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Preface

The present book contains fifteen contributions on various topics related to
Number Theory, Physics and Geometry. It presents, together with a forthcom-
ing second volume, most of the courses and seminars delivered at the meeting
entitled “Frontiers in Number Theory, Physics and Geometry”, which took
place at the Centre de Physique des Houches in the french Alps March 9-21,
2003.

The relation between mathematics and physics has a long history. Let us
mention only ordinary differential equations and mechanics, partial differential
equations in solid and fluid mechanics or electrodynamics, group theory is
essential in crystallography, elasticity or quantum mechanics. . .

The role of number theory and of more abstract parts of mathematics
such as topological, differential and algebraic geometry in physics has become
prominent more recently. Diverse instances of this trend appear in the works
of such scientists as V. Arnold, M. Atiyah, M. Berry, F. Dyson, L. Faddeev,
D. Hejhal, C. Itzykson, V. Kac, Y. Manin, J. Moser, W. Nahm, A. Polyakov,
D. Ruelle, A. Selberg, C. Siegel, S. Smale, E. Witten and many others.

In 1989 a first meeting took place at the Centre de Physique des Houches.
The triggering idea was due at that time to the late Claude Itzykson (1938-
1995). The meeting gathered physicists and mathematicians, and was the
occasion of long and passionate discussions.

The seminars were published in a book entitled “Number Theory and
Physics”, J.-M. Luck, P. Moussa, and M. Waldschmidt editors, Springer Pro-
ceedings in Physics, Vol. 47, 1990. The lectures were published as a second
book entitled “From Number Theory to Physics”, with C. Itzykson joining
the editorial team, Springer (2nd edition 1995).

Ten years later the evolution of the interface between theoretical physics
and mathematics prompted M. Waldschmidt, P. Cartier and B. Julia to re-
new the experience. However the emphasis was somewhat shifted to include
in particular selected chapters at the interface of physics and geometry, ran-
dom matrices or various zeta- and L- functions. Once the project of the new
meeting entitled “Frontiers in Number Theory, Physics and Geometry” re-
ceived support from the European Union the High level scientific conference
was organized in Les Houches.
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The Scientific Committee for the meeting “Frontiers in Number The-
ory, Physics and Geometry”, was composed of the following scientists: Frits
Beukers, Jean-Benoit Bost, Pierre Cartier, Predrag Cvitanovic, Michel Duflo,
Giovanni Gallavotti, Patricio Leboeuf, Werner Nahm, Ivan Todorov, Claire
Voisin, Michel Waldschmidt, Jean-Christophe Yoccoz, and Jean-Bernard Zu-
ber. The Organizing Committee included:

Bernard Julia (LPTENS, Paris scientific coordinator),

Pierre Moussa (SPhT CEA-Saclay), and

Pierre Vanhove (CERN and SPhT CEA-Saclay).

During two weeks, five lectures or seminars were given every day to about
seventy-five participants. The topics belonged to three main domains:

1. Dynamical Systems, Number theory, and Random matrices,
with lectures by E. Bogomolny on Quantum and arithmetical chaos, J. Conrey
on L-functions and random matrix theory, J.-C. Yoccoz on Interval exchange
maps, and A. Zorich on Flat surfaces;

2. Polylogarithms and Perturbative Physics,
with lectures by P. Cartier on Polylogarithms and motivic aspects, W. Nahm
on Physics and dilogarithms, and D. Zagier on Polylogarithms;

3. Symmetries and Non-pertubative Physics, with lectures by

A. Connes on Galoisian symmetries, zeta function and renormalization,
R. Dijkgraaf on String duality and automorphic forms,

P. Di Vecchia on Gauge theory and D-branes,

E. Frenkel on Vertex algebras, algebraic curves and Langlands program,
G. Moore on String theory and number theory,

C. Soulé on Arithmetic groups.

In addition seminars were given by participants many of whom could have
given full sets of lectures had time been available. They were: Z. Bern, A.
Bondal, P. Candelas, J. Conway, P. Cvitanovic, H. Gangl, G. Gentile, D.
Kreimer, J. Lagarias, M. Marcolli, J. Marklof, S. Marmi, J. McKay, B. Pioline,
M. Pollicott, H. Then, E. Vasserot, A. Vershik, D. Voiculescu, A. Voros, S.
Weinzierl, K. Wendland, A. Zabrodin.

We have chosen to reorganize the written contributions in two parts ac-
cording to their subject. These naturally lead to two different volumes. The
present volume is the first one, let us now briefly describe its contents.

This volume is itself composed of three parts including each lectures and
seminars covering one theme. In the first part, we present the contributions
on the theme “Random matrices : from Physics to Number Theory”. It begins
with lectures by E. Bogomolny, which review three selected topics of quan-
tum chaos, namely trace formulas with or without chaos, the two-point spec-
tral correlation function of Riemann zeta function zeroes, and the two-point
spectral correlation functions of the Laplace-Beltrami operator for modular



Preface VII

domains leading to arithmetic chaos. The lectures can serve as a non-formal
introduction to mathematical methods of quantum chaos. A general introduc-
tion to arithmetic groups will appear in the second volume. There are then
lectures by J. Conrey who examines relations between random-matrix theory
and families of arithmetic L-functions (mostly in characteristics zero), that is
Dirichlet series satisfying functional equations similar to those obeyed by the
Riemann zeta-function. The relevant L-functions are those associated with
cusp-forms. The moments of L-functions are related to correlation functions
of eigenvalues of random matrices.

Then follow a number of seminar presentations: by J. Marklof on some
energy level statistics in relation with almost modular functions; by H. Then
on arithmetic quantum chaos in a particular three-dimensional hyperbolic
domain, in relation to Maass waveforms. Next P. Wiegmann and A. Zabrodin
study the large N expansion for normal and complex matrix ensembles. D.
Voiculescu reviews symmetries of free probability models. Finally A. Vershik
presents some random (resp. universal) graphs and metric spaces.

In the second part “Zeta functions: a transverse tool”, the theme is zeta-
functions and their applications.

First the lectures by A. Connes were written up in collaboration with M.
Marcolli and have been divided into two parts.

The second one will appear in the second volume as it relates to renor-
malization of quantum field theories. In their first chapter they introduce
the noncommutative space of commensurability classes of Q-lattices and the
arithmetic properties of KMS states in the corresponding quantum statistical
mechanical system. In the 1-dimensional case this space gives the spectral
realization of zeroes of zeta-functions. They give a description of the multiple
phase transitions and arithmetic spontaneous symmetry breaking in the case
of Q-lattices of dimension two. The system at zero temperature settles onto a
classical Shimura variety, which parametrizes the pure phases of the system.
The noncommutative space has an arithmetic structure provided by a ratio-
nal subalgebra closely related to the modular Hecke algebra. The action of
the symmetry group involves the formalism of superselection sectors and the
full noncommutative system at positive temperature. It acts on values of the
ground states at the rational elements via the Galois group of the modular
field.

Then we report seminars given by A. Voros on zeta functions built on
Riemann zeroes; by J. Lagarias on Hilbert spaces of entire functions and
Dirichlet L-functions; and by M. Pollicott on Dynamical zeta functions and
closed orbits for geodesic and hyperbolic flows.

In the third part “ Dynamical systems: interval exchanges, flat surfaces and
small divisors”, are gathered all the other contributions on dynamical systems.
The lectures by A. Zorich provide an extensive self-contained introduction to
the geometry of Flat surfaces which allows a description of flows on compact
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Riemann surfaces of arbitrary genus. The course by J.-C. Yoccoz analyzes
Interval exchange maps such as the first return maps of these flows. Ergodic
properties of maps are connected with ergodic properties of flows. This leads
to a generalization to surfaces of higher genus of the irrational flows on the
two dimensional torus. The adaptation of a continued fraction like algorithm
to this situation is a prerequisite to extension of small divisors techniques to
higher genus cases.

Finally we conclude this volume with seminars given by G. Gentile on Br-
juno numbers and dynamical systems and by S. Marmi on Real and Complex
Brjuno functions. In both talks either perturbation of irrational rotations or
twist maps are considered, with fine details on arithmetic conditions (Brjuno
condition and Brjuno numbers) for stability of trajectories under perturba-
tions of parameters, and on the size of stability domains in the parametric
space (Brjuno functions).

The following institutions are most gratefully acknowledged for their gen-
erous financial support to the meeting:

Département Sciences Physiques et Mathématiques and the Service de
Formation permanente of the Centre National de la Recherche Scientifique;
Ecole Normale Supérieure de Paris; Département des Sciences de la matiéere du
Commissariat a I’Energie Atomique; Institut des Hautes Etudes Scientifiques;
National Science Foundation; Ministere de la Recherche et de la Technolo-
gie and Ministeére des Affaires Etrangéres; The International association of
mathematical physics and most especially the Commission of the European
Communities.

Three European excellence networks helped also in various ways. Let
us start with the most closely involved “Mathematical aspects of Quantum
chaos”, but the other two were “Superstrings” and “Quantum structure of
spacetime and the geometric nature of fundamental interactions”.

On the practical side we thank CERN Theory division for allowing us
to use their computers for the webpage and registration process. We are also
grateful to Marcelle Martin, Thierry Paul and the staff of les Houches for their
patient help. We had the privilege to have two distinguished participants:
Cécile de Witt-Morette (founder of the Les Houches School) and the late
Bryce de Witt whose communicative and critical enthusiasm were greatly
appreciated.

Paris, July 2005 Bernard Julia
Pierre Cartier

Pierre Moussa

Pierre Vanhove
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Summary. The lectures are centered around three selected topics of quantum
chaos: the Selberg trace formula, the two-point spectral correlation functions of
Riemann zeta function zeros, and the Laplace—Beltrami operator for the modular
group. The lectures cover a wide range of quantum chaos applications and can serve
as a non-formal introduction to mathematical methods of quantum chaos.
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Introduction

Quantum chaos is a nickname for the investigation of quantum systems which
do not permit exact solutions. The absence of explicit formulas means that
underlying problems are so complicated that they cannot be expressed in
terms of known (~ simple) functions. The class of non-soluble systems is very
large and practically any model (except a small set of completely integrable
systems) belongs to it. An extreme case of quantum non-soluble problems
appears naturally when one considers the quantization of classically chaotic
systems which explains the word ‘chaos’ in the title.

As, by definition, for complex systems exact solutions are not possible,
new analytical approaches were developed within quantum chaos. First, one
may find relations between different non-integrable models, hoping that for
certain questions a problem will be more tractable than another. Second,
one considers, instead of exact quantities, the calculation of their smoothed
values. In many cases such coarse graining appears naturally in experimental
settings and, usually, it is more easy to treat. Third, one tries to understand
statistical properties of quantum quantities by organizing them in suitable
ensembles. An advantage of such an approach is that many different models
may statistically be indistinguishable which leads to the notion of statistical
universality.

The ideas and methods of quantum chaos are not restricted only to quan-
tum models. They can equally well be applied to any problem whose analytical
solution either is not possible or is very complicated. One of the most spec-
tacular examples of such interrelations is the application of quantum chaos
to number theory, in particular, to the zeros of the Riemann zeta function.
Though a hypothetical quantum-like system whose eigenvalues coincide with
the imaginary part of Riemann zeta function zeros has not (yet!) been found,
the Riemann zeta function is, in many aspects, similar to dynamical zeta func-
tions and the investigation of such relations already mutually enriched both
quantum chaos and number theory (see e.g. the calculation by Keating and
Snaith of moments of the Riemann zeta function using random matrix theory
43)).

The topics of these lectures were chosen specially to emphasize the inter-
play between physics and mathematics which is typical in quantum chaos.

In Chapter I different types of trace formulas are discussed. The main at-
tention is given to the derivation of the Selberg trace formula which relates
the spectral density of automorphic Laplacian on hyperbolic surfaces gener-
ated by discrete groups with classical periodic orbits for the free motion on
these surfaces. This question is rarely discussed in the Physics literature but
is of general interest because it is the only case where the trace formula is
exact and not only a leading semiclassical contribution as for general dynam-
ical systems. Short derivations of trace formulas for dynamical systems and
for the Riemann zeta function zeros are also presented in this Chapter.
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According to the well-known conjecture [17] statistical properties of eigen-
values of energies of quantum chaotic systems are described by standard ran-
dom matrix ensembles depending only on system symmetries. In Chapter II
we discuss analytical methods of confirmation of this conjecture. The largest
part of this Chapter is devoted to a heuristic derivation of the ‘exact’ two-
point correlation function for the Riemann zeros. The derivation is based on
the Hardy—Littlewood conjecture about the distribution of prime pairs which
is also reviewed. The resulting formula agrees very well with numerical calcu-
lations of Odlyzko.

In Chapter III a special class of dynamical systems is considered, namely,
hyperbolic surfaces generated by arithmetic groups. Though from the view-
point of classical mechanics these models are the best known examples of
classical chaos, their spectral statistics are close to the Poisson statistics typ-
ical for integrable models. The reason for this unexpected behavior is found
to be related with exponential degeneracies of periodic orbit lengths charac-
teristic for arithmetical systems. The case of the modular group is considered
in details and the exact expression for the two-point correlation function for
this problem is derived.

To be accessible for physics students the lectures are written in a non-
formal manner. In many cases analogies are used instead of theorems and
complicated mathematical notions are illustrated by simple examples.
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I. Trace Formulas

Different types of trace formulas are the cornerstone of quantum chaos.
Trace formulas relate quantum properties of a system with their classical
counterparts. In the simplest and widely used case the trace formula expresses
the quantum density of states through a sum over periodic orbits and each
term in this sum can be calculated from pure classical mechanics.

In general, dynamical trace formulas represent only the leading term of
the semiclassical expansion in powers of i. The computation of other terms is
possible though quite tedious [1]. The noticeable exception is the free motion
on constant negative curvature surfaces generated by discrete groups where
the trace formula (called the Selberg trace formula) is exact. The derivation
of this formula is the main goal of this Section.

For clarity, in Sect. 1 the simplest case of the rectangular billiard is briefly
considered and the trace formula for this system is derived. The derivation
is presented in a manner which permits to generalize it to the Selberg case
of constant negative curvature surfaces generated by discrete groups which
is considered in details in Sect. 2. In Sects. 3 and 4 the derivations of the
trace formula for, respectively, classically integrable and chaotic systems are
presented. In Sect. 5 it is demonstrated that the density of Riemann zeta
function zeros can be written as a sort of trace formula where the role of
periodic orbits is played by prime numbers. Section 6 is a summary of this
Chapter.

1 Plane Rectangular Billiard

To clarify the derivation of trace formulas let us consider in details a very
simple example, namely, the computation of the energy spectrum for the plane
rectangular billiard with periodic boundary conditions.

This problem consists of solving the equation

(A + En)kpn(zv y) =0 (1)

where A = 92/02% + 02/0y? is the usual two-dimensional Laplacian with
periodic boundary conditions

Un(z +a,y) = Un(z,y +b) = ¥n(,y) (2)

where a and b are sizes of the rectangle.

The plane wave
g’n(l’ y> — eik1x+ik2y

is an admissible solution of (1). Boundary conditions (2) determine the allowed
values of the momentum k
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27 27
ki=—n1, ko= —ng,
a b
with ny,ne = 0,+1, 42, ..., and, consequently, energy eigenvalues are

2 2 2 2
En1n2 = (an1> + (bn2> . (3)

The first step of construction of trace formulas is to consider instead of indi-
vidual eigenvalues their density defined as the sum over all eigenvalues which
explains the word ‘trace’

“+oo

dB)= Y S(E-Enu). (4)

n1,n2=—00

To transforms this and similar expressions into a convenient form one often
uses the Poisson summation formula

+o00 +o00 +o00 )
S fm= Y / 2T (1) dn (5)

An informal proof of this identity can, for example, be done as follows.

First
“+o0

+oo
> = [ r@glads

n=-—o00 -

where g(z) is the periodic §-function

+oo
g(z) = Z o(x —n).

n=—oo

As any periodic function with period 1, g(x) can be expanded into the Fourier

series
—+oo

g(x) _ Z e271'imzcm )

m=—0o0

Coefficients ¢, are obtained by the integration of g(x) over one period

+1/2 _
Cm = / g(y)e >"dy =1
—1/2

which gives (5).
By applying the Poisson summation formula (5) to the density of states
(4) one gets
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+oo
d(E) _ Z //GQWi(mlnl—l-mzng) %

mi1,Ma=—00

2T 2 2T 2
X 0 <E — (711) — (’ng) ) dnldng .
a b
Perform the following substitutions: E = k2, n; = arcosg/2n, and ny =
brsin /2. Then dnydng = abrdrdy/(27)? and

+o0o
d(E) _ /’L(D) Z ei(mlacos<p+mgbsin<p)r5(k2 _ 7"2)7“d7“d
- (2n? 7

mi,Ma2=—00

D +oo 27 .
2/zé7r))2 > /0 etV mattmatteos ¢ gy

mi,ma=—00

D) X
- A Z JO(kLP) ’

mi,May=—00

where p(D) = ab is the area of the rectangle,

1 o ix cos ¢
Jo(z) = ), e dy

is the Bessel function of order zero (see e.g. [32], Vol. 2, Sect. 7), and

Ly = /(m1a)? + (m3b)?

is (as it is easy to check) the length of a periodic orbit in the rectangle with
periodic boundary conditions.

Separating the term with m; = my = 0 one concludes that the eigenvalue
density of the rectangle with periodic boundary conditions can be written as
the sum of two terms

d(E) = d(E) + d“*)(E)

where D)
7 L
d(E) =
() =11 (6)
is the smooth part of the density and
D
d05)(E) = u(D) Z Jo(kLy) (7)
4 p-o.

is the oscillating part equal to a sum over all periodic orbits in the rectangle.

As
Jo(z) == \/Zcos (z - %)
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the oscillating part of the level density in the semiclassical limit k — oo takes

the form
MZ cos( » %) . (8)

Let us repeat the main steps which lead to this trace formula. One starts
with an explicit formula (like (3)) which expresses eigenvalues as a function
of integers. Using the Poisson summation formula (5) the density of states (4)
is transformed into a sum over periodic orbits. In Sect. 3 it will be demon-
strated that exactly this method can be applied for any integrable system in
the semiclassical limit where eigenvalues can be approximated by the WKB
formulas.

d(osc)

More Refined Approach

The above method of deriving the trace formula for the rectangular billiard

can be applied only if one knows an explicit expression for eigenvalues. For

chaotic systems this is not possible and another method has to be used.
Assume that one has to solve the equation

(By — H)Wph(x) =0

for a certain problem with a Hamiltonian H. Under quite general conditions
eigenfunctions ¥, (x) can be chosen orthogonal

/Wn (x)¥ (x)dx = dpm,
and they form a complete system of functions

D Ua(x)Ti(y) = d(x —y) .

The Green function of the problem, by definition, obeys the equation
(E—H)Gp(x,y) =0d(x—y)

and the same boundary conditions as the original eigenfunctions. Its explicit
form can formally be written through exact eigenfunctions and eigenvalues as
follows

Golxy) = 3 ) )

The +ie prescription determines the so-called retarded Green function.
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Ezample

To get used to Green functions let us consider in details the calculation of the
Green function for the free motion in f-dimensional Euclidean space. This
Green function obeys the free equation

(B+ 1)WY (x,y) = 6(x —y) - (10)

Let us look for the solution of the above equation in the form Gg) (x,y) =G(r)
where r = |x — y| is the distance between two points.
Simple calculations shows that for » # 0 G(r) obeys the equation

£ [-146 R
dr? r dr h2

G=0

where F = k2.
After the substitution

k
G(r)= r=12g (r)
h
one gets for g(z) the Bessel equation (see e.g. [32], Vol. 2, Sect. 7)

2 1 2
dg+dg+(1—”>g:0 (11)

dz2  zdz 22
with v =|f/2 — 1].

There are many solutions of this equation. The above +ie prescription
means that when k& — k + ie with a positive ¢ the Green function has to
decrease at large distances. It is easy to see that G(r) is proportional to
eTk/I at large r. The +ie prescription selects a solution which behaves at

infinity like e™™*"/" with positive k. The required solution of (11) is the first
Hankel function (see [32], Vol. 2, Sect. 7)

9(z) = CHD (2) (12)

where C is a constant and Hﬁl)(z) has the following asymptotics for large

and small z
HO(z) =5 [ 2 gie=mv/2=n/2)
v T2

() 2—0 { —i2"I'(v)z="/m, v#2

— 2ilnz/m , v=2"

and

The overall factor in (12) has to be computed from the requirement that the
Green function will give the correct d-function contribution in the right hand
side of (10). This term can appear only in the result of differentiation of the
Green function at small » where it has the following behaviour
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G(r) =2 Go(r) = Apr*/

with W T ()
VKRV v
Ay =Cp———~2
1 =0 irkv
One should have
h2AG0(r) =4(r) . (13)

Multiplying this equality by a suitable test function f(r) quickly decreasing
at infinity one has

hZ/f(r)AGo(r)dr = £(0) .

Integrating by parts one obtains

2 / ol )2 Gy(r)dr = —£(0)

Oz,

As both functions f(r) and Go(r) depend only on the modulus of r one finally
s < df(r) dGo(r)
2 r ol”) r-1 _
h /o o g " 4rSi=—1(0)

where Sy_; is the volume of the (f — 1)-dimensional sphere z +...+z} = 1.
Using (13) one concludes that in order to give the §-function term Ay has to
obey

RPAp(f—2)Sp_1=—1.

One of the simplest method of calculation of S¢_; is the following identity

> 2 & ) > 2 1/2
e “1dxy e “2dxy ... e g”fdxf:w/ .
— 00 — 00 — 00

By changing Cartesian coordinates in the left hand side to hyper-spherical

ones we obtain -
/ e*ﬂrf*ldrSf_l =nl/?
0

which gives

/2

I'(f/2)

where I'(z) is the usual gamma-function (see e.g. [32], Vol. 1, Sect. 1).

Combining together all terms and using the relation xI'(x) = I'(z+1) one
gets the explicit expression for the free Green function in f dimensions

Sp oy =

G(O)(X y)= 417#(];7;%)1{ ( |X—Y|> (14)

where v = |f/2 — 1. In particular, in the two-dimensional Euclidean space
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1 k
6 xy) = ot (- v1) (15)

Another method of calculation of the free Green function is based on (9) which
for the free motion is equivalent to the Fourier expansion

dp eip(X7y)/h
e — / . 16
B (%) @) E—p? +ic (16)

Performing angular integration one obtains the same formulas as above.

The knowledge of the Green function permits to calculate practically all
quantum mechanical quantities. In particular, using

1

_ =0 n5(x)
T+ 1€

Im

one gets that the eigenvalue density is expressed through the exact Green
function as follows

d(E) = —%Im/D Gp(x,x)dx . (17)

This general expression is the starting point of all trace formulas.
For the above model of the rectangle with periodic boundary conditions
the exact Green function has to obey

0?2 02
(@ + £ + E)Gp(z,y;2',y) = 6(z — 2")o(y — ¢/) (18)

and the periodic boundary conditions
Ge(z +na,y+mba’,y') = Ge(z,y;2",y) (19)

for all integer m and n.

The fact important for us later is that the rectangular billiard with periodic
boundary conditions can be considered as the result of the factorization of the
whole plane (z,y) with respect to the group of integer translations

x—x+na, y—y+mb (20)

with integer m and n.

The factorization of the plan (z,y) with respect to these transformations
means two things. First, any two points connected by a group transformation
is considered as one point. Hence (19) fulfilled. Second, inside the rectangle
there is no points which are connected by these transformations. In mathe-
matical language the rectangle with sizes (a,b) is the fundamental domain of
the group (20).
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Correspondingly, the exact Green function for the rectangular billiard with
periodic boundary conditions equals the sum of the free Green function over
all elements of the group of integer translations (20)

oo
Gplz,y2'y)= Y. GP(x+nay+mba’y).

n,m=—oo

Here Gg) (x,x’) is the Green function corresponding to the free motion with-
out periodic boundary conditions. To prove formally that it is really the exact
Green function one has to note that (i) it obeys (18) because each term in the
sum obeys it, (ii) it obeys boundary conditions (19) by construction (provided
the sum converges), and (iii) inside the initial rectangle only identity term can
produce a d-function contribution required in (18) because all other terms will
give §-functions outside the rectangle.

The next steps are straightforward. The free Green function for the two-
dimensional Euclidean plane has the form (15). From (17) it follows that the
eigenvalue density for the rectangular billiard is

—lIm / Gp(x,x)dx
™ D

iﬂ > /D Im H{" (k (ma)? + (nb)2) dx

D D !
= %T) + %T) >, JolkLy) (21)
which coincides exactly with (6) and (7) obtained directly from the knowledge
of the eigenvalues.

The principal drawback of all trace formulas is that the sum over periodic
orbits does not converge. Even the sum of the squares diverges. The simplest
way to treat this problem is to multiply both sides of (21) by a suitable test
function h(F) and integrate them over E. In this manner one obtains

Zh(En)z%f)/ h(E dE+—Z/ E)Jo(VEL,)dE

When the Fourier harmonics of h(F) decrease quickly the sum over periodic
orbits converges and this expression constitutes a mathematically well de-
fined trace formula. Nevertheless for approximate calculations of eigenvalues
of energies one can still use ‘naive’ trace formulas by introducing a cut-off on
periodic orbit sum. For example, in Fig. 1 the result of numerical application
of the above trace formula is presented. In performing this calculation one
uses the asymptotic form of the oscillating part of the density of state (8)
with only 250 first periodic orbits. Though additional oscillations are clearly
seen, one can read off this figure the positions of first energy levels for the
problem considered. In the literature many different methods of resummation
of trace formulas were discussed (see e.g. [19] and references therein).

d(E)
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30

20 -y i ]

-10 . . . .
0 20 40 60 80 100

Fig. 1. The trace formula for the rectangular billiard with periodic boundary con-
ditions calculated by taking into account 250 different periodic orbits. Dotted lines
indicate the position of exact energy levels.

2 Billiards on Constant Negative Curvature Surfaces

The crucial point in the second method of derivation of the trace formula for
the rectangular billiard with periodic boundary conditions was a representa-
tion of the exact Green function as a sum of a free Green function over all
images of the initial point. This method of images can be applied for any
problem which corresponds to a factorization of a space over the action of a
discrete group. In the Euclidean plane (i.e. the space of zero curvature) there
exist only a few discrete groups. Much more different discrete groups are pos-
sible in the constant negative curvature (hyperbolic) space. Correspondingly,
one can derive the trace formula (called the Selberg trace formula) for all
hyperbolic surfaces generated by discrete groups.

The exposition of this Section follows closely [20]. In Sect. 2.1 hyperbolic
geometry is non-formally discussed. The important fact is that on hyperbolic
plane there exist an infinite number of discrete groups (see e.g. [42]). Their
properties are mentioned in Sect. 2.2. In Sect. 2.3 the classical mechanics on
hyperbolic surfaces is considered and in Sect. 2.4 the notion of quantum prob-
lems on such surfaces is introduced. The construction of the Selberg trace
formula for hyperbolic surfaces generated by discrete groups consists of two
steps. The first is the explicit calculation of the free hyperbolic Green func-
tion performed in Sect. 2.5. The second step includes the summation over all
group transformations. In Sect. 2.6 it is demonstrated that the identity group
element gives the mean density of states. Other group elements contribute to
the oscillating part of the level density and correspond to classical periodic
orbits for the motion on systems considered. The relation between group ele-
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ments and periodic orbits is not unique. All conjugated matrices correspond
to one periodic orbit. The summation over classes of conjugated elements is
done in Sect. 2.7. Performing necessary integrations in Sect. 2.8 one gets the
famous Selberg trace formula. Using this formula in Sect. 2.9 we compute the
asymptotic density of periodic orbits for discrete groups. In Sect. 2.10 the
construction of the Selberg zeta function is presented. The importance of this
function follows from the fact that its non-trivial zeros coincide with eigenval-
ues of the Laplace—Beltrami operator automorphic with respect to a discrete
group (see Sect. 2.11). Though the Selberg zeta function is defined formally
only in a part of the complex plan, it obeys a functional equation (Sect. 2.12)
which permits the analytical continuation to the whole complex plane.

2.1 Hyperbolic Geometry

The standard representation of the constant negative curvature space is the
Poincaré upper half plane model (x,y) with y > 0 (see e.g. [7] and [42]) with
the following metric form

1

2
dsfy2

(dz? + dy?) .

The geodesic in this space (= the straight line) connecting two points is the
arc of circle perpendicular to the abscissa axis which passes through these
points (see Fig. 2). The distance d(x,y) between two points x = (z1,y1) and

Fig. 2. The Poincaré model of constant negative curvature space. Solid line indicates
the geodesic passing through points A and B.

y = (x2,y2) is defined as the length of the geodesic connecting these points.
Explicitly
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(z1 — I2)2 + (y1 — y2)2 —1 |21 — 22|2

sh d =1 e Ss) B
coshd(x,y) + 2y1Y2 2Im zIm 2y

(22)

where in the last equation one combined coordinates (z,y) into a complex
number z = x + y.

In the Euclidean plane the distance between two points remains invariant
under 3-parameter group of rotations and translations. For constant negative
curvature space the distance (22) is invariant under fractional transformations

az+b

g —
=T _g(z)icz—&—d

(23)

with real parameters a, b, ¢, d. This invariance follows from the following rela-
tions

Z,_Z,_azl+b_azg+b_(ad_bc) Z1 — 22
Vo7 i +d cam+d (cz1 +d)(cza +d)’
and .
"~ 2 — Y = (ad — b Y .
y 2i( Z)=la C)|cz+d|2

Substituting these expressions to (22) one concludes that the distance between
two transformed points 21, 25 is the same as between initial points z1, 2zo.

As fractional transformations are not changed under the multiplication of
all elements a, b, ¢, d by a real factor, one can normalize them by the require-
ment

ad —bc=1.

In this case the distance preserving transformations are described by 2 x 2
matrices with real elements and unit determinant

ab _ _
g_<cd>’ and detg=ad—bc=1.

It is easy to check that the result of two successive fractional transformations
(23) corresponds to the usual multiplication of the corresponding matrices.

The collection of all such matrices forms a group called the projective spe-
cial linear group over reals and it is denoted by PSL(2,IR). ‘Linear’ in the name
means that it is a matrix group, ‘special’ indicates that the determinant equals
1, and ‘projective’ here has to remind that fractional transformations (23) are
not changed when all elements are multiplied by £1 which is equivalent that
two matrices £1 corresponds to the identity element of the group.

The free classical motion on the constant negative curvature surface is
defined as the motion along geodesics (i.e. circles perpendicular to the abscissa
axis). The measure invariant under fractional transformations is the following
differential form
dxdy

y2

dp = . (24)
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This measure is invariant in the sense that if two regions, D and D’, are related
by a transformation (23), D’ = g(D), the measures of these two regions are
equal, u(D") = u(D).

The operator invariant with respect to distance preserving transformations
(23) is called the Laplace-Beltrami operator and it has the following form

9? 0?
A =9 =— +=— | . 25
LB=Y (8z2+6y2> (25)
Its invariance means that

Arpf(9(z)) = AL f(2)

for any fractional transformation g(z).
Practically all notions used for the Euclidean space can be translated to
the constant negative curvature case (see e.g. [7]).

2.2 Discrete groups

A rectangle (a torus) considered in Sect. 1 was the result of the factorization
of the free motion on the plane by a discrete group of translations (20). Ex-
actly in the same way one can construct a finite constant negative surface by
factorizing the upper half plane by the action of a discrete group € PSL(2,IR).

A group is discrete if (roughly speaking) there is a finite vicinity of every
point of our space such that the results of all the group transformations (except
the identity) lie outside this vicinity. The images of a point cannot approach
each other too close.

Ezample

The group of transformation of the unit circle into itself. The group consists
of all transformations of the following type

z—g(n)z, and g(n) = exp(2wian),

where « is a constant and n is an integer. If « is a rational number « = M /N,
g(n) can take only a finite number of values (g(n))" = 1 and the corresponding
group is discrete. But if « is an irrational number, the images of any point
cover the whole circle uniformly and the group is not discrete.

Modular Group

Mathematical fact: in the upper half plane there exists an infinite number of
discrete groups (see e.g. [42]). As an example let us consider the group of 2 x 2
integer matrices with unit determinant

(Z”;) , m,n,k,[ are integers and ml —nk=1.
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This is evidently a group. It is called the modular group PSL(2,7Z) (Z means
integers) and it is one of the most investigated groups in mathematics.

This group is generated by the translation 7': z — 241 and the inversion
S: z— —1/z (see e.g. [42]) which are represented by the following matrices

e (3 (%)

These matrices obey defining relations
S?=—1,(ST)*=1

and are generators in the sense that any modular group matrix can be repre-
sented as a product of a certain sequence of matrices corresponding to S and
T.

Fundamental Region

Similarly to the statement that the rectangular billiard is a fundamental do-
main of integer translations, one can construct a fundamental domain for any
discrete group.

By definition the fundamental domain of a group is defined as a region on
the upper half plane such that (i) for all points outside the fundamental do-
main there exists a group transformation that puts it to fundamental domain
and (ii) no two points inside the fundamental domain are connected by group
transformations.

The fundamental domain for the modular group is presented in Fig. 3. In
general, the fundamental region of a discrete group has a shape of a polygon
built from segments of geodesics. Group generators identify corresponding
sides of the polygon.

<~

-1-120 172 1

Fig. 3. Fundamental domain of the modular group. The indicated parts are identi-
fied by the corresponding generators
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2.3 Classical Mechanics

Assume that we have a discrete group G with corresponding matrices M €

G € PSL(2,R)
ab
M= (d> |

The factorization over action of the group means that points z and 2z’ where

az+b
2 = ot d (26)

are identified i.e. they are considered as one point. The classical motion on the
resulting surface is the motion (with unit velocity) on geodesics (semi-circles
perpendicular to the real axis) inside the fundamental domain but when a
trajectory hits a boundary it reappears from the opposite side as prescribed
by boundary identifications.
For each hyperbolic matrix M € G with |Tr M| > 2 one can associate
a periodic orbit defined as a geodesics which remains invariant under the
corresponding transformation. The equation of such invariant geodesics has
the form
c(@®+y*)+(d—a)z—b=0. (27)

This equation is the only function which has the following property. If z =
x + iy belongs to this curve then

, az+b
z

cz+d

also belongs to it.
The length of the periodic orbit is the distance along these geodesics be-
tween a point and its image. Let 2z’ as above be the result of transformation

(26) then the distance between z and 2z’ is

|z =2
hl,=1+ ———

coshl, + 2y

But 3 = y/|cz + d|* and

az+b  cle+iy)? —(d—a)(x+iy) —b  —2cy+i(d—a+ 2cx)
cz+d cz+d -V cz+d '

Here we have used the fact that point z belongs to the periodic orbit (i.e. its
coordinates obey (27)). Therefore

1
coshl, =1+ §| —2cy +i(d — a + 2acx)|?

:1+%[4bc+(d—a)2]:%(a—&—d)Q—l.
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Notice that the length of periodic orbit does not depend on an initial point
and is a function only of the trace of the corresponding matrix.
Finally one gets

l
2 cosh 5” =|Tr M| . (28)

Periodic orbits are defined only for hyperbolic matrices with |Tr M| > 2. For
discrete groups only a finite number of elliptic matrices with |Tr M| < 2 can
exist (see [42]).

To each hyperbolic group matrix one can associate only one periodic orbit
but each periodic orbit corresponds to infinitely many group matrices. This
is due to the fact that z and g(z) for any group transformation have to be
considered as one point. Therefore all matrices of the form

SMS~1

for all S € G give one periodic orbit. These matrices form a class of conju-
gated matrices and periodic orbits of the classical motion are in one-to-one
correspondence with classes of conjugated matrices.

2.4 Quantum Problem

The natural ‘quantum’ problem on hyperbolic plane consists in considering
the same equation as in (1) but with the substitution of the invariant Laplace—
Beltrami operator (25) instead of the usual Laplace operator

,, 0% 02

for the class of functions invariant (= automorphic) with respect to a given
discrete group G

(', y') = Wn(,y)

where 2/ = 2’ + i3y’ is connected with z = x + iy by group transformations

, az+b
z = .
cz+d

It is easy to check that the Laplace—Beltrami operator (25) is self-adjoint with
respect to the invariant measure (24), i.e.

/ U (AW)dp = / (AT dp

and all eigenvalues F,, are real and E,, > 0.
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2.5 Construction of the Green Function

As in the case of plain rectangular billiards the construction of the Green
function requires two main steps.

e The computation of the exact Green function for the free motion on the
whole upper half plane.

e The summation of the free Green function over all images of the initial
point under group transformations.

The free hyperbolic Green function obeys the equation
(ALs + E)GY (x,x)) = 6(x — X))
and should depend only on the (hyperbolic) distance between points x, x’

(-2 +W-y)

= coshd N=1
u = cosh d(x,x") + 5y

After simple calculations one gets that G(y) with y # 0 obeys the equation
for the Legendre functions (see e.g. [32], Vol.1, Sect. 3)

(1—u2)(§7§ —Qu%—kl(l—i—l)G:O
where 1
E:Z+k2= I(1+1)
and 1
l:—i—ik:

As for the plane case the required solution of the above equation should grow
as e’*® when d — oo and should behave like Ind/2m when d — 0. From [32],
Vol.1, Sect. 3 it follows that

1
G%))(X, x') = f%Q_%_ik(cosh d(x,x")) .

Here Q_1_;;(coshd) is the Legendre function of the second kind with the
integral representation [32], Vol. 1 (3.7.4)

1 & etkrdr
_1_;yp(coshd) = — _—
@ > il ) \/i/d v/coshr — coshd

and the following asymptotics
Q,%,ik(cosh d) =9 log d

and
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d—oo ™ i _
) h i(kd—m/4) )
@yt (coshd) \/ 2k sinh d°

The automorphic Green function is the sum over all images of one of the
points

Gp(xx) =) G (x,g(x)
g
where the summation is performed over all group transformations.
2.6 Density of State
Using the standard formula (17)
™

d(E) = ! /D Im Gg(x,x)du

one gets the expression for the density of states as the sum over all group

elements
1 o0 sin krdr
wp - L[ |
2\/57-(-2 zg: D ( d(z,9(2)) \/cOShT — cosh d(Z, g(z))

Mean Density of States

dzdy
Y2

The mean density of states corresponds to the identity element of our group.
In this case g(z) = z and d(z, g(z)) = 0. Therefore

A(E) 1 / dzdy [ sinkr d
= r
w2r2 Jp y? Jo +eoshr —1

~ u(D) sin kr .
B (27r)2/0 sinh(r/2)d

dzdy
uo)= [
DY

is the (hyperbolic) area of the fundamental domain.
The last integral is

where

/ _Smikrdr = wtanh 7wk
o sinh(r/2)

and the mean density of states takes the form

d(E) = “iD ) tanh k.

7

When k£ — oo it tends to u(D)/4m as for the plane case.
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2.7 Conjugated Classes

The most tedious step is the computation of the contribution from non-trivial
fractional transformations.

Let us divide all group matrices into classes of conjugated elements. It
means that all matrices having the form

g/ _ SgS_l

where S belong to the group are considered as forming one class.
Two classes either have no common elements or coincide. This statement
is a consequence of the fact that if

51915f1 = 5292551

then go = Sgng:;l where S5 = Sl_lSQ. Therefore g belongs to the same class
as g1 and group matrices are split into classes of mutually non-conjugated
elements.

The summation over group elements can be rewritten as the double sum
over classes of conjugated elements and the elements in each class. Let g be a
representative of a class. Then the summation over elements in this class is

> /D f(z. 89571 (2))du

and the summation is performed over all group matrices S provided there is
no double counting in the sum. The latter means that matrices S should be
such that they do not contain matrices for which

S19S; " = 295,
or the matrix S3 = 57 1Sy commutes with matrix g
S39 =953 .

Denote the set of matrices commuting with g by S;. They form a subgroup
of the initial group G as their products also commute with g. To ensure
the unique decomposition of group matrices into non-overlapping classes of
conjugated elements the summation should be performed over matrices S such
that no two of them can be represented as

SQ = 851

and s belongs to S;. This is equivalent to the statement that we sum over all
matrices but the matrices sS are considered as one matrix. It means that we
factorize the group over S, and consider the group G/S,.

As the distance is invariant under simultaneous transformations of both
coordinates
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d(z,2") = d(5(2), 5(z'))
one has
d(z,9(2)) = d(S(2), S9(2)) = d(y, Sg5~* (y))
where y = 5(z2).
These relations give

[ s sos wndn= [ fleg)dn

D S-1(D)

and the last integral is taken over the image of the fundamental domain under
the transformation S—!. Therefore

> /D Flato S5~ @) =3 /S F(d(z g(2)))dn

(D)

For different S images S—!(D) are different and do not overlap. The integrand
does not depend on S and

g /D F(d(y, S95 () = /D e o)

where

Dy=> S7Y(D).
S

The sum of all images S~!(D) will cover the whole upper half plane but we
have to sum not over all S but only over S factorized by the action the group
of matrices commuting with a fixed matrix g. Therefore the sum will be a
smaller region.

Any matrix g can be written as a power of a primitive element

9=90

and it is (almost) evident that matrices commuting with ¢ are precisely the
group of matrices generated by go. This is a cyclic Abelian group consisting
of all (positive, negative, and zero) powers of g

Sg=g0, m=0,%£1,£2,...

and as a discrete group it has a fundamental domain FD,.
Therefore

> [ st sos e = [ pta)).

SEG/S, FDyg

In the left hand side the integration is taken over the fundamental domain of
the whole group G and the summation is done over matrices from G factorized
by the subgroup S, of matrices which commutes with a fixed matrix g. In the
right hand side there is no summation but the integration is performed over
the (large) fundamental domain of the subgroup Sy.
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2.8 Selberg Trace Formula

We have demonstrated that the density of states of the hyperbolic Laplace—
Beltrami operator automorphic over a discrete group can be represented as

d(E) = d(E)+)_dy(E)

where

sin kr

1 o0
dy(E) = —— d dr
4(E) 2/272 /FDg ’u/d(z,g(z)) \/coshr—coshd(z,g(z))

and the summation is performed over classes of conjugated matrices.
Let us consider the case of hyperbolic matrices g = g¢* (i.e. |Tr go| > 2).
By a suitable matrix B such matrix can be transform to the diagonal form

(X O

For hyperbolic matrices \g is real and |\g| > 1. By the same transformation
the matrix ¢ will be transformed to

(A0
ByB _(OAl
and A = A"

Assume that g is in the diagonal form. Then g(z) = A2z and

(2~ 12 +9?)

coshd(z,g(z)) =1+ 232y

Because )\ is real the transformation z’ = A3z gives y' = A2y and the funda-
mental domain of S; = A3™z has the form of a horizontal strip 1 < y < A3
indicated in Fig. 4. Now

dy(E) :/_D:de/l)\gF ((A2 - 1));(;224-1/2)) d%/.

Y

Introducing a new variable £ = zy one gets

dg(E):/l/\gCZL//O;F<(1+£2)(>\2)\21)2) d¢
1nA§/OOF<(1+52)(A2;21)2) de .

— 00

After the substitution
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X

Fig. 4. Fundamental domain of multiplication group

u:(1+£2)(A2%)2

one obtains
In /\(2) © F(u)

d,(F) = du
9(E) — =
where ()\2 )
-1 9 1
ug = T = A + F —2.

The variable u is connected with the distance by coshd = 14 /2 and the
function F(2(coshd — 1)) has the form

> sin kr

1
2272 Jg +/coshr — coshd

Introduce a variable 7 connected with r as u is connected with d

F(2(coshd — 1)) =

cosh . r dr 1
sht = -, ==
2 dr T2 41
It gives
1 [ sin kr(7)
Fu) =5 5
212 Jy (r —u)(r? +47)
and a2
n
dy(E 0
oF) = o5 = (w0)
where

flwr= /w m = / NG Sjnukr; )+ =

Changing the order of integration one obtains

o0

sin kr (7 T du

w \/T2+4T (u—w)(T —u)
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The last integral is a half of the residue at infinity

/T du
=
w (u—w)(T —u)
and kr( -
sin kr( . 7r
m =7 z sin(kr)dr = 7, €08 kL,

Here 1, is the minimal value of r corresponding to ug

1 1
2 2
or )
2coshl, = A+ 3= Tr g
i.e. [, is the length of periodic orbit associated with the matrix g.
Therefore
In A2 10
dy(E) = 0 kl, = ——>——— coskl
o(F) o2rkv A+ N1 — COS 47Tk:smhlp/2 o8
where 11(70) is the length of the primitive periodic orbit associated with gg.

Combining all terms together one finds that the eigenvalues density of the
Laplace—Beltrami operator automorphic with respect to a discrete group with
only hyperbolic matrices has the form

(D cos(knl,)
d tanh 7wk
(E) = anhrh Z 47rk: Z sinh( nlp/2

P-p.o.

The oscillating part of the density is given by the double sum. The first sum-
mation is done over all primitive periodic orbits (p.p.o.) and the second sum is
performed over all repetitions of these orbits. Here & is the momentum related
with the energy by F = k? + 1/4.

To obtain mathematically sound formula and to avoid problems with con-
vergence it is common to multiply both parts of the above equality by a test
function h(k) and to integrate over dE = 2kdk. To assume the convergence
the test function h(r) should have the following properties

)
e The function h(r) is a function analytical in the region |Im 7| < 1/24§
with certain § > 0

h(=r) = h(r).
h(r)] < AL+ [r)) 7270

The left hand side of the above equation is

/d(E)h(k:)dE = 0(E = Ep)h(k)dE = h(ky) .

n
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In the right hand side one obtains

. 1 SS] )
/ h(k)c‘;;:lkdk == / h(k)e *ldE .

The final formula takes the form

> h(kn) = %f) /Oo kh(k) tanh(rk)dk

+ Z 72 2 sinh( nl »/2) 9(nty) (29)

p.p.o.
where k,, is related with eigenvalue E,, as follows
1

E, =k + =

and g(!) is the Fourier transform of h(k)

1 [ :
= — / h(k)e *dk .
21 J_ o

This is the famous Selberg trace formula. It connects eigenvalues of the
Laplace—Beltrami operator for functions automorphic with respect to a dis-
crete group having only hyperbolic elements with classical periodic orbits.

2.9 Density of Periodic Orbits

To find the density of periodic orbits for a discrete group let us choose the
test function A(r) in (29) as

h(r) = ef(r2+1/4)T — o BT

with a parameter T > 0. Its Fourier transforms is

: /OC h(kye- g — St g a
u) = — e =——¢ :
M =57 | M 2T

In the left hand side of the Selberg trace formula one obtains
n E,>0

where we take into account that for any discrete group there is one zero
eigenvalue corresponding to a constant eigenfunction. Therefore when T' — oo
the above sum tends to one

S
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One can easily check that in the right hand side of (29) the contribution of
the smooth part of the density goes to zero at large T" and the contribution
of periodic orbits is important only for primitive periodic orbits with n = 1.
The latter is

o T/4 o—T/4

l e—lg/4T—zp/2 _ le—l2/4T—l/2 Ndl
2vnT zp: b 2vaT Jo Pl
where p(l) is the density of periodic orbits. Hence the Selberg trace formula
states that
o T/4
lim
T—oo 2/ Jo
Assume that p(l) = be? /I with certain constants a and b. Then from the
above limit it follows that a = b = 1 which demonstrates that the density of
periodic orbits for a discrete group increases exponentially with the length

le P/AT=12p(dl =1 .

2.10 Selberg Zeta Function

Among many applications of the Selberg trace formula let us consider the
construction of the Selberg zeta function.
Choose as test function h(k) the function

1 1

h(k) = — .
( ) k2+a2 k2+52
Its Fourier transform is
1 1
)= —ealll — — =8l
g(l) = 5 53¢

The Selberg trace formula gives

S 1
N\ va® RrP
:M/ ktanhwk< o1 >dk

27 ) k24+a?2 k2452
= lp e % Bl
+pzp; nz::l 2sinhnl, /2 ( 220 28 )

The Selberg zeta function is defined as the following formal product

Z(s) =[] ﬁu—e*lﬁﬁm)). (30)

p.p.o m=0
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One has
1dz Ip( o
Zds Zzlfe—l(sﬂw ZZZZG (stm)
p.p.o. m=0 p.p.o. n=1m=0
=2 ! Z =D Z%mhnl ¢ e len(s—1/2)
p-p-0. n=1 p.p.o. n=

Choose « = s —1/2 and § = s’ — 1/2 then

; (k% + (81— 1/2)2 K2+ (8’1— 1/2)2>

_ WD) [ 1 1
= ?/_Ooktanhwk <k2+(51/2)2 - k2+(s’1/2)2>dk
1 Z(s) 1 Z(sY

+2$—IZ(5) 2s' =1 Z(s') °

The integral in the right hand side can be computed by the residues

> 1 1 /
/ k tanh 7k <k2+ PRy TR e 1/2)2) dk = f(s) = f(5')

— 00

where f(s) is the sum over residues from one pole k = i(s — 1/2) and from
poles k, = i(n+ 1/2) of tanh 7k

oo

N . i n+1/2
f(s) = 2xi [Qtanh[m(s—lﬂ)]—l—ﬂ_z = 1

1/2)2 — (n+1/2)?

n=0
=1 =1
= Tcot s — .
mecot s Zs—n+zs+n
n=1 n=1
But - -
1 1
t =
Teobms Zs—n+zs—|—n’
n=1 n=1
therefore
=1
=2 .
f(s) ;Hn

Using these relations one gets the identity valid for all values of s and s’

1 Z'(s) 1 Z'(s) H(D)i( 11 >

2s —1 Z(s) _28’—1Z(s’) Cor s+n s +n

1
+Z(k2 +(s—1/2)2 k%+(5’1/2)2) . (31)
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The right hand side of this identity has poles at s = 1/2 4+ ik,, and s = —n.
The same poles have to be present in the left hand side. If
Z'(s) Vg
—
Z(s) s — Sk

then
Z(s) — (s — sg)” when s — s .

When v > 0 (resp. v < 0) point s is a zero (resp. a pole) of the Selberg
zeta function Z(s).

2.11 Zeros of the Selberg Zeta Function

Combining all poles one concludes that the Selberg zeta function for a group
with only hyperbolic elements have two different sets of zero. The first consists
of non-trivial zeros

s=1/2 % iky,

coming from eigenvalues of the Laplace—Beltrami operator for automorphic
functions. The second set includes a zero from E = 0 eigenvalue and zeros
from the smooth term. These zeros are called trivial zeros and they are located
at points

s=-m (m=1,2,...)

with multiplicity v, = (2m + 1)u(D)/27, at point s = 0 with multiplicity
vo = pu(D)/27 and a single zero at s = 1. These multiplicities are integers
because the area of a compact fundamental domain p(D) = 4nw(g — 1) where
g is the genus of the surface.

The structure of these zeros is presented schematically at Fig. 5.

trivial zeros non-trivial zeros

Fig. 5. Zeros of the Selberg zeta function
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2.12 Functional Equation

The infinite product defining the Selberg zeta function (30) converges only
when Re s > 1/2. Nevertheless the Selberg zeta function can be analytically
continued to the whole complex plane s with the aid of (31).

Put ' =1 — s in (31). The sum over eigenvalues cancels and f(s) — f(1 —
s) = 2w cot ws. Therefore

L (70) Z0-5)) _ uD)
25— 1 (Z(s) + 2(13)) =g cotms

which is equivalent to the following relation (called functional equation)
Z(s) = ¢(s)Z(1 - s) (32)

where

and ¢(1/2) = 1.
Explicitly

s—1/2
o(s) = exp (u(D)/O utan 7rudu> .

Therefore if one knows the Selberg zeta function when Re s > 1 (32) gives its
continuation to the mirror region Re s < 0.

3 Trace Formulas for Integrable Dynamical Systems

A f-dimensional system is called integrable if its classical Hamiltonian can be
written as a function of action variables only

H(I)=H(L,...,If) .

In this representation the classical equations of motion take especially simple

form
om_ - _oH

0 = —

0e 0 PT a1

The semiclassical quantization consists of fixing the values of the action vari-
ables

i=

=w.

Ij = h(n; + %)

where n; are integers and p; are called the Maslov indices.
In this approximation eigenvalues of energy of the system are a function
of these integers

Em)=H (h(m + %), o hng + %)) .
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The eigenvalue density is the sum over all integers n;
1
d(F) = O(FE —H(h - .
(E) §n ( (A(n+ 7 p))

Using the Poisson summation formula (5) one transforms this expression as
follows

d(E) = Z/e2mNn5(E — H(h(n + iu))dn
N
= g e et o mapar @)

where the summation is taken over f integers IV;.

3.1 Smooth Part of the Density

The term with N = 0 in (33) corresponds to the smooth part of the density

d(E) = % /6(E — H(I))dI.

As dIde is the canonical invariant, dIde = dpdq where p and q are the
momenta and coordinates and, because [d¢ = (27)/, the formula for the
smooth part of the level density can be rewritten in the Thomas-Fermi form

: dpdq

aE) = [ 68~ Hp.a) ot (34)
The usual interpretation of this formula is that each quantum state occu-
pies (27h)f volume on the constant energy surface. For general systems (34)
represents the leading term of the expansion of the smooth part of the level
density when /& — 0. Other terms can be found e.g. in [5]. See also [14] for the
resummation of such series for certain models.

3.2 Oscillating Part of the Density

In the semiclassical approximation i — 0 terms with N # 0 in (33) can be
calculated by the saddle point method. Our derivation differs slightly from
the one given in [9]. First it is convenient to represent J-function as follows

1 oo

o(z) = Py elor/hdq
—o0

Then ) -
osc _ —imTNp/2 iS(I,a)/h
N

— 00
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where the effective action, S(I, «), is
S(I,a) =27NI+ o(E — H(I)) .

The integration over I and « can be performed by the saddle point method.
The saddle point values, I, and asp, are determined from equations

a8 oS
D =FE—-H(I,,)=0, i
The first equation shows that in the leading approximation I, belongs to the
constant energy surface and the second equation selects special values of I,
for which frequencies w; are commensurable
2w

Qsp

= 27N — agwep = 0.

N.

wsp ES

Together the saddle point conditions demonstrate that in the limit 2 — 0 the
dominant contribution to the term with fixed integer vector N comes from
the classical periodic orbit with period

T), = agp

and the saddle point action coincides with the classical action along this tra-

jectory
Ssp = 2mNIy, .

To compute remaining integrals it is necessary to expand the full action up
to quadratic terms on deviations from the saddle point values. One has

T,
S(Isp + 51, asp —+ 5&) = Ssp + ?p((SIZH”(SIJ) - 5a(wj5]j)

where the summation over repeating indexes is assumed. H;; is the matrix of
the second derivatives of the Hamiltonian computed at the saddle point

0*H |
oLor; "=t

The follo