correspon-
dante, que l'on appelle une structure. Ces structures a faible cofit peuvent
se mélanger librement avec les objets de classe, permettant aux program-
meurs d'écrire des instructions comme celles-ci :

MyClass myObject = new MyClass();

/] affiche un "myObject"” mis sous forme de chaine
Console.WriteLine(myObject.ToString());

int i = 5;

/] affiche un int sous forme de chaine
Console.WriteLine(i.ToString());

// affiche la constante 5 sous forme de chaine
Console.WriteLine(5.ToString());

Non seulement je peux invoquer la méme méthode sur un int que sur un
objet de MyClass, mais je peux aussi le faire avec une constante comme
"5". Ce scandaleux mélange des types de variable est une fonctionnalité
puissante de C#.

NET
description 3,5, 7

A_UN 280

quand utiliser 281
Abstract 318
AbstractInheritance 318
Abstractinterface 343
Abstraction 231, 232
Acces

a des membres de

classe, restreindre 239

controle de I, 237 244, 246
AccessControl 391
Accesseur 250
Addition sur des chaines,

opérateur 202
Aide

en cours d'édition 196

plus 195

saisie automatique 190
AlignOutput 218
Ancrer un contrdle dans un

formulaire 426
Application

ajouter des actions 18

commentaires 26

console

cadre de travail 26

créer 24

créer un modele de 22
dessiner 12

Index

dossier dans lequel
enregistrer 22
exécuter 19
a partir de la ligne de
commande DOS 25
générer 17
nom par défaut 22
ou sont les instructions 27
Application Windows
afficher le code source 415
ajouter
des actions 433
des controles 422
des étiquettes 424
concevoir la
présentation 411
connattre les
composants 431
construire les menus 419
créer le cadre de
travail 413
définir 410
dessiner 412
redimensionner le
formulaire 426
Argument(s)
accorder définition et
utilisation 146
d'un type valeur, passer
a une fonction 151
par défaut,
implémenter 149
passer
a l'invite de DOS 165
a Main() 164
a partir de Visual
Studio .NET 170

a partir d'une
fenétre 168
& un programme 164
a une fonction 144
par référence a une
fonction 154
plusieurs a une
fonction 145
qui sortent mais n'entrent
pas 156
surcharger une
fonction 147
Arithmétique (opérateurs) 53
Array (classe) 116
syntaxe 117
Arrondir 37
Assembleur 4
Assignation, opérateur de 56
Assistant Applications 8
Asynchrone (I/0) 396
Automatique, saisie 190
AverageAndDisplay 145
AverageAndDisplay-
Overloaded 148
AverageStudentGPA 125
AverageWith
CompilerError 146

5

Balise des commentaires de
documentation 196

BankAccount 240, 291

BankAccountContructors-
AndFunction 266

Index 483

String 201
Classification 234, 235,
273, 311
Clipboard 435
Commandes de boucle 79
Commentaire 26
de documentation 195
balise 196
Comparaison, opérateurs
de 59
Compare() 204
avec majuscules et
minuscules 208
Comparer des nombres 41
Compteur 44, 45, 47, 52
utiliser une variable
comme 41
Concaténation 47, 221
Concepteur de formulaires 12
Console,
application, créer un
modele de 22
classe 173
Const 116
Constante numérique
déclarer 50
type 50
Constructeur(s) 252
comment se fait la
construction 262
de la classe de base,
passer des arguments
au 288
de structure 348
et héritage 286
éviter les duplications
entre les 265
exécuter a partir du
débogueur 258
exemple 256
par défaut 253, 261
de la classe de base,
invoquer 286
surcharger 263
ConstructorSavings-
Account 291

Continue 85
Controle
ancrer dans un formu-
laire 426
d'acceés 237, 244, 246
dans une application
Windows, ajouter 422
mettre en place 13
propriétés 15
Conversion
implicite 464
invalide, éviter en
utilisant is 284
Conversion de température 40
Convert 212
Couplage 391
CustomException 380

Decimal 42

limitations 44
vitesse de calcul 44
DecimalBankAccount 247
Déclaration
tableau 123
Déclarer
constante numérique 50
variable 32
DemonstrateDefault-
Constructor 256
Dessiner une application 12
Destructeur 293
Déterministe 294
DisplayArguments 164
DisplayRoundedDecimal 149
DisplayXWithNestedlL.oops 95
Distribué (développement) 5
Do... while 84
Documentation
commentaire de 195
balise 196
XML, générer 200

Donnée membre d'une
classe 136

DOS, passer des arguments a
l'invite de 165

Dossier de classement d'une
application 22

Double 39

DoubleBankAccount 246

E

Early binding 306
Enregistrer, avant de
quitter 452
Erreur
codes d'erreur 365
retourner 36(), 362
utiliser un mécanisme
d'exceptions 367
Espace de nom
accéder a des modules
du méme 388
controler l'acces aux
classes avec 391
déclarer 388
réunir des fichiers
source dans 387
utiliser avec using 390
EST_UN 278
quand utiliser 281
Etiquette dans une applica-
tion Windows, ajouter 424
Evénement 18, 434
Exception
classe de, redéfinir 380
créer une classe de 371
exemple 368
intercepter et
renvoyer 378
laisser passer 375
utiliser un mécanisme
de 367
Exécutable 4

instructions if imbri-
quées 76
Incrémentation, opérateurs
de 57,58
Index d'un tableau 118
InheritanceExample 272
InheritanceTest 321
InheritingAConstructor 286
Initialisation, référence non
initialisée 112
Instance 106, 234
Int 33, 35
Interface
a créer soi-méme 332
abstraite 342
description 329
et héritage 342
exemple 330
prédéfinie 334
InvokeBaseConstructor 289
InvokeMethod 179
Is 284, 308
IsAllDigits 213
Italique (mettre en) 439

7-K

Label 425
Langage(s)
C#3,5
d'assemblage 4
de haut niveau 4
Java b
machine 4
Late binding 306
Length 122
Liaison
précoce 306
tardive 306
Lire les caracteres saisis au
clavier 210

Logique
opérateurs 61
type bool 44
de comparaison 59

M

Main(), passer des
arguments a 164
Majuscules 208
Masquer Voir redéfinir
Membre
de classe, restreindre
l'acces 239
donnée 136
d'un objet, accéder a 107
fonction 136
statique d'une classe 115
Mémoire, stocker un objet
en 107
Menus
ajouter des actions 435
d'une application
Windows, construire 419
implémenter les
options 440
Méthode 181
abstraite 318
acces 394
déclarée
comme virtuelle 309
internal 394
private 393
protected 393
public 393
définir 179
différente selon la
classe 297
d'objet, définir 177
d'une classe de base,
redéfinir 298
d'une structure 349

héritée, surcharger 296
nom complet 182
propriétés actives 434
redéfinie, Accéder a 308
redéfinir
accidentellement 302 -
ou ajouter un test 301
roles 181
Minuscules 208
MixingFunctionsAnd-
Methods 188, 196
Modeéle 8
ModifyString 203

Nachos 231

New 258, 469
Nom
complet
d'une méthode 182
d'une fonction 296
conventions sur 48
de classe 105
de fichier, lire 446
de fonction,
surcharger 147
de variable 127
d'une fonction 207
espace de 387
Nombre(s)
comparer des 41
en virgule flottante,
comparer 60
entré au clavier 215
format de sortie 224
réels 38
Notation hongroise 49
Null 111
référence a 161
Numérique
entrée, analyser 212

Index 485

Replace 221
Return 157, 158
RichTextBox 418
RTF 418
écrire un fichier 449
lire un fichier 448

S

Saisie automatique 190
sur les fonctions de la
bibliotheque
standard 191
sur vos propres fonc-
tions et méthodes 193
SavingsAccount 279
Sceller une classe 325
Sealed 325
Sécurité
niveaux de 243
SetX 250
Signée (variable) 37
SimpleEditor 410
enregistrer avant de
quitter 452
fenétre d'édition 417
SimpleSavingsAccount 275
Sortie d'un programme
controler manuellement 217
SortInterface 336
SortStudents 130
Source 4
fichiers
diviser un programme
en plusieurs 385
réunir dans un espace
de nom 387
Split 215, 223
Statique
membre d'une classe 115
propriété 251
StreamReader, utiliser 402
StreamWriter 395

utiliser 396
String 46, 202
classe 201
convertir en un autre
type 212
StringReader 395
StringToCharAccess 210
StringWriter 395
Struct 346
Structure 346
constructeur de 348
et classe 345
exemple 350
méthodes d'une 349
types structure
prédéfinis 353
StructureExample 350
Surcharger Voir aussi
redéfinir
constructeur 263
fonction 147, 296
une méthode
d'une classe de base 298
héritée 296
Switch 97
pour tester une chaine 209

T

Tableau 116 Voir aussi Array
a longueur
fixe 117
variable 120
déclaration 123
dépassement de taille 119
d'objets 124
foreach 127
index 118
longueur 123
propriété Length 122
trier 128
Taille, de police, changer 439
Température (conversion) 40

Test 162
TextBox 422
changer la taille de
police en utilisant 444
TextReader 395
TextWriter 395
This 184
absent 188
explicite 185
Throw 367
Tolnt32 212
Tolnt64 212
ToString 384
TrackBar 424
changer la taille de
police en utilisant 442
Trier un tableau 128
Trim 212, 217
Tronquer 37
True 44
Try 367
Type
assigner un 65
bool 44
char 45
const 116
conversion de 45
conversion de, le cast 51
conversion explicite,
le cast 65
conversion implicite 64
de longueur fixe 49
de référence, opérateurs
sur 111
decimal 42
decimal, int, et float
(comparaison) 44
déclaré, utiliser chaque
fois 306
défini par le program-
meur 50
d'expression, accorder 63
double 39
d'une constante 50
d'une opération,
calculer 63

Index 487

a1l “s1Ae]
'v'd'§ wndogo sed
€00z Jdrauel us
Jowndwi,p gasyoy

488 C# pour les Nuls

entiers divers 35
étendue 42
évaluation par 107
float 38
fonction avec ou sans 160
int 33
intrinséque 49
string 46

convertir 212

et char, comparaison 47
struct 346
structure prédéfinie 353
type valeur 49
unifier le systéme de 353
vitesse de calcul selon

le 42

TypeUnification 354

U

UML (Unified Modeling
Language) 312

Using, utiliser un espace de
nom avec 390

v

Valeur, évaluation par, 107
Variable
de longueur fixe 49
decimal, déclarer 43
déclarer 32

en virgule
flottante 38
flottante, comparer 60
flottante, déclarer 38
flottante, limitations 40
flottante, précision 39
initialiser 467
logique 44
nom 127
non déclarée 462
passer par référence
a une fonction 154
ou par valeur 151
regles de
déclaration 34
portée 90
signée ou non signée 37
structure 346
utiliser comme
compteur 41
VariableArrayAverage 120
VehicleDataOnly 109
Virgule flottante 38
comparer des nombres
en 60
format de calcul du
Pentium 41
limitations 40
précision 39
Virtuelle, méthode, déclarer
comme 309
Visual Basic 20
Visual Studio
fenétres de 13
interface utilisateur 13
plus d'aide 195
saisie automatique 190

Visual Studio .NET 7
Vitesse de calcul, 42 44
Void 160

w

While 80
Windows
créer une application
avec C#7
définir une
application 410
générer et exécuter un
premier programme 11
Presse-papiers 435
WriteBinary 395
WriteLine 173

X-2

XML 196
documentation,
générer 200
Zéro, référence a 161

486 C# pour les Nuls

0

Object (classe) 285
Obiet(s)
accéder
a, méthodes pour 245
aux membres d'un 107
changer de classe 282
constructeur 252
courant 181
accéder a 183
courant, this 184
distinguer les uns des
autres 111
d'une classe abstraite 320
fonctions et méthodes
de, définir 177
null 111
passer a une fonction 175
programmation
orientée 231
propriété(s) 110
de 115
stocker en mémoire 107
string 202
structure 346
tableau de 124
Opérateur(s)
d'addition sur les
chaines 202
d'assignation 56, 111
de comparaison 59
d'incrémentation 57, 58
logiques 61
ordre d'exécution 55
point 111
simples 54
ternaire 66
Orientée objet
(programmation) 231
Out 153, 158
OutputFormatControls 226

Pad 217

ParseSequenceWithSplit 215
PassByReference 153
PassByReferenceError 154
PassByValue 151
PassObject 176
PassObjectToMember-
Function 177
Pentium
calculs en virgule
flottante 41
vitesse de calcul 42
PEUT_ETRE_UTILISE_
COMME 327
Police, changer de 439
Polymorphicinheritance 309
Polymorphisme 305, 306
accéder a une méthode
redéfinie 308
Portée des variables, régles
de 90
Précision 39, 41
Presse-papiers 435
Programmation
fonctionnelle 233, 235
langages de 3
orientée objet 231
abstraction 231
classification 234, 235
contrdle d'acces 237
implémentation en
C# 238
interface utilisable 236
Programme Voir aussi
application
contrdler manuellement
la sortie 217
définir une application
Windows 410
définition 4
diviser en plusieurs
fichiers source 385

exécutable 4
exécuter en déposant un
fichier dessus 168
interface 236
modele de 8
passer des arguments
aled
Propriété(s)
active 177, 434
accéder aux 434
avec effets de bord 252
de classe, définir 250
des controles 15
d'objet 115
Length 122
statique 251, 434
Protection, niveau de 466
Public 105, 239
exemple 240

0-R

\ 4

Quitter, enregistrer avant
de 452
Ramasse-miettes 294
ReadBinary 395
ReadLine 212
Redéfinir
accidentellement 302
une méthode d'une
classe de base 298
ou ajouter un test 301
Redimensionner le formu-
laire d'une application
Windows 426
Réel (nombre) 38
Ref 153
Référence
anull et a zéro 161
non initialisée 112
ReferencingThisExplicitly 186
Registres (du processeur) 49
RemoveWhiteSpace 221

484 C# pour les Nuls

Exécuter un programme en
déposant un fichier
dessus 168

Expression

accorder les types 63
évaluation 55

F

FactorialErrorReturn 362
FactorialException 368
FactorialWithError 360
Factorielle 360
Factoring 311
Fahrenheit 40
False 44
Fenétre
Code 18
de Visual Studio 11
passer des arguments &
partir d'une 168
Propriétés 15
Résultats 11
Fermeture (bouton de),
implémenter 456
Fichier(s)
lire le nom du 446
rassembler des données
dans 394
RTF 418
écrire 449
lire 448
source 4
diviser un programme
en plusieurs 385
réunir dans un espace
de nom 387
FileRead 402
FileWrite 397
Final 367
FixedArrayAverage 118
Float 38
Flux d'exécution

conditions mutuellement
exclusives, 74
controler, 70
exemple, 71
foreach, 127
goto, 100
switch, 97
Fonction
appelée méthode 181
d'acces 250
définir et utiliser 135
d'objet, définir 177
exemple 137
indiquer une erreur
dans 362
membre
d'une classe 136
statique d'une classe,
définir 177
nom 147, 207
complet 296
passer
des arguments a 143
des arguments d'un
type valeur 151
des arguments par
référence 152, 154
des arguments par
valeur 151
un objet 4 175
pourquoi ? 142
qui ne retourne pas de
valeur, définir 160
retourner une valeur 157
sans type 160
surcharger 147, 296
typée ou non typée 160
utiliser return 157
void ou non-void 160
WriteLine 173
For 91
Foreach 127, 210
Format 224
RTF 418
Formulaire 12

ajouter un controle
dans 14
ancrer les composants 426
Concepteur de
formulaires 12
redimensionner 426
Four & micro-ondes 231
Fraction
précision 39
représenter 37
FunctionsWithDefault-
Arguments 149

Générer 11

une application 17
GetX 250
Goto 100
Gras (mettre en) 439

H

Héritage 272
et constructeur 286
et interface 342
exemple 275
utilité 274
HidingWithdrawal 299
Hiérarchie de classes 321
Hongroise (notation) 49
HTML 196

/

[/O asynchrones 396
If, 70
éviter le else 75

482 C# pour les Nuls

BankAccountContructors-
AndThis 267
BankAccountWithMultiple-
Constructors 263
Base 288, 303
Boite a outils 13
Bool 44
conversion 45
Bord, effets de 252
Boucle(s)
break et continue 85
briser 85
commandes de 79
do... while 84
for 91
a quoi sert-elle ? 92
exemple 91
imbriquées 93
while 80
Boxing 159
Break 85
Build Voir générer
BuildASentence 205
Bulles (tri en) 129

C

créer une application
Windows avec 7
description 3, 5, 7
Cacher Voir redéfinir
Cadre de travail d'une
application Windows,
créer 413
Calculatelnterest 72
CalculatelnterestTable 80, 137
CalculatelnterestTableMore-
Forgiving 86
CalculatelnterestTableWith-
Functions 138
CalculatelnterestWith-
EmbeddedTest 76

Caractére
non imprimable 46, 211
de retour a la ligne 47
saisis au clavier, lire 210
variable de type 45
Cast 51
invalide a I'exécution 283
Catch 367
assigner plusieurs
bloes 373
laisser passer des
exceptions 375
sans arguments 405
Celsius 40
Chaine 47 Voir aussi string
analyser des caracteres
d'une 210
Compare 204
concaténation 47, 221
controler manuellement
la sortie d'un
programme 217
convertir en un autre
type 212
de controle 224
Format 224
invariabilité 204
lire 210
opérateur
+ 47
d’'addition 202
Pad 217
Replace 221
Split 215, 223
suite de chiffres tapés au
clavier, traiter 215
Trim 217
utiliser switch avec 209
Char 45
Class1 164
Classe 104
abstraite 317
utiliser 318
Array 116
changer la classe d'un
objet 282

classification 273, 311
Console 173
contenant d'autres
classes 113
controler l'acces aux
classes avec les espa-
ces de nom 391
créer un objet d'une, 106
de base, passer des
arguments au construc-
teur de 288
définition 105, 106, 110
destructeur 293
d'exceptions
créer 371
redéfinir 380
et structure 345
étendre 323
factoring 311
faiblement couplée 391
fonction membre 136
statique d'une,
définir 177
fortement couplée 391
héritage 272
hiérarchie de
créer une nouvelle 324
redémarrer 321
historique 108
instance 234
d'une 106
membre(s) 105
donnée 136
statiques d'une 115
ne pouvant étre
instanciée que
localement 270
nom, majuscules et
minuscules 105
object 285
propriétés de, définir 250
restreindre l'accés a des
membres 239
scellée 470
sceller 325
sous-classe 234

4 78 Sixieme partie : Petits suppléments par paquets de dix

Définis soigneusement tes types de variable,
mon enfant

C++ est tres politiquement correct. Il ne marcherait a aucun prix sur les
plates-bandes d'un ordinateur en exigeant qu'un type de variable particulier
soit limité & une étendue de valeurs particuliére. Il spécifie qu'un int fait a
peu prés "telle taille” et qu'un long est "plus grand”. Cette décision conduit a
des erreurs obscures quand on essaie de déplacer un programme d'un type
de processeur a un autre.

C# n'y va pas par quatre chemins. Il dit qu'un int fait 32 bits et qu'un long
fait 64 bits, et que c'est comme ca. En tant que programmeur, vous pou-
vez envoyer cela a votre banque ou a un autre ordinateur sans qu'il en
résulte d'erreurs inattendues.

Pas d'héritage multiple

C++ autorise une méme classe a hériter de plus d'une classe de base. Par
exemple, une classe Canapélit peut hériter de la classe Lit et de la
classe Canapé. Ca ne semble pas manquer de rigueur, et ca peut effective-
ment étre trés utile. Le seul inconvénient, c’'est que I'héritage de plusieurs
classes de base peut provoquer des erreurs de programmation qui sont
parmi les plus difficiles a identifier que I'on connaisse.

C# se met en retrait, et évite des erreurs supplémentaires en écartant
I'héritage multiple. Toutefois, ce choix n'aurait pas été possible si C#
n'avait pas remplacé I'héritage muitiple par une nouvelle fonctionnalité :
l'interface.

Prévoir une bonne interface

Quand les gens ont pris un peu de recul pour réaliser dans quel cauche-
mar ils s'étaient mis avec I'héritage multiple, ils se sont rendu compte que
dans 90 % des cas, la deuxieéme classe de base n'était 1a que pour décrire
la sous-classe. Par exemple, une classe parfaitement ordinaire pouvait
hériter d'une classe abstraite Persistable, avec une méthode abstraite
read () et une autre write (). Cela obligeait la sous-classe a implémenter
les méthodes read () et write() et a dire au monde extérieur que ces
méthodes étaient disponibles si on voulait s'en servir.

4 76 Sixieéme partie : Petits suppléments par paquets de dix

private string sName;
public void set(string sName)
{
this.sName = sName;
}
public string get()
{
/] retourne une copie du nom
return String.Copy(sName);
}
]
class MyClass
{
public void AddLastName(Student student)
{
student.set(student.get() + " Kringle");
}
}

La notion de Propriété en C# permet d'implémenter les fonctions get () et
set () d'une maniere compléetement naturelle dans le programme :

using System;
public class Student
{
private string sName;
public string Name
{
gset { sName = value;)
get { return String.Copy(sName); }
}
}
class MyClass
{
public void AddLastName(Student student)
{
student.Name = student.Name + "Kringle";
} :
}

Je n'inclurai plus jamais un fichier

C++ impose une cohérence rigoureuse des types. C'est une bonne chose.
Il Ie fait en vous obligeant a déclarer vos fonctions et vos classes dans des

4 74 Sixiéme partie : Petits suppléments par paquets de dix

Pas de données ni de fonctions globales

C++ passe pour un langage orienté objet, et il I'est, au sens ol vous
pouvez l'utiliser pour programmer d'une maniére orientée objet. Vous
pouvez aussi mettre de c6té les objets en placant simplement les données
et les fonctions dans un espace global, ouverts a tous les éléments et &
tout programmeur doté d'un clavier.

C# demande au programmeur de lui faire allégeance : toutes les fonctions
et tous les membres donnée doivent faire partie d'une classe. Si vous
voulez accéder a cette fonction ou a ces données, vous devez passer par
l'auteur de cette classe. Il n'y a pas d'exception a cela.

Tous les objets sont alloués a partir du tas

C comme C++ autorisent l'allocation de mémoire de trois maniéres diffé-
rentes, chacune avec ses propres inconvénients :

1 Les objets globaux existent du début a la fin de I'exécution du
programme. Un programme peut facilement allouer plusieurs
pointeurs au méme objet global. Si vous en modifiez un, ils sont
tous modifiés, qu'ils soient préts pour cela ou non.

1+ Un objet de pile est propre a une fonction (ce qui est une bonne
chose), mais son allocation disparait lorsque la fonction retourne
son résultat. Tout pointeur qui pointe vers un objet dont l'allocation
mémoire a été supprimée devient invalide. Ce serait trés bien si
quelqu'un avait prévenu le pointeur, mais le malheureux s'imagine
toujours qu'il pointe vers un objet valide, et le programmeur aussi.

1 Les objets du tas sont alloués en fonction des nécessités. Ces
objets sont propres a un thread d'exécution particulier.

Le probléme est qu'il est trop facile d'oublier a quel type de mémoire se
réféere un pointeur. Un objet du tas doit étre retourné quand on en a fini avec
lui. Oubliez-le, et votre programme aura de moins en moins de mémoire
disponible, jusqu'a ce qu'il ne puisse plus fonctionner. D'un autre c6té, si
vous libérez plus d'une fois le méme bloc du tas pour "retourner” un bloc de
la mémoire globale ou de la pile, votre programme est parti pour une longue
sieste. Il faudra peut-6tre Ctrl+Alt+Del pour le réveiller.

4 72 Sixieme partie : Petits suppléments par paquets de dix

Ces deux possibilités sont mises en évidence dans la classe suivante :

public class MyClass
{
public string ConvertToString(int n)
{
/! convert the int n into a string s
string s = n.ToString();
}
public string ConvertPositiveNumbers(int n)
{
/! .only positive numbers are valid for conversion
if (o> 0)
{
string s = n.ToString();
return s;

}
Console.WriteLine("the argument {0} is invalid", n);

ConvertToString() calcule une chaine & retourner, mais ne la retourne
jamais. Ajoutez simplement r--u:2 s: en bas de la méthode.

ConvertPositiveNumbers () retourne la version chaine de I'argument int
n lorsque celui-ci est positif. En outre, il génére correctement un message
d'erreur lorsque n n'est pas positif. Mais méme si n n'est pas positif, la
fonction doit retourner guelque chose. Dans ces cas-1a, retournez soit un
null, soit une chaine vide "". La solution qui conviendra le mieux dépend
de l'application.

¥ attendue

Ce message indique que C# attendait encore une accolade fermante a la

fin du listing. Quelque part dans le code, vous avez oublié de fermer une
définition de classe, une fonction ou un bloc if. Reprenez votre code et

appariez soigneusement les accolades ouvrantes et fermantes jusqu'a ce
que vous trouviez la coupable.

W[. \ L ,
<X Ce message est souvent le dernier d'une série de messages d'erreur
souvent idiots. Ne vous préoccupez pas des autres avant d'avoir remédié
a celui-ci.

4 70 Sixieme partie : Petits suppléments par paquets de dix

~ new public void Function()
A

}
}

»* Vous vouliez vraiment hériter de la classe de base par polymor-
phisme, auquel cas vous auriez di déclarer les deux classes de la

facon suivante :

public class BaseClass

{

public virtual void Function()

-
}
}

public class SubClass : BaseClass

{
public overrides void Function()
(
}

Voyez le Chapitre 13 pour en savoir plus.
«‘S,\'\NIQ(/@
&

S Cela n'est pas une erreur, mais seulement un avertissement dans la
=

fenétre Liste des taches.

'subclassName' : ne peut pas hériter de la
classe scellée 'baseclassName'

Ce message indique que la classe est scellée et que vous ne pouvez donc
pas en hériter, ni en modifier les propriétés. Typiquement, seules les
classes des bibliothéques sont scellées. Vous ne pouvez rien y changer.

‘className' n'implémente pas le membre
d'interface 'methodName'

L'implémentation d'une interface représente une promesse de fournir une
définition pour toutes les méthodes que comporte cette interface. Ce
message vous dit que vous n'avez pas tenu cette promesse car vous n'avez
pas implémenté la méthode citée. Il peut y avoir plusieurs raisons a cela :

468 Sixieme partie : Petits suppléments par paquets de dix

Dans ce cas, aucune valeur n'est assignée a n dans SomeFunction(), mais
elle en recoit une dans SomeOtherFunction(). Cette derniére ignore la
valeur d'un argument cut comme s'il n’existait pas, ce qui est le cas ici.

Le fichier 'programName.exe' ne peut pas étre
copié dans le répertoire d'exécution. Le processus
ne peut pas...

En général, ce message se répete de nombreuses fois. Dans presque tous
les cas, il signifie que vous avez oublié d'arréter le programme avant de le
générer a nouveau. Autrement dit, voila ce que vous avez fait :

1. Vous avez généré votre programme avec succes (supposons que
ce soit une application console, bien que cela puisse se produire
avec n'importe quelle sortie en C#).

2. Vous avez vu le message "Appuyez sur Entrée pour terminer”,
mais, dans votre hate, vous ne l'avez pas fait. Votre programme
est donc toujours en cours d'exécution, et vous étes retourné
dans Visual Studio pour modifier le fichier.

3. Vous avez essayé de générer a nouveau le programme avec vos
modifications. C'est la que vous avez obtenu ce message d'erreur.

Un fichier exécutable .EXE est verrouillé par Windows jusqu'a ce que le
programme termine effectivement son exécution. Visual C# ne peut pas
écraser la version précédente du fichier exécutable .EXE avec la nouvelle
version tant que le programme n'a pas terminé son exécution.

Revenez a l'application, et faites le nécessaire pour qu'elle se termine.
Dans le cas d'une application console, appuyez simplement sur la touche
Entrée. Vous pouvez aussi mettre fin & 'exécution d'un programme dans
Visual Studio en sélectionnant Déboguer/Arréter le déboguage.

Une fois que la version antérieure du programme a terminé son exécution,
générez a nouveau l'application.

Si vous n'arrivez pas a vous débarrasser de l'erreur en mettant fin &
I'exécution du programme, il est possible qu'il y ait quelque chose qui

466 Sixieme partie : Petits suppléments par paquets de dix

Le résultat de 2.0 * est toujours de type double, mais le programmeur a
indiqué qu'il voulait que le résultat soit converti en type float, méme au
cas improbable ou il en résulterait une perte d'informations.

Une autre approche consisterait a s'assurer que toutes les constantes
sont de méme type :

class MyClass
{
static public float FloatTimes2(float f)
{
/] ceci fonctionne bien parce que 2.0F est une constante de type float
float fResult = 2.0F * f;
return fResult;
)
}

Cette version de la fonction utilise une constante 2.0 de type f1o2+ au lieu
du type double par défaut. Un f1cat multiplié par un flozt estun lcat.

‘className.memberName' est inaccessible en
raison de son niveau de protection

Ce message indique qu'une fonction essaie d'accéder a un membre auquel
elle n'a pas acceés. Par exemple, une méthode d'une classe peut essayer
d'accéder a un membre privé d'une autre classe (voyez le Chapitre 11) :

public clags MyClass
{
public void SomeFunction()
{
YourClass uc = new YourClass();
/] ceci ne fonctionne pas correctement parce que MyClass
/] ne peut pas accéder au membre privé
uc.nPrivateMember = 1;
)
}
public class YourClass
{
private int nPrivateMember = 0;

)

En général, I'erreur n'est pas aussi flagrante. Bien souvent, vous avez simple-
ment laissé le descripteur hors de I'objet membre ou de la classe elle-méme.

464 Sixieme partie : Petits suppléments par pagquets de dix

Impossible de convertir implicitement le type 'x'
en |u I
Ce message indique généralement que vous essayez d'utiliser deux types
de variable différents dans la méme expression. Par exemple :

int nAge = 10;
/! génére un message d'erreur
int nFactoredAge = 2.0 * nAge;

Le probléme est ici que 2.0 est une variable de type double. La variable n4ge
de type int multipliée par le 2.0 de type double produit une valeur de type
double. C# ne va pas automatiquement stocker une valeur de type double
dans la variable de type int nFactoredAge, car il pourrait en résulter une
perte d'information (en particulier, la partie décimale de la valeur douhle).

Certaines conversions ne sont pas aussi évidentes, comme dans l'exemple
suivant :

class MyClass
{ !
static public float FloatTimes2(float f)
{
/! ceci produit une erreur de génération
float fResult = 2.0 * f;
return fResult;
}
}

On pourrait croire que multiplier par deux un type float ne pose pas de
probléme, mais c'est justement la qu'est le probléme. 2.0 n'est pas de type
float mais de type double. Un float multiplié par un double donne un
double. C# ne va pas stocker une valeur de type double dans une variable
de type float, a cause — vous avez deviné — de la perte d'informations qui
pourrait en résulter (dans ce cas, plusieurs chiffres de précision).

Les conversions implicites peuvent déconcerter plus encore le lecteur
désinvolte (c'est mon cas, dans les bons jours). Cette version de
FloatTimes2 () marche trés bien:

class MyClass
{
static public float FloatTimes2(float f)

{

462 Sixieme partie : Petits suppléments par paquets de dix

parfois affreusement bavard. Jai réduit certains des messages d'erreur pour
les faire tenir sur une page. En plus, il y a dans un message d'erreur différents
endroits ol apparait le nom d'un membre donnée offensant ou d'une classe
irrévérencieuse. Jai remplacé ces noms par variablelName, memberName ou
className.

Enfin, C# ne se contente pas de cracher le nom de la classe. Il préfére
mettre sur la table I'espace de nom au grand complet (au cas, bien sir, ou
le message aurait été trop court avec la premiére solution).

‘className' ne contient pas de définition pour
'memberName'

Ce message d'erreur peut signifier que vous avez oublié de déclarer une
variable, comme dans l'exemple suivant :

for{index = 0; index < 10; indext+)
{
// . . . instructions . . .

}

La variable index n'est définie nulle part (pour savoir comment déclarer
les variables, reportez-vous au Chapitre 3). Cet exemple devrait avoir été
écrit de la facon suivante :

for(int index = 0; index ¢ 10; indext+)
{

// . . . instructions . . .
]

La méme chose s'applique aux membres donnée d'une classe (voyez le
Chapitre 6).

Il y a en fait plus de chances que vous ayez fait une faute de frappe dans
un nom de variable. En voici un bon exemple :

class Student

{
public string sStudentName;
public int nID;

)

class MyClass

{

Dans cette partie...

uel livre Pour les nuls serait complet sans notre
wp traditionnelle partie des dix ? C# est trés doué pour
trouver des erreurs dans vos programmes lorsque vous
essayez de les générer. Vous l'avez sans doute remarqué.
Mais les messages d'erreur qu'il génére peuvent €tre assez
obscurs. Vous l'avez sans doute remarqué aussi. Le Chapi-
tre 19 passe en revue les dix messages d'erreur de générations
les plus courants et ce qu'ils signifient le plus souvent. Et comme
savoir c'est pouvoir, vous y trouverez aussi des suggestions de
correction pour les problémes correspondants.

Beaucoup des lecteurs de ce livre seront venus a C# par le
plus répandu de tous les langages orientés objet, C++. Le
Chapitre 20 donne la liste des dix différences principales
entre ces deux langages.

456 Cinquieme partie : Programmer pour Windows avec Visual Studio

Implémenter le bouton de fermeture de la

fenétre

Il reste encore un petit probléme. Il est toujours possible de quitter
l'application en fermant la fenétre :

1.

Dans le Concepteur de formulaires, sélectionnez le cadre de la
fenétre du programme.

Dans la fenétre Propriétés, sélectionnez I'événement Closing.
Entrez le nom de fonction ApplicationWindow(Closing.

C'est la propriété Clcosing qui est invoquée lorsque l'utilisateur
clique sur Ie bouton de fermeture de la fenétre (le x dans le coin
supérieur droit). Il est facile d'associer une méthode a cette pro-
priété. La difficulté est de savoir quoi faire quand elle recoit le
controle. La réponse est donnée par un aspect des méthodes de
propriété, que j'ai passé sous silence jusqu'ici.

Lorsque C# appelle une méthode en réponse a un clic sur un
bouton ou a la saisie d'une valeur, il lui passe deux arguments. Le
premier de ceux-ci est appelé le sender. Cet objet est le composant
qui est a l'origine du stimulus. Les méthodes que nous avons
générées ne pouvaient étre invoquées que par une seule source.
Toutefois, il peut étre utile de différencier les senders, car cela
réduit la quantité de code a écrire (je suis toujours d'accord pour
écrire moins de code). Par exemple, une méme méthode peut étre
utilisée pour traiter plusieurs boutons radio, le sender indiquant
quel est le bouton sur lequel a cliqué 'utilisateur.

Le deuxiéme argument contient d'autres informations sur I'événe-
ment, qui ont trait a la raison pour laquelle la méthode a été appe-
lée. Toutefois, la classe CancelEventArgs passée a notre méthode a
la suite d'un clic sur le bouton de fermeture de la fenétre contient
une propriété Cancel (Annuler). Si vous donnez a cet indicateur la
valeur “rue, l'opération de fermeture de la fenétre est tuée dans
I'ceuf.

Modifiez la méthode ipplicationWindowClosing () sur la base de
la méme logique "ne pas perdre les modifications” que nous
avons utilisée avec succes pour la commande Fichier/Quitter :

454 Cinquieme partie : Programmer pour Windows avec Visual Studio

MessageBey retourne DialogResult. Yes, c'est que l'utilisateur dit qu'il cst
d'accord pour ne pas enregistrer ses modifications.

C'est ce que réalisent les modifications suivantes aux méthodes
FileGpen(), Filesave() et FileExit() :

private void FileOpen(object sender, System.EventArgs e)
{
/1 n'écrase pas le précédent fichier en ouvrant le nouveau
if (IsChangeOK() == false)
{
return;
}
// tout va bien, dit-il
OpenAndReadFile();
// la zone de texte est maintenant dans 1'état non modifié
bTextChanged = false;
}
private void FileSave(object sender, System.EventArgs e)
(.
/! donne la valeur false a 1'indicateur de modification
/! si 1'enregistrement a fonctionné
if (SaveSpecifiedFile())
{
bTextChanged = false;
]
}
private void FileExit{object ‘sender, System.EventArgs e)
{
/] ne quitte pas si les modifications n'ont pas été déja enregistrées
/] ou tant que l'utilisateur ne dit pas qu'il est d'accord
if (IsChangeOK() == false)
{
return;
}
/] la voie est libre
Application.Bxit();

Dans tous les cas, la méthode IsChangeOK () est invoquée avant d'exécuter
une opération qui pourrait provoquer la perte d'une modification.

Il nous manque encore quelque chose : il faut que l'indicateur bTextChanged
recoive la valeur true a chaque modification apportée dans la zone de texte.
RichTextsox nous donne ce quil nous faut : la propriété dynamique
TextChanead (), qui est invoquée chaque fois que quelque chose modifie le

452 Cinquieme partie : Programmer pour Windows avec Visual Studio

——— =10l x|

Fichier Edition Format »

FigUl’E 18.7: T2 texte a été creé danz Word
SimpleRditor |dans differentes pahres,

est mainte- de diverses tailles

nant un et divers styles

véritable

éditeur,

capable de

lire d'un seul Taille de pofice [16
coupdegros ‘

fichier RTF. e T
]

2

Ne perdez pas mes modifications en quittant !

Limplémentation de la commande Fichier/Quitter est une chose facile :

1. Dans le Concepteur de formulaires, sélectionnez 1'option de
menu Fichier/Quitter.

2. Dans la fenétre Propriétés, sélectionnez I'événement (1 ick, et
entrez le nom de fonction FileExit.

3. Implémentez de la facon suivante la méthode FeFx it () que
vous venez de créer :

private void FileExit(object sender, System.EventArgs e)
{

Application.Exit();
}

Cestlaclasse 4pplication qui contrdle 'ensemble du programme.
Comme son nom l'indique, sa méthode Zxit () fait directement sortir de
la scéne. L'inconvénient de cette solution est que quitter le programme
sans avoir commencé par faire Fichier/Enregistrer provoque la perte de
vos dernieres modifications. Ce n'est pas une chose a faire.

Heureusement, les méthodes de lecture et d'écriture nous donnent ce dont
nous avons besoin pour éviter cette catastrophe. SaveSpecifiedfile()
retourne un bool qui indique si la donnée a effectivement été enregistrée.
Nous n'avons besoin ici que d'un indicateur "grossier", disant s'il yaounon
dans RichTextBox quelque chose a enregistrer. Nous pouvons assigner false

450 Cinquieme partie : Programmer pour Windows avec Visual Studio

if (strOutput != null)
{
System.I0.StreamWriter striWtr =
new System.I0.StreamWriter(strOutput);
strWtr.Write(richTextBoxl.Rtf);
strWtr.Close();
bReturnValue = true;
}
}
return bReturnValue;

}

Cette fonction suit exactement le méme chemin que la méthode
OpenAndReadFile () que nous avons vue plus haut. Pour commencer, elle
ouvre la boite de dialogue SaveFileDialog, et attend qu'elle lui retourne
OK. Le programme essaie alors d'ouvrir le fichier. Si l'opération aboutit, le
programme écrit dans le fichier tout le contenu de la propriété Rtf de la
zone de texte RichTextBox.

Nous avons ajouté le composant Savel'ileDialoga SimpleEditor enle
faisant glisser depuis la Boite a outils. Aucun ajustement n'a été nécessaire.

Mettre Lire et Ecrire dans une boite, avec un
menu par-dessus
| Les méthodes OpenindReadFile() et SaveSpecifiedFile() sont bien

jolies, mais totalement inutiles tant qu'elles ne sont pas liées chacune a
une option de menu.

Pour implémenter les options de menu Fichier/Ouvrir et Fichier/Enregis-
trer, suivez ces étapes :

1. Entrez les méthodes OpenindReadFile() et SaveSpecifiedFile()
décrites dans les sections précédentes.

2. Dans le Concepteur de formulaires, sélectionnez 1'option de
menu Fichier/Enregistrer.

3. Dans la fenétre Propriétés, sélectionnez I'événement C1ick, puis
entrez le nom de fonction FileSave, comme le montre la Figure 18.6.

448 Cinquiéme partie : Programmer pour Windows avec Visual Studio .

Live un fichier RTF

La boite de dialogue Opentiledialoy est étonnamment facile a utiliser. La
méthode StowDizlog!) ouvre la boite de dialogue. SimpleEditor n'a rien
a faire pendant que I'utilisateur fait défiler le contenu de cette boite de
dialogue a la recherche du fichier a ouvrir. Une fois qu'il a terminé, il
clique sur OK (ou sur Annuler s'il n'a rien trouvé). C'est seulement alors
que le controle est restitué a la fonction appelante. La valeur retournée
par ShowDialogi) est DialogResult.OK sil'utilisateur a cliqué sur le
bouton OK. S'il a cliqué sur autre chose, ca ne nous intéresse pas.

La méthode OopenF:ie!) retourne soit un 10.Strean valide qui permet de
lire le fichier, soit un nul1 sile fichier spécifié ne peut pas étre lu pour
une raison ou pour une autre. Ces deux méthodes sont combinées dans la
fonction OpenincReadFile () suivante :

// 1it dans la RichTextBox le fichier spécifié par 1'utilisateur
// (retourne true si la RichTextBox est modifiée)
private bool OpenAndReadFile()
{
bool bReturnValue = false;
try
{
// lit le nom de fichier entré par 1'utilisateur
if (openFileDialogl.ShowDialog() == DialogResult.0K)
{
/1 ouwvre le fichier
System.I0.Stream strinput = openFileDialogl.OpenFile();
if (strInput != null)
{
/] si 1'ouverture du fichier a réussi, lui associe
// un lecteur de flux
System.I0.StreamReader strRdr =
new System.I0.StreamReader (strinput);
// 1it tout le contenu du fichier
string sContents = strRdr.ReadToEnd();
richTextBoxl.Rtf = sContents;
// nous avons modifié la fenltre de texte
bReturnValue = true;
/! assurons-nous de fermer le fichier pour que d'autres
// puissent le lire
strRdr.Close();

catch(Exception e)

446 Cinquiéme partie : Programmer pour Windows avec Visual Studio

4.
5.
6.

Générez le programme et exécutez-le.
Entrez du texte et sélectionnez-le.
Entrez une taille de police entre 8 et 24.

La taille du texte sélectionné change, et l'index de la barre se
déplace a la position correspondante.

Enregistrer le texte de ['utilisateur

Sans la possibilité de lire et d'écrire des fichiers, SimpleEditor ne serait
rien de plus qu'un jouet.

Lire le nom du fichier

Pour lire un fichier, il faut savoir lequel il faut lire. Pour cela, C# fournit
une boite de dialogue spéciale, nommée OpenfileDialog. Tot ou tard,
l'utilisateur voudra enregistrer sur le disque le texte qu'il vient de saisir et
de mettre en forme. Vous avez deviné : vous avez besoin pour cela de
OpenFileDialog. Associez a ces deux boites de dialogue les fonctions de
lecture et d'écriture de fichier que nous avons vues au Chapitre 16, et
vous avez un éditeur complet.

Ajouter une boite de dialogue OpenFileDialog est un jeu d'enfant :

1.

Dans le Concepteur de formulaires, faites glisser un composant
OpenFileDizlog de la Boite a outils jusqu'a la zone qui se trouve
au-dessous de la fenétre d'édition (la zone dans laquelle il y a
déja MainMenul).

Faites la méme chose avec un composant SaveFileDialog.
Le résultat doit ressembler a la Figure 18.5.

Le composant OpenFilelialog ne contient qu'une seule propriété
statique vraiment intéressante. Quand on utilise cette boite de
dialogue pour ouvrir un fichier, il y apparait généralement dans
une liste des fichiers de divers types. Par exemple, le Bloc-notes
commence par rechercher les fichiers *.txt, alors que Word
commence par rechercher les fichiers *.doc. C'est ce qu'on

444

Cinquiéme partie : Programmer pour Windows avec Visual Studio

Figure 18.4:
Grace aulien
établi entre
ces deux
composants,
la valeur qui
apparaitdans
la TextBox
estmise a
jour en
fonction de la
position de
I'index dans la
TrackBar.

M simplekditor g =10 x|

Fichier Edition Format

Ce teute avait d'abard la taille de police par défaut

puis = 3 zélectiorn: CE rtaines Parti es
que s a g ran d |eS eri faizant

ghizser index du trackbar

Taille de police 11 E

8 ¢ 24

oo e e

Changer de taille en utilisant la TextBox

L'utilisateur peut aussi entrer directement une taille de police dans la
zone de texte Taille de police (sinon, elle ne servirait pas a grand-chose).
Cette fonction doit donc fonctionner dans la direction opposée a la
fonction FontSizeControl (), mais elle est également un peu plus compli-
quée car elle doit prendre en compte les erreurs de saisie éventuelles de
l'utilisateur. Mais au bout du compte, FontSizeEntered () doit exécuter la
méme opération : lire la nouvelle valeur, modifier la taille de police, et
ajuster la position de l'index de la barre en conséquence.

1. Sélectionnez l'objet TextBox de la taille de police.

2. Dans la fenétre Propriétés, sélectionnez 1'événement
TextChanged, et entrez le nom de fonction FontSizeEntered.

C'est cette méthode qui sera invoquée par C# lorsque l'utilisateur
entrera une nouvelle valeur dans la zone de texte Taille de police.

3. Dans le code source, implémentez la nouvelle fonction comme suit :

/1 invoquée quand 1'utilisateur tape quelque chose dans la TextBox
/] utilisé pour définir la taille de la police
private void FontSizeEntered(object sender, System.EventArgs e)
{
// 1lit le contenu de la TextBox
string sText = textBoxl.Text;

442 Cinquieme partie : Programmer pour Windows avec Visual Studio

1

// TODO: Add any conmstructor code after InitializeComponent call

11 ‘

// donne & la police le style et la taille par défaut ‘
SetFont () ;

6. Générez le programme et exécutez-le.
7. Entrez du texte, et sélectionnez-le avec la souris.

8. Sélectionnez Format/Gras et Format/Italique dans un ordre
quelconque.

La Figure 18.3 montre du texte mis en gras et en italique dans la fenétre de
SimpleEditor. Remarquez aussi que les options activées a l'endroit ot se
trouve le curseur sont précédées d'une coche dans le menu, qui vous permet
donc de savoir quelle sera la mise en forme du texte que vous allez taper a
partir de 1a. C'est le résultat de notre définition de la propriété Checked.

% simpleEditor SO n i P
Fichier Edtion Format 2
— vGras CieG GG
FIgUI’E]8 3 . v Italique Ctrl+1 Chri+I
A ..) G eot oute norrna
SimpleFditor [<5"'" dutestz nora
Ceci est en gras
perm et en ialique
maintenant
de saisir du
texte en gras
et en Taille de police r_
N~ 3
italique. e 24
|

Choisir la taille de police

Le changement de la taille de police utilise la méme fonction SetFont (J,

mais avec une petite complication, car elle peut étre définie par deux
composants différents.

Changer de taille en utilisant la TrackBar

C'est une opération qui se fait assez directement :

440 Cinquieme partie : Programmer pour Windows avec Visual Studio

fs l= FontStyle.Bold;

if (isItalics)
{

fs |= FontStyle.Italic;
) | |
Font font = new Font(richTextBoxl.Font.FontFamily, fontSize, fs);
richTextBoxl.SelectionFont = font; . :

La base de cette fonction est le constructeur Font (). Il en existe de nom-
breuses versions, mais celle-ci admet les arguments qui nous intéressent :
la police courante, la nouvelle taille, et la nouvelle police. FontStyle
rassemble sous forme de bits des propriétés comme gras, italique, barré et
souligné. Commencez par FontStyle.Regular et ajoutez celles que vous
voulez de ces propriétés en utilisant 'opérateur C# OR (1 1). Les deux
indicateurs isBolded et isItalics stockent les informations disant sile
texte est ou non en gras ou en italique.

Le premier argument du constructeur spécifie la police courante (la possibilité
de changer de police ne fait pas partie des fonctionnalités que nous avons
retenues pour SimpleFditor). La commande richTextBoxl.Font retourne
une description de la police courante. La propriété FontFamnily retourne le
type de police (par exemple, "Arial" ou "Times New Roman"). Le constructeur
crée donc un nouvel objet Font, avec la méme police mais dans une nouvelle
taille, et dont les attributs gras et italiques ont éventuellement été changés.

La derniére assignation modifie la police du texte sélectionné ou du texte
qui sera tapé a partir du point ot se trouve le curseur.

L'expression richTextBoxl.Font = font; modifie la police de tout le
texte qui se trouve dans la zone de texte.

Implémenter les options du menu Format

Les étapes ci-dessous implémentent les options du menu Format :
1. Dans les menus, sélectionnez Format/Gras.

2. Dans la fenétre Propriétés, sélectionnez 1'événement C1ick, et
entrez le nom FormatBold.

3. Répétez le méme processus pour l'option de menu Format/
Italique, en utilisant le nom Formatltalics.

438 Cinquiéme partie : Programmer pour Windows avec Visual Studio

QL

)

/] efface ce qui est déja la
richTextBoxl.SelectedRtf = "";

private void EditCopy(object sender, System.EventArgs e)

{

)

string rtfText = richTextBoxl.SelectedRtf;
WriteClipboard(rtfText);

private void EditPaste(object sender, System.EventArgs e)

{

}

string s = ReadClipboard(});
if (s != null)

{

}

10.

11.

richTextBoxl,.SelectedRtf = s;

La propriété SelectedRtf contient a chaque instant le texte qui est
sélectionné. La méthode EditCopy () passe cette propriété a
WriteClipboard().La méthode Edi=Cut () fait la méme chose, mais
en supprimant le texte sélectionné en assignant une chaine vide a
cette propriété. La méthode EditPaste () lit dans le Presse-papiers
une chaine RTF, par laquelle il remplace le texte sélectionné (ou
insére cette chaine a I'endroit ou se trouve le curseur s'il n'y a pas de

texte sélectionné).

Double-cliquer sur le nom d'une propriété dans la fenétre Proprié-
tés vous conduit directement a la fonction correspondante. Cette
astuce peut faire gagner pas mal de temps.

Générez a nouveau Simplefditor. Vous avez maintenant un
programme qui peut vraiment couper, copier et coller.

Exécutez le programme en sélectionnant Déboguer/Démarrer.
Tapez quelques lignes de texte dans la fenétre d'édition.

Sélectionnez une portion de texte, sélectionnez Edition/Couper
(ou appuyez sur Ctrl+X), placez le curseur a I'endroit que vous
voulez, sélectionnez Edition/Coller (ou appuyez sur Ctrl+V), et
voila ! Le texte a été déplacé.

Plus impressionnant encore, SimpleEditor peut échanger du texte par Couper
et Coller avec d'autres applications, par exemple Word. La Figure 18.2 montre
une portion de texte coupée dans un document Word et collée dans

436 Cinquieme partie : Programmer pour Windows avec Visual Studio

La fonction suivante stocke dans le Presse-papiers une chaine de texte
identifiée comme de type RTF (Rich Text Format) :

private void WriteClipboard(string rtfText)

{
DataObject data = new DataObject();
data.SetData(DataFormats.Rtf, rtfText);
Clipboard.SetDataObject(data, true);

]

La méthode WriteClipboard () accepte un argument string pour le
copier dans le Presse-papiers. Elle commence par créer un objet
DataObject (1, dans lequel elle stocke la chalne et l'indication que le texte
est en fait une série de commandes RTF, et non un objet de type feuille de
calcul ou base de données. La classe DataFormats n'est en fait rien de
plus qu'un ensemble de descripteurs de différents formats de données,
DataFormats.Rtf étant celui qui nous intéresse ici. La méthode
SetDataObject () copie la chaine RTF dans le Presse-papiers.

La lecture des données dans le Presse-papiers est le méme processus en
sens inverse, mais il vous faut y ajouter quelques tests pour garantir que
la requéte de lecture sera ignorée si la donnée contenue dans le Presse-
papiers n'est pas de type chaine : :

private string ReadClipboard()
(;
© /] récupére le contenu du Presse-papiers

IDataObject data = Clipboard.GetDataObject();

if (data == null)

{

return null;

b
/] une fois les données récupérées, vérifie qu'elles sont
/! au format RTF o
object o = data.CetData(DataFormats.Rtf, true); =~ .
if (o == mull) ‘

{
return null;
}
/! nous avons quelque chose, mais assurons-nous '
/I que c'est bien une chaine
if ({0 is string) == false)
{
return null;

}

434 Cinquiéme partie : Programmer pour Windows avec Visual Studio

formelle, ces accessoires sont appelés des cornposants). Il suffit de choisir un
composant dans la Boite a outils, et de le faire glisser pour le déposer sur le
formulaire. Vous pouvez ensuite le personnaliser en ajustant toutes les pro-
priétés que vous voulez dans la fenétre Propriétés, judicieusement nommeée.

La fenétre Propriétés liste deux types fondamentalement différents de
propriétés. Le premier de ces ensembles, que j'appelle les propriétés stati-
ques, comporte la police, la forme, la couleur d'arriere-plan, et le texte initial.
Ce sont également des propriétés du point de vue du langage C#. (Pour en
savoir plus sur la structure Propriété de C#, reportez-vous au Chapitre 11.)

La fenétre Propriétés contient aussi un ensemble de propriétés compléte-
ment différent, qui correspondent plutdt aux méthodes de C#. Je les
appelle propriétés actives.

Les propriétés actives correspondent en fait a ce que 1'on appelle un
délégué. Un délégué est une référence a un couple objet/méthode. Dans ce
cas, l'objet est le composant sélectionné, et la méthode est la "propriété”
de la liste des propriétés actives.

Les propriétés dynamiques sont plus communément appelées des événe-
ments. La méthode qui est invoquée lorsque I'événement se produit
s'appelle un gestionnaire d'événement. Mais je ne veux pas introduire de
complications inutiles.

Les propriétés actives d'un objet sont les méthodes invoquées par C#
lorsque certaines circonstances particulieres se produisent. Par exemple,
la propriété Button.Click est invoquée lorsque que I'utilisateur clique
sur un bouton. Mais ces propriétés actives offrent un contréle bien plus
précis que cela. Par exemple, si vous voulez différencier le fait d'enfoncer
un bouton ou de le relacher, vous avez une propriété différente pour
chacune de ces deux actions. Une propriété active est déclenchée quand
le pointeur se trouve sur un bouton, que I'utilisateur clique ou non, et
c'est une autre propriété qui passe a l'action lorsque la souris va ailleurs
{(c'est généralement ce qui est utilisé pour changer la couleur d'un bouton
quand le pointeur passe dessus).

Pour accéder aux propriétés actives, sélectionnez le composant, et cliquez sur
le bouton contenant un éclair en haut de la fenétre Propriétés. La Figure 18.1
montre une partie des propriétés actives d'un composant TextBox.

Afin que le programme SimpleEditor fasse ce que l'on attend de lui, vous
devez définir une ou plusieurs propriétés actives pour chacun de ses
composants. SimpleEditor parait soudain moins simple.

430 Cinquieme partie : Programmer pour Windows avec Visual Studio

- 'thig.menultem5,
“ thig.menulteny,
 this.menulten12));
/) e e
// trackBarl
/! :
this.trackBarl.Anchor = {(System.Windows.Forms.AnchorStyles.Bottom |
System.Windows.Forms.AnchorStyles.Left)
| System.Windows.Forms.AnchorStyles.Right);
this.trackBarl.Location = new System.Drawing.Point(40, 248);
this.trackBarl.Maximum = 24; R
this.trackBarl.Minimum = §;
_ this.trackBarl.Name = "trackBarl"; P
" this.trackBarl.Size = new System.Drawing.Size(208, 42);
* this.trackBarl.TabIndex = 2; i
this.trackBarl.Value = 12;
}
fendregion

}

J'ai supprimé toutes les sections qui ne concernent pas le menu principal
(MainMenu), I'une des options du Menuy, et la TrackBar. Chacun de ces
objets est un membre donnée de la classe Forml. Le Concepteur de
formulaires crée les noms de ces membres donnée en concaténant le type
de lI'objet avec un numéro.

J'aurais pu vous faire définir des noms dans la fenétre Propriétés pour
obtenir quelque chose de plus parlant, mais c'était sans importance. Pour
des programmes de grande taille, la définition de vos propres noms peut
rendre le code qui en résulte beaucoup plus facile a lire.

La méthode TnitializeComponent () commence par créer un objet de
chaque type.

Ne vous étonnez pas du fait que le Concepteur de formulaires donne le
nom complet de chaque classe, y compris son espace de nom
(System.Windows.Forms).

Dans l'une des sections suivantes du programme,
InitializeComponent () assigne a chacun de ces objets les propriétés
que vous avez définies dans la fenétre Propriétés.

428 Cinquieme partie : Programmer pour Windows avec Visual Studio

+ Sivous générez a nouveau SimpleEditor, le redimensionnement
fonctionne comme vous pouvez l'attendre, comme le montrent le
"petit SimpleEditor" dela Figure 17.11 et le "grand SimpleEditor”
de la Figure 17.12.

Tableau 17.2: Type d'ancrage pour chaque composant.

Composant Ancrage
RichTextBox Haut, bas, gauche, droite
Zone de texte "Taille de police” Bas

Etiquette 'Taille de police" Bas

TrackBar Bas, gauche, droite
Etiquette de I'extrémité gauche de la TrackBar Bas, gauche
Etiquette de I'extrémité droite de la TrackBar Bas, droite
I

Figure 17.10:;

Cliquez sur les

bras de la
fenétre

d'ancrage

pour

sélectionner
{gris foncé) ou
désélectionner
(blanc)
I'ancrage
dans chaque
direction.

=lofx]

Fichier Edition Format ?

Figure 17.11:
Le petlt Taille de police r“]
SimpleBditor, ° e

426 Cinquieme partie : Programmer pour Windows avec Visual Studio

&‘\‘“ON 7

Redimensionner le formulaire

Les utilisateurs aiment que les fenétres soient redimensionnables. Pour
étre plus précis, les utilisateurs peuvent avoir envie de redimensionner le
formulaire de SimpleEditor. Par défaut, un formulaire est
redimensionnable, mais les objets qu'il contient ne le sont généralement
pas. C'est une chose a laquelle vous pouvez remédier, mais la solution n'est
pas triviale.

Si vous voulez faire simple, ne permettez pas aux utilisateurs de
redimensionner le formulaire. Ce n'est pas forcément évident, mais le
redimensionnement est une fonction du cadre. L'assignation de la valeur
Fixed3D ala propriété FormBorderStyle met le formulaire hors d'atteinte
du zele des souris.

1. Sélectionnez le formulaire. Identifiez la propriété rormBorderStyle.
Sa valeur par défaut est Sizable. Cliquez sur cette propriété pour
faire apparaitre une liste déroulante des valeurs possibles. Sélec-
tionnez Fixed3D pour interdire le redimensionnement.

La suite de cette section, consacrée a la maniére de rendre
SimpleEditor redimensionnable, peut étre considérée comme
appartenant au domaine technique. Vous pouvez l'ignorer et
continuer & avancer. Vous y reviendrez quand vous voudrez.

Pour rendre un formulaire redimensionnable, la difficulté est de dire
aux composants qu'il contient comment ils doivent répondre. Par
défaut, la plupart des composants ne sont pas redimensionnables.
Si vous redimensionnez le formulaire, ils resteront 1a ou ils étaient,
comme le montre la Figure 17.9.

Si SimpleEditor doit étre redimensionnable, ses composants
doivent savoir quoi faire. Par exemple, si le cadre est agrandi, la
TrackBar doit se déplacer vers la droite, tout en suivant le bord
inférieur du formulaire. Autrement dit, la TrackBar est ancrée en
bas du formulaire. Si le formulaire est allongé verticalement, la
TrackBar reste sur le bord inférieur.

En plus, la TrackBar doit s'étirer horizontalement entre le bord
gauche et le bord droit du formulaire. Cet effet est produit par son
ancrage sur les bords droit et gauche. Quelle que soit la largeur
donnée au formulaire, la TrackBar ne doit jamais dépasser du
formulaire, par la droite ou par la gauche.

424 Cinquiéme partie : Programmer pour Windows avec Visual Studio

Encore un détail : il faut centrer horizontalement la zone de texte
dans le formulaire. Vous pouvez le faire visuellement, mais il y a
une meilleure solution.

5. Sélectionnez la zone de texte, et cliquez sur I'outil Centrer hori-
zontalement dans la barre d'outils Disposition.

La zone de texte est centrée horizontalement dans le formulaire.

6. Venons-en maintenant a notre TrackBar. Sélectionnez le compo-
sant TrackBar dans la Boite a outils, et placez-le tout en bas du
formulaire SimpleEditor,

La taille verticale d'un composant TrackBar est fixe, mais vous
pouvez |'étirer horizontalement pour lui donner la longueur que
vous trouverez raisonnable. Encore une fois, "raisonnable” est une
question de préférence personnelle, et vous pourrez modifier cette
longueur lorsque vous aurez vu ce qu'elle donne en pratique.

Une TrackBar posseéde plusieurs propriétés de comportement
intéressantes. En fonctionnement, SimpleEditor aura besoin de
demander ala TrackBar la valeur qu'elle contient. Ce qui souléve la
question : "A quelle valeur correspondent la position la plus a
droite et la position la plus a gauche de l'index ?" Ces deux valeurs
sont définies respectivement par les propriétés Minimum et Maximum
de TrackBar. Nous avons dit que la taille de la police peut aller de 8
a 24 points.

7. Sélectionnez la TrackBar (si elle ne l'est pas déja). Assignez la
valeur 8 a la propriété 1“ininun, et la valeur 24 a la propriété
Maximun. Assignez la valeur 12 a la propriété value.

8. Centrez la TrackBar : sélectionnez-la, et cliquez sur le bouton
Centrer horizontalement dans la barre d'outils Disposition.

Encore un coup de peinture et nous y sommes

Les composants dont nous avions besoin pour la taille de la police sont
en place et préts a fonctionner, mais ils pourraient étre plus sympathi-
ques. Vous et moi, nous savons a quoi ils servent, mais personne d'autre
ne va le deviner. SimpleEditor a besoin de quelques étiquettes pour
indiquer a quoi servent les différents champs.

422 Cinquieme partie : Programmer pour Windows avec Visual Studio

Tableau 17.1 : Raccourcis clavier des éléments de menu.

Eléement de menu Raccourci

Fichier/Quvrir Ctrl0
Fichier/Enregistrer CtrlS
Fichier/Quitter CtrlQ
Edition/Couper CtriX
Edition/Copier CtriC
Edition/Coller Ctrlv
Format/Gras CtriB
Format/Italique Ctrll

?

F1

€2 P4
Qg\) §

Ajouter les contréles d'ajustement de la police

SimpleEditor doit aussi étre capable de modifier la police, dans certai-
nes limites arbitraires. Dans cette section, vous allez ajouter une zone de
texte dans laquelle I'utilisateur pourra taper la taille qu'il veut donner a la
police. SimpleEditor disposera aussi d'un contréle analogue, que 'on
appelle TrackBar, dans lequel l'utilisateur peut faire glisser un index
d'une extrémité a I'autre pour augmenter ou diminuer la taille de la police.

En dehors de rendre SimpleEditor plus facile & utiliser, cette fonctionna-
lité permet aussi de montrer comment relier deux contrdles.

1. Ouvrez la Boite a outils, et faites glisser un contrdle TextBox en bas
de la fenétre Simplekfditor. Comme la taille par défaut est un peu
grande pour deux chiffres, vous pouvez la réduire horizontalement.

Il y a beaucoup de choses dans la propriété Font (police) : la police
elle-méme et sa taille, ainsi que des propriétés comme Bold (gras),
Ttalic (italique), et Strikeout (barré). C'est pour cette raison
qu'il y a un petit signe plus a gauche de la propriété Font. Cliquez
sur ce signe plus, et vous voyez apparaitre toutes les propriétés
que contient Font, comme le montre la Figure 17.7. (Et le signe plus
devient un signe moins - si vous cliquez sur le signe moins, vous ne
voyez plus que la propriété Font, comme avant.)

420 Cinquieme partie : Programmer pour Windows avec Visual Studio

2.

.. SimpleEditor - Microsoft Visual Ci#.NET [design) - Formit.cs [Desiy =10l
Eichier Editron Affichage Projet Genérer Déboguer Dgnnées OQutils Fenétre Help
] bl &- s Cetug - o8 s AR 2
e . Formis [Design]* | = - - < Bolte & outis 2 x
4] Donnees
=10] %] Composants
— Windows Forms
. . N Pomter
Figure 17.5: A e
Le compo- A Uoktabel
sant 2| Buton
MainMenu g K::Zw
vous 7 CheckBox
propose de @ Redotitton
1 . GroupBox
ta per I Optlon 28) PictureBox
du menu i (i panel
principal et . 5 oatas
& marMeniu! Presse-papiers circulaire -
celle du Générat o
sous-menu. Retesonn [oo
e

Suivez les instructions simples qui apparaissent dans le Concepteur :
cliquez sur les mots Tapez ici, puis tapez le nom de votre premier
élément de menu : Fichier.

Le Concepteur répond en affichant un autre cadre Tapez ici au-
dessous, et encore un autre a droite du premier, comme le montre
la Figure 17.5. C'est tellement excitant que je ne sais pas par lequel

commencer.

3.

4.

Cliquez dans le cadre Tapez ici au-dessous de Fichier, et entrez
les trois options du menu Fichier : Ouvrir, Enregistrer, et Quitter.

Cela fait, cliquez dans le cadre Tapez ici a droite du menu
Fichier, et entrez Edition et ses options : Couper, Copier, et Coller.

Déplacez-vous a nouveau d'un cran vers la droite, et ajoutez
Format et ses options : Gras et Italique.

Enfin, ajoutez ? (l'aide) a la barre de menus.

Remarquez la nouvelle zone ouverte par le Concepteur au-dessous
de la zone de dessins avec la création de votre premier menu
principal. Vous pouvez cliquer sur I'objet mainMenul qui y apparait
pour définir les propriétés d'ensemble de ces menus. Vous pouvez
aussi utiliser cette zone pour y placer les objets qui ne sont pas
directement visibles (par exemple, une boite de dialogue qui
apparait seulement dans certaines circonstances).

4 78 Cinquieme partie : Programmer pour Windows avec Visual Studio

vous-méme. Tous ces sujets sont fort intéressants, mais, comme
vous vous en doutez, sortent du cadre de ce livre.

En faisant défiler vers le haut et vers le bas le contenu de la Boite a
outils, vous découvrez une pléthore de composants. On y trouve des
étiquettes, des boutons, des zones de texte, des menus, et une quan-
tité d'autres objets graphiques. Il y en a stirement un qui est ce dont
nous avons besoin pour la fenétre d'édition. On pourrait penser que le
composant TextBox est ce qu'il nous faut, mais une zone de texte est
plutot adaptée a la saisie d'un texte simple (en général, une ligne). Par
exemple, vous utiliserez une zone de texte pour permettre a I'utilisa-
teur d'entrer un simple nombre entier pour la taille de police.

En fait, le meilleur choix pour la fenétre d'édition est le composant
RichTextBox. Celui-ci permet de saisir et d'afficher du texte dans le
format nommé RTF (Rich Text Format). Un fichier RTF est sembla-
ble a un fichier au format Microsoft Word (.DOC), a cette différence
que RTF est plutot un standard. Ce format a toutes les propriétés
dont nous avons besoin : italique, gras, différentes tailles de police,
et il est pris en compte par la plupart des traitements de texte pour
Windows, dont Word, et d'autres traitements de texte écrits pour
d'autres systémes d'exploitation, par exemple pour Unix.

Afin de créer la fenétre d'édition, cliquez sur le symbole
RichTextBox dans la Boite a outils. Placez le pointeur dans le
coin supérieur gauche du formulaire Simple Editor, puis mainte-
nez enfoncé le bouton gauche de la souris pour le faire glisser
vers le bas et vers la droite, créant ainsi une zone d'édition
comme celle que montre la Figure 17.4.

Ne vous préoccupez pas trop de la taille et de 'emplacement exact
de la zone RichTextBox. Vous pourrez toujours la déplacer et la
redimensionner autant que nécessaire.

Je n'aime pas beaucoup le texte initial de richTextBox1. Pour le
modifier, ouvrez la fenétre Propriétés, et remplacez le contenu
de la propriété Tcxt par rien. Autrement dit, effacez ce qui s'y
trouve pour laisser ce champ vierge.

Le texte disparait de la zone RichTextRox.

La méme propriété peut étre interprétée de facon différente par
deux composants différents. La propriété Text en est le meilleur
exemple. Pour un formulaire, c'est I'étiquette qui se trouve dans la
barre de titre. Pour une zone de texte (TextBox ou RichTextBox),

|

DECOUVREZ

Variables
et opérateurs.
Programmation
et objets.
Vous voici confronté a un micro-ordinateur - plus par nécessité que par
gout, avouons-le -, sans savoir par quel bout prendre cet instrument La programmation
barbare et capricieux. Oubliez toute appréhension, cette nouvelle orientée objet.
collection est réellement faite pour vous !
- Classe, héritage
et polymorphisme.
Grace a ce livre, vous allez rapidement écrire vos premieres gpplicati?ns Programmer
en C#,sans pour autant devenir un gourou de la programmation. C#, c'est i '
le nouveau langage de programmation développé par Microsoft, et qui se sous Windows

présente comme la pierre angulaire de la solution .NET du géant du avec Visual Studio.
logiciel. Rassurez-vous, on ne vous assommera pas avec toutes les
subtilités du langage, mais vous posséderez les bases nécessaires pour
utiliser la panoplie d'outils du parfait programmeur C#.

le texte.

Linformatique en francais dans 5y x
N
ulement tout ce que vous devez ’&/@“ 'aof V;uvsuéteescae”z;qgee;'.a
S \
Tout et se iy

P IT savoir. o \, 7 chemin.
L LS?R a I’mformatnon graceau g

Un acces rapide

- Cette icone signale une
on. ipulation qui va vous
eala naVlgaﬂ manipulation g
D-ES N[XLS systéeme d’iconesd ‘"d simplifier la vie.

Les dix commandements. Q,\sez Pa

Y Désolé, il faut quand méme
= W ,] retenir ceci.

Une bonne dose d’humour.

65 3303 8
ISBN-2-84427-259-2
21,90 €

(143,65 F)
% FI rst Retrouvez First Interactive sur Internet “I ||| " " II ”
: www.efirst.com 28441272591
Hungry Minds~ In W27259

65 3303 8

First

T i i L PN

