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Preface

The recent years have been marked out by an evergrowing interest in the
research of qualitative behaviour of solutions to nonlinear evolutionary
partial differential equations. Such equations mostly arise as mathematical
models of processes that take place in real (physical, chemical, biological,
etc.) systems whose states can be characterized by an infinite number of
parameters in general. Dissipative systems form an important class of sys-
tems observed in reality. Their main feature is the presence of mechanisms
of energy reallocation and dissipation. Interaction of these two mecha-
nisms can lead to appearance of complicated limit regimes and structures
in the system. Intense interest to the infinite-dimensional dissipative sys-
tems was significantly stimulated by attempts to find adequate mathemati-
cal models for the explanation of turbulence in liquids based on the notion
of strange (irregular) attractor. By now significant progress in the study of
dynamics of infinite-dimensional dissipative systems have been made.
Moreover, the latest mathematical studies offer a more or less common line
(strategy), which when followed can help to answer a number of principal
questions about the properties of limit regimes arising in the system under
consideration. Although the methods, ideas and concepts from finite-di-
mensional dynamical systems constitute the main source of this strategy,
finite-dimensional approaches require serious revaluation and adaptation.

The book is devoted to a systematic introduction to the scope of main
ideas, methods and problems of the mathematical theory of infinite-dimen-
sional dissipative dynamical systems. Main attention is paid to the systems
that are generated by nonlinear partial differential equations arising in the
modern mechanics of continua. The main goal of the book is to help the
reader to master the basic strategies of the theory and to qualify him/her
for an independent scientific research in the given branch. We also hope
that experts in nonlinear dynamics will find the form many fundamental
facts are presented in convenient and practical.

The core of the book is composed of the courses given by the author at
the Department of Mechanics and Mathematics at Kharkov University dur-
ing several years. The book consists of 6 chapters. Each chapter corre-
sponds to a term course (34-36 hours) approximately. Its body can be
inferred from the table of contents. Every chapter includes a separate list
of references. The references do not claim to be full. The lists consist of the
publications referred to in this book and offer additional works recommen-



Preface

ded for further reading. There are a lot of exercises in the book. They play
a double role. On the one hand, proofs of some statements are presented as
(or contain) cycles of exercises. On the other hand, some exercises contain
an additional information on the object under consideration. We recom-
mend that the exercises should be read at least. Formulae and statements
have double indexing in each chapter (the first digit is a section number).
When formulae and statements from another chapter are referred to,
the number of the corresponding chapter is placed first.

It is sufficient to know the basic concepts and facts from functional
analysis and ordinary differential equations to read the book. It is quite un-

derstandable for under-graduate students in Mathematics and Physics.

1.D. Chueshov
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The mathematical theory of dynamical systems is based on the qualitative theo-
ry of ordinary differential equations the foundations of which were laid by Henri
Poincaré (1854-1912). An essential role in its development was also played by the
works of A. M. Lyapunov (1857-1918) and A. A. Andronov (1901-1952). At present
the theory of dynamical systems is an intensively developing branch of mathematics
which is closely connected to the theory of differential equations.

In this chapter we present some ideas and approaches of the theory of dynami-
cal systems which are of general-purpose use and applicable to the systems genera-
ted by nonlinear partial differential equations.

§ I Notion of Dynamical System

In this book dymamical system is taken to mean the pair of objects (X, St) con-
sisting of a complete metric space X and a family .S , of continuous mappings of the
space X into itself with the properties

S, =808, tteT,, Sy=1I, (1.1)

t+t
where T, coincides with either a set R, of nonnegative real numbers or a set
2,={0,1,2,..}.1f T, =R,, we also assume that y(¢) =S,y is a continuous
function with respect to ¢ for any ¥ € X . Therewith X is called a phase space, or
a state space, the family S, is called an evolutionary operator (or semigroup),
parameter ¢ € T, plays the role of time. If T, =7, then dynamical system is
called discrete (or a system with discrete time). If T, = R, then (X, S,) is fre-
quently called to be dynamical system with continuowus time. If a notion of dimen-
sion can be defined for the phase space X (e. g., if X is a lineal), the value dimX is
called a dimension of dynamical system.

Originally a dynamical system was understood as an isolated mechanical system
the motion of which is described by the Newtonian differential equations and which
is characterized by a finite set of generalized coordinates and velocities. Now people
associate any time-dependent process with the notion of dynamical system. These
processes can be of quite different origins. Dynamical systems naturally arise in
physics, chemistry, biology, economics and sociology. The notion of dynamical sys-
tem is the key and uniting element in synergetics. Its usage enables us to cover
arather wide spectrum of problems arising in particular sciences and to work out
universal approaches to the description of qualitative picture of real phenomena
in the universe.
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Basic Concepts of the Theory of Infinite-Dimensional Dynamical Systems

Let us look at the following examples of dynamical systems.

Example 1.1

Let f (x) be a continuously differentiable function on the real axis posessing the
property xf(x) > —C(1+2), where C is a constant. Consider the Cauchy
problem for an ordinary differential equation

2(t) = ~f(x(t), t>0, 2(0)=ux,. (1.2)
For any « € R problem (1.2) is uniquely solvable and determines a dynamical
systemin R. The evolutionary operator S, is given by the formula S, x, = x(t),
where 2(t) is a solution to problem (1.2). Semigroup property (1.1) holds
by virtue of the theorem of uniqueness of solutions to problem (1.2). Equations
of the type (1.2) are often used in the modeling of some ecological processes.
For example, if we take f(x)= o -2 (x —1), o > 0, then we get a logistic equ-
ation that describes a growth of a population with competition (the value x(t)
is the population level; we should take IR, for the phase space).

Example 1.2

Let f(«) and g () be continuously differentiable functions such that
A
F)= [4(©)0 2 o, g() =
0

with some constant ¢ . Let us consider the Cauchy problem

{i+g(x)9b+f(x)=0, t>0,

1.3
2(0) =2y, 2(0)=mz,. 1

For any y,= (7, 7;) € R2, problem (1.3) is uniquely solvable. It generates
a two-dimensional dynamical system (lRiz, S,), provided the evolutionary ope-
rator is defined by the formula

Sy (g @) = (2(1); 2(1))
where 2 (t) is the solution to problem (1.3). It should be noted that equations

of the type (1.3) are known as Liénard equations in literature. The van der Pol
equation:

glx)=¢(@?-1), €>0, flx)=x
and the Duffing equation:
glx)=¢, €¢>0, f(r)=23-a-x-0b
which often occur in applications, belong to this class of equations.
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Example 1.8

Let us now consider an autonomous system of ordinary differential equations

() =f (v, 29, ..., 2y), k=1,2,...,N. (1.4

Let the Cauchy problem for the system of equations (1.4) be uniquely solvable
over an arbitrary time interval for any initial condition. Assume that a solution
continuously depends on the initial data. Then equations (1.4) generate an N - di-
mensional dynamical system (IR{N , S, ) with the evolutionary operator S, acting
in accordance with the formula

Sy =(x1(0), - 2n(1), Y= (710, Taps -5 Tg)
where {x,(t)} is the solution to the system of equations (1.4) such that
2;(0)=2;9, ©=1,2,..., N . Generally, let X be a linear space and F be
a continuous mapping of X into itself. Then the Cauchy problem

i(t)=F(z(t), t>0, x(0)=x,ecX (15)

generates a dynamical system (X R St) in a natural way provided this problem is
well-posed, i.e. theorems on existence, uniqueness and continuous dependence
of solutions on the initial conditions are valid for (1.5).

Example 1.4
Let us consider an ordinary retarded differential equation
x(t)+ox(t)=flx(t-1)), t>0, (1.6)

where f is a continuous function on R, o > 0. Obviously an initial condition
for (1.6) should be given in the form

x(t)be[_l, 0] = (b(t) (1.1

Assume that ¢ (t) lies in the space C[—1, 0] of continuous functions on the
segment [—1, O]. In this case the solution to problem (1.6) and (1.7) can be
constructed by step-by-step integration. For example, if 0 < ¢ < 1, the solu-
tion 2 (1) is given by

t

(1) = e §(0) +J‘e_°‘(t_T)f(d)(r—l))dr ,

0
andif ¢ € [1, 2], then the solution is expressed by the similar formula in terms
of the values of the function x (t) for ¢ € [0, 1] and so on. It is clear that the so-

lution is uniquely determined by the initial function ¢ (¢). If we now define an
operator S, in the space X = C[~1, 0] by the formula

S, 0)(r)=2(t+1), 7Te[-1,0],

where 2 (t) is the solution to problem (1.6) and (1.7), then we obtain an infi-
nite-dimensional dynamical system (C[~1, 0], S,).

13
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Now we give several examples of discrete dynamical systems. First of all it should be
noted that any system (X R St) with continuous time generates a discrete system if
we take ¢ € /Z, instead of ¢ € R, . Furthermore, the evolutionary operator S, of
a discrete dynamical system is a degree of the mapping S, i.e. S, = Si ,tel,.
Thus, a dynamical system with discrete time is determined by a continuous mapping
of the phase space X into itself. Moreover, a discrete dynamical system is very often
defined as a pair (X, S), consisting of the metric space X and the continuous map-
ping S'.

Example 1.5
Let us consider a one-step difference scheme for problem (1.5):

X

-
W:F(xn)’ n=0,1,2,..., 1>0.

There arises a discrete dynamical system (X, S™), where S is the continuous
mapping of X into itself defined by the formula Sz = x + 1 F ().

Example 1.6
Let us consider a nonautonomous ordinary differential equation

z(t)=f(x, t), >0, zeRl, (1.9
where f(x, t) is a continuously differentiable function of its variables and is pe-
riodic with respect to t, i. e. f(x, t)=f(x, t+T) for some T > 0. It is as-
sumed that the Cauchy problem for (1.9) is uniquely solvable on any time
interval. We define a monodromy operator (a period mapping) by the formula
Sxy=x(T), where 2(t) is the solution to (1.9) satisfying the initial condition
2(0)= 2 - It is obvious that this operator possesses the property

Skx(t)y=x(t+kT) (1.10)

for any solution «(¢) to equation (1.9) and anyk e Z, . The arising dynamical

system (Rl, S¥) plays an important role in the study of the long-time proper-
ties of solutions to problem (1.9).

Example 1.7 (Bernoulli shift)

Let X=X, be a set of sequences x = {xi, 1 € L} consisting of zeroes and
ones. Let us make this set into a metric space by defining the distance by the
formula

d(w, y)=mnf{2™": x,=y;, |il<n}.
Let S be the shift operator on X, i. e. the mapping transforming the sequence
x = {x,} into the element y = {y,}, where y, = 7, , | . As aresult, a dynamical

system (X, S™) comes into being. It is used for describing complicated (qua-
sirandom) behaviour in some quite realistic systems.
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In the example below we describe one of the approaches that enables us to connect
dynamical systems to nonautonomous (and nonperiodic) ordinary differential equa-
tions.

Example 1.8

Let % (x, t) be a continuous bounded function on R?. Let us define the hull
L, of the function /2 (x, t) as the closure of a set

{hr(x, ty=h(x, t+1), TE€ ]R(}

with respect to the norm
Ihl, = sup {m (. 1) weR 1 e ]R{} |

Let g() be a continuous function. It is assumed that the Cauchy problem
(t)=g(x)+h(z, t), z(0)=uz, (1.11)

is uniquely solvable over the interval [O, +o0) for any h el 5 - Let us define
the evolutionary operator S on the space X = R x L 5, by the formula
So(g. )= (#(2). h),

where z(¢) is the solution to problem (1.11) and & = & (z, t +7). As a result,
a dynamical system (R x L . St) comes into being. A similar construction is of-
ten used when L, is a compact set in the space C of continuous bounded func-
tions (for example, if % (2, t) is a quasiperiodic or almost periodic function).
As the following example shows, this approach also enables us to use naturally
the notion of the dynamical system for the description of the evolution of ob-
jects subjected to random influences.

Example 1.9

Assume that f;, and f; are continuous mappings from a metric space Y into it-
self. Let Y be a state space of a system that evolves as follows: if ¢ is the state of
the system at time & , then its state at time k +1 is either f,(») or f;(y) with
probability 1/2 , where the choice of Jo or f doesnot depend on time and the
previous states. The state of the system can be defined after a number of steps
in time if we flip a coin and write down the sequence of events from the right to
the left using 0 and 1. For example, let us assume that after 8 flips we get the
following set of outcomes:

... 10110010.

Here 1 corresponds to the head falling, whereas 0 corresponds to the tail fall-
ing. Therewith the state of the system at time ¢ = 8 will be written in the form:
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W= (f1ofpefiof10p0Spef1000) ().
This construction can be formalized as follows. Let 22 be a set of two-sided se-

quences consisting of zeroes and ones (as in Example 1.7), i.e. a collection
of elements of the type

O=(..0_,..0_;0;0...0,,...),
where @, is equal to either 1 or 0. Let us consider the space X = X, x Y con-

sisting of pairs # = (®, y), where ® € X, , y € V. Let us define the mapping
F: X — X by the formula:

F(z) = F(o, y) = (S0, f, 1),

where S is the left-shift operator in X, (see Example 1.7). It is easy to see that
the 7 - th degree of the mapping F' actcts according to the formula

Fr(o, 9) = (", (fy oSy oS0 W)
and it generates a discrete dynamical system (22 x Y, F™). This system is often

called a universal random (discrete) dynamical system.

Examples of dynamical systems generated by partial differential equations will be gi-
ven in the chapters to follow.

Exercise 1.1  Assume that operators S; have a continuous inverse for any ¢ .
Show that the family of operators {St t € R} defined by the equa-
lity St S, fort > 0 and S,; Sltl for t < 0 form a group, i.e. (1.1)
holds for all t, TeR.

Exercise 1.2 Prove the unique solvability of problems (1.2) and (1.3) in-
volved in Examples 1.1 and 1.2.

Exercise 1.8 Ground formula (1.10) in Example 1.6.

Exercise 1.4 Show that the mapping S, in Example 1.8 possesses semi-
group property (1.1).

Exercise 1.5 Show that the value d (2, y) involved in Example 1.7 is a met-
ric. Prove its equivalence to the metric

T S ey,

i =—00



Trajectories and Invariant Sets

§ 2 Trajectories and Invariant Sets

Let (X, Sz) be a dynamical system with continuous or discrete time. Its trajectory
(or orbit) is defined as a set of the type

y={u(t): t eT},

where u(t) is a continuous function with values in X such that S_w(¢) = u(t +1)
forall T e T, and ¢ € T. Positive (negative) semitrajectory is defined as a set
yr={w(t): t>0}, (y"={u(t): t <0}, respectively), where a continuous on T,
(T_, respectively) function u () possesses the property S u(t) = u(t+71) for any
7>0,t>20 (>0, t<0, T+t <0, respectively). It is clear that any positive
semitrajectory y* has the form y* = { Stz 0}, i.e. it is uniquely determined by
its initial state v. To emphasize this circumstance, we often write y*=v*(v).
In general, it is impossible to continue this semitrajectory y*(w) to a full trajectory
without imposing any additional conditions on the dynamical system.

Exercise 2.1 Assume that an evolutionary operator .S, is invertible for some
t > 0. Then it is invertible for all £ > 0 and for any v € X there
exists a negative semitrajectory y~ = y‘(v) ending at the point v .

A trajectory v ={u(t): t € T} is called a periodic trajectory (or a cycle) if
there exists 7 € T,, T >0 such that u(¢+T) = w(t). Therewith the minimal
number 7' > 0 possessing the property mentioned above is called a period of a tra-
jectory. Here T is either R or 7 depending on whether the system is a continuous
or a discrete one. An element u, € X is called a fixed point of a dynamical system
(X, St) if S;uq=ug forall t > 0 (synonyms: equilibrium point, stationary
point).

Exercise 22 Find all the fixed points of the dynamical system (R, S,) ge-
nerated by equation (1.2) with f(2x)= 2 (2 —1). Does there exist
a periodic trajectory of this system?

Exercise 2.8 Find all the fixed points and periodic trajectories of a dynami-
cal system in R? generated by the equations

d=—oy —x[(@2+y2) —4(22+y2)+ 1],
g=ox—y[(a2+y2) —4(a2+y2)+1].
Consider the cases o0 # 0 and oo = 0. Hint: use polar coordinates.

Exercise 24 Prove the existence of stationary points and periodic trajecto-
ries of any period for the discrete dynamical system described

17
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;’ in Example 1.7. Show that the set of all periodic trajectories is dense
a in the phase space of this system. Make sure that there exists a tra-
I; jectory that passes at a whatever small distance from any point of the
‘ phase space.

1

The notion of invariant set plays an important role in the theory of dynamical sys-
tems. A subset Y of the phase space X is said to be:
a) positively invariant,if S,Y c Y forall ¢t > 0;
b) megatively invariant,if S,Y o Y forall ¢t > 0;
c) invariant, if it is both positively and negatively invariant, i.e. if
S, Y=Yforalt=0.
The simplest examples of invariant sets are trajectories and semitrajectories.

Exercise 25 Showthat y* is positively invariant, Y~ is negatively invariant
and 7y is invariant.

Exercise 2.6 Let us define the sets
Y*(A) = U S,(A) = U (v=S,u: ueAl
t30 t>0
and
y=(A) = US;l(A) = U{v: S,v e Al
t>0 t>0
for any subset A of the phase space X . Prove that y*(A) is a positively

invariant set, and if the operator St is invertible for some ¢ > 0,
then y7(A) is a negatively invariant set.

Other important example of invariant set is connected with the notions of ® -limit
and o -limit sets that play an essential role in the study of the long-time behaviour
of dynamical systems.

Let A < X. Then the w-limit set for A is defined by

®(A) = ﬂo[ Ust(A)L,

where S;(A) = {v==S,u: u e A}. Hereinafter Y] is the closure of a set Y in the
space X . The set

o 4) = no[ Usit@)] .

L>s X
where S, (A) = {v: S,v € A}, is called the o -limit set for A .
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Lemma 2.1
For an element y to belong to an ©-limit set u)(A), 1t 18 mecessary and

sufficient that there exist a sequence of elements {yn} c A and a se-
quence of numbers t, the latter lending to infinity such that

lim d(S, =0
R

where d(x, y) is the distance between the elements x and y in the
space X.

Proof.
Let the sequences mentioned above exist. Then it is obvious that for any

T > 0 there exists 7, > 0 such that

t yn U S n 2z ng.

L=t
This implies that
y= lim S, y, € [ USt(A)J
X

1N —> © ‘Vl
[

for all T > 0. Hence, the element y¥ belongs to the intersection of these sets,
ie. y e (4).
On the contrary, if ¥y € ®(A), thenforall » =0, 1, 2,

ye[US A)]

t2n

Hence, for any 7 there exists an element 2z, such that

1
2, € USt(A), d(y, 2,) < 7.
tzn
Therewith it is obvious that z, =5, yn, Y, €A, t, 2mn. This proves the
lemma.

It should be noted that this lemma gives us a description of an ® -limit set but does
not guarantee its nonemptiness.

Exercise 2.7 Show that ®(A) is a positively invariant set. If for any ¢ > 0
there exists a continuous inverse to St, then w(A) is invariant, i.e.
S,0(A) = 0(4).

Exercise 2.8 Let Sz be an invertible mapping for every ¢t > 0. Prove the
counterpart of Lemma 2.1 for an o -limit set:

Yy e (x(A)<:>{EI{yn} €A, 3, t,—>+o00; lim d(St_nlyn, y):()}.

N —> oo

Establish the invariance of o (A).
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Exercise 29 Lety={u(t): —oo <t < oo} be a periodic trajectory of a dy-
namical system. Show that y = () = o.(u) forany u € .

Exercise 210 Let us consider the dynamical system (IR, S,) constructed in
Example 1.1. Let a and b be the roots of the function f(x):
Sf(a)=f(b)=0, a<b.Thenthe segment / ={x: a < < b} is
an invariant set. Let F(x) be a primitive of the function f(x)
(F'(x)=f(x)). Then the set {x: F(x) < ¢} is positively invariant
for any c.

Exercise 2.11 Assume that for a continuous dynamical system (X s Sz ) there
exists a continuous scalar function V(y) on X such that the value
V (S, y) is differentiable with respect to ¢ forany y € X and

d

&(V(Sty))+ocV(Sly)Sp, (>0, p>0, y eX).
Then the set {y: V(y) < R} is positively invariant for any R >
> p/o.

§ 8 Definition of Attractor

Attractor is a central object in the study of the limit regimes of dynamical systems.
Several definitions of this notion are available. Some of them are given below. From
the point of view of infinite-dimensional systems the most convenient concept is that
of the global attractor.

Abounded closed set A; X is called a global attractor for a dynamical sys-
tem (X, S,), if

1) Ay isaninvariant set,ie. S, A;=A; forany t > 0;

2) the set A uniformly attracts all trajectories starting in bounded sets,

i.e. for any bounded set B from X

lim sup {dist(Sly, Ay e B}: 0.

t— oo

We remind that the distance between an element 2 and a set A is defined by the
equality:

dist (2, A) = inf{d (2, y): y € A},
where d (2, y) is the distance between the elements z and y in X.

The notion of a weak global attractor is useful for the study of dynamical sys-
tems generated by partial differential equations.
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Let X be a complete linear metric space. A bounded weakly closed set A, is
called a global weak attractor if it is invariant (S,A,=A,, t > 0) and for any
weak vicinity @ of the set A, and for every bounded set B — X there exists
to=1,(0, B) suchthat S,B c @ fort >t,.

We remind that an open set in weak topology of the space X can be described
as finite intersection and subsequent arbitrary union of sets of the form

Uy =1z eX: l(x)<c},

where ¢ is a real number and [ is a continuous linear functional on X .

It is clear that the concepts of global and global weak attractors coincide in the
finite-dimensional case. In general, a global attractor A is also a global weak attrac-
tor, provided the set A is weakly closed.

Exercise 8.1 Let A be a global or global weak attractor of a dynamical sys-
tem (X R St) . Then it is uniquely determined and contains any boun-
ded negatively invariant set. The attractor A also contains the
o - limit set (B) of any bounded B < X .

Exercise 3.2 Assume that a dynamical system (X, Sz) with continuous
time possesses a global attractor A;. Let us consider a discrete sys-
tem (X, T7),where T = Sto with some ¢, > 0. Prove that A, is a glo-
bal attractor for the system (X, 7). Give an example which shows
that the converse assertion does not hold in general.

If the global attractor A, exists, then it contains a global minimal attractor Aq
which is defined as a minimal closed positively invariant set possessing the property

lim dist(S,», A3) =0 forevery yeX.
t— o

By definition minimality means that A5 has no proper subset possessing the proper-
ties mentioned above. It should be noted that in contrast with the definition of the
global attractor the uniform convergence of trajectories to A5 is not expected here.

Exercise 83 Showthat S,A5 = A4, provided A5 is a compact set.

Exercise 3.4 Prove that ®(x) € A5 for any 2 € X. Therewith, if A4 is
a compact, then A5 = | J{o(2): v € X}.

By definition the attractor A5 contains limit regimes of each individual trajectory.
It will be shown below that A5 # A; in general. Thus, a set of real limit regimes
(states) originating in a dynamical system can appear to be narrower than the global
attractor. Moreover, in some cases some of the states that are unessential from the
point of view of the frequency of their appearance can also be “removed” from A,
for example, such states like absolutely unstable stationary points. The next two
definitions take into account the fact mentioned above. Unfortunately, they require
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additional assumptions on the properties of the phase space. Therefore, these defini-
tions are mostly used in the case of finite-dimensional dynamical systems.

Let a Borel measure [t such that p (X ) < oo be given on the phase space X of
a dynamical system (X, St) . Abounded set A, in X is called a Milnor attractor
(with respect to the measure p) for (X, S,) if A, is a minimal closed invariant set
possessing the property

lim dist (S,y, Ay) =0
t — oo
for almost all elements y € X with respect to the measure p . The Milnor attractor
is frequently called a probabilistic global minimal attractor.

At last let us introduce the notion of a statistically essential global minimal at-
tractor suggested by Ilyashenko. Let U be an open set in X and let X U(x) be its
characteristic function: X;;(x) =1, v € U; X;(x)=0, x ¢ U. Let us define the
average time T(x, U) which is spent by the semitrajectory y*(2) emanating from x
in the set U by the formula

T— o

T
t(x, U)= lim %JXU(Stx)dt.
0

A set U is said to be unessential with respect to the measure p if

M(U)=p{x: t(2, U)>0}=0.
The complement Ay to the maximal unessential open set is called an Ilyashenko
attractor (with respect to the measure ).

It should be noted that the attractors A, and Ay are used in cases when the na-
tural Borel measure is given on the phase space (for example, if X is a closed mea-
surable set in RN and p is the Lebesgue measure).

The relations between the notions introduced above can be illustrated by the
following example.

Example 3.1

Let us consider a quasi-Hamiltonian system of equations in R :

. oH oH
= _—_— — H_
a op H oq’
3.1)
. oH oH
0 Y & g
D 5q L o’

where H(p, q) = (1/2)p?+q*—¢® and p is a positive number. It is easy
to ascertain that the phase portrait of the dynamical system generated by equa-
tions (3.1) has the form represented on Fig. 1.
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A separatrix (“eight cur-
ve”) separates the do-
mains of the phase plane
with the different quali-
tative behaviour of the
trajectories. It is given by

(W (B e oion (5 )=

M AN M q The points (p, ) inside

the separatrix are charac-

\/ terized by the equation

H(p, q) < 0. Therewith
it appears that

Fig. 1. Phase portrait of system (3.1)

A=Ay ={(p, q): H(p, q) < 0},
A3={(10, q): H(p, Q)=0} U {(p, q): %H(p, Q)=§—qH(p, Q)=0} :

Ay={(p, a): H(p, 4)=0}.
Finally, the simple calculations show that A5 = {0, 0}, i.e. the Ilyashenko at-
tractor consists of a single point. Thus,
A=Ay D A3 DA D Ag,

all inclusions being strict.

Exercise 8.5 Display graphically the attractors A i of the system generated
by equations (3.1) on the phase plane.

Exercise 8.6 Consider the dynamical system from Example 1.1 with
Sf(x)=2(2?—-1). Provethat A= {x: -1 <z <1},
Ag={xr=0; x=%1}, and A =A;={xr==%1}.

Exercise 3.7 Provethat Ay c A5 and Ay c Aq in general.

Exercise 8.8 Show that all positive semitrajectories of a dynamical system
which possesses a global minimal attractor are bounded sets.

In particular, the result of the last exercise shows that the global attractor can exist
only under additional conditions concerning the behaviour of trajectories of the sys-
tem at infinity. The main condition to be met is the dissipativity discussed in the next
section.
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§$ 4 Dissipativity and Asymptotic
Compactness

From the physical point of view dissipative systems are primarily connected with ir-
reversible processes. They represent a rather wide and important class of the dy-
namical systems that are intensively studied by modern natural sciences. These
systems (unlike the conservative systems) are characterized by the existence of the
accented direction of time as well as by the energy reallocation and dissipation.
In particular, this means that limit regimes that are stationary in a certain sense can
arise in the system when ¢ — + oo . Mathematically these features of the qualitative
behaviour of the trajectories are connected with the existence of a bounded absor-
bing set in the phase space of the system.

A set By c X is said to be absorbing for a dynamical system (X, S,) if for
any bounded set B in X there exists ¢, = t,(B) such that S,(B) < B, for every
t 2 t;. A dynamical system (X, St) is said to be dissipative if it possesses a boun-
ded absorbing set. In cases when the phase space X of a dissipative system (X R St)
is a Banach space a ball of the form {# € X: |2y < R} can be taken as an absor-
bing set. Therewith the value R is said to be a radius of dissipativity.

As arule, dissipativity of a dynamical system can be derived from the existence
of a Lyapunov type function on the phase space. For example, we have the following
assertion.

Theorem 4.1.

Let the phase space of a continuous dynamical system (X, Sz) be a Ba-
nach space. Assume that:

(a) there exists a continuous function U(x) on X possessing the pro-

perties
¢1(lzl) < U(z) < @qy(ll2l) , (4.1)

where ¢;(r) are continuous functions on R, and ¢(r) > +x
when r > o©o;

(b) there exist a derivative %U(St y) for t 2 0 and positive numbers
a and p such that

%U(Sty) <-a for |S,u|>p- (4.2)

Then the dynamical system (X, S,) is dissipative.
Proof.
Let us choose R, > p suchthat ¢(7) >0 for r > R,. Let
I = sup{@y(7): r < 1+R,}
and Ry > R, +1 be suchthat ¢,(r)>1 for r >R . Letus show that
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|S;y| < Ry forall t20 and |yl <R,. (4.3)

Assume the contrary, i.e. assume that for some y € X such that |y| < R there
exists a time 7 > 0 possessing the property ||Sf y" > R, . Then the continuity of S,y
implies that there exists 0 < ¢, < 7 such that p < “StoyH < Ry +1. Thus, equation
(4.2) implies that

U(Sly) < U(Sloy), t>tg,

provided ||S[y|| > p. It follows that U(S,y) < [ forall t > t,. Hence, ||Sty|| < R, for
all £ = t. This contradicts the assumption. Let us assume now that B is an arbitrary
bounded set in X that does not lie inside the ball with the radius R . Then equation
(4.2) implies that
US,y) < Uly)-oat < lg—at, yeB, (4.4)
provided |S,y| > p. Here
lg=sup{U(x): v € B}.

Let y € B. If for atime ¢" < (Iz—1)/a the semitrajectory S,y enters the ball with
the radius p, then by (4.3) we have ||Sty|| < Ry forall ¢ > ¢". If that does not take
place, from equation (4.4) it follows that

Iy~

¢S v]) < US,y) <1 for ¢2 5

ie. |S,y| <Ry for t > a l(ip—1). Thus,

lp—1
S,B < {x: lal <R}, 12—

This and (4.3) imply that the ball with the radius R, is an absorbing set for the dy-
namical system (X, S, ). Thus, Theorem 4.1 is proved.

Exercise 4.1 Show that hypothesis (4.2) of Theorem 4.1 can be replaced
by the requirement

Su(s,y)+Us,9) < ©,

where y and C are positive constants.

Exercise 4.2 Show that the dynamical system generated in R by the diffe-
rential equation « +f(x) = 0 (see Example 1.1) is dissipative, pro-
vided the function f(x) possesses the property: xf(x) > 822 —C,
where 8 > 0 and C are constants (Hint: U(z) = 22). Find an up-
per estimate for the minimal radius of dissipativity.

Exercise 43 Consider a discrete dynamical system (R, f”), where f is
a continuous function on R . Show that the system (IR, f) is dissi-
pative, provided there exist p >0 and O0< a< 1 such that
|f(2)l < ala| for |zl >p.
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Exercise 4.4 Consider a dynamical system (IR{Z, St) generated (see Exam-
ple 1.2) by the Duffing equation

T+ex+a’—axr="»b,
where a and b are real numbers and ¢ > 0. Using the properties
of the function
1.2 1 4 _a o (~§2)
Ulx, x) = sa°+zat —gat+ V(i +5w
show that the dynamical system (]R{2, S,) is dissipative for v > 0

small enough. Find an upper estimate for the minimal radius of dissi-
pativity.

Exercise 4.5 Prove the dissipativity of the dynamical system generated
by (1.4) (see Example 1.3), provided

N N
Zxkfk(xl’ Loy wees xN) < —8Z$£+C, 0>0.
k=1 k=1

Exercise 4.6 Show that the dynamical system of Example 1.4 is dissipative
if f(2) is a bounded function.

Exercise 4.7 Consider a cylinder II with coordinates (z, @), x € R,
(ONS [O, 1) and the mapping 7T of this cylinder which is defined
by the formula T'(x, ¢) = (x', ¢'), where

x'=0ox+ksin2noe,

¢ =@+ (modl).
Here o and k are positive parameters. Prove that the discrete dyna-
mical system (II, 7") is dissipative, provided 0 < oo < 1. We note
that if oo = 1, then the mapping 7' is known as the Chirikov map-

ping. It appears in some problems of physics of elementary parti-
cles.

Exercise 4.8 Using Theorem 4.1 prove that the dynamical system (lRiz, S,)
generated by equations (3.1) (see Example 3.1) is dissipative.
. 2
Hint: U(x)=[H(p, q)]7).

In the proof of the existence of global attractors of infinite-dimensional dissipative
dynamical systems a great role is played by the property of asymptotic compactness.
For the sake of simplicity let us assume that X is a closed subset of a Banach space.
The dynamical system (X, S,) is said to be asymptotically compact if for any
t > 0 its evolutionary operator Sz can be expressed by the form

S, =W 453 (4.5)

where the mappings St(l) and St(z) possess the properties:
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a) for any bounded set B in X
ro(t) = sup |V -0, I —> +00;
(1) ye%" Y]y o

b) for any bounded set B in X there exists ¢, such that the set
(2) - (2)
[n,)®1=| |Js7B (4.6)
L=t
is compact in X', where [y] is the closure of the set 7.

A dynamical system is said to be compact if it is asymptotically compact and
one can take St(l) = (0 in representation (4.5). It becomes clear that any finite-di-

mensional dissipative system is compact.

Exercise 4.9 Show that condition (4.6) is fulfilled if there exists a compact
set K in H such that for any bounded set B the inclusion St(z)B ckKk,
[ tO(B) holds. In particular, a dissipative system is compact if it
possesses a compact absorbing set.

Lemma 4.1.

The dynamical system (X R Sz) 18 asymptotically compact if there exists
a compact set K such that

lim sup{dist(S,u, K): u € B}=0 4.7
t — oo
Sfor any set B bounded im X.

Proof.
The distance to a compact set is reached on some element. Hence, for any
t >0 and v € X there exists an element v = St(z)u € K such that

dist (S,u, K) = HSzu —St(z)u“ :

Therefore, if we take St(l)u =S,u —St(g)u , 1t is easy to see that in this case de-
composition (4.5) satisfies all the requirements of the definition of asymptotic
compactness.

Remark 4.1.

In most applications Lemma 4.1 plays a major role in the proof of the
property of asymptotic compactness. Moreover, in cases when the phase
space X of the dynamical system (X, Sz) does not possess the structure
of a linear space it is convenient to define the notion of the asymptotic
compactness using equation (4.7). Namely, the system (X, Sz) s said
to be asymptotically compact if there exists a compact K possessing
property (4.7) for any bounded set B im X. For one more approach
to the definition of this concept see Exercise 5.1 below.
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Exercise 4.10 Consider the infinite-dimensional dynamical system genera-
ted by the retarded equation

z(t)+ax(t)=f(x(t-1)),

where o > 0 and f(2) is bounded (see Example 1.4). Show that
this system is compact.

Exercise 4.11 Consider the system of Lorentz equations arising as a three-
mode Galerkin approximation in the problem of convection in a thin
layer of liquid:

x =-0x+0y,
Yy =rx—y—xz,
2 =-bz+ay.
Here o, 7, and b are positive numbers. Prove the dissipativity of
the dynamical system generated by these equations in R3.
Hint: Consider the function
V(z, y, 2) = %(mz +y2+(z -7 —0)2)

on the trajectories of the system.

§ 5 Theorems on Existence
of Global Attractor

For the sake of simplicity it is assumed in this section that the phase space X is
a Banach space, although the main results are valid for a wider class of spaces
(see, e. g., Exercise 5.8). The following assertion is the main result.

Theorem 5.1.

Assume that a dynamical system (X, Sz) 18 disstpative and asymptoti-
cally compact. Let B be a bounded absorbing set of the system (X, St). Then
the set A = ©(B) is a nonempty compact set and is a global attractor of the
dynamical system (X, S,). The attractor A is a connected set in X .

In particular, this theorem is applicable to the dynamical systems from Exercises
4.2-4.11. It should also be noted that Theorem 5.1 along with Lemma 4.1 gives the
following criterion: a dissipative dynamical system possesses a compact global at-
tractor if and only if it is asymptotically compact.

The proof of the theorem is based on the following lemma.
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Lemma 5.1.

Let a dynamical system (X, Sz) be asymptotically compact. Then for
any bounded set B of X the ®-limit set ®(B) is a nonempty compact
movariant set.

Proof.

Let ,, € B.. Then for any sequence {t, } tending to infinity the set {St(j) Yp s
n=1, 2, ... } is relatively compact, i.e. there exist a sequence 7, and an ele-
ment y € X such that St(z)ynk tends to ¥ as k — oo . Hence, the asymptotic
compactness gives us thatn]c

1 2
Hy _Sznkynk s HS;(nlzynk“Jr“y —St(n:ynk -0 as k—>oo.

Thus, y = lim S,
k— o
empty.

Let us prove the invariance of o -limit set. Let 4 € ®(B). Then according
to Lemma 2.1 there exist sequences {t,}, ¢, — o, and {2, } < B such that
S, 2, — y . However, the mapping S, is continuous. Therefore,

n

. Due to Lemma 2.1 this indicates that ®(B) is non-

Yn
ny k

St+znzn=StoStnzn—>Sty, n —> oo .
Lemma 2.1 implies that S, € ®(B). Thus,
S,o(B)c o(B), t>0.

Let us prove the reverse inclusion. Let ¥ € ®(B). Then there exist sequences
{v,} =B and {t,,: t, > oo} such that S; v, > y. Let us consider the se-
quence y,, = Stn_tvn , t, 2 t.The asymptotic compactness implies that there
exist a subsequence t”k and an element 2 € X such that

2= lim S

-t Y, -
koo mpt T

As stated above, this gives us that

2= lim St

k — o0 ”k_t ynk'

Therefore, 2 € ®(B). Moreover,

S,z = lim S,08 = lim S —y.
t? —I)rloot tnk,tﬂ oy Un, =Y

" k>0 My
Hence, y € S, ®(B). Thus, the invariance of the set ®(B) is proved.

Let us prove the compactness of the set ®»(B). Assume that {z,,} is a se-
quence in ®(B). Then Lemma 2.1 implies that for any 7 we can find ¢, > % and
Y, € B such that Hzn_Stn yn" < 1/n. As said above, the property of asymp-
totic compactness enables us to find an element 2 and a sequence {nk} such

that

HSt”ky”k_zH -0, k—ooo.
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This implies that 2 € ®(B) and 2y, — 2. This means that © (B) is a closed and
compact set in H . Lemma 5.1 is proved completely.

Now we establish Theorem 5.1. Let B be a bounded absorbing set of the dynamical
system. Let us prove that 0)(3 ) is a global attractor. It is sufficient to verify that
(D(B) uniformly attracts the absorbing set B . Assume the contrary. Then the value
sup {dist (S,y, o(B)): y € B} does not tend to zero as ¢t — co. This means that
there exist 6 > 0 and a sequence {t,,: t,— oo} such that

sup{dist(Stw Yy, ®(B)): y € B} >20.

Therefore, there exists an element y,, € B such that
dist(Stnyn, o(B))=29d, n=1,2,... (5.1

As before, a convergent subsequence {Stn ynk} can be extracted from the sequence
{S1,Y,} - Therewith Lemma 2.1 implies
z= lim S € 0(B
e Pt Y, (B)
which contradicts estimate (5.1). Thus, ®(B) is a global attractor. Its compactness
follows from the easily verifiable relation

a=o0B)= [ ﬂs}z)BJ.

>0 t>1
Let us prove the connectedness of the attractor by reductio ad absurdum. Assume
that the attractor A is not a connected set. Then there exists a pair of open sets U,
and U, such that

UNA=@, i=1,2, AcUUU,, UNU=82.

Let A = conv(A) be a convex hull of the set A4, i.e.

N N
Ac:[{ZAivi: vied, ;20, > =1, N=1, ZH

1=1 =1

It is clear that A¢ is a bounded connected set and A° > A . The continuity of the
mapping S, implies that the set S, A¢ is also connected. Therewith A =S, A < S, A°.
Therefore, U; N S,A° # &, i =1, 2. Hence, for any ¢ > 0 the pair U}, U, cannot
cover S, A°. It follows that there exists a sequence of points z,, = S, y, € S, A°
such that x, ¢ U; U U, . The asymptotic compactness of the dynamical system
enables us to extract a subsequence {7, } such that Py = Sy Yn, tends in X to an
element y as k — oo . Itis clear that y ¢ U; U Uy and y € w(A°). These equations
contradict one another since ®(A°) ¢ ®(B)=A < U; UU,. Therefore, Theorem
5.1 is proved completely.
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It should be noted that the connectedness of the global attractor can also be proved
without using the linear structure of the phase space (do it yourself).

Exercise 5.1 Show that the assumption of asymptotic compactness in Theo-
rem 5.1 can be replaced by the Ladyzhenskaya assumption: the se-
quence { Stn un} contains a convergent subsequence for any
bounded sequence {un} c X and for any increasing sequence
{t,,} = T, such that ¢, — +oo. Moreover, the Ladyzhenskaya as-
sumption is equivalent to the condition of asymptotic compactness.

Exercise 5.2 Assume that a dynamical system (X, ;) possesses a compact
global attractor A. Let A* be a minimal closed set with the property

lim dist(S,y, A")=0 forevery yeX.
t — oo
Then A"c A and A" = | J{w(2): 2 € X},ie. A" coincides with the

global minimal attractor (cf. Exercise 3.4).

Exercise 5.8 Assume that equation (4.7) holds. Prove that the global at-
tractor A possesses the property A = o(K) c K.

Exercise 5.4 Assume that a dissipative dynamical system possesses a glo-
bal attractor A . Show that A = ®(B) for any bounded absorbing set
B of the system.

The fact that the global attractor A has the form A = ®(B), where B is an absorb-
ing set of the system, enables us to state that the set StB not only tends to the at-
tractor A , but is also uniformly distributed over it as ¢ — oo . Namely, the following
assertion holds.

Theorem 5.2.
Assume that a dissipative dynamical system (X, Sz) possesses a com-
pact global attractor A. Let B be a bounded absorbing set for (X, St). Then

lim sup{dist(a, S,B): a € A}=0. (5.2)
t — oo

Proof.
Assume that equation (5.2) does not hold. Then there exist sequences {an} c
c A and {t,: t, — oo} such that

dist(a,,, Sy, B) 26 forsome & >0. (5.3)
The compactness of A enables us to suppose that {an} converges to an element
a € A . Therewith (see Exercise 5.4)

a= lim Srmym, {y,,} < B,

m —» oo
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where {1,,} is a sequence such that t,,— oo . Let us choose a subsequence {m,, }
such that t,,, >, + g forevery n =1, 2, ... . Here ¢y is chosen such that S, B
cBforallt >tp. Letz, =S, _, y, .Thenitisclearthat{z,}c B and
n n n
a= lim S
N —> ©

Equation (5.3) implies that
dist(a,, Sy, z,) = dist(a,, S; B) 2 5.

nym7 = lim S 2,.

g 7 —> o0

This contradicts the previous equation. Theorem 5.2 is proved.

For a description of convergence of the trajectories to the global attractor it is con-
venient to use the Hausdorff metric that is defined on subsets of the phase space
by the formula

p(C, D) =max{h(C, D); h(D,C)}, (5.4)
where C, D € X and
h(C, D)= sup{dist(c, D): ¢ € C}. (5.5)

Theorems 5.1 and 5.2 give us the following assertion.

Corollary 5.1.

Let (X R St) be an asymptotically compact dissipative system. Then its
global attractor A possesses the property tlgmwp(StB, A)=0 for any
bounded absorbing set B of the system (X, Sz)~

In particular, this corollary means that for any & > 0 there exists ¢, > 0 such that
for every t >, the set S;B gets into the & -vicinity of the global attractor A4;
and vice versa, the attractor A lies in the € -vicinity of the set S,B. Here B is
a bounded absorbing set.

The following theorem shows that in some cases we can get rid of the require-
ment of asymptotic compactness if we use the notion of the global weak attractor.

Theorem 5.3.

Let the phase space H of a dynamical system (H, Sz) be a separable
Hilbert space. Assume that the system (H, Sz) is dissipative and its evolu-
tionary operator S, is weakly closed, i.e. for all t > 0 the weak convergence
Y,~>Yy and S, Yy, >=? tmply that z=S,y. Then the dynamical system
(H, St) possesses a, global weak attractor.

The proof of this theorem basically repeats the reasonings used in the proof of Theo-
rem 5.1. The weak compactness of bounded sets in a separable Hilbert space plays
the main role instead of the asymptotic compactness.
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Lemma 5.2.

Assume that the hypotheses of Theorem 5.3 hold. For B ¢ H we define
the weak -limit set ®,,(B) by the formula

0,B)= N [ v St(B)} , (5.6)
s>0 t=s w

where [Y]w s the weak closure of the set Y. Then for any bounded set

B c H the set (uw(B) 1S a nonempty weakly closed bounded tmvariant

set.

Proof.

The dissipativity implies that each of the sets v, (B) = [U,. Si(B)], is
bounded and therefore weakly compact. Then the Cantor theorem on the col-
lection of nested compact sets gives us that ®,,(B) = (.. ,Ys(B) is a non-
empty weakly closed bounded set. Let us prove its invariance. Let y € ®,, (B) .
Then there exists a sequence y,, € Uﬁ s nSt (B) such that y,, — y weakly. The
dissipativity property implies that the set { S, yn} is bounded when ¢ is large
enough. Therefore, there exist a subsequence { ynk} and an element 2 such
that ynk—> y and S, Y,, % weakly. The weak closedness of S, implies that
z =S,y Since S,y,, € ¥,,(B) for n; > s, we have that z € v, (B) forall s.
Hence, z € ®,,(B). Therefore, S, ®,,(B) < ®,,(B). The proof of the reverse
inclusion is left to the reader as an exercise.

For the proof of Theorem 5.3 it is sufficient to show that the set
A, = ww(B), .7

where B is a bounded absorbing set of the system (H, St) ,is a global weak attractor
for the system. To do that it is sufficient to verify that the set B is uniformly attract-
edto A, = cow(B) in the weak topology of the space H . Assume the contrary. Then
there exist a weak vicinity @ of the set A, and sequences {y,,} < B and {t,: t, —
- oo} such that Stn Y, & ©. However, the set { Stn yn} is weakly compact. There-
fore, there exist an element 2 ¢ @ and a sequence {7, } such that

z=w-— lim S .
k — o0 tnk'ynk
However, Sy, vy, € V5, (B) for tn, 2s. Thus, z € Vo (B) forall s >0 and 2 €

€ o,,(B), which is impossible. Theorem 5.3 is proved.

Exercise 5.5 Assume that the hypotheses of Theorem 5.3 hold. Show that
the global weak attractor A w 1s a connected set in the weak topology
of the phase space H .

Exercise 5.6 Show that the global weak minimal attractor 4 = | J{®,,(2):
x € H} is astrictly invariant set.
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Exercise 5.7 Prove the existence and describe the structure of global and
global minimal attractors for the dynamical system generated by
the equations

{9& = uxr -y —x(x?+y2?),

Y= x+uy—y(@?+y?)

for every real L.

Exercise 5.8 Assume that X is a metric space and (X, Sz) is an asymptoti-
cally compact (in the sense of the definition given in Remark 4.1)
dynamical system. Assume also that the attracting compact K is
contained in some bounded connected set. Prove the validity of the
assertions of Theorem 5.1 in this case.

In conclusion to this section, we give one more assertion on the existence of the global
attractor in the form of exercises. This assertion uses the notion of the asymptotic
smoothness (see [3] and [9]). The dynamical system (X, St) is said to be asympto-
tically smooth if for any bounded positively invariant (S,B < B, t > 0) set
B c X there exists a compact K such that 2 (S,B, K) - 0 as t — oo, where the
value A ( -, -) is defined by formula (5.5).

Exercise 5.9 Prove that every asymptotically compact system is asymptoti-
cally smooth.

Exercise 5.10 Let (X, St) be an asymptotically smooth dynamical system.
Assume that for any bounded set B < X the set y*(B)=
= [ » 05;(B) is bounded. Show that the system (X, S,) posses-
ses a global attractor A of the form

A= U{w(B): Bc X, B isbounded}.

Exercise 5.11 In addition to the assumptions of Exercise 5.10 assume that
(X, S,) is pointwise dissipative, i.e. there exists a bounded set
B, c X such that distx(S,y, By) - 0 as t - oo for every point
y € X . Prove that the global attractor A is compact.

§ 6 On the Structure of Global Attractor

The study of the structure of global attractor of a dynamical system is an important
problem from the point of view of applications. There are no universal approaches to
this problem. Even in finite-dimensional cases the attractor can be of complicated
structure. However, some sets that undoubtedly belong to the attractor can be poin-
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ted out. It should be first noted that every stationary point of the semigroup Sz be-
longs to the attractor of the system. We also have the following assertion.

Lemma 6.1.

Assume that an element 2 lies in the global attractor A of a dynamical
system (X, St). Then the point z belongs to some trajectory Yy that lies
n A wholly.

Proof.

Since S;,A =A and 2 € A, then there exists a sequence {zn} < A such
that 2y =2, S12,=%,_;, n=1, 2, ... . Therewith for discrete time the re-
quired trajectory is y = {u,,: m € Z}, where u, =S,z for n >0 and u,, =
=2_, for n < 0. For continuous time let us consider the value

S, 2, t>0,
u(t) =

S yny —MS<t<-n+l, n=1,2, ..

Then it is clear that u(t) € A forall t € R and S u(t) = u(t+1) for T >0,
t € R. Therewith u(O) = 2. Thus, the required trajectory is also built in the
continuous case.

Exercise 6.1 Show that an element 2 belongs to a global attractor if and
only if there exists a bounded trajectory y = {u(t): —oo <t < o0}
such that » (0) = z.

Unstable sets also belong to the global attractor. Let Y be a subset of the phase
space X of the dynamical system (X, S,). Then the unstable set emanating
Jrom Y is defined as the set M, (Y) of points # € X for every of which there exists
atrajectory y = {u(t): ¢t € T} such that

u(0) =z, tli)rrjoodist(u (1), Y)=0.

Exercise 6.2 Prove that M (Y) is invariant, i.e. S,IM_(Y) = M_(Y) for all
t>0.

Lemma 6.2.

Let N be a set of stationary points of the dynamical system (X, St)
possessing a global attractor A. Then M (N) c A.

Proof.

It is obvious that the set N ={z: S,z =2, >0} lies in the attractor
of the system and thus it is bounded. Let 2 € M, (/). Then there exists a tra-
jectory v, = {u(t), t €T} suchthat u(0) =z and

dist (u(t), /) >0, T—>—c0.
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Therefore, the set B, ={u(7): T < —s} is bounded when s >0 is large
enough. Hence, the set S, B, tends to the attractor of the system as ¢t — +o0.
However, 2 € S, B, for ¢t > s. Therefore,

dist (2, A) < sup{dist(S,y, A): y e B} >0, t—+0c0.

This implies that 2 € A . The lemma is proved.

Exercise 6.8 Assume that the set /N of stationary points is finite. Show
that

l
ML) = | M, (=),
k=1

where 2, are the stationary points of S, (the set M (2, ) is called
an unstable manifold emanating from the stationary point 2, ).

Thus, the global attractor A includes the unstable set M, (/). It turns out that un-
der certain conditions the attractor includes nothing else. We give the following defi-
nition. Let ¥ be a positively invariant set of a semigroup S,: S,Y < Y, t > 0. The
continuous functional ®(y) defined on Yis called the Lyapunov function of the
dynamical system (X, S,) on Y if the following conditions hold:
a) forany y € Y the function CD(St y) is a nonincreasing function with re-
specttot > 0;
b) if for some ¢, > 0 and y € X the equation ®(y) = CD(StOy) holds, then
y =S,y forallt > 0,i.e. y isastationary point of the semigroup .S, .

Theorem 6.1.

Let a dynamical system (X, Sz) possess a compact attractor A. Assume
also that the Lyapunov function ©(y) exists on A. Then A = M (N), where
N is the set of stationary points of the dynamical system.

Proof.

Let y € A. Let us consider a trajectory y passing through y (its existence fol-
lows from Lemma 6.1). Let

y={u(t): teT} and y;={u(t): t <71}

Since y; < A, the closure [y;] is a compact set in X . This implies that the o -limit
set
a(y)= ([
<0
of the trajectory y is nonempty. It is easy to verify that the set o(y) is invariant:
S,a(y) = a(y). Let us show that the Lyapunov function ®(y)is constant on a.(y).
Indeed, if € a(y), then there exists a sequence {t,,} tending to —oo such that
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lim  w(t,)=u.
by, = —®

Consequently,
D(u)= lim d(u(t,)).

7 —> 00
By virtue of monotonicity of the function CD(u) along the trajectory we have
D(u) = sup{P(u(t)): T<0}.
Therefore, the function ®(u) is constant on o.(y). Hence, the invariance of the set

o.(y) gives us that (S, %) = D(u), t > 0 forall u € o(y). This means that o(y)
lies in the set & of stationary points. Therewith (verify it yourself)

tli)rzloodist(u(t), o(y))=0.

Hence, y € M, (/). Theorem 6.1 is proved.

Exercise 6.4 Assume that the hypotheses of Theorem 6.1 hold. Then for
any element y € A its ® -limit set w(y) consists of stationary points
of the system.

Thus, the global attractor coincides with the set of all full trajectories connecting the
stationary points.

Exercise 6.5 Assume that the system (X R Sz) possesses a compact global
attractor and there exists a Lyapunov function on X. Assume that
the Lyapunov function is bounded below. Show that any semitrajec-
tory of the system tends to the set A" of stationary points of the sys-
tem as { - +o00, i.e. the global minimal attractor coincides with the
set V.

In particular, this exercise confirms the fact realized by many investigators that the
global attractor is a too wide object for description of actually observed limit regimes
of a dynamical system.

Exercise 6.6 Assume that (IR, St) is a dynamical system generated by the
logistic equation (see Example 1.1): x +ox(x—-1)=0, o >0.
Show that V(x) = x3/3 —x2/2 is a Lyapunov function for this sys-
tem.

Exercise 6.7 Show that the total energy

=ls2, 14 a2
E(x,x)—zx +0% —gat —ba

is a Lyapunov function for the dynamical system generated (see
Example 1.2) by the Duffing equation

z+ex+a3—ar=>b, €>0.
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If in the definition of a Lyapunov functional we omit the second requirement, then
a minor modification of the proof of Theorem 6.1 enables us to get the following as-
sertion.

Theorem 6.2.

Assume that a dynamical system (X, S,) possesses a compact global at-
tractor A and there exists a continuous function Y (y) on X such that
‘I’(St y) does mot increase with respect to t for any y € X. Let & be a set of
elements u € A such that ¥(u(t)) =¥ (u) for all —oo < t < oo. Here {u(t)} is
a trajectory of the system passing through w (u(0)=u). Then M (%) =A
and % contains the global minimal attractor A" = Uzex ©=).

Proof.

In fact, the property M +( S@) = A was established in the proof of Theorem 6.1.
As to the property A"« %, it follows from the constancy of the function ‘P(u) on
the o -limit set @(2) of any element x € X .

Exercise 6.8 Apply Theorem 6.2 to justify the results of Example 3.1 (see
also Exercise 4.8).

If the set Y of stationary points of a dynamical system (X, St) is finite, then Theo-
rem 6.1 can be extended a little. This extension is described below in Exercises 6.9—
6.12. In these exercises it is assumed that the dynamical system (X, St) is continu-
ous and possesses the following properties:

(a) there exists a compact global attractor A ;

(b) there exists a Lyapunov function ®(x) on 4 ;

(c) the set N'={z|,... 2y} of stationary points is finite, therewith ®(z,) #

# CD(zj) for ¢ # j and the indexing of 2; possesses the property

D(z)) < D(z9) < ... < D(2y). (6.1)
We denote

J
A]:UM[+(zk)7 jzla 253N’ AO:®
k=1

Exercise 6.9 Show that StAjzAj forallj=1, 2, ... N.
Exercise 6.10 Assume that B < A\{2,}. Then
lim sup{dist($y, A;_;): y € B}=0. (6.2)

t— oo ¢
Exercise 6.11 Assume that the function @ is defined on the whole X . Then
(6.2) holds for any bounded set B c {x: ®(x)< ®(z;) -5},

where 0 is a positive number.
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Exercise 6.12 Assume that [IV[,(2;)] is the closure of the set M, (z;) and
OM,(2;) = [M,(2;)]\M,(2;) is its boundary. Show that 0, z;c
c Ajf1 and

5, ML(z)] = [M.()],  5,0M,(z)) = M. (z,).

It can also be shown (see the book by A. V. Babin and M. 1. Vishik [1]) that under
some additional conditions on the evolutionary operator Sz the unstable manifolds
M +(zj) are surfaces of the class C1, therewith the facts given in Exercises 6.9-6.12
remain true if strict inequalities are substituted by nonstrict ones in (6.1). It should
be noted that a global attractor possessing the properties mentioned above is fre-
quently called regular.

Let us give without proof one more result on the attractor of a system with a fi-
nite number of stationary points and a Lyapunov function. This result is important
for applications.

At first let us remind several definitions. Let S be an operator acting in a Ba-
nach space X . The operator S is called Frechét differentiable at a point
x € X provided that there exists a linear bounded operator .S ’(x): X — X such
that

I1S(y) =S(x) =S"(@)(y—2)I < v(lz-yl)lx-yl
for all y from some vicinity of the point «, where y(&) — 0 as & — 0. Therewith,
the operator S is said to belong to the class C1t* % 0< o< 1,onaset Y if it is
differentiable at every point x € Y and

||S’(x)—S’(y)||L(X’ X) < C"x_y”a

for all ¥ from some vicinity of the point x € Y. A stationary point 2 of the mapping
S is called hyperbolic if S € C1*® in some vicinity of the point 2, the spectrum
of the linear operator S’(2) does not cross the unit circle {A: |A|=1} and the spec-
tral subspace of the operator corresponding to the set {A: [A| > 1} is finite-dimen-
sional.

Theorem 6.3.

Let X be a Banach space and let a continuous dynamical system
(X, Sz) possess the properties:
1) there exists a global attractor A;
2) there exists a vicinity Q of the attractor A such that

||Stx -5, y” < Cea(t_f)”er -5, y”

Jorall t > 1> 0, provided S,x and S,y belong to Q forall t > 0;
3) there exists a Lyapunov function continuous on X;
4) the set N'={z,, ..., 2y} of stationary points is finite and all the
points are hyperbolic;
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5) the mapping (t, u) = S,u is continuous.
Then for any compact set B in X the estimate

sup {dist Sy, A): y EB} < Cge Mt (6.3)
holds for all t > 0, where n > 0 does not depend on B.

The proof of this theorem as well as other interesting results on the asymptotic be-
haviour of a dynamical system possessing a Lyapunov function can be found in the
book by A. V. Babin and M. 1. Vishik [1].

To conclude this section, we consider a finite-dimensional example that shows
how the Lyapunov function method can be used to prove the existence of periodic
trajectories in the attractor.

Example 6.1 (onthetheme by E. Hopf)

Studying Galerkin approximations in a model suggested by E. Hopf for the de-
scription of possible mechanisms of turbulence appearence, we obtain the fol-
lowing system of ordinary differential equations

u+pu+v2+wd=0, (6.4)
D+vo—vu—Pw=0, (6.5)
w+vw-—wu+Pv=0. (6.6

Here [ is a positive parameter, v and 3 are real parameters. It is clear that the
Cauchy problem for (6.4)—(6.6) is solvable, at least locally for any initial condi-
tion. Let us show that the dynamical system generated by equations (6.4)—(6.6)
is dissipative. It will also be sufficient for the proof of global solvability. Let us
introduce a new unknown function «* = u + /2 —v. Then equations (6.4)—
(6.6) can be rewritten in the form

U+ put 02 +w? = p(g—v),

7}+%uv—vu*—Bw:0,

w+%uw—wu*+ Bv=0.

These equations imply that
1d
2 dt
on any interval of existence of solutions. Hence,

d
de

(el + 1ol + lol?) + e + 5 (o +ul?) = p(5 —v)ur

2
(41 + 1))+ (P + 1ol +ul?) < p(b-v) .



On the Structure of Global Attractor

Thus,

(0% + [0 () + Jw (1) <

< (|u*(0)|2+|v(0)|2+|w(0)|2)e—m n (%_\/)2(1—9_“t) '

Firstly, this equation enables us to prove the global solvability of problem (6.4)—
(6.6) for any initial condition and, secondly, it means that the set

B, = {(u, v, W): (u+§—V)2+vz+w2 . 1+(g—v)2}

is absorbing for the dynamical system (IR{S, S,) generated by the Cauchy prob-
lem for equations (6.4)—(6.6). Thus, Theorem 5.1 guarantees the existence of
a global attractor A. It is a connected compact set in R3.

Exercise 6.18 Verify that B, is a positively invariant set for (]R{S, S,).

In order to describe the structure of the global attractor A we introduce the polar
coordinates

v(t)=r(t)coso(t), w(t)=r(t)sing(t)
on the plane of the variables {7.]; w} As a result, equations (6.4)—(6.6) are trans-
formed into the system
{d+uu+72:0, (6.7
r+vr—ur=0, (6.8)
therewith, ¢(t) = — ¢+ ¢, . System (6.7) and (6.8) has a stationary point {u =0,
r=0} forall p >0 and v € R.If v < 0, then one more stationary point {u=V,

7= =V} occurs in system (6.7) and (6.8). It corresponds to a periodic trajectory
of the original problem (6.4)—(6.6).

Exercise 6.14 Show that the point (0; 0) is a stable node of system (6.7)
and (6.8) when v > 0 and it is a saddle when v < 0.

Exercise 6.15 Show that the stationary point {w =V, ==V} is stable

(v < 0)beinganodeif —/8 < v < 0 and a focusif v < — g

If v>0,then (6.7) and (6.8) imply that

1d

2&(uz+¢2) + min(u, v)(u?+7r%) < 0.

Therefore,

|u(t)|2 + |7”(t)|2 < |u(0)|2 + |7‘(0)|2 p—2min(u, V)t
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Hence, for v > 0 the global attractor A of the system (]R{3, S,) consists of the single
stationary exponentially attracting point

{fu=0,v=0, w=0}.

Exercise 6.16 Prove that for v =0 the global attractor of problem (6.4)—
(6.6) consists of the single stationary point {#=0, v=0, w=0}.
Show that it is not exponentially attracting.

Now we consider the case v < 0. Let us again refer to problem (6.7) and (6.8). It is
clear that the line » = 0 is a stable manifold of the stationary point {u=0, »=0}.
Moreover, it is obvious that if () > 0, then the value 7 (¢) remains positive for all
t > t, . Therefore, the function

Vi, ) = 2w =v)® + L% + vy (6.9)

is defined on all the trajectories, the initial point of which does not lie on the line
{r=0}. Simple calculations show that

& (V(u(t), (1) + u(u()-v)* =0 (6.10)
and
Viu, r) > V(v, —uv)+%(lu—vl2+|r— —uv|2); 6.11)

therewith, V(v, J=uv) = (1/2)u|vl In(e/(u[vl)). Equation (6.10) implies that
the function V(u, 7) does not increase along the trajectories. Therefore, any semi-
trajectory {(u(t); r(t)), t € R,} emanating from the point {u,, r,; 7r,# 0} o
the system (R xR,, S,) generated by equations (6.7) and (6.8) possesses the
property V(u(t), »(t)) < V(ug, r,) for t > 0. Therewith, equation (6.9) implies
that this semitrajectory can not approach the line {7": 0} at a distance less then
exp{[1/(uv)]-V(uy, ry)}. Hence, this semitrajectory tends to 7 ={u=yv,
r= m} . Moreover, for any & € R the set

Be={y=(u, r): V(u,r) <}
is uniformly attracted to 7 ,i.e. for any € > 0 there exists ¢, = ¢, (&, &) such that
StBé c{y: ly—7l <e}.
Indeed, if it is not true, then there exist g, > 0, a sequence t,— +oo,and g, € Bg
such that ‘Sz 2, y‘ > & . The monotonicity of V() and property (6.11) imply that
n
1 2
V(S,2,) = V(St/ z,) = V(v, —uv)+28

forall 0 <t < t, - Let 2 be a limit point of the sequence { } Then after passing
to the limit we fmd out that
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\

S )|

C\/

Fig. 2. Qualitative behaviour of solutions to problem (6.7), (6.8):
a)-U/8<v<O, b) v<-—u/8

V(S,2) = V(v, A/—uv)+%8%, t>0

with 2 ¢ {r=0}. Thus, the last inequality is impossible since S,z =7 ={u=v,
r=.—uv}. Hence
lim sup{dist(S,y, ¥): v € Bg} =0. (6.12)

t — oo
The qualitative behaviour of solutions to problem (6.7) and (6.8) on the semiplane
is shown on Fig. 2.
In particular, the observations above mean that the global minimal attractor
A i, of the dynamical system (IR3, S,) generated by equations (6.4)—(6.6) consists

of the saddle point {#. =0, v =0, w =0} and the stable limit cycle
C,={u=v, v*+w?=-puv} (6.13)

for v < 0. Therewith, equation (6.12) implies that the cycle C,, uniformly attracts
all bounded sets B in R? possessing the property

d = inf{v?+w?: (u, v, w)eB} >0, (6.14)
i.e. which lie at a positive distance from the line {v =0, w=0}.

Exercise 6.17 Using the structure of equations (6.7) and (6.8) near the sta-
tionary point {w=v, r=.—=puV}, prove that a bounded set B pos-
sessing property (6.14) is uniformly and exponentially attracted to
the cycle C,,, i.e.

sup{dist (S,y, C,), ¥ € B} < ce ')

for t > {5, where 7y is a positive constant.
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Now let y, = (ug, vy, w,) lie in the global attractor A of the system (R3, ).
Assume that 7, # 0 and V% = 7.]% + w% # —l V. Then (see Lemma 6.1) there exists
a trajectory y = {y/(t)=(u(t); v(t); w(t)), te R} lyingin A such that y(0)=y,.
The analysis given above shows that y(t) — C,, as t - +oo. Let us show that
y(t) > 0 when t - —co . Indeed, the function V(u(t), 7(¢)) is monotonely nonde-
creasing as t — —oo . If we argue by contradiction and use the fact that |y(¢)| is

bounded we can easily find out that
lim V(u(t), r(t)) = oo

t —> —oo
and therefore
1/2
r()=(loP +lw(@)?) " >0 as 1 oo, (6.16)
Equation (6.7) gives us that
¢
u(t) = e * =Ty (s) —j e (-7 [7‘(’[)]2 dr. (6.17)

S
Since u (s) is bounded for all s € R, we can get the equation

t
ult) = —j e HE=D ] (1)P e
“
by tending s — —oco in (6.17). Therefore, by virtue of (6.16) we find that u () — 0
as t - —oo. Thus, y(t) > 0 as t - —oo. Hence, for v < 0 the global attractor A

b)

Fig. 3. Attractor of the system (6.4)—(6.6);
a)-u/8<v<0,b) v —u/8
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of the system (IR, S,) coincides with the union of the unstable manifold M, (0)
emanating from the point {# =0, v=0, w=0} and the limit cycle (6.13). The at-
tractor is shown on Fzg. 3.

§ 7 Stability Properties of Attractor
and Reduction Principle

A positively invariant set M in the phase space of a dynamical system (X R Sz) is said
to be stable (in Lyapunov’s sense) in X if its every vicinity @ contains some
vicinity @' such that S,(@') c @ forall t > 0. Therewith, M is said to be asymp-
totically stable if it is stable and S,y — M as t — oo for every y € O'. A set
M is called uniformly asymptotically stable if it is stable and

lim sup {dist (S, y, M): y € @'} =0. (7.1

t — o0

The following simple assertion takes place.

Theorem 7.1.

Let A be the compact global attractor of a continuous dynamical sys-
tem (X, S,). Assume that there exists its bounded vicinity U such that the
mapping (t, u) = S,u is continuous on R, x U. Then A is a stable set.

Proof.

Assume that ©@ is a vicinity of A . Then there exists 7' > 0 such that S, U < @
for ¢t > T'. Let us show that there exists a vicinity @’ of the attractor A such that
S,0'c O forallt € [0, T]. Assume the contrary. Then there exist sequences {2, }
and {,,} such that dist(u,, A) >0, {t,}€[0, T] and S, u, & ©. The set A being
compact, we can choose a subsequence {nk} such that Up, > UE A as t”k -
—t € [0, T]. Therefore, the continuity property of the function (¢, u)— S,u
gives us that S;nkunk—> S,u € A. This contradicts the equation Stnun ¢ @ . Thus,
there exists @' such that S,@'c @ for t € [0, T]. We can choose T such that
S,(@'NU)c @ for all t > 0. Therefore, the attractor A is stable. Theorem 7.1
is proved.

It is clear that the stability of the global attractor implies its uniform asymptotic
stability.

Exercise 7.1 Assume that M is a positively invariant set of a system
(X, S,). Prove that if there exists an element y ¢ M such that its
o -limit set o (y) possesses the property o (y) N M # &, then M
is not stable.
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In particular, the result of this exercise shows that the global minimal attractor can
appear to be an unstable set.

Exercise 7.2 Let us return to Example 3.1 (see also Exercises 4.8 and 6.8).
Show that:
(a) the global attractor A; and the Milnor attractor A, are
stable;
(b) the global minimal attractor A; and the Ilyashenko at-
tractor Ay are unstable.

Now let us consider the question concerning the stability of the attractor with re-
spect to perturbations of a dynamical system. Assume that we have a family of dy-
namical systems (X, S)“) with the same phase space X and with an evolutionary
operator S}L depending on a parameter A which varies in a complete metric space
A . The followmg assertion was proved by L. V. Kapitansky and I. N. Kostin [6].

Theorem 7.2.

Assume that a dynamical system (X, St}‘ ) possesses a compact global at-
tractor A for every A € A. Assume that the following conditions hold:
(a) there exists a compact K< X such that A»c K forall A € A;
M A Ay, 2 e A™ and x, = 2, then St xy = Sy, % for some
o> O
Then the family of attractors AN s upper semicontinuous at the point ko,
i.e.

h(Ak’f, Axo) = sup{dist(y, AXO): ye Ak’c} -0 (7.2)

as A, — Ag.

Proof.

Assume that equation (7.2) does not hold. Then there exist a sequence k -
— A, and a sequence x;, € A"k such that dist(x,;, A 0) > 0 for some 0 > 0. But
the sequence x;, lies in the compact K . Therefore, without loss of generality we can
assume that x;, — x, € K for some x; € K and x, ¢ A)”O . Let us show that this re-
sult leads to contradiction. Let v, = {u;(t): —co<t < oo} be a trajectory of the dy-
namical system (X, St}”/f) passing through the element x;, (u,(0) = x;.). Using the
standard diagonal process it is easy to find that there exist a subsequence {k(7)}
and a sequence of elements {,, } ¢ K such that

nlgnoouk( )( mty) = w,, forall m=0,1,2,

where v = 2. Here t; > 0 is a fixed number. Sequential application of condition
(b) gives us that
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Uy = M0 2y (=(m=1)1,) = lim Slt K )uk(n)( mty) = Su Uy
M — o0 n — oo
forallm =1, 2, ... and [ =1, 2, ..., m.It follows that the function
Ao
S, U, t>0,
u(t) = ”
St+l0m Uy, —tom < L<—ty(m=1), m=1,2, ..

gives a full trajectory y passing through the point x, . It is obvious that the trajectory
Y is bounded. Therefore (see Exercise 6.1), it wholly belongs to AMo , but that con-
tradicts the equation &, ¢ AM0 . Theorem 7.2 is proved.

Exercise 7.3 Following L. V. Kapitansky and I. N. Kostin [6], for L — 4,
define the upper limit A(A,; A) of the attractors A* along A by
the equality

Al A)= ) [U{Ak; he A, 0<dist(h i) < 5}} ,
0>0
where [ ] denotes the closure operation. Prove that if the hypothe-
ses of Theorem 7.2 hold, then A (XO, A) is a nonempty compact in-
variant set lying in the attractor A™0 .

Theorem 7.2 embraces only the upper semicontinuity of the family of attractors
{Ak} . In order to prove their continuity (in the Hausdorff metric defined by equation
(5.4)), additional conditions should be imposed on the family of dynamical systems
(X S 7‘) For example, the following assertion proved by A. V. Babin and M. I. Vishik
concerning the power estimate of the deviation of the attractors A and A% in the
Hausdorff metric holds.

Theorem 7.3.

Assume that a dynamical system (X, Stk) possesses a global attractor
A% for every L € A. Let the following conditions hold:
(a) there exists a bounded set By X such that Ar < B, for all LeA
and

n(S}By, A%) < Cpe ™, heA, (7.3)
with constants C, >0 and N > 0 independent of A and with
h(B, A) = sup{dist(b, A): b € B} ;
() for any Ly, Ay € A and wu,, uy € B, the estimate

by

dist(S . 12 uy) < Cpe®!(dist (uy, uy) + dist(hy, Ay)) (7.4)
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holds, with constants C; and o independent of A.

Then there exists Cy > 0 such that

A A ,
p(AM, a™2) < oyfdist(hy A,)]9,  g= nﬂa' (7.5)

Here p(-, -) is the Hausdorff metric defined by the formula
p(B, A) =max{h(B, A); h(A, B)}.

Proof.
By virtue of the symmetry of (7.5) it is sufficient to find out that
(A", A%y <y [dist(Ay, 2)]" (7.6)
Equation (7.3) implies that for any € > 0
S}'By < @, (A%) forall AeA (7.7
when ¢t > t"(g, Cy) = 171 (In1/¢ +InC,) . Here @, (A%) is an & -vicinity of the set
AN Tt follows from equation (7.4) that

o A . . A Do,
h(S, By, S,"By)= sup inf dist(S, @, S,“y) <
xeBO yeBO

A A
< sup dist(S, Lo, S, ?x) < Ce®tdist(Ay, Ag). (7.8)
x eBO

Since A* = B, we have Al = S?‘Ak c S?‘BO. Therefore, with ¢ > t*(s, CO) , equa-
tion (7.7) gives us that

Ak < SIBy < O (A%). (7.9)
For any x, 2 € X the estimate
dist(, A%) < dist(x, @)+ dist(z, A*)
holds. Hence, we can find that
dist(x, A%) < dist(w, 2)+¢
forallz € X and 2 € @S(Ak) . Consequently, equation (7.9) implies that
dist(, A) < dist(z, SZ“BO) +e, wxeX
for t > t*(g, Cy). It means that

n(a™, a%2) = sup dist(x, A™2) <
xeA)‘l

x A A
< sup dist(z, S, *By)+¢& < h(S,'By, S,°By)+¢ .
xeA”1

Thus, equation (7.8) gives us that for any € > 0
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n(A™, A™2) < Clevt dist(M, hy)+e

for ¢t > t"(e, C,). By taking & = [dist (A, kz)]q, q= nTnoc and t=1"(g, Cy) =
= n*1 (Inl/e+ mCO) in this formula we find estimate (7.6). Theorem 7.3 is proved.

It should be noted that condition (7.3) in Theorem 7.3 is quite strong. It can be veri-
fied only for a definite class of systems possessing the Lyapunov function (see Theo-
rem 6.3).

In the theory of dynamical systems an important role is also played by the no-
tion of the Poisson stability. A trajectory y = {u(t): —oo <t < oo} of a dynamical
system (X, S,) is said to be Poisson stable if it belongs to its  -limit set ®(y).
It is clear that stationary points and periodic trajectories of the system are Poisson
stable.

Exercise 7.4 Show that any Poisson stable trajectory is contained in the
global minimal attractor if the latter exists.

Exercise 7.5 A trajectory y is Poisson stable if and only if any point x
of this trajectory is recurrent, i.e. for any vicinity @ > x there exists
t >0 suchthat S,x € O.

The following exercise testifies to the fact that not only periodic (and stationary) tra-
jectories can be Poisson stable.

Exercise 7.6 Let Cb(]R{) be a Banach space of continuous functions boun-
ded on the real axis. Let us consider a dynamical system (C,(R), S))
with the evolutionary operator defined by the formula

(SN (@) =f(@+1), f(x) e Cy(R).
Show that the element f,(x) = sinm; x + sinwyx is recurrent for
any real ®; and ®, (in particular, when (ol/ M, is an irrational

number). Therewith the trajectory v = {f,(x+1t): —oo<t <o}
is Poisson stable.

In conclusion to this section we consider a theorem that is traditionally associated
with the stability theory. Sometimes this theorem enables us to significantly decrease
the dimension of the phase space, this fact being very important for the study of infi-
nite-dimensional systems.

Theorem 7.4. (reduction principle).

Assume that in a dissipative dynamical system (X, S,) there exists
a positively invariant locally compact set M possessing the property of
uniform attraction, i.e. for any bounded set B — X the equation
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lim sup dist(S,y, M)=10 (7.10)

t—>oyeB

holds. Let A be a global attractor of the dynamical system (M, St). Then A
is also a global attractor of (X, S,).

Proof.
It is sufficient to verify that

lim sup dist(S,», A)=0 (7.11)

I—>0yeB

for any bounded set B — X . Assume that there exists a set B such that (7.11) does
not hold. Then there exist sequences {y, } < B and {t,: t, — oo} such that

dist(Sz/n Yy A) 20 (7.12)

for some 6 > 0. Let B, be a bounded absorbing set of (X, S,). We choose a moment
ty such that

\/je7]

sup {dist(StO Yy, A): yeMN Bo} <z (7.13)
This choice is possible because A is a global attractor of (M, St) . Equation (7.10)
implies that

dist(Stn_tO Yy, M)—>0, t,—>o0.

n

The dissipativity property of (X, St) gives us that S, - Y, € By when n is large
n

enough. Therefore, local compactness of the set M guarantees the existence of an

element & € M (1 B, and a subsequence {7, } such that

z= lim S,
k—> oo Mg

=t Yy .
This implies that Stnkyn - Stoz . Therefore, equation (7.12) gives us that
dist(StOz, A) > &. By virtue of the fact that z € M B, this contradicts equation

(7.13). Theorem 7.4 is proved.

Example 7.1

We consider a system of ordinary differential equations

Yy —y=y:%  yl,_ =Y
] (7.14)
2+z(1+4%)=0, 2),_o= %0
It is obvious that for any initial condition (yo, zo) problem (7.14) is uniquely
solvable over some interval (0, ¢"(y, 2)). If we multiply the first equation by
y and the second equation by 2 and if we sum the results obtained, then we get

that
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1d .
Qd_t(y2+z2)+y4_y2+2220’ t e (0, t'(yy zo)).
This implies that the function V(y, 2) = Y2 + 22 possesses the property
d

SV((0), 2(0)+2V(), 20) <2, 1[0, 'y 20).
Therefore,

V(y(t). 2(1) < V(yg. 29)e ' +1, te[0, 1'(yp 2))-
This implies that any solution to problem (7.14) can be extended to the whole
semiaxis R, and the dynamical system (R, S,) generated by equation (7.14)
is dissipative. Obviously, the set M = {(y, 0): y € R} is positively invariant.
Therewith the second equation in (7.14) implies that

%d%zz+z2 <0, t¢t>0.
Hence, |z(t)|2 < zg e~2! . Thus, the set M exponentially attracts all the bound-
ed sets in R2. Consequently, Theorem 7.4 gives us that the global attractor of
the dynamical system (M, ,) is also the attractor of the system (RZ, S,). But

on the set M system of equations (7.14) is reduced to the differential equation
Y+y?-y=0, y|,_,="Yo- (7.15)

Thus, the global attractors of the dynamical systems generated by equations
(7.14) and (7.15) coincide. Therewith the study of dynamics on the plane is re-
duced to the investigation of the properties of the one-dimensional dynamical
system.

Exercise 7.7 Show that the global attractor A of the dynamical system
(IR{Z, S,) generated by equations (7.14) has the form

A={(y, z): -1<y<1, 2=0}.

Figure the qualitative behaviour of the trajectories on the plane.

Exercise 7.8 Consider the system of ordinary differential equations

U—yP+y3(1+422)—y(1+22)=0
(7.16)
Zz(l+4yt) 2022 +y*—y2+3/2)=0.

Show that these equations generate a dissipative dynamical system
in IR2. Verify that the set M = {(y, 2): 2=y2, y € R} isinvariant
and exponentially attracting. Using Theorem 7.4, prove that the glo-
bal attractor A of problem (7.16) has the form

A={(y, 2): 2=y? -1<y<l1}.

Hint: Consider the variable w = 2 — yz instead of the variable z .
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§ 8 Finite Dimensionality
of Invariant Sets

Finite dimensionality is an important property of the global attractor which can be
established in many situations interesting for applications. There are several ap-
proaches to the proof of this property. The simplest of them seems to be the one
based on Ladyzhenskaya’s theorem on the finite dimensionality of the invariant set.
However, it should be kept in mind that the estimates of dimension based on La-
dyzhenskaya’s theorem usually turn out to be too overstated. Stronger estimates can
be obtained on the basis of the approaches developed in the books by A. V. Babin
and M. I. Vishik, and by R. Temam (see the references at the end of the chapter).

Let M be a compact set in a metric space X . Then its fractal dimension
is defined by

. — Inn (M , €
dimyf = fim ln(l/s)) :

where 7 (M, €) is the minimal number of closed balls of the radius & which cover
the set M .

Let us illustrate this definition with the following examples.

Example 81
Let M be a segment of the length [ . It is evident that

~1<nM, &)< =+1

1 L
2¢ 2¢e
Therefore,

l—2¢ l+2¢
2 2

Hence, dim;M =1, ie. the fractal dimension coincides with the value of the
standard geometric dimension.

In} +In < nn(M, €) < In}+1n

Example 82

Let M be the Cantor set obtained from the segment [0, 1] by the sequentual
removal of the centre thirds. First we remove all the points between 1/3 and
2/3. Then the centre thirds (1/9, 2/9) and (7/9, 8/9) of the two remaining
segments [0, 1/3] and [2/3, 1] are deleted. After that the centre parts
(1/27, 2/27),(7/27, 8/27),(19/27, 20/27) and (25/27, 26/27) of the four
remaining segments [0, 1/9], [2/9, 1/3], [2/3, 7/9] and [8/9, 1], respec-
tively, are deleted. If we continue this process to infinity, we obtain the Cantor
set M. Let us calculate its fractal dimension. First of all it should be noted that
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- (.
k=0

Jo=[0, 1], J, =10, 1/3]U[2/3, 1],

Jy =10, 1/9]U[2/9, 1/3]U[2/3, 7/9]U[8/9, 1]

and so on. Each set ch can be considered as a union of 2% segments of the
length 37% . In particular, the cardinality of the covering of the set M with the
segment of the length 37% equals to 2% . Therefore,

: . In2% In2
dimM = lim —=— = —=.
S 5w In(2-3%F)  In3

Thus, the fractal dimension of the Cantor set is not an integer (if a set possesses
this property, it is called fractal).

It should be noted that the fractal dimension is often referred to as the metric order
of a compact. This notion was first introduced by L. S. Pontryagin and L. G. Shnirel-
man in 1932. It can be shown that any compact set with the finite fractal dimension
is homeomorphic to a subset of the space R? when d > 0 is large enough.

To obtain the estimates of the fractal dimension the following simple assertion
is useful.

Lemma 8.1.

The following equality holds:

. - lnN(M 8)
dims;M = lim ———>2 |
T TS0 In(1/e)

where N (M, 8) s the cardinality of the minimal covering of the com-

pact M with closed sets diameter of which does not exceed 2¢ (the dia-
meter of a set X is defined by the value d(X) = sup{|lov—yl: 2, y e X}).

Proof.

It is evident that N (M, €) < n (M, €). Since any set of the diameter d lies
in a ball of the radius d , we have that 7 (M, 2€) < N (M, €). These two inequa-
lities provide us with the assertion of the lemma.

All the sets are expected to be compact in Exercises 8.1-8.4 given below.
Exercise 8.1 Provethatif M; ¢ My, then dime1 < dime2 .
Exercise 82 Verify that dim,(M; UM,) < max{dimgM;; dim;M,}.

Exercise 8.8 Assume that M| x M, is a direct product of two sets. Then

dimy (M x My) < dimgM; + dimgM, .
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Exercise 84 Let g be a Lipschitzian mapping of one metric space into
another. Then dim,g(M) < dimgM .

The notion of the dimension by Hausdorff is frequently used in the theory of dynami-
cal systems along with the fractal dimension. This notion can be defined as follows.
Let M be a compact set in X . For positive d and € we introduce the value

w(M, d, €)= ian(Vj)d ,
where the infimum is taken over all the coverings of the set M with the balls of the

radius 7 < ¢. It is evident that u(M, d, 8) is a monotone function with respect
to €. Therefore, there exists

w(M, d)= lim w(M, d, €)= sup u(M, d, ) .
e—>0 >0
The Hausdorff dimension of the set M is defined by the value
dimyM = inf{d: p(M, d)=0}.

Exercise 85 Show that the Hausdorff dimension does not exceed the frac-
tal one.

Exercise 86 Show that the fractal dimension coincides with the Hausdorff
one in Example 8.1, the same is true for Example 8.2.

Exercise 87 Assume that M = {an}:zl c R, where a, monotonically
tends to zero. Prove that dimyM =0 Hint: w(M, d, €) <
< agﬂ +n279" when a, ., <& <a,).

Exercise 88 Let M ={1/n};_; c R.Show that dim;M=1/2.
. 1 1
Hint: M +14+— h e <
( in 1n< n(M, )< n CESE when CEICE) €<
n(n+1))'

nn
n=2

o0
Exercise 89 Let M= {%—} < R . Prove that dim;M = 1.

Exercise 810 Find the fractal and Hausdorff dimensions of the global mini-
mal attractor of the dynamical system in R generated by the diffe-
rential equation

. 1
y+ysin—=0.
|yl
The facts presented in Exercises 8.7-8.9 show that the notions of the fractal and
Hausdorff dimensions do not coincide. The result of Exercise 8.5 enables us to re-

strict ourselves to the estimates of the fractal dimension when proving the finite di-
mensionality of a set.
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The main assertion of this section is the following variant of Ladyzhenskaya’s
theorem. It will be used below in the proof of the finite dimensionality of global at-
tractors of a number of infinite-dimensional systems generated by partial differential
equations.

Theorem 8.1.

Assume that M is a compact set in a Hilbert space H. Let V be a contin-
uous mapping in H such that V(M) > M. Assume that there exists a finite-
dimensional projector P in the space H such that

|P(Voy =Vuy)| < L|oy—vg|, vy, vg €M, (8.1
|(1=P)(Vo,=Vuy)| < S|vy—vy|, 01, vy €M, (8.2)

where O < 1. We also assume that | > 1—3. Then the compact M possesses
a finite fractal dimension and

dimM < dij~lnﬂ<~[ln—2:} - (8.3)

) 1I-6 L 1+8
We remind that a projector in a space H is defined as a bounded operator P with the
property P2 = P . A projector P is said to be finite-dimensional if the image PH is
a finite-dimensional subspace. The dimension of a projector P is defined as a num-
ber dimP = dimPH .
The following lemmata are used in the proof of Theorem 8.1.

Lemma 8.2.
Let By, be a ball of the radius R in RY . Then

2R\’
N(By. €) < n(By. ¢) < (1+ 28] (8.4)
Proof.
Estimate (8.4) is self-evident when € > R. Assume that € < R. Let
{&, ..., §;} be a maximal set in By with the property |§Z —§j| >e,1#].

By virtue of its maximality for every « € Bp there exists éZ such that
|z —&;| < &.Hence, n(Bp, €) < 1.Itis clear that

Be/z(‘gz’) C Bpig/os Bs/z(éi) N (38/2(éj)) =4, L#E .

Here B, (§) is a ball of the radius 7 centred at & . Therefore,

l
LVol(Byjg) = > Vol (Byg(&;)) < Vol By, g/3)-
i=1
This implies the assertion of the lemma.

Exercise 811 Show that

R .
n(Bp, €) 2 (5) , dimBp=d.
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Lemma 8.3.

Let F be a closed subset in H such that equations (8.1) and (8.2) hold
Sfor all its elements. Then for any q >0 and € >0 the following esti-
mate holds:

NV eg+8) < (142 N &), (8.5)

where n = dimP 1is the dimension of the projector P.

Proof.

Let {#} be a minimal covering of the set % with its closed subsets the di-
ameter of which does not exceed 2 ¢ . Equation (8.1) implies that in PH there
exist balls B; with radius 2/¢& such that PV% < B;. By virtue of Lemma 8.1
there exists a covering {B; j }JN:L | of the set PV¥, with the balls of the diameter
2qe,where N, < (1+(41/q))™ . Therefore, the collection

7

{GM:BijJr(l—P)V%: i=1,2, .., N(F ¢), j=1,2, ..., N}
is a covering of the set V% . Here the sum of two sets A and B is defined by the
equality

A+B={a+b: acA, beB}.
It is evident that
diamG,; < diamB,; + diam(1-P) V.
Equation (8.2) implies that diam(1-P)V% < 20¢. Therefore, diamG, ;<
< 2(q +9)¢e. Hence, estimate (8.5) is valid. Lemma 8.3 is proved.

Let us return to the proof of Theorem 8.1. Since M < VM , Lemma 8.3 gives us

N(M. £(g+8)) < N(M, &)1 +%—l)n.

It follows that
m 4yt
N, (g +8)") < Nt D (1+ 3 = e
We choose g and m = m(€) such that

O+g<1, (6+q)" < g,
where 0 < € < 1. Then

m 4] nm()
N(M, &) < N(M, (8+a)") < N(, 1)-(1+3])
Consequently,
dimM = Tim NN (M, £) n-ln(1+ﬂ)- i 7€)
e—>0 In(l/g) q

e—01In(1/g)
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Obviously, the choice of m (€) can be made to fulfil the condition

Ing
< —+1.
(&) ln(q+5)+

Thus,

dim, M < nln(l + ﬂ)[er .
s q q+0

By taking ¢ = 1/2(1—3) we obtain estimate (8.3). Theorem 8.1 is proved.

Exercise 812 Assume that the hypotheses of Theorem 8.1 hold and
I < 1-0. Prove that dim;M = 0.

Of course, in the proof of Theorem 8.1 a principal role is played by equations (8.1)
and (8.2). Roughly speaking, they mean that the mapping V squeezes sets along the
space (1-P)H while it does not stretch them too much along PH . Negative invari-
ance of M gives usthat M « VEM forall k = 1, 2, ... . Therefore, the set M should
be initially squeezed. This property is expressed by the assertion of its finite dimen-
sionality. As to positively invariant sets, their finite dimensionality is not guaranteed
by conditions (8.1) and (8.2). However, as the next theorem states, they are attract-
ed to finite-dimensional compacts at an exponential velocity.

Theorem 8.2.

Let V be a continuous mapping defined on a compact set M in a Hil-
bert space H such that VM c M. Assume that there exists a finite-dimensi-
onal projector P such that equations (8.1) and (8.2) hold with 0 < 0 < 1/2
and | +0 > 1. Then for any 0 € (0, 1) there exists a positively invariant
closed set Ay = M such that

sup {dist(VFy, Ag): y e M} <0F, k=12, .. (8.6)
and
ln(l + 94—l5) ln(l + ﬂ)
d]'mfAe < dimP - max i ) i , (8.7)
lné 1H2—'(q—-+6)

where q is an arbitrary number from the interval (0, 1/2 —9).

Proof.

The pair (M, Vk) is a discrete dynamical system. Since M is compact, Theo-
rem 5.1 gives us that there exists a global attractor M, = ﬂ k>0 VEM with the pro-
perties VM, = M and

h(VFM, M) = sup{dist(Vky, M): y e M} —0. (8.8)
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We construct a set Ay as an extension of M. Let E be a maximal set in V/M pos-
sessing the property dist(a, b) > 07 for a, b e E , a # b. The existence of such
a set follows from the compactness of VIM . Ttis 0bv10us that

L; = CardE; = N( 19])<N(VJM 161)
Lemma 8.3 with % = M, q:6—5,and8:(1/3)91_ gives us that
j lj) ( 4l) (j—l lj—l)
N(VM,SG < 1+9—5 NV M,Se
with O > 0 . Hereinafter # = dimP . Therefore,
B 41 YW 1)
L = CardE; < (HGTB) N(M, 1, 0>8. (8.9)
Let us prove that the set
Ag=MyU{U{VEE,: j=1,2, .., k=0, 1,2, ..}) (8.10)

possesses the properties required. It is evident that VAy < Ag. Since VkE c
c VE+IM | by virtue of (8.8) all the limit points of the set

U{VkEj: j=1,2, ..., k=0,1,2, ...}

lie in M, . Thus, Ae is a closed subset in M . The evident inequality

h(VEM, Ag) < h(VEM, E,) < 6% (8.11)
implies (8.6). Here and below i (X, Y) = sup{dist(x, Y): # € X}. Let us prove
(8.7). It is clear that

AG:VAQU{U{Ej: J=1,2,...}}. (8.12)
Let {F;} be a minimal covering of the set Ay with the closed sets the diameter
of which is not greater than 2 & . By virtue of Lemma 8.3 there exists a covering { Gi}

of the set VA with closed subsets of the diameter 2&(q + 9) . The cardinality of this
covering can be estimated as follows

N(&, q, 8) = N(VAq, £(q+3)) < (1 +4é)nN(A9, £). (8.13)

Using the covering {Gi}, we can construct a covering of the same cardinality of the
set VAy with the balls B(x,, 2&(q +0)) of the radius 2£(g +0) centered at the
points x;, <=1, 2, ..., N (g, q, 8). Weincrease the radius of every ball up to the
value 2¢ (q +0+ y) . The parameter y > 0 will be chosen below. Thus, we consider
the covering

(B, 2e(q+8+7)), i=1,2, .., N(c q. d)}

of the set VA . It is evident that every point x € VA belongs to this covering to-
gether with the ball B(z, 2y¢).If j > 2, the inequalities
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h(Ej, VAg) < h(V/M, VAg) < h(VM, VEj_l)
hold. By virtue of equation (8.11) with the help of (8.1) and (8.2) we have that
n(VIM, VE; ) < (1+8)h(V/7IM, B; ) < (1+8)677".
Therefore, h(Ej, VAg) < 2ye, provided 2ye < (1+8) 077", ie.if

j2jy =2+

Here [#] is an integer part of the number 2 . Consequently,

N(e, g, 0)
VAy U { U Ej} < |J Bl 2e(@+8+7).
i =7 i=1
Therefore, equation (8.12) gives us that
Jo—1
N(Ag, €&) < N(g, q, 8)+ Z CardE;,
j=0

where § = 2(g + 0 +7). Using (8.9) and (8.13) we find that
Jo—1 :
l) ( 41 )”J
< 1 b
N(Ag, €€) < MN(4,, g)+N(M, 5 21 L+ 5—s
Jj=
. LA
for O > 0. Here and further n={1+ 7)) Since

lnl

. &
o= £ +C(L 8.1, 0),

0

it is easy to find that
Jo—1

;}(1+%)”JSB.(%’)@ for a:min(hr%),

where the constant B > 0 does not depend on ¢ (its value is unessential further).

Therefore,
N(Ag, €€) < MN(Ag, €&)+Pe™*.
If we take € = ™~ 1 then after iterations we get

N(Ag, &™) < NN(4g, =+ pE 1% <

m—1

<N (Ag, 1)+ B (€%

1=0
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Let us fix 6 € (0, 1/2), 6 € (8, 1) and g € (0, 1/2 —3J) and choose y > 0 such
that £ =2(¢+0+7)< 1 and §%1n # 1. Then summarizing the geometric progres-
sion we obtain

N(Ag. §™) < 7 N(Ag, 1)+ pE— ;Zf n”

<1 (Vo 1)+ i)

Let € > 0 be small enough and

g-oam (8.14)

-

m () = 1+[%},

where, as mentioned above, [2] is an integer part of the number z . Since € < ﬁm(fl) ,
equation (8.14) gives us that

N(dg £) < V(g &) < 0 (143" 1 (5

where a; and a4 are positive numbers which do not depend on & . Therefore,

_ InN(4g, &)

m(e)

Tm : 1 4e\" ( 1 )m
< lim —— lim = 1+= + Ao| — .
saOlnl maoom{ ol q) 2 éa
€
Simple calculations give us that

dimyA < 1~1—~ln {max((l +aey, Ej"‘)}.

n

e =

This easily implies estimate (8.7). Thus, Theorem 8.2 is proved.

Exercise 818 Show that for 6 < 0 < 1/2 formula (8.7) for the dimension
of the set A g canbe rewritten in the form

(i )

lnL

20

dimsAg = dim P- (8.15)

If the hypotheses of Theorem 8.2 hold, then the discrete dynamical system (M, Vk)
possesses a finite-dimensional global attractor M, . This attractor uniformly attracts
all the trajectories of the system. Unfortunately, the speed of its convergence to the
attractor cannot be estimated in general. This speed can appear to be small. However,
Theorem 8.2 implies that the global attractor is contained in a finite-dimensional po-
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sitively invariant set possessing the property of uniform exponential attraction. From
the applied point of view the most interesting corollary of this fact is that the dyna-
mics of a system becomes finite-dimensional exponentially fast independent of
the speed of convergence of the trajectories to the global attractor. Moreover, the re-
duction principle (see Theorem 7.4) is applicable in this case. Thus, finite-dimen-
sional invariant exponentially attracting sets can be used to describe the qualitative
behaviour of infinite-dimensional systems. These sets are frequently referred to as
inertial sets, or fractal exponential attractors. In some cases they turn out
to be surfaces in the phase space. In contrast with the global attractor, the inertial
set of a dynamical system can not be uniquely determined. The construction in the
proof of Theorem 8.2 shows it.

§ 9 Euxistence and Properties of Attractors
of a Class of Infinite-Dimensional
Dissipative Systems

The considerations given in the previous sections are mainly of general character.
They are related to a dissipative dynamical system of the generic structure. There-
with, we inevitably make additional assumptions on the behaviour of trajectories of
these systems (e.g., the asymptotic compactness, the existence of a Lyapunov func-
tion, the squeezing property along a subspace, etc.). Thereby it is natural to ask
what properties of the original objects of a particular dynamical system guarantee
the fulfilment of the assumptions mentioned above. In this section we discuss this
question in terms of the dynamical system generated by a differential equation of
the form

d
gy tAv=BW)  Yl,_y=Y% 9.1

in a separable Hilbert space 96, where A is a linear operator and B is a nonlinear
mapping which is coordinated with A in some sense. Our main goal is to demon-
strate the generic line of arguments as well as to describe those properties of the
operators A and B which provide the applicability of general theorems proved in
the previous sections. The main attention is paid to the questions of existence and fi-
nite dimensionality of a global attractor. Nowadays the presented line of arguments
(or a modification of it) is one of the main components of a great number of works
on global attractors.
It is assumed below that the following conditions are fulfilled.
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(A) There exists a strongly continuous semigroup S, of continuous map-
pings in 7 such that y(t) = S,y is a solution to problem (9.1) in the
sense that the following identity holds:

t
Sy =Ty + Gt yg) = Tt90+JTz—rB(Sryo)dT7 (9.2)
0
where T, = exp(—=At) (see condition (B) below). The semigroup S, is
dissipative, i.e. there exists R > 0 such that for any B from the collec-
tion %(%) of all bounded subsets of the space J6 the estimate ||St y” <
< R holds when y € B and t > t,(B). We also assume that the set
v*(B)= U, » 05, B is bounded for any B € B(J).

(B) The linear closed operator A generates a semigroup T, = exp(—At)
which admits the estimate |7;| < Ljexp(w?) (L; and © are some
constants). There exists a sequence of finite-dimensional projectors
{P,} which strongly converges to the identity operator such that

1) A commutes with P, ,i.e. B, A c AP, forany n;

2) there exists 7, such that |7, (1-£, )| < Lyexp(—¢t) for n > n,
where €, Lo > 0;

N7, = HA‘l(l—Pn)H -0 as n > .

(C)For any R’ > 0 the nonlinear operator B (u) possesses the properties:
1)||B(u1) —B(uz)” < Cl(R’)|u1—u2|| if ||uZ|| <R, 1=1,2;
2) for n = n, ||ul|| <R, t¢=1,2, and for some & >0 the fol-
lowing equations hold:

[4°(1-E)) B(u,)| < Cy(R),

[4°(1=B,) (B(uy) = B(uy))| < C3(R)|uy — s

(the existence of the operator A®(1-F),) follows from (B2)).

It should be noted that although conditions (A)—(C) seem a little too lengthy, they are
valid for a class of problems of the theory of nonlinear oscillations as well as for
a number of systems generated by parabolic partial differential equations.

The following assertion should be mainly interpreted as a principal result which
testifies to the fact that the asymptotic behaviour of the system is determined by
a finite set of parameters.

Theorem 9.1.

If conditions (A)-(C) are fulfilled, then the semigroup S, possesses a
compact global attractor A. The attractor has a finite fractal dimension
which can be estimated as follows:

dimg A = a; (1 +1In|B| Ly Ly)(1+D(R)e™!) dimB, , (9.3)
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where D(R) = o +L,C|(R) and n > n is determined from the condition
S < ayD(R)[L LyCs(R)] " exp{-agD(R)(1+InLy)e™1} . (9.4)

Here a,, ay, and ag are some absolute constants.

When proving the theorem, we mainly rely on decomposition (9.2) and the lemmata
below.

Lemma 9.1.

Let K, be a set of elements which for some t 2 0 have the form v = v+
+(1-B,)G(t, w), where ug € B, J6, |ug| < cqR with the constant ¢, de-
termined by the condition ||P;@|| <S¢y for n=1, 2, .... Here the value
G(t, w) is the same as in (9.2) with the element w € Jb being such that

||Stu|| <R for all t>0. Then the set K, is precompact in J for
"2 n.

Proof.
Properties (B2) and (C2)imply that

Cy(R)Ly

t
|[4°(1-B)G(t, u)| < LzJe—s(‘—f)\\AG(l—%)B(Sru)H dv < 2o
0

when ||Sru|| < R for T > 0. Therefore, the set

{v: v=(1-B)G(t, u), t >0}, (9.5)
where |S,u| < R for all ¢ > 0, is bounded in the space D (A% | (1-5),) J6)
with the norm ||A(y . || . The symbol | denotes the restriction of an operator on
a subspace. However, property (B3) implies that

lim [B,A7}(1-E) - A~ (1-B,)| = 0.
(e o]

m —>
Therefore, the operator A~'N (1-P, )6 is compact. Hence, D(ASN1-E, ) 36)
is compactly embedded into (l—Pn) F6 . It means that the set (9.5) is precom-
pactin (1-P, ) %. This implies the precompactness of K, .
Lemma 9.2.

There exists a compact set K in the space ¥ such that
h(s,B, K) = sup{dist(S,y, K): y e B} < Lyre “!' ™10 9.6)
Sor any bounded set B < J6 and t > t, = ty(B).

Proof.

Let w € B, where B is a bounded set in J6. Then ||Stu|| <R fort>t, =
= ty(B). By virtue of (9.2) we have that
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. Stu:(l_%)Tt—tOStOu+Wn(tvtOv“)»

% where

¢ Wa(t, by, w) =B, Su+(1-5)G(t~tg, S u).
1 It is evident that W (¢, t,, u) € K, for t > ;. Therefore,

dist(S; w0, K,,) < H(l_%)Tt—tOSzO““ < LzRe_s(t_to),

This implies (9.6) with K = [K,, ], where [K, ] is the closure in ¥ of the set
K,, described in Lemma 9.1.

Exercise 9.1 Show that K = [K, ] lies in the set

Kn,d ={v,+vy: v € P, 36, vy (1-FB,) 6,
[or] < Cys 490 < Co} 9.7

where C 1 and 02 are some constants.

In particular, Lemma 9.2 means that the system (%, St) is asymptotically compact.
Therefore, we can use Theorem 5.1 (see also Exercise 5.3) to guarantee the exis-
tence of the global attractor /4 lyingin K = [K, ] .

Let us use Theorem 8.1 to prove the finite dimensionality of the attractor. Veri-

fication of the hypotheses of the theorem is based on the following assertion.

Lemma 9.3.
Let ||Stul|| <R, t20, i=1, 2. Then

|Syuy =S,ug| < Lyexp(D(R)t)|ug —uyf (9.8
and
L,Cqo(R
[(1=B) (S uy = S,un)]| < Lyest-(1+CorS %}g)) o) Juy — | (9.9)

Jor m 2 ny and a=¢e+D(R) .

Proof.
Decomposition (9.2) and condition (C1) imply that
t
|S; g =S, ug| < Ly |ug —ug| +C1(R) J e TS uy =S ug|dr (el
0

With the help of Gronwall’s lemma we obtain (9.8).
To prove (9.9) it should be kept in mind that decomposition (9.2) and equa-
tions (B2) and (C2) imply that for n > n,
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[(1=B) (S, vy =S ug)| < Loe " | Juy —ug| +

t
+COTSCS(R)Jegf||STu1—STu2|| dr |. (9.10)
0

Here the inequality HA‘G(I—PW)” <Cy 72 is used . If we put (9.8) in the right-
hand side of formula (9.10), we obtain estimate (9.9).

The following simple argument completes the proof of Theorem 9.1. Let us fix
an arbitrary number 0 < 0 < 1 and choose ty and 7 such that

—& tO _ 8 (e} CS(R) O(to <
Lye =5 and COVnLIW e <1.
Then the hypotheses of Theorem 8.1 with M = A4, V=S, , P=F, ,and | =

= L|B,| exp(D(R)t,) hold for the attractor /4. Hence, it is finite-dimensional with
estimate (9.3) holding for its fractal dimension. Theorem 9.1 is proved.

Exercise 9.2 Prove that the global attractor ./ of problem (9.1) is stable
(Himt: verify that the hypotheses of Theorem 7.1 hold).

Properties (A)-(C) also enable us to prove that the system generated by equation
(9.1) possesses an inertial set. A compact set AeXp in the phase space 7 is said to
be an imertial set (or a fractal exponential attractor) if it is positively invariant
(S;Acxp © Aeyp) » its fractal dimension is finite (dimg A, < o0) and it possesses
the property

1(S, B, Aggy ) = sup{dist(S, y, Aug): v € By < Gge "0 911
for any bounded set B < J6 and for ¢ > ¢ > t (B), where Cp and v are positive
numbers. (The importance of this notion for the theory of infinite-dimensional dy-

namical systems has been discussed at the end of Section 8).

Lemma 9.4.

Assume that properties (A)-(C) hold. Then the dynamical system
(76, St) generated by equation (9.1) possesses the following properties:
1) there exist a compact positively invariant set K and constants

C, v >0 such that

sup{dist(S, y, K): y € B} < ce V) (9.12)

Jor any bounded set B in J6 and fort > tg > 0;
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;’ 2) there exist a vicinity O of the compact K and numbers A; and

a oy > 0 such that

1%

t ol

. ||Sty1—8ty2|| <Ael ||y1— (9.13)
1 provided that for all t > 0 the semitrajectories Sz y; lie in the clo-

sure [O] of the set O;
3) there exist a sequence of finite-dimensional projectors {Pn} n the
space Jb, constants A2, Oy, B >0, and a sequence of positive

numbers {pn} tending to zero as n — oo such that
|| V(S ¥ —S, ¥y || < Age” ﬁz(1+p %2 ||y1 y2|| (9.14)
Jorany yy, Yy, € K.

Proof.

Let K be a compact set from Lemma 9.2. Let

K =y"(K) = U S, K.
t>0

It is clear that S,K” = K~ and equation (9.12) holds for K = K" with C = Ly R
and y = €. Let us prove that K" is a compact set. Let { } be a sequence of
elements of K" =y*(K). Then z, = =8, Y, for some t, >0 and y, € K.
If there exists an infinitely increasing subsequence {t, } then equation (9.6)
gives us that
lim dlSt(St ynk, K) =0.

k — oo
Therefore, the sequence {z,,} possesses a limit point in K = K*. If {¢,,} is
a bounded sequence, then by virtue of the compactness of K there exist a num-
ber ¢, > 0, an element y € K and a sequence {nk} such that Yn, =Y and
t,, — t. Therewith

g
"Stnk Y, =S, yH < H S, U —Stoy” + HStnk Y, _S‘nkyH :

The first term in the right-hand side of this inequality evidently tends to zero.
As for the second term, our argument is the same as in the proof of formula
(9.8). We use the boundedness of the set y* (l_( ) (see property (A)) and proper-
ties (B) and (C2) to obtain the estimate

IS, v1 =S, y9] < Ceckt”yl_yz”a Yy, Ys € K. (9.15)
It follows that
lim ‘Stnkynk—Stnky“ =0.

k — oo
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Therefore,

Stnky%k - Stoy ek = YJr([_()

The closedness of the set K* can be established with the help of similar argu-
ments. Thus, property (9.12) is proved for K = K*. Now we suppose that
K=38, K", where ¢, is chosen such that |y| < R for all y € K. It is obvious
that K is a compact positively invariant set. As it is proved above, it is easy to
find the estimate of form (9.15) for all ¥, and y, from an arbitrary bounded set
B. Here an important role is played by the boundedness of the set y*(B) (see
property (A)). Therefore, for any B € B(J#) there exists a constant Cy=
=C(B, K", t;) > 0 such that

“S‘oyl_sto%“ < Coly1 =g Yy, Yy, € BUK'.

Hence, for y € B we have that

dist(S,y, K) = diSt(SzO’Sz—toyv StOK*) < CodiSt(Sz—zoy7 K")

for ¢t > ;. This implies estimate (9.12) with the constant C' depending on K
and B . However, if we change the moment ¢z in equation (9.12), we can pre-
sume that, for example, C' = 1. Therewith ¥ = €. Thus, the first assertion of the
lemma is proved.

Since the set K lies in the ball of dissipativity {z € J: |z| <R}, estimates
(9.13) and (9.14) follow from Lemma 9.3. Moreover,

Aj=L,, o,=DR), Ay=L,, ay=¢e+D(R),

B=y=¢, p,=CorSCyR)-D(ER)". (9.16)

Thus, Lemma 9.4 is proved.

Lemma 9.4 along with the theorem given below enables us to verify the existence of
an inertial set for the dynamical system generated by equation (9.1).

Theorem 9.2.

Let the phase space J6 of a dynamical system (6, Sz) be a Hilbert
space. Assume that in F6 there exists a compact positively invariant set K
possessing properties (9.12)—(9.14). Then for any Vv > In2 there exists an

inertial set A, of the dynamical system (%, S,) such that

Y+d
h(S,B, A%) < C(B, V) exp {—y (1 —m) (t —zB)} 9.17)

Jor any bounded set B and t > t;. Here, as above, h(X,Y) = sup{dist(x, Y):
x € X}. Moreover,

dimy A7, < Cy-(1+n|P,[) dimP,, (9.18)
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where the number n is determined from the condition
o
2

B %y
Pn < (485)F exp v 9.19)
and constant C, does not depend on vV and n.

The proof of the theorem is based on the following preliminary assertions.

Lemma 9.5.

Let (K, St) be a dynamical system, its phase space being a compact in
a Hilbert space Jb. Assume that for all (y,, y5) € K equations (9.13)
and (9.14) are valid. Then for any v > In2 there exists an inertial set
A of the system (K, S ,) such that

exp

h(S K, AeXp) = sup{dist(S, ¥, Ay,): ¥y € K} < C eVl (9.20)

exp

Moreover, estimate (9.18) holds for the value dlmfAeXp

Proof.
We use Theorem 8.2 with M =K, V= S ,and & = —e‘V where 7, and
mn are chosen to fulfil

A, e Plo_ 0 élle*V and p,, e“20 < 1.

2
In this case conditions (8.1) and (8.2) are valid for V = St with & = 5 e“’ and
l= || || A e%1%0 . Therefore, there exists a bounded closed positively invariant
set Ay Wlth 0 < 0 < 1/2 such that (see (8.6) and (8.15))
sup{dist(V"y, Ag): yeK} < 0™, m=1,2, .. 9.21)
and
41 1
dim Ay < ln(l tg- 8)[ 2—8} -dimP, 9.22)

Assume that O = 20 = e~V and consider the set

Asp = [J18 490 020 <10}

exp
1
0

Here v =1Inx > In2 . Itis easy to see that

. v
danAeXp <1+ d]Ian

exp -

Therefore, equations (9.20) and (9.18) follow from (9.21) and (9.20) after some
simple calculations.
Lemma 9.6.

Assume that in the phase space F of a dynamical system (%, St)
there exist compact sets K and K, such that (a) Ky < K; (b) properties
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(9.12) and (9.13) are valid for K; and (c) the set K, possesses the pro-
perty
n(S,K, Ky) < Ce 10, 9.23)

where h(X,Y)=sup{dist(x,Y): xe X}. Then for any bounded set B< J
and 1 2 tg the following inequality holds

Yo

Proof.

By virtue of (9.12) every bounded set B reaches the vicinity @ in finite
time and stays in it. Therefore, it is sufficient to prove the lemma for a set
B € B() such that S,Bc[O)] for t >0, where [ @] denotes the closure of @.
Let ky € Ky and y € B. Evidently,

||Sty —kO” = ”SxtS(l—%)ty _Smk” + ||SmlC _k0||
forany 0 < % < 1 and k¥ € K. With the help of (9.13) we have that
|Siw =Kol < A

Therefore, forany 0 < ¥ < 1 and k € K we have that

oc1m|

|S(1 WY~ k||+||S tk_kO”'

oy nt

dist(S, v, K;) < Aje ||S(1 it ¥~ lc” +dist(S,, k, K;) <

< Al eOﬁl%Z”

S(l—%)t Y _k" + h(S%tK, KO) .
If we take an infimum over k¥ € K and a supremum over y € B, we find that

Otl%[

h(S,B, Kp) < P(S(1-w)i B> K) + 1 (S K, Kp)

forall 0 < » < 1. Hence, equations (9.12) and (9.23) give us that
(S, B, Ky) < Cge' 1 1)l o o7l

for t > tp. If we choose % =7y (y+7,+ ocl)_l, we obtain (9.24). Lemma 9.6
is proved.

If we now use Lemma 9.6 with K, = A\éxp and estimate (9.20), we get equation

(9.17). This completes the proof of Theorem 9.2.

Thus, by virtue of Lemma 9.4 and Theorem 9.2 the dynamical system (7, S,) gene-
rated by equation (9.1) possesses an inertial set A", exp for which equations (9.17)-
(9.19) hold with relations (9.16).

It should be noted that a slightly different approach to the construction of iner-
tial sets is developed in the book by A. Eden, C. Foias, B. Nicolaenko, and R. Temam
(see the list of references). This book contains further developments and applica-
tions of the theory of inertial sets.
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To conclude this section, we outline the results on the behaviour of the projec-
tion onto the finite-dimensional subspace P, F6 of the trajectories of the system
(76, S,) generated by equation (9.1).

Assume that an element y, belongs to the global attractor /4 of a dynamical
system (6, S,). Lemma 6.1 implies that there exists a trajectory y = {y(t), t € R}
lying in A4 wholly such that % (0) = », . Therewith the following assertion is valid.

Lemma 9.7.
Assume that properties (A)-(C) are fulfilled and let Yo € Jb. Then the

Sfollowing equation holds:
0

(1-B,)y = J (1-P)T_By(t)dt, n2n,, (9.25)
where {y (r)} is a trajectory passing through y,, the number n, can be
Sound from (B2) and the integral in (9.25) converges in the norm of the

space Fb.
Proof.
Since y, = S, ¥ (=t), equation (9.2) gives us that
0
(1=B)wy = (1=B)| o)+ [(1=B)T B (m)or | 026

=t
A trajectory in the attractor possesses the property |y (t)| < R, t € (-0, o).
Therefore, property (B2) implies that

|(1=B) T,y (=t)] < Ly-Re~®! and  |(1-B,)T_ B(y(1))| < LyCre ¢l .

These estimates enable us to pass to the limit in (9.26) as ¢ — —oo . Thereupon
we obtain (9.25).

The following assertion is valid under the hypotheses of Theorem 9.1.

Theorem 9.3.

There exists N, > n such that for all N 2 N, the following assertions
are valid:
1) for amy two trajectories y,(t) and y,(t) lying in the attractor of the
system generated by equation (9.1) the equality PNyl(t): PNy2(t)
Jorall t € R implies that y,(t) = y5(t);
2) for any two solutions u(t) and u,(t) of the system (9.1) the equa-
tion
Jlim Py (a4 (1) —5(1)) = 0 9.27)
—> — 00

implies that |u,(t) —uy(t) > 0 as t —> oo,
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We can also obtain an upper estimate of the number N, from the inequali-
(¢ -1
Wy TN, < ap€(LyCy(R))

Proof.
Equation (9.25) implies that for any trajectory yz(t) lying in the attractor
of system (9.1) the equation

(1-Py)y J'(1 POT, _ B(y,(v)) dt, i=1,2,

holds. Therefore, if Py, y,(t) = Py y5(t), then properties (B2), (B3), and (C2) give us
that
t

|v1(t) —y5(1)] < CornLyCs(R) J 978(%1)”91(7) —yy(7)]dr.

—00
It follows that the estimate
Ly
|y1(2) =5 (1)] < Ayexpi—gt+Ay(t—1)} J e“ Ty, () —wa(7)|dr
—00

holds for ¢ > ¢, where Ay = CyryLyCy(R). If we tend ¢, — —oo, we obtain the
first assertion, provided Ay, < €.
Now let us prove the second assertion of the theorem. Let

o (2) = | Py (uy (2) —ug(2))] -
Then
Jur (1) =g ()] < oy (2) + | (1=Fy) (uy (1) 1) -

Therefore, equation (9.10) for the function y (¢) = ||u1 - u2|| exp (8 t) gives us that

V() < ong(t) e+ Lo (0) ~uz(0)] + Ay [ w(m)er
0

This and Gronwall’s lemma imply that
|2y () =g (1)] < oy () + Ly exp(=(& =Ay) 1) |1 (0) —uy(0)] +

+ANJ oy (T) exp(—(g —Ay) (1 - 7)) dr.
0

Therefore, if A); < €, then equation (9.27) gives us that ||u1(t) — Uy (t)” — 0. Thus,
the second assertion of Theorem 9.3 is proved.
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Theorem 9.3 can be presented in another form. Let {ek k=1, ..., dN} be a basis
in the space Fy 6. Let us define linear functionals [ (w) = (u, ej) on J, j=
=1, ..., dy. Theorem 9.3 implies that the asymptotic behaviour of trajectories of
the system (%, S,) is uniquely determined by its values on the functionals lj.
Therefore, it is natural that the family of functionals {lj} is said to be the determin-
ing collection. At present some general approaches have been worked out which
enable us to define whether a particular set of functionals is determining. Chapter 5
is devoted to the exposition of these approaches. It should be noted that for the first
time Theorem 9.3 was proved for the two-dimensional Navier-Stokes system by
C. Foias and D. Prodi (the second assertion) and by O. A. Ladyzhenskaya (the first
assertion).

Concluding the chapter, we would like to note that the list of references given
below does not claim to be full. It contains only references to some monographs and
reviews devoted to the developments of the questions touched on here and compris-

ing intensive bibliography.
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In this chapter we study well-posedness and the asymptotic behaviour of solu-
tions to a class of abstract nonlinear parabolic equations. A typical representative of
this class is the nonlinear heat equation

d 9
% = VZ% +f(2, u)
i=1 "%
considered in a bounded domain Q of R? with appropriate boundary conditions on
the border 0 Q. However, the class also contains a number of nonlinear partial dif-
ferential equations arising in Mechanics and Physics that are interesting from the
applied point of view. The main feature of this class of equations lies in the fact that
the corresponding dynamical systems possess a compact absorbing set.

The first three sections of this chapter are devoted to the questions of existence
and uniqueness of solutions and a brief description of examples. They are indepen-
dent of the results of Chapter 1. In the other sections containing the discussion of
asymptotic properties of solutions we use general results on the existence and pro-
perties of global attractors proved in Chapter 1. In Sections 6 and 7 we present two
quite simple infinite-dimensional systems for which the asymptotic behaviour of the
trajectories can be explicitly described. In Section 8 we consider a class of systems
generated by infinite-dimensional retarded equations.

The list of references at the end of the chapter consists only of the books re-
commended for further reading.

§ 1 Positive Operators
with Discrete Spectrum

This section contains some auxiliary facts that play an important role in the subse-
quent considerations related to the study of the asymptotic properties of solutions
to abstract semilinear parabolic equations.

Assume that H is a separable Hilbert space with the inner product (-, -) and
the norm ||.| . Let A be a selfadjoint positive linear operator with the domain D (A).
An operator A is said to have a discrete spectrum if in the space H there exists
an orthonormal basis {e, } of the eigenvectors:

(e ej): Skj, Ae, =M\ e,, k,j=1,2, ..., (1.D
such that
O<Ay<hy<..,  lim A =oo. (1.2)

k — o
The following exercise contains a simple example of an operator with discrete spec-
trum.
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Exercise 1.1 Let H=L2(0, 1) and let A be an operator defined by the
equation Au = —u" with the domain D(A) which consists of conti-
nuously differentiable functions () such that (a) «(0)=u(1)=0,
(b) w'(x) is absolutely continuous and (c) u" € L2(0, 1). Show
that A is a positive operator with discrete spectrum. Find its eigen-
vectors and eigenvalues.

The above-mentioned structure of the operator A enables us to define an operator
f(A) for a wide class of functions f(A) defined on the positive semiaxis. It can be
done by supposing that

D(f(4)) = {h: i%ek € H: icl%[f(}%)]z < 00},

k=1 k=1
JAh=>" 6 f(Mex,  heD(f(4)). (1.3)
k=1

In particular, one can define operators A% with o0 € R.For o0 = — B < 0 these ope-
rators are bounded. However, in this case it is also convenient to introduce the line-
als D(A%) if we regard D (A~P) as a completion of the space H with respect to the
norm ||A‘B || .

Exercise 1.2 Show that the space % g = D(A-B) with B > 0 can be identi-
fied with the space of formal series Zc 1€, such that

(e}

Zcikgzﬁ< 0 .

k=1

Exercise 1.8 Show that for any 3 € R the operator AB can be defined on
every space D(A%) as a bounded mapping from D(A%) into
D(A%~B) such that

APD(A®) = DA By, aPrFPz_ 4P 4Pz (1.4)

Exercise 1.4 Show that for all a € R the space ¥, = D(A%) is a sepa-
rable Hilbert space with the inner product (u, v), = (A%u, A%v)
and the norm [u[ , = A% .

Exercise 1.5 The operator A with the domain E)FH & s a positive operator
with discrete spectrum in each space ‘070 .

Exercise 1.6 Prove the continuity of the embedding of the space 9%’0( into
9%',3 for o > B, i.e. verify that %, c 9%"3 and ||u||B < Cluly, -

Exercise 1.7 Provethat ¥ is dense in 9'[3 forany a > 3.
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Exercise 1.8 Let fe % for o > 0.Show that the linear functional F'(g) =
= ( f, g) can be continuously extended from the space H to % o

and |(f, g)l < Ifl5-1gl_s forany f e F; and g € F .

Exercise 1.9 Show that any continuous linear functional F' on 9’0 has the
form: F(f)=(f, g), where g € ¥ . Thus, % _ is the space
of continuous linear functionals on 9’6 .

(e}

The collection of Hilbert spaces with the properties mentioned in Exercises 1.7-1.9
is frequently called a scale of Hilbert spaces. The following assertion on the com-
pactness of embedding is valid for the scale of spaces {?76} .

Theorem 1.1.

Let 6, > 0,. Then the space 9;01 is compactly embedded into Gsz, i.e.
every sequence bounded in ?fGl s compact in 9762.

Proof.

It is well known that every bounded set in a separable Hilbert space is weakly
compact, i.e. it contains a weakly convergent sequence. Therefore, it is sufficient to
prove that any sequence weakly tending to zero in 9’01 converges to zero with re-
spect to the norm of the space 5%2 . We remind that a sequence { fn} in ¥ weakly
converges to an element f € %; if forall g € 7

im (f,, 9), = (/2 9)s-
n —> oo
Let the sequence { T } be weakly convergent to zero in 9561 and let

||fn||61 <C, m=12, ... (1.5)

Then for any N we have
N-1 96 ) © oo
2 2 2 1 2
[Fals, < Z Mg = (fs €)™ + 30, oy Z Me (s @)™ (16)
k=1 N =N

Here we applied the fact that for k > N

204 1

20
1
A 2 <

g )
}3\](61702) k

Equations (1.5) and (1.6) imply that

N-1
9 20 2 -2(c,;—-0,)
”fn”oz < Zxk (S )+ Chy
k=1
We fix € > 0 and choose N such that

N-1
2
[l2, < > % (U ) e (1.7
k=1
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Let us fix the number N . The weak convergence of f, to zero gives us
lim (fn,ek):o, k=1,2,..., N—-1.

n —

Therefore, it follows from (1.7) that

T g, < 6
By virtue of the arbitrariness of € we have
Jm g, =0

Thus, Theorem 1.1 is proved.

Exercise 1.10 Show that the resolvent R;(A)=(A-X)', L #2,, is
a compact operator in each space 970 .

We point out several properties of the scale of spaces {976} that are important for
further considerations.

Exercise 1.11 Show that in each space 950 the equation
l
PZUZZ(U’%)%’ ue%., —0<CG<o0

(e} )
k=1
defines an orthoprojector onto the finite-dimensional subspace ge-
nerated by the set of elements {e,, k=1, 2, ..., I}. Moreover,

for each ¢ we have

lim ||Plu —u" =0.
| — o0 o

Exercise 1.12 Using the Holder inequality
1/

1/p q
D q 1.1_
S, < [Zak] [Zbk] S
k k k
prove the interpolation inequality
J4%u) < JAul®-Jul=?, 0<6<1, weD(A).

Exercise 1.13 Relying on the result of the previous exercise verify that
for any o, 64 € R the following interpolation estimate holds:

1—
lullg o) < luls lulg®,

where 6(0) =00,+(1-0)c,, 0<0<1,and u € Frnax (

. . Oy, Gg)
Prove the inequality

0
2 2 1z 2
el gy < sl +Coe Tl

where 0 < O < 1 and ¢ is a positive number.
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Equations (1.3) enable us to define an exponential operator exp(—tA), t > 0, in
the scale {#_ }. Some of its properties are given in exercises 1.14-1.17.

Exercise 1.14 For any a € R and ¢ >0 the linear operator exp(—tA)
i —tA
map_s;k@a into ﬂ S 09'6 and possesses the property |e u||a <
<e M, -

Exercise 1.15 The following semigroup property holds:
exp(—t;A)-exp(—tyA) = exp(—(t;+1t5)A), ty, ty 20.

Exercise 1.16 Forany u € %, and 6 € R the following equation is valid:

lim e~ Ay —e T Aul;=0. (1.8)
t—>T

Exercise 1.17 Forany ¢ € R the exponential operator e~'4 defines a dissi-
pative compact dynamical system (9'6, e*tA) . What can you say
about its global attractor?

Let us introduce the following notations. Let C (a, b; @a) be the space of strongly
continuous functions on the segment [a, b] with the values in ga ,1.e. they are con-
tinuous with respect to the norm | - | , = |A% . |. In particular, Exercise 1.16 means
that e e C(R,, %,) if u € F,. By Cl(a, b; ¥,) we denote the subspace of
C(a, b; %,) that consists of the functions f(#) which possess strong (in %, ) deri-
vatives f'(¢) lying in C(a, b; %,). The space Ck(a, b; %,) is defined similarly
for any natural k£ . We remind that the strong derivative (in % ) of a function f (t) at
apoint ¢ = {; is defined as an element v e 9’0( such that

o H%(f(’fo +h) =f(ty)) —vHa =0.

Exercise 1.18 Let u; € @G for some o . Show that
eftAuo € C’C(S, +00; %)
foralld >0, a € R,and k =1, 2, ... . Moreover,
d* —tA k —tA
— e My, =(-A) e " u,, k=1, 2, ....
dtk 0 ( ) 0

Let L2(a, b; %) be the space of functions on the segment [a, b] with the values
in %, for which the integral

b
2 _ 2
W32, 4, 5,y = [0
a

exists. Let L"O(a, b; @a) be the space of essentially bounded functions on [a, b]
with the values in @'a and the norm
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U =ess s A%y (t
bl e, 0, pacy = 538,33 14%u ()
We consider the Cauchy problem
d
dﬁ +Ay=f(t), te(a, b); yla)=y,, (1.9)

where y € %, and f(t) € L?(a, b; F, _, ). The weak solution (in %, ) to this
problem on the segment [a, b] is defmed as a function

y(t) e C(a, b; F,) NL%(a, bs F, o 1/9) (1.10)

such that dy/dt € L?(a, b; F,_, /o) and equalities (1.9) hold. Here the derivative
y'(t) = dy/dt is considered in the generalized sense, i.e. it is defined by the equality

J'(pt)y J-(p(t y(O)dt, ¢ eCPa b),

where C°(a, b) is the space of infinitely differentiable scalar functions on (a, b)
vanishing near the points @ and b .

Exercise 1.19 Show that every weak solution to problem (1.9) possesses the
property

t t
2 2 2
Iy ()12 +j||y<r)||a+%dr < [¥ol, +j||f<r>||a g
a a
(Hint: first prove the analogue of formula (1.11) for y,, () =P, y(t),
then use Exercise 1.11).

Exercise 1.20 Prove the theorem on the existence and uniqueness of weak
solutions to problem (1.9). Show that a weak solution y(¢) to this
problem can be represented in the form

¢

y(t)=et-a)dy, +J-e—(Z—T)Af(r)dr. (1.12)

a
Exercise 1.21 Let y, € %, andlet a function f(t) possess the property
|1t =), < Clt=t5]?

for some 0 < O < 1. Then formula (1.12) gives us a solution to pro-

blem (1.9) belonging to the class
C([a. b); F,) N CH(Ja, b]: F,) N C(Ja, b]: Fyyy) -

o

Such a solution is said to be strong in 9%'(1 .
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The following properties of the exponential operator e~t4 play an important part

in the further considerations.

Lemma 1.1.

Let Qpy be the orthoprojector onto the closure of the span of elements

{ey, k2 N+1} in H and let Py=1-Qy, N=0, 1, 2, ... Then
) forallheH, >0 andt e R the following inequality holds:

HABPN e—tAh“ < k]% eKNW 17 ;

(1.13)

2) forall h e D(AB), t >0 and o > 3 the following estimate is valid:

IN

|4Qyetan]

0 we supose that 09 =0 in (1.14).

in the case o —f3

Proof.
Estimate (1.13) follows from the equation

N
BB tanf? = 375202 M (n, 6, )2,
k=1
In the proof of (1.14) we similarly have that

ACQ e tAp|? <
H N “ b2 hya k=N+1
This gives us the inequality
ACQ e tAp| < L max a=Be-w)|4ABn|.
[equetan] < oy ma (ueberh

Since max{u’e™™; u > 0} is attained when 1 = y, we have that

—Aniqt
(yrt)'e 0,0 Ayt 2y

max (p'e™)=
=Ryt

Therefore,

max  (uemH) < (y+ (D, ) )e v

= Ayt

This implies estimate (1.14). Lemma 1.1 is proved.

In particular, we note that it follows from (1.14) that

laveanl < [(SBY P ag Pl Mlann, azp.

(8P aagf] e hnaml,

max (L% Peth)? Z 22B(n, e, )2

yre ™, if Ay, t<7.

(1.14)

(1.15)
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Exercise 1.22 Using estimate (1.15) and the equation
t
e tAy —esAy = —JA@‘TAudI, t>s, uedg,
S

prove that
lemtAu —e=sAuly < €y St =31 Ol ¢t s>0, (1.16)

provided 0 < ¢ < 1+ 0, where a constant Cy o does not depend
on ¢t and s (cf. Exercise 1.16).

Exercise 1.28 Show that

o
|ace—ta| < (%) e % >0, a>0. (1.17)

Lemma 1.2.

Let f(t) e L*(R, %,_,) for 0 <y < 1. Then there exists a unique solu-
tion v(t) € C(R, 9’ .,) to the nonhomogeneous equation

dv
de

that is bounded m 9*0( on the whole axis. This solution can be
represented in the form

+Av=f(t), teR, (1.18)

t

v (t) = J' e =04 f(r)dr . (1.19)

—00

We understand the solution to equation (1.18) on the whole axis as a functionv (¢) €
e C(R, #,) such that for any a < b the function »(t) is a weak solution
(in %,_,/5) to problem (1.9) on the segment [a, b] with y, = v(a).

Proof.

If there exist two bounded solutions to problem (1.18), then their diffe-
rence w(t) is a solution to the homogeneous equation. Therefore, w(t) =
= exp{—(t —ty)A}w(ty) for t > t; and for any ¢, . Hence,

| A%w (1) < e—u—aﬂkwpywuuom < 0ot

If we tend ¢, — —oco here, then we obtain that w(t) = 0. Thus, the bounded so-
lution to problem (1.18) is unique. Let us prove that the function v(¢) defined
by formula (1.19) is the required solution. Equation (1.15) implies that
Y —(t —
||A°‘ef(t 04 < KL) + )Lﬂe =1k ess sup ||A°‘_’/f(r)||
[—7 TeR

fort > 7 and 0 < y < 1. Therefore, integral (1.19) exists and it can be uniform-
ly estimated with respect to ¢ as follows:
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1+k —
laco @)l < T ess sup 477 f(7)],
where k = 0 for y =0 and
o0
k=" '[s‘?’e‘sds for 0<y<1.

0
The continuity of the function v (¢) in %, follows from the following equation
that can be easily verified:
t

o(ty=e TN + je—@ =944 (t)dr.

t

0
This also implies (see Exercise 1.18) that v (¢) is a solution to equation (1.18).
Lemma 1.2 is proved.

§ 2 Semilinear Parabolic Equations
in Hilbert Space

In this section we prove theorems on the existence and uniqueness of solutions to
an evolutionary differential equation in a separable Hilbert space H of the form
du

E+Au=B(u, t), ul,_ = ug, @.1

where A is a positive operator with discrete spectrum and B(-, -) is a nonlinear
continuous mapping from D(Ae) x R into H, 0 < 0 < 1, possessing the property

|B(wy, 1) =B(ug, t)] < M(p)|A®(u;—uy)| (2.2)

for all u; and u, from the domain %y = D(Ae) of the operator A9 and such that
||A9u]-H < p. Here M(p) is a nondecreasing function of the parameter p that does
not depend on ¢ and || . || is anorm in the space H .

A function w (t) is said to be amild solution (in %y ) to problem (2.1) on the
half-interval [s, s+7) if it lies in C(s, s+ T"; Fy) for every T'< T and for all
t € [s, s+T) satisfies the integral equation

t
u(t) = ety +J'e-(t “D4B (u (1), T)dt. @.3)
S

The fixed point method enables us to prove the following assertion on the local
existence of mild solutions.
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Theorem 2.1.

Let u, € %y. Then there exists T" depending on 0 and ||u0||9 such that
problem (2.1) possesses a unique wmild solution on the half-interval
[s, s+ T) Moreover, either T"= oo or the solution camnot be continued
in Fy up to the moment t =s+7T".

Proof.
On the space C ¢ = C(s, s +T; %) we define the mapping
t
Glu](t) = e =94y, +je_(t_T)AB(u(r), T)drt.
S

Let us prove that G[u](t)e C(s, s+T; %) forany T > 0. Assume that ¢, t, €
€ [s, s+T] and t; < t,. It is evident that

ty
Glul(ty) = ¢ 2" WVAG (1)) + '[e‘(’fz‘f)AB(u(r), Ddt. (@4
ty
By virtue of (1.8) we have that if {5 — ¢, then
—(t, —1,)A
|6[ul(ty) - 2"V G u) (1)) 0.

Therefore, it is sufficient to estimate the second term in (2.4). Equation (1.15) im-
plies that

by

Je_(iz—T)AB(u(t), T)dt| <

I 0

Ly

0 Y _ .0

< [ +ior g, oo, 1 <

b
<t —t,|t70 e_e+;ﬁt 10 max 1B(u(r), Ol ©@5)
< o=ty =g Ml 4 ;T , .

(if 6 = 0, then the coefficient in the braces should be taken to be equal to 1). Thus,
G maps Cg g=C(s, s+T; Fy) into itself. Let vy(t)= e=(t=5)Ay . In Cs. 0
we consider a ball of the form

U= {u(t) e Cg p: |u—7)O|CS o= [SH;ai(T]”u(t) —vg(8)] < 1} .

Let us show that for 7' small enough the operator G maps U into itself and is con-
tractive. Since |ul o <1+ ||u0||9 for u € U, equation (2.2) gives
S,
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max  [B(u(t), T < max |B(0, 7)| +

Tels, s+T] Tels, s+T)|

(Lt fuglg) M1+ [uglg) = C (T,

uolg)

forall T' < Tj, where T}, is a fixed number. Therefore, with the help of (2.5) we find
that

|G ] =l ) S T1=9.C 1 (Ty, 6, ugly)-

Similarly we have
IG[u]—G[U]ICS’e < T'-9.0y(T,, 9)M(1+||u||9)|u—vlcs)9
for u, v € U. Consequently, if we choose T such that

T179C, (T, 0. Juglg) <1 and  T1 00y (T, 0)M(1+|ug|y) < 1,

we obtain that G is a contractive mapping of U into itself. Therefore, G possesses
a unique fixed pointin U < C 5. 0 Thus, we have constructed a solution on the seg-
ment [s, s+ Tl] . Taking s+ 7| as an initial moment, we can construct a solution
onthe segment [s+T,, s+ T, +T,]| with the initial condition wu,=wu(s+T;).
If we continue our reasoning, then we can construct a solution on some maximal half-
interval [s, s+ T") . Moreover, it is possible that 7"= oo . Theorem 2.1 is proved.

Exercise 21 Letuge %, andlet T°= T(0, u,) be such that [s, s+7") is
the maximal half-interval of the existence of the mild solution 2 (¢)

to problem (2.1). Then we have either 7'< oo and  Lim _[u(t)lg =

=0, or T'=c0. Lo s+l

Exercise 2.2 Using equations (1.16) and (2.5), prove that for any mild solu-
tion % (¢) to problem (2.1) on [s, s+ 7T") the estimate

lu(t)—u()l, < €0, a, T)t—19"%, 1, te[s, s+T], 26
is valid, provided u, e %y, 0 < o0 < 0, and T < T".

Exercise 28 Let u, € %y andlet % () be a mild solution to problem (2.1)
on the half-interval [s, s+ 7T"). Then
u(t) € C(s, s+T, Fy) NC(s+0, s+T, F_5) N
NCl(s+9, s+ T, F)

forany 6 >0, 0<d< T,and T < T". Moreover, equations (2.1)
are valid if they are understood as the equalities in % o and 979 , re-
spectively.

It is frequently convenient to use the Galerkin method in the study of properties of
mild solutions to the problem of the type (2.1). Let P, be the orthoprojector in H
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onto the span of elements {el, Cop vevs em}. Galerkin approximate solution
of the order m with respect to the basis {e,} is defined as a continuously diffe-
rentiable function

m
(1) = > () ey .7
k=1
with the values in the finite-dimensional space P, H that satisfies the equations
d
cTtum(t) +Au,,(t) = B,B(u,,(), t), t>s, u, = P, uy. (2.8)

It is clear that (2.8) can be rewritten as a system of ordinary differential equa-
tions for the functions g, (¢).

Exercise 24 Show that problem (2.8) is equivalent to the problem of find-
ing a continuous function w,,(¢) with the values in P, H that satis-
fies the integral equation

¢
w,,(t) = e 74Py +Je_(l “94p B(u,, (1), 1)dt. (2.9)

S

Exercise 2.5 Using the method of the proof of Theorem 2.1, prove the local
solvability of problem (2.9) on a segment [s, S+ T] , Where the pa-
rameter 7' > 0 can be chosen to be independent of m . Moreover,
the following uniform estimate is valid:

max ]”um(t)”6 <R, m=1,2, 3, .., (2.10)

[s, s+T

where R > 0 is a constant.

The following assertion on the convergence of approximate functions to exact ones
holds.

Theorem 2.2.

Let uj e 94*9. Assume that there exists a sequence of approximate solu-
tions u,,(t) on a segment [s, s +T| for which estimate (2.10) is valid. Then
there exists a mild solution u(t) to problem (2.1) on the segment [s, S+ T]
and

1
e [(0) =, (1) < c(j(1-B, gy + M*—GJ , @.11)

[s, s+T
m+ 1

where C = C(0, R, T) is a positive constant independent of s.
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Proof.
Let > m . We use (2.9), (1.14) and (1.17) to find that for © > 0 we have

”un(t) _um(t)”e < ||(Pn_Pm) uO" 0 +
0 _ _
#[F2) #2400, e +

() 1B, =Bl (). D).

+
®I
D
Cn!_ﬂm.

Therefore, equations (2.2) and (2.10) give us that

”un(t)_um(t)ne < ||(Pn_Pm)u0||9 +
+ ([Sfr}safT]llB(O, Ol +M(R)R),, (1, 5) +

t
+ M(R)09 =0 J(t 1) Oty (5) =t (D] o IT 2.12)

where

g, (L, s)= j‘[(%)e + k?rHlJ ¢ tma1 "Dy
S

It is evident that J, (¢, s) < J, (¢, —0). By changing the variable in the integral
E=AX,,,,(t—1),weobtain

T, (1, —0) = 2P [1 +00 jé—%—%déJ = X ir (L+k).
0
Thus, equation (2.12) implies
a,(0, k)
[ (8) =2 g = |Bu=B) ol + 7=+
m+ 1

¢
-0
+a,(0, R) J(t ~ 1)y, (7) (1) o T -
S
Hence, if we use Lemma 2.1 which is given below, we can find that

[0,y (8) =10, (8)] < C(”(Pn—Pm)uO"eJrkl-—_l?-) @.13)

m+ 1



90

= 0 =T ® 5O

\)

Long-Time Behaviour of Solutions to a Class of Semilinear Parabolic Equations

forall t € [s, s+T], where C> 0 is a constant dependingon 0, R, and 7. It is also
evident that estimate (2.13) remains true for 6 = 0. It means that the sequence of
approximate solutions {w,,(t)} is a Cauchy sequence in the space C(s, s +T; %y).
Therefore, there exists an element wu(t) € C(s, s+T; ;) such that equation
(2.11) holds. Estimates (2.10) and (2.11) enable us to pass to the limit in (2.9) and
to obtain equation (2.3) for u(t) . Theorem 2.2 is proved.

Exercise 2.6 Show that if the hypotheses of Theorem 2.2 hold, then the es-

timate
g
[Sgai(T]"u(t) |, < k?n @ |(1=B,)ug| o+ m

isvalidwith 0 < o0 < 6. Here aq and a, are constants independent
of O,R,and T.

The following assertion provides a simple sufficient condition of the global solvability
of problem (2.1).

Theorem 2.3.

Assume that the constant M(p) in (2.2) does not depend on p, i.e. the
mapping B(u, t) satisfies the global Lipschitz condition

||B(u1, t) — B(ug, t)|| < M||ul—uz||e (2.19)
Sor all u; € Fy with some constant M > 0. Then problem (2.1) has a unique
mild solution on the half-interval [s, +o0), provided uy € Fy. Moreover,
Jor any two solutions u, and u, the estimate
Ao (L —S
[ur(t) —ug(D)] < are”® T uy(s) —un(s)| g, tEzs,  (@15)

holds, where a, and a, are constants that depend on 0, kl, and M only.

The proof of this theorem is based on the following lemma (see the book by Henry [3],
Chapter 7).

Lemma 2.1.

Assume that (1) is a continuous nonnegative function on the interval
(0, T') such that
L

o(t) < cot Ve J(z— 1) To(t)dr, te(0,T), (2.16)

where ¢y, ¢ 20 and 0 <vy,, vy < 1. Then there exists a constant K =
=K(yy, ¢y, T) such that

C _
o(1) < 1_0Y0t OK(y, e T) 2.17)
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Proof of Theorem 2.3.
Let u(t) be a solution to problem (2.1) on the maximal half-interval of its exis-
tence [s, s+T).Assume that T' < oo . Condition (2.14) gives us that

1B(u, )] < B0, t)l+Mluly < My(T)+Mlulg
forall u € %y and t € [0, T]. Therefore, from (2.3) and (1.15) we find that

t

lu(t)l < ||u0||e+J'K%)9+A§J(MO(T)+M||M(T)||e)dr

S

Hence, for ¢ € [s, s+ T] we have that

t
hato)lg < Coffol 7. 0)+C3(7: 0) [ (=) Phu(Dlga.
S

Therefore, Lemma 2.1 implies that the value |u(t)|q is bounded on [s, s + T') which
is impossible (see Exercise 2.1). Thus, the solution exists for any half-interval
[s, s+ T).For the proof of estimate (2.15) we note that, as above, inequalities (2.3)
and (1.15) for the function w(t) = u () — uy(t) give us that

t

l(t)lg < (s >||9+H(%)G+A?}Muw<r>nedr.

S
If we apply Lemma 2.1, we find that

lwlg < C(0, &, M)|w(s)| for s<t<s+1.
Therefore, the estimate

leo(t )"6 C”“IIw( )”9 Cexp{(t— s)lnC}Ilw(s)IIe

holds for t =s+mn+ o, where n is natural and 0 < ¢ < 1. Thus, Theorem 2.3
is proved.

Exercise 2.7 Using estimate (1.14), prove that if the hypotheses of Theo-
rem 2.3 hold, then the inequality

|@n (1 () —ug(2)]g <

< {ek’v”(ts)““ 3—39 eaz(ts)}||u1(3)—u2(8)lle (2.18)
kN+1

is valid for any two solutions u(¢) and uq(t). Here Qy =1 —PFy

and Py is the orthoprojector onto the span of {el, ...e N}, the num-

ber a, isthe same as in (2.15) and ag depends on 7‘1 ,0,and M.

Let us consider one more case in which we can guarantee the global solvability
of problem (2.1). Assume that condition (2.2) holds for 6 = 1/2 and
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B(u) = —By(u)+By(u, t), (2.19)

where B,(u, t) satisfies the global Lipschitz condition (2.14) with 6 = 1/2 and
Bo(u) is a potential operator on the space V= 9’1 /9 - This means that there exists
a Frechét differentiable functional () on V such that B, (u) = F'(u), i.e.

—— [F(u+v) = F(u) = (By(u), v)| = 0.
loly 5 -0 1011 /5
Theorem 2.4.

Let (2.2) be valid with 0 = 1/2 and let decomposition (2.19) take place.
Assume that the functional F(u) is bounded below on V= %, 5. Then prob-
lem (2.1) has a unique mild solution wu(t) € C([s, s+T]; D(A1/2)) on an
arbitrary segment (s, s+T].

Proof.
Let u,,(t) be an approximate solution to problem (2.1) on a segment [s, s+77],
where T does not depend on m (see Exercise 2.5):

S, (1) + A, (1) = By B,y (), 1), w,(s)= By (220)

Multiplying (2.20) by w,,(t) = (%um(t) scalarwise in the space H , we find that
-2, d 1 2 .
il + 3120, | = (31000, )

< M’ + B0, O + M2|al 20, |

Since F'(u) is bounded below, we obtain that
d
de

with constants @ and b independent of m , where

W (u,, (1) < aW(u,(t)+b+]|B(0, t)||2

W(u)= %"Al/zu”z +F(u) .

Therefore, Gronwall’s lemma gives us that

t

W (20, (1)) < (W, () + 8] (=) 2Jea(t-f>||31(o, o)Pdr

S
for all ¢ in the segment [s, S+ T] of the existence of approximate solutions. Firstly,
this estimate enables us to prove the global existence of approximate solutions
(cf. Exercise 2.1). Secondly, by virtue of the continuity of the functional W on
V=9 /o Theorem 2.2 enables us to pass to the limit 7 — oo on an arbitrary seg-
ment [s, s+ 7] and prove the global solvability of limit problem (2.1). Theorem 2.4
is proved.
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Exercise 28 Let u(t) be a mild solution to problem (2.1) such that
lu(t)lg < Cp for s <t < s+7T.Use Lemma 2.1 to prove that

lu()l,, < CTtG*O‘”uO"e, tels, s+T] (2.21)
forall 0 < o< 1, where Cp = Cp(a, 0) is a positive constant.

Exercise 29 Let u(t) and v(t) be solutions to problem (2.1) with the ini-
tial conditions ug, v, € Fy and such that |u(t)lg+v(¢)lg < Cp
for ¢ lying in a segment [s, s+ T]. Then

lu(t) = v()l < Cp(B, )10~ ug—vq|,,

tels,s+T], O<a<l.

Thus, if B(u, t) = B(w) and the hypotheses of Theorem 2.3 or 2.4 hold, then equa-
tion (2.1) generates a dynamical system (@9, St) with the evolutionary operator .S,
which is defined by the equality S, 1, = u(t), where (t) is the solution to problem
(2.1). The semigroup property of S, follows from the assertion on the uniqueness
of solution.

Exercise 2.10 Show that Theorem 2.4 holds even if we replace the assump-
tion of semiboundedness of F(w)by the condition F(u) >
> — A2 u)? — [ for some o0 < 1/2 and > 0.

§ 83 FExamples

Here we consider several examples of an application of theorems of Section 2. Our
presentation is brief here and is organized in several cycles of exercises. More de-
tailed considerations as well as other examples can be found in the books by Henry,
Babin and Vishik, and Temam from the list of references to Chapter 2 (see also Sec-
tions 6 and 7 of this chapter).

We first remind some definitions and notations. Let Q be a domain in R?
(d 2 1). The Sobolev space H™(Q) of the order m (m=0, 1, 2, ...) is defined
by the formula

H™(Q)={feL?(Q): DifeLl?Q), |jl <m},
Wherej:(jl’jZ""’jd)7 j.}g:()? 1: 29"'7 |j|:j1++jd>
Dif=a;1 0,7 ... 00 f(x),  @=(wy s 7).

The space H m(Q) is a separable Hilbert space with the inner product
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(w, v),, = Z Diu(x) DIiv(x)dx .
ljl<m Q
Below we also use the space H,"(Q) which is constructed as the closure in H™(Q)
of the set CSO(Q) of infinitely differentiable functions with compact support. For

more detailed information we refer the reader to the handbooks on the theory of So-
bolev spaces.

E xample 3 1 (nonlinearheatequation)

O,u=vAu+f(t, xz, u, Vu), ve€Q,t>0,
3.1

Here Q is a bounded domainin R?, A is the Laplace operator, and Vv is a posi-
tive constant. Assume that f (t, x, U, ;0) is a continuous function of its vari-
ables which satisfies the Lipschitz condition

a 1/2
lf(t, 2, u, )= f(t, 2, u, q)l < K[|u1 —u2|2+2|pj—qj|2] (3.2)
j=1

with an absolute constant K. It is clear that the operator B(u, t) defined by
the formula

B(u, t)(x) = f(t, z, u(x), Vu(x)),
can be estimated as follows:

|Bluy, 1) =Blug. 1) < K (Juy=ug + > |0, (wy )P} *. @33)
J

Here and below | .| is the norm in the space H = L2(Q). It is well-known that
the operator A = —A with the Dirichlet boundary condition on ¢ Q is a positive
operator with discrete spectrum. Its domain is D(A) = H2(€) N H}(€2) . More-
over, D(AL/2) = H}(Q). We also note that

d
9 ou \2 1
A2 )% = (Au, u) = E J(a—-%) dr , wu eD(A1/2):HO(Q).
J=170

Therefore, equation (3.3) for B(u, t) gives us the estimate

1/2
|B(uy. 1)~ Bus, 0)] < &( Ly 1)1l
1
where )‘1 is the first eigenvalue of the operator —A with the Dirichlet boundary
condition on 6 Q. Therefore, we can apply Theorem 2.3 with 0 = 1/2 to prob-
lem (3.1). This theorem guarantees the existence and uniqueness of a mild solu-
tion to problem (3.1) in the space C (R, , Hj(Q)).
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Exercise 8.1 Assume that f(¢, x, u, p) = f(t, 2, u) is a continuous func-
tion of its arguments satisfying the global Lipschitz condition with
respect to the variable u . Prove the global theorem on the existence
of mild solutions to problem (3.1) in the space H = LZ(Q) .

Example 32

Let us consider problem (3.1) in the case of one spatial variable:

o,u = v@iu —g(x, w)+f(t, 2, u, o,u), t>0,2e(0,1)

3.4)
Uy =ulo =0, ul,_g=1ug-
Assume that g (x, u) is a continuously differentiable function with respect to
) < 2(u), where h(u) is a function bounded on
every compact set of the real axis. We also assume that the function f (t, x, U, p)
is continuous and possesses property (3.2). For any element u € D(Al/2) =

=H é (0, 1) the following estimates hold:

max lu(x) < Juw| and [ul < ']

s

12(0,1) 12(0,1) ~ L2%(0,1)°

where u' = 0, u . Therefore, it is easy to find that the inequality
|B(uy, t) = Blusg, t)] < M(p)uAl/z(ul—uZ)H (3.5)
is valid for
B(u, t) = —g(x, w(@)) + f(t, x, u(x), u'(x)),
promded H < p. Here |-| is the norm in the space H =
L2(0, 1) and M(p) = sup{h(é): €| < p}+ K 2. Equation (3.5) and Theo-

rem 2.1 guarantee the local solvability of problem (3.4) in the space Hé(Q).
Moreover, if the function

Yy
F(a, y) = jg(x, £)de
0

is bounded below, then we can use Theorem 2.4 to obtain the assertion on the
existence of mild solutions to problem (3.4) on an arbitrary segment [0, T] .

It should be noted that the reasoning in Example 3.2 is also valid for several spatial
variables. However, in order to ensure the fulfilment of the estimate of the form (3.5)
one should impose additional conditions on the growth of the function % (w).
For example, we can require that the equation

h(u) < Cy+CylulP

be fulfilled, where p < 2/(d —2) if d > 2 and p is an arbitrary number if d = 2.
In this case the inequality of the form (3.5) follows from the Hélder inequality and
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the continuity of the embedding of the space H 1(Q) into L4(Q), where q =
=2d/(d—-2)if d=dim€ > 2 and g is an arbitrary numberif d =2, ¢ > 1.

The results shown in Examples 3.1 and 3.2 also hold for the systems of parabo-
lic equations. For example, a system of reaction-diffusion equations

o,u = vAu+f(t, u, Vu),

ou
~—| =0, u|l,_,=uyx),
on 20 |t70

(3.6)

can be considered in a smooth bounded domain Q < R?. Here u = (U, Ug, ..oy
u,,) and f(t, u, &) is a continuous function from R, x R+ 14 into R™ such
that

Lf(t w, &) = f(t, v, M)l < M(Ju—v|+|E-ml), 3.7

where M is a constant, u, v € R™, &, 11 € R”% and 7 is an outer normal to Q.

Exercise 3.2 Prove the global theorem on the existence and uniqueness of
mild solutions to problem (3.6) in %, 5 = [H}(Q)]"'= HY(Q) x ... x
x H 1(Q) )

Example 33 (nonlocal Burgers equation).

{ul—vuxer(w, u)u, =f(t), 0<x<l, t>0 58

u|x=0:u|x=l: 0, u|t=O:uO.

Here f(¢) is a continuous function with the values in L2 (0, 1),
l
®eL2(0, 1), (o, u)= Jw(x)u(x, )dx
0

and Vv is a positive parameter. Exercises 3.3-3.6 below answer the question
on the solvability of problem (3.8).

Exercise 3.8 Prove the local existence of mild solutions to problem (3.8)
in the space 7, /5 = H)(0,1). Hint:
A=-vd2 , D(A)=H2(0, 1) N Hy(0, 1),

B(u) =~ (o, u)u,+f(t).

Exercise 3.4 Consider the Galerkin approximate solutions to problem (3.8)

u,,(t) = u,,(t, x)= ﬁ ng(t) sin%@x.
k=1

Write out the system of ordinary differential equations to determine
{9,(t)}. Prove that this system is locally solvable.
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Exercise 35 Prove that the equations
L p O + v, 0,0 = (0w, () B9)
and
Do, (O +v|22,u, 0 <
< 2([(0, wP|a,u, (O +170OF) 510

are valid for any interval of the existence of the approximate solution
u,,(t). Here | .| is the norm in L2(0, 1).

Exercise 8.6 Use equations (3.9) and (3.10) to prove the global existence
of the Galerkin approximate solutions to problem (3.8) and to obtain
the uniform estimate of the form

|| ax um(t)” <C (” ax U

|, T), tel0,T] 3.1D)
forany 7' > 0.

Thus, Theorem 2.2 guarantees the global existence and uniqueness of weak solu-
tions to problem (3.8) in % 5, = Hé(O, l).

E xample 34 (Cahn-Hilliard equation).

w, +votu -2 (ud+au+bu)=0, xe(0,1), t>0,

0, U

3
» |x:0:6xu|x:020, 0

3
xu|x:l=8xu|x:l= 0, (3.12)
u|z:0 = uO(x)’

where v > 0, a, and b € R are constants. The result of the cycle of Exercises

3.7-3.10 is a theorem on the existence and uniqueness of solutions to problem
(3.12).

Exercise 8.7 Prove that the estimate
”aﬁ(um)\ﬁ < C(||u||2+|\a§u\|2)(||v||2+Haiv||2)

is valid for any two functions « () and v(2) smooth on [0, {]. Use
this estimate to ascertain that problem (3.12) is locally uniquely
solvable in the space

V= {U/ € HZ(O, l) : U/x‘x_ozux‘x_l/zo}

(Hint: vot +1+> A, V=D(AV2)).
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Let us consider the Galerkin approximate solution w,,(¢) to problem (3.12):

u,,(t) = u,,(t, x)= g0 t)+[ ng (t) cos™E

Exercise 3.8 Prove that the equality
l

2
A (u,, (1) +J(ax[va§ (b 2) = (1, (1, 2)] ) dr =0 (313)
0
holds for any interval of the existence of approximate solutions
{u,,(t)}. Here p(u) = u +au?+b and

l
W(u)= J + u4 + 3u3 + gu )dx (3.14)
0

In particular, equation (3.13) implies that approximate solutions exist for any seg-
ment [0, T']. For u, € V they can be estimated as follows:
|00 ()] + max u, (¢, 2)| < Cp, tel[0, T], (3.15)
x €[0,1]

where the number Cp does not depend on .

Exercise 3.9 Using (3.15) show that the inequality
So2u, (O +]otu, (] < crt+]o2u, o), te(, T]

holds for any interval (0, 7)) and for any approximate solution
u,,(t) to problem (3.12). (Hint: first prove that [u’ |2

LA(0,1
<" maxu(a) -l 0.
[0, 1]

L2(0, 1) ).

Exercise 8.10 Using Theorem 2.2 and the result of the previous exercise,
prove the global theorem on the existence and uniqueness of weak
solutions to the Cahn-Hilliard equation (3.12) in the space V (see
Exercise 3.7).

Example 35 (abstract form of two-dimensional system
of Navier-Stokes equations)

In a separable Hilbert space H we consider the evolutionary equation

du

a +VAu+b(u, u)=f(t), u|

o= Ug (3.16)
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where A is a positive operator with discrete spectrum, v is a positive parame-
ter and b(u, v) is a bilinear mapping from D(A!2) x D(A2) into % | 5 =
= D(A~1/2) possessing the property

(b(u, v), v)=0 forall wu,v e D(AV?) (3.17)
and such that for all u, v € D(A) the estimates

Ib(u, v)| < Cs|AY2=04) |42+, o0<6<t (3.18)
o 2

and
[4Bb (u, v)l < Cy la/2*0y] |42 5By, o<B< L 0<8<t 319

hold. We also assume that f(¢) is a continuous function with the values in H .

Exercise 811 Prove that Theorem 2.1 on the local solvability with O =
=1/2+ 3 is applicable to problem (3.16), where [} is a number
from the interval (0, 1/2).

Let {e,} be the basis of eigenvectors of the operator A, let 0 < A; < A, < ... be
the corresponding eigenvalues and let P~ be the orthoprojector onto the span
of {e D> ooes em} . We consider the Galerkin approximations of problem (3.16):

(1) + VAU, (0) 4 P (0, (1), 2, (0)) = B (1)

u,,(0)="P, u, .

(3.20)

Exercise 812 Show that the estimates
¢

13

||um(t)||2+VJ-”A”zum(r)szr < Jug?+ %J' S(olPdt (321
0 0

and

_ 2 _
O < i@ 4 L (Ff =™ @2

are valid for an arbitrary interval of the existence of solutions to prob-
lem (3.20). Here F = sup |A=12f(t)| . Using these estimates, prove
the global solvability of problem (3.20).

Exercise 813 Show that the estimate

(%“A”z (0] + v||Aum(t)||2 <
IIb U (1), U () + 1)) (3.23)

holds for a solution to problem (3.20).
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Using the interpolation inequality (see Exercise 1.13) and estimate (3.18), it is easy
to find that

2 2
Io(u, w)? < Clul-JA2ulPlau) < (§) liPlav2ult + ¥ 1aul?.
Therefore, equation (3.23) implies that

QJarzu, )] < o, OA2u,, O + 21508, (3.24)

where o, (t) = (2C2/v3) ||um(t)||2 | Atz um(t)nz . Hence, Gronwall’s inequality gives
us that

t t ¢
[AV20, (O < [AV2u? exp J-GM(T)dT +%J-||f(f)||2exp J-Gm(i)dﬁ dr.
0 0 0

It follows from equation (3.21) that the value Jé o,,(7)d7 is uniformly bounded with
respect to 72 on an arbitrary segment [0, T] . Consequently, the uniform estimates

|AY2w,, (1) < Cp, €0, T], ug e D(AY?) (3.25)
arevalid forany 7 >0 and m =1, 2, ... .

Exercise 8.14 Using equations (3.23) and (3.25), prove that if u, e
e D(AV2), then

d
3142w, O + 3 A, () < Cp, te[0, 7]
forany T > 0.

Exercise 3.15 Let 0< 3 < % and let [sup]"Aﬁf(t)"2 < Cp. Prove that
0, T

%HM B, (O + v]art B, () <

< C AP (u,, (t), w, ()P +Cp

Exercise 3.16 Use the results of Exercises 3.14 and 3.15 and inequality
(3.19) to prove the global existence of mild solutions to problem
(3.16) in the space D(AY2*P), provided that u, € D(A/2+P)
and f(t) is a continuous function with the values in D(AP). Here
f3 is an arbitrary number from the interval (0, 1/2).
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§ 4 Existence Conditions and Properties
of Global Attractor

In this section we study the asymptotic properties of the dynamical system genera-
ted by the autonomous equation

du _
g TAu=B (w), u
where, as before, A is a positive operator with discrete spectrum and B(u) is
a nonlinear mapping from 94'9 into H such that

|B(uy) ~Blug)] < M(p)|A°(, ~uy) (42)

t:():u()a (41)

for all wuy,u, € Fy= D(Ae) possessing the property ”AeujH <p, 0<06<1.
We assume that problem (4.1) has a unique mild (in %) solution on R, for any
Uy € 9%’6 . The theorems that guarantee the fulfilment of this requirement and also
some examples are given in Sections 2 and 3 of this chapter. It should be also noted
that in this section we use some results of Chapter 1 for the proof of main assertions.
Further triple numeration is used in the references to the assertions and formulae
of Chapter 1 (first digit is the chapter number).

Let (9’6, Sz) be a dynamical system with the evolutionary operator S, defined
by the formula S,u,=wu(t), where u(t) is a mild solution to problem (4.1).
As shown in Chapter 1, for the system (9'9, Sz) to possess a compact global attrac-
tor, it should be dissipative. It turns out that the condition of dissipativity is not only
necessary, but also sufficient in the class of systems considered.

Lemma 4.1.

Let (%y, S,) be dissipative and let By = {u: |A9%| < R} beils absorbing
ball. Then the set B, = {u: A% < R} is absorbing for all a. € (0, 1),
where

) o
Ry =(0=0)"""Ro+ o sup{IB(u)l: ue Ty, [A%] <Ry} . @3

Proof.
Using equation (2.3) and estimate (1.17), we have
t+1
o-0] 40 o o
Ao (14 D] < (a-0)OLa%ul + [ (5% ) 1B |

t
where u(¢) = S,u. Let B be a bounded set in Fy. Then |S, y|, < R, for all
t 2 tp and y € B. Therefore, the estimate

IB(w(t))l < sup{|B(u)l: we By}, t=tg

holds for u (t) = S, y . Hence, ||A0‘u(t + 1)|| < R forall t > tp. This implies the
assertion of the lemma.
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Theorem 4.1.

Assume that the dynamical system (9'9, Sz) generated by problem (4.1)
s dissipative. Then it is compact and possesses a connected compact global
attractor /. This attractor is a bounded set in ¥, for 0 <a<1 and has
a finite fractal dimension.

Proof.

By virtue of Theorem 1.1 the space ?fa is compactly embedded into 959 for
o > 0. Therefore, Lemma 4.1 implies that the dynamical system (%, S;) is com-
pact. Hence, Theorem 1.5.1 gives us that (959, St) possesses a connected compact
global attractor /. Evidently, |A%| < R, for all u € /A, where R, is defined
by equality (4.3). Thus, we should only establish the finite dimensionality of the at-
tractor. Let us apply the method used in the proof of Theorem 1.9.1 and based on
Theorem 1.8.1. Let Stul and Slt Uy be semitrajectories of the dynamical system
(%, S;) such that ”Stuj"e <R forall¢t>0,7=1, 2. Then equations (2.3) and
(1.17) give us that

t

||Stu1 —Stuzne < ||u1 —u2||e +M(R)0 J(t _T)_GHSt“l_Stuz”edt .
0

Using Lemma, 2.1, we find that for all u; € Fy such that ||S
estimate holds:

z“j" g < R the following

||Stu1 —Stuzne < C||u1—uz||e for 0<t<1
where the constant C depends on 0 and R . Therefore,
||St7,Ll—Stu2||9 < C||STul—STu2||e for 0<tT<t<T+1
for the considered u; and u, . Consequently,
|Seur =S usly < C|Spyur=Spusly < CUIFuy—usyy,
where [t] is an integer part of the number ¢ . Thus, the estimate of the form
||Slu1—Slu2||e < Ce‘””ul—uzne (4.4)
is valid, where the constants C and a depend on 0 and R . Similarly, Lemma 1.1
gives

—A

|Qn(S;u1=Sus)ly < e N+1t||“1_u2||eJr

0\, .o g (L=T)
+M(R) J‘KT—?) +kN+1]e TS -8 ) de (4.5)
0
forall u,, u, € ¥, such that ||St uj”e < R, where Qy = I — Py and Py is the ortho-
projector onto the first N eigenvectors of the operator A. If we substitute equation
(4.4) in the right-hand side of inequality (4.5), then we obtain that
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—A
||QN(Stu1—Stu2)||e < (e NHIJFCM(R) eazJN(t))”ul_“z"ev

where
t

(t) = ”(%)e 2y e g
0

After the change of variable = Ay

(t—7) it is easy to find that Jy(t) <
<Cy k;vlfle . Therefore,

+1

=X t C(R, O
S A P X S

N+ 1

for all u,, uy € Fy such that ||Stuj||9 < R . Hence, there exist t, >0 and N such
that

HQN(Stoul_Stouz)HG < 8||u1—u2||e , 0<d<1,

forall u,, u, € ¥y such that ||St uj"9 < R .However, the attractor / lies in the ab-
sorbing ball B,. Therefore, this estimate and inequality (4.4) mean that the hypo-
theses of Theorem 1.8.1 hold for the mapping V = Sto . Hence, the attractor /4 has
a finite fractal dimension. It can be estimated with the help of the parameters in in-
equalities (4.4) and (4.6). Thus, Theorem 4.1 is proved.

Equations (4.4) and (4.6) which are valid for any R > 0 enable us to prove the exis-
tence of a fractal exponential attractor of the dynamical system (Gfe, St) in the same
way as in Section 9 of Chapter 1.

Theorem 4.2.

Assume that the dynamical system (9’9, Sz) generated by problem (4.1)
is dissipative. Then it possesses a fractal exponential attractor (imertial
set).

Proof.
It is sufficient to verify that the hypotheses of Theorem 1.9.2 (see (1.9.12)-
(1.9.14)) hold for (%, S, ). Let us show that

K = U S,By,  By={u: |A%u| <R}
1>,
can be taken for the compact K in (1.9.12)—(1.9.14). Here o is a number from the
interval (0, 1) and R, is defined by formula (4.3). We choose the parameter
to=ty(B,) such that S,K c B, for t > ;. Since K is a bounded invariant set,
equation (4.4) is valid for any %, u, € K with some constants C and « . It is also
easy to verify that K is a compact. Indeed, let {lcn} c K. Then k,, =Stn Y,,, there-
with we can assume that k, »>w, y, >y € B, and either { —{ <oo or
t,, — . Inthe first case with the help of (4.4) we have
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|8, 40 =81, < ce" "y, —uly + S0, 9 =51, [y
Therefore, k, = Stn Y, = Sz* y € K .In the second case
w = nli_r)nooSZn Y, € 0(B,)c StO(Boc) cK.
Here w(Ba) is the omega-limit set for the semitrajectories emanating from B, .
Thus, K is a compact invariant absorbing set. In particular this means that condition
(1.9.12) is fulfilled, therewith we can take any number for ¥ > 0 . Conditions (1.9.13)

and (1.9.14) follow from equations (4.4) and (4.6). Consequently, it is sufficient
to apply Theorem 1.9.2 to conclude the proof of Theorem 4.2.

Thus, the dissipativity of the dynamical system (9'9, Sz) generated by problem (4.1)
guarantees the existence of a finite-dimensional global attractor and an inertial set.
Under some additional conditions concerning B(u) the requirement of dissipativity
can be slightly weakened. We give the following definition. Let o < 6 . The dynami-
cal system (%, S,) is said to be ¥ -dissipative if there exists R, > 0 such that
for any set B bounded in %, there exists ¢, = {,(B) such that

|4%S, 4] = |S,4],, < Ry, forall y e BNFy and t > 1.

Lemma 4.2.
Assume that B(w) satisfies the global Lipschitz condition

|B(wy) =B(us)| < M|AO(u, —uy)|. 4.7
Let the dynamical system (*GFG’ St) generated by maild solutions to prob-
lem (4.1) be F-dissipative for some o e(0-1, 0]. Then (%, S,) is
a compact dynamical system, 1.e. it possesses an absorbing set which is
compact in Fy.

Proof.

By virtue of Lemma 4.1 it is sufficient to verify that the system (%, S,) is
dissipative (i.e. @e-dissipative). If we use expression (2.3) and equation (1.17),
then we obtain

t+s
0-a 0
’ 05 e (+2=)
J0%u(t+s) < (0=2) " lacu(o)l + j 0 IBu(n)lde
t
for positive ¢ and s. Here u(t) = S,u,. Since [B(u)| < [|B(0)| + M| A%, we
have the estimate

bouo-+s) < (4" {0 - -elarucol +1aon L |+
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S
0 )6 0
+MJ-(STT |A9%u(t + 7)dT
0
for 0 < s < 1.Hence, we can apply Lemma 2.1 to obtain
||A9u(t+s)|| < C(0, a, M)(1 +||A0‘u(t)||)so“9, 0<s<1.

Therefore, if |S,u|, < R, for t > 15(B) and u, € B N %y, then the latter in-
equality gives us that

IS;uolg < C(0, o, M)(1+R;) for t21+ty(B),

ie. (%y, S,) is a dissipative system. Lemma 4.2 is proved.

Exercise 4.1 Show that the assertion of Lemma 4.2 holds if instead of (4.7)
we suppose that B(u) = By(u)+By(u), where By(u) possesses
property (4.7) and By (u) is such that

sup{Bgy(u): A% < R} < oo

The following assertion contains a sufficient condition of dissipativity of the dynami-
cal system generated by problem (4.1).

Theorem 4.3.

Assume that condition (4.2) is fulfilled with 0=1/2 and B(u)=
=—F'(u) is a potential operator from ¥ 1o Wnto H (the prime stands for
the Frechét derivative). Let

Flu) > —a,  (F'(u), u)—BF(u) = —y]|AV2u)* -5 (4.8)
Jor all u e % 12, Where o, B, v, and & are real parameters, therewith
B >0 and y < 1. Then the dynamical system is dissipative in F /9

Proof.

In view of Theorem 2.4 conditions (4.8) guarantee the existence of the evolu-
tionary operator St . Let us verify the dissipativity. As in the proof of Theorem 2.4 we
consider the Galerkin approximations {u,,(t)}. It is evident that

LA O + 4120, (O + (7 (u,,). w,,) =0

m) U

and

S (L1420, 0 + P, (1) + [0 = 0.

If we add these equations and use (4.8), then we obtain that

% {% ||um”2 +%HA1/2umH2 + F(um)}Jr (1-7) HA1/2umH2 ¥ BF(u,) < 8.
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Let
V() = Flul®+ 31420l + F(u) + o
Therefore, it is clear that
d
i V(u,,(t)+oV(u,, (t) < C

with some positive constants @ and C that do not depend on m . This (cf. Exer-
cise 1.4.1) easily implies the dissipativity of the system (971 /25 Sz) , moreover,

1 2 oty C e
5|AVES, ul® < V(ug)e @+ G (1—em). (4.9)
Theorem 4.3 is proved.

Exercise 4.2 Show that the assertion of Theorem 4.3 holds if (4.2) is ful-
filled with 6 = 1/2 and

B(u)=—F'(u)+ By(u),
where F'(u) possesses properties (4.8) and B,(u) satisfies the esti-

mate |By(u)| < C,+ g|AY24)| for &€ > 0 small enough.

Let us look at the examples of Section 3 again. We assume that the function

St 2, u, p) = f(x, u, p) (4.10)
in Example 3.1 possesses property (3.2) and
Jf(x, w(@), Vu(@))u()de < (kl—é)'[uz(x)dx+0 4.11)
Q Q

for all u € H(l)(Q), where A, is the first eigenvalue of the operator —A with the
Dirichlet boundary condition on 0 Q. Here & and C are positive constants.

Exercise 4.8 Using the Galerkin approximations of problem (3.1) and Lem-
ma 4.2, prove that the dynamical system generated by equation (3.1)
is dissipative in Hé(Q) under conditions (3.2), (4.10), and (4.11).

Therefore, if conditions (3.2), (4.10) and (4.11) are fulfilled, then the dynamical sys-
tem (Hé(Q), S,) generated by a mild (in H(l)(Q)) solution to problem (3.1) posses-
ses both a finite-dimensional global attractor and an inertial set.

Exercise 4.4 Prove that equation (4.11) holds if
da
S, u, Vu) = fy(x, u)+2a-~ ,
=1
where a; are real constants and the function f{, (x, u) possesses
the property
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S, w)u < (A =0)u?+C, wuekR

forany x € Q.

Exercise 4.5 Consider the dynamical system generated by problem (3.4).
In addition to the hypotheses of Example 3.2 we assume that
Sf(t, 2, u, 0,u) =0 and the function g(x, u) possesses the pro-
perties
Yy

Y
jgcx, E)dE> —a,  yol y)—ﬁjgm £)de > —y
0 0

for some positive o, 3, and 7. Then the dynamical system genera-
ted by (3.4) is dissipative in H(l)(O, 1).

Exercise 4.6 Find the analogue of the result of Exercise 4.5 for the system
of reaction-diffusion equations (3.6).

Exercise 4.7 Using equations (3.9) and (3.10) prove that the dynamical
system generated by the nonlocal Burgers equation (3.8) with f(¢) =
= f e L?(0, 1) is dissipative in Hé(Q).

Let us consider a dynamical system (V, St) generated by the Cahn-Hilliard equation
(3.12). We remind that

V= {u e H%(0, 1): ux|x_0:ux‘x_l=o} :

Exercise 4.8 Let the function W(u) be defined by equality (3.14). Show
that for any positive £ and o the set

a,

l
X, p=ueV: Wu)<R, Ju(x)dx <a (4.12)
0

is a closed invariant subset in V' for the dynamical system (V, S,)
generated by problem (3.12).

Exercise 4.9 Prove that the dynamical system (X, p, S,) generated by
the Cahn-Hilliard equation on the set X , , defined by (4.12) is dis-
sipative (Hint: cf. Exercise 3.9).

In conclusion of this section let us establish the dissipativity of the dynamical system
(D(A'/2+P), S,) generated by the abstract form of the two-dimensional Navier-
Stokes system (see Example 3.5) under the assumption that f(t) =f € D(Aﬁ).
We consider the dynamical system (£, H, S;*) generated by the Galerkin approxi-
mations (see (3.20)) of problem (3.16).
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Exercise 4.10 Using (3.24) prove that
1
(a2 smugl < | e+ j [al2 57 [P de | x
0

1

2
X exp clj(”szﬂuouznAlﬂsﬁuOH) dr (4.13)
0

forall 0 < ¢ < 1,where ¢, and ¢; are constants independent of 7 .

Exercise 4.11 With the help of (3.21), (3.22) and (4.13) verify the property
of dissipativity of the system (D(A/2+P), S)) in the space
D(Al/z) . Deduce its dissipativity (Hint: see Exercise 3.14-3.16).

Thus, the dynamical system generated by the two-dimensional Navier-Stokes equa-
tions possesses both a finite-dimensional compact global attractor and an inertial set.

§ 5 Systems with Lyapunov Function

In this section we consider problem (4.1) on the assumption that condition (4.2)
holds with 0 = 1/2 and B(w) is a potential operator, i.e. there exists a functional
F(u) on %, jq = D(AY2) such that its Frechét derivative F’'(u) possesses the pro-
perty

B(u) = —F'(u), u e D(A"?). (5.1)
Below we also assume that the conditions
Flu)>—a, (F'(u), u)—PF(u)>—-y|A2u]* -5 (5.2)

are fulfilled for all u e D(A2), where o, 3 e R, B >0, and y < 1. On the one
hand, these conditions ensure the existence and uniqueness of mild (in D (Al/2))
solutions to problem (4.1) (see Theorem 2.4). On the other hand, they guarantee
the existence of a finite-dimensional global attractor 4 for the dynamical system
(F1/9> S;) generated by problem (4.1) (see Theorem 4.3). Conditions (5.1) and
(5.2) enable us to obtain additional information on the structure of attractor.

Theorem 5.1.

Assume that conditions (5.1), (5.2), and (4.2) hold with 0 = 1/2. Then
the global attractor A of the dynamical system (9’1 /90 St) generated by
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problem (4.1) is a bounded set in ¥, = D(A) and it coincides with the un-
stable manifold emanating from the set of fixed points of the system, i.e.
=M, (N), (5.3)

where N ={z € D(A): Az=B(z)} (for the definition of M (.N') see Secti-
on 6 of Chapter 1).

The proof of the theorem is based on the following lemmata.

Lemma 5.1.

Assume that a semitrajectory u(t) = S,u, possesses the property
||Aau(t)|| <R, forallt >0, where 1/2< o< 1. Then

JAV2 (w(t) —u(s))l < C(Ry)lt—s]* 12 (5.4)
forall t,s20.

Proof.
For the sake of definiteness we assume that ¢ > s > 0. Equation (2.3) im-
plies that
t
w(t)—u(s) = (e =94 —yu(s)+ Je(t ~DAB(u(1))dr.
S
Since
t
e (t=8)A 1= —J‘A e (t-DAqr,
S
equation (1.17) gives us that
t
JAV2 (0 (1) —u(s))] < ¢ J-(t — )% =3 2gg) A% u(s)| +

S
t

N CIJ-(t—r)_l/2dr max |B(u (7))

This implies estimate (5.4).

Lemma 5.2.

There exists Ry >0 such that the set By ={u: |Au| < R} is absorbing
Sor the dynamical system (o, S,).

Proof.
By virtue of Theorem 4.3 the system (9’1 /2> Sz) is dissipative. Therefore, it
follows from Lemma 4.1 that B, = {u : ||A0‘ u|| <R a} is an absorbing set,where
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;’ R isdefined by (4.3), 1 /2 < o< 1. Thus, to prove the lemma it is sufficient to
a consider semitrajectories u(t) possessing the property ||A0‘u(t)|| <R,,t120.
' Let us present the solution w(¢) in the form

. t

5 w(t) = e =94y (s)+ Je-('f-ﬂf‘ [B(u(x) ~B(u(0))]dr+

S

+ A (1= =N Bu(r)) .
Using Lemma 5.1 we find that
L 3,
1/2
lAu(O)l < Co(t=s)"""Ry 9 +Cy(R )j(t_f) 2" dT+Cz(R1/2)-
S

This implies that
l[Au(t+1)| < C(R,), t=0,

provided that ||A0‘u(t)|| < R, for t > 0. Therefore, the assertion of Lemma 5.2
follows from Lemma 4.1.

Proof of Theorem 5. 1.
The boundedness of the attractor 4 in D(A) follows from Lemma 5.2. Let us
prove (5.3). We consider the Galerkin approximation um(t) of solutions to problem

(4.1):
du,,(t)
dt + Aum(t) P B( m(t))’ um(o) = Pmu0'
Here Pm is the orthoprojector onto the span of {81, €95 v’ em} . Let

(u)— (Au, w)+F(u), u e o=DA2). (5.5)

It is clear that
SV (1, (1)) = (At (1) + F (10, (1)), (1)) = =By, [Arn, (1) = B, ()]

This implies that

V(0 () =V (@, () = =| | B[ A (1) = Bl (1)]PdT <

m(—)m

_'[ [Py (A, (1) = B(u,, (1) dt

for ¢ 2 s and for any N < m, where Py, is the orthoprojector onto the span of
{el, e, eN}. With the help of Theorem 2.2 and due to the continuity of the func-
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tional V() we can pass to the limit 7 — oo in the latter equation. As a result,
we obtain the estimate

V(u(z))+J'||PN(Au(r)—B(u(r)))nzdr < V(u(s), tz=s, (56

for any solution % (¢) to problem (4.1) and for any N > 1. If the semitrajectory
u(t) = S, u lies in the attractor ./, then we can pass to the limit N — oo in (5.6)
and obtain the equation

V(u(t)) +J||Au(r) —Bu(D)Pdt < V(u(s)) (5.7

forany t > s > 0 and u(t) € A. Equation (5.7) implies that the functional V()
defined by equality (5.5) is the Lyapunov function of the dynamical system
(#1/2> S;) on the attractor /. Therefore, Theorem 1.6.1 implies equation (5.3).
Theorem 5.1 is proved.

Exercise 5.1 Using (5.6) show that any solution «(¢) to problem (4.1) with
U € 9’1/2 possesses the property

I3
JnAu(r)uzdw o, 150,
0

Prove the validity of inequality (5.7) for any solution w(¢) to prob-
lem (4.1).

Exercise 5.2 Using the results of Exercises 5.1 and 1.6.5 show that if the
hypotheses of Theorem 5.1 hold, then a global minimal attractor
A Of the system (% 5, S;) has the form

Hoin ={w € D(A): Aw —B(w)=0}.
Exercise 5.3 Prove that the assertions of Theorems 4.3 and 5.1 hold if we

consider the equation

du
a?—i-Au:B(u)-i-h, ul,_ = %o (5.8)

instead of problem (4.1). Here A is an arbitrary element from A and
B(u) possesses properties (5.1), (5.2) and (4.2) with 6 =1/2
Hint: V,(u)=V(u)—(h, u)).

Exercise 54 Let S, be an evolutionary operator of problem (5.8). Show
that for any R > 0 there exist numbers ap 2 0 and bp > 0 such
that

)

“Al/z (S,u, —Stuz)H < bp eOLRtHAl/2 (uy —u2)|

provided ”Al/zuj” <R, j=1,2 (Hint: V,(S,u;) < Vi, (u;) <Cp).
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Theorem 5.1 and the reasonings of Section 6 of Chapter 1 reduce the question on the
structure of global attractor to the problem of studying the properties of stationary
points of the dynamical system under consideration. Under some additional condi-
tions on the operator B(w) it can be proved in general that the number of fixed
points is finite and all of them are hyperbolic. This enables us to use the results of
Section 6 of Chapter 1 to specify the attractor structure. For some reasons (they will
be clear later) it is convenient to deal with the fixed points of the dynamical system
generated by problem (5.8).
Thus we consider the equation

L(u)=Au—-B(u)=nh, ueD(A), (5.9)
where as before A is a positive operator with discrete spectrum, B (u) is a nonline-

ar mapping possessing properties (5.1), (5.2) and (4.2) with 6 = 1/2, and % is an
element of H .

Lemma 5.3.

For any h € H problem (5.9) is solvable. If M is a bounded set in H,
then the set L~ (M) of solutions to equation (5.9) is bounded in D(A)
Jor hoe M. If M is compact in H, then L~Y(M) is compact in D(A).

Proof.
Let us consider a continuous functional
W(u) = %(Au, u)+F(u)—(h, u) (5.10)

on % o = D(A2). Since F(u) > —a for all u € % 5, the functional W (u)
possesses the property

W) > LAzl - o -lavzpf |42 >

> %lllA”zull2 —a—Jalzp)® .11

In particular, this means that W (w) is bounded below. Let us consider the func-
tional W(«) on the subspace B.% /9 (B, is the orthoprojector onto the span
of elements e, ey, ..., e, , as before). By virtue of (5.11) there exists a mini-
mum point %, of this functional in £, 951 /2 which obviously satisfies the equa-
tion
Au,, —PmB(um) =B, h. (6.12)

Equation (5.11) also implies that

LyA1/2 2 —1/2 1,2

i |AY 2w, |7 < W(u,)+a+|a V20" <

< inf{W(u): weP, Hy+o+ A 120f .
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Hence,
[AV2u,, | < F(0)+o+]a 120 < c(1+]a12hP)

with a constant C' independent of 2 . Thus, equations (5.12) and (4.2) give us
that

|Aw,,| = |B(w,,)+0| < IBO)+In]+2M(

412w, )| 412w,

Therefore, if || < R, then ||Aum|| < C(R). This estimate enables us to extract
a weakly convergent (in D (A)) subsequence {umk} and to pass to the limit as
k — oo in (5.12) with the help of Theorem 1.1. Thus, the solvability of equation
(5.9) is proved. It is obvious that every limit (in D(A)) point » of the sequence
{u,,} possesses the property

lAul < Cp if IRl <R. (5.13)

This means that the complete preimage L_I(M ) of any bounded set M in H is
bounded in D(A). Now we prove that the mapping L is proper, i.e. the pre-
image L™Y(M) is compact for a compact M. Let {u,} be a sequence from
L~Y(M). Then the sequence {L(w,,)} lies in the compact M and therefore there
exist an element & € M and a subsequence {7, } such that |L(uy,)—%| — 0
as k — oo . By virtue of (5.13) we can also assume that {4 unk} is a weakly con-
vergent sequence in D(A) . If we use the equation

“Aunk—B(unk) —h” -0, k—>oo,

Theorem 1.1, and property (4.2) with 6 = 1/2, then we can easily prove that
the sequence {unk} strongly converges in D(A) to a solution u« to the equation
L(w)=h. Lemmab5.3isproved.

Lemma 5.4.

In addition to (5.1), (5.2), and (4.2) with 0 =1/2 we assume that the
mapping B() is Frechét differentiable, i.e. for any u € 9%’1 /2 there
exists a linear bounded operator B'(w) from % ;5 into H such that

IB(u+v)=B(u)—B'(u)v] = o(|AV20]) (5.14)

for every v € F 5, such that |AY29| < 1. Then the operator A —B'(u)
is a Fredholm operator for any u € F jo = D(A1/?).

We remind that a densely defined closed linear operator G in H is said to be Fred-
holm (of index zero) if

(a) itsimage is closed; and

(b) dim Her G = dim KerG* < 0.

Proof of Lemma 5.4.
It is clear that the operator G = A —B’(u) has the structure
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N G=A-CAV2 = AV2(] - A~120) ALV

b where C is a bounded operator in H (C=B'(u)A™1/2). By virtue of Theorem
Z 1.1 the operator K = A"1/2C is compact. This implies the closedness of the
r image of G . Moreover, it is obvious that

2

dim HerG = dim Her (1-K)
and
dim Her G* = dim%}:/t(]—K*).
Therefore, the Fredholm alternative for the compact operator gives us that

dim Ker G = dim Ker G < oo .

Let us introduce the notion of a regular value of the operator L seen as an ele-
ment & € H possessing the property that for every w € L™1h = {v : L(v)=h} the
operator L'(u) = A—B'(u) is invertible on H . Lemmata 5.3 and 5.4 enable us to use
the Sard-Smale theorem (for the statement and the proof see, e.g., the book by
A. V. Babin and M. I. Vishik [1]) and state that the set R of regular values of the
mapping L(uw) = Au—B(u) is an open everywhere dense set in H . The following
assertion is valid for regular values of the operator L .

Lemma 5.5.

Let h be a regular value of the operator L. Then the set of solutions to
equation (5.9) s finite.

Proof.

By virtue of Lemma 5.3 the set N ={v: L(v)=h} is compact. Since
h € P, the operator L'(u) = A—B'(u) is invertible on H for u e . It is also
evident that L'(w) has a domain D(A). Therefore, by virtue of the uniform
boundedness principle AL'(u)_1 is a bounded operator for u € /. Hence,
it follows from (5.14) that

[A(w —w)l < JAL() Y- 1L (v) (v —w)l =

= |AL ()" IB(v) =B(w) =B'(v)(v —w)| = o(|AY2(v —w)|)

forany v and w in Y . This implies that for every v € N there exists a vicinity
that does not contain other points of the set /. Therefore, the compact set N
has no condensation points. Hence, /¥ consists of a finite number of elements.
Lemma 5.5 is proved.

In order to prove the hyperbolicity (for the definition see Section 6 of Chapter 1) of
fixed points we should first consider linearization of problem (5.8) at these points.
Assume that the hypotheses of Lemma 5.4 hold and v, € D(A) is a stationary solu-
tion. We consider the problem
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?j—?;-i-(A “Bwg))u=0,  ul,_,=up. (5.15)
Its solution can be regarded as a continuous function in %, ,, = D(AY/#) which satis-
fies the equation

t

u(t)=e'4u, + Je_(i “O4B (vy)u(t)dr.

0
If uy e D(Al/ 2), then we can apply Theorem 2.3 on the existence and uniqueness
of solution. Let T, stand for the evolutionary operator of problem (5.15).

Exercise 5.5 Prove that Tt is a compact operator in every space Gfa,
0<a<l1l, t>0.

Exercise 5.6 Prove that for any p >0 and ¢ > 0 the set of points of the
spectrum of the operator 7, that are lying outside the disk {k:
|A| < p} is finite and the corresponding eigensubspace is finite-di-
mensional.

Exercise 57 Assume that B'(v)) is a symmetric operator in H . Prove that
the spectrum of the operator 7; is real.

The next assertion contains the conditions wherein the evolutionary operator S; be-
longs to the class C1+® o > 0, on the set of stationary points.

Theorem 5.2.

Assume that conditions (5.1), (5.2), and (4.2) are fulfilled with 6=1/2.
Let B(u) possess a Frechét derivative in ¥, such that for any R > 0

u+v)—Bb(u)— u)v| < v , o >0, .
IB B B'(u)v] < clavzy|tte 0 (5.16)

provided that |AY2v| < R, where the constant C = C(u, R) depends on u
and R only. Then the evolutionary operator S, of problem (5.8) has a
Frechét derivative at every stationary point v,. Moreover, ([S,(v,)]", u)=
= T,u, where T, is the evolutionary operator of linear problem (5.15).

Proof.
It is evident that
t
S, [vg+u] —vy—T,u= je(tT)A {B(ST[UO +u])=B(v) —B'(UO)TTU} dt.
0
Therefore, using (1.17) and (5.16) we have
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!
latzy @)l < J(2€[t =~ V(O] AV (S [vg +u] —og)] T+
0
fe )] 4 o) f e
where (1) = S,[vg+u] —v,—T,u . Using the result of Exercise 5.4 we obtain that

”Al/z(St[vOJru] —?)0)” < bReaRt

A2y it JAY2u| < R.
Thus,
t
lat2y (o) < couie T VR aza] T gy j(t—r)“z |at72y (o)l de.
0
Consequently, Lemma 2.1 gives us the estimate

[AV2(S, [0y +u] —vy-Tu)| < Cplal2ul'**,  telo, T].

This implies the assertion of Theorem 5.2.

Exercise 5.8 Assume that the constant C in (5.16) depends on R only,
provided that [AY2u[ < R and |AV20] < R. Prove that S, e C1+¢
forany 0 < oo < 1.

The reasoning above leads to the following result on the properties of the set of fixed
points of problem (5.8).

Theorem 5.3.

Assume that conditions (5.1), (5.2) and (4.2) are fulfilled with 6 = 1/2
and the operator B(u) possesses a Frechét derivative in % 1o Such that
equation (5.16) holds with the constant C = C(R) depending only on R for
|AY2u| < R and |AY29| < R. Then there exists an open dense (in H) set
P such that for h € % the set of fixed points of the system (¥, S,) gen-
erated by problem (5.8) is finite. If in addition we assume that B'(z) is a
symmetric operator for z € D(A), then fixed points are hyperbolic.

In particular, this theorem means that if 7 € R, then the global attractor of the dy-
namical system generated by equation (5.8) possesses the properties given in Exer-
cises 1.6.9-1.6.12. Moreover, it is possible to apply Theorem 1.6.3 as well as the other
results related to finiteness and hyperbolicity of the set of fixed points (see, e.g., the
book by A. V. Babin and M. I. Vishik [1]).
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Example 51

Let us consider a dynamical system generated by the nonlinear heat equation

ou o%u
~-—-v—F+g(x, u(x))=h(x), O<x<l, t>0,
5 Vo @) = h(@) .

u|x=0 = u|x=1 =0, u|t=0 =uy(2),

in H}(0, 1). Assume that g(«, u) is twice continuously differentiable with re-
spect to its variables and the conditions

Y
jg@c, §dE > -a,  yola. y)—ng<x, £)de > —y
0 0

are fulfilled with some positive constants a, b, and y.

Exercise 5.9 Prove that the dynamical system generated by equation
(5.17) possesses a global attractor /=M (N), where N is
the set of stationary solutions to problem (5.17).

Exercise 5.10 Prove that there exists a dense open set R in Lz(O, 1) such
that for every i (x) € % the set N of fixed points of the dynamical
system generated by problem (5.17) is finite and all the points are
hyperbolic.

It should be noted that if a property of a dynamical system holds for the parameters
from an open and dense set in the corresponding space, then it is frequently said that
this property is a generic property.

However, it should be kept in mind that the generic property is not the one that
holds almost always. For example one can build an open and dense set % in [O, 1] ,
the Lebesgue measure of which is arbitrarily small ( < ¢). To do that we should
take

P = {xe((), 1): o -7 <8~2_k_2},
kL:JI [ =7

where {7, } is a sequence of all the rational numbers of the segment [0, 1]. There-
fore, it should be remembered that generic properties are quite frequently encoun-
tered and stay stable during small perturbations of the properties of a system.
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§ 6 FExplicitly Solvable Model
of Nonlinear Diffusion

In this section we study the asymptotic properties of solutions to the following non-
linear diffusion equation

1
U, =V, + %J.lu(x, t)lzdx—r u+pu,=0, 0<w<l1,t>0,
0 6.1)

Ul =u =0, ul_g=u),

where v >0, % >0, ' and p are parameters. The main feature of this problem is
that the asymptotic behaviour of its solutions can be completely described with the
help of elementary functions. We do not know whether problem (6.1) is related to
any real physical process.

Exercise 6.1 Show that Theorem 2.4 which guarantees the global existence
and uniqueness of mild solutions is applicable to problem (6.1) in the
Sobolev space Hé (0, 1).

Exercise 6.2 Write out the system of ordinary differential equations for the
functions {g,(t)} that determine the Galerkin approximations

w,,(t) = A2 ng(t) sinkx (6.2)
k=1

of the order m of a solution to problem (6.1).

Exercise 6.8 Using the properties of the functions um(t) defined by equa-
tion (6.2) prove that the mild solution w (¢, x) possesses the proper-
ties

t
%Ilu(t)llz+J(v||8xu(r)||2+x||u(r)||4—Fllu(r)llz)dr = %"uonz (6.3)
0
and
2 2 _—avnli 2 —2vnlt
u(t < uy|“e + ——(1l—e . 6.4
[u(t)? < Ju TRl ). (64

Here and below | -| is a normin £2(0, 1).

Exercise 6.4 Using equations (6.3) and (6.4) prove that the dynamical sys-
tem generated by problem (6.1) in H é (0, 1) is dissipative.
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Therefore, by virtue of Theorem 4.1 the dynamical system (4, é (0, 1), S,) generated
by equation (6.1) possesses a finite-dimensional global attractor.

Let u(t)=u(x, t) e C(R,; HO (0, 1)) be a mild solution to problem (6.1) with
the initial condition u(x) € H0 (0, 1). Then the function u(x, t) can be conside-
red as a mild solution to the linear problem

{ut—vuxx+ b(t)u+pu,=0, 0<x<l1, t>0,
(6.5)
Ul o=, ;=0 ul,_,= ug () ,
where b(t) is a scalar continuous function defined by the formula
1
b(t) = %J-Iu(x, 0Pde -T .
0
We consider the function
t
p2, P
v(x, t) = u(x, t)exp '[b T)dr+4—t—ﬂx . (6.6)
0
Then it is easy to check that v (ac, t) is a mild solution to the heat equation
v,=vv,., xe(0,1), t>0,
(6.7

p
50 = v|le =0, v|t:0 = uy () exp {—ﬂx}

The following assertion shows that the asymptotic properties of equation (6.7)
completely determine the dynamics of the system generated by problem (6.1).

Lemma 6.1.

Every mild (in H(l)(O, 1)) solution w(x, t) to problem (6.1) can be re-

written in the form

u(z, t) = w(z, t) - (6.8)

1+2%j||w(r)||2 dt

where w(x, t) has the form

w(x, t)=v(x, 1) exp{( —pz)t-i-gf\—/x} (6.9)

and v(x, t) is the solution to problem (6.7).
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Proof.
Let w (2, t) have the form (6.9). Then we obtain from (6.6) that

t
w(z, 1) = u (@, 1)exp xJ.IIu(T)IIZdr . (6.10)
0

Therefore,

t t
o (z, DI = Ju (=, 1)I exp ijllu(f)llzdr = L exp mjuu(r)n%n
0 0

Hence,
t t
expi2x JIIu(r)IIZdI —14 Z%JIIw(r)Ilzdt.
0 0

This and equation (6.10) imply (6.8). Lemma 6.1 is proved.

Now let us find the fixed points of problem (6.1). They satisfy the equation

—VuII-l-(%HuH2 -Mu+pu,=0, ul,_g=ul,_,;=0.

xr =

Therefore, u(x) = w(x)exp {ZB\—/@"}, where w () is the solution to the problem
P
4v
However, this problem has a nontrivial solution w () if and only if

) 2 p? 2
w(x)=Csintne  and  x|ul —F+E+v(nn) =0,

_ 2 _ — _ _
vwxx+(%||u|| I+ )w—O, w|x:0—w|x:1—0.

P

where 7 is a natural number. Since u = w eXp{ﬂ x}, we obtain the equation
1

o [ 57 o 2 p
V7 i _ L
% C Je sinnadr + v(nn)” -+ 5 =0
0
which can be used to find the constant C . After the integration we have
212 v2 2 p? 2
% C2Y(ePlV_1) 2V o _y(rn).

p( p2 +4n2v2 2 v Vi)
The constant C can be found only when the parameter 7 possesses the property
I —p2/(4v)—v(nn)* > 0. Thus, we have the following assertion.
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Lemma 6.2.

P

Let y=v([, v, p) = F—ﬂ. Ify < vniZ, then problem (6.1) has a unique
fized point uy(x) = 0. If (tn)? <y < n2(n+1)2 for some n 21, then
the fized points of problem (6.1) are
P
Uy(x) =0, 7wy (x)=1p.e?v sinnkz, k=1,2,...,n, (6.11)

where

e = (T, pov) = (6.12)
5, (T, p, v) = [ATvV—p2 —4(nnv)*]-[p2 +4(nnv)?].
Exercise 6.5 Show that every subspace
Py
H,, = Lin {62" sinthkx: k=1, 2, ..., N} (6.13)

is positively invariant for the dynamical system (H é(O, 1), S,) gene-
rated by problem (6.1).
Theorem 6.1.

2
Lety=T- f—v < v7i2. Then for any mild solution w(t) to problem (6.1)
the estimate

|o,u(t)] < C(p, V)g*(vnzfy)t"axuo ,  t>0, (6.14)

is valid. If y 2 vnZ and vriNZ > Y, then the subspace H,, _| defined by
SJormula (6.13) is exponentially attracting:

. _ 2 N2 _
disty 1 1) (Seug Hy_1) < C(ps v)e (VEENT=1)H18, ) - (6.15)

Here S, is the evolutionary operator in Hé(O, 1) corresponding to (6.1).

Proof.
Let w (2, t) be of the form (6.9). Then
P © 9
w,(t) =e 2Vow(t) = Ze_(v(“k) nte, p (@), (6.16)
k=

where e, (v) = J2sintkax and

Loy
Cr. p= J.e Voug() ey (x)de .
0
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Assume that y < va2. Then it is obvious that

o0

|6, (0] = Z (mk)* CF. pexp{=2(v(mk)* —y)1} <

k=1
p
—5=Z
0, (e 2v uoj
However, equation (6.8) implies that
p

5=

0, [e v u(t)j

Therefore, estimate (6.14) follows from (6.17) and from the obvious equality
fee] < 1/7c||8xu|| .When y > vi? and N > (1/n)4/y/v the function w(t) in (6.9)
can be rewritten in the form

2

< exp{-2(vm® —7)t} 6.17)

< Joy(e)

P
w(t) = (1) + 2V w, (1), (6.18)
where

P N-1
hy(t) = J2 e Ze*(v(“k)zﬂ’)t Cy, psinmkx € Hy_,

k=1
P
5=
2
0, (e v “0)
Thus, it is clear that

diStHé(O’ 1)(Stu0, Hy_y) < C(p, v)|0,w, n(1)]-

Consequently, estimate (6.15) is valid. Theorem 6.1 is proved.

and w o N(t) can be estimated (cf. (6.17)) as follows:

2

|6,y N < exp{=2(v(TN)* =)t} (6.19)

In particular, Theorem 6.1 means thatif y = I'— p2 / (4 V) < vml , then the global at-
tractor of problem (6.1) consists of a single zero element, whereas if ¥ > v , the
attractor lies in an exponentially attracting invariant subspace H,; , where N, =
= [(1/m)«y/v] and [-] is a sign of the integer part of a number.

The following assertion shows that the global minimal attractor of problem
(6.1) consists of fixed points of the system. It also provides a description of the cor-
responding basins of attraction.

Theorem 6.2.

2
Let y=T- 4P_V > vr2. Assume that the number n~1J/y/v is not integer.
Suppose that N, is the greatest integer such that V(TENO)2 <v. Let
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1
_P
C;(ug) = J2 J-e vauo (x) sinmtjx dx
0

and let u(t) be a mild solution to problem (6.1).
(@) If Cj(“o) =0 forall j=1, 2, ..., Ny, then

o, u(d] < C(v. p)exp{~(va2(Ny+ D ~7)1)} |2,

™ If Cj(uo) # 0 for some j between 1 and N, then there exist positive
numbers C = C(v, p, v; uy) and B = B(y, v) such that

o (u(t)-u < CeBt, t>0, (6.21)
x ok

. 1>0. (620

where U, (x) is defined by formula (6.11), ¢ = sign C,(u), and k is
the smallest index between 1 and N, such that C,(u) # 0.

Proof.

In order to prove assertion (a) it is sufficient to note that the value hN(t) is
identically equal to zero in decomposition (6.18) when N = N,+ 1. Therefore,
(6.20) follows from (6.19).

Now we prove assertion (b). In this case equation (6.18) can be rewritten in the
form

w(t) = g,(t) +hk(t) +w, No“(t)’ (6.22)
where
P e
g, (1) = N2 2V e VIR =1 ¢ () sin ke,
N,
Lr S 2
Ry (1) = J2e2v Z e (V)" =7t C; psinmjz,
j=k+1
and f (t) = 0 if kK = N . Moreover, the estimate
—(vr2(Ny+1)> -v)t
|0:1p, npe1 (O] = Clpy v)e T o ) (6.23)
is valid for w N+ 1(2) . It is also evident that
—v 2 2
[0, (1)] < C(p, v)elrVEEFIIG 4y (6.24)

Since

Jlwo (O =g ()] < (o O+ g O]) lw @ =g )] <

< @[+ O]+ g, w1 O PelO] [0, nye1 O
using (6.23) and (6.24) we obtain

(1 =g ()] < Cexp{2[y —va2(k2 +(k+1)%)]t}] 0, ul -
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N Integration gives
; ¢ L, t ,
Ey
. 2%J.||Qk(f)||2df = 4%[Ck(u0)]2 Je‘/ sinznkxdxj.e2(7_v(”k) )Tt =
d 0 0 0
2
2 _ Z(Clc(uo)) (2 =¥ @R 1y
My
where i, is defined by formula (6.12). Hence,
t
C, (ug N2 2
1 +2xJ||w(r)||2dr =1 +2(—’1(l—i)) P =VER I L g (1),  (6.25)
k
0
where
2 2
lay (1) < 0{1 +exp{2(y—vn2 %)t}} [0 uof?, k< Ny—1.
Let
(1)

v(t) =

t 1/2°
[1 N 2%J||w(r)||2er
0

We consider the case when 1 < k < N; — 1. Equations (6.23)-(6.25) imply that

|0, (u(t) =0 (D] < [0, w5, nyerD] + |92 7(1)] .

; 172
[1 Lo Jllw(r)llzer
0

f(vrrz(NO+1)2 -7t +

< C(p, V)| 0,uy| {e

exp {(y—vn?(k+1)%)t}
+ 1/2} )

(1B vty g, )

Therefore,

|0, (u(t) ~0(0)] <

< C(p, v, ugy) {e(vnz(No“)zY)t 4o VTR ((k +1)2—k2)1 G(t)_l/z} ,
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where
o (v —y 22 Cp (wg)y?

It follows from (6.25) that G(¢t) >0 for all ¢ >0 and G(0)= 1. Moreover, the
above-mentioned estimate for ak(t) enables us to state that

lim G (t) = 2(0’{[“0)]2 >0

t—> o0 k
This implies that there exists a constant G ; = G, (7, k. V, 1#) > 0 such that
G(t) 2 G, forallt > 0. Consequently,
||6x u( || C(p, v, 75 up) e %L, (6.26)

where o = o.(k, v, y) = mjn{vn2(N0+1) -7, vi?(2k+1)}. Now we consider
the value v, (¢) . Evidently,

() = (L, ug) U (2),
where

(G ()| exp {(y—v2k2)1)

My (1 +2 (CRELZO))Z exp{2(y-vnZk?)t} + ak(t))l/Z

P (L ug) =

Simple calculations give us that

|(pk(t, Uy) — 1| < C(p, Vv, 7, ug) e Pt

with the constant B =vn (2k +1). This and equation (6.26) imply (6.21), provi-
ded k < N,—1. We offer the reader to analyse the case when k = N, on his/her
own. Theorem 6.2 is proved.

Theorem 6.2 enables us to obtain a complete description of the basins of attraction of
each fixed point of the dynamical system (H é (0, 1), S,) generated by problem (6.1).
Corollary 6.1.

Let y = T—p2/(4v) > vi?. Assume that the number n=1Jy/v is not in-
teger. Let N be the greatest integer possessing the property V(TENO)2 <.
We denote

1
L
Ci(u) =2 Je 2V u(z)sinmjx do
0

and define the sets
@y ={u e Hy(0, 1): C;(u)=0, j=1, .., k=1, Cy(u)>0},

@, ={u e Hy(0, 1): Cj(u)=0, j=1, ..., k=1, Cp(u)< 0}
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Jor k=1, 2, ..., Ny. We also assume that
Do ={u e Hy(0, 1): C;(u)=0, j=1,2, ..., Ny} .
Then for any 1 =0, 1, 2, ..., N, we have that

lim ||S,v—u

l—)oo” 4 L"Hé(O, 1)
where {27,1} are the fixed points of problem (6.1) which are defined by
equalities (6.11).

=0eo0vey,,

The next assertion gives us a complete description of the global attractor of problem

(6.1).

Theorem 6.3.

Assume that the hypotheses of Theorem 6.2 hold and N, is the same as
in Theorem 6.2. Then the global attractor A of the dynamical system
(H é(o, 1), S,) generated by equation (6.1) is the closure of the set

P
N, 5o %
J2 Zki . ,e?V sinmkx

N oL, . \1/2
kJ
l+2%§ 0 —)
( k,j:1éké7vk+vj

where v, = y—v(nk)z, k=1,2,.., Ny, and

A=Jv(x)

: éj e RY, (6.27)

1
[
Oy = Zjevxsinnkx-sinnjxdx, k,j=1,2,.., N,.

0
Every complete trajectory {u(t): t € R} which lies in the attractor and
does mot coincide with any of the fixed points u,, k=0, £1, ..., £N,, has
the form
N, =X
«/éz 0 & e e o2V sinmka
k=1
u(t) = , (6.28)
(1422570 g Bhej_ (V% *Y;) ‘)1/2
Zk,j=1 k2 vty
where ék are real numbers, k=1, 2, ..., Ny, t € R.

Exercise 6.6 Show that forall § RY0 the function

Ny O (v +v)t
a(t, &) =2% k,j:lékéjvajvje TN 120 (6.29)

is nonnegative and it is monotonely nondecreasing with respect to ¢
(Hint: a;(t, £) 2 0 and a(t, §) > 0 ast — —o0).
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Proof of Theorem 6.3.
Let & belong to the set A given by formula (6.27). Then by virtue of Lemma 6.1
we have

w(x, t)
Syl = ; 1/2°

1 +2xJ'||w(r)||2dr

(6.30)

where

- | a Kt
T5a 0 é Zéke sintkx

and the value a (t, &) is defined according to (6.29). Simple calculations show that

e -

Therefore, it is easy to see that S,z = w(t) for t > 0, where u(t) has the form (6.28).
It follows that S, A = A and that a complete trajectory u(¢) lyingin A has the form
(6.28). In particular, this means that A < 4. To prove that A = /4 it is sufficient to
verify using Theorem 6.1 and the reduction principle (see Theorem 1.7.4) that for
any element s e HNo there exists a semitrajectory v (¢) < A such that

lim 0,,(S,h —v(1))] = 0
t —> oo
uniformly with respect to A from any bounded set in H Ny To do this, it should be
kept in mind that for
N, 0
- 2 sintkx € H 6.31
h-ﬁZ@ke sinmkx e Hy (6.31)

S;h has the form (6.30) with
o, 2
w(t) =2 eV Z g e sinmka.
k=1
Therefore, it is easy to find that
S,h = w(t)
" (Lra(n §)-a(0, §)12

where a(t, &) is given by formula (6.29). Hence, if we choose

o(t) = — W)
©=G7ag e <A

)

we find that
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S,h=v(t) = y(t, h)S,h,

where

y(t, h)=1 _(1 _1_%)1/2.

Using the obvious inequality
1-(1-2)12 <2z, 0<x<1,
we obtain that
) < G/(O’ (:) ,
1+a(t, §)

provided that ~# has the form (6.31). It is evident that

y(t

t

Ny
alt, &) = a(0, &) + cojengOTdr. S
k=1

0
Therefore,
, _
J‘e2 Mg
0
Consequently, the dissipativity property of S, in A 0(0, 1) and equations (6.32) give
us that
; -1
2VN T
10,(5,n—v(t)] < C Je O I
0

(6.32)

forallh e Bc H No» where B is an arbitrary bounded set. Thus, A = A and there-

fore Theorem 6.3 is proved.

Exercise 6.7 Show that the set A coincides with the unstable manifold
M_(0) emanating from zero, provided that the hypotheses of Theo-

+
rem 6.3 hold.

Exercise 6.8 Show that the set A = M (0) from Theorem 6.3 can be de-

scribed as follows:

N, 0

A = U:ﬁz Ny eﬂxsinnkx:
k=1

o
[2% nknjv f:jv <1, ne ]R{NO]
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Therewith, the global attractor / has the form

P,
J—Zn o2v’ sintkx: 2% z NN, V,C+V

k,j=1
Exercise 6.9 Prove that the boundary

Ny P

A= U:ﬁan e%xsinnkx:
k=1

O(.k N
(2% Z nknjkarJv =1, nekR 0)
k,j=1

of the set A is a strictly invariant set.

Exercise 6.10 Show that any trajectory y lying in A has the form {u(¢),
t € R}, where

2 V.t T
Z e e?V sinmka
u(t) = . neRY,

k ( . )t 1/2
\% V.
[ E nk‘bv j ko ]

Exercise 6.11 Using the result of Exercise 6.10 find the unstable manifold

M+(27k) emanating from the fixed point %, , k =*1, +2, ..., £Nj.
Exercise 6./2 Find out for which pairs of fixed points {7, ﬂj}, k,j=
=*1, £2, ..., £N,, there exists a heteroclinic trajectory connec-
ting them, i.e. a complete trajectory {ukj(t): t € R} such that
u, = lim w, .(t), u,= lim wu, (t).
kS e k() A SRS k()

Exercise 6.13 Display graphically the global attractor /4 on the plane gene-
rated by the vectors e; = elP/CV)]Zgina and ey = elpP/(2V)]
x sin2mx for Ny= 2.
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Exercise 6.14 Study the structure of the global attractor of the dynamical
system generated by the equation

1
U, =V, + %J‘(Iu(x, t)|2+lv(x, t)lz)dx—F u—ov =0, 0<x<l, t>0,
0

1
v, =V, %J‘ (lee(, t) +|v(x, t)|2)dx—T v+ou =0 O<x<l, t>0,
0

u

x=O:u|x=1:U|x=O:U|x=1:0

in Hé(O, 1) x Hé (0, 1), where v, %, I', o are positive parameters.

§ 7 Simplified Model of Appearance
of Turbulence in Fluid

In 1948 German mathematician E. Hopf suggested (see the references in [3]) to con-
sider the following system of equations in order to illustrate one of the possible sce-
narios of the turbulence appearance in fluids:

Up = HUU,y, —V0 —WsW —U=x1, (7.1)
= U, +vsutvsa+w=b, (7.2)
w,=Uw, +wsu —vsb+w=a , (7.3)

where the unknown functions %, v , and w are even and 2 1 -periodic with respect
to x and

(f+g)(x fo y)g(y)dy

Here a(x) and b(x) are even 2 -periodic functions and 1t is a positive constant.
We also set the initial conditions

u|t=0:u0(x), 7)|t=0:7jo(x), w|t=O:wO(x). (7.4)

As in the previous section the asymptotic behaviour of solutions to problem
(7.1)—(7.4) can be explicitly described.
Let us introduce the necessary functional spaces. Let

={feLi (R): f(x)=f(-2)=f(x+2m)}.
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Evidently H is a separable Hilbert space with the inner product and the norm de-
fined by the formulae:

21
(f, 9) = jf(x)g(x)dx, IF12 = (f, )
0

There is a natural orthonormal basis

1 1 1
———, —— COS¥, ——=CO0S2X, ...
{A/2 T Jn Jn }
in this space. The coefficients C, (f) of decomposition of the function f e H with
respect to this basis have the form

27 an
=1 _ 1
Co(f)—ﬁif(x)dx, Cn(f)—ﬁj;f(x)cosnxdx.

Exercise 7.1 Let f, g € H.Then f+g € H and

If gl < ﬁllflbllgll . (7.5)

The Fourier coefficients C,, of the functions fxg, f, and g obey
the equations

Colf+9) = =ColN)Col9), Cylfrg) = 51=Cu(1)C,(0)- (76)

Exercise 7.2 Let p,, be the orthoprojector onto the span of elements
{coskx, k=0, 1, ..., m} in H.Show that

0,,(fx9) = (p,,f)*9 = f=(p,,9)- (7.1

Let us consider the Hilbert space H= H3 = H x H x H with the norm |[(u; v; w)ly; =
= (||u||2 + ||U||2 + ||w||2)1/2 as the phase space of problem (7.1)-(7.4). We define
an operator A by the formula

Au, v, w) = (U=, 5 0 =, w=pw,,), (u; 0; w) e D(A)
on the domain
D(A) = [H2 (R)]’ N H,
where leoc(]R{) is the second order Sobolev space.
Exercise 7.8 Provethat A is a positive operator with discrete spectrum. Its
eigenvalues {4, }*_ have the form:

hagp=RAgpq=Agprog=1+uk?, k=0,1,2, ..,
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while the corresponding eigenelements are defined by the formulae

60:%7;(1; 0; 0), 61:7;_—7%(0; 1; 0), 62=J—;—_TE(0; 0; 1),
egk:ﬁ(coskx; 0; 0), 63k+1=71;(0; coskx; 0), ¢ (7.8)
63k+2:71;(0; 0; coskx),
where k=1, 2, ...
Let
bi(u, v, W) = —VxV —WxwW —Ux1,

by(u, v, W) = Vsu+vsa+ws=b,

ba(u, v, W) = WU —V=b+w=a.

Equation (7.5) implies that bj(u, v, w) € H,provided a, b, u, v,and w are the
elements of the space H, j =1, 2, 3. Therefore, the formula

B(u, v, w)=(b)(u, v, w)+u; by(u, v, w)+v; b3(u, v, W)+ w)

gives a continuous mapping of the space H into itself.

Exercise 7.4 Prove that

||B(y1) _B(y2)||]H[ = C(l +lal + ol + ||y1||}H[ + "%”H)"yl _y2||]H[’
where y; = (uj; V53 wj) eH, j=1,2.

Thus, if a, b € H, then problem (7.1)-(7.4) can be rewritten in the form
z_zz +Ay=By), Y|,_,=Y0

where A and B satisfy the hypotheses of Theorem 2.1. Therefore, the Cauchy prob-
lem (7.1)—(7.4) has a unique mild solution y(¢) = (u(t), v(t), w(t)) in the space
IH on a segment [0, T'], provided that a, b € H. In order to prove the global exis-
tence theorem we consider the Galerkin approximations of problem (7.1)—(7.4).
The Galerkin approximate solution ¥, () of the order 3m with respect to basis
(7.8) can be presented in the form

m—1

Yp(t) = (u(m)(t); v(m)(1); w(m)(t)) = Z (uk(t); v,(); wk(t)) coskz, (7.9)

k=0
where wu,(t), v,(t), and wy(t) are scalar functions. By virtue of equations (7.7)
it is easy to check that the functions u(")(t), v(")(t), and w(")(t) satisfy equa-
tions (7.1)—(7.3) and the initial conditions

w™(0)=p,,u,, o"(0)=p,v,, w™(0)=p,,w,. (7.10)
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Thus, approximate solutions exist, locally at least. However, if we use (7.1)—(7.3) we
can easily find that

3 2l R O+t o} +

P+ ) -

= —(um 1, ulm) + (oM xa, vM) + (WM xa, wM) .

Therefore, inequality (7.5) leads to the relation

dt”ym(t)”xu < C(1+lal)]y,,( t)”'[u :

This implies the global existence of approximate solutions y,m(t) (see Exercise 2.1).
Therefore, Theorem 2.2 guarantees the existence of a mild solution to problem
(7.1)—(7.4) in the space H = H3 on the time interval of any length 7. Moreover, the
mild solution y(t) = (u(t); v(t); w(t)) possesses the property

[I(‘S‘ta;(] ||y(t) —ym(t)" -0, m-o>ow
for any segment [0, T'] . Approximate solution y,,(¢) has the structure (7.9).

Exercise 7.5 Show that the scalar functions {2,(t); v,(t); w,(t)} involved
in (7.9) are solutions to the system of equations:

Uy + WkPuy, = —vf —wi —ud,, (7.11)
ﬁk-i-ukzvk = VU F VLA F Wb (7.12)
Wy + Wk w, = wu,—v, b +w,a, . (7.13)

Here k=1, 2, ..., 0,0 =0 for k # 0, ,, = 1, the numbers a, =
= Cy(a) and b, = C,(b) are the Fourier coefficients of the func-
tions a(x) and b(x).

Thus, equations (7.1)—(7.3) generate a dynamical system (HH, S,) with the evolu-
tionary operator St defined by the formula

Syyo = (u(t); v(t); w(t)),
where (u(t); v(t); w(t)) is a mild solution (in H) to the Cauchy problem (7.1)—

(74, yg= (uo, Vs wo) . An interesting property of this system is given in the fol-
lowing exercise.

Exercise 7.6 Let %, be the span of elements {5, €5, €3j.9}, Where
k=0, 1,2, .. and {e,} are defined by equations (7.8). Then the
subspace %, of the phase space H is positively invariant with re-
spectto S, (S, %, < B).
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Therefore, the phase space H of the dynamical system (IH, S,) falls into the ortho-
gonal sum

lH[:i@%k
k=0

of invariant subspaces. Evidently, the dynamics of the system (HH, S,) in the sub-
space S@k is completely determined by the system of three ordinary differential
equations (7.11)—(7.13).

Lemma 7.1.
Assume that a, b € H and
2n
1

Coy= 72: ‘[a(x)dx <0. (7.14)

a

Then the dynamical system (H, S,) is dissipative.

Proof.

Let us fix N and then consider the initial conditions y, = (u, v, W)
from the subspace

N N
Hy = > @ %= > @Lin{eg 35010 €304
k=0 k=0

where {e,,} are defined by equations (7.8). It is clear that Hly is positively in-
variant and the trajectory

N
y () = (u(t): v(t): w(t)) = 5" () v(0): wy(t)) cosk
=0

of the system is a function satisfying (7.1)—(7.4) in the classical sense. Let
p,, be the orthoprojectorin A onto the span of elements {coskx :n=0,1, ...,
m}. We introduce a new variable % (t) = u(t)+ o™ instead of the function
u(t). Here o™ =(p,,—py)a . Equations (7.1)—(7.3) can be rewritten in the

form
U, — W, = Vv —ww+(~u+ o)1 —po’, (7.15)
v, UV, = vxu+vx(g,a)twsb+vx(pya), (7.16)
W, —Uw,. . = W=t —vrb+w=(q,,a)+wx(pya), (7.17)

where q,, =1 —p,,. The properties of the convolution operation (see Exer-
cises 7.1 and 7.2) enable us to show that
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f=%

1 8l + Wl + 1l?) + ([ + o + [ ) =

= ((ra+a™)«1, u) + p(o’, w,) + (vs(gq,,a), v) +

o

+ (w=(q,,a), w) + (v=(pya), v) + (w=(pya), w) . (7.18)
It is clear that
(Fa+am)=1, u)=—-[C, (ﬁ)]z, (v#(pya), v) = A/%—RCO(@)[CO(U)F,

where Cy(f) is the zeroth Fourier coefficient of the function f(x) € H . Moreo-
ver, the estimate

o] < [od. w1,

holds. We choose m > 1 such that (1/.2 Tc)"qma” < /2. Then equation (7.18)
implies that

S0 + 1ol + k) + ()2 + o + fon?) +
20y + 2 @) () +[Cow)) < mjolP.

If we use the inequality

IF12 < (G 2+ A2
then we find that

S0t + I+ 1ol?) + v (el + ol + hol?) < o f?

where v = min(ll, 2, 42/7|Cy(a)|) . Consequently, the estimate
1GOIE < 15O0Eev + S(1-evt)|a]? (7.19)

is valid for y(¢) = (u(t), v(¢), w(t)), provided |g,,a| < um/2 and g, = y,+
+(a™, 0, 0) where y,, € Hj . By passing to the limit we can extend inequality
(7.19) over all the elements y, € H . Thus, the system (HH, S,) possesses an ab-
sorbing set

By ={(w, v, w): Ju+(D,,—po)af* +I0I* +lwl® < RZ,}, (7.20)

where m is such that |a —p,,a| < uA/m/2 and
-1
B2, = u[@,-po)al | (min(p. 2. 2lCo(@))] +1.

Exercise 7.7 Show that the ball %m defined by equality (7.20) is positively
invariant.
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Exercise 7.8 Consider the restriction of the dynamical system (IH, S,) to
the subspace

2n
H = 1n(@)=(u(@); v(x); w(@)) e H, J’h(x)dx=o -3 %,
0 n 21

Show that (H, S, ) is dissipative not depending on the validity of
condition (7.14).

Lemma 7.2.

Assume that the hypotheses of Lemma 7.1 hold and let D, be the ortho-

projector onto the span of elements {coskx: k=0, 1, ..., m} n H,
4,, = 1-p,,. Then the estimate
q, a
[ @N2 < [l exp{—2((m+1)2 “—%)t} (7.21)

holds for all m such that |q,,a| < py2m(m+ 1)%. Here Y1) = (q,,u();
q,,0(t); q,,w(t)) and (u(t); v(t); w(t)) is the mild solution to problem
(7.1)-(7.4) with the initial condition y, = (uo; Vg5 wo).

Proof.

As in the proof of Lemma 7.1 we assume that y, = (u,; v(; w,) € Hy for
some N . If we apply the projector g,, to equalities (7.15)—(7.17), then we get
the equations

m _ mo _ _,m M _ )M, m
uz puxx = V%V w W ,

mo_ moo_ ,my, ., m m m
vy R, = 0 um Wb+ 0" q 0,
m _ mo_ m M _pyM m
wt wax = WU V"M b+ w *qma,

where u™ =g, u, 0" =q,v and w" = q,, w . Therefore, we obtain

3 8 (el s bl + Yoom?) + o (s + o + o) <

1 2 2
< 1 gy, (lol? + homl?) (7.22)
Lfaql
as in the proof of the previous lemma. It is easy to check that H(th) 2>
> (m+ 1) 2|n)? forevery h e pyH . Therefore, inequality (7.22) implies that

2 2 2
3 ailmOFf + (0m +17 = faal )l 0 < 0

Hence, equation (7.21) is valid. Lemma 7.2 is proved.
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Lemmata 7.1 and 7.2 enable us to prove the following assertion on the existence
of the global attractor.

Theorem 7.1.

Let a,b € H and let condition (7.14) hold. Then the dynamical system
(H, S,) generated by the mild solutions to problem (7.1)-(7.4) possesses a
global attractor A W This attractor is a compact connected set. It lies in the
Sinite-dimensional subspace
N
Hy= " ®Lin{egy. €55, 10 €5041)s
k=0
where the vectors {en} are defined by equalities (7.8) and the parameter N
is defined as the smallest number possessing the property ||q Na” <
< U m(N +1)2. Here q,; is the orthoprojector onto the subspace generated
by the elements {cosnx: n > N+1} in H.

To prove the theorem it is sufficient to note that the dynamical system is compact
(see Lemma 4.1). Therefore, we can use Theorem 1.5.1. In particular, it should be
noted that belonging of the attractor J%“ to the subspace 76 means that
dimy A, < 3(N+1), where N is an arbitrary number possessing the property
lava| < n 27 (N+1)2 . Below we describe the structure of the attractor and evalu-
ate its dimension exactly.

According to Lemma 7.2 the subspace H is a uniformly exponentially attracting
and positively invariant set. Therefore, by virtue of Theorem 1.7.4 it is sufficient
to study the structure of the global attractor of the finite-dimensional dynamical sys-
tem (Hly, S,). To do that it is sufficient to study the qualitative behaviour of the tra-
jectory in each invariant subspace %,, 0 < k < N (see Exercise 7.6). This
behaviour is completely described by equations (7.11)—(7.13) which get trans-
formed into system (1.6.4)-(1.6.6) studied before if we take U= yk2+8k0,
V= ulcz— a,, ,and B=b i - Therefore, the results contained in Section 6 of Chapter 1
lead us to the following conclusion.

Theorem 7.2.

Let the hypotheses of Theorem 7.1 hold. Then the global minimal attrac-
tor J%I(Iﬂl)l of the dynamical system (H, S,) generated by mild solutions to
problem (7.1)—(7.4) has the form %%3 ={0}U Z“, where

coskx
7 .

I, = U U {(uk; 7, COSQ; 7, SinQ)
keJH(a) 0<op<2m

1/2

Here u, = Wk?—a,, r,=k(a,n—pn2k?)"'*, the values a, = C,(a) are the
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Fourier coefficients of the function a(x), and the number k ranges over
the set of indices J“(a) such that 0 < pkz < a,,. Topologically X u 1S a torus
(i.e. a cross product of circumferences) of the dimension Card J“(a). The
global attractor J%“ of the system (H, S,) can be obtained from J%I(Tﬁfl)l by at-
taching the unstable manifold M (0) emanating from the zero element of

the space H. Moreover, dim ﬂa“ = 2 Card J“(a).

It should be noted that appearance of a limit invariant torus of high dimension pos-
sesssing the structure described in Theorem 7.2 is usually assosiated with the Land-
au-Hopf picture of turbulence appearance in fluids. Assume that the parameter
gradually decreases. Then for some fixed choice of the function a(x) the following
picture is sequentially observed. If 1t is large enough, then there exists only one at-
tracting fixed point in the system. While [t decreases and passes some critical value
U, , this fixed point loses its stability and an attracting limit cycle arises in the sys-
tem. A subsequent decrease of L leads to the appearance of a two-dimensional
torus. It exists for some interval of values of p: Ly < u< Uy (<p;). Then tori
of higher dimensions arise sequentially. Therefore, the character of asymptotic be-
haviour of typical trajectories becomes more complicated as [t decreases. According
to the Landau-Hopf scenario, movement along an infinite-dimensional torus corres-
ponds to the turbulence.

§ 8 On Retarded Semilinear
Parabolic Equations

In this section we show how the above-mentioned ideas can be used in the study of
the asymptotic properties of dynamical systems generated by the retarded perturba-
tions of problem (2.1). It should be noted that systems corresponding to ordinary re-
tarded differential equations are quite well-studied (see, e. g., the book by J. Hale [4]).
However, there are only occasional journal publications on the retarded partial dif-
ferential equations. The exposition in this section is quite brief. We give the reader
an opportunity to restore the missing details independently.

As before, let A be a positive operator with discrete spectrum in a separable
Hilbert space H and let C(a, b, %) be the space of strongly continuous functions
on the segment [a, b] with the values in %y = D(AY), 0 > 0. Further we also use
the notation Cy = C(-7, 0; %), where » > 0 is a fixed number (with the meaning
of the delay time). It is clear that Ce is a Banach space with the norm

vlg, = max{”Aev(G)" Coelon 0]} |
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Let B be a (nonlinear) mapping of the space Ce into H possessing the property
||B(vl)—B(02)|| < M(R)|vl—7)2|ce, 0<0<1, (8.1)

for any v}, vy € Cy such that |?)j~| o < R, where R>0 is an arbitrary number and M(R)
is a nondecreasing function. In the space H we consider a differential equation

d
d_@t‘+Au =B(u,), txt,, (8.2)

where u, denotes the element from CG determined with the help of the function
u(t) by the equality

u,(o)=u(t+0), G e[-r, 0].
We equip equation (8.2) with the initial condition

uy, (0) = u(ty+0)=v(c), G e[~ 0], (8.3)

where v is an element from Cy.
The simplest example of problem (8.2) and (8.3) is the Cauchy problem for the
nonlinear retarded diffusion equation:

G A = o) e ), we Qg

Ulyn =0, M(G)lge[ ]IU(G).

to=7. 1
Here 7 is a positive parameter, f;(«) and f,(u) are the given scalar functions.
As in the non-retarded case (see Section 2), we give the following definition.

A function wu (t) € C(t,—7, to+T; %) is called a mild (in Fy) solution
to problem (8.2) and (8.3) on the half-interval [, t,+7) if (8.3) holds and w(t)
satisfies the integral equation
t

—(f—lo)AU(o) n J-e_(t_to)AB(ul_)dT . (8.5)

u(t)=-e
Ly
The following analogue of Theorem 2.1 on the local solvability of problem (8.2)
and (8.3) holds.

Theorem 8.1.

Assume that (8.1) holds. Then for any initial condition v € Cy there
exists T > 0 such that problem (8.2) and (8.3) has a unique mild solution
on the half-interval [t, t,+T).

Proof.
As in Section 2, we use the fixed point method. For the sake of simplicity we

consider the case 1= 0 (for arbitrary ¢, € R the reasoning is similar). In the space
Cy(0, T) = C(0, T; Fy) we consider a ball
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where 9 (t) = exp{-At}v(0) and v(c) € Cy is the initial condition for problem
(8.2) and (8.3). We also use the notation

[l g0, 7) = max {|A%w (1) - ¢ € [0, T]}.

We consider the mapping K from Ce(O, T) into itself defined by the formula
t
[Kw](t) = 5(t) + Je‘(“ VAR (w_)dt .
0

Here we assume that w(c) = v (o) for 6 € [-r, 0). Using the estimate (see Exer-
cise 1.23)

0
|49 54| < (e%)  s>0, (8.6)
(for O = 0 we suppose 09 = 1) we have that

49K, (1) — Ky ()] g'[( 0 V|Bw, ) ~Blwy Jdr. 6D
0

e(t—1)
Ifw e %p,then
max [A%w(t)] < p+]A%(0).

This easily implies that
|wr|Ce < p+|vlce, Tt e [0, T],

where, as above, w. € Ce is defined by the formula
w(c)=w(t+0), o©el[-r 0]
Hence, estimate (8.1) for w; € B o gives us that

[B(wy,2) =Blws, )] < M(p+lgy)wy c=ws g, -

Since w,(0) = wy(c) for ¢ € [~r, 0), the last estimate can be rewritten in
the form

|B(wy o) =B(wy )| < M(P+|U|Ce)|w1_w2|ce(o, T)

for T € [0, T]. Therefore, (8.7) implies that
Kw,-Kw < .L_(Q)GTl—eM( +olp ) w,—w
[Kw, 2|ce(o, 7 S 120 \e p+lvlg,)|wy 2|ce(0, T)

if w; € %p, J =1, 2. Similarly, we have that

Kuw ] < L (0 -0 fys(o+b(p+lol, ) (p + ol
co0.7) = T-ple P 1le (P FWig,
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for w e %p. These two inequalities enable us to choose T'=T(0, p, |[v|, ) >0
such that K is a contractive mapping of % into itself. Consequently, there exists
a unique fixed point w(t) € Cy(0, T) of the mapping K . The structure of the ope-
rator K implies that w (+0) = [Kw](+0) = v(0). Therefore, the function

w(t), t 0, T|,
V) { (1), tefo, 7]
v(t), te[-r, 0],
liesin C(-r, T; @6) and is a mild solution to problem (8.2), (8.3) on the segment
[0, T] . Thus, Theorem 8.1 is proved.

In many aspects the theory of retarded equations of the type (8.2) is similar to the
corresponding reasonings related to the problem without delay (see (2.1)). The exer-
cises below partially confirm that.

Exercise 81 Prove the assertions similar to the ones in Exercises 2.1-2.5
and in Theorem 2.2.

Exercise 82 Assume that the constant M(R) in (8.1) does not depend
on R . Prove that problem (8.2) and (8.3) has a unique mild solution
on [to, oo), provided U(G) € Ce. Moreover, for any pair of solu-
tions () and u4(t) the estimate

ao(t—t
[ur(t) —uy()]y < a ™" 0)|Ul—v2|ce (8.8)
is valid, where Uj(G) is the initial condition for uj(t) (see (8.3)).

For the sake of simplicity from now on we restrict ourselves to the case when the
mapping B has the form

B(v)=By(v(0))+By(v), v=v(0c)eCy, (8.9

where B (-) is a continuous mapping from %, ,, = D(A'2) into H, By(-) continu-
ously maps C, /9 into H and possesses the property BI(O) = 0. We also assume
that B (-) is a potential operator, i.e. there exists a continuously Frechét differenti-
able function F'(u) on %, ;o such that By(u) = —F'(u). We require that

Fu)>—o, (F'(u), u)—BF(u) > ylul2 -5 (8.10)

forall u € 7, 5, where o, 3, vy, and O are real parameters, 3 and y are positive
(cf. Section 2). As to the retarded term B 1(7)) , we consider the uniform estimate
0

B\(v)) ~By(vy)] < MJ. |412(v,(6) =vy ()| do 8.11)

to be valid. Here M is an absolute constant and v,(6) € C = C} /5.
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Exercise 88 Assume that conditions (8.9)—(8.11) hold. Then problem (8.2)
and (8.3) has a unique mild solution (in % /2) on any segment
[tg, Lo+ T] for every initial condition v from C = C 5.

Therefore, we can define an evolutionary operator S, acting in the space C = C; /9
by the formula

(S,v)(0)=u,(c)=u(t+c), ocel[-r 0], (8.12)
where 2 (¢) is a mild solution to problem (8.2) and (8.3).

Exercise 84 Prove that the operator S, given by formula (8.12) satisfies
the semigroup property: S,oS. =S5, ., Syg=1,1, 120 and the
pair (C, /95 S,) is a dynamical system.

Theorem 8.2.

Let conditions (8.9)—(8.11) and (8.1) with 0 =1/2 hold. Assume that
the parameters in (8.10) and (8.11) satisfy the equation

g(2+y)M2 exp{r-mjn(& v, B)} < min(2, v, B).

Then the dynamical system (C, Sz) generated by equality (8.12) is a dissi-
pative compact system.

Proof.

We reason in the same way as in the proof of Theorem 4.3. Using the Galerkin
approximations it is easy to find that a solution to problem (8.2) and (8.3) satisfies
the equalities

: d% L2 + A2 () + (F7 (u(t)), u(t)) = (By(w,), u(t))
and
L (a2l + 2R (u(0))) + (02 = (By(u,). (1) -
If we add these two equations and use (8.10), then we get that

(% V(u(t)) + 1AV 2u(e)* + ylu(l + 1l + BF(u(t) <

< O+ ||By(wy)| (e + (o)l (8.13)

where
V (u) = —1 ||u||2 + —1 ||A1/2u||2 +F(u) + o (8 14)

Using (8.11) it is easy to find that there exists a constant D, > 0 such that
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A y(u(t) + o, V(u(t)) < Do+ Lo, j A2 (o)t |

t—r
where

o, =min(2, v, f), w2=g(l+%)M2.

Consequently, the inequality
¢

V(o) + o) < Dyt oy [ wimdr
t—r
is valid for y (¢) = V(u(t)). Therefore, we have
t

¢(t) < D, ewlt+m2 o1 '[ o(t)dt
t=r
for the function
(1) ="y (1) = e V(u(t)) -
If we integrate this inequality from O to ¢, then we obtain

t
D,
o(t) < ¢(0) + w—?(ewlt—l) + wzewlyrj.(p(r)dr

Therefore, Gronwall’s lemma gives us that
2 —Mql
V(u() < (V((0))+Colo2 ye '+ cy,
provided that
(1)17”
wge Lr < m.

Here C; and C, are positive numbers, w5 = ;- cozemlyr > 0. This implies
the dissipativity of the dynamical system (C, Sz) . In order to prove its compactness
we note that the reasoning similar to the one in the proof of Lemma 4.1 enables us
to prove the existence of the absorbing set %e which is a bounded subset of the
space Cg = C(-7, 0; D(Ae)) for 1/2 < 0 < 1. Using the equality (cf. (8.5))

t

u(t) = e (t=s)A u(s)+ Je‘(t— T)AB(uT)dT

S

for t > s large enough, we can show that the equation

JAY2 (u(t) —u(s)) < Cli—s|P

holds for the solution %(t) in the absorbing set . Here the constant C depends
on %9 and the parameters of the problem only, B > 0. This circumstance enables
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;’ us to prove the existence of a compact absorbing set for the dynamical system

a (C, S,). Theorem 8.2 is proved.

1%

t

e Theorem 8.2 and the results of Chapter 1 enable us to prove the following assertion
on the attractor of problem (8.2) and (8.3).

2

Theorem 8.3.

Assume that the hypotheses of Theorem 8.2 hold. Then the dynamical
system (C, St) possesses a compact connected global attractor A which is
a bounded set in the space Ce =C (—7”, 0; %) foreach 6 < 1.

It should be noted that the finite dimensionality of this attractor can be proved
in some cases.
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If an infinite-dimensional dynamical system possesses a global attractor of finite
dimension (see the definitions in Chapter 1), then there is, at least theoretically,
a possibility to reduce the study of its asymptotic regimes to the investigation of pro-
perties of a finite-dimensional system. However, as the structure of attractor cannot
be described in details for the most interesting cases, the constructive investigation
of this finite-dimensional system cannot be carried out. In this respect some ideas
related to the method of integral manifolds and to the reduction principle are very
useful. They have led to appearance and intensive use of the concept of inertial ma-
nifold of an infinite-dimensional dynamical system (see [1]-[8] and the references
therein). This manifold is a finite-dimensional invariant surface, it contains a global
attractor and attracts trajectories exponentially fast. Moreover, there is a possibility
to reduce the study of limit regimes of the original infinite-dimensional system
to solving of a similar problem for a class of ordinary differential equations.

In this chapter we present one of the approaches to the construction of inertial
manifolds (IM) for an evolutionary equation of the type:

du

dr
Here w(t) is a function of the real variable ¢ with the values in a separable Hilbert
space H . We pay the main attention to the case when A is a positive linear operator
with discrete spectrum and B (u, t) is a nonlinear mapping of H subordinated to A
in some sense. The approach used here for the construction of inertial manifolds is
based on a variant of the Lyapunov-Perron method presented in the paper [2]. Other
approaches can be found in [1], [3]-[7], [9], and [10]. However, it should be noted
that all the methods for the construction of IM known at present time require a quite
strong condition on the spectrum of the operator A : the difference kN +1—7\.N
of two neighbouring eigenvalues of the operator A should grow sufficiently fast
as N > oo,

+tAu=B(u, t), u = U (0.1

t=0

§ 1 Basic Equation and Concept
of Inertial Manifold

In a separable Hilbert space H we consider a Cauchy problem of the type

%+Au:3(u, t), t>s, ul,_ =u, s elR, (1.1

where A is a positive operator with discrete spectrum (for the definition see Section
1 of Chapter 2) and B(-, -) is a nonlinear continuous mapping from D(Ae) x R
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into H, 0 < 0 < 1, possessing the properties

IB(u, t)] < M(1+]A0%]) (1.2)
and

|B(wy, 1) =B(ug, t)] < M|AO(u; —uy)| (1.3)

forall w, uy,and u, from the domain Gfe = D(Ae) of the operator A9 . Here M is
a positive constant independent of ¢ and | -| is the norm in the space H . Further it
is assumed that {e k} is the orthonormal basis in H consisting of the eigenfunctions
of the operator A :

Ae,=MNe,, O0<A <hy< .., kh_r)nookk:oo.

Theorem 2.3 of Chapter 2 implies that for any initial condition u, € %, prob-
lem (1.1) has a unique mild (in %, ) solution % (¢) on every half-interval [s, s +T),
i.e. there exists a unique function u(t) € C(s, s +T; %) which satisfies the inte-
gral equation

t

w(t) = e 04y je(tt)AB(u(r), T)dt (1.4)

forallt e [s, S+ T) . This solution possesses the property (see (2.6) in Chapter 2)
|AB(w(t+0)-u@) <cc9-B,  0<B<O

for 0 < 6 < 1 and ¢ > s . Moreover, for any pair of mild solutions u,(¢) and uy(t) to
problem (1.1) the following inequalities hold (see (2.2.15)):

[40u(t)] < aje™ "I|A0u(s), txs (1.5)
and (cf. (2.2.18))

@y A%u(t)] < {Q_XN*'I(L_S)-FM(I-FK)GI ko eaz(t_s)}HAeu(s)”, (1.6)

where u(t) = u,(t) —u5(t), a; and a, are positive numbers depending on 0, A,
and M only. Hereinafter @y = I — Fy;, where Py is the orthoprojector onto the first
N eigenvectors of the operator A . Moreover, we use the notation

kz@ejieeédi for >0 and k=0 for 6=0. (1.7
0
Further we will also use the following so-called dichotomy estimates proved
in Lemma 1.1 of Chapter 2:

[a0c-tap < 29 M e R;

—tA

[ qy] < et i, (1.8)
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otsa < (00430 ] 20, 050

The inertial manifold (IM) of problem (1.1) is a collection of surfaces
{M,, t € R} in H of the form

M, ={p+®(p, t): p e PyH, ®(p,t)e (1-Fy)%},
where ®(p, t) is amapping from B; H x R into (1 —£;)%, satisfying the Lipschitz
condition

HAG(‘D(JOP t) — D(py, t))H < CHAe(pl_pz)H (1.9)

with the constant C independent of D; and ¢ . We also require the fulfillment of the
invariance condition (if ug € Ms, then the solution u(¢) to problem (1.1) posses-
ses the property u(t) € Mt, t > s) and the condition of the uniform exponential
attraction of bounded sets: there exists Y > 0 such that for any bounded set B ¢ H
there exist numbers Cp and ¢z > s such that

sup {dist%(u(t, uy), M)z ug e B} < Cy e 7 p)

forall t > t5. Here u(t, u) is amild solution to problem (1.1).

From the point of view of applications the existence of an inertial manifold (IM)
means that a regular separation of fast (in the subspace (I —PN)H ) and slow (in the
subspace F;H ) motions is possible. Moreover, the subspace of slow motions turns
out to be finite-dimensional. It should be noted in advance that such separation is
not unique. However, if the global attractor exists, then every IM contains it.

When constructing IM we usually use the methods developed in the theory
of integral manifolds for central and central-unstable cases (see [11], [12]).

If the inertial manifold exists, then it continuously depends on ¢, i.e.

tliinS"Ae(d)(p, s)—D(p, t))|| =0

forany p € ByH and s € R . Indeed, let % (t) be the solution to problem (1.1) with
uy=p+®(p, s), p eBPyH.Thenu(t) e M, for t > s and hence

u(t) = Byu(t) + @(Pyu(t), t).
Therefore,

O(p, 1) = D(p, s) = [P(p, 1) = P(Byult), 1)] +
+[w(t) —up] +[p —Pyu(t)] -
Consequently, Lipschitz condition (1.9) leads to the estimate
|4@(p. 5)-0(p. )] < CA%u(t) ~uy)].

Since u(t) € C(s, +oo, D(Ae)) , this estimate gives us the required continuity pro-
perty of ®(p, t).
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Exercise 1.1 Prove that the estimate
||Aﬁ((D(;0, t+0)-D(p, t))|| < Cﬁ(p, N)GG*ﬁ
holds for @(p, t) when0 <o <1, 0<pB <0, teR.

The notion of the inertial manifold is closely related to the notion of the inertial
Jorm. If we rewrite the solution w(t) in the form w(t)=p(t)+q(t), where
p(t)=Pyu(t), q(t) = Qyu(t), and Qy =1 —PFy, then equation (1.1) can be re-
written as a system of two equations

d
dt

Sa)+aa(t) = QuB(p(1)+a(1)

p(t)+Ap(t) = ByB(p(t)+q(t)) ,

Pl,_¢=Po =Pyug, 4a|,_ =25 =Qnu -

By virtue of the invariance property of IM the condition (po, qo) eM s implies that
(p(), q(t)) € M, ie. the equality g, = ®(p, s) implies that q(t) = @ (p(t), t).
Therefore, if we know the function @ (p, t) that gives IM, then the solution 2 (¢)
lying in |\/|Zt can be found in two stages: at first we solve the problem

=py,  (L10)

S

SPO+AD() = BB +O@(0). 1), p|,_

and then we take u(t) = p(t) + @(p(t), t) . Thus, the qualitative behaviour of solu-
tions u(t) lying in IM is completely determined by the properties of differential
equation (1.10) in the finite-dimensional space PyyH. Equation (1.10) is said to be
the inertial form (IF) of problem (1.1). In the autonomous case (B(u, t) = B(u))
one can use the attraction property for IM and the reduction principle (see Theorem
7.4 of Chapter 1) in order to state that the finite-dimensional IF completely deter-
mines the asymptotic behaviour of the dynamical system generated by problem (1.1).

Exercise 1.2 Let ®(p, t) give the inertial manifold for problem (1.1).
Show that IF (1.10) is uniquely solvable on the whole real axis, i.e.
there exists a unique function p(t) € C(~o0, co; B H) such that
equation (1.10) holds.

Exercise 1.3 Let p(t) beasolution toIF (1.10) defined forall ¢ € R. Prove
that w (t) = p(t) +P(p(t), t) is amild solution to problem (1.1) de-
fined on the whole time axis and such that u|,_ = p,+ D(p, ).

Exercise 1.4 Use the results of Exercises 1.2 and 1.3 to show that if IM
{M,} exists, then it is strictly invariant, i.e. for any u € M, and
s < t there exists u, € M, such that u = w(t) is a solution to prob-
lem (1.1).



Basic Equation and Concept of Inertial Manifold

In the sections to follow the construction of IM is based on a version of the Lyapunov-
Perron method presented in the paper by Chow-Lu [2]. This method is based on the
following simple fact.

Lemma 1.1.

Let f(t) be a continuous function on R with the values in H such that
||QNf(z:)|| <C, tekR.

Then for the mild solution wu(t) (on the whole axis) to equation

d%quAu = 1(t) (L11)

to be bounded 1n the subspace QN% it 18 mecessary and suffictent that
t t
u(t) = e (t=s)4p +J‘e—(t ~DAPR, f(t)dT+ J. e~(t=DAQ, f(t)dt (1.12)
s —o0
for t € R, where p is an element from ByH and s is an arbitrary real
number.

We note that the solution to problem (1.11) on the whole axis is a function u(t) €
e C(R, H) satisfying the equation
t
u(t) = e =)y (s) + Je_(t DA g(t)dt
S

forany s € R.

Proof.

It is easy to prove (do it yourself) that equation (1.12) gives a mild solution
to (1.11) with the required property of boundedness. Vice versa, let u(t) be
a solution to equation (1.11) such that ||QNu(t)||9 is bounded. Then the func-
tion g (¢) = @y u(t) is a bounded solution to equation

S0 +Aa(t) = Quf(1).

Consequently, Lemma 2.1.2 implies that
t
a(t) = J' o 1=D4Q, f(1)dr.
—o0

Therefore, in order to prove (1.12) it is sufficient to use the constant variation
formula for a solution to the finite-dimensional equation

Wy ap=Bes), p()=Beult).
Thus, Lemma 1.1 is proved.

1563
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Lemma 1.1 enables us to obtain an equation to determine the function ®(p, t).
Indeed, let us assume that B (u, t) is bounded and there exists M, with the func-
tion @(p, ¢) possessing the property ||A9(I)(p, t)|| < Cforallp € ByH and t € R.
Then the solution to problem (1.1) lying in M, has the form

u(t) =pt)+d(p(t), t).

It is bounded in the subspace yH and therefore it satisfies the equation of the
form

u(t) = e (t=5)4p +
t t
+J'e-<t ~94p,B(u(1), 1)dt +'[ e =DAQ B(u(t), T)dt, (teR). (1.13)
S —o0
Moreover,
S
O(p, 5) = Qu(s) = J ¢ =DAQ B(u(t), 1)dr . (1.14)
Actually it is this fact that forms the core of the Lyapunov-Perron method. It is
proved below that under some conditions (i) integral equation (1.13) is uniquely
solvable for any p € P;H and (ii) the function ®(p, s) defined by equality (1.14)
gives IM.

In the construction of IM with the help of the Lyapunov-Perron method an im-
portant role is also played by the results given in the following exercises.

Exercise 1.5 Assume that sup{e_Y(s_t)IIf(t)Ilz t < s} < oo, where vy is any
number from the interval (Ay, Ay, ;) and s € R. Let w(t)be amild
solution (on the whole axis) to equation (1.11). Show that % (¢) pos-
sesses the property

sup {e‘Y(s ‘5)||A9u(t)||} < oo

t<s
if and only if equation (1.12) holds for ¢ < s .
Hint: consider the new unknown function

w(t) = e’ = u(r)
instead of u(t).
Exercise 1.6 Assume that f(¢) is a continuous function on the semiaxis
[s, +00) with the valuesin A such that for some y from the interval
(Ax» Ay,qp) the equation
sup {e TE DI F(D): t e [s, +o0)} < o0

holds. Prove that for a mild solution w(¢) to equation (1.11) on the
semiaxis [s, +oo) to possess the property
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sup{e_Y(S —t) |ABwu(t): ¢ e [s, +o0)} < o
it is necessary and sufficient that
t

u(t) = e (17944 +Je_(‘_f)A Qyf(t)dt -

S
+ o0

- J‘ e_(t_T)APNf(r)dr , (1.15)
t
where ¢ > s and ¢ is an element of @ ND(AG) . Hint: see the hint to
Exercise 1.5.

§ 2 Integral Equation for Determination
of Inertial Manifold

In this section we study the solvability and the properties of solutions to a class of in-
tegral equations which contains equation (1.13) as a limit case. Broader treatment of
the equation of the type (1.13) is useful in connection with some problems of the ap-
proximation theory for IM.

Fors € R and 0 < L < co we define the space C, = C% o(s =L, s) as the set
of continuous functions v (¢) on the segment [s —L, s] with the values in D(A)
and such that

bl = ,_u (eIl < oo

Here 7y is a positive number. In this space we consider the integral equation

v(t)=BS "[v](t), s-L<t<s, @.D

where

S

By “[0](1) = et =9)4p - Je_(t‘T)APB(U(T), T)dt +

t
t

+ J- e~ (t-DAQB(v (1), T)dt .
s—L
Hereinafter the index N of the projectors P; and Q,; is omitted, i.e. P is the ortho-

projector onto Lin{el, . eN} and @ = 1 —P . It should be noted that the most sig-
nificant case for the construction of IM is when L = oo .
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Lemma 2.1.

Let at least one of two conditions be fulfilled:

0O<L<oo and M( e_eLl 9+Lk]?/+1><q<1 2.2)
or 0< L <00 and
hvor =y 2 2R, +A0), O<a<, 2.3)

where k is defined by equation (1.7). Then for any fixed s € R there
exists a unique function v (t' p) € C, satisfying equation (2.1) for all

e[s—L, s], where v is an arbztrcw"y number from the segment [y,
Ans1] in the case of (2.2) and y = A +(2M/q) N the case of (2.3).
Moreover,

(5 p) =0 (-5 o < (1-a) ' [4%(p; —py)| 2.4)
and
|Us|s < (1-q) 1D, +||Aep||}; 2.5)
where
_ -1+6 -1+0
Dy = M(I+k)Ayi1" +May ™" (2.6)
Proof.

Let us apply the fixed point method to equation (2.1). Using (1.8) it is easy
to check (similar estimates are given in Chapter 2) that

[49(B, “ (v (1) = B}, “(03) ()] <

< &40, —py)| +j 2y, (7) — vy () e+

t

0 P
N j [(%) i e Vet Do, (1) g (D) g T <
s—L
< ekN(s_t)HAe( po)| +(ay (s, 1) +ay(s, 1)) S t)|vl—v2|
where

(s, t) =M J ti +7L]9v+1} g U= N=D) g @
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and
S
ay(s. 1) = Mjk]% NN 2.8)
Therefore, if the estimate
q,(s, t)+qy(s,t) < q, s-L<t<s (2.9
holds, then
, L L
By, “[01] =By, [va]|, < [A4%py —py)]| +a oy v, (2.10)

Let us estimate the values g, (s, t) and gy (s, t). Assume that (2.2) is fulfilled.
Then it is evident that
t

a,(s, 1) < MOO '[ (t—t)yOdt+ MAD, (t—s+1) =
s—L

=M ee(t—s+L)1 04 ML) [(t—s+1L)

and
q5(s, t) < Mkl?,(s—t) < Mkj%ﬂ(s—t)

for Ay; <y < Ay - Therefore,

00

1-6

Consequently, equation (2.2) implies (2.9). Now let the spectral condition (2.3)
be fulfilled. Then

ay(s. ) +ag(s, 0) < M(Eo (e —s 4 0)10 429 1),

Z 0
aq (3 lf) < '[ Meee ei(kN-H*Y)(Z’T)dT_FM
(t-7) A=Y

—00

for all ¥ < Ay, ;. We change the variable in integration § = (Ay_;—7)(t = 1)
and find that

Mk n M 7‘]?/ +1
Oy =0 Ay
where the constant k is defined by (1.7). It is also evident that

0
qy(s, t) < }71‘{_%
provided that y > A,,. Equation (2.3) implies that y = A, +(2M/q) k]% lies in
the interval (Ay, Ay, ). If we choose the parameter y in such way, then we get

q(s, t) <

)
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M(L+R)AY

q,(s, t)+ay(s, t) < 5o
A=A =5 Ay

q
+ 2 .
+17
Hence, equation (2.3) implies (2.9). Therefore, estimate (2.10) is valid, provi-
ded that the hypotheses of the lemma hold. Moreover, similar reasoning enables
us to show that

BS“[v]s < Dy +149p] +qlvl;, @2.11)

where D is defined by formula (2.6). In particular, estimates (2.10) and (2.11)
mean that when s, L, and p are fixed, the operator B;’L maps C into itself
and is contractive. Therefore, there exists a unique fixed point v (¢, p). Evi-
dently it possesses properties (2.4) and (2.5). Lemma 2.1 is proved.

Lemma 2.1 enables us to define a collection of manifolds { M[S‘} by the formula

ML ={p+®L(p, s): p e PH},

where

®L(p, s)= | e ~DAQB(v (1), 1)dt = Qu(s; p). (2.12)

s—L
Here v(t) =v(t; p) is the solution to integral equation (2.1). Some properties of
the manifolds { M[; } and the function ®X(p, s) are given in the following assertion.

Theorem 2.1.

Assume that at least one of two conditions (2.2) and (2.3) is satisfied.
Then the mapping ¢)L( -, s) from PH into QH possesses the properties

a) |AP@L(p, s)| < Dy+q(1—q)"H{D,+]A%l} (2.13)
Jor any p € PH, hereingfier D, is defined by formula (2.6) and
Dy =M(1+k) A S (2.14)
b) the manifold MSL 1S a Lipschitzian surface and
[A9@L(py, 5) - @E(py, s)| < %]“Ae(pl_pz)” (2.15)

Jorall p,, py € PH and s € R;

o) Yu(t)=ult s;p +(1>sL(p)) is the solution to problem (1.1) with the
indtial data wy=p+PL(p, s), p e PH, then Qu(t)=DL(Pu(t), t)
for L = oo, In case of L < o the inequality

140 (Qu (t) — ®E(Pu(t), 1)) <

< Dy(1-q) te 4 q(1-q)2e " =) (D, + 4%} (2.16)
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holds for all s <t < s+ L, where y is an arbitrary number from the
segment [ Ly, Ay 1] o (2.2) is fulfilled and y = Ly + (ZM/q)kj% when
(2.3) s fulfilled,

d) #f B(u, t) = B(u) does not depend on t, then ®L(p, s) = PL(p), ie.
®L(p, t) is independent of t.

Proof.
Equations (2.12) and (1.8) imply that

S
0 (s
|AODL(p, s)| < M '[ [(Si_r) +k§,+1}e e 79 (1 A0y (o)) dr <

s—L

S
0 P
= M .[ [(%) +7L1?/+1]€ N1 (s T)dr+q1(s, s)ll, -
s—L

By virtue of (2.9) we have that g, (s, s) < q. Therefore, when we change the vari-
able in integration & = Ay, ;(s—1) with the help of equation (2.5) we obtain (2.13).
Similarly, using (2.4) and (1.8) one can prove property (2.15).

Let us prove assertion (c). We fix t; € [s, s +L] and assume that w(t) is a

function on the segment [s, s+L] such that w(t) = u(t) fort € [s, t;] and w(t) =
=wv(t) for t € [s—L, s]. Here v(t) is the solution to integral equation (2.1). Using
equations (1.4) and (2.1) we obtain that

w(t) = e"=9)4(p + DL(p, 5))+J€_(L_T)A3(w(r), T)dt =

S
t t

_ e—(t—S)Ap+Je‘(’f‘T)APB(w(r), T)dt+ Je_(t_T)A QB(w(1), )dt  (2.17)

S s—L

for s <t < t,. Evidently, equation (2.17) also remains true for ¢ € [s—L, s].Equa-
tion (1.4) gives us that

p=e _tO)Ap(tO) + Je_(s ~D4PB(w (1), T)dr.

Ly

Therefore, the substitution in (2.17) gives us that

tn, L
w(t) = Bpo(to)[w](t)+bL(tO, s; 1) (2.18)
forall t € [ty—L, t,], where p(t) = Pu(t) and
%7L
by (g 55 )= J e 1=D4QB (v (1), T)dT . (2.19)

s—L
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In particular, if L = oo equation (2.18) turns into equation (2.1) with s ={, and
p = p(t;). Therefore, equation (2.12) implies the invariance property Qu(t,) =
= O®(Pu(ty), t;).Let us estimate the value (2.19). If we reason in the same way as
in the proof of Lemma 2.1, then we obtain that

* —ln+ L
H{ql(s’ toy—L)+a;(s, tp—L) eY(S 0 )|U5|8}’

where ¢, (s, t) is defined by formula (2.7) and

”AebL(to, s; t)” < o mtgt L)y

t
0 _ _
qi(s. t)=M J (7)) +29,,)e vt Dar, (2.20)
s—L
Therefore, simple calculations give us that

|49, (tg. 55 t)] < ¢l By {D2+eY(St0+L)q|vs|S}, (2.21)

where D, is defined by formula (2.14). Let v, O(t) be the solution to integral equa-
tion (2.1) for s = ¢, and p = Pu(t,). Then using (2.12), (2.18), and (2.1) we find
that

Qu(ty) =@ (Puty), tg) = Q(w(ty) = v, () (2.22)

However, for all t € [t,—L, t,] we have that
to, L tn, L

w(t) =0, (1) = Byl [0](1) =Byl [0 ) (1)+ by (1, 55 1)

to, L
Therefore, the contractibility property of the operator Bp0 gives us that

R U A O It

Hence, it follows from (2.21) and (2.22) that

|4%(Qu(ty)) = ®E(Puty), ¢ HAG (tg) — ”zo(to))“ <

< ‘w —@t‘
0

< (1-¢)! {e‘YLDZ + qe_Y(tO_S)|Us|s} .

This and equation (2.5) imply (2.16). Therefore, assertion (c) is proved.
In order to prove assertion (d) it should be kept in mind that if B(u, ¢) =
= B(u), then the structure of the operator Bfg’ L enables us to state that

By “[o](t—h) = BST P 0,](1)

for s+h—L <t < s+h,where v,(t) = v(t—h). Therefore, if v(t) € CY g(s=L,s)
is a solution to integral equation (2.1), then the function

v(t) = v(t—h)eC, g(s+h-L, s+h)

Ly
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is its solution when s + & is written instead of s. Consequently, equation (2.12)
gives us that

OL(p, s+h) = Qu,(s+h)= Qu(s)=D(p, s) .

Thus, Theorem 2.1 is proved.

Exercise 2.1 Show that if [B(u, t)] < M, then inequalities (2.13) and
(2.16) can be replaced by the relations

|48 (p, s)| < Dy, (2.23)

140(Qu(t) —DL(Pu((t), ) < Dy(1—q) e, (2.24)
where D, is defined by formula (2.14).

§ 8 FExistence and Properties
of Imertial Manifolds

In particular, assertion (c) of Theorem 2.1 shows that if the spectral gap condition

hvar=hy 2 2+ R)AR, +0Y), O<a<1, 3.1
is fulfilled, then the collection of surfaces
M,={p+®(p, s): p e PH}, sek, 3.2)
is invariant, i.e.
U, s) Mg M,, —oo<s<it<oo. (3.3)

Here @(p, s) = ®®(p, s) is defined by formula (2.12) for L = co and U(t, s) is
the evolutionary operator corresponding to problem (1.1). It is defined by the for-
mula U(t, s)uy = u(t), where u(¢) is a mild solution to problem (1.1).

In this section we show that collection (3.2) possesses the property of exponen-
tial uniform attraction. Hence, {Mz} is an inertial manifold for problem (1.1). More-
over, Theorem 3.1 below states that {M,} is an exponentially asymptotically
complete 1M, i.e. for any solution u (t) = U(t, s)u, there exists a solution u(t) =
= U(t, s)u, lying in the manifold (2 (t) € M,, ¢ > s) such that

140(u(t) —a () < ce™ME=9) >0, t>s.

In this case the solution % (¢) is said to be an ¢nduced trajectory for u(t) on the
manifold IVIt . In particular, the existence of induced trajectories means that the so-
lution to original infinite-dimensional problem (1.1) can be naturally associated with
the solution to the system of ordinary differential equations (1.10).
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Theorem 3.1.

Assume that spectral gap condition (3.1) is valid for some q < 2 — J2.
Then the manifold (M, s € R} given by formula (3.2) is inertial for prob-
lem (1.1). Moreover, for any solution wu(t)= U(t, s)u, there exists an in-
duced tragectory w'(t) = U(t, s)u;, such that u*(t) e M, for t > s and

2(1-q)
(2-q)*-2
where | = Ly + %ng and t > s.

140 (w(t) —ur(t))] < e 19| A9(Quy - D(Pyu, 5))

, B4

Proof.

Obviously it is sufficient just to prove the existence of an induced trajectory
u*(t) € M, possessing property (3.4). Let u(¢) be a mild solution to problem (1.1),
u(t) = U(t, s)u,. We construct the induced trajectory u*(t) = U(t, s)uy, for u(t)

in the form (1) = wu(t) +w(t), where w(t) lies in the space Cf = Cy (s, + oo,
D (Ae)) of continuous functions on the semiaxis [s, +0) such that
lwlg, | = sup {eﬂt_s)”Aew(t)"} < o, (3.5)

L2s
where y = Ay+(2M/q) k]% . We introduce the notation
F(w, t)=B(u(t)+w, t)—B(u(t)) (3.6)
and consider the integral equation (cf. (1.15))
!
w(t) = BI[w](t) = e =94 q(w) + '[e—('f—ﬂ/* QF(w(t), 1)dt -

S
+ 00

— J. e =DAPF(w(t), T)dt, tels, +0), (3.7

t

in the space C;f . Here the value g (w) e QD(AY) is chosen from the condition
w(s)=wu(s)+w(s) e My,
i.e. such that
Quy+Quw(s)=D(Puy+Pw(s), s).
Therefore, by virtue of (3.7) we have
+o0
q(w) = —Quy+®| Puy — J e = DAPR(w (1), T)dr, 5. (3.8)

S

Thus, in order to prove inequality (3.4) it is sufficient to prove the solvability of inte-
gral equation (3.7) in the space C;’ and to obtain the estimate of the solution. The
preparatory steps for doing this are hidden in the following exercises.
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Exercise 8.1 Assume that F(w, ¢) has the form (3.6). Show that for any
w(t), w(t)eCf =C
and for ¢t > s the following inequalities hold:

IF(w(t), )] < eV M )

o (5. Fo01 D(A%))

o (3.9)

|F(w(t), 1) =F(@(t), ] < e " IMw -], , . (3.10)

Exercise 8.2 Using (1.8) prove that the equations

+ o0 )\‘9
J |40~ =DAp| g v(T=s)gr | <« N o1(t=5) (311)
YAy
t
J 40~ =DA Q| eV (F=5)gir | <
0
. k(1 =7)° +}\‘N+1 o 1(t=5) (3.12)
Ay =Y
hold for Ay <y < Ay,; and ¢ > s. Here k is defined by formula
a.m.
Lemma 3.1.

Assume that spectral gap condition (3.1) holds with q < 2 —J2. Then
B; 1S a continuous contractive mapping of the space C; wmto itself.
The unique fixed point w of this mapping satisfies the estimate

%\\AQ(Q% = ®(Pug, 5))|. (3.13)

uly, <

Proof.
If we use (3.7), then we find that

|49B; [w](1)] < (=8) 241 A9 (w)| +
+ o0
+ '[ |40~ = DA QI F(u (1), Tl dt + '[ |40t =D)4 p| | Faw (1), Tl d

for ¢ > s. Therefore, (3.9), (3.11), and (3.12) give us that

[49Bt [w] (1) < ¢ 71| 40g(w)] +

10 (1+k)nY
+{ N +( ) N+1}Me_y“_s)|wls .
V=Ay Ay —Y ’
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Since y = Ay + (2M/ q)k9 , spectral gap condition (3.1) implies that
|49BE[w] (1) < (= S)}W“"Aeq(w)” +qe_Y(t_S)|w|S’ L (3.14)
Similarly with the help of (3.10)—(3.12) we have that
[A°B;[w] () - B{[@] (1) <
< TN G(w) —q@) +qe T w-T, . (3.15)

forany w, w € C;r . From equations (3.8), (3.9), and (2.15) we obtain that
+ o0

M (s— (s
“Ae(q(w)JrQuo—CD(Puo, s))” < qu J | 4B (5= DA p| oY (T=5) g |w|s’ N

Therefore, (3.11) implies that

|49 (w)l < |A%Quy - D (Pug, s )\| ) ol -
Similarly we have that
0 T ' i
|A (a(w) —q(w))” < 50 _q)lw —wls’ 4 3.17)
It follows from (3.14)—(3.17) that
q2-q
Bt [w],. < [A%Quy—D(Puy, s))| + 5 T—g " + (3.18)
_ q 2—q _
Biw) - Bi, . < §i=a -,

Therefore, if ¢ < 2 — ﬁ , then the operator B;L is continuous and contractive in
C;L . Estimate (3.13) of its fixed point follows from (3.18). Lemma 3.1 is proved.

In order to complete the proof of Theorem 3.1 we must prove that the function

w(t)=u(t)+w(t)
is a mild solution to problem (1.1) lying in {M,, ¢t > s} (here w(¢) is a solution
to integral equation (3.7) ). We can do that by using the result of Exercise 1.2, the in-
variance of the collection {M,}, and the fact that equality (3.8) is equivalent to the
equation u*(s) € My . Theorem 3.1 is completely proved.

Exercise 3.8 Show that if the hypotheses of Theorem 3.1 hold, then the in-
duced trajectory u*(t) is uniquely defined in the following sense: if
there exists a trajectory »**(¢) such that u**(¢t) € M, for ¢ > s and

149w (1) —w(1))] < Ce77=9)

with 7 > Ay + ZTM?LI%,then w*(t) = u(t) for t > s.
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The construction presented in the proof of Theorem 3.1 shows that in order to build
the induced trajectory for a solution u(¢) with the exponential order of decrease y
given, it is necessary to have the information on the behaviour of the solution %(t)
for all values ¢ > s. In this connection the following simple fact on the exponential
closeness of the solution « (t) to its projection Pu(t) + @ (Pwu(t), ¢) onto the mani-
fold appears to be useful sometimes.

Exercise 3.4 Show that if the hypotheses of Theorem 3.1 hold, then the es-
timate

|AO(Qu(t) —D(Pul(t), t)) <
2 ~y(t=s)| 40 _
< R (=9 A0(Puy — D(Puy, 1))
is valid for any solution w(t) to problem (1.1). Here y = A+
+(2M/q)k]% and t>s (Hint: add the value ®D((Pu*(t),t)—
—Qu*(t)) =0 to the expression under the norm sign in the left-hand
side. Here u*(t) is the induced trajectory for w(t)).

It is evident that the inertial manifold {M,} consists of the solutions «(t) to problem
(1.1) which are defined for all real ¢ (see Exercises 1.3 and 1.4). These solutions can
be characterized as follows.

Theorem 3.2.

Assume that spectral gap condition (3.1) holds with g < 2 -2 and
{M,} is the inertial manifold for problem (1.1) constructed in Theorem 3.1.
Then for a solution wu(t) to problem (1.1) defined for all t € R to lie in the
inertial manifold (u(t) € M), it is necessary and sufficient that

ul, = sup{e_Y(S_l)"Aeu(t)": —0 <t <sp< o (3.19)

Jor each s € R, where v = Ay + ZTMKI%

Proof.
If u(t) e M,, then w(t)=Pu(t)+D(Pu(t), t). Therefore, equation (2.13)
implies that

qD
[40u(t)| < D, + l__i.] + 1%21 |49Pu (1) (3.20)

A

The function p (t) = Pu(t) satisfies the equation
t
p(t)=e =9 4p(s)+ J.e_(t_T)APB(u (1), T)dt
S

for allreal ¢ and s . Therefore, we have that
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S
[40p()] < e AN | A0p(s)| + m2d, J TN (1 4| A1) de
¢
for ¢ < s. With the help of (3.20) we find that

o S
)k MA —1)%
49p(0)] < C(s, N, q)el® ™ oe 22 J TN 40p ()| de
t
for ¢ < s, where

qD, 1
s 8. a) = Wp(s) (140, )

Hence, the inequality
M8 ¢
Q) < C(s, N, @)+ y— J(p(T)dt
t

holds for the function @(t) = ||A9p(t)|| e(tfs) hy and ¢ < s. If we introduce the func-
tion y(¢) = '[: (¢(7)dt, then the last inequlity can be rewritten in the form

g
\y'(t)+1—_q—q/(t) > -C(s, N, q), t<s,

or

M M,

d%{\y(t)exp {ﬁ tH > —C(s, N, q)exp{Tq t}, t<s.

After the integration over the segment [t, s] and a simple transformation it is easy
to obtain the estimate

0 M8,
[49p()] < C(s, N, q)exp (kNJrl—_EI-)(s —1) b (3.21)
Obviously for q¢ < 2 — ﬁ we have that
M2, oM 0

Therefore, equations (3.21) and (3.20) imply (3.19).
Vice versa, we assume that equation (3.19) holds for the solution « (t). Then

IBu(t)l < G- OM(1+d,), t<s. (3.22)

It is evident that ¢ (t) = e~ Qu () is a bounded (on (—oo, s]) solution to the
equation

W (A-r)a =F ().
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where F(t) = exp{—y(s—t)} QB (u(t)). By virtue of (3.22) the function F(t) is
bounded in Q H . It is also clear that A,, = A—7 is a positive operator with discrete
spectrum in @ H . Therefore, Lemma 1.1 is applicable. It gives
t
Qu(t)= [ e -94QB () dr.
o0

Using the equation for Pu(t) it is now easy to find that
u(t)=By “[u](t), t<s,

where p = Pu(s) and B;’ *[u] is the integral operator similar to the one in (2.1).
Hence, we have that Qu(s) = ®(Pu(s), s) accoring to definition (2.12) of the
function @(p, s) = ®*(p, s). Thus, Theorem 3.2 is proved.

The followmg assertion shows that IM |\/| = |\/| can be approximated by the mani-
folds { ME s}, L < oo, with the exponentlal accuracy (see (2.12)).

Theorem 3.3.

Assume that spectral gap condition (3.1) is fulfilled with q < 1. We also
assume that the function (’DL(p, s) 1is defined by equality (2.12) for
0 < L < oo. Then the estimate

L L
0@ (p, 5)-0"p, 5)) <
_l+g
2(1-q)*
is valid with L ; =min(L,, Ly), 0< Ly, L, < oo; the constants D, and D,
are defined by equations (2.6) and (2.14);

_ 2M 40 s _2M(1-q),0
=TS AN, Oy = W)‘N

< Dy(1-gq)te N min g (D, +[A0p|} O min (3.23)

Proof.
Let 0 < L < Ly < oo Definition (2.12) implies that

L L
D Y(p, 5) =D 2(p, 5) = Q(v(s) —vy(s)), (3.24)
where U](t) is a solution to integral equation (2.1) with L = L , J=1, 2.The ope-
rator Bs’ 2 acting in Cy 6(5 Ly, s) (see (2.1)) can be represented in the form

By [0](0)= By ")) +b (s 1s), tels—Ly 5],

where
s—L1

b(v; 1, 5) = '[ e~(1=DA QB(v(1), T)dt

s—L2
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and v (t) is an arbitrary element in C, (s =Ly, s). Therefore, if v,(t) is a solution
to problem (2.1) with L = Lj , then

s, L s, L
vy(t) —vy(t) = B, o] =B, [vy] = b(vy; 1, 5) (3.25)

forall s—L; <t < s. Let us estimate the value b(vz; t, s). As before it is easy to
verify that

[400 (vy; 4, s)] < & T TN (e (s L)) 4y (s =L))o, )

forallt € [s—Ly, s], where

t
ry(t) = M J [4Pe~(t-0)A Q| dr,

—00

l
ry(t) = MJ [40e-(t-0)4 Q] ¥~ Ve |

Itq

and the norm |vy 5

by the formula

is defined using the constants q* =

S, x

and y,= Ay + 27]—”7»]6\,

[vg], , = sup {e_y*(s_t)”Aevz(t)“: t €[s—Ly, s]}

Evidently, spectral gap condition (3.1) implies the same equation with the parameter
q" instead of q . Therefore, simple calculations based on (1.8) give us that

s=1)q"
2 )

where D, is defined by formula (2.14). Using Lemma 2.1 under condition (2.3) with
q* instead of ¢ we obtain that

oo, < (1=a") (D + 1A%},

r(t) <D, and ry <e '+l

where Dy is given by formula (2.6). Therefore, finaly we have that

0 ) —(t—s+ L)\ q* v, L
“A b(vy; t, s)” < e LVEN+1 D2+m€ 1(D1+||Aep||)

forallt € [s—L;, s]. Consequently,

sup {QYU—S)”A%(UZ; t, S)H: t e[s—Ly, s]} <

—yL * L
<e 1{D2+2(1q7_q*) el 1(D1+||A910||)}~
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. L, . . . .
Therefore, since B;’ 1 is a contractive operator in CY g(s—Ly, s), equation (3.25)
gives us that

(1—q)|1)1 _2)2|CY’ g(s =Ly, s) <

¢ o Mip il }Jrq NCATALS (D1+||A9p||)

Here we also use the equality q¢* =
(3.24). Theorem 3.3 is proved.

(1+q). Hence, estimate (3.23) follows from

DOj—

Exercise 8.5 Show that in the case when |B(u, t)| < M equation (3.23)
can be replaced by the inequality

[40@" 1 (p, 5)-®"2(p, 5))| < Dy(1-q) e I min

Exercise 36 Assume that the hypotheses of Theorem 3.1 hold. Then the
estimate

[49(Qu (1) —@L(Pu(t), 1)) <
< e’ +uA6uo\|)e-YN“-s>+cR

holds for ¢ > ¢, and for any solution % (¢) to problem (1.1) possess-
ing the dissipativity property: |A% (¢ 1%/[)” < R for t > 1, >s and for
some R and t¢,. Here yy = Ay +22 Ay and the constant o > 0
does not depend on N .

Therefore, if the hypotheses of Theorem 3.1 hold, then a bounded solution to prob-
lem (1.1) gets into the exponentially small (with respect to k]ev and L) vicinity of
the manifold {MSL : —o0 < § < o0} at an exponential velocity.
According to (2.12) in order to build an approximation {IVI;L } of the inertial
manifold {MS} we should solve integral equation (2.1) for L large enough. This
equation has the same structure both for L. < co and for L = oo . Therefore, it is im-
possible to use the surfaces {M SL} directly for the effective approximation of {M,}.
However, by virtue of contractiveness of the operator B;’ “ in the space Cs_ =
= Cy’ o(—o0, ), its fixed point v (¢) which determines M can be found with the
help of iterations. This fact enables us to construct the collection {M,, ¢} of appro-
ximations for { M} as follows. Let V=", 5 (; p) be an element of C . We take

v, =0, (tp)=ByTlv, 1](t), n=1,2 ..,
and define the surfaces {M,, } by the formula
Mn’ s={p+®, (v, s): pe PH},
where @, (p, s) = QUTZ,S(p, s), m=1,2,..
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Exercise 8.7 Letv, = p andlet B(u, t) = B(u). Show that
Oy(p, s)=0 and D (p, s)=AT1QB(p).

Exercise 3.8 Assume that spectral gap condition (3.1) is fulfilled. Show
that

|49, (0. 5) -0, )| = (o], + (1= [Py + 14901 ),

where D, is defined by formula (2.6) and @(p, s) is the function
that determines the inertial manifold.

Exercise 3.9 Prove the assertion for @ (p, s) similar to the one in Exer-
cise 3.5.

Theorems represented above can also be used in the case when the original system is
dissipative and estimates (1.2) and (1.3) are not assumed to be uniform with respect
tou €D (Ae) . The dissipativity property enables us to restrict ourselves to the con-
sideration of the trajectories lying in a vicinity of the absorbing set when we study
the asymptotic behaviour of solutions to problem (0.1). In this case it is convenient
to modify the original problem. Assume that the mapping B(w, t) is continuous with
respect to its arguments and possesses the properties

IB(u, ) < Cpy,  [B(uy, t) =B(ug, t)] < Cp”A@(u1 —uz)” (3.26)
for any p >0 and for all u, u;, and u, lying in the ball B = {v: | A0y < p}.
Let y (s) be an infinitely differentiable function on R, = [0, o) such that

x(s)=1, 0<s<1; x(s)=0, s22;
0<yx(s)<1, Ix'(s) <2, seR,.
We define the mapping B P (u, t) by assuming that
Bp(u, t) = y(RA[)B(u, t), weD(A9). (327

Exercise 8.710 Show that the mapping Bp(u, t) possesses the properties
|4%Bg (u, 1) < M,

|Bg(uy, t) =Bg(ug, t)] < M|ANuy —uy)|, (3.28)
where M = Cyp(1+2/R) and Cp is a constant from (3.26).
Let us now assume that B(u, t) satisfies condition (3.26) and the problem
du
T +Au = B(u, t), Ul,_ o= Yo, (3.29)

has a unique mild solution on any segment [s, S+ T] and possesses the following
dissipativity property: there exists B, > 0 such that for any £ > 0 the relation
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|4%(1, 53 ug)| <Ry forall t—s >ty(R) (3.30)
holds, provided that “AGMOH <R .Here u(t, s; uo) is the solution to problem (3.29).

Exercise 3.11 Show that the asymptotic behaviour of solutions to problem
(3.29) completely coincides with the asymptotic behaviour of solu-
tions to the problem

du
G tAu = Bog (u.t),  ul,_ = uq, (3.31)

where B, R, is defined by formula (3.27) and R is the constant
from equation (3.30).

Exercise 312 Assume that for a solution to problem (3.29) the invariance
property of the absorbing ball is fulfilled: if ”AeuOH <R, then
HAeu (t, s; uo)“ <R forall t < s.Let M, be the invariant manifold
of problem (3.31). Then the set ME0 = M, N {w: |A4%] < R} is in-
variant for problem (3.29): if u € Mfo , then u(t,s; uy) € MSRO,
t2>s.

Thus, if the appropriate spectral gap condition for problem (3.29) is fulfilled, then
there exists a finite-dimensional surface which is a locally invariant exponentially at-
tracting set.

In conclusion of this section we note that the version of the Lyapunov-Perron me-
thod represented here can also be used for the construction (see [13]) of inertial
manifolds for retarded semilinear parabolic equations similar to the ones considered
in Section 8 of Chapter 2. In this case both the smallness of retardation and the fulfil-
ment of the spectral gap condition of the form (3.1) are required.

§ 4 Continuous Dependence of Inertial
Manifold on Problem Parameters

Let us consider the Cauchy problem

du x
E+Au=B (u, t), ul,_ =uy, seR 4.1

in the space H together with problem (1.1). Assume that B*(u, ¢) is a nonlinear
mapping from D(Ae) x R into H possessing properties (1.2) and (1.3) with the
same constant M as in problem (1.1). If spectral gap condition (3.1) is fulfilled, then
problem (4.1) (as well as (1.1)) possesses an invariant manifold
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M, ={p+®(p, s): pePH}, sek. (4.2)

The aim of this section is to obtain an estimate for the distance between the
manifolds My and M . The main result is the following assertion.

Theorem 4.1.

Assume that conditions (1.2), (1.3), and (3.1) are fulfilled both for
problems (1.1) and (4.1). We also assume that

IB(v, t)=B"(v, t)] < py+ pyladl (4.3)

Sorall v e D(Ae) and t € R, where p, and p, are positive numbers. Then
the equation

P17+ Py
1-0
Ay
is valid for the functions ®(p, s) and @' (p, s) which give the invariant

manifolds for problems (1.1) and (4.1) respectively. Here the mumbers
Cy(a. 0) and Cy(q, 0, M) do not depend on N and p;.

58161%||A9(<1>(p, s)— @ (p, )| < Cy(q, 0) +Cy(q, 0, M) p,|A%p|

Proof.
Equation (2.12) with L = oo implies that

|AB (D (p, s) — D(p, s))| < J |40~ (s—DA | IB(v(7), ) = B*(v*(7), T)l dr,

where v(1) and v*(t) are solutions to the integral equations of the type (2.1) cor-
responding to problems (1.1) and (4.1) respectively. Equations (1.3) and (4.3) give
us that

|B(v(7), T) = B'(v*(7), T < M|AO(w(T) —2*(7)) +(p1 +py ||A%(r)||) <
< e’/(s_f)(Mh)—U*|S+p2|v|5)+p1 (4.4)
for T < s, where

fwl; = ess sup {e‘W‘t)IIA@w(t)II} (4.5)
<s

and v = XN + %—Mk]ev as before. Hence, after simple calculations as in Section 2 we
find that

|40 (D (p, s) — D(p, s))| < %OU -0+ %|U|S)+ o)) ﬁ ) (4.6)
+

Let us estimate the value |v —v*| ¢+ Since v and v* are fixed points of the correspon-
ding operator BZ’ * we have that
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140w (1) —v*(1))] < J||Aee_(t_T)AP||||B(U(r), ) —B(v*(1), 1)|dt +

+ '[ |40~ =DAQ||B(u (1), T) - B*(v*(z), D)l dt .

Therefore, by using spectral gap condition (3.1) and estimate (4.4) as above it is
easy to find that

. 4 , 4P 1 1+k
v -0, < q|v—v|s+72~|v|s+pl[ J

- 4 =
1-6 1-6
}“N }“N +1

Consequently,

v < 2 P2 P12+
s $ —

ol ) ‘
I—g M "lsT1=5 31-0
1 1 Iy
Therefore, equation (4.6) implies that

0 & a  Pa 2-q 2+k
|A8(@(p, 5) - D'(p, s)) < —g'2 lvlg + Py 524 7»1]\?9.

Hence, estimate (2.5) gives us the inequality

PitPy 24k, g P2
(1=q)* 2579 2(1-q? M

This implies the assertion of Theorem 4.1.

|2%@(p, 5) -, s)) < [A%] .

Let us now consider the Galerkin approximations u,,(t) of problem (1.1). We re-
mind (see Chapter 2) that the Galerkin approximation of the order m is defined as a
function u,,(¢) with the values in P, [, this function being a solution to the problem

du,,
T+Aum:EHB(umO), um‘t:S: UGy - 4.7
Here B, is the orthoprojector onto the span of elements {el, e, em} in H.

Exercise 4.1 Assume that spectral gap condition (3.1) holdsand m > N+1 .
Show that problem (4.7) possesses an invariant manifold of the form

Mgm) ={p+®")(p, s): p e PH}

in P H, where the function @) (p, s): PH— (P,—P)H is de-
fined by equation similar to (2.12).
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The following assertion holds.

Theorem 4.2.

Assume that spectral gap condition (3.1) holds. Let ®(p, s) and
¢)(m)(p, s) be the functions defined by the formulae of the type (2.12) and
let these functions give invariant manifolds for problems (1.1) and (4.7) for
m > N+ 1 respectively. Then the estimate

D, +]A°
C(a, M, 0) |, Di+14%l

1-6
7“m+1 1_AN+1
A

is valid, where the constant D, is defined by formula (2.6).

|48(D(p, s) —D™)(p, s)) < (4.8)

m+ 1

Proof.
It is evident that

(@(p, s)—@™)(p, s5))=Q[v(s; p)—v™(s; p)], 4.9
where v (t, p) and v(m)(t, p) are solutions to the integral equations
v(t) = By “[v](t), -eo<t<s,
and
oM (1)=P, B;’ Clm](t), -w<t<s.
Here B}y ™ is defined as in (2.1). Since

v(t)=ol(t) = (I=B,)v(t) + B, [By “[v](t) - By " [o(™](1)],

we have
|49 () —o(m) (1)) = [A%(1-B,)v(1)] +[4%[B} * [v](t) - By “[o(™)](1)] -

The contractiveness property of the operator Bfg’ * leads to the equation

[49(o(t) —om) ()] = |40(1=B,)w (1) + - o —o(m) ev(s =),
In particular, this implies that

| —v(m)|; = sup e V(51 148w (£) —o(m) (1)) < (1-q)! |(1—Pm)v|s )
Hence, with the help of (4.9) we find that
[A%(@(p, s) — @) (p, s)) < [A%v (s) =) (s)) < o —v(™); < (4.10)

< (1-0)1|(1-B, )|,
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Let us estimate the value |(1-£,)v| . It is clear that
t
(1-P,)v(t) = J e-(t=04(1-P ) B(v(1))dr.
Zo0
Therefore, Lemma 2.1.1 (see also (1.8)) gives us that

#o01-5, Mj 2 a8, e

:| (L_T))“m+1dr+

t
0 - — —
+MJ‘ [(17_9%) +}\,?n+1:| e )\”erl(z T) e(z T)V d'f |U|S'6y(87t) ’

—00

where

v =+ 2008 < iy <2

m+1
as above. Simple calculations analogous to the ones in Lemma 2.1 imply that

M(l+k)+ (1+k)7\‘m+1 y(s—t)|v|

)\.;,L_Jrel }bm-!—l_y

[4%(1=E, )0 (1) <

where the constant k¥ has the form (1.7). Consequently, using (2.5) we obtain

(1-B,)0|, < M(H@—%)lms) <

)L%{fl m+1

M(1+k A -1 ~
< ML (128 ) (1 gy (b, L))
}“m+1 m+1

This and (4.10) imply estimate (4.8). Theorem 4.2 is proved.

Exercise 4.2 In addition assume that the hypotheses of Theorem 4.2 hold
and |B(u, t)| < M .Show that in this case estimate (4.8) has the form

140D (p, s)-@)(p, s))| < C(q; M, O)1; 10

m+1
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: § 5 FExamples and Discussion
b
t
: Example 5.1
3 Let us consider the nonlinear heat equation
ou _  d%u
E_vw+f(x,u,t), O<x<l, t>0, (5.1)
u|x:O:u|x:l:O ’ (5'2)
ul, o= () - (5.3)

Assume that Vv is a positive parameter and f (x, u, t) is a continuous function
of its variables which possesses the properties

M
|f(x, uy, t) = f(2, ug, t)| < M|u1 —u2| . 1f(2, 0, ) < ﬁ .

Problem (5.1)-(5.3) generates a dynamical system in LZ(O, 1) (see Section 3
of Chapter 2). Therewith
d2
dz2’
where H5(0, 1) is the Sobolev space of the order s . The mapping B( -, t) given
by the formula w(x) — f(2, u(x), t) satisfies conditions (1.2) and (1.3) with

0 = 0. In this case spectral gap condition (2.3) has the form

A=-v D(A)=H(0, L) N H2(0, 1),

p)
- 2 _N2) > 4M
VE(N+1P-N2) > 4

Thus, problem (5.1)—(5.3) possesses an inertial manifold of the dimension N,
provided that

yeMe (5.4)

for some g < 2-.2.

Exercise 5.1 Find the conditions under which the inertial manifold of prob-
lem (5.1)—(5.3) is one-dimensional. What is the structure of the cor-
responding inertial form?

Exercise 5.2 Consider problem (5.1) and (5.3) with the Neumann bounda-
ry conditions:

ou
ox

_ou _
=5 =0 (5.5)

‘x:O ‘x:l

Show that problem (5.1), (56.3), and (5.5) has an inertial manifold
of the dimension N+ 1, provided condition (5.4) holds for some
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N > 0. (Hint: A=—v(d?/dz?) + & with condition (5.5), B(u, t) =
= —eu+f(x, u, t), where € > 0 is small enough).

Exercise 5.8 Find the conditions on the parameters of problem (5.1), (5.3),
and (5.5) under which there exists a one-dimensional inertial mani-
fold. Show that if f(x, w, t) = f(u, t), then the corresponding iner-
tial form is of the type

p(t) =f(p(t), ), p|,_q=po-

Example 52

Consider the problem

ou 0%u ( )
—=Vv—s+fla, u, =, t], 0<ax<l, t>0,
ot 022 I ox (5.6)

u|x:0:u|x:l: 0, u|t:0=u0(x) .

Here v > 0 and f (x, u, &, t) is a continuous function of its variables such that
|f(x, uy, &, t) = fx, uy, &, t)| < L1|u1—u2|+L2|§1—<§2| b7

forallz € (0, 1), t >0 and
l

J[f(x, 0, 0, )]%dw < L5,

0
where L j are nonnegative numbers. As in Example 5.1 we assume that
A=y E D(A)=H}(0, 1) N H2(0, 1), B(u, t)= f(x u, t)
dxza 0 ) > ) B B B 8{[’ .

It is evident that
aul 6u2

By, 1) = Blug, O] < Lfus —ug| + Lo 5 — 5

Here | - | is the norm in L2(0, ). By using the obvious inequality
oulz o (T, 12 1
EE (P 1d?,  wenbo. ),
we find that
_ 1 ! 1/2(,, —
By, 0) =By, 0)] < Jo(Ly o+ L[4V, ~u).
Hence, conditions (1.2) and (1.3) are fulfilled with

1 iy (L)
9—2, M—max{Ls,ﬁ T[L1+L2 }
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Therewith spectral gap condition (2.3) acquires the form

FeN+1) 2 2N 1ok 1)),
where
X
k:_J'é 12=E g = [
V2 0
Thus, the equation
14+ [F N+1 _ ma v

2 2N+1 ~ 2IM

T n 1 ng v
2*@*@ SNFI S 1

must be valid for some 0 < g < 2 — ﬁ . We can ensure the fulfilment of this con-
dition only in the case when

TqyaV
2+/\E< l?w ) QOZZ_A/é7

or

Le.if

_ 1 (1 JV Jé_1
M=max{L3, 7_;(T.[LIJFLQ} < 2n’ Thi (5.9)

Thus, in order to apply the above-presented theorems to the construction of the
inertial manifold for problem (5.6) one should pose some additional conditions
(see (5.7) and (5.9)) on the nonlinear term f(x, u, du/dx, t) or require that the
diffusion coefficient v be large enough.

Exercise 54 Assume that f(x, u, &, t)=¢f(x, u, &, t) in (5.6), where
the function f possesses properties (5.7) and (5.8) with arbitrary
Lj > (. Show that problem (5.6) has an inertial manifold for any
0 < &< gy, where

S22 -1 101 !
€g=2T LV 2A/§+A/E.{max{[43, \C/(ﬁLl_l_Lz)H .

Characterize the dependence of the dimension of inertial manifold
on¢.

Exercise 5.5 Study the question on the existence of an inertial manifold for
problem (5.6) in which the Dirichlet boundary condition is replaced
by the Neumann boundary condition (5.5).
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It should be noted that
A, =Cyn*%(1+0(1)), mn->o, d=dmQ,

where kn are the eigenvalues of the linear part of the equation of the type

%:vAu+f(x, u, Vu, t), xeQ, >0,

in a multidimensional bounded domain Q . Therefore, we can not expect that Theo-
rem 3.1 is directly applicable in this case. In this connection we point out the paper
[3] in which the existence of IM for the nonlinear heat equation is proved in a boun-
ded domain QQ = R? (d < 3) that satisfies the so-called “principle of spatial ave-
raging” (the class of these domains contains two- and three-dimensional cubes).

It is evident that the most severe constraint that essentially restricts an applica-
tion of Theorem 3.1 is spectral gap condition (3.1). In some cases it is possible to
weaken or modify it a little. In this connection we mention papers [6] and [7]
in which spectral gap condition (3.1) is given with the parameters g = 2 and k¥ = 0
for 0 < 0 < 1. Besides it is not necessary to assume that the spectrum of the opera-
tor A is discrete. It is sufficient just to require that the selfadjoint operator A pos-
sess a gap in the positive part of the spectrum such that for its edges the spectral
condition holds. We can also assume the operator A to be sectorial rather than self-
adjoint (for example, see [6]).

Unfortunately, we cannot get rid of the spectral conditions in the construction
of the inertial manifold. One of the approaches to overcome this difficulty runs as
follows: let us consider the regularization of problem (0.1) of the form

d
d—Z;+Au+sAmu = B(u, 1), u|,_,=tg- (5.10)

Here ¢ > 0 and the number m > 0 is chosen such that the operator A = A + gA™
possesses spectral gap condition (3.1). Therewith IM for problem (5.10) should be
naturally called an approximate IM for system (0.1). Other approaches to the con-
struction of the approximate IM are presented below.

It should also be noted that in spite of the arising difficulties the number of equations
of mathematical physics for which it is possible to prove the existence of IM is large
enough. Among these equations we can name the Cahn-Hillard equations in the do-
main Q = (0, L)%, d = dimQ < 2, the Ginzburg-Landau equations (Q = (0, L)%,
d < 2), the Kuramoto-Sivashinsky equation, some equations of the theory of oscilla-
tions (d = 1), a number of reaction-diffusion equations, the Swift-Hohenberg equa-
tion, and a non-local version of the Burgers equation. The corresponding references
and an extended list of equations can be found in survey [8].

In conclusion of this section we give one more interesting application of the
theorem on the existence of an inertial manifold.
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Example 58

Let us consider the system of reaction-diffusion equations

ou _ oul  _
gt——vAu—i-f(u, Vu), %69—0, (5.11)
in a bounded domain Q = R?. Here u = (uy, ..., u,,) and the function f(u, &)
satisfies the global Lipschitz condition:
(s €)= f(v, Ml < Lilu—of +1& =P}, (5.12)

where u, v € R™, &, 1 e R™% and L > 0. We also assume that | f(0, 0)] < L.
Problem (5.11) can be rewritten in the form (0.1) in the space H = [L2(Q)]™
if we suppose

Au=-vAu+u, B(u)=u+f(u, Vu).
It is clear that the operator A is positive in its natural domain and it has a dis-
crete spectrum. Equation (5.12) implies that the relation

1/2
|B(u) -B(w)| < Lﬂu—vﬁ+wvml~wﬁ} +lu -] <

1/2
< [1 +Lmax{1; LB {Hu —o2 + v|V(u —U)||2}
NG

is valid for B(w) . Thus,

1B(u) =B(w)l < M|AV2(u v,
where

M=1+ Lmax{l; L}.

SV
Therefore, problem (5.11) generates an evolutionary semigroup S, (see Chap-
ter 2) in the space D(Al/ 2) . An important property of S, is the following: the
subspace L which consists of constant vectors is invariant with respect to this
semigroup. The dimension of this subspace is equal to 72 . The action of the
semigroup in this subspace is generated by a system of ordinary differential
equations
?Tl; = f(u, 0), wu(t)el. (5.13)
Exercise 5.6 Assume that equation (5.12) holds for & = 11 = 0. Show that
equation (5.13) is uniquely solvable on the whole time axis for any
initial condition and the equation

sup {e_L(s _t)lu (s)|} < oo (5.14)

t

holds forany s € R.
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The subspace L consists of the eigenvectors of the operator A corresponding to the
eigenvalue A, = 1. The next eigenvalue has the form A, = v, +1, where i, is
the first nonzero eigenvalue of the Laplace operator with the Neumann boundary
condition on 0€2. Therefore, spectral gap equation (3.1) can be rewritten in the
form

v, > %(1+Lmax{1; JLVB ((1+£)W+1) (5.15)

for N=m and 6 = 1/2, where 0 < ¢ < 2 — /2. It is clear that there exists vy >0
such that equation (5.15) holds for all v > v, . Therefore, we can apply Theorem 3.1
to find that if v is large enough, then there exists IM of the type

M :{p+®(p):p elL,®: L 5HO L}.

The invariance of the subspace L and estimate (5.14) enable us to use Theorem 3.2
and to state that L < M. This easily implies that ®(p) = 0, ie. M = L. Thus,
Theorem 3.1 gives us that for any solution u(t) to problem (5.11) there exists a so-
lution % (¢) to the system of ordinary differential equations (5.13) such that

lu(t) —u(t), < Ce?t, 120,

where the constant ¥ > 0 does not depend on «(¢) and | - |, is the Sobolev norm
of the first order.

Exercise 5.7 Consider the problem

2
ou _ vau+f(x, u), 0<x<m; ul,

é? 5&7—? u| _TC: O, (516)

=0 = x=
where the function f(x, ) has the form
S, u) = gy (uy, ug)sinw + gq(uy, uy)sin2x.

Here

T
2 . .

u; = T—CJ-u(x)smjxdx, j=1,2,

0
and g, (u}, uy) are continuous functions such that

|9;(uy, ug) —g;(vy, vy)| <

2 2 1/2
< LJ-Ou1 v+ |ug — vy ) ; 9,(0, 0)=0.

Show that if

2 2 2
Vv o> 75(&—1) In(L]+L3),
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then the dynamical system generated by problem (5.16) has the
two-dimensional (flat) inertial manifold

M = {p;sinx + pysin2x: p,, vy € R}
and the corresponding inertial form is:

D1+Vvpy = 9(P1, P3), Dyt 4VDy = go(Py, D) -

Exercise 5.8 Study the question on the existence of an inertial manifold
for the Hopf model of turbulence appearance (see Section 7 of Chap-
ter 2).

§ 6 Approximate Inertial Manifolds
Sfor Semilinear Parabolic Equations

Even in the cases when the existence of IM can be proved, the question concerning
the effective use of the inertial form

Op+Ap =PB(p+D(p, t), t) (6.1)

is not simple. The fact is that it is not practically possible to find a more or less ex-
plicit solution to the integral equation for ®@(p, t) even in the finite-dimensional
case. In this connection we face the problem of approximate or asymptotic construc-
tion of an invariant (inertial) manifold. Various aspects of this problem related to fi-
nite-dimensional systems are presented in the book by Ya. Baris and O. Lykova [14].

For infinite-dimensional systems the problem of construction of an approxi-
mate IM can be interpreted as a problem of reduction, i.e. as a problem of construc-
tive description of finite-dimensional projectors P and functions ®(-, t): PH —
— (1 =P)H such that an equation of form (6.1) “inherits” (of course, this needs
to be specified) all the peculiarities of the long-time behaviour of the original system
(0.1). It is clear that the manifolds arising in this case have to be close in some sense
to the real IM (in fact, the dynamics on IM reproduces all the essential features of
the qualitative behaviour of the original system). Under such a formulation a prob-
lem of construction of IM acquires secondary importance, so one can directly con-
struct a sequence of approximate IMs. Usually (see the references in survey [8]) the
problem of the construction of an approximate IM can be formulated as follows: find
a surface of the form

M,={p+D(p, t): pe PH}, (6.2)

which attracts all the trajectories of the system in its small vicinity. The character of
closeness is determined by the parameter k;vl +1 related to the decomposition
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dp+Ap PB(p+q, t),
(6.3)

+Aq (1-P)B(p+aq,t).

We obtain the trivial approximate IM M(O) if we put @(p, t) = Py(p, t) =0 in (6.2).
In this case M(O) is a finite- d1mens10nal subspace in # whereas inertial form (6.1)
turns into the standard Galerkin approximation of problem (0.1) corresponding to
this subspace. One can find the simplest non-trivial approximation I\/Itl) using for-
mula (6.2) and assuming that

D(p, t)= O (p, t) = A (1-P)B(p, 1). (6.4)

The consideration of system (0.1) on Mt(l) leads to the second equation of equa-
tions (6.3) being replaced by the equality Ag = (1-P)B(p, t). The results of the
computer simulation (see the references in survey [8]) show that the use of just the
first approximation to IM has a number of advantages in comparison with the tradi-
tional Galerkin method (some peculiarities of the qualitative behaviour of the system
can be observed for a smaller number of modes).

There exist several methods of the construction of an approximate IM. We present
the approach based on Lemma 2.1 which enables us to construct an approximate IM
of the exponential order, i.e. the surfaces in the phase space H such that their expo-
nentially small (with respect to the parameter A N +1 ) Vicinities uniformly attract all
the trajectories of the system. For the first time this approach was used in paper [15]
for a class of stochastic equations in the Hilbert space. Here we give its deterministic
version.
Let us consider the integral equation (see(2.1))

v(t)=BS [w](), s-L<t<s

and assume that L = pkN where the parameter p possesses the property

+10

0 . (1
q EMG’:—G A 9)pl-9+p)< 1. (6.5)

In this case equations (2.2) hold. Hence Lemma 2.1 enables us to construct a collec-
tion of manifolds { M L} forL=p 10 N1 With the help of the formula

ML ={p+®L(p, s): p e PH}, (6.6)
where

S
OL(p, s) = J e_(S_T)AQB(U(T), T)dt = Qu(s, p) . (6.7)
s—L
Here v(t) = v(t, p) is a solution to integral equation (2.1) and L = pk&il .
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Exercise 6.1 Show that both the function ®L(p, s) and the surface MSL
do not depend on s in the autonomous case (B(u, t) = B(t)).

The following assertion is valid.

Theorem 6.1.

There exist positive numbers p, = p;(M, 0, 1) and A=A(M, 0, L)
such that if
_ -0
M8 = Apl, L=pAy, 0<p<p, (6.8)

then the mappings CI)L(~, s): PH —» QH defined by equation (6.7) possess
the property

|AO(Qu(t) —DL(Pu(t), 1))l <

1 o 2 _
< Cy )eXp{—p‘—) o (t—t*)}+ O exp {_gp l}vﬂ} ©9)
SJorallt >t,+L/2. Here 6, >0 is an absolute constant and u(t) is a mild
solution to problem (1.1) such that
|AOu(t) < R for telt,, +o). (6.10)
If |B(u, t)| < M, then estimate (6.9) can be rewritten as follows:

|AO(Qu(t) — DL(Pu(t), t))| <

90,0 1-0
< CReXp{—F XNH(t—t*)}+D2eXp{—pkN+l}, 6.11)
where D, is defined by equality (2.14).

Proof.
Let
a(t) = U(t, s; Pu(s)+ ®L(Pu(s), s)), t,<s<t

* )

where U(t, s; v) is a mild solution to problem (1.1) with the initial condition
Ve D(Ae) at the moment s . Therewith w (¢) = U(t, 0; ). It is evident that

Qu(t) —DL(Pu(t), t)=Q(u(t)—u(t))+

+ [Qa(t) —OL(Pa(t), z:)] + [CDL(P&(t), t) — OL(Pu (t), t)} L (6.12)
Let us estimate each term in this decomposition. Equation (1.6) implies that

1A%Q(wu(t) —a ()l < ay(t —s)|A%(Qu(s) — DL(Pu(s), s))

. (6.13)
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where

Ty(1) = e N L M(1+k)a, A0 e
Using (2.16) we find that

[4%(Q i (s) —@F(Pa(s), s)| < By(L, t—s) (6.14)
where

Ba(Ls 1) = Dy(1 —q) te vk +q(1_q)_2(R+D1) e,

moreover, the second term in 35/(L, T) can be omitted if |B(u, t)| < M (see Exer-
cise 2.1). At last equations (2.15) and (1.5) imply that

[AB@L(Pa(t), t)) — OL(Pu(t), )] <
< alé "2 40(Qu(s) —DL(Pu(s), s)) . (6.15)

Thus, equations (6.12)—(6.15) give us the inequality
a(t) < ay(t—s)d(s)+By(L, t—s) (6.16)
fort 2 s > t,, where

d(t) = [A%Qu(t) — ®L(Pu(t), 1))

and

.y _ _
= e N+1T+a1[M(l+k) klele-i- q(1-q) IJ e”2".

It follows from (6.16) that under the condition s + L/2 < t < s+ L the equation
d(t) < ay pd(s)+ By(L, L/2) (6.17)
holds with

L
. L
Oy g =¢ N+12+a1[M(1+k) 1+19+—1qq} el

Itis clear that oy ;, < 1/2 if
Ay L>4m2, ALY > 16a,M(1+k)
and
asL < In2, q<(1+16a;)". (6.18)

Let p; = p;(M, 0, &,) be such that equation (6.18) holds for L = pk;veJr , and for
the parameter ¢ of the form (6.5) with 0 < p < p;. Then equation (6.8) with
A=4(1+4a;M(1+k)p;) implies that oy ; < 1/2. Let , =t,+(1/2)nL . Then
it follows from (6.17) that
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1
a(t, ;) < gd(tn)+BN(L,L/2), n=0,1,2,..
After iterations we find that
_ L
a(r,) < 2md(g) +2By(L. 5), m=0.1 2 .. (6.19)
Equation (6.17) also gives us that
1 L
a(y<laq)+py(L. k). 1+
Therefore, it follows from (6.19) that
2 L
d(t) < 2eXp{—z(t—t*)ln2}d(t*)+2BN(L, L)

forall ¢ > ¢,+L/2. This implies (6.9) and (6.11) if we take y = 7‘N+1 in the equa-
tion for 35(L, L/2). Thus, Theorem 6.1 is proved.

<t<t,+L.

Do|

In particular, it should be noted that relations (6.9) and (6.11) also mean that a solu-
tion to problem (0.1) possessing the property (6.10) reaches the layer of the thick-
ness €y = ¢; eXp{—cy }”}v— +91} adjacent to the surface {MLL } given by equation (6.6)
for ¢ large enough. Moreover, it is clear that if problem (0.1) is autonomous
(B(u, t) = B(u)) and if it possesses a global attractor, then the attractor lies in this
layer. In the autonomous case ML does not depend on ¢ (see Exercise 6.1). These
observations give us some information about the position of the attractor in the
phase space. Sometimes they enable us to establish the so-called localization theo-
rems for the global attractor.

Exercise 6.2 Let |B(u, t)|] < M. Use equations (1.4) and (1.8) to show
that

A (t—
[a0u() < eI a0uq| + Ry,
where Ry = M(1+k) KIHG .
In particular, the result of this exercise means that assumption (6.10) holds for any

R > R, and for ¢, large enough under the condition |B(u, t)|] < M. In the general
case equation (6.10) is a variant of the dissipativity property.

Exercise 6.3 Let v, = Uld,s(t’ s) be a function from C, g(s—L, s).
Assume that

vl =0l (1s) =By v, (1), m=1,2, ..

n

and
(I)i(p’ S):Qz)fl,s(s9 p)? 7’L=O, 13 2)

Show that the assertions of Theorem 6.1 remain true for the function
®L(p, s) if we add the term
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q”(|vo|s +c¢o(D;+R))

to the right-hand sides of equations (6.9) and (6.11). Here q is de-
fined by equality (6.5) and |2)0|S is the norm of the function v, in the
space C, g(s—L, s).

Therefore, the function CD%(;O, s) generates a collection of approximate inertial
manifolds of the exponential (with respect to A N+ ) order for » large enough.

Example 6.1

Let us consider the nonlinear heat equation in a bounded domain Q <« R?:

a—u:Au-i-f(u, Vu), xeQ, t>s,

ot (6.20)
u|aQ =0, u|t:s =ug(x) .

Assume that the function f(w, &) possesses the properties
|f(uys &) = Sf(ug, So)| < Cyllug —ug| +18; &), S (u, S < Cy.
We use Theorem 6.1 and the asymptotic formula

dy ~cogN?d, N —> oo,

for the eigenvalues of the operator —A in Q = R? to obtain that in the Sobolev
space H%)(Q) for any N there exists a finite-dimensional Lipschitzian surface
M of the dimension N such that

distHé(Q)(u(t), My) < Ciexp{—c,NVd(t—1,)} + Cyexp{—c,N1/d}

for ¢t > t, and for any mild (in H(l)(Q)) solution w (t) to problem (6.20). Here ¢,
is large enough, Cj and o; are positive constants.

Exercise 6.4 Consider the abstract form of the two-dimensional system of
the Navier-Stokes equations

du

Tt VAu +b(u, u)= f(t), ul,_
(see Example 3.5 and Exercises 4.10 and 4.11 of Chapter 2). Assume
that |AY2f(¢)] < C for t > 0. Use the dissipativity property for

(6.21) and the formula

= u, 6.21)

7\’]6

Cok < —

0 }‘“1

for the eigenvalues of the operator A to show that there exists a col-

lection of functions {®(p, t): ¢ > 1} from PD(A) into (1-P)D(A)
possessing the properties

< ek
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a) |AD(p, t) < ¢ N7V,
AP (P, 1) = P(py, 1)) < co]Alpy — D))
forany p, py, py € PD(A);

b) for any solution u(t) € D(A) to problem (6.21) there
exists t* > 1 such that

[AQ(u(t) —®(Pu(t), t))l <
< cgexp{—o, NV2(t—t,)} + ¢ exp{—c,NV/2}.

Here P is the orthoprojector onto the first N eigenelements of the
operator A .

Exercise 6.5 Use Theorem 6.1 to construct approximate inertial manifolds
for (a) the nonlocal Burgers equation, (b) the Cahn-Hilliard equa-
tion, and (c) the system of reaction-diffusion equations (see Sec-
tions 3 and 4 of Chapter 2).

In conclusion of the section we note (see [8], [9]) that in the autonomous case the ap-
proximate IM can also be built using the equation

(®'(p); —Ap+PB(p+®(p))y + AD(p) = QB(p+ D(p)). (6.22)
Here pe PH, Q =I—-P, ®'(p) is the Frechét derivative and (D'(p), w) is its
value at the point p on the element w . At least formally, equation (6.22) can be ob-
tained if we substitute the pair {p(t); ®(p(t))} into equation (6.3). The second of
equations (6.3) implicitly contains a small parameter kxflﬂ . Therefore, using (6.22)

we can suggest an iteration process of calculation of the sequence {d)m} giving the
approximate IM:

AD(p) = QB(p + Py, (1)(P)) +
(@) 1) (p) 5 A —PB(0+ Dy i)(p))) , k> 1, (6.23)

where the integers v, (k) are such that
0 < vz(lc) <k-1, kli_r)noovi(lc):oo, 1=1, 2, 3.

One should also choose the zeroth approximation and concretely define the form of
the values v, (k) (for example, we can take ®y(v) = 0 and v, (k) =k-1,i=1, 2,
3). When constructing a sequence of approximate IMs one has to solve only a linear
stationary problem on each step. From the point of view of concrete calculations this
gives certain advantages in comparison with the construction used in Theorem 6.1.
However, these manifolds have the power order of approximation only (for detailed
discussion of this construction and for proofs see [9]).

Exercise 6.6 Prove that the mapping d)l(v) has the form (6.4) under the
condition ®y(v) = 0. Write down the equation for ®y(v) when
Vi(2) =1, vy(2)=v3(2)=0.
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§ 7 Inertial Manifold for Second Order
in Time Equations

The approach to the construction of IM given in Sections 2—4 is essentially based on
the fact that the system has form (0.1) with a selfadjoint positive operator A . How-
ever, there exists a wide class of problems which cannot be reduced to this form.
From the point of view of applications the important representatives of this class are
second order in time systems arising in the theory of nonlinear oscillations:

d2u du _ _
¥+ZSE+Au =B(u, t), t>s, €>0,
(7.1
_ du
ul_g=uo g Uy
t=s

In this section we study the existence of IM for problem (7.1). We assume that
A is a selfadjoint positive operator with discrete spectrum (L, and e, are the cor-
responding eigenvalues and eigenelements) and the mapping B (u, t) possesses the
properties of the type (1.2) and (1.3) for 0 < 0 < 1/2,i.e. B(u, t) is a continuous
mapping from D(Ae) x R into H such that

IB(0, )l < M,,

|B(wy, t) =B(ug, t)] < MlHAe(ul_uz)

; (7.2)

where 0 < 0 < 1/2 and uy, uy € D(AY) = %,.

The simplest example of a system of the form (7.1) is the following nonlinear
wave equation with dissipation:

%u o 0u _0%u ( _ 6u) _

67+ ag @ﬂfx,t,u,a—x =0, O<x<L, t>s,

ulx:O = u|x:L =0 ’ (7.3)
ou

=uy () .

t=s

ul,_ o =up(w), a

Let 6= D(A2) x H. It is clear that J6 is a separable Hilbert space with the
inner product

(U, V) = (Aug, vo) +(uy, v;), (7.4)

where U = (uq; uy) and V= (v; v;) are elements of J. In the space J prob-
lem (7.1) can be rewritten as a system of the first order:

U+ AU =B, 1), t>s; U, =T, 75

189
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Here
u(t) = (u(y: Z89), 0 = (ug: ) < %,
The linear operator A and the mapping B(U, ¢) are defined by the equations:
AU = (—uy; Aug+2euy),  D(A)=D(A) x D(AV2), (7.6)

B(U 1) = (05 Bug, 1)), U= (g5 uy).

Exercise 7.1 Prove that the eigenvalues and eigenvectors of the operator
A have the form:

M=ot el ff=(e,;-Ae,), n=1,2 .., (D

where |1, and e, are the eigenvalues and eigenvectors of A.

Exercise 7.2 Display graphically the spectrum of the operator A on the
complex plane.

These exercises show that although problem (7.1) can be represented in the form
(7.5) which is formally identical to (0.1) we cannot use Theorem 3.1 here. Neverthe-
less, after a small modification the reasoning of Sections 2—4 enables us to prove the
existence of IM for problem (7.1). Such a modification based on an idea from [16] is
given below.

First of all we prove the solvability of problem (7.1). Let us first consider the li-
near problem

d?u du B
&5+ZSEZ+AM =h(t), t>s,
(7.8)
_ du|  _
u|t=s—u0, a =Uj -
t=s
These equations can also be rewritten in the form (cf. (7.5))
Qv+ AU = HE),  Ul,_ =T, (7.9)

where U(t) = (u(t); w(t)) and H(t) = (0; h(t)). We define a mild solution to
problem (7.8) (or (7.9)) on the segment [s, s+ T'] as a function w(t) from the class

L7 = C(s, s+T; Fy9) NCl(s, s+T; H) N C%(s, s+ T; F | 9)

which satisfies equations (7.8). Here %, = D(Ae) as before (see Chapter 2). One
can prove the existence and uniqueness of mild solutions to (7.8) using the Galerkin
method, for example. The approximate Galerkin solution of the order m is
defined as a function
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m
um(t) = Z gk(t)ek
k=1
satisfying the equations

(T (1), €)) + 28 (1l (1), €)) + (A, (1), €)= (R(1), ), t>s, 7.10)

(%, (8)s ej) = (uy, ej)v (2 (5), ej) = (uy, ej)

for j=1, 2, ..., m. Moreover, we assume that gj(t) e Cl(s, s+7T) and g'j(t) is
absolutely continuous. Hereinafter we use the notation o (t) = dv/d¢. Evidently
equations (7.10) can be rewritten in the form

Uy (£) +280,,(t) +Au,,(t)=Dp,,h(t),

] (7.11)
um‘t:S:anU’O’ um‘t:S:pmul )
where p,, is the orthoprojector onto Lin{e,, ... e,,} in H.
In the exercises given below it is assumed that
n(t) e L*(R, H), wu,eD(AY2), wu,eH. (7.12)

Exercise 7.8 Show that problem (7.10) is uniquely solvable on any segment
[s, s+T]and u,,(t) € Ly 7.

Exercise 7.4 Show that the energy equality

Lm0 + ]2 (0 ) + 2 J||nm(r)||2dr _

t
(e HA”2Pm“oH2)+J(h<T), iy ()T (7.13)

holds for any solution to problem (7.10).
Exercise 7.5 Using (7.11) and (7.13) prove the a priori estimate
A2 0, (0 + [, (2)]* + A2, (1) < C(T, ug, uy)
for the approximate Galerkin solution %, () to problem (7.8).

Exercise 7.6 Using the linearity of problem (7.11) show that for every two
approximate solutions u,,(¢) and u,,(¢) the estimate

HA_1/2 (um(t) - 22m’(t))uz +

() =ty (O] + AV (2 (0) =0 () <

191
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e L
+‘|A1/2 s = Dyyr) “0“ + ess sup ||(pm—10m')h(f)||2
Tels, s+T]

holds forall ¢ € [s, s+T], where T > 0 is an arbitrary number.

Exercise 7.7 Using the results of Exercises 7.5 and 7.6 show that we can
pass to the limit 72 — oo in equations (7.11) and prove the existence
and uniqueness of mild solutions to problem (7.8) on every segment
[s, s+ T] under the condition (7.12).

Exercise 7.8 For a mild solution %(t) to problem (7.8) prove the energy
equation:

(bl + 1420 )l + 2 z,J. (o2 dr =

t
:%("u [2+ A2 a2 +J' dr . (7.14)

S

In particular, the exercises above show that for /(¢) = 0 problem (7.8) generates a
linear evolutionary semigroup e A in the space J = D(Al/ 2) x H by the formula

e A (ug; wy) = (u(t); u(t)), (7.15)
where w(¢) is amild solution to problem (7.8) for (t) = 0. Equation (7.14) implies
that the semigroup e!A is contractive for € > 0.

Exercise 7.9 Assume that conditions (7.12) are fulfilled. Show that the
mild solution to problem (7.8) can be presented in the form
t
((t); u(t)) = e t=9A (u; u1)+Je‘(l‘5)A(O; h(t))dt, (7.16)
S

—tA

where the semigroup e is defined by equation (7.15).

Let us now consider nonlinear problem (7.1) and define its m%ld solution as
a function U(t) = (u(t); u(t)) € C(s, s+T; Jb) satisfying the integral equation
!
U(t):e‘(“S)AUO+J. e~(1=5)AB(U(1), T)dt (7.17)
S

on [s, s+ T].Here B(U(t), t) = (0; B(u(t), t)) and Uy = (uy; uq).
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Exercise 7.10 Show that the estimates
IB(U: D)l < M(1+1Ul5),
[B(U, 1) =B(Us, 1)]5 < M|U, = Uy,
hold in the space J6 = D(A1/2) x H. Here M is a positive constant.

Exercise 7.11 Follow the reasoning used in the proof of Theorems 2.1 and
2.3 of Chapter 2 to prove the existence and uniqueness of a mild so-
lution to problem (7.1) on any segment [s, s+77].

Thus, in the space 6 there exists a continuous evolutionary family of operators
S (t, s) possessing the properties

S(t,t)y=1, St t)oS(1,5)=S(, s),
and

S(t, s)Uy = (u(1); u(1)),
where (¢) is a mild solution to problem (7.1) with the initial condition U, =
= (ugs uy).
Let condition &2 > Uy 1 hold for some integer N'. We consider the decomposi-

tion of the space J into the orthogonal sum
where

Jb, = Lin{(e,; 0), (0; e,): k=1, 2, ...N}
and %2 is defined as the closure of the set

Lin{(e,; 0), (0; e,): k > N+1}.

Exercise 7.2 Show that the subspaces J; and J, are invariant with re-
spect to the operator A . Find the spectrum of the restrictions of the
operator A to each of these spaces.

Let us introduce the following inner products in the spaces %1 and %2 (the pur-
pose of this introduction will become apparent further):

(U, Vy, = €%(uy, vy) —(Aug, vy)+ (ug+uy, evy+vy), 718)
(U, VYo = (Aug, vo)+ (€2 =21y, 1) (ugs V) + (Euy+ uy, €vy+0y) .

Here U= (uy; uy) and V= (v,; v;) are elements from the corresponding sub-
space Jb;. Using (7.18) we define a new inner product and a norm in by the
equalities:

<U9 V>:<U19 V1>1+<U29 I/2>2v |U]:<U9 U>1/27

where U= U, + U, and V=V, +V;, are decompositions of the elements U and V
into the orthogonal terms V;, U, € J;, i=1, 2.
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Lemma 7.1.

The estimates

Ul 2 2 62—y |40, U= (ugs uy) e %, (7.19)
My

Uly > —5— 8y | A%, U= (ug: uy) %, (7.20)
“N+1

hold for 0 < 0 < 1/2. Here
Sy o= JHyeq min| 1, /'m : (7.21)
'€ * My 1
Proof.

Let U= (ug; u) € ;. It is evident that in this case HABMOH < u]% [
forany 3 > 0. Therefore,

U 2 e2fug]” ~[AV2uof* 2 1070 (e2 =y [4%uq|?,

i.e. equation (7.19) holds. Let U € 6, . Then using the inequality

[ABug| = iy, i Jug], B >0, ugelinfe,: k=N+1) (7.22)
for 0 < 0 < 1 we find that
U5 > 82|AV 20 + (62— (1+ 82) py 1) [t

If we take & = Oy “1_\[1121 and use (7.22), then we obtain estimate (7.20). The
lemma is proved.

In particular, this lemma implies the estimate
[AOug] < ud,, 85101 (7.23)
forany U = (uy; u,) € J,where 0 < 0 < 1/2 and 6y, . has the form (7.21).

Exercise 7.18 Prove the equivalence of the norm |-| and the norm generated
by the inner product (7.4).

Exercise 7.14 Show that we can take Oy , = [e2 — U4 for 6=0 in (7.20)
and (7.23).

Exercise 7.15 Prove that the eigenvectors { fki }of the operator A (see
(7.7)) possess the following orthogonal properties:

S D =S S =S [y =0, k#mn,
(fit, fi)=0, 1<k<N. (7.24)
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Note that the last of these equations is one of the reasons of introducing a new inner
product.
Let Py, be the orthoprojector onto the subspace 7, in 76, i =1, 2.
K2

Lemma 7.2.

The equality

—A

\6‘“3%2 e LN} (7.25)

is valid. Here |-| is the operator norm which is induced by the corres-
ponding vector norm.

Proof.
Let U e Jb,. We consider the function y(t) = |e‘AZU|2 . Since b, is inva-
riant with respect to e=A! , the equation

W(t) = (Au(t). u(t)+ (62 =2y, ) (o). u(o)+ i+ eul?

holds, where w(t) is a solution to problem (7.8) for 2(t) = 0. After simple cal-
culations we obtain that

d .
d—q;+28l]] = 4(e2—uy (U +eu, u).

It is evident that

2. e~y (i+eu, u) < (2=, Dlul®+a+eul® < y(r).

Therefore,

dy
4 T2ev <2 €2 — Uy, V-

Consequently,
w(t) < e Vel y0), t>0. (7.26)

If we now notice that

A

_ ) R A
eXp{—At}fN+1= e "N+l fN+1 )

then equation (7.26) implies (7.25). Thus, Lemma 7.2 is proved.

Let us consider the subspaces
. +
J6; =Lin{f, : k <N}.

Equation (7.24) gives us that the subspaces are orthogonal to each other and there-
fore J6;, = %f ® J6, . Using (7.24) it is easy to prove (do it yourself) that
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|eAtP%_‘ <L eR, (7.27)
1

— Il
‘e*Ath‘ <e WU 10, (7.28)
1

We use the following pair of orthogonal (with respect to the inner product
(-, -)) projectors in the space J4

P=Po, Q=I-P=P.+PF,

to construct the inertial manifold of problem (7.1) (or (7.5)). Lemma 7.2 and equa-
tions (7.27) and (7.28) imply the dichotomy equations

leAtp| < NI e R JeArgl < e ve S0 (729

We remind that 1y = &—,/6%— 1, and 82 > Ly ;.
The assertion below plays an important role in the estimates to follow.

Lemma 7.3.

Let B(U, t) = (0; B(ug, t)), where U= (uy; uy) € # and B(ug) pos-
sesses properties (71.2). Then

B(U, t) < My+EKylUl, Ue %,
B(Uy, t) =B(Uy, 1) < Ky|Uy =Uyf, Uy, Uy € 36, (7.30)

- [
Ky = My u$ L2 max{l, 2_N—“] (7.31)
€~ Hyny1

The proof of this lemma follows from the structure of the mapping B(U, t) and from
estimates (7.2) and (7.23).

where

Exercise 7.16 Show that one can take K,; = M1(82_HN+1)_1/2 for 0 =0 in
(7.30) (Hint: see Exercise 7.14).

Let us now consider the integral equation (cf. (2.1) for L = o0 )

v(t) = B3 [V](1)

S t
= e~ (1=5)Ap —Je(tT)APB(V(r), T)dt+ j e (=DAQB(V(1), T)dt  (7.32)
13

—00



Inertial Manifold for Second Order in Time Equations

in the space C, of continuous vector-functions U(t) on (—co, s] with the values
in 76 such that the norm

101 = sup e "D < 0,y = F (e + iy ),
t<s
is finite. Here p € PJ6 and t € (—o0, s).

Exercise 7.17 Show that the right-hand side of equation (7.32) is a continu-
ous function of the variable ¢ with the values in 6.

Lemma 7.4.

The operator QS‘; maps the space Cs wmto itself and possesses the pro-

perties
4K
1B, [Vl < |p|+M0[%+7r1 j+ S\ ) (7.33)
N N+1 N+1_7“N
and
4K
15, [V1] -3, [Va]l < ﬁlVl—Vgl. (7.34)
N+1 N
Proof.

Let us prove (7.34). Evidently, equations (7.29) and (7.30) imply that

S S ( 7\'_ -
5 V()] - BE[Va(1)]] < KNje VO (1) = vy ()| dr +
; ) t
+KNJ. e N Dy (1)~ v ()| de

—00

Since
V(1) =Vo(o)| < "C7INV -1,
it is evident that
135 [11(1) =B, [V (0)] < ae?C =NV - W)
with
s t ~
q = Ky J-e(kNY)(Tt)dr + J- ef(kN”*Y)(t*T)dr
t —o0

Simple calculations show that g < 4Ky (Ay,;—Ay )~1. Consequently, equa-
tion (7.34) holds. Equation (7.33) can be proved similarly. Lemma 7.4 is proved.
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Thus, if for some g < 1 the condition
_ _ 4K,
kNH—kN > = (7.35)

holds, then equation (7.32) is uniquely solvable in C'; and its solution V' can be esti-
mated as follows:

_ 1 1
IVl < (1-q) 1(|p|+M0(kT+k_ ). (7.36)
N N+1
Therefore, we can define a collection of manifolds { M S} in the space 6 by the for-
mula

M, ={p+®D(p, s): p € PF}, (7.37)
where
D(p, s) = J e~(t=AQB(V(1), T)dr. (7.38)

Here V(1) is a solution to integral equation (7.32). The main result of this section is
the following assertion.

Theorem 7.1.

Assume that

4Ky,
q
Sfor some 0 < g < 1, where ?;C =g— [e2 - W, and Ky is defined by formula

(7.31). Then the function ®(p, s) given by equality (7.38) satisfies the Lip-
schitz condition

e2> Uy, and Ay, —Ay = (7.39)

|D(py, 5) = Py, s)| < ﬁ [P, Dy (7.40)

and the manifold Ms 1S tnvariant with respect to the evolutionary opera-
tor S(t, 1) generated by the formula

S(t, T)Uy = (u(t); u(t)), t=s,
in J6, where u(t) is a solution to problem (7.1) with the initial condition

Uy= (ug; uy). Moreover, if 0 < g < 2—4/2, then there exist initial conditions
Uy = (uf; ui) € My such that

|S(t, s)Uy=S(t. $)Uy| < C,e " =9)|QU, - D(PU, s)|
Jor t > s, where y = %(k}v +Ani1)-

The proof of the theorem is based on Lemma 7.4 and estimates (7.29) and (7.30).
It almost entirely repeats the corresponding reasonings in Sections 2 and 3. We give
the reader an oppotunity to recover the details of the reasonings as an exercise.
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Let us analyse condition (7.39). Equation (7.31) implies that (7.39) holds if
Hy+17Hn o 4

2 > 2“ =
= N+1> =
2 IEZ_HN q

However, if we assume that

My QT2 (7.41)

8[

M1~ My 2 —=M; “N+1 , (7.42)
then for condition (7.41) to be fulfilled it is sufficient to require that

2Uysy S 8% < 20y TRy (7.43)

Thus, if for some N conditions (7.42) and (7.43) hold, then the assertions of Theo-
rem 7.1 are valid for system (7.1). This enables us to formulate the assertion on the
existence of IM as follows.

Theorem 7.2.
Assume that the eigenvalues Ly of the operator A possess the properties
inf N5 0 and Uyl = cokP(1+0(1)), p>0, k—>oo, (744

N Uy

Jor some sequence {N(k)} which tends to infinity and satisfies the estimate

82
Ma(r) +1 7 Have)y = [ 1“N(k)+1: 0<qg<2-42.

Then there exists €, > 0 such that the assertions of Theorem 7.1 hold for all
€>¢
0 .

Proof.
Equation (7.44) implies that there exists &, such that the intervals

[2 M@y 10 2HN@) +1 + M) k2 K,
cover some semiaxis [80, +oo). Indeed, otherwise there would appear a subse-
quence {N(k;)} such that
L < 2 -
N (k) (”N(lcj+1)+1 ”N(lcj)+1)

But that is impossible due to (7.44). Consequently, for any & > g, there exists
N = N; such that equations (7.42), (7.43) as well as (7.39) hold.

Exercise 7.18 Consider problem (7.3) with the function f(z, t, u, %) =
= f(2, t, w) possessing the property

|f(x, t, uy) — f(w, t, u2)| < L|u1 —u2|.
Use Theorem 7.1 to find a domain in the plane of the parameters

(e, L) for which one can guarantee the existence of an inertial ma-
nifold.
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§ 8 Approximate Imertial Manifolds
Sfor Second Order in Time Equations

As seen from the results of Section 7, in order to guarantee the existence of IM for
a problem of the type

% +y +Au B(u) ,

8.1
u =u du =u e
|[:O_ 0> dt tio_ 1>

we have to require that the parameter y = 2¢ > 0 be large enough and the spectral
gap condition (see (7.41)) be valid for the operator A . Therefore, as in the case with
parabolic equations there arises a problem of construction of an approximate inertial
manifold without any assumptions on the behaviour of the spectrum of the operator
A and the parameter v > 0 which characterizes the resistance force.

Unfortunately, the approach presented in Section 6 is not applicable to the
equation of the type (8.1) without any additional assumptions on vy . First of all, it is
connected with the fact that the regularizing effect which takes place in the case of
parabolic equations does not hold for second order equations of the type (8.1) (in
the parabolic case the solution at the moment ¢ > 0 is smoother than its initial con-
dition).

In this section (see also [17]) we suggest an iteration scheme that enables us to
construct an approximate IM as a solution to a class of linear problems. For the sake
of simplicity, we restrict ourselves to the case of autonomous equations (B(u, t) =
= B(u)). The suggested scheme is based on the equation in functional derivatives
such that the function giving the original true IM should satisfy it. This approach was
developed for the parabolic equation in [9] (see also [8]). Unfortunately, this ap-
proach has two defects. First, approximate IMs have the power order (not the expo-
nential one as in Section 6) and, second, we cannot prove the convergence of
approximate IMs to the exact one when the latter exists.

Thus, in a separable Hilbert space H we consider a differential equation of the type
(8.1) where v is a positive number, A is a positive selfadjoint operator with discrete
spectrum and B () is a nonlinear mapping from the domain D(Al/ 2) of the operator
Al2 into H such that for some integer m > 2 the function B(u) liesin C™ as a
mapping from D(AY2) into H and for every p > 0 the following estimates hold:

k
”(B(k)(u); Wy, ooy wk>H < CpHHAl/zij , (8.2)

J=1
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k
[(BE) () =BE) (w); wy, ..., wy)] < Cp||A1/2(u—u*)||HHA1/2ij, (8.3)

j=1
where k=0, 1, ..., m, || is anorm in the space H, |A12u| < p, |AV2u| < p,
and w; € D(AY2)  Here B(¥)(w) is the Frechét derivative of the order k of B(u)
and (B(k)(u); wy, ..., W) isits value on the elements w, ..., w,, .

Let L,, p be a class of solutions to problem (8.1) possessing the following
properties of regularity:
D fork=0,1, ..., m—1andforall T > 0

uk)(t) e C(0, T; D(A))
and
ulm)(t) e C(0, T; D(AY2)), wlm+1)(t) e C(0, T; H),

where C(0, T'; V) is the space of strongly continuous functions on [0, T']
with the values in V, hereinafter u(*¥)(¢) = o u(t);
ID) forany u € L,, p the estimate

Jue+ D ()2 + A2 0 ®) (1) + |AuE =D (0)]* < R2 (8.4)

holds for k =1, ..., m and for t > t", where ¢" depends on % and u, only.
In fact, the classes L,, p are studied in [18]. This paper contains necessary and
sufficient conditions which guarantee that a solution belongs to a class L, p.
It should be noted that in [18] the nonlinear wave equation of the type
6?u+y6zu -Au+g(u) = fv), 2€Q, t>0,

(8.5)

u|aQ=O, u|t=O=u0(x), 6tu|t=O=u1(x),

serves as the main example. Here y > 0, f(x) € C*°(Q) and the conditions set on
the function g(s) from C*(IR) are such that we can take g(u) = sinu or g(u) =
=u2P*tl where p=0,1,2,... for d=dimQ <2 and p=0, 1 for d = 3.
In this example the classes Lm’ p are nonempty for all 7 . Other examples will be
given in Chapter 4.

We fix an integer N and assume P = F; to be the projector in H onto the sub-
space generated by the first N eigenvectors of the operator A . Let @Q=1—P . If we
apply the projectors P and @ to equation (8.1), then we obtain the following sys-
tem of two equations for p (¢) = PU(t) and q(t) = Qu(t):

6t2p+y65p+Ap:PB(p+q) , 5.6
6L2q +v0,q+Aq=QB(p+q) .
The reasoning below is formal. Its goal is to obtain an iteration scheme for the deter-
mination of an approximate IM. We assume that system (8.6) has an invariant mani-
fold of the form

M={(p+h(p,p); p+l(p,p)): p,p e PH} (8.7
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in the phase space D(AY2) x H . Here h and | are smooth mappings from PH x PH
into QD(A). If we substitute q(t) = h(p(t), 0,p(t)) and 0,q(t) = L(p(t), 0,0(t))
in the second equality of (8.6), then we obtain the following equation:

(8,1 Y +(8;l; —yp—Ap+PB(p+h(p, p)) +
+7U(p, p)+AR(p, D) = QB(p+h(p, p)) -
The compatibility condition
Hp(t), 0,p(1)) = 0,h(p(?), 0,p(t))
gives us that
Hp. p) = (8, p)+ (0, h; =yp —Ap+PB(p+h(p, D))

Hereinafter Sp S and O, f are the Frechét derivatives of the function f(p,p) with
respect to p and p; <5p f; w) and <8p f; w) are values of the corresponding deri-
vatives on an element w .

Using these formal equations, we can suggest the following iteration process to
determine the class of functions {hk; lk} giving the sequence of approximate IMs
with the help of (8.7):

Aly(p, D) = QB(D +hy_1 (0, D)) =Vl 1y (0> D) =0 Ly _ 15 D) =

Oyl 13 —vP —Ap+PB(p+ 1y 1 (D, D)) (8.8)

where k =1, 2, 3, ... and the integers v(k) should be choosen such that k—1 <
< v(k) < k.Here I, (p, p) is defined by the formula

lk(pa p) = <8phk_1; D)+ <6phk—15 VD _Ap+PB(p +h’k_1(p3 p))> , (8.9)
where k = 1, 2, 3, ... . We also assume that

ho(p, P) = ly(p, D) = 0. (8.10)

Exercise 81 Find the form of /,(p, p) and [;(p, p) for v(1) =0 and for
v(l)=1.

The following assertion contains information on the smoothness properties of the
functions &, and [, which will be necessary further.

Theorem 8.1.

Assume that the class of functions {hn; Zn} is defined according to
(8.8)—(8.10). Then for each n the functions h, and l, belong to the class
C™ as mappings from PH x PH into QH and for all integers o, P = 0 such
that o+ 3 < m the estimates
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[AD® PR (D, D); wy, oy wys oy, ey p)] <
o B
< Cq p.r [ [1Awd- [ 14204 | (8.11)
1=1 =1
|AV2(D% B (D, D); wy, s wes by, e, )] <
o B
< Cop.r | [lAw [ J1AY%0 (8.12)

i=1 i=1
are valid for all p and p from PH such that |Ap| < R and |AY2p| < R.
Hereinafter D% p S is the mixed Frechét derivative of the function f of the
order o with respect to p and of the order [3 with respect to p; the values
w; and u')j are from PH. Moreover, if oo =0 or 3= 0, then the correspon-
ding products in (8.11) and (8.12) should be omitted.

Proof.

We use induction with respect to 7 . It follows from (8.10) and (8.2) that esti-
mates (8.11) and (8.12) are valid for n = 0, 1. Assume that (8.11) and (8.12) hold
for all n < k —1 . Then the following lemma holds.

Lemma 8.1.

Let F,(p, p)=B(p +h,(p, D)) and let
F& Pw) = (D% PBF,(p, p); wy, ooy wys by, ..., tbp).

Then for v < k—1 and for all integers o, B =0 such that o+ <m
the estimate

o B
R D) < ] Jjam ] Jlaid 1)
=1 =1
holds, where w;, w;, p, pePH and |Ap| <R, |AV2p] < R.
Proof.
It is evident that F;" P (w) is the sum of terms of the type
By (y) = (BS)(p+hy(0. D) Yps s ¥y, s20.
Here y is one of the values of the form:

Y. =we+ (0, wy),

Y= (DO Thyy wy, .o, W5 Wy, .y wB>.
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Equation (8.2) implies that

S
1Bl < G ] la"2u-
=1

Therefore, the induction hypothesis gives us (8.13).

Let us prove (8.12). The induction hypothesis implies that it is sufficient to estimate
the derivatives of the second term in the right-hand side of (8.9). It has the form

<6phk_1§ Dk(p, D)), (8.14)
where
Dy(p, p) = =yp —Ap+PB(p+hy_1(p, D))-
The Frechét derivatives of value (8.14)
<D0"B<8phk71; Dy(Ds D)3 w1 vy W Wy, oy tDp)
are sums of the terms of the type
G(o, 1) = (D% " ln_(p,p); Wisves Wy S

where

Yo, = (D*O B—TDk(p, D); W woos Wy, u')pl, e, W

Pg_f>'
Here 0 < 0 < o, 0 < 1 < [3 and the sets of indices possess the following proper-
ties:

(s dot N{o, ..., 0,5} =D,
Uy dgtUfog, ., 0,5 = {1, 2, ..., a};
{igs s NPy s P} = D,

{ig, s igpUf{py -os pB_T} ={1,2, ..., B}.
The induction hypothesis implies that

o T
0o, < O] Tjauy |- TT|4% ] 1406, |
0=1 0=1

Using the induction hypothesis again as well as Lemma 8.1 and the inequality
[av2pn < 22 1Pl

we obtain an estimate of the following form (if ¢ = o or T = 3, then the correspon-
ding product should be considered to be equal to 1):

o—-c p-r
4206, 4 < ¢ [T o [T]4 0]
0=1 0=1
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Hereinafter A i 1s the k -th eigenvalue of the operator A . Thus, it is possible to state
that

14G(c, 1l < C(1+ay™)] [JAw]- T [lav2]- (8.15)
i i

Using the inequality
IQnl < 2y, 14Qnl, s>o0, (8.16)

and equation (8.15) it is easy to find that estimates (8.12) are valid for n = k . If we
use (8.8), (8.12) and follow a similar line of reasoning, we can easily obtain (8.11).
Theorem 8.1 is proved.

Theorem 8.1 and equation (8.4) imply the following lemma.

Lemma 8.2.

Assume that u(t) is a solution to problem (8.1) lying in L m > 1.

Let p(t) = Pu(t) and let
0s(1) = h(0(2). ,0(1) . @, (1) = 1,0 (1), (1)) - (817)
Then the estimates
[a2aP @ + e ()] <
with 0 <7 <m—-1 and
g @ +]4"2a{ @) <

are valid for t large enough.

m, R’

A
:UC)

A
::;Q

Proof.
It should be noted that qgj ) (t) is the sum of terms of the form

(D% B (p, o,p). V(). ... @) PV, L p By,

where o, 3, Uy oees bgs Tps vees Ty are nonnegative integers such that
l1<a+p<y, @'1+...+@'a+rl+...+rﬁ:j.

Similar equation also holds for (js(i)(t) . Further one should use Theorem 8.1 and
the estimates

o+ D)2 + |AV2pE@)|? + |Ap D) < B2, 121, 1<k<m,
which follow from (8.4).

Let us define the induced trajectories of the system by the formula

Us(t) = (us(1); ug(1))

where s =0, 1, 2, ... and

ug(t) = p(t)+a5(t),  a(t) =0,p(t) +s(t). (8.18)
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Here p(t) = Pu(t), u(t) is a solution to problem (8.1); g (¢) and g(¢) are defined
with the help of (8.17). Assume that «(t) lies in L,, 5. Then Lemma 8.2 implies
that the induced trajectories can be estimated as follows:

e a0 = Gy, 05 m-
O + = < o,

for t large enough. Using (8.3), (8.4), and the last estimates, it is easy to prove the
following assertion (do it yourself).

Lemma 8.3.

Let
E((t)=B(p(t)+a(1)) =B(p(1) +q,(1)).
Then
J
2O < ¢ ;> |42 @) -a o)
1=0
for =0, 1, ..., m and for t large enough.

The main result of this section is the following assertion.

Theorem 8.2.

Let u(t) be a solution to problem (8.1) lying in L, p with m > 2.
Assume that h,(p, p) and 1,(p, p) are defined by (8.8)—(8.10). Then the es-
timates

48] (u(t) ~u, ()] < €, AT, (8.19)
4172 8 (3,u(t) =, ()] < Cpp RPN (8.20)

are valid for n < m—1 and for t large enough. Here 0 <j<m—-n—1,
u, (t) and 7%, (t) are defined by (8.18), and Ay, is the (N+1)-th eigenva-
lue of the operator A.

Proof.
Let us consider the difference between the solution « (¢) and the trajectory in-
duced by this solution:

Xs(t) = u(t) _us(t)7 zs(t) = atu(t) _as(t)7

s
where 7,(t) and uy(t) are defined by formula (8.18). Since ¥ (t) = q(t), equation
(8.4) implies that

>0,

HA1/2X(OJ+1)(,;)H+HAX(({)(J:)” <C, j=0,1,2,.., m-1, (8.21)
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for ¢ large enough. Equations (8.8)—(8.10) also give us that
Axa(8) = =x6(0) =y xp(0) + QE(?) -
We use Lemma 8.3 and equation (8.21) to find that
[V < a2, j=0,1, .., m-2,

for ¢ large enough. Therefore, equation (8.19) holds for 2 = 0, 1 and for ¢ large
enough. From equations (8.6), (8.8), and (8.9) it is easy to find that

AXk = _atZk—l_yatZWk)—l_Y<820hV(k)_1; PEV(k)_1> -
=Byl 13 PE,_)+QE,_,

and
i = atxk71+<8phk71; PE, ). (8.22)
Lemma 8.4.
The estimates
J
AN 1/2
[407(8;hy: PE)| < Cay® " |42 (o) (8.23)
s=0
and
] 1/2 4
[aV28/¢5, 1,2 PE| < Cay® " A2y (o) (8.24)
s=0
are valid for t large enough and for each v >0, where j=0,1,..., m—1.
Proof.

Let f,,=h, or f,=1,.1Itis clear that the value 8{(81-) Jvs PE,) is the
algebraic sum of terms of the form:
<DO(, ﬁ‘-'—1~f\/’ pY15 e pYO(, pcla ey pcﬁ’ aISPZZ’V> -
Therefore, Theorem 8.1 and Lemma 8.3 imply (8.23) and (8.24). Lemma 8.4

is proved.

We use Lemmata 8.3 and 8.4 as well as inequality (8.16) to obtain that
F+2 j+1

”A)Cg)(t)“ S Cky I { ZHAXS;)—l(t)” + Z ‘|AX(52k)—1(’5)H}+
. s=0 s=0

J
-1/2 S
+dy i Ayl ZHAX;(CL('?)
s=0
where j = 0, 1, ..., m—2 and the numbers ¢, j and d, j do not depend on N .

, (8.25)
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If we now assume that (8.19) holds for n < k — 1, then equation (8.25) implies
(8.19) for n =k and for k¥ < m —1. Using (8.22) and (8.23) we obtain equation
(8.20). Theorem 8.2 is proved.

Corollary 8.1

Let the manifold M,, have the form (8.7) with h(p, p)= h,(p, D) and
I(p, p)=1,p, p). We also assume that U(t)= (u(t); u(t)), where u(t)
is the solution to problem (0.1) from the class L,, p. Then

dist (UL M,) < C a8, n=0,1,2..m-1.

D(A)x D(AL/2)
Thus, the thickness of the layer that attracts the trajectories in the phase space has

the power order with respect to AN +1 unlike the semilinear parabolic equations
of Section 6.

Example 81

Let us consider the nonlinear wave equation (8.5). Let d = dimQ < 2. We as-
sume the following (cf. [18]) about the function g (s):
S
lim s ljg(c)dc >0;
Is] > oo
there exists C; > 0 such that
S

lim s7|sg(s)— ClJ- g(o)do | > 0;

|s| = o0
0
for any m there exists 3(m2) > 0 such that
lgm)(s)| < Cy(1 +[s|P0m)). (8.26)

Under these assumptions the solution u(t) lies in L,, p for R >0 large
enough if and only if the initial data satisfy some compatibility conditions [18].
Moreover, the global attractor % of system (8.5) exists and any trajectory lying
in A possesses properties (8.4) forallt e R and k =1, 2, ..., [18]. It is easy
to see that Theorem 8.2 is applicable here (the form of A, B(-) and H is evi-
dent in this case). In particular, Theorem 8.2 gives us that for a trajectory
U(t) = (u(t); 8,u()) of problem (8.5) which lies in the global attractor 4 the

estimate
_ ., 1/2 p
-
{HAaf(u(t) (WO +] 4283 (6 u(t) ~ 7, () } < Oy s I
holds for all »=1,2,...,all j=1,2, ..., and all t € R. Here %_(t) and

un(t) are defined with the help of (8.18). Therewith
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sup{dist(U, M,,): Ue A} < ¢, "2, n=1,2, .., (8.27)

where M, is a manifold of the type (8.7) with & = h,(p,p)andl=1,(p, D).
Here dist(U, M,,) is the distance between U and M, in the space
D(A) x D(AY2). Equation (8.27) gives us some information on the location of
the global attractor in the phase space.

Other examples of usage of the construction given here can be found in papers [17]
and [19] (see also Section 9 of Chapter 4).

§ 9 Idea of Nonlinear Galerkin Method

Approximate inertial manifolds have proved to be applicable to the computational
study of the asymptotic behaviour of infinite-dimensional dissipative dynamical sys-
tems (for example, see the discussion and the references in [8]). Their usage leads
to the appearance of the so-called nonlinear Galerkin method [20] based on the re-
placement of the original problem by its approximate inertial form. In this section we
discuss the main features of this method using the following example of a second or-
der in time equation of type (8.1):

d2u
di2

du

+YE+AU B(u), Ul,_ o=t Et

=Uj. 9.1
=0
If all conditions on A and B( ) given in the previous section are fulfilled, then
Theorem 8.2 is valid. It guarantees the existence of a family of mappings {hk; lk}
from PH x PH into QH possessing the properties:
1) there exist constants M; = Mj(n, p) and L; = Lj(n, p), j=1, 2, such
that

|AR, (g, Do)| < M, ”A1/2 Ly(Po po)” < Mye, (9.2)
|AC, (1, B1) =Ty (P3: P2))] < L1(||A(p1 —py)| + A2 (4 —25?2)”), ©-3)

|AY2(1,,(py, 1) =1, (P P2))| < L1(||A(101 —py)| +|AV2 (9, _pz)“) (CE)
for all D; and pj from PH such that
[Ap )+ [apf <p* G=0.1, p>0;

2) for any solution u(¢) to problem (9.1) which lies in L, p form > 2 the es-
timate
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C
h 1/2
2 — 2 -n/2
: {IlA(u(t) =1, ()| + |4V (2,u(t) ~ 0, (1) } < C,phyin (95
t
¢ is valid (see Theorem 8.2) forall » < m —1 and ¢ large enough. Here
3 u,(t) = p(t) +h, (p(2), 8,0(1))

(9.6)
w,(t) = 0,p(1) +1,(p(t), 0,p(1)) ,
An4q isthe (N+1)-th eigenvalue of A, and R is the constant from (8.4).

The family {%,; [, } is defined with the help of a quite simple procedure (see (8.8)
and (8.9)) which can be reduced to the process of solving of stationary equations of
the type Av = g in the subspace QH . Moreover,

ho(p, P) = ly(p, D) =0,  hy(p, )=A"1QB(p), li(p,p)=0. (9.7

In particular, estimates (9.5) and (9.6) mean (see Corollary 8.1) that trajectories
U(t) = (u(t); 0,u(t)) of system (9.1) are attracted by a small (for N large enough)
vicinity of the manifold

M, ={(p+h,(p, p); D+1,(p,P)): p, pePH}. 9.8)

The sequence of mappings {%,,(p, p)} generates a family of approximate inertial
forms of problem (9.1):

o2p+78,p+Ap = PB(p+h,(p, 8,p)). 9.9)

A finite-dimensional dynamical system in PH which approximates (in some sense)
the original system corresponds to each form. For n = 0 equation (9.9) transforms
into the standard Galerkin approximation of problem (9.1) (due to (9.7)).If n > 0,
then we obtain a class of numerical methods which can be naturally called the non-
linear Galerkin methods. However, we cannot use equation (9.9) in the computa-
tional study directly. The point is that, first, in the calculation of hn(p, p) we have
to solve a linear equation in the infinite-dimensional space QH and, second, we can
lose the dissipativity property. Therefore, we need additional regularization. It can
be done as follows. Assume that f, (p, p) stands for one of the functions %,,(p, p)
or l,,(p, p). We define the value

. 1/2
Fo0:5) = Sy, a1, (02 ) = 2 (B (14D +1425) 7 VB 1, (0. ). (9.10)

where y (s) is an infinitely differentiable function on R, such that a) 0< y(s)<1;
b) x(s)=1for0 <s<1; c)y(s)=0 fors>2; R is the radius of dissipativity
(see (8.4) for k = 0) of system (9.1); P), is the orthoprojector in 4 onto the sub-
space generated by the first M eigenvectors of the operator A, M > N . We consider
the following N -dimensional evolutionary equation in the subspace By H :
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8,:2])* +7v0,p" +Ap* = PyB (p*+ h;(p*, atp*)) ,
9.11)
D

A

roo= v, 007, _ = Fyug -

Exercise 9.1 Prove that problem (9.11) has a unique solution for ¢ > 0 and
the corresponding dynamical system is dissipative in By H x P H .

We call problem (9.11) a nonlinear Galerkin (n, N, M ) -approximation of problem
(9.1). The following assertion is valid.
Theorem 9.1.

Assume that the mappings h,(p,p) and 1,(p,P) satisfy equations
(9.2)-(9.5) for n < m—1 and for some m > 2. Moreover, we assume that
(9.5) is valid for all t > 0. Let h; and l;’z be defined by (9.10) with the help
of h,, and 1, and let

wuy, (1) = p*(t) + 15, (07(1), 0,07(1)),
a,(t) = 0,p*(t) +1,(p*(t), 0,p*(t)),
where p*(t) is a solution to problem (9.11). Then the estimate

1/2
{“AW (u(t) _ujl(;;))HZ + 0, u(r) —a;@(t)HZ} <

< (o 2+ aya L) exo(Bi) 9.12)

holds, where u(t) is a solution to problem (9.1) which lies in L, p for
m > 2 and possesses property (8.4) for k=1 and for all t > 0. Here n <
<m-1, oy, o, and B are positive constants independent of M and N,
kk is the k -th eigenvalue of the operator A.

Let p(t) = Pyu(t). We consider the values
) =y, (1) = p(t) =p* (1) + [Quu(t) =h, (0 (1), 0,0(1))]+
+ 7, (0(1), 0,p(1)) =13, (p(2), 0,07(1))]

£

and
0yu(t) =t (1) = 0,(p(t) —p" (1)) + [@y Oy u(t) =1, ((1), 0,p(1))] +

+[L,(2(1), 8,p(1) =1, (p"(1), 0,p"(1))] -
The equalities
Byph,(0(1), 0,0(1)) = hiy(p(1), 0,p(1))
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and

Pyl (p(2), 8,p(1)) = L, (p(1), 0,p(1))

are valid for the class of solutions under consideration. Therefore, we use (9.5) to
find that

HA”Z wu(t) —u; ())” <

c c,
< ¢, (142 (o (1) ~p* ) +6,0.(t) ~0,0° ()] ) + 2 + ko)
AM+1 }LN+1

and

[0,(t) —8,ut, (1)] <

C C
C3(1472(p () = ()] +[0,0(8) = 0" (8)] )+~ + s 014
XM+1 }“n-!—l

Therefore, we must compare the solution p*(¢) to problem (9.11) with the value
p(t) = Pyu(t) which satisfies the equation

2p+y0,p+Ap = QuB(p+Qyu) (9.15)

with the same initial conditions as the function p*(¢). Let »(¢) = p(t) —p*(¢). Then
it follows from (9.11) and (9.15) that

ofr(t)+vo,r(t)+Ar(t) = F(t, p', u) ,
(9.16)
r(0)=0, 0,7(0)=0,
where
F(t, p u) = Qu[B(u(1)) =B(u,(1))]
Due to the dissipativity of problems (9.11) and (9.15) we use (9.13) to obtain

1/2 _ B
Pt o u)l < Cr(la2r (P + ) +C,, 5 23T+ 0

for the class of solutions under consideration. Therefore, equation (9.16) implies
that

_ . — — 1 _
LA (@ +1av2r(n)l?) < Tl (12 +1a12r ()2 )+ Ty 200 + 051,
Hence, Gronwall’s lemma gives us that
I# (P + 1412 (0l < (C,,, g A0 +Coofsy) 7R

This and equations (9.13) and (9.14) imply estimate (9.12). Theorem 9.1 is proved.

If we take 7 = 0 and N = M in Theorem 9.1, then estimate (9.12) changes into the
accuracy estimate of the standard Galerkin method of the order N . Therefore, if the
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parameters N, M , and » are compatible such that A, | < kﬁ,ill , then the error of

the corresponding nonlinear Galerkin method has the same order of smallness as in
the standard Galerkin method which uses M basis functions. However, if we use the
nonlinear method, we have to solve a number of linear algebraic systems of the order
M —N and the Cauchy problem for system (9.11) which consists of N equations.
In particular, in order to determine the value % (p, p) we must solve the equation

Ahy(p, p) = (B —Py)QB(p)

for n = 1 and choose the numbers N and M such that kM +1 S K]%/ +1 - Moreover,
if L,=cyk®(1+0(1)), 6 >0,as k — o, then the values N and M must be com-
patible such that M < ¢ N2,

We note that Theorem 9.1 as well as the corresponding variant of the nonlinear
Galerkin method can be used in the study of the asymptotic properties of solutions
to the nonlinear wave equation (8.5) under some conditions on the nonlinear term
g(u) . Other applications of Theorem 9.1 can also be pointed out.
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In this chapter we use the ideas and the results of Chapters 1 and 3 to study in
details the asymptotic behaviour of a class of problems arising in the nonlinear theo-
ry of oscillations of distributed parameter systems. The main object is the following
second order in time equation in a separable Hilbert space H :

d? d 2 /2,2 _
@u+y&u+A u+M(||A ul )Au+Lu = p(1), (0.1)
ul,_ o= "o, ‘3_“ —uy, 0.2)
¢ t=0

where A is a positive operator with discrete spectrum in H, M(s) is a real function
(its properties are described below), L is a linear operator in H, p(t) is a given
bounded function with the values in /', and y is a nonnegative parameter. The
problem of type (0.1) and (0.2) arises in the study of nonlinear oscillations of a plate
in the supersonic flow of gas. For example, in Berger’s approach (see [1, 2]), the dy-
namics of a plate can be described by the following quasilinear partial differential
equation:

02U + Y0, u + A2 + (F —J|Vu|2 dxj Autpo, u = p(, 1), 0.3)

z e (x), ) c Qc R?, t>0
with boundary and initial conditions of the form

Upn=Mupq=0, ul,_o=up(®), G| _ =u(). 04

Here A is the Laplace operator in the domain €2; ¥ >0, p> 0, and I' are con-
stants; and p(x, t), uy(7), and u;(x) are given functions. Equations (0.3)-(0.4)
describe nonlinear oscillations of a plate occupying the domain Q on a plane which
is located in a supersonic gas flow moving along the x; -axis. The aerodynamic pres-
sure on the plate is taken into account according to Ilyushin’s “piston” theory (see,
e. 8., [3]) and is described by the term pd,,u . The parameter p is determined by
the velocity of the flow. The function u(x, t) measures the plate deflection at the
point x and the moment ¢. The boundary conditions imply that the edges of the
plate are hinged. The function p(x, t) describes the transverse load on the plate.
The parameter I is proportional to the value of compressive force acting in the
plane of the plate. The value y takes into account the environment resistance.

Our choice of problem (0.1) and (0.2) as the base example is conditioned by the
following circumstances. First, using this model we can avoid significant technical
difficulties to demonstrate the main steps of reasoning required to construct a solu-
tion and to prove the existence of a global attractor for a nonlinear evolutionary se-
cond order in time partial differential equation. Second, a study of the limit regimes
of system (0.3)—(0.4) is of practical interest. The point is that the most important
(from the point of view of applications) type of instability which can be found in the
system under consideration is the flutter, i.e. autooscillations of a plate subjected to
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aerodynamical loads. The modern look on the flutter instability of a plate is the fol-
lowing: there arises the Andronov-Hopf bifurcation leading to the appearance of
a stable limit cycle in the system. However, there are experimental and numerical
data that enable us to conjecture that an increase in flow velocity may result in the
complication of the dynamics and appearance of chaotic fluctuations [4]. Therefore,
the study of the existence and properties of the attractor of the given problem
enables us to better understand the mechanism of appearance of a nonlinear flutter.

§ 1 Spaces

As above (see Chapter 2), we use the scale of spaces %, generated by a positive ope-
rator A with discrete spectrum acting in a separable Hilbert space H. We remind
(see Section 2.1) that the space % is defined by the equation

F. = D(A%) = {v: chek: Zc% A3s < oo},
k=1 k=1

where {ek} is the orthonormal basis of the eigenelements of the operator A in H,
A 1 < kz < ... are the corresponding eigenvalues and s is a real parameter
(for s = 0 we have % = H and for s < 0 the space %, should be treated as a class
of formal series). The norm in ?fs is given by the equality
o0 o0
||U||§ = ch)%s for v = chek.
k=1 k=1

Further we use the notation L?(0, T; %) for the set of measurable functions

on the segment [O, T] with the values in the space 9; such that the norm

1/2

is finite. The notation L”(0, T'; X) has a similar meaning for 1 < p < oo.

We remind that a function «(?) with the values in a separable Hilbert space H
is said to be Bochner measurable on a segment [0, T] if it is a limit of a se-
quence of functions

N
upn(t) = ZUN, K X, k(2
k=1

for almost all ¢ € [0, T'], where u,; , are elements of H and }, ,(t) are the cha-
racteristic functions of the pairwise disjoint Lebesgue measurable sets Ay, ;. One
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can prove (see, e.g., the book by K. Yosida [5]) that for separable Hilbert spaces un-
der consideration a function u(¢) is measurable if and only if the scalar function
(u(t), )y is measurable for every /& e H. Furthermore, a function u(t) is said
to be Bochmer integrable over [0, T] if

T

J [u(t) —uy (D% & >0, N>,
0

where {u,(t)} is a sequence of simple functions defined above. The integral of the
function w(t) over a measurable set S [O, T] is defined by the equation

T
Ju(t) d = lim J 1s(D)un(t) dr |
N — oo

S 0
where y ¢(7) is the characteristic function of the set S and the integral of a simple
function in the right-hand side of the equality is defined in an obvious way.

For the function with the values in Hilbert spaces most facts of the ordinary Le-
besgue integration theory remain true.

Exercise 1.1 Let u(¢) be a function on [0, 7] with the values in a sepa-
rable Hilbert space H . If there exists a sequence of measurable func-
tions w,,(t) such that u,,(t) - w(t) almost everywhere, then w(t)
is also measurable.

Exercise 1.2 Show that a measurable function «(¢) with the values in H

is integrable if and only if |u(¢)| € LY(0, T). Therewith

ju(t) dr| < i (1)) dz

B

for any measurable set B < [0, T].

Exercise 1.3 Let a function u(t) be integrable over [0, T'] and let B be
a measurable set from [0, 7']. Show that

J-(u(t), 1), dr = Ju(r)dr, I
B B H

forany h € H.

Exercise 1.4 Show that the space L2(0, T} %,) can be described as a set
of series

h(t) = Z cp(t)ey,
k=1

219
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where ¢, (t) are scalar functions that are square-integrable over
[0, T] and such that
T

Zkgs"‘ Ck t) dt < . (1.1

0

Below we also use the space C (0, T'; %) of strongly continuous functions on [0, T
with the values in 9; and the norm

e, r o) =, g%%f(ﬂ”i)(t)”s.

Exercise 1.5 Let u(t) be a function with the values in % integrable over
[0, T']. Show that the function

= '([u(r) dr

lies in C(0, T'; %). Moreover, v(t) is an absolutely continuous
function with the values in %, i.e. for any € > 0 there exists 0>0
such that for any collection of disjoint segments [a,, B,.] < [0, T]
the condition Zk(Bk —ay,) < O implies that

D (B —v(oy)], < -
k

Exercise 1.6 Show that for any absolutely continuous function v(¢) on
[0, T'] with the values in %, there exists a function u(¢) with the
values in %, such that it is integrable over [0, 7'] and

!

o(t) = v(O)—i—Ju(T) dr, tefo,T].
0
(Himnt: use the one-dimensional variant of this assertion).

The space
Wy = {U(t): v(t)e L2(0, T; %), o(t) e L2(0, T; H)} (1.2)
with the norm

1/2
= (1022 0, 7, )+ W20, 7, 1)

plays an important role below. Hereinafter the derivative v(¢) = dv/dt stands for
a function integrable over [0, T'] and such that
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3

o(t) = h +Jz}(r)dr
0
almost everywhere for some h € H (see Exercises 1.5 and 1.6). Evidently, the space
Wy is continuously embedded into C (0, T; H), i.e. every function w(¢) from W,
liesin C(0, T; H) and

max Ju(t) < Clu ,
, max u(Ol < Cluly,

where C is a constant. This fact is strengthened in the series of exercises given be-
low.

Exercise 1.7 Let p,, be the projector onto the span of the set {ek: k=
=1, ..., m} and let v(t) € W,. Show that p, v(t) is absolutely
continuous and possesses the property

(0, 0(1) = 1, 5(t) € L2(0, T3 p,, 7).

Exercise 1.8 The equations

l
[P0 (3 = [P 2|5 + ZJ-(me(r), P(T)); 5 dr (1.3)

and
2
(=) Py =
!
2 .
- J(||pmv(r)||1/2+ 2(t=5) (P, 0(¥)y P, 5(7))y 5 )6 (130)
S
arevalidforany 0 < s < ¢ < T and v(t) € Wp.
Exercise 1.9 Use (1.3) to prove that
<
SFOI?T]”me(t)”Uz < CTI@IWT (1.4a)

and

su

ZE[g?T]||(10m—10k)@(t)||1/z < Opl(Dy i)ty - (14D)

Exercise 1.10 Use (1.4) to prove that Wy is continuously embedded into
C(0,T; %,5) and

max_[o(t)ly5 < Cploly, .
t e[0,7] ( )1/2 TV Wp

s
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The following three exercises result in a particular case of Dubinskii’s theorem
(see Exercise 1.13).

Exercise 1.11 Let {l;(t)}"_, bean orthonormal basis in L2(0, T; R) con-
sisting of the trigonometric functions

1 92 . 2nk 2 2k
ho(t)= =, hy, ((t)= |2sin?%0%  h,,(t)= |2cos2lNy,
o(t) = 95-1(1) sin x 95(1) cos x

k=1, 2,...Showthat f(¢t) e L?(0, T; %,) if and only if

f(t)= Z chj hy(t)e; (1.5)

and

Exercise 1.12 Show that the space W can be described as a set of series of
the form (1.5) such that

o0

Z (k2+ka)|ckj|2 < .

k,j=1

Exercise .13 Use the method of the proof of Theorem 2.1.1 to show that
Wy is compactly embedded into the space LZ(O, T, 9?8) for any
s<1.

Exercise 1.14 Show that Wy is compactly embedded into C(0,T; H).
Hint: use Exercise 1.10 and the reasoning which is usually applied
to prove the Arzeld theorem on the compactness of a collection
of scalar continuous functions.

§ 2 Auxiliary Linear Problem

In this section we study the properties of a solution to the following linear problem:

d2u du

S+ y=—=+A2u+b(t)Au = h(t 2.1

Ly B g2 b (o) du = ne) @1
d

ul,_ =t U=y 2.2)

dt 120
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Here A is a positive operator with discrete spectrum. The vectors %(t), Uy, Up
as well as the scalar function b(t) are given (for the corresponding hypotheses see
the assertion of Theorem 2.1).

The main results of this section are the proof of the theorem on the existence
and uniqueness of weak solutions to problem (2.1) and (2.2) and the construction
of the evolutionary operator for the system when £(t) = 0. In fact, the approach we
use here is well-known (see, e.g., [6] and [7]).

A weak solution to problem (2.1) and (2.2) on a segment [0, 7] is a func-
tion u(t) € W such that u(0) = u, and the equation

T T

—j (1) +yu(t), 5(t))de +'[ (Aw(t) +b(t)u(t), Av(t))di =

0 0
T

= (uy +yug, v(0)) +J.(h(t), o (1)) dr ©.3)
0

holds for any function v(t) € W such that v(T) = 0. As above, 7 stands for the
derivative of u with respect to ¢.

Exercise 2.1 Prove that if a weak solution u(?) exists, then it satisfies
the equation

((t) +yu(l), w)=(u;+yug, w) =
—J'(Au(r) +o(t)u(t), Aw)de +J'(h(r), wydt (@24
0 0

for every w e %, (Hint: take v(t) = [, ¢(t)dT-w in (2.3), where
¢(¢) is a scalar function from C[0, T']).

Theorem 2.1

Let uy e F), u € %, and y > 0. We also assume that b(t) is a bounded
continuous function on [0, T]and h(t) € L*(0, T; %)), where T is a posi-
tive number. Then problem (2.1) and (2.2) has a unique weak solution
u(t) on the segment [O, T]. This solution possesses the properties

u(t) e C(0,T; %), u(t)eC(0,T; %) (2.5)

and satisfies the energy equation

%(||u(t)||2+||Au(t ||2 +yj||u (DI dt + | b(1)(Au(t), (1)) dr =

ot~

= %(““1” +|A“o|| + ), u(t))d 2.6)

o'——.w
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Proof.

We use the compactness method to prove this theorem. At first we construct ap-
proximate solutions to problem (2.1) and (2.2). The approximate Galerkin solution
(to this problem) of the order m with respect to the basis {e, } is considered to be
the function

m
u,,(t) = ng(t)ek 2.7
k=1
satisfying the equations
(Cyy + YUy, +A%u,, +0(t)Au,, —h(t), €)= 0, (2.8)
(U, (0), €)= (g, €;),  (Uy(0), €)= (uy, €;), J=1,2,..., m. (29

Here g, (t) € C 1(0, T') and g,,(t) is absolutely continuous. Due to the orthogonality
of the basis {e k} equations (2.8) and (2.9) can be rewritten as a system of ordinary
differential equations:

Gr+ V0, + 10, —0(1) Mg, = Iy (1) = (B(1), €} )e,
9x(0) = (ug, €),  gx(0) = (uy, &), k=1,2, ..., m.

Lemma 2.1

Assume that v >0, a>0, b(t) is continuous, and c(t) is a measu-
rable bounded function. Then the Cauchy problem

dg+vg+ala—b(t))g=c(t), te[0, T],
. (2.10)
9(0)=90, 9(0)=g,
s uniquely solvable on any segment [0, T]. Its solution possesses the
property
t
gt +a2g(t)? < g%+azg§+%/ J.c(r)2 dr (e tel0, T], 2.1D)
0

where by = mtaXIb(t)I. Moreover, if b(t) e C1(0,T), ¢(t)=0 and for all
t € [0, T] the conditions

2 .
—%a+y— <b(t) < La, b(t)+y(%—b(t)) >0, (2.12)

hold, then the following estimate is valid:

gt +a2g(t)? < 3(9% +azg%) exp(—%/t) . (2.13)
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Proof.

Problem (2.10) is solvable at least locally, i.e. there exists ¢ such that a so-
lution exists on the half-interval [0, 7). Let us prove estimate (2.11) for the in-
terval of existence of solution. To do that, we multiply equation (2.10) by g(t).
As aresult, we obtain that

L 3@ +a2g?) +1d? = ab(t)gg +e(t)d

We integrate this equality and use the equations
alb(t)gdl < 3 maXIb( ) (92 + a292) . cg <ygt+ 41Y c?
to obtain that

t t
G172 +a2g(t) < g?+a2g? zl‘J dr+bOJ. P +a2g(t)?) dr.
0

This and Gronwall’s lemma give us (2.1 1).

In particular, estimate (2.11) enables us to prove that the solution g(¢) can
be extended on a segment [0, T] of arbitrary length. Indeed, let us assume the
contrary. Then there exists a point ¢ such that the solution can not be extended
through it. Therewith equation (2.11) implies that

g2 +a2g(ty < C(T; 9o, 97, 0<t<?<T.

Therefore, (2.10) gives us that the derivative §(¢) is bounded on [0, 7).
Hence, the values
t t

() = go+'[g(r) dt,  g(1) = g0+Jg(r) dr
0 0

are continuous up to the point 7 . If we now apply the local theorem on exis-
tence to system (2.10) with the initial conditions at the point ¢ that are equal to
g(%) and g(t), then we obtain that the solution can be extended through 7 .
This contradiction implies that the solution g(t) exists on an arbitrary segment
[0, T].

Let us prove estimate (2.13). To do that, we consider the function

V(t) = (g +a(a—=b(t))g ) %(gg'—i—%gz) . (2.14)
Using the inequality
1o Voo : 1 Y 9
Zyg 59 < 99 = 2yg +29 )

it is easy to find that the equation

1( . 3(,
Zl(gz—i-azgz) < V() < 1—1(924‘@292) (2.15)
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holds under the condition

%a—b(t)zo, a[%aer(t)J—yz > 0.
Further we use (2.10) with ¢(¢) = 0 to obtain that
dav_ Y. 1

&= _292 —5(ab +ay(a—b))g?.
Consequently, with the help of (2.15) we get
dav v
Z4iy<
a T2V =0
under conditions (2.12). This implies that

V() < v(0)exp(-Lr).
We use (2.15) to obtain estimate (2.13). Thus, Lemma 2.1 is proved.

Exercise 2.2 Assume that y < 0 in Lemma 2.1. Show that problem (2.10)
is uniquely solvable on any segment [O, T] and the estimate

9(t)+a*g (1) < (g3 +a2gR)el 0Oy

t
+% J.C(T)z e(b0+2|Y|+6)(t_T)dT
0

is valid for g(¢) and for any 6 > 0, where b, = m?XIb(t)I .

Lemma 2.1 implies the existence of a sequence of approximate solutions {u,,(t)}
to problem (2.1) and (2.2) on any segment [0, T'].

Exercise 2.8 Show that every approximate solution u,, is a solution to

problem (2.1) and (2.2) with uq = u,,,, ;= %,,,and h(z, t) =
= h,,(z, t), where

m
Wim = Pyt = Z (uss €)@y
k=1 (2.16)

m
hm = pmh = Z (h(t)’ ek)elc’
k=1

and p,, is the orthoprojector onto the span of elements {ek: k=1,
2,...,m} in F=H.

Let us prove that the sequence of approximate solutions { um} is convergent.
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At first we note that
m+1
A 1(8) = ey =Ty [P+ A2ty = 4 )P = Z (9r(0) + 27 g, (t)7)
k=m+1

forevery t € [0, T] . Therefore, by virtue of Lemma 2.1 we have that

m+l T
byt 2_ 142 21 2
A, ) < e Z (wy, €)" + Ay (g, ) +ﬂ '[(h(t), e)” di
k=m+1 0
for y > 0. Moreover, in the case y = 0, the result of Exercise 2.2 gives that
(by+ 1)t ! ‘
2 2 2 2
Ay, (t) < e? Z (g, €)" + Ay (ugs ) +J(h(t)’ e,)” dt
k=m+1 0

These equations imply that the sequences {2,,(¢)} and {Aw,,(t)} are the Cauchy
sequences in the space C(0, T; H) on any segment [0, T] . Consequently, there
exists a function %(¢) such that

a(t) e C(0,T: HY, u(t)eC(0,T; F),

tim e (4, (6) = (1) + (1) —u(8)] ) = 0. @.17)

m—> oo [0, T]

Equations (2.8) and (2.9) further imply that

T T
—J (i (0) + 720, (1), (1)) +'[ (A, (8) 4 (1), (1), A (1)) =
0 0

T
= (U Vg v<o>>+j<hm<t>, o(t)) de
0

for all functions v(t) from W, such that v(7) = 0. Here u;,, ,and h,,(t),i=0, 1,
are defined by (2.16). We use equation (2.17) to pass to the limit in this equation and
to prove that the function wu(t) satisfies equality (2.3). Moreover, it follows from
(2.17) that %(0) = u,, . Therefore, the function () is a weak solution to problem
(2.1) and (2.2).

In order to prove the uniqueness of weak solutions we consider the function

(2.18)
0, s<t<T,

for s € [0, T']. Here u(t) is a weak solution to problem (2.1) and (2.2) for =0,
ug=0,and u; = 0. Evidently v (t) € Wy. Therefore,
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T T
—'[ (@ () +yu(t), 55(1) dt + J(Au(t) +b(tyult), Avy(t))dt = 0.
0 0

Due to the structure of the function v (¢) we obtain that

%(Ilu(s)n2 + ||AUS(O)||2) +y '[ lu()® &t = J,(u, v), (2.19)
0

where

S
J(u v) = '[(b(t)u(t), Avg(t))
0
It is evident that Av (1) = Avy(0)—Av,(0) for t < s. Therefore,

(. 0)| < bo[”Avs(O)” Jllu(t)ll dt+'[||u(t)||-||A7)t(O)|| dt] <
0 0

S s
b
< %1||Avs(0)||2 +sb§ Jllu(t)||2 dt + 70 J(||u(t)||2 " ||A”z(0)||2) .
0 0

If we substitute this estimate into equation (2.19), then it is easy to find that
S
()P + [ Av, (O < CTJ. (b ()12 + | A, (O)2 ) ok
0
where s € [0, T] and Cp is a positive constant depending on the length of the seg-
ment [0, 7']. This and Gronwall’s lemma imply that w(t) = 0.
Let us prove the energy equation. If we multiply equation (2.8) by g'j(t) and
summarize the result with respect to 5, then we find that

1d/;. . . .
1 (Ff? + [ A2 2) 47 a2+ 0(0) (At ) = (e )

After integration with respect to ¢ we use (2.17) to pass to the limit and obtain (2.6).
Theorem 2.1 is completely proved.

Exercise 24 Prove that the estimate

]
i () + 1Au (o) < [|Iu1||2+||AuOI|2+z—ly jllh(r)llzer e (220)
0

is valid for a weak solution u(¢) to problem (2.1) and (2.2). Here
by =max{[b(t): ¢t >0} and y > 0.
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Exercise 25 Let u(t) be a weak solution to problem (2.1) and (2.2). Prove
that A%u(t) € C(0, T; %) and
t
u(t)+yu(t) = up+vyu —J (A2u(t)+b(1)Au(t) =R (1)) dT.
0

Here we treat the equality as an equality of elements in % 1-
(Himt: use the results of Exercises 2.1 and 2.1.3).

Exercise 26 Let u(t) be a weak solution to problem (2.1) and (2.2) con-
structed in Theorem 2.1. Then the function % () is absolutely conti-
nuous as a vector-function with the values in % 1 while the derivati-
ve (1) belongs to the space L*(0, T; % ;). Moreover, the function
u(t) satisfies equation (2.1) if we treat it as an equality of elements
in %, foralmostall t € [0, T].

In particular, the result of Exercise 2.6 shows that a weak solution satisfies equation
(2.1) in a stronger sense then (2.4).

We also note that the assertions of Theorem 2.1 and Exercises 2.4-2.6 with the
corresponding changes remain true if the initial condition is given at any other mo-
ment ¢, which is not equal to zero.

Now we consider the case h(t) = 0 and construct the evolutionary operator of prob-
lem (2.1) and (2.2). To do that, let us consider the family of spaces

Fs = F| o 6% Ty, G 2>0.

(e

Every space J; is a set of pairs y = (u; v) such that v € ¥, , and v e % .
We define the inner product in %G by the formula

(yl’ yz)%c = (uy, u2)1+0+(01’ 02)0'

Exercise 2.7 Prove that %01 is compactly embedded into %G foro;>0.

In the space %O we define the evolutionary operator Ul (t; tO) of problem (2.1) and
(2.2) for h(t) = 0 by the equation

U(ts ty)y = (u(t); u(t)), (2.21)
where u(t) is a solution to (2.1) and (2.2) at the moment ¢ with initial conditions
that are equal to y = (2; %;) at the moment ¢,.

The following assertion plays an important role in the study of asymptotic be-
haviour of solutions to problem (0.1) and (0.2).
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Theorem 2.2

Assume that the function b(l) is continuously differentiable in (2.1)
and such that

by = SLtlpr(t)I < o, b= sutlp|b.(t)| < oo .

Then the evolutionary operator U(t; T) of problem (2.1) and (2.2) for
h(t)=0 is a linear bounded operator in each space Fs for 6 20 and it
possesses the properties:

a) U(t; 1)U(t;s)=U(t;s), t=2t=s, Ult;t)=1;

b) forall c > 0 the estimate

10(t: Tl < Lyl exo( 1oyt =) 2.22)
s valid;
c) there exists a number N, depending on v, by, and b, such that the
equation
,X (t — 17)
||(I—PN) U(t; T)y”%o < J§||([—PN)y||%Ge 4 , L>T, (2.23)

holds for all N > N, where Py; is the orthoprojector onto the subspace
Ly =Lin{(e;; 0), (0; e,): k=1, 2, ..., N}

in the space b .

Proof.

Semigroup property a) follows from the uniqueness of a weak solution.
The boundedness property of the operator U(t; t) follows from (2.22). Let us prove
relations (2.22) and (2.23). It is sufficient to consider the case T = 0. According
to the definition of the evolutionary operator we have that

U(t; 0)y = (u(t); (1), y=(ug; uy),

where u(t) is the weak solution to problem (2.1) and (2.2) for ~(t) = 0. Due to
(2.17) it can be represented as a convergent series of the form

w(n)= 3 gilt)e.
k=1

Moreover, Lemma 2.1 implies that

G0 + 220,17 < (402 + 22 g, (0)2) 0" (2.24)
Since
105 0)pl%, = > (9607 + 239, (02237,
k=1

equation (2.24) implies (2.22).
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Further we use equation (2.13) to obtain that

1y
Ge(t)? + 1E g, (1) < 3(gk(0)2 + A2 gk(0)2) e 2, (2.25)
provided the conditions (cf. (2.12))
2 . A
1 Y 1 k
gl i <60 < gh by +y(ZE-b(0)) 20,
are fulfilled. Evidently, these conditions hold if
4b, 2
Ay 2 - +4b+ by

where b, = max|b(t)| and b; = m?xlb(t)l . Since
t

o0
=P U 0, = ST (G0 + kg, P )20,
k=N+1
equation (2.25) gives us (2.23) forall N 2 Ny—1, where N, is the smallest natural
number such that
4b, 2
> - 1
}LNo 2~ +4by+ by (2.26)
Thus, Theorem 2.2 is proved.

Exercise 28 Show that a weak solution w%(¢) to problem (2.1) and (2.2)
can be represented in the form
t

(u(t); 4(1)) = U(; 0)y +J U(t; 1)(0; k(1)) dt, (2.27)
0
where y = (uq; %) and U(¢; 7) is defined by (2.21).

Exercise 29 Use the result of Exercise 2.2 to show that Theorem 2.1 and
Theorem 2.2 (a, b) with another constant in (2.22) also remain true
for y < 0. Use this fact to prove that if the hypotheses of Theorems
2.1 and 2.2 hold on the whole time axis, then problem (2.1) and (2.2)
is solvable in the class of functions

W =C(R; %) N CYR; F)
withy 2 0.

Exercise 2.0 Show that the evolutionary operator U(¢, T) has a bounded
inverse operator in every space %G for o > 0. How is the operator
[U(t, 1')]_1 for ¢t > T related to the solution to equation (2.1) for
h(t) = 0? Define the operator U(t, T) using the formula U(t, T) =
=[U(r, t)]_l for ¢t < T and prove assertion (a) of Theorem 2.2 for
all t, 7 e R.
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§ 8 Theorem on Existence
and Uniqueness of Solutions

In this section we use the compactness method (see, e.g., [8]) to prove the theorem
on the existence and uniqueness of weak solutions to problem (0.1) and (0.2) under
the assumption that

uyge¥FH, u €%, p(t)el>0,T; %); 3.1
M(z) € CY(R,), Jb(z) = J’M(g) dE > —az—b, 3.2)

where 0 < a < 7“1 ,belR, 7“1 is the first eigenvalue of the operator A, and the
operator L is defined on D(A) and satisfies the estimate

ILul < ClAul, weD(A). (3.3)
Similarly to the linear problem (see Section 2), the function u(¢) € Wy is said

to be a weak solution to problem (0.1) and (0.2) on the segment [0, T]
if %(0) = u, and the equation

f £+ yult D(t))dt+f(Au(t)+M(||A1/2 O Ju(r), Av(r) ) +
0 0
T
+J(Lu(t), () dt = (uy+yaug v +J(p (1), v(1))d 3.4)
0 0

holds for any function v(t) € Wy, such that v(7T') = 0. Here the space W, is defined
by equation (1.2).

Exercise 8.1 Prove the analogue of formula (2.4) for weak solutions to
problem (0.1) and (0.2).

The following assertion holds.

Theorem 3.1

Assume that conditions (3.1)—(3.3) hold. Then on every segment [O, T]
problem (0.1) and (0.2) has a weak solution wu(t). This solution is unique.
It possesses the properties

u(t) e C(0, T; %), u(t)eC(0,T; %) (3.5)
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and satisfies the energy equality

E(u(t). () = E(ug, )+ | (<7l + (~Lu(t) + (1), (1)) dr, (36)

ot— =

where

B(u, v) = (ol + 14ul® + (1a120)2)). 3.7

We use the scheme from Section 2 to prove the theorem.
The Galerkin approximate solution of the order m to problem (0.1) and (0.2)
with respect to the basis ¢, is defined as a function of the form

m
(1) = gp(t)ey
k=1
which satisfies the equations

(g (1) + Y2 (2), €5) +
(A, (0 + (1420l (1), Aey)+ (L, (0) ~p(0). ) =0 (B8)

forj=1, 2, ..., m with ¢t € (0, T'] and the initial conditions

(U (0), €;) = (ugs €;),  (Uy(0), €)= (uy, ),  J=1,2,..., m. (3.9
Simple calculations show that the problem of determining of approximate solutions
can be reduced to solving the following system of ordinary differential equations:

m m
gk+yg'k+k,%gk+kkM(ijgj(t)2jgk+Z(Lej, ek)gj = p,(t), (3.10)
j=1 j=1

9:(0) =90, = (g €,),  91(0) =9, = (U1, €), k=1,2,.., m. (3.11)

The nonlinear terms of this system are continuously differentiable with respect to
gj- Therefore, it is solvable at least locally. The global solvability follows from the
a priori estimate of a solution as in the linear problem. Let us prove this estimate.

We consider an approximate solution um(t) to problem (0.1) and (0.2) on the
solvability interval (0, 7). It satisfies equations (3.8) and (3.9) on the interval
(0, ). We multiply equation (3.8) by g'j(t) and summarize these equations with re-
spect to j from 1 to m . Since

dﬂt%(||A1/2u||2) - 2M(||A1/2u||2)(z4u(t), u(t))

we obtain

E (1, (1), 11 (1)) = =Y [ (O = (L, (6) = (1), (1)) B12)
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as a result, where E(u, 1) is defined by (3.7). Equation (3.3) implies that
(Lt i) < ClAuy i < C(JAw 2+ |?).
Condition (3.2) gives us the estimate
3 ([l i) € O CaB s ) 619

with the constants independent of 1 . Therefore, due to Gronwall’s lemma equation
(3.12) implies that

. 2 2 . Cyt
i (O + At (O < (Co+ C1E(u,, (0. 1, (0))) €', (3.14)
with the constants C, C; , and C, depending on the problem parameters only.

Exercise 3.2 Use equation (3.14) to prove the global solvability of Cauchy
problem (3.10) and (3.11).

It is evident that

[m(O)] < Jur] and J4l/2u,,(0)] <

1 1
JTIHAM(O)” < ﬁ”“oﬂl :

Therefore,
: 1
B (0, (0), 20 (0)) < 5 (g2 + Jutgl2 + CoslJual))
where C,,(p) = max{/b(z): 0 <z < p?/L,}.Consequently, equation (3.14) gives
us that

s T](||um(t)||2 HAu, (OF) < (3.15)

forany 7'> 0, where Cp does not depend on 7 . Thus, the set of approximate solu-
tions {u,,(t)} is bounded in Wy for any 7> 0. Hence, there exist an element
u(t) € Wy and a sequence {m} such that w,, (1) —> w(t) weakly in Wy Let us
show that the weak limit point u(t) possesses the property

la()* +1Au(e)® < Cp (3.16)

for almost all ¢ € [0, T']. Indeed, the weak convergence of the sequence { umk} to
the function » in W, means that zlmk and AumlC weakly (in L2(0, T; H)) con-
verge to « and Awu respectively. Consequently, this convergence will also take
place in L%(a, b; H) for any a and b from the segment [0, 7']. Therefore, by
virtue of the known property of the weak convergence we get

b b

. 2 2 . . 2 2
J(Hu(t}" HAu(@)di < lim ([t O+ |40, (1) Jar
k — o k k
a a
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With the help of (3.15) we find that
b

j(nu(z)uz HlAu))d < Cpb-a).
a
Therefore, due to the arbitrariness of @ and b we obtain estimate (3.16).
Lemma 3.1
For any function v (t) e L2(0, T; H)
lim JT(umk, v)=Jp(u, v),

k — oo
where
T
Tp(u, v) = JM("Al/zu(t)”Z)(u(t), (1)) dr
0
Proof.
Since

‘M(“Al/zumkﬂz)—M(||A1/2u||2) <

1
< j M
0
where M (2) = 22M'(22) € C(R,), due to (3.15) and (3.16) we have
2 2
‘ 1 ([aV 2, [*) - (142 l?) .

where the constant C(Tl) is the maximum of the function M(z) on the sufficient-
ly large segment [O, aT], determined by the constant Cp from inequalities
(3.15) and (3.16). Hence,

T

|

0

’

(e, | = (-0l | a - 4420, )

< op |42, (1) —u ()

M(HAuzum(t)Hz) _M("AI/Z )l )

t) v(t) )‘ d <

1/2
< CT”U”LZ(O T; H) [J “Al/z my Ok t))H dt} '

The compactness of the embedding of W, into L2 (0, T, % /2) (see Exer-
cise 1.13) implies that & . — 0 as k — oo Itis evident that
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‘JT r v) = Jp(u, v)‘ et

(11, (6) = (0), 0(2)) M(1A2u(0)]) ]

oSt—

Because of the weak convergence of umk to u this gives us the assertion of the
lemma.

Exercise 8.8 Prove that the functional
T

Blu] = J(Lu(t), V(1)) dr
0
is continuous on W, for any v e L2(0, T; H).

Let us prove that the limit function «(¢) is a weak solution to problem (0.1) and
(0.2).

Let p, be the orthoprojector onto the span of elements e,, k=1, 2, ..., |
in the space H . We also assume that

Wp={ve Wy v(T)=0}
and
.y - _
Wp=p,Wp={pv:ve Wr}.

It is clear that an arbitrary element of the space V~VZT has the form

l
0= ey
k=1

where 1, (t) is an absolutely continuous real function on [0, T'] such that

N(T)=0, (1) € L2(0. 7).
If we multiply equation (3.8) by n; (), summarize the result with respect to j from
1to 1, and integrate it with respect to ¢ from 0 to 7, then it is easy to find that

T

(Aum+M(HA1/2 umnz) U, )dt +J (Lu,,, v,)dt =

0

— | (o, +v1,,, 0;)dt +

o‘—u'ﬂ
ot—

(p, v;)dt

= (uy +yug v,(0)+

S

for m = 1. The weak convergence of the sequence U, tO U in Wy as well as Lem-
ma 3.1 and Exercise 3.3 enables us to pass to the limit in this equality and to show
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that the function w(t) satisfies equation (3.4) for any function v € VNV%, where
l=1, 2, ... .Further we use (cf. Exercise 2.1.11) the formula

T
lim J (I,5(0) =5 (0)) + |p, Av(1) — Av ()] )i = 0
0

for any function v(¢) € Wy in order to turn from the elements v of W to the func-
tions v from the space Wy .

Exercise 8.4 Prove that u(t)|, _ = ug-

Thus, every weak limit point () of the sequence of Galerkin approximations {u,,, }
in the space Wy is a weak solution to problem (0.1) and (0.2).

If we compare equations (3.4) and (2.3), then we find that every weak solution
u(t) is simultaneously a weak solution to problem (2.1) and (2.2) with b(¢) = 0 and

(1) = ~M(1AV2u(0)) Au() - Lu(t) + p (1) (.17

It is evident that h(t) € L*(0, T'; %,). Therefore, due to Theorem 2.1 equations
(3.5) are valid for the function w(t).

To prove energy equality (3.6) it is sufficient (due to (2.6)) to verify that for
h(t) of form (3.17) the equality

(h(1), u(7))dr =

Ol_)w

T=t

= J(—Lu(r)ﬂo(r), u(t))dt — %%(”Al/zu(r)ﬂz) (3.18)
0

=0
holds. Here u(t) is a vector-function possessing property (3.5). We can do that by
first proving (3.18) for the function of the form p, % and then passing to the limit.

Exercise 85 Let u(t) be a weak solution to problem (0.1) and (0.2). Use
equation (3.6) to prove that
Imuw?umu@m2s(CWH%E@%,qufﬁ, t>0, (319

where C(, €, Cy > 0 are constants depending on the parameters
of problem (0.1) and (0.2).

Let us prove the uniqueness of a weak solution to problem (0.1) and (0.2). We as-
sume that () and u4(t) are weak solutions to problem (0.1) and (0.2) with the
initial conditions {2, 2, } and {2y, %5}, respectively. Then the function

u(t) = uy(t) = ug(t)
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is a weak solution to problem (2.1) and (2.2) with the initial conditions u, = w4~
— Uy, Uy = Uy —Uy, the function b(r) = M(|AY2u, (1) “ ), and the right-hand
side

n(0) = [M(| a2y ) = 2{J 412, Of) | Ay (0)+ L (us(0) = (2).
We use equation (3.19) to verify that
IR < Gp(E(ugy, wyy)+E(ugg, wyg))|[A(uy(t) —ug(?))]

where GT(é) is a positive monotonely increasing function of the parameter & .
Therefore, equation (2.20) implies that

e [0, T],

Ji (£) = tag ()] + [y (£) —us (1) <

t
< Cp ||u11_“12||2+||u01 _“02||?+J.||u1(f) —uz(T)H?dT] ,
0

where Cp > 0 depends on 7' and the problem parameters and is a function of the
variables K (uo o U j) , =1, 2. We can assume that Cp is the same for all initial
data such that £(u,, o U j) < R, j=1, 2. Using Gronwall’s lemma we obtain that

. : c
||“1(t)_“2(’5)||2+||“1(t)_uz(t)"f < 01(”“11_“12”2+||“01_“02||§)8a ? (3200

where t € [0, T] and C > 0 is a constant depending only on 7', the problem pa-
rameters and the value R > 0 such that ||uO j||? + ||u1 j"z < R . In particular, this esti-
mate implies the uniqueness of weak solutions to problem (0.1) and (0.2). The proof
of Theorem 3.1 is complete.

Exercise 8.6 Show that a weak solution u(t) satisfies equation (0.1) if we
consider this equation as an equality of elements in % 1 foralmostall ¢ .
Moreover, %(t) e C(0, T; %) (Hint: see Exercise 2.5).

Exercise 8.7 Assume that the hypotheses of Theorem 3.1 hold. Let w(t) be
a weak solution to problem (0.1) and (0.2) on the segment [0, T']
and let um(t) be the corresponding Galerkin approximation of the
order m . Show that

u,,(t) > u(t) weaklyin L2(0,T; %),
U, (t) > u(t) weaklyin L2(0, T; %) ,
u,,(t) > wu(t) stronglyin L2(0,T; %), s<1,

as M — oo,



Theorem on Existence and Uniqueness of Solutions

In conclusion of the section we note that in case of stationary load p(t) = p € H we
can construct an evolutionary operator S, of problem (0.1) and (0.2) in the space
J6 = Fy = F| x F, supposing that

Sy = (u(t); a(t))
for y = (g, u;), where u(t) is a weak solution to problem (0.1) and (0.2) with the
initial conditions y = (uo; ul) . Due to the uniqueness of weak solutions we have

S,08, =8 So=1I, 1, 120.

L+t
By virtue of (3.20) the nonlinear mapping S, is a continuous mapping of 7. Equa-
tion (3.5) implies that the vector-function S,y is strongly continuous with respect
to t for any y € 6. Moreover, for any R > 0 and 7> 0 there exists a constant
C(R, T) > 0 such that

||Sty1_Sty2||% < C(R, T)‘"y]_yg"% (3.21)
forall ¢ € [0, T'] and for all y; € {yeJF: lyly <R}

Exercise 838 Use equation (3.21) to show that (¢, ¥) — S,y is a continu-
ous mapping from R, x J6 into F6.

Exercise 3.9 Prove the theorem on the existence and uniqueness of solu-
tions to problem (0.1) and (0.2) for ¥ < 0. Use this fact to show that
the collection of operators {S,} is defined for negative ¢ and forms
a group (Hint: cf. Exercises 2.9 and 2.10).

Exercise 3.10 Prove that the mapping .S, is a homeomorphism in Fb for eve-
ryt >0.

Exercise 8.11 Let p(t) e L*(R,, H) be a periodic function: p(t)=
=p(t+ to) , o> 0. Define the family of operators S, by the for-
mula

S,y = (u(mto); U(mto)), m=0,1,2, ...,

in the space 76 = ¥, x %, . Here u(t) is a solution to problem (0.1)
and (0.2) with the initial conditions » = (1, %,). Prove that the
pair (6, Sm) is a discrete dynamical system. Moreover, S, = S{n
and §; is a homeomorphism in 7.
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§ 4 Smoothness of Solutions

In the study of smoothness properties of solutions constructed in Section 3 we use
some ideas presented in paper [9]. The main result of this section is the following as-
sertion.

Theorem 4.1

Let the hypotheses of Theorem 3.1 hold. We assume that M(z) e
e C'*1(R,) and the load p(t) lies in C'(0, T; %,) for some | > 1. Then

Jor a weak solution wu(t) to problem (0.1) and (0.2) to possess the properties
uk(t) e C(0,T; %), k=0,1,2,..,1-1,
(4.1
u(t) e C(0,T; 7)), ul+D(t)eC(0,T; %),

it 1s mecessary and sufficient that the following compatibility conditions
are fulfilled:

uk(0)e F, k=0,1,2,...,1-1; u)(0) e 7. (4.2)

Here uV)(t) is a strong derivative of the function w(t) with respect to t
of the order j and the values u(k)(O) are recurrently defined by the initial
conditions u, and u, with the help of equation (0.1):

wO(0) = uy, w(0)=u,,
ulk)(0) = —{yu(k1)(0)+A2u(k2)(0)+Lu(k2)(0)+

k-2
d } 4.3)
t=0

& (mlazulP) au(e) - (1)

where k=2, 3, ....

+

Proof.

It is evident that if a solution « (t) possesses properties (4.1) then compatibility
conditions (4.2) are fulfilled. Let us prove that conditions (4.2) are sufficient for
equations (4.1) to be satisfied. We start with the case [ = 1. The compatibility condi-
tions have the form: u, € %,, u; € % . As in the proof of Theorem 3.1 we consider
the Galerkin approximation

()= > g (0)e,
k=1

of the order m for a solution to problem (0.1) and (0.2). It satisfies the equations



Smoothness of Solutions

U (1) + 7t (1) + A%, (1) +

+M(”Al/2um(t)“2)Aum(t)+meum(t) = p,p() , (4.4)

um(O) = DU U,,(0) = p,,uy,

where p,, is the orthoprojector onto the span of elements e, ... ¢, . The structure
of equation (3.10) implies that u,, (t) € C2(0, T; %,) . We differentiate equation
(4.4) with respect to ¢ to obtain that v, (¢) = u,,(t) satisfies the equation

B+ Y0y + 420, + M(|4V20, [?) Av,, +p,, Lo, =
= —2M (|A1/ 2 umuz)(Aum, U,,) A, + D, D(t) (4.5)

and the initial conditions

Um(o) =Py

0,,(0) = —-p,, {yul + Aug+ M(“Al/zpmuouz) Auy+Lp,,u, —p(O)} . (4.6)
It is clear that
¥,,(0) = p,,u2)(0) + [M(HAUZ u0“2) _M(‘|Al/2pmu0‘|2):| Ap,uy + L(ug=D, ug),
where u(z)(O) is defined by (4.3). Therefore,

[0(0) =2, u®O)] < C(Jutg])tg=Prat o] -

The compatibility conditions give us that u € 9’2 and hence u(z)(O) € ?70. Thus,
the initial condition Um(O) possesses the property

[6,,(0) —®)(0)| >0,  m—>00. 4.7
We multiply (4.5) by 9,,,(t) scalarwise in H to find that
35 (Fn@F + 140, 0P )+ 1l 0F = 0. 5,00, @48)

where
£ (1) = ~M (|42, |2) Av,, ~p,, Lo, -

-2M’ ( Al/2 umuz) (Au,,, t,,)Au,, +p,, (1) - (4.9)

Using a priori estimates (3.14) for u,,(t) we obtain

7, 0] < 0p(1+]Av,0)). ¢ efo.T].
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Thus, equation (4.8) implies that

d. _
G (P +]40,0F) < Cr(1+]0,, 0 +|Av, ).t <[0. 7].
Equation (4.7) and the property u, € % give us that the estimate
[2m(O)F +42,,0)" < ©

holds uniformly with respect to m . Therefore, we reason as in Section 3 and use
Gronwall’s lemma to find that

[ A0 (O + [N

IA

Cp, tel0,T]. (4.10)

Consequently,

IN

Aty (O] + i (]
Equation (4.4) gives us that
20 O] = Fi0)]+ i 0]+ P20, O 1, 0] + [t (O] + DN
Therefore, (3.14) and (4.11) imply that
|A2u,, (1)) < Cp, telO0,T]. (4.12)

Cp, tel0,T]. (4.11)

Thus, the sequence {um(t)} of approximate solutions to problem (0.1) and (0.2)
possesses the properties (cf. Exercise 3.7):
u,,(t) > u(t) weaklyin L2(0, T; D(A?));
U, (1) > 2 (t) weaklyin L2(0, T; D(A)); (4.13)
U,,(t) > 0(t) weaklyin L2(0,T; H);

where wu(t) is a weak solution to problem (0.1) and (0.2). Moreover (see Exer-
cise 1.13),
T

mliinooJ. [ty () = (D) + e, (1) —u (D)2, .t = 0 (4.14)
0

for every s < 1.If we use these equations and arguments similar to the ones given in
Section 3, then it is easy to pass to the limit and to prove that the function w(t) = 2 (¢)
is a weak solution to the problem

W+ Y+ A2w +M(||A1/2u(t)||2) Aw+Lw =

= —20r (1412w ()l ) (Au, 1) Au+ (1) , (4.15)

w(0)=u,, w(0)=ul)(0),
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where u(z)(O) is defined by (4.3). Therefore, Theorem 2.1 gives us that
u(t) = w(t) e C(0,T; D(A))NCY0,T; H).
This implies equation (4.1) for [ = 1.

Further arguments are based on the following assertion.

Lemma 4.1

Let u(t) be a weak solution to the linear problem

a(t)+yu(t) + A2u(t)+b(t)Au = h(t),
(4.16)
u(0) = ug,

where b(t) is a scalar continuously differentiable function, h(t) €
e CL(0,T; %) and uy e F, uye % . Then
u(t) e C(0,T; %) NCHO, T; F)NC%0, T; %) (4.17)

and the function v(t) = u(t) is a weak solution to the problem obtained
by the formal differentiation of (4.16) with respect to t and equiped
with the initial conditions v(0) = uy and ©(0)=4(0) = —(yu,+ A%uy+
+b(0)Auy —h(0)).

Proof.

Let u,,(t) be the Galerkin approximation of the order m of a solution to
problem (4.16) (see (2.7)). It is clear that um(t) is thrice differentiable with re-
spectto t and v, (t) = ,,(t) satisfies the equation

By + 70y, + A%, +b(t)Av,, = —b(t)Au,, + p,,h(t), >0,
and the initial conditions
0u(0) =ppur,  D(0) = —p,,(Yuy + A%ug +b(0) Aug —h(0)) .

Therefore, as above, it is easy to prove the validity of equations (4.10)—(4.14)
for the case under consideration and complete the proof of Lemma 4.1.

Exercise 4.1 Assume that the hypotheses of Lemma 4.1 hold with b(¢) €
e C1(0,T) and h(t) e C'(0,T; %) for some | > 1. Let the com-
patibility conditions (4.2) be fulfilled with %(9)(0) = u,, u(1)(0) =
= u;,and

uk)(0) = —{Yu(k_l)(O) + A2ulk=2)(0) +

k-2
+57 ¢ b0 (0)Aulk=2=1)(0) +

7=0
4Ll ~2)(0) — il —2>(0)}
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for k=2, 3, ..., l. Show that the weak solution u(¢) to problem
(4.16) possesses properties (4.1) and the function v, (t) = u(k)(t) is
a weak solution to the equation obtained by the formal differentia-
tion of (4.16) k times with respectto t. Here k =0, 1, ..., [.

In order to complete the proof of Theorem 4.1 we use induction with respect to
l. Assume that the hypotheses of the theorem as well as equations (4.2) for
[ =mn+1 hold. Assume that the assertion of the theorem is valid for l=mn > 1.
Since equations (4.1) hold for the solution «(¢) with [ = 7, we have

dr 2 2
a@ {M("Al/zu(t)” )Au(t)} = (v 2u (o) au)(e) + 6,0,
where G, (t) € cl(o, T; %), k=1, ..., n. Therefore, we differentiate equation
(0.1) 7 —1 times with respect to ¢ to obtain that v(t) = u(”_l)(t) is a weak solution
to problem (4.16) with

o(t) = M(JAV2u(0)?) and h(t)= -G,y (1) + P (1),

Consequently, Lemma 4.1 gives us that w(t) = ©(t) is a weak solution to the problem
which is obtained by the formal differentiation of equation (0.1) 7 times with re-
spectto t:

W+ + AZw +M(||A1/2u(t)||2) Aw = pm(t) -G, (1),
w(0) = ul™(0), w(0) = ul?*+1)(0) .
However, the hypotheses of Lemma 4.1 hold for this problem. Therefore (see (4.17)),
w™(t) = w(t) e C(0,T; Fy) N CL0, T; F) N C2(0, T; %),
i.e. equations (4.1) hold for [ = n+1 . Theorem 4.1 is proved.
Exercise 4.2 Show that if the hypotheses of Theorem 4.1 hold, then the
function v(t) = u(k)(t) is a weak solution to the problem which is

obtained by the formal differentiation of equation (0.1) k times with
respecttot, k=1,2, ..., 1.

Exercise 4.8 Assume that the hypotheses of Theorem 4.1 hold and L = 0
in equation (0.1). Show that if the conditions
p(t) e CK([0,T]; %_,), k=0,1,..,1, (4.18)

are fulfilled, then a solution (¢) to problem (0.1) and (0.2) possess-
es the properties

u(t) e CH[0, T Fuq_p), k=0,1,..,1+1.
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Exercise 4.4 Assume that the hypotheses of Theorem 4.1 hold. We define
the sets

Y, = {(uo, uy) € Jb: equation (4.2) holds with | = k} (4.19)

in the space J6 = %, x %, . Prove that
V=%x%F and V> >..>%.
Exercise 4.5 Show that every set %, given by equality (4.19) is invariant:
(ug; uy) € Y = (u(t); u(t) e, k=1,..,1.
Here wu(t) is a weak solution to problem (0.1) and (0.2).

Exercise 4.6 Assume that L = 0 in equation (0.1) and the load p(t) pos-
sesses property (4.18). Show that for k = 1, 2, ..., [ the set <7/k of
form (4.19) contains the subspace %, | x %, .

Exercise 4.7 Assume that the hypotheses of Theorem 3.1 hold and the ope-
rator L (in equation (0.1)) possesses the property

|ILuly, < Clul,,, forsome 0<s<1. (4.20)
Let ug € %, ; andlet u; € %, . Show that the estimate
. 2 2
[ O5 + 7 < Cps €0, T], (4.21)

is valid for the approximate Galerkin solution ,,(¢) to problem
(0.1) and (0.2). Here the constant Cp does not depend on m
(Hint: multiply equation (3.8) by KJZS gj(t) and summarize the re-
sult with respect to 7 ; then use relation (3.14) to estimate the non-
linear term).

Exercise 4.8 Show that if the hypotheses of Exercise 4.7 hold, then prob-
lem (0.1) and (0.2) possesses a weak solution % (t) such that

u(t) e C(0. T: @, ) 1 CH0, T: F) N CX0,T: F ),

where s € (0, 1) is the number from Exercise 4.7.

245



246

= 0 =T ® 5O

N

The Problem on Nonlinear Oscillations of a Plate in a Supersonic Gas Flow

§ 5 Dissipativity and Asymptotic
Compactness

In this section we prove the dissipativity and asymptotic compactness of the dynam-
ical system (7, St) generated by weak solutions to problem (0.1) and (0.2) for
Y > 0 in the case of a stationary load p(t) =peH= % . The phase space is 76 =
= §i’1 X ?70 . The evolutionary operator is defined by the formula

Sy = (u(1), u(1)), (5.1)
where wu(t) is a weak solution to problem (0.1) and (0.2) with the initial condition
y = (ug; uy).

Theorem 5.1

Assume that in addition to (3.2) the following conditions are fulfilled:
a) there exist numbers a; > 0 such that

zM(z)—ale(ﬁ)di > ay2't%—ay, 220 (5.2)
0

with a constant o > 0;
b) thereexist 0 <0< 1 and C >0 such that

ILul < C|A%|, u e D(AP). (5.3)

Then the dynamical system (7, St) generated by problem (0.1) and (0.2)
Jor v >0 and for p(t) = p € H is dissipative.

To prove the theorem it is sufficient to verify (see Theorem 1.4.1 and Exercise 1.4.1)
that there exists a functional V(y) on J# which is bounded on the bounded sets of
the space F, differentiable along the trajectories of system (0.1) and (0.2), and
such that

V(y) > alyld -2, (5.4)
d%(V(Szy)H BV(S,y) < @, (5.5)

where o, B >0 and %, %, > 0 are constants. To construct the functional V()
we use the method which is widely-applied for finite-dimensional systems (we used
it in the proof of estimate (2.13)).

Let

V(y)=E(y)+v®(y),

where y = (uy; u,) e ¥. Here E(y) = E(uy; u,) is the energy of system (0.1)
and (0.2) defined by the formula (3.7),
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D(y) = (ugs uy)+ 5|,

and the parameter v > 0 will be chosen below. It is evident that

glul? < @@) < g P+ vl
For 0 < v < 7 this implies estimate (5.4) and the inequality
V(y) < b E(y)+ by (5.6)
with the constants b, b, > 0 independent of v. This inequality guarantees the
boundedness of V() on the bounded sets of the space .

Energy equality (3.6) implies that the function E(y(t)), where y(t) = S,y , is
continuously differentiable and

SB(1) = —yla(l? + (-Lu() +p, a(1)).

Therefore, due to (5.3) we have that
d
dt

We use interpolation inequalities (see Exercises 2.1.12 and 2.1.13) to obtain that

J40ul* < S1Aul® + Cglarzul?,  §>0.

Thus, the estimate

B() < - L1l + Elau® + ¢ Jav2ul? + o, (5.7)

holds forany € > 0.

E(y(t)) < —Slal?+ cyla%ul® + ¢,

Lemma 5.1

Let u(t) be a weak solution to problem (0.1) and (0.2) and let y(t) =
= (u(t), u(t)). Then the function ®(y(t)) is continuously differenti-
able and

S D(y(1) = la(e) + (@ (e) + yi(t), u(t)) - (5.8)

We note that since 7i(t) € C(R,, % ;) (see Exercise 3.6), equation (5.8) is correct-
ly defined.

Proof.
It is sufficient to verify that
¢
(u(t), u(t)) = (uo, uy) +J {(u(r), u(t))+ ||a(r)||2}dr. (5.9

0
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Let p, be the orthoprojector onto the span of elements {ek, k=1, 2, ..., l} in
%, - Then it is evident that the vector-function u,(t) = p;u(t) is twice continu-
ously differentiable with respect to ¢ . Therefore,

l

(0 1) = (0, 00+ | {(dm ul<r>>+||al<r>||2} dr
0

The properties of the projector p; (see Exercise 2.1.11) enable us to pass to
the limit / — oo and to obtain (5.9). Lemma 5.1 is proved.

Since w(¢) is a solution to equation (0.1), relation (5.8) implies that

So ) = lal? —{nAunz +m(lav2ul®) Jav2ul? + (Lu -p, u>}.

Therefore, equation (5.2) and the evident inequality

(Lu—p, u)l < %IIAMII2 +CyJul® + Ipl?

give us that

o) < 1l - Liaul? —a, m(14720l) - ay A2l 2%+ C ul+ ¢,

Hence, (56.6) and (5.7) enable us to obtain the estimate

V() +8V((1) < ~L(r-8b,-2v)l? -

5b
~Lv-80,—e)laul® - (va, - 1) b (l4V2ul?) + R(us v, €, 8)

where & > 0 and
R(u; v, &,8) = —vay[aAV2ul**2% 4 ¢ [AV2u?+ v, |ul*+ Cy .

Therefore, for any 0 < v < 7/2 estimate (5.5) holds, provided 0 and € are chosen
appropriately. Thus, Theorem 5.1 is proved.

Exercise 5.1 Prove that if the hypotheses of Theorem 5.1 hold, then the as-
sertion on the dissipativity of solutions to problem (0.1) and (0.2)
remains true in the case of a nonstationary load p(t) € L*(R,, H).

Theorem 5.2
Let the hypotheses of Theorem 5.1 hold and assume that for some G > 0
pe¥,, LD(A)c D(A%), lASLwu| < ClAu]. (5.10)
Then there exists a positively invariant bounded set K in the space Fb; =

= §}’1 o X 9;’0 which is closed in F and such that
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—%(5 ~tp)

sup{dist%(Sty, Ky): ye B} < Ce (5.11)

Jor any bounded set B in the space J6, t > i.

Due to the compactness of the embedding of %G in 36 for ¢ > 0, this theorem and
Lemma 1.4.1 imply that the dynamical system (%, St) is asymptotically compact.

Proof.
Since the system (6, St) is dissipative, there exists R > 0 such that for all
y e Bandt > t;=t,(B)

l(0)I* + 1Au()? < R*, (5.12)
where u(t) is a weak solution to problem (0.1) and (0.2) with the initial conditions
y=(ugy; u;) € B. We consider u(t) as a solution to linear problem (2.1) and (2.2)
with b(t) = M(JAY2wu(t)|*) and k(1) = — Lu(t) + p . Itis easy to verify that b(t) is a
continuously differentiable function and

() +1b(0) < Cpy 121y
Moreover, equation (2.27) implies that
S,y =U(t, ty)y(ty) +G(L, ty; v), (5.13)
where
t

Gt ty: y) = —J U(t, 7)(0; Lu(t)—p)dr.
)
Here U(t, 1) is the evolutionary operator of the homogeneous problem (2.1) and

(2.2) with A(t) = 0 and b(t) = M(JAY2u(t)|*). By virtue of Theorem 2.2 there
exists Ny = 0 such that

|(1=By) U(t, r)h”%c < ﬁllhll%c exp {—z—i(t - r)} : (5.14)

where N > N, t 2 T 2 I, and Py s the orthoprojector 7 onto
%y = Lin{(e,; 0), (0; e,), k=1,2,..., N}.
This implies that

(0=t ), < 8 [ = o) g

Therefore, we use (5.10) to obtain that
H(I—PNO)G(L‘, tos y)"%G < C(R). (6.15)
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It is also easy to find that
HPNOSzy”%G < NG|Sls < RNG, bz

Consequently, there exists a number R, depending on the radius of dissipativity R
and the parameters of the problem such that the value

S,y —(1 —PNO) U(t, ty) Stoyo = PNOSty +(1 —PNO)G(t, tos Y) (5.16)
lies in the ball
By ={y: lyly, < R}
for ¢t > t,. Therefore, with the help of (5.12) and (2.23) we have that

Y
. —L(t—1t,)
dists, (S,y, Bg) < H(l—PNO) U(t, to)Szo?/H < RJ3et Y. (51D

Let K = v"(Bs) = | J; » 05, (Bg) - Evidently equation (5.11) is valid. Moreover, K ;
is positively invariant. The continuity of S,y with recpect to the both variables
(t; y) in the space J6 (see Exercise 3.8) and attraction property (5.17) imply that
K isaclosed set in 7. Let us prove that K is bounded in J . First we note that
K is bounded in 6. Indeed, by virtue of the dissipativity we have that ||Szy|| <R
forally e B; andt >t = t(Bg). Since S,y is continuous with respect to the vari-
ables (; ), its maximum is attained on the compact [0, t] x B . Thus, there exists
R>0 suchthat |Jy| <R forally K . Let us return to equality (5.16) for ¢, =0
and y, € B . It is evident that the norm of the right-hand side in the space
is bounded by the constant C = C (G, R). However, equation (5.14) implies that

[(1=Ey,) UL, O)yOH%G < W3Ry, 120, y,eB,.
Therefore, equation (5.16) leads to the uniform estimate
|Sey

Thus, the set K is bounded in F6 . Theorem 5.2 is proved.

w <Bo, 120, yeB,.

Exercise 5.2 Showthat forany 0 < s < ¢ abounded set of , is attracted
by K at an exponential rate with respect to the metric of the space
b, . Thus, we can replace disty, by dist %, in (6.11).

Exercise 5.8 Prove that if the hypotheses of Theorem 5.2 hold, then the as-
sertion on the asymptotic compactness of solutions to problem (0.1)
and (0.2) remains true in the case of nonstationary load p(t) €
e L*(R,, %;) (see also Exercise 5.1).

Exercise 5.4 Prove that the hypotheses of Theorem 5.1 and 5.2 hold for
problem (0.3) and (0.4) for any 0 < 6 < 1/4, provided that y > 0
and p(w, t) = p(x) lies in the Sobolev space H} ().
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Let us consider the dissipativity properties of smooth solutions (see Section 4) to
problem (0.1) and (0.2).

Theorem 5.3

Let the hypotheses of Theorem 5.1 hold. Assume that M(z) e C'*1(R,)
and the initial conditions y, = (uq; u,) are such that equations (4.1) (and
hence (4.2)) are valid for the solution (u(t); wu(t)) = S,y,. Then there exists
R, > 0 such that for any initial data y,= (uo; U 1) possessing the property

Juk+ D)2 + [Au)(0)% +|A2u=D(O)? < p2, k=1,2,...,1, (5.18)
the solution (u(t); u(t)) = S,y, admits the estimate
lule+ D () + | Au®) ()] + | A2ut-D(0)|* < RZ (5.19)
Jorall k=1, 2, ..., 1 assoon as t > t,(p).

We use induction to prove the theorem. The proof is based on the following asser-
tion.

Lemma 5.2

Assume that the hypotheses of Theorem 5.3 hold for | = 1. Then the dy-
namical system (Jb;, S,) generated by problem (0.1) and (0.2) in the
space Jb, = F, x F, is dissipative.

Proof.

Let (u(t); u(t))=S,y, be a semitrajectory of the dynamical system
(P, S,) and let y,=(ug; uy) € I, =%, x F . If the hypotheses of the lem-
ma hold, then the function w(¢) = %(t) is a weak solution to problem (4.15) ob-
tained by formal differentiation of (0.1) with respect to ¢ (as we have shown in
Section 4). By virtue of Theorem 2.1 the energy equality of the form (2.6) holds
for the function w(¢) . We rewrite it in the differential form:

SF(t; w(e), () +yhib (e = P (u(t), w(?), (5.20)
where
(s w, i) = (10l +1awl® + (a2 u)l?) |4l 2wl?)  5.2D)
and
Pu(t), w(t)) = ~(Lw(t), w(t))+
+ (1420 (o)) (Au). ()14 () ~2(Au(), w(0)] .

The dissipativity property of (%, Sz) given by Theorem 5.1 leads to the esti-
mates
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and for all ¢ > ¢y(p) large enough. Hereinafter R is the radius of dissipativity

of the system (6, S,). These estimates imply that for ¢ > ¢,(p) we have

Yol +1awl?) - ay < F(s w, ) < ool + b))+ ay 522

and

d . N1 Y2 2

(5.23)

where the constants o > 0 depend on R . Here 0 < 1. Similarly, we use Lem-

ma 5.1 to find that
: (1) + SO} < L@ - Llaw(e)? +c
g 1w @), (@) + 5l b < (I - 5lAw (@)l + Cp
for ¢t > t,(p). Consequently, the function
V(1) = F(t; w, w)+v{(w, u'))+%/||w||2}

possesses the properties

dv
E+wVSCR, w>0,

and
Ll +14wl?) ~a; < v < ay(wl? +1l?) + ay
for t > t;(p)and for v > 0 small enough. This implies that
L (O + 1aw(IF < ¢ (it + |Aw(to)F )@t + €,
fort > t, = t,(p), provided that
2 2

Al + ™ < p*.

If we use (5.4)—(5.6), then it is easy to find that

lAu(P + ()l < ¢

0, R t>0,

(5.24)

(5.25)

under condition (5.25). Using the energy equality for the weak solutions to

problem (4.15) we conclude that
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d . .
S(1awOP +10()12) < 0y(p. R)-1Awl-lil + Cy(p, R) .
Therefore, standard reasoning in which Gronwall’s lemma is used leads to
Jaw ()2 +li (0 < (1Aw(O) + Li(0) +a Jeb,

provided that equation (5.25) is valid. Here a@ and b are some positive con-
stants depending on p and E . This and equation (5.24) imply that

()12 + 14w ()P < 0y(p. R)((1+Li(0)2) +1Aw(0)? ) e=0t + 0y, (5.26)
where Cy5 depends on 2 only. Since
(O +1Aw(O) < €y, Jougf +[Augf? < (7%)2
provided that
[du P +]42u* < p2,
equation (5.26) gives us the estimate
LI +1Aa()® < b, > To(p).

This easily implies the dissipativity of the dynamical system (J;, S,). Thus,
Lemma 5.2 is proved.

Exercise 5.5 Prove that the dynamical system (%, S,) generated by
problem (0.1) and (0.2) with the initial data = (uy; u;) € Jb, =
= 9*2 X 9*1 is asymptotically compact provided that equations (5.10)
hold.

In order to complete the proof of Theorem 5.3, we should note first that Lemma 5.2
coincides with the assertion of the theorem for [ = 1 and second we should use the
fact that the derivatives u(’f)(t) are weak solutions to the problem obtained by dif-
ferentiation of the original equation. The main steps of the reasoning are given in the
following exercises.

Exercise 5.6 Assume that the hypotheses of Theorem 5.3 hold for [ = n+1
and its assertion is valid for [ = 7. Show that w(t) = u("*1)(¢) is
a weak solution to the problem of the form

W (1) + () + A2w(t) + MIAY2ul* Aw + Lw =G, , (1),
w(0) = ul+1)(0), w(0) = u"*+2)(0),

where
|G, 41(0)] < C(R,) forall t>t4(p).
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Exercise 5.7 Use the result of Exercise 5.6 and the method given in the
proof of Lemma 5.2 to prove that w(t) = u("*+1)(¢) can be estima-
ted as follows:

lb () + JAw ()2 <

< Gyl (O +lAw (0P + 0y )eotr 0y, (B2

where ® > 0, the numbers Cj dependon p and R, j =1, 2,and
the constant Cy depends on R,, only.

Exercise 5.8 Use the induction assumption and equation (5.27) to prove
the assertion of Theorem 5.3 for [ = n+1.

§ 6 Global Attractor and Inertial Sets

The above given properties of the evolutionary operator St generated by problem
(0.1) and (0.2) in the case of stationary load p(¢) = p enable us to apply the gene-
ral assertions proved in Chapter 1 (see also [10]).

Theorem 6.1

Assume that conditions (3.2), (5.2), (5.3), and (5.10) are fulfilled. Then
the dynamical system (I, Sz) generated by problem (0.1) and (0.2) pos-
sesses a global attractor A of a finite fractal dimension. This attractor is
a conmnected compact set in J6 and is bounded in the space Fb = F ;x Y,
where G > 0 is defined by condition (5.10).

Proof.

By virtue of Theorems 5.1, 5.2, and 1.5.1 we should prove only the finite dimen-
sionality of the attractor. The corresponding reasoning is based on Theorem 1.8.1
and the following assertions.

Lemma 6.1.

Assume that conditions (3.2), (5.2), and (5.3) are fulfilled. Let p € H.
Then for any pair of semilrajectories {Styj: t>0}, j=1, 2, posses-
sing the property ||Sz y]” <R forall t >0 the estimate

||Sty1—Sty2||% < exp (aot)”yl—yz”% , t>0, (6.1)

holds with the constant a, depending on R.
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Proof.

If () and u(t) are solutions to problem (0.1) and (0.2) with the initial
conditions y; = (ug;; %y;) and yg = (Uge; U;9), then the function v(t) =
= u,(t) —uq () satisfies the equation

T+y0+ A0 = Fuy, uy, t), (6.2)
where
2
F(uy, g, 1) = M{JAY2y (0]F) Auug(6) ~ M (| AY20, (0)]F) vy (0) ~ Lo (1)
It is evident that the estimate
[F(ers g, )] < Cp-[ Ay (2) —un(t))]

holds, provided that |y, (¢) ||% o ( )||2+||u1(t)||f < RZ. Therefore, (2.20)
implies that
‘

Ision-Siwalle < fr-valie+ ar [ 1SSl
0

Gronwall’s lemma gives us equation (6.1).

Lemma 6.2

Assume that the hypotheses of Theorem 6.1 hold. Let K be the compact
positively invariant set constructed in Theorem 5.2. Then for any
Y1» Y € K the inequality

1y L
|QN (S 41 =8us)|5 < age 4 [1+7L06 easlj"yl_yZ”% (6.3)
N+1

is wvalid, where Q= 1-Py, N 2N, the orthoprojector Py and the
number N, are defined as in (5.14), L, and a, are positive constants
which depend on the parameters of the problem.

Proof.
It is evident that
QnSyy; = (ayug(1); anuy(t)),
where g,; is the orthoprojector onto the closure of the span of elements {e i
k=N+1, N+2, ...} in %,=H . Moreover, the function wy(t) = g, (u;(t) —u(t))
is a solution to the equation
Wy + Yy + A2 wN+M(‘|A1/2u1”2) Awy = Oy (uy, ug, t),

where

Py (aay, 10y, 1) = = [M (|42 ) - (| A4V 20 )y vty —apyLiosy =),

25656
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Let us estimate the value ®@,;. Since |ylg < Rg for y e K, - (see the proof
(e}
of Theorem 5.2), we have

lay Aug =lanus], < Aiillanusliy g < 25 Ro
Using equation (5.10) we similarly obtain that
layLo| < Iap o las Lol < 02 1Al

+
Therefore,
lanL (uy(t) =us ()] < CA 1 |Su1=S,Us] 5 -
Consequently,
C(R
| P (215 209, 1)) < kg G)”Szyl_szy2"%~ (6.4)
N+1

Using equation (2.27) we obtain that
t

Qn(S,y1—8,55) = U, O)QN(yl_yz)+jU(ta 7)(0; @y(1))dr,
0

where U(t, 1) is the evolutionary operator of homogeneous problem (2.1) with
b(t) = M(JAV2u,(1)|]?) and h(t) = 0. Therefore, (2.23) and (6.4) imply that

QN (S5 =805 <

—%t C(RG) %1‘

et | Sy =Scpf dr (6.5)

Sﬁe

Y1 Yolq T
” 1 2"% )&?\7_,_1

ot~

We substitute (6.1) in this equation to obtain (6.3). Lemma 6.2 is proved.

Let us choose £y and N > NO such that

azexp{—z—;to} = g, Lok explagty} < 1, d<1.

Then Lemmata 6.1 and 6.2 enable us to state that
“S‘Oyl B S‘oyzﬂ% < Hyi—vals
and
”QN(SzO% _St0y2)

where [ = ¢"0 ‘o and the elements y,; and y, lie in the global attractor 4. Hence,

we can use Theorem 1.8.1 with M = /&, V=S, ,and P = Py;. Therefore, the fractal
. . AP 0

dimension of the attractor ./ is finite. Thus, Theorem 6.1 is proved.

s < Ol vslse
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Theorem 5.2 and Lemmata 6.1 and 6.2 enable us to use Theorem 1.9.2 to obtain an
assertion on the existence of the inertial set (fractal exponential attractor) for the
dynamical system (6, S,) generated by problem (0.1) and (0.2).

Theorem 6.2

Assume that the hypotheses of Theorem 6.1 hold. Then there exists
a compact positively tmvariant set J%exp c 96 of the finite fractal dimen-
ston such that

sup {dist%(Sty, Aexp): Y eB} < ce Vi)

Jor any bounded set B in F6 and t > ty. Here C and v are positive num-
bers. The inertial set J&exp s bounded in the space Fb.

To prove the theorem we should only note that relations (5.11), (6.1), and (6.3)
coincide with conditions (9.12)—(9.14) of Theorem 1.9.2.

Using (1.8.3) and (1.9.18) we can obtain estimates (involving the parameters of the
problem) for the dimensions of the attractor and the inertial set by an accurate ob-
serving of the constants in the proof of Theorems 5.1 and 5.2 and Lemmata 6.1 and
6.2. However, as far as problem (0.3) and (0.4) is concerned, it is rather difficult
to evaluate these estimates for the values of parameters that are very interesting
from the point of view of applications. Moreover, these estimates appear to be quite
overstated. Therefore, the assertions on the finite dimensionality of an attractor and
inertial set should be considered as qualitative results in this case. In particular, this
assertions mean that the nonlinear flutter of a plate is an essentially finite-dimen-
sional phenomenon. The study of oscillations caused by the flutter can be reduced to
the study of the structure of the global attractor of the system and the properties
of inertial sets.

Exercise 6.1 Prove that the global attractor of the dynamical system gene-
rated by problem (0.1) and (0.2) is a uniformly asymptotically stable
set (Hint: see Theorem 1.7.1).

We note that theorems analogous to Theorems 6.1 and 6.2 also hold for a class of re-
tarded perturbations of problem (0.1) and (0.2). For example, instead of (0.1) and
(0.2) we can consider (cf. [11-13]) the following problem

U+ yu+ A2u +M(||A1/2u||2)Au +Lu+q(u,) = p,

ul,_g=ug, ul,_g=up, 4, (=, 0) " ¢(1).
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Here A, M, and L are the same as in Theorems 6.1 and 6.2, the symbol u, denotes
the function on [—7, 0] which is given by the equality u,(c) = u(t+0) for ¢ €
e [-7, 0], the parameter » is a delay value, and ¢(-) is a linear mapping from

L%(-r, 0; %, ) into H possessing the property
0

la%q(o)? < ¢ J”A“O‘U(G)HZ do
-7
for ¢, small enough and for all o € [0, o], where o is a positive number. Such
a formulation of the problem corresponds to the case when we use the model of the
linearized potential gas flow (see [11-14]) to take into account the aerodynamic
pressure in problem (0.3) and (0.4).

The following assertion gives the time smoothness of trajectories lying in the attrac-
tor of problem (0.1) and (0.2).

Theorem 6.3

Assume that conditions (3.2) and (5.2) are fulfilled and the linear ope-
rator L possesses the property

ALl < clac+124y,  w e D(A) (6.6)
Sfor all o € [-1/2, 1/2). Let p € F,,,. Then the assertions of Theorem 6.1
are valid for any o € (0, 1/2). Moreover, if M(z) e C'*(R,) for some
l > 1, then the trajectories y = (u(t), u(t)) lying in the global attractor
of the system (J, S,) generated by problem (0.1) and (0.2) for y >0 pos-
sess the property

lulk+ D (@) + | Aut)()? + [A2u-D()* < RE (6.7)

Jor all —o< i<, k=1,2,..,1, where R, is a constant depending on
the problem parameters only.

Proof.

It is evident that conditions (5.3) and (5.10) follow from (6.6). Therefore, we
can apply Theorem 6.1 which guarantees the existence of a global attractor /. Let
us assume that M(z) e C'*1(R,), 1 = 1.Let y(¢) = (u(t), u(t)) be atrajectory in
A, —o0 < t < oo. We consider a function u,,(t) = p,,u(t), where p, , is the ortho-
projector onto the span of the basis vectors { €15 e em} in 9*0 for m large enough.
It is clear that u,,(t) € C?(R; %,) and satisfies the equation

iy, + Y, + 42U, +M(||A1/2u(z)||2) Au, +p, Lu =p,p. (6.8)

Equation (6.6) for ¢ = —1/2 implies that p,,Lw is a continuously differentiable
function. It is also evident that M(|AY/ 2u(t)||2) e CY(R). Therefore, we differenti-
ate equation (6.8) with respect to ¢ to obtain the equation
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W, + YWy + A0, +M(||A1/2u(z:)||2) Aw, = —p Lu(t)+F (1)
for the function w,, (t) = ,,(t) = p,,%(t) . Here

Py (1) = —20 (JA12u )l ) (Au (), (1) A, (0).

Since any trajectory y = (w(t), %(t)) lying in the attractor possesses the property

L (0 +lAu()* < RS, -o<t<oo, (6.9)
it is clear that
||Fm(t)|| < CRO, —0 <t < o0, (6.10)
Relation (6.9) also implies that the function
(1) = M{lAV2u (1)) (6.11)
possesses the property
b(t) +1b(t) < Cp,» —o<t<®.

Therefore, as in the proof of Theorem 2.2, we find that there exists N, such that

Y
< C|A-Fy)y]se a0 (6.12)

||(1—PN) U(t, T)y| %, S
S

for all real s, where J6, = %, , . x %, Py is the orthoprojector onto
Ly =Lin{(e,, 0); (0, ¢e,): k=1, 2, ..., N},
N 2 Ngy,and U (t, r) is the evolutionary operator of the problem
{d+yu+A2u+b(t)Au =0,

u|z=o:u0’ d|t =up,

=0
with b(t) of the form (6.10). Moreover, 2, (t) = (w,,(t), ,,(t)) can be presented
in the form

t

2 (1) = ULt to)zm(t0)+J Ut, ©)(0; —p,, Lu(t)+F, (1) dt.  (6.13)
Ly
Then for m > N > N, we have
1-P t <cC g (O t +
0-B) 2,0, . < 0o enttolls,
t
S (LT
e '[ e [Py L) + By (1), O

Lo
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Therefore, we use (6.9), (6.10), and (6.6) for ¢ = —1/2 to obtain that

Y Loy
_ -3 =t) -7(t=1)
||(1 PN) zm(t)”%_l/2 < CRorm e + CRO e dt
Ly
We tend ¢, — —oo in this inequality to find that

1-P L.
sup [(1-Py) 2, (1)

< C
H_1/9 ’

where C > 0 does not depend on m . It further follows from (6.9) and equation (0.1)
that

ng% ”PN Zmu)”%—l/z < ¢,

where the constant C can depend on N . Hence,
sup (” Py, A2 u(t)HZ +[a1/2 pmd(t)"z) <C
teR

We tend m — oo to find that any trajectory y(¢) = (w(¢), %(t)) lying in the attrac-
tor possesses the property

() ”1/2 "Al/zu(t)” < CR —00 < < 00.

By virtue of (6.6) we have

IL2(t)l < CRo’ —0<t<®.

Therefore, we reason as above to find that equation (6.13) implies

e -tp)

|(1=Fn) 2 ()] 5 < Crym € +Cg, -

0
Similarly we get

la(e)? + [Au(t)* < R?

for all ¢ € (—o0,00). Consequently, using equation (0.1) we obtain estimate (6.7) for
k = 1.In order to prove (6.7) for the other values of k¥ we should use induction with
respect to k and similar arguments. We offer the reader to make an independent de-
tailed study as an exercise.

Exercise 6.2 Inaddition to the hypotheses of Theorem 6.3 we assume that
L =0 and p e % = D(A!). Prove that the global attractor /& of
the system (76, S,) liesin %, , | x %,.
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§ 7 Conditions of Regularity of Attractor

Unfortunately, the structure of the global attractor of problem (0.1) and (0.2) can be
described only under additional conditions that guarantee the existence of the Lya-
punov function (see Section 1.6). These conditions require that L = 0 and assume
the stationarity of the transverse load p(t). For the Berger system (0.3) and (0.4)
these hypotheses correspond to p = 0 and p(«, t) = p(x), i.e. to the case of plate
oscillations in a motionless stationary medium.

Thus, let us assume that the operator L is identically equal to zero and
p(t) = p in (0.1). Assume that the hypotheses of Theorem 3.1 hold. Then energy
equality (3.6) implies that

E%y@y)—E%yUﬁ)::—yjnuwmzdr+J(p,uajfdr, (7.1)

where y(t) = S,y = (u(t), u(t)), the function u(t) is a weak solution to problem
(0.1) and (0.2) with the initial conditions ¥ = (uy; u;), and E(y) is the energy
of the system defined by formula (3.7).

Let us prove that the functional W (y) = E(y) —(p, uy) with y = (ugy; u;)
is a Lyapunov function (for definition see Section 1.6) of the dynamical system
(6, S,;). Indeed, it is evident that the functional ‘¥'(y) is continuous on 7. By vir-
tue of (7.1) it is monotonely increasing. If E'(y(t,)) = £(y) for some t, > 0, then

Ly
jmuowdr:o.
0

Therefore, 2(t) = 0 for T € [0, t],ie. u(t) =% is a stationary solution to prob-
lem (0.1) and (0.2). Hence, y = (%; 0) is a fixed point of the semigroup S,
Therefore, Theorems 1.6.1 and 6.1 give us the following assertion.

Theorem 7.1

Assume that v >0, L =0, and p € % for some ¢ > 0. We also assume
that the function M(z) satisfies conditions (3.2) and (5.2). Then the global
attractor A of the dynamical system (7, St) generated by problem (0.1)
and (0.2) has the form

A=M,(N), (7.2)

where N is the set of fixed points of the semigroup S,, i.e.
2
N= {(u, 0): ue%, A2u+M(||A1/2u|| )Au:p}, (7.3)

and M, (V) is the unstable set emanating from N (for definition see Sec-
tion 1.6).
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Exercise 7.1 Let p = 0. Prove that if the hypotheses of Theorem 7.1 hold,
then any fixed point 2 of problem (0.1) and (0.2) either equals to ze-
ro, 2 = (0; 0), or has the form z = (c-e,; 0), where the constant
¢ is the solution to the equation M (c21,)+ A, = 0.

Exercise 7.2 Assume that p = 0 and M(2) = —I'+ 2. Then problem (0.1)
and (0.2) has a unique fixed point z,=(0; 0) for '<A,.

If A, << A, ., ,thenthe number of fixed points is equal to 27+1
and all of them have the form 2z, = (w;; 0), k=0, £1, ..., 4n,
where
-2,
wy=0, wy ==t 5 "€, k=1,2,...,n
k

Exercise 7.8 Show that if the hypotheses of Exercise 7.2 hold, then the
energy (zk) of each fixed point z; has the form

E(2y) =0, E(Zik):_éll(r_kk)z’ k=1,2,..,n,

forkn<l—‘s7\,

n+1-

Exercise 7.4 Assume that the hypotheses of Theorem 7.1 hold. Show that
if the set

Y, = {y:(uo; uy) e Fb: Y(y)=E(y)—(p, uy) < c} (7.4)

is not empty, then it is a closed positively invariant set of the dyna-
mical system ( J6, St) generated by weak solutions to problem (0.1)
and (0.2).

Exercise 7.5 Assume that the hypotheses of Theorem 7.1 hold and the set
@C defined by equality (7.4) is not empty. Show that the dynamical
system (%, S,) possesses a compact global attractor &, =M, (A),
where ./%@ is the set of fixed points of St satisfying the condition
Y(z)<c.

Exercise 7.6 Show that if the hypotheses of Theorem 7.1 hold, then the
global minimal attractor ./, ~(for definition see Section 1.3)
of problem (0.1) and (0.2) coincides with the set / of the fixed
points (see (7.3)).

Further we prove that if the hypotheses of Theorem 7.1 hold, then the attractor 4
of problem (0.1) and (0.2) is regular in generic case. As in Section 2.5, the corre-
sponding arguments are based on the results obtained by A. V. Babin and M. 1. Vishik
(see also Section 1.6). These results prove that in generic case the number of fixed
points is finite and all of them are hyperbolic.
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Lemma 7.1.
Assume that conditions (3.2) and (5.2) are fulfilled. Then the problem
Blu] = A2U+M(”A1/2u”2)Au:p, u e D(A2+0), 75)

possesses a solution for any p € ¥, where ¢ 2 0. If B is a bounded set
in %, , then its preimage B~ B) is bounded in Fy, .= D(A**0). If B
is a compact in F,, then %-YB) is a compact in D(A2+0), ie. the
mapping % is proper.

Proof.

We follow the line of arguments given in the proof of Lemma 2.5.3. Let us
consider the continuous functional

W(u) = % {(Au, Au)+ %(IIAI/ZuHZ)} —(p, u) (7.6)

g
on % = D(A), where Jb(z) = j M(&) dg is a primitive of the function M (2).
Equation (3.2) implies that 0

W) = 3(1a® ~alav2ul? -b) - La-tpl Jaul >

1 ( a ) 2 b ( a )’1 _102
> 112 _9_[1-4 7.7
> 711 % lAul® -3 -1 » latpl]®. (7.7
Thus, the functional W(w) is bounded below. Let us consider it on the subspace
pmgﬂ , where p,. is the orthoprojector onto Lin{el, e, em} as before. Since

W(u) = +oo as |Au| — oo, there exists a minimum point ,, on the subspace
pm@l . This minimum point evidently satisfies the equation

A2um+M(HA1/2umH2)Aum =p,,D- (7.8)

Equation (7.7) gives us that
||Aum||2 < ¢y +oy mf{W(u) u € pm%}+ 03||A*1p||2

with the constants being independent of m . Therefore, it follows from (7.8)
that ||A2 um” < Cp, provided [p| < R. This estimate enables us to pass to the
limit in (7.8) and to prove that if 6 = 0, then equation (7.5) is solvable for any
p € % . Equation (7.5) implies that

”Az*'cum” < Cp for |plg <R,

i.e. £71(B) isbounded in D(A2+9) if B is bounded. In order to prove that the
mapping % is proper we should reason as in the proof of Lemma 2.5.3. We give
the reader an opportunity to follow these reasonings individually, as an exercise.
Lemma 7.1 is proved.

263



264

= 0o 4" e QO

The Problem on Nonlinear Oscillations of a Plate in a Supersonic Gas Flow

Lemma 7.2

Let w e F,. Then the operator %'[u] defined by the formula

L' [ulw = A2w +2M’ (||A1/2u||2) (Au, w)Au +M(||A1/2u||2)Aw (7.9)
with the domain D(%'[u]) = D(A?) is selfadjoint and dmKer B'[u] <
<0,

Proof.

It is clear that %'[w] is a symmetric operator on D(A2). Moreover, it is
easy to verify that

| £ [u]w —A2w| < C(u) lAwl, w e D(A2), (7.10)
ie. %'[W] is a relatively compact perturbation of the operator A% . Therefore,
%'[u] is selfadjoint. It is further evident that
Fer B'[u] = Her {]—FAZ(S@’[M] —AZ)}.

However, due to (7.10) the operator A‘Z(%’[u] —Az) is compact. Therefore,
dim Ker £'[u] < oo . Lemma 7.2 is proved.

Exercise 7.7 Prove that for any u € % the operator %'[u] is bounded
below and has a discrete spectrum, i.e. there exists an orthonormal
basis { f},} in J such that

Elulfe=MW S k=1,2,..., H<puy<... lim p, =oo.

"N — 0

Exercise 7.8 Assume that u = CoCky > where ¢, is a constant and €k, is an
element of the basis {e k} of eigenfunctions of the operator A . Show
that #'[u]e, = M e, forallk =1, 2, ..., where

o =12 [1 +25kkoc(2)M’(cg7uk0)J +M(Cg)‘k0))‘k'

Here Skk0= 1 for k = ky and 8“02 0 for k # k.

As in Section 2.5, Lemmata 7.1 and 7.2 enable us to use the Sard-Smale theorem
(see, e.g., the book by A. V. Babin and M. L. Vishik [10]) and to state that the set

Ry = {h e%: 3[F[u]]! forall wue S@‘l[h]}

of regular values of the operator % is an open everywhere dense set in 9% for
c2>0.

Exercise 7.9 Show that the set of solutions to equation (7.5) is finite for
p € Py (Hint: see the proof of Lemma 2.5.5).
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Let us consider the linearization of problem (0.1) and (0.2) on a solution % e D(A2)
to problem (7.5):
wH+yw+ Lujw=0,

, (7.11)
w|t:O=w0, w|t:O=w1 )

Here %'[u] is given by formula (7.9).

Exercise 7.10 Prove that problem (7.11) has a unique weak solution on any
segment [0, T] if wy e %, w, € %), and the function M(2) €
e C2(R,) possesses property (3.2).

Thus, problem (7.11) defines a strongly continuous linear evolutionary semigroup
T,[u] inthe space J6 = %, x %, by the formula

Ty[ul(wg; wy) = (w(1); w(?)), (7.12)

where w(t) is a weak solution to problem (7.11).

Exercise 7.11 Let {f.} be the orthonormal basis of eigenelements of the
operator S@’[u] and let U, be the corresponding eigenvalues. Then
each subspace

Hy, = Lin{(fy3 0), (05 fi)} = H

is invariant with respect to 7,[u] . The eigenvalues of the restriction
of the operator T, [u] onto the subspace %k have the form

2
exp {—(%i / YZ —yk)t}.
Lemma 7.3

Let L = 0. Assume that M(z) € Cz(]R{+) possesses property (3.2). Then
the evolutionary operator S, of problem (0.1) and (0.2) is Frechét dif-
Serentiable at each fived point 7 = (u; 0). Moreover, S/[u]=T,[u],
where T,[u] is defined by equality (7.12).

Proof.
Let
z(t) = S,[g+h]-g-T,[ulh,
where h=(hy; hy) € F, 7= (u; 0),and % is a solution to equation (7.5).
It is clear that 2 (t) = (v(t); ©(t)), where v(t) = u(t) —u —w(t) is a weak so-
lution to problem
{7}' +yv+A%0 = F(u(t), u, w(t)),

7)|t=0:0’ 7)|t=0:0 )

(7.13)
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Here

Flu(t), . w(t)) = M(Jav2al?) am - m(JAV2u(o)l?) Au(r) +

+u(lav2al?) aw(e) + 20 (|aV2al ) Az, w(e) AT |

where (1) is a weak solution to problem (0.1) and (0.2) with the initial condi-
tions y,=7 +h = (@ +hy; hy) and w(t) is a solution to problem (7.11) with
wy=hyand w; = h;.Itis evident that

Plu(t), m, w(t) = -M(1a12al) 4o+ B (0) -a(lav2al? ) ) | (7.14)

where
(1) = —{M(IIA%@)IIZ) ~um(lavzal?) -

o (L2l (Lol -Laveal) L auo)

Fy(t) = (1412 (0)? ~|Av2al?) Aur) -2 (Am, w(1) AT
It is also evident that the value Fl(t) can be estimated in the following way
IR0 < o -max{IM” () 2 < [0, cg]} L4120 (0)f2 — a2zl
for t € [0, T] and for |h|4 < R, where the constants ¢; and ¢, dependon T,
R, and & . This implies that
|F1(0)] = C(T, R, ﬁ)llA(u(t)—ﬁ)lI2 . (7.15)
Let us rewrite the value Fy(¢) in the form
Fy(t) = (u(t) +a, Au(t) —))-Au(t)-a) +
+[AV2 (u(t) —m)|* A + 2 (7, Av(t)) AT .
Consequently, the estimate
|Fo(t)] < C(T, R, w)lA(u(t) —17)||2 +Cqo(m)[Av ()l (7.16)

holds for ¢ € [0, T'] and for |k]4 < R . Therefore, equations (7.14)—(7.16) give
us that

IF(u(t), @, w(t))l < CilAv(t)l +C2||A(u(t)—ﬁ)||2
onany segment [0, T']. Here C; = C,(@) and Cy = Co (T, R, ). We use conti-

nuity property (3.20) of a solution to problem (0.1) and (0.2) with respect to
the initial conditions to obtain that
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[A(u(t)~m)| < Cp glhlz, t[0,T], Ihls<R.
Therefore,
IF(u(t), @, w(t)) < ClllAv(t)ll+C2||h||§(4

for t € [0, T'] and for ||y < R . Hence, the energy equality for the solutions
to problem (7.13) gives us that

d . i
S (Ao +150)1%) < alav (o + 15012 )+ Clnl.
Therefore, Gronwall’s lemma implies that
lAv(e)l? + 50 < Clnl*, ¢ e [0, T].
This equation can be rewritten in the form

|S:[7 +h] =7 ~T,[a]h|, < clnl?.

76
Thus, Lemma 7.3 is proved.

Exercise 7.12 Use the arguments given in the proof of Lemma 7.3 to verify
that under condition (3.2) for M(z) € C2(R,) the evolutionary
operator S, of problem (0.1) and (0.2) in 7 belongs to the class cl
and

|5t [w1] =S} [ws]

forany ¢t > 0 and Y, € F6 .

B, %) S Clyr—va|%

Exercise 7.18 Use the results of Exercises 7.7 and 7.11 to prove that for
a regular value p of the mapping % [u] the spectrum of the opera-
tor T,[u] does not intersect the unit circumference while the eigen-
subspace £, which corresponds to the spectrum outside the unit
disk does not depend on ¢ and is finite-dimensional.

The results presented above enable us to prove the following assertion (see Chap-
ter V of the book by A. V. Babin and M. I. Vishik [10]).

Theorem 7.2

Assume that the hypotheses of Theorem 7.1 hold. Then there exists an
open dense set R, in % such that the dynamical system (J, S,) possesses
a regular global attractor A for every p € R, 1. e.

N
A= M, (2),
j=1
where M, (zj) is the unstable manifold of the evolutionary operator S, ema-
nating from the fixed point z;. Moreover, each set M, (zj) s a finite-dimen-
sional surface of the class C1.
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In the case of a zero transverse load (p = 0) Theorem 7.2 is not applicable in gene-
ral. However, this case can be studied by using the structure of the problem. For exam-
ple, we can guarantee finiteness of the set of fixed points if we assume (see Exer-
cise 7.1) that the equation M(c?A,)+ A, = 0, first, is solvable with respect to ¢
only for a finite number of the eigenvalues A . and, second, possesses not more than
a finite number of solutions for every k. The solutions to equation (7.5) are either
u=0,or %=cye,, where ¢y and k satisfy M(cg kk0)+kk0 = 0. The eigen-
values of the operator %'[u] have the form

O, = A +M(O)4, if =0

and
_ P 9 e —
= — ! f = .
I, xk[xk xk0+25moxkocoM(coxko)} it 7 =ocge;

Therefore, the result of Exercise 7.11 implies that the fixed points are hyperbolic
if all the numbers [1, are nonzero, i.e. if

M(O)# ~hy, k=125 Azl , kxky  M(c§h)#0

for all ¢, and k, such that M(c3 A, )+ k’fo = 0. In particular, if M(z)=-T +2,
then for any real I' there exists a finite number of fixed points (see Exercise 7.2)
and all of them are hyperbolic, provided that I" # kk for all ¥ and the eigenvalues
kj- satisfying the condition kj < T are simple. Moreover, we can prove that for
A, <T < A,.; the unstable manifold M, (z,), k=0, £1, ..., #n, emanating
from the fixed point 2, (see Exercise 7.2) possesses the property

dimM, (z,) =7, dimM, () = |k[—1.

§ 8 Omn Singular Limit in the Problem
of Oscillations of a Plate

In this section we consider problem (0.1) and (0.2) in the following form:
].M'/L+}/u+A2u+M(||A1/2u”2)Au+Lu:p’ t>0, 8.1

ul,_g=up U,_o=1u;- (8.2)

Equation (8.1) differs from equation (0.1) in that the parameter p > 0 is intro-
duced. It stands for the mass density of the plate material. The introduction of a new
time t' = t/ﬁl transforms equation (8.1) into (0.1) with the medium resistance pa-
rameter ¥’ = y/J/u instead of y. Therefore, all the above results mentioned above
remain true for problem (8.1) and (8.2) as well.
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The main question discussed in this section is the asymptotic behaviour of the
solution to problem (8.1) and (8.2) for the case when the inertial forces are small
with respect to the medium resistance forces (1< y. Formally, this assumption
leads to a quasistatic statement of problem (8.1) and (8.2):

v+ A2u +M(||A1/2u||2) Au+Lu=1p, t>0, (8.3)

u|t=0: U - (8.4)

Here we prove that the global attractor of problem (8.1) and (8.2) is close to the glo-
bal attractor of the dynamical system generated by equations (8.3) and (8.4)
in some sense.

Without loss of generality we further assume that ¥y = 1. We also note that
problem (8.3) and (8.4) belongs to the class of equations considered in Chapter 2.

Exercise 81 Assume that conditions (3.2) and (3.3) are fulfilled and
p € ¥, =H . Show that problem (8.3) and (8.4) has a unique mild
(in % = D(A)) solution on any segment [0, 7], i.e. there exists
a unique function u(t) € C(0, T'; %) such that

u(t) = e A% Uy —

t

- [ {M("Al/zu(r)"Z)Au(r) +Lu(r) - p} a

0
(Hint: see Theorem 2.2.4 and Exercise 2.2.10).

Let us consider the Galerkin approximations of problem (8.3) and (8.4):
2, (1) + A2, (1) + M(HAl/z um(t)Hz) Au,, +p, Lu,(t) = p,p, (85)

u,,(0) = p,,u, (8.6)
where p, is the orthoprojector onto the first m eigenvectors of the operator A and
u,,(t) € Lin{e,, ..., e, }.

Exercise 82 Assume that conditions (3.2) and (3.3) are fulfilled and
p € %= H. Then problem (8.5) and (8.6) is solvable on any seg-
ment [0, 7] and

[Ior}a%(] [A(u(t) —u,, ()] >0, m—>oo. (8.7

Theorem 8.1

Let p € H and assume that conditions (3.2), (5.2), and (5.3) are ful-
filled. Then the dynamical system (¥, Sz) generated by weak solutions to
problem (8.3) and (8.4) possesses a compact connected global attractor .
This attractor is a bounded set in ¥, , B Jor 0 < B < 1 and has a finite frac-
tal dimension.
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Proof.

First we prove that the system (971, Sz) is dissipative. To do that we consider
the Galerkin approximations (8.5) and (8.6). We multiply (8.5) by um(t) scalarwise
and find that

3 SO + A, (O + M| 420, () |42, (1) +

(L, (1), (1) = (D5 2y (1)) -
Using equation (5.2) we obtain that
14 i, (O + ||Aum(t)||2+al/ﬂ(o(“Al/zum(t)uz) <

< ag = ag|AY2u,, (T2~ (Lt (0), (1) + (D, 2, (1)) -

We use equation (5.3) and reason in the same way as in the proof of Theorem 5.1 to
find that

3 g [l 0 (s P+ (14120, [P )+, 420, P29 < by c88)

with some positive constants bj, J =0, 1, 2. Multiplying equation (8.5) by ,,(¢)
we obtain that

L ST (11, (0) + e (O + (L1, (0, 2 (1) = (05 2,(1)),

where
M(u) = LAul® + (|AV2ul?).

It follows that

S 1, (0) + i (O < 201 + A0, (1) 8.9)
If we summarize (8.8) and (8.9), then it is easy to find that

d%{"um”2 +H(um)} + bo{"um”g +H(um)} <C.
This implies that

||um(z§)||2 +1I(u,,(t)) < {"pmuonz + H(pmuo)} el y o

We use (8.7) to pass to the limit as 72 — oo and to obtain that

lu(@)]* +TI(u(t)) < {||u0||2 + H(uo)} el
This implies the dissipativity of the dynamical system (94'1, St) generated by prob-

lem (8.3) and (8.4). In order to complete the proof of the theorem we use Theorem
2.4.1.
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We note that the dissipativity also implies that the dynamical system (071, St) pos-
sesses a fractal exponential attractor (see Theorem 2.4.2).

Exercise 88 Assume that the hypotheses of Theorem 8.1 hold and L = 0.
Show that for generic p € H the attractor of the dynamical system
(%, S,) generated by equations (8.3) and (8.4) is regular (see the
definition in the statement of Theorem 7.2). Hint: see Section 2.5.

We assume that M(z) € Cz(]R{+) and conditions (3.2), (5.2), (5.3), and (5.10) are
fulfilled. Let us consider the dynamical system (%1, St“ ) generated by problem
(8.1) and (8.2) in the space J6, = %, x ¥, = D(A?) x D(A) . Lemma 5.2 and Exer-
cise 5.5 imply that (%1, Sz“) possesses a compact global attractor ﬂau for any
u>0.

The main result of this section is the following assertion on the closeness of
attractors of problem (8.1) and (8.2) and problem (8.3) and (8.4) for small 1 > 0.

Theorem 8.2

Assume that M(z) € C2(R,) and conditions (3.2), (5.2), (5.3), and
(5.10) concerning M(z), L, and p are fulfilled. Then the equation

lim sup{disty(y, A" ): y € A, }=0 (8.10)
nw—0 H

is valid, where A M is a global attractor of the dynamical system (J6,, St“)
generated by problem (8.1) and (8.2),

A = {(zo; 21): #ge b, &)= _AZzO_M(HAl/zzonz)Azo_Lzo"‘p} :

Here /A 1is a global attractor of problem (8.3) and (8.4) in ¥ and
disty(y, A) is the distance between the element y and the set A in the
space Jb=F x F,. We remind that ¥ = 1 in equations (8.1) and (8.3).

The proof of the theorem is based on the following lemmata.

Lemma 8.1

The dynamical system (%1, St“ ) is uniformly dissipative in Fb with
respect to e (0, uy] for some g, >0, ie there exists |, >0 and
R >0 such that for any set B < J6; which is bounded in J6 we have

SEB < {y:(uo; wy): pfug P+ A SRZ} (8.11)

Sorall t >2t(B, u), ne(0,pyy.
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Proof.
We use the arguments from the proof of Theorem 5.1 slightly modifying
them. Let

Vy)=E@)+vO(y), y=(up uy),
where

B(y) = L] + |Aue + 6 (j4172 0]
and
D(y) = 1 wy)+ o]

As in the proof of Theorem 5.1 it is easy to find that the inequalities

d Ly 12 4 €4 40,12 2
G EW®) < —glul”+glaul® + ClaV2ul” + ¢, (8.12)

and
L) < ulil? -1l - o, (Jar2ul?) -
_ 1/2,,2+2a 2
ay A2 +Cylul® + Cy (8.13)

are valid for y(t) = (u(t); u(t)) = S/'y,. Here € > 0 is an arbitrary number,

the constants a; and ¢ 5 do not depend on [L. Moreover, it is also evident that

V() < 4 Bo(pfugf? +Aul? + 6(JA1 20 ?)) + By (8.14)

for u e (0, py] and for any p,. Here P, and f3; do not depend on p €
e (0, “0] and v < 1. Equations (8.12)—(8.14) lead us to the inequality

SV +87w(1) < ~1(1=( Bo+ v)plil® -

5
~L(v=58B, —e)laul® ~(va, - %) (la2ul?) + @,

where the constant @ does not depend on t € (0, “0] . If we choose L, small
enough, then we can take 6 >0 and v > 0 independent of u € (0, p,] and
such that
d
dt
where @, >0 does not depend on p € (0, L,]. Moreover, we can assume
(due to the choice of L, ) that

V(y(1)) = Bg(ulld(t)llz+||Au(t)||2) -C, (8.16)

where 33 and C donot depend on € (0, ] . Using equations (8.14)—(8.16)
we obtain the assertion of Lemma 8.1.

V(y(t)+8V(y(1) < @, , (8.15)
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Lemma 8.2

Let u(t) be a solution to problem (8.1) and (8.2) such that |[Au(t)| < R
Sforall t > 0. Then the estimate

%Juu(r)nze-ﬁ‘(f—’:)dr < () +1Au(O)) P + C(R, B)
0

is valid for t 2 0, where B is a positive constant such that B < 1/2.

Proof.
It is evident that the estimate

M(||A1/2u(t)||2)Au(t)+Lu(t)—pH < ¢,

holds, provided |Au(t)| < R . Therefore, equaiton (8.1) easily implies the esti-
mate

L3 (i + Lau() + S < ¢

for the solution % (t). We multiply this inequality by 2 exp([3t). Then by virtue
of the fact that |Au(t)| < R we have

[P (mbatl? +1au@i]]« Ll eBt < cp yeb

for uf3 < 1/2. We integrate this equation from 0 to ¢ to obtain the assertion
of the lemma.

Lemma 8.3

Let u(t) be a solution to problem (8.1) and (8.2) with the initial condi-
tions (uy; u;) € Jb; =% x F and such that |[Au(t)] <R for t > 0. Then
the estimate

uli (O + 14w < ¢5(1+1b(0)F +1Aw(O)?) e P+ 0, 817)

is valid for the function w(t)=u(t). Here we (0, uy], Uy is small
enough, BO>0, and the numbers C; and Cq do mot depend on
e (0, pol.

Proof.
Let us consider the function

()= (sl +1aw )+ v(u (o, w)+ Lol

for v > 0. It is clear that
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c
! Fu(t=vll + Flawl® < w() <
>
% < Su(+ vl + ( + Vi )IIAwII2 : (8.18)
4 Since the function w(t) is a weak solution to the equation obtained by the dif-

ferentiation of (8.1) with respect to ¢ (cf. (4.15)):

wib(e) + (1) + A% () + M(1AV2u(0)?) Aw(t) + Lw(t) = F(1),
where

F(t) = 20 (JAV2 () ) (Au(t). w(t)) Au(r),
then we have that

Swie) == (1 =vlil? -M (A2 (0)P) (Aw, @) - (Lw, i)+ (F, i) -

. v{HAszz+M(|L41/2u(t)||2)|lAl/2w||2+(Lw, w)— (. w)}‘
It follows that

d (1 _ 2 2 @)y, 12
Swiey < (L -vilal® -Lv-ciawl+ vl

We take v = Cg)+ 2 and choose [, small enough to obtain with the help
of (8.18) that

SW)+Bw(t) < Clw(l?, 120, e u),

where the constants BO > 0 and C do not depend on [L. Consequently,
t
w(t) < woye Pl ic j la(o)l2e Pot = g

Therefore, estimate (8.17) follows from equation (8.18) and Lemma 8.2. Thus,
Lemma 8.3 is proved.

Lemma 8.3 and equations (8.11) imply the existence of a constant R, such that for
any bounded set B in 6, there exists t, = t,(B, |) such that

wli(n)l® +[Au()l* < R?,  pe (0, yy), (8.19)

where w(t) is a solution to problem (8.1) and (8.2) with the initial conditions from
B . However, due to (8.1) equations (8.11) and (8.19) imply that ||A2u(t)|| < C for
t >ty (B, n).Thus, there exists R, > 0 such that
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wla(I + 1A +1A2u()* < RS, t>1,(B, p), (8.20)

where u(¢) is a solution to system (8.1) and (8.2) with the initial conditions from the
bounded set B in J;, Ry does not depend on pe (0, y,), and p, is small
enough. Equation (8.20) and the invariance property of the attractor A M imply the
estimate

(O + Az (O + |42 (0 < B3 (8.21)

for any trajectory Sty = (u“( ); ty(t)) lyingin A, forall ¢ & (—oo, ).
Let us prove (8.10). Itis ev1dent that there ex1sts an element Y= (uo w U H)
from ﬂo such that

d(y,,) = disty(y,, A" ) = sup { distg(y, J%*):yefé“}.

Let y,,(t) = (u,(t); u(t)) be a trajectory of system (8.1) and (8.2) lying in the at-
tractor A, and such that y, (0)=y .- Equation (8.21) implies that there exist
asubsequence {y, (t)} and an element y(t)=(w(t); u(t)) € L®(—o0, 005 Fb))
such that for any segment [a, b] the sequence y, () converges to y(t) in the
*-weak topology of the space L% (a, b; %l) as W, — 0. Equation (8.21) gives us
that the subsequence {Auun(t)} is uniformly continuous and uniformly bounded
in H . Therefore (cf. Exercise 1.14),

3, a0, 00 =0 522
forany a < b. However, it follows from (8.21) that |, ()] — 0 as pt — 0. There-
fore, we pass to the limit © — 0 in equation (8.1) and obtain that the function u(t)
is a bounded (on the whole axis) solution to problem (8.3) and (8.4). Hence, it lies in
the attractor /& of the system (%, S,). With the help of (8.21) and (8.22) it is easy
to find that

d(yun)é Hyun—you%—)O, Hy =0
where
wo=(u(0): —Au(0) M (142w (0)?) Aug~Lug+p) e A"

Thus, Theorem 8.2 is proved.
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$§ 9 On Inertial and Approximate
Inertial Manifolds

The considerations of this section are based on the results presented in Sections 3.7,
3.8, and 3.9. For the sake of simplicity we further assume that p(t) = g € H.

Theorem 9.1

Assume that conditions (3.2), (5.2), and (5.3) are fulfilled. We also as-
sume that eigenvalues of the operator A possess the properties

A
inf == >0 and Ay = ckP(1+0(1), p>0, k>, (O.1
N Anil

Jor some sequence {N(k)} — . Then there exist numbers ¥, > 0 and k;> 0
such that the conditions

V>V, and 7“12\/(1c)+1_k12v(k) 2 Ko Ay (r)+1 (©.2)

imply that the dynamical system (6, Sz) generated by problem (0.1) and
(0.2) possesses a local inertial manifold, i.e. there exists a finite-dimen-
stonal manifold M in F6= % x F, of the form

Mo ={y=w+D(w): wePIH, ®w)e (1-P)IH}, (9.3)

where D(-) is a Lipschitzian mapping from PJ into (1-P)J6 and P is a
Sfinite-dimensional projector in F6. This manifold possesses the properties:
1) for any bounded set B in J6 and for t > t,(B)

sup {dist(S,y, 4b): y € B} < Cexp{-P(t—ty(B))}; (9.4)

2) there exists R > 0 such that the conditions y < /b and ||Sty|
t €0, ty] imply that S,y € Jb for t € [0, ty];

3) if the global attractor of the system (J, S,) exists, then the set b
contains it (see Theorem 6.1).

5 < B for

Proof.

Conditions (3.2), (5.2), and (5.3) imply (see Theorem 5.1) that the dynamical
system (J6, S,) is dissipative, i.e. there exists R > 0 such that

||Sty % <R, yeB, 1>1y(B) (9.5)
for any bounded set B € J. This enables us to use the dynamical system (&, Sz)
generated by an equation of the type

{d+ya+A2u= Bp(u) ,

(9.6)

u|g=0:u0’ u| =Uy,

t=0
to describe the asymptotic behaviour of solutions to problem (0.1) and (0.2). Here

By(u) = 7(R) " 14wl {g ~m(Jav2ul?) Au —Lu}
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and y(s) is an infinitely differentiable function on IR, possessing the properties
0<y(s)<1; Ix'(s) <2;
x(s)=1, 0<s<1; x(s)=0, s=>2.
It is easy to find that there exists a constant Cp such that
|Bg(w)| < Cg
and
|Br(uy) = Bg(us)] < Cg|A(ug—uy)|-
Therefore, we can apply Theorem 3.7.2 to the dynamical system (%, S’t) generated
by equation (9.6). This theorem guarantees the existence of an inertial manifold of
the system (%, St) if the hypotheses of Theorem 9.1 hold. However, inside the dissi-

pativity ball {y: |yl < R} problem (9.6) coincides with problem (0.1) and (0.2).
This easily implies the assertion of Theorem 9.1.

Exercise 9.1 Show that the hypotheses of Theorem 9.1 hold for the prob-
lem on oscillations of an infinite panel in a supersonic flow of gas:

T
O%u +y0,u+dtu + F—J|axu(x, P de | 02w+ pou= g(x), xe(0,m), >0
0
2
u|x:0’ P axu|x:0’ x:n:O, u|t:0=u0(x), 8tu‘Z:0: Uy ().

Here I' and p are real parameters and g () € L?(0, ).

It is evident that the most essential assumption of Theorem 9.1 that restricts its ap-
plication is condition (9.2). In this connection the following assertion concerning the
case when problem (0.1) and (0.2) possesses a regular attractor is of some interest.

Theorem 9.2
Assume that in equation (0.1) we have L=0 and p(t)=ge
1S Lin{el, ey eNO} Jor some N,. We also assume that conditions (3.2) and
(5.2) are fulfilled. Then there exists N 2 N, such that for all N =2 N, the
subspace
Fy = Lin{(e,; 0), (0; e): k=1, 2, ..., N} (9.7

s an tnvariant and exponentially attracting set of the dynamical system
(%, S,) generated by problem (0.1) and (0.2):

. 5 -1,(8))
dist(S,y, Hby) < CB”(I—PN)y”% e , y €B 9.8)

Jort > ¢, (B) and for any bounded set B in J6. Here By is the orthoprojector
onto Fby;.
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Proof.
Since pyg =g for N > N, where p,; is the orthoprojector onto the span of
{el, e, eNO}, the uniqueness theorem implies the invariance of %N. Let us prove

attraction property (9.8). It is sufficient to consider a trajectory (w(t), 2(t)) lyingin
the ball of dissipativity {: |yl4 < R}. Evidently the function v(t) = (1— py)u(t)
satisfies the equation

b+ y0 + A2 +M(||A1/2u(t)||2) Av =0,
(9.9)
v, o= (1=pp)ug, 9],_o=(1-py)u

It is also clear that the conditions

< by(R)

< by() ana |Sa(larucof?)

hold in the ball of dissipativity. This fact enables us to use Theorem 2.2 with b(t) =
= M(|AV2qy (t)||2) . In particular, equation (2.23) guarantees the existence of a num-
ber N| > N, which depends on y, b,(R),and b;(R) and such that

‘M(”Al/zu(t)”g)

0
Iy(0)l 30 = < Bl-ByyO)e ', t>0,

for all N > N, where £ is the orthoprojector onto J#y and y(t) = (v(t), ¥(t)).
This implies estimate (9.8). Theorem 9.2 is proved.

Exercise 9.2 Assume that the hypotheses of Theorem 9.2 hold. Show that
for any semitrajectory S,y there exists an induced trajectory in
Fby; , i.e. there exists J € Fy; such that

VY
18,5 5,3, < Cpe 2" Y

for ¢ > ¢, and for some ¢, = ¢, (¥l 4) -

Exercise 9.8 Write down an inertial form of problem (0.1) and (0.2) in the
subspace F#, ., provided the hypotheses of Theorem 9.2 hold. Prove
that the inertial form coincides with the Galerkin approximation of
the order N of problem (0.1) and (0.2).

Exercise 9.4 Show that if the hypotheses of Theorem 9.2 hold, then the
global attractor of problem (0.1) and (0.2) coincides with the global
attractor of its Galerkin approximation of a sufficiently large order.

Let us now turn to the question on the construction of approximate inertial mani-
folds for problem (0.1) and (0.2). In this case we can use the results of Section 3.8
and the theorems on the regularity proved in Sections 4 and 5.
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Exercise 9.5 Assume that M(2) e C"L(R,), m >1 and
B(u) = p-M(1AV2u)?) Au~Lu,

where p € H and u € 9(A) =%, . Show that the mapping B(-)
has the Frechét derivatives B(¥) up to the order [ inclusive. Moreo-
ver, the estimates

k
[BE s wy, .. wp| < CrTT|Aw)] (9.10)
H

and

[(BO[u] - B®[w]; wy, ..., wy)] <

k
< Cpla(u-w) ] [Jaw) ©.11)
=1

are valid, where k=0, 1, ..., m, |Au| <R, |Au'| <R, and
w; e D(A). Here (B¥)[u]; wy, ..., w)) is the value of the
Frechét derivative on the elements w, ..., w, .

We consider equations (9.10) and (9.11) as well as Theorem 5.3 which guarantees
nonemptiness of the classes Lm’ p corresponding to the problem considered when
R > 0 is large enough. They enable us to apply the results of Section 3.8.

Let P Dbe the orthoprojector onto the span of elements {e 1> s © N} in H and
let Q = 1—P. We define the sequences {%,,(p, p)}jj: o and {1, (p, p)}jj: o of map-
pings from PH x PH into QH by the formulae

ho(p, D) = ly(p. P) =0, 9.12)
Ahy(p, D) = ag=My_y (D, D) Ay = QL(D+hy 1) =Yly (o)~
—(Bplp_ys DY +(Bpl_15 VD + Ap—by+ M, _(p, p)Ap+PL(p+hy_,)),(9.13)
L(p, P) = (8,13 D) —
= (8l _y3 YD+ A%p —by+ My _y(p, D)Ap+PL(p+hy_1)).  (9.14)

Here M, (p, p) = M(”Al/zjz)”2 + ”Al/zhk( , p)“z), 6, and Sp are the Frechét de-
rivatives with respect to the corresponding variables, a,=Qg, b, = Pg, where
g = p(t) is a stationary transverse load in (0.1), k=1, 2, ..., m, the numbers
V(k) are chosen to fulfil the inequality k —1 < v(k) < k.

Exercise 9.6 Evaluate the functions %, (p, p) and I,(p, p).

279



280

= 0 =T ® 5O

N

The Problem on Nonlinear Oscillations of a Plate in a Supersonic Gas Flow

Theorem 3.8.2 implies the following assertion.

Theorem 9.3

Assume that p(t)=ge H, M(z) e C"T(R,), m =2, and conditions
(3.2), (6.2), and (56.3) are fulfilled. Then forall k=1, ..., m the collection of
mappings (hn, ln) given by equalities (9.12)—(9.14) possesses the properties

1) there exist constants M;= M;(n, p) and L;(n, p), j=1, 2 such that

”Azh'n (200, pO)H < My, ”Aln(po, p0)|
|42, (D1, D1) =y (Dg, D2))| < Ly(|A2 (D) —py)| +[A(D1 —D5)]),

JAG, 03 51) 105 20 < L0y —po)| 4G -],
Sor all D and pj Sfrom PH and such that
[P +[ap* <p, j=0,12, p>0;

< My,

2) for any solution w(t) to problem (0.1) and (0.2) which satisfies com-
patibility conditions (4.3) with | = m the estimate

1/2
2 — 2 -
{laetuo O + o -m,OF ) = i,

is valid for n < m—1 and for ¢ large enough. Here

w,,(t) = p(t) +h, (p(t), B(1))

u,(t) = D(t) + L, (p(1), B(1)) 5
A N @S the N -th eigenvalue of the operator A and the constant C, de-
pends on the radius of dissipativity.

In particular, Theorem 9.3 means that the manifold

b, ={(p+h,(p, ); P+l,(p, P)): p,p<cPH}

attracts sufficiently smooth trajectories of the dynamical system (%, St) generated
by problem (0.1) and (0.2) into a small vicinity (of the order C, 7\;\,711 ) of b, .

Exercise 9.7 Assume that the hypotheses of Theorem 6.3 hold (this theo-
rem guarantees the existence of the global attractor / consisting of
smooth trajectories of problem (0.1) and (0.2)). Prove that

sup{dist(y, Ab,): ye A} < C, Ay,

for all » < m—1 (the number m is defined by the condition
M(z) e Cm+1(]R{+)).

Exercise 9.8 Prove the analogue of Theorem 3.9.1 on properties of the non-
linear Galerkin method for problem (0.1) and (0.2).
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The results presented in previous chapters show that in many cases the asymp-
totic behaviour of infinite-dimensional dissipative systems can be described by a fi-
nite-dimensional global attractor. However, a detailed study of the structure of
attractor has been carried out only for a very limited number of problems. In this re-
gard it is of importance to search for minimal (or close to minimal) sets of natural
parameters of the problem that uniquely determine the long-time behaviour of a sys-
tem. This problem was first discussed by Foias and Prodi [1] and by Ladyzhenskaya
[2] for the 2D Navier-Stokes equations. They have proved that the long-time beha-
viour of solutions is completely determined by the dynamics of the first N Fourier
modes if N is sufficiently large. Later on, similar results have been obtained for
other parameters and equations. The concepts of determining nodes and deter-
mining local volume averages have been introduced. A general approach to the prob-
lem on the existence of a finite number of determining parameters has been
discussed (see survey [3]).

In this chapter we develop a general theory of determining functionals. This
theory enables us, first, to cover all the results mentioned above from a unified point
of view and, second, to suggest rather simple conditions under which a set of func-
tionals on the phase space uniquely determines the asymptotic behaviour of the sys-
tem by its values on the trajectories. The approach presented here relies on the
concept of completeness defect of a set of functionals and involves some ideas and
results from the approximation theory of infinite-dimensional spaces.

§ 1 Concept of a Set of Determining
Functionals

Let us consider a nonautonomous differential equation in a real reflexive Banach
space H of the type

du
az:F(u, t), t>0, ul,_ =t - (1.1

Let 9/ be a class of solutions to (1.1) defined on the semiaxis R, = {t: t > 0} such
that for any u(t) € % there exists a point of time ¢, > 0 such that

u(t) e C(ty, +o0; H) N leoc(to, +o0, V), (1.2)

where V is a reflexive Banach space which is continuously embedded into H . Here-
inafter C(a, b; X) is the space of strongly continuous functions on [a, b] with the
values in X and L} (a, b; X) has a similar meaning. The symbols |-, and ||,
stand for the norms in the spaces H and V, ||y <[, -
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The following definition is based on the property established in [1] for the Fou-
rier modes of solutions to the 2D Navier-Stokes system with periodic boundary con-
ditions.

Let = {lj: Jj=1, ..., N} be a set of continuous linear functionals on V.
Then % is said to be a set of asymptotically (V, H, W')-determining func-
tionals (or elements) for problem (1.1) if for any two solutions u, v € % the con-
dition

t+1
tim '[ L (() - L) de =0 for j=1,.., N (1.3)
t

implies that
tim Ju(2) —o(t)l; = 0. (1.4)
I — oo

Thus, if & is a set of asymptotically determining functionals for problem (1.1), the
asymptotic behaviour of a solution u(t) is completely determined by the behaviour
of a finite number of scalar values {lj (u(t)): y=1, 2, ..., N}. Further, if no ambi-
guity results, we will sometimes omit the spaces V, H, and 9% in the description of

determining functionals.

Exercise 1.1 Show that condition (1.3) is equivalent to
t+1
im | [ (u(t) —v(t) dr=0,
t— oo
t

where N (u) isaseminormin H defined by the equation

Neg(w) = ﬂaéﬂ(u)l .

Exercise 1.2 Let u; and uq be stationary (time-independent) solutions to
problem (1.1) lying in the class 9. Let % = {l]-: j=1,..., N} bea
set of asymptotically determining functionals. Show that condition
lj(ul) = ;j(u2) forall j =1, 2, ..., N implies that u; = u, .

The following theorem forms the basis for all assertions known to date on the exis-
tence of finite sets of asymptotically determining functionals.

Theorem 1.1.

Let ¥ = {lj: j=1, ..., N} be a family of continuous linear functionals
on V. Suppose that there exists a continuous function ¥ (u, t) on H x R,
with the values in R, which possesses the following properties:

a) there exist positive numbers o and G such that

P(u, t)>o-|ul® forall weH, tekR,; (1.5)
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b) for any two solutions u(t), v(t) € W to problem (1.1) there exist (i)
a point of time t,> 0, (i) a function () that is locally integrable
over the half-interval [t,, o) and such that

l+a

Yy = lim J-\y(r) dr > 0 (1.6)
L — oo 4
and
t+a
I = lim | max{0, —y(1)}dr < o (1.7

t — oo
t

Sfor some a >0, and (iii) a positive constant C such that for all
t2s 21, we have

P (u(t)-o(t), +_["’ I (u(t)-v((1), 1)) dt <

< V(u(s)=v(s), s)+C- j:{T,l.?'l')'(, N|lj(u(r)) - lj(U(T))|2 dr . (1.8)

Then % is a set of asymptotically (V, H, W)-determining functionals for
problem (1.1).

It is evident that the proof of this theorem follows from a version of Gronwall's lemma
stated below.

Lemma 1.1.

Let y(t) and g(t) be two functions that are locally integrable over
some half-interval [t,, o). Assume that (1.6) and (1.7) hold and g(t)

18 monnegative and possesses the property
t+a
lim g(t)dt =0, a>0. (1.9
I — oo
¢

Suppose that w(t) is a nonnegative continuous function satisfying the

mequality
t t
+J-q/(‘c)-w('c)dr < w(s)+Jg(r)dr (1.10)

Jorall t > s >1t,. Then w(t)—>0 as t — .

It should be noted that this version of Gronwall's lemma has been used by many au-
thors (see the references in the survey [3]).
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Proof.
Let us first show that equation (1.10) implies the inequality

t

w(t) < w(s)exp —sz(o)dc +Jg(r)exp —jw(o)do dr (1.11)

S

for all t > s > ¢,. It follows from (1.10) that the function w(t) is absolutely
continuous on any finite interval and therefore possesses a derivative w(¢) al-
most everywhere. Therewith, equation (1.10) gives us

w(t)+wy()w(t) < g(t) (1.12)
for almost all ¢ . Multiplying this inequality by

e(1) = exp J'w(o)do ,

we find that

Sw(t)e(r) < g(t)e(t)

almost everywhere. Integration gives us equation (1.11).
Let us choose the value s such that

T+a
J max{-y(c), 0}do < I'+1, I = FJ, (1.13)
T
and
T+a
J y(o)ds = L, y=yy (1.14)
T

forall T > s.Itisevidentthatif ¢t > T > s and k = [%J , where [ -] is the in-

teger part of a number, then

t ka+t t

J.\y(cs)dcs: '[ y(o)do + '[ y(o)do >

T T ka+t
(k+1)a+t

> %/k— J- max{-y(c), 0}doc > %k—(l“+1).
ka+Tt

Thus, forallt > T > s
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jw(c)da > L-n-(1+7+}).

Consequently, equation (1.11) gives us that

l

w(t) < C(T, y) w(s)exp{—zla(t—s)}+Jg(7)exp{—2la(t—r)}dr ,

S

where C (I, y) = exp{l +I+ %/} Therefore,
t
Tm w(t) < C(T, y)- Im J-g(r)exp{—l—(t—r)} dr. (1.15)
t — oo t —> oo 2a

It is evident that

k=0 s+ka
where N = [%J is the integer part of the number % . Therefore,
G+a N s+(k+1)a
Y
< . _ _
G(t,s) < sup J g(t)dr Z exp{ Za(t t)}dr
e} k=0 s{ka
c+a s+(N+1)a
_ Yo _
= s J g(t)dr J exp{ Za(t r)}dr =
() S
c+a Yvs1)
2a Y 2
= 24, . - (t= -1/,
7 sup J g(t)dt eXp{ Za(t s)}{e }
()

Since N = [t—;ﬂ , this implies that

lim G(t, s) < C(a, y)- sup J‘ g(t)dt (1.16)
t — oo G2s
(e
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for any s such that equations (1.13) and (1.14) hold. Hence, equations (1.15)
and (1.16) give us that

oct+a
T w(t) < C(T, v, a)- sup J' g(1)dr .
t — oo [P

(e}

If we tend s — oo, then with the help of (1.9) we obtain
lim w(t)=0.
I — oo

This implies the assertion of Lemma 1.1.

In cases when problem (1.1) is the Cauchy problem for a quasilinear partial differen-
tial equation, we usually take some norm of the phase space as the function q/(u, t)
when we try to prove the existence of a finite set of asymptotically determining func-
tionals. For example, the next assertion which follows from Theorem 1.1 is often
used for parabolic problems.

Corollary 1.1.

Let V and H be reflexive Banach spaces such that V is continuously
and densely embedded into H. Assume that for any two solutions
uy(t), ug(t) € W to problem (1.1) we have

fis(6) =0+ [ WD er(0) ~rip (o)
< ||u1(s)—u2(s)||2v+Kj||ul—u2||gdr (1.17)

Jort 2 s 2t,, where K is a constant and the function y(t) depends on
uy(t) and uy(t) in general and possesses properties (1.6) and (1.7).
Assume that the family b= {Zj: Jj=1, ..., N} on V possesses the pro-
perty

oy < € mmax (0] +eqlely (1.18)

Sfor any veV, where C and £g are posilive constants depending
on #. Then F is a set of asymptotically determining functionals for
problem (1.1), provided

Q=

8%<~m
t— oo

+
J. = y;a—lK—l. (1.19)
t
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Proof.
Using the obvious inequality
(a+b)? < (1+5)a2+(1+(%)b2, >0,
we find from equation (1.18) that

Il < (1+b)8%IIU||V+C5 max (o) (1.20)

for any & > 0. Therefore, equation (1.17) 1mp11es that
t
2 2 2
fat0) =0l + [ ((0) =14 8)K e oy (1) (o) o <

S
l

< Jugls) —us(s)y +CJ[N%(M1(T) —uy(1))Pdr,

where Ne(v) = rqaxN|lj (v)| - Consequently, if for some & > 0 the function
Jj=1...

- Yo
V(1) = () - (1+8)Ke?
possesses properties (1.6) and (1.7) with some constants ¥ and I'> 0, then

Theorem 1.1 is applicable. A simple verification shows that it is sufficient to re-
quire that equation (1.19) be fulfilled. Thus, Corollary 1.1 is proved.

Another variant of Corollary 1.1 useful for applications can be formulated as follows.

Corollary 1.2.

Let V and H be reflexive Banach spaces such that V is continuously
embedded into H. Assume that for any two solutions wu(t), v(t) € W to
problem (1.1) there exists a moment ty> 0 such that for all t 2 s >t
the equation

hu(t) - t)||H+vJ.||u ool dr <

< Ju(s)—v(s)E + jcp(r).nu(r)—v(r)ng dt (1.21)

holds. Here v >0 and the positive function d)(t) 1S locally integrable
over the half-interval [t,, o) and satisfies the relation

t+a
_m '[ (t)dt < R (1.22)
t

1
e O
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N Jor some a >0, where the constant R >0 is independent of u(t) and
a v(t). Let = {lj: Jj=1, ..., N} be a family of continuous linear func-
I; tionals on V possessing the property

r w < Cy- max L(w)+ e w

: hily < Ce_max )+ fuly

forany w e V. Here Cy, and €4, are positive constants. Then % is a set
of asymptotically (V, H, W')-determining functionals for problem (1.1),
provided that €4 < JV/R.

Proof.
Equation (1.20) implies that

2 _ -2 2
lwly, = (1+06) e - lwly — C%’é-jzfnax

for any 0 > 0. Therefore, (1.21) implies that

ba(0) =00 + [ (o) () ol e <

< Juls) ~0(NG +vOs - [ e [(u() —v(@)Fdr,
) s s
where y(t) = V(1+5)_18§é2 — ¢(¢). Using (1.22) and applying Theorem 1.1
with ¥ (u, t) = |u|? , we complete the proof of Corollary 1.2.

Other approaches of introduction of the concept of determining functionals are also
possible. The definition below is an extension to a more general situation of the pro-
perty proved by O.A. Ladyzhenskaya [2] for trajectories lying in the global attractor
of the 2D Navier-Stokes equations.

Let 9 be a class of solutions to problem (1.1) on the real axis R such that
W leoc(_oo’ +oo; V). A family B ={l;: j=1, ..., N} of continuous linear
functionals on V is said to be a set of (V, W')-determining functionals (or
elements) for problem (1.1) if for any two solutions u, v € I the condition

Li(u(t))=1;(v(t)) for j=1, ..., N and almostall ¢ € R (1.23)

implies that w(t) = v(t).
It is easy to establish the following analogue of Theorem 1.1.

Theorem 1.2.

Let £ = {lj: j=1, ..., N} be a family of continuous linear functionals
on V. Let W be a class of solutions to problem (1.1) on the real axis R such
that
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W < C(~o0, +0; H) NnL? (-o0, +00; V) . (1.29)

loc

Assume that there exists a continuous function V' (u, t) on Hx R with the
values in R which possesses the following properties:
a) there exist positive numbers o and G such that

V(u,t) = o |ul® forall ueH, teR; (1.25)
b) forany wu(t), v(t) € W
ZsuIJ)R{(?/(u(t) —o(t), t)< oo ; (1.26)

¢) for any two solutions wu(t), v(t) € W to problem (1.1) there exist (i)
a function \y(t) locally integrable over the axis R with the properties

t+a
Yy = lim y(t)dr >0 (1.27)
t — —oo
!
and
t+a
I, = lm max{0, —y(7)}dt < o (1.28)
t — —oo

t
Sfor some a >0, and (i) a positive constant C such that equation
(1.8) holds forall t > s. Then % is a set of (V, W) -determining func-
tionals for problem (1.1).

Proof.

It follows from (1.23), (1.8), and (1.11) that the function w(t) =¥ (u(t)—-v(t), t)
satisfies the inequality

w(t) < w(s)- exp —J' w(t)de (1.29)

for all ¢ > s. Using properties (1.27) and (1.28) it is easy to find that there exist
numbers s*, a, > 0,and b, > 0 such that

B

52
J.l,u(r)dr > ag-(S9—5;)—by, 5, <8955 .
51

This equation and boundedness property (1.26) enable us to pass to the limit
in (1.29) for fixed ¢ as s — —oo and to obtain the required assertion.

Using Theorem 1.2 with ¥'(u, t) = ||u||2 as above, we obtain the following assertion.
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Corollary 1.3.

Let V and H be reflexive Banach spaces such that V is continuously
embedded into H. Let W be a class of solutions to problem (1.1) on the
real axis R possessing property (1.24) and such that

sup Ju(t)ly < oo forall wu(t) e W. (1.30)
tekRr

Assume that for any u(t), v(t) € W and for all real t>s equation
(1.21) holds with v >0 and a positive function ¢(t) locally integrable
over the axis R and satisfying the condition

st+a

sli_nlooé J d(t)dt < R (1.31)

Jor some a > 0. Here R > 0 is a constant independent of u(t) and v(t).
Let %= {lj: Jj=1, ..., N} be a family of continuous linear functionals
on V possessing property (1.18) with €4 < JV/R. Then % is a set of
asymptotically (V, W)-determining functionals for problem (1.1).

Proof.
As in the proof of Corollary 1.2 equations (1.20) and (1.21) imply that

||u(t)—v(t)||H+Jw(r)||u(r)—y(r)||§1dr < Ju(s)—o(s)I%

forall £ > s, where y(t) = v(1+8)1 &% — (1) and & is an arbitrary positive
number. Hence

la(t) =0 (OIZ < u(s) —v(s)IZ exp —qu(r)dr (1.32)

for all ¢ 2 s. Using (1.31) it is easy to find that for any 11 > 0 there exists
M n> 0 such that

S2

j O(r)dr < (R+1)(sy-5,+a)

S1
forall s; < sy < —=M n- This equation and boundedness property (1.30) enable

us to pass to the limit as s — —oo in (1.32), provided €, < 4/V/R, and to obtain
the required assertion.

We now give one more general result on the finiteness of the number of determining
functionals. This result does not use Lemma 1.1 and requires only the convergence
of functionals on a certain sequence of moments of time.
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Theorem 1.3.

Let V and H be reflexive Banach spaces such that V is continuously
embedded into H. Assume that W is a class of solutions to problem (1.1)
possessing property (1.2). Assume that there exist constants C, K> 0,
B>a>0, and 0< q< 1 such that for any pair of solutions ul(t) and
uy(t) from W we have

[u1(t) =g ()], < Clug(s) —usg(s)]y

»

<t<s+f, (1.33)
and
[y () =g (0)], < K|uy(t) —us(t)|; + alus(s)—us(s)|, , stast<s+f (1.34)

for s large enough. Let & be a finite set of continuous linear functionals
on V possessing property (1.18) with €4 < (l—q)K‘l. Assume that {tk} s a
sequence of positive numbers such that 1, -+ and o <t -1 < B.
Assume that

Jim 1y (6) ~us(t) = 0, Le % (1.35)

Then
Jui (1) —ug(t)), >0 as t—>+oo. (1.36)

It should be noted that relations like (1.33) and (1.34) can be obtained for a wide
class of equations (see, e.g., Sections 1.9, 2.2, and 4.6).

Proof.
Let u(t) = u,(t) —uy(t). Then equations (1.34) and (1.18) give us

u(tk—l)"v +C m?X|lj(u(tk))

[y < as

I

where g, = q(1-€4 K )_1 < 1. Therefore, after iterations we obtain that

n
[a(tlly < a%luttolly +C- " a% " max;(u(s,)

k=1
Hence, equation (1.35) implies that ||u(tn)||V — 0 as n — oo . Therefore, (1.36) fol-
lows from equation (1.33). Theorem 1.3 is proved.

Application of Corollaries 1.1-1.3 and Theorem 1.3 to the proof of finiteness of a set
% of determining elements requires that the inequalities of the type (1.17) and
(1.21), or (1.30) and (1.33), or (1.33) and (1.34), as well as (1.18) with the constant
€y small enough be fulfilled. As the analysis of particular examples shows, the fulfil-
ment of estimates (1.17), (1.21), (1.30), (1.31), (1.33), and (1.34) is mainly con-
nected with the dissipativity properties of the system. Methods for obtaining them
are rather well-developed (see Chapters 1 and 2 and the references therein) and in
many cases the corresponding constants v, B, K,and ¢q either are close to opti-
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mal or can be estimated explicitly in terms of the parameters of equations. There-
fore, the problem of description of finite families of functionals that asymptotically
determine the dynamics of the process can be reduced to the study of sets of func-
tionals for which estimate (1.18) holds with €5 small enough. It is convenient to
base this study on the concept of completeness defect of a family of functionals with
respect to a pair of spaces.

§ 2 Completeness Defect

Let V and H be reflexive Banach spaces such that V' is continuously and densely
embedded into H. The completeness defect of a set &£ of linear functionals
on V with respect to H is defined as

€y (V, H) = sup {lIwIIH: weV, l(w)=0, le &, |wl,< 1}. @.D
It should be noted that the finite dimensionality of Lin & is not assumed here.

Exercise 2.1 Prove that the value € (V, H ) can also be defined by one
of the following formulae:

€4 (V, H) = sup {lIwIlH: weV, l(w)=0, |wl,= 1} , (2.2)

lwly

—=: weV, w0, l(w)=0;, (23)
lwly,

ex(V, H) = sup{

&g (V. H) = inf{C: lwly < Clwly, weV, l(w):O} (2.4

Exercise 22 Let &, c %, betwo sets in the space V" of linear functionals
on V. Show that 8%1(1/, H) > S%Z(V, H).

Exercise 23 Let $c V" and let % be a weakly closed span of the set £
in the space V™. Show that &4, (V, H) = &.,(V, H).

The following fact explains the name of the value ¢, (V, H). We remind that a set &
of functionals on V is said to be complete if the condition I(w) = 0 forall I € % im-
plies that w = 0.

Exercise 24 Show that for a set $ of functionals on V' to be complete it is
necessary and sufficient that £,(V, H) = 0.
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The following assertion plays an important role in the construction of a set of deter-
mining functionals.

Theorem 2.1.

Let ¢4, = ¢4 (V, H) be the completeness defect of a set & of linear func-
tionals on V with respect to H. Then there exists a constant Cy > 0 such
that

luly, < & lul, +C, -sup {Il(u)l: le %, I, < 1} 2.5)

Jor any element uw € V, where % is a weakly closed span of the set % in
V.
Proof.
Let
Bl = {fveV:l(v)=0, l e &} (2.6)
be the annihilator of $. If u € B+, then it is evident that [(u) =0 forall | e .
Therefore, equation (2.4) implies that
luly,y < eglul, forall we %L, 2.7

i.e. for u € %+ equation (2.5) is valid.
Assume that # ¢ %L . Since %1 is asubspacein V, it is easy to verify that there
exists an element w € %L such that

lu—wl,, = disty(u, L) = inf{lIu—UIIV: ve S@l} ) 2.8)

Indeed, let the sequence {v,,} = % be such that
d = disty(u, $+) = lim Ju-v

aly-
7 —> o v

It is clear that {vn} is a bounded sequence in V. Therefore, by virtue of the reflexivi-
ty of the space V, there exist an element w from %1 and a subsequence { Unk}
such that Vn, weakly converges to w as k — oo, i.e. for any functional f e V" the
equation
Sfu—w)= lim f(u-v, )
k — oo k
holds. It follows that

Slu=w) < 1 Ju=v, ] A7l < dlfl. .

Therefore, we use the reflexivity of V' once again to find that

IIu—wIIV:sup{lf(u—w)I: feVT, ||f||*=1} <d.

However, [u—wl|;, > d . Hence, |u —wl;, = d . Thus, equation (2.8) holds.
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Equation (2.7) and the continuity of the embedding of V into H imply that
luly < lwly+lu-wly < eglwly, +Clu-wl, .
It is clear that
lwly, < luly +lu-wl,.
Therefore,
luly < egluly, +(eq+C)lu—wl, . 2.9

Let us now prove that there exists a continuous linear functional [, on the space V
possessing the properties

lo(u—w) = lu—-wly, =1, ly(w)=0 for ve%t. (2.10)

To do that, we define the functional 70 by the formula
ly(m)=alu-wl,, m=v+a(u-w),

on the subspace
M= {mzv ta(u-w): ve B, ae ]R{}.

It is clear that [ is a linear functional on M and 1 (m) = 0 for m e %L . Let us cal-
culate its norm. Evidently

1
aUH a+0.

Imly = lo+a(u-wly =lal-fu-w+ 1o,

Since w —a~1v e %L, equation (2.8) implies that

Imly > lal-lu—wly, =]l

m=v+a(u-w), a=#0.

Consequently, for any m € M
|~lo(m)| < |mly, .

This implies that 20 has a unit norm as a functional on M . By virtue of the Hahn-Ba-
nach theorem the functional Nlo can be extended on V without increase of the norm.
Therefore, there exists a functional [, on V' possessing propermes (2.10). Therewith
Iy lies in a weakly closed span % of the set %. Indeed, if [, ¢ SB then using the re-
flexivity of V' and reasoning as in the construction of the functional [y it is easy to
verify that there exists an element 2 € V such that /(x) # 0 and I(x) = 0 for all
I € $#.Itis impossible due to (2.10) .

In order to complete the proof of Theorem 2.1 we use equations (2.9) and
(2.10). As aresult, we obtain that

luly < egluly +(eq+C)ly(u—w).

However, [ € §£, lo(u—w)=1y(u), and ||l0||* = 1. Therefore, equation (2.5)
holds. Theorem 2.1 is proved.
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Exercise 25 Assume that $={l;: j=1, ..., N} is a finite set in V.
Show that there exists a constant Cg, such that

luly < eV, B)luly + Cy _max J(w)] @10

forallu e V.

In particular, if the hypotheses of Corollaries 1.1 and 1.3 hold, then Theorem 2.1 and
equation (2.11) enable us to get rid of assumption (1.18) by replacing it with the cor-
responding assumption on the smallness of the completeness defect £ (V, H).

The following assertion provides a way of calculating the completeness defect when
we are dealing with Hilbert spaces.

Theorem 2.2.

Let V and H be separable Hilbert spaces such that V is compactly and
densely embedded into H. Let K be a selfadjoint positive compact operator
in the space V defined by the equality

(Ku, v)y=(u, v)y, u,veV.

Then the completeness defect of a set £ of functionals on V can be evalua-

ted by the formula
ex(V,H) = [Upax(PeKPy) , (2.12)
where Py, s the orthoprojector in the space V onto the annihilator
Ft={veV: I(v)=0, l € B}
and L, (S) is the maximal eigenvalue of the operator S.

Proof.
It follows from definition (2.1) that

e (V. H) = sup {l|uly: e By}

where By, = N {v: |vl, < 1} is the unit ball in %+ . Due to the compactness
of the embedding of V' into H, the set By, is compact in [ . Therefore, there exists
an element u, € By such that

5 (V. H)? = Jugljy = (Kug, )y = 1.

Therewith u is the maximum point of the function (Ku, u);, on the set By, .
Hence, forany v € %+ and s € R! we have

(K(ug+sv), ug+sv), .

= (Kuy, U .
g +s0[2 b= (o Yoly
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It follows that
(K (wgtsv), ug+sv),— ufug +sv||12/ <0.
It is also clear that ||u0||V = 1. Therefore,

s2{(Kv, v), — plol?} + 25 {(Ku,, V), = W(ug, v)y,} < 0
forall s € R. This implies that
(Kug, v) = m(ug, v), < 0
for any v € %L . If we take —v instead of v in this equation, then we obtain the op-
posite inequality. Therefore,
(Kug, v) = m(ug, v) = 0, ve Bt
Consequently,
ie. u= (Kuy, uO)V = ||u0||]2{ is an eigenvalue of the operator Py, KP, . It is evident
that this eigenvalue is maximal. Thus, Theorem 2.2 is proved.
Corollary 2.1.

Assume that the hypotheses of Theorem 2.2 hold. Let {ej} be an ortho-
normal basis in the space V thal consists of eigenvectors of the opera-
tor K:

Ke; = pe;, (e e

j)V:5iJ’ Uy = Uy >..., Uy—0.

Then the completeness defect of the system of functionals

B={l;eV": L;(v)=(v, ¢)),: j=1, 2, ..., N}

is given by the formula €4 (V, H) = [l -

To prove this assertion, it is just sufficient to note that P, is the orthoprojector
onto the closure of the span of elements {ej: J =2 N+1} and that P, commutes
with K .

Exercise 2.6 Let A be a positive operator with discrete spectrum in the
space H :

Aey=Me., A <hy<..., Ay—>+0, (e, ej-)Hz 8kj,
and let %, = D(A®), s € R, be a scale of spaces generated by the
operator A (see Section 2.1). Assume that

S@:{lj: lj(v):(v, ej)H: Jj=1,2,..., N}. (2.13)
Prove that €4 (%, %) = k;\gfl_s) forallc > s.

It should be noted that the functionals in Exercise 2.6 are often called modes.
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Let us give several more facts on general properties of the completeness defect.

Theorem 2.3.

Assume that the hypotheses of Theorem 2.2 hold. Assume that & is a set
of linear functionals on V and F, is a family of linear bounded operators
R that map V into H and are such that Ru =0 for all u € %+. Let

65(3) = sup {IIu—RuIIH: lully, < 1} (2.14)

be the global approximation error in H arising from the approximation
of elements v € V by elements Rv. Then

e (V; H) :nﬁn{eg(}e): Re %f} (2.15)

Proof.
Let R € F ;. Equation (2.14) implies that

H
lu—Ruly; < ep(R)lul,, weV.

Therefore, for u € %1 we have luly < e{}’(R)IIuIIV e eq(V; H) < eg(R) for all
R e Fq. Let us show that there exists an operator R;e Fb5 such that
e (Vs H) = el}(R,) . Equation (2.12) implies that

ex (Vs H) = ||K1/2PS£||L(V; y) = Sup {"KUZPSJ; uly: uly < 1},

where Py, is the orthoprojector in the space V' onto %L and ||K Y 215‘5,5 || LV, V) is the
norm of the operator K / 2P5g in the space L(V, V) of bounded linear operators in V.
Therefore, the definition of the operator K implies that

£ (V; H) = sup {"P%MHH: July, < 1}: e (1-Py). (2.16)

It is evident that the orthoprojector @ = I — P, belongs to F, (it projects onto
the subspace that is orthogonal to %1 in V). Theorem 2.3 is proved.

Exercise 27 Assume that # = {lj: Jj=1, ..., N} is afinite set. Show that
the family J6, consists of finite-dimensional operators R of the

form
N
Ru:le(u)(pj, ueV,
J=1
where {(pj: j=1, ..., N} is an arbitrary collection of elements

of the space V (they do not need to be distinct). How should the
choice of elements {(pj} be made for the operator ¢4 from the
proof of Theorem 2.3?
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Theorem 2.3 will be used further (see Section 3) to obtain upper estimates of
the completeness defect for some specific sets of functionals. The simplest situation
is presented in the following example.

Example 21
Let H=L2(0, 1) and let V= (H2 N Hg)(0, l). As usual, here H5(0, 1) is
the Sobolev space of the order s and Hy, (0, 1) is the closure of the set C{J’ (0, 1)
in H5(0, ). We define the norms in H# and V by the equalities

l

luly = Jul® = J(U(x))2dx, k= lul?.
0

Let h = I/N, Z; =jh, 7=1, ..., N—1.Consider a set of functionals

b :{l(u)zu(xj): Jj=1, ..., N-1}

on V. Assume that R is a transformation that maps a function « € V into its
linear interpolating spline

s(x)= Nz_lu(xj) X(% —j)'
j=1

Here y(x)=1-|x| for |x[ <1 and y(x)=0 for |x| > 1. We apply Theo-
rem 2.3 and obtain

eq(V; H) < sup{IIu—sIl: ueV, |u'| < 1}.

We use an easy verifiable equation

u(x)—s(x) = —%L

x S
de J dg Ju”(y)dy X E [xj» xj+1]’
x] x] T

to obtain the estimate

hey
luw—sl < =[u"| .
3

This implies that €, (H; V) < h2/J3.

The assertion on the interdependence of the completeness defect &5, and the Kol-
mogorov N-width made below enables us to obtain effective lower estimates
for e4(V; H).

Let V and H be separable Hilbert spaces such that V' is continuously and
densely embedded into H . Then the Kolmogorov N-width of the embedding
of V into H is defined by the relation
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ey = %y (V; H):inf{eg(F): Fe Q’N}, 2.17)
where %, is the family of all N -dimensional subspaces F' of the space V and

e}V](F) = sup {distH(v, F): o], < 1}

is the global error of approximation of elements v € V' in H by elements of the sub-
space F'. Here

dist;; (v, F') = inf {II?)—fHH: fe F‘} )

In other words, the Kolmogorov N -width x,; of the embedding of V into H is the
minimal possible global error of approximation of elements of V' in H by elements
of some N -dimensional subspace.

Theorem 2.4.

Let V and H be separable Hilbert spaces such that V is continuously
and densely embedded into H. Then

wy(V; H) = mjn{si,(v; H): <V dimLin%:N} = [y, (218)

where {uj} is the nonincreasing sequence of eigenvalues of the operator K
defined by the equality (v, v); = (Ku, v);,.

The proof of the theorem is based on the lemma given below as well as on the fact
that (u, v)y = (Ku, v),, where K is a compact positive operator in the space V
(see Theorem 2.2). Further the notation {ej }70: 1 stands for the proper basis of the
operator K in the space V while the notation L stands for the corresponding eigen-
values:

Kej= e, W 2py>.., Ww,—>0, (e,e€),=95;.
It is evident that {L 6@} is an orthonormalized basis in the space H .
K
Lemma 2.1.

Assume that the hypotheses of Theorem 2.4 hold. Then

(2.19)

+1 -

mjn{sgg(v; H): %cV, dijinSézN}z Ly

303



304

= 0o 4" e QO

Theory of Functionals that Uniquely Determine Long-Time Dynamics

Proof.
By virtue of Corollary 2.1 it is sufficient to verify that

ex (Vi H) 2 [ty

for all = {lj: j=1, ..., N}, where lj are linearly independent functionals

on V. Definition (2.1) implies that

[e5(V: H)J? = Jul; - Zuju ‘)

for all u e V such that |ul,,= 1 and lj(u) =0, j=1, ..., N.Let us substi-

tute in (2.20) the vector
N+1

U= chej,

Jj=1
where the constants ¢; are choosen such that I (u)=0 for j=1,
lul;, = 1. Therewith equation (2.20) implies that

N+1 N+1
2 2
[ex (Vs H)] ZHJ 72 My ch = Wy luly =ty -
j=1

Thus, Lemma 2.1 is proved.

We now prove that xy, = min{e, } . Let us use equation (2.16)

€4 (V; H) = sup {"u—Q%u”H: luly, < 1} )

Here @ is the orthoprojector onto the subspace ¢V orthogonal to %L in V. 1tis
evident that @V is isomorphic to Lin #. Therefore, dim @V = N . Hence, equa-

tion (2.21) gives us that

€4(V; H) > sup {distH(u, QRyV): uly, < 1} > ny

for all ¥ € V" such that dimLin ¥ = N. Conversely, let ' be an N-dimensional
subspace in V and let { fj : j=1, ..., N} be a orthonormalized basis in the space H .

Assume that
Bp =1l L(v)=(f;.v)y j=1, ..., N}.
Let & 7 be the orthoprojector in the space H onto F'. It is clear that
N

Qp, pu = Z(%J})Hfi '

i=1

Therefore, if u € %; ,then Q pu = 0.1Itis clear that Q;; » is a bounded operator

from V into H . Using Theorem 2.3 we find that
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g, (Vi H) < ey(Qy p) = sup{”u—QH’Fu"H: Jul, < 1}.

However,

u=Qy pul, = disty(u, F). Hence,
min{ey} < e (Vi H) < el (F) (2.23)

for any N -dimensional subspace F' in V. Equations (2.22) and (2.23) imply that
xN(V; H) = min {8%(17; H): $c V*, dimLin % :N} .
This equation together with Lemma 2.1 completes the proof of Theorem 2.4.

Exercise 28 Let V, and H, be reflexive Banach spaces such that V; is con-
tinuously and densely embedded into H, , let %, be a set of linear
functionalson V, , k =1, 2. Assume that

%=g1Ug2C(V1XV2)*,

where

By, = {le (Vi x Vo)': Loy, v9)=1(vy), | € S@k}, k=1,2.
Prove that

&y (V1 x Vg, Hyx Hy) = max {S%I(VP H,y), &, (Va, Hz)}-

Exercise 29 Use Lemma 2.1 and Corollary 2.1 to calculate the Kolmogorov
N-width of the embedding of the space % = D (A®) into %, = D(A°)
for s > o, where A is a positive operator with discrete spectrum.

Exercise 210 Show that in Example 2.1 %y (V, H)=12-[m(N+1)]2.
Prove that m=2h% < e4(V; H) < h2/J3.

Exercise 2.11 Assume that there are three reflexive Banach spaces Vc
cWc H such that all embeddings are dense and continuous.
Let # be a set of functionals on W. Prove that &4 (V, H) <
Seq(V,W)-eq(W, H) (Hint: see (2.3)).

Exercise 2 12 In addition to the hypotheses of Exercise 2.11, assume that
the inequality
0 1-6
luly < agluly - luly,™", weV,
holds for some constants ag > 0 and 0 € (0, 1). Show that

[ag e (V. M)]0 < e(V. H) < [ageg(W, H)]T_Le-

Dl—
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§ 8 Estimates of Completeness Defect
in Sobolev Spaces

In this section we consider several families of functionals on Sobolev spaces that are
important from the point of view of applications. We also give estimates of the cor-
responding completeness defects. The exposition is quite brief here. We recommend
that the reader who does not master the theory of Sobolev spaces just get acquain-
ted with the statements of Theorems 3.1 and 3.2 and the results of Examples 3.1 and
3.2 and Exercises 3.2-3.6.

We remind some definitions (see, e.g., the book by Lions-Magenes [4]). Let
be a domain in RY. The Sobolev space H™(€) of the order m (m=0, 1, 2, ...)
is a set of functions

H™(Q) = {fe L2(Q): @If(x)e L2(Q), |j Sm},

where j=(j, ... J,), J,=0, 1,2, ..., [jl=j,+... +J, and
olilf
6%{1- 8%52 axjv

The space H™(Q) is a separable Hilbert space with the inner product

@I f(x) = 3.1

(u, v),, = Z Diu - DIvde .
il <m Q
Further we also use the space Hy'(Q) which is the closure (in H™(Q)) of the set

CSO (Q) of infinitely differentiable functions with compact support in € and the
space H*(RY) which is defined as follows:

H5(RY) = {u(x) e L2(RY): J'(1+ ) () dy = Jul? < oo},

RY
where s > 0, #4(y) isthe Fourier transform of the function u(x),

a(y) = J. el y(x)dr,
RY

lyl>=y%+... +y2, and 2y =2,y +... +2,y,. Evidently this definition coin-
1 2 191 vIv
cides with the previous one for natural s and Q = RV.

Exercise 8.1 Show that the norms in the spaces H5(RY) possess the pro-
perty
luls gy < IIMIISG1 -||u||§2_e, s(0)=0s;+(1-0)sy,

0<0<1, s,520.
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We can also define the space H5(€2) as restriction (to Q) of functions from H$(RV)
with the norm

||U||5, o= inf{llvlls’ RV v(@)=u(r) in Q, ve Hs(]R{V)}

and the space H{(Q) as the closure of the set C(’(Q) in H5(Q). The spaces H5(Q)
and H(Q) are separable Hilbert spaces. More detailed information on the Sobolev
spaces can be found in textbooks on the theory of such spaces (see, e.g., [4], [B]).

The following version of the Sobolev integral representation will be used fur-
ther.

Lemma 3.1.
Let Q be a domain in RV and let A(x) be a function from L*(RY) such
that
supp A c c Q, J-K(x)dx=l. (3.2)
RY

Assume that Q s a star-like domain with respect to the support supp A
of the function A. This means that for any point x € Q the cone

V.={2=12x+(1-1)y; 0<1<1, yesupphr} (3.3)
belongs to the domain Q. Then for any function w(x) € H™(Q) the re-
presentation

w(x)="P, (x; u)+ Z % j(x—y)aK(x, Y)D%u(y)dy (3.4
fd=m
s valid, where
Py wuw= Y4 j A(y) (x—y)* D%u(y)dy 35)
m—1\" o ’ '
‘OL| <m Q
a=(0, ..., 0,), ol =0ay..0/, za:z?l...zgv,

1
K(z, y) = Jsvl k(x + y%‘”) ds (3.6)

0

Proof.
If we multiply Taylor’s formula

u(x) = Z (—x;ly)a@o‘u(y) +
lal < m
1
+m Z (z—y)” Jsm_l@ﬁo‘u(ay-i-s(y—x))ds

lal =m 0
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by A(y) and integrate it over y, then after introducing a new variable
2 =2 +s(y —«) we obtain the assertion of the lemma.

Integral representation (3.4) enables us to obtain the following generalization of the
Poincaré inequality.

Lemma 3.2.

Let the hypotheses of Lemma 3.1 be wvalid for a bounded domain
Q c RY and for a function A(x). Then for any function u(x) € HY(Q)
the inequality

3.7

(@)
= () AV M g IV

) <V Q)

is valid, where (u); = JQK(x)u(x) dr, o, is the surface measure of
the unit sphere in RV and d = diam Q = sup{|lx—yl|: »,y € Q}.

Proof.
We use formula (3.4) for m = 1:
u(x) = (u)k-}-z JK(x y)(z; —yj) (y)dy : (3.8)
It is clear that A (2 +(1/s)(y — x)) =0 when s7!|z—y| > d = diam Q. There-
fore,
1
—v— 1
K(z,y) = J. sV 1k(x+§(y—x))ds.
Az -yl
Consequently,
)
K < =50, v) = D 3.9
Thus, it follows from (3.8) that
\Y%
|u(x)—<u>k| < SJ‘L(Z\J/)_'Idy <
lz =yl
Q
1/2
Fein) {[)
< 0 . 3.10
[u sl M irere G
Let B, () ={y: |l —y| < r}. Then it is evident that
J dy__ J _ W <5, (3.1
|l —yl¥ |l —yl¥
Q Bd(x)
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where G, is the surface measure of the unit sphere in RY. Therefore, equation
(3.10) implies that

2
|u(x)—<u>k|2 < 82.5, d_[ |V“(Z/V)|_1d
|z -yl

After integration with respect to  and using (3.11) we obtain (3.7). Lemma 3.2
is proved.

Lemma 3.3.

Assume that the hypotheses of Lemma 3.1 are valid for a bounded do-
main Q from RY and for a function A(x). Let m,,=[v/2]+1, where
[] s a sign of the integer part of a number. Then for any function
u(x) e H"™(Q) we have the inequality

max|u(x)—P _q (s u)‘ <

x e my,
e motV
< Ya" 2, Z a2l 2, (3.12)
Ia\:
where P, _(x; w) is defined by formula (3.5), ¢, = [Gv/(va—v)]l/z,
G, is the surface measure of the unit sphere in RV, and d = diam Q.
Proof.

Using (3.4) and (3.9) we find that

‘u(x)—va_l(x; u)‘ < Z % J|x_y|mv|[((x, )| D% u(y) dy <

lof=m,

87’)@ m,,—V
Z alvjlx—yl v g%u(y) dy <

|0(|=mv Q

Sm . — 1/2
> T teulgy | [le-o ™ e
mv Q

ol =

IA

As above, we obtain that
d

J.|x—y|2(mv_v) dy < GVJVZMV_V_ldr < Gvdzmv_v~(2mv—v)’1.

Thus, equation (3.12) is valid. Lemma 3.3 is proved.
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Lemma 3.4.

Assume that the hypotheses of Lemma 3.3 hold. Then for any function
w(x) e H™(Q) and for any v, e Q the inequality

1/2
=02 g = U’ () —u(x*)zdx] <
Q
\% } l
J=1 lal=j

is valid, where C,, is a constant that depends on v only and d 1is the
diameter of the domain Q.

Proof.
It is evident that

o —u(=,)

iy < @l gt av2|(uy, —u(z,), (3.14)

where

(u, =j My) u(y) dy
Q

The structure of the polynomial P 71(95, u) implies that

|(u)k—u(x)| <

IA

@) By s@wwfs Y & [y et a <
Q

1< | <m,,—1

IN

o]
@) =By @ u)+ S Gl g 9%l g

1 <ol <m,~1

for all «x € Q. Therefore, estimate (3.13) follows from (3.14) and Lemmata 3.2
and 3.3. Lemma 3.4 is proved.

These lemmata enable us to estimate the completeness defect of two families of
functionals that are important from the point of view of applications. We consider
these families of functionals on the Sobolev spaces in the case when the domain is
strongly Lipschitzian, i.e. the domain Q < RY possesses the property: for every
x € 0Q there exists a vicinity U such that

UNQ={x=(x, .., v,): ,<f(2y, ... 2y_1)}
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in some system of Cartesian coordinates, where f(x) is a Lipschitzian function.
For strongly Lipschitzian domains the space H5(Q) consists of restrictions to €2
of functions from HS(RY), s > 0 (see [5] or [6]).

Theorem 3.1.
Assume that a bounded strongly Lipschitzian domain Q in RV can be
divided into subdomains {€;: j=1, 2, ..., N} such that
N
Q:.UQJ-, Q,NQ =0 for i#j. (3.15)

Here the bar stands for the closure of a set. Assume that kj(x) 1S a function
in L*(€;) such that

supp kj cc Qj , J kj(x)dx =1 (3.16)

and Qj is a star-like domain with respect to supp lj. We define the set &
of generalized local volume averages cowesponding to the collection

= {(Q k) =1, 2, N}
as the family of functionals
S@z{lj(u):jkj(x)u(x)dx, Jj=1, 2, ...,N}. (3.17)
Q.
J

Then the estimate

£, (H3(Q). HO(Q) <1 | g (3.18)

holds, where A = max {djy||kj||Lw(Q): Jj=1,2, ..., N}, d = max dj ,

d; = diam Q = sup{|x —y|: x,y € Qj} ,
C(v, s) and C, are constants.

Proof.
Let us define the interpolation operator % 4 for the collection ¥ by the formula

(Rogu)(x jk , erj, j=1,2, ..., N.
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It is easy to check that
=Rl ) < Oyl ), 1 e LH(Q).
It further follows from Lemma 3.2 that
Gv v+1
T I A L A LTS

This implies the estimate

Ju— %?7“”L2(Q) < dA”u”Hl(Q
Using the fact (see [4, 6]) that

and the interpolation theorem for operators [4] we find that

1 —
PENCRY 5 (2¢ an) .
forall 0 < s < 1. Consequently, Theorem 2.3 gives the equation

e (HS(Q); L2(Q)) < C,AdS, 0<s<I1. (3.19)

”U/ _RTu"LZ

Using the result of Exercise 2.12 and the interpolation inequalities (see, e.g., [4,6])

0 1-6 _ _
||u||Hs(9)(Q) < C||u||H51(Q)- ||u||H$2(Q) , s(0)= 519 + 32(1 0), 0<0<1, (3.20)
it is easy to obtain equation (3.18) from (3.19).

Let us illustrate this theorem by the following example.

Example 3.1

Let Q= (0, )V be a cube in RV with the edge of the length /. We construct
a collection ¥ which defines local volume averages in the following way.
Let K = (0, 1)V be the standard unit cube in RY and let ® be a measurable set
in K with the positive Lebesgue measure, mes ® > 0. We define the function
A(®, x) on K by the formula

Mo, z) = { [mes(x)]_l, reo,
0, x e K\w .

Assume that

Qj =h-(j+K) = {x:(xl, s X)) gy < #<ji+l, i=1,2, ..., v},
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for any multi-index j = (j;, ..., j,), where j,=0, 1, ..., N-1, h=1/N.
It is clear that the hypotheses of Theorem 3.1 are valid for the collection
T = {Qj, 7\,]-} . Moreover,

v/2

_ i _ . _ Vv
d,]'_dlamgi_“/;h’ A mes

and hence in this case we have

h S—C
&y (H3(Q); HO(Q)) < Cv,s(m) (32D

for the set $ of functionals of the form (3.17) when s > 1 and 0 < ¢ < s.
It should be noted that in this case the number of functionals in the set 3 is
equal to Ng, = NV. Thus, estimate (3.21) can be rewritten as

) S—0 1 $—GC
8%(]_]8(9)’ HG(Q)) < CV,S[meswj [mj ' ’

However, one can show (see, e.g., [6]) that the Kolmogorov Ny, -width of the em-
bedding of H5(Q) into H(€2) has the same order in N, i.e.

g 6, 1) = e ]

Thus, it follows from Theorem 2.4 that local volume averages have a complete-
ness defect that is close (when the number of functionals is fixed) to the mini-
mal. In the example under consideration this fact yields a double inequality

c h570 < g (H%(Q), HO(Q)) < cyh®~%, o<s, (3.22)
where ¢, and ¢, are positive constants that may depend on s, v, ®, and Q.
Similar relations are valid for domains of a more general type.

Another important example of functionals is given in the following assertion.

Theorem 3.2.

Assume the hypotheses of Theorem 3.1. Let us choose a point Z; (called
a node) in every set Qj and define a set of functionals on H™(Q)),
m=[v/2]+1, by

S@z{lj(u):u(xj): xjer, jzl,...,N}. (3.23)

Then for all s 2 m and 0 < G < s the estimate
ex(HS(Q); HO(Q)) < C(v,s)(dA)°™° (3.24)

1s valid for the completeness defect of this set of functionals, where

313



314

= 0o 4" e QO

Theory of Functionals that Uniquely Determine Long-Time Dynamics

dzmax{dj: j=1, 2,...,N}, dj:diamQ,

_ v Do

A—max{dj ||kj||Lw(Q)' Jj=1,2, ..., N} .

Proof.

Let u € H™(€Q) and let lj(u)z u(xj): 0, j=1,2,..., N. Then using

(3.13) for Q = Qj and &, = x; we obtain that

m
l
|u”L2(Q]) = CV(d]V”}\']”LOO(QJ)) Zdj ”u"l’ Q] ’
. =1

where

lul, o = ||@D ul,
0, L2,

laf = l
It follows that

lul i < OOV Al g
=1

forall w € H™(Q) suchthat l;(u) = u(x;) =0, j=1, 2, ..., N. Using interpola-
tion inequality (3.20) we find that
l

m 1—-=
< AL 1 m I/m
el 2y < Cv A > d'lul g Nl - (3.25)
=1
By virtue of the inequality
zP |yl 1,1
< L <z = = = >
rYSTH+T, 5ty 1, 2, y20,
we get
b , 1 ! m .l_
l lim _ “mo | gmA Tl m
A-dt- IIuIILZ(Q IIuIIHm(Q) = ul,» (d A IIuIIHm] <
N I T
_ v m—1 v L Am l
< (1=7) 8" Mul g g + 738 ™ ATl g

forl=1, 2, ..., m—1 and for all & > 0. We substitute these inequalities in (3.25)
to obtain that

m—1 m

lul 2y < Gy Y (1=g) 87T Jul g+

mol, mom
+Cv( 5 LAl +Ajdm||u||Hm(Q). (3.26)
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We choose 0 = 6(V, m) such that

m—1

1
forall uw € H™(Q) such that u(xj) =0, j=1, 2, ..., N.Hence, the estimate

m 2 l
e, (H™(Q); LA(Q)) < C(v)d Z mA
=1
is valid. Since A > 1, this implies inequality (3.24) for c=0 and s=m =
= [V/ 2] + 1. Asin Theorem 3.1 further arguments rely on Lemma 2.1 and interpola-
tion inequalities (3.20). Theorem 3.2 is proved.

Example 32

We return to the case described in Example 3.1. Let us choose nodes x; € Qj
and assume that @ = K. Then for a set # of functionals of the form (3.23) we
have

g (H5(Q); HO(Q)) < Cy  h°7°

foralls > [v/2]+1, 0 < ¢ < s and for any location of the nodes ; inside the
Q]- . In the case under consideration double estimate (3.22) is preserved.

In the exercises below several one-dimensional situations are given.

Exercise 32 Prove that
1

g (HY(0, 1); L2(0, 1)) = %y (HY(0, 1); LX(0, 1)) = [1 +(“ZN) ]

for

l
_ Jye _ Jr P _
_{lj(u)—Ju(x)cosTxdx, j=0,1,.., N 1}.
0

Exercise 3.8 Verify that

1
g (Hy (0, 1); LA(0, 1)) = %y_q (Hy(0, 1); L2(0, 1)) = [H(RT)ZF

for
{ (u) = J sm—dx; Jj=1, 2,...,N—1}.

316



316

= 0o 4" e QO

Theory of Functionals that Uniquely Determine Long-Time Dynamics

Exercise 84 Let
1
Hpe (0, 1) = {u € H(0, 1): u(0)=u(l)}.
Show that

£ (Hper(0, 1): LX(0, 1)) =

— sy 1 (HL (0, 1); L2(0, l)):[l+(27§N)}é ,

where $ consists of functionals 13, and I3, for k=0, 1,..., N-1
(the functionals ljc and ljs are defined in Exercises 3.2 and 3.3).

Exercise 3.5 Consider the functionals
h

1
Li(u) = 5 Ju(xj+r)dr ,
0
_ _ 1 F_ _
xj—jh, h_N’ 7=0,1,..., N-1,
on the space L2(O, l). Assume that an interpolation operator K,
maps an element u € L2(O, l) into a step-function equal to lj ()

on the segment [x;, «;, ]. Show that

|w=Ryul, L2(0, l) hlw "L2 0,1) "

Prove the estimate
h

T2+ 12

Exercise 3.6 Consider a set $ of functionals

< &g (HY0, 1); L2(0,1)) < k.

lj(u):u(xj), x;=jh, n=L N 7=0,1,...,N-1,

on the space H 1(0, l). Assume that an interpolation operator F;,
maps an element w € H'(0, 1) into a step-function equal to lj(u)
on the segment [xj x; +1] - Show that

|w—R),u| IIu [

L2(0, z) [ L2(0,1) -

Prove the estimate

h__ < e, (HY(0,1); L2(0, 1)) <

Jri+n?

sl
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§ 4 Determining Functionals for Abstract
Semilinear Parabolic Equations

In this section we prove a number of assertions on the existence and properties of
determining functionals for processes generated in some separable Hilbert space H
by an equation of the form

du
E—i—Au:B(u, t), t>0, Ul,_g=up- 4.1

Here A is a positive operator with discrete spectrum (for definition see Section 2.1)
and B(u, t) is a continuous mapping from D(A2) x R into H possessing the pro-
perties

IB(O, 1) < My, [B(uy, t) =B(ug, )] < M(p)|AV2(u;—uy)| (42
for all ¢ and for all u; e D(AY2) such that [AY2u;| < p, where p is an arbitrary

positive number, M, and M(p) are positive numbers.
Assume that problem (4.1) is uniquely solvable in the class of functions

W= C([0, +0); H) N C([0, +o0); D(AV2))
and is pointwise dissipative, i.e. there exists £ > 0 such that
|AY2u(t)l <R when ¢ > t4(u) (4.3)
for all u(¢) € 9. Examples of problems of the type (4.1) with the properties listed
above can be found in Chapter 2, for example.

The results obtained in Sections 1 and 2 enable us to establish the following as-
sertion.

Theorem 4.1.

For the set of linear functionals £={l.: j=1, 2, ..., N} on the space

V = D(AY2) with the norm | -|,, = |AY2 . | to be (V,V; W)-asymptotically

determining for problem (4.1) under conditions (4.2) and (4.3), it is suffi-
cient that the completeness defect €, (V, H) satisfies the inequality

ey = €4 (V, H)< M(R)™1, (4.4)

where M(p) and R are the same as in (4.2) and (4.3).

Proof.
We consider two solutions u;(¢) and u,(t) to problem (4.1) that lie in 9.
By virtue of dissipativity property (4.3) we can suppose that

A2y (1) < R, t>0, j=1,2. (4.5)
|4V 2, (0)]
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Let u(t) = u,(t) —uy(t) . If we consider u(t) as a solution to the linear problem

%+Au = f(t) = B(uy(t), t) —B(uy(t), t),

then it is easy to find that
t

Lo +J (Au(t), u(v))dt < Lju(s)? +M(R) J||A1/2u(r)||.||u(r)|| dr

forallt > s > 0. We use (2.11) to obtain that
M(R)-[AY2ul - Jul < &y M(R)-|AV2ul? + 8]AV2ul? + C(R, %, 8)[N(u)]?
forany & > 0, where
N(uw)=max{|l;(u)]: j=1, 2, ..., N}.

Therefore,
A
Ju(0)2 +2(1-8 — £ M(R)) J' JAV24(1)2 dt <
S

< Ju(s)P+C(R, %, §) J [N(u(t))]? dt . (4.6)

Using (4.4) we can choose the parameter 0 >0 such that 1-0 —e5,M(R) > 0.
Thus, we can apply Theorem 1.1 and find that under condition (4.4) equation

t+1
lim | [N(u (1) —uy(t))]* dr =0
t — oo
¢
implies the equality
lim oy (¢) — 2y ()] = 0. 4.
t — oo

In order to complete the proof of the theorem we should obtain
lim [AY2 (wy (1) = uy(t))] = 0 (4.8)
t— oo
from (4.7). To prove (4.8) it should be first noted that
lim A9 (uy (1) —ugy(1))] = 0 (4.9)
t — oo
forany 0 < 0 < 1/2 . Indeed, the interpolation inequality (see Exercise 2.1.12)

JA%%) < Jult =20 JA2y)20 ) 0<B<1/2,

and dissipativity property (4.5) enable us to obtain (4.9) from equation (4.7). Now
we use the integral representation of a weak solution (see (2.2.3)) and the method
applied in the proof of Lemma 2.4.1 to show (do it yourself) that
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|4Pu;(0)] < C(R, My), %<B<1, > 1.
Therefore, using the interpolation inequality
Jav2u] < [av2-ou] Jav2+ou],  0<5<],

we obtain (4.8) from (4.9). Theorem 4.1 is proved.

Exercise 4.1 Show that if the hypotheses of Theorem 4.1 hold, then equa-
tion (4.9)isvalidforall 0 < O < 1.

The reasonings in the proof of Theorem 4.1 lead us to the following assertion.

Corollary 4.1.

Assume that the hypotheses of Theorem 4.1 hold. Then for any two weak
(in D(AY2)) solutions uy(t) and uy(t) to problem (4.1) that are boun-
ded on the whole axis,

sup {“Al/Zui(t)H: —o <t < OO}SR, i=1,2, (4.10)

the condition L (u(t))=1;(uy(t)) for l; € B and t € R implies that
wy(t) = us(t).

Proof.
In the situation considered equation (4.6) implies that

[ (8)I7 + By, J [AY2u(t)Pdr < Ju(s)?

forall t > s and some P > 0. It follows that

lu@) < e PeCDpu(s), x5,

Therefore, if we tend s — —oo, then using (4.10) we obtain that [u(¢)] =0
forall t € R,ie. u (1) = uy(t).

It should be noted that Corollary 4.1 means that solutions to problem (4.1) that are
bounded on the whole axis are uniquely determined by their values on the functionals
lj . It was this property of the functionals {lj} which was used by Ladyzhenskaya [2]
to define the notion of determining modes for the two-dimensional Navier-Stokes
system. We also note that a more general variant of Theorem 4.1 can be found in [3].

Exercise 4.2 Assume that problem (4.1) is autonomous, ie. B(u, t) =
= B(u).Let /b be a global attractor of the dynamical system (V; S,)
generated by weak (in V= D(A!2)) solutions to problem (4.1) and
assume that a set of functionals ¥ = {lj: Jj=1, ..., N} possesses

319



320

= 0 =T ® 5O

ot

Theory of Functionals that Uniquely Determine Long-Time Dynamics

property (4.4). Then for any pair of trajectories u,(¢) and uq(t)
lying in the attractor / the condition ;(u(t)) = l;(uy(t)) implies
that u,(t) = ug(t) forallt e Randj=1, 2, ..., N

Theorems 4.1 and 2.4 enable us to obtain conditions on the existence of N deter-
mining functionals.

Corollary 4.2.

Assume that the Kolmogorov N -width of the embedding of the space
V=D(AY2) into H possesses the property w(V; H) < M(R)™. Then
there exists a set of asymptotically (V, V; 074/) -determining functionals
Sfor problem (4.1) consisting of N elements.

Theorem 2.4, Corollary 2.1, and Exercise 2.6 imply that if the hypotheses of Theorem
4.1 hold, then the family of functionals % given by equation (2.13) isa (V, V; W/)-
determining set for problem (4.1), provided Ay ; > M (R)?.Here M(R) and R are
the constants from (4.2) and (4.3). It should be noted that the set & of the form
(2.13) for problem (4.1) is often called a set of determining modes. Thus, Theo-
rem 4.1 and Exercise 2.6 imply that semilinear parabolic equation (4.1) possesses
a finite number of determining modes.

When condition (4.2) holds uniformly with respect to p, we can omit the re-
quirement of dissipativity (4.3) in Theorem 4.1. Then the following assertion is valid.

Theorem 4.2.
Assume that a continuous mapping B(u, t) from D(AV?) x R into H
possesses the properties

IB(O, t)l < My, |B(uy, 1) =B(ug, t)] < MJAYV2(u;—uy)| (41D

for all u; e D(AY?). Then a set of linear functionals %={l;: j=1,2, ..., N}
on V= D(Al/ 2) is asymptotically (V, V; W')-determining for problem (4.1),
provided €y = €4(V, H) < M~1.

Proof.

If we reason as in the proof of Theorem 4.1, we obtain that if €5, < M ~1 then
for an arbitrary pair of solutions () and u4(¢) emanating from the points %, and
Uy at amoment s the equation (see (4.6))

t
nu<t>n2+5juAﬂz (P dr < lu(s)E+0 j [N (u()]? 412)

is valid. Here u/(t) = ul( )—uy(t), B=P(ey, M) and C(%, M) are positive con-
stants, and

N(u)=max{|l;(u): j=1, 2, ..., N}.
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Therefore, using Theorem 1.1 we conclude that the condition

t+1
lim | [N(u(t))]>dt=0 (4.13)
t — oo
t
implies that
t+1
Jim {Ilu O+ '[ JAV2y (T )||2dr} =0. (4.14)
Since u(t) = u(t) —uq(t) isa solutlon to the linear equation
QA = (1) = Bly(t), 1) =Bug(0), 1), (4.15)

it is easy to verify that
t
a2 ul < 142+ [ 17 dr (4.16)

for ¢ > s. It should be noted that equation (4.16) can be obtained with the help
of formal multiplication of (4.15) by %(¢) with subsequent integration. This conver-
sion can be grounded using the Galerkin approximations. If we integrate equation
(4.16) with respect to s from ¢—1 to ¢, then it is easy to see that

t t
a2 1) < '[ Jav2a(s)P? ds + 1 J LA(o)? dr .
t—1
Using the structure of the function f(¢) and inequality (4.11), we obtain that

t
lavzu(e) < (142 j JAV2 (1) dt .
t—1
Consequently, (4.14) gives us that

lim [[AY2 (2 (£) =g (£))] = 0.
)
Therefore, Theorem 4.2 is proved.

Further considerations in this section are related to the problems possessing inertial
manifolds (see Chapter 3). In order to cover a wider class of problems, it is conve-
nient to introduce the notion of a process.

Let H be a real reflexive Banach space. A two-parameter family {S(¢, T);
t>1; 7, te R} of continuous mappings acting in H is said to be evolutionary,
if the following conditions hold:

(@ S(t,s)-S(s,1)=S(t, 1), t=2s=>21, St t)=1.

(b) S(t, s) Uy is a strongly continuous function of the variable ¢.
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A pair (H, S(t, t)) with S(¢, T) being an evolutionary family in H is often called
a process. Therewith the space H is said to be a phase space and the family
of mappings S(t, ) is called an evolutionary operator. A curve

Yolugl = {u(t) = S(t+s, s)uy: t =0}
is said to be a trajectory of the process emanating from the point u,, at the moment s .
It is evident that every dynamical system (H R Sz) is a process. However, main

examples of processes are given by evolutionary equations of the form (1.1). There-
with the evolutionary operator is defined by the obvious formula

S(t, s)ug=u(t, s; ug),

where u(t) = u(t, s; ug) is the solution to problem (1.1) with the initial condition
U at the moment s.

Exercise 4.8 Assume that the conditions of Section 2.2 and the hypotheses
of Theorem 2.2.3 hold for problem (4.1). Show that weak solutions
to problem (4.1) generate a process in H .

Similar to the definitions of Chapter 3 we will say that a process (V; S(¢, T)) acting
in a separable Hilbert space V' possesses an asymptotically complete finite-dimen-
sional inertial manifold {,} if there exist a finite-dimensional orthoprojector P in
the space V and a continuous function ®(p, ¢t): PV xR — (1-P)V such that

() | @0y, t) = P(py, 1), < L|p;—pyy (4.17)
forall p j € PV, t e R, where L is a positive constant;
(b) the surface
M,={p+®(p, t): pe PV}cV (4.18)
is invariant: S(t, T)M, < M,;
(¢) the condition of asymptotical completeness holds: for any s € R and

Ug € V' there exists ub eM ¢ such that

IS(t, s)ug = S(t, s)ug|, < ce V=9 tss, (4.19)

where C and y are positive constants which may depend on u, and

s e R.

Exercise 44 Show that for any two elements u, u, € M, s € R the fol-
lowing inequality holds

(L L) By —ugly < [Py =gy < [y =gl

Exercise 4.5 Using equation (4.19) prove that
|(1=P)S(t, s)ug = ®(PS(L, s)ug, t)], < (1+L): CeoV(t—s)

fort > s.
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Exercise 4.6 Show that for any two trajectories w,(¢)=S(¢, s)u;, j=1, 2,
of the process (V; S(¢, 7)) the condition

T [Py (1) (0, = 0
implies that
I _ =0
oy (£) = ug (1),

In particular, the results of these exercises mean that M is homeomorphic to a sub-
set in RN, N=dimP, for every s € R. The correspondmg homeomorphism
r: V=R can be defined by the equality 7w = {(u, d)j)V}N L where {¢;} is a ba-
sis in PV Therewith the set of functionals {1;(v) = (v, (pj)V Jj=1, ..., N} appears
to be asymptotically determining for the process. The following theorem contains
a sufficient condition of the fact that a set of functionals { lj} possesses the proper-
ties mentioned above.

Theorem 4.3.

Assume that V and H are separable Hilbert spaces such that V is con-
tinuously and densely embedded into H. Let a process (V; S(t, 1)) possess
an asymptotically complete finite-dimensional inertial manifold {M t} .
Assume that the orthoprojector P from the definition of {Mz} can be conti-
nuously extended to the mapping from H into V, i.e. there exists a constant
A =A(P) >0 such that

IPoly, < A-loly, veV. (4.20)
If $= {lj-: Jj=1, ..., N} is a set of linear functionals on V such that
e (V; H) < (1+L2) V2A°1, (4.21)

then the following conditions are valid:
1) there exist positive constants ¢, and c, depending on &% such that

¢y Jug —ug|, < max{|l(u;—ug): j=1, ... N} < co|uy—uy|, (4.22)

Jor all u;, uge M, , t € R; i.e. the mapping r acting from V into
RN according to the formula rou = {y (u)}j\/:1 is a Lipschitzian ho-
meomorphism from M, into RN for every t e R;

2) the set of functionals % is determining for the process (V; S(t, 1)) in

the sense that for any two trajectories u;(t) = S(t, s)u; the condition

Jm (4 (g (£) = L (uy(2))) = 0

implies that

lim ||u1

=0
i iy ()= (0,
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Proof.
Let uy, ugy € M, . Then

uj:Puj+CI)(Pu<, t)y, Jj=1,2.
Therewith equation (4.17) gives us that
|y —us|, < (1+L2)"2|Puy—Puy|,, u;eM,. (4.23)
Consequently, using Theorem 2.1 and inequality (4.20) we obtain that
[y =g, < Cop Ny (g —ug) + £q(1+L2)2 AJuy —us|,,,

where Ny (w) = max{|l;(u)|: j=1, ..., N} and &g, = &4(V; H). Therefore, equa-
tion (4.21) implies that

”ul_U’Z"H s Cl(%)'Nyj(ul_UZ)’ (4.24)
where  Cy(%) = Cy- (184 (1+L2)2AY L
On the other hand, (4.20) and (4.23) give us that
1/2
(g —uy)| < Cyluy—ug|, < Cq (14 L2?) Auy —ug|, - (4.25)

Equations (4.24) and (4.25) imply estimate (4.22). Hence, assertion 1 of the theo-
rem is proved.

Let us prove the second assertion of the theorem. Let u;(t) = S(t, s)u;, t = s
be trajectories of the process. Since

uj(t) = (Puj(t) + @(Puj(t), t)) +((1—P)uj(t) - CI)(Puj(t), t)),

using (4.17) it is easy to find that

)

[y (8) = ug ()], < (1+L2)2|P(uy (8) —ug (1)), +

+ Z [(1=P)u,(t) = @(Puy(t), t)],, -

Jj=1,2
The property of asymptotical completeness (4.19) implies (see Exercise 4.5) that
— t —_
[(1=P)uy(t) = ®(Puy(t), 1) < Ce V79 1>

Therefore, equation (4.20) gives us the estimate
1/2 vt
[y () =ug (1)), < (1+L2)ZAfuy () = ug(t)], + Ce 775 (4.26)
It follows from Theorem 2.1 that
||u1(t) — Uy (t)”H < Gy Neg(uy (1) —ug(?)

Therefore, provided (4.21) holds, equation (4.26) implies that

)= ug (D),

|ui () —ug(t)|,, < Ag Ne(uy(t)—ug(t)) + By e 1S) g,



Determining Functionals for Abstract Semilinear Parabolic Equations

where Ay, and B, are positive numbers. Hence, the condition
limw N (u (1) =g ()) = 0
t — oo
implies that
Lim |uq(2)—uy(t)),, = 0.
i o, (0) = (1)
Thus, Theorem 4.3 is proved.

Exercise 4.7 Assume that the hypotheses of Theorem 4.3 hold. Let
Uy, Ug € Mg besuchthat I;(u;) = 1;(uy) forall I; € 5. Show that

S(t, s)uy = S(t, s)ug for t >s.

Exercise 4.8 Prove that if the hypotheses of Theorem 4.3 hold, then in-
equality (4.22) as well as the equation

ouy —ug|, < max {|l;(u;—ug): J=1, 2, ..., N} < cofuy—uy|,,

is valid for any u,, u, € M, and ¢t € R, where ¢, ¢4 > 0 are con-

stants depending on %.

Let us return to problem (4.1). Assume that B(u, ¢) is a continuous mapping from
D(Ae) x R into H, 0 < 0 < 1, possessing the properties

1Blug. 1)) < M(1+]0u),  [Bluy £) ~Blug, t)] < MJA® () — )|

for all u; € D(Ae) , 0 <0 < 1. Assume that the spectral gap condition

2M 0 0
)‘n+1_kn 2 7 (1+k))‘n+l +kn)
holds for some 7 and 0 < g < 2—./2 . Here {kn} are the eigenvalues of the opera-
tor A indexed in the increasing order and & is a constant defined by (3.1.7). Under
these conditions there exists (see Chapter 2) a process (D(A%); S(t, s)) generated
by problem (4.1). By virtue of Theorems 3.2.1 and 3.3.1 this process possesses an
asymptotically complete finite-dimensional inertial manifold {M t} and the corres-
ponding orthoprojector P is a projector onto the span of the first 7 eigenvectors
of the operator A . Therefore,

149 Pu| < kg_snAsuﬂ, —o<s<0.

Therewith the Lipschitz constant L for CI)(p, t) can be estimated by the value
q/(1—q). Thus, if % is a set of functionals on V= D(Ae) , then in order to apply
Theorem 4.3 with H = D(A%), —oo < s < 0 , it is sufficient to require that

5, (D(A%); D(A%)) < ——4

1
Jo—2qr2g2 A7
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Due to Theorem 2.4 this estimate can be rewritten as follows:

1—-q A +\0-s
4(D(AY): D(AY) < (52) m0@%): D)),
J2-2q+2¢% n
where %, (D(A%); D(A%)) is the Kolmogorov 7 -width of the embedding of D(A?)
into D(A%), —o<s<O, 0<0<1.
It should be noted that the assertion similar to Theorem 4.3 was first estab-
lished for the Kuramoto-Sivashinsky equation
U+ u

g T Uy T U U =10, x e (0, L), t>0,

with the periodic boundary conditions on [0, L] in the case when {l,} is a set of
uniformly distributed nodes on [0, L], i.e.

lj(u) =u(jh), where h= j=0,1,.., N—1.

L
N )
For the references and discussion of general case see survey [3].

In conclusion of this section we give one more theorem on the existence of deter-
mining functionals for problem (4.1). The theorem shows that in some cases we can
require that the values of functionals on the difference of two solutions tend to zero
only on a sequence of moments of time (cf. Theorem 1.3).

Theorem 4.4.
As before, assume that A is a positive operator with discrete spectrum.:
Ae,=Ne,, 0<A <Ay<..., lim A —oo.
k — o

Assume that B(u, t) is a continuous mapping from D(Ae) x R into H for
some 0 < 0 < 1 and the estimate

|B(wy, t) =B(ug, t)] < M"Ae(u1 —Uy)|, wy, Uy € D(AY),

holds. Let £ ={l;} be a finite set of linear functionals on D(AP). Then for
any 0 < o< P there exists n =mn (o, B, 0, Ay, M) such that the condition

€q = £4(D(A%), H) < %k;ﬁ

implies that the set of functionals B is determining for problem (4.1)
in the sense that if for some pair of solutions {u,(t); us(t)} and for some se-
quence {1,.} such that

lim ¢, =00, o<t 41—t <P, k=1
k — oo

)

the condition
Hm 1 (uy () —ug(l)) =0, e B,
k — oo
holds, then
lim A9 (uy(£) —ug())| = 0 . (4.27)

t — o0
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Proof.
Let u(t) = uy(¢t) —uy(t) . Then the results of Chapter 2 (see Theorem 2.2.3 and
Exercise 2.2.7) imply that

[A0u(i)] < aq e ] A0u(s), (4.28)
_ a _
[(1-B,)A%(1)] < { P 1@ Dy B S)}IIA%(S)II (4.29)
n+1

fort > s > 0,where a;, ay,and ag are positive numbers depending on 0, kl ,and

M and P, is the orthoprojector onto Lin{el, ey en} . It follows form (4.29) that
[(1=B) %) < aq plAOu@s),  s+a<t<s+p, (4.30)
where
_ a
Ay, p=¢ o ® —1_36 2P
kn+1

Let us choose 7 = n(a, f3, 0, A, M) such that g, p < < 1/2 . Then equation (4.30)
gives us that

[a9u(@)l < 29kl +la0u(s)l,  s+a<t<s+p.

This inequality as well as estimate (4.28) enables us to use Theorem 1.3 with V=
= D(Ae) and to complete the proof of Theorem 4.4.

Exercise 4.9 Assume that 7 is chosen such that Qg g < 1 in the proof
of Theorem 4.4. Show that the condition |5, ( ulg‘ —ugy(ty))| =0
as k — oo implies (4.27).

The results presented in this section can also be proved for semilinear retarded
equations. For example, we can consider a retarded perturbation of problem (4.1)
of the following form

%—u+Au B(u, t)+Q(u,, t)
Ul [-r, 0]~ ¢(t) e C,=C([-r, 0], D(Al/z)) 7

where, as usual (see Section 2.8), u, is an element of C, defined with the help
of u(t) by the equality u,(0) = u(t+0), 0 € [-r, 0], and @ is a continuous map-
ping from C,. x R into H possessing the property

0
[Q(vy, 1) ~Q(vy, D < M, - '[HA”Z(UI(G) —u,(0)]? do

for any v, v5 € C,.. The corresponding scheme of reasoning is similar to the me-
thod used in [3], where the second order in time retarded equations are considered.
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§ 5 Determining Functionals
for Reaction-Diffusion Systems

In this section we consider systems of parabolic equations of the reaction-diffusion
type and find conditions under which a finite set of linear functionals given on the
phase space uniquely determines the asymptotic behaviour of solutions. In particu-
lar, the results obtained enable us to prove the existence of finite collections of de-
termining modes, nodes, and local volume averages for the class of systems under
consideration. It also appears that in some cases determining functionals can be gi-
ven only on a part of components of the state vector. As an example, we consider
a system of equations which describes the Belousov-Zhabotinsky reaction and the
Navier-Stokes equations.

Assume that Q is a smooth bounded domain in R, n > 1, H5(Q) is the
Sobolev space of the order s on ©, and H;(Q) is the closure (in H5(Q)) of the set
of infinitely differentiable functions with compact support in Q. Let | - | be a norm
in 5(Q) andlet | -| and (-, -) beanorm and an inner product in L2(Q), respec-
tively. Further we also use the spaces

HS = (H5(Q))™ = HS(Q) x ... x H5(Q), m>1.
Notations L? and HS have a similar meaning. We denote the norms and the inner
products in L? and H* asin L2(Q) and H5(Q).

We consider the following system of equations
ou=a(r, t)Au—f(r,u, Vu; t), xe€Q, >0, B.1D
Ulpn=0, u(@ 0)=uy(x),
as the main model. Here w (2, t) = (u,(2, t); ...; u,,(2, t)), A is the Laplace ope-
rator, Vay, = (O Uy, .., Oy Uy), and a(z, t) is an m -by-m matrix with the ele-
ments from L*(Q x R, ) such that forallz € Q and t € R,
a, (x,t) = %-(a+a*) > ug-l, pg>0. (5.2)
We also assume that the continuous function
F=0f1 s fp): Qx ROFDM R R™

is such that problem (5.1) has solutions which belong to a class 9 of functions

on R, with the following properties:
a) forany u € W there exists ¢, > 0 such that

u(t) e C(ty, +oo; HENHp), 8,u(t) e C(ty, +oo; L?), (5.3)

where C(a, b; X ) is the space of strongly continuous functions on
[a, b] with the values in X ;
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b) there exists a constant ¥ > 0 such that for any u, v € 9 there exists
t, >0 such that for ¢ > ¢; we have

(s Vs €)= £ (0, Vo3 0 < k- (lu=ol +1Vu - Vo). (5.4)

It should be noted that if a(x,t) is a diagonal matrix with the elements from
C2 (Q x R,) and f is a continuously differentiable mapping such that

| f(, u, p5 1) = f, v, g5 1) < k-(lu—vl+|p—ql) (5.5)
forall u,v e R™, p,qe R"™, xeQ,and te R . » then under natural compa-
tibility conditions problem (5.1) has a unique classical solution [7] which evidently
possesses properties (5.3) and (5.4). In cases when the dynamical system generated

by equations (5.1) is dissipative, the global Lipschitz condition (5.5) can be
weakened. For example (see [8]), if a is a constant matrix and

Sz, uw, Vu; t) = f(x, u) Zb x)0, u+g( ),

where b; = (b}, ..., b") e L®, g=(9y, ... 9,,) € L?, and [ = (Fp, ... Jy)
is contmuously dlfferentlable and satisfies the conditions

- - -1
f(xs u)u 2 “1|u|p07 |f(x5 u)| < H2|u|p0 +07 p0>25

o

< C-(A+u)y, 1<k<m, 1<j<mn,
o

where U, Uy >0 and p; < min(4/n, 2/(n—2)) for » > 2, then any solution
to problem (5.1) with the initial condition from L? is unique and possesses proper-
ties (5.3) and (5.4).

Let us formulate our main assertion.

Theorem 5.1.

Aset £L={l;: j=1, N} of linearly independent continuous linear
Sfunctionals on H 2 N Ho s an asymptotically determining set with respect
to the space HO JSor problem (5 1) in the class W if

ena 12 < (1 ()
ey (H ﬂHO,L ) < ﬁ 1+4 g =p(k, Y, (5.6)
where ¢yt = sup{lwly: w e (H? NHY)(Q), Aw] < 1}, and L, and k are
constants from (5.2) and (5.4). This means that if inequality (5.6) holds,
then for some pair of solutions u, v € W the equation

t+1

lim '[ L ((D) L) dt=0, j=1,.., N, .7
t
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implies their asymptotic closeness in the space H' :
lim Ju(t)—v(t)l; = 0. (6.8)
t— oo

Proof.
Let w, v € . Then equation (5.1) for w = u —v gives us that

o,w=a(x, t)Aw —(f(x, u, Vu; t) = f(x, v, Vo; t)).

If we multiply this by Aw in L? scalarwise and use equation (5.4), then we find that

L S paw(OF + wolaw@F < k(lw (O +1(Vw) ()] JAw o)

for ¢ > 0 large enough. Therefore, the inequality ||Vw||2 = [(w, Aw)| < |w]-|Aw]|
enables us to obtain the estimate

d 2 2 _ 2K2(, ., 27( k2,2
S1vul®+ polawl® < 2E (14 2L( 7 Jul?. (5.9

Theorem 2.1 implies that
lwl?> < C(N, 8) m?X|lj(w)|2 +(1+8)- €2 - Jwl3 (5.10)

forall w € H2 N Hé and for any & > 0, where C(N, §) > 0 isa constant and €, =
=gy, (H?NH, é, L?). Consequently, estimate (5.9) gives us that

(1+8)e,
p(k, 1)

where p(k, “0) is defined by equation (5.6). It follows that if estimate (5.6) is valid,
then there exists 5 > 0 such that

2
)

d 2 2
&IIVw(t)II + 1y -[1 - )IIAw(t)Il < C~m‘.7ax|lj(w)

t
Vw2 < ¢ P v (i) + c.je—ﬁ@—r) max |1, (w (7)) dt
J

Ly
for all ¢ > ¢, where i is large enough. Therefore, equation (5.7) implies (5.8).
Thus, Theorem 5.1 is proved.

Exercise 5.1 Assume that w(¢) and v(t) are two solutions to equation (5.1)
defined for all £ € R. Let (5.3) and (5.4) hold for every ¢, € R and
let

sup (1IVa(@ll + 1Vo(o)l) < o0

Prove that if the hypotheses of Theorem 5.1 hold, then equalities
Li(u(t)) =1l (v(t)) for j=1, ..., N and ¢ < s for some s < oo im-
ply that u(¢) = v(t) forall ¢ <s.
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Let us give several examples of sets of determining functionals for problem (5.1).

Example 51 (determining modes, m > 1)

Let {e k} be eigenelements of the operator —A in L2 with the Dirichlet bounda-
ry conditions on 0 Q2 and let 0 < 7t1 < 7‘2 < ... be the corresponding eigenva-
lues. Then the completeness defect of the set

%= {lj: lj(w):'[w(x)ej(x)dx, Jj=1, ..., N}
Q

can be easily estimated as follows: £(H2 N H}, L2) < Jn-A34 (see Exer-
cise 2.6). Thus, if N possesses the property )\,N+1 > Jn- -p(k, “0) ,then &
is a set of asymptotically (H 2N H} 05 H! 0> W) -determining functionals for prob-
lem (5.1).

Considerations of Section 5.3 also enable us to give the following examples.

Example 52 (determining generalized local volume averages)

Assume that the domain Q is divided into local Lipschitzian subdomains
{Qj: Jj=1, ..., N}, with diameters not exceeding some given number . >0 .
Assume that on every domain €; a function 4, (x) € L®(€);) is given such
that the domain Q is star-like W1th respect to supp )t and the conditions

A
A ,  esssup|ri(x) £ =,
j erf)|‘7( )| h7

hold, where the constant A > 0 does not depend on & and j . Theorem 3.1 im-
plies that

gy (H2(Q) N Hy(Q); LA(Q)) < ¢, h? A

for the set of functionals

%, { J'x v)dr, j=1,2, | }

Therewith the reasonings in the proof of Theorem 3.1 imply that ¢, = (52 -,
where G, is the area of the unit sphere in R" . For every l € &, we defme the
functlonals l( ) on H? by the formula

(w): L(wg),  w=(wy, ..., w,) eH?, k=1,2,..,m. (6.1
Let
L) = (1 (w): k=1,2,..,m, L%}, (5.12)
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;’ One can check (see Exercise 2.8) that

: wy (HENHy; L2) < ¢, -h2-A2.

: Therefore, if /# is small enough, then S@ém) is a set of asymptotically deter-
5 mining functionals for problem (5.1).

Example 538 (determining nodes, n < 3)
Let Q be a convex smooth domain in R”, n < 3.Let & > 0 and let
Q, =QMN{z=(2y, ..., ,): Jh <z < (p+1)h, k=1, 2, 3},

where j = (7, ..., j,,) € Z" N Q. Let us choose a point ; in every subdomain
Qj- and define the set of nodes
By, ={lj(w)=u(z)): jeZ"NQ}, n<3. (5.13)

Theorem 3.2 enables us to state that
1 .
&g (H*(Q) NHy(Q); L7(Q)) < c-h?,
where ¢ is an absolute constant. Therefore, the set of functionals Sé( ) defined

by formulae (5.11) and (5.12) with &, given by equality (5.13) possesses the
property

m)(H2 NH; L) < ¢-h2.

Consequently, 56( ) | is a set of asymptotically determining functionals for prob-
lem (5.1) in the class 9, provided that £ is small enough.

It is also clear that the result of Exercise 2.8 enables us to construct mixed determin-
ing functionals: they are determining nodes or local volume averages depending
on the components of a state vector. Other variants are also possible.

However, it is possible that not all the components of the solution vector u(x, t)
appear to be essential for the asymptotic behaviour to be uniquely determined.
A theorem below shows when this situation can occur.

Let I be asubset of {1, ..., m}. Let us introduce the spaces

H ={w=(wy, ..., w,) e H: w,=0,kel}, seR.

We identify these spaces with (H5(Q))/l, where |I] is the number of elements of
the set . Notations L% and HO ; have the similar meaning. The set % of linear
functionals on H 1 is said to be determining if p, 7% is determining, where p ; is the
natural projection of HS onto H; .
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Theorem 5.2.

Let a = diag (dl, dm) be a diagonal matrix with constant elements
and let {I,1'} be a partition of the set {1, ..., m} into two disjoint subsets.
Assume that there exist positive constants , k", 9@» where 1=1, ..., m,
such that for any pair of solutions wu, v € W the following inequality holds
(hereinafter w = u—v):

00 - s+ it s 0905 0 )|+

iel
+>°0; {—di||Vwi||2—(fi(u, Vu; t) - f;(v, Vo; t), wi)} <
iel
< -0 Z [w,|” + & Z |, - (5.14)
iel iel
Then a set = {l;: j=340(1), ..., . of linearly independent continuous linear

Sfunctionals on le NH 0.1 is an asymptotically determining set with respect
to the space H(l) Sor problem (5.1) in the class W if
d;0;

ey = eu(Hy NHy ;, L7) < cg min [0, (5.15)

where ¢y >0 1is defined as in (5.6). This means that if two solutions
u, v € W possess the property
t+1

Jim. j |1 (pyu(7)) = L(po(0)Pdt=0 for j=1,...N, (5.16)
4

where p; is the nmatural projection of H° onto Hf, then equation (5.8)
holds.

Proof.
Let w, v e W and w =wu —v.Then
o,w; =d; Aw; —(f; (2, u, Vu; t) = f; (2, v, Vo; t)) (56.17)
for i =1, ..., m.In L2(Q) we scalarwise multiply equations (5.17) by -0, Aw,

for 7 € I and by Giwi for 7 € I' and summarize the results. Using inequality (5.14)
we find that

1.d 1 2 2 . 2
g.&(b(w(t))+22di8i||Awi|| o> wf* < & Jwi?,

1el 1 el el

2 2
O(w) =30, Ve[*+ B 0wy

el el

where
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As in the proof of Theorem 5.1 (see (5.10)) we have

> Jwil® < C(N. 8) maxl (pyw) +1+5a?f S A

el el

for every & > 0. Therefore, provided (5.15) holds, we obtain that

9 D)+ Bd(w(t) < c,m]axuj(p]w(t))ﬁ

with some constant 3 > 0. Equation (5.16) implies that ®(w(t)) > 0 as t > 0.
Hence,

lim [w(t)] = 0. (5.18)

t — oo

However, equation (5.9) and the inequality

IVw| < C-lAwl, w e H2NH;,
imply that
t

Vet < P10 ||vw(to)||2+CJ‘ e P () o

by
forall t > t, with ¢, large enough and for B > 0. Therefore, equation (5.8) follows
from (5.18). Theorem 5.2 is proved.

The abstract form of Theorem 5.2 can be found in [3].

As an application of Theorem 5.2 we consider a system of equations which describe
the Belousov-Zhabotinsky reaction. This system (see [9], [10], and the references there-
in) can be obtained from (5.1) if we take 7 < 3, m = 3, a(x, t)=diag(d,, dy, d3)
and

S, w, Vus 1) = flu) = (fi(w); fo(u); f3(u)),

where

Si(u) = —a(uy—uyuy +uy = Bui),

So(u) = —é(yuS—uz—uluz), Sy(u) = =6 (u;—ug).

Here a, B, v, and O are positive numbers. The theorem on the existence of classi-
cal solutions can be proved without any difficulty (see, e.g., [7]). It is well-known
[10] that if a5 > a; > max(1, f~!) and a, > Yag, then the domain

D ={u = (uy, uy, ug): 0<u;<a; j=1,2, 3} IR3

is invariant (if the initial condition vector lies in D for all x € Q , then u (x, t) eD
for x € Q and t > 0). Let W '= Y}, be a set of classical solutions the initial condi-
tions of which have the values in D . It is clear that assumptions (5.3) and (5.4) are
valid for 9. Simple calculations show that the numbers ®, k", 05, and 05 can be
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chosen such that equation (5.14) holds for /= {1}, I' ={2, 3}, and 0, =1. In-
deed, let smooth functions wu(x) and v(x) be such that u(x), v(x) € D for all
2 e Q and let w(x)=wu(x)—v(x). Then it is evident that there exist constants
C; > 0 such that

(S1(w)=f1(v), Aw,)

dl 2 2 2
@, Fawy 2+ ¢ (g + Jwaf?).

IA

IA

Dy = ~( (1) = Fo(0). W) = —ge sl + Cy-(Juo [P+ o).

@y = ~(fy () = fy(0), wg) < ~Jwgff +Cyfuoy |

Consequently, for any 0,5, 05 > 0 we have

d
D, +0,D, + 0,0y < 71 |Aw |+ (Cy +0,C, + 05C5) [, | +

+ (01 —%) o] + (0, - 9_?;.5) [

It follows that there is a possibility to choose the parameters 62 and 63 such that

wif” = o(Jusf? + s

with positive constants ¥* and ®. This enables us to prove (5.14) and, hence, the
validity of the assertions of Theorem 5.2 for the system of Belousov-Zhabotinsky
equations. Therefore, if &= {l-: Jj=1, ..., N} is a set of linear functionals on
H2(Q) N Hy(Q) such that g4, ((H2 N Hy)(Q), L2(Q)) is small enough, then the
condition

dl 2 *
D, + 0,0, +0,D; < -2-||Aw1|| +k

t+1
lim J|lj(u1(r))—lj(yl(r))|2dr:O, j=1, .., N,
t

L —> oo
for some pair of solutions wu(t) = (uy(t), uy(t), us(t)) and v(t) = (v,(t), vy(t),
v4(t)) which lie in % implies that

le(t)—v(t)l; >0 as t »>o0.

In particular, this means that the asymptotic behaviour of solutions to the Belousov-
Zhabotinsky system is uniquely determined by the behaviour of one of the compo-
nents of the state vector. A similar effect for the other equations is discussed in the
sections to follow.

The approach presented above can also be used in the study of the Navier-Stokes
system. As an example, let us consider equations that describe the dynamics of a vis-
cous incompressible fluid in the domain Q = 72 = (0, L) x (0, L) with periodic
boundary conditions:
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o,u —VAu+ (u,Vyu+Vp=F(x,t), xeT?, >0,
Vu=0, zeT? ux0)=uy), (5.19)

where the unknown velocity vector wu(x, t) = (u;(x, t); us(x, t)) and pressure
p(x, t) are L -periodic functions with respect to spatial variables, v >0, and
F(z, t) is the external force.
Let us introduce some definitions. Let 9" be a space of trigonometric polynomi-
als v(x) of the period L with the values in R? such that divo =0 and
Tzv(x) dx = 0. Let H be the closure of ¥ in L? ,1let IT be the orthoprojector onto
H in L?,let A=-T1Au=—-Au and B(u, v)=II(u, V)v for all w and v from
D(A)=H N H?. We remind (see, e.g., [11]) that A is a positive operator with dis-
crete spectrum and the bilinear operator B(u, U) is a continuous mapping from
D(A) x D(A) into H . In this case problem (5.19) can be rewritten in the form

Oyu+ VAu+B(u, u)=IIF(), u|,_,=ujeH. (5.20)

It is well-known (see, e.g., [11]) that if u, € H and I1F(t) € L*(R,; H), then prob-
lem (5.20) has a unique solution % (t) such that

u(t) e C(R,; H)N C(ty, +oo; D(A)), tg>0. (5.21)
One can prove (see [9] and [12]) that it possesses the property

t+a

2 1
T J'||Au D2 de < _( + m) (5.22)

for any a > 0. Here )‘1 =(2 TC/L)2 is the first eigenvalue of the operator A in H
and

F= Tm |TIF(¢)] .

t — oo

Lemma 5.1.
Let u,v € D(A) and let w=wu—v. Then

|(B(u, w) =B(v, v), Aw) < J2|wl|, [Vw||Aul, (5.23)

(B, u)=B(v, v), Aw)| < ¢ JL| V|- IVl [Aw[? |Aul, (5.24)

where |- |, is the L® -norm, w, is the k-th component of the vector w,
k=1, 2, and c is an absolute constant.

Proof.
Using the identity (see [12])

(B(u, w), Aw)+ (B(w, v), Aw) + (B(w, w), Au)=0
for u, v € D(A) and w = u —v , it is easy to find that
(B(u, u)=B(v, v), Aw) = —(B(w, w), Au) .
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Therefore, it is sufficient to estimate the norm |B(w, w)| . The incompressibili-
ty condition Vw = 0 gives us that

(w, V)w = (=w; 0wy +wy 0wy, w10 wy=wydywy),
where 0; is the derivative with respect to the variable x; . Consequently,
o, V)l < 2(J(wy, V)] + [0y, V) ?) - (5.25)

This implies (5.23). Let us prove (5.24). For the sake of definiteness we let
k = 1. We can also assume that w € %. Then (5.25) gives us that

I 9yl < 2 (Jon] | Vora] o+ ool |V ]).
We use the inequalities (see, e.g., [11], [12])
lol, . < aglol?-JAv]
and
lol, 4 < ay ol Ivol "2,

where a and a are absolute constants (their explicit equations can be found
in [12]). These inequalities as well as a simply verifiable estimate [v| <
< (L/2m)-|Vo| imply that

I(w, V)w| < J%(a%+0L0)||Vw1||.||Vw||1/2.||Aw||1/2.

This proves (5.24) for k = 1.

Theorem 5.3.

1. A set = {lj: Jj=1,2,...,N} of linearly independent continuous
linear functionals on D(A) = H?> N H is an asymptotically determining set
with respect to H' for problem (5.20) in the class of solutions with property
(5.21) if

— ~1
£y = £ (D(A), H) < ,G = ;v Tm ITF@) (5.26)
t — oo
where ¢, is an absolute constant.

2. Let B=1{l;: j=1,..., N} be a set of linear functionals on H%(Q)

and let

_ —2
&l = e (H2(Q), L2(Q)) < 02V4L‘3(tlim el
— o

where ¢, is an absolute constant. Then every set ]o,C £ is an asymptotically
determining set with respect to H' for problem (5.20) in the class of solu-
tions with property (5.21). Here p, 1is the natural projection onto the k-th
component of the velocity vector, p, (“1§ uZ) =u,, k=1, 2.
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Proof.
Let u(t) and v(t) be solutions to problem (5.20) possessing property (5.21).
Then equations (5.20) and (5.23) imply that

d
L8|Vl + viswl? < J2lul, Vel -J4ul

for w = u—v . As above, Theorem 2.1 gives us the estimate

lol < Cn(w)+sgldwl,  nw) = max|l;(w)].
Therefore,
[, < ag-leol-Jawl™® < ¢ dm(w)- 18wl + ag Jeq-1Aw] .
The inequality
IVwl? < fwl-|Aw]
enables us to obtain the estimate (see Exercise 2.12) £,(D(A), D(AV2)) < &5 and
hence
-1
JAwl? > ~Csn(w)* +(1-8)e3 - [Vl

for every & > 0. Therefore, we use dissipativity properties of solutions (see [8] and
[9] as well as Chapter 2) to obtain that

%IIVw(t)II2+oc(t)-IIVwII2 < C-[n(w)2+A/T](w)],
where
a(t)=v(1-8)ey! —2aleq, v Au(t)?.

Equation (5.22) for a = (Vkl)_1 implies that the function o.(¢) possesses proper-
ties (1.6) and (1.7), provided (5.26) holds. Therefore, we apply Lemma 1.1 to obtain
that [Vw(t)| - 0 as ¢t — oo, provided

t+1

tim [ (o) de=o.

In order to prove the second part of the theorem, we use similar arguments. For
the sake of definiteness let us consider the case k = 1 only. It follows from (5.20)
and (5.24) that

d
L SIVul? + VIAwl < o L[V | [Vl -1aw] "2 Jaul . 5.27)

The definition of completeness defect implies that

Ve < oGy + [l | aw |2 < 0 )+ e 1awl 2,

where 1 (w;) = max|l;(w, )| .Therefore,
J
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oL |V, |2 el Al 21 Au <

< L fety Vel - | Awl - JAul + € m(w)) Vel - Aw] ' |Au| <
< oy + [+ e ) Ivul® Jaul® + Ylawl?

for any % > 0, where the constant C depends on %, v, $, and L. Consequently,
from (5.27) we obtain that

d
Qyvul? + vidul? < o[n(wy)+2 (% + L1 ) VwlPlaul®.

Therefore, we can choose % = 8- L-¢2- V_1 - £ and find that

d%lle||2+[v(%LE) 2(1+8)k e, Al | IVul? < C[n(w,)?,

where 6 > 0 is an arbitrary number. Further arguments repeat those in the proof
of the first assertion. Theorem 5.3 is proved.

It should be noted that assertion 1 of Theorem 5.3 and the results of Section 3 enable
us to obtain estimates for the number of determining nodes and local volume avera-
ges that are close to optimal (see the references in the survey [3]). At the same time,
although assertion 2 uses only one component of the velocity vector, in general it
makes it necessary to consider a much greater number of determining functionals in
comparison with assertion 1. It should also be noted that assertion 2 remains true if
instead of w, we consider the projections of the velocity vector onto an arbitrary
a priori chosen direction [3]. Furthermore, analogues of Theorems 1.3 and 4.4 can be
proved for the Navier-Stokes system (5.19) (the corresponding variants of estimates
(4.28) and (4.29) can be derived from the arguments in [2], [8], and [9]).

§ 6 Determining Functionals
in the Problem of Nerve Impulse
Transmission

We consider the following system of partial differential equations suggested by
Hodgkin and Huxley for the description of the mechanism of nerve impulse trans-
mission:

0,u —dyd2u+g(u, vy, vy, v3) =0, xe(0,L), >0, (6.1)

00— ;0% v+ k() (v;—hy(u)) =0,  we(0,L), t>0, j=1,2,3. (62)
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Here d,> 0, dij,and

3 4
g(u, vy, Vg, V3) = =Y 01V (8 —u) = Y503 (8y—u) = V5(Sg—u) ,  (6.3)
where y;> 0 and &, > 83> 0 > 3, . We also assume that k;(u) and /;(u) are the
given continuously differentiable functions such that k() > 0 and 0 < 7;(u) < 1,
7 =1, 2, 3. In this model % describes the electric potential in the nerve and v i is
the density of a chemical matter and can vary between 0 and 1. Problem (6.1) and
(6.2) has been studied by many authors (see, e.g., [9], [10], [13] and the references
therein) for different boundary conditions. The results of numerical simulation given
in [13] show that the asymptotic behaviour of solutions to this problem can be quite
complicated. In this chapter we focus on the existence and the structure of deter-
mining functionals for problem (6.1) and (6.2). In particular, we prove that the
asymptotic behaviour of densities v i is uniquely determined by sets of functionals
defined on the electric potential 2 only. Thus, the component u of the state vector
(u, vy, vy, v4) is leading in some sense.
We equip equations (6.1) and (6.2) with the initial data
Uliog=Uol®@)s vl _ =00, J=12.3, (6.4)
and with one of the following boundary conditions:
u| =u|x:L=dej| :d]-v- =0, t>0, (6.5a)

J

x=0 |x:L

x=0

0. u

X

=o,u _ =dpo,u|  =dpdwy| =0, 1>0, (65D

‘x:O x=0

w(@+L, t)=u(x, t) = d;- (v;(x+L, t)=vi(w, 1)) =0, we RY, ¢>0,(6.5c)

where j = 1, 2, 3. Thus, we have no boundary conditions for the function v; (2, 1)
when the corresponding diffusion coefficient dj is equal to zero for some j=1, 2, 3.

Let us now describe some properties of solutions to problem (6.1)—(6.5). First
of all it should be noted (see, e.g., [10]) that the parallelepiped

DZ{UE(M,UI,UZ,Ug): 09 < u <9y, Oﬁvjﬁl, j=1, 2,3}C]R4

is a positively invariant set for problem (6.1)—(6.5). This means that if the initial data
Up(@) = (uy(2), v10(7), v99(x), vg¢(2)) belongs to D for almost all x € [0, L],
then

U(t) = (u(x, t), vy(@, t), vy(x, t), v5(x, t)) € D

for x € [0, L] and forall ¢ > 0 for which the solution to problem (6.1)—(6.5) exists.
Let H, = [H]* = [L2(0, L)]* be the space consisting of vector-functions

U(zx) = (u, vy, vy, v3), where u € L2(0, L), v; € L2(0,L), j=1,2,3.

We equip it with the standard norm. Let



Determining Functionals in the Problem of Nerve Impulse Transmission

0, (D) = {U(x) € Hy: U(x)e D foralmostall «x € (0, L)} .

Depending upon the boundary conditions (6.5 a, b, or c) we use the following nota-
tions H; = [V,]* and H, = [V,]*, where

V,=H}(0,L), or HY0,L), or H. (0, L) (6.6)

per

and

V, = H2(0, L) N H}(0, L), or

{u(m) e H%(0, L): axu‘x:o LT 0}, or ngr(o, L), (6.7)

respectively. Hereinafter H5(0, L) is the Sobolev space of the order s on (0, L),
H(l) and Hll)er are subspaces in H 1(0, L) corresponding to the boundary conditions
(6.5a) and (6.5¢). The norm in H%(0, L) is defined by the equality

L

[ul2 = [o5ul® +ul* = J(|a;u(x)\2+|u(x)|2)dx, s=1,2, ...

0
We use notations |-| and (-, -) for the norm and the inner product in H =
= LZ(O, L). Further we assume that C(0, T; X) is the space of strongly continu-
ous functions on [0, 7'] with the values in X . The notation L”(0, 7'; X) has a simi-
lar meaning.

Let dj >0 for all j=1, 2, 3. Then for every vector U, € Hy(D) problem

(6.1)—(6.5) has a unique solution U(t) € H(D) defined forall ¢ (see, e.g., [9], [10]).
This solution lies in

C(0, T; Hy(D)) N L2(0, T; Hy)
for any segment [0, 7'] and if U, € H(D) N H; , then
U(t) € C(0, T; Hy(D) N HYy) NL2(0, T; Hy). (6.8)

Therefore, we can define the evolutionary semigroup S, in the space Hgy(D) N H;
by the formula

$,Uy = U(t) = (u(@, 1), vy(a, 1), v(a, 1) vy, 1),
where U(t) is a solution to problem (6.1)—(6.5) with the initial conditions
Uy = (ug(2), v10(2), vg90(), v30())-
The dynamical system (IHq(D) N H;; S;) has been studied by many authors.

In particular, it has been proved that it possesses a finite-dimensional global attrac-
tor [9].

341



342

= 0 =T ® 5O

ot

Theory of Functionals that Uniquely Determine Long-Time Dynamics

If dy=dy=dq=0, then the corresponding evolutionary semigroup can be
defined in the space V; = (V; x [H(0, L)]?) N H(D) . In this case for any segment
[0, T'] we have

S, Uy=U(t) e C(0,T; V)N Lz(O, T; Vo x (HI(O, L))3), (6.9)
if U, e V,. This assertion can be easily obtained by using the general methods
of Chapter 2.

The following assertion is the main result of this section.

Theorem 6.1.

Let = {lj: Jj=1, ..., N} be a finite set of continuous linear functio-
nals on the space V,,s =1, 2 (see (6.6) and (6.7)). Assume that

(1 _ . dy
&y’ =eq(V), H) < TTE (6.10)
or
8(52) =gq(Vy, H) < $, (6.11)
' d3 + K3
where
(A.+B.
Ky =(8,-85)- > B"(,‘ii*j) (6.12)
j=1 J
and
3 2\1/2
B;(A;+B))
Ky = 2'((Y1+Y2)2+ 5(51_52)2 : Z(% (6.13)
j=1 J

with B,=37,, By=7v,, PBs=47,, and

A;= max{|8ukj(u)| D0 u< 81}, B; = max {|8u(l~c]hJ) (w)|: dgsu< 81},

k;:Hun{kj(u) 52£u£51}.

Then % is an asymptotically determining set with respect to the space I,
Sor problem (6.1)-(6.5) in the sense that for any two solutions

U(t) = (u(x, t), v, 1), vy, 1), v5(x, 1))

and

%

U(t) = (w'(@, 1), vy(w, 1), v5(, 1), (2, 1))

satisfying either (6.8) with dj >0, or (6.9) with dj =0, 7=1, 2, 3, the con-
dition
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t+1
lim J' ()~ (D)Pdt=0 for j=1,..N  (6.14)
t — oo
t
implies that
3
lim {Ilu(z:)—u*(t)llz+Z||Uj(z:)—v;(t)||2} =0. (6.15)
t — oo ic1

Proof.
Assume that (6.10) is valid. Let

U(t) = (ul@, 1), vy(, 1), vy, 1), vg(w, 1))
and
U(t) = (w'(w, 1), vi(, 1), v5(@, 1), v5(x, 1))

be solutions satisfying either (6.8) with dj >0, or (6.9) with dj =0, 5=1, 2, 3.
It is clear that

G(U, U") = g(u, vy, vy, v3) —g (u', v}, v5, v5) =
4 ® *
= (1,0} vy + 7505 +73) (w—w) + (U, U')
where
n(U, U") = =y, (0705 =07205) (8 =) =15 (v3 =05 ) (85— ).
Since U, U" € D, it is evident that

3
(U, U <> aglo; =2
j=1

where a; = (8, —-08,) B;. Let w = w—u" and y; = v;—v;, j=1, 2, 3. It follows
from (6.1) that

0w —dyd>w +G(U, U )=0, axe(0, L), ¢>0. (6.16)
If we multiply (6.16) by w in L2(0, L), then it is easy to find that

3
%.%"w”z tdglo,w* +vslel < > gl - (6.17)
j=1

Equation (6.2) also implies that

1 d 2 2, o* 2

5 g IWil™ + 4ol + R wil™ < (A + B[ wl Nl (6.18)

Thus, forany 0 < € < 1 and 6]- >0, j=1, 2, 3, we obtain that
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3 3
1 d 2 9 9 ) ) ,
2'&[“”” +Zejlle|| j+d0||axw” + vglwl +s§_ K0P <

3
Z (1—&)k;0,]w,|* +Z a;+0,(A;+B)]| v, - lwl <

[a;+0;(4; +B)]

< Jwl? .
Zl 4(1-¢)0 J ]

J=
Theorem 2.1 gives us that

lolP < Gy - max () + (1+ me% 2 (Jo ) +wl?)

for any n > 0. Therefore,

wazz S S lj-||w||2—C -max|(w) .
e s )

Consequently, it follows from (6.19) that
3
d
%'d—t(”w”“Z@jWI%IFJ +dg (%, 2, 0, 1)l +
j=1

3
+8;kj6j||wj|| < O, -max|l; (1)
forany 0<g<1, 6;,>0,and n >0, where

o(%, ¢ 0,1) = 22

a;+0;(A;+B,))

1 [
+ ~1-
d, 1)12 - *
0 (1) [e)] j; 4(1-¢)0;k; d,
We choose 0; = a;-(4;+B ) and obtain that

o(%, & 0, 1) P S W
"l Ve TaenlE T

(6.19)

(6.20)

6.21)

It is easy to see that if (6.10) is valid, then there exist 0 < € < 1 and 1 > 0 such that

o (%, €, 0, n) > 0. Therefore, equation (6.21) gives us that

3
@+ 30, w; O <
J=1

13

3
< (||w0||2 +>°0)] q/j0||2j e+ Cy j /(1) max| L(w(T))Pdr
j=1

0
where ®* > 0. Thus, if (6.10) is valid, then equation (6.14) implies (6.15).
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Let us now assume that (6.11) is valid. Since
~(G(U. U"), 92w) < ~ 3], +((ry + 7o) bl +I(u, U )- |02
then it follows from (6.16) that

5 gilowl’ + Dozl + vlo,uf* <

2
< Fnrr hulf + 2 Z Jwil” 6.22)
Jj=1

Therefore, we can use equation (6.18) and obtain (cf. (6.19)) that

3 3
1 d 2 2 d 9 9 . 9
2 a[“awli +Zej|lwf||}7ouaiwu + el +e 3 KOl <

j+l
o @ﬁﬁ}'”w”z

forany 0 < ¢ <1 and 6; = a?-[(1- e)k;d o] . As above, we find that

a;
8%21}2 > (é—lj-IIsz—G ~maxl~(w)2
ool 2 (g —

for any n > 0. Therefore,

2 2
dt[w ul? +Ze||w]n]+v3na WP Y KO = Co il

J+1
provided that
3 9&2A-+B.2
S 1—f4-—~(y +y)2— ( ) >0
22 gz M'tore
(1+m)[ez’] 0 —2(1-e) [k ag

As in the first part of the proof, we can now conclude that if (6.11) is valid, then (6.14)
implies the equations

lim |0,w(t)]=0 and lim |y;(t)]=0, j=1,23. (623
t—>o L —> o0

It follows from (6.17) that

dy i2 2
gl + vl < Z POl

Therefore, as above, we obtain equation (6.15) for the case (6.11). Theorem 6.1
is proved.
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As in the previous sections, modes, nodes and generalized local volume averages can
be choosen as determining functionals in Theorem 6.1.

Exercise 6.1 Let {e,} be a basis in L#(0, L) which consists of eigenvec-
tors of the operator 6925 with one of the boundary conditions (6.5).
Show that the set

L

% = {lj(u) - J; e () u@)dr, j=1, ..., N}

is determining (in the sense of (6.14) and (6.15)) for problem (6.1)—
(6.5) for N large enough.

Exercise 6.2 Show that in the case of the Neumann boundary conditions
(6.5b) it is sufficient to choose the number N in Exercise 6.1 such

that
K.
L% P
N>Tc d,’ j=1lor 2. (6.24)

Obtain a similar estimate for the other boundary conditions (H#7t:
see Exercises 3.2-3.4).

Exercise 6.3 Let

Show that for every w e V; the estimate

”2 > 2
(1+m)h?

holds for any n > 0 (Hint: see Exercise 3.6).

||6 w

x

lwl? = Cy, max|L(w)]  (6.26)

Exercise 6.4 Use estimate (6.26) instead of (6.20) in the proof of Theorem
6.1 to show that the set of functionals (6.25) is determining for prob-
lem (6.1)—(6.5), provided that N > L- [(2K,)/d,, .

Exercise 6.5 Obtain the assertions similar to those given in Exercises 6.3
and 6.4 for the following set of functionals

h
% = {lj(w):% J A5 )l + 1) dr,

w,=jh, hzj%, j=0, ...,N—l},
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where the function A(x) € L*(R!) possesses the properties

'[ AMa)dr =1,  supp A(x) < [0, 1].

It should be noted that in their work Hodgkin and Huxley used the following expres-
sions (see [13]) for k;(u) and /;(u):
o (w)

()= oy () +By(u), Iy = s,
7 J

where o (u)=e(=01u+25), B,(u)=4exp(-u/18);

0.07 1
%)= co0may P TrepcoTas)

og(u) = 01e(=01u+1), PBs(u)= 0.125exp(-u/80).

Here e(2) = 2/(e?—1). They also supposed that &, = 115, 8, =-12, y; = 120,
and Y, = 36. As calculations show, in this case K; < 5.2-10% and K, < 7.4-10%.
Therefore (see Exercise 6.4), the nodes {xj =jh, h=1/N, j=0,1,2,...,N}
are determining for problem (6.1)-(6.5) when N > 2.3-102. L/ﬁo. Of course,
similar estimates are valid for modes and generalized volume averages.

Thus, for the asymptotic dynamics of the system to be determined by a small
number of functionals, we should require the smallness of the parameter L/ﬁo.
However, using the results available (see [14]) on the analyticity of solutions to
problem (6.1)—(6.5) one can show (see Theorem 6.2 below) that the values of all
components of the state vector U= (u, V1, Vg, 03) in two sufficiently close nodes
uniquely determine the asymptotic dynamics of the system considered not depend-
ing on the value of the parameter L/ﬁo . Therewith some regularity conditions for
the coefficients of equations (6.1) and (6.2) are necessary.

Let us consider the periodic initial-boundary value problem (6.1)—(6.5c). As-
sume that d; > 0 for all j and the functions k;(u) and /;(u) are polynomials such
that kj(u) >0 and 0 < hj(u) <1 for u € [0y, O,]. In this case (see [14]) every
solution

U(t) = (u(®, t), vy(x, 1), vy(w, 1), v5(2, 1))
possesses the following Gevrey regularity property: there exists ¢, >0 such
that

[ee]

3
S @@+ [F ) el < ¢ ©.27)
j=1

[=—o0

for some T > 0 and for all ¢ > t.. Here Fl(w) are the Fourier coefficients of the
function w(x):
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L

vjw(x)~exp{i¥x}dx, 1=0, %1, £2, ...

0
In particular, property (6.27) implies that every solution to problem (6.1)—(6.5¢) be-
comes a real analytic function for all ¢ large enough. This property enables us to
prove the following assertion.

Fi(w) =

o=

Theorem 6.2.

Let d; >0 for all j and let k;(u) and h(u) be the polynomials pos-
sessing the properties

ki(w)>0, 0<hi(u)<1 for wueldy, 0]

Let x; and x5 be two modes such that 0<x<xy<L and
Zo—2 < /2d0/K1, where K, is defined by formula (6.12). Then for every
two solutions

U(t) = (u(@, 1), vy(2, t), vy(, 1), vg(2, 1))
and

U'(t) = (w'(w, 1), vi(, t), vy(w, 1), v3(2, 1))
to problem (6.1)—(6.5 c) the condition

lim max {|u(ml, t)—u'(x;, t) Z‘?J 2y, ) Uj(xl’ t)|}: 0

t—>o0 l=1,2

implies their asymptotic closeness in the space H:

: 2
1 + t) "= 6.28
Tin {nu OF + 3 oy ||} (6.28)
Jj=1
Proof.
Let w = w—u" and let Y, = Uj—v;, 7 =1, 2, 3. We introduce the notations:
X3

A=f{z: 2, <@ <my), |Al=ay-a;, and |wl2 = J’ oo ()P e
Ra

Let

3
m(t, A)= max, {|w(xl, )| +Z|wj(xl, t)|}.
, “~

As in the proof of Theorem 6.1, it is easy to find that

é dgt”w”i + d()"axw"i + Ys"w"i <
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< [l 1) 0 ZajnwjnA ot

and

Ia = 20 [wi@s 0 0wy, O] +(4;+ Bl la
=1, 2
It follows from (6.27) that

3

Therefore, forany 0 <& <1 and Oj = a]-v(Aj +B]-)_1 , j=1,2,3,wehave

3 3
d .
%a[“w(ﬂ"i +>0) %ﬂi} + doo,uwly + vslwly + &> k0wl <
j=1 Jj+1

5 alvila

< K -(1—g) - wli + m(t, A),
where K| is defined by formula (6.12). Simple calculations give us that
xz X
2 2 AP 2 2
lwly = J|w(x)l dr < (1+n) |8xw(x)| dx +Cn-|A|-|w(x1)|
L1 1
for any m > 0. Consequently, if |A|2 < 2dy/K;, then there exist 0 <& < 1 and
N > 0 such that

(”w"A*ZG ||wj||A} +o [llwlwze ||wj||A} < Com(t. ),

j=1

where ® is a positive constant. As in the proof of Theorem 6.1, it follows that condi-
tion m(t, A) > 0 as t — oo implies that

3
_ oonll 1 2 2| _
Jim [U(5) = U0l = lim [llwllA +j§ 19j|| wj||A] =0. (6.29)

Let us now prove (6.28). We do it by reductio ad absurdum. Assume that there exists
asequence f, — +o0 such that
Tim \| U(t,)- U*(tn)H > 0. (6.30)
n —> oo

Let {Vn} and { } be sequences lying in the attractor 4 of the dynamical system
generated by equatlons (6.1)—(6.5¢) and such that

|U(z,)=V,| =0, HU*(tn) -

(6.31)
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Using the compactness of the attractor we obtain that there exist a sequence {7, }
and elements V, V" € / such that V;, — V and V;, — V. Since

“Vn_V;

s < U U+ ue) vl e,y -5

)

it follows from (6.29) and (6.31) that

=0.

vl = g 6,0,

k

Therefore, V() = V'(x) for x € A. However, the Gevrey regularity property im-
plies that elements of the attractor are real analytic functions. The theorem on the
uniqueness of such functions gives us that V(z) = V'(x) for x € [0, L]. Hence,
“Vnk — V;k — 0 as k — oo. Therefore, equation (6.31) implies that

m ” u(t, ) =U (%)“ =0.

li
k — oo

This contradicts assumption (6.30). Theorem 6.2 is proved.

It should be noted that the connection between the Gevrey regularity and the exis-
tence of two determining nodes was established in the paper [15] for the first time.
The results similar to Theorem 6.2 can also be obtained for other equations (see the
references in [3]). However, the requirements of the spatial unidimensionality
of the problem and the Gevrey regularity of its solutions are crucial.

§ 7 Determining Functionals
Sfor Second Order in Time Equations

In a separable Hilbert space H we consider the problem

u+yu+Au=DBu,t), ul = U, u|Z:S:u1, (7.1)

t=
where the dot over w stands for the derivative with respect to ¢, A is a positive
operator with discrete spectrum, y > 0 is a constant, and B(u, t) is a continuous
mapping from D(Ae) x R into H with the property

|B(uy, £)=B(ug, t)] < M(p)-|A%(u; —us)| (7.2)

for some 0 < 6 < 1/2 and for all u; € D(AY2) such that |AY2u | < p. Assume
that forany s € R, u € D(AY 2) ,and u; € H problem (7.1) is uniquely solvable in
the class of functions

C([s, +); D(AV2)) N CY([s, +), H) (7.3)
and defines a process (76; S(t, 7)) in the space J = D(AY2) x H with the evolu-
tionary operator given by the formula

S(t, s)(wgs wy) = (u(t); u(t)), (7.4)
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where w(¢) is a solution to problem (7.1) in the class (7.3). Assume that the process
(F6; S(t, 1)) is pointwise dissipative, i.e. there exists R > 0 such that

> 8) Yol = = s+l (Yo :
|5 s)yy R t 2 s+1ty(yg) (7.5)

for all initial data y, = (¢q; %;) € J6. The nonlinear wave equation (see the book
by A. V. Babin and M. 1. Vishik [8])

02w | _ou

W'FYE_A/U/:JC(U), er,t>0,
ou

Ulpn=0, ul,_g=up(®), ‘aftzozul(x)a

is an example of problem (7.1) which possesses all the properties listed above. Here
Q is a bounded domain in R? and the function f(u) € C1(R) possesses the pro-
perties:

(0 —e)u?—C, < J-f(v)dz; < Cyuf(u)+ Cy +3 (0 —e)u? |
0

()l < Cy(1+]ulP),

where 7‘1 is the first eigenvalue of the operator —A with the Dirichlet boundary
conditions on 0Q2, C; > 0 and & > 0 are constants, < 2(d—2)"! for d > 3 and
[ is arbitrary for d = 2.

Theorem 7.1.

Let ¥ = { l;: 7=1, ..., N } be a set of continuous linear functionals
on D(AV2). Assume that
1

£ = ., (D(A2); H) < ! }1‘—“2‘9 (7.6)
AP LﬂRx4+4mlﬁf”

where R is the radius of dissipativity (see (7.5)), M(p) and 6 € [0, 1/2)
are the constants from (7.2), and }“1 is the first eigenvalue of the operator
A. Then % is an asymptotically determining set for problem (7.1) in the
sense that for a pair of solutions u,(t) and u,(t) from the class (7.3) the
condition

t+1

lim J|lj(u1(r)—u2(r))|dr:0 for j=1,..,N .7
t

t — oo

implies that

0. (7.8)

t — o0

mnﬂm@ww»uamVﬂmwrmxwﬂ
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Proof.
We rewrite problem (7.1) in the form
dy
G T =B ), Yl =Y, (7.9

where

y=(u;u), Ay=(-u;yu+Au), By, t)=(0; B(u,1)).

Lemma 7.1.
There exists an exponential operator eXp{—tﬂp} in the space F=
=D(AY2)x H and

|| il < 2 14 L MY L 7.10
EXp{ }ygg < )Tl-eXp m Yl » (7.10)

where 7‘1 1S the first eigenvalue of the operator A.

Proof.
Let yo = (u; u). Then it is evident that y(¢) = e~y = (u(t); u(t)),
where %(t) is a solution to the problem

u+yu+Au=0, Ul,_ =" u|2=0:u1, (7.11D)

(see Section 3.7 for the solvability of this problem and the properties of solu-
tions). Let us consider the functional

V) = 3l + 142l v, i Ju), o<y,

on the space J6 = D(A2) x H . It is clear that
1 Va2 o 1 2
2(1—7)||u|| + 2||Al/2u|| < V(iu) <

1 . .
: (§+2_Vy)"“”2+(%+111VY)||A”21L||2 . (7.12)

Moreover, for a solution u(¢) to problem (7.11) from the class (7.3) with s = 0
we have that

V() = ~(r-v)lal? - viavzal . (7.13)

Therefore, it follows from (7.12) and (7.13) that

d
g V(@) + BV (u(t)) <

 (rmv-(be )R (- (he )l

Hence, for v =(1/2)y and B = (2 + )ql yz)_l -y we obtain that
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S y(u(n)) + BV (u(t) <0
Yial +1av2ul?) < vw) < (3+2702)(1al? +|avzul?),

This implies estimate (7.10). Lemma 7.1 is proved.

It follows from (7.9) that
t

y(t) = e =)y (s) + Je(tr)ﬂ’ Bly(t), 1)t .

S

Therefore, with the help of Lemma 7.1 for the difference of two solutions yj(t) =

= (u;(1); u;(t)), j=1, 2, we obtain the estimate
!

ly(t)lze < DePE]y(s)lg + Dj e PUDIB(uy (1) - Blug(v)] de, (7.14)

S

where y(t) = y,(t) —y5(t) and the constants D and 3 have the form

yA
D=21+2'2, B—T +12Y

By virtue of the dissipativity (7.5) we can assume that || yi( l
Therefore, equations (7.14) and (7.2) imply that

||%£R forallt>s>s.

ly(Dllse < DePE9)]y(s)l5+ DM(R) j e PU=D] 40w (1) —uy (1)) dr .

The interpolation inequality (see Exercise 2.1.12)

[40ul < Jul' 2014 20?0 <0<l
Theorem 2.1, and the result of Exercise 2.12 give us that

|49 < ¢, m?X|lj (w)] + 8%5_29"141/2 ul,

where €, = £4(D(AY2), H). Therefore,
t

ly()ls < De Py (s)ly+ DM(R)- 81~ Zej BU=D)y(t)ly dr +

S

t
C(%, D, R)- J e PN (u(1))dT

where Ng(u) = max{|l;(u)|: j=1, 2, ..., N}. If we introduce a new unknown
function y(t) = ebt ly (¢)l in this mequahty, then we obtain the equation
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t

w(t) < Dy(s)+ oc'[ w(t)dt+ cj PN, (u(T))dt

where o0 = DM (R) €y . We apply Gronwall’s lemma to obtain

t

w(t) < Dy(s)e®t=5) 1 Ce(”J.e‘” '[eﬁizv%(u(g)) dg ! dr |

S

After integration by parts we get
t
ly(Dlz < Dly(s)lz exp {(~(B-a)(t=s)} + cj e P U=TING (u (1)) de
S
If equation (7.6) holds, then ®w = f—o > 0. Therewith it is evident that for

0 < a < t—s we have the estimate
¢

ly()ls < Dly(s)lge %) + cj e~ IN(u(T)) dt +

t—a
t—a

e J’ o=, (u(7)) dt .

Therefore, using the dissipativity property we obtain that

ly(t)ly < DR-e =91 ¢ J' Ny (u(7)) dt + C(R, %)e 00
t—a
fort > s and 0 < a < t—s. If we fix a and tend the parameter ¢ to infinity, then
with the help of (7.7) we find that

lim ly(t)ly < C(R, B)e @
t — oo
for any a > 0. This implies (7.8). Theorem 7.1 is proved.

Unfortunately, because of the fact that condition (7.2) is assumed to hold only for
0 £ 0<1/2, Theorem 7.1 cannot be applied to the problem on nonlinear plate
oscillations considered in Chapter 4. However, the arguments in the proof of Theo-
rem 7.1 can be slightly modified and the theorem can still be proved for this case
using the properties of solutions to linear nonautonomous problems (see Section 4.2).
However, instead of a modification we suggest another approach (see also [3]) which
helps us to prove the assertions on the existence of sets of determining functionals
for second order in time equations. As an example, let us consider a problem of plate
oscillations .
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Thus, in a separable Hilbert space H we consider the equation
U+ Y +A%u +M(||A1/2u||2)Au +Lu = p(t), (7.15)
u|t:0=u0, @'L|z:0:u1 } (7.16)

We assume that A is an operator with discrete spectrum and the function M(z) lies
inC 1(IR{ ,) and possesses the properties:

<
2 A(z) = J-M(é) dé > —az—b), (7.17)
0
where 0 < a < Ay, beR,and A, is the first eigenvalue of the opera-
tor A;
b) there exist numbers a; > 0 such that

j
2M(2)—ayMb(z) 2 ag2'T%—ay, 220 (7.18)

with some constant o > 0.
We also require the existence of 0 < 6 < 1 and C >0 such that

|Lul < ClA%), u e D(A9). (7.19)
These assumptions enable us to state (see Sections 4.3 and 4.5) that if
uyeD@A), wu eH, p(t)el®R,,H), y>0, (7.20)

then problem (7.15) and (7.16) is uniquely solvable in the class of functions
w =C(R,; D(A)NCYR,; H). (7.21)
Therewith there exists £ > 0 such that
JAw(®* + () < R2, ¢ > ty(ug, uy) (7.22)
for any solution «(t) € 9 to problem (7.15) and (7.16).

Theorem 7.2.

Assume that conditions (7.17)—(7.20) hold. Let = {lj: Jj=1,2,..,N}
be a set of continuous linear functionals on D(A). Then there exists ;>0
depending both on R and the parameter of equation (7.15) such that the
condition € = £4(D(A); H) < €, implies that % is an asymptotically deter-
mining set of functionals with respect to D(A) x H for problem (7.15) and
(7.16) in the class of solutions W, i.e. for two solutions u,(t) and u.(t)
Sfrom W the condition

t+1
lim J- |1 (g (1) —ug(1)Pdr=0, 1% (7.23)

t

t — oo J

tmplies that
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lim {||u1(z) (O + JA(uy (1) - uz(t))”z} = 0. (7.24)

Proof.
Let u,(t) and uy(¢) be solutions to problem (7.15) and (7.16) lying in %'. Due
to equation (7.22) we can assume that these solutions possess the property

[Aw, (O + e ()] < B2, t=0, j=1,2. (7.25)
Let us consider the function % (t) = u,(¢) —u4(t) as a solution to equation
U+ yi+ A%y +M(HA1/2 ul(t)“2) Au = F(uq(t), uy(t)), (7.26)
where
2 2
Fuy, u5) = ({420 ) ~ba{{ a2 )] e, ~ Ly ).
It follows from (7.19) and (7.25) that
[ (0, un(0)] < Cp(lAV2ul +]4%4]). 7.27)

Let us consider the functional
Vi, s t) = LB (u, 1 £)+v {(u, W)+ %Ilullz} (7.28)
on the space 36 = D(A) x H , where
B, iz 1) = [l +1Aul® + 1 (| AV2 0 (1)) LAV2ul? + pfuaf?

and the positive parameters t and v will be chosen below. It is clear that for
(u; 1) € J6 we have

. 212 2
E(u, s t) = Jal® +[Aul® + mp|AV2ul + plul?,
where m,, = min{M(z): 0 < 2z < A7'R2} . Moreover,
1.2 . Y12 1.2 2
= < = < =
gplal™ < (u. i)+ glal® < golal™+yhul®.
Therefore, the value L can be chosen such that
2 - 12 92 12
oy (JAul? +1il?) < V(u. 1) < oy (lAul? +al?) (7.29)

for all 0 < v < v, where o ; and o, are positive numbers depending on R . Let us
now estimate the value (d/d¢) V(u(t), w(t); t).Due to (7.26) we have that
d . . .
5 S B(u(t), w(t); 1) = —yla(l + (), (1) +

0 (A2, (02 ) Ay (), g ()IAY2 (O + (g (1), (1)), (1))
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With the help of (7.25) and (7.27) we obtain that
d . .
L pu, s 1) < =Dl + oy (Javzal? + a0l?).
Using (7.26) and (7.27) it is also easy to find that

%{(u, i)+ 2w, u)} = Jul? + (u, g+ i) <

< Ll ~JAul? + Mplal2ul® + Cp (14120l + |40l ful |
where
Mj, = max {IM(z)I: 0<ec< x;lz#}.
We choose v = y/4 and use the estimate of the form

J4Bu) < JAulP Jul*=P < elAul+C lul, 0<B<1, &>0,
to obtain that

d o _dJ1 . .Y
&V(u,u, t) = dt{zE(u, u; t)+v(u, u+2uj} <

IA

— L(1aul? + 1al?) + Cplu(o)l? .

Therefore, using the estimate
lu(0)]® < c%m?xpj () +284(D(A), H)|Au|?

and equation (7.29) we obtain the inequality

d%V(u(t), u(t); t)+oV(u(t), u(t); t) < Cmax|lj(u(t))|2 ,
J
provided €4 (D(A), H) < €5 = % Cgl . Here o is a positive constant. As above, this

easily implies (7.24), provided (7.23) holds. Theorem 7.2 is proved.

Exercise 7.1 Show that the method used in the proof of Theorem 7.2 also
enables us to obtain the assertion of Theorem 7.1 for problem (7.1).

Exercise 7.2 Using the results of Section 4.2 related to the linear variant of
equation (7.15), prove that the method of the proof of Theorem 7.1
can also be applied in the proof of Theorem 7.2.

Thus, the methods presented in the proofs of Theorems 7.1 and 7.2 are close to each
other. The same methods with slight modifications can also be used in the study
of problems like (7.1) with additional retarded terms (see [3]).
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Exercise 7.8 Using the estimates for the difference of two solutions to equ-
ation (7.15) proved in Lemmata 4.6.1 and 4.6.2, find an analogue
of Theorems 1.3 and 4.4 for the problem (7.15) and (7.16).

§ 8 On Boundary Determining Functionals

The fact (see Sections 5-7 as well as paper [3]) that in some cases determining func-
tionals can be defined on some auxiliary space admits in our opinion an interesting
generalization which leads to the concept of boundary determining functionals.
We now clarify this by giving the following simple example.
In a smooth bounded domain Q = R? we consider a parabolic equation with
the nonlinear boundary condition
ou

ar = VAu-Sflu), 2eQ, >0,

8.1

ou
o aQ+h(u)|6Q=0, u|t:0: ug () .

Assume that Vv is a positive parameter, f(2) and & (z) are continuously differenti-
able functions on R! such that

f(2)2-a, |n(e) < B, (8.2)

where o > 0 and 3 > 0 are constants. Let
W=C%HQAxR,)NCLIQXR,). (8.3)

Here C%1(Q x R,) is a set of functions u(z, t) on Q xR, that are twice continu-
ously differentiable with respect to & and continuously differentiable with respect
to ¢. The notation C1-0(Q x R, ) has a similar meaning, the bar denotes the closure
of a set.

Let ul(x, t) and Usg (2, t) be two solutions to problem (8.1) lying in the class
9 (we do not discuss the existence of such solutions here and refer the reader to
the book [7]). We consider the difference w(t) = u,(¢) —4(t) . Then (8.1) evidently
implies that

! d% lu()lZ, @t vllw(t)lliz(g) (S (0) =fug (), b)) 5 )=

_ vy '[ w(t) (A (1)) = h(uy(1))) do .

oQ
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Using (8.2) we obtain that

L a0 g+ VIVH(O ) = (Ol ) € VBTt - B

One can show that there exist constants ¢; and ¢, depending on the domain Q
only and such that

L (e 2y (85)

N (U N2 (86)

Here HS(0Q) is the Sobolev space of the order s on the boundary of the domain
Q. Equations (8.4)—(8.6) enable us to obtain the following assertion.

Theorem 8.1.

Let £= { Jj=1,...,N} be a set of continuous linear functionals
on the space H ir2 (0Q). Assume that o.c, <V and

H2(6Q), L2(6Q i v 8.7
€q = &g , < =g, )
s = S (HI200), 1200) < [frrarmp ] =, ®D
where the constants Vv, d, 3, ¢y, and ¢, are defined in equations (8.1),
(8.2), (8.5), and (8.6). Then & is an asymptotically determining set with
respect to L2(Q) Sor problem (8.1) in the class of classical solutions W.

Proof.

Let w(t) = u(t)—uy(t), where w,(t) € W are solutions to problem (8.1).
Theorem 2.1 implies that

lul 00y < O 5 x| () + (1+8) 5 bl 1z 8.8)
for any 0 > 0. Equations (8.5) and (8.6) imply that
2 2 2
500y < Ca, s max|ly(u) +(l+cl)cz(l+5)8§g(||u||L2 vl Q))

Therefore, equation (8.4) gives us that

1 d

5 g lulla )+ V]l o +IVuly o | = alu(@)ls g <

< V(LB (Dl 500 < v(1+cl)02(1+5)(1+B)g%(nuuLz(m)+||W||22(Q))+
C L) .

+ mﬁx|j(u)|

Using estimate (8.5) once again we get

Q.|Q_

, (8.9)

C
% Jul® + CX{1— (1+c;)ey(1+8)(1+P)e2 — ocvl}llullz < C max|l;(u)
1 J
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provided that

°
%
It is evident that (8.10) with some 0 > 0 follows from (8.7). Therefore, inequality
(8.9) enables us to complete the proof of the theorem.

1—(14¢))cy(1+8)(1+B)es — a— > 0. (8.10)

Thus, the analogue of Theorem 3.1 for smooth surfaces enables us to state that prob-
lem (6.1) has finite determining sets of boundary local surface averages.

An assertion similar to Theorem 8.1 can also be obtained (see [3]) for a nonlinear
wave equation of the form
BRI ou d

ou| ou B - ou B
a_”‘r__aﬁr_(p(uh)’ Uoanr =00 Uling=Uol@)s G| =),

Here I' is a smooth open subset on the boundary of Q, f(w) and ¢@(u) are bound-
ed continuously differentiable functions, and o and y are positive parameters.
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In this chapter we consider some questions on the asymptotic behaviour of a dis-
crete dynamical system. We remind (see Chapter 1) that a discrete dynamical sys-
tem is defined as a pair (X, S) consisting of a metric space X and a continuous
mapping of X into itself. Most assertions on the existence and properties of attrac-
tors given in Chapter 1 remain true for these systems. It should be noted that the fol-
lowing examples of discrete dynamical systems are the most interesting from the
point of view of applications: a) systems generated by monodromy operators (period
mappings) of evolutionary equations, with coefficients being periodic in time;
b) systems generated by difference schemes of the type r‘l(un 1 Uy) =
= F(u,), n=0,1,2, ... inaBanach space X (see Examples 1.5 and 1.6 of Chap-
ter 1).

The main goal of this chapter is to give a strict mathematical description of one
of the mechanisms of a complicated (irregular, chaotic) behaviour of trajectories.
We deal with the phenomenon of the so-called homoclinic chaos. This phenomenon
is well-known and is described by the famous Smale theorem (see, e.g., [1-3]) for fi-
nite-dimensional systems. This theorem is of general nature and can be proved for
infinite-dimensional systems. Its proof given in Section 5 is based on an infinite-di-
mensional variant of Anosov’s lemma on € -trajectories (see Section 4). The conside-
rations of this Chapter are based on the paper [4] devoted to the finite-dimensional
case as well as on the results concerning exponential dichotomies of infinite-dimen-
sional systems given in Chapter 7 of the book [5]. We follow the arguments given in [6]
while proving Anosov’s lemma.

§ 1 Bernoulli Shift as a Model of Chaos

Mathematical simulation of complicated dynamical processes which take place in real
systems requires that the notion of a state of chaos be formalized. One of the possible
approaches to the introduction of this notion relies on a selection of a class of expli-
citly solvable models with complicated (in some sense) behaviour of trajectories.
Then we can associate every model of the class with a definite type of chaotic beha-
viour and use these models as standard ones comparing their dynamical structure
with a qualitative behaviour of the dynamical system considered. A discrete dynami-
cal system known as the Bernoulli shift is one of these explicitly solvable models.
Let m > 2 and let

z,= {xz(..., X1, Xgs Tpy - ) z; € {1,2,..., m}, jeZ} ,

ie. Zm is a set of two-sided infinite sequences the elements of which are the inte-
gers 1, 2, ..., m. Let us equip the set X, ~with a metric
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ol iUl (1.1
Z 1+|x yl| '

i =—00
Here v ={x;: i€/} and y ={y;: i€} are elements of £, . Other methods
of introduction of a metric in 2, ~are given in Example 1.1.7 and Exercise 1.1.5.

Exercise 1.1 Show that the function d(x, y) satisfies all the axioms of
a metric.

Exercise 1.2 Let x={x,} and y={y,} be elements of the set X
Assume that &, = y; for [f] < N and for some integer N . Prove that
d(z, y) < 27N+1,

Exercise 1.3 Assume that equation d(z, y)< 27V holds for x, y € z,,
where N is a natural number. Show that x; = y; for all |i| < N1
(Hint: d(x, y) = 27111 if 2, = y,).

Exercise 1.4 Letx € X, andlet
WUN(z)={yeZX,: x;=y; for [i|<N}. (1.2)
Prove that for any 0 < € < 1 the relation
WUNE)+2(x) < {y: d(w, y) < e} c UWNE) ()
holds, where N(€) is an integer with the property

Inl/e
In2

N(g) < < N(g)+1.
Exercise 1.5 Show that the space X, with metric (1.1) is a compact met-
ric space.

In the space X,, we define a mapping S which shifts every sequence one symbol

left, i.e.
[Sx]; =

Xy, tel, x={x;}eX, .

Evidently, S is invertible and the relations

d(Sxz, Sy) < 2d(z,y), d(S7lx, S7ly) < 2d(x, y)
hold for all #, y € X, . Therefore, the mapping S is a homeomorphism.
The discrete dynamical system (X, , S) is called the Bernoulli shift of the

space of sequences of m symbols. Let us study the dynamical properties of the sys-
tem (Z,,, S).

Exercise 1.6 Prove that (X,,, S) has m fixed points exactly. What struc-
ture do they have?
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We call an arbitrary ordered collection a = (0, ..., 0) Wwith ;€ {1,..., m}
a segment (of the length N). Each element x € X, can be considered as an or-
dered infinite family of finite segments while the elements of the set X =~ can be con-
structed from segments. In particular, using the segment a = (ocl, . OLN) we can
construct a periodic element @ € X by the formula

Apgtj = 04, je{l,..,N}, kel. (1.3)
Exercise 1.7 Let a = (0, ..., 0y) be a segment of the length N and let
a € X,, be an element defined by (1.3). Prove that @ is a periodic

point of the period N of the dynamical system (Z,,S), ie.
SNa =a.

Exercise 1.8 Prove that for any natural N there exists a periodic point
of the minimal period equal to N .

Exercise 1.9 Prove that the set of all periodic points is dense in Zm ,i.e. for
every x € Zm and € > 0 there exists a periodic point a with the
property d(x, a) < € (Hint: use the result of Exercise 1.4).

Exercise 1.10 Prove that the set of nonperiodic points is not countable.

Exercise 1.11 Leta=(..., o, o, @, ...) and b= (..., B, B, B, ...) be fi-
xed points of the system (Z,,S). Let C={c,;} be an element
of ¥, suchthat ¢; = a for i <—M; and ¢; = [ for i > M, , where
M; and M, are natural numbers. Prove that

lim S"c=a, lim S"c=0b. (1.9

N —> —o0 MmN —> o0

Assume that an element ¢ € Zm possesses property (1.4) with c#a and c#b.
If a # b, then the set

Yo p=1{S"c: mel}
is called a heteroclinic trajectory that connects the fixed points @ and b.
Ifa=0b,theny,=v, , iscalled a homoclinic trajectory of the point a . The

elements of a heteroclinic (homoclinic, respectively) trajectory are called hetero-
clinic (homoclinic, respectively) points.

Exercise 1.12 Prove that for any pair of fixed points there exists an infinite
number of heteroclinic trajectories connecting them whereas the
corresponding set of heteroclinic points is dense in 2m .

Exercise 1.13 Let

y,={S"a: nel}={S"a: n=0,1,..., Nj—1}
and

Vo= {S"b: meZ}={S"b: n=0,1,.., Ny—1}

367
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be cycles (periodic trajectories). Prove that there exists a hetero-
clinic trajectory vy, o = {S"™c: m e L} that connects the cycles "
and 7, , i.e. such that

dist(S™c, y,) = xilelfy da(S"c, x) >0, N — —0
1

and

dist(S™c, v4) = xuelfy a(S"c, x)—>0, n—+o.
2

For every N there exists only a finite number of segments of the length N . There-
fore, the set ¥ of all segments is countable, i.e. we can assume that &= { ay:
k=1, 2, ...}, therewith the length of the segment @y, 1 is not less than the length
of a, . Let us construct an element b = {bi: 1€ Z} from Zm taking b, =1 for

7 < 0 and sequentially putting all the segments a;, to the right of the zeroth posi-
tion. As a result, we obtain an element of the form

b=(..,1,1, 1, a;, ay, as, ...), a; € B. (1.5)
Exercise 1.14 Prove that a positive semitrajectory y, = {S™b, n >0} with
b having the form (1.5) is dense in X, i.e. for every x € X, and

€>0 there exists 7 = n(x, &) such that d(x, S"b) < €.

Exercise 1.15 Prove that the semitrajectory y, constructed in Exercise 1.14
returns to an ¢ -vicinity of every point x e X o, nfinite number
of times (Hint: see Exercises 1.4 and 1.9).

Exercise 1.16 Construct a negative semitrajectory y_={S"c: n <0}
which is dense in X .

Thus, summing up the results of the exercises given above, we obtain the following
assertion.

Theorem 1.1.

The dynamical system (X - ) of the Bernoulli shift of sequences
of m symbols possesses the properties:

1) there exists a finite number of fixed points;

2) there exist periodic orbits of any minimal period and the set of these

orbits is dense in the phase space X, ;

3) the set of nonperiodic points is uncountable;

4) heteroclinic and homoclinic points are dense in the phase space;

5) there exist everywhere dense trajectories.

All these properties clearly imply the extraordinarity and complexity of the dyna-
mics in the system (Z e S ) . They also give a motivation for the following definitions.
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Let (X, f) be a discrete dynamical system. The dynamics of the system (X, f)
is called chaotic if there exists a natural number k such that the mapping f* is
topologically conjugate to the Bernoulli shift for some m , i.e. there exists a homeo-
morphism /: X — X such that i (f%(x)) = S(k(x)) for all x € X. We also say
that chaotic dynamics is observed in the system (X , f ) if there exist a number k
and aset Y in X invariant with respect to f¥ (f¥Y < Y) such that the restriction
of f* to Y is topologically conjugate to the Bernoulli shift.

It turns out that if a dynamical system (X, f) has a fixed point and a correspon-
ding homoclinic trajectory, then chaotic dynamics can be observed in this system
under some additional conditions (this assertion is the core of the Smale theorem).
Therefore, we often speak about homoclinic chaos in this situation. It should also be
noted that the approach presented here is just one of the possible methods used to
describe chaotic behaviour (for example, other approaches can be found in [1] as
well as in book [7], the latter contains a survey of methods used to study the dynam-
ics of complicated systems and processes).

§ 2 FExponential Dichotomy
and Difference Equations

This is an auxiliary section. Nonautonomous linear difference equations of the form

x A, x,+h,, nel, @210

n+1 =
in a Banach space X are considered here. We assume that {An} is a family of linear
bounded operators in X, &, is a sequence of vectors from X . Some results both
on the dichotomy (splitting) of solutions to homogeneous (%,, = 0) equation (2.1)
and on the existence and properties of bounded solutions to nonhomogeneous equa-
tion are given here. We mostly follow the arguments given in book [5] as well as
in paper [4] devoted to the finite-dimensional case.

Thus, let {A, : n € Z} be a sequence of linear bounded operators in a Banach
space X . Let us consider a homogeneous difference equation

=A x ned, 2.2)

Lp+1 = ApZys

where J is anintervalin Z , i.e. a set of integers of the form

J={nel: m <n<my},
where m; and m, are given numbers, we allow the cases 7, = —c0 and mqy = +00.
Evidently, any solution {x,,: 7 € J} to difference equation (2.2) possesses the pro-
perty

x, = D(m, n)x

m m=2mn, m,mned,
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where ®(m, n)=A,, _;-... A, for m >n and ®(m,m)=1. The mapping

®(m, n) is called an evolutionary operator of problem (2.2).

Exercise 2.1 Provethatforall m > n > k we have
D(m, k)= D(m, n)D(n, k).

Exercise 22 Let {£,: n e J} be a family of projectors (i.e. B2 = P ) in X

suchthat P, 1A, = A, E, . Show that

P, ®(m,n)=®(m,n)E,, m=2n, mned,

i.e. the evolutionary operator ®(m2, 7) maps P, X into P, X .

Exercise 23 Prove that solutions {x,} to nonhomogeneous difference
equation (2.1) possess the property

m—1
x,, = ®(m, n)xn+Z®(m, k+1)h,, m>n.
k=mn
Let us give the following definition. A family of linear bounded operators {An}

is said to possess an exponential dichotomy over an interval J with constants
K >0 and 0 < g < 1 if there exists a family of projectors {Pn: n € J} such that

a) b, A, =AbP, mn,nt+tled;
b) ||(D(m, n)BZ” < Kgm=", mz=n, m,mned;

c) for n > m the evolutionary operator CD(n, m) is a one-to-one mapping
of the subspace (1-P,,)X onto (1-E,)X and the following estimate
holds:

“(D(n, m)‘l(l—Pn)” < Kgt ™, m<n, mmed.

If these conditions are fulfilled, then it is also said that difference equation (2.2) ad-
mits an exponential dichotomy over J . It should be noted that the cases J = 7 and
J =17, are the most interesting for further considerations, where 7, (Z_) is
the set of all nonnegative (nonpositive) integers.

The simplest case when difference equation (2.2) admits an exponential dicho-
tomy is described in the following example.

Example 21 (autonomous case)

Assume that equation (2.2) is autonomous, i.e. A,, = A for all 7, and the spec-
trum o (A) does not intersect the unit circumference {z € C: |2|=1}. Linear
operators possessing this property are often called hyperbolic (with respect to
the fixed point & = 0). It is well-known (see, e.g., [8]) that in this case there
exists a projector P with the properties:
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a) AP=PA,i.e. the subspaces PX and (1-P)X are invariant with re-
spect to A ;

b) the spectrum ¢ (A| px) of the restriction of the operator A to PX lies
strictly inside of the unit disc;

¢) the spectrum G(A|_pyx) of the restriction of A to the subspace
(1-P)X lies outside the unit disc.

Exercise 24 Let C be alinear bounded operator in a Banach space X and
let p =max{|z]: 2 € c(C)} be its spectral radius. Show that for
any q > p there exists a constant M_ > 1 such that

ol < Myqn, n=0,1,2, .

(Hint: use the formula p = lim || C”"l/ " the proof of which can be
o0
found in [9], for example).

Applying the result of Exercise 2.4 to the restriction of the operator A to PX , we ob-
tain that there exist K > 0 and 0 < ¢ < 1 such that

|lamP| < Kg®, n=0. (2.3)
It is also evident that the restriction of the operator A to (1 —P)X is invertible and
the spectrum of the inverse operator lies inside the unit disc. Therefore,
|lara-p)| < Kq®, n=0, 2.4
where the constants K >0 and 0 < ¢ < 1 can be chosen the same as in (2.3). The
evolutionary operator (D(m, n) of the difference equation x, ,; = Ax, has the
form @ (m, n)=A""", m > n. Therefore, the equality AP = PA and estimates
(2.3) and (2.4) imply that the equation x,, , ; = Ax,, admits an exponential dicho-
tomy over Z , provided the spectrum of the operator A does not intersect the unit
circumference.

Exercise 25 Assume that for the operator A there exists a projector P
such that AP= PA and estimates (2.3) and (2.4) hold with 0 <g< 1.
Show that the spectrum of the operator A does not intersect the
unit circumference, i.e. A is hyperbolic.

Thus, the hyperbolicity of the linear operator A is equivalent to the exponential di-
chotomy over 7 of the difference equation Xy 1= Axn with the projectors P, in-
dependent of 7. Therefore, the dichotomy property of difference equation (2.2)
should be considered as an extension of the notion of hyperbolicity to the nonauto-
nomous case. The meaning of this notion is explained in the following two exercises.

Exercise 2.6 Let A be ahyperbolic operator. Show that the space X can be
decomposed into a direct sum of stable X* and unstable X% sub-
spaces, i.e. X = X5+ X% therewith
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A < Kq|xl, xeXs, nm=x0,
lAaraz| > k=Yg |2l, xeX®, nx0,

with some constants K >0 and 0 < g< 1.

Exercise 27 Let X=R2 be a plane and let A be an operator defined by
the formula

Ay, 2g) = (2 + 295 21+ 25), x = (25 2y) € RZ.

Show that the operator A is hyperbolic. Evaluate and display gra-
phically stable X and unstable X% subspaces on the plane. Display
graphically the trajectory {A"x: m € /Z} of some point # that lies
neither in X%, norin X*.

The next assertion (its proof can be found in the book [5]) plays an important role in
the study of existence conditions of exponential dichotomy of a family of operators
{A,: nel}.

n

Theorem 2.1.

Let {An: n e L} be a sequence of linear bounded operators in a Ba-
nach space X. Then the following assertions are equivalent:
(i) the sequence {An: n € L} possesses an exponential dichotomy over
L,
(ii) for any bounded sequence {h,: n € L} from X there exists a unique
bounded solution {v,: n e/} to the monhomogeneous difference
equation

x A,x, +h,, nel. (2.5)

n+l1 =

In the case when the sequence {A n} possesses an exponential dichotomy, solutions
to difference equation (2.5) can be constructed using the Green function:

®(n, m)P,,, nzm,
G(n, m)=
—[®(m, n)]"L(1-P,), n<m.

Exercise 28 Prove that [G(n, m)| < Kqln—ml
Exercise 2.9 Prove that for any bounded sequence {f,,: n € Z} from X

a solution to equation (2.5) has the form

x, = ZG(n,m—i—l)hm, nel.

n
m el
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Moreover, the following estimate is valid:

1+q
Wl < KTTq' 5P [2] -

sup ||x

n
The properties of the Green function enable us to prove the following assertion
on the uniqueness of the family of projectors {F), } .

Lemma 2.1.

Let a sequence {An} possess an exponential dichotomy over 7.. Then

the projectors {P,: n € L} are uniquely defined.

Proof.

Assume that there exist two collections of projectors {P,} and {Q,,} for
which the sequence {A } possesses an exponential dichotomy. Let Gp (7, m)
and GQ(n, m) be Green functions constructed with the help of these collec-

tions. Then Theorem 2.1 enables us to state (see Exercise 2.9) that

Z Gp(n, m+1)h,, = Z Go(n, m+1)h,,
m e L m e/
for all n € 7 and for any bounded sequence {hn} < X . Assuming that &, = 0
form # k—1 and h,, = h for m = k—1, we find that
Gp(n, k)thQ(n, kYh, heX, nkel, n>k.

This equality with 7 = k gives us that P, 2 = @, & . Thus, the lemma is proved.

In particular, Theorem 2.1 implies that in order to prove the existence of an expo-
nential dichotomy it is sufficient to make sure that equation (2.5) is uniquely solv-
able for any bounded right-hand side. It is convenient to consider this difference
equation in the space l;) = 1”(Z, X) of sequences x={x,,: ne L} of elements of X
for which the norm

|:Jt:‘|loo = |{xn}|lw = sup {”xn” n e Z} (2.6)
is finite. Assume that the condition
sup {”An” ne Z} < oo 2.7

is valid. Then for any & = {x,,} € Iy the sequence {y, =x,—A, _ x, _;} liesin I5 .
Consequently, equation

(L2), =2,=Ay 12,y Z={z,}elf (2.8)

defines a linear bounded operator acting in the space l;) = lw(Z, X ) . Therewith as-
sertion (ii) of Theorem 2.1 is equivalent to the assertion on the invertibility of the
operator L given by equation (2.8).

n
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The assertion given below provides a sufficient condition of invertibility of the
operator L . Due to Theorem 2.1 this condition guarantees the existence of an expo-
nential dichotomy for the corresponding difference equation. This assertion will be
used in Section 4 in the proof of Anosov’s lemma. It is a slightly weakened variant
of a lemma proved in [6].

Theorem 2.2.

Assume that a sequence of operators {A
(2.7). Let there exist a family of projectors {Q

. m €L} satisfies condition

: m e L} such that

|Q.] <K, |1-@Q,] <K, (2.9)
1Qps14,(1-Q,)] <8, |(1-Q,,1)A,Q,] <3, (2.10)

Jor all n € L. We also assume that the operator (1-Q,,|)A, 1is invertible
as a mapping from (1-Q,)X into (1-Q,,, ;)X and the estimates

[4,Q. <%, |[(1-Q,)A]  (1-Q,u1) S 2 (2.11)
are valid for every n e 7. If

K < S < é , (2.12)

1
8 )
then the operator L acting in l;; according to formula (2.8) is invertible
and |L7Y| < 2K+1.

Proof.

Let us first prove the injectivity of the mapping L . Assume that there exists a
nonzero element = {x,,} l;(o suchthat Lo =0,ie.x,=A, 2, | forallnel.
Let us prove that the sequence {xn} possesses the property

”(I_Qn)xn” < ”ann" @13
for all n € Z . Indeed, let there exist m e 7 such that
||(1—Qm)xm|| > ||mem|| (2.14)

It is evident that this equation is only possible when |(1-@,,)x,,| > 0. Let us con-
sider the value

Nm+1 = ||(1_Qm+1)xm+1” _||Qm+1xm+1” =
= ”(I_Qerl)Amxm" - ”Qm+1Amxm” : (2.15)
It is clear that
”(1_Qn+1)Anxn” 2 ||(1_Qn+l)An(1_Qn)xn" - ||(1_Qn+l)Anann" :

Since

[(1_Qn+l)An]_1 (1_Qn+1)An(1_Qn) = (I_Qn)’
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it follows from (2.11) that
(1-Q)7] < 2](1-9,,1)4,(1-Q,)a|
for every x € X and for all n € Z . Therefore, we use estimates (2.10) to find that
[(1=Q, A, 2, = AY(1-Q,)x,] — 8z, - (2.16)
Then it is evident that
||Qn+1Anxn|| < ||Qn+1An ann” + ”Qn-!—lAn(l_Qn)xn" S

< (1Qul 14,Q0] + Q014 (1=, ) ), -
Therefore, estimates (2.9)—(2.11) imply that
||Qn+1Anxn|| < (KA+ 5)||xn| , nel. @17
Thus, equations (2.15)—(2.17) lead us to the estimate
N, 2 A1 ||(1—Qm)xm|| - (20 +K7L)||x

It follows from (2.14) that
[#] < Q@] + [(1= Q)| < 2[(1=Qy) 2, -

-

Therefore,
Npsr > (A1 =2KE0~43)[(1-Q,,),| -
Hence, if conditions (2.12) hold, then
||(1_Qm+1)xm+1” - ||Qm+1 xm-!—l" > 7”(1_Qm)xm” > 0. (2.18)

When proving (2.18) we use the fact that
Al > 8K > 8|Q,[ > 8.
Thus, equation (2.18) follows from (2.14),i.e. N, > 0 implies N,, ;> 0. Hence,
(1-Q,)x,| > |@Q,%,| foral n=m.
Moreover, (2.18) gives us that
Kol 2 [(A=Qp) @y 2 T |(1= Q) 2y,

Therefore, |, | = +o0 as 7 — +oo . This contradicts the assumption £ = {x,,} € Iy .
Thus, for all » € 7 estimate (2.13) is valid. In particular it leads us to the inequality

ol < 101-@,), ] +[@,] < 2], 2.19)
Therefore, it follows from (2.17) that

||Qn+1 xn+1” = ”Qn-!—lAnxn” <2 (KA’ + 8) ”ann"
for all » € Z . We use conditions (2.12) to find that

, n=m.

1
|Qnr1%041| < §||ann|| , nel. (2.20)
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If x = {xn} # 0, then inequality (2.19) gives us that there exists m e Z such that
||Qm xm” # 0. Therefore, it follows from (2.20) that

[Qnzd = 277" | @] >0

for all n < m . We tend n — —oo to obtain that ||ann|| — +oo which is impossible
due to (2.9) and the boundedness of the sequence { xn}. Therefore, there does not
exist a nonzero X € l;j such that Lx = 0. Thus, the mapping L is injective.

Let us now prove the surjectivity of L . Let us consider an operator R in the
space l;j acting according to the formula

(Ry)n = Qnyn_Bn(l_Qn+l)yn+l ) y= {yn} € l)??

where the operator B, = [(1-Q,,,)A4,] " acts from (1-Q,,, )X into (1-Q,)X

and is inverse to (1— Qn+1)An|(1_Q X It follows from (2.9) and (2.11) that
n

IRyl < (E+M)lyl,.. wely. 2.21)
It is evident that
(LRy)n_yn = _(I_Qn)yn_Bn(l_Qn+l)yn+1 -
- An—l Qn—lyn—l + An—an—l(l_Qn)yn :
Since
(1_Qn)Anlen71(1_Qn) = I_Qn’
we have that
(LRy)n_yn = _Bn(l_Qn+1)yn+1 _An—l Qn—lyn—1+
+ QnAn—l(1_Qn—1)Bn—1(l_Qn)yn :
Consequently,

KERY) =] S B Qo [l 1y @] ]+

+ ”QnAn—l (1_ Qn—l)” ’ ||Bn—1(1_ Qn)” ’ || yn" :

Therefore, inequalities (2.10), (2.11), and (2.12) give us that

1
LRy gl < 22 +6)lul < ol
i.e. |[LR —1| < 1/2. That means that the operator LR is invertible and
lLr)y Y < (1-|LrR-1))" < 2. (2.22)

Let k = {h,,} be an arbitrary element of l;’ . Then it is evident that the element y =
= R(LR)™!h is a solution to equation Ly = k. Moreover, it follows from (2.21) and
(2.22) that

Iyl < 2+ )1A,...

Hence, L is surjective and |L™!| < 2K +1 . Theorem 2.2 is proved.
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§ 3 Hyperbolicity of Invariant Sets
Sfor Differentiable Mappings

Let us remind the definition of the differentiable mapping. Let X and Y be Banach
spaces and let % be an open set in X. The mapping f from % into Y is called
(Frechét) differentiable at the point x € 2 if there exists a linear bounded ope-
rator Df(x) from X into ¥ such that

. 1 _
”UIHHEO m||f(x+v) —f(x)=Df(x)v]| =0.

If the mapping f is differentiable at every point x € %, then the mapping Df:
2 — Df(x) acts from 2 into the Banach space #(X, Y) of all linear bounded oper-
ators from X into Y. If Df: % — $(X, Y) is continuous, then the mapping f is
said to be continuously differentiable (or C!-mapping) on 2. The notion of
the derivative of any order can also be introduced by means of induction. For example,
D2f () is the Frechét derivative of the mapping Df: 2% — $(X, Y).

Exercise 3.1 Let g and f be continuously differentiable mappings from
U < X into Y and from Y'Y into Z, respectively. Moreover, let
2 and W be open sets such that g(2) c % . Prove that (fo g)(x) =
= f(9(x)) is a C! -mapping on % and obtain a chain rule for the
differentiation of a composed function

D(fog)(x) =Df(g(x))Dg(x), x € 2.

Exercise 3.2 Let f be a continuously differentiable mapping from X into
X and let f" be the 7 -th degree of the mapping f, i.e. f"(x)=
=f(f"Yx)), n =1, fYx)=rf(x).Provethat f* isa Cl-map-
ping on X and

(Df™)(x) = Df(S" Nx)) Df(S"2(x))- ... -Df(x) . B.D

Now we give the definition of a hyperbolic set. Assume that f is a continuously dif-
ferentiable mapping from a Banach space X into itself and A is a subsetin X which
is invariant with respect to f (f(A) < A). The set A is called hyperbolic (with
respect to f) if there exists a collection of projectors {P(x): « € A} such that
a) P(x) continuously depends on x € A with respect to the operator
norm,;
b) forevery x € A

Df(x)-P(x) = P(f(x)) - Df(x); (3.2)
c¢) the mappings Df(x) are invertible for every # € A as linear operators
from (1-P(x))X into (I-P(f(x)))X;
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d) for every x € A the following equations hold:
l(Df") (@) P(x) < Kg®, n>0, (3.3)

I[@s) (@) (=P @) < Kg®, m=0, (3.4)
with the constants K> 0 and 0 < ¢ < 1 independent of x € A . Here
™ is the n-th degree of the mapping f (f™(x)= f(f"1(x)) for
n>1and fl(z) = f(x)).
It should be noted that properties (b) and (c) as well as formula (3.1) enable us
to state that (Df")(x) maps (1-P(x))X into (1-P(f"(x))) and is an invertible
operator. Therefore, the value in the left-hand side of inequality (3.4) exists.

Exercise 8.8 Let A = {x,}, where # is a fixed point of a C-mapping f,
ie. f(xy) = x,. Then for the set A to be hyperbolic it is necessary
and sufficient that the spectrum of the linear operator D f (xo) does
not intersect the unit circumference (Hint: see Example 2.1).

Let A be an invariant hyperbolic set of a C1-mapping f and let Y= {xn: nel}

be a complete trajectory (in A) for f,ie. y= {xn} is a sequence of points from A
such that f(x,) =, for all n € Z. Let us consider a difference equation ob-
tained as a result of linearization of the mapping f* along v:

u, . = Df(x,)u, , nel. (3.5)

Exercise 3.4 Prove that the evolutionary operator CD(m, n) of difference
equation (3.5) has the form

D(m, n) = (Df""")(x,,), m>n, m,mel.

Exercise 8.5 Prove that difference equation (3.5) admits an exponential di-
chotomy over 7Z with (i) the constants K and ¢ given by equations
(3.3) and (3.4) and (i) the projectors P, = P(x,) involved in the
definition of the hyperbolicity.

It should be noted that property (a) of uniform continuity implies that the projectors
P(x) are similar to one another, provided the values of x are close enough.
The proof of this fact is based on the following assertion.

Lemma 3.1.

Let P and  be projectors in a Banach space X. Assume that
1
< — < — —
IPI<K, -Pl<K, [P-Q|< 5K (3.6)

for some constant K > 1. Then the operator
J=PQ+(1-P)1-Q) (3.7
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possesses the property PJ =JQ and is invertible, therewith

|71 < (1-2K-[P-QI)*. (3.8)

Proof.
Since P2 + (1-P)? = 1, we have
J-1= J—P2—(1—P)2 = P(Q-P)+(1-P)(P-Q).
It follows from (3.6) that
lJ-1] < 2K|P-Q| < 1.

Hence, the operator J~! can be defined as the following absolutely convergent
series
o0
Jl= Z (1-J)".
n=>0
This implies estimate (3.8). The permutability property PJ = J @ is evident.
Lemma 3.1 is proved.

Exercise 3.6 Let A beaconnected compact set and let {P(x): x e A} be
a family of projectors for which condition (a) of the hyperbolicity de-
finition holds. Then all operators P(«) are similar to one another, i.e.
for any &, y € A there exists an invertible operator J = J .y such
that P(z) = JP(y)J!.

The following assertion contains a description of a situation when the hyperbolicity
of the invariant set is equivalent to the existence of an exponential dichotomy for dif-
ference equation (3.5) (cf. Exercise 3.5).

Theorem 3.1.

Let f(x) be a continuously differentiable mapping of the space X into
itself. Let v, be a hyperbolic fized point of f (f(x,)=x,) andlet {y,: n<cl}
be a homoclinic trajectory (not equal to x,) of the mapping f, i.e.

f,) =Y,01, mMmeL, Yy, —> Ty, N —>*oo. 3.9

Then the set A ={x,}U{y,: n e L} is hyperbolic if and only if the diffe-
rence equation

U, 1= Df(y,,)u,, nel, (3.10)

possesses an exponential dichotomy over 7..

Proof.

If A is hyperbolic, then (see Exercise 3.5) equation (3.10) possesses an expo-
nential dichotomy over 7 . Let us prove the converse assertion. Assume that equa-
tion (3.10) possesses an exponential dichotomy over Z with projectors {P,,: n € Z}
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and constants K and q . Let us denote the spectral projector of the operator D f (xo)
corresponding to the part of the spectrum inside the unit disc by P . Without loss
of generality we can assume that

[(Df(x)"P| < Kq®, n=20,
[[Df(z)] " (1-P)| < kg™, n20.

Thus, for every x € A the projector P(x) is defined: P(x,) =P, P(y,)=DPF,.
The structure of the evolutionary operator of difference equation (3.10) (see Exer-
cise 3.4) enables us to verify properties (b)—(d) of the definition of a hyperbolic set.
In order to prove property (a) it is sufficient to verify that

||Pk—P|| -0 as k—zfoo. (3.11)
Since A is a compact set, then
M =sup{|Df(x)l: x e A} < 0. (3.12)
Let us consider the following difference equations
v, = Df(xy)v,, nel, (3.13)
and
wk) = Df(y, . Jwl,  nel, (3.14)

where k is an integer. It is evident that equation (3.14) admits an exponential di-
chotomy over Z with constants X and ¢ and projectors Pff ) = P, -Let G(n, m)
and G(k)(n, m) be the Green functions (see Section 2) of difference equations
(3.13) and (3.14). We consider the sequence

z,=G(n, 0)2—GK)(n, 0)z, zeX.
Since (see Exercise 2.8)
IG(n, O) < Kq",  |a®)(n, 0)] < Kq", (3.15)

we have that the sequence {xn} is bounded. Moreover, it is easy to prove (see Exer-
cise 2.9) that {xn} is a solution to the difference equation

xn+1_Df(xO)xn = hn = [Df(xo) _Df(yn+k)] G(k)(n’ O)z'

It follows from (3.12) and (3.15) that the sequence {hn} is bounded. Therefore,
(see Exercise 2.9),

G(n, 0)z —GK)(n, 0)z = x, = Z G(n, m+1)h,, .
me 7
If we take 7 = 0 in this formula, then from the definition of the Green function we

obtain that

(P=B)z="3" G0, m+1)(Df()~Df (1)) GH(m, 0)2.
mel
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Therefore, equation (3.15) implies that

(P=P2] < K23 |DS(g) =D Wy )] a1 el

m el
Consequently,
|P=F < K23 |DA(0) DS W i) a1 <
m e L
< K2 {l/ngnagNHDf(xo)—Df(ym+k)||' S e Y qz'”"l},

lm| < N |m| >N

where N is an arbitrary natural number. Upon simple calculations we find that

2K? 2N+2
[P=Fd < m(”}Z??N||Df(xo)—Df(ym+k)||+2Mq *2)

for every N > 1. It follows that

T [P-p| < HCMgan+1,

N=1,2, ...
Kk — too 1—q2

We assume that N — +oo to obtain that
lim |P-F <0.
k — too

This implies equation (3.11). Therefore, Theorem 3.1 is proved.

It should be noted that in the case when the set A = {x,} U{y,,: 7 € Z} from The-
orem 3.1 is hyperbolic the elements y,, of the homoclinic trajectory y = { Yy,: ME Z}
are called transversal homoclinic points. The point is that in some cases (see,
e.g., [4]) it can be proved that the hyperbolicity of A is equivalent to the transversa-
lity property at every point y,, of the stable W$(x,) and unstable W*(x,) mani-
folds of a fixed point x, (roughly speaking, transversality means that the surfaces
Ws(x,) and W¥(x,) intersect at the point g, ata nonzero angle). In this case the
trajectory vy is often called a transversal homoclinic trajectory.

§4 Anosov’s Lemma on €-trajectories

Let f be a Cl-mapping of a Banach space X into itself. A sequence {yn: nel}
in X is called a 0 -pseudotrajectory (or O -pseudoorbit) of the mapping f if for
all n e 7 the equation

|9+1=S ()] < &
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is valid. A sequence {xn: ne Z} is called an € -trajectory of the mapping f cor-
responding to a 0 -pseudotrajectory {y,,: n € Z} if

@ f(x,)=x,,, forany n e Z;
(b) ||xw—yn|| <¢g forall neZ.

It should be noted that condition (a) means that {xn} is an orbit (complete tra-
jectory) of the mapping f. Moreover, if a pair of Cl-mappings f and g is given,
then the notion of the ¢ -trajectory of the mapping g corresponding to a 0 -pseu-
doorbit of the mapping f can be introduced.

The following assertion is the main result of this section.

Theorem 4.1.

Let f be a Cl-mapping of a Banach space X into itself and let A be
a hyperbolic invariant (f(A) c A) set. Assume that there exists a A -vicini-
ty O of the set A such that f(x) and Df(x) are bounded and uniformly
continuous on the closure @ of the set O. Then there exists &, > 0 posses-
sing the property that for every 0 < € < g, there exists 0=0(¢) >0 such
that any O -pseudoorbit {yn: n e L} lying in A has a unique & -trajectory

{,: mel} corresponding to {y,}.

As the following theorem shows, the property of the mapping f to have an € -trajec-
tory is rough, i.e. this property also remains true for mappings that are close to f.

Theorem 4.2.

Assume that the hypotheses of Theorem 4.1 hold for the mapping f.
Let GM/n (f) be a set of continuously differentiable mappings g of the space
X into itself such that the following estimates hold on the closure @ of the
A -vicinity O of the set A:

If(x)=g@)l <m,  IDf(x)-Dg(x)l <n. 4.1
Then ¢, > 0 can be chosen to possess the property that for every € e (0, 80]
there exist 0 =0(g) >0 and N=n(e) >0 such that for any S-pseudotra-
Jectory {y,: n € L} (lying in A) of the mapping f and for any g < GM/n (f)
there exists a unique trajectory {xn: n € L} of the mapping g with the pro-
perty
|Y,—%,| <€ forall nel.

It is clear that Theorem 4.1 is a corollary of Theorem 4.2 the proof of which is based
on the lemmata below.
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Lemma 4.1.

Let U be an open set in a Banach space X and let F: U —> X be a con-
titnuously differentiable mapping. Assume that for some point y € U
there exist an operator [DF(y)] ™" and a number g,> 0 such that

IDF () -DF) < (2 ||[D9’(y)]_1||)71 (4.2)

Sor all x with the property |x—y| < &,. Assume that for some € € (0, €]
the inequality

-1
17w)l < 7-&(20DFW) ) (4.3)
is valid with 0 < @ < 1. Then for any Cl-mapping G: U — X such that
-1
16(0)-F(@)l < e(1-a)(2IpFw) ) (4.4)
and
ID%()-DF) < L(2lpF(w)) ) 4.5)

Jor |x—y| < g, the equation §(x)=0 has a unique solution x with
the property |x—y| < €.

Proof.
Let T = (2|[DF(»)] )" and let
n(w) = F()-F(y)-DF(y)(x-y) .

For x|, x4 € BSO = {z: |z—yl < €,} we have that

N(xy) —N(xy) = F(a) —F(2y) = DF(y) (v —25) =

(DF() + E(xy—21)) =DF(y)) (2, —2x5)dE .

O(-—.r—t

Since
1

||n(x1)— n(x2)|| < J||D9’(x1+ E(vg—2))) —D@'(y)” dé ||xl—x2|| ,
0

it follows from (4.2) that
In(@) =n(y)] < Tl -y (4.6)

for all ; and @, from BSO . Now we rewrite the equation (x) = 0 in the form

@ =T(x) = y=[DF(y)] " () - F(x) + F(y) + n(@)) .
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Let us show that the mapping 7' has a unique fixed point in the ball B, = {x :
lo—yl < €} .1tis evident that

7)ol < IDF@)](1%() -F@ I +1F @)+ In@) )
for any & € B, . Since 1(y) = 0, we obtain from (4.6) that
In@)l =In(z)-nw)l < Tle—y| < Te.
Therefore, estimates (4.3) and (4.4) imply that
IT(x)-y| <& for xeB,,

i.e. T maps the ball B, into itself. This mapping is contractive in B . Indeed,

| T() =Ty < 5 (19601 25)] + () - )],
where
Ty, 29) = G(2))— G(2g) —F(21) + F(2g) =
1

= J[D G2+ S (2 —2y)) = DF (2 + E (0~ 25)) | AE (2~ 25)
0
It follows from (4.5) that

[F6(a;, wy)] < ST|a—ay] .
This equation and inequality (4.6) imply the estimate

[T(2) = T(wo)] < 3=y -

Therefore, the mapping 7' has a unique fixed point in the ball B, = {x:
lo =yl < €}. The lemma is proved.

Let the hypotheses of Theorems 4.1 and 4.2 hold. We assume that 1< 1 in (4.1).
Then for any element g € O74/]]( f) the following estimates hold:

lg(x)l <M, [Dg(x)l <M, wxe0, 4.7
where M >0 is a constant. In particular, these estimates are valid for the mapping f .

Lemma 4.2.

Let {y,: n e L} be a 6-pseudotrajectory of the mapping f lying in A.
Then for any k > 1 the sequence {z, =y, ,: ne L} is a & -M,_, -pseu-
dotrajectory of the mapping f¥. Here M, has the form

My=1+M+..+M¥,  k>1, My=1, (4.8)

and M is a constant from (4.7).
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Proof.
Let us use induction to prove that
|Wiess =S W) < 8-M;_y, 1<i<k. (4.9)

Since {y,,} is a & -pseudotrajectory, then it is evident that for ¢ = 1 inequality
(4.9) is valid. Assume that equation (4.9) is valid for some 7 > 1 and prove esti-
mate (4.9) for ¢+ 1:

Voiesior =S T @) < Nksior =S Gar s |+ 1S W) —F 0] -
With the help of (4.7) we obtain that

[ vie1=F T i)l < 0+ M= F ()] < 5+M-0M;_y =8-M;.
Thus, Lemma 4.2 is proved.

Lemma 4.3.

Let {y,} be a O-pseudoorbit of the mapping f lying in A. Let {x,} be
a tragjectory of the mapping g € %fn(f) such that

||ynk—xnk|| < g, nel, (4.10)
forsome k > 1. If
max(e, 0+M)M, <A, (4.11D)
then
||yn—xn|| < max(g, 0+M)-M, , (4.12)

where M, has the form (4.8).

Proof.
We first note that

”ynk+l_xnlc+1” = ||ynlc+1_g(xnk)” <

< ”ynk—H _f(ynk)” + ||f(ynk) _g(ynk)" + ||g(ynk) _g(xnlc)" .
Therefore, it is evident that

||ynk+1—xnk+1|| < 5+1”|+M||ynk—xnk|| < max(g, 0+M)(1+M). (4.13)

Here we use the estimate
1

lg(y)—g (@)l < JIIDg(y+€(x—y))lldi~||x—y|| < Mlx—yl
0

which follows from (4.7) and holds when the segment connecting the points x
and y lies in @. Condition (4.11) guarantees the fulfillment of this property
at each stage of reasoning. If we repeat the arguments from the proof of (4.13),
then it is easy to complete the proof of (4.12) using induction as in Lemma 4.2.
Lemma 4.3 is proved.
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N Lemma 4.4.
. Let y e A and |x—y| < €. Assume that
: max(g, N)(1+... +ME=1) < A, (4.14)
' Then the estimates
6 ‘ . . . A
179(y) = fi(e)l < MIilz—yl,  IDfI()l < M7, (4.15)
| fi(y)—gi(x)l < max(e, n)(1+... +M7), (4.16)
| fi(z) —gi(x)] < n(1+... +MI~1) (4.17)

are valid for 7 =1, 2, ..., k and for every mapping g € %(f)

Proof.

As above, let us use induction. If 7 = 1, it is evident that equations (4.15)—
(4.17) hold. The transition from j to 7 +1 in (4.15) is evident. Let us consider
estimate (4.16):

P13 y) =g @) = (F(@) ~A(0(@))) + 1 (g7(@) ~algi (@) @418)

Condition (4.14) and the induction assumption give us that ¢/ (2) lies in the ball
with the centre at the point ff (y) € A lying in ©@. Therefore, it follows from
(4.18) that

| fi+Y(y)—gi Y (2)| < MIfi(y) —gi(x)l+n < max(e, N)(1+... +MI+1).

The transition from j to j+1 in (4.17) can be made in a similar way. Lemma 4.4
is proved.

Lemma 4.5.

There exists ' < A such that the equations

sup{l74(a) =gl < ) < pyt) (1.19)
and

sup {”(Df’f)(x) —(Dgk) () x e @"} < pp(M) (4.20)

are wvalid in the A -vicinity ©O' of the set A for any function
€ W (f). Here pp(n) >0 as n—>0.

The proof follows from the definition of the class of functions W/Vn (f) and estimates
(4.7) and (4.17).
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Let us also introduce the values

(%) = sup{llka(y) -Dfk@): ye A, -yl < x} (4.21)

and
o(%) = sup {lIP(y)—P(x)lI, x,ye A, |[x—y| < x} (4.22)

The requirement of the uniform continuity of the derivative Df(x) (see the hypo-
theses of Theorem 4.1) and the projectors P(x) (see the hyperbolicity definition)
enables us to state that

(%) >0, o(x)—>0 as x—>0. (4.23)
Let {y,,} be a 0 -pseudotrajectory of the mapping f lying in A. Then due to
Lemma 4.2 the sequence {7, =y,,,: 7 € Z} is a M, _,-pseudotrajectory of the

mapping f*. Let us consider the mappings %(x) and %(x) in the space
l;’ = [™(Z, X) (for the definition see Section 2) given by the equalities

[g(x)]n =Yp T _fk(z_/n—l +xn—1)7 (4.24)
[9()], =1, +%, —9%",_1+x,_) , (4.25)

where 2 = {x,,: n € Z} is an element from l; . Thus, the construction of € -trajec-
tories of the mapping f k and g’C corresponding to the sequence { z_/n} is reduced to
solving of the equations

F(x)=0 and G(x)=0
in the ball {z: || % < €}. Let us show that for k large enough Lemma 4.1 can be
applied to the mappings % and §. Let us start with the mapping %.
Lemma 4.6.
The function F is a Cl-smooth mapping in l;? with the properties

IF(0)l < oM, _, , (4.26)

IDF(2) -DF0) < o), IIxIIZ; <g. 4.27)

Proof.
Estimate (4.26) follows from the fact that {%,,} is a 0 M, _, -pseudotrajec-
tory. Then it is evident that

[DF )R], = h, =Df@, _+x,_)h,_ 1, (4.28)

where x = {#,,: n e Z} and h = {h,: n e L} liein Y . Therefore, simple cal-
culations and equation (4.21) give us (4.27).
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In order to deduce relations (4.2) and (4.3) from inequalities (4.26) and (4.27) for
y = 0, we use Theorem 2.2. Consider the operator L = D%(0). It is clear that

[Lh]n:hn_ka(yn—l)hn—l’ h:{hn}
Let us show that equations (2.9)-(2.11) are valid for A = Df ’f(yn_l) and Q, =

= P(7,,_;) and then estimate the corresponding constants. Property (2.9) follows
from the hyperbolicity definition. Equations (3.3) and (4.15) imply that

||AnQn|| < Kg¥f  and ||An|| < Mk,
Further, the permutability property (3.2) gives us that

Qn+1 (1 Q) [Qn+1An_AnQn](1_Qn):

= (@1 ~PUH@, )] 4,0-0,)
Hence (see (4.22)),
”Qn+1A 1 Q )” 8Mlc 1) ”An" ”1 Qn” 8Mlc I)Mk K.
Similarly, we find that
||(1 Qn+1 A Qn" 8Mk I)Mk K.
The operator
Jn = Qn+lp(fk(yn71)) _(I_anLl)(l_P(fk(ynfl)))
is invertible if (see Lemma 3.1)
_ 1
HQn+1 _P(fk(ynq))“ < 00OM;_) < 5% -
Moreover,
— -1
|1 < (1-2K0M, )™ < 2,
provided 2K®(0M,,_;) < 1/2. Due to the hyperbolicity of the set A, the operator
A,, is an invertible mapping from (1-@,,)X into (1-P(f k(yn_l)))X . Therefore,

n
since

(1_Qn+1)An(1_Qn) = JnAn(l_Qn) J

the operator (1 -Q,, , ;)A4,,(1 —Q,,) is invertible as a mapping from (1-@,,)X into
(1-Q,,,1)X . Moreover, by virtue of (3.4) we have that

-1 -1 4=
“[(I_anLl)An] (1_Qn+1)H = “[An(l_Qn)] 'Jnl(l_QnJrl)H s 2K2qk'
Thus, under the conditions
4Ko(0M, )< 1, SKM’COJ(SMkfl) <1, 16K3qgF<1, (4.29)

Theorem 2.2 implies that the operator L = D%(0) is invertible and IZ-Y < 2K+1.
Let us fix some € > 0. If
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M, | < %(4K+2)’1-§, o, (8) < (4K+2)71, (4.30)

then by Lemma 4.6 relations (4.2) and (4.3) holdwith y =0, e =€,andg = 1/2.If
pe(n) < Fmin(g, 1)(4K+2)7", (4.31)

then equations (4.4) and (4.5) also hold with y =0, € =&, and g = 1/2. Hence,
under conditions (4.29)—(4.31) there exists a unique solution to equation §(x) = 0
possessing the property || ;o < €. This means that for any & -pseudoorbit {y,,:
n € L} (lyingin A) of the mapping f there exists a unique trajectory {z,,: 7 € Z}
of the mapping g e Gﬂfn( f) such that

||an_ynk|| <E, nel,
provided conditions (4.29)—(4.31) hold. Therefore, under the additional condition
(E+0+MmM, <A
and due to Lemma 4.3 we get
|9 =2, < E+S+M)M,, nel.
These properties are sufficient for the completion of the proof of Theorem 4.2.

Let us fix k¥ such that 16 K3¢¥ < 1. We choose gy <A< A (A is defined

in Lemma 4.5) such that
0, (8) < (4K+2)"" forall &< 0
k 2M,,

Let us fix an arbitrary ¢ e (0, gy] and take &= 8[2Mk]_1. Now we choose
0 = 0(¢) and n = n(¢&) such that the following conditions hold:

AKo(0M, |) <1, 8KMFo(8M,_ ;) <1,

oM, _; <

AT

EQRK+1)", py(n) < Fmin(E, DEK+1), 2+n)M, < ¢

It is clear that under such a choice of § and 1 any & -pseudoorbit (from A) of the
mapping f has a unique € -trajectory of the mapping g . Thus, Theorem 4.2 is proved.

Exercise 4.1 Let the hypotheses of Theorem 4.1 hold. Show that there
exist A >0 and 0 >0 such that for any two trajectories {x,: 7 € Z}
and {y,,: m € Z} of a dynamical system (X, f) the conditions

dist(z,, A)< A, dist(y,, A) <A, s%p"xn—yn" <o
imply that x,, = y,,, n e Z. . In other words, any two trajectories of

the system (X , f ) that are close to a hyperbolic invariant set cannot
remain arbitrarily close to each other all the time.
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Exercise 4.2 Show that Theorem 4.1 admits the following strengthening:
if the hypotheses of Theorem 4.1 hold, then there exists g, > 0 such
that for every ¢ € (0, ¢;) there exists 0 = 0(¢) with the property
that for any o -pseudoorbit {y, } such that dist(y,, A) < 0 there
exists a unique € -trajectory.

Exercise 4.8 Prove the analogue of the assertion of Exercise 4.2 for Theo-
rem 4.2.

Exercise 44 Let A ={x,: n e /Z} be a periodic orbit of the mapping f,
ie. fM(x,) =x,,, =, forallm € Z and for some k > 1. Assume
that the hypotheses of Theorem 4.2 hold. Then for 11 > 0 small
enough every mapping g € Oﬂfn ( f ) possesses a periodic trajectory
of the period k& .

§ 5 Birkhoff-Smale Theorem

One of the most interesting corollaries of Anosov’s lemma is the Birkhoff-Smale the-
orem that provides conditions under which the chaotic dynamics is observed in
a discrete dynamical system (X, f). We remind (see Section 1) that by definition
the possibility of chaotic dynamics means that there exists an invariant set Y in the
space X such that the restriction of some degree f¥ of the mapping f on Y is to-
pologically equivalent to the Bernoulli shift S in the space m Of two-sided infinite
sequences of m symbols.

Theorem 5.1.

Let | be a continuously differentiable mapping of a Banach space X
into itself. Let x, e X be a hyperbolic fixed point of f and let {yn: nel}
be a homoclinic tragectory of the mapping | that does mot coincide with
g, t.e.

S(@o)=wg;  S(Y) = VYpy1» Yn*xg meL; Y, >z, n—>Eoo,
Assume that the trajectory {yn: n € L} is transversal, i.e. the set
A={x,}U{y,: nel}

is hyperbolic with respect to f and there exists a vicinity O of the set A
such that f(x) and Df(x) are bounded and uniformly continuous on the
closure @. By %( f) we denote a set of continuously differentiable map-
pings g of the space X into itself such that

If(z)=g@) <n, IDf(x)-Dg(x)l <n, xe0.
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Then there exists 1> 0 such that for any mapping g < %/n( f) and for any
m 2 2 there exist a natural number | and a continuous mapping ¢ of the
space X, into a compact subset Y = (p(Em) wm X such that
a) Y=0(2,,) is strictly invariant with respect to g', i.e. g'(Y)=Y;
b) if a=(..a_, ay a;,...)and a'=(...a", aj, a}, ...) are elements
of X,, such that a, # a; forsome i >0, then ¢(a)= ¢(a’);
c) the restriction of g! on Y is topologically conjugate to the Bernoulli
shift S in X, ie.
9(0(a) = 9(Sa), a3,
Moreover, if in addition we assume that for the mapping g there exists
€y> 0 such that for any two trajectories {x,: ne L} and {Z,: ne L}
(of the mapping g) lying in the &,-vicinity of the set A the condition
Ty, = Ty, Jor some 1 L implies that x, = T, for all n € 1, then the map-
ping ¢ is a homeomorphism.

The proof of this theorem is based on Anosov’s lemma and mostly follows the stan-
dard scheme (see, e.g., [4]) used in the finite-dimensional case. The only difficulty
arising in the infinite-dimensional case is the proof of the continuity of the mapping
@. It can be overcome with the help of the lemma presented below which is bor-
rowed from the thesis by Jiirgen Kalkbrenner (Augsburg, 1994) in fact.

It should also be noted that the condition under which ¢ is a homeomorphism
holds if the mapping g does not “glue” the points in some vicinity of the set A, i.e.
the equality g(») = g(7) implies x = .

Lemma 5.1.
Let the hypotheses of Theorem 5.1 hold. Let us introduce the notation
Jy = dy(kg W) =1{k e Z: |k—kg < pvy,
where kye L and n,veN. Let z={z,: ned,} be a segment (lying
m A ) of a O-pseudoorbit of the mapping f :
2, €A, ||zn+1—f(zn)|| <9, n, n+led, . (GRY)

Assume that x ={x,: ned,} and T ={T,: ned,} are segments of or-

bits of the mapping g € %(f) :
9(x,)=2,,1, 9(T,) =T, 1, n,n+led,, (5.2)
such that
||zn—xn|| <eg, ||zn—a_§n|| <g. 5.3
Then there exist 6, M, € >0, and we N such that conditions (5.1)—
(6.3) imply the tmequality

“xko—g—ckou < 2l=ve (5.4)
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Proof.
It follows from (5.2) that
xkontu - E}C0+Ll = (Dfu)(zko)(xko_fko) +Rk0 ) (5.5)
where

Ry, = Q“(xko) —Q“(Tko) _(Df“)(zko)(xko_flc )-

Since the set A is hyperbolic with respect to f , there exists a family of projec-
tors {P(x): x € A} for which equations (3.2)—(3.4) are valid. Therefore,

(1_P(f“(zko)))(xk0+u_9_%o+“) =

= (DS 1)) (1= P2y ) (g =T ) + (L= P(SH(2p ) Ry -

It means that
(=P 2y ) (2, = Ty, =
_1 —
= [(Df“)(zko)] [I_P(f“(zko))] [xk0+u_ xk0+u_Rlc
Consequently, equation (3.4) implies that
H(I_P(zko))(%o_jko)” s Kq“(kaO+p - ‘Tk0+u” + HRkou) :

Let us estimate the value Rko . It can be rewritten in the form

1

By, = [ (09" (G + (1-0)7,) ~Dr*(ai, )10 (=7 )

0
It follows from (5.3) that éxko +(1- é)a‘cko—zkou < g. Hence, using (4.20)
and (4.21), for € > 0 small enough we obtain that

0

].

0

HRkou < (p“(n)+m“(8))ka0—a_§kO , (5.6)
where py (1) >0 as 1 — 0 and (&) > 0 as & > 0. Therefore,
H(I_P(zko))(xko_fko)” < KM (| %41~ Ty +||xk0_97k0”) , (GD

provided p, (1) + (&) < 1. Further, we substitute the value k;—p for k,
in (5.5) to obtain that

e = Ty = DI (R ) (B - = Ty - ) + By -
Therefore, using (3.2) we find that
P(f”(zko—u))(%o_g_”ko) =

= Df‘u(zko—“)P(zko—u)(xko—u_ Eko—p) +P(f‘u(2lc0—u))Rko—u'
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Hence, equations (3.3) and (5.6) with kj — L instead of k give us that

Hp(f“(zko—u))(xko_fko)u <

< K{g*+ (pu(n) + (L)“(S))}kao_“— ‘Tko—uH : (56.8)
Since
=P ) - Zo{fﬂ(zko_j) - sety 10
J=

it follows from (4.15) and (5.1) that
-1
szo —f“(zko_m)H <38 EMJ < S-p(l+ MM
for 0 small enough. Therefore, o
|P(ei,) - PGz )] < 0 n(1+M8) = 0, ),
where ®(&) —>0 as E— 0 (cf. (4.22)). Consequently, estimate (5.8) implies that
[P Gzi ) (@1, ~ 7 )| <

< K{g"+py(n)+o,(e) + K1 (0, “)}kaoﬂl_ Ekof“” . (5.9)
It is evident that estimates (5.7) and (5.9) enable us to choose the parameters
1, M, €,and o such that
_ 1 .
”xko—xkou <5 max { |z, —Z|: ke Jy(kg, W)} -

Using this inequality with k£ instead of k, we obtain that

[re =3 < Smax{|a,—7,|: neJylko 1)}

forall k € J;(k(, u). Therefore,
|, | < Lmax{|a, =7, 7€ Jy(ko, p)}-
If we continue to argue like that, then we find that
kao—ikon < 27Vmax{|x,—7Z,[|: ne (kg W)}

Since ||:rn— 9_%" < || x,, —zn" + || Z,—2,
Lemma 5.1 is proved.

| , this and estimate (5.3) imply (5.4).

Proof of Theorem 5.1.

Let py, Py, ..., D,,_1 be distinct integers. Let us choose and fix the parame-
ters €, M, 0 > 0 and the integer p > 0 such that (i) Theorem 4.2 and Lemma 5.1
can be applied to the hyperbolic set A = {z,} U{y,,: n € Z} and (ii)
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1. o PR
€< 3 nun{“ypi—ypj ypi—xon. i,7=1,..., m—1, © ¢j} . (6.10)
Assume that N is such that

||yn—x0||<;—5 for n=N+p,+1 and n=p,—N (5.11)

k

foralli=1, 2, ..., m—1.Let us consider the segments C; of the orbits of the map-
ping f of the form

Ci=(Wp—ns s Upp s YUpen)s  1=1 20, m—1,

C,, = (g, Tgs vy 7).
The length of every such segmentis 2N +1.Leta = (... a_jaya,...) € £, .Letus
consider a sequence of elements v, made up of the segments Ci by the formula

Ya= (- Cq_ CayCay-)- (5.12)

It is clear that v, € A and by virtue of (5.11) Y, isa 0 -pseudoorbit of the mapping
f . Therefore, due to Theorem 4.2 there exists a unique trajectory {w,, = w,,(a):
n € /} of the mapping g such that

lwan, 2, 5y —2i5(@)] < &, (5.13)
where n(N, i, j) =N+ (¢—-1)2N+1)+j and zij(a) is the j-th element of the

segment Caj, iel, j=1, 2, ..., 2N+1.Let us define the mapping ¢ from DI,
into X by the formula

o(a)=w,, (5.14)

where w), is the zeroth element of the trajectory {w),, }. Since the trajectory {w,, }
possessing the property (5.13) is uniquely defined, equation (5.14) defines a map-
ping from X into X .

If we substitute 7 +1 for ¢ in (5.13) and use the equations

Wy (N, i+1, j) = Wn(N, 4, j)+2N+1 = QZNH(wn(N, i,j))’
we obtain that
HQZNH(wn(N, i,j))_zi+1,j(a)" <&
forallie Z andj=1, 2, ..., 2N+1 . Therefore, the equality zHLj(a) = zij(Sa)
with S being the Bernoulli shift in X leads us to the equation
”92N+1(wn(N, i) _zz+1,j(3a)H s €.

Consequently, the uniqueness property of the € -trajectory in Theorem 4.2 gives us
the equation

w,(Sa)=g*N*l(w,(a)), nel.
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This implies that
p(Sa) = g?*N*p(a)), aek,, (5.15)
i.e. property (c) is valid for [ = 2N+1 . It follows from (5.15) that

9?1 (e(s71a)) = ¢(a).
Therefore, the set Y= ¢(Z,,) is strictly invariant with respect to g2N+1 Thus, as-
sertion (a) is proved.

Let us prove the continuity of the mapping ¢ . Assume that the sequence of ele-
ments a(s) = (..., afs’l), a(()s), ags), ..)of X, tendstoa = (.., a_,, ay a, ...) €
€ X, as s = +co. This means (see Exercise 1.4) that for any M € N there exists
5o = 8o (M) such that

ags) =a, for [i| <M, s=>s,. (5.16)
Assume that () = {zgcs)} and y = {2} are 0 -pseudoorbits in A constructed ac-
cording to (5.12) for the symbols a(s) and a , respectively. Equation (5.16) implies
that z;(f) =z, for |k| < M(2N+1). Let {w,, } and {wgf)} be ¢ -trajectories corres-
ponding to ¥y and y(s) , respectively. Lemma 5.1 gives us that

[w§) —w| < 2" Ve, (.17

provided M(2N+1) > v, i.e. forany veN equations (5.17) is valid for s > s,(v, M) .
This means that

lo (@) = p(a)l = |w§)—w,| -0

as s — +o0o. Thus, the mapping ¢ is continuous and ¥ = ¢(Z,,) is a compact strict-
ly invariant set with respect to g2V+1.

Let us now prove nontriviality property (b) of the mapping ¢ . Let a, a’ Zm
be such that a; # a; for some 7 > 0. Let {w, } and {w/ } be € -trajectories corres-
ponding to the symbols a and a', respectively. Then

||wn(N, i, N+1) ~Wn(, 4, N+1)|| 2 |2, n+1(@) =25 yya(al)) =
_”wn(N, i, N+1) ~ %, N+1(@)) _||wh(N, i, N+1) ~ %4, ne1(@)] -
Therefore, it follows both from (5.13) and the definition of the elements 2, j(a) that
[wen+1y =wienryil = |Yq,~Yqy| —22,
where ¢, = p, and g} = p,, . We apply (5.10) to obtain that
7 3

||w(2N+1)¢_w'(2N+1)¢|| > 0. (5.18)
Therefore, if 7 > 0, then
g(2N+1)i(wO) i g(ZN“)i(wb).

Hence, ¢(a) = w, # w(, = ¢(a’). This completes the proof of assertion (b).
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If the trajectories of the mapping g cannot be “glued” (see the hypotheses of
Theorem 5.1), then for some ¢ € Z equation (5.18) gives us that wy # Wy, Le.
¢(a) # @(a') if a # a’. Thus, the mapping ¢ is injective in this case. Since X,
is a compact metric space, then the injectivity and continuity of ¢ imply that ¢ is
a homeomorphism from X, onto ¢(Z,,) . Theorem 5.1 is proved.

It should be noted that equations (5.13) and (5.14) imply that the set ¥ = ¢(Z,,)
lies in the ¢ -vicinity of the hyperbolic set A . Therewith, the values 1 and [ in-
volved in the statement of the theorem depend on € and one can state that for any
vicinity % of the set A there exist 1 and ! such that the conclusions of Theo-
rem 5.1 are valid and ¢(Z,,) € 2. It is also clear that the set Y= ¢(Z,,) is not
uniquely determined.

Exercise 5.1 Assume that g = f in Theorem 5.1. Prove that the mapping ¢
can be constructed such that ¢(Z,)) o {2} U{y,,;: 7= 0}, where
{y,,: m e L} is a homoclinic orbit of the mapping f .

Exercise 5.2 Prove the Birkhoff theorem: if the hypotheses of Theorem 5.1
hold, then for any € > 0 small enough there exist 1 >0 and ! € N
such that for every mapping g e %fn (f) there exist periodic trajec-
tories of the mapping ¢! of any minimal period in the ¢ -vicinity
of the set A .

Exercise 5.8 Use Theorem 1.1 to describe all the possible types of beha-
viour of the trajectories of the mapping g on a set

l
W= k(o2 ).
kulg (©(Z,,)

In conclusion, it should be noted that different infinite-dimensional versions of Ano-
sov’s lemma and the Birkhoff-Smale theorem have been considered by many authors
(see, e.g., [6],[10], [11], [12], and the references therein).

§ 6 Possibility of Chaos in the Problem
of Nonlinear Oscillations of a Plate

In this section the Birkhoff-Smale theorem is applied to prove the existence of chaotic
regimes in the problem of nonlinear plate oscillations subjected to a periodic load.
The results presented here are close to the assertions proved in [13]. However, the
methods used differ from those in [13].
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Let us remind the statement of the problem. We consider its abstract version
as in Chapter 4. Let H be a separable Hilbert space and let A be a positive operator
with discrete spectrum in H, i.e. there exists an orthonormalized basis {ek} in H
such that

Ae,=Mee,, O0<A <Ay<..., nliinooknzoo.

The following problem is considered:

2+ 7y +A2u + (x| AY2u)? ~T)Au + Lu = heosot (6.1)

ul,_,=ug € Fy=D(A), u|_,=u eH. (6.2

t t=0

Here y, %, I', and ® are positive parameters, % is an element of the space H, L
is a linear operator in H subordinate to A , i.e.

ILul < K[Au], (6.3)
where K is a constant. The problem of the form (6.1) and (6.2) was studied in Chap-
ter 4 in details (nonlinearity of a more general type was considered there). The re-

sults of Section 4.3 imply that problem (6.1) and (6.2) is uniquely solvable in the
class of functions

W, = C(R,, D(A)) N CY(R,, H). (6.4)

+

Moreover, one can prove (cf. Exercise 4.3.9) that Cauchy problem (6.1) and (6.2)
is uniquely solvable on the whole time axis, i.e. in the class

W= C(R, D(A))N Cl(]R{, H).
This fact as well as the continuous dependence of solutions on the initial conditions

(see (4.3.20)) enables us to state that the monodromy operator G acting in J6 =
= D(A) x H according to the formula

6(ug: w) = (u(5F). i) ©5)

is a homeomorphism of the space J6 (see Exercise 4.3.11). Here w(t) is a solution
to problem (6.1) and (6.2)

The aim of this section is to prove the fact that under some conditions on L and
h chaotic dynamics is observed in the discrete dynamical system (¥, G) for some
set of parameters v, %, I ;and .

Lemma 6.1.

The mapping G defined by equality (6.5) is a diffeomorphism of the
space Jb=D(A) x H.

Proof.
We use the method applied to prove Lemma 4.7.3. Let u,(t) be a solution
to problem (6.1) and (6.2) with the initial conditions 7 = (1, u;) € ¥ and let
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uy(t) be a solution to it with the initial condions 7 +2& = (uq+2(, u;+2;)€ 6.
Let us consider a linearization of problem (6.1) and (6.2) along the solution ul(t) :

W (t)+ 7y (t) + A2w + (x| A2y (1) ~T) Aw +
+ 2% (A2 (t), AV2w(t)) Au (t)+Lw = 0, (6.6)
Wly_o=%0 W|,_o=%1 (6.7)

As in the proof of Theorem 4.2.1, it is easy to find that problem (6.6) and (6.7) is
uniquely solvable in the class of functions (6.4). Let v(t) = uq(t) —u(t) —w(t).
It is evident that v(¢) is a weak solution to problem

B+yo(t) + A2o(t) = F(t) = F(uy(t), ug(t), w(t)) , (6.8)

v],_o=0, ¥|,_,=0, (6.9)

where

F(uy, ugy, w) = —(x HA1/2u2H2 —F)Auz + (%”A“zuluz —F) Auy +

+ (%HAI/ZUIHZ —F) Aw + 2% (Auy, w) Auy —L(ug—uy —w) .
A simple calculation shows that
Fuy, g, w) = Fy(uy, g, w) +Fy(uy, ug, w) = I + 5,
where

i (el “T)av ~Lo —2xtau, o)t v

Fy = —n|Al2 (ul—uz)“2A(ul+w) —2%(Auy, w)Aw.

We assume that |75 < R and 2] < 1.In this case (see Section 4.3) the esti-
mates

|Au,(t)] < Cg. 7,
[ACuy () —us(t))] < Cp_ rl2lse
lAw(t)l < Cp, rl2l5, (6.10)
are valid on any segment [0, T] .Here C R.T is a constant. Therefore,
||F1|| < ClAq, ||F2|| < Czllzlléé, tel0,T],
where C] and C, are constants depending on K and 7. Hence,

IF()* < ClAv|® +Cyll2l,,  telo, T].
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Therefore, the energy equation

LI +140(0)?) + v JIID(T)IIZdr - J (F(1), 6())de (6.11)
0 0

for problem (6.8) and (6.9) leads us to the estimate
t

lo()2 + 1Av(0)? < J(ClllAv(t)llz +Cyllel)dr,  tefo, 7).
0
Using Gronwall’s lemma we find that

[o@ +1Av(@)? < clel*,  te[o,T],
where the constant C depends on 7" and R . This estimate implies that the map-
ping
’. = . 27 . 27
G': z=(2) 27— (w(a), w(a)) (6.12)

is a Frechét derivative of the mapping G defined by equality (6.5). Here w(t)
is a solution to problem (6.6) and (6.7). It follows from (6.10) and (6.6) that G’
is a continuous linear mapping of 76 into itself. Using (6.10) it is also easy to see
that G' = G'[u, u;] continuously depends on 7 = (u,; u;) Wwith respect to
the operator norm. Lemma 6.1 is proved.

Further we will also need the following assertion.

Lemma 6.2.

Let G} be the monodromy operator of problem (6.1) and (6.2) with
L= Lj and h= hj, Jj=1,2. Assume that for L:Lj equation (6.3) is va-
led and hj eH, j=1, 2. Moreover, assume that

|4 <o <P =12
Then the estimates
sup [Gy() ~Gay(w)| < C(J(Ly ~Lo) A + |y~ (6.13)
Yy € BR
and
sup |G (y) —G4(y)| < C(H(LI—LZ)A—ln+||h1—h2||) (6.14)
Yy € BR

are valid. Here By is a ball of the radius R in H=D(A)xH, R>0
is an arbitrary number while the constant C depends on R and p but
does not depend on the parameters ®, v, » 2 0, and I provided they
vary in bounded sets.



400

= 0 =T ® 5O

[op}

Homoclinic Chaos in Infinite-Dimensional Systems

Proof.
Let uj(t) be a solution to problem (6.1) and (6.2) with L = L; and k= h,
7 =1, 2.Itis evident (see Section 4.3) that

[Au;(t) < C=C(R. p.T), tel0,T]. (6.15)
Therefore, it is easy to find that the difference u(t) = u(t) —uy(t) satisfies
the equation

U+yu+A%u = F(t, uy, uy) ,

u|l:0:0, 7,'4|l:0:0 ,

where the function F(t, u,, u,) can be estimated as follows:
[ty )] < Cldul +Co|(Ly ~Ly) A7 + |y~ 1o ).

As in the proof of Lemma 6.1, we now use energy equality (6.11) and Gronwall’s
lemma to obtain the estimate

() +1Au(@l < O(J(Ly ~Lo) A + [y = ol (6.16)

This implies inequality (6.13). Estimate (6.14) can be obtained in a similar way.
In its proof equations (6.12), (6.15), and (6.16) are used. We suggest the reader
to carry out the corresponding reasonings himself/herself. Lemma 6.2 is proved.

Let us now prove that there exist an operator L. and a vector & such that the corres-
ponding mapping G possesses a hyperbolic homoclinic trajectory. To do that, we use
the following well-known result (see, e.g., [1], [13], as well as Section 7) related to the
Duffing equation.

Theorem 6.1.

Let g: R2 > R? be a monodromy operator corresponding to the Duffing
equation

& —Bx+ax’=e(f cosot—08x), (6.17)

i.e. the mapping of the plane RZ into itself acting according to the formula

atag-ay) = [a(%5): 4(3F)), .18
where x(t) is a solution to equation (6.17) such that x(0) =z, and 2(0) =
= x,. All the parameters contained in (6.17) are assumed to be positive.
Let us also assume that
.9 B3/ 2 o
f>f. =06 —/——. cosh(—). (6.19)

o 30/2a 2./B
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Then there exists €, > 0 such that for every ¢ e (0, 80) the mapping g pos-
sesses a fixed point z and a homoclinic trajectory {yn: n e L} to it Yy, % 2,
therewith the set {z}U{y,: n € L} is hyperbolic.

Let Pk be the orthoprojector onto the one-dimensional subspace generated by the
eigenvector e, in [ . We consider problem (6.1) and (6.2) with L, = L(1-F,) in-
stead of L and h = hy e, where k. is a positive number. Then it is evident that
every solution to problem (6.1) and (6.2) with the initial conditions u, = c¢,e, and
Uy = ¢; e, has the form

u(t) = x(t) ey,
where 2(t) is a solution to the Duffing equation

T4+ya =M (T=A) o+ xkixS:hkcoswt (6.20)

with the initial conditions 2(0) = ¢, and #(0) = ¢, . In particular, this means that
the two-dimensional subspace %, = Lin{(e,; 0), (0; e,)} of the space 6 is strict-
ly invariant with respect to the corresponding monodromy operator G, while the re-
striction of Gk to %k coincides with the monodromy operator corresponding to the
Duffing equation (6.20). Therefore, if /2, is small enough and the conditions

hy, 27%(1“_)%)( r )1/2008h T

O0< A, <T, L, B R SIS
= YT Bodix ‘i 2 [h (=)

hold, then the mapping Gk possesses a hyperbolic invariant set
A, = {ze } U{y, e, nel}
consisting of the fixed point (zo € % ek) and its homoclinic trajectory
{y,e,: mel}, where y, = (yg; y%) e R2.

Thus, if ® > 0 and for some & the condition 0 < 7% < T" holds, then there exists an
open set & in the space of parameters {7y, %, } such that for every (y, &) € % the mo-
nodromy operator G, corresponding to problem (6.1) and (6.2) with L, = L(1-P,)
instead of L and i = h; e, possesses a hyperbolic set consisting of a fixed point and

a homoclinic trajectory. This fact as well as Lemmata 6.1 and 6.2 enables us to apply
the Birkhoff-Smale theorem and prove the following assertion.

Theorem 6.2.

Let o > 0 and let the condition 0 < kk < I' hold for some k. Then there
exist 1L > 0 and an open set P in the metric space R, x H such that if

-1
| Lew| 2 < 1, (v, h) € P,
then some degree G! of the monodromy operator G of problem (6.1) and

(6.2) possesses a compact strictly invariant set Y (GZY: Y) in the space F
in which the mapping G' is topologically conjugate to the Bernoulli shift of
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;’ sequences of m symbols, i.e. there exists a homeomorphism ¢: %, — Y
a such that

1%

! Glo(a)) = ¢(Sa), acZ,.

6 Exercise 6.1 Prove that if the hypotheses of Theorem 6.2 hold, then equa-

tion (6.1) possesses an infinite number of periodic solutions with pe-
riods multiple to ® .

Exercise 6.2 Apply Theorem 6.2 to the Berger approximation of the prob-
lem of nonlinear plate oscillations:

Pu | 0u | Ao 24
a2 + y§+ Acy [%JIVu(x, )" dw FJAu +
Q

ou
n p571 = h(z)coswt, x=(x,x5)eQcRZ, >0,

ou
u|aQ=Au|aQ:0, u|t:O=u0(x), E‘t,ozul(x)'

§ 7 On the Existence of Transversal
Homoclinic Trajectories

Undoubtedly, Theorem 6.1 on the existence of a transversal (hyperbolic) homoclinic
trajectory of the monodromy operator for the periodic perturbation of the Duffing
equation is the main fact which makes it possible to apply the Birkhoff-Smale
theorem and to prove the possibility of chaotic dynamics in the problem of plate
oscillations. In this connection, the question as to what kind of generic condition
guarantees the existence of a transversal homoclinic orbit of monodromy operators
generated by ordinary differential equations gains importance. Extensive literature
is devoted to this question (see, e.g., [1], [2] and the references therein). There are
several approaches to this problem. All of them enable us to construct systems with
transversal homoclinic trajectories as small perturbations of “simple” systems with
homoclinic (not transversal!) orbits. In some cases the corresponding conditions on
perturbations can be formulated in terms of the Melnikov function.

This section is devoted to the exposition and discussion of the results obtained
by K. Palmer [14]. These results help us to describe some classes of systems of ordi-
nary differential equations which generate dynamical systems with transversal ho-
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moclinic orbits. Such differential equations are obtained as periodic perturbations
of autonomous equations with homoclinic trajectories.
In the space R" let us consider a system of equations

a(t)=g(x(t)), 2(t)eR?, (7.1
where g: R"” — R” is a twice continuously differentiable mapping. Assume that the
Cauchy problem for equation (7.1) is uniquely solvable for any initial condition
2(0) = 2. Let us also assume that there exist a fixed point 2, (g(2,)=0) and
a trajectory z(t) # & homoclinic to z, i.e. a solution to equation (7.1) such that
z(t) —> 2 as t - oo . Exercises 7.1 and 7.2 given below give us the examples of the
cases when these conditions hold. We remind that every second order equation & +
+V(x) =0 can be rewritten as a system of the form (7.1) if we take xy=x and

xzzx.

Exercise 7.1 Consider the Duffing equation
i-PBr+ax®=0, a,B>0.
Prove that the curve 2(¢) = (n(t), 1)(¢)) € R? is an orbit of the corres-
ponding system (7.1) homoclinic to 0 . Here n(¢) =42 3/a sech./Bt .

Exercise 7.2 Assume that for a function U(x) e C3(R) there exist a num-
ber £ and a pair of points a < b such that

Ula)=U(b)=E,; Ux)<E, ze(a, b);
Ufa)=0; U'(a)<0; U(b)>0.
Then system (7.1) corresponding to & + U’(x) = 0 possesses an or-
bit homoclinic to (a, 0) that passes through the point (b, 0).

Unfortunately, as the cycle of Exercises 7.3-7.5 shows, the homoclinic orbit of au-
tonomous equation (7.1) cannot be used directly to construct a discrete dynamical
system with a transversal homoclinic trajectory.

Exercise 7.8 Forevery T > 0 define the mapping f: R”— R” by the for-
mula f(x,) =2(T; 2,), where x(t; x,) is a solution to equation
(7.1) with the initial condition x, . Show that f is a diffeomorphism
in R” with a fixed point 2, and a family of homoclinic orbits
{y3: mel} wherey, =z2(s+n1), se0,1).

Exercise 7.4 Prove that the derivative f' of the mapping f constructed in

Exercise 7.3 can be evaluated using the formula f'(x,)w = (1, w),
where y(t, w) is a solution to problem

(1) = g' (@) y(t),  y(0)=wq.
Here x(t) = x(t; ) is a solution to equation (7.1) with the initial
condition x .
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Exercise 7.5 Let f be the mapping constructed in Exercise 7.3 and let
{2(t): t e Z} be a homoclinic orbit of equation (7.1). Show that
{w, =2(nt): m e L} isabounded solution to the difference equa-
tion w,,, =f"(y,)w, , where y =z(nt) (Hint: the function
w(t) = 2(t) satisfies the equation w = g'(2(t))w ).
Thus, due to Theorems 2.1 and 3.1 the result of Exercise 7.5 implies that the set
A ={z4tU{z(nt): nel}
cannot be hyperbolic with respect to the mapping f defined by the formula
Sf(xg) = 2(7; 2y), where 2(t; x,) is a solution to equation (7.1) with the initial
condition x. Nevertheless we can indicate some quite simple conditions on the

class of perturbations {.(t, 2, 1)} periodic with respect to ¢ under which the mo-
nodromy operator of the problem

2(t) = g(x(t))+un(t, 2(t), n)y,  2(t) e R?, (7.2)

possesses a transversal (hyperbolic) homoclinic trajectory for [t small enough.

Further we will use the notion of exponential dichotomy for ordinary differential
equations (see [15], [16] as well as [5] and the references therein)

Let A(t) be a continuous and bounded 7 x 7 matrix function on the real axis.
We consider the problem

x(t)=A)x(t), telk, x|, _ =%, (7.3)

in the space X = R . It is easy to see that it is solvable for every initial condition.
Therefore, we can define the evolutionary operator @(t, s), ¢, s € R, by the for-
mula

D(t, s)xg=2(t) = 2(t, 55 7)), t, s e R,

where 2 (t) is a solution to problem (7.3).

Exercise 7.6 Prove that
D(t,s) = DL, 1)DP(1,5), DO, t)=1
forall t, s, T € R and the following matrix equations hold:

Qo 5)= A0 0L s), Lot s) = -0(, 5)A(s). (T4

Exercise 7.7 Prove the inequality

t
[, s)] < exp jIIA(r)IIdr . ixs.
S
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Let 9 be some interval of the real axis. We say that equation (7.3) admits an expo-
nential dichotomy over the interval J if there exist constants K, o > 0 and
a family of projectors {P(t): ¢ e J} continuously depending on ¢ and such that

P(t)D(t, s) = D(¢, s) P(s), t>s; (7.5)
|D(t, s)P(s)| < Ke®(=s) ¢ >5, (7.6)
(2, s)(I-P(s)| < Ke ®G=D p<s, )

for t,s e 9.

Exercise 7.8 Let A(t) = A be a constant matrix. Prove that equation (7.3)
admits an exponential dichotomy over R if and only if the eigenva-
lues on A do not lie on the imaginary axis.

The assertion contained in Exercise 7.8 as well as the following theorem on the
roughness enables us to construct examples of equations possessing an exponential
dichotomy.

Theorem 7.1.

Assume that problem (7.3) possesses an exponential dichotomy over
an interval 9. Then there exists € > 0 such that equation

2(t) = (A(t)+B(t)) x(t) (7.8)
possesses an exponential dichotomy over Y, provided |B(t)| < & for t € J.

Moreover, the dimensions of the corresponding projectors for (7.3) and
(7.8) are the same.

The proof of this theorem can be found in [15] or [16], for example.

The exercises given below contain some simple facts on systems possessing an expo-
nential dichotomy. We will use them in our further considerations.

Exercise 7.9 Prove that equations (7.5)—(7.7) imply the estimates
D, s)El > K 1e®U=9)|1-P(s))El, t=>s,
|D(, 5)E] > K 1eC-D|P(s)El, 1<,
forany E e X = R™.

Exercise 7.10 Assume that equation (7.3) admits an exponential dichotomy
over R, = [0, +00) . Prove that P(0)X =V, , where

vV, = {é e X =R": supolld)(t, 0)&l < oo} (7.9
t >

Hint: |D(¢, 0)E] = K~ Le!|(1-P(0))El, ¢=0).
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Exercise 7.11 If equation (7.3) possesses an exponential dichotomy over
R_ = (=00, 0], then (I-P(0))X =V_, where

V = {EJ e X = R”: sup()ll@(t, 0)&l < oo} (7.10)
t <

Hint: |®(t, 0)E] > K-Le!|[P(0)E], t<0).

Exercise 7.12 Assume that equation (7.3) possesses an exponential dicho-
tomy over R, (over R_, respectively). Show that any solution to
problem (7.3) bounded on R, (on R_, respectively) decreases
at exponential velocity as t — +o0o (as t — —oo , respectively).

Exercise 7.13 Assume that equation (7.3) possesses an exponential dicho-
tomy over the half-interval [a, +o0), where a is a real number.
Prove that equation (7.3) possesses an exponential dichotomy over
any semiaxis of the form [b, +o0).
(Hint: P(t) = @(t, a)P(a) D(a, t)).

Exercise 7.14 Prove the analogue of the assertion of Exercise 7.13 for the
semiaxis (—oo, @] .

Exercise 7.15 Prove that for problem (7.3) to possess an exponential dicho-
tomy over R it is necessary and sufficient that equation (7.3) pos-
sesses an exponential dichotomy both over R, and R_ and has no
nontrivial solutions bounded on the whole axis R ..

Exercise 7.16 Prove that the spaces V., and V_ (see (7.9) and (7.10)) pos-
sess the properties

V,NV. ={0}, V,+V. =X=R",

provided problem (7.3) possesses an exponential dichotomy over R .

Exercise 7.17 Consider the following equation adjoint to (7.3):

y(t) = =A"(t)y(t), (7.11D)
where A*(¢) is the transposed matrix. Prove that the evolutionary
operator ¥(¢, s) of problem (7.11) has the form (¢, s) = [®(s, ¢)]".

Exercise 7.18 Assume that problem (7.3) possesses an exponential dichoto-
my over an interval 9. Then equation (7.11) possesses exponential
dichotomy over ¥ with the same constants K, o > 0 and projectors

Q(t)=1-P(1)".

Exercise 7.19 Assume that problem (7.3) possesses an exponential dichoto-
my both over R, and R_. Let dimV, + dimV_= 7, where V, are
defined by equalities (7.9) and (7.10). Show that the dimensions of
the spaces of solutions to problems (7.3) and (7.11) bounded on the
whole axis are finite and coincide.
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Exercise 7.20 Assume that problem (7.3) possesses an exponential dichoto-
my over R. Then for any s € R and T > 0 the difference equation
x, = (D(s +1n, 5)907%1 possesses an exponential dichotomy over

7. (for the definition see Section 2).

Let us now return to problem (7.1). Assume that 2, is a hyperbolic fixed point for
(7.1),i.e. the matrix g’(zo) does not have any eigenvalues on the imaginary axis. Let
2(t) be a trajectory homoclinic to 2. Using Theorem 7.1 on the roughness and the
results of Exercises 7.13 and 7.14 we can prove that the equation

y=9'(01)y (7.12)
possesses an exponential dichotomy over both semiaxes R, and R_. Moreover, the
dimensions of the corresponding projectors are the same and coincide with the di-
mension of the spectral subspace of the matrix g’(zo) corresponding to the spec-
trum in the left semiplane. Therewith it is easy to prove that dimV, +dimV_=n,
where V, have form (7.9) and (7.10). The result of Exercise 7.15 implies that equa-
tion (7.12) cannot possess an exponential dichotomy over R (y(¢) = 2(¢) is a solu-
tion to (7.12) bounded on R) while Exercise 7.19 gives that the number of linearly
independent bounded (on R) solutions to (7.12) and to the adjoint equation

v =-[g'(z(t)]'y (7.13)
is the same. These facts enable us to formulate Palmer’s theorem (see [14]) as fol-
lows.

Theorem 7.2.

Assume that g(x) is a twice continuously differentiable function from
R” into R" and equation
&= g(w)
possesses a fized hyperbolic point 2, and a trajectory {z(t): t € R} homo-
clinic to z,. We also assume that y(t) = 2(t) is a unique (up to a scalar fac-
tor) solution to equation

v =9'(2(t)y (7.14)
bounded on R. Let h(t, x, 1) be a continuously differentiable vector func-
tion T-periodic with respect to t and defined for t € R, |v—=2(t) < A,
lul <oy, ne R.If

'[ (W(b). (L, 2(0). 0)),, 0t =0, J (W(0), i, 2(0), 0)),,dt =0, (7.15)

where Y(t) is a bounded (umique up to a constant factor) solution to
the equation adjoint to (7.14), then there exist A and G such that for
0 < |u| < o the perturbed equation

T =g(x)+ uh(t, x, pn) (7.16)
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;’ possesses the following properties:

a (2) there exists a unique T-periodic solution C(t, 1) such that
p

: |20= &t W) < A, teR,

' and

6

sup |29 —Eo(t, W) >0, w—0;
teR

(b) there exists a solution &(t, 1) bounded on R and such that
[E(t, n)—2(t) <A, teR,
sup £ () —=(0)] = 0(n),
and

|88 ) =&t ) = 05

(c) the linearized equation

Y= {9'(11(25, W) + phy (e, (e, p), u)} Y, (7.17)

where N(t, 1) s equal to either S(t, 1) or Sy(t, 1), possesses an ex-
ponential dichotomy over R.

This theorem immediately implies (see Exercise 7.20 and Theorem 3.1) that
under conditions (7.15) the monodromy operator for problem (7.16) has a hyperbo-
lic fixed point in a vicinity of the orbit {z(¢): ¢ € R} and a transversal trajectory ho-
moclinic to it.

We will not prove Theorem 7.2 here. Its proof can be found in paper [14]. We only
outline the scheme of reasoning which enables us to construct a homoclinic trajecto-
ry £(t, ®). Here we pay the main attention to the role of conditions (7.15). If we
change the variable x = 2(¢) + £ in equation (7.16), then we obtain the equation

C = g(2(t)+C) = g(2(1) + ph(t, (1) +C, u).
We use this equation to construct a mapping % from Cll)(]R{, R™) x R into
Cg (R, R™) acting according to the formula

(G 1) = F(C, u) = E—{g(2(t) + Q) —g(=(2)) + nh(t, 2(1)+C, w)}. (7.18)
We remind that C{f (R, X) is the space of k times continuously differentiable bound-
ed functions from R into X with bounded derivatives with respect to ¢ up to the & -
th order, inclusive.

Thus, the existence of bounded solutions to problem (7.16) is equivalent to the
solvability of the equation #(C, 1) = 0. It is clear that %(0, 0) = 0. Therefore, in
order to construct solutions to equation % (C, u) = 0 we should apply an appropri-
ate version of the theorem on implicit functions. Its standard statement requires
that the operator L = DC‘GZ (0, 0) be invertible. However, it is easy to check that the
operator L has the form
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(Ly)(t) = 5(t)=g'(2(t) y(t) -
Therefore, it possesses a nonzero kernel (Lz' = 0) . Hence, we should use the modi-

fied (nonstandard) theorem on implicit functions (see Theorem 4.1 in [14]). Roughly
speaking, we should make one more change { = piw and consider the equation

F(uw, p)=0. (7.19)
If this equation is solvable and the solution w depends on  smoothly, then w sa-
tisfies the equation
Dgg'(uw, u)[w+uwp] +Dp§i'(pw, n) =0, (7.20)
where w), is the derivative of w with respect to the parameter Q. This equation can
be obtained by differentiation of the identity #(pw (1), 1) = 0 with respect to .
Due to the smoothness properties of the mapping %, it follows from (7.20) the solva-
bility of the problem
ch(o, O)wo + D“g(O, 0) =0, (7.21D)
which is equivalent to the differential equation
wo = g'(2(t))wy+ h(t, 2(t), 0) (7.22)
in the class of bounded solutions. It is easy to prove that the first condition in (7.15)
is necessary for the solvability of (7.22) (it is also sufficient, as it is shown in [14]).
Further, the necessary condition of the dichotomicity of (7.17) for n(t, u) =

= &(t, u) on R is the condition of the absence of nonzero solutions to equation
(7.17) bounded on R . However, this equation can be rewritten in the form

DeF(pw, p)y(p) =0, (7.23)

where w = w() is determined with (7.19). If we assume that equation (7.23) has
nonzero solutions, then we differentiate equation (7.23) with respect to 1 at zero,
as above, to obtain that

[DCC@(O, 0)wy + D¢, F(O, o)] Yo + D F(0, 0)y, = 0, (7.24)

where w),, is a solution to equation (7.21), y,=»(0), y; = D“y(()), and y(u) is
a solution to equation (7.23). Equation (7.17) transforms into (7.14) when 1 =0.
Therefore, the condition of uniqueness of bounded solutions to (7.14) gives us that
Yo = coz'(t), therewith we can assume that ¢,= 1. Hence, equation (7.24) trans-
forms into an equation for y; of the form

U1—9'(2(t)y, = a(t), (7.25)

where
alt) = —([DCCSK(O, 0)wg + D, (0, 0)}2)(1:) -

= [Dy 9(e(®) wy(t) +D,h(t. 2(1). 0)]2(1)
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Here wO(t) is a solution to (7.22). A simple calculation shows that equation (7.25)
can be rewritten in the form

%(yl(tﬂwo(t)) = 9" () (1) +2o(1)) = hy(t, 2(2), 0). (7.26)

The second condition in (7.15) means that equation (7.26) cannot have solutions
bounded on the whole axis. It follows that equation (7.23) has no nonzero solutions,
i.e. equation (7.17) is dichotomous for n(t, u) = &(¢, 1).

Thus, the first condition in (7.15) guarantees the existence of a homoclinic tra-
jectory &(¢, p) while the second one guarantees the exponential dichotomicity of
the linearization of the equation along this trajectory.

As to the existence and properties of the periodic solution (¢, 1), this situa-
tion is much easier since the point 2 is hyperbolic. The standard theorem on im-
plicit functions works here.

It should be noted that condition (7.15) can be modified a little. If we consider a
“shifted” homoclinic trajectory 2 (t) = 2(t—s) for s € R instead of 2(¢) in Theo-
rem 7.2, then the first condition in (7.15) can be rewritten in the form

o0
A(s) = J (\V(t—s), h(t, z(t—s), O))Wdt =0.
—00
If we change the variable ¢t — ¢ +s, then we obtain that

o0

A(s) = '[ (), ne+s, 2, 0)), . (7.27)
It is evident that -
A(s) = J (w(e=s), m(t, 2(t=5), 0)) .

Therefore, the second condition in (7.15) leads us to the requirement A'(s) # 0.
Thus, if the function A(s) has a simple root s, (A(sy) =0, A'(sy) # 0), then the
assertions of Theorem 7.2 hold if we substitute the value z(t —s;) for 2(¢) in (b).
Performing the corresponding shift in the function &(¢, L), we obtain the asser-
tions of the theorem in the original form. Thus, condition (7.15) is equivalent to the
requirement

A(sg)=0, A(s))#0 forsome s,e R, (7.28)
where A(s) has form (7.17).

In conclusion we apply Theorem 7.2 to prove Theorem 6.1. The unperturbed Duffing
equation can be rewritten in the form

xl =X s
{ 2 (7.29)
Zo = Pa;—ox .
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The equation linearized along the homoclinic orbit 2(t) = (n(¢), 1(t)) (see Exer-
cise 7.1) has the form

yl = yz )
. (7.30)
Uy = By —3an(t)*y, -

Let us show that system (7.30) has no solutions which are bounded on the axis and
not proportional to 2(t) . Indeed, if w(¢) = (v(¢), ¥(¢)) is another bounded solution,
then due to the fact that |f(¢)|+]7(¢)] > 0 as [t| > oo, the Wronskian W(t) =
= v(t)N(t) —v(t)N(t) possesses the properties

Y9y =0 and 1l W(t)=0.
dt |Z| —> o

This implies that W(¢) = 0 and therefore v(¢) is proportional to 1(¢).
Evidently, the equation adjoint to (7.30) has the form

Y — By, +3an(t)2y, ,
{ .1 Byy n(t)°yg (731)
Yg = ~Yy -

Since we have that
s = Byy+3an(tfy, = 0,

a solution to (7.31) bounded on R has the form (¢)=(-1(¢); 7(¢)). Let us now
consider the corresponding function A(s). Since in this case h(t, 2, 1) =
= (0; fcoswt—0x,), we have

A(s) = J () [feos(t+s) — ()] de

where

nt) = @sechmt = A/?(QJT”—F@_JBI)_I.

Calculations (try to do them yourself) give us that

2 sinmws 4 3/2
As) = meJ; pEny Lsp,
2./B
Therefore, equation A(s) = 0 has simple roots under condition (6.19). Thus, the as-
sertion of Theorem 6.1 follows from Theorem 7.2.

It should be noted that in this case the function A(s) coincides with the famous
Melnikov function arising in the geometric approach to the study of the transversali-
ty (see, e.g., [1], [2] and the references therein). Therewith conditions (7.28) trans-
form into the standard requirements on the Melnikov function which guarantee the
appearance of homoclinic chaos.

411



412 Homoclinic Chaos in Infinite-Dimensional Systems

Addition to the English translation:

The monographs by Piljugin [1*] and by Palmer [2*] have appeared after publication
of the Russian version of the book. Both monographs contain an extensive bibliogra-
phy and are closely related to the subject of Chapter 6.
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